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1. Introduction

02P4 In this chapter we discuss Chow homology groups and the construction of Chern
classes of vector bundles as elements of operational Chow cohomology groups (ev-
erything with Z-coefficients).
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We start this chapter by giving the shortest possible algebraic proof of the Key
Lemma 6.3. We first define the Herbrand quotient (Section 2) and we compute
it in some cases (Section 3). Next, we prove some simple algebra lemmas on ex-
istence of suitable factorizations after modifications (Section 4). Using these we
construct/define the tame symbol in Section 5. Only the most basic properties of
the tame symbol are needed to prove the Key Lemma, which we do in Section 6.
Next, we introduce the basic setup we work with in the rest of this chapter in
Section 7. To make the material a little bit more challenging we decided to treat a
somewhat more general case than is usually done. Namely we assume our schemes
X are locally of finite type over a fixed locally Noetherian base scheme which is
universally catenary and is endowed with a dimension function. These assumptions
suffice to be able to define the Chow homology groups CH∗(X) and the action of
capping with Chern classes on them. This is an indication that we should be able
to define these also for algebraic stacks locally of finite type over such a base.
Next, we follow the first few chapters of [Ful98] in order to define cycles, flat pull-
back, proper pushforward, and rational equivalence, except that we have been less
precise about the supports of the cycles involved.
We diverge from the presentation given in [Ful98] by using the Key lemma men-
tioned above to prove a basic commutativity relation in Section 27. Using this
we prove that the operation of intersecting with an invertible sheaf passes through
rational equivalence and is commutative, see Section 28. One more application of
the Key lemma proves that the Gysin map of an effective Cartier divisor passes
through rational equivalence, see Section 30. Having proved this, it is straightfor-
ward to define Chern classes of vector bundles, prove additivity, prove the splitting
principle, introduce Chern characters, Todd classes, and state the Grothendieck-
Riemann-Roch theorem.
There are two appendices. In Appendix A (Section 68) we discuss an alterna-
tive (longer) construction of the tame symbol and corresponding proof of the Key
Lemma. Finally, in Appendix B (Section 69) we briefly discuss the relationship with
K-theory of coherent sheaves and we discuss some blowup lemmas. We suggest the
reader look at their introductions for more information.
We will return to the Chow groups CH∗(X) for smooth projective varieties over
algebraically closed fields in the next chapter. Using a moving lemma as in [Sam56],
[Che58a], and [Che58b] and Serre’s Tor-formula (see [Ser00] or [Ser65]) we will define
a ring structure on CH∗(X). See Intersection Theory, Section 1 ff.

2. Periodic complexes and Herbrand quotients

02PF Of course there is a very general notion of periodic complexes. We can require
periodicity of the maps, or periodicity of the objects. We will add these here as
needed. For the moment we only need the following cases.

Definition 2.1.02PG Let R be a ring.
(1) A 2-periodic complex over R is given by a quadruple (M,N,φ, ψ) consisting

of R-modules M , N and R-module maps φ : M → N , ψ : N → M such
that

. . . // M
φ // N

ψ // M
φ // N // . . .

https://stacks.math.columbia.edu/tag/02PG
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is a complex. In this setting we define the cohomology modules of the
complex to be the R-modules

H0(M,N,φ, ψ) = Ker(φ)/ Im(ψ) and H1(M,N,φ, ψ) = Ker(ψ)/ Im(φ).
We say the 2-periodic complex is exact if the cohomology groups are zero.

(2) A (2, 1)-periodic complex over R is given by a triple (M,φ, ψ) consisting of
an R-module M and R-module maps φ : M →M , ψ : M →M such that

. . . // M
φ // M

ψ // M
φ // M // . . .

is a complex. Since this is a special case of a 2-periodic complex we have its
cohomology modules H0(M,φ, ψ), H1(M,φ, ψ) and a notion of exactness.

In the following we will use any result proved for 2-periodic complexes without
further mention for (2, 1)-periodic complexes. It is clear that the collection of
2-periodic complexes forms a category with morphisms (f, g) : (M,N,φ, ψ) →
(M ′, N ′, φ′, ψ′) pairs of morphisms f : M → M ′ and g : N → N ′ such that
φ′ ◦ f = g ◦ φ and ψ′ ◦ g = f ◦ ψ. We obtain an abelian category, with kernels and
cokernels as in Homology, Lemma 13.3.

Definition 2.2.02PH Let (M,N,φ, ψ) be a 2-periodic complex over a ring R whose
cohomology modules have finite length. In this case we define the multiplicity of
(M,N,φ, ψ) to be the integer

eR(M,N,φ, ψ) = lengthR(H0(M,N,φ, ψ))− lengthR(H1(M,N,φ, ψ))
In the case of a (2, 1)-periodic complex (M,φ, ψ), we denote this by eR(M,φ, ψ)
and we will sometimes call this the (additive) Herbrand quotient.

If the cohomology groups of (M,φ, ψ) are finite abelian groups, then it is customary
to call the (multiplicative) Herbrand quotient

q(M,φ, ψ) = #H0(M,φ, ψ)
#H1(M,φ, ψ)

In words: the multiplicative Herbrand quotient is the number of elements of H0

divided by the number of elements of H1. If R is local and if the residue field of R
is finite with q elements, then we see that

q(M,φ, ψ) = qeR(M,φ,ψ)

An example of a (2, 1)-periodic complex over a ring R is any triple of the form
(M, 0, ψ) where M is an R-module and ψ is an R-linear map. If the kernel and
cokernel of ψ have finite length, then we obtain
(2.2.1)0EA6 eR(M, 0, ψ) = lengthR(Coker(ψ))− lengthR(Ker(ψ))
We state and prove the obligatory lemmas on these notations.

Lemma 2.3.0EA7 Let R be a ring. Suppose that we have a short exact sequence of
2-periodic complexes

0→ (M1, N1, φ1, ψ1)→ (M2, N2, φ2, ψ2)→ (M3, N3, φ3, ψ3)→ 0
If two out of three have cohomology modules of finite length so does the third and
we have

eR(M2, N2, φ2, ψ2) = eR(M1, N1, φ1, ψ1) + eR(M3, N3, φ3, ψ3).

https://stacks.math.columbia.edu/tag/02PH
https://stacks.math.columbia.edu/tag/0EA7
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Proof. We abbreviate A = (M1, N1, φ1, ψ1), B = (M2, N2, φ2, ψ2) and C =
(M3, N3, φ3, ψ3). We have a long exact cohomology sequence
. . .→ H1(C)→ H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ H1(C)→ . . .

This gives a finite exact sequence
0→ I → H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ K → 0

with 0 → K → H1(C) → I → 0 a filtration. By additivity of the length function
(Algebra, Lemma 52.3) we see the result. □

Lemma 2.4.0EA8 Let R be a ring. If (M,N,φ, ψ) is a 2-periodic complex such that
M , N have finite length, then eR(M,N,φ, ψ) = lengthR(M) − lengthR(N). In
particular, if (M,φ, ψ) is a (2, 1)-periodic complex such that M has finite length,
then eR(M,φ, ψ) = 0.

Proof. This follows from the additity of Lemma 2.3 and the short exact sequence
0→ (M, 0, 0, 0)→ (M,N,φ, ψ)→ (0, N, 0, 0)→ 0. □

Lemma 2.5.0EA9 Let R be a ring. Let f : (M,φ, ψ) → (M ′, φ′, ψ′) be a map of
(2, 1)-periodic complexes whose cohomology modules have finite length. If Ker(f)
and Coker(f) have finite length, then eR(M,φ, ψ) = eR(M ′, φ′, ψ′).

Proof. Apply the additivity of Lemma 2.3 and observe that (Ker(f), φ, ψ) and
(Coker(f), φ′, ψ′) have vanishing multiplicity by Lemma 2.4. □

3. Calculation of some multiplicities

0EAA To prove equality of certain cycles later on we need to compute some multiplicities.
Our main tool, besides the elementary lemmas on multiplicities given in the previous
section, will be Algebra, Lemma 121.7.

Lemma 3.1.02QF Let R be a Noetherian local ring. Let M be a finite R-module. Let
x ∈ R. Assume that

(1) dim(Supp(M)) ≤ 1, and
(2) dim(Supp(M/xM)) ≤ 0.

Write Supp(M) = {m, q1, . . . , qt}. Then

eR(M, 0, x) =
∑

i=1,...,t
ordR/qi(x)lengthRqi

(Mqi).

Proof. We first make some preparatory remarks. The result of the lemma holds if
M has finite length, i.e., if t = 0, because both the left hand side and the right hand
side are zero in this case, see Lemma 2.4. Also, if we have a short exact sequence
0→M →M ′ →M ′′ → 0 of modules satisfying (1) and (2), then lemma for 2 out
of 3 of these implies the lemma for the third by the additivity of length (Algebra,
Lemma 52.3) and additivty of multiplicities (Lemma 2.3).
Denote Mi the image of M in Mqi , so Supp(Mi) = {m, qi}. The kernel and cokernel
of the map M →

⊕
Mi have support {m} and hence have finite length. By our

preparatory remarks, it follows that it suffices to prove the lemma for each Mi. Thus
we may assume that Supp(M) = {m, q}. In this case we have a finite filtration M ⊃
qM ⊃ q2M ⊃ . . . ⊃ qnM = 0 by Algebra, Lemma 62.4. Again additivity shows
that it suffices to prove the lemma in the case M is annihilated by q. In this case
we can view M as a R/q-module, i.e., we may assume that R is a Noetherian local

https://stacks.math.columbia.edu/tag/0EA8
https://stacks.math.columbia.edu/tag/0EA9
https://stacks.math.columbia.edu/tag/02QF
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domain of dimension 1 with fraction field K. Dividing by the torsion submodule,
i.e., by the kernel of M → M ⊗R K = V (the torsion has finite length hence
is handled by our preliminary remarks) we may assume that M ⊂ V is a lattice
(Algebra, Definition 121.3). Then x : M → M is injective and lengthR(M/xM) =
d(M,xM) (Algebra, Definition 121.5). Since lengthK(V ) = dimK(V ) we see that
det(x : V → V ) = xdimK(V ) and ordR(det(x : V → V )) = dimK(V )ordR(x). Thus
the desired equality follows from Algebra, Lemma 121.7 in this case. □

Lemma 3.2.02QG Let R be a Noetherian local ring. Let x ∈ R. If M is a finite Cohen-
Macaulay module over R with dim(Supp(M)) = 1 and dim(Supp(M/xM)) = 0,
then

lengthR(M/xM) =
∑

i
lengthR(R/(x, qi))lengthRqi

(Mqi).
where q1, . . . , qt are the minimal primes of the support of M . If I ⊂ R is an ideal
such that x is a nonzerodivisor on R/I and dim(R/I) = 1, then

lengthR(R/(x, I)) =
∑

i
lengthR(R/(x, qi))lengthRqi

((R/I)qi)

where q1, . . . , qn are the minimal primes over I.

Proof. These are special cases of Lemma 3.1. □

Here is another case where we can determine the value of a multiplicity.

Lemma 3.3.0EAB Let R be a ring. Let M be an R-module. Let φ : M → M be an
endomorphism and n > 0 such that φn = 0 and such that Ker(φ)/ Im(φn−1) has
finite length as an R-module. Then

eR(M,φi, φn−i) = 0
for i = 0, . . . , n.

Proof. The cases i = 0, n are trivial as φ0 = idM by convention. Let us think
of M as an R[t]-module where multiplication by t is given by φ. Let us write
Ki = Ker(ti : M →M) and
ai = lengthR(Ki/t

n−iM), bi = lengthR(Ki/tKi+1), ci = lengthR(K1/t
iKi+1)

Boundary values are a0 = an = b0 = c0 = 0. The ci are integers for i < n as
K1/t

iKi+1 is a quotient of K1/t
n−1M which is assumed to have finite length. We

will use frequently that Ki ∩ tjM = tjKi+j . For 0 < i < n − 1 we have an exact
sequence

0→ K1/t
n−i−1Kn−i → Ki+1/t

n−i−1M
t−→ Ki/t

n−iM → Ki/tKi+1 → 0
By induction on i we conclude that ai and bi are integers for i < n and that

cn−i−1 − ai+1 + ai − bi = 0
For 0 < i < n− 1 there is a short exact sequence

0→ Ki/tKi+1 → Ki+1/tKi+2
ti−→ K1/t

i+1Ki+2 → K1/t
iKi+1 → 0

which gives
bi − bi+1 + ci+1 − ci = 0

Since b0 = c0 we conclude that bi = ci for i < n. Then we see that
a2 = a1 + bn−2 − b1, a3 = a2 + bn−3 − b2, . . .

It is straighforward to see that this implies ai = an−i as desired. □

https://stacks.math.columbia.edu/tag/02QG
https://stacks.math.columbia.edu/tag/0EAB
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Lemma 3.4.0EAC Let (R,m) be a Noetherian local ring. Let (M,φ, ψ) be a (2, 1)-
periodic complex over R with M finite and with cohomology groups of finite length
over R. Let x ∈ R be such that dim(Supp(M/xM)) ≤ 0. Then

eR(M,xφ, ψ) = eR(M,φ, ψ)− eR(Im(φ), 0, x)

and
eR(M,φ, xψ) = eR(M,φ, ψ) + eR(Im(ψ), 0, x)

Proof. We will only prove the first formula as the second is proved in exactly the
same manner. Let M ′ = M [x∞] be the x-power torsion submodule of M . Consider
the short exact sequence 0 → M ′ → M → M ′′ → 0. Then M ′′ is x-power torsion
free (More on Algebra, Lemma 88.4). Since φ, ψ map M ′ into M ′ we obtain a
short exact sequence

0→ (M ′, φ′, ψ′)→ (M,φ, ψ)→ (M ′′, φ′′, ψ′′)→ 0

of (2, 1)-periodic complexes. Also, we get a short exact sequence 0→M ′∩Im(φ)→
Im(φ) → Im(φ′′) → 0. We have eR(M ′, φ, ψ) = eR(M ′, xφ, ψ) = eR(M ′ ∩
Im(φ), 0, x) = 0 by Lemma 2.5. By additivity (Lemma 2.3) we see that it suf-
fices to prove the lemma for (M ′′, φ′′, ψ′′). This reduces us to the case discussed in
the next paragraph.

Assume x : M → M is injective. In this case Ker(xφ) = Ker(φ). On the other
hand we have a short exact sequence

0→ Im(φ)/x Im(φ)→ Ker(ψ)/ Im(xφ)→ Ker(ψ)/ Im(φ)→ 0

This together with (2.2.1) proves the formula. □

4. Preparation for tame symbols

0EAD In this section we put some lemma that will help us define the tame symbol in the
next section.

Lemma 4.1.0EAE Let A be a Noetherian ring. Let m1, . . . ,mr be pairwise distinct
maximal ideals of A. For i = 1, . . . , r let φi : Ami → Bi be a ring map whose
kernel and cokernel are annihilated by a power of mi. Then there exists a ring map
φ : A→ B such that

(1) the localization of φ at mi is isomorphic to φi, and
(2) Ker(φ) and Coker(φ) are annihilated by a power of m1 ∩ . . . ∩mr.

Moreover, if each φi is finite, injective, or surjective then so is φ.

Proof. Set I = m1 ∩ . . . ∩mr. Set Ai = Ami and A′ =
∏
Ai. Then IA′ =

∏
miAi

and A→ A′ is a flat ring map such that A/I ∼= A′/IA′. Thus we may use More on
Algebra, Lemma 89.16 to see that there exists an A-module map φ : A→ B with φi
isomorphic to the localization of φ at mi. Then we can use the discussion in More
on Algebra, Remark 89.19 to endow B with an A-algebra structure matching the
given A-algebra structure on Bi. The final statement of the lemma follows easily
from the fact that Ker(φ)mi ∼= Ker(φi) and Coker(φ)mi ∼= Coker(φi). □

The following lemma is very similar to Algebra, Lemma 119.3.

https://stacks.math.columbia.edu/tag/0EAC
https://stacks.math.columbia.edu/tag/0EAE
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Lemma 4.2.02Q7 Let (R,m) be a Noetherian local ring of dimension 1. Let a, b ∈ R be
nonzerodivisors. There exists a finite ring extension R ⊂ R′ with R′/R annihilated
by a power of m and nonzerodivisors t, a′, b′ ∈ R′ such that a = ta′ and b = tb′ and
R′ = a′R′ + b′R′.

Proof. If a or b is a unit, then the lemma is true with R = R′. Thus we may
assume a, b ∈ m. Set I = (a, b). The idea is to blow up R in I. Instead of doing the
algebraic argument we work geometrically. Let X = Proj(

⊕
d≥0 I

d). By Divisors,
Lemma 32.4 the morphism X → Spec(R) is an isomorphism over the punctured
spectrum U = Spec(R) \ {m}. Thus we may and do view U as an open subscheme
of X. The morphism X → Spec(R) is projective by Divisors, Lemma 32.13. Also,
every generic point of X lies in U , for example by Divisors, Lemma 32.10. It follows
from Varieties, Lemma 17.2 that X → Spec(R) is finite. Thus X = Spec(R′) is
affine and R → R′ is finite. We have Ra ∼= R′

a as U = D(a). Hence a power of a
annihilates the finite R-module R′/R. As m =

√
(a) we see that R′/R is annihilated

by a power of m. By Divisors, Lemma 32.4 we see that IR′ is a locally principal
ideal. Since R′ is semi-local we see that IR′ is principal, see Algebra, Lemma 78.7,
say IR′ = (t). Then we have a = a′t and b = b′t and everything is clear. □

Lemma 4.3.0EAF Let (R,m) be a Noetherian local ring of dimension 1. Let a, b ∈ R
be nonzerodivisors with a ∈ m. There exists an integer n = n(R, a, b) such that for
a finite ring extension R ⊂ R′ if b = amc for some c ∈ R′, then m ≤ n.

Proof. Choose a minimal prime q ⊂ R. Observe that dim(R/q) = 1, in particular
R/q is not a field. We can choose a discrete valuation ring A dominating R/q with
the same fraction field, see Algebra, Lemma 119.1. Observe that a and b map to
nonzero elements of A as nonzerodivisors in R are not contained in q. Let v be the
discrete valuation on A. Then v(a) > 0 as a ∈ m. We claim n = v(b)/v(a) works.
Let R ⊂ R′ be given. Set A′ = A ⊗R R′. Since Spec(R′) → Spec(R) is surjective
(Algebra, Lemma 36.17) also Spec(A′) → Spec(A) is surjective (Algebra, Lemma
30.3). Pick a prime q′ ⊂ A′ lying over (0) ⊂ A. Then A ⊂ A′′ = A′/q′ is a
finite extension of rings (again inducing a surjection on spectra). Pick a maximal
ideal m′′ ⊂ A′′ lying over the maximal ideal of A and a discrete valuation ring A′′′

dominating A′′
m′′ (see lemma cited above). Then A→ A′′′ is an extension of discrete

valuation rings and we have b = amc in A′′′. Thus v′′′(b) ≥ mv′′′(a). Since v′′′ = ev
where e is the ramification index of A′′′/A, we find that m ≤ n as desired. □

Lemma 4.4.0EAG Let (A,m) be a Noetherian local ring of dimension 1. Let r ≥ 2 and
let a1, . . . , ar ∈ A be nonzerodivisors not all units. Then there exist

(1) a finite ring extension A ⊂ B with B/A annihilated by a power of m,
(2) for each maximal ideal mj ⊂ B a nonzerodivisor πj ∈ Bj = Bmj , and
(3) factorizations ai = ui,jπ

ei,j
j in Bj with ui,j ∈ Bj units and ei,j ≥ 0.

Proof. Since at least one ai is not a unit we find that m is not an associated prime
of A. Moreover, for any A ⊂ B as in the statement m is not an associated prime
of B and mj is not an associate prime of Bj . Keeping this in mind will help check
the arguments below.
First, we claim that it suffices to prove the lemma for r = 2. We will argue this by
induction on r; we suggest the reader skip the proof. Suppose we are given A ⊂ B
and πj in Bj = Bmj and factorizations ai = ui,jπ

ei,j
j for i = 1, . . . , r− 1 in Bj with

https://stacks.math.columbia.edu/tag/02Q7
https://stacks.math.columbia.edu/tag/0EAF
https://stacks.math.columbia.edu/tag/0EAG
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ui,j ∈ Bj units and ei,j ≥ 0. Then by the case r = 2 for πj and ar in Bj we can
find extensions Bj ⊂ Cj and for every maximal ideal mj,k of Cj a nonzerodivisor
πj,k ∈ Cj,k = (Cj)mj,k and factorizations

πj = vj,kπ
fj,k
j,k and ar = wj,kπ

gj,k
j,k

as in the lemma. There exists a unique finite extension B ⊂ C with C/B annihilated
by a power of m such that Cj ∼= Cmj for all j, see Lemma 4.1. The maximal ideals
of C correspond 1-to-1 to the maximal ideals mj,k in the localizations and in these
localizations we have

ai = ui,jπ
ei,j
j = ui,jv

ei,j
j,k π

ei,jfj,k
j,k

for i ≤ r − 1. Since ar factors correctly too the proof of the induction step is
complete.
Proof of the case r = 2. We will use induction on

ℓ = min(lengthA(A/a1A), lengthA(A/a2A)).
If ℓ = 0, then either a1 or a2 is a unit and the lemma holds with A = B. Thus we
may and do assume ℓ > 0.
Suppose we have a finite extension of rings A ⊂ A′ such that A′/A is annihilated by
a power of m and such that m is not an associated prime of A′. Let m1, . . . ,mr ⊂ A′

be the maximal ideals and set A′
i = A′

mi . If we can solve the problem for a1, a2
in each A′

i, then we can apply Lemma 4.1 to produce a solution for a1, a2 in A.
Choose x ∈ {a1, a2} such that ℓ = lengthA(A/xA). By Lemma 2.5 and (2.2.1) we
have lengthA(A/xA) = lengthA(A′/xA′). On the other hand, we have

lengthA(A′/xA′) =
∑

[κ(mi) : κ(m)]lengthA′
i
(A′

i/xA
′
i)

by Algebra, Lemma 52.12. Since x ∈ m we see that each term on the right hand
side is positive. We conclude that the induction hypothesis applies to a1, a2 in each
A′
i if r > 1 or if r = 1 and [κ(m1) : κ(m)] > 1. We conclude that we may assume

each A′ as above is local with the same residue field as A.
Applying the discussion of the previous paragraph, we may replace A by the ring
constructed in Lemma 4.2 for a1, a2 ∈ A. Then since A is local we find, after
possibly switching a1 and a2, that a2 ∈ (a1). Write a2 = am1 c with m > 0 maximal.
In fact, by Lemma 4.3 we may assume m is maximal even after replacing A by any
finite extension A ⊂ A′ as in the previous paragraph. If c is a unit, then we are
done. If not, then we replace A by the ring constructed in Lemma 4.2 for a1, c ∈ A.
Then either (1) c = a1c

′ or (2) a1 = ca′
1. The first case cannot happen since it

would give a2 = am+1
1 c′ contradicting the maximality of m. In the second case we

get a1 = ca′
1 and a2 = cm+1(a′

1)m. Then it suffices to prove the lemma for A and
c, a′

1. If a′
1 is a unit we’re done and if not, then lengthA(A/cA) < ℓ because cA is

a strictly bigger ideal than a1A. Thus we win by induction hypothesis. □

5. Tame symbols

0EAH Consider a Noetherian local ring (A,m) of dimension 1. We denote Q(A) the total
ring of fractions of A, see Algebra, Example 9.8. The tame symbol will be a map

∂A(−,−) : Q(A)∗ ×Q(A)∗ −→ κ(m)∗

satisfying the following properties:
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(1) ∂A(f, gh) = ∂A(f, g)∂A(f, h)0EAI for f, g, h ∈ Q(A)∗,
(2) ∂A(f, g)∂A(g, f) = 10EAJ for f, g ∈ Q(A)∗,
(3) ∂A(f, 1− f) = 10EAK for f ∈ Q(A)∗ such that 1− f ∈ Q(A)∗,
(4) ∂A(aa′, b) = ∂A(a, b)∂A(a′, b)0EAL and ∂A(a, bb′) = ∂A(a, b)∂A(a, b′) for a, a′, b, b′ ∈

A nonzerodivisors,
(5) ∂A(b, b) = (−1)m0EAM with m = lengthA(A/bA) for b ∈ A a nonzerodivisor,
(6) ∂A(u, b) = um mod m0EAN with m = lengthA(A/bA) for u ∈ A a unit and b ∈ A

a nonzerodivisor, and
(7)0EAP ∂A(a, b − a)∂A(b, b) = ∂A(b, b − a)∂A(a, b) for a, b ∈ A such that a, b, b − a

are nonzerodivisors.
Since it is easier to work with elements of A we will often think of ∂A as a map
defined on pairs of nonzerodivisors of A satisfying (4), (5), (6), (7). It is an exercise
to see that setting

∂A(a
b
,
c

d
) = ∂A(a, c)∂A(a, d)−1∂A(b, c)−1∂A(b, d)

we get a well defined map Q(A)∗ ×Q(A)∗ → κ(m)∗ satisfying (1), (2), (3) as well
as the other properties.
We do not claim there is a unique map with these properties. Instead, we will give
a recipe for constructing such a map. Namely, given a1, a2 ∈ A nonzerodivisors, we
choose a ring extension A ⊂ B and local factorizations as in Lemma 4.4. Then we
define
(5.0.1)0EAQ ∂A(a1, a2) =

∏
j

Normκ(mj)/κ(m)((−1)e1,je2,ju
e2,j
1,j u

−e1,j
2,j mod mj)mj

where mj = lengthBj (Bj/πjBj) and the product is taken over the maximal ideals
m1, . . . ,mr of B.

Lemma 5.1.0EAR The formula (5.0.1) determines a well defined element of κ(m)∗.
In other words, the right hand side does not depend on the choice of the local
factorizations or the choice of B.

Proof. Independence of choice of factorizations. Suppose we have a Noetherian
1-dimensional local ring B, elements a1, a2 ∈ B, and nonzerodivisors π, θ such that
we can write

a1 = u1π
e1 = v1θ

f1 , a2 = u2π
e2 = v2θ

f2

with ei, fi ≥ 0 integers and ui, vi units in B. Observe that this implies

ae2
1 = ue2

1 u
−e1
2 ae1

2 , af2
1 = vf2

1 v−f1
2 af1

2

On the other hand, setting m = lengthB(B/πB) and k = lengthB(B/θB) we find
e2m = lengthB(B/a2B) = f2k. Expanding ae2m

1 = af2k
1 using the above we find

(ue2
1 u

−e1
2 )m = (vf2

1 v−f1
2 )k

This proves the desired equality up to signs. To see the signs work out we have to
show me1e2 is even if and only if kf1f2 is even. This follows as both me2 = kf2
and me1 = kf1 (same argument as above).
Independence of choice of B. Suppose given two extensions A ⊂ B and A ⊂ B′ as
in Lemma 4.4. Then

C = (B ⊗A B′)/(m-power torsion)

https://stacks.math.columbia.edu/tag/0EAR
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will be a third one. Thus we may assume we have A ⊂ B ⊂ C and factorizations
over the local rings of B and we have to show that using the same factorizations over
the local rings of C gives the same element of κ(m). By transitivity of norms (Fields,
Lemma 20.5) this comes down to the following problem: if B is a Noetherian local
ring of dimension 1 and π ∈ B is a nonzerodivisor, then

λm =
∏

Normκk/κ(λ)mk

Here we have used the following notation: (1) κ is the residue field of B, (2) λ is an
element of κ, (3) mk ⊂ C are the maximal ideals of C, (4) κk = κ(mk) is the residue
field of Ck = Cmk , (5) m = lengthB(B/πB), and (6) mk = lengthCk(Ck/πCk).
The displayed equality holds because Normκk/κ(λ) = λ[κk:κ] as λ ∈ κ and because
m =

∑
mk[κk : κ]. First, we have m = lengthB(B/xB) = lengthB(C/πC) by

Lemma 2.5 and (2.2.1). Finally, we have lengthB(C/πC) =
∑
mk[κk : κ] by

Algebra, Lemma 52.12. □

Lemma 5.2.0EAS The tame symbol (5.0.1) satisfies (4), (5), (6), (7) and hence gives
a map ∂A : Q(A)∗ ×Q(A)∗ → κ(m)∗ satisfying (1), (2), (3).

Proof. Let us prove (4). Let a1, a2, a3 ∈ A be nonzerodivisors. Choose A ⊂ B as
in Lemma 4.4 for a1, a2, a3. Then the equality

∂A(a1a2, a3) = ∂A(a1, a3)∂A(a2, a3)

follows from the equality

(−1)(e1,j+e2,j)e3,j (u1,ju2,j)e3,ju
−e1,j−e2,j
3,j = (−1)e1,je3,ju

e3,j
1,j u

−e1,j
3,j (−1)e2,je3,ju

e3,j
2,j u

−e2,j
3,j

in Bj . Properties (5) and (6) are equally immediate.

Let us prove (7). Let a1, a2, a1 − a2 ∈ A be nonzerodivisors and set a3 = a1 − a2.
Choose A ⊂ B as in Lemma 4.4 for a1, a2, a3. Then it suffices to show

(−1)e1,je2,j+e1,je3,j+e2,je3,j+e2,ju
e2,j−e3,j
1,j u

e3,j−e1,j
2,j u

e1,j−e2,j
3,j mod mj = 1

This is clear if e1,j = e2,j = e3,j . Say e1,j > e2,j . Then we see that e3,j = e2,j
because a3 = a1 − a2 and we see that u3,j has the same residue class as −u2,j .
Hence the formula is true – the signs work out as well and this verification is the
reason for the choice of signs in (5.0.1). The other cases are handled in exactly the
same manner. □

Lemma 5.3.0EAT Let (A,m) be a Noetherian local ring of dimension 1. Let A ⊂ B be a
finite ring extension with B/A annihilated by a power of m and m not an associated
prime of B. For a, b ∈ A nonzerodivisors we have

∂A(a, b) =
∏

Normκ(mj)/κ(m)(∂Bj (a, b))

where the product is over the maximal ideals mj of B and Bj = Bmj .

Proof. Choose Bj ⊂ Cj as in Lemma 4.4 for a, b. By Lemma 4.1 we can choose a
finite ring extension B ⊂ C with Cj ∼= Cmj for all j. Let mj,k ⊂ C be the maximal
ideals of C lying over mj . Let

a = uj,kπ
fj,k
j,k , b = vj,kπ

gj,k
j,k

https://stacks.math.columbia.edu/tag/0EAS
https://stacks.math.columbia.edu/tag/0EAT
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be the local factorizations which exist by our choice of Cj ∼= Cmj . By definition we
have

∂A(a, b) =
∏

j,k
Normκ(mj,k)/κ(m)((−1)fj,kgj,kugj,kj,k v

−fj,k
j,k mod mj,k)mj,k

and
∂Bj (a, b) =

∏
k

Normκ(mj,k)/κ(mj)((−1)fj,kgj,kugj,kj,k v
−fj,k
j,k mod mj,k)mj,k

The result follows by transitivity of norms for κ(mj,k)/κ(mj)/κ(m), see Fields,
Lemma 20.5. □

Lemma 5.4.0EPG Let (A,m, κ) → (A′,m′, κ′) be a local homomorphism of Noether-
ian local rings. Assume A → A′ is flat and dim(A) = dim(A′) = 1. Set m =
lengthA′(A′/mA′). For a1, a2 ∈ A nonzerodivisors ∂A(a1, a2)m maps to ∂A′(a1, a2)
via κ→ κ′.

Proof. If a1, a2 are both units, then ∂A(a1, a2) = 1 and ∂A′(a1, a2) = 1 and the
result is true. If not, then we can choose a ring extension A ⊂ B and local fac-
torizations as in Lemma 4.4. Denote m1, . . . ,mm be the maximal ideals of B. Let
m1, . . . ,mm be the maximal ideals of B with residue fields κ1, . . . , κm. For each
j ∈ {1, . . . ,m} denote πj ∈ Bj = Bmj a nonzerodivisor such that we have factor-
izations ai = ui,jπ

ei,j
j as in the lemma. By definition we have

∂A(a1, a2) =
∏

j
Normκj/κ((−1)e1,je2,ju

e2,j
1,j u

−e1,j
2,j mod mj)mj

where mj = lengthBj (Bj/πjBj).

Set B′ = A′ ⊗A B. Since A′ is flat over A we see that A′ ⊂ B′ is a ring extension
with B′/A′ annihilated by a power of m′. Let

m′
j,l, l = 1, . . . , nj

be the maximal ideals of B′ lying over mj . Denote κ′
j,l the residue field of m′

j,l.
Denote B′

j,l the localization of B′ at m′
j,l. As factorizations of a1 and a2 in B′

j,l we
use the image of the factorizations ai = ui,jπ

ei,j
j given to us in Bj . By definition

we have
∂A′(a1, a2) =

∏
j,l

Normκ′
j,l
/κ′((−1)e1,je2,ju

e2,j
1,j u

−e1,j
2,j mod m′

j,l)m
′
j,l

where m′
j,l = lengthB′

j,l
(B′

j,l/πjB
′
j,l).

Comparing the formulae above we see that it suffices to show that for each j and
for any unit u ∈ Bj we have

(5.4.1)0GU1
(
Normκj/κ(u mod mj)mj

)m =
∏

l
Normκ′

j,l
/κ′(u mod m′

j,l)m
′
j,l

in κ′. We are going to use the construction of determinants of endomorphisms of
finite length modules in More on Algebra, Section 120 to prove this. Set M =
Bj/πjBj . By More on Algebra, Lemma 120.2 we have

Normκj/κ(u mod mj)mj = detκ(u : M →M)
Thus, by More on Algebra, Lemma 120.3, the left hand side of (5.4.1) is equal to
detκ′(u : M ⊗A A′ →M ⊗A A′). We have an isomorphism

M ⊗A A′ = (Bj/πjBj)⊗A A′ =
⊕

l
B′
j,l/πjB

′
j,l

https://stacks.math.columbia.edu/tag/0EPG
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of A′-modules. Setting M ′
l = B′

j,l/πjB
′
j,l we see that Normκ′

j,l
/κ′(u mod m′

j,l)
m′
j,l =

detκ′(uj : M ′
l →M ′

l ) by More on Algebra, Lemma 120.2 again. Hence (5.4.1) holds
by multiplicativity of the determinant construction, see More on Algebra, Lemma
120.1. □

6. A key lemma

0EAU In this section we apply the results above to prove Lemma 6.3. This lemma is a low
degree case of the statement that there is a complex for Milnor K-theory similar to
the Gersten-Quillen complex in Quillen’s K-theory. See Remark 6.4.

Lemma 6.1.0EAV Let (A,m) be a 2-dimensional Noetherian local ring. Let t ∈ m be a
nonzerodivisor. Say V (t) = {m, q1, . . . , qr}. Let Aqi ⊂ Bi be a finite ring extension
with Bi/Aqi annihilated by a power of t. Then there exists a finite extension A ⊂ B
of local rings identifying residue fields with Bi ∼= Bqi and B/A annihilated by a
power of t.

Proof. Choose n > 0 such that Bi ⊂ t−nAqi . Let M ⊂ t−nA, resp. M ′ ⊂ t−2nA
be the A-submodule consisting of elements mapping to Bi in t−nAqi , resp. t−2nAqi .
Then M ⊂ M ′ are finite A-modules as A is Noetherian and Mqi = M ′

qi = Bi as
localization is exact. Thus M ′/M is annihilated by mc for some c > 0. Observe
that M ·M ⊂M ′ under the multiplication t−nA× t−nA→ t−2nA. Hence B = A+
mc+1M is a finite A-algebra with the correct localizations. We omit the verification
that B is local with maximal ideal m + mc+1M . □

Lemma 6.2.0EAW Let (A,m) be a 2-dimensional Noetherian local ring. Let a, b ∈ A be
nonzerodivisors. Then we have∑

ordA/q(∂Aq
(a, b)) = 0

where the sum is over the height 1 primes q of A.

Proof. If q is a height 1 prime of A such that a, b map to a unit of Aq, then
∂Aq

(a, b) = 1. Thus the sum is finite. In fact, if V (ab) = {m, q1, . . . , qr} then the
sum is over i = 1, . . . , r. For each i we pick an extension Aqi ⊂ Bi as in Lemma
4.4 for a, b. By Lemma 6.1 with t = ab and the given list of primes we may assume
we have a finite local extension A ⊂ B with B/A annihilated by a power of ab and
such that for each i the Bqi

∼= Bi. Observe that if qi,j are the primes of B lying
over qi then we have

ordA/qi(∂Aqi
(a, b)) =

∑
j

ordB/qi,j (∂Bqi,j
(a, b))

by Lemma 5.3 and Algebra, Lemma 121.8. Thus we may replace A by B and reduce
to the case discussed in the next paragraph.
Assume for each i there is a nonzerodivisor πi ∈ Aqi and units ui, vi ∈ Aqi such
that for some integers ei, fi ≥ 0 we have

a = uiπ
ei
i , b = viπ

fi
i

in Aqi . Setting mi = lengthAqi
(Aqi/πi) we have ∂Aqi

(a, b) = ((−1)eifiufii v
−ei
i )mi

by definition. Since a, b are nonzerodivisors the (2, 1)-periodic complex (A/(ab), a, b)
has vanishing cohomology. Denote Mi the image of A/(ab) in Aqi/(ab). Then we
have a map

A/(ab) −→
⊕

Mi

https://stacks.math.columbia.edu/tag/0EAV
https://stacks.math.columbia.edu/tag/0EAW
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whose kernel and cokernel are supported in {m} and hence have finite length. Thus
we see that ∑

eA(Mi, a, b) = 0

by Lemma 2.5. Hence it suffices to show eA(Mi, a, b) = −ordA/qi(∂Aqi
(a, b)).

Let us prove this first, in case πi, ui, vi are the images of elements πi, ui, vi ∈ A
(using the same symbols should not cause any confusion). In this case we get

eA(Mi, a, b) = eA(Mi, uiπ
ei
i , viπ

fi
i )

= eA(Mi, π
ei
i , π

fi
i )− eA(πeii Mi, 0, ui) + eA(πfii Mi, 0, vi)

= 0− fimiordA/qi(ui) + eimiordA/qi(vi)

= −miordA/qi(u
fi
i v

−ei
i ) = −ordA/qi(∂Aqi

(a, b))

The second equality holds by Lemma 3.4. Observe thatMi ⊂ (Mi)qi = Aqi/(π
ei+fi
i )

and (πeii Mi)qi ∼= Aqi/π
fi
i and (πfii Mi)qi ∼= Aqi/π

ei
i . The 0 in the third equality

comes from Lemma 3.3 and the other two terms come from Lemma 3.1. The last two
equalities follow from multiplicativity of the order function and from the definition
of our tame symbol.

In general, we may first choose c ∈ A, c ̸∈ qi such that cπi ∈ A. After replacing πi
by cπi and ui by c−eiui and vi by c−fivi we may and do assume πi is in A. Next,
choose an c ∈ A, c ̸∈ qi with cui, cvi ∈ A. Then we observe that

eA(Mi, ca, cb) = eA(Mi, a, b)− eA(aMi, 0, c) + eA(bMi, 0, c)

by Lemma 3.1. On the other hand, we have

∂Aqi
(ca, cb) = cmi(fi−ei)∂Aqi

(a, b)

in κ(qi)∗ because c is a unit in Aqi . The arguments in the previous paragraph show
that eA(Mi, ca, cb) = −ordA/qi(∂Aqi

(ca, cb)). Thus it suffices to prove

eA(aMi, 0, c) = ordA/qi(c
mifi) and eA(bMi, 0, c) = ordA/qi(c

miei)

and this follows from Lemma 3.1 by the description (see above) of what happens
when we localize at qi. □

Lemma 6.3 (Key Lemma).0EAX When A is an
excellent ring this is
[Kat86, Proposition
1].

Let A be a 2-dimensional Noetherian local domain
with fraction field K. Let f, g ∈ K∗. Let q1, . . . , qt be the height 1 primes q of A
such that either f or g is not an element of A∗

q. Then we have∑
i=1,...,t

ordA/qi(∂Aqi
(f, g)) = 0

We can also write this as∑
height(q)=1

ordA/q(∂Aq
(f, g)) = 0

since at any height 1 prime q of A where f, g ∈ A∗
q we have ∂Aq

(f, g) = 1.

Proof. Since the tame symbols ∂Aq
(f, g) are bilinear and the order functions

ordA/q are additive it suffices to prove the formula when f and g are elements
of A. This case is proven in Lemma 6.2. □

https://stacks.math.columbia.edu/tag/0EAX
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Remark 6.4 (Milnor K-theory).0EAY For a field k let us denote KM
∗ (k) the quotient of

the tensor algebra on k∗ divided by the two-sided ideal generated by the elements
x⊗ 1− x for x ∈ k \ {0, 1}. Thus KM

0 (k) = Z, KM
1 (k) = k∗, and

KM
2 (k) = k∗ ⊗Z k

∗/⟨x⊗ 1− x⟩

If A is a discrete valuation ring with fraction field F = Frac(A) and residue field κ,
there is a tame symbol

∂A : KM
i+1(F )→ KM

i (κ)
defined as in Section 5; see [Kat86]. More generally, this map can be extended to
the case where A is an excellent local domain of dimension 1 using normalization
and norm maps on KM

i , see [Kat86]; presumably the method in Section 5 can be
used to extend the construction of the tame symbol ∂A to arbitrary Noetherian local
domains A of dimension 1. Next, let X be a Noetherian scheme with a dimension
function δ. Then we can use these tame symbols to get the arrows in the following:⊕

δ(x)=j+1
KM
i+1(κ(x)) −→

⊕
δ(x)=j

KM
i (κ(x)) −→

⊕
δ(x)=j−1

KM
i−1(κ(x))

However, it is not clear, that the composition is zero, i.e., that we obtain a complex
of abelian groups. For excellent X this is shown in [Kat86]. When i = 1 and j
arbitrary, this follows from Lemma 6.3.

7. Setup

02QK We will throughout work over a locally Noetherian universally catenary base S
endowed with a dimension function δ. Although it is likely possible to generalize
(parts of) the discussion in the chapter, it seems that this is a good first approxima-
tion. It is exactly the generality discussed in [Tho90]. We usually do not assume
our schemes are separated or quasi-compact. Many interesting algebraic stacks
are non-separated and/or non-quasi-compact and this is a good case study to see
how to develop a reasonable theory for those as well. In order to reference these
hypotheses we give it a number.

Situation 7.1.02QL Here S is a locally Noetherian, and universally catenary scheme.
Moreover, we assume S is endowed with a dimension function δ : S −→ Z.

See Morphisms, Definition 17.1 for the notion of a universally catenary scheme,
and see Topology, Definition 20.1 for the notion of a dimension function. Recall
that any locally Noetherian catenary scheme locally has a dimension function, see
Properties, Lemma 11.3. Moreover, there are lots of schemes which are universally
catenary, see Morphisms, Lemma 17.5.

Let (S, δ) be as in Situation 7.1. Any scheme X locally of finite type over S is
locally Noetherian and catenary. In fact, X has a canonical dimension function

δ = δX/S : X −→ Z

associated to (f : X → S, δ) given by the rule δX/S(x) = δ(f(x))+trdegκ(f(x))κ(x).
See Morphisms, Lemma 52.3. Moreover, if h : X → Y is a morphism of schemes
locally of finite type over S, and x ∈ X, y = h(x), then obviously δX/S(x) =
δY/S(y) + trdegκ(y)κ(x). We will freely use this function and its properties in the
following.

https://stacks.math.columbia.edu/tag/0EAY
https://stacks.math.columbia.edu/tag/02QL
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Here are the basic examples of setups as above. In fact, the main interest lies in
the case where the base is the spectrum of a field, or the case where the base is the
spectrum of a Dedekind ring (e.g. Z, or a discrete valuation ring).
Example 7.2.02QM Here S = Spec(k) and k is a field. We set δ(pt) = 0 where pt
indicates the unique point of S. The pair (S, δ) is an example of a situation as in
Situation 7.1 by Morphisms, Lemma 17.5.
Example 7.3.02QN Here S = Spec(A), where A is a Noetherian domain of dimension
1. For example we could consider A = Z. We set δ(p) = 0 if p is a maximal ideal
and δ(p) = 1 if p = (0) corresponds to the generic point. This is an example of
Situation 7.1 by Morphisms, Lemma 17.5.
Example 7.4.0F91 Here S is a Cohen-Macaulay scheme. Then S is universally
catenary by Morphisms, Lemma 17.5. We set δ(s) = −dim(OS,s). If s′ ⇝
s is a nontrivial specialization of points of S, then OS,s′ is the localization of
OS,s at a nonmaximal prime ideal p ⊂ OS,s, see Schemes, Lemma 13.2. Thus
dim(OS,s) = dim(OS,s′) + dim(OS,s/p) > dim(OS,s′) by Algebra, Lemma 104.4.
Hence δ(s′) > δ(s). If s′ ⇝ s is an immediate specialization, then there is no prime
ideal strictly between p and ms and we find δ(s′) = δ(s) + 1. Thus δ is a dimension
function. In other words, the pair (S, δ) is an example of Situation 7.1.
If S is Jacobson and δ sends closed points to zero, then δ is the function sending a
point to the dimension of its closure.
Lemma 7.5.02QO Let (S, δ) be as in Situation 7.1. Assume in addition S is a Jacobson
scheme, and δ(s) = 0 for every closed point s of S. Let X be locally of finite type
over S. Let Z ⊂ X be an integral closed subscheme and let ξ ∈ Z be its generic
point. The following integers are the same:

(1) δX/S(ξ),
(2) dim(Z), and
(3) dim(OZ,z) where z is a closed point of Z.

Proof. Let X → S, ξ ∈ Z ⊂ X be as in the lemma. Since X is locally of finite
type over S we see that X is Jacobson, see Morphisms, Lemma 16.9. Hence closed
points of X are dense in every closed subset of Z and map to closed points of S.
Hence given any chain of irreducible closed subsets of Z we can end it with a closed
point of Z. It follows that dim(Z) = supz(dim(OZ,z) (see Properties, Lemma 10.3)
where z ∈ Z runs over the closed points of Z. Note that dim(OZ,z) = δ(ξ) − δ(z)
by the properties of a dimension function. For each closed z ∈ Z the field extension
κ(z)/κ(f(z)) is finite, see Morphisms, Lemma 16.8. Hence δX/S(z) = δ(f(z)) = 0
for z ∈ Z closed. It follows that all three integers are equal. □

In the situation of the lemma above the value of δ at the generic point of a closed
irreducible subset is the dimension of the irreducible closed subset. However, in
general we cannot expect the equality to hold. For example if S = Spec(C[[t]])
and X = Spec(C((t))) then we would get δ(x) = 1 for the unique point of X,
but dim(X) = 0. Still we want to think of δX/S as giving the dimension of the
irreducible closed subschemes. Thus we introduce the following terminology.
Definition 7.6.02QP Let (S, δ) as in Situation 7.1. For any scheme X locally of finite
type over S and any irreducible closed subset Z ⊂ X we define

dimδ(Z) = δ(ξ)

https://stacks.math.columbia.edu/tag/02QM
https://stacks.math.columbia.edu/tag/02QN
https://stacks.math.columbia.edu/tag/0F91
https://stacks.math.columbia.edu/tag/02QO
https://stacks.math.columbia.edu/tag/02QP
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where ξ ∈ Z is the generic point of Z. We will call this the δ-dimension of Z.
If Z is a closed subscheme of X, then we define dimδ(Z) as the supremum of the
δ-dimensions of its irreducible components.

8. Cycles

02QQ Since we are not assuming our schemes are quasi-compact we have to be a little
careful when defining cycles. We have to allow infinite sums because a rational
function may have infinitely many poles for example. In any case, if X is quasi-
compact then a cycle is a finite sum as usual.

Definition 8.1.02QR Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let k ∈ Z.

(1) A cycle on X is a formal sum

α =
∑

nZ [Z]

where the sum is over integral closed subschemes Z ⊂ X, each nZ ∈ Z, and
the collection {Z;nZ ̸= 0} is locally finite (Topology, Definition 28.4).

(2) A k-cycle on X is a cycle

α =
∑

nZ [Z]

where nZ ̸= 0⇒ dimδ(Z) = k.
(3) The abelian group of all k-cycles on X is denoted Zk(X).

In other words, a k-cycle on X is a locally finite formal Z-linear combination of
integral closed subschemes of δ-dimension k. Addition of k-cycles α =

∑
nZ [Z]

and β =
∑
mZ [Z] is given by

α+ β =
∑

(nZ +mZ)[Z],

i.e., by adding the coefficients.

Remark 8.2.0GU2 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let k ∈ Z. Then we can write

Zk(X) =
⊕′

δ(x)=k
KM

0 (κ(x)) ⊂
⊕

δ(x)=k
KM

0 (κ(x))

with the following notation and conventions:
(1) KM

0 (κ(x)) = Z is the degree 0 part of the Milnor K-theory of the residue
field κ(x) of the point x ∈ X (see Remark 6.4), and

(2) the direct sum on the right is over all points x ∈ X with δ(x) = k,
(3) the notation

⊕′
x signifies that we consider the subgroup consisting of locally

finite elements; namely, elements
∑
x nx such that for every quasi-compact

open U ⊂ X the set of x ∈ U with nx ̸= 0 is finite.

Definition 8.3.0H46 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. The support of a cycle α =

∑
nZ [Z] on X is

Supp(α) =
⋃

nZ ̸=0
Z ⊂ X

Since the collection {Z;nZ ̸= 0} is locally finite we see that Supp(α) is a closed
subset of X. If α is a k-cycle, then every irreducible component Z of Supp(α) has
δ-dimension k.

https://stacks.math.columbia.edu/tag/02QR
https://stacks.math.columbia.edu/tag/0GU2
https://stacks.math.columbia.edu/tag/0H46
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Definition 8.4.0H47 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. A cycle α on X is effective if it can be written as α =

∑
nZ [Z] with nZ ≥ 0

for all Z.

The set of all effective cycles is a monoid because the sum of two effective cycles is
effective, but it is not a group (unless X = ∅).

9. Cycle associated to a closed subscheme

02QS
Lemma 9.1.02QT Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Z ⊂ X be a closed subscheme.

(1) Let Z ′ ⊂ Z be an irreducible component and let ξ ∈ Z ′ be its generic point.
Then

lengthOX,ξ
OZ,ξ <∞

(2) If dimδ(Z) ≤ k and ξ ∈ Z with δ(ξ) = k, then ξ is a generic point of an
irreducible component of Z.

Proof. Let Z ′ ⊂ Z, ξ ∈ Z ′ be as in (1). Then dim(OZ,ξ) = 0 (for example by
Properties, Lemma 10.3). Hence OZ,ξ is Noetherian local ring of dimension zero,
and hence has finite length over itself (see Algebra, Proposition 60.7). Hence, it
also has finite length over OX,ξ, see Algebra, Lemma 52.5.

Assume ξ ∈ Z and δ(ξ) = k. Consider the closure Z ′ = {ξ}. It is an irreducible
closed subscheme with dimδ(Z ′) = k by definition. Since dimδ(Z) = k it must be
an irreducible component of Z. Hence we see (2) holds. □

Definition 9.2.02QU Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let Z ⊂ X be a closed subscheme.

(1) For any irreducible component Z ′ ⊂ Z with generic point ξ the integer
mZ′,Z = lengthOX,ξ

OZ,ξ (Lemma 9.1) is called the multiplicity of Z ′ in Z.
(2) Assume dimδ(Z) ≤ k. The k-cycle associated to Z is

[Z]k =
∑

mZ′,Z [Z ′]

where the sum is over the irreducible components of Z of δ-dimension k.
(This is a k-cycle by Divisors, Lemma 26.1.)

It is important to note that we only define [Z]k if the δ-dimension of Z does not
exceed k. In other words, by convention, if we write [Z]k then this implies that
dimδ(Z) ≤ k.

10. Cycle associated to a coherent sheaf

02QV
Lemma 10.1.02QW Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let F be a coherent OX-module.

(1) The collection of irreducible components of the support of F is locally finite.
(2) Let Z ′ ⊂ Supp(F) be an irreducible component and let ξ ∈ Z ′ be its generic

point. Then
lengthOX,ξ

Fξ <∞
(3) If dimδ(Supp(F)) ≤ k and ξ ∈ Z with δ(ξ) = k, then ξ is a generic point

of an irreducible component of Supp(F).

https://stacks.math.columbia.edu/tag/0H47
https://stacks.math.columbia.edu/tag/02QT
https://stacks.math.columbia.edu/tag/02QU
https://stacks.math.columbia.edu/tag/02QW
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Proof. By Cohomology of Schemes, Lemma 9.7 the support Z of F is a closed
subset of X. We may think of Z as a reduced closed subscheme of X (Schemes,
Lemma 12.4). Hence (1) follows from Divisors, Lemma 26.1 applied to Z and (3)
follows from Lemma 9.1 applied to Z.
Let ξ ∈ Z ′ be as in (2). In this case for any specialization ξ′ ⇝ ξ in X we have
Fξ′ = 0. Recall that the non-maximal primes of OX,ξ correspond to the points
of X specializing to ξ (Schemes, Lemma 13.2). Hence Fξ is a finite OX,ξ-module
whose support is {mξ}. Hence it has finite length by Algebra, Lemma 62.3. □

Definition 10.2.02QX Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let F be a coherent OX -module.

(1) For any irreducible component Z ′ ⊂ Supp(F) with generic point ξ the
integer mZ′,F = lengthOX,ξ

Fξ (Lemma 10.1) is called the multiplicity of Z ′

in F .
(2) Assume dimδ(Supp(F)) ≤ k. The k-cycle associated to F is

[F ]k =
∑

mZ′,F [Z ′]

where the sum is over the irreducible components of Supp(F) of δ-dimension
k. (This is a k-cycle by Lemma 10.1.)

It is important to note that we only define [F ]k if F is coherent and the δ-dimension
of Supp(F) does not exceed k. In other words, by convention, if we write [F ]k then
this implies that F is coherent on X and dimδ(Supp(F)) ≤ k.
Lemma 10.3.02QY Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Z ⊂ X be a closed subscheme. If dimδ(Z) ≤ k, then [Z]k = [OZ ]k.
Proof. This is because in this case the multiplicities mZ′,Z and mZ′,OZ

agree by
definition. □

Lemma 10.4.02QZ Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let 0 → F → G → H → 0 be a short exact sequence of coherent sheaves
on X. Assume that the δ-dimension of the supports of F , G, and H is ≤ k. Then
[G]k = [F ]k + [H]k.
Proof. Follows immediately from additivity of lengths, see Algebra, Lemma 52.3.

□

11. Preparation for proper pushforward

02R0
Lemma 11.1.02R1 Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a morphism. Assume X, Y integral and dimδ(X) =
dimδ(Y ). Then either f(X) is contained in a proper closed subscheme of Y , or f
is dominant and the extension of function fields R(X)/R(Y ) is finite.

Proof. The closure f(X) ⊂ Y is irreducible as X is irreducible (Topology, Lemmas
8.2 and 8.3). If f(X) ̸= Y , then we are done. If f(X) = Y , then f is dominant and
by Morphisms, Lemma 8.6 we see that the generic point ηY of Y is in the image of
f . Of course this implies that f(ηX) = ηY , where ηX ∈ X is the generic point of X.
Since δ(ηX) = δ(ηY ) we see that R(Y ) = κ(ηY ) ⊂ κ(ηX) = R(X) is an extension of
transcendence degree 0. Hence R(Y ) ⊂ R(X) is a finite extension by Morphisms,
Lemma 51.7 (which applies by Morphisms, Lemma 15.8). □

https://stacks.math.columbia.edu/tag/02QX
https://stacks.math.columbia.edu/tag/02QY
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Lemma 11.2.02R2 Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a morphism. Assume f is quasi-compact, and {Zi}i∈I is
a locally finite collection of closed subsets of X. Then {f(Zi)}i∈I is a locally finite
collection of closed subsets of Y .

Proof. Let V ⊂ Y be a quasi-compact open subset. Since f is quasi-compact the
open f−1(V ) is quasi-compact. Hence the set {i ∈ I | Zi ∩ f−1(V ) ̸= ∅} is finite by
a simple topological argument which we omit. Since this is the same as the set

{i ∈ I | f(Zi) ∩ V ̸= ∅} = {i ∈ I | f(Zi) ∩ V ̸= ∅}

the lemma is proved. □

12. Proper pushforward

02R3
Definition 12.1.02R4 Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume f is proper.

(1) Let Z ⊂ X be an integral closed subscheme with dimδ(Z) = k. We define

f∗[Z] =
{

0 if dimδ(f(Z)) < k,
deg(Z/f(Z))[f(Z)] if dimδ(f(Z)) = k.

Here we think of f(Z) ⊂ Y as an integral closed subscheme. The degree of
Z over f(Z) is finite if dimδ(f(Z)) = dimδ(Z) by Lemma 11.1.

(2) Let α =
∑
nZ [Z] be a k-cycle on X. The pushforward of α as the sum

f∗α =
∑

nZf∗[Z]

where each f∗[Z] is defined as above. The sum is locally finite by Lemma
11.2 above.

By definition the proper pushforward of cycles

f∗ : Zk(X) −→ Zk(Y )

is a homomorphism of abelian groups. It turns X 7→ Zk(X) into a covariant functor
on the category of schemes locally of finite type over S with morphisms equal to
proper morphisms.

Lemma 12.2.02R5 Let (S, δ) be as in Situation 7.1. Let X, Y , and Z be locally of
finite type over S. Let f : X → Y and g : Y → Z be proper morphisms. Then
g∗ ◦ f∗ = (g ◦ f)∗ as maps Zk(X)→ Zk(Z).

Proof. Let W ⊂ X be an integral closed subscheme of dimension k. Consider
W ′ = f(W ) ⊂ Y and W ′′ = g(f(W )) ⊂ Z. Since f , g are proper we see that
W ′ (resp. W ′′) is an integral closed subscheme of Y (resp. Z). We have to show
that g∗(f∗[W ]) = (g ◦ f)∗[W ]. If dimδ(W ′′) < k, then both sides are zero. If
dimδ(W ′′) = k, then we see the induced morphisms

W −→W ′ −→W ′′

both satisfy the hypotheses of Lemma 11.1. Hence

g∗(f∗[W ]) = deg(W/W ′) deg(W ′/W ′′)[W ′′], (g ◦ f)∗[W ] = deg(W/W ′′)[W ′′].

Then we can apply Morphisms, Lemma 51.9 to conclude. □

https://stacks.math.columbia.edu/tag/02R2
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A closed immersion is proper. If i : Z → X is a closed immersion then the maps

i∗ : Zk(Z) −→ Zk(X)

are all injective.

Lemma 12.3.0F92 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let X1, X2 ⊂ X be closed subschemes such that X = X1 ∪X2 set theoretically.
For every k ∈ Z the sequence of abelian groups

Zk(X1 ∩X2) // Zk(X1)⊕ Zk(X2) // Zk(X) // 0

is exact. Here X1 ∩ X2 is the scheme theoretic intersection and the maps are the
pushforward maps with one multiplied by −1.

Proof. First assume X is quasi-compact. Then Zk(X) is a free Z-module with
basis given by the elements [Z] where Z ⊂ X is integral closed of δ-dimension k.
The groups Zk(X1), Zk(X2), Zk(X1 ∩ X2) are free on the subset of these Z such
that Z ⊂ X1, Z ⊂ X2, Z ⊂ X1 ∩X2. This immediately proves the lemma in this
case. The general case is similar and the proof is omitted. □

Lemma 12.4.02R6 Let (S, δ) be as in Situation 7.1. Let f : X → Y be a proper
morphism of schemes which are locally of finite type over S.

(1) Let Z ⊂ X be a closed subscheme with dimδ(Z) ≤ k. Then

f∗[Z]k = [f∗OZ ]k.

(2) Let F be a coherent sheaf on X such that dimδ(Supp(F)) ≤ k. Then

f∗[F ]k = [f∗F ]k.

Note that the statement makes sense since f∗F and f∗OZ are coherent OY -modules
by Cohomology of Schemes, Proposition 19.1.

Proof. Part (1) follows from (2) and Lemma 10.3. Let F be a coherent sheaf on
X. Assume that dimδ(Supp(F)) ≤ k. By Cohomology of Schemes, Lemma 9.7
there exists a closed subscheme i : Z → X and a coherent OZ-module G such that
i∗G ∼= F and such that the support of F is Z. Let Z ′ ⊂ Y be the scheme theoretic
image of f |Z : Z → Y . Consider the commutative diagram of schemes

Z
i
//

f |Z
��

X

f

��
Z ′ i′ // Y

We have f∗F = f∗i∗G = i′∗(f |Z)∗G by going around the diagram in two ways.
Suppose we know the result holds for closed immersions and for f |Z . Then we see
that

f∗[F ]k = f∗i∗[G]k = (i′)∗(f |Z)∗[G]k = (i′)∗[(f |Z)∗G]k = [(i′)∗(f |Z)∗G]k = [f∗F ]k
as desired. The case of a closed immersion is straightforward (omitted). Note that
f |Z : Z → Z ′ is a dominant morphism (see Morphisms, Lemma 6.3). Thus we have
reduced to the case where dimδ(X) ≤ k and f : X → Y is proper and dominant.

Assume dimδ(X) ≤ k and f : X → Y is proper and dominant. Since f is dominant,
for every irreducible component Z ⊂ Y with generic point η there exists a point

https://stacks.math.columbia.edu/tag/0F92
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ξ ∈ X such that f(ξ) = η. Hence δ(η) ≤ δ(ξ) ≤ k. Thus we see that in the
expressions

f∗[F ]k =
∑

nZ [Z], and [f∗F ]k =
∑

mZ [Z].
whenever nZ ̸= 0, or mZ ̸= 0 the integral closed subscheme Z is actually an irre-
ducible component of Y of δ-dimension k. Pick such an integral closed subscheme
Z ⊂ Y and denote η its generic point. Note that for any ξ ∈ X with f(ξ) = η we
have δ(ξ) ≥ k and hence ξ is a generic point of an irreducible component of X of
δ-dimension k as well (see Lemma 9.1). Since f is quasi-compact and X is locally
Noetherian, there can be only finitely many of these and hence f−1({η}) is finite.
By Morphisms, Lemma 51.1 there exists an open neighbourhood η ∈ V ⊂ Y such
that f−1(V )→ V is finite. Replacing Y by V and X by f−1(V ) we reduce to the
case where Y is affine, and f is finite.
Write Y = Spec(R) and X = Spec(A) (possible as a finite morphism is affine).
Then R and A are Noetherian rings and A is finite over R. Moreover F = M̃ for
some finite A-module M . Note that f∗F corresponds to M viewed as an R-module.
Let p ⊂ R be the minimal prime corresponding to η ∈ Y . The coefficient of Z in
[f∗F ]k is clearly lengthRp

(Mp). Let qi, i = 1, . . . , t be the primes of A lying over
p. Then Ap =

∏
Aqi since Ap is an Artinian ring being finite over the dimension

zero local Noetherian ring Rp. Clearly the coefficient of Z in f∗[F ]k is∑
i=1,...,t

[κ(qi) : κ(p)]lengthAqi
(Mqi)

Hence the desired equality follows from Algebra, Lemma 52.12. □

13. Preparation for flat pullback

02R7 Recall that a morphism f : X → Y which is locally of finite type is said to have
relative dimension r if every nonempty fibre is equidimensional of dimension r. See
Morphisms, Definition 29.1.

Lemma 13.1.02R8 Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a morphism. Assume f is flat of relative dimension r.
For any closed subset Z ⊂ Y we have

dimδ(f−1(Z)) = dimδ(Z) + r.

provided f−1(Z) is nonempty. If Z is irreducible and Z ′ ⊂ f−1(Z) is an irreducible
component, then Z ′ dominates Z and dimδ(Z ′) = dimδ(Z) + r.

Proof. It suffices to prove the final statement. We may replace Y by the integral
closed subscheme Z and X by the scheme theoretic inverse image f−1(Z) = Z×Y X.
Hence we may assume Z = Y is integral and f is a flat morphism of relative
dimension r. Since Y is locally Noetherian the morphism f which is locally of finite
type, is actually locally of finite presentation. Hence Morphisms, Lemma 25.10
applies and we see that f is open. Let ξ ∈ X be a generic point of an irreducible
component of X. By the openness of f we see that f(ξ) is the generic point η of
Z = Y . Note that dimξ(Xη) = r by assumption that f has relative dimension r.
On the other hand, since ξ is a generic point of X we see that OX,ξ = OXη,ξ has
only one prime ideal and hence has dimension 0. Thus by Morphisms, Lemma 28.1
we conclude that the transcendence degree of κ(ξ) over κ(η) is r. In other words,
δ(ξ) = δ(η) + r as desired. □

https://stacks.math.columbia.edu/tag/02R8
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Here is the lemma that we will use to prove that the flat pullback of a locally finite
collection of closed subschemes is locally finite.

Lemma 13.2.02R9 Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume {Zi}i∈I is a locally finite
collection of closed subsets of Y . Then {f−1(Zi)}i∈I is a locally finite collection of
closed subsets of X.

Proof. Let U ⊂ X be a quasi-compact open subset. Since the image f(U) ⊂ Y
is a quasi-compact subset there exists a quasi-compact open V ⊂ Y such that
f(U) ⊂ V . Note that

{i ∈ I | f−1(Zi) ∩ U ̸= ∅} ⊂ {i ∈ I | Zi ∩ V ̸= ∅}.
Since the right hand side is finite by assumption we win. □

14. Flat pullback

02RA In the following we use f−1(Z) to denote the scheme theoretic inverse image of a
closed subscheme Z ⊂ Y for a morphism of schemes f : X → Y . We recall that
the scheme theoretic inverse image is the fibre product

f−1(Z) //

��

X

��
Z // Y

and it is also the closed subscheme of X cut out by the quasi-coherent sheaf of
ideals f−1(I)OX , if I ⊂ OY is the quasi-coherent sheaf of ideals corresponding to
Z in Y . (This is discussed in Schemes, Section 4 and Lemma 17.6 and Definition
17.7.)

Definition 14.1.02RB Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume f is flat of relative dimension
r.

(1) Let Z ⊂ Y be an integral closed subscheme of δ-dimension k. We define
f∗[Z] to be the (k + r)-cycle on X to the scheme theoretic inverse image

f∗[Z] = [f−1(Z)]k+r.

This makes sense since dimδ(f−1(Z)) = k + r by Lemma 13.1.
(2) Let α =

∑
ni[Zi] be a k-cycle on Y . The flat pullback of α by f is the sum

f∗α =
∑

nif
∗[Zi]

where each f∗[Zi] is defined as above. The sum is locally finite by Lemma
13.2.

(3) We denote f∗ : Zk(Y )→ Zk+r(X) the map of abelian groups so obtained.

An open immersion is flat. This is an important though trivial special case of a flat
morphism. If U ⊂ X is open then sometimes the pullback by j : U → X of a cycle
is called the restriction of the cycle to U . Note that in this case the maps

j∗ : Zk(X) −→ Zk(U)
are all surjective. The reason is that given any integral closed subscheme Z ′ ⊂ U , we
can take the closure of Z of Z ′ in X and think of it as a reduced closed subscheme of
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X (see Schemes, Lemma 12.4). And clearly Z∩U = Z ′, in other words j∗[Z] = [Z ′]
whence the surjectivity. In fact a little bit more is true.

Lemma 14.2.02RC Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let U ⊂ X be an open subscheme, and denote i : Y = X \ U → X as a reduced
closed subscheme of X. For every k ∈ Z the sequence

Zk(Y ) i∗ // Zk(X) j∗
// Zk(U) // 0

is an exact complex of abelian groups.

Proof. First assume X is quasi-compact. Then Zk(X) is a free Z-module with
basis given by the elements [Z] where Z ⊂ X is integral closed of δ-dimension k.
Such a basis element maps either to the basis element [Z ∩ U ] or to zero if Z ⊂ Y .
Hence the lemma is clear in this case. The general case is similar and the proof is
omitted. □

Lemma 14.3.02RD Let (S, δ) be as in Situation 7.1. Let X,Y, Z be locally of finite type
over S. Let f : X → Y and g : Y → Z be flat morphisms of relative dimensions r
and s. Then g ◦ f is flat of relative dimension r + s and

f∗ ◦ g∗ = (g ◦ f)∗

as maps Zk(Z)→ Zk+r+s(X).

Proof. The composition is flat of relative dimension r + s by Morphisms, Lemma
29.3. Suppose that

(1) W ⊂ Z is a closed integral subscheme of δ-dimension k,
(2) W ′ ⊂ Y is a closed integral subscheme of δ-dimension k + s with W ′ ⊂

g−1(W ), and
(3) W ′′ ⊂ Y is a closed integral subscheme of δ-dimension k + s + r with

W ′′ ⊂ f−1(W ′).
We have to show that the coefficient n of [W ′′] in (g ◦ f)∗[W ] agrees with the
coefficient m of [W ′′] in f∗(g∗[W ]). That it suffices to check the lemma in these
cases follows from Lemma 13.1. Let ξ′′ ∈ W ′′, ξ′ ∈ W ′ and ξ ∈ W be the generic
points. Consider the local rings A = OZ,ξ, B = OY,ξ′ and C = OX,ξ′′ . Then we
have local flat ring maps A→ B, B → C and moreover

n = lengthC(C/mAC), and m = lengthC(C/mBC)lengthB(B/mAB)

Hence the equality follows from Algebra, Lemma 52.14. □

Lemma 14.4.02RE Let (S, δ) be as in Situation 7.1. Let X,Y be locally of finite type
over S. Let f : X → Y be a flat morphism of relative dimension r.

(1) Let Z ⊂ Y be a closed subscheme with dimδ(Z) ≤ k. Then we have
dimδ(f−1(Z)) ≤ k + r and [f−1(Z)]k+r = f∗[Z]k in Zk+r(X).

(2) Let F be a coherent sheaf on Y with dimδ(Supp(F)) ≤ k. Then we have
dimδ(Supp(f∗F)) ≤ k + r and

f∗[F ]k = [f∗F ]k+r

in Zk+r(X).
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Proof. The statements on dimensions follow immediately from Lemma 13.1. Part
(1) follows from part (2) by Lemma 10.3 and the fact that f∗OZ = Of−1(Z).

Proof of (2). As X, Y are locally Noetherian we may apply Cohomology of Schemes,
Lemma 9.1 to see that F is of finite type, hence f∗F is of finite type (Modules,
Lemma 9.2), hence f∗F is coherent (Cohomology of Schemes, Lemma 9.1 again).
Thus the lemma makes sense. Let W ⊂ Y be an integral closed subscheme of
δ-dimension k, and let W ′ ⊂ X be an integral closed subscheme of dimension k+ r
mapping into W under f . We have to show that the coefficient n of [W ′] in f∗[F ]k
agrees with the coefficient m of [W ′] in [f∗F ]k+r. Let ξ ∈ W and ξ′ ∈ W ′ be the
generic points. Let A = OY,ξ, B = OX,ξ′ and set M = Fξ as an A-module. (Note
that M has finite length by our dimension assumptions, but we actually do not
need to verify this. See Lemma 10.1.) We have f∗Fξ′ = B⊗AM . Thus we see that

n = lengthB(B ⊗AM) and m = lengthA(M)lengthB(B/mAB)

Thus the equality follows from Algebra, Lemma 52.13. □

15. Push and pull

02RF In this section we verify that proper pushforward and flat pullback are compat-
ible when this makes sense. By the work we did above this is a consequence of
cohomology and base change.

