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1. Introduction

00AP Basic commutative algebra will be explained in this document. A reference is

[Mat70].

2. Conventions

00AQ A ring is commutative with 1. The zero ring is a ring. In fact it is the only ring
that does not have a prime ideal. The Kronecker symbol d;; will be used. If R — S
is a ring map and q a prime of S, then we use the notation “p = RN q” to indicate
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the prime which is the inverse image of q under R — S even if R is not a subring
of S and even if R — §' is not injective.

3. Basic notions

The following is a list of basic notions in commutative algebra. Some of these
notions are discussed in more detail in the text that follows and some are defined
in the list, but others are considered basic and will not be defined. If you are
not familiar with most of the italicized concepts, then we suggest looking at an
introductory text on algebra before continuing.

(1) Ris a ring,

(2) x € R is nilpotent,

(3) = € R is a zerodivisor,

(4) x € R is a unit,
(5) e € R is an idempotent,
(6) an idempotent e € R is called trivial if e=1 or e =0,
(7) ¢ : Ry — Ry is a ring homomorphism,
(8) ¢ : R1 — Ro is of finite presentation, or Ry is a finitely presented R;-
algebra, see Definition [6.1
(9) ¢ : Ry — Ry is of finite type, or Ry is a finite type Ry -algebra, see Definition
6.1}
(10) ¢ : Ry — Ry is finite, or Ry is a finite Ry-algebra,
(11) R is a (integral) domain,
(12) R is reduced,
(13) R is Noetherian,
(14) R is a principal ideal domain or a PID,
(15) R is a Fuclidean domain,
(16) R is a unique factorization domain or a UFD,
(17) R is a discrete valuation ring or a dur,
(18) K is a field,
(19) L/K is a field extension,
(20) L/K is an algebraic field extension,
(21) {t;}icr is a transcendence basis for L over K,
(22) the transcendence degree trdeg(L/K) of L over K,
(23) the field k is algebraically closed,
(24) if L/K is algebraic, and /K an extension with  algebraically closed, then
there exists a ring map L — ) extending the map on K,
(25) I C R is an ideal,
(26) I C R is radical,
(27) if T is an ideal then we have its radical v/T,
(28) I C R is nilpotent means that I"™ = 0 for some n € N,
(29) I C R is locally nilpotent means that every element of I is nilpotent,
(30) p C R is a prime ideal,
(31) if p C R is prime and if I, J C R are ideal, and if IJ C p, then I C p or
J Cp.
(32) m C R is a mazimal ideal,
(33) any nonzero ring has a maximal ideal,
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(34) the Jacobson radical of R is rad(R) = [),,cp m the intersection of all the
maximal ideals of R,

(35) the ideal (T') generated by a subset T' C R,

(36) the quotient ring R/I,

(37) an ideal I in the ring R is prime if and only if R/I is a domain,

(38) an ideal I in the ring R is maximal if and only if the ring R/I is a field,

(39) if ¢ : Ry — Ry is a ring homomorphism, and if I C Ry is an ideal, then

@ (I) is an ideal of Ry,

(40) if ¢ : Ry — Ry is a ring homomorphism, and if I C R is an ideal, then
©(I) - Ry (sometimes denoted I - Ry, or IRy) is the ideal of Ry generated
by ¢(I),

(41) if ¢ : Ry — Ry is a ring homomorphism, and if p C Ry is a prime ideal,
then ¢ ~!(p) is a prime ideal of Ry,

(42) M is an R-module,

(43) for m € M the annihilator I = {f € R| fm =0} of m in R,

(44) N C M is an R-submodule,

(45) M is an Noetherian R-module,

(46) M is a finite R-module,

(47) M is a finitely generated R-module,

(48) M is a finitely presented R-module,

(49) M is a free R-module,

(50) if 0 - K - L — M — 0 is a short exact sequence of R-modules and K,

M are free, then L is free,

(51) if N C M C L are R-modules, then L/M = (L/N)/(M/N),

(52) S is a multiplicative subset of R,

(53) the localization R — S™'R of R,

(54) if R is a ring and S is a multiplicative subset of R then S™!R is the zero
ring if and only if S contains 0,

(55) if R is a ring and if the multiplicative subset S consists completely of
nonzerodivisors, then R — S~'R is injective,

(56) if ¢ : Ry — Ry is a ring homomorphism, and S is a multiplicative subsets
of Ry, then ¢(S) is a multiplicative subset of Rg,

(57) if S, S’ are multiplicative subsets of R, and if S'S’ denotes the set of products
S8 ={re R|3se 5,3s' € §',r = ss'} then S5’ is a multiplicative subset
of R,

(58) if S, S’ are multiplicative subsets of R, and if S denotes the image of S in

(S))"'R, then (SS")'R=15 '((S")"'R),

(59) the localization S™'M of the R-module M,

(60) the functor M ~ S~'M preserves injective maps, surjective maps, and
exactness,

(61) if S, S are multiplicative subsets of R, and if M is an R-module, then
(SS) M = S=1((S") "t M),

(62) if Ris aring, I an ideal of R, and S a multiplicative subset of R, then S~1I
is an ideal of S™!'R, and we have ST'R/S~!I = g_l(R/I), where S is the
image of S in R/I,
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(63) if R is a ring, and S a multiplicative subset of R, then any ideal I’ of S~'R
is of the form S~!I, where one can take I to be the inverse image of I’ in
R,

(64) if Ris aring, M an R-module, and S a multiplicative subset of R, then any
submodule N’ of S~ M is of the form S™'N for some submodule N ¢ M,
where one can take N to be the inverse image of N' in M,

(65) if S={1,f, f? ...} then Rf = S7'R and My = S™'M,

(66) if S=R\p={x € R|x¢p} for some prime ideal p, then it is customary

to denote Ry = S™'R and M, = S M,

(67) a local ring is a ring with exactly one maximal ideal,

(68) a semi-local ring is a ring with finitely many maximal ideals,

(69) if p is a prime in R, then R, is a local ring with maximal ideal pR,,

(70) the residue field, denoted k(p), of the prime p in the ring R is the field of

fractions of the domain R/p; it is equal to Ry, /pR, = (R\ p)"'R/p,

(71) given R and M;, My the tensor product My @ g Mo,

(72) given matrices A and B in a ring R of sizes m x n and n x m we have
det(AB) = > det(Ag)det(sB) in R where the sum is over subsets S C
{1,...,n} of size m and Ag is the m x m submatrix of A with columns
corresponding to S and gB is the m x m submatrix of B with rows corre-
sponding to .5,

(73) etc.

4. Snake lemma

The snake lemma and its variants are discussed in the setting of abelian categories
in Homology, Section

Lemma 4.1. Given a commutative diagram

XY —Z—0
Lol
0l eV —sW

of abelian groups with exact rows, there is a canonical eract sequence
Ker(a) — Ker(8) — Ker(y) — Coker(a) — Coker(8) — Coker(y)

Moreover: if X — Y is injective, then the first map is injective; if V. — W is
surjective, then the last map is surjective.

Proof. The map 0 : Ker(y) — Coker(a) is defined as follows. Take z € Ker(7).
Choose y € Y mapping to z. Then S(y) € V maps to zero in W. Hence S(y) is
the image of some u € U. Set 0z = w, the class of u in the cokernel of a.. Proof of
exactness is omitted. O

5. Finite modules and finitely presented modules

Just some basic notation and lemmas.

Definition 5.1. Let R be a ring. Let M be an R-module.

[CE56, III, Lemma
3.3]
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(1) We say M is a finite R-module, or a finitely generated R-module if there
exist n € N and z1,...,x, € M such that every element of M is an R-linear
combination of the x;. Equivalently, this means there exists a surjection
RO — M for some n € N.

(2) We say M is a finitely presented R-module or an R-module of finite presen-
tation if there exist integers n,m € N and an exact sequence

R®™ s RO s M —0

Informally, M is a finitely presented R-module if and only if it is finitely generated
and the module of relations among these generators is finitely generated as well. A
choice of an exact sequence as in the definition is called a presentation of M.

Lemma 5.2. Let R be a ring. Let a : R®™ — M and B : N — M be module
maps. If Im(a) C Im(f), then there exists an R-module map v : R®" — N such
that oo = B oy.

Proof. Let ¢; = (0,...,0,1,0,...,0) be the ith basis vector of R®". Let z; € N
be an element with a(e;) = B(x;) which exists by assumption. Set y(ay,...,a,) =
> a;xz;. By construction a = o +. [

Lemma 5.3. Let R be a ring. Let
O—>M1—>M2—>M3—)O

be a short eract sequence of R-modules.

(1) If My and M3 are finite R-modules, then My is a finite R-module.

(2) If My and M3 are finitely presented R-modules, then My is a finitely pre-
sented R-module.

(3) If My is a finite R-module, then Ms is a finite R-module.

(4) If M is a finitely presented R-module and M is a finite R-module, then
Ms is a finitely presented R-module.

(5) If M3 is a finitely presented R-module and Ms is a finite R-module, then
M is a finite R-module.

Proof. Proof of (1). If 1,...,x, are generators of M; and yi,...,ym € My are
elements whose images in M3 are generators of Ms, then x1,...,Tn,y1,.-.,Ym
generate Ms.

Part (3) is immediate from the definition.
Proof of (5). Assume Msj is finitely presented and M, finite. Choose a presentation
R®™ — R®™ — M3 — 0

By Lemma there exists a map R®"™ — M, such that the solid diagram

REBm REBn M3 0
L
\
0 M, M, Ms 0

commutes. This produces the dotted arrow. By the snake lemma (Lemma [4.1)) we
see that we get an isomorphism

Coker(R®™ — M) = Coker(R®" — M)
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In particular we conclude that Coker(R®™ — M) is a finite R-module. Since
Im(R®™ — M) is finite by (3), we see that M, is finite by part (1).

Proof of (4). Assume M, is finitely presented and M; is finite. Choose a pre-
sentation R®™ — R®" — M, — 0. Choose a surjection R®* — M,;. By
Lemma there exists a factorization R®* — R®"™ — M, of the composition
R®* — M; — M,. Then R®*+t™ — R®" — Ms; — 0 is a presentation.

Proof of (2). Assume that M; and Mj are finitely presented. The argument in the
proof of part (1) produces a commutative diagram

0 R®™ R¥mtm R®™ 0
0 M, M; M; 0

with surjective vertical arrows. By the snake lemma we obtain a short exact se-
quence

0 — Ker(R®" — M;) — Ker(R®"™ — M) — Ker(R®™ — M3) — 0

By part (5) we see that the outer two modules are finite. Hence the middle one is
finite too. By (4) we see that M5 is of finite presentation. O

Lemma 5.4. Let R be a ring, and let M be a finite R-module. There exists a
filtration by R-submodules

O=MycMyC...CM,=M
such that each quotient M;/M;_1 is isomorphic to R/I; for some ideal I; of R.

Proof. By induction on the number of generators of M. Let x1,...,2, € M be
a minimal number of generators. Let M’ = Rx; € M. Then M/M' has r — 1
generators and the induction hypothesis applies. And clearly M’ = R/I; with
L={feR]| fx; =0} O

Lemmal 5.5. Let R — S be a ring map. Let M be an S-module. If M is finite as
an R-module, then M is finite as an S-module.

Proof. In fact, any R-generating set of M is also an S-generating set of M, since
the R-module structure is induced by the image of R in S. O

6. Ring maps of finite type and of finite presentation

Definition 6.1. Let R — S be a ring map.

(1) We say R — S is of finite type, or that S is a finite type R-algebra if there
exist an n € N and an surjection of R-algebras R[x1,...,x,] — S.

(2) We say R — S is of finite presentation if there exist integers n,m € N and
polynomials fi,..., fm € R[z1,...,2,] and an isomorphism of R-algebras

R[xl,...,xn]/(fl,...,fm)%S.

Informally, R — S is of finite presentation if and only if S is finitely generated as
an R-algebra and the ideal of relations among the generators is finitely generated.
A choice of a surjection R[x1,...,2,] — S as in the definition is sometimes called
a presentation of S.


https://stacks.math.columbia.edu/tag/00KZ
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Lemma 6.2. The notions finite type and finite presentation have the following
permanence properties.
(1) A composition of ring maps of finite type is of finite type.
(2) A composition of ring maps of finite presentation is of finite presentation.
(3) Given R — S" — S with R — S of finite type, then S’ — S is of finite type.
(4) Given R — S" — S, with R — S of finite presentation, and R — S’ of
finite type, then S’ — S is of finite presentation.

Proof. We only prove the last assertion. Write S = R[z1,...,2,]/(f1,.-., fm) and
S" = Rly1,...,Ya)/I. Say that the class y; of y; maps to h; mod (f1,..., fin) in S.
Then it is clear that S = S'[z1,..., 2]/ (f1,- s fm, P1 — U1y, Pa — Ta)- O

Lemmal 6.3. Let R — S be a ring map of finite presentation. For any surjection
a: R[xy,...,x,] = S the kernel of « is a finitely generated ideal in R[x1,...,x,].

Proof. Write S = R[y1,...,Ym]/(f1,---, fx). Choose g; € Rlyi,...,ym] which
are lifts of a(x;). Then we see that S = Rlx;,y;]/(fi,zi — ¢;). Choose h; €
R[z1,...,x,] such that a(h;) corresponds to y; mod (fi,..., fx). Consider the
map ¢ : Rlz;,y;] = R[x;i], ; — x;, y; — h;. Then the kernel of « is the image of
(fi,z; — gi) under ¥ and we win. O

Lemmal 6.4. Let R — S be a ring map. Let M be an S-module. Assume R — S
is of finite type and M is finitely presented as an R-module. Then M is finitely
presented as an S-module.

