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02P4 In this chapter we discuss Chow homology groups and the construction of Chern
classes of vector bundles as elements of operational Chow cohomology groups (ev-
erything with Z-coefficients).



02PF

02PG

CHOW HOMOLOGY AND CHERN CLASSES 3

We start this chapter by giving the shortest possible algebraic proof of the Key
Lemma We first define the Herbrand quotient (Section and we compute
it in some cases (Section . Next, we prove some simple algebra lemmas on ex-
istence of suitable factorizations after modifications (Section [4]). Using these we
construct/define the tame symbol in Section [5| Only the most basic properties of
the tame symbol are needed to prove the Key Lemma, which we do in Section [f]

Next, we introduce the basic setup we work with in the rest of this chapter in
Section [7] To make the material a little bit more challenging we decided to treat a
somewhat more general case than is usually done. Namely we assume our schemes
X are locally of finite type over a fixed locally Noetherian base scheme which is
universally catenary and is endowed with a dimension function. These assumptions
suffice to be able to define the Chow homology groups CH,(X) and the action of
capping with Chern classes on them. This is an indication that we should be able
to define these also for algebraic stacks locally of finite type over such a base.

Next, we follow the first few chapters of [Ful98] in order to define cycles, flat pull-
back, proper pushforward, and rational equivalence, except that we have been less
precise about the supports of the cycles involved.

We diverge from the presentation given in [Ful98] by using the Key lemma men-
tioned above to prove a basic commutativity relation in Section 27 Using this
we prove that the operation of intersecting with an invertible sheaf passes through
rational equivalence and is commutative, see Section 28 One more application of
the Key lemma proves that the Gysin map of an effective Cartier divisor passes
through rational equivalence, see Section Having proved this, it is straightfor-
ward to define Chern classes of vector bundles, prove additivity, prove the splitting
principle, introduce Chern characters, Todd classes, and state the Grothendieck-
Riemann-Roch theorem.

There are two appendices. In Appendix A (Section we discuss an alterna-
tive (longer) construction of the tame symbol and corresponding proof of the Key
Lemma. Finally, in Appendix B (Section we briefly discuss the relationship with
K-theory of coherent sheaves and we discuss some blowup lemmas. We suggest the
reader look at their introductions for more information.

We will return to the Chow groups CH,.(X) for smooth projective varieties over
algebraically closed fields in the next chapter. Using a moving lemma as in [Samb6],
[Cheb8al, and [Cheb8b] and Serre’s Tor-formula (see [Ser00] or [Ser65]) we will define
a ring structure on CH,(X). See Intersection Theory, Section [1| ff.

2. Periodic complexes and Herbrand quotients

Of course there is a very general notion of periodic complexes. We can require
periodicity of the maps, or periodicity of the objects. We will add these here as
needed. For the moment we only need the following cases.

Definition 2.1. Let R be a ring.

(1) A 2-periodic complex over R is given by a quadruple (M, N, ¢, 1) consisting
of R-modules M, N and R-module maps ¢ : M — N, ¢ : N — M such
that

M- N-Y 2N
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is a complex. In this setting we define the cohomology modules of the
complex to be the R-modules

H°(M,N,¢,v) = Ker(p)/Im(y) and H'(M,N,¢,9) = Ker(¢)/ Im(p).

We say the 2-periodic complex is ezact if the cohomology groups are zero.
(2) A (2,1)-periodic complex over R is given by a triple (M, ¢, 1) consisting of
an R-module M and R-module maps ¢ : M — M, ¢ : M — M such that

® P ¥

M M M M

is a complex. Since this is a special case of a 2-periodic complex we have its
cohomology modules HO(M, ¢,v), H' (M, p, 1) and a notion of exactness.

In the following we will use any result proved for 2-periodic complexes without
further mention for (2,1)-periodic complexes. It is clear that the collection of
2-periodic complexes forms a category with morphisms (f,g) : (M,N,¢,¥) —
(M',N',¢',¢") pairs of morphisms f : M — M’ and g : N — N’ such that
o of=gopandy og= for. We obtain an abelian category, with kernels and
cokernels as in Homology, Lemma [13.3

Definition 2.2. Let (M, N, p, 1) be a 2-periodic complex over a ring R whose
cohomology modules have finite length. In this case we define the multiplicity of
(M, N, ¢, ) to be the integer

er(M, N, ¢, ) = lengthp(H(M, N, ¢,)) — length (H' (M, N, ¢, 1))
In the case of a (2,1)-periodic complex (M, p, 1), we denote this by er(M, p, )

and we will sometimes call this the (additive) Herbrand quotient.

If the cohomology groups of (M, ¢, 1) are finite abelian groups, then it is customary
to call the (multiplicative) Herbrand quotient
_ #HO(M, 0,0)
#H' (M, ¢,9)
In words: the multiplicative Herbrand quotient is the number of elements of H°

divided by the number of elements of H!. If R is local and if the residue field of R
is finite with ¢ elements, then we see that

q(M, @, ) = g°rMe)

q(M, p,1)

An example of a (2,1)-periodic complex over a ring R is any triple of the form
(M,0,%) where M is an R-module and ¢ is an R-linear map. If the kernel and
cokernel of ¥ have finite length, then we obtain

(2.2.1) er(M,0,1¢) = length 5 (Coker(¢))) — lengthz (Ker(v)))
We state and prove the obligatory lemmas on these notations.

Lemma 2.3. Let R be a ring. Suppose that we have a short exact sequence of
2-periodic complexes

0 — (M1, N1, 01,91) = (Ma, Na, p2,12) = (Ms, N3, @3,1%3) = 0

If two out of three have cohomology modules of finite length so does the third and
we have

er(Ma, No, @a,12) = er(Mq, N1, 1,¢1) + er(Ms, N3, p3,13).
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Proof. We abbreviate A = (My, Ni,01,¢1), B = (M3, Na,¢a,19) and C =
(M3, N3, ¢3,13). We have a long exact cohomology sequence

...— HYC) = HY(A) — H(B) = H°(C) — H'(A) - HY(B) - H'(C) — ...
This gives a finite exact sequence
0—1I— H°(A)— H(B) — H°(C) - H*(A) - H(B) - K =0

with 0 = K — H'(C) — I — 0 a filtration. By additivity of the length function
(Algebra, Lemma [52.3)) we see the result. O

Lemma 2.4. Let R be a ring. If (M, N,p, ) is a 2-periodic complezx such that
M, N have finite length, then er(M,N,p, ) = lengthr(M) — lengthg(N). In
particular, if (M, p,v) is a (2,1)-periodic complex such that M has finite length,
then er(M, p, ) = 0.

Proof. This follows from the additity of Lemma [2.3|and the short exact sequence
0— (M,0,0,0) = (M,N,p,v) — (0,N,0,0) — 0. O

Lemma 2.5. Let R be a ring. Let f : (M,p,v) — (M',¢',4") be a map of
(2,1)-periodic complezes whose cohomology modules have finite length. If Ker(f)
and Coker(f) have finite length, then egr(M,p, ) = er(M’, ¢’ ¢').

Proof. Apply the additivity of Lemma and observe that (Ker(f),,v) and
(Coker(f),¢’,4') have vanishing multiplicity by Lemma O

3. Calculation of some multiplicities

To prove equality of certain cycles later on we need to compute some multiplicities.
Our main tool, besides the elementary lemmas on multiplicities given in the previous
section, will be Algebra, Lemma

Lemma 3.1. Let R be a Noetherian local ring. Let M be a finite R-module. Let
x € R. Assume that

(1) dim(Supp(M)) <1, and

(2) dim(Supp(M/xzM)) <O0.
Write Supp(M) = {m,q1,...,q+}. Then

er(M,0,2) = Ziil , ordgq; (x)lengthg, (Mg, ).

,,,,,,

Proof. We first make some preparatory remarks. The result of the lemma holds if
M has finite length, i.e., if t = 0, because both the left hand side and the right hand
side are zero in this case, see Lemma [2.4] Also, if we have a short exact sequence
0— M — M — M" — 0 of modules satisfying (1) and (2), then lemma for 2 out
of 3 of these implies the lemma for the third by the additivity of length (Algebra,
Lemma and additivty of multiplicities (Lemma [2.3)).

Denote M; the image of M in My, so Supp(M;) = {m, q;}. The kernel and cokernel
of the map M — @ M; have support {m} and hence have finite length. By our
preparatory remarks, it follows that it suffices to prove the lemma for each M;. Thus
we may assume that Supp(M) = {m, q}. In this case we have a finite filtration M D
gM D g?M D ... D q"M = 0 by Algebra, Lemma Again additivity shows
that it suffices to prove the lemma in the case M is annihilated by q. In this case
we can view M as a R/q-module, i.e., we may assume that R is a Noetherian local
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domain of dimension 1 with fraction field K. Dividing by the torsion submodule,
i.e., by the kernel of M — M ®pr K = V (the torsion has finite length hence
is handled by our preliminary remarks) we may assume that M C V is a lattice
(Algebra, Definition [121.3)). Then = : M — M is injective and lengthy(M/zM) =
d(M,zM) (Algebra, Definition [121.5). Since lengthy (V) = dimg (V) we see that
det(z : V — V) = 29mx(V) and ordg(det(x : V — V)) = dimg (V)ordp(x). Thus
the desired equality follows from Algebra, Lemma [121.7] in this case. O
Lemma 3.2. Let R be a Noetherian local ring. Let x € R. If M is a finite Cohen-
Macaulay module over R with dim(Supp(M)) = 1 and dim(Supp(M/xM)) = 0,
then

lengthp (M /xM) = Z lengthg(R/(x,q:))lengthg (Mg, ).
where q1,...,q; are the minimal primes of the support of M. If I C R is an ideal
such that x is a nonzerodivisor on R/I and dim(R/I) = 1, then

lengthn(R/(2.1)) = 3 lengthp(R/ (x.q,))lengthy, (R/1)q,)
where q1,...,q, are the minimal primes over I.
Proof. These are special cases of Lemma [3.1 O
Here is another case where we can determine the value of a multiplicity.

