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1. Introduction

01DX In this document we work out some topics on cohomology of sheaves on topological
spaces. We mostly work in the generality of modules over a sheaf of rings and we
work with morphisms of ringed spaces. To see what happens for sheaves on sites
take a look at the chapter Cohomology on Sites, Section 1. Basic references are
[God73] and [Ive86].

2. Cohomology of sheaves

01DZ Let X be a topological space. Let F be an abelian sheaf. We know that the
category of abelian sheaves on X has enough injectives, see Injectives, Lemma 4.1.
Hence we can choose an injective resolution F [0]→ I•. As is customary we define

(2.0.1)0712 Hi(X,F) = Hi(Γ(X, I•))
to be the ith cohomology group of the abelian sheaf F . The family of functors
Hi(X,−) forms a universal δ-functor from Ab(X)→ Ab.
Let f : X → Y be a continuous map of topological spaces. With F [0] → I• as
above we define
(2.0.2)0713 Rif∗F = Hi(f∗I•)

to be the ith higher direct image of F . The family of functors Rif∗ forms a universal
δ-functor from Ab(X)→ Ab(Y ).
Let (X,OX) be a ringed space. Let F be an OX -module. We know that the
category of OX -modules on X has enough injectives, see Injectives, Lemma 5.1.
Hence we can choose an injective resolution F [0]→ I•. As is customary we define

(2.0.3)0714 Hi(X,F) = Hi(Γ(X, I•))
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to be the ith cohomology group of F . The family of functors Hi(X,−) forms a
universal δ-functor from Mod(OX)→ ModOX (X).
Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. With F [0] → I• as
above we define
(2.0.4)0715 Rif∗F = Hi(f∗I•)

to be the ith higher direct image of F . The family of functors Rif∗ forms a universal
δ-functor from Mod(OX)→ Mod(OY ).

3. Derived functors

0716 We briefly explain how to get right derived functors using resolution functors. For
the unbounded derived functors, please see Section 28.
Let (X,OX) be a ringed space. The category Mod(OX) is abelian, see Modules,
Lemma 3.1. In this chapter we will write

K(OX) = K(Mod(OX)) and D(OX) = D(Mod(OX)).
and similarly for the bounded versions for the triangulated categories introduced
in Derived Categories, Definition 8.1 and Definition 11.3. By Derived Categories,
Remark 24.3 there exists a resolution functor

j = jX : K+(Mod(OX)) −→ K+(I)
where I is the strictly full additive subcategory of Mod(OX) consisting of injective
sheaves. For any left exact functor F : Mod(OX) → B into any abelian category
B we will denote RF the right derived functor described in Derived Categories,
Section 20 and constructed using the resolution functor jX just described:
(3.0.1)05U3 RF = F ◦ j′

X : D+(X) −→ D+(B)
see Derived Categories, Lemma 25.1 for notation. Note that we may think of RF
as defined on Mod(OX), Comp+(Mod(OX)), K+(X), or D+(X) depending on the
situation. According to Derived Categories, Definition 16.2 we obtain the ith right
derived functor
(3.0.2)05U4 RiF = Hi ◦RF : Mod(OX) −→ B

so that R0F = F and {RiF, δ}i≥0 is universal δ-functor, see Derived Categories,
Lemma 20.4.
Here are two special cases of this construction. Given a ring R we write K(R) =
K(ModR) and D(R) = D(ModR) and similarly for bounded versions. For any open
U ⊂ X we have a left exact functor Γ(U,−) : Mod(OX) −→ ModOX (U) which gives
rise to
(3.0.3)0717 RΓ(U,−) : D+(X) −→ D+(OX(U))

by the discussion above. We set Hi(U,−) = RiΓ(U,−). If U = X we recover
(2.0.3). If f : X → Y is a morphism of ringed spaces, then we have the left exact
functor f∗ : Mod(OX) −→ Mod(OY ) which gives rise to the derived pushforward
(3.0.4)0718 Rf∗ : D+(X) −→ D+(Y )

The ith cohomology sheaf of Rf∗F• is denoted Rif∗F• and called the ith higher
direct image in accordance with (2.0.4). The two displayed functors above are exact
functors of derived categories.
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Abuse of notation: When the functor Rf∗, or any other derived functor, is
applied to a sheaf F on X or a complex of sheaves it is understood that F has been
replaced by a suitable resolution of F . To facilitate this kind of operation we will
say, given an object F• ∈ D(OX), that a bounded below complex I• of injectives of
Mod(OX) represents F• in the derived category if there exists a quasi-isomorphism
F• → I•. In the same vein the phrase “let α : F• → G• be a morphism of D(OX)”
does not mean that α is represented by a morphism of complexes. If we have an
actual morphism of complexes we will say so.

4. First cohomology and torsors

02FN
Definition 4.1.02FO Let X be a topological space. Let G be a sheaf of (possibly
non-commutative) groups on X. A torsor, or more precisely a G-torsor, is a sheaf
of sets F on X endowed with an action G × F → F such that

(1) whenever F(U) is nonempty the action G(U) × F(U) → F(U) is simply
transitive, and

(2) for every x ∈ X the stalk Fx is nonempty.
A morphism of G-torsors F → F ′ is simply a morphism of sheaves of sets compatible
with the G-actions. The trivial G-torsor is the sheaf G endowed with the obvious
left G-action.

It is clear that a morphism of torsors is automatically an isomorphism.

Lemma 4.2.02FP Let X be a topological space. Let G be a sheaf of (possibly non-
commutative) groups on X. A G-torsor F is trivial if and only if F(X) ̸= ∅.

Proof. Omitted. □

Lemma 4.3.02FQ Let X be a topological space. Let H be an abelian sheaf on X. There
is a canonical bijection between the set of isomorphism classes of H-torsors and
H1(X,H).

Proof. Let F be a H-torsor. Consider the free abelian sheaf Z[F ] on F . It is the
sheafification of the rule which associates to U ⊂ X open the collection of finite
formal sums

∑
ni[si] with ni ∈ Z and si ∈ F(U). There is a natural map

σ : Z[F ] −→ Z

which to a local section
∑
ni[si] associates

∑
ni. The kernel of σ is generated by

the local section of the form [s] − [s′]. There is a canonical map a : Ker(σ) → H
which maps [s] − [s′] 7→ h where h is the local section of H such that h · s = s′.
Consider the pushout diagram

0 // Ker(σ) //

a

��

Z[F ] //

��

Z //

��

0

0 // H // E // Z // 0

Here E is the extension obtained by pushout. From the long exact cohomology
sequence associated to the lower short exact sequence we obtain an element ξ =
ξF ∈ H1(X,H) by applying the boundary operator to 1 ∈ H0(X,Z).

https://stacks.math.columbia.edu/tag/02FO
https://stacks.math.columbia.edu/tag/02FP
https://stacks.math.columbia.edu/tag/02FQ
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Conversely, given ξ ∈ H1(X,H) we can associate to ξ a torsor as follows. Choose
an embedding H → I of H into an injective abelian sheaf I. We set Q = I/H so
that we have a short exact sequence

0 // H // I // Q // 0

The element ξ is the image of a global section q ∈ H0(X,Q) because H1(X, I) = 0
(see Derived Categories, Lemma 20.4). Let F ⊂ I be the subsheaf (of sets) of
sections that map to q in the sheaf Q. It is easy to verify that F is a torsor.

We omit the verification that the two constructions given above are mutually in-
verse. □

5. First cohomology and extensions

0B39
Lemma 5.1.0B3A Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
There is a canonical bijection

Ext1
Mod(OX )(OX ,F) −→ H1(X,F)

which associates to the extension

0→ F → E → OX → 0

the image of 1 ∈ Γ(X,OX) in H1(X,F).

Proof. Let us construct the inverse of the map given in the lemma. Let ξ ∈
H1(X,F). Choose an injection F ⊂ I with I injective in Mod(OX). Set Q = I/F .
By the long exact sequence of cohomology, we see that ξ is the image of a section
ξ̃ ∈ Γ(X,Q) = HomOX

(OX ,Q). Now, we just form the pullback

0 // F // E //

��

OX //

ξ̃

��

0

0 // F // I // Q // 0

see Homology, Section 6. □

6. First cohomology and invertible sheaves

09NT The Picard group of a ringed space is defined in Modules, Section 25.

Lemma 6.1.09NU Let (X,OX) be a locally ringed space. There is a canonical isomor-
phism

H1(X,O∗
X) = Pic(X).

of abelian groups.

Proof. Let L be an invertible OX -module. Consider the presheaf L∗ defined by
the rule

U 7−→ {s ∈ L(U) such that OU
s·−−−→ LU is an isomorphism}

This presheaf satisfies the sheaf condition. Moreover, if f ∈ O∗
X(U) and s ∈ L∗(U),

then clearly fs ∈ L∗(U). By the same token, if s, s′ ∈ L∗(U) then there exists a
unique f ∈ O∗

X(U) such that fs = s′. Moreover, the sheaf L∗ has sections locally

https://stacks.math.columbia.edu/tag/0B3A
https://stacks.math.columbia.edu/tag/09NU
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by Modules, Lemma 25.4. In other words we see that L∗ is a O∗
X -torsor. Thus we

get a map
invertible sheaves on (X,OX)

up to isomorphism −→ O∗
X -torsors

up to isomorphism
We omit the verification that this is a homomorphism of abelian groups. By Lemma
4.3 the right hand side is canonically bijective to H1(X,O∗

X). Thus we have to show
this map is injective and surjective.

Injective. If the torsor L∗ is trivial, this means by Lemma 4.2 that L∗ has a global
section. Hence this means exactly that L ∼= OX is the neutral element in Pic(X).

Surjective. Let F be an O∗
X -torsor. Consider the presheaf of sets

L1 : U 7−→ (F(U)×OX(U))/O∗
X(U)

where the action of f ∈ O∗
X(U) on (s, g) is (fs, f−1g). Then L1 is a presheaf of

OX -modules by setting (s, g) + (s′, g′) = (s, g + (s′/s)g′) where s′/s is the local
section f of O∗

X such that fs = s′, and h(s, g) = (s, hg) for h a local section of OX .
We omit the verification that the sheafification L = L#

1 is an invertible OX -module
whose associated O∗

X -torsor L∗ is isomorphic to F . □

7. Locality of cohomology

01E0 The following lemma says there is no ambiguity in defining the cohomology of a
sheaf F over an open.

Lemma 7.1.01E1 Let X be a ringed space. Let U ⊂ X be an open subspace.
(1) If I is an injective OX-module then I|U is an injective OU -module.
(2) For any sheaf of OX-modules F we have Hp(U,F) = Hp(U,F|U ).

Proof. Denote j : U → X the open immersion. Recall that the functor j−1 of
restriction to U is a right adjoint to the functor j! of extension by 0, see Sheaves,
Lemma 31.8. Moreover, j! is exact. Hence (1) follows from Homology, Lemma 29.1.

By definition Hp(U,F) = Hp(Γ(U, I•)) where F → I• is an injective resolution
in Mod(OX). By the above we see that F|U → I•|U is an injective resolution in
Mod(OU ). Hence Hp(U,F|U ) is equal to Hp(Γ(U, I•|U )). Of course Γ(U,F) =
Γ(U,F|U ) for any sheaf F on X. Hence the equality in (2). □

Let X be a ringed space. Let F be a sheaf of OX -modules. Let U ⊂ V ⊂ X be
open subsets. Then there is a canonical restriction mapping

(7.1.1)01E2 Hn(V,F) −→ Hn(U,F), ξ 7−→ ξ|U
functorial in F . Namely, choose any injective resolution F → I•. The restriction
mappings of the sheaves Ip give a morphism of complexes

Γ(V, I•) −→ Γ(U, I•)

The LHS is a complex representing RΓ(V,F) and the RHS is a complex representing
RΓ(U,F). We get the map on cohomology groups by applying the functor Hn. As
indicated we will use the notation ξ 7→ ξ|U to denote this map. Thus the rule
U 7→ Hn(U,F) is a presheaf of OX -modules. This presheaf is customarily denoted
Hn(F). We will give another interpretation of this presheaf in Lemma 11.4.

https://stacks.math.columbia.edu/tag/01E1
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Lemma 7.2.01E3 Let X be a ringed space. Let F be a sheaf of OX-modules. Let
U ⊂ X be an open subspace. Let n > 0 and let ξ ∈ Hn(U,F). Then there exists an
open covering U =

⋃
i∈I Ui such that ξ|Ui

= 0 for all i ∈ I.
Proof. Let F → I• be an injective resolution. Then

Hn(U,F) = Ker(In(U)→ In+1(U))
Im(In−1(U)→ In(U)) .

Pick an element ξ̃ ∈ In(U) representing the cohomology class in the presentation
above. Since I• is an injective resolution of F and n > 0 we see that the complex I•

is exact in degree n. Hence Im(In−1 → In) = Ker(In → In+1) as sheaves. Since
ξ̃ is a section of the kernel sheaf over U we conclude there exists an open covering
U =

⋃
i∈I Ui such that ξ̃|Ui

is the image under d of a section ξi ∈ In−1(Ui).
By our definition of the restriction ξ|Ui

as corresponding to the class of ξ̃|Ui
we

conclude. □

Lemma 7.3.01E4 Let f : X → Y be a morphism of ringed spaces. Let F be a OX-
module. The sheaves Rif∗F are the sheaves associated to the presheaves

V 7−→ Hi(f−1(V ),F)
with restriction mappings as in Equation (7.1.1). There is a similar statement for
Rif∗ applied to a bounded below complex F•.
Proof. Let F → I• be an injective resolution. Then Rif∗F is by definition the
ith cohomology sheaf of the complex

f∗I0 → f∗I1 → f∗I2 → . . .

By definition of the abelian category structure on OY -modules this cohomology
sheaf is the sheaf associated to the presheaf

V 7−→ Ker(f∗Ii(V )→ f∗Ii+1(V ))
Im(f∗Ii−1(V )→ f∗Ii(V ))

and this is obviously equal to
Ker(Ii(f−1(V ))→ Ii+1(f−1(V )))
Im(Ii−1(f−1(V ))→ Ii(f−1(V )))

which is equal to Hi(f−1(V ),F) and we win. □

Lemma 7.4.01E5 Let f : X → Y be a morphism of ringed spaces. Let F be an OX-
module. Let V ⊂ Y be an open subspace. Denote g : f−1(V ) → V the restriction
of f . Then we have

Rpg∗(F|f−1(V )) = (Rpf∗F)|V
There is a similar statement for the derived image Rf∗F• where F• is a bounded
below complex of OX-modules.
Proof. First proof. Apply Lemmas 7.3 and 7.1 to see the displayed equality.
Second proof. Choose an injective resolution F → I• and use that F|f−1(V ) →
I•|f−1(V ) is an injective resolution also. □

Remark 7.5.03BA Here is a different approach to the proofs of Lemmas 7.2 and 7.3
above. Let (X,OX) be a ringed space. Let iX : Mod(OX) → PMod(OX) be the
inclusion functor and let # be the sheafification functor. Recall that iX is left exact
and # is exact.

https://stacks.math.columbia.edu/tag/01E3
https://stacks.math.columbia.edu/tag/01E4
https://stacks.math.columbia.edu/tag/01E5
https://stacks.math.columbia.edu/tag/03BA
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(1) First prove Lemma 11.4 below which says that the right derived functors
of iX are given by RpiXF = Hp(F). Here is another proof: The equality is
clear for p = 0. Both (RpiX)p≥0 and (Hp)p≥0 are delta functors vanishing
on injectives, hence both are universal, hence they are isomorphic. See
Homology, Section 12.

(2) A restatement of Lemma 7.2 is that (Hp(F))# = 0, p > 0 for any sheaf of
OX -modules F . To see this is true, use that # is exact so

(Hp(F))# = (RpiXF)# = Rp(# ◦ iX)(F) = 0
because # ◦ iX is the identity functor.

(3) Let f : X → Y be a morphism of ringed spaces. Let F be an OX -module.
The presheaf V 7→ Hp(f−1V,F) is equal to Rp(iY ◦ f∗)F . You can prove
this by noticing that both give universal delta functors as in the argument
of (1) above. Hence Lemma 7.3 says that Rpf∗F = (Rp(iY ◦f∗)F)#. Again
using that # is exact a that # ◦ iY is the identity functor we see that

Rpf∗F = Rp(# ◦ iY ◦ f∗)F = (Rp(iY ◦ f∗)F)#

as desired.

8. Mayer-Vietoris

01E9 Below will construct the Čech-to-cohomology spectral sequence, see Lemma 11.5.
A special case of that spectral sequence is the Mayer-Vietoris long exact sequence.
Since it is such a basic, useful and easy to understand variant of the spectral
sequence we treat it here separately.

Lemma 8.1.01EA Let X be a ringed space. Let U ′ ⊂ U ⊂ X be open subspaces. For
any injective OX-module I the restriction mapping I(U)→ I(U ′) is surjective.

Proof. Let j : U → X and j′ : U ′ → X be the open immersions. Recall that j!OU
is the extension by zero of OU = OX |U , see Sheaves, Section 31. Since j! is a left
adjoint to restriction we see that for any sheaf F of OX -modules

HomOX
(j!OU ,F) = HomOU

(OU ,F|U ) = F(U)
see Sheaves, Lemma 31.8. Similarly, the sheaf j′

!OU ′ represents the functor F 7→
F(U ′). Moreover there is an obvious canonical map of OX -modules

j′
!OU ′ −→ j!OU

which corresponds to the restriction mapping F(U)→ F(U ′) via Yoneda’s lemma
(Categories, Lemma 3.5). By the description of the stalks of the sheaves j′

!OU ′ ,
j!OU we see that the displayed map above is injective (see lemma cited above).
Hence if I is an injective OX -module, then the map

HomOX
(j!OU , I) −→ HomOX

(j′
!OU ′ , I)

is surjective, see Homology, Lemma 27.2. Putting everything together we obtain
the lemma. □

Lemma 8.2 (Mayer-Vietoris).01EB Let X be a ringed space. Suppose that X = U ∪ V
is a union of two open subsets. For every OX-module F there exists a long exact
cohomology sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

This long exact sequence is functorial in F .

https://stacks.math.columbia.edu/tag/01EA
https://stacks.math.columbia.edu/tag/01EB
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Proof. The sheaf condition says that the kernel of (1,−1) : F(U) ⊕ F(V ) →
F(U ∩ V ) is equal to the image of F(X) by the first map for any abelian sheaf
F . Lemma 8.1 above implies that the map (1,−1) : I(U) ⊕ I(V ) → I(U ∩ V ) is
surjective whenever I is an injective OX -module. Hence if F → I• is an injective
resolution of F , then we get a short exact sequence of complexes

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0.

Taking cohomology gives the result (use Homology, Lemma 13.12). We omit the
proof of the functoriality of the sequence. □

Lemma 8.3 (Relative Mayer-Vietoris).01EC Let f : X → Y be a morphism of ringed
spaces. Suppose that X = U ∪ V is a union of two open subsets. Denote a = f |U :
U → Y , b = f |V : V → Y , and c = f |U∩V : U ∩ V → Y . For every OX-module F
there exists a long exact sequence

0→ f∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1f∗F → . . .

This long exact sequence is functorial in F .

Proof. Let F → I• be an injective resolution of F . We claim that we get a short
exact sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.

Namely, for any open W ⊂ Y , and for any n ≥ 0 the corresponding sequence of
groups of sections over W

0→ In(f−1(W ))→ In(U∩f−1(W ))⊕In(V ∩f−1(W ))→ In(U∩V ∩f−1(W ))→ 0

was shown to be short exact in the proof of Lemma 8.2. The lemma follows by
taking cohomology sheaves and using the fact that I•|U is an injective resolution
of F|U and similarly for I•|V , I•|U∩V see Lemma 7.1. □

9. The Čech complex and Čech cohomology

01ED Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open covering, see

Topology, Basic notion (13). As is customary we denote Ui0...ip = Ui0 ∩ . . . ∩ Uip
for the (p+ 1)-fold intersection of members of U . Let F be an abelian presheaf on
X. Set

Čp(U ,F) =
∏

(i0,...,ip)∈Ip+1
F(Ui0...ip).

This is an abelian group. For s ∈ Čp(U ,F) we denote si0...ip its value in F(Ui0...ip).
Note that if s ∈ Č1(U ,F) and i, j ∈ I then sij and sji are both elements of F(Ui∩Uj)
but there is no imposed relation between sij and sji. In other words, we are not
working with alternating cochains (these will be defined in Section 23). We define

d : Čp(U ,F) −→ Čp+1(U ,F)

by the formula

(9.0.1)01EE d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

|Ui0...ip+1

It is straightforward to see that d ◦ d = 0. In other words Č•(U ,F) is a complex.

https://stacks.math.columbia.edu/tag/01EC
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Definition 9.1.01EF Let X be a topological space. Let U : U =
⋃
i∈I Ui be an

open covering. Let F be an abelian presheaf on X. The complex Č•(U ,F) is the
Čech complex associated to F and the open covering U . Its cohomology groups
Hi(Č•(U ,F)) are called the Čech cohomology groups associated to F and the cov-
ering U . They are denoted Ȟi(U ,F).

Lemma 9.2.01EG Let X be a topological space. Let F be an abelian presheaf on X.
The following are equivalent

(1) F is an abelian sheaf and
(2) for every open covering U : U =

⋃
i∈I Ui the natural map

F(U)→ Ȟ0(U ,F)
is bijective.

Proof. This is true since the sheaf condition is exactly that F(U) → Ȟ0(U ,F) is
bijective for every open covering. □

Lemma 9.3.0G6S Let X be a topological space. Let F be an abelian presheaf on X. Let
U : U =

⋃
i∈I Ui be an open covering. If Ui = U for some i ∈ I, then the extended

Čech complex
F(U)→ Č•(U ,F)

obtained by putting F(U) in degree −1 with differential given by the canonical map
of F(U) into Č0(U ,F) is homotopy equivalent to 0.

Proof. Fix an element i ∈ I with U = Ui. Observe that Ui0...ip = Ui0...̂ij ...ip if
ij = i. Let us define a homotopy

h :
∏

i0...ip+1
F(Ui0...ip+1) −→

∏
i0...ip

F(Ui0...ip)

by the rule
h(s)i0...ip = sii0...ip

In other words, h :
∏
i0
F(Ui0)→ F(U) is projection onto the factor F(Ui) = F(U)

and in general the map h equals the projection onto the factors F(Uii1...ip+1) =
F(Ui1...ip+1). We compute

(dh+ hd)(s)i0...ip =
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + d(s)ii0...ip

=
∑p

j=0
(−1)jsii0...̂ij ...ip + si0...ip +

∑p

j=0
(−1)j+1sii0...̂ij ...ip

= si0...ip

This proves the identity map is homotopic to zero as desired. □

10. Čech cohomology as a functor on presheaves

01EH Warning: In this section we work almost exclusively with presheaves and categories
of presheaves and the results are completely wrong in the setting of sheaves and
categories of sheaves!
Let X be a ringed space. Let U : U =

⋃
i∈I Ui be an open covering. Let F be a

presheaf of OX -modules. We have the Čech complex Č•(U ,F) of F just by thinking
of F as a presheaf of abelian groups. However, each term Čp(U ,F) has a natural

https://stacks.math.columbia.edu/tag/01EF
https://stacks.math.columbia.edu/tag/01EG
https://stacks.math.columbia.edu/tag/0G6S
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structure of a OX(U)-module and the differential is given by OX(U)-module maps.
Moreover, it is clear that the construction

F 7−→ Č•(U ,F)

is functorial in F . In fact, it is a functor

(10.0.1)01EI Č•(U ,−) : PMod(OX) −→ Comp+(ModOX (U))

see Derived Categories, Definition 8.1 for notation. Recall that the category of
bounded below complexes in an abelian category is an abelian category, see Homol-
ogy, Lemma 13.9.

Lemma 10.1.01EJ The functor given by Equation (10.0.1) is an exact functor (see
Homology, Lemma 7.2).

Proof. For any open W ⊂ U the functor F 7→ F(W ) is an additive exact functor
from PMod(OX) to ModOX (U). The terms Čp(U ,F) of the complex are products of
these exact functors and hence exact. Moreover a sequence of complexes is exact
if and only if the sequence of terms in a given degree is exact. Hence the lemma
follows. □

Lemma 10.2.01EK Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open cov-

ering. The functors F 7→ Ȟn(U ,F) form a δ-functor from the abelian category
of presheaves of OX-modules to the category of OX(U)-modules (see Homology,
Definition 12.1).

Proof. By Lemma 10.1 a short exact sequence of presheaves of OX -modules 0→
F1 → F2 → F3 → 0 is turned into a short exact sequence of complexes of OX(U)-
modules. Hence we can use Homology, Lemma 13.12 to get the boundary maps
δF1→F2→F3 : Ȟn(U ,F3)→ Ȟn+1(U ,F1) and a corresponding long exact sequence.
We omit the verification that these maps are compatible with maps between short
exact sequences of presheaves. □

In the formulation of the following lemma we use the functor jp! of extension by 0
for presheaves of modules relative to an open immersion j : U → X. See Sheaves,
Section 31. For any open W ⊂ X and any presheaf G of OX |U -modules we have

(jp!G)(W ) =
{
G(W ) if W ⊂ U

0 else.

Moreover, the functor jp! is a left adjoint to the restriction functor see Sheaves,
Lemma 31.8. In particular we have the following formula

HomOX
(jp!OU ,F) = HomOU

(OU ,F|U ) = F(U).

Since the functor F 7→ F(U) is an exact functor on the category of presheaves we
conclude that the presheaf jp!OU is a projective object in the category PMod(OX),
see Homology, Lemma 28.2.

Note that if we are given open subsets U ⊂ V ⊂ X with associated open im-
mersions jU , jV , then we have a canonical map (jU )p!OU → (jV )p!OV . It is the
identity on sections over any open W ⊂ U and 0 else. In terms of the identifica-
tion HomOX

((jU )p!OU , (jV )p!OV ) = (jV )p!OV (U) = OV (U) it corresponds to the
element 1 ∈ OV (U).

https://stacks.math.columbia.edu/tag/01EJ
https://stacks.math.columbia.edu/tag/01EK
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Lemma 10.3.01EL Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Denote

ji0...ip : Ui0...ip → X the open immersion. Consider the chain complex K(U)• of
presheaves of OX-modules

. . .→
⊕
i0i1i2

(ji0i1i2)p!OUi0i1i2
→

⊕
i0i1

(ji0i1)p!OUi0i1
→

⊕
i0

(ji0)p!OUi0
→ 0→ . . .

where the last nonzero term is placed in degree 0 and where the map
(ji0...ip+1)p!OUi0...ip+1

−→ (ji0...̂ij ...ip+1
)p!OUi0...̂ij ...ip+1

is given by (−1)j times the canonical map. Then there is an isomorphism
HomOX

(K(U)•,F) = Č•(U ,F)
functorial in F ∈ Ob(PMod(OX)).

Proof. We saw in the discussion just above the lemma that
HomOX

((ji0...ip)p!OUi0...ip
,F) = F(Ui0...ip).

Hence we see that it is indeed the case that the direct sum⊕
i0...ip

(ji0...ip)p!OUi0...ip

represents the functor
F 7−→

∏
i0...ip

F(Ui0...ip).

Hence by Categories, Yoneda Lemma 3.5 we see that there is a complex K(U)•
with terms as given. It is a simple matter to see that the maps are as given in the
lemma. □

Lemma 10.4.01EM Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let

OU ⊂ OX be the image presheaf of the map
⊕
jp!OUi

→ OX . The chain complex
K(U)• of presheaves of Lemma 10.3 above has homology presheaves

Hi(K(U)•) =
{

0 if i ̸= 0
OU if i = 0

Proof. Consider the extended complex Kext
• one gets by putting OU in degree

−1 with the obvious map K(U)0 =
⊕

i0
(ji0)p!OUi0

→ OU . It suffices to show
that taking sections of this extended complex over any open W ⊂ X leads to an
acyclic complex. In fact, we claim that for every W ⊂ X the complex Kext

• (W ) is
homotopy equivalent to the zero complex. Write I = I1 ⨿ I2 where W ⊂ Ui if and
only if i ∈ I1.
If I1 = ∅, then the complex Kext

• (W ) = 0 so there is nothing to prove.
If I1 ̸= ∅, then OU (W ) = OX(W ) and

Kext
p (W ) =

⊕
i0...ip∈I1

OX(W ).

This is true because of the simple description of the presheaves (ji0...ip)p!OUi0...ip
.

Moreover, the differential of the complex Kext
• (W ) is given by

d(s)i0...ip =
∑

j=0,...,p+1

∑
i∈I1

(−1)jsi0...ij−1iij ...ip .

The sum is finite as the element s has finite support. Fix an element ifix ∈ I1.
Define a map

h : Kext
p (W ) −→ Kext

p+1(W )

https://stacks.math.columbia.edu/tag/01EL
https://stacks.math.columbia.edu/tag/01EM
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by the rule

h(s)i0...ip+1 =
{

0 if i0 ̸= ifix
si1...ip+1 if i0 = ifix

We will use the shorthand h(s)i0...ip+1 = (i0 = ifix)si1...ip for this. Then we compute
(dh+ hd)(s)i0...ip

=
∑
j

∑
i∈I1

(−1)jh(s)i0...ij−1iij ...ip + (i = i0)d(s)i1...ip

= si0...ip +
∑
j≥1

∑
i∈I1

(−1)j(i0 = ifix)si1...ij−1iij ...ip + (i0 = ifix)d(s)i1...ip

which is equal to si0...ip as desired. □

Lemma 10.5.01EN Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open covering

of U ⊂ X. The Čech cohomology functors Ȟp(U ,−) are canonically isomorphic as
a δ-functor to the right derived functors of the functor

Ȟ0(U ,−) : PMod(OX) −→ ModOX (U).

Moreover, there is a functorial quasi-isomorphism

Č•(U ,F) −→ RȞ0(U ,F)
where the right hand side indicates the right derived functor

RȞ0(U ,−) : D+(PMod(OX)) −→ D+(OX(U))

of the left exact functor Ȟ0(U ,−).

Proof. Note that the category of presheaves of OX -modules has enough injectives,
see Injectives, Proposition 8.5. Note that Ȟ0(U ,−) is a left exact functor from the
category of presheaves of OX -modules to the category of OX(U)-modules. Hence
the derived functor and the right derived functor exist, see Derived Categories,
Section 20.
Let I be a injective presheaf of OX -modules. In this case the functor HomOX

(−, I)
is exact on PMod(OX). By Lemma 10.3 we have

HomOX
(K(U)•, I) = Č•(U , I).

By Lemma 10.4 we have that K(U)• is quasi-isomorphic to OU [0]. Hence by the
exactness of Hom into I mentioned above we see that Ȟi(U , I) = 0 for all i > 0.
Thus the δ-functor (Ȟn, δ) (see Lemma 10.2) satisfies the assumptions of Homology,
Lemma 12.4, and hence is a universal δ-functor.

By Derived Categories, Lemma 20.4 also the sequence RiȞ0(U ,−) forms a universal
δ-functor. By the uniqueness of universal δ-functors, see Homology, Lemma 12.5
we conclude that RiȞ0(U ,−) = Ȟi(U ,−). This is enough for most applications
and the reader is suggested to skip the rest of the proof.
Let F be any presheaf of OX -modules. Choose an injective resolution F → I•

in the category PMod(OX). Consider the double complex Č•(U , I•) with terms
Čp(U , Iq). Consider the associated total complex Tot(Č•(U , I•)), see Homology,
Definition 18.3. There is a map of complexes

Č•(U ,F) −→ Tot(Č•(U , I•))

https://stacks.math.columbia.edu/tag/01EN
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coming from the maps Čp(U ,F)→ Čp(U , I0) and there is a map of complexes

Ȟ0(U , I•) −→ Tot(Č•(U , I•))

coming from the maps Ȟ0(U , Iq) → Č0(U , Iq). Both of these maps are quasi-
isomorphisms by an application of Homology, Lemma 25.4. Namely, the columns
of the double complex are exact in positive degrees because the Čech complex as
a functor is exact (Lemma 10.1) and the rows of the double complex are exact in
positive degrees since as we just saw the higher Čech cohomology groups of the
injective presheaves Iq are zero. Since quasi-isomorphisms become invertible in
D+(OX(U)) this gives the last displayed morphism of the lemma. We omit the
verification that this morphism is functorial. □

11. Čech cohomology and cohomology

01EO
Lemma 11.1.01EP Let X be a ringed space. Let U : U =

⋃
i∈I Ui be a covering. Let I

be an injective OX-module. Then

Ȟp(U , I) =
{
I(U) if p = 0

0 if p > 0

Proof. An injective OX -module is also injective as an object in the category
PMod(OX) (for example since sheafification is an exact left adjoint to the inclusion
functor, using Homology, Lemma 29.1). Hence we can apply Lemma 10.5 (or its
proof) to see the result. □

Lemma 11.2.01EQ Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. There

is a transformation
Č•(U ,−) −→ RΓ(U,−)

of functors Mod(OX) → D+(OX(U)). In particular this provides canonical maps
Ȟp(U ,F)→ Hp(U,F) for F ranging over Mod(OX).

Proof. Let F be an OX -module. Choose an injective resolution F → I•. Consider
the double complex Č•(U , I•) with terms Čp(U , Iq). There is a map of complexes

α : Γ(U, I•) −→ Tot(Č•(U , I•))

coming from the maps Iq(U)→ Ȟ0(U , Iq) and a map of complexes

β : Č•(U ,F) −→ Tot(Č•(U , I•))

coming from the map F → I0. We can apply Homology, Lemma 25.4 to see that
α is a quasi-isomorphism. Namely, Lemma 11.1 implies that the qth row of the
double complex Č•(U , I•) is a resolution of Γ(U, Iq). Hence α becomes invertible in
D+(OX(U)) and the transformation of the lemma is the composition of β followed
by the inverse of α. We omit the verification that this is functorial. □

Lemma 11.3.0B8R Let X be a topological space. Let H be an abelian sheaf on X. Let
U : X =

⋃
i∈I Ui be an open covering. The map

Ȟ1(U ,H) −→ H1(X,H)

is injective and identifies Ȟ1(U ,H) via the bijection of Lemma 4.3 with the set of
isomorphism classes of H-torsors which restrict to trivial torsors over each Ui.

https://stacks.math.columbia.edu/tag/01EP
https://stacks.math.columbia.edu/tag/01EQ
https://stacks.math.columbia.edu/tag/0B8R
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Proof. To see this we construct an inverse map. Namely, let F be a H-torsor
whose restriction to Ui is trivial. By Lemma 4.2 this means there exists a section
si ∈ F(Ui). On Ui0 ∩ Ui1 there is a unique section si0i1 of H such that si0i1 ·
si0 |Ui0 ∩Ui1

= si1 |Ui0 ∩Ui1
. A computation shows that si0i1 is a Čech cocycle and

that its class is well defined (i.e., does not depend on the choice of the sections
si). The inverse maps the isomorphism class of F to the cohomology class of the
cocycle (si0i1). We omit the verification that this map is indeed an inverse. □

Lemma 11.4.01ER Let X be a ringed space. Consider the functor i : Mod(OX) →
PMod(OX). It is a left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)

see discussion in Section 7.

Proof. It is clear that i is left exact. Choose an injective resolution F → I•. By
definition Rpi is the pth cohomology presheaf of the complex I•. In other words,
the sections of Rpi(F) over an open U are given by

Ker(Ip(U)→ Ip+1(U))
Im(Ip−1(U)→ Ip(U)) .

which is the definition of Hp(U,F). □

Lemma 11.5.01ES Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. For

any sheaf of OX-modules F there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(U , Hq(F))

converging to Hp+q(U,F). This spectral sequence is functorial in F .

Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma
22.2) for the functors

i : Mod(OX)→ PMod(OX) and Ȟ0(U ,−) : PMod(OX)→ ModOX (U).

Namely, we have Ȟ0(U , i(F)) = F(U) by Lemma 9.2. We have that i(I) is Čech
acyclic by Lemma 11.1. And we have that Ȟp(U ,−) = RpȞ0(U ,−) as functors on
PMod(OX) by Lemma 10.5. Putting everything together gives the lemma. □

Lemma 11.6.01ET Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let

F be an OX-module. Assume that Hi(Ui0...ip ,F) = 0 for all i > 0, all p ≥ 0 and
all i0, . . . , ip ∈ I. Then Ȟp(U ,F) = Hp(U,F) as OX(U)-modules.

Proof. We will use the spectral sequence of Lemma 11.5. The assumptions mean
that Ep,q2 = 0 for all (p, q) with q ̸= 0. Hence the spectral sequence degenerates at
E2 and the result follows. □

Lemma 11.7.01EU Let X be a ringed space. Let

0→ F → G → H → 0

be a short exact sequence of OX-modules. Let U ⊂ X be an open subset. If there
exists a cofinal system of open coverings U of U such that Ȟ1(U ,F) = 0, then the
map G(U)→ H(U) is surjective.

https://stacks.math.columbia.edu/tag/01ER
https://stacks.math.columbia.edu/tag/01ES
https://stacks.math.columbia.edu/tag/01ET
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Proof. Take an element s ∈ H(U). Choose an open covering U : U =
⋃
i∈I Ui such

that (a) Ȟ1(U ,F) = 0 and (b) s|Ui is the image of a section si ∈ G(Ui). Since we
can certainly find a covering such that (b) holds it follows from the assumptions of
the lemma that we can find a covering such that (a) and (b) both hold. Consider
the sections

si0i1 = si1 |Ui0i1
− si0 |Ui0i1

.

Since si lifts s we see that si0i1 ∈ F(Ui0i1). By the vanishing of Ȟ1(U ,F) we can
find sections ti ∈ F(Ui) such that

si0i1 = ti1 |Ui0i1
− ti0 |Ui0i1

.

Then clearly the sections si − ti satisfy the sheaf condition and glue to a section of
G over U which maps to s. Hence we win. □

Lemma 11.8.01EV Let X be a ringed space. Let F be an OX-module such that

Ȟp(U ,F) = 0
for all p > 0 and any open covering U : U =

⋃
i∈I Ui of an open of X. Then

Hp(U,F) = 0 for all p > 0 and any open U ⊂ X.

Proof. Let F be a sheaf satisfying the assumption of the lemma. We will indicate
this by saying “F has vanishing higher Čech cohomology for any open covering”.
Choose an embedding F → I into an injective OX -module. By Lemma 11.1 I has
vanishing higher Čech cohomology for any open covering. Let Q = I/F so that we
have a short exact sequence

0→ F → I → Q → 0.
By Lemma 11.7 and our assumptions this sequence is actually exact as a sequence of
presheaves! In particular we have a long exact sequence of Čech cohomology groups
for any open covering U , see Lemma 10.2 for example. This implies that Q is also
an OX -module with vanishing higher Čech cohomology for all open coverings.
Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

for any open U ⊂ X. Since I is injective we have Hn(U, I) = 0 for n > 0 (see
Derived Categories, Lemma 20.4). By the above we see that H0(U, I)→ H0(U,Q)
is surjective and hence H1(U,F) = 0. Since F was an arbitrary OX -module with
vanishing higher Čech cohomology we conclude that also H1(U,Q) = 0 since Q
is another of these sheaves (see above). By the long exact sequence this in turn
implies that H2(U,F) = 0. And so on and so forth. □

Lemma 11.9.01EW (Variant of Lemma 11.8.) Let X be a ringed space. Let B be a
basis for the topology on X. Let F be an OX-module. Assume there exists a set of
open coverings Cov with the following properties:

https://stacks.math.columbia.edu/tag/01EV
https://stacks.math.columbia.edu/tag/01EW
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(1) For every U ∈ Cov with U : U =
⋃
i∈I Ui we have U,Ui ∈ B and every

Ui0...ip ∈ B.
(2) For every U ∈ B the open coverings of U occurring in Cov is a cofinal

system of open coverings of U .
(3) For every U ∈ Cov we have Ȟp(U ,F) = 0 for all p > 0.

Then Hp(U,F) = 0 for all p > 0 and any U ∈ B.

Proof. Let F and Cov be as in the lemma. We will indicate this by saying “F
has vanishing higher Čech cohomology for any U ∈ Cov”. Choose an embedding
F → I into an injective OX -module. By Lemma 11.1 I has vanishing higher Čech
cohomology for any U ∈ Cov. Let Q = I/F so that we have a short exact sequence

0→ F → I → Q → 0.
By Lemma 11.7 and our assumption (2) this sequence gives rise to an exact sequence

0→ F(U)→ I(U)→ Q(U)→ 0.

for every U ∈ B. Hence for any U ∈ Cov we get a short exact sequence of Čech
complexes

0→ Č•(U ,F)→ Č•(U , I)→ Č•(U ,Q)→ 0
since each term in the Čech complex is made up out of a product of values over
elements of B by assumption (1). In particular we have a long exact sequence of
Čech cohomology groups for any open covering U ∈ Cov. This implies that Q is
also an OX -module with vanishing higher Čech cohomology for all U ∈ Cov.
Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

for any U ∈ B. Since I is injective we have Hn(U, I) = 0 for n > 0 (see Derived
Categories, Lemma 20.4). By the above we see that H0(U, I)→ H0(U,Q) is surjec-
tive and hence H1(U,F) = 0. Since F was an arbitrary OX -module with vanishing
higher Čech cohomology for all U ∈ Cov we conclude that also H1(U,Q) = 0 since
Q is another of these sheaves (see above). By the long exact sequence this in turn
implies that H2(U,F) = 0. And so on and so forth. □

Lemma 11.10.01EX Let f : X → Y be a morphism of ringed spaces. Let I be an
injective OX-module. Then

(1) Ȟp(V, f∗I) = 0 for all p > 0 and any open covering V : V =
⋃
j∈J Vj of Y .

(2) Hp(V, f∗I) = 0 for all p > 0 and every open V ⊂ Y .
In other words, f∗I is right acyclic for Γ(V,−) (see Derived Categories, Definition
15.3) for any V ⊂ Y open.

Proof. Set U : f−1(V ) =
⋃
j∈J f

−1(Vj). It is an open covering of X and

Č•(V, f∗I) = Č•(U , I).

https://stacks.math.columbia.edu/tag/01EX
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This is true because

f∗I(Vj0...jp) = I(f−1(Vj0...jp)) = I(f−1(Vj0) ∩ . . . ∩ f−1(Vjp)) = I(Uj0...jp).

Thus the first statement of the lemma follows from Lemma 11.1. The second
statement follows from the first and Lemma 11.8. □

The following lemma implies in particular that f∗ : Ab(X) → Ab(Y ) transforms
injective abelian sheaves into injective abelian sheaves.

Lemma 11.11.02N5 Let f : X → Y be a morphism of ringed spaces. Assume f is flat.
Then f∗I is an injective OY -module for any injective OX-module I.

Proof. In this case the functor f∗ transforms injections into injections (Modules,
Lemma 20.2). Hence the result follows from Homology, Lemma 29.1. □

Lemma 11.12.0D0A Let (X,OX) be a ringed space. Let I be a set. For i ∈ I let Fi be
an OX-module. Let U ⊂ X be open. The canonical map

Hp(U,
∏

i∈I
Fi) −→

∏
i∈I

Hp(U,Fi)

is an isomorphism for p = 0 and injective for p = 1.

Proof. The statement for p = 0 is true because the product of sheaves is equal
to the product of the underlying presheaves, see Sheaves, Section 29. Proof for
p = 1. Set F =

∏
Fi. Let ξ ∈ H1(U,F) map to zero in

∏
H1(U,Fi). By locality

of cohomology, see Lemma 7.2, there exists an open covering U : U =
⋃
Uj such

that ξ|Uj
= 0 for all j. By Lemma 11.3 this means ξ comes from an element

ξ̌ ∈ Ȟ1(U ,F). Since the maps Ȟ1(U ,Fi) → H1(U,Fi) are injective for all i (by
Lemma 11.3), and since the image of ξ is zero in

∏
H1(U,Fi) we see that the

image ξ̌i = 0 in Ȟ1(U ,Fi). However, since F =
∏
Fi we see that Č•(U ,F) is the

product of the complexes Č•(U ,Fi), hence by Homology, Lemma 32.1 we conclude
that ξ̌ = 0 as desired. □

12. Flasque sheaves

09SV Here is the definition.

Definition 12.1.09SW Let X be a topological space. We say a presheaf of sets F is
flasque or flabby if for every U ⊂ V open in X the restriction map F(V ) → F(U)
is surjective.

We will use this terminology also for abelian sheaves and sheaves of modules if X
is a ringed space. Clearly it suffices to assume the restriction maps F(X)→ F(U)
is surjective for every open U ⊂ X.

Lemma 12.2.09SX Let (X,OX) be a ringed space. Then any injective OX-module is
flasque.

Proof. This is a reformulation of Lemma 8.1. □

Lemma 12.3.09SY Let (X,OX) be a ringed space. Any flasque OX-module is acyclic
for RΓ(X,−) as well as RΓ(U,−) for any open U of X.

https://stacks.math.columbia.edu/tag/02N5
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https://stacks.math.columbia.edu/tag/09SW
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Proof. We will prove this using Derived Categories, Lemma 15.6. Since every
injective module is flasque we see that we can embed every OX -module into a
flasque module, see Injectives, Lemma 4.1. Thus it suffices to show that given a
short exact sequence

0→ F → G → H → 0
with F , G flasque, then H is flasque and the sequence remains short exact after
taking sections on any open of X. In fact, the second statement implies the first.
Thus, let U ⊂ X be an open subspace. Let s ∈ H(U). We will show that we can
lift s to a section of G over U . To do this consider the set T of pairs (V, t) where
V ⊂ U is open and t ∈ G(V ) is a section mapping to s|V in H. We put a partial
ordering on T by setting (V, t) ≤ (V ′, t′) if and only if V ⊂ V ′ and t′|V = t. If
(Vα, tα), α ∈ A is a totally ordered subset of T , then V =

⋃
Vα is open and there

is a unique section t ∈ G(V ) restricting to tα over Vα by the sheaf condition on G.
Thus by Zorn’s lemma there exists a maximal element (V, t) in T . We will show
that V = U thereby finishing the proof. Namely, pick any x ∈ U . We can find a
small open neighbourhood W ⊂ U of x and t′ ∈ G(W ) mapping to s|W in H. Then
t′|W∩V − t|W∩V maps to zero in H, hence comes from some section r′ ∈ F(W ∩V ).
Using that F is flasque we find a section r ∈ F(W ) restricting to r′ over W ∩ V .
Modifying t′ by the image of r we may assume that t and t′ restrict to the same
section over W ∩ V . By the sheaf condition of G we can find a section t̃ of G over
W ∪ V restricting to t and t′. By maximality of (V, t) we see that V ∪W = V .
Thus x ∈ V and we are done. □

The following lemma does not hold for flasque presheaves.

Lemma 12.4.09SZ Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
Let U : U =

⋃
Ui be an open covering. If F is flasque, then Ȟp(U ,F) = 0 for

p > 0.

Proof. The presheaves Hq(F) used in the statement of Lemma 11.5 are zero by
Lemma 12.3. Hence Ȟp(U,F) = Hp(U,F) = 0 by Lemma 12.3 again. □

Lemma 12.5.09T0 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let F
be a sheaf of OX-modules. If F is flasque, then Rpf∗F = 0 for p > 0.

