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1. Introduction

0BRW In this chapter we develop some of the theory of algebraic curves. A reference
covering algebraic curves over the complex numbers is the book [ACGH85].
What we already know. Besides general algebraic geometry, we have already proved
some specific results on algebraic curves. Here is a list.

(1) We have discussed affine opens of and ample invertible sheaves on 1 dimen-
sional Noetherian schemes in Varieties, Section 38.
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(2) We have seen a curve is either affine or projective in Varieties, Section 43.
(3) We have discussed degrees of locally free modules on proper curves in Va-

rieties, Section 44.
(4) We have discussed the Picard scheme of a nonsingular projective curve over

an algebraically closed field in Picard Schemes of Curves, Section 1.

2. Curves and function fields

0BXX In this section we elaborate on the results of Varieties, Section 4 in the case of
curves.

Lemma 2.1.0BXY Let k be a field. Let X be a curve and Y a proper variety. Let
U ⊂ X be a nonempty open and let f : U → Y be a morphism. If x ∈ X is a
closed point such that OX,x is a discrete valuation ring, then there exist an open
U ⊂ U ′ ⊂ X containing x and a morphism of varieties f ′ : U ′ → Y extending f .

Proof. This is a special case of Morphisms, Lemma 42.5. □

Lemma 2.2.0BXZ Let k be a field. Let X be a normal curve and Y a proper variety.
The set of rational maps from X to Y is the same as the set of morphisms X → Y .

Proof. A rational map from X to Y can be extended to a morphism X → Y by
Lemma 2.1 as every local ring is a discrete valuation ring (for example by Varieties,
Lemma 43.8). Conversely, if two morphisms f, g : X → Y are equivalent as rational
maps, then f = g by Morphisms, Lemma 7.10. □

Lemma 2.3.0CCK Let k be a field. Let f : X → Y be a nonconstant morphism of
curves over k. If Y is normal, then f is flat.

Proof. Pick x ∈ X mapping to y ∈ Y . Then OY,y is either a field or a discrete
valuation ring (Varieties, Lemma 43.8). Since f is nonconstant it is dominant (as
it must map the generic point of X to the generic point of Y ). This implies that
OY,y → OX,x is injective (Morphisms, Lemma 8.7). Hence OX,x is torsion free as
a OY,y-module and therefore OX,x is flat as a OY,y-module by More on Algebra,
Lemma 22.10. □

Lemma 2.4.0CCL Let k be a field. Let f : X → Y be a morphism of schemes over k.
Assume

(1) Y is separated over k,
(2) X is proper of dimension ≤ 1 over k,
(3) f(Z) has at least two points for every irreducible component Z ⊂ X of

dimension 1.
Then f is finite.

Proof. The morphism f is proper by Morphisms, Lemma 41.7. Thus f(X) is
closed and images of closed points are closed. Let y ∈ Y be the image of a closed
point in X. Then f−1({y}) is a closed subset of X not containing any of the
generic points of irreducible components of dimension 1 by condition (3). It follows
that f−1({y}) is finite. Hence f is finite over an open neighbourhood of y by
More on Morphisms, Lemma 44.2 (if Y is Noetherian, then you can use the easier
Cohomology of Schemes, Lemma 21.2). Since we’ve seen above that there are
enough of these points y, the proof is complete. □

https://stacks.math.columbia.edu/tag/0BXY
https://stacks.math.columbia.edu/tag/0BXZ
https://stacks.math.columbia.edu/tag/0CCK
https://stacks.math.columbia.edu/tag/0CCL
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Lemma 2.5.0BY0 Let k be a field. Let X → Y be a morphism of varieties with Y

proper and X a curve. There exists a factorization X → X → Y where X → X is
an open immersion and X is a projective curve.
Proof. This is clear from Lemma 2.1 and Varieties, Lemma 43.6. □

Here is the main theorem of this section. We will say a morphism f : X → Y of
varieties is constant if the image f(X) consists of a single point y of Y . If this
happens then y is a closed point of Y (since the image of a closed point of X will
be a closed point of Y ).
Theorem 2.6.0BY1 Let k be a field. The following categories are canonically equivalent

(1) The category of finitely generated field extensions K/k of transcendence
degree 1.

(2) The category of curves and dominant rational maps.
(3) The category of normal projective curves and nonconstant morphisms.
(4) The category of nonsingular projective curves and nonconstant morphisms.
(5) The category of regular projective curves and nonconstant morphisms.
(6) The category of normal proper curves and nonconstant morphisms.

Proof. The equivalence between categories (1) and (2) is the restriction of the
equivalence of Varieties, Theorem 4.1. Namely, a variety is a curve if and only if its
function field has transcendence degree 1, see for example Varieties, Lemma 20.3.
The categories in (3), (4), (5), and (6) are the same. First of all, the terms “regular”
and “nonsingular” are synonyms, see Properties, Definition 9.1. Being normal
and regular are the same thing for Noetherian 1-dimensional schemes (Properties,
Lemmas 9.4 and 12.6). See Varieties, Lemma 43.8 for the case of curves. Thus (3)
is the same as (5). Finally, (6) is the same as (3) by Varieties, Lemma 43.4.
If f : X → Y is a nonconstant morphism of nonsingular projective curves, then
f sends the generic point η of X to the generic point ξ of Y . Hence we obtain a
morphism k(Y ) = OY,ξ → OX,η = k(X) in the category (1). If two morphisms
f, g : X → Y gives the same morphism k(Y ) → k(X), then by the equivalence
between (1) and (2), f and g are equivalent as rational maps, so f = g by Lemma
2.2. Conversely, suppose that we have a map k(Y ) → k(X) in the category (1).
Then we obtain a morphism U → Y for some nonempty open U ⊂ X. By Lemma
2.1 this extends to all of X and we obtain a morphism in the category (5). Thus
we see that there is a fully faithful functor (5)→(1).
To finish the proof we have to show that every K/k in (1) is the function field
of a normal projective curve. We already know that K = k(X) for some curve
X. After replacing X by its normalization (which is a variety birational to X) we
may assume X is normal (Varieties, Lemma 27.1). Then we choose X → X with
X \ X = {x1, . . . , xn} as in Varieties, Lemma 43.6. Since X is normal and since
each of the local rings OX,xi

is normal we conclude that X is a normal projective
curve as desired. (Remark: We can also first compactify using Varieties, Lemma
43.5 and then normalize using Varieties, Lemma 27.1. Doing it this way we avoid
using the somewhat tricky Morphisms, Lemma 53.16.) □

Definition 2.7.0BY2 Let k be a field. Let X be a curve. A nonsingular projective model
of X is a pair (Y, φ) where Y is a nonsingular projective curve and φ : k(X)→ k(Y )
is an isomorphism of function fields.

https://stacks.math.columbia.edu/tag/0BY0
https://stacks.math.columbia.edu/tag/0BY1
https://stacks.math.columbia.edu/tag/0BY2
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A nonsingular projective model is determined up to unique isomorphism by Theo-
rem 2.6. Thus we often say “the nonsingular projective model”. We usually drop
φ from the notation. Warning: it needn’t be the case that Y is smooth over k but
Lemma 2.8 shows this can only happen in positive characteristic.

Lemma 2.8.0BY3 Let k be a field. Let X be a curve and let Y be the nonsingular
projective model of X. If k is perfect, then Y is a smooth projective curve.

Proof. See Varieties, Lemma 43.8 for example. □

Lemma 2.9.0BY4 Let k be a field. Let X be a geometrically irreducible curve over k.
For a field extension K/k denote YK a nonsingular projective model of (XK)red.

(1) If X is proper, then YK is the normalization of XK .
(2) There exists K/k finite purely inseparable such that YK is smooth.
(3) Whenever YK is smooth1 we have H0(YK ,OYK

) = K.
(4) Given a commutative diagram

Ω K ′oo

K

OO

koo

OO

of fields such that YK and YK′ are smooth, then YΩ = (YK)Ω = (YK′)Ω.

Proof. Let X ′ be a nonsingular projective model of X. Then X ′ and X have iso-
morphic nonempty open subschemes. In particular X ′ is geometrically irreducible
as X is (some details omitted). Thus we may assume that X is projective.

Assume X is proper. Then XK is proper and hence the normalization (XK)ν
is proper as a scheme finite over a proper scheme (Varieties, Lemma 27.1 and
Morphisms, Lemmas 44.11 and 41.4). On the other hand, XK is irreducible as X is
geometrically irreducible. Hence Xν

K is proper, normal, irreducible, and birational
to (XK)red. This proves (1) because a proper curve is projective (Varieties, Lemma
43.4).

Proof of (2). As X is proper and we have (1), we can apply Varieties, Lemma
27.4 to find K/k finite purely inseparable such that YK is geometrically normal.
Then YK is geometrically regular as normal and regular are the same for curves
(Properties, Lemma 12.6). Then Y is a smooth variety by Varieties, Lemma 12.6.

If YK is geometrically reduced, then YK is geometrically integral (Varieties, Lemma
9.2) and we see that H0(YK ,OYK

) = K by Varieties, Lemma 26.2. This proves (3)
because a smooth variety is geometrically reduced (even geometrically regular, see
Varieties, Lemma 12.6).

If YK is smooth, then for every extension Ω/K the base change (YK)Ω is smooth
over Ω (Morphisms, Lemma 34.5). Hence it is clear that YΩ = (YK)Ω. This proves
(4). □

1Or even geometrically reduced.

https://stacks.math.columbia.edu/tag/0BY3
https://stacks.math.columbia.edu/tag/0BY4
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3. Linear series

0CCM We deviate from the classical story (see Remark 3.6) by defining linear series in the
following manner.

Definition 3.1.0CCN Let k be a field. Let X be a proper scheme of dimension ≤ 1
over k. Let d ≥ 0 and r ≥ 0. A linear series of degree d and dimension r is a pair
(L, V ) where L is an invertible OX -module of degree d (Varieties, Definition 44.1)
and V ⊂ H0(X,L) is a k-subvector space of dimension r + 1. We will abbreviate
this by saying (L, V ) is a grd on X.

We will mostly use this when X is a nonsingular proper curve. In fact, the definition
above is just one way to generalize the classical definition of a grd. For example,
if X is a proper curve, then one can generalize linear series by allowing L to be a
torsion free coherent OX -module of rank 1. On a nonsingular curve every torsion
free coherent module is locally free, so this agrees with our notion for nonsingular
proper curves.
The following lemma explains the geometric meaning of linear series for proper
nonsingular curves.

Lemma 3.2.0CCP Let k be a field. Let X be a nonsingular proper curve over k. Let
(L, V ) be a grd on X. Then there exists a morphism

φ : X −→ Pr
k = Proj(k[T0, . . . , Tr])

of varieties over k and a map α : φ∗OPr
k
(1)→ L such that φ∗T0, . . . , φ

∗Tr are sent
to a basis of V by α.

Proof. Let s0, . . . , sr ∈ V be a k-basis. Since X is nonsingular the image L′ ⊂ L
of the map s0, . . . , sr : O⊕r+1

X → L is an invertible OX -module for example by
Divisors, Lemma 11.11. Then we use Constructions, Lemma 13.1 to get a morphism

φ = φ(L′,(s0,...,sr)) : X −→ Pr
k

as in the statement of the lemma. □

Lemma 3.3.0CCQ Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. If X has a grd, then X has a gsd for all 0 ≤ s ≤ r.

Proof. This is true because a vector space V of dimension r+1 over k has a linear
subspace of dimension s+ 1 for all 0 ≤ s ≤ r. □

Lemma 3.4.0CCR Let k be a field. Let X be a nonsingular proper curve over k. Let
(L, V ) be a g1

d on X. Then the morphism φ : X → P1
k of Lemma 3.2 either

(1) is nonconstant and has degree ≤ d, or
(2) factors through a closed point of P1

k and in this case H0(X,OX) ̸= k.

Proof. By Lemma 3.2 we see that L′ = φ∗OP1
k
(1) has a nonzero map L′ → L.

Hence by Varieties, Lemma 44.12 we see that 0 ≤ deg(L′) ≤ d. If deg(L′) = 0,
then the same lemma tells us L′ ∼= OX and since we have two linearly independent
sections we find we are in case (2). If deg(L′) > 0 then φ is nonconstant (since the
pullback of an invertible module by a constant morphism is trivial). Hence

deg(L′) = deg(X/P1
k) deg(OP1

k
(1))

by Varieties, Lemma 44.11. This finishes the proof as the degree of OP1
k
(1) is 1. □

https://stacks.math.columbia.edu/tag/0CCN
https://stacks.math.columbia.edu/tag/0CCP
https://stacks.math.columbia.edu/tag/0CCQ
https://stacks.math.columbia.edu/tag/0CCR
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Lemma 3.5.0CCS Let k be a field. Let X be a proper curve over k with H0(X,OX) = k.
If X has a grd, then r ≤ d. If equality holds, then H1(X,OX) = 0, i.e., the genus
of X (Definition 8.1) is 0.

Proof. Let (L, V ) be a grd. Since this will only increase r, we may assume V =
H0(X,L). Choose a nonzero element s ∈ V . Then the zero scheme of s is an
effective Cartier divisor D ⊂ X, we have L = OX(D), and we have a short exact
sequence

0→ OX → L → L|D → 0
see Divisors, Lemma 14.10 and Remark 14.11. By Varieties, Lemma 44.9 we have
deg(D) = deg(L) = d. Since D is an Artinian scheme we have L|D ∼= OD2. Thus

dimkH
0(D,L|D) = dimkH

0(D,OD) = deg(D) = d

On the other hand, by assumption dimkH
0(X,OX) = 1 and dimH0(X,L) = r+1.

We conclude that r + 1 ≤ 1 + d, i.e., r ≤ d as in the lemma.
Assume equality holds. Then H0(X,L) → H0(X,L|D) is surjective. If we knew
that H1(X,L) was zero, then we would conclude that H1(X,OX) is zero by the
long exact cohomology sequence and the proof would be complete. Our strategy
will be to replace L by a large power which has vanishing. As L|D is the trivial
invertible module (see above), we can find a section t of L whose restriction of D
generates L|D. Consider the multiplication map

µ : H0(X,L)⊗k H0(X,L) −→ H0(X,L⊗2)
and consider the short exact sequence

0→ L s−→ L⊗2 → L⊗2|D → 0
Since H0(L)→ H0(L|D) is surjective and since t maps to a trivialization of L|D we
see that µ(H0(X,L)⊗ t) gives a subspace of H0(X,L⊗2) surjecting onto the global
sections of L⊗2|D. Thus we see that

dimH0(X,L⊗2) = r + 1 + d = 2r + 1 = deg(L⊗2) + 1
Ok, so L⊗2 has the same property as L, i.e., that the dimension of the space of global
sections is equal to the degree plus one. Since L is ample (Varieties, Lemma 44.14)
there exists some n0 such that L⊗n has vanishing H1 for all n ≥ n0 (Cohomology
of Schemes, Lemma 16.1). Thus applying the argument above to L⊗n with n = 2m
for some sufficiently large m we conclude the lemma is true. □

Remark 3.6 (Classical definition).0CCT Let X be a smooth projective curve over an
algebraically closed field k. We say two effective Cartier divisors D,D′ ⊂ X are
linearly equivalent if and only if OX(D) ∼= OX(D′) as OX -modules. Since Pic(X) =
Cl(X) (Divisors, Lemma 27.7) we see that D and D′ are linearly equivalent if and
only if the Weil divisors associated to D and D′ define the same element of Cl(X).
Given an effective Cartier divisor D ⊂ X of degree d the complete linear system or
complete linear series |D| of D is the set of effective Cartier divisors E ⊂ X which
are linearly equivalent to D. Another way to say it is that |D| is the set of closed
points of the fibre of the morphism

γd : HilbdX/k −→ PicdX/k

2In our case this follows from Divisors, Lemma 17.1 as D → Spec(k) is finite.

https://stacks.math.columbia.edu/tag/0CCS
https://stacks.math.columbia.edu/tag/0CCT
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(Picard Schemes of Curves, Lemma 6.7) over the closed point corresponding to
OX(D). This gives |D| a natural scheme structure and it turns out that |D| ∼= Pm

k

with m+ 1 = h0(OX(D)). In fact, more canonically we have

|D| = P(H0(X,OX(D))∨)

where (−)∨ indicates k-linear dual and P is as in Constructions, Example 21.2. In
this language a linear system or a linear series on X is a closed subvariety L ⊂ |D|
which can be cut out by linear equations. If L has dimension r, then L = P(V ∨)
where V ⊂ H0(X,OX(D)) is a linear subspace of dimension r+1. Thus the classical
linear series L ⊂ |D| corresponds to the linear series (OX(D), V ) as defined above.