Lemma 15.1.02RG Let (S, δ) be as in Situation 7.1. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a fibre product diagram of schemes locally of finite type over S. Assume f : X →
Y proper and g : Y ′ → Y flat of relative dimension r. Then also f ′ is proper and
g′ is flat of relative dimension r. For any k-cycle α on X we have

g∗f∗α = f ′
∗(g′)∗α

in Zk+r(Y ′).

Proof. The assertion that f ′ is proper follows from Morphisms, Lemma 41.5. The
assertion that g′ is flat of relative dimension r follows from Morphisms, Lemmas
29.2 and 25.8. It suffices to prove the equality of cycles when α = [W ] for some
integral closed subscheme W ⊂ X of δ-dimension k. Note that in this case we have
α = [OW ]k, see Lemma 10.3. By Lemmas 12.4 and 14.4 it therefore suffices to show
that f ′

∗(g′)∗OW is isomorphic to g∗f∗OW . This follows from cohomology and base
change, see Cohomology of Schemes, Lemma 5.2. □

Lemma 15.2.02RH Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a finite locally free morphism of degree d (see Morphisms,
Definition 48.1). Then f is both proper and flat of relative dimension 0, and

f∗f
∗α = dα

for every α ∈ Zk(Y ).
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Proof. A finite locally free morphism is flat and finite by Morphisms, Lemma 48.2,
and a finite morphism is proper by Morphisms, Lemma 44.11. We omit showing
that a finite morphism has relative dimension 0. Thus the formula makes sense. To
prove it, let Z ⊂ Y be an integral closed subscheme of δ-dimension k. It suffices
to prove the formula for α = [Z]. Since the base change of a finite locally free
morphism is finite locally free (Morphisms, Lemma 48.4) we see that f∗f

∗OZ is a
finite locally free sheaf of rank d on Z. Hence

f∗f
∗[Z] = f∗f

∗[OZ ]k = [f∗f
∗OZ ]k = d[Z]

where we have used Lemmas 14.4 and 12.4. □

16. Preparation for principal divisors

02RI Some of the material in this section partially overlaps with the discussion in Divi-
sors, Section 26.

Lemma 16.1.02RK Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X is integral.

(1) If Z ⊂ X is an integral closed subscheme, then the following are equivalent:
(a) Z is a prime divisor,
(b) Z has codimension 1 in X, and
(c) dimδ(Z) = dimδ(X)− 1.

(2) If Z is an irreducible component of an effective Cartier divisor on X, then
dimδ(Z) = dimδ(X)− 1.

Proof. Part (1) follows from the definition of a prime divisor (Divisors, Definition
26.2) and the definition of a dimension function (Topology, Definition 20.1). Let
ξ ∈ Z be the generic point of an irreducible component Z of an effective Cartier
divisor D ⊂ X. Then dim(OD,ξ) = 0 and OD,ξ = OX,ξ/(f) for some nonzerodivisor
f ∈ OX,ξ (Divisors, Lemma 15.2). Then dim(OX,ξ) = 1 by Algebra, Lemma 60.13.
Hence Z is as in (1) by Properties, Lemma 10.3 and the proof is complete. □

Lemma 16.2.02RM Let f : X → Y be a morphism of schemes. Let ξ ∈ Y be a point.
Assume that

(1) X, Y are integral,
(2) Y is locally Noetherian
(3) f is proper, dominant and R(Y ) ⊂ R(X) is finite, and
(4) dim(OY,ξ) = 1.

Then there exists an open neighbourhood V ⊂ Y of ξ such that f |f−1(V ) : f−1(V )→
V is finite.

Proof. This lemma is a special case of Varieties, Lemma 17.2. Here is a direct
argument in this case. By Cohomology of Schemes, Lemma 21.2 it suffices to prove
that f−1({ξ}) is finite. We replace Y by an affine open, say Y = Spec(R). Note that
R is Noetherian, as Y is assumed locally Noetherian. Since f is proper it is quasi-
compact. Hence we can find a finite affine open covering X = U1 ∪ . . . ∪ Un with
each Ui = Spec(Ai). Note that R→ Ai is a finite type injective homomorphism of
domains such that the induced extension of fraction fields is finite. Thus the lemma
follows from Algebra, Lemma 113.2. □
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17. Principal divisors

02RN The following definition is the analogue of Divisors, Definition 26.5 in our current
setup.

Definition 17.1.02RO Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Assume X is integral with dimδ(X) = n. Let f ∈ R(X)∗. The principal
divisor associated to f is the (n− 1)-cycle

div(f) = divX(f) =
∑

ordZ(f)[Z]

defined in Divisors, Definition 26.5. This makes sense because prime divisors have
δ-dimension n− 1 by Lemma 16.1.

In the situation of the definition for f, g ∈ R(X)∗ we have

divX(fg) = divX(f) + divX(g)

in Zn−1(X). See Divisors, Lemma 26.6. The following lemma will be superseded
by the more general Lemma 20.2.

Lemma 17.2.02RR Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Assume X, Y are integral and n = dimδ(Y ). Let f : X → Y be a flat
morphism of relative dimension r. Let g ∈ R(Y )∗. Then

f∗(divY (g)) = divX(g)

in Zn+r−1(X).

Proof. Note that since f is flat it is dominant so that f induces an embedding
R(Y ) ⊂ R(X), and hence we may think of g as an element of R(X)∗. Let Z ⊂ X
be an integral closed subscheme of δ-dimension n+ r − 1. Let ξ ∈ Z be its generic
point. If dimδ(f(Z)) > n− 1, then we see that the coefficient of [Z] in the left and
right hand side of the equation is zero. Hence we may assume that Z ′ = f(Z) is
an integral closed subscheme of Y of δ-dimension n − 1. Let ξ′ = f(ξ). It is the
generic point of Z ′. Set A = OY,ξ′ , B = OX,ξ. The ring map A → B is a flat
local homomorphism of Noetherian local domains of dimension 1. We have g in the
fraction field of A. What we have to show is that

ordA(g)lengthB(B/mAB) = ordB(g).

This follows from Algebra, Lemma 52.13 (details omitted). □

18. Principal divisors and pushforward

02RS The first lemma implies that the pushforward of a principal divisor along a generi-
cally finite morphism is a principal divisor.

Lemma 18.1.02RT Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Assume X, Y are integral and n = dimδ(X) = dimδ(Y ). Let p : X → Y
be a dominant proper morphism. Let f ∈ R(X)∗. Set

g = NmR(X)/R(Y )(f).

Then we have p∗div(f) = div(g).
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Proof. Let Z ⊂ Y be an integral closed subscheme of δ-dimension n − 1. We
want to show that the coefficient of [Z] in p∗div(f) and div(g) are equal. We may
apply Lemma 16.2 to the morphism p : X → Y and the generic point ξ ∈ Z.
Hence we may replace Y by an affine open neighbourhood of ξ and assume that
p : X → Y is finite. Write Y = Spec(R) and X = Spec(A) with p induced by a
finite homomorphism R → A of Noetherian domains which induces an finite field
extension L/K of fraction fields. Now we have f ∈ L, g = Nm(f) ∈ K, and a
prime p ⊂ R with dim(Rp) = 1. The coefficient of [Z] in divY (g) is ordRp

(g). The
coefficient of [Z] in p∗divX(f) is∑

q lying over p
[κ(q) : κ(p)]ordAq

(f)

The desired equality therefore follows from Algebra, Lemma 121.8. □

An important role in the discussion of principal divisors is played by the “universal”
principal divisor [0]− [∞] on P1

S . To make this more precise, let us denote

(18.1.1)0F93 D0, D∞ ⊂ P1
S = Proj

S
(OS [T0, T1])

the closed subscheme cut out by the section T1, resp. T0 of O(1). These are effective
Cartier divisors, see Divisors, Definition 13.1 and Lemma 14.10. The following
lemma says that loosely speaking we have “div(T1/T0) = [D0]− [D1]” and that this
is the universal principal divisor.

Lemma 18.2.02RQ Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Assume X is integral and n = dimδ(X). Let f ∈ R(X)∗. Let U ⊂ X
be a nonempty open such that f corresponds to a section f ∈ Γ(U,O∗

X). Let Y ⊂
X ×S P1

S be the closure of the graph of f : U → P1
S. Then

(1) the projection morphism p : Y → X is proper,
(2) p|p−1(U) : p−1(U)→ U is an isomorphism,
(3) the pullbacks Y0 = q−1D0 and Y∞ = q−1D∞ via the morphism q : Y → P1

S

are defined (Divisors, Definition 13.12),
(4) we have

divY (f) = [Y0]n−1 − [Y∞]n−1

(5) we have
divX(f) = p∗divY (f)

(6) if we view Y0 and Y∞ as closed subschemes of X via the morphism p then
we have

divX(f) = [Y0]n−1 − [Y∞]n−1

Proof. Since X is integral, we see that U is integral. Hence Y is integral, and
(1, f)(U) ⊂ Y is an open dense subscheme. Also, note that the closed subscheme
Y ⊂ X ×S P1

S does not depend on the choice of the open U , since after all it is the
closure of the one point set {η′} = {(1, f)(η)} where η ∈ X is the generic point.
Having said this let us prove the assertions of the lemma.
For (1) note that p is the composition of the closed immersion Y → X×SP1

S = P1
X

with the proper morphism P1
X → X. As a composition of proper morphisms is

proper (Morphisms, Lemma 41.4) we conclude.
It is clear that Y ∩ U ×S P1

S = (1, f)(U). Thus (2) follows. It also follows that
dimδ(Y ) = n.
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Note that q(η′) = f(η) is not contained in D0 or D∞ since f ∈ R(X)∗. Hence (3)
by Divisors, Lemma 13.13. We obtain dimδ(Y0) = n − 1 and dimδ(Y∞) = n − 1
from Lemma 16.1.
Consider the effective Cartier divisor Y0. At every point ξ ∈ Y0 we have f ∈ OY,ξ
and the local equation for Y0 is given by f . In particular, if δ(ξ) = n− 1 so ξ is the
generic point of a integral closed subscheme Z of δ-dimension n − 1, then we see
that the coefficient of [Z] in divY (f) is

ordZ(f) = lengthOY,ξ
(OY,ξ/fOY,ξ) = lengthOY,ξ

(OY0,ξ)
which is the coefficient of [Z] in [Y0]n−1. A similar argument using the rational
function 1/f shows that −[Y∞] agrees with the terms with negative coefficients in
the expression for divY (f). Hence (4) follows.
Note that D0 → S is an isomorphism. Hence we see that X ×S D0 → X is
an isomorphism as well. Clearly we have Y0 = Y ∩ X ×S D0 (scheme theoretic
intersection) inside X ×S P1

S . Hence it is really the case that Y0 → X is a closed
immersion. It follows that

p∗OY0 = OY ′
0

where Y ′
0 ⊂ X is the image of Y0 → X. By Lemma 12.4 we have p∗[Y0]n−1 =

[Y ′
0 ]n−1. The same is true for D∞ and Y∞. Hence (6) is a consequence of (5).

Finally, (5) follows immediately from Lemma 18.1. □

The following lemma says that the degree of a principal divisor on a proper curve
is zero.

Lemma 18.3.02RU Let K be any field. Let X be a 1-dimensional integral scheme
endowed with a proper morphism c : X → Spec(K). Let f ∈ K(X)∗ be an invertible
rational function. Then∑

x∈X closed
[κ(x) : K]ordOX,x

(f) = 0

where ord is as in Algebra, Definition 121.2. In other words, c∗div(f) = 0.

Proof. Consider the diagram
Y

p
//

q

��

X

c

��
P1
K

c′
// Spec(K)

that we constructed in Lemma 18.2 starting with X and the rational function f
over S = Spec(K). We will use all the results of this lemma without further
mention. We have to show that c∗divX(f) = c∗p∗divY (f) = 0. This is the same
as proving that c′

∗q∗divY (f) = 0. If q(Y ) is a closed point of P1
K then we see

that divX(f) = 0 and the lemma holds. Thus we may assume that q is dominant.
Suppose we can show that q : Y → P1

K is finite locally free of degree d (see
Morphisms, Definition 48.1). Since divY (f) = [q−1D0]0 − [q−1D∞]0 we see (by
definition of flat pullback) that divY (f) = q∗([D0]0− [D∞]0). Then by Lemma 15.2
we get q∗divY (f) = d([D0]0 − [D∞]0). Since clearly c′

∗[D0]0 = c′
∗[D∞]0 we win.

It remains to show that q is finite locally free. (It will automatically have some given
degree as P1

K is connected.) Since dim(P1
K) = 1 we see that q is finite for example

by Lemma 16.2. All local rings of P1
K at closed points are regular local rings of
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dimension 1 (in other words discrete valuation rings), since they are localizations
of K[T ] (see Algebra, Lemma 114.1). Hence for y ∈ Y closed the local ring OY,y
will be flat over OP1

K
,q(y) as soon as it is torsion free (More on Algebra, Lemma

22.11). This is obviously the case as OY,y is a domain and q is dominant. Thus q
is flat. Hence q is finite locally free by Morphisms, Lemma 48.2. □

19. Rational equivalence

02RV In this section we define rational equivalence on k-cycles. We will allow locally finite
sums of images of principal divisors (under closed immersions). This leads to some
pretty strange phenomena, see Example 19.5. However, if we do not allow these
then we do not know how to prove that capping with Chern classes of line bundles
factors through rational equivalence.

Definition 19.1.02RW Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of
finite type over S. Let k ∈ Z.

(1) Given any locally finite collection {Wj ⊂ X} of integral closed subschemes
with dimδ(Wj) = k + 1, and any fj ∈ R(Wj)∗ we may consider∑

(ij)∗div(fj) ∈ Zk(X)

where ij : Wj → X is the inclusion morphism. This makes sense as the
morphism

∐
ij :

∐
Wj → X is proper.

(2) We say that α ∈ Zk(X) is rationally equivalent to zero if α is a cycle of the
form displayed above.

(3) We say α, β ∈ Zk(X) are rationally equivalent and we write α ∼rat β if
α− β is rationally equivalent to zero.

(4) We define
CHk(X) = Zk(X)/ ∼rat

to be the Chow group of k-cycles on X. This is sometimes called the Chow
group of k-cycles modulo rational equivalence on X.

There are many other interesting (adequate) equivalence relations. Rational equiv-
alence is the coarsest one of them all.

Remark 19.2.0GU3 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let k ∈ Z. Let us show that we have a presentation⊕′

δ(x)=k+1
KM

1 (κ(x)) ∂−→
⊕′

δ(x)=k
KM

0 (κ(x))→ CHk(X)→ 0

Here we use the notation and conventions introduced in Remark 8.2 and in addition
(1) KM

1 (κ(x)) = κ(x)∗ is the degree 1 part of the Milnor K-theory of the residue
field κ(x) of the point x ∈ X (see Remark 6.4), and

(2) the differential ∂ is defined as follows: given an element ξ =
∑
x fx we

denote Wx = x the integral closed subscheme of X with generic point x
and we set

∂(ξ) =
∑

(Wx → X)∗div(fx)
in Zk(X) which makes sense as we have seen that the second term of the
complex is equal to Zk(X) by Remark 8.2.

The fact that we obtain a presentation of CHk(X) follows immediately by compar-
ing with Definition 19.1.
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A very simple but important lemma is the following.

Lemma 19.3.02RX Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let U ⊂ X be an open subscheme, and denote i : Y = X \U → X as a
reduced closed subscheme of X. Let k ∈ Z. Suppose α, β ∈ Zk(X). If α|U ∼rat β|U
then there exist a cycle γ ∈ Zk(Y ) such that

α ∼rat β + i∗γ.

In other words, the sequence

CHk(Y ) i∗ // CHk(X) j∗
// CHk(U) // 0

is an exact complex of abelian groups.

Proof. Let {Wj}j∈J be a locally finite collection of integral closed subschemes of
U of δ-dimension k + 1, and let fj ∈ R(Wj)∗ be elements such that (α − β)|U =∑

(ij)∗div(fj) as in the definition. Set W ′
j ⊂ X equal to the closure of Wj . Suppose

that V ⊂ X is a quasi-compact open. Then also V ∩U is quasi-compact open in U
as V is Noetherian. Hence the set {j ∈ J |Wj ∩ V ̸= ∅} = {j ∈ J |W ′

j ∩ V ̸= ∅} is
finite since {Wj} is locally finite. In other words we see that {W ′

j} is also locally
finite. Since R(Wj) = R(W ′

j) we see that

α− β −
∑

(i′j)∗div(fj)

is a cycle supported on Y and the lemma follows (see Lemma 14.2). □

Lemma 19.4.0F94 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let X1, X2 ⊂ X be closed subschemes such that X = X1 ∪X2 set theoretically.
For every k ∈ Z the sequence of abelian groups

CHk(X1 ∩X2) // CHk(X1)⊕ CHk(X2) // CHk(X) // 0

is exact. Here X1 ∩ X2 is the scheme theoretic intersection and the maps are the
pushforward maps with one multiplied by −1.

Proof. By Lemma 12.3 the arrow CHk(X1) ⊕ CHk(X2) → CHk(X) is surjective.
Suppose that (α1, α2) maps to zero under this map. Write α1 =

∑
n1,i[W1,i] and

α2 =
∑
n2,i[W2,i]. Then we obtain a locally finite collection {Wj}j∈J of integral

closed subschemes of X of δ-dimension k + 1 and fj ∈ R(Wj)∗ such that∑
n1,i[W1,i] +

∑
n2,i[W2,i] =

∑
(ij)∗div(fj)

as cycles on X where ij : Wj → X is the inclusion morphism. Choose a disjoint
union decomposition J = J1 ⨿ J2 such that Wj ⊂ X1 if j ∈ J1 and Wj ⊂ X2 if
j ∈ J2. (This is possible because the Wj are integral.) Then we can write the
equation above as∑

n1,i[W1,i]−
∑

j∈J1
(ij)∗div(fj) = −

∑
n2,i[W2,i] +

∑
j∈J2

(ij)∗div(fj)

Hence this expression is a cycle (!) on X1∩X2. In other words the element (α1, α2)
is in the image of the first arrow and the proof is complete. □

Example 19.5.02RY Here is a “strange” example. Suppose that S is the spectrum of
a field k with δ as in Example 7.2. Suppose that X = C1 ∪ C2 ∪ . . . is an infinite
union of curves Cj ∼= P1

k glued together in the following way: The point ∞ ∈ Cj is
glued transversally to the point 0 ∈ Cj+1 for j = 1, 2, 3, . . .. Take the point 0 ∈ C1.
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This gives a zero cycle [0] ∈ Z0(X). The “strangeness” in this situation is that
actually [0] ∼rat 0! Namely we can choose the rational function fj ∈ R(Cj) to be
the function which has a simple zero at 0 and a simple pole at ∞ and no other
zeros or poles. Then we see that the sum

∑
(ij)∗div(fj) is exactly the 0-cycle [0].

In fact it turns out that CH0(X) = 0 in this example. If you find this too bizarre,
then you can just make sure your spaces are always quasi-compact (so X does not
even exist for you).

Remark 19.6.02RZ Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Suppose we have infinite collections αi, βi ∈ Zk(X), i ∈ I of k-cycles
on X. Suppose that the supports of αi and βi form locally finite collections of
closed subsets of X so that

∑
αi and

∑
βi are defined as cycles. Moreover, assume

that αi ∼rat βi for each i. Then it is not clear that
∑
αi ∼rat

∑
βi. Namely,

the problem is that the rational equivalences may be given by locally finite families
{Wi,j , fi,j ∈ R(Wi,j)∗}j∈Ji but the union {Wi,j}i∈I,j∈Ji may not be locally finite.

In many cases in practice, one has a locally finite family of closed subsets {Ti}i∈I
such that αi, βi are supported on Ti and such that αi = βi in CHk(Ti), in other
words, the families {Wi,j , fi,j ∈ R(Wi,j)∗}j∈Ji consist of subschemes Wi,j ⊂ Ti.
In this case it is true that

∑
αi ∼rat

∑
βi on X, simply because the family

{Wi,j}i∈I,j∈Ji is automatically locally finite in this case.

20. Rational equivalence and push and pull

02S0 In this section we show that flat pullback and proper pushforward commute with
rational equivalence.

Lemma 20.1.0EPH Let (S, δ) be as in Situation 7.1. Let X, Y be schemes locally of
finite type over S. Assume Y integral with dimδ(Y ) = k. Let f : X → Y be a flat
morphism of relative dimension r. Then for g ∈ R(Y )∗ we have

f∗divY (g) =
∑

njij,∗divXj (g ◦ f |Xj )

as (k + r− 1)-cycles on X where the sum is over the irreducible components Xj of
X and nj is the multiplicity of Xj in X.

Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension k + r − 1. We
have to show that the coefficient n of [Z] in f∗div(g) is equal to the coefficient m of
[Z] in

∑
ij,∗div(g ◦ f |Xj ). Let Z ′ be the closure of f(Z) which is an integral closed

subscheme of Y . By Lemma 13.1 we have dimδ(Z ′) ≥ k − 1. Thus either Z ′ = Y
or Z ′ is a prime divisor on Y . If Z ′ = Y , then the coefficients n and m are both
zero: this is clear for n by definition of f∗ and follows for m because g ◦ f |Xj is a
unit in any point of Xj mapping to the generic point of Y . Hence we may assume
that Z ′ ⊂ Y is a prime divisor.

We are going to translate the equality of n and m into algebra. Namely, let ξ′ ∈ Z ′

and ξ ∈ Z be the generic points. Set A = OY,ξ′ and B = OX,ξ. Note that A, B are
Noetherian, A→ B is flat, local, A is a domain, and mAB is an ideal of definition
of the local ring B. The rational function g is an element of the fraction field Q(A)
of A. By construction, the closed subschemes Xj which meet ξ correspond 1-to-1
with minimal primes

q1, . . . , qs ⊂ B
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The integers nj are the corresponding lengths

ni = lengthBqi
(Bqi)

The rational functions g ◦ f |Xj correspond to the image gi ∈ κ(qi)∗ of g ∈ Q(A).
Putting everything together we see that

n = ordA(g)lengthB(B/mAB)

and that
m =

∑
ordB/qi(gi)lengthBqi

(Bqi)

Writing g = x/y for some nonzero x, y ∈ A we see that it suffices to prove

lengthA(A/(x))lengthB(B/mAB) = lengthB(B/xB)

(equality uses Algebra, Lemma 52.13) equals∑
i=1,...,s

lengthB/qi(B/(x, qi))lengthBqi
(Bqi)

and similarly for y. As A → B is flat it follows that x is a nonzerodivisor in B.
Hence the desired equality follows from Lemma 3.2. □

Lemma 20.2.02S1 Let (S, δ) be as in Situation 7.1. Let X, Y be schemes locally
of finite type over S. Let f : X → Y be a flat morphism of relative dimension
r. Let α ∼rat β be rationally equivalent k-cycles on Y . Then f∗α ∼rat f∗β as
(k + r)-cycles on X.

Proof. What do we have to show? Well, suppose we are given a collection

ij : Wj −→ Y

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational
functions gj ∈ R(Wj)∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally
finite on Y . Then we have to show that

f∗(
∑

ij,∗div(gj)) =
∑

f∗ij,∗div(gj)

is rationally equivalent to zero on X. The sum on the right makes sense as {Wj}
is locally finite in X by Lemma 13.2.

Consider the fibre products

i′j : W ′
j = Wj ×Y X −→ X.

and denote fj : W ′
j → Wj the first projection. By Lemma 15.1 we can write the

sum above as ∑
i′j,∗(f∗

j div(gj))

By Lemma 20.1 we see that each f∗
j div(gj) is rationally equivalent to zero on W ′

j .
Hence each i′j,∗(f∗

j div(gj)) is rationally equivalent to zero. Then the same is true
for the displayed sum by the discussion in Remark 19.6. □

Lemma 20.3.02S2 Let (S, δ) be as in Situation 7.1. Let X, Y be schemes locally of
finite type over S. Let p : X → Y be a proper morphism. Suppose α, β ∈ Zk(X)
are rationally equivalent. Then p∗α is rationally equivalent to p∗β.

https://stacks.math.columbia.edu/tag/02S1
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Proof. What do we have to show? Well, suppose we are given a collection
ij : Wj −→ X

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational
functions fj ∈ R(Wj)∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally
finite on X. Then we have to show that

p∗

(∑
ij,∗div(fj)

)
is rationally equivalent to zero on X.
Note that the sum is equal to ∑

p∗ij,∗div(fj).

Let W ′
j ⊂ Y be the integral closed subscheme which is the image of p ◦ ij . The

collection {W ′
j} is locally finite in Y by Lemma 11.2. Hence it suffices to show, for

a given j, that either p∗ij,∗div(fj) = 0 or that it is equal to i′j,∗div(gj) for some
gj ∈ R(W ′

j)∗.
The arguments above therefore reduce us to the case of a single integral closed
subscheme W ⊂ X of δ-dimension k + 1. Let f ∈ R(W )∗. Let W ′ = p(W ) as
above. We get a commutative diagram of morphisms

W
i
//

p′

��

X

p

��
W ′ i′ // Y

Note that p∗i∗div(f) = i′∗(p′)∗div(f) by Lemma 12.2. As explained above we have
to show that (p′)∗div(f) is the divisor of a rational function on W ′ or zero. There
are three cases to distinguish.
The case dimδ(W ′) < k. In this case automatically (p′)∗div(f) = 0 and there is
nothing to prove.
The case dimδ(W ′) = k. Let us show that (p′)∗div(f) = 0 in this case. Let η ∈W ′

be the generic point. Note that c : Wη → Spec(K) is a proper integral curve over
K = κ(η) whose function field K(Wη) is identified with R(W ). Here is a diagram

Wη
//

c

��

W

p′

��
Spec(K) // W ′

Let us denote fη ∈ K(Wη)∗ the rational function corresponding to f ∈ R(W )∗.
Moreover, the closed points ξ of Wη correspond 1 − 1 to the closed integral sub-
schemes Z = Zξ ⊂W of δ-dimension k with p′(Z) = W ′. Note that the multiplicity
of Zξ in div(f) is equal to ordOWη,ξ

(fη) simply because the local rings OWη,ξ and
OW,ξ are identified (as subrings of their fraction fields). Hence we see that the mul-
tiplicity of [W ′] in (p′)∗div(f) is equal to the multiplicity of [Spec(K)] in c∗div(fη).
By Lemma 18.3 this is zero.
The case dimδ(W ′) = k + 1. In this case Lemma 18.1 applies, and we see that
indeed p′

∗div(f) = div(g) for some g ∈ R(W ′)∗ as desired. □



CHOW HOMOLOGY AND CHERN CLASSES 35

21. Rational equivalence and the projective line

02S3 Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite type over S.
Given any closed subscheme Z ⊂ X ×S P1

S = X × P1 we let Z0, resp. Z∞ be the
scheme theoretic closed subscheme Z0 = pr−1

2 (D0), resp. Z∞ = pr−1
2 (D∞). Here

D0, D∞ are as in (18.1.1).

Lemma 21.1.02S4 Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let W ⊂ X ×S P1

S be an integral closed subscheme of δ-dimension
k + 1. Assume W ̸= W0, and W ̸= W∞. Then

(1) W0, W∞ are effective Cartier divisors of W ,
(2) W0, W∞ can be viewed as closed subschemes of X and

[W0]k ∼rat [W∞]k,
(3) for any locally finite family of integral closed subschemes Wi ⊂ X×S P1

S of
δ-dimension k+1 with Wi ̸= (Wi)0 and Wi ̸= (Wi)∞ we have

∑
([(Wi)0]k−

[(Wi)∞]k) ∼rat 0 on X, and
(4) for any α ∈ Zk(X) with α ∼rat 0 there exists a locally finite family

of integral closed subschemes Wi ⊂ X ×S P1
S as above such that α =∑

([(Wi)0]k − [(Wi)∞]k).

Proof. Part (1) follows from Divisors, Lemma 13.13 since the generic point of W
is not mapped into D0 or D∞ under the projection X×S P1

S → P1
S by assumption.

Since X ×S D0 → X is a closed immersion, we see that W0 is isomorphic to a
closed subscheme of X. Similarly for W∞. The morphism p : W → X is proper as
a composition of the closed immersion W → X ×S P1

S and the proper morphism
X ×S P1

S → X. By Lemma 18.2 we have [W0]k ∼rat [W∞]k as cycles on W . Hence
part (2) follows from Lemma 20.3 as clearly p∗[W0]k = [W0]k and similarly for W∞.
The only content of statement (3) is, given parts (1) and (2), that the collection
{(Wi)0, (Wi)∞} is a locally finite collection of closed subschemes of X. This is clear.
Suppose that α ∼rat 0. By definition this means there exist integral closed sub-
schemes Vi ⊂ X of δ-dimension k + 1 and rational functions fi ∈ R(Vi)∗ such that
the family {Vi}i∈I is locally finite in X and such that α =

∑
(Vi → X)∗div(fi). Let

Wi ⊂ Vi ×S P1
S ⊂ X ×S P1

S

be the closure of the graph of the rational map fi as in Lemma 18.2. Then we have
that (Vi → X)∗div(fi) is equal to [(Wi)0]k − [(Wi)∞]k by that same lemma. Hence
the result is clear. □

Lemma 21.2.02S5 Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let Z be a closed subscheme of X ×P1. Assume

(1) dimδ(Z) ≤ k + 1,
(2) dimδ(Z0) ≤ k, dimδ(Z∞) ≤ k, and
(3) for any embedded point ξ (Divisors, Definition 4.1) of Z either ξ ̸∈ Z0∪Z∞

or δ(ξ) < k.
Then [Z0]k ∼rat [Z∞]k as k-cycles on X.

Proof. Let {Wi}i∈I be the collection of irreducible components of Z which have
δ-dimension k + 1. Write

[Z]k+1 =
∑

ni[Wi]
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with ni > 0 as per definition. Note that {Wi} is a locally finite collection of closed
subsets of X ×S P1

S by Divisors, Lemma 26.1. We claim that

[Z0]k =
∑

ni[(Wi)0]k
and similarly for [Z∞]k. If we prove this then the lemma follows from Lemma 21.1.
Let Z ′ ⊂ X be an integral closed subscheme of δ-dimension k. To prove the
equality above it suffices to show that the coefficient n of [Z ′] in [Z0]k is the same
as the coefficient m of [Z ′] in

∑
ni[(Wi)0]k. Let ξ′ ∈ Z ′ be the generic point. Set

ξ = (ξ′, 0) ∈ X ×S P1
S . Consider the local ring A = OX×SP1

S
,ξ. Let I ⊂ A be the

ideal cutting out Z, in other words so that A/I = OZ,ξ. Let t ∈ A be the element
cutting out X×SD0 (i.e., the coordinate of P1 at zero pulled back). By our choice
of ξ′ ∈ Z ′ we have δ(ξ) = k and hence dim(A/I) = 1. Since ξ is not an embedded
point by assumption (3) we see that A/I is Cohen-Macaulay. Since dimδ(Z0) = k
we see that dim(A/(t, I)) = 0 which implies that t is a nonzerodivisor on A/I.
Finally, the irreducible closed subschemes Wi passing through ξ correspond to the
minimal primes I ⊂ qi over I. The multiplicities ni correspond to the lengths
lengthAqi

(A/I)qi . Hence we see that

n = lengthA(A/(t, I))
and

m =
∑

lengthA(A/(t, qi))lengthAqi
(A/I)qi

Thus the result follows from Lemma 3.2. □

Lemma 21.3.02S6 Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let F be a coherent sheaf on X × P1. Let i0, i∞ : X → X × P1 be
the closed immersion such that it(x) = (x, t). Denote F0 = i∗0F and F∞ = i∗∞F .
Assume

(1) dimδ(Supp(F)) ≤ k + 1,
(2) dimδ(Supp(F0)) ≤ k, dimδ(Supp(F∞)) ≤ k, and
(3) for any embedded associated point ξ of F either ξ ̸∈ (X×P1)0∪ (X×P1)∞

or δ(ξ) < k.
Then [F0]k ∼rat [F∞]k as k-cycles on X.

Proof. Let {Wi}i∈I be the collection of irreducible components of Supp(F) which
have δ-dimension k + 1. Write

[F ]k+1 =
∑

ni[Wi]

with ni > 0 as per definition. Note that {Wi} is a locally finite collection of closed
subsets of X ×S P1

S by Lemma 10.1. We claim that

[F0]k =
∑

ni[(Wi)0]k
and similarly for [F∞]k. If we prove this then the lemma follows from Lemma 21.1.
Let Z ′ ⊂ X be an integral closed subscheme of δ-dimension k. To prove the
equality above it suffices to show that the coefficient n of [Z ′] in [F0]k is the same
as the coefficient m of [Z ′] in

∑
ni[(Wi)0]k. Let ξ′ ∈ Z ′ be the generic point. Set

ξ = (ξ′, 0) ∈ X ×S P1
S . Consider the local ring A = OX×SP1

S
,ξ. Let M = Fξ as

an A-module. Let t ∈ A be the element cutting out X ×S D0 (i.e., the coordinate
of P1 at zero pulled back). By our choice of ξ′ ∈ Z ′ we have δ(ξ) = k and hence
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dim(Supp(M)) = 1. Since ξ is not an associated point of F by assumption (3) we
see that M is a Cohen-Macaulay module. Since dimδ(Supp(F0)) = k we see that
dim(Supp(M/tM)) = 0 which implies that t is a nonzerodivisor on M . Finally,
the irreducible closed subschemes Wi passing through ξ correspond to the minimal
primes qi of Ass(M). The multiplicities ni correspond to the lengths lengthAqi

Mqi .
Hence we see that

n = lengthA(M/tM)
and

m =
∑

lengthA(A/(t, qi)A)lengthAqi
Mqi

Thus the result follows from Lemma 3.2. □

22. Chow groups and envelopes

0GU4 Here is the definition.

Definition 22.1.0GU5 [Ful98, Definition
18.3]

Let X be a scheme. An envelope is a proper morphism f : Y →
X which is completely decomposed (More on Morphisms, Definition 78.1).

The exact sequence of Lemma 22.4 is the main motivation for the definition.

Lemma 22.2.0GU6 Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. If f : Y → X and g : Z → Y are envelopes, then f ◦ g is an envelope.

Proof. Follows from Morphisms, Lemma 41.4 and More on Morphisms, Lemma
78.2. □

Lemma 22.3.0GU7 Let (S, δ) be as in Situation 7.1. Let X ′ → X be a morphism of
schemes locally of finite type over S. If f : Y → X is an envelope, then the base
change f ′ : Y ′ → X ′ of f is an envelope too.

Proof. Follows from Morphisms, Lemma 41.5 and More on Morphisms, Lemma
78.3. □

Lemma 22.4.0GU8 Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let f : Y → X be an envelope. Then we have an exact sequence

CHk(Y ×X Y ) p∗−q∗−−−−→ CHk(Y ) f∗−→ CHk(X)→ 0
for all k ∈ Z. Here p, q : Y ×X Y → Y are the projections.

Proof. Since f is an envelope, f is proper and hence pushforward on cycles and
cycle classes is defined, see Sections 12 and 15. Similarly, the morphisms p and q
are proper as base changes of f . The composition of the arrows is zero as f∗ ◦ p∗ =
(p ◦ f)∗ = (q ◦ f)∗ = f∗ ◦ q∗, see Lemma 12.2.
Let us show that f∗ : Zk(Y ) → Zk(X) is surjective. Namely, suppose that we
have α =

∑
ni[Zi] ∈ Zk(X) where Zi ⊂ X is a locally finite family of integral

closed subschemes. Let xi ∈ Zi be the generic point. Since f is an envelope and
hence completely decomposed, there exists a point yi ∈ Y with f(yi) = xi and
with κ(yi)/κ(xi) trivial. Let Wi ⊂ Y be the integral closed subscheme with generic
point yi. Since f is closed, we see that f(Wi) = Zi. It follows that the family
of closed subschemes Wi is locally finite on Y . Since κ(yi)/κ(xi) is trivial we see
that dimδ(Wi) = dimδ(Zi) = k. Hence β =

∑
ni[Wi] is in Zk(Y ). Finally, since

κ(yi)/κ(xi) is trivial, the degree of the dominant morphism f |Wi
: Wi → Zi is 1

and we conclude that f∗β = α.
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Since f∗ : Zk(Y )→ Zk(X) is surjective, a fortiori the map f∗ : CHk(Y )→ CHk(X)
is surjective.

Let β ∈ Zk(Y ) be an element such that f∗β is zero in CHk(X). This means
we can find a locally finite family of integral closed subschemes Zj ⊂ X with
dimδ(Zj) = k + 1 and fj ∈ R(Zj)∗ such that

f∗β =
∑

(Zj → X)∗div(fj)

as cycles where ij : Zj → X is the given closed immersion. Arguing exactly
as above, we can find a locally finite family of integral closed subschemes Wj ⊂ Y
with f(Wj) = Zj and such that Wj → Zj is birational, i.e., induces an isomorphism
R(Zj) = R(Wj). Denote gj ∈ R(Wj)∗ the element corresponding to fj . Observe
that Wj → Zj is proper and that (Wj → Zj)∗div(gj) = div(fj) as cycles on Zj . It
follows from this that if we replace β by the rationally equivalent cycle

β′ = β −
∑

(Wj → Y )∗div(gj)

then we find that f∗β
′ = 0. (This uses Lemma 12.2.) Thus to finish the proof of

the lemma it suffices to show the claim in the following paragraph.

Claim: if β ∈ Zk(Y ) and f∗β = 0, then β = δ + p∗γ − q∗γ in Zk(Y ) for some
γ ∈ Zk(Y ×X Y ). Namely, write β =

∑
j∈J nj [Wj ] with {Wj}j∈J a locally finite

family of integral closed subschemes of Y with dimδ(Wj) = k. Fix an integral
closed subscheme Z ⊂ X. Consider the subset JZ = {j ∈ J : f(Wj) = Z}. This is
a finite set. There are three cases:

(1) JZ = ∅. In this case we set γZ = 0.
(2) JZ ̸= ∅ and dimδ(Z) = k. The condition f∗β = 0 implies by looking at

the coefficient of Z that
∑
j∈JZ nj deg(Wj/Z) = 0. In this case we choose

an integral closed subscheme W ⊂ Y which maps birationally onto Z (see
above). Looking at generic points, we see that Wj ×Z W has a unique
irreducible component W ′

j ⊂Wj ×Z W ⊂ Y ×X Y mapping birationally to
Wj . Then W ′

j → W is dominant and deg(W ′
j/W ) = deg(Wj/W ). Thus

if we set γZ =
∑
j∈JZ nj [W

′
j ] then we see that p∗γZ =

∑
j∈JZ nj [Wj ] and

q∗γZ =
∑
j∈JZ nj deg(W ′

j/W )[W ] = 0.
(3) JZ ̸= ∅ and dimδ(Z) < k. In this case we choose an integral closed sub-

scheme W ⊂ Y which maps birationally onto Z (see above). Looking at
generic points, we see that Wj ×Z W has a unique irreducible component
W ′
j ⊂ Wj ×Z W ⊂ Y ×X Y mapping birationally to Wj . Then W ′

j → W
is dominant and k = dimδ(W ′

j) > dimδ(W ) = dimδ(Z). Thus if we set
γZ =

∑
j∈JZ nj [W

′
j ] then we see that p∗γZ =

∑
j∈JZ nj [Wj ] and q∗γZ = 0.

Since the family of integral closed subschemes {f(Wj)} is locally finite on X
(Lemma 11.2) we see that the k-cycle

γ =
∑

Z⊂X integral closed
γZ

on Y ×X Y is well defined. By our computations above it follows that p∗γZ = β
and q∗γZ = 0 which implies what we wanted to prove. □
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23. Chow groups and K-groups

0FDQ In this section we are going to compare K0 of the category of coherent sheaves to
the chow groups.
Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite type over S.
We denote Coh(X) = Coh(OX) the category of coherent sheaves on X. It is an
abelian category, see Cohomology of Schemes, Lemma 9.2. For any k ∈ Z we let
Coh≤k(X) be the full subcategory of Coh(X) consisting of those coherent sheaves
F having dimδ(Supp(F)) ≤ k.
Lemma 23.1.02S8 Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of
finite type over S. The categories Coh≤k(X) are Serre subcategories of the abelian
category Coh(X).
Proof. The definition of a Serre subcategory is Homology, Definition 10.1. The
proof of the lemma is straightforward and omitted. □

Lemma 23.2.02S9 Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. The maps

Zk(X) −→ K0(Coh≤k(X)/Coh≤k−1(X)),
∑

nZ [Z] 7→
[⊕

nZ>0
O⊕nZ
Z

]
−

[⊕
nZ<0

O⊕−nZ
Z

]
and

K0(Coh≤k(X)/Coh≤k−1(X)) −→ Zk(X), F 7−→ [F ]k
are mutually inverse isomorphisms.
Proof. Note that if

∑
nZ [Z] is in Zk(X), then the direct sums

⊕
nZ>0O

⊕nZ
Z and⊕

nZ<0O
⊕−nZ
Z are coherent sheaves on X since the family {Z | nZ > 0} is locally

finite on X. The map F → [F ]k is additive on Coh≤k(X), see Lemma 10.4. And
[F ]k = 0 if F ∈ Coh≤k−1(X). By part (1) of Homology, Lemma 11.3 this implies
that the second map is well defined too. It is clear that the composition of the first
map with the second map is the identity.
Conversely, say we start with a coherent sheaf F on X. Write [F ]k =

∑
i∈I ni[Zi]

with ni > 0 and Zi ⊂ X, i ∈ I pairwise distinct integral closed subschemes of
δ-dimension k. We have to show that

[F ] = [
⊕

i∈I
O⊕ni
Zi

]

in K0(Coh≤k(X)/Coh≤k−1(X)). Denote ξi ∈ Zi the generic point. If we set

F ′ = Ker(F →
⊕

ξi,∗Fξi)

then F ′ is the maximal coherent submodule of F whose support has dimension≤ k−
1. In particular F and F/F ′ have the same class in K0(Coh≤k(X)/Coh≤k−1(X)).
Thus after replacing F by F/F ′ we may and do assume that the kernel F ′ displayed
above is zero.
For each i ∈ I we choose a filtration

Fξi = F0
i ⊃ F1

i ⊃ . . . ⊃ F
ni
i = 0

such that the successive quotients are of dimension 1 over the residue field at ξi.
This is possible as the length of Fξi over OX,ξi is ni. For p > ni set Fpi = 0. For
p ≥ 0 we denote

Fp = Ker
(
F −→

⊕
ξi,∗(Fξi/F

p
i )

)
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Then Fp is coherent, F0 = F , and Fp/Fp+1 is isomorphic to a free OZi-module
of rank 1 (if ni > p) or 0 (if ni ≤ p) in an open neighbourhood of ξi. Moreover,
F ′ =

⋂
Fp = 0. Since every quasi-compact open U ⊂ X contains only a finite

number of ξi we conclude that Fp|U is zero for p ≫ 0. Hence
⊕

p≥0 Fp is a
coherent OX -module. Consider the short exact sequences

0→
⊕

p>0
Fp →

⊕
p≥0
Fp →

⊕
p>0
Fp/Fp+1 → 0

and
0→

⊕
p>0
Fp →

⊕
p≥0
Fp → F → 0

of coherent OX -modules. This already shows that

[F ] = [
⊕
Fp/Fp+1]

in K0(Coh≤k(X)/Coh≤k−1(X)). Next, for every p ≥ 0 and i ∈ I such that ni > p
we choose a nonzero ideal sheaf Ii,p ⊂ OZi and a map Ii,p → Fp/Fp+1 on X
which is an isomorphism over the open neighbourhood of ξi mentioned above. This
is possible by Cohomology of Schemes, Lemma 10.6. Then we consider the short
exact sequence

0→
⊕

p≥0,i∈I,ni>p
Ii,p →

⊕
Fp/Fp+1 → Q→ 0

and the short exact sequence

0→
⊕

p≥0,i∈I,ni>p
Ii,p →

⊕
p≥0,i∈I,ni>p

OZi → Q′ → 0

Observe that both Q and Q′ are zero in a neighbourhood of the points ξi and that
they are supported on

⋃
Zi. Hence Q and Q′ are in Coh≤k−1(X). Since⊕
i∈I
O⊕ni
Zi
∼=

⊕
p≥0,i∈I,ni>p

OZi

this concludes the proof. □

Lemma 23.3.0FDR Let π : X → Y be a finite morphism of schemes locally of finite
type over (S, δ) as in Situation 7.1. Then π∗ : Coh(X) → Coh(Y ) is an exact
functor which sends Coh≤k(X) into Coh≤k(Y ) and induces homomorphisms on
K0 of these categories and their quotients. The maps of Lemma 23.2 fit into a
commutative diagram

Zk(X)

π∗

��

// K0(Coh≤k(X)/Coh≤k−1(X))

π∗

��

// Zk(X)

π∗

��
Zk(Y ) // K0(Coh≤k(Y )/Coh≤k−1(Y )) // Zk(Y )

Proof. A finite morphism is affine, hence pushforward of quasi-coherent modules
along π is an exact functor by Cohomology of Schemes, Lemma 2.3. A finite
morphism is proper, hence π∗ sends coherent sheaves to coherent sheaves, see Co-
homology of Schemes, Proposition 19.1. The statement on dimensions of supports
is clear. Commutativity on the right follows immediately from Lemma 12.4. Since
the horizontal arrows are bijections, we find that we have commutativity on the left
as well. □
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Lemma 23.4.0FDS Let X be a scheme locally of finite type over (S, δ) as in Situation
7.1. There is a canonical map

CHk(X) −→ K0(Coh≤k+1(X)/Coh≤k−1(X))

induced by the map Zk(X)→ K0(Coh≤k(X)/Coh≤k−1(X)) from Lemma 23.2.

Proof. We have to show that an element α of Zk(X) which is rationally equiv-
alent to zero, is mapped to zero in K0(Coh≤k+1(X)/Coh≤k−1(X)). Write α =∑

(ij)∗div(fj) as in Definition 19.1. Observe that

π =
∐

ij : W =
∐

Wj −→ X

is a finite morphism as each ij : Wj → X is a closed immersion and the family of
Wj is locally finite in X. Hence we may use Lemma 23.3 to reduce to the case of
W . Since W is a disjoint union of integral scheme, we reduce to the case discussed
in the next paragraph.

Assume X is integral of δ-dimension k + 1. Let f be a nonzero rational func-
tion on X. Let α = div(f). We have to show that α is mapped to zero in
K0(Coh≤k+1(X)/Coh≤k−1(X)). Let I ⊂ OX be the ideal of denominators of f ,
see Divisors, Definition 23.10. Then we have short exact sequences

0→ I → OX → OX/I → 0

and
0→ I f−→ OX → OX/fI → 0

See Divisors, Lemma 23.9. We claim that

[OX/I]k − [OX/fI]k = div(f)

The claim implies the element α = div(f) is represented by [OX/I] − [OX/fI]
in K0(Coh≤k(X)/Coh≤k−1(X)). Then the short exact sequences show that this
element maps to zero in K0(Coh≤k+1(X)/Coh≤k−1(X)).

To prove the claim, let Z ⊂ X be an integral closed subscheme of δ-dimension k
and let ξ ∈ Z be its generic point. Then I = Iξ ⊂ A = OX,ξ is an ideal such that
fI ⊂ A. Now the coefficient of [Z] in div(f) is ordA(f). (Of course as usual we
identify the function field of X with the fraction field of A.) On the other hand,
the coefficient of [Z] in [OX/I]− [OX/fI] is

lengthA(A/I)− lengthA(A/fI)

Using the distance fuction of Algebra, Definition 121.5 we can rewrite this as

d(A, I)− d(A, fI) = d(I, fI) = ordA(f)

The equalities hold by Algebra, Lemmas 121.6 and 121.7. (Using these lemmas
isn’t necessary, but convenient.) □

Remark 23.5.02SD Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of
finite type over S. We will see later (in Lemma 69.3) that the map

CHk(X) −→ K0(Cohk+1(X)/Coh≤k−1(X))

of Lemma 23.4 is injective. Composing with the canonical map

K0(Cohk+1(X)/Coh≤k−1(X)) −→ K0(Coh(X)/Coh≤k−1(X))

https://stacks.math.columbia.edu/tag/0FDS
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we obtain a canonical map

CHk(X) −→ K0(Coh(X)/Coh≤k−1(X)).

We have not been able to find a statement or conjecture in the literature as to
whether this map should be injective or not. It seems reasonable to expect the
kernel of this map to be torsion. We will return to this question (insert future
reference).

Lemma 23.6.0FDT Let X be a locally Noetherian scheme. Let Z ⊂ X be a closed
subscheme. Denote CohZ(X) ⊂ Coh(X) the Serre subcategory of coherent OX-
modules whose set theoretic support is contained in Z. Then the exact inclusion
functor Coh(Z)→ CohZ(X) induces an isomorphism

K ′
0(Z) = K0(Coh(Z)) −→ K0(CohZ(X))

Proof. Let F be an object of CohZ(X). Let I ⊂ OX be the quasi-coherent ideal
sheaf of Z. Consider the descending filtration

. . . ⊂ Fp = IpF ⊂ Fp−1 ⊂ . . . ⊂ F0 = F

Exactly as in the proof of Lemma 23.4 this filtration is locally finite and hence⊕
p≥0 Fp,

⊕
p≥1 Fp, and

⊕
p≥0 Fp/Fp+1 are coherent OX -modules supported on

Z. Hence we get

[F ] = [
⊕

p≥0
Fp/Fp+1]

in K0(CohZ(X)) exactly as in the proof of Lemma 23.4. Since the coherent module⊕
p≥0 Fp/Fp+1 is annihilated by I we conclude that [F ] is in the image. Actually,

we claim that the map

F 7−→ c(F) = [
⊕

p≥0
Fp/Fp+1]

factors through K0(CohZ(X)) and is an inverse to the map in the statement of the
lemma. To see this all we have to show is that if

0→ F → G → H → 0

is a short exact sequence in CohZ(X), then we get c(G) = c(F) + c(H). Observe
that for all q ≥ 0 we have a short exact sequence

0→ (F ∩ IqG)/(F ∩ Iq+1G)→ Gq/Gq+1 → Hq/Hq+1 → 0

For p, q ≥ 0 consider the coherent submodule

Fp,q = IpF ∩ IqG

Arguing exactly as above and using that the filtrations Fp = IpF and F ∩IqG are
locally finite, we find that

[
⊕

p≥0
Fp/Fp+1] = [

⊕
p,q≥0

Fp,q/(Fp+1,q+Fp,q+1)] = [
⊕

q≥0
(F∩IqG)/(F∩Iq+1G)]

in K0(Coh(Z)). Combined with the exact sequences above we obtain the desired
result. Some details omitted. □

https://stacks.math.columbia.edu/tag/0FDT
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24. The divisor associated to an invertible sheaf

02SI The following definition is the analogue of Divisors, Definition 27.4 in our current
setup.

Definition 24.1.02SJ Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Assume X is integral and n = dimδ(X). Let L be an invertible OX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor
associated to s is the (n− 1)-cycle

divL(s) =
∑

ordZ,L(s)[Z]

defined in Divisors, Definition 27.4. This makes sense because Weil divisors
have δ-dimension n− 1 by Lemma 16.1.

(2) We define Weil divisor associated to L as
c1(L) ∩ [X] = class of divL(s) ∈ CHn−1(X)

where s is any nonzero meromorphic section of L over X. This is well
defined by Divisors, Lemma 27.3.

Let X and S be as in Definition 24.1 above. Set n = dimδ(X). It is clear from the
definitions that Cl(X) = CHn−1(X) where Cl(X) is the Weil divisor class group
of X as defined in Divisors, Definition 26.7. The map

Pic(X) −→ CHn−1(X), L 7−→ c1(L) ∩ [X]
is the same as the map Pic(X)→ Cl(X) constructed in Divisors, Equation (27.5.1)
for arbitrary locally Noetherian integral schemes. In particular, this map is a
homomorphism of abelian groups, it is injective if X is a normal scheme, and an
isomorphism if all local rings of X are UFDs. See Divisors, Lemmas 27.6 and 27.7.
There are some cases where it is easy to compute the Weil divisor associated to an
invertible sheaf.

Lemma 24.2.02SK Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X is integral and n = dimδ(X). Let L be an invertible OX-module. Let
s ∈ Γ(X,L) be a nonzero global section. Then

divL(s) = [Z(s)]n−1

in Zn−1(X) and
c1(L) ∩ [X] = [Z(s)]n−1

in CHn−1(X).

Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension n − 1. Let
ξ ∈ Z be its generic point. Choose a generator sξ ∈ Lξ. Write s = fsξ for some
f ∈ OX,ξ. By definition of Z(s), see Divisors, Definition 14.8 we see that Z(s) is
cut out by a quasi-coherent sheaf of ideals I ⊂ OX such that Iξ = (f). Hence
lengthOX,x

(OZ(s),ξ) = lengthOX,x
(OX,ξ/(f)) = ordOX,x

(f) as desired. □

The following lemma will be superseded by the more general Lemma 26.2.

Lemma 24.3.02SM Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite
type over S. Assume X, Y are integral and n = dimδ(Y ). Let L be an invertible
OY -module. Let f : X → Y be a flat morphism of relative dimension r. Then

f∗(c1(L) ∩ [Y ]) = c1(f∗L) ∩ [X]

https://stacks.math.columbia.edu/tag/02SJ
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in CHn+r−1(X).
Proof. Let s be a nonzero meromorphic section of L. We will show that actually
f∗divL(s) = divf∗L(f∗s) and hence the lemma holds. To see this let ξ ∈ Y be a
point and let sξ ∈ Lξ be a generator. Write s = gsξ with g ∈ R(Y )∗. Then there is
an open neighbourhood V ⊂ Y of ξ such that sξ ∈ L(V ) and such that sξ generates
L|V . Hence we see that

divL(s)|V = divY (g)|V .
In exactly the same way, since f∗sξ generates f∗L over f−1(V ) and since f∗s =
gf∗sξ we also have

divL(f∗s)|f−1(V ) = divX(g)|f−1(V ).

Thus the desired equality of cycles over f−1(V ) follows from the corresponding
result for pullbacks of principal divisors, see Lemma 17.2. □

25. Intersecting with an invertible sheaf

02SN In this section we study the following construction.
Definition 25.1.02SO Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let L be an invertible OX -module. We define, for every integer k, an
operation

c1(L) ∩ − : Zk+1(X)→ CHk(X)
called intersection with the first Chern class of L.

(1) Given an integral closed subscheme i : W → X with dimδ(W ) = k + 1 we
define

c1(L) ∩ [W ] = i∗(c1(i∗L) ∩ [W ])
where the right hand side is defined in Definition 24.1.

(2) For a general (k + 1)-cycle α =
∑
ni[Wi] we set

c1(L) ∩ α =
∑

nic1(L) ∩ [Wi]

Write each c1(L) ∩Wi =
∑
j ni,j [Zi,j ] with {Zi,j}j a locally finite sum of integral

closed subschemes of Wi. Since {Wi} is a locally finite collection of integral closed
subschemes on X, it follows easily that {Zi,j}i,j is a locally finite collection of
closed subschemes of X. Hence c1(L) ∩ α =

∑
nini,j [Zi,j ] is a cycle. Another,

more convenient, way to think about this is to observe that the morphism
∐
Wi →

X is proper. Hence c1(L) ∩ α can be viewed as the pushforward of a class in
CHk(

∐
Wi) =

∏
CHk(Wi). This also explains why the result is well defined up to

rational equivalence on X.
The main goal for the next few sections is to show that intersecting with c1(L)
factors through rational equivalence. This is not a triviality.
Lemma 25.2.02SP Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L, N be an invertible sheaves on X. Then

c1(L) ∩ α+ c1(N ) ∩ α = c1(L ⊗OX
N ) ∩ α

in CHk(X) for every α ∈ Zk+1(X). Moreover, c1(OX) ∩ α = 0 for all α.
Proof. The additivity follows directly from Divisors, Lemma 27.5 and the defini-
tions. To see that c1(OX)∩α = 0 consider the section 1 ∈ Γ(X,OX). This restricts
to an everywhere nonzero section on any integral closed subscheme W ⊂ X. Hence
c1(OX) ∩ [W ] = 0 as desired. □

https://stacks.math.columbia.edu/tag/02SO
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Recall that Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible
sheaf on a scheme X, see Divisors, Definition 14.8.

Lemma 25.3.0EPI Let (S, δ) be as in Situation 7.1. Let Y be locally of finite type over
S. Let L be an invertible OY -module. Let s ∈ Γ(Y,L). Assume

(1) dimδ(Y ) ≤ k + 1,
(2) dimδ(Z(s)) ≤ k, and
(3) for every generic point ξ of an irreducible component of Z(s) of δ-dimension

k the multiplication by s induces an injection OY,ξ → Lξ.
Write [Y ]k+1 =

∑
ni[Yi] where Yi ⊂ Y are the irreducible components of Y of

δ-dimension k + 1. Set si = s|Yi ∈ Γ(Yi,L|Yi). Then

(25.3.1)02SR [Z(s)]k =
∑

ni[Z(si)]k
as k-cycles on Y .

Proof. Let Z ⊂ Y be an integral closed subscheme of δ-dimension k. Let ξ ∈ Z
be its generic point. We want to compare the coefficient n of [Z] in the expression∑
ni[Z(si)]k with the coefficient m of [Z] in the expression [Z(s)]k. Choose a

generator sξ ∈ Lξ. Write A = OY,ξ, L = Lξ. Then L = Asξ. Write s = fsξ for
some (unique) f ∈ A. Hypothesis (3) means that f : A → A is injective. Since
dimδ(Y ) ≤ k + 1 and dimδ(Z) = k we have dim(A) = 0 or 1. We have

m = lengthA(A/(f))
which is finite in either case.
If dim(A) = 0, then f : A → A being injective implies that f ∈ A∗. Hence in this
case m is zero. Moreover, the condition dim(A) = 0 means that ξ does not lie on
any irreducible component of δ-dimension k + 1, i.e., n = 0 as well.
Now, let dim(A) = 1. Since A is a Noetherian local ring it has finitely many minimal
primes q1, . . . , qt. These correspond 1-1 with the Yi passing through ξ′. Moreover
ni = lengthAqi

(Aqi). Also, the multiplicity of [Z] in [Z(si)]k is lengthA(A/(f, qi)).
Hence the equation to prove in this case is

lengthA(A/(f)) =
∑

lengthAqi
(Aqi)lengthA(A/(f, qi))

which follows from Lemma 3.2. □

The following lemma is a useful result in order to compute the intersection product
of the c1 of an invertible sheaf and the cycle associated to a closed subscheme.
Recall that Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible
sheaf on a scheme X, see Divisors, Definition 14.8.

Lemma 25.4.02SQ Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let L be an invertible OX-module. Let Y ⊂ X be a closed subscheme. Let
s ∈ Γ(Y,L|Y ). Assume

(1) dimδ(Y ) ≤ k + 1,
(2) dimδ(Z(s)) ≤ k, and
(3) for every generic point ξ of an irreducible component of Z(s) of δ-dimension

k the multiplication by s induces an injection OY,ξ → (L|Y )ξ1.

1For example, this holds if s is a regular section of L|Y .

https://stacks.math.columbia.edu/tag/0EPI
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Then
c1(L) ∩ [Y ]k+1 = [Z(s)]k

in CHk(X).

Proof. Write
[Y ]k+1 =

∑
ni[Yi]

where Yi ⊂ Y are the irreducible components of Y of δ-dimension k+1 and ni > 0.
By assumption the restriction si = s|Yi ∈ Γ(Yi,L|Yi) is not zero, and hence is a
regular section. By Lemma 24.2 we see that [Z(si)]k represents c1(L|Yi). Hence by
definition

c1(L) ∩ [Y ]k+1 =
∑

ni[Z(si)]k
Thus the result follows from Lemma 25.3. □

26. Intersecting with an invertible sheaf and push and pull

0AYA In this section we prove that the operation c1(L) ∩− commutes with flat pullback
and proper pushforward.

Lemma 26.1.0EPJ Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a flat morphism of relative dimension r. Let L be an
invertible sheaf on Y . Assume Y is integral and n = dimδ(Y ). Let s be a nonzero
meromorphic section of L. Then we have

f∗divL(s) =
∑

nidivf∗L|Xi (si)

in Zn+r−1(X). Here the sum is over the irreducible components Xi ⊂ X of δ-
dimension n + r, the section si = f |∗Xi(s) is the pullback of s, and ni = mXi,X is
the multiplicity of Xi in X.

Proof. To prove this equality of cycles, we may work locally on Y . Hence we
may assume Y is affine and s = p/q for some nonzero sections p ∈ Γ(Y,L) and
q ∈ Γ(Y,O). If we can show both

f∗divL(p) =
∑

nidivf∗L|Xi (pi) and f∗divO(q) =
∑

nidivOXi
(qi)

(with obvious notations) then we win by the additivity, see Divisors, Lemma 27.5.
Thus we may assume that s ∈ Γ(Y,L). In this case we may apply the equality
(25.3.1) to see that

[Z(f∗(s))]k+r−1 =
∑

nidivf∗L|Xi (si)

where f∗(s) ∈ f∗L denotes the pullback of s to X. On the other hand we have

f∗divL(s) = f∗[Z(s)]k−1 = [f−1(Z(s))]k+r−1,

by Lemmas 24.2 and 14.4. Since Z(f∗(s)) = f−1(Z(s)) we win. □

Lemma 26.2.02SS Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a flat morphism of relative dimension r. Let L be an
invertible sheaf on Y . Let α be a k-cycle on Y . Then

f∗(c1(L) ∩ α) = c1(f∗L) ∩ f∗α

in CHk+r−1(X).

https://stacks.math.columbia.edu/tag/0EPJ
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Proof. Write α =
∑
ni[Wi]. We will show that
f∗(c1(L) ∩ [Wi]) = c1(f∗L) ∩ f∗[Wi]

in CHk+r−1(X) by producing a rational equivalence on the closed subscheme f−1(Wi)
of X. By the discussion in Remark 19.6 this will prove the equality of the lemma
is true.
Let W ⊂ Y be an integral closed subscheme of δ-dimension k. Consider the closed
subscheme W ′ = f−1(W ) = W ×Y X so that we have the fibre product diagram

W ′ //

h

��

X

f

��
W // Y

We have to show that f∗(c1(L) ∩ [W ]) = c1(f∗L) ∩ f∗[W ]. Choose a nonzero
meromorphic section s of L|W . Let W ′

i ⊂ W ′ be the irreducible components of
δ-dimension k + r. Write [W ′]k+r =

∑
ni[W ′

i ] with ni the multiplicity of W ′
i in

W ′ as per definition. So f∗[W ] =
∑
ni[W ′

i ] in Zk+r(X). Since each W ′
i → W is

dominant we see that si = s|W ′
i

is a nonzero meromorphic section for each i. By
Lemma 26.1 we have the following equality of cycles

h∗divL|W (s) =
∑

nidivf∗L|W ′
i

(si)

in Zk+r−1(W ′). This finishes the proof since the left hand side is a cycle on W ′

which pushes to f∗(c1(L)∩ [W ]) in CHk+r−1(X) and the right hand side is a cycle
on W ′ which pushes to c1(f∗L) ∩ f∗[W ] in CHk+r−1(X). □

Lemma 26.3.02ST Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a proper morphism. Let L be an invertible sheaf on Y .
Let s be a nonzero meromorphic section s of L on Y . Assume X, Y integral, f
dominant, and dimδ(X) = dimδ(Y ). Then

f∗ (divf∗L(f∗s)) = [R(X) : R(Y )]divL(s).
as cycles on Y . In particular

f∗(c1(f∗L) ∩ [X]) = [R(X) : R(Y )]c1(L) ∩ [Y ] = c1(L) ∩ f∗[X]

Proof. The last equation follows from the first since f∗[X] = [R(X) : R(Y )][Y ]
by definition. It turns out that we can re-use Lemma 18.1 to prove this. Namely,
since we are trying to prove an equality of cycles, we may work locally on Y . Hence
we may assume that L = OY . In this case s corresponds to a rational function
g ∈ R(Y ), and we are simply trying to prove

f∗ (divX(g)) = [R(X) : R(Y )]divY (g).
Comparing with the result of the aforementioned Lemma 18.1 we see this true since
NmR(X)/R(Y )(g) = g[R(X):R(Y )] as g ∈ R(Y )∗. □

Lemma 26.4.02SU Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let p : X → Y be a proper morphism. Let α ∈ Zk+1(X). Let L be an
invertible sheaf on Y . Then

p∗(c1(p∗L) ∩ α) = c1(L) ∩ p∗α

in CHk(Y ).

https://stacks.math.columbia.edu/tag/02ST
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Proof. Suppose that p has the property that for every integral closed subscheme
W ⊂ X the map p|W : W → Y is a closed immersion. Then, by definition of
capping with c1(L) the lemma holds.

We will use this remark to reduce to a special case. Namely, write α =
∑
ni[Wi]

with ni ̸= 0 and Wi pairwise distinct. Let W ′
i ⊂ Y be the image of Wi (as an

integral closed subscheme). Consider the diagram

X ′ =
∐
Wi q

//

p′

��

X

p

��
Y ′ =

∐
W ′
i

q′
// Y.

Since {Wi} is locally finite on X, and p is proper we see that {W ′
i} is locally finite on

Y and that q, q′, p′ are also proper morphisms. We may think of
∑
ni[Wi] also as a

k-cycle α′ ∈ Zk(X ′). Clearly q∗α
′ = α. We have q∗(c1(q∗p∗L)∩α′) = c1(p∗L)∩q∗α

′

and (q′)∗(c1((q′)∗L) ∩ p′
∗α

′) = c1(L) ∩ q′
∗p

′
∗α

′ by the initial remark of the proof.
Hence it suffices to prove the lemma for the morphism p′ and the cycle

∑
ni[Wi].

Clearly, this means we may assume X, Y integral, f : X → Y dominant and
α = [X]. In this case the result follows from Lemma 26.3. □

27. The key formula

0AYB Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S. Assume X
is integral and dimδ(X) = n. Let L and N be invertible sheaves on X. Let s be
a nonzero meromorphic section of L and let t be a nonzero meromorphic section
of N . Let Zi ⊂ X, i ∈ I be a locally finite set of irreducible closed subsets of
codimension 1 with the following property: If Z ̸∈ {Zi} with generic point ξ, then
s is a generator for Lξ and t is a generator for Nξ. Such a set exists by Divisors,
Lemma 27.2. Then

divL(s) =
∑

ordZi,L(s)[Zi]

and similarly
divN (t) =

∑
ordZi,N (t)[Zi]

Unwinding the definitions more, we pick for each i generators si ∈ Lξi and ti ∈ Nξi
where ξi is the generic point of Zi. Then we can write

s = fisi and t = giti

Set Bi = OX,ξi . Then by definition

ordZi,L(s) = ordBi(fi) and ordZi,N (t) = ordBi(gi)

Since ti is a generator of Nξi we see that its image in the fibre Nξi ⊗ κ(ξi) is a
nonzero meromorphic section of N|Zi . We will denote this image ti|Zi . From our
definitions it follows that

c1(N ) ∩ divL(s) =
∑

ordBi(fi)(Zi → X)∗divN |Zi (ti|Zi)

and similarly

c1(L) ∩ divN (t) =
∑

ordBi(gi)(Zi → X)∗divL|Zi (si|Zi)
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in CHn−2(X). We are going to find a rational equivalence between these two cycles.
To do this we consider the tame symbol

∂Bi(fi, gi) ∈ κ(ξi)∗

see Section 5.

Lemma 27.1 (Key formula).0AYC In the situation above the cycle∑
(Zi → X)∗

(
ordBi(fi)divN |Zi (ti|Zi)− ordBi(gi)divL|Zi (si|Zi)

)
is equal to the cycle ∑

(Zi → X)∗div(∂Bi(fi, gi))

Proof. First, let us examine what happens if we replace si by usi for some unit u
in Bi. Then fi gets replaced by u−1fi. Thus the first part of the first expression of
the lemma is unchanged and in the second part we add

−ordBi(gi)div(u|Zi)

(where u|Zi is the image of u in the residue field) by Divisors, Lemma 27.3 and in
the second expression we add

div(∂Bi(u−1, gi))

by bi-linearity of the tame symbol. These terms agree by property (6) of the tame
symbol.

Let Z ⊂ X be an irreducible closed with dimδ(Z) = n − 2. To show that the
coefficients of Z of the two cycles of the lemma is the same, we may do a replacement
si 7→ usi as in the previous paragraph. In exactly the same way one shows that we
may do a replacement ti 7→ vti for some unit v of Bi.

Since we are proving the equality of cycles we may argue one coefficient at a time.
Thus we choose an irreducible closed Z ⊂ X with dimδ(Z) = n − 2 and compare
coefficients. Let ξ ∈ Z be the generic point and set A = OX,ξ. This is a Noetherian
local domain of dimension 2. Choose generators σ and τ for Lξ and Nξ. After
shrinking X, we may and do assume σ and τ define trivializations of the invertible
sheaves L and N over all of X. Because Zi is locally finite after shrinking X we
may assume Z ⊂ Zi for all i ∈ I and that I is finite. Then ξi corresponds to a
prime qi ⊂ A of height 1. We may write si = aiσ and ti = biτ for some ai and bi
units in Aqi . By the remarks above, it suffices to prove the lemma when ai = bi = 1
for all i.

Assume ai = bi = 1 for all i. Then the first expression of the lemma is zero, because
we choose σ and τ to be trivializing sections. Write s = fσ and t = gτ with f and
g in the fraction field of A. By the previous paragraph we have reduced to the case
fi = f and gi = g for all i. Moreover, for a height 1 prime q of A which is not in
{qi} we have that both f and g are units in Aq (by our choice of the family {Zi}
in the discussion preceding the lemma). Thus the coefficient of Z in the second
expression of the lemma is ∑

i
ordA/qi(∂Bi(f, g))

which is zero by the key Lemma 6.3. □

https://stacks.math.columbia.edu/tag/0AYC
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Remark 27.2.0GU9 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let k ∈ Z. We claim that there is a complex⊕′

δ(x)=k+2
KM

2 (κ(x)) ∂−→
⊕′

δ(x)=k+1
KM

1 (κ(x)) ∂−→
⊕′

δ(x)=k
KM

0 (κ(x))

Here we use notation and conventions introduced in Remark 19.2 and in addition
(1) KM

2 (κ(x)) is the degree 2 part of the Milnor K-theory of the residue field
κ(x) of the point x ∈ X (see Remark 6.4) which is the quotient of κ(x)∗⊗Z
κ(x)∗ by the subgroup generated by elements of the form λ ⊗ (1 − λ) for
λ ∈ κ(x) \ {0, 1}, and

(2) the first differential ∂ is defined as follows: given an element ξ =
∑
x αx in

the first term we set

∂(ξ) =
∑

x⇝x′, δ(x′)=k+1
∂OWx,x′ (αx)

where ∂OWx,x′ : KM
2 (κ(x))→ KM

1 (κ(x)) is the tame symbol constructed in
Section 5.

