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1. Introduction

026L This is where we define algebraic stacks and make some very elementary obser-
vations. The general philosophy will be to have no separation conditions whatso-
ever and add those conditions necessary to make lemmas, propositions, theorems
true/provable. Thus the notions discussed here differ slightly from those in other
places in the literature, e.g., [LMB00].

This chapter is not an introduction to algebraic stacks. For an informal discussion
of algebraic stacks, please take a look at Introducing Algebraic Stacks, Section 1.

2. Conventions

026M The conventions we use in this chapter are the same as those in the chapter on
algebraic spaces. For convenience we repeat them here.

This is a chapter of the Stacks Project, version 2c3bdd57, compiled on Jun 18, 2024.
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We work in a suitable big fppf site Schfppf as in Topologies, Definition 7.6. So, if
not explicitly stated otherwise all schemes will be objects of Schfppf . We discuss
what changes if you change the big fppf site in Section 18.

We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 7.8. The absolute
case can be recovered by taking S = Spec(Z).

If U, T are schemes over S, then we denote U(T ) for the set of T -valued points over
S. In a formula: U(T ) = MorS(T, U).

Note that any fpqc covering is a universal effective epimorphism, see Descent,
Lemma 13.7. Hence the topology on Schfppf is weaker than the canonical topology
and all representable presheaves are sheaves.

3. Notation

0400 We use the letters S, T, U, V, X, Y to indicate schemes. We use the letters X , Y, Z
to indicate categories (fibred, fibred in groupoids, stacks, ...) over (Sch/S)fppf . We
use small case letters f , g for functors such as f : X → Y over (Sch/S)fppf . We
use capital F , G, H for algebraic spaces over S, and more generally for presheaves
of sets on (Sch/S)fppf . (In future chapters we will revert to using also X, Y , etc
for algebraic spaces.)

The reason for these choices is that we want to clearly distinguish between the
different types of objects in this chapter, to build the foundations.

4. Representable categories fibred in groupoids

02ZQ Let S be a scheme contained in Schfppf . The basic object of study in this chapter
will be a category fibred in groupoids p : X → (Sch/S)fppf , see Categories, Defini-
tion 35.1. We will often simply say “let X be a category fibred in groupoids over
(Sch/S)fppf” to indicate this situation. A 1-morphism X → Y of categories fibred
in groupoids over (Sch/S)fppf will be a 1-morphism in the 2-category of categories
fibred in groupoids over (Sch/S)fppf , see Categories, Definition 35.6. It is simply
a functor X → Y over (Sch/S)fppf . We recall this is really a (2, 1)-category and
that all 2-fibre products exist.

Let X be a category fibred in groupoids over (Sch/S)fppf . Recall that X is said to
be representable if there exists a scheme U ∈ Ob((Sch/S)fppf ) and an equivalence

j : X −→ (Sch/U)fppf
of categories over (Sch/S)fppf , see Categories, Definition 40.1. We will sometimes
say that X is representable by a scheme to distinguish from the case where X is
representable by an algebraic space (see below).

If X , Y are fibred in groupoids and representable by U, V , then we have

(4.0.1)04SR MorCat/(Sch/S)fppf
(X , Y)

/
2-isomorphism = MorSch/S(U, V )

see Categories, Lemma 40.3. More precisely, any 1-morphism X → Y gives rise to
a morphism U → V . Conversely, given a morphism of schemes U → V over S there
exists a 1-morphism ϕ : X → Y which gives rise to U → V and which is unique up
to unique 2-isomorphism.
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5. The 2-Yoneda lemma

04SS Let U ∈ Ob((Sch/S)fppf ), and let X be a category fibred in groupoids over
(Sch/S)fppf . We will frequently use the 2-Yoneda lemma, see Categories, Lemma
41.2. Technically it says that there is an equivalence of categories

MorCat/(Sch/S)fppf
((Sch/U)fppf , X ) −→ XU , f 7−→ f(U/U).

It says that 1-morphisms (Sch/U)fppf → X correspond to objects x of the fibre
category XU . Namely, given a 1-morphism f : (Sch/U)fppf → X we obtain the
object x = f(U/U) ∈ Ob(XU ). Conversely, given a choice of pullbacks for X
as in Categories, Definition 33.6, and an object x of XU , we obtain a functor
(Sch/U)fppf → X defined by the rule

(φ : V → U) 7−→ φ∗x

on objects. By abuse of notation we use x : (Sch/U)fppf → X to indicate this
functor. It indeed has the property that x(U/U) = x and moreover, given any
other functor f with f(U/U) = x there exists a unique 2-isomorphism x → f .
In other words the functor x is well determined by the object x up to unique
2-isomorphism.

We will use this without further mention in the following.

6. Representable morphisms of categories fibred in groupoids

04ST Let X , Y be categories fibred in groupoids over (Sch/S)fppf . Let f : X →
Y be a representable 1-morphism, see Categories, Definition 42.3. This means
that for every U ∈ Ob((Sch/S)fppf ) and any y ∈ Ob(YU ) the 2-fibre product
(Sch/U)fppf ×y,Y X is representable. Choose a representing object Vy and an
equivalence

(Sch/Vy)fppf −→ (Sch/U)fppf ×y,Y X .

The projection (Sch/Vy)fppf → (Sch/U)fppf ×Y Y → (Sch/U)fppf comes from a
morphism of schemes fy : Vy → U , see Section 4. We represent this by the diagram

(6.0.1)0401

Vy //

fy

��

(Sch/Vy)fppf

��

// X

f

��
U // (Sch/U)fppf

y // Y

where the squiggly arrows represent the 2-Yoneda embedding. Here are some lem-
mas about this notion that work in great generality (namely, they work for cate-
gories fibred in groupoids over any base category which has fibre products).

Lemma 6.1.02ZR Let f : X → Y be a morphism of (Sch/S)fppf . Then the 1-morphism
induced by f

(Sch/X)fppf −→ (Sch/Y )fppf
is a representable 1-morphism.

Proof. This is formal and relies only on the fact that the category (Sch/S)fppf
has fibre products. □

https://stacks.math.columbia.edu/tag/02ZR
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Lemma 6.2.0456 Let S be an object of Schfppf . Consider a 2-commutative diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume the
horizontal arrows are equivalences. Then f is representable if and only if f ′ is
representable.

Proof. Omitted. □

Lemma 6.3.02ZS Let S be a scheme contained in Schfppf . Let X , Y, Z be categories
fibred in groupoids over (Sch/S)fppf Let f : X → Y, g : Y → Z be representable
1-morphisms. Then

g ◦ f : X −→ Z
is a representable 1-morphism.

Proof. This is entirely formal and works in any category. □

Lemma 6.4.02ZT Let S be a scheme contained in Schfppf . Let X , Y, Z be categories
fibred in groupoids over (Sch/S)fppf Let f : X → Y be a representable 1-morphism.
Let g : Z → Y be any 1-morphism. Consider the fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y
Then the base change f ′ is a representable 1-morphism.

Proof. This is entirely formal and works in any category. □

Lemma 6.5.02ZU Let S be a scheme contained in Schfppf . Let Xi, Yi be categories
fibred in groupoids over (Sch/S)fppf , i = 1, 2. Let fi : Xi → Yi, i = 1, 2 be
representable 1-morphisms. Then

f1 × f2 : X1 × X2 −→ Y1 × Y2

is a representable 1-morphism.

Proof. Write f1 × f2 as the composition X1 × X2 → Y1 × X2 → Y1 × Y2. The first
arrow is the base change of f1 by the map Y1 × X2 → Y1, and the second arrow
is the base change of f2 by the map Y1 × Y2 → Y2. Hence this lemma is a formal
consequence of Lemmas 6.3 and 6.4. □

7. Split categories fibred in groupoids

04SU Let S be a scheme contained in Schfppf . Recall that given a “presheaf of groupoids”
F : (Sch/S)oppfppf −→ Groupoids

we get a category fibred in groupoids SF over (Sch/S)fppf , see Categories, Example
37.1. Any category fibred in groupoids isomorphic (!) to one of these is called a
split category fibred in groupoids. Any category fibred in groupoids is equivalent to
a split one.

https://stacks.math.columbia.edu/tag/0456
https://stacks.math.columbia.edu/tag/02ZS
https://stacks.math.columbia.edu/tag/02ZT
https://stacks.math.columbia.edu/tag/02ZU
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If F is a presheaf of sets then SF is fibred in sets, see Categories, Definition 38.2,
and Categories, Example 38.5. The rule F 7→ SF is in some sense fully faithful on
presheaves, see Categories, Lemma 38.6. If F, G are presheaves, then

SF×G = SF ×(Sch/S)fppf
SG

and if F → H and G → H are maps of presheaves of sets, then
SF×HG = SF ×SH

SG
where the right hand sides are 2-fibre products. This is immediate from the defini-
tions as the fibre categories of SF , SG, SH have only identity morphisms.
An even more special case is where F = hX is a representable presheaf. In this
case we have ShX

= (Sch/X)fppf , see Categories, Example 38.7.
We will use the notation SF without further mention in the following.

