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1. Introduction

06Z2 For any scheme X the category QCoh(OX) of quasi-coherent modules is abelian
and a weak Serre subcategory of the abelian category of all OX -modules. The same
thing works for the category of quasi-coherent modules on an algebraic space X
viewed as a subcategory of the category of all OX -modules on the small étale site
of X. Moreover, for a quasi-compact and quasi-separated morphism f : X → Y
the pushforward f∗ and higher direct images preserve quasi-coherence.
Next, let X be a scheme and let O be the structure sheaf on one of the big sites
of X, say, the big fppf site. The category of quasi-coherent O-modules is abelian
(in fact it is equivalent to the category of usual quasi-coherent OX -modules on the
scheme X we mentioned above) but its imbedding into Mod(O) is not exact. An
example is the map of quasi-coherent modules

OA1
k

−→ OA1
k

on A1
k = Spec(k[x]) given by multiplication by x. In the abelian category of

quasi-coherent sheaves this map is injective, whereas in the abelian category of
all O-modules on the big site of A1

k this map has a nontrivial kernel as we see
by evaluating on sections over Spec(k[x]/(x)) = Spec(k). Moreover, for a quasi-
compact and quasi-separated morphism f : X → Y the functor fbig,∗ does not
preserve quasi-coherence.
In this chapter we introduce the category of what we will call adequate modules,
closely related to quasi-coherent modules, which “fixes” the two problems mentioned
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above. Another solution, which we will implement when we talk about quasi-
coherent modules on algebraic stacks, is to consider O-modules which are locally
quasi-coherent and satisfy the flat base change property. See Cohomology of Stacks,
Section 8, Cohomology of Stacks, Remark 10.7, and Derived Categories of Stacks,
Section 5.

2. Conventions

06Z3 In this chapter we fix τ ∈ {Zar, étale, smooth, syntomic, fppf} and we fix a big
τ -site Schτ as in Topologies, Section 2. All schemes will be objects of Schτ . In
particular, given a scheme S we obtain sites (Aff/S)τ ⊂ (Sch/S)τ . The structure
sheaf O on these sites is defined by the rule O(T ) = Γ(T,OT ).
All rings A will be such that Spec(A) is (isomorphic to) an object of Schτ . Given a
ring A we denote AlgA the category of A-algebras whose objects are the A-algebras
B of the form B = Γ(U,OU ) where S is an affine object of Schτ . Thus given an
affine scheme S = Spec(A) the functor

(Aff/S)τ −→ AlgA, U 7−→ O(U)
is an equivalence.

3. Adequate functors

06US In this section we discuss a topic closely related to direct images of quasi-coherent
sheaves. Most of this material was taken from the paper [Jaf97].

Definition 3.1.06Z4 Let A be a ring. A module-valued functor is a functor F : AlgA →
Ab such that

(1) for every object B of AlgA the group F (B) is endowed with the structure
of a B-module, and

(2) for any morphism B → B′ of AlgA the map F (B) → F (B′) is B-linear.
A morphism of module-valued functors is a transformation of functors φ : F → G
such that F (B) → G(B) is B-linear for all B ∈ Ob(AlgA).

Let S = Spec(A) be an affine scheme. The category of module-valued functors on
AlgA is equivalent to the category PMod((Aff/S)τ ,O) of presheaves of O-modules.
The equivalence is given by the rule which assigns to the module-valued functor
F the presheaf F defined by the rule F(U) = F (O(U)). This is clear from the
equivalence (Aff/S)τ → AlgA, U 7→ O(U) given in Section 2. The quasi-inverse
sets F (B) = F(Spec(B)).
An important special case of a module-valued functor comes about as follows. Let
M be an A-module. Then we will denote M the module-valued functor B 7→
M ⊗A B (with obvious B-module structure). Note that if M → N is a map of A-
modules then there is an associated morphism M → N of module-valued functors.
Conversely, any morphism of module-valued functors M → N comes from an A-
module map M → N as the reader can see by evaluating on B = A. In other words
ModA is a full subcategory of the category of module-valued functors on AlgA.
Given and A-module map φ : M → N then Coker(M → N) = Q where Q =
Coker(M → N) because ⊗ is right exact. But this isn’t the case for the kernel in
general: for example an injective map of A-modules need not be injective after base
change. Thus the following definition makes sense.

https://stacks.math.columbia.edu/tag/06Z4
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Definition 3.2.06UT Let A be a ring. A module-valued functor F on AlgA is called
(1) adequate if there exists a map of A-modules M → N such that F is iso-

morphic to Ker(M → N).
(2) linearly adequate if F is isomorphic to the kernel of a map A⊕n → A⊕m.

Note that F is adequate if and only if there exists an exact sequence 0 → F →
M → N and F is linearly adequate if and only if there exists an exact sequence
0 → F → A⊕n → A⊕m.
Let A be a ring. In this section we will show the category of adequate functors
on AlgA is abelian (Lemmas 3.10 and 3.11) and has a set of generators (Lemma
3.6). We will also see that it is a weak Serre subcategory of the category of all
module-valued functors on AlgA (Lemma 3.16) and that it has arbitrary colimits
(Lemma 3.12).
Lemma 3.3.06UU Let A be a ring. Let F be an adequate functor on AlgA. If B =
colimBi is a filtered colimit of A-algebras, then F (B) = colimF (Bi).
Proof. This holds because for any A-module M we have M ⊗A B = colimM ⊗A

Bi (see Algebra, Lemma 12.9) and because filtered colimits commute with exact
sequences, see Algebra, Lemma 8.8. □

Remark 3.4.06UV Consider the category Algfp,A whose objects are A-algebras B of
the form B = A[x1, . . . , xn]/(f1, . . . , fm) and whose morphisms are A-algebra maps.
Every A-algebra B is a filtered colimit of finitely presented A-algebra, i.e., a filtered
colimit of objects of Algfp,A. By Lemma 3.3 we conclude every adequate functor
F is determined by its restriction to Algfp,A. For some questions we can therefore
restrict to functors on Algfp,A. For example, the category of adequate functors does
not depend on the choice of the big τ -site chosen in Section 2.
Lemma 3.5.06UW Let A be a ring. Let F be an adequate functor on AlgA. If B → B′

is flat, then F (B) ⊗B B′ → F (B′) is an isomorphism.
Proof. Choose an exact sequence 0 → F → M → N . This gives the diagram

0 // F (B) ⊗B B′ //

��

(M ⊗A B) ⊗B B′ //

��

(N ⊗A B) ⊗B B′

��
0 // F (B′) // M ⊗A B′ // N ⊗A B′

where the rows are exact (the top one because B → B′ is flat). Since the right two
vertical arrows are isomorphisms, so is the left one. □

Lemma 3.6.06UX Let A be a ring. Let F be an adequate functor on AlgA. Then there
exists a surjection L → F with L a direct sum of linearly adequate functors.
Proof. Choose an exact sequence 0 → F → M → N where M → N is given by
φ : M → N . By Lemma 3.3 it suffices to construct L → F such that L(B) → F (B)
is surjective for every finitely presented A-algebra B. Hence it suffices to construct,
given a finitely presented A-algebra B and an element ξ ∈ F (B) a map L → F
with L linearly adequate such that ξ is in the image of L(B) → F (B). (Because
there is a set worth of such pairs (B, ξ) up to isomorphism.)
To do this write

∑
i=1,...,n mi ⊗ bi the image of ξ in M(B) = M ⊗A B. We know

that
∑
φ(mi) ⊗ bi = 0 in N ⊗A B. As N is a filtered colimit of finitely presented

https://stacks.math.columbia.edu/tag/06UT
https://stacks.math.columbia.edu/tag/06UU
https://stacks.math.columbia.edu/tag/06UV
https://stacks.math.columbia.edu/tag/06UW
https://stacks.math.columbia.edu/tag/06UX
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A-modules, we can find a finitely presented A-module N ′, a commutative diagram
of A-modules

A⊕n //

m1,...,mn

��

N ′

��
M // N

such that (b1, . . . , bn) maps to zero in N ′ ⊗A B. Choose a presentation A⊕l →
A⊕k → N ′ → 0. Choose a lift A⊕n → A⊕k of the map A⊕n → N ′ of the diagram.
Then we see that there exist (c1, . . . , cl) ∈ B⊕l such that (b1, . . . , bn, c1, . . . , cl) maps
to zero in B⊕k under the map B⊕n ⊕ B⊕l → B⊕k. Consider the commutative
diagram

A⊕n ⊕A⊕l //

��

A⊕k

��
M // N

where the left vertical arrow is zero on the summand A⊕l. Then we see that L equal
to the kernel of A⊕n+l → A⊕k works because the element (b1, . . . , bn, c1, . . . , cl) ∈
L(B) maps to ξ. □

Consider a graded A-algebra B =
⊕

d≥0 Bd. Then there are two A-algebra maps
p, a : B → B[t, t−1], namely p : b 7→ b and a : b 7→ tdeg(b)b where b is homogeneous.
If F is a module-valued functor on AlgA, then we define

(3.6.1)06UY F (B)(k) = {ξ ∈ F (B) | tkF (p)(ξ) = F (a)(ξ)}.

For functors which behave well with respect to flat ring extensions this gives a
direct sum decomposition. This amounts to the fact that representations of Gm

are completely reducible.

Lemma 3.7.06UZ Let A be a ring. Let F be a module-valued functor on AlgA. Assume
that for B → B′ flat the map F (B) ⊗B B′ → F (B′) is an isomorphism. Let B be
a graded A-algebra. Then

(1) F (B) =
⊕

k∈Z F (B)(k), and
(2) the map B → B0 → B induces map F (B) → F (B) whose image is con-

tained in F (B)(0).

Proof. Let x ∈ F (B). The map p : B → B[t, t−1] is free hence we know that

F (B[t, t−1]) =
⊕

k∈Z
F (p)(F (B)) · tk =

⊕
k∈Z

F (B) · tk

as indicated we drop the F (p) in the rest of the proof. Write F (a)(x) =
∑
tkxk for

some xk ∈ F (B). Denote ϵ : B[t, t−1] → B the B-algebra map t 7→ 1. Note that
the compositions ϵ◦p, ϵ◦a : B → B[t, t−1] → B are the identity. Hence we see that

x = F (ϵ)(F (a)(x)) = F (ϵ)(
∑

tkxk) =
∑

xk.

https://stacks.math.columbia.edu/tag/06UZ
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On the other hand, we claim that xk ∈ F (B)(k). Namely, consider the commutative
diagram

B
a

//

a′

��

B[t, t−1]

f

��
B[s, s−1] g // B[t, s, t−1, s−1]

where a′(b) = sdeg(b)b, f(b) = b, f(t) = st and g(b) = tdeg(b)b and g(s) = s. Then

F (g)(F (a′))(x) = F (g)(
∑

skxk) =
∑

skF (a)(xk)

and going the other way we see

F (f)(F (a))(x) = F (f)(
∑

tkxk) =
∑

(st)kxk.

