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1. Introduction

01X7 In this chapter we first prove a number of results on the cohomology of quasi-
coherent sheaves. A fundamental reference is [DG67]. Having done this we will
elaborate on cohomology of coherent sheaves in the Noetherian setting. See [Ser55].

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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2. Čech cohomology of quasi-coherent sheaves

01X8 Let X be a scheme. Let U ⊂ X be an affine open. Recall that a standard open
covering of U is a covering of the form U : U =

⋃n
i=1 D(fi) where f1, . . . , fn ∈

Γ(U,OX) generate the unit ideal, see Schemes, Definition 5.2.

Lemma 2.1.01X9 Let X be a scheme. Let F be a quasi-coherent OX-module. Let
U : U =

⋃n
i=1 D(fi) be a standard open covering of an affine open of X. Then

Ȟp(U ,F) = 0 for all p > 0.

Proof. Write U = Spec(A) for some ring A. In other words, f1, . . . , fn are elements
of A which generate the unit ideal of A. Write F|U = M̃ for some A-module M .
Clearly the Čech complex Č•(U ,F) is identified with the complex∏

i0
Mfi0

→
∏

i0i1
Mfi0fi1

→
∏

i0i1i2
Mfi0fi1fi2

→ . . .

We are asked to show that the extended complex

(2.1.1)01XA 0→M →
∏

i0
Mfi0

→
∏

i0i1
Mfi0fi1

→
∏

i0i1i2
Mfi0fi1fi2

→ . . .

(whose truncation we have studied in Algebra, Lemma 24.1) is exact. It suffices to
show that (2.1.1) is exact after localizing at a prime p, see Algebra, Lemma 23.1.
In fact we will show that the extended complex localized at p is homotopic to zero.

There exists an index i such that fi ̸∈ p. Choose and fix such an element ifix. Note
that Mfifix ,p

= Mp. Similarly for a localization at a product fi0 . . . fip and p we
can drop any fij for which ij = ifix. Let us define a homotopy

h :
∏

i0...ip+1
Mfi0 ...fip+1 ,p

−→
∏

i0...ip
Mfi0 ...fip ,p

by the rule
h(s)i0...ip = sifixi0...ip

(This is “dual” to the homotopy in the proof of Cohomology, Lemma 10.4.) In
other words, h :

∏
i0
Mfi0 ,p

→Mp is projection onto the factor Mfifix ,p
= Mp and in

general the map h equal projection onto the factorsMfifixfi1 ...fip+1 ,p
= Mfi1 ...fip+1 ,p

.
We compute

(dh+ hd)(s)i0...ip =
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + d(s)ifixi0...ip

=
∑p

j=0
(−1)jsifixi0...̂ij ...ip

+ si0...ip +
∑p

j=0
(−1)j+1sifixi0...̂ij ...ip

= si0...ip

This proves the identity map is homotopic to zero as desired. □

The following lemma says in particular that for any affine scheme X and any quasi-
coherent sheaf F on X we have

Hp(X,F) = 0

for all p > 0.

Lemma 2.2.01XB Let X be a scheme. Let F be a quasi-coherent OX-module. For any
affine open U ⊂ X we have Hp(U,F) = 0 for all p > 0.

https://stacks.math.columbia.edu/tag/01X9
https://stacks.math.columbia.edu/tag/01XB
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Proof. We are going to apply Cohomology, Lemma 11.9. As our basis B for the
topology of X we are going to use the affine opens of X. As our set Cov of open
coverings we are going to use the standard open coverings of affine opens of X.
Next we check that conditions (1), (2) and (3) of Cohomology, Lemma 11.9 hold.
Note that the intersection of standard opens in an affine is another standard open.
Hence property (1) holds. The coverings form a cofinal system of open coverings
of any element of B, see Schemes, Lemma 5.1. Hence (2) holds. Finally, condition
(3) of the lemma follows from Lemma 2.1. □

Here is a relative version of the vanishing of cohomology of quasi-coherent sheaves
on affines.

Lemma 2.3.01XC Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX-module. If f is affine then Rif∗F = 0 for all i > 0.

Proof. According to Cohomology, Lemma 7.3 the sheaf Rif∗F is the sheaf asso-
ciated to the presheaf V 7→ Hi(f−1(V ),F|f−1(V )). By assumption, whenever V is
affine we have that f−1(V ) is affine, see Morphisms, Definition 11.1. By Lemma
2.2 we conclude that Hi(f−1(V ),F|f−1(V )) = 0 whenever V is affine. Since S has
a basis consisting of affine opens we win. □

Lemma 2.4.089W Let f : X → S be an affine morphism of schemes. Let F be a
quasi-coherent OX-module. Then Hi(X,F) = Hi(S, f∗F) for all i ≥ 0.

Proof. Follows from Lemma 2.3 and the Leray spectral sequence. See Cohomology,
Lemma 13.6. □

The following two lemmas explain when Čech cohomology can be used to compute
cohomology of quasi-coherent modules.

Lemma 2.5.0BDX Let X be a scheme. The following are equivalent
(1) X has affine diagonal ∆ : X → X ×X,
(2) for U, V ⊂ X affine open, the intersection U ∩ V is affine, and
(3) there exists an open covering U : X =

⋃
i∈I Ui such that Ui0...ip is affine

open for all p ≥ 0 and all i0, . . . , ip ∈ I.
In particular this holds if X is separated.

Proof. Assume X has affine diagonal. Let U, V ⊂ X be affine opens. Then
U ∩ V = ∆−1(U × V ) is affine. Thus (2) holds. It is immediate that (2) implies
(3). Conversely, if there is a covering of X as in (3), then X ×X =

⋃
Ui×Ui′ is an

affine open covering, and we see that ∆−1(Ui ×Ui′) = Ui ∩Ui′ is affine. Then ∆ is
an affine morphism by Morphisms, Lemma 11.3. The final assertion follows from
Schemes, Lemma 21.7. □

Lemma 2.6.01XD Let X be a scheme. Let U : X =
⋃
i∈I Ui be an open covering such

that Ui0...ip is affine open for all p ≥ 0 and all i0, . . . , ip ∈ I. In this case for any
quasi-coherent sheaf F we have

Ȟp(U ,F) = Hp(X,F)

as Γ(X,OX)-modules for all p.

Proof. In view of Lemma 2.2 this is a special case of Cohomology, Lemma 11.6. □

https://stacks.math.columbia.edu/tag/01XC
https://stacks.math.columbia.edu/tag/089W
https://stacks.math.columbia.edu/tag/0BDX
https://stacks.math.columbia.edu/tag/01XD
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3. Vanishing of cohomology

01XE We have seen that on an affine scheme the higher cohomology groups of any quasi-
coherent sheaf vanish (Lemma 2.2). It turns out that this also characterizes affine
schemes. We give two versions.

Lemma 3.1.01XF [Ser57], [DG67, II,
Theorem 5.2.1 (d’)
and IV (1.7.17)]

Let X be a scheme. Assume that
(1) X is quasi-compact,
(2) for every quasi-coherent sheaf of ideals I ⊂ OX we have H1(X, I) = 0.

Then X is affine.

Proof. Let x ∈ X be a closed point. Let U ⊂ X be an affine open neighbourhood
of x. Write U = Spec(A) and let m ⊂ A be the maximal ideal corresponding to x.
Set Z = X \U and Z ′ = Z∪{x}. By Schemes, Lemma 12.4 there are quasi-coherent
sheaves of ideals I, resp. I ′ cutting out the reduced closed subschemes Z, resp. Z ′.
Consider the short exact sequence

0→ I ′ → I → I/I ′ → 0.
Since x is a closed point of X and x ̸∈ Z we see that I/I ′ is supported at x. In
fact, the restriction of I/I ′ to U corresponds to the A-module A/m. Hence we see
that Γ(X, I/I ′) = A/m. Since by assumption H1(X, I ′) = 0 we see there exists
a global section f ∈ Γ(X, I) which maps to the element 1 ∈ A/m as a section of
I/I ′. Clearly we have x ∈ Xf ⊂ U . This implies that Xf = D(fA) where fA is the
image of f in A = Γ(U,OX). In particular Xf is affine.
Consider the union W =

⋃
Xf over all f ∈ Γ(X,OX) such that Xf is affine.

Obviously W is open in X. By the arguments above every closed point of X is
contained in W . The closed subset X \W of X is also quasi-compact (see Topology,
Lemma 12.3). Hence it has a closed point if it is nonempty (see Topology, Lemma
12.8). This would contradict the fact that all closed points are in W . Hence we
conclude X = W .
Choose finitely many f1, . . . , fn ∈ Γ(X,OX) such that X = Xf1 ∪ . . . ∪ Xfn

and
such that each Xfi

is affine. This is possible as we’ve seen above. By Properties,
Lemma 27.3 to finish the proof it suffices to show that f1, . . . , fn generate the unit
ideal in Γ(X,OX). Consider the short exact sequence

0 // F // O⊕n
X

f1,...,fn // OX // 0

The arrow defined by f1, . . . , fn is surjective since the opens Xfi cover X. We let
F be the kernel of this surjective map. Observe that F has a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F
so that each subquotient Fi/Fi−1 is isomorphic to a quasi-coherent sheaf of ideals.
Namely we can take Fi to be the intersection of F with the first i direct summands
of O⊕n

X . The assumption of the lemma implies that H1(X,Fi/Fi−1) = 0 for all i.
This implies that H1(X,F2) = 0 because it is sandwiched between H1(X,F1) and
H1(X,F2/F1). Continuing like this we deduce that H1(X,F) = 0. Therefore we
conclude that the map⊕

i=1,...,n Γ(X,OX) f1,...,fn // Γ(X,OX)

is surjective as desired. □

https://stacks.math.columbia.edu/tag/01XF
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Note that if X is a Noetherian scheme then every quasi-coherent sheaf of ideals is
automatically a coherent sheaf of ideals and a finite type quasi-coherent sheaf of
ideals. Hence the preceding lemma and the next lemma both apply in this case.

Lemma 3.2.01XG [Ser57], [DG67, II,
Theorem 5.2.1]

Let X be a scheme. Assume that
(1) X is quasi-compact,
(2) X is quasi-separated, and
(3) H1(X, I) = 0 for every quasi-coherent sheaf of ideals I of finite type.

Then X is affine.

Proof. By Properties, Lemma 22.3 every quasi-coherent sheaf of ideals is a directed
colimit of quasi-coherent sheaves of ideals of finite type. By Cohomology, Lemma
19.1 taking cohomology on X commutes with directed colimits. Hence we see that
H1(X, I) = 0 for every quasi-coherent sheaf of ideals on X. In other words we see
that Lemma 3.1 applies. □

We can use the arguments given above to find a sufficient condition to see when an
invertible sheaf is ample. However, we warn the reader that this condition is not
necessary.

Lemma 3.3.0B5P Let X be a scheme. Let L be an invertible OX-module. Assume that
(1) X is quasi-compact,
(2) for every quasi-coherent sheaf of ideals I ⊂ OX there exists an n ≥ 1 such

that H1(X, I ⊗OX
L⊗n) = 0.

Then L is ample.

Proof. This is proved in exactly the same way as Lemma 3.1. Let x ∈ X be a
closed point. Let U ⊂ X be an affine open neighbourhood of x such that L|U ∼= OU .
Write U = Spec(A) and let m ⊂ A be the maximal ideal corresponding to x. Set
Z = X \ U and Z ′ = Z ∪ {x}. By Schemes, Lemma 12.4 there are quasi-coherent
sheaves of ideals I, resp. I ′ cutting out the reduced closed subschemes Z, resp. Z ′.
Consider the short exact sequence

0→ I ′ → I → I/I ′ → 0.
For every n ≥ 1 we obtain a short exact sequence

0→ I ′ ⊗OX
L⊗n → I ⊗OX

L⊗n → I/I ′ ⊗OX
L⊗n → 0.

By our assumption we may pick n such that H1(X, I ′ ⊗OX
L⊗n) = 0. Since x

is a closed point of X and x ̸∈ Z we see that I/I ′ is supported at x. In fact,
the restriction of I/I ′ to U corresponds to the A-module A/m. Since L is trivial
on U we see that the restriction of I/I ′ ⊗OX

L⊗n to U also corresponds to the
A-module A/m. Hence we see that Γ(X, I/I ′ ⊗OX

L⊗n) = A/m. By our choice
of n we see there exists a global section s ∈ Γ(X, I ⊗OX

L⊗n) which maps to the
element 1 ∈ A/m. Clearly we have x ∈ Xs ⊂ U because s vanishes at points of Z.
This implies that Xs = D(f) where f ∈ A is the image of s in A ∼= Γ(U,L⊗n). In
particular Xs is affine.
Consider the union W =

⋃
Xs over all s ∈ Γ(X,L⊗n) for n ≥ 1 such that Xs is

affine. Obviously W is open in X. By the arguments above every closed point
of X is contained in W . The closed subset X \ W of X is also quasi-compact
(see Topology, Lemma 12.3). Hence it has a closed point if it is nonempty (see
Topology, Lemma 12.8). This would contradict the fact that all closed points are

https://stacks.math.columbia.edu/tag/01XG
https://stacks.math.columbia.edu/tag/0B5P
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in W . Hence we conclude X = W . This means that L is ample by Properties,
Definition 26.1. □

There is a variant of Lemma 3.3 with finite type ideal sheaves which we will for-
mulate and prove here if we ever need it.

Lemma 3.4.0F83 Let f : X → Y be a quasi-compact morphism with X and Y quasi-
separated. If R1f∗I = 0 for every quasi-coherent sheaf of ideals I on X, then f is
affine.

Proof. Let V ⊂ Y be an affine open subscheme. We have to show that U = f−1(V )
is affine. The inclusion morphism V → Y is quasi-compact by Schemes, Lemma
21.14. Hence the base change U → X is quasi-compact, see Schemes, Lemma 19.3.
Thus any quasi-coherent sheaf of ideals I on U extends to a quasi-coherent sheaf of
ideals on X, see Properties, Lemma 22.1. Since the formation of R1f∗ is local on Y
(Cohomology, Section 7) we conclude that R1(U → V )∗I = 0 by the assumption in
the lemma. Hence by the Leray Spectral sequence (Cohomology, Lemma 13.4) we
conclude that H1(U, I) = H1(V, (U → V )∗I). Since (U → V )∗I is quasi-coherent
by Schemes, Lemma 24.1, we have H1(V, (U → V )∗I) = 0 by Lemma 2.2. Thus
we find that U is affine by Lemma 3.1. □

4. Quasi-coherence of higher direct images

01XH We have seen that the higher cohomology groups of a quasi-coherent module on
an affine are zero. For (quasi-)separated quasi-compact schemes X this implies
vanishing of cohomology groups of quasi-coherent sheaves beyond a certain degree.
However, it may not be the case that X has finite cohomological dimension, because
that is defined in terms of vanishing of cohomology of all OX -modules.

Lemma 4.1 (Induction Principle).08DR [BV03, Proposition
3.3.1]

Let X be a quasi-compact and quasi-separated
scheme. Let P be a property of the quasi-compact opens of X. Assume that

(1) P holds for every affine open of X,
(2) if U is quasi-compact open, V affine open, P holds for U , V , and U ∩ V ,

then P holds for U ∪ V .
Then P holds for every quasi-compact open of X and in particular for X.

Proof. First we argue by induction that P holds for separated quasi-compact opens
W ⊂ X. Namely, such an open can be written as W = U1 ∪ . . .∪Un and we can do
induction on n using property (2) with U = U1 ∪ . . . ∪ Un−1 and V = Un. This is
allowed because U ∩V = (U1∩Un)∪ . . .∪ (Un−1∩Un) is also a union of n−1 affine
open subschemes by Schemes, Lemma 21.7 applied to the affine opens Ui and Un
of W . Having said this, for any quasi-compact open W ⊂ X we can do induction
on the number of affine opens needed to cover W using the same trick as before
and using that the quasi-compact open Ui ∩Un is separated as an open subscheme
of the affine scheme Un. □

Lemma 4.2.01XI Let X be a quasi-compact scheme with affine diagonal (for example
if X is separated). Let t = t(X) be the minimal number of affine opens needed to
cover X. Then Hn(X,F) = 0 for all n ≥ t and all quasi-coherent sheaves F .

Proof. First proof. By induction on t. If t = 1 the result follows from Lemma 2.2.
If t > 1 write X = U ∪V with V affine open and U = U1∪ . . .∪Ut−1 a union of t−1

https://stacks.math.columbia.edu/tag/0F83
https://stacks.math.columbia.edu/tag/08DR
https://stacks.math.columbia.edu/tag/01XI
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open affines. Note that in this case U ∩V = (U1∩V )∪ . . . (Ut−1∩V ) is also a union
of t−1 affine open subschemes. Namely, since the diagonal is affine, the intersection
of two affine opens is affine, see Lemma 2.5. We apply the Mayer-Vietoris long exact
sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

see Cohomology, Lemma 8.2. By induction we see that the groups Hi(U,F),
Hi(V,F), Hi(U ∩V,F) are zero for i ≥ t−1. It follows immediately that Hi(X,F)
is zero for i ≥ t.

Second proof. Let U : X =
⋃t
i=1 Ui be a finite affine open covering. Since X is

has affine diagonal the multiple intersections Ui0...ip are all affine, see Lemma 2.5.
By Lemma 2.6 the Čech cohomology groups Ȟp(U ,F) agree with the cohomology
groups. By Cohomology, Lemma 23.6 the Čech cohomology groups may be com-
puted using the alternating Čech complex Č•

alt(U ,F). As the covering consists of
t elements we see immediately that Čpalt(U ,F) = 0 for all p ≥ t. Hence the result
follows. □

Lemma 4.3.0BDY Let X be a quasi-compact scheme with affine diagonal (for example
if X is separated). Then

(1) given a quasi-coherent OX-module F there exists an embedding F → F ′ of
quasi-coherent OX-modules such that Hp(X,F ′) = 0 for all p ≥ 1, and

(2) {Hn(X,−)}n≥0 is a universal δ-functor from QCoh(OX) to Ab.

Proof. Let X =
⋃
Ui be a finite affine open covering. Set U =

∐
Ui and denote

j : U → X the morphism inducing the given open immersions Ui → X. Since U is
an affine scheme and X has affine diagonal, the morphism j is affine, see Morphisms,
Lemma 11.11. For every OX -module F there is a canonical map F → j∗j

∗F . This
map is injective as can be seen by checking on stalks: if x ∈ Ui, then we have a
factorization

Fx → (j∗j
∗F)x → (j∗F)x′ = Fx

where x′ ∈ U is the point x viewed as a point of Ui ⊂ U . Now if F is quasi-coherent,
then j∗F is quasi-coherent on the affine scheme U hence has vanishing higher
cohomology by Lemma 2.2. Then Hp(X, j∗j

∗F) = 0 for p > 0 by Lemma 2.4 as j
is affine. This proves (1). Finally, we see that the map Hp(X,F)→ Hp(X, j∗j

∗F)
is zero and part (2) follows from Homology, Lemma 12.4. □

Lemma 4.4.071L Let X be a quasi-compact quasi-separated scheme. Let X = U1 ∪
. . .∪Ut be an open covering with each Ui quasi-compact and separated (for example
affine). Set

d = maxI⊂{1,...,t}

(
|I|+ t(

⋂
i∈I

Ui)− 1
)

where t(U) is the minimal number of affines needed to cover the scheme U . Then
Hn(X,F) = 0 for all n ≥ d and all quasi-coherent sheaves F .

Proof. Note that since X is quasi-separated and Ui quasi-compact the numbers
t(

⋂
i∈I Ui) are finite. Proof using induction on t. If t = 1 then the result follows

from Lemma 4.2. If t > 1, write X = U ∪ V with U = U1 ∪ . . .∪Ut−1 and V = Ut.
We apply the Mayer-Vietoris long exact sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

https://stacks.math.columbia.edu/tag/0BDY
https://stacks.math.columbia.edu/tag/071L
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see Cohomology, Lemma 8.2. Since V is affine, we have Hi(V,F) = 0 for i ≥ 0. By
induction hypothesis we have Hi(U,F) = 0 for

i ≥ maxI⊂{1,...,t−1}

(
|I|+ t(

⋂
i∈I

Ui)− 1
)

and the bound on the right is less than the bound in the statement of the lemma.
Finally we may use our induction hypothesis for the open U ∩V = (U1 ∩Ut)∪ . . .∪
(Ut−1 ∩ Ut) to get the vanishing of Hi(U ∩ V,F) = 0 for

i ≥ maxI⊂{1,...,t−1}

(
|I|+ t(Ut ∩

⋂
i∈I

Ui)− 1
)

Since the bound on the right is at least 1 less than the bound in the statement of
the lemma, the lemma follows. □

Lemma 4.5.01XJ Let f : X → S be a morphism of schemes. Assume that f is
quasi-separated and quasi-compact.

(1) For any quasi-coherent OX-module F the higher direct images Rpf∗F are
quasi-coherent on S.

(2) If S is quasi-compact, there exists an integer n = n(X,S, f) such that
Rpf∗F = 0 for all p ≥ n and any quasi-coherent sheaf F on X.

(3) In fact, if S is quasi-compact we can find n = n(X,S, f) such that for every
morphism of schemes S′ → S we have Rp(f ′)∗F ′ = 0 for p ≥ n and any
quasi-coherent sheaf F ′ on X ′. Here f ′ : X ′ = S′ ×S X → S′ is the base
change of f .

Proof. We first prove (1). Note that under the hypotheses of the lemma the sheaf
R0f∗F = f∗F is quasi-coherent by Schemes, Lemma 24.1. Using Cohomology,
Lemma 7.4 we see that forming higher direct images commutes with restriction to
open subschemes. Since being quasi-coherent is local on S we reduce to the case
discussed in the next paragraph.

Proof of (1) in case S is affine. We will use the induction principle. Since f quasi-
compact and quasi-separated we see that X is quasi-compact and quasi-separated.
For U ⊂ X quasi-compact open and a = f |U we let P (U) be the property that
Rpa∗F is quasi-coherent on S for all quasi-coherent modules F on U and all p ≥ 0.
Since P (X) is (1), it suffices the prove conditions (1) and (2) of Lemma 4.1 hold.
If U is affine, then P (U) holds because Rpa∗F = 0 for p ≥ 1 (by Lemma 2.3 and
Morphisms, Lemma 11.12) and we’ve already observed the result holds for p = 0
in the first paragraph. Next, let U ⊂ X be a quasi-compact open, V ⊂ X an affine
open, and assume P (U), P (V ), P (U ∩ V ) hold. Let a = f |U , b = f |V , c = f |U∩V ,
and g = f |U∪V . Then for any quasi-coherent OU∪V -module F we have the relative
Mayer-Vietoris sequence

0→ g∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1g∗F → . . .

see Cohomology, Lemma 8.3. By P (U), P (V ), P (U ∩ V ) we see that Rpa∗(F|U ),
Rpb∗(F|V ) and Rpc∗(F|U∩V ) are all quasi-coherent. Using the results on quasi-
coherent sheaves in Schemes, Section 24 this implies that each of the sheaves Rpg∗F
is quasi-coherent since it sits in the middle of a short exact sequence with a cokernel
of a map between quasi-coherent sheaves on the left and a kernel of a map between
quasi-coherent sheaves on the right. Whence P (U ∪ V ) and the proof of (1) is
complete.

https://stacks.math.columbia.edu/tag/01XJ
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Next, we prove (3) and a fortiori (2). Choose a finite affine open covering S =⋃
j=1,...m Sj . For each j choose a finite affine open covering f−1(Sj) =

⋃
i=1,...tj Uji.

Let
dj = maxI⊂{1,...,tj}

(
|I|+ t(

⋂
i∈I

Uji)
)

be the integer found in Lemma 4.4. We claim that n(X,S, f) = max dj works.
Namely, let S′ → S be a morphism of schemes and let F ′ be a quasi-coherent sheaf
on X ′ = S′×S X. We want to show that Rpf ′

∗F ′ = 0 for p ≥ n(X,S, f). Since this
question is local on S′ we may assume that S′ is affine and maps into Sj for some
j. Then X ′ = S′ ×Sj

f−1(Sj) is covered by the open affines S′ ×Sj
Uji, i = 1, . . . tj

and the intersections ⋂
i∈I

S′ ×Sj
Uji = S′ ×Sj

⋂
i∈I

Uji

are covered by the same number of affines as before the base change. Applying
Lemma 4.4 we get Hp(X ′,F ′) = 0. By the first part of the proof we already
know that each Rqf ′

∗F ′ is quasi-coherent hence has vanishing higher cohomology
groups on our affine scheme S′, thus we see that H0(S′, Rpf ′

∗F ′) = Hp(X ′,F ′) = 0
by Cohomology, Lemma 13.6. Since Rpf ′

∗F ′ is quasi-coherent we conclude that
Rpf ′

∗F ′ = 0. □

Lemma 4.6.01XK Let f : X → S be a morphism of schemes. Assume that f is
quasi-separated and quasi-compact. Assume S is affine. For any quasi-coherent
OX-module F we have

Hq(X,F) = H0(S,Rqf∗F)
for all q ∈ Z.

Proof. Consider the Leray spectral sequence Ep,q2 = Hp(S,Rqf∗F) converging to
Hp+q(X,F), see Cohomology, Lemma 13.4. By Lemma 4.5 we see that the sheaves
Rqf∗F are quasi-coherent. By Lemma 2.2 we see that Ep,q2 = 0 when p > 0. Hence
the spectral sequence degenerates at E2 and we win. See also Cohomology, Lemma
13.6 (2) for the general principle. □

5. Cohomology and base change, I

02KE Let f : X → S be a morphism of schemes. Let F be a quasi-coherent sheaf
on X. Suppose further that g : S′ → S is any morphism of schemes. Denote
X ′ = XS′ = S′ ×S X the base change of X and denote f ′ : X ′ → S′ the base
change of f . Also write g′ : X ′ → X the projection, and set F ′ = (g′)∗F . Here is
a diagram representing the situation:

(5.0.1)02KF

F ′ = (g′)∗F X ′
g′
//

f ′

��

X

f

��

F

Rf ′
∗F ′ S′ g // S Rf∗F

Here is the simplest case of the base change property we have in mind.

Lemma 5.1.02KG Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX-module. Assume f is affine. In this case f∗F ∼= Rf∗F is a quasi-coherent sheaf,
and for every base change diagram (5.0.1) we have

g∗f∗F = f ′
∗(g′)∗F .

https://stacks.math.columbia.edu/tag/01XK
https://stacks.math.columbia.edu/tag/02KG
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Proof. The vanishing of higher direct images is Lemma 2.3. The statement is local
on S and S′. Hence we may assume X = Spec(A), S = Spec(R), S′ = Spec(R′) and
F = M̃ for some A-module M . We use Schemes, Lemma 7.3 to describe pullbacks
and pushforwards of F . Namely, X ′ = Spec(R′⊗RA) and F ′ is the quasi-coherent
sheaf associated to (R′ ⊗R A) ⊗A M . Thus we see that the lemma boils down to
the equality

(R′ ⊗R A)⊗AM = R′ ⊗RM
as R′-modules. □

In many situations it is sufficient to know about the following special case of coho-
mology and base change. It follows immediately from the stronger results in Section
7, but since it is so important it deserves its own proof.

Lemma 5.2 (Flat base change).02KH Consider a cartesian diagram of schemes

X ′

f ′

��

g′
// X

f

��
S′ g // S

Let F be a quasi-coherent OX-module with pullback F ′ = (g′)∗F . Assume that g is
flat and that f is quasi-compact and quasi-separated. For any i ≥ 0

(1) the base change map of Cohomology, Lemma 17.1 is an isomorphism

g∗Rif∗F −→ Rif ′
∗F ′,

(2) if S = Spec(A) and S′ = Spec(B), then Hi(X,F)⊗A B = Hi(X ′,F ′).

Proof. Using Cohomology, Lemma 17.1 in (1) is allowed since g′ is flat by Mor-
phisms, Lemma 25.8. Having said this, part (1) follows from part (2). Namely,
part (1) is local on S′ and hence we may assume S and S′ are affine. In other
words, we have S = Spec(A) and S′ = Spec(B) as in (2). Then since Rif∗F is
quasi-coherent (Lemma 4.5), it is the quasi-coherent OS-module associated to the
A-module H0(S,Rif∗F) = Hi(X,F) (equality by Lemma 4.6). Similarly, Rif ′

∗F ′

is the quasi-coherent OS′ -module associated to the B-module Hi(X ′,F ′). Since
pullback by g corresponds to − ⊗A B on modules (Schemes, Lemma 7.3) we see
that it suffices to prove (2).

Let A → B be a flat ring homomorphism. Let X be a quasi-compact and quasi-
separated scheme over A. Let F be a quasi-coherent OX -module. Set XB =
X ×Spec(A) Spec(B) and denote FB the pullback of F . We are trying to show that
the map

Hi(X,F)⊗A B −→ Hi(XB ,FB)
(given by the reference in the statement of the lemma) is an isomorphism.

