CONVENTIONS

0002

Contents

1.	Comments	1
2.	Set theory	1
3.	Categories	1
4.	Algebra	1
5.	Notation	1
6.	Other chapters	2
Rei	ferences	3

1. Comments

0003 The philosophy behind the conventions used in writing these documents is to choose those conventions that work.

2. Set theory

0004 We use Zermelo-Fraenkel set theory with the axiom of choice. See [Kun83]. We do not use universes (different from SGA4). We do not stress set-theoretic issues, but we make sure everything is correct (of course) and so we do not ignore them either.

3. Categories

0005 A category \mathcal{C} consists of a set of objects and, for each pair of objects, a set of morphisms between them. In other words, it is what is called a "small" category in other texts. We will use "big" categories (categories whose objects form a proper class) as well, but only those that are listed in Categories, Remark 2.2.

4. Algebra

0006 In these notes a ring is a commutative ring with a 1. Hence the category of rings has an initial object \mathbb{Z} and a final object $\{0\}$ (this is the unique ring where 1=0). Modules are assumed unitary. See [Eis95].

5. Notation

055X The natural integers are elements of $\mathbf{N} = \{1, 2, 3, ...\}$. The integers are elements of $\mathbf{Z} = \{..., -2, -1, 0, 1, 2, ...\}$. The field of rational numbers is denoted \mathbf{Q} . The field of real numbers is denoted \mathbf{R} . The field of complex numbers is denoted \mathbf{C} .

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.

6. Other chapters

Preliminaries

- (1) Introduction
- (2) Conventions
- (3) Set Theory
- (4) Categories
- (5) Topology
- (6) Sheaves on Spaces
- (7) Sites and Sheaves
- (8) Stacks
- (9) Fields
- (10) Commutative Algebra
- (11) Brauer Groups
- (12) Homological Algebra
- (13) Derived Categories
- (14) Simplicial Methods
- (15) More on Algebra
- (16) Smoothing Ring Maps
- (17) Sheaves of Modules
- (18) Modules on Sites
- (19) Injectives
- (20) Cohomology of Sheaves
- (21) Cohomology on Sites
- (22) Differential Graded Algebra
- (23) Divided Power Algebra
- (24) Differential Graded Sheaves
- (25) Hypercoverings

Schemes

- (26) Schemes
- (27) Constructions of Schemes
- (28) Properties of Schemes
- (29) Morphisms of Schemes
- (30) Cohomology of Schemes
- (31) Divisors
- (32) Limits of Schemes
- (33) Varieties
- (34) Topologies on Schemes
- (35) Descent
- (36) Derived Categories of Schemes
- (37) More on Morphisms
- (38) More on Flatness
- (39) Groupoid Schemes
- (40) More on Groupoid Schemes
- (41) Étale Morphisms of Schemes

Topics in Scheme Theory

(42) Chow Homology

- (43) Intersection Theory
- (44) Picard Schemes of Curves
- (45) Weil Cohomology Theories
- (46) Adequate Modules
- (47) Dualizing Complexes
- (48) Duality for Schemes
- (49) Discriminants and Differents
- (50) de Rham Cohomology
- (51) Local Cohomology
- (52) Algebraic and Formal Geometry
- (53) Algebraic Curves
- (54) Resolution of Surfaces
- (55) Semistable Reduction
- (56) Functors and Morphisms
- (57) Derived Categories of Varieties
- (58) Fundamental Groups of Schemes
- (59) Étale Cohomology
- (60) Crystalline Cohomology
- (61) Pro-étale Cohomology
- (62) Relative Cycles
- (63) More Étale Cohomology
- (64) The Trace Formula

Algebraic Spaces

- (65) Algebraic Spaces
- (66) Properties of Algebraic Spaces
- (67) Morphisms of Algebraic Spaces
- (68) Decent Algebraic Spaces
- (69) Cohomology of Algebraic Spaces
- (70) Limits of Algebraic Spaces
- (71) Divisors on Algebraic Spaces
- (72) Algebraic Spaces over Fields
- (73) Topologies on Algebraic Spaces
- (74) Descent and Algebraic Spaces
- (75) Derived Categories of Spaces
- (76) More on Morphisms of Spaces
- (77) Flatness on Algebraic Spaces
- (78) Groupoids in Algebraic Spaces
- (79) More on Groupoids in Spaces
- (80) Bootstrap
- (81) Pushouts of Algebraic Spaces

Topics in Geometry

- (82) Chow Groups of Spaces
- (83) Quotients of Groupoids
- (84) More on Cohomology of Spaces
- (85) Simplicial Spaces
- (86) Duality for Spaces

- (87) Formal Algebraic Spaces
- (88) Algebraization of Formal Spaces
- (89) Resolution of Surfaces Revisited

Deformation Theory

- (90) Formal Deformation Theory
- (91) Deformation Theory
- (92) The Cotangent Complex
- (93) Deformation Problems

Algebraic Stacks

- (94) Algebraic Stacks
- (95) Examples of Stacks
- (96) Sheaves on Algebraic Stacks
- (97) Criteria for Representability
- (98) Artin's Axioms
- (99) Quot and Hilbert Spaces
- (100) Properties of Algebraic Stacks
- (101) Morphisms of Algebraic Stacks
- (102) Limits of Algebraic Stacks

- (103) Cohomology of Algebraic Stacks
- (104) Derived Categories of Stacks
- (105) Introducing Algebraic Stacks
- (106) More on Morphisms of Stacks
- (107) The Geometry of Stacks

Topics in Moduli Theory

- (108) Moduli Stacks
- (109) Moduli of Curves

Miscellany

- (110) Examples
- (111) Exercises
- (112) Guide to Literature
- (113) Desirables
- (114) Coding Style
- (115) Obsolete
- (116) GNU Free Documentation License
- (117) Auto Generated Index

References

[Eis95] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, 1995.

[Kun83] Kenneth Kunen, Set theory, Elsevier Science, 1983.