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1. Introduction

08P6 The goal of this chapter is to construct the cotangent complex of a ring map, of a
morphism of schemes, and of a morphism of algebraic spaces. Some references are
the notes [Qui], the paper [Qui70], and the books [And67] and [Ill72].

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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2. Advice for the reader

08UM In writing this chapter we have tried to minimize the use of simplicial techniques.
We view the choice of a resolution P• of a ring B over a ring A as a tool to
calculating the homology of abelian sheaves on the category CB/A, see Remark 5.5.
This is similar to the role played by a “good cover” to compute cohomology using the
Čech complex. To read a bit on homology on categories, please visit Cohomology
on Sites, Section 39. The derived lower shriek functor Lπ! is to homology what
RΓ(CB/A,−) is to cohomology. The category CB/A, studied in Section 4, is the
opposite of the category of factorizations A → P → B where P is a polynomial
algebra over A. This category comes with maps of sheaves of rings

A −→ O −→ B

where over the object U = (P → B) we have O(U) = P . It turns out that we
obtain the cotangent complex of B over A as

LB/A = Lπ!(ΩO/A ⊗O B)

see Lemma 4.3. We have consistently tried to use this point of view to prove the
basic properties of cotangent complexes of ring maps. In particular, all of the results
can be proven without relying on the existence of standard resolutions, although we
have not done so. The theory is quite satisfactory, except that perhaps the proof
of the fundamental triangle (Proposition 7.4) uses just a little bit more theory on
derived lower shriek functors. To provide the reader with an alternative, we give a
rather complete sketch of an approach to this result based on simple properties of
standard resolutions in Remarks 7.5 and 7.6.

Our approach to the cotangent complex for morphisms of ringed topoi, morphisms
of schemes, morphisms of algebraic spaces, etc is to deduce as much as possible
from the case of “plain ring maps” discussed above.

3. The cotangent complex of a ring map

08PL Let A be a ring. Let AlgA be the category of A-algebras. Consider the pair of adjoint
functors (U, V ) where V : AlgA → Sets is the forgetful functor and U : Sets→ AlgA
assigns to a set E the polynomial algebra A[E] on E over A. LetX• be the simplicial
object of Fun(AlgA,AlgA) constructed in Simplicial, Section 34.

Consider an A-algebra B. Denote P• = X•(B) the resulting simplicial A-algebra.
Recall that P0 = A[B], P1 = A[A[B]], and so on. In particular each term Pn is a
polynomial A-algebra. Recall also that there is an augmentation

ϵ : P• −→ B

where we view B as a constant simplicial A-algebra.

Definition 3.1.08PM Let A→ B be a ring map. The standard resolution of B over A
is the augmentation ϵ : P• → B with terms

P0 = A[B], P1 = A[A[B]], . . .

and maps as constructed above.

It will turn out that we can use the standard resolution to compute left derived
functors in certain settings.

https://stacks.math.columbia.edu/tag/08PM
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Definition 3.2.08PN The cotangent complex LB/A of a ring map A→ B is the complex
of B-modules associated to the simplicial B-module

ΩP•/A ⊗P•,ϵ B

where ϵ : P• → B is the standard resolution of B over A.

In Simplicial, Section 23 we associate a chain complex to a simplicial module, but
here we work with cochain complexes. Thus the term L−n

B/A in degree −n is the
B-module ΩPn/A ⊗Pn,ϵn

B and LmB/A = 0 for m > 0.

Remark 3.3.08PP Let A → B be a ring map. Let A be the category of arrows
ψ : C → B of A-algebras and let S be the category of maps E → B where E is a
set. There are adjoint functors V : A → S (the forgetful functor) and U : S → A
which sends E → B to A[E] → B. Let X• be the simplicial object of Fun(A,A)
constructed in Simplicial, Section 34. The diagram

A

��

// Soo

��
AlgA // Setsoo

commutes. It follows that X•(idB : B → B) is equal to the standard resolution of
B over A.

Lemma 3.4.08S9 Let Ai → Bi be a system of ring maps over a directed index set I.
Then colimLBi/Ai

= LcolimBi/ colimAi
.

Proof. This is true because the forgetful functor V : A-Alg→ Sets and its adjoint
U : Sets → A-Alg commute with filtered colimits. Moreover, the functor B/A 7→
ΩB/A does as well (Algebra, Lemma 131.5). □

4. Simplicial resolutions and derived lower shriek

08PQ Let A→ B be a ring map. Consider the category whose objects are A-algebra maps
α : P → B where P is a polynomial algebra over A (in some set1 of variables) and
whose morphisms s : (α : P → B)→ (α′ : P ′ → B) are A-algebra homomorphisms
s : P → P ′ with α′ ◦ s = α. Let C = CB/A denote the opposite of this category.
The reason for taking the opposite is that we want to think of objects (P, α) as
corresponding to the diagram of affine schemes

Spec(B)

��

// Spec(P )

yy
Spec(A)

We endow C with the chaotic topology (Sites, Example 6.6), i.e., we endow C with
the structure of a site where coverings are given by identities so that all presheaves
are sheaves. Moreover, we endow C with two sheaves of rings. The first is the sheaf

1It suffices to consider sets of cardinality at most the cardinality of B.

https://stacks.math.columbia.edu/tag/08PN
https://stacks.math.columbia.edu/tag/08PP
https://stacks.math.columbia.edu/tag/08S9
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O which sends to object (P, α) to P . Then second is the constant sheaf B, which
we will denote B. We obtain the following diagram of morphisms of ringed topoi

(4.0.1)08PR

(Sh(C), B)
i
//

π

��

(Sh(C),O)

(Sh(∗), B)

The morphism i is the identity on underlying topoi and i♯ : O → B is the obvious
map. The map π is as in Cohomology on Sites, Example 39.1. An important role
will be played in the following by the derived functors Li∗ : D(O) −→ D(B) left
adjoint to Ri∗ = i∗ : D(B) → D(O) and Lπ! : D(B) −→ D(B) left adjoint to
π∗ = π−1 : D(B)→ D(B).

Lemma 4.1.08PS With notation as above let P• be a simplicial A-algebra endowed
with an augmentation ϵ : P• → B. Assume each Pn is a polynomial algebra over A
and ϵ is a trivial Kan fibration on underlying simplicial sets. Then

Lπ!(F) = F(P•, ϵ)

in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

Proof. We will use the criterion of Cohomology on Sites, Lemma 39.7 to prove
this. Given an object U = (Q, β) of C we have to show that

S• = MorC((Q, β), (P•, ϵ))

is homotopy equivalent to a singleton. Write Q = A[E] for some set E (this is
possible by our choice of the category C). We see that

S• = MorSets((E, β|E), (P•, ϵ))

Let ∗ be the constant simplicial set on a singleton. For b ∈ B let Fb,• be the
simplicial set defined by the cartesian diagram

Fb,• //

��

P•

ϵ

��
∗ b // B

With this notation S• =
∏
e∈E Fβ(e),•. Since we assumed ϵ is a trivial Kan fibration

we see that Fb,• → ∗ is a trivial Kan fibration (Simplicial, Lemma 30.3). Thus S• →
∗ is a trivial Kan fibration (Simplicial, Lemma 30.6). Therefore S• is homotopy
equivalent to ∗ (Simplicial, Lemma 30.8). □

In particular, we can use the standard resolution of B over A to compute derived
lower shriek.

Lemma 4.2.08PT Let A→ B be a ring map. Let ϵ : P• → B be the standard resolution
of B over A. Let π be as in (4.0.1). Then

Lπ!(F) = F(P•, ϵ)

in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

https://stacks.math.columbia.edu/tag/08PS
https://stacks.math.columbia.edu/tag/08PT


THE COTANGENT COMPLEX 5

First proof. We will apply Lemma 4.1. Since the terms Pn are polynomial alge-
bras we see the first assumption of that lemma is satisfied. The second assumption is
proved as follows. By Simplicial, Lemma 34.3 the map ϵ is a homotopy equivalence
of underlying simplicial sets. By Simplicial, Lemma 31.9 this implies ϵ induces
a quasi-isomorphism of associated complexes of abelian groups. By Simplicial,
Lemma 31.8 this implies that ϵ is a trivial Kan fibration of underlying simplicial
sets. □

Second proof. We will use the criterion of Cohomology on Sites, Lemma 39.7.
Let U = (Q, β) be an object of C. We have to show that

S• = MorC((Q, β), (P•, ϵ))
is homotopy equivalent to a singleton. Write Q = A[E] for some set E (this is
possible by our choice of the category C). Using the notation of Remark 3.3 we see
that

S• = MorS((E → B), i(P• → B))
By Simplicial, Lemma 34.3 the map i(P• → B) → i(B → B) is a homotopy
equivalence in S. Hence S• is homotopy equivalent to

MorS((E → B), (B → B)) = {∗}
as desired. □

Lemma 4.3.08PU Let A→ B be a ring map. Let π and i be as in (4.0.1). There is a
canonical isomorphism

LB/A = Lπ!(Li∗ΩO/A) = Lπ!(i∗ΩO/A) = Lπ!(ΩO/A ⊗O B)
in D(B).

Proof. For an object α : P → B of the category C the module ΩP/A is a free
P -module. Thus ΩO/A is a flat O-module. Hence Li∗ΩO/A = i∗ΩO/A is the sheaf
of B-modules which associates to α : P → A the B-module ΩP/A ⊗P,α B. By
Lemma 4.2 we see that the right hand side is computed by the value of this sheaf
on the standard resolution which is our definition of the left hand side (Definition
3.2). □

Lemma 4.4.08QE If A→ B is a ring map, then Lπ!(π−1M) = M with π as in (4.0.1).

Proof. This follows from Lemma 4.1 which tells us Lπ!(π−1M) is computed by
(π−1M)(P•, ϵ) which is the constant simplicial object on M . □

Lemma 4.5.08QF If A→ B is a ring map, then H0(LB/A) = ΩB/A.

Proof. We will prove this by a direct calculation. We will use the identification
of Lemma 4.3. There is clearly a map from ΩO/A ⊗ B to the constant sheaf with
value ΩB/A. Thus this map induces a map

H0(LB/A) = H0(Lπ!(ΩO/A ⊗B)) = π!(ΩO/A ⊗B)→ ΩB/A
By choosing an object P → B of CB/A with P → B surjective we see that this map
is surjective (by Algebra, Lemma 131.6). To show that it is injective, suppose that
P → B is an object of CB/A and that ξ ∈ ΩP/A ⊗P B is an element which maps
to zero in ΩB/A. We first choose factorization P → P ′ → B such that P ′ → B
is surjective and P ′ is a polynomial algebra over A. We may replace P by P ′.
If B = P/I, then the kernel ΩP/A ⊗P B → ΩB/A is the image of I/I2 (Algebra,

https://stacks.math.columbia.edu/tag/08PU
https://stacks.math.columbia.edu/tag/08QE
https://stacks.math.columbia.edu/tag/08QF
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Lemma 131.9). Say ξ is the image of f ∈ I. Then we consider the two maps
a, b : P ′ = P [x]→ P , the first of which maps x to 0 and the second of which maps
x to f (in both cases P [x]→ B maps x to zero). We see that ξ and 0 are the image
of dx ⊗ 1 in ΩP ′/A ⊗P ′ B. Thus ξ and 0 have the same image in the colimit (see
Cohomology on Sites, Example 39.1) π!(ΩO/A ⊗B) as desired. □

Lemma 4.6.08QG If B is a polynomial algebra over the ring A, then with π as in
(4.0.1) we have that π! is exact and π!F = F(B → B).

Proof. This follows from Lemma 4.1 which tells us the constant simplicial algebra
on B can be used to compute Lπ!. □

Lemma 4.7.08QH If B is a polynomial algebra over the ring A, then LB/A is quasi-
isomorphic to ΩB/A[0].

Proof. Immediate from Lemmas 4.3 and 4.6. □

5. Constructing a resolution

08PV In the Noetherian finite type case we can construct a “small” simplicial resolution
for finite type ring maps.

Lemma 5.1.08PW Let A be a Noetherian ring. Let A → B be a finite type ring map.
Let A be the category of A-algebra maps C → B. Let n ≥ 0 and let P• be a
simplicial object of A such that

(1) P• → B is a trivial Kan fibration of simplicial sets,
(2) Pk is finite type over A for k ≤ n,
(3) P• = cosknsknP• as simplicial objects of A.

Then Pn+1 is a finite type A-algebra.

Proof. Although the proof we give of this lemma is straightforward, it is a bit
messy. To clarify the idea we explain what happens for low n before giving the
proof in general. For example, if n = 0, then (3) means that P1 = P0 ×B P0. Since
the ring map P0 → B is surjective, this is of finite type over A by More on Algebra,
Lemma 5.1.

If n = 1, then (3) means that

P2 = {(f0, f1, f2) ∈ P 3
1 | d0f0 = d0f1, d1f0 = d0f2, d1f1 = d1f2}

where the equalities take place in P0. Observe that the triple

(d0f0, d1f0, d1f1) = (d0f1, d0f2, d1f2)

is an element of the fibre product P0 ×B P0 ×B P0 over B because the maps di :
P1 → P0 are morphisms over B. Thus we get a map

ψ : P2 −→ P0 ×B P0 ×B P0

The fibre of ψ over an element (g0, g1, g2) ∈ P0 ×B P0 ×B P0 is the set of triples
(f0, f1, f2) of 1-simplices with (d0, d1)(f0) = (g0, g1), (d0, d1)(f1) = (g0, g2), and

https://stacks.math.columbia.edu/tag/08QG
https://stacks.math.columbia.edu/tag/08QH
https://stacks.math.columbia.edu/tag/08PW
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(d0, d1)(f2) = (g1, g2). As P• → B is a trivial Kan fibration the map (d0, d1) :
P1 → P0 ×B P0 is surjective. Thus we see that P2 fits into the cartesian diagram

P2

��

// P 3
1

��
P0 ×B P0 ×B P0 // (P0 ×B P0)3

By More on Algebra, Lemma 5.2 we conclude. The general case is similar, but
requires a bit more notation.

The case n > 1. By Simplicial, Lemma 19.14 the condition P• = cosknsknP•
implies the same thing is true in the category of simplicial A-algebras and hence
in the category of sets (as the forgetful functor from A-algebras to sets commutes
with limits). Thus

Pn+1 = Mor(∆[n+ 1], P•) = Mor(skn∆[n+ 1], sknP•)

by Simplicial, Lemma 11.3 and Equation (19.0.1). We will prove by induction on
1 ≤ k < m ≤ n+ 1 that the ring

Qk,m = Mor(skk∆[m], skkP•)

is of finite type over A. The case k = 1, 1 < m ≤ n + 1 is entirely similar to the
discussion above in the case n = 1. Namely, there is a cartesian diagram

Q1,m

��

// PN1

��
P0 ×B . . .×B P0 // (P0 ×B P0)N

where N =
(
m+1

2
)
. We conclude as before.

Let 1 ≤ k0 ≤ n and assume Qk,m is of finite type over A for all 1 ≤ k ≤ k0 and
k < m ≤ n+ 1. For k0 + 1 < m ≤ n+ 1 we claim there is a cartesian square

Qk0+1,m

��

// PNk0+1

��
Qk0,m

// QNk0,k0+1

where N is the number of nondegenerate (k0 +1)-simplices of ∆[m]. Namely, to see
this is true, think of an element of Qk0+1,m as a function f from the (k0+1)-skeleton
of ∆[m] to P•. We can restrict f to the k0-skeleton which gives the left vertical
map of the diagram. We can also restrict to each nondegenerate (k0 + 1)-simplex
which gives the top horizontal arrow. Moreover, to give such an f is the same thing
as giving its restriction to k0-skeleton and to each nondegenerate (k0 + 1)-face,
provided these agree on the overlap, and this is exactly the content of the diagram.
Moreover, the fact that P• → B is a trivial Kan fibration implies that the map

Pk0 → Qk0,k0+1 = Mor(∂∆[k0 + 1], P•)

is surjective as every map ∂∆[k0 + 1] → B can be extended to ∆[k0 + 1] → B for
k0 ≥ 1 (small argument about constant simplicial sets omitted). Since by induction
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hypothesis the rings Qk0,m, Qk0,k0+1 are finite type A-algebras, so is Qk0+1,m by
More on Algebra, Lemma 5.2 once more. □

Proposition 5.2.08PX Let A be a Noetherian ring. Let A → B be a finite type ring
map. There exists a simplicial A-algebra P• with an augmentation ϵ : P• → B such
that each Pn is a polynomial algebra of finite type over A and such that ϵ is a trivial
Kan fibration of simplicial sets.

Proof. Let A be the category of A-algebra maps C → B. In this proof our
simplicial objects and skeleton and coskeleton functors will be taken in this category.