Proof. Immediate from Lemma 7.3 and Lemma 12.3. □

The following lemma can be proved by an elementary induction argument for finite
coverings, compare with the discussion of Čech cohomology in [Vak].

Lemma 12.6.0A36 Let X be a topological space. Let F be an abelian sheaf on X. Let
U : U =

⋃
i∈I Ui be an open covering. Assume the restriction mappings F(U) →

F(U ′) are surjective for U ′ an arbitrary union of opens of the form Ui0...ip . Then
Ȟp(U ,F) vanishes for p > 0.

Proof. Let Y be the set of nonempty subsets of I. We will use the lettersA,B,C, . . .
to denote elements of Y , i.e., nonempty subsets of I. For a finite nonempty subset
J ⊂ I let

VJ = {A ∈ Y | J ⊂ A}
This means that V{i} = {A ∈ Y | i ∈ A} and VJ =

⋂
j∈J V{j}. Then VJ ⊂ VK if

and only if J ⊃ K. There is a unique topology on Y such that the collection of

https://stacks.math.columbia.edu/tag/09SZ
https://stacks.math.columbia.edu/tag/09T0
https://stacks.math.columbia.edu/tag/0A36
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subsets VJ is a basis for the topology on Y . Any open is of the form

V =
⋃

t∈T
VJt

for some family of finite subsets Jt. If Jt ⊂ Jt′ then we may remove Jt′ from the
family without changing V . Thus we may assume there are no inclusions among
the Jt. In this case the minimal elements of V are the sets A = Jt. Hence we can
read off the family (Jt)t∈T from the open V .

We can completely understand open coverings in Y . First, because the elements
A ∈ Y are nonempty subsets of I we have

Y =
⋃

i∈I
V{i}

To understand other coverings, let V be as above and let Vs ⊂ Y be an open
corresponding to the family (Js,t)t∈Ts

. Then

V =
⋃

s∈S
Vs

if and only if for each t ∈ T there exists an s ∈ S and ts ∈ Ts such that Jt = Js,ts .
Namely, as the family (Jt)t∈T is minimal, the minimal element A = Jt has to be in
Vs for some s, hence A ∈ VJts

for some ts ∈ Ts. But since A is also minimal in Vs
we conclude that Jts = Jt.

Next we map the set of opens of Y to opens of X. Namely, we send Y to U , we
use the rule

VJ 7→ UJ =
⋂

i∈J
Ui

on the opens VJ , and we extend it to arbitrary opens V by the rule

V =
⋃

t∈T
VJt 7→

⋃
t∈T

UJt

The classification of open coverings of Y given above shows that this rule transforms
open coverings into open coverings. Thus we obtain an abelian sheaf G on Y by
setting G(Y ) = F(U) and for V =

⋃
t∈T VJt

setting

G(V ) = F
(⋃

t∈T
UJt

)
and using the restriction maps of F .

With these preliminaries out of the way we can prove our lemma as follows. We
have an open covering V : Y =

⋃
i∈I V{i} of Y . By construction we have an equality

Č•(V,G) = Č•(U ,F)

of Čech complexes. Since the sheaf G is flasque on Y (by our assumption on F in
the statement of the lemma) the vanishing follows from Lemma 12.4. □

13. The Leray spectral sequence

01EY
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Lemma 13.1.01EZ Let f : X → Y be a morphism of ringed spaces. There is a
commutative diagram

D+(X)
RΓ(X,−)

//

Rf∗

��

D+(OX(X))

restriction
��

D+(Y )
RΓ(Y,−) // D+(OY (Y ))

More generally for any V ⊂ Y open and U = f−1(V ) there is a commutative
diagram

D+(X)
RΓ(U,−)

//

Rf∗

��

D+(OX(U))

restriction
��

D+(Y )
RΓ(V,−) // D+(OY (V ))

See also Remark 13.2 for more explanation.

Proof. Let Γres : Mod(OX) → ModOY (Y ) be the functor which associates to an
OX -module F the global sections of F viewed as an OY (Y )-module via the map f ♯ :
OY (Y ) → OX(X). Let restriction : ModOX (X) → ModOY (Y ) be the restriction
functor induced by f ♯ : OY (Y ) → OX(X). Note that restriction is exact so that
its right derived functor is computed by simply applying the restriction functor, see
Derived Categories, Lemma 16.9. It is clear that

Γres = restriction ◦ Γ(X,−) = Γ(Y,−) ◦ f∗

We claim that Derived Categories, Lemma 22.1 applies to both compositions.
For the first this is clear by our remarks above. For the second, it follows from
Lemma 11.10 which implies that injective OX -modules are mapped to Γ(Y,−)-
acyclic sheaves on Y . □

Remark 13.2.01F0 Here is a down-to-earth explanation of the meaning of Lemma
13.1. It says that given f : X → Y and F ∈ Mod(OX) and given an injective
resolution F → I• we have

RΓ(X,F) is represented by Γ(X, I•)
Rf∗F is represented by f∗I•

RΓ(Y,Rf∗F) is represented by Γ(Y, f∗I•)

the last fact coming from Leray’s acyclicity lemma (Derived Categories, Lemma
16.7) and Lemma 11.10. Finally, it combines this with the trivial observation that

Γ(X, I•) = Γ(Y, f∗I•).

to arrive at the commutativity of the diagram of the lemma.

Lemma 13.3.01F1 Let X be a ringed space. Let F be an OX-module.
(1) The cohomology groups Hi(U,F) for U ⊂ X open of F computed as an
OX-module, or computed as an abelian sheaf are identical.

(2) Let f : X → Y be a morphism of ringed spaces. The higher direct images
Rif∗F of F computed as an OX-module, or computed as an abelian sheaf
are identical.

There are similar statements in the case of bounded below complexes of OX-modules.

https://stacks.math.columbia.edu/tag/01EZ
https://stacks.math.columbia.edu/tag/01F0
https://stacks.math.columbia.edu/tag/01F1
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Proof. Consider the morphism of ringed spaces (X,OX)→ (X,ZX) given by the
identity on the underlying topological space and by the unique map of sheaves of
rings ZX → OX . Let F be an OX -module. Denote Fab the same sheaf seen as
an ZX -module, i.e., seen as a sheaf of abelian groups. Let F → I• be an injective
resolution. By Remark 13.2 we see that Γ(X, I•) computes both RΓ(X,F) and
RΓ(X,Fab). This proves (1).

To prove (2) we use (1) and Lemma 7.3. The result follows immediately. □

Lemma 13.4 (Leray spectral sequence).01F2 Let f : X → Y be a morphism of ringed
spaces. Let F• be a bounded below complex of OX-modules. There is a spectral
sequence

Ep,q2 = Hp(Y,Rqf∗(F•))
converging to Hp+q(X,F•).

Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma
22.2 coming from the composition of functors Γres = Γ(Y,−) ◦ f∗ where Γres is as
in the proof of Lemma 13.1. To see that the assumptions of Derived Categories,
Lemma 22.2 are satisfied, see the proof of Lemma 13.1 or Remark 13.2. □

Remark 13.5.01F3 The Leray spectral sequence, the way we proved it in Lemma 13.4
is a spectral sequence of Γ(Y,OY )-modules. However, it is quite easy to see that it
is in fact a spectral sequence of Γ(X,OX)-modules. For example f gives rise to a
morphism of ringed spaces f ′ : (X,OX) → (Y, f∗OX). By Lemma 13.3 the terms
Ep,qr of the Leray spectral sequence for an OX -module F and f are identical with
those for F and f ′ at least for r ≥ 2. Namely, they both agree with the terms of the
Leray spectral sequence for F as an abelian sheaf. And since (f∗OX)(Y ) = OX(X)
we see the result. It is often the case that the Leray spectral sequence carries
additional structure.

Lemma 13.6.01F4 Let f : X → Y be a morphism of ringed spaces. Let F be an
OX-module.

(1) If Rqf∗F = 0 for q > 0, then Hp(X,F) = Hp(Y, f∗F) for all p.
(2) If Hp(Y,Rqf∗F) = 0 for all q and p > 0, then Hq(X,F) = H0(Y,Rqf∗F)

for all q.

Proof. These are two simple conditions that force the Leray spectral sequence
to degenerate at E2. You can also prove these facts directly (without using the
spectral sequence) which is a good exercise in cohomology of sheaves. □

Lemma 13.7.01F5 Let f : X → Y and g : Y → Z be morphisms of ringed spaces. In
this case Rg∗ ◦Rf∗ = R(g ◦ f)∗ as functors from D+(X)→ D+(Z).

Proof. We are going to apply Derived Categories, Lemma 22.1. It is clear that
g∗ ◦ f∗ = (g ◦ f)∗, see Sheaves, Lemma 21.2. It remains to show that f∗I is g∗-
acyclic. This follows from Lemma 11.10 and the description of the higher direct
images Rig∗ in Lemma 7.3. □

Lemma 13.8 (Relative Leray spectral sequence).01F6 Let f : X → Y and g : Y → Z be
morphisms of ringed spaces. Let F be an OX-module. There is a spectral sequence
with

Ep,q2 = Rpg∗(Rqf∗F)

https://stacks.math.columbia.edu/tag/01F2
https://stacks.math.columbia.edu/tag/01F3
https://stacks.math.columbia.edu/tag/01F4
https://stacks.math.columbia.edu/tag/01F5
https://stacks.math.columbia.edu/tag/01F6
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converging to Rp+q(g ◦ f)∗F . This spectral sequence is functorial in F , and there
is a version for bounded below complexes of OX-modules.

Proof. This is a Grothendieck spectral sequence for composition of functors and
follows from Lemma 13.7 and Derived Categories, Lemma 22.2. □

14. Functoriality of cohomology

01F7
Lemma 14.1.01F8 Let f : X → Y be a morphism of ringed spaces. Let G•, resp. F•

be a bounded below complex of OY -modules, resp. OX-modules. Let φ : G• → f∗F•

be a morphism of complexes. There is a canonical morphism
G• −→ Rf∗(F•)

in D+(Y ). Moreover this construction is functorial in the triple (G•,F•, φ).

Proof. Choose an injective resolution F• → I•. By definition Rf∗(F•) is repre-
sented by f∗I• in K+(OY ). The composition

G• → f∗F• → f∗I•

is a morphism inK+(Y ) which turns into the morphism of the lemma upon applying
the localization functor jY : K+(Y )→ D+(Y ). □

Let f : X → Y be a morphism of ringed spaces. Let G be an OY -module and let
F be an OX -module. Recall that an f -map φ from G to F is a map φ : G → f∗F ,
or what is the same thing, a map φ : f∗G → F . See Sheaves, Definition 21.7. Such
an f -map gives rise to a morphism of complexes
(14.1.1)01F9 φ : RΓ(Y,G) −→ RΓ(X,F)

inD+(OY (Y )). Namely, we use the morphism G → Rf∗F inD+(Y ) of Lemma 14.1,
and we apply RΓ(Y,−). By Lemma 13.1 we see that RΓ(X,F) = RΓ(Y,Rf∗F) and
we get the displayed arrow. We spell this out completely in Remark 14.2 below. In
particular it gives rise to maps on cohomology
(14.1.2)01FA φ : Hi(Y,G) −→ Hi(X,F).

Remark 14.2.01FB Let f : X → Y be a morphism of ringed spaces. Let G be an
OY -module. Let F be an OX -module. Let φ be an f -map from G to F . Choose
a resolution F → I• by a complex of injective OX -modules. Choose resolutions
G → J • and f∗I• → (J ′)• by complexes of injective OY -modules. By Derived
Categories, Lemma 18.6 there exists a map of complexes β such that the diagram

(14.2.1)01FC G

��

// f∗F // f∗I•

��
J • β // (J ′)•

commutes. Applying global section functors we see that we get a diagram

Γ(Y, f∗I•)

qis

��

Γ(X, I•)

Γ(Y,J •) β // Γ(Y, (J ′)•)

https://stacks.math.columbia.edu/tag/01F8
https://stacks.math.columbia.edu/tag/01FB
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The complex on the bottom left represents RΓ(Y,G) and the complex on the top
right represents RΓ(X,F). The vertical arrow is a quasi-isomorphism by Lemma
13.1 which becomes invertible after applying the localization functorK+(OY (Y ))→
D+(OY (Y )). The arrow (14.1.1) is given by the composition of the horizontal map
by the inverse of the vertical map.

15. Refinements and Čech cohomology

09UY Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui and V : X =

⋃
j∈J Vj be open

coverings. Assume that U is a refinement of V. Choose a map c : I → J such that
Ui ⊂ Vc(i) for all i ∈ I. This induces a map of Čech complexes

γ : Č•(V,F) −→ Č•(U ,F), (ξj0...jp
) 7−→ (ξc(i0)...c(ip)|Ui0...ip

)

functorial in the sheaf of OX -modules F . Suppose that c′ : I → J is a second
map such that Ui ⊂ Vc′(i) for all i ∈ I. Then the corresponding maps γ and γ′ are
homotopic. Namely, γ − γ′ = d ◦ h + h ◦ d with h : Čp+1(V,F) → Čp(U ,F) given
by the rule

h(α)i0...ip =
∑p

a=0
(−1)aαc(i0)...c(ia)c′(ia)...c′(ip)

We omit the computation showing this works; please see the discussion following
(25.0.2) for the proof in a more general case. In particular, the map on Čech
cohomology groups is independent of the choice of c. Moreover, it is clear that if
W : X =

⋃
k∈KWk is a third open covering and V is a refinement of W, then the

composition of the maps

Č•(W,F) −→ Č•(V,F) −→ Č•(U ,F)

associated to maps I → J and J → K is the map associated to the composition
I → K. In particular, we can define the Čech cohomology groups

Ȟp(X,F) = colimU Ȟ
p(U ,F)

where the colimit is over all open coverings of X preordered by refinement.

It turns out that the maps γ defined above are compatible with the map to coho-
mology, in other words, the composition

Ȟp(V,F)→ Ȟp(U ,F) Lemma 11.2−−−−−−−−→ Hp(X,F)

is the canonical map from the first group to cohomology of Lemma 11.2. In the
lemma below we will prove this in a slightly more general setting. A consequence
is that we obtain a well defined map

(15.0.1)09UZ Ȟp(X,F) = colimU Ȟ
p(U ,F) −→ Hp(X,F)

from Čech cohomology to cohomology.

Lemma 15.1.01FD Let f : X → Y be a morphism of ringed spaces. Let φ : f∗G → F
be an f -map from an OY -module G to an OX-module F . Let U : X =

⋃
i∈I Ui and

V : Y =
⋃
j∈J Vj be open coverings. Assume that U is a refinement of f−1V : X =

https://stacks.math.columbia.edu/tag/01FD
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j∈J f

−1(Vj). In this case there exists a commutative diagram

Č•(U ,F) // RΓ(X,F)

Č•(V,G) //

γ

OO

RΓ(Y,G)

OO

in D+(OX(X)) with horizontal arrows given by Lemma 11.2 and right vertical arrow
by (14.1.1). In particular we get commutative diagrams of cohomology groups

Ȟp(U ,F) // Hp(X,F)

Ȟp(V,G) //

γ

OO

Hp(Y,G)

OO

where the right vertical arrow is (14.1.2)

Proof. We first define the left vertical arrow. Namely, choose a map c : I → J
such that Ui ⊂ f−1(Vc(i)) for all i ∈ I. In degree p we define the map by the rule

γ(s)i0...ip = φ(s)c(i0)...c(ip)

This makes sense because φ does indeed induce maps G(Vc(i0)...c(ip))→ F(Ui0...ip)
by assumption. It is also clear that this defines a morphism of complexes. Choose
injective resolutions F → I• on X and G → J• on Y . According to the proof of
Lemma 11.2 we introduce the double complexes A•,• and B•,• with terms

Bp,q = Čp(V,J q) and Ap,q = Čp(U , Iq).
As in Remark 14.2 above we also choose an injective resolution f∗I → (J ′)• on
Y and a morphism of complexes β : J → (J ′)• making (14.2.1) commutes. We
introduce some more double complexes, namely (B′)•,• and (B′′)•,• with

(B′)p,q = Čp(V, (J ′)q) and (B′′)p,q = Čp(V, f∗Iq).
Note that there is an f -map of complexes from f∗I• to I•. Hence it is clear that
the same rule as above defines a morphism of double complexes

γ : (B′′)•,• −→ A•,•.

Consider the diagram of complexes

Č•(U ,F) // Tot(A•,•) Γ(X, I•)
qis

oo

Č•(V,G) //

γ

OO

Tot(B•,•) β // Tot((B′)•,•) Tot((B′′)•,•)oo

sγ

kk

Γ(Y,J •)

qis

OO

β // Γ(Y, (J ′)•)

OO

Γ(Y, f∗I•)

OO

qisoo

The two horizontal arrows with targets Tot(A•,•) and Tot(B•,•) are the ones ex-
plained in Lemma 11.2. The left upper shape (a pentagon) is commutative simply
because (14.2.1) is commutative. The two lower squares are trivially commutative.
It is also immediate from the definitions that the right upper shape (a square) is
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commutative. The result of the lemma now follows from the definitions and the fact
that going around the diagram on the outer sides from Č•(V,G) to Γ(X, I•) either
on top or on bottom is the same (where you have to invert any quasi-isomorphisms
along the way). □

16. Cohomology on Hausdorff quasi-compact spaces

09V0 For such a space Čech cohomology agrees with cohomology.

Lemma 16.1.09V1 Let X be a topological space. Let F be an abelian sheaf. Then the
map Ȟ1(X,F)→ H1(X,F) defined in (15.0.1) is an isomorphism.

Proof. Let U be an open covering of X. By Lemma 11.5 there is an exact sequence

0→ Ȟ1(U ,F)→ H1(X,F)→ Ȟ0(U , H1(F))

Thus the map is injective. To show surjectivity it suffices to show that any element
of Ȟ0(U , H1(F)) maps to zero after replacing U by a refinement. This is immediate
from the definitions and the fact that H1(F) is a presheaf of abelian groups whose
sheafification is zero by locality of cohomology, see Lemma 7.2. □

Lemma 16.2.09V2 Let X be a Hausdorff and quasi-compact topological space. Let F
be an abelian sheaf on X. Then the map Ȟn(X,F)→ Hn(X,F) defined in (15.0.1)
is an isomorphism for all n.

Proof. We already know that Ȟn(X,−) → Hn(X,−) is an isomorphism of func-
tors for n = 0, 1, see Lemma 16.1. The functors Hn(X,−) form a universal δ-
functor, see Derived Categories, Lemma 20.4. If we show that Ȟn(X,−) forms
a universal δ-functor and that Ȟn(X,−) → Hn(X,−) is compatible with bound-
ary maps, then the map will automatically be an isomorphism by uniqueness of
universal δ-functors, see Homology, Lemma 12.5.

Let 0→ F → G → H → 0 be a short exact sequence of abelian sheaves on X. Let
U : X =

⋃
i∈I Ui be an open covering. This gives a complex of complexes

0→ Č•(U ,F)→ Č•(U ,G)→ Č•(U ,H)→ 0

which is in general not exact on the right. The sequence defines the maps

Ȟn(U ,F)→ Ȟn(U ,G)→ Ȟn(U ,H)

but isn’t good enough to define a boundary operator δ : Ȟn(U ,H)→ Ȟn+1(U ,F).
Indeed such a thing will not exist in general. However, given an element h ∈
Ȟn(U ,H) which is the cohomology class of a cocycle h = (hi0...in) we can choose
open coverings

Ui0...in =
⋃
Wi0...in,k

such that hi0...in |Wi0...in,k
lifts to a section of G over Wi0...in,k. By Topology, Lemma

13.5 (this is where we use the assumption that X is hausdorff and quasi-compact)
we can choose an open covering V : X =

⋃
j∈J Vj and α : J → I such that

Vj ⊂ Uα(j) (it is a refinement) and such that for all j0, . . . , jn ∈ J there is a k such

https://stacks.math.columbia.edu/tag/09V1
https://stacks.math.columbia.edu/tag/09V2
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that Vj0...jn
⊂Wα(j0)...α(jn),k. We obtain maps of complexes

0 // Č•(U ,F)

��

// Č•(U ,G)

��

// Č•(U ,H)

��

// 0

0 // Č•(V,F) // Č•(V,G) // Č•(V,H) // 0

In fact, the vertical arrows are the maps of complexes used to define the transition
maps between the Čech cohomology groups. Our choice of refinement shows that
we may choose

gj0...jn ∈ G(Vj0...jn), gj0...jn 7−→ hα(j0)...α(jn)|Vj0...jn

The cochain g = (gj0...jn
) is not a cocycle in general but we know that its Čech

boundary d(g) maps to zero in Čn+1(V,H) (by the commutative diagram above
and the fact that h is a cocycle). Hence d(g) is a cocycle in Č•(V,F). This allows
us to define

δ(h) = class of d(g) in Ȟn+1(V,F)
Now, given an element ξ ∈ Ȟn(X,G) we choose an open covering U and an element
h ∈ Ȟn(U ,G) mapping to ξ in the colimit defining Čech cohomology. Then we
choose V and g as above and set δ(ξ) equal to the image of δ(h) in Ȟn(X,F). At
this point a lot of properties have to be checked, all of which are straightforward.
For example, we need to check that our construction is independent of the choice
of U , h,V, α : J → I, g. The class of d(g) is independent of the choice of the
lifts gi0...in because the difference will be a coboundary. Independence of α holds1

because a different choice of α determines homotopic vertical maps of complexes
in the diagram above, see Section 15. For the other choices we use that given a
finite collection of coverings of X we can always find a covering refining all of them.
We also need to check additivity which is shown in the same manner. Finally, we
need to check that the maps Ȟn(X,−)→ Hn(X,−) are compatible with boundary
maps. To do this we choose injective resolutions

0 // F //

��

G //

��

H //

��

0

0 // I•
1

// I•
2

// I•
3

// 0

as in Derived Categories, Lemma 18.9. This will give a commutative diagram

0 // Č•(U ,F) //

��

Č•(U ,F) //

��

Č•(U ,F) //

��

0

0 // Tot(Č•(U , I•
1 )) // Tot(Č•(U , I•

2 )) // Tot(Č•(U , I•
3 )) // 0

Here U is an open covering as above and the vertical maps are those used to
define the maps Ȟn(U ,−) → Hn(X,−), see Lemma 11.2. The bottom complex is
exact as the sequence of complexes of injectives is termwise split exact. Hence the

1This is an important check because the nonuniqueness of α is the only thing preventing us
from taking the colimit of Čech complexes over all open coverings of X to get a short exact
sequence of complexes computing Čech cohomology.
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boundary map in cohomology is computed by the usual procedure for this lower
exact sequence, see Homology, Lemma 13.12. The same will be true after passing
to the refinement V where the boundary map for Čech cohomology was defined.
Hence the boundary maps agree because they use the same construction (whenever
the first one is defined on an element in Čech cohomology on a given covering).
This finishes our discussion of the construction of the structure of a δ-functor on
Čech cohomology and why this structure is compatible with the given δ-functor
structure on usual cohomology.
Finally, we may apply Lemma 11.1 to see that higher Čech cohomology is trivial
on injective sheaves. Hence we see that Čech cohomology is a universal δ-functor
by Homology, Lemma 12.4. □

Lemma 16.3.09V3 [AGV71, Expose V
bis, 4.1.3]

Let X be a topological space. Let Z ⊂ X be a quasi-compact subset
such that any two points of Z have disjoint open neighbourhoods in X. For every
abelian sheaf F on X the canonical map

colimHp(U,F) −→ Hp(Z,F|Z)
where the colimit is over open neighbourhoods U of Z in X is an isomorphism.

Proof. We first prove this for p = 0. Injectivity follows from the definition of F|Z
and holds in general (for any subset of any topological space X). Next, suppose
that s ∈ H0(Z,F|Z). Then we can find opens Ui ⊂ X such that Z ⊂

⋃
Ui and such

that s|Z∩Ui comes from si ∈ F(Ui). It follows that there exist opens Wij ⊂ Ui ∩Uj
with Wij ∩Z = Ui ∩Uj ∩Z such that si|Wij = sj |Wij . Applying Topology, Lemma
13.7 we find opens Vi of X such that Vi ⊂ Ui and such that Vi ∩ Vj ⊂ Wij . Hence
we see that si|Vi

glue to a section of F over the open neighbourhood
⋃
Vi of Z.

To finish the proof, it suffices to show that if I is an injective abelian sheaf on
X, then Hp(Z, I|Z) = 0 for p > 0. This follows using short exact sequences and
dimension shifting; details omitted. Thus, suppose ξ is an element of Hp(Z, I|Z)
for some p > 0. By Lemma 16.2 the element ξ comes from Ȟp(V, I|Z) for some
open covering V : Z =

⋃
Vi of Z. Say ξ is the image of the class of a cocycle

ξ = (ξi0...ip) in Čp(V, I|Z).
Let I ′ ⊂ I|Z be the subpresheaf defined by the rule
I ′(V ) = {s ∈ I|Z(V ) | ∃(U, t), U ⊂ X open, t ∈ I(U), V = Z ∩ U, s = t|Z∩U}

Then I|Z is the sheafification of I ′. Thus for every (p+1)-tuple i0 . . . ip we can find
an open covering Vi0...ip =

⋃
Wi0...ip,k such that ξi0...ip |Wi0...ip,k

is a section of I ′.
Applying Topology, Lemma 13.5 we may after refining V assume that each ξi0...ip
is a section of the presheaf I ′.
Write Vi = Z ∩ Ui for some opens Ui ⊂ X. Since I is flasque (Lemma 12.2)
and since ξi0...ip is a section of I ′ for every (p + 1)-tuple i0 . . . ip we can choose a
section si0...ip ∈ I(Ui0...ip) which restricts to ξi0...ip on Vi0...ip = Z ∩ Ui0...ip . (This
appeal to injectives being flasque can be avoided by an additional application of
Topology, Lemma 13.7.) Let s = (si0...ip) be the corresponding cochain for the
open covering U =

⋃
Ui. Since d(ξ) = 0 we see that the sections d(s)i0...ip+1

restrict to zero on Z ∩ Ui0...ip+1 . Hence, by the initial remarks of the proof, there
exists open subsets Wi0...ip+1 ⊂ Ui0...ip+1 with Z ∩Wi0...ip+1 = Z ∩ Ui0...ip+1 such
that d(s)i0...ip+1 |Wi0...ip+1

= 0. By Topology, Lemma 13.7 we can find U ′
i ⊂ Ui

https://stacks.math.columbia.edu/tag/09V3
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such that Z ⊂
⋃
U ′
i and such that U ′

i0...ip+1
⊂ Wi0...ip+1 . Then s′ = (s′

i0...ip
) with

s′
i0...ip

= si0...ip |U ′
i0...ip

is a cocycle for I for the open covering U ′ =
⋃
U ′
i of an open

neighbourhood of Z. Since I has trivial higher Čech cohomology groups (Lemma
11.1) we conclude that s′ is a coboundary. It follows that the image of ξ in the Čech
complex for the open covering Z =

⋃
Z ∩U ′

i is a coboundary and we are done. □

17. The base change map

02N6 We will need to know how to construct the base change map in some cases. Since
we have not yet discussed derived pullback we only discuss this in the case of a
base change by a flat morphism of ringed spaces. Before we state the result, let
us discuss flat pullback on the derived category. Namely, suppose that g : X → Y
is a flat morphism of ringed spaces. By Modules, Lemma 20.2 the functor g∗ :
Mod(OY )→ Mod(OX) is exact. Hence it has a derived functor

g∗ : D+(Y )→ D+(X)
which is computed by simply pulling back an representative of a given object in
D+(Y ), see Derived Categories, Lemma 16.9. Hence as indicated we indicate this
functor by g∗ rather than Lg∗.

Lemma 17.1.02N7 Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a commutative diagram of ringed spaces. Let F• be a bounded below complex of
OX-modules. Assume both g and g′ are flat. Then there exists a canonical base
change map

g∗Rf∗F• −→ R(f ′)∗(g′)∗F•

in D+(S′).

Proof. Choose injective resolutions F• → I• and (g′)∗F• → J •. By Lemma 11.11
we see that (g′)∗J • is a complex of injectives representing R(g′)∗(g′)∗F•. Hence
by Derived Categories, Lemmas 18.6 and 18.7 the arrow β in the diagram

(g′)∗(g′)∗F• // (g′)∗J •

F•

adjunction

OO

// I•

β

OO

exists and is unique up to homotopy. Pushing down to S we get
f∗β : f∗I• −→ f∗(g′)∗J • = g∗(f ′)∗J •

By adjunction of g∗ and g∗ we get a map of complexes g∗f∗I• → (f ′)∗J •. Note
that this map is unique up to homotopy since the only choice in the whole process
was the choice of the map β and everything was done on the level of complexes. □

Remark 17.2.02N8 The “correct” version of the base change map is the map

Lg∗Rf∗F• −→ R(f ′)∗L(g′)∗F•.

The construction of this map involves unbounded complexes, see Remark 28.3.

https://stacks.math.columbia.edu/tag/02N7
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18. Proper base change in topology

09V4 In this section we prove a very general version of the proper base change theorem
in topology. It tells us that the stalks of the higher direct images Rpf∗ can be
computed on the fibre.

Lemma 18.1.09V5 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let
y ∈ Y . Assume that

(1) f is closed,
(2) f is separated, and
(3) f−1(y) is quasi-compact.

Then for E in D+(OX) we have (Rf∗E)y = RΓ(f−1(y), E|f−1(y)) in D+(OY,y).

Proof. The base change map of Lemma 17.1 gives a canonical map (Rf∗E)y →
RΓ(f−1(y), E|f−1(y)). To prove this map is an isomorphism, we represent E by a
bounded below complex of injectives I•. Set Z = f−1({y}). The assumptions of
Lemma 16.3 are satisfied, see Topology, Lemma 4.2. Hence the restrictions In|Z
are acyclic for Γ(Z,−). Thus RΓ(Z,E|Z) is represented by the complex Γ(Z, I•|Z),
see Derived Categories, Lemma 16.7. In other words, we have to show the map

colimV I•(f−1(V )) −→ Γ(Z, I•|Z)

is an isomorphism. Using Lemma 16.3 we see that it suffices to show that the
collection of open neighbourhoods f−1(V ) of Z = f−1({y}) is cofinal in the system
of all open neighbourhoods. If f−1({y}) ⊂ U is an open neighbourhood, then as f
is closed the set V = Y \f(X \U) is an open neighbourhood of y with f−1(V ) ⊂ U .
This proves the lemma. □

Theorem 18.2 (Proper base change).09V6 [AGV71, Expose V
bis, 4.1.1]

Consider a cartesian square of topological
spaces

X ′ = Y ′ ×Y X

f ′

��

g′
// X

f

��
Y ′ g // Y

Assume that f is proper. Let E be an object of D+(X). Then the base change map

g−1Rf∗E −→ Rf ′
∗(g′)−1E

of Lemma 17.1 is an isomorphism in D+(Y ′).

Proof. Let y′ ∈ Y ′ be a point with image y ∈ Y . It suffices to show that the base
change map induces an isomorphism on stalks at y′. As f is proper it follows that
f ′ is proper, the fibres of f and f ′ are quasi-compact and f and f ′ are closed, see
Topology, Theorem 17.5 and Lemma 4.4. Thus we can apply Lemma 18.1 twice to
see that

(Rf ′
∗(g′)−1E)y′ = RΓ((f ′)−1(y′), (g′)−1E|(f ′)−1(y′))

and
(Rf∗E)y = RΓ(f−1(y), E|f−1(y))

The induced map of fibres (f ′)−1(y′)→ f−1(y) is a homeomorphism of topological
spaces and the pull back of E|f−1(y) is (g′)−1E|(f ′)−1(y′). The desired result follows.

□

https://stacks.math.columbia.edu/tag/09V5
https://stacks.math.columbia.edu/tag/09V6
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Lemma 18.3 (Proper base change for sheaves of sets).0D90 Consider a cartesian square
of topological spaces

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

Assume that f is proper. Then g−1f∗F = f ′
∗(g′)−1F for any sheaf of sets F on X.

Proof. We argue exactly as in the proof of Theorem 18.2 and we find it suffices
to show (f∗F)y = Γ(Xy,F|Xy

). Then we argue as in Lemma 18.1 to reduce this
to the p = 0 case of Lemma 16.3 for sheaves of sets. The first part of the proof
of Lemma 16.3 works for sheaves of sets and this finishes the proof. Some details
omitted. □

19. Cohomology and colimits

01FE Let X be a ringed space. Let (Fi, φii′) be a system of sheaves of OX -modules over
the directed set I, see Categories, Section 21. Since for each i there is a canonical
map Fi → colimi Fi we get a canonical map

colimiH
p(X,Fi) −→ Hp(X, colimi Fi)

for every p ≥ 0. Of course there is a similar map for every open U ⊂ X. These
maps are in general not isomorphisms, even for p = 0. In this section we generalize
the results of Sheaves, Lemma 29.1. See also Modules, Lemma 22.8 (in the special
case G = OX).

Lemma 19.1.01FF Let X be a ringed space. Assume that the underlying topological
space of X has the following properties:

(1) there exists a basis of quasi-compact open subsets, and
(2) the intersection of any two quasi-compact opens is quasi-compact.

Then for any directed system (Fi, φii′) of sheaves of OX-modules and for any quasi-
compact open U ⊂ X the canonical map

colimiH
q(U,Fi) −→ Hq(U, colimi Fi)

is an isomorphism for every q ≥ 0.

Proof. It is important in this proof to argue for all quasi-compact opens U ⊂ X
at the same time. The result is true for q = 0 and any quasi-compact open U ⊂ X
by Sheaves, Lemma 29.1 (combined with Topology, Lemma 27.1). Assume that we
have proved the result for all q ≤ q0 and let us prove the result for q = q0 + 1.
By our conventions on directed systems the index set I is directed, and any system
of OX -modules (Fi, φii′) over I is directed. By Injectives, Lemma 5.1 the category
of OX -modules has functorial injective embeddings. Thus for any system (Fi, φii′)
there exists a system (Ii, φii′) with each Ii an injective OX -module and a morphism
of systems given by injective OX -module maps Fi → Ii. Denote Qi the cokernel
so that we have short exact sequences

0→ Fi → Ii → Qi → 0.
We claim that the sequence

0→ colimi Fi → colimi Ii → colimiQi → 0.

https://stacks.math.columbia.edu/tag/0D90
https://stacks.math.columbia.edu/tag/01FF
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is also a short exact sequence of OX -modules. We may check this on stalks. By
Sheaves, Sections 28 and 29 taking stalks commutes with colimits. Since a di-
rected colimit of short exact sequences of abelian groups is short exact (see Alge-
bra, Lemma 8.8) we deduce the result. We claim that Hq(U, colimi Ii) = 0 for all
quasi-compact open U ⊂ X and all q ≥ 1. Accepting this claim for the moment
consider the diagram

colimiH
q0(U, Ii)

��

// colimiH
q0(U,Qi)

��

// colimiH
q0+1(U,Fi)

��

// 0

��
Hq0(U, colimi Ii) // Hq0(U, colimiQi) // Hq0+1(U, colimi Fi) // 0

The zero at the lower right corner comes from the claim and the zero at the upper
right corner comes from the fact that the sheaves Ii are injective. The top row
is exact by an application of Algebra, Lemma 8.8. Hence by the snake lemma we
deduce the result for q = q0 + 1.
It remains to show that the claim is true. We will use Lemma 11.9. Let B be
the collection of all quasi-compact open subsets of X. This is a basis for the
topology on X by assumption. Let Cov be the collection of finite open coverings
U : U =

⋃
j=1,...,m Uj with each of U , Uj quasi-compact open in X. By the result

for q = 0 we see that for U ∈ Cov we have
Č•(U , colimi Ii) = colimi Č•(U , Ii)

because all the multiple intersections Uj0...jp are quasi-compact. By Lemma 11.1
each of the complexes in the colimit of Čech complexes is acyclic in degree ≥ 1.
Hence by Algebra, Lemma 8.8 we see that also the Čech complex Č•(U , colimi Ii)
is acyclic in degrees ≥ 1. In other words we see that Ȟp(U , colimi Ii) = 0 for all
p ≥ 1. Thus the assumptions of Lemma 11.9 are satisfied and the claim follows. □

Next we formulate the analogy of Sheaves, Lemma 29.4 for cohomology. Let X be
a spectral space which is written as a cofiltered limit of spectral spaces Xi for a
diagram with spectral transition morphisms as in Topology, Lemma 24.5. Assume
given

(1) an abelian sheaf Fi on Xi for all i ∈ Ob(I),
(2) for a : j → i an fa-map φa : Fi → Fj of abelian sheaves (see Sheaves,

Definition 21.7)
such that φc = φb ◦ φa whenever c = a ◦ b. Set F = colim p−1

i Fi on X.

Lemma 19.2.0A37 In the situation discussed above. Let i ∈ Ob(I) and let Ui ⊂ Xi be
quasi-compact open. Then

colima:j→iH
p(f−1

a (Ui),Fj) = Hp(p−1
i (Ui),F)

for all p ≥ 0. In particular we have Hp(X,F) = colimHp(Xi,Fi).

Proof. The case p = 0 is Sheaves, Lemma 29.4.
In this paragraph we show that we can find a map of systems (γi) : (Fi, φa) →
(Gi, ψa) with Gi an injective abelian sheaf and γi injective. For each i we pick an
injection Fi → Ii where Ii is an injective abelian sheaf on Xi. Then we can consider
the family of maps

γi : Fi −→
∏

b:k→i
fb,∗Ik = Gi

https://stacks.math.columbia.edu/tag/0A37
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where the component maps are the maps adjoint to the maps f−1
b Fi → Fk → Ik.

For a : j → i in I there is a canonical map

ψa : f−1
a Gi → Gj

whose components are the canonical maps f−1
b fa◦b,∗Ik → fb,∗Ik for b : k → j.

Thus we find an injection {γi} : {Fi, φa)→ (Gi, ψa) of systems of abelian sheaves.
Note that Gi is an injective sheaf of abelian groups on Xi, see Lemma 11.11 and
Homology, Lemma 27.3. This finishes the construction.

Arguing exactly as in the proof of Lemma 19.1 we see that it suffices to prove that
Hp(X, colim f−1

i Gi) = 0 for p > 0.

Set G = colim f−1
i Gi. To show vanishing of cohomology of G on every quasi-compact

open of X, it suffices to show that the Čech cohomology of G for any covering U
of a quasi-compact open of X by finitely many quasi-compact opens is zero, see
Lemma 11.9. Such a covering is the inverse by pi of such a covering Ui on the space
Xi for some i by Topology, Lemma 24.6. We have

Č•(U ,G) = colima:j→i Č•(f−1
a (Ui),Gj)

by the case p = 0. The right hand side is a filtered colimit of complexes each of
which is acyclic in positive degrees by Lemma 11.1. Thus we conclude by Algebra,
Lemma 8.8. □

20. Vanishing on Noetherian topological spaces

02UU The aim is to prove a theorem of Grothendieck namely Proposition 20.7. See
[Gro57].

Lemma 20.1.02UV Let i : Z → X be a closed immersion of topological spaces. For
any abelian sheaf F on Z we have Hp(Z,F) = Hp(X, i∗F).

Proof. This is true because i∗ is exact (see Modules, Lemma 6.1), and hence
Rpi∗ = 0 as a functor (Derived Categories, Lemma 16.9). Thus we may apply
Lemma 13.6. □

Lemma 20.2.02UW Let X be an irreducible topological space. Then Hp(X,A) = 0 for
all p > 0 and any abelian group A.

Proof. Recall that A is the constant sheaf as defined in Sheaves, Definition 7.4.
Since X is irreducible, any nonempty open U is irreducible and a fortiori connected.
Hence for U ⊂ X nonempty open we have A(U) = A. We have A(∅) = 0. Thus A
is a flasque abelian sheaf on X. The vanishing follows from Lemma 12.3. □

Lemma 20.3.0A38 [Gro57, Page 168].Let X be a topological space such that the intersection of any two
quasi-compact opens is quasi-compact. Let F ⊂ Z be a subsheaf generated by finitely
many sections over quasi-compact opens. Then there exists a finite filtration

(0) = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F

by abelian subsheaves such that for each 0 < i ≤ n there exists a short exact sequence

0→ j′
!ZV → j!ZU → Fi/Fi−1 → 0

with j : U → X and j′ : V → X the inclusion of quasi-compact opens into X.

https://stacks.math.columbia.edu/tag/02UV
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Proof. Say F is generated by the sections s1, . . . , st over the quasi-compact opens
U1, . . . , Ut. Since Ui is quasi-compact and si a locally constant function to Z we may
assume, after possibly replacing Ui by the parts of a finite decomposition into open
and closed subsets, that si is a constant section. Say si = ni with ni ∈ Z. Of course
we can remove (Ui, ni) from the list if ni = 0. Flipping signs if necessary we may
also assume ni > 0. Next, for any subset I ⊂ {1, . . . , t} we may add

⋂
i∈I Ui and

gcd(ni, i ∈ I) to the list. After doing this we see that our list (U1, n1), . . . , (Ut, nt)
satisfies the following property: For x ∈ X set Ix = {i ∈ {1, . . . , t} | x ∈ Ui}. Then
gcd(ni, i ∈ Ix) is attained by ni for some i ∈ Ix.
As our filtration we take F0 = (0) and Fn generated by the sections ni over Ui for
those i such that ni ≤ n. It is clear that Fn = F for n≫ 0. Moreover, the quotient
Fn/Fn−1 is generated by the section n over U =

⋃
ni≤n Ui and the kernel of the

map j!ZU → Fn/Fn−1 is generated by the section n over V =
⋃
ni≤n−1 Ui. Thus a

short exact sequence as in the statement of the lemma. □

Lemma 20.4.02UX This is a special
case of [Gro57,
Proposition 3.6.1].

Let X be a topological space. Let d ≥ 0 be an integer. Assume
(1) X is quasi-compact,
(2) the quasi-compact opens form a basis for X, and
(3) the intersection of two quasi-compact opens is quasi-compact.
(4) Hp(X, j!ZU ) = 0 for all p > d and any quasi-compact open j : U → X.

Then Hp(X,F) = 0 for all p > d and any abelian sheaf F on X.

Proof. Let S =
∐
U⊂X F(U) where U runs over the quasi-compact opens of X.

For any finite subset A = {s1, . . . , sn} ⊂ S, let FA be the subsheaf of F generated
by all si (see Modules, Definition 4.5). Note that if A ⊂ A′, then FA ⊂ FA′ . Hence
{FA} forms a system over the directed partially ordered set of finite subsets of S.
By Modules, Lemma 4.6 it is clear that

colimA FA = F
by looking at stalks. By Lemma 19.1 we have

Hp(X,F) = colimAH
p(X,FA)

Hence it suffices to prove the vanishing for the abelian sheaves FA. In other words,
it suffices to prove the result when F is generated by finitely many local sections
over quasi-compact opens of X.
Suppose that F is generated by the local sections s1, . . . , sn. Let F ′ ⊂ F be the
subsheaf generated by s1, . . . , sn−1. Then we have a short exact sequence

0→ F ′ → F → F/F ′ → 0
From the long exact sequence of cohomology we see that it suffices to prove the
vanishing for the abelian sheaves F ′ and F/F ′ which are generated by fewer than
n local sections. Hence it suffices to prove the vanishing for sheaves generated by
at most one local section. These sheaves are exactly the quotients of the sheaves
j!ZU where U is a quasi-compact open of X.
Assume now that we have a short exact sequence

0→ K → j!ZU → F → 0
with U quasi-compact open in X. It suffices to show that Hq(X,K) is zero for
q ≥ d+1. As above we can write K as the filtered colimit of subsheaves K′ generated

https://stacks.math.columbia.edu/tag/02UX
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by finitely many sections over quasi-compact opens. Then F is the filtered colimit
of the sheaves j!ZU/K′. In this way we reduce to the case that K is generated by
finitely many sections over quasi-compact opens. Note that K is a subsheaf of ZX .
Thus by Lemma 20.3 there exists a finite filtration of K whose successive quotients
Q fit into a short exact sequence

0→ j′′
! ZW → j′

!ZV → Q→ 0
with j′′ : W → X and j′ : V → X the inclusions of quasi-compact opens. Hence
the vanishing of Hp(X,Q) for p > d follows from our assumption (in the lemma)
on the vanishing of the cohomology groups of j′′

! ZW and j′
!ZV . Returning to K

this, via an induction argument using the long exact cohomology sequence, implies
the desired vanishing for it as well. □

Example 20.5.0BX0 Let X = N endowed with the topology whose opens are ∅, X,
and Un = {i | i ≤ n} for n ≥ 1. An abelian sheaf F on X is the same as an inverse
system of abelian groups An = F(Un) and Γ(X,F) = limAn. Since the inverse
limit functor is not an exact functor on the category of inverse systems, we see
that there is an abelian sheaf with nonzero H1. Finally, the reader can check that
Hp(X, j!ZU ) = 0, p ≥ 1 if j : U = Un → X is the inclusion. Thus we see that X
is an example of a space satisfying conditions (2), (3), and (4) of Lemma 20.4 for
d = 0 but not the conclusion.

Lemma 20.6.02UY Let X be an irreducible topological space. Let H ⊂ Z be an abelian
subsheaf of the constant sheaf. Then there exists a nonempty open U ⊂ X such
that H|U = dZU for some d ∈ Z.

Proof. Recall that Z(V ) = Z for any nonempty open V of X (see proof of Lemma
20.2). If H = 0, then the lemma holds with d = 0. If H ̸= 0, then there exists
a nonempty open U ⊂ X such that H(U) ̸= 0. Say H(U) = nZ for some n ≥ 1.
Hence we see that nZU ⊂ H|U ⊂ ZU . If the first inclusion is strict we can find a
nonempty U ′ ⊂ U and an integer 1 ≤ n′ < n such that n′ZU ′ ⊂ H|U ′ ⊂ ZU ′ . This
process has to stop after a finite number of steps, and hence we get the lemma. □

Proposition 20.7 (Grothendieck).02UZ [Gro57, Theorem
3.6.5].

Let X be a Noetherian topological space. If
dim(X) ≤ d, then Hp(X,F) = 0 for all p > d and any abelian sheaf F on X.