We claim that we get a complex, i.e., that ∂◦∂ = 0. To see this it suffices to take an
element ξ as above and a point x′′ ∈ X with δ(x′′) = k and check that the coefficient
of x′′ in the element ∂(∂(ξ)) is zero. Because ξ =

∑
αx is a locally finite sum, we

may in fact assume by additivity that ξ = αx for some x ∈ X with δ(x) = k + 2
and αx ∈ KM

2 (κ(x)). By linearity again we may assume that αx = f ⊗ g for some
f, g ∈ κ(x)∗. Denote W ⊂ X the integral closed subscheme with generic point x.
If x′′ ̸∈ W , then it is immediately clear that the coefficient of x in ∂(∂(ξ)) is zero.
If x′′ ∈W , then we see that the coefficient of x′′ in ∂(∂(x)) is equal to∑

x⇝x′⇝x′′, δ(x′)=k+1
ordO

{x′},x′′
(∂OW,x′ (f, g))

The key algebraic Lemma 6.3 says exactly that this is zero.

Remark 27.3.0GUA Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let k ∈ Z. The complex in Remark 27.2 and the presentation of CHk(X)
in Remark 19.2 suggests that we can define a first higher Chow group

CHM
k (X, 1) = H1(the complex of Remark 27.2)

We use the supscript M to distinguish our notation from the higher chow groups
defined in the literature, e.g., in the papers by Spencer Bloch ([Blo86] and [Blo94]).
Let U ⊂ X be open with complement Y ⊂ X (viewed as reduced closed subscheme).
Then we find a split short exact sequence

0→
⊕′

y∈Y,δ(y)=k+i
KM
i (κ(y))→

⊕′

x∈X,δ(x)=k+i
KM
i (κ(x))→

⊕′

u∈U,δ(u)=k+i
KM
i (κ(u))→ 0

for i = 2, 1, 0 compatible with the boundary maps in the complexes of Remark 27.2.
Applying the snake lemma (see Homology, Lemma 13.6) we obtain a six term exact
sequence

CHM
k (Y, 1)→ CHM

k (X, 1)→ CHM
k (U, 1)→ CHk(Y )→ CHk(X)→ CHk(U)→ 0

extending the canonical exact sequence of Lemma 19.3. With some work, one may
also define flat pullback and proper pushforward for the first higher chow group
CHM

k (X, 1). We will return to this later (insert future reference here).

https://stacks.math.columbia.edu/tag/0GU9
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28. Intersecting with an invertible sheaf and rational equivalence

02TG Applying the key lemma we obtain the fundamental properties of intersecting with
invertible sheaves. In particular, we will see that c1(L)∩− factors through rational
equivalence and that these operations for different invertible sheaves commute.

Lemma 28.1.02TH Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X integral and dimδ(X) = n. Let L, N be invertible on X. Choose a
nonzero meromorphic section s of L and a nonzero meromorphic section t of N .
Set α = divL(s) and β = divN (t). Then

c1(N ) ∩ α = c1(L) ∩ β
in CHn−2(X).

Proof. Immediate from the key Lemma 27.1 and the discussion preceding it. □

Lemma 28.2.02TI Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L be invertible on X. The operation α 7→ c1(L)∩α factors through rational
equivalence to give an operation

c1(L) ∩ − : CHk+1(X)→ CHk(X)

Proof. Let α ∈ Zk+1(X), and α ∼rat 0. We have to show that c1(L)∩α as defined
in Definition 25.1 is zero. By Definition 19.1 there exists a locally finite family
{Wj} of integral closed subschemes with dimδ(Wj) = k + 2 and rational functions
fj ∈ R(Wj)∗ such that

α =
∑

(ij)∗divWj
(fj)

Note that p :
∐
Wj → X is a proper morphism, and hence α = p∗α

′ where α′ ∈
Zk+1(

∐
Wj) is the sum of the principal divisors divWj

(fj). By Lemma 26.4 we have
c1(L)∩α = p∗(c1(p∗L)∩α′). Hence it suffices to show that each c1(L|Wj )∩divWj (fj)
is zero. In other words we may assume that X is integral and α = divX(f) for some
f ∈ R(X)∗.
Assume X is integral and α = divX(f) for some f ∈ R(X)∗. We can think of
f as a regular meromorphic section of the invertible sheaf N = OX . Choose a
meromorphic section s of L and denote β = divL(s). By Lemma 28.1 we conclude
that

c1(L) ∩ α = c1(OX) ∩ β.
However, by Lemma 25.2 we see that the right hand side is zero in CHk(X) as
desired. □

Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S. Let L be
invertible on X. We will denote

c1(L) ∩ − : CHk+1(X)→ CHk(X)
the operation c1(L)∩−. This makes sense by Lemma 28.2. We will denote c1(L)s∩−
the s-fold iterate of this operation for all s ≥ 0.

Lemma 28.3.02TJ Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L, N be invertible on X. For any α ∈ CHk+2(X) we have

c1(L) ∩ c1(N ) ∩ α = c1(N ) ∩ c1(L) ∩ α
as elements of CHk(X).

https://stacks.math.columbia.edu/tag/02TH
https://stacks.math.columbia.edu/tag/02TI
https://stacks.math.columbia.edu/tag/02TJ


CHOW HOMOLOGY AND CHERN CLASSES 52

Proof. Write α =
∑
mj [Zj ] for some locally finite collection of integral closed

subschemes Zj ⊂ X with dimδ(Zj) = k + 2. Consider the proper morphism p :∐
Zj → X. Set α′ =

∑
mj [Zj ] as a (k+ 2)-cycle on

∐
Zj . By several applications

of Lemma 26.4 we see that c1(L) ∩ c1(N ) ∩ α = p∗(c1(p∗L) ∩ c1(p∗N ) ∩ α′) and
c1(N ) ∩ c1(L) ∩ α = p∗(c1(p∗N ) ∩ c1(p∗L) ∩ α′). Hence it suffices to prove the
formula in case X is integral and α = [X]. In this case the result follows from
Lemma 28.1 and the definitions. □

29. Gysin homomorphisms

02T7 In this section we define the gysin map for the zero locus D of a section of an
invertible sheaf. An interesting case occurs when D is an effective Cartier divisor,
but the generalization to arbitrary D allows us a flexibility to formulate various
compatibilities, see Remark 29.7 and Lemmas 29.8, 29.9, and 30.5. These results
can be generalized to locally principal closed subschemes endowed with a virtual
normal bundle (Remark 29.2) or to pseudo-divisors (Remark 29.3).

Recall that effective Cartier divisors correspond 1-to-1 to isomorphism classes of
pairs (L, s) where L is an invertible sheaf and s is a regular global section, see
Divisors, Lemma 14.10. If D corresponds to (L, s), then L = OX(D). Please keep
this in mind while reading this section.

Definition 29.1.02T8 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let (L, s) be a pair consisting of an invertible sheaf and a global section
s ∈ Γ(X,L). Let D = Z(s) be the zero scheme of s, and denote i : D → X the
closed immersion. We define, for every integer k, a Gysin homomorphism

i∗ : Zk+1(X)→ CHk(D).

by the following rules:
(1) Given a integral closed subscheme W ⊂ X with dimδ(W ) = k+1 we define

(a) if W ̸⊂ D, then i∗[W ] = [D ∩W ]k as a k-cycle on D, and
(b) if W ⊂ D, then i∗[W ] = i′∗(c1(L|W ) ∩ [W ]), where i′ : W → D is the

induced closed immersion.
(2) For a general (k + 1)-cycle α =

∑
nj [Wj ] we set

i∗α =
∑

nji
∗[Wj ]

(3) If D is an effective Cartier divisor, then we denote D · α = i∗i
∗α the

pushforward of the class i∗α to a class on X.

In fact, as we will see later, this Gysin homomorphism i∗ can be viewed as an
example of a non-flat pullback. Thus we will sometimes informally call the class
i∗α the pullback of the class α.

Remark 29.2.0B70 Let X be a scheme locally of finite type over S as in Situation
7.1. Let (D,N , σ) be a triple consisting of a locally principal (Divisors, Definition
13.1) closed subscheme i : D → X, an invertible OD-module N , and a surjection
σ : N⊗−1 → i∗ID ofOD-modules2. HereN should be thought of as a virtual normal
bundle of D in X. The construction of i∗ : Zk+1(X)→ CHk(D) in Definition 29.1
generalizes to such triples, see Section 54.

2This condition assures us that if D is an effective Cartier divisor, then N = OX(D)|D.

https://stacks.math.columbia.edu/tag/02T8
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Remark 29.3.0B7D Let X be a scheme locally of finite type over S as in Situation 7.1.
In [Ful98] a pseudo-divisor on X is defined as a triple D = (L, Z, s) where L is an
invertible OX -module, Z ⊂ X is a closed subset, and s ∈ Γ(X \ Z,L) is a nowhere
vanishing section. Similarly to the above, one can define for every α in CHk+1(X)
a product D · α in CHk(Z ∩ |α|) where |α| is the support of α.

Lemma 29.4.02T9 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let (L, s, i : D → X) be as in Definition 29.1. Let α be a (k + 1)-cycle on
X. Then i∗i

∗α = c1(L) ∩ α in CHk(X). In particular, if D is an effective Cartier
divisor, then D · α = c1(OX(D)) ∩ α.

Proof. Write α =
∑
nj [Wj ] where ij : Wj → X are integral closed subschemes

with dimδ(Wj) = k. Since D is the zero scheme of s we see that D ∩Wj is the
zero scheme of the restriction s|Wj

. Hence for each j such that Wj ̸⊂ D we have
c1(L) ∩ [Wj ] = [D ∩Wj ]k by Lemma 25.4. So we have

c1(L) ∩ α =
∑

Wj ̸⊂D
nj [D ∩Wj ]k +

∑
Wj⊂D

njij,∗(c1(L)|Wj
) ∩ [Wj ])

in CHk(X) by Definition 25.1. The right hand side matches (termwise) the push-
forward of the class i∗α on D from Definition 29.1. Hence we win. □

Lemma 29.5.02TB Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let (L, s, i : D → X) be as in Definition 29.1.

(1) Let Z ⊂ X be a closed subscheme such that dimδ(Z) ≤ k+ 1 and such that
D ∩ Z is an effective Cartier divisor on Z. Then i∗[Z]k+1 = [D ∩ Z]k.

(2) Let F be a coherent sheaf on X such that dimδ(Supp(F)) ≤ k + 1 and
s : F → F ⊗OX

L is injective. Then
i∗[F ]k+1 = [i∗F ]k

in CHk(D).

Proof. Assume Z ⊂ X as in (1). Then set F = OZ . The assumption that D∩Z is
an effective Cartier divisor is equivalent to the assumption that s : F → F ⊗OX

L
is injective. Moreover [Z]k+1 = [F ]k+1] and [D ∩ Z]k = [OD∩Z ]k = [i∗F ]k. See
Lemma 10.3. Hence part (1) follows from part (2).
Write [F ]k+1 =

∑
mj [Wj ] with mj > 0 and pairwise distinct integral closed sub-

schemes Wj ⊂ X of δ-dimension k + 1. The assumption that s : F → F ⊗OX
L is

injective implies that Wj ̸⊂ D for all j. By definition we see that

i∗[F ]k+1 =
∑

mj [D ∩Wj ]k.

We claim that ∑
[D ∩Wj ]k = [i∗F ]k

as cycles. Let Z ⊂ D be an integral closed subscheme of δ-dimension k. Let
ξ ∈ Z be its generic point. Let A = OX,ξ. Let M = Fξ. Let f ∈ A be an
element generating the ideal of D, i.e., such that OD,ξ = A/fA. By assumption
dim(Supp(M)) = 1, the map f : M → M is injective, and lengthA(M/fM) < ∞.
Moreover, lengthA(M/fM) is the coefficient of [Z] in [i∗F ]k. On the other hand,
let q1, . . . , qt be the minimal primes in the support of M . Then∑

lengthAqi
(Mqi)ordA/qi(f)

is the coefficient of [Z] in
∑

[D∩Wj ]k. Hence we see the equality by Lemma 3.2. □
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Remark 29.6.0B6Z Let X → S, L, s, i : D → X be as in Definition 29.1 and assume
that L|D ∼= OD. In this case we can define a canonical map i∗ : Zk+1(X)→ Zk(D)
on cycles, by requiring that i∗[W ] = 0 whenever W ⊂ D is an integral closed
subscheme. The possibility to do this will be useful later on.

Remark 29.7.0B6Y Let f : X ′ → X be a morphism of schemes locally of finite type
over S as in Situation 7.1. Let (L, s, i : D → X) be a triple as in Definition 29.1.
Then we can set L′ = f∗L, s′ = f∗s, and D′ = X ′ ×X D = Z(s′). This gives a
commutative diagram

D′

g

��

i′
// X ′

f

��
D

i // X

and we can ask for various compatibilities between i∗ and (i′)∗.

Lemma 29.8.02TA Let (S, δ) be as in Situation 7.1. Let f : X ′ → X be a proper
morphism of schemes locally of finite type over S. Let (L, s, i : D → X) be as in
Definition 29.1. Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Remark 29.7. For any (k + 1)-cycle α′ on X ′ we have i∗f∗α
′ = g∗(i′)∗α′ in

CHk(D) (this makes sense as f∗ is defined on the level of cycles).

Proof. Suppose α = [W ′] for some integral closed subscheme W ′ ⊂ X ′. Let
W = f(W ′) ⊂ X. In case W ′ ̸⊂ D′, then W ̸⊂ D and we see that

[W ′ ∩D′]k = divL′|W ′ (s′|W ′) and [W ∩D]k = divL|W (s|W )
and hence f∗ of the first cycle equals the second cycle by Lemma 26.3. Hence the
equality holds as cycles. In case W ′ ⊂ D′, then W ⊂ D and f∗(c1(L|W ′) ∩ [W ′])
is equal to c1(L|W ) ∩ [W ] in CHk(W ) by the second assertion of Lemma 26.3. By
Remark 19.6 the result follows for general α′. □

Lemma 29.9.0B71 Let (S, δ) be as in Situation 7.1. Let f : X ′ → X be a flat morphism
of relative dimension r of schemes locally of finite type over S. Let (L, s, i : D → X)
be as in Definition 29.1. Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Remark 29.7. For any (k + 1)-cycle α on X we have (i′)∗f∗α = g∗i∗α in
CHk+r(D′) (this makes sense as f∗ is defined on the level of cycles).

Proof. Suppose α = [W ] for some integral closed subscheme W ⊂ X. Let W ′ =
f−1(W ) ⊂ X ′. In case W ̸⊂ D, then W ′ ̸⊂ D′ and we see that

W ′ ∩D′ = g−1(W ∩D)
as closed subschemes of D′. Hence the equality holds as cycles, see Lemma 14.4.
In case W ⊂ D, then W ′ ⊂ D′ and W ′ = g−1(W ) with [W ′]k+1+r = g∗[W ] and
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equality holds in CHk+r(D′) by Lemma 26.2. By Remark 19.6 the result follows
for general α′. □

30. Gysin homomorphisms and rational equivalence

02TK In this section we use the key formula to show the Gysin homomorphism factor
through rational equivalence. We also prove an important commutativity property.

Lemma 30.1.02TM Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let X be integral and n = dimδ(X). Let i : D → X be an effective Cartier
divisor. Let N be an invertible OX-module and let t be a nonzero meromorphic
section of N . Then i∗divN (t) = c1(N|D) ∩ [D]n−1 in CHn−2(D).

Proof. Write divN (t) =
∑

ordZi,N (t)[Zi] for some integral closed subschemes Zi ⊂
X of δ-dimension n− 1. We may assume that the family {Zi} is locally finite, that
t ∈ Γ(U,N|U ) is a generator where U = X \

⋃
Zi, and that every irreducible

component of D is one of the Zi, see Divisors, Lemmas 26.1, 26.4, and 27.2.

Set L = OX(D). Denote s ∈ Γ(X,OX(D)) = Γ(X,L) the canonical section. We
will apply the discussion of Section 27 to our current situation. For each i let ξi ∈ Zi
be its generic point. Let Bi = OX,ξi . For each i we pick generators si ∈ Lξi and
ti ∈ Nξi over Bi but we insist that we pick si = s if Zi ̸⊂ D. Write s = fisi and
t = giti with fi, gi ∈ Bi. Then ordZi,N (t) = ordBi(gi). On the other hand, we have
fi ∈ Bi and

[D]n−1 =
∑

ordBi(fi)[Zi]

because of our choices of si. We claim that

i∗divN (t) =
∑

ordBi(gi)divL|Zi (si|Zi)

as cycles. More precisely, the right hand side is a cycle representing the left
hand side. Namely, this is clear by our formula for divN (t) and the fact that
divL|Zi (si|Zi) = [Z(si|Zi)]n−2 = [Zi ∩ D]n−2 when Zi ̸⊂ D because in that case
si|Zi = s|Zi is a regular section, see Lemma 24.2. Similarly,

c1(N ) ∩ [D]n−1 =
∑

ordBi(fi)divN |Zi (ti|Zi)

The key formula (Lemma 27.1) gives the equality∑ (
ordBi(fi)divN |Zi (ti|Zi)− ordBi(gi)divL|Zi (si|Zi)

)
=

∑
divZi(∂Bi(fi, gi))

of cycles. If Zi ̸⊂ D, then fi = 1 and hence divZi(∂Bi(fi, gi)) = 0. Thus we
get a rational equivalence between our specific cycles representing i∗divN (t) and
c1(N ) ∩ [D]n−1 on D. This finishes the proof. □

Lemma 30.2.02TO Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let (L, s, i : D → X) be as in Definition 29.1. The Gysin homomorphism
factors through rational equivalence to give a map i∗ : CHk+1(X)→ CHk(D).

Proof. Let α ∈ Zk+1(X) and assume that α ∼rat 0. This means there exists a
locally finite collection of integral closed subschemes Wj ⊂ X of δ-dimension k + 2
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and fj ∈ R(Wj)∗ such that α =
∑
ij,∗divWj

(fj). Set X ′ =
∐
Wi and consider the

diagram
D′

q

��

i′
// X ′

p

��
D

i // X

of Remark 29.7. Since X ′ → X is proper we see that i∗p∗ = q∗(i′)∗ by Lemma 29.8.
As we know that q∗ factors through rational equivalence (Lemma 20.3), it suffices
to prove the result for α′ =

∑
divWj (fj) on X ′. Clearly this reduces us to the case

where X is integral and α = div(f) for some f ∈ R(X)∗.
Assume X is integral and α = div(f) for some f ∈ R(X)∗. If X = D, then we see
that i∗α is equal to c1(L)∩α. This is rationally equivalent to zero by Lemma 28.2.
If D ̸= X, then we see that i∗divX(f) is equal to c1(OD)∩ [D]n−1 in CHn−2(D) by
Lemma 30.1. Of course capping with c1(OD) is the zero map (Lemma 25.2). □

Lemma 30.3.0F95 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let (L, s, i : D → X) be as in Definition 29.1. Then i∗i∗ : CHk(D)→ CHk−1(D)
sends α to c1(L|D) ∩ α.

Proof. This is immediate from the definition of i∗ on cycles and the definition of
i∗ given in Definition 29.1. □

Lemma 30.4.0B72 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let (L, s, i : D → X) be a triple as in Definition 29.1. Let N be an invertible
OX-module. Then i∗(c1(N )∩α) = c1(i∗N )∩i∗α in CHk−2(D) for all α ∈ CHk(X).

Proof. With exactly the same proof as in Lemma 30.2 this follows from Lemmas
26.4, 28.3, and 30.1. □

Lemma 30.5.0B73 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let (L, s, i : D → X) and (L′, s′, i′ : D′ → X) be two triples as in Definition
29.1. Then the diagram

CHk(X)
i∗

//

(i′)∗

��

CHk−1(D)

j∗

��
CHk−1(D′)

(j′)∗
// CHk−2(D ∩D′)

commutes where each of the maps is a gysin map.

Proof. Denote j : D ∩D′ → D and j′ : D ∩D′ → D′ the closed immersions cor-
responding to (L|D′ , s|D′ and (L′

D, s|D). We have to show that (j′)∗i∗α = j∗(i′)∗α
for all α ∈ CHk(X). Let W ⊂ X be an integral closed subscheme of dimension k.
Let us prove the equality in case α = [W ]. We will deduce it from the key formula.
We let σ be a nonzero meromorphic section of L|W which we require to be equal
to s|W if W ̸⊂ D. We let σ′ be a nonzero meromorphic section of L′|W which we
require to be equal to s′|W if W ̸⊂ D′. Write

divL|W (σ) =
∑

ordZi,L|W (σ)[Zi] =
∑

ni[Zi]

and similarly

divL′|W (σ′) =
∑

ordZi,L′|W (σ′)[Zi] =
∑

n′
i[Zi]
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as in the discussion in Section 27. Then we see that Zi ⊂ D if ni ̸= 0 and Z ′
i ⊂ D′

if n′
i ̸= 0. For each i, let ξi ∈ Zi be the generic point. As in Section 27 we choose

for each i an element σi ∈ Lξi , resp. σ′
i ∈ L′

ξi
which generates over Bi = OW,ξi and

which is equal to the image of s, resp. s′ if Zi ̸⊂ D, resp. Zi ̸⊂ D′. Write σ = fiσi
and σ′ = f ′

iσ
′
i so that ni = ordBi(fi) and n′

i = ordBi(f ′
i). From our definitions it

follows that
(j′)∗i∗[W ] =

∑
ordBi(fi)divL′|Zi (σ

′
i|Zi)

as cycles and

j∗(i′)∗[W ] =
∑

ordBi(f ′
i)divL|Zi (σi|Zi)

The key formula (Lemma 27.1) now gives the equality∑ (
ordBi(fi)divL′|Zi (σ

′
i|Zi)− ordBi(f ′

i)divL|Zi (σi|Zi)
)

=
∑

divZi(∂Bi(fi, f ′
i))

of cycles. Note that divZi(∂Bi(fi, f ′
i)) = 0 if Zi ̸⊂ D∩D′ because in this case either

fi = 1 or f ′
i = 1. Thus we get a rational equivalence between our specific cycles

representing (j′)∗i∗[W ] and j∗(i′)∗[W ] on D ∩D′ ∩W . By Remark 19.6 the result
follows for general α. □

31. Relative effective Cartier divisors

02TP Relative effective Cartier divisors are defined and studied in Divisors, Section 18.
To develop the basic results on Chern classes of vector bundles we only need the
case where both the ambient scheme and the effective Cartier divisor are flat over
the base.

Lemma 31.1.02TR Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let p : X → Y be a flat morphism of relative dimension r. Let i : D → X
be a relative effective Cartier divisor (Divisors, Definition 18.2). Let L = OX(D).
For any α ∈ CHk+1(Y ) we have

i∗p∗α = (p|D)∗α

in CHk+r(D) and
c1(L) ∩ p∗α = i∗((p|D)∗α)

in CHk+r(X).

Proof. Let W ⊂ Y be an integral closed subscheme of δ-dimension k + 1. By
Divisors, Lemma 18.1 we see that D ∩ p−1W is an effective Cartier divisor on
p−1W . By Lemma 29.5 we get the first equality in

i∗[p−1W ]k+r+1 = [D ∩ p−1W ]k+r = [(p|D)−1(W )]k+r.

and the second because D∩ p−1(W ) = (p|D)−1(W ) as schemes. Since by definition
p∗[W ] = [p−1W ]k+r+1 we see that i∗p∗[W ] = (p|D)∗[W ] as cycles. If α =

∑
mj [Wj ]

is a general k + 1 cycle, then we get i∗α =
∑
mji

∗p∗[Wj ] =
∑
mj(p|D)∗[Wj ] as

cycles. This proves then first equality. To deduce the second from the first apply
Lemma 29.4. □

https://stacks.math.columbia.edu/tag/02TR
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32. Affine bundles

02TS For an affine bundle the pullback map is surjective on Chow groups.
Lemma 32.1.02TT Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a flat morphism of relative dimension r. Assume that
for every y ∈ Y , there exists an open neighbourhood U ⊂ Y such that f |f−1(U) :
f−1(U) → U is identified with the morphism U ×Ar → U . Then f∗ : CHk(Y ) →
CHk+r(X) is surjective for all k ∈ Z.
Proof. Let α ∈ CHk+r(X). Write α =

∑
mj [Wj ] with mj ̸= 0 and Wj pairwise

distinct integral closed subschemes of δ-dimension k + r. Then the family {Wj} is
locally finite in X. For any quasi-compact open V ⊂ Y we see that f−1(V ) ∩Wj

is nonempty only for finitely many j. Hence the collection Zj = f(Wj) of closures
of images is a locally finite collection of integral closed subschemes of Y .
Consider the fibre product diagrams

f−1(Zj) //

fj

��

X

f

��
Zj // Y

Suppose that [Wj ] ∈ Zk+r(f−1(Zj)) is rationally equivalent to f∗
j βj for some k-cycle

βj ∈ CHk(Zj). Then β =
∑
mjβj will be a k-cycle on Y and f∗β =

∑
mjf

∗
j βj

will be rationally equivalent to α (see Remark 19.6). This reduces us to the case Y
integral, and α = [W ] for some integral closed subscheme of X dominating Y . In
particular we may assume that d = dimδ(Y ) <∞.
Hence we can use induction on d = dimδ(Y ). If d < k, then CHk+r(X) = 0 and the
lemma holds. By assumption there exists a dense open V ⊂ Y such that f−1(V ) ∼=
V × Ar as schemes over V . Suppose that we can show that α|f−1(V ) = f∗β for
some β ∈ Zk(V ). By Lemma 14.2 we see that β = β′|V for some β′ ∈ Zk(Y ).
By the exact sequence CHk(f−1(Y \ V )) → CHk(X) → CHk(f−1(V )) of Lemma
19.3 we see that α − f∗β′ comes from a cycle α′ ∈ CHk+r(f−1(Y \ V )). Since
dimδ(Y \ V ) < d we win by induction on d.
Thus we may assume that X = Y ×Ar. In this case we can factor f as

X = Y ×Ar → Y ×Ar−1 → . . .→ Y ×A1 → Y.

Hence it suffices to do the case r = 1. By the argument in the second paragraph of
the proof we are reduced to the case α = [W ], Y integral, and W → Y dominant.
Again we can do induction on d = dimδ(Y ). If W = Y ×A1, then [W ] = f∗[Y ].
Lastly, W ⊂ Y × A1 is a proper inclusion, then W → Y induces a finite field
extension R(W )/R(Y ). Let P (T ) ∈ R(Y )[T ] be the monic irreducible polynomial
such that the generic fibre of W → Y is cut out by P in A1

R(Y ). Let V ⊂ Y be a
nonempty open such that P ∈ Γ(V,OY )[T ], and such that W ∩ f−1(V ) is still cut
out by P . Then we see that α|f−1(V ) ∼rat 0 and hence α ∼rat α′ for some cycle α′

on (Y \ V )×A1. By induction on the dimension we win. □

Lemma 32.2.0B74 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L be an invertible OX-module. Let

p : L = Spec(Sym∗(L)) −→ X

https://stacks.math.columbia.edu/tag/02TT
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be the associated vector bundle over X. Then p∗ : CHk(X) → CHk+1(L) is an
isomorphism for all k.

Proof. For surjectivity see Lemma 32.1. Let o : X → L be the zero section of
L→ X, i.e., the morphism corresponding to the surjection Sym∗(L)→ OX which
maps L⊗n to zero for all n > 0. Then p ◦ o = idX and o(X) is an effective Cartier
divisor on L. Hence by Lemma 31.1 we see that o∗ ◦ p∗ = id and we conclude that
p∗ is injective too. □

Remark 32.3.02TU We will see later (Lemma 36.3) that if X is a vector bundle of
rank r over Y then the pullback map CHk(Y ) → CHk+r(X) is an isomorphism.
This is true whenever X → Y satisfies the assumptions of Lemma 32.1, see [Tot14,
Lemma 2.2]. We will sketch a proof in Remark 32.8 using higher chow groups.

Lemma 32.4.0F96 In the situation of Lemma 32.2 denote o : X → L the zero section
(see proof of the lemma). Then we have

(1) o(X) is the zero scheme of a regular global section of p∗L⊗−1,
(2) o∗ : CHk(X)→ CHk(L) as o is a closed immersion,
(3) o∗ : CHk+1(L)→ CHk(X) as o(X) is an effective Cartier divisor,
(4) o∗p∗ : CHk(X)→ CHk(X) is the identity map,
(5) o∗α = −p∗(c1(L) ∩ α) for any α ∈ CHk(X), and
(6) o∗o∗ : CHk(X)→ CHk−1(X) is equal to the map α 7→ −c1(L) ∩ α.

Proof. Since p∗OL = Sym∗(L) we have p∗(p∗L⊗−1) = Sym∗(L)⊗OX
L⊗−1 by the

projection formula (Cohomology, Lemma 54.2) and the section mentioned in (1)
is the canonical trivialization OX → L ⊗OX

L⊗−1. We omit the proof that the
vanishing locus of this section is precisely o(X). This proves (1).
Parts (2), (3), and (4) we’ve seen in the course of the proof of Lemma 32.2. Of
course (4) is the first formula in Lemma 31.1.
Part (5) follows from the second formula in Lemma 31.1, additivity of capping with
c1 (Lemma 25.2), and the fact that capping with c1 commutes with flat pullback
(Lemma 26.2).
Part (6) follows from Lemma 30.3 and the fact that o∗p∗L = L. □

Lemma 32.5.0F97 Let Y be a scheme. Let Li, i = 1, 2 be invertible OY -modules. Let
s be a global section of L1 ⊗OX

L2. Denote i : D → X the zero scheme of s. Then
there exists a commutative diagram

D1
i1
//

p1

��

L

p

��

D2
i2

oo

p2

��
D

i // Y D
ioo

and sections si of p∗Li such that the following hold:
(1) p∗s = s1 ⊗ s2,
(2) p is of finite type and flat of relative dimension 1,
(3) Di is the zero scheme of si,
(4) Di

∼= Spec(Sym∗(L⊗−1
1−i )|D)) over D for i = 1, 2,

(5) p−1D = D1 ∪D2 (scheme theoretic union),
(6) D1 ∩D2 (scheme theoretic intersection) maps isomorphically to D, and
(7) D1 ∩D2 → Di is the zero section of the line bundle Di → D for i = 1, 2.
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Moreover, the formation of this diagram and the sections si commutes with arbitrary
base change.

Proof. Let p : X → Y be the relative spectrum of the quasi-coherent sheaf of
OY -algebras

A =
(⊕

a1,a2≥0
L⊗−a1

1 ⊗OY
L⊗−a2

2

)
/J

where J is the ideal generated by local sections of the form st − t for t a local
section of any summand L⊗−a1

1 ⊗L⊗−a2
2 with a1, a2 > 0. The sections si viewed as

maps p∗L⊗−1
i → OX are defined as the adjoints of the maps L⊗−1

i → A = p∗OX .
For any y ∈ Y we can choose an affine open V ⊂ Y , say V = Spec(B), containing
y and trivializations zi : OV → L⊗−1

i |V . Observe that f = s(z1z2) ∈ A cuts out
the closed subscheme D. Then clearly

p−1(V ) = Spec(B[z1, z2]/(z1z2 − f))

Since Di is cut out by zi everything is clear. □

Lemma 32.6.0F98 In the situation of Lemma 32.5 assume Y is locally of finite type
over (S, δ) as in Situation 7.1. Then we have i∗1p∗α = p∗

1i
∗α in CHk(D1) for all

α ∈ CHk(Y ).

Proof. Let W ⊂ Y be an integral closed subscheme of δ-dimension k. We distin-
guish two cases.

Assume W ⊂ D. Then i∗[W ] = c1(L1) ∩ [W ] + c1(L2) ∩ [W ] in CHk−1(D) by
our definition of gysin homomorphisms and the additivity of Lemma 25.2. Hence
p∗

1i
∗[W ] = p∗

1(c1(L1) ∩ [W ]) + p∗
1(c1(L2) ∩ [W ]). On the other hand, we have

p∗[W ] = [p−1(W )]k+1 by construction of flat pullback. And p−1(W ) = W1 ∪W2
(scheme theoretically) where Wi = p−1

i (W ) is a line bundle over W by the lemma
(since formation of the diagram commutes with base change). Then [p−1(W )]k+1 =
[W1] + [W2] as Wi are integral closed subschemes of L of δ-dimension k+ 1. Hence

i∗1p
∗[W ] = i∗1[p−1(W )]k+1

= i∗1([W1] + [W2])
= c1(p∗

1L1) ∩ [W1] + [W1 ∩W2]k
= c1(p∗

1L1) ∩ p∗
1[W ] + [W1 ∩W2]k

= p∗
1(c1(L1) ∩ [W ]) + [W1 ∩W2]k

by construction of gysin homomorphisms, the definition of flat pullback (for the
second equality), and compatibility of c1 ∩ − with flat pullback (Lemma 26.2).
Since W1 ∩W2 is the zero section of the line bundle W1 →W we see from Lemma
32.4 that [W1 ∩W2]k = p∗

1(c1(L2) ∩ [W ]). Note that here we use the fact that D1
is the line bundle which is the relative spectrum of the inverse of L2. Thus we get
the same thing as before.

Assume W ̸⊂ D. In this case, both i∗1p
∗[W ] and p∗

1i
∗[W ] are represented by the

k − 1 cycle associated to the scheme theoretic inverse image of W in D1. □

Lemma 32.7.0F99 In Situation 7.1 let X be a scheme locally of finite type over S.
Let (L, s, i : D → X) be a triple as in Definition 29.1. There exists a commutative
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diagram
D′

i′
//

p

��

X ′

g

��
D

i // X

such that
(1) p and g are of finite type and flat of relative dimension 1,
(2) p∗ : CHk(D)→ CHk+1(D′) is injective for all k,
(3) D′ ⊂ X ′ is the zero scheme of a global section s′ ∈ Γ(X ′,OX′),
(4) p∗i∗ = (i′)∗g∗ as maps CHk(X)→ CHk(D′).

Moreover, these properties remain true after arbitrary base change by morphisms
Y → X which are locally of finite type.

Proof. Observe that (i′)∗ is defined because we have the triple (OX′ , s′, i′ : D′ →
X ′) as in Definition 29.1. Thus the statement makes sense.

Set L1 = OX , L2 = L and apply Lemma 32.5 with the section s of L = L1⊗OX
L2.

Take D′ = D1. The results now follow from the lemma, from Lemma 32.6 and
injectivity by Lemma 32.2. □

Remark 32.8.0GUB Let (S, δ) be as in Situation 7.1. Let Y be locally of finite type
over S. Let r ≥ 0. Let f : X → Y be a morphism of schemes. Assume every y ∈ Y
is contained in an open V ⊂ Y such that f−1(V ) ∼= V × Ar as schemes over V .
In this remark we sketch a proof of the fact that f∗ : CHk(Y ) → CHk+r(X) is an
isomorphism. First, by Lemma 32.1 the map is surjective. Let α ∈ CHk(Y ) with
f∗α = 0. We will prove that α = 0.

Step 1. We may assume that dimδ(Y ) < ∞. (This is immediate in all cases in
practice so we suggest the reader skip this step.) Namely, any rational equivalence
witnessing that f∗α = 0 on X, will use a locally finite collection of integral closed
subschemes of dimension k + r + 1. Taking the union of the closures of the images
of these in Y we get a closed subscheme Y ′ ⊂ Y of dimδ(Y ′) ≤ k+ r+ 1 such that
α is the image of some α′ ∈ CHk(Y ′) and such that (f ′)∗α = 0 where f ′ is the base
change of f to Y ′.

Step 2. Assume d = dimδ(Y ) < ∞. Then we can use induction on d. If d < k,
then α = 0 and we are done; this is the base case of the induction. In general, our
assumption on f shows we can choose a dense open V ⊂ Y such that U = f−1(V ) =
Ar
V . Denote Y ′ ⊂ Y the complement of V as a reduced closed subscheme and set

X ′ = f−1(Y ′). Consider

CHM
k+r(U, 1) // CHk+r(X ′) // CHk+r(X) // CHk+r(U) // 0

CHM
k (V, 1) //

OO

CHk(Y ′) //

OO

CHk(Y ) //

OO

CHk(V ) //

OO

0

Here we use the first higher Chow groups of V and U and the six term exact
sequences constructed in Remark 27.3, as well as flat pullback for these higher chow
groups and compatibility of flat pullback with these six term exact sequences. Since
U = Ar

V the vertical map on the right is an isomorphism. The map CHk(Y ′) →

https://stacks.math.columbia.edu/tag/0GUB
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CHk+r(X ′) is bijective by induction on d. Hence to finish the argument is suffices
to show that

CHM
k (V, 1) −→ CHM

k+r(U, 1)

is surjective. Arguing as in the proof of Lemma 32.1 this reduces to Step 3 below.

Step 3. Let F be a field. Then CHM
0 (A1

F , 1) = 0. (In the proof of the lemma cited
above we proved analogously that CH0(A1

F ) = 0.) We have

CHM
0 (A1

F , 1) = Coker
(
∂ : KM

2 (F (T )) −→
⊕

p⊂F [T ] maximal
κ(p)∗

)
The classical argument for the vanishing of the cokernel is to show by induction
on the degree of κ(p)/F that the summand corresponding to p is in the image. If
p is generated by the irreducible monic polynomial P (T ) ∈ F [T ] and if u ∈ κ(x)∗

is the residue class of some Q(T ) ∈ F [T ] with deg(Q) < deg(P ) then one shows
that ∂(Q,P ) produces the element u at p and perhaps some other units at primes
dividing Q which have lower degree. This finishes the sketch of the proof.

33. Bivariant intersection theory

0B75 In order to intelligently talk about higher Chern classes of vector bundles we intro-
duce bivariant chow classes as in [Ful98]. Our definition differs from [Ful98] in two
respects: (1) we work in a different setting, and (2) we only require our bivariant
classes commute with the gysin homomorphisms for zero schemes of sections of
invertible modules (Section 29). We will see later, in Lemma 54.8, that our bivari-
ant classes commute with all higher codimension gysin homomorphisms and hence
satisfy all properties required of them in [Ful98]; see also [Ful98, Theorem 17.1].

Definition 33.1.0B76 Similar to [Ful98,
Definition 17.1]

Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism
of schemes locally of finite type over S. Let p ∈ Z. A bivariant class c of degree
p for f is given by a rule which assigns to every locally of finite type morphism
Y ′ → Y and every k a map

c ∩ − : CHk(Y ′) −→ CHk−p(X ′)

where X ′ = Y ′ ×Y X, satisfying the following conditions
(1) if Y ′′ → Y ′ is a proper, then c ∩ (Y ′′ → Y ′)∗α

′′ = (X ′′ → X ′)∗(c ∩ α′′) for
all α′′ on Y ′′ where X ′′ = Y ′′ ×Y X,

(2) if Y ′′ → Y ′ is flat locally of finite type of fixed relative dimension, then
c ∩ (Y ′′ → Y ′)∗α′ = (X ′′ → X ′)∗(c ∩ α′) for all α′ on Y ′, and

(3) if (L′, s′, i′ : D′ → Y ′) is as in Definition 29.1 with pullback (N ′, t′, j′ :
E′ → X ′) to X ′, then we have c ∩ (i′)∗α′ = (j′)∗(c ∩ α′) for all α′ on Y ′.

The collection of all bivariant classes of degree p for f is denoted Ap(X → Y ).

Let (S, δ) be as in Situation 7.1. Let X → Y and Y → Z be morphisms of schemes
locally of finite type over S. Let p ∈ Z. It is clear that Ap(X → Y ) is an abelian
group. Moreover, it is clear that we have a bilinear composition

Ap(X → Y )×Aq(Y → Z)→ Ap+q(X → Z)

which is associative.
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Lemma 33.2.0B78 Let (S, δ) be as in Situation 7.1. Let f : X → Y be a flat morphism
of relative dimension r between schemes locally of finite type over S. Then the rule
that to Y ′ → Y assigns (f ′)∗ : CHk(Y ′) → CHk+r(X ′) where X ′ = X ×Y Y ′ is a
bivariant class of degree −r.

Proof. This follows from Lemmas 20.2, 14.3, 15.1, and 29.9. □

Lemma 33.3.0B79 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let (L, s, i : D → X) be a triple as in Definition 29.1. Then the rule that
to f : X ′ → X assigns (i′)∗ : CHk(X ′) → CHk−1(D′) where D′ = D ×X X ′ is a
bivariant class of degree 1.

Proof. This follows from Lemmas 30.2, 29.8, 29.9, and 30.5. □

Lemma 33.4.0EPK Let (S, δ) be as in Situation 7.1. Let f : X → Y and g : Y → Z
be morphisms of schemes locally of finite type over S. Let c ∈ Ap(X → Z) and
assume f is proper. Then the rule that to Z ′ → Z assigns α 7−→ f ′

∗(c ∩ α) is a
bivariant class denoted f∗ ◦ c ∈ Ap(Y → Z).

Proof. This follows from Lemmas 12.2, 15.1, and 29.8. □

Remark 33.5.0F9Z Let (S, δ) be as in Situation 7.1. Let X → Y and Y ′ → Y be
morphisms of schemes locally of finite type over S. Let X ′ = Y ′×Y X. Then there
is an obvious restriction map

Ap(X → Y ) −→ Ap(X ′ → Y ′), c 7−→ res(c)
obtained by viewing a scheme Y ′′ locally of finite type over Y ′ as a scheme locally
of finite type over Y and settting res(c)∩α′′ = c∩α′′ for any α′′ ∈ CHk(Y ′′). This
restriction operation is compatible with compositions in an obvious manner.

Remark 33.6.0FA2 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. For i = 1, 2 let Zi → X be a morphism of schemes locally of finite type.
Let ci ∈ Api(Zi → X), i = 1, 2 be bivariant classes. For any α ∈ CHk(X) we can
ask whether

c1 ∩ c2 ∩ α = c2 ∩ c1 ∩ α
in CHk−p1−p2(Z1 ×X Z2). If this is true and if it holds after any base change by
X ′ → X locally of finite type, then we say c1 and c2 commute. Of course this is
the same thing as saying that

res(c1) ◦ c2 = res(c2) ◦ c1

in Ap1+p2(Z1 ×X Z2 → X). Here res(c1) ∈ Ap1(Z1 ×X Z2 → Z2) is the restriction
of c1 as in Remark 33.5; similarly for res(c2).

Example 33.7.0FA3 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let (L, s, i : D → X) a triple as in Definition 29.1. Let Z → X be a
morphism of schemes locally of finite type and let c ∈ Ap(Z → X) be a bivariant
class. Then the bivariant gysin class c′ ∈ A1(D → X) of Lemma 33.3 commutes
with c in the sense of Remark 33.6. Namely, this is a restatement of condition (3)
of Definition 33.1.

Remark 33.8.0FDU There is a more general type of bivariant class that doesn’t seem
to be considered in the literature. Namely, suppose we are given a diagram

X −→ Z ←− Y
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of schemes locally of finite type over (S, δ) as in Situation 7.1. Let p ∈ Z. Then we
can consider a rule c which assigns to every Z ′ → Z locally of finite type maps

c ∩ − : CHk(Y ′) −→ CHk−p(X ′)

for all k ∈ Z where X ′ = X ×Z Z ′ and Y ′ = Z ′ ×Z Y compatible with
(1) proper pushforward if given Z ′′ → Z ′ proper,
(2) flat pullback if given Z ′′ → Z ′ flat of fixed relative dimension, and
(3) gysin maps if given D′ ⊂ Z ′ as in Definition 29.1.

We omit the detailed formulations. Suppose we denote the collection of all such
operations Ap(X → Z ← Y ). A simple example of the utility of this concept
is when we have a proper morphism f : X2 → X1. Then f∗ isn’t a bivariant
operation in the sense of Definition 33.1 but it is in the above generalized sense,
namely, f∗ ∈ A0(X1 → X1 ← X2).

34. Chow cohomology and the first Chern class

0FDV We will be most interested in Ap(X) = Ap(X → X), which will always mean the
bivariant cohomology classes for idX . Namely, that is where Chern classes will live.

Definition 34.1.0B7E Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. The Chow cohomology of X is the graded Z-algebra A∗(X) whose degree p
component is Ap(X → X).

Warning: It is not clear that the Z-algebra structure on A∗(X) is commutative,
but we will see that Chern classes live in its center.

Remark 34.2.0B7F Let (S, δ) be as in Situation 7.1. Let f : Y ′ → Y be a morphism
of schemes locally of finite type over S. As a special case of Remark 33.5 there is a
canonical Z-algebra map res : A∗(Y ) → A∗(Y ′). This map is often denoted f∗ in
the literature.

Lemma 34.3.0B77 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L be an invertible OX-module. Then the rule that to f : X ′ → X assigns
c1(f∗L) ∩ − : CHk(X ′)→ CHk−1(X ′) is a bivariant class of degree 1.

Proof. This follows from Lemmas 28.2, 26.4, 26.2, and 30.4. □

The lemma above finally allows us to make the following definition.

Definition 34.4.0FDW Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let L be an invertible OX -module. The first Chern class c1(L) ∈ A1(X)
of L is the bivariant class of Lemma 34.3.

For finite locally free modules we construct the Chern classes in Section 38. Let us
prove that c1(L) is in the center of A∗(X).

Lemma 34.5.0B7B Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L be an invertible OX-module. Then

(1) c1(L) ∈ A1(X) is in the center of A∗(X) and
(2) if f : X ′ → X is locally of finite type and c ∈ A∗(X ′ → X), then c◦c1(L) =

c1(f∗L) ◦ c.
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Proof. Of course (2) implies (1). Let p : L → X be as in Lemma 32.2 and let
o : X → L be the zero section. Denote p′ : L′ → X ′ and o′ : X ′ → L′ their base
changes. By Lemma 32.4 we have

p∗(c1(L) ∩ α) = −o∗α and (p′)∗(c1(f∗L) ∩ α′) = −o′
∗α

′

Since c is a bivariant class we have
(p′)∗(c ∩ c1(L) ∩ α) = c ∩ p∗(c1(L) ∩ α)

= −c ∩ o∗α

= −o′
∗(c ∩ α)

= (p′)∗(c1(f∗L) ∩ c ∩ α)
Since (p′)∗ is injective by one of the lemmas cited above we obtain c ∩ c1(L) ∩ α =
c1(f∗L)∩ c∩α. The same is true after any base change by Y → X locally of finite
type and hence we have the equality of bivariant classes stated in (2). □

Lemma 34.6.0FDX Let (S, δ) be as in Situation 7.1. Let X be a finite type scheme
over S which has an ample invertible sheaf. Assume d = dim(X) < ∞ (here
we really mean dimension and not δ-dimension). Then for any invertible sheaves
L1, . . . ,Ld+1 on X we have c1(L1) ◦ . . . ◦ c1(Ld+1) = 0 in Ad+1(X).

Proof. We prove this by induction on d. The base case d = 0 is true because
in this case X is a finite set of closed points and hence every invertible module is
trivial. Assume d > 0. By Divisors, Lemma 15.12 we can write Ld+1 ∼= OX(D) ⊗
OX(D′)⊗−1 for some effective Cartier divisors D,D′ ⊂ X. Then c1(Ld+1) is the
difference of c1(OX(D)) and c1(OX(D′)) and hence we may assume Ld+1 = OX(D)
for some effective Cartier divisor.
Denote i : D → X the inclusion morphism and denote i∗ ∈ A1(D → X) the
bivariant class given by the gysin hommomorphism as in Lemma 33.3. We have
i∗ ◦ i∗ = c1(Ld+1) in A1(X) by Lemma 29.4 (and Lemma 33.4 to make sense of
the left hand side). Since c1(Li) commutes with both i∗ and i∗ (by definition of
bivariant classes) we conclude that
c1(L1)◦ . . .◦c1(Ld+1) = i∗◦c1(L1)◦ . . .◦c1(Ld)◦i∗ = i∗◦c1(L1|D)◦ . . .◦c1(Ld|D)◦i∗

Thus we conclude by induction on d. Namely, we have dim(D) < d as none of the
generic points of X are in D. □

Remark 34.7.0FA0 Let (S, δ) be as in Situation 7.1. Let Z → X be a closed immersion
of schemes locally of finite type over S and let p ≥ 0. In this setting we define

A(p)(Z → X) =
∏

i≤p−1
Ai(X)×

∏
i≥p

Ai(Z → X).

Then A(p)(Z → X) canonically comes equipped with the structure of a graded
algebra. In fact, more generally there is a multiplication

A(p)(Z → X)×A(q)(Z → X) −→ A(max(p,q))(Z → X)
In order to define these we define maps

Ai(Z → X)×Aj(X)→ Ai+j(Z → X)
Ai(X)×Aj(Z → X)→ Ai+j(Z → X)

Ai(Z → X)×Aj(Z → X)→ Ai+j(Z → X)

https://stacks.math.columbia.edu/tag/0FDX
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For the first we use composition of bivariant classes. For the second we use re-
striction Ai(X) → Ai(Z) (Remark 33.5) and composition Ai(Z) × Aj(Z → X) →
Ai+j(Z → X). For the third, we send (c, c′) to res(c) ◦ c′ where res : Ai(Z →
X) → Ai(Z) is the restriction map (see Remark 33.5). We omit the verification
that these multiplications are associative in a suitable sense.

Remark 34.8.0FA1 Let (S, δ) be as in Situation 7.1. Let Z → X be a closed immersion
of schemes locally of finite type over S. Denote res : Ap(Z → X) → Ap(Z) the
restriction map of Remark 33.5. For c ∈ Ap(Z → X) we have res(c) ∩ α = c ∩ i∗α
for α ∈ CH∗(Z). Namely res(c) ∩ α = c ∩ α and compatibility of c with proper
pushforward gives (Z → Z)∗(c ∩ α) = c ∩ (Z → X)∗α.

35. Lemmas on bivariant classes

0FDY In this section we prove some elementary results on bivariant classes. Here is a
criterion to see that an operation passes through rational equivalence.

Lemma 35.1.0B7A Very weak form of
[Ful98, Theorem
17.1]

Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism of
schemes locally of finite type over S. Let p ∈ Z. Suppose given a rule which assigns
to every locally of finite type morphism Y ′ → Y and every k a map

c ∩ − : Zk(Y ′) −→ CHk−p(X ′)

where Y ′ = X ′ ×X Y , satisfying condition (3) of Definition 33.1 whenever L′|D′ ∼=
OD′ . Then c ∩ − factors through rational equivalence.

Proof. The statement makes sense because given a triple (L, s, i : D → X) as
in Definition 29.1 such that L|D ∼= OD, then the operation i∗ is defined on the
level of cycles, see Remark 29.6. Let α ∈ Zk(X ′) be a cycle which is rationally
equivalent to zero. We have to show that c ∩ α = 0. By Lemma 21.1 there exists
a cycle β ∈ Zk+1(X ′ ×P1) such that α = i∗0β − i∗∞β where i0, i∞ : X ′ → X ′ ×P1

are the closed immersions of X ′ over 0,∞. Since these are examples of effective
Cartier divisors with trivial normal bundles, we see that c ∩ i∗0β = j∗

0 (c ∩ β) and
c ∩ i∗∞β = j∗

∞(c ∩ β) where j0, j∞ : Y ′ → Y ′ ×P1 are closed immersions as before.
Since j∗

0 (c ∩ β) ∼rat j∗
∞(c ∩ β) (follows from Lemma 21.1) we conclude. □

Lemma 35.2.0F9A Weak form of
[Ful98, Theorem
17.1]

Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism of
schemes locally of finite type over S. Let p ∈ Z. Suppose given a rule which assigns
to every locally of finite type morphism Y ′ → Y and every k a map

c ∩ − : CHk(Y ′) −→ CHk−p(X ′)

where Y ′ = X ′×X Y , satisfying conditions (1), (2) of Definition 33.1 and condition
(3) whenever L′|D′ ∼= OD′ . Then c ∩ − is a bivariant class.

Proof. Let Y ′ → Y be a morphism of schemes which is locally of finite type. Let
(L′, s′, i′ : D′ → Y ′) be as in Definition 29.1 with pullback (N ′, t′, j′ : E′ → X ′) to
X ′. We have to show that c ∩ (i′)∗α′ = (j′)∗(c ∩ α′) for all α′ ∈ CHk(Y ′).

Denote g : Y ′′ → Y ′ the smooth morphism of relative dimension 1 with i′′ : D′′ →
Y ′′ and p : D′′ → D′ constructed in Lemma 32.7. (Warning: D′′ isn’t the full
inverse image of D′.) Denote f : X ′′ → X ′ and E′′ ⊂ X ′′ their base changes by
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X ′ → Y ′. Picture
X ′′ //

h
��

Y ′′

g

��

E′′ //

q

��

j′′
==

D′′

p

��

i′′
==

X ′ // Y ′

E′ //

j′
==

D′

i′
==

By the properties given in the lemma we know that β′ = (i′)∗α′ is the unique
element of CHk−1(D′) such that p∗β′ = (i′′)∗g∗α′. Similarly, we know that γ′ =
(j′)∗(c∩α′) is the unique element of CHk−1−p(E′) such that q∗γ′ = (j′′)∗h∗(c∩α′).
Since we know that

(j′′)∗h∗(c ∩ α′) = (j′′)∗(c ∩ g∗α′) = c ∩ (i′′)∗g∗α′

by our assuptions on c; note that the modified version of (3) assumed in the state-
ment of the lemma applies to i′′ and its base change j′′. We similarly know that

q∗(c ∩ β′) = c ∩ p∗β′

We conclude that γ′ = c ∩ β′ by the uniqueness pointed out above. □

Here a criterion for when a bivariant class is zero.

Lemma 35.3.02UC Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism of
schemes locally of finite type over S. Let c ∈ Ap(X → Y ). For Y ′′ → Y ′ → Y set
X ′′ = Y ′′ ×Y X and X ′ = Y ′ ×Y X. The following are equivalent

(1) c is zero,
(2) c ∩ [Y ′] = 0 in CH∗(X ′) for every integral scheme Y ′ locally of finite type

over Y , and
(3) for every integral scheme Y ′ locally of finite type over Y , there exists a

proper birational morphism Y ′′ → Y ′ such that c ∩ [Y ′′] = 0 in CH∗(X ′′).

Proof. The implications (1) ⇒ (2) ⇒ (3) are clear. Assumption (3) implies (2)
because (Y ′′ → Y ′)∗[Y ′′] = [Y ′] and hence c ∩ [Y ′] = (X ′′ → X ′)∗(c ∩ [Y ′′])
as c is a bivariant class. Assume (2). Let Y ′ → Y be locally of finite type. Let
α ∈ CHk(Y ′). Write α =

∑
ni[Y ′

i ] with Y ′
i ⊂ Y ′ a locally finite collection of integral

closed subschemes of δ-dimension k. Then we see that α is pushforward of the
cycle α′ =

∑
ni[Y ′

i ] on Y ′′ =
∐
Y ′
i under the proper morphism Y ′′ → Y ′. By the

properties of bivariant classes it suffices to prove that c∩α′ = 0 in CHk−p(X ′′). We
have CHk−p(X ′′) =

∏
CHk−p(X ′

i) where X ′
i = Y ′

i ×Y X. This follows immediately
from the definitions. The projection maps CHk−p(X ′′) → CHk−p(X ′

i) are given
by flat pullback. Since capping with c commutes with flat pullback, we see that it
suffices to show that c∩ [Y ′

i ] is zero in CHk−p(X ′
i) which is true by assumption. □

Lemma 35.4.0FDZ Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism of
schemes locally of finite type over S. Assume we have disjoint union decompositions

https://stacks.math.columbia.edu/tag/02UC
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X =
∐
i∈I Xi and Y =

∐
j∈J Yj by open and closed subschemes and a map a : I → J

of sets such that f(Xi) ⊂ Ya(i). Then

Ap(X → Y ) =
∏

i∈I
Ap(Xi → Ya(i))

Proof. Suppose given an element (ci) ∈
∏
iA

p(Xi → Ya(i)). Then given β ∈
CHk(Y ) we can map this to the element of CHk−p(X) whose restriction to Xi is ci∩
β|Ya(i) . This works because CHk−p(X) =

∏
i CHk−p(Xi). The same construction

works after base change by any Y ′ → Y locally of finite type and we get c ∈
Ap(X → Y ). Thus we obtain a map Ψ from the right hand side of the formula to
the left hand side of the formula. Conversely, given c ∈ Ap(X → Y ) and an element
βi ∈ CHk(Ya(i)) we can consider the element (c∩ (Ya(i) → Y )∗βi)|Xi in CHk−p(Xi).
The same thing works after base change by any Y ′ → Y locally of finite type and
we get ci ∈ Ap(Xi → Ya(i)). Thus we obtain a map Φ from the left hand side of
the formula to the right hand side of the formula. It is immediate that Φ ◦Ψ = id.
For the converse, suppose that c ∈ Ap(X → Y ) and β ∈ CHk(Y ). Say Φ(c) = (ci).
Let j ∈ J . Because c commutes with flat pullback we get

(c ∩ β)|∐
a(i)=j

Xi
= c ∩ β|Yj

Because c commutes with proper pushforward we get

(
∐

a(i)=j
Xi → X)∗((c ∩ β)|∐

a(i)=j
Xi

) = c ∩ (Yj → Y )∗β|Yj

The left hand side is the cycle on X restricting to (c ∩ β)|Xi on Xi for i ∈ I with
a(i) = j and 0 else. The right hand side is a cycle on X whose restriction to Xi is
ci ∩ β|Yj for i ∈ I with a(i) = j. Thus c ∩ β = Ψ((ci)) as desired. □

Remark 35.5.0FE0 Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism
of schemes locally of finite type over S. Let X =

∐
i∈I Xi and Y =

∐
j∈J Yj be

the decomposition of X and Y into their connected components (the connected
components are open as X and Y are locally Noetherian, see Topology, Lemma 9.6
and Properties, Lemma 5.5). Let a(i) ∈ J be the index such that f(Xi) ⊂ Ya(i).
Then Ap(X → Y ) =

∏
Ap(Xi → Ya(i)) by Lemma 35.4. In this setting it is

convenient to set
A∗(X → Y )∧ =

∏
i
A∗(Xi → Ya(i))

This “completed” bivariant group is the subset

A∗(X → Y )∧ ⊂
∏

p≥0
Ap(X)

consisting of elements c = (c0, c1, c2, . . .) such that for each connected component
Xi the image of cp in Ap(Xi → Ya(i)) is zero for almost all p. If Y → Z is a second
morphism, then the composition A∗(X → Y )×A∗(Y → Z)→ A∗(X → Z) extends
to a composition A∗(X → Y )∧×A∗(Y → Z)∧ → A∗(X → Z)∧ of completions. We
sometimes call A∗(X)∧ = A∗(X → X)∧ the completed bivariant cohomology ring
of X.

Lemma 35.6.0GUC Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism
of schemes locally of finite type over S. Let g : Y ′ → Y be an envelope (Definition
22.1) and denote X ′ = Y ′ ×Y X. Let p ∈ Z and let c′ ∈ Ap(X ′ → Y ′). If the two
restrictions

res1(c′) = res2(c′) ∈ Ap(X ′ ×X X ′ → Y ′ ×Y Y ′)
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are equal (see proof), then there exists a unique c ∈ Ap(X → Y ) whose restriction
res(c) = c′ in Ap(X ′ → Y ′).

Proof. We have a commutative diagram

X ′ ×X X ′

f ′′

��

a //

b
// X

′

f ′

��

h
// X

f

��
Y ′ ×Y Y ′

p //

q
// Y

′ g // Y

The element res1(c′) is the restriction (see Remark 33.5) of c′ for the cartesian
square with morphisms a, f ′, p, f ′′ and the element res2(c′) is the restriction of c′

for the cartesian square with morphisms b, f ′, q, f ′′. Assume res1(c′) = res2(c′)
and let β ∈ CHk(Y ). By Lemma 22.4 we can find a β′ ∈ CHk(Y ′) with g∗β

′ = β.
Then we set

c ∩ β = h∗(c′ ∩ β′)

To see that this is independent of the choice of β′ it suffices to show that h∗(c′ ∩
(p∗γ − q∗γ)) is zero for γ ∈ CHk(Y ′ ×Y Y ′). Since c′ is a bivariant class we have

h∗(c′ ∩ (p∗γ − q∗γ)) = h∗(a∗(c′ ∩ γ)− b∗(c′ ∩ γ)) = 0

the last equality since h∗ ◦ a∗ = h∗ ◦ b∗ as h ◦ a = h ◦ b.

Observe that our choice for c∩ β is forced by the requirement that res(c) = c′ and
the compatibility of bivariant classes with proper pushforward.

Of course, in order to define the bivariant class c we need to construct maps c ∩
− : CHk(Y1) → CHk+p(Y1 ×Y X) for any morphism Y1 → Y locally of finite
type satisfying the conditions listed in Definition 33.1. Denote Y ′

1 = Y ′ ×Y Y1,
X1 = X ×Y Y1. The morphism Y ′

1 → Y1 is an envelope by Lemma 22.3. Hence we
can use the base changed diagram

X ′
1 ×X1 X

′
1

f ′′
1
��

a1 //

b1

// X
′
1

f ′
1
��

h1

// X1

f1

��
Y ′

1 ×Y1 Y
′

1

p1 //

q1
// Y

′
1

g1 // Y1

and the same arguments to get a well defined map c ∩ − : CHk(Y1)→ CHk+p(X1)
as before.

Next, we have to check conditions (1), (2), and (3) of Definition 33.1 for c. For
example, suppose that t : Y2 → Y1 is a proper morphism of schemes locally of finite
type over Y . Denote as above the base changes of the first diagram to Y1, resp. Y2,
by subscripts 1, resp. 2. Denote t′ : Y ′

2 → Y ′
1 , s : X2 → X1, and s′ : X ′

2 → X ′
1 the

base changes of t to Y ′, X, and X ′. We have to show that

s∗(c ∩ β2) = c ∩ t∗β2
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for β2 ∈ CHk(Y2). Choose β′
2 ∈ CHk(Y ′

2) with g2,∗β
′
2 = β2. Since c′ is a bivariant

class and the diagrams

X ′
2

s′

��

h2

// X2

s

��
X ′

1
h1 // X1

and

X ′
2

s′

��

f ′
2

// Y ′
2

t′

��
X ′

2
f ′

1 // Y ′
1

are cartesian we have

s∗(c ∩ β2) = s∗(h2,∗(c′ ∩ β′
2)) = h1,∗s

′
∗(c′ ∩ β′

2) = h1,∗(c′ ∩ (t′∗β′
2))

and the final expression computes c ∩ t∗β2 by construction: t′∗β′
2 ∈ CHk(Y ′

1) is a
class whose image by g1,∗ is t∗β2. This proves condition (1). The other conditions
are proved in the same manner and we omit the detailed arguments. □

36. Projective space bundle formula

02TV Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S. Consider
a finite locally free OX -module E of rank r. Our convention is that the projective
bundle associated to E is the morphism

P(E) = Proj
X

(Sym∗(E)) π // X

over X with OP(E)(1) normalized so that π∗(OP(E)(1)) = E . In particular there is
a surjection π∗E → OP(E)(1). We will say informally “let (π : P → X,OP (1)) be
the projective bundle associated to E” to denote the situation where P = P(E) and
OP (1) = OP(E)(1).

Lemma 36.1.02TW Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally free OX-module E of rank r. Let (π : P → X,OP (1)) be
the projective bundle associated to E. For any α ∈ CHk(X) the element

π∗ (c1(OP (1))s ∩ π∗α) ∈ CHk+r−1−s(X)

is 0 if s < r − 1 and is equal to α when s = r − 1.

Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension k. Note that
π∗[Z] = [π−1(Z)] as π−1(Z) is integral of δ-dimension r − 1. If s < r − 1, then by
construction c1(OP (1))s ∩ π∗[Z] is represented by a (k+ r− 1− s)-cycle supported
on π−1(Z). Hence the pushforward of this cycle is zero for dimension reasons.

Let s = r−1. By the argument given above we see that π∗(c1(OP (1))s∩π∗α) = n[Z]
for some n ∈ Z. We want to show that n = 1. For the same dimension reasons
as above it suffices to prove this result after replacing X by X \ T where T ⊂ Z
is a proper closed subset. Let ξ be the generic point of Z. We can choose el-
ements e1, . . . , er−1 ∈ Eξ which form part of a basis of Eξ. These give rational
sections s1, . . . , sr−1 of OP (1)|π−1(Z) whose common zero set is the closure of the
image a rational section of P(E|Z) → Z union a closed subset whose support
maps to a proper closed subset T of Z. After removing T from X (and corre-
spondingly π−1(T ) from P ), we see that s1, . . . , sn form a sequence of global sec-
tions si ∈ Γ(π−1(Z),Oπ−1(Z)(1)) whose common zero set is the image of a section
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Z → π−1(Z). Hence we see successively that
π∗[Z] = [π−1(Z)]

c1(OP (1)) ∩ π∗[Z] = [Z(s1)]
c1(OP (1))2 ∩ π∗[Z] = [Z(s1) ∩ Z(s2)]

. . . = . . .

c1(OP (1))r−1 ∩ π∗[Z] = [Z(s1) ∩ . . . ∩ Z(sr−1)]
by repeated applications of Lemma 25.4. Since the pushforward by π of the image
of a section of π over Z is clearly [Z] we see the result when α = [Z]. We omit
the verification that these arguments imply the result for a general cycle α =∑
nj [Zj ]. □

Lemma 36.2 (Projective space bundle formula).02TX Let (S, δ) be as in Situation 7.1.
Let X be locally of finite type over S. Let E be a finite locally free OX-module E of
rank r. Let (π : P → X,OP (1)) be the projective bundle associated to E. The map⊕r−1

i=0
CHk+i(X) −→ CHk+r−1(P ),

(α0, . . . , αr−1) 7−→ π∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1

is an isomorphism.

Proof. Fix k ∈ Z. We first show the map is injective. Suppose that (α0, . . . , αr−1)
is an element of the left hand side that maps to zero. By Lemma 36.1 we see that

0 = π∗(π∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1) = αr−1

Next, we see that
0 = π∗(c1(OP (1))∩(π∗α0+c1(OP (1))∩π∗α1+. . .+c1(OP (1))r−2∩π∗αr−2)) = αr−2

and so on. Hence the map is injective.
It remains to show the map is surjective. Let Xi, i ∈ I be the irreducible com-
ponents of X. Then Pi = P(E|Xi), i ∈ I are the irreducible components of P .
Consider the commutative diagram∐

Pi∐
πi

��

p
// P

π

��∐
Xi

q // X

Observe that p∗ is surjective. If β ∈ CHk(
∐
Xi) then π∗q∗β = p∗(

∐
πi)∗β, see

Lemma 15.1. Similarly for capping with c1(O(1)) by Lemma 26.4. Hence, if the
map of the lemma is surjective for each of the morphisms πi : Pi → Xi, then the
map is surjective for π : P → X. Hence we may assume X is irreducible. Thus
dimδ(X) <∞ and in particular we may use induction on dimδ(X).
The result is clear if dimδ(X) < k. Let α ∈ CHk+r−1(P ). For any locally closed
subscheme T ⊂ X denote γT :

⊕
CHk+i(T )→ CHk+r−1(π−1(T )) the map

γT (α0, . . . , αr−1) = π∗α0 + . . .+ c1(Oπ−1(T )(1))r−1 ∩ π∗αr−1.

Suppose for some nonempty open U ⊂ X we have α|π−1(U) = γU (α0, . . . , αr−1).
Then we may choose lifts α′

i ∈ CHk+i(X) and we see that α− γX(α′
0, . . . , α

′
r−1) is

by Lemma 19.3 rationally equivalent to a k-cycle on PY = P(E|Y ) where Y = X \U
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as a reduced closed subscheme. Note that dimδ(Y ) < dimδ(X). By induction the
result holds for PY → Y and hence the result holds for α. Hence we may replace
X by any nonempty open of X.

In particular we may assume that E ∼= O⊕r
X . In this case P(E) = X ×Pr−1. Let us

use the stratification

Pr−1 = Ar−1 ⨿Ar−2 ⨿ . . .⨿A0

The closure of each stratum is a Pr−1−i which is a representative of c1(O(1))i ∩
[Pr−1]. Hence P has a similar stratification

P = Ur−1 ⨿ Ur−2 ⨿ . . .⨿ U0

Let P i be the closure of U i. Let πi : P i → X be the restriction of π to P i.
Let α ∈ CHk+r−1(P ). By Lemma 32.1 we can write α|Ur−1 = π∗α0|Ur−1 for
some α0 ∈ CHk(X). Hence the difference α − π∗α0 is the image of some α′ ∈
CHk+r−1(P r−2). By Lemma 32.1 again we can write α′|Ur−2 = (πr−2)∗α1|Ur−2

for some α1 ∈ CHk+1(X). By Lemma 31.1 we see that the image of (πr−2)∗α1
represents c1(OP (1)) ∩ π∗α1. We also see that α− π∗α0 − c1(OP (1)) ∩ π∗α1 is the
image of some α′′ ∈ CHk+r−1(P r−3). And so on. □

Lemma 36.3.02TY Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally free sheaf of rank r on X. Let

p : E = Spec(Sym∗(E)) −→ X

be the associated vector bundle over X. Then p∗ : CHk(X) → CHk+r(E) is an
isomorphism for all k.

Proof. (For the case of linebundles, see Lemma 32.2.) For surjectivity see Lemma
32.1. Let (π : P → X,OP (1)) be the projective space bundle associated to the finite
locally free sheaf E ⊕ OX . Let s ∈ Γ(P,OP (1)) correspond to the global section
(0, 1) ∈ Γ(X, E ⊕ OX). Let D = Z(s) ⊂ P . Note that (π|D : D → X,OP (1)|D) is
the projective space bundle associated to E . We denote πD = π|D and OD(1) =
OP (1)|D. Moreover, D is an effective Cartier divisor on P . Hence OP (D) = OP (1)
(see Divisors, Lemma 14.10). Also there is an isomorphism E ∼= P \ D. Denote
j : E → P the corresponding open immersion. For injectivity we use that the kernel
of

j∗ : CHk+r(P ) −→ CHk+r(E)

are the cycles supported in the effective Cartier divisor D, see Lemma 19.3. So if
p∗α = 0, then π∗α = i∗β for some β ∈ CHk+r(D). By Lemma 36.2 we may write

β = π∗
Dβ0 + . . .+ c1(OD(1))r−1 ∩ π∗

Dβr−1.

for some βi ∈ CHk+i(X). By Lemmas 31.1 and 26.4 this implies

π∗α = i∗β = c1(OP (1)) ∩ π∗β0 + . . .+ c1(OD(1))r ∩ π∗βr−1.

Since the rank of E ⊕OX is r + 1 this contradicts Lemma 26.4 unless all α and all
βi are zero. □
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37. The Chern classes of a vector bundle

02TZ We can use the projective space bundle formula to define the Chern classes of a
rank r vector bundle in terms of the expansion of c1(O(1))r in terms of the lower
powers, see formula (37.1.1). The reason for the signs will be explained later.

Definition 37.1.02U0 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Assume X is integral and n = dimδ(X). Let E be a finite locally free sheaf
of rank r on X. Let (π : P → X,OP (1)) be the projective space bundle associated
to E .

(1) By Lemma 36.2 there are elements ci ∈ CHn−i(X), i = 0, . . . , r such that
c0 = [X], and

(37.1.1)02U1
∑r

i=0
(−1)ic1(OP (1))i ∩ π∗cr−i = 0.