4. Duality

0E31 In this section we work out the consequences of the very general material on du-
alizing complexes and duality for proper 1-dimensional schemes over fields. If you
are interested in the analogous discussion for higher dimension proper schemes over
fields, see Duality for Schemes, Section 27.

Lemma 4.1.0BS2 Let X be a proper scheme of dimension ≤ 1 over a field k. There
exists a dualizing complex ω•

X with the following properties
(1) Hi(ω•

X) is nonzero only for i = −1, 0,
(2) ωX = H−1(ω•

X) is a coherent Cohen-Macaulay module whose support is the
irreducible components of dimension 1,

(3) for x ∈ X closed, the module H0(ω•
X,x) is nonzero if and only if either

(a) dim(OX,x) = 0 or
(b) dim(OX,x) = 1 and OX,x is not Cohen-Macaulay,

(4) for K ∈ DQCoh(OX) there are functorial isomorphisms3

ExtiX(K,ω•
X) = Homk(H−i(X,K), k)

compatible with shifts and distinguished triangles,
(5) there are functorial isomorphisms Hom(F , ωX) = Homk(H1(X,F), k) for
F quasi-coherent on X,

(6) if X → Spec(k) is smooth of relative dimension 1, then ωX ∼= ΩX/k.

Proof. Denote f : X → Spec(k) the structure morphism. We start with the
relative dualizing complex

ω•
X = ω•

X/k = a(OSpec(k))

as described in Duality for Schemes, Remark 12.5. Then property (4) holds by
construction as a is the right adjoint for f∗ : DQCoh(OX) → D(OSpec(k)). Since f
is proper we have f !(OSpec(k)) = a(OSpec(k)) by definition, see Duality for Schemes,
Section 16. Hence ω•

X and ωX are as in Duality for Schemes, Example 22.1 and as
in Duality for Schemes, Example 22.2. Parts (1) and (2) follow from Duality for
Schemes, Lemma 22.4. For a closed point x ∈ X we see that ω•

X,x is a normalized
dualizing complex over OX,x, see Duality for Schemes, Lemma 21.1. Assertion (3)
then follows from Dualizing Complexes, Lemma 20.2. Assertion (5) follows from
Duality for Schemes, Lemma 22.5 for coherent F and in general by unwinding (4)

3This property characterizes ω•
X in DQCoh(OX) up to unique isomorphism by the Yoneda

lemma. Since ω•
X is in Db

Coh(OX) in fact it suffices to consider K ∈ Db
Coh(OX).

https://stacks.math.columbia.edu/tag/0BS2
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for K = F [0] and i = −1. Assertion (6) follows from Duality for Schemes, Lemma
15.7. □

Lemma 4.2.0BS3 Let X be a proper scheme over a field k which is Cohen-Macaulay and
equidimensional of dimension 1. The module ωX of Lemma 4.1 has the following
properties

(1) ωX is a dualizing module on X (Duality for Schemes, Section 22),
(2) ωX is a coherent Cohen-Macaulay module whose support is X,
(3) there are functorial isomorphisms ExtiX(K,ωX [1]) = Homk(H−i(X,K), k)

compatible with shifts for K ∈ DQCoh(X),
(4) there are functorial isomorphisms Ext1+i(F , ωX) = Homk(H−i(X,F), k)

for F quasi-coherent on X.

Proof. Recall from the proof of Lemma 4.1 that ωX is as in Duality for Schemes,
Example 22.1 and hence is a dualizing module. The other statements follow from
Lemma 4.1 and the fact that ω•

X = ωX [1] as X is Cohen-Macualay (Duality for
Schemes, Lemma 23.1). □

Remark 4.3.0BS4 Let X be a proper scheme of dimension ≤ 1 over a field k. Let ω•
X

and ωX be as in Lemma 4.1. If E is a finite locally free OX -module with dual E∨

then we have canonical isomorphisms
Homk(H−i(X, E), k) = Hi(X, E∨ ⊗L

OX
ω•
X)

This follows from the lemma and Cohomology, Lemma 50.5. If X is Cohen-
Macaulay and equidimensional of dimension 1, then we have canonical isomor-
phisms

Homk(H−i(X, E), k) = H1+i(X, E∨ ⊗OX
ωX)

by Lemma 4.2. In particular if L is an invertible OX -module, then we have
dimkH

0(X,L) = dimkH
1(X,L⊗−1 ⊗OX

ωX)
and

dimkH
1(X,L) = dimkH

0(X,L⊗−1 ⊗OX
ωX)

Here is a sanity check for the dualizing complex.

Lemma 4.4.0E32 Let X be a proper scheme of dimension ≤ 1 over a field k. Let ω•
X

and ωX be as in Lemma 4.1.
(1) If X → Spec(k) factors as X → Spec(k′)→ Spec(k) for some field k′, then

ω•
X and ωX satisfy properties (4), (5), (6) with k replaced with k′.

(2) If K/k is a field extension, then the pullback of ω•
X and ωX to the base

change XK are as in Lemma 4.1 for the morphism XK → Spec(K).

Proof. Denote f : X → Spec(k) the structure morphism. Assertion (1) really
means that ω•

X and ωX are as in Lemma 4.1 for the morphism f ′ : X → Spec(k′).
In the proof of Lemma 4.1 we took ω•

X = a(OSpec(k)) where a be is the right adjoint
of Duality for Schemes, Lemma 3.1 for f . Thus we have to show a(OSpec(k)) ∼=
a′(OSpec(k)) where a′ be is the right adjoint of Duality for Schemes, Lemma 3.1 for
f ′. Since k′ ⊂ H0(X,OX) we see that k′/k is a finite extension (Cohomology of
Schemes, Lemma 19.2). By uniqueness of adjoints we have a = a′ ◦ b where b is
the right adjoint of Duality for Schemes, Lemma 3.1 for g : Spec(k′) → Spec(k).
Another way to say this: we have f ! = (f ′)! ◦ g!. Thus it suffices to show that

https://stacks.math.columbia.edu/tag/0BS3
https://stacks.math.columbia.edu/tag/0BS4
https://stacks.math.columbia.edu/tag/0E32
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Homk(k′, k) ∼= k′ as k′-modules, see Duality for Schemes, Example 3.2. This holds
because these are k′-vector spaces of the same dimension (namely dimension 1).

Proof of (2). This holds because we have base change for a by Duality for Schemes,
Lemma 6.2. See discussion in Duality for Schemes, Remark 12.5. □

Lemma 4.5.0E33 Let X be a proper scheme of dimension ≤ 1 over a field k. Let
i : Y → X be a closed immersion. Let ω•

X , ωX , ω•
Y , ωY be as in Lemma 4.1. Then

(1) ω•
Y = RHom(OY , ω•

X),
(2) ωY = Hom(OY , ωX) and i∗ωY = HomOX

(i∗OY , ωX).

Proof. Denote g : Y → Spec(k) and f : X → Spec(k) the structure morphisms.
Then g = f◦i. Denote a, b, c the right adjoint of Duality for Schemes, Lemma 3.1 for
f, g, i. Then b = c ◦a by uniqueness of right adjoints and because Rg∗ = Rf∗ ◦Ri∗.
In the proof of Lemma 4.1 we set ω•

X = a(OSpec(k)) and ω•
Y = b(OSpec(k)). Hence

ω•
Y = c(ω•

X) which implies (1) by Duality for Schemes, Lemma 9.7. Since ωX =
H−1(ω•

X) and ωY = H−1(ω•
Y ) we conclude that ωY = Hom(OY , ωX). This implies

i∗ωY = HomOX
(i∗OY , ωX) by Duality for Schemes, Lemma 9.3. □

Lemma 4.6.0E34 Let X be a proper scheme over a field k which is Gorenstein, reduced,
and equidimensional of dimension 1. Let i : Y → X be a reduced closed subscheme
equidimensional of dimension 1. Let j : Z → X be the scheme theoretic closure of
X \ Y . Then

(1) Y and Z are Cohen-Macaulay,
(2) if I ⊂ OX , resp. J ⊂ OX is the ideal sheaf of Y , resp. Z in X, then

I = i∗I ′ and J = j∗J ′

where I ′ ⊂ OZ , resp. J ′ ⊂ OY is the ideal sheaf of Y ∩ Z in Z, resp. Y ,
(3) ωY = J ′(i∗ωX) and i∗(ωY ) = JωX ,
(4) ωZ = I ′(i∗ωX) and i∗(ωZ) = IωX ,
(5) we have the following short exact sequences

0→ ωX → i∗i
∗ωX ⊕ j∗j

∗ωX → OY ∩Z → 0
0→ i∗ωY → ωX → j∗j

∗ωX → 0
0→ j∗ωZ → ωX → i∗i

∗ωX → 0
0→ i∗ωY ⊕ j∗ωZ → ωX → OY ∩Z → 0

0→ ωY → i∗ωX → OY ∩Z → 0
0→ ωZ → j∗ωX → OY ∩Z → 0

Here ωX , ωY , ωZ are as in Lemma 4.1.

Proof. A reduced 1-dimensional Noetherian scheme is Cohen-Macaulay, so (1) is
true. Since X is reduced, we see that X = Y ∪ Z scheme theoretically. With
notation as in Morphisms, Lemma 4.6 and by the statement of that lemma we have
a short exact sequence

0→ OX → OY ⊕OZ → OY ∩Z → 0

Since J = Ker(OX → OZ), J ′ = Ker(OY → OY ∩Z), I = Ker(OX → OY ), and
I ′ = Ker(OZ → OY ∩Z) a diagram chase implies (2). Observe that I+J is the ideal

https://stacks.math.columbia.edu/tag/0E33
https://stacks.math.columbia.edu/tag/0E34
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sheaf of Y ∩ Z and that I ∩ J = 0. Hence we have the following exact sequences
0→ OX → OY ⊕OZ → OY ∩Z → 0

0→ J → OX → OZ → 0
0→ I → OX → OY → 0

0→ J ⊕ I → OX → OY ∩Z → 0
0→ J ′ → OY → OY ∩Z → 0
0→ I ′ → OZ → OY ∩Z → 0

Since X is Gorenstein ωX is an invertible OX -module (Duality for Schemes, Lemma
24.4). Since Y ∩Z has dimension 0 we have ωX |Y ∩Z ∼= OY ∩Z . Thus if we prove (3)
and (4), then we obtain the short exact sequences of the lemma by tensoring the
above short exact sequence with the invertible module ωX . By symmetry it suffices
to prove (3) and by (2) it suffices to prove i∗(ωY ) = JωX .
We have i∗ωY = HomOX

(i∗OY , ωX) by Lemma 4.5. Again using that ωX is invert-
ible we finally conclude that it suffices to show HomOX

(OX/I,OX) maps isomor-
phically to J by evaluation at 1. In other words, that J is the annihilator of I.
This follows from the above. □

5. Riemann-Roch

0B5B Let k be a field. Let X be a proper scheme of dimension ≤ 1 over k. In Varieties,
Section 44 we have defined the degree of a locally free OX -module E of constant
rank by the formula
(5.0.1)0BRX deg(E) = χ(X, E)− rank(E)χ(X,OX)
see Varieties, Definition 44.1. In the chapter on Chow Homology we defined the
first Chern class of E as an operation on cycles (Chow Homology, Section 38) and
we proved that
(5.0.2)0BRY deg(E) = deg(c1(E) ∩ [X]1)
see Chow Homology, Lemma 41.3. Combining (5.0.1) and (5.0.2) we obtain our
first version of the Riemann-Roch formula
(5.0.3)0BRZ χ(X, E) = deg(c1(E) ∩ [X]1) + rank(E)χ(X,OX)
If L is an invertibleOX -module, then we can also consider the numerical intersection
(L·X) as defined in Varieties, Definition 45.3. However, this does not give anything
new as
(5.0.4)0BS0 (L ·X) = deg(L)
by Varieties, Lemma 45.12. If L is ample, then this integer is positive and is called
the degree
(5.0.5)0BS1 degL(X) = (L ·X) = deg(L)
of X with respect to L, see Varieties, Definition 45.10.
To obtain a true Riemann-Roch theorem we would like to write χ(X,OX) as the
degree of a canonical zero cycle on X. We refer to [Ful98] for a fully general version
of this. We will use duality to get a formula in the case where X is Gorenstein;
however, in some sense this is a cheat (for example because this method cannot
work in higher dimension).
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We first use Lemmas 4.1 and 4.2 to get a relation between the euler characteristic of
OX and the euler characteristic of the dualizing complex or the dualizing module.

Lemma 5.1.0BS5 Let X be a proper scheme of dimension ≤ 1 over a field k. With
ω•
X and ωX as in Lemma 4.1 we have

χ(X,OX) = χ(X,ω•
X)

If X is Cohen-Macaulay and equidimensional of dimension 1, then

χ(X,OX) = −χ(X,ωX)

Proof. We define the right hand side of the first formula as follows:

χ(X,ω•
X) =

∑
i∈Z

(−1)i dimkH
i(X,ω•

X)

This is well defined because ω•
X is in Db

Coh(OX), but also because

Hi(X,ω•
X) = Exti(OX , ω•

X) = H−i(X,OX)

which is always finite dimensional and nonzero only if i = 0,−1. This of course
also proves the first formula. The second is a consequence of the first because
ω•
X = ωX [1] in the CM case, see Lemma 4.2. □

We will use Lemma 5.1 to get the desired formula for χ(X,OX) in the case that
ωX is invertible, i.e., that X is Gorenstein. The statement is that −1/2 of the first
Chern class of ωX capped with the cycle [X]1 associated to X is a natural zero
cycle on X with half-integer coefficients whose degree is χ(X,OX). The occurence
of fractions in the statement of Riemann-Roch cannot be avoided.

Lemma 5.2 (Riemann-Roch).0BS6 Let X be a proper scheme over a field k which is
Gorenstein and equidimensional of dimension 1. Let ωX be as in Lemma 4.1. Then

(1) ωX is an invertible OX-module,
(2) deg(ωX) = −2χ(X,OX),
(3) for a locally free OX-module E of constant rank we have

χ(X, E) = deg(E)− 1
2 rank(E) deg(ωX)

and dimk(Hi(X, E)) = dimk(H1−i(X, E∨ ⊗OX
ωX)) for all i ∈ Z.

Nonsingular (normal) curves are Gorenstein, see Duality for Schemes, Lemma 24.3.

