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1. Introduction

0EI6 This chapter continues the study of formal algebraic geometry and in particular
the question of whether a formal object is the completion of an algebraic one. A
fundamental reference is [Gro68]. Here is a list of results we have already discussed
in the Stacks project:

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
1
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(1) The theorem on formal functions, see Cohomology of Schemes, Section 20.
(2) Coherent formal modules, see Cohomology of Schemes, Section 23.
(3) Grothendieck’s existence theorem, see Cohomology of Schemes, Sections

24, 25, and 27.
(4) Grothendieck’s algebraization theorem, see Cohomology of Schemes, Sec-

tion 28.
(5) Grothendieck’s existence theorem more generally, see More on Flatness,

Sections 28 and 29.
Let us give an overview of the contents of this chapter.

Let X be a scheme and let I ⊂ OX be a finite type quasi-coherent sheaf of ideals.
Many questions in this chapter have to do with inverse systems (Fn) of quasi-
coherent OX -modules such that Fn = Fn+1/InFn+1. An important special case
is where X is a scheme over a Noetherian ring A and I = IOX for some ideal
I ⊂ A. In Cohomology, Sections 35, 36, and 39 we have some general results. In
this chapter, Sections 2 and 3 contain results specific to schemes and quasi-coherent
modules. In Section 4 we prove that the limit topology on lim Hp(X,Fn) is I-adic
in case cd(A, I) = 1. One of the themes of this chapter will be to show that
results proven in the principal ideal case I = (f) also hold when we only assume
cd(A, I) = 1.

In Section 6 we discuss derived completion of modules on a ringed site (C,O) with
respect to a finite type sheaf of ideals I. This section is the natural continuation
of the theory of derived completion in commutative algebra as described in More
on Algebra, Section 91. The first main result is that derived completion exists.
The second main result is that for a morphism f if ringed sites derived completion
commutes with derived pushforward:

(Rf∗K)∧ = Rf∗(K∧)

if the ideal sheaf upstairs is locally generated by sections coming from the ideal
downstairs, see Lemma 6.19. We stress that both main results are very elementary
in case the ideals in question are globally finitely generated which will be true for all
applications of this theory in this chapter. The displayed equality is the “correct”
version of the theorem on formal functions, see discussion in Section 7.

Let A be a Noetherian ring and let I, J be two ideals of A. Let M be a finite
A-module. The next topic in this chapter is the map

RΓJ(M) −→ RΓJ(M)∧

from local cohomology of M into the derived I-adic completion of the same. It turns
out that if we impose suitable depth conditions this map becomes an isomorphism
on cohomology in a range of degrees. In Section 8 we work essentially in the
generality just mentioned. In Section 9 we assume A is a local ring and J = m is a
maximal ideal. We encourage the reader to read this section before the other two
in this part of the chapter. Finally, in Section 10 we bootstrap the local case to
obtain stronger results back in the general case.

In the next part of this chapter we use the results on completion of local cohomology
to get a nonexhaustive list of results on cohomology of the completion of coherent
modules. More precisely, let A be a Noetherian ring, let I ⊂ A be an ideal, and let
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U ⊂ Spec(A) be an open subscheme. If F is a coherent OU -module, then we may
consider the maps

Hi(U,F) −→ lim Hi(U,F/InF)
and ask if we get an isomorphism in a certain range of degrees. In Section 11 we
work out some examples where U is the punctured spectrum of a local ring. In
Section 12 we discuss the general case. In Section 14 we apply some of the results
obtained to questions of connectedness in algebraic geometry.

The remaining sections of this chapter are devoted to a discussion of algebraization
of coherent formal modules. In other words, given an inverse system of coherent
modules (Fn) on U as above with Fn = Fn+1/InFn+1 we ask whether there exists
a coherent OU -module F such that Fn = F/InF for all n. We encourage the reader
to read Section 16 for a precise statement of the question, a useful general result
(Lemma 16.10), and a nontrivial application (Lemma 16.11). To prove a result
going essentially beyond this case quite a bit more theory has to be developed.
Please see Section 22 for the strongest results of this type obtained in this chapter.

2. Formal sections, I

0EH3 We suggest looking at Cohomology, Section 35 first.

Lemma 2.1.0EI8 Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals.
Let

. . .→ F3 → F2 → F1

be an inverse system of quasi-coherent OX-modules such that Fn = Fn+1/InFn+1.
Set F = limFn. Then

(1) F = R limFn,
(2) for any affine open U ⊂ X we have Hp(U,F) = 0 for p > 0, and
(3) for each p there is a short exact sequence 0 → R1 lim Hp−1(X,Fn) →

Hp(X,F)→ lim Hp(X,Fn)→ 0.
If moreover I is of finite type, then

(4) Fn = F/InF , and
(5) InF = limm≥n InFm.

Proof. Parts (1), (2), and (3) are general facts about inverse systems of quasi-
coherent modules with surjective transition maps, see Derived Categories of Schemes,
Lemma 3.2 and Cohomology, Lemma 37.1. Next, assume I is of finite type. Let
U ⊂ X be affine open. Say U = Spec(A) and I|U corresponds to I ⊂ A. Ob-
serve that I is a finitely generated ideal. By the equivalence of categories between
quasi-coherent OU -modules and A-modules (Schemes, Lemma 7.5) we find that
Mn = Fn(U) is an inverse system of A-modules with Mn = Mn+1/InMn+1. Thus

M = F(U) = limFn(U) = lim Mn

is an I-adically complete module with M/InM = Mn by Algebra, Lemma 98.2.
This proves (4). Part (5) translates into the statement that limm≥n InM/ImM =
InM . Since ImM = Im−n · InM this is just the statement that ImM is I-adically
complete. This follows from Algebra, Lemma 96.3 and the fact that M is complete.

□

https://stacks.math.columbia.edu/tag/0EI8
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3. Formal sections, II

0BLA We suggest looking at Cohomology, Sections 36 and 39 first.

Lemma 3.1.0EH9 Let X be a scheme. Let f ∈ Γ(X,OX). Let

. . .→ F3 → F2 → F1

be an inverse system of quasi-coherent OX-modules. The following are equivalent
(1) for all n ≥ 1 the map f : Fn+1 → Fn+1 factors through Fn+1 → Fn to give

a short exact sequence 0→ Fn → Fn+1 → F1 → 0,
(2) for all n ≥ 1 the map fn : Fn+1 → Fn+1 factors through Fn+1 → F1 to

give a short exact sequence 0→ F1 → Fn+1 → Fn → 0
(3) there exists an OX-module G which is f -divisible such that Fn = G[fn].
(4) there exists an OX-module F which is f -torsion free such that Fn = F/fnF .

Proof. The equivalence of (1), (2), (3) and the implication (4)⇒ (1) are proven in
Cohomology, Lemma 36.1. Assume (1) holds. Set F = limFn. By Lemma 2.1 part
(4) we have Fn = F/fnF . Let U ⊂ X be open and s = (sn) ∈ F(U) = limFn(U).
Choose n ≥ 1. If fs = 0, then sn+1 is in the kernel of Fn+1 → Fn by condition (1).
Hence sn = 0. Since n was arbitrary, we see s = 0. Thus F is f -torsion free. □

Lemma 3.2.0BLD Slightly improved
version of [BdJ14,
Lemma 1.6]

Let A be a ring and f ∈ A. Let X be a scheme over A. Let F be
a quasi-coherent OX-module. Assume that F [fn] = Ker(fn : F → F) stabilizes.
Then

RΓ(X, limF/fnF) = RΓ(X,F)∧

where the right hand side indicates the derived completion with respect to the ideal
(f) ⊂ A. Consequently, for p ∈ Z we obtain a commutative diagram

0 0

0 // ̂Hp(X,F) //

OO

lim Hp(X,F/fnF) //

OO

Tf (Hp+1(X,F)) // 0

0 // H0(Hp(X,F)∧) //

OO

Hp(X, limF/fnF) //

OO

Tf (Hp+1(X,F)) // 0

R1 lim Hp(X,F)[fn]

OO

∼= // R1 lim Hp−1(X,F/fnF)

OO

0

OO

0

OO

with exact rows and columns where ̂Hp(X,F) = lim Hp(X,F)/fnHp(X,F) is the
usual f -adic completion and Tf (−) denotes the f -adic Tate module as in More on
Algebra, Example 93.5.

Proof. By Lemma 2.1 we have limF/fnF = R limF/fnF . Everything else follows
from Cohomology, Example 39.3. □

https://stacks.math.columbia.edu/tag/0EH9
https://stacks.math.columbia.edu/tag/0BLD
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4. Formal sections, III

0EI9 In this section we prove Lemma 4.5 which (in the setting of Noetherian schemes and
coherent modules) is the analogue of Cohomology, Lemma 36.2 in case the ideal I
is not assumed principal but has the property that cd(A, I) = 1.

Lemma 4.1.0EIA Let I = (f1, . . . , fr) be an ideal of a Noetherian ring A. If cd(A, I) =
1, then there exist c ≥ 1 and maps φj : Ic → A such that

∑
fjφj : Ic → I is the

inclusion map.

Proof. Since cd(A, I) = 1 the complement U = Spec(A) \ V (I) is affine (Local
Cohomology, Lemma 4.8). Say U = Spec(B). Then IB = B and we can write
1 =

∑
j=1,...,r fjbj for some bj ∈ B. By Cohomology of Schemes, Lemma 10.5 we

can represent bj by maps φj : Ic → A for some c ≥ 0. Then
∑

fjφj : Ic → I ⊂ A
is the canonical embedding, after possibly replacing c by a larger integer, by the
same lemma. □

Lemma 4.2.0EIB Let I = (f1, . . . , fr) be an ideal of a Noetherian ring A with cd(A, I) =
1. Let c ≥ 1 and φj : Ic → A, j = 1, . . . , r be as in Lemma 4.1. Then there is a
unique graded A-algebra map

Φ :
⊕

n≥0
Inc → A[T1, . . . , Tr]

with Φ(g) =
∑

φj(g)Tj for g ∈ Ic. Moreover, the composition of Φ with the map
A[T1, . . . , Tr]→

⊕
n≥0 In, Tj 7→ fj is the inclusion map

⊕
n≥0 Inc →

⊕
n≥0 In.

Proof. For each j and m ≥ c the restriction of φj to Im is a map φj : Im → Im−c.
Given j1, . . . , jn ∈ {1, . . . , r} we claim that the composition

φj1 . . . φjn
: Inc → I(n−1)c → . . .→ Ic → A

is independent of the order of the indices j1, . . . , jn. Namely, if g = g1 . . . gn with
gi ∈ Ic, then we see that

(φj1 . . . φjn
)(g) = φj1(g1) . . . φjn

(gn)

is independent of the ordering as multiplication in A is commutative. Thus we can
define Φ by sending g ∈ Inc to

Φ(g) =
∑

e1+...+er=n
(φe1

1 ◦ . . . ◦ φer
r )(g)T e1

1 . . . T er
r

It is straightforward to prove that this is a graded A-algebra homomorphism with
the desired property. Uniqueness is immediate as is the final property. This proves
the lemma. □

Lemma 4.3.0EIC Let I = (f1, . . . , fr) be an ideal of a Noetherian ring A with cd(A, I) =
1. Let c ≥ 1 and φj : Ic → A, j = 1, . . . , r be as in Lemma 4.1. Let A → B be a
ring map with B Noetherian and let N be a finite B-module. Then, after possibly
increasing c and adjusting φj accordingly, there is a unique unique graded B-module
map

ΦN :
⊕

n≥0
IncN → N [T1, . . . , Tr]

with ΦN (gx) = Φ(g)x for g ∈ Inc and x ∈ N where Φ is as in Lemma 4.2. The
composition of ΦN with the map N [T1, . . . , Tr] →

⊕
n≥0 InN , Tj 7→ fj is the

inclusion map
⊕

n≥0 IncN →
⊕

n≥0 InN .

https://stacks.math.columbia.edu/tag/0EIA
https://stacks.math.columbia.edu/tag/0EIB
https://stacks.math.columbia.edu/tag/0EIC
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Proof. The uniqueness is clear from the formula and the uniqueness of Φ in Lemma
4.2. Consider the Noetherian A-algebra B′ = B ⊕N where N is an ideal of square
zero. To show the existence of ΦN it is enough (via Lemma 4.1) to show that
φj extends to a map φ′

j : IcB′ → B′ after possibly increasing c to some c′ (and
replacing φj by the composition of the inclusion Ic′ → Ic with φj). Recall that φj

corresponds to a section
hj ∈ Γ(Spec(A) \ V (I),OSpec(A))

see Cohomology of Schemes, Lemma 10.5. (This is in fact how we chose our φj in
the proof of Lemma 4.1.) Let us use the same lemma to represent the pullback

h′
j ∈ Γ(Spec(B′) \ V (IB′),OSpec(B′))

of hj by a B′-linear map φ′
j : Ic′

B′ → B′ for some c′ ≥ c. The agreement with φj

will hold for c′ sufficiently large by a further application of the lemma: namely we
can test agreement on a finite list of generators of Ic′ . Small detail omitted. □

Lemma 4.4.0EH6 Let I = (f1, . . . , fr) be an ideal of a Noetherian ring A with cd(A, I) =
1. Let c ≥ 1 and φj : Ic → A, j = 1, . . . , r be as in Lemma 4.1. Let X be a Noe-
therian scheme over Spec(A). Let

. . .→ F3 → F2 → F1

be an inverse system of coherent OX-modules such that Fn = Fn+1/InFn+1. Set
F = limFn. Then, after possibly increasing c and adjusting φj accordingly, there
exists a unique graded OX-module map

ΦF :
⊕

n≥0
IncF −→ F [T1, . . . , Tr]

with ΦF (gs) = Φ(g)s for g ∈ Inc and s a local section of F where Φ is as in Lemma
4.2. The composition of ΦF with the map F [T1, . . . , Tr]→

⊕
n≥0 InF , Tj 7→ fj is

the canonical inclusion
⊕

n≥0 IncF →
⊕

n≥0 InF .

Proof. The uniqueness is immediate from the OX -linearity and the requirement
that ΦF (gs) = Φ(g)s for g ∈ Inc and s a local section of F . Thus we may assume
X = Spec(B) is affine. Observe that (Fn) is an object of the category Coh(X, IOX)
introduced in Cohomology of Schemes, Section 23. Let B′ = B∧ be the I-adic com-
pletion of B. By Cohomology of Schemes, Lemma 23.1 the object (Fn) corresponds
to a finite B′-module N in the sense that Fn is the coherent module associated to
the finite B-module N/InN . Applying Lemma 4.3 to I ⊂ A → B′ and N we see
that, after possibly increasing c and adjusting φj accordingly, we get unique maps

ΦN :
⊕

n≥0
IncN → N [T1, . . . , Tr]

with the corresponding properties. Note that in degree n we obtain an inverse
system of maps N/ImN →

⊕
e1+...+er=n N/Im−ncN · T e1

1 . . . T er
r for m ≥ nc.

Translating back into coherent sheaves we see that ΦN corresponds to a system
of maps

Φn
m : IncFm −→

⊕
e1+...+er=n

Fm−nc · T e1
1 . . . T er

r

for varying m ≥ nc and n ≥ 1. Taking the inverse limit of these maps over m
we obtain ΦF =

⊕
n limm Φn

m. Note that limm ItFm = ItF as can be seen by
evaluating on affines for example, but in fact we don’t need this because it is clear
there is a map ItF → limm ItFm. □

https://stacks.math.columbia.edu/tag/0EH6


ALGEBRAIC AND FORMAL GEOMETRY 7

Lemma 4.5.0EH7 Let I be an ideal of a Noetherian ring A. Let X be a Noetherian
scheme over Spec(A). Let

. . .→ F3 → F2 → F1

be an inverse system of coherent OX-modules such that Fn = Fn+1/InFn+1. If
cd(A, I) = 1, then for all p ∈ Z the limit topology on lim Hp(X,Fn) is I-adic.

Proof. First it is clear that It lim Hp(X,Fn) maps to zero in Hp(X,Ft). Thus the
I-adic topology is finer than the limit topology. For the converse we set F = limFn,
we pick generators f1, . . . , fr of I, we pick c ≥ 1, and we choose ΦF as in Lemma
4.4. We will use the results of Lemma 2.1 without further mention. In particular
we have a short exact sequence

0→ R1 lim Hp−1(X,Fn)→ Hp(X,F)→ lim Hp(X,Fn)→ 0

Thus we can lift any element ξ of lim Hp(X,Fn) to an element ξ′ ∈ Hp(X,F).
Suppose ξ maps to zero in Hp(X,Fnc) for some n, in other words, suppose ξ is
“small” in the limit topology. We have a short exact sequence

0→ IncF → F → Fnc → 0

and hence the assumption means we can lift ξ′ to an element ξ′′ ∈ Hp(X, IncF).
Applying ΦF we get

ΦF (ξ′′) =
∑

e1+...+er=n
ξ′

e1,...,er
· T e1

1 . . . T er
r

for some ξ′
e1,...,er

∈ Hp(X,F). Letting ξe1,...,er ∈ lim Hp(X,Fn) be the images and
using the final assertion of Lemma 4.4 we conclude that

ξ =
∑

fe1
1 . . . fer

r ξe1,...,er

is in In lim Hp(X,Fn) as desired. □

Example 4.6.0EH8 Let k be a field. Let A = k[x, y][[s, t]]/(xs− yt). Let I = (s, t) and
a = (x, y, s, t). Let X = Spec(A) − V (a) and Fn = OX/InOX . Observe that the
rational function

g = t

x
= s

y

is regular in an open neighbourhood V ⊂ X of V (IOX). Hence every power ge

determines a section ge ∈ M = lim H0(X,Fn). Observe that ge → 0 as e → ∞ in
the limit topology on M since ge maps to zero in Fe. On the other hand, ge ̸∈ IM
for any e as the reader can see by computing H0(U,Fn); computation omitted.
Observe that cd(A, I) = 2. Thus the result of Lemma 4.5 is sharp.

5. Mittag-Leffler conditions

0EFN When taking local cohomology with respect to the maximal ideal of a local Noe-
therian ring, we often get the Mittag-Leffler condition for free. This implies the
same thing is true for higher cohomology groups of an inverse system of coherent
sheaves with surjective transition maps on the puncture spectrum.

Lemma 5.1.0DX0 Let (A,m) be a Noetherian local ring.
(1) Let M be a finite A-module. Then the A-module Hi

m(M) satisfies the de-
scending chain condition for any i.

https://stacks.math.columbia.edu/tag/0EH7
https://stacks.math.columbia.edu/tag/0EH8
https://stacks.math.columbia.edu/tag/0DX0
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(2) Let U = Spec(A)\{m} be the punctured spectrum of A. Let F be a coherent
OU -module. Then the A-module Hi(U,F) satisfies the descending chain
condition for i > 0.

Proof. We will prove part (1) by induction on the dimension of the support of M .
The statement holds if M = 0, thus we may and do assume M is not zero.
Base case of the induction. If dim(Supp(M)) = 0, then the support of M is {m}
and we see that H0

m(M) = M and Hi
m(M) = 0 for i > 0 as is clear from the

construction of local cohomology, see Dualizing Complexes, Section 9. Since M has
finite length (Algebra, Lemma 52.8) it has the descending chain condition.
Induction step. Assume dim(Supp(M)) > 0. By the base case the finite module
H0

m(M) ⊂M has the descending chain condition. By Dualizing Complexes, Lemma
11.6 we may replace M by M/H0

m(M). Then H0
m(M) = 0, i.e., M has depth≥ 1, see

Dualizing Complexes, Lemma 11.1. Choose x ∈ m such that x : M → M is injec-
tive. By Algebra, Lemma 63.10 we have dim(Supp(M/xM)) = dim(Supp(M))− 1
and the induction hypothesis applies. Pick an index i and consider the exact se-
quence

Hi−1
m (M/xM)→ Hi

m(M) x−→ Hi
m(M)

coming from the short exact sequence 0 → M
x−→ M → M/xM → 0. It follows

that the x-torsion Hi
m(M)[x] is a quotient of a module with the descending chain

condition, and hence has the descending chain condition itself. Hence the m-torsion
submodule Hi

m(M)[m] has the descending chain condition (and hence is finite di-
mensional over A/m). Thus we conclude that the m-power torsion module Hi

m(M)
has the descending chain condition by Dualizing Complexes, Lemma 7.7.
Part (2) follows from (1) via Local Cohomology, Lemma 8.2. □

Lemma 5.2.0DX1 Let (A,m) be a Noetherian local ring.
(1) Let (Mn) be an inverse system of finite A-modules. Then the inverse system

Hi
m(Mn) satisfies the Mittag-Leffler condition for any i.

(2) Let U = Spec(A) \ {m} be the punctured spectrum of A. Let Fn be an
inverse system of coherent OU -modules. Then the inverse system Hi(U,Fn)
satisfies the Mittag-Leffler condition for i > 0.

Proof. Follows immediately from Lemma 5.1. □

Lemma 5.3.0EHB Let (A,m) be a Noetherian local ring. Let (Mn) be an inverse system
of finite A-modules. Let M → lim Mn be a map where M is a finite A-module such
that for some i the map Hi

m(M) → lim Hi
m(Mn) is an isomorphism. Then the

inverse system Hi
m(Mn) is essentially constant with value Hi

m(M).

Proof. By Lemma 5.2 the inverse system Hi
m(Mn) satisfies the Mittag-Leffler con-

dition. Let En ⊂ Hi
m(Mn) be the image of Hi

m(Mn′) for n′ ≫ n. Then (En) is
an inverse system with surjective transition maps and Hi

m(M) = lim En. Since
Hi

m(M) has the descending chain condition by Lemma 5.1 we find there can only
be a finite number of nontrivial kernels of the surjections Hi

m(M) → En. Thus
En → En−1 is an isomorphism for all n≫ 0 as desired. □

Lemma 5.4.0DXJ Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let M
be a finite A-module. Then

Hi(RΓm(M)∧) = lim Hi
m(M/InM)

https://stacks.math.columbia.edu/tag/0DX1
https://stacks.math.columbia.edu/tag/0EHB
https://stacks.math.columbia.edu/tag/0DXJ
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for all i where RΓm(M)∧ denotes the derived I-adic completion.

Proof. Apply Dualizing Complexes, Lemma 12.4 and Lemma 5.2 to see the van-
ishing of the R1 lim terms. □

6. Derived completion on a ringed site

0995 We urge the reader to skip this section on a first reading.
The algebra version of this material can be found in More on Algebra, Section 91.
Let O be a sheaf of rings on a site C. Let f be a global section of O. We denote
Of the sheaf associated to the presheaf of localizations U 7→ O(U)f .

Lemma 6.1.0996 Let (C,O) be a ringed site. Let f be a global section of O.
(1) For L, N ∈ D(Of ) we have RHomO(L, N) = RHomOf

(L, N). In particu-
lar the two Of -structures on RHomO(L, N) agree.

(2) For K ∈ D(O) and L ∈ D(Of ) we have
RHomO(L, K) = RHomOf

(L, RHomO(Of , K))
In particular RHomO(Of , RHomO(Of , K)) = RHomO(Of , K).

(3) If g is a second global section of O, then
RHomO(Of , RHomO(Og, K)) = RHomO(Ogf , K).

Proof. Proof of (1). Let J • be a K-injective complex of Of -modules representing
N . By Cohomology on Sites, Lemma 20.10 it follows that J • is a K-injective
complex of O-modules as well. Let F• be a complex of Of -modules representing
L. Then

RHomO(L, N) = RHomO(F•,J •) = RHomOf
(F•,J •)

by Modules on Sites, Lemma 11.4 because J • is a K-injective complex of O and of
Of -modules.
Proof of (2). Let I• be a K-injective complex of O-modules representing K. Then
RHomO(Of , K) is represented by HomO(Of , I•) which is a K-injective complex of
Of -modules and of O-modules by Cohomology on Sites, Lemmas 20.11 and 20.10.
Let F• be a complex of Of -modules representing L. Then

RHomO(L, K) = RHomO(F•, I•) = RHomOf
(F•,HomO(Of , I•))

by Modules on Sites, Lemma 27.8 and because HomO(Of , I•) is a K-injective com-
plex of Of -modules.
Proof of (3). This follows from the fact that RHomO(Og, I•) is K-injective as a
complex ofO-modules and the fact thatHomO(Of ,HomO(Og,H)) = HomO(Ogf ,H)
for all sheaves of O-modules H. □

Let K ∈ D(O). We denote T (K, f) a derived limit (Derived Categories, Definition
34.1) of the inverse system

. . .→ K
f−→ K

f−→ K

in D(O).

Lemma 6.2.0997 Let (C,O) be a ringed site. Let f be a global section of O. Let
K ∈ D(O). The following are equivalent

(1) RHomO(Of , K) = 0,

https://stacks.math.columbia.edu/tag/0996
https://stacks.math.columbia.edu/tag/0997
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(2) RHomO(L, K) = 0 for all L in D(Of ),
(3) T (K, f) = 0.

Proof. It is clear that (2) implies (1). The implication (1) ⇒ (2) follows from
Lemma 6.1. A free resolution of the O-module Of is given by

0→
⊕

n∈N
O →

⊕
n∈N
O → Of → 0

where the first map sends a local section (x0, x1, . . .) to (x0, x1− fx0, x2− fx1, . . .)
and the second map sends (x0, x1, . . .) to x0 + x1/f + x2/f2 + . . .. Applying
HomO(−, I•) where I• is a K-injective complex of O-modules representing K we
get a short exact sequence of complexes

0→ HomO(Of , I•)→
∏
I• →

∏
I• → 0

because In is an injective O-module. The products are products in D(O), see
Injectives, Lemma 13.4. This means that the object T (K, f) is a representative of
RHomO(Of , K) in D(O). Thus the equivalence of (1) and (3). □

Lemma 6.3.0998 Let (C,O) be a ringed site. Let K ∈ D(O). The rule which associates
to U the set I(U) of sections f ∈ O(U) such that T (K|U , f) = 0 is a sheaf of ideals
in O.

Proof. We will use the results of Lemma 6.2 without further mention. If f ∈ I(U),
and g ∈ O(U), then OU,gf is an OU,f -module hence RHomO(OU,gf , K|U ) = 0,
hence gf ∈ I(U). Suppose f, g ∈ O(U). Then there is a short exact sequence

0→ OU,f+g → OU,f(f+g) ⊕OU,g(f+g) → OU,gf(f+g) → 0
because f, g generate the unit ideal in O(U)f+g. This follows from Algebra, Lemma
24.2 and the easy fact that the last arrow is surjective. Because RHomO(−, K|U ) is
an exact functor of triangulated categories the vanishing of RHomOU

(OU,f(f+g), K|U ),
RHomOU

(OU,g(f+g), K|U ), and RHomOU
(OU,gf(f+g), K|U ), implies the vanishing

of RHomOU
(OU,f+g, K|U ). We omit the verification of the sheaf condition. □

We can make the following definition for any ringed site.

Definition 6.4.0999 Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals. Let
K ∈ D(O). We say that K is derived complete with respect to I if for every object
U of C and f ∈ I(U) the object T (K|U , f) of D(OU ) is zero.

It is clear that the full subcategory Dcomp(O) = Dcomp(O, I) ⊂ D(O) consisting
of derived complete objects is a saturated triangulated subcategory, see Derived
Categories, Definitions 3.4 and 6.1. This subcategory is preserved under products
and homotopy limits in D(O). But it is not preserved under countable direct sums
in general.

Lemma 6.5.099A Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals. If
K ∈ D(O) and L ∈ Dcomp(O), then RHomO(K, L) ∈ Dcomp(O).

Proof. Let U be an object of C and let f ∈ I(U). Recall that
HomD(OU )(OU,f , RHomO(K, L)|U ) = HomD(OU )(K|U ⊗L

OU
OU,f , L|U )

by Cohomology on Sites, Lemma 35.2. The right hand side is zero by Lemma
6.2 and the relationship between internal hom and actual hom, see Cohomol-
ogy on Sites, Lemma 35.1. The same vanishing holds for all U ′/U . Thus the

https://stacks.math.columbia.edu/tag/0998
https://stacks.math.columbia.edu/tag/0999
https://stacks.math.columbia.edu/tag/099A
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object RHomOU
(OU,f , RHomO(K, L)|U ) of D(OU ) has vanishing 0th cohomol-

ogy sheaf (by locus citatus). Similarly for the other cohomology sheaves, i.e.,
RHomOU

(OU,f , RHomO(K, L)|U ) is zero in D(OU ). By Lemma 6.2 we conclude.
□

Lemma 6.6.099C Let C be a site. Let O → O′ be a homomorphism of sheaves of
rings. Let I ⊂ O be a sheaf of ideals. The inverse image of Dcomp(O, I) under the
restriction functor D(O′)→ D(O) is Dcomp(O′, IO′).

Proof. Using Lemma 6.3 we see that K ′ ∈ D(O′) is in Dcomp(O′, IO′) if and only
if T (K ′|U , f) is zero for every local section f ∈ I(U). Observe that the cohomology
sheaves of T (K ′|U , f) are computed in the category of abelian sheaves, so it doesn’t
matter whether we think of f as a section of O or take the image of f as a section of
O′. The lemma follows immediately from this and the definition of derived complete
objects. □

Lemma 6.7.099J Let f : (Sh(D),O′) → (Sh(C),O) be a morphism of ringed topoi.
Let I ⊂ O and I ′ ⊂ O′ be sheaves of ideals such that f ♯ sends f−1I into I ′. Then
Rf∗ sends Dcomp(O′, I ′) into Dcomp(O, I).

Proof. We may assume f is given by a morphism of ringed sites correspond-
ing to a continuous functor C → D (Modules on Sites, Lemma 7.2 ). Let U
be an object of C and let g be a section of I over U . We have to show that
HomD(OU )(OU,g, Rf∗K|U ) = 0 whenever K is derived complete with respect to I ′.
Namely, by Cohomology on Sites, Lemma 35.1 this, applied to all objects over U
and all shifts of K, will imply that RHomOU

(OU,g, Rf∗K|U ) is zero, which implies
that T (Rf∗K|U , g) is zero (Lemma 6.2) which is what we have to show (Definition
6.4). Let V in D be the image of U . Then

HomD(OU )(OU,g, Rf∗K|U ) = HomD(O′
V

)(O′
V,g′ , K|V ) = 0

where g′ = f ♯(g) ∈ I ′(V ). The second equality because K is derived complete and
the first equality because the derived pullback of OU,g is O′

V,g′ and Cohomology on
Sites, Lemma 19.1. □

The following lemma is the simplest case where one has derived completion.

Lemma 6.8.099B Let (C,O) be a ringed on a site. Let f1, . . . , fr be global sections of
O. Let I ⊂ O be the ideal sheaf generated by f1, . . . , fr. Then the inclusion functor
Dcomp(O)→ D(O) has a left adjoint, i.e., given any object K of D(O) there exists
a map K → K∧ with K∧ in Dcomp(O) such that the map

HomD(O)(K∧, E) −→ HomD(O)(K, E)

is bijective whenever E is in Dcomp(O). In fact we have

K∧ = RHomO(O →
∏

i0
Ofi0

→
∏

i0<i1
Ofi0 fi1

→ . . .→ Of1...fr , K)

functorially in K.

Proof. Define K∧ by the last displayed formula of the lemma. There is a map of
complexes

(O →
∏

i0
Ofi0

→
∏

i0<i1
Ofi0 fi1

→ . . .→ Of1...fr
) −→ O

https://stacks.math.columbia.edu/tag/099C
https://stacks.math.columbia.edu/tag/099J
https://stacks.math.columbia.edu/tag/099B
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which induces a map K → K∧. It suffices to prove that K∧ is derived complete
and that K → K∧ is an isomorphism if K is derived complete.
Let f be a global section of O. By Lemma 6.1 the object RHomO(Of , K∧) is equal
to

RHomO((Of →
∏

i0
Offi0

→
∏

i0<i1
Offi0 fi1

→ . . .→ Off1...fr
), K)

If f = fi for some i, then f1, . . . , fr generate the unit ideal in Of , hence the
extended alternating Čech complex

Of →
∏

i0
Offi0

→
∏

i0<i1
Offi0 fi1

→ . . .→ Off1...fr

is zero (even homotopic to zero). In this way we see that K∧ is derived complete.
If K is derived complete, then RHomO(Of , K) is zero for all f = fi0 . . . fip , p ≥ 0.
Thus K → K∧ is an isomorphism in D(O). □

Next we explain why derived completion is a completion.

Lemma 6.9.0A0E Let (C,O) be a ringed on a site. Let f1, . . . , fr be global sections
of O. Let I ⊂ O be the ideal sheaf generated by f1, . . . , fr. Let K ∈ D(O). The
derived completion K∧ of Lemma 6.8 is given by the formula

K∧ = R lim K ⊗L
O Kn

where Kn = K(O, fn
1 , . . . , fn

r ) is the Koszul complex on fn
1 , . . . , fn

r over O.

Proof. In More on Algebra, Lemma 29.6 we have seen that the extended alternat-
ing Čech complex

O →
∏

i0
Ofi0

→
∏

i0<i1
Ofi0 fi1

→ . . .→ Of1...fr

is a colimit of the Koszul complexes Kn = K(O, fn
1 , . . . , fn

r ) sitting in degrees
0, . . . , r. Note that Kn is a finite chain complex of finite free O-modules with dual
HomO(Kn,O) = Kn where Kn is the Koszul cochain complex sitting in degrees
−r, . . . , 0 (as usual). By Lemma 6.8 the functor E 7→ E∧ is gotten by taking RHom
from the extended alternating Čech complex into E:

E∧ = RHom(colim Kn, E)
This is equal to R lim(E ⊗L

O Kn) by Cohomology on Sites, Lemma 48.8. □

Lemma 6.10.099D There exist a way to construct
(1) for every pair (A, I) consisting of a ring A and a finitely generated ideal

I ⊂ A a complex K(A, I) of A-modules,
(2) a map K(A, I)→ A of complexes of A-modules,
(3) for every ring map A → B and finitely generated ideal I ⊂ A a map of

complexes K(A, I)→ K(B, IB),
such that

(a) for A→ B and I ⊂ A finitely generated the diagram

K(A, I) //

��

A

��
K(B, IB) // B

https://stacks.math.columbia.edu/tag/0A0E
https://stacks.math.columbia.edu/tag/099D
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commutes,
(b) for A→ B → C and I ⊂ A finitely generated the composition of the maps

K(A, I)→ K(B, IB)→ K(C, IC) is the map K(A, I)→ K(C, IC).
(c) for A→ B and a finitely generated ideal I ⊂ A the induced map K(A, I)⊗L

A

B → K(B, IB) is an isomorphism in D(B), and
(d) if I = (f1, . . . , fr) ⊂ A then there is a commutative diagram

(A→
∏

i0
Afi0

→
∏

i0<i1
Afi0 fi1

→ . . .→ Af1...fr
) //

��

K(A, I)

��
A

1 // A

in D(A) whose horizontal arrows are isomorphisms.

Proof. Let S be the set of rings A0 of the form A0 = Z[x1, . . . , xn]/J . Every
finite type Z-algebra is isomorphic to an element of S. Let A0 be the category
whose objects are pairs (A0, I0) where A0 ∈ S and I0 ⊂ A0 is an ideal and whose
morphisms (A0, I0)→ (B0, J0) are ring maps φ : A0 → B0 such that J0 = φ(I0)B0.

Suppose we can construct K(A0, I0) → A0 functorially for objects of A0 having
properties (a), (b), (c), and (d). Then we take

K(A, I) = colimφ:(A0,I0)→(A,I) K(A0, I0)

where the colimit is over ring maps φ : A0 → A such that φ(I0)A = I with (A0, I0)
in A0. A morphism between (A0, I0) → (A, I) and (A′

0, I ′
0) → (A, I) are given by

maps (A0, I0)→ (A′
0, I ′

0) in A0 commuting with maps to A. The category of these
(A0, I0) → (A, I) is filtered (details omitted). Moreover, colimφ:(A0,I0)→(A,I) A0 =
A so that K(A, I) is a complex of A-modules. Finally, given φ : A→ B and I ⊂ A
for every (A0, I0)→ (A, I) in the colimit, the composition (A0, I0)→ (B, IB) lives
in the colimit for (B, IB). In this way we get a map on colimits. Properties (a),
(b), (c), and (d) follow readily from this and the corresponding properties of the
complexes K(A0, I0).