(2) With notation as above we set ci(E)∩ [X] = ci as an element of CHn−i(X).
We call these the Chern classes of E on X.

(3) The total Chern class of E on X is the combination
c(E) ∩ [X] = c0(E) ∩ [X] + c1(E) ∩ [X] + . . .+ cr(E) ∩ [X]

which is an element of CH∗(X) =
⊕

k∈Z CHk(X).

Let us check that this does not give a new notion in case the vector bundle has
rank 1.

Lemma 37.2.02U2 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X is integral and n = dimδ(X). Let L be an invertible OX-module. The
first Chern class of L on X of Definition 37.1 is equal to the Weil divisor associated
to L by Definition 24.1.

Proof. In this proof we use c1(L)∩[X] to denote the construction of Definition 24.1.
Since L has rank 1 we have P(L) = X and OP(L)(1) = L by our normalizations.
Hence (37.1.1) reads

(−1)1c1(L) ∩ c0 + (−1)0c1 = 0
Since c0 = [X], we conclude c1 = c1(L) ∩ [X] as desired. □

Remark 37.3.02U3 We could also rewrite equation 37.1.1 as

(37.3.1)05M8
∑r

i=0
c1(OP (−1))i ∩ π∗cr−i = 0.

but we find it easier to work with the tautological quotient sheaf OP (1) instead of
its dual.

38. Intersecting with Chern classes

02U4 In this section we define Chern classes of vector bundles on X as bivariant classes
on X, see Lemma 38.7 and the discussion following this lemma. Our construction
follows the familiar pattern of first defining the operation on prime cycles and then
summing. In Lemma 38.2 we show that the result is determined by the usual for-
mula on the associated projective bundle. Next, we show that capping with Chern
classes passes through rational equivalence, commutes with proper pushforward,
commutes with flat pullback, and commutes with the gysin maps for inclusions of
effective Cartier divisors. These lemmas could have been avoided by directly using

https://stacks.math.columbia.edu/tag/02U0
https://stacks.math.columbia.edu/tag/02U2
https://stacks.math.columbia.edu/tag/02U3


CHOW HOMOLOGY AND CHERN CLASSES 74

the characterization in Lemma 38.2 and using Lemma 33.4; the reader who wishes
to see this worked out should consult Chow Groups of Spaces, Lemma 28.1.

Definition 38.1.02U5 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. We define, for every
integer k and any 0 ≤ j ≤ r, an operation

cj(E) ∩ − : Zk(X)→ CHk−j(X)
called intersection with the jth Chern class of E .

(1) Given an integral closed subscheme i : W → X of δ-dimension k we define
cj(E) ∩ [W ] = i∗(cj(i∗E) ∩ [W ]) ∈ CHk−j(X)

where cj(i∗E) ∩ [W ] is as defined in Definition 37.1.
(2) For a general k-cycle α =

∑
ni[Wi] we set

cj(E) ∩ α =
∑

nicj(E) ∩ [Wi]

If E has rank 1 then this agrees with our previous definition (Definition 25.1) by
Lemma 37.2.

Lemma 38.2.02U6 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. Let (π : P → X,OP (1))
be the projective bundle associated to E. For α ∈ Zk(X) the elements cj(E)∩α are
the unique elements αj of CHk−j(X) such that α0 = α and∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

holds in the Chow group of P .

Proof. The uniqueness of α0, . . . , αr such that α0 = α and such that the displayed
equation holds follows from the projective space bundle formula Lemma 36.2. The
identity holds by definition for α = [W ] where W is an integral closed subscheme of
X. For a general k-cycle α on X write α =

∑
na[Wa] with na ̸= 0, and ia : Wa → X

pairwise distinct integral closed subschemes. Then the family {Wa} is locally finite
on X. Set Pa = π−1(Wa) = P(E|Wa

). Denote i′a : Pa → P the corresponding
closed immersions. Consider the fibre product diagram

P ′

π′

��

∐
Pa∐

πa

��

∐
i′a

// P

π

��
X ′ ∐

Wa

∐
ia // X

The morphism p : X ′ → X is proper. Moreover π′ : P ′ → X ′ together with
the invertible sheaf OP ′(1) =

∐
OPa(1) which is also the pullback of OP (1) is the

projective bundle associated to E ′ = p∗E . By definition

cj(E) ∩ [α] =
∑

ia,∗(cj(E|Wa
) ∩ [Wa]).

Write βa,j = cj(E|Wa
) ∩ [Wa] which is an element of CHk−j(Wa). We have∑r

i=0
(−1)ic1(OPa(1))i ∩ π∗

a(βa,r−i) = 0

for each a by definition. Thus clearly we have∑r

i=0
(−1)ic1(OP ′(1))i ∩ (π′)∗(βr−i) = 0
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with βj =
∑
naβa,j ∈ CHk−j(X ′). Denote p′ : P ′ → P the morphism

∐
i′a. We

have π∗p∗βj = p′
∗(π′)∗βj by Lemma 15.1. By the projection formula of Lemma

26.4 we conclude that ∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(p∗βj) = 0

Since p∗βj is a representative of cj(E) ∩ α we win. □

We will consistently use this characterization of Chern classes to prove many more
properties.
Lemma 38.3.02U7 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally free sheaf of rank r on X. If α ∼rat β are rationally
equivalent k-cycles on X then cj(E) ∩ α = cj(E) ∩ β in CHk−j(X).
Proof. By Lemma 38.2 the elements αj = cj(E)∩α, j ≥ 1 and βj = cj(E)∩β, j ≥ 1
are uniquely determined by the same equation in the chow group of the projective
bundle associated to E . (This of course relies on the fact that flat pullback is
compatible with rational equivalence, see Lemma 20.2.) Hence they are equal. □

In other words capping with Chern classes of finite locally free sheaves factors
through rational equivalence to give maps

cj(E) ∩ − : CHk(X)→ CHk−j(X).
Our next task is to show that Chern classes are bivariant classes, see Definition
33.1.
Lemma 38.4.02U9 Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. Let p : X → Y be a
proper morphism. Let α be a k-cycle on X. Let E be a finite locally free sheaf on
Y . Then

p∗(cj(p∗E) ∩ α) = cj(E) ∩ p∗α

Proof. Let (π : P → Y,OP (1)) be the projective bundle associated to E . Then
PX = X×Y P is the projective bundle associated to p∗E and OPX (1) is the pullback
of OP (1). Write αj = cj(p∗E) ∩ α, so α0 = α. By Lemma 38.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗

X(αr−i) = 0

in the chow group of PX . Consider the fibre product diagram
PX

p′
//

πX

��

P

π

��
X

p // Y

Apply proper pushforward p′
∗ (Lemma 20.3) to the displayed equality above. Using

Lemmas 26.4 and 15.1 we obtain∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(p∗αr−i) = 0

in the chow group of P . By the characterization of Lemma 38.2 we conclude. □

Lemma 38.5.02U8 Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on Y . Let f : X → Y be a flat
morphism of relative dimension r. Let α be a k-cycle on Y . Then

f∗(cj(E) ∩ α) = cj(f∗E) ∩ f∗α
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Proof. Write αj = cj(E) ∩ α, so α0 = α. By Lemma 38.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

in the chow group of the projective bundle (π : P → Y,OP (1)) associated to E .
Consider the fibre product diagram

PX = P(f∗E)
f ′
//

πX

��

P

π

��
X

f // Y

Note that OPX (1) is the pullback of OP (1). Apply flat pullback (f ′)∗ (Lemma 20.2)
to the displayed equation above. By Lemmas 26.2 and 14.3 we see that∑r

i=0
(−1)ic1(OPX (1))i ∩ π∗

X(f∗αr−i) = 0

holds in the chow group of PX . By the characterization of Lemma 38.2 we conclude.
□

Lemma 38.6.0B7G Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. Let (L, s, i : D → X) be
as in Definition 29.1. Then cj(E|D) ∩ i∗α = i∗(cj(E) ∩ α) for all α ∈ CHk(X).

Proof. Write αj = cj(E) ∩ α, so α0 = α. By Lemma 38.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

in the chow group of the projective bundle (π : P → X,OP (1)) associated to E .
Consider the fibre product diagram

PD = P(E|D)
i′
//

πD

��

P

π

��
D

i // X

Note that OPD (1) is the pullback of OP (1). Apply the gysin map (i′)∗ (Lemma
30.2) to the displayed equation above. Applying Lemmas 30.4 and 29.9 we obtain∑r

i=0
(−1)ic1(OPD (1))i ∩ π∗

D(i∗αr−i) = 0

in the chow group of PD. By the characterization of Lemma 38.2 we conclude. □

At this point we have enough material to be able to prove that capping with Chern
classes defines a bivariant class.

Lemma 38.7.0B7H Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a locally free OX-module of rank r. Let 0 ≤ p ≤ r. Then the rule that
to f : X ′ → X assigns cp(f∗E) ∩ − : CHk(X ′) → CHk−p(X ′) is a bivariant class
of degree p.

Proof. Immediate from Lemmas 38.3, 38.4, 38.5, and 38.6 and Definition 33.1. □

This lemma allows us to define the Chern classes of a finite locally free module as
follows.
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Definition 38.8.0FE1 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let E be a locally free OX -module of rank r. For i = 0, . . . , r the ith Chern
class of E is the bivariant class ci(E) ∈ Ai(X) of degree i constructed in Lemma
38.7. The total Chern class of E is the formal sum

c(E) = c0(E) + c1(E) + . . .+ cr(E)

which is viewed as a nonhomogeneous bivariant class on X.

By the remark following Definition 38.1 if E is invertible, then this definition agrees
with Definition 34.4. Next we see that Chern classes are in the center of the
bivariant Chow cohomology ring A∗(X).

Lemma 38.9.02UA Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a locally free OX-module of rank r. Then

(1) cj(E) ∈ Aj(X) is in the center of A∗(X) and
(2) if f : X ′ → X is locally of finite type and c ∈ A∗(X ′ → X), then c◦cj(E) =

cj(f∗E) ◦ c.
In particular, if F is a second locally free OX-module on X of rank s, then

ci(E) ∩ cj(F) ∩ α = cj(F) ∩ ci(E) ∩ α

as elements of CHk−i−j(X) for all α ∈ CHk(X).

Proof. It is immediate that (2) implies (1). Let α ∈ CHk(X). Write αj = cj(E)∩α,
so α0 = α. By Lemma 38.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

in the chow group of the projective bundle (π : P → Y,OP (1)) associated to E .
Denote π′ : P ′ → X ′ the base change of π by f . Using Lemma 34.5 and the
properties of bivariant classes we obtain

0 = c ∩
(∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i)

)
=

∑r

i=0
(−1)ic1(OP ′(1))i ∩ (π′)∗(c ∩ αr−i)

in the Chow group of P ′ (calculation omitted). Hence we see that c∩αj is equal to
cj(f∗E)∩(c∩α) by the characterization of Lemma 38.2. This proves the lemma. □

Remark 38.10.0ESW Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let E be a finite locally free OX -module. If the rank of E is not constant
then we can still define the Chern classes of E . Namely, in this case we can write

X = X0 ⨿X1 ⨿X2 ⨿ . . .

where Xr ⊂ X is the open and closed subspace where the rank of E is r. By Lemma
35.4 we have Ap(X) =

∏
Ap(Xr). Hence we can define cp(E) to be the product

of the classes cp(E|Xr ) in Ap(Xr). Explicitly, if X ′ → X is a morphism locally of
finite type, then we obtain by pullback a corresponding decomposition of X ′ and
we find that

CH∗(X ′) =
∏

r≥0
CH∗(X ′

r)

by our definitions. Then cp(E) ∈ Ap(X) is the bivariant class which preserves
these direct product decompositions and acts by the already defined operations
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ci(E|Xr ) ∩− on the factors. Observe that in this setting it may happen that cp(E)
is nonzero for infinitely many p. It follows that the total chern class is an element

c(E) = c0(E) + c1(E) + c2(E) + . . . ∈ A∗(X)∧

of the completed bivariant cohomology ring, see Remark 35.5. In this setting we
define the “rank” of E to be the element r(E) ∈ A0(X) as the bivariant operation
which sends (αr) ∈

∏
CH∗(X ′

r) to (rαr) ∈
∏

CH∗(X ′
r). Note that it is still true

that cp(E) and r(E) are in the center of A∗(X).

Remark 38.11.0FA4 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let E be a finite locally free OX -module. In general we write X =

∐
Xr as

in Remark 38.10. If only a finite number of the Xr are nonempty, then we can set

ctop(E) =
∑

r
cr(E|Xr ) ∈ A∗(X) =

⊕
A∗(Xr)

where the equality is Lemma 35.4. If infinitely many Xr are nonempty, we will use
the same notation to denote

ctop(E) =
∏

cr(E|Xr ) ∈
∏

Ar(Xr) ⊂ A∗(X)∧

see Remark 35.5 for notation.

39. Polynomial relations among Chern classes

02UB Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S. Let Ei be a
finite collection of finite locally free sheaves on X. By Lemma 38.9 we see that the
Chern classes

cj(Ei) ∈ A∗(X)
generate a commutative (and even central) Z-subalgebra of the Chow cohomology
algebra A∗(X). Thus we can say what it means for a polynomial in these Chern
classes to be zero, or for two polynomials to be the same. As an example, saying
that c1(E1)5 + c2(E2)c3(E3) = 0 means that the operations

CHk(Y ) −→ CHk−5(Y ), α 7−→ c1(E1)5 ∩ α+ c2(E2) ∩ c3(E3) ∩ α
are zero for all morphisms f : Y → X which are locally of finite type. By Lemma
35.3 this is equivalent to the requirement that given any morphism f : Y → X
where Y is an integral scheme locally of finite type over S the cycle

c1(E1)5 ∩ [Y ] + c2(E2) ∩ c3(E3) ∩ [Y ]
is zero in CHdim(Y )−5(Y ).
A specific example is the relation

c1(L ⊗OX
N ) = c1(L) + c1(N )

proved in Lemma 25.2. More generally, here is what happens when we tensor an
arbitrary locally free sheaf by an invertible sheaf.

Lemma 39.1.02UD Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally free sheaf of rank r on X. Let L be an invertible sheaf
on X. Then we have

(39.1.1)02UE ci(E ⊗ L) =
∑i

j=0

(
r − i+ j

j

)
ci−j(E)c1(L)j

in A∗(X).
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Proof. This should hold for any triple (X, E ,L). In particular it should hold when
X is integral and by Lemma 35.3 it is enough to prove it holds when capping with
[X] for such X. Thus assume that X is integral. Let (π : P → X,OP (1)), resp.
(π′ : P ′ → X,OP ′(1)) be the projective space bundle associated to E , resp. E ⊗ L.
Consider the canonical morphism

P

π   

g
// P ′

π′
~~

X

see Constructions, Lemma 20.1. It has the property that g∗OP ′(1) = OP (1)⊗π∗L.
This means that we have∑r

i=0
(−1)i(ξ + x)i ∩ π∗(cr−i(E ⊗ L) ∩ [X]) = 0

in CH∗(P ), where ξ represents c1(OP (1)) and x represents c1(π∗L). By simple
algebra this is equivalent to∑r

i=0
(−1)iξi

(∑r

j=i
(−1)j−i

(
j

i

)
xj−i ∩ π∗(cr−j(E ⊗ L) ∩ [X])

)
= 0

Comparing with Equation (37.1.1) it follows from this that

cr−i(E) ∩ [X] =
∑r

j=i

(
j

i

)
(−c1(L))j−i ∩ cr−j(E ⊗ L) ∩ [X]

Reworking this (getting rid of minus signs, and renumbering) we get the desired
relation. □

Some example cases of (39.1.1) are
c1(E ⊗ L) = c1(E) + rc1(L)

c2(E ⊗ L) = c2(E) + (r − 1)c1(E)c1(L) +
(
r

2

)
c1(L)2

c3(E ⊗ L) = c3(E) + (r − 2)c2(E)c1(L) +
(
r − 1

2

)
c1(E)c1(L)2 +

(
r

3

)
c1(L)3

40. Additivity of Chern classes

02UF All of the preliminary lemmas follow trivially from the final result.

Lemma 40.1.02UG Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let E, F be finite locally free sheaves on X of ranks r, r − 1 which fit into
a short exact sequence

0→ OX → E → F → 0
Then we have

cr(E) = 0, cj(E) = cj(F), j = 0, . . . , r − 1
in A∗(X).

Proof. By Lemma 35.3 it suffices to show that if X is integral then cj(E) ∩ [X] =
cj(F) ∩ [X]. Let (π : P → X,OP (1)), resp. (π′ : P ′ → X,OP ′(1)) denote the
projective space bundle associated to E , resp. F . The surjection E → F gives rise
to a closed immersion

i : P ′ −→ P

https://stacks.math.columbia.edu/tag/02UG
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over X. Moreover, the element 1 ∈ Γ(X,OX) ⊂ Γ(X, E) gives rise to a global
section s ∈ Γ(P,OP (1)) whose zero set is exactly P ′. Hence P ′ is an effective
Cartier divisor on P such that OP (P ′) ∼= OP (1). Hence we see that

c1(OP (1)) ∩ π∗α = i∗((π′)∗α)
for any cycle class α on X by Lemma 31.1. By Lemma 38.2 we see that αj =
cj(F) ∩ [X], j = 0, . . . , r − 1 satisfy∑r−1

j=0
(−1)jc1(OP ′(1))j ∩ (π′)∗αj = 0

Pushing this to P and using the remark above as well as Lemma 26.4 we get∑r−1

j=0
(−1)jc1(OP (1))j+1 ∩ π∗αj = 0

By the uniqueness of Lemma 38.2 we conclude that cr(E)∩[X] = 0 and cj(E)∩[X] =
αj = cj(F) ∩ [X] for j = 0, . . . , r − 1. Hence the lemma holds. □

Lemma 40.2.02UH Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let E, F be finite locally free sheaves on X of ranks r, r − 1 which fit into
a short exact sequence

0→ L → E → F → 0
where L is an invertible sheaf. Then

c(E) = c(L)c(F)
in A∗(X).

Proof. This relation really just says that ci(E) = ci(F)+c1(L)ci−1(F). By Lemma
40.1 we have cj(E⊗L⊗−1) = cj(F⊗L⊗−1) for j = 0, . . . , r were we set cr(F⊗L−1) =
0 by convention. Applying Lemma 39.1 we deduce

i∑
j=0

(
r − i+ j

j

)
(−1)jci−j(E)c1(L)j =

i∑
j=0

(
r − 1− i+ j

j

)
(−1)jci−j(F)c1(L)j

Setting ci(E) = ci(F) + c1(L)ci−1(F) gives a “solution” of this equation. The
lemma follows if we show that this is the only possible solution. We omit the
verification. □

Lemma 40.3.02UI Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Suppose that E sits in an exact sequence

0→ E1 → E → E2 → 0
of finite locally free sheaves Ei of rank ri. The total Chern classes satisfy

c(E) = c(E1)c(E2)
in A∗(X).

Proof. By Lemma 35.3 we may assume that X is integral and we have to show the
identity when capping against [X]. By induction on r1. The case r1 = 1 is Lemma
40.2. Assume r1 > 1. Let (π : P → X,OP (1)) denote the projective space bundle
associated to E1. Note that

(1) π∗ : CH∗(X)→ CH∗(P ) is injective, and
(2) π∗E1 sits in a short exact sequence 0 → F → π∗E1 → L → 0 where L is

invertible.

https://stacks.math.columbia.edu/tag/02UH
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The first assertion follows from the projective space bundle formula and the second
follows from the definition of a projective space bundle. (In fact L = OP (1).) Let
Q = π∗E/F , which sits in an exact sequence 0 → L → Q → π∗E2 → 0. By
induction we have

c(π∗E) ∩ [P ] = c(F) ∩ c(π∗E/F) ∩ [P ]
= c(F) ∩ c(L) ∩ c(π∗E2) ∩ [P ]
= c(π∗E1) ∩ c(π∗E2) ∩ [P ]

Since [P ] = π∗[X] we win by Lemma 38.5. □

Lemma 40.4.02UJ Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Li, i = 1, . . . , r be invertible OX-modules on X. Let E be a locally free rank
OX-module endowed with a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E
such that Ei/Ei−1 ∼= Li. Set c1(Li) = xi. Then

c(E) =
∏r

i=1
(1 + xi)

in A∗(X).

Proof. Apply Lemma 40.2 and induction. □

41. Degrees of zero cycles

0AZ0 We start defining the degree of a zero cycle on a proper scheme over a field. One
approach is to define it directly as in Lemma 41.2 and then show it is well defined
by Lemma 18.3. Instead we define it as follows.

Definition 41.1.0AZ1 Let k be a field (Example 7.2). Let p : X → Spec(k) be proper.
The degree of a zero cycle on X is given by proper pushforward

p∗ : CH0(X)→ CH0(Spec(k))
(Lemma 20.3) combined with the natural isomorphism CH0(Spec(k)) = Z which
maps [Spec(k)] to 1. Notation: deg(α).

Let us spell this out further.

Lemma 41.2.0AZ2 Let k be a field. Let X be proper over k. Let α =
∑
ni[Zi] be in

Z0(X). Then
deg(α) =

∑
ni deg(Zi)

where deg(Zi) is the degree of Zi → Spec(k), i.e., deg(Zi) = dimk Γ(Zi,OZi).

Proof. This is the definition of proper pushforward (Definition 12.1). □

Next, we make the connection with degrees of vector bundles over 1-dimensional
proper schemes over fields as defined in Varieties, Section 44.

Lemma 41.3.0AZ3 Let k be a field. Let X be a proper scheme over k of dimension
≤ 1. Let E be a finite locally free OX-module of constant rank. Then

deg(E) = deg(c1(E) ∩ [X]1)
where the left hand side is defined in Varieties, Definition 44.1.

https://stacks.math.columbia.edu/tag/02UJ
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Proof. Let Ci ⊂ X, i = 1, . . . , t be the irreducible components of dimension 1 with
reduced induced scheme structure and let mi be the multiplicity of Ci in X. Then
[X]1 =

∑
mi[Ci] and c1(E) ∩ [X]1 is the sum of the pushforwards of the cycles

mic1(E|Ci) ∩ [Ci]. Since we have a similar decomposition of the degree of E by
Varieties, Lemma 44.6 it suffices to prove the lemma in case X is a proper curve
over k.
Assume X is a proper curve over k. By Divisors, Lemma 36.1 there exists a mod-
ification f : X ′ → X such that f∗E has a filtration whose successive quotients are
invertible OX′ -modules. Since f∗[X ′]1 = [X]1 we conclude from Lemma 38.4 that

deg(c1(E) ∩ [X]1) = deg(c1(f∗E) ∩ [X ′]1)
Since we have a similar relationship for the degree by Varieties, Lemma 44.4 we
reduce to the case where E has a filtration whose successive quotients are invertible
OX -modules. In this case, we may use additivity of the degree (Varieties, Lemma
44.3) and of first Chern classes (Lemma 40.3) to reduce to the case discussed in the
next paragraph.
Assume X is a proper curve over k and E is an invertible OX -module. By Divisors,
Lemma 15.12 we see that E is isomorphic to OX(D)⊗OX(D′)⊗−1 for some effec-
tive Cartier divisors D,D′ on X (this also uses that X is projective, see Varieties,
Lemma 43.4 for example). By additivity of degree under tensor product of invert-
ible sheaves (Varieties, Lemma 44.7) and additivity of c1 under tensor product of
invertible sheaves (Lemma 25.2 or 39.1) we reduce to the case E = OX(D). In this
case the left hand side gives deg(D) (Varieties, Lemma 44.9) and the right hand
side gives deg([D]0) by Lemma 25.4. Since

[D]0 =
∑

x∈D
lengthOX,x

(OD,x)[x] =
∑

x∈D
lengthOD,x

(OD,x)[x]

by definition, we see

deg([D]0) =
∑

x∈D
lengthOD,x

(OD,x)[κ(x) : k] = dimk Γ(D,OD) = deg(D)

The penultimate equality by Algebra, Lemma 52.12 using that D is affine. □

Finally, we can tie everything up with the numerical intersections defined in Vari-
eties, Section 45.

Lemma 41.4.0BFI Let k be a field. Let X be a proper scheme over k. Let Z ⊂ X be a
closed subscheme of dimension d. Let L1, . . . ,Ld be invertible OX-modules. Then

(L1 · · · Ld · Z) = deg(c1(L1) ∩ . . . ∩ c1(Ld) ∩ [Z]d)
where the left hand side is defined in Varieties, Definition 45.3. In particular,

degL(Z) = deg(c1(L)d ∩ [Z]d)
if L is an ample invertible OX-module.

Proof. We will prove this by induction on d. If d = 0, then the result is true by
Varieties, Lemma 33.3. Assume d > 0.
Let Zi ⊂ Z, i = 1, . . . , t be the irreducible components of dimension d with reduced
induced scheme structure and let mi be the multiplicity of Zi in Z. Then [Z]d =∑
mi[Zi] and c1(L1) ∩ . . . ∩ c1(Ld) ∩ [Z]d is the sum of the cycles mic1(L1) ∩ . . . ∩

c1(Ld)∩ [Zi]. Since we have a similar decomposition for (L1 · · · Ld ·Z) by Varieties,

https://stacks.math.columbia.edu/tag/0BFI
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Lemma 45.2 it suffices to prove the lemma in case Z = X is a proper variety of
dimension d over k.
By Chow’s lemma there exists a birational proper morphism f : Y → X with Y
H-projective over k. See Cohomology of Schemes, Lemma 18.1 and Remark 18.2.
Then

(f∗L1 · · · f∗Ld · Y ) = (L1 · · · Ld ·X)
by Varieties, Lemma 45.7 and we have

f∗(c1(f∗L1) ∩ . . . ∩ c1(f∗Ld) ∩ [Y ]) = c1(L1) ∩ . . . ∩ c1(Ld) ∩ [X]
by Lemma 26.4. Thus we may replace X by Y and assume that X is projective
over k.
If X is a proper d-dimensional projective variety, then we can write L1 = OX(D)⊗
OX(D′)⊗−1 for some effective Cartier divisors D,D′ ⊂ X by Divisors, Lemma
15.12. By additivity for both sides of the equation (Varieties, Lemma 45.5 and
Lemma 25.2) we reduce to the case L1 = OX(D) for some effective Cartier divisor
D. By Varieties, Lemma 45.8 we have

(L1 · · · Ld ·X) = (L2 · · · Ld ·D)
and by Lemma 25.4 we have

c1(L1) ∩ . . . ∩ c1(Ld) ∩ [X] = c1(L2) ∩ . . . ∩ c1(Ld) ∩ [D]d−1

Thus we obtain the result from our induction hypothesis. □

42. Cycles of given codimension

0FE2 In some cases there is a second grading on the abelian group of all cycles given by
codimension.
Lemma 42.1.0FE3 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Write δ = δX/S as in Section 7. The following are equivalent

(1) There exists a decomposition X =
∐
n∈Z Xn into open and closed sub-

schemes such that δ(ξ) = n whenever ξ ∈ Xn is a generic point of an
irreducible component of Xn.

(2) For all x ∈ X there exists an open neighbourhood U ⊂ X of x and an integer
n such that δ(ξ) = n whenever ξ ∈ U is a generic point of an irreducible
component of U .

(3) For all x ∈ X there exists an integer nx such that δ(ξ) = nx for any generic
point ξ of an irreducible component of X containing x.

The conditions are satisfied if X is either normal or Cohen-Macaulay3.
Proof. It is clear that (1) ⇒ (2) ⇒ (3). Conversely, if (3) holds, then we set
Xn = {x ∈ X | nx = n} and we get a decomposition as in (1). Namely, Xn is open
because given x the union of the irreducible components of X passing through x
minus the union of the irreducible components of X not passing through x is an
open neighbourhood of x. If X is normal, then X is a disjoint union of integral
schemes (Properties, Lemma 7.7) and hence the properties hold. If X is Cohen-
Macaulay, then δ′ : X → Z, x 7→ − dim(OX,x) is a dimension function on X (see
Example 7.4). Since δ − δ′ is locally constant (Topology, Lemma 20.3) and since
δ′(ξ) = 0 for every generic point ξ of X we see that (2) holds. □

3In fact, it suffices if X is (S2). Compare with Local Cohomology, Lemma 3.2.

https://stacks.math.columbia.edu/tag/0FE3
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Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S satisfying
the equivalent conditions of Lemma 42.1. For an integral closed subscheme Z ⊂ X
we have the codimension codim(Z,X) of Z in X, see Topology, Definition 11.1. We
define a codimension p-cycle to be a cycle α =

∑
nZ [Z] on X such that nZ ̸= 0⇒

codim(Z,X) = p. The abelian group of all codimension p-cycles is denoted Zp(X).
Let X =

∐
Xn be the decomposition given in Lemma 42.1 part (1). Recalling that

our cycles are defined as locally finite sums, it is clear that

Zp(X) =
∏

n
Zn−p(Xn)

Moreover, we see that
∏
p Z

p(X) =
∏
k Zk(X). We could now define rational

equivalence of codimension p cycles on X in exactly the same manner as before
and in fact we could redevelop the whole theory from scratch for cycles of a given
codimension for X as in Lemma 42.1. However, instead we simply define the Chow
group of codimension p-cycles as

CHp(X) =
∏

n
CHn−p(Xn)

As before we have
∏
p CHp(X) =

∏
k CHk(X). If X is quasi-compact, then the

product in the formula is finite (and hence is a direct sum) and we have
⊕

p CHp(X) =⊕
k CHk(X). If X is quasi-compact and finite dimensional, then only a finite num-

ber of these groups is nonzero.

Many of the constructions and results for Chow groups proved above have natural
counterparts for the Chow groups CH∗(X). Each of these is shown by decomposing
the relevant schemes into “equidimensional” pieces as in Lemma 42.1 and applying
the results already proved for the factors in the product decomposition given above.
Let us list some of them.

(1) If f : X → Y is a flat morphism of schemes locally of finite type over S and
X and Y satisfy the equivalent conditions of Lemma 42.1 then flat pullback
determines a map

f∗ : CHp(Y )→ CHp(X)

(2) If f : X → Y is a morphism of schemes locally of finite type over S and
X and Y satisfy the equivalent conditions of Lemma 42.1 let us say f has
codimension r ∈ Z if for all pairs of irreducible components Z ⊂ X, W ⊂ Y
with f(Z) ⊂W we have dimδ(W )− dimδ(Z) = r.

(3) If f : X → Y is a proper morphism of schemes locally of finite type over
S and X and Y satisfy the equivalent conditions of Lemma 42.1 and f has
codimension r, then proper pushforward is a map

f∗ : CHp(X)→ CHp+r(Y )

(4) If f : X → Y is a morphism of schemes locally of finite type over S
and X and Y satisfy the equivalent conditions of Lemma 42.1 and f has
codimension r and c ∈ Aq(X → Y ), then c induces maps

c ∩ − : CHp(Y )→ CHp+q−r(X)

(5) If X is a scheme locally of finite type over S satisfying the equivalent
conditions of Lemma 42.1 and L is an invertible OX -module, then

c1(L) ∩ − : CHp(X)→ CHp+1(X)
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(6) If X is a scheme locally of finite type over S satisfying the equivalent
conditions of Lemma 42.1 and E is a finite locally free OX -module, then

ci(E) ∩ − : CHp(X)→ CHp+i(X)
Warning: the property for a morphism to have codimension r is not preserved by
base change.

Remark 42.2.0FE4 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S satisfying the equivalent conditions of Lemma 42.1. Let X =

∐
Xn be

the decomposition into open and closed subschemes such that every irreducible
component of Xn has δ-dimension n. In this situation we sometimes set

[X] =
∑

n
[Xn]n ∈ CH0(X)

This class is a kind of “fundamental class” of X in Chow theory.

43. The splitting principle

02UK In our setting it is not so easy to say what the splitting principle exactly says/is.
Here is a possible formulation.

Lemma 43.1.02UL Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Ei be a finite collection of locally free OX-modules of rank ri. There exists
a projective flat morphism π : P → X of relative dimension d such that

(1) for any morphism f : Y → X the map π∗
Y : CH∗(Y )→ CH∗+d(Y ×X P ) is

injective, and
(2) each π∗Ei has a filtration whose successive quotients Li,1, . . . ,Li,ri are in-

vertible OP -modules.
Moreover, when (1) holds the restriction map A∗(X) → A∗(P ) (Remark 34.2) is
injective.

Proof. We may assume ri ≥ 1 for all i. We will prove the lemma by induction on∑
(ri − 1). If this integer is 0, then Ei is invertible for all i and we conclude by

taking π = idX . If not, then we can pick an i such that ri > 1 and consider the
morphism πi : Pi = P(Ei)→ X. We have a short exact sequence

0→ F → π∗
i Ei → OPi(1)→ 0

of finite locally free OPi-modules of ranks ri − 1, ri, and 1. Observe that π∗
i is

injective on chow groups after any base change by the projective bundle formula
(Lemma 36.2). By the induction hypothesis applied to the finite locally free OPi-
modules F and π∗

i′Ei′ for i′ ̸= i, we find a morphism π : P → Pi with properties
stated as in the lemma. Then the composition πi ◦ π : P → X does the job. Some
details omitted. □

Remark 43.2.0FVE The proof of Lemma 43.1 shows that the morphism π : P → X
has the following additional properties:

(1) π is a finite composition of projective space bundles associated to locally
free modules of finite constant rank, and

(2) for every α ∈ CHk(X) we have α = π∗(ξ1 ∩ . . . ∩ ξd ∩ π∗α) where ξi is the
first Chern class of some invertible OP -module.

The second observation follows from the first and Lemma 36.1. We will add more
observations here as needed.

https://stacks.math.columbia.edu/tag/0FE4
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Let (S, δ), X, and Ei be as in Lemma 43.1. The splitting principle refers to the
practice of symbolically writing

c(Ei) =
∏

(1 + xi,j)

The symbols xi,1, . . . , xi,ri are called the Chern roots of Ei. In other words, the
pth Chern class of Ei is the pth elementary symmetric function in the Chern roots.
The usefulness of the splitting principle comes from the assertion that in order to
prove a polynomial relation among Chern classes of the Ei it is enough to prove the
corresponding relation among the Chern roots.

Namely, let π : P → X be as in Lemma 43.1. Recall that there is a canonical
Z-algebra map π∗ : A∗(X) → A∗(P ), see Remark 34.2. The injectivity of π∗

Y on
Chow groups for every Y over X, implies that the map π∗ : A∗(X) → A∗(P ) is
injective (details omitted). We have

π∗c(Ei) =
∏

(1 + c1(Li,j))

by Lemma 40.4. Thus we may think of the Chern roots xi,j as the elements
c1(Li,j) ∈ A∗(P ) and the displayed equation as taking place in A∗(P ) after ap-
plying the injective map π∗ : A∗(X)→ A∗(P ) to the left hand side of the equation.

To see how this works, it is best to give some examples.

Lemma 43.3.0FA5 In Situation 7.1 let X be locally of finite type over S. Let E be a
finite locally free OX-module with dual E∨. Then

ci(E∨) = (−1)ici(E)

in Ai(X).

Proof. Choose a morphism π : P → X as in Lemma 43.1. By the injectivity of π∗

(after any base change) it suffices to prove the relation between the Chern classes
of E and E∨ after pulling back to P . Thus we may assume there exist invertible
OX -modules Li, i = 1, . . . , r and a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E

such that Ei/Ei−1 ∼= Li. Then we obtain the dual filtration

0 = E⊥
r ⊂ E⊥

1 ⊂ E⊥
2 ⊂ . . . ⊂ E⊥

0 = E∨

such that E⊥
i−1/E⊥

i
∼= L⊗−1

i . Set xi = c1(Li). Then c1(L⊗−1
i ) = −xi by Lemma

25.2. By Lemma 40.4 we have

c(E) =
∏r

i=1
(1 + xi) and c(E∨) =

∏r

i=1
(1− xi)

in A∗(X). The result follows from a formal computation which we omit. □

Lemma 43.4.0FA6 In Situation 7.1 let X be locally of finite type over S. Let E and
F be a finite locally free OX-modules of ranks r and s. Then we have

c1(E ⊗ F) = rc1(F) + sc1(E)

c2(E ⊗ F) = rc2(F) + sc2(E) +
(
r

2

)
c1(F)2 + (rs− 1)c1(F)c1(E) +

(
s

2

)
c1(E)2

and so on in A∗(X).

https://stacks.math.columbia.edu/tag/0FA5
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Proof. Arguing exactly as in the proof of Lemma 43.3 we may assume we have
invertible OX -modules Li, i = 1, . . . , r Ni, i = 1, . . . , s filtrations

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E and 0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fs = F

such that Ei/Ei−1 ∼= Li and such that Fj/Fj−1 ∼= Nj . Ordering pairs (i, j) lexico-
graphically we obtain a filtration

0 ⊂ . . . ⊂ Ei ⊗Fj + Ei−1 ⊗F ⊂ . . . ⊂ E ⊗ F

with successive quotients

L1 ⊗N1,L1 ⊗N2, . . . ,L1 ⊗Ns,L2 ⊗N1, . . . ,Lr ⊗Ns
By Lemma 40.4 we have

c(E) =
∏

(1 + xi), c(F) =
∏

(1 + yj), and c(E ⊗ F) =
∏

(1 + xi + yj),

in A∗(X). The result follows from a formal computation which we omit. □

Remark 43.5.0FA7 The equalities proven above remain true even when we work with
finite locally free OX -modules whose rank is allowed to be nonconstant. In fact, we
can work with polynomials in the rank and the Chern classes as follows. Consider
the graded polynomial ring Z[r, c1, c2, c3, . . .] where r has degree 0 and ci has degree
i. Let

P ∈ Z[r, c1, c2, c3, . . .]
be a homogeneous polynomial of degree p. Then for any finite locally free OX -
module E on X we can consider

P (E) = P (r(E), c1(E), c2(E), c3(E), . . .) ∈ Ap(X)

see Remark 38.10 for notation and conventions. To prove relations among these
polynomials (for multiple finite locally free modules) we can work locally on X and
use the splitting principle as above. For example, we claim that

c2(HomOX
(E , E)) = P (E)

where P = 2rc2 − (r − 1)c2
1. Namely, since HomOX

(E , E) = E ⊗ E∨ this follows
easily from Lemmas 43.3 and 43.4 above by decomposing X into parts where the
rank of E is constant as in Remark 38.10.

Example 43.6.0F9B For every p ≥ 1 there is a unique homogeneous polynomial
Pp ∈ Z[c1, c2, c3, . . .] of degree p such that, for any n ≥ p we have

Pp(s1, s2, . . . , sp) =
∑

xpi

in Z[x1, . . . , xn] where s1, . . . , sp are the elementary symmetric polynomials in
x1, . . . , xn, so

si =
∑

1≤j1<...<ji≤n
xj1xj2 . . . xji

The existence of Pp comes from the well known fact that the elementary symmetric
functions generate the ring of all symmetric functions over the integers. Another
way to characterize Pp ∈ Z[c1, c2, c3, . . .] is that we have

log(1 + c1 + c2 + c3 + . . .) =
∑

p≥1
(−1)p−1Pp

p

https://stacks.math.columbia.edu/tag/0FA7
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as formal power series. This is clear by writing 1 + c1 + c2 + . . . =
∏

(1 + xi) and
applying the power series for the logarithm function. Expanding the left hand side
we get

(c1 + c2 + . . .)− (1/2)(c1 + c2 + . . .)2 + (1/3)(c1 + c2 + . . .)3 − . . .
= c1 + (c2 − (1/2)c2

1) + (c3 − c1c2 + (1/3)c3
1) + . . .

In this way we find that
P1 = c1,

P2 = c2
1 − 2c2,

P3 = c3
1 − 3c1c2 + 3c3,

P4 = c4
1 − 4c2

1c2 + 4c1c3 + 2c2
2 − 4c4,

and so on. Since the Chern classes of a finite locally free OX -module E are the
elementary symmetric polynomials in the Chern roots xi, we see that

Pp(E) =
∑

xpi

For convenience we set P0 = r in Z[r, c1, c2, c3, . . .] so that P0(E) = r(E) as a
bivariant class (as in Remarks 38.10 and 43.5).

44. Chern classes and sections

0FA8 A brief section whose main result is that we may compute the top Chern class of a
finite locally free module using the vanishing locus of a “regular section.
Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite type over S.
Let E be a finite locally free OX -module. Let f : X ′ → X be locally of finite type.
Let

s ∈ Γ(X ′, f∗E)
be a global section of the pullback of E to X ′. Let Z(s) ⊂ X ′ be the zero scheme of
s. More precisely, we define Z(s) to be the closed subscheme whose quasi-coherent
sheaf of ideals is the image of the map s : f∗E∨ → OX′ .

Lemma 44.1.0FA9 In the situation described just above assume dimδ(X ′) = n, that
f∗E has constant rank r, that dimδ(Z(s)) ≤ n− r, and that for every generic point
ξ ∈ Z(s) with δ(ξ) = n − r the ideal of Z(s) in OX′,ξ is generated by a regular
sequence of length r. Then

cr(E) ∩ [X ′]n = [Z(s)]n−r

in CH∗(X ′).

Proof. Since cr(E) is a bivariant class (Lemma 38.7) we may assume X = X ′ and
we have to show that cr(E) ∩ [X]n = [Z(s)]n−r in CHn−r(X). We will prove the
lemma by induction on r ≥ 0. (The case r = 0 is trivial.) The case r = 1 is handled
by Lemma 25.4. Assume r > 1.
Let π : P → X be the projective space bundle associated to E and consider the
short exact sequence

0→ E ′ → π∗E → OP (1)→ 0
By the projective space bundle formula (Lemma 36.2) it suffices to prove the equal-
ity after pulling back by π. Observe that π−1Z(s) = Z(π∗s) has δ-dimension ≤ n−1

https://stacks.math.columbia.edu/tag/0FA9
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and that the assumption on regular sequences at generic points of δ-dimension n−1
holds by flat pullback, see Algebra, Lemma 68.5. Let t ∈ Γ(P,OP (1)) be the image
of π∗s. We claim

[Z(t)]n+r−2 = c1(OP (1)) ∩ [P ]n+r−1

Assuming the claim we finish the proof as follows. The restriction π∗s|Z(t) maps to
zero in OP (1)|Z(t) hence comes from a unique element s′ ∈ Γ(Z(t), E ′|Z(t)). Note
that Z(s′) = Z(π∗s) as closed subschemes of P . If ξ ∈ Z(s′) is a generic point
with δ(ξ) = n− 1, then the ideal of Z(s′) in OZ(t),ξ can be generated by a regular
sequence of length r − 1: it is generated by r − 1 elements which are the images
of r − 1 elements in OP,ξ which together with a generator of the ideal of Z(t) in
OP,ξ form a regular sequence of length r in OP,ξ. Hence we can apply the induction
hypothesis to s′ on Z(t) to get cr−1(E ′) ∩ [Z(t)]n+r−2 = [Z(s′)]n−1. Combining all
of the above we obtain

cr(π∗E) ∩ [P ]n+r−1 = cr−1(E ′) ∩ c1(OP (1)) ∩ [P ]n+r−1

= cr−1(E ′) ∩ [Z(t)]n+r−2

= [Z(s′)]n−1

= [Z(π∗s)]n−1

which is what we had to show.

Proof of the claim. This will follow from an application of the already used Lemma
25.4. We have π−1(Z(s)) = Z(π∗s) ⊂ Z(t). On the other hand, for x ∈ X if
Px ⊂ Z(t), then t|Px = 0 which implies that s is zero in the fibre E ⊗ κ(x), which
implies x ∈ Z(s). It follows that dimδ(Z(t)) ≤ n+ (r− 1)− 1. Finally, let ξ ∈ Z(t)
be a generic point with δ(ξ) = n + r − 2. If ξ is not the generic point of the fibre
of P → X it is immediate that a local equation of Z(t) is a nonzerodivisor in OP,ξ
(because we can check this on the fibre by Algebra, Lemma 99.2). If ξ is the generic
point of a fibre, then x = π(ξ) ∈ Z(s) and δ(x) = n + r − 2 − (r − 1) = n − 1.
This is a contradiction with dimδ(Z(s)) ≤ n− r because r > 1 so this case doesn’t
happen. □

Lemma 44.2.0FAA Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let

0→ N ′ → N → E → 0
be a short exact sequence of finite locally free OX-modules. Consider the closed
embedding

i : N ′ = Spec
X

(Sym((N ′)∨)) −→ N = Spec
X

(Sym(N∨))

For α ∈ CHk(X) we have

i∗(p′)∗α = p∗(ctop(E) ∩ α)

where p′ : N ′ → X and p : N → X are the structure morphisms.

Proof. Here ctop(E) is the bivariant class defined in Remark 38.11. By its very
definition, in order to verify the formula, we may assume that E has constant rank.
We may similarly assume N ′ and N have constant ranks, say r′ and r, so E has
rank r − r′ and ctop(E) = cr−r′(E). Observe that p∗E has a canonical section

s ∈ Γ(N, p∗E) = Γ(X, p∗p
∗E) = Γ(X, E ⊗OX

Sym(N∨) ⊃ Γ(X,Hom(N , E))
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corresponding to the surjection N → E given in the statement of the lemma. The
vanishing scheme of this section is exactly N ′ ⊂ N . Let Y ⊂ X be an integral
closed subscheme of δ-dimension n. Then we have

(1) p∗[Y ] = [p−1(Y )] since p−1(Y ) is integral of δ-dimension n+ r,
(2) (p′)∗[Y ] = [(p′)−1(Y )] since (p′)−1(Y ) is integral of δ-dimension n+ r′,
(3) the restriction of s to p−1Y has vanishing scheme (p′)−1Y and the closed

immersion (p′)−1Y → p−1Y is a regular immersion (locally cut out by a
regular sequence).

We conclude that

(p′)∗[Y ] = cr−r′(p∗E) ∩ p∗[Y ] in CH∗(N)

by Lemma 44.1. This proves the lemma. □

45. The Chern character and tensor products

02UM Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S. We define
the Chern character of a finite locally free OX -module to be the formal expression

ch(E) =
∑r

i=1
exi

if the xi are the Chern roots of E . Writing this as a polynomial in the Chern classes
we obtain

ch(E) = r(E) + c1(E) + 1
2(c1(E)2 − 2c2(E)) + 1

6(c1(E)3 − 3c1(E)c2(E) + 3c3(E))

+ 1
24(c1(E)4 − 4c1(E)2c2(E) + 4c1(E)c3(E) + 2c2(E)2 − 4c4(E)) + . . .

=
∑

p=0,1,2,...

Pp(E)
p!

with Pp polynomials in the Chern classes as in Example 43.6. The degree p com-
ponent of the above is

chp(E) = Pp(E)
p! ∈ Ap(X)⊗Q

What does it mean that the coefficients are rational numbers? Well this simply
means that we think of chp(E) as an element of Ap(X)⊗Q.

Remark 45.1.0ESX In the discussion above we have defined the components of the
Chern character chp(E) ∈ Ap(X) ⊗ Q of E even if the rank of E is not constant.
See Remarks 38.10 and 43.5. Thus the full Chern character of E is an element of∏
p≥0(Ap(X)⊗Q). If X is quasi-compact and dim(X) <∞ (usual dimension), then

one can show using Lemma 34.6 and the splitting principle that ch(E) ∈ A∗(X)⊗Q.

Lemma 45.2.0F9C Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let 0 → E1 → E → E2 → 0 be a short exact sequence of finite locally free
OX-modules. Then we have the equality

ch(E) = ch(E1) + ch(E2)

More precisely, we have Pp(E) = Pp(E1) + Pp(E2) in Ap(X) where Pp is as in
Example 43.6.

https://stacks.math.columbia.edu/tag/0ESX
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Proof. It suffices to prove the more precise statement. By Section 43 this follows
because if x1,i, i = 1, . . . , r1 and x2,i, i = 1, . . . , r2 are the Chern roots of E1 and
E2, then x1,1, . . . , x1,r1 , x2,1, . . . , x2,r2 are the Chern roots of E . Hence we get the
result from our choice of Pp in Example 43.6. □

Lemma 45.3.0F9D Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E1 and E2 be finite locally free OX-modules. Then we have the equality

ch(E1 ⊗OX
E2) = ch(E1)ch(E2)

More precisely, we have

Pp(E1 ⊗OX
E2) =

∑
p1+p2=p

(
p

p1

)
Pp1(E1)Pp2(E2)

in Ap(X) where Pp is as in Example 43.6.

Proof. It suffices to prove the more precise statement. By Section 43 this follows
because if x1,i, i = 1, . . . , r1 and x2,i, i = 1, . . . , r2 are the Chern roots of E1 and
E2, then x1,i + x2,j , 1 ≤ i ≤ r1, 1 ≤ j ≤ r2 are the Chern roots of E1 ⊗ E2. Hence
we get the result from the binomial formula for (x1,i + x2,j)p and the shape of our
polynomials Pp in Example 43.6. □

Lemma 45.4.0FAB In Situation 7.1 let X be locally of finite type over S. Let E
be a finite locally free OX-module with dual E∨. Then chi(E∨) = (−1)ichi(E) in
Ai(X)⊗Q.

Proof. Follows from the corresponding result for Chern classes (Lemma 43.3). □

46. Chern classes and the derived category

0ESY In this section we define the total Chern class of a perfect object E of the derived
category of a scheme X, under the assumption that E may be represented by a
finite complex of finite locally free modules on an envelope of X.

Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S. Let

Ea → Ea+1 → . . .→ Eb

be a bounded complex of finite locally free OX -modules of constant rank. Then we
define the total Chern class of the complex by the formula

c(E•) =
∏

n=a,...,b
c(En)(−1)n ∈

∏
p≥0

Ap(X)

Here the inverse is the formal inverse, so

(1 + c1 + c2 + c3 + . . .)−1 = 1− c1 + c2
1 − c2 − c3

1 + 2c1c2 − c3 + . . .

We will denote cp(E•) ∈ Ap(X) the degree p part of c(E•). We similarly define the
Chern character of the complex by the formula

ch(E•) =
∑

n=a,...,b
(−1)nch(En) ∈

∏
p≥0

(Ap(X)⊗Q)

We will denote chp(E•) ∈ Ap(X) ⊗ Q the degree p part of ch(E•). Finally, for
Pp ∈ Z[r, c1, c2, c3, . . .] as in Example 43.6 we define

Pp(E•) =
∑

n=a,...,b
(−1)nPp(En)
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in Ap(X). Then we have chp(E•) = (1/p!)Pp(E•) as usual. The next lemma shows
that these constructions only depends on the image of the complex in the derived
category.
Lemma 46.1.0ESZ Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E ∈ D(OX) be an object such that there exists a locally bounded complex
E• of finite locally free OX-modules representing E. Then a slight generalization of
the above constructions

c(E•) ∈
∏

p≥0
Ap(X), ch(E•) ∈

∏
p≥0

Ap(X)⊗Q, Pp(E•) ∈ Ap(X)

are independent of the choice of the complex E•.
Proof. We prove this for the total Chern class; the other two cases follow by the
same arguments using Lemma 45.2 instead of Lemma 40.3.
As in Remark 38.10 in order to define the total chern class c(E•) we decompose X
into open and closed subschemes

X =
∐

i∈I
Xi

such that the rank En is constant on Xi for all n and i. (Since these ranks are
locally constant functions on X we can do this.) Since E• is locally bounded, we
see that only a finite number of the sheaves En|Xi are nonzero for a fixed i. Hence
we can define

c(E•|Xi) =
∏

n
c(En|Xi)(−1)n ∈

∏
p≥0

Ap(Xi)

as above. By Lemma 35.4 we have Ap(X) =
∏
iA

p(Xi). Hence for each p ∈ Z we
have a unique element cp(E•) ∈ Ap(X) restricting to cp(E•|Xi) on Xi for all i.
Suppose we have a second locally bounded complex F• of finite locally free OX -
modules representing E. Let g : Y → X be a morphism locally of finite type with
Y integral. By Lemma 35.3 it suffices to show that with c(g∗E•) ∩ [Y ] is the same
as c(g∗F•) ∩ [Y ] and it even suffices to prove this after replacing Y by an integral
scheme proper and birational over Y . Then first we conclude that g∗E• and g∗F•

are bounded complexes of finite locally free OY -modules of constant rank. Next,
by More on Flatness, Lemma 40.3 we may assume that Hi(Lg∗E) is perfect of tor
dimension ≤ 1 for all i ∈ Z. This reduces us to the case discussed in the next
paragraph.
Assume X is integral, E• and F• are bounded complexes of finite locally free
modules of constant rank, and Hi(E) is a perfect OX -module of tor dimension ≤ 1
for all i ∈ Z. We have to show that c(E•)∩ [X] is the same as c(F•)∩ [X]. Denote
diE : E i → E i+1 and diF : F i → F i+1 the differentials of our complexes. By More
on Flatness, Remark 40.4 we know that Im(diE), Ker(diE), Im(diF ), and Ker(diF ) are
finite locally free OX -modules for all i. By additivity (Lemma 40.3) we see that

c(E•) =
∏

i
c(Ker(diE))(−1)ic(Im(diE))(−1)i

and similarly for F•. Since we have the short exact sequences
0→ Im(diE)→ Ker(diE)→ Hi(E)→ 0 and 0→ Im(diF )→ Ker(diF )→ Hi(E)→ 0
we reduce to the problem stated and solved in the next paragraph.
Assume X is integral and we have two short exact sequences

0→ E ′ → E → Q → 0 and 0→ F ′ → F → Q→ 0
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CHOW HOMOLOGY AND CHERN CLASSES 93

with E , E ′, F , F ′ finite locally free. Problem: show that c(E)c(E ′)−1 ∩ [X] =
c(F)c(F ′)−1 ∩ [X]. To do this, consider the short exact sequence

0→ G → E ⊕ F → Q → 0
defining G. Since Q has tor dimension ≤ 1 we see that G is finite locally free. A
diagram chase shows that the kernel of the surjection G → F maps isomorphically
to E ′ in E and the kernel of the surjection G → E maps isomorphically to F ′ in F .
(Working affine locally this follows from or is equivalent to Schanuel’s lemma, see
Algebra, Lemma 109.1.) We conclude that

c(E)c(F ′) = c(G) = c(F)c(E ′)
as desired. □

Lemma 46.2.0GUD Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E ∈ D(OX) be a perfect object. Assume there exists an envelope f : Y → X
(Definition 22.1) such that Lf∗E is isomorphic in D(OY ) to a locally bounded
complex E• of finite locally free OY -modules. Then there exists unique bivariant
classes c(E) ∈

∏
p≥0 A

p(X), ch(E) ∈
∏
p≥0 A

p(X) ⊗ Q, and Pp(E) ∈ Ap(X),
independent of the choice of f : Y → X and E•, such that the restriction of these
classes to Y are equal to c(E•), ch(E•), and Pp(E•).
Proof. Fix p ∈ Z. We will prove the lemma for the chern class cp(E) ∈ Ap(X)
and omit the arguments for the other cases.
Let g : T → X be a morphism locally of finite type such that there exists a
locally bounded complex E• of finite locally free OT -modules representing Lg∗E
in D(OT ). The bivariant class cp(E•) ∈ Ap(T ) is independent of the choice of E•

by Lemma 46.1. Let us write cp(Lg∗E) ∈ Ap(T ) for this class. For any further
morphism h : T ′ → T which is locally of finite type, setting g′ = g ◦ h we see
that L(g′)∗E = L(g ◦ h)∗E = Lh∗Lg∗E is represented by h∗E• in D(OT ′). We
conclude that cp(L(g′)∗E) makes sense and is equal to the restriction (Remark
33.5) of cp(Lg∗E) to T ′ (strictly speaking this requires an application of Lemma
38.7).
Let f : Y → X and E• be as in the statement of the lemma. We obtain a bivariant
class cp(E) ∈ Ap(X) from an application of Lemma 35.6 to f : Y → X and the
class c′ = cp(Lf∗E) we constructed in the previous paragraph. The assumption in
the lemma is satisfied because by the discussion in the previous paragraph we have
res1(c′) = cp(Lg∗E) = res2(c′) where g = f ◦ p = f ◦ q : Y ×X Y → X.
Finally, suppose that f ′ : Y ′ → X is a second envelope such that L(f ′)∗E is
represented by a bounded complex of finite locally free OY ′ -modules. Then it
follows that the restrictions of cp(Lf∗E) and cp(L(f ′)∗E) to Y ×X Y ′ are equal.
Since Y ×X Y ′ → X is an envelope (Lemmas 22.3 and 22.2), we see that our two
candidates for cp(E) agree by the unicity in Lemma 35.6. □

Definition 46.3.0F9E Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let E ∈ D(OX) be a perfect object.

(1) We say the Chern classes of E are defined4 if there exists an envelope
f : Y → X such that Lf∗E is isomorphic in D(OY ) to a locally bounded
complex of finite locally free OY -modules.

4See Lemma 46.4 for some criteria.
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(2) If the Chern classes of E are defined, then we define

c(E) ∈
∏

p≥0
Ap(X), ch(E) ∈

∏
p≥0

Ap(X)⊗Q, Pp(E) ∈ Ap(X)

by an application of Lemma 46.2.

This definition applies in many but not all situations envisioned in this chapter,
see Lemma 46.4. Perhaps an elementary construction of these bivariant classes for
general E/X/(S, δ) as in the definition exists; we don’t know.

Lemma 46.4.0GUE Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let E ∈ D(OX) be a perfect object. If one of the following conditions hold,
then the Chern classes of E are defined:

(1) there exists an envelope f : Y → X such that Lf∗E is isomorphic in D(OY )
to a locally bounded complex of finite locally free OY -modules,

(2) E can be represented by a bounded complex of finite locally free OX-modules,
(3) the irreducible components of X are quasi-compact,
(4) X is quasi-compact,
(5) there exists a morphism X → X ′ of schemes locally of finite type over S

such that E is the pullback of a perfect object E′ on X ′ whose chern classes
are defined, or

(6) add more here.

Proof. Condition (1) is just Definition 46.3 part (1). Condition (2) implies (1).

As in (3) assume the irreducible components Xi of X are quasi-compact. We view
Xi as a reduced integral closed subscheme over X. The morphism

∐
Xi → X

is an envelope. For each i there exists an envelope X ′
i → Xi such that X ′

i has
an ample family of invertible modules, see More on Morphisms, Proposition 80.3.
Observe that f : Y =

∐
X ′
i → X is an envelope; small detail omitted. By Derived

Categories of Schemes, Lemma 36.7 each X ′
i has the resolution property. Thus the

perfect object L(f |X′
i
)∗E of D(OX′

i
) can be represented by a bounded complex of

finite locally free OX′
i
-modules, see Derived Categories of Schemes, Lemma 37.2.

This proves (3) implies (1).

Part (4) implies (3).

Let g : X → X ′ and E′ be as in part (5). Then there exists an envelope f ′ :
Y ′ → X ′ such that L(f ′)∗E′ is represented by a locally bounded complex (E ′)• of
OY ′ -modules. Then the base change f : Y → X is an envelope by Lemma 22.3.
Moreover, the pulllback E• = g∗(E ′)• represents Lf∗E and we see that the chern
classes of E are defined. □

Lemma 46.5.0GUF Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E ∈ D(OX) be a perfect object. Assume the Chern classes of E are defined.
For g : W → X locally of finite type with W integral, there exists a commutative
diagram

W ′

g′
!!

b
// W

g
~~

X

https://stacks.math.columbia.edu/tag/0GUE
https://stacks.math.columbia.edu/tag/0GUF


CHOW HOMOLOGY AND CHERN CLASSES 95

with W ′ integral and b : W ′ →W proper birational such that L(g′)∗E is represented
by a bounded complex E• of locally free OW ′-modules of constant rank and we have
res(cp(E)) = cp(E•) in Ap(W ′).

Proof. Choose an envelope f : Y → X such that Lf∗E is isomorphic in D(OY ) to
a locally bounded complex E• of finite locally free OY -modules. The base change
Y ×X W → W of f is an envelope by Lemma 22.3. Choose a point ξ ∈ Y ×X W
mapping to the generic point of W with the same residue field. Consider the
integral closed subscheme W ′ ⊂ Y ×X W with generic point ξ. The restriction of
the projection Y ×X W →W to W ′ is a proper birational morphism b : W ′ →W .
Set g′ = g ◦ b. Finally, consider the pullback (W ′ → Y )∗E•. This is a locally
bounded complex of finite locally free modules on W ′. Since W ′ is integral it
follows that it is bounded and that the terms have constant rank. Finally, by
construction (W ′ → Y )∗E• represents L(g′)∗E and by construction its pth chern
class gives the restriction of cp(E) by W ′ → X. This finishes the proof. □

Lemma 46.6.0FAC Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E ∈ D(OX) be perfect. If the Chern classes of E are defined then

(1) cp(E) is in the center of the algebra A∗(X), and
(2) if g : X ′ → X is locally of finite type and c ∈ A∗(X ′ → X), then c◦cp(E) =

cp(Lg∗E) ◦ c.

Proof. Part (1) follows immediately from part (2). Let g : X ′ → X and c ∈
A∗(X ′ → X) be as in (2). To show that c ◦ cp(E) − cp(Lg∗E) ◦ c = 0 we use the
criterion of Lemma 35.3. Thus we may assume that X is integral and by Lemma
46.5 we may even assume that E is represented by a bounded complex E• of finite
locally free OX -modules of constant rank. Then we have to show that

c ∩ cp(E•) ∩ [X] = cp(E•) ∩ c ∩ [X]
in CH∗(X ′). This is immediate from Lemma 38.9 and the construction of cp(E•)
as a polynomial in the chern classes of the locally free modules En. □

Lemma 46.7.0F9F Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let

E1 → E2 → E3 → E1[1]
be a distinguished triangle of perfect objects in D(OX). If one of the following
conditions holds

(1) there exists an envelope f : Y → X such that Lf∗E1 → Lf∗E2 can be
represented by a map of locally bounded complexes of finite locally free OY -
modules,

(2) E1 → E2 can be represented be a map of locally bounded complexes of finite
locally free OX-modules,

(3) the irreducible components of X are quasi-compact,
(4) X is quasi-compact, or
(5) add more here,

then the Chern classes of E1, E2, E3 are defined and we have c(E2) = c(E1)c(E3),
ch(E2) = ch(E1) + ch(E3), and Pp(E2) = Pp(E1) + Pp(E3).

Proof. Let f : Y → X be an envelope and let α• : E•
1 → E•

2 be a map of locally
bounded complexes of finite locally free OY -modules representing Lf∗E1 → Lf∗E2.
Then the cone C(α)• represents Lf∗E3. Since C(α)n = En2 ⊕En+1

1 we see that C(α)•
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is a locally bounded complex of finite locally free OY -modules. We conclude that
the Chern classes of E1, E2, E3 are defined. Moreover, recall that cp(E1) is defined
as the unique element of Ap(X) which restricts to cp(E•

1 ) in Ap(Y ). Similarly for E2
and E3. Hence it suffices to prove c(E•

2 ) = c(E•
1 )c(C(α)•) in

∏
p≥0 A

p(Y ). In turn,
it suffices to prove this after restricting to a connected component of Y . Hence
we may assume the complexes E•

1 and E•
2 are bounded complexes of finite locally

free OY -modules of fixed rank. In this case the desired equality follows from the
multiplicativity of Lemma 40.3. In the case of ch or Pp we use Lemmas 45.2.

In the previous paragraph we have seen that the lemma holds if condition (1)
is satisfied. Since (2) implies (1) this deals with the second case. Assume (3).
Arguing exactly as in the proof of Lemma 46.4 we find an envelope f : Y → X
such that Y is a disjoint union Y =

∐
Yi of quasi-compact (and quasi-separated)

schemes each having the resolution property. Then we may represent the restriction
of Lf∗E1 → Lf∗E2 to Yi by a map of bounded complexes of finite locally free
modules, see Derived Categories of Schemes, Proposition 37.5. In this way we see
that condition (3) implies condition (1). Of course condition (4) implies condition
(3) and the proof is complete. □

Remark 46.8.0FAD The Chern classes of a perfect complex, when defined, satisfy a
kind of splitting principle. Namely, suppose that (S, δ), X,E are as in Definition
46.3 such that the Chern classes of E are defined. Say we want to prove a relation
between the bivariant classes cp(E), Pp(E), and chp(E). To do this, we may choose
an envelope f : Y → X and a locally bounded complex E• of finite locally free OX -
modules representing E. By the uniqueness in Lemma 46.2 it suffices to prove the
desired relation between the bivariant classes cp(E•), Pp(E•), and chp(E•). Thus we
may replace X by a connected component of Y and assume that E is represented
by a bounded complex E• of finite locally free modules of fixed rank. Using the
splitting principle (Lemma 43.1) we may assume each E i has a filtration whose
successive quotients Li,j are invertible modules. Settting xi,j = c1(Li,j) we see
that

c(E) =
∏

i even
(1 + xi,j)

∏
i odd

(1 + xi,j)−1

and
Pp(E) =

∑
i even

(xi,j)p −
∑

i odd
(xi,j)p

Formally taking the logarithm for the expression for c(E) above we find that

log(c(E)) =
∑

(−1)p−1Pp(E)
p

Looking at the construction of the polynomials Pp in Example 43.6 it follows that
Pp(E) is the exact same expression in the Chern classes of E as in the case of vector
bundles, in other words, we have

P1(E) = c1(E),
P2(E) = c1(E)2 − 2c2(E),
P3(E) = c1(E)3 − 3c1(E)c2(E) + 3c3(E),
P4(E) = c1(E)4 − 4c1(E)2c2(E) + 4c1(E)c3(E) + 2c2(E)2 − 4c4(E),

https://stacks.math.columbia.edu/tag/0FAD
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and so on. On the other hand, the bivariant class P0(E) = r(E) = ch0(E) cannot
be recovered from the Chern class c(E) of E; the chern class doesn’t know about
the rank of the complex.

Lemma 46.9.0FAE In Situation 7.1 let X be locally of finite type over S. Let E ∈
D(OX) be a perfect object whose Chern classes are defined. Then ci(E∨) = (−1)ici(E),
Pi(E∨) = (−1)iPi(E), and chi(E∨) = (−1)ichi(E) in Ai(X).

Proof. First proof: argue as in the proof of Lemma 46.6 to reduce to the case
where E is represented by a bounded complex of finite locally free modules of fixed
rank and apply Lemma 43.3. Second proof: use the splitting principle discussed
in Remark 46.8 and use that the chern roots of E∨ are the negatives of the chern
roots of E. □

Lemma 46.10.0FAF In Situation 7.1 let X be locally of finite type over S. Let E be
a perfect object of D(OX) whose Chern classes are defined. Let L be an invertible
OX-module. Then

ci(E ⊗ L) =
∑i

j=0

(
r − i+ j

j

)
ci−j(E)c1(L)j

provided E has constant rank r ∈ Z.

Proof. In the case where E is locally free of rank r this is Lemma 39.1. The
reader can deduce the lemma from this special case by a formal computation. An
alternative is to use the splitting principle of Remark 46.8. In this case one ends
up having to prove the following algebra fact: if we write formally∏

a=1,...,n(1 + xa)∏
n=1,...,m(1 + yb)

= 1 + c1 + c2 + c3 + . . .

with ci homogeneous of degree i in Z[xi, yj ] then we have∏
a=1,...,n(1 + xa + t)∏
b=1,...,m(1 + yb + t) =

∑
i≥0

∑i

j=0

(
r − i+ j

j

)
ci−jt

j

where r = n−m. We omit the details. □

Lemma 46.11.0FAG In Situation 7.1 let X be locally of finite type over S. Let E and
F be perfect objects of D(OX) whose Chern classes are defined. Then we have

c1(E ⊗L
OX

F ) = r(E)c1(F) + r(F )c1(E)

and for c2(E ⊗L
OX

F ) we have the expression

r(E)c2(F )+r(F )c2(E)+
(
r(E)

2

)
c1(F )2+(r(E)r(F )−1)c1(F )c1(E)+

(
r(F )

2

)
c1(E)2

and so on for higher Chern classes in A∗(X). Similarly, we have ch(E ⊗L
OX

F ) =
ch(E)ch(F ) in A∗(X)⊗Q. More precisely, we have

Pp(E ⊗L
OX

F ) =
∑

p1+p2=p

(
p

p1

)
Pp1(E)Pp2(F )

in Ap(X).

https://stacks.math.columbia.edu/tag/0FAE
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https://stacks.math.columbia.edu/tag/0FAG


CHOW HOMOLOGY AND CHERN CLASSES 98

Proof. After choosing an envelope f : Y → X such that Lf∗E and Lf∗F can
be represented by locally bounded complexes of finite locally free OX -modules this
follows by a compuation from the corresponding result for vector bundles in Lemmas
43.4 and 45.3. A better proof is probably to use the splitting principle as in Remark
46.8 and reduce the lemma to computations in polynomial rings which we describe
in the next paragraph.

Let A be a commutative ring (for us this will be the subring of the bivariant chow
ring of X generated by Chern classes). Let S be a finite set together with maps
ϵ : S → {±1} and f : S → A. Define

Pp(S, f, ϵ) =
∑

s∈S
ϵ(s)f(s)p

in A. Given a second triple (S′, ϵ′, f ′) the equality that has to be shown for Pp is
the equality

Pp(S × S′, f + f ′, ϵϵ′) =
∑

p1+p2=p

(
p

p1

)
Pp1(S, f, ϵ)Pp2(S′, f ′, ϵ′)

To see this is true, one reduces to the polynomial ring on variables S ⨿ S′ and one
shows that each term f(s)if ′(s′)j occurs on the left and right hand side with the
same coefficient. To verify the formulas for c1(E ⊗L

OX
F ) and c2(E ⊗L

OX
F ) we use

the splitting principle to reduce to checking these formulae in a torsion free ring.
Then we use the relationship between Pj(E) and ci(E) proved in Remark 46.8. For
example

c1(E ⊗ F ) = P1(E ⊗ F ) = r(F )P1(E) + r(E)P1(F ) = r(F )c1(E) + r(E)c1(F )

the middle equation because r(E) = P0(E) by definition. Similarly, we have

2c2(E ⊗ F )
= c1(E ⊗ F )2 − P2(E ⊗ F )
= (r(F )c1(E) + r(E)c1(F ))2 − r(F )P2(E)− P1(E)P1(F )− r(E)P2(F )
= (r(F )c1(E) + r(E)c1(F ))2 − r(F )(c1(E)2 − 2c2(E))− c1(E)c1(F )−
r(E)(c1(F )2 − 2c2(F ))

which the reader can verify agrees with the formula in the statement of the lemma
up to a factor of 2. □

47. A baby case of localized Chern classes

0F9G In this section we discuss some properties of the bivariant classes constructed in
the following lemma; most of these properties follow immediately from the charac-
terization given in the lemma. We urge the reader to skip the rest of the section.