8. Categories fibred in groupoids representable by algebraic spaces

02ZV A slightly weaker notion than being representable is the notion of being repre-
sentable by algebraic spaces which we discuss in this section. This discussion might
have been avoided had we worked with some category Spacesfppf of algebraic spaces
instead of the category Schfppf . However, it seems to us natural to consider the
category of schemes as the natural collection of “test objects” over which the fibre
categories of an algebraic stack are defined.
In analogy with Categories, Definitions 40.1 we make the following definition.
Definition 8.1.04SV Let S be a scheme contained in Schfppf . A category fibred in
groupoids p : X → (Sch/S)fppf is called representable by an algebraic space over
S if there exists an algebraic space F over S and an equivalence j : X → SF of
categories over (Sch/S)fppf .
We continue our abuse of notation in suppressing the equivalence j whenever we
encounter such a situation. It follows formally from the above that if X is repre-
sentable (by a scheme), then it is representable by an algebraic space. Here is the
analogue of Categories, Lemma 40.2.
Lemma 8.2.02ZX Let S be a scheme contained in Schfppf . Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Then X is representable by an algebraic space
over S if and only if the following conditions are satisfied:

(1) X is fibred in setoids1, and
(2) the presheaf U 7→ Ob(XU )/∼= is an algebraic space.

Proof. Omitted, but see Categories, Lemma 40.2. □

If X , Y are fibred in groupoids and representable by algebraic spaces F, G over S,
then we have
(8.2.1)04SW MorCat/(Sch/S)fppf

(X , Y)
/

2-isomorphism = MorSch/S(F, G)

see Categories, Lemma 39.6. More precisely, any 1-morphism X → Y gives rise to
a morphism F → G. Conversely, given a morphism of sheaves F → G over S there
exists a 1-morphism ϕ : X → Y which gives rise to F → G and which is unique up
to unique 2-isomorphism.

1This means that it is fibred in groupoids and objects in the fibre categories have no nontrivial
automorphisms, see Categories, Definition 39.2.

https://stacks.math.columbia.edu/tag/04SV
https://stacks.math.columbia.edu/tag/02ZX
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9. Morphisms representable by algebraic spaces

04SX In analogy with Categories, Definition 42.3 we make the following definition.

Definition 9.1.02ZW Let S be a scheme contained in Schfppf . A 1-morphism f :
X → Y of categories fibred in groupoids over (Sch/S)fppf is called representable by
algebraic spaces if for any U ∈ Ob((Sch/S)fppf ) and any y : (Sch/U)fppf → Y the
category fibred in groupoids

(Sch/U)fppf ×y,Y X
over (Sch/U)fppf is representable by an algebraic space over U .

Choose an algebraic space Fy over U which represents (Sch/U)fppf×y,Y X . We may
think of Fy as an algebraic space over S which comes equipped with a canonical
morphism fy : Fy → U over S, see Spaces, Section 16. Here is the diagram

(9.1.1)0402

Fy

fy

��

(Sch/U)fppf ×y,Y Xoo

pr0

��

pr1
// X

f

��
U (Sch/U)fppfoo y // Y

where the squiggly arrows represent the construction which associates to a stack
fibred in setoids its associated sheaf of isomorphism classes of objects. The right
square is 2-commutative, and is a 2-fibre product square.
Here is the analogue of Categories, Lemma 42.5.

Lemma 9.2.02ZY Let S be a scheme contained in Schfppf . Let f : X → Y be a
1-morphism of categories fibred in groupoids over (Sch/S)fppf . The following are
necessary and sufficient conditions for f to be representable by algebraic spaces:

(1) for each scheme U/S the functor fU : XU −→ YU between fibre categories
is faithful, and

(2) for each U and each y ∈ Ob(YU ) the presheaf
(h : V → U) 7−→ {(x, ϕ) | x ∈ Ob(XV ), ϕ : h∗y → f(x)}/ ∼=

is an algebraic space over U .
Here we have made a choice of pullbacks for Y.

Proof. This follows from the description of fibre categories of the 2-fibre products
(Sch/U)fppf ×y,Y X in Categories, Lemma 42.1 combined with Lemma 8.2. □

Here are some lemmas about this notion that work in great generality.

Lemma 9.3.0457 Let S be an object of Schfppf . Consider a 2-commutative diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume the
horizontal arrows are equivalences. Then f is representable by algebraic spaces if
and only if f ′ is representable by algebraic spaces.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/02ZW
https://stacks.math.columbia.edu/tag/02ZY
https://stacks.math.columbia.edu/tag/0457
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Lemma 9.4.02ZZ Let S be an object of Schfppf . Let f : X → Y be a 1-morphism
of categories fibred in groupoids over S. If X and Y are representable by algebraic
spaces over S, then the 1-morphism f is representable by algebraic spaces.

Proof. Omitted. This relies only on the fact that the category of algebraic spaces
over S has fibre products, see Spaces, Lemma 7.3. □

Lemma 9.5.0458 Let S be an object of Schfppf . Let a : F → G be a map of presheaves
of sets on (Sch/S)fppf . Denote a′ : SF → SG the associated map of categories fibred
in sets. Then a is representable by algebraic spaces (see Bootstrap, Definition 3.1)
if and only if a′ is representable by algebraic spaces.

Proof. Omitted. □

Lemma 9.6.04SY Let S be an object of Schfppf . Let f : X → Y be a 1-morphism of
categories fibred in setoids over (Sch/S)fppf . Let F , resp. G be the presheaf which
to T associates the set of isomorphism classes of objects of XT , resp. YT . Let
a : F → G be the map of presheaves corresponding to f . Then a is representable by
algebraic spaces (see Bootstrap, Definition 3.1) if and only if f is representable by
algebraic spaces.

Proof. Omitted. Hint: Combine Lemmas 9.3 and 9.5. □

Lemma 9.7.0302 Let S be a scheme contained in Schfppf . Let X , Y, Z be categories
fibred in groupoids over (Sch/S)fppf . Let f : X → Y be a 1-morphism representable
by algebraic spaces. Let g : Z → Y be any 1-morphism. Consider the fibre product
diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y

Then the base change f ′ is a 1-morphism representable by algebraic spaces.

Proof. This is formal. □

Lemma 9.8.0300 Let S be a scheme contained in Schfppf . Let X , Y, Z be categories
fibred in groupoids over (Sch/S)fppf Let f : X → Y, g : Z → Y be 1-morphisms.
Assume

(1) f is representable by algebraic spaces, and
(2) Z is representable by an algebraic space over S.

Then the 2-fibre product Z ×g,Y,f X is representable by an algebraic space.

Proof. This is a reformulation of Bootstrap, Lemma 3.6. First note that Z×g,Y,fX
is fibred in setoids over (Sch/S)fppf . Hence it is equivalent to SF for some presheaf
F on (Sch/S)fppf , see Categories, Lemma 39.5. Moreover, let G be an algebraic
space which represents Z. The 1-morphism Z ×g,Y,f X → Z is representable by
algebraic spaces by Lemma 9.7. And Z ×g,Y,f X → Z corresponds to a morphism
F → G by Categories, Lemma 39.6. Then F → G is representable by algebraic
spaces by Lemma 9.6. Hence Bootstrap, Lemma 3.6 implies that F is an algebraic
space as desired. □

https://stacks.math.columbia.edu/tag/02ZZ
https://stacks.math.columbia.edu/tag/0458
https://stacks.math.columbia.edu/tag/04SY
https://stacks.math.columbia.edu/tag/0302
https://stacks.math.columbia.edu/tag/0300
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Let S, X , Y, Z, f , g be as in Lemma 9.8. Let F and G be algebraic spaces
over S such that F represents Z ×g,Y,f X and G represents Z. The 1-morphism
f ′ : Z ×g,Y,f X → Z corresponds to a morphism f ′ : F → G of algebraic spaces by
(8.2.1). Thus we have the following diagram

(9.8.1)0403

F

f ′

��

Z ×g,Y,f Xoo

��

// X

f

��
G Zoo g // Y

where the squiggly arrows represent the construction which associates to a stack
fibred in setoids its associated sheaf of isomorphism classes of objects.
Lemma 9.9.0301 Let S be a scheme contained in Schfppf . Let X , Y, Z be categories
fibred in groupoids over (Sch/S)fppf . If f : X → Y, g : Y → Z are 1-morphisms
representable by algebraic spaces, then

g ◦ f : X −→ Z
is a 1-morphism representable by algebraic spaces.
Proof. This follows from Lemma 9.8. Details omitted. □