Endow C0 = Aopp
0 with the chaotic topology. We equip C0 with the sheaf of rings

O : (A, I) 7→ A. The ideals I fit together to give a sheaf of ideals I ⊂ O. Choose
an injective resolution O → J •. Consider the object

F• =
⋃

n
J •[In]

Let U = (A, I) ∈ Ob(C0). Since the topology in C0 is chaotic, the value J •(U) is
a resolution of A by injective A-modules. Hence the value F•(U) is an object of
D(A) representing the image of RΓI(A) in D(A), see Dualizing Complexes, Section
9. Choose a complex of O-modules K• and a commutative diagram

O // J •

K• //

OO

F•

OO

where the horizontal arrows are quasi-isomorphisms. This is possible by the con-
struction of the derived category D(O). Set K(A, I) = K•(U) where U = (A, I).
Properties (a) and (b) are clear and properties (c) and (d) follow from Dualizing
Complexes, Lemmas 10.2 and 10.3. □
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Lemma 6.11.099E Let (C,O) be a ringed site. Let I ⊂ O be a finite type sheaf of
ideals. There exists a map K → O in D(O) such that for every U ∈ Ob(C) such
that I|U is generated by f1, . . . , fr ∈ I(U) there is an isomorphism

(OU →
∏

i0
OU,fi0

→
∏

i0<i1
OU,fi0 fi1

→ . . .→ OU,f1...fr
) −→ K|U

compatible with maps to OU .

Proof. Let C′ ⊂ C be the full subcategory of objects U such that I|U is generated
by finitely many sections. Then C′ → C is a special cocontinuous functor (Sites,
Definition 29.2). Hence it suffices to work with C′, see Sites, Lemma 29.1. In other
words we may assume that for every object U of C there exists a finitely generated
ideal I ⊂ I(U) such that I|U = Im(I ⊗ OU → OU ). We will say that I generates
I|U . Warning: We do not know that I(U) is a finitely generated ideal in O(U).

Let U be an object and I ⊂ O(U) a finitely generated ideal which generates I|U .
On the category C/U consider the complex of presheaves

K•
U,I : U ′/U 7−→ K(O(U ′), IO(U ′))

with K(−,−) as in Lemma 6.10. We claim that the sheafification of this is indepen-
dent of the choice of I. Indeed, if I ′ ⊂ O(U) is a finitely generated ideal which also
generates I|U , then there exists a covering {Uj → U} such that IO(Uj) = I ′O(Uj).
(Hint: this works because both I and I ′ are finitely generated and generate I|U .)
Hence K•

U,I and K•
U,I′ are the same for any object lying over one of the Uj . The

statement on sheafifications follows. Denote K•
U the common value.

The independence of choice of I also shows that K•
U |C/U ′ = K•

U ′ whenever we are
given a morphism U ′ → U and hence a localization morphism C/U ′ → C/U . Thus
the complexes K•

U glue to give a single well defined complex K• of O-modules.
The existence of the map K• → O and the quasi-isomorphism of the lemma follow
immediately from the corresponding properties of the complexes K(−,−) in Lemma
6.10. □

Proposition 6.12.099F Let (C,O) be a ringed site. Let I ⊂ O be a finite type sheaf
of ideals. There exists a left adjoint to the inclusion functor Dcomp(O)→ D(O).

Proof. Let K → O in D(O) be as constructed in Lemma 6.11. Let E ∈ D(O).
Then E∧ = RHom(K, E) together with the map E → E∧ will do the job. Namely,
locally on the site C we recover the adjoint of Lemma 6.8. This shows that E∧

is always derived complete and that E → E∧ is an isomorphism if E is derived
complete. □

Remark 6.13 (Comparison with completion).0CQH Let (C,O) be a ringed site. Let
I ⊂ O be a finite type sheaf of ideals. Let K 7→ K∧ be the derived completion
functor of Proposition 6.12. For any n ≥ 1 the object K ⊗L

O O/In is derived
complete as it is annihilated by powers of local sections of I. Hence there is a
canonical factorization

K → K∧ → K ⊗L
O O/In

of the canonical map K → K ⊗L
O O/In. These maps are compatible for varying n

and we obtain a comparison map

K∧ −→ R lim
(
K ⊗L

O O/In
)

https://stacks.math.columbia.edu/tag/099E
https://stacks.math.columbia.edu/tag/099F
https://stacks.math.columbia.edu/tag/0CQH
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The right hand side is more recognizable as a kind of completion. In general this
comparison map is not an isomorphism.

Remark 6.14 (Localization and derived completion).0A0F Let (C,O) be a ringed
site. Let I ⊂ O be a finite type sheaf of ideals. Let K 7→ K∧ be the derived
completion functor of Proposition 6.12. It follows from the construction in the proof
of the proposition that K∧|U is the derived completion of K|U for any U ∈ Ob(C).
But we can also prove this as follows. From the definition of derived complete
objects it follows that K∧|U is derived complete. Thus we obtain a canonical map
a : (K|U )∧ → K∧|U . On the other hand, if E is a derived complete object of
D(OU ), then Rj∗E is a derived complete object of D(O) by Lemma 6.7. Here j is
the localization morphism (Modules on Sites, Section 19). Hence we also obtain a
canonical map b : K∧ → Rj∗((K|U )∧). We omit the (formal) verification that the
adjoint of b is the inverse of a.

Remark 6.15 (Completed tensor product).099G Let (C,O) be a ringed site. Let I ⊂ O
be a finite type sheaf of ideals. Denote K 7→ K∧ the adjoint of Proposition 6.12.
Then we set

K ⊗∧
O L = (K ⊗L

O L)∧

This completed tensor product defines a functor Dcomp(O)×Dcomp(O)→ Dcomp(O)
such that we have

HomDcomp(O)(K, RHomO(L, M)) = HomDcomp(O)(K ⊗∧
O L, M)

for K, L, M ∈ Dcomp(O). Note that RHomO(L, M) ∈ Dcomp(O) by Lemma 6.5.

Lemma 6.16.099H Let C be a site. Assume φ : O → O′ is a flat homomorphism of
sheaves of rings. Let f1, . . . , fr be global sections of O such that O/(f1, . . . , fr) ∼=
O′/(f1, . . . , fr)O′. Then the map of extended alternating Čech complexes

O →
∏

i0
Ofi0

→
∏

i0<i1
Ofi0 fi1

→ . . .→ Of1...fr

��
O′ →

∏
i0
O′

fi0
→

∏
i0<i1

O′
fi0 fi1

→ . . .→ O′
f1...fr

is a quasi-isomorphism.

Proof. Observe that the second complex is the tensor product of the first complex
with O′. We can write the first extended alternating Čech complex as a colimit
of the Koszul complexes Kn = K(O, fn

1 , . . . , fn
r ), see More on Algebra, Lemma

29.6. Hence it suffices to prove Kn → Kn ⊗O O′ is a quasi-isomorphism. Since
O → O′ is flat it suffices to show that Hi → Hi ⊗O O′ is an isomorphism where
Hi is the ith cohomology sheaf Hi = Hi(Kn). These sheaves are annihilated by
fn

1 , . . . , fn
r , see More on Algebra, Lemma 28.6. Hence these sheaves are annihilated

by (f1, . . . , fr)m for some m ≫ 0. Thus Hi → Hi ⊗O O′ is an isomorphism by
Modules on Sites, Lemma 28.16. □

Lemma 6.17.099I Let C be a site. Let O → O′ be a homomorphism of sheaves of rings.
Let I ⊂ O be a finite type sheaf of ideals. If O → O′ is flat and O/I ∼= O′/IO′, then
the restriction functor D(O′) → D(O) induces an equivalence Dcomp(O′, IO′) →
Dcomp(O, I).

https://stacks.math.columbia.edu/tag/0A0F
https://stacks.math.columbia.edu/tag/099G
https://stacks.math.columbia.edu/tag/099H
https://stacks.math.columbia.edu/tag/099I
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Proof. Lemma 6.7 implies restriction r : D(O′) → D(O) sends Dcomp(O′, IO′)
into Dcomp(O, I). We will construct a quasi-inverse E 7→ E′.
Let K → O be the morphism of D(O) constructed in Lemma 6.11. Set K ′ = K⊗L

O
O′ in D(O′). Then K ′ → O′ is a map in D(O′) which satisfies the conclusions of
Lemma 6.11 with respect to I ′ = IO′. The map K → r(K ′) is a quasi-isomorphism
by Lemma 6.16. Now, for E ∈ Dcomp(O, I) we set

E′ = RHomO(r(K ′), E)
viewed as an object in D(O′) using the O′-module structure on K ′. Since E is
derived complete we have E = RHomO(K, E), see proof of Proposition 6.12. On
the other hand, since K → r(K ′) is an isomorphism in we see that there is an
isomorphism E → r(E′) in D(O). To finish the proof we have to show that, if
E = r(M ′) for an object M ′ of Dcomp(O′, I ′), then E′ ∼= M ′. To get a map we use
M ′ = RHomO′(O′, M ′)→ RHomO(r(O′), r(M ′))→ RHomO(r(K ′), r(M ′)) = E′

where the second arrow uses the map K ′ → O′. To see that this is an isomorphism,
one shows that r applied to this arrow is the same as the isomorphism E → r(E′)
above. Details omitted. □

Lemma 6.18.099K Let f : (Sh(D),O′) → (Sh(C),O) be a morphism of ringed topoi.
Let I ⊂ O and I ′ ⊂ O′ be finite type sheaves of ideals such that f ♯ sends f−1I into
I ′. Then Rf∗ sends Dcomp(O′, I ′) into Dcomp(O, I) and has a left adjoint Lf∗

comp

which is Lf∗ followed by derived completion.
Proof. The first statement we have seen in Lemma 6.7. Note that the second state-
ment makes sense as we have a derived completion functor D(O′)→ Dcomp(O′, I ′)
by Proposition 6.12. OK, so now let K ∈ Dcomp(O, I) and M ∈ Dcomp(O′, I ′).
Then we have

Hom(K, Rf∗M) = Hom(Lf∗K, M) = Hom(Lf∗
compK, M)

by the universal property of derived completion. □

Lemma 6.19.0A0G Generalization of
[BS13, Lemma 6.5.9
(2)]. Compare with
[HLP14, Theorem
6.5] in the setting of
quasi-coherent
modules and
morphisms of
(derived) algebraic
stacks.

Let f : (Sh(D),O′) → (Sh(C),O) be a morphism of ringed topoi.
Let I ⊂ O be a finite type sheaf of ideals. Let I ′ ⊂ O′ be the ideal gener-
ated by f ♯(f−1I). Then Rf∗ commutes with derived completion, i.e., Rf∗(K∧) =
(Rf∗K)∧.
Proof. By Proposition 6.12 the derived completion functors exist. By Lemma 6.7
the object Rf∗(K∧) is derived complete, and hence we obtain a canonical map
(Rf∗K)∧ → Rf∗(K∧) by the universal property of derived completion. We may
check this map is an isomorphism locally on C. Thus, since derived completion
commutes with localization (Remark 6.14) we may assume that I is generated by
global sections f1, . . . , fr. Then I ′ is generated by gi = f ♯(fi). By Lemma 6.9 we
have to prove that

R lim
(
Rf∗K ⊗L

O K(O, fn
1 , . . . , fn

r )
)

= Rf∗
(
R lim K ⊗L

O′ K(O′, gn
1 , . . . , gn

r )
)

Because Rf∗ commutes with R lim (Cohomology on Sites, Lemma 23.3) it suffices
to prove that

Rf∗K ⊗L
O K(O, fn

1 , . . . , fn
r ) = Rf∗

(
K ⊗L

O′ K(O′, gn
1 , . . . , gn

r )
)

This follows from the projection formula (Cohomology on Sites, Lemma 50.1) and
the fact that Lf∗K(O, fn

1 , . . . , fn
r ) = K(O′, gn

1 , . . . , gn
r ). □

https://stacks.math.columbia.edu/tag/099K
https://stacks.math.columbia.edu/tag/0A0G
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Lemma 6.20.0BLX Let A be a ring and let I ⊂ A be a finitely generated ideal. Let C
be a site and let O be a sheaf of A-algebras. Let F be a sheaf of O-modules. Then
we have

RΓ(C,F)∧ = RΓ(C,F∧)
in D(A) where F∧ is the derived completion of F with respect to IO and on the
left hand wide we have the derived completion with respect to I. This produces two
spectral sequences

Ei,j
2 = Hi(Hj(C,F)∧) and Ep,q

2 = Hp(C, Hq(F∧))
both converging to H∗(RΓ(C,F)∧) = H∗(C,F∧)

Proof. Apply Lemma 6.19 to the morphism of ringed topoi (C,O) → (pt, A) and
take cohomology to get the first statement. The second spectral sequence is the
second spectral sequence of Derived Categories, Lemma 21.3. The first spectral
sequence is the spectral sequence of More on Algebra, Example 91.22 applied to
RΓ(C,F)∧. □

Remark 6.21.0CQI Let (C,O) be a ringed site. Let I ⊂ O be a finite type sheaf of
ideals. Let K 7→ K∧ be the derived completion of Proposition 6.12. Let U ∈ Ob(C)
be an object such that I is generated as an ideal sheaf by f1, . . . , fr ∈ I(U). Set
A = O(U) and I = (f1, . . . , fr) ⊂ A. Warning: it may not be the case that
I = I(U). Then we have

RΓ(U, K∧) = RΓ(U, K)∧

where the right hand side is the derived completion of the object RΓ(U, K) of
D(A) with respect to I. This is true because derived completion commutes with
localization (Remark 6.14) and Lemma 6.20.

7. The theorem on formal functions

0A0H We interrupt the flow of the exposition to talk a little bit about derived completion
in the setting of quasi-coherent modules on schemes and to use this to give a
somewhat different proof of the theorem on formal functions. We give some pointers
to the literature in Remark 7.4.
Lemma 6.19 is a (very formal) derived version of the theorem on formal functions
(Cohomology of Schemes, Theorem 20.5). To make this more explicit, suppose
f : X → S is a morphism of schemes, I ⊂ OS is a quasi-coherent sheaf of ideals of
finite type, and F is a quasi-coherent sheaf on X. Then the lemma says that
(7.0.1)0A0I Rf∗(F∧) = (Rf∗F)∧

where F∧ is the derived completion of F with respect to f−1I · OX and the right
hand side is the derived completion of Rf∗F with respect to I. To see that this
gives back the theorem on formal functions we have to do a bit of work.

Lemma 7.1.0A0L Let X be a locally Noetherian scheme. Let I ⊂ OX be a quasi-
coherent sheaf of ideals. Let K be a pseudo-coherent object of D(OX) with derived
completion K∧. Then

Hp(U, K∧) = lim Hp(U, K)/InHp(U, K) = Hp(U, K)∧

for any affine open U ⊂ X where I = I(U) and where on the right we have the
derived completion with respect to I.

https://stacks.math.columbia.edu/tag/0BLX
https://stacks.math.columbia.edu/tag/0CQI
https://stacks.math.columbia.edu/tag/0A0L
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Proof. Write U = Spec(A). The ring A is Noetherian and hence I ⊂ A is finitely
generated. Then we have

RΓ(U, K∧) = RΓ(U, K)∧

by Remark 6.21. Now RΓ(U, K) is a pseudo-coherent complex of A-modules (De-
rived Categories of Schemes, Lemma 10.2). By More on Algebra, Lemma 94.4 we
conclude that the pth cohomology module of RΓ(U, K∧) is equal to the I-adic com-
pletion of Hp(U, K). This proves the first equality. The second (less important)
equality follows immediately from a second application of the lemma just used. □

Lemma 7.2.0A0K Let X be a locally Noetherian scheme. Let I ⊂ OX be a quasi-
coherent sheaf of ideals. Let K be an object of D(OX). Then

(1) the derived completion K∧ is equal to R lim(K ⊗L
OX
OX/In).

Let K is a pseudo-coherent object of D(OX). Then
(2) the cohomology sheaf Hq(K∧) is equal to lim Hq(K)/InHq(K).

Let F be a coherent OX-module1. Then
(3) the derived completion F∧ is equal to limF/InF ,
(4) limF/InF = R limF/InF ,
(5) Hp(U,F∧) = 0 for p ̸= 0 for all affine opens U ⊂ X.

Proof. Proof of (1). There is a canonical map
K −→ R lim(K ⊗L

OX
OX/In),

see Remark 6.13. Derived completion commutes with passing to open subschemes
(Remark 6.14). Formation of R lim commutes with passsing to open subschemes.
It follows that to check our map is an isomorphism, we may work locally. Thus we
may assume X = U = Spec(A). Say I = (f1, . . . , fr). Let Kn = K(A, fn

1 , . . . , fn
r )

be the Koszul complex. By More on Algebra, Lemma 94.1 we have seen that the
pro-systems {Kn} and {A/In} of D(A) are isomorphic. Using the equivalence
D(A) = DQCoh(OX) of Derived Categories of Schemes, Lemma 3.5 we see that the
pro-systems {K(OX , fn

1 , . . . , fn
r )} and {OX/In} are isomorphic in D(OX). This

proves the second equality in
K∧ = R lim

(
K ⊗L

OX
K(OX , fn

1 , . . . , fn
r )

)
= R lim(K ⊗L

OX
OX/In)

The first equality is Lemma 6.9.
Assume K is pseudo-coherent. For U ⊂ X affine open we have Hq(U, K∧) =
lim Hq(U, K)/In(U)Hq(U, K) by Lemma 7.1. As this is true for every U we see
that Hq(K∧) = lim Hq(K)/InHq(K) as sheaves. This proves (2).
Part (3) is a special case of (2). Parts (4) and (5) follow from Derived Categories
of Schemes, Lemma 3.2. □

Lemma 7.3.0A0M Let A be a Noetherian ring and let I ⊂ A be an ideal. Let X
be a Noetherian scheme over A. Let F be a coherent OX-module. Assume that
Hp(X,F) is a finite A-module for all p. Then there are short exact sequences

0→ R1 lim Hp−1(X,F/InF)→ Hp(X,F)∧ → lim Hp(X,F/InF)→ 0
of A-modules where Hp(X,F)∧ is the usual I-adic completion. If f is proper, then
the R1 lim term is zero.

1For example Hq(K) for K pseudo-coherent on our locally Noetherian X.

https://stacks.math.columbia.edu/tag/0A0K
https://stacks.math.columbia.edu/tag/0A0M
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Proof. Consider the two spectral sequences of Lemma 6.20. The first degenerates
by More on Algebra, Lemma 94.4. We obtain Hp(X,F)∧ in degree p. This is where
we use the assumption that Hp(X,F) is a finite A-module. The second degenerates
because

F∧ = limF/InF = R limF/InF
is a sheaf by Lemma 7.2. We obtain Hp(X, limF/InF) in degree p. Since RΓ(X,−)
commutes with derived limits (Injectives, Lemma 13.6) we also get

RΓ(X, limF/InF) = RΓ(X, R limF/InF) = R lim RΓ(X,F/InF)
By More on Algebra, Remark 87.6 we obtain exact sequences

0→ R1 lim Hp−1(X,F/InF)→ Hp(X, limF/InF)→ lim Hp(X,F/InF)→ 0
of A-modules. Combining the above we get the first statement of the lemma. The
vanishing of the R1 lim term follows from Cohomology of Schemes, Lemma 20.4. □

Remark 7.4.0AKL Here are some references to discussions of related material the lit-
erature. It seems that a “derived formal functions theorem” for proper maps goes
back to [Lur04, Theorem 6.3.1]. There is the discussion in [Lur11], especially Chap-
ter 4 which discusses the affine story, see More on Algebra, Section 91. In [GR13,
Section 2.9] one finds a discussion of proper base change and derived completion us-
ing (ind) coherent modules. An analogue of (7.0.1) for complexes of quasi-coherent
modules can be found as [HLP14, Theorem 6.5]

8. Algebraization of local cohomology, I

0EFF Let A be a Noetherian ring and let I and J be two ideals of A. Let M be a finite
A-module. In this section we study the cohomology groups of the object

RΓJ(M)∧ of D(A)
where ∧ denotes derived I-adic completion. Observe that in Dualizing Complexes,
Lemma 12.5 we have shown, if A is complete with respect to I, that there is an
isomorphism

colim H0
Z(M) −→ H0(RΓJ(M)∧)

where the (directed) colimit is over the closed subsets Z = V (J ′) with J ′ ⊂ J and
V (J ′) ∩ V (I) = V (J) ∩ V (I). The union of these closed subsets is
(8.0.1)0EFG T = {p ∈ Spec(A) : V (p) ∩ V (I) ⊂ V (J) ∩ V (I)}
This is a subset of Spec(A) stable under specialization. The result above becomes
the statement that

H0
T (M) −→ H0(RΓJ(M)∧)

is an isomorphism provided A is complete with respect to I, see Local Cohomology,
Lemma 5.3 and Remark 5.6. Our method to extend this isomorphism to higher
cohomology groups rests on the following lemma.

Lemma 8.1.0EFH Let I, J be ideals of a Noetherian ring A. Let M be a finite A-module.
Let p ⊂ A be a prime. Let s and d be integers. Assume

(1) A has a dualizing complex,
(2) p ̸∈ V (J) ∩ V (I),
(3) cd(A, I) ≤ d, and
(4) for all primes p′ ⊂ p we have depthAp′ (Mp′) + dim((A/p′)q) > d + s for all

q ∈ V (p′) ∩ V (J) ∩ V (I).

https://stacks.math.columbia.edu/tag/0AKL
https://stacks.math.columbia.edu/tag/0EFH
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Then there exists an f ∈ A, f ̸∈ p which annihilates Hi(RΓJ(M)∧) for i ≤ s where
∧ indicates I-adic completion.

Proof. We will use that RΓJ = RΓV (J) and similarly for I +J , see Dualizing Com-
plexes, Lemma 10.1. Observe that RΓJ(M)∧ = RΓI(RΓJ(M))∧ = RΓI+J(M)∧,
see Dualizing Complexes, Lemmas 12.1 and 9.6. Thus we may replace J by I + J
and assume I ⊂ J and p ̸∈ V (J). Recall that

RΓJ(M)∧ = R HomA(RΓI(A), RΓJ(M))
by the description of derived completion in More on Algebra, Lemma 91.10 com-
bined with the description of local cohomology in Dualizing Complexes, Lemma
10.2. Assumption (3) means that RΓI(A) has nonzero cohomology only in degrees
≤ d. Using the canonical truncations of RΓI(A) we find it suffices to show that

Exti(N, RΓJ(M))
is annihilated by an f ∈ A, f ̸∈ p for i ≤ s + d and any A-module N . In turn using
the canonical truncations for RΓJ(M) we see that it suffices to show Hi

J(M) is
annihilated by an f ∈ A, f ̸∈ p for i ≤ s + d. This follows from Local Cohomology,
Lemma 10.2. □

Lemma 8.2.0EFI Let I, J be ideals of a Noetherian ring. Let M be a finite A-module.
Let s and d be integers. With T as in (8.0.1) assume

(1) A has a dualizing complex,
(2) if p ∈ V (I), then no condition,
(3) if p ̸∈ V (I), p ∈ T , then dim((A/p)q) ≤ d for some q ∈ V (p)∩V (J)∩V (I),
(4) if p ̸∈ V (I), p ̸∈ T , then

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d + s

for all q ∈ V (p) ∩ V (J) ∩ V (I).
Then there exists an ideal J0 ⊂ J with V (J0) ∩ V (I) = V (J) ∩ V (I) such that for
any J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I) the map

RΓJ′(M) −→ RΓJ0(M)
induces an isomorphism in cohomology in degrees ≤ s and moreover these modules
are annihilated by a power of J0I.

Proof. Let us consider the set
B = {p ̸∈ V (I), p ∈ T, and depth(Mp) ≤ s}

Choose J0 ⊂ J such that V (J0) is the closure of B ∪ V (J).
Claim I: V (J0) ∩ V (I) = V (J) ∩ V (I).
Proof of Claim I. The inclusion ⊃ holds by construction. Let p be a minimal prime
of V (J0). If p ∈ B ∪ V (J), then either p ∈ T or p ∈ V (J) and in both cases
V (p) ∩ V (I) ⊂ V (J) ∩ V (I) as desired. If p ̸∈ B ∪ V (J), then V (p) ∩ B is dense,
hence infinite, and we conclude that depth(Mp) < s by Local Cohomology, Lemma
9.2. In fact, let V (p)∩B = {pλ}λ∈Λ. Pick qλ ∈ V (pλ)∩ V (J)∩ V (I) as in (3). Let
δ : Spec(A) → Z be the dimension function associated to a dualizing complex ω•

A

for A. Since Λ is infinite and δ is bounded, there exists an infinite subset Λ′ ⊂ Λ
on which δ(qλ) is constant. For λ ∈ Λ′ we have

depth(Mpλ
) + δ(pλ)− δ(qλ) = depth(Mpλ

) + dim((A/pλ)qλ
) ≤ d + s

https://stacks.math.columbia.edu/tag/0EFI
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by (3) and the definition of B. By the semi-continuity of the function depth + δ
proved in Duality for Schemes, Lemma 2.8 we conclude that

depth(Mp) + dim((A/p)qλ
) = depth(Mp) + δ(p)− δ(qλ) ≤ d + s

Since also p ̸∈ V (I) we read off from (4) that p ∈ T , i.e., V (p)∩V (I) ⊂ V (J)∩V (I).
This finishes the proof of Claim I.
Claim II: Hi

J0
(M) → Hi

J(M) is an isomorphism for i ≤ s and J ′ ⊂ J0 with
V (J ′) ∩ V (I) = V (J) ∩ V (I).
Proof of claim II. Choose p ∈ V (J ′) not in V (J0). It suffices to show that
Hi

pAp
(Mp) = 0 for i ≤ s, see Local Cohomology, Lemma 2.6. Observe that p ∈ T .

Hence since p is not in B we see that depth(Mp) > s and the groups vanish by
Dualizing Complexes, Lemma 11.1.
Claim III. The final statement of the lemma is true.
By Claim II for i ≤ s we have

Hi
T (M) = Hi

J0
(M) = Hi

J′(M)
for all ideals J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I). See Local Cohomology,
Lemma 5.3. Let us check the hypotheses of Local Cohomology, Proposition 10.1
for the subsets T ⊂ T ∪ V (I), the module M , and the integer s. We have to show
that given p ⊂ q with p ̸∈ T ∪ V (I) and q ∈ T we have

depthAp
(Mp) + dim((A/p)q) > s

If depth(Mp) ≥ s, then this is true because the dimension of (A/p)q is at least
1. Thus we may assume depth(Mp) < s. If q ∈ V (I), then q ∈ V (J) ∩ V (I)
and the inequality holds by (4). If q ̸∈ V (I), then we can use (3) to pick q′ ∈
V (q) ∩ V (J) ∩ V (I) with dim((A/q)q′) ≤ d. Then assumption (4) gives

depthAp
(Mp) + dim((A/p)q′) > s + d

Since A is catenary this implies the inequality we want. Applying Local Coho-
mology, Proposition 10.1 we find J ′′ ⊂ A with V (J ′′) ⊂ T ∪ V (I) such that J ′′

annihilates Hi
T (M) for i ≤ s. Then we can write V (J ′′) ∪ V (J0) ∪ V (I) = V (J ′I)

for some J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I). Replacing J0 by J ′ the proof
is complete. □

Lemma 8.3.0EFJ In Lemma 8.2 if instead of the empty condition (2) we assume
(2’) if p ∈ V (I), p ̸∈ V (J)∩ V (I), then depthAp

(Mp) + dim((A/p)q) > s for all
q ∈ V (p) ∩ V (J) ∩ V (I),

then the conditions also imply that Hi
J0

(M) is a finite A-module for i ≤ s.

Proof. Recall that Hi
J0

(M) = Hi
T (M), see proof of Lemma 8.2. Thus it suffices to

check that for p ̸∈ T and q ∈ T with p ⊂ q we have depthAp
(Mp)+dim((A/p)q) > s,

see Local Cohomology, Proposition 11.1. Condition (2’) tells us this is true for
p ∈ V (I). Since we know Hi

T (M) is annihilated by a power of IJ0 we know the
condition holds if p ̸∈ V (IJ0) by Local Cohomology, Proposition 10.1. This covers
all cases and the proof is complete. □

Lemma 8.4.0EFK If in Lemma 8.2 we additionally assume
(6) if p ̸∈ V (I), p ∈ T , then depthAp

(Mp) > s,

https://stacks.math.columbia.edu/tag/0EFJ
https://stacks.math.columbia.edu/tag/0EFK
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then Hi
J0

(M) = Hi
J(M) = Hi

J+I(M) for i ≤ s and these modules are annihilated
by a power of I.

Proof. Choose p ∈ V (J) or p ∈ V (J0) but p ̸∈ V (J + I) = V (J0 + I). It suffices
to show that Hi

pAp
(Mp) = 0 for i ≤ s, see Local Cohomology, Lemma 2.6. These

groups vanish by condition (6) and Dualizing Complexes, Lemma 11.1. The final
statement follows from Local Cohomology, Proposition 10.1. □

Lemma 8.5.0EFL Let I, J be ideals of a Noetherian ring A. Let M be a finite A-module.
Let s and d be integers. With T as in (8.0.1) assume

(1) A is I-adically complete and has a dualizing complex,
(2) if p ∈ V (I) no condition,
(3) cd(A, I) ≤ d,
(4) if p ̸∈ V (I), p ̸∈ T then

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d + s

for all q ∈ V (p) ∩ V (J) ∩ V (I),
(5) if p ̸∈ V (I), p ̸∈ T , V (p) ∩ V (J) ∩ V (I) ̸= ∅, and depth(Mp) < s, then one

of the following holds2:
(a) dim(Supp(Mp)) < s + 23, or
(b) δ(p) > d + δmax − 1 where δ is a dimension function and δmax is the

maximum of δ on V (J) ∩ V (I), or
(c) depthAp

(Mp) + dim((A/p)q) > d + s + δmax − δmin − 2 for all q ∈
V (p) ∩ V (J) ∩ V (I).

Then there exists an ideal J0 ⊂ J with V (J0) ∩ V (I) = V (J) ∩ V (I) such that for
any J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I) the map

RΓJ′(M) −→ RΓJ(M)∧

induces an isomorphism on cohomology in degrees ≤ s. Here ∧ denotes derived
I-adic completion.

We encourage the reader to read the proof in the local case first (Lemma 9.5) as it
explains the structure of the proof without having to deal with all the inequalities.

Proof. For an ideal a ⊂ A we have RΓa = RΓV (a), see Dualizing Complexes,
Lemma 10.1. Next, we observe that
RΓJ(M)∧ = RΓI(RΓJ(M))∧ = RΓI+J(M)∧ = RΓI+J′(M)∧ = RΓI(RΓJ′(M))∧ = RΓJ′(M)∧

by Dualizing Complexes, Lemmas 9.6 and 12.1. This explains how we define the
arrow in the statement of the lemma.
We claim that the hypotheses of Lemma 8.2 are implied by our current hypotheses
on M . The only thing to verify is hypothesis (3). Thus let p ̸∈ V (I), p ∈ T .
Then V (p) ∩ V (I) is nonempty as I is contained in the Jacobson radical of A
(Algebra, Lemma 96.6). Since p ∈ T we have V (p) ∩ V (I) = V (p) ∩ V (J) ∩ V (I).
Let q ∈ V (p) ∩ V (I) be the generic point of an irreducible component. We have
cd(Aq, Iq) ≤ d by Local Cohomology, Lemma 4.6. We have V (pAq)∩V (Iq) = {qAq}
by our choice of q and we conclude dim((A/p)q) ≤ d by Local Cohomology, Lemma
4.10.

2Our method forces this additional condition. We will return to this (insert future reference).
3For example if M satisfies Serre’s condition (Ss) on the complement of V (I) ∪ T .

https://stacks.math.columbia.edu/tag/0EFL
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Observe that the lemma holds for s < 0. This is not a trivial case because it is
not a priori clear that Hi(RΓJ(M)∧) is zero for i < 0. However, this vanishing
was established in Dualizing Complexes, Lemma 12.4. We will prove the lemma by
induction for s ≥ 0.

The lemma for s = 0 follows immediately from the conclusion of Lemma 8.2 and
Dualizing Complexes, Lemma 12.5.

Assume s > 0 and the lemma has been shown for smaller values of s. Let M ′ ⊂M
be the maximal submodule whose support is contained in V (I) ∪ T . Then M ′ is a
finite A-module whose support is contained in V (J ′) ∪ V (I) for some ideal J ′ ⊂ J
with V (J ′) ∩ V (I) = V (J) ∩ V (I). We claim that

RΓJ′(M ′)→ RΓJ(M ′)∧

is an isomorphism for any choice of J ′. Namely, we can choose a short exact
sequence 0→M1⊕M2 →M ′ → N → 0 with M1 annihilated by a power of J ′, with
M2 annihilated by a power of I, and with N annihilated by a power of I +J ′. Thus
it suffices to show that the claim holds for M1, M2, and N . In the case of M1 we see
that RΓJ′(M1) = M1 and since M1 is a finite A-module and I-adically complete we
have M∧

1 = M1. This proves the claim for M1 by the initial remarks of the proof.
In the case of M2 we see that Hi

J(M2) = Hi
I+J(M) = Hi

I+J′(M) = Hi
J′(M2) are

annihilated by a power of I and hence derived complete. Thus the claim in this
case also. For N we can use either of the arguments just given. Considering the
short exact sequence 0 → M ′ → M → M/M ′ → 0 we see that it suffices to prove
the lemma for M/M ′. Thus we may assume Ass(M) ∩ (V (I) ∪ T ) = ∅.

Let p ∈ Ass(M) be such that V (p) ∩ V (J) ∩ V (I) = ∅. Since I is contained in
the Jacobson radical of A this implies that V (p) ∩ V (J ′) = ∅ for any J ′ ⊂ J with
V (J ′) ∩ V (I) = V (J) ∩ V (I). Thus setting N = H0

p(M) we see that RΓJ(N) =
RΓJ′(N) = 0 for all J ′ ⊂ J with V (J ′) ∩ V (I) = V (J) ∩ V (I). In particular
RΓJ(N)∧ = 0. Thus we may replace M by M/N as this changes the structure of
M only in primes which do not play a role in conditions (4) or (5). Repeating we
may assume that V (p) ∩ V (J) ∩ V (I) ̸= ∅ for all p ∈ Ass(M).

Assume Ass(M)∩(V (I)∪T ) = ∅ and that V (p)∩V (J)∩V (I) ̸= ∅ for all p ∈ Ass(M).
Let p ∈ Ass(M). We want to show that we may apply Lemma 8.1. It is in the
verification of this that we will use the supplemental condition (5). Choose p′ ⊂ p
and q′ ⊂ V (p) ∩ V (J) ∩ V (I).

(1) If Mp′ = 0, then depth(Mp′) =∞ and depth(Mp′)+dim((A/p′)q′) > d+s.
(2) If depth(Mp′) < s, then depth(Mp′) + dim((A/p′)q′) > d + s by (4).

In the remaining cases we have Mp′ ̸= 0 and depth(Mp′) ≥ s. In particular, we see
that p′ is in the support of M and we can choose p′′ ⊂ p′ with p′′ ∈ Ass(M).