Lemma 47.1.0F9H Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let ij : Xj → X, j = 1, 2 be closed immersions such that X = X1 ∪X2 set
theoretically. Let E2 ∈ D(OX2) be a perfect object. Assume

(1) Chern classes of E2 are defined,
(2) the restriction E2|X1∩X2 is zero, resp. isomorphic to a finite locally free
OX1∩X2-module of rank < p sitting in cohomological degree 0.

https://stacks.math.columbia.edu/tag/0F9H
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Then there is a canonical bivariant class

P ′
p(E2), resp. c′

p(E2) ∈ Ap(X2 → X)

characterized by the property

P ′
p(E2) ∩ i2,∗α2 = Pp(E2) ∩ α2 and P ′

p(E2) ∩ i1,∗α1 = 0,

respectively

c′
p(E2) ∩ i2,∗α2 = cp(E2) ∩ α2 and c′

p(E2) ∩ i1,∗α1 = 0

for αi ∈ CHk(Xi) and similarly after any base change X ′ → X locally of finite
type.

Proof. We are going to use the material of Section 46 without further mention.

Assume E2|X1∩X2 is zero. Consider a morphism of schemes X ′ → X which is locally
of finite type and denote i′j : X ′

j → X ′ the base change of ij . By Lemma 19.4 we
can write any element α′ ∈ CHk(X ′) as i′1,∗α′

1 + i′2,∗α
′
2 where α′

2 ∈ CHk(X ′
2) is well

defined up to an element in the image of pushforward by X ′
1 ∩ X ′

2 → X ′
2. Then

we can set P ′
p(E2) ∩ α′ = Pp(E2) ∩ α′

2 ∈ CHk−p(X ′
2). This is well defined by our

assumption that E2 restricts to zero on X1 ∩X2.

If E2|X1∩X2 is isomorphic to a finite locally free OX1∩X2-module of rank < p sitting
in cohomological degree 0, then cp(E2|X1∩X2) = 0 by rank considerations and we
can argue in exactly the same manner. □

Lemma 47.2.0FAH In Lemma 47.1 the bivariant class P ′
p(E2), resp. c′

p(E2) in Ap(X2 →
X) does not depend on the choice of X1.

Proof. Suppose that X ′
1 ⊂ X is another closed subscheme such that X = X ′

1 ∪X2
set theoretically and the restriction E2|X′

1∩X2 is zero, resp. isomorphic to a finite
locally free OX′

1∩X2-module of rank < p sitting in cohomological degree 0. Then
X = (X1 ∩X ′

1)∪X2. Hence we can write any element α ∈ CHk(X) as i∗β+ i2,∗α2
with α2 ∈ CHk(X ′

2) and β ∈ CHk(X1 ∩ X ′
1). Thus it is clear that P ′

p(E2) ∩ α =
Pp(E2) ∩ α2 ∈ CHk−p(X2), resp. c′

p(E2) ∩ α = cp(E2) ∩ α2 ∈ CHk−p(X2), is
independent of whether we use X1 or X ′

1. Similarly after any base change. □

Lemma 47.3.0GUG In Lemma 47.1 let X ′ → X be a morphism which is locally of
finite type. Denote X ′ = X ′

1 ∪ X ′
2 and E′

2 ∈ D(OX′
2
) the pullbacks to X ′. Then

the class P ′
p(E′

2), resp. c′
p(E′

2) in Ap(X ′
2 → X ′) constructed in Lemma 47.1 using

X ′ = X ′
1 ∪ X ′

2 and E′
2 is the restriction (Remark 33.5) of the class P ′

p(E2), resp.
c′
p(E2) in Ap(X2 → X).

Proof. Immediate from the characterization of these classes in Lemma 47.1. □

Lemma 47.4.0F9I In Lemma 47.1 say E2 is the restriction of a perfect E ∈ D(OX)
such that E|X1 is zero, resp. isomorphic to a finite locally free OX1-module of rank
< p sitting in cohomological degree 0. If Chern classes of E are defined, then
i2,∗ ◦ P ′

p(E2) = Pp(E), resp. i2,∗ ◦ c′
p(E2) = cp(E) (with ◦ as in Lemma 33.4).

https://stacks.math.columbia.edu/tag/0FAH
https://stacks.math.columbia.edu/tag/0GUG
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Proof. First, assume E|X1 is zero. With notations as in the proof of Lemma 47.1
the lemma in this case follows from

Pp(E) ∩ α′ = i′1,∗(Pp(E) ∩ α′
1) + i′2,∗(Pp(E) ∩ α′

2)
= i′1,∗(Pp(E|X1) ∩ α′

1) + i′2,∗(P ′
p(E2) ∩ α′)

= i′2,∗(P ′
p(E2) ∩ α′)

The case where E|X1 is isomorphic to a finite locally free OX1 -module of rank < p
sitting in cohomological degree 0 is similar. □

Lemma 47.5.0FAI In Lemma 47.1 suppose we have closed subschemes X ′
2 ⊂ X2 and

X1 ⊂ X ′
1 ⊂ X such that X = X ′

1 ∪X ′
2 set theoretically. Assume E2|X′

1∩X2 is zero,
resp. isomorphic to a finite locally free module of rank < p placed in degree 0. Then
we have (X ′

2 → X2)∗◦P ′
p(E2|X′

2
) = P ′

p(E2), resp. (X ′
2 → X2)∗◦c′

p(E2|X′
2
) = cp(E2)

(with ◦ as in Lemma 33.4).

Proof. This follows immediately from the characterization of these classes in Lemma
47.1. □

Lemma 47.6.0FAJ In Lemma 47.1 let f : Y → X be locally of finite type and say
c ∈ A∗(Y → X). Then

c ◦ P ′
p(E2) = P ′

p(Lf∗
2E2) ◦ c resp. c ◦ c′

p(E2) = c′
p(Lf∗

2E2) ◦ c
in A∗(Y2 → Y ) where f2 : Y2 → X2 is the base change of f .

Proof. Let α ∈ CHk(X). We may write
α = α1 + α2

with αi ∈ CHk(Xi); we are omitting the pushforwards by the closed immersions
Xi → X. The reader then checks that c′

p(E2) ∩ α = cp(E2) ∩ α2, c ∩ c′
p(E2) ∩ α =

c∩ cp(E2)∩α2, c∩α = c∩α1 + c∩α2, and c′
p(Lf∗

2E2)∩ c∩α = cp(Lf∗
2E2)∩ c∩α2.

We conclude by Lemma 46.6. □

Lemma 47.7.0FAK In Lemma 47.1 assume E2|X1∩X2 is zero. Then
P ′

1(E2) = c′
1(E2),

P ′
2(E2) = c′

1(E2)2 − 2c′
2(E2),

P ′
3(E2) = c′

1(E2)3 − 3c′
1(E2)c′

2(E2) + 3c′
3(E2),

P ′
4(E2) = c′

1(E2)4 − 4c′
1(E2)2c′

2(E2) + 4c′
1(E2)c′

3(E2) + 2c′
2(E2)2 − 4c′

4(E2),
and so on with multiplication as in Remark 34.7.

Proof. The statement makes sense because the zero sheaf has rank < 1 and hence
the classes c′

p(E2) are defined for all p ≥ 1. The equalities follow immediately from
the characterization of the classes produced by Lemma 47.1 and the corresponding
result for capping with the Chern classes of E2 given in Remark 46.8. □

Lemma 47.8.0FAL Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let ij : Xj → X, j = 1, 2 be closed immersions such that X = X1 ∪X2 set
theoretically. Let E,F ∈ D(OX) be perfect objects. Assume

(1) Chern classes of E and F are defined,
(2) the restrictions E|X1∩X2 and F |X1∩X2 are isomorphic to a finite locally free
OX1-modules of rank < p and < q sitting in cohomological degree 0.

https://stacks.math.columbia.edu/tag/0FAI
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With notation as in Remark 34.7 set
c(p)(E) = 1 + c1(E) + . . .+ cp−1(E) + c′

p(E|X2) + c′
p+1(E|X2) + . . . ∈ A(p)(X2 → X)

with c′
p(E|X2) as in Lemma 47.1. Similarly for c(q)(F ) and c(p+q)(E ⊕ F ). Then

c(p+q)(E ⊕ F ) = c(p)(E)c(q)(F ) in A(p+q)(X2 → X).

Proof. Immediate from the characterization of the classes in Lemma 47.1 and the
additivity in Lemma 46.7. □

Lemma 47.9.0FAM Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let ij : Xj → X, j = 1, 2 be closed immersions such that X = X1 ∪X2 set
theoretically. Let E,F ∈ D(OX2) be perfect objects. Assume

(1) Chern classes of E and F are defined,
(2) the restrictions E|X1∩X2 and F |X1∩X2 are zero,

Denote P ′
p(E), P ′

p(F ), P ′
p(E ⊕ F ) ∈ Ap(X2 → X) for p ≥ 0 the classes constructed

in Lemma 47.1. Then P ′
p(E ⊕ F ) = P ′

p(E) + P ′
p(F ).

Proof. Immediate from the characterization of the classes in Lemma 47.1 and the
additivity in Lemma 46.7. □

Lemma 47.10.0FAN In Lemma 47.1 assume E2 has constant rank 0. Let L be an
invertible OX-module. Then

c′
i(E2 ⊗ L) =

∑i

j=0

(
−i+ j

j

)
c′
i−j(E2)c1(L)j

Proof. The assumption on rank implies that E2|X1∩X2 is zero. Hence c′
i(E2) is

defined for all i ≥ 1 and the statement makes sense. The actual equality follows
immediately from Lemma 46.10 and the characterization of c′

i in Lemma 47.1. □

Lemma 47.11.0FE5 In Situation 7.1 let X be locally of finite type over S. Let
X = X1 ∪X2 = X ′

1 ∪X ′
2

be two ways of writing X as a set theoretic union of closed subschemes. Let E, E′

be perfect objects of D(OX) whose Chern classes are defined. Assume that E|X1

and E′|X′
1

are zero5 for i = 1, 2. Denote
(1) r = P ′

0(E) ∈ A0(X2 → X) and r′ = P ′
0(E′) ∈ A0(X ′

2 → X),
(2) γp = c′

p(E|X2) ∈ Ap(X2 → X) and γ′
p = c′

p(E′|X′
2
) ∈ Ap(X ′

2 → X),
(3) χp = P ′

p(E|X2) ∈ Ap(X2 → X) and χ′
p = P ′

p(E′|X′
2
) ∈ Ap(X ′

2 → X)
the classes constructed in Lemma 47.1. Then we have

c′
1((E ⊗L

OX
E′)|X2∩X′

2
) = rγ′

1 + r′γ1

in A1(X2 ∩X ′
2 → X) and

c′
2((E ⊗L

OX
E′)|X2∩X′

2
) = rγ′

2 + r′γ2 +
(
r

2

)
(γ′

1)2 + (rr′ − 1)γ′
1γ1 +

(
r′

2

)
γ2

1

in A2(X2 ∩X ′
2 → X) and so on for higher Chern classes. Similarly, we have

P ′
p((E ⊗L

OX
E′)|X2∩X′

2
) =

∑
p1+p2=p

(
p

p1

)
χp1χ

′
p2

5Presumably there is a variant of this lemma where we only assume these restrictions are
isomorphic to a finite locally free modules of rank < p and < p′.

https://stacks.math.columbia.edu/tag/0FAM
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in Ap(X2 ∩X ′
2 → X).

Proof. First we observe that the statement makes sense. Namely, we have X =
(X2∩X ′

2)∪Y where Y = (X1∩X ′
1)∪(X1∩X ′

2)∪(X2∩X ′
1) and the object E⊗L

OX
E′

restricts to zero on Y . The actual equalities follow from the characterization of our
classes in Lemma 47.1 and the equalities of Lemma 46.11. We omit the details. □

48. Gysin at infinity

0FAP This section is about the bivariant class constructed in the next lemma. We urge
the reader to skip the rest of the section.

Lemma 48.1.0F9J Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let b : W → P1

X be a proper morphism of schemes which is an isomorphism
over A1

X . Denote i∞ : W∞ → W the inverse image of the divisor D∞ ⊂ P1
X with

complement A1
X . Then there is a canonical bivariant class

C ∈ A0(W∞ → X)

with the property that i∞,∗(C ∩α) = i0,∗α for α ∈ CHk(X) and similarly after any
base change by X ′ → X locally of finite type.

Proof. Given α ∈ CHk(X) there exists a β ∈ CHk+1(W ) restricting to the flat
pullback of α on b−1(A1

X), see Lemma 14.2. A second choice of β differs from β by
a cycle supported on W∞, see Lemma 19.3. Since the normal bundle of the effective
Cartier divisor D∞ ⊂ P1

X of (18.1.1) is trivial, the gysin homomorphism i∗∞ kills
cycle classes supported on W∞, see Remark 29.6. Hence setting C ∩ α = i∗∞β is
well defined.

Since W∞ and W0 = X×{0} are the pullbacks of the rationally equivalent effective
Cartier divisors D0, D∞ in P1

X , we see that i∗∞β and i∗0β map to the same cycle
class on W ; namely, both represent the class c1(OP1

X
(1)) ∩ β by Lemma 29.4. By

our choice of β we have i∗0β = α as cycles on W0 = X×{0}, see for example Lemma
31.1. Thus we see that i∞,∗(C ∩ α) = i0,∗α as stated in the lemma.

Observe that the assumptions on b are preserved by any base change by X ′ → X
locally of finite type. Hence we get an operation C ∩ − : CHk(X ′) → CHk(W ′

∞)
by the same construction as above. To see that this family of operations defines a
bivariant class, we consider the diagram

CH∗(X)

flat pullback
��

CH∗+1(W∞) //

0

''

CH∗+1(W )

i∗∞
��

flat pullback // CH∗+1(A1
X) //

C∩−uu

0

CH∗(W∞)

for X as indicated and the base change of this diagram for any X ′ → X. We
know that flat pullback and i∗∞ are bivariant operations, see Lemmas 33.2 and
33.3. Then a formal argument (involving huge diagrams of schemes and their chow
groups) shows that the dotted arrow is a bivariant operation. □

https://stacks.math.columbia.edu/tag/0F9J
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Lemma 48.2.0GUH In Lemma 48.1 let X ′ → X be a morphism which is locally of finite
type. Denote b′ : W ′ → P1

X′ and i′∞ : W ′
∞ → W ′ the base changes of b and i∞.

Then the class C ′ ∈ A0(W ′
∞ → X ′) constructed as in Lemma 48.1 using b′ is the

restriction (Remark 33.5) of C.

Proof. Immediate from the construction and the fact that a similar statement
holds for flat pullback and i∗∞. □

Lemma 48.3.0FAQ In Lemma 48.1 let g : W ′ → W be a proper morphism which is
an isomorphism over A1

X . Let C ′ ∈ A0(W ′
∞ → X) and C ∈ A0(W∞ → X) be the

classes constructed in Lemma 48.1. Then g∞,∗ ◦ C ′ = C in A0(W∞ → X).

Proof. Set b′ = b ◦ g : W ′ → P1
X . Denote i′∞ : W ′

∞ →W ′ the inclusion morphism.
Denote g∞ : W ′

∞ → W∞ the restriction of g. Given α ∈ CHk(X) choose β′ ∈
CHk+1(W ′) restricting to the flat pullback of α on (b′)−1A1

X . Then β = g∗β
′ ∈

CHk+1(W ) restricts to the flat pullback of α on b−1A1
X . Then i∗∞β = g∞,∗(i′∞)∗β′

by Lemma 29.8. This and the corresponding fact after base change by morphisms
X ′ → X locally of finite type, corresponds to the assertion made in the lemma. □

Lemma 48.4.0FAR In Lemma 48.1 we have C ◦ (W∞ → X)∗ ◦ i∗∞ = i∗∞.

Proof. Let β ∈ CHk+1(W ). Denote i0 : X = X × {0} → W the closed immersion
of the fibre over 0 in P1. Then (W∞ → X)∗i

∗
∞β = i∗0β in CHk(X) because i∞,∗i

∗
∞β

and i0,∗i∗0β represent the same class on W (for example by Lemma 29.4) and hence
pushforward to the same class on X. The restriction of β to b−1(A1

X) restricts to
the flat pullback of i∗0β = (W∞ → X)∗i

∗
∞β because we can check this after pullback

by i0, see Lemmas 32.2 and 32.4. Hence we may use β when computing the image
of (W∞ → X)∗i

∗
∞β under C and we get the desired result. □

Lemma 48.5.0FAS In Lemma 48.1 let f : Y → X be a morphism locally of finite type
and c ∈ A∗(Y → X). Then C ◦ c = c ◦ C in A∗(W∞ ×X Y → X).

Proof. Consider the commutative diagram

W∞ ×X Y WY,∞
iY,∞

//

��

WY
bY

//

��

P1
Y pY

//

��

Y

f

��
W∞

i∞ // W
b // P1

X

p // X

with cartesian squares. For an elemnent α ∈ CHk(X) choose β ∈ CHk+1(W ) whose
restriction to b−1(A1

X) is the flat pullback of α. Then c ∩ β is a class in CH∗(WY )
whose restriction to b−1

Y (A1
Y ) is the flat pullback of c ∩ α. Next, we have

i∗Y,∞(c ∩ β) = c ∩ i∗∞β

because c is a bivariant class. This exactly says that C ∩ c ∩ α = c ∩ C ∩ α. The
same argument works after any base change by X ′ → X locally of finite type. This
proves the lemma. □

49. Preparation for localized Chern classes

0FAT In this section we discuss some properties of the bivariant classes constructed in
the following lemma. We urge the reader to skip the rest of the section.
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Lemma 49.1.0F9K Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Z ⊂ X be a closed subscheme. Let

b : W −→ P1
X

be a proper morphism of schemes. Let Q ∈ D(OW ) be a perfect object. Denote
W∞ ⊂ W the inverse image of the divisor D∞ ⊂ P1

X with complement A1
X . We

assume
(A0) Chern classes of Q are defined (Section 46),
(A1) b is an isomorphism over A1

X ,
(A2) there exists a closed subscheme T ⊂W∞ containing all points of W∞ lying

over X \ Z such that Q|T is zero, resp. isomorphic to a finite locally free
OT -module of rank < p sitting in cohomological degree 0.

Then there exists a canonical bivariant class
P ′
p(Q), resp. c′

p(Q) ∈ Ap(Z → X)

with (Z → X)∗ ◦ P ′
p(Q) = Pp(Q|X×{0}), resp. (Z → X)∗ ◦ c′

p(Q) = cp(Q|X×{0}).

Proof. Denote E ⊂ W∞ the inverse image of Z. Then W∞ = T ∪ E and b
induces a proper morphism E → Z. Denote C ∈ A0(W∞ → X) the bivariant class
constructed in Lemma 48.1. Denote P ′

p(Q|E), resp. c′
p(Q|E) in Ap(E → W∞) the

bivariant class constructed in Lemma 47.1. This makes sense because (Q|E)|T∩E
is zero, resp. isomorphic to a finite locally free OE∩T -module of rank < p sitting in
cohomological degree 0 by assumption (A2). Then we define

P ′
p(Q) = (E → Z)∗ ◦ P ′

p(Q|E) ◦ C, resp. c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C
This is a bivariant class, see Lemma 33.4. Since E → Z → X is equal to E →
W∞ →W → X we see that

(Z → X)∗ ◦ c′
p(Q) = (W → X)∗ ◦ i∞,∗ ◦ (E →W∞)∗ ◦ c′

p(Q|E) ◦ C
= (W → X)∗ ◦ i∞,∗ ◦ cp(Q|W∞) ◦ C
= (W → X)∗ ◦ cp(Q) ◦ i∞,∗ ◦ C
= (W → X)∗ ◦ cp(Q) ◦ i0,∗
= (W → X)∗ ◦ i0,∗ ◦ cp(Q|X×{0})
= cp(Q|X×{0})

The second equality holds by Lemma 47.4. The third equality because cp(Q) is a
bivariant class. The fourth equality by Lemma 48.1. The fifth equality because
cp(Q) is a bivariant class. The final equality because (W0 → W ) ◦ (W → X) is
the identity on X if we identify W0 with X as we’ve done above. The exact same
sequence of equations works to prove the property for P ′

p(Q). □

Lemma 49.2.0GUI In Lemma 49.1 let X ′ → X be a morphism which is locally of
finite type. Denote Z ′, b′ : W ′ → P1

X′ , and T ′ ⊂ W ′
∞ the base changes of Z,

b : W → P1
X , and T ⊂W∞. Set Q′ = (W ′ →W )∗Q. Then the class P ′

p(Q′), resp.
c′
p(Q′) in Ap(Z ′ → X ′) constructed as in Lemma 49.1 using b′, Q′, and T ′ is the

restriction (Remark 33.5) of the class P ′
p(Q), resp. c′

p(Q) in Ap(Z → X).

Proof. Recall that the construction is as follows
P ′
p(Q) = (E → Z)∗ ◦ P ′

p(Q|E) ◦ C, resp. c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C

https://stacks.math.columbia.edu/tag/0F9K
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Thus the lemma follows from the corresponding base change property for C (Lemma
48.2) and the fact that the same base change property holds for the classes con-
structed in Lemma 47.1 (small detail omitted). □

Lemma 49.3.0FAU In Lemma 49.1 the bivariant class P ′
p(Q), resp. c′

p(Q) is indepen-
dent of the choice of the closed subscheme T . Moreover, given a proper morphism
g : W ′ → W which is an isomorphism over A1

X , then setting Q′ = g∗Q we have
P ′
p(Q) = P ′

p(Q′), resp. c′
p(Q) = c′

p(Q′).

Proof. The independence of T follows immediately from Lemma 47.2.

Let g : W ′ →W be a proper morphism which is an isomorphism over A1
X . Observe

that taking T ′ = g−1(T ) ⊂ W ′
∞ is a closed subscheme satisfying (A2) hence the

operator P ′
p(Q′), resp. c′

p(Q′) in Ap(Z → X) corresponding to b′ = b◦g : W ′ → P1
X

and Q′ is defined. Denote E′ ⊂W ′
∞ the inverse image of Z in W ′

∞. Recall that

c′
p(Q′) = (E′ → Z)∗ ◦ c′

p(Q′|E′) ◦ C ′

with C ′ ∈ A0(W ′
∞ → X) and c′

p(Q′|E′) ∈ Ap(E′ →W ′
∞). By Lemma 48.3 we have

g∞,∗ ◦C ′ = C. Observe that E′ is also the inverse image of E in W ′
∞ by g∞. Since

moreover Q′ = g∗Q we find that c′
p(Q′|E′) is simply the restriction of c′

p(Q|E) to
schemes lying over W ′

∞, see Remark 33.5. Thus we obtain

c′
p(Q′) = (E′ → Z)∗ ◦ c′

p(Q′|E′) ◦ C ′

= (E → Z)∗ ◦ (E′ → E)∗ ◦ c′
p(Q|E) ◦ C ′

= (E → Z)∗ ◦ c′
p(Q|E) ◦ g∞,∗ ◦ C ′

= (E → Z)∗ ◦ c′
p(Q|E) ◦ C

= c′
p(Q)

In the third equality we used that c′
p(Q|E) commutes with proper pushforward as

it is a bivariant class. The equality P ′
p(Q) = P ′

p(Q′) is proved in exactly the same
way. □

Lemma 49.4.0FAV In Lemma 49.1 assume Q|T is isomorphic to a finite locally free
OT -module of rank < p. Denote C ∈ A0(W∞ → X) the class of Lemma 48.1. Then

C ◦ cp(Q|X×{0}) = C ◦ (Z → X)∗ ◦ c′
p(Q) = cp(Q|W∞) ◦ C

Proof. The first equality holds because cp(Q|X×{0}) = (Z → X)∗ ◦ c′
p(Q) by

Lemma 49.1. We may prove the second equality one cycle class at a time (see
Lemma 35.3). Since the construction of the bivariant classes in the lemma is com-
patible with base change, we may assume we have some α ∈ CHk(X) and we have

https://stacks.math.columbia.edu/tag/0FAU
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to show that C ∩ (Z → X)∗(c′
p(Q) ∩ α) = cp(Q|W∞) ∩ C ∩ α. Observe that

C ∩ (Z → X)∗(c′
p(Q) ∩ α) = C ∩ (Z → X)∗(E → Z)∗(c′

p(Q|E) ∩ C ∩ α)
= C ∩ (W∞ → X)∗(E →W∞)∗(c′

p(Q|E) ∩ C ∩ α)
= C ∩ (W∞ → X)∗(E →W∞)∗(c′

p(Q|E) ∩ i∗∞β)
= C ∩ (W∞ → X)∗(cp(Q|W∞) ∩ i∗∞β)
= C ∩ (W∞ → X)∗i

∗
∞(cp(Q) ∩ β)

= i∗∞(cp(Q) ∩ β)
= cp(Q|W∞) ∩ i∗∞β
= cp(Q|W∞) ∩ C ∩ α

as desired. For the first equality we used that c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C
where E ⊂ W∞ is the inverse image of Z and c′

p(Q|E) is the class constructed in
Lemma 47.1. The second equality is just the statement that E → Z → X is equal to
E →W∞ → X. For the third equality we choose β ∈ CHk+1(W ) whose restriction
to b−1(A1

X) is the flat pullback of α so that C ∩ α = i∗∞β by construction. The
fourth equality is Lemma 47.4. The fifth equality is the fact that cp(Q) is a bivariant
class and hence commutes with i∗∞. The sixth equality is Lemma 48.4. The seventh
uses again that cp(Q) is a bivariant class. The final holds as C ∩ α = i∗∞β. □

Lemma 49.5.0FAW In Lemma 49.1 let Y → X be a morphism locally of finite type and
let c ∈ A∗(Y → X) be a bivariant class. Then

P ′
p(Q) ◦ c = c ◦ P ′

p(Q) resp. c′
p(Q) ◦ c = c ◦ c′

p(Q)

in A∗(Y ×X Z → X).

Proof. Let E ⊂ W∞ be the inverse image of Z. Recall that P ′
p(Q) = (E →

Z)∗ ◦ P ′
p(Q|E) ◦C, resp. c′

p(Q) = (E → Z)∗ ◦ c′
p(Q|E) ◦C where C is as in Lemma

48.1 and P ′
p(Q|E), resp. c′

p(Q|E) are as in Lemma 47.1. By Lemma 48.5 we see
that C commutes with c and by Lemma 47.6 we see that P ′

p(Q|E), resp. c′
p(Q|E)

commutes with c. Since c is a bivariant class it commutes with proper pushforward
by E → Z by definition. This finishes the proof. □

Lemma 49.6.0FAX In Lemma 49.1 assume Q|T is zero. In A∗(Z → X) we have

P ′
1(Q) = c′

1(Q),
P ′

2(Q) = c′
1(Q)2 − 2c′

2(Q),
P ′

3(Q) = c′
1(Q)3 − 3c′

1(Q)c′
2(Q) + 3c′

3(Q),
P ′

4(Q) = c′
1(Q)4 − 4c′

1(Q)2c′
2(Q) + 4c′

1(Q)c′
3(Q) + 2c′

2(Q)2 − 4c′
4(Q),

and so on with multiplication as in Remark 34.7.

Proof. The statement makes sense because the zero sheaf has rank < 1 and hence
the classes c′

p(Q) are defined for all p ≥ 1. In the proof of Lemma 49.1 we have
constructed the classes P ′

p(Q) and c′
p(Q) using the bivariant class C ∈ A0(W∞ →

X) of Lemma 48.1 and the bivariant classes P ′
p(Q|E) and c′

p(Q|E) of Lemma 47.1
for the restriction Q|E of Q to the inverse image E of Z in W∞. Observe that by
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Lemma 47.7 we have the desired relationship between P ′
p(Q|E) and c′

p(Q|E). Recall
that

P ′
p(Q) = (E → Z)∗ ◦ P ′

p(Q|E) ◦ C and c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C

To finish the proof it suffices to show the multiplications defined in Remark 34.7
on the classes ap = c′

p(Q) and on the classes bp = c′
p(Q|E) agree:

ap1ap2 . . . apr = (E → Z)∗ ◦ bp1bp2 . . . bpr ◦ C

Some details omitted. If r = 1, then this is true. For r > 1 note that by Remark
34.8 the multiplication in Remark 34.7 proceeds by inserting (Z → X)∗, resp.
(E →W∞)∗ in between the factors of the product ap1ap2 . . . apr , resp. bp1bp2 . . . bpr
and taking compositions as bivariant classes. Now by Lemma 47.1 we have

(E →W∞)∗ ◦ bpi = cpi(Q|W∞)

and by Lemma 49.4 we have

C ◦ (Z → X)∗ ◦ api = cpi(Q|W∞) ◦ C

for i = 2, . . . , r. A calculation shows that the left and right hand side of the desired
equality both simplify to

(E → Z)∗ ◦ c′
p1

(Q|E) ◦ cp2(Q|W∞) ◦ . . . ◦ cpr (Q|W∞) ◦ C

and the proof is complete. □

Lemma 49.7.0FAY In Lemma 49.1 assume Q|T is isomorphic to a finite locally free
OT -module of rank < p. Assume we have another perfect object Q′ ∈ D(OW ) whose
Chern classes are defined with Q′|T isomorphic to a finite locally free OT -module
of rank < p′ placed in cohomological degree 0. With notation as in Remark 34.7 set

c(p)(Q) = 1 + c1(Q|X×{0}) + . . .+ cp−1(Q|X×{0}) + c′
p(Q) + c′

p+1(Q) + . . .

in A(p)(Z → X) with c′
i(Q) for i ≥ p as in Lemma 49.1. Similarly for c(p′)(Q′) and

c(p+p′)(Q⊕Q′). Then c(p+p′)(Q⊕Q′) = c(p)(Q)c(p′)(Q′) in A(p+p′)(Z → X).

Proof. Recall that the image of c′
i(Q) in Ap(X) is equal to ci(Q|X×{0}) for i ≥ p

and similarly for Q′ and Q ⊕ Q′, see Lemma 49.1. Hence the equality in degrees
< p+ p′ follows from the additivity of Lemma 46.7.

Let’s take n ≥ p + p′. As in the proof of Lemma 49.1 let E ⊂ W∞ denote the
inverse image of Z. Observe that we have the equality

c(p+p′)(Q|E ⊕Q′|E) = c(p)(Q|E)c(p′)(Q′|E)

in A(p+p′)(E →W∞) by Lemma 47.8. Since by construction

c′
p(Q⊕Q′) = (E → Z)∗ ◦ c′

p(Q|E ⊕Q′|E) ◦ C

we conclude that suffices to show for all i+ j = n we have

(E → Z)∗ ◦ c(p)
i (Q|E)c(p′)

j (Q′|E) ◦ C = c
(p)
i (Q)c(p′)

j (Q′)

in An(Z → X) where the multiplication is the one from Remark 34.7 on both sides.
There are three cases, depending on whether i ≥ p, j ≥ p′, or both.
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Assume i ≥ p and j ≥ p′. In this case the products are defined by inserting
(E → W∞)∗, resp. (Z → X)∗ in between the two factors and taking compositions
as bivariant classes, see Remark 34.8. In other words, we have to show

(E → Z)∗ ◦ c′
i(Q|E) ◦ (E →W∞)∗ ◦ c′

j(Q′|E) ◦ C = c′
i(Q) ◦ (Z → X)∗ ◦ c′

j(Q′)
By Lemma 47.1 the left hand side is equal to

(E → Z)∗ ◦ c′
i(Q|E) ◦ cj(Q′|W∞) ◦ C

Since c′
i(Q) = (E → Z)∗ ◦ c′

i(Q|E) ◦ C the right hand side is equal to
(E → Z)∗ ◦ c′

i(Q|E) ◦ C ◦ (Z → X)∗ ◦ c′
j(Q′)

which is immediately seen to be equal to the above by Lemma 49.4.
Assume i ≥ p and j < p. Unwinding the products in this case we have to show

(E → Z)∗ ◦ c′
i(Q|E) ◦ cj(Q′|W∞) ◦ C = c′

i(Q) ◦ cj(Q′|X×{0})
Again using that c′

i(Q) = (E → Z)∗ ◦ c′
i(Q|E) ◦ C we see that it suffices to show

cj(Q′|W∞) ◦ C = C ◦ cj(Q′|X×{0}) which is part of Lemma 49.4.
Assume i < p and j ≥ p′. Unwinding the products in this case we have to show

(E → Z)∗ ◦ ci(Q|E) ◦ c′
j(Q′|E) ◦ C = ci(Q|Z×{0}) ◦ c′

j(Q′)
However, since c′

j(Q|E) and c′
j(Q′) are bivariant classes, they commute with capping

with Chern classes (Lemma 38.9). Hence it suffices to prove
(E → Z)∗ ◦ c′

j(Q′|E) ◦ ci(Q|W∞) ◦ C = c′
j(Q′) ◦ ci(Q|X×{0})

which we reduces us to the case discussed in the preceding paragraph. □

Lemma 49.8.0FAZ In Lemma 49.1 assume Q|T is zero. Assume we have another
perfect object Q′ ∈ D(OW ) whose Chern classes are defined such that the restriction
Q′|T is zero. In this case the classes P ′

p(Q), P ′
p(Q′), P ′

p(Q ⊕ Q′) ∈ Ap(Z → X)
constructed in Lemma 49.1 satisfy P ′

p(Q⊕Q′) = P ′
p(Q) + P ′

p(Q′).

Proof. This follows immediately from the construction of these classes and Lemma
47.9. □

50. Localized Chern classes

0FB0 Outline of the construction. Let F be a field, let X be a variety over F , let E
be a perfect object of D(OX), and let Z ⊂ X be a closed subscheme such that
E|X\Z = 0. Then we want to construct elements

cp(Z → X,E) ∈ Ap(Z → X)
We will do this by constructing a diagram

W

f

��

q
// X

P1
F

and a perfect object Q of D(OW ) such that
(1) f is flat, and f , q are proper; for t ∈ P1

F denote Wt the fibre of f , qt : Wt →
X the restriction of q, and Qt = Q|Wt

,
(2) qt : Wt → X is an isomorphism and Qt = q∗

tE for t ∈ A1
F ,
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(3) q∞ : W∞ → X is an isomorphism over X \ Z,
(4) if T ⊂W∞ is the closure of q−1

∞ (X \ Z) then Q∞|T is zero.
The idea is to think of this as a family {(Wt, Qt)} parametrized by t ∈ P1. For
t ̸= ∞ we see that cp(Qt) is just cp(E) on the chow groups of Qt = X. But for
t =∞ we see that cp(Q∞) sends classes on Q∞ to classes supported on E = q−1

∞ (Z)
since Q∞|T = 0. We think of E as the exceptional locus of q∞ : W∞ → X. Since
any α ∈ CH∗(X) gives rise to a “family” of cycles αt ∈ CH∗(Wt) it makes sense to
define cp(Z → X,E) ∩ α as the pushforward (E → Z)∗(cp(Q∞) ∩ α∞).
To make this work there are two main ingredients: (1) the construction of W and
Q is a sort of algebraic Macpherson’s graph construction; it is done in More on
Flatness, Section 44. (2) the construction of the actual class given W and Q is
done in Section 49 relying on Sections 48 and 47.
Situation 50.1.0GUJ Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of
finite type over S. Let i : Z → X be a closed immersion. Let E ∈ D(OX) be an
object. Let p ≥ 0. Assume

(1) E is a perfect object of D(OX),
(2) the restriction E|X\Z is zero, resp. isomorphic to a finite locally free OX\Z-

module of rank < p sitting in cohomological degree 0, and
(3) at least one6 of the following is true: (a) X is quasi-compact, (b) X has

quasi-compact irreducible components, (c) there exists a locally bounded
complex of finite locally free OX -modules representing E, or (d) there exists
a morphism X → X ′ of schemes locally of finite type over S such that E
is the pullback of a perfect object on X ′ and the irreducible components of
X ′ are quasi-compact.

Lemma 50.2.0FB2 In Situation 50.1 there exists a canonical bivariant class
Pp(Z → X,E) ∈ Ap(Z → X), resp. cp(Z → X,E) ∈ Ap(Z → X)

with the property that
(50.2.1)0FB1 i∗ ◦ Pp(Z → X,E) = Pp(E), resp. i∗ ◦ cp(Z → X,E) = cp(E)
as bivariant classes on X (with ◦ as in Lemma 33.4).
Proof. The construction of these bivariant classes is as follows. Let

b : W −→ P1
X and T −→W∞ and Q

be the blowing up, the perfect object Q in D(OW ), and the closed immersion
constructed in More on Flatness, Section 44 and Lemma 44.1. Let T ′ ⊂ T be
the open and closed subscheme such that Q|T ′ is zero, resp. isomorphic to a finite
locally free OT ′ -module of rank < p sitting in cohomological degree 0. By condition
(2) of Situation 50.1 the morphisms

T ′ → T →W∞ → X

are all isomorphisms of schemes over the open subscheme X \ Z of X. Below
we check the chern classes of Q are defined. Recalling that Q|X×{0} ∼= E by
construction, we conclude that the bivariant class constructed in Lemma 49.1 using
W, b,Q, T ′ gives us classes

Pp(Z → X,E) = P ′
p(Q) ∈ Ap(Z → X)

6Please ignore this technical condition on a first reading; see discussion in Remark 50.5.
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and
cp(Z → X,E) = c′

p(Q) ∈ Ap(Z → X)
satisfying (50.2.1).
In this paragraph we prove that the chern classes of Q are defined (Definition 46.3);
we suggest the reader skip this. If assumption (3)(a) or (3)(b) of Situation 50.1
holds, i.e., if X has quasi-compact irreducible components, then the same is true
for W (because W → X is proper). Hence we conclude that the chern classes of any
perfect object of D(OW ) are defined by Lemma 46.4. If (3)(c) hold, i.e., if E can
be represented by a locally bounded complex of finite locally free modules, then the
object Q can be represented by a locally bounded complex of finite locally free OW -
modules by part (5) of More on Flatness, Lemma 44.1. Hence the chern classes of Q
are defined. Finally, assume (3)(d) holds, i.e., assume we have a morphism X → X ′

of schemes locally of finite type over S such that E is the pullback of a perfect
object E′ on X ′ and the irreducible components of X ′ are quasi-compact. Let
b′ : W ′ → P1

X′ and Q′ ∈ D(OW ′) be the morphism and perfect object constructed
as in More on Flatness, Section 44 starting with the triple (P1

X′ , (P1
X′)∞, L(p′)∗E′).

By the discussion above we see that the chern classes of Q′ are defined. Since b and
b′ were constructed via an application of More on Flatness, Lemma 43.6 it follows
from More on Flatness, Lemma 43.8 that there exists a morphism W → W ′ such
that Q = L(W →W ′)∗Q′. Then it follows from Lemma 46.4 that the chern classes
of Q are defined. □

Definition 50.3.0FB5 With (S, δ), X, E ∈ D(OX), and i : Z → X as in Situation
50.1.

(1) If the restriction E|X\Z is zero, then for all p ≥ 0 we define
Pp(Z → X,E) ∈ Ap(Z → X)

by the construction in Lemma 50.2 and we define the localized Chern char-
acter by the formula

ch(Z → X,E) =
∑

p=0,1,2,...

Pp(Z → X,E)
p! in

∏
p≥0

Ap(Z → X)⊗Q

(2) If the restriction E|X\Z is isomorphic to a finite locally free OX\Z-module
of rank < p sitting in cohomological degree 0, then we define the localized
pth Chern class cp(Z → X,E) by the construction in Lemma 50.2.

In the situation of the definition assume E|X\Z is zero. Then, to be sure, we have
the equality

i∗ ◦ ch(Z → X,E) = ch(E)
in A∗(X)⊗Q because we have shown the equality (50.2.1) above.
Here is an important sanity check.

Lemma 50.4.0FB3 In Situation 50.1 let f : X ′ → X be a morphism of schemes which
is locally of finite type. Denote E′ = f∗E and Z ′ = f−1(Z). Then the bivariant
class of Definition 50.3

Pp(Z ′ → X ′, E′) ∈ Ap(Z ′ → X ′), resp. cp(Z ′ → X ′, E′) ∈ Ap(Z ′ → X ′)
constructed as in Lemma 50.2 using X ′, Z ′, E′ is the restriction (Remark 33.5) of
the bivariant class Pp(Z → X,E) ∈ Ap(Z → X), resp. cp(Z → X,E) ∈ Ap(Z →
X).

https://stacks.math.columbia.edu/tag/0FB5
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Proof. Denote p : P1
X → X and p′ : P1

X′ → X ′ the structure morphisms. Recall
that b : W → P1

X and b′ : W ′ → P1
X′ are the morphism constructed from the triples

(P1
X , (P1

X)∞, p∗E) and (P1
X′ , (P1

X′)∞, (p′)∗E′) in More on Flatness, Lemma 43.6.
Furthermore Q = LηI∞p

∗E and Q = LηI′
∞

(p′)∗E′ where I∞ ⊂ OW is the ideal
sheaf of W∞ and I ′

∞ ⊂ OW ′ is the ideal sheaf of W ′
∞. Next, h : P1

X′ → P1
X is a

morphism of schemes such that the pullback of the effective Cartier divisor (P1
X)∞

is the effective Cartier divisor (P1
X′)∞ and such that h∗p∗E = (p′)∗E′. By More

on Flatness, Lemma 43.8 we obtain a commutative diagram

W ′

b′
%%

g
// P1

X′ ×P1
X
W

r

��

q
// W

b

��
P1
X′ // P1

X

such that W ′ is the “strict transform” of P1
X′ with respect to b and such that Q′ =

(q ◦ g)∗Q. Now recall that Pp(Z → X,E) = P ′
p(Q), resp. cp(Z → X,E) = c′

p(Q)
where P ′

p(Q), resp. c′
p(Q) are constructed in Lemma 49.1 using b,Q, T ′ where T ′ is

a closed subscheme T ′ ⊂W∞ with the following two properties: (a) T ′ contains all
points of W∞ lying over X \ Z, and (b) Q|T ′ is zero, resp. isomorphic to a finite
locally free module of rank < p placed in degree 0. In the construction of Lemma
49.1 we chose a particular closed subscheme T ′ with properties (a) and (b) but the
precise choice of T ′ is immaterial, see Lemma 49.3.

Next, by Lemma 49.2 the restriction of the bivariant class Pp(Z → X,E) = P ′
p(Q),

resp. cp(Z → X,E) = cp(Q′) to X ′ corresponds to the class P ′
p(q∗Q), resp. c′

p(q∗Q)
constructed as in Lemma 49.1 using r : P1

X′ ×P1
X
W → P1

X′ , the complex q∗Q, and
the inverse image q−1(T ′).

Now by the second statement of Lemma 49.3 we have P ′
p(Q′) = P ′

p(q∗Q), resp.
c′
p(q∗Q) = c′

p(Q′). Since Pp(Z ′ → X ′, E′) = P ′
p(Q′), resp. cp(Z ′ → X ′, E′) = c′

p(Q′)
we conclude that the lemma is true. □

Remark 50.5.0GUK In Situation 50.1 it would have been more natural to replace
assumption (3) with the assumption: “the chern classes of E are defined”. In fact,
combining Lemmas 50.2 and 50.4 with Lemma 35.6 it is easy to extend the definition
to this (slightly) more general case. If we ever need this we will do so here.

Lemma 50.6.0FB4 In Situation 50.1 we have

Pp(Z → X,E) ∩ i∗α = Pp(E|Z) ∩ α, resp. cp(Z → X,E) ∩ i∗α = cp(E|Z) ∩ α

in CH∗(Z) for any α ∈ CH∗(Z).

Proof. We only prove the second equality and we omit the proof of the first. Since
cp(Z → X,E) is a bivariant class and since the base change of Z → X by Z → X
is id : Z → Z we have cp(Z → X,E) ∩ i∗α = cp(Z → X,E) ∩ α. By Lemma 50.4
the restriction of cp(Z → X,E) to Z (!) is the localized Chern class for id : Z → Z
and E|Z . Thus the result follows from (50.2.1) with X = Z. □

Lemma 50.7.0FB6 In Situation 50.1 if α ∈ CHk(X) has support disjoint from Z, then
Pp(Z → X,E) ∩ α = 0, resp. cp(Z → X,E) ∩ α = 0.

https://stacks.math.columbia.edu/tag/0GUK
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Proof. This is immediate from the construction of the localized Chern classes. It
also follows from the fact that we can compute cp(Z → X,E)∩α by first restricting
cp(Z → X,E) to the support of α, and then using Lemma 50.4 to see that this
restriction is zero. □

Lemma 50.8.0FB7 In Situation 50.1 assume Z ⊂ Z ′ ⊂ X where Z ′ is a closed
subscheme of X. Then Pp(Z ′ → X,E) = (Z → Z ′)∗ ◦ Pp(Z → X,E), resp.
cp(Z ′ → X,E) = (Z → Z ′)∗ ◦ cp(Z → X,E) (with ◦ as in Lemma 33.4).

Proof. The construction of Pp(Z ′ → X,E), resp. cp(Z ′ → X,E) in Lemma 50.2
uses the exact same morphism b : W → P1

X and perfect object Q of D(OW ). Then
we can use Lemma 47.5 to conclude. Some details omitted. □

Lemma 50.9.0FB8 In Lemma 47.1 say E2 is the restriction of a perfect E ∈ D(OX)
whose restriction to X1 is zero, resp. isomorphic to a finite locally free OX1-module
of rank < p sitting in cohomological degree 0. Then the class P ′

p(E2), resp. c′
p(E2)

of Lemma 47.1 agrees with Pp(X2 → X,E), resp. cp(X2 → X,E) of Definition
50.3 provided E satisfies assumption (3) of Situation 50.1.

Proof. The assumptions on E imply that there is an open U ⊂ X containing
X1 such that E|U is zero, resp. isomorphic to a finite locally free OU -module of
rank < p. See More on Algebra, Lemma 75.6. Let Z ⊂ X be the complement
of U in X endowed with the reduced induced closed subscheme structure. Then
Pp(X2 → X,E) = (Z → X2)∗ ◦ Pp(Z → X,E), resp. cp(X2 → X,E) = (Z →
X2)∗◦cp(Z → X,E) by Lemma 50.8. Now we can prove that Pp(X2 → X,E), resp.
cp(X2 → X,E) satisfies the characterization of P ′

p(E2), resp. c′
p(E2) given in Lemma

47.1. Namely, by the relation Pp(X2 → X,E) = (Z → X2)∗ ◦ Pp(Z → X,E), resp.
cp(X2 → X,E) = (Z → X2)∗ ◦ cp(Z → X,E) just proven and the fact that
X1 ∩ Z = ∅, the composition Pp(X2 → X,E) ◦ i1,∗, resp. cp(X2 → X,E) ◦ i1,∗ is
zero by Lemma 50.7. On the other hand, Pp(X2 → X,E) ◦ i2,∗ = Pp(E2), resp.
cp(X2 → X,E) ◦ i2,∗ = cp(E2) by Lemma 50.6. □

51. Two technical lemmas

0FE6 In this section we develop some additional tools to allow us to work more comfort-
ably with localized Chern classes. The following lemma is a more precise version
of something we’ve already encountered in the proofs of Lemmas 49.6 and 49.7.

Lemma 51.1.0FE7 Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let b : W −→ P1

X be a proper morphism of schemes. Let n ≥ 1. For i = 1, . . . , n
let Zi ⊂ X be a closed subscheme, let Qi ∈ D(OW ) be a perfect object, let pi ≥ 0
be an integer, and let Ti ⊂ W∞, i = 1, . . . , n be closed. Denote Wi = b−1(P1

Zi
).

Assume
(1) for i = 1, . . . , n the assumption of Lemma 49.1 hold for b, Zi, Qi, Ti, pi,
(2) Qi|W\Wi

is zero, resp. isomorphic to a finite locally free module of rank
< pi placed in cohomological degree 0,

(3) Qi on W satisfies assumption (3) of Situation 50.1.
Then P ′

pn(Qn) ◦ . . . ◦ P ′
p1

(Q1) is equal to

(Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ P ′
pn(Qn|Wn,∞) ◦ . . . ◦ P ′

p1
(Q1|W1,∞) ◦ C

https://stacks.math.columbia.edu/tag/0FB7
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in Apn+...+p1(Zn ∩ . . . ∩ Z1 → X), resp. c′
pn(Qn) ◦ . . . ◦ c′

p1
(Q1) is equal to

(Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ c′
pn(Qn|Wn,∞) ◦ . . . ◦ c′

p1
(Q1|W1,∞) ◦ C

in Apn+...+p1(Zn ∩ . . . ∩ Z1 → X).

Proof. Let us prove the statement on Chern classes by induction on n; the state-
ment on Pp(−) is proved in the exact same manner. The case n = 1 is the con-
struction of c′

p1
(Q1) because W1,∞ is the inverse image of Z1 in W∞. For n > 1 we

have by induction that c′
pn(Qn) ◦ . . . ◦ c′

p1
(Q1) is equal to

c′
pn(Qn)◦(Wn−1,∞∩. . .∩W1,∞ → Zn−1∩. . .∩Z1)∗◦c′

pn−1
(Qn−1|Wn−1,∞)◦. . .◦c′

p1
(Q1|W1,∞)◦C

By Lemma 49.2 the restriction of c′
pn(Qn) to Zn−1 ∩ . . . ∩ Z1 is computed by the

closed subset Zn ∩ . . .∩Z1, the morphism b′ : Wn−1 ∩ . . .∩W1 → P1
Zn−1∩...∩Z1

and
the restriction of Qn to Wn−1 ∩ . . .∩W1. Observe that (b′)−1(Zn) = Wn ∩ . . .∩W1
and that (Wn ∩ . . . ∩W1)∞ = Wn,∞ ∩ . . . ∩W1,∞. Denote Cn−1 ∈ A0(Wn−1,∞ ∩
. . .∩W1,∞ → Zn−1∩ . . .∩Z1) the class of Lemma 48.1. We conclude the restriction
of c′

pn(Qn) to Zn−1 ∩ . . . ∩ Z1 is

(Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ c′
pn(Qn|(Wn∩...∩W1)∞) ◦ Cn−1

= (Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ c′
pn(Qn|Wn,∞) ◦ Cn−1

where the equality follows from Lemma 47.3 (we omit writing the restriction on the
right). Hence the above becomes

(Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ c′
pn(Qn|Wn,∞)◦

Cn−1 ◦ (Wn−1,∞ ∩ . . . ∩W1,∞ → Zn−1 ∩ . . . ∩ Z1)∗

◦c′
pn−1

(Qn−1|Wn−1,∞) ◦ . . . ◦ c′
p1

(Q1|W1,∞) ◦ C

By Lemma 48.4 we know that the composition Cn−1 ◦ (Wn−1,∞ ∩ . . . ∩W1,∞ →
Zn−1 ∩ . . . ∩ Z1)∗ is the identity on elements in the image of the gysin map

(Wn−1,∞ ∩ . . . ∩W1,∞ →Wn−1 ∩ . . . ∩W1)∗

Thus it suffices to show that any element in the image of c′
pn−1

(Qn−1|Wn−1,∞)◦ . . .◦
c′
p1

(Q1|W1,∞) ◦ C is in the image of the gysin map. We may write

c′
pi(Qi|Wi,∞) = restriction of cpi(Wi →W,Qi) to Wi,∞

by Lemma 50.9 and assumptions (2) and (3) on Qi in the statement of the lemma.
Thus, if β ∈ CHk+1(W ) restricts to the flat pullback of α on b−1(A1

X), then
c′
pn−1

(Qn−1|Wn−1,∞) ∩ . . . ∩ c′
p1

(Q1|W1,∞) ∩ C ∩ α
= c′

pn−1
(Qn−1|Wn−1,∞) ∩ . . . ∩ c′

p1
(Q1|W1,∞) ∩ i∗∞β

= cpn−1(Wn−1 →W,Qn−1) ∩ . . . ∩ cpn−1(W1 →W,Q1) ∩ i∗∞β
= (Wn−1,∞ ∩ . . . ∩W1,∞ →Wn−1 ∩ . . . ∩W1)∗ (

cpn−1(Wn−1 →W,Qn−1) ∩ . . . ∩ cp1(W1 →W,Q1) ∩ β
)

as desired. Namely, for the last equality we use that cpi(Wi →W,Qi) is a bivariant
class and hence commutes with i∗∞ by definition. □

The following lemma gives us a tremendous amount of flexibility if we want to
compute the localized Chern classes of a complex.

Lemma 51.2.0FE8 Assume (S, δ), X, Z, b : W → P1
X , Q, T, p satisfy the assumptions

of Lemma 49.1. Let F ∈ D(OX) be a perfect object such that

https://stacks.math.columbia.edu/tag/0FE8
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(1) the restriction of Q to b−1(A1
X) is isomorphic to the pullback of F ,

(2) F |X\Z is zero, resp. isomorphic to a finite locally free OX\Z-module of rank
< p sitting in cohomological degree 0, and

(3) Q on W and F on X satisfy assumption (3) of Situation 50.1.
Then the class P ′

p(Q), resp. c′
p(Q) in Ap(Z → X) constructed in Lemma 49.1 is

equal to Pp(Z → X,F ), resp. cp(Z → X,F ) from Definition 50.3.
Proof. The assumptions are preserved by base change with a morphism X ′ → X
locally of finite type. Hence it suffices to show that Pp(Z → X,F )∩α = P ′

p(Q)∩α,
resp. cp(Z → X,F ) ∩ α = c′

p(Q) ∩ α for any α ∈ CHk(X). Choose β ∈ CHk+1(W )
whose restriction to b−1(A1

X) is equal to the flat pullback of α as in the construction
of C in Lemma 48.1. Denote W ′ = b−1(Z) and denote E = W ′

∞ ⊂W∞ the inverse
image of Z by W∞ → X. The lemma follows from the following sequence of
equalities (the case of Pp is similar)

c′
p(Q) ∩ α = (E → Z)∗(c′

p(Q|E) ∩ i∗∞β)
= (E → Z)∗(cp(E →W∞, Q|W∞) ∩ i∗∞β)
= (W ′

∞ → Z)∗(cp(W ′ →W,Q) ∩ i∗∞β)
= (W ′

∞ → Z)∗((i′∞)∗(cp(W ′ →W,Q) ∩ β))
= (W ′

∞ → Z)∗((i′∞)∗(cp(Z ′ → X,F ) ∩ β))
= (W ′

0 → Z)∗((i′0)∗(cp(Z ′ → X,F ) ∩ β))
= (W ′

0 → Z)∗(cp(Z ′ → X,F ) ∩ i∗0β))
= cp(Z → X,F ) ∩ α

The first equality is the construction of c′
p(Q) in Lemma 49.1. The second is Lemma

50.9. The base change of W ′ →W by W∞ →W is the morphism E = W ′
∞ →W∞.

Hence the third equality holds by Lemma 50.4. The fourth equality, in which
i′∞ : W ′

∞ → W ′ is the inclusion morphism, follows from the fact that cp(W ′ →
W,Q) is a bivariant class. For the fith equality, observe that cp(W ′ → W,Q) and
cp(Z ′ → X,F ) restrict to the same bivariant class in Ap((b′)−1 → b−1(A1

X)) by
assumption (1) of the lemma which says that Q and F restrict to the same object
of D(Ob−1(A1

X
)); use Lemma 50.4. Since (i′∞)∗ annihilates cycles supported on W ′

∞
(see Remark 29.6) we conclude the fifth equality is true. The sixth equality holds
because W ′

∞ and W ′
0 are the pullbacks of the rationally equivalent effective Cartier

divisors D0, D∞ in P1
Z and hence i∗∞β and i∗0β map to the same cycle class on

W ′; namely, both represent the class c1(OP1
Z

(1)) ∩ cp(Z → X,F) ∩ β by Lemma
29.4. The seventh equality holds because cp(Z → X,F ) is a bivariant class. By
construction W ′

0 = Z and i∗0β = α which explains why the final equality holds. □

52. Properties of localized Chern classes

0FB9 The main results in this section are additivity and multiplicativity for localized
Chern classes.
Lemma 52.1.0FBA In Situation 50.1 assume E|X\Z is zero. Then
P1(Z → X,E) = c1(Z → X,E),
P2(Z → X,E) = c1(Z → X,E)2 − 2c2(Z → X,E),
P3(Z → X,E) = c1(Z → X,E)3 − 3c1(Z → X,E)c2(Z → X,E) + 3c3(Z → X,E),

https://stacks.math.columbia.edu/tag/0FBA
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and so on where the products are taken in the algebra A(1)(Z → X) of Remark
34.7.

Proof. The statement makes sense because the zero sheaf has rank < 1 and hence
the classes cp(Z → X,E) are defined for all p ≥ 1. The result itself follows im-
mediately from the more general Lemma 49.6 as the localized Chern classes where
defined using the procedure of Lemma 49.1 in Section 50. □

Lemma 52.2.0FBB In Situation 50.1 let Y → X be locally of finite type and c ∈
A∗(Y → X). Then

Pp(Z → X,E) ◦ c = c ◦ Pp(Z → X,E),
respectively

cp(Z → X,E) ◦ c = c ◦ cp(Z → X,E)
in A∗(Y ×X Z → X).

Proof. This follows from Lemma 49.5. More precisely, let
b : W → P1

X and Q and T ′ ⊂ T ⊂W∞

be as in the proof of Lemma 50.2. By definition cp(Z → X,E) = c′
p(Q) as bivariant

operations where the right hand side is the bivariant class constructed in Lemma
49.1 usingW, b,Q, T ′. By Lemma 49.5 we have P ′

p(Q)◦c = c◦P ′
p(Q), resp. c′

p(Q)◦c =
c ◦ c′

p(Q) in A∗(Y ×X Z → X) and we conclude. □

Remark 52.3.0FBC In Situation 50.1 it is convenient to define

c(p)(Z → X,E) = 1+c1(E)+ . . .+cp−1(E)+cp(Z → X,E)+cp+1(Z → X,E)+ . . .

as an element of the algebra A(p)(Z → X) considered in Remark 34.7.

Lemma 52.4.0FBD Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Z → X be a closed immersion. Let

E1 → E2 → E3 → E1[1]
be a distinguished triangle of perfect objects in D(OX). Assume

(1) the restrictions E1|X\Z and E3|X\Z are isomorphic to finite locally free
OX\Z-modules of rank < p1 and < p3 placed in degree 0, and

(2) at least one of the following is true: (a) X is quasi-compact, (b) X has
quasi-compact irreducible components, (c) E3 → E1[1] can be represented
by a map of locally bounded complexes of finite locally free OX-modules, or
(d) there exists an envelope f : Y → X such that Lf∗E3 → Lf∗E1[1] can
be represented by a map of locally bounded complexes of finite locally free
OY -modules.

With notation as in Remark 52.3 we have
c(p1+p3)(Z → X,E2) = c(p1)(Z → X,E1)c(p3)(Z → X,E3)

in A(p1+p3)(Z → X).

Proof. Observe that the assumptions imply that E2|X\Z is zero, resp. isomorphic
to a finite locally free OX\Z-module of rank < p1 + p3. Thus the statement makes
sense.
Let f : Y → X be an envelope. Expanding the left and right hand sides of the
formula in the statement of the lemma we see that we have to prove some equalities
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of classes in A∗(X) and in A∗(Z → X). By the uniqueness in Lemma 35.6 it suffices
to prove the corresponding relations in A∗(Y ) and A∗(Z → Y ). Since moreover the
construction of the classes involved is compatible with base change (Lemma 50.4)
we may replace X by Y and the distinguished triangle by its pullback.

In the proof of Lemma 46.7 we have seen that conditions (2)(a), (2)(b), and (2)(c)
imply condition (2)(d). Combined with the discussion in the previous paragraph
we reduce to the case discussed in the next paragraph.

Let φ• : E•
3 [−1] → E•

1 be a map of locally bounded complexes of finite locally free
OX -modules representing the map E3[−1]→ E1 in the derived category. Consider
the scheme X ′ = A1×X with projection g : X ′ → X. Let Z ′ = g−1(Z) = A1×Z.
Denote t the coordinate on A1. Consider the cone C• of the map of complexes

tg∗φ• : g∗E•
3 [−1] −→ g∗E•

1

over X ′. We obtain a distinguished triangle

g∗E•
1 → C• → g∗E•

3 → g∗E•
1 [1]

where the first three terms form a termwise split short exact sequence of complexes.
Clearly C• is a bounded complex of finite locally free OX′ -modules whose restriction
to X ′ \ Z ′ is isomorphic to a finite locally free OX′\Z′ -module of rank < p1 + p3
placed in degree 0. Thus we have the localized Chern classes

cp(Z ′ → X ′, C•) ∈ Ap(Z ′ → X ′)

for p ≥ p1 + p3. For any α ∈ CHk(X) consider

cp(Z ′ → X ′, C•) ∩ g∗α ∈ CHk+1−p(A1 ×X)

If we restrict to t = 0, then the map tg∗φ• restricts to zero and C•|t=0 is the direct
sum of E•

1 and E•
3 . By compatibility of localized Chern classes with base change

(Lemma 50.4) we conclude that

i∗0 ◦ c(p1+p3)(Z ′ → X ′, C•) ◦ g∗ = c(p1+p2)(Z → X,E1 ⊕ E3)

in A(p1+p3)(Z → X). On the other hand, if we restrict to t = 1, then the map
tg∗φ• restricts to φ and C•|t=1 is a bounded complex of finite locally free modules
representing E2. We conclude that

i∗1 ◦ c(p1+p3)(Z ′ → X ′, C•) ◦ g∗ = c(p1+p2)(Z → X,E2)

in A(p1+p3)(Z → X). Since i∗0 = i∗1 by definition of rational equivalence (more
precisely this follows from the formulae in Lemma 32.4) we conclude that

c(p1+p2)(Z → X,E2) = c(p1+p2)(Z → X,E1 ⊕ E3)

This reduces us to the case discussed in the next paragraph.

Assume E2 = E1 ⊕ E3 and the triples (X,Z,Ei) are as in Situation 50.1. For
i = 1, 3 let

bi : Wi → P1
X and Qi and T ′

i ⊂ Ti ⊂Wi,∞

be as in the proof of Lemma 50.2. By definition

cp(Z → X,Ei) = c′
p(Qi)
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where the right hand side is the bivariant class constructed in Lemma 49.1 using
Wi, bi, Qi, T

′
i . Set W = W1 ×b1,P1

X
,b2 W2 and consider the cartesian diagram

W

g1

��

b

!!

g3
// W3

b3
��

W1
b1 // P1

X

Of course b−1(A1) maps isomorphically to A1
X . Observe that T ′ = g−1

1 (T ′
1) ∩

g−1
2 (T ′

2) still contains all the points of W∞ lying over X \ Z. By Lemma 49.3 we
may use W , b, g∗

iQi, and T ′ to construct cp(Z → X,Ei) for i = 1, 3. Also, by the
stronger independence given in Lemma 51.2 we may use W , b, g∗

1Q1 ⊕ g∗
3Q3, and

T ′ to compute the classes cp(Z → X,E2). Thus the desired equality follows from
Lemma 49.7. □

Lemma 52.5.0FBE Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Z → X be a closed immersion. Let

E1 → E2 → E3 → E1[1]

be a distinguished triangle of perfect objects in D(OX). Assume
(1) the restrictions E1|X\Z and E3|X\Z are zero, and
(2) at least one of the following is true: (a) X is quasi-compact, (b) X has

quasi-compact irreducible components, (c) E3 → E1[1] can be represented
by a map of locally bounded complexes of finite locally free OX-modules, or
(d) there exists an envelope f : Y → X such that Lf∗E3 → Lf∗E1[1] can
be represented by a map of locally bounded complexes of finite locally free
OY -modules.

Then we have

Pp(Z → X,E2) = Pp(Z → X,E1) + Pp(Z → X,E3)

for all p ∈ Z and consequently ch(Z → X,E2) = ch(Z → X,E1) + ch(Z → X,E3).

Proof. The proof is exactly the same as the proof of Lemma 52.4 except it uses
Lemma 49.8 at the very end. For p > 0 we can deduce this lemma from Lemma 52.4
with p1 = p3 = 1 and the relationship between Pp(Z → X,E) and cp(Z → X,E)
given in Lemma 52.1. The case p = 0 can be shown directly (it is only interesting
if X has a connected component entirely contained in Z). □

Lemma 52.6.0FBF In Situation 7.1 let X be locally of finite type over S. Let Zi ⊂ X,
i = 1, 2 be closed subschemes. Let Fi, i = 1, 2 be perfect objects of D(OX). Assume
for i = 1, 2 that Fi|X\Zi is zero7 and that Fi on X satisfies assumption (3) of
Situation 50.1. Denote ri = P0(Zi → X,Fi) ∈ A0(Zi → X). Then we have

c1(Z1 ∩ Z2 → X,F1 ⊗L
OX

F2) = r1c1(Z2 → X,F2) + r2c1(Z1 → X,F1)

7Presumably there is a variant of this lemma where we only assume Fi|X\Zi
is isomorphic to

a finite locally free OX\Zi
-module of rank < pi.

https://stacks.math.columbia.edu/tag/0FBE
https://stacks.math.columbia.edu/tag/0FBF


CHOW HOMOLOGY AND CHERN CLASSES 118

in A1(Z1 ∩ Z2 → X) and

c2(Z1 ∩ Z2 → X,F1 ⊗L
OX

F2) = r1c2(Z2 → X,F2) + r2c2(Z1 → X,F1)+(
r1

2

)
c1(Z2 → X,F2)2+

(r1r2 − 1)c1(Z2 → X,F2)c1(Z1 → X,F1)+(
r2

2

)
c1(Z1 → X,F1)2

in A2(Z1 ∩ Z2 → X) and so on for higher Chern classes. Similarly, we have

ch(Z1 ∩ Z2 → X,F1 ⊗L
OX

F2) = ch(Z1 → X,F1)ch(Z2 → X,F2)

in
∏
p≥0 A

p(Z1 ∩ Z2 → X)⊗Q. More precisely, we have

Pp(Z1 ∩Z2 → X,F1⊗L
OX

F2) =
∑

p1+p2=p

(
p

p1

)
Pp1(Z1 → X,F1)Pp2(Z2 → X,F2)

in Ap(Z1 ∩ Z2 → X).

Proof. Choose proper morphisms bi : Wi → P1
X and Qi ∈ D(OWi

) as well as
closed subschemes Ti ⊂ Wi,∞ as in the construction of the localized Chern classes
for Fi or more generally as in Lemma 51.2. Choose a commutative diagram

W

g1

��

b

!!

g2
// W2

b2
��

W1
b1 // P1

X

where all morphisms are proper and isomorphisms over A1
X . For example, we can

take W to be the closure of the graph of the isomorphism between b−1
1 (A1

X) and
b−1

2 (A1
X). By Lemma 51.2 we may work with W , b = bi ◦ gi, Lg∗

iQi, and g−1
i (Ti)

to construct the localized Chern classes cp(Zi → X,Fi). Thus we reduce to the
situation described in the next paragraph.

Assume we have
(1) a proper morphism b : W → P1

X which is an isomorphism over A1
X ,

(2) Ei ⊂W∞ is the inverse image of Zi,
(3) perfect objects Qi ∈ D(OW ) whose Chern classes are defined, such that

(a) the restriction of Qi to b−1(A1
X) is the pullback of Fi, and

(b) there exists a closed subscheme Ti ⊂W∞ containing all points of W∞
lying over X \ Zi such that Qi|Ti is zero.

By Lemma 51.2 we have

cp(Zi → X,Fi) = c′
p(Qi) = (Ei → Zi)∗ ◦ c′

p(Qi|Ei) ◦ C

and
Pp(Zi → X,Fi) = P ′

p(Qi) = (Ei → Zi)∗ ◦ P ′
p(Qi|Ei) ◦ C

for i = 1, 2. Next, we observe that Q = Q1 ⊗L
OW

Q2 satisfies (3)(a) and (3)(b) for
F1 ⊗L

OX
F2 and T1 ∪ T2. Hence we see that

cp(Z1 ∩ Z2 → X,F1 ⊗L
OX

F2) = (E1 ∩ E2 → Z1 ∩ Z2)∗ ◦ c′
p(Q|E1∩E2) ◦ C
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and

Pp(Z1 ∩ Z2 → X,F1 ⊗L
OX

F2) = (E1 ∩ E2 → Z1 ∩ Z2)∗ ◦ P ′
p(Q|E1∩E2) ◦ C

by the same lemma. By Lemma 47.11 the classes c′
p(Q|E1∩E2) and P ′

p(Q|E1∩E2) can
be expanded in the correct manner in terms of the classes c′

p(Qi|Ei) and P ′
p(Qi|Ei).

Then finally Lemma 51.1 tells us that polynomials in c′
p(Qi|Ei) and P ′

p(Qi|Ei) agree
with the corresponding polynomials in c′

p(Qi) and P ′
p(Qi) as desired. □

53. Blowing up at infinity

0FBG Let X be a scheme. Let Z ⊂ X be a closed subscheme cut out by a finite type
quasi-coherent sheaf of ideals. Denote X ′ → X the blowing up with center Z. Let
b : W → P1

X be the blowing up with center ∞(Z). Denote E ⊂W the exceptional
divisor. There is a commutative diagram

X ′ //

��

W

b
��

X
∞ // P1

X

whose horizontal arrows are closed immersion (Divisors, Lemma 33.2). Denote
E ⊂ W the exceptional divisor and W∞ ⊂ W the inverse image of (P1

X)∞. Then
the following are true

(1) b is an isomorphism over A1
X ∪P1

X\Z ,
(2) X ′ is an effective Cartier divisor on W ,
(3) X ′ ∩ E is the exceptional divisor of X ′ → X,
(4) W∞ = X ′ + E as effective Cartier divisors on W ,
(5) E = Proj

Z
(CZ/X,∗[S]) where S is a variable placed in degree 1,

(6) X ′ ∩ E = Proj
Z

(CZ/X,∗),
(7)0FBH E \X ′ = E \ (X ′ ∩ E) = Spec

Z
(CZ/X,∗) = CZX,

(8)0FE9 there is a closed immersion P1
Z →W whose composition with b is the inclu-

sion morphism P1
Z → P1

X and whose base change by ∞ is the composition
Z → CZX → E →W∞ where the first arrow is the vertex of the cone.

We recall that CZ/X,∗ is the conormal algebra of Z in X, see Divisors, Definition
19.1 and that CZX is the normal cone of Z in X, see Divisors, Definition 19.5.

We now give the proof of the numbered assertions above. We strongly urge the
reader to work through some examples instead of reading the proofs.

Part (1) follows from the corresponding assertion of Divisors, Lemma 32.4. Observe
that E ⊂W is an effective Cartier divisor by the same lemma.

Observe that W∞ is an effective Cartier divisor by Divisors, Lemma 32.11. Since
E ⊂ W∞ we can write W∞ = D + E for some effective Cartier divisor D, see
Divisors, Lemma 13.8. We will see below that D = X ′ which will prove (2) and
(4).