Lemma 9.10.0303 Let S be a scheme contained in Schfppf . Let Xi, Yi be categories
fibred in groupoids over (Sch/S)fppf , i = 1, 2. Let fi : Xi → Yi, i = 1, 2 be
1-morphisms representable by algebraic spaces. Then

f1 × f2 : X1 × X2 −→ Y1 × Y2

is a 1-morphism representable by algebraic spaces.
Proof. Write f1 × f2 as the composition X1 × X2 → Y1 × X2 → Y1 × Y2. The first
arrow is the base change of f1 by the map Y1 × X2 → Y1, and the second arrow
is the base change of f2 by the map Y1 × Y2 → Y2. Hence this lemma is a formal
consequence of Lemmas 9.9 and 9.7. □

Lemma 9.11.0CKY Lemma in an email
of Matthew
Emerton dated June
15, 2016

Let S be a scheme contained in Schfppf . Let X → Z and Y → Z
be 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . If X → Z is
representable by algebraic spaces and Y is a stack in groupoids, then X ×Z Y is a
stack in groupoids.
Proof. The property of a morphism being representable by algebraic spaces is
preserved under base-change (Lemma 9.8), and so, passing to the base-change X ×Z
Y over Y, we may reduce to the case of a morphism of categories fibred in groupoids
X → Y which is representable by algebraic spaces, and whose target is a stack in
groupoids; our goal is then to prove that X is also a stack in groupoids. This
follows from Stacks, Lemma 6.11 whose assumptions are satisfied as a result of
Lemma 9.2. □

10. Properties of morphisms representable by algebraic spaces

03YJ Here is the definition that makes this work.
Definition 10.1.03YK Let S be a scheme contained in Schfppf . Let f : X → Y
be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf . Assume f is
representable by algebraic spaces. Let P be a property of morphisms of algebraic
spaces which

https://stacks.math.columbia.edu/tag/0301
https://stacks.math.columbia.edu/tag/0303
https://stacks.math.columbia.edu/tag/0CKY
https://stacks.math.columbia.edu/tag/03YK
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(1) is preserved under any base change, and
(2) is fppf local on the base, see Descent on Spaces, Definition 10.1.

In this case we say that f has property P if for every U ∈ Ob((Sch/S)fppf ) and
any y ∈ YU the resulting morphism of algebraic spaces fy : Fy → U , see diagram
(9.1.1), has property P.

It is important to note that we will only use this definition for properties of mor-
phisms that are stable under base change, and local in the fppf topology on the
target. This is not because the definition doesn’t make sense otherwise; rather it
is because we may want to give a different definition which is better suited to the
property we have in mind.

Lemma 10.2.0459 Let S be an object of Schfppf . Let P be as in Definition 10.1.
Consider a 2-commutative diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume the
horizontal arrows are equivalences and f (or equivalently f ′) is representable by
algebraic spaces. Then f has P if and only if f ′ has P.

Proof. Note that this makes sense by Lemma 9.3. Proof omitted. □

Here is a sanity check.

Lemma 10.3.045A Let S be a scheme contained in Schfppf . Let a : F → G be a
map of presheaves on (Sch/S)fppf . Let P be as in Definition 10.1. Assume a is
representable by algebraic spaces. Then a : F → G has property P (see Bootstrap,
Definition 4.1) if and only if the corresponding morphism SF → SG of categories
fibred in groupoids has property P.

Proof. Note that the lemma makes sense by Lemma 9.5. Proof omitted. □

Lemma 10.4.04TC Let S be an object of Schfppf . Let P be as in Definition 10.1. Let
f : X → Y be a 1-morphism of categories fibred in setoids over (Sch/S)fppf . Let
F , resp. G be the presheaf which to T associates the set of isomorphism classes of
objects of XT , resp. YT . Let a : F → G be the map of presheaves corresponding to
f . Then a has P if and only if f has P.

Proof. The lemma makes sense by Lemma 9.6. The lemma follows on combining
Lemmas 10.2 and 10.3. □

Lemma 10.5.045B Let S be a scheme contained in Schfppf . Let X , Y, Z be categories
fibred in groupoids over (Sch/S)fppf . Let P be a property as in Definition 10.1
which is stable under composition. Let f : X → Y, g : Y → Z be 1-morphisms
which are representable by algebraic spaces. If f and g have property P so does
g ◦ f : X → Z.

Proof. Note that the lemma makes sense by Lemma 9.9. Proof omitted. □

https://stacks.math.columbia.edu/tag/0459
https://stacks.math.columbia.edu/tag/045A
https://stacks.math.columbia.edu/tag/04TC
https://stacks.math.columbia.edu/tag/045B
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Lemma 10.6.045C Let S be a scheme contained in Schfppf . Let X , Y, Z be categories
fibred in groupoids over (Sch/S)fppf . Let P be a property as in Definition 10.1.
Let f : X → Y be a 1-morphism representable by algebraic spaces. Let g : Z → Y
be any 1-morphism. Consider the 2-fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y

If f has P, then the base change f ′ has P.

Proof. The lemma makes sense by Lemma 9.7. Proof omitted. □

Lemma 10.7.045D Let S be a scheme contained in Schfppf . Let X , Y, Z be categories
fibred in groupoids over (Sch/S)fppf . Let P be a property as in Definition 10.1.
Let f : X → Y be a 1-morphism representable by algebraic spaces. Let g : Z → Y
be any 1-morphism. Consider the fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y

Assume that for every scheme U and object x of YU , there exists an fppf covering
{Ui → U} such that x|Ui is in the essential image of the functor g : ZUi → YUi . In
this case, if f ′ has P, then f has P.

Proof. Proof omitted. Hint: Compare with the proof of Spaces, Lemma 5.6. □

Lemma 10.8.045E Let S be a scheme contained in Schfppf . Let P be a property
as in Definition 10.1 which is stable under composition. Let Xi, Yi be categories
fibred in groupoids over (Sch/S)fppf , i = 1, 2. Let fi : Xi → Yi, i = 1, 2 be 1-
morphisms representable by algebraic spaces. If f1 and f2 have property P so does
f1 × f2 : X1 × X2 → Y1 × Y2.

Proof. The lemma makes sense by Lemma 9.10. Proof omitted. □

Lemma 10.9.045F Let S be a scheme contained in Schfppf . Let X , Y be categories
fibred in groupoids over (Sch/S)fppf . Let f : X → Y be a 1-morphism representable
by algebraic spaces. Let P, P ′ be properties as in Definition 10.1. Suppose that for
any morphism of algebraic spaces a : F → G we have P(a) ⇒ P ′(a). If f has
property P then f has property P ′.

Proof. Formal. □

Lemma 10.10.05UK Let S be a scheme contained in Schfppf . Let j : X → Y be
a 1-morphism of categories fibred in groupoids over (Sch/S)fppf . Assume j is
representable by algebraic spaces and a monomorphism (see Definition 10.1 and
Descent on Spaces, Lemma 11.30). Then j is fully faithful on fibre categories.

Proof. We have seen in Lemma 9.2 that j is faithful on fibre categories. Consider
a scheme U , two objects u, v of XU , and an isomorphism t : j(u) → j(v) in YU . We
have to construct an isomorphism in XU between u and v. By the 2-Yoneda lemma

https://stacks.math.columbia.edu/tag/045C
https://stacks.math.columbia.edu/tag/045D
https://stacks.math.columbia.edu/tag/045E
https://stacks.math.columbia.edu/tag/045F
https://stacks.math.columbia.edu/tag/05UK
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(see Section 5) we think of u, v as 1-morphisms u, v : (Sch/U)fppf → X and we
consider the 2-fibre product

(Sch/U)fppf ×j◦v,Y X .

By assumption this is representable by an algebraic space Fj◦v, over U and the mor-
phism Fj◦v → U is a monomorphism. But since (1U , v, 1j(v)) gives a 1-morphism
of (Sch/U)fppf into the displayed 2-fibre product, we see that Fj◦v = U (here we
use that if V → U is a monomorphism of algebraic spaces which has a section, then
V = U). Therefore the 1-morphism projecting to the first coordinate

(Sch/U)fppf ×j◦v,Y X → (Sch/U)fppf

is an equivalence of fibre categories. Since (1U , u, t) and (1U , v, 1j(v)) give two
objects in ((Sch/U)fppf ×j◦v,Y X )U which have the same first coordinate, there
must be a 2-morphism between them in the 2-fibre product. This is by definition a
morphism t̃ : u → v such that j(t̃) = t. □

Here is a characterization of those categories fibred in groupoids for which the
diagonal is representable by algebraic spaces.

