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1. Introduction

073X A reference is the lectures by Serre in the Seminaire Cartan, see [Ser55]. Serre in
turn refers to [Deu68] and [ANT44]. We changed some of the proofs, in particular
we used a fun argument of Rieffel to prove Wedderburn’s theorem. Very likely this
change is not an improvement and we strongly encourage the reader to read the
original exposition by Serre.

2. Noncommutative algebras

073Y Let k be a field. In this chapter an algebra A over k is a possibly noncommutative
ring A together with a ring map k → A such that k maps into the center of A and
such that 1 maps to an identity element of A. An A-module is a right A-module
such that the identity of A acts as the identity.

Definition 2.1.073Z Let A be a k-algebra. We say A is finite if dimk(A) <∞. In this
case we write [A : k] = dimk(A).

Definition 2.2.0740 A skew field is a possibly noncommutative ring with an identity
element 1, with 1 6= 0, in which every nonzero element has a multiplicative inverse.

A skew field is a k-algebra for some k (e.g., for the prime field contained in it). We
will use below that any module over a skew field is free because a maximal linearly
independent set of vectors forms a basis and exists by Zorn’s lemma.

Definition 2.3.0741 Let A be a k-algebra. We say an A-module M is simple if it is
nonzero and the only A-submodules are 0 and M . We say A is simple if the only
two-sided ideals of A are 0 and A.

This is a chapter of the Stacks Project, version 9a03196a, compiled on Jan 25, 2019.
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Definition 2.4.0742 A k-algebra A is central if the center of A is the image of k → A.

Definition 2.5.0743 Given a k-algebra A we denote Aop the k-algebra we get by
reversing the order of multiplication in A. This is called the opposite algebra.

3. Wedderburn’s theorem

0744 The following cute argument can be found in a paper of Rieffel, see [Rie65]. The
proof could not be simpler (quote from Carl Faith’s review).

Lemma 3.1.0745 Let A be a possibly noncommutative ring with 1 which contains no
nontrivial two-sided ideal. Let M be a nonzero right ideal in A, and view M as a
right A-module. Then A coincides with the bicommutant of M .

Proof. Let A′ = EndA(M), so M is a left A′-module. Set A′′ = EndA′(M) (the
bicommutant of M). We view A′′ as an algebra so that M is a right A′′-module1.
Let R : A → A′′ be the natural homomorphism such that mR(a) = ma. Then R
is injective, since R(1) = idM and A contains no nontrivial two-sided ideal. We
claim that R(M) is a right ideal in A′′. Namely, R(m)a′′ = R(ma′′) for a′′ ∈ A′′

and m in M , because left multiplication of M by any element n of M represents
an element of A′, and so (nm)a′′ = n(ma′′) for all n in M . Finally, the product
ideal AM is a two-sided ideal, and so A = AM . Thus R(A) = R(A)R(M), so that
R(A) is a right ideal in A′′. But R(A) contains the identity element of A′′, and so
R(A) = A′′. �

Lemma 3.2.0746 Let A be a k-algebra. If A is finite, then

(1) A has a simple module,
(2) any nonzero module contains a simple submodule,
(3) a simple module over A has finite dimension over k, and
(4) if M is a simple A-module, then EndA(M) is a skew field.

Proof. Of course (1) follows from (2) since A is a nonzero A-module. For (2),
any submodule of minimal (finite) dimension as a k-vector space will be simple.
There exists a finite dimensional one because a cyclic submodule is one. If M is
simple, then mA ⊂ M is a sub-module, hence we see (3). Any nonzero element of
EndA(M) is an isomorphism, hence (4) holds. �

Theorem 3.3.0747 Let A be a simple finite k-algebra. Then A is a matrix algebra
over a finite k-algebra K which is a skew field.