Choose a polynomial algebra P0 of finite type over A and a surjection P0 → B. As
a first approximation we take P• = cosk0(P0). In other words, P• is the simplicial
A-algebra with terms Pn = P0×A . . .×AP0. (In the final paragraph of the proof this
simplicial object will be denoted P 0

• .) By Simplicial, Lemma 32.3 the map P• → B
is a trivial Kan fibration of simplicial sets. Also, observe that P• = cosk0sk0P•.

Suppose for some n ≥ 0 we have constructed P• (in the final paragraph of the proof
this will be Pn• ) such that

(a) P• → B is a trivial Kan fibration of simplicial sets,
(b) Pk is a finitely generated polynomial algebra for 0 ≤ k ≤ n, and
(c) P• = cosknsknP•

By Lemma 5.1 we can find a finitely generated polynomial algebra Q over A and
a surjection Q → Pn+1. Since Pn is a polynomial algebra the A-algebra maps
si : Pn → Pn+1 lift to maps s′

i : Pn → Q. Set d′
j : Q→ Pn equal to the composition

of Q → Pn+1 and dj : Pn+1 → Pn. We obtain a truncated simplicial object P ′
• of

A by setting P ′
k = Pk for k ≤ n and P ′

n+1 = Q and morphisms d′
i = di and s′

i = si
in degrees k ≤ n − 1 and using the morphisms d′

j and s′
i in degree n. Extend this

to a full simplicial object P ′
• of A using coskn+1. By functoriality of the coskeleton

functors there is a morphism P ′
• → P• of simplicial objects extending the given

morphism of (n+ 1)-truncated simplicial objects. (This morphism will be denoted
Pn+1

• → Pn• in the final paragraph of the proof.)

Note that conditions (b) and (c) are satisfied for P ′
• with n replaced by n+ 1. We

claim the map P ′
• → P• satisfies assumptions (1), (2), (3), and (4) of Simplicial,

Lemmas 32.1 with n+ 1 instead of n. Conditions (1) and (2) hold by construction.
By Simplicial, Lemma 19.14 we see that we have P• = coskn+1skn+1P• and P ′

• =
coskn+1skn+1P

′
• not only in A but also in the category of A-algebras, whence in the

category of sets (as the forgetful functor from A-algebras to sets commutes with all
limits). This proves (3) and (4). Thus the lemma applies and P ′

• → P• is a trivial
Kan fibration. By Simplicial, Lemma 30.4 we conclude that P ′

• → B is a trivial
Kan fibration and (a) holds as well.

To finish the proof we take the inverse limit P• = limPn• of the sequence of simplicial
algebras

. . .→ P 2
• → P 1

• → P 0
•

constructed above. The map P• → B is a trivial Kan fibration by Simplicial,
Lemma 30.5. However, the construction above stabilizes in each degree to a fixed
finitely generated polynomial algebra as desired. □

https://stacks.math.columbia.edu/tag/08PX
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Lemma 5.3.08PY Let A be a Noetherian ring. Let A → B be a finite type ring map.
Let π, B be as in (4.0.1). If F is an B-module such that F(P, α) is a finite B-
module for all α : P = A[x1, . . . , xn]→ B, then the cohomology modules of Lπ!(F)
are finite B-modules.

Proof. By Lemma 4.1 and Proposition 5.2 we can compute Lπ!(F) by a complex
constructed out of the values of F on finite type polynomial algebras. □

Lemma 5.4.08PZ Let A be a Noetherian ring. Let A → B be a finite type ring map.
Then Hn(LB/A) is a finite B-module for all n ∈ Z.

Proof. Apply Lemmas 4.3 and 5.3. □

Remark 5.5 (Resolutions).08QI Let A → B be any ring map. Let us call an aug-
mented simplicial A-algebra ϵ : P• → B a resolution of B over A if each Pn is a
polynomial algebra and ϵ is a trivial Kan fibration of simplicial sets. If P• → B
is an augmentation of a simplicial A-algebra with each Pn a polynomial algebra
surjecting onto B, then the following are equivalent

(1) ϵ : P• → B is a resolution of B over A,
(2) ϵ : P• → B is a quasi-isomorphism on associated complexes,
(3) ϵ : P• → B induces a homotopy equivalence of simplicial sets.

To see this use Simplicial, Lemmas 30.8, 31.9, and 31.8. A resolution P• of B over
A gives a cosimplicial object U• of CB/A as in Cohomology on Sites, Lemma 39.7
and it follows that

Lπ!F = F(P•)
functorially in F , see Lemma 4.1. The (formal part of the) proof of Proposition
5.2 shows that resolutions exist. We also have seen in the first proof of Lemma 4.2
that the standard resolution of B over A is a resolution (so that this terminology
doesn’t lead to a conflict). However, the argument in the proof of Proposition 5.2
shows the existence of resolutions without appealing to the simplicial computations
in Simplicial, Section 34. Moreover, for any choice of resolution we have a canonical
isomorphism

LB/A = ΩP•/A ⊗P•,ϵ B

in D(B) by Lemma 4.3. The freedom to choose an arbitrary resolution can be quite
useful.

Lemma 5.6.08QJ Let A → B be a ring map. Let π, O, B be as in (4.0.1). For any
O-module F we have

Lπ!(F) = Lπ!(Li∗F) = Lπ!(F ⊗L
O B)

in D(Ab).

Proof. It suffices to verify the assumptions of Cohomology on Sites, Lemma 39.12
hold for O → B on CB/A. We will use the results of Remark 5.5 without further
mention. Choose a resolution P• of B over A to get a suitable cosimplicial object
U• of CB/A. Since P• → B induces a quasi-isomorphism on associated complexes
of abelian groups we see that Lπ!O = B. On the other hand Lπ!B is computed by
B(U•) = B. This verifies the second assumption of Cohomology on Sites, Lemma
39.12 and we are done with the proof. □

https://stacks.math.columbia.edu/tag/08PY
https://stacks.math.columbia.edu/tag/08PZ
https://stacks.math.columbia.edu/tag/08QI
https://stacks.math.columbia.edu/tag/08QJ
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Lemma 5.7.08QK Let A→ B be a ring map. Let π, O, B be as in (4.0.1). We have

Lπ!(O) = Lπ!(B) = B and LB/A = Lπ!(ΩO/A ⊗O B) = Lπ!(ΩO/A)

in D(Ab).

Proof. This is just an application of Lemma 5.6 (and the first equality on the right
is Lemma 4.3). □

Here is a special case of the fundamental triangle that is easy to prove.

Lemma 5.8.08SA Let A→ B → C be ring maps. If B is a polynomial algebra over A,
then there is a distinguished triangle LB/A⊗L

BC → LC/A → LC/B → LB/A⊗L
BC[1]

in D(C).

Proof. We will use the observations of Remark 5.5 without further mention. Choose
a resolution ϵ : P• → C of C over B (for example the standard resolution). Since B
is a polynomial algebra over A we see that P• is also a resolution of C over A. Hence
LC/A is computed by ΩP•/A⊗P•,ϵC and LC/B is computed by ΩP•/B⊗P•,ϵC. Since
for each n we have the short exact sequence 0→ ΩB/A ⊗B Pn → ΩPn/A → ΩPn/B

(Algebra, Lemma 138.9) and since LB/A = ΩB/A[0] (Lemma 4.7) we obtain the
result. □

Example 5.9.09D4 Let A → B be a ring map. In this example we will construct an
“explicit” resolution P• of B over A of length 2. To do this we follow the procedure
of the proof of Proposition 5.2, see also the discussion in Remark 5.5.

We choose a surjection P0 = A[ui] → B where ui is a set of variables. Choose
generators ft ∈ P0, t ∈ T of the ideal Ker(P0 → B). We choose P1 = A[ui, xt] with
face maps d0 and d1 the unique A-algebra maps with dj(ui) = ui and d0(xt) = 0 and
d1(xt) = ft. The map s0 : P0 → P1 is the unique A-algebra map with s0(ui) = ui.
It is clear that

P1
d0−d1−−−−→ P0 → B → 0

is exact, in particular the map (d0, d1) : P1 → P0 ×B P0 is surjective. Thus, if P•
denotes the 1-truncated simplicial A-algebra given by P0, P1, d0, d1, and s0, then
the augmentation cosk1(P•) → B is a trivial Kan fibration. The next step of the
procedure in the proof of Proposition 5.2 is to choose a polynomial algebra P2 and
a surjection

P2 −→ cosk1(P•)2

Recall that

cosk1(P•)2 = {(g0, g1, g2) ∈ P 3
1 | d0(g0) = d0(g1), d1(g0) = d0(g2), d1(g1) = d1(g2)}

Thinking of gi ∈ P1 as a polynomial in xt the conditions are

g0(0) = g1(0), g0(ft) = g2(0), g1(ft) = g2(ft)

Thus cosk1(P•)2 contains the elements yt = (xt, xt, ft) and zt = (0, xt, xt). Every
element G in cosk1(P•)2 is of the form G = H + (0, 0, g) where H is in the image
of A[ui, yt, zt] → cosk1(P•)2. Here g ∈ P1 is a polynomial with vanishing constant
term such that g(ft) = 0 in P0. Observe that

(1) g = xtxt′ − ftxt′ and
(2) g =

∑
rtxt with rt ∈ P0 if

∑
rtft = 0 in P0

https://stacks.math.columbia.edu/tag/08QK
https://stacks.math.columbia.edu/tag/08SA
https://stacks.math.columbia.edu/tag/09D4
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are elements of P1 of the desired form. Let

Rel = Ker(
⊕

t∈T
P0 −→ P0), (rt) 7−→

∑
rtft

We set P2 = A[ui, yt, zt, vr, wt,t′ ] where r = (rt) ∈ Rel, with map

P2 −→ cosk1(P•)2

given by yt 7→ (xt, xt, ft), zt 7→ (0, xt, xt), vr 7→ (0, 0,
∑
rtxt), and wt,t′ 7→

(0, 0, xtxt′ − ftxt′). A calculation (omitted) shows that this map is surjective.
Our choice of the map displayed above determines the maps d0, d1, d2 : P2 → P1.
Finally, the procedure in the proof of Proposition 5.2 tells us to choose the maps
s0, s1 : P1 → P2 lifting the two maps P1 → cosk1(P•)2. It is clear that we can take
si to be the unique A-algebra maps determined by s0(xt) = yt and s1(xt) = zt.

6. Functoriality

08QL In this section we consider a commutative square

(6.0.1)08QM

B // B′

A

OO

// A′

OO

of ring maps. We claim there is a canonical B-linear map of complexes

LB/A −→ LB′/A′

associated to this diagram. Namely, if P• → B is the standard resolution of B over
A and P ′

• → B′ is the standard resolution of B′ over A′, then there is a canonical
map P• → P ′

• of simplicial A-algebras compatible with the augmentations P• → B
and P ′

• → B′. This can be seen in terms of the construction of standard resolutions
in Simplicial, Section 34 but in the special case at hand it probably suffices to say
simply that the maps

P0 = A[B] −→ A′[B′] = P ′
0, P1 = A[A[B]] −→ A′[A′[B′]] = P ′

1,

and so on are given by the given maps A → A′ and B → B′. The desired map
LB/A → LB′/A′ then comes from the associated maps ΩPn/A → ΩP ′

n/A
′ .

Another description of the functoriality map can be given as follows. Let C = CB/A
and C′ = C′

B′/A be the categories considered in Section 4. There is a functor

u : C −→ C′, (P, α) 7−→ (P ⊗A A′, c ◦ (α⊗ 1))

where c : B ⊗A A′ → B′ is the obvious map. As discussed in Cohomology on Sites,
Example 39.3 we obtain a morphism of topoi g : Sh(C)→ Sh(C′) and a commutative
diagram of maps of ringed topoi

(6.0.2)08QN

(Sh(C′), B)

π

��

(Sh(C′), B′)

π

��

h
oo (Sh(C), B′)

π′

��

g
oo

(Sh(∗), B) (Sh(∗), B′)foo (Sh(∗), B′)oo

Here h is the identity on underlying topoi and given by the ring map B → B′ on
sheaves of rings. By Cohomology on Sites, Remark 38.7 given F on C and F ′ on C′
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and a transformation t : F → g−1F ′ we obtain a canonical map Lπ!(F)→ Lπ′
!(F ′).

If we apply this to the sheaves
F : (P, α) 7→ ΩP/A ⊗P B, F ′ : (P ′, α′) 7→ ΩP ′/A′ ⊗P ′ B′,

and the transformation t given by the canonical maps
ΩP/A ⊗P B −→ ΩP⊗AA′/A′ ⊗P⊗AA′ B′

to get a canonical map
Lπ!(ΩO/A ⊗O B) −→ Lπ′

!(ΩO′/A′ ⊗O′ B′)
By Lemma 4.3 this gives LB/A → LB′/A′ . We omit the verification that this map
agrees with the map defined above in terms of simplicial resolutions.

Lemma 6.1.08QP Assume (6.0.1) induces a quasi-isomorphism B ⊗L
A A

′ = B′. Then,
with notation as in (6.0.2) and F ′ ∈ Ab(C′), we have Lπ!(g−1F ′) = Lπ′

!(F ′).

Proof. We use the results of Remark 5.5 without further mention. We will apply
Cohomology on Sites, Lemma 39.8. Let P• → B be a resolution. If we can show
that u(P•) = P• ⊗A A′ → B′ is a quasi-isomorphism, then we are done. The
complex of A-modules s(P•) associated to P• (viewed as a simplicial A-module) is
a free A-module resolution of B. Namely, Pn is a free A-module and s(P•)→ B is
a quasi-isomorphism. Thus B ⊗L

A A
′ is computed by s(P•) ⊗A A′ = s(P• ⊗A A′).

Therefore the assumption of the lemma signifies that ϵ′ : P• ⊗A A′ → B′ is a
quasi-isomorphism. □

The following lemma in particular applies when A→ A′ is flat and B′ = B ⊗A A′

(flat base change).

Lemma 6.2.08QQ If (6.0.1) induces a quasi-isomorphism B ⊗L
A A′ = B′, then the

functoriality map induces an isomorphism
LB/A ⊗L

B B
′ −→ LB′/A′

Proof. We will use the notation introduced in Equation (6.0.2). We have

LB/A ⊗L
B B

′ = Lπ!(ΩO/A ⊗O B)⊗L
B B

′ = Lπ!(Lh∗(ΩO/A ⊗O B))
the first equality by Lemma 4.3 and the second by Cohomology on Sites, Lemma
39.6. Since ΩO/A is a flat O-module, we see that ΩO/A ⊗O B is a flat B-module.
Thus Lh∗(ΩO/A ⊗O B) = ΩO/A ⊗O B′ which is equal to g−1(ΩO′/A′ ⊗O′ B′) by
inspection. we conclude by Lemma 6.1 and the fact that LB′/A′ is computed by
Lπ′

!(ΩO′/A′ ⊗O′ B′). □

Remark 6.3.08SB Suppose that we are given a square (6.0.1) such that there exists
an arrow κ : B → A′ making the diagram commute:

B
β
//

κ   

B′

A

OO

α // A′

OO

In this case we claim the functoriality map P• → P ′
• is homotopic to the composition

P• → B → A′ → P ′
•. Namely, using κ the functoriality map factors as

P• → PA′/A′,• → P ′
•

https://stacks.math.columbia.edu/tag/08QP
https://stacks.math.columbia.edu/tag/08QQ
https://stacks.math.columbia.edu/tag/08SB
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where PA′/A′,• is the standard resolution of A′ over A′. Since A′ is the polynomial
algebra on the empty set over A′ we see from Simplicial, Lemma 34.3 that the
augmentation ϵA′/A′ : PA′/A′,• → A′ is a homotopy equivalence of simplicial rings.
Observe that the homotopy inverse map c : A′ → PA′/A′,• constructed in the proof
of that lemma is just the structure morphism, hence we conclude what we want
because the two compositions

P• // PA′/A′,•
id //

c◦ϵA′/A′
// PA′/A′,• // P ′

•

are the two maps discussed above and these are homotopic (Simplicial, Remark
26.5). Since the second map P• → P ′

• induces the zero map ΩP•/A → ΩP ′
•/A

′ we
conclude that the functoriality map LB/A → LB′/A′ is homotopic to zero in this
case.

Lemma 6.4.08SC Let A → B and A → C be ring maps. Then the map LB×C/A →
LB/A ⊕ LC/A is an isomorphism in D(B × C).