Since B → B[s, t, s−1, t−1] is free we see that F (B[t, s, t−1, s−1]) =
⊕

k,l∈Z F (B) ·
tksl and comparing coefficients in the expressions above we find F (a)(xk) = tkxk

as desired.
Finally, the image of F (B0) → F (B) is contained in F (B)(0) because B0 → B

a−→
B[t, t−1] is equal to B0 → B

p−→ B[t, t−1]. □

As a particular case of Lemma 3.7 note that
M(B)(k) = M ⊗A Bk

where Bk is the degree k part of the graded A-algebra B.

Lemma 3.8.06V0 Let A be a ring. Given a solid diagram

0 // L

φ

��

// A⊕n //

}}

A⊕m

M

of module-valued functors on AlgA with exact row there exists a dotted arrow making
the diagram commute.

Proof. Suppose that the map A⊕n → A⊕m is given by them×n-matrix (aij). Con-
sider the ring B = A[x1, . . . , xn]/(

∑
aijxj). The element (x1, . . . , xn) ∈ A⊕n(B)

maps to zero in A⊕m(B) hence is the image of a unique element ξ ∈ L(B). Note that
ξ has the following universal property: for any A-algebra C and any ξ′ ∈ L(C) there
exists an A-algebra map B → C such that ξ maps to ξ′ via the map L(B) → L(C).
Note that B is a graded A-algebra, hence we can use Lemmas 3.7 and 3.5 to
decompose the values of our functors on B into graded pieces. Note that ξ ∈
L(B)(1) as (x1, . . . , xn) is an element of degree one in A⊕n(B). Hence we see that
φ(ξ) ∈ M(B)(1) = M ⊗A B1. Since B1 is generated by x1, . . . , xn as an A-module
we can write φ(ξ) =

∑
mi ⊗ xi. Consider the map A⊕n → M which maps the

ith basis vector to mi. By construction the associated map A⊕n → M maps the
element ξ to φ(ξ). It follows from the universal property mentioned above that the
diagram commutes. □

Lemma 3.9.06V1 Let A be a ring. Let φ : F → M be a map of module-valued functors
on AlgA with F adequate. Then Coker(φ) is adequate.

https://stacks.math.columbia.edu/tag/06V0
https://stacks.math.columbia.edu/tag/06V1
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Proof. By Lemma 3.6 we may assume that F =
⊕
Li is a direct sum of linearly

adequate functors. Choose exact sequences 0 → Li → A⊕ni → A⊕mi . For each i
choose a map A⊕ni → M as in Lemma 3.8. Consider the diagram

0 //⊕Li
//

��

⊕
A⊕ni //

zz

⊕
A⊕mi

M

Consider the A-modules

Q = Coker(
⊕

A⊕ni → M⊕
⊕

A⊕mi) and P = Coker(
⊕

A⊕ni →
⊕

A⊕mi).

Then we see that Coker(φ) is isomorphic to the kernel of Q → P . □

Lemma 3.10.06V2 Let A be a ring. Let φ : F → G be a map of adequate functors on
AlgA. Then Coker(φ) is adequate.

Proof. Choose an injection G → M . Then we have an injection G/F → M/F . By
Lemma 3.9 we see that M/F is adequate, hence we can find an injection M/F → N .
Composing we obtain an injection G/F → N . By Lemma 3.9 the cokernel of the
induced map G → N is adequate hence we can find an injection N/G → K. Then
0 → G/F → N → K is exact and we win. □

Lemma 3.11.06V3 Let A be a ring. Let φ : F → G be a map of adequate functors on
AlgA. Then Ker(φ) is adequate.

Proof. Choose an injection F → M and an injection G → N . Denote F → M ⊕N
the diagonal map so that

F

��

// G

��
M ⊕N // N

commutes. By Lemma 3.10 we can find a module map M ⊕ N → K such that F
is the kernel of M ⊕N → K. Then Ker(φ) is the kernel of M ⊕N → K ⊕N . □

Lemma 3.12.06V4 Let A be a ring. An arbitrary direct sum of adequate functors on
AlgA is adequate. A colimit of adequate functors is adequate.

Proof. The statement on direct sums is immediate. A general colimit can be
written as a kernel of a map between direct sums, see Categories, Lemma 14.12.
Hence this follows from Lemma 3.11. □

Lemma 3.13.06V5 Let A be a ring. Let F,G be module-valued functors on AlgA. Let
φ : F → G be a transformation of functors. Assume

(1) φ is additive,
(2) for every A-algebra B and ξ ∈ F (B) and unit u ∈ B∗ we have φ(uξ) =

uφ(ξ) in G(B), and
(3) for any flat ring map B → B′ we have G(B) ⊗B B′ = G(B′).

Then φ is a morphism of module-valued functors.

https://stacks.math.columbia.edu/tag/06V2
https://stacks.math.columbia.edu/tag/06V3
https://stacks.math.columbia.edu/tag/06V4
https://stacks.math.columbia.edu/tag/06V5
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Proof. Let B be an A-algebra, ξ ∈ F (B), and b ∈ B. We have to show that
φ(bξ) = bφ(ξ). Consider the ring map

B → B′ = B[x, y, x−1, y−1]/(x+ y − b).
This ring map is faithfully flat, hence G(B) ⊂ G(B′). On the other hand
φ(bξ) = φ((x+ y)ξ) = φ(xξ) + φ(yξ) = xφ(ξ) + yφ(ξ) = (x+ y)φ(ξ) = bφ(ξ)

because x, y are units in B′. Hence we win. □

Lemma 3.14.06V6 Let A be a ring. Let 0 → M → G → L → 0 be a short exact
sequence of module-valued functors on AlgA with L linearly adequate. Then G is
adequate.

Proof. We first point out that for any flat A-algebra map B → B′ the map
G(B) ⊗B B′ → G(B′) is an isomorphism. Namely, this holds for M and L, see
Lemma 3.5 and hence follows for G by the five lemma. In particular, by Lemma
3.7 we see that G(B) =

⊕
k∈Z G(B)(k) for any graded A-algebra B.

Choose an exact sequence 0 → L → A⊕n → A⊕m. Suppose that the map
A⊕n → A⊕m is given by the m × n-matrix (aij). Consider the graded A-algebra
B = A[x1, . . . , xn]/(

∑
aijxj). The element (x1, . . . , xn) ∈ A⊕n(B) maps to zero

in A⊕m(B) hence is the image of a unique element ξ ∈ L(B). Observe that
ξ ∈ L(B)(1). The map

HomA(B,C) −→ L(C), f 7−→ L(f)(ξ)
defines an isomorphism of functors. The reason is that f is determined by the
images ci = f(xi) ∈ C which have to satisfy the relations

∑
aijcj = 0. And L(C)

is the set of n-tuples (c1, . . . , cn) satisfying the relations
∑
aijcj = 0.

Since the value of each of the functors M , G, L on B is a direct sum of its weight
spaces (by the lemma mentioned above) exactness of 0 → M → G → L → 0
implies the sequence 0 → M(B)(1) → G(B)(1) → L(B)(1) → 0 is exact. Thus we
may choose an element θ ∈ G(B)(1) mapping to ξ.
Consider the graded A-algebra

C = A[x1, . . . , xn, y1, . . . , yn]/(
∑

aijxj ,
∑

aijyj)

There are three graded A-algebra homomorphisms p1, p2,m : B → C defined by
the rules

p1(xi) = xi, p1(xi) = yi, m(xi) = xi + yi.

We will show that the element
τ = G(m)(θ) −G(p1)(θ) −G(p2)(θ) ∈ G(C)

is zero. First, τ maps to zero in L(C) by a direct calculation. Hence τ is an
element of M(C). Moreover, since m, p1, p2 are graded algebra maps we see that
τ ∈ G(C)(1) and since M ⊂ G we conclude

τ ∈ M(C)(1) = M ⊗A C1.

We may write uniquely τ = M(p1)(τ1) +M(p2)(τ2) with τi ∈ M ⊗A B1 = M(B)(1)

because C1 = p1(B1) ⊕ p2(B1). Consider the ring map q1 : C → B defined by
xi 7→ xi and yi 7→ 0. Then M(q1)(τ) = M(q1)(M(p1)(τ1) + M(p2)(τ2)) = τ1. On
the other hand, because q1◦m = q1◦p1 we see that G(q1)(τ) = −G(q1◦p2)(τ). Since

https://stacks.math.columbia.edu/tag/06V6
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q1 ◦ p2 factors as B → A → B we see that G(q1 ◦ p2)(τ) is in G(B)(0), see Lemma
3.7. Hence τ1 = 0 because it is in G(B)(0) ∩ M(B)(1) ⊂ G(B)(0) ∩ G(B)(1) = 0.
Similarly τ2 = 0, whence τ = 0.

Since θ ∈ G(B) we obtain a transformation of functors

ψ : L(−) = HomA(B,−) −→ G(−)

by mapping f : B → C to G(f)(θ). Since θ is a lift of ξ the map ψ is a right inverse
of G → L. In terms of ψ the statements proved above have the following meaning:
τ = 0 means that ψ is additive and θ ∈ G(B)(1) implies that for any A-algebra D
we have ψ(ul) = uψ(l) in G(D) for l ∈ L(D) and u ∈ D∗ a unit. This implies that
ψ is a morphism of module-valued functors, see Lemma 3.13. Clearly this implies
that G ∼= M ⊕ L and we win. □

Remark 3.15.06V7 Let A be a ring. The proof of Lemma 3.14 shows that any extension
0 → M → E → L → 0 of module-valued functors on AlgA with L linearly adequate
splits. It uses only the following properties of the module-valued functor F = M :

(1) F (B) ⊗B B′ → F (B′) is an isomorphism for a flat ring map B → B′, and
(2) F (C)(1) = F (p1)(F (B)(1))⊕F (p2)(F (B)(1)) whereB = A[x1, . . . , xn]/(

∑
aijxj)

and C = A[x1, . . . , xn, y1, . . . , yn]/(
∑
aijxj ,

∑
aijyj).

These two properties hold for any adequate functor F ; details omitted. Hence we
see that L is a projective object of the abelian category of adequate functors.

Lemma 3.16.06V8 Let A be a ring. Let 0 → F → G → H → 0 be a short exact
sequence of module-valued functors on AlgA. If F and H are adequate, so is G.

Proof. Choose an exact sequence 0 → F → M → N . If we can show that
(M ⊕ G)/F is adequate, then G is the kernel of the map of adequate functors
(M ⊕G)/F → N , hence adequate by Lemma 3.11. Thus we may assume F = M .

