CONVENTIONS

Contents

1. Comments 1
2. Set theory 1
3. Categories 1
4. Algebra 1
5. Notation 1
6. Other chapters 2
References 3

1. Comments

The philosophy behind the conventions used in writing these documents is to choose those conventions that work.

2. Set theory

We use Zermelo-Fraenkel set theory with the axiom of choice. See [Kun83]. We do not use universes (different from SGA4). We do not stress set-theoretic issues, but we make sure everything is correct (of course) and so we do not ignore them either.

3. Categories

A category \(\mathcal{C} \) consists of a set of objects and, for each pair of objects, a set of morphisms between them. In other words, it is what is called a “small” category in other texts. We will use “big” categories (categories whose objects form a proper class) as well, but only those that are listed in Categories, Remark 2.2.

4. Algebra

In these notes a ring is a commutative ring with a 1. Hence the category of rings has an initial object \(\mathbb{Z} \) and a final object \{0\} (this is the unique ring where 1 = 0). Modules are assumed unitary. See [Eis95].

5. Notation

The natural integers are elements of \(\mathbb{N} = \{1, 2, 3, \ldots\} \). The integers are elements of \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \). The field of rational numbers is denoted \(\mathbb{Q} \). The field of real numbers is denoted \(\mathbb{R} \). The field of complex numbers is denoted \(\mathbb{C} \).
6. Other chapters

Preliminaries
- **(1)** Introduction
- **(2)** Conventions
- **(3)** Set Theory
- **(4)** Categories
- **(5)** Topology
- **(6)** Sheaves on Spaces
- **(7)** Sites and Sheaves
- **(8)** Stacks
- **(9)** Fields
- **(10)** Commutative Algebra
- **(11)** Brauer Groups
- **(12)** Homological Algebra
- **(13)** Derived Categories
- **(14)** Simplicial Methods
- **(15)** More on Algebra
- **(16)** Smoothing Ring Maps
- **(17)** Sheaves of Modules
- **(18)** Modules on Sites
- **(19)** Injectives
- **(20)** Cohomology of Sheaves
- **(21)** Cohomology on Sites
- **(22)** Differential Graded Algebra
- **(23)** Divided Power Algebra
- **(24)** Differential Graded Sheaves
- **(25)** Hypercoverings

Schemes
- **(26)** Schemes
- **(27)** Constructions of Schemes
- **(28)** Properties of Schemes
- **(29)** Morphisms of Schemes
- **(30)** Cohomology of Schemes
- **(31)** Divisors
- **(32)** Limits of Schemes
- **(33)** Varieties
- **(34)** Topologies on Schemes
- **(35)** Descent
- **(36)** Derived Categories of Schemes
- **(37)** More on Morphisms
- **(38)** More on Flatness
- **(39)** Groupoid Schemes
- **(40)** More on Groupoid Schemes
- **(41)** Étale Morphisms of Schemes

Topics in Scheme Theory
- **(42)** Chow Homology
- **(43)** Intersection Theory
- **(44)** Picard Schemes of Curves
- **(45)** Weil Cohomology Theories
- **(46)** Adequate Modules
- **(47)** Dualizing Complexes
- **(48)** Duality for Schemes
- **(49)** Discriminants and Differences
- **(50)** de Rham Cohomology
- **(51)** Local Cohomology
- **(52)** Algebraic and Formal Geometry
- **(53)** Algebraic Curves
- **(54)** Resolution of Surfaces
- **(55)** Semistable Reduction
- **(56)** Fundamental Groups of Schemes
- **(57)** Étale Cohomology
- **(58)** Crystalline Cohomology
- **(59)** Pro-étale Cohomology
- **(60)** More Étale Cohomology
- **(61)** The Trace Formula

Algebraic Spaces
- **(62)** Algebraic Spaces
- **(63)** Properties of Algebraic Spaces
- **(64)** Morphisms of Algebraic Spaces
- **(65)** Decent Algebraic Spaces
- **(66)** Cohomology of Algebraic Spaces
- **(67)** Limits of Algebraic Spaces
- **(68)** Divisors on Algebraic Spaces
- **(69)** Algebraic Spaces over Fields
- **(70)** Topologies on Algebraic Spaces
- **(71)** Descent and Algebraic Spaces
- **(72)** Derived Categories of Spaces
- **(73)** More on Morphisms of Spaces
- **(74)** Flatness on Algebraic Spaces
- **(75)** Groupoids in Algebraic Spaces
- **(76)** More on Groupoids in Spaces
- **(77)** Bootstrap
- **(78)** Pushouts of Algebraic Spaces

Topics in Geometry
- **(79)** Chow Groups of Spaces
- **(80)** Quotients of Groupoids
- **(81)** More on Cohomology of Spaces
- **(82)** Simplicial Spaces
- **(83)** Duality for Spaces
- **(84)** Formal Algebraic Spaces
- **(85)** Restricted Power Series
- **(86)** Resolution of Surfaces Revisited
Deformation Theory

(87) Formal Deformation Theory
(88) Deformation Theory
(89) The Cotangent Complex
(90) Deformation Problems

Algebraic Stacks

(91) Algebraic Stacks
(92) Examples of Stacks
(93) Sheaves on Algebraic Stacks
(94) Criteria for Representability
(95) Artin’s Axioms
(96) Quot and Hilbert Spaces
(97) Properties of Algebraic Stacks
(98) Morphisms of Algebraic Stacks
(99) Limits of Algebraic Stacks
(100) Cohomology of Algebraic Stacks
(101) Derived Categories of Stacks

Introducing Algebraic Stacks

(102) More on Morphisms of Stacks
(104) The Geometry of Stacks

Topics in Moduli Theory

(105) Moduli Stacks
(106) Moduli of Curves

Miscellany

(107) Examples
(108) Exercises
(109) Guide to Literature
(110) Desirables
(111) Coding Style
(112) Obsolete
(113) GNU Free Documentation License
(114) Auto Generated Index

References