Proof. Recall that Gorenstein schemes are Cohen-Macaulay (Duality for Schemes,
Lemma 24.2) and hence ωX is a dualizing module on X, see Lemma 4.2. It follows
more or less from the definition of the Gorenstein property that the dualizing sheaf
is invertible, see Duality for Schemes, Section 24. By (5.0.3) applied to ωX we have

χ(X,ωX) = deg(c1(ωX) ∩ [X]1) + χ(X,OX)

Combined with Lemma 5.1 this gives

2χ(X,OX) = −deg(c1(ωX) ∩ [X]1) = −deg(ωX)

the second equality by (5.0.2). Putting this back into (5.0.3) for E gives the dis-
played formula of the lemma. The symmetry in dimensions is a consequence of
duality for X, see Remark 4.3. □

https://stacks.math.columbia.edu/tag/0BS5
https://stacks.math.columbia.edu/tag/0BS6
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6. Some vanishing results

0B5C This section contains some very weak vanishing results. Please see Section 21 for a
few more and more interesting results.

Lemma 6.1.0BY5 Let k be a field. Let X be a proper scheme over k having dimension 1
and H0(X,OX) = k. Then X is connected, Cohen-Macaulay, and equidimensional
of dimension 1.

Proof. Since Γ(X,OX) = k has no nontrivial idempotents, we see that X is con-
nected. This already shows that X is equidimensional of dimension 1 (any irre-
ducible component of dimension 0 would be a connected component). Let I ⊂ OX
be the maximal coherent submodule supported in closed points. Then I exists
(Divisors, Lemma 4.6) and is globally generated (Varieties, Lemma 33.3). Since
1 ∈ Γ(X,OX) is not a section of I we conclude that I = 0. Thus X does not have
embedded points (Divisors, Lemma 4.6). Thus X has (S1) by Divisors, Lemma 4.3.
Hence X is Cohen-Macaulay. □

In this section we work in the following situation.

Situation 6.2.0B5D Here k is a field, X is a proper scheme over k having dimension 1
and H0(X,OX) = k.

By Lemma 6.1 the scheme X is Cohen-Macaulay and equidimensional of dimension
1. The dualizing module ωX discussed in Lemmas 4.1 and 4.2 has nonvanishing
H1 because in fact dimkH

1(X,ωX) = dimkH
0(X,OX) = 1. It turns out that

anything slightly more “positive” than ωX has vanishing H1.

Lemma 6.3.0B5E In Situation 6.2. Given an exact sequence

ωX → F → Q→ 0

of coherent OX-modules with H1(X,Q) = 0 (for example if dim(Supp(Q)) = 0),
then either H1(X,F) = 0 or F = ωX ⊕Q.

Proof. (The parenthetical statement follows from Cohomology of Schemes, Lemma
9.10.) Since H0(X,OX) = k is dual to H1(X,ωX) (see Section 5) we see that
dimH1(X,ωX) = 1. The sheaf ωX represents the functor F 7→ Homk(H1(X,F), k)
on the category of coherent OX -modules (Duality for Schemes, Lemma 22.5).
Consider an exact sequence as in the statement of the lemma and assume that
H1(X,F) ̸= 0. Since H1(X,Q) = 0 we see that H1(X,ωX) → H1(X,F) is an
isomorphism. By the universal property of ωX stated above, we conclude there
is a map F → ωX whose action on H1 is the inverse of this isomorphism. The
composition ωX → F → ωX is the identity (by the universal property) and the
lemma is proved. □

Lemma 6.4.0B62 In Situation 6.2. Let L be an invertible OX-module which is globally
generated and not isomorphic to OX . Then H1(X,ωX ⊗ L) = 0.

Proof. By duality as discussed in Section 5 we have to show thatH0(X,L⊗−1) = 0.
If not, then we can choose a global section t of L⊗−1 and a global section s of L
such that st ̸= 0. However, then st is a constant multiple of 1, by our assumption
that H0(X,OX) = k. It follows that L ∼= OX , which is a contradiction. □

https://stacks.math.columbia.edu/tag/0BY5
https://stacks.math.columbia.edu/tag/0B5D
https://stacks.math.columbia.edu/tag/0B5E
https://stacks.math.columbia.edu/tag/0B62
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Lemma 6.5.0B5F In Situation 6.2. Given an exact sequence
ωX → F → Q→ 0

of coherent OX-modules with dim(Supp(Q)) = 0 and dimkH
0(X,Q) ≥ 2 and such

that there is no nonzero submodule Q′ ⊂ F such that Q′ → Q is injective. Then
the submodule of F generated by global sections surjects onto Q.

Proof. Let F ′ ⊂ F be the submodule generated by global sections and the image of
ωX → F . Since dimkH

0(X,Q) ≥ 2 and dimkH
1(X,ωX) = dimkH

0(X,OX) = 1,
we see that F ′ → Q is not zero and ωX → F ′ is not an isomorphism. Hence
H1(X,F ′) = 0 by Lemma 6.3 and our assumption on F . Consider the short exact
sequence

0→ F ′ → F → Q/ Im(F ′ → Q)→ 0
If the quotient on the right is nonzero, then we obtain a contradiction because then
H0(X,F) is bigger than H0(X,F ′). □

Here is an example global generation statement.

Lemma 6.6.0B5G In Situation 6.2 assume that X is integral. Let 0 → ωX → F →
Q → 0 be a short exact sequence of coherent OX-modules with F torsion free,
dim(Supp(Q)) = 0, and dimkH

0(X,Q) ≥ 2. Then F is globally generated.

Proof. Consider the submodule F ′ generated by the global sections. By Lemma
6.5 we see that F ′ → Q is surjective, in particular F ′ ̸= 0. Since X is a curve, we
see that F ′ ⊂ F is an inclusion of rank 1 sheaves, hence Q′ = F/F ′ is supported in
finitely many points. To get a contradiction, assume thatQ′ is nonzero. Then we see
thatH1(X,F ′) ̸= 0. Then we get a nonzero map F ′ → ωX by the universal property
(Duality for Schemes, Lemma 22.5). The image of the composition F ′ → ωX → F
is generated by global sections, hence is inside of F ′. Thus we get a nonzero self
map F ′ → F ′. Since F ′ is torsion free of rank 1 on a proper curve this has to be
an automorphism (details omitted). But then this implies that F ′ is contained in
ωX ⊂ F contradicting the surjectivity of F ′ → Q. □

Lemma 6.7.0B5H In Situation 6.2. Let L be a very ample invertible OX-module with
deg(L) ≥ 2. Then ωX ⊗OX

L is globally generated.

Proof. Assume k is algebraically closed. Let x ∈ X be a closed point. Let Ci ⊂ X
be the irreducible components and for each i let xi ∈ Ci be the generic point. By
Varieties, Lemma 22.2 we can choose a section s ∈ H0(X,L) such that s vanishes at
x but not at xi for all i. The corresponding module map s : OX → L is injective with
cokernel Q supported in finitely many points and with H0(X,Q) ≥ 2. Consider
the corresponding exact sequence

0→ ωX → ωX ⊗ L → ωX ⊗Q → 0
By Lemma 6.5 we see that the module generated by global sections surjects onto
ωX ⊗Q. Since x was arbitrary this proves the lemma. Some details omitted.
We will reduce the case where k is not algebraically closed, to the algebraically
closed field case. We suggest the reader skip the rest of the proof. Choose an
algebraic closure k of k and consider the base change Xk. Let us check that
Xk → Spec(k) is an example of Situation 6.2. By flat base change (Cohomol-
ogy of Schemes, Lemma 5.2) we see that H0(Xk,O) = k. The scheme Xk is proper

https://stacks.math.columbia.edu/tag/0B5F
https://stacks.math.columbia.edu/tag/0B5G
https://stacks.math.columbia.edu/tag/0B5H
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over k (Morphisms, Lemma 41.5) and equidimensional of dimension 1 (Morphisms,
Lemma 28.3). The pullback of ωX to Xk is the dualizing module of Xk by Lemma
4.4. The pullback of L to Xk is very ample (Morphisms, Lemma 38.8). The degree
of the pullback of L to Xk is equal to the degree of L on X (Varieties, Lemma 44.2).
Finally, we see that ωX ⊗L is globally generated if and only if its base change is so
(Varieties, Lemma 22.1). In this way we see that the result follows from the result
in the case of an algebraically closed ground field. □

7. Very ample invertible sheaves

0E8U An often used criterion for very ampleness of an invertible module L on a scheme
X of finite type over an algebraically closed field is: sections of L separate points
and tangent vectors (Varieties, Section 23). Here is another criterion for curves;
please compare with Varieties, Subsection 35.6.

Lemma 7.1.0E8V Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Let L be an invertible OX-module. Assume

(1) L has a regular global section,
(2) H1(X,L) = 0, and
(3) L is ample.

Then L⊗6 is very ample on X over k.

Proof. Let s be a regular global section of L. Let i : Z = Z(s) → X be the zero
scheme of s, see Divisors, Section 14. By condition (3) we see that Z ̸= ∅ (small
detail omitted). Consider the short exact sequence

0→ OX
s−→ L → i∗(L|Z)→ 0

Tensoring with L we obtain
0→ L → L⊗2 → i∗(L⊗2|Z)→ 0

Observe that Z has dimension 0 (Divisors, Lemma 13.5) and hence is the spectrum
of an Artinian ring (Varieties, Lemma 20.2) hence L|Z ∼= OZ (Algebra, Lemma
78.7). The short exact sequence also shows that H1(X,L⊗2) = 0 (for example
using Varieties, Lemma 33.3 to see vanishing in the spot on the right). Using
induction on n ≥ 1 and the sequence

0→ L⊗n s−→ L⊗n+1 → i∗(L⊗n+1|Z)→ 0
we see that H1(X,L⊗n) = 0 for n > 0 and that there exists a global section tn+1
of L⊗n+1 which gives a trivialization of L⊗n+1|Z ∼= OZ .
Consider the multiplication map
µn : H0(X,L)⊗k H0(X,L⊗n)⊕H0(X,L⊗2)⊗k H0(X,L⊗n−1) −→ H0(X,L⊗n+1)
We claim this is surjective for n ≥ 3. To see this we consider the short exact
sequence

0→ L⊗n s−→ L⊗n+1 → i∗(L⊗n+1|Z)→ 0
The sections of L⊗n+1 coming from the left in this sequence are in the image of
µn. On the other hand, since H0(L⊗2)→ H0(L⊗2|Z) is surjective (see above) and
since tn−1 maps to a trivialization of L⊗n−1|Z we see that µn(H0(X,L⊗2)⊗ tn−1)
gives a subspace of H0(X,L⊗n+1) surjecting onto the global sections of L⊗n+1|Z .
This proves the claim.

https://stacks.math.columbia.edu/tag/0E8V
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From the claim in the previous paragraph we conclude that the graded k-algebra

S =
⊕

n≥0
H0(X,L⊗n)

is generated in degrees 0, 1, 2, 3 over k. Recall that X = Proj(S), see Morphisms,
Lemma 43.17. Thus S(6) =

⊕
n S6n is generated in degree 1. This means that L⊗6

is very ample as desired. □

Lemma 7.2.0E8W Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Let L be an invertible OX-module. Assume

(1) L is globally generated,
(2) H1(X,L) = 0, and
(3) L is ample.

Then L⊗2 is very ample on X over k.

Proof. Choose basis s0, . . . , sn of H0(X,L⊗2) over k. By property (1) we see that
L⊗2 is globally generated and we get a morphism

φL⊗2,(s0,...,sn) : X −→ Pn
k

See Constructions, Section 13. The lemma asserts that this morphism is a closed
immersion. To check this we may replace k by its algebraic closure, see Descent,
Lemma 23.19. Thus we may assume k is algebraically closed.
Assume k is algebraically closed. For each generic point ηi ∈ X let Vi ⊂ H0(X,L)
be the k-subvector space of sections vanishing at ηi. Since L is globally generated,
we see that Vi ̸= H0(X,L). Since X has only a finite number of irreducible compo-
nents and k is infinite, we can find s ∈ H0(X,L) nonvanishing at ηi for all i. Then
s is a regular section of L (because X is Cohen-Macaulay by Lemma 6.1 and hence
L has no embedded associated points).
In particular, all of the statements given in the proof of Lemma 7.1 hold with this
s. Moreover, as L is globally generated, we can find a global section t ∈ H0(X,L)
such that t|Z is nonvanishing (argue as above using the finite number of points
of Z). Then in the proof of Lemma 7.1 we can use t to see that additionally the
multiplication map

µn : H0(X,L)⊗k H0(X,L⊗2) −→ H0(X,L⊗3)
is surjective. Thus

S =
⊕

n≥0
H0(X,L⊗n)

is generated in degrees 0, 1, 2 over k. Arguing as in the proof of Lemma 7.1 we find
that S(2) =

⊕
n S2n is generated in degree 1. This means that L⊗2 is very ample

as desired. Some details omitted. □

8. The genus of a curve

0BY6 If X is a smooth projective geometrically irreducible curve over a field k, then
we’ve previously defined the genus of X as the dimension of H1(X,OX), see Picard
Schemes of Curves, Definition 6.3. Observe that H0(X,OX) = k in this case, see
Varieties, Lemma 26.2. Let us generalize this as follows.

Definition 8.1.0BY7 Let k be a field. Let X be a proper scheme over k having
dimension 1 and H0(X,OX) = k. Then the genus of X is g = dimkH

1(X,OX).

https://stacks.math.columbia.edu/tag/0E8W
https://stacks.math.columbia.edu/tag/0BY7
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This is sometimes called the arithmetic genus of X. In the literature the arithmetic
genus of a proper curve X over k is sometimes defined as

pa(X) = 1− χ(X,OX) = 1− dimkH
0(X,OX) + dimkH

1(X,OX)

This agrees with our definition when it applies because we assume H0(X,OX) = k.
But note that

(1) pa(X) can be negative, and
(2) pa(X) depends on the base field k and should be written pa(X/k).

For example if k = Q and X = P1
Q(i) then pa(X/Q) = −1 and pa(X/Q(i)) = 0.

The assumption that H0(X,OX) = k in our definition has two consequences. On
the one hand, it means there is no confusion about the base field. On the other
hand, it implies the scheme X is Cohen-Macaulay and equidimensional of dimension
1 (Lemma 6.1). If ωX denotes the dualizing module as in Lemmas 4.1 and 4.2 we
see that

(8.1.1)0BY8 g = dimkH
1(X,OX) = dimkH

0(X,ωX)

by duality, see Remark 4.3.

If X is proper over k of dimension ≤ 1 and H0(X,OX) is not equal to the ground
field k, instead of using the arithmetic genus pa(X) given by the displayed formula
above we shall use the invariant χ(X,OX). In fact, it is advocated in [Ser55, page
276] and [Hir95, Introduction] that we should call χ(X,OX) the arithmetic genus.

Lemma 8.2.0BY9 Let k′/k be a field extension. Let X be a proper scheme over k
having dimension 1 and H0(X,OX) = k. Then Xk′ is a proper scheme over k′

having dimension 1 and H0(Xk′ ,OXk′ ) = k′. Moreover the genus of Xk′ is equal
to the genus of X.

Proof. The dimension of Xk′ is 1 for example by Morphisms, Lemma 28.3. The
morphism Xk′ → Spec(k′) is proper by Morphisms, Lemma 41.5. The equality
H0(Xk′ ,OXk′ ) = k′ follows from Cohomology of Schemes, Lemma 5.2. The equality
of the genus follows from the same lemma. □

Lemma 8.3.0C19 Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. If X is Gorenstein, then

deg(ωX) = 2g − 2

where g is the genus of X and ωX is as in Lemma 4.1.

Proof. Immediate from Lemma 5.2. □

Lemma 8.4.0C1A Let X be a smooth proper curve over a field k with H0(X,OX) = k.
Then

dimkH
0(X,ΩX/k) = g and deg(ΩX/k) = 2g − 2

where g is the genus of X.