We can choose a surjection L → H where L is a direct sum of linearly adequate
functors, see Lemma 3.6. If we can show that the pullback G×HL is adequate, then
G is the cokernel of the map Ker(L → H) → G ×H L hence adequate by Lemma
3.10. Thus we may assume that H =

⊕
Li is a direct sum of linearly adequate

functors. By Lemma 3.14 each of the pullbacks G ×H Li is adequate. By Lemma
3.12 we see that

⊕
G×H Li is adequate. Then G is the cokernel of⊕

i ̸=i′
F −→

⊕
G×H Li

where ξ in the summand (i, i′) maps to (0, . . . , 0, ξ, 0, . . . , 0,−ξ, 0, . . . , 0) with nonzero
entries in the summands i and i′. Thus G is adequate by Lemma 3.10. □

Lemma 3.17.06V9 Let A → A′ be a ring map. If F is an adequate functor on AlgA,
then its restriction F ′ to AlgA′ is adequate too.

Proof. Choose an exact sequence 0 → F → M → N . Then F ′(B′) = F (B′) =
Ker(M ⊗A B

′ → N ⊗A B
′). Since M ⊗A B

′ = M ⊗A A
′ ⊗A′ B′ and similarly for N

we see that F ′ is the kernel of M ⊗A A′ → N ⊗A A′. □

Lemma 3.18.06VA Let A → A′ be a ring map. If F ′ is an adequate functor on AlgA′ ,
then the module-valued functor F : B 7→ F ′(A′ ⊗A B) on AlgA is adequate too.

https://stacks.math.columbia.edu/tag/06V7
https://stacks.math.columbia.edu/tag/06V8
https://stacks.math.columbia.edu/tag/06V9
https://stacks.math.columbia.edu/tag/06VA
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Proof. Choose an exact sequence 0 → F ′ → M ′ → N ′. Then

F (B) = F ′(A′ ⊗A B)
= Ker(M ′ ⊗A′ (A′ ⊗A B) → N ′ ⊗A′ (A′ ⊗A B))
= Ker(M ′ ⊗A B → N ′ ⊗A B)

Thus F is the kernel of M → N where M = M ′ and N = N ′ viewed as A-
modules. □

Lemma 3.19.06VB Let A = A1 × . . .×An be a product of rings. An adequate functor
over A is the same thing as a sequence F1, . . . , Fn of adequate functors Fi over Ai.

Proof. This is true because an A-algebra B is canonically a product B1 × . . .×Bn

and the same thing holds for A-modules. Setting F (B) =
∐
Fi(Bi) gives the

correspondence. Details omitted. □

Lemma 3.20.06VH Let A → A′ be a ring map and let F be a module-valued functor
on AlgA such that

(1) the restriction F ′ of F to the category of A′-algebras is adequate, and
(2) for any A-algebra B the sequence

0 → F (B) → F (B ⊗A A′) → F (B ⊗A A′ ⊗A A′)

is exact.
Then F is adequate.

Proof. The functors B → F (B ⊗A A
′) and B 7→ F (B ⊗A A

′ ⊗A A
′) are adequate,

see Lemmas 3.18 and 3.17. Hence F as a kernel of a map of adequate functors is
adequate, see Lemma 3.11. □

4. Higher exts of adequate functors

06Z5 Let A be a ring. In Lemma 3.16 we have seen that any extension of adequate
functors in the category of module-valued functors on AlgA is adequate. In this
section we show that the same remains true for higher ext groups.

Lemma 4.1.06Z6 Let A be a ring. For every module-valued functor F on AlgA there
exists a morphism Q(F ) → F of module-valued functors on AlgA such that (1)
Q(F ) is adequate and (2) for every adequate functor G the map Hom(G,Q(F )) →
Hom(G,F ) is a bijection.

Proof. Choose a set {Li}i∈I of linearly adequate functors such that every linearly
adequate functor is isomorphic to one of the Li. This is possible. Suppose that we
can find Q(F ) → F with (1) and (2)’ or every i ∈ I the map Hom(Li, Q(F )) →
Hom(Li, F ) is a bijection. Then (2) holds. Namely, combining Lemmas 3.6 and
3.11 we see that every adequate functor G sits in an exact sequence

K → L → G → 0

with K and L direct sums of linearly adequate functors. Hence (2)’ implies that
Hom(L,Q(F )) → Hom(L,F ) and Hom(K,Q(F )) → Hom(K,F ) are bijections,
whence the same thing for G.

https://stacks.math.columbia.edu/tag/06VB
https://stacks.math.columbia.edu/tag/06VH
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Consider the category I whose objects are pairs (i, φ) where i ∈ I and φ : Li → F
is a morphism. A morphism (i, φ) → (i′, φ′) is a map ψ : Li → Li′ such that
φ′ ◦ ψ = φ. Set

Q(F ) = colim(i,φ)∈Ob(I) Li

There is a natural map Q(F ) → F , by Lemma 3.12 it is adequate, and by construc-
tion it has property (2)’. □

Lemma 4.2.06Z7 Let A be a ring. Denote P the category of module-valued functors
on AlgA and A the category of adequate functors on AlgA. Denote i : A → P the
inclusion functor. Denote Q : P → A the construction of Lemma 4.1. Then

(1) i is fully faithful, exact, and its image is a weak Serre subcategory,
(2) P has enough injectives,
(3) the functor Q is a right adjoint to i hence left exact,
(4) Q transforms injectives into injectives,
(5) A has enough injectives.

Proof. This lemma just collects some facts we have already seen so far. Part
(1) is clear from the definitions, the characterization of weak Serre subcategories
(see Homology, Lemma 10.3), and Lemmas 3.10, 3.11, and 3.16. Recall that P
is equivalent to the category PMod((Aff/ Spec(A))τ ,O). Hence (2) by Injectives,
Proposition 8.5. Part (3) follows from Lemma 4.1 and Categories, Lemma 24.5.
Parts (4) and (5) follow from Homology, Lemmas 29.1 and 29.3. □

Let A be a ring. As in Formal Deformation Theory, Section 11 given an A-algebra B
and an B-module N we set B[N ] equal to the R-algebra with underlying B-module
B⊕N with multiplication given by (b,m)(b′,m′) = (bb′, bm′ + b′m). Note that this
construction is functorial in the pair (B,N) where morphism (B,N) → (B′, N ′) is
given by an A-algebra map B → B′ and an B-module map N → N ′. In some sense
the functor TF of pairs defined in the following lemma is the tangent space of F .
Below we will only consider pairs (B,N) such that B[N ] is an object of AlgA.

Lemma 4.3.06Z8 Let A be a ring. Let F be a module valued functor. For every
B ∈ Ob(AlgA) and B-module N there is a canonical decomposition

F (B[N ]) = F (B) ⊕ TF (B,N)

characterized by the following properties
(1) TF (B,N) = Ker(F (B[N ]) → F (B)),
(2) there is a B-module structure TF (B,N) compatible with B[N ]-module struc-

ture on F (B[N ]),
(3) TF is a functor from the category of pairs (B,N),
(4)06Z9 there are canonical maps N ⊗B F (B) → TF (B,N) inducing a transforma-

tion between functors defined on the category of pairs (B,N),
(5) TF (B, 0) = 0 and the map TF (B,N) → TF (B,N ′) is zero when N → N ′

is the zero map.

Proof. Since B → B[N ] → B is the identity we see that F (B) → F (B[N ]) is
a direct summand whose complement is TF (N,B) as defined in (1). This con-
struction is functorial in the pair (B,N) simply because given a morphism of pairs

https://stacks.math.columbia.edu/tag/06Z7
https://stacks.math.columbia.edu/tag/06Z8
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(B,N) → (B′, N ′) we obtain a commutative diagram

B′ // B′[N ′] // B′

B //

OO

B[N ] //

OO

B

OO

in AlgA. The B-module structure comes from the B[N ]-module structure and the
ring map B → B[N ]. The map in (4) is the composition

N ⊗B F (B) −→ B[N ] ⊗B[N ] F (B[N ]) −→ F (B[N ])

whose image is contained in TF (B,N). (The first arrow uses the inclusions N →
B[N ] and F (B) → F (B[N ]) and the second arrow is the multiplication map.) If
N = 0, then B = B[N ] hence TF (B, 0) = 0. If N → N ′ is zero then it factors as
N → 0 → N ′ hence the induced map is zero since TF (B, 0) = 0. □

Let A be a ring. Let M be an A-module. Then the module-valued functor M has
tangent space TM given by the rule TM(B,N) = N ⊗A M . In particular, for B
given, the functor N 7→ TM(B,N) is additive and right exact. It turns out this
also holds for injective module-valued functors.

Lemma 4.4.06ZA Let A be a ring. Let I be an injective object of the category of
module-valued functors. Then for any B ∈ Ob(AlgA) and short exact sequence
0 → N1 → N → N2 → 0 of B-modules the sequence

TI(B,N1) → TI(B,N) → TI(B,N2) → 0
is exact.

Proof. We will use the results of Lemma 4.3 without further mention. Denote
h : AlgA → Sets the functor given by h(C) = MorA(B[N ], C). Similarly for h1 and
h2. The map B[N ] → B[N2] corresponding to the surjection N → N2 is surjective.
It corresponds to a map h2 → h such that h2(C) → h(C) is injective for all A-
algebras C. On the other hand, there are two maps p, q : h → h1, corresponding to
the zero map N1 → N and the injection N1 → N . Note that

h2 // h
//
// h1

is an equalizer diagram. Denote Oh the module-valued functor C 7→
⊕

h(C) C.
Similarly for Oh1 and Oh2 . Note that

HomP(Oh, F ) = F (B[N ])
where P is the category of module-valued functors on AlgA. We claim there is an
equalizer diagram

Oh2
// Oh

//
// Oh1

in P. Namely, suppose that C ∈ Ob(AlgA) and ξ =
∑

i=1,...,n ci · fi where ci ∈ C

and fi : B[N ] → C is an element of Oh(C). If p(ξ) = q(ξ), then we see that∑
ci · fi ◦ z =

∑
ci · fi ◦ y

where z, y : B[N1] → B[N ] are the maps z : (b,m1) 7→ (b, 0) and y : (b,m1) 7→
(b,m1). This means that for every i there exists a j such that fj ◦z = fi ◦y. Clearly,
this implies that fi(N1) = 0, i.e., fi factors through a unique map f i : B[N2] → C.

https://stacks.math.columbia.edu/tag/06ZA
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Hence ξ is the image of ξ =
∑
ci ·f i. Since I is injective, it transforms this equalizer

diagram into a coequalizer diagram

I(B[N1]) //
// I(B[N ]) // I(B[N2])

This diagram is compatible with the direct sum decompositions I(B[N ]) = I(B) ⊕
TI(B,N) and I(B[Ni]) = I(B) ⊕ TI(B,Ni). The zero map N → N1 induces the
zero map TI(B,N) → TI(B,N1). Thus we see that the coequalizer property above
means we have an exact sequence TI(B,N1) → TI(B,N) → TI(B,N2) → 0 as
desired. □

Lemma 4.5.06ZB Let A be a ring. Let F be a module-valued functor such that for
any B ∈ Ob(AlgA) the functor TF (B,−) on B-modules transforms a short exact
sequence of B-modules into a right exact sequence. Then

(1) TF (B,N1 ⊕N2) = TF (B,N1) ⊕ TF (B,N2),
(2) there is a second functorial B-module structure on TF (B,N) defined by

setting x · b = TF (B, b · 1N )(x) for x ∈ TF (B,N) and b ∈ B,
(3)06ZC the canonical map N ⊗B F (B) → TF (B,N) of Lemma 4.3 is B-linear also

with respect to the second B-module structure,
(4)06ZD given a finitely presented B-module N there is a canonical isomorphism

TF (B,B) ⊗B N → TF (B,N) where the tensor product uses the second
B-module structure on TF (B,B).