Lemmal 3.3. Let R be a ring. Let M be an R-module. Let ¢ : M — M be an
endomorphism and n > 0 such that ¢ = 0 and such that Ker(¢)/Im(p" ') has
finite length as an R-module. Then

eR(M7 Qoiv @n_i) =0
fori=0,...,n.
Proof. The cases i = 0,n are trivial as ¢ = idy; by convention. Let us think

of M as an R[t]-module where multiplication by ¢ is given by ¢. Let us write
K; =Ker(t': M — M) and

a; = lengthp (K;/t"""M), b; = lengthp(K;/tK;t1), ¢ = lengthp(Ky/t'Kit1)

Boundary values are ag = a, = by = ¢g = 0. The ¢; are integers for i < n as
K1 /t'K, 11 is a quotient of K;/t" 1M which is assumed to have finite length. We
will use frequently that K; Nt/M = t/K; ;. For 0 < i < n — 1 we have an exact
sequence

0— Kl/tn_i_lKn_i — Ki+1/tn_i_1M i) Ki/tn_iM — Ki/tKH_l —0
By induction on i we conclude that a; and b; are integers for ¢ < n and that
Cn—i—1 — @i+1 + a; —b; =0

For 0 < i < n — 1 there is a short exact sequence

0= Ki/tKips — Kior [tKips o K1/ Kivs — K1 /tKs1 — 0
which gives
bi = biy1+cip1 —¢; =0
Since by = ¢g we conclude that b; = ¢; for i < n. Then we see that
a2 =a1+bp_2—>b1, a3 =az+by_3— by,

It is straighforward to see that this implies a; = a,,_; as desired. O
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Lemma 3.4. Let (R,m) be a Noetherian local ring. Let (M,p,%) be a (2,1)-
periodic complex over R with M finite and with cohomology groups of finite length
over R. Let x € R be such that dim(Supp(M/xzM)) < 0. Then

eR(Mv Ty, 1/}) = eR(M7 90»¢) - GR(Im((P),O,l')
and

eR(M’ ©s xw) = eR(M7 ©s 1/)) + eR(Im(w)’ 0, Z‘)

Proof. We will only prove the first formula as the second is proved in exactly the
same manner. Let M’ = M[z*°] be the z-power torsion submodule of M. Consider
the short exact sequence 0 — M’ — M — M" — 0. Then M" is z-power torsion
free (More on Algebra, Lemma . Since ¢, ¥ map M’ into M’ we obtain a
short exact sequence

0— (M, ¢"\¢') = (M, p,9) = (M",¢",4") =0

of (2,1)-periodic complexes. Also, we get a short exact sequence 0 — M'NIm(y) —
Im(p) — Im(¢”) — 0. We have egr(M',0,v) = er(M',zp,¢) = er(M’' N
Im(p),0,2) = 0 by Lemma By additivity (Lemma we see that it suf-
fices to prove the lemma for (M", ¢ ¢"). This reduces us to the case discussed in
the next paragraph.

Assume z : M — M is injective. In this case Ker(zyp) = Ker(y). On the other
hand we have a short exact sequence

0 — Im(p)/zIm(p) = Ker(¢)/ Im(x¢p) — Ker(1))/Im(p) — 0
This together with (2.2.1]) proves the formula. O

4. Preparation for tame symbols

In this section we put some lemma that will help us define the tame symbol in the
next section.

Lemmal 4.1. Let A be a Noetherian ring. Let my,...,m, be pairwise distinct
mazimal ideals of A. Fori = 1,...,r let ¢; : Am, — B; be a ring map whose
kernel and cokernel are annihilated by a power of m;. Then there exists a ring map
w: A — B such that

(1) the localization of ¢ at m; is isomorphic to @;, and
(2) Ker(p) and Coker(p) are annihilated by a power of my N...Nm,.

Moreover, if each @; is finite, injective, or surjective then so is .

Proof. Set I =m;N...Nm,. Set A; = A, and A’ =[] A;. Then TA' = [[m;A;
and A — A’ is a flat ring map such that A/I = A’/IA’. Thus we may use More on
Algebra, Lemma|[89.16] to see that there exists an A-module map ¢ : A — B with ¢;
isomorphic to the localization of ¢ at m;. Then we can use the discussion in More
on Algebra, Remark to endow B with an A-algebra structure matching the
given A-algebra structure on B;. The final statement of the lemma follows easily
from the fact that Ker(¢)m, = Ker(yp;) and Coker(p)m, = Coker(p;). O

The following lemma is very similar to Algebra, Lemma [119.3
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Lemma 4.2. Let (R, m) be a Noetherian local ring of dimension 1. Let a,b € R be
nonzerodivisors. There exists a finite ring extension R C R’ with R'/R annihilated
by a power of m and nonzerodivisors t,a’,b’ € R’ such that a = ta’ and b =tV and
R =dR +VR.

Proof. If a or b is a unit, then the lemma is true with R = R’. Thus we may
assume a,b € m. Set I = (a,b). The idea is to blow up R in I. Instead of doing the
algebraic argument we work geometrically. Let X = Proj(€D,-,¢). By Divisors,
Lemma the morphism X — Spec(R) is an isomorphism over the punctured
spectrum U = Spec(R) \ {m}. Thus we may and do view U as an open subscheme
of X. The morphism X — Spec(R) is projective by Divisors, Lemma Also,
every generic point of X lies in U, for example by Divisors, Lemma[32.10] It follows
from Varieties, Lemma that X — Spec(R) is finite. Thus X = Spec(R') is
affine and R — R’ is finite. We have R, = R/, as U = D(a). Hence a power of a
annihilates the finite R-module R'/R. As m = \/(a) we see that R'/R is annihilated
by a power of m. By Divisors, Lemma we see that IR’ is a locally principal
ideal. Since R’ is semi-local we see that IR’ is principal, see Algebra, Lemma
say IR’ = (t). Then we have a = a't and b = b't and everything is clear. O

Lemma 4.3. Let (R,m) be a Noetherian local ring of dimension 1. Let a,b € R
be nonzerodivisors with a € m. There exists an integer n = n(R, a,b) such that for
a finite ring extension R C R’ if b= a™c for some ¢ € R', then m < n.

Proof. Choose a minimal prime q C R. Observe that dim(R/q) = 1, in particular
R/q is not a field. We can choose a discrete valuation ring A dominating R/q with
the same fraction field, see Algebra, Lemma Observe that a and b map to
nonzero elements of A as nonzerodivisors in R are not contained in q. Let v be the
discrete valuation on A. Then v(a) > 0 as a € m. We claim n = v(b)/v(a) works.

Let R C R be given. Set A’ = A®pg R'. Since Spec(R’) — Spec(R) is surjective
(Algebra, Lemma [36.17) also Spec(A’) — Spec(A) is surjective (Algebra, Lemma
30.3). Pick a prime ¢’ C A’ lying over (0) C A. Then A C A” = A’/q' is a
finite extension of rings (again inducing a surjection on spectra). Pick a maximal
ideal m” C A” lying over the maximal ideal of A and a discrete valuation ring A"
dominating A7, (see lemma cited above). Then A — A’ is an extension of discrete
valuation rings and we have b = a™c in A”’. Thus v"’(b) > mv"'(a). Since v"’ = ev

where e is the ramification index of A" /A, we find that m < n as desired. O

Lemma 4.4. Let (A, m) be a Noetherian local ring of dimension 1. Let r > 2 and
let ai,...,a, € A be nonzerodivisors not all units. Then there exist

(1) a finite ring extension A C B with B/A annihilated by a power of m,
(2) for each mazximal ideal mj C B a nonzerodivisor m; € Bj = By, and

(3) factorizations a; = ui7j7rji’j in Bj with u; ; € B, units and e; ; > 0.

Proof. Since at least one a; is not a unit we find that m is not an associated prime
of A. Moreover, for any A C B as in the statement m is not an associated prime
of B and m; is not an associate prime of B;. Keeping this in mind will help check
the arguments below.

First, we claim that it suffices to prove the lemma for r = 2. We will argue this by
induction on r; we suggest the reader skip the proof. Suppose we are given A C B
and 7; in Bj = By, and factorizations a; = ui,jwje-""j fori=1,...,7—1in B, with
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u;; € B; units and e; ; > 0. Then by the case r = 2 for 7; and a, in B; we can
find extensions B; C C; and for every maximal ideal m;; of C; a nonzerodivisor
Tk € Cjp = (Cj)mj,k and factorizations

_ fik _ 9j.k
Tj = U kT, and a, = Wy kT,

as in the lemma. There exists a unique finite extension B C C with C'/B annihilated
by a power of m such that C; = Cy,; for all j, see Lemma The maximal ideals
of C correspond 1-to-1 to the maximal ideals m;; in the localizations and in these
localizations we have

a; = ui T, = umv;’i,;"wjfjjfj’k
for i < r — 1. Since a, factors correctly too the proof of the induction step is

complete.
Proof of the case r = 2. We will use induction on
¢ = min(length 4, (A/a1 A), length 4 (A/azA)).