(a) Observe that dim((A/p′′)p′) ≥ depth(Mp′) by Algebra, Lemma 72.9. If
equality holds, then we have

depth(Mp′) + dim((A/p′)q′) = depth(Mp′′) + dim((A/p′′)q′) > s + d

by (4) applied to p′′ and we are done. This means we are only in trouble if
dim((A/p′′)p′) > depth(Mp′). This implies that dim(Mp) ≥ s + 2. Thus if
(5)(a) holds, then this does not occur.
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(b) If (5)(b) holds, then we get

depth(Mp′) + dim((A/p′)q′) ≥ s + δ(p′)− δ(q′) ≥ s + 1 + δ(p)− δmax > s + d

as desired.
(c) If (5)(c) holds, then we get

depth(Mp′) + dim((A/p′)q′) ≥ s + δ(p′)− δ(q′)
≥ s + 1 + δ(p)− δ(q′)
= s + 1 + δ(p)− δ(q) + δ(q)− δ(q′)
> s + 1 + (s + d + δmax − δmin − 2) + δ(q)− δ(q′)
≥ 2s + d− 1 ≥ s + d

as desired. Observe that this argument works because we know that a
prime q ∈ V (p) ∩ V (J) ∩ V (I) exists.

Now we are ready to do the induction step.

Choose an ideal J0 as in Lemma 8.2 and an integer t > 0 such that (J0I)t annihilates
Hs

J(M). The assumptions of Lemma 8.1 are satisfied for every p ∈ Ass(M) (see
previous paragraph). Thus the annihilator a ⊂ A of Hs(RΓJ(M)∧) is not contained
in p for p ∈ Ass(M). Thus we can find an f ∈ a(J0I)t not in any associated prime
of M which is an annihilator of both Hs(RΓJ(M)∧) and Hs

J(M). Then f is a
nonzerodivisor on M and we can consider the short exact sequence

0→M
f−→M →M/fM → 0

Our choice of f shows that we obtain

Hs−1
J′ (M)

��

// Hs−1
J′ (M/fM)

��

// Hs
J′(M)

��

// 0

Hs−1(RΓJ(M)∧) // Hs−1(RΓJ(M/fM)∧) // Hs(RΓJ(M)∧) // 0

for any J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I). Thus if we choose J ′ such that
it works for M and M/fM and s− 1 (possible by induction hypothesis – see next
paragraph), then we conclude that the lemma is true.

To finish the proof we have to show that the module M/fM satisfies the hypotheses
(4) and (5) for s − 1. Thus we let p be a prime in the support of M/fM with
depth((M/fM)p) < s−1 and with V (p)∩V (J)∩V (I) nonempty. Then dim(Mp) =
dim((M/fM)p)+1 and depth(Mp) = depth((M/fM)p)+1. In particular, we know
(4) and (5) hold for p and M with the original value s. The desired inequalities
then follow by inspection. □

Example 8.6.0EFM In Lemma 8.5 we do not know that the inverse systems Hi
J(M/InM)

satisfy the Mittag-Leffler condition. For example, suppose that A = Zp[[x, y]],
I = (p), J = (p, x), and M = A/(xy − p). Then the image of H0

J(M/pnM) →
H0

J(M/pM) is the ideal generated by yn in M/pM = A/(p, xy).

https://stacks.math.columbia.edu/tag/0EFM
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9. Algebraization of local cohomology, II

0EFP In this section we redo the arguments of Section 8 when (A,m) is a local ring and
we take local cohomology RΓm with respect to m. As before our main tool is the
following lemma.

Lemma 9.1.0DXK Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let M
be a finite A-module and let p ⊂ A be a prime. Let s and d be integers. Assume

(1) A has a dualizing complex,
(2) cd(A, I) ≤ d, and
(3) depthAp

(Mp) + dim(A/p) > d + s.
Then there exists an f ∈ A \ p which annihilates Hi(RΓm(M)∧) for i ≤ s where ∧

indicates I-adic completion.

Proof. According to Local Cohomology, Lemma 9.4 the function
p′ 7−→ depthAp′ (Mp′) + dim(A/p′)

is lower semi-continuous on Spec(A). Thus the value of this function on p′ ⊂ p is
> s + d. Thus our lemma is a special case of Lemma 8.1 provided that p ̸= m. If
p = m, then we have Hi

m(M) = 0 for i ≤ s + d by the relationship between depth
and local cohomology (Dualizing Complexes, Lemma 11.1). Thus the argument
given in the proof of Lemma 8.1 shows that Hi(RΓm(M)∧) = 0 for i ≤ s in this
(degenerate) case. □

Lemma 9.2.0DXM Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let M
be a finite A-module. Let s and d be integers. Assume

(1) A has a dualizing complex,
(2) if p ∈ V (I), then no condition,
(3) if p ̸∈ V (I) and V (p) ∩ V (I) = {m}, then dim(A/p) ≤ d,
(4) if p ̸∈ V (I) and V (p) ∩ V (I) ̸= {m}, then

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim(A/p) > d + s

Then there exists an ideal J0 ⊂ A with V (J0) ∩ V (I) = {m} such that for any
J ⊂ J0 with V (J) ∩ V (I) = {m} the map

RΓJ(M) −→ RΓJ0(M)
induces an isomorphism in cohomology in degrees ≤ s and moreover these modules
are annihilated by a power of J0I.

Proof. This is a special case of Lemma 8.2. □

Lemma 9.3.0DXN In Lemma 9.2 if instead of the empty condition (2) we assume
(2’) if p ∈ V (I) and p ̸= m, then depthAp

(Mp) + dim(A/p) > s,
then the conditions also imply that Hi

J0
(M) is a finite A-module for i ≤ s.

Proof. This is a special case of Lemma 8.3. □

Lemma 9.4.0EFQ If in Lemma 9.2 we additionally assume
(6) if p ̸∈ V (I) and V (p) ∩ V (I) = {m}, then depthAp

(Mp) > s,
then Hi

J0
(M) = Hi

J(M) = Hi
m(M) for i ≤ s and these modules are annihilated by

a power of I.

https://stacks.math.columbia.edu/tag/0DXK
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Proof. This is a special case of Lemma 8.4. □

Lemma 9.5.0DXP Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let M
be a finite A-module. Let s and d be integers. Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if p ∈ V (I), no condition,
(3) cd(A, I) ≤ d,
(4) if p ̸∈ V (I) and V (p) ∩ V (I) ̸= {m} then

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim(A/p) > d + s

Then there exists an ideal J0 ⊂ A with V (J0) ∩ V (I) = {m} such that for any
J ⊂ J0 with V (J) ∩ V (I) = {m} the map

RΓJ(M) −→ RΓJ(M)∧ = RΓm(M)∧

induces an isomorphism in cohomology in degrees ≤ s. Here ∧ denotes derived
I-adic completion.

Proof. This lemma is a special case of Lemma 8.5 since condition (5)(c) is implied
by condition (4) as δmax = δmin = δ(m). We will give the proof of this important
special case as it is somewhat easier (fewer things to check).

There is no difference between RΓa and RΓV (a) in our current situation, see Dual-
izing Complexes, Lemma 10.1. Next, we observe that

RΓm(M)∧ = RΓI(RΓJ(M))∧ = RΓJ(M)∧

by Dualizing Complexes, Lemmas 9.6 and 12.1 which explains the equality sign in
the statement of the lemma.

Observe that the lemma holds for s < 0. This is not a trivial case because it is not
a priori clear that Hs(RΓm(M)∧) is zero for negative s. However, this vanishing
was established in Lemma 5.4. We will prove the lemma by induction for s ≥ 0.

The assumptions of Lemma 9.2 are satisfied by Local Cohomology, Lemma 4.10.
The lemma for s = 0 follows from Lemma 9.2 and Dualizing Complexes, Lemma
12.5.

Assume s > 0 and the lemma holds for smaller values of s. Let M ′ ⊂ M be the
submodule of elements whose support is condained in V (I) ∪ V (J) for some ideal
J with V (J) ∩ V (I) = {m}. Then M ′ is a finite A-module. We claim that

RΓJ(M ′)→ RΓm(M ′)∧

is an isomorphism for any choice of J . Namely, for any such module there is a short
exact sequence 0→M1 ⊕M2 →M ′ → N → 0 with M1 annihilated by a power of
J , with M2 annihilated by a power of I and with N annihilated by a power of m.
In the case of M1 we see that RΓJ(M1) = M1 and since M1 is a finite A-module
and I-adically complete we have M∧

1 = M1. Thus the claim holds for M1. In the
case of M2 we see that Hi

J(M2) is annihilated by a power of I and hence derived
complete. Thus the claim for M2. By the same arguments the claim holds for
N and we conclude that the claim holds. Considering the short exact sequence
0→M ′ →M →M/M ′ → 0 we see that it suffices to prove the lemma for M/M ′.
This we may assume p ∈ Ass(M) implies V (p) ∩ V (I) ̸= {m}, i.e., p is a prime as
in (4).

https://stacks.math.columbia.edu/tag/0DXP
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Choose an ideal J0 as in Lemma 9.2 and an integer t > 0 such that (J0I)t annihilates
Hs

J(M). Here J denotes an arbitrary ideal J ⊂ J0 with V (J) ∩ V (I) = {m}.
The assumptions of Lemma 9.1 are satisfied for every p ∈ Ass(M) (see previous
paragraph). Thus the annihilator a ⊂ A of Hs(RΓm(M)∧) is not contained in p
for p ∈ Ass(M). Thus we can find an f ∈ a(J0I)t not in any associated prime
of M which is an annihilator of both Hs(RΓm(M)∧) and Hs

J(M). Then f is a
nonzerodivisor on M and we can consider the short exact sequence

0→M
f−→M →M/fM → 0

Our choice of f shows that we obtain

Hs−1
J (M)

��

// Hs−1
J (M/fM)

��

// Hs
J(M)

��

// 0

Hs−1(RΓm(M)∧) // Hs−1(RΓm(M/fM)∧) // Hs(RΓm(M)∧) // 0

for any J ⊂ J0 with V (J) ∩ V (I) = {m}. Thus if we choose J such that it works
for M and M/fM and s− 1 (possible by induction hypothesis), then we conclude
that the lemma is true. □

10. Algebraization of local cohomology, III

0EFT In this section we bootstrap the material in Sections 8 and 9 to give a stronger
result the following situation.

Situation 10.1.0EFU Here A is a Noetherian ring. We have an ideal I ⊂ A, a finite
A-module M , and a subset T ⊂ V (I) stable under specialization. We have integers
s and d. We assume

(1) A has a dualizing complex,
(3) cd(A, I) ≤ d,
(4) given primes p ⊂ r ⊂ q with p ̸∈ V (I), r ∈ V (I) \ T , q ∈ T we have

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d + s

(6) given q ∈ T denoting A′,m′, I ′, M ′ are the usual I-adic completions of
Aq, qAq, Iq, Mq we have

depth(M ′
p′) > s

for all p′ ∈ Spec(A′) \ V (I ′) with V (p′) ∩ V (I ′) = {m′}.

The following lemma explains why in Situation 10.1 it suffices to look at triples
p ⊂ r ⊂ q of primes in (4) even though the actual assumption only involves p and
q.

Lemma 10.2.0EID In Situation 10.1 let p ⊂ q be primes of A with p ̸∈ V (I) and
q ∈ T . If there does not exist an r ∈ V (I) \ T with p ⊂ r ⊂ q then depth(Mp) > s.

Proof. Choose q′ ∈ T with p ⊂ q′ ⊂ q such that there is no prime in T strictly
in between p and q′. To prove the lemma we may and do replace q by q′. Next,
let p′ ⊂ Aq be the prime corresponding to p. After doing this we obtain that
V (p′)∩V (IAq) = {qAq} because of the nonexistence of a prime r as in the lemma.
Let A′, I ′,m′, M ′ be the I-adic completions of Aq, Iq, qAq, Mq. Since Aq → A′ is

https://stacks.math.columbia.edu/tag/0EFU
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faithfully flat (Algebra, Lemma 97.3) we can choose p′′ ⊂ A′ lying over p′ with
dim(A′

p′′/p′A′
p′′) = 0. Then we see that

depth(M ′
p′′) = depth((Mq ⊗Aq

A′)p′′) = depth(Mp ⊗Ap
A′

p′′) = depth(Mp)

by flatness of A → A′ and our choice of p′′, see Algebra, Lemma 163.1. Since p′′

lies over p′ we have V (p′′) ∩ V (I ′) = {m′}. Thus condition (6) in Situation 10.1
implies depth(M ′

p′′) > s which finishes the proof. □

The following tedious lemma explains the relationships between various collections
of conditions one might impose.

Lemma 10.3.0EFV In Situation 10.1 we have
(E) if T ′ ⊂ T is a smaller specialization stable subset, then A, I, T ′, M satisfies

the assumptions of Situation 10.1,
(F) if S ⊂ A is a multiplicative subset, then S−1A, S−1I, T ′, S−1M satisfies the

assumptions of Situation 10.1 where T ′ ⊂ V (S−1I) is the inverse image of
T ,

(G) the quadruple A′, I ′, T ′, M ′ satisfies the assumptions of Situation 10.1 where
A′, I ′, M ′ are the usual I-adic completions of A, I, M and T ′ ⊂ V (I ′) is the
inverse image of T .

Let I ⊂ a ⊂ A be an ideal such that V (a) ⊂ T . Then
(A) if I is contained in the Jacobson radical of A, then all hypotheses of Lemmas

8.2 and 8.4 are satisfied for A, I, a, M ,
(B) if A is complete with respect to I, then all hypotheses except for possibly

(5) of Lemma 8.5 are satisfied for A, I, a, M ,
(C) if A is local with maximal ideal m = a, then all hypotheses of Lemmas 9.2

and 9.4 hold for A,m, I, M ,
(D) if A is local with maximal ideal m = a and I-adically complete, then all

hypotheses of Lemma 9.5 hold for A,m, I, M ,

Proof. Proof of (E). We have to prove assumptions (1), (3), (4), (6) of Situation
10.1 hold for A, I, T, M . Shrinking T to T ′ weakens assumption (6) and strengthens
assumption (4). However, if we have p ⊂ r ⊂ q with p ̸∈ V (I), r ∈ V (I) \T ′, q ∈ T ′

as in assumption (4) for A, I, T ′, M , then either we can pick r ∈ V (I) \ T and
condition (4) for A, I, T, M kicks in or we cannot find such an r in which case we
get depth(Mp) > s by Lemma 10.2. This proves (4) holds for A, I, T ′, M as desired.
Proof of (F). This is straightforward and we omit the details.
Proof of (G). We have to prove assumptions (1), (3), (4), (6) of Situation 10.1 hold
for the I-adic completions A′, I ′, T ′, M ′. Please keep in mind that Spec(A′) →
Spec(A) induces an isomorphism V (I ′)→ V (I).
Assumption (1): The ring A′ has a dualizing complex, see Dualizing Complexes,
Lemma 22.4.
Assumption (3): Since I ′ = IA′ this follows from Local Cohomology, Lemma 4.5.
Assumption (4): If we have primes p′ ⊂ r′ ⊂ q′ in A′ with p′ ̸∈ V (I ′), r′ ∈ V (I ′)\T ′,
q′ ∈ T ′ then their images p ⊂ r ⊂ q in the spectrum of A satisfy p ̸∈ V (I),
r ∈ V (I) \ T , q ∈ T . Then we have

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d + s

https://stacks.math.columbia.edu/tag/0EFV
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by assumption (4) for A, I, T, M . We have depth(M ′
p′) ≥ depth(Mp) and depth(M ′

p′)+
dim((A′/p′)q′) = depth(Mp) + dim((A/p)q) by Local Cohomology, Lemma 11.3.
Thus assumption (4) holds for A′, I ′, T ′, M ′.
Assumption (6): Let q′ ∈ T ′ lying over the prime q ∈ T . Then A′

q′ and Aq have
isomorphic I-adic completions and similarly for Mq and M ′

q′ . Thus assumption (6)
for A′, I ′, T ′, M ′ is equivalent to assumption (6) for A, I, T, M .
Proof of (A). We have to check conditions (1), (2), (3), (4), and (6) of Lemmas 8.2
and 8.4 for (A, I, a, M). Warning: the set T in the statement of these lemmas is
not the same as the set T above.
Condition (1): This holds because we have assumed A has a dualizing complex in
Situation 10.1.
Condition (2): This is empty.
Condition (3): Let p ⊂ A with V (p) ∩ V (I) ⊂ V (a). Since I is contained in the
Jacobson radical of A we see that V (p) ∩ V (I) ̸= ∅. Let q ∈ V (p) ∩ V (I) be a
generic point. Since cd(Aq, Iq) ≤ d (Local Cohomology, Lemma 4.6) and since
V (pAq) ∩ V (Iq) = {qAq} we get dim((A/p)q) ≤ d by Local Cohomology, Lemma
4.10 which proves (3).
Condition (4): Suppose p ̸∈ V (I) and q ∈ V (p) ∩ V (a). It suffices to show

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d + s

If there exists a prime p ⊂ r ⊂ q with r ∈ V (I) \ T , then this follows immediately
from assumption (4) in Situation 10.1. If not, then depth(Mp) > s by Lemma 10.2.
Condition (6): Let p ̸∈ V (I) with V (p) ∩ V (I) ⊂ V (a). Since I is contained in the
Jacobson radical of A we see that V (p)∩V (I) ̸= ∅. Choose q ∈ V (p)∩V (I) ⊂ V (a).
It is clear there does not exist a prime p ⊂ r ⊂ q with r ∈ V (I) \ T . By Lemma
10.2 we have depth(Mp) > s which proves (6).
Proof of (B). We have to check conditions (1), (2), (3), (4) of Lemma 8.5. Warning:
the set T in the statement of this lemma is not the same as the set T above.
Condition (1): This holds because A is complete and has a dualizing complex.
Condition (2): This is empty.
Condition (3): This is the same as assumption (3) in Situation 10.1.
Condition (4): This is the same as assumption (4) in Lemma 8.2 which we proved
in (A).
Proof of (C). This is true because the assumptions in Lemmas 9.2 and 9.4 are the
same as the assumptions in Lemmas 8.2 and 8.4 in the local case and we proved
these hold in (A).
Proof of (D). This is true because the assumptions in Lemma 9.5 are the same
as the assumptions (1), (2), (3), (4) in Lemma 8.5 and we proved these hold in
(B). □

Lemma 10.4.0EFR In Situation 10.1 assume A is local with maximal ideal m and
T = {m}. Then Hi

m(M) → lim Hi
m(M/InM) is an isomorphism for i ≤ s and

these modules are annihilated by a power of I.

https://stacks.math.columbia.edu/tag/0EFR
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Proof. Let A′, I ′,m′, M ′ be the usual I-adic completions of A, I,m, M . Recall that
we have Hi

m(M)⊗A A′ = Hi
m′(M ′) by flatness of A→ A′ and Dualizing Complexes,

Lemma 9.3. Since Hi
m(M) is m-power torsion we have Hi

m(M) = Hi
m(M) ⊗A A′,

see More on Algebra, Lemma 89.3. We conclude that Hi
m(M) = Hi

m′(M ′). The
exact same arguments will show that Hi

m(M/InM) = Hi
m′(M ′/(I ′)nM ′) for all n

and i.
Lemmas 9.5, 9.2, and 9.4 apply to A′,m′, I ′, M ′ by Lemma 10.3 parts (C) and (D).
Thus we get an isomorphism

Hi
m′(M ′) −→ Hi(RΓm′(M ′)∧)

for i ≤ s where ∧ is derived I ′-adic completion and these modules are annihilated
by a power of I ′. By Lemma 5.4 we obtain isomorphisms

Hi
m′(M ′) −→ lim Hi

m′(M ′/(I ′)nM ′))
for i ≤ s. Combined with the already established comparison with local cohomology
over A we conclude the lemma is true. □

Lemma 10.5.0EFW Let I ⊂ a be ideals of a Noetherian ring A. Let M be a finite
A-module. Let s and d be integers. If we assume

(a) A has a dualizing complex,
(b) cd(A, I) ≤ d,
(c) if p ̸∈ V (I) and q ∈ V (p) ∩ V (a) then depthAp

(Mp) > s or depthAp
(Mp) +

dim((A/p)q) > d + s.
Then A, I, V (a), M, s, d are as in Situation 10.1.

Proof. We have to show that assumptions (1), (3), (4), and (6) of Situation 10.1
hold. It is clear that (a) ⇒ (1), (b) ⇒ (3), and (c) ⇒ (4). To finish the proof in
the next paragraph we show (6) holds.
Let q ∈ V (a). Denote A′, I ′,m′, M ′ the I-adic completions of Aq, Iq, qAq, Mq. Let
p′ ⊂ A′ be a nonmaximal prime with V (p′) ∩ V (I ′) = {m′}. Observe that this
implies dim(A′/p′) ≤ d by Local Cohomology, Lemma 4.10. Denote p ⊂ A the
image of p′. We have depth(M ′

p′) ≥ depth(Mp) and depth(M ′
p′) + dim(A′/p′) =

depth(Mp) + dim((A/p)q) by Local Cohomology, Lemma 11.3. By assumption
(c) either we have depth(M ′

p′) ≥ depth(Mp) > s and we’re done or we have
depth(M ′

p′) + dim(A′/p′) > s + d which implies depth(M ′
p′) > s because of the al-

ready shown inequality dim(A′/p′) ≤ d. In both cases we obtain what we want. □

Lemma 10.6.0EFX In Situation 10.1 the inverse systems {Hi
T (InM)}n≥0 are pro-zero

for i ≤ s. Moreover, there exists an integer m0 such that for all m ≥ m0 there
exists an integer m′(m) ≥ m such that for k ≥ m′(m) the image of Hs+1

T (IkM)→
Hs+1

T (ImM) maps injectively to Hs+1
T (Im0M).

Proof. Fix m. Let q ∈ T . By Lemmas 10.3 and 10.4 we see that
Hi

q(Mq) −→ lim Hi
q(Mq/InMq)

is an isomorphism for i ≤ s. The inverse systems {Hi
q(InMq)}n≥0 and {Hi

q(M/InM)}n≥0
satisfy the Mittag-Leffler condition for all i, see Lemma 5.2. Thus looking at the
inverse system of long exact sequences

0→ H0
q (InMq)→ H0

q (Mq)→ H0
q (Mq/InMq)→ H1

q (InMq)→ H1
q (Mq)→ . . .
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we conclude (some details omitted) that there exists an integer m′(m, q) ≥ m such
that for all k ≥ m′(m, q) the map Hi

q(IkMq)→ Hi
q(ImMq) is zero for i ≤ s and the

image of Hs+1
q (IkMq) → Hs+1

q (ImMq) is independent of k ≥ m′(m, q) and maps
injectively into Hs+1

q (Mq).

Suppose we can show that m′(m, q) can be chosen independently of q ∈ T . Then
the lemma follows immediately from Local Cohomology, Lemmas 6.2 and 6.3.

Let ω•
A be a dualizing complex. Let δ : Spec(A)→ Z be the corresponding dimen-

sion function. Recall that δ attains only a finite number of values, see Dualizing
Complexes, Lemma 17.4. Claim: for each d ∈ Z the integer m′(m, q) can be chosen
independently of q ∈ T with δ(q) = d. Clearly the claim implies the lemma by
what we said above.

Pick q ∈ T with δ(q) = d. Consider the ext modules

E(n, j) = Extj
A(InM, ω•

A)

A key feature we will use is that these are finite A-modules. Recall that (ω•
A)q[−d]

is a normalized dualizing complex for Aq by definition of the dimension function
associated to a dualizing complex, see Dualizing Complexes, Section 17. The local
duality theorem (Dualizing Complexes, Lemma 18.4) tells us that the qAq-adic
completion of E(n,−d−i)q is Matlis dual to Hi

q(InMq). Thus the choice of m′(m, q)
for i ≤ s in the first paragraph tells us that for k ≥ m′(m, q) and j ≥ −d − s the
map

E(m, j)q → E(k, j)q
is zero. Since these modules are finite and nonzero only for a finite number of
possible j (small detail omitted), we can find an open neighbourhood W ⊂ Spec(A)
of q such that

E(m, j)q′ → E(m′(m, q), j)q′

is zero for j ≥ −d−s for all q′ ∈W . Then of course the maps E(m, j)q′ → E(k, j)q′

for k ≥ m′(m, q) are zero as well.

For i = s + 1 corresponding to j = −d− s− 1 we obtain from local duality and the
results of the first paragraph that

Kk,q = Ker(E(m,−d− s− 1)q → E(k,−d− s− 1)q)

is independent of k ≥ m′(m, q) and that

E(0,−d− s− 1)q → E(m,−d− s− 1)q/Km′(m,q),q

is surjective. For k ≥ m′(m, q) set

Kk = Ker(E(m,−d− s− 1)→ E(k,−d− s− 1))

Since Kk is an increasing sequence of submodules of the finite module E(m,−d−
s − 1) we see that, at the cost of increasing m′(m, q) a little bit, we may assume
Km′(m,q) = Kk for k ≥ m′(m, q). After shrinking W further if necessary, we may
also assume that

E(0,−d− s− 1)q′ → E(m,−d− s− 1)q′/Km′(m,q),q′

is surjective for all q′ ∈W (as before use that these modules are finite and that the
map is surjective after localization at q).
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Any subset, in particular Td = {q ∈ T with δ(q) = d}, of the Noetherian topological
space Spec(A) with the endowed topology is Noetherian and hence quasi-compact.
Above we have seen that for every q ∈ Td there is an open neighbourhood W where
m′(m, q) works for all q′ ∈ Td ∩ W . We conclude that we can find an integer
m′(m, d) such that for all q ∈ Td we have

E(m, j)q → E(m′(m, d), j)q
is zero for j ≥ −d−s and with Km′(m,d) = Ker(E(m,−d−s−1)→ E(m′(m, d),−d−
s− 1)) we have

Km′(m,d),q = Ker(E(m,−d− s− 1)q → E(k,−d− s− 1)q)
for all k ≥ m′(m, d) and the map

E(0,−d− s− 1)q → E(m,−d− s− 1)q/Km′(m,d),q

is surjective. Using the local duality theorem again (in the opposite direction) we
conclude that the claim is correct. This finishes the proof. □

Lemma 10.7.0EFY In Situation 10.1 there exists an integer m0 ≥ 0 such that
(1) {Hi

T (M/InM)}n≥0 satisfies the Mittag-Leffler condition for i < s.
(2) {Hi

T (Im0M/InM)}n≥m0 satisfies the Mittag-Leffler condition for i ≤ s,
(3) Hi

T (M)→ lim Hi
T (M/InM) is an isomorphism for i < s,

(4) Hs
T (Im0M)→ lim Hs

T (Im0M/InM) is an isomorphism for i ≤ s,
(5) Hs

T (M)→ lim Hs
T (M/InM) is injective with cokernel killed by Im0 , and

(6) R1 lim Hs
T (M/InM) is killed by Im0 .

Proof. Consider the long exact sequences
0→ H0

T (InM)→ H0
T (M)→ H0

T (M/InM)→ H1
T (InM)→ H1

T (M)→ . . .

Parts (1) and (3) follows easily from this and Lemma 10.6.
Let m0 and m′(−) be as in Lemma 10.6. For m ≥ m0 consider the long exact
sequence

Hs
T (ImM)→ Hs

T (Im0M)→ Hs
T (Im0M/ImM)→ Hs+1

T (ImM)→ H1
T (Im0M)

Then for k ≥ m′(m) the image of Hs+1
T (IkM)→ Hs+1

T (ImM) maps injectively to
Hs+1

T (Im0M). Hence the image of Hs
T (Im0M/IkM)→ Hs

T (Im0M/ImM) maps to
zero in Hs+1

T (ImM) for all k ≥ m′(m). We conclude that (2) and (4) hold.
Consider the short exact sequences 0 → Im0M → M → M/Im0M → 0 and
0→ Im0M/InM →M/InM →M/Im0M → 0. We obtain a diagram

Hs−1
T (M/Im0M) // lim Hs

T (Im0M/InM) // lim Hs
T (M/InM) // Hs

T (M/Im0M)

Hs−1
T (M/Im0M) // Hs

T (Im0M) //

∼=

OO

Hs
T (M) //

OO

Hs
T (M/Im0M)

whose lower row is exact. The top row is also exact (at the middle two spots) by
Homology, Lemma 31.4. Part (5) follows.
Write Bn = Hs

T (M/InM). Let An ⊂ Bn be the image of Hs
T (Im0M/InM) →

Hs
T (M/InM). Then (An) satisfies the Mittag-Leffler condition by (2) and Homol-

ogy, Lemma 31.3. Also Cn = Bn/An is killed by Im0 . Thus R1 lim Bn
∼= R1 lim Cn

is killed by Im0 and we get (6). □

https://stacks.math.columbia.edu/tag/0EFY
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Theorem 10.8.0EIE In Situation 10.1 the inverse system {Hi
T (M/InM)}n≥0 satisfies

the Mittag-Leffler condition for i ≤ s, the map
Hi

T (M) −→ lim Hi
T (M/InM)

is an isomorphism for i ≤ s, and Hi
T (M) is annihilated by a power of I for i ≤ s.

Proof. To prove the final assertion of the theorem we apply Local Cohomology,
Proposition 10.1 with T ⊂ V (I) ⊂ Spec(A). Namely, suppose that p ̸∈ V (I), q ∈ T
with p ⊂ q. Then either there exists a prime p ⊂ r ⊂ q with r ∈ V (I) \ T and we
get

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d + s

by (4) in Situation 10.1 or there does not exist an r and we get depthAp
(Mp) > s

by Lemma 10.2. In all three cases we see that depthAp
(Mp) + dim((A/p)q) > s.

Thus Local Cohomology, Proposition 10.1 (2) holds and we find that a power of I
annihilates Hi

T (M) for i ≤ s.
We already know the other two assertions of the theorem hold for i < s by Lemma
10.7 and for the module Im0M for i = s and m0 large enough. To finish of the
proof we will show that in fact these assertions for i = s holds for M .
Let M ′ = H0

I (M) and M ′′ = M/M ′ so that we have a short exact sequence
0→M ′ →M →M ′′ → 0

and M ′′ has H0
I (M ′) = 0 by Dualizing Complexes, Lemma 11.6. By Artin-Rees

(Algebra, Lemma 51.2) we get short exact sequences
0→M ′ →M/InM →M ′′/InM ′′ → 0

for n large enough. Consider the long exact sequences
Hs

T (M ′)→ Hs
T (M/InM)→ Hs

T (M ′′/InM ′′)→ Hs+1
T (M ′)

Now it is a simple matter to see that if we have Mittag-Leffler for the inverse
system {Hs

T (M ′′/InM ′′)}n≥0 then we have Mittag-Leffler for the inverse system
{Hs

T (M/InM)}n≥0. (Note that the ML condition for an inverse system of groups
Gn only depends on the values of the inverse system for sufficiently large n.) More-
over the sequence

Hs
T (M ′)→ lim Hs

T (M/InM)→ lim Hs
T (M ′′/InM ′′)→ Hs+1

T (M ′)
is exact because we have ML in the required spots, see Homology, Lemma 31.4.
Hence, if Hs

T (M ′′) → lim Hs
T (M ′′/InM ′′) is an isomorphism, then Hs

T (M) →
lim Hs

T (M/InM) is an isomorphism too by the five lemma (Homology, Lemma
5.20). This reduces us to the case discussed in the next paragraph.
Assume that H0

I (M) = 0. Choose generators f1, . . . , fr of Im0 where m0 is the
integer found for M in Lemma 10.7. Then we consider the exact sequence

0→M
f1,...,fr−−−−−→ (Im0M)⊕r → Q→ 0

defining Q. Some observations: the first map is injective exactly because H0
I (M) =

0. The cokernel Q of this injection is a finite A-module such that for every 1 ≤ j ≤ r
we have Qfj

∼= (Mfj
)⊕r−1. In particular, for a prime p ⊂ A with p ̸∈ V (I) we have

Qp
∼= (Mp)⊕r−1. Similarly, given q ∈ T and p′ ⊂ A′ = (Aq)∧ not contained in

V (IA′), we have Q′
p′
∼= (M ′

p′)⊕r−1 where Q′ = (Qq)∧ and M ′ = (Mq)∧. Thus

https://stacks.math.columbia.edu/tag/0EIE
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the conditions in Situation 10.1 hold for A, I, T, Q. (Observe that Q may have
nonvanishing H0

I (Q) but this won’t matter.)

For any n ≥ 0 we set F nM = M∩In(Im0M)⊕r so that we get short exact sequences

0→ F nM → In(Im0M)⊕r → InQ→ 0

By Artin-Rees (Algebra, Lemma 51.2) there exists a c ≥ 0 such that InM ⊂
F nM ⊂ In−cM for all n ≥ c. Let m0 be the integer and let m′(m) be the function
defined for m ≥ m0 found in Lemma 10.6 applied to M . Note that the integer
m0 is the same as our integer m0 chosen above (you don’t need to check this: you
can just take the maximum of the two integers if you like). Finally, by Lemma
10.6 applied to Q for every integer m there exists an integer m′′(m) ≥ m such that
Hs

T (IkQ)→ Hs
T (ImQ) is zero for all k ≥ m′′(m).

Fix m ≥ m0. Choose k ≥ m′(m′′(m + c)). Choose ξ ∈ Hs+1
T (IkM) which maps to

zero in Hs+1
T (M). We want to show that ξ maps to zero in Hs+1

T (ImM). Namely,
this will show that {Hs

T (M/InM)}n≥0 is Mittag-Leffler exactly as in the proof of
Lemma 10.7. Picture to help vizualize the argument:

Hs+1
T (IkM) //

��

Hs+1
T (Ik(Im0M)⊕r)

��
Hs

T (Im′′(m+c)Q)
δ
//

��

Hs+1
T (F m′′(m+c)M) //

��

Hs+1
T (Im′′(m+c)(Im0M)⊕r)

Hs
T (Im+cQ) // Hs+1

T (F m+cM)

��
Hs+1

T (ImM)

The image of ξ in Hs+1
T (Ik(Im0M)⊕r) maps to zero in Hs+1

T ((Im0M)⊕r) and hence
maps to zero in Hs+1

T (Im′′(m+c)(Im0M)⊕r) by choice of m′(−). Thus the image
ξ′ ∈ Hs+1

T (F m′′(m+c)M) maps to zero in Hs+1
T (Im′′(m+c)(Im0M)⊕r) and hence

ξ′ = δ(η) for some η ∈ Hs
T (Im′′(m+c)Q). By our choice of m′′(−) we find that η maps

to zero in Hs
T (Im+cQ). This in turn means that ξ′ maps to zero in Hs+1

T (F m+cM).
Since F m+cM ⊂ ImM we conclude.

Finally, we prove the statement on limits. Consider the short exact sequences

0→M/F nM → (Im0M)⊕r/In(Im0M)⊕r → Q/InQ→ 0
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We have lim Hs
T (M/InM) = lim Hs

T (M/F nM) as these inverse systems are pro-
isomorphic. We obtain a commutative diagram

Hs−1
T (Q) //

��

lim Hs−1
T (Q/InQ)

��
Hs

T (M) //

��

lim Hs
T (M/InM)

��
Hs

T ((Im0M)⊕r) //

��

lim Hs
T ((Im0M)⊕r/In(Im0M)⊕r)

��
Hs

T (Q) // lim Hs
T (Q/InQ)

The right column is exact because we have ML in the required spots, see Homology,
Lemma 31.4. The lowest horizontal arrow is injective (!) by part (5) of Lemma 10.7.
The horizontal arrow above it is bijective by part (4) of Lemma 10.7. The arrows
in cohomological degrees ≤ s − 1 are isomorphisms. Thus we conclude Hs

T (M) →
lim Hs

T (M/InM) is an isomorphism by the five lemma (Homology, Lemma 5.20).
This finishes the proof of the theorem. □

Lemma 10.9.0EG0 Let I ⊂ a ⊂ A be ideals of a Noetherian ring A and let M be a
finite A-module. Let s and d be integers. Suppose that

(1) A, I, V (a), M satisfy the assumptions of Situation 10.1 for s and d, and
(2) A, I, a, M satisfy the conditions of Lemma 8.5 for s + 1 and d with J = a.