Proof. We will use the results of Lemma 4.3 without further mention. The maps
N1 → N1 ⊕ N2 and N2 → N1 ⊕ N2 give a map TF (B,N1) ⊕ TF (B,N2) →
TF (B,N1 ⊕N2) which is injective since the maps N1 ⊕N2 → N1 and N1 ⊕N2 → N2
induce an inverse. Since TF is right exact we see that TF (B,N1) → TF (B,N1 ⊕
N2) → TF (B,N2) → 0 is exact. Hence TF (B,N1)⊕TF (B,N2) → TF (B,N1⊕N2)
is an isomorphism. This proves (1).
To see (2) the only thing we need to show is that x · (b1 + b2) = x · b1 + x · b2.
(Associativity and additivity are clear.) To see this consider

N
(b1,b2)−−−−→ N ⊕N

+−→ N

and apply TF (B,−).
Part (3) follows immediately from the fact that N ⊗B F (B) → TF (B,N) is func-
torial in the pair (B,N).
Suppose N is a finitely presented B-module. Choose a presentation B⊕m → B⊕n →
N → 0. This gives an exact sequence

TF (B,B⊕m) → TF (B,B⊕n) → TF (B,N) → 0
by right exactness of TF (B,−). By part (1) we can write TF (B,B⊕m) = TF (B,B)⊕m

and TF (B,B⊕n) = TF (B,B)⊕n. Next, suppose that B⊕m → B⊕n is given by the
matrix T = (bij). Then the induced map TF (B,B)⊕m → TF (B,B)⊕n is given by
the matrix with entries TF (B, bij · 1B). This combined with right exactness of ⊗
proves (4). □

Example 4.6.06ZE Let F be a module-valued functor as in Lemma 4.5. It is not
always the case that the two module structures on TF (B,N) agree. Here is an
example. Suppose A = Fp where p is a prime. Set F (B) = B but with B-module
structure given by b ·x = bpx. Then TF (B,N) = N with B-module structure given

https://stacks.math.columbia.edu/tag/06ZB
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by b · x = bpx for x ∈ N . However, the second B-module structure is given by
x · b = bx. Note that in this case the canonical map N ⊗B F (B) → TF (B,N) is
zero as raising an element n ∈ B[N ] to the pth power is zero.

In the following lemma we will frequently use the observation that if 0 → F → G →
H → 0 is an exact sequence of module-valued functors on AlgA, then for any pair
(B,N) the sequence 0 → TF (B,N) → TG(B,N) → TH(B,N) → 0 is exact. This
follows from the fact that 0 → F (B[N ]) → G(B[N ]) → H(B[N ]) → 0 is exact.

Lemma 4.7.06ZF Let A be a ring. For F a module-valued functor on AlgA say (∗) holds
if for all B ∈ Ob(AlgA) the functor TF (B,−) on B-modules transforms a short
exact sequence of B-modules into a right exact sequence. Let 0 → F → G → H → 0
be a short exact sequence of module-valued functors on AlgA.

(1) If (∗) holds for F,G then (∗) holds for H.
(2) If (∗) holds for F,H then (∗) holds for G.
(3) If H ′ → H is morphism of module-valued functors on AlgA and (∗) holds

for F , G, H, and H ′, then (∗) holds for G×H H ′.

Proof. Let B be given. Let 0 → N1 → N2 → N3 → 0 be a short exact sequence
of B-modules. Part (1) follows from a diagram chase in the diagram

0 // TF (B,N1) //

��

TG(B,N1) //

��

TH(B,N1) //

��

0

0 // TF (B,N2) //

��

TG(B,N2) //

��

TH(B,N2) //

��

0

0 // TF (B,N3) //

��

TG(B,N3) //

��

TH(B,N3) // 0

0 0

with exact horizontal rows and exact columns involving TF and TG. To prove part
(2) we do a diagram chase in the diagram

0 // TF (B,N1) //

��

TG(B,N1) //

��

TH(B,N1) //

��

0

0 // TF (B,N2) //

��

TG(B,N2) //

��

TH(B,N2) //

��

0

0 // TF (B,N3) //

��

TG(B,N3) // TH(B,N3) //

��

0

0 0

with exact horizontal rows and exact columns involving TF and TH. Part (3)
follows from part (2) as G×H H ′ sits in the exact sequence 0 → F → G×H H ′ →
H ′ → 0. □

https://stacks.math.columbia.edu/tag/06ZF
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Most of the work in this section was done in order to prove the following key
vanishing result.

Lemma 4.8.06ZG Let A be a ring. Let M , P be A-modules with P of finite presentation.
Then Exti

P(P ,M) = 0 for i > 0 where P is the category of module-valued functors
on AlgA.

Proof. Choose an injective resolution M → I• in P, see Lemma 4.2. By Derived
Categories, Lemma 27.2 any element of Exti

P(P ,M) comes from a morphism φ :
P → Ii with di ◦ φ = 0. We will prove that the Yoneda extension

E : 0 → M → I0 → . . . → Ii−1 ×Ker(di) P → P → 0
of P by M associated to φ is trivial, which will prove the lemma by Derived Cate-
gories, Lemma 27.5.
For F a module-valued functor on AlgA say (∗) holds if for all B ∈ Ob(AlgA) the
functor TF (B,−) on B-modules transforms a short exact sequence of B-modules
into a right exact sequence. Recall that the module-valued functors M, In, P each
have property (∗), see Lemma 4.4 and the remarks preceding it. By splitting 0 →
M → I• into short exact sequences we find that each of the functors Im(dn−1) =
Ker(dn) ⊂ In has property (∗) by Lemma 4.7 and also that Ii−1 ×Ker(di) P has
property (∗).
Thus we may assume the Yoneda extension is given as

E : 0 → M → Fi−1 → . . . → F0 → P → 0
where each of the module-valued functors Fj has property (∗). Set Gj(B) =
TFj(B,B) viewed as a B-module via the second B-module structure defined in
Lemma 4.5. Since TFj is a functor on pairs we see that Gj is a module-valued
functor on AlgA. Moreover, since E is an exact sequence the sequence Gj+1 →
Gj → Gj−1 is exact (see remark preceding Lemma 4.7). Observe that TM(B,B) =
M ⊗A B = M(B) and that the two B-module structures agree on this. Thus we
obtain a Yoneda extension

E′ : 0 → M → Gi−1 → . . . → G0 → P → 0
Moreover, the canonical maps

Fj(B) = B ⊗B Fj(B) −→ TFj(B,B) = Gj(B)
of Lemma 4.3 (4) are B-linear by Lemma 4.5 (3) and functorial in B. Hence a map

0 // M //

1
��

Fi−1 //

��

. . . // F0 //

��

P //

1
��

0

0 // M // Gi−1 // . . . // G0 // P // 0

of Yoneda extensions. In particular we see that E and E′ have the same class in
Exti

P(P ,M) by the lemma on Yoneda Exts mentioned above. Finally, let N be a
A-module of finite presentation. Then we see that

0 → TM(A,N) → TFi−1(A,N) → . . . → TF0(A,N) → TP (A,N) → 0
is exact. By Lemma 4.5 (4) with B = A this translates into the exactness of the
sequence of A-modules

0 → M ⊗A N → Gi−1(A) ⊗A N → . . . → G0(A) ⊗A N → P ⊗A N → 0

https://stacks.math.columbia.edu/tag/06ZG
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Hence the sequence of A-modules 0 → M → Gi−1(A) → . . . → G0(A) → P → 0 is
universally exact, in the sense that it remains exact on tensoring with any finitely
presented A-module N . Let K = Ker(G0(A) → P ) so that we have exact sequences

0 → K → G0(A) → P → 0 and G2(A) → G1(A) → K → 0
Tensoring the second sequence with N we obtain that K ⊗A N = Coker(G2(A) ⊗A

N → G1(A) ⊗A N). Exactness of G2(A) ⊗A N → G1(A) ⊗A N → G0(A) ⊗A N
then implies that K ⊗A N → G0(A) ⊗A N is injective. By Algebra, Theorem 82.3
this means that the A-module extension 0 → K → G0(A) → P → 0 is exact, and
because P is assumed of finite presentation this means the sequence is split, see
Algebra, Lemma 82.4. Any splitting P → G0(A) defines a map P → G0 which
splits the surjection G0 → P . Thus the Yoneda extension E′ is equivalent to the
trivial Yoneda extension and we win. □

Lemma 4.9.06ZH Let A be a ring. Let M be an A-module. Let L be a linearly
adequate functor on AlgA. Then Exti

P(L,M) = 0 for i > 0 where P is the category
of module-valued functors on AlgA.

Proof. Since L is linearly adequate there exists an exact sequence
0 → L → A⊕m → A⊕n → P → 0

Here P = Coker(A⊕m → A⊕n) is the cokernel of the map of finite free A-modules
which is given by the definition of linearly adequate functors. By Lemma 4.8 we have
the vanishing of Exti

P(P ,M) and Exti
P(A,M) for i > 0. Let K = Ker(A⊕n → P ).

By the long exact sequence of Ext groups associated to the exact sequence 0 →
K → A⊕n → P → 0 we conclude that Exti

P(K,M) = 0 for i > 0. Repeating with
the sequence 0 → L → A⊕m → K → 0 we win. □

Lemma 4.10.06ZI With notation as in Lemma 4.2 we have RpQ(F ) = 0 for all p > 0
and any adequate functor F .

Proof. Choose an exact sequence 0 → F → M0 → M1. Set M2 = Coker(M0 →
M1) so that 0 → F → M0 → M1 → M2 → 0 is a resolution. By Derived
Categories, Lemma 21.3 we obtain a spectral sequence

RpQ(Mq) ⇒ Rp+qQ(F )
Since Q(Mq) = Mq it suffices to prove RpQ(M) = 0, p > 0 for any A-module M .
Choose an injective resolution M → I• in the category P. Suppose that RiQ(M)
is nonzero. Then Ker(Q(Ii) → Q(Ii+1)) is strictly bigger than the image of
Q(Ii−1) → Q(Ii). Hence by Lemma 3.6 there exists a linearly adequate func-
tor L and a map φ : L → Q(Ii) mapping into the kernel of Q(Ii) → Q(Ii+1) which
does not factor through the image of Q(Ii−1) → Q(Ii). Because Q is a left adjoint
to the inclusion functor the map φ corresponds to a map φ′ : L → Ii with the same
properties. Thus φ′ gives a nonzero element of Exti

P(L,M) contradicting Lemma
4.9. □

5. Adequate modules

06VF In Descent, Section 8 we have seen that quasi-coherent modules on a scheme S are
the same as quasi-coherent modules on any of the big sites (Sch/S)τ associated to
S. We have seen that there are two issues with this identification:

https://stacks.math.columbia.edu/tag/06ZH
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(1) QCoh(OS) → Mod((Sch/S)τ ,O), F 7→ Fa is not exact in general (Descent,
Lemma 10.2), and

(2) given a quasi-compact and quasi-separated morphism f : X → S the func-
tor f∗ does not preserve quasi-coherent sheaves on the big sites in general
(Descent, Proposition 9.4).