Since X ′ is the strict transform of the closed immersion ∞ : X → P1
X (see above)

it follows that the exceptional divisor of X ′ → X is equal to the intersection X ′∩E
(for example because both are cut out by the pullback of the ideal sheaf of Z to
X ′). This proves (3).
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The intersection of ∞(Z) with P1
Z is the effective Cartier divisor (P1

Z)∞ hence
the strict transform of P1

Z by the blowing up b maps isomorphically to P1
Z (see

Divisors, Lemmas 33.2 and 32.7). This gives us the morphism P1
Z →W mentioned

in (8). It is a closed immersion as b is separated, see Schemes, Lemma 21.11.
Suppose that Spec(A) ⊂ X is an affine open and that Z ∩ Spec(A) corresponds to
the finitely generated ideal I ⊂ A. An affine neighbourhood of ∞(Z ∩ Spec(A)) is
the affine space over A with coordinate s = T0/T1. Denote J = (I, s) ⊂ A[s] the
ideal generated by I and s. Let B = A[s] ⊕ J ⊕ J2 ⊕ . . . be the Rees algebra of
(A[s], J). Observe that

Jn = In ⊕ sIn−1 ⊕ s2In−2 . . .⊕ snA⊕ sn+1A⊕ . . .
as an A-submodule of A[s] for all n ≥ 0. Consider the open subscheme

Proj(B) = Proj(A[s]⊕ J ⊕ J2 ⊕ . . .) ⊂W
Finally, denote S the element s ∈ J viewed as a degree 1 element of B.
Since formation of Proj commutes with base change (Constructions, Lemma 11.6)
we see that

E = Proj(B ⊗A[s] A/I) = Proj((A/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . .)[S])

The verification that B ⊗A[s] A/I =
⊕
Jn/Jn+1 is as given follows immediately

from our description of the powers Jn above. This proves (5) because the conormal
algebra of Z ∩ Spec(A) in Spec(A) corresponds to the graded A-algebra A/I ⊕
I/I2 ⊕ I2/I3 ⊕ . . . by Divisors, Lemma 19.2.

Recall that Proj(B) is covered by the affine opens D+(S) and D+(f (1)) for f ∈ I
which are the spectra of affine blowup algebras A[s][Js ] and A[s][Jf ], see Divisors,
Lemma 32.2 and Algebra, Definition 70.1. We will describe each of these affine
opens and this will finish the proof.
The open D+(S), i.e., the spectrum of A[s][Js ]. It follows from the description of
the powers of J above that

A[s][Js ] =
∑
s−nIn[s] ⊂ A[s, s−1]

The element s is a nonzerodivisor in this ring, defines the exceptional divisor E as
well as W∞. Hence D ∩ D+(S) = ∅. Finally, the quotient of A[s][Js ] by s is the
conormal algebra

A/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . .
This proves (7).

The open D+(f (1)), i.e., the spectrum of A[s][Jf ]. It follows from the description of
the powers of J above that

A[s][Jf ] = A[ If ][ sf ]
where s

f is a variable. The element f is a nonzerodivisor in this ring whose zero
scheme defines the exceptional divisor E. Since s defines W∞ and s = f · sf we
conclude that s

f defines the divisor D constructed above. Then we see that

D ∩D+(f (1)) = Spec(A[ If ])

which is the corresponding open of the blowup X ′ over Spec(A). Namely, the
surjective graded A[s]-algebra map B → A ⊕ I ⊕ I2 ⊕ . . . to the Rees algebra of
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(A, I) corresponds to the closed immersion X ′ → W over Spec(A[s]). This proves
D = X ′ as desired.

Let us prove (6). Observe that the zero scheme of s
f in the previous paragraph is

the restriction of the zero scheme of S on the affine open D+(f (1)). Hence we see
that S = 0 defines X ′ ∩ E on E. Thus (6) follows from (5).

Finally, we have to prove the last part of (8). This is clear because the map P1
Z →W

is affine locally given by the surjection

B → B ⊗A[s] A/I = (A/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . .)[S]→ A/I[S]

and the identification Proj(A/I[S]) = Spec(A/I). Some details omitted.

54. Higher codimension gysin homomorphisms

0FBI Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite type over S.
In this section we are going to consider triples

(Z → X,N , σ : N∨ → CZ/X)

consisting of a closed immersion Z → X and a locally free OZ-module N and a
surjection σ : N∨ → CZ/X from the dual of N to the conormal sheaf of Z in X, see
Morphisms, Section 31. We will say N is a virtual normal sheaf for Z in X.

Lemma 54.1.0FBJ Let (S, δ) be as in Situation 7.1. Let

Z ′ //

g

��

X ′

f

��
Z // X

be a cartesian diagram of schemes locally of finite type over S whose horizontal
arrows are closed immersions. If N is a virtual normal sheaf for Z in X, then
N ′ = g∗N is a virtual normal sheaf for Z ′ in X ′.

Proof. This follows from the surjectivity of the map g∗CZ/X → CZ′/X′ proved in
Morphisms, Lemma 31.4. □

Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite type over S.
Let N be a virtual normal bundle for a closed immersion Z → X. In this situation
we set

p : N = Spec
Z

(Sym(N∨)) −→ Z

equal to the vector bundle over Z whose sections correspond to sections of N . In
this situation we have canonical closed immersions

CZX −→ NZX −→ N

The first closed immersion is Divisors, Equation (19.5.1) and the second closed
immersion corresponds to the surjection Sym(N∨) → Sym(CZ/X) induced by σ.
Let

b : W −→ P1
X

be the blowing up in ∞(Z) constructed in Section 53. By Lemma 48.1 we have a
canonical bivariant class in

C ∈ A0(W∞ → X)

https://stacks.math.columbia.edu/tag/0FBJ
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Consider the open immersion j : CZX → W∞ of (7) and the closed immersion
i : CZX → N constructed above. By Lemma 36.3 for every α ∈ CHk(X) there
exists a unique β ∈ CH∗(Z) such that

i∗j
∗(C ∩ α) = p∗β

We set c(Z → X,N ) ∩ α = β.

Lemma 54.2.0FBK The construction above defines a bivariant class8

c(Z → X,N ) ∈ A∗(Z → X)∧

and moreover the construction is compatible with base change as in Lemma 54.1.
If N has constant rank r, then c(Z → X,N ) ∈ Ar(Z → X).

Proof. Since both i∗ ◦ j∗ ◦ C and p∗ are bivariant classes (see Lemmas 33.2 and
33.4) we can use the equation

i∗ ◦ j∗ ◦ C = p∗ ◦ c(Z → X,N )
(suitably interpreted) to define c(Z → X,N ) as a bivariant class. This works
because p∗ is always bijective on chow groups by Lemma 36.3.
Let X ′ → X, Z ′ → X ′, and N ′ be as in Lemma 54.1. Write c = c(Z → X,N )
and c′ = c(Z ′ → X ′,N ′). The second statement of the lemma means that c′ is the
restriction of c as in Remark 33.5. Since we claim this is true for all X ′/X locally
of finite type, a formal argument shows that it suffices to check that c′ ∩α′ = c∩α′

for α′ ∈ CHk(X ′). To see this, note that we have a commutative diagram

CZ′X ′

��

// W ′
∞

��

// W ′

��

// P1
X′

��
CZX // W∞ // W // P1

X

which induces closed immersions:
W ′ →W ×P1

X
P1
X′ , W ′

∞ →W∞ ×X X ′, CZ′X ′ → CZX ×Z Z ′

To get c∩α′ we use the class C∩α′ defined using the morphism W×P1
X

P1
X′ → P1

X′

in Lemma 48.1. To get c′ ∩ α′ on the other hand, we use the class C ′ ∩ α′ defined
using the morphism W ′ → P1

X′ . By Lemma 48.3 the pushforward of C ′ ∩α′ by the
closed immersion W ′

∞ → (W ×P1
X

P1
X′)∞, is equal to C ∩ α′. Hence the same is

true for the pullbacks to the opens
CZ′X ′ ⊂W ′

∞, CZX ×Z Z ′ ⊂ (W ×P1
X

P1
X′)∞

by Lemma 15.1. Since we have a commutative diagram

CZ′X ′

��

// N ′

CZX ×Z Z ′ // N ×Z Z ′

these classes pushforward to the same class on N ′ which proves that we obtain the
same element c ∩ α′ = c′ ∩ α′ in CH∗(Z ′). □

8The notation A∗(Z → X)∧ is discussed in Remark 35.5. If X is quasi-compact, then A∗(Z →
X)∧ = A∗(Z → X).

https://stacks.math.columbia.edu/tag/0FBK
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Lemma 54.3.0FBL Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of
finite type over S. Let N be a virtual normal sheaf for a closed subscheme Z of X.
Suppose that we have a short exact sequence 0→ N ′ → N → E → 0 of finite locally
free OZ-modules such that the given surjection σ : N∨ → CZ/X factors through a
map σ′ : (N ′)∨ → CZ/X . Then

c(Z → X,N ) = ctop(E) ◦ c(Z → X,N ′)
as bivariant classes.

Proof. Denote N ′ → N the closed immersion of vector bundles corresponding to
the surjection N∨ → (N ′)∨. Then we have closed immersions

CZX → N ′ → N

Thus the desired relationship between the bivariant classes follows immediately
from Lemma 44.2. □

Lemma 54.4.0FV7 Let (S, δ) be as in Situation 7.1. Consider a cartesian diagram

Z ′ //

g

��

X ′

f

��
Z // X

of schemes locally of finite type over S whose horizontal arrows are closed immer-
sions. Let N , resp. N ′ be a virtual normal sheaf for Z ⊂ X, resp. Z ′ → X ′.
Assume given a short exact sequence 0→ N ′ → g∗N → E → 0 of finite locally free
modules on Z ′ such that the diagram

g∗N∨ //

��

(N ′)∨

��
g∗CZ/X // CZ′/X′

commutes. Then we have
res(c(Z → X,N )) = ctop(E) ◦ c(Z ′ → X ′,N ′)

in A∗(Z ′ → X ′)∧.

Proof. By Lemma 54.2 we have res(c(Z → X,N )) = c(Z ′ → X ′, g∗N ) and the
equality follows from Lemma 54.3. □

Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite type over S.
Let N be a virtual normal sheaf for a closed subscheme Z of X. Let Y → X be a
morphism which is locally of finite type. Assume Z ×X Y → Y is a regular closed
immersion, see Divisors, Section 21. In this case the conormal sheaf CZ×XY/Y is a
finite locally free OZ×XY -module and we obtain a short exact sequence

0→ E∨ → N∨|Z×XY → CZ×XY/Y → 0
The quotient N|Y×XZ → E is called the excess normal sheaf of the situation.

Lemma 54.5.0FBM In the situation described just above assume dimδ(Y ) = n and that
CY×XZ/Z has constant rank r. Then

c(Z → X,N ) ∩ [Y ]n = ctop(E) ∩ [Z ×X Y ]n−r

https://stacks.math.columbia.edu/tag/0FBL
https://stacks.math.columbia.edu/tag/0FV7
https://stacks.math.columbia.edu/tag/0FBM
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in CH∗(Z ×X Y ).

Proof. The bivariant class ctop(E) ∈ A∗(Z ×X Y ) was defined in Remark 38.11.
By Lemma 54.2 we may replace X by Y . Thus we may assume Z → X is a regular
closed immersion of codimension r, we have dimδ(X) = n, and we have to show
that c(Z → X,N ) ∩ [X]n = ctop(E) ∩ [Z]n−r in CH∗(Z). By Lemma 54.3 we may
even assume N∨ → CZ/X is an isomorphism. In other words, we have to show
c(Z → X, C∨

Z/X) ∩ [X]n = [Z]n−r in CH∗(Z).

Let us trace through the steps in the definition of c(Z → X, C∨
Z/X) ∩ [X]n. Let

b : W → P1
X be the blowing up of∞(Z). We first have to compute C ∩ [X]n where

C ∈ A0(W∞ → X) is the class of Lemma 48.1. To do this, note that [W ]n+1 is a
cycle on W whose restriction to A1

X is equal to the flat pullback of [X]n. Hence
C ∩ [X]n is equal to i∗∞[W ]n+1. Since W∞ is an effective Cartier divisor on W we
have i∗∞[W ]n+1 = [W∞]n, see Lemma 29.5. The restriction of this class to the open
CZX ⊂ W∞ is of course just [CZX]n. Because Z ⊂ X is regularly embedded we
have

CZ/X,∗ = Sym(CZ/X)
as graded OZ-algebras, see Divisors, Lemma 21.5. Hence p : N = CZX → Z is
the structure morphism of the vector bundle associated to the finite locally free
module CZ/X of rank r. Then it is clear that p∗[Z]n−r = [CZX]n and the proof is
complete. □

Lemma 54.6.0FEA Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let N be a virtual normal sheaf for a closed subscheme Z of X. Let
Y → X be a morphism which is locally of finite type. Given integers r, n assume

(1) N is locally free of rank r,
(2) every irreducible component of Y has δ-dimension n,
(3) dimδ(Z ×X Y ) ≤ n− r, and
(4) for ξ ∈ Z ×X Y with δ(ξ) = n− r the local ring OY,ξ is Cohen-Macaulay.

Then c(Z → X,N ) ∩ [Y ]n = [Z ×X Y ]n−r in CHn−r(Z ×X Y ).

Proof. The statement makes sense as Z×X Y is a closed subscheme of Y . Because
N has rank r we know that c(Z → X,N ) ∩ [Y ]n is in CHn−r(Z ×X Y ). Since
dimδ(Z ∩ Y ) ≤ n − r the chow group CHn−r(Z ×X Y ) is freely generated by the
cycle classes of the irreducible components W ⊂ Z ×X Y of δ-dimension n− r. Let
ξ ∈W be the generic point. By assumption (2) we see that dim(OY,ξ) = r. On the
other hand, since N has rank r and since N∨ → CZ/X is surjective, we see that
the ideal sheaf of Z is locally cut out by r equations. Hence the quasi-coherent
ideal sheaf I ⊂ OY of Z ×X Y in Y is locally generated by r elements. Since OY,ξ
is Cohen-Macaulay of dimension r and since Iξ is an ideal of definition (as ξ is
a generic point of Z ×X Y ) it follows that Iξ is generated by a regular sequence
(Algebra, Lemma 104.2). By Divisors, Lemma 20.8 we see that I is generated by
a regular sequence over an open neighbourhood V ⊂ Y of ξ. By our description of
CHn−r(Z ×X Y ) it suffices to show that c(Z → X,N ) ∩ [V ]n = [Z ×X V ]n−r in
CHn−r(Z ×X V ). This follows from Lemma 54.5 because the excess normal sheaf
is 0 over V . □

Lemma 54.7.0FBN Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of
finite type over S. Let (L, s, i : D → X) be a triple as in Definition 29.1. The

https://stacks.math.columbia.edu/tag/0FEA
https://stacks.math.columbia.edu/tag/0FBN
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gysin homomorphism i∗ viewed as an element of A1(D → X) (see Lemma 33.3)
is the same as the bivariant class c(D → X,N ) ∈ A1(D → X) constructed using
N = i∗L viewed as a virtual normal sheaf for D in X.

Proof. We will use the criterion of Lemma 35.3. Thus we may assume that X
is an integral scheme and we have to show that i∗[X] is equal to c ∩ [X]. Let
n = dimδ(X). As usual, there are two cases.

If X = D, then we see that both classes are represented by c1(N ) ∩ [X]n. See
Lemma 54.5 and Definition 29.1.

If D ̸= X, then D → X is an effective Cartier divisor and in particular a regular
closed immersion of codimension 1. Again by Lemma 54.5 we conclude c(D →
X,N )∩ [X]n = [D]n−1. The same is true by definition for the gysin homomorphism
and we conclude once again. □

Lemma 54.8.0FBP Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let Z ⊂ X be a closed subscheme with virtual normal sheaf N . Let
Y → X be locally of finite type and c ∈ A∗(Y → X). Then c and c(Z → X,N )
commute (Remark 33.6).

Proof. To check this we may use Lemma 35.3. Thus we may assume X is an
integral scheme and we have to show c∩c(Z → X,N )∩[X] = c(Z → X,N )∩c∩[X]
in CH∗(Z ×X Y ).

If Z = X, then c(Z → X,N ) = ctop(N ) by Lemma 54.5 which commutes with the
bivariant class c, see Lemma 38.9.

Assume that Z is not equal to X. By Lemma 35.3 it even suffices to prove the result
after blowing up X (in a nonzero ideal). Let us blowup X in the ideal sheaf of Z.
This reduces us to the case where Z is an effective Cartier divisor, see Divisors,
Lemma 32.4,

If Z is an effective Cartier divisor, then we have

c(Z → X,N ) = ctop(E) ◦ i∗

where i∗ ∈ A1(Z → X) is the gysin homomorphism associated to i : Z → X
(Lemma 33.3) and E is the dual of the kernel of N∨ → CZ/X , see Lemmas 54.3 and
54.7. Then we conclude because Chern classes are in the center of the bivariant
ring (in the strong sense formulated in Lemma 38.9) and c commutes with the gysin
homomorphism i∗ by definition of bivariant classes. □

Let (S, δ) be as in Situation 7.1. Let X be an integral scheme locally of finite type
over S of δ-dimension n. Let Z ⊂ Y ⊂ X be closed subschemes which are both
effective Cartier divisors in X. Denote o : Y → CYX the zero section of the normal
line cone of Y in X. As CYX is a line bundle over Y we obtain a bivariant class
o∗ ∈ A1(Y → CYX), see Lemma 33.3.

Lemma 54.9.0FEB With notation as above we have

o∗[CZX]n = [CZY ]n−1

in CHn−1(Y ×o,CYX CZX).

https://stacks.math.columbia.edu/tag/0FBP
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Proof. Denote W → P1
X the blowing up of ∞(Z) as in Section 53. Similarly,

denote W ′ → P1
X the blowing up of ∞(Y ). Since ∞(Z) ⊂ ∞(Y ) we get an

opposite inclusion of ideal sheaves and hence a map of the graded algebras defining
these blowups. This produces a rational morphism from W to W ′ which in fact
has a canonical representative

W ⊃ U −→W ′

See Constructions, Lemma 18.1. A local calculation (omitted) shows that U con-
tains at least all points of W not lying over ∞ and the open subscheme CZX of
the special fibre. After shrinking U we may assume U∞ = CZX and A1

X ⊂ U . An-
other local calculation (omitted) shows that the morphism U∞ →W ′

∞ induces the
canonical morphism CZX → CYX ⊂W ′

∞ of normal cones induced by the inclusion
of ideals sheaves coming from Z ⊂ Y . Denote W ′′ ⊂ W the strict transform of
P1
Y ⊂ P1

X in W . Then W ′′ is the blowing up of P1
Y in ∞(Z) by Divisors, Lemma

33.2 and hence (W ′′ ∩ U)∞ = CZY .
Consider the effective Cartier divisor i : P1

Y → W ′ from (8) and its associated
bivariant class i∗ ∈ A1(P1

Y →W ′) from Lemma 33.3. We similarly denote (i′∞)∗ ∈
A1(W ′

∞ → W ′) the gysin map at infinity. Observe that the restriction of i′∞
(Remark 33.5) to U is the restriction of i∗∞ ∈ A1(W∞ → W ) to U . On the one
hand we have

(i′∞)∗i∗[U ]n+1 = i∗∞i
∗[U ]n+1 = i∗∞[(W ′′ ∩ U)∞]n+1 = [CZY ]n

because i∗∞ kills all classes supported over ∞, because i∗[U ] and [W ′′] agree as
cycles over A1, and because CZY is the fibre of W ′′ ∩ U over ∞. On the other
hand, we have

(i′∞)∗i∗[U ]n+1 = i∗i∗∞[U ]n+1 = i∗[U∞] = o∗[CYX]n
because (i′∞)∗ and i∗ commute (Lemma 30.5) and because the fibre of i : P1

Y →W ′

over∞ factors as o : Y → CYX and the open immersion CYX →W ′
∞. The lemma

follows. □

Lemma 54.10.0FEC Let (S, δ) be as in Situation 7.1. Let Z ⊂ Y ⊂ X be closed
subschemes of a scheme locally of finite type over S. Let N be a virtual normal
sheaf for Z ⊂ X. Let N ′ be a virtual normal sheaf for Z ⊂ Y . Let N ′′ be a virtual
normal sheaf for Y ⊂ X. Assume there is a commutative diagram

(N ′′)∨|Z //

��

N∨ //

��

(N ′)∨

��
CY/X |Z // CZ/X // CZ/Y

where the sequence at the bottom is from More on Morphisms, Lemma 7.12 and the
top sequence is a short exact sequence. Then

c(Z → X,N ) = c(Z → Y,N ′) ◦ c(Y → X,N ′′)
in A∗(Z → X)∧.

Proof. Observe that the assumptions remain satisfied after any base change by
a morphism X ′ → X which is locally of finite type (the short exact sequence of
virtual normal sheaves is locally split hence remains exact after any base change).
Thus to check the equality of bivariant classes we may use Lemma 35.3. Thus we
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may assume X is an integral scheme and we have to show c(Z → X,N ) ∩ [X] =
c(Z → Y,N ′) ∩ c(Y → X,N ′′) ∩ [X].

If Y = X, then we have

c(Z → Y,N ′) ∩ c(Y → X,N ′′) ∩ [X] = c(Z → Y,N ′) ∩ ctop(N ′′) ∩ [Y ]
= ctop(N ′′|Z) ∩ c(Z → Y,N ′) ∩ [Y ]
= c(Z → X,N ) ∩ [X]

The first equality by Lemma 54.3. The second because Chern classes commute with
bivariant classes (Lemma 38.9). The third equality by Lemma 54.3.

Assume Y ̸= X. By Lemma 35.3 it even suffices to prove the result after blowing
up X in a nonzero ideal. Let us blowup X in the product of the ideal sheaf of
Y and the ideal sheaf of Z. This reduces us to the case where both Y and Z are
effective Cartier divisors on X, see Divisors, Lemmas 32.4 and 32.12.

Denote N ′′ → E the surjection of finite locally free OZ-modules such that 0 →
E∨ → (N ′′)∨ → CY/X → 0 is a short exact sequence. Then N → E|Z is a surjection
as well. Denote N1 the finite locally free kernel of this map and observe that
N∨ → CZ/X factors through N1. By Lemma 54.3 we have

c(Y → X,N ′′) = ctop(E) ◦ c(Y → X, C∨
Y/X)

and
c(Z → X,N ) = ctop(E|Z) ◦ c(Z → X,N1)

Since Chern classes of bundles commute with bivariant classes (Lemma 38.9) it
suffices to prove

c(Z → X,N1) = c(Z → Y,N ′) ◦ c(Y → X, C∨
Y/X)

in A∗(Z → X). This we may assume that N ′′ = CY/X . This reduces us to the case
discussed in the next paragraph.

In this paragraph Z and Y are effective Cartier divisors on X integral of dimension
n, we have N ′′ = CY/X . In this case c(Y → X, C∨

Y/X) ∩ [X] = [Y ]n−1 by Lemma
54.5. Thus we have to prove that c(Z → X,N ) ∩ [X] = c(Z → Y,N ′) ∩ [Y ]n−1.
Denote N and N ′ the vector bundles over Z associated to N and N ′. Consider the
commutative diagram

N ′
i
// N // (CYX)×Y Z

CZY //

OO

CZX

OO

of cones and vector bundles over Z. Observe that N ′ is a relative effective Cartier
divisor in N over Z and that

N ′

��

i
// N

��
Z

o // (CYX)×Y Z
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is cartesian where o is the zero section of the line bundle CYX over Y . By Lemma
54.9 we have o∗[CZX]n = [CZY ]n−1 in

CHn−1(Y ×o,CYX CZX) = CHn−1(Z ×o,(CYX)×Y Z CZX)
By the cartesian property of the square above this implies that

i∗[CZX]n = [CZY ]n−1

in CHn−1(N ′). Now observe that γ = c(Z → X,N )∩ [X] and γ′ = c(Z → Y,N ′)∩
[Y ]n−1 are characterized by p∗γ = [CZX]n in CHn(N) and by (p′)∗γ′ = [CZY ]n−1
in CHn−1(N ′). Hence the proof is finished as i∗ ◦ p∗ = (p′)∗ by Lemma 31.1. □

Remark 54.11 (Variant for immersions).0FBQ Let (S, δ) be as in Situation 7.1. Let
X be a scheme locally of finite type over S. Let i : Z → X be an immersion of
schemes. In this situation

(1) the conormal sheaf CZ/X of Z in X is defined (Morphisms, Definition 31.1),
(2) we say a pair consisting of a finite locally freeOZ-moduleN and a surjection

σ : N∨ → CZ/X is a virtual normal bundle for the immersion Z → X,
(3) choose an open subscheme U ⊂ X such that Z → X factors through a closed

immersion Z → U and set c(Z → X,N ) = c(Z → U,N ) ◦ (U → X)∗.
The bivariant class c(Z → X,N ) does not depend on the choice of the open sub-
scheme U . All of the lemmas have immediate counterparts for this slightly more
general construction. We omit the details.

55. Calculating some classes

0FED To get further we need to compute the values of some of the classes we’ve con-
structed above.

Lemma 55.1.0FEE Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let E be a locally free OX-module of rank r. Then∏

n=0,...,r
c(∧nE)(−1)n = 1− (r − 1)!cr(E) + . . .

Proof. By the splitting principle we can turn this into a calculation in the poly-
nomial ring on the Chern roots x1, . . . , xr of E . See Section 43. Observe that

c(∧nE) =
∏

1≤i1<...<in≤r
(1 + xi1 + . . .+ xin)

Thus the logarithm of the left hand side of the equation in the lemma is

−
∑

p≥1

∑r

n=0

∑
1≤i1<...<in≤r

(−1)p+n

p
(xi1 + . . .+ xin)p

Please notice the minus sign in front. However, we have∑
p≥0

∑r

n=0

∑
1≤i1<...<in≤r

(−1)p+n

p! (xi1 + . . .+ xin)p =
∏

(1− e−xi)

Hence we see that the first nonzero term in our Chern class is in degree r and equal
to the predicted value. □

Lemma 55.2.0FEF Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let C be a locally free OX-module of rank r. Consider the morphisms

X = Proj
X

(OX [T ]) i−→ E = Proj
X

(Sym∗(C)[T ]) π−→ X

https://stacks.math.columbia.edu/tag/0FBQ
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Then ct(i∗OX) = 0 for t = 1, . . . , r − 1 and in A0(C → E) we have

p∗ ◦ π∗ ◦ cr(i∗OX) = (−1)r−1(r − 1)!j∗

where j : C → E and p : C → X are the inclusion and structure morphism of the
vector bundle C = Spec(Sym∗(C)).

Proof. The canonical map π∗C → OE(1) vanishes exactly along i(X). Hence the
Koszul complex on the map

π∗C ⊗ OE(−1)→ OE
is a resolution of i∗OX . In particular we see that i∗OX is a perfect object of D(OE)
whose Chern classes are defined. The vanishing of ct(i∗OX) for t = 1, . . . , t − 1
follows from Lemma 55.1. This lemma also gives

cr(i∗OX) = −(r − 1)!cr(π∗C ⊗ OE(−1))

On the other hand, by Lemma 43.3 we have

cr(π∗C ⊗ OE(−1)) = (−1)rcr(π∗C∨ ⊗OE(1))

and π∗C∨ ⊗OE(1) has a section s vanishing exactly along i(X).

After replacing X by a scheme locally of finite type over X, it suffices to prove
that both sides of the equality have the same effect on an element α ∈ CH∗(E).
Since C → X is a vector bundle, every cycle class on C is of the form p∗β for some
β ∈ CH∗(X) (Lemma 36.3). Hence by Lemma 19.3 we can write α = π∗β+γ where
γ is supported on E \ C. Using the equalities above it suffices to show that

p∗(π∗(cr(π∗C∨ ⊗OE(1)) ∩ [W ])) = j∗[W ]

when W ⊂ E is an integral closed subscheme which is either (a) disjoint from C or
(b) is of the form W = π−1Y for some integral closed subscheme Y ⊂ X. Using
the section s and Lemma 44.1 we find in case (a) cr(π∗C∨ ⊗OE(1))∩ [W ] = 0 and
in case (b) cr(π∗C∨ ⊗ OE(1)) ∩ [W ] = [i(Y )]. The result follows easily from this;
details omitted. □

Lemma 55.3.0FEG Let (S, δ) be as in Situation 7.1. Let i : Z → X be a regular
closed immersion of codimension r between schemes locally of finite type over S.
Let N = C∨

Z/X be the normal sheaf. If X is quasi-compact (or has quasi-compact
irreducible components), then ct(Z → X, i∗OZ) = 0 for t = 1, . . . , r − 1 and

cr(Z → X, i∗OZ) = (−1)r−1(r − 1)!c(Z → X,N ) in Ar(Z → X)

where ct(Z → X, i∗OZ) is the localized Chern class of Definition 50.3.

Proof. For any x ∈ Z we can choose an affine open neighbourhood Spec(A) ⊂ X
such that Z ∩ Spec(A) = V (f1, . . . , fr) where f1, . . . , fr ∈ A is a regular sequence.
See Divisors, Definition 21.1 and Lemma 20.8. Then we see that the Koszul complex
on f1, . . . , fr is a resolution of A/(f1, . . . , fr) for example by More on Algebra,
Lemma 30.2. Hence A/(f1, . . . , fr) is perfect as an A-module. It follows that
F = i∗OZ is a perfect object of D(OX) whose restriction to X \ Z is zero. The
assumption that X is quasi-compact (or has quasi-compact irreducible components)
means that the localized Chern classes ct(Z → X, i∗OZ) are defined, see Situation
50.1 and Definition 50.3. All in all we conclude that the statement makes sense.

https://stacks.math.columbia.edu/tag/0FEG
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Denote b : W → P1
X the blowing up in ∞(Z) as in Section 53. By (8) we have a

closed immersion
i′ : P1

Z −→W

We claim that Q = i′∗OP1
Z

is a perfect object of D(OW ) and that F and Q satisfy
the assumptions of Lemma 51.2.
Assume the claim. The output of Lemma 51.2 is that we have

cp(Z → X,F ) = c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C
for all p ≥ 1. Observe that Q|E is equal to the pushforward of the structure sheaf
of Z via the morphism Z → E which is the base change of i′ by ∞. Thus the
vanishing of ct(Z → X,F ) for 1 ≤ t ≤ r − 1 by Lemma 55.2 applied to E → Z.
Because CZ/X = N∨ is locally free the bivariant class c(Z → X,N ) is characterized
by the relation

j∗ ◦ C = p∗ ◦ c(Z → X,N )
where j : CZX → W∞ and p : CZX → Z are the given maps. (Recall C ∈
A0(W∞ → X) is the class of Lemma 48.1.) Thus the displayed equation in the
statement of the lemma follows from the corresponding equation in Lemma 55.2.
Proof of the claim. Let A and f1, . . . , fr be as above. Consider the affine open
Spec(A[s]) ⊂ P1

X as in Section 53. Recall that s = 0 defines (P1
X)∞ over this open.

Hence over Spec(A[s]) we are blowing up in the ideal generated by the regular
sequence s, f1, . . . , fr. By More on Algebra, Lemma 31.2 the r + 1 affine charts
are global complete intersections over A[s]. The chart corresponding to the affine
blowup algebra

A[s][f1/s, . . . , fr/s] = A[s, y1, . . . , yr]/(syi − fi)
contains i′(Z ∩ Spec(A)) as the closed subscheme cut out by y1, . . . , yr. Since
y1, . . . , yr, sy1−f1, . . . , syr−fr is a regular sequence in the polynomial ringA[s, y1, . . . , yr]
we find that i′ is a regular immersion. Some details omitted. As above we conclude
that Q = i′∗OP1

Z
is a perfect object of D(OW ). All the other assumptions on F and

Q in Lemma 51.2 (and Lemma 49.1) are immediately verified. □

Lemma 55.4.0FEH In the situation of Lemma 55.3 say dimδ(X) = n. Then we have
(1) ct(Z → X, i∗OZ) ∩ [X]n = 0 for t = 1, . . . , r − 1,
(2) cr(Z → X, i∗OZ) ∩ [X]n = (−1)r−1(r − 1)![Z]n−r,
(3) cht(Z → X, i∗OZ) ∩ [X]n = 0 for t = 0, . . . , r − 1, and
(4) chr(Z → X, i∗OZ) ∩ [X]n = [Z]n−r.

Proof. Parts (1) and (2) follow immediately from Lemma 55.3 combined with
Lemma 54.5. Then we deduce parts (3) and (4) using the relationship between
chp = (1/p!)Pp and cp given in Lemma 52.1. (Namely, (−1)r−1(r − 1)!chr = cr
provided c1 = c2 = . . . = cr−1 = 0.) □

56. An Adams operator

0FEI We do the minimal amount of work to define the second adams operator. Let X
be a scheme. Recall that Vect(X) denotes the category of finite locally free OX -
modules. Moreover, recall that we have constructed a zeroth K-group K0(Vect(X))
associated to this category in Derived Categories of Schemes, Section 38. Finally,
K0(Vect(X)) is a ring, see Derived Categories of Schemes, Remark 38.6.
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Lemma 56.1.0FEJ Let X be a scheme. There is a ring map

ψ2 : K0(Vect(X)) −→ K0(Vect(X))
which sends [L] to [L⊗2] when L is invertible and is compatible with pullbacks.

Proof. Let X be a scheme. Let E be a finite locally free OX -module. We will
consider the element

ψ2(E) = [Sym2(E)]− [∧2(E)]
of K0(Vect(X)).
Let X be a scheme and consider a short exact sequence

0→ E → F → G → 0
of finite locally free OX -modules. Let us think of this as a filtration on F with 2
steps. The induced filtration on Sym2(F) has 3 steps with graded pieces Sym2(E),
E ⊗ F , and Sym2(G). Hence

[Sym2(F)] = [Sym2(E)] + [E ⊗ F ] + [Sym2(G)]
In exactly the same manner one shows that

[∧2(F)] = [∧2(E)] + [E ⊗ F ] + [∧2(G)]
Thus we see that ψ2(F) = ψ2(E) + ψ2(G). We conclude that we obtain a well
defined additive map ψ2 : K0(Vect(X))→ K0(Vect(X)).
It is clear that this map commutes with pullbacks.
We still have to show that ψ2 is a ring map. Let X be a scheme and let E and F
be finite locally free OX -modules. Observe that there is a short exact sequence

0→ ∧2(E)⊗ ∧2(F)→ Sym2(E ⊗ F)→ Sym2(E)⊗ Sym2(F)→ 0
where the first map sends (e ∧ e′) ⊗ (f ∧ f ′) to (e ⊗ f)(e′ ⊗ f ′) − (e′ ⊗ f)(e ⊗ f ′)
and the second map sends (e⊗ f)(e′ ⊗ f ′) to ee′ ⊗ ff ′. Similarly, there is a short
exact sequence

0→ Sym2(E)⊗ ∧2(F)→ ∧2(E ⊗ F)→ ∧2(E)⊗ Sym2(F)→ 0
where the first map sends ee′⊗ f ∧ f ′ to (e⊗ f)∧ (e′⊗ f ′) + (e′⊗ f)∧ (e⊗ f ′) and
the second map sends (e ⊗ f) ∧ (e′ ⊗ f ′) to (e ∧ e′) ⊗ (ff ′). As above this proves
the map ψ2 is multiplicative. Since it is clear that ψ2(1) = 1 this concludes the
proof. □

Remark 56.2.0FEK Let X be a scheme such that 2 is invertible on X. Then the Adams
operator ψ2 can be defined on the K-group K0(X) = K0(Dperf (OX)) (Derived
Categories of Schemes, Definition 38.2) in a straightforward manner. Namely, given
a perfect complex L on X we get an action of the group {±1} on L⊗LL by switching
the factors. Then we can set

ψ2(L) = [(L⊗L L)+]− [(L⊗L L)−]
where (−)+ denotes taking invariants and (−)− denotes taking anti-invariants (suit-
ably defined). Using exactness of taking invariants and anti-invariants one can argue
similarly to the proof of Lemma 56.1 to show that this is well defined. When 2 is
not invertible on X the situation is a good deal more complicated and another
approach has to be used.
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Lemma 56.3.0FV8 Let X be a scheme. There is a ring map ψ−1 : K0(Vect(X)) →
K0(Vect(X)) which sends [E ] to [E∨] when E is finite locally free and is compatible
with pullbacks.

Proof. The only thing to check is that taking duals is compatible with short exact
sequences and with pullbacks. This is clear. □

Remark 56.4.0FEL Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. The Chern class map defines a canonical map

c : K0(Vect(X)) −→
∏

i≥0
Ai(X)

by sending a generator [E ] on the left hand side to c(E) = 1+c1(E)+c2(E)+ . . . and
extending multiplicatively. Thus −[E ] is sent to the formal inverse c(E)−1 which is
why we have the infinite product on the right hand side. This is well defined by
Lemma 40.3.

Remark 56.5.0FEM Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. The Chern character map defines a canonical ring map

ch : K0(Vect(X)) −→
∏

i≥0
Ai(X)⊗Q

by sending a generator [E ] on the left hand side to ch(E) and extending additively.
This is well defined by Lemma 45.2 and a ring homomorphism by Lemma 45.3.

Lemma 56.6.0FEN Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. If ψ2 is as in Lemma 56.1 and c and ch are as in Remarks 56.4 and 56.5 then
we have ci(ψ2(α)) = 2ici(α) and chi(ψ2(α)) = 2ichi(α) for all α ∈ K0(Vect(X)).

Proof. Observe that the map
∏
i≥0 A

i(X) →
∏
i≥0 A

i(X) multiplying by 2i on
Ai(X) is a ring map. Hence, since ψ2 is also a ring map, it suffices to prove the
formulas for additive generators of K0(Vect(X)). Thus we may assume α = [E ] for
some finite locally free OX -module E . By construction of the Chern classes of E
we immediately reduce to the case where E has constant rank r, see Remark 38.10.
In this case, we can choose a projective smooth morphism p : P → X such that
restriction A∗(X) → A∗(P ) is injective and such that p∗E has a finite filtration
whose graded parts are invertible OP -modules Lj , see Lemma 43.1. Then [p∗E ] =∑

[Lj ] and hence ψ2([pE ]) =
∑

[L⊗2
j ] by definition of ψ2. Setting xj = c1(Lj) we

have
c(α) =

∏
(1 + xj) and c(ψ2(α)) =

∏
(1 + 2xj)

in
∏
Ai(P ) and we have

ch(α) =
∑

exp(xj) and ch(ψ2(α)) =
∑

exp(2xj)

in
∏
Ai(P ). From these formulas the desired result follows. □

Remark 56.7.0FEP Let X be a locally Noetherian scheme. Let Z ⊂ X be a closed
subscheme. Consider the strictly full, saturated, triangulated subcategory

DZ,perf (OX) ⊂ D(OX)
consisting of perfect complexes of OX -modules whose cohomology sheaves are set-
theoretically supported on Z. Denote CohZ(X) ⊂ Coh(X) the Serre subcategory
of coherent OX -modules whose set theoretic support is contained in Z. Observe
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that given E ∈ DZ,perf (OX) Zariski locally on X only a finite number of the coho-
mology sheaves Hi(E) are nonzero (and they are all settheoretically supported on
Z). Hence we can define

K0(DZ,perf (OX)) −→ K0(CohZ(X)) = K ′
0(Z)

(equality by Lemma 23.6) by the rule

E 7−→ [
⊕

i∈Z
H2i(E)]− [

⊕
i∈Z

H2i+1(E)]

This works because given a distinguished triangle in DZ,perf (OX) we have a long
exact sequence of cohomology sheaves.

Remark 56.8.0FEQ Let X, Z, DZ,perf (OX) be as in Remark 56.7. Assume X is
regular. Then there is a canonical map

K0(Coh(Z)) −→ K0(DZ,perf (OX))
defined as follows. For any coherent OZ-module F denote F [0] the object of D(OX)
which has F in degree 0 and is zero in other degrees. Then F [0] is a perfect
complex on X by Derived Categories of Schemes, Lemma 11.8. Hence F [0] is an
object of DZ,perf (OX). On the other hand, given a short exact sequence 0 →
F → F ′ → F ′′ → 0 of coherent OZ-modules we obtain a distinguished triangle
F [0]→ F ′[0]→ F ′′[0]→ F [1], see Derived Categories, Section 12. This shows that
we obtain a map K0(Coh(Z)) → K0(DZ,perf (OX)) by sending [F ] to [F [0]] with
apologies for the horrendous notation.

Lemma 56.9.0FER Let X be a Noetherian regular scheme. Let Z ⊂ X be a closed
subscheme. The maps constructed in Remarks 56.7 and 56.8 are mutually inverse
and we get K ′

0(Z) = K0(DZ,perf (OX)).

Proof. Clearly the composition
K0(Coh(Z)) −→ K0(DZ,perf (OX)) −→ K0(Coh(Z))

is the identity map. Thus it suffices to show the first arrow is surjective. Let E
be an object of DZ,perf (OX). Recall that Dperf (OX) = Db

Coh(OX) by Derived
Categories of Schemes, Lemma 11.8. Hence the cohomologies Hi(E) are coherent,
can be viewed as objects of DZ,perf (OX), and only a finite number are nonzero.
Using the distinguished triangles of canonical truncations the reader sees that

[E] =
∑

(−1)i[Hi(E)[0]]

in K0(DZ,perf (OX)). Then it suffices to show that [F [0]] is in the image of the map
for any coherent OX -module set theoretically supported on Z. Since we can find a
finite filtration on F whose subquotients are OZ-modules, the proof is complete. □

Remark 56.10.0FES Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let Z ⊂ X be a closed subscheme and let DZ,perf (OX) be as in Remark
56.7. If X is quasi-compact (or more generally the irreducible components of X are
quasi-compact), then the localized Chern classes define a canonical map

c(Z → X,−) : K0(DZ,perf (OX)) −→ A0(X)×
∏

i≥1
Ai(Z → X)

by sending a generator [E] on the left hand side to
c(Z → X,E) = 1 + c1(Z → X,E) + c2(Z → X,E) + . . .
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and extending multiplicatively (with product on the right hand side as in Remark
34.7). The quasi-compactness condition on X guarantees that the localized chern
classes are defined (Situation 50.1 and Definition 50.3) and that these localized
chern classes convert distinguished triangles into the corresponding products in the
bivariant chow rings (Lemma 52.4).

Remark 56.11.0FET Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let Z ⊂ X be a closed subscheme and let DZ,perf (OX) be as in Remark
56.7. If the irreducible components of X are quasi-compact, then the localized
Chern character defines a canonical additive and multiplicative map

ch(Z → X,−) : K0(DZ,perf (OX)) −→
∏

i≥0
Ai(Z → X)⊗Q

by sending a generator [E] on the left hand side to ch(Z → X,E) and extending
additively. Namely, the condition on the irreducible components of X guarantees
that the localized chern character is defined (Situation 50.1 and Definition 50.3)
and that these localized chern characters convert distinguished triangles into the
corresponding sums in the bivariant chow rings (Lemma 52.5). The multiplication
on K0(DZ,perf (X)) is defined using derived tensor product (Derived Categories
of Schemes, Remark 38.9) hence ch(Z → X,αβ) = ch(Z → X,α)ch(Z → X,β)
by Lemma 52.6. If X is quasi-compact, then the map ch(Z → X,−) has image
contained in A∗(Z → X)⊗Q; we omit the details.

Remark 56.12.0FEU Let (S, δ) be as in Situation 7.1. Let X be locally of finite
type over S and assume X is quasi-compact (or more generally the irreducible
components of X are quasi-compact). With Z = X and notation as in Remarks
56.10 and 56.11 we have DZ,perf (OX) = Dperf (OX) and we see that

K0(DZ,perf (OX)) = K0(Dperf (OX)) = K0(X)
see Derived Categories of Schemes, Definition 38.2. Hence we get

c : K0(X)→
∏

Ai(X) and ch : K0(X)→
∏

Ai(X)⊗Q

as a special case of Remarks 56.10 and 56.11. Of course, instead we could have
just directly used Definition 46.3 and Lemmas 46.7 and 46.11 to construct these
maps (as this immediately seen to produce the same classes). Recall that there is
a canonical map K0(Vect(X))→ K0(X) which sends a finite locally free module to
itself viewed as a perfect complex (placed in degree 0), see Derived Categories of
Schemes, Section 38. Then the diagram

K0((Vect(X))

c
''

// K0(Dperf (OX)) = K0(X)

c
uu∏

Ai(X)

commutes where the south-east arrow is the one constructed in Remark 56.4. Sim-
ilarly, the diagram

K0((Vect(X))

ch ((

// K0(Dperf (OX)) = K0(X)

chuu∏
Ai(X)⊗Q
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commutes where the south-east arrow is the one constructed in Remark 56.5.

57. Chow groups and K-groups revisited

0FEV This section is the continuation of Section 23. Let (S, δ) be as in Situation 7.1. Let
X be locally of finite type over S. The K-group K ′

0(X) = K0(Coh(X)) of coherent
sheaves on X has a canonical increasing filtration

FkK
′
0(X) = Im

(
K0(Coh≤k(X))→ K0(Coh(X)

)
This is called the filtration by dimension of supports. Observe that

grkK ′
0(X) ⊂ K ′

0(X)/Fk−1K
′
0(X) = K0(Coh(X)/Coh≤k−1(X))

where the equality holds by Homology, Lemma 11.3. The discussion in Remark
23.5 shows that there are canonical maps

CHk(X) −→ grkK ′
0(X)

defined by sending the class of an integral closed subscheme Z ⊂ X of δ-dimension
k to the class of [OZ ] on the right hand side.

Proposition 57.1.0FEW Let (S, δ) be as in Situation 7.1. Assume given a closed im-
mersion X → Y of schemes locally of finite type over S with Y regular and quasi-
compact. Then the composition

K ′
0(X)→ K0(DX,perf (OY ))→ A∗(X → Y )⊗Q→ CH∗(X)⊗Q

of the map F 7→ F [0] from Remark 56.8, the map ch(X → Y,−) from Remark
56.11, and the map c 7→ c ∩ [Y ] induces an isomorphism

K ′
0(X)⊗Q −→ CH∗(X)⊗Q

which depends on the choice of Y . Moreover, the canonical map
CHk(X)⊗Q −→ grkK ′

0(X)⊗Q
(see above) is an isomorphism of Q-vector spaces for all k ∈ Z.

Proof. Since Y is regular, the construction in Remark 56.8 applies. Since Y is
quasi-compact, the construction in Remark 56.11 applies. We have that Y is locally
equidimensional (Lemma 42.1) and thus the “fundamental cycle” [Y ] is defined as
an element of CH∗(Y ), see Remark 42.2. Combining this with the map CHk(X)→
grkK ′

0(X) constructed above we see that it suffices to prove
(1) If F is a coherent OX -module whose support has δ-dimension ≤ k, then

the composition above sends [F ] into
⊕

k′≤k CHk′(X)⊗Q.
(2) If Z ⊂ X is an integral closed subscheme of δ-dimension k, then the com-

position above sends [OZ ] to an element whose degree k part is the class of
[Z] in CHk(X)⊗Q.

Namely, if this holds, then our maps induce maps grkK ′
0(X)⊗Q→ CHk(X)⊗Q

which are inverse to the canonical maps CHk(X)⊗Q→ grkK ′
0(X)⊗Q given above

the proposition.
Given a coherent OX -module F the composition above sends [F ] to

ch(X → Y,F [0]) ∩ [Y ] ∈ CH∗(X)⊗Q
If F is (set theoretically) supported on a closed subscheme Z ⊂ X, then we have

ch(X → Y,F [0]) = (Z → X)∗ ◦ ch(Z → Y,F [0])
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by Lemma 50.8. We conclude that in this case we end up in the image of CH∗(Z)→
CH∗(X). Hence we get condition (1).

Let Z ⊂ X be an integral closed subscheme of δ-dimension k. The composition
above sends [OZ ] to the element

ch(X → Y,OZ [0]) ∩ [Y ] = (Z → X)∗ch(Z → Y,OZ [0]) ∩ [Y ]

by the same argument as above. Thus it suffices to prove that the degree k part
of ch(Z → Y,OZ [0]) ∩ [Y ] ∈ CH∗(Z) ⊗Q is [Z]. Since CHk(Z) = Z, in order to
prove this we may replace Y by an open neighbourhood of the generic point ξ of
Z. Since the maximal ideal of the regular local ring OX,ξ is generated by a regular
sequence (Algebra, Lemma 106.3) we may assume the ideal of Z is generated by
a regular sequence, see Divisors, Lemma 20.8. Thus we deduce the result from
Lemma 55.4. □

58. Rational intersection products on regular schemes

0FEX We will show that CH∗(X) ⊗ Q has an intersection product if X is Noetherian,
regular, finite dimensional, with affine diagonal. The basis for the construction is
the following result (which is a corollary of the proposition in the previous section).

Lemma 58.1.0FEY Let (S, δ) be as in Situation 7.1. Let X be a quasi-compact regular
scheme of finite type over S with affine diagonal and δX/S : X → Z bounded. Then
the composition

K0(Vect(X))⊗Q −→ A∗(X)⊗Q −→ CH∗(X)⊗Q

of the map ch from Remark 56.5 and the map c 7→ c ∩ [X] is an isomorphism.

Proof. We haveK ′
0(X) = K0(X) = K0(Vect(X)) by Derived Categories of Schemes,

Lemmas 38.4, 36.8, and 38.5. By Remark 56.12 the composition given agrees with
the map of Proposition 57.1 for X = Y . Thus the result follows from the proposi-
tion. □

Let X,S, δ be as in Lemma 58.1. For simplicity let us work with cycles of a given
codimension, see Section 42. Let [X] be the fundamental cycle of X, see Remark
42.2. Pick α ∈ CHi(X) and β ∈ CHj(X). By the lemma we can find a unique α′ ∈
K0(Vect(X))⊗Q with ch(α′)∩[X] = α. Of course this means that chi′(α′)∩[X] = 0
if i′ ̸= i and chi(α′) ∩ [X] = α. By Lemma 56.6 we see that α′′ = 2−iψ2(α′) is
another solution. By uniqueness we get α′′ = α′ and we conclude that chi′(α) = 0
in Ai

′(X)⊗Q for i′ ̸= i. Then we can define

α · β = ch(α′) ∩ β = chi(α′) ∩ β

in CHi+j(X) ⊗Q by the property of α′ we observed above. This is a symmetric
pairing: namely, if we pick β′ ∈ K0(Vect(X))⊗Q lifting β, then we get

α · β = ch(α′) ∩ β = ch(α′) ∩ ch(β′) ∩ [X]

and we know that Chern classes commute. The intersection product is associative
for the same reason

(α · β) · γ = ch(α′) ∩ ch(β′) ∩ ch(γ′) ∩ [X]
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because we know composition of bivariant classes is associative. Perhaps a better
way to formulate this is as follows: there is a unique commutative, associative inter-
section product on CH∗(X)⊗Q compatible with grading such that the isomorphism
K0(Vect(X))⊗Q→ CH∗(X)⊗Q is an isomorphism of rings.

59. Gysin maps for local complete intersection morphisms

0FEZ Before reading this section, we suggest the reader read up on regular immersions
(Divisors, Section 21) and local complete intersection morphisms (More on Mor-
phisms, Section 62).

Let (S, δ) be as in Situation 7.1. Let i : X → Y be a regular immersion9 of schemes
locally of finite type over S. In particular, the conormal sheaf CX/Y is finite locally
free (see Divisors, Lemma 21.5). Hence the normal sheaf

NX/Y = HomOX
(CX/Y ,OX)

is finite locally free as well and we have a surjection N∨
X/Y → CX/Y (because

an isomorphism is also a surjection). The construction in Section 54 gives us a
canonical bivariant class

i! = c(X → Y,NX/Y ) ∈ A∗(X → Y )∧

We need a couple of lemmas about this notion.

Lemma 59.1.0FF0 Let (S, δ) be as in Situation 7.1. Let i : X → Y and j : Y → Z be
regular immersions of schemes locally of finite type over S. Then j ◦ i is a regular
immersion and (j ◦ i)! = i! ◦ j!.

Proof. The first statement is Divisors, Lemma 21.7. By Divisors, Lemma 21.6
there is a short exact sequence

0→ i∗(CY/Z)→ CX/Z → CX/Y → 0

Thus the result by the more general Lemma 54.10. □

Lemma 59.2.0FF1 Let (S, δ) be as in Situation 7.1. Let p : P → X be a smooth
morphism of schemes locally of finite type over S and let s : X → P be a section.
Then s is a regular immersion and 1 = s! ◦ p∗ in A∗(X)∧ where p∗ ∈ A∗(P → X)∧

is the bivariant class of Lemma 33.2.

Proof. The first statement is Divisors, Lemma 22.8. It suffices to show that s! ∩
p∗[Z] = [Z] in CH∗(X) for any integral closed subscheme Z ⊂ X as the assumptions
are preserved by base change by X ′ → X locally of finite type. After replacing P by
an open neighbourhood of s(Z) we may assume P → X is smooth of fixed relative
dimension r. Say dimδ(Z) = n. Then every irreducible component of p−1(Z) has
dimension r+ n and p∗[Z] is given by [p−1(Z)]n+r. Observe that s(X)∩ p−1(Z) =
s(Z) scheme theoretically. Hence by the same reference as used above s(X)∩p−1(Z)
is a closed subscheme regularly embedded in p−1(Z) of codimension r. We conclude
by Lemma 54.5. □

9See Divisors, Definition 21.1. Observe that regular immersions are the same thing as Koszul-
regular immersions or quasi-regular immersions for locally Noetherian schemes, see Divisors,
Lemma 21.3. We will use this without further mention in this section.
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Let (S, δ) be as in Situation 7.1. Consider a commutative diagram

X

f   

i
// P

g
��

Y

of schemes locally of finite type over S such that g is smooth and i is a regular
immersion. Combining the bivariant class i! discussed above with the bivariant
class g∗ ∈ A∗(P → Y )∧ of Lemma 33.2 we obtain

f ! = i! ◦ g∗ ∈ A∗(X → Y )

Observe that the morphism f is a local complete intersection morphism, see More
on Morphisms, Definition 62.2. Conversely, if f : X → Y is a local complete
intersection morphism of locally Noetherian schemes and f = g ◦ i with g smooth,
then i is a regular immersion. We claim that our construction of f ! only depends
on the morphism f and not on the choice of factorization f = g ◦ i.

Lemma 59.3.0FF2 Let (S, δ) be as in Situation 7.1. Let f : X → Y be a local complete
intersection morphism of schemes locally of finite type over S. The bivariant class
f ! is independent of the choice of the factorization f = g◦ i with g smooth (provided
one exists).

Proof. Given a second such factorization f = g′ ◦ i′ we can consider the smooth
morphism g′′ : P×Y P ′ → Y , the immersion i′′ : X → P×Y P ′ and the factorization
f = g′′ ◦ i′′. Thus we may assume that we have a diagram

P ′

p

��

g′

  
X

i //

i′
>>

P
g // Y

where p is a smooth morphism. Then (g′)∗ = p∗ ◦ g∗ (Lemma 14.3) and hence
it suffices to show that i! = (i′)! ◦ p∗ in A∗(X → P ). Consider the commutative
diagram

X ×P P ′

p

��

j
// P ′

p

��
X

s

::

1 // X
i // P

where s = (1, i′). Then s and j are regular immersions (by Divisors, Lemma 22.8
and Divisors, Lemma 21.4) and i′ = j ◦ s. By Lemma 59.1 we have (i′)! = s! ◦ j!.
Since the square is cartesian, the bivariant class j! is the restriction (Remark 33.5)
of i! to P ′, see Lemma 54.2. Since bivariant classes commute with flat pullbacks
we find j! ◦ p∗ = p∗ ◦ i!. Thus it suffices to show that s! ◦ p∗ = id which is done in
Lemma 59.2. □

Definition 59.4.0FF3 Let (S, δ) be as in Situation 7.1. Let f : X → Y be a local
complete intersection morphism of schemes locally of finite type over S. We say the
gysin map for f exists if we can write f = g ◦ i with g smooth and i an immersion.
In this case we define the gysin map f ! = i! ◦ g∗ ∈ A∗(X → Y ) as above.
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It follows from the definition that for a regular immersion this agrees with the
construction earlier and for a smooth morphism this agrees with flat pullback. In
fact, this agreement holds for all syntomic morphisms.

Lemma 59.5.0FF4 Let (S, δ) be as in Situation 7.1. Let f : X → Y be a local complete
intersection morphism of schemes locally of finite type over S. If the gysin map
exists for f and f is flat, then f ! is equal to the bivariant class of Lemma 33.2.

Proof. Choose a factorization f = g ◦ i with i : X → P an immersion and g : P →
Y smooth. Observe that for any morphism Y ′ → Y which is locally of finite type,
the base changes of f ′, g′, i′ satisfy the same assumptions (see Morphisms, Lemmas
34.5 and 30.4 and More on Morphisms, Lemma 62.8). Thus we reduce to proving
that f∗[Y ] = i!(g∗[Y ]) in case Y is integral, see Lemma 35.3. Set n = dimδ(Y ).
After decomposing X and P into connected components we may assume f is flat of
relative dimension r and g is smooth of relative dimension t. Then f∗[Y ] = [X]n+s
and g∗[Y ] = [P ]n+t. On the other hand i is a regular immersion of codimension
t− s. Thus i![P ]n+t = [X]n+s (Lemma 54.5) and the proof is complete. □

Lemma 59.6.0FF5 Let (S, δ) be as in Situation 7.1. Let f : X → Y and g : Y → Z
be local complete intersection morphisms of schemes locally of finite type over S.
Assume the gysin map exists for g ◦ f and g. Then the gysin map exists for f and
(g ◦ f)! = f ! ◦ g!.

Proof. Observe that g ◦ f is a local complete intersection morphism by More on
Morphisms, Lemma 62.7 and hence the statement of the lemma makes sense. If
X → P is an immersion of X into a scheme P smooth over Z then X → P ×Z Y
is an immersion of X into a scheme smooth over Y . This prove the first assertion
of the lemma. Let Y → P ′ be an immersion of Y into a scheme P ′ smooth over Z.
Consider the commutative diagram

X //

��

P ×Z Y a
//

p
{{

P ×Z P ′

q
xx

Y
b
//

��

P ′

zz
Z

Here the horizontal arrows are regular immersions, the south-west arrows are smooth,
and the square is cartesian. Whence a! ◦ q∗ = p∗ ◦ b! as bivariant classes commute
with flat pullback. Combining this fact with Lemmas 59.1 and 14.3 the reader finds
the statement of the lemma holds true. Small detail omitted. □

Lemma 59.7.0FF6 Let (S, δ) be as in Situation 7.1. Consider a commutative diagram

X ′′

��

// X ′

��

// X

f

��
Y ′′ // Y ′ // Y

of schemes locally of finite type over S with both square cartesian. Assume f : X →
Y is a local complete intersection morphism such that the gysin map exists for f .
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Let c ∈ A∗(Y ′′ → Y ′). Denote res(f !) ∈ A∗(X ′ → Y ′) the restriction of f ! to Y ′

(Remark 33.5). Then c and res(f !) commute (Remark 33.6).

Proof. Choose a factorization f = g ◦ i with g smooth and i an immersion. Since
f ! = i! ◦ g! it suffices to prove the lemma for g! (which is given by flat pullback)
and for i!. The result for flat pullback is part of the definition of a bivariant class.
The case of i! follows immediately from Lemma 54.8. □

Lemma 59.8.0FF7 Let (S, δ) be as in Situation 7.1. Consider a cartesian diagram

X ′

f ′

��

// X

f

��
Y ′ // Y

of schemes locally of finite type over S. Assume
(1) f is a local complete intersection morphism and the gysin map exists for f ,
(2) X, X ′, Y , Y ′ satisfy the equivalent conditions of Lemma 42.1,
(3) for x′ ∈ X ′ with images x, y′, and y in X, Y ′, and Y we have nx′ − ny′ =

nx − ny where nx′ , nx, ny′ , and ny are as in the lemma, and
(4) for every generic point ξ ∈ X ′ the local ring OY ′,f ′(ξ) is Cohen-Macaulay.

Then f ![Y ′] = [X ′] where [Y ′] and [X ′] are as in Remark 42.2.

Proof. Recall that nx′ is the common value of δ(ξ) where ξ is the generic point of
an irreducible component passing through x′. Moreover, the functions x′ 7→ nx′ ,
x 7→ nx, y′ 7→ ny′ , and y 7→ ny are locally constant. Let X ′

n, Xn, Y ′
n, and Yn be

the open and closed subscheme of X ′, X, Y ′, and Y where the function has value
n. Recall that [X ′] =

∑
[X ′

n]n and [Y ′] =
∑

[Y ′
n]n. Having said this, it is clear that

to prove the lemma we may replace X ′ by one of its connected components and X,
Y ′, Y by the connected component that it maps into. Then we know that X ′, X,
Y ′, and Y are δ-equidimensional in the sense that each irreducible component has
the same δ-dimension. Say n′, n, m′, and m is this common value for X ′, X, Y ′,
and Y . The last assumption means that n′ −m′ = n−m.

Choose a factorization f = g ◦ i where i : X → P is an immersion and g : P → Y
is smooth. As X is connected, we see that the relative dimension of P → Y at
points of i(X) is constant. Hence after replacing P by an open neighbourhood of
i(X), we may assume that P → Y has constant relative dimension and i : X → P
is a closed immersion. Denote g′ : Y ′ ×Y P → Y ′ the base change of g and
denote i′ : X ′ → Y ′ ×Y P the base change of i. It is clear that g∗[Y ] = [P ] and
(g′)∗[Y ′] = [Y ′ ×Y P ]. Finally, if ξ′ ∈ X ′ is a generic point, then OY ′×Y P,i′(ξ) is
Cohen-Macaulay. Namely, the local ring map OY ′,f ′(ξ) → OY ′×Y P,i′(ξ) is flat with
regular fibre (see Algebra, Section 142), a regular local ring is Cohen-Macaulay
(Algebra, Lemma 106.3), OY ′,f ′(ξ) is Cohen-Macaulay by assumption (4) and we
get what we want from Algebra, Lemma 163.3. Thus we reduce to the case discussed
in the next paragraph.

Assume f is a regular closed immersion and X ′, X, Y ′, and Y are δ-equidimensional
of δ-dimensions n′, n, m′, and m and m′ − n′ = m− n. In this case we obtain the
result immediately from Lemma 54.6. □
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Remark 59.9.0FF8 Let (S, δ) be as in Situation 7.1. Let f : X → Y be a local
complete intersection morphism of schemes locally of finite type over S. Assume
the gysin map exists for f . Then f ! ◦ ci(E) = ci(f∗E) ◦ f ! and similarly for the
Chern character, see Lemma 59.7. If X and Y satisfy the equivalent conditions of
Lemma 42.1 and Y is Cohen-Macaulay (for example), then f ![Y ] = [X] by Lemma
59.8. In this case we also get f !(ci(E) ∩ [Y ]) = ci(f∗E) ∩ [X] and similarly for the
Chern character.

Lemma 59.10.0FV9 Let (S, δ) be as in Situation 7.1. Consider a cartesian square

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

of schemes locally of finite type over S. Assume
(1) both f and f ′ are local complete intersection morphisms, and
(2) the gysin map exists for f

Then C = Ker(H−1((g′)∗ NLX/Y ) → H−1(NLX′/Y ′)) is a finite locally free OX′-
module, the gysin map exists for f ′, and we have

res(f !) = ctop(C∨) ◦ (f ′)!

in A∗(X ′ → Y ′).

Proof. The fact that C is finite locally free follows immediately from More on
Algebra, Lemma 85.5. Choose a factorization f = g ◦ i with g : P → Y smooth and
i an immersion. Then we can factor f ′ = g′ ◦ i′ where g′ : P ′ → Y ′ and i′ : X ′ → P ′

the base changes. Picture

X ′ //

��

P ′ //

��

Y ′

��
X // P // Y

In particular, we see that the gysin map exists for f ′. By More on Morphisms,
Lemmas 13.13 we have

NLX/Y =
(
CX/P → i∗ΩP/Y

)
where CX/P is the conormal sheaf of the embedding i. Similarly for the primed
version. We have (g′)∗i∗ΩP/Y = (i′)∗ΩP ′/Y ′ because ΩP/Y pulls back to ΩP ′/Y ′ by
Morphisms, Lemma 32.10. Also, recall that (g′)∗CX/P → CX′/P ′ is surjective, see
Morphisms, Lemma 31.4. We deduce that the sheaf C is canonicallly isomorphic
to the kernel of the map (g′)∗CX/P → CX′/P ′ of finite locally free modules. Recall
that i! is defined using N = C∨

Z/X and similarly for (i′)!. Thus we have

res(i!) = ctop(C∨) ◦ (i′)!

in A∗(X ′ → P ′) by an application of Lemma 54.4. Since finally we have f ! = i! ◦g∗,
(f ′)! = (i′)! ◦ (g′)∗, and (g′)∗ = res(g∗) we conclude. □
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Lemma 59.11 (Blow up formula).0FVA Let (S, δ) be as in Situation 7.1. Let i : Z → X
be a regular closed immersion of schemes locally of finite type over S. Let b : X ′ →
X be the blowing up with center Z. Picture

E
j
//

π

��

X ′

b

��
Z

i // X

Assume that the gysin map exists for b. Then we have

res(b!) = ctop(F∨) ◦ π∗

in A∗(E → Z) where F is the kernel of the canonical map π∗CZ/X → CE/X′ .

Proof. Observe that the morphism b is a local complete intersection morphism
by More on Algebra, Lemma 31.2 and hence the statement makes sense. Since
Z → X is a regular immersion (and hence a fortiori quasi-regular) we see that
CZ/X is finite locally free and the map Sym∗(CZ/X) → CZ/X,∗ is an isomorphism,
see Divisors, Lemma 21.5. Since E = Proj(CZ/X,∗) we conclude that E = P(CZ/X)
is a projective space bundle over Z. Thus E → Z is smooth and certainly a local
complete intersection morphism. Thus Lemma 59.10 applies and we see that

res(b!) = ctop(C∨) ◦ π!

with C as in the statement there. Of course π∗ = π! by Lemma 59.5. It remains to
show that F is equal to the kernel C of the map H−1(j∗ NLX′/X)→ H−1(NLE/Z).

Since E → Z is smooth we have H−1(NLE/Z) = 0, see More on Morphisms, Lemma
13.7. Hence it suffices to show that F can be identified with H−1(j∗ NLX′/X). By
More on Morphisms, Lemmas 13.11 and 13.9 we have an exact sequence

0→ H−1(j∗ NLX′/X)→ H−1(NLE/X)→ CE/X′ → . . .

By the same lemmas applied to E → Z → X we obtain an isomorphism π∗CZ/X =
H−1(π∗ NLZ/X)→ H−1(NLE/X). Thus we conclude. □

Lemma 59.12.0FF9 Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism
of schemes locally of finite type over S such that both X and Y are quasi-compact,
regular, have affine diagonal, and finite dimension. Then f is a local complete
intersection morphism. Assume moreover the gysin map exists for f . Then

f !(α · β) = f !α · f !β

in CH∗(X)⊗Q where the intersection product is as in Section 58.

Proof. The first statement follows from More on Morphisms, Lemma 62.11. Ob-
serve that f ![Y ] = [X], see Lemma 59.8. Write α = ch(α′)∩[Y ] and β = ch(β′)∩[Y ]
where α′, β′ ∈ K0(Vect(X))⊗Q as in Section 58. Setting c = ch(α′) and c′ = ch(β′)
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we find α · β = c ∩ c′ ∩ [Y ] by construction. By Lemma 59.7 we know that f ! com-
mutes with both c and c′. Hence

f !(α · β) = f !(c ∩ c′ ∩ [Y ])
= c ∩ c′ ∩ f ![Y ]
= c ∩ c′ ∩ [X]
= (c ∩ [X]) · (c′ ∩ [X])
= (c ∩ f ![Y ]) · (c′ ∩ f ![Y ])
= f !(α) · f !(β)

as desired. □

Lemma 59.13.0FFA Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism
of schemes locally of finite type over S such that both X and Y are quasi-compact,
regular, have affine diagonal, and finite dimension. Then f is a local complete
intersection morphism. Assume moreover the gysin map exists for f and that f is
proper. Then

f∗(α · f !β) = f∗α · β
in CH∗(Y )⊗Q where the intersection product is as in Section 58.

Proof. The first statement follows from More on Morphisms, Lemma 62.11. Ob-
serve that f ![Y ] = [X], see Lemma 59.8. Write α = ch(α′)∩[X] and β = ch(β′)∩[Y ]
α′ ∈ K0(Vect(X))⊗Q and β′ ∈ K0(Vect(Y ))⊗Q as in Section 58. Set c = ch(α′)
and c′ = ch(β′). We have

f∗(α · f !β) = f∗(c ∩ f !(c′ ∩ [Y ]e))
= f∗(c ∩ c′ ∩ f ![Y ]e)
= f∗(c ∩ c′ ∩ [X]d)
= f∗(c′ ∩ c ∩ [X]d)
= c′ ∩ f∗(c ∩ [X]d)
= β · f∗(α)

The first equality by the construction of the intersection product. By Lemma 59.7
we know that f ! commutes with c′. The fact that Chern classes are in the center
of the bivariant ring justifies switching the order of capping [X] with c and c′.
Commuting c′ with f∗ is allowed as c′ is a bivariant class. The final equality is
again the construction of the intersection product. □

60. Gysin maps for diagonals

0FBR Let (S, δ) be as in Situation 7.1. Let f : X → Y be a smooth morphism of schemes
locally of finite type over S. Then the diagonal morphism ∆ : X −→ X ×Y X is a
regular immersion, see More on Morphisms, Lemma 62.18. Thus we have the gysin
map

∆! ∈ A∗(X → X ×Y X)∧

constructed in Section 59. If X → Y has constant relative dimension d, then
∆! ∈ Ad(X → X ×Y X).

Lemma 60.1.0FBS In the situation above we have ∆! ◦ pr!
i = 1 in A0(X).
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Proof. Observe that the projections pri : X ×Y X → X are smooth and hence we
have gysin maps for these projections as well. Thus the lemma makes sense and is
a special case of Lemma 59.6. □

Proposition 60.2.0FBT [Ful98, Proposition
17.4.2]

Let (S, δ) be as in Situation 7.1. Let f : X → Y and g : Y → Z
be morphisms of schemes locally of finite type over S. If g is smooth of relative
dimension d, then Ap(X → Y ) = Ap−d(X → Z).

Proof. We will use that smooth morphisms are local complete intersection mor-
phisms whose gysin maps exist (see Section 59). In particular we have g! ∈
A−d(Y → Z). Then we can send c ∈ Ap(X → Y ) to c ◦ g! ∈ Ap−d(X → Z).
Conversely, let c′ ∈ Ap−d(X → Z). Denote res(c′) the restriction (Remark 33.5) of
c′ by the morphism Y → Z. Since the diagram

X ×Z Y pr2
//

pr1

��

Y

g

��
X

f // Z

is cartesian we find res(c′) ∈ Ap−d(X ×Z Y → Y ). Let ∆ : Y → Y ×Z Y be
the diagonal and denote res(∆!) the restriction of ∆! to X ×Z Y by the morphism
X ×Z Y → Y ×Z Y . Since the diagram

X //

��

X ×Z Y

��
Y

∆ // Y ×Z Y

is cartesian we see that res(∆!) ∈ Ad(X → X ×Z Y ). Combining these two restric-
tions we obtain

res(∆!) ◦ res(c′) ∈ Ap(X → Y )
Thus we have produced maps Ap(X → Y )→ Ap−d(X → Z) and Ap−d(X → Z)→
Ap(X → Y ). To finish the proof we will show these maps are mutually inverse.
Let us start with c ∈ Ap(X → Y ). Consider the diagram

X

��

// Y

��
X ×Z Y //

pr1

��

Y ×Z Y p2
//

p1

��

Y

g

��
X

f // Y
g // Z

whose squares are carteisan. The lower two square of this diagram show that
res(c ◦ g!) = res(c) ∩ p!