Proof. This is similar to the proof of part (4) of Lemmal[6.2] We may assume S =
R[zq,...,2z,])/J. Choose y1,...,ym € M which generate M as an R-module and
choose relations Y a;;y; =0, @ =1,...,t which generate the kernel of R®™ — M.
Foranyt=1,...,nand j =1,...,m write

TiYj = Z AijkYk

for some a;j, € R. Consider the S-module N generated by 1, ...,y subject to
the relations > a;;y; = 0, ¢ = 1,...,t and z;y; = > aijuye, ¢ = 1,...,n and
j=1,...,m. Then N has a presentation

Senmit g8 s N — 0

By construction there is a surjective map ¢ : N — M. To finish the proof we show
¢ is injective. Suppose z = > bjy; € N for some b; € S. We may think of b;
as a polynomial in z1,...,z, with coefficients in R. By applying the relations of
the form z;y; = > a;jxyx we can inductively lower the degree of the polynomials.
Hence we see that z = ) ¢;y; for some ¢; € R. Hence if ¢(z) = 0 then the vector
(c1,...,¢n) is an R-linear combination of the vectors (a1, . . ., @;n) and we conclude
that z = 0 as desired. (]

7. Finite ring maps
Here is the definition.

Definition 7.1. Let ¢ : R — S be a ring map. We say ¢ : R — S is finite if S is
finite as an R-module.

Lemmal 7.2. Let R — S be a finite ring map. Let M be an S-module. Then M
is finite as an R-module if and only if M is finite as an S-module.
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Proof. One of the implications follows from Lemma 5.5l To see the other assume

that M is finite as an S-module. Pick z1,...,z, € S which generate S as an
R-module. Pick y1,...,ym € M which generate M as an S-module. Then z;y;
generate M as an R-module. [

Lemmal 7.3. Suppose that R — S and S — T are finite ring maps. Then R — T
1s finite.

Proof. If t; generate T" as an S-module and s; generate S as an R-module, then
t;s; generate T' as an R-module. (Also follows from Lemma [7.2]) O

Lemma 7.4. Let ¢ : R — S be a ring map.
(1) If ¢ is finite, then ¢ is of finite type.
(2) If S is of finite presentation as an R-module, then ¢ is of finite presentation.

Proof. For (1) if z1,...,z, € S generate S as an R-module, then z1,...,z, gen-
erate S as an R-algebra. For (2), suppose that Zr;xl =0,7=1,...,mis a set
of generators of the relations among the z; when viewed as R-module generators
of S. Furthermore, write 1 = ) r;z; for some r; € R and z;2; = > rfjxk for some
rfj € R. Then

S=Rltr, ... )/ rits, 1= iy, tit; — > rhity)

as an R-algebra which proves (2). O

For more information on finite ring maps, please see Section

8. Colimits

Some of the material in this section overlaps with the general discussion on col-
imits in Categories, Sections [14] - The notion of a preordered set is defined in
Categories, Definition It is a slightly weaker notion than a partially ordered
set.

Definition 8.1. Let (I, <) be a preordered set. A system (M;, pi;) of R-modules
over I consists of a family of R-modules {M;};c; indexed by I and a family of
R-module maps {p;; : M; — M, };<; such that for all ¢ < j <k

Wi =1da, ik = Mgk © i
We say (M;, pij) is a directed system if I is a directed set.
This is the same as the notion defined in Categories, Definition [21.2] and Section

We refer to Categories, Definition for the definition of a colimit of a
diagram/system in any category.

Lemma 8.2. Let (M;, p;j) be a system of R-modules over the preordered set I.
The colimit of the system (M;, pi;) is the quotient R-module (@,;c; M;)/Q where
Q is the R-submodule generated by all elements

vi(@i) — i (paj (@)
where v; : M; — @iel M; is the natural inclusion. We denote the colimit M =

colim; M;. We denote 7 : @,;.; M; — M the projection map and ¢; = wov; : My —
M.
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Proof. This lemma is a special case of Categories, Lemma but we will also
prove it directly in this case. Namely, note that ¢; = ¢; o u;; in the above con-
struction. To show the pair (M, ¢;) is the colimit we have to show it satisfies the
universal property: for any other such pair (Y, ;) with ¢; : M; = Y, 1; = 1, 0o s,
there is a unique R-module homomorphism g : M — Y such that the following
diagram commutes:

And this is clear because we can define g by taking the map ; on the summand
M; in the direct sum €@ M;. |

Lemma 8.3. Let (M;, pij) be a system of R-modules over the preordered set I.
Assume that I is directed. The colimit of the system (M;, ;) is canonically iso-
morphic to the module M defined as follows:

(1) as a set let
= (I, ) -

where for m € M; and m’ € M; we have
m ~m' < p;j(m) = pi(m') for some j >14,i

(2) as an abelian group for m € M; and m’ € M; we define the sum of the
classes of m and m’ in M to be the class of pi;(m) + pirj(m’) where j € I
is any index with i < j and ¢ < j, and

(3) as an R-module define for m € M; and x € R the product of x and the
class of m in M to be the class of xm in M.

The canonical maps ¢; : M; — M are induced by the canonical maps M; —
Hie[ M;.
Proof. Omitted. Compare with Categories, Section (]

Lemma 8.4. Let (M;, ;) be a directed system. Let M = colim M; with u; :
M; — M. Then, p;(x;) =0 for x; € M; if and only if there exists j > i such that
pij(wi) = 0.

Proof. This is clear from the description of the directed colimit in Lemma 8.3, [

Example 8.5. Consider the partially ordered set I = {a,b, ¢} witha < band a < ¢
and no other strict inequalities. A system (Mg, My, M, fiap, ftac) Over I consists of
three R-modules M,, My, M. and two R-module homomorphisms i, : M, — M
and pg. : My — M,.. The colimit of the system is just

M := colim;cy M; = Coker(M, — M, & M,)
where the map is pgp ® —ptqe- Thus the kernel of the canonical map M, — M is
Ker(pap) + Ker(piqe). And the kernel of the canonical map M, — M is the image

of Ker(ji4.) under the map pqp. Hence clearly the result of Lemma is false for
general systems.
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Definition 8.6. Let (M;, pti;), (Ni,vi;) be systems of R-modules over the same
preordered set I. A homomorphism of systems ® from (M;, f1;;) to (N;,v45) is by
definition a family of R-module homomorphisms ¢; : M; — N; such that ¢; o u;; =
vij o ¢; for all ¢ < 5.

This is the same notion as a transformation of functors between the associated
diagrams M : I — Modgr and N : I — Modg, in the language of categories. The
following lemma is a special case of Categories, Lemma [14.8

Lemma 8.7. Let (M;, p1i5), (Ni,vij) be systems of R-modules over the same pre-
ordered set. A morphism of systems ® = (¢;) from (M;, ;) to (N;,v45) induces a
unique homomorphism

colim ¢; : colim M; — colim NN;

such that
M; —— colim M;

bi i \Lcolim bi

N; —— colim V;
commutes for alli € I.
Proof. Write M = colim M; and N = colim N; and ¢ = colim ¢; (as yet to be
constructed). We will use the explicit description of M and N in Lemma

without further mention. The condition of the lemma is equivalent to the condition
that

@iel M; — M

ol ]

Gaiel Ny ——N

commutes. Hence it is clear that if ¢ exists, then it is unique. To see that ¢ exists,
it suffices to show that the kernel of the upper horizontal arrow is mapped by € ¢;
to the kernel of the lower horizontal arrow. To see this, let j < k and x; € M;.
Then

(EP o) (@ — mjn(z;) = 65 (x;) — bin(5)) = &5 (5) — viu(d;(x;))
which is in the kernel of the lower horizontal arrow as required. O

Lemma 8.8. Let I be a directed set. Let (L;, Nij), (M;, pij), and (N;,v;) be
systems of R-modules over I. Let ¢; : L; — M; and ¥; : M; — N; be morphisms
of systems over I. Assume that for alli € I the sequence of R-modules

L, i M; P N;

is a complex with homology H;. Then the R-modules H; form a system over I, the
sequence of R-modules

colim; L; LA colim; M; l> colim; V;
is a complex as well, and denoting H its homology we have

H = colim; H;.
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Proof. It is clear that colim; L; Lcolimi M; L>colimi N, is a complex.
For each i € I, there is a canonical R-module morphism H; — H (sending each
[m] € H; = Ker(1;)/ Im(y;) to the residue class in H = Ker(v)/Im(p) of the image
of m in colim; M;). These give rise to a morphism colim; H; — H. It remains to
show that this morphism is surjective and injective.

We are going to repeatedly use the description of colimits over I as in Lemma [8.3
without further mention. Let h € H. Since H = Ker(v))/Im(yp) we see that h is
the class mod Im(p) of an element [m] in Ker(¢) C colim; M;. Choose an ¢ such
that [m] comes from an element m € M;. Choose a j > ¢ such that v;;(¢;(m)) =0
which is possible since [m] € Ker(¢). After replacing ¢ by j and m by p,;(m) we
see that we may assume m € Ker(¢);). This shows that the map colim; H; — H is
surjective.

Suppose that h; € H; has image zero on H. Since H; = Ker(v;)/Im(yp;) we may
represent h; by an element m € Ker(¢);) C M;. The assumption on the vanishing of
h; in H means that the class of m in colim; M; lies in the image of ¢. Hence there
exists a j > ¢ and an | € L; such that ¢;(I) = p;;(m). Clearly this shows that the
image of h; in H; is zero. This proves the injectivity of colim; H; — H. O

Example| 8.9. Taking colimits is not exact in general. Consider the partially
ordered set I = {a,b,c} with a < b and a < ¢ and no other strict inequalities, as in
Example[8.5] Consider the map of systems (0,Z,Z,0,0) — (Z,Z,Z,1,1). From the
description of the colimit in Example [85] we see that the associated map of colimits
is not injective, even though the map of systems is injective on each object. Hence
the result of Lemma [8.8]is false for general systems.

Lemma 8.10. LetZ be an index category satisfying the assumptions of Categories,
Lemma [19.8, Then taking colimits of diagrams of abelian groups over I is ezact
(i.e., the analogue of Lemma holds in this situation).

Proof. By Categories, Lemma we may write Z = [];.;Z; with each Z; a
filtered category, and J possibly empty. By Categories, Lemma [21.5] taking colimits
over the index categories Z; is the same as taking the colimit over some directed set.
Hence Lemma [8.8| applies to these colimits. This reduces the problem to showing
that coproducts in the category of R-modules over the set J are exact. In other
words, exact sequences L; — M; — N; of R modules we have to show that

69jeJ Lj— @jeJ M; — @jeJ N;

is exact. This can be verified by hand, and holds even if J is empty. O

9. Localization

Definition 9.1. Let R be a ring, S a subset of R. We say S is a multiplicative
subset of Rif 1 € S and S is closed under multiplication, i.e., s,s’ € S = ss’ € S.

Given a ring A and a multiplicative subset S, we define a relation on A x S as
follows:

(z,8) ~ (y,t) & Ju € S such that (xt —ys)u =0
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It is easily checked that this is an equivalence relation. Let z/s (or £) be the
equivalence class of (x,s) and S™!A be the set of all equivalence classes. Define
addition and multiplication in S~1A as follows:

x/s+y/t=(zt+ys)/st, z/s-y/t=uxy/st
One can check that S~ A becomes a ring under these operations.

Definition 9.2. This ring is called the localization of A with respect to S.

We have a natural ring map from A to its localization S™'A,
A— STMA, /1

which is sometimes called the localization map. In general the localization map is
not injective, unless S contains no zerodivisors. For, if /1 = 0, then there is a
u € S such that zu = 0 in A and hence z = 0 since there are no zerodivisors in S.
The localization of a ring has the following universal property.

Proposition 9.3. Let f: A — B be a ring map that sends every element in S to
a unit of B. Then there is a unique homomorphism g : S~'A — B such that the
following diagram commutes.

A ! B

oA

S—tA

Proof. Existence. We define a map g as follows. For z/s € S71A, let g(z/s) =
f(x)f(s)~! € B. It is easily checked from the definition that this is a well-defined
ring map. And it is also clear that this makes the diagram commutative.

Uniqueness. We now show that if ¢ : S7'A — B satisfies ¢/(x/1) = f(z), then
g = ¢'. Hence f(s) = ¢'(s/1) for s € S by the commutativity of the diagram.
But then ¢’(1/s)f(s) = 1 in B, which implies that ¢’(1/s) = f(s)~! and hence
g'(x/s) =g'(x/1)g'(1/s) = f(x)f(s)~" = g(x/s). O

Lemma 9.4. The localization S™'A is the zero ring if and only if 0 € S.

Proof. If 0 € S, any pair (a,s) ~ (0,1) by definition. If 0 ¢ S, then clearly
1/1#0/1in STLA. O

Lemma 9.5. Let R be a ring. Let S C R be a multiplicative subset. The category
of ST'R-modules is equivalent to the category of R-modules N with the property
that every s € S acts as an automorphism on N.