Part (1) means that we cannot define a triangulated subcategory of D(O) consisting
of complexes whose cohomology sheaves are quasi-coherent. Part (2) means that
Rf∗F isn’t a complex with quasi-coherent cohomology sheaves even when F is
quasi-coherent and f is quasi-compact and quasi-separated. Moreover, the examples
given in the proofs of Descent, Lemma 10.2 and Descent, Proposition 9.4 are not
of a pathological nature.

In this section we discuss a slightly larger category of O-modules on (Sch/S)τ with
contains the quasi-coherent modules, is abelian, and is preserved under f∗ when f
is quasi-compact and quasi-separated. To do this, suppose that S is a scheme. Let
F be a presheaf of O-modules on (Sch/S)τ . For any affine object U = Spec(A) of
(Sch/S)τ we can restrict F to (Aff/U)τ to get a presheaf of O-modules on this site.
The corresponding module-valued functor, see Section 3, will be denoted

F = FF,A : AlgA −→ Ab, B 7−→ F(Spec(B))

The assignment F 7→ FF,A is an exact functor of abelian categories.

Definition 5.1.06VG A sheaf of O-modules F on (Sch/S)τ is adequate if there exists
a τ -covering {Spec(Ai) → S}i∈I such that FF,Ai

is adequate for all i ∈ I.

We will see below that the category of adequate O-modules is independent of the
chosen topology τ .

Lemma 5.2.06VI Let S be a scheme. Let F be an adequate O-module on (Sch/S)τ .
For any affine scheme Spec(A) over S the functor FF,A is adequate.

Proof. Let {Spec(Ai) → S}i∈I be a τ -covering such that FF,Ai
is adequate for

all i ∈ I. We can find a standard affine τ -covering {Spec(A′
j) → Spec(A)}j=1,...,m

such that Spec(A′
j) → Spec(A) → S factors through Spec(Ai(j)) for some i(j) ∈ I.

Then we see that FF,A′
j

is the restriction of FF,Ai(j) to the category of A′
j-algebras.

Hence FF,A′
j

is adequate by Lemma 3.17. By Lemma 3.19 the sequence FF,A′
j

corresponds to an adequate “product” functor F ′ over A′ = A′
1 × . . .×A′

m. As F is
a sheaf (for the Zariski topology) this product functor F ′ is equal to FF,A′ , i.e., is
the restriction of F to A′-algebras. Finally, {Spec(A′) → Spec(A)} is a τ -covering.
It follows from Lemma 3.20 that FF,A is adequate. □

Lemma 5.3.06ZJ Let S = Spec(A) be an affine scheme. The category of adequate
O-modules on (Sch/S)τ is equivalent to the category of adequate module-valued
functors on AlgA.

Proof. Given an adequate module F the functor FF,A is adequate by Lemma 5.2.
Given an adequate functor F we choose an exact sequence 0 → F → M → N and we
consider the O-module F = Ker(Ma → Na) where Ma denotes the quasi-coherent
O-module on (Sch/S)τ associated to the quasi-coherent sheaf M̃ on S. Note that
F = FF,A, in particular the module F is adequate by definition. We omit the proof
that the constructions define mutually inverse equivalences of categories. □

https://stacks.math.columbia.edu/tag/06VG
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Lemma 5.4.06VJ Let f : T → S be a morphism of schemes. The pullback f∗F of an
adequate O-module F on (Sch/S)τ is an adequate O-module on (Sch/T )τ .

Proof. The pullback map f∗ : Mod((Sch/S)τ ,O) → Mod((Sch/T )τ ,O) is given
by restriction, i.e., f∗F(V ) = F(V ) for any scheme V over T . Hence this lemma
follows immediately from Lemma 5.2 and the definition. □

Here is a characterization of the category of adequate O-modules. To understand
the significance, consider a map G → H of quasi-coherent OS-modules on a scheme
S. The cokernel of the associated map Ga → Ha of O-modules is quasi-coherent
because it is equal to (H/G)a. But the kernel of Ga → Ha in general isn’t quasi-
coherent. However, it is adequate.

Lemma 5.5.06VK Let S be a scheme. Let F be an O-module on (Sch/S)τ . The
following are equivalent

(1) F is adequate,
(2) there exists an affine open covering S =

⋃
Si and maps of quasi-coherent

OSi
-modules Gi → Hi such that F|(Sch/Si)τ

is the kernel of Ga
i → Ha

i

(3) there exists a τ -covering {Si → S}i∈I and maps of OSi
-quasi-coherent mod-

ules Gi → Hi such that F|(Sch/Si)τ
is the kernel of Ga

i → Ha
i ,

(4) there exists a τ -covering {fi : Si → S}i∈I such that each f∗
i F is adequate,

(5) for any affine scheme U over S the restriction F|(Sch/U)τ
is the kernel of

a map Ga → Ha of quasi-coherent OU -modules.

Proof. Let U = Spec(A) be an affine scheme over S. Set F = FF,A. By definition,
the functor F is adequate if and only if there exists a map of A-modules M → N
such that F = Ker(M → N). Combining with Lemmas 5.2 and 5.3 we see that (1)
and (5) are equivalent.
It is clear that (5) implies (2) and (2) implies (3). If (3) holds then we can refine
the covering {Si → S} such that each Si = Spec(Ai) is affine. Then we see, by the
preliminary remarks of the proof, that FF,Ai

is adequate. Thus F is adequate by
definition. Hence (3) implies (1).
Finally, (4) is equivalent to (1) using Lemma 5.4 for one direction and that a
composition of τ -coverings is a τ -covering for the other. □

Just like is true for quasi-coherent sheaves the category of adequate modules is
independent of the topology.

Lemma 5.6.06VL Let F be an adequate O-module on (Sch/S)τ . For any surjective
flat morphism Spec(B) → Spec(A) of affines over S the extended Čech complex

0 → F(Spec(A)) → F(Spec(B)) → F(Spec(B ⊗A B)) → . . .

is exact. In particular F satisfies the sheaf condition for fpqc coverings, and is a
sheaf of O-modules on (Sch/S)fppf .

Proof. With A → B as in the lemma let F = FF,A. This functor is adequate by
Lemma 5.2. By Lemma 3.5 since A → B, A → B ⊗A B, etc are flat we see that
F (B) = F (A) ⊗A B, F (B ⊗A B) = F (A) ⊗A B ⊗A B, etc. Exactness follows from
Descent, Lemma 3.6.
Thus F satisfies the sheaf condition for τ -coverings (in particular Zariski coverings)
and any faithfully flat covering of an affine by an affine. Arguing as in the proofs of
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Descent, Lemma 5.1 and Descent, Proposition 5.2 we conclude that F satisfies the
sheaf condition for all fpqc coverings (made out of objects of (Sch/S)τ ). Details
omitted. □

Lemma 5.6 shows in particular that for any pair of topologies τ, τ ′ the collec-
tion of adequate modules for the τ -topology and the τ ′-topology are identical (as
presheaves of modules on the underlying category Sch/S).

Definition 5.7.07AH Let S be a scheme. The category of adequate O-modules on
(Sch/S)τ is denoted Adeq(O) or Adeq((Sch/S)τ ,O). If we want to think just about
the abelian category of adequate modules without choosing a topology we simply
write Adeq(S).

Lemma 5.8.06VM Let S be a scheme. Let F be an adequate O-module on (Sch/S)τ .
(1) The restriction F|SZar

is a quasi-coherent OS-module on the scheme S.
(2) The restriction F|Sétale

is the quasi-coherent module associated to F|SZar
.

(3) For any affine scheme U over S we have Hq(U,F) = 0 for all q > 0.
(4) There is a canonical isomorphism

Hq(S,F|SZar
) = Hq((Sch/S)τ ,F).

Proof. By Lemma 3.5 and Lemma 5.2 we see that for any flat morphism of affines
U → V over S we have F(U) = F(V ) ⊗O(V ) O(U). This works in particular if
U ⊂ V ⊂ S are affine opens of S, hence F|SZar

is quasi-coherent. Thus (1) holds.

Let S′ → S be an étale morphism of schemes. Then for U ⊂ S′ affine open mapping
into an affine open V ⊂ S we see that F(U) = F(V ) ⊗O(V ) O(U) because U → V
is étale, hence flat. Therefore F|S′

Zar
is the pullback of F|SZar

. This proves (2).

We are going to apply Cohomology on Sites, Lemma 10.9 to the site (Sch/S)τ with
B the set of affine schemes over S and Cov the set of standard affine τ -coverings.
Assumption (3) of the lemma is satisfied by Descent, Lemma 9.1 and Lemma 5.6
for the case of a covering by a single affine. Hence we conclude that Hp(U,F) = 0
for every affine scheme U over S. This proves (3). In exactly the same way as in the
proof of Descent, Proposition 9.3 this implies the equality of cohomologies (4). □

Remark 5.9.06VN Let S be a scheme. We have functors u : QCoh(OS) → Adeq(O)
and v : Adeq(O) → QCoh(OS). Namely, the functor u : F 7→ Fa comes from taking
the associated O-module which is adequate by Lemma 5.5. Conversely, the functor
v comes from restriction v : G 7→ G|SZar

, see Lemma 5.8. Since Fa can be described
as the pullback of F under a morphism of ringed topoi ((Sch/S)τ ,O) → (SZar,OS),
see Descent, Remark 8.6 and since restriction is the pushforward we see that u and
v are adjoint as follows

HomOS
(F , vG) = HomO(uF ,G)

where O denotes the structure sheaf on the big site. It is immediate from the
description that the adjunction mapping F → vuF is an isomorphism for all quasi-
coherent sheaves.