If £ = 0, then either a; or as is a unit and the lemma holds with A = B. Thus we
may and do assume ¢ > 0.

Suppose we have a finite extension of rings A C A’ such that A’/A is annihilated by
a power of m and such that m is not an associated prime of A’. Let mq,...,m, C A’
be the maximal ideals and set A, = A/ . If we can solve the problem for aj,as
in each A}, then we can apply Lemma to produce a solution for aj,as in A.
Choose = € {a1, a2} such that ¢ = length 4, (A/xA). By Lemma and we
have length 4 (A/zA) = length ,(A’/xA’). On the other hand, we have

length 4 (A" /zA") = Z[K(ml) : /{(m)]lengthA; (A} )z AL)

by Algebra, Lemma Since € m we see that each term on the right hand
side is positive. We conclude that the induction hypothesis applies to a1, as in each
Alifr>1orifr=1and [k(my) : k(m)] > 1. We conclude that we may assume
each A’ as above is local with the same residue field as A.

Applying the discussion of the previous paragraph, we may replace A by the ring
constructed in Lemma [I.2] for aj,as € A. Then since A is local we find, after
possibly switching a; and as, that as € (a1). Write as = af*c with m > 0 maximal.
In fact, by Lemma we may assume m is maximal even after replacing A by any
finite extension A C A’ as in the previous paragraph. If ¢ is a unit, then we are
done. If not, then we replace A by the ring constructed in Lemma [£.2]for a;,c € A.
Then either (1) ¢ = a1¢’ or (2) a1 = ca)j. The first case cannot happen since it
would give ag = a{”“c’ contradicting the maximality of m. In the second case we
get a; = ca} and ay = ¢™*1(a})™. Then it suffices to prove the lemma for A and
c,a. If af is a unit we’re done and if not, then length 4,(A/cA) < £ because cA is
a strictly bigger ideal than a; A. Thus we win by induction hypothesis. O

5. Tame symbols

Consider a Noetherian local ring (A, m) of dimension 1. We denote Q(A) the total
ring of fractions of A, see Algebra, Example The tame symbol will be a map

9a(=,—): Q(A)" x Q(A)" — r(m)"

satisfying the following properties:
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aA( )6A(g7f)_1 fOI‘f,gEQ( )

A(f,1—f)=1 for f € Q(A)* such that 1 — f € Q(A)*,

0a(aa’,b) = 0a(a,b)0a(a’,b) and Oa(a,bb’) = 0a(a,b)d4(a,b") for a,a’,b,b’ €
A nonzerod1v1sors

(5) 0a(b,b) = (—1)™ with m = length4(A/bA) for b € A a nonzerodivisor,

(6) 0a(u,b) =u™ mod m with m = length 4,(A/bA) for u € A aunit and b € A
a nonzerodivisor, and

(7) 0a(a,b—a)da(b,b) = 0a(b,b— a)da(a,b) for a,b € A such that a,b,b —a

are nonzerodivisors.

8A(fagh) 8A(f,g)a,4(f7 ) for f,g,hEQ(A)*,
i1

A~~~
w
—_— — — —

Since it is easier to work with elements of A we will often think of 04 as a map
defined on pairs of nonzerodivisors of A satisfying , , @, @ It is an exercise
to see that setting

OA(L. £) = 0(a.c)0a(0.d) " Da(b0) 0 (0.)

we get a well defined map Q(A)* x Q(A)* — x(m)* satisfying (T)), (2), as well
as the other properties.

We do not claim there is a unique map with these properties. Instead, we will give
a recipe for constructing such a map. Namely, given a1, as € A nonzerodivisors, we
choose a ring extension A C B and local factorizations as in Lemma [£.4] Then we
define

(5.0.1) O0a(ay,az) = Hj Normy (m;)/r(m) ((=1)17 Ju?f Us Jl 7 mod m;)™

where m; = lengthy (B;/m;B;) and the product is taken over the maximal ideals
my,...,m, of B.

Lemma 5.1. The formula determines a well defined element of k(m)*.
In other words, the right hand side does not depend on the choice of the local
factorizations or the choice of B.

Proof. Independence of choice of factorizations. Suppose we have a Noetherian
1-dimensional local ring B, elements a1, as € B, and nonzerodivisors 7, 6 such that
we can write

a1 = u T = 0107, ay = uem®? = 1672
with e;, f; > 0 integers and wu;, v; units in B. Observe that this implies

ex _ ez, —ey €1 fo_ fo, —f1 N1
a1 —Ul U2 a2 s a U 'U a2

On the other hand, setting m = lengthy(B/7mB) and k = lengthz(B/0B) we find

eam = lengthg(B/asB) = fok. Expanding a{?™ = a{Qk using the above we find
(ufugy )™ = (vf?v; 7)*

This proves the desired equality up to signs. To see the signs work out we have to

show mejes is even if and only if kf; fo is even. This follows as both mes = kfs
and me; = kf; (same argument as above).

Independence of choice of B. Suppose given two extensions A C B and A C B’ as
in Lemma [£4l Then

C = (B ®a B')/(m-power torsion)
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will be a third one. Thus we may assume we have A C B C C and factorizations
over the local rings of B and we have to show that using the same factorizations over
the local rings of C gives the same element of x(m). By transitivity of norms (Fields,
Lemma this comes down to the following problem: if B is a Noetherian local
ring of dimension 1 and 7 € B is a nonzerodivisor, then

= H Norm,, /,.(A)™*

Here we have used the following notation: (1) & is the residue field of B, (2) X is an
element of k, (3) my C C are the maximal ideals of C, (4) ki, = k(my,) is the residue
field of Cx = Cu,, (5) m = lengthp(B/7B), and (6) my = lengthe, (Cy/mCy).
The displayed equality holds because Norm,, /. (\) = Areisl as X € K and because
m = Y mylrg : k]. First, we have m = lengthz(B/xB) = lengthz(C/7C) by
Lemma and (2.2.1). Finally, we have lengthz(C/7C) = > mylxr : k] by
Algebra, Lemma [52.12) (|

0EAS |Lemma 5.2. The tame symbol 1 satisfies @ and hence gives
amap da : Q(A)* X Q(A)* — k(m satzsfymg I

Proof. Let us prove . Let a1, as,a3 € A be nonzerodivisors. Choose A C B as
in Lemma [£.4] for a1, a2, as. Then the equality

0a(araz,a3) = 0a(a1,a3)da(az,as)

follows from the equality

(_1)(61,j+e2)j)e3,j (u17ju2,j)831ju;;1,j762,_7‘ _ (—1)61 j€s, Juf €3, ]u3 er, ]( 1)&2 jes, JUZS ]u3 €2,j

)

in B;. Properties and @ are equally immediate.

Let us prove . Let aq,as,a1 — as € A be nonzerodivisors and set az = a; — as.
Choose A C B as in Lemma [£.4] for a1, az,as. Then it suffices to show

(—1)erseziterics tesesites, U12j] 8. ”u23 JT Ju31 7 mod my =1
;

This is clear if e; ; = ez ; = e3;. Say e1; > ez ;. Then we see that e3; = ez ;
because a3 = a; — a2 and we see that us; has the same residue class as —us ;.
Hence the formula is true — the signs work out as well and this verification is the
reason for the choice of signs in . The other cases are handled in exactly the
same manner. (]

OEAT |Lemma|5.3. Let (A, m) be a Noetherian local ring of dimension 1. Let A C B be a
finite ring extension with B/A annihilated by a power of m and m not an associated
prime of B. For a,b € A nonzerodivisors we have

04 (aa b) = H Normﬁ(mj)/n(m) (83_7’ (aa b))

where the product is over the mazimal ideals m; of B and Bj = B, .

Proof. Choose Bj C C; as in Lemma [4.4] for a,b. By Lemma [4.1] we can choose a
finite ring extension B C C with C; = Cy, for all j. Let m;; C C' be the maximal
ideals of C' lying over m;. Let

Tik
a = uj; kT

— oy 90k
gk b_’ULkTrj,k
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be the local factorizations which exist by our choice of C; & Cy,;. By definition we
have

da(a,b) = Hj k NOT () /) (1) 779550550 I mod my ) ™ove
and
0, (a,b) = [ ], Normy(m, 1) /nmy) (= L)Frgikudiho 0 mod my )™k

The result follows by transitivity of norms for x(m;)/k(m;)/k(m), see Fields,
Lemma 20.5 O

Lemma 5.4. Let (A,m,k) — (A, m’,£) be a local homomorphism of Noether-
ian local rings. Assume A — A’ is flat and dim(A) = dim(A’) = 1. Set m =
length 4 (A’ /mA"). For ai,as € A nonzerodivisors 0a(a1,a2)™ maps to 0as(ay,az)
via kK — K.

Proof. If a1, as are both units, then d4(a1,a2) = 1 and da/(a1,a2) = 1 and the
result is true. If not, then we can choose a ring extension A C B and local fac-
torizations as in Lemma [£.4] Denote my,..., m,, be the maximal ideals of B. Let
my,...,m,, be the maximal ideals of B with residue fields x1,...,k,,. For each
Jj €{1,...,m} denote m; € B; = By, a nonzerodivisor such that we have factor-

. . € i . o .
izations a; = uiijj”” as in the lemma. By definition we have

€ €15
4(a1,az) H Normy, /. ((—=1)“"77u; 7 uy ;7 mod my)™

where m; = lengthy (B;/m;B;).
Set B’ = A’ ®4 B. Since A’ is flat over A we see that A’ C B’ is a ring extension
with B’/A’ annihilated by a power of m’. Let

m;’l, l:L,nj
be the maximal ideals of B’ lying over m;. Denote «’; the residue field of m’
Denote B’ 1 the localization of B’ at m’ I As factorizations of a; and as in B’ 1 we

use the image of the factorizations a; = u; Jﬂ' 7 given to us in B;. By deﬁnltlon
we have

dar(ar,az) = Hj ! Normy /o ((=1)727uy’ uy 5/ mod )"
where m/,; = lengthB;J (B, /7B ;).