Proof. By Lemma 4.1 we have ΩX/k = ωX . Hence the formulas hold by (8.1.1)
and Lemma 8.3. □

https://stacks.math.columbia.edu/tag/0BY9
https://stacks.math.columbia.edu/tag/0C19
https://stacks.math.columbia.edu/tag/0C1A
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9. Plane curves

0BYA Let k be a field. A plane curve will be a curve X which is isomorphic to a closed
subscheme of P2

k. Often the embedding X → P2
k will be considered given. By

Divisors, Example 31.2 a curve is determined by the corresponding homogeneous
ideal

I(X) = Ker
(
k[T0, T2, T2] −→

⊕
Γ(X,OX(n))

)
Recall that in this situation we have

X = Proj(k[T0, T2, T2]/I)

as closed subschemes of P2
k. For more general information on these constructions

we refer the reader to Divisors, Example 31.2 and the references therein. It turns
out that I(X) = (F ) for some homogeneous polynomial F ∈ k[T0, T1, T2], see
Lemma 9.1. Since X is irreducible, it follows that F is irreducible, see Lemma 9.2.
Moreover, looking at the short exact sequence

0→ OP2
k
(−d) F−→ OP2

k
→ OX → 0

where d = deg(F ) we find that H0(X,OX) = k and that X has genus (d− 1)(d−
2)/2, see proof of Lemma 9.3.

To find smooth plane curves it is easiest to write explicit equations. Let p denote
the characteristic of k. If p does not divide d, then we can take

F = T d0 + T d1 + T d2

The corresponding curve X = V+(F ) is called the Fermat curve of degree d. It is
smooth because on each standard affine piece D+(Ti) we obtain a curve isomorphic
to the affine curve

Spec(k[x, y]/(xd + yd + 1))
The ring map k → k[x, y]/(xd + yd + 1) is smooth by Algebra, Lemma 137.16 as
dxd−1 and dyd−1 generate the unit ideal in k[x, y]/(xd + yd + 1). If p|d but p ̸= 3
then you can use the equation

F = T d−1
0 T1 + T d−1

1 T2 + T d−1
2 T0

Namely, on the affine pieces you get x + xd−1y + yd−1 with derivatives 1 − xd−2y
and xd−1−yd−2 whose common zero set (of all three) is empty4. We leave it to the
reader to make examples in characteristic 3.

More generally for any field k and any n and d there exists a smooth hypersurface
of degree d in Pn

k , see for example [Poo05].

Of course, in this way we only find smooth curves whose genus is a triangular
number. To get smooth curves of an arbitrary genus one can look for smooth
curves lying on P1 ×P1 (insert future reference here).

Lemma 9.1.0BYB Let Z ⊂ P2
k be a closed subscheme which is equidimensional of

dimension 1 and has no embedded points (equivalently Z is Cohen-Macaulay). Then
the ideal I(Z) ⊂ k[T0, T1, T2] corresponding to Z is principal.

4Namely, as xd−1 = yd−2, then 0 = x + xd−1y + yd−1 = x + 2xd−1y. Since x ̸= 0 because
1 = xd−2y we get 0 = 1 + 2xd−2y = 3 which is absurd unless 3 = 0.

https://stacks.math.columbia.edu/tag/0BYB
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Proof. This is a special case of Divisors, Lemma 31.3 (see also Varieties, Lemma
34.4). The parenthetical statement follows from the fact that a 1 dimensional
Noetherian scheme is Cohen-Macaulay if and only if it has no embedded points, see
Divisors, Lemma 4.4. □

Lemma 9.2.0BYC Let Z ⊂ P2
k be as in Lemma 9.1 and let I(Z) = (F ) for some

F ∈ k[T0, T1, T2]. Then Z is a curve if and only if F is irreducible.

Proof. If F is reducible, say F = F ′F ′′ then let Z ′ be the closed subscheme of P2
k

defined by F ′. It is clear that Z ′ ⊂ Z and that Z ′ ̸= Z. Since Z ′ has dimension
1 as well, we conclude that either Z is not reduced, or that Z is not irreducible.
Conversely, write Z =

∑
aiDi where Di are the irreducible components of Z,

see Divisors, Lemmas 15.8 and 15.9. Let Fi ∈ k[T0, T1, T2] be the homogeneous
polynomial generating the ideal of Di. Then it is clear that F and

∏
F ai
i cut out

the same closed subscheme of P2
k. Hence F = λ

∏
F ai
i for some λ ∈ k∗ because

both generate the ideal of Z. Thus we see that if F is irreducible, then Z is a prime
divisor, i.e., a curve. □

Lemma 9.3.0BYD Let Z ⊂ P2
k be as in Lemma 9.1 and let I(Z) = (F ) for some

F ∈ k[T0, T1, T2]. Then H0(Z,OZ) = k and the genus of Z is (d − 1)(d − 2)/2
where d = deg(F ).

Proof. Let S = k[T0, T1, T2]. There is an exact sequence of graded modules

0→ S(−d) F−→ S → S/(F )→ 0
Denote i : Z → P2

k the given closed immersion. Applying the exact functor ˜
(Constructions, Lemma 8.4) we obtain

0→ OP2
k
(−d)→ OP2

k
→ i∗OZ → 0

because F generates the ideal of Z. Note that the cohomology groups of OP2
k
(−d)

and OP2
k

are given in Cohomology of Schemes, Lemma 8.1. On the other hand, we
have Hq(Z,OZ) = Hq(P2

k, i∗OZ) by Cohomology of Schemes, Lemma 2.4. Apply-
ing the long exact cohomology sequence we first obtain that

k = H0(P2
k,OP2

k
) −→ H0(Z,OZ)

is an isomorphism and next that the boundary map
H1(Z,OZ) −→ H2(P2

k,OP2
k
(−d)) ∼= k[T0, T1, T2]d−3

is an isomorphism. Since it is easy to see that the dimension of this is (d−1)(d−2)/2
the proof is finished. □

Lemma 9.4.0CCU Let Z ⊂ P2
k be as in Lemma 9.1 and let I(Z) = (F ) for some

F ∈ k[T0, T1, T2]. If Z → Spec(k) is smooth in at least one point and k is infinite,
then there exists a closed point z ∈ Z contained in the smooth locus such that κ(z)/k
is finite separable of degree at most d.

Proof. Suppose that z′ ∈ Z is a point where Z → Spec(k) is smooth. After
renumbering the coordinates if necessary we may assume z′ is contained in D+(T0).
Set f = F (1, x, y) ∈ k[x, y]. Then Z ∩ D+(X0) is isomorphic to the spectrum of
k[x, y]/(f). Let fx, fy be the partial derivatives of f with respect to x, y. Since z′

is a smooth point of Z/k we see that either fx or fy is nonzero in z′ (see discussion
in Algebra, Section 137). After renumbering the coordinates we may assume fy is

https://stacks.math.columbia.edu/tag/0BYC
https://stacks.math.columbia.edu/tag/0BYD
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not zero at z′. Hence there is a nonempty open subscheme V ⊂ Z ∩D+(X0) such
that the projection

p : V −→ Spec(k[x])
is étale. Because the degree of f as a polynomial in y is at most d, we see that the
degrees of the fibres of the projection p are at most d (see discussion in Morphisms,
Section 57). Moreover, as p is étale the image of p is an open U ⊂ Spec(k[x]).
Finally, since k is infinite, the set of k-rational points U(k) of U is infinite, in
particular not empty. Pick any t ∈ U(k) and let z ∈ V be a point mapping to t.
Then z works. □

10. Curves of genus zero

0C6L Later we will need to know what a proper genus zero curve looks like. It turns
out that a Gorenstein proper genus zero curve is a plane curve of degree 2, i.e.,
a conic, see Lemma 10.3. A general proper genus zero curve is obtained from a
nonsingular one (over a bigger field) by a pushout procedure, see Lemma 10.5.
Since a nonsingular curve is Gorenstein, these two results cover all possible cases.

Lemma 10.1.0C6M Let X be a proper curve over a field k with H0(X,OX) = k. If X
has genus 0, then every invertible OX-module L of degree 0 is trivial.

Proof. Namely, we have dimkH
0(X,L) ≥ 0+1−0 = 1 by Riemann-Roch (Lemma

5.2), hence L has a nonzero section, hence L ∼= OX by Varieties, Lemma 44.12. □

Lemma 10.2.0C6T Let X be a proper curve over a field k with H0(X,OX) = k.
Assume X has genus 0. Let L be an invertible OX-module of degree d > 0. Then
we have

(1) dimkH
0(X,L) = d+ 1 and dimkH

1(X,L) = 0,
(2) L is very ample and defines a closed immersion into Pd

k.

Proof. By definition of degree and genus we have
dimkH

0(X,L)− dimkH
1(X,L) = d+ 1

Let s be a nonzero section of L. Then the zero scheme of s is an effective Cartier
divisor D ⊂ X, we have L = OX(D) and we have a short exact sequence

0→ OX → L → L|D → 0
see Divisors, Lemma 14.10 and Remark 14.11. Since H1(X,OX) = 0 by assump-
tion, we see that H0(X,L) → H0(X,L|D) is surjective. As L|D is generated by
global sections (because dim(D) = 0, see Varieties, Lemma 33.3) we conclude that
the invertible module L is generated by global sections. In fact, since D is an
Artinian scheme we have L|D ∼= OD5 and hence we can find a section t of L
whose restriction of D generates L|D. The short exact sequence also shows that
H1(X,L) = 0.
For n ≥ 1 consider the multiplication map

µn : H0(X,L)⊗k H0(X,L⊗n) −→ H0(X,L⊗n+1)
We claim this is surjective. To see this we consider the short exact sequence

0→ L⊗n s−→ L⊗n+1 → L⊗n+1|D → 0

5In our case this follows from Divisors, Lemma 17.1 as D → Spec(k) is finite.

https://stacks.math.columbia.edu/tag/0C6M
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The sections of L⊗n+1 coming from the left in this sequence are in the image of
µn. On the other hand, since H0(L) → H0(L|D) is surjective and since tn maps
to a trivialization of L⊗n|D we see that µn(H0(X,L) ⊗ tn) gives a subspace of
H0(X,L⊗n+1) surjecting onto the global sections of L⊗n+1|D. This proves the
claim.

Observe that L is ample by Varieties, Lemma 44.14. Hence Morphisms, Lemma
43.17 gives an isomorphism

X −→ Proj
(⊕

n≥0
H0(X,L⊗n)

)
Since the maps µn are surjective for all n ≥ 1 we see that the graded algebra on the
right hand side is a quotient of the symmetric algebra on H0(X,L). Choosing a
k-basis s0, . . . , sd of H0(X,L) we see that it is a quotient of a polynomial algebra in
d+ 1 variables. Since quotients of graded rings correspond to closed immersions of
Proj (Constructions, Lemma 11.5) we find a closed immersion X → Pd

k. We omit
the verification that this morphism is the morphism of Constructions, Lemma 13.1
associated to the sections s0, . . . , sd of L. □

Lemma 10.3.0C6N Let X be a proper curve over a field k with H0(X,OX) = k. If X
is Gorenstein and has genus 0, then X is isomorphic to a plane curve of degree 2.

Proof. Consider the invertible sheaf L = ω⊗−1
X where ωX is as in Lemma 4.1.

Then deg(ωX) = −2 by Lemma 8.3 and hence deg(L) = 2. By Lemma 10.2 we
conclude that choosing a basis s0, s1, s2 of the k-vector space of global sections of
L we obtain a closed immersion

φ(L,(s0,s1,s2)) : X −→ P2
k

Thus X is a plane curve of some degree d. Let F ∈ k[T0, T1, T2]d be its equation
(Lemma 9.1). Because the genus of X is 0 we see that d is 1 or 2 (Lemma 9.3).
Observe that F restricts to the zero section on φ(X) and hence F (s0, s1, s2) is
the zero section of L⊗2. Because s0, s1, s2 are linearly independent we see that F
cannot be linear, i.e., d = deg(F ) ≥ 2. Thus d = 2 and the proof is complete. □

Proposition 10.4 (Characterization of the projective line).0C6U Let k be a field. Let
X be a proper curve over k. The following are equivalent

(1) X ∼= P1
k,

(2) X is smooth and geometrically irreducible over k, X has genus 0, and X
has an invertible module of odd degree,

(3) X is geometrically integral over k, X has genus 0, X is Gorenstein, and X
has an invertible sheaf of odd degree,

(4) H0(X,OX) = k, X has genus 0, X is Gorenstein, and X has an invertible
sheaf of odd degree,

(5) X is geometrically integral over k, X has genus 0, and X has an invertible
OX-module of degree 1,

(6) H0(X,OX) = k, X has genus 0, and X has an invertible OX-module of
degree 1,

(7) H1(X,OX) = 0 and X has an invertible OX-module of degree 1,
(8) H1(X,OX) = 0 and X has closed points x1, . . . , xn such that OX,xi

is
normal and gcd([κ(xi) : k]) = 1, and

(9) add more here.

https://stacks.math.columbia.edu/tag/0C6N
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Proof. We will prove that each condition (2) – (8) implies (1) and we omit the
verification that (1) implies (2) – (8).
Assume (2). A smooth scheme over k is geometrically reduced (Varieties, Lemma
25.4) and regular (Varieties, Lemma 25.3). Hence X is Gorenstein (Duality for
Schemes, Lemma 24.3). Thus we reduce to (3).
Assume (3). Since X is geometrically integral over k we have H0(X,OX) = k by
Varieties, Lemma 26.2. and we reduce to (4).
Assume (4). Since X is Gorenstein the dualizing module ωX as in Lemma 4.1 has
degree deg(ωX) = −2 by Lemma 8.3. Combined with the assumed existence of
an odd degree invertible module, we conclude there exists an invertible module of
degree 1. In this way we reduce to (6).
Assume (5). Since X is geometrically integral over k we have H0(X,OX) = k by
Varieties, Lemma 26.2. and we reduce to (6).
Assume (6). Then X ∼= P1

k by Lemma 10.2.
Assume (7). Observe that κ = H0(X,OX) is a field finite over k by Varieties,
Lemma 26.2. If d = [κ : k] > 1, then every invertible sheaf has degree divisible by
d and there cannot be an invertible sheaf of degree 1. Hence d = 1 and we reduce
to case (6).
Assume (8). Observe that κ = H0(X,OX) is a field finite over k by Varieties,
Lemma 26.2. Since κ ⊂ κ(xi) we see that k = κ by the assumption on the gcd
of the degrees. The same condition allows us to find integers ai such that 1 =∑
ai[κ(xi) : k]. Because xi defines an effective Cartier divisor on X by Varieties,

Lemma 43.8 we can consider the invertible module OX(
∑
aixi). By our choice of

ai the degree of L is 1. Thus X ∼= P1
k by Lemma 10.2. □

Lemma 10.5.0DJB Let X be a proper curve over a field k with H0(X,OX) = k.
Assume X is singular and has genus 0. Then there exists a diagram

x′

��

// X ′

ν

��

// Spec(k′)

��
x // X // Spec(k)

where
(1) k′/k is a nontrivial finite extension,
(2) X ′ ∼= P1

k′ ,
(3) x′ is a k′-rational point of X ′,
(4) x is a k-rational point of X,
(5) X ′ \ {x′} → X \ {x} is an isomorphism,
(6) 0 → OX → ν∗OX′ → k′/k → 0 is a short exact sequence where k′/k =

κ(x′)/κ(x) indicates the skyscraper sheaf on the point x.

Proof. Let ν : X ′ → X be the normalization of X, see Varieties, Sections 27 and
41. Since X is singular ν is not an isomorphism. Then k′ = H0(X ′,OX′) is a finite
extension of k (Varieties, Lemma 26.2). The short exact sequence

0→ OX → ν∗OX′ → Q→ 0
and the fact that Q is supported in finitely many closed points give us that

https://stacks.math.columbia.edu/tag/0DJB
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(1) H1(X ′,OX′) = 0, i.e., X ′ has genus 0 as a curve over k′,
(2) there is a short exact sequence 0→ k → k′ → H0(X,Q)→ 0.