Proof. Although this lemma can be deduced from the fundamental triangle we will
give a direct and elementary proof of this now. Factor the ring map A → B × C
as A → A[x] → B × C where x 7→ (1, 0). By Lemma 5.8 we have a distinguished
triangle

LA[x]/A ⊗L
A[x] (B × C)→ LB×C/A → LB×C/A[x] → LA[x]/A ⊗L

A[x] (B × C)[1]

in D(B × C). Similarly we have the distinguished triangles

LA[x]/A ⊗L
A[x] B → LB/A → LB/A[x] → LA[x]/A ⊗L

A[x] B[1]
LA[x]/A ⊗L

A[x] C → LC/A → LC/A[x] → LA[x]/A ⊗L
A[x] C[1]

Thus it suffices to prove the result for B×C over A[x]. Note that A[x]→ A[x, x−1] is
flat, that (B×C)⊗A[x]A[x, x−1] = B⊗A[x]A[x, x−1], and that C⊗A[x]A[x, x−1] = 0.
Thus by base change (Lemma 6.2) the map LB×C/A[x] → LB/A[x]⊕LC/A[x] becomes
an isomorphism after inverting x. In the same way one shows that the map becomes
an isomorphism after inverting x− 1. This proves the lemma. □

7. The fundamental triangle

08QR In this section we consider a sequence of ring maps A→ B → C. It is our goal to
show that this triangle gives rise to a distinguished triangle

(7.0.1)08QS LB/A ⊗L
B C → LC/A → LC/B → LB/A ⊗L

B C[1]

in D(C). This will be proved in Proposition 7.4. For an alternative approach see
Remark 7.5.

Consider the category CC/B/A wich is the opposite of the category whose objects
are (P → B,Q→ C) where

(1) P is a polynomial algebra over A,
(2) P → B is an A-algebra homomorphism,
(3) Q is a polynomial algebra over P , and
(4) Q→ C is a P -algebra-homomorphism.

https://stacks.math.columbia.edu/tag/08SC
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We take the opposite as we want to think of (P → B,Q→ C) as corresponding to
the commutative diagram

Spec(C)

��

// Spec(Q)

��
Spec(B)

��

// Spec(P )

yy
Spec(A)

Let CB/A, CC/A, CC/B be the categories considered in Section 4. There are functors

u1 : CC/B/A → CB/A, (P → B,Q→ C) 7→ (P → B)
u2 : CC/B/A → CC/A, (P → B,Q→ C) 7→ (Q→ C)
u3 : CC/B/A → CC/B , (P → B,Q→ C) 7→ (Q⊗P B → C)

These functors induce corresponding morphisms of topoi gi. Let us denote Oi =
g−1
i O so that we get morphisms of ringed topoi

(7.0.2)08QT
g1 : (Sh(CC/B/A),O1) −→ (Sh(CB/A),O)
g2 : (Sh(CC/B/A),O2) −→ (Sh(CC/A),O)
g3 : (Sh(CC/B/A),O3) −→ (Sh(CC/B),O)

Let us denote π : Sh(CC/B/A) → Sh(∗), π1 : Sh(CB/A) → Sh(∗), π2 : Sh(CC/A) →
Sh(∗), and π3 : Sh(CC/B) → Sh(∗), so that π = πi ◦ gi. We will obtain our
distinguished triangle from the identification of the cotangent complex in Lemma
4.3 and the following lemmas.

Lemma 7.1.08QU With notation as in (7.0.2) set

Ω1 = ΩO/A ⊗O B on CB/A
Ω2 = ΩO/A ⊗O C on CC/A
Ω3 = ΩO/B ⊗O C on CC/B

Then we have a canonical short exact sequence of sheaves of C-modules

0→ g−1
1 Ω1 ⊗B C → g−1

2 Ω2 → g−1
3 Ω3 → 0

on CC/B/A.

Proof. Recall that g−1
i is gotten by simply precomposing with ui. Given an object

U = (P → B,Q→ C) we have a split short exact sequence

0→ ΩP/A ⊗Q→ ΩQ/A → ΩQ/P → 0

for example by Algebra, Lemma 138.9. Tensoring with C over Q we obtain a short
exact sequence

0→ ΩP/A ⊗ C → ΩQ/A ⊗ C → ΩQ/P ⊗ C → 0

We have ΩP/A⊗C = ΩP/A⊗B⊗C whence this is the value of g−1
1 Ω1⊗BC on U . The

module ΩQ/A⊗C is the value of g−1
2 Ω2 on U . We have ΩQ/P ⊗C = ΩQ⊗PB/B ⊗C

by Algebra, Lemma 131.12 hence this is the value of g−1
3 Ω3 on U . Thus the short

exact sequence of the lemma comes from assigning to U the last displayed short
exact sequence. □

https://stacks.math.columbia.edu/tag/08QU
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Lemma 7.2.08QV With notation as in (7.0.2) suppose that C is a polynomial algebra
over B. Then Lπ!(g−1

3 F) = Lπ3,!F = π3,!F for any abelian sheaf F on CC/B
Proof. Write C = B[E] for some set E. Choose a resolution P• → B of B over
A. For every n consider the object Un = (Pn → B,Pn[E] → C) of CC/B/A. Then
U• is a cosimplicial object of CC/B/A. Note that u3(U•) is the constant cosimplicial
object of CC/B with value (C → C). We will prove that the object U• of CC/B/A
satisfies the hypotheses of Cohomology on Sites, Lemma 39.7. This implies the
lemma as it shows that Lπ!(g−1

3 F) is computed by the constant simplicial abelian
group F(C → C) which is the value of Lπ3,!F = π3,!F by Lemma 4.6.

Let U = (β : P → B, γ : Q→ C) be an object of CC/B/A. We may write P = A[S]
and Q = A[S ⨿ T ] by the definition of our category CC/B/A. We have to show that

MorCC/B/A
(U•, U)

is homotopy equivalent to a singleton simplicial set ∗. Observe that this simplicial
set is the product ∏

s∈S
Fs ×

∏
t∈T

F ′
t

where Fs is the corresponding simplicial set for Us = (A[{s}] → B,A[{s}] → C)
and F ′

t is the corresponding simplicial set for Ut = (A→ B,A[{t}]→ C). Namely,
the object U is the product

∏
Us ×

∏
Ut in CC/B/A. It suffices each Fs and F ′

t

is homotopy equivalent to ∗, see Simplicial, Lemma 26.10. The case of Fs follows
as P• → B is a trivial Kan fibration (as a resolution) and Fs is the fibre of this
map over β(s). (Use Simplicial, Lemmas 30.3 and 30.8). The case of F ′

t is more
interesting. Here we are saying that the fibre of

P•[E] −→ C = B[E]

over γ(t) ∈ C is homotopy equivalent to a point. In fact we will show this map is
a trivial Kan fibration. Namely, P• → B is a trivial can fibration. For any ring R
we have

R[E] = colimΣ⊂Map(E,Z≥0) finite
∏

I∈Σ
R

(filtered colimit). Thus the displayed map of simplicial sets is a filtered colimit of
trivial Kan fibrations, whence a trivial Kan fibration by Simplicial, Lemma 30.7. □

Lemma 7.3.08QW With notation as in (7.0.2) we have Lgi,! ◦ g−1
i = id for i = 1, 2, 3

and hence also Lπ! ◦ g−1
i = Lπi,! for i = 1, 2, 3.

Proof. Proof for i = 1. We claim the functor CC/B/A is a fibred category over CB/A
Namely, suppose given (P → B,Q → C) and a morphism (P ′ → B) → (P → B)
of CB/A. Recall that this means we have an A-algebra homomorphism P → P ′

compatible with maps to B. Then we set Q′ = Q ⊗P P ′ with induced map to C
and the morphism

(P ′ → B,Q′ → C) −→ (P → B,Q→ C)

in CC/B/A (note reversal arrows again) is strongly cartesian in CC/B/A over CB/A.
Moreover, observe that the fibre category of u1 over P → B is the category CC/P .
Let F be an abelian sheaf on CB/A. Since we have a fibred category we may
apply Cohomology on Sites, Lemma 40.2. Thus Lng1,!g

−1
1 F is the (pre)sheaf which

assigns to U ∈ Ob(CB/A) the nth homology of g−1
1 F restricted to the fibre category

https://stacks.math.columbia.edu/tag/08QV
https://stacks.math.columbia.edu/tag/08QW
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over U . Since these restrictions are constant the desired result follows from Lemma
4.4 via our identifications of fibre categories above.
The case i = 2. We claim CC/B/A is a fibred category over CC/A is a fibred category.
Namely, suppose given (P → B,Q → C) and a morphism (Q′ → C) → (Q → C)
of CC/A. Recall that this means we have a B-algebra homomorphism Q → Q′

compatible with maps to C. Then
(P → B,Q′ → C) −→ (P → B,Q→ C)

is strongly cartesian in CC/B/A over CC/A. Note that the fibre category of u2 over
Q → C has an final (beware reversal arrows) object, namely, (A → B,Q → C).
Let F be an abelian sheaf on CC/A. Since we have a fibred category we may apply
Cohomology on Sites, Lemma 40.2. Thus Lng2,!g

−1
2 F is the (pre)sheaf which assigns

to U ∈ Ob(CC/A) the nth homology of g−1
1 F restricted to the fibre category over

U . Since these restrictions are constant the desired result follows from Cohomology
on Sites, Lemma 39.5 because the fibre categories all have final objects.
The case i = 3. In this case we will apply Cohomology on Sites, Lemma 40.3 to u =
u3 : CC/B/A → CC/B and F ′ = g−1

3 F for some abelian sheaf F on CC/B . Suppose
U = (Q→ C) is an object of CC/B . Then IU = CQ/B/A (again beware of reversal of
arrows). The sheaf F ′

U is given by the rule (P → B,Q→ Q) 7→ F(Q⊗P B → C).
In other words, this sheaf is the pullback of a sheaf on CQ/C via the morphism
Sh(CQ/B/A) → Sh(CQ/B). Thus Lemma 7.2 shows that Hn(IU ,F ′

U ) = 0 for n > 0
and equal to F(Q → C) for n = 0. The aforementioned Cohomology on Sites,
Lemma 40.3 implies that Lg3,!(g−1

3 F) = F and the proof is done. □

Proposition 7.4.08QX Let A → B → C be ring maps. There is a canonical distin-
guished triangle

LB/A ⊗L
B C → LC/A → LC/B → LB/A ⊗L

B C[1]
in D(C).
Proof. Consider the short exact sequence of sheaves of Lemma 7.1 and apply the
derived functor Lπ! to obtain a distinguished triangle

Lπ!(g−1
1 Ω1 ⊗B C)→ Lπ!(g−1

2 Ω2)→ Lπ!(g−1
3 Ω3)→ Lπ!(g−1

1 Ω1 ⊗B C)[1]
in D(C). Using Lemmas 7.3 and 4.3 we see that the second and third terms agree
with LC/A and LC/B and the first one equals

Lπ1,!(Ω1 ⊗B C) = Lπ1,!(Ω1)⊗L
B C = LB/A ⊗L

B C

The first equality by Cohomology on Sites, Lemma 39.6 (and flatness of Ω1 as a
sheaf of modules over B) and the second by Lemma 4.3. □

Remark 7.5.08SD We sketch an alternative, perhaps simpler, proof of the existence of
the fundamental triangle. Let A→ B → C be ring maps and assume that B → C
is injective. Let P• → B be the standard resolution of B over A and let Q• → C
be the standard resolution of C over B. Picture

P• : A[A[A[B]]]

��

//
//
//
A[A[B]]

��

//
//oo

oo
A[B]

��

oo // B

Q• : A[A[A[C]]]
//
//
//
A[A[C]] //

//oo
oo

A[C]oo // C

https://stacks.math.columbia.edu/tag/08QX
https://stacks.math.columbia.edu/tag/08SD
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Observe that since B → C is injective, the ring Qn is a polynomial algebra over Pn
for all n. Hence we obtain a cosimplicial object in CC/B/A (beware reversal arrows).
Now set Q• = Q• ⊗P• B. The key to the proof of Proposition 7.4 is to show that
Q• is a resolution of C over B. This follows from Cohomology on Sites, Lemma
39.12 applied to C = ∆, O = P•, O′ = B, and F = Q• (this uses that Qn is flat
over Pn; see Cohomology on Sites, Remark 39.11 to relate simplicial modules to
sheaves). The key fact implies that the distinguished triangle of Proposition 7.4
is the distinguished triangle associated to the short exact sequence of simplicial
C-modules

0→ ΩP•/A ⊗P• C → ΩQ•/A ⊗Q• C → ΩQ•/B
⊗Q•

C → 0

which is deduced from the short exact sequences 0 → ΩPn/A ⊗Pn
Qn → ΩQn/A →

ΩQn/Pn
→ 0 of Algebra, Lemma 138.9. Namely, by Remark 5.5 and the key fact

the complex on the right hand side represents LC/B in D(C).
IfB → C is not injective, then we can use the above to get a fundamental triangle for
A→ B → B×C. Since LB×C/B → LB/B⊕LC/B and LB×C/A → LB/A⊕LC/A are
quasi-isomorphism in D(B×C) (Lemma 6.4) this induces the desired distinguished
triangle in D(C) by tensoring with the flat ring map B × C → C.

Remark 7.6.08SE Let A → B → C be ring maps with B → C injective. Recall
the notation P•, Q•, Q• of Remark 7.5. Let R• be the standard resolution of
C over B. In this remark we explain how to get the canonical identification of
ΩQ•/B

⊗Q•
C with LC/B = ΩR•/B ⊗R• C. Let S• → B be the standard resolution

of B over B. Note that the functoriality map S• → R• identifies Rn as a polynomial
algebra over Sn because B → C is injective. For example in degree 0 we have the
map B[B] → B[C], in degree 1 the map B[B[B]] → B[B[C]], and so on. Thus
R• = R• ⊗S• B is a simplicial polynomial algebra over B as well and it follows
(as in Remark 7.5) from Cohomology on Sites, Lemma 39.12 that R• → C is a
resolution. Since we have a commutative diagram

Q• // R•

P•

OO

// S•

OO

// B

we obtain a canonical map Q• = Q• ⊗P• B → R•. Thus the maps
LC/B = ΩR•/B ⊗R• C −→ ΩR•/B

⊗R•
C ←− ΩQ•/B

⊗Q•
C

are quasi-isomorphisms (Remark 5.5) and composing one with the inverse of the
other gives the desired identification.

8. Localization and étale ring maps

08QY In this section we study what happens if we localize our rings. Let A → A′ → B
be ring maps such that B = B ⊗L

A A
′. This happens for example if A′ = S−1A is

the localization of A at a multiplicative subset S ⊂ A. In this case for an abelian
sheaf F ′ on CB/A′ the homology of g−1F ′ over CB/A agrees with the homology of
F ′ over CB/A′ , see Lemma 6.1 for a precise statement.

Lemma 8.1.08QZ Let A → A′ → B be ring maps such that B = B ⊗L
A A

′. Then
LB/A = LB/A′ in D(B).

https://stacks.math.columbia.edu/tag/08SE
https://stacks.math.columbia.edu/tag/08QZ
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Proof. According to the discussion above (i.e., using Lemma 6.1) and Lemma 4.3
we have to show that the sheaf given by the rule (P → B) 7→ ΩP/A ⊗P B on
CB/A is the pullback of the sheaf given by the rule (P → B) 7→ ΩP/A′ ⊗P B. The
pullback functor g−1 is given by precomposing with the functor u : CB/A → CB/A′ ,
(P → B) 7→ (P ⊗A A′ → B). Thus we have to show that

ΩP/A ⊗P B = ΩP⊗AA′/A′ ⊗(P⊗AA′) B

By Algebra, Lemma 131.12 the right hand side is equal to
(ΩP/A ⊗A A′)⊗(P⊗AA′) B

Since P is a polynomial algebra over A the module ΩP/A is free and the equality is
obvious. □

Lemma 8.2.08R0 Let A→ B be a ring map such that B = B ⊗L
A B. Then LB/A = 0

in D(B).

Proof. This is true because LB/A = LB/B = 0 by Lemmas 8.1 and 4.7. □

Lemma 8.3.08R1 Let A → B be a ring map such that TorAi (B,B) = 0 for i > 0 and
such that LB/B⊗AB = 0. Then LB/A = 0 in D(B).

Proof. By Lemma 6.2 we see that LB/A ⊗L
B (B ⊗A B) = LB⊗AB/B . Now we use

the distinguished triangle (7.0.1)
LB⊗AB/B ⊗

L
(B⊗AB) B → LB/B → LB/B⊗AB → LB⊗AB/B ⊗

L
(B⊗AB) B[1]

associated to the ring maps B → B⊗AB → B and the vanishing of LB/B (Lemma
4.7) and LB/B⊗AB (assumed) to see that

0 = LB⊗AB/B ⊗
L
(B⊗AB) B = LB/A ⊗L

B (B ⊗A B)⊗L
(B⊗AB) B = LB/A

as desired. □

Lemma 8.4.08R2 The cotangent complex LB/A is zero in each of the following cases:
(1) A → B and B ⊗A B → B are flat, i.e., A → B is weakly étale (More on

Algebra, Definition 104.1),
(2) A→ B is a flat epimorphism of rings,
(3) B = S−1A for some multiplicative subset S ⊂ A,
(4) A→ B is unramified and flat,
(5) A→ B is étale,
(6) A → B is a filtered colimit of ring maps for which the cotangent complex

vanishes,
(7) B is a henselization of a local ring of A,
(8) B is a strict henselization of a local ring of A, and
(9) add more here.