Comparing the formulae above we see that it suffices to show that for each j and
for any unit u € B; we have

(5.4.1) (Norm,, /,,(u mod m;)"™i)" = Hl Norm,s /s (u mod m’; ;)™

in k’. We are going to use the construction of determinants of endomorphisms of
finite length modules in More on Algebra, Section to prove this. Set M =
Bj/mjBj. By More on Algebra, Lemma |120.2 we have

Normy,, /. (u mod m;)™ = det,(u: M — M)

Thus, by More on Algebra, Lemma [120.3] the left hand side of ([5.4.1]) is equal to
det(u: M ®q A" — M ®4 A’). We have an isomorphism

M®AA/=(BJ‘/7TJ‘ ®AAI @le/ﬁj 5,0
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of A™-modules. Setting M; = B}, /m; B, we see that Norm, /. (u mod m}fl)mévl =
det, (uj : M] — M]) by More on Algebra, Lemma [120.2| again. Hence (5.4.1)) holds
by multiplicativity of the determinant construction, see More on Algebra, Lemma

M20.11 O
6. A key lemma

In this section we apply the results above to prove Lemmal[6.3] This lemma is a low
degree case of the statement that there is a complex for Milnor K-theory similar to
the Gersten-Quillen complex in Quillen’s K-theory. See Remark

Lemma 6.1. Let (A,m) be a 2-dimensional Noetherian local ring. Let t € m be a
nonzerodivisor. Say V(t) = {m,q1,...,q.}. Let Aq, C B; be a finite ring extension
with B; /Aq, annihilated by a power of t. Then there exists a finite extension A C B
of local rings identifying residue fields with B; = By, and B/A annihilated by a
power of t.

Proof. Choose n > 0 such that B; C t " A,,. Let M C t™"A, resp. M’ C t72"A
be the A-submodule consisting of elements mapping to B; in t~" A, , resp. t_Q"Aqi.
Then M C M’ are finite A-modules as A is Noetherian and M,, = M;, = B; as
localization is exact. Thus M’'/M is annihilated by m¢ for some ¢ > 0. Observe
that M - M C M’ under the multiplication t ™" A xt ™A — t72" A. Hence B = A+
m¢T1M is a finite A-algebra with the correct localizations. We omit the verification
that B is local with maximal ideal m 4+ m°+1 M. O

Lemma 6.2. Let (A, m) be a 2-dimensional Noetherian local ring. Let a,b € A be
nonzerodivisors. Then we have

Z orda;q(0a,(a,b)) =0
where the sum is over the height 1 primes q of A.

Proof. If q is a height 1 prime of A such that a,b map to a unit of Ay, then
04, (a,b) = 1. Thus the sum is finite. In fact, if V(ab) = {m,q1,...,q,} then the
sum is over ¢ = 1,...,r. For each ¢ we pick an extension A;, C B; as in Lemma
for a,b. By Lemma [6.1] with ¢ = ab and the given list of primes we may assume
we have a finite local extension A C B with B/A annihilated by a power of ab and
such that for each i the By, = B;. Observe that if q; ; are the primes of B lying
over (; then we have

ordA/qi(ﬁAqi (a,b)) = Zj ordg/q, (83%)], (a,b))

by Lemma|[5.3]and Algebra, Lemma[I21.8] Thus we may replace A by B and reduce
to the case discussed in the next paragraph.

Assume for each ¢ there is a nonzerodivisor 7; € Ay, and units u;,v; € Ag, such
that for some integers e;, f; > 0 we have

€;
i

in Ag,. Setting m; = lengthAqi(Aqi/m) we have 04, (a,b) = ((fl)eifiu{ivi_ei)mi
by definition. Since a, b are nonzerodivisors the (2, 1)-periodic complex (A/(abd), a,b)
has vanishing cohomology. Denote M; the image of A/(ab) in Ag,/(ab). Then we
have a map

a =T b:vﬂrzf"

Af(ab) — @ M;
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whose kernel and cokernel are supported in {m} and hence have finite length. Thus
we see that

Z eA(Mi7 a, b) =0
by Lemma Hence it suffices to show ea(M;, a,b) = —ord4/q,(04,, (a,b)).
Let us prove this first, in case m;,u;,v; are the images of elements m;,u;,v; € A
(using the same symbols should not cause any confusion). In this case we get

fi)

%

=es(M;, ] 7rfi) —ea(m{ M;,0,u;) + eA(WZfiMi,O,vi)

v 0 g

ea(M;,a,b) = ea(M;,wmit, vm

=0- fimiordA/qi(Ui) + €im¢OI‘dA/qi (’Uz)

= fmiordA/qi(ufivi_”) = —ord/q, (04, (a,b))

The second equality holds by Lemma Observe that M; C (M;)q, = Aq. /(Werf)
and (77" M;)q, = Aqi/wzfi and (7erMz)q = Ay, /7. The 0 in the third equality
comes from Lemma[3.3]and the other two terms come from Lemma[3.3l The last two
equalities follow from multiplicativity of the order function and from the definition
of our tame symbol.

In general, we may first choose ¢ € A, ¢ € q; such that cm; € A. After replacing ;
by cm; and u; by ¢~ %wu; and v; by cFiv; we may and do assume 7; is in A. Next,
choose an c € A, ¢ € q; with cu;, cv; € A. Then we observe that

eA(Mia ca, Cb) = €A (Mu a, b) - 6A(aMi7 07 C) + 6A(bMi7 07 C)
by Lemma On the other hand, we have
da,, (ca,cb) = cm*fi—ei)aA% (a,b)

in k(q;)* because c is a unit in Ay,. The arguments in the previous paragraph show
that ea(M;, ca,cb) = —ordayq,(0a,, (ca,cb)). Thus it suffices to prove

ealaM;,0,c) = ordA/qi(cm’?fi) and es(bM;,0,c¢) = ord 4 /q, (™)

and this follows from Lemma by the description (see above) of what happens
when we localize at ;. ]

Lemma 6.3 (Key Lemma). Let A be a 2-dimensional Noetherian local domain When A is an
with fraction field K. Let f,g € K*. Let q1,...,q; be the height 1 primes q of A excellent ring this is
such that either f or g is not an element of Ay. Then we have [Kat86l, Proposition

1].
Zi—l ¢ OTdA/qi (aAqi (fa g)) =0

yeeey

We can also write this as
Zh@ight(q):l ordasq(0a,(f,9)) =0
since at any height 1 prime q of A where f,g € A; we have 8Aq(f7g) - 1.

Proof. Since the tame symbols 04, (f,g) are bilinear and the order functions
ordy/q are additive it suffices to prove the formula when f and g are elements
of A. This case is proven in Lemma [6.2} O
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0EAY Remark 6.4 (Milnor K-theory). For a field k let us denote KM (k) the quotient of

02QK

02QL

the tensor algebra on k* divided by the two-sided ideal generated by the elements
r®1—zforzek)\{0,1}. Thus KM (k) = Z, KM (k) = k*, and

KM (k) =k @z k" /(z®1—2)

If A is a discrete valuation ring with fraction field F' = Frac(A) and residue field x,
there is a tame symbol

Oa: KM (F) — KM (k)

defined as in Section [5; see [Kat86]. More generally, this map can be extended to
the case where A is an excellent local domain of dimension 1 using normalization
and norm maps on K| see [Kat86]; presumably the method in Section [5| can be
used to extend the construction of the tame symbol 94 to arbitrary Noetherian local
domains A of dimension 1. Next, let X be a Noetherian scheme with a dimension
function . Then we can use these tame symbols to get the arrows in the following;:

EB(;(I):jH KN, (k(z)) — @é(w):j KM(k(z)) — @5@):%1 KM, (k(x))

However, it is not clear, that the composition is zero, i.e., that we obtain a complex
of abelian groups. For excellent X this is shown in [Kat86]. When ¢ = 1 and j
arbitrary, this follows from Lemma [6.3

7. Setup

We will throughout work over a locally Noetherian universally catenary base S
endowed with a dimension function §. Although it is likely possible to generalize
(parts of) the discussion in the chapter, it seems that this is a good first approxima-
tion. It is exactly the generality discussed in [Tho90]. We usually do not assume
our schemes are separated or quasi-compact. Many interesting algebraic stacks
are non-separated and/or non-quasi-compact and this is a good case study to see
how to develop a reasonable theory for those as well. In order to reference these
hypotheses we give it a number.

Situation 7.1. Here S is a locally Noetherian, and universally catenary scheme.
Moreover, we assume S is endowed with a dimension function 6 : S — Z.

See Morphisms, Definition for the notion of a universally catenary scheme,
and see Topology, Definition for the notion of a dimension function. Recall
that any locally Noetherian catenary scheme locally has a dimension function, see
Properties, Lemma Moreover, there are lots of schemes which are universally
catenary, see Morphisms, Lemma [17.5

Let (5,6) be as in Situation Any scheme X locally of finite type over S is
locally Noetherian and catenary. In fact, X has a canonical dimension function

5=5X/52X—>Z

associated to (f : X — 5, ) given by the rule dx/s(x) = §(f(x)) +trdeg, sk (z).
See Morphisms, Lemma Moreover, if h : X — Y is a morphism of schemes
locally of finite type over S, and x € X, y = h(z), then obviously dx,s(z) =
dy/s(y) + trdeg, ki (x). We will freely use this function and its properties in the
following.
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Here are the basic examples of setups as above. In fact, the main interest lies in
the case where the base is the spectrum of a field, or the case where the base is the
spectrum of a Dedekind ring (e.g. Z, or a discrete valuation ring).