Lemma 5.10.06VP Let S be a scheme. Let F be a presheaf of O-modules on (Sch/S)τ .
If for every affine scheme Spec(A) over S the functor FF,A is adequate, then the
sheafification of F is an adequate O-module.
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Proof. Let U = Spec(A) be an affine scheme over S. Set F = FF,A. The sheafifi-
cation F# = (F+)+, see Sites, Section 10. By construction

(F)+(U) = colimU Ȟ
0(U ,F)

where the colimit is over coverings in the site (Sch/S)τ . Since U is affine it suffices
to take the limit over standard affine τ -coverings U = {Ui → U}i∈I = {Spec(Ai) →
Spec(A)}i∈I of U . Since each A → Ai and A → Ai ⊗A Aj is flat we see that

Ȟ0(U ,F) = Ker(
∏

F (A) ⊗A Ai →
∏

F (A) ⊗A Ai ⊗A Aj)

by Lemma 3.5. Since A →
∏
Ai is faithfully flat we see that this always is canon-

ically isomorphic to F (A) by Descent, Lemma 3.6. Thus the presheaf (F)+ has
the same value as F on all affine schemes over S. Repeating the argument once
more we deduce the same thing for F# = ((F)+)+. Thus FF,A = FF#,A and we
conclude that F# is adequate. □

Lemma 5.11.06VQ Let S be a scheme.
(1) The category Adeq(O) is abelian.
(2) The functor Adeq(O) → Mod((Sch/S)τ ,O) is exact.
(3) If 0 → F1 → F2 → F3 → 0 is a short exact sequence of O-modules and F1

and F3 are adequate, then F2 is adequate.
(4) The category Adeq(O) has colimits and Adeq(O) → Mod((Sch/S)τ ,O) com-

mutes with them.

Proof. Let φ : F → G be a map of adequate O-modules. To prove (1) and (2) it
suffices to show that K = Ker(φ) and Q = Coker(φ) computed in Mod((Sch/S)τ ,O)
are adequate. Let U = Spec(A) be an affine scheme over S. Let F = FF,A and
G = FG,A. By Lemmas 3.11 and 3.10 the kernel K and cokernel Q of the induced
map F → G are adequate functors. Because the kernel is computed on the level of
presheaves, we see that K = FK,A and we conclude K is adequate. To prove the
result for the cokernel, denote Q′ the presheaf cokernel of φ. Then Q = FQ′,A and
Q = (Q′)#. Hence Q is adequate by Lemma 5.10.
Let 0 → F1 → F2 → F3 → 0 is a short exact sequence of O-modules and F1 and
F3 are adequate. Let U = Spec(A) be an affine scheme over S. Let Fi = FFi,A.
The sequence of functors

0 → F1 → F2 → F3 → 0
is exact, because for V = Spec(B) affine over U we have H1(V,F1) = 0 by Lemma
5.8. Since F1 and F3 are adequate functors by Lemma 5.2 we see that F2 is adequate
by Lemma 3.16. Thus F2 is adequate.
Let I → Adeq(O), i 7→ Fi be a diagram. Denote F = colimi Fi the colimit
computed in Mod((Sch/S)τ ,O). To prove (4) it suffices to show that F is adequate.
Let F ′ = colimi Fi be the colimit computed in presheaves of O-modules. Then
F = (F ′)#. Let U = Spec(A) be an affine scheme over S. Let Fi = FFi,A. By
Lemma 3.12 the functor colimi Fi = FF ′,A is adequate. Lemma 5.10 shows that F
is adequate. □

The following lemma tells us that the total direct image Rf∗F of an adequate
module under a quasi-compact and quasi-separated morphism is a complex whose
cohomology sheaves are adequate.
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Lemma 5.12.06VR Let f : T → S be a quasi-compact and quasi-separated morphism
of schemes. For any adequate OT -module on (Sch/T )τ the pushforward f∗F and
the higher direct images Rif∗F are adequate OS-modules on (Sch/S)τ .

Proof. First we explain how to compute the higher direct images. Choose an
injective resolution F → I•. Then Rif∗F is the ith cohomology sheaf of the
complex f∗I•. Hence Rif∗F is the sheaf associated to the presheaf which associates
to an object U/S of (Sch/S)τ the module

Ker(f∗Ii(U) → f∗Ii+1(U))
Im(f∗Ii−1(U) → f∗Ii(U)) = Ker(Ii(U ×S T ) → Ii+1(U ×S T ))

Im(Ii−1(U ×S T ) → Ii(U ×S T ))
= Hi(U ×S T,F)
= Hi((Sch/U ×S T )τ ,F|(Sch/U×ST )τ

)
= Hi(U ×S T,F|(U×ST )Zar

)

The first equality by Topologies, Lemma 7.12 (and its analogues for other topolo-
gies), the second equality by definition of cohomology of F over an object of
(Sch/T )τ , the third equality by Cohomology on Sites, Lemma 7.1, and the last
equality by Lemma 5.8. Thus by Lemma 5.10 it suffices to prove the claim stated
in the following paragraph.
Let A be a ring. Let T be a scheme quasi-compact and quasi-separated over A.
Let F be an adequate OT -module on (Sch/T )τ . For an A-algebra B set TB =
T ×Spec(A) Spec(B) and denote FB = F|(TB)Zar

the restriction of F to the small
Zariski site of TB . (Recall that this is a “usual” quasi-coherent sheaf on the scheme
TB , see Lemma 5.8.) Claim: The functor

B 7−→ Hq(TB ,FB)
is adequate. We will prove the lemma by the usual procedure of cutting T into
pieces.
Case I: T is affine. In this case the schemes TB are all affine and Hq(TB ,FB) = 0
for all q ≥ 1. The functor B 7→ H0(TB ,FB) is adequate by Lemma 3.18.
Case II: T is separated. Let n be the minimal number of affines needed to cover
T . We argue by induction on n. The base case is Case I. Choose an affine open
covering T = V1 ∪ . . . ∪ Vn. Set V = V1 ∪ . . . ∪ Vn−1 and U = Vn. Observe that

U ∩ V = (V1 ∩ Vn) ∪ . . . ∪ (Vn−1 ∩ Vn)
is also a union of n − 1 affine opens as T is separated, see Schemes, Lemma 21.7.
Note that for each B the base changes UB , VB and (U ∩ V )B = UB ∩ VB behave in
the same way. Hence we see that for each B we have a long exact sequence
0 → H0(TB ,FB) → H0(UB ,FB)⊕H0(VB ,FB) → H0((U∩V )B ,FB) → H1(TB ,FB) → . . .

functorial in B, see Cohomology, Lemma 8.2. By induction hypothesis the functors
B 7→ Hq(UB ,FB), B 7→ Hq(VB ,FB), and B 7→ Hq((U ∩ V )B ,FB) are adequate.
Using Lemmas 3.11 and 3.10 we see that our functor B 7→ Hq(TB ,FB) sits in the
middle of a short exact sequence whose outer terms are adequate. Thus the claim
follows from Lemma 3.16.
Case III: General quasi-compact and quasi-separated case. The proof is again by
induction on the number n of affines needed to cover T . The base case n = 1 is

https://stacks.math.columbia.edu/tag/06VR


ADEQUATE MODULES 21

Case I. Choose an affine open covering T = V1 ∪ . . . ∪ Vn. Set V = V1 ∪ . . . ∪ Vn−1
and U = Vn. Note that since T is quasi-separated U ∩ V is a quasi-compact open
of an affine scheme, hence Case II applies to it. The rest of the argument proceeds
in exactly the same manner as in the paragraph above and is omitted. □

6. Parasitic adequate modules

06ZK In this section we start comparing adequate modules and quasi-coherent modules
on a scheme S. Recall that there are functors u : QCoh(OS) → Adeq(O) and
v : Adeq(O) → QCoh(OS) satisfying the adjunction

HomQCoh(OS)(F , vG) = HomAdeq(O)(uF ,G)
and such that F → vuF is an isomorphism for every quasi-coherent sheaf F , see
Remark 5.9. Hence u is a fully faithful embedding and we can identify QCoh(OS)
with a full subcategory of Adeq(O). The functor v is exact but u is not left exact
in general. The kernel of v is the subcategory of parasitic adequate modules.
In Descent, Definition 12.1 we give the definition of a parasitic module. For ade-
quate modules the notion does not depend on the chosen topology.
Lemma 6.1.06ZM Let S be a scheme. Let F be an adequate O-module on (Sch/S)τ .
The following are equivalent:

(1) vF = 0,
(2) F is parasitic,
(3) F is parasitic for the τ -topology,
(4) F(U) = 0 for all U ⊂ S open, and
(5) there exists an affine open covering S =

⋃
Ui such that F(Ui) = 0 for all i.

Proof. The implications (2) ⇒ (3) ⇒ (4) ⇒ (5) are immediate from the definitions.
Assume (5). Suppose that S =

⋃
Ui is an affine open covering such that F(Ui) = 0

for all i. Let V → S be a flat morphism. There exists an affine open covering
V =

⋃
Vj such that each Vj maps into some Ui. As the morphism Vj → S is flat,

also Vj → Ui is flat. Hence the corresponding ring map Ai = O(Ui) → O(Vj) = Bj

is flat. Thus by Lemma 5.2 and Lemma 3.5 we see that F(Ui) ⊗Ai
Bj → F(Vj) is

an isomorphism. Hence F(Vj) = 0. Since F is a sheaf for the Zariski topology we
conclude that F(V ) = 0. In this way we see that (5) implies (2).
This proves the equivalence of (2), (3), (4), and (5). As (1) is equivalent to (3) (see
Remark 5.9) we conclude that all five conditions are equivalent. □

Let S be a scheme. The subcategory of parasitic adequate modules is a Serre
subcategory of Adeq(O). The quotient is the category of quasi-coherent modules.
Lemma 6.2.06ZN Let S be a scheme. The subcategory C ⊂ Adeq(O) of parasitic
adequate modules is a Serre subcategory. Moreover, the functor v induces an equiv-
alence of categories

Adeq(O)/C = QCoh(OS).
Proof. The category C is the kernel of the exact functor v : Adeq(O) → QCoh(OS),
see Lemma 6.1. Hence it is a Serre subcategory by Homology, Lemma 10.4. By
Homology, Lemma 10.6 we obtain an induced exact functor v : Adeq(O)/C →
QCoh(OS). Because u is a right inverse to v we see right away that v is essentially
surjective. We see that v is faithful by Homology, Lemma 10.7. Because u is a right
inverse to v we finally conclude that v is fully faithful. □
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Lemma 6.3.06ZP Let f : T → S be a quasi-compact and quasi-separated morphism
of schemes. For any parasitic adequate OT -module on (Sch/T )τ the pushforward
f∗F and the higher direct images Rif∗F are parasitic adequate OS-modules on
(Sch/S)τ .

Proof. We have already seen in Lemma 5.12 that these higher direct images are
adequate. Hence it suffices to show that (Rif∗F)(Ui) = 0 for any τ -covering {Ui →
S} open. And Rif∗F is parasitic by Descent, Lemma 12.3. □

7. Derived categories of adequate modules, I

06VS Let S be a scheme. We continue the discussion started in Section 6. The exact
functor v induces a functor

D(Adeq(O)) −→ D(QCoh(OS))

and similarly for bounded versions.

Lemma 7.1.06ZQ Let S be a scheme. Let C ⊂ Adeq(O) denote the full subcategory
consisting of parasitic adequate modules. Then

D(Adeq(O))/DC(Adeq(O)) = D(QCoh(OS))

and similarly for the bounded versions.

Proof. Follows immediately from Derived Categories, Lemma 17.3. □

Next, we look for a description the other way around by looking at the functors

K+(QCoh(OS)) −→ K+(Adeq(O)) −→ D+(Adeq(O)) −→ D+(QCoh(OS)).