In particular k′/k is a nontrivial extension.

Next, we consider what is often called the conductor ideal

I = HomOX
(ν∗OX′ ,OX)

This is a quasi-coherent OX -module. We view I as an ideal in OX via the map
φ 7→ φ(1). Thus I(U) is the set of f ∈ OX(U) such that f (ν∗OX′(U)) ⊂ OX(U).
In other words, the condition is that f annihilates Q. In other words, there is a
defining exact sequence

0→ I → OX → HomOX
(Q,Q)

Let U ⊂ X be an affine open containing the support of Q. Then V = Q(U) =
H0(X,Q) is a k-vector space of dimension n−1. The image ofOX(U)→ Homk(V, V )
is a commutative subalgebra, hence has dimension ≤ n−1 over k (this is a property
of commutative subalgebras of matrix algebras; details omitted). We conclude that
we have a short exact sequence

0→ I → OX → A→ 0

where Supp(A) = Supp(Q) and dimkH
0(X,A) ≤ n − 1. On the other hand, the

description I = HomOX
(ν∗OX′ ,OX) provides I with a ν∗OX′ -module structure

such that the inclusion map I → ν∗OX′ is a ν∗OX′ -module map. We conclude that
I = ν∗I ′ for some quasi-coherent sheaf of ideals I ′ ⊂ OX′ , see Morphisms, Lemma
11.6. Define A′ as the cokernel:

0→ I ′ → OX′ → A′ → 0

Combining the exact sequences so far we obtain a short exact sequence 0 → A →
ν∗A′ → Q→ 0. Using the estimate above, combined with dimkH

0(X,Q) = n− 1,
gives

dimkH
0(X ′,A′) = dimkH

0(X,A) + dimkH
0(X,Q) ≤ 2n− 2

However, since X ′ is a curve over k′ we see that the left hand side is divisible
by n (Varieties, Lemma 44.10). As A and A′ cannot be zero, we conclude that
dimkH

0(X ′,A′) = n which means that I ′ is the ideal sheaf of a k′-rational point
x′. By Proposition 10.4 we find X ′ ∼= P1

k′ . Going back to the equalities above,
we conclude that dimkH

0(X,A) = 1. This means that I is the ideal sheaf of a
k-rational point x. Then A = κ(x) = k and A′ = κ(x′) = k′ as skyscraper sheaves.
Comparing the exact sequences given above, this immediately implies the result on
structure sheaves as stated in the lemma. □

Example 10.6.0DJC In fact, the situation described in Lemma 10.5 occurs for any
nontrivial finite extension k′/k. Namely, we can consider

A = {f ∈ k′[x] | f(0) ∈ k}

The spectrum of A is an affine curve, which we can glue to the spectrum of B = k′[y]
using the isomorphism Ax ∼= By sending x−1 to y. The result is a proper curve
X with H0(X,OX) = k and singular point x corresponding to the maximal ideal
A ∩ (x). The normalization of X is P1

k′ exactly as in the lemma.

https://stacks.math.columbia.edu/tag/0DJC
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11. Geometric genus

0BYE If X is a proper and smooth curve over k with H0(X,OX) = k, then

pg(X) = dimkH
0(X,ΩX/k)

is called the geometric genus of X. By Lemma 8.4 the geometric genus of X agrees
with the (arithmetic) genus. However, in higher dimensions there is a difference
between the geometric genus and the arithmetic genus, see Remark 11.2.

For singular curves, we will define the geometric genus as follows.

Definition 11.1.0BYF Let k be a field. Let X be a geometrically irreducible curve
over k. The geometric genus of X is the genus of a smooth projective model of X
possibly defined over an extension field of k as in Lemma 2.9.

If k is perfect, then the nonsingular projective model Y of X is smooth (Lemma 2.8)
and the geometric genus of X is just the genus of Y . But if k is not perfect, this may
not be true. In this case we choose an extension K/k such that the nonsingular
projective model YK of (XK)red is a smooth projective curve and we define the
geometric genus of X to be the genus of YK . This is well defined by Lemmas 2.9
and 8.2.

Remark 11.2.0BYG Suppose that X is a d-dimensional proper smooth variety over an
algebraically closed field k. Then the arithmetic genus is often defined as pa(X) =
(−1)d(χ(X,OX) − 1) and the geometric genus as pg(X) = dimkH

0(X,ΩdX/k). In
this situation the arithmetic genus and the geometric genus no longer agree even
though it is still true that ωX ∼= ΩdX/k. For example, if d = 2, then we have

pa(X)− pg(X) = h0(X,OX)− h1(X,OX) + h2(X,OX)− 1− h0(X,Ω2
X/k)

= −h1(X,OX) + h2(X,OX)− h0(X,ωX)
= −h1(X,OX)

where hi(X,F) = dimkH
i(X,F) and where the last equality follows from duality.

Hence for a surface the difference pg(X)− pa(X) is always nonnegative; it is some-
times called the irregularity of the surface. If X = C1 ×C2 is a product of smooth
projective curves of genus g1 and g2, then the irregularity is g1 + g2.

12. Riemann-Hurwitz

0C1B Let k be a field. Let f : X → Y be a morphism of smooth curves over k. Then we
obtain a canonical exact sequence

f∗ΩY/k
df−→ ΩX/k −→ ΩX/Y −→ 0

by Morphisms, Lemma 32.9. Since X and Y are smooth, the sheaves ΩX/k and
ΩY/k are invertible modules, see Morphisms, Lemma 34.12. Assume the first map
is nonzero, i.e., assume f is generically étale, see Lemma 12.1. Let R ⊂ X be the
closed subscheme cut out by the different Df of f . By Discriminants, Lemma 12.6
this is the same as the vanishing locus of df , it is an effective Cartier divisor, and
we get

f∗ΩY/k ⊗OX
OX(R) = ΩX/k

https://stacks.math.columbia.edu/tag/0BYF
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In particular, if X, Y are projective with k = H0(Y,OY ) = H0(X,OX) and X, Y
have genus gX , gY , then we get the Riemann-Hurwitz formula

2gX − 2 = deg(ΩX/k)
= deg(f∗ΩY/k ⊗OX

OX(R))
= deg(f) deg(ΩY/k) + deg(R)
= deg(f)(2gY − 2) + deg(R)

The first and last equality by Lemma 8.4. The second equality by the isomorphism
of invertible sheaves given above. The third equality by additivity of degrees (Va-
rieties, Lemma 44.7), the formula for the degree of a pullback (Varieties, Lemma
44.11), and finally the formula for the degree of OX(R) (Varieties, Lemma 44.9).
To use the Riemann-Hurwitz formula we need to compute deg(R) = dimk Γ(R,OR).
By the structure of zero dimensional schemes over k (see for example Varieties,
Lemma 20.2), we see that R is a finite disjoint union of spectra of Artinian local
rings R =

∐
x∈R Spec(OR,x) with each OR,x of finite dimension over k. Thus

deg(R) =
∑

x∈R
dimkOR,x =

∑
x∈R

dx[κ(x) : k]

with
dx = lengthOR,x

OR,x = lengthOX,x
OR,x

the multiplicity of x in R (see Algebra, Lemma 52.12). Let x ∈ X be a closed point
with image y ∈ Y . Looking at stalks we obtain an exact sequence

ΩY/k,y → ΩX/k,x → ΩX/Y,x → 0
Choosing local generators ηx and ηy of the (free rank 1) modules ΩX/k,x and ΩY/k,y
we see that ηy 7→ hηx for some nonzero h ∈ OX,x. By the exact sequence we see
that ΩX/Y,x ∼= OX,x/hOX,x as OX,x-modules. Since the divisor R is cut out by h
(see above) we have OR,x = OX,x/hOX,x. Thus we find the following equalities

dx = lengthOX,x
(OR,x)

= lengthOX,x
(OX,x/hOX,x)

= lengthOX,x
(ΩX/Y,x)

= ordOX,x
(h)

= ordOX,x
(“ηy/ηx”)

The first equality by our definition of dx. The second and third we saw above. The
fourth equality is the definition of ord, see Algebra, Definition 121.2. Note that
since OX,x is a discrete valuation ring, the integer ordOX,x

(h) just the valuation of
h. The fifth equality is a mnemonic.
Here is a case where one can “calculate” the multiplicity dx in terms of other
invariants. Namely, if κ(x) is separable over k, then we may choose ηx = ds
and ηy = dt where s and t are uniformizers in OX,x and OY,y (Lemma 12.3). Then
t 7→ usex for some unit u ∈ OX,x where ex is the ramification index of the extension
OY,y ⊂ OX,x. Hence we get

ηy = dt = d(usex) = esex−1uds+ sexdu
Writing du = wds for some w ∈ OX,x we see that

“ηy/ηx” = esex−1u+ sexw = (exu+ sw)sex−1
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We conclude that the order of vanishing of this is ex − 1 unless the characteristic
of κ(x) is p > 0 and p divides ex in which case the order of vanishing is > ex − 1.
Combining all of the above we find that if k has characteristic zero, then

2gX − 2 = (2gY − 2) deg(f) +
∑

x∈X
(ex − 1)[κ(x) : k]

where ex is the ramification index of OX,x over OY,f(x). This precise formula will
hold if and only if all the ramification is tame, i.e., when the residue field extensions
κ(x)/κ(y) are separable and ex is prime to the characteristic of k, although the
arguments above are insufficient to prove this. We refer the reader to Lemma 12.4
and its proof.
Lemma 12.1.0C1C Let k be a field. Let f : X → Y be a morphism of smooth curves
over k. The following are equivalent

(1) df : f∗ΩY/k → ΩX/k is nonzero,
(2) ΩX/Y is supported on a proper closed subset of X,
(3) there exists a nonempty open U ⊂ X such that f |U : U → Y is unramified,
(4) there exists a nonempty open U ⊂ X such that f |U : U → Y is étale,
(5) the extension k(X)/k(Y ) of function fields is finite separable.

Proof. Since X and Y are smooth, the sheaves ΩX/k and ΩY/k are invertible
modules, see Morphisms, Lemma 34.12. Using the exact sequence

f∗ΩY/k −→ ΩX/k −→ ΩX/Y −→ 0
of Morphisms, Lemma 32.9 we see that (1) and (2) are equivalent and equivalent to
the condition that f∗ΩY/k → ΩX/k is nonzero in the generic point. The equivalence
of (2) and (3) follows from Morphisms, Lemma 35.2. The equivalence between
(3) and (4) follows from Morphisms, Lemma 36.16 and the fact that flatness is
automatic (Lemma 2.3). To see the equivalence of (5) and (4) use Algebra, Lemma
140.9. Some details omitted. □

Lemma 12.2.0C1D Let f : X → Y be a morphism of smooth proper curves over a field
k which satisfies the equivalent conditions of Lemma 12.1. If k = H0(Y,OY ) =
H0(X,OX) and X and Y have genus gX and gY , then

2gX − 2 = (2gY − 2) deg(f) + deg(R)
where R ⊂ X is the effective Cartier divisor cut out by the different of f .
Proof. See discussion above; we used Discriminants, Lemma 12.6, Lemma 8.4, and
Varieties, Lemmas 44.7 and 44.11. □

Lemma 12.3.0C1E Let X → Spec(k) be smooth of relative dimension 1 at a closed
point x ∈ X. If κ(x) is separable over k, then for any uniformizer s in the discrete
valuation ring OX,x the element ds freely generates ΩX/k,x over OX,x.
Proof. The ring OX,x is a discrete valuation ring by Algebra, Lemma 140.3. Since
x is closed κ(x) is finite over k. Hence if κ(x)/k is separable, then any uniformizer
s maps to a nonzero element of ΩX/k,x⊗OX,x

κ(x) by Algebra, Lemma 140.4. Since
ΩX/k,x is free of rank 1 over OX,x the result follows. □

Lemma 12.4.0C1F Notation and assumptions as in Lemma 12.2. For a closed point
x ∈ X let dx be the multiplicity of x in R. Then

2gX − 2 = (2gY − 2) deg(f) +
∑

dx[κ(x) : k]
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Moreover, we have the following results
(1) dx = lengthOX,x

(ΩX/Y,x),
(2) dx ≥ ex − 1 where ex is the ramification index of OX,x over OY,y,
(3) dx = ex − 1 if and only if OX,x is tamely ramified over OY,y.

Proof. By Lemma 12.2 and the discussion above (which used Varieties, Lemma
20.2 and Algebra, Lemma 52.12) it suffices to prove the results on the multiplicity
dx of x in R. Part (1) was proved in the discussion above. In the discussion above
we proved (2) and (3) only in the case where κ(x) is separable over k. In the rest
of the proof we give a uniform treatment of (2) and (3) using material on differents
of quasi-finite Gorenstein morphisms.

First, observe that f is a quasi-finite Gorenstein morphism. This is true for ex-
ample because f is a flat quasi-finite morphism and X is Gorenstein (see Duality
for Schemes, Lemma 25.7) or because it was shown in the proof of Discriminants,
Lemma 12.6 (which we used above). Thus ωX/Y is invertible by Discriminants,
Lemma 16.1 and the same remains true after replacing X by opens and after per-
forming a base change by some Y ′ → Y . We will use this below without further
mention.

Choose affine opens U ⊂ X and V ⊂ Y such that x ∈ U , y ∈ V , f(U) ⊂ V , and x
is the only point of U lying over y. Write U = Spec(A) and V = Spec(B). Then
R ∩ U is the different of f |U : U → V . By Discriminants, Lemma 9.4 formation of
the different commutes with arbitrary base change in our case. By our choice of U
and V we have

A⊗B κ(y) = OX,x ⊗OY,y
κ(y) = OX,x/(sex)

where ex is the ramification index as in the statement of the lemma. Let C =
OX,x/(sex) viewed as a finite algebra over κ(y). Let DC/κ(y) be the different of C
over κ(y) in the sense of Discriminants, Definition 9.1. It suffices to show: DC/κ(y)
is nonzero if and only if the extension OY,y ⊂ OX,x is tamely ramified and in
the tamely ramified case DC/κ(y) is equal to the ideal generated by sex−1 in C.
Recall that tame ramification means exactly that κ(x)/κ(y) is separable and that
the characteristic of κ(y) does not divide ex. On the other hand, the different of
C/κ(y) is nonzero if and only if τC/κ(y) ∈ ωC/κ(y) is nonzero. Namely, since ωC/κ(y)
is an invertible C-module (as the base change of ωA/B) it is free of rank 1, say
with generator λ. Write τC/κ(y) = hλ for some h ∈ C. Then DC/κ(y) = (h) ⊂ C
whence the claim. By Discriminants, Lemma 4.8 we have τC/κ(y) ̸= 0 if and only if
κ(x)/κ(y) is separable and ex is prime to the characteristic. Finally, even if τC/κ(y)
is nonzero, then it is still the case that sτC/κ(y) = 0 because sτC/κ(y) : C → κ(y)
sends c to the trace of the nilpotent operator sc which is zero. Hence sh = 0, hence
h ∈ (sex−1) which proves that DC/κ(y) ⊂ (sex−1) always. Since (sex−1) ⊂ C is the
smallest nonzero ideal, we have proved the final assertion. □

13. Inseparable maps

0CCV Some remarks on the behaviour of the genus under inseparable maps.