Proof. We may choose a simple submodule M ⊂ A and then the k-algebra K =
EndA(M) is a skew field, see Lemma 3.2. By Lemma 3.1 we see that A = EndK(M).
Since K is a skew field and M is finitely generated (since dimk(M) < ∞) we
see that M is finite free as a left K-module. It follows immediately that A ∼=
Mat(n× n,Kop). �

1This means that given a′′ ∈ A′′ and m ∈ M we have a product ma′′ ∈ M . In particu-
lar, the multiplication in A′′ is the opposite of what you’d get if you wrote elements of A′′ as
endomorphisms acting on the left.

https://stacks.math.columbia.edu/tag/0742
https://stacks.math.columbia.edu/tag/0743
https://stacks.math.columbia.edu/tag/0745
https://stacks.math.columbia.edu/tag/0746
https://stacks.math.columbia.edu/tag/0747
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4. Lemmas on algebras

0748 Let A be a k-algebra. Let B ⊂ A be a subalgebra. The centralizer of B in A is the
subalgebra

C = {y ∈ A | xy = yx for all x ∈ B}.
It is a k-algebra.

Lemma 4.1.0749 Let A, A′ be k-algebras. Let B ⊂ A, B′ ⊂ A′ be subalgebras with
centralizers C, C ′. Then the centralizer of B ⊗k B′ in A⊗k A′ is C ⊗k C ′.

Proof. Denote C ′′ ⊂ A⊗kA
′ the centralizer of B⊗kB

′. It is clear that C⊗kC
′ ⊂

C ′′. Conversely, every element of C ′′ commutes with B ⊗ 1 hence is contained in
C ⊗k A′. Similarly C ′′ ⊂ A⊗k C ′. Thus C ′′ ⊂ C ⊗k A′ ∩A⊗k C ′ = C ⊗k C ′. �

Lemma 4.2.074A Let A be a finite simple k-algebra. Then the center k′ of A is a finite
field extension of k.

Proof. Write A = Mat(n×n,K) for some skew field K finite over k, see Theorem
3.3. By Lemma 4.1 the center of A is k ⊗k k′ where k′ ⊂ K is the center of K.
Since the center of a skew field is a field, we win. �

Lemma 4.3.074B Let V be a k vector space. Let K be a central k-algebra which is
a skew field. Let W ⊂ V ⊗k K be a two-sided K-sub vector space. Then W is
generated as a left K-vector space by W ∩ (V ⊗ 1).

Proof. Let V ′ ⊂ V be the k-sub vector space generated by v ∈ V such that
v ⊗ 1 ∈W . Then V ′ ⊗k K ⊂W and we have

W/(V ′ ⊗k K) ⊂ (V/V ′)⊗k K.

If v ∈ V/V ′ is a nonzero vector such that v ⊗ 1 is contained in W/V ′ ⊗k K, then
we see that v⊗ 1 ∈W where v ∈ V lifts v. This contradicts our construction of V ′.
Hence we may replace V by V/V ′ and W by W/V ′ ⊗k K and it suffices to prove
that W ∩ (V ⊗ 1) is nonzero if W is nonzero.

To see this let w ∈ W be a nonzero element which can be written as w =∑
i=1,...,n vi ⊗ ki with n minimal. We may right multiply with k−11 and assume

that k1 = 1. If n = 1, then we win because v1 ⊗ 1 ∈W . If n > 1, then we see that
for any c ∈ K

cw − wc =
∑

i=2,...,n
vi ⊗ (cki − kic) ∈W

and hence cki − kic = 0 by minimality of n. This implies that ki is in the center
of K which is k by assumption. Hence w = (v1 +

∑
kivi) ⊗ 1 contradicting the

minimality of n. �

Lemma 4.4.074C Let A be a k-algebra. Let K be a central k-algebra which is a skew
field. Then any two-sided ideal I ⊂ A⊗kK is of the form J⊗kK for some two-sided
ideal J ⊂ A. In particular, if A is simple, then so is A⊗k K.

Proof. Set J = {a ∈ A | a⊗1 ∈ I}. This is a two-sided ideal of A. And I = J⊗kK
by Lemma 4.3. �

Lemma 4.5.074D Let R be a possibly noncommutative ring. Let n ≥ 1 be an integer.
Let Rn = Mat(n× n,R).

(1) The functors M 7→ M⊕n and N 7→ Ne11 define quasi-inverse equivalences
of categories ModR ↔ ModRn

.

https://stacks.math.columbia.edu/tag/0749
https://stacks.math.columbia.edu/tag/074A
https://stacks.math.columbia.edu/tag/074B
https://stacks.math.columbia.edu/tag/074C
https://stacks.math.columbia.edu/tag/074D


BRAUER GROUPS 4

(2) A two-sided ideal of Rn is of the form IRn for some two-sided ideal I of R.
(3) The center of Rn is equal to the center of R.