Proof. In case (1) we may apply Lemma 8.2 to the surjective flat ring map B ⊗A
B → B to conclude that LB/B⊗AB = 0 and then we use Lemma 8.3 to conclude.
The cases (2) – (5) are each special cases of (1). Part (6) follows from Lemma
3.4. Parts (7) and (8) follows from the fact that (strict) henselizations are filtered
colimits of étale ring extensions of A, see Algebra, Lemmas 155.7 and 155.11. □

Lemma 8.5.08R3 Let A → B → C be ring maps such that LC/B = 0. Then LC/A =
LB/A ⊗L

B C.

https://stacks.math.columbia.edu/tag/08R0
https://stacks.math.columbia.edu/tag/08R1
https://stacks.math.columbia.edu/tag/08R2
https://stacks.math.columbia.edu/tag/08R3
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Proof. This is a trivial consequence of the distinguished triangle (7.0.1). □

Lemma 8.6.08SF Let A → B be ring maps and S ⊂ A, T ⊂ B multiplicative subsets
such that S maps into T . Then LT−1B/S−1A = LB/A ⊗B T−1B in D(T−1B).

Proof. Lemma 8.5 shows that LT−1B/A = LB/A ⊗B T−1B and Lemma 8.1 shows
that LT−1B/A = LT−1B/S−1A. □

Lemma 8.7.08UN Let A → B be a local ring homomorphism of local rings. Let
Ah → Bh, resp. Ash → Bsh be the induced maps of henselizations, resp. strict
henselizations. Then
LBh/Ah = LBh/A = LB/A ⊗L

B B
h resp. LBsh/Ash = LBsh/A = LB/A ⊗L

B B
sh

in D(Bh), resp. D(Bsh).

Proof. The complexes LAh/A, LAsh/A, LBh/B , and LBsh/B are all zero by Lemma
8.4. Using the fundamental distinguished triangle (7.0.1) for A → B → Bh we
obtain LBh/A = LB/A ⊗L

B B
h. Using the fundamental triangle for A → Ah → Bh

we obtain LBh/Ah = LBh/A. Similarly for strict henselizations. □

9. Smooth ring maps

08R4 Let C → B be a surjection of rings with kernel I. Let us call such a ring map
“weakly quasi-regular” if I/I2 is a flat B-module and TorC∗ (B,B) is the exterior
algebra on I/I2. The generalization to “smooth ring maps” of what is done in
Lemma 8.4 for “étale ring maps” is to look at flat ring maps A→ B such that the
multiplication map B ⊗A B → B is weakly quasi-regular. For the moment we just
stick to smooth ring maps.

Lemma 9.1.08R5 If A→ B is a smooth ring map, then LB/A = ΩB/A[0].

Proof. We have the agreement in cohomological degree 0 by Lemma 4.5. Thus
it suffices to prove the other cohomology groups are zero. It suffices to prove this
locally on Spec(B) as LBg/A = (LB/A)g for g ∈ B by Lemma 8.5. Thus we may
assume that A→ B is standard smooth (Algebra, Lemma 137.10), i.e., that we can
factor A → B as A → A[x1, . . . , xn] → B with A[x1, . . . , xn] → B étale. In this
case Lemmas 8.4 and Lemma 8.5 show that LB/A = LA[x1,...,xn]/A ⊗B whence the
conclusion by Lemma 4.7. □

10. Positive characteristic

0G5X In this section we fix a prime number p. If A is a ring with p = 0 in A, then
FA : A→ A denotes the Frobenius endomorphism a 7→ ap.

Lemma 10.1.0G5Y Let A→ B be a ring map with p = 0 in A. Let P• be the standard
resolution of B over A. The map P• → P• induced by the diagram

B
FB

// B

A

OO

FA // A

OO

discussed in Section 6 is homotopic to the Frobenius endomorphism P• → P• given
by Frobenius on each Pn.

https://stacks.math.columbia.edu/tag/08SF
https://stacks.math.columbia.edu/tag/08UN
https://stacks.math.columbia.edu/tag/08R5
https://stacks.math.columbia.edu/tag/0G5Y
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Proof. Let A be the category of Fp-algebra maps A→ B. Let S be the category of
pairs (A,E) where A is an Fp-algebra and E is a set. Consider the adjoint functors

V : A → S, (A→ B) 7→ (A,B)

and
U : S → A, (A,E) 7→ (A→ A[E])

Let X be the simplicial object in in the category of functors fromA toA constructed
in Simplicial, Section 34. It is clear that P• = X(A→ B) because if we fix A then.

Set Y = U ◦ V . Recall that X is constructed from Y and certain maps and has
terms Xn = Y ◦ . . . ◦ Y with n + 1 terms; the construction is given in Simplicial,
Example 33.1 and please see proof of Simplicial, Lemma 34.2 for details.

Let f : idA → idA be the Frobenius endomorphism of the identity functor. In other
words, we set fA→B = (FA, FB) : (A → B) → (A → B). Then our two maps on
X(A → B) are given by the natural transformations f ⋆ 1X and 1X ⋆ f . Details
omitted. Thus we conclude by Simplicial, Lemma 33.6. □

Lemma 10.2.0G5Z Let p be a prime number. Let A → B be a ring homomorphism
and assume that p = 0 in A. The map LB/A → LB/A of Section 6 induced by the
Frobenius maps FA and FB is homotopic to zero.

Proof. Let P• be the standard resolution of B over A. By Lemma 10.1 the map
P• → P• induced by FA and FB is homotopic to the map FP• : P• → P• given by
Frobenius on each term. Hence we obtain what we want as clearly FP• induces the
zero zero map ΩPn/A → ΩPn/A (since the derivative of a pth power is zero). □

Lemma 10.3.0G60 Let p be a prime number. Let A → B be a ring homomorphism
and assume that p = 0 in A. If A and B are perfect, then LB/A is zero in D(B).

Proof. The map (FA, FB) : (A→ B)→ (A→ B) is an isomorphism hence induces
an isomorphism on LB/A and on the other hand induces zero on LB/A by Lemma
10.2. □

11. Comparison with the naive cotangent complex

08R6 The naive cotangent complex was introduced in Algebra, Section 134.

Remark 11.1.08R7 Let A → B be a ring map. Working on CB/A as in Section
4 let J ⊂ O be the kernel of O → B. Note that Lπ!(J ) = 0 by Lemma 5.7.
Set Ω = ΩO/A ⊗O B so that LB/A = Lπ!(Ω) by Lemma 4.3. It follows that
Lπ!(J → Ω) = Lπ!(Ω) = LB/A. Thus, for any object U = (P → B) of CB/A we
obtain a map

(11.1.1)08R8 (J → ΩP/A ⊗P B) −→ LB/A

where J = Ker(P → B) in D(A), see Cohomology on Sites, Remark 39.4. Contin-
uing in this manner, note that Lπ!(J ⊗L

O B) = Lπ!(J ) = 0 by Lemma 5.6. Since
TorO

0 (J , B) = J /J 2 the spectral sequence

Hp(CB/A,TorO
q (J , B))⇒ Hp+q(CB/A,J ⊗L

O B) = 0

(dual of Derived Categories, Lemma 21.3) implies that H0(CB/A,J /J 2) = 0 and
H1(CB/A,J /J 2) = 0. It follows that the complex of B-modules J /J 2 → Ω

https://stacks.math.columbia.edu/tag/0G5Z
https://stacks.math.columbia.edu/tag/0G60
https://stacks.math.columbia.edu/tag/08R7
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satisfies τ≥−1Lπ!(J /J 2 → Ω) = τ≥−1LB/A. Thus, for any object U = (P → B) of
CB/A we obtain a map

(11.1.2)08R9 (J/J2 → ΩP/A ⊗P B) −→ τ≥−1LB/A

in D(B), see Cohomology on Sites, Remark 39.4.

The first case is where we have a surjection of rings.

Lemma 11.2.08RA Let A→ B be a surjective ring map with kernel I. Then H0(LB/A) =
0 and H−1(LB/A) = I/I2. This isomorphism comes from the map (11.1.2) for the
object (A→ B) of CB/A.

Proof. We will show below (using the surjectivity of A → B) that there exists a
short exact sequence

0→ π−1(I/I2)→ J /J 2 → Ω→ 0

of sheaves on CB/A. Taking Lπ! and the associated long exact sequence of homology,
and using the vanishing of H1(CB/A,J /J 2) and H0(CB/A,J /J 2) shown in Remark
11.1 we obtain what we want using Lemma 4.4.

What is left is to verify the local statement mentioned above. For every object
U = (P → B) of CB/A we can choose an isomorphism P = A[E] such that the
map P → B maps each e ∈ E to zero. Then J = J (U) ⊂ P = O(U) is equal to
J = IP + (e; e ∈ E). The value on U of the short sequence of sheaves above is the
sequence

0→ I/I2 → J/J2 → ΩP/A ⊗P B → 0
Verification omitted (hint: the only tricky point is that IP ∩J2 = IJ ; which follows
for example from More on Algebra, Lemma 30.9). □

Lemma 11.3.08RB Let A → B be a ring map. Then τ≥−1LB/A is canonically quasi-
isomorphic to the naive cotangent complex.

Proof. Consider P = A[B] → B with kernel I. The naive cotangent complex
NLB/A of B over A is the complex I/I2 → ΩP/A ⊗P B, see Algebra, Definition
134.1. Observe that in (11.1.2) we have already constructed a canonical map

c : NLB/A −→ τ≥−1LB/A

Consider the distinguished triangle (7.0.1)

LP/A ⊗L
P B → LB/A → LB/P → (LP/A ⊗L

P B)[1]

associated to the ring maps A → A[B] → B. We know that LP/A = ΩP/A[0] =
NLP/A in D(P ) (Lemma 4.7 and Algebra, Lemma 134.3) and that τ≥−1LB/P =
I/I2[1] = NLB/P in D(B) (Lemma 11.2 and Algebra, Lemma 134.6). To show c
is a quasi-isomorphism it suffices by Algebra, Lemma 134.4 and the long exact co-
homology sequence associated to the distinguished triangle to show that the maps
LP/A → LB/A → LB/P are compatible on cohomology groups with the correspond-
ing maps NLP/A → NLB/A → NLB/P of the naive cotangent complex. We omit
the verification. □

Remark 11.4.08UP We can make the comparison map of Lemma 11.3 explicit in the
following way. Let P• be the standard resolution of B over A. Let I = Ker(A[B]→

https://stacks.math.columbia.edu/tag/08RA
https://stacks.math.columbia.edu/tag/08RB
https://stacks.math.columbia.edu/tag/08UP
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B). Recall that P0 = A[B]. The map of the lemma is given by the commutative
diagram

LB/A

��

. . . // ΩP2/A ⊗P2 B
//

��

ΩP1/A ⊗P1 B
//

��

ΩP0/A ⊗P0 B

��
NLB/A . . . // 0 // I/I2 // ΩP0/A ⊗P0 B

We construct the downward arrow with target I/I2 by sending df ⊗ b to the class
of (d0(f)−d1(f))b in I/I2. Here di : P1 → P0, i = 0, 1 are the two face maps of the
simplicial structure. This makes sense as d0 − d1 maps P1 into I = Ker(P0 → B).
We omit the verification that this rule is well defined. Our map is compatible with
the differential ΩP1/A ⊗P1 B → ΩP0/A ⊗P0 B as this differential maps df ⊗ b to
d(d0(f)− d1(f))⊗ b. Moreover, the differential ΩP2/A⊗P2 B → ΩP1/A⊗P1 B maps
df⊗b to d(d0(f)−d1(f)+d2(f))⊗b which are annihilated by our downward arrow.
Hence a map of complexes. We omit the verification that this is the same as the
map of Lemma 11.3.

Remark 11.5.09D5 Adopt notation as in Remark 11.1. The arguments given there
show that the differential

H2(CB/A,J /J 2) −→ H0(CB/A,TorO
1 (J , B))

of the spectral sequence is an isomorphism. Let C′
B/A denote the full subcategory

of CB/A consisting of surjective maps P → B. The agreement of the cotangent
complex with the naive cotangent complex (Lemma 11.3) shows that we have an
exact sequence of sheaves

0→ H1(LB/A)→ J /J 2 d−→ Ω→ H2(LB/A)→ 0

on C′
B/A. It follows that Ker(d) and Coker(d) on the whole category CB/A have van-

ishing higher homology groups, since these are computed by the homology groups
of constant simplicial abelian groups by Lemma 4.1. Hence we conclude that

Hn(CB/A,J /J 2)→ Hn(LB/A)

is an isomorphism for all n ≥ 2. Combined with the remark above we obtain the
formula H2(LB/A) = H0(CB/A,TorO

1 (J , B)).

12. A spectral sequence of Quillen

08RC In this section we discuss a spectral sequence relating derived tensor product to the
cotangent complex.

Lemma 12.1.08RD Notation and assumptions as in Cohomology on Sites, Example
39.1. Assume C has a cosimplicial object as in Cohomology on Sites, Lemma 39.7.
Let F be a flat B-module such that H0(C,F) = 0. Then Hl(C,Symk

B(F)) = 0 for
l < k.

Proof. We drop the subscript B from tensor products, wedge powers, and sym-
metric powers. We will prove the lemma by induction on k. The cases k = 0, 1
follow from the assumptions. If k > 1 consider the exact complex

. . .→ ∧2F ⊗ Symk−2F → F ⊗ Symk−1F → SymkF → 0

https://stacks.math.columbia.edu/tag/09D5
https://stacks.math.columbia.edu/tag/08RD
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with differentials as in the Koszul complex. If we think of this as a resolution of
SymkF , then this gives a first quadrant spectral sequence

Ep,q1 = Hp(C,∧q+1F ⊗ Symk−q−1F)⇒ Hp+q(C,Symk(F))

By Cohomology on Sites, Lemma 39.10 we have

Lπ!(∧q+1F ⊗ Symk−q−1F) = Lπ!(∧q+1F)⊗L
B Lπ!(Symk−q−1F))

It follows (from the construction of derived tensor products) that the induction
hypothesis combined with the vanishing of H0(C,∧q+1(F)) = 0 will prove what we
want. This is true because ∧q+1(F) is a quotient of F⊗q+1 and H0(C,F⊗q+1) is a
quotient of H0(C,F)⊗q+1 which is zero. □

Remark 12.2.08SG In the situation of Lemma 12.1 one can show thatHk(C,Symk(F)) =
∧kB(H1(C,F)). Namely, it can be deduced from the proof that Hk(C,Symk(F)) is
the Sk-coinvariants of

H−k(Lπ!(F)⊗L
B Lπ!(F)⊗L

B . . .⊗L
B Lπ!(F)) = H1(C,F)⊗k

Thus our claim is that this action is given by the usual action of Sk on the tensor
product multiplied by the sign character. To prove this one has to work through
the sign conventions in the definition of the total complex associated to a multi-
complex. We omit the verification.

Lemma 12.3.08RE Let A be a ring. Let P = A[E] be a polynomial ring. Set I =
(e; e ∈ E) ⊂ P . The maps TorPi (A, In+1)→ TorPi (A, In) are zero for all i and n.

Proof. Denote xe ∈ P the variable corresponding to e ∈ E. A free resolution of A
over P is given by the Koszul complex K• on the xe. Here Ki has basis given by
wedges e1∧ . . .∧ei, e1, . . . , ei ∈ E and d(e) = xe. Thus K•⊗P In = InK• computes
TorPi (A, In). Observe that everything is graded with deg(xe) = 1, deg(e) = 1, and
deg(a) = 0 for a ∈ A. Suppose ξ ∈ In+1Ki is a cocycle homogeneous of degree m.
Note that m ≥ i+ 1 +n. Then ξ = dη for some η ∈ Ki+1 as K• is exact in degrees
> 0. (The case i = 0 is left to the reader.) Now deg(η) = m ≥ i + 1 + n. Hence
writing η in terms of the basis we see the coordinates are in In. Thus ξ maps to
zero in the homology of InK• as desired. □

Theorem 12.4 (Quillen spectral sequence).08RF Let A→ B be a surjective ring map.
Consider the sheaf Ω = ΩO/A ⊗O B of B-modules on CB/A, see Section 4. Then
there is a spectral sequence with E1-page

Ep,q1 = H−p−q(CB/A,Symp
B(Ω))⇒ TorA−p−q(B,B)

with dr of bidegree (r,−r + 1). Moreover, Hi(CB/A,Symk
B(Ω)) = 0 for i < k.

Proof. Let I ⊂ A be the kernel of A → B. Let J ⊂ O be the kernel of O → B.
Then IO ⊂ J . Set K = J /IO and O = O/IO.