In case X is separated, choose an affine open covering U : X = U1 ∪ . . . ∪ Ut and
recall that

Ȟp(U ,F) = Hp(X,F),
see Lemma 2.6. If UB : XB = (U1)B ∪ . . .∪ (Ut)B we obtain by base change, then it
is still the case that each (Ui)B is affine and that XB is separated. Thus we obtain

Ȟp(UB ,FB) = Hp(XB ,FB).

https://stacks.math.columbia.edu/tag/02KH
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We have the following relation between the Čech complexes

Č•(UB ,FB) = Č•(U ,F)⊗A B

as follows from Lemma 5.1. Since A → B is flat, the same thing remains true on
taking cohomology.

In case X is quasi-separated, choose an affine open covering U : X = U1 ∪ . . . ∪Ut.
We will use the Čech-to-cohomology spectral sequence Cohomology, Lemma 11.5.
The reader who wishes to avoid this spectral sequence can use Mayer-Vietoris and
induction on t as in the proof of Lemma 4.5. The spectral sequence has E2-page
Ep,q2 = Ȟp(U , Hq(F)) and converges to Hp+q(X,F). Similarly, we have a spectral
sequence with E2-page Ep,q2 = Ȟp(UB , Hq(FB)) which converges to Hp+q(XB ,FB).
Since the intersections Ui0...ip are quasi-compact and separated, the result of the
second paragraph of the proof gives Ȟp(UB , Hq(FB)) = Ȟp(U , Hq(F))⊗A B. Us-
ing that A → B is flat we conclude that Hi(X,F) ⊗A B → Hi(XB ,FB) is an
isomorphism for all i and we win. □

Lemma 5.3 (Finite locally free base change).0CKW Consider a cartesian diagram of
schemes

Y

g

��

h
// X

f

��
Spec(B) // Spec(A)

Let F be a quasi-coherent OX-module with pullback G = h∗F . If B is a finite locally
free A-module, then Hi(X,F)⊗A B = Hi(Y,G).

Warning: Do not use this lemma unless you understand the difference between
this and Lemma 5.2.

Proof. In case X is separated, choose an affine open covering U : X =
⋃
i∈I Ui

and recall that
Ȟp(U ,F) = Hp(X,F),

see Lemma 2.6. Let V : Y =
⋃
i∈I g

−1(Ui) be the corresponding affine open covering
of Y . The opens Vi = g−1(Ui) = Ui×Spec(A) Spec(B) are affine and Y is separated.
Thus we obtain

Ȟp(V,G) = Hp(Y,G).
We claim the map of Čech complexes

Č•(U ,F)⊗A B −→ Č•(V,G)

is an isomorphism. Namely, as B is finitely presented as an A-module we see
that tensoring with B over A commutes with products, see Algebra, Proposition
89.3. Thus it suffices to show that the maps Γ(Ui0...ip ,F)⊗A B → Γ(Vi0...ip ,G) are
isomorphisms which follows from Lemma 5.1. Since A→ B is flat, the same thing
remains true on taking cohomology.

In the general case we argue in exactly the same way using affine open cover-
ing U : X =

⋃
i∈I Ui and the corresponding covering V : Y =

⋃
i∈I Vi with

Vi = g−1(Ui) as above. We will use the Čech-to-cohomology spectral sequence Co-
homology, Lemma 11.5. The spectral sequence has E2-page Ep,q2 = Ȟp(U , Hq(F))

https://stacks.math.columbia.edu/tag/0CKW
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and converges to Hp+q(X,F). Similarly, we have a spectral sequence with E2-
page Ep,q2 = Ȟp(V, Hq(G)) which converges to Hp+q(Y,G). Since the intersec-
tions Ui0...ip are separated, the result of the previous paragraph gives isomorphisms
Γ(Ui0...ip , Hq(F)) ⊗A B → Γ(Vi0...ip , Hq(G)). Using that − ⊗A B commutes with
products and is exact, we conclude that Ȟp(U , Hq(F))⊗AB → Ȟp(V, Hq(G)) is an
isomorphism. Using that A→ B is flat we conclude thatHi(X,F)⊗AB → Hi(Y,G)
is an isomorphism for all i and we win. □

6. Colimits and higher direct images

07TA General results of this nature can be found in Cohomology, Section 19, Sheaves,
Lemma 29.1, and Modules, Lemma 22.8.

Lemma 6.1.07TB Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let F = colimFi be a filtered colimit of quasi-coherent sheaves on X.
Then for any p ≥ 0 we have

Rpf∗F = colimRpf∗Fi.

Proof. Recall that Rpf∗F is the sheaf associated to U 7→ Hp(f−1U,F), see Coho-
mology, Lemma 7.3. Recall that the colimit is the sheaf associated to the presheaf
colimit (taking colimits over opens). Hence we can apply Cohomology, Lemma 19.1
to Hp(f−1U,−) where U is affine to conclude. (Because the basis of affine opens
in f−1U satisfies the assumptions of that lemma.) □

7. Cohomology and base change, II

071M Let f : X → S be a morphism of schemes and let F be a quasi-coherent OX -
module. If f is quasi-compact and quasi-separated we would like to represent
Rf∗F by a complex of quasi-coherent sheaves on S. This follows from the fact that
the sheaves Rif∗F are quasi-coherent if S is quasi-compact and has affine diagonal,
using that DQCoh(S) is equivalent to D(QCoh(OS)), see Derived Categories of
Schemes, Proposition 7.5.

In this section we will use a different approach which produces an explicit complex
having a good base change property. The construction is particularly easy if f and
S are separated, or more generally have affine diagonal. Since this is the case which
by far the most often used we treat it separately.

Lemma 7.1.01XL Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX-module. Assume X is quasi-compact and X and S have affine diagonal (e.g.,
if X and S are separated). In this case we can compute Rf∗F as follows:

(1) Choose a finite affine open covering U : X =
⋃
i=1,...,n Ui.

(2) For i0, . . . , ip ∈ {1, . . . , n} denote fi0...ip : Ui0...ip → S the restriction of f
to the intersection Ui0...ip = Ui0 ∩ . . . ∩ Uip .

(3) Set Fi0...ip equal to the restriction of F to Ui0...ip .
(4) Set

Čp(U , f,F) =
⊕

i0...ip
fi0...ip∗Fi0...ip

and define differentials d : Čp(U , f,F) → Čp+1(U , f,F) as in Cohomology,
Equation (9.0.1).

https://stacks.math.columbia.edu/tag/07TB
https://stacks.math.columbia.edu/tag/01XL
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Then the complex Č•(U , f,F) is a complex of quasi-coherent sheaves on S which
comes equipped with an isomorphism

Č•(U , f,F) −→ Rf∗F
in D+(S). This isomorphism is functorial in the quasi-coherent sheaf F .

Proof. Consider the resolution F → C•(U ,F) of Cohomology, Lemma 24.1. We
have an equality of complexes Č•(U , f,F) = f∗C

•(U ,F) of quasi-coherent OS-
modules. The morphisms ji0...ip : Ui0...ip → X and the morphisms fi0...ip :
Ui0...ip → S are affine by Morphisms, Lemma 11.11 and Lemma 2.5. Hence
Rqji0...ip∗Fi0...ip as well as Rqfi0...ip∗Fi0...ip are zero for q > 0 (Lemma 2.3). Us-
ing f ◦ ji0...ip = fi0...ip and the spectral sequence of Cohomology, Lemma 13.8 we
conclude that Rqf∗(ji0...ip∗Fi0...ip) = 0 for q > 0. Since the terms of the com-
plex C•(U ,F) are finite direct sums of the sheaves ji0...ip∗Fi0...ip we conclude using
Leray’s acyclicity lemma (Derived Categories, Lemma 16.7) that

Rf∗F = f∗C
•(U ,F) = Č•(U , f,F)

as desired. □

Next, we are going to consider what happens if we do a base change.

Lemma 7.2.01XM With notation as in diagram (5.0.1). Assume f : X → S and F
satisfy the hypotheses of Lemma 7.1. Choose a finite affine open covering U : X =⋃
Ui of X. There is a canonical isomorphism

g∗Č•(U , f,F) −→ Rf ′
∗F ′

in D+(S′). Moreover, if S′ → S is affine, then in fact
g∗Č•(U , f,F) = Č•(U ′, f ′,F ′)

with U ′ : X ′ =
⋃
U ′
i where U ′

i = (g′)−1(Ui) = Ui,S′ is also affine.

Proof. In fact we may define U ′
i = (g′)−1(Ui) = Ui,S′ no matter whether S′ is

affine over S or not. Let U ′ : X ′ =
⋃
U ′
i be the induced covering of X ′. In this case

we claim that
g∗Č•(U , f,F) = Č•(U ′, f ′,F ′)

with Č•(U ′, f ′,F ′) defined in exactly the same manner as in Lemma 7.1. This is
clear from the case of affine morphisms (Lemma 5.1) by working locally on S′.
Moreover, exactly as in the proof of Lemma 7.1 one sees that there is an isomor-
phism

Č•(U ′, f ′,F ′) −→ Rf ′
∗F ′

in D+(S′) since the morphisms U ′
i → X ′ and U ′

i → S′ are still affine (being base
changes of affine morphisms). Details omitted. □

The lemma above says that the complex
K• = Č•(U , f,F)

is a bounded below complex of quasi-coherent sheaves on S which universally com-
putes the higher direct images of f : X → S. This is something about this particular
complex and it is not preserved by replacing Č•(U , f,F) by a quasi-isomorphic com-
plex in general! In other words, this is not a statement that makes sense in the
derived category. The reason is that the pullback g∗K• is not equal to the derived
pullback Lg∗K• of K• in general!

https://stacks.math.columbia.edu/tag/01XM
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Here is a more general case where we can prove this statement. We remark that
the condition of S being separated is harmless in most applications, since this is
usually used to prove some local property of the total derived image. The proof
is significantly more involved and uses hypercoverings; it is a nice example of how
you can use them sometimes.

Lemma 7.3.01XN Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X. Assume that f is quasi-compact and quasi-separated and that S is
quasi-compact and separated. There exists a bounded below complex K• of quasi-
coherent OS-modules with the following property: For every morphism g : S′ → S
the complex g∗K• is a representative for Rf ′

∗F ′ with notation as in diagram (5.0.1).

Proof. (If f is separated as well, please see Lemma 7.2.) The assumptions imply
in particular that X is quasi-compact and quasi-separated as a scheme. Let B
be the set of affine opens of X. By Hypercoverings, Lemma 11.4 we can find a
hypercovering K = (I, {Ui}) such that each In is finite and each Ui is an affine
open of X. By Hypercoverings, Lemma 5.3 there is a spectral sequence with E2-
page

Ep,q2 = Ȟp(K,Hq(F))

converging to Hp+q(X,F). Note that Ȟp(K,Hq(F)) is the pth cohomology group
of the complex∏

i∈I0
Hq(Ui,F)→

∏
i∈I1

Hq(Ui,F)→
∏

i∈I2
Hq(Ui,F)→ . . .

Since each Ui is affine we see that this is zero unless q = 0 in which case we obtain∏
i∈I0
F(Ui)→

∏
i∈I1
F(Ui)→

∏
i∈I2
F(Ui)→ . . .

Thus we conclude that RΓ(X,F) is computed by this complex.

For any n and i ∈ In denote fi : Ui → S the restriction of f to Ui. As S is separated
and Ui is affine this morphism is affine. Consider the complex of quasi-coherent
sheaves

K• = (
∏

i∈I0
fi,∗F|Ui →

∏
i∈I1

fi,∗F|Ui →
∏

i∈I2
fi,∗F|Ui → . . .)

on S. As in Hypercoverings, Lemma 5.3 we obtain a map K• → Rf∗F in D(OS) by
choosing an injective resolution of F (details omitted). Consider any affine scheme
V and a morphism g : V → S. Then the base change XV has a hypercovering
KV = (I, {Ui,V }) obtained by base change. Moreover, g∗fi,∗F = fi,V,∗(g′)∗F|Ui,V

.
Thus the arguments above prove that Γ(V, g∗K•) computes RΓ(XV , (g′)∗F). This
finishes the proof of the lemma as it suffices to prove the equality of complexes
Zariski locally on S′. □

The following lemma is a variant to flat base change.

Lemma 7.4.0GN5 Consider a cartesian diagram of schemes

X ′

f ′

��

g′
// X

f

��
S′ g // S

https://stacks.math.columbia.edu/tag/01XN
https://stacks.math.columbia.edu/tag/0GN5
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Let F be a quasi-coherent OX-module. Let G be a quasi-coherent OS′-module flat
over S. Assume f is quasi-compact and quasi-separated. For any i ≥ 0 there is an
identification

G ⊗OS′ g
∗Rif∗F = Rif ′

∗
(
(f ′)∗G ⊗OX′ (g′)∗F

)
Proof. Let us construct a map from left to right. First, we have the base change
map Lg∗Rf∗F → Rf ′

∗L(g′)∗F . There is also the adjunction map G → Rf ′
∗L(f ′)∗G.

Using the relative cup product We obtain

G ⊗L
OS′ Lg

∗Rf∗F → Rf ′
∗L(f ′)∗G ⊗L

OS′ Rf
′
∗L(g′)∗F

→ Rf ′
∗

(
L(f ′)∗G ⊗L

OX′ L(g′)∗F
)

→ Rf ′
∗

(
(f ′)∗G ⊗OX′ (g′)∗F

)
where for the middle arrow we used the relative cup product, see Cohomology,
Remark 28.7. The source of the composition is

G ⊗L
OS′ Lg

∗Rf∗F = G ⊗L
g−1OS

g−1Rf∗F

by Cohomology, Lemma 27.4. Since G is flat as a sheaf of g−1OS-modules and
since g−1 is an exact functor, this is a complex whose ith cohomology sheaf is
G ⊗g−1OS

g−1Rif∗F = G ⊗OS′ g
∗Rif∗F . In this way we obtain global maps from

left to right in the equality of the lemma. To show this map is an isomorphism
we may work locally on S′. Thus we may and do assume that S and S′ are affine
schemes.

Proof in case S and S′ are affine. Say S = Spec(A) and S′ = Spec(B) and say G
corresponds to the B-module N which is assumed to be A-flat. Since S is affine,
X is quasi-compact and quasi-separated. We will use a hypercovering argument to
finish the proof; if X is separated or has affine diagonal, then you can use a Čech
covering. Let B be the set of affine opens of X. By Hypercoverings, Lemma 11.4
we can find a hypercovering K = (I, {Ui}) of X such that each In is finite and
each Ui is an affine open of X. By Hypercoverings, Lemma 5.3 there is a spectral
sequence with E2-page

Ep,q2 = Ȟp(K,Hq(F))
converging to Hp+q(X,F). Since each Ui is affine and F is quasi-coherent the value
of Hq(F) is zero on Ui for q > 0. Thus the spectral sequence degenerates and we
conclude that the cohomology modules Hq(X,F) are computed by∏

i∈I0
F(Ui)→

∏
i∈I1
F(Ui)→

∏
i∈I2
F(Ui)→ . . .

Next, note that the base change of our hypercovering to S′ is a hypercovering of
X ′ = S′ ×S X. The schemes S′ ×S Ui are affine too and we have(

(f ′)∗G ⊗OS′ (g′)∗F
)

(S′ ×S Ui) = N ⊗A F(Ui)

In this way we conclude that the cohomology modules Hq(X ′, (f ′)∗G ⊗OS′ (g′)∗F)
are computed by

N ⊗A
(∏

i∈I0
F(Ui)→

∏
i∈I1
F(Ui)→

∏
i∈I2
F(Ui)→ . . .

)
Since N is flat over A, we conclude that

Hq(X ′, (f ′)∗G ⊗OS′ (g′)∗F) = N ⊗A Hq(X,F)
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Since this is the translation into algebra of the statement we had to show the proof
is complete. □

8. Cohomology of projective space

01XS In this section we compute the cohomology of the twists of the structure sheaf
on Pn

S over a scheme S. Recall that Pn
S was defined as the fibre product Pn

S =
S ×Spec(Z) Pn

Z in Constructions, Definition 13.2. It was shown to be equal to
Pn
S = Proj

S
(OS [T0, . . . , Tn])

in Constructions, Lemma 21.5. In particular, projective space is a particular case
of a projective bundle. If S = Spec(R) is affine then we have

Pn
S = Pn

R = Proj(R[T0, . . . , Tn]).
All these identifications are compatible and compatible with the constructions of
the twisted structure sheaves OPn

S
(d).

Before we state the result we need some notation. Let R be a ring. Recall that
R[T0, . . . , Tn] is a graded R-algebra where each Ti is homogeneous of degree 1.
Denote (R[T0, . . . , Tn])d the degree d summand. It is a finite free R-module of rank(
n+d
d

)
when d ≥ 0 and zero else. It has a basis consisting of monomials T e0

0 . . . T en
n

with
∑
ei = d. We will also use the following notation: R[ 1

T0
, . . . , 1

Tn
] denotes

the Z-graded ring with 1
Ti

in degree −1. In particular the Z-graded R[ 1
T0
, . . . , 1

Tn
]

module
1

T0 . . . Tn
R[ 1
T0
, . . . ,

1
Tn

]

which shows up in the statement below is zero in degrees ≥ −n, is free on the
generator 1

T0...Tn
in degree −n− 1 and is free of rank (−1)n

(
n+d
d

)
for d ≤ −n− 1.

Lemma 8.1.01XT [DG67, III
Proposition 2.1.12]

Let R be a ring. Let n ≥ 0 be an integer. We have

Hq(Pn,OPn
R

(d)) =


(R[T0, . . . , Tn])d if q = 0

0 if q ̸= 0, n(
1

T0...Tn
R[ 1

T0
, . . . , 1

Tn
]
)
d

if q = n

as R-modules.

Proof. We will use the standard affine open covering

U : Pn
R =

⋃n

i=0
D+(Ti)

to compute the cohomology using the Čech complex. This is permissible by Lemma
2.6 since any intersection of finitely many affine D+(Ti) is also a standard affine
open (see Constructions, Section 8). In fact, we can use the alternating or ordered
Čech complex according to Cohomology, Lemmas 23.3 and 23.6.
The ordering we will use on {0, . . . , n} is the usual one. Hence the complex we are
looking at has terms

Čpord(U ,OPR
(d)) =

⊕
i0<...<ip

(R[T0, . . . , Tn,
1

Ti0 . . . Tip
])d

Moreover, the maps are given by the usual formula

d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

https://stacks.math.columbia.edu/tag/01XT
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see Cohomology, Section 23. Note that each term of this complex has a natural
Zn+1-grading. Namely, we get this by declaring a monomial T e0

0 . . . T en
n to be

homogeneous with weight (e0, . . . , en) ∈ Zn+1. It is clear that the differential given
above respects the grading. In a formula we have

Č•
ord(U ,OPR

(d)) =
⊕

e⃗∈Zn+1
Č•(e⃗)

where not all summands on the right hand side occur (see below). Hence in order
to compute the cohomology modules of the complex it suffices to compute the
cohomology of the graded pieces and take the direct sum at the end.

Fix e⃗ = (e0, . . . , en) ∈ Zn+1. In order for this weight to occur in the complex above
we need to assume e0 + . . . + en = d (if not then it occurs for a different twist of
the structure sheaf of course). Assuming this, set

NEG(e⃗) = {i ∈ {0, . . . , n} | ei < 0}.

With this notation the weight e⃗ summand Č•(e⃗) of the Čech complex above has the
following terms

Čp(e⃗) =
⊕

i0<...<ip, NEG(e⃗)⊂{i0,...,ip}
R · T e0

0 . . . T en
n

In other words, the terms corresponding to i0 < . . . < ip such that NEG(e⃗) is not
contained in {i0 . . . ip} are zero. The differential of the complex Č•(e⃗) is still given
by the exact same formula as above.

Suppose that NEG(e⃗) = {0, . . . , n}, i.e., that all exponents ei are negative. In this
case the complex Č•(e⃗) has only one term, namely Čn(e⃗) = R · 1

T
−e0
0 ...T−en

n

. Hence
in this case

Hq(Č•(e⃗)) =
{
R · 1

T
−e0
0 ...T−en

n

if q = n

0 if else
The direct sum of all of these terms clearly gives the value(

1
T0 . . . Tn

R[ 1
T0
, . . . ,

1
Tn

]
)
d

in degree n as stated in the lemma. Moreover these terms do not contribute to
cohomology in other degrees (also in accordance with the statement of the lemma).

Assume NEG(e⃗) = ∅. In this case the complex Č•(e⃗) has a summand R correspond-
ing to all i0 < . . . < ip. Let us compare the complex Č•(e⃗) to another complex.
Namely, consider the affine open covering

V : Spec(R) =
⋃

i∈{0,...,n}
Vi

where Vi = Spec(R) for all i. Consider the alternating Čech complex

Č•
ord(V,OSpec(R))

By the same reasoning as above this computes the cohomology of the structure
sheaf on Spec(R). Hence we see that Hp(Č•

ord(V,OSpec(R))) = R if p = 0 and is
0 whenever p > 0. For these facts, see Lemma 2.1 and its proof. Note that also
Č•
ord(V,OSpec(R)) has a summand R for every i0 < . . . < ip and has exactly the same
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differential as Č•(e⃗). In other words these complexes are isomorphic complexes and
hence have the same cohomology. We conclude that

Hq(Č•(e⃗)) =
{
R · T e0

0 . . . T en
n if q = 0

0 if else
in the case that NEG(e⃗) = ∅. The direct sum of all of these terms clearly gives the
value

(R[T0, . . . , Tn])d
in degree 0 as stated in the lemma. Moreover these terms do not contribute to
cohomology in other degrees (also in accordance with the statement of the lemma).

To finish the proof of the lemma we have to show that the complexes Č•(e⃗) are
acyclic when NEG(e⃗) is neither empty nor equal to {0, . . . , n}. Pick an index
ifix ̸∈ NEG(e⃗) (such an index exists). Consider the map

h : Čp+1(e⃗)→ Čp(e⃗)
given by the rule that for i0 < . . . < ip we have

h(s)i0...ip =


0 if p ̸∈ {0, . . . , n− 1}
0 if ifix ∈ {i0, . . . , ip}

sifixi0...ip if ifix < i0
(−1)asi0...ia−1ifixia...ip if ia−1 < ifix < ia

(−1)psi0...ip if ip < ifix

Please compare with the proof of Lemma 2.1. This makes sense because we have
NEG(e⃗) ⊂ {i0, . . . , ip} ⇔ NEG(e⃗) ⊂ {ifix, i0, . . . , ip}

The exact same (combinatorial) computation1 as in the proof of Lemma 2.1 shows
that

(hd+ dh)(s)i0...ip = si0...ip

Hence we see that the identity map of the complex Č•(e⃗) is homotopic to zero which
implies that it is acyclic. □

In the following lemma we are going to use the pairing of free R-modules

R[T0, . . . , Tn]× 1
T0 . . . Tn

R[ 1
T0
, . . . ,

1
Tn

] −→ R

which is defined by the rule

(f, g) 7−→ coefficient of 1
T0 . . . Tn

in fg.

1For example, suppose that i0 < . . . < ip is such that ifix ̸∈ {i0, . . . , ip} and that ia−1 < ifix <
ia for some 1 ≤ a ≤ p. Then we have
(dh + hd)(s)i0...ip

=
∑p

j=0
(−1)jh(s)i0...̂ij ...ip

+ (−1)ad(s)i0...ia−1ifixia...ip

=
∑a−1

j=0
(−1)j+a−1si0...̂ij ...ia−1ifixia...ip

+
∑p

j=a
(−1)j+asi0...ia−1ifixia...̂ij ...ip

+∑a−1

j=0
(−1)a+jsi0...̂ij ...ia−1ifixia...ip

+ (−1)2asi0...ip +
∑p

j=a
(−1)a+j+1si0...ia−1ifixia...̂ij ...ip

= si0...ip

as desired. The other cases are similar.
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In other words, the basis element T e0
0 . . . T en

n pairs with the basis element T d0
0 . . . T dn

n

to give 1 if and only if ei + di = −1 for all i, and pairs to zero in all other cases.
Using this pairing we get an identification(

1
T0 . . . Tn

R[ 1
T0
, . . . ,

1
Tn

]
)
d

= HomR((R[T0, . . . , Tn])−n−1−d, R)

Thus we can reformulate the result of Lemma 8.1 as saying that

(8.1.1)01XU Hq(Pn,OPn
R

(d)) =

 (R[T0, . . . , Tn])d if q = 0
0 if q ̸= 0, n

HomR((R[T0, . . . , Tn])−n−1−d, R) if q = n

Lemma 8.2.01XV The identifications of Equation (8.1.1) are compatible with base
change w.r.t. ring maps R→ R′. Moreover, for any f ∈ R[T0, . . . , Tn] homogeneous
of degree m the map multiplication by f

OPn
R

(d) −→ OPn
R

(d+m)
induces the map on the cohomology group via the identifications of Equation (8.1.1)
which is multiplication by f for H0 and the contragredient of multiplication by f

(R[T0, . . . , Tn])−n−1−(d+m) −→ (R[T0, . . . , Tn])−n−1−d

on Hn.

Proof. Suppose that R → R′ is a ring map. Let U be the standard affine open
covering of Pn

R, and let U ′ be the standard affine open covering of Pn
R′ . Note that

U ′ is the pullback of the covering U under the canonical morphism Pn
R′ → Pn

R.
Hence there is a map of Čech complexes

γ : Č•
ord(U ,OPR

(d)) −→ Č•
ord(U ′,OPR′ (d))

which is compatible with the map on cohomology by Cohomology, Lemma 15.1.
It is clear from the computations in the proof of Lemma 8.1 that this map of
Čech complexes is compatible with the identifications of the cohomology groups in
question. (Namely the basis elements for the Čech complex over R simply map to
the corresponding basis elements for the Čech complex over R′.) Whence the first
statement of the lemma.
Now fix the ring R and consider two homogeneous polynomials f, g ∈ R[T0, . . . , Tn]
both of the same degree m. Since cohomology is an additive functor, it is clear
that the map induced by multiplication by f + g is the same as the sum of the
maps induced by multiplication by f and the map induced by multiplication by g.
Moreover, since cohomology is a functor, a similar result holds for multiplication
by a product fg where f, g are both homogeneous (but not necessarily of the same
degree). Hence to verify the second statement of the lemma it suffices to prove
this when f = x ∈ R or when f = Ti. In the case of multiplication by an element
x ∈ R the result follows since every cohomology groups or complex in sight has the
structure of an R-module or complex of R-modules. Finally, we consider the case
of multiplication by Ti as a OPn

R
-linear map

OPn
R

(d) −→ OPn
R

(d+ 1)

The statement on H0 is clear. For the statement on Hn consider multiplication by
Ti as a map on Čech complexes

Č•
ord(U ,OPR

(d)) −→ Č•
ord(U ,OPR

(d+ 1))

https://stacks.math.columbia.edu/tag/01XV
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We are going to use the notation introduced in the proof of Lemma 8.1. We consider
the effect of multiplication by Ti in terms of the decompositions

Č•
ord(U ,OPR

(d)) =
⊕

e⃗∈Zn+1,
∑

ei=d
Č•(e⃗)

and
Č•
ord(U ,OPR

(d+ 1)) =
⊕

e⃗∈Zn+1,
∑

ei=d+1
Č•(e⃗)

It is clear that it maps the subcomplex Č•(e⃗) to the subcomplex Č•(e⃗+b⃗i) where b⃗i =
(0, . . . , 0, 1, 0, . . . , 0)) the ith basis vector. In other words, it maps the summand
of Hn corresponding to e⃗ with ei < 0 and

∑
ei = d to the summand of Hn

corresponding to e⃗ + b⃗i (which is zero if ei + bi ≥ 0). It is easy to see that this
corresponds exactly to the action of the contragredient of multiplication by Ti as a
map

(R[T0, . . . , Tn])−n−1−(d+1) −→ (R[T0, . . . , Tn])−n−1−d

This proves the lemma. □

Before we state the relative version we need some notation. Namely, recall that
OS [T0, . . . , Tn] is a graded OS-module where each Ti is homogeneous of degree 1.
Denote (OS [T0, . . . , Tn])d the degree d summand. It is a finite locally free sheaf of
rank

(
n+d
d

)
on S.

Lemma 8.3.01XW Let S be a scheme. Let n ≥ 0 be an integer. Consider the structure
morphism

f : Pn
S −→ S.

We have

Rqf∗(OPn
S
(d)) =

 (OS [T0, . . . , Tn])d if q = 0
0 if q ̸= 0, n

HomOS
((OS [T0, . . . , Tn])−n−1−d,OS) if q = n

Proof. Omitted. Hint: This follows since the identifications in (8.1.1) are compat-
ible with affine base change by Lemma 8.2. □

Next we state the version for projective bundles associated to finite locally free
sheaves. Let S be a scheme. Let E be a finite locally free OS-module of constant
rank n + 1, see Modules, Section 14. In this case we think of Sym(E) as a graded
OS-module where E is the graded part of degree 1. And Symd(E) is the degree
d summand. It is a finite locally free sheaf of rank

(
n+d
d

)
on S. Recall that our

normalization is that
π : P(E) = Proj

S
(Sym(E)) −→ S

and that there are natural maps Symd(E)→ π∗OP(E)(d).

Lemma 8.4.01XX Let S be a scheme. Let n ≥ 1. Let E be a finite locally free OS-
module of constant rank n+ 1. Consider the structure morphism

π : P(E) −→ S.