Example 7.2. Here S = Spec(k) and k is a field. We set d(pt) = 0 where pt
indicates the unique point of S. The pair (5,4) is an example of a situation as in
Situation [7.1] by Morphisms, Lemma, [I7.5

Example 7.3. Here S = Spec(A), where A is a Noetherian domain of dimension
1. For example we could consider A = Z. We set d(p) = 0 if p is a maximal ideal
and §(p) = 1 if p = (0) corresponds to the generic point. This is an example of
Situation by Morphisms, Lemma

Example| 7.4. Here S is a Cohen-Macaulay scheme. Then S is universally
catenary by Morphisms, Lemma We set 0(s) = —dim(Ogs). If s ~
s is a mnontrivial specialization of points of S, then Og is the localization of
Ogs,s at a nonmaximal prime ideal p C Ogg, see Schemes, Lemma Thus
dim(Ogs) = dim(Og,¢) + dim(Og s/p) > dim(Og ) by Algebra, Lemma
Hence §(s") > d(s). If s’ ~ s is an immediate specialization, then there is no prime
ideal strictly between p and m; and we find §(s’) = 6(s) + 1. Thus ¢ is a dimension
function. In other words, the pair (S, ) is an example of Situation

If S is Jacobson and § sends closed points to zero, then § is the function sending a
point to the dimension of its closure.

Lemma 7.5. Let (S,0) be as in Situation . Assume in addition S is a Jacobson
scheme, and 6(s) = 0 for every closed point s of S. Let X be locally of finite type
over S. Let Z C X be an integral closed subscheme and let £ € Z be its generic
point. The following integers are the same:

(1) dx/s(),

(2) dim(Z), and

(3) dim(Oz, ) where z is a closed point of Z.

Proof. Let X — S, £ € Z C X be as in the lemma. Since X is locally of finite
type over S we see that X is Jacobson, see Morphisms, Lemma Hence closed
points of X are dense in every closed subset of Z and map to closed points of S.
Hence given any chain of irreducible closed subsets of Z we can end it with a closed
point of Z. It follows that dim(Z) = sup, (dim(Oz,.) (see Properties, Lemma [10.3)
where z € Z runs over the closed points of Z. Note that dim(Oz .) = 6(£) — d(2)
by the properties of a dimension function. For each closed z € Z the field extension
k(2)/k(f(2)) is finite, see Morphisms, Lemma Hence 0x/s(z) = 0(f(2)) =0
for z € Z closed. It follows that all three integers are equal. (]

In the situation of the lemma above the value of ¢ at the generic point of a closed
irreducible subset is the dimension of the irreducible closed subset. However, in
general we cannot expect the equality to hold. For example if S = Spec(C][[t]])
and X = Spec(C((t))) then we would get d(xz) = 1 for the unique point of X,
but dim(X) = 0. Still we want to think of dx/g as giving the dimension of the
irreducible closed subschemes. Thus we introduce the following terminology.

Definition 7.6. Let (S5,0) as in Situation For any scheme X locally of finite
type over S and any irreducible closed subset Z C X we define

dims(2) = 6(¢)
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where £ € Z is the generic point of Z. We will call this the §-dimension of Z.
If Z is a closed subscheme of X, then we define dims(Z) as the supremum of the
d-dimensions of its irreducible components.

8. Cycles

Since we are not assuming our schemes are quasi-compact we have to be a little
careful when defining cycles. We have to allow infinite sums because a rational
function may have infinitely many poles for example. In any case, if X is quasi-
compact then a cycle is a finite sum as usual.

Definition 8.1. Let (S,0) be as in Situation Let X be locally of finite type
over S. Let k € Z.

(1) A cycle on X is a formal sum

a= an[Z]

where the sum is over integral closed subschemes Z C X, each nz € Z, and
the collection {Z;nz # 0} is locally finite (Topology, Definition [28.4)).
(2) A k-cycle on X is a cycle

a= ZnZ[Z]

where nz # 0 = dims(Z) = k.
(3) The abelian group of all k-cycles on X is denoted Zj(X).

In other words, a k-cycle on X is a locally finite formal Z-linear combination of
integral closed subschemes of §-dimension k. Addition of k-cycles o = > nz[Z]
and 8 =Y myz[Z] is given by

a+pB=> (nz+mz)Z,
i.e., by adding the coefficients.

Remark 8.2. Let (S,0) be as in Situation Let X be locally of finite type
over S. Let k € Z. Then we can write

2:(X) =@, K6 B, K (n(@)

with the following notation and conventions:

(1) KM (k(x)) = Z is the degree 0 part of the Milnor K-theory of the residue
field x(z) of the point # € X (see Remark [6.4)), and

(2) the direct sum on the right is over all points z € X with §(x) =k,

(3) the notation @/, signifies that we consider the subgroup consisting of locally
finite elements; namely, elements ) ©_n, such that for every quasi-compact
open U C X the set of z € U with n, # 0 is finite.

Definition 8.3. Let (S,0) be as in Situation Let X be locally of finite type
over S. The support of a cycle a = > nz[Z] on X is
S = Z CX
upp(cv) Unz wZc
Since the collection {Z;nz # 0} is locally finite we see that Supp(«) is a closed
subset of X. If «v is a k-cycle, then every irreducible component Z of Supp(«) has
d-dimension k.
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Definition 8.4. Let (S,0) be as in Situation Let X be locally of finite type
over S. A cycle a on X is effective if it can be written as « = Y nz[Z] withnz >0
for all Z.

The set of all effective cycles is a monoid because the sum of two effective cycles is
effective, but it is not a group (unless X = ().

9. Cycle associated to a closed subscheme

Lemma 9.1. Let (S,0) be as in Situation . Let X be locally of finite type over
S. Let Z C X be a closed subscheme.
(1) Let Z' C Z be an irreducible component and let £ € Z' be its generic point.
Then
lengthy, ,Oz¢ < 00
(2) If dims(Z) < k and £ € Z with §(§) = k, then £ is a generic point of an
irreducible component of Z.

Proof. Let Z' C Z, (¢ € Z' be as in (1). Then dim(Oz¢) = 0 (for example by
Properties, Lemma . Hence Oz ¢ is Noetherian local ring of dimension zero,
and hence has finite length over itself (see Algebra, Proposition . Hence, it
also has finite length over Ox ¢, see Algebra, Lemma

Assume ¢ € Z and §(¢) = k. Consider the closure Z’' = {€}. It is an irreducible
closed subscheme with dims(Z’) = k by definition. Since dims(Z) = k it must be
an irreducible component of Z. Hence we see (2) holds. O

Definition 9.2. Let (S,0) be as in Situation Let X be locally of finite type
over S. Let Z C X be a closed subscheme.
(1) For any irreducible component Z’ C Z with generic point £ the integer
My 7z = lengthOX@OZ’f (Lemma is called the multiplicity of Z' in Z.
(2) Assume dims(Z) < k. The k-cycle associated to Z is

2]k = mz 22
where the sum is over the irreducible components of Z of d-dimension k.
(This is a k-cycle by Divisors, Lemma )

It is important to note that we only define [Z]; if the J-dimension of Z does not
exceed k. In other words, by convention, if we write [Z]; then this implies that
dims(Z) < k.

10. Cycle associated to a coherent sheaf

Lemma 10.1. Let (S,6) be as in Situation , Let X be locally of finite type over
S. Let F be a coherent Ox-module.
(1) The collection of irreducible components of the support of F is locally finite.
(2) Let Z' C Supp(F) be an irreducible component and let £ € Z' be its generic
point. Then
lengthe  Fe < 00
(3) If dims(Supp(F)) < k and £ € Z with 0(§) = k, then & is a generic point
of an irreducible component of Supp(F).
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Proof. By Cohomology of Schemes, Lemma the support Z of F is a closed
subset of X. We may think of Z as a reduced closed subscheme of X (Schemes,
Lemma [12.4). Hence (1) follows from Divisors, Lemma applied to Z and (3)
follows from Lemma applied to Z.

Let £ € Z’' be as in (2). In this case for any specialization £ ~» £ in X we have
Fe = 0. Recall that the non-maximal primes of Ox ¢ correspond to the points
of X specializing to £ (Schemes, Lemma . Hence F¢ is a finite Ox ¢-module
whose support is {m¢}. Hence it has finite length by Algebra, Lemma O

Definition 10.2. Let (5,0) be as in Situation Let X be locally of finite type
over S. Let F be a coherent Ox-module.

(1) For any irreducible component Z’ C Supp(F) with generic point ¢ the
integer mz/, r = lengthy Fe (Lemma [10.1) is called the multiplicity of Z'
in F.

(2) Assume dimgs(Supp(F)) < k. The k-cycle associated to F is

[Fle = Zmz',F[Zl]

where the sum is over the irreducible components of Supp(F) of 4-dimension
k. (This is a k-cycle by Lemma [10.1])

It is important to note that we only define [F]y, if F is coherent and the §-dimension
of Supp(F) does not exceed k. In other words, by convention, if we write [F]j then
this implies that F is coherent on X and dimgs(Supp(F)) < k.