Lemma 10.11.045G Let S be a scheme contained in Schfppf . Let X be a category
fibred in groupoids over (Sch/S)fppf . The following are equivalent:

(1) the diagonal X → X × X is representable by algebraic spaces,
(2) for every scheme U over S, and any x, y ∈ Ob(XU ) the sheaf Isom(x, y) is

an algebraic space over U ,
(3) for every scheme U over S, and any x ∈ Ob(XU ) the associated 1-morphism

x : (Sch/U)fppf → X is representable by algebraic spaces,
(4) for every pair of schemes T1, T2 over S, and any xi ∈ Ob(XTi

), i = 1, 2
the 2-fibre product (Sch/T1)fppf ×x1,X ,x2 (Sch/T2)fppf is representable by
an algebraic space,

(5) for every representable category fibred in groupoids U over (Sch/S)fppf ev-
ery 1-morphism U → X is representable by algebraic spaces,

(6) for every pair T1, T2 of representable categories fibred in groupoids over
(Sch/S)fppf and any 1-morphisms xi : Ti → X , i = 1, 2 the 2-fibre product
T1 ×x1,X ,x2 T2 is representable by an algebraic space,

(7) for every category fibred in groupoids U over (Sch/S)fppf which is repre-
sentable by an algebraic space every 1-morphism U → X is representable by
algebraic spaces,

(8) for every pair T1, T2 of categories fibred in groupoids over (Sch/S)fppf which
are representable by algebraic spaces, and any 1-morphisms xi : Ti → X the
2-fibre product T1 ×x1,X ,x2 T2 is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 2.5 and the
definitions. Let us prove the equivalence of (1) and (3). Write C = (Sch/S)fppf
for the base category. We will use some of the observations of the proof of the
similar Categories, Lemma 42.6. We will use the symbol ∼= to mean “equivalence of
categories fibred in groupoids over C = (Sch/S)fppf”. Assume (1). Suppose given
U and x as in (3). For any scheme V and y ∈ Ob(XV ) we see (compare reference
above) that

C/U ×x,X ,y C/V ∼= (C/U ×S V ) ×(x,y),X ×X ,∆ X

https://stacks.math.columbia.edu/tag/045G
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which is representable by an algebraic space by assumption. Conversely, assume
(3). Consider any scheme U over S and a pair (x, x′) of objects of X over U . We
have to show that X ×∆,X ×X ,(x,x′) U is representable by an algebraic space. This
is clear because (compare reference above)

X ×∆,X ×X ,(x,x′) C/U ∼= (C/U ×x,X ,x′ C/U) ×C/U×SU,∆ C/U

and the right hand side is representable by an algebraic space by assumption and
the fact that the category of algebraic spaces over S has fibre products and contains
U and S.

The equivalences (3) ⇔ (4), (5) ⇔ (6), and (7) ⇔ (8) are formal. The equivalences
(3) ⇔ (5) and (4) ⇔ (6) follow from Lemma 9.3. Assume (3), and let U → X be
as in (7). To prove (7) we have to show that for every scheme V and 1-morphism
y : (Sch/V )fppf → X the 2-fibre product (Sch/V )fppf ×y,X U is representable by
an algebraic space. Property (3) tells us that y is representable by algebraic spaces
hence Lemma 9.8 implies what we want. Finally, (7) directly implies (3). □

In the situation of the lemma, for any 1-morphism x : (Sch/U)fppf → X as in
the lemma, it makes sense to say that x has property P, for any property as in
Definition 10.1. In particular this holds for P = “surjective”, P = “smooth”, and
P = “étale”, see Descent on Spaces, Lemmas 11.6, 11.26, and 11.28. We will use
these three cases in the definitions of algebraic stacks below.

11. Stacks in groupoids

0304 Let S be a scheme contained in Schfppf . Recall that a category p : X → (Sch/S)fppf
over (Sch/S)fppf is said to be a stack in groupoids (see Stacks, Definition 5.1) if
and only if

(1) p : X → (Sch/S)fppf is fibred in groupoids over (Sch/S)fppf ,
(2) for all U ∈ Ob((Sch/S)fppf ), for all x, y ∈ Ob(XU ) the presheaf Isom(x, y)

is a sheaf on the site (Sch/U)fppf , and
(3) for all coverings U = {Ui → U} in (Sch/S)fppf , all descent data (xi, ϕij)

for U are effective.
For examples see Examples of Stacks, Section 9 ff.

12. Algebraic stacks

026N Here is the definition of an algebraic stack. We remark that condition (2) implies
we can make sense out of the condition in part (3) that (Sch/U)fppf → X is smooth
and surjective, see discussion following Lemma 10.11.

Definition 12.1.026O Let S be a base scheme contained in Schfppf . An algebraic
stack over S is a category

p : X → (Sch/S)fppf
over (Sch/S)fppf with the following properties:

(1) The category X is a stack in groupoids over (Sch/S)fppf .
(2) The diagonal ∆ : X → X × X is representable by algebraic spaces.

https://stacks.math.columbia.edu/tag/026O
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(3) There exists a scheme U ∈ Ob((Sch/S)fppf ) and a 1-morphism (Sch/U)fppf →
X which is surjective and smooth2.

There are some differences with other definitions found in the literature.

The first is that we require X to be a stack in groupoids in the fppf topology,
whereas in many references the étale topology is used. It somehow seems to us that
the fppf topology is the natural topology to work with. In the end the resulting
2-category of algebraic stacks ends up being the same. This is explained in Criteria
for Representability, Section 19.

The second is that we only require the diagonal map of X to be representable by
algebraic spaces, whereas in most references some other conditions are imposed.
Our point of view is to try to prove a certain number of the results that follow
only assuming that the diagonal of X be representable by algebraic spaces, and
simply add an additional hypothesis wherever this is necessary. It has the added
benefit that any algebraic space (as defined in Spaces, Definition 6.1) gives rise to
an algebraic stack.

The third is that in some papers it is required that there exists a scheme U and a
surjective and étale morphism U → X . In the groundbreaking paper [DM69] where
algebraic stacks were first introduced Deligne and Mumford used this definition
and showed that the moduli stack of stable genus g > 1 curves is an algebraic
stack which has an étale covering by a scheme. Michael Artin, see [Art74], realized
that many natural results on algebraic stacks generalize to the case where one only
assume a smooth covering by a scheme. Hence our choice above. To distinguish
the two cases one sees the terms “Deligne-Mumford stack” and “Artin stack” used
in the literature. We will reserve the term “Artin stack” for later use (insert future
reference here), and continue to use “algebraic stack”, but we will use “Deligne-
Mumford stack” to indicate those algebraic stacks which have an étale covering by
a scheme.

Definition 12.2.03YO Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. We say X is a Deligne-Mumford stack if there exists a scheme U and
a surjective étale morphism (Sch/U)fppf → X .

We will compare our notion of a Deligne-Mumford stack with the notion as defined
in the paper by Deligne and Mumford later (see insert future reference here).

The category of algebraic stacks over S forms a 2-category. Here is the precise
definition.

Definition 12.3.03YP Let S be a scheme contained in Schfppf . The 2-category of
algebraic stacks over S is the sub 2-category of the 2-category of categories fibred
in groupoids over (Sch/S)fppf (see Categories, Definition 35.6) defined as follows:

(1) Its objects are those categories fibred in groupoids over (Sch/S)fppf which
are algebraic stacks over S.

(2) Its 1-morphisms f : X → Y are any functors of categories over (Sch/S)fppf ,
as in Categories, Definition 32.1.

2In future chapters we will denote this simply U → X as is customary in the literature. Another
good alternative would be to formulate this condition as the existence of a representable category
fibred in groupoids U and a surjective smooth 1-morphism U → X .

https://stacks.math.columbia.edu/tag/03YO
https://stacks.math.columbia.edu/tag/03YP
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(3) Its 2-morphisms are transformations between functors over (Sch/S)fppf , as
in Categories, Definition 32.1.

In other words this 2-category is the full sub 2-category of Cat/(Sch/S)fppf whose
objects are algebraic stacks. Note that every 2-morphism is automatically an iso-
morphism. Hence this is actually a (2, 1)-category and not just a 2-category.

We will see later (insert future reference here) that this 2-category has 2-fibre
products.

Similar to the remark above the 2-category of algebraic stacks over S is a full sub
2-category of the 2-category of categories fibred in groupoids over (Sch/S)fppf . It
turns out that it is closed under equivalences. Here is the precise statement.

Lemma 12.4.03YQ Let S be a scheme contained in Schfppf . Let X , Y be categories
over (Sch/S)fppf . Assume X , Y are equivalent as categories over (Sch/S)fppf .
Then X is an algebraic stack if and only if Y is an algebraic stack. Similarly, X is
a Deligne-Mumford stack if and only if Y is a Deligne-Mumford stack.