Proof. The functor which defines the equivalence associates to an S~!R-module
M the same module but now viewed as an R-module via the localization map
R — S7'R. Conversely, if N is an R-module, such that every s € S acts via an
automorphism sy, then we can think of N as an S~!R-module by letting x/s act
via T o s&l. We omit the verification that these two functors are quasi-inverse to
each other. g
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The notion of localization of a ring can be generalized to the localization of a
module. Let A be a ring, S a multiplicative subset of A and M an A-module. We
define a relation on M x S as follows

(m,s) ~ (n,t) < 3u € S such that (mt —ns)u =0
This is clearly an equivalence relation. Denote by m/s (or ™) be the equivalence

class of (m,s) and S M be the set of all equivalence classes. Define the addition
and scalar multiplication as follows

m/s+n/t=(mt+ns)/st, m/s-n/t=mn/st
It is clear that this makes S™'M an S—!'A-module.
Definition 9.6. The S~!A-module S™'M is called the localization of M at S.

Note that there is an A-module map M — S~ M, m + m/1 which is sometimes
called the localization map. It satisfies the following universal property.

Lemma 9.7. Let R be a ring. Let S C R a multiplicative subset. Let M, N be
R-modules. Assume all the elements of S act as automorphisms on N. Then the
canonical map

Homp(S™*M, N) — Hompg (M, N)

induced by the localization map, is an isomorphism.

Proof. It is clear that the map is well-defined and R-linear. Injectivity: Let a €
Hompz(S~'M, N) and take an arbitrary element m/s € S™'M. Then, since s -
a(m/s) = a(m/1), we have a(m/s) = s~1(a(m/1)), so a is completely determined
by what it does on the image of M in S™'M. Surjectivity: Let 8 : M — N be a
given R-linear map. We need to show that it can be "extended' to S~™!M. Define
a map of sets
M xS — N, (m,s)— s 18(m)

Clearly, this map respects the equivalence relation from above, so it descends to a
well-defined map o : S™'M — N. It remains to show that this map is R-linear, so
take 7,7’ € R as well as s,s’ € S and m,m’ € M. Then

alfr-m/s+r"-m'/s)y=a((r-s" - m+r"-s-m')/(ss))
= (ss)'B(r-s-m+r-s-m)
= (ss')7H(r - 8'B(m) + 1" sB(m"))
=ra(m/s) +r'a(m'/s")
and we win. O

Example| 9.8. Let A be a ring and let M be an A-module. Here are some
important examples of localizations.

(1) Given p a prime ideal of A consider S = A\p. It is immediately checked that
S is a multiplicative set. In this case we denote A, and M, the localization
of A and M with respect to S respectively. These are called the localization
of A, resp. M at p.

(2) Let f € A. Consider S = {1, f, f2,...}. This is clearly a multiplicative
subset of A. In this case we denote Ay (resp. My) the localization S~ A
(resp. STIM). This is called the localization of A, resp. M with respect to
f. Note that Ay = 0 if and only if f is nilpotent in A.
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(3) Let S = {f € A | f is not a zerodivisor in A}. This is a multiplicative
subset of A. In this case the ring Q(A) = S7'A is called either the total
quotient ring, or the total ring of fractions of A.

(4) If A is a domain, then the total quotient ring Q(A) is the field of fractions
of A. Please see Fields, Example [3.4

Lemmal 9.9. Let R be a ring. Let S C R be a multiplicative subset. Let M be an
R-module. Then

S_lM = COlimfes Mf
where the preorder on S is given by f > ' < f = f'f" for some f"” € R in which
case the map My — My is given by m/(f')¢ — m(f")¢/fe.
Proof. Omitted. Hint: Use the universal property of Lemma O

In the following paragraph, let A denote a ring, and M, N denote modules over A.
If S and S’ are multiplicative sets of A, then it is clear that

SS'={ss':s5€ 8, §e8s'}
is also a multiplicative set of A. Then the following holds.
Proposition 9.10. Let S be the image of S in S’"1 A, then (SS’) "1 A is isomorphic
to 5 (S'TLA).

Proof. The map sending z € A to x/1 € (55’)71A induces a map sending z/s €
S 1Atox/s € (§5")"LA, by universal property. The image of the elements in S are

invertible in (SS’)~*A. By the universal property we get a map f : ?71(5’ “14) —
(8S")~LA which maps (z/t')/(s/s") to (z/t') - (s/s')7L.

On the other hand, the map from A to ?71(5’*1/1) sending x € A to (x/1)/(1/1)
also induces a map g : (SS')"'A — §_1(S’*1A) which sends z/ss” to (x/s")/(s/1),
by the universal property again. It is immediately checked that f and g are inverse
to each other, hence they are both isomorphisms. O

For the module M we have

Proposition 9.11. View S'~'M as an A-module, then S=1(S’~t M) is isomorphic
to (SS")"1M.

Proof. Note that given a A-module M, we have not proved any universal property
for S~'M. Hence we cannot reason as in the preceding proof; we have to construct
the isomorphism explicitly.

We define the maps as follows

z/s

f:S8 NS M) — (SS") ' M, . > x/ss'

x/s

g:(SS) M — STHSTI M), x/t— for some s € S,s" € ', and t = 55

We have to check that these homomorphisms are well-defined, that is, independent
the choice of the fraction. This is easily checked and it is also straightforward to
show that they are inverse to each other. [
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Ifu: M — N is an A homomorphism, then the localization indeed induces a
well-defined S~'A homomorphism S~!u : S™'M — S~IN which sends z/s to
u(z)/s. It is immediately checked that this construction is functorial, so that S~*
is actually a functor from the category of A-modules to the category of S—'A-
modules. Moreover this functor is exact, as we show in the following proposition.

Proposition 9.12. Let L = M % N be an exact sequence of R-modules. Then
S™IL — S~'M — S7IN is also exact.

Proof. First it is clear that S™'L — S™'M — S™'N is a complex since lo-
calization is a functor. Next suppose that z/s maps to zero in S™!N for some
x/s € STIM. Then by definition there is a t € S such that v(zt) = v(x)t = 0 in
M, which means zt € Ker(v). By the exactness of L - M — N we have xt = u(y)
for some y in L. Then z/s is the image of y/st. This proves the exactness. (I

Lemma 9.13. Localization respects quotients, i.e. if N is a submodule of M, then
S™HM/N)~ (S~M)/(S7IN).
Proof. From the exact sequence

0—N—M-—M/N—20

we have

0— S!N—S'M— S HM/N)—0
The corollary then follows. O
If, in the preceding Corollary, we take N = I and M = A for an ideal I of A, we
see that S™*A/S™1I ~ S71(A/I) as A-modules. The next proposition shows that
they are isomorphic as rings.
Proposition 9.14. Let I be an ideal of A, S a multiplicative set of A. Then S™'I
is an ideal of ST'A and §_1(A/I) is isomorphic to STYA/STI, where S is the
image of S in A/I.
Proof. The fact that S~'I is an ideal is clear since I itself is an ideal. Define

FiS7'A—T A/, z/s—T)3

where T and § are the images of z and s in A/I. We shall keep similar notations in
this proof. This map is well-defined by the universal property of S~*A, and S~'I
is contained in the kernel of it, therefore it induces a map

T:SMA/STH — S NAJD), /s T3
On the other hand, the map A — S~1A/S~!I sending = to 7/1 induces a map

AJI — S~1A/S~'I sending T to /1. The image of S is invertible in S~*A/S~'1,
thus induces a map

g:5 A/ — 5714 s7 T, L)

wl | 8

by the universal property. It is then clear that f and g are inverse to each other,
hence are both isomorphisms. O

We now consider how submodules behave in localization.
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Lemma 9.15. Any submodule N’ of S~'M is of the form SN for some N C M.
Indeed one can take N to be the inverse image of N’ in M.

Proof. Let N be the inverse image of N’ in M. Then one can see that S™*N D N'.
To show they are equal, take z/s in S™'N, where s € S and x € N. This yields
that /1 € N’. Since N’ is an S~!R-submodule we have z/s = z/1-1/s € N'.
This finishes the proof. O

Taking M = A and N = [ an ideal of A, we have the following corollary, which can
be viewed as a converse of the first part of Proposition

Lemma 9.16. Each ideal I' of S™' A takes the form S™'I, where one can take I
to be the inverse image of I' in A.

Proof. Immediate from Lemma [0.15] |

10. Internal Hom
If R is a ring, and M, N are R-modules, then
Homp(M,N)={p: M — N}

is the set of R-linear maps from M to N. This set comes with the structure of an
abelian group by setting (o+v¢)(m) = @(m)+¢(m), as usual. In fact, Homp (M, N)
is also an R-module via the rule (z¢)(m) = zp(m) = @(zm).

Given maps a : M — M’ and b: N — N’ of R-modules, we can pre-compose and
post-compose homomorphisms by a and b. This leads to the following commutative
diagram

Homp(M', N) THomR(M’,N’)

_oal l_oa

Homp (M, N) —°"> Homp (M, N')
In fact, the maps in this diagram are R-module maps. Thus Homp defines an
additive functor

Modz” x Modg — Modg, (M, N)+— Homg(M,N)

Lemma 10.1. FEzactness and Hompg. Let R be a ring.

(1) Let My — My — M3 — 0 be a complex of R-modules. Then My — My —
Mz — 0 is exact if and only if 0 — Hompg(Ms, N) — Hompg(Msy, N) —
Homp(My, N) is exact for all R-modules N.

(2) Let 0 —» My — My — Ms be a complex of R-modules. Then 0 — M; —
My — Ms is exact if and only if 0 — Hompg (N, My) — Hompg(N, Ms) —
Homp(N, Ms3) is exact for all R-modules N.

Proof. Omitted. |

Lemma 10.2. Let R be a ring. Let M be a finitely presented R-module. Let N
be an R-module.

(1) For f € R we have Homgr(M, N)y = Hompg, (M, Ny) = Hompg(My, Ny),
(2) for a multiplicative subset S of R we have

S~ Homp(M,N) = Homg-15(S™'M,S™'N) = Homg(S™*M,S™'N).
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Proof. Part (1) is a special case of part (2). The second equality in (2) follows
from Lemma [9.7] Choose a presentation

@j:h.,m R — @i:L.H,n R— M — 0.
By Lemma this gives an exact sequence

0 — Homp(M, N) — @Zln N — @jzl,...,m N.
Inverting S and using Proposition we get an exact sequence

—1 -1 -1

0 — S~ Homp(M,N) — @izlmn STIN — @j:l,...,m STIN
and the result follows since S™'M sits in an exact sequence
-1 -1 -1

@jzl,...,m SR — 691:1,...,71 STR—S "M—=0

which induces (by Lemma [10.1)) the exact sequence
-1 -1 -1 -1
0 — Homg-1(S™*M,S7'N) — @_Lm’n STIN — EBj:l SN

)

which is the same as the one above. O

11. Characterizing finite and finitely presented modules

0G8M Given a module N over a ring R, you can characterize whether or not IV is a finite
module or a finitely presented module in terms of the functor Homp (N, —).

0G8N |Lemma 11.1. Let R be a ring. Let N be an R-module. The following are equiv-
alent
(1) N is a finite R-module,
(2) for any filtered colimit M = colim M; of R-modules the map colim Homg (N, M;) —
Hompg (N, M) is injective.

Proof. Assume (1) and choose generators 1, ..., z,, for N. If N — M, is a module
map and the composition N — M; — M is zero, then because M = colim; >; M
for each j € {1,...,m} we can find a ¢’ > ¢ such that =; maps to zero in M;,. Since
there are finitely many z; we can find a single ¢’ which works for all of them. Then
the composition N — M; — M, is zero and we conclude the map is injective, i.e.,
part (2) holds.

Assume (2). For a finite subset E C N denote Ny C N the R-submodule generated
by the elements of E. Then 0 = colim N/Ng is a filtered colimit. Hence we see
that id : N — N maps into Ng for some F, i.e., N is finitely generated. O

For purposes of reference, we define what it means to have a relation between
elements of a module.

07N8 |Definition/11.2. Let R be a ring. Let M be an R-module. Let n > 0 and z; € M
for i = 1,...,n. A relation between x1,...,x, in M is a sequence of elements
fi,....fn € Rsuch that 37,  fiz;=0.

00HA Lemmal11.3. Let R be a ring and let M be an R-module. Then M is the colimit of
a directed system (M;, pi;) of R-modules with all M; finitely presented R-modules.
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Proof. Consider any finite subset S C M and any finite collection of relations F
among the elements of S. So each s € S corresponds to x; € M and each e € F
consists of a vector of elements f. s € R such that > f. ;x5 = 0. Let Mg g be the
cokernel of the map

R#E — R#S, (ge)eeE — (Z gefe,s)s€S~

There are canonical maps Mg r — M. If S C S" and if the elements of E corre-
spond, via this map, to relations in E’, then there is an obvious map Mg g — Mg/ g
commuting with the maps to M. Let I be the set of pairs (S, F') with ordering by
inclusion as above. It is clear that the colimit of this directed system is M. ([

0G8P Lemma 11.4. Let R be a ring. Let N be an R-module. The following are equiv-
alent

(1) N is a finitely presented R-module,
(2) for any filtered colimit M = colim M; of R-modules the map colim Homg(N, M;) —
Hompg (N, M) is bijective.

Proof. Assume (1) and choose an exact sequence F_; — Fy — N — 0 with F;
finite free. Then we have an exact sequence

0 — Hompg (N, M) — Hompg(Fy, M) — Homp(F_1, M)

functorial in the R-module M. The functors Hompg(F;, M) commute with filtered
colimits as Hompg(R®", M) = M®". Since filtered colimits are exact (Lemma [3.8])
we see that (2) holds.