For every object U = (P → B) of CB/A we can choose an isomorphism P = A[E]
such that the map P → B maps each e ∈ E to zero. Then J = J (U) ⊂ P = O(U)
is equal to J = IP+(e; e ∈ E). Moreover O(U) = B[E] and K = K(U) = (e; e ∈ E)
is the ideal generated by the variables in the polynomial ring B[E]. In particular
it is clear that

K/K2 d−→ ΩP/A ⊗P B

https://stacks.math.columbia.edu/tag/08SG
https://stacks.math.columbia.edu/tag/08RE
https://stacks.math.columbia.edu/tag/08RF
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is a bijection. In other words, Ω = K/K2 and Symk
B(Ω) = Kk/Kk+1. Note that

π!(Ω) = ΩB/A = 0 (Lemma 4.5) as A → B is surjective (Algebra, Lemma 131.4).
By Lemma 12.1 we conclude that

Hi(CB/A,Kk/Kk+1) = Hi(CB/A,Symk
B(Ω)) = 0

for i < k. This proves the final statement of the theorem.

The approach to the theorem is to note that

B ⊗L
A B = Lπ!(O)⊗L

A B = Lπ!(O ⊗L
A B) = Lπ!(O)

The first equality by Lemma 5.7, the second equality by Cohomology on Sites,
Lemma 39.6, and the third equality as O is flat over A. The sheaf O has a filtration

. . . ⊂ K3 ⊂ K2 ⊂ K ⊂ O

This induces a filtration F on a complex C representing Lπ!(O) with F pC repre-
senting Lπ!(Kp) (construction of C and F omitted). Consider the spectral sequence
of Homology, Section 24 associated to (C,F ). It has E1-page

Ep,q1 = H−p−q(CB/A,Kp/Kp+1) ⇒ H−p−q(CB/A,O) = TorA−p−q(B,B)

and differentials Ep,qr → Ep+r,q−r+1
r . To show convergence we will show that for

every k there exists a c such that Hi(CB/A,Kn) = 0 for i < k and n > c2.

Given k ≥ 0 set c = k2. We claim that

Hi(CB/A,Kn+c)→ Hi(CB/A,Kn)

is zero for i < k and all n ≥ 0. Note that Kn/Kn+c has a finite filtration whose
successive quotients Km/Km+1, n ≤ m < n+ c have Hi(CB/A,Km/Km+1) = 0 for
i < n (see above). Hence the claim implies Hi(CB/A,Kn+c) = 0 for i < k and all
n ≥ k which is what we need to show.

Proof of the claim. Recall that for any O-module F the map F → F ⊗L
O B induces

an isomorphism on applying Lπ!, see Lemma 5.6. Consider the map

Kn+k ⊗L
O B −→ Kn ⊗L

O B

We claim that this map induces the zero map on cohomology sheaves in degrees
0,−1, . . . ,−k + 1. If this second claim holds, then the k-fold composition

Kn+c ⊗L
O B −→ Kn ⊗L

O B

factors through τ≤−kKn ⊗L
O B hence induces zero on Hi(CB/A,−) = Liπ!(−) for

i < k, see Derived Categories, Lemma 12.5. By the remark above this means the
same thing is true for Hi(CB/A,Kn+c) → Hi(CB/A,Kn) which proves the (first)
claim.

Proof of the second claim. The statement is local, hence we may work over an
object U = (P → B) as above. We have to show the maps

TorPi (B,Kn+k)→ TorPi (B,Kn)

are zero for i < k. There is a spectral sequence

TorPa (P/IP,TorP/IPb (B,Kn))⇒ TorPa+b(B,Kn),

2A posteriori the “correct” vanishing Hi(CB/A, Kn) = 0 for i < n can be concluded.
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see More on Algebra, Example 62.2. Thus it suffices to prove the maps

TorP/IPi (B,Kn+1)→ TorP/IPi (B,Kn)

are zero for all i. This is Lemma 12.3. □

Remark 12.5.08RG In the situation of Theorem 12.4 let I = Ker(A → B). Then
H−1(LB/A) = H1(CB/A,Ω) = I/I2, see Lemma 11.2. Hence Hk(CB/A,Symk(Ω)) =
∧kB(I/I2) by Remark 12.2. Thus the E1-page looks like

B
0
0 I/I2

0 H−2(LB/A)
0 H−3(LB/A) ∧2(I/I2)
0 H−4(LB/A) H3(CB/A,Sym2(Ω))
0 H−5(LB/A) H4(CB/A,Sym2(Ω)) ∧3(I/I2)

with horizontal differential. Thus we obtain edge maps TorAi (B,B)→ H−i(LB/A),
i > 0 and ∧iB(I/I2)→ TorAi (B,B). Finally, we have TorA1 (B,B) = I/I2 and there
is a five term exact sequence

TorA3 (B,B)→ H−3(LB/A)→ ∧2
B(I/I2)→ TorA2 (B,B)→ H−2(LB/A)→ 0

of low degree terms.

Remark 12.6.09D6 Let A → B be a ring map. Let P• be a resolution of B over A
(Remark 5.5). Set Jn = Ker(Pn → B). Note that

TorPn
2 (B,B) = TorPn

1 (Jn, B) = Ker(Jn ⊗Pn Jn → J2
n).

Hence H2(LB/A) is canonically equal to

Coker(TorP1
2 (B,B)→ TorP0

2 (B,B))

by Remark 11.5. To make this more explicit we choose P2, P1, P0 as in Example
5.9. We claim that

TorP1
2 (B,B) = ∧2(

⊕
t∈T

B) ⊕
⊕

t∈T
J0 ⊕ TorP0

2 (B,B)

Namely, the basis elements xt∧xt′ of the first summand corresponds to the element
xt⊗xt′−xt′⊗xt of J1⊗P1 J1. For f ∈ J0 the element xt⊗f of the second summand
corresponds to the element xt ⊗ s0(f)− s0(f)⊗ xt of J1 ⊗P1 J1. Finally, the map
TorP0

2 (B,B) → TorP1
2 (B,B) is given by s0. The map d0 − d1 : TorP1

2 (B,B) →
TorP0

2 (B,B) is zero on the last summand, maps xt⊗ f to f ⊗ ft− ft⊗ f , and maps
xt ∧ xt′ to ft ⊗ ft′ − ft′ ⊗ ft. All in all we conclude that there is an exact sequence

∧2
B(J0/J

2
0 )→ TorP0

2 (B,B)→ H−2(LB/A)→ 0

In this way we obtain a direct proof of a consequence of Quillen’s spectral sequence
discussed in Remark 12.5.

https://stacks.math.columbia.edu/tag/08RG
https://stacks.math.columbia.edu/tag/09D6
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13. Comparison with Lichtenbaum-Schlessinger

09AM Let A → B be a ring map. In [LS67] there is a fairly explicit determination
of τ≥−2LB/A which is often used in calculations of versal deformation spaces of
singularities. The construction follows. Choose a polynomial algebra P over A and
a surjection P → B with kernel I. Choose generators ft, t ∈ T for I which induces a
surjection F =

⊕
t∈T P → I with F a free P -module. Let Rel ⊂ F be the kernel of

F → I, in other words Rel is the set of relations among the ft. Let TrivRel ⊂ Rel
be the submodule of trivial relations, i.e., the submodule of Rel generated by the
elements (. . . , ft′ , 0, . . . , 0,−ft, 0, . . .). Consider the complex of B-modules

(13.0.1)09CD Rel/TrivRel −→ F ⊗P B −→ ΩP/A ⊗P B

where the last term is placed in degree 0. The first map is the obvious one and the
second map sends the basis element corresponding to t ∈ T to dft ⊗ 1.

Definition 13.1.09CE Let A→ B be a ring map. Let M be a (B,B)-bimodule over A.
An A-biderivation is an A-linear map λ : B →M such that λ(xy) = xλ(y)+λ(x)y.

For a polynomial algebra the biderivations are easy to describe.

Lemma 13.2.09CF Let P = A[S] be a polynomial ring over A. Let M be a (P, P )-
bimodule over A. Given ms ∈ M for s ∈ S, there exists a unique A-biderivation
λ : P →M mapping s to ms for s ∈ S.

Proof. We set
λ(s1 . . . st) =

∑
s1 . . . si−1msisi+1 . . . st

in M . Extending by A-linearity we obtain a biderivation. □

Here is the comparison statement. The reader may also read about this in [And74,
page 206, Proposition 12] or in the paper [DRGV92] which extends the complex
(13.0.1) by one term and the comparison to τ≥−3.

Lemma 13.3.09CG In the situation above denote L the complex (13.0.1). There is a
canonical map LB/A → L in D(B) which induces an isomorphism τ≥−2LB/A → L
in D(B).

Proof. Let P• → B be a resolution of B over A (Remark 5.5). We will identify
LB/A with ΩP•/A ⊗B. To construct the map we make some choices.

Choose an A-algebra map ψ : P0 → P compatible with the given maps P0 → B
and P → B.

Write P1 = A[S] for some set S. For s ∈ S we may write

ψ(d0(s)− d1(s)) =
∑

ps,tft

for some ps,t ∈ P . Think of F =
⊕

t∈T P as a (P1, P1)-bimodule via the maps
(ψ ◦ d0, ψ ◦ d1). By Lemma 13.2 we obtain a unique A-biderivation λ : P1 → F
mapping s to the vector with coordinates ps,t. By construction the composition

P1 −→ F −→ P

sends f ∈ P1 to ψ(d0(f) − d1(f)) because the map f 7→ ψ(d0(f) − d1(f)) is an
A-biderivation agreeing with the composition on generators.

https://stacks.math.columbia.edu/tag/09CE
https://stacks.math.columbia.edu/tag/09CF
https://stacks.math.columbia.edu/tag/09CG
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For g ∈ P2 we claim that λ(d0(g)− d1(g) + d2(g)) is an element of Rel. Namely, by
the last remark of the previous paragraph the image of λ(d0(g)− d1(g) + d2(g)) in
P is

ψ((d0 − d1)(d0(g)− d1(g) + d2(g)))
which is zero by Simplicial, Section 23).
The choice of ψ determines a map

dψ ⊗ 1 : ΩP0/A ⊗B −→ ΩP/A ⊗B
Composing λ with the map F → F ⊗ B gives a usual A-derivation as the two
P1-module structures on F ⊗B agree. Thus λ determines a map

λ : ΩP1/A ⊗B −→ F ⊗B
Finally, We obtain a B-linear map

q : ΩP2/A ⊗B −→ Rel/TrivRel

by mapping dg to the class of λ(d0(g)− d1(g) + d2(g)) in the quotient.
The diagram

ΩP3/A ⊗B //

��

ΩP2/A ⊗B //

q

��

ΩP1/A ⊗B //

λ

��

ΩP0/A ⊗B

dψ⊗1
��

0 // Rel/TrivRel // F ⊗B // ΩP/A ⊗B

commutes (calculation omitted) and we obtain the map of the lemma. By Remark
11.4 and Lemma 11.3 we see that this map induces isomorphisms H1(LB/A) →
H1(L) and H0(LB/A)→ H0(L).
It remains to see that our map LB/A → L induces an isomorphism H2(LB/A) →
H2(L). Choose a resolution of B over A with P0 = P = A[ui] and then P1 and P2
as in Example 5.9. In Remark 12.6 we have constructed an exact sequence

∧2
B(J0/J

2
0 )→ TorP0

2 (B,B)→ H−2(LB/A)→ 0
where P0 = P and J0 = Ker(P → B) = I. Calculating the Tor group using the
short exact sequences 0 → I → P → B → 0 and 0 → Rel → F → I → 0 we find
that TorP2 (B,B) = Ker(Rel ⊗ B → F ⊗ B). The image of the map ∧2

B(I/I2) →
TorP2 (B,B) under this identification is exactly the image of TrivRel⊗B. Thus we
see that H2(LB/A) ∼= H2(L).
Finally, we have to check that our map LB/A → L actually induces this isomor-
phism. We will use the notation and results discussed in Example 5.9 and Re-
marks 12.6 and 11.5 without further mention. Pick an element ξ of TorP0

2 (B,B) =
Ker(I ⊗P I → I2). Write ξ =

∑
ht′,tft′ ⊗ ft for some ht′,t ∈ P . Tracing through

the exact sequences above we find that ξ corresponds to the image in Rel ⊗ B of
the element r ∈ Rel ⊂ F =

⊕
t∈T P with tth coordinate rt =

∑
t′∈T ht′,tft′ . On

the other hand, ξ corresponds to the element of H2(LB/A) = H2(Ω) which is the
image via d : H2(J /J 2)→ H2(Ω) of the boundary of ξ under the 2-extension

0→ TorO
2 (B,B)→ J ⊗O J → J → J /J 2 → 0

We compute the successive transgressions of our element. First we have

ξ = (d0 − d1)(−
∑

s0(ht′,tft′)⊗ xt)
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and next we have ∑
s0(ht′,tft′)xt = d0(vr)− d1(vr) + d2(vr)

by our choice of the variables v in Example 5.9. We may choose our map λ above
such that λ(ui) = 0 and λ(xt) = −et where et ∈ F denotes the basis vector
corresponding to t ∈ T . Hence the construction of our map q above sends dvr to

λ(
∑

s0(ht′,tft′)xt) =
∑

t

(∑
t′
ht′,tft′

)
et

matching the image of ξ in Rel ⊗ B (the two minus signs we found above cancel
out). This agreement finishes the proof. □

Remark 13.4 (Functoriality of the Lichtenbaum-Schlessinger complex).09D7 Consider
a commutative square

A′ // B′

A

OO

// B

OO

of ring maps. Choose a factorization

A′ // P ′ // B′

A

OO

// P

OO

// B

OO

with P a polynomial algebra over A and P ′ a polynomial algebra over A′. Choose
generators ft, t ∈ T for Ker(P → B). For t ∈ T denote f ′

t the image of ft in P ′.
Choose f ′

s ∈ P ′ such that the elements f ′
t for t ∈ T ′ = T ⨿ S generate the kernel

of P ′ → B′. Set F =
⊕

t∈T P and F ′ =
⊕

t′∈T ′ P ′. Let Rel = Ker(F → P ) and
Rel′ = Ker(F ′ → P ′) where the maps are given by multiplication by ft, resp. f ′

t

on the coordinates. Finally, set TrivRel, resp. TrivRel′ equal to the submodule
of Rel, resp. TrivRel generated by the elements (. . . , ft′ , 0, . . . , 0,−ft, 0, . . .) for
t, t′ ∈ T , resp. T ′. Having made these choices we obtain a canonical commutative
diagram

L′ : Rel′/TrivRel′ // F ′ ⊗P ′ B′ // ΩP ′/A′ ⊗P ′ B′

L :

OO

Rel/TrivRel //

OO

F ⊗P B //

OO

ΩP/A ⊗P B

OO

Moreover, tracing through the choices made in the proof of Lemma 13.3 the reader
sees that one obtains a commutative diagram

LB′/A′ // L′

LB/A //

OO

L

OO

https://stacks.math.columbia.edu/tag/09D7
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14. The cotangent complex of a local complete intersection

08SH If A → B is a local complete intersection map, then LB/A is a perfect complex.
The key to proving this is the following lemma.

Lemma 14.1.08SI Let A = Z[x1, . . . , xn] → B = Z be the ring map which sends xi
to 0 for i = 1, . . . , n. Let I = (x1, . . . , xn) ⊂ A. Then LB/A is quasi-isomorphic to
I/I2[1].

Proof. There are several ways to prove this. For example one can explicitly con-
struct a resolution of B over A and compute. We will use (7.0.1). Namely, consider
the distinguished triangle

LZ[x1,...,xn]/Z⊗Z[x1,...,xn]Z→ LZ/Z → LZ/Z[x1,...,xn] → LZ[x1,...,xn]/Z⊗Z[x1,...,xn]Z[1]

The complex LZ[x1,...,xn]/Z is quasi-isomorphic to ΩZ[x1,...,xn]/Z by Lemma 4.7. The
complex LZ/Z is zero in D(Z) by Lemma 8.4. Thus we see that LB/A has only one
nonzero cohomology group which is as described in the lemma by Lemma 11.2. □

Lemma 14.2.08SJ Let A→ B be a surjective ring map whose kernel I is generated by
a Koszul-regular sequence (for example a regular sequence). Then LB/A is quasi-
isomorphic to I/I2[1].

Proof. Let f1, . . . , fr ∈ I be a Koszul regular sequence generating I. Consider the
ring map Z[x1, . . . , xr]→ A sending xi to fi. Since x1, . . . , xr is a regular sequence
in Z[x1, . . . , xr] we see that the Koszul complex on x1, . . . , xr is a free resolution
of Z = Z[x1, . . . , xr]/(x1, . . . , xr) over Z[x1, . . . , xr] (see More on Algebra, Lemma
30.2). Thus the assumption that f1, . . . , fr is Koszul regular exactly means that
B = A⊗L

Z[x1,...,xr]Z. Hence LB/A = LZ/Z[x1,...,xr]⊗L
ZB by Lemmas 6.2 and 14.1. □

Lemma 14.3.08SK Let A → B be a surjective ring map whose kernel I is Koszul.
Then LB/A is quasi-isomorphic to I/I2[1].