Proof. We prove this lemma by induction on d. So fix d and assume the lemma
holds for all Noetherian topological spaces of dimension < d.
Let F be an abelian sheaf on X. Suppose U ⊂ X is an open. Let Z ⊂ X denote
the closed complement. Denote j : U → X and i : Z → X the inclusion maps.
Then there is a short exact sequence

0→ j!j
∗F → F → i∗i

∗F → 0
see Modules, Lemma 7.1. Note that j!j

∗F is supported on the topological closure Z ′

of U , i.e., it is of the form i′∗F ′ for some abelian sheaf F ′ on Z ′, where i′ : Z ′ → X
is the inclusion.
We can use this to reduce to the case where X is irreducible. Namely, according to
Topology, Lemma 9.2 X has finitely many irreducible components. If X has more
than one irreducible component, then let Z ⊂ X be an irreducible component of
X and set U = X \ Z. By the above, and the long exact sequence of cohomology,
it suffices to prove the vanishing of Hp(X, i∗i∗F) and Hp(X, i′∗F ′) for p > d. By

https://stacks.math.columbia.edu/tag/0BX0
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Lemma 20.1 it suffices to prove Hp(Z, i∗F) and Hp(Z ′,F ′) vanish for p > d. Since
Z ′ and Z have fewer irreducible components we indeed reduce to the case of an
irreducible X.
If d = 0 and X is irreducible, then X is the only nonempty open subset of X.
Hence every sheaf is constant and higher cohomology groups vanish (for example
by Lemma 20.2).
Suppose X is irreducible of dimension d > 0. By Lemma 20.4 we reduce to the
case where F = j!ZU for some open U ⊂ X. In this case we look at the short exact
sequence

0→ j!(ZU )→ ZX → i∗ZZ → 0
where Z = X \ U . By Lemma 20.2 we have the vanishing of Hp(X,ZX) for all
p ≥ 1. By induction we have Hp(X, i∗ZZ) = Hp(Z,ZZ) = 0 for p ≥ d. Hence we
win by the long exact cohomology sequence. □

21. Cohomology with support in a closed subset

0A39 This section just discusses the bare minimum – the discussion will be continued in
Section 34.
Let X be a topological space and let Z ⊂ X be a closed subset. Let F be an abelian
sheaf on X. We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}
be the subset of sections whose support is contained in Z. The support of a section
is defined in Modules, Definition 5.1. Modules, Lemma 5.2 implies that ΓZ(X,F)
is a subgroup of Γ(X,F). The same lemma guarantees that the assignment F 7→
ΓZ(X,F) is a functor in F . This functor is left exact but not exact in general.
Since the category of abelian sheaves has enough injectives (Injectives, Lemma 4.1)
we we obtain a right derived functor

RΓZ(X,−) : D+(X) −→ D+(Ab)
by Derived Categories, Lemma 20.2. The value of RΓZ(X,−) on an object K is
computed by representing K by a bounded below complex I• of injective abelian
sheaves and taking ΓZ(X, I•), see Derived Categories, Lemma 20.1. The coho-
mology groups of an abelian sheaf F with support in Z defined by Hq

Z(X,F) =
RqΓZ(X,F).
Let I be an injective abelian sheaf on X. Let U = X \ Z. Then the restriction
map I(X)→ I(U) is surjective (Lemma 8.1) with kernel ΓZ(X, I). It immediately
follows that for K ∈ D+(X) there is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]
in D+(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .

for any K in D+(X).
For an abelian sheaf F on X we can consider the subsheaf of sections with support
in Z, denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ∩ Z} = ΓZ∩U (U,F|U )
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Using the equivalence of Modules, Lemma 6.1 we may view HZ(F) as an abelian
sheaf on Z, see Modules, Remark 6.2. Thus we obtain a functor

Ab(X) −→ Ab(Z), F 7−→ HZ(F) viewed as a sheaf on Z

This functor is left exact, but in general not exact. Exactly as above we obtain a
right derived functor

RHZ : D+(X) −→ D+(Z)
the derived functor. We set HqZ(F) = RqHZ(F) so that H0

Z(F) = HZ(F).
Observe that we have ΓZ(X,F) = Γ(Z,HZ(F)) for any abelian sheaf F . By
Lemma 21.1 below the functor HZ transforms injective abelian sheaves into sheaves
right acyclic for Γ(Z,−). Thus by Derived Categories, Lemma 22.2 we obtain a
convergent Grothendieck spectral sequence

Ep,q2 = Hp(Z,HqZ(K))⇒ Hp+q
Z (X,K)

functorial in K in D+(X).
Lemma 21.1.0A3A Let i : Z → X be the inclusion of a closed subset. Let I be an
injective abelian sheaf on X. Then HZ(I) is an injective abelian sheaf on Z.
Proof. This follows from Homology, Lemma 29.1 as HZ(−) is right adjoint to the
exact functor i∗. See Modules, Lemmas 6.1 and 6.3. □

22. Cohomology on spectral spaces

0A3C A key result on the cohomology of spectral spaces is Lemma 19.2 which loosely
speaking says that cohomology commutes with cofiltered limits in the category of
spectral spaces as defined in Topology, Definition 23.1. This can be applied to give
analogues of Lemmas 16.3 and 18.1 as follows.
Lemma 22.1.0A3D Let X be a spectral space. Let F be an abelian sheaf on X. Let
E ⊂ X be a quasi-compact subset. Let W ⊂ X be the set of points of X which
specialize to a point of E.

(1) Hp(W,F|W ) = colimHp(U,F) where the colimit is over quasi-compact
open neighbourhoods of E,

(2) Hp(W \E,F|W\E) = colimHp(U \E,F|U\E) if E is a constructible subset.
Proof. From Topology, Lemma 24.7 we see that W = limU where the limit is over
the quasi-compact opens containing E. Each U is a spectral space by Topology,
Lemma 23.5. Thus we may apply Lemma 19.2 to conclude that (1) holds. The
same proof works for part (2) except we use Topology, Lemma 24.8. □

Lemma 22.2.0A3E Let f : X → Y be a spectral map of spectral spaces. Let y ∈ Y .
Let E ⊂ Y be the set of points specializing to y. Let F be an abelian sheaf on X.
Then (Rpf∗F)y = Hp(f−1(E),F|f−1(E)).
Proof. Observe that E =

⋂
V where V runs over the quasi-compact open neigh-

bourhoods of y in Y . Hence f−1(E) =
⋂
f−1(V ). This implies that f−1(E) =

lim f−1(V ) as topological spaces. Since f is spectral, each f−1(V ) is a spectral
space too (Topology, Lemma 23.5). We conclude that f−1(E) is a spectral space
and that

Hp(f−1(E),F|f−1(E)) = colimHp(f−1(V ),F)
by Lemma 19.2. On the other hand, the stalk of Rpf∗F at y is given by the colimit
on the right. □

https://stacks.math.columbia.edu/tag/0A3A
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Lemma 22.3.0A3F Let X be a profinite topological space. Then Hq(X,F) = 0 for all
q > 0 and all abelian sheaves F .

Proof. Any open covering of X can be refined by a finite disjoint union decompo-
sition with open parts, see Topology, Lemma 22.4. Hence if F → G is a surjection
of abelian sheaves on X, then F(X) → G(X) is surjective. In other words, the
global sections functor is an exact functor. Therefore its higher derived functors
are zero, see Derived Categories, Lemma 16.9. □

The following result on cohomological vanishing improves Grothendieck’s result
(Proposition 20.7) and can be found in [Sch92].

Proposition 22.4.0A3G Part (1) is the main
theorem of [Sch92].

Let X be a spectral space of Krull dimension d. Let F be an
abelian sheaf on X.

(1) Hq(X,F) = 0 for q > d,
(2) Hd(X,F)→ Hd(U,F) is surjective for every quasi-compact open U ⊂ X,
(3) Hq

Z(X,F) = 0 for q > d and any constructible closed subset Z ⊂ X.

Proof. We prove this result by induction on d.

If d = 0, then X is a profinite space, see Topology, Lemma 23.8. Thus (1) holds
by Lemma 22.3. If U ⊂ X is quasi-compact open, then U is also closed as a quasi-
compact subset of a Hausdorff space. Hence X = U⨿(X \U) as a topological space
and we see that (2) holds. Given Z as in (3) we consider the long exact sequence

Hq−1(X,F)→ Hq−1(X \ Z,F)→ Hq
Z(X,F)→ Hq(X,F)

Since X and U = X \ Z are profinite (namely U is quasi-compact because Z is
constructible) and since we have (2) and (1) we obtain the desired vanishing of the
cohomology groups with support in Z.

Induction step. Assume d ≥ 1 and assume the proposition is valid for all spectral
spaces of dimension < d. We first prove part (2) for X. Let U be a quasi-compact
open. Let ξ ∈ Hd(U,F). Set Z = X \ U . Let W ⊂ X be the set of points
specializing to Z. By Lemma 22.1 we have

Hd(W \ Z,F|W\Z) = colimZ⊂V H
d(V \ Z,F)

where the colimit is over the quasi-compact open neighbourhoods V of Z in X. By
Topology, Lemma 24.7 we see that W \Z is a spectral space. Since every point of W
specializes to a point of Z, we see that W \Z is a spectral space of Krull dimension
< d. By induction hypothesis we see that the image of ξ in Hd(W \ Z,F|W\Z) is
zero. By the displayed formula, there exists a Z ⊂ V ⊂ X quasi-compact open such
that ξ|V \Z = 0. Since V \ Z = V ∩ U we conclude by the Mayer-Vietoris (Lemma
8.2) for the covering X = U ∪ V that there exists a ξ̃ ∈ Hd(X,F) which restricts
to ξ on U and to zero on V . In other words, part (2) is true.

Proof of part (1) assuming (2). Choose an injective resolution F → I•. Set

G = Im(Id−1 → Id) = Ker(Id → Id+1)

https://stacks.math.columbia.edu/tag/0A3F
https://stacks.math.columbia.edu/tag/0A3G
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For U ⊂ X quasi-compact open we have a map of exact sequences as follows

Id−1(X) //

��

G(X) //

��

Hd(X,F)

��

// 0

Id−1(U) // G(U) // Hd(U,F) // 0

The sheaf Id−1 is flasque by Lemma 12.2 and the fact that d ≥ 1. By part (2) we see
that the right vertical arrow is surjective. We conclude by a diagram chase that the
map G(X) → G(U) is surjective. By Lemma 12.6 we conclude that Ȟq(U ,G) = 0
for q > 0 and any finite covering U : U = U1 ∪ . . . ∪ Un of a quasi-compact open
by quasi-compact opens. Applying Lemma 11.9 we find that Hq(U,G) = 0 for all
q > 0 and all quasi-compact opens U of X. By Leray’s acyclicity lemma (Derived
Categories, Lemma 16.7) we conclude that

Hq(X,F) = Hq
(
Γ(X, I0)→ . . .→ Γ(X, Id−1)→ Γ(X,G)

)
In particular the cohomology group vanishes if q > d.
Proof of (3). Given Z as in (3) we consider the long exact sequence

Hq−1(X,F)→ Hq−1(X \ Z,F)→ Hq
Z(X,F)→ Hq(X,F)

Since X and U = X \ Z are spectral spaces (Topology, Lemma 23.5) of dimension
≤ d and since we have (2) and (1) we obtain the desired vanishing. □

23. The alternating Čech complex

01FG This section compares the Čech complex with the alternating Čech complex and
some related complexes.
Let X be a topological space. Let U : U =

⋃
i∈I Ui be an open covering. For p ≥ 0

set

Čpalt(U ,F) =
{
s ∈ Čp(U ,F) such that si0...ip = 0 if in = im for some n ̸= m

and si0...in...im...ip = −si0...im...in...ip in any case.

}
We omit the verification that the differential d of Equation (9.0.1) maps Čpalt(U ,F)
into Čp+1

alt (U ,F).

Definition 23.1.01FH Let X be a topological space. Let U : U =
⋃
i∈I Ui be an

open covering. Let F be an abelian presheaf on X. The complex Č•
alt(U ,F) is the

alternating Čech complex associated to F and the open covering U .

Hence there is a canonical morphism of complexes
Č•
alt(U ,F) −→ Č•(U ,F)

namely the inclusion of the alternating Čech complex into the usual Čech complex.
Suppose our covering U : U =

⋃
i∈I Ui comes equipped with a total ordering < on

I. In this case, set

Čpord(U ,F) =
∏

(i0,...,ip)∈Ip+1,i0<...<ip
F(Ui0...ip).

This is an abelian group. For s ∈ Čpord(U ,F) we denote si0...ip its value in F(Ui0...ip).
We define

d : Čpord(U ,F) −→ Čp+1
ord (U ,F)

https://stacks.math.columbia.edu/tag/01FH
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by the formula

d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

|Ui0...ip+1

for any i0 < . . . < ip+1. Note that this formula is identical to Equation (9.0.1). It
is straightforward to see that d ◦ d = 0. In other words Č•

ord(U ,F) is a complex.

Definition 23.2.01FI Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Assume given a total ordering on I. Let F be an abelian presheaf on
X. The complex Č•

ord(U ,F) is the ordered Čech complex associated to F , the open
covering U and the given total ordering on I.

This complex is sometimes called the alternating Čech complex. The reason is that
there is an obvious comparison map between the ordered Čech complex and the
alternating Čech complex. Namely, consider the map

c : Č•
ord(U ,F) −→ Č•(U ,F)

given by the rule

c(s)i0...ip =
{

0 if in = im for some n ̸= m
sgn(σ)siσ(0)...iσ(p) if iσ(0) < iσ(1) < . . . < iσ(p)

Here σ denotes a permutation of {0, . . . , p} and sgn(σ) denotes its sign. The al-
ternating and ordered Čech complexes are often identified in the literature via the
map c. Namely we have the following easy lemma.

Lemma 23.3.01FJ Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Assume I comes equipped with a total ordering. The map c is a morphism
of complexes. In fact it induces an isomorphism

c : Č•
ord(U ,F)→ Č•

alt(U ,F)

of complexes.

Proof. Omitted. □

There is also a map
π : Č•(U ,F) −→ Č•

ord(U ,F)
which is described by the rule

π(s)i0...ip = si0...ip

whenever i0 < i1 < . . . < ip.

Lemma 23.4.01FK Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Assume I comes equipped with a total ordering. The map π : Č•(U ,F)→
Č•
ord(U ,F) is a morphism of complexes. It induces an isomorphism

π : Č•
alt(U ,F)→ Č•

ord(U ,F)

of complexes which is a left inverse to the morphism c.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/01FI
https://stacks.math.columbia.edu/tag/01FJ
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Remark 23.5.01FL This means that if we have two total orderings <1 and <2 on the
index set I, then we get an isomorphism of complexes τ = π2 ◦ c1 : Čord-1(U ,F)→
Čord-2(U ,F). It is clear that

τ(s)i0...ip = sign(σ)siσ(0)...iσ(p)

where i0 <1 i1 <1 . . . <1 ip and iσ(0) <2 iσ(1) <2 . . . <2 iσ(p). This is the sense in
which the ordered Čech complex is independent of the chosen total ordering.

Lemma 23.6.01FM Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open cov-

ering. Assume I comes equipped with a total ordering. The map c ◦ π is homotopic
to the identity on Č•(U ,F). In particular the inclusion map Č•

alt(U ,F)→ Č•(U ,F)
is a homotopy equivalence.

Proof. For any multi-index (i0, . . . , ip) ∈ Ip+1 there exists a unique permutation
σ : {0, . . . , p} → {0, . . . , p} such that

iσ(0) ≤ iσ(1) ≤ . . . ≤ iσ(p) and σ(j) < σ(j + 1) if iσ(j) = iσ(j+1).

We denote this permutation σ = σi0...ip .
For any permutation σ : {0, . . . , p} → {0, . . . , p} and any a, 0 ≤ a ≤ p we denote
σa the permutation of {0, . . . , p} such that

σa(j) =
{

σ(j) if 0 ≤ j < a,
min{j′ | j′ > σa(j − 1), j′ ̸= σ(k),∀k < a} if a ≤ j

So if p = 3 and σ, τ are given by
id 0 1 2 3
σ 3 2 1 0 and id 0 1 2 3

τ 3 0 2 1
then we have

id 0 1 2 3
σ0 0 1 2 3
σ1 3 0 1 2
σ2 3 2 0 1
σ3 3 2 1 0

and

id 0 1 2 3
τ0 0 1 2 3
τ1 3 0 1 2
τ2 3 0 1 2
τ3 3 0 2 1

It is clear that always σ0 = id and σp = σ.

Having introduced this notation we define for s ∈ Čp+1(U ,F) the element h(s) ∈
Čp(U ,F) to be the element with components

(23.6.1)01FN h(s)i0...ip =
∑

0≤a≤p
(−1)asign(σa)siσ(0)...iσ(a)iσa(a)...iσa(p)

where σ = σi0...ip . The index iσ(a) occurs twice in iσ(0) . . . iσ(a)iσa(a) . . . iσa(p) once
in the first group of a+ 1 indices and once in the second group of p− a+ 1 indices
since σa(j) = σ(a) for some j ≥ a by definition of σa. Hence the sum makes sense
since each of the elements siσ(0)...iσ(a)iσa(a)...iσa(p) is defined over the open Ui0...ip .
Note also that for a = 0 we get si0...ip and for a = p we get (−1)psign(σ)siσ(0)...iσ(p) .
We claim that

(dh+ hd)(s)i0...ip = si0...ip − sign(σ)siσ(0)...iσ(p)

where σ = σi0...ip . We omit the verification of this claim. (There is a PARI/gp
script called first-homotopy.gp in the stacks-project subdirectory scripts which can

https://stacks.math.columbia.edu/tag/01FL
https://stacks.math.columbia.edu/tag/01FM
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be used to check finitely many instances of this claim. We wrote this script to make
sure the signs are correct.) Write

κ : Č•(U ,F) −→ Č•(U ,F)

for the operator given by the rule

κ(s)i0...ip = sign(σi0...ip)siσ(0)...iσ(p) .

The claim above implies that κ is a morphism of complexes and that κ is homotopic
to the identity map of the Čech complex. This does not immediately imply the
lemma since the image of the operator κ is not the alternating subcomplex. Namely,
the image of κ is the “semi-alternating” complex Čpsemi-alt(U ,F) where s is a p-
cochain of this complex if and only if

si0...ip = sign(σ)siσ(0)...iσ(p)

for any (i0, . . . , ip) ∈ Ip+1 with σ = σi0...ip . We introduce yet another variant Čech
complex, namely the semi-ordered Čech complex defined by

Čpsemi-ord(U ,F) =
∏

i0≤i1≤...≤ip
F(Ui0...ip)

It is easy to see that Equation (9.0.1) also defines a differential and hence that we
get a complex. It is also clear (analogous to Lemma 23.4) that the projection map

Č•
semi-alt(U ,F) −→ Č•

semi-ord(U ,F)

is an isomorphism of complexes.

Hence the Lemma follows if we can show that the obvious inclusion map

Čpord(U ,F) −→ Čpsemi-ord(U ,F)

is a homotopy equivalence. To see this we use the homotopy
(23.6.2)

01FO h(s)i0...ip =
{

0 if i0 < i1 < . . . < ip
(−1)asi0...ia−1iaiaia+1...ip if i0 < i1 < . . . < ia−1 < ia = ia+1

We claim that

(dh+ hd)(s)i0...ip =
{

0 if i0 < i1 < . . . < ip
si0...ip else

We omit the verification. (There is a PARI/gp script called second-homotopy.gp
in the stacks-project subdirectory scripts which can be used to check finitely many
instances of this claim. We wrote this script to make sure the signs are correct.)
The claim clearly shows that the composition

Č•
semi-ord(U ,F) −→ Č•

ord(U ,F) −→ Č•
semi-ord(U ,F)

of the projection with the natural inclusion is homotopic to the identity map as
desired. □

Lemma 23.7.0G6T Let X be a topological space. Let F be an abelian presheaf on X.
Let U : U =

⋃
i∈I Ui be an open covering. If Ui = U for some i ∈ I, then the

extended alternating Čech complex

F(U)→ Č•
alt(U ,F)

https://stacks.math.columbia.edu/tag/0G6T
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obtained by putting F(U) in degree −1 with differential given by the canonical map
of F(U) into Č0(U ,F) is homotopy equivalent to 0. Similarly, for any total ordering
on I the extended ordered Čech complex

F(U)→ Č•
ord(U ,F)

is homotopy equivalent to 0.

First proof. Combine Lemmas 9.3 and 23.6. □

Second proof. Since the alternating and ordered Čech complexes are isomorphic
it suffices to prove this for the ordered one. We will use standard notation: a cochain
s of degree p in the extended ordered Čech complex has the form s = (si0...ip) where
si0...ip is in F(Ui0...ip) and i0 < . . . < ip. With this notation we have

d(x)i0...ip+1 =
∑

j
(−1)jxi0...̂ij ...ip

Fix an index i ∈ I with U = Ui. As homotopy we use the maps

h : cochains of degree p+ 1→ cochains of degree p

given by the rule

h(s)i0...ip = 0 if i ∈ {i0, . . . , ip} and h(s)i0...ip = (−1)jsi0...ijiij+1...ip if not

Here j is the unique index such that ij < i < ij+1 in the second case; also, since
U = Ui we have the equality

F(Ui0...ip) = F(Ui0...ijiij+1...ip)

which we can use to make sense of thinking of (−1)jsi0...ijiij+1...ip as an element of
F(Ui0...ip). We will show by a computation that dh+hd equals the negative of the
identity map which finishes the proof. To do this fix s a cochain of degree p and
let i0 < . . . < ip be elements of I.

Case I: i ∈ {i0, . . . , ip}. Say i = it. Then we have h(d(s))i0...ip = 0. On the other
hand we have

d(h(s))i0...ip =
∑

(−1)jh(s)i0...̂ij ...ip = (−1)th(s)i0...̂i...ip = (−1)t(−1)t−1si0...ip

Thus (dh+ hd)(s)i0...ip = −si0...ip as desired.

Case II: i ̸∈ {i0, . . . , ip}. Let j be such that ij < i < ij+1. Then we see that

h(d(s))i0...ip = (−1)jd(s)i0...ijiij+1...ip

=
∑

j′≤j
(−1)j+j

′
si0...̂ij′ ...ijiij+1...ip

− si0...ip

+
∑

j′>j
(−1)j+j

′+1si0...ijiij+1...̂ij′ ...ip

On the other hand we have

d(h(s))i0...ip =
∑

j′
(−1)j

′
h(s)i0...̂ij′ ...ip

=
∑

j′≤j
(−1)j

′+j−1si0...̂ij′ ...ijiij+1...ip

+
∑

j′>j
(−1)j

′+jsi0...ijiij+1...̂ij′ ...ip

Adding these up we obtain (dh+ hd)(s)i0...ip = −si0...ip as desired. □
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24. Alternative view of the Čech complex

02FR In this section we discuss an alternative way to establish the relationship between
the Čech complex and cohomology.

Lemma 24.1.02FU Let X be a ringed space. Let U : X =
⋃
i∈I Ui be an open covering

of X. Let F be an OX-module. Denote Fi0...ip the restriction of F to Ui0...ip . There
exists a complex C•(U ,F) of OX-modules with

Cp(U ,F) =
∏

i0...ip
(ji0...ip)∗Fi0...ip

and differential d : Cp(U ,F)→ Cp+1(U ,F) as in Equation (9.0.1). Moreover, there
exists a canonical map

F → C•(U ,F)
which is a quasi-isomorphism, i.e., C•(U ,F) is a resolution of F .

Proof. We check
0→ F → C0(U ,F)→ C1(U ,F)→ . . .

is exact on stalks. Let x ∈ X and choose ifix ∈ I such that x ∈ Uifix . Then define
h : Cp(U ,F)x → Cp−1(U ,F)x

as follows: If s ∈ Cp(U ,F)x, take a representative

s̃ ∈ Cp(U ,F)(V ) =
∏

i0...ip
F(V ∩ Ui0 ∩ . . . ∩ Uip)

defined on some neighborhood V of x, and set
h(s)i0...ip−1 = s̃ifixi0...ip−1,x.

By the same formula (for p = 0) we get a map C0(U ,F)x → Fx. We compute
formally as follows:

(dh+ hd)(s)i0...ip =
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + d(s)ifixi0...ip

=
∑p

j=0
(−1)jsifixi0...̂ij ...ip

+ si0...ip +
∑p

j=0
(−1)j+1sifixi0...̂ij ...ip

= si0...ip

This shows h is a homotopy from the identity map of the extended complex
0→ Fx → C0(U ,F)x → C1(U ,F)x → . . .

to zero and we conclude. □

With this lemma it is easy to reprove the Čech to cohomology spectral sequence
of Lemma 11.5. Namely, let X, U , F as in Lemma 24.1 and let F → I• be an
injective resolution. Then we may consider the double complex

A•,• = Γ(X,C•(U , I•)).
By construction we have

Ap,q =
∏

i0...ip
Iq(Ui0...ip)

Consider the two spectral sequences of Homology, Section 25 associated to this
double complex, see especially Homology, Lemma 25.1. For the spectral sequence
(′Er,

′dr)r≥0 we get ′Ep,q2 = Ȟp(U , Hq(F)) because taking products is exact (Ho-
mology, Lemma 32.1). For the spectral sequence (′′Er,

′′dr)r≥0 we get ′′Ep,q2 = 0

https://stacks.math.columbia.edu/tag/02FU
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if p > 0 and ′′E0,q
2 = Hq(X,F). Namely, for fixed q the complex of sheaves

C•(U , Iq) is a resolution (Lemma 24.1) of the injective sheaf Iq by injective sheaves
(by Lemmas 7.1 and 11.11 and Homology, Lemma 27.3). Hence the cohomology
of Γ(X,C•(U , Iq)) is zero in positive degrees and equal to Γ(X, Iq) in degree 0.
Taking cohomology of the next differential we get our claim about the spectral
sequence (′′Er,

′′dr)r≥0. Whence the result since both spectral sequences converge
to the cohomology of the associated total complex of A•,•.

Definition 24.2.02FS Let X be a topological space. An open covering X =
⋃
i∈I Ui

is said to be locally finite if for every x ∈ X there exists an open neighbourhood W
of x such that {i ∈ I |W ∩ Ui ̸= ∅} is finite.

Remark 24.3.02FT Let X =
⋃
i∈I Ui be a locally finite open covering. Denote ji :

Ui → X the inclusion map. Suppose that for each i we are given an abelian sheaf
Fi on Ui. Consider the abelian sheaf G =

⊕
i∈I(ji)∗Fi. Then for V ⊂ X open we

actually have
Γ(V,G) =

∏
i∈I
Fi(V ∩ Ui).

In other words we have ⊕
i∈I

(ji)∗Fi =
∏

i∈I
(ji)∗Fi

This seems strange until you realize that the direct sum of a collection of sheaves is
the sheafification of what you think it should be. See discussion in Modules, Section
3. Thus we conclude that in this case the complex of Lemma 24.1 has terms

Cp(U ,F) =
⊕

i0...ip
(ji0...ip)∗Fi0...ip

which is sometimes useful.

25. Čech cohomology of complexes

01FP In general for sheaves of abelian groups F and G on X there is a cup product map

Hi(X,F)×Hj(X,G) −→ Hi+j(X,F ⊗Z G).

In this section we define it using Čech cocycles by an explicit formula for the cup
product. If you are worried about the fact that cohomology may not equal Čech co-
homology, then you can use hypercoverings and still use the cocycle notation. This
also has the advantage that it works to define the cup product for hypercohomology
on any topos (insert future reference here).

Let F• be a bounded below complex of presheaves of abelian groups on X. We
can often compute Hn(X,F•) using Čech cocycles. Namely, let U : X =

⋃
i∈I Ui

be an open covering of X. Since the Čech complex Č•(U ,F) (Definition 9.1) is
functorial in the presheaf F we obtain a double complex Č•(U ,F•). The associated
total complex to Č•(U ,F•) is the complex with degree n term

Totn(Č•(U ,F•)) =
⊕

p+q=n

∏
i0...ip

Fq(Ui0...ip)

see Homology, Definition 18.3. A typical element in Totn will be denoted α =
{αi0...ip} where αi0...ip ∈ Fq(Ui0...ip). In other words the F-degree of αi0...ip is
q = n − p. This notation requires us to be aware of the degree α lives in at all
times. We indicate this situation by the formula degF (αi0...ip) = q. According to

https://stacks.math.columbia.edu/tag/02FS
https://stacks.math.columbia.edu/tag/02FT
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our conventions in Homology, Definition 18.3 the differential of an element α of
degree n is given by

d(α)i0...ip+1 =
∑p+1

j=0
(−1)jαi0...̂ij ...ip+1

+ (−1)p+1dF (αi0...ip+1)

where dF denotes the differential on the complex F•. The expression αi0...̂ij ...ip+1

means the restriction of αi0...̂ij ...ip+1
∈ F(Ui0...̂ij ...ip+1

) to Ui0...ip+1 .

The construction of Tot(Č•(U ,F•)) is functorial in F•. As well there is a functorial
transformation
(25.0.1)07M9 Γ(X,F•) −→ Tot(Č•(U ,F•))

of complexes defined by the following rule: The section s ∈ Γ(X,Fn) is mapped to
the element α = {αi0...ip} with αi0 = s|Ui0

and αi0...ip = 0 for p > 0.

Refinements. Let V = {Vj}j∈J be a refinement of U . This means there is a map
t : J → I such that Vj ⊂ Ut(j) for all j ∈ J . This gives rise to a functorial
transformation
(25.0.2)08BM Tt : Tot(Č•(U ,F•)) −→ Tot(Č•(V,F•)).
defined by the rule

Tt(α)j0...jp = αt(j0)...t(jp)|Vj0...jp
.

Given two maps t, t′ : J → I as above the maps Tt and Tt′ constructed above are
homotopic. The homotopy is given by

h(α)j0...jp =
∑p

a=0
(−1)aαt(j0)...t(ja)t′(ja)...t′(jp)

for an element α of degree n. This works because of the following computation,
again with α an element of degree n (so d(α) has degree n+ 1 and h(α) has degree
n− 1):

(d(h(α)) + h(d(α)))j0...jp
=

∑p

k=0
(−1)kh(α)j0...ĵk...jp

+

(−1)pdF (h(α)j0...jp
)+∑p

a=0
(−1)ad(α)t(j0)...t(ja)t′(ja)...t′(jp)

=
∑p

k=0

∑k−1

a=0
(−1)k+aα

t(j0)...t(ja)t′(ja)... ˆt′(jk)...t′(jp)+∑p

k=0

∑p

a=k+1
(−1)k+a−1α

t(j0)... ˆt(jk)...t(ja)t′(ja)...t′(jp)+∑p

a=0
(−1)p+adF (αt(j0)...t(ja)t′(ja)...t′(jp))+∑p

a=0

∑a

k=0
(−1)a+kα

t(j0)... ˆt(jk)...t(ja)t′(ja)...t′(jp)+∑p

a=0

∑p

k=a
(−1)a+k+1α

t(j0)...t(ja)t′(ja)... ˆt′(jk)...t′(jp)+∑p

a=0
(−1)a+p+1dF (αt(j0)...t(ja)t′(ja)...t′(jp))

=αt′(j0)...t′(jp) + (−1)2p+1αt(j0)...t(jp)

=Tt′(α)j0...jp − Tt(α)j0...jp

We leave it to the reader to verify the cancellations. (Note that the terms having
both k and a in the 1st, 2nd and 4th, 5th summands cancel, except the ones where
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a = k which only occur in the 4th and 5th and these cancel against each other
except for the two desired terms.) It follows that the induced map

Hn(Tt) : Hn(Tot(Č•(U ,F•)))→ Hn(Tot(Č•(V,F•)))
is independent of the choice of t. We define Čech hypercohomology as the limit of
the Čech cohomology groups over all refinements via the maps H•(Tt).
In the limit (over all open coverings of X) the following lemma provides a map
of Čech hypercohomology into cohomology, which is often an isomorphism and is
always an isomorphism if we use hypercoverings.
Lemma 25.1.08BN Let (X,OX) be a ringed space. Let U : X =

⋃
i∈I Ui be an open

covering. For a bounded below complex F• of OX-modules there is a canonical map
Tot(Č•(U ,F•)) −→ RΓ(X,F•)

functorial in F• and compatible with (25.0.1) and (25.0.2). There is a spectral
sequence (Er, dr)r≥0 with

Ep,q2 = Hp(Tot(Č•(U , Hq(F•)))
converging to Hp+q(X,F•).
Proof. Let I• be a bounded below complex of injectives. The map (25.0.1) for
I• is a map Γ(X, I•)→ Tot(Č•(U , I•)). This is a quasi-isomorphism of complexes
of abelian groups as follows from Homology, Lemma 25.4 applied to the double
complex Č•(U , I•) using Lemma 11.1. Suppose F• → I• is a quasi-isomorphism of
F• into a bounded below complex of injectives. Since RΓ(X,F•) is represented by
the complex Γ(X, I•) we obtain the map of the lemma using

Tot(Č•(U ,F•)) −→ Tot(Č•(U , I•)).
We omit the verification of functoriality and compatibilities. To construct the
spectral sequence of the lemma, choose a Cartan-Eilenberg resolution F• → I•,•,
see Derived Categories, Lemma 21.2. In this case F• → Tot(I•,•) is an injective
resolution and hence

Tot(Č•(U ,Tot(I•,•)))
computes RΓ(X,F•) as we’ve seen above. By Homology, Remark 18.4 we can
view this as the total complex associated to the triple complex Č•(U , I•,•) hence,
using the same remark we can view it as the total complex associate to the double
complex A•,• with terms

An,m =
⊕

p+q=n
Čp(U , Iq,m)

Since Iq,• is an injective resolution of Fq we can apply the first spectral sequence
associated to A•,• (Homology, Lemma 25.1) to get a spectral sequence with

En,m1 =
⊕

p+q=n
Čp(U , Hm(Fq))

which is the nth term of the complex Tot(Č•(U , Hm(F•)). Hence we obtain E2
terms as described in the lemma. Convergence by Homology, Lemma 25.3. □

Lemma 25.2.0FLH Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be an open

covering. Let F• be a bounded below complex of OX-modules. If Hi(Ui0...ip ,Fq) = 0
for all i > 0 and all p, i0, . . . , ip, q, then the map Tot(Č•(U ,F•)) → RΓ(X,F•) of
Lemma 25.1 is an isomorphism.

https://stacks.math.columbia.edu/tag/08BN
https://stacks.math.columbia.edu/tag/0FLH
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Proof. Immediate from the spectral sequence of Lemma 25.1. □

Remark 25.3.0FLI Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be an open

covering. Let F• be a bounded below complex of OX -modules. Let b be an integer.
We claim there is a commutative diagram

Tot(Č•(U ,F•))[b] //

γ

��

RΓ(X,F•)[b]

��
Tot(Č•(U ,F•[b])) // RΓ(X,F•[b])

in the derived category where the map γ is the map on complexes constructed in
Homology, Remark 18.5. This makes sense because the double complex Č•(U ,F•[b])
is clearly the same as the double complex Č•(U ,F•)[0, b] introduced in Homology,
Remark 18.5. To check that the diagram commutes, we may choose an injective
resolution F• → I• as in the proof of Lemma 25.1. Chasing diagrams, we see that
it suffices to check the diagram commutes when we replace F• by I•. Then we
consider the extended diagram

Γ(X, I•)[b] //

��

Tot(Č•(U , I•))[b] //

γ

��

RΓ(X, I•)[b]

��
Γ(X, I•[b]) // Tot(Č•(U , I•[b])) // RΓ(X, I•[b])

where the left horizontal arrows are (25.0.1). Since in this case the horizonal arrows
are isomorphisms in the derived category (see proof of Lemma 25.1) it suffices to
show that the left square commutes. This is true because the map γ uses the sign
1 on the summands Č0(U , Iq+b), see formula in Homology, Remark 18.5.

Let X be a topological space, let U : X =
⋃
i∈I Ui be an open covering, and let F•

be a bounded below complex of presheaves of abelian groups. Consider the map
τ : Tot(Č•(U ,F•))→ Tot(Č•(U ,F•)) defined by

τ(α)i0...ip = (−1)p(p+1)/2αip...i0 .

Then we have for an element α of degree n that

d(τ(α))i0...ip+1

=
∑p+1

j=0
(−1)jτ(α)i0...̂ij ...ip+1

+ (−1)p+1dF (τ(α)i0...ip+1)

=
∑p+1

j=0
(−1)j+

p(p+1)
2 αip+1...̂ij ...i0

+ (−1)p+1+ (p+1)(p+2)
2 dF (αip+1...i0)

On the other hand we have

τ(d(α))i0...ip+1

= (−1)
(p+1)(p+2)

2 d(α)ip+1...i0

= (−1)
(p+1)(p+2)

2

(∑p+1

j=0
(−1)jαip+1...̂ip+1−j ...i0

+ (−1)p+1dF (αip+1...i0)
)

Thus we conclude that d(τ(α)) = τ(d(α)) because p(p+ 1)/2 ≡ (p+ 1)(p+ 2)/2 +
p+ 1 mod 2. In other words τ is an endomorphism of the complex Tot(Č•(U ,F•)).

https://stacks.math.columbia.edu/tag/0FLI
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Note that the diagram
Γ(X,F•) −→ Tot(Č•(U ,F•))
↓ id ↓ τ

Γ(X,F•) −→ Tot(Č•(U ,F•))
commutes. In addition τ is clearly compatible with refinements. This suggests
that τ acts as the identity on Čech cohomology (i.e., in the limit – provided Čech
hypercohomology agrees with hypercohomology, which is always the case if we use
hypercoverings). We claim that τ actually is homotopic to the identity on the total
Čech complex Tot(Č•(U ,F•)). To prove this, we use as homotopy

h(α)i0...ip =
∑p

a=0
ϵp(a)αi0...iaip...ia with ϵp(a) = (−1)

(p−a)(p−a−1)
2 +p

for α of degree n. As usual we omit writing |Ui0...ip
. This works because of the

following computation, again with α an element of degree n:

(d(h(α)) + h(d(α)))i0...ip =
∑p

k=0
(−1)kh(α)i0...̂ik...ip+

(−1)pdF (h(α)i0...ip)+∑p

a=0
ϵp(a)d(α)i0...iaip...ia

=
∑p

k=0

∑k−1

a=0
(−1)kϵp−1(a)αi0...iaip...îk...ia+∑p

k=0

∑p

a=k+1
(−1)kϵp−1(a− 1)αi0...îk...iaip...ia+∑p

a=0
(−1)pϵp(a)dF (αi0...iaip...ia)+∑p

a=0

∑a

k=0
ϵp(a)(−1)kαi0...îk...iaip...ia+∑p

a=0

∑p

k=a
ϵp(a)(−1)p+a+1−kαi0...iaip...îk...ia+∑p

a=0
ϵp(a)(−1)p+1dF (αi0...iaip...ia)

=ϵp(0)αip...i0 + ϵp(p)(−1)p+1αi0...ip

=(−1)
p(p+1)

2 αip...i0 − αi0...ip
The cancellations follow because
(−1)kϵp−1(a) + ϵp(a)(−1)p+a+1−k = 0 and (−1)kϵp−1(a− 1) + ϵp(a)(−1)k = 0
We leave it to the reader to verify the cancellations.
Suppose we have two bounded below complexes of abelian sheaves F• and G•. We
define the complex Tot(F• ⊗Z G•) to be to complex with terms

⊕
p+q=n Fp ⊗ Gq

and differential according to the rule
(25.3.1)07MA d(α⊗ β) = d(α)⊗ β + (−1)deg(α)α⊗ d(β)
when α and β are homogeneous, see Homology, Definition 18.3.
Suppose that M• and N• are two bounded below complexes of abelian groups.
Then if m, resp. n is a cocycle for M•, resp. N•, it is immediate that m ⊗ n is a
cocycle for Tot(M• ⊗N•). Hence a cup product

Hi(M•)×Hj(N•) −→ Hi+j(Tot(M• ⊗N•)).
This is discussed also in More on Algebra, Section 63.
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So the construction of the cup product in hypercohomology of complexes rests on
a construction of a map of complexes

(25.3.2)07MB Tot
(

Tot(Č•(U ,F•))⊗Z Tot(Č•(U ,G•))
)
−→ Tot(Č•(U ,Tot(F• ⊗ G•)))

This map is denoted ∪ and is given by the rule

(α ∪ β)i0...ip =
∑p

r=0
ϵ(n,m, p, r)αi0...ir ⊗ βir...ip .

where α has degree n and β has degree m and with

ϵ(n,m, p, r) = (−1)(p+r)n+rp+r.

Note that ϵ(n,m, p, n) = 1. Hence if F• = F [0] is the complex consisting in a single
abelian sheaf F placed in degree 0, then there no signs in the formula for ∪ (as
in that case αi0...ir = 0 unless r = n). For an explanation of why there has to be
a sign and how to compute it see [AGV71, Exposee XVII] by Deligne. To check
(25.3.2) is a map of complexes we have to show that

d(α ∪ β) = d(α) ∪ β + (−1)deg(α)α ∪ d(β)

by the definition of the differential on Tot(Tot(Č•(U ,F•)) ⊗Z Tot(Č•(U ,G•))) as
given in Homology, Definition 18.3. We compute first

d(α ∪ β)i0...ip+1 =
∑p+1

j=0
(−1)j(α ∪ β)i0...̂ij ...ip+1

+ (−1)p+1dF⊗G((α ∪ β)i0...ip+1)

=
∑p+1

j=0

∑j−1

r=0
(−1)jϵ(n,m, p, r)αi0...ir ⊗ βir...̂ij ...ip+1

+∑p+1

j=0

∑p+1

r=j+1
(−1)jϵ(n,m, p, r − 1)αi0...̂ij ...ir ⊗ βir...ip+1+∑p+1

r=0
(−1)p+1ϵ(n,m, p+ 1, r)dF⊗G(αi0...ir ⊗ βir...ip+1)

and note that the summands in the last term equal

(−1)p+1ϵ(n,m, p+ 1, r)
(
dF (αi0...ir )⊗ βir...ip+1 + (−1)n−rαi0...ir ⊗ dG(βir...ip+1)

)
.

because degF (αi0...ir ) = n− r. On the other hand

(d(α) ∪ β)i0...ip+1 =
∑p+1

r=0
ϵ(n+ 1,m, p+ 1, r)d(α)i0...ir ⊗ βir...ip+1

=
∑p+1

r=0

∑r

j=0
ϵ(n+ 1,m, p+ 1, r)(−1)jαi0...îj ...ir ⊗ βir...ip+1+∑p+1

r=0
ϵ(n+ 1,m, p+ 1, r)(−1)rdF (αi0...ir )⊗ βir...ip+1

and

(α ∪ d(β))i0...ip+1 =
∑p+1

r=0
ϵ(n,m+ 1, p+ 1, r)αi0...ir ⊗ d(β)ir...ip+1

=
∑p+1

r=0

∑p+1

j=r
ϵ(n,m+ 1, p+ 1, r)(−1)j−rαi0...ir ⊗ βir...îj ...ip+1

+∑p+1

r=0
ϵ(n,m+ 1, p+ 1, r)(−1)p+1−rαi0...ir ⊗ dG(βir...ip+1)
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The desired equality holds if we have

(−1)p+1ϵ(n,m, p+ 1, r) = ϵ(n+ 1,m, p+ 1, r)(−1)r

(−1)p+1ϵ(n,m, p+ 1, r)(−1)n−r = (−1)nϵ(n,m+ 1, p+ 1, r)(−1)p+1−r

ϵ(n+ 1,m, p+ 1, r)(−1)r = (−1)1+nϵ(n,m+ 1, p+ 1, r − 1)
(−1)jϵ(n,m, p, r) = (−1)nϵ(n,m+ 1, p+ 1, r)(−1)j−r

(−1)jϵ(n,m, p, r − 1) = ϵ(n+ 1,m, p+ 1, r)(−1)j

(The third equality is necessary to get the terms with r = j from d(α) ∪ β and
(−1)nα ∪ d(β) to cancel each other.) We leave the verifications to the reader.
(Alternatively, check the script signs.gp in the scripts subdirectory of the Stacks
project.)

Associativity of the cup product. Suppose that F•, G• and H• are bounded below
complexes of abelian groups on X. The obvious map (without the intervention of
signs) is an isomorphism of complexes

Tot(Tot(F• ⊗Z G•)⊗Z H•) −→ Tot(F• ⊗Z Tot(G• ⊗Z H•)).

Another way to say this is that the triple complex F• ⊗Z G• ⊗Z H• gives rise to a
well defined total complex with differential satisfying

d(α⊗β⊗γ) = d(α)⊗β⊗γ+(−1)deg(α)α⊗d(β)⊗γ+(−1)deg(α)+deg(β)α⊗β⊗d(γ)

for homogeneous elements. Using this map it is easy to verify that

(α ∪ β) ∪ γ = α ∪ (β ∪ γ)

namely, if α has degree a, β has degree b and γ has degree c, then

((α ∪ β) ∪ γ)i0...ip =
∑p

r=0
ϵ(a+ b, c, p, r)(α ∪ β)i0...ir ⊗ γir...ip

=
∑p

r=0

∑r

s=0
ϵ(a+ b, c, p, r)ϵ(a, b, r, s)αi0...is ⊗ βis...ir ⊗ γir...ip

and

(α ∪ (β ∪ γ)i0...ip =
∑p

s=0
ϵ(a, b+ c, p, s)αi0...is ⊗ (β ∪ γ)is...ip

=
∑p

s=0

∑p

r=s
ϵ(a, b+ c, p, s)ϵ(b, c, p− s, r − s)αi0...is ⊗ βis...ir ⊗ γir...ip

and a trivial mod 2 calculation shows the signs match up. (Alternatively, check the
script signs.gp in the scripts subdirectory of the Stacks project.)

Finally, we indicate why the cup product preserves a graded commutative structure,
at least on a cohomological level. For this we use the operator τ introduced above.
Let F• be a bounded below complexes of abelian groups, and assume we are given
a graded commutative multiplication

∧• : Tot(F• ⊗F•) −→ F•.

This means the following: For s a local section of Fa, and t a local section of Fb
we have s ∧ t a local section of Fa+b. Graded commutative means we have s ∧ t =
(−1)abt∧s. Since ∧ is a map of complexes we have d(s∧t) = d(s)∧t+(−1)as∧d(t).
The composition

Tot(Tot(Č•(U ,F•))⊗Tot(Č•(U ,F•)))→ Tot(Č•(U ,Tot(F•⊗ZF•)))→ Tot(Č•(U ,F•))
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induces a cup product on cohomology

Hn(Tot(Č•(U ,F•)))×Hm(Tot(Č•(U ,F•))) −→ Hn+m(Tot(Č•(U ,F•)))

and so in the limit also a product on Čech cohomology and therefore (using hy-
percoverings if needed) a product in cohomology of F•. We claim this product
(on cohomology) is graded commutative as well. To prove this we first consider
an element α of degree n in Tot(Č•(U ,F•)) and an element β of degree m in
Tot(Č•(U ,F•)) and we compute

∧•(α ∪ β)i0...ip =
∑p

r=0
ϵ(n,m, p, r)αi0...ir ∧ βir...ip

=
∑p

r=0
ϵ(n,m, p, r)(−1)deg(αi0...ir ) deg(βir...ip )βir...ip ∧ αi0...ir

because ∧ is graded commutative. On the other hand we have

τ(∧•(τ(β) ∪ τ(α)))i0...ip =χ(p)
∑p

r=0
ϵ(m,n, p, r)τ(β)ip...ip−r ∧ τ(α)ip−r...i0

=χ(p)
∑p

r=0
ϵ(m,n, p, r)χ(r)χ(p− r)βip−r...ip ∧ αi0...ip−r

=χ(p)
∑p

r=0
ϵ(m,n, p, p− r)χ(r)χ(p− r)βir...ip ∧ αi0...ir

where χ(t) = (−1)
t(t+1)

2 . Since we proved earlier that τ acts as the identity on
cohomology we have to verify that

ϵ(n,m, p, r)(−1)(n−r)(m−(p−r)) = (−1)nmχ(p)ϵ(m,n, p, p− r)χ(r)χ(p− r)

A trivial mod 2 calculation shows these signs match up. (Alternatively, check the
script signs.gp in the scripts subdirectory of the Stacks project.)