Lemma 10.3. Let (S,0) be as in Situation|7.1. Let X be locally of finite type over
S. Let Z C X be a closed subscheme. If dims(Z) < k, then [Z]; = [Oz]k.

Proof. This is because in this case the multiplicities mz: z and mz o, agree by
definition. |

Lemma 10.4. Let (S,9) be as in Situation . Let X be locally of finite type

over S. Let 0 - F — G — H — 0 be a short exact sequence of coherent sheaves

on X. Assume that the d-dimension of the supports of F, G, and H is < k. Then

Gl = [Flx + [H]-

Proof. Follows immediately from additivity of lengths, see Algebra, Lemma [52.3
O

11. Preparation for proper pushforward

Lemma 11.1. Let (S,0) be as in Situation . Let X, Y be locally of finite type
over S. Let f : X — Y be a morphism. Assume X, Y integral and dims(X) =
dims(Y). Then either f(X) is contained in a proper closed subscheme of Y, or f
is dominant and the extension of function fields R(X)/R(Y) is finite.

Proof. The closure f(X) C Y is irreducible as X is irreducible (Topology, Lemmas
and . If f(X) # Y, then we are done. If f(X) =Y, then f is dominant and
by Morphisms, Lemma we see that the generic point ny of Y is in the image of
f. Of course this implies that f(nx) = ny, where nx € X is the generic point of X.
Since 0(nx) = d(ny) we see that R(Y) = k(ny) C k(nx) = R(X) is an extension of
transcendence degree 0. Hence R(Y) C R(X) is a finite extension by Morphisms,
Lemma (which applies by Morphisms, Lemma . [
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Lemma 11.2. Let (S,6) be as in Situation . Let X, Y be locally of finite type
over S. Let f: X =Y be a morphism. Assume f is quasi-compact, and {Z;}icr is
a locally finite collection of closed subsets of X. Then {f(Z;)}icr is a locally finite
collection of closed subsets of Y.

Proof. Let V C Y be a quasi-compact open subset. Since f is quasi-compact the
open f~1(V) is quasi-compact. Hence the set {i € I | Z;N f=1(V) # 0} is finite by
a simple topological argument which we omit. Since this is the same as the set

{iel|f(Z)NV A0y ={iel| f(Z)NV #0}

the lemma is proved. [

12. Proper pushforward

Definition 12.1. Let (5,0) be as in Situation Let X, Y be locally of finite
type over S. Let f: X — Y be a morphism. Assume f is proper.

(1) Let Z C X be an integral closed subscheme with dims(Z) = k. We define
.17 :{ 0 if dims(f(2)) < k,
: deg(2/f(2))[f(2)] if dims(f(Z)) = k.

Here we think of f(Z) C Y as an integral closed subscheme. The degree of

Z over f(Z) is finite if dims(f(Z)) = dims(Z) by Lemma [11.1}
(2) Let a = > nz[Z] be a k-cycle on X. The pushforward of « as the sum

fea =Y nzf.(Z]

where each f.[Z] is defined as above. The sum is locally finite by Lemma

1.2 above.
By definition the proper pushforward of cycles
fo Z(X) — Zy(Y)

is a homomorphism of abelian groups. It turns X — Z(X) into a covariant functor
on the category of schemes locally of finite type over S with morphisms equal to
proper morphisms.

Lemma 12.2. Let (S,0) be as in Situation . Let X, Y, and Z be locally of
finite type over S. Let f : X — Y and g : Y — Z be proper morphisms. Then
gi o fu = (g0 f) as maps Z,(X) — Zy(Z).

Proof. Let W C X be an integral closed subscheme of dimension k. Consider
W' = f(W) CY and W’ = g(f(W)) C Z. Since f, g are proper we see that
W’ (resp. W) is an integral closed subscheme of Y (resp. Z). We have to show
that g.(f«[W]) = (g o f)[W]. If dims(W") < k, then both sides are zero. If
dims(W") = k, then we see the induced morphisms

W— W — W
both satisfy the hypotheses of Lemma Hence
9 (f<[W]) = deg(W/W') deg(W'/W")[W"], (g o f)«[W] = deg(W/W")[W"].
Then we can apply Morphisms, Lemma to conclude. (I
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A closed immersion is proper. If i : Z — X is a closed immersion then the maps
Ty : Zk(Z) — Zk(X)
are all injective.

Lemma 12.3. Let (5,6) be as in Situation . Let X be locally of finite type over
S. Let X1, X5 C X be closed subschemes such that X = X7 U Xy set theoretically.
For every k € Z the sequence of abelian groups

Zip (X1 N X)) ——= Zp(X1) @ Zp(X2) —= Zp(X) —=0

is exact. Here X1 N Xo is the scheme theoretic intersection and the maps are the
pushforward maps with one multiplied by —1.

Proof. First assume X is quasi-compact. Then Z;(X) is a free Z-module with
basis given by the elements [Z] where Z C X is integral closed of J-dimension k.
The groups Z(X1), Zr(X2), Zx(X1 N X3) are free on the subset of these Z such
that Z C X1, Z C X9, Z C X1 N X,. This immediately proves the lemma in this
case. The general case is similar and the proof is omitted. O

Lemma 12.4. Let (S,d) be as in Situation . Let f: X = Y be a proper
morphism of schemes which are locally of finite type over S.

(1) Let Z C X be a closed subscheme with dims(Z) < k. Then

flZ]i = [f<Oz]k.
(2) Let F be a coherent sheaf on X such that dims(Supp(F)) < k. Then

Note that the statement makes sense since f.F and f.Oyz are coherent Oy -modules
by Cohomology of Schemes, Proposition|19.1]

Proof. Part (1) follows from (2) and Lemma Let F be a coherent sheaf on
X. Assume that dims(Supp(F)) < k. By Cohomology of Schemes, Lemma
there exists a closed subscheme 7 : Z — X and a coherent Oz-module G such that
1+G = F and such that the support of F is Z. Let Z’ C Y be the scheme theoretic
image of f|z : Z — Y. Consider the commutative diagram of schemes

Z — X
le lf
7Ly
We have f.F = f.i.G = i,.(f|z)«G by going around the diagram in two ways.

Suppose we know the result holds for closed immersions and for f|z. Then we see
that

FlFle = feialGli = ()u(fl2)[Glk = () [(fl2)« Gk = [(I")x(f12)4Glk = [feFlk

as desired. The case of a closed immersion is straightforward (omitted). Note that
flz : Z — Z' is a dominant morphism (see Morphisms, Lemma. Thus we have
reduced to the case where dims(X) < k and f: X — Y is proper and dominant.

Assume dims(X) < kand f : X — Y is proper and dominant. Since f is dominant,
for every irreducible component Z C Y with generic point n there exists a point
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¢ € X such that f(§) = n. Hence 6(n) < §(§) < k. Thus we see that in the
expressions
flFle = ZnZ[Z], and [foFk = ZmZ[Z].

whenever ny # 0, or myz # 0 the integral closed subscheme Z is actually an irre-
ducible component of Y of §-dimension k. Pick such an integral closed subscheme
Z C Y and denote 7 its generic point. Note that for any £ € X with f(£) = n we
have §(£) > k and hence & is a generic point of an irreducible component of X of
d-dimension k as well (see Lemma . Since f is quasi-compact and X is locally
Noetherian, there can be only finitely many of these and hence f~1({n}) is finite.
By Morphisms, Lemma there exists an open neighbourhood n € V C Y such
that f=1(V) — V is finite. Replacing Y by V and X by f~1(V) we reduce to the
case where Y is affine, and f is finite.

Write Y = Spec(R) and X = Spec(A) (possible as a finite morphism is affine).
Then R and A are Noetherian rings and A is finite over R. Moreover F = M for
some finite A-module M. Note that f,F corresponds to M viewed as an R-module.
Let p C R be the minimal prime corresponding to n € Y. The coefficient of Z in
[f«Fi is clearly lengthp (My). Let q;, i = 1,...,t be the primes of A lying over
p. Then A, = [[ A, since A, is an Artinian ring being finite over the dimension
zero local Noetherian ring R,,. Clearly the coefficient of Z in f,[F]y is

>, In(a) s r(ellenthy, (0Mg,)

Hence the desired equality follows from Algebra, Lemma [52.12 (]

13. Preparation for flat pullback

Recall that a morphism f : X — Y which is locally of finite type is said to have
relative dimension r if every nonempty fibre is equidimensional of dimension 7. See

Morphisms, Definition [29.1]

Lemma 13.1. Let (S,6) be as in Situation . Let X, Y be locally of finite type
over S. Let f: X — Y be a morphism. Assume f is flat of relative dimension r.
For any closed subset Z C'Y we have

dims(f~1(2)) = dims(Z) + .

provided f~1(Z) is nonempty. If Z is irreducible and Z' C f=1(Z) is an irreducible
component, then Z' dominates Z and dims(Z') = dims(Z) + r.

Proof. It suffices to prove the final statement. We may replace Y by the integral
closed subscheme Z and X by the scheme theoretic inverse image f~(Z) = Zxy X.
Hence we may assume Z = Y is integral and f is a flat morphism of relative
dimension 7. Since Y is locally Noetherian the morphism f which is locally of finite
type, is actually locally of finite presentation. Hence Morphisms, Lemma [25.10
applies and we see that f is open. Let £ € X be a generic point of an irreducible
component of X. By the openness of f we see that f(§) is the generic point 7 of
Z =Y. Note that dim¢(X,) = r by assumption that f has relative dimension 7.
On the other hand, since § is a generic point of X we see that Ox ¢ = Ox, ¢ has
only one prime ideal and hence has dimension 0. Thus by Morphisms, Lemma [28.1
we conclude that the transcendence degree of (&) over k(n) is r. In other words,
d(&) = 0(n) + r as desired. O
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Here is the lemma that we will use to prove that the flat pullback of a locally finite
collection of closed subschemes is locally finite.