Then there exists an ideal J0 ⊂ a with V (J0) ∩ V (I) = V (a) such that for any
J ⊂ J0 with V (J) ∩ V (I) = V (a) the map

Hs+1
J (M) −→ lim Hs+1

a (M/InM)
is an isomorphism.

Proof. Namely, we have the existence of J0 and the isomorphism Hs+1
J (M) =

Hs+1(RΓa(M)∧) by Lemma 8.5, we have a short exact sequence
0→ R1 lim Hs

a(M/InM)→ Hs+1(RΓa(M)∧)→ lim Hs+1
a (M/InM)→ 0

by Dualizing Complexes, Lemma 12.4, and the module R1 lim Hs
a(M/InM) is zero

because {Hs
a(M/InM)}n≥0 has Mittag-Leffler by Theorem 10.8. □

11. Algebraization of formal sections, I

0DXH In this section we study the problem of algebraization of formal sections in the local
case. Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let

X = Spec(A) ⊃ U = Spec(A) \ {m}
and denote Y = V (I) the closed subscheme corresponding to I. Let F be a coherent
OU -module. In this section we consider the limits

limn Hi(U,F/InF)
This is closely related to the cohomology of the pullback of F to the formal com-
pletion of U along Y ; however, since we have not yet introduced formal schemes,
we cannot use this terminology here.

https://stacks.math.columbia.edu/tag/0EG0
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Lemma 11.1.0DXI Let U be the punctured spectrum of a Noetherian local ring A. Let
F be a coherent OU -module. Let I ⊂ A be an ideal. Then

Hi(RΓ(U,F)∧) = lim Hi(U,F/InF)

for all i where RΓ(U,F)∧ denotes the derived I-adic completion.

Proof. By Lemmas 6.20 and 7.2 we have

RΓ(U,F)∧ = RΓ(U,F∧) = RΓ(U, R limF/InF)

Thus we obtain short exact sequences

0→ R1 lim Hi−1(U,F/InF)→ Hi(RΓ(U,F)∧)→ lim Hi(U,F/InF)→ 0

by Cohomology, Lemma 37.1. The R1 lim terms vanish because the inverse systems
of groups Hi(U,F/InF) satisfy the Mittag-Leffler condition by Lemma 5.2. □

Theorem 11.2.0DXQ The method of proof
follows roughly the
method of proof of
[Fal79, Theorem 1]
and [Fal80b, Satz 2].
The result is almost
the same as [Ray74,
Theorem 1.1] (affine
complement case)
and [Ray75,
Theorem 3.9]
(complement is
union of few affines).

Let (A,m) be a Noetherian local ring which has a dualizing com-
plex and is complete with respect to an ideal I. Set X = Spec(A), Y = V (I), and
U = X \ {m}. Let F be a coherent sheaf on U . Assume

(1) cd(A, I) ≤ d, i.e., Hi(X \ Y,G) = 0 for i ≥ d and quasi-coherent G on X,
(2) for any x ∈ X \ Y whose closure {x} in X meets U ∩ Y we have

depthOX,x
(Fx) ≥ s or depthOX,x

(Fx) + dim({x}) > d + s

Then there exists an open V0 ⊂ U containing U ∩Y such that for any open V ⊂ V0
containing U ∩ Y the map

Hi(V,F)→ lim Hi(U,F/InF)

is an isomorphism for i < s. If in addition depthOX,x
(Fx) + dim({x}) > s for all

x ∈ U ∩ Y , then these cohomology groups are finite A-modules.

Proof. Choose a finite A-module M such that F is the restriction to U of the
coherent OX -module associated to M , see Local Cohomology, Lemma 8.2. Then
the assumptions of Lemma 9.5 are satisfied. Pick J0 as in that lemma and set
V0 = X \ V (J0). Then opens V ⊂ V0 containing U ∩ Y correspond 1-to-1 with
ideals J ⊂ J0 with V (J) ∩ V (I) = {m}. Moreover, for such a choice we have a
distinguished triangle

RΓJ(M)→M → RΓ(V,F)→ RΓJ(M)[1]

We similarly have a distinguished triangle

RΓm(M)∧ →M → RΓ(U,F)∧ → RΓm(M)∧[1]

involving derived I-adic completions. The cohomology groups of RΓ(U,F)∧ are
equal to the limits in the statement of the theorem by Lemma 11.1. The canonical
map between these triangles and some easy arguments show that our theorem
follows from the main Lemma 9.5 (note that we have i < s here whereas we have
i ≤ s in the lemma; this is because of the shift). The finiteness of the cohomology
groups (under the additional assumption) follows from Lemma 9.3. □

Lemma 11.3.0DXR Let (A,m) be a Noetherian local ring which has a dualizing complex
and is complete with respect to an ideal I. Set X = Spec(A), Y = V (I), and
U = X \ {m}. Let F be a coherent sheaf on U . Assume for any associated point

https://stacks.math.columbia.edu/tag/0DXI
https://stacks.math.columbia.edu/tag/0DXQ
https://stacks.math.columbia.edu/tag/0DXR
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x ∈ U of F we have dim({x}) > cd(A, I) + 1 where {x} is the closure in X. Then
the map

colim H0(V,F) −→ lim H0(U,F/InF)
is an isomorphism of finite A-modules where the colimit is over opens V ⊂ U
containing U ∩ Y .

Proof. Apply Theorem 11.2 with s = 1 (we get finiteness too). □

12. Algebraization of formal sections, II

0EG1 It is a bit difficult to succintly state all possible consequences of the results in
Sections 8 and 10 for cohomology of coherent sheaves on quasi-affine schemes and
their completion with respect to an ideal. This section gives a nonexhaustive list of
applications to H0. The next section contains applications to higher cohomology.

Lemma 12.1.0H48 Let I ⊂ a be ideals of a Noetherian ring A. Let 0 → F ′ → F →
F ′′ → 0 be a short exact sequence of coherent modules on U = Spec(A) \ V (a). Let
V be the set of open subschemes V ⊂ U containing U ∩ V (I) ordered by reverse
inclusion. Consider the commutative diagram

colimV H0(V,F ′)

��

// colimV H0(V,F)

��

// colimV H0(V,F ′′)

��
lim H0(U,F ′/InF ′) // lim H0(U,F ′/InF) // lim H0(U,F ′/InF ′′)

If the left and right downarrows are isomorphisms so is the middle. If the middle
and left downarrows are isomorphisms, so is the left.

Proof. The sequences in the diagram are exact in the middle and the first arrow is
injective. Thus the final statement follows from an easy diagram chase. For the rest
of the proof we assume the left and right downward arrows are isomorphisms. A
diagram chase shows that the middle downward arrow is injective. All that remains
is to show that it is surjective.
We may choose finite A-modules M and M ′ such that F and F ′ are the restriction
of M̃ and M̃ ′ to U , see Local Cohomology, Lemma 8.2. After replacing M ′ by
anM ′ for some n ≥ 0 we may assume that F ′ → F corresponds to a module map
M ′ → M , see Cohomology of Schemes, Lemma 10.5. After replacing M ′ by the
image of M ′ → M and seting M ′′ = M/M ′ we see that our short exact sequence
corresponds to the restriction of the short exact sequence of coherent modules
associated to the short exact sequence 0→M ′ →M →M ′′ → 0 of A-modules.
Let ŝ ∈ lim H0(U,F/InF) with image ŝ′′ ∈ lim H0(U,F ′′/InF ′′). By assumption
we find V ∈ V and a section s′′ ∈ F ′′(V ) mapping to ŝ′′. Let J ⊂ A be an ideal
such that V (J) = Spec(A) \ V . By Cohomology of Schemes, Lemma 10.5 after
replacing J by a power, we may assume there is an A-linear map φ : J → M ′′

corresponding to s′′. We fix this choice of J ; in the rest of the proof we will replace
V by a smaller V in V, i.e, we will have V ∩ V (J) = ∅.
Choose a presentation A⊕m → A⊕n → J → 0. Denote g1, . . . , gn ∈ J the images
of the basis vectors of A⊕n, so that J = (g1, . . . , gn). Let A⊕m → A⊕n be given by
the matric (aji) so that

∑
ajigi = 0, j = 1, . . . , m. Since M →M ′′ is surjective, for

each i we can choose mi ∈M mapping to φ(gi) ∈M ′′. Then the element giŝ−mi of

https://stacks.math.columbia.edu/tag/0H48
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lim H0(U,F/InF) lies in the submodule lim H0(U,F ′/InF ′). By assumption after
shrinking V we may assume there are s′

i ∈ F ′(V ), i = 1, . . . , n with s′
i mapping to

giŝ −mi. Set si = s′
i + mi in F(V ). Note that

∑
ajisi maps to

∑
ajigiŝ = 0 by

the map
colimV F(V ′) −→ lim H0(U,F/InF)

Since this map is injective (see above), we may after shrinking V assume that∑
ajisi = 0 in F(V ) for all j = 1, . . . , m. Then it follows that we obtain an

A-module map J → F(V ) sending gi to si. By the universal property of J̃ this
A-module map corresponds to an OV -module map J̃ |V → F . However, since
V (J)∩ V = ∅ we have J̃ |V = OV . Thus we have produced a section s ∈ F(V ). We
omit the computation that shows that s maps to ŝ by the map displayed above. □

The following lemma will be superceded by Proposition 12.3.

Lemma 12.2.0EIF Let I ⊂ a be ideals of a Noetherian ring A. Let F be a coherent
module on U = Spec(A) \ V (a). Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x ̸∈ V (I), {x} ∩ V (I) ̸⊂ V (a), and z ∈ {x} ∩ V (a), then

dim(O{x},z
) > cd(A, I) + 1,

(3) one of the following holds:
(a) the restriction of F to U \ V (I) is (S1)
(b) the dimension of V (a) is at most 24.

Then we obtain an isomorphism

colim H0(V,F) −→ lim H0(U,F/InF)

where the colimit is over opens V ⊂ U containing U ∩ V (I).

Proof. Choose a finite A-module M such that F is the restriction to U of the
coherent module associated to M , see Local Cohomology, Lemma 8.2. Set d =
cd(A, I). Let p be a prime of A not contained in V (I) and let q ∈ V (p) ∩ V (a).
Then either p is not an associated prime of M and hence depth(Mp) ≥ 1 or we have
dim((A/p)q) > d + 1 by (2). Thus the hypotheses of Lemma 8.5 are satisfied for
s = 1 and d; here we use condition (3). Thus we find there exists an ideal J0 ⊂ a
with V (J0) ∩ V (I) = V (a) such that for any J ⊂ J0 with V (J) ∩ V (I) = V (a) the
maps

Hi
J(M) −→ Hi(RΓa(M)∧)

are isomorphisms for i = 0, 1. Consider the morphisms of exact triangles

RΓJ(M)

��

// M //

��

RΓ(V,F)

��

// RΓJ(M)[1]

��
RΓJ(M)∧ // M // RΓ(V,F)∧ // RΓJ(M)∧[1]

RΓa(M)∧ //

OO

M //

OO

RΓ(U,F)∧ //

OO

RΓa(M)∧[1]

OO

4In the sense that the difference of the maximal and minimal values on V (a) of a dimension
function on Spec(A) is at most 2.

https://stacks.math.columbia.edu/tag/0EIF
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where V = Spec(A) \ V (J). Recall that RΓa(M)∧ → RΓJ(M)∧ is an isomorphism
(because a, a+I, and J+I cut out the same closed subscheme, for example see proof
of Lemma 8.5). Hence RΓ(U,F)∧ = RΓ(V,F)∧. This produces a commutative
diagram

0 // H0
J(M) //

��

M //

��

// Γ(V,F)

��

// H1
J(M)

��

// 0

0 // H0(RΓJ(M)∧) // M // H0(RΓ(V,F)∧) // H1(RΓJ(M)∧) // 0

0 // H0(RΓa(M)∧) //

OO

M //

OO

H0(RΓ(U,F)∧) //

OO

H1(RΓa(M)∧) //

OO

0

with exact rows and isomorphisms for the lower vertical arrows. Hence we obtain
an isomorphism Γ(V,F)→ H0(RΓ(U,F)∧). By Lemmas 6.20 and 7.2 we have

RΓ(U,F)∧ = RΓ(U,F∧) = RΓ(U, R limF/InF)
and we find H0(RΓ(U,F)∧) = lim H0(U,F/InF) by Cohomology, Lemma 37.1. □

Now we bootstrap the preceding lemma to get rid of condition (3).

Proposition 12.3.0EG2 Let I ⊂ a be ideals of a Noetherian ring A. Let F be a coherent
module on U = Spec(A) \ V (a). Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x ̸∈ V (I), {x} ∩ V (I) ̸⊂ V (a), and z ∈ {x} ∩ V (a), then

dim(O{x},z
) > cd(A, I) + 1.

Then we obtain an isomorphism
colim H0(V,F) −→ lim H0(U,F/InF)

where the colimit is over opens V ⊂ U containing U ∩ V (I).

Proof. Let T ⊂ U be the set of points x with {x} ∩ V (I) ⊂ V (a). Let F → F ′ be
the surjection of coherent modules on U constructed in Local Cohomology, Lemma
15.1. Since F → F ′ is an isomorphism over an open V ⊂ U containing U ∩ V (I) it
suffices to prove the lemma with F replaced by F ′. Hence we may and do assume
for x ∈ U with {x} ∩ V (I) ⊂ V (a) we have depth(Fx) ≥ 1.
Let V be the set of open subschemes V ⊂ U containing U ∩V (I) ordered by reverse
inclusion. This is a directed set. We first claim that

F(V ) −→ lim H0(U,F/InF)
is injective for any V ∈ F (and in particular the map of the lemma is injective).
Namely, an associated point x of F must have {x} ∩ U ∩ Y ̸= ∅ by the previous
paragraph. If y ∈ {x}∩U∩Y then Fx is a localization of Fy and Fy ⊂ limFy/InFy

by Krull’s intersection theorem (Algebra, Lemma 51.4). This proves the claim as
a section s ∈ F(V ) in the kernel would have to have empty support, hence would
have to be zero.
Choose a finite A-module M such that F is the restriction of M̃ to U , see Local
Cohomology, Lemma 8.2. We may and do assume that H0

a(M) = 0. Let Ass(M) \
V (I) = {p1, . . . , pn}. We will prove the lemma by induction on n. After reordering
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we may assume that pn is a minimal element of the set {p1, . . . , pn} with respect
to inclusion, i.e, pn is a generic point of the support of M . Set

M ′ = H0
p1...pn−1I(M)

and M ′′ = M/M ′. Let F ′ and F ′′ be the coherent OU -modules corresponding to
M ′ and M ′′. Dualizing Complexes, Lemma 11.6 implies that M ′′ has only one
associated prime, namely pn. Hence F ′′ has only one associated point and we
see that condition (3)(a) of Lemma 12.2 holds; thus the map colim H0(V,F ′′) →
lim H0(U,F ′′/InF ′′) is an isomorphism. On the other hand, since pn ̸∈ V (p1 . . . pn−1I)
we see that pn is not an associated prime of M ′. Hence the induction hypothesis
applies to M ′; note that since F ′ ⊂ F the condition depth(F ′

x) ≥ 1 at points
x with {x} ∩ V (I) ⊂ V (a) holds, see Algebra, Lemma 72.6. Thus the map
colim H0(V,F ′) → lim H0(U,F ′/InF ′) is an isomorphism too. We conclude by
Lemma 12.1. □

Lemma 12.4.0EIG Let I ⊂ a be ideals of a Noetherian ring A. Let F be a coherent
module on U = Spec(A) \ V (a). Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x ̸∈ V (I), {x} ∩ V (I) ̸⊂ V (a), and z ∈ V (a) ∩ {x}, then

dim(O{x},z
) > cd(A, I) + 1,

(3) for x ∈ U with {x} ∩ V (I) ⊂ V (a) we have depth(Fx) ≥ 2,
Then we obtain an isomorphism

H0(U,F) −→ lim H0(U,F/InF)

Proof. Let ŝ ∈ lim H0(U,F/InF). By Proposition 12.3 we find that ŝ is the image
of an element s ∈ F(V ) for some V ⊂ U open containing U ∩ V (I). However,
condition (3) shows that depth(Fx) ≥ 2 for all x ∈ U \ V and hence we find that
F(V ) = F(U) by Divisors, Lemma 5.11 and the proof is complete. □

Lemma 12.5.0EIH Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an
ideal of A. Let M be a finite A-module. Assume

(1) A is f -adically complete,
(2) f is a nonzerodivisor on M ,
(3) H1

a(M/fM) is a finite A-module.
Then with U = Spec(A) \ V (a) the map

colimV Γ(V, M̃) −→ lim Γ(U, M̃/fnM)

is an isomorphism where the colimit is over opens V ⊂ U containing U ∩ V (f).

Proof. Set F = M̃ |U . The finiteness of H1
a(M/fM) implies that H0(U,F/fF)

is finite, see Local Cohomology, Lemma 8.2. By Cohomology, Lemma 36.3 (which
applies as f is a nonzerodivisor on F) we see that N = lim H0(U,F/fnF) is a
finite A-module, is f -torsion free, and N/fN ⊂ H0(U,F/fF). On the other hand,
we have a map M → N and a compatible map

M/fM −→ H0(U,F/fF)

For g ∈ a we see that (M/fM)g maps isomorphically to H0(U ∩D(f),F/fF) since
F/fF is the restriction of M̃/fM to U . We conclude that Mg → Ng induces an
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isomorphism
Mg/fMg = (M/fM)g → (N/fN)g = Ng/fNg

Since f is a nonzerodivisor on both N and M we conclude that Mg → Ng induces
an isomorphism on f -adic completions which in turn implies Mg → Ng is an iso-
morphism in an open neightbourhood of V (f) ∩D(g). Since g ∈ a was arbitrary,
we conclude that M and N determine isomorphic coherent modules over an open
V as in the statement of the lemma. This finishes the proof. □

Proposition 12.6.0H49 Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of
an ideal of A. Let F be a coherent module on U = Spec(A) \ V (a). Assume

(1) A is f -adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x ̸∈ V (f), {x} ∩ V (f) ̸⊂ V (a), and z ∈ {x} ∩ V (a), then

dim(O{x},z
) > 2.

Then the map
colimV Γ(V,F) −→ lim Γ(U,F/fnF)

is an isomorphism where the colimit is over opens V ⊂ U containing U ∩ V (f).

First proof. Recall that A is universally catenary and with Gorenstein formal
fibres, see Dualizing Complexes, Lemmas 23.2 and 17.4. Thus we may consider the
map F → F ′ constructed in Local Cohomology, Lemma 15.3 for the closed subset
V (f) ∩ U of U . Observe that

(1) The kernel and cokernel of F → F ′ are supported on V (f) ∩ U .
(2) The module F ′ is f -torsion free as its stalks have depth ≥ 1 for all points

of V (f) ∩ U , i.e., F ′ has no associated points in V (f) ∩ U .
(3) If y ∈ V (f) ∩ U is an associated point of F ′/fF ′, then depth(F ′

y) = 1
and hence (by the construction of F ′) there is an immediate specialization
x ⇝ y with x ̸∈ V (f) an associated point of F . It follows that y cannot
have an immediate specialization in Spec(A) to a point z ∈ V (a) by our
assumption (2).

(4) It follows from (3) that H0(U,F ′/fF ′) is a finite A-module, see Local
Cohomology, Lemma 12.1.

These observations will allow us to finish the proof.
First, we claim the lemma holds for F ′. Namely, choose a finite A-module M ′ such
that F ′ is the restriction to U of the coherent module associated to M ′, see Local
Cohomology, Lemma 8.2. Since F ′ is f -torsion free, we may assume M ′ is f -torsion
free as well. Observation (4) above shows that H1

a(M ′) is a finite A-module, see
Local Cohomology, Lemma 8.2. Thus the claim by Lemma 12.5.
Second, we observe that the lemma holds trivially for any coherent OU -module
supported on V (f) ∩ U . Let K, resp. G, resp. Q be the kernel, resp. image, resp.
cokernel of the map F → F ′. The short exact sequence 0 → G → F ′ → Q → 0
and Lemma 12.1 show that the result holds for G. Then we do this again with the
short exact sequence 0→ K → F → G → 0 to finish the proof. □

Second proof. The proposition is a special case of Proposition 12.3. □

Lemma 12.7.0EII Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an
ideal of A. Let M be a finite A-module. Assume

(1) A is f -adically complete,
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(2) H1
a(M) and H2

a(M) are annihilated by a power of f .
Then with U = Spec(A) \ V (a) the map

Γ(U, M̃) −→ lim Γ(U, M̃/fnM)
is an isomorphism.

Proof. We may apply Lemma 3.2 to U and F = M̃ |U because F is a Noetherian
object in the category of coherent OU -modules. Since H1(U,F) = H2

a(M) (Local
Cohomology, Lemma 8.2) is annihilated by a power of f , we see that its f -adic Tate
module is zero. Hence the lemma shows lim H0(U,F/fnF) is equal to the usual
f -adic completion of H0(U,F). Consider the short exact sequence

0→M/H0
a(M)→ H0(U,F)→ H1

a(M)→ 0
of Local Cohomology, Lemma 8.2. Since M/H0

a(M) is a finite A-module, it is
complete, see Algebra, Lemma 97.1. Since H1

a(M) is killed by a power of f , we
conclude from Algebra, Lemma 96.4 that H0(U,F) is complete as well. This finishes
the proof. □

13. Algebraization of formal sections, III

0EIJ The next section contains a nonexhaustive list of applications of the material on
completion of local cohomology to higher cohomology of coherent modules on quasi-
affine schemes and their completion with respect to an ideal.

Proposition 13.1.0EG4 Let I ⊂ a be ideals of a Noetherian ring A. Let F be a coherent
module on U = Spec(A) \ V (a). Let s ≥ 0. Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ U \ V (I) then depth(Fx) > s or

depth(Fx) + dim(O{x},z
) > cd(A, I) + s + 1

for all z ∈ V (a) ∩ {x},
(3) one of the following conditions holds:

(a) the restriction of F to U \ V (I) is (Ss+1), or
(b) the dimension of V (a) is at most 25.

Then the maps
Hi(U,F) −→ lim Hi(U,F/InF)

are isomorphisms for i < s. Moreover we have an isomorphism
colim Hs(V,F) −→ lim Hs(U,F/InF)

where the colimit is over opens V ⊂ U containing U ∩ V (I).

Proof. We may assume s > 0 as the case s = 0 was done in Proposition 12.3.
Choose a finite A-module M such that F is the restriction to U of the coherent
module associated to M , see Local Cohomology, Lemma 8.2. Set d = cd(A, I).
Let p be a prime of A not contained in V (I) and let q ∈ V (p) ∩ V (a). Then
either depth(Mp) ≥ s + 1 > s or we have dim((A/p)q) > d + s + 1 by (2). By
Lemma 10.5 we conclude that the assumptions of Situation 10.1 are satisfied for

5In the sense that the difference of the maximal and minimal values on V (a) of a dimension
function on Spec(A) is at most 2.
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A, I, V (a), M, s, d. On the other hand, the hypotheses of Lemma 8.5 are satisfied
for s + 1 and d; this is where condition (3) is used.
Applying Lemma 8.5 we find there exists an ideal J0 ⊂ a with V (J0)∩V (I) = V (a)
such that for any J ⊂ J0 with V (J) ∩ V (I) = V (a) the maps

Hi
J(M) −→ Hi(RΓa(M)∧)

is an isomorphism for i ≤ s + 1.
For i ≤ s the map Hi

a(M) → Hi
J(M) is an isomorphism by Lemmas 10.3 and 8.4.

Using the comparison of cohomology and local cohomology (Local Cohomology,
Lemma 2.2) we deduce Hi(U,F)→ Hi(V,F) is an isomorphism for V = Spec(A) \
V (J) and i < s.
By Theorem 10.8 we have Hi

a(M) = lim Hi
a(M/InM) for i ≤ s. By Lemma 10.9

we have Hs+1
a (M) = lim Hs+1

a (M/InM).
The isomorphism H0(U,F) = H0(V,F) = lim H0(U,F/InF) follows from the
above and Proposition 12.3. For 0 < i < s we get the desired isomorphisms
Hi(U,F) = Hi(V,F) = lim Hi(U,F/InF) in the same manner using the relation
between local cohomology and cohomology; it is easier than the case i = 0 because
for i > 0 we have
Hi(U,F) = Hi+1

a (M), Hi(V,F) = Hi+1
J (M), Hi(RΓ(U,F)∧) = Hi+1(RΓa(M)∧)

Similarly for the final statement. □

Lemma 13.2.0EKM Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an
ideal of A. Let M be a finite A-module. Let s ≥ 0. Assume

(1) A is f -adically complete,
(2) Hi

a(M) is annihilated by a power of f for i ≤ s + 1.
Then with U = Spec(A) \ V (a) the map

Hi(U, M̃) −→ lim Hi(U, M̃/fnM)
is an isomorphism for i < s.

Proof. By induction on s. If s = 0, the assertion is empty. If s = 1, then the result
is Lemma 12.7. Assume s > 1. By induction it suffices to prove the result for i =
s−1 ≥ 1. We may apply Lemma 3.2 to U and F = M̃ |U because F is a Noetherian
object in the category of coherentOU -modules. Observe that Hj(U,F) = Hj+1

a (M)
for all j by Local Cohomology, Lemma 8.2. Thus for j = s = (s − 1) + 1 this is
annihilated by a power of f by assumption. Thus it follows from Lemma 3.2 that
lim Hs−1(U,F/fnF) is the usual f -adic completion of Hs−1(U,F). Then again
using that this module is killed by a power of f we see that the completion is
simply equal to Hs−1(U,F) as desired. □

14. Application to connectedness

0ECQ In this section we discuss Grothendieck’s connectedness theorem and variants; the
original version can be found as [Gro68, Exposee XIII, Theorem 2.1]. There is a
version called Faltings’ connectedness theorem in the literature; our guess is that
this refers to [Fal80a, Theorem 6]. Let us state and prove the optimal version for
complete local rings given in [Var09, Theorem 1.6].
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Lemma 14.1.0ECR [Var09, Theorem
1.6]

Let (A,m) be a Noetherian complete local ring. Let I be a proper
ideal of A. Set X = Spec(A) and Y = V (I). Denote

(1) d the minimal dimension of an irreducible component of X, and
(2) c the minimal dimension of a closed subset Z ⊂ X such that X \ Z is

disconnected.
Then for Z ⊂ Y closed we have Y \ Z is connected if dim(Z) < min(c, d − 1) −
cd(A, I). In particular, the punctured spectrum of A/I is connected if cd(A, I) <
min(c, d− 1).

Proof. Let us first prove the final assertion. As a first case, if the punctured spec-
trum of A/I is empty, then Local Cohomology, Lemma 4.10 shows every irreducible
component of X has dimension ≤ cd(A, I) and we get min(c, d− 1)− cd(A, I) < 0
which implies the lemma holds in this case. Thus we may assume U∩Y is nonempty
where U = X\{m} is the punctured spectrum of A. We may replace A by its reduc-
tion. Observe that A has a dualizing complex (Dualizing Complexes, Lemma 22.4)
and that A is complete with respect to I (Algebra, Lemma 96.8). If we assume
d− 1 > cd(A, I), then we may apply Lemma 11.3 to see that

colim H0(V,OV ) −→ lim H0(U,OU /InOU )
is an isomorphism where the colimit is over opens V ⊂ U containing U∩Y . If U∩Y
is disconnected, then its nth infinitesimal neighbourhood in U is disconnected for
all n and we find the right hand side has a nontrivial idempotent (here we use that
U ∩ Y is nonempty). Thus we can find a V which is disconnected. Set Z = X \ V .
By Local Cohomology, Lemma 4.10 we see that every irreducible component of Z
has dimension ≤ cd(A, I). Hence c ≤ cd(A, I) and this indeed proves the final
statement.
We can deduce the statement of the lemma from what we just proved as follows.
Suppose that Z ⊂ Y closed and Y \Z is disconnected and dim(Z) = e. Recall that
a connected space is nonempty by convention. Hence we conclude either (a) Y = Z
or (b) Y \Z = W1⨿W2 with Wi nonempty, open, and closed in Y \Z. In case (b) we
may pick points wi ∈Wi which are closed in U , see Morphisms, Lemma 16.10. Then
we can find f1, . . . , fe ∈ m such that V (f1, . . . , fe) ∩ Z = {m} and in case (b) we
may assume wi ∈ V (f1, . . . , fe). Namely, we can inductively using prime avoidance
choose fi such that dim V (f1, . . . , fi)∩Z = e− i and such that in case (b) we have
w1, w2 ∈ V (fi). It follows that the punctured spectrum of A/I + (f1, . . . , fe) is
disconnected (small detail omitted). Since cd(A, I + (f1, . . . , fe)) ≤ cd(A, I) + e by
Local Cohomology, Lemmas 4.4 and 4.3 we conclude that

cd(A, I) + e ≥ min(c, d− 1)
by the first part of the proof. This implies e ≥ min(c, d − 1) − cd(A, I) which is
what we had to show. □

Lemma 14.2.0EG5 Let I ⊂ a be ideals of a Noetherian ring A. Assume
(1) A is I-adically complete and has a dualizing complex,
(2) if p ⊂ A is a minimal prime not contained in V (I) and q ∈ V (p) ∩ V (a),

then dim((A/p)q) > cd(A, I) + 1,
(3) any nonempty open V ⊂ Spec(A) which contains V (I)\V (a) is connected6.

6For example if A is a domain.
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Then V (I) \ V (a) is either empty or connected.

Proof. We may replace A by its reduction. Then we have the inequality in (2) for
all associated primes of A. By Proposition 12.3 we see that

colim H0(V,OV ) = lim H0(Tn,OTn)
where the colimit is over the opens V as in (3) and Tn is the nth infinitesimal
neighbourhood of T = V (I)\V (a) in U = Spec(A)\V (a). Thus T is either empty or
connected, since if not, then the right hand side would have a nontrivial idempotent
and we’ve assumed the left hand side does not. Some details omitted. □

Lemma 14.3.0EG3 Let A be a Noetherian domain which has a dualizing complex
and which is complete with respect to a nonzero f ∈ A. Let f ∈ a ⊂ A be an
ideal. Assume every irreducible component of Z = V (a) has codimension > 2 in
X = Spec(A), i.e., assume every irreducible component of Z has codimension > 1
in Y = V (f). Then Y \ Z is connected.

Proof. This is a special case of Lemma 14.2 (whose proof relies on Proposition
12.3). Below we prove it using the easier Proposition 12.6.
Set U = X \ Z. By Proposition 12.6 we have an isomorphism

colim Γ(V,OV )→ limn Γ(U,OU /fnOU )
where the colimit is over open V ⊂ U containing U ∩ Y . Hence if U ∩ Y is
disconnected, then for some V there exists a nontrivial idempotent in Γ(V,OV ).
This is impossible as V is an integral scheme as X is the spectrum of a domain. □

15. The completion functor

0EKN Let X be a Noetherian scheme. Let Y ⊂ X be a closed subscheme with quasi-
coherent sheaf of ideals I ⊂ OX . In this section we consider inverse systems of
coherent OX -modules (Fn) with Fn annihilated by In such that the transition
maps induce isomorphisms Fn+1/InFn+1 → Fn. The category of these inverse
systems was denoted

Coh(X, I)
in Cohomology of Schemes, Section 23. This category is equivalent to the category
of coherent modules on the formal completion of X along Y ; however, since we
have not yet introduced formal schemes or coherent modules on them, we cannot
use this terminology here. We are particularly interested in the completion functor

Coh(OX) −→ Coh(X, I), F 7−→ F∧

See Cohomology of Schemes, Equation (23.3.1).

Lemma 15.1.0EKP Let X be a Noetherian scheme and let Y ⊂ X be a closed sub-
scheme. Let Yn ⊂ X be the nth infinitesimal neighbourhood of Y in X. Consider
the following conditions

(1) X is quasi-affine and Γ(X,OX)→ lim Γ(Yn,OYn
) is an isomorphism,

(2) X has an ample invertible module L and Γ(X,L⊗m)→ lim Γ(Yn,L⊗m|Yn
)

is an isomorphism for all m≫ 0,
(3) for every finite locally free OX-module E the map Γ(X, E)→ lim Γ(Yn, E|Yn)

is an isomorphism, and
(4) the completion functor Coh(OX) → Coh(X, I) is fully faithful on the full

subcategory of finite locally free objects.
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Then (1) ⇒ (2) ⇒ (3) ⇒ (4) and (4) ⇒ (3).

Proof. Proof of (3)⇒ (4). If F and G are finite locally free on X, then considering
H = HomOX

(G,F) and using Cohomology of Schemes, Lemma 23.5 we see that (3)
implies (4).
Proof of (2) → (3). Namely, let L be ample on X and suppose that E is a finite
locally free OX -module. We claim we can find a universally exact sequence

0→ E → (L⊗p)⊕r → (L⊗q)⊕s

for some r, s ≥ 0 and 0≪ p≪ q. If this holds, then using the exact sequence
0→ lim Γ(E|Yn

)→ lim Γ((L⊗p)⊕r|Yn
)→ lim Γ((L⊗q)⊕s|Yn

)
and the isomorphisms in (2) we get the isomorphism in (3). To prove the claim,
consider the dual locally free module HomOX

(E ,OX) and apply Properties, Propo-
sition 26.13 to find a surjection

(L⊗−p)⊕r −→ HomOX
(E ,OX)

Taking duals we obtain the first map in the exact sequence (it is universally injective
because being a surjection is universal). Repeat with the cokernel to get the second.
Some details omitted.
Proof of (1) ⇒ (2). This is true because if X is quasi-affine then OX is an ample
invertible module, see Properties, Lemma 27.1.
We omit the proof of (4) ⇒ (3). □

Given a Noetherian scheme and a quasi-coherent sheaf of ideals I ⊂ OX we will
say an object (Fn) of Coh(X, I) is finite locally free if each Fn is a finite locally
free OX/In-module.

Lemma 15.2.0EK2 Let X be a Noetherian scheme and let Y ⊂ X be a closed subscheme
with ideal sheaf I ⊂ OX . Let Yn ⊂ X be the nth infinitesimal neighbourhood of Y
in X. Let V be the set of open subschemes V ⊂ X containing Y ordered by reverse
inclusion.

(1) X is quasi-affine and
colimV Γ(V,OV ) −→ lim Γ(Yn,OYn

)
is an isomorphism,

(2) X has an ample invertible module L and
colimV Γ(V,L⊗m) −→ lim Γ(Yn,L⊗m|Yn

)
is an isomorphism for all m≫ 0,

(3) for every V ∈ V and every finite locally free OV -module E the map
colimV ′≥V Γ(V ′, E|V ′) −→ lim Γ(Yn, E|Yn

)
is an isomorphism, and

(4) the completion functor
colimV Coh(OV ) −→ Coh(X, I), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects (see ex-
planation above).

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) and (4) ⇒ (3).
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Proof. Observe that V is a directed set, so the colimits are as in Categories, Section
19. The rest of the argument is almost exactly the same as the argument in the
proof of Lemma 15.1; we urge the reader to skip it.

Proof of (3) ⇒ (4). If F and G are finite locally free on V ∈ V, then considering
H = HomOV

(G,F) and using Cohomology of Schemes, Lemma 23.5 we see that (3)
implies (4).

Proof of (2) ⇒ (3). Let L be ample on X and suppose that E is a finite locally free
OV -module for some V ∈ V. We claim we can find a universally exact sequence

0→ E → (L⊗p)⊕r|V → (L⊗q)⊕s|V
for some r, s ≥ 0 and 0 ≪ p ≪ q. If this is true, then the isomorphism in (2) will
imply the isomorphism in (3). To prove the claim, recall that L|V is ample, see
Properties, Lemma 26.14. Consider the dual locally free module HomOV

(E ,OV )
and apply Properties, Proposition 26.13 to find a surjection

(L⊗−p)⊕r|V −→ HomOV
(E ,OV )

(it is universally injective because being a surjection is universal). Taking duals we
obtain the first map in the exact sequence. Repeat with the cokernel to get the
second. Some details omitted.