Finally, we study the compatibility of cup product with boundary maps. Suppose
that

0→ F•
1 → F•

2 → F•
3 → 0 and 0← G•

1 ← G•
2 ← G•

3 ← 0
are short exact sequences of bounded below complexes of abelian sheaves on X. Let
H• be another bounded below complex of abelian sheaves, and suppose we have
maps of complexes

γi : Tot(F•
i ⊗Z G•

i ) −→ H•

which are compatible with the maps between the complexes, namely such that the
diagrams

Tot(F•
1 ⊗Z G•

1 )

γ1

��

Tot(F•
1 ⊗Z G•

2 )oo

��
H• Tot(F•

2 ⊗Z G•
2 )γ2oo

and
Tot(F•

2 ⊗Z G•
2 )

γ2

��

Tot(F•
2 ⊗Z G•

3 )oo

��
H• Tot(F•

3 ⊗Z G•
3 )γ3oo

are commutative.
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Lemma 25.4.07MC In the situation above, assume Čech cohomology agrees with co-
homology for the sheaves Fpi and Gqj . Let a3 ∈ Hn(X,F•

3 ) and b1 ∈ Hm(X,G•
1 ).

Then we have
γ1(∂a3 ∪ b1) = (−1)n+1γ3(a3 ∪ ∂b1)

in Hn+m(X,H•) where ∂ indicates the boundary map on cohomology associated to
the short exact sequences of complexes above.

Proof. We will use the following conventions and notation. We think of Fp1 as a
subsheaf of Fp2 and we think of Gq3 as a subsheaf of Gq2 . Hence if s is a local section
of Fp1 we use s to denote the corresponding section of Fp2 as well. Similarly for
local sections of Gq3 . Furthermore, if s is a local section of Fp2 then we denote s̄ its
image in Fp3 . Similarly for the map Gq2 → G

q
1 . In particular if s is a local section of

Fp2 and s̄ = 0 then s is a local section of Fp1 . The commutativity of the diagrams
above implies, for local sections s of Fp2 and t of Gq3 that γ2(s ⊗ t) = γ3(s̄ ⊗ t) as
sections of Hp+q.
Let U : X =

⋃
i∈I Ui be an open covering of X. Suppose that α3, resp. β1 is a

degree n, resp. m cocycle of Tot(Č•(U ,F•
3 )), resp. Tot(Č•(U ,G•

1 )) representing a3,
resp. b1. After refining U if necessary, we can find cochains α2, resp. β2 of degree
n, resp. m in Tot(Č•(U ,F•

2 )), resp. Tot(Č•(U ,G•
2 )) mapping to α3, resp. β1. Then

we see that
d(α2) = d(ᾱ2) = 0 and d(β2) = d(β̄2) = 0.

This means that α1 = d(α2) is a degree n+1 cocycle in Tot(Č•(U ,F•
1 )) representing

∂a3. Similarly, β3 = d(β2) is a degree m+ 1 cocycle in Tot(Č•(U ,G•
3 )) representing

∂b1. Thus we may compute
d(γ2(α2 ∪ β2)) = γ2(d(α2 ∪ β2))

= γ2(d(α2) ∪ β2 + (−1)nα2 ∪ d(β2))
= γ2(α1 ∪ β2) + (−1)nγ2(α2 ∪ β3)
= γ1(α1 ∪ β1) + (−1)nγ3(α3 ∪ β3)

So this even tells us that the sign is (−1)n+1 as indicated in the lemma2. □

Lemma 25.5.0B8S Let X be a topological space. Let O′ → O be a surjection of
sheaves of rings whose kernel I ⊂ O′ has square zero. Then M = H1(X, I) is a
R = H0(X,O)-module and the boundary map ∂ : R → M associated to the short
exact sequence

0→ I → O′ → O → 0
is a derivation (Algebra, Definition 131.1).

Proof. The map O′ → Hom(I, I) factors through O as I · I = 0 by assumption.
Hence I is a sheaf of O-modules and this defines the R-module structure on M .
The boundary map is additive hence it suffices to prove the Leibniz rule. Let
f ∈ R. Choose an open covering U : X =

⋃
Ui such that there exist fi ∈ O′(Ui)

lifting f |Ui ∈ O(Ui). Observe that fi − fj is an element of I(Ui ∩ Uj). Then ∂(f)

2The sign depends on the convention for the signs in the long exact sequence in cohomology
associated to a triangle in D(X). The conventions in the Stacks project are (a) distinguished
triangles correspond to termwise split exact sequences and (b) the boundary maps in the long
exact sequence are given by the maps in the snake lemma without the intervention of signs. See
Derived Categories, Section 10.

https://stacks.math.columbia.edu/tag/07MC
https://stacks.math.columbia.edu/tag/0B8S
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corresponds to the Čech cohomology class of the 1-cocycle α with αi0i1 = fi0 − fi1 .
(Observe that by Lemma 11.3 the first Čech cohomology group with respect to U
is a submodule of M .) Next, let g ∈ R be a second element and assume (after
possibly refining the open covering) that gi ∈ O′(Ui) lifts g|Ui

∈ O(Ui). Then we
see that ∂(g) is given by the cocycle β with βi0i1 = gi0 − gi1 . Since figi ∈ O′(Ui)
lifts fg|Ui

we see that ∂(fg) is given by the cocycle γ with
γi0i1 = fi0gi0 − fi1gi1 = (fi0 − fi1)gi0 + fi1(gi0 − gi1) = αi0i1g + fβi0i1

by our definition of the O-module structure on I. This proves the Leibniz rule and
the proof is complete. □

26. Flat resolutions

06Y7 A reference for the material in this section is [Spa88]. Let (X,OX) be a ringed space.
By Modules, Lemma 17.6 any OX -module is a quotient of a flat OX -module. By
Derived Categories, Lemma 15.4 any bounded above complex of OX -modules has
a left resolution by a bounded above complex of flat OX -modules. However, for
unbounded complexes, it turns out that flat resolutions aren’t good enough.

Lemma 26.1.06Y8 Let (X,OX) be a ringed space. Let G• be a complex of OX-modules.
The functors

K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(G• ⊗OX
F•)

and
K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(F• ⊗OX

G•)
are exact functors of triangulated categories.

Proof. This follows from Derived Categories, Remark 10.9. □

Definition 26.2.06Y9 Let (X,OX) be a ringed space. A complex K• of OX -modules
is called K-flat if for every acyclic complex F• of OX -modules the complex

Tot(F• ⊗OX
K•)

is acyclic.

Lemma 26.3.06YA Let (X,OX) be a ringed space. Let K• be a K-flat complex. Then
the functor

K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(F• ⊗OX
K•)

transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 26.1 and the fact that quasi-isomorphisms are char-
acterized by having acyclic cones. □

Lemma 26.4.06YB Let (X,OX) be a ringed space. Let K• be a complex of OX-modules.
Then K• is K-flat if and only if for all x ∈ X the complex K•

x of OX,x-modules is
K-flat (More on Algebra, Definition 59.1).

Proof. If K•
x is K-flat for all x ∈ X then we see that K• is K-flat because ⊗ and

direct sums commute with taking stalks and because we can check exactness at
stalks, see Modules, Lemma 3.1. Conversely, assume K• is K-flat. Pick x ∈ X
M• be an acyclic complex of OX,x-modules. Then ix,∗M• is an acyclic complex of
OX -modules. Thus Tot(ix,∗M• ⊗OX

K•) is acyclic. Taking stalks at x shows that
Tot(M• ⊗OX,x

K•
x) is acyclic. □

https://stacks.math.columbia.edu/tag/06Y8
https://stacks.math.columbia.edu/tag/06Y9
https://stacks.math.columbia.edu/tag/06YA
https://stacks.math.columbia.edu/tag/06YB
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Lemma 26.5.079R Let (X,OX) be a ringed space. If K•, L• are K-flat complexes of
OX-modules, then Tot(K• ⊗OX

L•) is a K-flat complex of OX-modules.

Proof. Follows from the isomorphism
Tot(M• ⊗OX

Tot(K• ⊗OX
L•)) = Tot(Tot(M• ⊗OX

K•)⊗OX
L•)

and the definition. □

Lemma 26.6.079S Let (X,OX) be a ringed space. Let (K•
1,K•

2,K•
3) be a distinguished

triangle in K(Mod(OX)). If two out of three of K•
i are K-flat, so is the third.

Proof. Follows from Lemma 26.1 and the fact that in a distinguished triangle in
K(Mod(OX)) if two out of three are acyclic, so is the third. □

Lemma 26.7.0G6U Let (X,OX) be a ringed space. Let 0→ K•
1 → K•

2 → K•
3 → 0 be a

short exact sequence of complexes such that the terms of K•
3 are flat OX-modules.

If two out of three of K•
i are K-flat, so is the third.

Proof. By Modules, Lemma 17.7 for every complex L• we obtain a short exact
sequence

0→ Tot(L• ⊗OX
K•

1)→ Tot(L• ⊗OX
K•

1)→ Tot(L• ⊗OX
K•

1)→ 0
of complexes. Hence the lemma follows from the long exact sequence of cohomology
sheaves and the definition of K-flat complexes. □

Lemma 26.8.06YC Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback of a K-flat complex of OY -modules is a K-flat complex of OX-modules.

Proof. We can check this on stalks, see Lemma 26.4. Hence this follows from
Sheaves, Lemma 26.4 and More on Algebra, Lemma 59.3. □

Lemma 26.9.06YD Let (X,OX) be a ringed space. A bounded above complex of flat
OX-modules is K-flat.

Proof. We can check this on stalks, see Lemma 26.4. Thus this lemma follows
from Modules, Lemma 17.2 and More on Algebra, Lemma 59.7. □

In the following lemma by a colimit of a system of complexes we mean the termwise
colimit.

Lemma 26.10.06YE Let (X,OX) be a ringed space. Let K•
1 → K•

2 → . . . be a system
of K-flat complexes. Then colimiK•

i is K-flat.

Proof. Because we are taking termwise colimits it is clear that
colimi Tot(F• ⊗OX

K•
i ) = Tot(F• ⊗OX

colimiK•
i )

Hence the lemma follows from the fact that filtered colimits are exact. □

Lemma 26.11.079T Let (X,OX) be a ringed space. For any complex G• of OX-modules
there exists a commutative diagram of complexes of OX-modules

K•
1

��

// K•
2

��

// . . .

τ≤1G• // τ≤2G• // . . .

https://stacks.math.columbia.edu/tag/079R
https://stacks.math.columbia.edu/tag/079S
https://stacks.math.columbia.edu/tag/0G6U
https://stacks.math.columbia.edu/tag/06YC
https://stacks.math.columbia.edu/tag/06YD
https://stacks.math.columbia.edu/tag/06YE
https://stacks.math.columbia.edu/tag/079T
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with the following properties: (1) the vertical arrows are quasi-isomorphisms and
termwise surjective, (2) each K•

n is a bounded above complex whose terms are direct
sums of OX-modules of the form jU !OU , and (3) the maps K•

n → K•
n+1 are termwise

split injections whose cokernels are direct sums of OX-modules of the form jU !OU .
Moreover, the map colimK•

n → G• is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows imme-
diately from Modules, Lemma 17.6 and Derived Categories, Lemma 29.1. The
induced map colimK•

n → G• is a quasi-isomorphism because filtered colimits are
exact. □

Lemma 26.12.06YF Let (X,OX) be a ringed space. For any complex G• there exists
a K-flat complex K• whose terms are flat OX-modules and a quasi-isomorphism
K• → G• which is termwise surjective.

Proof. Choose a diagram as in Lemma 26.11. Each complex K•
n is a bounded above

complex of flat modules, see Modules, Lemma 17.5. Hence K•
n is K-flat by Lemma

26.9. Thus colimK•
n is K-flat by Lemma 26.10. The induced map colimK•

n → G•

is a quasi-isomorphism and termwise surjective by construction. Property (3) of
Lemma 26.11 shows that colimKmn is a direct sum of flat modules and hence flat
which proves the final assertion. □

Lemma 26.13.06YG Let (X,OX) be a ringed space. Let α : P• → Q• be a quasi-
isomorphism of K-flat complexes of OX-modules. For every complex F• of OX-
modules the induced map

Tot(idF• ⊗ α) : Tot(F• ⊗OX
P•) −→ Tot(F• ⊗OX

Q•)
is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism K• → F• with K• a K-flat complex, see
Lemma 26.12. Consider the commutative diagram

Tot(K• ⊗OX
P•) //

��

Tot(K• ⊗OX
Q•)

��
Tot(F• ⊗OX

P•) // Tot(F• ⊗OX
Q•)

The result follows as by Lemma 26.3 the vertical arrows and the top horizontal
arrow are quasi-isomorphisms. □

Let (X,OX) be a ringed space. Let F• be an object of D(OX). Choose a K-flat
resolution K• → F•, see Lemma 26.12. By Lemma 26.1 we obtain an exact functor
of triangulated categories

K(OX) −→ K(OX), G• 7−→ Tot(G• ⊗OX
K•)

By Lemma 26.3 this functor induces a functor D(OX) → D(OX) simply because
D(OX) is the localization of K(OX) at quasi-isomorphisms. By Lemma 26.13 the
resulting functor (up to isomorphism) does not depend on the choice of the K-flat
resolution.

Definition 26.14.06YH Let (X,OX) be a ringed space. Let F• be an object of D(OX).
The derived tensor product

−⊗L
OX
F• : D(OX) −→ D(OX)

https://stacks.math.columbia.edu/tag/06YF
https://stacks.math.columbia.edu/tag/06YG
https://stacks.math.columbia.edu/tag/06YH
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is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism

F• ⊗L
OX
G• ∼= G• ⊗L

OX
F•

for G• and F• in D(OX). Here we use sign rules as given in More on Algebra,
Section 72. Hence when we write F• ⊗L

OX
G• we will usually be agnostic about

which variable we are using to define the derived tensor product with.

Definition 26.15.08BP Let (X,OX) be a ringed space. Let F , G be OX -modules. The
Tor’s of F and G are define by the formula

TorOX
p (F ,G) = H−p(F ⊗L

OX
G)

with derived tensor product as defined above.

This definition implies that for every short exact sequence of OX -modules 0 →
F1 → F2 → F3 → 0 we have a long exact cohomology sequence

F1 ⊗OX
G // F2 ⊗OX

G // F3 ⊗OX
G // 0

TorOX
1 (F1,G) // TorOX

1 (F2,G) // TorOX
1 (F3,G)

kk

for everyOX -module G. This will be called the long exact sequence of Tor associated
to the situation.

Lemma 26.16.08BQ Let (X,OX) be a ringed space. Let F be an OX-module. The
following are equivalent

(1) F is a flat OX-module, and
(2) TorOX

1 (F ,G) = 0 for every OX-module G.

Proof. If F is flat, then F ⊗OX
− is an exact functor and the satellites vanish.

Conversely assume (2) holds. Then if G → H is injective with cokernel Q, the long
exact sequence of Tor shows that the kernel of F ⊗OX

G → F ⊗OX
H is a quotient

of TorOX
1 (F ,Q) which is zero by assumption. Hence F is flat. □

Lemma 26.17.0G6V Let (X,OX) be a ringed space. Let a : K• → L• be a map of
complexes of OX-modules. If K• is K-flat, then there exist a complex N • and maps
of complexes b : K• → N • and c : N • → L• such that

(1) N • is K-flat,
(2) c is a quasi-isomorphism,
(3) a is homotopic to c ◦ b.

If the terms of K• are flat, then we may choose N •, b, and c such that the same is
true for N •.

Proof. We will use that the homotopy category K(Mod(OX)) is a triangulated
category, see Derived Categories, Proposition 10.3. Choose a distinguished triangle
K• → L• → C• → K•[1]. Choose a quasi-isomorphism M• → C• with M• K-flat
with flat terms, see Lemma 26.12. By the axioms of triangulated categories, we
may fit the composition M• → C• → K•[1] into a distinguished triangle K• →
N • → M• → K•[1]. By Lemma 26.6 we see that N • is K-flat. Again using the

https://stacks.math.columbia.edu/tag/08BP
https://stacks.math.columbia.edu/tag/08BQ
https://stacks.math.columbia.edu/tag/0G6V
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axioms of triangulated categories, we can choose a map N • → L• fitting into the
following morphism of distinghuised triangles

K• //

��

N • //

��

M• //

��

K•[1]

��
K• // L• // C• // K•[1]

Since two out of three of the arrows are quasi-isomorphisms, so is the third arrow
N • → L• by the long exact sequences of cohomology associated to these distin-
guished triangles (or you can look at the image of this diagram in D(OX) and use
Derived Categories, Lemma 4.3 if you like). This finishes the proof of (1), (2), and
(3). To prove the final assertion, we may choose N • such that Nn ∼=Mn⊕Kn, see
Derived Categories, Lemma 10.7. Hence we get the desired flatness if the terms of
K• are flat. □

27. Derived pullback

06YI Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. We can use K-flat
resolutions to define a derived pullback functor

Lf∗ : D(OY )→ D(OX)
Namely, for every complex of OY -modules G• we can choose a K-flat resolution
K• → G• and set Lf∗G• = f∗K•. You can use Lemmas 26.8, 26.12, and 26.13 to
see that this is well defined. However, to cross all the t’s and dot all the i’s it is
perhaps more convenient to use some general theory.

Lemma 27.1.06YJ The construction above is independent of choices and defines an
exact functor of triangulated categories Lf∗ : D(OY )→ D(OX).

Proof. To see this we use the general theory developed in Derived Categories,
Section 14. Set D = K(OY ) and D′ = D(OX). Let us write F : D → D′ the exact
functor of triangulated categories defined by the rule F (G•) = f∗G•. We let S be
the set of quasi-isomorphisms in D = K(OY ). This gives a situation as in Derived
Categories, Situation 14.1 so that Derived Categories, Definition 14.2 applies. We
claim that LF is everywhere defined. This follows from Derived Categories, Lemma
14.15 with P ⊂ Ob(D) the collection of K-flat complexes: (1) follows from Lemma
26.12 and to see (2) we have to show that for a quasi-isomorphism K•

1 → K•
2 between

K-flat complexes of OY -modules the map f∗K•
1 → f∗K•

2 is a quasi-isomorphism.
To see this write this as

f−1K•
1 ⊗f−1OY

OX −→ f−1K•
2 ⊗f−1OY

OX
The functor f−1 is exact, hence the map f−1K•

1 → f−1K•
2 is a quasi-isomorphism.

By Lemma 26.8 applied to the morphism (X, f−1OY ) → (Y,OY ) the complexes
f−1K•

1 and f−1K•
2 are K-flat complexes of f−1OY -modules. Hence Lemma 26.13

guarantees that the displayed map is a quasi-isomorphism. Thus we obtain a derived
functor

LF : D(OY ) = S−1D −→ D′ = D(OX)
see Derived Categories, Equation (14.9.1). Finally, Derived Categories, Lemma
14.15 also guarantees that LF (K•) = F (K•) = f∗K• when K• is K-flat, i.e., Lf∗ =
LF is indeed computed in the way described above. □

https://stacks.math.columbia.edu/tag/06YJ
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Lemma 27.2.0D5S Let f : X → Y and g : Y → Z be morphisms of ringed spaces.
Then Lf∗ ◦ Lg∗ = L(g ◦ f)∗ as functors D(OZ)→ D(OX).

Proof. Let E be an object of D(OZ). By construction Lg∗E is computed by
choosing a K-flat complex K• representing E on Z and setting Lg∗E = g∗K•.
By Lemma 26.8 we see that g∗K• is K-flat on Y . Then Lf∗Lg∗E is given by
f∗g∗K• = (g ◦ f)∗K• which also represents L(g ◦ f)∗E. □

Lemma 27.3.079U Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. There
is a canonical bifunctorial isomorphism

Lf∗(F• ⊗L
OY
G•) = Lf∗F• ⊗L

OX
Lf∗G•

for F•,G• ∈ Ob(D(OY )).

Proof. We may assume that F• and G• are K-flat complexes. In this case F•⊗L
OY

G• is just the total complex associated to the double complex F• ⊗OY
G•. By

Lemma 26.5 Tot(F• ⊗OY
G•) is K-flat also. Hence the isomorphism of the lemma

comes from the isomorphism

Tot(f∗F• ⊗OX
f∗G•) −→ f∗Tot(F• ⊗OY

G•)

whose constituents are the isomorphisms f∗Fp ⊗OX
f∗Gq → f∗(Fp ⊗OY

Gq) of
Modules, Lemma 16.4. □

Lemma 27.4.08DE Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. There
is a canonical bifunctorial isomorphism

F• ⊗L
OX

Lf∗G• = F• ⊗L
f−1OY

f−1G•

for F• in D(OX) and G• in D(OY ).

Proof. Let F be an OX -module and let G be an OY -module. Then F ⊗OX
f∗G =

F ⊗f−1OY
f−1G because f∗G = OX ⊗f−1OY

f−1G. The lemma follows from this
and the definitions. □

Lemma 27.5.0FP0 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let
K• and M• be complexes of OY -modules. The diagram

Lf∗(K• ⊗L
OY
M•) //

��

Lf∗Tot(K• ⊗OY
M•)

��
Lf∗K• ⊗L

OX
Lf∗M•

��

f∗Tot(K• ⊗OY
M•)

��
f∗K• ⊗L

OX
f∗M• // Tot(f∗K• ⊗OX

f∗M•)

commutes.

https://stacks.math.columbia.edu/tag/0D5S
https://stacks.math.columbia.edu/tag/079U
https://stacks.math.columbia.edu/tag/08DE
https://stacks.math.columbia.edu/tag/0FP0
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Proof. We will use the existence of K-flat resolutions as in Lemma 26.8. If we
choose such resolutions P• → K• and Q• →M•, then we see that

Lf∗Tot(P• ⊗OY
Q•) //

��

Lf∗Tot(K• ⊗OY
M•)

��
f∗Tot(P• ⊗OY

Q•)

��

// f∗Tot(K• ⊗OY
M•)

��
Tot(f∗P• ⊗OX

f∗Q•) // Tot(f∗K• ⊗OX
f∗M•)

commutes. However, now the left hand side of the diagram is the left hand side of
the diagram by our choice of P• and Q• and Lemma 26.5. □

28. Cohomology of unbounded complexes

079V Let (X,OX) be a ringed space. The category Mod(OX) is a Grothendieck abelian
category: it has all colimits, filtered colimits are exact, and it has a generator,
namely ⊕

U⊂X open
jU !OU ,

see Modules, Section 3 and Lemmas 17.5 and 17.6. By Injectives, Theorem 12.6
for every complex F• of OX -modules there exists an injective quasi-isomorphism
F• → I• to a K-injective complex of OX -modules all of whose terms are injective
OX -modules and moreover this embedding can be chosen functorial in the complex
F•. It follows from Derived Categories, Lemma 31.7 that

(1) any exact functor F : K(Mod(OX)) → D into a trianguated category D
has a right derived functor RF : D(OX)→ D,

(2) for any additive functor F : Mod(OX)→ A into an abelian category A we
consider the exact functor F : K(Mod(OX))→ D(A) induced by F and we
obtain a right derived functor RF : D(OX)→ K(A).

By construction we have RF (F•) = F (I•) where F• → I• is as above.

Here are some examples of the above:
(1) The functor Γ(X,−) : Mod(OX)→ ModΓ(X,OX ) gives rise to

RΓ(X,−) : D(OX)→ D(Γ(X,OX))

We shall use the notation Hi(X,K) = Hi(RΓ(X,K)) for cohomology.
(2) For an open U ⊂ X we consider the functor Γ(U,−) : Mod(OX) →

ModΓ(U,OX ). This gives rise to

RΓ(U,−) : D(OX)→ D(Γ(U,OX))

We shall use the notation Hi(U,K) = Hi(RΓ(U,K)) for cohomology.
(3) For a morphism of ringed spaces f : (X,OX) → (Y,OY ) we consider the

functor f∗ : Mod(OX)→ Mod(OY ) which gives rise to the total direct image

Rf∗ : D(OX) −→ D(OY )

on unbounded derived categories.
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Lemma 28.1.079W Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
functor Rf∗ defined above and the functor Lf∗ defined in Lemma 27.1 are adjoint:

HomD(OX )(Lf∗G•,F•) = HomD(OY )(G•, Rf∗F•)

bifunctorially in F• ∈ Ob(D(OX)) and G• ∈ Ob(D(OY )).

Proof. This follows formally from the fact that Rf∗ and Lf∗ exist, see Derived
Categories, Lemma 30.3. □

Lemma 28.2.0D5T Let f : X → Y and g : Y → Z be morphisms of ringed spaces.
Then Rg∗ ◦Rf∗ = R(g ◦ f)∗ as functors D(OX)→ D(OZ).

Proof. By Lemma 28.1 we see that Rg∗ ◦ Rf∗ is adjoint to Lf∗ ◦ Lg∗. We have
Lf∗ ◦Lg∗ = L(g ◦ f)∗ by Lemma 27.2 and hence by uniqueness of adjoint functors
we have Rg∗ ◦Rf∗ = R(g ◦ f)∗. □

Remark 28.3.08HY The construction of unbounded derived functor Lf∗ and Rf∗
allows one to construct the base change map in full generality. Namely, suppose
that

X ′
g′
//

f ′

��

X

f

��
S′ g // S

is a commutative diagram of ringed spaces. Let K be an object of D(OX). Then
there exists a canonical base change map

Lg∗Rf∗K −→ R(f ′)∗L(g′)∗K

in D(OS′). Namely, this map is adjoint to a map L(f ′)∗Lg∗Rf∗K → L(g′)∗K
Since L(f ′)∗Lg∗ = L(g′)∗Lf∗ we see this is the same as a map L(g′)∗Lf∗Rf∗K →
L(g′)∗K which we can take to be L(g′)∗ of the adjunction map Lf∗Rf∗K → K.

Remark 28.4.0ATL Consider a commutative diagram

X ′
k
//

f ′

��

X

f

��
Y ′ l //

g′

��

Y

g

��
Z ′ m // Z

of ringed spaces. Then the base change maps of Remark 28.3 for the two squares
compose to give the base change map for the outer rectangle. More precisely, the
composition

Lm∗ ◦R(g ◦ f)∗ = Lm∗ ◦Rg∗ ◦Rf∗

→ Rg′
∗ ◦ Ll∗ ◦Rf∗

→ Rg′
∗ ◦Rf ′

∗ ◦ Lk∗

= R(g′ ◦ f ′)∗ ◦ Lk∗

is the base change map for the rectangle. We omit the verification.

https://stacks.math.columbia.edu/tag/079W
https://stacks.math.columbia.edu/tag/0D5T
https://stacks.math.columbia.edu/tag/08HY
https://stacks.math.columbia.edu/tag/0ATL
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Remark 28.5.0ATM Consider a commutative diagram

X ′′
g′
//

f ′′

��

X ′
g
//

f ′

��

X

f

��
Y ′′ h′

// Y ′ h // Y

of ringed spaces. Then the base change maps of Remark 28.3 for the two squares
compose to give the base change map for the outer rectangle. More precisely, the
composition

L(h ◦ h′)∗ ◦Rf∗ = L(h′)∗ ◦ Lh∗ ◦Rf∗

→ L(h′)∗ ◦Rf ′
∗ ◦ Lg∗

→ Rf ′′
∗ ◦ L(g′)∗ ◦ Lg∗

= Rf ′′
∗ ◦ L(g ◦ g′)∗

is the base change map for the rectangle. We omit the verification.

Lemma 28.6.0FP1 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let
K• be a complex of OX-modules. The diagram

Lf∗f∗K• //

��

f∗f∗K•

��
Lf∗Rf∗K• // K•

coming from Lf∗ → f∗ on complexes, f∗ → Rf∗ on complexes, and adjunction
Lf∗ ◦Rf∗ → id commutes in D(OX).

Proof. We will use the existence of K-flat resolutions and K-injective resolutions,
see Lemma 26.8 and the discussion above. Choose a quasi-isomorphism K• → I•

where I• is K-injective as a complex of OX -modules. Choose a quasi-isomorphism
Q• → f∗I• where Q• is K-flat as a complex of OY -modules. We can choose a
K-flat complex of OY -modules P• and a diagram of morphisms of complexes

P• //

��

f∗K•

��
Q• // f∗I•

commutative up to homotopy where the top horizontal arrow is a quasi-isomorphism.
Namely, we can first choose such a diagram for some complex P• because the quasi-
isomorphisms form a multiplicative system in the homotopy category of complexes
and then we can replace P• by a K-flat complex. Taking pullbacks we obtain a
diagram of morphisms of complexes

f∗P• //

��

f∗f∗K•

��

// K•

��
f∗Q• // f∗f∗I• // I•

commutative up to homotopy. The outer rectangle witnesses the truth of the state-
ment in the lemma. □

https://stacks.math.columbia.edu/tag/0ATM
https://stacks.math.columbia.edu/tag/0FP1
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Remark 28.7.0B68 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
adjointness of Lf∗ and Rf∗ allows us to construct a relative cup product

Rf∗K ⊗L
OY

Rf∗L −→ Rf∗(K ⊗L
OX

L)

inD(OY ) for allK,L inD(OX). Namely, this map is adjoint to a map Lf∗(Rf∗K⊗L
OY

Rf∗L) → K ⊗L
OX

L for which we can take the composition of the isomorphism
Lf∗(Rf∗K ⊗L

OY
Rf∗L) = Lf∗Rf∗K ⊗L

OX
Lf∗Rf∗L (Lemma 27.3) with the map

Lf∗Rf∗K ⊗L
OX

Lf∗Rf∗L→ K ⊗L
OX

L coming from the counit Lf∗ ◦Rf∗ → id.

29. Cohomology of filtered complexes

0FLJ Filtered complexes of sheaves frequently come up in a natural fashion when studying
cohomology of algebraic varieties, for example the de Rham complex comes with its
Hodge filtration. In this sectionwe use the very general Injectives, Lemma 13.7 to
find construct spectral sequences on cohomology and we relate these to previously
constructed spectral sequences.

Lemma 29.1.0BKK Let (X,OX) be a ringed space. Let F• be a filtered complex of
OX-modules. There exists a canonical spectral sequence (Er, dr)r≥1 of bigraded
Γ(X,OX)-modules with dr of bidegree (r,−r + 1) and

Ep,q1 = Hp+q(X, grpF•)
If for every n we have

Hn(X,F pF•) = 0 for p≫ 0 and Hn(X,F pF•) = Hn(X,F•) for p≪ 0
then the spectral sequence is bounded and converges to H∗(X,F•).

Proof. (For a proof in case the complex is a bounded below complex of modules
with finite filtrations, see the remark below.) Choose an map of filtered complexes
j : F• → J • as in Injectives, Lemma 13.7. The spectral sequence is the spectral
sequence of Homology, Section 24 associated to the filtered complex

Γ(X,J •) with F pΓ(X,J •) = Γ(X,F pJ •)
Since cohomology is computed by evaluating on K-injective representatives we see
that the E1 page is as stated in the lemma. The convergence and boundedness
under the stated conditions follows from Homology, Lemma 24.13. □

Remark 29.2.0BKL Let (X,OX) be a ringed space. Let F• be a filtered complex of
OX -modules. If F• is bounded from below and for each n the filtration on Fn is
finite, then there is a construction of the spectral sequence in Lemma 29.1 avoiding
Injectives, Lemma 13.7. Namely, by Derived Categories, Lemma 26.9 there is a
filtered quasi-isomorphism i : F• → I• of filtered complexes with I• bounded
below, the filtration on In is finite for all n, and with each grpIn an injective
OX -module. Then we take the spectral sequence associated to

Γ(X, I•) with F pΓ(X, I•) = Γ(X,F pI•)
Since cohomology can be computed by evaluating on bounded below complexes of
injectives we see that the E1 page is as stated in the lemma. The convergence and
boundedness under the stated conditions follows from Homology, Lemma 24.11. In
fact, this is a special case of the spectral sequence in Derived Categories, Lemma
26.14.

https://stacks.math.columbia.edu/tag/0B68
https://stacks.math.columbia.edu/tag/0BKK
https://stacks.math.columbia.edu/tag/0BKL
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Example 29.3.0BKM Let (X,OX) be a ringed space. Let F• be a complex of OX -
modules. We can apply Lemma 29.1 with F pF• = τ≤−pF•. (If F• is bounded
below we can use Remark 29.2.) Then we get a spectral sequence

Ep,q1 = Hp+q(X,H−p(F•)[p]) = H2p+q(X,H−p(F•))
After renumbering p = −j and q = i+ 2j we find that for any K ∈ D(OX) there is
a spectral sequence (E′

r, d
′
r)r≥2 of bigraded modules with d′

r of bidegree (r,−r+1),
with

(E′
2)i,j = Hi(X,Hj(K))

If K is bounded below (for example), then this spectral sequence is bounded and
converges to Hi+j(X,K). In the bounded below case this spectral sequence is
an example of the second spectral sequence of Derived Categories, Lemma 21.3
(constructed using Cartan-Eilenberg resolutions).

Example 29.4.0FLK Let (X,OX) be a ringed space. Let F• be a complex of OX -
modules. We can apply Lemma 29.1 with F pF• = σ≥pF•. Then we get a spectral
sequence

Ep,q1 = Hp+q(X,Fp[−p]) = Hq(X,Fp)
If F• is bounded below, then

(1) we can use Remark 29.2 to construct this spectral sequence,
(2) the spectral sequence is bounded and converges to Hi+j(X,F•), and
(3) the spectral sequence is equal to the first spectral sequence of Derived

Categories, Lemma 21.3 (constructed using Cartan-Eilenberg resolutions).

Lemma 29.5.0FLL Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let
F• be a filtered complex of OX-modules. There exists a canonical spectral sequence
(Er, dr)r≥1 of bigraded OY -modules with dr of bidegree (r,−r + 1) and

Ep,q1 = Rp+qf∗grpF•

If for every n we have
Rnf∗F

pF• = 0 for p≫ 0 and Rnf∗F
pF• = Rnf∗F• for p≪ 0

then the spectral sequence is bounded and converges to Rf∗F•.

Proof. The proof is exactly the same as the proof of Lemma 29.1. □

30. Godement resolution

0FKR A reference is [God73].
Let (X,OX) be a ringed space. Denote Xdisc the discrete topological space with
the same points as X. Denote f : Xdisc → X the obvious continuous map. Set
OXdisc

= f−1OX . Then f : (Xdisc,OXdisc
) → (X,OX) is a flat morphism of

ringed spaces. We can apply the dual of the material in Simplicial, Section 34
to the adjoint pair of functors f∗, f∗ on sheaves of modules. Thus we obtain an
augmented cosimplicial object

id // f∗f
∗ //

// f∗f
∗f∗f

∗oo
//
//
//
f∗f

∗f∗f
∗f∗f

∗
oo
oo

in the category of functors from Mod(OX) to itself, see Simplicial, Lemma 34.2.
Moreover, the augmentation

f∗ // f∗f∗f
∗ //

// f
∗f∗f

∗f∗f
∗oo

//
//
//
f∗f∗f

∗f∗f
∗f∗f

∗
oo
oo

https://stacks.math.columbia.edu/tag/0BKM
https://stacks.math.columbia.edu/tag/0FLK
https://stacks.math.columbia.edu/tag/0FLL
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is a homotopy equivalence, see Simplicial, Lemma 34.3.

Lemma 30.1.0FKS Let (X,OX) be a ringed space. For every sheaf of OX-modules F
there is a resolution

0→ F → f∗f
∗F → f∗f

∗f∗f
∗F → f∗f

∗f∗f
∗f∗f

∗F → . . .

functorial in F such that each term f∗f
∗ . . . f∗f

∗F is a flasque OX-module and
such that for all x ∈ X the map

Fx[0]→
(

(f∗f
∗F)x → (f∗f

∗f∗f
∗F)x → (f∗f

∗f∗f
∗f∗f

∗F)x → . . .
)

is a homotopy equivalence in the category of complexes of OX,x-modules.

Proof. The complex f∗f
∗F → f∗f

∗f∗f
∗F → f∗f

∗f∗f
∗f∗f

∗F → . . . is the complex
associated to the cosimplicial object with terms f∗f

∗F , f∗f
∗f∗f

∗F , f∗f
∗f∗f

∗f∗f
∗F , . . .

described above, see Simplicial, Section 25. The augmentation gives rise to the map
F → f∗f

∗F as indicated. For any abelian sheaf H on Xdisc the pushforward f∗H
is flasque because Xdisc is a discrete space and the pushforward of a flasque sheaf
is flasque. Hence the terms of the complex are flasque OX -modules.

If x ∈ Xdisc = X is a point, then (f∗G)x = Gx for any OX -module G. Hence f∗ is
an exact functor and a complex of OX -modules G1 → G2 → G3 is exact if and only
if f∗G1 → f∗G2 → f∗G3 is exact (see Modules, Lemma 3.1). The result mentioned
in the introduction to this section proves the pullback by f∗ gives a homotopy
equivalence from the constant cosimplicial object f∗F to the cosimplicial object
with terms f∗f

∗F , f∗f
∗f∗f

∗F , f∗f
∗f∗f

∗f∗f
∗F , . . .. By Simplicial, Lemma 28.7 we

obtain that

f∗F [0]→
(
f∗f∗f

∗F → f∗f∗f
∗f∗f

∗F → f∗f∗f
∗f∗f

∗f∗f
∗F → . . .

)
is a homotopy equivalence. This immediately implies the two remaining statements
of the lemma. □

Lemma 30.2.0FKT Let (X,OX) be a ringed space. Let F• be a bounded below complex
of OX-modules. There exists a quasi-isomorphism F• → G• where G• be a bounded
below complex of flasque OX-modules and for all x ∈ X the map F•

x → G•
x is a

homotopy equivalence in the category of complexes of OX,x-modules.

Proof. Let A be the category of complexes of OX -modules and let B be the cate-
gory of complexes of OX -modules. Then we can apply the discussion above to the
adjoint functors f∗ and f∗ between A and B. Arguing exactly as in the proof of
Lemma 30.1 we get a resolution

0→ F• → f∗f
∗F• → f∗f

∗f∗f
∗F• → f∗f

∗f∗f
∗f∗f

∗F• → . . .

in the abelian category A such that each term of each f∗f
∗ . . . f∗f

∗F• is a flasque
OX -module and such that for all x ∈ X the map

F•
x [0]→

(
(f∗f

∗F•)x → (f∗f
∗f∗f

∗F•)x → (f∗f
∗f∗f

∗f∗f
∗F•)x → . . .

)
is a homotopy equivalence in the category of complexes of complexes of OX,x-
modules. Since a complex of complexes is the same thing as a double complex, we
can consider the induced map

F• → G• = Tot(f∗f
∗F• → f∗f

∗f∗f
∗F• → f∗f

∗f∗f
∗f∗f

∗F• → . . .)

https://stacks.math.columbia.edu/tag/0FKS
https://stacks.math.columbia.edu/tag/0FKT
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Since the complex F• is bounded below, the same is true for G• and in fact each
term of G• is a finite direct sum of terms of the complexes f∗f

∗ . . . f∗f
∗F• and

hence is flasque. The final assertion of the lemma now follows from Homology,
Lemma 25.5. Since this in particular shows that F• → G• is a quasi-isomorphism,
the proof is complete. □

31. Cup product

0FKU Let (X,OX) be a ringed space. Let K,M be objects of D(OX). Set A = Γ(X,OX).
The (global) cup product in this setting is a map

µ : RΓ(X,K)⊗L
A RΓ(X,M) −→ RΓ(X,K ⊗L

OX
M)

in D(A). We define it as the relative cup product for the morphism of ringed
spaces f : (X,OX)→ (pt, A) as in Remark 28.7 via D(pt, A) = D(A). This map in
particular defines pairings

∪ : Hi(X,K)×Hj(X,M) −→ Hi+j(X,K ⊗L
OX

M)

Namely, given ξ ∈ Hi(X,K) = Hi(RΓ(X,K)) and η ∈ Hj(X,M) = Hj(RΓ(X,M))
we can first “tensor” them to get an element ξ⊗η in Hi+j(RΓ(X,K)⊗L

ARΓ(X,M)),
see More on Algebra, Section 63. Then we can apply µ to get the desired element
ξ ∪ η = µ(ξ ⊗ η) of Hi+j(X,K ⊗L

OX
M).

Here is another way to think of the cup product of ξ and η. Namely, we can write

RΓ(X,K) = RHomX(OX ,K) and RΓ(X,M) = RHomX(OX ,M)

because Hom(OX ,−) = Γ(X,−). Thus ξ and η are the “same” thing as maps

ξ̃ : OX [−i]→ K and η̃ : OX [−j]→M

Combining this with the functoriality of the derived tensor product we obtain

OX [−i− j] = OX [−i]⊗L
OX
OX [−j] ξ̃⊗η̃−−→ K ⊗L

OX
M

which by the same token as above is an element of Hi+j(X,K ⊗L
OX

M).

Lemma 31.1.0FP2 This construction gives the cup product.

Proof. With f : (X,OX)→ (pt, A) as above we have Rf∗(−) = RΓ(X,−) and our
map µ is adjoint to the map

Lf∗(Rf∗K ⊗L
A Rf∗M) = Lf∗Rf∗K ⊗L

OX
Lf∗Rf∗M

ϵK⊗ϵM−−−−−→ K ⊗L
OX

M

where ϵ is the counit of the adjunction between Lf∗ and Rf∗. If we think of ξ and
η as maps ξ : A[−i]→ RΓ(X,K) and η : A[−j]→ RΓ(X,M), then the tensor ξ⊗η
corresponds to the map3

A[−i− j] = A[−i]⊗L
A A[−j] ξ⊗η−−→ RΓ(X,K)⊗L

A RΓ(X,M)

3There is a sign hidden here, namely, the equality is defined by the composition

A[−i − j] → (A ⊗L
A A)[−i − j] → A[−i] ⊗L

A A[−j]

where in the second step we use the identification of More on Algebra, Item (7) which uses a sign in
principle. Except, in this case the sign is +1 by our convention and even if it wasn’t +1 it wouldn’t
matter since we used the same sign in the identification OX [−i − j] = OX [−i] ⊗L

OX
OX [−j].

https://stacks.math.columbia.edu/tag/0FP2


COHOMOLOGY OF SHEAVES 67

By definition the cup product ξ∪η is the map A[−i−j]→ RΓ(X,K⊗L
OX

M) which
is adjoint to

(ϵK ⊗ ϵM ) ◦ Lf∗(ξ ⊗ η) = (ϵK ◦ Lf∗ξ)⊗ (ϵM ◦ Lf∗η)

However, it is easy to see that ϵK ◦Lf∗ξ = ξ̃ and ϵM ◦Lf∗η = η̃. We conclude that
ξ̃ ∪ η = ξ̃ ⊗ η̃ which means we have the desired agreement. □

Remark 31.2.0G6W Let (X,OX) be a ringed space. Let K,M be objects of D(OX).
Set A = Γ(X,OX). Given ξ ∈ Hi(X,K) we get an associated map

ξ = “ξ ∪ −′′ : RΓ(X,M)[−i]→ RΓ(X,K ⊗L
OX

M)

by representing ξ as a map ξ : A[−i] → RΓ(X,K) as in the proof of Lemma 31.1
and then using the composition

RΓ(X,M)[−i] = A[−i]⊗L
ARΓ(X,M) ξ⊗1−−→ RΓ(X,K)⊗L

ARΓ(X,M)→ RΓ(X,K⊗L
OX

M)

where the second arrow is the global cup product µ above. On cohomology this
recovers the cup product by ξ as is clear from Lemma 31.1 and its proof.

Let us formulate and prove a natural compatibility of the relative cup product.
Namely, suppose that we have a morphism f : (X,OX)→ (Y,OY ) of ringed spaces.
Let K• and M• be complexes of OX -modules. There is a naive cup product

Tot(f∗K• ⊗OY
f∗M•) −→ f∗Tot(K• ⊗OX

M•)

We claim that this is related to the relative cup product.

Lemma 31.3.0FP3 In the situation above the following diagram commutes

f∗K• ⊗L
OY

f∗M• //

��

Rf∗K• ⊗L
OY

Rf∗M•

Remark 28.7
��

Tot(f∗K• ⊗OY
f∗M•)

naive cup product
��

Rf∗(K• ⊗L
OX
M•)

��
f∗Tot(K• ⊗OX

M•) // Rf∗Tot(K• ⊗OX
M•)

Proof. By the construction in Remark 28.7 we see that going around the diagram
clockwise the map

f∗K• ⊗L
OY

f∗M• −→ Rf∗Tot(K• ⊗OX
M•)

is adjoint to the map

Lf∗(f∗K• ⊗L
OY

f∗M•) = Lf∗f∗K• ⊗L
OY

Lf∗f∗M•

→ Lf∗Rf∗K• ⊗L
OY

Lf∗Rf∗M•

→ K• ⊗L
OY
M•

→ Tot(K• ⊗OX
M•)

https://stacks.math.columbia.edu/tag/0G6W
https://stacks.math.columbia.edu/tag/0FP3
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By Lemma 28.6 this is also equal to

Lf∗(f∗K• ⊗L
OY

f∗M•) = Lf∗f∗K• ⊗L
OY

Lf∗f∗M•

→ f∗f∗K• ⊗L
OY

f∗f∗M•

→ K• ⊗L
OY
M•

→ Tot(K• ⊗OX
M•)

Going around anti-clockwise we obtain the map adjoint to the map

Lf∗(f∗K• ⊗L
OY

f∗M•)→ Lf∗Tot(f∗K• ⊗OY
f∗M•)

→ Lf∗f∗Tot(K• ⊗OX
M•)

→ Lf∗Rf∗Tot(K• ⊗OX
M•)

→ Tot(K• ⊗OX
M•)

By Lemma 28.6 this is also equal to

Lf∗(f∗K• ⊗L
OY

f∗M•)→ Lf∗Tot(f∗K• ⊗OY
f∗M•)

→ Lf∗f∗Tot(K• ⊗OX
M•)

→ f∗f∗Tot(K• ⊗OX
M•)

→ Tot(K• ⊗OX
M•)

Now the proof is finished by a contemplation of the diagram

Lf∗(f∗K• ⊗L
OY

f∗M•)

��

// Lf∗f∗K• ⊗L
OX

Lf∗f∗M•

��
Lf∗Tot(f∗K• ⊗OY

f∗M•)

naive

��

// f∗Tot(f∗K• ⊗OY
f∗M•)

naive

xx ��

f∗f∗K• ⊗L
OX

f∗f∗M•

��xx

Lf∗f∗Tot(K• ⊗OX
M•)

��
f∗f∗Tot(K• ⊗OX

M•)

**

Tot(f∗f∗K• ⊗OX
f∗f∗M•)

��

K• ⊗L
OX
M•

tt
Tot(K• ⊗OX

M•)

All of the polygons in this diagram commute. The top one commutes by Lemma
27.5. The square with the two naive cup products commutes because Lf∗ → f∗

is functorial in the complex of modules. Similarly with the square involving the
two maps A• ⊗L B• → Tot(A• ⊗B•). Finally, the commutativity of the remaining
square is true on the level of complexes and may be viewed as the definiton of the
naive cup product (by the adjointness of f∗ and f∗). The proof is finished because
going around the diagram on the outside are the two maps given above. □

Let (X,OX) be a ring space. Let K• and M• be complexes of OX -modules. Then
we have a “naive” cup product

µ′ : Tot(Γ(X,K•)⊗A Γ(X,M•)) −→ Γ(X,Tot(K• ⊗OX
M•))
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By Lemma 31.3 applied to the morphism (X,OX)→ (pt, A) this naive cup product
is related to the cup product µ defined in the first paragraph of this section by the
following commutative diagram

Γ(X,K•)⊗L
A Γ(X,M•)

��

// RΓ(X,K•)⊗L
A RΓ(X,M•)

µ

��
Tot(Γ(X,K•)⊗A Γ(X,M•))

µ′

��

RΓ(X,K• ⊗L
OX
M•)

��
Γ(X,Tot(K• ⊗OX

M•)) // RΓ(X,Tot(K• ⊗OX
M•))

in D(A). On cohomology we obtain the commutative diagram

Hi(Γ(X,K•))×Hj(Γ(X,M•))

��

// Hi+j(X,Tot(K• ⊗OX
M•))

Hi(X,K•)×Hj(X,M•) ∪ // Hi+j(X,K• ⊗L
OX
M•)

OO

relating the naive cup product with the actual cuproduct.