Proof. Part (1) proves itself. If J ⊂ Rn is a two-sided ideal, then J =
⊕

eiiJejj
and all of the summands eiiJejj are equal to each other and are a two-sided ideal
I of R. This proves (2). Part (3) is clear. �

Lemma 4.6.074E Let A be a finite simple k-algebra.
(1) There exists exactly one simple A-module M up to isomorphism.
(2) Any finite A-module is a direct sum of copies of a simple module.
(3) Two finite A-modules are isomorphic if and only if they have the same

dimension over k.
(4) If A = Mat(n× n,K) with K a finite skew field extension of k, then M =

K⊕n is a simple A-module and EndA(M) = Kop.
(5) If M is a simple A-module, then L = EndA(M) is a skew field finite over k

acting on the left on M , we have A = EndL(M), and the centers of A and
L agree. Also [A : k][L : k] = dimk(M)2.

(6) For a finite A-module N the algebra B = EndA(N) is a matrix algebra over
the skew field L of (5). Moreover EndB(N) = A.

Proof. By Theorem 3.3 we can write A = Mat(n×n,K) for some finite skew field
extension K of k. By Lemma 4.5 the category of modules over A is equivalent to
the category of modules over K. Thus (1), (2), and (3) hold because every module
over K is free. Part (4) holds because the equivalence transforms the K-module K
to M = K⊕n. Using M = K⊕n in (5) we see that L = Kop. The statement about
the center of L = Kop follows from Lemma 4.5. The statement about EndL(M)
follows from the explicit form of M . The formula of dimensions is clear. Part (6)
follows as N is isomorphic to a direct sum of copies of a simple module. �

Lemma 4.7.074F Let A, A′ be two simple k-algebras one of which is finite and central
over k. Then A⊗k A′ is simple.

Proof. Suppose that A′ is finite and central over k. Write A′ = Mat(n × n,K ′),
see Theorem 3.3. Then the center of K ′ is k and we conclude that A⊗kK

′ is simple
by Lemma 4.4. Hence A⊗k A

′ = Mat(n×n,A⊗k K
′) is simple by Lemma 4.5. �

Lemma 4.8.074G The tensor product of finite central simple algebras over k is finite,
central, and simple.

Proof. Combine Lemmas 4.1 and 4.7. �

Lemma 4.9.074H Let A be a finite central simple algebra over k. Let k ⊂ k′ be a field
extension. Then A′ = A⊗k k′ is a finite central simple algebra over k′.

Proof. Combine Lemmas 4.1 and 4.7. �

Lemma 4.10.074I Let A be a finite central simple algebra over k. Then A⊗k Aop ∼=
Mat(n× n, k) where n = [A : k].

Proof. By Lemma 4.8 the algebra A⊗k Aop is simple. Hence the map

A⊗k Aop −→ Endk(A), a⊗ a′ 7−→ (x 7→ axa′)

is injective. Since both sides of the arrow have the same dimension we win. �

https://stacks.math.columbia.edu/tag/074E
https://stacks.math.columbia.edu/tag/074F
https://stacks.math.columbia.edu/tag/074G
https://stacks.math.columbia.edu/tag/074H
https://stacks.math.columbia.edu/tag/074I
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5. The Brauer group of a field

074J Let k be a field. Consider two finite central simple algebras A and B over k. We say
A and B are similar if there exist n,m > 0 such that Mat(n×n,A) ∼= Mat(m×m,B)
as k-algebras.

Lemma 5.1.074K Similarity.

(1) Similarity defines an equivalence relation on the set of isomorphism classes
of finite central simple algebras over k.

(2) Every similarity class contains a unique (up to isomorphism) finite central
skew field extension of k.

(3) If A = Mat(n×n,K) and B = Mat(m×m,K ′) for some finite central skew
fields K, K ′ over k then A and B are similar if and only if K ∼= K ′ as
k-algebras.