Assume (2). By Lemma we can write N = colim V; as a filtered colimit such
that N; is of finite presentation for all i. Thus idy factors through N; for some 1.
This means that N is a direct summand of a finitely presented R-module (namely
N;) and hence finitely presented. ([

12. Tensor products

0oCcv

00CW |Definition 12.1. Let R be a ring, M, N, P be three R-modules. A mapping
f:MxN — P (where M x N is viewed only as Cartesian product of two R-
modules) is said to be R-bilinear if for each € M the mapping y — f(x,y) of N
into P is R-linear, and for each y € N the mapping x — f(z,y) is also R-linear.

00CX |Lemma 12.2. Let M, N be R-modules. Then there exists a pair (T,g) where T
is an R-module, and g : M x N — T an R-bilinear mapping, with the following
universal property: For any R-module P and any R-bilinear mapping f : M x N —
P, there exists a unique R-linear mapping f : T — P such that f = fog. In other
words, the following diagram commutes:

M x N

N

T

Moreover, if (T, g) and (T',g’) are two pairs with this property, then there exists a
unique isomorphism j : T — T" such that jog=g¢'.
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The R-module T" which satisfies the above universal property is called the tensor
product of R-modules M and N, denoted as M ®p N.

Proof. We first prove the existence of such R-module T'. Let M, N be R-modules.
Let T be the quotient module P/Q, where P is the free R-module RM*N) and Q
is the R-module generated by all elements of the following types: (x € M,y € N)

(@ +2,y) = (z,y) — (@,y),
(x,y + y/) - (ﬂl‘,y) - (mvy/)7
(axa y) - a(xa )7

(1‘, ay) - a‘(xvy)

Let m: M x N — T denote the natural map. This map is R-bilinear, as implied
by the above relations when we check the bilinearity conditions. Denote the image
m(x,y) = © ® y, then these elements generate T. Now let f : M x N — P be
an R-bilinear map, then we can define f' : T — P by extending the mapping
fl(x®y) = f(z,y). Clearly f = f’ om. Moreover, f’ is uniquely determined by the
value on the generating sets {x ® y : @ € M,y € N}. Suppose there is another pair
(T',¢g') satistying the same properties. Then there is a unique j : T'— T” and also
j' T — T such that ¢ = jog, g = j og’. But then both the maps (jo0j')og
and g satisfies the universal properties, so by uniqueness they are equal, and hence
j' o7 is identity on T'. Similarly (j'o0j)og = ¢’ and joj’ is identity on T". So j is
an isomorphism. O

Lemma 12.3. Let M, N, P be R-modules, then the bilinear maps

(z,y) >y
(x4+y,2)—2rRz+y®z
(r,x) — rx

induce unique isomorphisms

M®r N - N ®gr M,
(M@ N)®r P — (M &g P)® (N ®g P),
R®pr M —- M

Proof. Omitted. (|

We may generalize the tensor product of two R-modules to finitely many R-modules,
and set up a correspondence between the multi-tensor product with multilinear
mappings. Using almost the same construction one can prove that:

Lemma 12.4. Let My,..., M, be R-modules. Then there exists a pair (T,g)
consisting of an R-module T and an R-multilinear mapping g : My x ... x M, = T
with the universal property: For any R-multilinear mapping f : My X ... x M, — P
there exists a unique R-module homomorphism f' : T — P such that f'og = f.
Such a module T is unique up to unique isomorphism. We denote it Mi®g...QrM,
and we denote the universal multilinear map (m1,...,m;) —» M1 & ... @ m,.

Proof. Omitted. O
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00D0 Lemma 12.5. The homomorphisms
(Mgr N)@rP > MerNQrP — M®r (N ®gP)

such that f((z@yY)®z2) = 2QYRz and g(zRY®z2) = 2@ (yRz), v € M,y € N,z € P
are well-defined and are isomorphisms.

Proof. We shall prove f is well-defined and is an isomorphism, and this proof
carries analogously to ¢g. Fix any z € P, then the mapping (z,y) — 2 Qy ®
z, x € M,y € N, is R-bilinear in x and y, and hence induces homomorphism
f:  M®N — M ®N ® P which sends f,(z ® y) = 2 ® y ® z. Then consider
(M@ N)x P— M ® N ® P given by (w,z) — f.(w). The map is R-bilinear and
thus induces f: (M @gr N)@r P > M @r N@r P and f(zQy)®z2) =@y 2.
To construct the inverse, we note that the map 7 : M X Nx P - (M @ N)® P is
R-trilinear. Therefore, it induces an R-linear map h: M@ N®@ P - (M @ N)® P
which agrees with the universal property. Here we see that h(z®@y®z2) = (zQy)®z.
From the explicit expression of f and h, foh and ho f are identity maps of M @ N® P
and (M ® N) ® P respectively, hence f is our desired isomorphism. [

Doing induction we see that this extends to multi-tensor products. Combined with
Lemma [12.3| we see that the tensor product operation on the category of R-modules
is associative, commutative and distributive.

00D1 |Definition 12.6. An abelian group N is called an (A, B)-bimodule if it is both an
A-module and a B-module, and the actions A — End(M) and B — End(M) are
compatible in the sense that (ax)b = a(xb) for all a € A,b € B,z € N. Usually we
denote it as 4 Np.

00D2 Lemma 12.7. For A-module M, B-module P and (A, B)-bimodule N, the modules
(M®aN)®p P and M ®4 (N ®pg P) can both be given (A, B)-bimodule structure,
and moreover
(M®sN)®@pP=2M®y (N®p P).

Proof. A priori M ® 4 N is an A-module, but we can give it a B-module structure
by letting

(zy)b=z®yb, z€MyecNbeB
Thus M ®4 N becomes an (A, B)-bimodule. Similarly for N ® g P, and thus for
(M ®s N)®p Pand M ®4 (N ®p P). By Lemma these two modules are
isomorphic as both as A-module and B-module via the same mapping. [l

00DE |Lemma 12.8. For any three R-modules M, N, P,
Homp(M ®r N, P) 2 Hompr(M,Homg(N, P))

Proof. An R-linear map f € Homg(M ®g N, P) corresponds to an R-bilinear map
f:Mx N — P. For each x € M the mapping y — f(z,y) is R-linear by the
universal property. Thus f corresponds to a map ¢ : M — Homp (N, P). This
map is R-linear since

drax +y)(2) = flax +y,2) = af (2,2) + f(y,2) = (ads(z) + ¢ (y))(2),
foralla € R,x € M,y € M and z € N. Conversely, any f € Homp (M, Homg(N, P))
defines an R-bilinear map M x N — P, namely (z,y) — f(x)(y). So this is a nat-

ural one-to-one correspondence between the two modules Homgr(M ®r N, P) and
Hompg(M,Hompg (N, P)). O
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Lemma 12.9 (Tensor products commute with colimits). Let (M;, p1;;) be a system
over the preordered set I. Let N be an R-module. Then

colim(M; ® N) = (colim M;) ® N.

Moreover, the isomorphism is induced by the homomorphisms pu; ® 1 : M; @ N —
M ® N where M = colim; M; with natural maps p; : M; — M.

Proof. First proof. The functor M’ — M’ ®r N is left adjoint to the functor
N’ + Hompg(N,N’) by Lemma [12.8 Thus M’ — M’ ®p N commutes with all
colimits, see Categories, Lemma [24.5

Second direct proof. Let P = colim(M; ® N) with coprojections \; : M; ® N — P.
Let M = colim M; with coprojections p; : M; — M. Then for all ¢ < j, the
following diagram commutes:

M; @ N—— MR N

pi®1
Mj@li lid

Mo N2 Mo N

By Lemma these maps induce a unique homomorphism v : P - M ® N such
that p; ® 1 =1 o \;.
To construct the inverse map, for each ¢ € I, there is the canonical R-bilinear
mapping g; : M; X N — M; ® N. This induces a unique mapping ¢ : M x N — P
such that ¢o(u; x 1) = \;og;. It is R-bilinear. Thus it induces an R-linear mapping
¢: M ®N — P. From the commutative diagram below:

M;x N—2>M; @ N — M; ® N

1

i X id Ai i ®id
® W )

M x N P M@N—-P

we see that 1 o (;AS = g, the canonical R-bilinear mapping g : M x N - M ® N. So
1 o ¢ is identity on M ® N. From the right-hand square and triangle, ¢ o % is also
identity on P. O

Lemma 12.10. Let

My, LMy % My — 0

be an exact sequence of R-modules and homomorphisms, and let N be any R-
module. Then the sequence

(12.10.1) Mo N L Mye N 225 My@ N — 0

is exact. In other words, the functor — ®gr N is right exact, in the sense that
tensoring each term in the original right exact sequence preserves the exactness.

Proof. We apply the functor Hom(—, Hom(N, P)) to the first exact sequence. We
obtain

0 — Hom(Mj3, Hom(N, P)) — Hom(Ms, Hom(N, P)) — Hom(M;, Hom(N, P))
By Lemma [I2.8] we have
0 — Hom(M3 ® N, P) — Hom(M; ® N, P) — Hom(M; ® N, P)
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Using the pullback property again, we arrive at the desired exact sequence. O

Remark| 12.11. However, tensor product does NOT preserve exact sequences in
general. In other words, if My — My — M3 is exact, then it is not necessarily true
that M7, @ N — My ® N — M3 ® N is exact for arbitrary R-module N.

Example| 12.12. Consider the injective map 2 : Z — Z viewed as a map of
Z-modules. Let N = Z/2. Then the induced map Z ® Z/2 — Z ® Z/2 is NOT
injective. This is because for z ® y € Z ® Z/2,

2e1)(zRy)=2zQy=2R2y=20=0
Therefore the induced map is the zero map while Z ® N # 0.

Remark| 12.13. For R-modules N, if the functor — ® g N is exact, i.e. tensoring
with IV preserves all exact sequences, then N is said to be flat R-module. We will
discuss this later in Section

Lemma 12.14. Let R be a ring. Let M and N be R-modules.

(1) If N and M are finite, then so is M @ g N.
(2) If N and M are finitely presented, then so is M ®r N.

Proof. Suppose M is finite. Then choose a presentation 0 — K — R®"* — M — 0.
This gives an exact sequence K g N — N®* — M ®r N — 0 by Lemma
We conclude that if N is finite too then M ®pg N is a quotient of a finite module,
hence finite, see Lemma [5.3] Similarly, if both N and M are finitely presented,
then we see that K is finite and that M ®r N is a quotient of the finitely presented

module N®" by a finite module, namely K ® g N, and hence finitely presented, see
Lemma 5.3 O

Lemma 12.15. Let M be an R-module. Then the S™'R-modules S™'M and
ST'R®rM are canonically isomorphic, and the canonical isomorphism f : ST'R®g
M — S7'M is given by

f((a/s)®@m) =am/s,Ya € R,me M,s €S

Proof. Obviously, the map f': SR x M — S='M given by f'(a/s,m) = am/s
is bilinear, and thus by the universal property, this map induces a unique S~!R-
module homomorphism f : ST'R ®g M — S™'M as in the statement of the
lemma. Actually every element in S~1M is of the form m/s, m € M,s € S and
every element in ST'R ®p M is of the form 1/s ® m. To see the latter fact, write
an element in S™'R ®@p M as

ag arly 1 1
DL BME=) T @M= S @) atumg = @m
k k

Where m = 3", aptpmy. Then it is obvious that f is surjective, and if f(f @ m) =
m/s = 0 then there exists ¢’ € S with tm = 0 in M. Then we have

1 1 1
-—®@m=—Qtm=—80=0
S st st

Therefore f is injective. (I

Lemmal 12.16. Let M, N be R-modules, then there is a canonical S™'R-module
isomorphism f: ST'M ®g-1r STIN — S7H(M ®r N), given by

f((m/s) @ (n/t)) = (m @ n)/st
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Proof. We may use Lemma and Lemma [12.15| repeatedly to see that these
two S~!R-modules are isomorphic, noting that S™1R is an (R, S~!R)-bimodule:

ST MorN)=2S 'Rz (Mg N)
~ S M er N
~ (ST'M ®g-1r ST'R) ®r N
> S M ®g-15 (ST'R®R N)
~ S M ®g-15 ST'N

This isomorphism is easily seen to be the one stated in the lemma. (I

13. Tensor algebra

Let R be a ring. Let M be an R-module. We define the tensor algebra of M over
R to be the noncommutative R-algebra

T(M) = Ta(M) =@ _ T"(M)

with TO(M) = R, T"(M) = M, T*(M) = M @ M, T*(M) = M @r M @5 M,
and so on. Multiplication is defined by the rule that on pure tensors we have

n>0

(11 R22®..0T,) Y1 QYR ...Q0UR) =1 RT2Q ... T, QY1 QY2 ® ... QY
and we extend this by linearity.

We define the exterior algebra A(M) of M over R to be the quotient of T(M) by
the two sided ideal generated by the elements r® x € TQ(M ). The image of a pure
tensor 1 ® ... ® x, in A"(M) is denoted x1 A ... A x,. These elements generate
A"(M), they are R-linear in each x; and they are zero when two of the z; are equal
(i.e., they are alternating as functions of z1,z2,...,2,). The multiplication on
A(M) is graded commutative, i.e., every x € M and y € M satisfy z Ay = —y A x.