Lemma 13.1.0CCW Let k be a field. Let f : X → Y be a surjective morphism of curves
over k. If X is smooth over k and Y is normal, then Y is smooth over k.

https://stacks.math.columbia.edu/tag/0CCW
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Proof. Let y ∈ Y . Pick x ∈ X mapping to y. By Varieties, Lemma 25.9 it suffices
to show that f is flat at x. This follows from Lemma 2.3. □

Lemma 13.2.0CCX Let k be a field of characteristic p > 0. Let f : X → Y be
a nonconstant morphism of proper nonsingular curves over k. If the extension
k(X)/k(Y ) of function fields is purely inseparable, then there exists a factorization

X = X0 → X1 → . . .→ Xn = Y

such that each Xi is a proper nonsingular curve and Xi → Xi+1 is a degree p
morphism with k(Xi+1) ⊂ k(Xi) inseparable.

Proof. This follows from Theorem 2.6 and the fact that a finite purely inseparable
extension of fields can always be gotten as a sequence of (inseparable) extensions
of degree p, see Fields, Lemma 14.5. □

Lemma 13.3.0CCY Let k be a field of characteristic p > 0. Let f : X → Y be
a nonconstant morphism of proper nonsingular curves over k. If X is smooth
and k(Y ) ⊂ k(X) is inseparable of degree p, then there is a unique isomorphism
Y = X(p) such that f is FX/k.

Proof. The relative frobenius morphism FX/k : X → X(p) is constructed in Vari-
eties, Section 36. Observe thatX(p) is a smooth proper curve over k as a base change
of X. The morphism FX/k has degree p by Varieties, Lemma 36.10. Thus k(X(p))
and k(Y ) are both subfields of k(X) with [k(X) : k(Y )] = [k(X) : k(X(p))] = p. To
prove the lemma it suffices to show that k(Y ) = k(X(p)) inside k(X). See Theorem
2.6.
Write K = k(X). Consider the map d : K → ΩK/k. It follows from Lemma 12.1
that both k(Y ) is contained in the kernel of d. By Varieties, Lemma 36.7 we see
that k(X(p)) is in the kernel of d. Since X is a smooth curve we know that ΩK/k
is a vector space of dimension 1 over K. Then More on Algebra, Lemma 46.2.
implies that Ker(d) = kKp and that [K : kKp] = p. Thus k(Y ) = kKp = k(X(p))
for reasons of degree. □

Lemma 13.4.0CCZ Let k be a field of characteristic p > 0. Let f : X → Y be a
nonconstant morphism of proper nonsingular curves over k. If X is smooth and
k(Y ) ⊂ k(X) is purely inseparable, then there is a unique n ≥ 0 and a unique
isomorphism Y = X(pn) such that f is the n-fold relative Frobenius of X/k.

Proof. The n-fold relative Frobenius of X/k is defined in Varieties, Remark 36.11.
The lemma follows by combining Lemmas 13.3 and 13.2. □

Lemma 13.5.0CD0 Let k be a field of characteristic p > 0. Let f : X → Y be a
nonconstant morphism of proper nonsingular curves over k. Assume

(1) X is smooth,
(2) H0(X,OX) = k,
(3) k(X)/k(Y ) is purely inseparable.

Then Y is smooth, H0(Y,OY ) = k, and the genus of Y is equal to the genus of X.

Proof. By Lemma 13.4 we see that Y = X(pn) is the base change of X by FnSpec(k).
Thus Y is smooth and the result on the cohomology and genus follows from Lemma
8.2. □
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Example 13.6.0CD1 This example will show that the genus can change under a purely
inseparable morphism of nonsingular projective curves. Let k be a field of charac-
teristic 3. Assume there exists an element a ∈ k which is not a 3rd power. For
example k = F3(a) would work. Let X be the plane curve with homogeneous
equation

F = T 2
1 T0 − T 3

2 + aT 3
0

as in Section 9. On the affine piece D+(T0) using coordinates x = T1/T0 and
y = T2/T0 we obtain x2 − y3 + a = 0 which defines a nonsingular affine curve.
Moreover, the point at infinity (0 : 1 : 0) is a smooth point. HenceX is a nonsingular
projective curve of genus 1 (Lemma 9.3). On the other hand, consider the morphism
f : X → P1

k which on D+(T0) sends (x, y) to x ∈ A1
k ⊂ P1

k. Then f is a morphism
of proper nonsingular curves over k inducing an inseparable function field extension
of degree p = 3 but the genus of X is 1 and the genus of P1

k is 0.

Proposition 13.7.0CD2 Let k be a field of characteristic p > 0. Let f : X → Y be a
nonconstant morphism of proper smooth curves over k. Then we can factor f as

X −→ X(pn) −→ Y

where X(pn) → Y is a nonconstant morphism of proper smooth curves inducing a
separable field extension k(X(pn))/k(Y ), we have

X(pn) = X ×Spec(k),Fn
Spec(k)

Spec(k),

and X → X(pn) is the n-fold relative frobenius of X.

Proof. By Fields, Lemma 14.6 there is a subextension k(X)/E/k(Y ) such that
k(X)/E is purely inseparable and E/k(Y ) is separable. By Theorem 2.6 this cor-
responds to a factorization X → Z → Y of f with Z a nonsingular proper curve.
Apply Lemma 13.4 to the morphism X → Z to conclude. □

Lemma 13.8.0CD3 Let k be a field of characteristic p > 0. Let X be a smooth proper
curve over k. Let (L, V ) be a grd with r ≥ 1. Then one of the following two is true

(1) there exists a g1
d whose corresponding morphism X → P1

k (Lemma 3.2) is
generically étale (i.e., is as in Lemma 12.1), or

(2) there exists a grd′ on X(p) where d′ ≤ d/p.

Proof. Pick two k-linearly independent elements s, t ∈ V . Then f = s/t is the
rational function defining the morphism X → P1

k corresponding to the linear series
(L, ks+kt). If this morphism is not generically étale, then f ∈ k(X(p)) by Proposi-
tion 13.7. Now choose a basis s0, . . . , sr of V and let L′ ⊂ L be the invertible sheaf
generated by s0, . . . , sr. Set fi = si/s0 in k(X). If for each pair (s0, si) we have
fi ∈ k(X(p)), then the morphism

φ = φ(L′,(s0,...,sr) : X −→ Pr
k = Proj(k[T0, . . . , Tr])

factors through X(p) as this is true over the affine open D+(T0) and we can extend
the morphism over the affine part to the whole of the smooth curve X(p) by Lemma
2.2. Introducing notation, say we have the factorization

X
FX/k−−−→ X(p) ψ−→ Pr

k
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of φ. Then N = ψ∗OP1
k
(1) is an invertible OX(p) -module with L′ = F ∗

X/kN and
with ψ∗T0, . . . , ψ

∗Tr k-linearly independent (as they pullback to s0, . . . , sr on X).
Finally, we have

d = deg(L) ≥ deg(L′) = deg(FX/k) deg(N ) = p deg(N )
as desired. Here we used Varieties, Lemmas 44.12, 44.11, and 36.10. □

Lemma 13.9.0CD4 Let k be a field. Let X be a smooth proper curve over k with
H0(X,OX) = k and genus g ≥ 2. Then there exists a closed point x ∈ X with
κ(x)/k separable of degree ≤ 2g − 2.

Proof. Set ω = ΩX/k. By Lemma 8.4 this has degree 2g − 2 and has g global
sections. Thus we have a gg−1

2g−2. By the trivial Lemma 3.3 there exists a g1
2g−2 and

by Lemma 3.4 we obtain a morphism
φ : X −→ P1

k

of some degree d ≤ 2g − 2. Since φ is flat (Lemma 2.3) and finite (Lemma 2.4) it
is finite locally free of degree d (Morphisms, Lemma 48.2). Pick any rational point
t ∈ P1

k and any point x ∈ X with φ(x) = t. Then
d ≥ [κ(x) : κ(t)] = [κ(x) : k]

for example by Morphisms, Lemmas 57.3 and 57.2. Thus if k is perfect (for example
has characteristic zero or is finite) then the lemma is proved. Thus we reduce to
the case discussed in the next paragraph.
Assume that k is an infinite field of characteristic p > 0. As above we will use that
X has a gg−1

2g−2. The smooth proper curve X(p) has the same genus as X. Hence
its genus is > 0. We conclude that X(p) does not have a gg−1

d for any d ≤ g − 1 by
Lemma 3.5. Applying Lemma 13.8 to our gg−1

2g−2 (and noting that 2g− 2/p ≤ g− 1)
we conclude that possibility (2) does not occur. Hence we obtain a morphism

φ : X −→ P1
k

which is generically étale (in the sense of the lemma) and has degree ≤ 2g− 2. Let
U ⊂ X be the nonempty open subscheme where φ is étale. Then φ(U) ⊂ P1

k is a
nonempty Zariski open and we can pick a k-rational point t ∈ φ(U) as k is infinite.
Let u ∈ U be a point with φ(u) = t. Then κ(u)/κ(t) is separable (Morphisms,
Lemma 36.7), κ(t) = k, and [κ(u) : k] ≤ 2g − 2 as before. □

The following lemma does not really belong in this section but we don’t know a
good place for it elsewhere.

Lemma 13.10.0C1G Let X be a smooth curve over a field k. Let x ∈ Xk be a closed
point with image x ∈ X. The ramification index of OX,x ⊂ OX

k
,x is the inseparable

degree of κ(x)/k.

Proof. After shrinking X we may assume there is an étale morphism π : X → A1
k,

see Morphisms, Lemma 36.20. Then we can consider the diagram of local rings
OX

k
,x OA1

k
,π(x)oo

OX,x

OO

OA1
k
,π(x)oo

OO
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The horizontal arrows have ramification index 1 as they correspond to étale mor-
phisms. Moreover, the extension κ(x)/κ(π(x)) is separable hence κ(x) and κ(π(x))
have the same inseparable degree over k. By multiplicativity of ramification indices
it suffices to prove the result when x is a point of the affine line.

Assume X = A1
k. In this case, the local ring of X at x looks like

OX,x = k[t](P )

where P is an irreducible monic polynomial over k. Then P (t) = Q(tq) for some
separable polynomial Q ∈ k[t], see Fields, Lemma 12.1. Observe that κ(x) =
k[t]/(P ) has inseparable degree q over k. On the other hand, over k we can factor
Q(t) =

∏
(t − αi) with αi pairwise distinct. Write αi = βqi for some unique βi ∈

k. Then our point x corresponds to one of the βi and we conclude because the
ramification index of

k[t](P ) −→ k[t](t−βi)

is indeed equal to q as the uniformizer P maps to (t− βi)q times a unit. □

14. Pushouts

0E35 Let k be a field. Consider a solid diagram

Z ′

��

i′
// X ′

a

��
Z

i // X

of schemes over k satisfying
(a) X ′ is separated of finite type over k of dimension ≤ 1,
(b) i : Z ′ → X ′ is a closed immersion,
(c) Z ′ and Z are finite over Spec(k), and
(d) Z ′ → Z is surjective.

In this situation every finite set of points of X ′ are contained in an affine open,
see Varieties, Proposition 42.7. Thus the assumptions of More on Morphisms,
Proposition 67.3 are satisfied and we obtain the following

(1) the pushout X = Z ⨿Z′ X ′ exists in the category of schemes,
(2) i : Z → X is a closed immersion,
(3) a : X ′ → X is integral surjective,
(4) X → Spec(k) is separated by More on Morphisms, Lemma 67.4
(5) X → Spec(k) is of finite type by More on Morphisms, Lemmas 67.5,
(6) thus a : X ′ → X is finite by Morphisms, Lemmas 44.4 and 15.8,
(7) if X ′ → Spec(k) is proper, then X → Spec(k) is proper by Morphisms,

Lemma 41.9.
The following lemma can be generalized significantly.

Lemma 14.1.0E36 In the situation above, let Z = Spec(k′) where k′ is a field and
Z ′ = Spec(k′

1 × . . . × k′
n) with k′

i/k
′ finite extensions of fields. Let x ∈ X be the

image of Z → X and x′
i ∈ X ′ the image of Spec(k′

i) → X ′. Then we have a fibre

https://stacks.math.columbia.edu/tag/0E36
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product diagram ∏
i=1,...,n k

′
i

∏
i=1,...,nO∧

X′,x′
i

oo

k′

OO

O∧
X,x

OO

oo

where the horizontal arrows are given by the maps to the residue fields.

Proof. Choose an affine open neighbourhood Spec(A) of x in X. Let Spec(A′) ⊂
X ′ be the inverse image. By construction we have a fibre product diagram∏

i=1,...,n k
′
i A′oo

k′

OO

A

OO

oo

Since everything is finite over A we see that the diagram remains a fibre product
diagram after completion with respect to the maximal ideal m ⊂ A corresponding
to x (Algebra, Lemma 97.2). Finally, apply Algebra, Lemma 97.8 to identify the
completion of A′. □

15. Glueing and squishing

0C1H Below we will indicate k[ϵ] the algebra of dual numbers over k as defined in Varieties,
Definition 16.1.

Lemma 15.1.0C1I Let k be an algebraically closed field. Let k ⊂ A be a ring extension
such that A has exactly two k-sub algebras, then either A = k × k or A = k[ϵ].

Proof. The assumption means k ̸= A and any subring k ⊂ C ⊂ A is equal to
either k or A. Let t ∈ A, t ̸∈ k. Then A is generated by t over k. Hence A = k[x]/I
for some ideal I. If I = (0), then we have the subalgebra k[x2] which is not allowed.
Otherwise I is generated by a monic polynomial P . Write P =

∏d
i=1(t − ai). If

d > 2, then the subalgebra generated by (t−a1)(t−a2) gives a contradiction. Thus
d = 2. If a1 ̸= a2, then A = k × k, if a1 = a2, then A = k[ϵ]. □

Example 15.2 (Glueing points).0C1J Let k be an algebraically closed field. Let
f : X ′ → X be a morphism of algebraic k-schemes. We say X is obtained by
glueing a and b in X ′ if the following are true:

(1) a, b ∈ X ′(k) are distinct points which map to the same point x ∈ X(k),
(2) f is finite and f−1(X \ {x})→ X \ {x} is an isomorphism,
(3) there is a short exact sequence

0→ OX → f∗OX′
a−b−−→ x∗k → 0

where arrow on the right sends a local section h of f∗OX′ to the difference
h(a)− h(b) ∈ k.

If this is the case, then there also is a short exact sequence

0→ O∗
X → f∗O∗

X′
ab−1

−−−→ x∗k
∗ → 0

where arrow on the right sends a local section h of f∗O∗
X′ to the multiplicative

difference h(a)h(b)−1 ∈ k∗.
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Example 15.3 (Squishing a tangent vector).0C1K Let k be an algebraically closed
field. Let f : X ′ → X be a morphism of algebraic k-schemes. We say X is obtained
by squishing the tangent vector ϑ in X ′ if the following are true:

(1) ϑ : Spec(k[ϵ]) → X ′ is a closed immersion over k such that f ◦ ϑ factors
through a point x ∈ X(k),

(2) f is finite and f−1(X \ {x})→ X \ {x} is an isomorphism,
(3) there is a short exact sequence

0→ OX → f∗OX′
ϑ−→ x∗k → 0

where arrow on the right sends a local section h of f∗OX′ to the coefficient
of ϵ in ϑ♯(h) ∈ k[ϵ].

If this is the case, then there also is a short exact sequence

0→ O∗
X → f∗O∗

X′
ϑ−→ x∗k → 0

where arrow on the right sends a local section h of f∗O∗
X′ to d log(ϑ♯(h)) where

d log : k[ϵ]∗ → k is the homomorphism of abelian groups sending a+ bϵ to b/a ∈ k.

Lemma 15.4.0C1L Let k be an algebraically closed field. Let f : X ′ → X be a
finite morphism algebraic k-schemes such that OX ⊂ f∗OX′ and such that f is an
isomorphism away from a finite set of points. Then there is a factorization

X ′ = Xn → Xn−1 → . . .→ X1 → X0 = X

such that each Xi → Xi−1 is either the glueing of two points or the squishing of a
tangent vector (see Examples 15.2 and 15.3).