Proof. Assume X is an algebraic stack (resp. a Deligne-Mumford stack). By
Stacks, Lemma 5.4 this implies that Y is a stack in groupoids over Schfppf . Choose
an equivalence f : X → Y over Schfppf . This gives a 2-commutative diagram

X
f

//

∆X

��

Y

∆Y

��
X × X

f×f // Y × Y

whose horizontal arrows are equivalences. This implies that ∆Y is representable by
algebraic spaces according to Lemma 9.3. Finally, let U be a scheme over S, and
let x : (Sch/U)fppf → X be a 1-morphism which is surjective and smooth (resp.
étale). Considering the diagram

(Sch/U)fppf id
//

x

��

(Sch/U)fppf

f◦x
��

X
f // Y

and applying Lemma 10.2 we conclude that f ◦ x is surjective and smooth (resp.
étale) as desired. □

13. Algebraic stacks and algebraic spaces

03YR In this section we discuss some simple criteria which imply that an algebraic stack
is an algebraic space. The main result is that this happens exactly when objects of
fibre categories have no nontrivial automorphisms. This is not a triviality! Before
we come to this we first do a sanity check.

Lemma 13.1.03YS Let S be a scheme contained in Schfppf .
(1) A category fibred in groupoids p : X → (Sch/S)fppf which is representable

by an algebraic space is a Deligne-Mumford stack.
(2) If F is an algebraic space over S, then the associated category fibred in

groupoids p : SF → (Sch/S)fppf is a Deligne-Mumford stack.

https://stacks.math.columbia.edu/tag/03YQ
https://stacks.math.columbia.edu/tag/03YS
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(3) If X ∈ Ob((Sch/S)fppf ), then (Sch/X)fppf → (Sch/S)fppf is a Deligne-
Mumford stack.

Proof. It is clear that (2) implies (3). Parts (1) and (2) are equivalent by Lemma
12.4. Hence it suffices to prove (2). First, we note that SF is stack in sets since F
is a sheaf (Stacks, Lemma 6.3). A fortiori it is a stack in groupoids. Second the
diagonal morphism SF → SF ×SF is the same as the morphism SF → SF×F which
comes from the diagonal of F . Hence this is representable by algebraic spaces
according to Lemma 9.4. Actually it is even representable (by schemes), as the
diagonal of an algebraic space is representable, but we do not need this. Let U
be a scheme and let hU → F be a surjective étale morphism. We may think of
this as a surjective étale morphism of algebraic spaces. Hence by Lemma 10.3 the
corresponding 1-morphism (Sch/U)fppf → SF is surjective and étale. □

The following result says that a Deligne-Mumford stack whose inertia is trivial “is”
an algebraic space. This lemma will be obsoleted by the stronger Proposition 13.3
below which says that this holds more generally for algebraic stacks...

Lemma 13.2.045H Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. The following are equivalent

(1) X is a Deligne-Mumford stack and is a stack in setoids,
(2) X is a Deligne-Mumford stack such that the canonical 1-morphism IX → X

is an equivalence, and
(3) X is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 7.2. The im-
plication (3) ⇒ (1) follows from Lemma 13.1. Finally, assume (1). By Stacks,
Lemma 6.3 there exists a sheaf F on (Sch/S)fppf and an equivalence j : X → SF .
By Lemma 9.5 the fact that ∆X is representable by algebraic spaces, means that
∆F : F → F × F is representable by algebraic spaces. Let U be a scheme,
and let x : (Sch/U)fppf → X be a surjective étale morphism. The composition
j ◦ x : (Sch/U)fppf → SF corresponds to a morphism hU → F of sheaves. By
Bootstrap, Lemma 5.1 this morphism is representable by algebraic spaces. Hence
by Lemma 10.4 we conclude that hU → F is surjective and étale. Finally, we apply
Bootstrap, Theorem 6.1 to see that F is an algebraic space. □

Proposition 13.3.04SZ Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. The following are equivalent

(1) X is a stack in setoids,
(2) the canonical 1-morphism IX → X is an equivalence, and
(3) X is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 7.2. The impli-
cation (3) ⇒ (1) follows from Lemma 13.2. Finally, assume (1). By Stacks, Lemma
6.3 there exists an equivalence j : X → SF where F is a sheaf on (Sch/S)fppf .
By Lemma 9.5 the fact that ∆X is representable by algebraic spaces, means that
∆F : F → F × F is representable by algebraic spaces. Let U be a scheme and
let x : (Sch/U)fppf → X be a surjective smooth morphism. The composition
j ◦x : (Sch/U)fppf → SF corresponds to a morphism hU → F of sheaves. By Boot-
strap, Lemma 5.1 this morphism is representable by algebraic spaces. Hence by
Lemma 10.4 we conclude that hU → F is surjective and smooth. In particular it is

https://stacks.math.columbia.edu/tag/045H
https://stacks.math.columbia.edu/tag/04SZ
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surjective, flat and locally of finite presentation (by Lemma 10.9 and the fact that
a smooth morphism of algebraic spaces is flat and locally of finite presentation,
see Morphisms of Spaces, Lemmas 37.5 and 37.7). Finally, we apply Bootstrap,
Theorem 10.1 to see that F is an algebraic space. □

14. 2-Fibre products of algebraic stacks

04TD The 2-category of algebraic stacks has products and 2-fibre products. The first
lemma is really a special case of Lemma 14.3 but its proof is slightly easier.

Lemma 14.1.04TE Let S be a scheme contained in Schfppf . Let X , Y be algebraic
stacks over S. Then X ×(Sch/S)fppf

Y is an algebraic stack, and is a product in the
2-category of algebraic stacks over S.

Proof. An object of X ×(Sch/S)fppf
Y over T is just a pair (x, y) where x is an

object of XT and y is an object of YT . Hence it is immediate from the definitions
that X ×(Sch/S)fppf

Y is a stack in groupoids. If (x, y) and (x′, y′) are two objects
of X ×(Sch/S)fppf

Y over T , then

Isom((x, y), (x′, y′)) = Isom(x, x′) × Isom(y, y′).
Hence it follows from the equivalences in Lemma 10.11 and the fact that the cate-
gory of algebraic spaces has products that the diagonal of X ×(Sch/S)fppf

Y is repre-
sentable by algebraic spaces. Finally, suppose that U, V ∈ Ob((Sch/S)fppf ), and let
x, y be surjective smooth morphisms x : (Sch/U)fppf → X , y : (Sch/V )fppf → Y.
Note that

(Sch/U ×S V )fppf = (Sch/U)fppf ×(Sch/S)fppf
(Sch/V )fppf .

The object (pr∗
Ux, pr∗

V y) of X ×(Sch/S)fppf
Y over (Sch/U ×S V )fppf thus defines a

1-morphism
(Sch/U ×S V )fppf −→ X ×(Sch/S)fppf

Y
which is the composition of base changes of x and y, hence is surjective and smooth,
see Lemmas 10.6 and 10.5. We conclude that X ×(Sch/S)fppf

Y is indeed an algebraic
stack. We omit the verification that it really is a product. □

Lemma 14.2.04TF Let S be a scheme contained in Schfppf . Let Z be a stack in
groupoids over (Sch/S)fppf whose diagonal is representable by algebraic spaces.
Let X , Y be algebraic stacks over S. Let f : X → Z, g : Y → Z be 1-morphisms of
stacks in groupoids. Then the 2-fibre product X ×f,Z,g Y is an algebraic stack.

Proof. We have to check conditions (1), (2), and (3) of Definition 12.1. The first
condition follows from Stacks, Lemma 5.6.
The second condition we have to check is that the Isom-sheaves are representable by
algebraic spaces. To do this, suppose that T is a scheme over S, and u, v are objects
of (X ×f,Z,g Y)T . By our construction of 2-fibre products (which goes all the way
back to Categories, Lemma 32.3) we may write u = (x, y, α) and v = (x′, y′, α′).
Here α : f(x) → g(y) and similarly for α′. Then it is clear that

Isom(u, v)

��

// Isom(y, y′)

ϕ 7→g(ϕ)◦α
��

Isom(x, x′)
ψ 7→α′◦f(ψ) // Isom(f(x), g(y′))

https://stacks.math.columbia.edu/tag/04TE
https://stacks.math.columbia.edu/tag/04TF


ALGEBRAIC STACKS 17

is a cartesian diagram of sheaves on (Sch/T )fppf . Since by assumption the sheaves
Isom(y, y′), Isom(x, x′), Isom(f(x), g(y′)) are algebraic spaces (see Lemma 10.11)
we see that Isom(u, v) is an algebraic space.
Let U, V ∈ Ob((Sch/S)fppf ), and let x, y be surjective smooth morphisms x :
(Sch/U)fppf → X , y : (Sch/V )fppf → Y. Consider the morphism

(Sch/U)fppf ×f◦x,Z,g◦y (Sch/V )fppf −→ X ×f,Z,g Y.