An example of this is when M = Rz & ... ® Rx, is a finite free module. In this
case A(M) is free over R with basis the elements

xil/\.../\xir
with0<r<nand1<i <ig<...<i. <n.

We define the symmetric algebra Sym(M) of M over R to be the quotient of T(M)
by the two sided ideal generated by the elements z @ y —y @ 2 € T?(M). The
image of a pure tensor 1 ® ... ® z,, in Sym” (M) is denoted just z; ...z,. These
elements generate Sym™ (M), these are R-linear in each a; and a7 ...2, = 2} ...z}
if the sequence of elements 1, ..., 2, is a permutation of the sequence zi,..., /.
Thus we see that Sym(M) is commutative.

An example of this is when M = Rz ® ... ® Rx, is a finite free module. In this
case Sym(M) = R[z1,...,x,] is a polynomial algebra.

Lemmal 13.1. Let R be a ring. Let M be an R-module. If M is a free R-module,
so is each symmetric and exterior power.

Proof. Omitted, but see above for the finite free case. O
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Lemma 13.2. Let R be a ring. Let My — My — M — 0 be an exact sequence of
R-modules. There are exact sequences

My @r Sym" ™ (My) — Sym™(M;) — Sym™(M) — 0
and similarly
My ®@p A" "H(My) = A*(My) = A™(M) — 0
Proof. Omitted. U
Lemma 13.3. Let R be a ring. Let M be an R-module. Let x;, i € I be a given

system of generators of M as an R-module. Let n > 2. There exists a canonical
exact sequence

b Pp e H prim) - (M) - AN (M) =0
1<j1<g2<nii,i2€l 1<j1<g2<n i€l

where the pure tensor my ® ... Q@ my_o in the first summand maps to

m1®...®xil®...®xi2®...®mn,2

with x;y and x;, occupying slots j1 and jz in the tensor

+ m1®...®xiz®...®xil®...®mn_2

with x;, and x;; occupying slots j1 and jz in the tensor
and mi; ® ... ® my_o in the second summand maps to

m1®®xl®®xl®®mn_2

with z; and x; occupying slots j1 and ja in the tensor
There is also a canonical exact sequence
b p i - (M) - Sym" (M) — 0
1<ji<j2<nii,i2€l

where the pure tensor mi; @ ... ® My_o maps to

m1®...®xi1®...®xi2®...®mn_2

with x;y and x;, occupying slots j1 and jz in the tensor

— m1®®x72®®x“®®mn_2

with x;, and x;; occupying slots j1 and jz in the tensor

Proof. Omitted. O

Lemma 13.4. Let A — B be a ring map. Let M be a B-module. Letn > 1. The
kernel of the A-linear map M @4 ...@4 M — N (M) is generated as an A-module
by the elements m1 @ ... ® my, with m; = m; fori # j, my,...,m, € M and
the elements M1 @ ... bM; ® ... My —M1 @ ... bM; ® ... ® my, fori # j,
my,...,my € M, and b € B.

Proof. Omitted. O

Lemmal 13.5. Let R be a ring. Let M; be a directed system of R-modules. Then
colim; T(M;) = T(colim; M;) and similarly for the symmetric and exterior algebras.

Proof. Omitted. Hint: Apply Lemma [12.9 (]
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Lemma 13.6. Let R be a ring and let S C R be a multiplicative subset. Then
STITR(M) = Tg-1z(S™IM) for any R-module M. Similar for symmetric and
exterior algebras.

Proof. Omitted. Hint: Apply Lemma [12.16 [

14. Base change
We formally introduce base change in algebra as follows.

Definition 14.1. Let ¢ : R — S be a ring map. Let M be an S-module. Let
R — R’ be any ring map. The base change of ¢ by R — R’ is the ring map
R’ — S ®gr R’. In this situation we often write S’ = S ®r R’. The base change of
the S-module M is the S’-module M ®pr R'.

If S = R[z;]/(f;) for some collection of variables z;, ¢ € I and some collection of
polynomials f; € R[z;], j € J, then S®@pr R' = R'[x;]/(f}), where f] € R'[z;] is the
image of f; under the map R[z;] — R'[z;] induced by R — R’. This simple remark
is the key to understanding base change.

Lemmal 14.2. Let R — S be a ring map. Let M be an S-module. Let R — R’ be
a ring map and let S' =S ®r R’ and M' = M @, R’ be the base changes.
(1) If M is a finite S-module, then the base change M’ is a finite S"-module.
(2) If M is an S-module of finite presentation, then the base change M’ is an
S’-module of finite presentation.
(3) If R — S is of finite type, then the base change R’ — S’ is of finite type.
(4) If R — S is of finite presentation, then the base change R' — S’ is of finite
presentation.

Proof. Proof of (1). Take a surjective, S-linear map S®* — M — 0. By Lemma
and the result after tensoring with R’ is a surjection $’®" — M’ — 0,
so M’ is a finitely generated S’-module. Proof of (2). Take a presentation S®™ —
S®" — M — 0. By Lemma and the result after tensoring with R’ gives
a finite presentation $'®™ — §’" — M’ — 0, of the S’-module M’. Proof of (3).
This follows by the remark preceding the lemma as we can take I to be finite by
assumption. Proof of (4). This follows by the remark preceding the lemma as we
can take I and J to be finite by assumption. (I

Let ¢ : R — S be a ring map. Given an S-module N we obtain an R-module Ng
by the rule r - n = ¢(r)n. This is sometimes called the restriction of N to R.

Lemma 14.3. Let R — S be a ring map. The functors Mods — Modgr, N — Ng
(restriction) and Modr — Mods, M — M ®pg S (base change) are adjoint functors.
In a formula

Hompg(M, Ng) = Homg(M ®r S, N)

Proof. If o : M — Ng is an R-module map, then we define o/ : M @z S — N by
the rule &/(m ® s) = sa(m). If §: M ®r S — N is an S-module map, we define
B M — Npg by the rule 8'(m) = 8(m ® 1). We omit the verification that these
constructions are mutually inverse. O

The lemma above tells us that restriction has a left adjoint, namely base change.
It also has a right adjoint.
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Lemma 14.4. Let R — S be a ring map. The functors Mods — Modgr, N — Ng
(restriction) and Modr — Mods, M — Hompg(S, M) are adjoint functors. In a
formula

HomR(NR, M) = HomS(N, HOIIlR(S7 M))

Proof. If « : N — M is an R-module map, then we define o : N — Homp(S, M)
by the rule &/(n) = (s — a(sn)). If 8 : N — Hompg(S, M) is an S-module map,
we define 5/ : Np — M by the rule 8'(n) = 8(n)(1). We omit the verification that
these constructions are mutually inverse. O

Lemma 14.5. Let R — S be a ring map. Given S-modules M, N and an R-module
P we have

Homp(M ®g N, P) = Homg(M,Homg (N, P))
Proof. This can be proved directly, but it is also a consequence of Lemmas
and Namely, we have
Hompr(M ®s N, P) = Homg(M ®s N,Hompg(S, P))
= Homg (M, Homg (N, Hompg(S, P)))
= Homg(M,Hompg(N, P))
as desired. 0

15. Miscellany

The proofs in this section should not refer to any results except those from the
section on basic notions, Section [3]

Lemma 15.1. Let R be a ring, I and J two ideals and p a prime ideal containing
the product IJ. Then p contains I or J.

Proof. Assume the contrary and take z € I'\ p and y € J\ p. Their product is an
element of I.J C p, which contradicts the assumption that p was prime. ([

Lemma 15.2 (Prime avoidance). Let R be a ring. Let I; C R, i =1,...,r, and
J C R be ideals. Assume

(1) JZI; fori=1,...,r, and
(2) all but two of I; are prime ideals.
Then there exists an x € J, x & I; for all 1.
Proof. The result is true for r = 1. If r = 2, then let z,y € J with z ¢ I; and

y &€ I;. We are done unless « € Iy and y € I;. Then the element = + y cannot be
in I (since that would mean x +y — y € I) and it also cannot be in Is.

For r > 3, assume the result holds for » — 1. After renumbering we may assume
that I,. is prime. We may also assume there are no inclusions among the I;. Pick

zeJ, x&foralli=1,...,r—1. If x & I, we are done. So assume z € I,.
If JIy... I,y C I, then J C I, (by Lemma [15.1) a contradiction. Pick y €
JI ... 1.—1, y & I.. Then x + y works. (]

Lemma 15.3. Let R be a ring. Let x € R, I C R an ideal, and p;, i = 1,...,7
be prime ideals. Suppose that x + 1 ¢ p; fori=1,...,r. Then there exists a y € 1
such that x +y & p; for all i.
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Proof. We may assume there are no inclusions among the p;. After reordering we
may assume x ¢ p; for i < s and x € p; for i > s. If s = r + 1 then we are done.
If not, then we can find y € I with y ¢ p,. Choose f € (),_,p; with f & p,. Then
x + fy is not contained in pi,...,ps. Thus we win by induction on s. [

Lemma 15.4 (Chinese remainder). Let R be a ring.

(1) If I, ..., I are ideals such that I, + I, = R when a # b, then [1N...NI,. =
11]2...17« and R/(Illglr) = R/Il X ... X R/IT

(2) If my,...,m, are pairwise distinct mazimal ideals then m, +m, = R for
a # b and the above applies.

Proof. Let us first prove I1N...N1. = I; ... I, as this will also imply the injectivity
of the induced ring homomorphism R/(I; ...I.) = R/I1 x...x R/I,. The inclusion
LN...NI. D I;... I, is always fulfilled since ideals are closed under multiplication
with arbitrary ring elements. To prove the other inclusion, we claim that the ideals

Il...fi...Ir, izl,...,T‘

generate the ring R. We prove this by induction on r. It holds when r = 2. If
r > 2, then we see that R is the sum of the ideals I ...J;... I,_y,i=1,...,r — 1.
Hence I, is the sum of the ideals Il...fi...Ir, i =1,...,r — 1. Applying the
same argument with the reverse ordering on the ideals we see that I; is the sum
of the ideals I ...1I; . A, i =2,...,r. Since R = I + I, by assumption we see
that R is the sum of the ideals displayed above. Therefore we can find elements
a; € I...I;... 1. such that their sum is one. Multiplying this equation by an
element of Iy N ... N I. gives the other inclusion. It remains to show that the
canonical map R/(I;...I.) = R/I; x ... x R/I, is surjective. For this, consider
its action on the equation 1 = Y""_, a; we derived above. On the one hand, a ring
morphism sends 1 to 1 and on the other hand, the image of any a; is zero in R/I;
for j # i. Therefore, the image of a; in R/I; is the identity. So given any element
(bi,...,b) € R/I x ... x R/I,, the element >i_,a;-b; is an inverse image in R.

To see (2), by the very definition of being distinct maximal ideals, we have m,+m;, =
R for a # b and so the above applies. O

Lemmal 15.5. Let R be a ring. Let n > m. Let A be an n X m matriz with
coefficients in R. Let J C R be the ideal generated by the m x m minors of A.

(1) For any f € J there exists a m x n matriz B such that BA = fl,,xm.
(2) If f € R and BA = flyxm for some m x n matriz B, then f™ € J.

Proof. For I C {1,...,n} with |I| = m, we denote by E; the m x n matrix of the

projection
bn _
R*" = @i€{17...,n} E— i€l R

and set Ay = EjA, ie., A; is the m x m matrix whose rows are the rows of A
with indices in I. Let B; be the adjugate (transpose of cofactor) matrix to Ay,
i.e., such that A;B;y = BrA; = det(A7)lyxm. The m x m minors of A are the
determinants det Ay for all the I C {1,...,n} with |I| = m. If f € J then we can
write f =) crdet(Ar) for some ¢y € R. Set B =Y ¢;BrE} to see that (1) holds.

If f1,,%xm = BA then by the Cauchy-Binet formula we have f™ =" by det(Ay)
where by is the determinant of the m x m matrix whose columns are the columns

of B with indices in I. O
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080R |Lemma 15.6. Let R be a ring. Let n > m. Let A = (a;j) be an n X m matric
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with coefficients in R, written in block form as

A=)

where Ay has size m X m. Let B be the adjugate (transpose of cofactor) matriz to

Ai. Then
_ f]-mxm
AB_< . )

where f = det(A1) and ¢;; is (up to sign) the determinant of the m x m minor of
A corresponding to the rows 1,...,7,...,m,i.

Proof. Since the adjugate has the property A1 B = BA; = f the first block of the
expression for AB is correct. Note that

Cij = Zk airbrj = Y (1) Fa;, det(A]")

where Aij means A; with the jth row and kth column removed. This last expression
is the row expansion of the determinant of the matrix in the statement of the
lemma. ([

Lemma 15.7. Let R be a nonzero ring. Let n > 1. Let M be an R-module
generated by < n elements. Then any R-module map f : R®™ — M has a nonzero
kernel.