We have

Rqπ∗(OP(E)(d)) =

 Symd(E) if q = 0
0 if q ̸= 0, n

HomOS
(Sym−n−1−d(E)⊗OS

∧n+1E ,OS) if q = n

https://stacks.math.columbia.edu/tag/01XW
https://stacks.math.columbia.edu/tag/01XX
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These identifications are compatible with base change and isomorphism between
locally free sheaves.

Proof. Consider the canonical map

π∗E −→ OP(E)(1)

and twist down by 1 to get

π∗(E)(−1) −→ OP(E)

This is a surjective map from a locally free rank n + 1 sheaf onto the structure
sheaf. Hence the corresponding Koszul complex is exact (More on Algebra, Lemma
28.5). In other words there is an exact complex

0→ π∗(∧n+1E)(−n− 1)→ . . .→ π∗(∧iE)(−i)→ . . .→ π∗E(−1)→ OP(E) → 0

We will think of the term π∗(∧iE)(−i) as being in degree −i. We are going to
compute the higher direct images of this acyclic complex using the first spectral
sequence of Derived Categories, Lemma 21.3. Namely, we see that there is a spectral
sequence with terms

Ep,q1 = Rqπ∗
(
π∗(∧−pE)(p)

)
converging to zero! By the projection formula (Cohomology, Lemma 54.2) we have

Ep,q1 = ∧−pE ⊗OS
Rqπ∗

(
OP(E)(p)

)
.

Note that locally on S the sheaf E is trivial, i.e., isomorphic to O⊕n+1
S , hence locally

on S the morphism P(E)→ S can be identified with Pn
S → S. Hence locally on S

we can use the result of Lemmas 8.1, 8.2, or 8.3. It follows that Ep,q1 = 0 unless
(p, q) is (0, 0) or (−n− 1, n). The nonzero terms are

E0,0
1 = π∗OP(E) = OS

E−n−1,n
1 = Rnπ∗

(
π∗(∧n+1E)(−n− 1)

)
= ∧n+1E ⊗OS

Rnπ∗
(
OP(E)(−n− 1)

)
Hence there can only be one nonzero differential in the spectral sequence namely
the map d−n−1,n

n+1 : E−n−1,n
n+1 → E0,0

n+1 which has to be an isomorphism (because the
spectral sequence converges to the 0 sheaf). Thus Ep,q1 = Ep,qn+1 and we obtain a
canonical isomorphism

∧n+1E ⊗OS
Rnπ∗

(
OP(E)(−n− 1)

)
= Rnπ∗

(
π∗(∧n+1E)(−n− 1)

) d−n−1,n
n+1−−−−−→ OS

Since ∧n+1E is an invertible sheaf, this implies that Rnπ∗OP(E)(−n−1) is invertible
as well and canonically isomorphic to the inverse of ∧n+1E . In other words we have
proved the case d = −n− 1 of the lemma.

Working locally on S we see immediately from the computation of cohomology
in Lemmas 8.1, 8.2, or 8.3 the statements on vanishing of the lemma. Moreover
the result on R0π∗ is clear as well, since there are canonical maps Symd(E) →
π∗OP(E)(d) for all d. It remains to show that the description of Rnπ∗OP(E)(d) is
correct for d < −n− 1. In order to do this we consider the map

π∗(Sym−d−n−1(E))⊗OP(E) OP(E)(d) −→ OP(E)(−n− 1)

Applying Rnπ∗ and the projection formula (see above) we get a map

Sym−d−n−1(E)⊗OS
Rnπ∗(OP(E)(d)) −→ Rnπ∗OP(E)(−n− 1) = (∧n+1E)⊗−1
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(the last equality we have shown above). Again by the local calculations of Lem-
mas 8.1, 8.2, or 8.3 it follows that this map induces a perfect pairing between
Rnπ∗(OP(E)(d)) and Sym−d−n−1(E)⊗ ∧n+1(E) as desired. □

9. Coherent sheaves on locally Noetherian schemes

01XY We have defined the notion of a coherent module on any ringed space in Modules,
Section 12. Although it is possible to consider coherent sheaves on non-Noetherian
schemes we will always assume the base scheme is locally Noetherian when we
consider coherent sheaves. Here is a characterization of coherent sheaves on locally
Noetherian schemes.
Lemma 9.1.01XZ Let X be a locally Noetherian scheme. Let F be an OX-module.
The following are equivalent

(1) F is coherent,
(2) F is a quasi-coherent, finite type OX-module,
(3) F is a finitely presented OX-module,
(4) for any affine open Spec(A) = U ⊂ X we have F|U = M̃ with M a finite

A-module, and
(5) there exists an affine open covering X =

⋃
Ui, Ui = Spec(Ai) such that

each F|Ui
= M̃i with Mi a finite Ai-module.

In particular OX is coherent, any invertible OX-module is coherent, and more gen-
erally any finite locally free OX-module is coherent.
Proof. The implications (1) ⇒ (2) and (1) ⇒ (3) hold in general, see Modules,
Lemma 12.2. If F is finitely presented then F is quasi-coherent, see Modules,
Lemma 11.2. Hence also (3) ⇒ (2).
Assume F is a quasi-coherent, finite type OX -module. By Properties, Lemma 16.1
we see that on any affine open Spec(A) = U ⊂ X we have F|U = M̃ with M a
finite A-module. Since A is Noetherian we see that M has a finite resolution

A⊕m → A⊕n →M → 0.
Hence F is of finite presentation by Properties, Lemma 16.2. In other words (2) ⇒
(3).
By Modules, Lemma 12.5 it suffices to show that OX is coherent in order to
show that (3) implies (1). Thus we have to show: given any open U ⊂ X and
any finite collection of sections fi ∈ OX(U), i = 1, . . . , n the kernel of the map⊕

i=1,...,nOU → OU is of finite type. Since being of finite type is a local property
it suffices to check this in a neighbourhood of any x ∈ U . Thus we may assume
U = Spec(A) is affine. In this case f1, . . . , fn ∈ A are elements of A. Since A is
Noetherian, see Properties, Lemma 5.2 the kernel K of the map

⊕
i=1,...,nA → A

is a finite A-module. See for example Algebra, Lemma 51.1. As the functor ˜ is
exact, see Schemes, Lemma 5.4 we get an exact sequence

K̃ →
⊕

i=1,...,n
OU → OU

and by Properties, Lemma 16.1 again we see that K̃ is of finite type. We conclude
that (1), (2) and (3) are all equivalent.
It follows from Properties, Lemma 16.1 that (2) implies (4). It is trivial that (4)
implies (5). The discussion in Schemes, Section 24 show that (5) implies that F is

https://stacks.math.columbia.edu/tag/01XZ
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quasi-coherent and it is clear that (5) implies that F is of finite type. Hence (5)
implies (2) and we win. □

Lemma 9.2.01Y0 Let X be a locally Noetherian scheme. The category of coherent OX-
modules is abelian. More precisely, the kernel and cokernel of a map of coherent
OX-modules are coherent. Any extension of coherent sheaves is coherent.

Proof. This is a restatement of Modules, Lemma 12.4 in a particular case. □

The following lemma does not always hold for the category of coherent OX -modules
on a general ringed space X.

Lemma 9.3.01Y1 Let X be a locally Noetherian scheme. Let F be a coherent OX-
module. Any quasi-coherent submodule of F is coherent. Any quasi-coherent quo-
tient module of F is coherent.

Proof. We may assume that X is affine, say X = Spec(A). Properties, Lemma
5.2 implies that A is Noetherian. Lemma 9.1 turns this into algebra. The algebraic
counter part of the lemma is that a quotient, or a submodule of a finite A-module
is a finite A-module, see for example Algebra, Lemma 51.1. □

Lemma 9.4.01Y2 Let X be a locally Noetherian scheme. Let F , G be coherent OX-
modules. The OX-modules F ⊗OX

G and HomOX
(F ,G) are coherent.

Proof. It is shown in Modules, Lemma 22.6 that HomOX
(F ,G) is coherent. The

result for tensor products is Modules, Lemma 16.6 □

Lemma 9.5.01Y3 Let X be a locally Noetherian scheme. Let F , G be coherent OX-
modules. Let φ : G → F be a homomorphism of OX-modules. Let x ∈ X.

(1) If Fx = 0 then there exists an open neighbourhood U ⊂ X of x such that
F|U = 0.

(2) If φx : Gx → Fx is injective, then there exists an open neighbourhood U ⊂ X
of x such that φ|U is injective.

(3) If φx : Gx → Fx is surjective, then there exists an open neighbourhood
U ⊂ X of x such that φ|U is surjective.

(4) If φx : Gx → Fx is bijective, then there exists an open neighbourhood U ⊂ X
of x such that φ|U is an isomorphism.

Proof. See Modules, Lemmas 9.4, 9.5, and 12.6. □

Lemma 9.6.01Y4 Let X be a locally Noetherian scheme. Let F , G be coherent OX-
modules. Let x ∈ X. Suppose ψ : Gx → Fx is a map of OX,x-modules. Then there
exists an open neighbourhood U ⊂ X of x and a map φ : G|U → F|U such that
φx = ψ.

Proof. In view of Lemma 9.1 this is a reformulation of Modules, Lemma 22.4. □

Lemma 9.7.01Y5 Let X be a locally Noetherian scheme. Let F be a coherent OX-
module. Then Supp(F) is closed, and F comes from a coherent sheaf on the scheme
theoretic support of F , see Morphisms, Definition 5.5.

Proof. Let i : Z → X be the scheme theoretic support of F and let G be the finite
type quasi-coherent sheaf on Z such that i∗G ∼= F . Since Z = Supp(F) we see that
the support is closed. The scheme Z is locally Noetherian by Morphisms, Lemmas
15.5 and 15.6. Finally, G is a coherent OZ-module by Lemma 9.1 □

https://stacks.math.columbia.edu/tag/01Y0
https://stacks.math.columbia.edu/tag/01Y1
https://stacks.math.columbia.edu/tag/01Y2
https://stacks.math.columbia.edu/tag/01Y3
https://stacks.math.columbia.edu/tag/01Y4
https://stacks.math.columbia.edu/tag/01Y5
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Lemma 9.8.087T Let i : Z → X be a closed immersion of locally Noetherian schemes.
Let I ⊂ OX be the quasi-coherent sheaf of ideals cutting out Z. The functor i∗
induces an equivalence between the category of coherent OX-modules annihilated by
I and the category of coherent OZ-modules.
Proof. The functor is fully faithful by Morphisms, Lemma 4.1. Let F be a coherent
OX -module annihilated by I. By Morphisms, Lemma 4.1 we can write F = i∗G
for some quasi-coherent sheaf G on Z. By Modules, Lemma 13.3 we see that G is of
finite type. Hence G is coherent by Lemma 9.1. Thus the functor is also essentially
surjective as desired. □

Lemma 9.9.01Y6 Let f : X → Y be a morphism of schemes. Let F be a quasi-coherent
OX-module. Assume f is finite and Y locally Noetherian. Then Rpf∗F = 0 for
p > 0 and f∗F is coherent if F is coherent.
Proof. The higher direct images vanish by Lemma 2.3 and because a finite mor-
phism is affine (by definition). Note that the assumptions imply that also X is
locally Noetherian (see Morphisms, Lemma 15.6) and hence the statement makes
sense. Let Spec(A) = V ⊂ Y be an affine open subset. By Morphisms, Definition
44.1 we see that f−1(V ) = Spec(B) with A → B finite. Lemma 9.1 turns the
statement of the lemma into the following algebra fact: If M is a finite B-module,
then M is also finite viewed as a A-module, see Algebra, Lemma 7.2. □

In the situation of the lemma also the higher direct images are coherent since they
vanish. We will show that this is always the case for a proper morphism between
locally Noetherian schemes (Proposition 19.1).
Lemma 9.10.0B3J Let X be a locally Noetherian scheme. Let F be a coherent sheaf
with dim(Supp(F)) ≤ 0. Then F is generated by global sections and Hi(X,F) = 0
for i > 0.
Proof. By Lemma 9.7 we see that F = i∗G where i : Z → X is the inclusion of
the scheme theoretic support of F and where G is a coherent OZ-module. Since
the dimension of Z is 0, we see Z is a disjoint union of affines (Properties, Lemma
10.5). Hence G is globally generated and the higher cohomology groups of G are
zero (Lemma 2.2). Hence F = i∗G is globally generated. Since the cohomologies
of F and G agree (Lemma 2.4 applies as a closed immersion is affine) we conclude
that the higher cohomology groups of F are zero. □

Lemma 9.11.0CYJ Let X be a scheme. Let j : U → X be the inclusion of an open.
Let T ⊂ X be a closed subset contained in U . If F is a coherent OU -module with
Supp(F) ⊂ T , then j∗F is a coherent OX-module.
Proof. Consider the open covering X = U ∪ (X \T ). Then j∗F|U = F is coherent
and j∗F|X\T = 0 is also coherent. Hence j∗F is coherent. □

10. Coherent sheaves on Noetherian schemes

01Y7 In this section we mention some properties of coherent sheaves on Noetherian
schemes.
Lemma 10.1.01Y8 Let X be a Noetherian scheme. Let F be a coherent OX-module.
The ascending chain condition holds for quasi-coherent submodules of F . In other
words, given any sequence

F1 ⊂ F2 ⊂ . . . ⊂ F

https://stacks.math.columbia.edu/tag/087T
https://stacks.math.columbia.edu/tag/01Y6
https://stacks.math.columbia.edu/tag/0B3J
https://stacks.math.columbia.edu/tag/0CYJ
https://stacks.math.columbia.edu/tag/01Y8
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of quasi-coherent submodules, then Fn = Fn+1 = . . . for some n ≥ 0.
Proof. Choose a finite affine open covering. On each member of the covering we
get stabilization by Algebra, Lemma 51.1. Hence the lemma follows. □

Lemma 10.2.01Y9 Let X be a Noetherian scheme. Let F be a coherent sheaf on X.
Let I ⊂ OX be a quasi-coherent sheaf of ideals corresponding to a closed subscheme
Z ⊂ X. Then there is some n ≥ 0 such that InF = 0 if and only if Supp(F) ⊂ Z
(set theoretically).
Proof. This follows immediately from Algebra, Lemma 62.4 because X has a finite
covering by spectra of Noetherian rings. □

Lemma 10.3 (Artin-Rees).01YA Let X be a Noetherian scheme. Let F be a coherent
sheaf on X. Let G ⊂ F be a quasi-coherent subsheaf. Let I ⊂ OX be a quasi-
coherent sheaf of ideals. Then there exists a c ≥ 0 such that for all n ≥ c we
have

In−c(IcF ∩ G) = InF ∩ G
Proof. This follows immediately from Algebra, Lemma 51.2 because X has a finite
covering by spectra of Noetherian rings. □

Lemma 10.4.0GN6 Let X be a Noetherian scheme. Every quasi-coherent OX-module
is the filtered colimit of its coherent submodules.
Proof. This is a reformulation of Properties, Lemma 22.3 in view of the fact that
a finite type quasi-coherent OX -module is coherent by Lemma 9.1. □

Lemma 10.5.01YB Let X be a Noetherian scheme. Let F be a quasi-coherent OX-
module. Let G be a coherent OX-module. Let I ⊂ OX be a quasi-coherent sheaf
of ideals. Denote Z ⊂ X the corresponding closed subscheme and set U = X \ Z.
There is a canonical isomorphism

colimn HomOX
(InG,F) −→ HomOU

(G|U ,F|U ).
In particular we have an isomorphism

colimn HomOX
(In,F) −→ Γ(U,F).

Proof. We first prove the second map is an isomorphism. It is injective by Proper-
ties, Lemma 25.3. Since F is the union of its coherent submodules, see Properties,
Lemma 22.3 (and Lemma 9.1) we may and do assume that F is coherent to prove
surjectivity. Let Fn denote the quasi-coherent subsheaf of F consisting of sections
annihilated by In, see Properties, Lemma 25.3. Since F1 ⊂ F2 ⊂ . . . we see that
Fn = Fn+1 = . . . for some n ≥ 0 by Lemma 10.1. Set H = Fn for this n. By
Artin-Rees (Lemma 10.3) there exists an c ≥ 0 such that ImF ∩ H ⊂ Im−cH.
Picking m = n + c we get ImF ∩ H ⊂ InH = 0. Thus if we set F ′ = ImF then
we see that F ′ ∩ Fn = 0 and F ′|U = F|U . Note in particular that the subsheaf
(F ′)N of sections annihilated by IN is zero for all N ≥ 0. Hence by Properties,
Lemma 25.3 we deduce that the top horizontal arrow in the following commutative
diagram is a bijection:

colimn HomOX
(In,F ′) //

��

Γ(U,F ′)

��
colimn HomOX

(In,F) // Γ(U,F)
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Since also the right vertical arrow is a bijection we conclude that the bottom hori-
zontal arrow is surjective as desired.

Next, we prove the first arrow of the lemma is a bijection. By Lemma 9.1 the sheaf
G is of finite presentation and hence the sheaf H = HomOX

(G,F) is quasi-coherent,
see Schemes, Section 24. By definition we have

H(U) = HomOU
(G|U ,F|U )

Pick a ψ in the right hand side of the first arrow of the lemma, i.e., ψ ∈ H(U). The
result just proved applies to H and hence there exists an n ≥ 0 and an φ : In → H
which recovers ψ on restriction to U . By Modules, Lemma 22.1 φ corresponds to a
map

φ : In ⊗OX
G −→ F .

This is almost what we want except that the source of the arrow is the tensor
product of In and G and not the product. We will show that, at the cost of
increasing n, the difference is irrelevant. Consider the short exact sequence

0→ K → In ⊗OX
G → InG → 0

where K is defined as the kernel. Note that InK = 0 (proof omitted). By Artin-
Rees again we see that

K ∩ Im(In ⊗OX
G) = 0

for some m large enough. In other words we see that

Im(In ⊗OX
G) −→ In+mG

is an isomorphism. Let φ′ be the restriction of φ to this submodule thought of as
a map Im+nG → F . Then φ′ gives an element of the left hand side of the first
arrow of the lemma which maps to ψ via the arrow. In other words we have proved
surjectivity of the arrow. We omit the proof of injectivity. □

Lemma 10.6.0FD0 Let X be a locally Noetherian scheme. Let F , G be coherent OX-
modules. Let U ⊂ X be open and let φ : F|U → G|U be an OU -module map. Then
there exists a coherent submodule F ′ ⊂ F agreeing with F over U such that φ
extends to φ′ : F ′ → G.

Proof. Let I ⊂ OX be the coherent sheaf of ideals cutting out the reduced induced
scheme structure on X \ U . If X is Noetherian, then Lemma 10.5 tells us that we
can take F ′ = InF for some n. The general case will follow from this using Zorn’s
lemma.

Consider the set of triples (U ′,F ′, φ′) where U ⊂ U ′ ⊂ X is open, F ′ ⊂ F|U ′ is
a coherent subsheaf agreeing with F over U , and φ′ : F ′ → G|U ′ restricts to φ
over U . We say (U ′′,F ′′, φ′′) ≥ (U ′,F ′, φ′) if and only if U ′′ ⊃ U ′, F ′′|U ′ = F ′,
and φ′′|U ′ = φ′. It is clear that if we have a totally ordered collection of triples
(Ui,Fi, φi), then we can glue the Fi to a subsheaf F ′ of F over U ′ =

⋃
Ui and

extend φ to a map φ′ : F ′ → G|U ′ . Hence any totally ordered subset of triples has
an upper bound. Finally, suppose that (U ′,F ′, φ′) is any triple but U ′ ̸= X. Then
we can choose an affine open W ⊂ X which is not contained in U ′. By the result of
the first paragraph we can extend the subsheaf F ′|W∩U ′ and the restriction φ′|W∩U ′

to some subsheaf F ′′ ⊂ F|W and map φ′′ : F ′′ → G|W . Of course the agreement
between (F ′, φ′) and (F ′′, φ′′) over W ∩ U ′ exactly means that we can extend this
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to a triple (U ′∪W,F ′′′, φ′′′). Hence any maximal triple (U ′,F ′, φ′) (which exist by
Zorn’s lemma) must have U ′ = X and the proof is complete. □

11. Depth

0340 In this section we talk a little bit about depth and property (Sk) for coherent
modules on locally Noetherian schemes. Note that we have already discussed this
notion for locally Noetherian schemes in Properties, Section 12.

Definition 11.1.0341 Let X be a locally Noetherian scheme. Let F be a coherent
OX -module. Let k ≥ 0 be an integer.

(1) We say F has depth k at a point x of X if depthOX,x
(Fx) = k.

(2) We say X has depth k at a point x of X if depth(OX,x) = k.
(3) We say F has property (Sk) if

depthOX,x
(Fx) ≥ min(k, dim(Supp(Fx)))

for all x ∈ X.
(4) We say X has property (Sk) if OX has property (Sk).

Any coherent sheaf satisfies condition (S0). Condition (S1) is equivalent to having
no embedded associated points, see Divisors, Lemma 4.3.

Lemma 11.2.0EBC Let X be a locally Noetherian scheme. Let F , G be coherent OX-
modules and x ∈ X.

(1) If Gx has depth ≥ 1, then HomOX
(F ,G)x has depth ≥ 1.

(2) If Gx has depth ≥ 2, then HomOX
(F ,G)x has depth ≥ 2.

Proof. Observe that HomOX
(F ,G) is a coherent OX -module by Lemma 9.4. Co-

herent modules are of finite presentation (Lemma 9.1) hence taking stalks commutes
with taking Hom and Hom, see Modules, Lemma 22.4. Thus we reduce to the case
of finite modules over local rings which is More on Algebra, Lemma 23.10. □

Lemma 11.3.0AXQ Let X be a locally Noetherian scheme. Let F , G be coherent OX-
modules.

(1) If G has property (S1), then HomOX
(F ,G) has property (S1).

(2) If G has property (S2), then HomOX
(F ,G) has property (S2).

Proof. Follows immediately from Lemma 11.2 and the definitions. □

We have seen in Properties, Lemma 12.3 that a locally Noetherian scheme is Cohen-
Macaulay if and only if (Sk) holds for all k. Thus it makes sense to introduce the
following definition, which is equivalent to the condition that all stalks are Cohen-
Macaulay modules.

Definition 11.4.0343 Let X be a locally Noetherian scheme. Let F be a coherent
OX -module. We say F is Cohen-Macaulay if and only if (Sk) holds for all k ≥ 0.

Lemma 11.5.0B3K Let X be a regular scheme. Let F be a coherent OX-module. The
following are equivalent

(1) F is Cohen-Macaulay and Supp(F) = X,
(2) F is finite locally free of rank > 0.
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Proof. Let x ∈ X. If (2) holds, then Fx is a free OX,x-module of rank > 0. Hence
depth(Fx) = dim(OX,x) because a regular local ring is Cohen-Macaulay (Algebra,
Lemma 106.3). Conversely, if (1) holds, then Fx is a maximal Cohen-Macaulay
module over OX,x (Algebra, Definition 103.8). Hence Fx is free by Algebra, Lemma
106.6. □

12. Devissage of coherent sheaves

01YC Let X be a Noetherian scheme. Consider an integral closed subscheme i : Z → X.
It is often convenient to consider coherent sheaves of the form i∗G where G is a
coherent sheaf on Z. In particular we are interested in these sheaves when G is a
torsion free rank 1 sheaf. For example G could be a nonzero sheaf of ideals on Z,
or even more specifically G = OZ .
Throughout this section we will use that a coherent sheaf is the same thing as a finite
type quasi-coherent sheaf and that a quasi-coherent subquotient of a coherent sheaf
is coherent, see Section 9. The support of a coherent sheaf is closed, see Modules,
Lemma 9.6.

Lemma 12.1.01YD Let X be a Noetherian scheme. Let F be a coherent sheaf on X.
Suppose that Supp(F) = Z ∪ Z ′ with Z, Z ′ closed. Then there exists a short exact
sequence of coherent sheaves

0→ G′ → F → G → 0
with Supp(G′) ⊂ Z ′ and Supp(G) ⊂ Z.

Proof. Let I ⊂ OX be the sheaf of ideals defining the reduced induced closed
subscheme structure on Z, see Schemes, Lemma 12.4. Consider the subsheaves
G′
n = InF and the quotients Gn = F/InF . For each n we have a short exact

sequence
0→ G′

n → F → Gn → 0
For every point x of Z ′ \ Z we have Ix = OX,x and hence Gn,x = 0. Thus we see
that Supp(Gn) ⊂ Z. Note that X \ Z ′ is a Noetherian scheme. Hence by Lemma
10.2 there exists an n such that G′

n|X\Z′ = InF|X\Z′ = 0. For such an n we see
that Supp(G′

n) ⊂ Z ′. Thus setting G′ = G′
n and G = Gn works. □

Lemma 12.2.01YE Let X be a Noetherian scheme. Let i : Z → X be an integral
closed subscheme. Let ξ ∈ Z be the generic point. Let F be a coherent sheaf on
X. Assume that Fξ is annihilated by mξ. Then there exist an integer r ≥ 0 and a
coherent sheaf of ideals I ⊂ OZ and an injective map of coherent sheaves

i∗
(
I⊕r)→ F

which is an isomorphism in a neighbourhood of ξ.

Proof. Let J ⊂ OX be the ideal sheaf of Z. Let F ′ ⊂ F be the subsheaf of local
sections of F which are annihilated by J . It is a quasi-coherent sheaf by Properties,
Lemma 24.2. Moreover, F ′

ξ = Fξ because Jξ = mξ and part (3) of Properties,
Lemma 24.2. By Lemma 9.5 we see that F ′ → F induces an isomorphism in
a neighbourhood of ξ. Hence we may replace F by F ′ and assume that F is
annihilated by J .
Assume JF = 0. By Lemma 9.8 we can write F = i∗G for some coherent sheaf
G on Z. Suppose we can find a morphism I⊕r → G which is an isomorphism in a
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neighbourhood of the generic point ξ of Z. Then applying i∗ (which is left exact)
we get the result of the lemma. Hence we have reduced to the case X = Z.

Suppose Z = X is an integral Noetherian scheme with generic point ξ. Note that
OX,ξ = κ(ξ) is the function field of X in this case. Since Fξ is a finite Oξ-module
we see that r = dimκ(ξ) Fξ is finite. Hence the sheaves O⊕r

X and F have isomorphic
stalks at ξ. By Lemma 9.6 there exists a nonempty open U ⊂ X and a morphism
ψ : O⊕r

X |U → F|U which is an isomorphism at ξ, and hence an isomorphism in
a neighbourhood of ξ by Lemma 9.5. By Schemes, Lemma 12.4 there exists a
quasi-coherent sheaf of ideals I ⊂ OX whose associated closed subscheme Z ⊂ X
is the complement of U . By Lemma 10.5 there exists an n ≥ 0 and a morphism
In(O⊕r

X ) → F which recovers our ψ over U . Since In(O⊕r
X ) = (In)⊕r we get a

map as in the lemma. It is injective because X is integral and it is injective at the
generic point of X (easy proof omitted). □

Lemma 12.3.01YF Let X be a Noetherian scheme. Let F be a coherent sheaf on X.
There exists a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that for each j = 1, . . . ,m there exist an integral closed
subscheme Zj ⊂ X and a nonzero coherent sheaf of ideals Ij ⊂ OZj

such that

Fj/Fj−1 ∼= (Zj → X)∗Ij

Proof. Consider the collection

T =
{
Z ⊂ X closed such that there exists a coherent sheaf F

with Supp(F) = Z for which the lemma is wrong

}
We are trying to show that T is empty. If not, then because X is Noetherian we
can choose a minimal element Z ∈ T . This means that there exists a coherent
sheaf F on X whose support is Z and for which the lemma does not hold. Clearly
Z ̸= ∅ since the only sheaf whose support is empty is the zero sheaf for which the
lemma does hold (with m = 0).

If Z is not irreducible, then we can write Z = Z1∪Z2 with Z1, Z2 closed and strictly
smaller than Z. Then we can apply Lemma 12.1 to get a short exact sequence of
coherent sheaves

0→ G1 → F → G2 → 0
with Supp(Gi) ⊂ Zi. By minimality of Z each of Gi has a filtration as in the
statement of the lemma. By considering the induced filtration on F we arrive at a
contradiction. Hence we conclude that Z is irreducible.

Suppose Z is irreducible. Let J be the sheaf of ideals cutting out the reduced
induced closed subscheme structure of Z, see Schemes, Lemma 12.4. By Lemma
10.2 we see there exists an n ≥ 0 such that J nF = 0. Hence we obtain a filtration

0 = J nF ⊂ J n−1F ⊂ . . . ⊂ JF ⊂ F

each of whose successive subquotients is annihilated by J . Hence if each of these
subquotients has a filtration as in the statement of the lemma then also F does. In
other words we may assume that J does annihilate F .
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In the case where Z is irreducible and JF = 0 we can apply Lemma 12.2. This
gives a short exact sequence

0→ i∗(I⊕r)→ F → Q→ 0
where Q is defined as the quotient. Since Q is zero in a neighbourhood of ξ by the
lemma just cited we see that the support of Q is strictly smaller than Z. Hence we
see that Q has a filtration of the desired type by minimality of Z. But then clearly
F does too, which is our final contradiction. □

Lemma 12.4.01YG Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X. Assume

(1) For any short exact sequence of coherent sheaves
0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) For every integral closed subscheme Z ⊂ X and every quasi-coherent sheaf

of ideals I ⊂ OZ we have P for i∗I.
Then property P holds for every coherent sheaf on X.