Lemma 31.4.0FKV Let (X,OX) be a ringed space. Let K• and M• be bounded below
complexes of OX-modules. Let U : X =

⋃
i∈I Ui be an open covering Then

Tot(Č•(U ,K•))⊗L
A Tot(Č•(U ,M•))

��

// RΓ(X,K•)⊗L
A RΓ(X,M•)

µ

��
Tot(Tot(Č•(U ,K•))⊗A Tot(Č•(U ,M•)))

(25.3.2)
��

RΓ(X,K• ⊗L
OX
M•)

��
Tot(Č•(U ,Tot(K• ⊗OX

M•))) // RΓ(X,Tot(K• ⊗OX
M•))

where the horizontal arrows are the ones in Lemma 25.1 commutes in D(A).

Proof. Choose quasi-isomorphisms of complexes a : K• → K•
1 and b :M• →M•

1
as in Lemma 30.2. Since the maps a and b on stalks are homotopy equivalences we
see that the induced map

Tot(K• ⊗OX
M•)→ Tot(K•

1 ⊗OX
M•

1)

is a homotopy equivalence on stalks too (More on Algebra, Lemma 58.2) and hence
a quasi-isomorphism. Thus the targets

RΓ(X,Tot(K• ⊗OX
M•)) = RΓ(X,Tot(K•

1 ⊗OX
M•

1))

of the two diagrams are the same in D(A). It follows that it suffices to prove the
diagram commutes for K and M replaced by K1 and M1. This reduces us to the
case discussed in the next paragraph.

Assume K• and M• are bounded below complexes of flasque OX -modules and
consider the diagram relating the cup product with the cup product (25.3.2) on

https://stacks.math.columbia.edu/tag/0FKV


COHOMOLOGY OF SHEAVES 70

Čech complexes. Then we can consider the commutative diagram

Γ(X,K•)⊗L
A Γ(X,M•)

��

// Tot(Č•(U ,K•))⊗L
A Tot(Č•(U ,M•))

��
Tot(Γ(X,K•)⊗A Γ(X,M•))

��

// Tot(Tot(Č•(U ,K•))⊗A Tot(Č•(U ,M•)))

(25.3.2)
��

Γ(X,Tot(K• ⊗OX
M•)) // Tot(Č•(U ,Tot(K• ⊗OX

M•)))

In this diagram the horizontal arrows are isomorphisms in D(A) because for a
bounded below complex of flasque modules such as K• we have

Γ(X,K•) = Tot(Č•(U ,K•)) = RΓ(X,K•)

in D(A). This follows from Lemma 12.3, Derived Categories, Lemma 16.7, and
Lemma 25.2. Hence the commutativity of the diagram of the lemma involving
(25.3.2) follows from the already proven commutativity of Lemma 31.3 where f is
the morphism to a point (see discussion following Lemma 31.3). □

Lemma 31.5.0FP4 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
relative cup product of Remark 28.7 is associative in the sense that the diagram

Rf∗K ⊗L
OY

Rf∗L⊗L
OY

Rf∗M //

��

Rf∗(K ⊗L
OX

L)⊗L
OY

Rf∗M

��
Rf∗K ⊗L

OY
Rf∗(L⊗L

OX
M) // Rf∗(K ⊗L

OX
L⊗L

OX
M)

is commutative in D(OY ) for all K,L,M in D(OX).

Proof. Going around either side we obtain the map adjoint to the obvious map

Lf∗(Rf∗K ⊗L
OY

Rf∗L⊗L
OY

Rf∗M) = Lf∗(Rf∗K)⊗L
OX

Lf∗(Rf∗L)⊗L
OX

Lf∗(Rf∗M)
→ K ⊗L

OX
L⊗L

OX
M

in D(OX). □

Lemma 31.6.0FP5 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
relative cup product of Remark 28.7 is commutative in the sense that the diagram

Rf∗K ⊗L
OY

Rf∗L //

ψ

��

Rf∗(K ⊗L
OX

L)

Rf∗ψ

��
Rf∗L⊗L

OY
Rf∗K // Rf∗(L⊗L

OX
K)

is commutative in D(OY ) for all K,L in D(OX). Here ψ is the commutativity
constraint on the derived category (Lemma 50.6).

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/0FP4
https://stacks.math.columbia.edu/tag/0FP5
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Lemma 31.7.0FP6 Let f : (X,OX) → (Y,OY ) and g : (Y,OY ) → (Z,OZ) be mor-
phisms of ringed spaces. The relative cup product of Remark 28.7 is compatible with
compositions in the sense that the diagram

R(g ◦ f)∗K ⊗L
OZ

R(g ◦ f)∗L

��

Rg∗Rf∗K ⊗L
OZ

Rg∗Rf∗L

��
R(g ◦ f)∗(K ⊗L

OX
L) Rg∗Rf∗(K ⊗L

OX
L) Rg∗(Rf∗K ⊗L

OY
Rf∗L)oo

is commutative in D(OZ) for all K,L in D(OX).

Proof. This is true because going around the diagram either way we obtain the
map adjoint to the map

L(g ◦ f)∗ (
R(g ◦ f)∗K ⊗L

OZ
R(g ◦ f)∗L

)
= L(g ◦ f)∗R(g ◦ f)∗K ⊗L

OX
L(g ◦ f)∗R(g ◦ f)∗L)

→ K ⊗L
OX

L

in D(OX). To see this one uses that the composition of the counits like so
L(g ◦ f)∗R(g ◦ f)∗ = Lf∗Lg∗Rg∗Rf∗ → Lf∗Rf∗ → id

is the counit for L(g ◦ f)∗ and R(g ◦ f)∗. See Categories, Lemma 24.9. □

32. Some properties of K-injective complexes

0D5U Let (X,OX) be a ringed space. Let U ⊂ X be an open subset. Denote j : (U,OU )→
(X,OX) the corresponding open immersion. The pullback functor j∗ is exact as it
is just the restriction functor. Thus derived pullback Lj∗ is computed on any com-
plex by simply restricting the complex. We often simply denote the corresponding
functor

D(OX)→ D(OU ), E 7→ j∗E = E|U
Similarly, extension by zero j! : Mod(OU )→ Mod(OX) (see Sheaves, Section 31) is
an exact functor (Modules, Lemma 3.4). Thus it induces a functor

j! : D(OU )→ D(OX), F 7→ j!F

by simply applying j! to any complex representing the object F .

Lemma 32.1.08BS Let X be a ringed space. Let U ⊂ X be an open subspace. The
restriction of a K-injective complex of OX-modules to U is a K-injective complex
of OU -modules.

Proof. Follows from Derived Categories, Lemma 31.9 and the fact that the restric-
tion functor has the exact left adjoint j!. For the construction of j! see Sheaves,
Section 31 and for exactness see Modules, Lemma 3.4. □

Lemma 32.2.0D5V Let X be a ringed space. Let U ⊂ X be an open subspace. For K
in D(OX) we have Hp(U,K) = Hp(U,K|U ).

Proof. Let I• be a K-injective complex of OX -modules representing K. Then
Hq(U,K) = Hq(Γ(U, I•)) = Hq(Γ(U, I•|U ))

by construction of cohomology. By Lemma 32.1 the complex I•|U is a K-injective
complex representing K|U and the lemma follows. □

https://stacks.math.columbia.edu/tag/0FP6
https://stacks.math.columbia.edu/tag/08BS
https://stacks.math.columbia.edu/tag/0D5V
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Lemma 32.3.0BKJ Let (X,OX) be a ringed space. Let K be an object of D(OX). The
sheafification of

U 7→ Hq(U,K) = Hq(U,K|U )
is the qth cohomology sheaf Hq(K) of K.

Proof. The equality Hq(U,K) = Hq(U,K|U ) holds by Lemma 32.2. Choose a
K-injective complex I• representing K. Then

Hq(U,K) = Ker(Iq(U)→ Iq+1(U))
Im(Iq−1(U)→ Iq(U)) .

by our construction of cohomology. Since Hq(K) = Ker(Iq → Iq+1)/ Im(Iq−1 →
Iq) the result is clear. □

Lemma 32.4.08FE Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Given
an open subspace V ⊂ Y , set U = f−1(V ) and denote g : U → V the induced
morphism. Then (Rf∗E)|V = Rg∗(E|U ) for E in D(OX).

Proof. Represent E by a K-injective complex I• of OX -modules. Then Rf∗(E) =
f∗I• and Rg∗(E|U ) = g∗(I•|U ) by Lemma 32.1. Since it is clear that (f∗F)|V =
g∗(F|U ) for any sheaf F on X the result follows. □

Lemma 32.5.0D5W Let f : X → Y be a morphism of ringed spaces. Then RΓ(Y,−) ◦
Rf∗ = RΓ(X,−) as functors D(OX) → D(Γ(Y,OY )). More generally for V ⊂ Y
open and U = f−1(V ) we have RΓ(U,−) = RΓ(V,−) ◦Rf∗.

Proof. Let Z be the ringed space consisting of a singleton space with Γ(Z,OZ) =
Γ(Y,OY ). There is a canonical morphism Y → Z of ringed spaces inducing the
identification on global sections of structure sheaves. Then D(OZ) = D(Γ(Y,OY )).
Hence the assertion RΓ(Y,−) ◦Rf∗ = RΓ(X,−) follows from Lemma 28.2 applied
to X → Y → Z.
The second (more general) statement follows from the first statement after applying
Lemma 32.4. □

Lemma 32.6.0D5X Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let
K be in D(OX). Then Hi(Rf∗K) is the sheaf associated to the presheaf

V 7→ Hi(f−1(V ),K) = Hi(V,Rf∗K)

Proof. The equality Hi(f−1(V ),K) = Hi(V,Rf∗K) follows upon taking cohomol-
ogy from the second statement in Lemma 32.5. Then the statement on sheafification
follows from Lemma 32.3. □

Lemma 32.7.0D5Y Let X be a ringed space. Let K be an object of D(OX) and denote
Kab its image in D(ZX).

(1) For any open U ⊂ X there is a canonical map RΓ(U,K) → RΓ(U,Kab)
which is an isomorphism in D(Ab).

(2) Let f : X → Y be a morphism of ringed spaces. There is a canonical map
Rf∗K → Rf∗(Kab) which is an isomorphism in D(ZY ).

Proof. The map is constructed as follows. Choose a K-injective complex I• repre-
senting K. Choose a quasi-isomorpism I• → J • where J • is a K-injective complex
of abelian groups. Then the map in (1) is given by Γ(U, I•) → Γ(U,J •) and the
map in (2) is given by f∗I• → f∗J •. To show that these maps are isomorphisms, it

https://stacks.math.columbia.edu/tag/0BKJ
https://stacks.math.columbia.edu/tag/08FE
https://stacks.math.columbia.edu/tag/0D5W
https://stacks.math.columbia.edu/tag/0D5X
https://stacks.math.columbia.edu/tag/0D5Y
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suffices to prove they induce isomorphisms on cohomology groups and cohomology
sheaves. By Lemmas 32.2 and 32.6 it suffices to show that the map

H0(X,K) −→ H0(X,Kab)

is an isomorphism. Observe that

H0(X,K) = HomD(OX )(OX ,K)

and similarly for the other group. Choose any complex K• of OX -modules repre-
senting K. By construction of the derived category as a localization we have

HomD(OX )(OX ,K) = colims:F•→OX
HomK(OX )(F•,K•)

where the colimit is over quasi-isomorphisms s of complexes of OX -modules. Sim-
ilarly, we have

HomD(Z
X

)(ZX ,K) = colims:G•→ZX
HomK(Z

X
)(G•,K•)

Next, we observe that the quasi-isomorphisms s : G• → ZX with G• bounded above
complex of flat ZX -modules is cofinal in the system. (This follows from Modules,
Lemma 17.6 and Derived Categories, Lemma 15.4; see discussion in Section 26.)
Hence we can construct an inverse to the map H0(X,K) −→ H0(X,Kab) by rep-
resenting an element ξ ∈ H0(X,Kab) by a pair

(s : G• → ZX , a : G• → K•)

with G• a bounded above complex of flat ZX -modules and sending this to

(G• ⊗Z
X
OX → OX ,G• ⊗Z

X
OX → K•)

The only thing to note here is that the first arrow is a quasi-isomorphism by Lemmas
26.13 and 26.9. We omit the detailed verification that this construction is indeed
an inverse. □

Lemma 32.8.08BT Let (X,OX) be a ringed space. Let U ⊂ X be an open subset.
Denote j : (U,OU )→ (X,OX) the corresponding open immersion. The restriction
functor D(OX) → D(OU ) is a right adjoint to extension by zero j! : D(OU ) →
D(OX).

Proof. This follows formally from the fact that j! and j∗ are adjoint and exact
(and hence Lj! = j! and Rj∗ = j∗ exist), see Derived Categories, Lemma 30.3. □

Lemma 32.9.0D5Z Let f : X → Y be a flat morphism of ringed spaces. If I• is
a K-injective complex of OX-modules, then f∗I• is K-injective as a complex of
OY -modules.

Proof. This is true because

HomK(OY )(F•, f∗I•) = HomK(OX )(f∗F•, I•)

by Sheaves, Lemma 26.2 and the fact that f∗ is exact as f is assumed to be flat. □

https://stacks.math.columbia.edu/tag/08BT
https://stacks.math.columbia.edu/tag/0D5Z
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33. Unbounded Mayer-Vietoris

08BR There is a Mayer-Vietoris sequence for unbounded cohomology as well.

Lemma 33.1.08BU Let (X,OX) be a ringed space. Let X = U ∪V be the union of two
open subspaces. For any object E of D(OX) we have a distinguished triangle

jU∩V !E|U∩V → jU !E|U ⊕ jV !E|V → E → jU∩V !E|U∩V [1]

in D(OX).

Proof. We have seen in Section 32 that the restriction functors and the extension
by zero functors are computed by just applying the functors to any complex. Let
E• be a complex of OX -modules representing E. The distinguished triangle of the
lemma is the distinguished triangle associated (by Derived Categories, Section 12
and especially Lemma 12.1) to the short exact sequence of complexes ofOX -modules

0→ jU∩V !E•|U∩V → jU !E•|U ⊕ jV !E•|V → E• → 0

To see this sequence is exact one checks on stalks using Sheaves, Lemma 31.8
(computation omitted). □

Lemma 33.2.08BV Let (X,OX) be a ringed space. Let X = U ∪V be the union of two
open subspaces. For any object E of D(OX) we have a distinguished triangle

E → RjU,∗E|U ⊕RjV,∗E|V → RjU∩V,∗E|U∩V → E[1]

in D(OX).

Proof. Choose a K-injective complex I• representing E whose terms In are in-
jective objects of Mod(OX), see Injectives, Theorem 12.6. We have seen that I•|U
is a K-injective complex as well (Lemma 32.1). Hence RjU,∗E|U is represented
by jU,∗I•|U . Similarly for V and U ∩ V . Hence the distinguished triangle of the
lemma is the distinguished triangle associated (by Derived Categories, Section 12
and especially Lemma 12.1) to the short exact sequence of complexes

0→ I• → jU,∗I•|U ⊕ jV,∗I•|V → jU∩V,∗I•|U∩V → 0.

This sequence is exact because for any W ⊂ X open and any n the sequence

0→ In(W )→ In(W ∩ U)⊕ In(W ∩ V )→ In(W ∩ U ∩ V )→ 0

is exact (see proof of Lemma 8.2). □

Lemma 33.3.08BW Let (X,OX) be a ringed space. Let X = U ∪ V be the union of
two open subspaces of X. For objects E, F of D(OX) we have a Mayer-Vietoris
sequence

. . . // Ext−1(EU∩V , FU∩V )

qqHom(E,F ) // Hom(EU , FU )⊕Hom(EV , FV ) // Hom(EU∩V , FU∩V )

where the subscripts denote restrictions to the relevant opens and the Hom’s and
Ext’s are taken in the relevant derived categories.

https://stacks.math.columbia.edu/tag/08BU
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Proof. Use the distinguished triangle of Lemma 33.1 to obtain a long exact se-
quence of Hom’s (from Derived Categories, Lemma 4.2) and use that

HomD(OX )(jU !E|U , F ) = HomD(OU )(E|U , F |U )
by Lemma 32.8. □

Lemma 33.4.08BX Let (X,OX) be a ringed space. Suppose that X = U ∪V is a union
of two open subsets. For an object E of D(OX) we have a distinguished triangle

RΓ(X,E)→ RΓ(U,E)⊕RΓ(V,E)→ RΓ(U ∩ V,E)→ RΓ(X,E)[1]
and in particular a long exact cohomology sequence
. . .→ Hn(X,E)→ Hn(U,E)⊕H0(V,E)→ Hn(U ∩ V,E)→ Hn+1(X,E)→ . . .

The construction of the distinguished triangle and the long exact sequence is func-
torial in E.

Proof. Choose a K-injective complex I• representing E. We may assume In is an
injective object of Mod(OX) for all n, see Injectives, Theorem 12.6. Then RΓ(X,E)
is computed by Γ(X, I•). Similarly for U , V , and U ∩ V by Lemma 32.1. Hence
the distinguished triangle of the lemma is the distinguished triangle associated
(by Derived Categories, Section 12 and especially Lemma 12.1) to the short exact
sequence of complexes

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0.
We have seen this is a short exact sequence in the proof of Lemma 8.2. The final
statement follows from the functoriality of the construction in Injectives, Theorem
12.6. □

Lemma 33.5.08HZ Let f : X → Y be a morphism of ringed spaces. Suppose that
X = U ∪ V is a union of two open subsets. Denote a = f |U : U → Y , b = f |V :
V → Y , and c = f |U∩V : U ∩ V → Y . For every object E of D(OX) there exists a
distinguished triangle

Rf∗E → Ra∗(E|U )⊕Rb∗(E|V )→ Rc∗(E|U∩V )→ Rf∗E[1]
This triangle is functorial in E.

Proof. Choose a K-injective complex I• representing E. We may assume In is an
injective object of Mod(OX) for all n, see Injectives, Theorem 12.6. Then Rf∗E
is computed by f∗I•. Similarly for U , V , and U ∩ V by Lemma 32.1. Hence
the distinguished triangle of the lemma is the distinguished triangle associated
(by Derived Categories, Section 12 and especially Lemma 12.1) to the short exact
sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.
This is a short exact sequence of complexes by Lemma 8.3 and the fact that R1f∗I =
0 for an injective object I of Mod(OX). The final statement follows from the
functoriality of the construction in Injectives, Theorem 12.6. □

Lemma 33.6.08DF Let (X,OX) be a ringed space. Let j : U → X be an open subspace.
Let T ⊂ X be a closed subset contained in U .

(1) If E is an object of D(OX) whose cohomology sheaves are supported on T ,
then E → Rj∗(E|U ) is an isomorphism.

https://stacks.math.columbia.edu/tag/08BX
https://stacks.math.columbia.edu/tag/08HZ
https://stacks.math.columbia.edu/tag/08DF
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(2) If F is an object of D(OU ) whose cohomology sheaves are supported on T ,
then j!F → Rj∗F is an isomorphism.

Proof. Let V = X \ T and W = U ∩ V . Note that X = U ∪ V is an open
covering of X. Denote jW : W → V the open immersion. Let E be an object
of D(OX) whose cohomology sheaves are supported on T . By Lemma 32.4 we
have (Rj∗E|U )|V = RjW,∗(E|W ) = 0 because E|W = 0 by our assumption. On
the other hand, Rj∗(E|U )|U = E|U . Thus (1) is clear. Let F be an object of
D(OU ) whose cohomology sheaves are supported on T . By Lemma 32.4 we have
(Rj∗F )|V = RjW,∗(F |W ) = 0 because F |W = 0 by our assumption. We also have
(j!F )|V = jW !(F |W ) = 0 (the first equality is immediate from the definition of
extension by zero). Since both (Rj∗F )|U = F and (j!F )|U = F we see that (2)
holds. □

Lemma 33.7.0G6X Let (X,OX) be a ringed space. Set A = Γ(X,OX). Suppose that
X = U ∪ V is a union of two open subsets. For objects K and M of D(OX) we
have a map of distinguished triangles

RΓ(X,K)⊗L
A RΓ(X,M) //

��

RΓ(X,K ⊗L
OX

M)

��
RΓ(X,K)⊗L

A (RΓ(U,M)⊕RΓ(V,M)) //

��

RΓ(U,K ⊗L
OX

M)⊕RΓ(V,K ⊗L
OX

M))

��
RΓ(X,K)⊗L

A RΓ(U ∩ V,M) //

��

RΓ(U ∩ V,K ⊗L
OX

M)

��
RΓ(X,K)⊗L

A RΓ(X,M)[1] // RΓ(X,K ⊗L
OX

M)[1]

where
(1) the horizontal arrows are given by cup product,
(2) on the right hand side we have the distinguished triangle of Lemma 33.4 for

K ⊗L
OX

M , and
(3) on the left hand side we have the exact functor RΓ(X,K)⊗L

A − applied to
the distinguished triangle of Lemma 33.4 for M .

Proof. Choose a K-flat complex T • of flat A-modules representing RΓ(X,K), see
More on Algebra, Lemma 59.10. Denote T • ⊗A OX the pullback of T • by the
morphism of ringed spaces (X,OX) → (pt, A). There is a natural adjunction map
ϵ : T •⊗AOX → K in D(OX). Observe that T •⊗AOX is a K-flat complex of OX -
modules with flat terms, see Lemma 26.8 and Modules, Lemma 20.2. By Lemma
26.17 we can find a morphism of complexes

T • ⊗A OX −→ K•

of OX -modules representing ϵ such that K• is a K-flat complex with flat terms.
Namely, by the construction of D(OX) we can first represent ϵ by some map of
complexes e : T • ⊗A OX → L• of OX -modules representing ϵ and then we can
apply the lemma to e. Choose a K-injective complex I• whose terms are injective

https://stacks.math.columbia.edu/tag/0G6X
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OX -modules representing M . Finally, choose a quasi-isomorphism

Tot(K• ⊗O I•) −→ J •

into a K-injective complex whose terms are injective OX -modules. Observe that
source and target of this arrow represent K ⊗L

OX
M in D(OX). At this point, for

any open W ⊂ X we obtain a map of complexes

Tot(T • ⊗A I•(W ))→ Tot(K•(W )⊗A I•(W ))→ J •(W )

of A-modules whose composition represents the map

RΓ(X,K)⊗L
A RΓ(W,M) −→ RΓ(W,K ⊗L

OX
M)

in D(A). Clearly, these maps are compatible with restriction mappings. OK, so now
we can consider the following commutative(!) diagram of complexes of A-modules

0

��

0

��
Tot(T • ⊗A I•(X))

��

// J •(X)

��
Tot(T • ⊗A (I•(U)⊕ I•(V ))

��

// J •(U)⊕ J •(V )

��
Tot(T • ⊗A I•(U ∩ V )) //

��

J •(U ∩ V )

��
0 0

By the proof of Lemma 8.2 the columns are exact sequences of complexes of A-
modules (this also uses that Tot(T • ⊗A −) transforms short exact sequences of
complexes of A-modules into short exact sequences as the terms of T • are flat A-
modules). Since the distinguished triangles of Lemma 33.4 are the distinguished
triangles associated to these short exact sequences of complexes, the desired re-
sult follows from the functoriality of “taking the associated distinguished triangle”
discussed in Derived Categories, Section 12. □

34. Cohomology with support in a closed subset, II

0G6Y We continue the discussion started in Section 21.

Let (X,OX) be a ringed space. Let Z ⊂ X be a closed subset. In this situation we
can consider the functor Mod(OX) → Mod(OX(X)) given by F 7→ ΓZ(X,F). See
Modules, Definition 5.1 and Modules, Lemma 5.2. Using K-injective resolutions,
see Section 28, we obtain the right derived functor

RΓZ(X,−) : D(OX)→ D(OX(X))

Given an object K in D(OX) we denote Hq
Z(X,K) = Hq(RΓZ(X,K)) the coho-

mology module with support in Z. We will see later (Lemma 34.8) that this agrees
with the construction in Section 21.
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For an OX -module F we can consider the subsheaf of sections with support in Z,
denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ∩ Z} = ΓZ∩U (U,F|U )
As discussed in Modules, Remark 13.5 we may view HZ(F) as an OX |Z-module on
Z and we obtain a functor

Mod(OX) −→ Mod(OX |Z), F 7−→ HZ(F) viewed as an OX |Z-module on Z

This functor is left exact, but in general not exact. Exactly as above we obtain a
right derived functor

RHZ : D(OX) −→ D(OX |Z)
We set HqZ(K) = Hq(RHZ(K)) so that H0

Z(F) = HZ(F) for any sheaf of OX -
modules F .

Lemma 34.1.0A3B Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of
a closed subset.

(1) RHZ : D(OX)→ D(OX |Z) is right adjoint to i∗ : D(OX |Z)→ D(OX).
(2) For K in D(OX |Z) we have RHZ(i∗K) = K.
(3) Let G be a sheaf of OX |Z-modules on Z. Then HpZ(i∗G) = 0 for p > 0.

Proof. The functor i∗ is exact, so i∗ = Ri∗ = Li∗. Hence part (1) of the lemma
follows from Modules, Lemma 13.6 and Derived Categories, Lemma 30.3. Let K
be as in (2). We can represent K by a K-injective complex I• of OX |Z-modules.
By Lemma 32.9 the complex i∗I•, which represents i∗K, is a K-injective complex
of OX -modules. Thus RHZ(i∗K) is computed by HZ(i∗I•) = I• which proves (2).
Part (3) is a special case of (2). □

Let (X,OX) be a ringed space and let Z ⊂ X be a closed subset. The category
of OX -modules whose support is contained in Z is a Serre subcategory of the
category of all OX -modules, see Homology, Definition 10.1 and Modules, Lemma
5.2. We denote DZ(OX) the strictly full saturated triangulated subcategory of
D(OX) consisting of complexes whose cohomology sheaves are supported on Z, see
Derived Categories, Section 17.

Lemma 34.2.0AEF Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of
a closed subset.

(1) For K in D(OX |Z) we have i∗K in DZ(OX).
(2) The functor i∗ : D(OX |Z)→ DZ(OX) is an equivalence with quasi-inverse

i−1|DZ (OX ) = RHZ |DZ (OX ).
(3) The functor i∗ ◦RHZ : D(OX)→ DZ(OX) is right adjoint to the inclusion

functor DZ(OX)→ D(OX).

Proof. Part (1) is immediate from the definitions. Part (3) is a formal consequence
of part (2) and Lemma 34.1. In the rest of the proof we prove part (2).
Let us think of i as the morphism of ringed spaces i : (Z,OX |Z)→ (X,OX). Recall
that i∗ and i∗ is an adjoint pair of functors. Since i is a closed immersion, i∗ is
exact. Since i−1OX = OX |Z is the structure sheaf of (Z,OX |Z) we see that i∗ = i−1

is exact and we see that that i∗i∗ = i−1i∗ is isomorphic to the identify functor. See
Modules, Lemmas 3.3 and 6.1. Thus i∗ : D(OX |Z) → DZ(OX) is fully faithful
and i−1 determines a left inverse. On the other hand, suppose that K is an object
of DZ(OX) and consider the adjunction map K → i∗i

−1K. Using exactness of i∗

https://stacks.math.columbia.edu/tag/0A3B
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and i−1 this induces the adjunction maps Hn(K) → i∗i
−1Hn(K) on cohomology

sheaves. Since these cohomology sheaves are supported on Z we see these adjunction
maps are isomorphisms and we conclude that i∗ : D(OX |Z) → DZ(OX) is an
equivalence.
To finish the proof it suffices to show that RHZ(K) = i−1K if K is an object of
DZ(OX). To do this we can use that K = i∗i

−1K as we’ve just proved this is the
case. Then Lemma 34.1 tells us what we want. □

Lemma 34.3.0G6Z Let (X,OX) be a ringed space. Let i : Z → X be the inclusion
of a closed subset. If I• is a K-injective complex of OX-modules, then HZ(I•) is
K-injective complex of OX |Z-modules.

Proof. Since i∗ : Mod(OX |Z) → Mod(OX) is exact and left adjoint to HZ (Mod-
ules, Lemma 13.6) this follows from Derived Categories, Lemma 31.9. □

Lemma 34.4.0G70 Let (X,OX) be a ringed space. Let i : Z → X be the inclusion
of a closed subset. Then RΓ(Z,−) ◦ RHZ = RΓZ(X,−) as functors D(OX) →
D(OX(X)).

Proof. Follows from the construction of right derived functors using K-injective
resolutions, Lemma 34.3, and the fact that ΓZ(X,−) = Γ(Z,−) ◦ HZ . □

Lemma 34.5.0G71 Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of
a closed subset. Let U = X \ Z. There is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]
in D(OX(X)) functorial for K in D(OX).

Proof. Choose a K-injective complex I• all of whose terms are injective OX -
modules representing K. See Section 28. Recall that I•|U is a K-injective complex
of OU -modules, see Lemma 32.1. Hence each of the derived functors in the distin-
guished triangle is gotten by applying the underlying functor to I•. Hence we find
that it suffices to prove that for an injective OX -module I we have a short exact
sequence

0→ ΓZ(X, I)→ Γ(X, I)→ Γ(U, I)→ 0
This follows from Lemma 8.1 and the definitions. □

Lemma 34.6.0G72 Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of a
closed subset. Denote j : U = X \ Z → X the inclusion of the complement. There
is a distinguished triangle

i∗RHZ(K)→ K → Rj∗(K|U )→ i∗RHZ(K)[1]
in D(OX) functorial for K in D(OX).

Proof. Choose a K-injective complex I• all of whose terms are injective OX -
modules representing K. See Section 28. Recall that I•|U is a K-injective complex
of OU -modules, see Lemma 32.1. Hence each of the derived functors in the dis-
tinguished triangle is gotten by applying the underlying functor to I•. Hence it
suffices to prove that for an injective OX -module I we have a short exact sequence

0→ i∗HZ(I)→ I → j∗(I|U )→ 0
This follows from Lemma 8.1 and the definitions. □

https://stacks.math.columbia.edu/tag/0G6Z
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Lemma 34.7.0G73 Let (X,OX) be a ringed space. Let Z ⊂ X be a closed subset. Let
j : U → X be the inclusion of an open subset with U∩Z = ∅. Then RHZ(Rj∗K) = 0
for all K in D(OU ).

Proof. Choose a K-injective complex I• of OU -modules representing K. Then
j∗I• represents Rj∗K. By Lemma 32.9 the complex j∗I• is a K-injective complex
of OX -modules. Hence HZ(j∗I•) represents RHZ(Rj∗K). Thus it suffices to show
that HZ(j∗G) = 0 for any abelian sheaf G on U . Thus we have to show that a
section s of j∗G over some open W which is supported on W∩Z is zero. The support
condition means that s|W\W∩Z = 0. Since j∗G(W ) = G(U ∩W ) = j∗G(W \W ∩Z)
this implies that s is zero as desired. □

Lemma 34.8.0G74 Let (X,OX) be a ringed space. Let Z ⊂ X be a closed subset. Let
K be an object of D(OX) and denote Kab its image in D(ZX).

(1) There is a canonical map RΓZ(X,K)→ RΓZ(X,Kab) which is an isomor-
phism in D(Ab).

(2) There is a canonical map RHZ(K)→ RHZ(Kab) which is an isomorphism
in D(ZZ).

Proof. Proof of (1). The map is constructed as follows. Choose a K-injective
complex of OX -modules I• representing K. Choose a quasi-isomorpism I• → J •

where J • is a K-injective complex of abelian groups. Then the map in (1) is given
by

ΓZ(X, I•)→ ΓZ(X,J •)
determined by the fact that ΓZ is a functor on abelian sheaves. An easy check
shows that the resulting map combined with the canonical maps of Lemma 32.7 fit
into a morphism of distinguished triangles

RΓZ(X,K) //

��

RΓ(X,K) //

��

RΓ(U,K)

��
RΓZ(X,Kab) // RΓ(X,Kab) // RΓ(U,Kab)

of Lemma 34.5. Since two of the three arrows are isomorphisms by the lemma cited,
we conclude by Derived Categories, Lemma 4.3.

The proof of (2) is omitted. Hint: use the same argument with Lemma 34.6 for the
distinguished triangle. □

Remark 34.9.0G75 Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of
a closed subset. Given K and M in D(OX) there is a canonical map

K|Z ⊗L
OX |Z

RHZ(M) −→ RHZ(K ⊗L
OX

M)

in D(OX |Z). Here K|Z = i−1K is the restriction of K to Z viewed as an object of
D(OX |Z). By adjointness of i∗ and RHZ of Lemma 34.1 to construct this map it
suffices to produce a canonical map

i∗

(
K|Z ⊗L

OX |Z
RHZ(M)

)
−→ K ⊗L

OX
M

To construct this map, we choose a K-injective complex I• of OX -modules rep-
resenting M and a K-flat complex K• of OX -modules representing K. Observe

https://stacks.math.columbia.edu/tag/0G73
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that K•|Z is a K-flat complex of OX |Z-modules representing K|Z , see Lemma 26.8.
Hence we need to produce a map of complexes

i∗Tot
(
K•|Z ⊗OX |Z

HZ(I•)
)
−→ Tot(K• ⊗OX

I•)

of OX -modules. For this it suffices to produce maps

i∗(Ka|Z ⊗OX |Z
HZ(Ib)) −→ Ka ⊗OX

Ib

Looking at stalks (for example), we see that the left hand side of this formula is
equal to Ka ⊗OX

i∗HZ(Ib) and we can use the inclusion HZ(Ib) → Ib to get our
map.

Remark 34.10.0G76 With notation as in Remark 34.9 we obtain a canonical cup
product

Ha(X,K)×Hb
Z(X,M) = Ha(X,K)×Hb(Z,RHZ(M))

→ Ha(Z,K|Z)×Hb(Z,RHZ(M))
→ Ha+b(Z,K|Z ⊗L

OX |Z
RHZ(M))

→ Ha+b(Z,RHZ(K ⊗L
OX

M))

= Ha+b
Z (X,K ⊗L

OX
M)

Here the equal signs are given by Lemma 34.4, the first arrow is restriction to Z,
the second arrow is the cup product (Section 31), and the third arrow is the map
from Remark 34.9.

Lemma 34.11.0G77 With notation as in Remark 34.9 the diagram

Hi(X,K)×Hj
Z(X,M) //

��

Hi+j
Z (X,K ⊗L

OX
M)

��
Hi(X,K)×Hj(X,M) // Hi+j(X,K ⊗L

OX
M)

commutes where the top horizontal arrow is the cup product of Remark 34.10.

Proof. Omitted. □

Remark 34.12.0G78 Let f : (X ′,OX′) → (X,OX) be a morphism of ringed spaces.
Let Z ⊂ X be a closed subset and Z ′ = f−1(Z). Denote f |Z′ : (Z ′,OX′ |Z′) →
(Z,OX |Z) be the induced morphism of ringed spaces. For any K in D(OX) there
is a canonical map

L(f |Z′)∗RHZ(K) −→ RHZ′(Lf∗K)

in D(OX′ |Z′). Denote i : Z → X and i′ : Z ′ → X ′ the inclusion maps. By Lemma
34.2 part (2) applied to i′ it is the same thing to give a map

i′∗L(f |Z′)∗RHZ(K) −→ i′∗RHZ′(Lf∗K)

in DZ′(OX′). The map of functors Lf∗ ◦ i∗ → i′∗ ◦ L(f |Z′)∗ of Remark 28.3 is an
isomorphism in this case (follows by checking what happens on stalks using that i∗
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and i′∗ are exact and that OZ,z = OX,z and similarly for Z ′). Hence it suffices to
construct a the top horizonal arrow in the following diagram

Lf∗i∗RHZ(K) //

''

i′∗RHZ′(Lf∗K)

ww
Lf∗K

The complex Lf∗i∗RHZ(K) is supported on Z ′. The south-east arrow comes from
the adjunction mapping i∗RHZ(K) → K (Lemma 34.1). Since the adjunction
mapping i′∗RHZ′(Lf∗K) → Lf∗K is universal by Lemma 34.2 part (3), we find
that the south-east arrow factors uniquely over the south-west arrow and we obtain
the desired arrow.

Lemma 34.13.0G79 With notation and assumptions as in Remark 34.12 the diagram

Hp
Z(X,K) //

��

Hp
Z′(X,Lf∗K)

��
Hp(X,K) // Hp(X ′, Lf∗K)

commutes. Here the top horizontal arrow comes from the identifications Hp
Z(X,K) =

Hp(Z,RHZ(K)) and Hp
Z′(X ′, Lf∗K) = Hp(Z ′, RHZ′(K ′)), the pullback map Hp(Z,RHZ(K))→

Hp(Z ′, L(f |Z′)∗RHZ(K)), and the map constructed in Remark 34.12.

Proof. Omitted. Hints: Using that Hp(Z,RHZ(K)) = Hp(X, i∗RHZ(K)) and
similarly for RHZ′(Lf∗K) this follows from the functoriality of the pullback maps
and the commutative diagram used to define the map of Remark 34.12. □

35. Inverse systems and cohomology, I

0GYJ Let A be a ring and let I ⊂ A be an ideal. We prove some results on inverse systems
of sheaves of A/In-modules.

Lemma 35.1.0GYK Let I be an ideal of a ring A. Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on X such that Fn = Fn+1/I
nFn+1.

Let p ≥ 0. Assume ⊕
n≥0

Hp+1(X, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then

the inverse system Mn = Hp(X,Fn) satisfies the Mittag-Leffler condition4.

Proof. SetNn = Hp+1(X, InFn+1) and let δn : Mn → Nn be the boundary map on
cohomology coming from the short exact sequence 0→ InFn+1 → Fn+1 → Fn → 0.
Then

⊕
Im(δn) ⊂

⊕
Nn is a graded submodule. Namely, if s ∈ Mn and f ∈ Im,

4In fact, there exists a c ≥ 0 such that Im(Mn → Mn−c) is the stable image for all n ≥ c.
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https://stacks.math.columbia.edu/tag/0GYK


COHOMOLOGY OF SHEAVES 83

then we have a commutative diagram
0 // InFn+1

f

��

// Fn+1

f

��

// Fn

f

��

// 0

0 // In+mFn+m+1 // Fn+m+1 // Fn+m // 0

The middle vertical map is given by lifting a local section of Fn+1 to a section of
Fn+m+1 and then multiplying by f ; similarly for the other vertical arrows. We
conclude that δn+m(fs) = fδn(s). By assumption we can find sj ∈ Mnj

, j =
1, . . . , N such that δnj

(sj) generate
⊕

Im(δn) as a graded module. Let n > c =
max(nj). Let s ∈Mn. Then we can find fj ∈ In−nj such that δn(s) =

∑
fjδnj

(sj).
We conclude that δ(s −

∑
fjsj) = 0, i.e., we can find s′ ∈ Mn+1 mapping to

s−
∑
fjsj in Mn. It follows that

Im(Mn+1 →Mn−c) = Im(Mn →Mn−c)
Namely, the elements fjsj map to zero in Mn−c. This proves the lemma. □

Lemma 35.2.0GYL Let I be an ideal of a ring A. Let X be a topological space. Let
. . .→ F3 → F2 → F1

be an inverse system of A-modules on X such that Fn = Fn+1/I
nFn+1. Let p ≥ 0.

Given n define

Nn =
⋂

m≥n
Im

(
Hp+1(X, InFm+1)→ Hp+1(X, InFn+1)

)
If

⊕
Nn satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module,
then the inverse system Mn = Hp(X,Fn) satisfies the Mittag-Leffler condition5.

Proof. The proof is exactly the same as the proof of Lemma 35.1. In fact, the
result will follow from the arguments given there as soon as we show that

⊕
Nn is

a graded
⊕

n≥0 I
n/In+1-submodule of

⊕
Hp+1(X, InFn+1) and that the boundary

maps δn : Mn → Hp+1(X, InFn+1) have image contained in Nn.
Suppose that ξ ∈ Nn and f ∈ Ik. Choosem≫ n+k. Choose ξ′ ∈ Hp+1(X, InFm+1)
lifting ξ. We consider the diagram

0 // InFm+1

f

��

// Fm+1

f

��

// Fn

f

��

// 0

0 // In+kFm+1 // Fm+1 // Fn+k // 0

constructed as in the proof of Lemma 35.1. We get an induced map on cohomology
and we see that fξ′ ∈ Hp+1(X, In+kFm+1) maps to fξ. Since this is true for all
m≫ n+ k we see that fξ is in Nn+k as desired.
To see the boundary maps δn have image contained in Nn we consider the diagrams

0 // InFm+1

��

// Fm+1

��

// Fn

��

// 0

0 // InFn+1 // Fn+1 // Fn // 0

5In fact, there exists a c ≥ 0 such that Im(Mn → Mn−c) is the stable image for all n ≥ c.

https://stacks.math.columbia.edu/tag/0GYL
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for m ≥ n. Looking at the induced maps on cohomology we conclude. □

Lemma 35.3.0GYM Let I be an ideal of a ring A. Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on X such that Fn = Fn+1/I
nFn+1.

Let p ≥ 0. Assume ⊕
n≥0

Hp(X, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then

the limit topology on M = limHp(X,Fn) is the I-adic topology.

Proof. Set Fn = Ker(M → Hp(X,Fn)) for n ≥ 1 and F 0 = M . Observe that
IFn ⊂ Fn+1. In particular InM ⊂ Fn. Hence the I-adic topology is finer than the
limit topology. For the converse, we will show that given n there exists an m ≥ n
such that Fm ⊂ InM6. We have injective maps

Fn/Fn+1 −→ Hp(X,Fn+1)

whose image is contained in the image of Hp(X, InFn+1)→ Hp(X,Fn+1). Denote

En ⊂ Hp(X, InFn+1)

the inverse image of Fn/Fn+1. Then
⊕
En is a graded

⊕
In/In+1-submodule

of
⊕
Hp(X, InFn+1) and

⊕
En →

⊕
Fn/Fn+1 is a homomorphism of graded

modules; details omitted. By assumption
⊕
En is generated by finitely many

homogeneous elements over
⊕
In/In+1. Since En → Fn/Fn+1 is surjective, we see

that the same thing is true of
⊕
Fn/Fn+1. Hence we can find r and c1, . . . , cr ≥ 0

and ai ∈ F ci whose images in
⊕
Fn/Fn+1 generate. Set c = max(ci).

For n ≥ c we claim that IFn = Fn+1. The claim shows that Fn+c = InF c ⊂ InM
as desired. To prove the claim suppose a ∈ Fn+1. The image of a in Fn+1/Fn+2 is
a linear combination of our ai. Therefore a−

∑
fiai ∈ Fn+2 for some fi ∈ In+1−ci .

Since In+1−ci = I · In−ci as n ≥ ci we can write fi =
∑
gi,jhi,j with gi,j ∈ I and

hi,jai ∈ Fn. Thus we see that Fn+1 = Fn+2 + IFn. A simple induction argument
gives Fn+1 = Fn+e + IFn for all e > 0. It follows that IFn is dense in Fn+1.
Choose generators k1, . . . , kr of I and consider the continuous map

u : (Fn)⊕r −→ Fn+1, (x1, . . . , xr) 7→
∑

kixi

(in the limit topology). By the above the image of (Fm)⊕r under u is dense in
Fm+1 for all m ≥ n. By the open mapping lemma (More on Algebra, Lemma 36.5)
we find that u is open. Hence u is surjective. Hence IFn = Fn+1 for n ≥ c. This
concludes the proof. □

Lemma 35.4.0GYN Let I be an ideal of a ring A. Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on X such that Fn = Fn+1/I
nFn+1.

Let p ≥ 0. Given n define

Nn =
⋂

m≥n
Im (Hp(X, InFm+1)→ Hp(X, InFn+1))

6In fact, there exist a c ≥ 0 such that F n+c ⊂ InM for all n.
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If
⊕
Nn satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module,
then the limit topology on M = limHp(X,Fn) is the I-adic topology.

Proof. The proof is exactly the same as the proof of Lemma 35.3. In fact, the
result will follow from the arguments given there as soon as we show that

⊕
Nn is

a graded
⊕

n≥0 I
n/In+1-submodule of

⊕
Hp+1(X, InFn+1) and that Fn/Fn+1 ⊂

Hp(X,Fn+1) is contained in the image of Nn → Hp(X,Fn+1). In the proof of
Lemma 35.2 we have seen the statement on the module structure.

Let t ∈ Fn. Choose an element s ∈ Hp(X, InFn+1) which maps to the image of
t in Hp(X,Fn+1). We have to show that s is in Nn. Now Fn is the kernel of
the map from M → Hp(X,Fn) hence for all m ≥ n we can map t to an element
tm ∈ Hp(X,Fm+1) which maps to zero in Hp(X,Fn). Consider the cohomology
sequence

Hp−1(X,Fn)→ Hp(X, InFm+1)→ Hp(X,Fm+1)→ Hp(X,Fn)

coming from the short exact sequence 0 → InFm+1 → Fm+1 → Fn → 0. We
can choose sm ∈ Hp(X, InFm+1) mapping to tm. Comparing the sequence above
with the one for m = n we see that sm maps to s up to an element in the image
of Hp−1(X,Fn) → Hp(X, InFn+1). However, this map factors through the map
Hp(X, InFm+1)→ Hp(X, InFn+1) and we see that s is in the image as desired. □

36. Inverse systems and cohomology, II

0H38 This section continues the discussion in Section 35 in the setting where the ideal is
principal.

Lemma 36.1.0H39 Let (X,OX) be a ringed space. Let f ∈ Γ(X,OX). Let

. . .→ F3 → F2 → F1

be inverse system of OX-modules. Consider the conditions
(1) for all n ≥ 1 the map f : Fn+1 → Fn+1 factors through Fn+1 → Fn to give

a short exact sequence 0→ Fn → Fn+1 → F1 → 0,
(2) for all n ≥ 1 the map fn : Fn+1 → Fn+1 factors through Fn+1 → F1 to

give a short exact sequence 0→ F1 → Fn+1 → Fn → 0
(3) there exists an OX-module G which is f -divisible such that Fn = G[fn], and
(4) there exists an OX-module F which is f -torsion free such that Fn = F/fnF .