2 where in this formula res(c) means the restriction of c
via p1. Looking at the upper square of the diagram and using Lemma 59.7 we get
c ◦∆! = res(∆!) ◦ res(c). We compute

res(∆!) ◦ res(c ◦ g!) = res(∆!) ◦ res(c) ◦ p!
2

= c ◦∆! ◦ p!
2

= c
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The final equality by Lemma 60.1.
Conversely, let us start with c′ ∈ Ap−d(X → Z). Looking at the lower rectangle of
the diagram above we find res(c′) ◦ g! = pr!

1 ◦ c′. We compute

res(∆!) ◦ res(c′) ◦ g! = res(∆!) ◦ pr!
1 ◦ c′

= c′

The final equality holds because the left two squares of the diagram show that
id = res(∆! ◦ p!

1) = res(∆!) ◦ pr!
1. This finishes the proof. □

61. Exterior product

0FBU Let k be a field. In this section we work over S = Spec(k) with δ : S → Z defined
by sending the unique point to 0, see Example 7.2.
Consider a cartesian square

X ×k Y //

��

Y

��
X // Spec(k) = S

of schemes locally of finite type over k. Then there is a canonical map
× : CHn(X)⊗Z CHm(Y ) −→ CHn+m(X ×k Y )

which is uniquely determined by the following rule: given integral closed subschemes
X ′ ⊂ X and Y ′ ⊂ Y of dimensions n and m we have

[X ′]× [Y ′] = [X ′ ×k Y ′]n+m

in CHn+m(X ×k Y ).

Lemma 61.1.0FBV The map × : CHn(X) ⊗Z CHm(Y ) → CHn+m(X ×k Y ) is well
defined.

Proof. A first remark is that if α =
∑
ni[Xi] and β =

∑
mj [Yj ] with Xi ⊂ X

and Yj ⊂ Y locally finite families of integral closed subschemes of dimensions n and
m, then Xi ×k Yj is a locally finite collection of closed subschemes of X ×k Y of
dimensions n+m and we can indeed consider

α× β =
∑

nimj [Xi ×k Yj ]n+m

as a (n+m)-cycle on X×k Y . In this way we obtain an additive map × : Zn(X)⊗Z
Zm(Y )→ Zn+m(X×kY ). The problem is to show that this procedure is compatible
with rational equivalence.
Let i : X ′ → X be the inclusion morphism of an integral closed subscheme of
dimension n. Then flat pullback along the morphism p′ : X ′ → Spec(k) is an
element (p′)∗ ∈ A−n(X ′ → Spec(k)) by Lemma 33.2 and hence c′ = i∗ ◦ (p′)∗ ∈
A−n(X → Spec(k)) by Lemma 33.4. This produces maps

c′ ∩ − : CHm(Y ) −→ CHm+n(X ×k Y )
which the reader easily sends [Y ′] to [X ′×kY ′]n+m for any integral closed subscheme
Y ′ ⊂ Y of dimension m. Hence the construction ([X ′], [Y ′]) 7→ [X ′ ×k Y ′]n+m
factors through rational equivalence in the second variable, i.e., gives a well defined
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map Zn(X) ⊗Z CHm(Y ) → CHn+m(X ×k Y ). By symmetry the same is true for
the other variable and we conclude. □

Lemma 61.2.0FBW Let k be a field. Let X be a scheme locally of finite type over k.
Then we have a canonical identification

Ap(X → Spec(k)) = CH−p(X)
for all p ∈ Z.

Proof. Consider the element [Spec(k)] ∈ CH0(Spec(k)). We get a map Ap(X →
Spec(k))→ CH−p(X) by sending c to c ∩ [Spec(k)].
Conversely, suppose we have α ∈ CH−p(X). Then we can define cα ∈ Ap(X →
Spec(k)) as follows: given X ′ → Spec(k) and α′ ∈ CHn(X ′) we let

cα ∩ α′ = α× α′

in CHn−p(X ×k X ′). To show that this is a bivariant class we write α =
∑
ni[Xi]

as in Definition 8.1. Consider the composition∐
Xi

g−→ X → Spec(k)

and denote f :
∐
Xi → Spec(k) the composition. Then g is proper and f is flat

of relative dimension −p. Pullback along f is a bivariant class f∗ ∈ Ap(
∐
Xi →

Spec(k)) by Lemma 33.2. Denote ν ∈ A0(
∐
Xi) the bivariant class which multiplies

a cycle by ni on the ith component. Thus ν ◦ f∗ ∈ Ap(
∐
Xi → X). Finally, we

have a bivariant class
g∗ ◦ ν ◦ f∗

by Lemma 33.4. The reader easily verifies that cα is equal to this class and hence
is itself a bivariant class.
To finish the proof we have to show that the two constructions are mutually inverse.
Since cα ∩ [Spec(k)] = α this is clear for one of the two directions. For the other,
let c ∈ Ap(X → Spec(k)) and set α = c ∩ [Spec(k)]. It suffices to prove that

c ∩ [X ′] = cα ∩ [X ′]
when X ′ is an integral scheme locally of finite type over Spec(k), see Lemma 35.3.
However, then p′ : X ′ → Spec(k) is flat of relative dimension dim(X ′) and hence
[X ′] = (p′)∗[Spec(k)]. Thus the fact that the bivariant classes c and cα agree on
[Spec(k)] implies they agree when capped against [X ′] and the proof is complete. □

Lemma 61.3.0FBX Let k be a field. Let X be a scheme locally of finite type over k.
Let c ∈ Ap(X → Spec(k)). Let Y → Z be a morphism of schemes locally of finite
type over k. Let c′ ∈ Aq(Y → Z). Then c ◦ c′ = c′ ◦ c in Ap+q(X ×k Y → Z).

Proof. In the proof of Lemma 61.2 we have seen that c is given by a combination of
proper pushforward, multiplying by integers over connected components, and flat
pullback. Since c′ commutes with each of these operations by definition of bivariant
classes, we conclude. Some details omitted. □

Remark 61.4.0FBY The upshot of Lemmas 61.2 and 61.3 is the following. Let k be a
field. Let X be a scheme locally of finite type over k. Let α ∈ CH∗(X). Let Y → Z
be a morphism of schemes locally of finite type over k. Let c′ ∈ Aq(Y → Z). Then

α× (c′ ∩ β) = c′ ∩ (α× β)
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in CH∗(X ×k Y ) for any β ∈ CH∗(Z). Namely, this follows by taking c = cα ∈
A∗(X → Spec(k)) the bivariant class corresponding to α, see proof of Lemma 61.2.

Lemma 61.5.0FBZ Exterior product is associative. More precisely, let k be a field,
let X,Y, Z be schemes locally of finite type over k, let α ∈ CH∗(X), β ∈ CH∗(Y ),
γ ∈ CH∗(Z). Then (α× β)× γ = α× (β × γ) in CH∗(X ×k Y ×k Z).

Proof. Omitted. Hint: associativity of fibre product of schemes. □

62. Intersection products

0FC0 Let k be a field. In this section we work over S = Spec(k) with δ : S → Z defined
by sending the unique point to 0, see Example 7.2.
Let X be a smooth scheme over k. The bivariant class ∆! of Section 60 allows us
to define a kind of intersection product on chow groups of schemes locally of finite
type over X. Namely, suppose that Y → X and Z → X are morphisms of schemes
which are locally of finite type. Then observe that

Y ×X Z = (Y ×k Z)×X×kX,∆ X

Hence we can consider the following sequence of maps

CHn(Y )⊗Z CHm(Z) ×−→ CHn+m(Y ×k Z) ∆!

−→ CHn+m−∗(Y ×X Z)
Here the first arrow is the exterior product constructed in Section 61 and the
second arrow is the gysin map for the diagonal studied in Section 60. If X is
equidimensional of dimension d, then we end up in CHn+m−d(Y ×X Z) and in
general we can decompose into the parts lying over the open and closed subschemes
of X where X has a given dimension. Given α ∈ CH∗(Y ) and β ∈ CH∗(Z) we will
denote

α · β = ∆!(α× β) ∈ CH∗(Y ×X Z)
In the special case where X = Y = Z we obtain a multiplication

CH∗(X)× CH∗(X)→ CH∗(X), (α, β) 7→ α · β
which is called the intersection product. We observe that this product is clearly
symmetric. Associativity follows from the next lemma.

Lemma 62.1.0FC1 The product defined above is associative. More precisely, let k be
a field, let X be smooth over k, let Y, Z,W be schemes locally of finite type over
X, let α ∈ CH∗(Y ), β ∈ CH∗(Z), γ ∈ CH∗(W ). Then (α · β) · γ = α · (β · γ) in
CH∗(Y ×X Z ×X W ).

Proof. By Lemma 61.5 we have (α× β)× γ = α× (β × γ) in CH∗(Y ×k Z ×kW ).
Consider the closed immersions

∆12 : X ×k X −→ X ×k X ×k X, (x, x′) 7→ (x, x, x′)
and

∆23 : X ×k X −→ X ×k X ×k X, (x, x′) 7→ (x, x′, x′)
Denote ∆!

12 and ∆!
23 the corresponding bivariant classes; observe that ∆!

12 is the
restriction (Remark 33.5) of ∆! to X ×k X ×k X by the map pr12 and that ∆!

23 is
the restriction of ∆! to X ×kX ×kX by the map pr23. Thus clearly the restriction
of ∆!

12 by ∆23 is ∆! and the restriction of ∆!
23 by ∆12 is ∆! too. Thus by Lemma

54.8 we have
∆! ◦∆!

12 = ∆! ◦∆!
23
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Now we can prove the lemma by the following sequence of equalities:

(α · β) · γ = ∆!(∆!(α× β)× γ)
= ∆!(∆!

12((α× β)× γ))
= ∆!(∆!

23((α× β)× γ))
= ∆!(∆!

23(α× (β × γ))
= ∆!(α×∆!(β × γ))
= α · (β · γ)

All equalities are clear from the above except perhaps for the second and penulti-
mate one. The equation ∆!

23(α× (β × γ)) = α×∆!(β × γ) holds by Remark 61.4.
Similarly for the second equation. □

Lemma 62.2.0FC2 Let k be a field. Let X be a smooth scheme over k, equidimensional
of dimension d. The map

Ap(X) −→ CHd−p(X), c 7−→ c ∩ [X]d

is an isomorphism. Via this isomorphism composition of bivariant classes turns
into the intersection product defined above.

Proof. Denote g : X → Spec(k) the structure morphism. The map is the compo-
sition of the isomorphisms

Ap(X)→ Ap−d(X → Spec(k))→ CHd−p(X)

The first is the isomorphism c 7→ c ◦ g∗ of Proposition 60.2 and the second is the
isomorphism c 7→ c ∩ [Spec(k)] of Lemma 61.2. From the proof of Lemma 61.2
we see that the inverse to the second arrow sends α ∈ CHd−p(X) to the bivariant
class cα which sends β ∈ CH∗(Y ) for Y locally of finite type over k to α × β in
CH∗(X ×k Y ). From the proof of Proposition 60.2 we see the inverse to the first
arrow in turn sends cα to the bivariant class which sends β ∈ CH∗(Y ) for Y → X
locally of finite type to ∆!(α× β) = α · β. From this the final result of the lemma
follows. □

Lemma 62.3.0FFB Let k be a field. Let f : X → Y be a morphism of schemes smooth
over k. Then the gysin map exists for f and f !(α · β) = f !α · f !β.

Proof. Observe that X → X×kY is an immersion of X into a scheme smooth over
Y . Hence the gysin map exists for f (Definition 59.4). To prove the formula we
may decompose X and Y into their connected components, hence we may assume
X is smooth over k and equidimensional of dimension d and Y is smooth over k
and equidimensional of dimension e. Observe that f ![Y ]e = [X]d (see for example
Lemma 59.8). Write α = c ∩ [Y ]e and β = c′ ∩ [Y ]e and hence α · β = c ∩ c′ ∩ [Y ]e,
see Lemma 62.2. By Lemma 59.7 we know that f ! commutes with both c and c′.
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Hence

f !(α · β) = f !(c ∩ c′ ∩ [Y ]e)
= c ∩ c′ ∩ f ![Y ]e
= c ∩ c′ ∩ [X]d
= (c ∩ [X]d) · (c′ ∩ [X]d)
= (c ∩ f ![Y ]e) · (c′ ∩ f ![Y ]e)
= f !(α) · f !(β)

as desired where we have used Lemma 62.2 for X as well.

An alternative proof can be given by proving that (f × f)!(α× β) = f !α× f !β and
using Lemma 59.6. □

Lemma 62.4.0FFC Let k be a field. Let f : X → Y be a proper morphism of schemes
smooth over k. Then the gysin map exists for f and f∗(α · f !β) = f∗α · β.

Proof. Observe that X → X×kY is an immersion of X into a scheme smooth over
Y . Hence the gysin map exists for f (Definition 59.4). To prove the formula we
may decompose X and Y into their connected components, hence we may assume
X is smooth over k and equidimensional of dimension d and Y is smooth over k
and equidimensional of dimension e. Observe that f ![Y ]e = [X]d (see for example
Lemma 59.8). Write α = c ∩ [X]d and β = c′ ∩ [Y ]e, see Lemma 62.2. We have

f∗(α · f !β) = f∗(c ∩ f !(c′ ∩ [Y ]e))
= f∗(c ∩ c′ ∩ f ![Y ]e)
= f∗(c ∩ c′ ∩ [X]d)
= f∗(c′ ∩ c ∩ [X]d)
= c′ ∩ f∗(c ∩ [X]d)
= β · f∗(α)

The first equality by the result of Lemma 62.2 for X. By Lemma 59.7 we know
that f ! commutes with c′. The commutativity of the intersection product justifies
switching the order of capping [X]d with c and c′ (via the lemma). Commuting
c′ with f∗ is allowed as c′ is a bivariant class. The final equality is again the
lemma. □

Lemma 62.5.0FFD Let k be a field. Let X be an integral scheme smooth over k. Let
Y,Z ⊂ X be integral closed subschemes. Set d = dim(Y ) + dim(Z) − dim(X).
Assume

(1) dim(Y ∩ Z) ≤ d, and
(2) OY,ξ and OZ,ξ are Cohen-Macaulay for every ξ ∈ Y ∩ Z with δ(ξ) = d.

Then [Y ] · [Z] = [Y ∩ Z]d in CHd(X).

Proof. Recall that [Y ] · [Z] = ∆!([Y ×Z]) where ∆! = c(∆ : X → X ×X, TX/k) is
a higher codimension gysin map (Section 54) with TX/k = Hom(ΩX/k,OX) locally
free of rank dim(X). We have the equality of schemes

Y ∩ Z = X ×∆,(X×X) (Y × Z)
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and dim(Y × Z) = dim(Y ) + dim(Z) and hence conditions (1), (2), and (3) of
Lemma 54.6 hold. Finally, if ξ ∈ Y ∩ Z, then we have a flat local homomorphism

OY,ξ −→ OY×Z,ξ

whose “fibre” is OZ,ξ. It follows that if both OY,ξ and OZ,ξ are Cohen-Macaulay,
then so is OY×Z,ξ, see Algebra, Lemma 163.3. In this way we see that all the
hypotheses of Lemma 54.6 are satisfied and we conclude. □

Lemma 62.6.0FFE Let k be a field. Let X be a scheme smooth over k. Let i : Y → X be
a regular closed immersion. Let α ∈ CH∗(X). If Y is equidimensional of dimension
e, then α · [Y ]e = i∗(i!(α)) in CH∗(X).

Proof. After decomposing X into connected components we may and do assume
X is equidimensional of dimension d. Write α = c ∩ [X]n with x ∈ A∗(X), see
Lemma 62.2. Then
i∗(i!(α)) = i∗(i!(c ∩ [X]n)) = i∗(c ∩ i![X]n) = i∗(c ∩ [Y ]e) = c ∩ i∗[Y ]e = α · [Y ]e

The first equality by choice of c. Then second equality by Lemma 59.7. The third
because i![X]d = [Y ]e in CH∗(Y ) (Lemma 59.8). The fourth because bivariant
classes commute with proper pushforward. The last equality by Lemma 62.2. □

Lemma 62.7.0FFF Let k be a field. Let X be a smooth scheme over k which is quasi-
compact and has affine diagonal. Then the intersection product on CH∗(X) con-
structed in this section agrees after tensoring with Q with the intersection product
constructed in Section 58.

Proof. Let α ∈ CHi(X) and β ∈ CHj(X). Write α = ch(α′)∩[X] and β = ch(β′)∩
[X] α′, β′ ∈ K0(Vect(X)) ⊗ Q as in Section 58. Set c = ch(α′) and c′ = ch(β′).
Then the intersection product in Section 58 produces c ∩ c′ ∩ [X]. This is the
same as α · β by Lemma 62.2 (or rather the generalization that Ai(X)→ CHi(X),
c 7→ c ∩ [X] is an isomorphism for any smooth scheme X over k). □

63. Exterior product over Dedekind domains

0FC3 Let S be a locally Noetherian scheme which has an open covering by spectra of
Dedekind domains. Set δ(s) = 0 for s ∈ S closed and δ(s) = 1 otherwise. Then
(S, δ) is a special case of our general Situation 7.1; see Example 7.3. Observe that
S is normal (Algebra, Lemma 120.17) and hence a disjoint union of normal integral
schemes (Properties, Lemma 7.7). Thus all of the arguments below reduce to the
case where S is irreducible. On the other hand, we allow S to be nonseparated (so
S could be the affine line with 0 doubled for example).
Consider a cartesian square

X ×S Y //

��

Y

��
X // S

of schemes locally of finite type over S. We claim there is a canonical map
× : CHn(X)⊗Z CHm(Y ) −→ CHn+m−1(X ×S Y )

which is uniquely determined by the following rule: given integral closed subschemes
X ′ ⊂ X and Y ′ ⊂ Y of δ-dimensions n and m we set
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(1) [X ′] × [Y ′] = [X ′ ×S Y ′]n+m−1 if X ′ or Y ′ dominates an irreducible com-
ponent of S,

(2) [X ′]× [Y ′] = 0 if neither X ′ nor Y ′ dominates an irreducible component of
S.

Lemma 63.1.0FC4 The map × : CHn(X)⊗Z CHm(Y )→ CHn+m−1(X ×S Y ) is well
defined.

Proof. Consider n and m cycles α =
∑
i∈I ni[Xi] and β =

∑
j∈J mj [Yj ] with

Xi ⊂ X and Yj ⊂ Y locally finite families of integral closed subschemes of δ-
dimensions n and m. Let K ⊂ I × J be the set of pairs (i, j) ∈ I × J such that
Xi or Yj dominates an irreducible component of S. Then {Xi ×S Yj}(i,j)∈K is a
locally finite collection of closed subschemes of X ×S Y of δ-dimension n+m− 1.
This means we can indeed consider

α× β =
∑

(i,j)∈K
nimj [Xi ×S Yj ]n+m−1

as a (n + m − 1)-cycle on X ×S Y . In this way we obtain an additive map × :
Zn(X)⊗Z Zm(Y )→ Zn+m(X ×S Y ). The problem is to show that this procedure
is compatible with rational equivalence.

Let i : X ′ → X be the inclusion morphism of an integral closed subscheme of δ-
dimension n which dominates an irreducible component of S. Then p′ : X ′ → S
is flat of relative dimension n− 1, see More on Algebra, Lemma 22.11. Hence flat
pullback along p′ is an element (p′)∗ ∈ A−n+1(X ′ → S) by Lemma 33.2 and hence
c′ = i∗ ◦ (p′)∗ ∈ A−n+1(X → S) by Lemma 33.4. This produces maps

c′ ∩ − : CHm(Y ) −→ CHm+n−1(X ×S Y )

which sends [Y ′] to [X ′ ×S Y ′]n+m−1 for any integral closed subscheme Y ′ ⊂ Y of
δ-dimension m.

Let i : X ′ → X be the inclusion morphism of an integral closed subscheme of
δ-dimension n such that the composition X ′ → X → S factors through a closed
point s ∈ S. Since s is a closed point of the spectrum of a Dedekind domain,
we see that s is an effective Cartier divisor on S whose normal bundle is trivial.
Denote c ∈ A1(s→ S) the gysin homomorphism, see Lemma 33.3. The morphism
p′ : X ′ → s is flat of relative dimension n. Hence flat pullback along p′ is an element
(p′)∗ ∈ A−n(X ′ → S) by Lemma 33.2. Thus

c′ = i∗ ◦ (p′)∗ ◦ c ∈ A−n(X → S)

by Lemma 33.4. This produces maps

c′ ∩ − : CHm(Y ) −→ CHm+n−1(X ×S Y )

which for any integral closed subscheme Y ′ ⊂ Y of δ-dimension m sends [Y ′] to
either [X ′ ×S Y ′]n+m−1 if Y ′ dominates an irreducible component of S or to 0 if
not.

From the previous two paragraphs we conclude the construction ([X ′], [Y ′]) 7→
[X ′ ×S Y ′]n+m−1 factors through rational equivalence in the second variable, i.e.,
gives a well defined map Zn(X)⊗Z CHm(Y )→ CHn+m−1(X ×S Y ). By symmetry
the same is true for the other variable and we conclude. □
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Lemma 63.2.0FC5 Let (S, δ) be as above. Let X be a scheme locally of finite type over
S. Then we have a canonical identification

Ap(X → S) = CH1−p(X)
for all p ∈ Z.

Proof. Consider the element [S]1 ∈ CH1(S). We get a map Ap(X → S) →
CH1−p(X) by sending c to c ∩ [S]1.
Conversely, suppose we have α ∈ CH1−p(X). Then we can define cα ∈ Ap(X → S)
as follows: given X ′ → S and α′ ∈ CHn(X ′) we let

cα ∩ α′ = α× α′

in CHn−p(X×SX ′). To show that this is a bivariant class we write α =
∑
i∈I ni[Xi]

as in Definition 8.1. In particular the morphism

g :
∐

i∈I
Xi −→ X

is proper. Pick i ∈ I. If Xi dominates an irreducible component of S, then the
structure morphism pi : Xi → S is flat and we have ξi = p∗

i ∈ Ap(Xi → S). On
the other hand, if pi factors as p′

i : Xi → si followed by the inclusion si → S of a
closed point, then we have ξi = (p′

i)∗ ◦ ci ∈ Ap(Xi → S) where ci ∈ A1(si → S) is
the gysin homomorphism and (p′

i)∗ is flat pullback. Observe that

Ap(
∐

i∈I
Xi → S) =

∏
i∈I

Ap(Xi → S)

Thus we have
ξ =

∑
niξi ∈ Ap(

∐
i∈I

Xi → S)
Finally, since g is proper we have a bivariant class

g∗ ◦ ξ ∈ Ap(X → S)
by Lemma 33.4. The reader easily verifies that cα is equal to this class (please
compare with the proof of Lemma 63.1) and hence is itself a bivariant class.
To finish the proof we have to show that the two constructions are mutually inverse.
Since cα ∩ [S]1 = α this is clear for one of the two directions. For the other, let
c ∈ Ap(X → S) and set α = c ∩ [S]1. It suffices to prove that

c ∩ [X ′] = cα ∩ [X ′]
when X ′ is an integral scheme locally of finite type over S, see Lemma 35.3. How-
ever, either p′ : X ′ → S is flat of relative dimension dimδ(X ′)− 1 and hence [X ′] =
(p′)∗[S]1 or X ′ → S factors as X ′ → s → S and hence [X ′] = (p′)∗(s → S)∗[S]1.
Thus the fact that the bivariant classes c and cα agree on [S]1 implies they agree
when capped against [X ′] (since bivariant classes commute with flat pullback and
gysin maps) and the proof is complete. □

Lemma 63.3.0FC6 Let (S, δ) be as above. Let X be a scheme locally of finite type over
S. Let c ∈ Ap(X → S). Let Y → Z be a morphism of schemes locally of finite type
over S. Let c′ ∈ Aq(Y → Z). Then c ◦ c′ = c′ ◦ c in Ap+q(X ×S Y → X ×S Z).

Proof. In the proof of Lemma 63.2 we have seen that c is given by a combination
of proper pushforward, multiplying by integers over connected components, flat
pullback, and gysin maps. Since c′ commutes with each of these operations by
definition of bivariant classes, we conclude. Some details omitted. □
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Remark 63.4.0FC7 The upshot of Lemmas 63.2 and 63.3 is the following. Let (S, δ)
be as above. Let X be a scheme locally of finite type over S. Let α ∈ CH∗(X). Let
Y → Z be a morphism of schemes locally of finite type over S. Let c′ ∈ Aq(Y → Z).
Then

α× (c′ ∩ β) = c′ ∩ (α× β)
in CH∗(X ×S Y ) for any β ∈ CH∗(Z). Namely, this follows by taking c = cα ∈
A∗(X → S) the bivariant class corresponding to α, see proof of Lemma 63.2.

Lemma 63.5.0FC8 Exterior product is associative. More precisely, let (S, δ) be as
above, let X,Y, Z be schemes locally of finite type over S, let α ∈ CH∗(X), β ∈
CH∗(Y ), γ ∈ CH∗(Z). Then (α× β)× γ = α× (β × γ) in CH∗(X ×S Y ×S Z).

Proof. Omitted. Hint: associativity of fibre product of schemes. □

64. Intersection products over Dedekind domains

0FC9 Let S be a locally Noetherian scheme which has an open covering by spectra of
Dedekind domains. Set δ(s) = 0 for s ∈ S closed and δ(s) = 1 otherwise. Then
(S, δ) is a special case of our general Situation 7.1; see Example 7.3 and discussion
in Section 63.
Let X be a smooth scheme over S. The bivariant class ∆! of Section 60 allows us
to define a kind of intersection product on chow groups of schemes locally of finite
type over X. Namely, suppose that Y → X and Z → X are morphisms of schemes
which are locally of finite type. Then observe that

Y ×X Z = (Y ×S Z)×X×SX,∆ X

Hence we can consider the following sequence of maps

CHn(Y )⊗Z CHm(Y ) ×−→ CHn+m−1(Y ×S Z) ∆!

−→ CHn+m−∗(Y ×X Z)
Here the first arrow is the exterior product constructed in Section 63 and the
second arrow is the gysin map for the diagonal studied in Section 60. If X is
equidimensional of dimension d, then X → S is smooth of relative dimension d− 1
and hence we end up in CHn+m−d(Y ×X Z). In general we can decompose into
the parts lying over the open and closed subschemes of X where X has a given
dimension. Given α ∈ CH∗(Y ) and β ∈ CH∗(Z) we will denote

α · β = ∆!(α× β) ∈ CH∗(Y ×X Z)
In the special case where X = Y = Z we obtain a multiplication

CH∗(X)× CH∗(X)→ CH∗(X), (α, β) 7→ α · β
which is called the intersection product. We observe that this product is clearly
symmetric. Associativity follows from the next lemma.

Lemma 64.1.0FCA The product defined above is associative. More precisely, with (S, δ)
as above, let X be smooth over S, let Y, Z,W be schemes locally of finite type over
X, let α ∈ CH∗(Y ), β ∈ CH∗(Z), γ ∈ CH∗(W ). Then (α · β) · γ = α · (β · γ) in
CH∗(Y ×X Z ×X W ).

Proof. By Lemma 63.5 we have (α×β)× γ = α× (β× γ) in CH∗(Y ×S Z ×SW ).
Consider the closed immersions

∆12 : X ×S X −→ X ×S X ×S X, (x, x′) 7→ (x, x, x′)
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and
∆23 : X ×S X −→ X ×S X ×S X, (x, x′) 7→ (x, x′, x′)

Denote ∆!
12 and ∆!

23 the corresponding bivariant classes; observe that ∆!
12 is the

restriction (Remark 33.5) of ∆! to X ×S X ×S X by the map pr12 and that ∆!
23 is

the restriction of ∆! to X×SX×SX by the map pr23. Thus clearly the restriction
of ∆!

12 by ∆23 is ∆! and the restriction of ∆!
23 by ∆12 is ∆! too. Thus by Lemma

54.8 we have
∆! ◦∆!

12 = ∆! ◦∆!
23

Now we can prove the lemma by the following sequence of equalities:
(α · β) · γ = ∆!(∆!(α× β)× γ)

= ∆!(∆!
12((α× β)× γ))

= ∆!(∆!
23((α× β)× γ))

= ∆!(∆!
23(α× (β × γ))

= ∆!(α×∆!(β × γ))
= α · (β · γ)

All equalities are clear from the above except perhaps for the second and penulti-
mate one. The equation ∆!

23(α× (β × γ)) = α×∆!(β × γ) holds by Remark 61.4.
Similarly for the second equation. □

Lemma 64.2.0FCB Let (S, δ) be as above. Let X be a smooth scheme over S, equidi-
mensional of dimension d. The map

Ap(X) −→ CHd−p(X), c 7−→ c ∩ [X]d
is an isomorphism. Via this isomorphism composition of bivariant classes turns
into the intersection product defined above.

Proof. Denote g : X → S the structure morphism. The map is the composition
of the isomorphisms

Ap(X)→ Ap−d+1(X → S)→ CHd−p(X)
The first is the isomorphism c 7→ c ◦ g∗ of Proposition 60.2 and the second is the
isomorphism c 7→ c ∩ [S]1 of Lemma 63.2. From the proof of Lemma 63.2 we see
that the inverse to the second arrow sends α ∈ CHd−p(X) to the bivariant class cα
which sends β ∈ CH∗(Y ) for Y locally of finite type over k to α×β in CH∗(X×kY ).
From the proof of Proposition 60.2 we see the inverse to the first arrow in turn sends
cα to the bivariant class which sends β ∈ CH∗(Y ) for Y → X locally of finite type
to ∆!(α× β) = α · β. From this the final result of the lemma follows. □

65. Todd classes

02UN A final class associated to a vector bundle E of rank r is its Todd class Todd(E). In
terms of the Chern roots x1, . . . , xr it is defined as

Todd(E) =
∏r

i=1

xi
1− e−xi

In terms of the Chern classes ci = ci(E) we have

Todd(E) = 1+ 1
2c1 + 1

12(c2
1 + c2)+ 1

24c1c2 + 1
720(−c4

1 +4c2
1c2 +3c2

2 + c1c3− c4)+ . . .
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We have made the appropriate remarks about denominators in the previous section.
It is the case that given an exact sequence

0→ E1 → E → E2 → 0
we have

Todd(E) = Todd(E1)Todd(E2).

66. Grothendieck-Riemann-Roch

02UO Let (S, δ) be as in Situation 7.1. Let X,Y be locally of finite type over S. Let E
be a finite locally free sheaf E on X of rank r. Let f : X → Y be a proper smooth
morphism. Assume that Rif∗E are locally free sheaves on Y of finite rank. The
Grothendieck-Riemann-Roch theorem say in this case that

f∗(Todd(TX/Y )ch(E)) =
∑

(−1)ich(Rif∗E)

Here
TX/Y = HomOX

(ΩX/Y ,OX)
is the relative tangent bundle of X over Y . If Y = Spec(k) where k is a field, then
we can restate this as

χ(X, E) = deg(Todd(TX/k)ch(E))
The theorem is more general and becomes easier to prove when formulated in correct
generality. We will return to this elsewhere (insert future reference here).

67. Change of base scheme

0FVF In this section we explain how to compare theories for different base schemes.

Situation 67.1.0FVG Here (S, δ) and (S′, δ′) are as in Situation 7.1. Furthermore
g : S′ → S is a flat morphism of schemes and c ∈ Z is an integer such that: for all
s ∈ S and s′ ∈ S′ a generic point of an irreducible component of g−1({s}) we have
δ(s′) = δ(s) + c.

We will see that for a scheme X locally of finite type over S there is a well defined
map CHk(X)→ CHk+c(X ×S S′) of Chow groups which (by and large) commutes
with the operations we have defined in this chapter.

Lemma 67.2.0FVH In Situation 67.1 let X → S be locally of finite type. Denote
X ′ → S′ the base change by S′ → S. If X is integral with dimδ(X) = k, then every
irreducible component Z ′ of X ′ has dimδ′(Z ′) = k + c,

Proof. The projection X ′ → X is flat as a base change of the flat morphism
S′ → S (Morphisms, Lemma 25.8). Hence every generic point x′ of an irreducible
component of X ′ maps to the generic point x ∈ X (because generalizations lift
along X ′ → X by Morphisms, Lemma 25.9). Let s ∈ S be the image of x. Recall
that the scheme S′

s = S′×S s has the same underlying topological space as g−1({s})
(Schemes, Lemma 18.5). We may view x′ as a point of the scheme S′

s ×s x which
comes equipped with a monomorphism S′

s ×s x → S′ ×S X. Of course, x′ is a
generic point of an irreducible component of S′

s ×s x as well. Using the flatness
of Spec(κ(x)) → Spec(κ(s)) = s and arguing as above, we see that x′ maps to a
generic point s′ of an irreducible component of g−1({s}). Hence δ′(s′) = δ(s)+c by
assumption. We have dimx(Xs) = dimx′(Xs′) by Morphisms, Lemma 28.3. Since
x is a generic point of an irreducible component Xs (this is an irreducible scheme
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but we don’t need this) and x′ is a generic point of an irreducible component of X ′
s′

we conclude that trdegκ(s)(κ(x)) = trdegκ(s′)(κ(x′)) by Morphisms, Lemma 28.1.
Then

δX′/S′(x′) = δ(s′) + trdegκ(s′)(κ(x′)) = δ(s) + c+ trdegκ(s)(κ(x)) = δX/S(x) + c

This proves what we want by Definition 7.6. □

In Situation 67.1 let X → S be locally of finite type. Denote X ′ → S′ the base
change by g : S′ → S. There is a unique homomorphism

g∗ : Zk(X) −→ Zk+c(X ′)

which given an integral closed subscheme Z ⊂ X of δ-dimension k sends [Z] to
[Z ×S S′]k+c. This makes sense by Lemma 67.2.

Lemma 67.3.0FVI In Situation 67.1 let X → S locally of finite type and let X ′ → S
be the base change by S′ → S.

(1) Let Z ⊂ X be a closed subscheme with dimδ(Z) ≤ k and base change
Z ′ ⊂ X ′. Then we have dimδ′(Z ′)) ≤ k + c and [Z ′]k+c = g∗[Z]k in
Zk+c(X ′).

(2) Let F be a coherent sheaf on X with dimδ(Supp(F)) ≤ k and base change
F ′ on X ′. Then we have dimδ(Supp(F ′)) ≤ k + c and g∗[F ]k = [F ′]k+c in
Zk+c(X ′).

Proof. The proof is exactly the same is the proof of Lemma 14.4 and we suggest
the reader skip it.

The statements on dimensions follow from Lemma 67.2. Part (1) follows from part
(2) by Lemma 10.3 and the fact that the base change of the coherent module OZ
is OZ′ .

Proof of (2). As X, X ′ are locally Noetherian we may apply Cohomology of
Schemes, Lemma 9.1 to see that F is of finite type, hence F ′ is of finite type
(Modules, Lemma 9.2), hence F ′ is coherent (Cohomology of Schemes, Lemma 9.1
again). Thus the lemma makes sense. Let W ⊂ X be an integral closed subscheme
of δ-dimension k, and let W ′ ⊂ X ′ be an integral closed subscheme of δ′-dimension
k + c mapping into W under X ′ → X. We have to show that the coefficient n of
[W ′] in g∗[F ]k agrees with the coefficient m of [W ′] in [F ′]k+c. Let ξ ∈ W and
ξ′ ∈ W ′ be the generic points. Let A = OX,ξ, B = OX′,ξ′ and set M = Fξ as an
A-module. (Note that M has finite length by our dimension assumptions, but we
actually do not need to verify this. See Lemma 10.1.) We have F ′

ξ′ = B ⊗A M .
Thus we see that

n = lengthB(B ⊗AM) and m = lengthA(M)lengthB(B/mAB)

Thus the equality follows from Algebra, Lemma 52.13. □

Lemma 67.4.0FVJ In Situation 67.1 let X → S be locally of finite type and let X ′ → S′

be the base change by S′ → S. The map g∗ : Zk(X) → Zk+c(X ′) above factors
through rational equivalence to give a map

g∗ : CHk(X) −→ CHk+c(X ′)

of chow groups.
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Proof. Suppose that α ∈ Zk(X) is a k-cycle which is rationally equivalent to zero.
By Lemma 21.1 there exists a locally finite family of integral closed subschemes
Wi ⊂ X×P1 of δ-dimension k not contained in the divisors (X×P1)0 or (X×P1)∞
of X × P1 such that α =

∑
([(Wi)0]k − [(Wi)∞]k). Thus it suffices to prove for

W ⊂ X×P1 integral closed of δ-dimension k not contained in the divisors (X×P1)0
or (X ×P1)∞ of X ×P1 we have

(1) the base change W ′ ⊂ X ′ × P1 satisfies the assumptions of Lemma 21.2
with k replaced by k + c, and

(2) g∗[W0]k = [(W ′)0]k+c and g∗[W∞]k = [(W ′)∞]k+c.
Part (2) follows immediately from Lemma 67.3 and the fact that (W ′)0 is the
base change of W0 (by associativity of fibre products). For part (1), first the
statement on dimensions follows from Lemma 67.2. Then let w′ ∈ (W ′)0 with
image w ∈ W0 and z ∈ P1

S . Denote t ∈ OP1
S
,z the usual equation for 0 : S → P1

S .
Since OW,w → OW ′,w′ is flat and since t is a nonzerodivisor on OW,w (as W is
integral and W ̸= W0) we see that also t is a nonzerodivisor in OW ′,w′ . Hence W ′

has no associated points lying on W ′
0. □

Lemma 67.5.0FVK In Situation 67.1 let Y → X → S be locally of finite type and let
Y ′ → X ′ → S′ be the base change by S′ → S. Assume f : Y → X is flat of relative
dimension r. Then f ′ : Y ′ → X ′ is flat of relative dimension r and the diagrams

Zk+r(Y )
g∗
// Zk+c+r(Y ′)

Zk(X) g∗
//

(f ′)∗

OO

Zk+c(X ′)

f∗

OO

and

CHk+r(Y )
g∗
// CHk+c+r(Y ′)

CHk(X) g∗
//

(f ′)∗

OO

CHk+c(X ′)

f∗

OO

of cycle and chow groups commutes.

Proof. It suffices to show the first diagram commutes. To see this, let Z ⊂ X be
an integral closed subscheme of δ-dimension k and denote Z ′ ⊂ X ′ its base change.
By construction we have g∗[Z] = [Z ′]k+c. By Lemma 14.4 we have (f ′)∗g∗[Z] =
[Z ′×X′ Y ′]k+c+r. Conversely, we have f∗[Z] = [Z×X Y ]k+r by Definition 14.1. By
Lemma 67.3 we have g∗f∗[Z] = [(Z ×X Y )′]k+r+c. Since (Z ×X Y )′ = Z ′ ×X′ Y ′

by associativity of fibre product we conclude. □

Lemma 67.6.0FVL In Situation 67.1 let Y → X → S be locally of finite type and let
Y ′ → X ′ → S′ be the base change by S′ → S. Assume f : Y → X is proper. Then
f ′ : Y ′ → X ′ is proper and the diagram

Zk(Y )
g∗
//

f∗

��

Zk+c(Y ′)

f ′
∗
��

Zk(X) g∗
// Zk+c(X ′)

and

CHk(Y )
g∗
//

f∗

��

CHk+c(Y ′)

f ′
∗
��

CHk(X) g∗
// CHk+c(X ′)

of cycle and chow groups commutes.

Proof. It suffices to show the first diagram commutes. To see this, let Z ⊂ Y be
an integral closed subscheme of δ-dimension k and denote Z ′ ⊂ X ′ its base change.
By construction we have g∗[Z] = [Z ′]k+c. By Lemma 12.4 we have (f ′)∗g

∗[Z] =
[f ′

∗OZ′ ]k+c. By the same lemma we have f∗[Z] = [f∗OZ ]k. By Lemma 67.3 we
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have g∗f∗[Z] = [(X ′ → X)∗f∗OZ ]k+r. Thus it suffices to show that
(X ′ → X)∗f∗OZ ∼= f ′

∗OZ′

as coherent modules on X ′. As X ′ → X is flat and as OZ′ = (Y ′ → Y )∗OZ , this
follows from flat base change, see Cohomology of Schemes, Lemma 5.2. □

Lemma 67.7.0FVM In Situation 67.1 let X → S be locally of finite type and let X ′ → S′

be the base change by S′ → S. Let L be an invertible OX-module with base change
L′ on X ′. Then the diagram

CHk(X)
g∗
//

c1(L)∩−
��

CHk+c(X ′)

c1(L′)∩−
��

CHk−1(X) g∗
// CHk+c−1(X ′)

of chow groups commutes.

Proof. Let p : L→ X be the line bundle associated to L with zero section o : X →
L. For α ∈ CHk(X) we know that β = c1(L)∩α is the unique element of CHk−1(X)
such that o∗α = −p∗β, see Lemmas 32.2 and 32.4. The same characterization holds
after pullback. Hence the lemma follows from Lemmas 67.5 and 67.6. □

Lemma 67.8.0FVN In Situation 67.1 let X → S be locally of finite type and let X ′ → S′

be the base change by S′ → S. Let E be a finite locally free OX-module of rank r
with base change E ′ on X ′. Then the diagram

CHk(X)
g∗
//

ci(E)∩−
��

CHk+c(X ′)

ci(E′)∩−
��

CHk−i(X) g∗
// CHk+c−i(X ′)

of chow groups commutes for all i.

Proof. Set P = P(E). The base change P ′ of P is equal to P(E ′). Since we already
know that flat pullback and cupping with c1 of an invertible module commute with
base change (Lemmas 67.5 and 67.7) the lemma follows from the characterization
of capping with ci(E) given in Lemma 38.2. □

Lemma 67.9.0FVP Let (S, δ), (S′, δ′), (S′′, δ′′) be as in Situation 7.1. Let g : S′ → S
and g′ : S′′ → S′ be flat morphisms of schemes and let c, c′ ∈ Z be integers such that
S, δ, S′, δ′, g, c and S′, δ′, S′′, g′, c′ are as in Situation 67.1. Let X → S be locally
of finite type and denote X ′ → S′ and X ′′ → S′′ the base changes by S′ → S and
S′′ → S. Then

(1) S, δ, S′′, δ′′, g ◦ g′, c+ c′ is as in Situation 67.1,
(2) the maps g∗ : Zk(X) → Zk+c(X ′) and (g′)∗ : Zk+c(X ′) → Zk+c+c′(X ′′) of

compose to give the map (g ◦ g′)∗ : Zk(X)→ Zk+c+c′(X ′′), and
(3) the maps g∗ : CHk(X)→ CHk+c(X ′) and (g′)∗ : CHk+c(X ′)→ CHk+c+c′(X ′′)

of Lemma 67.4 compose to give the map (g◦g′)∗ : CHk(X)→ CHk+c+c′(X ′′)
of Lemma 67.4.

Proof. Let s ∈ S and let s′′ ∈ S′′ be a generic point of an irreducible component
of (g ◦ g′)−1({s}). Set s′ = g′(s′′). Clearly, s′′ is a generic point of an irreducible
component of (g′)−1({s′}). Moreover, since g′ is flat and hence generalizations

https://stacks.math.columbia.edu/tag/0FVM
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lift along g′ (Morphisms, Lemma 25.8) we see that also s′ is a generic point of
an irreducible component of g−1({s}). Thus by assumption δ′(s′) = δ(s) + c and
δ′′(s′′) = δ′(s′) + c′. We conclude δ′′(s′′) = δ(s) + c + c′ and the first part of the
statement is true.
For the second part, let Z ⊂ X be an integral closed subscheme of δ-dimension
k. Denote Z ′ ⊂ X ′ and Z ′′ ⊂ X ′′ the base changes. By definition we have
g∗[Z] = [Z ′]k+c. By Lemma 67.3 we have (g′)∗[Z ′]k+c = [Z ′′]k+c+c′ . This proves
the final statement. □

Lemma 67.10.0FVQ In Situation 67.1 assume c = 0 and assume that S′ = limi∈I Si
is a filtered limit of schemes Si affine over S such that

(1) with δi equal to Si → S
δ−→ Z the pair (Si, δi) is as in Situation 7.1,

(2) Si, δi, S, δ, S → Si, c = 0 is as in Situation 67.1,
(3) Si, δi, Si′ , δi′ , Si → Si′ , c = 0 for i ≥ i′ is as in Situation 67.1.

Then for a quasi-compact scheme X of finite type over S with base change X ′

and Xi by S′ → S and Si → S we have Zk(X ′) = colimZk(Xi) and CHk(X ′) =
colim CHk(Xi).

Proof. By the result of Lemma 67.9 we obtain a system of cycle groups Zk(Xi)
and a system of chow groups CHk(Xi) as well as maps colimZk(Xi)→ Zk(X ′) and
colim CHi(Xi) → CHk(X ′). We may replace S by a quasi-compact open through
which X → S factors, hence we may and do assume all the schemes occuring in
this proof are Noetherian (and hence quasi-compact and quasi-separated).
Let us show that the map colimZk(Xi)→ Zk(X ′) is surjective. Namely, let Z ′ ⊂ X ′

be an integral closed subscheme of δ′-dimension k. By Limits, Lemma 10.1 we can
find an i and a morphism Zi → Xi of finite presentation whose base change is
Z ′. Afer increasing i we may assume Zi is a closed subscheme of Xi, see Limits,
Lemma 8.5. Then Z ′ → Xi factors through Zi and we may replace Zi by the scheme
theoretic image of Z ′ → Xi. In this way we see that we may assume Zi is an integral
closed subscheme of Xi. By Lemma 67.2 we conclude that dimδi(Zi) = dimδ′(Z ′) =
k. Thus Zk(Xi)→ Zk(X ′) maps [Zi] to [Z ′] and we conclude surjectivity holds.
Let us show that the map colimZk(Xi)→ Zk(X ′) is injective. Let αi =

∑
nj [Zj ] ∈

Zk(Xi) be a cycle whose image in Zk(X ′) is zero. We may and do assume Zj ̸= Zj′

if j ̸= j′ and nj ̸= 0 for all j. Denote Z ′
j ⊂ X ′ the base change of Zj . By

Lemma 67.2 each irreducible component of Z ′
j has δ′-dimension k. Moreover, as

Zj is irreducible and Z ′
j → Zj is flat (as the base change of S′ → S) we see that

Z ′
j → Zj is dominant. Hence if Z ′

j is nonempty, then some irreducible component,
say Z ′, of Z ′

j dominates Zj . It follows that Z ′ cannot be an irreducible component
of Z ′

j′ for j′ ̸= j. Hence if Z ′
j is nonempty, then we see that (S′ → Si)∗αi =

∑
[Z ′
j ]r

is nonzero (as the coefficient of Z ′ would be nonzero). Thus we see that Z ′
j = ∅

for all j. However, this means that the base change of Zj by some transition map
Si′ → Si is empty by Limits, Lemma 4.3. Thus αi dies in the colimit as desired.
The surjectivity of colimZk(Xi)→ Zk(X ′) implies that colim CHk(Xi)→ CHk(X ′)
is surjective. To finish the proof we show that this map is injective. Let αi ∈
CHk(Xi) be a cycle whose image α′ ∈ CHk(X ′) is zero. Then there exist integral
closed subschemes W ′

l ⊂ X ′, l = 1, . . . , r of δ”-dimension k+1 and nonzero rational
functions f ′

l on W ′
l such that α′ =

∑
l=1,...,r divW ′

l
(f ′
l ). Arguing as above we can

https://stacks.math.columbia.edu/tag/0FVQ
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find an i and integral closed subschemes Wi,l ⊂ Xi of δi-dimension k + 1 whose
base change is W ′

l . After increasin i we may assume we have rational functions
fi,l on Wi,l. Namely, we may think of f ′

l as a section of the structure sheaf over a
nonempty open U ′

l ⊂W ′
l , we can descend these opens by Limits, Lemma 4.11 and

after increasing i we may descend f ′
l by Limits, Lemma 4.7. We claim that

αi =
∑

l=1,...,r
divWi,l

(fi,l)

after possibly increasing i.

To prove the claim, let Z ′
l,j ⊂W ′

l be a finite collection of integral closed subschemes
of δ′-dimension k such that f ′

l is an invertible regular function outside
⋃
j Y

′
l,j . After

increasing i (by the arguments above) we may assume there exist integral closed
subschemes Zi,l,j ⊂ Wi of δi-dimension k such that fi,l is an invertible regular
function outside

⋃
j Zi,l,j . Then we may write

divW ′
l
(f ′
l ) =

∑
nl,j [Z ′

l,j ]

and
divWi,l

(fi,l) =
∑

ni,l,j [Zi,l,j ]
To prove the claim it suffices to show that nl,i = ni,l,j . Namely, this will imply that
βi = αi −

∑
l=1,...,r divWi,l

(fi,l) is a cycle on Xi whose pullback to X ′ is zero as a
cycle! It follows that βi pulls back to zero as a cycle on Xi′ for some i′ ≥ i by an
easy argument we omit.

To prove the equality nl,i = ni,l,j we choose a generic point ξ′ ∈ Z ′
l,j and we denote

ξ ∈ Zi,l,j the image which is a generic point also. Then the local ring map

OWi,l,ξ −→ OW ′
l
,ξ′

is flat as W ′
l →Wi,l is the base change of the flat morphism S′ → Si. We also have

mξOW ′
l
,ξ′ = mξ′ because Zi,l,j pulls back to Z ′

l,j ! Thus the equality of

nl,j = ordZ′
l,j

(f ′
l ) = ordOW ′

l
,ξ′ (f ′

l ) and ni,l,j = ordZi,l,j (fi,l) = ordOWi,l,ξ
(fi,l)

follows from Algebra, Lemma 52.13 and the construction of ord in Algebra, Section
121. □

68. Appendix A: Alternative approach to key lemma

0EAZ In this appendix we first define determinants detκ(M) of finite length modules
M over local rings (R,m, κ), see Subsection 68.1. The determinant detκ(M) is
a 1-dimensional κ-vector space. We use this in Subsection 68.12 to define the
determinant detκ(M,φ, ψ) ∈ κ∗ of an exact (2, 1)-periodic complex (M,φ, ψ) with
M of finite length. In Subsection 68.26 we use these determinants to construct a
tame symbol dR(a, b) = detκ(R/ab, a, b) for a pair of nonzerodivisors a, b ∈ R when
R is Noetherian of dimension 1. Although there is no doubt that

dR(a, b) = ∂R(a, b)

where ∂R is as in Section 5, we have not (yet) added the verification. The advantage
of the tame symbol as constructed in this appendix is that it extends (for example)
to pairs of injective endomorphisms φ,ψ of a finite R-module M of dimension 1
such that φ(ψ(M)) = ψ(φ(M)). In Subsection 68.40 we relate Herbrand quotients
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and determinants. An easy to state version of the main result (Proposition 68.43)
is the formula

−eR(M,φ, ψ) = ordR(detK(MK , φ, ψ))
when (M,φ, ψ) is a (2, 1)-periodic complex whose Herbrand quotient eR (Definition
2.2) is defined over a 1-dimensonal Noetherian local domain R with fraction field
K. We use this proposition to give an alternative proof of the key lemma (Lemma
6.3) for the tame symbol constructed in this appendix, see Lemma 68.46.

68.1. Determinants of finite length modules.02P5 The material in this section
is related to the material in the paper [KM76] and to the material in the thesis
[Ros09].
Let (R,m, κ) be a local ring. Let φ : M → M be an R-linear endomorphism of
a finite length R-module M . In More on Algebra, Section 120 we have already
defined the determinant detκ(φ) (and the trace and the characteristic polynomial)
of φ relative to κ. In this section, we will construct a canonical 1-dimensional κ-
vector space detκ(M) such that detκ(φ : M → M) : detκ(M) → detκ(M) is equal
to multiplication by detκ(φ). If M is annihilated by m, then M can be viewed
as a finite dimension κ-vector space and then we have detκ(M) = ∧nκ(M) where
n = dimκ(M). Our construction will generalize this to all finite length modules
over R and if R contains its residue field, then the determinant detκ(M) will be
given by the usual determinant in a suitable sense, see Remark 68.9.

Definition 68.2.02P6 Let R be a local ring with maximal ideal m and residue field κ.
Let M be a finite length R-module. Say l = lengthR(M).

(1) Given elements x1, . . . , xr ∈ M we denote ⟨x1, . . . , xr⟩ = Rx1 + . . . + Rxr
the R-submodule of M generated by x1, . . . , xr.

(2) We will say an l-tuple of elements (e1, . . . , el) of M is admissible if mei ⊂
⟨e1, . . . , ei−1⟩ for i = 1, . . . , l.

(3) A symbol [e1, . . . , el] will mean (e1, . . . , el) is an admissible l-tuple.
(4) An admissible relation between symbols is one of the following:

(a) if (e1, . . . , el) is an admissible sequence and for some 1 ≤ a ≤ l we have
ea ∈ ⟨e1, . . . , ea−1⟩, then [e1, . . . , el] = 0,

(b) if (e1, . . . , el) is an admissible sequence and for some 1 ≤ a ≤ l we have
ea = λe′

a + x with λ ∈ R∗, and x ∈ ⟨e1, . . . , ea−1⟩, then
[e1, . . . , el] = λ[e1, . . . , ea−1, e

′
a, ea+1, . . . , el]

where λ ∈ κ∗ is the image of λ in the residue field, and
(c) if (e1, . . . , el) is an admissible sequence and mea ⊂ ⟨e1, . . . , ea−2⟩ then

[e1, . . . , el] = −[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el].
(5) We define the determinant of the finite length R-module M to be

detκ(M) =
{

κ-vector space generated by symbols
κ-linear combinations of admissible relations

}
We stress that always l = lengthR(M). We also stress that it does not follow that
the symbol [e1, . . . , el] is additive in the entries (this will typically not be the case).
Before we can show that the determinant detκ(M) actually has dimension 1 we
have to show that it has dimension at most 1.

Lemma 68.3.02P7 With notations as above we have dimκ(detκ(M)) ≤ 1.

https://stacks.math.columbia.edu/tag/02P6
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Proof. Fix an admissible sequence (f1, . . . , fl) of M such that
lengthR(⟨f1, . . . , fi⟩) = i

for i = 1, . . . , l. Such an admissible sequence exists exactly because M has length l.
We will show that any element of detκ(M) is a κ-multiple of the symbol [f1, . . . , fl].
This will prove the lemma.
Let (e1, . . . , el) be an admissible sequence of M . It suffices to show that [e1, . . . , el]
is a multiple of [f1, . . . , fl]. First assume that ⟨e1, . . . , el⟩ ≠ M . Then there exists
an i ∈ [1, . . . , l] such that ei ∈ ⟨e1, . . . , ei−1⟩. It immediately follows from the
first admissible relation that [e1, . . . , en] = 0 in detκ(M). Hence we may assume
that ⟨e1, . . . , el⟩ = M . In particular there exists a smallest index i ∈ {1, . . . , l}
such that f1 ∈ ⟨e1, . . . , ei⟩. This means that ei = λf1 + x with x ∈ ⟨e1, . . . , ei−1⟩
and λ ∈ R∗. By the second admissible relation this means that [e1, . . . , el] =
λ[e1, . . . , ei−1, f1, ei+1, . . . , el]. Note that mf1 = 0. Hence by applying the third
admissible relation i− 1 times we see that

[e1, . . . , el] = (−1)i−1λ[f1, e1, . . . , ei−1, ei+1, . . . , el].
Note that it is also the case that ⟨f1, e1, . . . , ei−1, ei+1, . . . , el⟩ = M . By induction
suppose we have proven that our original symbol is equal to a scalar times

[f1, . . . , fj , ej+1, . . . , el]
for some admissible sequence (f1, . . . , fj , ej+1, . . . , el) whose elements generate M ,
i.e., with ⟨f1, . . . , fj , ej+1, . . . , el⟩ = M . Then we find the smallest i such that
fj+1 ∈ ⟨f1, . . . , fj , ej+1, . . . , ei⟩ and we go through the same process as above to see
that

[f1, . . . , fj , ej+1, . . . , el] = (scalar)[f1, . . . , fj , fj+1, ej+1, . . . , êi, . . . , el]
Continuing in this vein we obtain the desired result. □

Before we show that detκ(M) always has dimension 1, let us show that it agrees
with the usual top exterior power in the case the module is a vector space over κ.

Lemma 68.4.02P8 Let R be a local ring with maximal ideal m and residue field κ. Let
M be a finite length R-module which is annihilated by m. Let l = dimκ(M). Then
the map

detκ(M) −→ ∧lκ(M), [e1, . . . , el] 7−→ e1 ∧ . . . ∧ el
is an isomorphism.

Proof. It is clear that the rule described in the lemma gives a κ-linear map since
all of the admissible relations are satisfied by the usual symbols e1 ∧ . . . ∧ el. It is
also clearly a surjective map. Since by Lemma 68.3 the left hand side has dimension
at most one we see that the map is an isomorphism. □

Lemma 68.5.02P9 Let R be a local ring with maximal ideal m and residue field κ.
Let M be a finite length R-module. The determinant detκ(M) defined above is a
κ-vector space of dimension 1. It is generated by the symbol [f1, . . . , fl] for any
admissible sequence such that ⟨f1, . . . fl⟩ = M .

Proof. We know detκ(M) has dimension at most 1, and in fact that it is generated
by [f1, . . . , fl], by Lemma 68.3 and its proof. We will show by induction on l =
length(M) that it is nonzero. For l = 1 it follows from Lemma 68.4. Choose a
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nonzero element f ∈ M with mf = 0. Set M = M/⟨f⟩, and denote the quotient
map x 7→ x. We will define a surjective map

ψ : detk(M)→ detκ(M)

which will prove the lemma since by induction the determinant of M is nonzero.

We define ψ on symbols as follows. Let (e1, . . . , el) be an admissible sequence. If
f ̸∈ ⟨e1, . . . , el⟩ then we simply set ψ([e1, . . . , el]) = 0. If f ∈ ⟨e1, . . . , el⟩ then we
choose an i minimal such that f ∈ ⟨e1, . . . , ei⟩. We may write ei = λf +x for some
unit λ ∈ R and x ∈ ⟨e1, . . . , ei−1⟩. In this case we set

ψ([e1, . . . , el]) = (−1)iλ[e1, . . . , ei−1, ei+1, . . . , el].

Note that it is indeed the case that (e1, . . . , ei−1, ei+1, . . . , el) is an admissible se-
quence in M , so this makes sense. Let us show that extending this rule κ-linearly
to linear combinations of symbols does indeed lead to a map on determinants. To
do this we have to show that the admissible relations are mapped to zero.

Type (a) relations. Suppose we have (e1, . . . , el) an admissible sequence and for
some 1 ≤ a ≤ l we have ea ∈ ⟨e1, . . . , ea−1⟩. Suppose that f ∈ ⟨e1, . . . , ei⟩
with i minimal. Then i ̸= a and ea ∈ ⟨e1, . . . , êi, . . . , ea−1⟩ if i < a or ea ∈
⟨e1, . . . , ea−1⟩ if i > a. Thus the same admissible relation for detκ(M) forces the
symbol [e1, . . . , ei−1, ei+1, . . . , el] to be zero as desired.

Type (b) relations. Suppose we have (e1, . . . , el) an admissible sequence and for
some 1 ≤ a ≤ l we have ea = λe′

a+x with λ ∈ R∗, and x ∈ ⟨e1, . . . , ea−1⟩. Suppose
that f ∈ ⟨e1, . . . , ei⟩ with i minimal. Say ei = µf + y with y ∈ ⟨e1, . . . , ei−1⟩. If
i < a then the desired equality is

(−1)iλ[e1, . . . , ei−1, ei+1, . . . , el] = (−1)iλ[e1, . . . , ei−1, ei+1, . . . , ea−1, e
′
a, ea+1, . . . , el]

which follows from ea = λe′
a + x and the corresponding admissible relation for

detκ(M). If i > a then the desired equality is

(−1)iλ[e1, . . . , ei−1, ei+1, . . . , el] = (−1)iλ[e1, . . . , ea−1, e
′
a, ea+1, . . . , ei−1, ei+1, . . . , el]

which follows from ea = λe′
a + x and the corresponding admissible relation for

detκ(M). The interesting case is when i = a. In this case we have ea = λe′
a + x =

µf + y. Hence also e′
a = λ−1(µf + y − x). Thus we see that

ψ([e1, . . . , el]) = (−1)iµ[e1, . . . , ei−1, ei+1, . . . , el] = ψ(λ[e1, . . . , ea−1, e
′
a, ea+1, . . . , el])

as desired.

Type (c) relations. Suppose that (e1, . . . , el) is an admissible sequence and mea ⊂
⟨e1, . . . , ea−2⟩. Suppose that f ∈ ⟨e1, . . . , ei⟩ with i minimal. Say ei = λf + x with
x ∈ ⟨e1, . . . , ei−1⟩. We distinguish 4 cases:

Case 1: i < a− 1. The desired equality is

(−1)iλ[e1, . . . , ei−1, ei+1, . . . , el]
= (−1)i+1λ[e1, . . . , ei−1, ei+1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]

which follows from the type (c) admissible relation for detκ(M).
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Case 2: i > a. The desired equality is
(−1)iλ[e1, . . . , ei−1, ei+1, . . . , el]
= (−1)i+1λ[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , ei−1, ei+1, . . . , el]

which follows from the type (c) admissible relation for detκ(M).
Case 3: i = a. We write ea = λf + µea−1 + y with y ∈ ⟨e1, . . . , ea−2⟩. Then

ψ([e1, . . . , el]) = (−1)aλ[e1, . . . , ea−1, ea+1, . . . , el]
by definition. If µ is nonzero, then we have ea−1 = −µ−1λf + µ−1ea − µ−1y and
we obtain
ψ(−[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]) = (−1)aµ−1λ[e1, . . . , ea−2, ea, ea+1, . . . , el]

by definition. Since in M we have ea = µea−1 + y we see the two outcomes are
equal by relation (a) for detκ(M). If on the other hand µ is zero, then we can write
ea = λf + y with y ∈ ⟨e1, . . . , ea−2⟩ and we have

ψ(−[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]) = (−1)aλ[e1, . . . , ea−1, ea+1, . . . , el]
which is equal to ψ([e1, . . . , el]).
Case 4: i = a− 1. Here we have

ψ([e1, . . . , el]) = (−1)a−1λ[e1, . . . , ea−2, ea, . . . , el]
by definition. If f ̸∈ ⟨e1, . . . , ea−2, ea⟩ then

ψ(−[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]) = (−1)a+1λ[e1, . . . , ea−2, ea, . . . , el]
Since (−1)a−1 = (−1)a+1 the two expressions are the same. Finally, assume f ∈
⟨e1, . . . , ea−2, ea⟩. In this case we see that ea−1 = λf + x with x ∈ ⟨e1, . . . , ea−2⟩
and ea = µf + y with y ∈ ⟨e1, . . . , ea−2⟩ for units λ, µ ∈ R. We conclude that
both ea ∈ ⟨e1, . . . , ea−1⟩ and ea−1 ∈ ⟨e1, . . . , ea−2, ea⟩. In this case a relation of
type (a) applies to both [e1, . . . , el] and [e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el] and the
compatibility of ψ with these shown above to see that both

ψ([e1, . . . , el]) and ψ([e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el])
are zero, as desired.
At this point we have shown that ψ is well defined, and all that remains is to show
that it is surjective. To see this let (f2, . . . , f l) be an admissible sequence in M . We
can choose lifts f2, . . . , fl ∈M , and then (f, f2, . . . , fl) is an admissible sequence in
M . Since ψ([f, f2, . . . , fl]) = [f2, . . . , fl] we win. □

Let R be a local ring with maximal ideal m and residue field κ. Note that if φ :
M → N is an isomorphism of finite length R-modules, then we get an isomorphism

detκ(φ) : detκ(M)→ detκ(N)
simply by the rule

detκ(φ)([e1, . . . , el]) = [φ(e1), . . . , φ(el)]
for any symbol [e1, . . . , el] for M . Hence we see that detκ is a functor

(68.5.1)05M7
{

finite length R-modules
with isomorphisms

}
−→

{
1-dimensional κ-vector spaces

with isomorphisms

}
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This is typical for a “determinant functor” (see [Knu02]), as is the following addi-
tivity property.

Lemma 68.6.02PA Let (R,m, κ) be a local ring. For every short exact sequence
0→ K → L→M → 0

of finite length R-modules there exists a canonical isomorphism
γK→L→M : detκ(K)⊗κ detκ(M) −→ detκ(L)

defined by the rule on nonzero symbols
[e1, . . . , ek]⊗ [f1, . . . , fm] −→ [e1, . . . , ek, f1, . . . , fm]

with the following properties:
(1) For every isomorphism of short exact sequences, i.e., for every commutative

diagram
0 // K //

u

��

L //

v

��

M //

w

��

0

0 // K ′ // L′ // M ′ // 0
with short exact rows and isomorphisms u, v, w we have

γK′→L′→M ′ ◦ (detκ(u)⊗ detκ(w)) = detκ(v) ◦ γK→L→M ,

(2) for every commutative square of finite length R-modules with exact rows
and columns

0

��

0

��

0

��
0 // A //

��

B //

��

C //

��

0

0 // D //

��

E //

��

F //

��

0

0 // G //

��

H //

��

I //

��

0

0 0 0
the following diagram is commutative

detκ(A)⊗ detκ(C)⊗ detκ(G)⊗ detκ(I)

ϵ

��

γA→B→C⊗γG→H→I

// detκ(B)⊗ detκ(H)

γB→E→H

��
detκ(E)

detκ(A)⊗ detκ(G)⊗ detκ(C)⊗ detκ(I) γA→D→G⊗γC→F→I // detκ(D)⊗ detκ(F )

γD→E→F

OO

where ϵ is the switch of the factors in the tensor product times (−1)cg with
c = lengthR(C) and g = lengthR(G), and

https://stacks.math.columbia.edu/tag/02PA
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(3) the map γK→L→M agrees with the usual isomorphism if 0 → K → L →
M → 0 is actually a short exact sequence of κ-vector spaces.

Proof. The significance of taking nonzero symbols in the explicit description of
the map γK→L→M is simply that if (e1, . . . , el) is an admissible sequence in K,
and (f1, . . . , fm) is an admissible sequence in M , then it is not guaranteed that
(e1, . . . , el, f1, . . . , fm) is an admissible sequence in L (where of course fi ∈ L sig-
nifies a lift of f i). However, if the symbol [e1, . . . , el] is nonzero in detκ(K), then
necessarily K = ⟨e1, . . . , ek⟩ (see proof of Lemma 68.3), and in this case it is true
that (e1, . . . , ek, f1, . . . , fm) is an admissible sequence. Moreover, by the admissible
relations of type (b) for detκ(L) we see that the value of [e1, . . . , ek, f1, . . . , fm] in
detκ(L) is independent of the choice of the lifts fi in this case also. Given this
remark, it is clear that an admissible relation for e1, . . . , ek in K translates into an
admissible relation among e1, . . . , ek, f1, . . . , fm in L, and similarly for an admissi-
ble relation among the f1, . . . , fm. Thus γ defines a linear map of vector spaces as
claimed in the lemma.
By Lemma 68.5 we know detκ(L) is generated by any single symbol [x1, . . . , xk+m]
such that (x1, . . . , xk+m) is an admissible sequence with L = ⟨x1, . . . , xk+m⟩. Hence
it is clear that the map γK→L→M is surjective and hence an isomorphism.
Property (1) holds because

detκ(v)([e1, . . . , ek, f1, . . . , fm])
= [v(e1), . . . , v(ek), v(f1), . . . , v(fm)]
= γK′→L′→M ′([u(e1), . . . , u(ek)]⊗ [w(f1), . . . , w(fm)]).

Property (2) means that given a symbol [α1, . . . , αa] generating detκ(A), a symbol
[γ1, . . . , γc] generating detκ(C), a symbol [ζ1, . . . , ζg] generating detκ(G), and a
symbol [ι1, . . . , ιi] generating detκ(I) we have

[α1, . . . , αa, γ̃1, . . . , γ̃c, ζ̃1, . . . , ζ̃g, ι̃1, . . . , ι̃i]
= (−1)cg[α1, . . . , αa, ζ̃1, . . . , ζ̃g, γ̃1, . . . , γ̃c, ι̃1, . . . , ι̃i]

(for suitable lifts x̃ in E) in detκ(E). This holds because we may use the admissible
relations of type (c) cg times in the following order: move the ζ̃1 past the elements
γ̃c, . . . , γ̃1 (allowed since mζ̃1 ⊂ A), then move ζ̃2 past the elements γ̃c, . . . , γ̃1
(allowed since mζ̃2 ⊂ A+Rζ̃1), and so on.
Part (3) of the lemma is obvious. This finishes the proof. □

We can use the maps γ of the lemma to define more general maps γ as follows.
Suppose that (R,m, κ) is a local ring. Let M be a finite length R-module and
suppose we are given a finite filtration (see Homology, Definition 19.1)

0 = Fm ⊂ Fm−1 ⊂ . . . ⊂ Fn+1 ⊂ Fn = M

then there is a well defined and canonical isomorphism
γ(M,F ) : detκ(Fm−1/Fm)⊗κ . . .⊗k detκ(Fn/Fn+1) −→ detκ(M)

To construct it we use isomorphisms of Lemma 68.6 coming from the short exact
sequences 0 → F i−1/F i → M/F i → M/F i−1 → 0. Part (2) of Lemma 68.6 with
G = 0 shows we obtain the same isomorphism if we use the short exact sequences
0→ F i → F i−1 → F i−1/F i → 0.
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Here is another typical result for determinant functors. It is not hard to show. The
tricky part is usually to show the existence of a determinant functor.

Lemma 68.7.02PB Let (R,m, κ) be any local ring. The functor

detκ :
{

finite length R-modules
with isomorphisms

}
−→

{
1-dimensional κ-vector spaces

with isomorphisms

}
endowed with the maps γK→L→M is characterized by the following properties

(1) its restriction to the subcategory of modules annihilated by m is isomorphic
to the usual determinant functor (see Lemma 68.4), and

(2) (1), (2) and (3) of Lemma 68.6 hold.

Proof. Omitted. □

Lemma 68.8.02PC Let (R′,m′)→ (R,m) be a local ring homomorphism which induces
an isomorphism on residue fields κ. Then for every finite length R-module the
restriction MR′ is a finite length R′-module and there is a canonical isomorphism

detR,κ(M) −→ detR′,κ(MR′)
This isomorphism is functorial in M and compatible with the isomorphisms γK→L→M

of Lemma 68.6 defined for detR,κ and detR′,κ.