Proof. Locally on Spec(A) the ideal I is generated by a Koszul regular sequence,
see More on Algebra, Definition 32.1. Hence this follows from Lemma 6.2. □

Proposition 14.4.08SL Let A→ B be a local complete intersection map. Then LB/A
is a perfect complex with tor amplitude in [−1, 0].

Proof. Choose a surjection P = A[x1, . . . , xn]→ B with kernel J . By Lemma 11.3
we see that J/J2 →

⊕
Bdxi is quasi-isomorphic to τ≥−1LB/A. Note that J/J2

is finite projective (More on Algebra, Lemma 32.3), hence τ≥−1LB/A is a perfect
complex with tor amplitude in [−1, 0]. Thus it suffices to show that Hi(LB/A) = 0
for i ̸∈ [−1, 0]. This follows from (7.0.1)

LP/A ⊗L
P B → LB/A → LB/P → LP/A ⊗L

P B[1]

and Lemma 14.3 to see that Hi(LB/P ) is zero unless i ∈ {−1, 0}. (We also use
Lemma 4.7 for the term on the left.) □

15. Tensor products and the cotangent complex

09D8

https://stacks.math.columbia.edu/tag/08SI
https://stacks.math.columbia.edu/tag/08SJ
https://stacks.math.columbia.edu/tag/08SK
https://stacks.math.columbia.edu/tag/08SL
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Let R be a ring and let A, B be R-algebras. In this section we discuss LA⊗RB/R.
Most of the information we want is contained in the following diagram
(15.0.1)

09D9

LA/R ⊗L
A (A⊗R B) // LA⊗RB/B

// E

LA/R ⊗L
A (A⊗R B) // LA⊗RB/R

//

OO

LA⊗RB/A

OO

LB/R ⊗L
B (A⊗R B)

OO

LB/R ⊗L
B (A⊗R B)

OO

Explanation: The middle row is the fundamental triangle (7.0.1) for the ring maps
R→ A→ A⊗R B. The middle column is the fundamental triangle (7.0.1) for the
ring maps R→ B → A⊗RB. Next, E is an object of D(A⊗RB) which “fits” into
the upper right corner, i.e., which turns both the top row and the right column into
distinguished triangles. Such an E exists by Derived Categories, Proposition 4.23
applied to the lower left square (with 0 placed in the missing spot). To be more
explicit, we could for example define E as the cone (Derived Categories, Definition
9.1) of the map of complexes

LA/R ⊗L
A (A⊗R B)⊕ LB/R ⊗L

B (A⊗R B) −→ LA⊗RB/R

and get the two maps with target E by an application of TR3. In the Tor indepen-
dent case the object E is zero.

Lemma 15.1.09DA If A and B are Tor independent R-algebras, then the object E in
(15.0.1) is zero. In this case we have

LA⊗RB/R = LA/R ⊗L
A (A⊗R B)⊕ LB/R ⊗L

B (A⊗R B)

which is represented by the complex LA/R ⊗R B ⊕ LB/R ⊗R A of A⊗R B-modules.

Proof. The first two statements are immediate from Lemma 6.2. The last state-
ment follows as LA/R is a complex of free A-modules, hence LA/R ⊗L

A (A⊗R B) is
represented by LA/R ⊗A (A⊗R B) = LA/R ⊗R B □

In general we can say this about the object E.

Lemma 15.2.09DB Let R be a ring and let A, B be R-algebras. The object E in
(15.0.1) satisfies

Hi(E) =
{

0 if i ≥ −1
TorR1 (A,B) if i = −2

Proof. We use the description of E as the cone on LB/R⊗L
B (A⊗RB)→ LA⊗RB/A.

By Lemma 13.3 the canonical truncations τ≥−2LB/R and τ≥−2LA⊗RB/A are com-
puted by the Lichtenbaum-Schlessinger complex (13.0.1). These isomorphisms are
compatible with functoriality (Remark 13.4). Thus in this proof we work with the
Lichtenbaum-Schlessinger complexes.

Choose a polynomial algebra P over R and a surjection P → B. Choose generators
ft ∈ P , t ∈ T of the kernel of this surjection. Let Rel ⊂ F =

⊕
t∈T P be the

kernel of the map F → P which maps the basis vector corresponding to t to ft. Set

https://stacks.math.columbia.edu/tag/09DA
https://stacks.math.columbia.edu/tag/09DB
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PA = A ⊗R P and FA = A ⊗R F = PA ⊗P F . Let RelA be the kernel of the map
FA → PA. Using the exact sequence

0→ Rel→ F → P → B → 0

and standard short exact sequences for Tor we obtain an exact sequence

A⊗R Rel→ RelA → TorR1 (A,B)→ 0

Note that PA → A⊗R B is a surjection whose kernel is generated by the elements
1 ⊗ ft in PA. Denote TrivRelA ⊂ RelA the PA-submodule generated by the ele-
ments (. . . , 1⊗ ft′ , 0, . . . , 0,−1⊗ ft⊗ 1, 0, . . .). Since TrivRel⊗R A→ TrivRelA is
surjective, we find a canonical exact sequence

A⊗R (Rel/TrivRel)→ RelA/TrivRelA → TorR1 (A,B)→ 0

The map of Lichtenbaum-Schlessinger complexes is given by the diagram

RelA/TrivRelA // FA ⊗PA
(A⊗R B) // ΩPA/A⊗RB ⊗PA

(A⊗R B)

Rel/TrivRel //

−2

OO

F ⊗P B //

−1

OO

ΩP/A ⊗P B

0

OO

Note that vertical maps −1 and −0 induce an isomorphism after applying the
functor A ⊗R − = PA ⊗P − to the source and the vertical map −2 gives exactly
the map whose cokernel is the desired Tor module as we saw above. □

16. Deformations of ring maps and the cotangent complex

08SM This section is the continuation of Deformation Theory, Section 2 which we urge
the reader to read first. We start with a surjective ring map A′ → A whose kernel
is an ideal I of square zero. Moreover we assume given a ring map A → B, a
B-module N , and an A-module map c : I → N . In this section we ask ourselves
whether we can find the question mark fitting into the following diagram

(16.0.1)08SN

0 // N // ? // B // 0

0 // I

c

OO

// A′

OO

// A

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for
a surjection of A′-algebras B′ → B whose kernel is an ideal of square zero and is
identified with N such that A′ → B′ induces the given map c. We will say B′ is a
solution to (16.0.1).

Lemma 16.1.08SP In the situation above we have
(1) There is a canonical element ξ ∈ Ext2

B(LB/A, N) whose vanishing is a
sufficient and necessary condition for the existence of a solution to (16.0.1).

(2) If there exists a solution, then the set of isomorphism classes of solutions
is principal homogeneous under Ext1

B(LB/A, N).
(3) Given a solution B′, the set of automorphisms of B′ fitting into (16.0.1) is

canonically isomorphic to Ext0
B(LB/A, N).

https://stacks.math.columbia.edu/tag/08SP
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Proof. Via the identificationsNLB/A = τ≥−1LB/A (Lemma 11.3) andH0(LB/A) =
ΩB/A (Lemma 4.5) we have seen parts (2) and (3) in Deformation Theory, Lemmas
2.1 and 2.2.
Proof of (1). Roughly speaking, this follows from the discussion in Deformation
Theory, Remark 2.8 by replacing the naive cotangent complex by the full cotangent
complex. Here is a more detailed explanation. By Deformation Theory, Lemma 2.7
and Remark 2.8 there exists an element

ξ′ ∈ Ext1
A(NLA/A′ , N) = Ext1

B(NLA/A′ ⊗L
AB,N) = Ext1

B(LA/A′ ⊗L
A B,N)

(for the equalities see Deformation Theory, Remark 2.8 and use that NLA′/A =
τ≥−1LA′/A) such that a solution exists if and only if this element is in the image of
the map

Ext1
B(NLB/A′ , N) = Ext1

B(LB/A′ , N) −→ Ext1
B(LA/A′ ⊗L

A B,N)
The distinguished triangle (7.0.1) for A′ → A → B gives rise to a long exact
sequence

. . .→ Ext1
B(LB/A′ , N)→ Ext1

B(LA/A′ ⊗L
A B,N)→ Ext2

B(LB/A, N)→ . . .

Hence taking ξ the image of ξ′ works. □

17. The Atiyah class of a module

09DC Let A → B be a ring map. Let M be a B-module. Let P → B be an object of
CB/A (Section 4). Consider the extension of principal parts

0→ ΩP/A ⊗P M → P 1
P/A(M)→M → 0

see Algebra, Lemma 133.6. This sequence is functorial in P by Algebra, Remark
133.7. Thus we obtain a short exact sequence of sheaves of O-modules

0→ ΩO/A ⊗O M → P 1
O/A(M)→M → 0

on CB/A. We have Lπ!(ΩO/A ⊗O M) = LB/A ⊗B M = LB/A ⊗L
B M by Lemma 4.2

and the flatness of the terms of LB/A. We have Lπ!(M) = M by Lemma 4.4. Thus
a distinguished triangle

(17.0.1)09DD LB/A ⊗L
B M → Lπ!

(
P 1

O/A(M)
)
→M → LB/A ⊗L

B M [1]

in D(B). Here we use Cohomology on Sites, Remark 39.13 to get a distinguished
triangle in D(B) and not just in D(A).

Definition 17.1.09DE Let A → B be a ring map. Let M be a B-module. The map
M → LB/A ⊗L

B M [1] in (17.0.1) is called the Atiyah class of M .

18. The cotangent complex

08UQ In this section we discuss the cotangent complex of a map of sheaves of rings on
a site. In later sections we specialize this to obtain the cotangent complex of a
morphism of ringed topoi, a morphism of ringed spaces, a morphism of schemes, a
morphism of algebraic space, etc.
Let C be a site and let Sh(C) denote the associated topos. Let A denote a sheaf
of rings on C. Let A-Alg be the category of A-algebras. Consider the pair of
adjoint functors (U, V ) where V : A-Alg → Sh(C) is the forgetful functor and
U : Sh(C) → A-Alg assigns to a sheaf of sets E the polynomial algebra A[E ] on

https://stacks.math.columbia.edu/tag/09DE
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E over A. Let X• be the simplicial object of Fun(A-Alg,A-Alg) constructed in
Simplicial, Section 34.

Now assume that A → B is a homomorphism of sheaves of rings. Then B is an
object of the category A-Alg. Denote P• = X•(B) the resulting simplicial A-
algebra. Recall that P0 = A[B], P1 = A[A[B]], and so on. Recall also that there is
an augmentation

ϵ : P• −→ B

where we view B as a constant simplicial A-algebra.

Definition 18.1.08SR Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. The standard resolution of B over A is the augmentation ϵ : P• → B
with terms

P0 = A[B], P1 = A[A[B]], . . .

and maps as constructed above.

With this definition in hand the cotangent complex of a map of sheaves of rings is
defined as follows. We will use the module of differentials as defined in Modules on
Sites, Section 33.

Definition 18.2.08SS Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. The cotangent complex LB/A is the complex of B-modules associated
to the simplicial module

ΩP•/A ⊗P•,ϵ B

where ϵ : P• → B is the standard resolution of B over A. We usually think of LB/A
as an object of D(B).

These constructions satisfy a functoriality similar to that discussed in Section 6.
Namely, given a commutative diagram

(18.2.1)08ST

B // B′

A

OO

// A′

OO

of sheaves of rings on C there is a canonical B-linear map of complexes

LB/A −→ LB′/A′

constructed as follows. If P• → B is the standard resolution of B over A and
P ′

• → B′ is the standard resolution of B′ over A′, then there is a canonical map
P• → P ′

• of simplicial A-algebras compatible with the augmentations P• → B and
P ′

• → B′. The maps

P0 = A[B] −→ A′[B′] = P ′
0, P1 = A[A[B]] −→ A′[A′[B′]] = P ′

1

and so on are given by the given maps A → A′ and B → B′. The desired map
LB/A → LB′/A′ then comes from the associated maps on sheaves of differentials.

Lemma 18.3.08SV Let f : Sh(D) → Sh(C) be a morphism of topoi. Let A → B be a
homomorphism of sheaves of rings on C. Then f−1LB/A = Lf−1B/f−1A.

https://stacks.math.columbia.edu/tag/08SR
https://stacks.math.columbia.edu/tag/08SS
https://stacks.math.columbia.edu/tag/08SV
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Proof. The diagram
A-Alg

f−1

��

// Sh(C)oo

f−1

��
f−1A-Alg // Sh(D)oo

commutes. □

Lemma 18.4.08SW Let C be a site. Let A → B be a homomorphism of sheaves of rings
on C. Then Hi(LB/A) is the sheaf associated to the presheaf U 7→ Hi(LB(U)/A(U)).

Proof. Let C′ be the site we get by endowing C with the chaotic topology (presheaves
are sheaves). There is a morphism of topoi f : Sh(C)→ Sh(C′) where f∗ is the in-
clusion of sheaves into presheaves and f−1 is sheafification. By Lemma 18.3 it
suffices to prove the result for C′, i.e., in case C has the chaotic topology.

If C carries the chaotic topology, then LB/A(U) is equal to LB(U)/A(U) because

A-Alg

sections over U
��

// Sh(C)oo

sections over U
��

A(U)-Alg // Setsoo

commutes. □

Remark 18.5.08SX It is clear from the proof of Lemma 18.4 that for any U ∈ Ob(C)
there is a canonical map LB(U)/A(U) → LB/A(U) of complexes of B(U)-modules.
Moreover, these maps are compatible with restriction maps and the complex LB/A
is the sheafification of the rule U 7→ LB(U)/A(U).

Lemma 18.6.08UR Let C be a site. Let A → B be a homomorphism of sheaves of rings
on C. Then H0(LB/A) = ΩB/A.

Proof. Follows from Lemmas 18.4 and 4.5 and Modules on Sites, Lemma 33.4. □

Lemma 18.7.08SY Let C be a site. Let A → B and A → B′ be homomorphisms of
sheaves of rings on C. Then

LB×B′/A −→ LB/A ⊕ LB′/A

is an isomorphism in D(B × B′).

Proof. By Lemma 18.4 it suffices to prove this for ring maps. In the case of rings
this is Lemma 6.4. □

The fundamental triangle for the cotangent complex of sheaves of rings is an easy
consequence of the result for homomorphisms of rings.

Lemma 18.8.08SZ Let D be a site. Let A → B → C be homomorphisms of sheaves of
rings on D. There is a canonical distinguished triangle

LB/A ⊗L
B C → LC/A → LC/B → LB/A ⊗L

B C[1]

in D(C).

https://stacks.math.columbia.edu/tag/08SW
https://stacks.math.columbia.edu/tag/08SX
https://stacks.math.columbia.edu/tag/08UR
https://stacks.math.columbia.edu/tag/08SY
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Proof. We will use the method described in Remarks 7.5 and 7.6 to construct the
triangle; we will freely use the results mentioned there. As in those remarks we
first construct the triangle in case B → C is an injective map of sheaves of rings. In
this case we set

(1) P• is the standard resolution of B over A,
(2) Q• is the standard resolution of C over A,
(3) R• is the standard resolution of C over B,
(4) S• is the standard resolution of B over B,
(5) Q• = Q• ⊗P• B, and
(6) R• = R• ⊗S• B.

The distinguished triangle is the distinguished triangle associated to the short exact
sequence of simplicial C-modules

0→ ΩP•/A ⊗P• C → ΩQ•/A ⊗Q• C → ΩQ•/B ⊗Q•
C → 0

The first two terms are equal to the first two terms of the triangle of the state-
ment of the lemma. The identification of the last term with LC/B uses the quasi-
isomorphisms of complexes

LC/B = ΩR•/B ⊗R• C −→ ΩR•/B ⊗R•
C ←− ΩQ•/B ⊗Q•

C

All the constructions used above can first be done on the level of presheaves and then
sheafified. Hence to prove sequences are exact, or that map are quasi-isomorphisms
it suffices to prove the corresponding statement for the ring maps A(U)→ B(U)→
C(U) which are known. This finishes the proof in the case that B → C is injective.
In general, we reduce to the case where B → C is injective by replacing C by B × C
if necessary. This is possible by the argument given in Remark 7.5 by Lemma
18.7. □

Lemma 18.9.08T0 Let C be a site. Let A → B be a homomorphism of sheaves of rings
on C. If p is a point of C, then (LB/A)p = LBp/Ap

.

Proof. This is a special case of Lemma 18.3. □

For the construction of the naive cotangent complex and its properties we refer to
Modules on Sites, Section 35.

Lemma 18.10.08US Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. There is a canonical map LB/A → NLB/A which identifies the naive
cotangent complex with the truncation τ≥−1LB/A.