Lemma 13.2. Let (S,0) be as in Situation . Let X, Y be locally of finite
type over S. Let f : X — Y be a morphism. Assume {Z;}icr is a locally finite
collection of closed subsets of Y. Then {f~Y(Z;)}ier is a locally finite collection of
closed subsets of X.

Proof. Let U C X be a quasi-compact open subset. Since the image f(U) C Y
is a quasi-compact subset there exists a quasi-compact open V C Y such that
f(U) Cc V. Note that

Gel|lf " Z)NU#Dycliel|Z;nV #£0}.

Since the right hand side is finite by assumption we win. |

14. Flat pullback

In the following we use f~!(Z) to denote the scheme theoretic inverse image of a
closed subscheme Z C Y for a morphism of schemes f : X — Y. We recall that
the scheme theoretic inverse image is the fibre product

fU(2) —=X

|

L ———Y

and it is also the closed subscheme of X cut out by the quasi-coherent sheaf of
ideals f~Y(Z)Ox, if T C Oy is the quasi-coherent sheaf of ideals corresponding to
Z in Y. (This is discussed in Schemes, Section [4] and Lemma and Definition
17.71)

Definition 14.1. Let (S,d) be as in Situation Let X, Y be locally of finite
type over S. Let f: X — Y be a morphism. Assume f is flat of relative dimension
.

(1) Let Z C Y be an integral closed subscheme of d-dimension k. We define
f*[Z] to be the (k 4 r)-cycle on X to the scheme theoretic inverse image

F12 =D wsr

This makes sense since dims(f~1(Z)) = k + r by Lemma
(2) Let a =3 n;[Z;] be a k-cycle on Y. The flat pullback of o by f is the sum

fra=Y nif*(Z]

where each f*[Z;] is defined as above. The sum is locally finite by Lemma

(3) We denote f*: Z,(Y) = Zg4r(X) the map of abelian groups so obtained.

An open immersion is flat. This is an important though trivial special case of a flat
morphism. If U C X is open then sometimes the pullback by 7 : U — X of a cycle
is called the restriction of the cycle to U. Note that in this case the maps

are all surjective. The reason is that given any integral closed subscheme Z’ C U, we
can take the closure of Z of Z’ in X and think of it as a reduced closed subscheme of
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X (see Schemes, Lemma [12.4)). And clearly ZNU = Z’, in other words j*[Z] = [Z]
whence the surjectivity. In fact a little bit more is true.

Lemma 14.2. Let (5,6) be as in Situation . Let X be locally of finite type over
S. Let U C X be an open subscheme, and denotei:Y = X \U — X as a reduced
closed subscheme of X. For every k € Z the sequence

. *
K3

Z(Y) = Z(X) = Z4(U) — 0
is an exact complex of abelian groups.

Proof. First assume X is quasi-compact. Then Z;(X) is a free Z-module with
basis given by the elements [Z] where Z C X is integral closed of §-dimension k.
Such a basis element maps either to the basis element [Z N U] or to zero if Z C Y.
Hence the lemma is clear in this case. The general case is similar and the proof is
omitted. O

Lemma 14.3. Let (S,0) be as in Situation . Let XY, Z be locally of finite type
over S. Let f: X =Y and g:Y — Z be flat morphisms of relative dimensions r
and s. Then go f is flat of relative dimension r + s and

[rog"=(gof)
as maps Zk<Z) — Zk+r+s(X)'

Proof. The composition is flat of relative dimension r + s by Morphisms, Lemma
Suppose that
(1) W C Z is a closed integral subscheme of d-dimension k,
(2) W’ C Y is a closed integral subscheme of d-dimension k + s with W' C
g 1 (W), and
(3) W” C Y is a closed integral subscheme of d-dimension k + s 4+ r with
W' c f=Yw’).
We have to show that the coefficient n of [W”] in (g o f)*[W] agrees with the
coefficient m of [W”] in f*(¢*[W]). That it suffices to check the lemma in these
cases follows from Lemma Let & e W, & € W and £ € W be the generic
points. Consider the local rings A = Oz¢, B = Oy and C' = Ox ¢r. Then we
have local flat ring maps A — B, B — C' and moreover

n = length(C/maC), and m =length,(C/mpC)lengthy(B/myB)
Hence the equality follows from Algebra, Lemma (Il

Lemma 14.4. Let (S,0) be as in Situation , Let X, Y be locally of finite type
over S. Let f: X =Y be a flat morphism of relative dimension .

(1) Let Z C Y be a closed subscheme with dims(Z) < k. Then we have
dims(f~1(2Z)) <k +7r and [f YD) ksr = F[ 2]k in Zpyr(X).

(2) Let F be a coherent sheaf on'Y with dims(Supp(F)) < k. Then we have
dimy(Supp(f* F)) < k + 1 and

f*[}—]k = [f*}—]kJrr
m Zk_;,_r(X)
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Proof. The statements on dimensions follow immediately from Lemma Part
(1) follows from part (2) by Lemma and the fact that f*Oz = Of-1(z).

Proof of (2). As X, Y are locally Noetherian we may apply Cohomology of Schemes,
Lemma to see that F is of finite type, hence f*F is of finite type (Modules,
Lemma , hence f*F is coherent (Cohomology of Schemes, Lemma again).
Thus the lemma makes sense. Let W C Y be an integral closed subscheme of
d-dimension k, and let W/ C X be an integral closed subscheme of dimension k + 7
mapping into W under f. We have to show that the coefficient n of [W'] in f*[F]x
agrees with the coefficient m of [W'] in [f*Flr4r. Let £ € W and £ € W’ be the
generic points. Let A = Oy, B = Ox ¢ and set M = F¢ as an A-module. (Note
that M has finite length by our dimension assumptions, but we actually do not
need to verify this. See Lemma ) We have f*F¢y = B4 M. Thus we see that

n = lengthg(B®4 M) and m = length,(M)lengthy(B/maB)
Thus the equality follows from Algebra, Lemma [52.13 O

15. Push and pull

In this section we verify that proper pushforward and flat pullback are compat-
ible when this makes sense. By the work we did above this is a consequence of
cohomology and base change.

Lemma 15.1. Let (S,6) be as in Situation . Let
X —X
f/l ’ lf
v sy
be a fibre product diagram of schemes locally of finite type over S. Assume f: X —

Y proper and g : Y' — Y flat of relative dimension r. Then also [’ is proper and
g’ is flat of relative dimension r. For any k-cycle a on X we have

9" fea = fi(g/)*a
in Zgy (Y').
Proof. The assertion that f’ is proper follows from Morphisms, Lemma The
assertion that ¢’ is flat of relative dimension r follows from Morphisms, Lemmas
and It suffices to prove the equality of cycles when a = [W] for some
integral closed subscheme W C X of §-dimension k. Note that in this case we have
o = [Ow]k, see Lemma [10.3] By Lemmas and it therefore suffices to show

that f.(g")*Ow is isomorphic to ¢g* f,Oy . This follows from cohomology and base
change, see Cohomology of Schemes, Lemma [5.2 O

Lemma 15.2. Let (S,6) be as in Situation . Let X, Y be locally of finite type
over S. Let f : X =Y be a finite locally free morphism of degree d (see Morphisms,
Definition . Then f is both proper and flat of relative dimension 0, and

foffa =da
for every oo € Zi(Y).
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Proof. A finite locally free morphism is flat and finite by Morphisms, Lemma [48.2)
and a finite morphism is proper by Morphisms, Lemma We omit showing
that a finite morphism has relative dimension 0. Thus the formula makes sense. To
prove it, let Z C Y be an integral closed subscheme of J-dimension k. It suffices
to prove the formula for o = [Z]. Since the base change of a finite locally free
morphism is finite locally free (Morphisms, Lemma we see that f,f*Oy is a
finite locally free sheaf of rank d on Z. Hence

f*f*[Z] = f*f*[OZ]k = [f*f*OZ]k = d[Z]
where we have used Lemmas [[4.4] and [[2.4] O

16. Preparation for principal divisors

Some of the material in this section partially overlaps with the discussion in Divi-
sors, Section

Lemma 16.1. Let (S,9) be as in Situation . Let X be locally of finite type over
S. Assume X is integral.

(1) If Z C X is an integral closed subscheme, then the following are equivalent:
(a) Z is a prime divisor,
(b) Z has codimension 1 in X, and
(¢) dims(Z) = dimg(X) — 1.

(2) If Z is an irreducible component of an effective Cartier divisor on X, then
dimg(Z) = dim5(X) —1.

Proof. Part (1) follows from the definition of a prime divisor (Divisors, Definition
and the definition of a dimension function (Topology, Definition [20.1)). Let
& € Z be the generic point of an irreducible component Z of an effective Cartier
divisor D C X. Then dim(Op¢) = 0and Op ¢ = Ox ¢/(f) for some nonzerodivisor
f € Ox ¢ (Divisors, Lemma [15.2). Then dim(Ox¢) = 1 by Algebra, Lemma
Hence Z is as in (1) by Properties, Lemma and the proof is complete. O

Lemma 16.2. Let f: X — Y be a morphism of schemes. Let £ €Y be a point.
Assume that

(1) X, Y are integral,

(2) Y is locally Noetherian

(3) f is proper, dominant and R(Y) C R(X) is finite, and

(4) dim(Oy¢) = 1.
Then there exists an open neighbourhood V- C'Y of § such that f|s—1(y) Yv) —
V' is finite.