Then (4) ⇒ (3) ⇔ (2) ⇔ (1).

Proof. We omit the proof of the equivalence of (1) and (2). We omit the proof
that (3) implies (1). Given Fn as in (1) to prove (3) we set G = colimFn where
the maps F1 → F2 → F3 → . . . are as in (1). The map f : G → G is surjective as
the image of Fn+1 ⊂ G is Fn ⊂ G by the short exact sequence (1). Thus G is an
f -divisible OX -module with Fn = G[fn].

Assume given F as in (4). The map F/fn+1F → F/fnF is always surjective with
kernel the image of the map F/fF → F/fn+1F induced by multiplication with
fn. To verify (2) it suffices to see that the kernel of fn : F → F/fn+1F is fF . To
see this it suffices to show that given sections s, t of F over an open U ⊂ X with
fns = fn+1t we have s = ft. This is clear because f : F → F is injective as F is
f -torsion free. □

https://stacks.math.columbia.edu/tag/0H39
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Lemma 36.2.0EHA Suppose X, f , (Fn) satisfy condition (1) of Lemma 36.1. Let p ≥ 0
and set Hp = limHp(X,Fn). Then f cHp is the kernel of Hp → Hp(X,Fc) for all
c ≥ 1. Thus the limit topology on Hp is the f -adic topology.

Proof. Let c ≥ 1. It is clear that f cHp maps to zero in Hp(X,Fc). If ξ = (ξn) ∈
Hp is small in the limit topology, then ξc = 0, and hence ξn maps to zero in
Hp(X,Fc) for n ≥ c. Consider the inverse system of short exact sequences

0→ Fn−c
fc

−→ Fn → Fc → 0
and the corresponding inverse system of long exact cohomology sequences

Hp−1(X,Fc)→ Hp(X,Fn−c)→ Hp(X,Fn)→ Hp(X,Fc)
Since the term Hp−1(X,Fc) is independent of n we can choose a compatible se-
quence of elements ξ′

n ∈ Hp(X,Fn−c) lifting ξn. Setting ξ′ = (ξ′
n) we see that

ξ = f cξ′ as desired. □

Lemma 36.3.0BLB Let A be a Noetherian ring complete with respect to a principal
ideal (f). Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules. Assume
(1) Γ(X,F1) is a finite A-module,
(2) X, f , (Fn) satisfy condition (1) of Lemma 36.1.

Then
M = lim Γ(X,Fn)

is a finite A-module, f is a nonzerodivisor on M , and M/fM is the image of M
in Γ(X,F1).

Proof. By Lemma 36.2 we have M/fM ⊂ H0(X,F1). From (1) and the Noether-
ian property of A we get that M/fM is a finite A-module. Observe that

⋂
fnM = 0

as fnM maps to zero in H0(X,Fn). By Algebra, Lemma 96.12 we conclude that M
is finite over A. Finally, suppose s = (sn) ∈ M = limH0(X,Fn) satisfies fs = 0.
Then sn+1 is in the kernel of Fn+1 → Fn by condition (1) of Lemma 36.1. Hence
sn = 0. Since n was arbitrary, we see s = 0. Thus f is a nonzerodivisor on M . □

Lemma 36.4.0BLC Let A be a ring. Let f ∈ A. Let X be a topological space. Let
. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules. Let p ≥ 0. Assume
(1) either Hp+1(X,F1) is an A-module of finite length or A is Noetherian and

Hp+1(X,F1) is a finite A-module,
(2) X, f , (Fn) satisfy condition (1) of Lemma 36.1.

Then the inverse system Mn = Hp(X,Fn) satisfies the Mittag-Leffler condition.

Proof. Set I = (f). We will use the criterion of Lemma 35.1. Observe that
fn : F1 → InFn+1 is an isomorphism for all n ≥ 0. Thus it suffices to show that⊕

n≥1
Hp+1(X,F1) · fn+1

is a graded S =
⊕

n≥0 A/(f) · fn-module satisfying the ascending chain condition.
If A is not Noetherian, then Hp+1(X,F1) has finite length and the result holds. If

https://stacks.math.columbia.edu/tag/0EHA
https://stacks.math.columbia.edu/tag/0BLB
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A is Noetherian, then S is a Noetherian ring and the result holds as the module is
finite over S by the assumed finiteness of Hp+1(X,F1). Some details omitted. □

Lemma 36.5.0DXG Let A be a ring. Let f ∈ A. Let X be a topological space. Let
. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules. Let p ≥ 0. Assume
(1) either there is an m ≥ 1 such that the image of Hp+1(X,Fm)→ Hp+1(X,F1)

is an A-module of finite length or A is Noetherian and the intersection of
the images of Hp+1(X,Fm)→ Hp+1(X,F1) is a finite A-module,

(2) X, f , (Fn) satisfy condition (1) of Lemma 36.1.
Then the inverse system Mn = Hp(X,Fn) satisfies the Mittag-Leffler condition.

Proof. Set I = (f). We will use the criterion of Lemma 35.2 involving the modules
Nn. For m ≥ n we have InFm+1 = Fm+1−n. Thus we see that

Nn =
⋂

m≥1
Im

(
Hp+1(X,Fm)→ Hp+1(X,F1)

)
is independent of n and

⊕
Nn =

⊕
N1 · fn+1. Thus we conclude exactly as in the

proof of Lemma 36.4. □

Remark 36.6.0H3A Let (X,OX) be a ringed space. Let f ∈ Γ(X,OX). Let F be
OX -module. If F is f -torsion free, then for every p ≥ 0 we have a short exact
sequence of inverse systems

0→ {Hp(X,F)/fnHp(X,F)} → {Hp(X,F/fnF)} → {Hp+1(X,F)[fn]} → 0
Since the first inverse system has the Mittag-Leffler condition (ML) we learn three
things from this:

(1) There is a short exact sequence

0→ ̂Hp(X,F)→ limHp(X,F/fnF)→ Tf (Hp+1(X,F))→ 0
where ̂ denotes the usual f -adic completion and Tf (−) denotes the f -adic
Tate module from More on Algebra, Example 93.5.

(2) We have R1 limHp(X,F/fnF) = R1 limHp+1(X,F)[fn].
(3) The system {Hp+1(X,F)[fn]} is ML if and only if {Hp(X,F/fnF)} is ML.

See Homology, Lemma 31.3 and More on Algebra, Lemmas 86.2 and 86.13.

37. Derived limits

0BKN Let (X,OX) be a ringed space. Since the triangulated categoryD(OX) has products
(Injectives, Lemma 13.4) it follows that D(OX) has derived limits, see Derived
Categories, Definition 34.1. If (Kn) is an inverse system in D(OX) then we denote
R limKn the derived limit.

Lemma 37.1.0D60 Let (X,OX) be a ringed space. For U ⊂ X open the functor
RΓ(U,−) commutes with R lim. Moreover, there are short exact sequences

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0
for any inverse system (Kn) in D(OX) and any m ∈ Z.

Proof. The first statement follows from Injectives, Lemma 13.6. Then we may
apply More on Algebra, Remark 86.10 to R limRΓ(U,Kn) = RΓ(U,R limKn) to
get the short exact sequences. □

https://stacks.math.columbia.edu/tag/0DXG
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Lemma 37.2.0BKP Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Then
Rf∗ commutes with R lim, i.e., Rf∗ commutes with derived limits.

Proof. Let (Kn) be an inverse system in D(OX). Consider the defining distin-
guished triangle

R limKn →
∏

Kn →
∏

Kn

in D(OX). Applying the exact functor Rf∗ we obtain the distinguished triangle

Rf∗(R limKn)→ Rf∗

(∏
Kn

)
→ Rf∗

(∏
Kn

)
in D(OY ). Thus we see that it suffices to prove that Rf∗ commutes with products
in the derived category (which are not just given by products of complexes, see
Injectives, Lemma 13.4). However, since Rf∗ is a right adjoint by Lemma 28.1
this follows formally (see Categories, Lemma 24.5). Caution: Note that we cannot
apply Categories, Lemma 24.5 directly as R limKn is not a limit in D(OX). □

Remark 37.3.0BKQ Let (X,OX) be a ringed space. Let (Kn) be an inverse system
in D(OX). Set K = R limKn. For each n and m let Hmn = Hm(Kn) be the mth
cohomology sheaf of Kn and similarly set Hm = Hm(K). Let us denote Hmn the
presheaf

U 7−→ Hmn (U) = Hm(U,Kn)
Similarly we set Hm(U) = Hm(U,K). By Lemma 32.3 we see that Hmn is the
sheafification of Hmn and Hm is the sheafification of Hm. Here is a diagram

K Hm

��

// Hm

��
R limKn limHmn // limHmn

In general it may not be the case that limHmn is the sheafification of limHmn . If
U ⊂ X is an open, then we have short exact sequences
(37.3.1)0BKR 0→ R1 limHm−1

n (U)→ Hm(U)→ limHmn (U)→ 0
by Lemma 37.1.

The following lemma applies to an inverse system of quasi-coherent modules with
surjective transition maps on a scheme.

Lemma 37.4.0BKS Let (X,OX) be a ringed space. Let (Fn) be an inverse system of
OX-modules. Let B be a set of opens of X. Assume

(1) every open of X has a covering whose members are elements of B,
(2) Hp(U,Fn) = 0 for p > 0 and U ∈ B,
(3) the inverse system Fn(U) has vanishing R1 lim for U ∈ B.

Then R limFn = limFn and we have Hp(U, limFn) = 0 for p > 0 and U ∈ B.

Proof. Set Kn = Fn and K = R limFn. Using the notation of Remark 37.3
and assumption (2) we see that for U ∈ B we have Hmn (U) = 0 when m ̸= 0
and H0

n(U) = Fn(U). From Equation (37.3.1) and assumption (3) we see that
Hm(U) = 0 when m ̸= 0 and equal to limFn(U) when m = 0. Sheafifying using
(1) we find that Hm = 0 when m ̸= 0 and equal to limFn when m = 0. Hence
K = limFn. Since Hm(U,K) = Hm(U) = 0 for m > 0 (see above) we see that the
second assertion holds. □

https://stacks.math.columbia.edu/tag/0BKP
https://stacks.math.columbia.edu/tag/0BKQ
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Lemma 37.5.0D61 Let (X,OX) be a ringed space. Let (Kn) be an inverse system
in D(OX). Let x ∈ X and m ∈ Z. Assume there exist an integer n(x) and a
fundamental system Ux of open neighbourhoods of x such that for U ∈ Ux

(1) R1 limHm−1(U,Kn) = 0, and
(2) Hm(U,Kn)→ Hm(U,Kn(x)) is injective for n ≥ n(x).

Then the map on stalks Hm(R limKn)x → Hm(Kn(x))x is injective.

Proof. Let γ be an element of Hm(R limKn)x which maps to zero in Hm(Kn(x))x.
Since Hm(R limKn) is the sheafification of U 7→ Hm(U,R limKn) (by Lemma 32.3)
we can choose U ∈ Ux and an element γ̃ ∈ Hm(U,R limKn) mapping to γ. Then
γ̃ maps to γ̃n(x) ∈ Hm(U,Kn(x)). Using that Hm(Kn(x)) is the sheafification of
U 7→ Hm(U,Kn(x)) (by Lemma 32.3 again) we see that after shrinking U we may
assume that γ̃n(x) = 0. For this U we consider the short exact sequence

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0
of Lemma 37.1. By assumption (1) the group on the left is zero and by assumption
(2) the group on the right maps injectively into Hm(U,Kn(x)). We conclude γ̃ = 0
and hence γ = 0 as desired. □

Lemma 37.6.0D62 Let (X,OX) be a ringed space. Let E ∈ D(OX). Assume that for
every x ∈ X there exist a function p(x,−) : Z → Z and a fundamental system Ux
of open neighbourhoods of x such that

Hp(U,Hm−p(E)) = 0 for U ∈ Ux and p > p(x,m)
Then the canonical map E → R lim τ≥−nE is an isomorphism in D(OX).

Proof. Set Kn = τ≥−nE and K = R limKn. The canonical map E → K comes
from the canonical maps E → Kn = τ≥−nE. We have to show that E → K induces
an isomorphism Hm(E)→ Hm(K) of cohomology sheaves. In the rest of the proof
we fix m. If n ≥ −m, then the map E → τ≥−nE = Kn induces an isomorphism
Hm(E) → Hm(Kn). To finish the proof it suffices to show that for every x ∈ X
there exists an integer n(x) ≥ −m such that the map Hm(K)x → Hm(Kn(x))x is
injective. Namely, then the composition

Hm(E)x → Hm(K)x → Hm(Kn(x))x
is a bijection and the second arrow is injective, hence the first arrow is bijective.
Set
n(x) = 1 + max{−m, p(x,m− 1)−m,−1 + p(x,m)−m,−2 + p(x,m+ 1)−m}.

so that in any case n(x) ≥ −m. Claim: the maps
Hm−1(U,Kn+1)→ Hm−1(U,Kn) and Hm(U,Kn+1)→ Hm(U,Kn)

are isomorphisms for n ≥ n(x) and U ∈ Ux. The claim implies conditions (1) and
(2) of Lemma 37.5 are satisfied and hence implies the desired injectivity. Recall
(Derived Categories, Remark 12.4) that we have distinguished triangles

H−n−1(E)[n+ 1]→ Kn+1 → Kn → H−n−1(E)[n+ 2]
Looking at the asssociated long exact cohomology sequence the claim follows if

Hm+n(U,H−n−1(E)), Hm+n+1(U,H−n−1(E)), Hm+n+2(U,H−n−1(E))
are zero for n ≥ n(x) and U ∈ Ux. This follows from our choice of n(x) and the
assumption in the lemma. □

https://stacks.math.columbia.edu/tag/0D61
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Lemma 37.7.0D63 [Spa88, Proposition
3.13]

Let (X,OX) be a ringed space. Let E ∈ D(OX). Assume that for
every x ∈ X there exist an integer dx ≥ 0 and a fundamental system Ux of open
neighbourhoods of x such that

Hp(U,Hq(E)) = 0 for U ∈ Ux, p > dx, and q < 0

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(OX).

Proof. This follows from Lemma 37.6 with p(x,m) = dx + max(0,m). □

Lemma 37.8.08U2 Let (X,OX) be a ringed space. Let E ∈ D(OX). Assume there
exist a function p(−) : Z→ Z and a set B of opens of X such that

(1) every open in X has a covering whose members are elements of B, and
(2) Hp(U,Hm−p(E)) = 0 for p > p(m) and U ∈ B.

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(OX).

Proof. Apply Lemma 37.6 with p(x,m) = p(m) and Ux = {U ∈ B | x ∈ U}. □

Lemma 37.9.0D64 Let (X,OX) be a ringed space. Let E ∈ D(OX). Assume there
exist an integer d ≥ 0 and a basis B for the topology of X such that

Hp(U,Hq(E)) = 0 for U ∈ B, p > d, and q < 0

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(OX).

Proof. Apply Lemma 37.7 with dx = d and Ux = {U ∈ B | x ∈ U}. □

The lemmas above can be used to compute cohomology in certain situations.

Lemma 37.10.0BKT Let (X,OX) be a ringed space. Let K be an object of D(OX).
Let B be a set of opens of X. Assume

(1) every open of X has a covering whose members are elements of B,
(2) Hp(U,Hq(K)) = 0 for all p > 0, q ∈ Z, and U ∈ B.

Then Hq(U,K) = H0(U,Hq(K)) for q ∈ Z and U ∈ B.

Proof. Observe that K = R lim τ≥−nK by Lemma 37.9 with d = 0. Let U ∈ B.
By Equation (37.3.1) we get a short exact sequence

0→ R1 limHq−1(U, τ≥−nK)→ Hq(U,K)→ limHq(U, τ≥−nK)→ 0

Condition (2) implies Hq(U, τ≥−nK) = H0(U,Hq(τ≥−nK)) for all q by using the
spectral sequence of Example 29.3. The spectral sequence converges because τ≥−nK
is bounded below. If n > −q then we have Hq(τ≥−nK) = Hq(K). Thus the
systems on the left and the right of the displayed short exact sequence are eventually
constant with values H0(U,Hq−1(K)) and H0(U,Hq(K)). The lemma follows. □

Here is another case where we can describe the derived limit.

Lemma 37.11.0BKU Let (X,OX) be a ringed space. Let (Kn) be an inverse system of
objects of D(OX). Let B be a set of opens of X. Assume

(1) every open of X has a covering whose members are elements of B,
(2) for all U ∈ B and all q ∈ Z we have

(a) Hp(U,Hq(Kn)) = 0 for p > 0,
(b) the inverse system H0(U,Hq(Kn)) has vanishing R1 lim.

Then Hq(R limKn) = limHq(Kn) for q ∈ Z.

https://stacks.math.columbia.edu/tag/0D63
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Proof. Set K = R limKn. We will use notation as in Remark 37.3. Let U ∈ B.
By Lemma 37.10 and (2)(a) we have Hq(U,Kn) = H0(U,Hq(Kn)). Using that the
functor RΓ(U,−) commutes with derived limits we have

Hq(U,K) = Hq(R limRΓ(U,Kn)) = limH0(U,Hq(Kn))
where the final equality follows from More on Algebra, Remark 86.10 and assump-
tion (2)(b). Thus Hq(U,K) is the inverse limit the sections of the sheaves Hq(Kn)
over U . Since limHq(Kn) is a sheaf we find using assumption (1) that Hq(K),
which is the sheafification of the presheaf U 7→ Hq(U,K), is equal to limHq(Kn).
This proves the lemma. □

38. Producing K-injective resolutions

0719 Let (X,OX) be a ringed space. Let F• be a complex of OX -modules. The category
Mod(OX) has enough injectives, hence we can use Derived Categories, Lemma 29.3
produce a diagram

. . . // τ≥−2F• //

��

τ≥−1F•

��
. . . // I•

2
// I•

1

in the category of complexes of OX -modules such that
(1) the vertical arrows are quasi-isomorphisms,
(2) I•

n is a bounded below complex of injectives,
(3) the arrows I•

n+1 → I•
n are termwise split surjections.

The category ofOX -modules has limits (they are computed on the level of presheaves),
hence we can form the termwise limit I• = limn I•

n. By Derived Categories, Lem-
mas 31.4 and 31.8 this is a K-injective complex. In general the canonical map
(38.0.1)071A F• → I•

may not be a quasi-isomorphism. In the following lemma we describe some condi-
tions under which it is.

Lemma 38.1.071B In the situation described above. Denote Hm = Hm(F•) the mth
cohomology sheaf. Let B be a set of open subsets of X. Let d ∈ N. Assume

(1) every open in X has a covering whose members are elements of B,
(2) for every U ∈ B we have Hp(U,Hq) = 0 for p > d and q < 07.

Then (38.0.1) is a quasi-isomorphism.

Proof. By Derived Categories, Lemma 34.4 it suffices to show that the canonical
map F• → R lim τ≥−nF• is an isomorphism. This is Lemma 37.9. □

Here is a technical lemma about the cohomology sheaves of the inverse limit of a
system of complexes of sheaves. In some sense this lemma is the wrong thing to
try to prove as one should take derived limits and not actual inverse limits.

Lemma 38.2.08BY Let (X,OX) be a ringed space. Let (F•
n) be an inverse system of

complexes of OX-modules. Let m ∈ Z. Assume there exist a set B of open subsets
of X and an integer n0 such that

(1) every open in X has a covering whose members are elements of B,

7It suffices if ∀m, ∃p(m), Hp(U.Hm−p) = 0 for p > p(m), see Lemma 37.8.
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(2) for every U ∈ B
(a) the systems of abelian groups Fm−2

n (U) and Fm−1
n (U) have vanishing

R1 lim (for example these have the Mittag-Leffler condition),
(b) the system of abelian groups Hm−1(F•

n(U)) has vanishing R1 lim (for
example it has the Mittag-Leffler condition), and

(c) we have Hm(F•
n(U)) = Hm(F•

n0
(U)) for all n ≥ n0.

Then the maps Hm(F•) → limHm(F•
n) → Hm(F•

n0
) are isomorphisms of sheaves

where F• = limF•
n is the termwise inverse limit.

Proof. Let U ∈ B. Note that Hm(F•(U)) is the cohomology of
limn Fm−2

n (U)→ limn Fm−1
n (U)→ limn Fmn (U)→ limn Fm+1

n (U)
in the third spot from the left. By assumptions (2)(a) and (2)(b) we may apply
More on Algebra, Lemma 86.3 to conclude that

Hm(F•(U)) = limHm(F•
n(U))

By assumption (2)(c) we conclude
Hm(F•(U)) = Hm(F•

n(U))
for all n ≥ n0. By assumption (1) we conclude that the sheafification of U 7→
Hm(F•(U)) is equal to the sheafification of U 7→ Hm(F•

n(U)) for all n ≥ n0. Thus
the inverse system of sheaves Hm(F•

n) is constant for n ≥ n0 with value Hm(F•)
which proves the lemma. □

39. Inverse systems and cohomology, III

0H3B This section continues the discussion in Section 36 using derived limits.

Lemma 39.1.0H3C Let (X,OX) be a ringed space. Let A→ Γ(X,OX) be a ring map
and let f ∈ A. Let E be an object of D(OX). Denote

En = E ⊗OX
(OX

fn

−−→ OX)
and set E∧ = R limEn. For p ∈ Z is a canonical commutative diagram

0 0

0 // ̂Hp(X,E) //

OO

limHp(X,En) //

OO

Tf (Hp+1(X,E)) // 0

0 // H0(Hp(X,E)∧) //

OO

Hp(X,E∧) //

OO

Tf (Hp+1(X,E)) // 0

R1 limHp(X,E)[fn]

OO

∼= // R1 limHp−1(X,En)

OO

0

OO

0

OO

with exact rows and columns where ̂Hp(X,E) = limHp(X,E)/fnHp(X,E) is
the usual f -adic completion, Hp(X,E)∧ is the derived f -adic completion, and

https://stacks.math.columbia.edu/tag/0H3C
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Tf (Hp+1(X,E)) is the f -adic Tate module, see More on Algebra, Example 93.5.
Finally, we have Hp(X,E∧) = Hp(RΓ(X,E)∧).

Proof. Observe that RΓ(X,E∧) = R limRΓ(X,En) by Lemma 37.2. On the other
hand, we have

RΓ(X,En) = RΓ(X,E)⊗L
A (A fn

−−→ A)
(details omitted). We find thatRΓ(X,E∧) is the derived f -adic completionRΓ(X,E)∧.
Whence the diagram by More on Algebra, Lemma 93.6. □

Lemma 39.2.0H3D Let A be an abelian category. Let f : M → M be a morphism of
A. If M [fn] = Ker(fn : M →M) stabilizes, then the inverse systems

(M fn

−−→M) and Coker(fn : M →M)

are pro-isomorphic in D(A).

Proof. There is clearly a map from the first inverse system to the second. Suppose
that M [f c] = M [f c+1] = M [f c+2] = . . .. Then we can define an arrow of inverse
systems in D(A) in the other direction by the diagrams

M/M [f c]
fn+c

//

fc

��

M

1
��

M
fn

// M

Since the top horizontal arrow is injective the complex in the top row is quasi-
isomorphic to Coker(fn+c : M →M). Some details omitted. □

Example 39.3.0H3E Let (X,OX) be a ringed space. Let A → Γ(X,OX) be a ring
map and let f ∈ A. Let F be an OX -module. Assume there is a c such that
F [f c] = F [fn] for all n ≥ c. We are going to apply Lemma 39.1 with E = F . By
Lemma 39.2 we see that the inverse system (En) is pro-isomorphic to the inverse
system (F/fnF). We conclude that for p ∈ Z we obtain a commutative diagram

0 0

0 // ̂Hp(X,F) //

OO

limHp(X,F/fnF) //

OO

Tf (Hp+1(X,F)) // 0

0 // H0(Hp(X,F)∧) //

OO

Hp(RΓ(X,F)∧) //

OO

Tf (Hp+1(X,F)) // 0

R1 limHp(X,F)[fn]

OO

∼= // R1 limHp−1(X,F/fnF)

OO

0

OO

0

OO

with exact rows and columns where ̂Hp(X,F) = limHp(X,F)/fnHp(X,F) is the
usual f -adic completion and M∧ denotes derived f -adic completion for M in D(A).

https://stacks.math.columbia.edu/tag/0H3D
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40. Čech cohomology of unbounded complexes

08BZ The construction of Section 25 isn’t the “correct” one for unbounded complexes.
The problem is that in the Stacks project we use direct sums in the totalization of
a double complex and we would have to replace this by a product. Instead of doing
so in this section we assume the covering is finite and we use the alternating Čech
complex.

Let (X,OX) be a ringed space. Let F• be a complex of presheaves of OX -modules.
Let U : X =

⋃
i∈I Ui be a finite open covering of X. Since the alternating Čech

complex Č•
alt(U ,F) (Section 23) is functorial in the presheaf F we obtain a double

complex Č•
alt(U ,F•). In this section we work with the associated total complex. The

construction of Tot(Č•
alt(U ,F•)) is functorial in F•. As well there is a functorial

transformation

(40.0.1)08C0 Γ(X,F•) −→ Tot(Č•
alt(U ,F•))

of complexes defined by the following rule: The section s ∈ Γ(X,Fn) is mapped to
the element α = {αi0...ip} with αi0 = s|Ui0

and αi0...ip = 0 for p > 0.

Lemma 40.1.08C1 Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be a finite

open covering. For a complex F• of OX-modules there is a canonical map

Tot(Č•
alt(U ,F•)) −→ RΓ(X,F•)

functorial in F• and compatible with (40.0.1).

Proof. Let I• be a K-injective complex whose terms are injective OX -modules.
The map (40.0.1) for I• is a map Γ(X, I•) → Tot(Č•

alt(U , I•)). This is a quasi-
isomorphism of complexes of abelian groups as follows from Homology, Lemma 25.4
applied to the double complex Č•

alt(U , I•) using Lemmas 11.1 and 23.6. Suppose
F• → I• is a quasi-isomorphism of F• into a K-injective complex whose terms
are injectives (Injectives, Theorem 12.6). Since RΓ(X,F•) is represented by the
complex Γ(X, I•) we obtain the map of the lemma using

Tot(Č•
alt(U ,F•)) −→ Tot(Č•

alt(U , I•)).

We omit the verification of functoriality and compatibilities. □

Lemma 40.2.08C2 Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be a finite

open covering. Let F• be a complex of OX-modules. Let B be a set of open subsets
of X. Assume

(1) every open in X has a covering whose members are elements of B,
(2) we have Ui0...ip ∈ B for all i0, . . . , ip ∈ I,
(3) for every U ∈ B and p > 0 we have

(a) Hp(U,Fq) = 0,
(b) Hp(U,Coker(Fq−1 → Fq)) = 0, and
(c) Hp(U,Hq(F)) = 0.

Then the map
Tot(Č•

alt(U ,F•)) −→ RΓ(X,F•)
of Lemma 40.1 is an isomorphism in D(Ab).

https://stacks.math.columbia.edu/tag/08C1
https://stacks.math.columbia.edu/tag/08C2
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Proof. First assume F• is bounded below. In this case the map

Tot(Č•
alt(U ,F•)) −→ Tot(Č•(U ,F•))

is a quasi-isomorphism by Lemma 23.6. Namely, the map of double complexes
Č•
alt(U ,F•) → Č•(U ,F•) induces an isomorphism between the first pages of the

second spectral sequences associated to these complexes (by Homology, Lemma
25.1) and these spectral sequences converge (Homology, Lemma 25.3). Thus the
conclusion in this case by Lemma 25.2 and assumption (3)(a).

In general, by assumption (3)(c) we may choose a resolution F• → I• = lim I•
n as

in Lemma 38.1. Then the map of the lemma becomes

limn Tot(Č•
alt(U , τ≥−nF•)) −→ Γ(X, I•) = limn Γ(X, I•

n)

Here the arrow is in the derived category, but the equality on the right holds on
the level of complexes. Note that (3)(b) shows that τ≥−nF• is a bounded below
complex satisfying the hypothesis of the lemma. Thus the case of bounded below
complexes shows each of the maps

Tot(Č•
alt(U , τ≥−nF•)) −→ Γ(X, I•

n)

is a quasi-isomorphism. The cohomologies of the complexes on the left hand side
in given degree are eventually constant (as the alternating Čech complex is finite).
Hence the same is true on the right hand side. Thus the cohomology of the limit
on the right hand side is this constant value by Homology, Lemma 31.7 (or the
stronger More on Algebra, Lemma 86.3) and we win. □

41. Hom complexes

0A8K Let (X,OX) be a ringed space. Let L• andM• be two complexes of OX -modules.
We construct a complex of OX -modules Hom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomOX

(L−q,Mp)

It is a good idea to think of Homn as the sheaf of OX -modules of all OX -linear
maps from L• to M• (viewed as graded OX -modules) which are homogenous of
degree n. In this terminology, we define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn
OX

(L•,M•). We omit the verification that d2 = 0. This construction is
a special case of Differential Graded Algebra, Example 26.6. It follows immediately
from the construction that we have

(41.0.1)0A8L Hn(Γ(U,Hom•(L•,M•))) = HomK(OU )(L•,M•[n])

for all n ∈ Z and every open U ⊂ X.

Lemma 41.1.0A8M Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX-modules there is an isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗OX
L•),M•)

of complexes of OX-modules functorial in K•,L•,M•.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.1. □

https://stacks.math.columbia.edu/tag/0A8M
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Lemma 41.2.0A8N Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX-modules there is a canonical morphism

Tot (Hom•(L•,M•)⊗OX
Hom•(K•,L•)) −→ Hom•(K•,M•)

of complexes of OX-modules.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.3. □

Lemma 41.3.0BYR Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX-modules there is a canonical morphism

Tot (K• ⊗OX
Hom•(M•,L•)) −→ Hom•(M•,Tot(K• ⊗OX

L•))
of complexes of OX-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.4. □

Lemma 41.4.0A8Q Let (X,OX) be a ringed space. Given complexes K•,L• of OX-
modules there is a canonical morphism

K• −→ Hom•(L•,Tot(K• ⊗OX
L•))

of complexes of OX-modules functorial in both complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.5. □

Lemma 41.5.0A8P Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX-modules there is a canonical morphism

Tot(Hom•(L•,M•)⊗OX
K•) −→ Hom•(Hom•(K•,L•),M•)

of complexes of OX-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.6. □

Lemma 41.6.0A8R Let (X,OX) be a ringed space. Let I• be a K-injective complex of
OX-modules. Let L• be a complex of OX-modules. Then

H0(Γ(U,Hom•(L•, I•))) = HomD(OU )(L|U ,M |U )
for all U ⊂ X open.

Proof. We have
H0(Γ(U,Hom•(L•, I•))) = HomK(OU )(L|U ,M |U )

= HomD(OU )(L|U ,M |U )
The first equality is (41.0.1). The second equality is true because I•|U is K-injective
by Lemma 32.1. □

Lemma 41.7.0A8S Let (X,OX) be a ringed space. Let (I ′)• → I• be a quasi-
isomorphism of K-injective complexes of OX-modules. Let (L′)• → L• be a quasi-
isomorphism of complexes of OX-modules. Then

Hom•(L•, (I ′)•) −→ Hom•((L′)•, I•)
is a quasi-isomorphism.

https://stacks.math.columbia.edu/tag/0A8N
https://stacks.math.columbia.edu/tag/0BYR
https://stacks.math.columbia.edu/tag/0A8Q
https://stacks.math.columbia.edu/tag/0A8P
https://stacks.math.columbia.edu/tag/0A8R
https://stacks.math.columbia.edu/tag/0A8S
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Proof. Let M be the object of D(OX) represented by I• and (I ′)•. Let L be the
object of D(OX) represented by L• and (L′)•. By Lemma 41.6 we see that the
sheaves

H0(Hom•(L•, (I ′)•)) and H0(Hom•((L′)•, I•))
are both equal to the sheaf associated to the presheaf

U 7−→ HomD(OU )(L|U ,M |U )
Thus the map is a quasi-isomorphism. □

Lemma 41.8.0A8T Let (X,OX) be a ringed space. Let I• be a K-injective complex of
OX-modules. Let L• be a K-flat complex of OX-modules. Then Hom•(L•, I•) is a
K-injective complex of OX-modules.
Proof. Namely, if K• is an acyclic complex of OX -modules, then

HomK(OX )(K•,Hom•(L•, I•)) = H0(Γ(X,Hom•(K•,Hom•(L•, I•))))
= H0(Γ(X,Hom•(Tot(K• ⊗OX

L•), I•)))
= HomK(OX )(Tot(K• ⊗OX

L•), I•)
= 0

The first equality by (41.0.1). The second equality by Lemma 41.1. The third
equality by (41.0.1). The final equality because Tot(K• ⊗OX

L•) is acyclic because
L• is K-flat (Definition 26.2) and because I• is K-injective. □

42. Internal hom in the derived category

08DH Let (X,OX) be a ringed space. Let L,M be objects of D(OX). We would like to
construct an object RHom(L,M) of D(OX) such that for every third object K of
D(OX) there exists a canonical bijection
(42.0.1)08DI HomD(OX )(K,RHom(L,M)) = HomD(OX )(K ⊗L

OX
L,M)

Observe that this formula defines RHom(L,M) up to unique isomorphism by the
Yoneda lemma (Categories, Lemma 3.5).
To construct such an object, choose a K-injective complex I• representing M and
any complex of OX -modules L• representing L. Then we set

RHom(L,M) = Hom•(L•, I•)
where the right hand side is the complex of OX -modules constructed in Section 41.
This is well defined by Lemma 41.7. We get a functor

D(OX)opp ×D(OX) −→ D(OX), (K,L) 7−→ RHom(K,L)
As a prelude to proving (42.0.1) we compute the cohomology groups ofRHom(K,L).
Lemma 42.1.08DK Let (X,OX) be a ringed space. Let L,M be objects of D(OX). For
every open U we have

H0(U,RHom(L,M)) = HomD(OU )(L|U ,M |U )
and in particular H0(X,RHom(L,M)) = HomD(OX )(L,M).
Proof. Choose a K-injective complex I• of OX -modules representing M and a K-
flat complex L• representing L. Then Hom•(L•, I•) is K-injective by Lemma 41.8.
Hence we can compute cohomology over U by simply taking sections over U and
the result follows from Lemma 41.6. □

https://stacks.math.columbia.edu/tag/0A8T
https://stacks.math.columbia.edu/tag/08DK
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Lemma 42.2.08DJ Let (X,OX) be a ringed space. Let K,L,M be objects of D(OX).
With the construction as described above there is a canonical isomorphism

RHom(K,RHom(L,M)) = RHom(K ⊗L
OX

L,M)

in D(OX) functorial in K,L,M which recovers (42.0.1) by taking H0(X,−).

Proof. Choose a K-injective complex I• representing M and a K-flat complex of
OX -modules L• representing L. LetK• be any complex ofOX -modules representing
K. Then we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗OX
L•), I•)

by Lemma 41.1. Note that the left hand side represents RHom(K,RHom(L,M))
(use Lemma 41.8) and that the right hand side represents RHom(K ⊗L

OX
L,M).

This proves the displayed formula of the lemma. Taking global sections and using
Lemma 42.1 we obtain (42.0.1). □

Lemma 42.3.08DL Let (X,OX) be a ringed space. Let K,L be objects of D(OX). The
construction of RHom(K,L) commutes with restrictions to opens, i.e., for every
open U we have RHom(K|U , L|U ) = RHom(K,L)|U .

Proof. This is clear from the construction and Lemma 32.1. □

Lemma 42.4.08I0 Let (X,OX) be a ringed space. The bifunctor RHom(−,−) trans-
forms distinguished triangles into distinguished triangles in both variables.

Proof. This follows from the observation that the assignment

(L•,M•) 7−→ Hom•(L•,M•)

transforms a termwise split short exact sequences of complexes in either variable
into a termwise split short exact sequence. Details omitted. □

Lemma 42.5.0A8V Let (X,OX) be a ringed space. Given K,L,M in D(OX) there is
a canonical morphism

RHom(L,M)⊗L
OX

RHom(K,L) −→ RHom(K,M)

in D(OX) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex J •

representing L, and any complex of OX -modules K• representing K. By Lemma
41.2 there is a map of complexes

Tot (Hom•(J •, I•)⊗OX
Hom•(K•,J •)) −→ Hom•(K•, I•)

The complexes of OX -modules Hom•(J •, I•), Hom•(K•,J •), and Hom•(K•, I•)
represent RHom(L,M), RHom(K,L), and RHom(K,M). If we choose a K-flat
complex H• and a quasi-isomorphism H• → Hom•(K•,J •), then there is a map

Tot (Hom•(J •, I•)⊗OX
H•) −→ Tot (Hom•(J •, I•)⊗OX

Hom•(K•,J •))

whose source represents RHom(L,M)⊗L
OX

RHom(K,L). Composing the two dis-
played arrows gives the desired map. We omit the proof that the construction is
functorial. □

https://stacks.math.columbia.edu/tag/08DJ
https://stacks.math.columbia.edu/tag/08DL
https://stacks.math.columbia.edu/tag/08I0
https://stacks.math.columbia.edu/tag/0A8V
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Lemma 42.6.0BYS Let (X,OX) be a ringed space. Given K,L,M in D(OX) there is
a canonical morphism

K ⊗L
OX

RHom(M,L) −→ RHom(M,K ⊗L
OX

L)

in D(OX) functorial in K,L,M .

Proof. Choose a K-flat complex K• representing K, and a K-injective complex
I• representing L, and choose any complex of OX -modules M• representing M .
Choose a quasi-isomorphism Tot(K•⊗OX

I•)→ J • where J • is K-injective. Then
we use the map

Tot (K• ⊗OX
Hom•(M•, I•))→ Hom•(M•,Tot(K• ⊗OX

I•))→ Hom•(M•,J •)

where the first map is the map from Lemma 41.3. □

Lemma 42.7.0A8W Let (X,OX) be a ringed space. Given K,L in D(OX) there is a
canonical morphism

K −→ RHom(L,K ⊗L
OX

L)
in D(OX) functorial in both K and L.

Proof. Choose a K-flat complex K• representing K and any complex of OX -
modules L• representing L. Choose a K-injective complex J • and a quasi-isomorphism
Tot(K• ⊗OX

L•)→ J •. Then we use

K• → Hom•(L•,Tot(K• ⊗OX
L•))→ Hom•(L•,J •)

where the first map comes from Lemma 41.4. □

Lemma 42.8.08I1 Let (X,OX) be a ringed space. Let L be an object of D(OX). Set
L∨ = RHom(L,OX). For M in D(OX) there is a canonical map

(42.8.1)08I2 M ⊗L
OX

L∨ −→ RHom(L,M)

which induces a canonical map

H0(X,M ⊗L
OX

L∨) −→ HomD(OX )(L,M)

functorial in M in D(OX).

Proof. The map (42.8.1) is a special case of Lemma 42.5 using the identification
M = RHom(OX ,M). □

Lemma 42.9.0A8U Let (X,OX) be a ringed space. Let K,L,M be objects of D(OX).
There is a canonical morphism

RHom(L,M)⊗L
OX

K −→ RHom(RHom(K,L),M)

in D(OX) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex
J • representing L, and a K-flat complex K• representing K. The map is defined
using the map

Tot(Hom•(J •, I•)⊗OX
K•) −→ Hom•(Hom•(K•,J •), I•)

of Lemma 41.5. By our particular choice of complexes the left hand side represents
RHom(L,M)⊗L

OX
K and the right hand side represents RHom(RHom(K,L),M).

We omit the proof that this is functorial in all three objects of D(OX). □

https://stacks.math.columbia.edu/tag/0BYS
https://stacks.math.columbia.edu/tag/0A8W
https://stacks.math.columbia.edu/tag/08I1
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Remark 42.10.0FXP Let (X,OX) be a ringed space. For K,K ′,M,M ′ in D(OX)
there is a canonical map

RHom(K,K ′)⊗L
OX

RHom(M,M ′) −→ RHom(K ⊗L
OX

M,K ′ ⊗L
OX

M ′)
Namely, by (42.0.1) is the same thing as a map

RHom(K,K ′)⊗L
OX

RHom(M,M ′)⊗L
OX

K ⊗L
OX

M −→ K ′ ⊗L
OX

M ′

For this we can first flip the middle two factors (with sign rules as in More on
Algebra, Section 72) and use the maps

RHom(K,K ′)⊗L
OX

K → K ′ and RHom(M,M ′)⊗L
OX

M →M ′

from Lemma 42.5 when thinking of K = RHom(OX ,K) and similarly for K ′, M ,
and M ′.
Remark 42.11.0B69 Let f : X → Y be a morphism of ringed spaces. Let K,L be
objects of D(OX). We claim there is a canonical map

Rf∗RHom(L,K) −→ RHom(Rf∗L,Rf∗K)
Namely, by (42.0.1) this is the same thing as a map Rf∗RHom(L,K)⊗L

OY
Rf∗L→

Rf∗K. For this we can use the composition
Rf∗RHom(L,K)⊗L

OY
Rf∗L→ Rf∗(RHom(L,K)⊗L

OX
L)→ Rf∗K

where the first arrow is the relative cup product (Remark 28.7) and the second
arrow is Rf∗ applied to the canonical map RHom(L,K)⊗L

OX
L→ K coming from

Lemma 42.5 (with OX in one of the spots).
Remark 42.12.0G7A Let h : X → Y be a morphism of ringed spaces. Let K,L,M be
objects of D(OY ). The diagram

Rf∗RHomOX
(K,M)⊗L

OY
Rf∗M //

��

Rf∗
(
RHomOX

(K,M)⊗L
OX

M
)

��
RHomOY

(Rf∗K,Rf∗M)⊗L
OY

Rf∗M // Rf∗M

is commutative. Here the left vertical arrow comes from Remark 42.11. The top
horizontal arrow is Remark 28.7. The other two arrows are instances of the map in
Lemma 42.5 (with one of the entries replaced with OX or OY ).
Remark 42.13.08I3 Let h : X → Y be a morphism of ringed spaces. Let K,L be
objects of D(OY ). We claim there is a canonical map

Lh∗RHom(K,L) −→ RHom(Lh∗K,Lh∗L)
in D(OX). Namely, by (42.0.1) proved in Lemma 42.2 such a map is the same thing
as a map

Lh∗RHom(K,L)⊗L Lh∗K −→ Lh∗L

The source of this arrow is Lh∗(Hom(K,L)⊗L K) by Lemma 27.3 hence it suffices
to construct a canonical map

RHom(K,L)⊗L K −→ L.

For this we take the arrow corresponding to
id : RHom(K,L) −→ RHom(K,L)

via (42.0.1).

https://stacks.math.columbia.edu/tag/0FXP
https://stacks.math.columbia.edu/tag/0B69
https://stacks.math.columbia.edu/tag/0G7A
https://stacks.math.columbia.edu/tag/08I3
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Remark 42.14.08I4 Suppose that

X ′
h
//

f ′

��

X

f

��
S′ g // S

is a commutative diagram of ringed spaces. Let K,L be objects of D(OX). We
claim there exists a canonical base change map

Lg∗Rf∗RHom(K,L) −→ R(f ′)∗RHom(Lh∗K,Lh∗L)

in D(OS′). Namely, we take the map adjoint to the composition

L(f ′)∗Lg∗Rf∗RHom(K,L) = Lh∗Lf∗Rf∗RHom(K,L)
→ Lh∗RHom(K,L)
→ RHom(Lh∗K,Lh∗L)

where the first arrow uses the adjunction mapping Lf∗Rf∗ → id and the second
arrow is the canonical map constructed in Remark 42.13.

43. Ext sheaves

0BQP Let (X,OX) be a ringed space. Let K,L ∈ D(OX). Using the construction of
the internal hom in the derived category we obtain a well defined sheaves of OX -
modules

Extn(K,L) = Hn(RHom(K,L))
by taking the nth cohomology sheaf of the object RHom(K,L) of D(OX). We
will sometimes write ExtnOX

(K,L) for this object. By Lemma 42.1 we see that this
Extn-sheaf is the sheafification of the rule

U 7−→ ExtnD(OU )(K|U , L|U )

By Example 29.3 there is always a spectral sequence

Ep,q2 = Hp(X, Extq(K,L))

converging to Extp+q
D(OX )(K,L) in favorable situations (for example if L is bounded

below and K is bounded above).

44. Global derived hom

0B6A Let (X,OX) be a ringed space. Let K,L ∈ D(OX). Using the construction of the
internal hom in the derived category we obtain a well defined object

RHomX(K,L) = RΓ(X,RHom(K,L))

in D(Γ(X,OX)). We will sometimes write RHomOX
(K,L) for this object. By

Lemma 42.1 we have

H0(RHomX(K,L)) = HomD(OX )(K,L), Hp(RHomX(K,L)) = ExtpD(OX )(K,L)

If f : Y → X is a morphism of ringed spaces, then there is a canonical map

RHomX(K,L) −→ RHomY (Lf∗K,Lf∗L)

in D(Γ(X,OX)) by taking global sections of the map defined in Remark 42.13.

https://stacks.math.columbia.edu/tag/08I4
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45. Glueing complexes

0D65 We can glue complexes! More precisely, in certain circumstances we can glue locally
given objects of the derived category to a global object. We first prove some easy
cases and then we’ll prove the very general [BBD82, Theorem 3.2.4] in the setting
of topological spaces and open coverings.

Lemma 45.1.08DG Let (X,OX) be a ringed space. Let X = U ∪V be the union of two
open subspaces of X. Suppose given

(1) an object A of D(OU ),
(2) an object B of D(OV ), and
(3) an isomorphism c : A|U∩V → B|U∩V .

Then there exists an object F of D(OX) and isomorphisms f : F |U → A, g : F |V →
B such that c = g|U∩V ◦ f−1|U∩V . Moreover, given

(1) an object E of D(OX),
(2) a morphism a : A→ E|U of D(OU ),
(3) a morphism b : B → E|V of D(OV ),

such that
a|U∩V = b|U∩V ◦ c.

Then there exists a morphism F → E in D(OX) whose restriction to U is a ◦ f
and whose restriction to V is b ◦ g.

Proof. Denote jU , jV , jU∩V the corresponding open immersions. Choose a distin-
guished triangle

F → RjU,∗A⊕RjV,∗B → RjU∩V,∗(B|U∩V )→ F [1]
where the map RjV,∗B → RjU∩V,∗(B|U∩V ) is the obvious one and where RjU,∗A→
RjU∩V,∗(B|U∩V ) is the composition of RjU,∗A → RjU∩V,∗(A|U∩V ) with RjU∩V,∗c.
Restricting to U we obtain

F |U → A⊕ (RjV,∗B)|U → (RjU∩V,∗(B|U∩V ))|U → F |U [1]
Denote j : U ∩ V → U . Compatibility of restriction to opens and cohomology
shows that both (RjV,∗B)|U and (RjU∩V,∗(B|U∩V ))|U are canonically isomorphic
to Rj∗(B|U∩V ). Hence the second arrow of the last displayed diagram has a section,
and we conclude that the morphism F |U → A is an isomorphism. Similarly, the
morphism F |V → B is an isomorphism. The existence of the morphism F → E
follows from the Mayer-Vietoris sequence for Hom, see Lemma 33.3. □

Lemma 45.2.0D66 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let B
be a basis for the topology on Y .