In some cases the derived category of adequate modules is a localization of the
homotopy category of complexes of quasi-coherent modules at universal quasi-
isomorphisms. Let S be a scheme. A map of complexes φ : F• → G• of quasi-
coherent OS-modules is said to be a universal quasi-isomorphism if for every mor-
phism of schemes f : T → S the pullback f∗φ is a quasi-isomorphism.

Lemma 7.2.06ZR Let U = Spec(A) be an affine scheme. The bounded below derived
category D+(Adeq(O)) is the localization of K+(QCoh(OU )) at the multiplicative
subset of universal quasi-isomorphisms.

Proof. If φ : F• → G• is a morphism of complexes of quasi-coherent OU -modules,
then uφ : uF• → uG• is a quasi-isomorphism if and only if φ is a universal quasi-
isomorphism. Hence the collection S of universal quasi-isomorphisms is a satu-
rated multiplicative system compatible with the triangulated structure by Derived
Categories, Lemma 5.4. Hence S−1K+(QCoh(OU )) exists and is a triangulated
category, see Derived Categories, Proposition 5.6. We obtain a canonical functor
can : S−1K+(QCoh(OU )) → D+(Adeq(O)) by Derived Categories, Lemma 5.7.

Note that, almost by definition, every adequate module on U has an embedding
into a quasi-coherent sheaf, see Lemma 5.5. Hence by Derived Categories, Lemma
15.5 given F• ∈ Ob(K+(Adeq(O))) there exists a quasi-isomorphism F• → uG•

where G• ∈ Ob(K+(QCoh(OU ))). This proves that can is essentially surjective.

Similarly, suppose that F• and G• are bounded below complexes of quasi-coherent
OU -modules. A morphism in D+(Adeq(O)) between these consists of a pair f :
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uF• → H• and s : uG• → H• where s is a quasi-isomorphism. Pick a quasi-
isomorphism s′ : H• → uE•. Then we see that s′ ◦ f : F → E• and the univer-
sal quasi-isomorphism s′ ◦ s : G• → E• give a morphism in S−1K+(QCoh(OU ))
mapping to the given morphism. This proves the "fully" part of full faithfulness.
Faithfulness is proved similarly. □

Lemma 7.3.06ZS Let U = Spec(A) be an affine scheme. The inclusion functor
Adeq(O) → Mod((Sch/U)τ ,O)

has a right adjoint A1. Moreover, the adjunction mapping A(F) → F is an iso-
morphism for every adequate module F .
Proof. By Topologies, Lemma 7.11 (and similarly for the other topologies) we
may work with O-modules on (Aff/U)τ . Denote P the category of module-valued
functors on AlgA and A the category of adequate functors on AlgA. Denote i : A →
P the inclusion functor. Denote Q : P → A the construction of Lemma 4.1. We
have the commutative diagram

(7.3.1)06ZT

Adeq(O)
k
// Mod((Aff/U)τ ,O)

j
// PMod((Aff/U)τ ,O)

A i // P
The left vertical equality is Lemma 5.3 and the right vertical equality was explained
in Section 3. Define A(F) = Q(j(F)). Since j is fully faithful it follows immediately
that A is a right adjoint of the inclusion functor k. Also, since k is fully faithful
too, the final assertion follows formally. □

The functor A is a right adjoint hence left exact. Since the inclusion functor is
exact, see Lemma 5.11 we conclude that A transforms injectives into injectives,
and that the category Adeq(O) has enough injectives, see Homology, Lemma 29.3
and Injectives, Theorem 8.4. This also follows from the equivalence in (7.3.1) and
Lemma 4.2.
Lemma 7.4.06ZU Let U = Spec(A) be an affine scheme. For any object F of Adeq(O)
we have RpA(F) = 0 for all p > 0 where A is as in Lemma 7.3.
Proof. With notation as in the proof of Lemma 7.3 choose an injective resolution
k(F) → I• in the category of O-modules on (Aff/U)τ . By Cohomology on Sites,
Lemmas 12.2 and Lemma 5.8 the complex j(I•) is exact. On the other hand, each
j(In) is an injective object of the category of presheaves of modules by Cohomology
on Sites, Lemma 12.1. It follows that RpA(F) = RpQ(j(k(F))). Hence the result
now follows from Lemma 4.10. □

Let S be a scheme. By the discussion in Section 5 the embedding Adeq(O) ⊂
Mod((Sch/S)τ ,O) exhibits Adeq(O) as a weak Serre subcategory of the category of
all O-modules. Denote

DAdeq(O) ⊂ D(O) = D(Mod((Sch/S)τ ,O))
the triangulated subcategory of complexes whose cohomology sheaves are adequate,
see Derived Categories, Section 17. We obtain a canonical functor

D(Adeq(O)) −→ DAdeq(O)

1This is the “adequator”.

https://stacks.math.columbia.edu/tag/06ZS
https://stacks.math.columbia.edu/tag/06ZU


ADEQUATE MODULES 24

see Derived Categories, Equation (17.1.1).

Lemma 7.5.06ZV If U = Spec(A) is an affine scheme, then the bounded below version

(7.5.1)06VV D+(Adeq(O)) −→ D+
Adeq(O)

of the functor above is an equivalence.

Proof. Let A : Mod(O) → Adeq(O) be the right adjoint to the inclusion functor
constructed in Lemma 7.3. Since A is left exact and since Mod(O) has enough
injectives, A has a right derived functor RA : D+

Adeq(O) → D+(Adeq(O)). We
claim that RA is a quasi-inverse to (7.5.1). To see this the key fact is that if F is
an adequate module, then the adjunction map F → RA(F) is a quasi-isomorphism
by Lemma 7.4.

Namely, to prove the lemma in full it suffices to show:
(1) Given F• ∈ K+(Adeq(O)) the canonical map F• → RA(F•) is a quasi-

isomorphism, and
(2) given G• ∈ K+(Mod(O)) the canonical map RA(G•) → G• is a quasi-

isomorphism.
Both (1) and (2) follow from the key fact via a spectral sequence argument using
one of the spectral sequences of Derived Categories, Lemma 21.3. Some details
omitted. □

Lemma 7.6.06ZW Let U = Spec(A) be an affine scheme. Let F and G be adequate
O-modules. For any i ≥ 0 the natural map

Exti
Adeq(O)(F ,G) −→ Exti

Mod(O)(F ,G)

is an isomorphism.

Proof. By definition these ext groups are computed as hom sets in the derived
category. Hence this follows immediately from Lemma 7.5. □

8. Pure extensions

06ZX We want to characterize extensions of quasi-coherent sheaves on the big site of an
affine schemes in terms of algebra. To do this we introduce the following notion.

Definition 8.1.06ZY Let A be a ring.
(1) An A-module P is said to be pure projective if for every universally ex-

act sequence 0 → K → M → N → 0 of A-module the sequence 0 →
HomA(P,K) → HomA(P,M) → HomA(P,N) → 0 is exact.

(2) An A-module I is said to be pure injective if for every universally ex-
act sequence 0 → K → M → N → 0 of A-module the sequence 0 →
HomA(N, I) → HomA(M, I) → HomA(K, I) → 0 is exact.

Let’s characterize pure projectives.

Lemma 8.2.06ZZ Let A be a ring.
(1) A module is pure projective if and only if it is a direct summand of a direct

sum of finitely presented A-modules.
(2) For any module M there exists a universally exact sequence 0 → N → P →

M → 0 with P pure projective.
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Proof. First note that a finitely presented A-module is pure projective by Algebra,
Theorem 82.3. Hence a direct summand of a direct sum of finitely presented A-
modules is indeed pure projective. Let M be any A-module. Write M = colimi∈I Pi

as a filtered colimit of finitely presented A-modules. Consider the sequence

0 → N →
⊕

Pi → M → 0.

For any finitely presented A-module P the map HomA(P,
⊕
Pi) → HomA(P,M)

is surjective, as any map P → M factors through some Pi. Hence by Algebra,
Theorem 82.3 this sequence is universally exact. This proves (2). If now M is pure
projective, then the sequence is split and we see that M is a direct summand of⊕
Pi. □

Let’s characterize pure injectives.

Lemma 8.3.0700 Let A be a ring. For any A-module M set M∨ = HomZ(M,Q/Z).
(1) For any A-module M the A-module M∨ is pure injective.
(2) An A-module I is pure injective if and only if the map I → (I∨)∨ splits.
(3) For any module M there exists a universally exact sequence 0 → M → I →

N → 0 with I pure injective.

Proof. We will use the properties of the functor M 7→ M∨ found in More on Alge-
bra, Section 55 without further mention. Part (1) holds because HomA(N,M∨) =
HomZ(N ⊗A M,Q/Z) and because Q/Z is injective in the category of abelian
groups. Hence if I → (I∨)∨ is split, then I is pure injective. We claim that
for any A-module M the evaluation map ev : M → (M∨)∨ is universally injec-
tive. To see this note that ev∨ : ((M∨)∨)∨ → M∨ has a right inverse, namely
ev′ : M∨ → ((M∨)∨)∨. Then for any A-module N applying the exact faithful
functor ∨ to the map N ⊗A M → N ⊗A (M∨)∨ gives

HomA(N, ((M∨)∨)∨) =
(
N ⊗A (M∨)∨

)∨
→

(
N ⊗A M

)∨
= HomA(N,M∨)

which is surjective by the existence of the right inverse. The claim follows. The
claim implies (3) and the necessity of the condition in (2). □

Before we continue we make the following observation which we will use frequently
in the rest of this section.

Lemma 8.4.0701 Let A be a ring.
(1) Let L → M → N be a universally exact sequence of A-modules. Let K =

Im(M → N). Then K → N is universally injective.
(2) Any universally exact complex can be split into universally exact short exact

sequences.

Proof. Proof of (1). For any A-module T the sequence L ⊗A T → M ⊗A T →
K⊗AT → 0 is exact by right exactness of ⊗. By assumption the sequence L⊗AT →
M ⊗A T → N ⊗A T is exact. Combined this shows that K ⊗A T → N ⊗A T is
injective.
Part (2) means the following: Suppose that M• is a universally exact complex of
A-modules. Set Ki = Ker(di) ⊂ M i. Then the short exact sequences 0 → Ki →
M i → Ki+1 → 0 are universally exact. This follows immediately from part (1). □

Definition 8.5.0702 Let A be a ring. Let M be an A-module.

https://stacks.math.columbia.edu/tag/0700
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(1) A pure projective resolution P• → M is a universally exact sequence

. . . → P1 → P0 → M → 0

with each Pi pure projective.
(2) A pure injective resolution M → I• is a universally exact sequence

0 → M → I0 → I1 → . . .

with each Ii pure injective.

These resolutions satisfy the usual uniqueness properties among the class of all
universally exact left or right resolutions.

Lemma 8.6.0703 Let A be a ring.
(1) Any A-module has a pure projective resolution.

Let M → N be a map of A-modules. Let P• → M be a pure projective resolution
and let N• → N be a universally exact resolution.