Proof. Let P• be the standard resolution of B over A. Let I = Ker(A[B] → B).
Recall that P0 = A[B]. The map of the lemma is given by the commutative diagram

LB/A

��

. . . // ΩP2/A ⊗P2 B //

��

ΩP1/A ⊗P1 B //

��

ΩP0/A ⊗P0 B

��
NLB/A . . . // 0 // I/I2 // ΩP0/A ⊗P0 B

We construct the downward arrow with target I/I2 by sending a local section df⊗b
to the class of (d0(f) − d1(f))b in I/I2. Here di : P1 → P0, i = 0, 1 are the two
face maps of the simplicial structure. This makes sense as d0 − d1 maps P1 into
I = Ker(P0 → B). We omit the verification that this rule is well defined. Our map
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is compatible with the differential ΩP1/A ⊗P1 B → ΩP0/A ⊗P0 B as this differential
maps a local section df ⊗ b to d(d0(f) − d1(f)) ⊗ b. Moreover, the differential
ΩP2/A⊗P2B → ΩP1/A⊗P1B maps a local section df⊗b to d(d0(f)−d1(f)+d2(f))⊗b
which are annihilated by our downward arrow. Hence a map of complexes.
To see that our map induces an isomorphism on the cohomology sheaves H0 and
H−1 we argue as follows. Let C′ be the site with the same underlying category as
C but endowed with the chaotic topology. Let f : Sh(C)→ Sh(C′) be the morphism
of topoi whose pullback functor is sheafification. Let A′ → B′ be the given map,
but thought of as a map of sheaves of rings on C′. The construction above gives a
map LB′/A′ → NLB′/A′ on C′ whose value over any object U of C′ is just the map

LB(U)/A(U) → NLB(U)/A(U)

of Remark 11.4 which induces an isomorphism on H0 and H−1. Since f−1LB′/A′ =
LB/A (Lemma 18.3) and f−1 NLB′/A′ = NLB/A (Modules on Sites, Lemma 35.3)
the lemma is proved. □

19. The Atiyah class of a sheaf of modules

09DF Let C be a site. Let A → B be a homomorphism of sheaves of rings. Let F be a
sheaf of B-modules. Let P• → B be the standard resolution of B over A (Section
18). For every n ≥ 0 consider the extension of principal parts

(19.0.1)09DG 0→ ΩPn/A ⊗Pn
F → P1

Pn/A(F)→ F → 0

see Modules on Sites, Lemma 34.6. The functoriality of this construction (Modules
on Sites, Remark 34.7) tells us (19.0.1) is the degree n part of a short exact sequence
of simplicial P•-modules (Cohomology on Sites, Section 41). Using the functor
Lπ! : D(P•) → D(B) of Cohomology on Sites, Remark 41.3 (here we use that
P• → A is a resolution) we obtain a distinguished triangle

(19.0.2)09DH LB/A ⊗L
B F → Lπ!

(
P1

P•/A(F)
)
→ F → LB/A ⊗L

B F [1]

in D(B).

Definition 19.1.09DI Let C be a site. Let A → B be a homomorphism of sheaves of
rings. Let F be a sheaf of B-modules. The map F → LB/A ⊗L

B F [1] in (19.0.2) is
called the Atiyah class of F .

20. The cotangent complex of a morphism of ringed spaces

08UT The cotangent complex of a morphism of ringed spaces is defined in terms of the
cotangent complex we defined above.

Definition 20.1.08UU Let f : (X,OX) → (S,OS) be a morphism of ringed spaces.
The cotangent complex Lf of f is Lf = LOX/f−1OS

. We will also use the notation
Lf = LX/S = LOX/OS

.

More precisely, this means that we consider the cotangent complex (Definition 18.2)
of the homomorphism f ♯ : f−1OS → OX of sheaves of rings on the site associated
to the topological space X (Sites, Example 6.4).

Lemma 20.2.08UV Let f : (X,OX)→ (S,OS) be a morphism of ringed spaces. Then
H0(LX/S) = ΩX/S.
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Proof. Special case of Lemma 18.6. □

Lemma 20.3.08T4 Let f : X → Y and g : Y → Z be morphisms of ringed spaces.
Then there is a canonical distinguished triangle

Lf∗LY/Z → LX/Z → LX/Y → Lf∗LY/Z [1]

in D(OX).

Proof. Set h = g ◦ f so that h−1OZ = f−1g−1OZ . By Lemma 18.3 we have
f−1LY/Z = Lf−1OY /h−1OZ

and this is a complex of flat f−1OY -modules. Hence the
distinguished triangle above is an example of the distinguished triangle of Lemma
18.8 with A = h−1OZ , B = f−1OY , and C = OX . □

Lemma 20.4.08UW Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. There
is a canonical map LX/Y → NLX/Y which identifies the naive cotangent complex
with the truncation τ≥−1LX/Y .

Proof. Special case of Lemma 18.10. □

21. Deformations of ringed spaces and the cotangent complex

08UX This section is the continuation of Deformation Theory, Section 7 which we urge
the reader to read first. We briefly recall the setup. We have a first order thickening
t : (S,OS) → (S′,OS′) of ringed spaces with J = Ker(t♯), a morphism of ringed
spaces f : (X,OX) → (S,OS), an OX -module G, and an f -map c : J → G of
sheaves of modules. We ask whether we can find the question mark fitting into the
following diagram

(21.0.1)08UY

0 // G // ? // OX // 0

0 // J

c

OO

// OS′

OO

// OS

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for
a first order thickening i : (X,OX) → (X ′,OX′) and a morphism of thickenings
(f, f ′) as in Deformation Theory, Equation (3.1.1) where Ker(i♯) is identified with
G such that (f ′)♯ induces the given map c. We will say X ′ is a solution to (21.0.1).

Lemma 21.1.08UZ In the situation above we have
(1) There is a canonical element ξ ∈ Ext2

OX
(LX/S ,G) whose vanishing is a

sufficient and necessary condition for the existence of a solution to (21.0.1).
(2) If there exists a solution, then the set of isomorphism classes of solutions

is principal homogeneous under Ext1
OX

(LX/S ,G).
(3) Given a solution X ′, the set of automorphisms of X ′ fitting into (21.0.1)

is canonically isomorphic to Ext0
OX

(LX/S ,G).

Proof. Via the identificationsNLX/S = τ≥−1LX/S (Lemma 20.4) andH0(LX/S) =
ΩX/S (Lemma 20.2) we have seen parts (2) and (3) in Deformation Theory, Lemmas
7.1 and 7.3.

Proof of (1). Roughly speaking, this follows from the discussion in Deformation
Theory, Remark 7.9 by replacing the naive cotangent complex by the full cotangent
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complex. Here is a more detailed explanation. By Deformation Theory, Lemma 7.8
there exists an element

ξ′ ∈ Ext1
OX

(Lf∗ NLS/S′ ,G) = Ext1
OX

(Lf∗LS/S′ ,G)

such that a solution exists if and only if this element is in the image of the map

Ext1
OX

(NLX/S′ ,G) = Ext1
OX

(LX/S′ ,G) −→ Ext1
OX

(Lf∗LS/S′ ,G)

The distinguished triangle of Lemma 20.3 for X → S → S′ gives rise to a long
exact sequence

. . .→ Ext1
OX

(LX/S′ ,G)→ Ext1
OX

(Lf∗LS/S′ ,G)→ Ext2
OX

(LX/S ,G)→ . . .

Hence taking ξ the image of ξ′ works. □

22. The cotangent complex of a morphism of ringed topoi

08SQ The cotangent complex of a morphism of ringed topoi is defined in terms of the
cotangent complex we defined above.

Definition 22.1.08SU Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of
ringed topoi. The cotangent complex Lf of f is Lf = LOC/f−1OD . We sometimes
write Lf = LOC/OD .

This definition applies to many situations, but it doesn’t always produce the thing
one expects. For example, if f : X → Y is a morphism of schemes, then f induces a
morphism of big étale sites fbig : (Sch/X)étale → (Sch/Y )étale which is a morphism
of ringed topoi (Descent, Remark 8.4). However, Lfbig

= 0 since (fbig)♯ is an
isomorphism. On the other hand, if we take Lf where we think of f as a morphism
between the underlying Zariski ringed topoi, then Lf does agree with the cotangent
complex LX/Y (as defined below) whose zeroth cohomology sheaf is ΩX/Y .

Lemma 22.2.08V0 Let f : (Sh(C),O) → (Sh(B),OB) be a morphism of ringed topoi.
Then H0(Lf ) = Ωf .

Proof. Special case of Lemma 18.6. □

Lemma 22.3.08V1 Let f : (Sh(C1),O1) → (Sh(C2),O2) and g : (Sh(C2),O2) →
(Sh(C3),O3) be morphisms of ringed topoi. Then there is a canonical distinguished
triangle

Lf∗Lg → Lg◦f → Lf → Lf∗Lg[1]
in D(O1).

Proof. Set h = g ◦ f so that h−1O3 = f−1g−1O3. By Lemma 18.3 we have
f−1Lg = Lf−1O2/h−1O3 and this is a complex of flat f−1O2-modules. Hence the
distinguished triangle above is an example of the distinguished triangle of Lemma
18.8 with A = h−1O3, B = f−1O2, and C = O1. □

Lemma 22.4.08V2 Let f : (Sh(C),O) → (Sh(B),OB) be a morphism of ringed topoi.
There is a canonical map Lf → NLf which identifies the naive cotangent complex
with the truncation τ≥−1Lf .

Proof. Special case of Lemma 18.10. □
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23. Deformations of ringed topoi and the cotangent complex

08V3 This section is the continuation of Deformation Theory, Section 13 which we urge
the reader to read first. We briefly recall the setup. We have a first order thickening
t : (Sh(B),OB) → (Sh(B′),OB′) of ringed topoi with J = Ker(t♯), a morphism of
ringed topoi f : (Sh(C),O)→ (Sh(B),OB), an O-module G, and a map f−1J → G
of sheaves of f−1OB-modules. We ask whether we can find the question mark fitting
into the following diagram

(23.0.1)08V4

0 // G // ? // O // 0

0 // f−1J

c

OO

// f−1OB′

OO

// f−1OB

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for a
first order thickening i : (Sh(C),O) → (Sh(C′),O′) and a morphism of thickenings
(f, f ′) as in Deformation Theory, Equation (9.1.1) where Ker(i♯) is identified with
G such that (f ′)♯ induces the given map c. We will say (Sh(C′),O′) is a solution to
(23.0.1).
Lemma 23.1.08V5 In the situation above we have

(1) There is a canonical element ξ ∈ Ext2
O(Lf ,G) whose vanishing is a suffi-

cient and necessary condition for the existence of a solution to (23.0.1).
(2) If there exists a solution, then the set of isomorphism classes of solutions

is principal homogeneous under Ext1
O(Lf ,G).

(3) Given a solution X ′, the set of automorphisms of X ′ fitting into (23.0.1)
is canonically isomorphic to Ext0

O(Lf ,G).
Proof. Via the identifications NLf = τ≥−1Lf (Lemma 22.4) and H0(Lf ) = Ωf
(Lemma 22.2) we have seen parts (2) and (3) in Deformation Theory, Lemmas 13.1
and 13.3.
Proof of (1). To match notation with Deformation Theory, Section 13 we will write
NLf = NLO/OB and Lf = LO/OB and similarly for the morphisms t and t ◦ f . By
Deformation Theory, Lemma 13.8 there exists an element

ξ′ ∈ Ext1
O(Lf∗ NLOB/OB′ ,G) = Ext1

O(Lf∗LOB/OB′ ,G)
such that a solution exists if and only if this element is in the image of the map

Ext1
O(NLO/OB′ ,G) = Ext1

O(LO/OB′ ,G) −→ Ext1
O(Lf∗LOB/OB′ ,G)

The distinguished triangle of Lemma 22.3 for f and t gives rise to a long exact
sequence

. . .→ Ext1
O(LO/OB′ ,G)→ Ext1

O(Lf∗LOB/OB′ ,G)→ Ext1
O(LO/OB ,G)

Hence taking ξ the image of ξ′ works. □

24. The cotangent complex of a morphism of schemes

08T1 As promised above we define the cotangent complex of a morphism of schemes as
follows.
Definition 24.1.08T2 Let f : X → Y be a morphism of schemes. The cotangent
complex LX/Y of X over Y is the cotangent complex of f as a morphism of ringed
spaces (Definition 20.1).
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In particular, the results of Section 20 apply to cotangent complexes of morphisms
of schemes. The next lemma shows this definition is compatible with the definition
for ring maps and it also implies that LX/Y is an object of DQCoh(OX).

Lemma 24.2.08T3 Let f : X → Y be a morphism of schemes. Let U = Spec(A) ⊂ X
and V = Spec(B) ⊂ Y be affine opens such that f(U) ⊂ V . There is a canonical
map

L̃B/A −→ LX/Y |U
of complexes which is an isomorphism in D(OU ). This map is compatible with
restricting to smaller affine opens of X and Y .

Proof. By Remark 18.5 there is a canonical map of complexes LOX (U)/f−1OY (U) →
LX/Y (U) of B = OX(U)-modules, which is compatible with further restrictions.
Using the canonical map A → f−1OY (U) we obtain a canonical map LB/A →
LOX (U)/f−1OY (U) of complexes of B-modules. Using the universal property of the˜ functor (see Schemes, Lemma 7.1) we obtain a map as in the statement of the
lemma. We may check this map is an isomorphism on cohomology sheaves by
checking it induces isomorphisms on stalks. This follows immediately from Lemmas
18.9 and 8.6 (and the description of the stalks of OX and f−1OY at a point p ∈
Spec(B) as Bp and Aq where q = A ∩ p; references used are Schemes, Lemma 5.4
and Sheaves, Lemma 21.5). □

Lemma 24.3.08V6 Let Λ be a ring. Let X be a scheme over Λ. Then
LX/ Spec(Λ) = LOX/Λ

where Λ is the constant sheaf with value Λ on X.

Proof. Let p : X → Spec(Λ) be the structure morphism. Let q : Spec(Λ)→ (∗,Λ)
be the obvious morphism. By the distinguished triangle of Lemma 20.3 it suffices
to show that Lq = 0. To see this it suffices to show for p ∈ Spec(Λ) that

(Lq)p = LOSpec(Λ),p/Λ = LΛp/Λ

(Lemma 18.9) is zero which follows from Lemma 8.4. □

25. The cotangent complex of a scheme over a ring

08V7 Let Λ be a ring and let X be a scheme over Λ. Write LX/ Spec(Λ) = LX/Λ which is
justified by Lemma 24.3. In this section we give a description of LX/Λ similar to
Lemma 4.3. Namely, we construct a category CX/Λ fibred over XZar and endow it
with a sheaf of (polynomial) Λ-algebras O such that

LX/Λ = Lπ!(ΩO/Λ ⊗O OX).
We will later use the category CX/Λ to construct a naive obstruction theory for the
stack of coherent sheaves.
Let Λ be a ring. Let X be a scheme over Λ. Let CX/Λ be the category whose objects
are commutative diagrams

(25.0.1)08V8

X

��

Uoo

��
Spec(Λ) Aoo
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of schemes where
(1) U is an open subscheme of X,
(2) there exists an isomorphism A = Spec(P ) where P is a polynomial algebra

over Λ (on some set of variables).
In other words, A is an (infinite dimensional) affine space over Spec(Λ). Morphisms
are given by commutative diagrams. Recall that XZar denotes the small Zariski
site X. There is a forgetful functor

u : CX/Λ → XZar, (U → A) 7→ U

Observe that the fibre category over U is canonically equivalent to the category
COX (U)/Λ introduced in Section 4.

Lemma 25.1.08V9 In the situation above the category CX/Λ is fibred over XZar.

Proof. Given an object U → A of CX/Λ and a morphism U ′ → U of XZar consider
the object U ′ → A of CX/Λ where U ′ → A is the composition of U → A and
U ′ → U . The morphism (U ′ → A) → (U → A) of CX/Λ is strongly cartesian over
XZar. □

We endow CX/Λ with the topology inherited from XZar (see Stacks, Section 10).
The functor u defines a morphism of topoi π : Sh(CX/Λ) → Sh(XZar). The site
CX/Λ comes with several sheaves of rings.

(1) The sheaf O given by the rule (U → A) 7→ Γ(A,OA).
(2) The sheaf OX = π−1OX given by the rule (U → A) 7→ OX(U).
(3) The constant sheaf Λ.

We obtain morphisms of ringed topoi

(25.1.1)08VA

(Sh(CX/Λ),OX)
i
//

π

��

(Sh(CX/Λ),O)

(Sh(XZar),OX)

The morphism i is the identity on underlying topoi and i♯ : O → OX is the
obvious map. The map π is a special case of Cohomology on Sites, Situation
38.1. An important role will be played in the following by the derived functors
Li∗ : D(O) −→ D(OX) left adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! :
D(OX) −→ D(OX) left adjoint to π∗ = π−1 : D(OX)→ D(OX). We can compute
Lπ! thanks to our earlier work.