Proof. Note that by Wedderburn’s theorem (Theorem 3.3) we can always write
a finite central simple algebra as a matrix algebra over a finite central skew field.
Hence it suffices to prove the third assertion. To see this it suffices to show that if
A = Mat(n×n,K) ∼= Mat(m×m,K ′) = B then K ∼= K ′. To see this note that for
a simple module M of A we have EndA(M) = Kop, see Lemma 4.6. Hence A ∼= B
implies Kop ∼= (K ′)op and we win. �

Given two finite central simple k-algebras A, B the tensor product A ⊗k B is
another, see Lemma 4.8. Moreover if A is similar to A′, then A ⊗k B is similar
to A′ ⊗k B because tensor products and taking matrix algebras commute. Hence
tensor product defines an operation on equivalence classes of finite central simple
algebras which is clearly associative and commutative. Finally, Lemma 4.10 shows
that A ⊗k Aop is isomorphic to a matrix algebra, i.e., that A ⊗k Aop is in the
similarity class of k. Thus we obtain an abelian group.

Definition 5.2.074L Let k be a field. The Brauer group of k is the abelian group of
similarity classes of finite central simple k-algebras defined above. Notation Br(k).

For any map of fields k → k′ we obtain a group homomorphism

Br(k) −→ Br(k′), A 7−→ A⊗k k′

see Lemma 4.9. In other words, Br(−) is a functor from the category of fields to
the category of abelian groups. Observe that the Brauer group of a field is zero if
and only if every finite central skew field extension k ⊂ K is trivial.

Lemma 5.3.074M The Brauer group of an algebraically closed field is zero.

Proof. Let k ⊂ K be a finite central skew field extension. For any element x ∈ K
the subring k[x] ⊂ K is a commutative finite integral k-sub algebra, hence a field,
see Algebra, Lemma 35.19. Since k is algebraically closed we conclude that k[x] = k.
Since x was arbitrary we conclude k = K. �

Lemma 5.4.074N Let A be a finite central simple algebra over a field k. Then [A : k]
is a square.

Proof. This is true because A⊗k k is a matrix algebra over k by Lemma 5.3. �

https://stacks.math.columbia.edu/tag/074K
https://stacks.math.columbia.edu/tag/074L
https://stacks.math.columbia.edu/tag/074M
https://stacks.math.columbia.edu/tag/074N
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6. Skolem-Noether

074P
Theorem 6.1.074Q Let A be a finite central simple k-algebra. Let B be a simple k-
algebra. Let f, g : B → A be two k-algebra homomorphisms. Then there exists an
invertible element x ∈ A such that f(b) = xg(b)x−1 for all b ∈ B.

Proof. Choose a simple A-module M . Set L = EndA(M). Then L is a skew field
with center k which acts on the left onM , see Lemmas 3.2 and 4.6. ThenM has two
B⊗kL

op-module structures defined by m·1(b⊗l) = lmf(b) and m·2(b⊗l) = lmg(b).
The k-algebra B⊗kL

op is simple by Lemma 4.7. Since B is simple, the existence of
a k-algebra homomorphism B → A implies that B is finite. Thus B⊗k L

op is finite
simple and we conclude the two B ⊗k L

op-module structures on M are isomorphic
by Lemma 4.6. Hence we find ϕ : M → M intertwining these operations. In
particular ϕ is in the commutant of L which implies that ϕ is multiplication by
some x ∈ A, see Lemma 4.6. Working out the definitions we see that x is a solution
to our problem. �

Lemma 6.2.074R Let A be a finite simple k-algebra. Any automorphism of A is inner.
In particular, any automorphism of Mat(n× n, k) is inner.

Proof. Note that A is a finite central simple algebra over the center of A which
is a finite field extension of k, see Lemma 4.2. Hence the Skolem-Noether theorem
(Theorem 6.1) applies. �

7. The centralizer theorem

074S
Theorem 7.1.074T Let A be a finite central simple algebra over k, and let B be a
simple subalgebra of A. Then

(1) the centralizer C of B in A is simple,
(2) [A : k] = [B : k][C : k], and
(3) the centralizer of C in A is B.