Proof. Choose a surjection R®"~! — M. We may lift the map f to a map
' R®" — R®"~! (Lemma . It suffices to prove f’ has a nonzero kernel. The
map f': RP" — R®"~1 is given by a matrix A = (a;;). If one of the a;; is not
nilpotent, say a = a;; is not, then we can replace R by the localization R, and we
may assume a;; is a unit. Since if we find a nonzero kernel after localization then
there was a nonzero kernel to start with as localization is exact, see Proposition
In this case we can do a base change on both R®” and R®"~! and reduce to
the case where

1 0 0
A— 0 a2 ao3
0 as2

Hence in this case we win by induction on n. If not then each a;; is nilpotent. Set
I = (ai;) C R. Note that I™*! = 0 for some m > 0. Let m be the largest integer
such that I"™ # 0. Then we see that (I"™)®" is contained in the kernel of the map
and we win. 0

Lemma 15.8. Let R be a nonzero ring. Let n,m > 0 be integers. If R®" is
isomorphic to R®™ as R-modules, then n = m.

Proof. Immediate from Lemma [5.7 O
16. Cayley-Hamilton
Lemma 16.1. Let R be a ring. Let A = (a;;) be an nxn matriz with coefficients in

R. Let P(z) € R[x] be the characteristic polynomial of A (defined as det(zidyxn —
A)). Then P(A) =0 in Mat(n x n, R).
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Proof. We reduce the question to the well-known Cayley-Hamilton theorem from
linear algebra in several steps:

(1) If ¢ : S — R is a ring morphism and b;; are inverse images of the a;; under
this map, then it suffices to show the statement for S and (b;;) since ¢ is a
ring morphism.

(2) If ¥ : R < S is an injective ring morphism, it clearly suffices to show the
result for S and the a;; considered as elements of S.

(3) Thus we may first reduce to the case R = Z[Xj;], a;; = X;; of a polynomial
ring and then further to the case R = Q(X;;) where we may finally apply
Cayley-Hamilton.

O

Lemma 16.2. Let R be a ring. Let M be a finite R-module. Let p : M — M
be an endomorphism. Then there exists a monic polynomial P € R[T] such that
P(¢) =0 as an endomorphism of M.

Proof. Choose a surjective R-module map R®™ — M, given by (a1,...,a,) —
>~ a;z; for some generators x; € M. Choose (a;1, ..., a;,) € R®™ such that p(x;) =
> a;jz;. In other words the diagram

RO — s M

R®" — = M

is commutative where A = (a;;). By Lemma there exists a monic polynomial
P such that P(A) = 0. Then it follows that P(p) = 0. O

Lemma 16.3. Let R be a ring. Let I C R be an ideal. Let M be a finite R-module.
Let ¢ : M — M be an endomorphism such that (M) C IM. Then there exists a
monic polynomial P = t"+a1t" ' +...+a, € R[T] such that aj € I’ and P(p) =0
as an endomorphism of M.

Proof. Choose a surjective R-module map R®" — M, given by (a1,...,a,) —
>~ a;x; for some generators z; € M. Choose (a1, - .., ain) € I¥" such that p(z;) =
> ai;xj. In other words the diagram

RO — > M

i |+

(I Y
is commutative where A = (a;;). By Lemmal[l6.1]the polynomial P(t) = det(tid,xn—
A) has all the desired properties. |
As a fun example application we prove the following surprising lemma.

Lemmal 16.4. Let R be a ring. Let M be a finite R-module. Let ¢ : M — M be
a surjective R-module map. Then ¢ is an isomorphism.

First proof. Write R’ = R[z] and think of M as a finite R’-module with z acting
via ¢. Set I = (x) C R’. By our assumption that ¢ is surjective we have IM = M.
Hence we may apply Lemma to M as an R’-module, the ideal I and the
endomorphism idps. We conclude that (14 a1 + ... + a,)idys = 0 with a; € I.
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Write a; = bj(z)x for some b;(z) € R[z]. Translating back into ¢ we see that
idy = —(32 21,0 bi(9))p, and hence ¢ is invertible. O

Second proof. We perform induction on the number of generators of M over R.
If M is generated by one element, then M = R/I for some ideal I C R. In this
case we may replace R by R/I so that M = R. In this case ¢ : R — R is given by
multiplication on M by an element r € R. The surjectivity of ¢ forces r invertible,
since ¢ must hit 1, which implies that ¢ is invertible.

Now assume that we have proven the lemma in the case of modules generated by
n — 1 elements, and are examining a module M generated by n elements. Let
A mean the ring R[t], and regard the module M as an A-module by letting ¢
act via ¢; since M is finite over R, it is finite over R[t] as well, and since we’re
trying to prove ¢ injective, a set-theoretic property, we might as well prove the
endomorphism ¢t : M — M over A injective. We have reduced our problem to the
case our endomorphism is multiplication by an element of the ground ring. Let
M' C M denote the sub-A-module generated by the first n — 1 of the generators of
M, and consider the diagram

0 M M M/M' —>0
lK,DIM/ i‘ﬁ lcp mod M’
0 M’ M M/M' —0,

where the restriction of ¢ to M’ and the map induced by ¢ on the quotient M /M’
are well-defined since ¢ is multiplication by an element in the base, and M’ and
M/M'" are A-modules in their own right. By the case n = 1 the map M/M' —
M/M' is an isomorphism. A diagram chase implies that ¢|p; is surjective hence
by induction |y is an isomorphism. This forces the middle column to be an
isomorphism by the snake lemma. O

17. The spectrum of a ring

We arbitrarily decide that the spectrum of a ring as a topological space is part of
the algebra chapter, whereas an affine scheme is part of the chapter on schemes.

Definition 17.1. Let R be a ring.

(1) The spectrum of R is the set of prime ideals of R. It is usually denoted
Spec(R).

(2) Given a subset T' C R we let V(T') C Spec(R) be the set of primes contain-
ing T, i.e., V(T) = {p € Spec(R) | Vf € T, f € p}.

(3) Given an element f € R we let D(f) C Spec(R) be the set of primes not
containing f.

Lemma 17.2. Let R be a ring.

1) The spectrum of a ring R is empty if and only if R is the zero ring.

2) Ewvery nonzero ring has a maximal ideal.

3) Every nonzero ring has a minimal prime ideal.

4) Given an ideal I C R and a prime ideal I C p there exists a prime I C q C p
such that q is minimal over I.

(5) If T C R, and if (T) is the ideal generated by T in R, then V((T)) = V(T).

(
(
(
(
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If I is an ideal and /T is its radical, see basic notion , then V(I) =
V(VI).

Given an ideal I of R we have VI = ﬂICp p.

If I is an ideal then V(I) = 0 if and only if I is the unit ideal.

If I, J are ideals of R then V(I)UV(J)=V(INJ).

If (In)aca is a set of ideals of R then (\,ca V(Ia) =V (Ugea La)-

If f € R, then D(f) L1V (f) = Spec(R).

If f € R then D(f) =0 if and only if f is nilpotent.

If f =uf’ for some unit u € R, then D(f) = D(f").

If I C R is an ideal, and p is a prime of R with p & V(I), then there exists
an f € R such that p € D(f), and D(f) NV (I) = 0.

If f.g € R, then D(fg) = D(f) N D(g).

If fi € R fori € I, then U;c; D(fi) is the complement of V({fi}icr) in
Spec(R).

If f € R and D(f) = Spec(R), then f is a unit.

We address each part in the corresponding item below.

This is a direct consequence of (2) or (3).

Let 2 be the set of all proper ideals of R. This set is ordered by inclusion
and is non-empty, since (0) € 2 is a proper ideal. Let A be a totally ordered
subset of 2. Then (J;c 4 [ is in fact an ideal. Since 1 ¢ I for all I € A,
the union does not contain 1 and thus is proper. Hence | J; 4 I is in 2l and
is an upper bound for the set A. Thus by Zorn’s lemma 2 has a maximal
element, which is the sought-after maximal ideal.

Since R is nonzero, it contains a maximal ideal which is a prime ideal. Thus
the set 2 of all prime ideals of R is nonempty. 2l is ordered by reverse-
inclusion. Let A be a totally ordered subset of 2. It’s pretty clear that
J = ﬂIGA I is in fact an ideal. Not so clear, however, is that it is prime.
Let zy € J. Then zy € I for all I € A. Now let B = {I € Aly € I}. Let
K = ﬂIGB I. Since A is totally ordered, either K = J (and we’re done,
since then y € J) or K D J and for all I € A such that I is properly
contained in K, we have y ¢ I. But that means that for all those I,z € I,
since they are prime. Hence x € J. In either case, J is prime as desired.
Hence by Zorn’s lemma we get a maximal element which in this case is a
minimal prime ideal.

This is the same exact argument as (3) except you only consider prime
ideals contained in p and containing I.

(T') is the smallest ideal containing T'. Hence if T' C I, some ideal, then
(T) C I as well. Hence if I € V(T), then I € V((T)) as well. The other
inclusion is obvious.

Since I ¢ VI,V(VI) c V(I). Now let p € V(I). Let € vI. Then
z" € I for some n. Hence x™ € p. But since p is prime, a boring induction
argument gets you that = € p. Hence VI C p and p € V(V1).

Let f € R\ VI. Then f* ¢ I for all n. Hence S = {1,f,f? ...} is
a multiplicative subset, not containing 0. Take a prime ideal p C S™'R
containing S~'I. Then the pull-back p in R of p is a prime ideal containing
I that does not intersect S. This shows that ((;,p C VI. Now if a € VT,
then a™ € I for some n. Hence if I C p, then a™ € p. But since p is prime,
we have a € p. Thus the equality is shown.
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(8) I is not the unit ideal if and only if I is contained in some maximal ideal
(to see this, apply (2) to the ring R/I) which is therefore prime.

(9) Ifp e V(I)UV(J), then I C p or J C p which means that I NJ C p. Now
if INJ Cyp, then I.J C p and hence either I of J is in p, since p is prime.

(10) peNeea Vo) & IaCpVac A p e V(U ca la)

(11) If p is a prime ideal and f € R, then either f € p or f ¢ p (strictly) which
is what the disjoint union says.

(12) If a € R is nilpotent, then a™ = 0 for some n. Hence a™ € p for any prime
ideal. Thus a € p as can be shown by induction and D(a) = 0. Now, as
shown in (7), if @ € R is not nilpotent, then there is a prime ideal that does
not contain it.

(13) f ep < uf €p, since u is invertible.

(14) If p ¢ V(I), then 3f € T\ p. Then f ¢ psop € D(f). Also if q € D(f),
then f ¢ q and thus I is not contained in ¢. Thus D(f) NV (I) = 0.

(15) If fg € p, then f €por g € p. Henceif f ¢ pand g ¢ p, then fg ¢ p. Since
p is an ideal, if fg ¢ p, then f ¢ p and g ¢ p.

(16) p € Uie; D(fi) & Ji€ I, fi ¢ p < p € Spec(R) \ V({fi}ier)

(17) If D(f) = Spec(R), then V(f) = 0 and hence fR = R, so f is a unit.

O

The lemma implies that the subsets V(T') from Definition form the closed
subsets of a topology on Spec(R). And it also shows that the sets D(f) are open
and form a basis for this topology.

Definition 17.3. Let R be a ring. The topology on Spec(R) whose closed sets
are the sets V(T') is called the Zariski topology. The open subsets D(f) are called
the standard opens of Spec(R).

It should be clear from context whether we consider Spec(R) just as a set or as a
topological space.

Lemmal 17.4. Suppose that ¢ : R — R’ is a ring homomorphism. The induced
map

Spec(p) : Spec(R') — Spec(R),  p' — ¢ (p')
is continuous for the Zariski topologies. In fact, for any element f € R we have
Spec(p) " (D(f)) = D(p(f))-
Proof. It is basic notion that p := ¢~ 1(p’) is indeed a prime ideal of R. The
last assertion of the lemma follows directly from the definitions, and implies the
first. O
If ' : R — R" is a second ring homomorphism then the composition

Spec(R") — Spec(R') — Spec(R)

equals Spec(p’ o ¢). In other words, Spec is a contravariant functor from the

category of rings to the category of topological spaces.

Lemmal 17.5. Let R be a ring. Let S C R be a multiplicative subset. The map
R — S™'R induces via the functoriality of Spec a homeomorphism

Spec(ST'R) — {p € Spec(R) | SNp =0}

where the topology on the right hand side is that induced from the Zariski topology
on Spec(R). The inverse map is given by p — S~ 1p.
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Proof. Denote the right hand side of the arrow of the lemma by D. Choose a
prime p’ C STIR and let p the inverse image of p’ in R. Since p’ does not contain
1 we see that p does not contain any element of S. Hence p € D and we see that
the image is contained in D. Let p € D. By assumption the image S does not
contain 0. By basic notion g_l(R/p) is not the zero ring. By basic notion
we see STIR/ST1p = g_l(R/p) is a domain, and hence S~!p is a prime.
The equality of rings also shows that the inverse image of S~'p in R is equal to
p, because R/p — F_l(R/p) is injective by basic notion . This proves that
the map Spec(S™'R) — Spec(R) is bijective onto D with inverse as given. It is
continuous by Lemma @ Finally, let D(g) C Spec(S™'R) be a standard open.
Write g = h/s for some h € R and s € S. Since g and h/1 differ by a unit we have
D(g) = D(h/1) in Spec(S™'R). Hence by Lemma and the bijectivity above
the image of D(g) = D(h/1) is DN D(h). This proves the map is open as well. [

Lemma 17.6. Let R be a ring. Let f € R. The map R — Ry induces via the
functoriality of Spec a homeomorphism

Spec(Ry) — D(f) C Spec(R).
The inverse is given by p — p - Ry.