Proof. Let U ⊂ X be the maximal open set over which f is an isomorphism. Then
X \U = {x1, . . . , xn} with xi ∈ X(k). We will consider factorizations X ′ → Y → X
of f such that both morphisms are finite and

OX ⊂ g∗OY ⊂ f∗OX′

where g : Y → X is the given morphism. By assumption OX,x → (f∗OX′)x is an
isomorphism onless x = xi for some i. Hence the cokernel

f∗OX′/OX =
⊕
Qi

is a direct sum of skyscraper sheaves Qi supported at x1, . . . , xn. Because the
displayed quotient is a coherent OX -module, we conclude that Qi has finite length
over OX,xi

. Hence we can argue by induction on the sum of these lengths, i.e., the
length of the whole cokernel.
If n > 1, then we can define an OX -subalgebra A ⊂ f∗OX′ by taking the inverse
image of Q1. This will give a nontrivial factorization and we win by induction.
Assume n = 1. We abbreviate x = x1. Consider the finite k-algebra extension

A = OX,x ⊂ (f∗OX′)x = B

Note that Q = Q1 is the skyscraper sheaf with value B/A. We have a k-subalgebra
A ⊂ A + mAB ⊂ B. If both inclusions are strict, then we obtain a nontrivial
factorization and we win by induction as above. If A+ mAB = B, then A = B by
Nakayama, then f is an isomorphism and there is nothing to prove. We conclude
that we may assume B = A + mAB. Set C = B/mAB. If C has more than 2
k-subalgebras, then we obtain a subalgebra between A and B by taking the inverse
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image in B. Thus we may assume C has exactly 2 k-subalgebras. Thus C = k × k
or C = k[ϵ] by Lemma 15.1. In this case f is correspondingly the glueing two points
or the squishing of a tangent vector. □

Lemma 15.5.0C1M Let k be an algebraically closed field. If f : X ′ → X is the glueing
of two points a, b as in Example 15.2, then there is an exact sequence

k∗ → Pic(X)→ Pic(X ′)→ 0

The first map is zero if a and b are on different connected components of X ′ and
injective if X ′ is proper and a and b are on the same connected component of X ′.

Proof. The map Pic(X)→ Pic(X ′) is surjective by Varieties, Lemma 38.7. Using
the short exact sequence

0→ O∗
X → f∗O∗

X′
ab−1

−−−→ x∗k
∗ → 0

we obtain

H0(X ′,O∗
X′) ab−1

−−−→ k∗ → H1(X,O∗
X)→ H1(X, f∗O∗

X′)

We have H1(X, f∗O∗
X′) ⊂ H1(X ′,O∗

X′) (for example by the Leray spectral se-
quence, see Cohomology, Lemma 13.4). Hence the kernel of Pic(X) → Pic(X ′) is
the cokernel of ab−1 : H0(X ′,O∗

X′) → k∗. If a and b are on different connected
components of X ′, then ab−1 is surjective. Because k is algebraically closed any
regular function on a reduced connected proper scheme over k comes from an ele-
ment of k, see Varieties, Lemma 9.3. Thus ab−1 is zero if X ′ is proper and a and b
are on the same connected component. □

Lemma 15.6.0C1N Let k be an algebraically closed field. If f : X ′ → X is the squishing
of a tangent vector ϑ as in Example 15.3, then there is an exact sequence

(k,+)→ Pic(X)→ Pic(X ′)→ 0

and the first map is injective if X ′ is proper and reduced.

Proof. The map Pic(X)→ Pic(X ′) is surjective by Varieties, Lemma 38.7. Using
the short exact sequence

0→ O∗
X → f∗O∗

X′
ϑ−→ x∗k → 0

of Example 15.3 we obtain

H0(X ′,O∗
X′) ϑ−→ k → H1(X,O∗

X)→ H1(X, f∗O∗
X′)

We have H1(X, f∗O∗
X′) ⊂ H1(X ′,O∗

X′) (for example by the Leray spectral se-
quence, see Cohomology, Lemma 13.4). Hence the kernel of Pic(X) → Pic(X ′) is
the cokernel of the map ϑ : H0(X ′,O∗

X′) → k. Because k is algebraically closed
any regular function on a reduced connected proper scheme over k comes from an
element of k, see Varieties, Lemma 9.3. Thus the final statement of the lemma. □
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16. Multicross and nodal singularities

0C1P In this section we discuss the simplest possible curve singularities.
Let k be a field. Consider the complete local k-algebra
(16.0.1)0C1U A = {(f1, . . . , fn) ∈ k[[t]]× . . .× k[[t]] | f1(0) = . . . = fn(0)}
In the language introduced in Varieties, Definition 40.4 we see that A is a wedge of
n copies of the power series ring in 1 variable over k. Observe that k[[t]]× . . .×k[[t]]
is the integral closure of A in its total ring of fractions. Hence the δ-invariant of A
is n− 1. There is an isomorphism

k[[x1, . . . , xn]]/({xixj}i ̸=j) −→ A

obtained by sending xi to (0, . . . , 0, t, 0, . . . , 0) in A. It follows that dim(A) = 1 and
dimk m/m

2 = n. In particular, A is regular if and only if n = 1.

Lemma 16.1.0C1V Let k be a separably closed field. Let A be a 1-dimensional reduced
Nagata local k-algebra with residue field k. Then

δ-invariant A ≥ number of branches of A− 1
If equality holds, then A∧ is as in (16.0.1).

Proof. Since the residue field of A is separably closed, the number of branches of A
is equal to the number of geometric branches of A, see More on Algebra, Definition
106.6. The inequality holds by Varieties, Lemma 40.6. Assume equality holds. We
may replace A by the completion of A; this does not change the number of branches
or the δ-invariant, see More on Algebra, Lemma 108.7 and Varieties, Lemma 39.6.
Then A is strictly henselian, see Algebra, Lemma 153.9. By Varieties, Lemma 40.5
we see that A is a wedge of complete discrete valuation rings. Each of these is
isomorphic to k[[t]] by Algebra, Lemma 160.10. Hence A is as in (16.0.1). □

Definition 16.2.0C1W Let k be an algebraically closed field. Let X be an algebraic
1-dimensional k-scheme. Let x ∈ X be a closed point. We say x defines a multicross
singularity if the completion O∧

X,x is isomorphic to (16.0.1) for some n ≥ 2. We say
x is a node, or an ordinary double point, or defines a nodal singularity if n = 2.

These singularities are in some sense the simplest kind of singularities one can have
on a curve over an algebraically closed field.

Lemma 16.3.0C1X Let k be an algebraically closed field. Let X be a reduced algebraic
1-dimensional k-scheme. Let x ∈ X. The following are equivalent

(1) x defines a multicross singularity,
(2) the δ-invariant of X at x is the number of branches of X at x minus 1,
(3) there is a sequence of morphisms Un → Un−1 → . . .→ U0 = U ⊂ X where

U is an open neighbourhood of x, where Un is nonsingular, and where each
Ui → Ui−1 is the glueing of two points as in Example 15.2.

Proof. The equivalence of (1) and (2) is Lemma 16.1.
Assume (3). We will argue by descending induction on i that all singularities of Ui
are multicross. This is true for Un as Un has no singular points. If Ui is gotten
from Ui+1 by glueing a, b ∈ Ui+1 to a point c ∈ Ui, then we see that

O∧
Ui,c ⊂ O

∧
Ui+1,a ×O

∧
Ui+1,b
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is the set of elements having the same residue classes in k. Thus the number of
branches at c is the sum of the number of branches at a and b, and the δ-invariant
at c is the sum of the δ-invariants at a and b plus 1 (because the displayed inclusion
has codimension 1). This proves that (2) holds as desired.

Assume the equivalent conditions (1) and (2). We may choose an open U ⊂ X
such that x is the only singular point of U . Then we apply Lemma 15.4 to the
normalization morphism

Uν = Un → Un−1 → . . .→ U1 → U0 = U

All we have to do is show that in none of the steps we are squishing a tangent
vector. Suppose Ui+1 → Ui is the smallest i such that this is the squishing of a
tangent vector θ at u′ ∈ Ui+1 lying over u ∈ Ui. Arguing as above, we see that
ui is a multicross singularity (because the maps Ui → . . . → U0 are glueing of
pairs of points). But now the number of branches at u′ and u is the same and the
δ-invariant of Ui at u is 1 bigger than the δ-invariant of Ui+1 at u′. By Lemma 16.1
this implies that u cannot be a multicross singularity which is a contradiction. □

Lemma 16.4.0CDZ Let k be an algebraically closed field. Let X be a reduced algebraic
1-dimensional k-scheme. Let x ∈ X be a multicross singularity (Definition 16.2).
If X is Gorenstein, then x is a node.

Proof. The map OX,x → O∧
X,x is flat and unramified in the sense that κ(x) =

O∧
X,x/mxO∧

X,x. (See More on Algebra, Section 43.) Thus X is Gorenstein implies
OX,x is Gorenstein, implies O∧

X,x is Gorenstein by Dualizing Complexes, Lemma
21.8. Thus it suffices to show that the ring A in (16.0.1) with n ≥ 2 is Gorenstein
if and only if n = 2.

If n = 2, then A = k[[x, y]]/(xy) is a complete intersection and hence Goren-
stein. For example this follows from Duality for Schemes, Lemma 24.5 applied
to k[[x, y]] → A and the fact that the regular local ring k[[x, y]] is Gorenstein by
Dualizing Complexes, Lemma 21.3.

Assume n > 2. If A where Gorenstein, then A would be a dualizing complex over
A (Duality for Schemes, Definition 24.1). Then RHom(k,A) would be equal to
k[n] for some n ∈ Z, see Dualizing Complexes, Lemma 15.12. It would follow that
Ext1

A(k,A) ∼= k or Ext1
A(k,A) = 0 (depending on the value of n; in fact n has to

be −1 but it doesn’t matter to us here). Using the exact sequence

0→ mA → A→ k → 0

we find that

Ext1
A(k,A) = HomA(mA, A)/A

where A → HomA(mA, A) is given by a 7→ (a′ 7→ aa′). Let ei ∈ HomA(mA, A) be
the element that sends (f1, . . . , fn) ∈ mA to (0, . . . , 0, fi, 0, . . . , 0). The reader ver-
ifies easily that e1, . . . , en−1 are k-linearly independent in HomA(mA, A)/A. Thus
dimk Ext1

A(k,A) ≥ n− 1 ≥ 2 which finishes the proof. (Observe that e1 + . . .+ en
is the image of 1 under the map A→ HomA(mA, A).) □
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17. Torsion in the Picard group

0C1Y In this section we bound the torsion in the Picard group of a 1-dimensional proper
scheme over a field. We will use this in our study of semistable reduction for curves.
There does not seem to be an elementary way to obtain the result of Lemma 17.1.
Analyzing the proof there are two key ingredients: (1) there is an abelian variety
classifying degree zero invertible sheaves on a smooth projective curve and (2) the
structure of torsion points on an abelian variety can be determined.

Lemma 17.1.0C1Z Let k be an algebraically closed field. Let X be a smooth projective
curve of genus g over k.

(1) If n ≥ 1 is invertible in k, then Pic(X)[n] ∼= (Z/nZ)⊕2g.
(2) If the characteristic of k is p > 0, then there exists an integer 0 ≤ f ≤ g

such that Pic(X)[pm] ∼= (Z/pmZ)⊕f for all m ≥ 1.

Proof. Let Pic0(X) ⊂ Pic(X) denote the subgroup of invertible sheaves of degree
0. In other words, there is a short exact sequence

0→ Pic0(X)→ Pic(X) deg−−→ Z→ 0.
The group Pic0(X) is the k-points of the group scheme Pic0

X/k, see Picard Schemes
of Curves, Lemma 6.7. The same lemma tells us that Pic0

X/k is a g-dimensional
abelian variety over k as defined in Groupoids, Definition 9.1. Thus we conclude
by the results of Groupoids, Proposition 9.11. □

Lemma 17.2.0CDU Let k be a field. Let n be prime to the characteristic of k. Let X
be a smooth proper curve over k with H0(X,OX) = k and of genus g.

(1) If g = 1 then there exists a finite separable extension k′/k such that Xk′

has a k′-rational point and Pic(Xk′)[n] ∼= (Z/nZ)⊕2.
(2) If g ≥ 2 then there exists a finite separable extension k′/k with [k′ : k] ≤

(2g − 2)(n2g)! such that Xk′ has a k′-rational point and Pic(Xk′)[n] ∼=
(Z/nZ)⊕2g.

Proof. Assume g ≥ 2. First we may choose a finite separable extension of degree
at most 2g−2 such that X acquires a rational point, see Lemma 13.9. Thus we may
assume X has a k-rational point x ∈ X(k) but now we have to prove the lemma
with [k′ : k] ≤ (n2g)!. Let k ⊂ ksep ⊂ k be a separable algebraic closure inside an
algebraic closure. By Lemma 17.1 we have

Pic(Xk)[n] ∼= (Z/nZ)⊕2g

By Picard Schemes of Curves, Lemma 7.2 we conclude that
Pic(Xksep)[n] ∼= (Z/nZ)⊕2g

By Picard Schemes of Curves, Lemma 7.2 there is a continuous action
Gal(ksep/k) −→ Aut(Pic(Xksep)[n]

and the lemma is true for the fixed field k′ of the kernel of this map. The kernel is
open because the action is continuous which implies that k′/k is finite. By Galois
theory Gal(k′/k) is the image of the displayed arrow. Since the permutation group
of a set of cardinality n2g has cardinality (n2g)! we conclude by Galois theory that
[k′ : k] ≤ (n2g)!. (Of course this proves the lemma with the bound |GL2g(Z/nZ)|,
but all we want here is that there is some bound.)
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If the genus is 1, then there is no upper bound on the degree of a finite separable
field extension over which X acquires a rational point (details omitted). Still, there
is such an extension for example by Varieties, Lemma 25.6. The rest of the proof
is the same as in the case of g ≥ 2. □

Proposition 17.3.0C20 Let k be an algebraically closed field. Let X be a proper scheme
over k which is reduced, connected, and has dimension 1. Let g be the genus of X
and let ggeom be the sum of the geometric genera of the irreducible components of
X. For any prime ℓ different from the characteristic of k we have

dimFℓ
Pic(X)[ℓ] ≤ g + ggeom

and equality holds if and only if all the singularities of X are multicross.

Proof. Let ν : Xν → X be the normalization (Varieties, Lemma 41.2). Choose a
factorization

Xν = Xn → Xn−1 → . . .→ X1 → X0 = X

as in Lemma 15.4. Let us denote h0
i = dimkH

0(Xi,OXi
) and h1

i = dimkH
1(Xi,OXi

).
By Lemmas 15.5 and 15.6 for each n > i ≥ 0 we have one of the following there
possibilities

(1) Xi is obtained by glueing a, b ∈ Xi+1 which are on different connected
components: in this case Pic(Xi) = Pic(Xi+1), h0

i+1 = h0
i + 1, h1

i+1 = h1
i ,

(2) Xi is obtained by glueing a, b ∈ Xi+1 which are on the same connected
component: in this case there is a short exact sequence

0→ k∗ → Pic(Xi)→ Pic(Xi+1)→ 0,
and h0

i+1 = h0
i , h1

i+1 = h1
i − 1,

(3) Xi is obtained by squishing a tangent vector in Xi+1: in this case there is
a short exact sequence

0→ (k,+)→ Pic(Xi)→ Pic(Xi+1)→ 0,
and h0

i+1 = h0
i , h1

i+1 = h1
i − 1.