Proof. Throughout this proof we use the results of Lemma 4.6 freely. Choose a
simple A-module M . Set L = EndA(M). Then L is a skew field with center k which
acts on the left on M and A = EndL(M). Then M is a right B⊗k L

op-module and
C = EndB⊗kLop(M). Since the algebra B ⊗k Lop is simple by Lemma 4.7 we see
that C is simple (by Lemma 4.6 again).

Write B ⊗k Lop = Mat(m × m,K) for some skew field K finite over k. Then
C = Mat(n× n,Kop) if M is isomorphic to a direct sum of n copies of the simple
B ⊗k Lop-module K⊕m (the lemma again). Thus we have dimk(M) = nm[K : k],
[B : k][L : k] = m2[K : k], [C : k] = n2[K : k], and [A : k][L : k] = dimk(M)2 (by
the lemma again). We conclude that (2) holds.

Part (3) follows because of (2) applied to C ⊂ A shows that [B : k] = [C ′ : k] where
C ′ is the centralizer of C in A (and the obvious fact that B ⊂ C ′). �

Lemma 7.2.074U Let A be a finite central simple algebra over k, and let B be a simple
subalgebra of A. If B is a central k-algebra, then A = B ⊗k C where C is the
(central simple) centralizer of B in A.

https://stacks.math.columbia.edu/tag/074Q
https://stacks.math.columbia.edu/tag/074R
https://stacks.math.columbia.edu/tag/074T
https://stacks.math.columbia.edu/tag/074U
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Proof. We have dimk(A) = dimk(B ⊗k C) by Theorem 7.1. By Lemma 4.7 the
tensor product is simple. Hence the natural map B⊗k C → A is injective hence an
isomorphism. �

Lemma 7.3.074V Let A be a finite central simple algebra over k. If K ⊂ A is a
subfield, then the following are equivalent

(1) [A : k] = [K : k]2,
(2) K is its own centralizer, and
(3) K is a maximal commutative subring.

Proof. Theorem 7.1 shows that (1) and (2) are equivalent. It is clear that (3) and
(2) are equivalent. �

Lemma 7.4.074W Let A be a finite central skew field over k. Then every maximal
subfield K ⊂ A satisfies [A : k] = [K : k]2.

Proof. Special case of Lemma 7.3. �

8. Splitting fields

074X
Definition 8.1.074Y Let A be a finite central simple k-algebra. We say a field extension
k ⊂ k′ splits A, or k′ is a splitting field for A if A⊗k k

′ is a matrix algebra over k′.

Another way to say this is that the class of A maps to zero under the map Br(k)→
Br(k′).

Theorem 8.2.074Z Let A be a finite central simple k-algebra. Let k ⊂ k′ be a finite
field extension. The following are equivalent

(1) k′ splits A, and
(2) there exists a finite central simple algebra B similar to A such that k′ ⊂ B

and [B : k] = [k′ : k]2.

Proof. Assume (2). It suffices to show that B⊗k k
′ is a matrix algebra. We know

that B⊗kB
op ∼= Endk(B). Since k′ is the centralizer of k′ in Bop by Lemma 7.3 we

see that B⊗k k
′ is the centralizer of k⊗ k′ in B⊗k B

op = Endk(B). Of course this
centralizer is just Endk′(B) where we view B as a k′ vector space via the embedding
k′ → B. Thus the result.

Assume (1). This means that we have an isomorphism A ⊗k k′ ∼= Endk′(V ) for
some k′-vector space V . Let B be the commutant of A in Endk(V ). Note that k′
sits in B. By Lemma 7.2 the classes of A and B add up to zero in Br(k). From the
dimension formula in Theorem 7.1 we see that

[B : k][A : k] = dimk(V )2 = [k′ : k]2 dimk′(V )2 = [k′ : k]2[A : k].

Hence [B : k] = [k′ : k]2. Thus we have proved the result for the opposite to the
Brauer class of A. However, k′ splits the Brauer class of A if and only if it splits
the Brauer class of the opposite algebra, so we win anyway. �

Lemma 8.3.0750 A maximal subfield of a finite central skew field K over k is a
splitting field for K.