Proof. First note that if F is a coherent sheaf with a filtration
0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that each of Fi/Fi−1 has property P, then so does F .
This follows from the property (1) for P. On the other hand, by Lemma 12.3 we can
filter any F with successive subquotients as in (2). Hence the lemma follows. □

Lemma 12.5.01YH Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible
closed subset with generic point ξ. Let P be a property of coherent sheaves on X
with support contained in Z0 such that

(1) For any short exact sequence of coherent sheaves if two out of three of them
have property P then so does the third.

(2) For every integral closed subscheme Z ⊂ Z0 ⊂ X, Z ̸= Z0 and every quasi-
coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I.

(3) There exists some coherent sheaf G on X such that
(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ,
(c) dimκ(ξ) Gξ = 1, and
(d) property P holds for G.

Then property P holds for every coherent sheaf F on X whose support is contained
in Z0.

Proof. First note that if F is a coherent sheaf with support contained in Z0 with
a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
by coherent subsheaves such that each of Fi/Fi−1 has property P, then so does F .
Or, if F has property P and all but one of the Fi/Fi−1 has property P then so
does the last one. This follows from assumption (1).
As a first application we conclude that any coherent sheaf whose support is strictly
contained in Z0 has property P. Namely, such a sheaf has a filtration (see Lemma
12.3) whose subquotients have property P according to (2).
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Let G be as in (3). By Lemma 12.2 there exist a sheaf of ideals I on Z0, an integer
r ≥ 1, and a short exact sequence

0→ ((Z0 → X)∗I)⊕r → G → Q→ 0
where the support of Q is strictly contained in Z0. By (3)(c) we see that r = 1.
Since Q has property P too we conclude that (Z0 → X)∗I has property P.
Next, suppose that I ′ ̸= 0 is another quasi-coherent sheaf of ideals on Z0. Then we
can consider the intersection I ′′ = I ′ ∩ I and we get two short exact sequences

0→ (Z0 → X)∗I ′′ → (Z0 → X)∗I → Q → 0
and

0→ (Z0 → X)∗I ′′ → (Z0 → X)∗I ′ → Q′ → 0.
Note that the support of the coherent sheaves Q and Q′ are strictly contained in
Z0. Hence Q and Q′ have property P (see above). Hence we conclude using (1)
that (Z0 → X)∗I ′′ and (Z0 → X)∗I ′ both have P as well.
The final step of the proof is to note that any coherent sheaf F on X whose support
is contained in Z0 has a filtration (see Lemma 12.3 again) whose subquotients all
have property P by what we just said. □

Lemma 12.6.01YI Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X such that

(1) For any short exact sequence of coherent sheaves if two out of three of them
have property P then so does the third.

(2) For every integral closed subscheme Z ⊂ X with generic point ξ there exists
some coherent sheaf G such that
(a) Supp(G) = Z,
(b) Gξ is annihilated by mξ,
(c) dimκ(ξ) Gξ = 1, and
(d) property P holds for G.

Then property P holds for every coherent sheaf on X.

Proof. According to Lemma 12.4 it suffices to show that for all integral closed
subschemes Z ⊂ X and all quasi-coherent ideal sheaves I ⊂ OZ we have P for
(Z → X)∗I. If this fails, then since X is Noetherian there is a minimal integral
closed subscheme Z0 ⊂ X such that P fails for (Z0 → X)∗I0 for some quasi-
coherent sheaf of ideals I0 ⊂ OZ0 , but P does hold for (Z → X)∗I for all integral
closed subschemes Z ⊂ Z0, Z ̸= Z0 and quasi-coherent ideal sheaves I ⊂ OZ . Since
we have the existence of G for Z0 by part (2), according to Lemma 12.5 this cannot
happen. □

Lemma 12.7.01YL Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible closed
subset with generic point ξ. Let P be a property of coherent sheaves on X such that

(1) For any short exact sequence of coherent sheaves
0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) If P holds for F⊕r for some r ≥ 1, then it holds for F .
(3) For every integral closed subscheme Z ⊂ Z0 ⊂ X, Z ̸= Z0 and every quasi-

coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I.
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(4) There exists some coherent sheaf G such that
(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ, and
(c) for every quasi-coherent sheaf of ideals J ⊂ OX such that Jξ = OX,ξ

there exists a quasi-coherent subsheaf G′ ⊂ JG with G′
ξ = Gξ and such

that P holds for G′.
Then property P holds for every coherent sheaf F on X whose support is contained
in Z0.

Proof. Note that if F is a coherent sheaf with a filtration
0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that each of Fi/Fi−1 has property P, then so does F .
This follows from assumption (1).
As a first application we conclude that any coherent sheaf whose support is strictly
contained in Z0 has property P. Namely, such a sheaf has a filtration (see Lemma
12.3) whose subquotients have property P according to (3).
Let us denote i : Z0 → X the closed immersion. Consider a coherent sheaf G as
in (4). By Lemma 12.2 there exists a sheaf of ideals I on Z0 and a short exact
sequence

0→ i∗I⊕r → G → Q→ 0
where the support of Q is strictly contained in Z0. In particular r > 0 and I
is nonzero because the support of G is equal to Z0. Let I ′ ⊂ I be any nonzero
quasi-coherent sheaf of ideals on Z0 contained in I. Then we also get a short exact
sequence

0→ i∗(I ′)⊕r → G → Q′ → 0
where Q′ has support properly contained in Z0. Let J ⊂ OX be a quasi-coherent
sheaf of ideals cutting out the support of Q′ (for example the ideal corresponding
to the reduced induced closed subscheme structure on the support of Q′). Then
Jξ = OX,ξ. By Lemma 10.2 we see that J nQ′ = 0 for some n. Hence J nG ⊂
i∗(I ′)⊕r. By assumption (4)(c) of the lemma we see there exists a quasi-coherent
subsheaf G′ ⊂ J nG with G′

ξ = Gξ for which property P holds. Hence we get a short
exact sequence

0→ G′ → i∗(I ′)⊕r → Q′′ → 0
where Q′′ has support properly contained in Z0. Thus by our initial remarks and
property (1) of the lemma we conclude that i∗(I ′)⊕r satisfies P. Hence we see
that i∗I ′ satisfies P by (2). Finally, for an arbitrary quasi-coherent sheaf of ideals
I ′′ ⊂ OZ0 we can set I ′ = I ′′ ∩ I and we get a short exact sequence

0→ i∗(I ′)→ i∗(I ′′)→ Q′′′ → 0
where Q′′′ has support properly contained in Z0. Hence we conclude that property
P holds for i∗I ′′ as well.
The final step of the proof is to note that any coherent sheaf F on X whose support
is contained in Z0 has a filtration (see Lemma 12.3 again) whose subquotients all
have property P by what we just said. □

Lemma 12.8.01YM Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X such that
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(1) For any short exact sequence of coherent sheaves
0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) If P holds for F⊕r for some r ≥ 1, then it holds for F .
(3) For every integral closed subscheme Z ⊂ X with generic point ξ there exists

some coherent sheaf G such that
(a) Supp(G) = Z,
(b) Gξ is annihilated by mξ, and
(c) for every quasi-coherent sheaf of ideals J ⊂ OX such that Jξ = OX,ξ

there exists a quasi-coherent subsheaf G′ ⊂ JG with G′
ξ = Gξ and such

that P holds for G′.
Then property P holds for every coherent sheaf on X.

Proof. Follows from Lemma 12.7 in exactly the same way that Lemma 12.6 follows
from Lemma 12.5. □

13. Finite morphisms and affines

01YN In this section we use the results of the preceding sections to show that the image of
a Noetherian affine scheme under a finite morphism is affine. We will see later that
this result holds more generally (see Limits, Lemma 11.1 and Proposition 11.2).

Lemma 13.1.01YO Let f : Y → X be a morphism of schemes. Assume f is finite,
surjective and X locally Noetherian. Let Z ⊂ X be an integral closed subscheme
with generic point ξ. Then there exists a coherent sheaf F on Y such that the
support of f∗F is equal to Z and (f∗F)ξ is annihilated by mξ.

Proof. Note that Y is locally Noetherian by Morphisms, Lemma 15.6. Because f
is surjective the fibre Yξ is not empty. Pick ξ′ ∈ Y mapping to ξ. Let Z ′ = {ξ′}.
We may think of Z ′ ⊂ Y as a reduced closed subscheme, see Schemes, Lemma 12.4.
Hence the sheaf F = (Z ′ → Y )∗OZ′ is a coherent sheaf on Y (see Lemma 9.9).
Look at the commutative diagram

Z ′
i′
//

f ′

��

Y

f

��
Z

i // X

We see that f∗F = i∗f
′
∗OZ′ . Hence the stalk of f∗F at ξ is the stalk of f ′

∗OZ′ at
ξ. Note that since Z ′ is integral with generic point ξ′ we have that ξ′ is the only
point of Z ′ lying over ξ, see Algebra, Lemmas 36.3 and 36.20. Hence the stalk of
f ′

∗OZ′ at ξ equal OZ′,ξ′ = κ(ξ′). In particular the stalk of f∗F at ξ is not zero.
This combined with the fact that f∗F is of the form i∗f

′
∗(something) implies the

lemma. □

Lemma 13.2.01YP Let f : Y → X be a morphism of schemes. Let F be a quasi-
coherent sheaf on Y . Let I be a quasi-coherent sheaf of ideals on X. If the morphism
f is affine then If∗F = f∗(f−1IF).

Proof. The notation means the following. Since f−1 is an exact functor we see
that f−1I is a sheaf of ideals of f−1OX . Via the map f ♯ : f−1OX → OY this
acts on F . Then f−1IF is the subsheaf generated by sums of local sections of the
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form as where a is a local section of f−1I and s is a local section of F . It is a
quasi-coherent OY -submodule of F because it is also the image of a natural map
f∗I ⊗OY

F → F .
Having said this the proof is straightforward. Namely, the question is local and
hence we may assume X is affine. Since f is affine we see that Y is affine too. Thus
we may write Y = Spec(B), X = Spec(A), F = M̃ , and I = Ĩ. The assertion of
the lemma in this case boils down to the statement that

I(MA) = ((IB)M)A
where MA indicates the A-module associated to the B-module M . □

Lemma 13.3.01YQ Let f : Y → X be a morphism of schemes. Assume
(1) f finite,
(2) f surjective,
(3) Y affine, and
(4) X Noetherian.

Then X is affine.

Proof. We will prove that under the assumptions of the lemma for any coher-
ent OX -module F we have H1(X,F) = 0. This will in particular imply that
H1(X, I) = 0 for every quasi-coherent sheaf of ideals of OX . Then it follows that
X is affine from either Lemma 3.1 or Lemma 3.2.
Let P be the property of coherent sheaves F on X defined by the rule

P(F)⇔ H1(X,F) = 0.
We are going to apply Lemma 12.8. Thus we have to verify (1), (2) and (3) of
that lemma for P. Property (1) follows from the long exact cohomology sequence
associated to a short exact sequence of sheaves. Property (2) follows since H1(X,−)
is an additive functor. To see (3) let Z ⊂ X be an integral closed subscheme with
generic point ξ. Let F be a coherent sheaf on Y such that the support of f∗F is
equal to Z and (f∗F)ξ is annihilated by mξ, see Lemma 13.1. We claim that taking
G = f∗F works. We only have to verify part (3)(c) of Lemma 12.8. Hence assume
that J ⊂ OX is a quasi-coherent sheaf of ideals such that Jξ = OX,ξ. A finite
morphism is affine hence by Lemma 13.2 we see that JG = f∗(f−1JF). Also, as
pointed out in the proof of Lemma 13.2 the sheaf f−1JF is a quasi-coherent OY -
module. Since Y is affine we see that H1(Y, f−1JF) = 0, see Lemma 2.2. Since f
is finite, hence affine, we see that

H1(X,JG) = H1(X, f∗(f−1JF)) = H1(Y, f−1JF) = 0
by Lemma 2.4. Hence the quasi-coherent subsheaf G′ = JG satisfies P. This verifies
property (3)(c) of Lemma 12.8 as desired. □

14. Coherent sheaves on Proj, I

01YR In this section we discuss coherent sheaves on Proj(A) where A is a Noetherian
graded ring generated by A1 over A0. In the next section we discuss what happens
if A is not generated by degree 1 elements. First, we formulate an all-in-one result
for projective space over a Noetherian ring.

Lemma 14.1.01YS Let R be a Noetherian ring. Let n ≥ 0 be an integer. For every
coherent sheaf F on Pn

R we have the following:
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(1) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕
j=1,...,r

OPn
R

(dj) −→ F .

(2) We have Hi(Pn
R,F) = 0 unless 0 ≤ i ≤ n.

(3) For any i the cohomology group Hi(Pn
R,F) is a finite R-module.

(4) If i > 0, then Hi(Pn
R,F(d)) = 0 for all d large enough.

(5) For any k ∈ Z the graded R[T0, . . . , Tn]-module⊕
d≥k

H0(Pn
R,F(d))

is a finite R[T0, . . . , Tn]-module.

Proof. We will use that OPn
R

(1) is an ample invertible sheaf on the scheme Pn
R.

This follows directly from the definition since Pn
R covered by the standard affine

opens D+(Ti). Hence by Properties, Proposition 26.13 every finite type quasi-
coherentOPn

R
-module is a quotient of a finite direct sum of tensor powers ofOPn

R
(1).

On the other hand coherent sheaves and finite type quasi-coherent sheaves are the
same thing on projective space over R by Lemma 9.1. Thus we see (1).
Projective n-space Pn

R is covered by n + 1 affines, namely the standard opens
D+(Ti), i = 0, . . . , n, see Constructions, Lemma 13.3. Hence we see that for any
quasi-coherent sheaf F on Pn

R we have Hi(Pn
R,F) = 0 for i ≥ n + 1, see Lemma

4.2. Hence (2) holds.
Let us prove (3) and (4) simultaneously for all coherent sheaves on Pn

R by descending
induction on i. Clearly the result holds for i ≥ n + 1 by (2). Suppose we know
the result for i + 1 and we want to show the result for i. (If i = 0, then part (4)
is vacuous.) Let F be a coherent sheaf on Pn

R. Choose a surjection as in (1) and
denote G the kernel so that we have a short exact sequence

0→ G →
⊕

j=1,...,r
OPn

R
(dj)→ F → 0

By Lemma 9.2 we see that G is coherent. The long exact cohomology sequence
gives an exact sequence

Hi(Pn
R,

⊕
j=1,...,r

OPn
R

(dj))→ Hi(Pn
R,F)→ Hi+1(Pn

R,G).

By induction assumption the right R-module is finite and by Lemma 8.1 the left
R-module is finite. Since R is Noetherian it follows immediately that Hi(Pn

R,F) is
a finite R-module. This proves the induction step for assertion (3). Since OPn

R
(d)

is invertible we see that twisting on Pn
R is an exact functor (since you get it by

tensoring with an invertible sheaf, see Constructions, Definition 10.1). This means
that for all d ∈ Z the sequence

0→ G(d)→
⊕

j=1,...,r
OPn

R
(dj + d)→ F(d)→ 0

is short exact. The resulting cohomology sequence is

Hi(Pn
R,

⊕
j=1,...,r

OPn
R

(dj + d))→ Hi(Pn
R,F(d))→ Hi+1(Pn

R,G(d)).

By induction assumption we see the module on the right is zero for d≫ 0 and by the
computation in Lemma 8.1 the module on the left is zero as soon as d ≥ −min{dj}
and i ≥ 1. Hence the induction step for assertion (4). This concludes the proof of
(3) and (4).
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In order to prove (5) note that for all sufficiently large d the map

H0(Pn
R,

⊕
j=1,...,r

OPn
R

(dj + d))→ H0(Pn
R,F(d))

is surjective by the vanishing of H1(Pn
R,G(d)) we just proved. In other words, the

module
Mk =

⊕
d≥k

H0(Pn
R,F(d))

is for k large enough a quotient of the corresponding module

Nk =
⊕

d≥k
H0(Pn

R,
⊕

j=1,...,r
OPn

R
(dj + d))

When k is sufficiently small (e.g. k < −dj for all j) then

Nk =
⊕

j=1,...,r
R[T0, . . . , Tn](dj)

by our computations in Section 8. In particular it is finitely generated. Suppose
k ∈ Z is arbitrary. Choose k− ≪ k ≪ k+. Consider the diagram

Nk− Nk+

��

oo

Mk Mk+
oo

where the vertical arrow is the surjective map above and the horizontal arrows are
the obvious inclusion maps. By what was said above we see that Nk− is a finitely
generated R[T0, . . . , Tn]-module. Hence Nk+ is a finitely generated R[T0, . . . , Tn]-
module because it is a submodule of a finitely generated module and the ring
R[T0, . . . , Tn] is Noetherian. Since the vertical arrow is surjective we conclude that
Mk+ is a finitely generated R[T0, . . . , Tn]-module. The quotient Mk/Mk+ is finite
as an R-module since it is a finite direct sum of the finite R-modules H0(Pn

R,F(d))
for k ≤ d < k+. Note that we use part (3) for i = 0 here. Hence Mk/Mk+ is
a fortiori a finite R[T0, . . . , Tn]-module. In other words, we have sandwiched Mk

between two finite R[T0, . . . , Tn]-modules and we win. □

Lemma 14.2.0AG6 Let A be a graded ring such that A0 is Noetherian and A is generated
by finitely many elements of A1 over A0. Set X = Proj(A). Then X is a Noetherian
scheme. Let F be a coherent OX-module.

(1) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕
j=1,...,r

OX(dj) −→ F .

(2) For any p the cohomology group Hp(X,F) is a finite A0-module.
(3) If p > 0, then Hp(X,F(d)) = 0 for all d large enough.
(4) For any k ∈ Z the graded A-module⊕

d≥k
H0(X,F(d))

is a finite A-module.

Proof. By assumption there exists a surjection of graded A0-algebras
A0[T0, . . . , Tn] −→ A

where deg(Tj) = 1 for j = 0, . . . , n. By Constructions, Lemma 11.5 this defines a
closed immersion i : X → Pn

A0
such that i∗OPn

A0
(1) = OX(1). In particular, X is

https://stacks.math.columbia.edu/tag/0AG6
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Noetherian as a closed subscheme of the Noetherian scheme Pn
A0

. We claim that
the results of the lemma for F follow from the corresponding results of Lemma 14.1
for the coherent sheaf i∗F (Lemma 9.8) on Pn

A0
. For example, by this lemma there

exists a surjection ⊕
j=1,...,r

OPn
A0

(dj) −→ i∗F .

By adjunction this corresponds to a map
⊕

j=1,...,rOX(dj) −→ F which is surjec-
tive as well. The statements on cohomology follow from the fact thatHp(X,F(d)) =
Hp(Pn

A0
, i∗F(d)) by Lemma 2.4. □

Lemma 14.3.0AG7 Let A be a graded ring such that A0 is Noetherian and A is generated
by finitely many elements of A1 over A0. Let M be a finite graded A-module. Set
X = Proj(A) and let M̃ be the quasi-coherent OX-module on X associated to M .
The maps

Mn −→ Γ(X, M̃(n))
from Constructions, Lemma 10.3 are isomorphisms for all sufficiently large n.

Proof. Because M is a finite A-module we see that M̃ is a finite type OX -module,
i.e., a coherent OX -module. Set N =

⊕
n∈Z Γ(X, M̃(n)). We have to show that

the map M → N of graded A-modules is an isomorphism in all sufficiently large
degrees. By Properties, Lemma 28.5 we have a canonical isomorphism Ñ → M̃

such that the induced maps Nn → Nn = Γ(X, M̃(n)) are the identity maps. Thus
we have maps M̃ → Ñ → M̃ such that for all n the diagram

Mn

��

// Nn

��
Γ(X, M̃(n)) // Γ(X, Ñ(n))

∼= // Γ(X, M̃(n))

is commutative. This means that the composition

Mn → Γ(X, M̃(n))→ Γ(X, Ñ(n))→ Γ(X, M̃(n))

is equal to the canonical map Mn → Γ(X, M̃(n)). Clearly this implies that the
composition M̃ → Ñ → M̃ is the identity. Hence M̃ → Ñ is an isomorphism. Let
K = Ker(M → N) and Q = Coker(M → N). Recall that the functor M 7→ M̃ is
exact, see Constructions, Lemma 8.4. Hence we see that K̃ = 0 and Q̃ = 0. Recall
that A is a Noetherian ring, M is a finitely generated A-module, and N is a graded
A-module such that N ′ =

⊕
n≥0 Nn is finitely generated by the last part of Lemma

14.2. Hence K ′ =
⊕

n≥0 Kn and Q′ =
⊕

n≥0 Qn are finite A-modules. Observe
that Q̃ = Q̃′ and K̃ = K̃ ′. Thus to finish the proof it suffices to show that a finite
A-module K with K̃ = 0 has only finitely many nonzero homogeneous parts Kd

with d ≥ 0. To do this, let x1, . . . , xr ∈ K be homogeneous generators say sitting
in degrees d1, . . . , dr. Let f1, . . . , fn ∈ A1 be elements generating A over A0. For
each i and j there exists an nij ≥ 0 such that fnij

i xj = 0 in Kdj+nij
: if not then

xi/f
di
i ∈ K(fi) would not be zero, i.e., K̃ would not be zero. Then we see that Kd

is zero for d > maxj(dj +
∑
i nij) as every element of Kd is a sum of terms where

each term is a monomials in the fi times one of the xj of total degree d. □

https://stacks.math.columbia.edu/tag/0AG7
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Let A be a graded ring such that A0 is Noetherian and A is generated by finitely
many elements of A1 over A0. Recall that A+ =

⊕
n>0 An is the irrelevant ideal.

Let M be a graded A-module. Recall that M is an A+-power torsion module if
for all x ∈ M there is an n ≥ 1 such that (A+)nx = 0, see More on Algebra,
Definition 88.1. If M is finitely generated, then we see that this is equivalent
to Mn = 0 for n ≫ 0. Sometimes A+-power torsion modules are called torsion
modules. Sometimes a graded A-module M is called torsion free if x ∈ M with
(A+)nx = 0, n > 0 implies x = 0. Denote ModA the category of graded A-
modules, ModfgA the full subcategory of finitely generated ones, and ModfgA,torsion
the full subcategory of modules M such that Mn = 0 for n≫ 0.

Proposition 14.4.0BXD Let A be a graded ring such that A0 is Noetherian and A is
generated by finitely many elements of A1 over A0. Set X = Proj(A). The functor
M 7→ M̃ induces an equivalence

ModfgA /ModfgA,torsion −→ Coh(OX)

whose quasi-inverse is given by F 7−→
⊕

n≥0 Γ(X,F(n)).

Proof. The subcategory ModfgA,torsion is a Serre subcategory of ModfgA , see Homol-
ogy, Definition 10.1. This is clear from the description of objects given above but
it also follows from More on Algebra, Lemma 88.5. Hence the quotient category on
the left of the arrow is defined in Homology, Lemma 10.6. To define the functor of
the proposition, it suffices to show that the functor M 7→ M̃ sends torsion modules
to 0. This is clear because for any f ∈ A+ homogeneous the module Mf is zero
and hence the value M(f) of M̃ on D+(f) is zero too.
By Lemma 14.2 the proposed quasi-inverse makes sense. Namely, the lemma shows
that F 7−→

⊕
n≥0 Γ(X,F(n)) is a functor Coh(OX) → ModfgA which we can com-

pose with the quotient functor ModfgA → ModfgA /ModfgA,torsion.

By Lemma 14.3 the composite left to right to left is isomorphic to the identity
functor.
Finally, let F be a coherent OX -module. Set M =

⊕
n∈Z Γ(X,F(n)) viewed as a

graded A-module, so that our functor sends F to M≥0 =
⊕

n≥0 Mn. By Properties,
Lemma 28.5 the canonical map M̃ → F is an isomorphism. Since the inclusion map
M≥0 →M defines an isomorphism M̃≥0 → M̃ we conclude that the composite right
to left to right is isomorphic to the identity functor as well. □

15. Coherent sheaves on Proj, II

0BXE In this section we discuss coherent sheaves on Proj(A) where A is a Noetherian
graded ring. Most of the results will be deduced by sleight of hand from the
corresponding result in the previous section where we discussed what happens if A
is generated by degree 1 elements.

Lemma 15.1.0B5Q Let A be a Noetherian graded ring. Set X = Proj(A). Then X is
a Noetherian scheme. Let F be a coherent OX-module.

(1) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕
j=1,...,r

OX(dj) −→ F .

https://stacks.math.columbia.edu/tag/0BXD
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(2) For any p the cohomology group Hp(X,F) is a finite A0-module.
(3) If p > 0, then Hp(X,F(d)) = 0 for all d large enough.
(4) For any k ∈ Z the graded A-module⊕

d≥k
H0(X,F(d))

is a finite A-module.

Proof. We will prove this by reducing the statement to Lemma 14.2. By Algebra,
Lemmas 58.2 and 58.1 the ring A0 is Noetherian and A is generated over A0 by
finitely many elements f1, . . . , fr homogeneous of positive degree. Let d be a suf-
ficiently divisible integer. Set A′ = A(d) with notation as in Algebra, Section 56.
Then A′ is generated over A′

0 = A0 by elements of degree 1, see Algebra, Lemma
56.2. Thus Lemma 14.2 applies to X ′ = Proj(A′).

By Constructions, Lemma 11.8 there exist an isomorphism of schemes i : X → X ′

and isomorphisms OX(nd)→ i∗OX′(n) compatible with the map A′ → A and the
maps An → H0(X,OX(n)) and A′

n → H0(X ′,OX′(n)). Thus Lemma 14.2 implies
X is Noetherian and that (1) and (2) hold. To see (3) and (4) we can use that for
any fixed k, p, and q we have⊕

dn+q≥k
Hp(X,F(dn+ q)) =

⊕
dn+q≥k

Hp(X ′, (i∗F(q))(n)

by the compatibilities above. If p > 0, we have the vanishing of the right hand
side for k depending on q large enough by Lemma 14.2. Since there are only a
finite number of congruence classes of integers modulo d, we see that (3) holds for
F on X. If p = 0, then we have that the right hand side is a finite A′-module by
Lemma 14.2. Using the finiteness of congruence classes once more, we find that⊕

n≥kH
0(X,F(n)) is a finite A′-module too. Since the A′-module structure comes

from the A-module structure (by the compatibilities mentioned above), we conclude
it is finite as an A-module as well. □

Lemma 15.2.0B5R Let A be a Noetherian graded ring and let d be the lcm of generators
of A over A0. Let M be a finite graded A-module. Set X = Proj(A) and let M̃ be
the quasi-coherent OX-module on X associated to M . Let k ∈ Z.

(1) N ′ =
⊕

n≥kH
0(X, M̃(n)) is a finite A-module,

(2) N =
⊕

n≥kH
0(X, M̃(n)) is a finite A-module,

(3) there is a canonical map N → N ′,
(4) if k is small enough there is a canonical map M → N ′,
(5) the map Mn → N ′

n is an isomorphism for n≫ 0,
(6) Nn → N ′

n is an isomorphism for d|n.

Proof. The map N → N ′ in (3) comes from Constructions, Equation (10.1.5) by
taking global sections.

By Constructions, Equation (10.1.6) there is a map of graded A-modules M →⊕
n∈Z H

0(X, M̃(n)). If the generators of M sit in degrees ≥ k, then the image is
contained in the submodule N ′ ⊂

⊕
n∈Z H

0(X, M̃(n)) and we get the map in (4).

By Algebra, Lemmas 58.2 and 58.1 the ring A0 is Noetherian and A is generated
over A0 by finitely many elements f1, . . . , fr homogeneous of positive degree. Let
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d = lcm(deg(fi)). Then we see that (6) holds for example by Constructions, Lemma
10.4.

Because M is a finite A-module we see that M̃ is a finite type OX -module, i.e., a
coherent OX -module. Thus part (2) follows from Lemma 15.1.

We will deduce (1) from (2) using a trick. For q ∈ {0, . . . , d− 1} write

qN =
⊕

n+q≥k
H0(X, M̃(q)(n))

By part (2) these are finite A-modules. The Noetherian ring A is finite over A(d) =⊕
n≥0 Adn, because it is generated by fi over A(d) and fdi ∈ A(d). Hence qN is

a finite A(d)-module. Moreover, A(d) is Noetherian (follows from Algebra, Lemma
57.9). It follows that the A(d)-submodule qN (d) =

⊕
n∈Z

qNdn is a finite module
over A(d). Using the isomorphisms ˜M(dn+ q) = M̃(q)(dn) we can write

N ′ =
⊕

q∈{0,...,d−1}

⊕
dn+q≥k

H0(X, M̃(q)(dn)) =
⊕

q∈{0,...,d−1}
qN (d)

Thus N ′ is finite over A(d) and a fortiori finite over A. Thus (1) is true.