Proof of (1) ⇒ (2). This is true because if X is quasi-affine then OX is an ample
invertible module, see Properties, Lemma 27.1.

We omit the proof of (4) ⇒ (3). □

Lemma 15.3.0EIQ Let X be a Noetherian scheme. Let I ⊂ OX be a quasi-coherent
sheaf of ideals. The functor

Coh(X, I) −→ Pro-QCoh(OX)

is fully faithful, see Categories, Remark 22.5.

Proof. Let (Fn) and (Gn) be objects of Coh(X, I). A morphism of pro-objects α
from (Fn) to (Gn) is given by a system of maps αn : Fn′(n) → Gn where N → N,
n 7→ n′(n) is an increasing function. Since Fn = Fn′(n)/InFn′(n) and since Gn is
annihilated by In we see that αn induces a map Fn → Gn. □

Next we add some examples of the kind of fully faithfulness result we will be able
to prove using the work done earlier in this chapter.

Lemma 15.4.0EKQ Let I ⊂ a be ideals of a Noetherian ring A. Let U = Spec(A)\V (a).
Assume

(1) A is I-adically complete and has a dualizing complex,
(2) for any associated prime p ⊂ A with p ̸∈ V (I) and V (p)∩V (I) ̸⊂ V (a) and

q ∈ V (p) ∩ V (a) we have dim((A/p)q) > cd(A, I) + 1,
(3) for p ⊂ A with p ̸∈ V (I) and V (p) ∩ V (I) ⊂ V (a) we have depth(Ap) ≥ 2.

Then the completion functor

Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

https://stacks.math.columbia.edu/tag/0EIQ
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Proof. By Lemma 15.1 it suffices to show that
Γ(U,OU ) = lim Γ(U,OU /InOU )

This follows immediately from Lemma 12.4. □

Lemma 15.5.0EKS Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an
ideal of A. Let U = Spec(A) \ V (a). Assume

(1) A is f -adically complete,
(2) H1

a(A) and H2
a(A) are annihilated by a power of f .

Then the completion functor
Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 15.1 it suffices to show that
Γ(U,OU ) = lim Γ(U,OU /InOU )

This follows immediately from Lemma 12.7. □

Lemma 15.6.0EKT Let A be a Noetherian ring. Let f ∈ a be an element of an ideal of
A. Let U = Spec(A) \ V (a). Assume

(1) A has a dualizing complex and is complete with respect to f ,
(2) for every prime p ⊂ A, f ̸∈ p and q ∈ V (p) ∩ V (a) we have depth(Ap) +

dim((A/p)q) > 2.
Then the completion functor

Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. Follows from Lemma 15.5 and Local Cohomology, Proposition 10.1. □

Lemma 15.7.0EKU Let I ⊂ a ⊂ A be ideals of a Noetherian ring A. Let U = Spec(A)\
V (a). Let V be the set of open subschemes of U containing U ∩ V (I) ordered by
reverse inclusion. Assume

(1) A is I-adically complete and has a dualizing complex,
(2) for any associated prime p ⊂ A with I ̸⊂ p and V (p) ∩ V (I) ̸⊂ V (a) and

q ∈ V (p) ∩ V (a) we have dim((A/p)q) > cd(A, I) + 1.
Then the completion functor

colimV Coh(OV ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 15.2 it suffices to show that
colimV Γ(V,OV ) = lim Γ(U,OU /InOU )

This follows immediately from Proposition 12.3. □

Lemma 15.8.0EKV Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an
ideal of A. Let U = Spec(A) \ V (a). Let V be the set of open subschemes of U
containing U ∩ V (f) ordered by reverse inclusion. Assume

(1) A is f -adically complete,
(2) f is a nonzerodivisor,

https://stacks.math.columbia.edu/tag/0EKS
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(3) H1
a(A/fA) is a finite A-module.

Then the completion functor
colimV Coh(OV ) −→ Coh(U, fOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 15.2 it suffices to show that
colimV Γ(V,OV ) = lim Γ(U,OU /InOU )

This follows immediately from Lemma 12.5. □

Lemma 15.9.0EIV Let I ⊂ a ⊂ A be ideals of a Noetherian ring A. Let U = Spec(A)\
V (a). Let V be the set of open subschemes of U containing U ∩ V (I) ordered by
reverse inclusion. Let F and G be coherent OV -modules for some V ∈ V. The map

colimV ′≥V HomV (G|V ′ ,F|V ′) −→ HomCoh(U,IOU )(G∧,F∧)
is bijective if the following assumptions hold:

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x ̸∈ V (I), {x} ∩ V (I) ̸⊂ V (a) and z ∈ {x} ∩ V (a), then

dim(O{x},z
) > cd(A, I) + 1.

Proof. We may choose coherent OU -modules F ′ and G′ whose restriction to V is
F and G, see Properties, Lemma 22.5. We may modify our choice of F ′ to ensure
that Ass(F ′) ⊂ V , see for example Local Cohomology, Lemma 15.1. Thus we may
and do replace V by U and F and G by F ′ and G′. Set H = HomOU

(G,F). This
is a coherent OU -module. We have
HomV (G|V ,F|V ) = H0(V,H) and lim H0(U,H/InH) = MorCoh(U,IOU )(G∧,F∧)
See Cohomology of Schemes, Lemma 23.5. Thus if we can show that the assump-
tions of Proposition 12.3 hold for H, then the proof is complete. This holds because
Ass(H) ⊂ Ass(F). See Cohomology of Schemes, Lemma 11.2. □

16. Algebraization of coherent formal modules, I

0DXS The essential surjectivity of the completion functor (see below) was studied system-
atically in [Gro68], [Ray75], and [Ray74]. We work in the following affine situation.

Situation 16.1.0EHC Here A is a Noetherian ring and I ⊂ a ⊂ A are ideals. We set
X = Spec(A), Y = V (I) = Spec(A/I), and Z = V (a) = Spec(A/a). Furthermore
U = X \ Z.

In this section we try to find conditions that guarantee an object of Coh(U, IOU ) is
in the image of the completion functor Coh(OU )→ Coh(U, IOU ). See Cohomology
of Schemes, Section 23 and Section 15.

Lemma 16.2.0DXT In Situation 16.1. Consider an inverse system (Mn) of A-modules
such that

(1) Mn is a finite A-module,
(2) Mn is annihilated by In,
(3) the kernel and cokernel of Mn+1/InMn+1 →Mn are a-power torsion.

Then (M̃n|U ) is in Coh(U, IOU ). Conversely, every object of Coh(U, IOU ) arises
in this manner.

https://stacks.math.columbia.edu/tag/0EIV
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Proof. We omit the verification that (M̃n|U ) is in Coh(U, IOU ). Let (Fn) be an
object of Coh(U, IOU ). By Local Cohomology, Lemma 8.2 we see that Fn = M̃n

for some finite A/In-module Mn. After dividing Mn by H0
a(Mn) we may assume

Mn ⊂ H0(U,Fn), see Dualizing Complexes, Lemma 11.6 and the already referenced
lemma. After replacing inductively Mn+1 by the inverse image of Mn under the
map Mn+1 → H0(U,Fn+1) → H0(U,Fn), we may assume Mn+1 maps into Mn.
This gives a inverse system (Mn) satisfying (1) and (2) such that Fn = M̃n. To see
that (3) holds, use that Mn+1/InMn+1 → Mn is a map of finite A-modules which
induces an isomorphism after applying ˜ and restriction to U (here we use the first
referenced lemma one more time). □

In Situation 16.1 we can study the completion functor Cohomology of Schemes,
Equation (23.3.1)

(16.2.1)0EIK Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

If A is I-adically complete, then this functor is fully faithful on suitable subcate-
gories by our earlier work on algebraization of formal sections, see Section 15 and
Lemma 19.6 for some sample results. Next, let (Fn) be an object of Coh(U, IOU ).
Still assuming A is I-adically complete, we can ask: When is (Fn) in the essential
image of the completion functor displayed above?

Lemma 16.3.0EIL In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Consider
the following conditions:

(1) (Fn) is in the essential image of the functor (16.2.1),
(2) (Fn) is the completion of a coherent OU -module,
(3) (Fn) is the completion of a coherent OV -module for U ∩ Y ⊂ V ⊂ U open,
(4) (Fn) is the completion of the restriction to U of a coherent OX-module,
(5) (Fn) is the restriction to U of the completion of a coherent OX-module,
(6) there exists an object (Gn) of Coh(X, IOX) whose restriction to U is (Fn).

Then conditions (1), (2), (3), (4), and (5) are equivalent and imply (6). If A is
I-adically complete then condition (6) implies the others.

Proof. Parts (1) and (2) are equivalent, because the completion of a coherent OU -
module F is by definition the image of F under the functor (16.2.1). If V ⊂ U is
an open subscheme containing U ∩ Y , then we have

Coh(V, IOV ) = Coh(U, IOU )

since the category of coherent OV -modules supported on V ∩ Y is the same as the
category of coherent OU -modules supported on U∩Y . Thus the completion of a co-
herent OV -module is an object of Coh(U, IOU ). Having said this the equivalence of
(2), (3), (4), and (5) holds because the functors Coh(OX)→ Coh(OU )→ Coh(OV )
are essentially surjective. See Properties, Lemma 22.5.

It is always the case that (5) implies (6). Assume A is I-adically complete. Then
any object of Coh(X, IOX) corresponds to a finite A-module by Cohomology of
Schemes, Lemma 23.1. Thus we see that (6) implies (5) in this case. □

Example 16.4.0EHE Let k be a field. Let A = k[x, y][[t]] with I = (t) and a = (x, y, t).
Let us use notation as in Situation 16.1. Observe that U ∩ Y = (D(x) ∩ Y ) ∪
(D(y)∩ Y ) is an affine open covering. For n ≥ 1 consider the invertible module Ln

https://stacks.math.columbia.edu/tag/0EIL
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of OU /tnOU given by glueing Ax/tnAx and Ay/tnAy via the invertible element of
Axy/tnAxy which is the image of any power series of the form

u = 1 + t

xy
+

∑
n≥2

an
tn

(xy)φ(n)

with an ∈ k[x, y] and φ(n) ∈ N. Then (Ln) is an invertible object of Coh(U, IOU )
which is not the completion of a coherent OU -module L. We only sketch the
argument and we omit most of the details. Let y ∈ U ∩ Y . Then the completion of
the stalk Ly would be an invertible module hence Ly is invertible. Thus there would
exist an open V ⊂ U containing U ∩ Y such that L|V is invertible. By Divisors,
Lemma 28.3 we find an invertible A-module M with M̃ |V ∼= L|V . However the
ring A is a UFD hence we see M ∼= A which would imply Ln

∼= OU /InOU . Since
L2 ̸∼= OU /I2OU by construction we get a contradiction as desired.

Note that if we take an = 0 for n ≥ 2, then we see that lim H0(U,Ln) is nonzero:
in this case we the function x on D(x) and the function x + t/y on D(y) glue. On
the other hand, if we take an = 1 and φ(n) = 2n or even φ(n) = n2 then the
reader can show that lim H0(U,Ln) is zero; this gives another proof that (Ln) is
not algebraizable in this case.

If in Situation 16.1 the ring A is not I-adically complete, then Lemma 16.3 suggests
the correct thing is to ask whether (Fn) is in the essential image of the restriction
functor

Coh(X, IOX) −→ Coh(U, IOU )
However, we can no longer say that this means (Fn) is algebraizable. Thus we
introduce the following terminology.

Definition 16.5.0EIM In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). We say
(Fn) extends to X if there exists an object (Gn) of Coh(X, IOX) whose restriction
to U is isomorphic to (Fn).

This notion is equivalent to being algebraizable over the completion.

Lemma 16.6.0EIN In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Let A′, I ′, a′

be the I-adic completions of A, I, a. Set X ′ = Spec(A′) and U ′ = X ′ \ V (a′). The
following are equivalent

(1) (Fn) extends to X, and
(2) the pullback of (Fn) to U ′ is the completion of a coherent OU ′-module.

Proof. Recall that A→ A′ is a flat ring map which induces an isomorphism A/I →
A′/I ′. See Algebra, Lemmas 97.2 and 97.4. Thus X ′ → X is a flat morphism
inducing an isomorphism Y ′ → Y . Thus U ′ → U is a flat morphism which induces
an isomorphism U ′ ∩ Y ′ → U ∩ Y . This implies that in the commutative diagram

Coh(X ′, IOX′) // Coh(U ′, IOU ′)

Coh(X, IOX)

OO

// Coh(U, IOU )

OO

the vertical functors are equivalences. See Cohomology of Schemes, Lemma 23.10.
The lemma follows formally from this and the results of Lemma 16.3. □
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In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). To figure out if (Fn)
extends to X it makes sense to look at the A-module

(16.6.1)0EHD M = lim H0(U,Fn)

Observe that M has a limit topology which is (a priori) coarser than the I-adic
topology since M → H0(U,Fn) annihilates InM . There are canonical maps

M̃ |U → M̃/InM |U → ˜H0(U,Fn)|U → Fn

One could hope that M̃ restricts to a coherent module on U and that (Fn) is the
completion of this module. This is naive because this has almost no chance of
being true if A is not complete. But even if A is I-adically complete this notion
is very difficult to work with. A less naive approach is to consider the following
requirement.

Definition 16.7.0EIP In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). We say
(Fn) canonically extends to X if the the inverse system

{ ˜H0(U,Fn)}n≥1

in QCoh(OX) is pro-isomorphic to an object (Gn) of Coh(X, IOX).

We will see in Lemma 16.8 that the condition in Definition 16.7 is stronger than
the condition of Definition 16.5.

Lemma 16.8.0EIR In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). If (Fn)
canonically extends to X, then

(1) ( ˜H0(U,Fn)) is pro-isomorphic to an object (Gn) of Coh(X, IOX) unique up
to unique isomorphism,

(2) the restriction of (Gn) to U is isomorphic to (Fn), i.e., (Fn) extends to X,
(3) the inverse system {H0(U,Fn)} satisfies the Mittag-Leffler condition, and
(4) the module M in (16.6.1) is finite over the I-adic completion of A and the

limit topology on M is the I-adic topology.

Proof. The existence of (Gn) in (1) follows from Definition 16.7. The uniqueness
of (Gn) in (1) follows from Lemma 15.3. Write Gn = M̃n. Then {Mn} is an inverse
system of finite A-modules with Mn = Mn+1/InMn+1. By Definition 16.7 the
inverse system {H0(U,Fn)} is pro-isomorphic to {Mn}. Hence we see that the
inverse system {H0(U,Fn)} satisfies the Mittag-Leffler condition and that M =
lim Mn (as topological modules). Thus the properties of M in (4) follow from
Algebra, Lemmas 98.2, 96.12, and 96.3. Since U is quasi-affine the canonical maps

˜H0(U,Fn)|U → Fn

are isomorphisms (Properties, Lemma 18.2). We conclude that (Gn|U ) and (Fn)
are pro-isomorphic and hence isomorphic by Lemma 15.3. □

Lemma 16.9.0EIS In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Let A→ A′

be a flat ring map. Set X ′ = Spec(A′), let U ′ ⊂ X ′ be the inverse image of U ,
and denote g : U ′ → U the induced morphism. Set (F ′

n) = (g∗Fn), see Cohomology
of Schemes, Lemma 23.9. If (Fn) canonically extends to X, then (F ′

n) canonically
extends to X ′. Moreover, the extension found in Lemma 16.8 for (Fn) pulls back
to the extension for (F ′

n).
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Proof. Let f : X ′ → X be the induced morphism. We have H0(U ′,F ′
n) =

H0(U,Fn) ⊗A A′ by flat base change, see Cohomology of Schemes, Lemma 5.2.
Thus if (Gn) in Coh(X, IOX) is pro-isomorphic to ( ˜H0(U,Fn)), then (f∗Gn) is
pro-isomorphic to

(f∗ ˜H0(U,Fn)) = ( ˜H0(U,Fn)⊗A A′) = ( ˜H0(U ′,F ′
n))

This finishes the proof. □

Lemma 16.10.0EHH In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Let M
be as in (16.6.1). Assume

(a) the inverse system H0(U,Fn) has Mittag-Leffler,
(b) the limit topology on M agrees with the I-adic topology, and
(c) the image of M → H0(U,Fn) is a finite A-module for all n.

Then (Fn) extends canonically to X. In particular, if A is I-adically complete,
then (Fn) is the completion of a coherent OU -module.

Proof. Since H0(U,Fn) has the Mittag-Leffler condition and since the limit topol-
ogy on M is the I-adic topology we see that {M/InM} and {H0(U,Fn)} are
pro-isomorphic inverse systems of A-modules. Thus if we set

Gn = M̃/InM

then we see that to verify the condition in Definition 16.7 it suffices to show that M
is a finite module over the I-adic completion of A. This follows from the fact that
M/InM is finite by condition (c) and the above and Algebra, Lemma 96.12. □

The following is in some sense the most straightforward possible application Lemma
16.10 above.

Lemma 16.11.0DXW In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) I = (f) is a principal ideal for a nonzerodivisor f ∈ a,
(2) Fn is a finite locally free OU /fnOU -module,
(3) H1

a(A/fA) and H2
a(A/fA) are finite A-modules.

Then (Fn) extends canonically to X. In particular, if A is complete, then (Fn) is
the completion of a coherent OU -module.

Proof. We will prove this by verifying hypotheses (a), (b), and (c) of Lemma 16.10.

Since Fn is locally free over OU /fnOU we see that we have short exact sequences
0 → Fn → Fn+1 → F1 → 0 for all n. Thus condition (b) holds by Cohomology,
Lemma 36.2.

As f is a nonzerodivisor we obtain short exact sequences

0→ A/fnA
f−→ A/fn+1A→ A/fA→ 0

and we have corresponding short exact sequences 0→ Fn → Fn+1 → F1 → 0. We
will use Local Cohomology, Lemma 8.2 without further mention. Our assumptions
imply that H0(U,OU /fOU ) and H1(U,OU /fOU ) are finite A-modules. Hence the
same thing is true for F1, see Local Cohomology, Lemma 12.2. Using induction
and the short exact sequences we find that H0(U,Fn) are finite A-modules for all
n. In this way we see hypothesis (c) is satisfied.
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Finally, as H1(U,F1) is a finite A-module we can apply Cohomology, Lemma 36.4
to see hypothesis (a) holds. □

Remark 16.12.0EHI In Lemma 16.11 if A is universally catenary with Cohen-Macaulay
formal fibres (for example if A has a dualizing complex), then the condition that
H1

a(A/fA) and H2
a(A/fA) are finite A-modules, is equivalent with

depth((A/f)p) + dim((A/p)q) > 2

for all p ∈ V (f) \ V (a) and q ∈ V (p) ∩ V (a) by Local Cohomology, Theorem 11.6.

For example, if A/fA is (S2) and if every irreducible component of Z = V (a) has
codimension ≥ 3 in Y = Spec(A/fA), then we get the finiteness of H1

a(A/fA) and
H2

a(A/fA). This should be contrasted with the slightly weaker conditions found in
Lemma 20.1 (see also Remark 20.2).

17. Algebraization of coherent formal modules, II

0EIT We continue the discussion started in Section 16. This section can be skipped on a
first reading.

Lemma 17.1.0EIU In Situation 16.1. Let (Fn)→ (F ′
n) be a morphism of Coh(U, IOU )

whose kernel and cokernel are annihilated by a power of I. Then
(1) (Fn) extends to X if and only if (F ′

n) extends to X, and
(2) (Fn) is the completion of a coherent OU -module if and only if (F ′

n) is.

Proof. Part (2) follows immediately from Cohomology of Schemes, Lemma 23.6.
To see part (1), we first use Lemma 16.6 to reduce to the case where A is I-adically
complete. However, in that case (1) reduces to (2) by Lemma 16.3. □

The following two lemmas where originally used in the proof of Lemma 16.10. We
keep them here for the reader who is interested to know what intermediate results
one can obtain.

Lemma 17.2.0EHF In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). If the
inverse system H0(U,Fn) has Mittag-Leffler, then the canonical maps

M̃/InM |U → Fn

are surjective for all n where M is as in (16.6.1).

Proof. Surjectivity may be checked on the stalk at some point y ∈ Y \ Z. If y
corresponds to the prime q ⊂ A, then we can choose f ∈ a, f ̸∈ q. Then it suffices
to show

Mf −→ H0(U,Fn)f = H0(D(f),Fn)
is surjective as D(f) is affine (equality holds by Properties, Lemma 17.1). Since we
have the Mittag-Leffler property, we find that

Im(M → H0(U,Fn)) = Im(H0(U,Fm)→ H0(U,Fn))

for some m ≥ n. Using the long exact sequence of cohomology we see that

Coker(H0(U,Fm)→ H0(U,Fn)) ⊂ H1(U, Ker(Fm → Fn))

Since U = X \V (a) this H1 is a-power torsion. Hence after inverting f the cokernel
becomes zero. □
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Lemma 17.3.0EHG In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Let M be
as in (16.6.1). Set

Gn = M̃/InM.

If the limit topology on M agrees with the I-adic topology, then Gn|U is a coherent
OU -module and the map of inverse systems

(Gn|U ) −→ (Fn)
is injective in the abelian category Coh(U, IOU ).

Proof. Observe that Gn is a quasi-coherent OX -module annihilated by In and that
Gn+1/InGn+1 = Gn. Consider

Mn = Im(M −→ H0(U,Fn))
The assumption says that the inverse systems (Mn) and (M/InM) are isomorphic
as pro-objects of ModA. Pick f ∈ a so D(f) ⊂ U is an affine open. Then we have

(Mn)f ⊂ H0(U,Fn)f = H0(D(f),Fn)

Equality holds by Properties, Lemma 17.1. Thus M̃n|U → Fn is injective. It
follows that M̃n|U is a coherent module (Cohomology of Schemes, Lemma 9.3).
Since M → M/InM is surjective and factors as Mn′ → M/InM for some n′ ≥ n
we find that Gn|U is coherent as the quotient of a coherent module. Combined with
the initical remarks of the proof we conclude that (Gn|U ) indeed forms an object of
Coh(U, IOU ). Finally, to show the injectivity of the map it suffices to show that

lim(M/InM)f = lim H0(D(f),Gn)→ lim H0(D(f),Fn)
is injective, see Cohomology of Schemes, Lemmas 23.2 and 23.1. The injectivity
of lim(Mn)f → lim H0(D(f),Fn) is clear (see above) and by our remark on pro-
systems we have lim(Mn)f = lim(M/InM)f . This finishes the proof. □

18. A distance function

0EIW Let Y be a Noetherian scheme and let Z ⊂ Y be a closed subset. We define a
function
(18.0.1)0EIX δY

Z = δZ : Y −→ Z≥0 ∪ {∞}
which measures the “distance” of a point of Y from Z. For an informal discussion,
please see Remark 18.3. Let y ∈ Y . We set δZ(y) = ∞ if y is contained in a
connected component of Y which does not meet Z. If y is contained in a connected
component of Y which meets Z, then we can find k ≥ 0 and a system

V0 ⊂W0 ⊃ V1 ⊂W1 ⊃ . . . ⊃ Vk ⊂Wk

of integral closed subschemes of Y such that V0 ⊂ Z and y ∈ Vk is the generic point.
Set ci = codim(Vi, Wi) for i = 0, . . . , k and bi = codim(Vi+1, Wi) for i = 0, . . . , k−1.
For such a system we set
δ(V0, W0, V1, . . . , Wk) = k + max

i=0,1,...,k
(ci + ci+1 + . . . + ck − bi − bi+1 − . . .− bk−1)

This is ≥ k as we can take i = k and we have ck ≥ 0. Finally, we set
δZ(y) = min δ(V0, W0, V1, . . . , Wk)

where the minimum is over all systems of integral closed subschemes of Y as above.

https://stacks.math.columbia.edu/tag/0EHG
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Lemma 18.1.0EIY Let Y be a Noetherian scheme and let Z ⊂ Y be a closed subset.
(1) For y ∈ Y we have δZ(y) = 0⇔ y ∈ Z.
(2) The subsets {y ∈ Y | δZ(y) ≤ k} are stable under specialization.
(3) For y ∈ Y and z ∈ {y} ∩ Z we have dim(O{y},z

) ≥ δZ(y).
(4) If δ is a dimension function on Y , then δ(y) ≤ δZ(y) + δmax where δmax is

the maximum value of δ on Z.
(5) If Y = Spec(A) is the spectrum of a catenary Noetherian local ring with

maximal ideal m and Z = {m}, then δZ(y) = dim({y}).
(6) Given a pattern of specializations

y′
0

�� ��

y′
1

��

. . . y′
k−1

$$
y0 y1 . . . yk = y

between points of Y with y0 ∈ Z and y′
i ⇝ yi an immediate specialization,

then δZ(yk) ≤ k.
(7) If Y ′ ⊂ Y is an open subscheme, then δY ′

Y ′∩Z(y′) ≥ δY
Z (y′) for y′ ∈ Y ′.

Proof. Part (1) is essentially true by definition. Namely, if y ∈ Z, then we can
take k = 0 and V0 = W0 = {y}.
Proof of (2). Let y ⇝ y′ be a nontrivial specialization and let V0 ⊂ W0 ⊃ V1 ⊂
W1 ⊃ . . . ⊂ Wk is a system for y. Here there are two cases. Case I: Vk = Wk,
i.e., ck = 0. In this case we can set V ′

k = W ′
k = {y′}. An easy computation shows

that δ(V0, W0, . . . , V ′
k, W ′

k) ≤ δ(V0, W0, . . . , Vk, Wk) because only bk−1 is changed
into a bigger integer. Case II: Vk ̸= Wk, i.e., ck > 0. Observe that in this case
maxi=0,1,...,k(ci + ci+1 + . . . + ck − bi − bi+1 − . . . − bk−1) > 0. Hence if we set
V ′

k+1 = Wk+1 = {y′}, then although k is replaced by k + 1, the maximum now
looks like

max
i=0,1,...,k+1

(ci + ci+1 + . . . + ck + ck+1 − bi − bi+1 − . . .− bk−1 − bk)

with ck+1 = 0 and bk = codim(Vk+1, Wk) > 0. This is strictly smaller than
maxi=0,1,...,k(ci+ci+1+. . .+ck−bi−bi+1−. . .−bk−1) and hence δ(V0, W0, . . . , V ′

k+1, W ′
k+1) ≤

δ(V0, W0, . . . , Vk, Wk) as desired.

Proof of (3). Given y ∈ Y and z ∈ {y} ∩ Z we get the system

V0 = {z} ⊂W0 = {y}
and c0 = codim(V0, W0) = dim(O{y},z

) by Properties, Lemma 10.3. Thus we see
that δ(V0, W0) = 0 + c0 = c0 which proves what we want.
Proof of (4). Let δ be a dimension function on Y . Let V0 ⊂W0 ⊃ V1 ⊂W1 ⊃ . . . ⊂
Wk be a system for y. Let y′

i ∈ Wi and yi ∈ Vi be the generic points, so y0 ∈ Z
and yk = y. Then we see that

δ(yi)− δ(yi−1) = δ(y′
i−1)− δ(yi−1)− δ(y′

i−1) + δ(yi) = ci−1 − bi−1

Finally, we have δ(y′
k)− δ(yk−1) = ck. Thus we see that

δ(y)− δ(y0) = c0 + . . . + ck − b0 − . . .− bk−1

We conclude δ(V0, W0, . . . , Wk) ≥ k + δ(y)− δ(y0) which proves what we want.
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Proof of (5). The function δ(y) = dim({y}) is a dimension function. Hence δ(y) ≤
δZ(y) by part (4). By part (3) we have δZ(y) ≤ δ(y) and we are done.

Proof of (6). Given such a sequence of points, we may assume all the specializations
y′

i ⇝ yi+1 are nontrivial (otherwise we can shorten the chain of specializations).
Then we set Vi = {yi} and Wi = {y′

i} and we compute δ(V0, W1, V1, . . . , Wk−1) = k
because all the codimensions ci of Vi ⊂ Wi are 1 and all bi > 0. This implies
δZ(y′

k−1) ≤ k as y′
k−1 is the generic point of Wk. Then δZ(y) ≤ k by part (2) as y

is a specialization of yk−1.

Proof of (7). This is clear as their are fewer systems to consider in the computation
of δY ′

Y ′∩Z . □

Lemma 18.2.0EIZ Let Y be a universally catenary Noetherian scheme. Let Z ⊂ Y be
a closed subscheme. Let f : Y ′ → Y be a finite type morphism all of whose fibres
have dimension ≤ e. Set Z ′ = f−1(Z). Then

δZ(y) ≤ δZ′(y′) + e− trdegκ(y)(κ(y′))

for y′ ∈ Y ′ with image y ∈ Y .

Proof. If δZ′(y′) = ∞, then there is nothing to prove. If δZ′(y′) < ∞, then we
choose a system of integral closed subschemes

V ′
0 ⊂W ′

0 ⊃ V ′
1 ⊂W ′

1 ⊃ . . . ⊂W ′
k

of Y ′ with V ′
0 ⊂ Z ′ and y′ the generic point of W ′

k such that δZ′(y′) = δ(V ′
0 , W ′

0, . . . , W ′
k).

Denote
V0 ⊂W0 ⊃ V1 ⊂W1 ⊃ . . . ⊂Wk

the scheme theoretic images of the above schemes in Y . Observe that y is the
generic point of Wk and that V0 ⊂ Z. For each i we look at the diagram

V ′
i

//

��

W ′
i

��

V ′
i+1

oo

��
Vi

// Wi Vi+1oo

Denote ni the relative dimension of V ′
i /Vi and mi the relative dimension of W ′

i /Wi;
more precisely these are the transcendence degrees of the corresponding exten-
sions of the function fields. Set ci = codim(Vi, Wi), c′

i = codim(V ′
i , W ′

i ), bi =
codim(Vi+1, Wi), and b′

i = codim(V ′
i+1, W ′

i ). By the dimension formula we have

ci = c′
i + ni −mi and bi = b′

i + ni+1 −mi

See Morphisms, Lemma 52.1. Hence ci− bi = c′
i− b′

i + ni−ni+1. Thus we see that

ci + ci+1 + . . . + ck − bi − bi+1 − . . .− bk−1

= c′
i + c′

i+1 + . . . + c′
k − b′

i − b′
i+1 − . . .− b′

k−1 + ni − nk + ck − c′
k

= c′
i + c′

i+1 + . . . + c′
k − b′

i − b′
i+1 − . . .− b′

k−1 + ni −mk
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Thus we see that

max
i=0,...,k

(ci + ci+1 + . . . + ck − bi − bi+1 − . . .− bk−1)

= max
i=0,...,k

(c′
i + c′

i+1 + . . . + c′
k − b′

i − b′
i+1 − . . .− b′

k−1 + ni −mk)

= max
i=0,...,k

(c′
i + c′

i+1 + . . . + c′
k − b′

i − b′
i+1 − . . .− b′

k−1 + ni)−mk

≤ max
i=0,...,k

(c′
i + c′

i+1 + . . . + c′
k − b′

i − b′
i+1 − . . .− b′

k−1) + e−mk

Since mk = trdegκ(y)(κ(y′)) we conclude that

δ(V0, W0, . . . , Wk) ≤ δ(V ′
0 , W ′

0, . . . , W ′
k) + e− trdegκ(y)(κ(y′))

as desired. □

Remark 18.3.0EJ0 Let Y be a Noetherian scheme and let Z ⊂ Y be a closed subset.
By Lemma 18.1 we have

δZ(y) ≤ min

k

∣∣∣∣∣∣
there exist specializations in Y

y0 ← y′
0 → y1 ← y′

1 → . . .← y′
k−1 → yk = y

with y0 ∈ Z and y′
i ⇝ yi immediate


We claim that if Y is of finite type over a field, then equality holds. If we ever
need this result we will formulate a precise result and prove it here. However, in
general if we define δZ by the right hand side of this inequality, then we don’t know
if Lemma 18.2 remains true.

Example 18.4.0EJ1 Let k be a field and Y = An
k . Denote δ : Y → Z≥0 the usual

dimension function.
(1) If Z = {z} for some closed point z, then

(a) δZ(y) = δ(y) if y ⇝ z and
(b) δZ(y) = δ(y) + 1 if y ̸⇝ z.

(2) If Z is a closed subvariety and W = {y}, then
(a) δZ(y) = 0 if W ⊂ Z,
(b) δZ(y) = dim(W )− dim(Z) if Z is contained in W ,
(c) δZ(y) = 1 if dim(W ) ≤ dim(Z) and W ̸⊂ Z,
(d) δZ(y) = dim(W )− dim(Z) + 1 if dim(W ) > dim(Z) and Z ̸⊂W .

A generalization of case (1) is if Y is of finite type over a field and Z = {z} is a
closed point. Then δZ(y) = δ(y) + t where t is the minimum length of a chain of
curves connecting z to a closed point of {y}.

19. Algebraization of coherent formal modules, III

0EJ2 We continue the discussion started in Sections 16 and 17. We will use the distance
function of Section 18 to formulate a some natural conditions on coherent formal
modules in Situation 16.1.

In Situation 16.1 given a point y ∈ U ∩ Y we can consider the I-adic completion

O∧
X,y = limOX,y/InOX,y

This is a Noetherian local ring complete with respect to IO∧
X,y with maximal ideal

m∧
y , see Algebra, Section 97. Let (Fn) be an object of Coh(U, IOU ). Let us define

https://stacks.math.columbia.edu/tag/0EJ0
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the “stalk” of (Fn) at y by the formula

F∧
y = limFn,y

This is a finite module over O∧
X,y. See Algebra, Lemmas 98.2 and 96.12.

Definition 19.1.0EJ3 In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Let a, b

be integers. Let δY
Z be as in (18.0.1). We say (Fn) satisfies the (a, b)-inequalities if

for y ∈ U ∩ Y and a prime p ⊂ O∧
X,y with p ̸∈ V (IO∧

X,y)
(1) if V (p) ∩ V (IO∧

X,y) ̸= {m∧
y }, then

depth((F∧
y )p) + δY

Z (y) ≥ a or depth((F∧
y )p) + dim(O∧

X,y/p) + δY
Z (y) > b

(2) if V (p) ∩ V (IO∧
X,y) = {m∧

y }, then

depth((F∧
y )p) + δY

Z (y) > a

We say (Fn) satisfies the strict (a, b)-inequalities if for y ∈ U ∩ Y and a prime
p ⊂ O∧

X,y with p ̸∈ V (IO∧
X,y) we have

depth((F∧
y )p) + δY

Z (y) > a or depth((F∧
y )p) + dim(O∧

X,y/p) + δY
Z (y) > b

Here are some elementary observations.

Lemma 19.2.0EJ4 In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Let a, b be
integers.

(1) If (Fn) is annihilated by a power of I, then (Fn) satisfies the (a, b)-inequalities
for any a, b.

(2) If (Fn) satisfies the (a + 1, b)-inequalities, then (Fn) satisfies the strict
(a, b)-inequalities.

If cd(A, I) ≤ d and A has a dualizing complex, then
(3) (Fn) satisfies the (s, s + d)-inequalities if and only if for all y ∈ U ∩ Y the

tuple O∧
X,y, IO∧

X,y, {m∧
y },F∧

y , s− δY
Z (y), d is as in Situation 10.1.

(4) If (Fn) satisfies the strict (s, s + d)-inequalities, then (Fn) satisfies the
(s, s + d)-inequalities.

Proof. Immediate except for part (4) which is a consequence of Lemma 10.5 and
the translation in (3). □

Lemma 19.3.0EKW In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). If cd(A, I) =
1, then F satisfies the (2, 3)-inequalities if and only if

depth((F∧
y )p) + dim(O∧

X,y/p) + δY
Z (y) > 3

for all y ∈ U ∩ Y and p ⊂ O∧
X,y with p ̸∈ V (IO∧

X,y).