(1) Assume K is in D(OX) such that for V ∈ B we have Hi(f−1(V ),K) =
0 for i < 0. Then Rf∗K has vanishing cohomology sheaves in negative
degrees, Hi(f−1(V ),K) = 0 for i < 0 for all opens V ⊂ Y , and the rule
V 7→ H0(f−1V,K) is a sheaf on Y .

(2) Assume K,L are in D(OX) such that for V ∈ B we have Exti(K|f−1V , L|f−1V ) =
0 for i < 0. Then Exti(K|f−1V , L|f−1V ) = 0 for i < 0 for all opens V ⊂ Y
and the rule V 7→ Hom(K|f−1V , L|f−1V ) is a sheaf on Y .

Proof. Lemma 32.6 tells us Hi(Rf∗K) is the sheaf associated to the presheaf
V 7→ Hi(f−1(V ),K) = Hi(V,Rf∗K). The assumptions in (1) imply that Rf∗K

https://stacks.math.columbia.edu/tag/08DG
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has vanishing cohomology sheaves in degrees < 0. We conclude that for any open
V ⊂ Y the cohomology group Hi(V,Rf∗K) is zero for i < 0 and is equal to
H0(V,H0(Rf∗K)) for i = 0. This proves (1).

To prove (2) apply (1) to the complex RHom(K,L) using Lemma 42.1 to do the
translation. □

Situation 45.3.0D67 Let (X,OX) be a ringed space. We are given
(1) a collection of opens B of X,
(2) for U ∈ B an object KU in D(OU ),
(3) for V ⊂ U with V,U ∈ B an isomorphism ρUV : KU |V → KV in D(OV ),

such that whenever we have W ⊂ V ⊂ U with U, V,W in B, then ρUW = ρVW ◦ρUV |W .

We won’t be able to prove anything about this without making more assumptions.
An interesting case is where B is a basis for the topology on X. Another is the case
where we have a morphism f : X → Y of topological spaces and the elements of B
are the inverse images of the elements of a basis for the topology of Y .

In Situation 45.3 a solution will be a pair (K, ρU ) where K is an object of D(OX)
and ρU : K|U → KU , U ∈ B are isomorphisms such that we have ρUV ◦ ρU |V = ρV
for all V ⊂ U , U, V ∈ B. In certain cases solutions are unique.

Lemma 45.4.0D68 In Situation 45.3 assume
(1) X =

⋃
U∈B U and for U, V ∈ B we have U ∩ V =

⋃
W∈B,W⊂U∩V W ,

(2) for any U ∈ B we have Exti(KU ,KU ) = 0 for i < 0.
If a solution (K, ρU ) exists, then it is unique up to unique isomorphism and more-
over Exti(K,K) = 0 for i < 0.

Proof. Let (K, ρU ) and (K ′, ρ′
U ) be a pair of solutions. Let f : X → Y be the

continuous map constructed in Topology, Lemma 5.6. Set OY = f∗OX . Then
K,K ′ and B are as in Lemma 45.2 part (2). Hence we obtain the vanishing of
negative exts for K and we see that the rule

V 7−→ Hom(K|f−1V ,K
′|f−1V )

is a sheaf on Y . As both (K, ρU ) and (K ′, ρ′
U ) are solutions the maps

(ρ′
U )−1 ◦ ρU : K|U −→ K ′|U

over U = f−1(f(U)) agree on overlaps. Hence we get a unique global section of
the sheaf above which defines the desired isomorphism K → K ′ compatible with
all structure available. □

Remark 45.5.0D69 With notation and assumptions as in Lemma 45.4. Suppose that
U, V ∈ B. Let B′ be the set of elements of B contained in U ∩ V . Then

({KU ′}U ′∈B′ , {ρU
′

V ′}V ′⊂U ′ with U ′,V ′∈B′)

is a system on the ringed space U ∩ V satisfying the assumptions of Lemma 45.4.
Moreover, both (KU |U∩V , ρ

U
U ′) and (KV |U∩V , ρ

V
U ′) are solutions to this system. By

the lemma we find a unique isomorphism

ρU,V : KU |U∩V −→ KV |U∩V

https://stacks.math.columbia.edu/tag/0D67
https://stacks.math.columbia.edu/tag/0D68
https://stacks.math.columbia.edu/tag/0D69
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such that for every U ′ ⊂ U ∩ V , U ′ ∈ B the diagram

KU |U ′
ρU,V |U′

//

ρU
U′ ##

KV |U ′

ρV
U′{{

KU ′

commutes. Pick a third elementW ∈ B. We obtain isomorphisms ρU,W : KU |U∩W →
KW |U∩W and ρV,W : KU |V ∩W → KW |V ∩W satisfying similar properties to those
of ρU,V . Finally, we have

ρU,W |U∩V ∩W = ρV,W |U∩V ∩W ◦ ρU,V |U∩V ∩W

This is true by the uniqueness in the lemma because both sides of the equality are
the unique isomorphism compatible with the maps ρUU ′′ and ρWU ′′ for U ′′ ⊂ U∩V ∩W ,
U ′′ ∈ B. Some minor details omitted. The collection (KU , ρU,V ) is a descent datum
in the derived category for the open covering U : X =

⋃
U∈B U of X. In this

language we are looking for “effectiveness of the descent datum” when we look for
the existence of a solution.

Lemma 45.6.0D6A In Situation 45.3 assume
(1) X = U1 ∪ . . . ∪ Un with Ui ∈ B,
(2) for U, V ∈ B we have U ∩ V =

⋃
W∈B,W⊂U∩V W ,

(3) for any U ∈ B we have Exti(KU ,KU ) = 0 for i < 0.
Then a solution exists and is unique up to unique isomorphism.

Proof. Uniqueness was seen in Lemma 45.4. We may prove the lemma by induction
on n. The case n = 1 is immediate.
The case n = 2. Consider the isomorphism ρU1,U2 : KU1 |U1∩U2 → KU2 |U1∩U2

constructed in Remark 45.5. By Lemma 45.1 we obtain an object K in D(OX) and
isomorphisms ρU1 : K|U1 → KU1 and ρU2 : K|U2 → KU2 compatible with ρU1,U2 .
Take U ∈ B. We will construct an isomorphism ρU : K|U → KU and we will leave
it to the reader to verify that (K, ρU ) is a solution. Consider the set B′ of elements
of B contained in either U ∩U1 or contained in U ∩U2. Then (KU , ρ

U
U ′) is a solution

for the system ({KU ′}U ′∈B′ , {ρU ′

V ′}V ′⊂U ′ with U ′,V ′∈B′) on the ringed space U . We
claim that (K|U , τU ′) is another solution where τU ′ for U ′ ∈ B′ is chosen as follows:
if U ′ ⊂ U1 then we take the composition

K|U ′
ρU1 |U′
−−−−→ KU1 |U ′

ρ
U1
U′−−→ KU ′

and if U ′ ⊂ U2 then we take the composition

K|U ′
ρU2 |U′
−−−−→ KU2 |U ′

ρ
U2
U′−−→ KU ′ .

To verify this is a solution use the property of the map ρU1,U2 described in Remark
45.5 and the compatibility of ρU1 and ρU2 with ρU1,U2 . Having said this we apply
Lemma 45.4 to see that we obtain a unique isomorphism K|U ′ → KU ′ compatible
with the maps τU ′ and ρUU ′ for U ′ ∈ B′.
The case n > 2. Consider the open subspace X ′ = U1∪ . . .∪Un−1 and let B′ be the
set of elements of B contained inX ′. Then we find a system ({KU}U∈B′ , {ρUV }U,V ∈B′)
on the ringed space X ′ to which we may apply our induction hypothesis. We find
a solution (KX′ , ρX

′

U ). Then we can consider the collection B∗ = B ∪{X ′} of opens

https://stacks.math.columbia.edu/tag/0D6A
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of X and we see that we obtain a system ({KU}U∈B∗ , {ρUV }V⊂U with U,V ∈B∗). Note
that this new system also satisfies condition (3) by Lemma 45.4 applied to the so-
lution KX′ . For this system we have X = X ′ ∪ Un. This reduces us to the case
n = 2 we worked out above. □

Lemma 45.7.0D6B Let X be a ringed space. Let E be a well ordered set and let

X =
⋃

α∈E
Wα

be an open covering with Wα ⊂Wα+1 and Wα =
⋃
β<αWβ if α is not a successor.

Let Kα be an object of D(OWα) with Exti(Kα,Kα) = 0 for i < 0. Assume given
isomorphisms ραβ : Kα|Wβ

→ Kβ in D(OWβ
) for all β < α with ραγ = ρβγ ◦ ραβ |Wγ

for γ < β < α. Then there exists an object K in D(OX) and isomorphisms
K|Wα → Kα for α ∈ E compatible with the isomorphisms ραβ .

Proof. In this proof α, β, γ, . . . represent elements of E. Choose a K-injective
complex I•

α on Wα representing Kα. For β < α denote jβ,α : Wβ → Wα the
inclusion morphism. Using transfinite recursion we will construct for all β < α a
map of complexes

τβ,α : (jβ,α)!I
•
β −→ I•

α

representing the adjoint to the inverse of the isomorphism ραβ : Kα|Wβ
→ Kβ .

Moreover, we will do this in such that for γ < β < α we have
τγ,α = τβ,α ◦ (jβ,α)!τγ,β

as maps of complexes. Namely, suppose already given τγ,β composing correctly for
all γ < β < α. If α = α′ + 1 is a successor, then we choose any map of complexes

(jα′,α)!I
•
α′ → I•

α

which is adjoint to the inverse of the isomorphism ραα′ : Kα|Wα′ → Kα′ (possible
because I•

α is K-injective) and for any β < α′ we set
τβ,α = τα′,α ◦ (jα′,α)!τβ,α′

If α is not a successor, then we can consider the complex on Wα given by
C• = colimβ<α(jβ,α)!I

•
β

(termwise colimit) where the transition maps of the sequence are given by the maps
τβ′,β for β′ < β < α. We claim that C• represents Kα. Namely, for β < α the
restriction of the coprojection (jβ,α)!I

•
β → C• gives a map

σβ : I•
β −→ C•|Wβ

which is a quasi-isomorphism: if x ∈Wβ then looking at stalks we get
(C•)x = colimβ′<α

(
(jβ′,α)!I

•
β′

)
x

= colimβ≤β′<α(I•
β′)x ←− (I•

β)x
which is a quasi-isomorphism. Here we used that taking stalks commutes with
colimits, that filtered colimits are exact, and that the maps (I•

β)x → (I•
β′)x are

quasi-isomorphisms for β ≤ β′ < α. Hence (C•, σ−1
β ) is a solution to the system

({Kβ}β<α, {ρββ′}β′<β<α). Since (Kα, ρ
α
β) is another solution we obtain a unique

isomorphism σ : Kα → C• in D(OWα) compatible with all our maps, see Lemma
45.6 (this is where we use the vanishing of negative ext groups). Choose a morphism
τ : C• → I•

α of complexes representing σ. Then we set
τβ,α = τ |Wβ

◦ σβ

https://stacks.math.columbia.edu/tag/0D6B
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to get the desired maps. Finally, we take K to be the object of the derived category
represented by the complex

K• = colimα∈E(Wα → X)!I
•
α

where the transition maps are given by our carefully constructed maps τβ,α for
β < α. Arguing exactly as above we see that for all α the restriction of the
coprojection determines an isomorphism

K|Wα −→ Kα

compatible with the given maps ραβ . □

Using transfinite induction we can prove the result in the general case.

Theorem 45.8 (BBD gluing lemma).0D6C Special case of
[BBD82, Theorem
3.2.4] without
boundedness
assumption.

In Situation 45.3 assume
(1) X =

⋃
U∈B U ,

(2) for U, V ∈ B we have U ∩ V =
⋃
W∈B,W⊂U∩V W ,

(3) for any U ∈ B we have Exti(KU ,KU ) = 0 for i < 0.
Then there exists an object K of D(OX) and isomorphisms ρU : K|U → KU in
D(OU ) for U ∈ B such that ρUV ◦ρU |V = ρV for all V ⊂ U with U, V ∈ B. The pair
(K, ρU ) is unique up to unique isomorphism.

Proof. A pair (K, ρU ) is called a solution in the text above. The uniqueness follows
from Lemma 45.4. If X has a finite covering by elements of B (for example if X is
quasi-compact), then the theorem is a consequence of Lemma 45.6. In the general
case we argue in exactly the same manner, using transfinite induction and Lemma
45.7.
First we use transfinite recursion to choose opens Wα ⊂ X for any ordinal α.
Namely, we set W0 = ∅. If α = β + 1 is a successor, then either Wβ = X and we
set Wα = X or Wβ ̸= X and we set Wα = Wβ ∪Uα where Uα ∈ B is not contained
in Wβ . If α is a limit ordinal we set Wα =

⋃
β<αWβ . Then for large enough α we

have Wα = X. Observe that for every α the open Wα is a union of elements of B.
Hence if Bα = {U ∈ B, U ⊂Wα}, then

Sα = ({KU}U∈Bα
, {ρUV }V⊂U with U,V ∈Bα

)
is a system as in Lemma 45.4 on the ringed space Wα.
We will show by transfinite induction that for every α the system Sα has a solution.
This will prove the theorem as this system is the system given in the theorem for
large α.
The case where α = β + 1 is a successor ordinal. (This case was already treated
in the proof of the lemma above but for clarity we repeat the argument.) Recall
that Wα = Wβ ∪ Uα for some Uα ∈ B in this case. By induction hypothesis
we have a solution (KWβ

, {ρWβ

U }U∈Bβ
) for the system Sβ . Then we can consider

the collection B∗
α = Bα ∪ {Wβ} of opens of Wα and we see that we obtain a

system ({KU}U∈B∗
α
, {ρUV }V⊂U with U,V ∈B∗

α
). Note that this new system also satisfies

condition (3) by Lemma 45.4 applied to the solution KWβ
. For this system we have

Wα = Wβ ∪ Uα. This reduces us to the case handled in Lemma 45.6.
The case where α is a limit ordinal. Recall that Wα =

⋃
β<αWβ in this case.

For β < α let (KWβ
, {ρWβ

U }U∈Bβ
) be the solution for Sβ . For γ < β < α the

https://stacks.math.columbia.edu/tag/0D6C
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restriction KWβ
|Wγ endowed with the maps ρWβ

U , U ∈ Bγ is a solution for Sγ . By
uniqueness we get unique isomorphisms ρWβ

Wγ
: KWβ

|Wγ → KWγ compatible with
the maps ρWβ

U and ρ
Wγ

U for U ∈ Bγ . These maps compose in the correct manner,
i.e., ρWγ

Wδ
◦ ρWβ

Wγ
|Wδ

= ρWδ

Wβ
for δ < γ < β < α. Thus we may apply Lemma 45.7

(note that the vanishing of negative exts is true for KWβ
by Lemma 45.4 applied

to the solution KWβ
) to obtain KWα

and isomorphisms

ρWα

Wβ
: KWα |Wβ

−→ KWβ

compatible with the maps ρWβ

Wγ
for γ < β < α.

To show that KWα
is a solution we still need to construct the isomorphisms ρWα

U :
KWα |U → KU for U ∈ Bα satisfying certain compatibilities. We choose ρWα

U to be
the unique map such that for any β < α and any V ∈ Bβ with V ⊂ U the diagram

KWα
|V

ρWα
U

|V

//

ρWα
Wβ

|V

��

KU |V

ρV
U

��
KWβ

ρ
Wβ
V // KV

commutes. This makes sense because
({KV }V⊂U,V ∈Bβ for some β<α, {ρV

′

V }V⊂V ′ with V,V ′⊂U and V,V ′∈Bβ for some β<α)

is a system as in Lemma 45.4 on the ringed space U and because (KU , ρ
U
V ) and

(KWα
|U , ρ

Wβ

V ◦ ρWα

Wβ
|V ) are both solutions for this system. This gives existence and

uniqueness. We omit the proof that these maps satisfy the desired compatibilities
(it is just bookkeeping). □

46. Strictly perfect complexes

08C3 Strictly perfect complexes of modules are used to define the notions of pseudo-
coherent and perfect complexes later on. They are defined as follows.

Definition 46.1.08C4 Let (X,OX) be a ringed space. Let E• be a complex of OX -
modules. We say E• is strictly perfect if E i is zero for all but finitely many i and E i
is a direct summand of a finite free OX -module for all i.

Warning: Since we do not assume that X is a locally ringed space, it may not be
true that a direct summand of a finite free OX -module is finite locally free.

Lemma 46.2.08C5 The cone on a morphism of strictly perfect complexes is strictly
perfect.

Proof. This is immediate from the definitions. □

Lemma 46.3.09J2 The total complex associated to the tensor product of two strictly
perfect complexes is strictly perfect.

Proof. Omitted. □

Lemma 46.4.09U6 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. If F•

is a strictly perfect complex of OY -modules, then f∗F• is a strictly perfect complex
of OX-modules.

https://stacks.math.columbia.edu/tag/08C4
https://stacks.math.columbia.edu/tag/08C5
https://stacks.math.columbia.edu/tag/09J2
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Proof. The pullback of a finite free module is finite free. The functor f∗ is additive
functor hence preserves direct summands. The lemma follows. □

Lemma 46.5.08C6 Let (X,OX) be a ringed space. Given a solid diagram of OX-
modules

E

��

// F

G

p

OO

with E a direct summand of a finite free OX-module and p surjective, then a dotted
arrow making the diagram commute exists locally on X.

Proof. We may assume E = O⊕n
X for some n. In this case finding the dotted arrow

is equivalent to lifting the images of the basis elements in Γ(X,F). This is locally
possible by the characterization of surjective maps of sheaves (Sheaves, Section
16). □

Lemma 46.6.08C7 Let (X,OX) be a ringed space.
(1) Let α : E• → F• be a morphism of complexes of OX-modules with E•

strictly perfect and F• acyclic. Then α is locally on X homotopic to zero.
(2) Let α : E• → F• be a morphism of complexes of OX-modules with E•

strictly perfect, E i = 0 for i < a, and Hi(F•) = 0 for i ≥ a. Then α is
locally on X homotopic to zero.

Proof. The first statement follows from the second, hence we only prove (2). We
will prove this by induction on the length of the complex E•. If E• ∼= E [−n] for
some direct summand E of a finite free OX -module and integer n ≥ a, then the
result follows from Lemma 46.5 and the fact that Fn−1 → Ker(Fn → Fn+1) is
surjective by the assumed vanishing of Hn(F•). If E i is zero except for i ∈ [a, b],
then we have a split exact sequence of complexes

0→ Eb[−b]→ E• → σ≤b−1E• → 0

which determines a distinguished triangle in K(OX). Hence an exact sequence

HomK(OX )(σ≤b−1E•,F•)→ HomK(OX )(E•,F•)→ HomK(OX )(Eb[−b],F•)

by the axioms of triangulated categories. The composition Eb[−b] → F• is locally
homotopic to zero, whence we may assume our map comes from an element in the
left hand side of the displayed exact sequence above. This element is locally zero
by induction hypothesis. □

Lemma 46.7.08C8 Let (X,OX) be a ringed space. Given a solid diagram of complexes
of OX-modules

E•

!!

α
// F•

G•

f

OO

with E• strictly perfect, Ej = 0 for j < a and Hj(f) an isomorphism for j > a
and surjective for j = a, then a dotted arrow making the diagram commute up to
homotopy exists locally on X.

https://stacks.math.columbia.edu/tag/08C6
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Proof. Our assumptions on f imply the cone C(f)• has vanishing cohomology
sheaves in degrees ≥ a. Hence Lemma 46.6 guarantees there is an open covering
X =

⋃
Ui such that the composition E• → F• → C(f)• is homotopic to zero over

Ui. Since
G• → F• → C(f)• → G•[1]

restricts to a distinguished triangle in K(OUi
) we see that we can lift α|Ui

up to
homotopy to a map αi : E•|Ui

→ G•|Ui
as desired. □

Lemma 46.8.08C9 Let (X,OX) be a ringed space. Let E•, F• be complexes of OX-
modules with E• strictly perfect.

(1) For any element α ∈ HomD(OX )(E•,F•) there exists an open covering X =⋃
Ui such that α|Ui is given by a morphism of complexes αi : E•|Ui → F•|Ui .

(2) Given a morphism of complexes α : E• → F• whose image in the group
HomD(OX )(E•,F•) is zero, there exists an open covering X =

⋃
Ui such

that α|Ui is homotopic to zero.

Proof. Proof of (1). By the construction of the derived category we can find a
quasi-isomorphism f : F• → G• and a map of complexes β : E• → G• such that
α = f−1β. Thus the result follows from Lemma 46.7. We omit the proof of (2). □

Lemma 46.9.08DM Let (X,OX) be a ringed space. Let E•, F• be complexes of OX-
modules with E• strictly perfect. Then the internal hom RHom(E•,F•) is repre-
sented by the complex H• with terms

Hn =
⊕

n=p+q
HomOX

(E−q,Fp)

and differential as described in Section 41.

Proof. Choose a quasi-isomorphism F• → I• into a K-injective complex. Let
(H′)• be the complex with terms

(H′)n =
∏

n=p+q
HomOX

(E−q, Ip)

which represents RHom(E•,F•) by the construction in Section 42. It suffices to
show that the map

H• −→ (H′)•

is a quasi-isomorphism. Given an open U ⊂ X we have by inspection
H0(H•(U)) = HomK(OU )(E•|U ,K•|U )→ H0((H′)•(U)) = HomD(OU )(E•|U ,K•|U )

By Lemma 46.8 the sheafification of U 7→ H0(H•(U)) is equal to the sheafification
of U 7→ H0((H′)•(U)). A similar argument can be given for the other cohomology
sheaves. Thus H• is quasi-isomorphic to (H′)• which proves the lemma. □

Lemma 46.10.0GM5 In the situation of Lemma 46.9 if F• is K-flat, then H• is K-flat.

Proof. Observe thatH• is simply the hom complexHom•(E•,F•) since the bound-
edness of the strictly prefect complex E• insures that the products in the definition
of the hom complex turn into direct sums. Let K• be an acyclic complex of OX -
modules. Consider the map

γ : Tot(K• ⊗Hom•(E•,F•)) −→ Hom•(E•,Tot(K• ⊗F•))
of Lemma 41.3. Since F• is K-flat, the complex Tot(K•⊗F•) is acyclic, and hence
by Lemma 46.8 (or Lemma 46.9 if you like) the target of γ is acyclic too. Hence to

https://stacks.math.columbia.edu/tag/08C9
https://stacks.math.columbia.edu/tag/08DM
https://stacks.math.columbia.edu/tag/0GM5


COHOMOLOGY OF SHEAVES 110

prove the lemma it suffices to show that γ is an isomorphism of complexes. To see
this, we may argue by induction on the length of the complex E•. If the length is
≤ 1 then the E• is a direct summand of O⊕n

X [k] for some n ≥ 0 and k ∈ Z and in
this case the result follows by inspection. If the length is > 1, then we reduce to
smaller length by considering the termwise split short exact sequence of complexes

0→ σ≥a+1E• → E• → σ≤aE• → 0

for a suitable a ∈ Z, see Homology, Section 15. Then γ fits into a morphism of
termwise split short exact sequences of complexes. By induction γ is an isomor-
phism for σ≥a+1E• and σ≤aE• and hence the result for E• follows. Some details
omitted. □

Lemma 46.11.08I5 Let (X,OX) be a ringed space. Let E•, F• be complexes of OX-
modules with

(1) Fn = 0 for n≪ 0,
(2) En = 0 for n≫ 0, and
(3) En isomorphic to a direct summand of a finite free OX-module.

Then the internal hom RHom(E•,F•) is represented by the complex H• with terms

Hn =
⊕

n=p+q
HomOX

(E−q,Fp)

and differential as described in Section 42.

Proof. Choose a quasi-isomorphism F• → I• where I• is a bounded below com-
plex of injectives. Note that I• is K-injective (Derived Categories, Lemma 31.4).
Hence the construction in Section 42 shows that RHom(E•,F•) is represented by
the complex (H′)• with terms

(H′)n =
∏

n=p+q
HomOX

(E−q, Ip) =
⊕

n=p+q
HomOX

(E−q, Ip)

(equality because there are only finitely many nonzero terms). Note that H• is the
total complex associated to the double complex with terms HomOX

(E−q,Fp) and
similarly for (H′)•. The natural map (H′)• → H• comes from a map of double
complexes. Thus to show this map is a quasi-isomorphism, we may use the spectral
sequence of a double complex (Homology, Lemma 25.3)

′Ep,q1 = Hp(HomOX
(E−q,F•))

converging to Hp+q(H•) and similarly for (H′)•. To finish the proof of the lemma
it suffices to show that F• → I• induces an isomorphism

Hp(HomOX
(E ,F•)) −→ Hp(HomOX

(E , I•))

on cohomology sheaves whenever E is a direct summand of a finite free OX -module.
Since this is clear when E is finite free the result follows. □

47. Pseudo-coherent modules

08CA In this section we discuss pseudo-coherent complexes.

Definition 47.1.08CB Let (X,OX) be a ringed space. Let E• be a complex of OX -
modules. Let m ∈ Z.

https://stacks.math.columbia.edu/tag/08I5
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(1) We say E• is m-pseudo-coherent if there exists an open covering X =
⋃
Ui

and for each i a morphism of complexes αi : E•
i → E•|Ui where Ei is strictly

perfect on Ui and Hj(αi) is an isomorphism for j > m and Hm(αi) is
surjective.

(2) We say E• is pseudo-coherent if it is m-pseudo-coherent for all m.
(3) We say an object E of D(OX) is m-pseudo-coherent (resp. pseudo-coherent)

if and only if it can be represented by a m-pseudo-coherent (resp. pseudo-
coherent) complex of OX -modules.

If X is quasi-compact, then an m-pseudo-coherent object of D(OX) is in D−(OX).
But this need not be the case if X is not quasi-compact.

Lemma 47.2.08CC Let (X,OX) be a ringed space. Let E be an object of D(OX).
(1) If there exists an open covering X =

⋃
Ui, strictly perfect complexes E•

i on
Ui, and maps αi : E•

i → E|Ui
in D(OUi

) with Hj(αi) an isomorphism for
j > m and Hm(αi) surjective, then E is m-pseudo-coherent.

(2) If E is m-pseudo-coherent, then any complex representing E is m-pseudo-
coherent.

Proof. Let F• be any complex representing E and let X =
⋃
Ui and αi : E•

i →
E|Ui

be as in (1). We will show that F• is m-pseudo-coherent as a complex, which
will prove (1) and (2) simultaneously. By Lemma 46.8 we can after refining the open
covering X =

⋃
Ui represent the maps αi by maps of complexes αi : E•

i → F•|Ui
.

By assumption Hj(αi) are isomorphisms for j > m, and Hm(αi) is surjective
whence F• is m-pseudo-coherent. □

Lemma 47.3.09U7 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let
E be an object of D(OY ). If E is m-pseudo-coherent, then Lf∗E is m-pseudo-
coherent.

Proof. Represent E by a complex E• of OY -modules and choose an open covering
Y =

⋃
Vi and αi : E•

i → E•|Vi
as in Definition 47.1. Set Ui = f−1(Vi). By Lemma

47.2 it suffices to show that Lf∗E•|Ui
is m-pseudo-coherent. Choose a distinguished

triangle
E•
i → E•|Vi → C → E•

i [1]
The assumption on αi means exactly that the cohomology sheaves Hj(C) are zero
for all j ≥ m. Denote fi : Ui → Vi the restriction of f . Note that Lf∗E•|Ui

=
Lf∗

i (E|Vi
). Applying Lf∗

i we obtain the distinguished triangle

Lf∗
i E•

i → Lf∗
i E|Vi → Lf∗

i C → Lf∗
i E•

i [1]

By the construction of Lf∗
i as a left derived functor we see that Hj(Lf∗

i C) = 0
for j ≥ m (by the dual of Derived Categories, Lemma 16.1). Hence Hj(Lf∗

i αi)
is an isomorphism for j > m and Hm(Lf∗αi) is surjective. On the other hand,
Lf∗

i E•
i = f∗

i E•
i . is strictly perfect by Lemma 46.4. Thus we conclude. □

Lemma 47.4.08CD Let (X,OX) be a ringed space and m ∈ Z. Let (K,L,M, f, g, h) be
a distinguished triangle in D(OX).

(1) If K is (m + 1)-pseudo-coherent and L is m-pseudo-coherent then M is
m-pseudo-coherent.

(2) If K and M are m-pseudo-coherent, then L is m-pseudo-coherent.
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(3) If L is (m + 1)-pseudo-coherent and M is m-pseudo-coherent, then K is
(m+ 1)-pseudo-coherent.

Proof. Proof of (1). Choose an open covering X =
⋃
Ui and maps αi : K•

i → K|Ui

in D(OUi
) with K•

i strictly perfect and Hj(αi) isomorphisms for j > m + 1 and
surjective for j = m + 1. We may replace K•

i by σ≥m+1K•
i and hence we may

assume that Kji = 0 for j < m+ 1. After refining the open covering we may choose
maps βi : L•

i → L|Ui
in D(OUi

) with L•
i strictly perfect such that Hj(β) is an

isomorphism for j > m and surjective for j = m. By Lemma 46.7 we can, after
refining the covering, find maps of complexes γi : K• → L• such that the diagrams

K|Ui
// L|Ui

K•
i

αi

OO

γi // L•
i

βi

OO

are commutative in D(OUi
) (this requires representing the maps αi, βi and K|Ui

→
L|Ui

by actual maps of complexes; some details omitted). The cone C(γi)• is strictly
perfect (Lemma 46.2). The commutativity of the diagram implies that there exists
a morphism of distinguished triangles

(K•
i ,L•

i , C(γi)•) −→ (K|Ui
, L|Ui

,M |Ui
).

It follows from the induced map on long exact cohomology sequences and Homology,
Lemmas 5.19 and 5.20 that C(γi)• →M |Ui

induces an isomorphism on cohomology
in degrees > m and a surjection in degree m. Hence M is m-pseudo-coherent by
Lemma 47.2.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. □

Lemma 47.5.09J3 Let (X,OX) be a ringed space. Let K,L be objects of D(OX).
(1) If K is n-pseudo-coherent and Hi(K) = 0 for i > a and L is m-pseudo-

coherent and Hj(L) = 0 for j > b, then K⊗L
OX

L is t-pseudo-coherent with
t = max(m+ a, n+ b).

(2) If K and L are pseudo-coherent, then K ⊗L
OX

L is pseudo-coherent.

Proof. Proof of (1). By replacing X by the members of an open covering we may
assume there exist strictly perfect complexes K• and L• and maps α : K• → K and
β : L• → L with Hi(α) and isomorphism for i > n and surjective for i = n and
with Hi(β) and isomorphism for i > m and surjective for i = m. Then the map

α⊗L β : Tot(K• ⊗OX
L•)→ K ⊗L

OX
L

induces isomorphisms on cohomology sheaves in degree i for i > t and a surjection
for i = t. This follows from the spectral sequence of tors (details omitted).

Proof of (2). We may first replace X by the members of an open covering to
reduce to the case that K and L are bounded above. Then the statement follows
immediately from case (1). □

Lemma 47.6.08CE Let (X,OX) be a ringed space. Let m ∈ Z. If K ⊕L is m-pseudo-
coherent (resp. pseudo-coherent) in D(OX) so are K and L.

https://stacks.math.columbia.edu/tag/09J3
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Proof. Assume that K ⊕L is m-pseudo-coherent. After replacing X by the mem-
bers of an open covering we may assume K ⊕ L ∈ D−(OX), hence L ∈ D−(OX).
Note that there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0)⊕ (L,L,L⊕ L[1])

see Derived Categories, Lemma 4.10. By Lemma 47.4 we see that L ⊕ L[1] is
m-pseudo-coherent. Hence also L[1] ⊕ L[2] is m-pseudo-coherent. By induction
L[n]⊕L[n+ 1] is m-pseudo-coherent. Since L is bounded above we see that L[n] is
m-pseudo-coherent for large n. Hence working backwards, using the distinguished
triangles

(L[n], L[n]⊕ L[n− 1], L[n− 1])
we conclude that L[n− 1], L[n− 2], . . . , L are m-pseudo-coherent as desired. □

Lemma 47.7.09V7 Let (X,OX) be a ringed space. Let m ∈ Z. Let F• be a (locally)
bounded above complex of OX-modules such that F i is (m− i)-pseudo-coherent for
all i. Then F• is m-pseudo-coherent.

Proof. Omitted. Hint: use Lemma 47.4 and truncations as in the proof of More
on Algebra, Lemma 64.9. □

Lemma 47.8.09V8 Let (X,OX) be a ringed space. Let m ∈ Z. Let E be an object of
D(OX). If E is (locally) bounded above and Hi(E) is (m− i)-pseudo-coherent for
all i, then E is m-pseudo-coherent.

Proof. Omitted. Hint: use Lemma 47.4 and truncations as in the proof of More
on Algebra, Lemma 64.10. □

Lemma 47.9.08DN Let (X,OX) be a ringed space. Let K be an object of D(OX). Let
m ∈ Z.

(1) If K is m-pseudo-coherent and Hi(K) = 0 for i > m, then Hm(K) is a
finite type OX-module.

(2) If K is m-pseudo-coherent and Hi(K) = 0 for i > m + 1, then Hm+1(K)
is a finitely presented OX-module.

Proof. Proof of (1). We may work locally on X. Hence we may assume there exists
a strictly perfect complex E• and a map α : E• → K which induces an isomorphism
on cohomology in degrees > m and a surjection in degree m. It suffices to prove
the result for E•. Let n be the largest integer such that En ̸= 0. If n = m, then
Hm(E•) is a quotient of En and the result is clear. If n > m, then En−1 → En
is surjective as Hn(E•) = 0. By Lemma 46.5 we can locally find a section of this
surjection and write En−1 = E ′ ⊕ En. Hence it suffices to prove the result for the
complex (E ′)• which is the same as E• except has E ′ in degree n−1 and 0 in degree
n. We win by induction on n.

Proof of (2). We may work locally on X. Hence we may assume there exists a
strictly perfect complex E• and a map α : E• → K which induces an isomorphism
on cohomology in degrees > m and a surjection in degree m. As in the proof
of (1) we can reduce to the case that E i = 0 for i > m + 1. Then we see that
Hm+1(K) ∼= Hm+1(E•) = Coker(Em → Em+1) which is of finite presentation. □

Lemma 47.10.09V9 Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
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(1) F viewed as an object of D(OX) is 0-pseudo-coherent if and only if F is a
finite type OX-module, and

(2) F viewed as an object of D(OX) is (−1)-pseudo-coherent if and only if F
is an OX-module of finite presentation.

Proof. Use Lemma 47.9 to prove the implications in one direction and Lemma
47.8 for the other. □

48. Tor dimension

08CF In this section we take a closer look at resolutions by flat modules.

Definition 48.1.08CG Let (X,OX) be a ringed space. Let E be an object of D(OX).
Let a, b ∈ Z with a ≤ b.

(1) We say E has tor-amplitude in [a, b] if Hi(E⊗L
OX
F) = 0 for all OX -modules

F and all i ̸∈ [a, b].
(2) We say E has finite tor dimension if it has tor-amplitude in [a, b] for some

a, b.
(3) We say E locally has finite tor dimension if there exists an open covering

X =
⋃
Ui such that E|Ui

has finite tor dimension for all i.
An OX -module F has tor dimension ≤ d if F [0] viewed as an object of D(OX) has
tor-amplitude in [−d, 0].

Note that if E as in the definition has finite tor dimension, then E is an object of
Db(OX) as can be seen by taking F = OX in the definition above.

Lemma 48.2.08CH Let (X,OX) be a ringed space. Let E• be a bounded above complex
of flat OX-modules with tor-amplitude in [a, b]. Then Coker(da−1

E• ) is a flat OX-
module.

Proof. As E• is a bounded above complex of flat modules we see that E•⊗OX
F =

E• ⊗L
OX
F for any OX -module F . Hence for every OX -module F the sequence

Ea−2 ⊗OX
F → Ea−1 ⊗OX

F → Ea ⊗OX
F

is exact in the middle. Since Ea−2 → Ea−1 → Ea → Coker(da−1) → 0 is a flat
resolution this implies that TorOX

1 (Coker(da−1),F) = 0 for all OX -modules F .
This means that Coker(da−1) is flat, see Lemma 26.16. □

Lemma 48.3.08CI Let (X,OX) be a ringed space. Let E be an object of D(OX). Let
a, b ∈ Z with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) E is represented by a complex E• of flat OX-modules with E i = 0 for i ̸∈

[a, b].

Proof. If (2) holds, then we may compute E ⊗L
OX
F = E• ⊗OX

F and it is clear
that (1) holds.
Assume that (1) holds. We may represent E by a bounded above complex of flat
OX -modules K•, see Section 26. Let n be the largest integer such that Kn ̸= 0. If
n > b, then Kn−1 → Kn is surjective as Hn(K•) = 0. As Kn is flat we see that
Ker(Kn−1 → Kn) is flat (Modules, Lemma 17.8). Hence we may replace K• by
τ≤n−1K•. Thus, by induction on n, we reduce to the case that K• is a complex of
flat OX -modules with Ki = 0 for i > b.
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Set E• = τ≥aK•. Everything is clear except that Ea is flat which follows immediately
from Lemma 48.2 and the definitions. □

Lemma 48.4.09U8 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let
E be an object of D(OY ). If E has tor amplitude in [a, b], then Lf∗E has tor
amplitude in [a, b].

Proof. Assume E has tor amplitude in [a, b]. By Lemma 48.3 we can represent
E by a complex of E• of flat O-modules with E i = 0 for i ̸∈ [a, b]. Then Lf∗E is
represented by f∗E•. By Modules, Lemma 20.2 the modules f∗E i are flat. Thus
by Lemma 48.3 we conclude that Lf∗E has tor amplitude in [a, b]. □

Lemma 48.5.09U9 Let (X,OX) be a ringed space. Let E be an object of D(OX). Let
a, b ∈ Z with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) for every x ∈ X the object Ex of D(OX,x) has tor-amplitude in [a, b].

Proof. Taking stalks at x is the same thing as pulling back by the morphism
of ringed spaces (x,OX,x) → (X,OX). Hence the implication (1) ⇒ (2) follows
from Lemma 48.4. For the converse, note that taking stalks commutes with tensor
products (Modules, Lemma 16.1). Hence

(E ⊗L
OX
F)x = Ex ⊗L

OX,x
Fx

On the other hand, taking stalks is exact, so

Hi(E ⊗L
OX
F)x = Hi((E ⊗L

OX
F)x) = Hi(Ex ⊗L

OX,x
Fx)

and we can check whether Hi(E⊗L
OX
F) is zero by checking whether all of its stalks

are zero (Modules, Lemma 3.1). Thus (2) implies (1). □

Lemma 48.6.08CJ Let (X,OX) be a ringed space. Let (K,L,M, f, g, h) be a distin-
guished triangle in D(OX). Let a, b ∈ Z.

(1) If K has tor-amplitude in [a + 1, b + 1] and L has tor-amplitude in [a, b]
then M has tor-amplitude in [a, b].

(2) If K and M have tor-amplitude in [a, b], then L has tor-amplitude in [a, b].
(3) If L has tor-amplitude in [a + 1, b + 1] and M has tor-amplitude in [a, b],

then K has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that −⊗L

OX
F preserves distin-

guished triangles. The easiest one to prove is (2) and the others follow from it by
translation. □

Lemma 48.7.09J4 Let (X,OX) be a ringed space. Let K,L be objects of D(OX). If
K has tor-amplitude in [a, b] and L has tor-amplitude in [c, d] then K ⊗L

OX
L has

tor amplitude in [a+ c, b+ d].

Proof. Omitted. Hint: use the spectral sequence for tors. □

Lemma 48.8.08CK Let (X,OX) be a ringed space. Let a, b ∈ Z. For K, L objects of
D(OX) if K ⊕ L has tor amplitude in [a, b] so do K and L.

Proof. Clear from the fact that the Tor functors are additive. □
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49. Perfect complexes

08CL In this section we discuss properties of perfect complexes on ringed spaces.

Definition 49.1.08CM Let (X,OX) be a ringed space. Let E• be a complex of OX -
modules. We say E• is perfect if there exists an open covering X =

⋃
Ui such

that for each i there exists a morphism of complexes E•
i → E•|Ui

which is a quasi-
isomorphism with E•

i a strictly perfect complex of OUi
-modules. An object E of

D(OX) is perfect if it can be represented by a perfect complex of OX -modules.

Lemma 49.2.08CN Let (X,OX) be a ringed space. Let E be an object of D(OX).
(1) If there exists an open covering X =

⋃
Ui and strictly perfect complexes E•

i

on Ui such that E•
i represents E|Ui

in D(OUi
), then E is perfect.

(2) If E is perfect, then any complex representing E is perfect.

Proof. Identical to the proof of Lemma 47.2. □

Lemma 49.3.0BCJ Let (X,OX) be a ringed space. Let E be an object of D(OX).
Assume that all stalks OX,x are local rings. Then the following are equivalent

(1) E is perfect,
(2) there exists an open covering X =

⋃
Ui such that E|Ui

can be represented
by a finite complex of finite locally free OUi

-modules, and
(3) there exists an open covering X =

⋃
Ui such that E|Ui

can be represented
by a finite complex of finite free OUi-modules.

Proof. This follows from Lemma 49.2 and the fact that onX every direct summand
of a finite free module is finite locally free. See Modules, Lemma 14.6. □

Lemma 49.4.08CP Let (X,OX) be a ringed space. Let E be an object of D(OX). Let
a ≤ b be integers. If E has tor amplitude in [a, b] and is (a − 1)-pseudo-coherent,
then E is perfect.

Proof. After replacing X by the members of an open covering we may assume
there exists a strictly perfect complex E• and a map α : E• → E such that Hi(α)
is an isomorphism for i ≥ a. We may and do replace E• by σ≥a−1E•. Choose a
distinguished triangle

E• → E → C → E•[1]
From the vanishing of cohomology sheaves of E and E• and the assumption on
α we obtain C ∼= K[a − 2] with K = Ker(Ea−1 → Ea). Let F be an OX -module.
Applying −⊗L

OX
F the assumption that E has tor amplitude in [a, b] implies K⊗OX

F → Ea−1 ⊗OX
F has image Ker(Ea−1 ⊗OX

F → Ea ⊗OX
F). It follows that

TorOX
1 (E ′,F) = 0 where E ′ = Coker(Ea−1 → Ea). Hence E ′ is flat (Lemma 26.16).

Thus E ′ is locally a direct summand of a finite free module by Modules, Lemma
18.3. Thus locally the complex

E ′ → Ea−1 → . . .→ Eb

is quasi-isomorphic to E and E is perfect. □

Lemma 49.5.08CQ Let (X,OX) be a ringed space. Let E be an object of D(OX). The
following are equivalent

(1) E is perfect, and
(2) E is pseudo-coherent and locally has finite tor dimension.
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Proof. Assume (1). By definition this means there exists an open covering X =⋃
Ui such that E|Ui is represented by a strictly perfect complex. Thus E is pseudo-

coherent (i.e., m-pseudo-coherent for all m) by Lemma 47.2. Moreover, a direct
summand of a finite free module is flat, hence E|Ui

has finite Tor dimension by
Lemma 48.3. Thus (2) holds.

Assume (2). After replacing X by the members of an open covering we may assume
there exist integers a ≤ b such that E has tor amplitude in [a, b]. Since E is m-
pseudo-coherent for all m we conclude using Lemma 49.4. □

Lemma 49.6.09UA Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let E
be an object of D(OY ). If E is perfect in D(OY ), then Lf∗E is perfect in D(OX).

Proof. This follows from Lemma 49.5, 48.4, and 47.3. (An alternative proof is to
copy the proof of Lemma 47.3.) □

Lemma 49.7.08CR Let (X,OX) be a ringed space. Let (K,L,M, f, g, h) be a distin-
guished triangle in D(OX). If two out of three of K,L,M are perfect then the third
is also perfect.

Proof. First proof: Combine Lemmas 49.5, 47.4, and 48.6. Second proof (sketch):
Say K and L are perfect. After replacing X by the members of an open covering
we may assume that K and L are represented by strictly perfect complexes K• and
L•. After replacing X by the members of an open covering we may assume the
map K → L is given by a map of complexes α : K• → L•, see Lemma 46.8. Then
M is isomorphic to the cone of α which is strictly perfect by Lemma 46.2. □

Lemma 49.8.09J5 Let (X,OX) be a ringed space. If K,L are perfect objects of D(OX),
then so is K ⊗L

OX
L.

Proof. Follows from Lemmas 49.5, 47.5, and 48.7. □

Lemma 49.9.08CS Let (X,OX) be a ringed space. If K ⊕ L is a perfect object of
D(OX), then so are K and L.

Proof. Follows from Lemmas 49.5, 47.6, and 48.8. □

Lemma 49.10.08DP Let (X,OX) be a ringed space. Let j : U → X be an open subspace.
Let E be a perfect object of D(OU ) whose cohomology sheaves are supported on a
closed subset T ⊂ U with j(T ) closed in X. Then Rj∗E is a perfect object of
D(OX).

Proof. Being a perfect complex is local on X. Thus it suffices to check that Rj∗E
is perfect when restricted to U and V = X \ j(T ). We have Rj∗E|U = E which is
perfect. We have Rj∗E|V = 0 because E|U\T = 0. □

Lemma 49.11.0GT1 Let (X,OX) be a ringed space. Let E in D(OX) be perfect.
Assume that all stalks OX,x are local rings. Then the set

U = {x ∈ X | Hi(E)x is a finite free OX,x-module for all i ∈ Z}

is open in X and is the maximal open set U ⊂ X such that Hi(E)|U is finite locally
free for all i ∈ Z.
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https://stacks.math.columbia.edu/tag/08CS
https://stacks.math.columbia.edu/tag/08DP
https://stacks.math.columbia.edu/tag/0GT1


COHOMOLOGY OF SHEAVES 118

Proof. Note that if V ⊂ X is some open such that Hi(E)|V is finite locally free
for all i ∈ Z then V ⊂ U . Let x ∈ U . We will show that an open neighbourhood
of x is contained in U and that Hi(E) is finite locally free on this neighbourhood
for all i. This will finish the proof. During the proof we may (finitely many times)
replace X by an open neighbourhood of x. Hence we may assume E is represented
by a strictly perfect complex E•. Say E i = 0 for i ̸∈ [a, b]. We will prove the result
by induction on b − a. The module Hb(E) = Coker(db−1 : Eb−1 → Eb) is of finite
presentation. Since Hb(E)x is finite free, we conclude Hb(E) is finite free in an open
neighbourhood of x by Modules, Lemma 11.6. Thus after replacing X by a (possibly
smaller) open neighbourhood we may assume we have a direct sum decomposition
Eb = Im(db−1)⊕Hb(E) and Hb(E) is finite free, see Lemma 46.5. Doing the same
argument again, we see that we may assume Eb−1 = Ker(db−1) ⊕ Im(db−1). The
complex Ea → . . . → Eb−2 → Ker(db−1) is a strictly perfect complex representing
a perfect object E′ with Hi(E) = Hi(E′) for i ̸= b. Hence we conclude by our
induction hypothesis. □

50. Duals

0FP7 In this section we characterize the dualizable objects of the category of complexes
and of the derived category. In particular, we will see that an object of D(OX) has
a dual if and only if it is perfect (this follows from Example 50.7 and Lemma 50.8).