Proof. If the length of M as an R-module is l, then the length of M as an
R′-module (i.e., MR′) is l as well, see Algebra, Lemma 52.12. Note that an ad-
missible sequence x1, . . . , xl of M over R is an admissible sequence of M over
R′ as m′ maps into m. The isomorphism is obtained by mapping the symbol
[x1, . . . , xl] ∈ detR,κ(M) to the corresponding symbol [x1, . . . , xl] ∈ detR′,κ(M).
It is immediate to verify that this is functorial for isomorphisms and compatible
with the isomorphisms γ of Lemma 68.6. □

Remark 68.9.0BDQ Let (R,m, κ) be a local ring and assume either the characteristic of
κ is zero or it is p and pR = 0. Let M1, . . . ,Mn be finite length R-modules. We will
show below that there exists an ideal I ⊂ m annihilating Mi for i = 1, . . . , n and a
section σ : κ → R/I of the canonical surjection R/I → κ. The restriction Mi,κ of
Mi via σ is a κ-vector space of dimension li = lengthR(Mi) and using Lemma 68.8
we see that

detκ(Mi) = ∧liκ (Mi,κ)
These isomorphisms are compatible with the isomorphisms γK→M→L of Lemma
68.6 for short exact sequences of finite length R-modules annihilated by I. The
conclusion is that verifying a property of detκ often reduces to verifying corre-
sponding properties of the usual determinant on the category finite dimensional
vector spaces.
For I we can take the annihilator (Algebra, Definition 40.3) of the module M =⊕
Mi. In this case we see that R/I ⊂ EndR(M) hence has finite length. Thus

R/I is an Artinian local ring with residue field κ. Since an Artinian local ring is
complete we see that R/I has a coefficient ring by the Cohen structure theorem
(Algebra, Theorem 160.8) which is a field by our assumption on R.

Here is a case where we can compute the determinant of a linear map. In fact
there is nothing mysterious about this in any case, see Example 68.11 for a random
example.

https://stacks.math.columbia.edu/tag/02PB
https://stacks.math.columbia.edu/tag/02PC
https://stacks.math.columbia.edu/tag/0BDQ
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Lemma 68.10.02PD Let R be a local ring with residue field κ. Let u ∈ R∗ be a
unit. Let M be a module of finite length over R. Denote uM : M → M the map
multiplication by u. Then

detκ(uM ) : detκ(M) −→ detκ(M)

is multiplication by ul where l = lengthR(M) and u ∈ κ∗ is the image of u.

Proof. Denote fM ∈ κ∗ the element such that detκ(uM ) = fM iddetκ(M). Suppose
that 0 → K → L → M → 0 is a short exact sequence of finite R-modules. Then
we see that uk, uL, uM give an isomorphism of short exact sequences. Hence by
Lemma 68.6 (1) we conclude that fKfM = fL. This means that by induction on
length it suffices to prove the lemma in the case of length 1 where it is trivial. □

Example 68.11.02PE Consider the local ring R = Zp. Set M = Zp/(p2) ⊕ Zp/(p3).
Let u : M →M be the map given by the matrix

u =
(
a b
pc d

)
where a, b, c, d ∈ Zp, and a, d ∈ Z∗

p. In this case detκ(u) equals multiplication by
a2d3 mod p ∈ F∗

p. This can easily be seen by consider the effect of u on the symbol
[p2e, pe, pf, e, f ] where e = (0, 1) ∈M and f = (1, 0) ∈M .

68.12. Periodic complexes and determinants.0BDR Let R be a local ring with
residue field κ. Let (M,φ, ψ) be a (2, 1)-periodic complex over R. Assume that M
has finite length and that (M,φ, ψ) is exact. We are going to use the determinant
construction to define an invariant of this situation. See Subsection 68.1. Let us
abbreviate Kφ = Ker(φ), Iφ = Im(φ), Kψ = Ker(ψ), and Iψ = Im(ψ). The short
exact sequences

0→ Kφ →M → Iφ → 0, 0→ Kψ →M → Iψ → 0

give isomorphisms

γφ : detκ(Kφ)⊗ detκ(Iφ) −→ detκ(M), γψ : detκ(Kψ)⊗ detκ(Iψ) −→ detκ(M),

see Lemma 68.6. On the other hand the exactness of the complex gives equalities
Kφ = Iψ, and Kψ = Iφ and hence an isomorphism

σ : detκ(Kφ)⊗ detκ(Iφ) −→ detκ(Kψ)⊗ detκ(Iψ)

by switching the factors. Using this notation we can define our invariant.

Definition 68.13.02PJ Let R be a local ring with residue field κ. Let (M,φ, ψ) be a
(2, 1)-periodic complex over R. Assume that M has finite length and that (M,φ, ψ)
is exact. The determinant of (M,φ, ψ) is the element

detκ(M,φ, ψ) ∈ κ∗

such that the composition

detκ(M)
γψ◦σ◦γ−1

φ−−−−−−→ detκ(M)

is multiplication by (−1)lengthR(Iφ)lengthR(Iψ) detκ(M,φ, ψ).

https://stacks.math.columbia.edu/tag/02PD
https://stacks.math.columbia.edu/tag/02PE
https://stacks.math.columbia.edu/tag/02PJ
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Remark 68.14.02PK Here is a more down to earth description of the determinant
introduced above. Let R be a local ring with residue field κ. Let (M,φ, ψ) be a
(2, 1)-periodic complex over R. Assume that M has finite length and that (M,φ, ψ)
is exact. Let us abbreviate Iφ = Im(φ), Iψ = Im(ψ) as above. Assume that
lengthR(Iφ) = a and lengthR(Iψ) = b, so that a + b = lengthR(M) by exactness.
Choose admissible sequences x1, . . . , xa ∈ Iφ and y1, . . . , yb ∈ Iψ such that the sym-
bol [x1, . . . , xa] generates detκ(Iφ) and the symbol [x1, . . . , xb] generates detκ(Iψ).
Choose x̃i ∈M such that φ(x̃i) = xi. Choose ỹj ∈M such that ψ(ỹj) = yj . Then
detκ(M,φ, ψ) is characterized by the equality

[x1, . . . , xa, ỹ1, . . . , ỹb] = (−1)ab detκ(M,φ, ψ)[y1, . . . , yb, x̃1, . . . , x̃a]

in detκ(M). This also explains the sign.

Lemma 68.15.02PL Let R be a local ring with residue field κ. Let (M,φ, ψ) be a
(2, 1)-periodic complex over R. Assume that M has finite length and that (M,φ, ψ)
is exact. Then

detκ(M,φ, ψ) detκ(M,ψ, φ) = 1.

Proof. Omitted. □

Lemma 68.16.02PM Let R be a local ring with residue field κ. Let (M,φ, φ) be a
(2, 1)-periodic complex over R. Assume that M has finite length and that (M,φ, φ)
is exact. Then lengthR(M) = 2lengthR(Im(φ)) and

detκ(M,φ, φ) = (−1)lengthR(Im(φ)) = (−1) 1
2 lengthR(M)

Proof. Follows directly from the sign rule in the definitions. □

Lemma 68.17.02PN Let R be a local ring with residue field κ. Let M be a finite length
R-module.

(1) if φ : M →M is an isomorphism then detκ(M,φ, 0) = detκ(φ).
(2) if ψ : M →M is an isomorphism then detκ(M, 0, ψ) = detκ(ψ)−1.

Proof. Let us prove (1). Set ψ = 0. Then we may, with notation as above
Definition 68.13, identify Kφ = Iψ = 0, Iφ = Kψ = M . With these identifications,
the map

γφ : κ⊗ detκ(M) = detκ(Kφ)⊗ detκ(Iφ) −→ detκ(M)
is identified with detκ(φ−1). On the other hand the map γψ is identified with the
identity map. Hence γψ ◦ σ ◦ γ−1

φ is equal to detκ(φ) in this case. Whence the
result. We omit the proof of (2). □

Lemma 68.18.02PO Let R be a local ring with residue field κ. Suppose that we have a
short exact sequence of (2, 1)-periodic complexes

0→ (M1, φ1, ψ1)→ (M2, φ2, ψ2)→ (M3, φ3, ψ3)→ 0

with all Mi of finite length, and each (M1, φ1, ψ1) exact. Then

detκ(M2, φ2, ψ2) = detκ(M1, φ1, ψ1) detκ(M3, φ3, ψ3).

in κ∗.

https://stacks.math.columbia.edu/tag/02PK
https://stacks.math.columbia.edu/tag/02PL
https://stacks.math.columbia.edu/tag/02PM
https://stacks.math.columbia.edu/tag/02PN
https://stacks.math.columbia.edu/tag/02PO
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Proof. Let us abbreviate Iφ,i = Im(φi), Kφ,i = Ker(φi), Iψ,i = Im(ψi), and
Kψ,i = Ker(ψi). Observe that we have a commutative square

0

��

0

��

0

��
0 // Kφ,1 //

��

Kφ,2 //

��

Kφ,3 //

��

0

0 // M1 //

��

M2 //

��

M3 //

��

0

0 // Iφ,1 //

��

Iφ,2 //

��

Iφ,3 //

��

0

0 0 0
of finite length R-modules with exact rows and columns. The top row is exact
since it can be identified with the sequence Iψ,1 → Iψ,2 → Iψ,3 → 0 of images, and
similarly for the bottom row. There is a similar diagram involving the modules
Iψ,i and Kψ,i. By definition detκ(M2, φ2, ψ2) corresponds, up to a sign, to the
composition of the left vertical maps in the following diagram

detκ(M1)⊗ detκ(M3) γ //

γ−1⊗γ−1

��

detκ(M2)

γ−1

��
detκ(Kφ,1)⊗ detκ(Iφ,1)⊗ detκ(Kφ,3)⊗ detκ(Iφ,3)

σ⊗σ
��

γ⊗γ // detκ(Kφ,2)⊗ detκ(Iφ,2)

σ

��
detκ(Kψ,1)⊗ detκ(Iψ,1)⊗ detκ(Kψ,3)⊗ detκ(Iψ,3)

γ⊗γ
��

γ⊗γ // detκ(Kψ,2)⊗ detκ(Iψ,2)

γ

��
detκ(M1)⊗ detκ(M3) γ // detκ(M2)

The top and bottom squares are commutative up to sign by applying Lemma 68.6
(2). The middle square is trivially commutative (we are just switching factors).
Hence we see that detκ(M2, φ2, ψ2) = ϵ detκ(M1, φ1, ψ1) detκ(M3, φ3, ψ3) for some
sign ϵ. And the sign can be worked out, namely the outer rectangle in the diagram
above commutes up to

ϵ = (−1)length(Iφ,1)length(Kφ,3)+length(Iψ,1)length(Kψ,3)

= (−1)length(Iφ,1)length(Iψ,3)+length(Iψ,1)length(Iφ,3)

(proof omitted). It follows easily from this that the signs work out as well. □

Example 68.19.02PP Let k be a field. Consider the ring R = k[T ]/(T 2) of dual
numbers over k. Denote t the class of T in R. Let M = R and φ = ut, ψ = vt with
u, v ∈ k∗. In this case detk(M) has generator e = [t, 1]. We identify Iφ = Kφ =
Iψ = Kψ = (t). Then γφ(t ⊗ t) = u−1[t, 1] (since u−1 ∈ M is a lift of t ∈ Iφ) and
γψ(t⊗ t) = v−1[t, 1] (same reason). Hence we see that detk(M,φ, ψ) = −u/v ∈ k∗.

https://stacks.math.columbia.edu/tag/02PP
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Example 68.20.02PQ Let R = Zp and let M = Zp/(pl). Let φ = pbu and φ = pav
with a, b ≥ 0, a + b = l and u, v ∈ Z∗

p. Then a computation as in Example 68.19
shows that

detFp(Zp/(pl), pbu, pav) = (−1)abua/vb mod p

= (−1)ordp(α)ordp(β)α
ordp(β)

βordp(α) mod p

with α = pbu, β = pav ∈ Zp. See Lemma 68.37 for a more general case (and a
proof).

Example 68.21.02PR Let R = k be a field. Let M = k⊕a ⊕ k⊕b be l = a + b
dimensional. Let φ and ψ be the following diagonal matrices

φ = diag(u1, . . . , ua, 0, . . . , 0), ψ = diag(0, . . . , 0, v1, . . . , vb)
with ui, vj ∈ k∗. In this case we have

detk(M,φ, ψ) = u1 . . . ua
v1 . . . vb

.

This can be seen by a direct computation or by computing in case l = 1 and using
the additivity of Lemma 68.18.

Example 68.22.02PS Let R = k be a field. Let M = k⊕a⊕k⊕a be l = 2a dimensional.
Let φ and ψ be the following block matrices

φ =
(

0 U
0 0

)
, ψ =

(
0 V
0 0

)
,

with U, V ∈ Mat(a× a, k) invertible. In this case we have

detk(M,φ, ψ) = (−1)a det(U)
det(V ) .

This can be seen by a direct computation. The case a = 1 is similar to the compu-
tation in Example 68.19.

Example 68.23.02PT Let R = k be a field. Let M = k⊕4. Let

φ =


0 0 0 0
u1 0 0 0
0 0 0 0
0 0 u2 0

 φ =


0 0 0 0
0 0 v2 0
0 0 0 0
v1 0 0 0


with u1, u2, v1, v2 ∈ k∗. Then we have

detk(M,φ, ψ) = −u1u2

v1v2
.

Next we come to the analogue of the fact that the determinant of a composition
of linear endomorphisms is the product of the determinants. To avoid very long
formulae we write Iφ = Im(φ), and Kφ = Ker(φ) for any R-module map φ : M →
M . We also denote φψ = φ ◦ ψ for a pair of morphisms φ,ψ : M →M .

Lemma 68.24.02PU Let R be a local ring with residue field κ. Let M be a finite length
R-module. Let α, β, γ be endomorphisms of M . Assume that

(1) Iα = Kβγ , and similarly for any permutation of α, β, γ,
(2) Kα = Iβγ , and similarly for any permutation of α, β, γ.

Then

https://stacks.math.columbia.edu/tag/02PQ
https://stacks.math.columbia.edu/tag/02PR
https://stacks.math.columbia.edu/tag/02PS
https://stacks.math.columbia.edu/tag/02PT
https://stacks.math.columbia.edu/tag/02PU
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(1) The triple (M,α, βγ) is an exact (2, 1)-periodic complex.
(2) The triple (Iγ , α, β) is an exact (2, 1)-periodic complex.
(3) The triple (M/Kβ , α, γ) is an exact (2, 1)-periodic complex.
(4) We have

detκ(M,α, βγ) = detκ(Iγ , α, β) detκ(M/Kβ , α, γ).

Proof. It is clear that the assumptions imply part (1) of the lemma.
To see part (1) note that the assumptions imply that Iγα = Iαγ , and similarly for
kernels and any other pair of morphisms. Moreover, we see that Iγβ = Iβγ = Kα ⊂
Iγ and similarly for any other pair. In particular we get a short exact sequence

0→ Iβγ → Iγ
α−→ Iαγ → 0

and similarly we get a short exact sequence

0→ Iαγ → Iγ
β−→ Iβγ → 0.

This proves (Iγ , α, β) is an exact (2, 1)-periodic complex. Hence part (2) of the
lemma holds.
To see that α, γ give well defined endomorphisms of M/Kβ we have to check that
α(Kβ) ⊂ Kβ and γ(Kβ) ⊂ Kβ . This is true because α(Kβ) = α(Iγα) = Iαγα ⊂
Iαγ = Kβ , and similarly in the other case. The kernel of the map α : M/Kβ →
M/Kβ is Kβα/Kβ = Iγ/Kβ . Similarly, the kernel of γ : M/Kβ → M/Kβ is equal
to Iα/Kβ . Hence we conclude that (3) holds.
We introduce r = lengthR(Kα), s = lengthR(Kβ) and t = lengthR(Kγ). By
the exact sequences above and our hypotheses we have lengthR(Iα) = s + t,
lengthR(Iβ) = r + t, lengthR(Iγ) = r + s, and length(M) = r + s+ t. Choose

(1) an admissible sequence x1, . . . , xr ∈ Kα generating Kα

(2) an admissible sequence y1, . . . , ys ∈ Kβ generating Kβ ,
(3) an admissible sequence z1, . . . , zt ∈ Kγ generating Kγ ,
(4) elements x̃i ∈M such that βγx̃i = xi,
(5) elements ỹi ∈M such that αγỹi = yi,
(6) elements z̃i ∈M such that βαz̃i = zi.

With these choices the sequence y1, . . . , ys, αz̃1, . . . , αz̃t is an admissible sequence
in Iα generating it. Hence, by Remark 68.14 the determinant D = detκ(M,α, βγ)
is the unique element of κ∗ such that

[y1, . . . , ys, αz̃1, . . . , αz̃s, x̃1, . . . , x̃r]

= (−1)r(s+t)D[x1, . . . , xr, γỹ1, . . . , γỹs, z̃1, . . . , z̃t]
By the same remark, we see that D1 = detκ(M/Kβ , α, γ) is characterized by
[y1, . . . , ys, αz̃1, . . . , αz̃t, x̃1, . . . , x̃r] = (−1)rtD1[y1, . . . , ys, γx̃1, . . . , γx̃r, z̃1, . . . , z̃t]

By the same remark, we see that D2 = detκ(Iγ , α, β) is characterized by
[y1, . . . , ys, γx̃1, . . . , γx̃r, z̃1, . . . , z̃t] = (−1)rsD2[x1, . . . , xr, γỹ1, . . . , γỹs, z̃1, . . . , z̃t]

Combining the formulas above we see that D = D1D2 as desired. □

Lemma 68.25.02PV Let R be a local ring with residue field κ. Let α : (M,φ, ψ) →
(M ′, φ′, ψ′) be a morphism of (2, 1)-periodic complexes over R. Assume

(1) M , M ′ have finite length,

https://stacks.math.columbia.edu/tag/02PV
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(2) (M,φ, ψ), (M ′, φ′, ψ′) are exact,
(3) the maps φ, ψ induce the zero map on K = Ker(α), and
(4) the maps φ, ψ induce the zero map on Q = Coker(α).

Denote N = α(M) ⊂ M ′. We obtain two short exact sequences of (2, 1)-periodic
complexes

0→ (N,φ′, ψ′)→ (M ′, φ′, ψ′)→ (Q, 0, 0)→ 0
0→ (K, 0, 0)→ (M,φ, ψ)→ (N,φ′, ψ′)→ 0

which induce two isomorphisms αi : Q→ K, i = 0, 1. Then
detκ(M,φ, ψ) = detκ(α−1

0 ◦ α1) detκ(M ′, φ′, ψ′)
In particular, if α0 = α1, then detκ(M,φ, ψ) = detκ(M ′, φ′, ψ′).

Proof. There are (at least) two ways to prove this lemma. One is to produce
an enormous commutative diagram using the properties of the determinants. The
other is to use the characterization of the determinants in terms of admissible
sequences of elements. It is the second approach that we will use.
First let us explain precisely what the maps αi are. Namely, α0 is the composition

α0 : Q = H0(Q, 0, 0)→ H1(N,φ′, ψ′)→ H2(K, 0, 0) = K

and α1 is the composition
α1 : Q = H1(Q, 0, 0)→ H2(N,φ′, ψ′)→ H3(K, 0, 0) = K

coming from the boundary maps of the short exact sequences of complexes displayed
in the lemma. The fact that the complexes (M,φ, ψ), (M ′, φ′, ψ′) are exact implies
these maps are isomorphisms.
We will use the notation Iφ = Im(φ), Kφ = Ker(φ) and similarly for the other
maps. Exactness for M and M ′ means that Kφ = Iψ and three similar equalities.
We introduce k = lengthR(K), a = lengthR(Iφ), b = lengthR(Iψ). Then we see
that lengthR(M) = a + b, and lengthR(N) = a + b − k, lengthR(Q) = k and
lengthR(M ′) = a+b. The exact sequences below will show that also lengthR(Iφ′) =
a and lengthR(Iψ′) = b.
The assumption that K ⊂ Kφ = Iψ means that φ factors through N to give an
exact sequence

0→ α(Iψ)→ N
φα−1

−−−→ Iψ → 0.
Here φα−1(x′) = y means x′ = α(x) and y = φ(x). Similarly, we have

0→ α(Iφ)→ N
ψα−1

−−−→ Iφ → 0.
The assumption that ψ′ induces the zero map on Q means that Iψ′ = Kφ′ ⊂ N .
This means the quotient φ′(N) ⊂ Iφ′ is identified with Q. Note that φ′(N) = α(Iφ).
Hence we conclude there is an isomorphism

φ′ : Q→ Iφ′/α(Iφ)
simply described by φ′(x′ mod N) = φ′(x′) mod α(Iφ). In exactly the same way
we get

ψ′ : Q→ Iψ′/α(Iψ)
Finally, note that α0 is the composition

Q
φ′
// Iφ′/α(Iφ)

ψα−1|I
φ′/α(Iφ)

// K
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and similarly α1 = φα−1|Iψ′/α(Iψ) ◦ ψ′.

To shorten the formulas below we are going to write αx instead of α(x) in the
following. No confusion should result since all maps are indicated by Greek letters
and elements by Roman letters. We are going to choose

(1) an admissible sequence z1, . . . , zk ∈ K generating K,
(2) elements z′

i ∈M such that φz′
i = zi,

(3) elements z′′
i ∈M such that ψz′′

i = zi,
(4) elements xk+1, . . . , xa ∈ Iφ such that z1, . . . , zk, xk+1, . . . , xa is an admissi-

ble sequence generating Iφ,
(5) elements x̃i ∈M such that φx̃i = xi,
(6) elements yk+1, . . . , yb ∈ Iψ such that z1, . . . , zk, yk+1, . . . , yb is an admissible

sequence generating Iψ,
(7) elements ỹi ∈M such that ψỹi = yi, and
(8) elements w1, . . . , wk ∈ M ′ such that w1 mod N, . . . , wk mod N are an ad-

missible sequence in Q generating Q.
By Remark 68.14 the element D = detκ(M,φ, ψ) ∈ κ∗ is characterized by

[z1, . . . , zk, xk+1, . . . , xa, z
′′
1 , . . . , z

′′
k , ỹk+1, . . . , ỹb]

= (−1)abD[z1, . . . , zk, yk+1, . . . , yb, z
′
1, . . . , z

′
k, x̃k+1, . . . , x̃a]

Note that by the discussion above αxk+1, . . . , αxa, φw1, . . . , φwk is an admissible
sequence generating Iφ′ and αyk+1, . . . , αyb, ψw1, . . . , ψwk is an admissible sequence
generating Iψ′ . Hence by Remark 68.14 the element D′ = detκ(M ′, φ′, ψ′) ∈ κ∗ is
characterized by

[αxk+1, . . . , αxa, φ
′w1, . . . , φ

′wk, αỹk+1, . . . , αỹb, w1, . . . , wk]
= (−1)abD′[αyk+1, . . . , αyb, ψ

′w1, . . . , ψ
′wk, αx̃k+1, . . . , αx̃a, w1, . . . , wk]

Note how in the first, resp. second displayed formula the first, resp. last k entries of
the symbols on both sides are the same. Hence these formulas are really equivalent
to the equalities

[αxk+1, . . . , αxa, αz
′′
1 , . . . , αz

′′
k , αỹk+1, . . . , αỹb]

= (−1)abD[αyk+1, . . . , αyb, αz
′
1, . . . , αz

′
k, αx̃k+1, . . . , αx̃a]

and
[αxk+1, . . . , αxa, φ

′w1, . . . , φ
′wk, αỹk+1, . . . , αỹb]

= (−1)abD′[αyk+1, . . . , αyb, ψ
′w1, . . . , ψ

′wk, αx̃k+1, . . . , αx̃a]
in detκ(N). Note that φ′w1, . . . , φ

′wk and αz′′
1 , . . . , z

′′
k are admissible sequences

generating the module Iφ′/α(Iφ). Write
[φ′w1, . . . , φ

′wk] = λ0[αz′′
1 , . . . , αz

′′
k ]

in detκ(Iφ′/α(Iφ)) for some λ0 ∈ κ∗. Similarly, write
[ψ′w1, . . . , ψ

′wk] = λ1[αz′
1, . . . , αz

′
k]

in detκ(Iψ′/α(Iψ)) for some λ1 ∈ κ∗. On the one hand it is clear that
αi([w1, . . . , wk]) = λi[z1, . . . , zk]

for i = 0, 1 by our description of αi above, which means that
detκ(α−1

0 ◦ α1) = λ1/λ0
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and on the other hand it is clear that

λ0[αxk+1, . . . , αxa, αz
′′
1 , . . . , αz

′′
k , αỹk+1, . . . , αỹb]

= [αxk+1, . . . , αxa, φ
′w1, . . . , φ

′wk, αỹk+1, . . . , αỹb]

and

λ1[αyk+1, . . . , αyb, αz
′
1, . . . , αz

′
k, αx̃k+1, . . . , αx̃a]

= [αyk+1, . . . , αyb, ψ
′w1, . . . , ψ

′wk, αx̃k+1, . . . , αx̃a]

which imply λ0D = λ1D
′. The lemma follows. □

68.26. Symbols.02PW The correct generality for this construction is perhaps the situ-
ation of the following lemma.

Lemma 68.27.02PX Let A be a Noetherian local ring. Let M be a finite A-module of
dimension 1. Assume φ,ψ : M →M are two injective A-module maps, and assume
φ(ψ(M)) = ψ(φ(M)), for example if φ and ψ commute. Then lengthR(M/φψM) <
∞ and (M/φψM,φ, ψ) is an exact (2, 1)-periodic complex.

Proof. Let q be a minimal prime of the support of M . Then Mq is a finite length
Aq-module, see Algebra, Lemma 62.3. Hence both φ and ψ induce isomorphisms
Mq → Mq. Thus the support of M/φψM is {mA} and hence it has finite length
(see lemma cited above). Finally, the kernel of φ on M/φψM is clearly ψM/φψM ,
and hence the kernel of φ is the image of ψ on M/φψM . Similarly the other way
since M/φψM = M/ψφM by assumption. □

Lemma 68.28.02PY Let A be a Noetherian local ring. Let a, b ∈ A.
(1) If M is a finite A-module of dimension 1 such that a, b are nonzerodivisors

on M , then lengthA(M/abM) < ∞ and (M/abM, a, b) is a (2, 1)-periodic
exact complex.

(2) If a, b are nonzerodivisors and dim(A) = 1 then lengthA(A/(ab)) <∞ and
(A/(ab), a, b) is a (2, 1)-periodic exact complex.

In particular, in these cases detκ(M/abM, a, b) ∈ κ∗, resp. detκ(A/(ab), a, b) ∈ κ∗

are defined.

Proof. Follows from Lemma 68.27. □

Definition 68.29.02PZ Let A be a Noetherian local ring with residue field κ. Let a, b ∈
A. Let M be a finite A-module of dimension 1 such that a, b are nonzerodivisors
on M . We define the symbol associated to M,a, b to be the element

dM (a, b) = detκ(M/abM, a, b) ∈ κ∗

Lemma 68.30.02Q0 Let A be a Noetherian local ring. Let a, b, c ∈ A. Let M be a
finite A-module with dim(Supp(M)) = 1. Assume a, b, c are nonzerodivisors on M .
Then

dM (a, bc) = dM (a, b)dM (a, c)
and dM (a, b)dM (b, a) = 1.

Proof. The first statement follows from Lemma 68.24 applied to M/abcM and
endomorphisms α, β, γ given by multiplication by a, b, c. The second comes from
Lemma 68.15. □

https://stacks.math.columbia.edu/tag/02PX
https://stacks.math.columbia.edu/tag/02PY
https://stacks.math.columbia.edu/tag/02PZ
https://stacks.math.columbia.edu/tag/02Q0
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Definition 68.31.02Q1 Let A be a Noetherian local domain of dimension 1 with residue
field κ. Let K be the fraction field of A. We define the tame symbol of A to be the
map

K∗ ×K∗ −→ κ∗, (x, y) 7−→ dA(x, y)
where dA(x, y) is extended to K∗ ×K∗ by the multiplicativity of Lemma 68.30.

It is clear that we may extend more generally dM (−,−) to certain rings of fractions
of A (even if A is not a domain).

Lemma 68.32.0AY9 Let A be a Noetherian local ring and M a finite A-module of di-
mension 1. Let a ∈ A be a nonzerodivisor on M . Then dM (a, a) = (−1)lengthA(M/aM).

Proof. Immediate from Lemma 68.16. □

Lemma 68.33.02Q2 Let A be a Noetherian local ring. Let M be a finite A-module of
dimension 1. Let b ∈ A be a nonzerodivisor on M , and let u ∈ A∗. Then

dM (u, b) = ulengthA(M/bM) mod mA.

In particular, if M = A, then dA(u, b) = uordA(b) mod mA.

Proof. Note that in this case M/ubM = M/bM on which multiplication by b is
zero. Hence dM (u, b) = detκ(u|M/bM ) by Lemma 68.17. The lemma then follows
from Lemma 68.10. □

Lemma 68.34.02Q3 Let A be a Noetherian local ring. Let a, b ∈ A. Let

0→M →M ′ →M ′′ → 0
be a short exact sequence of A-modules of dimension 1 such that a, b are nonzero-
divisors on all three A-modules. Then

dM ′(a, b) = dM (a, b)dM ′′(a, b)
in κ∗.

Proof. It is easy to see that this leads to a short exact sequence of exact (2, 1)-
periodic complexes

0→ (M/abM, a, b)→ (M ′/abM ′, a, b)→ (M ′′/abM ′′, a, b)→ 0
Hence the lemma follows from Lemma 68.18. □

Lemma 68.35.02Q4 Let A be a Noetherian local ring. Let α : M → M ′ be a homo-
morphism of finite A-modules of dimension 1. Let a, b ∈ A. Assume

(1) a, b are nonzerodivisors on both M and M ′, and
(2) dim(Ker(α)),dim(Coker(α)) ≤ 0.

Then dM (a, b) = dM ′(a, b).

Proof. If a ∈ A∗, then the equality follows from the equality length(M/bM) =
length(M ′/bM ′) and Lemma 68.33. Similarly if b is a unit the lemma holds as well
(by the symmetry of Lemma 68.30). Hence we may assume that a, b ∈ mA. This in
particular implies that m is not an associated prime of M , and hence α : M →M ′

is injective. This permits us to think of M as a submodule of M ′. By assumption
M ′/M is a finite A-module with support {mA} and hence has finite length. Note
that for any third module M ′′ with M ⊂ M ′′ ⊂ M ′ the maps M → M ′′ and
M ′′ → M ′ satisfy the assumptions of the lemma as well. This reduces us, by

https://stacks.math.columbia.edu/tag/02Q1
https://stacks.math.columbia.edu/tag/0AY9
https://stacks.math.columbia.edu/tag/02Q2
https://stacks.math.columbia.edu/tag/02Q3
https://stacks.math.columbia.edu/tag/02Q4
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induction on the length of M ′/M , to the case where lengthA(M ′/M) = 1. Finally,
in this case consider the map

α : M/abM −→M ′/abM ′.

By construction the cokernel Q of α has length 1. Since a, b ∈ mA, they act trivially
on Q. It also follows that the kernel K of α has length 1 and hence also a, b act
trivially on K. Hence we may apply Lemma 68.25. Thus it suffices to see that
the two maps αi : Q → K are the same. In fact, both maps are equal to the map
q = x′ mod Im(α) 7→ abx′ ∈ K. We omit the verification. □

Lemma 68.36.02Q5 Let A be a Noetherian local ring. Let M be a finite A-module
with dim(Supp(M)) = 1. Let a, b ∈ A nonzerodivisors on M . Let q1, . . . , qt be the
minimal primes in the support of M . Then

dM (a, b) =
∏

i=1,...,t
dA/qi(a, b)

lengthAqi
(Mqi

)

as elements of κ∗.

Proof. Choose a filtration by A-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mj/Mj−1 is isomorphic to A/pj for some prime ideal pj
of A. See Algebra, Lemma 62.1. For each j we have either pj = qi for some i, or
pj = mA. Moreover, for a fixed i, the number of j such that pj = qi is equal to
lengthAqi

(Mqi) by Algebra, Lemma 62.5. Hence dMj
(a, b) is defined for each j and

dMj
(a, b) =

{
dMj−1(a, b)dA/qi(a, b) if pj = qi

dMj−1(a, b) if pj = mA

by Lemma 68.34 in the first instance and Lemma 68.35 in the second. Hence the
lemma. □

Lemma 68.37.02Q6 Let A be a discrete valuation ring with fraction field K. For
nonzero x, y ∈ K we have

dA(x, y) = (−1)ordA(x)ordA(y)x
ordA(y)

yordA(x) mod mA,

in other words the symbol is equal to the usual tame symbol.

Proof. By multiplicativity it suffices to prove this when x, y ∈ A. Let t ∈ A be
a uniformizer. Write x = tbu and y = tbv for some a, b ≥ 0 and u, v ∈ A∗. Set
l = a+ b. Then tl−1, . . . , tb is an admissible sequence in (x)/(xy) and tl−1, . . . , ta is
an admissible sequence in (y)/(xy). Hence by Remark 68.14 we see that dA(x, y)
is characterized by the equation

[tl−1, . . . , tb, v−1tb−1, . . . , v−1] = (−1)abdA(x, y)[tl−1, . . . , ta, u−1ta−1, . . . , u−1].

Hence by the admissible relations for the symbols [x1, . . . , xl] we see that

dA(x, y) = (−1)abua/vb mod mA

as desired. □

https://stacks.math.columbia.edu/tag/02Q5
https://stacks.math.columbia.edu/tag/02Q6
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Lemma 68.38.02Q8 Let A be a Noetherian local ring. Let a, b ∈ A. Let M be a finite
A-module of dimension 1 on which each of a, b, b− a are nonzerodivisors. Then

dM (a, b− a)dM (b, b) = dM (b, b− a)dM (a, b)

in κ∗.

Proof. By Lemma 68.36 it suffices to show the relation when M = A/q for some
prime q ⊂ A with dim(A/q) = 1.

In case M = A/q we may replace A by A/q and a, b by their images in A/q. Hence
we may assume A = M and A a local Noetherian domain of dimension 1. The
reason is that the residue field κ of A and A/q are the same and that for any A/q-
module M the determinant taken over A or over A/q are canonically identified. See
Lemma 68.8.

It suffices to show the relation when both a, b are in the maximal ideal. Namely,
the case where one or both are units follows from Lemmas 68.33 and 68.32.

Choose an extension A ⊂ A′ and factorizations a = ta′, b = tb′ as in Lemma 4.2.
Note that also b− a = t(b′ − a′) and that A′ = (a′, b′) = (a′, b′ − a′) = (b′ − a′, b′).
Here and in the following we think of A′ as an A-module and a, b, a′, b′, t as A-
module endomorphisms of A′. We will use the notation dAA′(a′, b′) and so on to
indicate

dAA′(a′, b′) = detκ(A′/a′b′A′, a′, b′)
which is defined by Lemma 68.27. The upper index A is used to distinguish this
from the already defined symbol dA′(a′, b′) which is different (for example because
it has values in the residue field of A′ which may be different from κ). By Lemma
68.35 we see that dA(a, b) = dAA′(a, b), and similarly for the other combinations.
Using this and multiplicativity we see that it suffices to prove

dAA′(a′, b′ − a′)dAA′(b′, b′) = dAA′(b′, b′ − a′)dAA′(a′, b′)

Now, since (a′, b′) = A′ and so on we have

A′/(a′(b′ − a′)) ∼= A′/(a′)⊕A′/(b′ − a′)
A′/(b′(b′ − a′)) ∼= A′/(b′)⊕A′/(b′ − a′)

A′/(a′b′) ∼= A′/(a′)⊕A′/(b′)

Moreover, note that multiplication by b′ − a′ on A/(a′) is equal to multiplication
by b′, and that multiplication by b′−a′ on A/(b′) is equal to multiplication by −a′.
Using Lemmas 68.17 and 68.18 we conclude

dAA′(a′, b′ − a′) = detκ(b′|A′/(a′))−1 detκ(a′|A′/(b′−a′))
dAA′(b′, b′ − a′) = detκ(−a′|A′/(b′))−1 detκ(b′|A′/(b′−a′))
dAA′(a′, b′) = detκ(b′|A′/(a′))−1 detκ(a′|A′/(b′))

Hence we conclude that

(−1)lengthA(A′/(b′))dAA′(a′, b′ − a′) = dAA′(b′, b′ − a′)dAA′(a′, b′)

the sign coming from the −a′ in the second equality above. On the other hand, by
Lemma 68.16 we have dAA′(b′, b′) = (−1)lengthA(A′/(b′)) and the lemma is proved. □

The tame symbol is a Steinberg symbol.

https://stacks.math.columbia.edu/tag/02Q8
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Lemma 68.39.02Q9 Let A be a Noetherian local domain of dimension 1 with fraction
field K. For x ∈ K \ {0, 1} we have

dA(x, 1− x) = 1

Proof. Write x = a/b with a, b ∈ A. The hypothesis implies, since 1−x = (b−a)/b,
that also b− a ̸= 0. Hence we compute

dA(x, 1− x) = dA(a, b− a)dA(a, b)−1dA(b, b− a)−1dA(b, b)

Thus we have to show that dA(a, b − a)dA(b, b) = dA(b, b − a)dA(a, b). This is
Lemma 68.38. □

68.40. Lengths and determinants.02QA In this section we use the determinant to
compare lattices. The key lemma is the following.

Lemma 68.41.02QB Let R be a Noetherian local ring. Let q ⊂ R be a prime with
dim(R/q) = 1. Let φ : M → N be a homomorphism of finite R-modules. Assume
there exist x1, . . . , xl ∈M and y1, . . . , yl ∈M with the following properties

(1) M = ⟨x1, . . . , xl⟩,
(2) ⟨x1, . . . , xi⟩/⟨x1, . . . , xi−1⟩ ∼= R/q for i = 1, . . . , l,
(3) N = ⟨y1, . . . , yl⟩, and
(4) ⟨y1, . . . , yi⟩/⟨y1, . . . , yi−1⟩ ∼= R/q for i = 1, . . . , l.

Then φ is injective if and only if φq is an isomorphism, and in this case we have

lengthR(Coker(φ)) = ordR/q(f)

where f ∈ κ(q) is the element such that

[φ(x1), . . . , φ(xl)] = f [y1, . . . , yl]

in detκ(q)(Nq).

Proof. First, note that the lemma holds in case l = 1. Namely, in this case x1 is a
basis of M over R/q and y1 is a basis of N over R/q and we have φ(x1) = fy1 for
some f ∈ R. Thus φ is injective if and only if f ̸∈ q. Moreover, Coker(φ) = R/(f, q)
and hence the lemma holds by definition of ordR/q(f) (see Algebra, Definition
121.2).

In fact, suppose more generally that φ(xi) = fiyi for some fi ∈ R, fi ̸∈ q. Then
the induced maps

⟨x1, . . . , xi⟩/⟨x1, . . . , xi−1⟩ −→ ⟨y1, . . . , yi⟩/⟨y1, . . . , yi−1⟩

are all injective and have cokernels isomorphic to R/(fi, q). Hence we see that

lengthR(Coker(φ)) =
∑

ordR/q(fi).

On the other hand it is clear that

[φ(x1), . . . , φ(xl)] = f1 . . . fl[y1, . . . , yl]

in this case from the admissible relation (b) for symbols. Hence we see the result
holds in this case also.

https://stacks.math.columbia.edu/tag/02Q9
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We prove the general case by induction on l. Assume l > 1. Let i ∈ {1, . . . , l} be
minimal such that φ(x1) ∈ ⟨y1, . . . , yi⟩. We will argue by induction on i. If i = 1,
then we get a commutative diagram

0 // ⟨x1⟩ //

��

⟨x1, . . . , xl⟩ //

��

⟨x1, . . . , xl⟩/⟨x1⟩ //

��

0

0 // ⟨y1⟩ // ⟨y1, . . . , yl⟩ // ⟨y1, . . . , yl⟩/⟨y1⟩ // 0

and the lemma follows from the snake lemma and induction on l. Assume now that
i > 1. Write φ(x1) = a1y1 + . . . + ai−1yi−1 + ayi with aj , a ∈ R and a ̸∈ q (since
otherwise i was not minimal). Set

x′
j =

{
xj if j = 1
axj if j ≥ 2 and y′

j =
{
yj if j < i
ayj if j ≥ i

Let M ′ = ⟨x′
1, . . . , x

′
l⟩ and N ′ = ⟨y′

1, . . . , y
′
l⟩. Since φ(x′

1) = a1y
′
1+. . .+ai−1y

′
i−1+y′

i

by construction and since for j > 1 we have φ(x′
j) = aφ(xi) ∈ ⟨y′

1, . . . , y
′
l⟩ we get a

commutative diagram of R-modules and maps

M ′

��

φ′
// N ′

��
M

φ // N

By the result of the second paragraph of the proof we know that lengthR(M/M ′) =
(l−1)ordR/q(a) and similarly lengthR(M/M ′) = (l−i+1)ordR/q(a). By a diagram
chase this implies that

lengthR(Coker(φ′)) = lengthR(Coker(φ)) + i ordR/q(a).
On the other hand, it is clear that writing

[φ(x1), . . . , φ(xl)] = f [y1, . . . , yl], [φ′(x′
1), . . . , φ(x′

l)] = f ′[y′
1, . . . , y

′
l]

we have f ′ = aif . Hence it suffices to prove the lemma for the case that φ(x1) =
a1y1 + . . . ai−1yi−1 + yi, i.e., in the case that a = 1. Next, recall that

[y1, . . . , yl] = [y1, . . . , yi−1, a1y1 + . . . ai−1yi−1 + yi, yi+1, . . . , yl]
by the admissible relations for symbols. The sequence y1, . . . , yi−1, a1y1 + . . . +
ai−1yi−1 +yi, yi+1, . . . , yl satisfies the conditions (3), (4) of the lemma also. Hence,
we may actually assume that φ(x1) = yi. In this case, note that we have qx1 = 0
which implies also qyi = 0. We have

[y1, . . . , yl] = −[y1, . . . , yi−2, yi, yi−1, yi+1, . . . , yl]
by the third of the admissible relations defining detκ(q)(Nq). Hence we may replace
y1, . . . , yl by the sequence y′

1, . . . , y
′
l = y1, . . . , yi−2, yi, yi−1, yi+1, . . . , yl (which also

satisfies conditions (3) and (4) of the lemma). Clearly this decreases the invariant
i by 1 and we win by induction on i. □

To use the previous lemma we show that often sequences of elements with the
required properties exist.

Lemma 68.42.02QC Let R be a local Noetherian ring. Let q ⊂ R be a prime ideal. Let
M be a finite R-module such that q is one of the minimal primes of the support of
M . Then there exist x1, . . . , xl ∈M such that

https://stacks.math.columbia.edu/tag/02QC
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(1) the support of M/⟨x1, . . . , xl⟩ does not contain q, and
(2) ⟨x1, . . . , xi⟩/⟨x1, . . . , xi−1⟩ ∼= R/q for i = 1, . . . , l.

Moreover, in this case l = lengthRq
(Mq).

Proof. The condition that q is a minimal prime in the support of M implies
that l = lengthRq

(Mq) is finite (see Algebra, Lemma 62.3). Hence we can find
y1, . . . , yl ∈Mq such that ⟨y1, . . . , yi⟩/⟨y1, . . . , yi−1⟩ ∼= κ(q) for i = 1, . . . , l. We can
find fi ∈ R, fi ̸∈ q such that fiyi is the image of some element zi ∈M . Moreover,
as R is Noetherian we can write q = (g1, . . . , gt) for some gj ∈ R. By assumption
gjyi ∈ ⟨y1, . . . , yi−1⟩ inside the module Mq. By our choice of zi we can find some
further elements fji ∈ R, fij ̸∈ q such that fijgjzi ∈ ⟨z1, . . . , zi−1⟩ (equality in the
module M). The lemma follows by taking

x1 = f11f12 . . . f1tz1, x2 = f11f12 . . . f1tf21f22 . . . f2tz2,

and so on. Namely, since all the elements fi, fij are invertible in Rq we still have
that Rqx1 + . . .+Rqxi/Rqx1 + . . .+Rqxi−1 ∼= κ(q) for i = 1, . . . , l. By construction,
qxi ∈ ⟨x1, . . . , xi−1⟩. Thus ⟨x1, . . . , xi⟩/⟨x1, . . . , xi−1⟩ is an R-module generated by
one element, annihilated q such that localizing at q gives a q-dimensional vector
space over κ(q). Hence it is isomorphic to R/q. □

Here is the main result of this section. We will see below the various different
consequences of this proposition. The reader is encouraged to first prove the easier
Lemma 68.44 his/herself.

Proposition 68.43.02QD Let R be a local Noetherian ring with residue field κ. Suppose
that (M,φ, ψ) is a (2, 1)-periodic complex over R. Assume

(1) M is a finite R-module,
(2) the cohomology modules of (M,φ, ψ) are of finite length, and
(3) dim(Supp(M)) = 1.

Let qi, i = 1, . . . , t be the minimal primes of the support of M . Then we have10

−eR(M,φ, ψ) =
∑

i=1,...,t
ordR/qi

(
detκ(qi)(Mqi , φqi , ψqi)

)
Proof. We first reduce to the case t = 1 in the following way. Note that Supp(M) =
{m, q1, . . . , qt}, where m ⊂ R is the maximal ideal. Let Mi denote the image of
M →Mqi , so Supp(Mi) = {m, qi}. The map φ (resp. ψ) induces an R-module map
φi : Mi → Mi (resp. ψi : Mi → Mi). Thus we get a morphism of (2, 1)-periodic
complexes

(M,φ, ψ) −→
⊕

i=1,...,t
(Mi, φi, ψi).

The kernel and cokernel of this map have support contained in {m}. Hence by
Lemma 2.5 we have

eR(M,φ, ψ) =
∑

i=1,...,t
eR(Mi, φi, ψi)

On the other hand we clearly have Mqi = Mi,qi , and hence the terms of the right
hand side of the formula of the lemma are equal to the expressions

ordR/qi
(
detκ(qi)(Mi,qi , φi,qi , ψi,qi)

)
10Obviously we could get rid of the minus sign by redefining detκ(M,φ, ψ) as the inverse of

its current value, see Definition 68.13.
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In other words, if we can prove the lemma for each of the modules Mi, then the
lemma holds. This reduces us to the case t = 1.

Assume we have a (2, 1)-periodic complex (M,φ, ψ) over a Noetherian local ring
with M a finite R-module, Supp(M) = {m, q}, and finite length cohomology mod-
ules. The proof in this case follows from Lemma 68.41 and careful bookkeeping.
Denote Kφ = Ker(φ), Iφ = Im(φ), Kψ = Ker(ψ), and Iψ = Im(ψ). Since R is
Noetherian these are all finite R-modules. Set

a = lengthRq
(Iφ,q) = lengthRq

(Kψ,q), b = lengthRq
(Iψ,q) = lengthRq

(Kφ,q).

Equalities because the complex becomes exact after localizing at q. Note that
l = lengthRq

(Mq) is equal to l = a+ b.

We are going to use Lemma 68.42 to choose sequences of elements in finite R-
modules N with support contained in {m, q}. In this case Nq has finite length,
say n ∈ N. Let us call a sequence w1, . . . , wn ∈ N with properties (1) and (2)
of Lemma 68.42 a “good sequence”. Note that the quotient N/⟨w1, . . . , wn⟩ of
N by the submodule generated by a good sequence has support (contained in)
{m} and hence has finite length (Algebra, Lemma 62.3). Moreover, the symbol
[w1, . . . , wn] ∈ detκ(q)(Nq) is a generator, see Lemma 68.5.

Having said this we choose good sequences

x1, . . . , xb in Kφ, t1, . . . , ta in Kψ,
y1, . . . , ya in Iφ ∩ ⟨t1, . . . ta⟩, s1, . . . , sb in Iψ ∩ ⟨x1, . . . , xb⟩.

We will adjust our choices a little bit as follows. Choose lifts ỹi ∈M of yi ∈ Iφ and
s̃i ∈M of si ∈ Iψ. It may not be the case that qỹ1 ⊂ ⟨x1, . . . , xb⟩ and it may not be
the case that qs̃1 ⊂ ⟨t1, . . . , ta⟩. However, using that q is finitely generated (as in the
proof of Lemma 68.42) we can find a d ∈ R, d ̸∈ q such that qdỹ1 ⊂ ⟨x1, . . . , xb⟩ and
qds̃1 ⊂ ⟨t1, . . . , ta⟩. Thus after replacing yi by dyi, ỹi by dỹi, si by dsi and s̃i by ds̃i
we see that we may assume also that x1, . . . , xb, ỹ1, . . . , ỹb and t1, . . . , ta, s̃1, . . . , s̃b
are good sequences in M .

Finally, we choose a good sequence z1, . . . , zl in the finite R-module

⟨x1, . . . , xb, ỹ1, . . . , ỹa⟩ ∩ ⟨t1, . . . , ta, s̃1, . . . , s̃b⟩.

Note that this is also a good sequence in M .

Since Iφ,q = Kψ,q there is a unique element h ∈ κ(q) such that [y1, . . . , ya] =
h[t1, . . . , ta] inside detκ(q)(Kψ,q). Similarly, as Iψ,q = Kφ,q there is a unique element
h ∈ κ(q) such that [s1, . . . , sb] = g[x1, . . . , xb] inside detκ(q)(Kφ,q). We can also do
this with the three good sequences we have in M . All in all we get the following
identities

[y1, . . . , ya] = h[t1, . . . , ta]
[s1, . . . , sb] = g[x1, . . . , xb]
[z1, . . . , zl] = fφ[x1, . . . , xb, ỹ1, . . . , ỹa]
[z1, . . . , zl] = fψ[t1, . . . , ta, s̃1, . . . , s̃b]

for some g, h, fφ, fψ ∈ κ(q).
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Having set up all this notation let us compute detκ(q)(M,φ, ψ). Namely, consider
the element [z1, . . . , zl]. Under the map γψ ◦ σ ◦ γ−1

φ of Definition 68.13 we have

[z1, . . . , zl] = fφ[x1, . . . , xb, ỹ1, . . . , ỹa]
7→ fφ[x1, . . . , xb]⊗ [y1, . . . , ya]
7→ fφh/g[t1, . . . , ta]⊗ [s1, . . . , sb]
7→ fφh/g[t1, . . . , ta, s̃1, . . . , s̃b]
= fφh/fψg[z1, . . . , zl]

This means that detκ(q)(Mq, φq, ψq) is equal to fφh/fψg up to a sign.

We abbreviate the following quantities

kφ = lengthR(Kφ/⟨x1, . . . , xb⟩)
kψ = lengthR(Kψ/⟨t1, . . . , ta⟩)
iφ = lengthR(Iφ/⟨y1, . . . , ya⟩)
iψ = lengthR(Iψ/⟨s1, . . . , sa⟩)
mφ = lengthR(M/⟨x1, . . . , xb, ỹ1, . . . , ỹa⟩)
mψ = lengthR(M/⟨t1, . . . , ta, s̃1, . . . , s̃b⟩)
δφ = lengthR(⟨x1, . . . , xb, ỹ1, . . . , ỹa⟩⟨z1, . . . , zl⟩)
δψ = lengthR(⟨t1, . . . , ta, s̃1, . . . , s̃b⟩⟨z1, . . . , zl⟩)

Using the exact sequences 0→ Kφ →M → Iφ → 0 we get mφ = kφ+ iφ. Similarly
we have mψ = kψ + iψ. We have δφ + mφ = δψ + mψ since this is equal to the
colength of ⟨z1, . . . , zl⟩ in M . Finally, we have

δφ = ordR/q(fφ), δψ = ordR/q(fψ)

by our first application of the key Lemma 68.41.

Next, let us compute the multiplicity of the periodic complex

eR(M,φ, ψ) = lengthR(Kφ/Iψ)− lengthR(Kψ/Iφ)
= lengthR(⟨x1, . . . , xb⟩/⟨s1, . . . , sb⟩) + kφ − iψ
−lengthR(⟨t1, . . . , ta⟩/⟨y1, . . . , ya⟩)− kψ + iφ

= ordR/q(g/h) + kφ − iψ − kψ + iφ

= ordR/q(g/h) +mφ −mψ

= ordR/q(g/h) + δψ − δφ
= ordR/q(fψg/fφh)

where we used the key Lemma 68.41 twice in the third equality. By our computation
of detκ(q)(Mq, φq, ψq) this proves the proposition. □

In most applications the following lemma suffices.

Lemma 68.44.02QE Let R be a Noetherian local ring with maximal ideal m. Let M be
a finite R-module, and let ψ : M →M be an R-module map. Assume that

(1) Ker(ψ) and Coker(ψ) have finite length, and
(2) dim(Supp(M)) ≤ 1.

https://stacks.math.columbia.edu/tag/02QE
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Write Supp(M) = {m, q1, . . . , qt} and denote fi ∈ κ(qi)∗ the element such that
detκ(qi)(ψqi) : detκ(qi)(Mqi)→ detκ(qi)(Mqi) is multiplication by fi. Then we have

lengthR(Coker(ψ))− lengthR(Ker(ψ)) =
∑

i=1,...,t
ordR/qi(fi).

Proof. Recall that H0(M, 0, ψ) = Coker(ψ) and H1(M, 0, ψ) = Ker(ψ), see re-
marks above Definition 2.2. The lemma follows by combining Proposition 68.43
with Lemma 68.17.

Alternative proof. Reduce to the case Supp(M) = {m, q} as in the proof of Propo-
sition 68.43. Then directly combine Lemmas 68.41 and 68.42 to prove this specific
case of Proposition 68.43. There is much less bookkeeping in this case, and the
reader is encouraged to work this out. Details omitted. □

68.45. Application to the key lemma.02QI In this section we apply the results
above to show the analogue of the key lemma (Lemma 6.3) with the tame symbol
dA constructed above. Please see Remark 6.4 for the relationship with Milnor
K-theory.

Lemma 68.46 (Key Lemma).02QJ When A is an
excellent ring this is
[Kat86, Proposition
1].

Let A be a 2-dimensional Noetherian local domain
with fraction field K. Let f, g ∈ K∗. Let q1, . . . , qt be the height 1 primes q of A
such that either f or g is not an element of A∗

q. Then we have∑
i=1,...,t

ordA/qi(dAqi
(f, g)) = 0

We can also write this as∑
height(q)=1

ordA/q(dAq
(f, g)) = 0

since at any height one prime q of A where f, g ∈ A∗
q we have dAq

(f, g) = 1 by
Lemma 68.33.

Proof. Since the tame symbols dAq
(f, g) are additive (Lemma 68.30) and the or-

der functions ordA/q are additive (Algebra, Lemma 121.1) it suffices to prove the
formula when f = a ∈ A and g = b ∈ A. In this case we see that we have to show∑

height(q)=1
ordA/q(detκ(Aq/(ab), a, b)) = 0

By Proposition 68.43 this is equivalent to showing that

eA(A/(ab), a, b) = 0.

Since the complex A/(ab) a−→ A/(ab) b−→ A/(ab) a−→ A/(ab) is exact we win. □

69. Appendix B: Alternative approaches

0AYD In this appendix we first briefly try to connect the material in the main text with
K-theory of coherent sheaves. In particular we describe how cupping with c1 of an
invertible module is related to tensoring by this invertible module, see Lemma 69.7.
This material is obviously very interesting and deserves a much more detailed and
expansive exposition.

https://stacks.math.columbia.edu/tag/02QJ
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69.1. Rational equivalence and K-groups.02S7 This section is a continuation of
Section 23. The motivation for the following lemma is Homology, Lemma 11.3.

Lemma 69.2.02SB Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let F be a coherent sheaf on X. Let

. . . // F
φ // F

ψ // F
φ // F // . . .

be a complex as in Homology, Equation (11.2.1). Assume that
(1) dimδ(Supp(F)) ≤ k + 1.
(2) dimδ(Supp(Hi(F , φ, ψ))) ≤ k for i = 0, 1.

Then we have
[H0(F , φ, ψ)]k ∼rat [H1(F , φ, ψ)]k

as k-cycles on X.

Proof. Let {Wj}j∈J be the collection of irreducible components of Supp(F) which
have δ-dimension k+1. Note that {Wj} is a locally finite collection of closed subsets
of X by Lemma 10.1. For every j, let ξj ∈Wj be the generic point. Set

fj = detκ(ξj)(Fξj , φξj , ψξj ) ∈ R(Wj)∗.

See Definition 68.13 for notation. We claim that

−[H0(F , φ, ψ)]k + [H1(F , φ, ψ)]k =
∑

(Wj → X)∗div(fj)

If we prove this then the lemma follows.

Let Z ⊂ X be an integral closed subscheme of δ-dimension k. To prove the
equality above it suffices to show that the coefficient n of [Z] in [H0(F , φ, ψ)]k −
[H1(F , φ, ψ)]k is the same as the coefficient m of [Z] in

∑
(Wj → X)∗div(fj). Let

ξ ∈ Z be the generic point. Consider the local ring A = OX,ξ. Let M = Fξ as
an A-module. Denote φ,ψ : M → M the action of φ,ψ on the stalk. By our
choice of ξ ∈ Z we have δ(ξ) = k and hence dim(Supp(M)) = 1. Finally, the
integral closed subschemes Wj passing through ξ correspond to the minimal primes
qi of Supp(M). In each case the element fj ∈ R(Wj)∗ corresponds to the element
detκ(qi)(Mqi , φ, ψ) in κ(qi)∗. Hence we see that

n = −eA(M,φ, ψ)

and
m =

∑
ordA/qi(detκ(qi)(Mqi , φ, ψ))

Thus the result follows from Proposition 68.43. □

Lemma 69.3.02SC Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. The map

CHk(X) −→ K0(Coh≤k+1(X)/Coh≤k−1(X))

from Lemma 23.4 induces a bijection from CHk(X) onto the image Bk(X) of the
map

K0(Coh≤k(X)/Coh≤k−1(X)) −→ K0(Coh≤k+1(X)/Coh≤k−1(X)).

https://stacks.math.columbia.edu/tag/02SB
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Proof. By Lemma 23.2 we have Zk(X) = K0(Coh≤k(X)/Coh≤k−1(X)) compatible
with the map of Lemma 23.4. Thus, suppose we have an element [A] − [B] of
K0(Coh≤k(X)/Coh≤k−1(X)) which maps to zero in Bk(X), i.e., maps to zero in
K0(Coh≤k+1(X)/Coh≤k−1(X)). We have to show that [A] − [B] corresponds to a
cycle rationally equivalent to zero on X. Suppose [A] = [A] and [B] = [B] for some
coherent sheaves A,B on X supported in δ-dimension ≤ k. The assumption that
[A] − [B] maps to zero in the group K0(Coh≤k+1(X)/Coh≤k−1(X)) means that
there exists coherent sheaves A′,B′ on X supported in δ-dimension ≤ k − 1 such
that [A⊕A′]−[B⊕B′] is zero in K0(Cohk+1(X)) (use part (1) of Homology, Lemma
11.3). By part (2) of Homology, Lemma 11.3 this means there exists a (2, 1)-periodic
complex (F , φ, ψ) in the category Coh≤k+1(X) such that A⊕A′ = H0(F , φ, ψ) and
B ⊕ B′ = H1(F , φ, ψ). By Lemma 69.2 this implies that

[A⊕A′]k ∼rat [B ⊕ B′]k
This proves that [A]− [B] maps to a cycle rationally equivalent to zero by the map

K0(Coh≤k(X)/Coh≤k−1(X)) −→ Zk(X)
of Lemma 23.2. This is what we had to prove and the proof is complete. □

69.4. Cartier divisors and K-groups.02SV In this section we describe how the inter-
section with the first Chern class of an invertible sheaf L corresponds to tensoring
with L −O in K-groups.
Lemma 69.5.02QH Let A be a Noetherian local ring. Let M be a finite A-module. Let
a, b ∈ A. Assume

(1) dim(A) = 1,
(2) both a and b are nonzerodivisors in A,
(3) A has no embedded primes,
(4) M has no embedded associated primes,
(5) Supp(M) = Spec(A).

Let I = {x ∈ A | x(a/b) ∈ A}. Let q1, . . . , qt be the minimal primes of A. Then
(a/b)IM ⊂M and

lengthA(M/(a/b)IM)− lengthA(M/IM) =
∑

i
lengthAqi

(Mqi)ordA/qi(a/b)

Proof. Since M has no embedded associated primes, and since the support of M
is Spec(A) we see that Ass(M) = {q1, . . . , qt}. Hence a, b are nonzerodivisors on
M . Note that

lengthA(M/(a/b)IM)
= lengthA(bM/aIM)
= lengthA(M/aIM)− lengthA(M/bM)
= lengthA(M/aM) + lengthA(aM/aIM)− lengthA(M/bM)
= lengthA(M/aM) + lengthA(M/IM)− lengthA(M/bM)

as the injective map b : M → bM maps (a/b)IM to aIM and the injective map
a : M → aM maps IM to aIM . Hence the left hand side of the equation of the
lemma is equal to

lengthA(M/aM)− lengthA(M/bM).
Applying the second formula of Lemma 3.2 with x = a, b respectively and using
Algebra, Definition 121.2 of the ord-functions we get the result. □
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Lemma 69.6.02SW Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let L be an invertible OX-module. Let F be a coherent OX-module. Let
s ∈ Γ(X,KX(L)) be a meromorphic section of L. Assume

(1) dimδ(X) ≤ k + 1,
(2) X has no embedded points,
(3) F has no embedded associated points,
(4) the support of F is X, and
(5) the section s is regular meromorphic.

In this situation let I ⊂ OX be the ideal of denominators of s, see Divisors, Defi-
nition 23.10. Then we have the following:

(1) there are short exact sequences

0 → IF 1−→ F → Q1 → 0
0 → IF s−→ F ⊗OX

L → Q2 → 0

(2) the coherent sheaves Q1, Q2 are supported in δ-dimension ≤ k,
(3) the section s restricts to a regular meromorphic section si on every irre-

ducible component Xi of X of δ-dimension k + 1, and
(4) writing [F ]k+1 =

∑
mi[Xi] we have

[Q2]k − [Q1]k =
∑

mi(Xi → X)∗divL|Xi (si)

in Zk(X), in particular

[Q2]k − [Q1]k = c1(L) ∩ [F ]k+1

in CHk(X).

Proof. Recall from Divisors, Lemma 24.5 the existence of injective maps 1 : IF →
F and s : IF → F ⊗OX

L whose cokernels are supported on a closed nowhere
dense subsets T . Denote Qi there cokernels as in the lemma. We conclude that
dimδ(Supp(Qi)) ≤ k. By Divisors, Lemmas 23.5 and 23.8 the pullbacks si are
defined and are regular meromorphic sections for L|Xi . The equality of cycles in
(4) implies the equality of cycle classes in (4). Hence the only remaining thing to
show is that

[Q2]k − [Q1]k =
∑

mi(Xi → X)∗divL|Xi (si)

holds in Zk(X). To see this, let Z ⊂ X be an integral closed subscheme of δ-
dimension k. Let ξ ∈ Z be the generic point. Let A = OX,ξ and M = Fξ.
Moreover, choose a generator sξ ∈ Lξ. Then we can write s = (a/b)sξ where
a, b ∈ A are nonzerodivisors. In this case I = Iξ = {x ∈ A | x(a/b) ∈ A}. In this
case the coefficient of [Z] in the left hand side is

lengthA(M/(a/b)IM)− lengthA(M/IM)

and the coefficient of [Z] in the right hand side is∑
lengthAqi

(Mqi)ordA/qi(a/b)

where q1, . . . , qt are the minimal primes of the 1-dimensional local ring A. Hence
the result follows from Lemma 69.5. □
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Lemma 69.7.02SX Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L be an invertible OX-module. Let F be a coherent OX-module. Assume
dimδ(Supp(F)) ≤ k + 1. Then the element

[F ⊗OX
L]− [F ] ∈ K0(Coh≤k+1(X)/Coh≤k−1(X))

lies in the subgroup Bk(X) of Lemma 69.3 and maps to the element c1(L)∩ [F ]k+1
via the map Bk(X)→ CHk(X).

Proof. Let
0→ K → F → F ′ → 0

be the short exact sequence constructed in Divisors, Lemma 4.6. This in particular
means that F ′ has no embedded associated points. Since the support of K is
nowhere dense in the support of F we see that dimδ(Supp(K)) ≤ k. We may
re-apply Divisors, Lemma 4.6 starting with K to get a short exact sequence

0→ K′′ → K → K′ → 0

where now dimδ(Supp(K′′)) < k and K′ has no embedded associated points. Sup-
pose we can prove the lemma for the coherent sheaves F ′ and K′. Then we see
from the equations

[F ]k+1 = [F ′]k+1 + [K′]k+1 + [K′′]k+1

(use Lemma 10.4),

[F ⊗OX
L]− [F ] = [F ′ ⊗OX

L]− [F ′] + [K′ ⊗OX
L]− [K′] + [K′′ ⊗OX

L]− [K′′]

(use the ⊗L is exact) and the trivial vanishing of [K′′]k+1 and [K′′ ⊗OX
L] − [K′′]

in K0(Coh≤k+1(X)/Coh≤k−1(X)) that the result holds for F . What this means is
that we may assume that the sheaf F has no embedded associated points.

Assume X, F as in the lemma, and assume in addition that F has no embedded
associated points. Consider the sheaf of ideals I ⊂ OX , the corresponding closed
subscheme i : Z → X and the coherent OZ-module G constructed in Divisors,
Lemma 4.7. Recall that Z is a locally Noetherian scheme without embedded points,
G is a coherent sheaf without embedded associated points, with Supp(G) = Z and
such that i∗G = F . Moreover, set N = L|Z .

By Divisors, Lemma 25.4 the invertible sheaf N has a regular meromorphic section
s over Z. Let us denote J ⊂ OZ the sheaf of denominators of s. By Lemma 69.6
there exist short exact sequences

0 → JG 1−→ G → Q1 → 0
0 → JG s−→ G ⊗OZ

N → Q2 → 0

such that dimδ(Supp(Qi)) ≤ k and such that the cycle [Q2]k − [Q1]k is a represen-
tative of c1(N ) ∩ [G]k+1. We see (using the fact that i∗(G ⊗ N ) = F ⊗ L by the
projection formula, see Cohomology, Lemma 54.2) that

[F ⊗OX
L]− [F ] = [i∗Q2]− [i∗Q1]

https://stacks.math.columbia.edu/tag/02SX
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in K0(Coh≤k+1(X)/Coh≤k−1(X)). This already shows that [F ⊗OX
L]− [F ] is an

element of Bk(X). Moreover we have
[i∗Q2]k − [i∗Q1]k = i∗ ([Q2]k − [Q1]k)

= i∗ (c1(N ) ∩ [G]k+1)
= c1(L) ∩ i∗[G]k+1

= c1(L) ∩ [F ]k+1

by the above and Lemmas 26.4 and 12.4. And this agree with the image of the
element under Bk(X)→ CHk(X) by definition. Hence the lemma is proved. □

70. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes

(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces



CHOW HOMOLOGY AND CHERN CLASSES 190

(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal Spaces
(89) Resolution of Surfaces Revisited

Deformation Theory
(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index

References
[Blo86] Spencer Bloch, Algebraic cycles and higher K-theory, Adv. in Math. 61 (1986), no. 3,

267–304.
[Blo94] S. Bloch, The moving lemma for higher Chow groups, J. Algebraic Geom. 3 (1994),

no. 3, 537–568.
[Che58a] Claude Chevalley, Les classes d’equivalence rationnelles i, S’eminair Claude Chevalley

(1958), 14.
[Che58b] , Les classes d’equivalence rationnelles II, S’eminair Claude Chevalley (1958),

18.
[Ful98] William Fulton, Intersection theory, 2 ed., Ergebnisse der Mathematik und ihrer Gren-

zgebiete, 3. Folge, vol. 2, Springer-Verlag, 1998.
[Kat86] Kazuya Kato, Milnor K-theory and the Chow group of zero cycles, 241–253.
[KM76] Finn Faye Knudsen and David Mumford, The projectivity of the moduli space of stable

curves, I. Preliminaries on “det” and “Div”, Math. Scand. 39 (1976), no. 1, 19–55.
[Knu02] Finn Faye Knudsen, Determinant functors on exact categories and their extensions to

categories of bounded complexes, Michigan Math. J. 50 (2002), no. 2, 407–444.
[Ros09] Joseph Ross, The hilbert-chow morphism and the incidence divisor, Columbia University

PhD thesis, 2009.
[Sam56] Pierre Samuel, Rational equivalence of arbitrary cycles, Amer. J. Math. 78 (1956), 383–

400.



CHOW HOMOLOGY AND CHERN CLASSES 191

[Ser65] Jean-Pierre Serre, Algèbre locale. Multiplicités, Cours au Collège de France, 1957–1958,
rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, vol. 11,
Springer-Verlag, Berlin, 1965.

[Ser00] , Local algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin,
2000, Translated from the French by CheeWhye Chin and revised by the author.

[Tho90] Anders Thorup, Rational equivalence theory on arbitrary Noetherian schemes, Enumer-
ative geometry (Sitges, 1987), Lecture Notes in Math., vol. 1436, Springer, Berlin, 1990,
pp. 256–297.

[Tot14] Burt Totaro, Group cohomology and algebraic cycles, Cambridge Tracts in Mathematics,
vol. 204, Cambridge University Press, Cambridge, 2014.


	1. Introduction
	2. Periodic complexes and Herbrand quotients
	3. Calculation of some multiplicities
	4. Preparation for tame symbols
	5. Tame symbols
	6. A key lemma
	7. Setup
	8. Cycles
	9. Cycle associated to a closed subscheme
	10. Cycle associated to a coherent sheaf
	11. Preparation for proper pushforward
	12. Proper pushforward
	13. Preparation for flat pullback
	14. Flat pullback
	15. Push and pull
	16. Preparation for principal divisors
	17. Principal divisors
	18. Principal divisors and pushforward
	19. Rational equivalence
	20. Rational equivalence and push and pull
	21. Rational equivalence and the projective line
	22. Chow groups and envelopes
	23. Chow groups and K-groups
	24. The divisor associated to an invertible sheaf
	25. Intersecting with an invertible sheaf
	26. Intersecting with an invertible sheaf and push and pull
	27. The key formula
	28. Intersecting with an invertible sheaf and rational equivalence
	29. Gysin homomorphisms
	30. Gysin homomorphisms and rational equivalence
	31. Relative effective Cartier divisors
	32. Affine bundles
	33. Bivariant intersection theory
	34. Chow cohomology and the first Chern class
	35. Lemmas on bivariant classes
	36. Projective space bundle formula
	37. The Chern classes of a vector bundle
	38. Intersecting with Chern classes
	39. Polynomial relations among Chern classes
	40. Additivity of Chern classes
	41. Degrees of zero cycles
	42. Cycles of given codimension
	43. The splitting principle
	44. Chern classes and sections
	45. The Chern character and tensor products
	46. Chern classes and the derived category
	47. A baby case of localized Chern classes
	48. Gysin at infinity
	49. Preparation for localized Chern classes
	50. Localized Chern classes
	51. Two technical lemmas
	52. Properties of localized Chern classes
	53. Blowing up at infinity
	54. Higher codimension gysin homomorphisms
	55. Calculating some classes
	56. An Adams operator
	57. Chow groups and K-groups revisited
	58. Rational intersection products on regular schemes
	59. Gysin maps for local complete intersection morphisms
	60. Gysin maps for diagonals
	61. Exterior product
	62. Intersection products
	63. Exterior product over Dedekind domains
	64. Intersection products over Dedekind domains
	65. Todd classes
	66. Grothendieck-Riemann-Roch
	67. Change of base scheme
	68. Appendix A: Alternative approach to key lemma
	68.1. Determinants of finite length modules
	68.12. Periodic complexes and determinants
	68.26. Symbols
	68.40. Lengths and determinants
	68.45. Application to the key lemma

	69. Appendix B: Alternative approaches
	69.1. Rational equivalence and K-groups
	69.4. Cartier divisors and K-groups

	70. Other chapters
	References