Let K be a finite A-module such that K̃ = 0. We claim that Kn = 0 for d|n
and n ≫ 0. Arguing as above we see that K(d) is a finite A(d)-module. Let
x1, . . . , xm ∈ K be homogeneous generators of K(d) over A(d), say sitting in degrees
d1, . . . , dm with d|dj . For each i and j there exists an nij ≥ 0 such that fnij

i xj = 0
in Kdj+nij : if not then xj/f

di/ deg(fi)
i ∈ K(fi) would not be zero, i.e., K̃ would not

be zero. Here we use that deg(fi)|d|dj for all i, j. We conclude that Kn is zero for
n with d|n and n > maxj(dj +

∑
i nij deg(fi)) as every element of Kn is a sum of

terms where each term is a monomials in the fi times one of the xj of total degree
n.

To finish the proof, we have to show that M → N ′ is an isomorphism in all suffi-
ciently large degrees. The map N → N ′ induces an isomorphism Ñ → Ñ ′ because
on the affine opens D+(fi) = D+(fdi ) the corresponding modules are isomorphic:
N(fi) ∼= N(fd

i
)
∼= N ′

(fd
i

)
∼= N ′

(fi) by property (6). By Properties, Lemma 28.5 we

have a canonical isomorphism Ñ → M̃ . The composition Ñ → M̃ → Ñ ′ is the iso-
morphism above (proof omitted; hint: look on standard affine opens to check this).
Thus the map M → N ′ induces an isomorphism M̃ → Ñ ′. Let K = Ker(M → N ′)
and Q = Coker(M → N ′). Recall that the functor M 7→ M̃ is exact, see Con-
structions, Lemma 8.4. Hence we see that K̃ = 0 and Q̃ = 0. By the result of
the previous paragraph we see that Kn = 0 and Qn = 0 for d|n and n ≫ 0. At
this point we finally see the advantage of using N ′ over N : the functor M ⇝ N ′

is compatible with shifts (immediate from the construction). Thus, repeating the
whole argument with M replaced by M(q) we find that Kn = 0 and Qn = 0 for
n ≡ q mod d and n ≫ 0. Since there are only finitely many congruence classes
modulo n the proof is finished. □

Let A be a Noetherian graded ring. Recall that A+ =
⊕

n>0 An is the irrelevant
ideal. By Algebra, Lemmas 58.2 and 58.1 the ring A0 is Noetherian and A is
generated over A0 by finitely many elements f1, . . . , fr homogeneous of positive
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degree. Let d = lcm(deg(fi)). Let M be a graded A-module. In this situation we
say a homogeneous element x ∈M is irrelevant2 if

(A+x)nd = 0 for all n≫ 0
If x ∈ M is homogeneous and irrelevant and f ∈ A is homogeneous, then fx is
irrelevant too. Hence the set of irrelevant elements generate a graded submodule
Mirrelevant ⊂ M . We will say M is irrelevant if every homogeneous element of M
is irrelevant, i.e., if Mirrelevant = M . If M is finitely generated, then we see that
this is equivalent to Mnd = 0 for n ≫ 0. Denote ModA the category of graded A-
modules, ModfgA the full subcategory of finitely generated ones, and ModfgA,irrelevant
the full subcategory of irrelevant modules.

Proposition 15.3.0BXF Let A be a Noetherian graded ring. Set X = Proj(A). The
functor M 7→ M̃ induces an equivalence

ModfgA /ModfgA,irrelevant −→ Coh(OX)

whose quasi-inverse is given by F 7−→
⊕

n≥0 Γ(X,F(n)).

Proof. We urge the reader to read the proof in the case where A is generated in
degree 1 first, see Proposition 14.4. Let f1, . . . , fr ∈ A be homogeneous elements
of positive degree which generate A over A0. Let d be the lcm of the degrees di of
fi. Let M be a finite A-module. Let us show that M̃ is zero if and only if M is
an irrelevant graded A-module (as defined above the statement of the proposition).
Namely, let x ∈M be a homogeneous element. Choose k ∈ Z sufficiently small and
let N → N ′ and M → N ′ be as in Lemma 15.2. We may also pick l sufficiently
large such that Mn → Nn is an isomorphism for n ≥ l. If M̃ is zero, then N = 0.
Thus for any f ∈ A+ homogeneous with deg(f) + deg(x) = nd and nd > l we see
that fx is zero because Nnd → N ′

nd and Mnd → N ′
nd are isomorphisms. Hence x

is irrelevant. Conversely, assume M is irrelevant. Then Mnd is zero for n≫ 0 (see
discussion above proposition). Clearly this implies that M(fi) = M(fd/ deg(fi)

i
) = 0,

whence M̃ = 0 by construction.

It follows that the subcategory ModfgA,irrelevant is a Serre subcategory of ModfgA as
the kernel of the exact functor M 7→ M̃ , see Homology, Lemma 10.4 and Construc-
tions, Lemma 8.4. Hence the quotient category on the left of the arrow is defined
in Homology, Lemma 10.6. To define the functor of the proposition, it suffices to
show that the functor M 7→ M̃ sends irrelevant modules to 0 which we have shown
above.
By Lemma 15.1 the proposed quasi-inverse makes sense. Namely, the lemma shows
that F 7−→

⊕
n≥0 Γ(X,F(n)) is a functor Coh(OX) → ModfgA which we can com-

pose with the quotient functor ModfgA → ModfgA /ModfgA,irrelevant.

By Lemma 15.2 the composite left to right to left is isomorphic to the identity
functor. Namely, let M be a finite graded A-module and let k ∈ Z sufficiently
small and let N → N ′ and M → N ′ be as in Lemma 15.2. Then the kernel and
cokernel of M → N ′ are nonzero in only finitely many degrees, hence are irrelevant.
Moreover, the kernel and cokernel of the map N → N ′ are zero in all sufficiently

2This is nonstandard notation.
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large degrees divisible by d, hence these are irrelevant modules too. Thus M → N ′

and N → N ′ are both isomorphisms in the quotient category, as desired.

Finally, let F be a coherent OX -module. Set M =
⊕

n∈Z Γ(X,F(n)) viewed as a
graded A-module, so that our functor sends F to M≥0 =

⊕
n≥0 Mn. By Properties,

Lemma 28.5 the canonical map M̃ → F is an isomorphism. Since the inclusion map
M≥0 →M defines an isomorphism M̃≥0 → M̃ we conclude that the composite right
to left to right is isomorphic to the identity functor as well. □

16. Higher direct images along projective morphisms

0B5S We first state and prove a result for when the base is affine and then we deduce
some results for projective morphisms.

Lemma 16.1.0B5T Let R be a Noetherian ring. Let X → Spec(R) be a proper mor-
phism. Let L be an ample invertible sheaf on X. Let F be a coherent OX-module.

(1) The graded ring A =
⊕

d≥0 H
0(X,L⊗d) is a finitely generated R-algebra.

(2) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕
j=1,...,r

L⊗dj −→ F .

(3) For any p the cohomology group Hp(X,F) is a finite R-module.
(4) If p > 0, then Hp(X,F ⊗OX

L⊗d) = 0 for all d large enough.
(5) For any k ∈ Z the graded A-module⊕

d≥k
H0(X,F ⊗OX

L⊗d)

is a finite A-module.

Proof. By Morphisms, Lemma 39.4 there exists a d > 0 and an immersion i : X →
Pn
R such that L⊗d ∼= i∗OPn

R
(1). Since X is proper over R the morphism i is a closed

immersion (Morphisms, Lemma 41.7). Thus we have Hi(X,G) = Hi(Pn
R, i∗G) for

any quasi-coherent sheaf G on X (by Lemma 2.4 and the fact that closed immersions
are affine, see Morphisms, Lemma 11.9). Moreover, if G is coherent, then i∗G is
coherent as well (Lemma 9.8). We will use these facts without further mention.

Proof of (1). Set S = R[T0, . . . , Tn] so that Pn
R = Proj(S). Observe that A is an

S-algebra (but the ring map S → A is not a homomorphism of graded rings because
Sn maps into Adn). By the projection formula (Cohomology, Lemma 54.2) we have

i∗(L⊗nd+q) = i∗(L⊗q)⊗OPn
R

OPn
R

(n)

for all n ∈ Z. We conclude that
⊕

n≥0 And+q is a finite graded S-module by Lemma
14.1. Since A =

⊕
q∈{0,...,d−1

⊕
n≥0 And+q we see that A is finite as an S-algebra,

hence (1) is true.

Proof of (2). This follows from Properties, Proposition 26.13.

Proof of (3). Apply Lemma 14.1 and use Hp(X,F) = Hp(Pn
R, i∗F).

Proof of (4). Fix p > 0. By the projection formula we have

i∗(F ⊗OX
L⊗nd+q) = i∗(F ⊗OX

L⊗q)⊗OPn
R

OPn
R

(n)
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for all n ∈ Z. By Lemma 14.1 we conclude that Hp(X,F ⊗ Lnd+q) = 0 for n≫ 0.
Since there are only finitely many congruence classes of integers modulo d this
proves (4).

Proof of (5). Fix an integer k. Set M =
⊕

n≥kH
0(X,F ⊗ L⊗n). Arguing as

above we conclude that
⊕

nd+q≥kMnd+q is a finite graded S-module. Since M =⊕
q∈{0,...,d−1}

⊕
nd+q≥kMnd+q we see that M is finite as an S-module. Since the

S-module structure factors through the ring map S → A, we conclude that M is
finite as an A-module. □

Lemma 16.2.02O1 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let L be an invertible sheaf on X. Assume that

(1) S is Noetherian,
(2) f is proper,
(3) F is coherent, and
(4) L is relatively ample on X/S.

Then there exists an n0 such that for all n ≥ n0 we have

Rpf∗
(
F ⊗OX

L⊗n)
= 0

for all p > 0.

Proof. Choose a finite affine open covering S =
⋃
Vj and set Xj = f−1(Vj).

Clearly, if we solve the question for each of the finitely many systems (Xj →
Vj ,L|Xj

,F|Vj
) then the result follows. Thus we may assume S is affine. In this case

the vanishing of Rpf∗(F ⊗L⊗n) is equivalent to the vanishing of Hp(X,F ⊗L⊗n),
see Lemma 4.6. Thus the required vanishing follows from Lemma 16.1 (which
applies because L is ample on X by Morphisms, Lemma 39.4). □

Lemma 16.3.02O4 Let S be a locally Noetherian scheme. Let f : X → S be a locally
projective morphism. Let F be a coherent OX-module. Then Rif∗F is a coherent
OS-module for all i ≥ 0.

Proof. We first remark that a locally projective morphism is proper (Morphisms,
Lemma 43.5) and hence of finite type. In particular X is locally Noetherian (Mor-
phisms, Lemma 15.6) and hence the statement makes sense. Moreover, by Lemma
4.5 the sheaves Rpf∗F are quasi-coherent.

Having said this the statement is local on S (for example by Cohomology, Lemma
7.4). Hence we may assume S = Spec(R) is the spectrum of a Noetherian ring, and
X is a closed subscheme of Pn

R for some n, see Morphisms, Lemma 43.4. In this
case, the sheaves Rpf∗F are the quasi-coherent sheaves associated to the R-modules
Hp(X,F), see Lemma 4.6. Hence it suffices to show that R-modules Hp(X,F)
are finite R-modules (Lemma 9.1). This follows from Lemma 16.1 (because the
restriction of OPn

R
(1) to X is ample on X). □

17. Ample invertible sheaves and cohomology

01XO Here is a criterion for ampleness on proper schemes over affine bases in terms of
vanishing of cohomology after twisting.

Lemma 17.1.0B5U [DG67, III
Proposition 2.6.1]

Let R be a Noetherian ring. Let f : X → Spec(R) be a proper
morphism. Let L be an invertible OX-module. The following are equivalent

https://stacks.math.columbia.edu/tag/02O1
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(1) L is ample on X (this is equivalent to many other things, see Properties,
Proposition 26.13 and Morphisms, Lemma 39.4),

(2) for every coherent OX-module F there exists an n0 ≥ 0 such that Hp(X,F⊗
L⊗n) = 0 for all n ≥ n0 and p > 0, and

(3) for every quasi-coherent sheaf of ideals I ⊂ OX , there exists an n ≥ 1 such
that H1(X, I ⊗ L⊗n) = 0.

Proof. The implication (1) ⇒ (2) follows from Lemma 16.1. The implication (2)
⇒ (3) is trivial. The implication (3) ⇒ (1) is Lemma 3.3. □

Lemma 17.2.0B5V Let R be a Noetherian ring. Let f : Y → X be a morphism of
schemes proper over R. Let L be an invertible OX-module. Assume f is finite and
surjective. Then L is ample if and only if f∗L is ample.

Proof. The pullback of an ample invertible sheaf by a quasi-affine morphism is
ample, see Morphisms, Lemma 37.7. This proves one of the implications as a finite
morphism is affine by definition.
Assume that f∗L is ample. Let P be the following property on coherent OX -
modules F : there exists an n0 such that Hp(X,F ⊗ L⊗n) = 0 for all n ≥ n0 and
p > 0. We will prove that P holds for any coherent OX -module F , which implies
L is ample by Lemma 17.1. We are going to apply Lemma 12.8. Thus we have
to verify (1), (2) and (3) of that lemma for P . Property (1) follows from the long
exact cohomology sequence associated to a short exact sequence of sheaves and
the fact that tensoring with an invertible sheaf is an exact functor. Property (2)
follows since Hp(X,−) is an additive functor. To see (3) let Z ⊂ X be an integral
closed subscheme with generic point ξ. Let F be a coherent sheaf on Y such that
the support of f∗F is equal to Z and (f∗F)ξ is annihilated by mξ, see Lemma
13.1. We claim that taking G = f∗F works. We only have to verify part (3)(c)
of Lemma 12.8. Hence assume that J ⊂ OX is a quasi-coherent sheaf of ideals
such that Jξ = OX,ξ. A finite morphism is affine hence by Lemma 13.2 we see
that JG = f∗(f−1JF). Also, as pointed out in the proof of Lemma 13.2 the sheaf
f−1JF is a coherent OY -module. As L is ample we see from Lemma 17.1 that
there exists an n0 such that

Hp(Y, f−1JF ⊗OY
f∗L⊗n) = 0,

for n ≥ n0 and p > 0. Since f is finite, hence affine, we see that
Hp(X,JG ⊗OX

L⊗n) = Hp(X, f∗(f−1JF)⊗OX
L⊗n)

= Hp(X, f∗(f−1JF ⊗OY
f∗L⊗n))

= Hp(Y, f−1JF ⊗OY
f∗L⊗n) = 0

Here we have used the projection formula (Cohomology, Lemma 54.2) and Lemma
2.4. Hence the quasi-coherent subsheaf G′ = JG satisfies P . This verifies property
(3)(c) of Lemma 12.8 as desired. □

Cohomology is functorial. In particular, given a ringed space X, an invertible
OX -module L, a section s ∈ Γ(X,L) we get maps

Hp(X,F) −→ Hp(X,F ⊗OX
L), ξ 7−→ sξ

induced by the map F → F⊗OX
L which is multiplication by s. We set Γ∗(X,L) =⊕

n≥0 Γ(X,L⊗n) as a graded ring, see Modules, Definition 25.7. Given a sheaf of
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OX -modules F and an integer p ≥ 0 we set

Hp
∗ (X,L,F) =

⊕
n∈Z

Hp(X,F ⊗OX
L⊗n)

This is a graded Γ∗(X,L)-module by the multiplication defined above. Warning:
the notation Hp

∗ (X,L,F) is nonstandard.

Lemma 17.3.09MR Let X be a scheme. Let L be an invertible sheaf on X. Let
s ∈ Γ(X,L). Let F be a quasi-coherent OX-module. If X is quasi-compact and
quasi-separated, the canonical map

Hp
∗ (X,L,F)(s) −→ Hp(Xs,F)

which maps ξ/sn to s−nξ is an isomorphism.

Proof. Note that for p = 0 this is Properties, Lemma 17.2. We will prove the
statement using the induction principle (Lemma 4.1) where for U ⊂ X quasi-
compact open we let P (U) be the property: for all p ≥ 0 the map

Hp
∗ (U,L,F)(s) −→ Hp(Us,F)

is an isomorphism.

If U is affine, then both sides of the arrow displayed above are zero for p > 0 by
Lemma 2.2 and Properties, Lemma 26.4 and the statement is true. If P is true
for U , V , and U ∩ V , then we can use the Mayer-Vietoris sequences (Cohomology,
Lemma 8.2) to obtain a map of long exact sequences

Hp−1
∗ (U ∩ V,L,F)(s) //

��

Hp
∗ (U ∪ V,L,F)(s) //

��

Hp
∗ (U,L,F)(s) ⊕Hp

∗ (V,L,F)(s)

��
Hp−1(Us ∩ Vs,F) // Hp(Us ∪ Vs,F) // Hp(Us,F)⊕Hp(Vs,F)

(only a snippet shown). Observe that Us∩Vs = (U∩V )s and that Us∪Vs = (U∪V )s.
Thus the left and right vertical maps are isomorphisms (as well as one more to the
right and one more to the left which are not shown in the diagram). We conclude
that P (U ∪ V ) holds by the 5-lemma (Homology, Lemma 5.20). This finishes the
proof. □

Lemma 17.4.01XR Let X be a scheme. Let L be an invertible OX-module. Let s ∈
Γ(X,L) be a section. Assume that

(1) X is quasi-compact and quasi-separated, and
(2) Xs is affine.

Then for every quasi-coherent OX-module F and every p > 0 and all ξ ∈ Hp(X,F)
there exists an n ≥ 0 such that snξ = 0 in Hp(X,F ⊗OX

L⊗n).

Proof. Recall that Hp(Xs,G) is zero for every quasi-coherent module G by Lemma
2.2. Hence the lemma follows from Lemma 17.3. □

For a more general version of the following lemma see Limits, Lemma 11.4.

Lemma 17.5.09MS Let i : Z → X be a closed immersion of Noetherian schemes
inducing a homeomorphism of underlying topological spaces. Let L be an invertible
sheaf on X. Then i∗L is ample on Z, if and only if L is ample on X.
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Proof. If L is ample, then i∗L is ample for example by Morphisms, Lemma 37.7.
Assume i∗L is ample. We have to show that L is ample on X. Let I ⊂ OX be the
coherent sheaf of ideals cutting out the closed subscheme Z. Since i(Z) = X set
theoretically we see that In = 0 for some n by Lemma 10.2. Consider the sequence

X = Zn ⊃ Zn−1 ⊃ Zn−2 ⊃ . . . ⊃ Z1 = Z

of closed subschemes cut out by 0 = In ⊂ In−1 ⊂ . . . ⊂ I. Then each of the closed
immersions Zi → Zi−1 is defined by a coherent sheaf of ideals of square zero. In
this way we reduce to the case that I2 = 0.
Consider the short exact sequence

0→ I → OX → i∗OZ → 0
of quasi-coherent OX -modules. Tensoring with L⊗n we obtain short exact se-
quences
(17.5.1)0B8T 0→ I ⊗OX

L⊗n → L⊗n → i∗i
∗L⊗n → 0

As I2 = 0, we can use Morphisms, Lemma 4.1 to think of I as a quasi-coherent
OZ-module and then I ⊗OX

L⊗n = I ⊗OZ
i∗L⊗n with obvious abuse of nota-

tion. Moreover, the cohomology of this sheaf over Z is canonically the same as the
cohomology of this sheaf over X (as i is a homeomorphism).
Let x ∈ X be a point and denote z ∈ Z the corresponding point. Because i∗L is
ample there exists an n and a section s ∈ Γ(Z, i∗L⊗n) with z ∈ Zs and with Zs
affine. The obstruction to lifting s to a section of L⊗n over X is the boundary

ξ = ∂s ∈ H1(X, I ⊗OX
L⊗n) = H1(Z, I ⊗OZ

i∗L⊗n)
coming from the short exact sequence of sheaves (17.5.1). If we replace s by se+1

then ξ is replaced by ∂(se+1) = (e+ 1)seξ in H1(Z, I ⊗OZ
i∗L⊗(e+1)n) because the

boundary map for

0→
⊕

m≥0
I ⊗OX

L⊗m →
⊕

m≥0
L⊗m →

⊕
m≥0

i∗i
∗L⊗m → 0

is a derivation by Cohomology, Lemma 25.5. By Lemma 17.4 we see that seξ is
zero for e large enough. Hence, after replacing s by a power, we can assume s is the
image of a section s′ ∈ Γ(X,L⊗n). Then Xs′ is an open subscheme and Zs → Xs′

is a surjective closed immersion of Noetherian schemes with Zs affine. Hence Xs is
affine by Lemma 13.3 and we conclude that L is ample. □

For a more general version of the following lemma see Limits, Lemma 11.5.

Lemma 17.6.0B7K Let i : Z → X be a closed immersion of Noetherian schemes
inducing a homeomorphism of underlying topological spaces. Then X is quasi-affine
if and only if Z is quasi-affine.

Proof. Recall that a scheme is quasi-affine if and only if the structure sheaf is
ample, see Properties, Lemma 27.1. Hence if Z is quasi-affine, then OZ is ample,
hence OX is ample by Lemma 17.5, hence X is quasi-affine. A proof of the converse,
which can also be seen in an elementary way, is gotten by reading the argument
just given backwards. □

Lemma 17.7.0EBD Let X be a scheme. Let L be an ample invertible OX-module. Let
n0 be an integer. If Hp(X,L⊗−n) = 0 for n ≥ n0 and p > 0, then X is affine.

https://stacks.math.columbia.edu/tag/0B7K
https://stacks.math.columbia.edu/tag/0EBD


COHOMOLOGY OF SCHEMES 47

Proof. We claim Hp(X,F) = 0 for every quasi-coherent OX -module and p > 0.
Since X is quasi-compact by Properties, Definition 26.1 the claim finishes the proof
by Lemma 3.1. The scheme X is separated by Properties, Lemma 26.8. Say X is
covered by e+ 1 affine opens. Then Hp(X,F) = 0 for p > e, see Lemma 4.2. Thus
we may use descending induction on p to prove the claim. Writing F as a filtered
colimit of finite type quasi-coherent modules (Properties, Lemma 22.3) and using
Cohomology, Lemma 19.1 we may assume F is of finite type. Then we can choose
n > n0 such that F ⊗OX

L⊗n is globally generated, see Properties, Proposition
26.13. This means there is a short exact sequence

0→ F ′ →
⊕

i∈I
L⊗−n → F → 0

for some set I (in fact we can choose I finite). By induction hypothesis we have
Hp+1(X,F ′) = 0 and by assumption (combined with the already used commutation
of cohomology with colimits) we have Hp(X,

⊕
i∈I L⊗−n) = 0. From the long exact

cohomology sequence we conclude that Hp(X,F) = 0 as desired. □

Lemma 17.8.0EBE Let X be a quasi-affine scheme. If Hp(X,OX) = 0 for p > 0, then
X is affine.

Proof. Since OX is ample by Properties, Lemma 27.1 this follows from Lemma
17.7. □

18. Chow’s Lemma

02O2 In this section we prove Chow’s lemma in the Noetherian case (Lemma 18.1). In
Limits, Section 12 we prove some variants for the non-Noetherian case.

Lemma 18.1.0200 [DG67, II Theorem
5.6.1(a)]

Let S be a Noetherian scheme. Let f : X → S be a separated
morphism of finite type. Then there exist an n ≥ 0 and a diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.

Moreover, we may arrange it such that there exists a dense open subscheme U ⊂ X
such that π−1(U)→ U is an isomorphism.

Proof. All of the schemes we will encounter during the rest of the proof are go-
ing to be of finite type over the Noetherian scheme S and hence Noetherian (see
Morphisms, Lemma 15.6). All morphisms between them will automatically be
quasi-compact, locally of finite type and quasi-separated, see Morphisms, Lemma
15.8 and Properties, Lemmas 5.4 and 5.8.
The scheme X has only finitely many irreducible components (Properties, Lemma
5.7). Say X = X1∪ . . .∪Xr is the decomposition of X into irreducible components.
Let ηi ∈ Xi be the generic point. For every point x ∈ X there exists an affine
open Ux ⊂ X which contains x and each of the generic points ηi. See Properties,
Lemma 29.4. Since X is quasi-compact, we can find a finite affine open covering
X = U1 ∪ . . .∪Um such that each Ui contains η1, . . . , ηr. In particular we conclude
that the open U = U1 ∩ . . . ∩ Um ⊂ X is a dense open. This and the fact that the
Ui are affine opens covering X are all that we will use below.
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Let X∗ ⊂ X be the scheme theoretic closure of U → X, see Morphisms, Definition
6.2. Let U∗

i = X∗∩Ui. Note that U∗
i is a closed subscheme of Ui. Hence U∗

i is affine.
Since U is dense in X the morphism X∗ → X is a surjective closed immersion. It is
an isomorphism over U . Hence we may replace X by X∗ and Ui by U∗

i and assume
that U is scheme theoretically dense in X, see Morphisms, Definition 7.1.

By Morphisms, Lemma 39.3 we can find an immersion ji : Ui → Pni

S for each
i. By Morphisms, Lemma 7.7 we can find closed subschemes Zi ⊂ Pni

S such that
ji : Ui → Zi is a scheme theoretically dense open immersion. Note that Zi → S is
proper, see Morphisms, Lemma 43.5. Consider the morphism

j = (j1|U , . . . , jm|U ) : U −→ Pn1
S ×S . . .×S Pnm

S .

By the lemma cited above we can find a closed subscheme Z of Pn1
S ×S . . .×S Pnm

S

such that j : U → Z is an open immersion and such that U is scheme theoretically
dense in Z. The morphism Z → S is proper. Consider the ith projection

pri|Z : Z −→ Pni

S .

This morphism factors through Zi (see Morphisms, Lemma 6.6). Denote pi : Z →
Zi the induced morphism. This is a proper morphism, see Morphisms, Lemma 41.7
for example. At this point we have that U ⊂ Ui ⊂ Zi are scheme theoretically dense
open immersions. Moreover, we can think of Z as the scheme theoretic image of
the “diagonal” morphism U → Z1 ×S . . .×S Zm.

Set Vi = p−1
i (Ui). Note that pi|Vi : Vi → Ui is proper. Set X ′ = V1 ∪ . . . ∪ Vm.

By construction X ′ has an immersion into the scheme Pn1
S ×S . . . ×S Pnm

S . Thus
by the Segre embedding (see Constructions, Lemma 13.6) we see that X ′ has an
immersion into a projective space over S.

We claim that the morphisms pi|Vi
: Vi → Ui glue to a morphism X ′ → X.

Namely, it is clear that pi|U is the identity map from U to U . Since U ⊂ X ′ is
scheme theoretically dense by construction, it is also scheme theoretically dense in
the open subscheme Vi∩Vj . Thus we see that pi|Vi∩Vj = pj |Vi∩Vj as morphisms into
the separated S-scheme X, see Morphisms, Lemma 7.10. We denote the resulting
morphism π : X ′ → X.

We claim that π−1(Ui) = Vi. Since π|Vi = pi|Vi it follows that Vi ⊂ π−1(Ui).
Consider the diagram

Vi //

pi|Vi ##

π−1(Ui)

��
Ui

Since Vi → Ui is proper we see that the image of the horizontal arrow is closed, see
Morphisms, Lemma 41.7. Since Vi ⊂ π−1(Ui) is scheme theoretically dense (as it
contains U) we conclude that Vi = π−1(Ui) as claimed.

This shows that π−1(Ui)→ Ui is identified with the proper morphism pi|Vi : Vi →
Ui. Hence we see that X has a finite affine covering X =

⋃
Ui such that the

restriction of π is proper on each member of the covering. Thus by Morphisms,
Lemma 41.3 we see that π is proper.
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Finally we have to show that π−1(U) = U . To see this we argue in the same way
as above using the diagram

U //

##

π−1(U)

��
U

and using that idU : U → U is proper and that U is scheme theoretically dense in
π−1(U). □

Remark 18.2.0201 In the situation of Chow’s Lemma 18.1:
(1) The morphism π is actually H-projective (hence projective, see Morphisms,

Lemma 43.3) since the morphism X ′ → Pn
S ×S X = Pn

X is a closed immer-
sion (use the fact that π is proper, see Morphisms, Lemma 41.7).

(2) We may assume that π−1(U) is scheme theoretically dense in X ′. Namely,
we can simply replace X ′ by the scheme theoretic closure of π−1(U). In
this case we can think of U as a scheme theoretically dense open subscheme
of X ′. See Morphisms, Section 6.

(3) If X is reduced then we may choose X ′ reduced. This is clear from (2).

19. Higher direct images of coherent sheaves

02O3 In this section we prove the fundamental fact that the higher direct images of a
coherent sheaf under a proper morphism are coherent.

Proposition 19.1.02O5 [DG67, III Theorem
3.2.1]

Let S be a locally Noetherian scheme. Let f : X → S be
a proper morphism. Let F be a coherent OX-module. Then Rif∗F is a coherent
OS-module for all i ≥ 0.