Proof. This lemma is a special case of Varieties, Lemma Here is a direct
argument in this case. By Cohomology of Schemes, Lemma it suffices to prove
that f~1({¢}) is finite. We replace Y by an affine open, say Y = Spec(R). Note that
R is Noetherian, as Y is assumed locally Noetherian. Since f is proper it is quasi-
compact. Hence we can find a finite affine open covering X = Uy U ... U U, with
each U; = Spec(4;). Note that R — A; is a finite type injective homomorphism of
domains such that the induced extension of fraction fields is finite. Thus the lemma
follows from Algebra, Lemma O
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17. Principal divisors

The following definition is the analogue of Divisors, Definition [26.5] in our current
setup.

Definition 17.1. Let (5,9) be as in Situation Let X be locally of finite type
over S. Assume X is integral with dims(X) = n. Let f € R(X)*. The principal
divisor associated to f is the (n — 1)-cycle

div(f) = divx(f) =Y ordz(f)[Z]

defined in Divisors, Definition This makes sense because prime divisors have
0-dimension n — 1 by Lemma [16.1

In the situation of the definition for f,g € R(X)* we have

divx (fg) = divx (f) + divx(g)

in Z,_1(X). See Divisors, Lemma m The following lemma will be superseded
by the more general Lemma [20.2}

Lemma 17.2. Let (S,0) be as in Situation . Let X, Y be locally of finite type
over S. Assume X, Y are integral and n = dims(Y). Let f : X = Y be a flat
morphism of relative dimension r. Let g € R(Y)*. Then

f*(divy (9)) = divx(g)
in Zngr—1(X).

Proof. Note that since f is flat it is dominant so that f induces an embedding
R(Y) C R(X), and hence we may think of g as an element of R(X)*. Let Z C X
be an integral closed subscheme of -dimension n +r — 1. Let £ € Z be its generic
point. If dims(f(Z)) > n — 1, then we see that the coefficient of [Z] in the left and
right hand side of the equation is zero. Hence we may assume that Z’ = f(Z) is
an integral closed subscheme of Y of §-dimension n — 1. Let £ = f(£). Tt is the
generic point of Z’. Set A = Oy, B = Ox¢. The ring map A — B is a flat
local homomorphism of Noetherian local domains of dimension 1. We have g in the
fraction field of A. What we have to show is that

ord4(g)lengthz(B/maB) = ordp(g).
This follows from Algebra, Lemma [52.13| (details omitted). O

18. Principal divisors and pushforward

The first lemma implies that the pushforward of a principal divisor along a generi-
cally finite morphism is a principal divisor.

Lemma 18.1. Let (S,0) be as in Situation . Let X, Y be locally of finite type
over S. Assume X, Y are integral and n = dims(X) = dims(Y). Letp: X - Y
be a dominant proper morphism. Let f € R(X)*. Set

g = Nmp(x)/rv)(f)-
Then we have pydiv(f) = div(g).
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Proof. Let Z C Y be an integral closed subscheme of §-dimension n — 1. We
want to show that the coefficient of [Z] in p.div(f) and div(g) are equal. We may
apply Lemma to the morphism p : X — Y and the generic point £ € Z.
Hence we may replace Y by an affine open neighbourhood of £ and assume that
p: X — Y is finite. Write Y = Spec(R) and X = Spec(A) with p induced by a
finite homomorphism R — A of Noetherian domains which induces an finite field
extension L/K of fraction fields. Now we have f € L, ¢ = Nm(f) € K, and a
prime p C R with dim(R,) = 1. The coefficient of [Z] in divy (g) is ordg, (g). The
coefficient of [Z] in p.divx(f) is

> [1(q) : (p)Jorda, (f)
q lying over p
The desired equality therefore follows from Algebra, Lemma [121.8 O

An important role in the discussion of principal divisors is played by the “universal”
principal divisor [0] — [00] on P}. To make this more precise, let us denote

(18.1.1) Dy, Doy C Py = Proj(Os[To, Th])

the closed subscheme cut out by the section T3, resp. Ty of O(1). These are effective
Cartier divisors, see Divisors, Definition and Lemma The following
lemma says that loosely speaking we have “div(7}/Ty) = [Do] — [D1]” and that this
is the universal principal divisor.

Lemma 18.2. Let (S,9) be as in Situation . Let X be locally of finite type
over S. Assume X is integral and n = dims(X). Let f € R(X)*. Let U C X
be a nonempty open such that f corresponds to a section f € I'(U,O0%). Let Y C
X xg P} be the closure of the graph of f : U — Pk. Then

(1) the projection morphism p:Y — X is proper,

(2) plp-1w) : p~H(U) = U is an isomorphism,

(3) the pullbacks Yo = ¢ *Dg and Yoo = ¢~ Dy via the morphism q: Y — Pk

are defined (Divisors, Definition ,
(4) we have
d“)Y(f) = [YO]n—l - [Yoo]n—l
(5) we have
divx (f) = pudivy (f)

(6) if we view Yy and Y as closed subschemes of X wvia the morphism p then
we have

divx (f) = [Yoln-1 — [Yooln—1

Proof. Since X is integral, we see that U is integral. Hence Y is integral, and
(1, f)(U) C Y is an open dense subscheme. Also, note that the closed subscheme
Y CX xg PIS does not depend on the choice of the open U, since after all it is the
closure of the one point set {n'} = {(1, f)(n)} where n € X is the generic point.
Having said this let us prove the assertions of the lemma.

For (1) note that p is the composition of the closed immersion Y — X xs P} = P
with the proper morphism Pﬁ( — X. As a composition of proper morphisms is
proper (Morphisms, Lemma [41.4)) we conclude.

It is clear that Y NU xg PL = (1, f)(U). Thus (2) follows. It also follows that
dims(Y) = n.
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Note that ¢(n’) = f(n) is not contained in Dy or Dy, since f € R(X)*. Hence (3)
by Divisors, Lemma [13.13] We obtain dims(Yy) = n — 1 and dims(Yo) = n — 1
from Lemma [I6.11

Consider the effective Cartier divisor Y. At every point £ € Yy we have f € Oy ¢
and the local equation for Yy is given by f. In particular, if 6(§) = n — 1 so £ is the
generic point of a integral closed subscheme Z of §-dimension n — 1, then we see
that the coefficient of [Z] in divy (f) is

ordyz (f) = lengthoyé (Oy,g/nyé) = 1engthoyé (Oyoﬁg)

which is the coefficient of [Z] in [Yj],—1. A similar argument using the rational
function 1/f shows that —[Y] agrees with the terms with negative coefficients in
the expression for divy (f). Hence (4) follows.

Note that Dy — S is an isomorphism. Hence we see that X xg Dy — X is
an isomorphism as well. Clearly we have Yy = Y N X Xg Dg (scheme theoretic
intersection) inside X xg PL. Hence it is really the case that Yy — X is a closed
immersion. It follows that
p«Oy, = Oyy

where Yy C X is the image of ¥y — X. By Lemma we have p.[Yolp—1 =
[Yo]n—1. The same is true for Do and Y. Hence (6) is a consequence of (5).
Finally, (5) follows immediately from Lemmam a

The following lemma says that the degree of a principal divisor on a proper curve
is zero.

Lemma 18.3. Let K be any field. Let X be a 1-dimensional integral scheme
endowed with a proper morphism ¢ : X — Spec(K). Let f € K(X)* be an invertible
rational function. Then

ZQZGX closed[n(x) : K} OrdOX,m (f) =0
where ord is as in Algebra, Definition . In other words, c.div(f) = 0.

Proof. Consider the diagram

Y ——X

P
|
Pl < Spec(K)

that we constructed in Lemma [18.2] starting with X and the rational function f
over S = Spec(K). We will use all the results of this lemma without further
mention. We have to show that c.divx(f) = c.p.divy (f) = 0. This is the same
as proving that ¢,q.divy(f) = 0. If ¢(Y) is a closed point of Pl then we see
that divx (f) = 0 and the lemma holds. Thus we may assume that ¢ is dominant.
Suppose we can show that ¢ : Y — PL is finite locally free of degree d (see
Morphisms, Definition [48.1)). Since divy (f) = [¢7*Dolo — [¢7 Dso]o we see (by
definition of flat pullback) that divy (f) = ¢*([Dolo — [Doo]o)- Then by Lemma
we get g.divy (f) = d([Dolo — [Doo)- Since clearly ¢, [Dolo = ¢[Doo]o we win.

It remains to show that ¢ is finite locally free. (It will automatically have some given
degree as Pl is connected.) Since dim(P%) = 1 we see that ¢ is finite for example
by Lemma All local rings of P at closed points are regular local rings of
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dimension 1 (in other words discrete valuation rings), since they are localizations
of K[T] (see Algebra, Lemma . Hence for y € Y closed the local ring Oy,
will be flat over (’)p}(,q(y) as soon as it is torsion free (More on Algebra, Lemma
. This is obviously the case as Oy, is a domain and ¢ is dominant. Thus ¢
is flat. Hence ¢ is finite locally free by Morphisms, Lemma [48.2 (]

19. Rational equivalence

02RV In this section we define rational equivalence on k-cycles. We will allow locally finite
sums of images of principal divisors (under closed immersions). This leads to some
pretty strange phenomena, see Example [I9.5] However, if we do not allow these
then we do not know how to prove that capping with Chern classes of line bundles
factors