Proof. Observe that for a prime p ⊂ O∧
X,y, p ̸∈ V (IO∧

X,y) we have V (p) ∩
V (IO∧

X,y) = {m∧
y } ⇔ dim(O∧

X,y/p) = 1 as cd(A, I) = 1. See Local Cohomol-
ogy, Lemmas 4.5 and 4.10. OK, consider the three numbers α = depth((F∧

y )p) ≥ 0,
β = dim(O∧

X,y/p) ≥ 1, and γ = δY
Z (y) ≥ 1. Then we see Definition 19.1 requires

(1) if β > 1, then α + γ ≥ 2 or α + β + γ > 3, and
(2) if β = 1, then α + γ > 2.

It is trivial to see that this is equivalent to α + β + γ > 3. □
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In the rest of this section, which we suggest the reader skip on a first reading, we
will show that, when A is I-adically complete, the category of (Fn) of Coh(U, IOU )
which extend to X and satisfy the strict (1, 1 + cd(A, I))-inequalities is equivalent
to a full subcategory of the category of coherent OU -modules.

Lemma 19.4.0EJ5 In Situation 16.1 let F be a coherent OU -module and d ≥ 1.
Assume

(1) A is I-adically complete, has a dualizing complex, and cd(A, I) ≤ d,
(2) the completion F∧ of F satisfies the strict (1, 1 + d)-inequalities.

Let x ∈ X be a point. Let W = {x}. If W ∩ Y has an irreducible component
contained in Z and one which is not, then depth(Fx) ≥ 1.

Proof. Let W ∩ Y = W1 ∪ . . . ∪Wn be the decomposition into irreducible com-
ponents. By assumption, after renumbering, we can find 0 < m < n such that
W1, . . . , Wm ⊂ Z and Wm+1, . . . , Wn ̸⊂ Z. We conclude that

W ∩ Y \ ((W1 ∪ . . . ∪Wm) ∩ (Wm+1 ∪ . . . ∪Wn))

is disconnected. By Lemma 14.2 we can find 1 ≤ i ≤ m < j ≤ n and z ∈ Wi ∩Wj

such that dim(OW,z) ≤ d + 1. Choose an immediate specialization y ⇝ z with
y ∈ Wj , y ̸∈ Z; existence of y follows from Properties, Lemma 6.4. Observe that
δY

Z (y) = 1 and dim(OW,y) ≤ d. Let p ⊂ OX,y be the prime corresponding to x. Let
p′ ⊂ O∧

X,y be a minimal prime over pO∧
X,y. Then we have

depth(Fx) = depth((F∧
y )p′) and dim(OW,y) = dim(O∧

X,y/p′)

See Algebra, Lemma 163.1 and Local Cohomology, Lemma 11.3. Now we read off
the conclusion from the inequalities given to us. □

Lemma 19.5.0EJ6 In Situation 16.1 let F be a coherent OU -module and d ≥ 1.
Assume

(1) A is I-adically complete, has a dualizing complex, and cd(A, I) ≤ d,
(2) the completion F∧ of F satisfies the strict (1, 1 + d)-inequalities, and
(3) for x ∈ U with {x} ∩ Y ⊂ Z we have depth(Fx) ≥ 2.

Then H0(U,F)→ lim H0(U,F/InF) is an isomorphism.

Proof. We will prove this by showing that Lemma 12.4 applies. Thus we let
x ∈ Ass(F) with x ̸∈ Y . Set W = {x}. By condition (3) we see that W ∩ Y ̸⊂ Z.
By Lemma 19.4 we see that no irreducible component of W ∩ Y is contained in Z.
Thus if z ∈ W ∩ Z, then there is an immediate specialization y ⇝ z, y ∈ W ∩ Y ,
y ̸∈ Z. For existence of y use Properties, Lemma 6.4. Then δY

Z (y) = 1 and the
assumption implies that dim(OW,y) > d. Hence dim(OW,z) > 1+d and we win. □

Lemma 19.6.0EJ7 In Situation 16.1 let F be a coherent OU -module and d ≥ 1.
Assume

(1) A is I-adically complete, has a dualizing complex, and cd(A, I) ≤ d,
(2) the completion F∧ of F satisfies the strict (1, 1 + d)-inequalities, and
(3) for x ∈ U with {x} ∩ Y ⊂ Z we have depth(Fx) ≥ 2.

Then the map
HomU (G,F) −→ HomCoh(U,IOU )(G∧,F∧)

is bijective for every coherent OU -module G.
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Proof. Set H = HomOU
(G,F). Using Cohomology of Schemes, Lemma 11.2 or

More on Algebra, Lemma 23.10 we see that the completion of H satisfies the strict
(1, 1+d)-inequalities and that for x ∈ U with {x}∩Y ⊂ Z we have depth(Hx) ≥ 2.
Details omitted. Thus by Lemma 19.5 we have

HomU (G,F) = H0(U,H) = lim H0(U,H/InH) = MorCoh(U,IOU )(G∧,F∧)
See Cohomology of Schemes, Lemma 23.5 for the final equality. □

Lemma 19.7.0EJ8 In Situation 16.1 let (Fn) be an object of Coh(U, IOU ) and d ≥ 1.
Assume

(1) A is I-adically complete, has a dualizing complex, and cd(A, I) ≤ d,
(2) (Fn) is the completion of a coherent OU -module,
(3) (Fn) satisfies the strict (1, 1 + d)-inequalities.

Then there exists a unique coherent OU -module F whose completion is (Fn) such
that for x ∈ U with {x} ∩ Y ⊂ Z we have depth(Fx) ≥ 2.

Proof. Choose a coherent OU -module F whose completion is (Fn). Let T = {x ∈
U | {x} ∩ Y ⊂ Z}. We will construct F by applying Local Cohomology, Lemma
15.4 with F and T . Then uniqueness will follow from the mapping property of
Lemma 19.6.
Since T is stable under specialization in U the only thing to check is the following.
If x′ ⇝ x is an immediate specialization of points of U with x ∈ T and x′ ̸∈ T , then
depth(Fx′) ≥ 1. Set W = {x} and W ′ = {x′}. Since x′ ̸∈ T we see that W ′ ∩ Y is
not contained in Z. If W ′ ∩ Y contains an irreducible component contained in Z,
then we are done by Lemma 19.4. If not, we choose an irreducible component W1 of
W ∩Y and an irreducible component W ′

1 of W ′ ∩Y with W1 ⊂W ′
1. Let z ∈W1 be

the generic point. Let y ⇝ z, y ∈ W ′
1 be an immediate specialization with y ̸∈ Z;

existence of y follows from W ′
1 ̸⊂ Z (see above) and Properties, Lemma 6.4. Then

we have the following z ∈ Z, x ⇝ z, x′ ⇝ y ⇝ z, y ∈ Y \ Z, and δY
Z (y) = 1. By

Local Cohomology, Lemma 4.10 and the fact that z is a generic point of W ∩ Y
we have dim(OW,z) ≤ d. Since x′ ⇝ x is an immediate specialization we have
dim(OW ′,z) ≤ d + 1. Since y ̸= z we conclude dim(OW ′,y) ≤ d. If depth(Fx′) = 0
then we would get a contradiction with assumption (3); details about passage from
OX,y to its completion omitted. This finishes the proof. □

20. Algebraization of coherent formal modules, IV

0EHJ In this section we prove two stronger versions of Lemma 16.11 in the local case,
namely, Lemmas 20.1 and 20.4. Although these lemmas will be obsoleted by the
more general Proposition 22.2, their proofs are significantly easier.

Lemma 20.1.0DXU In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is local and a = m is the maximal ideal,
(2) A has a dualizing complex,
(3) I = (f) is a principal ideal for a nonzerodivisor f ∈ m,
(4) Fn is a finite locally free OU /fnOU -module,
(5) if p ∈ V (f) \ {m}, then depth((A/f)p) + dim(A/p) > 1, and
(6) if p ̸∈ V (f) and V (p) ∩ V (f) ̸= {m}, then depth(Ap) + dim(A/p) > 3.

Then (Fn) extends canonically to X. In particular, if A is complete, then (Fn) is
the completion of a coherent OU -module.
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Proof. We will prove this by verifying hypotheses (a), (b), and (c) of Lemma 16.10.
Since Fn is locally free over OU /fnOU we see that we have short exact sequences
0 → Fn → Fn+1 → F1 → 0 for all n. Thus condition (b) holds by Cohomology,
Lemma 36.2.
By induction on n and the short exact sequences 0→ A/fn → A/fn+1 → A/f → 0
we see that the associated primes of A/fnA agree with the associated primes of
A/fA. Since the associated points of Fn correspond to the associated primes of
A/fnA not equal to m by assumption (3), we conclude that Mn = H0(U,Fn) is a
finite A-module by (5) and Local Cohomology, Proposition 8.7. Thus hypothesis
(c) holds.
To finish the proof it suffices to show that there exists an n > 1 such that the image
of

H1(U,Fn) −→ H1(U,F1)
has finite length as an A-module. Namely, this will imply hypothesis (a) by Coho-
mology, Lemma 36.5. The image is independent of n for n large enough by Lemma
5.2. Let ω•

A be a normalized dualizing complex for A. By the local duality theorem
and Matlis duality (Dualizing Complexes, Lemma 18.4 and Proposition 7.8) our
claim is equivalent to: the image of

Ext−2
A (M1, ω•

A)→ Ext−2
A (Mn, ω•

A)
has finite length for n≫ 1. The modules in question are finite A-modules supported
at V (f). Thus it suffices to show that this map is zero after localization at a prime
q containing f and different from m. Let ω•

Aq
be a normalized dualizing complex

on Aq and recall that ω•
Aq

= (ω•
A)q[dim(A/q)] by Dualizing Complexes, Lemma

17.3. Using the local structure of Fn given in (4) we find that it suffices to show
the vanishing of

Ext−2+dim(A/q)
Aq

(Aq/f, ω•
Aq

)→ Ext−2+dim(A/q)
Aq

(Aq/fn, ω•
Aq

)

for n large enough. If dim(A/q) > 3, then this is immediate from Local Cohomology,
Lemma 9.4. For the other cases we will use the long exact sequence

. . .
fn

−−→ H−1(ω•
Aq

)→ Ext−1
Aq

(Aq/fn, ω•
Aq

)→ H0(ω•
Aq

) fn

−−→ H0(ω•
Aq

)→ Ext0
Aq

(Aq/fn, ω•
Aq

)→ 0

If dim(A/q) = 2, then H0(ω•
Aq

) = 0 because depth(Aq) ≥ 1 as f is a nonzerodivisor.
Thus the long exact sequence shows the condition is that

fn−1 : H−1(ω•
Aq

)/f → H−1(ω•
Aq

)/fn

is zero. Now H−1(ω•
q) is a finite module supported in the primes p ⊂ Aq such

that depth(Ap) + dim((A/p)q) ≤ 1. Since dim((A/p)q) = dim(A/p) − 2 condition
(6) tells us these primes are contained in V (f). Thus the desired vanishing for n
large enough. Finally, if dim(A/q) = 1, then condition (5) combined with the fact
that f is a nonzerodivisor insures that Aq has depth at least 2. Hence H0(ω•

Aq
) =

H−1(ω•
Aq

) = 0 and the long exact sequence shows the claim is equivalent to the
vanishing of

fn−1 : H−2(ω•
Aq

)/f → H−2(ω•
Aq

)/fn

Now H−2(ω•
q) is a finite module supported in the primes p ⊂ Aq such that depth(Ap)+

dim((A/p)q) ≤ 2. By condition (6) all of these primes are contained in V (f). Thus
the desired vanishing for n large enough. □
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Remark 20.2.0DXV Let (A,m) be a complete Noetherian normal local domain of
dimension ≥ 4 and let f ∈ m be nonzero. Then assumptions (1), (2), (3), (5), and
(6) of Lemma 20.1 are satisfied. Thus vectorbundles on the formal completion of U
along U ∩ V (f) can be algebraized. In Lemma 20.4 we will generalize this to more
general coherent formal modules; please also compare with Remark 20.7.

Lemma 20.3.0EHK In Situation 16.1 let (Mn) be an inverse system of A-modules
as in Lemma 16.2 and let (Fn) be the corresponding object of Coh(U, IOU ). Let
d ≥ cd(A, I) and s ≥ 0 be integers. With notation as above assume

(1) A is local with maximal ideal m = a,
(2) A has a dualizing complex, and
(3) (Fn) satisfies the (s, s + d)-inequalities (Definition 19.1).

Let E be an injective hull of the residue field of A. Then for i ≤ s there exists a
finite A-module N annihilated by a power of I and for n≫ 0 compatible maps

Hi
m(Mn)→ HomA(N, E)

whose cokernels are finite length A-modules and whose kernels Kn form an inverse
system such that Im(Kn′′ → Kn′) has finite length for n′′ ≫ n′ ≫ 0.

Proof. Let ω•
A be a normalized dualizing complex. Then δY

Z = δ is the dimension
function associated with this dualizing complex. Observe that Ext−i

A (Mn, ω•
A) is a

finite A-module annihilated by In. Fix 0 ≤ i ≤ s. Below we will find n1 > n0 > 0
such that if we set

N = Im(Ext−i
A (Mn0 , ω•

A)→ Ext−i
A (Mn1 , ω•

A))
then the kernels of the maps

N → Ext−i
A (Mn, ω•

A), n ≥ n1

are finite length A-modules and the cokernels Qn form a system such that Im(Qn′ →
Qn′′) has finite length for n′′ ≫ n′ ≫ n1. This is equivalent to the statement that
the system {Ext−i

A (Mn, ω•
A)}n≥1 is essentially constant in the quotient of the cate-

gory of finite A-modules modulo the Serre subcategory of finite length A-modules.
By the local duality theorem (Dualizing Complexes, Lemma 18.4) and Matlis du-
ality (Dualizing Complexes, Proposition 7.8) we conclude that there are maps

Hi
m(Mn)→ HomA(N, E), n ≥ n1

as in the statement of the lemma.
Pick f ∈ m. Let B = A∧

f be the I-adic completion of the localization Af . Recall
that ω•

Af
= ω•

A⊗A Af and ω•
B = ω•

A⊗A B are dualizing complexes (Dualizing Com-
plexes, Lemma 15.6 and 22.3). Let M be the finite B-module lim Mn,f (compare
with discussion in Cohomology of Schemes, Lemma 23.1). Then

Ext−i
A (Mn, ω•

A)f = Ext−i
Af

(Mn,f , ω•
Af

) = Ext−i
B (M/InM, ω•

B)

Since m can be generated by finitely many f ∈ m it suffices to show that for each
f the system

{Ext−i
B (M/InM, ω•

B)}n≥1

is essentially constant. Some details omitted.
Let q ⊂ IB be a prime ideal. Then q corresponds to a point y ∈ U∩Y . Observe that
δ(q) = dim({y}) is also the value of the dimension function associated to ω•

B (we

https://stacks.math.columbia.edu/tag/0DXV
https://stacks.math.columbia.edu/tag/0EHK
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omit the details; use that ω•
B is gotten from ω•

A by tensoring up with B). Assump-
tion (3) guarantees via Lemma 19.2 that Lemma 10.4 applies to Bq, IBq, qBq, Mq

with s replaced by s− δ(y). We obtain that

H
i−δ(q)
qBq

(Mq) = lim H
i−δ(q)
qBq

((M/InM)q)

and this module is annihilated by a power of I. By Lemma 5.3 we find that the in-
verse systems H

i−δ(q)
qBq

((M/InM)q) are essentially constant with value H
i−δ(q)
qBq

(Mq).
Since (ω•

B)q[−δ(q)] is a normalized dualizing complex on Bq the local duality the-
orem shows that the system

Ext−i
B (M/InM, ω•

B)q

is essentially constant with value Ext−i
B (M, ω•

B)q.

To finish the proof we globalize as in the proof of Lemma 10.6; the argument here
is easier because we know the value of our system already. Namely, consider the
maps

αn : Ext−i
B (M/InM, ω•

B) −→ Ext−i
B (M, ω•

B)
for varying n. By the above, for every q we can find an n such that αn is surjective
after localization at q. Since B is Noetherian and Ext−i

B (M, ω•
B) a finite module,

we can find an n such that αn is surjective. For any n such that αn is surjective,
given a prime q ∈ V (IB) we can find an n′ > n such that Ker(αn) maps to zero
in Ext−i(M/In′

M, ω•
B) at least after localizing at q. Since Ker(αn) is a finite

A-module and since supports of sections are quasi-compact, we can find an n′

such that Ker(αn) maps to zero in Ext−i(M/In′
M, ω•

B). In this way we see that
Ext−i(M/InM, ω•

B) is essentially constant with value Ext−i(M, ω•
B). This finishes

the proof. □

Here is a more general version of Lemma 20.1.

Lemma 20.4.0EJ9 In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is local and a = m is the maximal ideal,
(2) A has a dualizing complex,
(3) I = (f) is a principal ideal,
(4) (Fn) satisfies the (2, 3)-inequalities.

Then (Fn) extends to X. In particular, if A is I-adically complete, then (Fn) is
the completion of a coherent OU -module.

Proof. Recall that Coh(U, IOU ) is an abelian category, see Cohomology of Schemes,
Lemma 23.2. Over affine opens of U the object (Fn) corresponds to a finite module
over a Noetherian ring (Cohomology of Schemes, Lemma 23.1). Thus the kernels
of the maps fN : (Fn)→ (Fn) stabilize for N large enough. By Lemmas 17.1 and
16.3 in order to prove the lemma we may replace (Fn) by the image of such a map.
Thus we may assume f is injective on (Fn). After this replacement the equivalent
conditions of Lemma 3.1 hold for the inverse system (Fn) on U . We will use this
without further mention in the rest of the proof.

We will check hypotheses (a), (b), and (c) of Lemma 16.10. Hypothesis (b) holds
by Cohomology, Lemma 36.2.

https://stacks.math.columbia.edu/tag/0EJ9
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Pick a inverse system of modules {Mn} as in Lemma 16.2. We may assume
H0

m(Mn) = 0 by replacing Mn by Mn/H0
m(Mn) if necessary. Then we obtain

short exact sequences

0→Mn → H0(U,Fn)→ H1
m(Mn)→ 0

for all n. Let E be an injective hull of the residue field of A. By Lemma 20.3 and
our current assumption (4) we can choose, an integer m ≥ 0, finite A-modules N1
and N2 annihilated by f c for some c ≥ 0 and compatible systems of maps

Hi
m(Mn)→ HomA(Ni, E), i = 1, 2

for n ≥ m with the properties stated in the lemma.

We know that M = lim H0(U,Fn) is an A-module whose limit topology is the f -
adic topology. Thus, given n, the module M/fnM is a subquotient of H0(U,FN )
for some N ≫ n. Looking at the information obtained above we see that f cM/fnM
is a finite A-module. Since f is a nonzerodivisor on M we conclude that M/fn−cM
is a finite A-module. In this way we see that hypothesis (c) of Lemma 16.10 holds.

Next, we study the module

Ob = lim H1(U,Fn) = lim H2
m(Mn)

For n ≥ m let Kn be the kernel of the map H2
m(Mn) → HomA(N2, E). Set K =

lim Kn. We obtain an exact sequence

0→ K → Ob→ HomA(N2, E)

By the above the limit topology on Ob = lim H2
m(Mn) is the f -adic topology. Since

N2 is annihilated by f c we conclude the same is true for the limit topology on
K = lim Kn. Thus K/fK is a subquotient of Kn for n≫ 1. However, since {Kn}
is pro-isomorphic to a inverse system of finite length A-modules (by the conclusion
of Lemma 20.3) we conclude that K/fK is a subquotient of a finite length A-
module. It follows that K is a finite A-module, see Algebra, Lemma 96.12. (In
fact, we even see that dim(Supp(K)) = 1 but we will not need this.)

Given n ≥ 1 consider the boundary map

δn : H0(U,Fn) −→ limN H1(U, fnFN ) f−n

−−−→ Ob

(the second map is an isomorphism) coming from the short exact sequences

0→ fnFN → FN → Fn → 0

For each n set
Pn = Im(H0(U,Fn+m)→ H0(U,Fn))

where m is as above. Observe that {Pn} is an inverse system and that the map f :
Fn → Fn+1 on global sections maps Pn into Pn+1. If p ∈ Pn, then δn(p) ∈ K ⊂ Ob
because δn(p) maps to zero in H1(U, fnFn+m) = H2

m(Mm) and the composition of
δn and Ob→ HomA(N2, E) factors through H2

m(Mm) by our choice of m. Hence⊕
n≥0

Im(Pn → Ob)

is a finite graded A[T ]-module where T acts via multiplication by f . Namely, it
is a graded submodule of K[T ] and K is finite over A. Arguing as in the proof
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of Cohomology, Lemma 35.17 we find that the inverse system {Pn} satisfies ML.
Since {Pn} is pro-isomorphic to {H0(U,Fn)} we conclude that {H0(U,Fn)} has
ML. Thus hypothesis (a) of Lemma 16.10 holds and the proof is complete. □

We can unwind condition of Lemma 20.4 as follows.

Lemma 20.5.0EJA In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is local with maximal ideal a = m,
(2) cd(A, I) = 1.

Then (Fn) satisfies the (2, 3)-inequalities if and only if for all y ∈ U ∩ Y with
dim({y}) = 1 and every prime p ⊂ O∧

X,y, p ̸∈ V (IO∧
X,y) we have

depth((F∧
y )p) + dim(O∧

X,y/p) > 2

Proof. We will use Lemma 19.3 without further mention. In particular, we see
the condition is necessary. Conversely, suppose the condition is true. Note that
δY

Z (y) = dim({y}) by Lemma 18.1. Let us write δ for this function. Let y ∈ U ∩ Y .
If δ(y) > 2, then the inequality of Lemma 19.3 holds. Finally, suppose δ(y) = 2.
We have to show that

depth((F∧
y )p) + dim(O∧

X,y/p) > 1

Choose a specialization y ⇝ y′ with δ(y′) = 1. Then there is a ring map O∧
X,y′ →

O∧
X,y which identifies the target with the completion of the localization of O∧

X,y′ at
a prime q with dim(O∧

X,y′/q) = 1. Moreover, we then obtain

F∧
y = F∧

y′ ⊗O∧
X,y′
O∧

X,y

Let p′ ⊂ O∧
X,y′ be the image of p. By Local Cohomology, Lemma 11.3 we have

depth((F∧
y )p) + dim(O∧

X,y/p) = depth((F∧
y′)p′) + dim((O∧

X,y/p)p′)
= depth((F∧

y′)p′) + dim(O∧
X,y/p′)− 1

the last equality because the specialization is immediate. Thus the lemma is prove
by the assumed inequality for y′, p′. □

Lemma 20.6.0EJB In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is local with maximal ideal a = m,
(2) A has a dualizing complex,
(3) cd(A, I) = 1,
(4) for y ∈ U ∩ Y the module F∧

y is finite locally free outside V (IO∧
X,y), for

example if Fn is a finite locally free OU /InOU -module, and
(5) one of the following is true

(a) Af is (S2) and every irreducible component of X not contained in Y
has dimension ≥ 4, or

(b) if p ̸∈ V (f) and V (p) ∩ V (f) ̸= {m}, then depth(Ap) + dim(A/p) > 3.
Then (Fn) satisfies the (2, 3)-inequalities.

7Choose homogeneous generators of the form δnj (pj) for the displayed module. Then if k =
max(nj) we find that for n ≥ k and any p ∈ Pn we can find aj ∈ A such that p −

∑
ajfn−nj pj

is in the kernel of δn and hence in the image of Pn′ for all n′ ≥ n. Thus Im(Pn → Pn−k) =
Im(Pn′ → Pn−k) for all n′ ≥ n.

https://stacks.math.columbia.edu/tag/0EJA
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Proof. We will use the criterion of Lemma 20.5. Let y ∈ U ∩ Y with dim({y} = 1
and let p be a prime p ⊂ O∧

X,y with p ̸∈ V (IO∧
X,y). Condition (4) shows that

depth((F∧
y )p) = depth((O∧

X,y)p). Thus we have to prove

depth((O∧
X,y)p) + dim(O∧

X,y/p) > 2
Let p0 ⊂ A be the image of p. Let q ⊂ A be the prime corresponding to y. By
Local Cohomology, Lemma 11.3 we have

depth((O∧
X,y)p) + dim(O∧

X,y/p) = depth(Ap0) + dim((A/p0)q)
= depth(Ap0) + dim(A/p0)− 1

If (5)(a) holds, then we get that this is
≥ min(2, dim(Ap0)) + dim(A/p0)− 1

Note that in any case dim(A/p0) ≥ 2. Hence if we get 2 for the minimum, then we
are done. If not we get

dim(Ap0) + dim(A/p0)− 1 ≥ 4− 1
because every component of Spec(A) passing through p0 has dimension ≥ 4. If
(5)(b) holds, then we win immediately. □

Remark 20.7.0EJC Let (A,m) be a Noetherian local ring which has a dualizing complex
and is complete with respect to f ∈ m. Let (Fn) be an object of Coh(U, fOU )
where U is the punctured spectrum of A. Set Y = V (f) ⊂ X = Spec(A). If for
y ∈ U ∩V (f) closed in U , i.e., with dim({y}) = 1, we assume the O∧

X,y-module F∧
y

satisfies the following two conditions
(1) F∧

y [1/f ] is (S2) as a O∧
X,y[1/f ]-module, and

(2) for p ∈ Ass(F∧
y [1/f ]) we have dim(O∧

X,y/p) ≥ 3.
Then (Fn) is the completion of a coherent module on U . This follows from Lemmas
20.4 and 20.5.

21. Improving coherent formal modules

0EJD Let X be a Noetherian scheme. Let Y ⊂ X be a closed subscheme with quasi-
coherent sheaf of ideals I ⊂ OX . Let (Fn) be an object of Coh(X, I). In this
section we construct maps (Fn) → (F ′

n) similar to the maps constructed in Local
Cohomology, Section 15 for coherent modules. For a point y ∈ Y we set

O∧
X,y = limOX,y/In

y , I∧
y = lim Iy/In

y and m∧
y = limmy/In

y

Then O∧
X,y is a Noetherian local ring with maximal ideal m∧

y complete with respect
to I∧

y = IyO∧
X,y. We also set

F∧
y = limFn,y

Then F∧
y is a finite module over O∧

X,y with F∧
y /(I∧

y )nF∧
y = Fn,y for all n, see

Algebra, Lemmas 98.2 and 96.12.
Lemma 21.1.0EJE In the situation above assume X locally has a dualizing complex.
Let T ⊂ Y be a subset stable under specialization. Assume for y ∈ T and for a
nonmaximal prime p ⊂ O∧

X,y with V (p) ∩ V (I∧
y ) = {m∧

y } we have

depth(OX,y)p((F∧
y )p) > 0

Then there exists a canonical map (Fn) → (F ′
n) of inverse systems of coherent

OX-modules with the following properties

https://stacks.math.columbia.edu/tag/0EJC
https://stacks.math.columbia.edu/tag/0EJE
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(1) for y ∈ T we have depth(F ′
n,y) ≥ 1,

(2) (F ′
n) is isomorphic as a pro-system to an object (Gn) of Coh(X, I),

(3) the induced morphism (Fn) → (Gn) of Coh(X, I) is surjective with kernel
annihilated by a power of I.

Proof. For every n we let Fn → F ′
n be the surjection constructed in Local Coho-

mology, Lemma 15.1. Since this is the quotient of Fn by the subsheaf of sections
supported on T we see that we get canonical maps F ′

n+1 → F ′
n such that we obtain

a map (Fn)→ (F ′
n) of inverse systems of coherent OX -modules. Property (1) holds

by construction.
To prove properties (2) and (3) we may assume that X = Spec(A0) is affine and
A0 has a dualizing complex. Let I0 ⊂ A0 be the ideal corresponding to Y . Let
A, I be the I-adic completions of A0, I0. For later use we observe that A has a
dualizing complex (Dualizing Complexes, Lemma 22.4). Let M be the finite A-
module corresponding to (Fn), see Cohomology of Schemes, Lemma 23.1. Then
Fn corresponds to Mn = M/InM . Recall that F ′

n corresponds to the quotient
M ′

n = Mn/H0
T (Mn), see Local Cohomology, Lemma 15.1 and its proof.

Set s = 0 and d = cd(A, I). We claim that A, I, T, M, s, d satisfy assumptions (1),
(3), (4), (6) of Situation 10.1. Namely, (1) and (3) are immediate from the above,
(4) is the empty condition as s = 0, and (6) is the assumption we made in the
statement of the lemma.
By Theorem 10.8 we see that {H0

T (Mn)} is Mittag-Leffler, that lim H0
T (Mn) =

H0
T (M), and that H0

T (M) is killed by a power of I. Thus the limit of the short
exact sequences 0→ H0

T (Mn)→Mn →M ′
n → 0 is the short exact sequence

0→ H0
T (M)→M → lim M ′

n → 0
Setting M ′ = lim M ′

n we find that Gn corresponds to the finite A0-module M ′/InM ′.
To finish the prove we have to show that the canonical map {M ′/InM ′} → {M ′

n} is
a pro-isomorphism. This is equivalent to saying that {H0

T (M)+InM} → {ker(M →
M ′

n)} is a pro-isomorphism. Which in turn says that {H0
T (M)/H0

T (M) ∩ InM} →
{H0

T (Mn)} is a pro-isomorphism. This is true because {H0
T (Mn)} is Mittag-Leffler,

lim H0
T (Mn) = H0

T (M), and H0
T (M) is killed by a power of I (so that Artin-Rees

tells us that H0
T (M) ∩ InM = 0 for n large enough). □

Lemma 21.2.0EJF In the situation above assume X locally has a dualizing complex.
Let T ′ ⊂ T ⊂ Y be subsets stable under specialization. Let d ≥ 0 be an integer.
Assume

(a) affine locally we have X = Spec(A0) and Y = V (I0) and cd(A0, I0) ≤ d,
(b) for y ∈ T and a nonmaximal prime p ⊂ O∧

X,y with V (p) ∩ V (I∧
y ) = {m∧

y }
we have

depth(OX,y)p((F∧
y )p) > 0

(c) for y ∈ T ′ and for a prime p ⊂ O∧
X,y with p ̸∈ V (I∧

y ) and V (p) ∩ V (I∧
y ) ̸=

{m∧
y } we have

depth(OX,y)p((F∧
y )p) ≥ 1 or depth(OX,y)p((F∧

y )p) + dim(O∧
X,y/p) > 1 + d

(d) for y ∈ T ′ and a nonmaximal prime p ⊂ O∧
X,y with V (p) ∩ V (I∧

y ) = {m∧
y }

we have
depth(OX,y)p((F∧

y )p) > 1

https://stacks.math.columbia.edu/tag/0EJF
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(e) if y ⇝ y′ is an immediate specialization and y′ ∈ T ′, then y ∈ T .
Then there exists a canonical map (Fn) → (F ′′

n) of inverse systems of coherent
OX-modules with the following properties

(1) for y ∈ T we have depth(F ′′
n,y) ≥ 1,

(2) for y′ ∈ T ′ we have depth(F ′′
n,y′) ≥ 2,

(3) (F ′′
n) is isomorphic as a pro-system to an object (Hn) of Coh(X, I),

(4) the induced morphism (Fn) → (Hn) of Coh(X, I) has kernel and cokernel
annihilated by a power of I.

Proof. As in Lemma 21.1 and its proof for every n we let Fn → F ′
n be the sur-

jection constructed in Local Cohomology, Lemma 15.1. Next, we let F ′
n → F ′′

n be
the injection constructed in Local Cohomology, Lemma 15.5 and its proof. The
constructions show that we get canonical maps F ′′

n+1 → F ′′
n such that we obtain

maps
(Fn) −→ (F ′

n) −→ (F ′′
n)

of inverse systems of coherent OX -modules. Properties (1) and (2) hold by con-
struction.

To prove properties (3) and (4) we may assume that X = Spec(A0) is affine and
A0 has a dualizing complex. Let I0 ⊂ A0 be the ideal corresponding to Y . Let
A, I be the I-adic completions of A0, I0. For later use we observe that A has a
dualizing complex (Dualizing Complexes, Lemma 22.4). Let M be the finite A-
module corresponding to (Fn), see Cohomology of Schemes, Lemma 23.1. Then
Fn corresponds to Mn = M/InM . Recall that F ′

n corresponds to the quotient
M ′

n = Mn/H0
T (Mn). Also, recall that M ′ = lim M ′

n is the quotient of M by
H0

T (M) and that {M ′
n} and {M ′/InM ′} are isomorphic as pro-systems. Finally,

we see that F ′′
n corresponds to an extension

0→M ′
n →M ′′

n → H1
T ′(M ′

n)→ 0

see proof of Local Cohomology, Lemma 15.5.

Set s = 1. We claim that A, I, T ′, M ′, s, d satisfy assumptions (1), (3), (4), (6) of
Situation 10.1. Namely, (1) and (3) are immediate, (4) is implied by (c), and (6)
follows from (d). We omit the details of the verification (c) ⇒ (4).

By Theorem 10.8 we see that {H1
T ′(M ′/InM ′)} is Mittag-Leffler, that H1

T ′(M ′) =
lim H1

T ′(M ′/InM ′), and that H1
T ′(M ′) is killed by a power of I. We deduce

{H1
T ′(M ′

n)} is Mittag-Leffler and H1
T ′(M ′) = lim H1

T ′(M ′
n). Thus the limit of the

short exact sequences displayed above is the short exact sequence

0→M ′ → lim M ′′
n → H1

T ′(M ′)→ 0

Set M ′′ = lim M ′′
n . It follows from Local Cohomology, Proposition 11.1 that

H1
T ′(M ′) and hence M ′′ are finite A-modules. Thus we find that Hn corresponds

to the finite A0-module M ′′/InM ′′. To finish the prove we have to show that
the canonical map {M ′′/InM ′′} → {M ′′

n} is a pro-isomorphism. Since we al-
ready know that {M ′/InM ′} is pro-isomorphic to {M ′

n} the reader verifies (omit-
ted) this is equivalent to asking {H1

T ′(M ′)/InH1
T ′(M ′)} → {H1

T ′(M ′
n)} to be a

pro-isomorphism. This is true because {H1
T ′(M ′

n)} is Mittag-Leffler, H1
T ′(M ′) =

lim H1
T ′(M ′

n), and H1
T ′(M ′) is killed by a power of I. □
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Lemma 21.3.0EJG In Situation 16.1 assume that A has a dualizing complex. Let d ≥
cd(A, I). Let (Fn) be an object of Coh(U, IOU ). Assume (Fn) satisfies the (2, 2+d)-
inequalities, see Definition 19.1. Then there exists a canonical map (Fn) → (F ′′

n)
of inverse systems of coherent OU -modules with the following properties

(1) if depth(F ′′
n,y) + δY

Z (y) ≥ 3 for all y ∈ U ∩ Y ,
(2) (F ′′

n) is isomorphic as a pro-system to an object (Hn) of Coh(U, IOU ),
(3) the induced morphism (Fn)→ (Hn) of Coh(U, IOU ) has kernel and coker-

nel annihilated by a power of I,
(4) the modules H0(U,F ′′

n) and H1(U,F ′′
n) are finite A-modules for all n.

Proof. The existence and properties (2), (3), (4) follow immediately from Lemma
21.2 applied to U , U ∩ Y , T = {y ∈ U ∩ Y : δY

Z (y) ≤ 2}, T ′ = {y ∈ U ∩ Y :
δY

Z (y) ≤ 1}, and (Fn). The finiteness of the modules H0(U,F ′′
n) and H1(U,F ′′

n)
follows from Local Cohomology, Lemma 12.1 and the elementary properties of the
function δY

Z (−) proved in Lemma 18.1. □

22. Algebraization of coherent formal modules, V

0EJH In this section we prove our most general results on algebraization of coherent
formal modules. We first prove it in case the ideal has cohomological dimension 1.
Then we apply this to a blowup to prove a more general result.