Proof. Since the problem is local on S we may assume that S is a Noetherian
scheme. Since a proper morphism is of finite type we see that in this case X is a
Noetherian scheme also. Consider the property P of coherent sheaves on X defined
by the rule

P(F)⇔ Rpf∗F is coherent for all p ≥ 0
We are going to use the result of Lemma 12.6 to prove that P holds for every
coherent sheaf on X.
Let

0→ F1 → F2 → F3 → 0
be a short exact sequence of coherent sheaves on X. Consider the long exact
sequence of higher direct images

Rp−1f∗F3 → Rpf∗F1 → Rpf∗F2 → Rpf∗F3 → Rp+1f∗F1

Then it is clear that if 2-out-of-3 of the sheaves Fi have property P, then the
higher direct images of the third are sandwiched in this exact complex between two
coherent sheaves. Hence these higher direct images are also coherent by Lemma
9.2 and 9.3. Hence property P holds for the third as well.
Let Z ⊂ X be an integral closed subscheme. We have to find a coherent sheaf
F on X whose support is contained in Z, whose stalk at the generic point ξ of
Z is a 1-dimensional vector space over κ(ξ) such that P holds for F . Denote
g = f |Z : Z → S the restriction of f . Suppose we can find a coherent sheaf G
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on Z such that (a) Gξ is a 1-dimensional vector space over κ(ξ), (b) Rpg∗G = 0
for p > 0, and (c) g∗G is coherent. Then we can consider F = (Z → X)∗G.
As Z → X is a closed immersion we see that (Z → X)∗G is coherent on X and
Rp(Z → X)∗G = 0 for p > 0 (Lemma 9.9). Hence by the relative Leray spectral
sequence (Cohomology, Lemma 13.8) we will have Rpf∗F = Rpg∗G = 0 for p > 0
and f∗F = g∗G is coherent. Finally Fξ = ((Z → X)∗G)ξ = Gξ which verifies the
condition on the stalk at ξ. Hence everything depends on finding a coherent sheaf
G on Z which has properties (a), (b), and (c).

We can apply Chow’s Lemma 18.1 to the morphism Z → S. Thus we get a diagram

Z

g
��

Z ′

g′

��

π
oo

i
// Pm

S

}}
S

as in the statement of Chow’s lemma. Also, let U ⊂ Z be the dense open subscheme
such that π−1(U) → U is an isomorphism. By the discussion in Remark 18.2 we
see that i′ = (i, π) : Z ′ → Pm

Z is a closed immersion. Hence

L = i∗OPm
S

(1) ∼= (i′)∗OPm
Z

(1)

is g′-relatively ample and π-relatively ample (for example by Morphisms, Lemma
39.7). Hence by Lemma 16.2 there exists an n ≥ 0 such that both Rpπ∗L⊗n = 0
for all p > 0 and Rp(g′)∗L⊗n = 0 for all p > 0. Set G = π∗L⊗n. Property (a) holds
because π∗L⊗n|U is an invertible sheaf (as π−1(U)→ U is an isomorphism). Prop-
erties (b) and (c) hold because by the relative Leray spectral sequence (Cohomology,
Lemma 13.8) we have

Ep,q2 = Rpg∗R
qπ∗L⊗n ⇒ Rp+q(g′)∗L⊗n

and by choice of n the only nonzero terms in Ep,q2 are those with q = 0 and the
only nonzero terms of Rp+q(g′)∗L⊗n are those with p = q = 0. This implies that
Rpg∗G = 0 for p > 0 and that g∗G = (g′)∗L⊗n. Finally, applying the previous
Lemma 16.3 we see that g∗G = (g′)∗L⊗n is coherent as desired. □

Lemma 19.2.02O6 Let S = Spec(A) with A a Noetherian ring. Let f : X → S be
a proper morphism. Let F be a coherent OX-module. Then Hi(X,F) is a finite
A-module for all i ≥ 0.

Proof. This is just the affine case of Proposition 19.1. Namely, by Lemmas 4.5
and 4.6 we know that Rif∗F is the quasi-coherent sheaf associated to the A-module
Hi(X,F) and by Lemma 9.1 this is a coherent sheaf if and only if Hi(X,F) is an
A-module of finite type. □

Lemma 19.3.0897 Let A be a Noetherian ring. Let B be a finitely generated graded
A-algebra. Let f : X → Spec(A) be a proper morphism. Set B = f∗B̃. Let F be a
quasi-coherent graded B-module of finite type.

(1) For every p ≥ 0 the graded B-module Hp(X,F) is a finite B-module.
(2) If L is an ample invertible OX-module, then there exists an integer d0 such

that Hp(X,F ⊗ L⊗d) = 0 for all p > 0 and d ≥ d0.
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Proof. To prove this we consider the fibre product diagram

X ′ = Spec(B)×Spec(A) X π
//

f ′

��

X

f

��
Spec(B) // Spec(A)

Note that f ′ is a proper morphism, see Morphisms, Lemma 41.5. Also, B is a
finitely generated A-algebra, and hence Noetherian (Algebra, Lemma 31.1). This
implies that X ′ is a Noetherian scheme (Morphisms, Lemma 15.6). Note that
X ′ is the relative spectrum of the quasi-coherent OX -algebra B by Constructions,
Lemma 4.6. Since F is a quasi-coherent B-module we see that there is a unique
quasi-coherent OX′ -module F ′ such that π∗F ′ = F , see Morphisms, Lemma 11.6
Since F is finite type as a B-module we conclude that F ′ is a finite type OX′ -module
(details omitted). In other words, F ′ is a coherent OX′-module (Lemma 9.1). Since
the morphism π : X ′ → X is affine we have

Hp(X,F) = Hp(X ′,F ′)
by Lemma 2.4. Thus (1) follows from Lemma 19.2. Given L as in (2) we set
L′ = π∗L. Note that L′ is ample on X ′ by Morphisms, Lemma 37.7. By the
projection formula (Cohomology, Lemma 54.2) we have π∗(F ′⊗L′) = F ⊗L. Thus
part (2) follows by the same reasoning as above from Lemma 16.2. □

20. The theorem on formal functions

02O7 In this section we study the behaviour of cohomology of sequences of sheaves either
of the form {InF}n≥0 or of the form {F/InF}n≥0 as n varies.
Here and below we use the following notation. Given a morphism of schemes
f : X → Y , a quasi-coherent sheaf F on X, and a quasi-coherent sheaf of ideals
I ⊂ OY we denote InF the quasi-coherent subsheaf generated by products of local
sections of f−1(In) and F . In a formula

InF = Im (f∗(In)⊗OX
F −→ F) .

Note that there are natural maps
f−1(In)⊗f−1OY

ImF −→ f∗(In)⊗OX
ImF −→ In+mF

Hence a section of In will give rise to a map Rpf∗(ImF) → Rpf∗(In+mF) by
functoriality of higher direct images. Localizing and then sheafifying we see that
there are OY -module maps

In ⊗OY
Rpf∗(ImF) −→ Rpf∗(In+mF).

In other words we see that
⊕

n≥0 R
pf∗(InF) is a graded

⊕
n≥0 In-module.

If Y = Spec(A) and I = Ĩ we denote InF simply InF . The maps introduced
above give M =

⊕
Hp(X, InF) the structure of a graded S =

⊕
In-module. If f

is proper, A is Noetherian and F is coherent, then this turns out to be a module
of finite type.
Lemma 20.1.02O8 [DG67, III Cor

3.3.2]
Let A be a Noetherian ring. Let I ⊂ A be an ideal. Set B =⊕

n≥0 I
n. Let f : X → Spec(A) be a proper morphism. Let F be a coherent sheaf

on X. Then for every p ≥ 0 the graded B-module
⊕

n≥0 H
p(X, InF) is a finite

B-module.
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Proof. Let B =
⊕
InOX = f∗B̃. Then

⊕
InF is a finite type graded B-module.

Hence the result follows from Lemma 19.3 part (1). □

Lemma 20.2.02O9 Given a morphism of schemes f : X → Y , a quasi-coherent sheaf F
on X, and a quasi-coherent sheaf of ideals I ⊂ OY . Assume Y locally Noetherian,
f proper, and F coherent. Then

M =
⊕

n≥0
Rpf∗(InF)

is a graded A =
⊕

n≥0 In-module which is quasi-coherent and of finite type.

Proof. The statement is local on Y , hence this reduces to the case where Y is
affine. In the affine case the result follows from Lemma 20.1. Details omitted. □

Lemma 20.3.02OA Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let f : X →
Spec(A) be a proper morphism. Let F be a coherent sheaf on X. Then for every
p ≥ 0 there exists an integer c ≥ 0 such that

(1) the multiplication map In−c ⊗Hp(X, IcF)→ Hp(X, InF) is surjective for
all n ≥ c,

(2) the image of Hp(X, In+mF)→ Hp(X, InF) is contained in the submodule
Im−eHp(X, InF) where e = max(0, c− n) for n+m ≥ c, n,m ≥ 0,

(3) we have
Ker(Hp(X, InF)→ Hp(X,F)) = Ker(Hp(X, InF)→ Hp(X, In−cF))

for n ≥ c,
(4) there are maps InHp(X,F) → Hp(X, In−cF) for n ≥ c such that the

compositions
Hp(X, InF)→ In−cHp(X,F)→ Hp(X, In−2cF)

and
InHp(X,F)→ Hp(X, In−cF)→ In−2cHp(X,F)

for n ≥ 2c are the canonical ones, and
(5) the inverse systems (Hp(X, InF)) and (InHp(X,F)) are pro-isomorphic.

Proof. Write Mn = Hp(X, InF) for n ≥ 1 and M0 = Hp(X,F) so that we have
maps . . .→M3 →M2 →M1 →M0. SettingB =

⊕
n≥0 I

n, thenM =
⊕

n≥0 Mn is
a finite graded B-module, see Lemma 20.1. Observe that the products Bn⊗Mm →
Mm+n, a ⊗m 7→ a ·m are compatible with the maps in our inverse system in the
sense that the diagrams

Bn ⊗AMm
//

��

Mn+m

��
Bn ⊗AMm′ // Mn+m′

commute for n,m′ ≥ 0 and m ≥ m′.
Proof of (1). Choose d1, . . . , dt ≥ 0 and xi ∈ Mdi such that M is generated by
x1, . . . , xt over B. For any c ≥ max{di} we conclude that Bn−c ·Mc = Mn for
n ≥ c and we conclude (1) is true.
Proof of (2). Let c be as in the proof of (1). Let n + m ≥ c. We have Mn+m =
Bn+m−c ·Mc. If c > n then we use Mc →Mn and the compatibility of products with
transition maps pointed out above to conclude that the image of Mn+m → Mn is
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contained in In+m−cMn. If c ≤ n, then we write Mn+m = Bm ·Bn−c ·Mc = Bm ·Mn

to see that the image is contained in ImMn. This proves (2).

Let Kn ⊂ Mn be the kernel of the map Mn → M0. The compatibility of products
with transition maps pointed out above shows that K =

⊕
Kn ⊂ M is a graded

B-submodule. As B is Noetherian and M is a finitely generated graded B-module,
this shows that K is a finitely generated graded B-module. Choose d′

1, . . . , d
′
t′ ≥ 0

and yi ∈ Kd′
i

such that K is generated by y1, . . . , yt′ over B. Set c = max(d′
i, d

′
j).

Since yi ∈ Ker(Md′
i
→ M0) we see that Bn · yi ⊂ Ker(Mn+d′

i
→ Mn). In this way

we see that Kn = Ker(Mn →Mn−c) for n ≥ c. This proves (3).

Consider the following commutative solid diagram

In ⊗AM0 //

��

InM0 //

��

M0

��
Mn

// Mn−c // M0

Since the kernel of the surjective arrow In ⊗A M0 → InM0 maps into Kn by the
above we obtain the dotted arrow and the composition InM0 → Mn−c → M0 is
the canonical map. Then clearly the composition InM0 → Mn−c → In−2cM0 is
the canonical map for n ≥ 2c. Consider the composition Mn → In−cM0 →Mn−2c.
The first map sends an element of the form a ·m with a ∈ In−c and m ∈ Mc to
am′ where m′ is the image of m in M0. Then the second map sends this to a ·m′

in Mn−2c and we see (4) is true.

Part (5) is an immediate consequence of (4) and the definition of morphisms of
pro-objects. □

In the situation of Lemmas 20.1 and 20.3 consider the inverse system

F/IF ← F/I2F ← F/I3F ← . . .

We would like to know what happens to the cohomology groups. Here is a first
result.

Lemma 20.4.02OB Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let f : X →
Spec(A) be a proper morphism. Let F be a coherent sheaf on X. Fix p ≥ 0. There
exists a c ≥ 0 such that

(1) for all n ≥ c we have

Ker(Hp(X,F)→ Hp(X,F/InF)) ⊂ In−cHp(X,F).

(2) the inverse system

(Hp(X,F/InF))n∈N

satisfies the Mittag-Leffler condition (see Homology, Definition 31.2), and
(3) we have

Im(Hp(X,F/IkF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))

for all k ≥ n+ c.

Proof. Let c = max{cp, cp+1}, where cp, cp+1 are the integers found in Lemma
20.3 for Hp and Hp+1.
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Let us prove part (1). Consider the short exact sequence

0→ InF → F → F/InF → 0

From the long exact cohomology sequence we see that

Ker(Hp(X,F)→ Hp(X,F/InF)) = Im(Hp(X, InF)→ Hp(X,F))

Hence by Lemma 20.3 part (2) we see that this is contained in In−cHp(X,F) for
n ≥ c.

Note that part (3) implies part (2) by definition of the Mittag-Leffler systems.

Let us prove part (3). Fix an n. Consider the commutative diagram

0 // InF // F // F/InF // 0

0 // In+mF //

OO

F //

OO

F/In+mF //

OO

0

This gives rise to the following commutative diagram

Hp(X,F) // Hp(X,F/InF)
δ

// Hp+1(X, InF) // Hp+1(X,F)

Hp(X,F) //

1

OO

Hp(X,F/In+mF) //

γ

OO

Hp+1(X, In+mF)

α

OO

β // Hp+1(X,F)

1

OO

with exact rows. By Lemma 20.3 part (4) the kernel of β is equal to the kernel of
α for m ≥ c. By a diagram chase this shows that the image of γ is contained in the
kernel of δ which shows that part (3) is true (set k = n+m to get it). □

Theorem 20.5 (Theorem on formal functions).02OC Let A be a Noetherian ring. Let
I ⊂ A be an ideal. Let f : X → Spec(A) be a proper morphism. Let F be a coherent
sheaf on X. Fix p ≥ 0. The system of maps

Hp(X,F)/InHp(X,F) −→ Hp(X,F/InF)

define an isomorphism of limits

Hp(X,F)∧ −→ limnH
p(X,F/InF)

where the left hand side is the completion of the A-module Hp(X,F) with respect
to the ideal I, see Algebra, Section 96. Moreover, this is in fact a homeomorphism
for the limit topologies.

Proof. This follows from Lemma 20.4 as follows. Set M = Hp(X,F), Mn =
Hp(X,F/InF), and denote Nn = Im(M → Mn). By Lemma 20.4 parts (2) and
(3) we see that (Mn) is a Mittag-Leffler system with Nn ⊂Mn equal to the image
of Mk for all k ≫ n. It follows that limMn = limNn as topological modules (with
limit topologies). On the other hand, the Nn form an inverse system of quotients
of the module M and hence limNn is the completion of M with respect to the
topology given by the kernels Kn = Ker(M → Nn). By Lemma 20.4 part (1) we
have Kn ⊂ In−cM and since Nn ⊂ Mn is annihilated by In we have InM ⊂ Kn.
Thus the topology defined using the submodules Kn as a fundamental system of
open neighbourhoods of 0 is the same as the I-adic topology and we find that

https://stacks.math.columbia.edu/tag/02OC


COHOMOLOGY OF SCHEMES 55

the induced map M∧ = limM/InM → limNn = limMn is an isomorphism of
topological modules3. □

Lemma 20.6.087U Let A be a ring. Let I ⊂ A be an ideal. Assume A is Noetherian
and complete with respect to I. Let f : X → Spec(A) be a proper morphism. Let
F be a coherent sheaf on X. Then

Hp(X,F) = limnH
p(X,F/InF)

for all p ≥ 0.

Proof. This is a reformulation of the theorem on formal functions (Theorem 20.5)
in the case of a complete Noetherian base ring. Namely, in this case the A-module
Hp(X,F) is finite (Lemma 19.2) hence I-adically complete (Algebra, Lemma 97.1)
and we see that completion on the left hand side is not necessary. □

Lemma 20.7.02OD Given a morphism of schemes f : X → Y and a quasi-coherent
sheaf F on X. Assume

(1) Y locally Noetherian,
(2) f proper, and
(3) F coherent.

Let y ∈ Y be a point. Consider the infinitesimal neighbourhoods

Xn = Spec(OY,y/mny )×Y X
in
//

fn

��

X

f

��
Spec(OY,y/mny ) cn // Y

of the fibre X1 = Xy and set Fn = i∗nF . Then we have

(Rpf∗F)∧
y
∼= limnH

p(Xn,Fn)

as O∧
Y,y-modules.

Proof. This is just a reformulation of a special case of the theorem on formal
functions, Theorem 20.5. Let us spell it out. Note that OY,y is a Noetherian local
ring. Consider the canonical morphism c : Spec(OY,y)→ Y , see Schemes, Equation
(13.1.1). This is a flat morphism as it identifies local rings. Denote momentarily f ′ :
X ′ → Spec(OY,y) the base change of f to this local ring. We see that c∗Rpf∗F =
Rpf ′

∗F ′ by Lemma 5.2. Moreover, the infinitesimal neighbourhoods of the fibre Xy

and X ′
y are identified (verification omitted; hint: the morphisms cn factor through

c).

Hence we may assume that Y = Spec(A) is the spectrum of a Noetherian local ring
A with maximal ideal m and that y ∈ Y corresponds to the closed point (i.e., to
m). In particular it follows that

(Rpf∗F)y = Γ(Y,Rpf∗F) = Hp(X,F).

3To be sure, the limit topology on M∧ is the same as its I-adic topology as follows from
Algebra, Lemma 96.3. See More on Algebra, Section 36.
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In this case also, the morphisms cn are each closed immersions. Hence their base
changes in are closed immersions as well. Note that in,∗Fn = in,∗i

∗
nF = F/mnF .

By the Leray spectral sequence for in, and Lemma 9.9 we see that
Hp(Xn,Fn) = Hp(X, in,∗Fn) = Hp(X,F/mnF)

Hence we may indeed apply the theorem on formal functions to compute the limit
in the statement of the lemma and we win. □

Here is a lemma which we will generalize later to fibres of dimension > 0, namely
the next lemma.

Lemma 20.8.02OE Let f : X → Y be a morphism of schemes. Let y ∈ Y . Assume
(1) Y locally Noetherian,
(2) f is proper, and
(3) f−1({y}) is finite.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > 0.

Proof. The fibre Xy is finite, and by Morphisms, Lemma 20.7 it is a finite discrete
space. Moreover, the underlying topological space of each infinitesimal neighbour-
hood Xn is the same. Hence each of the schemes Xn is affine according to Schemes,
Lemma 11.8. Hence it follows that Hp(Xn,Fn) = 0 for all p > 0. Hence we see
that (Rpf∗F)∧

y = 0 by Lemma 20.7. Note that Rpf∗F is coherent by Proposition
19.1 and hence Rpf∗Fy is a finite OY,y-module. By Nakayama’s lemma (Algebra,
Lemma 20.1) if the completion of a finite module over a local ring is zero, then the
module is zero. Whence (Rpf∗F)y = 0. □

Lemma 20.9.02V7 Let f : X → Y be a morphism of schemes. Let y ∈ Y . Assume
(1) Y locally Noetherian,
(2) f is proper, and
(3) dim(Xy) = d.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > d.

Proof. The fibre Xy is of finite type over Spec(κ(y)). Hence Xy is a Noetherian
scheme by Morphisms, Lemma 15.6. Hence the underlying topological space of Xy

is Noetherian, see Properties, Lemma 5.5. Moreover, the underlying topological
space of each infinitesimal neighbourhood Xn is the same as that of Xy. Hence
Hp(Xn,Fn) = 0 for all p > d by Cohomology, Proposition 20.7. Hence we see
that (Rpf∗F)∧

y = 0 by Lemma 20.7 for p > d. Note that Rpf∗F is coherent by
Proposition 19.1 and hence Rpf∗Fy is a finite OY,y-module. By Nakayama’s lemma
(Algebra, Lemma 20.1) if the completion of a finite module over a local ring is zero,
then the module is zero. Whence (Rpf∗F)y = 0. □

21. Applications of the theorem on formal functions

02OF We will add more here as needed. For the moment we need the following charac-
terization of finite morphisms in the Noetherian case.

Lemma 21.1.02OG (For a more general version see More on Morphisms, Lemma 44.1.)
Let f : X → S be a morphism of schemes. Assume S is locally Noetherian. The
following are equivalent

(1) f is finite, and
(2) f is proper with finite fibres.
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Proof. A finite morphism is proper according to Morphisms, Lemma 44.11. A
finite morphism is quasi-finite according to Morphisms, Lemma 44.10. A quasi-
finite morphism has finite fibres, see Morphisms, Lemma 20.10. Hence a finite
morphism is proper and has finite fibres.
Assume f is proper with finite fibres. We want to show f is finite. In fact it suffices
to prove f is affine. Namely, if f is affine, then it follows that f is integral by
Morphisms, Lemma 44.7 whereupon it follows from Morphisms, Lemma 44.4 that
f is finite.
To show that f is affine we may assume that S is affine, and our goal is to show that
X is affine too. Since f is proper we see that X is separated and quasi-compact.
Hence we may use the criterion of Lemma 3.2 to prove that X is affine. To see this
let I ⊂ OX be a finite type ideal sheaf. In particular I is a coherent sheaf on X. By
Lemma 20.8 we conclude that R1f∗Is = 0 for all s ∈ S. In other words, R1f∗I = 0.
Hence we see from the Leray Spectral Sequence for f that H1(X, I) = H1(S, f∗I).
Since S is affine, and f∗I is quasi-coherent (Schemes, Lemma 24.1) we conclude
H1(S, f∗I) = 0 from Lemma 2.2 as desired. Hence H1(X, I) = 0 as desired. □

As a consequence we have the following useful result.

Lemma 21.2.02OH (For a more general version see More on Morphisms, Lemma 44.2.)
Let f : X → S be a morphism of schemes. Let s ∈ S. Assume

(1) S is locally Noetherian,
(2) f is proper, and
(3) f−1({s}) is a finite set.

Then there exists an open neighbourhood V ⊂ S of s such that f |f−1(V ) : f−1(V )→
V is finite.

Proof. The morphism f is quasi-finite at all the points of f−1({s}) by Morphisms,
Lemma 20.7. By Morphisms, Lemma 56.2 the set of points at which f is quasi-
finite is an open U ⊂ X. Let Z = X \ U . Then s ̸∈ f(Z). Since f is proper
the set f(Z) ⊂ S is closed. Choose any open neighbourhood V ⊂ S of s with
Z ∩ V = ∅. Then f−1(V ) → V is locally quasi-finite and proper. Hence it is
quasi-finite (Morphisms, Lemma 20.9), hence has finite fibres (Morphisms, Lemma
20.10), hence is finite by Lemma 21.1. □

Lemma 21.3.0D2M Let f : X → Y be a proper morphism of schemes with Y Noe-
therian. Let L be an invertible OX-module. Let F be a coherent OX-module. Let
y ∈ Y be a point such that Ly is ample on Xy. Then there exists a d0 such that for
all d ≥ d0 we have

Rpf∗(F ⊗OX
L⊗d)y = 0 for p > 0

and the map
f∗(F ⊗OX

L⊗d)y −→ H0(Xy,Fy ⊗OXy
L⊗d
y )

is surjective.

Proof. Note thatOY,y is a Noetherian local ring. Consider the canonical morphism
c : Spec(OY,y)→ Y , see Schemes, Equation (13.1.1). This is a flat morphism as it
identifies local rings. Denote momentarily f ′ : X ′ → Spec(OY,y) the base change
of f to this local ring. We see that c∗Rpf∗F = Rpf ′

∗F ′ by Lemma 5.2. Moreover,
the fibres Xy and X ′

y are identified. Hence we may assume that Y = Spec(A)
is the spectrum of a Noetherian local ring (A,m, κ) and y ∈ Y corresponds to

https://stacks.math.columbia.edu/tag/02OH
https://stacks.math.columbia.edu/tag/0D2M


COHOMOLOGY OF SCHEMES 58

m. In this case Rpf∗(F ⊗OX
L⊗d)y = Hp(X,F ⊗OX

L⊗d) for all p ≥ 0. Denote
fy : Xy → Spec(κ) the projection.

Let B = Grm(A) =
⊕

n≥0 m
n/mn+1. Consider the sheaf B = f∗

y B̃ of quasi-coherent
graded OXy

-algebras. We will use notation as in Section 20 with I replaced by
m. Since Xy is the closed subscheme of X cut out by mOX we may think of
mnF/mn+1F as a coherent OXy

-module, see Lemma 9.8. Then
⊕

n≥0 m
nF/mn+1F

is a quasi-coherent graded B-module of finite type because it is generated in degree
zero over B and because the degree zero part is Fy = F/mF which is a coherent
OXy

-module. Hence by Lemma 19.3 part (2) we see that

Hp(Xy,m
nF/mn+1F ⊗OXy

L⊗d
y ) = 0

for all p > 0, d ≥ d0, and n ≥ 0. By Lemma 2.4 this is the same as the statement
that Hp(X,mnF/mn+1F ⊗OX

L⊗d) = 0 for all p > 0, d ≥ d0, and n ≥ 0.
Consider the short exact sequences

0→ mnF/mn+1F → F/mn+1F → F/mnF → 0
of coherent OX -modules. Tensoring with L⊗d is an exact functor and we obtain
short exact sequences

0→ mnF/mn+1F ⊗OX
L⊗d → F/mn+1F ⊗OX

L⊗d → F/mnF ⊗OX
L⊗d → 0

Using the long exact cohomology sequence and the vanishing above we conclude
(using induction) that

(1) Hp(X,F/mnF ⊗OX
L⊗d) = 0 for all p > 0, d ≥ d0, and n ≥ 0, and

(2) H0(X,F/mnF ⊗OX
L⊗d) → H0(Xy,Fy ⊗OXy

L⊗d
y ) is surjective for all

d ≥ d0 and n ≥ 1.
By the theorem on formal functions (Theorem 20.5) we find that the m-adic comple-
tion of Hp(X,F⊗OX

L⊗d) is zero for all d ≥ d0 and p > 0. Since Hp(X,F⊗OX
L⊗d)

is a finite A-module by Lemma 19.2 it follows from Nakayama’s lemma (Algebra,
Lemma 20.1) that Hp(X,F⊗OX

L⊗d) is zero for all d ≥ d0 and p > 0. For p = 0 we
deduce from Lemma 20.4 part (3) that H0(X,F⊗OX

L⊗d)→ H0(Xy,Fy⊗OXy
L⊗d
y )

is surjective, which gives the final statement of the lemma. □

Lemma 21.4.0D2N (For a more general version see More on Morphisms, Lemma
50.3.) Let f : X → Y be a proper morphism of schemes with Y Noetherian. Let
L be an invertible OX-module. Let y ∈ Y be a point such that Ly is ample on Xy.
Then there is an open neighbourhood V ⊂ Y of y such that L|f−1(V ) is ample on
f−1(V )/V .

Proof. Pick d0 as in Lemma 21.3 for F = OX . Pick d ≥ d0 so that we can find
r ≥ 0 and sections sy,0, . . . , sy,r ∈ H0(Xy,L⊗d

y ) which define a closed immersion
φy = φL⊗d

y ,(sy,0,...,sy,r) : Xy → Pr
κ(y).

This is possible by Morphisms, Lemma 39.4 but we also use Morphisms, Lemma
41.7 to see that φy is a closed immersion and Constructions, Section 13 for the
description of morphisms into projective space in terms of invertible sheaves and
sections. By our choice of d0, after replacing Y by an open neighbourhood of y,
we can choose s0, . . . , sr ∈ H0(X,L⊗d) mapping to sy,0, . . . , sy,r. Let Xsi ⊂ X be
the open subset where si is a generator of L⊗d. Since the sy,i generate L⊗d

y we
see that Xy ⊂ U =

⋃
Xsi

. Since X → Y is closed, we see that there is an open
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neighbourhood y ∈ V ⊂ Y such that f−1(V ) ⊂ U . After replacing Y by V we may
assume that the si generate L⊗d. Thus we obtain a morphism

φ = φL⊗d,(s0,...,sr) : X −→ Pr
Y

with L⊗d ∼= φ∗OPr
Y

(1) whose base change to y gives φy.
We will finish the proof by a sleight of hand; the “correct” proof proceeds by directly
showing that φ is a closed immersion after base changing to an open neighbourhood
of y. Namely, by Lemma 21.2 we see that φ is a finite over an open neighbourhood
of the fibre Pr

κ(y) of Pr
Y → Y above y. Using that Pr

Y → Y is closed, after shrinking
Y we may assume that φ is finite. Then L⊗d ∼= φ∗OPr

Y
(1) is ample by the very

general Morphisms, Lemma 37.7. □

22. Cohomology and base change, III

07VJ In this section we prove the simplest case of a very general phenomenon that will
be discussed in Derived Categories of Schemes, Section 22. Please see Remark 22.2
for a translation of the following lemma into algebra.