Proof. Combine Lemma 7.4 with Theorem 8.2. �

https://stacks.math.columbia.edu/tag/074V
https://stacks.math.columbia.edu/tag/074W
https://stacks.math.columbia.edu/tag/074Y
https://stacks.math.columbia.edu/tag/074Z
https://stacks.math.columbia.edu/tag/0750
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Lemma 8.4.0751 Consider a finite central skew field K over k. Let d2 = [K : k]. For
any finite splitting field k′ for K the degree [k′ : k] is divisible by d.

Proof. By Theorem 8.2 there exists a finite central simple algebra B in the Brauer
class ofK such that [B : k] = [k′ : k]2. By Lemma 5.1 we see thatB = Mat(n×n,K)
for some n. Then [k′ : k]2 = n2d2 whence the result. �

Proposition 8.5.0752 Consider a finite central skew field K over k. There exists a
maximal subfield k ⊂ k′ ⊂ K which is separable over k. In particular, every Brauer
class has a finite separable spitting field.

Proof. Since every Brauer class is represented by a finite central skew field over k,
we see that the second statement follows from the first by Lemma 8.3.

To prove the first statement, suppose that we are given a separable subfield k′ ⊂ K.
Then the centralizer K ′ of k′ in K has center k′, and the problem reduces to finding
a maximal subfield of K ′ separable over k′. Thus it suffices to prove, if k 6= K, that
we can find an element x ∈ K, x 6∈ k which is separable over k. This statement is
clear in characteristic zero. Hence we may assume that k has characteristic p > 0.
If the ground field k is finite then, the result is clear as well (because extensions of
finite fields are always separable). Thus we may assume that k is an infinite field
of positive characteristic.

To get a contradiction assume no element ofK is separable over k. By the discussion
in Fields, Section 28 this means the minimal polynomial of any x ∈ K is of the
form T q − a where q is a power of p and a ∈ k. Since it is clear that every element
of K has a minimal polynomial of degree ≤ dimk(K) we conclude that there exists
a fixed p-power q such that xq ∈ k for all x ∈ K.

Consider the map
(−)q : K −→ K

and write it out in terms of a k-basis {a1, . . . , an} of K with a1 = 1. So

(
∑

xiai)
q =

∑
fi(x1, . . . , xn)ai.

Since multiplication on A is k-bilinear we see that each fi is a polynomial in
x1, . . . , xn (details omitted). The choice of q above and the fact that k is infi-
nite shows that fi is identically zero for i ≥ 2. Hence we see that it remains zero on
extending k to its algebraic closure k. But the algebra A⊗k k is a matrix algebra,
which implies there are some elements whose qth power is not central (e.g., e11).
This is the desired contradiction. �

The results above allow us to characterize finite central simple algebras as follows.

Lemma 8.6.0753 Let k be a field. For a k-algebra A the following are equivalent
(1) A is finite central simple k-algebra,
(2) A is a finite dimensional k-vector space, k is the center of A, and A has

no nontrivial two-sided ideal,
(3) there exists d ≥ 1 such that A⊗k k̄ ∼= Mat(d× d, k̄),
(4) there exists d ≥ 1 such that A⊗k ksep ∼= Mat(d× d, ksep),
(5) there exist d ≥ 1 and a finite Galois extension k ⊂ k′ such that A⊗k k′ ∼=

Mat(d× d, k′),
(6) there exist n ≥ 1 and a finite central skew field K over k such that A ∼=

Mat(n× n,K).

https://stacks.math.columbia.edu/tag/0751
https://stacks.math.columbia.edu/tag/0752
https://stacks.math.columbia.edu/tag/0753
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The integer d is called the degree of A.

Proof. The equivalence of (1) and (2) is a consequence of the definitions, see
Section 2. Assume (1). By Proposition 8.5 there exists a separable splitting field
k ⊂ k′ for A. Of course, then a Galois closure of k′/k is a splitting field also. Thus
we see that (1) implies (5). It is clear that (5) ⇒ (4) ⇒ (3). Assume (3). Then
A⊗k k is a finite central simple k-algebra for example by Lemma 4.5. This trivially
implies that A is a finite central simple k-algebra. Finally, the equivalence of (1)
and (6) is Wedderburn’s theorem, see Theorem 3.3. �
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