Lemma 22.1.0EJI In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A has a dualizing complex and cd(A, I) = 1,
(2) (Fn) is pro-isomorphic to an inverse system (F ′′

n) of coherent OU -modules
such that depth(F ′′

n,y) + δY
Z (y) ≥ 3 for all y ∈ U ∩ Y .

Then (Fn) extends canonically to X, see Definition 16.7.

Proof. We will check hypotheses (a), (b), and (c) of Lemma 16.10. Before we start,
let us point out that the modules H0(U,F ′′

n) and H1(U,F ′′
n) are finite A-modules

for all n by Local Cohomology, Lemma 12.1.

Observe that for each p ≥ 0 the limit topology on lim Hp(U,Fn) is the I-adic
topology by Lemma 4.5. In particular, hypothesis (b) holds.

We know that M = lim H0(U,Fn) is an A-module whose limit topology is the I-
adic topology. Thus, given n, the module M/InM is a subquotient of H0(U,FN )
for some N ≫ n. Since the inverse system {H0(U,FN )} is pro-isomorphic to an
inverse system of finite A-modules, namely {H0(U,F ′′

N )}, we conclude that M/InM
is finite. It follows that M is finite, see Algebra, Lemma 96.12. In particular
hypothesis (c) holds.

For each n ≥ 0 let us write Obn = limN H1(U, InFN ). A special case is Ob =
Ob0 = limN H1(U,FN ). Arguing exactly as in the previous paragraph we find that
Ob is a finite A-module. (In fact, we also know that Ob/IOb is annihilated by a
power of a, but it seems somewhat difficult to use this.)

We set F = limFn, we pick generators f1, . . . , fr of I, we pick c ≥ 1, and we
choose ΦF as in Lemma 4.4. We will use the results of Lemma 2.1 without further
mention. In particular, for each n ≥ 1 there are maps

δn : H0(U,Fn) −→ H1(U, InF) −→ Obn

https://stacks.math.columbia.edu/tag/0EJG
https://stacks.math.columbia.edu/tag/0EJI
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The first comes from the short exact sequence 0 → InF → F → Fn → 0 and the
second from InF = lim InFN . We will later use that if δn(s) = 0 for s ∈ H0(U,Fn)
then we can for each n′ ≥ n find s′ ∈ H0(U,Fn′) mapping to s. Observe that there
are commutative diagrams

H0(U,Fnc) //

��

H1(U, IncF)

��

ΦF

**⊕
e1+...+er=n H1(U,F) · T e1

1 . . . T er
r

tt
H0(U,Fn) // H1(U, InF)

We conclude that the obstruction map H0(U,Fn) → Obn sends the image of
H0(U,Fnc)→ H0(U,Fn) into the submodule

Ob′
n = Im

(⊕
e1+...+er=n

Ob · T e1
1 . . . T er

r → Obn

)
where on the summand Ob ·T e1

1 . . . T er
r we use the map on cohomology coming from

the reductions modulo powers of I of the multiplication map fe1
1 . . . fer

r : F → InF .
By construction ⊕

n≥0
Ob′

n

is a finite graded module over the Rees algebra
⊕

n≥0 In. For each n we set

Mn = {s ∈ H0(U,Fn) | δn(s) ∈ Ob′
n}

Observe that {Mn} is an inverse system and that fj : Fn → Fn+1 on global
sections maps Mn into Mn+1. By exactly the same argument as in the proof of
Cohomology, Lemma 35.1 we find that {Mn} is ML. Namely, because the Rees
algebra is Noetherian we can choose a finite number of homogeneous generators of
the form δnj (zj) with zj ∈ Mnj for the graded submodule

⊕
n≥0 Im(Mn → Ob′

n).
Then if k = max(nj) we find that for n ≥ k and any z ∈Mn we can find aj ∈ In−nj

such that z −
∑

ajzj is in the kernel of δn and hence in the image of Mn′ for all
n′ ≥ n (because the vanishing of δn means that we can lift z−

∑
ajzj to an element

z′ ∈ H0(U,Fn′c) for all n′ ≥ n and then the image of z′ in H0(U,Fn′) is in Mn′

by what we proved above). Thus Im(Mn → Mn−k) = Im(Mn′ → Mn−k) for all
n′ ≥ n.

Choose n. By the Mittag-Leffler property of {Mn} we just established we can
find an n′ ≥ n such that the image of Mn′ → Mn is the same as the image of
M ′ → Mn. By the above we see that the image of M ′ → Mn contains the image
of H0(U,Fn′c) → H0(U,Fn). Thus we see that {Mn} and {H0(U,Fn)} are pro-
isomorphic. Therefore {H0(U,Fn)} has ML and we finally conclude that hypothesis
(a) holds. This concludes the proof. □

Proposition 22.2 (Algebraization in cohomological dimension 1).0EJJ The local case of
this result is [Ray75,
IV Corollaire 2.9].

In Situation
16.1 let (Fn) be an object of Coh(U, IOU ). Assume

(1) A has a dualizing complex and cd(A, I) = 1,
(2) (Fn) satisfies the (2, 3)-inequalities, see Definition 19.1.

https://stacks.math.columbia.edu/tag/0EJJ
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Then (Fn) extends to X. In particular, if A is I-adically complete, then (Fn) is
the completion of a coherent OU -module.

Proof. By Lemma 17.1 we may replace (Fn) by the object (Hn) of Coh(U, IOU )
found in Lemma 21.3. Thus we may assume that (Fn) is pro-isomorphic to a
inverse system (F ′′

n) with the properties mentioned in Lemma 21.3. In Lemma 22.1
we proved that (Fn) canonically extends to X. The final statement follows from
Lemma 16.8. □

Lemma 22.3.0EJK In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A has a dualizing complex,
(2) all fibres of the blowing up b : X ′ → X of I have dimension ≤ d− 1,
(3) one of the following is true

(a) (Fn) satisfies the (d + 1, d + 2)-inequalities (Definition 19.1), or
(b) for y ∈ U ∩ Y and a prime p ⊂ O∧

X,y with p ̸∈ V (IO∧
X,y) we have

depth((F∧
y )p) + dim(O∧

X,y/p) + δY
Z (y) > d + 2

Then (Fn) extends to X.

Proof. Let Y ′ ⊂ X ′ be the exceptional divisor. Let Z ′ ⊂ Y ′ be the inverse image
of Z ⊂ Y . Then U ′ = X ′ \Z ′ is the inverse image of U . With δY ′

Z′ as in (18.0.1) we
set

T ′ = {y′ ∈ Y ′ | δY ′

Z′ (y′) = 1 or 2} ⊂ T = {y′ ∈ Y ′ | δY ′

Z′ (y′) = 1}
These are specialization stable subsets of U ′ ∩ Y ′ = Y ′ \ Z ′. Consider the object
(b|∗U ′Fn) of Coh(U ′, IOU ′), see Cohomology of Schemes, Lemma 23.9. For y′ ∈
U ′ ∩ Y ′ let us denote

F∧
y′ = lim(b|∗U ′Fn)y′

the “stalk” of this pullback at y′. We claim that conditions (a), (b), (c), (d), and
(e) of Lemma 21.2 hold for the object (b|∗U ′Fn) on U ′ with d replaced by 1 and the
subsets T ′ ⊂ T ⊂ U ′ ∩ Y ′. Condition (a) holds because Y ′ is an effective Cartier
divisor and hence locally cut out by 1 equation. Condition (e) holds by Lemma
18.1 parts (1) and (2). To prove (b), (c), and (d) we need some preparation.
Let y′ ∈ U ′ ∩ Y ′ and let p′ ⊂ O∧

X′,y′ be a prime ideal not contained in V (IO∧
X′,y′).

Denote y = b(y′) ∈ U ∩ Y . Choose f ∈ I such that y′ is contained in the spectrum
of the affine blowup algebra A[ I

f ], see Divisors, Lemma 32.2. For any A-algebra
B denote B′ = B[ IB

f ] the corresponding affine blowup algebra. Denote I-adic
completion by ∧. By our choice of f we get a ring map (O∧

X,y)′ → O∧
X′,y′ . If we let

q′ ⊂ (O∧
X,y)′ be the inverse image of m∧

y′ , then we see that ((O∧
X,y)′

q′)∧ = O∧
X′,y′ .

Let p ⊂ O∧
X,y be the corresponding prime. At this point we have a commutative

diagram

O∧
X,y

��

// (O∧
X,y)′

α

��

// (O∧
X,y)′

q′

��

β
// O∧

X′,y′

��
O∧

X,y/p // (O∧
X,y/p)′ // (O∧

X,y/p)′
q′

γ // ((O∧
X,y/p)′

q′)∧

��
O∧

X′,y′/p′

https://stacks.math.columbia.edu/tag/0EJK
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whose vertical arrows are surjective. By More on Algebra, Lemma 43.1 and the
dimension formula (Algebra, Lemma 113.1) we have

dim(((O∧
X,y/p)′

q′)∧) = dim((O∧
X,y/p)′

q′) = dim(O∧
X,y/p)− trdeg(κ(y′)/κ(y))

Tracing through the definitions of pullbacks, stalks, localizations, and completions
we find

(F∧
y )p ⊗(O∧

X,y
)p (O∧

X′,y′)p′ = (F∧
y′)p′

Details omitted. The ring maps β and γ in the diagram are flat with Gorenstein
(hence Cohen-Macaulay) fibres, as these are completions of rings having a dualizing
complex. See Dualizing Complexes, Lemmas 23.1 and 23.2 and the discussion in
More on Algebra, Section 51. Observe that (O∧

X,y)p = (O∧
X,y)′

p̃ where p̃ is the kernel
of α in the diagram. On the other hand, (O∧

X,y)′
p̃ → (O∧

X′,y′)p′ is flat with CM fibres
by the above. Whence (O∧

X,y)p → (O∧
X′,y′)p′ is flat with CM fibres. Using Algebra,

Lemma 163.1 we see that
depth((F∧

y′)p′) = depth((F∧
y )p) + dim(Fr)

where F is the generic formal fibre of (O∧
X,y/p)′

q′ and r is the prime corresponding to
p′. Since (O∧

X,y/p)′
q′ is a universally catenary local domain, its I-adic completion is

equidimensional and (universally) catenary by Ratliff’s theorem (More on Algebra,
Proposition 109.5). It then follows that

dim(((O∧
X,y/p)′

q′)∧) = dim(Fr) + dim(O∧
X′,y′/p′)

Combined with Lemma 18.2 we get

(22.3.1)0EJL

depth((F∧
y′)p′) + δY ′

Z′ (y′)

= depth((F∧
y )p) + dim(Fr) + δY ′

Z′ (y′)
≥ depth((F∧

y )p) + δY
Z (y) + dim(Fr) + trdeg(κ(y′)/κ(y))− (d− 1)

= depth((F∧
y )p) + δY

Z (y)− (d− 1) + dim(O∧
X,y/p)− dim(O∧

X′,y′/p′)
Please keep in mind that dim(O∧

X,y/p) ≥ dim(O∧
X′,y′/p′). Rewriting this we get

(22.3.2)0EJM
depth((F∧

y′)p′) + dim(O∧
X′,y′/p′) + δY ′

Z′ (y′)
≥ depth((F∧

y )p) + dim(O∧
X,y/p) + δY

Z (y)− (d− 1)
This inequality will allow us to check the remaning conditions.
Conditions (b) and (d) of Lemma 21.2. Assume V (p′) ∩ V (IO∧

X′,y′) = {m∧
y′}. This

implies that dim(O∧
X′,y′/p′) = 1 because Z ′ is an effective Cartier divisor. The

combination of (b) and (d) is equivalent with

depth((F∧
y′)p′) + δY ′

Z′ (y′) > 2
If (Fn) satisfies the inequalities in (3)(b) then we immediately conclude this is true
by applying (22.3.2). If (Fn) satisfies (3)(a), i.e., the (d+1, d+2)-inequalities, then
we see that in any case
depth((F∧

y )p) + δY
Z (y) ≥ d + 1 or depth((F∧

y )p) + dim(O∧
X,y/p) + δY

Z (y) > d + 2
Looking at (22.3.1) and (22.3.2) above this gives what we want except possibly if
dim(O∧

X,y/p) = 1. However, if dim(O∧
X,y/p) = 1, then we have V (p) ∩ V (IO∧

X,y) =
{m∧

y } and we see that actually

depth((F∧
y )p) + δY

Z (y) > d + 1
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as (Fn) satisfies the (d + 1, d + 2)-inequalities and we conclude again.

Condition (c) of Lemma 21.2. Assume V (p′)∩V (IO∧
X′,y′) ̸= {m∧

y′}. Then condition
(c) is equivalent to

depth((F∧
y′)p′) + δY ′

Z′ (y′) ≥ 2 or depth((F∧
y′)p′) + dim(O∧

X′,y′/p′) + δY ′

Z′ (y′) > 3

If (Fn) satisfies the inequalities in (3)(b) then we see the second of the two displayed
inequalities holds true by applying (22.3.2). If (Fn) satisfies (3)(a), i.e., the (d +
1, d+2)-inequalities, then this follows immediately from (22.3.1) and (22.3.2). This
finishes the proof of our claim.

Choose (b|∗U ′Fn) → (F ′′
n) and (Hn) in Coh(U ′, IOU ′) as in Lemma 21.2. For any

affine open W ⊂ X ′ observe that δW ∩Y ′

W ∩Z′ (y′) ≥ δY ′

Z′ (y′) by Lemma 18.1 part (7).
Hence we see that (Hn|W ) satisfies the assumptions of Lemma 22.1. Thus (Hn|W )
extends canonically to W . Let (GW,n) in Coh(W, IOW ) be the canonical extension
as in Lemma 16.8. By Lemma 16.9 we see that for W ′ ⊂ W there is a unique
isomorphism

(GW,n|W ′) −→ (GW ′,n)
compatible with the given isomorphisms (GW,n|W ∩U ) ∼= (Hn|W ∩U ). We conclude
that there exists an object (Gn) of Coh(X ′, IOX′) whose restriction to U is isomor-
phic to (Hn).

If A is I-adically complete we can finish the proof as follows. By Grothedieck’s
existence theorem (Cohomology of Schemes, Lemma 24.3) we see that (Gn) is the
completion of a coherent OX′ -module. Then by Cohomology of Schemes, Lemma
23.6 we see that (b|∗U ′Fn) is the completion of a coherent OU ′ -module F ′. By
Cohomology of Schemes, Lemma 25.3 we see that there is a map

(Fn) −→ ((b|U ′)∗F ′)∧

whose kernel and cokernel is annihilated by a power of I. Then finally, we win by
applying Lemma 17.1.

If A is not complete, then, before starting the proof, we may replace A by its
completion, see Lemma 16.6. After completion the assumptions still hold: this is
immediate for condition (3), follows from Dualizing Complexes, Lemma 22.4 for
condition (1), and from Divisors, Lemma 32.3 for condition (2). Thus the complete
case implies the general case. □

Proposition 22.4 (Algebraization for ideals with few generators).0EJN In Situation
16.1 let (Fn) be an object of Coh(U, IOU ). Assume

(1) A has a dualizing complex,
(2) V (I) = V (f1, . . . , fd) for some d ≥ 1 and f1, . . . , fd ∈ A,
(3) one of the following is true

(a) (Fn) satisfies the (d + 1, d + 2)-inequalities (Definition 19.1), or
(b) for y ∈ U ∩ Y and a prime p ⊂ O∧

X,y with p ̸∈ V (IO∧
X,y) we have

depth((F∧
y )p) + dim(O∧

X,y/p) + δY
Z (y) > d + 2

Then (Fn) extends to X. In particular, if A is I-adically complete, then (Fn) is
the completion of a coherent OU -module.

https://stacks.math.columbia.edu/tag/0EJN
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Proof. We may assume I = (f1, . . . , fd), see Cohomology of Schemes, Lemma
23.11. Then we see that all fibres of the blowup of X in I have dimension at most
d − 1. Thus we get the extension from Lemma 22.3. The final statement follows
from Lemma 16.3. □

Please compare the next lemma with Remarks 16.12, 20.2, 20.7, and 23.2.

Lemma 22.5.0EJP In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is a local ring which has a dualizing complex,
(2) all irreducible components of X have the same dimension,
(3) the scheme X \ Y is Cohen-Macaulay,
(4) I is generated by d elements,
(5) dim(X)− dim(Z) > d + 2, and
(6) for y ∈ U ∩ Y the module F∧

y is finite locally free outside V (IO∧
X,y), for

example if Fn is a finite locally free OU /InOU -module.
Then (Fn) extends to X. In particular if A is I-adically complete, then (Fn) is the
completion of a coherent OU -module.

Proof. We will show that the hypotheses (1), (2), (3)(b) of Proposition 22.4 are
satisfied. This is clear for (1) and (2).

Let y ∈ U∩Y and let p be a prime p ⊂ O∧
X,y with p ̸∈ V (IO∧

X,y). The last condition
shows that depth((F∧

y )p) = depth((O∧
X,y)p). Since X \ Y is Cohen-Macaulay we

see that (O∧
X,y)p is Cohen-Macaulay. Thus we see that

depth((F∧
y )p) + dim(O∧

X,y/p) + δY
Z (y)

= dim((O∧
X,y)p) + dim(O∧

X,y/p) + δY
Z (y)

= dim(O∧
X,y) + δY

Z (y)

The final equality because OX,y is equidimensional by the second condition. Let
δ(y) = dim({y}). This is a dimension function as A is a catenary local ring. By
Lemma 18.1 we have δY

Z (y) ≥ δ(y)− dim(Z). Since X is equidimensional we get

dim(O∧
X,y) + δY

Z (y) ≥ dim(O∧
X,y) + δ(y)− dim(Z) = dim(X)− dim(Z)

Thus we get the desired inequality and we win. □

Remark 22.6.0EJQ We are unable to prove or disprove the analogue of Proposition
22.4 where the assumption that I has d generators is replaced with the assump-
tion cd(A, I) ≤ d. If you know a proof or have a counter example, please email
stacks.project@gmail.com. Another obvious question is to what extend the condi-
tions in Proposition 22.4 are necessary.

23. Algebraization of coherent formal modules, VI

0EJR In this section we add a few more easier to prove cases.

Proposition 23.1.0EJS In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). As-
sume

(1) there exist f1, . . . , fd ∈ I such that for y ∈ U∩Y the ideal IOX,y is generated
by f1, . . . , fd and f1, . . . , fd form a F∧

y -regular sequence,
(2) H0(U,F1) and H1(U,F1) are finite A-modules.

https://stacks.math.columbia.edu/tag/0EJP
https://stacks.math.columbia.edu/tag/0EJQ
mailto:stacks.project@gmail.com
https://stacks.math.columbia.edu/tag/0EJS
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Then (Fn) extends canonically to X. In particular, if A is complete, then (Fn) is
the completion of a coherent OU -module.

Proof. We will prove this by verifying hypotheses (a), (b), and (c) of Lemma 16.10.
For every n we have a short exact sequence

0→ InFn+1 → Fn+1 → Fn → 0
Since f1, . . . , fd forms a regular sequence (and hence quasi-regular, see Algebra,
Lemma 69.2) on each of the “stalks” F∧

y and since we have IFn = (f1, . . . , fd)Fn

for all n, we find that

InFn+1 =
⊕

e1+...+ed=n
F1 · fe1

1 . . . fed

d

by checking on stalks. Using the assumption of finiteness of H0(U,F1) and induc-
tion, we first conclude that Mn = H0(U,Fn) is a finite A-module for all n. In this
way we see that condition (c) of Lemma 16.10 holds. We also see that⊕

n≥0
H1(U, InFn+1)

is a finite graded R =
⊕

In/In+1-module. By Cohomology, Lemma 35.1 we con-
clude that condition (a) of Lemma 16.10 is satisfied. Finally, condition (b) of
Lemma 16.10 is satisfied because

⊕
H0(U, InFn+1) is a finite graded R-module

and we can apply Cohomology, Lemma 35.3. □

Remark 23.2.0EJT In the situation of Proposition 23.1 if we assume A has a dualizing
complex, then the condition that H0(U,F1) and H1(U,F1) are finite is equivalent
to

depth(F1,y) + dim(O{y},z
) > 2

for all y ∈ U ∩ Y and z ∈ Z ∩ {y}. See Local Cohomology, Lemma 12.1. This
holds for example if F1 is a finite locally free OU∩Y -module, Y is (S2), and
codim(Z ′, Y ′) ≥ 3 for every pair of irreducible components Y ′ of Y , Z ′ of Z with
Z ′ ⊂ Y ′.

Proposition 23.3.0EJU In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). As-
sume there is Noetherian local ring (R,m) and a ring map R→ A such that

(1) I = mA,
(2) for y ∈ U ∩ Y the stalk F∧

y is R-flat,
(3) H0(U,F1) and H1(U,F1) are finite A-modules.

Then (Fn) extends canonically to X. In particular, if A is complete, then (Fn) is
the completion of a coherent OU -module.

Proof. The proof is exactly the same as the proof of Proposition 23.1. Namely, if
κ = R/m then for n ≥ 0 there is an isomorphism

InFn+1 ∼= F1 ⊗κ mn/mn+1

and the right hand side is a finite direct sum of copies of F1. This can be checked
by looking at stalks. Everything else is exactly the same. □

Remark 23.4.0EJV Proposition 23.3 is a local version of [Bar10, Theorem 2.10 (i)].
It is straightforward to deduce the global results from the local one; we will sketch
the argument. Namely, suppose (R,m) is a complete Noetherian local ring and
X → Spec(R) is a proper morphism. For n ≥ 1 set Xn = X ×Spec(R) Spec(R/mn).

https://stacks.math.columbia.edu/tag/0EJT
https://stacks.math.columbia.edu/tag/0EJU
https://stacks.math.columbia.edu/tag/0EJV
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Let Z ⊂ X1 be a closed subset of the special fibre. Set U = X \ Z and denote
j : U → X the inclusion morphism. Suppose given an object

(Fn) of Coh(U,mOU )

which is flat over R in the sense that Fn is flat over R/mn for all n. Assume
that j∗F1 and R1j∗F1 are coherent modules. Then affine locally on X we get a
canonical extension of (Fn) by Proposition 23.3 and formation of this extension
commutes with localization (by Lemma 16.11). Thus we get a canonical global
object (Gn) of Coh(X,mOX) whose restriction of U is (Fn). By Grothendieck’s
existence theorem (Cohomology of Schemes, Proposition 25.4) we see there exists
a coherent OX -module G whose completion is (Gn). In this way we see that (Fn)
is algebraizable, i.e., it is the completion of a coherent OU -module.

We add that the coherence of j∗F1 and R1j∗F1 is a condition on the special fibre.
Namely, if we denote j1 : U1 → X1 the special fibre of j : U → X, then we can think
of F1 as a coherent sheaf on U1 and we have j∗F1 = j1,∗F1 and R1j∗F1 = R1j1,∗F1.
Hence for example if X1 is (S2) and irreducible, we have dim(X1)−dim(Z) ≥ 3, and
F1 is a locally free OU1 -module, then j1,∗F1 and R1j1,∗F1 are coherent modules.

24. Application to the completion functor

0EKX In this section we just combine some already obtained results in order to conve-
niently reference them. There are many (stronger) results we could state here.

Lemma 24.1.0EKY In Situation 16.1 assume
(1) A has a dualizing complex and is I-adically complete,
(2) I = (f) generated by a single element,
(3) A is local with maximal ideal a = m,
(4) one of the following is true

(a) Af is (S2) and for p ⊂ A, f ̸∈ p minimal we have dim(A/p) ≥ 4, or
(b) if p ̸∈ V (f) and V (p) ∩ V (f) ̸= {m}, then depth(Ap) + dim(A/p) > 3.

Then with U0 = U ∩ V (f) the completion functor

colimU0⊂U ′⊂U open Coh(OU ′) −→ Coh(U, fOU )

is an equivalence on the full subcategories of finite locally free objects.

Proof. It follows from Lemma 15.7 that the functor is fully faithful (details omit-
ted). Let us prove essential surjectivity. Let (Fn) be a finite locally free object of
Coh(U, fOU ). By either Lemma 20.4 or Proposition 22.2 there exists a coherent
OU -module F such that (Fn) is the completion of F . Namely, for the application
of either result the only thing to check is that (Fn) satisfies the (2, 3)-inequalities.
This is done in Lemma 20.6. If y ∈ U0, then the f -adic completion of the stalk Fy

is isomorphic to a finite free module over the f -adic completion of OU,y. Hence F
is finite locally free in an open neighbourhood U ′ of U0. This finishes the proof. □

Lemma 24.2.0EKZ In Situation 16.1 assume
(1) I = (f) is principal,
(2) A is f -adically complete,
(3) f is a nonzerodivisor,
(4) H1

a(A/fA) and H2
a(A/fA) are finite A-modules.
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Then with U0 = U ∩ V (f) the completion functor
colimU0⊂U ′⊂U open Coh(OU ′) −→ Coh(U, fOU )

is an equivalence on the full subcategories of finite locally free objects.

Proof. The functor is fully faithful by Lemma 15.8. Essential surjectivity follows
from Lemma 16.11. □

25. Coherent triples

0F22 Let (A,m) be a Noetherian local ring. Let f ∈ m be a nonzerodivisor. Set X =
Spec(A), X0 = Spec(A/fA), U = X \ V (m), and U0 = U ∩X0. We say (F ,F0, α)
is a coherent triple if we have

(1) F is a coherent OU -module such that f : F → F is injective,
(2) F0 is a coherent OX0-module,
(3) α : F/fF → F0|U0 is an isomorphism.

There is an obvious notion of a morphism of coherent triples which turns the col-
lection of all coherent triples into a category.
The category of coherent triples is additive but not abelian. However, it is clear
what a short exact sequence of coherent triples is.
Given two coherent triples (F ,F0, α) and (G,G0, β) it may not be the case that
(F ⊗OU

G,F0 ⊗OX0
G0, α ⊗ β) is a coherent triple8. However, if the stalks Gx are

free for all x ∈ U0, then this does hold.
We will say the coherent triple (G,G0, β) is locally free, resp. invertible if G and
G0 are locally free, resp. invertible modules. In this case tensoring with (G,G0, β)
makes sense (see above) and turns short exact sequences of coherent triples into
short exact sequences of coherent triples.

Lemma 25.1.0F23 For any coherent triple (F ,F0, α) there exists a coherent OX-
module F ′ such that f : F ′ → F ′ is injective, an isomorphism α′ : F ′|U → F , and
a map α′

0 : F ′/fF ′ → F0 such that α ◦ (α′ mod f) = α′
0|U0 .

Proof. Choose a finite A-module M such that F is the restriction to U of the
coherent OX -module associated to M , see Local Cohomology, Lemma 8.2. Since F
is f -torsion free, we may replace M by its quotient by f -power torsion. On the other
hand, let M0 = Γ(X0,F0) so that F0 is the coherent OX0-module associated to the
finite A/fA-module M0. By Cohomology of Schemes, Lemma 10.5 there exists an
n such that the isomorphism α0 corresponds to an A/fA-module homomorphism
mnM/fM →M0 (whose kernel and cokernel are annihilated by a power of m, but
we don’t need this). Thus if we take M ′ = mnM and we let F ′ be the coherent
OX -module associated to M ′, then the lemma is clear. □

Let (F ,F0, α) be a coherent triple. Choose F ′, α′, α′
0 as in Lemma 25.1. Set

(25.1.1)0F24 χ(F ,F0, α) = lengthA(Coker(α′
0))− lengthA(Ker(α′

0))
The expression on the right makes sense as α′

0 is an isomorphism over U0 and hence
its kernel and coherent are coherent modules supported on {m} which therefore have
finite length (Algebra, Lemma 62.3).

8Namely, it isn’t necessarily the case that f is injective on F ⊗OU
G.

https://stacks.math.columbia.edu/tag/0F23


ALGEBRAIC AND FORMAL GEOMETRY 79

Lemma 25.2.0F25 The quantity χ(F ,F0, α) in (25.1.1) does not depend on the choice
of F ′, α′, α′

0 as in Lemma 25.1.

Proof. Let F ′, α′, α′
0 and F ′′, α′′, α′′

0 be two such choices. For n > 0 set F ′
n =

mnF ′. By Cohomology of Schemes, Lemma 10.5 for some n there exists an OX -
module map F ′

n → F ′′ agreeing with the identification F ′′|U = F ′|U determined
by α′ and α′′. Then the diagram

F ′
n/fF ′

n
//

��

F ′/fF ′

α′
0

��
F ′′/fF ′′ α′′

0 // F0

is commutative after restricting to U0. Hence by Cohomology of Schemes, Lemma
10.5 it is commutative after restricting to ml(F ′

n/fF ′
n) for some l > 0. Since

F ′
n+l/fF ′

n+l → F ′
n/fF ′

n factors through ml(F ′
n/fF ′

n) we see that after replacing n
by n + l the diagram is commutative. In other words, we have found a third choice
F ′′′, α′′′, α′′′

0 such that there are maps F ′′′ → F ′′ and F ′′′ → F ′ over X compatible
with the maps over U and X0. This reduces us to the case discussed in the next
paragraph.
Assume we have a map F ′′ → F ′ over X compatible with α′, α′′ over U and with
α′

0, α′′
0 over X0. Observe that F ′′ → F ′ is injective as it is an isomorphism over U

and since f : F ′′ → F ′′ is injective. Clearly F ′/F ′′ is supported on {m} hence has
finite length. We have the maps of coherent OX0-modules

F ′′/fF ′′ → F ′/fF ′ α′
0−→ F0

whose composition is α′′
0 and which are isomorphisms over U0. Elementary homo-

logical algebra gives a 6-term exact sequence
0→ Ker(F ′′/fF ′′ → F ′/fF ′)→ Ker(α′′

0)→ Ker(α′
0)→

Coker(F ′′/fF ′′ → F ′/fF ′)→ Coker(α′′
0)→ Coker(α′

0)→ 0
By additivity of lengths (Algebra, Lemma 52.3) we find that it suffices to show that

lengthA(Coker(F ′′/fF ′′ → F ′/fF ′))− lengthA(Ker(F ′′/fF ′′ → F ′/fF ′)) = 0
This follows from applying the snake lemma to the diagram

0 // F ′′
f
//

��

F ′′ //

��

F ′′/fF ′′ //

��

0

0 // F ′ f // F ′ // F ′/fF ′ // 0

and the fact that F ′/F ′′ has finite length. □

Lemma 25.3.0F26 We have χ(G,G0, β) = χ(F ,F0, α) + χ(H,H0, γ) if
0→ (F ,F0, α)→ (G,G0, β)→ (H,H0, γ)→ 0

is a short exact sequence of coherent triples.

Proof. Choose G′, β′, β′
0 as in Lemma 25.1 for the triple (G,G0, β). Denote j : U →

X the inclusion morphism. Let F ′ ⊂ G′ be the kernel of the composition

G′ β′

−→ j∗G → j∗H

https://stacks.math.columbia.edu/tag/0F25
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Observe that H′ = G′/F ′ is a coherent subsheaf of j∗H and hence f : H′ → H′ is
injective. Hence by the snake lemma we obtain a short exact sequence

0→ F ′/fF ′ → G′/fG′ → H′/fH′ → 0

We have isomorphisms α′ : F ′|U → F , β′ : G′|U → G, and γ′ : H′|U → H by
construction. To finish the proof we’ll need to construct maps α′

0 : F ′/fF ′ → F0
and γ′

0 : H′/fH′ → H0 as in Lemma 25.1 and fitting into a commutative diagram

0 // F ′/fF ′ //

α′
0
��

G′/fG′ //

β′
0
��

H′/fH′ //

γ′
0
��

0

0 // F0 // G0 // H0 // 0

However, this may not be possible with our initial choice of G′. From the displayed
diagram we see the obstruction is exactly the composition

δ : F ′/fF ′ → G′/fG′ β′
0−→ G0 → H0

Note that the restriction of δ to U0 is zero by our choice of F ′ and H′. Hence by
Cohomology of Schemes, Lemma 10.5 there exists an k > 0 such that δ vanishes on
mk · (F ′/fF ′). For n > k set G′

n = mnG′, F ′
n = G′

n∩F ′, and H′
n = G′

n/F ′
n. Observe

that β′
0 can be composed with G′

n/fG′
n → G′/fG′ to give a map β′

n,0 : G′
n/fG′

n → G0
as in Lemma 25.1. By Artin-Rees (Algebra, Lemma 51.2) we may choose n such
that F ′

n ⊂ mkF ′. As above the maps f : F ′
n → F ′

n, f : G′
n → G′

n, and f : H′
n → H′

n

are injective and as above using the snake lemma we obtain a short exact sequence

0→ F ′
n/fF ′

n → G′
n/fG′

n → H′
n/fH′

n → 0

As above we have isomorphisms α′
n : F ′

n|U → F , β′
n : G′

n|U → G, and γ′
n : H′

n|U →
H. We consider the obstruction

δn : F ′
n/fF ′

n → G′
n/fG′

n

β′
n,0−−−→ G0 → H0

as before. However, the commutative diagram

F ′
n/fF ′

n
//

��

G′
n/fG′

n
β′

n,0

//

��

G0 //

��

H0

��
F ′/fF ′ // G′/fG′ β′

0 // G0 // H0

our choice of n and our observation about δ show that δn = 0. This produces the
desired maps α′

n,0 : F ′
n/fF ′

n → F0, and γ′
n,0 : H′

n/fH′
n → H0. OK, so we may

use F ′
n, α′

n, α′
n,0, G′

n, β′
n, β′

n,0, and H′
n, γ′

n, γ′
n,0 to compute χ(F ,F0, α), χ(G,G0, β),

and χ(H,H0, γ). Now finally the lemma follows from an application of the snake
lemma to

0 // F ′
n/fF ′

n
//

��

G′
n/fG′

n
//

��

H′
n/fH′

n
//

��

0

0 // F0 // G0 // H0 // 0

and additivity of lengths (Algebra, Lemma 52.3). □
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Proposition 25.4.0F27 Let (F ,F0, α) be a coherent triple. Let (L,L0, λ) be an in-
vertible coherent triple. Then the function

Z −→ Z, n 7−→ χ((F ,F0, α)⊗ (L,L0, λ)⊗n)

is a polynomial of degree ≤ dim(Supp(F)).

More precisely, if F = 0, then the function is constant. If F has finite support in
U , then the function is constant. If the support of F in U has dimension 1, i.e., the
closure of the support of F in X has dimension 2, then the function is linear, etc.

Proof. We will prove this by induction on the dimension of the support of F .

The base case is when F = 0. Then either F0 is zero or its support is {m}. In this
case we have

(F ,F0, α)⊗ (L,L0, λ)⊗n = (0,F0 ⊗ L⊗n
0 , 0) ∼= (0,F0, 0)

Thus the function of the lemma is constant with value equal to the length of F0.

Induction step. Assume the support of F is nonempty. Let G0 ⊂ F0 denote the
submodule of sections supported on {m}. Then we get a short exact sequence

0→ (0,G0, 0)→ (F ,F0, α)→ (F ,F0/G0, α)→ 0

This sequence remains exact if we tensor by the invertible coherent triple (L,L0, λ),
see discussion above. Thus by additivity of χ (Lemma 25.3) and the base case
explained above, it suffices to prove the induction step for (F ,F0/G0, α). In this
way we see that we may assume m is not an associated point of F0.