Lemma 22.1.07VK Let A be a Noetherian ring and set S = Spec(A). Let f : X → S be
a proper morphism of schemes. Let F be a coherent OX-module flat over S. Then

(1) RΓ(X,F) is a perfect object of D(A), and
(2) for any ring map A→ A′ the base change map

RΓ(X,F)⊗L
A A

′ −→ RΓ(XA′ ,FA′)
is an isomorphism.

Proof. Choose a finite affine open covering X =
⋃
i=1,...,n Ui. By Lemmas 7.1 and

7.2 the Čech complex K• = Č•(U ,F) satisfies
K• ⊗A A′ = RΓ(XA′ ,FA′)

for all ring maps A→ A′. Let K•
alt = Č•

alt(U ,F) be the alternating Čech complex.
By Cohomology, Lemma 23.6 there is a homotopy equivalence K•

alt → K• of A-
modules. In particular, we have

K•
alt ⊗A A′ = RΓ(XA′ ,FA′)

as well. Since F is flat over A we see that each Kn
alt is flat over A (see Morphisms,

Lemma 25.2). Since moreover K•
alt is bounded above (this is why we switched to

the alternating Čech complex) K•
alt⊗AA′ = K•

alt⊗L
AA

′ by the definition of derived
tensor products (see More on Algebra, Section 59). By Lemma 19.2 the cohomology
groups Hi(K•

alt) are finite A-modules. As K•
alt is bounded, we conclude that K•

alt is
pseudo-coherent, see More on Algebra, Lemma 64.17. Given any A-module M set
A′ = A⊕M where M is a square zero ideal, i.e., (a,m) · (a′,m′) = (aa′, am′ +a′m).
By the above we see that K•

alt ⊗L
A A

′ has cohomology in degrees 0, . . . , n. Hence
K•
alt⊗L

AM has cohomology in degrees 0, . . . , n. Hence K•
alt has finite Tor dimension,

see More on Algebra, Definition 66.1. We win by More on Algebra, Lemma 74.2. □

Remark 22.2.07VL A consequence of Lemma 22.1 is that there exists a finite complex
of finite projective A-modules M• such that we have

Hi(XA′ ,FA′) = Hi(M• ⊗A A′)
functorially in A′. The condition that F is flat over A is essential, see [Har98].
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23. Coherent formal modules

0EHN As we do not yet have the theory of formal schemes to our disposal, we develop
a bit of language that replaces the notion of a “coherent module on a Noetherian
adic formal scheme”.
Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent sheaf of ideals.
We will consider inverse systems (Fn) of coherent OX -modules such that

(1) Fn is annihilated by In, and
(2) the transition maps induce isomorphisms Fn+1/InFn+1 → Fn.

A morphism of such inverse systems is defined as usual. Let us denote the category
of these inverse systems with Coh(X, I). We are going to proceed by proving a
bunch of lemmas about objects in this category. In fact, most of the lemmas that
follow are straightforward consequences of the following description of the category
in the affine case.

Lemma 23.1.087W If X = Spec(A) is the spectrum of a Noetherian ring and I is
the quasi-coherent sheaf of ideals associated to the ideal I ⊂ A, then Coh(X, I) is
equivalent to the category of finite A∧-modules where A∧ is the completion of A
with respect to I.

Proof. Let ModfgA,I be the category of inverse systems (Mn) of finite A-modules
satisfying: (1) Mn is annihilated by In and (2) Mn+1/I

nMn+1 = Mn. By the
correspondence between coherent sheaves on X and finite A-modules (Lemma 9.1)
it suffices to show ModfgA,I is equivalent to the category of finite A∧-modules. To
see this it suffices to prove that given an object (Mn) of ModfgA,I the module

M = limMn

is a finite A∧-module and that M/InM = Mn. As the transition maps are sur-
jective, we see that M → M1 is surjective. Pick x1, . . . , xt ∈ M which map to
generators of M1. This induces a map of systems (A/In)⊕t →Mn. By Nakayama’s
lemma (Algebra, Lemma 20.1) these maps are surjective. Let Kn ⊂ (A/In)⊕t be
the kernel. Property (2) implies that Kn+1 → Kn is surjective, in particular the
system (Kn) satisfies the Mittag-Leffler condition. By Homology, Lemma 31.3 we
obtain an exact sequence 0→ K → (A∧)⊕t →M → 0 with K = limKn. Hence M
is a finite A∧-module. As K → Kn is surjective it follows that

M/InM = Coker(K → (A/In)⊕t) = (A/In)⊕t/Kn = Mn

as desired. □

Lemma 23.2.087X Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals.

(1) The category Coh(X, I) is abelian.
(2) For U ⊂ X open the restriction functor Coh(X, I)→ Coh(U, I|U ) is exact.
(3) Exactness in Coh(X, I) may be checked by restricting to the members of an

open covering of X.

Proof. Let α = (αn) : (Fn)→ (Gn) be a morphism of Coh(X, I). The cokernel of
α is the inverse system (Coker(αn)) (details omitted). To describe the kernel let

K′
l,m = Im(Ker(αl)→ Fm)

for l ≥ m. We claim:
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(a) the inverse system (K′
l,m)l≥m is eventually constant, say with value K′

m,
(b) the system (K′

m/InK′
m)m≥n is eventually constant, say with value Kn,

(c) the system (Kn) forms an object of Coh(X, I), and
(d) this object is the kernel of α.

To see (a), (b), and (c) we may work affine locally, say X = Spec(A) and I corre-
sponds to the ideal I ⊂ A. By Lemma 23.1 α corresponds to a map f : M → N
of finite A∧-modules. Denote K = Ker(f). Note that A∧ is a Noetherian ring
(Algebra, Lemma 97.6). Choose an integer c ≥ 0 such that K ∩ InM ⊂ In−cK for
n ≥ c (Algebra, Lemma 51.2) and which satisfies Algebra, Lemma 51.3 for the map
f and the ideal I∧ = IA∧. Then K′

l,m corresponds to the A-module

K ′
l,m = a−1(I lN) + ImM

ImM
= K + I l−cf−1(IcN) + ImM

ImM
= K + ImM

ImM

where the last equality holds if l ≥ m + c. So K′
m corresponds to the A-module

K/K ∩ ImM and K′
m/InK′

m corresponds to
K

K ∩ ImM + InK
= K

InK

for m ≥ n+ c by our choice of c above. Hence Kn corresponds to K/InK.

We prove (d). It is clear from the description on affines above that the composition
(Kn)→ (Fn)→ (Gn) is zero. Let β : (Hn)→ (Fn) be a morphism such that α◦β =
0. Then Hl → Fl maps into Ker(αl). Since Hm = Hl/ImHl for l ≥ m we obtain a
system of maps Hm → K′

l,m. Thus a map Hm → K′
m. Since Hn = Hm/InHm we

obtain a system of maps Hn → K′
m/InK′

m and hence a map Hn → Kn as desired.

To finish the proof of (1) we still have to show that Coim = Im in Coh(X, I). We
have seen above that taking kernels and cokernels commutes, over affines, with the
description of Coh(X, I) as a category of modules. Since Im = Coim holds in the
category of modules this gives Coim = Im in Coh(X, I). Parts (2) and (3) of the
lemma are immediate from our construction of kernels and cokernels. □

Lemma 23.3.087Y Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. A map (Fn) → (Gn) is surjective in Coh(X, I) if and only if
F1 → G1 is surjective.

Proof. Omitted. Hint: Look on affine opens, use Lemma 23.1, and use Algebra,
Lemma 20.1. □

Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent sheaf of ideals.
There is a functor

(23.3.1)0880 Coh(OX) −→ Coh(X, I), F 7−→ F∧

which associates to the coherent OX -module F the object F∧ = (F/InF) of
Coh(X, I).

Lemma 23.4.0881 The functor (23.3.1) is exact.

Proof. It suffices to check this locally on X. Hence we may assume X is affine, i.e.,
we have a situation as in Lemma 23.1. The functor is the functor ModfgA → ModfgA∧

which associates to a finite A-module M the completion M∧. Thus the result
follows from Algebra, Lemma 97.2. □
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Lemma 23.5.0882 Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. Let F , G be coherent OX-modules. Set H = HomOX

(G,F). Then
limH0(X,H/InH) = MorCoh(X,I)(G∧,F∧).

Proof. To prove this we may work affine locally on X. Hence we may assume
X = Spec(A) and F , G given by finite A-module M and N . Then H corresponds
to the finite A-module H = HomA(M,N). The statement of the lemma becomes
the statement

H∧ = HomA∧(M∧, N∧)
via the equivalence of Lemma 23.1. By Algebra, Lemma 97.2 (used 3 times) we
have
H∧ = HomA(M,N)⊗A A∧ = HomA∧(M ⊗A A∧, N ⊗A A∧) = HomA∧(M∧, N∧)

where the second equality uses that A∧ is flat over A (see More on Algebra, Lemma
65.4). The lemma follows. □

Let X be a Noetherian scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals. We
say an object (Fn) of Coh(X, I) is I-power torsion or is annihilated by a power of I
if there exists a c ≥ 1 such that Fn = Fc for all n ≥ c. If this is the case we will say
that (Fn) is annihilated by Ic. If X = Spec(A) is affine, then, via the equivalence of
Lemma 23.1, these objects corresponds exactly to the finite A-modules annihilated
by a power of I or by Ic.

Lemma 23.6.0889 Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. Let G be a coherent OX-module. Let (Fn) an object of Coh(X, I).

(1) If α : (Fn) → G∧ is a map whose kernel and cokernel are annihilated by
a power of I, then there exists a unique (up to unique isomorphism) triple
(F , a, β) where
(a) F is a coherent OX-module,
(b) a : F → G is an OX-module map whose kernel and cokernel are anni-

hilated by a power of I,
(c) β : (Fn)→ F∧ is an isomorphism, and
(d) α = a∧ ◦ β.

(2) If α : G∧ → (Fn) is a map whose kernel and cokernel are annihilated by
a power of I, then there exists a unique (up to unique isomorphism) triple
(F , a, β) where
(a) F is a coherent OX-module,
(b) a : G → F is an OX-module map whose kernel and cokernel are anni-

hilated by a power of I,
(c) β : F∧ → (Fn) is an isomorphism, and
(d) α = β ◦ a∧.

Proof. Proof of (1). The uniqueness implies it suffices to construct (F , a, β) Zariski
locally on X. Thus we may assume X = Spec(A) and I corresponds to the ideal
I ⊂ A. In this situation Lemma 23.1 applies. Let M ′ be the finite A∧-module
corresponding to (Fn). Let N be the finite A-module corresponding to G. Then α
corresponds to a map

φ : M ′ −→ N∧

whose kernel and cokernel are annihilated by It for some t. Recall that N∧ =
N ⊗A A∧ (Algebra, Lemma 97.1). By More on Algebra, Lemma 89.16 there is an
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A-module map ψ : M → N whose kernel and cokernel are I-power torsion and
an isomorphism M ⊗A A∧ = M ′ compatible with φ. As N and M ′ are finite
modules, we conclude that M is a finite A-module, see More on Algebra, Remark
89.19. Hence M ⊗A A∧ = M∧. We omit the verification that the triple (M,N →
M,M∧ →M ′) so obtained is unique up to unique isomorphism.
The proof of (2) is exactly the same and we omit it. □

Lemma 23.7.0EHP Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. Any object of Coh(X, I) which is annihilated by a power of I is in
the essential image of (23.3.1). Moreover, if F , G are in Coh(OX) and either F
or G is annihilated by a power of I, then the maps

HomX(F ,G)

��

ExtX(F ,G)

��
HomCoh(X,I)(F∧,G∧) ExtCoh(X,I)(F∧,G∧)

are isomorphisms.

Proof. Suppose (Fn) is an object of Coh(X, I) which is annihilated by Ic for some
c ≥ 1. Then Fn → Fc is an isomorphism for n ≥ c. Hence if we set F = Fc, then
we see that F∧ ∼= (Fn). This proves the first assertion.
Let F , G be objects of Coh(OX) such that either F or G is annihilated by Ic for
some c ≥ 1. Then H = HomOX

(G,F) is a coherent OX -module annihilated by Ic.
Hence we see that

HomX(G,F) = H0(X,H) = limH0(X,H/InH) = MorCoh(X,I)(G∧,F∧).
see Lemma 23.5. This proves the statement on homomorphisms.
The notation Ext refers to extensions as defined in Homology, Section 6. The
injectivity of the map on Ext’s follows immediately from the bijectivity of the map
on Hom’s. For surjectivity, assume F is annihilated by a power of I. Then part (1)
of Lemma 23.6 shows that given an extension

0→ G∧ → (En)→ F∧ → 0
in Coh(U, IOU ) the morphism G∧ → (En) is isomorphic to G → E∧ for some G → E
in Coh(OU ). Similarly in the other case. □

Lemma 23.8.087Z Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. If (Fn) is an object of Coh(X, I) then

⊕
Ker(Fn+1 → Fn) is a

finite type, graded, quasi-coherent
⊕
In/In+1-module.

Proof. The question is local on X hence we may assume X is affine, i.e., we
have a situation as in Lemma 23.1. In this case, if (Fn) corresponds to the finite
A∧ module M , then

⊕
Ker(Fn+1 → Fn) corresponds to

⊕
InM/In+1M which is

clearly a finite module over
⊕
In/In+1. □

Lemma 23.9.0887 Let f : X → Y be a morphism of Noetherian schemes. Let J ⊂ OY
be a quasi-coherent sheaf of ideals and set I = f−1JOX . Then there is a right exact
functor

f∗ : Coh(Y,J ) −→ Coh(X, I)
which sends (Gn) to (f∗Gn). If f is flat, then f∗ is an exact functor.
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Proof. Since f∗ : Coh(OY )→ Coh(OX) is right exact we have
f∗Gn = f∗(Gn+1/InGn+1) = f∗Gn+1/f

−1Inf∗Gn+1 = f∗Gn+1/J nf∗Gn+1

hence the pullback of a system is a system. The construction of cokernels in the
proof of Lemma 23.2 shows that f∗ : Coh(Y,J ) → Coh(X, I) is always right
exact. If f is flat, then f∗ : Coh(OY ) → Coh(OX) is an exact functor. It follows
from the construction of kernels in the proof of Lemma 23.2 that in this case
f∗ : Coh(Y,J )→ Coh(X, I) also transforms kernels into kernels. □

Lemma 23.10.0EHQ Let f : X ′ → X be a morphism of Noetherian schemes. Let
Z ⊂ X be a closed subscheme and denote Z ′ = f−1Z the scheme theoretic inverse
image. Let I ⊂ OX , I ′ ⊂ OX′ be the corresponding quasi-coherent sheaves of
ideals. If f is flat and the induced morphism Z ′ → Z is an isomorphism, then the
pullback functor f∗ : Coh(X, I)→ Coh(X ′, I ′) (Lemma 23.9) is an equivalence.

Proof. If X and X ′ are affine, then this follows immediately from More on Algebra,
Lemma 89.3. To prove it in general we let Zn ⊂ X, Z ′

n ⊂ X ′ be the nth infinitesimal
neighbourhoods of Z, Z ′. The induced morphism Zn → Z ′

n is a homeomorphism
on underlying topological spaces. On the other hand, if z′ ∈ Z ′ maps to z ∈ Z,
then the ring map OX,z → OX′,z′ is flat and induces an isomorphism OX,z/Iz →
OX′,z′/I ′

z′ . Hence it induces an isomorphismOX,z/Inz → OX′,z′/(I ′
z′)n for all n ≥ 1

for example by More on Algebra, Lemma 89.2. Thus Z ′
n → Zn is an isomorphism

of schemes. Thus f∗ induces an equivalence between the category of coherent OX -
modules annihilated by In and the category of coherent OX′ -modules annihilated
by (I ′)n, see Lemma 9.8. This clearly implies the lemma. □

Lemma 23.11.0EHR Let X be a Noetherian scheme. Let I,J ⊂ OX be quasi-coherent
sheaves of ideals. If V (I) = V (J ) is the same closed subset of X, then Coh(X, I)
and Coh(X,J ) are equivalent.

Proof. First, assume X = Spec(A) is affine. Let I, J ⊂ A be the ideals corre-
sponding to I,J . Then V (I) = V (J) implies we have Ic ⊂ J and Jd ⊂ I for some
c, d ≥ 1 by elementary properties of the Zariski topology (see Algebra, Section 17
and Lemma 32.5). Hence the I-adic and J-adic completions of A agree, see Algebra,
Lemma 96.9. Thus the equivalence follows from Lemma 23.1 in this case.
In general, using what we said above and the fact that X is quasi-compact, to
choose c, d ≥ 1 such that Ic ⊂ J and J d ⊂ I. Then given an object (Fn) in
Coh(X, I) we claim that the inverse system

(Fcn/J nFcn)
is in Coh(X,J ). This may be checked on the members of an affine covering; we omit
the details. In the same manner we can construct an object of Coh(X, I) starting
with an object of Coh(X,J ). We omit the verification that these constructions
define mutually quasi-inverse functors. □

24. Grothendieck’s existence theorem, I

087V In this section we discuss Grothendieck’s existence theorem for the projective case.
We will use the notion of coherent formal modules developed in Section 23. The
reader who is familiar with formal schemes is encouraged to read the statement and
proof of the theorem in [DG67].
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Lemma 24.1.0883 Let A be Noetherian ring complete with respect to an ideal I. Let
f : X → Spec(A) be a proper morphism. Let I = IOX . Then the functor (23.3.1)
is fully faithful.

Proof. Let F , G be coherent OX -modules. Then H = HomOX
(G,F) is a coherent

OX -module, see Modules, Lemma 22.6. By Lemma 23.5 the map

limnH
0(X,H/InH)→ MorCoh(X,I)(G∧,F∧)

is bijective. Hence fully faithfulness of (23.3.1) follows from the theorem on formal
functions (Lemma 20.6) for the coherent sheaf H. □

Lemma 24.2.0884 Let A be Noetherian ring and I ⊂ A an ideal. Let f : X → Spec(A)
be a proper morphism and let L be an f -ample invertible sheaf. Let I = IOX . Let
(Fn) be an object of Coh(X, I). Then there exists an integer d0 such that

H1(X,Ker(Fn+1 → Fn)⊗ L⊗d) = 0

for all n ≥ 0 and all d ≥ d0.

Proof. Set B =
⊕
In/In+1 and B =

⊕
In/In+1 = f∗B̃. By Lemma 23.8 the

graded quasi-coherent B-module G =
⊕

Ker(Fn+1 → Fn) is of finite type. Hence
the lemma follows from Lemma 19.3 part (2). □

Lemma 24.3.0885 Let A be Noetherian ring complete with respect to an ideal I. Let
f : X → Spec(A) be a projective morphism. Let I = IOX . Then the functor
(23.3.1) is an equivalence.

Proof. We have already seen that (23.3.1) is fully faithful in Lemma 24.1. Thus it
suffices to show that the functor is essentially surjective.

We first show that every object (Fn) of Coh(X, I) is the quotient of an object in
the image of (23.3.1). Let L be an f -ample invertible sheaf on X. Choose d0 as in
Lemma 24.2. Choose a d ≥ d0 such that F1 ⊗ L⊗d is globally generated by some
sections s1,1, . . . , st,1. Since the transition maps of the system

H0(X,Fn+1 ⊗ L⊗d) −→ H0(X,Fn ⊗ L⊗d)

are surjective by the vanishing of H1 we can lift s1,1, . . . , st,1 to a compatible system
of global sections s1,n, . . . , st,n of Fn ⊗L⊗d. These determine a compatible system
of maps

(s1,n, . . . , st,n) : (L⊗−d)⊕t −→ Fn
Using Lemma 23.3 we deduce that we have a surjective map(

(L⊗−d)⊕t)∧ −→ (Fn)

as desired.

The result of the previous paragraph and the fact that Coh(X, I) is abelian (Lemma
23.2) implies that every object of Coh(X, I) is a cokernel of a map between objects
coming from Coh(OX). As (23.3.1) is fully faithful and exact by Lemmas 24.1 and
23.4 we conclude. □
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25. Grothendieck’s existence theorem, II

0886 In this section we discuss Grothendieck’s existence theorem in the proper case.
Before we give the statement and proof, we need to develop a bit more theory re-
garding the categories Coh(X, I) of coherent formal modules introduced in Section
23.

Remark 25.1.0888 Let X be a Noetherian scheme and let I,K ⊂ OX be quasi-
coherent sheaves of ideals. Let α : (Fn) → (Gn) be a morphism of Coh(X, I).
Given an affine open Spec(A) = U ⊂ X with I|U ,K|U corresponding to ideals
I,K ⊂ A denote αU : M → N of finite A∧-modules which corresponds to α|U via
Lemma 23.1. We claim the following are equivalent

(1) there exists an integer t ≥ 1 such that Ker(αn) and Coker(αn) are annihi-
lated by Kt for all n ≥ 1,

(2) for any affine open Spec(A) = U ⊂ X as above the modules Ker(αU ) and
Coker(αU ) are annihilated by Kt for some integer t ≥ 1, and

(3) there exists a finite affine open covering X =
⋃
Ui such that the conclusion

of (2) holds for αUi .
If these equivalent conditions hold we will say that α is a map whose kernel and
cokernel are annihilated by a power of K. To see the equivalence we use the following
commutative algebra fact: suppose given an exact sequence

0→ T →M → N → Q→ 0

of A-modules with T and Q annihilated by Kt for some ideal K ⊂ A. Then for every
f, g ∈ Kt there exists a canonical map ”fg” : N → M such that M → N → M is
equal to multiplication by fg. Namely, for y ∈ N we can pick x ∈M mapping to fy
in N and then we can set ”fg”(y) = gx. Thus it is clear that Ker(M/JM → N/JN)
and Coker(M/JM → N/JN) are annihilated by K2t for any ideal J ⊂ A.

Applying the commutative algebra fact to αUi
and J = In we see that (3) implies

(1). Conversely, suppose (1) holds and M → N is equal to αU . Then there is
a t ≥ 1 such that Ker(M/InM → N/InN) and Coker(M/InM → N/InN) are
annihilated by Kt for all n. We obtain maps ”fg” : N/InN → M/InM which
in the limit induce a map N → M as N and M are I-adically complete. Since
the composition with N → M → N is multiplication by fg we conclude that fg
annihilates T and Q. In other words T and Q are annihilated by K2t as desired.

Lemma 25.2.088A Let X be a Noetherian scheme. Let I,K ⊂ OX be quasi-coherent
sheaves of ideals. Let Xe ⊂ X be the closed subscheme cut out by Ke. Let Ie =
IOXe . Let (Fn) be an object of Coh(X, I). Assume

(1) the functor Coh(OXe
)→ Coh(Xe, Ie) is an equivalence for all e ≥ 1, and

(2) there exists a coherent sheaf H on X and a map α : (Fn) → H∧ whose
kernel and cokernel are annihilated by a power of K.

Then (Fn) is in the essential image of (23.3.1).

Proof. During this proof we will use without further mention that for a closed
immersion i : Z → X the functor i∗ gives an equivalence between the category of
coherent modules on Z and coherent modules on X annihilated by the ideal sheaf
of Z, see Lemma 9.8. In particular we may identify Coh(OXe

) with the category of
coherent OX -modules annihilated by Ke and Coh(Xe, Ie) as the full subcategory of
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Coh(X, I) of objects annihilated by Ke. Moreover (1) tells us these two categories
are equivalent under the completion functor (23.3.1).
Applying this equivalence we get a coherent OX -module Ge annihilated by Ke cor-
responding to the system (Fn/KeFn) of Coh(X, I). The maps Fn/Ke+1Fn →
Fn/KeFn correspond to canonical maps Ge+1 → Ge which induce isomorphisms
Ge+1/KeGe+1 → Ge. Hence (Ge) is an object of Coh(X,K). The map α induces a
system of maps

Fn/KeFn −→ H/(In +Ke)H
whence maps Ge → H/KeH (by the equivalence of categories again). Let t ≥ 1
be an integer, which exists by assumption (2), such that Kt annihilates the kernel
and cokernel of all the maps Fn → H/InH. Then K2t annihilates the kernel and
cokernel of the maps Fn/KeFn → H/(In + Ke)H, see Remark 25.1. Whereupon
we conclude that K4t annihilates the kernel and the cokernel of the maps

Ge −→ H/KeH,
see Remark 25.1. We apply Lemma 23.6 to obtain a coherent OX -module F , a
map a : F → H and an isomorphism β : (Ge)→ (F/KeF) in Coh(X,K). Working
backwards, for a given n the triple (F/InF , a mod In, β mod In) is a triple as
in the lemma for the morphism αn mod Ke : (Fn/KeFn) → (H/(In + Ke)H) of
Coh(X,K). Thus the uniqueness in Lemma 23.6 gives a canonical isomorphism
F/InF → Fn compatible with all the morphisms in sight. This finishes the proof
of the lemma. □

Lemma 25.3.088B Let Y be a Noetherian scheme. Let J ,K ⊂ OY be quasi-coherent
sheaves of ideals. Let f : X → Y be a proper morphism which is an isomorphism
over V = Y \V (K). Set I = f−1JOX . Let (Gn) be an object of Coh(Y,J ), let F be
a coherent OX-module, and let β : (f∗Gn)→ F∧ be an isomorphism in Coh(X, I).
Then there exists a map

α : (Gn) −→ (f∗F)∧

in Coh(Y,J ) whose kernel and cokernel are annihilated by a power of K.

Proof. Since f is a proper morphism we see that f∗F is a coherent OY -module
(Proposition 19.1). Thus the statement of the lemma makes sense. Consider the
compositions

γn : Gn → f∗f
∗Gn → f∗(F/InF).

Here the first map is the adjunction map and the second is f∗βn. We claim that
there exists a unique α as in the lemma such that the compositions

Gn
αn−−→ f∗F/J nf∗F → f∗(F/InF)

equal γn for all n. Because of the uniqueness we may assume that Y = Spec(B) is
affine. Let J ⊂ B corresponds to the ideal J . Set

Mn = H0(X,F/InF) and M = H0(X,F)
By Lemma 20.4 and Theorem 20.5 the inverse limit of the modules Mn equals
the completion M∧ = limM/JnM . Set Nn = H0(Y,Gn) and N = limNn. Via
the equivalence of categories of Lemma 23.1 the finite B∧ modules N and M∧

correspond to (Gn) and f∗F∧. It follows from this that α has to be the morphism
of Coh(Y,J ) corresponding to the homomorphism

lim γn : N = limnNn −→ limMn = M∧
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of finite B∧-modules.
We still have to show that the kernel and cokernel of α are annihilated by a power
of K. Set Y ′ = Spec(B∧) and X ′ = Y ′ ×Y X. Let K′, J ′, G′

n and I ′, F ′ be
the pullback of K, J , Gn and I, F , to Y ′ and X ′. The projection morphism
f ′ : X ′ → Y ′ is the base change of f by Y ′ → Y . Note that Y ′ → Y is a flat
morphism of schemes as B → B∧ is flat by Algebra, Lemma 97.2. Hence f ′

∗F ′,
resp. f ′

∗(f ′)∗G′
n is the pullback of f∗F , resp. f∗f

∗Gn to Y ′ by Lemma 5.2. The
uniqueness of our construction shows the pullback of α to Y ′ is the corresponding
map α′ constructed for the situation on Y ′. Moreover, to check that the kernel
and cokernel of α are annihilated by Kt it suffices to check that the kernel and
cokernel of α′ are annihilated by (K′)t. Namely, to see this we need to check this
for kernels and cokernels of the maps αn and α′

n (see Remark 25.1) and the ring
map B → B∧ induces an equivalence of categories between modules annihilated
by Jn and (J ′)n, see More on Algebra, Lemma 89.3. Thus we may assume B is
complete with respect to J .
Assume Y = Spec(B) is affine, J corresponds to the ideal J ⊂ B, and B is
complete with respect to J . In this case (Gn) is in the essential image of the functor
Coh(OY ) → Coh(Y,J ). Say G is a coherent OY -module such that (Gn) = G∧.
Note that f∗(G∧) = (f∗G)∧. Hence Lemma 24.1 tells us that β comes from an
isomorphism b : f∗G → F and α is the completion functor applied to

G → f∗f
∗G ∼= f∗F

Hence we are trying to verify that the kernel and cokernel of the adjunction map
c : G → f∗f

∗G are annihilated by a power of K. However, since the restriction
f |f−1(V ) : f−1(V ) → V is an isomorphism we see that c|V is an isomorphism.
Thus the coherent sheaves Ker(c) and Coker(c) are supported on V (K) hence are
annihilated by a power of K (Lemma 10.2) as desired. □

The following proposition is the form of Grothendieck’s existence theorem which is
most often used in practice.

Proposition 25.4.088C Let A be a Noetherian ring complete with respect to an ideal
I. Let f : X → Spec(A) be a proper morphism of schemes. Set I = IOX . Then
the functor (23.3.1) is an equivalence.