Proof. This is a special case of Lemma [17.5 ]

It is not the case that every “affine open” of a spectrum is a standard open. See
Example 27.4]

Lemma 17.7. Let R be a ring. Let I C R be an ideal. The map R — R/I induces
via the functoriality of Spec a homeomorphism

Spec(R/I) — V(I) C Spec(R).
The inverse is given by p — p/1.

Proof. It is immediate that the image is contained in V(I). On the other hand, if
p € V(I) then p D I and we may consider the ideal p/I C R/I. Using basic notion
we see that (R/I)/(p/I) = R/p is a domain and hence p/I is a prime ideal.
From this it is immediately clear that the image of D(f + I) is D(f) NV (I), and
hence the map is a homeomorphism. ([l

Remark| 17.8. A fundamental commutative diagram associated to a ring map
©: R — S, aprime q C S and the corresponding prime p = ¢~ 1(q) of R is the
following

K(q) = Sq/a5q Sq ) S/q r(q)
T ] |

K(p) @r S = Sp/pSp Sp S S/pS (R\p)~'S/pS
| ] |

K(p) = Ryp/pRy Ry R R/p K(p)

In this diagram the arrows in the outer left and outer right columns are identical.
The horizontal maps induce on the associated spectra always a homeomorphism
onto the image. The lower two rows of the diagram make sense without assuming q
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exists. The lower squares induce fibre squares of topological spaces. This diagram
shows that p is in the image of the map on Spec if and only if S ® g k(p) is not the
zero ring.

Lemmal17.9. Let o : R — S be a ring map. Let p be a prime of R. The following
are equivalent
(1) p is in the image of Spec(S) — Spec(R),
(2) S®r K(p) #0,
(3) Sp/pSp #0,
(4) (S/pS)p, #0, and
(5) p=¢"'(pS).
Proof. We have already seen the equivalence of the first two in Remark The
others are just reformulations of this. O

Lemma 17.10. Let R be a ring. The space Spec(R) is quasi-compact.

Proof. It suffices to prove that any covering of Spec(R) by standard opens can
be refined by a finite covering. Thus suppose that Spec(R) = UD(f;) for a set of
elements {f;};c; of R. This means that NV (f;) = 0. According to Lemma [17.2]
this means that V({f;}) = 0. According to the same lemma this means that the
ideal generated by the f; is the unit ideal of R. This means that we can write
1 as a finite sum: 1 = > . ;rif; with J C I finite. And then it follows that
Spec(R) = Use s D(fs). O

Lemma 17.11. Let R be a ring. The topology on X = Spec(R) has the following
properties:

(1) X is quasi-compact,

(2) X has a basis for the topology consisting of quasi-compact opens, and

(3) the intersection of any two quasi-compact opens is quasi-compact.

Proof. The spectrum of a ring is quasi-compact, see Lemma It has a basis
for the topology consisting of the standard opens D(f) = Spec(Ry) (Lemma
which are quasi-compact by the first remark. The intersection of two standard
opens is quasi-compact as D(f) N D(g) = D(fg). Given any two quasi-compact
opens U,V C X we may write U = D(f1)U...UD(f,) and V = D(g1)U...UD(gm).
Then U NV =JD(f;g;) which is quasi-compact. O

18. Local rings

Local rings are the bread and butter of algebraic geometry.

Definition 18.1. A local ring is a ring with exactly one maximal ideal. The
maximal ideal is often denoted mpg in this case. We often say “let (R, m,k) be a
local ring” to indicate that R is local, m is its unique maximal ideal and kK = R/m
is its residue field. A local homomorphism of local rings is a ring map ¢ : R — S
such that R and S are local rings and such that ¢(mpg) C mg. If it is given that R
and S are local rings, then the phrase “local ring map ¢ : R — S” means that ¢ is
a local homomorphism of local rings.

A field is a local ring. Any ring map between fields is a local homomorphism of
local rings.

Lemma 18.2. Let R be a ring. The following are equivalent:
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(1) R is a local ring,

(2) Spec(R) has exactly one closed point,

(3) R has a maximal ideal m and every element of R\ m is a unit, and

(4) R is not the zero ring and for every x € R either x or 1 — x is invertible
or both.

Proof. Let R be a ring, and m a maximal ideal. If x € R\ m, and z is not a unit
then there is a maximal ideal m’ containing x. Hence R has at least two maximal
ideals. Conversely, if m’ is another maximal ideal, then choose z € wm/, x &€ m.
Clearly x is not a unit. This proves the equivalence of (1) and (3). The equivalence
(1) and (2) is tautological. If R is local then (4) holds since x is either in m or not.
If (4) holds, and m, m’ are distinct maximal ideals then we may choose x € R such
that £ mod m’ = 0 and  mod m = 1 by the Chinese remainder theorem (Lemma
15.4). This element x is not invertible and neither is 1 — 2 which is a contradiction.
Thus (4) and (1) are equivalent. O

The localization Ry, of a ring R at a prime p is a local ring with maximal ideal pR,,.
Namely, the quotient R,/pR, is the fraction field of the domain R/p and every
element of R, which is not contained in pR, is invertible.

Lemma 18.3. Let ¢ : R — S be a ring map. Assume R and S are local rings.
The following are equivalent:

(1) ¢ is a local ring map,

( ) (mR) C mg, and

(3) ¢~ !(mg) = mg.

(4) For any x € R, if p(x) is invertible in S, then x is invertible in R.

Proof. Conditions (1) and (2) are equivalent by definition. If (3) holds then (2)
holds. Conversely, if (2) holds, then ¢! (mg) is a prime ideal containing the max-
imal ideal mp, hence ¢ ~!(mg) = mp. Finally, (4) is the contrapositive of (2) by
Lemma [[82 (]

Let ¢ : R — S be a ring map. Let q C S be a prime and set p = o~ 1(q). Then the
induced ring map R, — S, is a local ring map.

19. The Jacobson radical of a ring

We recall that the Jacobson radical rad(R) of a ring R is the intersection of all
maximal ideals of R. If R is local then rad(R) is the maximal ideal of R.

Lemma 19.1. Let R be a ring with Jacobson radical rad(R). Let I C R be an
ideal. The following are equivalent

(1) I C rad(R), and

(2) every element of 1+ I is a unit in R.
In this case every element of R which maps to a unit of R/I is a unit.

Proof. If f € rad(R), then f € m for all maximal ideals m of R. Hence 1 + f ¢ m
for all maximal ideals m of R. Thus the closed subset V(1 + f) of Spec(R) is empty.
This implies that 1 4+ f is a unit, see Lemma [17.2

Conversely, assume that 1+ f is a unit for all f € I. If m is a maximal ideal and
I ¢ m, then ] + m = R. Hence 1 = f + g for some ¢ € m and f € I. Then
g =1+ (—f) is not a unit, contradiction.
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For the final statement let f € R map to a unit in R/I. Then we can find g € R
mapping to the multiplicative inverse of f mod I. Then fg = 1 mod I. Hence fg
is a unit of R by (2) which implies that f is a unit. O

Lemma 19.2. Let ¢ : R — S be a ring map such that the induced map Spec(S) —
Spec(R) is surjective. Then an element © € R is a unit if and only if p(x) € S is
a unit.

Proof. If z is a unit, then so is p(z). Conversely, if ¢(x) is a unit, then ¢(z) € q
for all q € Spec(S). Hence z ¢ ¢~ 1(q) = Spec(p)(q) for all g € Spec(S). Since
Spec(yp) is surjective we conclude that z is a unit by part (17) of Lemma[17.2] O

20. Nakayama’s lemma

We quote from [Mat70]: “This simple but important lemma is due to T. Nakayama,
G. Azumaya and W. Krull. Priority is obscure, and although it is usually called
the Lemma of Nakayama, late Prof. Nakayama did not like the name.”

Lemma 20.1 (Nakayama’s lemma). Let R be a ring with Jacobson radical rad(R).
Let M be an R-module. Let I C R be an ideal.

(1) If IM = M and M is finite, then there exists an f € 1+ I such that
FM = 0.

(2) If IM = M, M is finite, and I C rad(R), then M = 0.

(3) If NN N' € M, M = N+IN’, and N' is finite, then there exists an f € 1+1
such that fM C N and My = Ny.

(4) If NNN'C M, M =N+ 1IN’', N’ is finite, and I C rad(R), then M = N.
(5) If N — M is a module map, N/JIN — M/IM is surjective, and M is
finite, then there exists an f € 141 such that Ny — My is surjective.

(6) If N - M is a module map, N/IN — M/IM is surjective, M is finite,

and I C rad(R), then N — M is surjective.
(7) If v1,...,xy, € M generate M/IM and M is finite, then there exists an
f € 1+1 such that xq,...,x, generate My over Ry.
(8) If x1,...,x, € M generate M/IM, M is finite, and I C rad(R), then M
is generated by x1,...,%y.
(9) If IM = M, I is nilpotent, then M = 0.
(10) If NyN'C M, M =N + IN’, and I is nilpotent then M = N.
(11) If N — M is a module map, I is nilpotent, and N/IN — M/IM is
surjective, then N — M is surjective.
(12) If {za}aca is a set of elements of M which generate M/IM and I is
nilpotent, then M 1is generated by the x,.

Proof. Proof of . Choose generators yi,...,Yym of M over R. For each i we
can write y; = >~ z;;y; with 2;; € I (since M = IM). In other words > ,(0;; —
zij)y; = 0. Let f be the determinant of the m x m matrix A = (0;; — 2;;). Note
that f € 14 I (since the matrix A is entrywise congruent to the m x m identity
matrix modulo I). By Lemma [15.5] (1), there exists an m x m matrix B such that
BA = fl,,xm. Writing out we see that ), byja;; = fop; for all h and j; hence,
Zi,j briaijy; = Zj fonjy; = fyn for every h. In other words, 0 = fy; for every h
(since each i satisfies 3 a;;y; = 0). This implies that f annihilates M.

By Lemma an element of 1 4 rad(R) is invertible element of R. Hence we see
that implies (2). We obtain (3) by applying (1) to M/N which is finite as N’

[Mat70, 1.M Lemma
(NAK) page 11]
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is finite. We obtain (4) by applying (2) to M/N which is finite as N’ is finite. We
obtain (5) by applying (3) to M and the submodules Im(N — M) and M. We
obtain (6) by applying (4) to M and the submodules Im(N — M) and M. We
obtain (7) by applying (5) to the map R®™ — M, (ay,...,an) = @121 +. ..+ apnTy.
We obtain (8) by applying (6) to the map R®" — M, (a1,...,a,) — a121 + ... +
AnThp.

Part (9) holds because if M = IM then M = I"M for all n > 0 and I being
nilpotent means I"™ = 0 for some n > 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. [l

Lemmal 20.2. Let R be a ring, let S C R be a multiplicative subset, let I C R be
an ideal, and let M be a finite R-module. If x1,...,x, € M generate S~*(M/IM)
as an STY(R/I)-module, then there exists an f € S+1 such that x1, ..., x, generate
My as an Rf—moduleﬂ

Proof. Special case I = 0. Let yp,...,ys be generators for M over R. Since
S~IM is generated by x1,...,z,, for each i we can write y; = > (a;j/s;j)x; for
some a;; € R and s;; € S. Let s € S be the product of all of the s;;. Then we
see that y; is contained in the Rs-submodule of M, generated by x1,...,x,. Hence
Ti,...,T, generates M.

General case. By the special case, we can find an s € S such that z1, ..., z, generate
(M/IM), over (R/I),. By Lemma [20.1] we can find a g € 1 + I, C R, such that
x1,...,x, generate (M), over (Ry),. Write g = 1+41i/s’. Then f = ss’ 4 is works;
details omitted. O

Lemmal 20.3. Let A — B be a local homomorphism of local rings. Assume
(1) B is finite as an A-module,
(2) mp is a finitely generated ideal,
(3) A — B induces an isomorphism on residue fields, and
(4) ma/m?% — mp/m% is surjective.
Then A — B is surjective.

Proof. To show that A — B is surjective, we view it as a map of A-modules and
apply Lemma (6). We conclude it suffices to show that A/ms — B/myB is
surjective. As A/my = B/mp it suffices to show that myB — mp is surjective.
View my B — mp as a map of B-modules and apply Lemma (6). We conclude
it suffices to see that myB/mamp — mp/m% is surjective. This follows from
assumption (4). O

21. Open and closed subsets of spectra

It turns out that open and closed subsets of a spectrum correspond to idempotents
of the ring.

Lemmal 21.1. Let R be a ring. Let e € R be an idempotent. In this case
Spec(R) = D(e) 1 D(1 —e).

1Special cases: (I) I = 0. The lemma says if z1,...,2, generate S™'M, then z1,...,z,
generate My for some f € S. (II) I = p is a prime ideal and S = R\ p. The lemma says if
x1,...,¢r generate M ®p x(p) then x1,...,z, generate My for some f € R, f & p.
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Proof. Note that an idempotent e of a domain is either 1 or 0. Hence we see that

D(e) = {peSpec(R)|e¢p}
{p € Spec(R) | e # 0 in k(p)}
= {peSpec(R) |e=11ink(p)}

Similarly we have

D(1—e) = {peSpec(R)|1—e¢gp}
= {pe€Spec(R)|e#1ink(p)}
= {p € Spec(R)|e=01in k(p)}

Since the image of e in any residue field is either 1 or 0 we deduce that D(e) and
D(1 — e) cover all of Spec(R). O

Lemma 21.2. Let Ry and Rs be rings. Let R = Ry X Ry. The maps R — Ry,
(x,y) = x and R — Ra, (x,y) — y induce continuous maps Spec(R1) — Spec(R)
and Spec(Rg) — Spec(R). The induced map

Spec(R;) II Spec(Ry) — Spec(R)

is a homeomorphism. In other words, the spectrum of R = Ry X Ry is the disjoint
union of the spectrum of Ry and the spectrum of Rs.