Remark 25.2.08VB In the situation above, for every U ⊂ X open let P•,U be the
standard resolution of OX(U) over Λ. Set An,U = Spec(Pn,U ). Then A•,U is a
cosimplicial object of the fibre category COX (U)/Λ of CX/Λ over U . Moreover, as
discussed in Remark 5.5 we have that A•,U is a cosimplicial object of COX (U)/Λ as in
Cohomology on Sites, Lemma 39.7. Since the construction U 7→ A•,U is functorial
in U , given any (abelian) sheaf F on CX/Λ we obtain a complex of presheaves

U 7−→ F(A•,U )
whose cohomology groups compute the homology of F on the fibre category. We
conclude by Cohomology on Sites, Lemma 40.2 that the sheafification computes
Lnπ!(F). In other words, the complex of sheaves whose term in degree −n is the
sheafification of U 7→ F(An,U ) computes Lπ!(F).
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With this remark out of the way we can state the main result of this section.

Lemma 25.3.08T9 In the situation above there is a canonical isomorphism

LX/Λ = Lπ!(Li∗ΩO/Λ) = Lπ!(i∗ΩO/Λ) = Lπ!(ΩO/Λ ⊗O OX)

in D(OX).

Proof. We first observe that for any object (U → A) of CX/Λ the value of the sheaf
O is a polynomial algebra over Λ. Hence ΩO/Λ is a flat O-module and we conclude
the second and third equalities of the statement of the lemma hold.

By Remark 25.2 the object Lπ!(ΩO/Λ ⊗O OX) is computed as the sheafification of
the complex of presheaves

U 7→
(
ΩO/Λ ⊗O OX

)
(A•,U ) = ΩP•,U/Λ ⊗P•,U

OX(U) = LOX (U)/Λ

using notation as in Remark 25.2. Now Remark 18.5 shows that Lπ!(ΩO/Λ⊗OOX)
computes the cotangent complex of the map of rings Λ→ OX on X. This is what
we want by Lemma 24.3. □

26. The cotangent complex of a morphism of algebraic spaces

08VC We define the cotangent complex of a morphism of algebraic spaces using the as-
sociated morphism between the small étale sites.

Definition 26.1.08VD Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The cotangent complex LX/Y of X over Y is the cotangent complex
of the morphism of ringed topoi fsmall between the small étale sites of X and Y
(see Properties of Spaces, Lemma 21.3 and Definition 22.1).

In particular, the results of Section 22 apply to cotangent complexes of morphisms
of algebraic spaces. The next lemmas show this definition is compatible with the
definition for ring maps and for schemes and that LX/Y is an object of DQCoh(OX).

Lemma 26.2.08VE Let S be a scheme. Consider a commutative diagram

U

p

��

g
// V

q

��
X

f // Y

of algebraic spaces over S with p and q étale. Then there is a canonical identification
LX/Y |Uétale

= LU/V in D(OU ).

Proof. Formation of the cotangent complex commutes with pullback (Lemma
18.3) and we have p−1

smallOX = OU and g−1
smallOVétale

= p−1
smallf

−1
smallOYétale

be-
cause q−1

smallOYétale
= OVétale

(Properties of Spaces, Lemma 26.1). Tracing through
the definitions we conclude that LX/Y |Uétale

= LU/V . □

Lemma 26.3.08VF Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume X and Y representable by schemes X0 and Y0. Then there
is a canonical identification LX/Y = ϵ∗LX0/Y0 in D(OX) where ϵ is as in Derived
Categories of Spaces, Section 4 and LX0/Y0 is as in Definition 24.1.
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Proof. Let f0 : X0 → Y0 be the morphism of schemes corresponding to f . There
is a canonical map ϵ−1f−1

0 OY0 → f−1
smallOY compatible with ϵ♯ : ϵ−1OX0 → OX

because there is a commutative diagram

X0,Zar

f0

��

Xétaleϵ
oo

f

��
Y0,Zar Yétale

ϵoo

see Derived Categories of Spaces, Remark 6.3. Thus we obtain a canonical map
ϵ−1LX0/Y0 = ϵ−1LOX0/f

−1
0 OY0

= Lϵ−1OX0/ϵ
−1f−1

0 OY0
−→ LOX/f

−1
small

OY
= LX/Y

by the functoriality discussed in Section 18 and Lemma 18.3. To see that the
induced map ϵ∗LX0/Y0 → LX/Y is an isomorphism we may check on stalks at
geometric points (Properties of Spaces, Theorem 19.12). We will use Lemma 18.9
to compute the stalks. Let x : Spec(k) → X0 be a geometric point lying over
x ∈ X0, with y = f ◦ x lying over y ∈ Y0. Then

LX/Y,x = LOX,x/OY,y

and
(ϵ∗LX0/Y0)x = LX0/Y0,x ⊗OX0,x

OX,x = LOX0,x/OY0,y
⊗OX0,x

OX,x
Some details omitted (hint: use that the stalk of a pullback is the stalk at the image
point, see Sites, Lemma 34.2, as well as the corresponding result for modules, see
Modules on Sites, Lemma 36.4). Observe that OX,x is the strict henselization of
OX0,x and similarly for OY,y (Properties of Spaces, Lemma 22.1). Thus the result
follows from Lemma 8.7. □

Lemma 26.4.08VG Let Λ be a ring. Let X be an algebraic space over Λ. Then
LX/ Spec(Λ) = LOX/Λ

where Λ is the constant sheaf with value Λ on Xétale.

Proof. Let p : X → Spec(Λ) be the structure morphism. Let q : Spec(Λ)étale →
(∗,Λ) be the obvious morphism. By the distinguished triangle of Lemma 22.3 it
suffices to show that Lq = 0. To see this it suffices to show (Properties of Spaces,
Theorem 19.12) for a geometric point t : Spec(k)→ Spec(Λ) that

(Lq)t = LOSpec(Λ)étale,t
/Λ

(Lemma 18.9) is zero. Since OSpec(Λ)étale,t
is a strict henselization of a local ring of

Λ (Properties of Spaces, Lemma 22.1) this follows from Lemma 8.4. □

27. The cotangent complex of an algebraic space over a ring

08VH Let Λ be a ring and let X be an algebraic space over Λ. Write LX/ Spec(Λ) = LX/Λ
which is justified by Lemma 26.4. In this section we give a description of LX/Λ
similar to Lemma 4.3. Namely, we construct a category CX/Λ fibred over Xétale

and endow it with a sheaf of (polynomial) Λ-algebras O such that
LX/Λ = Lπ!(ΩO/Λ ⊗O OX).

We will later use the category CX/Λ to construct a naive obstruction theory for the
stack of coherent sheaves.

https://stacks.math.columbia.edu/tag/08VG
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Let Λ be a ring. Let X be an algebraic space over Λ. Let CX/Λ be the category
whose objects are commutative diagrams

(27.0.1)08VI

X

��

Uoo

��
Spec(Λ) Aoo

of schemes where
(1) U is a scheme,
(2) U → X is étale,
(3) there exists an isomorphism A = Spec(P ) where P is a polynomial algebra

over Λ (on some set of variables).
In other words, A is an (infinite dimensional) affine space over Spec(Λ). Morphisms
are given by commutative diagrams. Recall that Xétale denotes the small étale site
of X whose objects are schemes étale over X. There is a forgetful functor

u : CX/Λ → Xétale, (U → A) 7→ U

Observe that the fibre category over U is canonically equivalent to the category
COX (U)/Λ introduced in Section 4.

Lemma 27.1.08VJ In the situation above the category CX/Λ is fibred over Xétale.

Proof. Given an object U → A of CX/Λ and a morphism U ′ → U of Xétale

consider the object U ′ → A of CX/Λ where U ′ → A is the composition of U → A
and U ′ → U . The morphism (U ′ → A) → (U → A) of CX/Λ is strongly cartesian
over Xétale. □

We endow CX/Λ with the topology inherited from Xétale (see Stacks, Section 10).
The functor u defines a morphism of topoi π : Sh(CX/Λ) → Sh(Xétale). The site
CX/Λ comes with several sheaves of rings.

(1) The sheaf O given by the rule (U → A) 7→ Γ(A,OA).
(2) The sheaf OX = π−1OX given by the rule (U → A) 7→ OX(U).
(3) The constant sheaf Λ.

We obtain morphisms of ringed topoi

(27.1.1)08VK

(Sh(CX/Λ),OX)
i
//

π

��

(Sh(CX/Λ),O)

(Sh(Xétale),OX)

The morphism i is the identity on underlying topoi and i♯ : O → OX is the
obvious map. The map π is a special case of Cohomology on Sites, Situation
38.1. An important role will be played in the following by the derived functors
Li∗ : D(O) −→ D(OX) left adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! :
D(OX) −→ D(OX) left adjoint to π∗ = π−1 : D(OX)→ D(OX). We can compute
Lπ! thanks to our earlier work.

Remark 27.2.08VL In the situation above, for every object U → X of Xétale let P•,U
be the standard resolution of OX(U) over Λ. Set An,U = Spec(Pn,U ). Then A•,U
is a cosimplicial object of the fibre category COX (U)/Λ of CX/Λ over U . Moreover, as

https://stacks.math.columbia.edu/tag/08VJ
https://stacks.math.columbia.edu/tag/08VL
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discussed in Remark 5.5 we have that A•,U is a cosimplicial object of COX (U)/Λ as in
Cohomology on Sites, Lemma 39.7. Since the construction U 7→ A•,U is functorial
in U , given any (abelian) sheaf F on CX/Λ we obtain a complex of presheaves

U 7−→ F(A•,U )

whose cohomology groups compute the homology of F on the fibre category. We
conclude by Cohomology on Sites, Lemma 40.2 that the sheafification computes
Lnπ!(F). In other words, the complex of sheaves whose term in degree −n is the
sheafification of U 7→ F(An,U ) computes Lπ!(F).

With this remark out of the way we can state the main result of this section.

Lemma 27.3.08VM In the situation above there is a canonical isomorphism

LX/Λ = Lπ!(Li∗ΩO/Λ) = Lπ!(i∗ΩO/Λ) = Lπ!(ΩO/Λ ⊗O OX)

in D(OX).

Proof. We first observe that for any object (U → A) of CX/Λ the value of the sheaf
O is a polynomial algebra over Λ. Hence ΩO/Λ is a flat O-module and we conclude
the second and third equalities of the statement of the lemma hold.

By Remark 27.2 the object Lπ!(ΩO/Λ ⊗O OX) is computed as the sheafification of
the complex of presheaves

U 7→
(
ΩO/Λ ⊗O OX

)
(A•,U ) = ΩP•,U/Λ ⊗P•,U

OX(U) = LOX (U)/Λ

using notation as in Remark 27.2. Now Remark 18.5 shows that Lπ!(ΩO/Λ⊗OOX)
computes the cotangent complex of the map of rings Λ → OX on Xétale. This is
what we want by Lemma 26.4. □

28. Fibre products of algebraic spaces and the cotangent complex

09DJ Let S be a scheme. Let X → B and Y → B be morphisms of algebraic spaces over
S. Consider the fibre product X×B Y with projection morphisms p : X×B Y → X
and q : X×B Y → Y . In this section we discuss LX×BY/B . Most of the information
we want is contained in the following diagram

(28.0.1)09DK

Lp∗LX/B // LX×BY/Y
// E

Lp∗LX/B // LX×BY/B
//

OO

LX×BY/X

OO

Lq∗LY/B

OO

Lq∗LY/B

OO

Explanation: The middle row is the fundamental triangle of Lemma 22.3 for the
morphisms X×B Y → X → B. The middle column is the fundamental triangle for
the morphisms X×B Y → Y → B. Next, E is an object of D(OX×BY ) which “fits”
into the upper right corner, i.e., which turns both the top row and the right column
into distinguished triangles. Such an E exists by Derived Categories, Proposition
4.23 applied to the lower left square (with 0 placed in the missing spot). To be more

https://stacks.math.columbia.edu/tag/08VM
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explicit, we could for example define E as the cone (Derived Categories, Definition
9.1) of the map of complexes

Lp∗LX/B ⊕ Lq∗LY/B −→ LX×BY/B

and get the two maps with target E by an application of TR3. In the Tor indepen-
dent case the object E is zero.

Lemma 28.1.09DL In the situation above, if X and Y are Tor independent over B,
then the object E in (28.0.1) is zero. In this case we have

LX×BY/B = Lp∗LX/B ⊕ Lq∗LY/B

Proof. Choose a scheme W and a surjective étale morphism W → B. Choose a
scheme U and a surjective étale morphism U → X ×BW . Choose a scheme V and
a surjective étale morphism V → Y ×BW . Then U ×W V → X ×B Y is surjective
étale too. Hence it suffices to prove that the restriction of E to U ×W V is zero.
By Lemma 26.3 and Derived Categories of Spaces, Lemma 20.3 this reduces us to
the case of schemes. Taking suitable affine opens we reduce to the case of affine
schemes. Using Lemma 24.2 we reduce to the case of a tensor product of rings, i.e.,
to Lemma 15.1. □

In general we can say the following about the object E.

Lemma 28.2.09DM Let S be a scheme. Let X → B and Y → B be morphisms of
algebraic spaces over S. The object E in (28.0.1) satisfies Hi(E) = 0 for i = 0,−1
and for a geometric point (x, y) : Spec(k)→ X ×B Y we have

H−2(E)(x,y) = TorR1 (A,B)⊗A⊗RB C

where R = OB,b, A = OX,x, B = OY,y, and C = OX×BY,(x,y).

Proof. The formation of the cotangent complex commutes with taking stalks and
pullbacks, see Lemmas 18.9 and 18.3. Note that C is a henselization of A ⊗R B.
LC/R = LA⊗RB/R⊗A⊗RB C by the results of Section 8. Thus the stalk of E at our
geometric point is the cone of the map LA/R ⊗ C → LA⊗RB/R ⊗ C. Therefore the
results of the lemma follow from the case of rings, i.e., Lemma 15.2. □

29. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories

(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes

https://stacks.math.columbia.edu/tag/09DL
https://stacks.math.columbia.edu/tag/09DM


THE COTANGENT COMPLEX 47

(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces

(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal Spaces
(89) Resolution of Surfaces Revisited

Deformation Theory
(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables



THE COTANGENT COMPLEX 48

(114) Coding Style
(115) Obsolete

(116) GNU Free Documentation Li-
cense

(117) Auto Generated Index

References
[And67] Michel André, Méthode simpliciale en algèbre homologique et algèbre commutative,

Lecture Notes in Mathematics, Vol. 32, Springer-Verlag, Berlin, 1967.
[And74] , Homologie des algèbres commutatives, Springer-Verlag, Berlin, 1974, Die

Grundlehren der mathematischen Wissenschaften, Band 206.
[DRGV92] José Luís Doncel, Alfredo Rodríguez-Grandjeán, and Maria Jesús Vale, On the homol-

ogy of commutative algebras, J. Pure Appl. Algebra 79 (1992), no. 2, 131–157.
[Ill72] Luc Illusie, Complexe cotangent et déformations I and II, Lecture Notes in Mathe-

matics, Vol. 239 and 283, Springer-Verlag, Berlin, 1971/1972.
[LS67] S. Lichtenbaum and M. Schlessinger, The cotangent complex of a morphism, Trans.

Amer. Math. Soc. 128 (1967), 41–70.
[Qui] Daniel Quillen, Homology of commutative rings, Unpublished, pp. 1–81.
[Qui70] , On the (co-) homology of commutative rings, Applications of Categorical

Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), Amer. Math. Soc.,
Providence, R.I., 1970, pp. 65–87.


	1. Introduction
	2. Advice for the reader
	3. The cotangent complex of a ring map
	4. Simplicial resolutions and derived lower shriek
	5. Constructing a resolution
	6. Functoriality
	7. The fundamental triangle
	8. Localization and étale ring maps
	9. Smooth ring maps
	10. Positive characteristic
	11. Comparison with the naive cotangent complex
	12. A spectral sequence of Quillen
	13. Comparison with Lichtenbaum-Schlessinger
	14. The cotangent complex of a local complete intersection
	15. Tensor products and the cotangent complex
	16. Deformations of ring maps and the cotangent complex
	17. The Atiyah class of a module
	18. The cotangent complex
	19. The Atiyah class of a sheaf of modules
	20. The cotangent complex of a morphism of ringed spaces
	21. Deformations of ringed spaces and the cotangent complex
	22. The cotangent complex of a morphism of ringed topoi
	23. Deformations of ringed topoi and the cotangent complex
	24. The cotangent complex of a morphism of schemes
	25. The cotangent complex of a scheme over a ring
	26. The cotangent complex of a morphism of algebraic spaces
	27. The cotangent complex of an algebraic space over a ring
	28. Fibre products of algebraic spaces and the cotangent complex
	29. Other chapters
	References