As the diagonal of Z is representable by algebraic spaces the source of this arrow is
representable by an algebraic space F , see Lemma 10.11. Moreover, the morphism
is the composition of base changes of x and y, hence surjective and smooth, see
Lemmas 10.6 and 10.5. Choosing a scheme W and a surjective étale morphism W →
F we see that the composition of the displayed 1-morphism with the corresponding
1-morphism

(Sch/W )fppf −→ (Sch/U)fppf ×f◦x,Z,g◦y (Sch/V )fppf
is surjective and smooth which proves the last condition. □

Lemma 14.3.04T2 Let S be a scheme contained in Schfppf . Let X , Y, Z be algebraic
stacks over S. Let f : X → Z, g : Y → Z be 1-morphisms of algebraic stacks. Then
the 2-fibre product X ×f,Z,g Y is an algebraic stack. It is also the 2-fibre product in
the 2-category of algebraic stacks over (Sch/S)fppf .

Proof. The fact that X ×f,Z,g Y is an algebraic stack follows from the stronger
Lemma 14.2. The fact that X ×f,Z,g Y is a 2-fibre product in the 2-category of
algebraic stacks over S follows formally from the fact that the 2-category of algebraic
stacks over S is a full sub 2-category of the 2-category of stacks in groupoids over
(Sch/S)fppf . □

15. Algebraic stacks, overhauled

04T0 Some basic results on algebraic stacks.

Lemma 15.1.04T1 Let S be a scheme contained in Schfppf . Let f : X → Y be
a 1-morphism of algebraic stacks over S. Let V ∈ Ob((Sch/S)fppf ). Let y :
(Sch/V )fppf → Y be surjective and smooth. Then there exists an object U ∈
Ob((Sch/S)fppf ) and a 2-commutative diagram

(Sch/U)fppf a
//

x

��

(Sch/V )fppf
y

��
X

f // Y
with x surjective and smooth.

Proof. First choose W ∈ Ob((Sch/S)fppf ) and a surjective smooth 1-morphism
z : (Sch/W )fppf → X . As Y is an algebraic stack we may choose an equivalence

j : SF −→ (Sch/W )fppf ×f◦z,Y,y (Sch/V )fppf
where F is an algebraic space. By Lemma 10.6 the morphism SF → (Sch/W )fppf
is surjective and smooth as a base change of y. Hence by Lemma 10.5 we see that
SF → X is surjective and smooth. Choose an object U ∈ Ob((Sch/S)fppf ) and
a surjective étale morphism U → F . Then applying Lemma 10.5 once more we
obtain the desired properties. □

https://stacks.math.columbia.edu/tag/04T2
https://stacks.math.columbia.edu/tag/04T1
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This lemma is a generalization of Proposition 13.3.

Lemma 15.2.04Y5 Let S be a scheme contained in Schfppf . Let f : X → Y be a
1-morphism of algebraic stacks over S. The following are equivalent:

(1) for U ∈ Ob((Sch/S)fppf ) the functor f : XU → YU is faithful,
(2) the functor f is faithful, and
(3) f is representable by algebraic spaces.

Proof. Parts (1) and (2) are equivalent by general properties of 1-morphisms of
categories fibred in groupoids, see Categories, Lemma 35.9. We see that (3) implies
(2) by Lemma 9.2. Finally, assume (2). Let U be a scheme. Let y ∈ Ob(YU ). We
have to prove that

W = (Sch/U)fppf ×y,Y X

is representable by an algebraic space over U . Since (Sch/U)fppf is an algebraic
stack we see from Lemma 14.3 that W is an algebraic stack. On the other hand
the explicit description of objects of W as triples (V, x, α : y(V ) → f(x)) and the
fact that f is faithful, shows that the fibre categories of W are setoids. Hence
Proposition 13.3 guarantees that W is representable by an algebraic space. □

Lemma 15.3.05UL Let S be a scheme contained in Schfppf . Let u : U → X be a
1-morphism of stacks in groupoids over (Sch/S)fppf . If

(1) U is representable by an algebraic space, and
(2) u is representable by algebraic spaces, surjective and smooth,

then X is an algebraic stack over S.

Proof. We have to show that ∆ : X → X ×X is representable by algebraic spaces,
see Definition 12.1. Given two schemes T1, T2 over S denote Ti = (Sch/Ti)fppf the
associated representable fibre categories. Suppose given 1-morphisms fi : Ti → X .
According to Lemma 10.11 it suffices to prove that the 2-fibered product T1 ×X T2
is representable by an algebraic space. By Stacks, Lemma 6.8 this is in any case
a stack in setoids. Thus T1 ×X T2 corresponds to some sheaf F on (Sch/S)fppf ,
see Stacks, Lemma 6.3. Let U be the algebraic space which represents U . By
assumption

T ′
i = U ×u,X ,fi

Ti
is representable by an algebraic space T ′

i over S. Hence T ′
1 ×U T ′

2 is representable
by the algebraic space T ′

1 ×U T ′
2. Consider the commutative diagram

T1 ×X T2 //

��

T1

��

T ′
1 ×U T ′

2

88

//

��

T ′
1

??

��

T2 // X

T ′
2

//

88

U

??

https://stacks.math.columbia.edu/tag/04Y5
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In this diagram the bottom square, the right square, the back square, and the
front square are 2-fibre products. A formal argument then shows that T ′

1 ×U T ′
2 →

T1 ×X T2 is the “base change” of U → X , more precisely the diagram

T ′
1 ×U T ′

2

��

// U

��
T1 ×X T2 // X

is a 2-fibre square. Hence T ′
1 ×U T ′

2 → F is representable by algebraic spaces,
smooth, and surjective, see Lemmas 9.6, 9.7, 10.4, and 10.6. Therefore F is an
algebraic space by Bootstrap, Theorem 10.1 and we win. □

An application of Lemma 15.3 is that something which is an algebraic space over
an algebraic stack is an algebraic stack. This is the analogue of Bootstrap, Lemma
3.6. Actually, it suffices to assume the morphism X → Y is “algebraic”, as we will
see in Criteria for Representability, Lemma 8.2.

Lemma 15.4.05UM Let S be a scheme contained in Schfppf . Let X → Y be a morphism
of stacks in groupoids over (Sch/S)fppf . Assume that

(1) X → Y is representable by algebraic spaces, and
(2) Y is an algebraic stack over S.

Then X is an algebraic stack over S.

Proof. Let V → Y be a surjective smooth 1-morphism from a representable stack in
groupoids to Y. This exists by Definition 12.1. Then the 2-fibre product U = V×Y X
is representable by an algebraic space by Lemma 9.8. The 1-morphism U → X is
representable by algebraic spaces, smooth, and surjective, see Lemmas 9.7 and 10.6.
By Lemma 15.3 we conclude that X is an algebraic stack. □

Lemma 15.5.05UN Removing the
hypothesis that j is
a monomorphism
was observed in an
email from Matthew
Emerton dates June
15, 2016

Let S be a scheme contained in Schfppf . Let j : X → Y be
a 1-morphism of categories fibred in groupoids over (Sch/S)fppf . Assume j is
representable by algebraic spaces. Then, if Y is a stack in groupoids (resp. an
algebraic stack), so is X .

Proof. The statement on algebraic stacks will follow from the statement on stacks
in groupoids by Lemma 15.4. If j is representable by algebraic spaces, then j is
faithful on fibre categories and for each U and each y ∈ Ob(YU ) the presheaf

(h : V → U) 7−→ {(x, ϕ) | x ∈ Ob(XV ), ϕ : h∗y → f(x)}/ ∼=
is an algebraic space over U . See Lemma 9.2. In particular this presheaf is a sheaf
and the conclusion follows from Stacks, Lemma 6.11. □

16. From an algebraic stack to a presentation

04T3 Given an algebraic stack over S we obtain a groupoid in algebraic spaces over S
whose associated quotient stack is the algebraic stack.

Recall that if (U, R, s, t, c) is a groupoid in algebraic spaces over S then [U/R]
denotes the quotient stack associated to this datum, see Groupoids in Spaces, Def-
inition 20.1. In general [U/R] is not an algebraic stack. In particular the stack
[U/R] occurring in the following lemma is in general not algebraic.

https://stacks.math.columbia.edu/tag/05UM
https://stacks.math.columbia.edu/tag/05UN
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Lemma 16.1.04T4 Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. Let U be an algebraic stack over S which is representable by an
algebraic space. Let f : U → X be a 1-morphism. Then

(1) the 2-fibre product R = U ×f,X ,f U is representable by an algebraic space,
(2) there is a canonical equivalence

U ×f,X ,f U ×f,X ,f U = R ×pr1,U,pr0 R,

(3) the projection pr02 induces via (2) a 1-morphism
pr02 : R ×pr1,U,pr0 R −→ R

(4) let U , R be the algebraic spaces representing U , R and t, s : R → U and
c : R ×s,U,t R → R are the morphisms corresponding to the 1-morphisms
pr0, pr1 : R → U and pr02 : R ×pr1,U,pr0 R → R above, then the quintuple
(U, R, s, t, c) is a groupoid in algebraic spaces over S,

(5) the morphism f induces a canonical 1-morphism fcan : [U/R] → X of
stacks in groupoids over (Sch/S)fppf , and

(6) the 1-morphism fcan : [U/R] → X is fully faithful.