Proof. Write 1 = e1 + e3 with e; = (1,0) and es = (0,1). Note that e; and
es = 1 —e; are idempotents. We leave it to the reader to show that Ry = R,, is the
localization of R at e;. Similarly for e5. Thus the statement of the lemma follows
from Lemma RT.1] combined with Lemma [I7.6] O

We reprove the following lemma later after introducing a glueing lemma for func-
tions. See Section 241

Lemma 21.3. Let R be a ring. For each U C Spec(R) which is open and closed
there exists a unique idempotent e € R such that U = D(e). This induces a 1-
1 correspondence between open and closed subsets U C Spec(R) and idempotents
ec R.

Proof. Let U C Spec(R) be open and closed. Since U is closed it is quasi-compact
by Lemma and similarly for its complement. Write U = (J;_; D(f;) as a finite
union of standard opens. Similarly, write Spec(R)\U = UT:l D(g;) as a finite union
of standard opens. Since ) = D(f;) N D(g;) = D(fig;) we see that f;g; is nilpotent
by Lemma [17.2] Let I = (f1,..., fn) C Randlet J = (g1,...,9m) C R. Note that
V(J) equals U, that V(I) equals the complement of U, so Spec(R) = V(I) LIV (J).
By the remark on nilpotency above, we see that (I.J)" = (0) for some sufficiently
large integer N. Since |JD(f;) U JD(g;) = Spec(R) we see that I +J = R,
see Lemma [17.2] By raising this equation to the 2Nth power we conclude that
IV + JN = R. Write 1 = 2 +y with x € IV and y € JV. Then 0 = 2y = 2(1 — )
as INJN = (0). Thus z = 2? is idempotent and contained in IV C I. The
idempotent y = 1 — z is contained in J» C .J. This shows that the idempotent z
maps to 1 in every residue field x(p) for p € V(J) and that = maps to 0 in x(p) for
every p € V(I).

To see uniqueness suppose that e;, e; are distinct idempotents in R. We have to
show there exists a prime p such that e; € p and es € p, or conversely. Write


https://stacks.math.columbia.edu/tag/00ED
https://stacks.math.columbia.edu/tag/00EE

00EF

00EH

00EB

04PP

COMMUTATIVE ALGEBRA 42

el =1—e;. If e; # ey, then 0 # e; —ex = e1(ea + €h) — (e1 + €])ea = erel, — €jes.
Hence either the idempotent eje, # 0 or e€jes # 0. An idempotent is not nilpotent,
and hence we find a prime p such that either ejey, & p or €jes & p, by Lemmam
It is easy to see this gives the desired prime. ([l

Lemma 21.4. Let R be a nonzero ring. Then Spec(R) is connected if and only if
R has no nontrivial idempotents.

Proof. Obvious from Lemma and the definition of a connected topological
space. U

Lemma 21.5. Let I C R be a finitely generated ideal of a ring R such that I = I>.
Then

(1) there exists an idempotent e € R such that I = (e),
(2) R/I = R,/ for the idempotent ¢’ =1 —e € R, and
(3) V(I) is open and closed in Spec(R).

Proof. By Nakayama’s Lemma there exists an element f = 1+14, i € I such
that fI = 0. Then f2 = f + fi = f is an idempotent. Consider the idempotent
e=1—f=—iel. Forjelwehaveej=j— fj=jhence I = (e). This proves
(1).

Parts (2) and (3) follow from (1). Namely, we have V(I) = V(e) = Spec(R) \ D(e)
which is open and closed by either Lemmal[21.1)or Lemmal[21.3] This proves (3). For
(2) observe that the map R — R,/ is surjective since x/(e/)" = x /e’ = ze'/(e/)? =
ze'/e/ = x/1 in Re. The kernel of the map R — R, is the set of elements of
R annihilated by a positive power of ¢’. Since €’ is idempotent this is the ideal
of elements annihilated by ¢’ which is the ideal I = (e) as e+ ¢ = 1 is a pair of
orthognal idempotents. This proves (2). |

22. Connected components of spectra

Connected components of spectra are not as easy to understand as one may think
at first. This is because we are used to the topology of locally connected spaces,
but the spectrum of a ring is in general not locally connected.

Lemma 22.1. Let R be a ring. Let T C Spec(R) be a subset of the spectrum. The
following are equivalent

(1) T is closed and is a union of connected components of Spec(R),

(2) T is an intersection of open and closed subsets of Spec(R), and

(3) T =V (I) where I C R is an ideal generated by idempotents.

Moreover, the ideal in (3) if it exists is unique.

Proof. By Lemma and Topology, Lemma we see that (1) and (2) are
equivalent. Assume (2) and write T' = (U, with U, C Spec(R) open and closed.
Then U, = D(e,) for some idempotent e, € R by Lemma Then setting
I = (1—-eq) we see that T = V(I), i.e., (3) holds. Finally, assume (3). Write
T =V(I) and I = (e,) for some collection of idempotents e,. Then it is clear that
T=NV(ea) =ND(1—eqn).

Suppose that I is an ideal generated by idempotents. Let e € R be an idempotent
such that V(I) C V(e). Then by Lemma we see that e” € I for some n > 1.
As e is an idempotent this means that e € I. Hence we see that I is generated
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by exactly those idempotents e such that ' C V(e). In other words, the ideal I is
completely determined by the closed subset T' which proves uniqueness. ([

00EG |Lemmal22.2. Let R be a ring. A connected component of Spec(R) is of the form
V(I), where I is an ideal generated by idempotents such that every idempotent of
R either maps to 0 or 1 in R/I.

Proof. Let p be a prime of R. By Lemma we have see that the hypotheses
of Topology, Lemma are satisfied for the topological space Spec(R). Hence
the connected component of p in Spec(R) is the intersection of open and closed
subsets of Spec(R) containing p. Hence it equals V' (I) where [ is generated by the
idempotents e € R such that e maps to 0 in x(p), see Lemma Any idempotent
e which is not in this collection clearly maps to 1 in R/I. g

23. Glueing properties

00EN In this section we put a number of standard results of the form: if something is
true for all members of a standard open covering then it is true. In fact, it often
suffices to check things on the level of local rings as in the following lemma.

00HN Lemma 23.1. Let R be a ring.

(1) For an element x of an R-module M the following are equivalent
(a) =0,
(b) « maps to zero in M, for all p € Spec(R),
(¢) & maps to zero in My, for all maximal ideals m of R.
In other words, the map M — [],, My is injective.
(2) Given an R-module M the following are equivalent
(a) M is zero,
(b) M, is zero for all p € Spec(R),
(¢) My is zero for all mazimal ideals m of R.
(3) Given a complex My — My — Ms of R-modules the following are equivalent
(a) My — My — Ms is exact,
(b) for every prime p of R the localization M, , — M, — M3, is exact,
(c) for every mazimal ideal m of R the localization My m — Mam — M3 m
s exact.
(4) Given a map f: M — M’ of R-modules the following are equivalent
(a) f is injective,
(b) fo: My — M, is injective for all primes p of R,
(¢) fm: Mm — M, is injective for all mazimal ideals m of R.
(5) Given a map f: M — M’ of R-modules the following are equivalent
(a) f is surjective,
(b) fp: My — M, is surjective for all primes p of R,
() fm: Myw — M], is surjective for all maximal ideals m of R.
(6) Given a map f: M — M’ of R-modules the following are equivalent
(a) f is bijective,
(b) fo: My — M, is bijective for all primes p of R,
() fm : Mwm — M, is bijective for all maximal ideals m of R.
Proof. Let x € M asin (1). Let I = {f € R | fr = 0}. It is easy to see that I

is an ideal (it is the annihilator of z). Condition (1)(c) means that for all maximal
ideals m there exists an f € R\ m such that fo = 0. In other words, V(I) does not
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contain a closed point. By Lemma [I7.2] we see I is the unit ideal. Hence x is zero,
i.e., (1)(a) holds. This proves (1).

Part (2) follows by applying (1) to all elements of M simultaneously.

Proof of (3). Let H be the homology of the sequence, ie., H = Ker(Ms —
Ms3)/Im(M; — Ms). By Proposition we have that H, is the homology of
the sequence M; , — My, — M3 ,. Hence (3) is a consequence of (2).

Parts (4) and (5) are special cases of (3). Part (6) follows formally on combining
(4) and (5). 0O

Lemmal 23.2. Let R be a ring. Let M be an R-module. Let S be an R-algebra.
Suppose that f1,..., fn is a finite list of elements of R such that | D(f;) = Spec(R),
in other words (f1,..., fn) = R.

(1) If each My, =0 then M = 0.

(2) If each My, is a finite Ry,-module, then M is a finite R-module.

(3) If each My, is a finitely presented Ry, -module, then M is a finitely presented
R-module.

(4) Let M — N be a map of R-modules. If My, — Ny, is an isomorphism for
each i then M — N is an isomorphism.

(5) Let 0 - M" — M — M' — 0 be a complex of R-modules. If 0 — M} —
My, — M} — 0 is ezact for each i, then 0 — M" — M — M’ — 0 is
exact.

(6) If each Ry, is Noetherian, then R is Noetherian.

(7) If each Sy, is a finite type R-algebra, so is S.

(8) If each Sy, is of finite presentation over R, so is S.

Proof. We prove each of the parts in turn.

(1) By Proposition @l this implies M, = 0 for all p € Spec(R), so we conclude
by Lemma [23.1}

(2) For each i take a finite generating set X; of My,. Without loss of generality,
we may assume that the elements of X; are in the image of the localization
map M — My, , so we take a finite set Y; of preimages of the elements of X;
in M. Let Y be the union of these sets. This is still a finite set. Consider
the obvious R-linear map RY — M sending the basis element ey to y.
By assumption this map is surjective after localizing at an arbitrary prime
ideal p of R, so it is surjective by Lemma and M is finitely generated.

(3) By (2) we have a short exact sequence

0O—-—K—R"—-M-—=0

Since localization is an exact functor and My, is finitely presented we see
that Ky, is finitely generated for all 1 <4 < n by Lemma By (2) this
implies that K is a finite R-module and therefore M is finitely presented.

(4) By Proposition the assumption implies that the induced morphism
on localizations at all prime ideals is an isomorphism, so we conclude by
Lemma 2311

(5) By Proposition the assumption implies that the induced sequence of
localizations at all prime ideals is short exact, so we conclude by Lemma

231
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(6) We will show that every ideal of R has a finite generating set: For this, let
I C R be an arbitrary ideal. By Proposition @ each Iy, C Ry, is an ideal.
These are all finitely generated by assumption, so we conclude by (2).

(7) For each i take a finite generating set X; of Sy,. Without loss of generality,
we may assume that the elements of X; are in the image of the localization
map S — Sy, so we take a finite set Y; of preimages of the elements of X;
in S. Let Y be the union of these sets. This is still a finite set. Consider
the algebra homomorphism R[X,],cy — S induced by Y. Since it is an
algebra homomorphism, the image T' is an R-submodule of the R-module
S, so we can consider the quotient module S/T. By assumption, this is zero
if we localize at the f;, so it is zero by (1) and therefore S is an R-algebra
of finite type.

(8) By the previous item, there exists a surjective R-algebra homomorphism
R[X1,...,X,] = S. Let K be the kernel of this map. This is an ideal in
R[X1,...,X,], finitely generated in each localization at f;. Since the f; gen-
erate the unit ideal in R, they also generate the unit ideal in R[ X1, ..., X,],
so an application of (2) finishes the proof.

O

00EP |Lemmal 23.3. Let R — S be a ring map. Suppose that g1,...,9gn s a finite list
of elements of S such that |J D(g;) = Spec(S) in other words (g1,...,9n) = S.

(1) If each Sy, is of finite type over R, then S is of finite type over R.
(2) If each Sy, is of finite presentation over R, then S is of finite presentation
over R.

Proof. Choose hq,...,h, € S such that > h;g; = 1.

Proof of (1). For each i choose a finite list of elements x; ; € Sy,, j = 1,...,m; which
generate Sy, as an R-algebra. Write z; ; = yi,j/g?i’j for some y; ; € S and some
n;; > 0. Consider the R-subalgebra S’ C S generated by ¢1,...,gn, h1,...,h, and
Yij,i=1,...,n,j =1,...,m;. Since localization is exact (Proposition [9.12), we
see that S;i — Sy, is injective. On the other hand, it is surjective by our choice of
¥i;- The elements g1,. .., g, generate the unit ideal in S” as hq,..., h, € S’. Thus
S’ — S viewed as an S’-module map is an isomorphism by Lemma [23.2]

Proof of (2). We already know that S is of finite type. Write S = R[x1,...,2m]/J
for some ideal J. For each i choose a lift ¢ € R[z1,..., 2] of g; and we choose a
lift b} € R[z1,...,%m] of h;. Then we see that

where J; is the ideal of R[z1,. .., Zm,y;] generated by J. Small detail omitted. By
Lemma we may choose a finite list of elements f; ; € J, j = 1,...,m; such that
the images of f; ; in J; and 1 — y,g; generate the ideal J; + (1 — y;g5