Lemma 50.1.0FP8 Let (X,OX) be a ringed space. The category of complexes of OX-
modules with tensor product defined by F• ⊗G• = Tot(F• ⊗OX

G•) is a symmetric
monoidal category (for sign rules, see More on Algebra, Section 72).

Proof. Omitted. Hints: as unit 1 we take the complex having OX in degree 0
and zero in other degrees with obvious isomorphisms Tot(1 ⊗OX

G•) = G• and
Tot(F• ⊗OX

1) = F•. to prove the lemma you have to check the commutativity of
various diagrams, see Categories, Definitions 43.1 and 43.9. The verifications are
straightforward in each case. □

Example 50.2.0FP9 Let (X,OX) be a ringed space. Let F• be a locally bounded
complex of OX -modules such that each Fn is locally a direct summand of a finite
free OX -module. In other words, there is an open covering X =

⋃
Ui such that

F•|Ui
is a strictly perfect complex. Consider the complex

G• = Hom•(F•,OX)

as in Section 41. Let

η : OX → Tot(F• ⊗OX
G•) and ϵ : Tot(G• ⊗OX

F•)→ OX
be η =

∑
ηn and ϵ =

∑
ϵn where ηn : OX → Fn⊗OX

G−n and ϵn : G−n⊗OX
Fn →

OX are as in Modules, Example 18.1. Then G•, η, ϵ is a left dual for F• as in
Categories, Definition 43.5. We omit the verification that (1 ⊗ ϵ) ◦ (η ⊗ 1) = idF•

and (ϵ⊗ 1) ◦ (1⊗ η) = idG• . Please compare with More on Algebra, Lemma 72.2.

Lemma 50.3.0FPA Let (X,OX) be a ringed space. Let F• be a complex of OX-
modules. If F• has a left dual in the monoidal category of complexes of OX-modules
(Categories, Definition 43.5) then F• is a locally bounded complex whose terms are
locally direct summands of finite free OX-modules and the left dual is as constructed
in Example 50.2.

https://stacks.math.columbia.edu/tag/0FP8
https://stacks.math.columbia.edu/tag/0FP9
https://stacks.math.columbia.edu/tag/0FPA
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Proof. By uniqueness of left duals (Categories, Remark 43.7) we get the final
statement provided we show that F• is as stated. Let G•, η, ϵ be a left dual. Write
η =

∑
ηn and ϵ =

∑
ϵn where ηn : OX → Fn ⊗OX

G−n and ϵn : G−n ⊗OX
Fn →

OX . Since (1 ⊗ ϵ) ◦ (η ⊗ 1) = idF• and (ϵ ⊗ 1) ◦ (1 ⊗ η) = idG• by Categories,
Definition 43.5 we see immediately that we have (1 ⊗ ϵn) ◦ (ηn ⊗ 1) = idFn and
(ϵn ⊗ 1) ◦ (1⊗ ηn) = idG−n . Hence we see that Fn is locally a direct summand of a
finite free OX -module by Modules, Lemma 18.2. Since the sum η =

∑
ηn is locally

finite, we conclude that F• is locally bounded. □

Lemma 50.4.0G40 Let (X,OX) be a ringed space. Let K,L,M ∈ D(OX). If K is
perfect, then the map

RHom(L,M)⊗L
OX

K −→ RHom(RHom(K,L),M)
of Lemma 42.9 is an isomorphism.

Proof. Since the map is globally defined and since formation of the right and left
hand side commute with localization (see Lemma 42.3), to prove this we may work
locally on X. Thus we may assume K is represented by a strictly perfect complex
E•.
If K1 → K2 → K3 is a distinguished triangle in D(OX), then we get distinguished
triangles

RHom(L,M)⊗L
OX

K1 → RHom(L,M)⊗L
OX

K2 → RHom(L,M)⊗L
OX

K3

and
RHom(RHom(K1, L),M)→ RHom(RHom(K2, L),M)RHom(RHom(K3, L),M)
See Section 26 and Lemma 42.4. The arrow of Lemma 42.9 is functorial in K hence
we get a morphism between these distinguished triangles. Thus, if the result holds
for K1 and K3, then the result holds for K2 by Derived Categories, Lemma 4.3.
Combining the remarks above with the distinguished triangles

σ≥nE• → E• → σ≤n−1E•

of stupid trunctions, we reduce to the case where K consists of a direct summand of
a finite free OX -module placed in some degree. By an obvious compatibility of the
problem with direct sums (similar to what was said above) and shifts this reduces
us to the case where K = O⊕n

X for some integer n. This case is clear. □

Lemma 50.5.08DQ Let (X,OX) be a ringed space. Let K be a perfect object of D(OX).
Then K∨ = RHom(K,OX) is a perfect object too and (K∨)∨ ∼= K. There are
functorial isomorphisms

M ⊗L
OX

K∨ = RHom(K,M)
and

H0(X,M ⊗L
OX

K∨) = HomD(OX )(K,M)
for M in D(OX).

Proof. By Lemma 42.9 there is a canonical map
K = RHom(OX ,OX)⊗L

OX
K −→ RHom(RHom(K,OX),OX) = (K∨)∨

which is an isomorphism by Lemma 50.4. To check the other statements we will use
without further mention that formation of internal hom commutes with restriction

https://stacks.math.columbia.edu/tag/0G40
https://stacks.math.columbia.edu/tag/08DQ
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to opens (Lemma 42.3). We may check K∨ is perfect locally on X. By Lemma
42.8 to see the final statement it suffices to check that the map (42.8.1)

M ⊗L
OX

K∨ −→ RHom(K,M)
is an isomorphism. This is local on X as well. Hence it suffices to prove these two
statements K is represented by a strictly perfect complex.
Assume K is represented by the strictly perfect complex E•. Then it follows from
Lemma 46.9 that K∨ is represented by the complex whose terms are (E−n)∨ =
HomOX

(E−n,OX) in degree n. Since E−n is a direct summand of a finite free OX -
module, so is (E−n)∨. Hence K∨ is represented by a strictly perfect complex too
and we see that K∨ is perfect. To see that (42.8.1) is an isomorphism, represent
M by a complex F•. By Lemma 46.9 the complex RHom(K,M) is represented by
the complex with terms ⊕

n=p+q
HomOX

(E−q,Fp)

On the other hand, the object M⊗L
OX

K∨ is represented by the complex with terms⊕
n=p+q

Fp ⊗OX
(E−q)∨

Thus the assertion that (42.8.1) is an isomorphism reduces to the assertion that
the canonical map

F ⊗OX
HomOX

(E ,OX) −→ HomOX
(E ,F)

is an isomorphism when E is a direct summand of a finite free OX -module and F is
any OX -module. This follows immediately from the corresponding statement when
E is finite free. □

Lemma 50.6.0FPB Let (X,OX) be a ringed space. The derived category D(OX) is a
symmetric monoidal category with tensor product given by derived tensor product
with usual associativity and commutativity constraints (for sign rules, see More on
Algebra, Section 72).

Proof. Omitted. Compare with Lemma 50.1. □

Example 50.7.0FPC Let (X,OX) be a ringed space. Let K be a perfect object of
D(OX). Set K∨ = RHom(K,OX) as in Lemma 50.5. Then the map

K ⊗L
OX

K∨ −→ RHom(K,K)
is an isomorphism (by the lemma). Denote

η : OX −→ K ⊗L
OX

K∨

the map sending 1 to the section corresponding to idK under the isomorphism
above. Denote

ϵ : K∨ ⊗L
OX

K −→ OX
the evaluation map (to construct it you can use Lemma 42.5 for example). Then
K∨, η, ϵ is a left dual for K as in Categories, Definition 43.5. We omit the verifica-
tion that (1⊗ ϵ) ◦ (η ⊗ 1) = idK and (ϵ⊗ 1) ◦ (1⊗ η) = idK∨ .

Lemma 50.8.0FPD Let (X,OX) be a ringed space. Let M be an object of D(OX). If
M has a left dual in the monoidal category D(OX) (Categories, Definition 43.5)
then M is perfect and the left dual is as constructed in Example 50.7.

https://stacks.math.columbia.edu/tag/0FPB
https://stacks.math.columbia.edu/tag/0FPC
https://stacks.math.columbia.edu/tag/0FPD
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Proof. Let x ∈ X. It suffices to find an open neighbourhood U of x such that
M restricts to a perfect complex over U . Hence during the proof we can (finitely
often) replace X by an open neighbourhood of x. Let N, η, ϵ be a left dual.

We are going to use the following argument several times. Choose any complex
M• of OX -modules representing M . Choose a K-flat complex N • representing N
whose terms are flat OX -modules, see Lemma 26.12. Consider the map

η : OX → Tot(M• ⊗OX
N •)

After shrinking X we can find an integer N and for i = 1, . . . , N integers ni ∈ Z
and sections fi and gi of Mni and N−ni such that

η(1) =
∑

i
fi ⊗ gi

Let K• ⊂ M• be any subcomplex of OX -modules containing the sections fi for
i = 1, . . . , N . Since Tot(K• ⊗OX

N •) ⊂ Tot(M• ⊗OX
N •) by flatness of the

modules Nn, we see that η factors through

η̃ : OX → Tot(K• ⊗OX
N •)

Denoting K the object of D(OX) represented by K• we find a commutative diagram

M
η⊗1

//

η̃⊗1 ))

M ⊗L N ⊗L M
1⊗ϵ
// M

K ⊗L N ⊗L M

OO

1⊗ϵ // K

OO

Since the composition of the upper row is the identity on M we conclude that M
is a direct summand of K in D(OX).

As a first use of the argument above, we can choose the subcomplexK• = σ≥aτ≤bM•

with a < ni < b for i = 1, . . . , N . Thus M is a direct summand in D(OX) of a
bounded complex and we conclude we may assume M is in Db(OX). (Recall that
the process above involves shrinking X.)

Since M is in Db(OX) we may choose M• to be a bounded above complex of flat
modules (by Modules, Lemma 17.6 and Derived Categories, Lemma 15.4). Then
we can choose K• = σ≥aM• with a < ni for i = 1, . . . , N in the argument above.
Thus we find that we may assume M is a direct summand in D(OX) of a bounded
complex of flat modules. In particular, M has finite tor amplitude.

Say M has tor amplitude in [a, b]. Assuming M is m-pseudo-coherent we are going
to show that (after shrinking X) we may assume M is (m − 1)-pseudo-coherent.
This will finish the proof by Lemma 49.4 and the fact that M is (b + 1)-pseudo-
coherent in any case. After shrinking X we may assume there exists a strictly
perfect complex E• and a map α : E• → M in D(OX) such that Hi(α) is an
isomorphism for i > m and surjective for i = m. We may and do assume that
E i = 0 for i < m. Choose a distinguished triangle

E• →M → L→ E•[1]

Observe that Hi(L) = 0 for i ≥ m. Thus we may represent L by a complex L•

with Li = 0 for i ≥ m. The map L → E•[1] is given by a map of complexes
L• → E•[1] which is zero in all degrees except in degree m − 1 where we obtain a
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map Lm−1 → Em, see Derived Categories, Lemma 27.3. Then M is represented by
the complex

M• : . . .→ Lm−2 → Lm−1 → Em → Em+1 → . . .

Apply the discussion in the second paragraph to this complex to get sections fi of
Mni for i = 1, . . . , N . For n < m let Kn ⊂ Ln be the OX -submodule generated
by the sections fi for ni = n and d(fi) for ni = n − 1. For n ≥ m set Kn = En.
Clearly, we have a morphism of distinguished triangles

E• //M• // L• // E•[1]

E• //

OO

K• //

OO

σ≤m−1K• //

OO

E•[1]

OO

where all the morphisms are as indicated above. Denote K the object of D(OX)
corresponding to the complex K•. By the arguments in the second paragraph of
the proof we obtain a morphism s : M → K in D(OX) such that the composition
M → K →M is the identity on M . We don’t know that the diagram

E• // K• K

E•

id

OO

i //M• M

s

OO

commutes, but we do know it commutes after composing with the map K → M .
By Lemma 46.8 after shrinking X we may assume that s ◦ i is given by a map of
complexes σ : E• → K•. By the same lemma we may assume the composition of σ
with the inclusion K• ⊂ M• is homotopic to zero by some homotopy {hi : E i →
Mi−1}. Thus, after replacing Km−1 by Km−1 + Im(hm) (note that after doing this
it is still the case that Km−1 is generated by finitely many global sections), we see
that σ itself is homotopic to zero! This means that we have a commutative solid
diagram

E• // M // L• // E•[1]

E• //

OO

K //

OO

σ≤m−1K• //

OO

E•[1]

OO

E• //

OO

M //

s

OO

L• //

OO

E•[1]

OO

By the axioms of triangulated categories we obtain a dotted arrow fitting into the
diagram. Looking at cohomology sheaves in degree m− 1 we see that we obtain

Hm−1(M) // Hm−1(L•) // Hm(E•)

Hm−1(K) //

OO

Hm−1(σ≤m−1K•) //

OO

Hm(E•)

OO

Hm−1(M) //

OO

Hm−1(L•) //

OO

Hm(E•)

OO
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Since the vertical compositions are the identity in both the left and right column, we
conclude the vertical composition Hm−1(L•)→ Hm−1(σ≤m−1K•)→ Hm−1(L•) in
the middle is surjective! In particular Hm−1(σ≤m−1K•)→ Hm−1(L•) is surjective.
Using the induced map of long exact sequences of cohomology sheaves from the
morphism of triangles above, a diagram chase shows this implies Hi(K)→ Hi(M)
is an isomorphism for i ≥ m and surjective for i = m− 1. By construction we can
choose an r ≥ 0 and a surjection O⊕r

X → Km−1. Then the composition
(O⊕r

X → E
m → Em+1 → . . .) −→ K −→M

induces an isomorphism on cohomology sheaves in degrees ≥ m and a surjection in
degree m− 1 and the proof is complete. □

51. Miscellany

0GM6 Some results which do not fit anywhere else.

Lemma 51.1.0DJI Let (X,OX) be a ringed space. Let (Kn)n∈N be a system of perfect
objects of D(OX). Let K = hocolimKn be the derived colimit (Derived Categories,
Definition 33.1). Then for any object E of D(OX) we have

RHom(K,E) = R limE ⊗L
OX

K∨
n

where (K∨
n ) is the inverse system of dual perfect complexes.

Proof. By Lemma 50.5 we have R limE ⊗L
OX

K∨
n = R limRHom(Kn, E) which

fits into the distinguished triangle

R limRHom(Kn, E)→
∏

RHom(Kn, E)→
∏

RHom(Kn, E)

Because K similarly fits into the distinguished triangle
⊕
Kn →

⊕
Kn → K

it suffices to show that
∏
RHom(Kn, E) = RHom(

⊕
Kn, E). This is a formal

consequence of (42.0.1) and the fact that derived tensor product commutes with
direct sums. □

Lemma 51.2.0FVB Let (X,OX) be a ringed space. Let K and E be objects of D(OX)
with E perfect. The diagram

H0(X,K ⊗L
OX

E∨)×H0(X,E) //

��

H0(X,K ⊗L
OX

E∨ ⊗L
OX

E)

��
HomX(E,K)×H0(X,E) // H0(X,K)

commutes where the top horizontal arrow is the cup product, the right vertical arrow
uses ϵ : E∨⊗L

OX
E → OX (Example 50.7), the left vertical arrow uses Lemma 50.5,

and the bottom horizontal arrow is the obvious one.

Proof. We will abbreviate ⊗ = ⊗L
OX

and O = OX . We will identify E and K with
RHom(O, E) and RHom(O,K) and we will identify E∨ with RHom(E,O).
Let ξ ∈ H0(X,K⊗E∨) and η ∈ H0(X,E). Denote ξ̃ : O → K⊗E∨ and η̃ : O → E
the corresponding maps in D(O). By Lemma 31.1 the cup product ξ∪η corresponds
to ξ̃ ⊗ η̃ : O → K ⊗ E∨ ⊗ E.
We claim the map ξ′ : E → K corresponding to ξ by Lemma 50.5 is the composition

E = O ⊗ E ξ̃⊗1E−−−→ K ⊗ E∨ ⊗ E 1K ⊗ϵ−−−→ K

https://stacks.math.columbia.edu/tag/0DJI
https://stacks.math.columbia.edu/tag/0FVB
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The construction in Lemma 50.5 uses the evaluation map (42.8.1) which in turn is
constructed using the identification of E with RHom(O, E) and the composition ◦
constructed in Lemma 42.5. Hence ξ′ is the composition

E = O ⊗RHom(O, E) ξ̃⊗1−−→ RHom(O,K)⊗RHom(E,O)⊗RHom(O, E)
◦⊗1−−→ RHom(E,K)⊗RHom(O, E)
◦−→ RHom(O,K) = K

The claim follows immediately from this and the fact that the composition ◦ con-
structed in Lemma 42.5 is associative (insert future reference here) and the fact
that ϵ is defined as the composition ◦ : E∨ ⊗ E → O in Example 50.7.
Using the results from the previous two paragraphs, we find the statement of the
lemma is that (1K ⊗ ϵ) ◦ (ξ̃ ⊗ η̃) is equal to (1K ⊗ ϵ) ◦ (ξ̃ ⊗ 1E) ◦ (1O ⊗ η̃) which is
immediate. □

Lemma 51.3.0GM7 Let h : X → Y be a morphism of ringed spaces. Let K,M be
objects of D(OY ). The canonical map

Lh∗RHom(K,M) −→ RHom(Lh∗K,Lh∗M)
of Remark 42.13 is an isomorphism in the following cases

(1) K is perfect,
(2) h is flat, K is pseudo-coherent, and M is (locally) bounded below,
(3) OX has finite tor dimension over h−1OY , K is pseudo-coherent, and M is

(locally) bounded below,

Proof. Proof of (1). The question is local on Y , hence we may assume that K is
represented by a strictly perfect complex E•, see Section 49. Choose a K-flat com-
plex F• representing M . Apply Lemma 46.9 to see that RHom(K,L) is represented
by the complex H• = Hom•(E•,F•) with terms Hn =

⊕
n=p+qHomOX

(E−q,Fp).
By the construction of Lh∗ in Section 27 we see that Lh∗K is represented by
the strictly perfect complex h∗E• (Lemma 46.4). Similarly, the object Lh∗M is
represented by the complex h∗F•. Finally, the object Lh∗RHom(K,M) is rep-
resented by h∗H• as H• is K-flat by Lemma 46.10. Thus to finish the proof it
suffices to show that h∗H• = Hom•(h∗E•, h∗F•). For this it suffices to note that
h∗Hom(E ,F) = Hom(h∗E ,F) whenever E is a direct summand of a finite free
OX -module.
Proof of (2). Since h is flat, we can compute Lh∗ by simply using h∗ on any complex
of OY -modules. In particular we have Hi(Lh∗K) = h∗Hi(K) for all i ∈ Z. Say
Hi(M) = 0 for i < a. Let K ′ → K be a morphism of D(OY ) which defines an
isomorphism Hi(K ′)→ Hi(K) for all i ≥ b. Then the corresponding maps

RHom(K,M)→ RHom(K ′,M)
and

RHom(Lh∗K,Lh∗M)→ RHom(Lh∗K ′, Lh∗M)
are isomorphisms on cohomology sheaves in degrees < a − b (details omitted).
Thus to prove the map in the statement of the lemma induces an isomorphism on
cohomology sheaves in degrees < a− b it suffices to prove the result for K ′ in those
degrees. Also, as in the proof of part (1) the question is local on Y . Thus we may

https://stacks.math.columbia.edu/tag/0GM7
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assume K is represented by a strictly perfect complex, see Section 47. This reduces
us to case (1).
Proof of (3). The proof is the same as the proof of (2) except one uses that Lh∗

has bounded cohomological dimension to get the desired vanishing. We omit the
details. □

Lemma 51.4.0GM8 Let X be a ringed space. Let K,M be objects of D(OX). Let
x ∈ X. The canonical map

RHom(K,M)x −→ RHomOX,x
(Kx,Mx)

is an isomorphism in the following cases
(1) K is perfect,
(2) K is pseudo-coherent and M is (locally) bounded below.

Proof. Let Y = {x} be the singleton ringed space with structure sheaf given by
OX,x. Then apply Lemma 51.3 to the flat inclusion morphism Y → X. □

52. Invertible objects in the derived category

0FPE We characterize invertible objects in the derived category of a ringed space (both
in the case where the stalks of the structure sheaf are local and where not).

Lemma 52.1.0FPF Let (X,OX) be a ringed space. Set R = Γ(X,OX). The category
of OX-modules which are summands of finite free OX-modules is equivalent to the
category of finite projective R-modules.

Proof. Observe that a finite projective R-module is the same thing as a summand
of a finite free R-module. The equivalence is given by the functor E 7→ Γ(X, E).
The inverse functor is given by the construction of Modules, Lemma 10.5. □

Lemma 52.2.0FPG Let (X,OX) be a ringed space. Let M be an object of D(OX). The
following are equivalent

(1) M is invertible in D(OX), see Categories, Definition 43.4, and
(2) there is a locally finite direct product decomposition

OX =
∏

n∈Z
On

and for each n there is an invertible On-module Hn (Modules, Definition
25.1) and M =

⊕
Hn[−n] in D(OX).

If (1) and (2) hold, then M is a perfect object of D(OX). If OX,x is a local ring
for all x ∈ X these condition are also equivalent to

(3) there exists an open covering X =
⋃
Ui and for each i an integer ni such

that M |Ui is represented by an invertible OUi-module placed in degree ni.

Proof. Assume (2). Consider the object RHom(M,OX) and the composition map
RHom(M,OX)⊗L

OX
M → OX

To prove this is an isomorphism, we may work locally. Thus we may assume
OX =

∏
a≤n≤bOn and M =

⊕
a≤n≤bHn[−n]. Then it suffices to show that

RHom(Hm,OX)⊗L
OX
Hn

is zero if n ̸= m and equal to On if n = m. The case n ̸= m follows from the
fact that On and Om are flat OX -algebras with On ⊗OX

Om = 0. Using the local

https://stacks.math.columbia.edu/tag/0GM8
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structure of invertible OX -modules (Modules, Lemma 25.2) and working locally
the isomorphism in case n = m follows in a straightforward manner; we omit the
details. Because D(OX) is symmetric monoidal, we conclude that M is invertible.

Assume (1). The description in (2) shows that we have a candidate for On,
namely, HomOX

(Hn(M), Hn(M)). If this is a locally finite family of sheaves of
rings and if OX =

∏
On, then we immediately obtain the direct sum decomposi-

tion M =
⊕
Hn(M)[−n] using the idempotents in OX coming from the product

decomposition. This shows that in order to prove (2) we may work locally on X.

Choose an object N of D(OX) and an isomorphism M ⊗L
OX

N ∼= OX . Let x ∈ X.
Then N is a left dual for M in the monoidal category D(OX) and we conclude that
M is perfect by Lemma 50.8. By symmetry we see that N is perfect. After replacing
X by an open neighbourhood of x, we may assume M and N are represented
by a strictly perfect complexes E• and F•. Then M ⊗L

OX
N is represented by

Tot(E•⊗OX
F•). After another shinking of X we may assume the mutually inverse

isomorphisms OX → M ⊗L
OX

N and M ⊗L
OX

N → OX are given by maps of
complexes

α : OX → Tot(E• ⊗OX
F•) and β : Tot(E• ⊗OX

F•)→ OX

See Lemma 46.8. Then β◦α = 1 as maps of complexes and α◦β = 1 as a morphism
in D(OX). After shrinking X we may assume the composition α ◦ β is homotopic
to 1 by some homotopy θ with components

θn : Totn(E• ⊗OX
F•)→ Totn−1(E• ⊗OX

F•)

by the same lemma as before. Set R = Γ(X,OX). By Lemma 52.1 we find that we
obtain

(1) M• = Γ(X, E•) is a bounded complex of finite projective R-modules,
(2) N• = Γ(X,F•) is a bounded complex of finite projective R-modules,
(3) α and β correspond to maps of complexes a : R → Tot(M• ⊗R N•) and

b : Tot(M• ⊗R N•)→ R,
(4) θn corresponds to a map hn : Totn(M•⊗RN•)→ Totn−1(M•⊗RN•), and
(5) b ◦ a = 1 and b ◦ a− 1 = dh+ hd,

It follows that M• and N• define mutually inverse objects of D(R). By More
on Algebra, Lemma 126.4 we find a product decomposition R =

∏
a≤n≤bRn and

invertible Rn-modules Hn such that M• ∼=
⊕

a≤n≤bH
n[−n]. This isomorphism in

D(R) can be lifted to an morphism⊕
Hn[−n] −→M•

of complexes because each Hn is projective as an R-module. Correspondingly, using
Lemma 52.1 again, we obtain an morphism⊕

Hn ⊗R OX [−n]→ E•

which is an isomorphism in D(OX). Setting On = Rn ⊗R OX we conclude (2) is
true.

If all stalks of OX are local, then it is straightforward to prove the equivalence of
(2) and (3). We omit the details. □
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53. Compact objects

09J6 In this section we study compact objects in the derived category of modules on a
ringed space. We recall that compact objects are defined in Derived Categories,
Definition 37.1. On suitable ringed spaces the perfect objects are compact.

Lemma 53.1.0F5Z Let X be a ringed space. Let j : U → X be the inclusion of an
open. The OX-module j!OU is a compact object of D(OX) if there exists an integer
d such that

(1) Hp(U,F) = 0 for all p > d, and
(2) the functors F 7→ Hp(U,F) commute with direct sums.

Proof. Assume (1) and (2). Since Hom(j!OU ,F) = F(U) by Sheaves, Lemma
31.8 we have Hom(j!OU ,K) = RΓ(U,K) for K in D(OX). Thus we have to show
that RΓ(U,−) commutes with direct sums. The first assumption means that the
functor F = H0(U,−) has finite cohomological dimension. Moreover, the second
assumption implies any direct sum of injective modules is acyclic for F . Let Ki be
a family of objects of D(OX). Choose K-injective representatives I•

i with injective
terms representing Ki, see Injectives, Theorem 12.6. Since we may compute RF
by applying F to any complex of acyclics (Derived Categories, Lemma 32.2) and
since

⊕
Ki is represented by

⊕
I•
i (Injectives, Lemma 13.4) we conclude that

RΓ(U,
⊕
Ki) is represented by

⊕
H0(U, I•

i ). HenceRΓ(U,−) commutes with direct
sums as desired. □

Lemma 53.2.09J7 Let X be a ringed space. Assume that the underlying topological
space of X has the following properties:

(1) X is quasi-compact,
(2) there exists a basis of quasi-compact open subsets, and
(3) the intersection of any two quasi-compact opens is quasi-compact.

Let K be a perfect object of D(OX). Then
(a) K is a compact object of D+(OX) in the following sense: if M =

⊕
i∈IMi

is bounded below, then Hom(K,M) =
⊕

i∈I Hom(K,Mi).
(b) If X has finite cohomological dimension, i.e., if there exists a d such that

Hi(X,F) = 0 for i > d, then K is a compact object of D(OX).

Proof. Let K∨ be the dual of K, see Lemma 50.5. Then we have

HomD(OX )(K,M) = H0(X,K∨ ⊗L
OX

M)

functorially in M in D(OX). Since K∨⊗L
OX
− commutes with direct sums it suffices

to show that RΓ(X,−) commutes with the relevant direct sums.

Proof of (b). Since RΓ(X,K) = RHom(OX ,K) and since Hp(X,−) commutes
with direct sums by Lemma 19.1 this is a special case of Lemma 53.1

Proof of (a). Let Ii, i ∈ I be a collection of injective OX -modules. By Lemma 19.1
we see that

Hp(X,
⊕

i∈I
Ii) =

⊕
i∈I

Hp(X, Ii) = 0

for all p. Now if M =
⊕
Mi is as in (a), then we see that there exists an a ∈ Z

such that Hn(Mi) = 0 for n < a. Thus we can choose complexes of injective
OX -modules I•

i representing Mi with Ini = 0 for n < a, see Derived Categories,

https://stacks.math.columbia.edu/tag/0F5Z
https://stacks.math.columbia.edu/tag/09J7
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Lemma 18.3. By Injectives, Lemma 13.4 we see that the direct sum complex
⊕
I•
i

represents M . By Leray acyclicity (Derived Categories, Lemma 16.7) we see that

RΓ(X,M) = Γ(X,
⊕
I•
i ) =

⊕
Γ(X,

⊕
I•
i ) =

⊕
RΓ(X,Mi)

as desired. □

54. Projection formula

01E6 In this section we collect variants of the projection formula. The most basic version
is Lemma 54.2. After we state and prove it, we discuss a more general version
involving perfect complexes.

Lemma 54.1.01E7 Let X be a ringed space. Let I be an injective OX-module. Let
E be an OX-module. Assume E is finite locally free on X, see Modules, Definition
14.1. Then E ⊗OX

I is an injective OX-module.

Proof. This is true because under the assumptions of the lemma we have
HomOX

(F , E ⊗OX
I) = HomOX

(F ⊗OX
E∨, I)

where E∨ = HomOX
(E ,OX) is the dual of E which is finite locally free also. Since

tensoring with a finite locally free sheaf is an exact functor we win by Homology,
Lemma 27.2. □

Lemma 54.2.01E8 Let f : X → Y be a morphism of ringed spaces. Let F be an OX-
module. Let E be an OY -module. Assume E is finite locally free on Y , see Modules,
Definition 14.1. Then there exist isomorphisms

E ⊗OY
Rqf∗F −→ Rqf∗(f∗E ⊗OX

F)
for all q ≥ 0. In fact there exists an isomorphism

E ⊗OY
Rf∗F −→ Rf∗(f∗E ⊗OX

F)
in D+(Y ) functorial in F .

Proof. Choose an injective resolution F → I• on X. Note that f∗E is finite locally
free also, hence we get a resolution

f∗E ⊗OX
F −→ f∗E ⊗OX

I•

which is an injective resolution by Lemma 54.1. Apply f∗ to see that
Rf∗(f∗E ⊗OX

F) = f∗(f∗E ⊗OX
I•).

Hence the lemma follows if we can show that f∗(f∗E ⊗OX
F) = E ⊗OY

f∗(F)
functorially in the OX -module F . This is clear when E = O⊕n

Y , and follows in
general by working locally on Y . Details omitted. □

Let f : X → Y be a morphism of ringed spaces. Let E ∈ D(OX) and K ∈ D(OY ).
Without any further assumptions there is a map
(54.2.1)0B53 Rf∗E ⊗L

OY
K −→ Rf∗(E ⊗L

OX
Lf∗K)

Namely, it is the adjoint to the canonical map
Lf∗(Rf∗E ⊗L

OY
K) = Lf∗Rf∗E ⊗L

OX
Lf∗K −→ E ⊗L

OX
Lf∗K

coming from the map Lf∗Rf∗E → E and Lemmas 27.3 and 28.1. A reasonably
general version of the projection formula is the following.

https://stacks.math.columbia.edu/tag/01E7
https://stacks.math.columbia.edu/tag/01E8
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Lemma 54.3.0B54 Let f : X → Y be a morphism of ringed spaces. Let E ∈ D(OX)
and K ∈ D(OY ). If K is perfect, then

Rf∗E ⊗L
OY

K = Rf∗(E ⊗L
OX

Lf∗K)

in D(OY ).

Proof. To check (54.2.1) is an isomorphism we may work locally on Y , i.e., we
have to find a covering {Vj → Y } such that the map restricts to an isomorphism
on Vj . By definition of perfect objects, this means we may assume K is represented
by a strictly perfect complex of OY -modules. Note that, completely generally, the
statement is true for K = K1 ⊕K2, if and only if the statement is true for K1 and
K2. Hence we may assume K is a finite complex of finite free OY -modules. In this
case a simple argument involving stupid truncations reduces the statement to the
case where K is represented by a finite free OY -module. Since the statement is
invariant under finite direct summands in the K variable, we conclude it suffices to
prove it for K = OY [n] in which case it is trivial. □

Here is a case where the projection formula is true in complete generality.

Lemma 54.4.0B55 Let f : X → Y be a morphism of ringed spaces such that f is a
homeomorphism onto a closed subset. Then (54.2.1) is an isomorphism always.

Proof. Since f is a homeomorphism onto a closed subset, the functor f∗ is exact
(Modules, Lemma 6.1). HenceRf∗ is computed by applying f∗ to any representative
complex. Choose a K-flat complex K• of OY -modules representing K and choose
any complex E• of OX -modules representing E. Then Lf∗K is represented by f∗K•

which is a K-flat complex of OX -modules (Lemma 26.8). Thus the right hand side
of (54.2.1) is represented by

f∗Tot(E• ⊗OX
f∗K•)

By the same reasoning we see that the left hand side is represented by

Tot(f∗E• ⊗OY
K•)

Since f∗ commutes with direct sums (Modules, Lemma 6.3) it suffices to show that

f∗(E ⊗OX
f∗K) = f∗E ⊗OY

K

for any OX -module E and OY -module K. We will check this by checking on stalks.
Let y ∈ Y . If y ̸∈ f(X), then the stalks of both sides are zero. If y = f(x), then
we see that we have to show

Ex ⊗OX,x
(OX,x ⊗OY,y

Fy) = Ex ⊗OY,y
Fy

(using Sheaves, Lemma 32.1 and Lemma 26.4). This equality holds and therefore
the lemma has been proved. □

Remark 54.5.0B6B The map (54.2.1) is compatible with the base change map of
Remark 28.3 in the following sense. Namely, suppose that

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

https://stacks.math.columbia.edu/tag/0B54
https://stacks.math.columbia.edu/tag/0B55
https://stacks.math.columbia.edu/tag/0B6B
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is a commutative diagram of ringed spaces. Let E ∈ D(OX) and K ∈ D(OY ).
Then the diagram

Lg∗(Rf∗E ⊗L
OY

K)
p

//

t

��

Lg∗Rf∗(E ⊗L
OX

Lf∗K)

b

��
Lg∗Rf∗E ⊗L

OY ′ Lg
∗K

b

��

Rf ′
∗L(g′)∗(E ⊗L

OX
Lf∗K)

t

��
Rf ′

∗L(g′)∗E ⊗L
OY ′ Lg

∗K

p
++

Rf ′
∗(L(g′)∗E ⊗L

OY ′ L(g′)∗Lf∗K)

c

��
Rf ′

∗(L(g′)∗E ⊗L
OY ′ L(f ′)∗Lg∗K)

is commutative. Here arrows labeled t are gotten by an application of Lemma
27.3, arrows labeled b by an application of Remark 28.3, arrows labeled p by an
application of (54.2.1), and c comes from L(g′)∗ ◦Lf∗ = L(f ′)∗ ◦Lg∗. We omit the
verification.

55. An operator introduced by Berthelot and Ogus

0GT2 This section continuous the discussion started in More on Algebra, Section 95. We
strongly encourage the reader to read that section first.

Lemma 55.1.0GT3 Let (X,OX) be a ringed space. Let I ⊂ OX be a sheaf of ideals.
Consider the following two conditions

(1) for every x ∈ X there exists an open neighbourhood U ⊂ X of x and
f ∈ I(U) such that I|U = OU · f and f : OU → OU is injective, and

(2) I is invertible as an OX-module.
Then (1) implies (2) and the converse is true if all stalks OX,x of the structure
sheaf are local rings.

Proof. Omitted. Hint: Use Modules, Lemma 25.4. □

Situation 55.2.0GT4 Let (X,OX) be a ringed space. Let I ⊂ OX be a sheaf of ideals
satisfying condition (1) of Lemma 55.18.

Lemma 55.3.0GT5 In Situation 55.2 let F be an OX-module. The following are
equivalent

(1) the subsheaf F [I] ⊂ F of sections annihilated by I is zero,
(2) the subsheaf F [In] is zero for all n ≥ 1,
(3) the multiplication map I ⊗OX

F → F is injective,
(4) for every open U ⊂ X such that I|U = OU · f for some f ∈ I(U) the map

f : F|U → F|U is injective,
(5) for every x ∈ X and generator f of the ideal Ix ⊂ OX,x the element f is a

nonzerodivisor on the stalk Fx.

Proof. Omitted. □

8The discussion in this section can be generalized to the case where all we require is that I is
an invertible OX -module as defined in Modules, Section 25.

https://stacks.math.columbia.edu/tag/0GT3
https://stacks.math.columbia.edu/tag/0GT4
https://stacks.math.columbia.edu/tag/0GT5
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In Situation 55.2 let F be an OX -module. If the equivalent conditions of Lemma
55.3 hold, then we will say that F is I-torsion free. If so, then for any i ∈ Z we
will denote

IiF = I⊗i ⊗OX
F

so that we have inclusions

. . . ⊂ Ii+1F ⊂ IiF ⊂ Ii−1F ⊂ . . .

The modules IiF are locally isomorphic to F as OX -modules, but not globally.

Let F• be a complex of I-torsion freeOX -modules with differentials di : F i → F i+1.
In this case we define ηIF• to be the complex with terms

(ηIF)i = Ker
(
di,−1 : IiF i ⊕ Ii+1F i+1 → IiF i+1)

= Ker
(
di : IiF i → IiF i+1/Ii+1F i+1)

and differential induced by di. In other words, a local section s of (ηIF)i is the
same thing as a local section s of IiF i such that its image di(s) in IiF i+1 is in
the subsheaf Ii+1F i+1. Observe that ηIF• is another complex of I-torsion free
modules.

Let a• : F• → G• be a map of complexes of I-torsion free OX -modules. Then we
obtain a map of complexes

ηIa
• : ηIF• −→ ηIG•

induced by the maps IiF i → IiGi. The reader checks that we obtain an endo-
functor on the category of complexes of I-torsion free OX -modules.

If a•, b• : F• → G• are two maps of complexes of I-torsion free OX -modules and
h = {hi : F i → Gi−1} is a homotopy between a• and b•, then we define ηIh to be
the family of maps (ηIh)i : (ηIF)i → (ηIG)i−1 which sends x to hi(x); this makes
sense as x a local section of IiF i implies hi(x) is a local section of IiGi−1 which is
certainly contained in (ηIG)i−1. The reader checks that ηIh is a homotopy between
ηIa

• and ηIb
•. All in all we see that we obtain a functor

ηf : K(I-torsion free OX -modules) −→ K(I-torsion free OX -modules)

on the homotopy category (Derived Categories, Section 8) of the additive category
of I-torsion free OX -modules. There is no sense in which ηI is an exact functor of
triangulated categories; compare with More on Algebra, Example 95.1.

Lemma 55.4.0GT6 In Situation 55.2 let F• be a complex of I-torsion free OX-modules.
For x ∈ X choose a generator f ∈ Ix. Then the stalk (ηIF•)x is canonically
isomorphic to the complex ηfF•

x constructed in More on Algebra, Section 95.

Proof. Omitted. □

Lemma 55.5.0F8N In Situation 55.2 let F• be a complex of I-torsion free OX-modules.
There is a canonical isomorphism

I⊗i ⊗OX

(
Hi(F•)/Hi(F•)[I]

)
−→ Hi(ηIF•)

of cohomology sheaves.

https://stacks.math.columbia.edu/tag/0GT6
https://stacks.math.columbia.edu/tag/0F8N
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Proof. We define a map

I⊗i ⊗OX
Hi(F•) −→ Hi(ηIF•)

as follows. Let g be a local section of I⊗i and let s be a local section of Hi(F•).
Then s is (locally) the class of a local section s of Ker(di : F i → F i+1). Then we
send g ⊗ s to the local section gs of (ηIF)i ⊂ IiF . Of course gs is in the kernel
of di on ηIF• and hence defines a local section of Hi(ηIF•). Checking that this
is well defined is without problems. We claim that this map factors through an
isomorphism as given in the lemma. This we my check on stalks and hence via
Lemma 55.4 this translates into the result of More on Algebra, Lemma 95.2. □

Lemma 55.6.0F8P In Situation 55.2 let F• → G• be a map of complexes of I-torsion
free OX-modules. Then the induced map ηIF• → ηIG• is a quasi-isomorphism too.

Proof. This is true because the isomorphisms of Lemma 55.5 are compatible with
maps of complexes. □

Lemma 55.7.0F8Q In Situation 55.2 there is an additive functor9 LηI : D(OX) →
D(OX) such that if M in D(OX) is represented by a complex F• of I-torsion free
OX-modules, then LηIM = ηIF•. Similarly for morphisms.

Proof. Denote T ⊂ Mod(OX) the full subcategory of I-torsion free OX -modules.
We have a corresponding inclusion

K(T ) ⊂ K(Mod(OX)) = K(OX)

of K(T ) as a full triangulated subcategory of K(OX). Let S ⊂ Arrows(K(T )) be
the quasi-isomorphisms. We will apply Derived Categories, Lemma 5.8 to show
that the map

S−1K(T ) −→ D(OX)

is an equivalence of triangulated categories. The lemma shows that it suffices
to prove: given a complex G• of OX -modules, there exists a quasi-isomorphism
F• → G• with F• a complex of I-torsion free OX -modules. By Lemma 26.12 we
can find a quasi-isomorphism F• → G• such that the complex F• is K-flat (we
won’t use this) and consists of flat OX -modules F i. By the third characterization
of Lemma 55.3 we see that a flat OX -module is an I-torsion free OX -module and
we are done.

With these preliminaries out of the way we can define Lηf . Namely, by the discus-
sion following Lemma 55.3 this section we have already a well defined functor

K(T ) ηf−→ K(T )→ K(OX)→ D(OX)

which according to Lemma 55.6 sends quasi-isomorphisms to quasi-isomorphisms.
Hence this functor factors over S−1K(T ) = D(OX) by Categories, Lemma 27.8. □

9Beware that this functor isn’t exact, i.e., does not transform distinguished triangles into
distinguished triangles.

https://stacks.math.columbia.edu/tag/0F8P
https://stacks.math.columbia.edu/tag/0F8Q
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In Situation 55.2 let us construct the Bockstein operators. First we observe that
there is a commutative diagram

0 // Ii+1 //

��

Ii //

��

Ii/Ii+1 // 0

0 // Ii+1/Ii+2 // Ii/Ii+2 // Ii/Ii+1 // 0

whose rows are short exact sequences of OX -modules. Let M be an object of
D(OX). Tensoring the above diagram with M gives a morphism

M ⊗L Ii+1 //

��

M ⊗L Ii //

��

M ⊗L Ii/Ii+1

id
��

M ⊗L Ii+1/Ii+2 // M ⊗L Ii/Ii+2 // M ⊗L Ii/Ii+1

of distinguished triangles. The long exact sequence of cohomology sheaves associ-
ated the bottom triangle in particular determines the Bockstein operator

β = βi : Hi(M ⊗L Ii/Ii+1) −→ Hi+1(M ⊗L Ii+1/Ii+2)
for all i ∈ Z. For later use we record here that by the commutative diagram above
there is a factorization

(55.7.1)0GT7

Hi(M ⊗L Ii/Ii+1)
δ

//

β **

Hi+1(M ⊗L Ii+1)

��
Hi+1(M ⊗L Ii+1/Ii+2)

of the Bockstein operator where δ is the boundary operator coming from the top
distinguished triangle in the commutative diagram above. We obtain a complex

(55.7.2)0GT8 H•(M/I) =



. . .
↓

Hi−1(M ⊗L Ii−1/Ii)
↓ β

Hi(M ⊗L Ii/Ii+1)
↓ β

Hi+1(M ⊗L Ii+1/Ii+2)
↓
. . .


i.e., that β ◦ β = 0. Namely, we can check this on stalks and in this case we can
deduce it from the corresponding result in algebra shown in More on Algebra, Sec-
tion 95. Alternative proof: the short exact sequences 0→ Ii+1/Ii+2 → Ii/Ii+2 →
Ii/Ii+1 → 0 define maps bi : Ii/Ii+1 → (Ii+1/Ii+2)[1] in D(OX) which induce
the maps β above by tensoring with M and taking cohomology sheaves. Then one
shows that the composition bi+1[1]◦bi : Ii/Ii+1 → (Ii+1/Ii+2)[1]→ (Ii+2/Ii+3)[2]
is zero in D(OX) by using the criterion in Derived Categories, Lemma 27.7 using
that the module Ii/Ii+3 is an extension of Ii+1/Ii+3 by Ii/Ii+1.
Lemma 55.8.0GT9 In Situation 55.2 let M be an object of D(OX). There is a canonical
isomorphism

LηIM ⊗L OX/I −→ H•(M/I)

https://stacks.math.columbia.edu/tag/0GT9
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in D(OX) where the right hand side is the complex (55.7.2).

Proof. By the construction of LηI in Lemma 55.6 we may assume M is represented
by a complex of I-torsion free OX -modules F•. Then LηIM is represented by
the complex ηIF• which is a complex of I-torsion free OX -modules as well. Thus
LηIM⊗LOX/I is represented by the complex ηIF•⊗OX/I. Similarly, the complex
H•(M/I) has terms Hi(F• ⊗ Ii/Ii+1).
Let f be a local generator for I. Let s be a local section of (ηIF)i. Then we can
write s = f is′ for a local section s′ of F i and similarly di(s) = f i+1t for a local
section t of F i+1. Thus di maps f is′ to zero in F i+1 ⊗ Ii/Ii+1. Hence we may
map s to the class of f is′ in Hi(F• ⊗ Ii/Ii+1). This rule defines a map

(ηIF)i ⊗OX/I −→ Hi(F• ⊗ Ii/Ii+1)
of OX -modules. A calculation shows that these maps are compatible with differen-
tials (essentially because β sends the class of f is′ to the class of f i+1t), whence a
map of complexes representing the arrow in the statement of the lemma.
To finish the proof, we observe that the construction given in the previous paragraph
agrees on stalks with the maps constructed in More on Algebra, Lemma 95.6 hence
we conclude. □

Lemma 55.9.0F9W In Situation 55.2 let F• be a complex of I-torsion free OX-modules.
Let L be an invertible OX-module. Then ηI(F• ⊗ L) = (ηIF•)⊗ L.

Proof. Immediate from the construction. □

Lemma 55.10.0GTA In Situation 55.2 let M be an object of D(OX). Let x ∈ X with
OX,x nonzero. If Hi(M)x is finite free over OX,x, then Hi(LηIM)x is finite free
over OX,x of the same rank.

Proof. Namely, say f ∈ OX,x generates the stalk Ix. Then f is a nonzerodivisor
in OX,x and hence Hi(M)x[f ] = 0. Thus by Lemma 55.5 we see that Hi(LηIM)x
is isomorphic to Iix ⊗OX,x

Hi(M)x which is free of the same rank as desired. □
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