Proof. Proof of (1). By definition ∆X is representable by algebraic spaces so
Lemma 10.11 applies to show that U → X is representable by algebraic spaces.
Hence the result follows from Lemma 9.8.
Let T be a scheme over S. By construction of the 2-fibre product (see Categories,
Lemma 32.3) we see that the objects of the fibre category RT are triples (a, b, α)
where a, b ∈ Ob(UT ) and α : f(a) → f(b) is a morphism in the fibre category XT .
Proof of (2). The equivalence comes from repeatedly applying Categories, Lemmas
31.8 and 31.10. Let us identify U ×X U ×X U with (U ×X U) ×X U . If T is a
scheme over S, then on fibre categories over T this equivalence maps the object
((a, b, α), c, β) on the left hand side to the object ((a, b, α), (b, c, β)) of the right
hand side.
Proof of (3). The 1-morphism pr02 is constructed in the proof of Categories, Lemma
31.9. In terms of the description of objects of the fibre category above we see that
((a, b, α), (b, c, β)) maps to (a, c, β ◦ α).
Unfortunately, this is not compatible with our conventions on groupoids where we
always have j = (t, s) : R → U , and we “think” of a T -valued point r of R as a
morphism r : s(r) → t(r). However, this does not affect the proof of (4), since the
opposite of a groupoid is a groupoid. But in the proof of (5) it is responsible for
the inverses in the displayed formula below.
Proof of (4). Recall that the sheaf U is isomorphic to the sheaf T 7→ Ob(UT )/ ∼=,
and similarly for R, see Lemma 8.2. It follows from Categories, Lemma 39.8 that
this description is compatible with 2-fibre products so we get a similar matching of
R×pr1,U,pr0 R and R×s,U,tR. The morphisms t, s : R → U and c : R×s,U,tR → R we
get from the general equality (8.2.1). Explicitly these maps are the transformations
of functors that come from letting pr0, pr0, pr02 act on isomorphism classes of
objects of fibre categories. Hence to show that we obtain a groupoid in algebraic
spaces it suffices to show that for every scheme T over S the structure

(Ob(UT )/∼=, Ob(RT )/∼=, pr1, pr0, pr02)
is a groupoid which is clear from our description of objects of RT above.

https://stacks.math.columbia.edu/tag/04T4
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Proof of (5). We will eventually apply Groupoids in Spaces, Lemma 23.2 to obtain
the functor [U/R] → X . Consider the 1-morphism f : U → X . We have a 2-arrow
τ : f ◦pr1 → f ◦pr0 by definition of R as the 2-fibre product. Namely, on an object
(a, b, α) of R over T it is the map α−1 : b → a. We claim that

τ ◦ idpr02 = (τ ⋆ idpr0) ◦ (τ ⋆ idpr1).

This identity says that given an object ((a, b, α), (b, c, β)) of R ×pr1,U,pr0 R over T ,
then the composition of

c
β−1
// b

α−1
// a

is the same as the arrow (β ◦ α)−1 : a → c. This is clearly true, hence the claim
holds. In this way we see that all the assumption of Groupoids in Spaces, Lemma
23.2 are satisfied for the structure (U , R, pr0, pr1, pr02) and the 1-morphism f and
the 2-morphism τ . Except, to apply the lemma we need to prove this holds for the
structure (SU , SR, s, t, c) with suitable morphisms.

Now there should be some general abstract nonsense argument which transfer these
data between the two, but it seems to be quite long. Instead, we use the following
trick. Pick a quasi-inverse j−1 : SU → U of the canonical equivalence j : U → SU
which comes from U(T ) = Ob(UT )/∼=. This just means that for every scheme T/S
and every object a ∈ UT we have picked out a particular element of its isomorphism
class, namely j−1(j(a)). Using j−1 we may therefore see SU as a subcategory of
U . Having chosen this subcategory we can consider those objects (a, b, α) of RT

such that a, b are objects of (SU )T , i.e., such that j−1(j(a)) = a and j−1(j(b)) = b.
Then it is clear that this forms a subcategory of R which maps isomorphically to
SR via the canonical equivalence R → SR. Moreover, this is clearly compatible
with forming the 2-fibre product R ×pr1,U,pr0 R. Hence we see that we may simply
restrict f to SU and restrict τ to a transformation between functors SR → X . Hence
it is clear that the displayed equality of Groupoids in Spaces, Lemma 23.2 holds
since it holds even as an equality of transformations of functors R×pr1,U,pr0 R → X
before restricting to the subcategory SR×s,U,tR.

This proves that Groupoids in Spaces, Lemma 23.2 applies and we get our desired
morphism of stacks fcan : [U/R] → X . We briefly spell out how fcan is defined in
this special case. On an object a of SU over T we have fcan(a) = f(a), where we
think of SU ⊂ U by the chosen embedding above. If a, b are objects of SU over
T , then a morphism φ : a → b in [U/R] is by definition an object of the form
φ = (b, a, α) of R over T . (Note switch.) And the rule in the proof of Groupoids
in Spaces, Lemma 23.2 is that

(16.1.1)04TG fcan(φ) =
(

f(a) α−1

−−→ f(b)
)

.

Proof of (6). Both [U/R] and X are stacks. Hence given a scheme T/S and objects
a, b of [U/R] over T we obtain a transformation of fppf sheaves

Isom(a, b) −→ Isom(fcan(a), fcan(b))

on (Sch/T )fppf . We have to show that this is an isomorphism. We may work fppf
locally on T , hence we may assume that a, b come from morphisms a, b : T → U .
By the embedding SU ⊂ U above we may also think of a, b as objects of U over
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T . In Groupoids in Spaces, Lemma 22.1 we have seen that the left hand sheaf is
represented by the algebraic space

R ×(t,s),U×SU,(b,a) T

over T . On the other hand, the right hand side is by Stacks, Lemma 2.5 equal to
the sheaf associated to the following stack in setoids:

X ×X ×X ,(f◦b,f◦a) T = X ×X ×X ,(f,f) (U × U) ×U×U,(b,a) T = R ×(pr0,pr1),U×U,(b,a) T

which is representable by the fibre product displayed above. At this point we have
shown that the two Isom-sheaves are isomorphic. Our 1-morphism fcan : [U/R] →
X induces this isomorphism on Isom-sheaves by Equation (16.1.1). □

We can use the previous very abstract lemma to produce presentations.

Lemma 16.2.04T5 Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. Let U be an algebraic space over S. Let f : SU → X be a surjective
smooth morphism. Let (U, R, s, t, c) be the groupoid in algebraic spaces and fcan :
[U/R] → X be the result of applying Lemma 16.1 to U and f . Then

(1) the morphisms s, t are smooth, and
(2) the 1-morphism fcan : [U/R] → X is an equivalence.

Proof. The morphisms s, t are smooth by Lemmas 10.2 and 10.3. As the 1-
morphism f is smooth and surjective it is clear that given any scheme T and any
object a ∈ Ob(XT ) there exists a smooth and surjective morphism T ′ → T such
that a|′T comes from an object of [U/R]T ′ . Since fcan : [U/R] → X is fully faithful,
we deduce that [U/R] → X is essentially surjective as descent data on objects are
effective on both sides, see Stacks, Lemma 4.8. □

Remark 16.3.04WY If the morphism f : SU → X of Lemma 16.2 is only assumed
surjective, flat and locally of finite presentation, then it will still be the case that
fcan : [U/R] → X is an equivalence. In this case the morphisms s, t will be flat and
locally of finite presentation, but of course not smooth in general.

Lemma 16.2 suggests the following definitions.

Definition 16.4.04TH Let S be a scheme. Let B be an algebraic space over S. Let
(U, R, s, t, c) be a groupoid in algebraic spaces over B. We say (U, R, s, t, c) is a
smooth groupoid3 if s, t : R → U are smooth morphisms of algebraic spaces.

Definition 16.5.04TI Let X be an algebraic stack over S. A presentation of X is given
by a smooth groupoid (U, R, s, t, c) in algebraic spaces over S, and an equivalence
f : [U/R] → X .

We have seen above that every algebraic stack has a presentation. Our next task
is to show that every smooth groupoid in algebraic spaces over S gives rise to an
algebraic stack.

3This terminology might be a bit confusing: it does not imply that [U/R] is smooth over
anything.

https://stacks.math.columbia.edu/tag/04T5
https://stacks.math.columbia.edu/tag/04WY
https://stacks.math.columbia.edu/tag/04TH
https://stacks.math.columbia.edu/tag/04TI
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17. The algebraic stack associated to a smooth groupoid

04TJ In this section we start with a smooth groupoid in algebraic spaces and we show
that the associated quotient stack is an algebraic stack.