Let T = Ass(F)∪Ass(F/fF). Since U is quasi-affine, we can find s ∈ Γ(U,L) which
does not vanish at any u ∈ T , see Properties, Lemma 29.7. After multiplying s by a
suitable element of m we may assume λ(s mod f) = s0|U0 for some s0 ∈ Γ(X0,L0);
details omitted. We obtain a morphism

(s, s0) : (OU ,OX0 , 1) −→ (L,L0, λ)

in the category of coherent triples. Let G = Coker(s : F → F ⊗ L) and G0 =
Coker(s0 : F0 → F0 ⊗ L0). Observe that s0 : F0 → F0 ⊗ L0 is injective as it
is injective on U0 by our choice of s and as m isn’t an associated point of F0. It
follows that there exists an isomorphism β : G/fG → G0|U0 such that we obtain a
short exact sequence

0→ (F ,F0, α)→ (F ,F0, α)⊗ (L,L0, λ)→ (G,G0, β)→ 0

By induction on the dimension of the support we know the proposition holds for
the coherent triple (G,G0, β). Using the additivity of Lemma 25.3 we see that

n 7−→ χ((F ,F0, α)⊗ (L,L0, λ)⊗n+1)− χ((F ,F0, α)⊗ (L,L0, λ)⊗n)

is a polynomial. We conclude by a variant of Algebra, Lemma 58.5 for functions
defined for all integers (details omitted). □

Lemma 25.5.0F28 Assume depth(A) ≥ 3 or equivalently depth(A/fA) ≥ 2. Let
(L,L0, λ) be an invertible coherent triple. Then

χ(L,L0, λ) = lengthA Coker(Γ(U,L)→ Γ(U0,L0))

and in particular this is ≥ 0. Moreover, χ(L,L0, λ) = 0 if and only if L ∼= OU .

https://stacks.math.columbia.edu/tag/0F27
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Proof. The equivalence of the depth conditions follows from Algebra, Lemma 72.7.
By the depth condition we see that Γ(U,OU ) = A and Γ(U0,OU0) = A/fA, see
Dualizing Complexes, Lemma 11.1 and Local Cohomology, Lemma 8.2. Using Local
Cohomology, Lemma 12.2 we find that M = Γ(U,L) is a finite A-module. This in
turn implies depth(M) ≥ 2 for example by part (4) of Local Cohomology, Lemma
8.2 or by Divisors, Lemma 6.6. Also, we have L0 ∼= OX0 as X0 is a local scheme.
Hence we also see that M0 = Γ(X0,L0) = Γ(U0,L0|U0) and that this module is
isomorphic to A/fA.

By the above F ′ = M̃ is a coherent OX -module whose restriction to U is isomorphic
to L. The isomorphism λ : L/fL → L0|U0 determines a map M/fM → M0 on
global sections which is an isomorphism over U0. Since depth(M) ≥ 2 we see that
H0

m(M/fM) = 0 and it follows that M/fM →M0 is injective. Thus by definition
χ(L,L0, λ) = lengthA Coker(M/fM →M0)

which gives the first statement of the lemma.
Finally, if this length is 0, then M →M0 is surjective. Hence we can find s ∈M =
Γ(U,L) mapping to a trivializing section of L0. Consider the finite A-modules K,
Q defined by the exact sequence

0→ K → A
s−→M → Q→ 0

The supports of K and Q do not meet U0 because s is nonzero at points of U0.
Using Algebra, Lemma 72.6 we see that depth(K) ≥ 2 (observe that As ⊂ M
has depth ≥ 1 as a submodule of M). Thus the support of K if nonempty has
dimension ≥ 2 by Algebra, Lemma 72.3. This contradicts Supp(M) ∩ V (f) ⊂ {m}
unless K = 0. When K = 0 we find that depth(Q) ≥ 2 and we conclude Q = 0 as
before. Hence A ∼= M and L is trivial. □

26. Invertible modules on punctured spectra, I

0F29 In this section we prove some local Lefschetz theorems for the Picard group. Some
of the ideas are taken from [Kol13], [BdJ14], and [Kol16].

Lemma 26.1.0F2A Let (A,m) be a Noetherian local ring. Let f ∈ m be a nonzerodivisor
and assume that depth(A/fA) ≥ 2, or equivalently depth(A) ≥ 3. Let U , resp. U0
be the punctured spectrum of A, resp. A/fA. The map

Pic(U)→ Pic(U0)
is injective on torsion.

Proof. Let L be an invertible OU -module. Observe that L maps to 0 in Pic(U0) if
and only if we can extend L to an invertible coherent triple (L,L0, λ) as in Section
25. By Proposition 25.4 the function

n 7−→ χ((L,L0, λ)⊗n)
is a polynomial. By Lemma 25.5 the value of this polynomial is zero if and only if
L⊗n is trivial. Thus if L is torsion, then this polynomial has infinitely many zeros,
hence is identically zero, hence L is trivial. □

Proposition 26.2 (Kollár).0F2B [Kol16, Theorem
1.9]

Let (A,m) be a Noetherian local ring. Let f ∈ m.
Assume

(1) A has a dualizing complex,

https://stacks.math.columbia.edu/tag/0F2A
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(2) f is a nonzerodivisor,
(3) depth(A/fA) ≥ 2, or equivalently depth(A) ≥ 3,
(4) if f ∈ p ⊂ A is a prime ideal with dim(A/p) = 2, then depth(Ap) ≥ 2.

Let U , resp. U0 be the punctured spectrum of A, resp. A/fA. The map
Pic(U)→ Pic(U0)

is injective. Finally, if (1), (2), (3), A is (S2), and dim(A) ≥ 4, then (4) holds.

Proof. Let L be an invertible OU -module. Observe that L maps to 0 in Pic(U0) if
and only if we can extend L to an invertible coherent triple (L,L0, λ) as in Section
25. By Proposition 25.4 the function

n 7−→ χ((L,L0, λ)⊗n)
is a polynomial P . By Lemma 25.5 we have P (n) ≥ 0 for all n ∈ Z with equality
if and only if L⊗n is trivial. In particular P (0) = 0 and P is either identically zero
and we win or P has even degree ≥ 2.
Set M = Γ(U,L) and M0 = Γ(X0,L0) = Γ(U0,L0). Then M is a finite A-module
of depth ≥ 2 and M0 ∼= A/fA, see proof of Lemma 25.5. Note that H2

m(M) is
finite A-module by Local Cohomology, Lemma 7.4 and the fact that Hi

m(A) = 0
for i = 0, 1, 2 since depth(A) ≥ 3. Consider the short exact sequence

0→M/fM →M0 → Q→ 0
Lemma 25.5 tells us Q has finite length equal to χ(L,L0, λ). We obtain Q =
H1

m(M/fM) and Hi
m(M/fM) = Hi

m(M0) ∼= Hi
m(A/fA) for i > 1 from the long

exact sequence of local cohomology associated to the displayed short exact sequence.
Consider the long exact sequence of local cohomology associated to the sequence
0→M →M →M/fM → 0. It starts with

0→ Q→ H2
m(M)→ H2

m(M)→ H2
m(A/fA)

Using additivity of lengths we see that χ(L,L0, λ) is equal to the length of the
image of H2

m(M)→ H2
m(A/fA).

Let prove the lemma in a special case to elucidate the rest of the proof. Namely,
assume for a moment that H2

m(A/fA) is a finite length module. Then we would
have P (1) ≤ lengthAH2

m(A/fA). The exact same argument applied to L⊗n shows
that P (n) ≤ lengthAH2

m(A/fA) for all n. Thus P cannot have positive degree and
we win. In the rest of the proof we will modify this argument to give a linear upper
bound for P (n) which suffices.
Let us study the map H2

m(M) → H2
m(M0) ∼= H2

m(A/fA). Choose a normalized
dualizing complex ω•

A for A. By local duality (Dualizing Complexes, Lemma 18.4)
this map is Matlis dual to the map

Ext−2
A (M, ω•

A)←− Ext−2
A (M0, ω•

A)
whose image therefore has the same (finite) length. The support (if nonempty)
of the finite A-module Ext−2

A (M0, ω•
A) consists of m and a finite number of primes

p1, . . . , pr containing f with dim(A/pi) = 1. Namely, by Local Cohomology, Lemma
9.4 the support is contained in the set of primes p ⊂ A with depthAp

(M0,p) +
dim(A/p) ≤ 2. Thus it suffices to show there is no prime p containing f with
dim(A/p) = 2 and depthAp

(M0,p) = 0. However, because M0,p
∼= (A/fA)p this

would give depth(Ap) = 1 which contradicts assumption (4). Choose a section



ALGEBRAIC AND FORMAL GEOMETRY 84

t ∈ Γ(U,L⊗−1) which does not vanish in the points p1, . . . , pr, see Properties,
Lemma 29.7. Multiplication by t on global sections determines a map t : M → A
which defines an isomorphism Mpi → Api for i = 1, . . . , r. Denote t0 = t|U0 the
corresponding section of Γ(U0,L⊗−1

0 ) which similarly determines a map t0 : M0 →
A/fA compatible with t. We conclude that there is a commutative diagram

Ext−2
A (M, ω•

A) Ext−2
A (M0, ω•

A)oo

Ext−2
A (A, ω•

A)

t

OO

Ext−2
A (A/fA, ω•

A)oo

t0

OO

It follows that the length of the image of the top horizontal map is at most the
length of Ext−2

A (A/fA, ω•
A) plus the length of the cokernel of t0.

However, if we replace L by Ln for n > 1, then we can use

tn : Mn = Γ(U,L⊗n) −→ Γ(U,OU ) = A

instead of t. This replaces t0 by its nth power. Thus the length of the image of the
map Ext−2

A (Mn, ω•
A)← Ext−2

A (Mn,0, ω•
A) is at most the length of Ext−2

A (A/fA, ω•
A)

plus the length of the cokernel of

tn
0 : Ext−2

A (A/fA, ω•
A) −→ Ext−2

A (Mn,0, ω•
A)

Via the isomorphism M0 ∼= A/fA the map t0 becomes g : A/fA → A/fA for
some g ∈ A/fA and via the corresponding isomorphisms Mn,0 ∼= A/fA the map tn

0
becomes gn : A/fA → A/fA. Thus the length of the cokernel above is the length
of the quotient of Ext−2

A (A/fA, ω•
A) by gn. Since Ext−2

A (A/fA, ω•
A) is a finite A-

module with support T of dimension 1 and since V (g) ∩ T consists of the closed
point by our choice of t this length grows linearly in n by Algebra, Lemma 62.6.

To finish the proof we prove the final assertion. Assume f ∈ m ⊂ A satisfies
(1), (2), (3), A is (S2), and dim(A) ≥ 4. Condition (1) implies A is catenary,
see Dualizing Complexes, Lemma 17.4. Then Spec(A) is equidimensional by Local
Cohomology, Lemma 3.2. Thus dim(Ap) + dim(A/p) ≥ 4 for every prime p of
A. Then depth(Ap) ≥ min(2, dim(Ap)) ≥ min(2, 4 − dim(A/p)) and hence (4)
holds. □

Remark 26.3.0FIX In SGA2 we find the following result. Let (A,m) be a Noetherian
local ring. Let f ∈ m. Assume A is a quotient of a regular ring, the element f is a
nonzerodivisor, and

(a) if p ⊂ A is a prime ideal with dim(A/p) = 1, then depth(Ap) ≥ 2, and
(b) depth(A/fA) ≥ 3, or equivalently depth(A) ≥ 4.

Let U , resp. U0 be the punctured spectrum of A, resp. A/fA. Then the map

Pic(U)→ Pic(U0)

is injective. This is [Gro68, Exposee XI, Lemma 3.16]9. This result from SGA2
follows from Proposition 26.2 because

(1) a quotient of a regular ring has a dualizing complex (see Dualizing Com-
plexes, Lemma 21.3 and Proposition 15.11), and

9Condition (a) follows from condition (b), see Algebra, Lemma 72.10.

https://stacks.math.columbia.edu/tag/0FIX


ALGEBRAIC AND FORMAL GEOMETRY 85

(2) if depth(A) ≥ 4 then depth(Ap) ≥ 2 for all primes p with dim(A/p) = 2,
see Algebra, Lemma 72.10.

27. Invertible modules on punctured spectra, II

0F2C Next we turn to surjectivity in local Lefschetz for the Picard group. First to extend
an invertible module on U0 to an open neighbourhood we have the following simple
criterion.

Lemma 27.1.0F2D Let (A,m) be a Noetherian local ring and f ∈ m. Assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

m(A/fA) and H2
m(A/fA) are finite A-modules, and

(4) H3
m(A/fA) = 010.

Let U , resp. U0 be the punctured spectrum of A, resp. A/fA. Then

colimU0⊂U ′⊂U open Pic(U ′) −→ Pic(U0)

is surjective.

Proof. Let U0 ⊂ Un ⊂ U be the nth infinitesimal neighbourhood of U0. Observe
that the ideal sheaf of Un in Un+1 is isomorphic to OU0 as U0 ⊂ U is the principal
closed subscheme cut out by the nonzerodivisor f . Hence we have an exact sequence
of abelian groups

Pic(Un+1)→ Pic(Un)→ H2(U0,OU0) = H3
m(A/fA) = 0

see More on Morphisms, Lemma 4.1. Thus every invertible OU0-module is the
restriction of an invertible coherent formal module, i.e., an invertible object of
Coh(U, fOU ). We conclude by applying Lemma 24.2. □

Remark 27.2.0F2E Let (A,m) be a Noetherian local ring and f ∈ m. The conclusion
of Lemma 27.1 holds if we assume

(1) A has a dualizing complex,
(2) A is f -adically complete,
(3) f is a nonzerodivisor,
(4) one of the following is true

(a) Af is (S2) and for p ⊂ A, f ̸∈ p minimal we have dim(A/p) ≥ 4, or
(b) if p ̸∈ V (f) and V (p) ∩ V (f) ̸= {m}, then depth(Ap) + dim(A/p) > 3.

(5) H3
m(A/fA) = 0.

The proof is exactly the same as the proof of Lemma 27.1 using Lemma 24.1 instead
of Lemma 24.2. Two points need to be made here: (a) it seems hard to find examples
where one knows H3

m(A/fA) = 0 without assuming depth(A/fA) ≥ 4, and (b) the
proof of Lemma 24.1 is a good deal harder than the proof of Lemma 24.2.

Lemma 27.3.0F2F Let (A,m) be a Noetherian local ring and f ∈ m. Assume
(1) the conditions of Lemma 27.1 hold, and
(2) for every maximal ideal p ⊂ Af the punctured spectrum of (Af )p has trivial

Picard group.

10Observe that (3) and (4) hold if depth(A/fA) ≥ 4, or equivalently depth(A) ≥ 5.

https://stacks.math.columbia.edu/tag/0F2D
https://stacks.math.columbia.edu/tag/0F2E
https://stacks.math.columbia.edu/tag/0F2F


ALGEBRAIC AND FORMAL GEOMETRY 86

Let U , resp. U0 be the punctured spectrum of A, resp. A/fA. Then
Pic(U) −→ Pic(U0)

is surjective.

Proof. Let L0 ∈ Pic(U0). By Lemma 27.1 there exists an open U0 ⊂ U ′ ⊂ U
and L′ ∈ Pic(U ′) whose restriction to U0 is L0. Since U ′ ⊃ U0 we see that U \ U ′

consists of points corresponding to prime ideals p1, . . . , pn as in (2). By assumption
we can find invertible modules L′

i on Spec(Api) agreeing with L′ over the punctured
spectrum U ′×U Spec(Api) since trivial invertible modules always extend. By Limits,
Lemma 20.2 applied n times we see that L′ extends to an invertible module on
U . □

Lemma 27.4.0F2G Let (A,m) be a Noetherian local ring of depth ≥ 2. Let A∧ be
its completion. Let U , resp. U∧ be the punctured spectrum of A, resp. A∧. Then
Pic(U)→ Pic(U∧) is injective.

Proof. Let L be an invertible OU -module with pullback L∧ on U∧. We have
H0(U,OU ) = A by our assumption on depth and Dualizing Complexes, Lemma 11.1
and Local Cohomology, Lemma 8.2. Thus L is trivial if and only if M = H0(U,L) is
isomorphic to A as an A-module. (Details omitted.) Since A→ A∧ is flat we have
M ⊗A A∧ = Γ(U∧,L∧) by flat base change, see Cohomology of Schemes, Lemma
5.2. Finally, it is easy to see that M ∼= A if and only if M ⊗A A∧ ∼= A∧. □

Lemma 27.5.0F2H Let (A,m) be a regular local ring. Then the Picard group of the
punctured spectrum of A is trivial.

Proof. Combine Divisors, Lemma 28.3 with More on Algebra, Lemma 121.2. □

Now we can bootstrap the earlier results to prove that Picard groups are trivial
for punctured spectra of complete intersections of dimension ≥ 4. Recall that
a Noetherian local ring is called a complete intersection if its completion is the
quotient of a regular local ring by the ideal generated by a regular sequence. See
the discussion in Divided Power Algebra, Section 8.

Proposition 27.6 (Grothendieck).0F2I Let (A,m) be a Noetherian local ring. If A is
a complete intersection of dimension ≥ 4, then the Picard group of the punctured
spectrum of A is trivial.

Proof. By Lemma 27.4 we may assume that A is a complete local ring. By as-
sumption we can write A = B/(f1, . . . , fr) where B is a complete regular local ring
and f1, . . . , fr is a regular sequence. We will finish the proof by induction on r.
The base case is r = 0 which follows from Lemma 27.5.
Assume that A = B/(f1, . . . , fr) and that the proposition holds for r − 1. Set
A′ = B/(f1, . . . , fr−1) and apply Lemma 27.3 to fr ∈ A′. This is permissible:

(1) condition (1) of Lemma 27.1 holds because our local rings are complete,
(2) condition (2) of Lemma 27.1 holds holds as f1, . . . , fr is a regular sequence,
(3) condition (3) and (4) of Lemma 27.1 hold as A = A′/frA′ is Cohen-

Macaulay of dimension dim(A) ≥ 4,
(4) condition (2) of Lemma 27.3 holds by induction hypothesis as dim((A′

fr
)p) ≥

4 for a maximal prime p of A′
fr

and as (A′
fr

)p = Bq/(f1, . . . , fr−1) for some
prime ideal q ⊂ B and Bq is regular.

https://stacks.math.columbia.edu/tag/0F2G
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This finishes the proof. □

Example 27.7.0F2J The dimension bound in Proposition 27.6 is sharp. For example
the Picard group of the punctured spectrum of A = k[[x, y, z, w]]/(xy − zw) is
nontrivial. Namely, the ideal I = (x, z) cuts out an effective Cartier divisor D on
the punctured spectrum U of A as it is easy to see that Ix, Iy, Iz, Iw are invertible
ideals in Ax, Ay, Az, Aw. But on the other hand, A/I has depth ≥ 1 (in fact 2),
hence I has depth ≥ 2 (in fact 3), hence I = Γ(U,OU (−D)). Thus if OU (−D) were
trivial, then we’d have I ∼= Γ(U,OU ) = A which isn’t true as I isn’t generated by
1 element.

Example 27.8.0F9L Proposition 27.6 cannot be extended to quotients

A = B/(f1, . . . , fr)

where B is regular and dim(B)−r ≥ 4. In other words, the condition that f1, . . . , fr

be a regular sequence is (in general) needed for vanishing of the Picard group of
the punctured spectrum of A. Namely, let k be a field and set

A = k[[a, b, x, y, z, u, v, w]]/(a3, b3, xa2 + yab + zb2, w2)

Observe that A = A0[w]/(w2) with A0 = k[[a, b, x, y, z, u, v]]/(a3, b3, xa2 + yab +
zb2). We will show below that A0 has depth 2. Denote U the punctured spectrum
of A and U0 the punctured spectrum of A0. Observe there is a short exact sequence
0→ A0 → A→ A0 → 0 where the first arrow is given by multiplication by w. By
More on Morphisms, Lemma 4.1 we find that there is an exact sequence

H0(U,O∗
U )→ H0(U0,O∗

U0
)→ H1(U0,OU0)→ Pic(U)

Since the depth of A0 and hence A is 2 we see that H0(U0,OU0) = A0 and
H0(U,OU ) = A and that H1(U0,OU0) is nonzero, see Dualizing Complexes, Lemma
11.1 and Local Cohomology, Lemma 2.2. Thus the last arrow displayed above is
nonzero and we conclude that Pic(U) is nonzero.

To show that A0 has depth 2 it suffices to show that A1 = k[[a, b, x, y, z]]/(a3, b3, xa2+
yab + zb2) has depth 0. This is true because a2b2 maps to a nonzero element of
A1 which is annihilated by each of the variables a, b, x, y, z. For example ya2b2 =
(yab)(ab) = −(xa2 + zb2)(ab) = −xa3b − yab3 = 0 in A1. The other cases are
similar.

28. Application to Lefschetz theorems

0EL0 In this section we discuss the relation between coherent sheaves on a projective
scheme P and coherent modules on formal completion along an ample divisor Q.

Let k be a field. Let P be a proper scheme over k. Let L be an ample invertible OP -
module. Let s ∈ Γ(P,L) be a section11 and let Q = Z(s) be the zero scheme, see
Divisors, Definition 14.8. For all n ≥ 1 we denote Qn = Z(sn) the nth infinitesimal
neighbourhood of Q. If F is a coherent OP -module, then we denote Fn = F|Qn

the restriction, i.e., the pullback of F by the closed immersion Qn → P .

11We do not require s to be a regular section. Correspondingly, Q is only a locally principal
closed subscheme of P and not necessarily an effective Cartier divisor.
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Proposition 28.1.0EL1 In the situation above assume for all points p ∈ P \Q we have

depth(Fp) + dim({p}) > s

Then the map

Hi(P,F) −→ lim Hi(Qn,Fn)

is an isomorphism for 0 ≤ i < s.

Proof. We will use More on Morphisms, Lemma 51.1 and we will use the notation
used and results found More on Morphisms, Section 51 without further mention;
this proof will not make sense without at least understanding the statement of the
lemma. Observe that in our case A =

⊕
m≥0 Γ(P,L⊗m) is a finite type k-algebra

all of whose graded parts are finite dimensional k-vector spaces, see Cohomology of
Schemes, Lemma 16.1.

We may and do think of s as an element f ∈ A1 ⊂ A, i.e., a homogeneous element
of degree 1 of A. Denote Y = V (f) ⊂ X the closed subscheme defined by f . Then
U ∩ Y = (π|U )−1(Q) scheme theoretically. Recall the notation FU = π∗F|U =
(π|U )∗F . This is a coherent OU -module. Choose a finite A-module M such that
FU = M̃ |U (for existence see Local Cohomology, Lemma 8.2). We claim that
Hi

Z(M) is annihilated by a power of f for i ≤ s + 1.

To prove the claim we will apply Local Cohomology, Proposition 10.1. Translating
into geometry we see that it suffices to prove for u ∈ U , u ̸∈ Y and z ∈ {u} ∩ Z
that

depth(FU,u) + dim(O{u},z
) > s + 1

This requires only a small amount of thought.

Observe that Z = Spec(A0) is a finite set of closed points of X because A0 is a
finite dimensional k-algebra. (The reader who would like Z to be a singleton can
replace the finite k-algebra A0 by k; it won’t affect anything else in the proof.)

The morphism π : L → P and its restriction π|U : U → P are smooth of relative
dimension 1. Let u ∈ U , u ̸∈ Y and z ∈ {u}∩Z. Let p = π(u) ∈ P \Q be its image.
Then either u is a generic point of the fibre of π over p or a closed point of the fibre.
If u is a generic point of the fibre, then depth(FU,u) = depth(Fp) and dim({u}) =
dim({p}) + 1. If u is a closed point of the fibre, then depth(FU,u) = depth(Fp) + 1
and dim({u}) = dim({p}). In both cases we have dim({u}) = dim(O{u},z

) because
every point of Z is closed. Thus the desired inequality follows from the assumption
in the statement of the lemma.

Let A′ be the f -adic completion of A. So A→ A′ is flat by Algebra, Lemma 97.2.
Denote U ′ ⊂ X ′ = Spec(A′) the inverse image of U and similarly for Y ′ and Z ′.
Let F ′ on U ′ be the pullback of FU and let M ′ = M ⊗A A′. By flat base change
for local cohomology (Local Cohomology, Lemma 5.7) we have

Hi
Z′(M ′) = Hi

Z(M)⊗A A′

https://stacks.math.columbia.edu/tag/0EL1
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and we find that for i ≤ s + 1 these are annihilated by a power of f . Consider the
diagram

Hi(U,FU )

vv ��

// lim Hi(U,FU /fnFU )

Hi(U,FU )⊗A A′ Hi(U ′,F ′) // lim Hi(U ′,F ′/fnF ′)

The lower horizontal arrow is an isomorphism for i < s by Lemma 13.2 and the
torsion property we just proved. The horizontal equal sign is flat base change (Co-
homology of Schemes, Lemma 5.2) and the vertical equal sign is because U ∩Y and
U ′∩Y ′ as well as their nth infinitesimal neighbourhoods are mapped isomorphically
onto each other (as we are completing with respect to f).

Applying More on Morphisms, Equation (51.0.2) we have compatible direct sum
decompositions

lim Hi(U,FU /fnFU ) = lim
(⊕

m∈Z
Hi(Qn,Fn ⊗ L⊗m)

)
and

Hi(U,FU ) =
⊕

m∈Z
Hi(P,F ⊗ L⊗m)

Thus we conclude by Algebra, Lemma 98.4. □

Lemma 28.2.0EL2 Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX-module. Let s ∈ Γ(X,L). Let Y = Z(s) be the zero scheme of s
with nth infinitesimal neighbourhood Yn = Z(sn). Let F be a coherent OX-module.
Assume that for all x ∈ X \ Y we have

depth(Fx) + dim({x}) > 1

Then Γ(V,F)→ lim Γ(Yn,F|Yn) is an isomorphism for any open subscheme V ⊂ X
containing Y .

Proof. By Proposition 28.1 this is true for V = X. Thus it suffices to show that
the map Γ(V,F) → lim Γ(Yn,F|Yn

) is injective. If σ ∈ Γ(V,F) maps to zero,
then its support is disjoint from Y (details omitted; hint: use Krull’s intersection
theorem). Then the closure T ⊂ X of Supp(σ) is disjoint from Y . Whence T is
proper over k (being closed in X) and affine (being closed in the affine scheme
X \ Y , see Morphisms, Lemma 43.18) and hence finite over k (Morphisms, Lemma
44.11). Thus T is a finite set of closed points of X. Thus depth(Fx) ≥ 2 is at
least 1 for x ∈ T by our assumption. We conclude that Γ(V,F) → Γ(V \ T,F) is
injective and σ = 0 as desired. □

Example 28.3.0EL3 Let k be a field and let X be a proper variety over k. Let Y ⊂ X
be an effective Cartier divisor such that OX(Y ) is ample and denote Yn its nth
infinitesimal neighbourhood. Let E be a finite locally free OX -module. Here are
some special cases of Proposition 28.1.

(1) If X is a curve, we don’t learn anything.
(2) If X is a Cohen-Macaulay (for example normal) surface, then

H0(X, E)→ lim H0(Yn, E|Yn)

is an isomorphism.

https://stacks.math.columbia.edu/tag/0EL2
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(3) If X is a Cohen-Macaulay threefold, then
H0(X, E)→ lim H0(Yn, E|Yn) and H1(X, E)→ lim H1(Yn, E|Yn)
are isomorphisms.

Presumably the pattern is clear. If X is a normal threefold, then we can conclude
the result for H0 but not for H1.

Before we prove the next main result, we need a lemma.

Lemma 28.4.0EL4 In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is a graded ring, a = A+, and I is a homogeneous ideal,
(2) (Fn) = (M̃n|U ) where (Mn) is an inverse system of graded A-modules, and
(3) (Fn) extends canonically to X.

Then there is a finite graded A-module N such that
(a) the inverse systems (N/InN) and (Mn) are pro-isomorphic in the category

of graded A-modules modulo A+-power torsion modules, and
(b) (Fn) is the completion of of the coherent module associated to N .

Proof. Let (Gn) be the canonical extension as in Lemma 16.8. The grading on A
and Mn determines an action

a : Gm ×X −→ X

of the group scheme Gm on X such that (M̃n) becomes an inverse system of Gm-
equivariant quasi-coherent OX -modules, see Groupoids, Example 12.3. Since a and
I are homogeneous ideals the closed subschemes Z, Y and the open subscheme U

are Gm-invariant closed and open subschemes. The restriction (Fn) of (M̃n) is an
inverse system of Gm-equivariant coherent OU -modules. In other words, (Fn) is a
Gm-equivariant coherent formal module, in the sense that there is an isomorphism

α : (a∗Fn) −→ (p∗Fn)
over Gm × U satisfying a suitable cocycle condition. Since a and p are flat mor-
phisms of affine schemes, by Lemma 16.9 we conclude that there exists a unique
isomorphism

β : (a∗Gn) −→ (p∗Gn)
over Gm×X restricting to α on Gm×U . The uniqueness guarantees that β satisfies
the corresponding cocycle condition. In this way each Gn becomes a Gm-equivariant
coherent OX -module in a manner compatible with transition maps.
By Groupoids, Lemma 12.5 we see that Gn with its Gm-equivariant structure cor-
responds to a graded A-module Nn. The transition maps Nn+1 → Nn are graded
module maps. Note that Nn is a finite A-module and Nn = Nn+1/InNn+1 because
(Gn) is an object of Coh(X, IOX). Let N be the finite graded A-module foud in
Algebra, Lemma 98.3. Then Nn = N/InN , whence (Gn) is the completion of the
coherent module associated to N , and a fortiori we see that (b) is true.
To see (a) we have to unwind the situation described above a bit more. First,
observe that the kernel and cokernel of Mn → H0(U,Fn) is A+-power torsion
(Local Cohomology, Lemma 8.2). Observe that H0(U,Fn) comes with a natural
grading such that these maps and the transition maps of the system are graded A-
module map; for example we can use that (U → X)∗Fn is a Gm-equivariant module
on X and use Groupoids, Lemma 12.5. Next, recall that (Nn) and (H0(U,Fn)) are

https://stacks.math.columbia.edu/tag/0EL4
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pro-isomorphic by Definition 16.7 and Lemma 16.8. We omit the verification that
the maps defining this pro-isomorphism are graded module maps. Thus (Nn) and
(Mn) are pro-isomorphic in the category of graded A-modules modulo A+-power
torsion modules. □

Let k be a field. Let P be a proper scheme over k. Let L be an ample invertible
OP -module. Let s ∈ Γ(P,L) be a section and let Q = Z(s) be the zero scheme, see
Divisors, Definition 14.8. Let I ⊂ OP be the ideal sheaf of Q. We will use Coh(P, I)
to denote the category of coherent formal modules introduced in Cohomology of
Schemes, Section 23.

Proposition 28.5.0EL5 In the situation above let (Fn) be an object of Coh(P, I).
Assume for all q ∈ Q and for all primes p ∈ O∧

P,q, p ̸∈ V (I∧
q ) we have

depth((F∧
q )p) + dim(O∧

P,q/p) + dim({q}) > 2

Then (Fn) is the completion of a coherent OP -module.

Proof. By Cohomology of Schemes, Lemma 23.6 to prove the lemma, we may re-
place (Fn) by an object differing from it by I-torsion (see below for more precision).
Let T ′ = {q ∈ Q | dim({q}) = 0} and T = {q ∈ Q | dim({q}) ≤ 1}. The assump-
tion in the proposition is exactly that Q ⊂ P , (Fn), and T ′ ⊂ T ⊂ Q satisfy the
conditions of Lemma 21.2 with d = 1; besides trivial manipulations of inequalities,
use that V (p)∩V (I∧

y ) = {m∧
y } ⇔ dim(O∧

P,q/p) = 1 as I∧
y is generated by 1 element.

Combining these two remarks, we may replace (Fn) by the object (Hn) of Coh(P, I)
found in Lemma 21.2. Thus we may and do assume (Fn) is pro-isomorphic to an
inverse system (F ′′

n) of coherent OP -modules such that depth(F ′′
n,q)+dim({q}) ≥ 2

for all q ∈ Q.

We will use More on Morphisms, Lemma 51.1 and we will use the notation used
and results found More on Morphisms, Section 51 without further mention; this
proof will not make sense without at least understanding the statement of the
lemma. Observe that in our case A =

⊕
m≥0 Γ(P,L⊗m) is a finite type k-algebra

all of whose graded parts are finite dimensional k-vector spaces, see Cohomology of
Schemes, Lemma 16.1.

By Cohomology of Schemes, Lemma 23.9 the pull back by π|U : U → P is an object
(π|∗UFn) of Coh(U, fOU ) which is pro-isomorphic to the inverse system (π|∗UF ′′

n) of
coherent OU -modules. We claim

depth(π|∗UF ′′
n,y) + δY

Z (y) ≥ 3

for all y ∈ U ∩Y . Since all the points of Z are closed, we see that δY
Z (y) ≥ dim({y})

for all y ∈ U∩Y , see Lemma 18.1. Let q ∈ Q be the image of y. Since the morphism
π : U → P is smooth of relative dimension 1 we see that either y is a closed point
of a fibre of π or a generic point. Thus we see that

depth(π∗F ′′
n,y) + δY

Z (y) ≥ depth(π∗F ′′
n,y) + dim({y}) = depth(F ′′

n,q) + dim({q}) + 1

because either the depth goes up by 1 or the dimension. This proves the claim.

By Lemma 22.1 we conclude that (π|∗UFn) canonically extends to X. Observe that

Mn = Γ(U, π|∗UFn) =
⊕

m∈Z
Γ(P,Fn ⊗OP

L⊗m)

https://stacks.math.columbia.edu/tag/0EL5
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is canonically a graded A-module, see More on Morphisms, Equation (51.0.2). By
Properties, Lemma 18.2 we have π|∗UFn = M̃n|U . Thus we may apply Lemma 28.4
to find a finite graded A-module N such that (Mn) and (N/InN) are pro-isomorphic
in the category of graded A-modules modulo A+-torsion modules. Let F be the
coherent OP -module associated to N , see Cohomology of Schemes, Proposition
15.3. The same proposition tells us that (F/InF) is pro-isomorphic to (Fn). Since
both are objects of Coh(P, I) we win by Lemma 15.3. □

Example 28.6.0EL6 Let k be a field and let X be a proper variety over k. Let Y ⊂ X
be an effective Cartier divisor such that OX(Y ) is ample and denote I ⊂ OX the
corresponding sheaf of ideals. Let (En) an object of Coh(X, I) with En finite locally
free. Here are some special cases of Proposition 28.5.

(1) If X is a curve or a surface, we don’t learn anything.
(2) If X is a Cohen-Macaulay threefold, then (En) is the completion of a co-

herent OX -module E .
(3) More generally, if dim(X) ≥ 3 and X is (S3), then (En) is the completion

of a coherent OX -module E .
Of course, if E exists, then E is finite locally free in an open neighbourhood of Y .

Proposition 28.7.0EL7 Let k be a field. Let X be a proper scheme over k. Let L
be an ample invertible OX-module and let s ∈ Γ(X,L). Let Y = Z(s) be the zero
scheme of s and denote I ⊂ OX the corresponding sheaf of ideals. Let V be the set
of open subschemes of X containing Y ordered by reverse inclusion. Assume that
for all x ∈ X \ Y we have

depth(OX,x) + dim({x}) > 2
Then the completion functor

colimV Coh(OV ) −→ Coh(X, I)
is an equivalence on the full subcategories of finite locally free objects.

Proof. To prove fully faithfulness it suffices to prove that
colimV Γ(V,L⊗m) −→ lim Γ(Yn,L⊗m|Yn

)
is an isomorphism for all m, see Lemma 15.2. This follows from Lemma 28.2.
Essential surjectivity. Let (Fn) be a finite locally free object of Coh(X, I). Then
for y ∈ Y we have F∧

y = limFn,y is is a finite free O∧
X,y-module. Let p ⊂ O∧

X,y be
a prime with p ̸∈ V (I∧

y ). Then p lies over a prime p0 ⊂ OX,y which corresponds to
a specialization x ⇝ y with x ̸∈ Y . By Local Cohomology, Lemma 11.3 and some
dimension theory (see Varieties, Section 20) we have

depth((O∧
X,y)p) + dim(O∧

X,y/p) = depth(OX,x) + dim({x})− dim({y})
Thus our assumptions imply the assumptions of Proposition 28.5 are satisfied and
we find that (Fn) is the completion of a coherent OX -module F . It then follows
that Fy is finite free for all y ∈ Y and hence F is finite locally free in an open
neighbourhood V of Y . This finishes the proof. □

29. Other chapters
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