Proof. We have already seen that (23.3.1) is fully faithful in Lemma 24.1. Thus it
suffices to show that the functor is essentially surjective.
Consider the collection Ξ of quasi-coherent sheaves of ideals K ⊂ OX such that
every object (Fn) annihilated by K is in the essential image. We want to show (0)
is in Ξ. If not, then since X is Noetherian there exists a maximal quasi-coherent
sheaf of ideals K not in Ξ, see Lemma 10.1. After replacing X by the closed
subscheme of X corresponding to K we may assume that every nonzero K is in Ξ.
(This uses the correspondence by coherent modules annihilated by K and coherent
modules on the closed subscheme corresponding to K, see Lemma 9.8.) Let (Fn)
be an object of Coh(X, I). We will show that this object is in the essential image
of the functor (23.3.1), thereby completion the proof of the proposition.
Apply Chow’s lemma (Lemma 18.1) to find a proper surjective morphism f : X ′ →
X which is an isomorphism over a dense open U ⊂ X such that X ′ is projective over
A. Let K be the quasi-coherent sheaf of ideals cutting out the reduced complement
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X \ U . By the projective case of Grothendieck’s existence theorem (Lemma 24.3)
there exists a coherent module F ′ on X ′ such that (F ′)∧ ∼= (f∗Fn). By Proposition
19.1 the OX -module H = f∗F ′ is coherent and by Lemma 25.3 there exists a
morphism (Fn) → H∧ of Coh(X, I) whose kernel and cokernel are annihilated by
a power of K. The powers Ke are all in Ξ so that (23.3.1) is an equivalence for the
closed subschemes Xe = V (Ke). We conclude by Lemma 25.2. □

26. Being proper over a base

0CYK This is just a short section to point out some useful features of closed subsets proper
over a base and finite type, quasi-coherent modules with support proper over a base.

Lemma 26.1.0CYL Let f : X → S be a morphism of schemes which is locally of finite
type. Let Z ⊂ X be a closed subset. The following are equivalent

(1) the morphism Z → S is proper if Z is endowed with the reduced induced
closed subscheme structure (Schemes, Definition 12.5),

(2) for some closed subscheme structure on Z the morphism Z → S is proper,
(3) for any closed subscheme structure on Z the morphism Z → S is proper.

Proof. The implications (3) ⇒ (1) and (1) ⇒ (2) are immediate. Thus it suffices
to prove that (2) implies (3). We urge the reader to find their own proof of this
fact. Let Z ′ and Z ′′ be closed subscheme structures on Z such that Z ′ → S is
proper. We have to show that Z ′′ → S is proper. Let Z ′′′ = Z ′ ∪ Z ′′ be the
scheme theoretic union, see Morphisms, Definition 4.4. Then Z ′′′ is another closed
subscheme structure on Z. This follows for example from the description of scheme
theoretic unions in Morphisms, Lemma 4.6. Since Z ′′ → Z ′′′ is a closed immersion
it suffices to prove that Z ′′′ → S is proper (see Morphisms, Lemmas 41.6 and
41.4). The morphism Z ′ → Z ′′′ is a bijective closed immersion and in particular
surjective and universally closed. Then the fact that Z ′ → S is separated implies
that Z ′′′ → S is separated, see Morphisms, Lemma 41.11. Moreover Z ′′′ → S is
locally of finite type as X → S is locally of finite type (Morphisms, Lemmas 15.5
and 15.3). Since Z ′ → S is quasi-compact and Z ′ → Z ′′′ is a homeomorphism we
see that Z ′′′ → S is quasi-compact. Finally, since Z ′ → S is universally closed,
we see that the same thing is true for Z ′′′ → S by Morphisms, Lemma 41.9. This
finishes the proof. □

Definition 26.2.0CYM Let f : X → S be a morphism of schemes which is locally
of finite type. Let Z ⊂ X be a closed subset. We say Z is proper over S if the
equivalent conditions of Lemma 26.1 are satisfied.

The lemma used in the definition above is false if the morphism f : X → S is not
locally of finite type. Therefore we urge the reader not to use this terminology if f
is not locally of finite type.

Lemma 26.3.0CYN Let f : X → S be a morphism of schemes which is locally of finite
type. Let Y ⊂ Z ⊂ X be closed subsets. If Z is proper over S, then the same is
true for Y .

Proof. Omitted. □
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Lemma 26.4.0CYP Consider a cartesian diagram of schemes

X ′

f ′

��

g′
// X

f

��
S′ g // S

with f locally of finite type. If Z is a closed subset of X proper over S, then
(g′)−1(Z) is a closed subset of X ′ proper over S′.

Proof. Observe that the statement makes sense as f ′ is locally of finite type by
Morphisms, Lemma 15.4. Endow Z with the reduced induced closed subscheme
structure. Denote Z ′ = (g′)−1(Z) the scheme theoretic inverse image (Schemes,
Definition 17.7). Then Z ′ = X ′ ×X Z = (S′ ×S X)×X Z = S′ ×S Z is proper over
S′ as a base change of Z over S (Morphisms, Lemma 41.5). □

Lemma 26.5.0CYQ Let S be a scheme. Let f : X → Y be a morphism of schemes
which are locally of finite type over S.

(1) If Y is separated over S and Z ⊂ X is a closed subset proper over S, then
f(Z) is a closed subset of Y proper over S.

(2) If f is universally closed and Z ⊂ X is a closed subset proper over S, then
f(Z) is a closed subset of Y proper over S.

(3) If f is proper and Z ⊂ Y is a closed subset proper over S, then f−1(Z) is
a closed subset of X proper over S.

Proof. Proof of (1). Assume Y is separated over S and Z ⊂ X is a closed subset
proper over S. Endow Z with the reduced induced closed subscheme structure and
apply Morphisms, Lemma 41.10 to Z → Y over S to conclude.

Proof of (2). Assume f is universally closed and Z ⊂ X is a closed subset proper
over S. Endow Z and Z ′ = f(Z) with their reduced induced closed subscheme
structures. We obtain an induced morphism Z → Z ′. Denote Z ′′ = f−1(Z ′)
the scheme theoretic inverse image (Schemes, Definition 17.7). Then Z ′′ → Z ′ is
universally closed as a base change of f (Morphisms, Lemma 41.5). Hence Z → Z ′

is universally closed as a composition of the closed immersion Z → Z ′′ and Z ′′ → Z ′

(Morphisms, Lemmas 41.6 and 41.4). We conclude that Z ′ → S is separated by
Morphisms, Lemma 41.11. Since Z → S is quasi-compact and Z → Z ′ is surjective
we see that Z ′ → S is quasi-compact. Since Z ′ → S is the composition of Z ′ → Y
and Y → S we see that Z ′ → S is locally of finite type (Morphisms, Lemmas 15.5
and 15.3). Finally, since Z → S is universally closed, we see that the same thing is
true for Z ′ → S by Morphisms, Lemma 41.9. This finishes the proof.

Proof of (3). Assume f is proper and Z ⊂ Y is a closed subset proper over S. Endow
Z with the reduced induced closed subscheme structure. Denote Z ′ = f−1(Z) the
scheme theoretic inverse image (Schemes, Definition 17.7). Then Z ′ → Z is proper
as a base change of f (Morphisms, Lemma 41.5). Whence Z ′ → S is proper as the
composition of Z ′ → Z and Z → S (Morphisms, Lemma 41.4). This finishes the
proof. □

Lemma 26.6.0CYR Let f : X → S be a morphism of schemes which is locally of finite
type. Let Zi ⊂ X, i = 1, . . . , n be closed subsets. If Zi, i = 1, . . . , n are proper over
S, then the same is true for Z1 ∪ . . . ∪ Zn.
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Proof. Endow Zi with their reduced induced closed subscheme structures. The
morphism

Z1 ⨿ . . .⨿ Zn −→ X

is finite by Morphisms, Lemmas 44.12 and 44.13. As finite morphisms are univer-
sally closed (Morphisms, Lemma 44.11) and since Z1 ⨿ . . . ⨿ Zn is proper over S
we conclude by Lemma 26.5 part (2) that the image Z1 ∪ . . . ∪ Zn is proper over
S. □

Let f : X → S be a morphism of schemes which is locally of finite type. Let F
be a finite type, quasi-coherent OX -module. Then the support Supp(F) of F is a
closed subset of X, see Morphisms, Lemma 5.3. Hence it makes sense to say “the
support of F is proper over S”.

Lemma 26.7.0CYS Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a finite type, quasi-coherent OX-module. The following are
equivalent

(1) the support of F is proper over S,
(2) the scheme theoretic support of F (Morphisms, Definition 5.5) is proper

over S, and
(3) there exists a closed subscheme Z ⊂ X and a finite type, quasi-coherent
OZ-module G such that (a) Z → S is proper, and (b) (Z → X)∗G = F .

Proof. The support Supp(F) of F is a closed subset of X, see Morphisms, Lemma
5.3. Hence we can apply Definition 26.2. Since the scheme theoretic support of F is
a closed subscheme whose underlying closed subset is Supp(F) we see that (1) and
(2) are equivalent by Definition 26.2. It is clear that (2) implies (3). Conversely,
if (3) is true, then Supp(F) ⊂ Z (an inclusion of closed subsets of X) and hence
Supp(F) is proper over S for example by Lemma 26.3. □

Lemma 26.8.0CYT Consider a cartesian diagram of schemes

X ′

f ′

��

g′
// X

f

��
S′ g // S

with f locally of finite type. Let F be a finite type, quasi-coherent OX-module. If
the support of F is proper over S, then the support of (g′)∗F is proper over S′.

Proof. Observe that the statement makes sense because (g′)∗F is of finite type by
Modules, Lemma 9.2. We have Supp((g′)∗F) = (g′)−1(Supp(F)) by Morphisms,
Lemma 5.3. Thus the lemma follows from Lemma 26.4. □

Lemma 26.9.0CYU Let f : X → S be a morphism of schemes which is locally of finite
type. Let F , G be finite type, quasi-coherent OX-module.

(1) If the supports of F , G are proper over S, then the same is true for F ⊕G,
for any extension of G by F , for Im(u) and Coker(u) given any OX-module
map u : F → G, and for any quasi-coherent quotient of F or G.

(2) If S is locally Noetherian, then the category of coherent OX-modules with
support proper over S is a Serre subcategory (Homology, Definition 10.1)
of the abelian category of coherent OX-modules.
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Proof. Proof of (1). Let Z, Z ′ be the support of F and G. Then all the sheaves
mentioned in (1) have support contained in Z∪Z ′. Thus the assertion itself is clear
from Lemmas 26.3 and 26.6 provided we check that these sheaves are finite type
and quasi-coherent. For quasi-coherence we refer the reader to Schemes, Section
24. For “finite type” we suggest the reader take a look at Modules, Section 9.

Proof of (2). The proof is the same as the proof of (1). Note that the assertions
make sense as X is locally Noetherian by Morphisms, Lemma 15.6 and by the
description of the category of coherent modules in Section 9. □

Lemma 26.10.08DS Let S be a locally Noetherian scheme. Let f : X → S be a
morphism of schemes which is locally of finite type. Let F be a coherent OX-
module with support proper over S. Then Rpf∗F is a coherent OS-module for all
p ≥ 0.

Proof. By Lemma 26.7 there exists a closed immersion i : Z → X and a finite
type, quasi-coherent OZ-module G such that (a) g = f ◦ i : Z → S is proper, and
(b) i∗G = F . We see that Rpg∗G is coherent on S by Proposition 19.1. On the
other hand, Rqi∗G = 0 for q > 0 (Lemma 9.9). By Cohomology, Lemma 13.8 we
get Rpf∗F = Rpg∗G which concludes the proof. □

Lemma 26.11.0CYV Let S be a Noetherian scheme. Let f : X → S be a finite type
morphism. Let I ⊂ OX be a quasi-coherent sheaf of ideals. The following are Serre
subcategories of Coh(X, I)

(1) the full subcategory of Coh(X, I) consisting of those objects (Fn) such that
the support of F1 is proper over S,

(2) the full subcategory of Coh(X, I) consisting of those objects (Fn) such that
there exists a closed subscheme Z ⊂ X proper over S with IZFn = 0 for
all n ≥ 1.

Proof. We will use the criterion of Homology, Lemma 10.2. Moreover, we will use
that if 0 → (Gn) → (Fn) → (Hn) → 0 is a short exact sequence of Coh(X, I),
then (a) Gn → Fn → Hn → 0 is exact for all n ≥ 1 and (b) Gn is a quotient of
Ker(Fm → Hm) for some m ≥ n. See proof of Lemma 23.2.

Proof of (1). Let (Fn) be an object of Coh(X, I). Then Supp(Fn) = Supp(F1)
for all n ≥ 1. Hence by remarks (a) and (b) above we see that for any short
exact sequence 0 → (Gn) → (Fn) → (Hn) → 0 of Coh(X, I) we have Supp(G1) ∪
Supp(H1) = Supp(F1). This proves that the category defined in (1) is a Serre
subcategory of Coh(X, I).

Proof of (2). Here we argue the same way. Let 0 → (Gn) → (Fn) → (Hn) → 0
be a short exact sequence of Coh(X, I). If Z ⊂ X is a closed subscheme and IZ
annihilates Fn for all n, then IZ annihilates Gn and Hn for all n by (a) and (b)
above. Hence if Z → S is proper, then we conclude that the category defined in
(2) is closed under taking sub and quotient objects inside of Coh(X, I). Finally,
suppose that Z ⊂ X and Y ⊂ X are closed subschemes proper over S such that
IZGn = 0 and IYHn = 0 for all n ≥ 1. Then it follows from (a) above that
IZ∪Y = IZ · IY annihilates Fn for all n. By Lemma 26.6 (and via Definition 26.2
which tells us we may choose an arbitrary scheme structure used on the union) we
see that Z ∪ Y → S is proper and the proof is complete. □
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27. Grothendieck’s existence theorem, III

0CYW To state the general version of Grothendieck’s existence theorem we introduce a bit
more notation. Let A be a Noetherian ring complete with respect to an ideal I. Let
f : X → Spec(A) be a separated finite type morphism of schemes. Set I = IOX .
In this situation we let

Cohsupport proper over A(OX)
be the full subcategory of Coh(OX) consisting of those coherent OX -modules whose
support is proper over Spec(A). This is a Serre subcategory of Coh(OX), see Lemma
26.9. Similarly, we let

Cohsupport proper over A(X, I)
be the full subcategory of Coh(X, I) consisting of those objects (Fn) such that the
support of F1 is proper over Spec(A). This is a Serre subcategory of Coh(X, I) by
Lemma 26.11 part (1). Since the support of a quotient module is contained in the
support of the module, it follows that (23.3.1) induces a functor

(27.0.1)088D Cohsupport proper over A(OX) −→ Cohsupport proper over A(X, I)

We are now ready to state the main theorem of this section.

Theorem 27.1 (Grothendieck’s existence theorem).088E [DG67, III Theorem
5.1.5]

Let A be a Noetherian ring
complete with respect to an ideal I. Let X be a separated, finite type scheme over
A. Then the functor (27.0.1)

Cohsupport proper over A(OX) −→ Cohsupport proper over A(X, I)

is an equivalence.

Proof. We will use the equivalence of categories of Lemma 9.8 without further
mention. For a closed subscheme Z ⊂ X proper over A in this proof we will
say a coherent module on X is “supported on Z” if it is annihilated by the ideal
sheaf of Z or equivalently if it is the pushforward of a coherent module on Z.
By Proposition 25.4 we know that the result is true for the functor between co-
herent modules and systems of coherent modules supported on Z. Hence it suf-
fices to show that every object of Cohsupport proper over A(OX) and every object of
Cohsupport proper over A(X, I) is supported on a closed subscheme Z ⊂ X proper
over A. This holds by definition for objects of Cohsupport proper over A(OX). We will
prove this statement for objects of Cohsupport proper over A(X, I) using the method
of proof of Proposition 25.4. We urge the reader to read that proof first.

Consider the collection Ξ of quasi-coherent sheaves of ideals K ⊂ OX such that the
statement holds for every object (Fn) of Cohsupport proper over A(X, I) annihilated
by K. We want to show (0) is in Ξ. If not, then since X is Noetherian there exists a
maximal quasi-coherent sheaf of ideals K not in Ξ, see Lemma 10.1. After replacing
X by the closed subscheme of X corresponding to K we may assume that every
nonzero K is in Ξ. Let (Fn) be an object of Cohsupport proper over A(X, I). We will
show that this object is supported on a closed subscheme Z ⊂ X proper over A,
thereby completing the proof of the theorem.

Apply Chow’s lemma (Lemma 18.1) to find a proper surjective morphism f : Y →
X which is an isomorphism over a dense open U ⊂ X such that Y is H-quasi-
projective over A. Choose an open immersion j : Y → Y ′ with Y ′ projective over
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A, see Morphisms, Lemma 43.11. Observe that

Supp(f∗Fn) = f−1Supp(Fn) = f−1Supp(F1)

The first equality by Morphisms, Lemma 5.3. By assumption and Lemma 26.5 part
(3) we see that f−1Supp(F1) is proper over A. Hence the image of f−1Supp(F1)
under j is closed in Y ′ by Lemma 26.5 part (1). Thus F ′

n = j∗f
∗Fn is coherent

on Y ′ by Lemma 9.11. It follows that (F ′
n) is an object of Coh(Y ′, IOY ′). By

the projective case of Grothendieck’s existence theorem (Lemma 24.3) there exists
a coherent OY ′ -module F ′ and an isomorphism (F ′)∧ ∼= (F ′

n) in Coh(Y ′, IOY ′).
Since F ′/IF ′ = F ′

1 we see that

Supp(F ′) ∩ V (IOY ′) = Supp(F ′
1) = j(f−1Supp(F1))

The structure morphism p′ : Y ′ → Spec(A) is proper, hence p′(Supp(F ′) \ j(Y ))
is closed in Spec(A). A nonempty closed subset of Spec(A) contains a point of
V (I) as I is contained in the Jacobson radical of A by Algebra, Lemma 96.6. The
displayed equation shows that Supp(F ′) ∩ (p′)−1V (I) ⊂ j(Y ) hence we conclude
that Supp(F ′) ⊂ j(Y ). Thus F ′|Y = j∗F ′ is supported on a closed subscheme Z ′

of Y proper over A and (F ′|Y )∧ = (f∗Fn).

Let K be the quasi-coherent sheaf of ideals cutting out the reduced complement
X \ U . By Proposition 19.1 the OX -module H = f∗(F ′|Y ) is coherent and by
Lemma 25.3 there exists a morphism α : (Fn) → H∧ of Coh(X, I) whose kernel
and cokernel are annihilated by a power Kt of K. We obtain an exact sequence

0→ Ker(α)→ (Fn)→ H∧ → Coker(α)→ 0

in Coh(X, I). If Z0 ⊂ X is the scheme theoretic support of H, then it is clear
that Z0 ⊂ f(Z ′) set-theoretically. Hence Z0 is proper over A by Lemma 26.3 and
Lemma 26.5 part (2). Hence H∧ is in the subcategory defined in Lemma 26.11
part (2) and a fortiori in Cohsupport proper over A(X, I). We conclude that Ker(α)
and Coker(α) are in Cohsupport proper over A(X, I) by Lemma 26.11 part (1). By
induction hypothesis, more precisely because Kt is in Ξ, we see that Ker(α) and
Coker(α) are in the subcategory defined in Lemma 26.11 part (2). Since this is a
Serre subcategory by the lemma, we conclude that the same is true for (Fn) which
is what we wanted to show. □

Remark 27.2 (Unwinding Grothendieck’s existence theorem).088F Let A be a Noe-
therian ring complete with respect to an ideal I. Write S = Spec(A) and Sn =
Spec(A/In). Let X → S be a separated morphism of finite type. For n ≥ 1 we set
Xn = X ×S Sn. Picture:

X1
i1
//

��

X2
i2
//

��

X3 //

��

. . . X

��
S1 // S2 // S3 // . . . S

In this situation we consider systems (Fn, φn) where
(1) Fn is a coherent OXn -module,
(2) φn : i∗nFn+1 → Fn is an isomorphism, and
(3) Supp(F1) is proper over S1.

https://stacks.math.columbia.edu/tag/088F


COHOMOLOGY OF SCHEMES 75

Theorem 27.1 says that the completion functor
coherent OX -modules F

with support proper over A −→ systems (Fn)
as above

is an equivalence of categories. In the special case that X is proper over A we can
omit the conditions on the supports.

28. Grothendieck’s algebraization theorem

0898 Our first result is a translation of Grothendieck’s existence theorem in terms of
closed subschemes and finite morphisms.
Lemma 28.1.0899 Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X → S be a separated morphism of
finite type. For n ≥ 1 we set Xn = X×S Sn. Suppose given a commutative diagram

Z1 //

��

Z2 //

��

Z3 //

��

. . .

X1
i1 // X2

i2 // X3 // . . .

of schemes with cartesian squares. Assume that
(1) Z1 → X1 is a closed immersion, and
(2) Z1 → S1 is proper.

Then there exists a closed immersion of schemes Z → X such that Zn = Z ×S Sn.
Moreover, Z is proper over S.
Proof. Let’s write jn : Zn → Xn for the vertical morphisms. As the squares in
the statement are cartesian we see that the base change of jn to X1 is j1. Thus
Morphisms, Lemma 45.7 shows that jn is a closed immersion. Set Fn = jn,∗OZn

,
so that j♯n is a surjection OXn

→ Fn. Again using that the squares are cartesian
we see that the pullback of Fn+1 to Xn is Fn. Hence Grothendieck’s existence
theorem, as reformulated in Remark 27.2, tells us there exists a map OX → F of
coherent OX -modules whose restriction to Xn recovers OXn → Fn. Moreover, the
support of F is proper over S. As the completion functor is exact (Lemma 23.4)
we see that the cokernel Q of OX → F has vanishing completion. Since F has
support proper over S and so does Q this implies that Q = 0 for example because
the functor (27.0.1) is an equivalence by Grothendieck’s existence theorem. Thus
F = OX/J for some quasi-coherent sheaf of ideals J . Setting Z = V (J ) finishes
the proof. □

In the following lemma it is actually enough to assume that Y1 → X1 is finite as it
will imply that Yn → Xn is finite too (see More on Morphisms, Lemma 3.3).
Lemma 28.2.09ZT Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X → S be a separated morphism of
finite type. For n ≥ 1 we set Xn = X×S Sn. Suppose given a commutative diagram

Y1 //

��

Y2 //

��

Y3 //

��

. . .

X1
i1 // X2

i2 // X3 // . . .

of schemes with cartesian squares. Assume that

https://stacks.math.columbia.edu/tag/0899
https://stacks.math.columbia.edu/tag/09ZT
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(1) Yn → Xn is a finite morphism, and
(2) Y1 → S1 is proper.

Then there exists a finite morphism of schemes Y → X such that Yn = Y ×S Sn.
Moreover, Y is proper over S.

Proof. Let’s write fn : Yn → Xn for the vertical morphisms. Set Fn = fn,∗OYn
.

This is a coherent OXn-module as fn is finite (Lemma 9.9). Using that the squares
are cartesian we see that the pullback of Fn+1 to Xn is Fn. Hence Grothendieck’s
existence theorem, as reformulated in Remark 27.2, tells us there exists a coherent
OX -module F whose restriction to Xn recovers Fn. Moreover, the support of F is
proper over S. As the completion functor is fully faithful (Theorem 27.1) we see
that the multiplication maps Fn ⊗OXn

Fn → Fn fit together to give an algebra
structure on F . Setting Y = Spec

X
(F) finishes the proof. □

Lemma 28.3.0A42 Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X, Y be schemes over S. For
n ≥ 1 we set Xn = X×S Sn and Yn = Y ×S Sn. Suppose given a compatible system
of commutative diagrams

Xn+1

##

gn+1
// Yn+1

{{
Xn

66

  

gn

// Yn

55

||

Sn+1

Sn

55

Assume that
(1) X → S is proper, and
(2) Y → S is separated of finite type.

Then there exists a unique morphism of schemes g : X → Y over S such that gn is
the base change of g to Sn.

Proof. The morphisms (1, gn) : Xn → Xn ×S Yn are closed immersions because
Yn → Sn is separated (Schemes, Lemma 21.11). Thus by Lemma 28.1 there exists
a closed subscheme Z ⊂ X ×S Y proper over S whose base change to Sn recovers
Xn ⊂ Xn ×S Yn. The first projection p : Z → X is a proper morphism (as
Z is proper over S, see Morphisms, Lemma 41.7) whose base change to Sn is an
isomorphism for all n. In particular, p : Z → X is finite over an open neighbourhood
of X0 by Lemma 21.2. As X is proper over S this open neighbourhood is all of
X and we conclude p : Z → X is finite. Applying the equivalence of Proposition
25.4 we see that p∗OZ = OX as this is true modulo In for all n. Hence p is an
isomorphism and we obtain the morphism g as the composition X ∼= Z → Y . We
omit the proof of uniqueness. □

In order to prove an “abstract” algebraization theorem we need to assume we have
an ample invertible sheaf, as the result is false without such an assumption.

Theorem 28.4 (Grothendieck’s algebraization theorem).089A Let A be a Noetherian
ring complete with respect to an ideal I. Set S = Spec(A) and Sn = Spec(A/In).

https://stacks.math.columbia.edu/tag/0A42
https://stacks.math.columbia.edu/tag/089A
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Consider a commutative diagram

X1
i1
//

��

X2
i2
//

��

X3 //

��

. . .

S1 // S2 // S3 // . . .

of schemes with cartesian squares. Suppose given (Ln, φn) where each Ln is an
invertible sheaf on Xn and φn : i∗nLn+1 → Ln is an isomorphism. If

(1) X1 → S1 is proper, and
(2) L1 is ample on X1

then there exists a proper morphism of schemes X → S and an ample invertible
OX-module L and isomorphisms Xn

∼= X ×S Sn and Ln ∼= L|Xn
compatible with

the morphisms in and φn.

Proof. Since the squares in the diagram are cartesian and since the morphisms
Sn → Sn+1 are closed immersions, we see that the morphisms in are closed immer-
sions too. In particular we may think of Xm as a closed subscheme of Xn for m < n.
In fact Xm is the closed subscheme cut out by the quasi-coherent sheaf of ideals
ImOXn

. Moreover, the underlying topological spaces of the schemes X1, X2, X3, . . .
are all identified, hence we may (and do) think of sheaves OXn

as living on the same
underlying topological space; similarly for coherent OXn -modules. Set

Fn = Ker(OXn+1 → OXn)

so that we obtain short exact sequences

0→ Fn → OXn+1 → OXn → 0

By the above we have Fn = InOXn+1 . It follows Fn is a coherent sheaf on Xn+1
annihilated by I, hence we may (and do) think of it as a coherent module OX1 -
module. Observe that for m > n the sheaf

InOXm
/In+1OXm

maps isomorphically to Fn under the map OXm
→ OXn+1 . Hence given n1, n2 ≥ 0

we can pick an m > n1 + n2 and consider the multiplication map

In1OXm
× In2OXm

−→ In1+n2OXm
→ Fn1+n2

This induces an OX1 -bilinear map

Fn1 ×Fn2 −→ Fn1+n2

which in turn defines the structure of a graded OX1 -algebra on F =
⊕

n≥0 Fn.

Set B =
⊕
In/In+1; this is a finitely generated graded A/I-algebra. Set B =

(X1 → S1)∗B̃. The discussion above provides us with a canonical surjection

B −→ F

of graded OX1 -algebras. In particular we see that F is a finite type quasi-coherent
graded B-module. By Lemma 19.3 we can find an integer d0 such that H1(X1,F ⊗
L⊗d) = 0 for all d ≥ d0. Pick a d ≥ d0 such that there exist sections s0,1, . . . , sN,1 ∈
Γ(X1,L⊗d

1 ) which induce an immersion

ψ1 : X1 → PN
S1
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over S1, see Morphisms, Lemma 39.4. As X1 is proper over S1 we see that ψ1 is a
closed immersion, see Morphisms, Lemma 41.7 and Schemes, Lemma 10.4. We are
going to “lift” ψ1 to a compatible system of closed immersions of Xn into PN .
Upon tensoring the short exact sequences of the first paragraph of the proof by
L⊗d
n+1 we obtain short exact sequences

0→ Fn ⊗ L⊗d
n+1 → L

⊗d
n+1 → L

⊗d
n+1 → 0

Using the isomorphisms φn we obtain isomorphisms Ln+1 ⊗ OXl
= Ll for l ≤ n.

Whence the sequence above becomes
0→ Fn ⊗ L⊗d

1 → L⊗d
n+1 → L⊗d

n → 0

The vanishing of H1(X,Fn ⊗ L⊗d
1 ) implies we can inductively lift s0,1, . . . , sN,1 ∈

Γ(X1,L⊗d
1 ) to sections s0,n, . . . , sN,n ∈ Γ(Xn,L⊗d

n ). Thus we obtain a commutative
diagram

X1
i1
//

ψ1
��

X2
i2
//

ψ2
��

X3 //

ψ3
��

. . .

PN
S1

// PN
S2

// PN
S3

// . . .

where ψn = φ(Ln,(s0,n,...,sN,n)) in the notation of Constructions, Section 13. As the
squares in the statement of the theorem are cartesian we see that the squares in
the above diagram are cartesian. We win by applying Lemma 28.1. □
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