Lemma 17.1.04WZ Let S be a scheme contained in Schfppf . Let (U, R, s, t, c) be a
groupoid in algebraic spaces over S. Then the diagonal of [U/R] is representable by
algebraic spaces.

Proof. It suffices to show that the Isom-sheaves are algebraic spaces, see Lemma
10.11. This follows from Bootstrap, Lemma 11.5. □

Lemma 17.2.04X0 Let S be a scheme contained in Schfppf . Let (U, R, s, t, c) be a
smooth groupoid in algebraic spaces over S. Then the morphism SU → [U/R] is
smooth and surjective.

Proof. Let T be a scheme and let x : (Sch/T )fppf → [U/R] be a 1-morphism. We
have to show that the projection

SU ×[U/R] (Sch/T )fppf −→ (Sch/T )fppf
is surjective and smooth. We already know that the left hand side is representable
by an algebraic space F , see Lemmas 17.1 and 10.11. Hence we have to show
the corresponding morphism F → T of algebraic spaces is surjective and smooth.
Since we are working with properties of morphisms of algebraic spaces which are
local on the target in the fppf topology we may check this fppf locally on T . By
construction, there exists an fppf covering {Ti → T} of T such that x|(Sch/Ti)fppf

comes from a morphism xi : Ti → U . (Note that F ×T Ti represents the 2-fibre
product SU ×[U/R] (Sch/Ti)fppf so everything is compatible with the base change
via Ti → T .) Hence we may assume that x comes from x : T → U . In this case we
see that
SU ×[U/R] (Sch/T )fppf = (SU ×[U/R] SU ) ×SU

(Sch/T )fppf = SR ×SU
(Sch/T )fppf

The first equality by Categories, Lemma 31.10 and the second equality by Groupoids
in Spaces, Lemma 22.2. Clearly the last 2-fibre product is represented by the
algebraic space F = R ×s,U,x T and the projection R ×s,U,x T → T is smooth as
the base change of the smooth morphism of algebraic spaces s : R → U . It is also
surjective as s has a section (namely the identity e : U → R of the groupoid). This
proves the lemma. □

Here is the main result of this section.

Theorem 17.3.04TK Let S be a scheme contained in Schfppf . Let (U, R, s, t, c) be a
smooth groupoid in algebraic spaces over S. Then the quotient stack [U/R] is an
algebraic stack over S.

Proof. We check the three conditions of Definition 12.1. By construction we have
that [U/R] is a stack in groupoids which is the first condition.
The second condition follows from the stronger Lemma 17.1.
Finally, we have to show there exists a scheme W over S and a surjective smooth
1-morphism (Sch/W )fppf −→ X . First choose W ∈ Ob((Sch/S)fppf ) and a sur-
jective étale morphism W → U . Note that this gives a surjective étale morphism
SW → SU of categories fibred in sets, see Lemma 10.3. Of course then SW → SU

https://stacks.math.columbia.edu/tag/04WZ
https://stacks.math.columbia.edu/tag/04X0
https://stacks.math.columbia.edu/tag/04TK
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is also surjective and smooth, see Lemma 10.9. Hence SW → SU → [U/R] is
surjective and smooth by a combination of Lemmas 17.2 and 10.5. □

18. Change of big site

04X1 In this section we briefly discuss what happens when we change big sites. The
upshot is that we can always enlarge the big site at will, hence we may assume any
set of schemes we want to consider is contained in the big fppf site over which we
consider our algebraic space. We encourage the reader to skip this section.
Pullbacks of stacks is defined in Stacks, Section 12.

Lemma 18.1.04X2 Suppose given big sites Schfppf and Sch′
fppf . Assume that Schfppf

is contained in Sch′
fppf , see Topologies, Section 12. Let S be an object of Schfppf .

Let f : (Sch′/S)fppf → (Sch/S)fppf the morphism of sites corresponding to the
inclusion functor u : (Sch/S)fppf → (Sch′/S)fppf . Let X be a stack in groupoids
over (Sch/S)fppf .

(1) if X is representable by some X ∈ Ob((Sch/S)fppf ), then f−1X is repre-
sentable too, in fact it is representable by the same scheme X, now viewed
as an object of (Sch′/S)fppf ,

(2) if X is representable by F ∈ Sh((Sch/S)fppf ) which is an algebraic space,
then f−1X is representable by the algebraic space f−1F ,

(3) if X is an algebraic stack, then f−1X is an algebraic stack, and
(4) if X is a Deligne-Mumford stack, then f−1X is a Deligne-Mumford stack

too.

Proof. Let us prove (3). By Lemma 16.2 we may write X = [U/R] for some smooth
groupoid in algebraic spaces (U, R, s, t, c). By Groupoids in Spaces, Lemma 28.1
we see that f−1[U/R] = [f−1U/f−1R]. Of course (f−1U, f−1R, f−1s, f−1t, f−1c)
is a smooth groupoid in algebraic spaces too. Hence (3) is proved.
Now the other cases (1), (2), (4) each mean that X has a presentation [U/R]
of a particular kind, and hence translate into the same kind of presentation for
f−1X = [f−1U/f−1R]. Whence the lemma is proved. □

It is not true (in general) that the restriction of an algebraic space over the bigger
site is an algebraic space over the smaller site (simply by reasons of cardinality).
Hence we can only ever use a simple lemma of this kind to enlarge the base category
and never to shrink it.

Lemma 18.2.04X3 Suppose Schfppf is contained in Sch′
fppf . Let S be an object of

Schfppf . Denote Algebraic-Stacks/S the 2-category of algebraic stacks over S de-
fined using Schfppf . Similarly, denote Algebraic-Stacks′/S the 2-category of alge-
braic stacks over S defined using Sch′

fppf . The rule X 7→ f−1X of Lemma 18.1
defines a functor of 2-categories

Algebraic-Stacks/S −→ Algebraic-Stacks′/S

which defines equivalences of morphism categories
MorAlgebraic-Stacks/S(X , Y) −→ MorAlgebraic-Stacks′/S(f−1X , f−1Y)

for every objects X , Y of Algebraic-Stacks/S. An object X ′ of Algebraic-Stacks′/S
is equivalence to f−1X for some X in Algebraic-Stacks/S if and only if it has a

https://stacks.math.columbia.edu/tag/04X2
https://stacks.math.columbia.edu/tag/04X3
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presentation X = [U ′/R′] with U ′, R′ isomorphic to f−1U , f−1R for some U, R ∈
Spaces/S.

Proof. The statement on morphism categories is a consequence of the more general
Stacks, Lemma 12.12. The characterization of the “essential image” follows from
the description of f−1 in the proof of Lemma 18.1. □

19. Change of base scheme

04X4 In this section we briefly discuss what happens when we change base schemes. The
upshot is that given a morphism S → S′ of base schemes, any algebraic stack over
S can be viewed as an algebraic stack over S′.

Lemma 19.1.04X5 Let Schfppf be a big fppf site. Let S → S′ be a morphism of this
site. The constructions A and B of Stacks, Section 13 above give isomorphisms of
2-categories{

2-category of algebraic
stacks X over S

}
↔

 2-category of pairs (X ′, f) consisting of an
algebraic stack X ′ over S′ and a morphism

f : X ′ → (Sch/S)fppf of algebraic stacks over S′


Proof. The statement makes sense as the functor j : (Sch/S)fppf → (Sch/S′)fppf
is the localization functor associated to the object S/S′ of (Sch/S′)fppf . By Stacks,
Lemma 13.2 the only thing to show is that the constructions A and B preserve the
subcategories of algebraic stacks. For example, if X = [U/R] then construction A
applied to X just produces X ′ = X . Conversely, if X ′ = [U ′/R′] the morphism p
induces morphisms of algebraic spaces U ′ → S and R′ → S, and then X = [U ′/R′]
but now viewed as a stack over S. Hence the lemma is clear. □

Definition 19.2.04X6 Let Schfppf be a big fppf site. Let S → S′ be a morphism of
this site. If p : X → (Sch/S)fppf is an algebraic stack over S, then X viewed as an
algebraic stack over S′ is the algebraic stack

X −→ (Sch/S′)fppf
gotten by applying construction A of Lemma 19.1 to X .

Conversely, what if we start with an algebraic stack X ′ over S′ and we want to get
an algebraic stack over S? Well, then we consider the 2-fibre product

X ′
S = (Sch/S)fppf ×(Sch/S′)fppf

X ′

which is an algebraic stack over S′ according to Lemma 14.3. Moreover, it comes
equipped with a natural 1-morphism p : X ′

S → (Sch/S)fppf and hence by Lemma
19.1 it corresponds in a canonical way to an algebraic stack over S.

Definition 19.3.04X7 Let Schfppf be a big fppf site. Let S → S′ be a morphism of
this site. Let X ′ be an algebraic stack over S′. The change of base of X ′ is the
algebraic stack X ′

S over S described above.
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