(2) There exists a map of complexes P• → N• inducing the given map

M = Coker(P1 → P0) → Coker(N1 → N0) = N

(3) two maps α, β : P• → N• inducing the same map M → N are homotopic.

Proof. Part (1) follows immediately from Lemma 8.2. Before we prove (2) and (3)
note that by Lemma 8.4 we can split the universally exact complex N• → N → 0
into universally exact short exact sequences 0 → K0 → N0 → N → 0 and 0 →
Ki → Ni → Ki−1 → 0.

Proof of (2). Because P0 is pure projective we can find a map P0 → N0 lifting the
map P0 → M → N . We obtain an induced map P1 → F0 → N0 wich ends up in
K0. Since P1 is pure projective we may lift this to a map P1 → N1. This in turn
induces a map P2 → P1 → N1 which maps to zero into N0, i.e., into K1. Hence we
may lift to get a map P2 → N2. Repeat.

Proof of (3). To show that α, β are homotopic it suffices to show the difference
γ = α− β is homotopic to zero. Note that the image of γ0 : P0 → N0 is contained
in K0. Hence we may lift γ0 to a map h0 : P0 → N1. Consider the map γ′

1 =
γ1 − h0 ◦ dP,1 : P1 → N1. By our choice of h0 we see that the image of γ′

1 is
contained in K1. Since P1 is pure projective may lift γ′

1 to a map h1 : P1 → N2.
At this point we have γ1 = h0 ◦ dF,1 + dN,2 ◦ h1. Repeat. □

Lemma 8.7.0704 Let A be a ring.
(1) Any A-module has a pure injective resolution.

Let M → N be a map of A-modules. Let M → M• be a universally exact resolution
and let N → I• be a pure injective resolution.

(2) There exists a map of complexes M• → I• inducing the given map

M = Ker(M0 → M1) → Ker(I0 → I1) = N

(3) two maps α, β : M• → I• inducing the same map M → N are homotopic.

Proof. This lemma is dual to Lemma 8.6. The proof is identical, except one has
to reverse all the arrows. □

https://stacks.math.columbia.edu/tag/0703
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Using the material above we can define pure extension groups as follows. Let A be
a ring and let M , N be A-modules. Choose a pure injective resolution N → I•.
By Lemma 8.7 the complex

HomA(M, I•)
is well defined up to homotopy. Hence its ith cohomology module is a well defined
invariant of M and N .

Definition 8.8.0705 Let A be a ring and let M , N be A-modules. The ith pure exten-
sion module Pexti

A(M,N) is the ith cohomology module of the complex HomA(M, I•)
where I• is a pure injective resolution of N .

Warning: It is not true that an exact sequence of A-modules gives rise to a long
exact sequence of pure extensions groups. (You need a universally exact sequence
for this.) We collect some facts which are obvious from the material above.

Lemma 8.9.0706 Let A be a ring.
(1) Pexti

A(M,N) = 0 for i > 0 whenever N is pure injective,
(2) Pexti

A(M,N) = 0 for i > 0 whenever M is pure projective, in particular if
M is an A-module of finite presentation,

(3) Pexti
A(M,N) is also the ith cohomology module of the complex HomA(P•, N)

where P• is a pure projective resolution of M .

Proof. To see (3) consider the double complex
A•,• = HomA(P•, I

•)
Each of its rows is exact except in degree 0 where its cohomology is HomA(M, Iq).
Each of its columns is exact except in degree 0 where its cohomology is HomA(Pp, N).
Hence the two spectral sequences associated to this complex in Homology, Section
25 degenerate, giving the equality. □

9. Higher exts of quasi-coherent sheaves on the big site

0707 It turns out that the module-valued functor I associated to a pure injective module
I gives rise to an injective object in the category of adequate functors on AlgA.
Warning: It is not true that a pure projective module gives rise to a projective
object in the category of adequate functors. We do have plenty of projective objects,
namely, the linearly adequate functors.

Lemma 9.1.0708 Let A be a ring. Let A be the category of adequate functors on AlgA.
The injective objects of A are exactly the functors I where I is a pure injective
A-module.

Proof. Let I be an injective object of A. Choose an embedding I → M for some A-
module M . As I is injective we see that M = I⊕F for some module-valued functor
F . Then M = I(A) ⊕ F (A) and it follows that I = I(A). Thus we see that any
injective object is of the form I for some A-module I. It is clear that the module I
has to be pure injective since any universally exact sequence 0 → M → N → L → 0
gives rise to an exact sequence 0 → M → N → L → 0 of A.
Finally, suppose that I is a pure injective A-module. Choose an embedding I → J
into an injective object of A (see Lemma 4.2). We have seen above that J = I ′ for
some A-module I ′ which is pure injective. As I → I ′ is injective the map I → I ′ is

https://stacks.math.columbia.edu/tag/0705
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universally injective. By assumption on I it splits. Hence I is a summand of J = I ′

whence an injective object of the category A. □

Let U = Spec(A) be an affine scheme. Let M be an A-module. We will use
the notation Ma to denote the quasi-coherent sheaf of O-modules on (Sch/U)τ

associated to the quasi-coherent sheaf M̃ on U . Now we have all the notation in
place to formulate the following lemma.

Lemma 9.2.0709 Let U = Spec(A) be an affine scheme. Let M , N be A-modules. For
all i we have a canonical isomorphism

Exti
Mod(O)(Ma, Na) = Pexti

A(M,N)
functorial in M and N .

Proof. Let us construct a canonical arrow from right to left. Namely, if N → I•

is a pure injective resolution, then Ma → (I•)a is an exact complex of (adequate)
O-modules. Hence any element of Pexti

A(M,N) gives rise to a map Na → Ma[i]
in D(O), i.e., an element of the group on the left.
To prove this map is an isomorphism, note that we may replace Exti

Mod(O)(Ma, Na)
by Exti

Adeq(O)(Ma, Na), see Lemma 7.6. Let A be the category of adequate functors
on AlgA. We have seen that A is equivalent to Adeq(O), see Lemma 5.3; see also
the proof of Lemma 7.3. Hence now it suffices to prove that

Exti
A(M,N) = Pexti

A(M,N)
However, this is clear from Lemma 9.1 as a pure injective resolution N → I• exactly
corresponds to an injective resolution of N in A. □

10. Derived categories of adequate modules, II

070T Let S be a scheme. Denote OS the structure sheaf of S and O the structure sheaf
of the big site (Sch/S)τ . In Descent, Remark 8.4 we constructed a morphism of
ringed sites
(10.0.1)070U f : ((Sch/S)τ ,O) −→ (SZar,OS).
In the previous sections have seen that the functor f∗ : Mod(O) → Mod(OS) trans-
forms adequate sheaves into quasi-coherent sheaves, and induces an exact func-
tor v : Adeq(O) → QCoh(OS), and in fact that f∗ = v induces an equivalence
Adeq(O)/C → QCoh(OS) where C is the subcategory of parasitic adequate mod-
ules. Moreover, the functor f∗ transforms quasi-coherent modules into adequate
modules, and induces a functor u : QCoh(OS) → Adeq(O) which is a left adjoint
to v.
There is a very similar relationship between DAdeq(O) and DQCoh(S). First we
explain why the category DAdeq(O) is independent of the chosen topology.

Remark 10.1.070V Let S be a scheme. Let τ, τ ′ ∈ {Zar, étale, smooth, syntomic, fppf}.
Denote Oτ , resp. Oτ ′ the structure sheaf O viewed as a sheaf on (Sch/S)τ , resp.
(Sch/S)τ ′ . Then DAdeq(Oτ ) and DAdeq(Oτ ′) are canonically isomorphic. This fol-
lows from Cohomology on Sites, Lemma 29.1. Namely, assume τ is stronger than
the topology τ ′, let C = (Sch/S)fppf , and let B the collection of affine schemes
over S. Assumptions (1) and (2) we’ve seen above. Assumption (3) is clear and
assumption (4) follows from Lemma 5.8.
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Remark 10.2.070W Let S be a scheme. The morphism f see (10.0.1) induces ad-
joint functors Rf∗ : DAdeq(O) → DQCoh(S) and Lf∗ : DQCoh(S) → DAdeq(O).
Moreover Rf∗Lf

∗ ∼= idDQCoh(S).
We sketch the proof. By Remark 10.1 we may assume the topology τ is the Zariski
topology. We will use the existence of the unbounded total derived functors Lf∗

and Rf∗ on O-modules and their adjointness, see Cohomology on Sites, Lemma
19.1. In this case f∗ is just the restriction to the subcategory SZar of (Sch/S)Zar.
Hence it is clear that Rf∗ = f∗ induces Rf∗ : DAdeq(O) → DQCoh(S). Suppose
that G• is an object of DQCoh(S). We may choose a system K•

1 → K•
2 → . . . of

bounded above complexes of flat OS-modules whose transition maps are termwise
split injectives and a diagram

K•
1

��

// K•
2

��

// . . .

τ≤1G• // τ≤2G• // . . .

with the properties (1), (2), (3) listed in Derived Categories, Lemma 29.1 where
P is the collection of flat OS-modules. Then Lf∗G• is computed by colim f∗K•

n,
see Cohomology on Sites, Lemmas 18.1 and 18.2 (note that our sites have enough
points by Étale Cohomology, Lemma 30.1). We have to see that Hi(Lf∗G•) =
colimHi(f∗K•

n) is adequate for each i. By Lemma 5.11 we conclude that it suffices
to show that each Hi(f∗K•

n) is adequate.
The adequacy of Hi(f∗K•

n) is local on S, hence we may assume that S = Spec(A)
is affine. Because S is affine DQCoh(S) = D(QCoh(OS)), see the discussion in
Derived Categories of Schemes, Section 3. Hence there exists a quasi-isomorphism
F• → K•

n where F• is a bounded above complex of flat quasi-coherent modules.
Then f∗F• → f∗K•

n is a quasi-isomorphism, and the cohomology sheaves of f∗F•

are adequate.
The final assertion Rf∗Lf

∗ ∼= idDQCoh(S) follows from the explicit description of the
functors above. (In plain English: if F is quasi-coherent and p > 0, then Lpf

∗F is
a parasitic adequate module.)

Remark 10.3.070X Remark 10.2 above implies we have an equivalence of derived
categories

DAdeq(O)/DC(O) −→ DQCoh(S)
where C is the category of parasitic adequate modules. Namely, it is clear that
DC(O) is the kernel of Rf∗, hence a functor as indicated. For any object X of
DAdeq(O) the map Lf∗Rf∗X → X maps to a quasi-isomorphism in DQCoh(S),
hence Lf∗Rf∗X → X is an isomorphism in DAdeq(O)/DC(O). Finally, for X,Y
objects of DAdeq(O) the map

Rf∗ : HomDAdeq(O)/DC(O)(X,Y ) → HomDQCoh(S)(Rf∗X,Rf∗Y )
is bijective as Lf∗ gives an inverse (by the remarks above).
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