To prove the statements on dimensions of cohomology groups of the structure sheaf,
use the exact sequences in Examples 15.2 and 15.3. Since k is algebraically closed of
characteristic prime to ℓ we see that (k,+) and k∗ are ℓ-divisible and with ℓ-torsion
(k,+)[ℓ] = 0 and k∗[ℓ] ∼= Fℓ. Hence

dimFℓ
Pic(Xi+1)[ℓ]− dimFℓ

Pic(Xi)[ℓ]
is zero, except in case (2) where it is equal to −1. At the end of this process we get
the normalization Xν = Xn which is a disjoint union of smooth projective curves
over k. Hence we have

(1) h1
n = ggeom and

(2) dimFℓ
Pic(Xn)[ℓ] = 2ggeom.

The last equality by Lemma 17.1. Since g = h1
0 we see that the number of steps

of type (2) and (3) is at most h1
0 − h1

n = g − ggeom. By our comptation of the
differences in ranks we conclude that

dimFℓ
Pic(X)[ℓ] ≤ g − ggeom + 2ggeom = g + ggeom

and equality holds if and only if no steps of type (3) occur. This indeed means
that all singularities of X are multicross by Lemma 16.3. Conversely, if all the sin-
gularities are multicross, then Lemma 16.3 guarantees that we can find a sequence
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Xν = Xn → . . . → X0 = X as above such that no steps of type (3) occur in the
sequence and we find equality holds in the lemma (just glue the local sequences
for each point to find one that works for all singular points of x; some details
omitted). □

18. Genus versus geometric genus

0CE0 Let k be a field with algebraic closure k. Let X be a proper scheme of dimension
≤ 1 over k. We define ggeom(X/k) to be the sum of the geometric genera of the
irreducible components of Xk which have dimension 1.

Lemma 18.1.0CE1 Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Then

ggeom(X/k) =
∑

C⊂X
ggeom(C/k)

where the sum is over irreducible components C ⊂ X of dimension 1.

Proof. This is immediate from the definition and the fact that an irreducible com-
ponent Z of Xk maps onto an irreducible component Z of X (Varieties, Lemma
8.10) of the same dimension (Morphisms, Lemma 28.3 applied to the generic point
of Z). □

Lemma 18.2.0CE2 Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Then

(1) We have ggeom(X/k) = ggeom(Xred/k).
(2) If X ′ → X is a birational proper morphism, then ggeom(X ′/k) = ggeom(X/k).
(3) If Xν → X is the normalization morphism, then ggeom(Xν/k) = ggeom(X/k).

Proof. Part (1) is immediate from Lemma 18.1. If X ′ → X is proper birational,
then it is finite and an isomorphism over a dense open (see Varieties, Lemmas
17.2 and 17.3). Hence X ′

k
→ Xk is an isomorphism over a dense open. Thus

the irreducible components of X ′
k

and Xk are in bijective correspondence and the
corresponding components have isomorphic function fields. In particular these com-
ponents have isomorphic nonsingular projective models and hence have the same
geometric genera. This proves (2). Part (3) follows from (1) and (2) and the fact
that Xν → Xred is birational (Morphisms, Lemma 54.7). □

Lemma 18.3.0CE3 Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Let f : Y → X be a finite morphism such that there exists a dense open U ⊂ X
over which f is a closed immersion. Then

dimkH
1(X,OX) ≥ dimkH

1(Y,OY )

Proof. Consider the exact sequence

0→ G → OX → f∗OY → F → 0

of coherent sheaves on X. By assumption F is supported in finitely many closed
points and hence has vanishing higher cohomology (Varieties, Lemma 33.3). On
the other hand, we have H2(X,G) = 0 by Cohomology, Proposition 20.7. It follows
formally that the induced map H1(X,OX) → H1(X, f∗OY ) is surjective. Since
H1(X, f∗OY ) = H1(Y,OY ) (Cohomology of Schemes, Lemma 2.4) we conclude the
lemma holds. □
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Lemma 18.4.0CE4 Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. If X ′ → X is a birational proper morphism, then

dimkH
1(X,OX) ≥ dimkH

1(X ′,OX′)
If X is reduced, H0(X,OX)→ H0(X ′,OX′) is surjective, and equality holds, then
X ′ = X.

Proof. If f : X ′ → X is proper birational, then it is finite and an isomorphism
over a dense open (see Varieties, Lemmas 17.2 and 17.3). Thus the inequality by
Lemma 18.3. Assume X is reduced. Then OX → f∗OX′ is injective and we obtain
a short exact sequence

0→ OX → f∗OX′ → F → 0
Under the assumptions given in the second statement, we conclude from the long
exact cohomology sequence that H0(X,F) = 0. Then F = 0 because F is generated
by global sections (Varieties, Lemma 33.3). and OX = f∗OX′ . Since f is affine this
implies X = X ′. □

Lemma 18.5.0CE5 Let k be a field. Let C be a proper curve over k. Set κ = H0(C,OC).
Then

[κ : k]s dimκH
1(C,OC) ≥ ggeom(C/k)

Proof. Varieties, Lemma 26.2 implies κ is a field and a finite extension of k. By
Fields, Lemma 14.8 we have [κ : k]s = |Mork(κ, k)| and hence Spec(κ ⊗k k) has
[κ : k]s points each with residue field k. Thus

Ck =
⋃

t∈Spec(κ⊗kk)
Ct

(set theoretic union). Here Ct = C×Spec(κ),tSpec(k) where we view t as a k-algebra
map t : κ→ k. The conclusion is that ggeom(C/k) =

∑
t ggeom(Ct/k) and the sum

is over an index set of size [κ : k]s. We have
H0(Ct,OCt) = k and dimkH

1(Ct,OCt) = dimκH
1(C,OC)

by cohomology and base change (Cohomology of Schemes, Lemma 5.2). Ob-
serve that the normalization Cνt is the disjoint union of the nonsingular projec-
tive models of the irreducible components of Ct (Morphisms, Lemma 54.6). Hence
dimkH

1(Cνt ,OCν
t
) is equal to ggeom(Ct/k). By Lemma 18.3 we have

dimkH
1(Ct,OCt

) ≥ dimkH
1(Cνt ,OCν

t
)

and this finishes the proof. □

Lemma 18.6.0CE6 Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Let ℓ be a prime number invertible in k. Then

dimFℓ
Pic(X)[ℓ] ≤ dimkH

1(X,OX) + ggeom(X/k)
where ggeom(X/k) is as defined above.

Proof. The map Pic(X) → Pic(Xk) is injective by Varieties, Lemma 30.3. By
Cohomology of Schemes, Lemma 5.2 dimkH

1(X,OX) equals dimkH
1(Xk,OXk

).
Hence we may assume k is algebraically closed.
Let Xred be the reduction of X. Then the surjection OX → OXred

induces a sur-
jection H1(X,OX)→ H1(X,OXred

) because cohomology of quasi-coherent sheaves
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vanishes in degrees ≥ 2 by Cohomology, Proposition 20.7. Since Xred → X induces
an isomorphism on irreducible components over k and an isomorphism on ℓ-torsion
in Picard groups (Picard Schemes of Curves, Lemma 7.2) we may replace X by
Xred. In this way we reduce to Proposition 17.3. □

19. Nodal curves

0C46 We have already defined ordinary double points over algebraically closed fields, see
Definition 16.2. Namely, if x ∈ X is a closed point of a 1-dimensional algebraic
scheme over an algebraically closed field k, then x is an ordinary double point if
and only if

O∧
X,x
∼= k[[x, y]]/(xy)

See discussion following (16.0.1) in Section 16.

Definition 19.1.0C47 Let k be a field. Let X be a 1-dimensional locally algebraic
k-scheme.

(1) We say a closed point x ∈ X is a node, or an ordinary double point, or
defines a nodal singularity if there exists an ordinary double point x ∈ Xk
mapping to x.

(2) We say the singularities of X are at-worst-nodal if all closed points of X
are either in the smooth locus of the structure morphism X → Spec(k) or
are ordinary double points.

Often a 1-dimensional algebraic scheme X is called a nodal curve if the singularities
of X are at worst nodal. Sometimes a nodal curve is required to be proper. Since
a nodal curve so defined need not be irreducible, this conflicts with our earlier
definition of a curve as a variety of dimension 1.

Lemma 19.2.0C48 Let (A,m) be a regular local ring of dimension 2. Let I ⊂ m be an
ideal.

(1) If A/I is reduced, then I = (0), I = m, or I = (f) for some nonzero f ∈ m.
(2) If A/I has depth 1, then I = (f) for some nonzero f ∈ m.

Proof. Assume I ̸= 0. Write I = (f1, . . . , fr). As A is a UFD (More on Algebra,
Lemma 121.2) we can write fi = fgi where f is the gcd of f1, . . . , fr. Thus the gcd
of g1, . . . , gr is 1 which means that there is no height 1 prime ideal over g1, . . . , gr.
Then either (g1, . . . , gr) = A which implies I = (f) or if not, then dim(A) = 2
implies that V (g1, . . . , gr) = {m}, i.e., m =

√
(g1, . . . , gr).

Assume A/I reduced, i.e., I radical. If f is a unit, then since I is radical we see
that I = m. If f ∈ m, then we see that fn maps to zero in A/I. Hence f ∈ I by
reducedness and we conclude I = (f).

Assume A/I has depth 1. Then m is not an associated prime of A/I. Since the
class of f modulo I is annihilated by g1, . . . , gr, this implies that the class of f is
zero in A/I. Thus I = (f) as desired. □

Let κ be a field and let V be a vector space over κ. We will say q ∈ Sym2
κ(V )

is nondegenerate if the induced κ-linear map V ∨ → V is an isomorphism. If q =
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i≤j aijxixj for some κ-basis x1, . . . , xn of V , then this means that the determinant

of the matrix 2a11 a12 . . .
a12 2a22 . . .
. . . . . . . . .


is nonzero. This is equivalent to the condition that the partial derivatives of q with
respect to the xi cut out 0 scheme theoretically.

Lemma 19.3.0C49 Let k be a field. Let (A,m, κ) be a Noetherian local k-algebra. The
following are equivalent

(1) κ/k is separable, A is reduced, dimκ(m/m2) = 2, and there exists a nonde-
generate q ∈ Sym2

κ(m/m2) which maps to zero in m2/m3,
(2) κ/k is separable, depth(A) = 1, dimκ(m/m2) = 2, and there exists a non-

degenerate q ∈ Sym2
κ(m/m2) which maps to zero in m2/m3,

(3) κ/k is separable, A∧ ∼= κ[[x, y]]/(ax2 + bxy + cy2) as a k-algebra where
ax2 + bxy + cy2 is a nondegenerate quadratic form over κ.

Proof. Assume (3). Then A∧ is reduced because ax2+bxy+cy2 is either irreducible
or a product of two nonassociated prime elements. Hence A ⊂ A∧ is reduced. It
follows that (1) is true.
Assume (1). Then A cannot be Artinian, since it would not be reduced because
m ̸= (0). Hence dim(A) ≥ 1, hence depth(A) ≥ 1 by Algebra, Lemma 157.3. On
the other hand dim(A) = 2 implies A is regular which contradicts the existence of
q by Algebra, Lemma 106.1. Thus dim(A) ≤ 1 and we conclude depth(A) = 1 by
Algebra, Lemma 72.3. It follows that (2) is true.
Assume (2). Since the depth of A is the same as the depth of A∧ (More on Algebra,
Lemma 43.2) and since the other conditions are insensitive to completion, we may
assume that A is complete. Choose κ → A as in More on Algebra, Lemma 38.3.
Since dimκ(m/m2) = 2 we can choose x0, y0 ∈ m which map to a basis. We obtain
a continuous κ-algebra map

κ[[x, y]] −→ A

by the rules x 7→ x0 and y 7→ y0. Let q be the class of ax2
0 + bx0y0 + cy2

0 in
Sym2

κ(m/m2). Write Q(x, y) = ax2 + bxy + cy2 viewed as a polynomial in two
variables. Then we see that

Q(x0, y0) = ax2
0 + bx0y0 + cy2

0 =
∑

i+j=3
aijx

i
0y
j
0

for some aij in A. We want to prove that we can increase the order of vanishing
by changing our choice of x0, y0. Suppose that x1, y1 ∈ m2. Then

Q(x0 + x1, y0 + y1) = Q(x0, y0) + (2ax0 + by0)x1 + (bx0 + 2cy0)y1 mod m4

Nondegeneracy of Q means exactly that 2ax0 + by0 and bx0 + 2cy0 are a κ-basis
for m/m2, see discussion preceding the lemma. Hence we can certainly choose
x1, y1 ∈ m2 such that Q(x0 + x1, y0 + y1) ∈ m4. Continuing in this fashion by
induction we can find xi, yi ∈ mi+1 such that

Q(x0 + x1 + . . .+ xn, y0 + y1 + . . .+ yn) ∈ mn+3

Since A is complete we can set x∞ =
∑
xi and y∞ =

∑
yi and we can consider

the map κ[[x, y]] −→ A sending x to x∞ and y to y∞. This map induces a sur-
jection κ[[x, y]]/(Q) −→ A by Algebra, Lemma 96.1. By Lemma 19.2 the kernel of
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k[[x, y]] → A is principal. But the kernel cannot contain a proper divisor of Q as
such a divisor would have degree 1 in x, y and this would contradict dim(m/m2) = 2.
Hence Q generates the kernel as desired. □

Lemma 19.4.0C4A Let k be a field. Let (A,m, κ) be a Nagata local k-algebra. The
following are equivalent

(1) k → A is as in Lemma 19.3,
(2) κ/k is separable, A is reduced of dimension 1, the δ-invariant of A is 1,

and A has 2 geometric branches.
If this holds, then the integral closure A′ of A in its total ring of fractions has either
1 or 2 maximal ideals m′ and the extensions κ(m′)/k are separable.

Proof. In both cases A and A∧ are reduced. In case (2) because the completion
of a reduced local Nagata ring is reduced (More on Algebra, Lemma 43.6). In both
cases A and A∧ have dimension 1 (More on Algebra, Lemma 43.1). The δ-invariant
and the number of geometric branches of A and A∧ agree by Varieties, Lemma 39.6
and More on Algebra, Lemma 108.7. Let A′ be the integral closure of A in its total
ring of fractions as in Varieties, Lemma 39.2. By Varieties, Lemma 39.5 we see that
A′ ⊗A A∧ plays the same role for A∧. Thus we may replace A by A∧ and assume
A is complete.

Assume (1) holds. It suffices to show that A has two geometric branches and δ-
invariant 1. We may assume A = κ[[x, y]]/(ax2 +bxy+cy2) with q = ax2 +bxy+cy2

nondegenerate. There are two cases.

Case I: q splits over κ. In this case we may after changing coordinates assume that
q = xy. Then we see that

A′ = κ[[x, y]]/(x)× κ[[x, y]]/(y)

Case II: q does not split. In this case c ̸= 0 and nondegenerate means b2− 4ac ̸= 0.
Hence κ′ = κ[t]/(a+ bt+ ct2) is a degree 2 separable extension of κ. Then t = y/x
is integral over A and we conclude that

A′ = κ′[[x]]

with y mapping to tx on the right hand side.

In both cases one verifies by hand that the δ-invariant is 1 and the number of
geometric branches is 2. In this way we see that (1) implies (2). Moreover we
conclude that the final statement of the lemma holds.

Assume (2) holds. More on Algebra, Lemma 106.7 implies A′ either has two max-
imal ideals or A′ has one maximal ideal and [κ(m′) : κ]s = 2.

Case I: A′ has two maximal ideals m′
1, m′

2 with residue fields κ1, κ2. Since the
δ-invariant is the length of A′/A and since there is a surjection A′/A→ (κ1×κ2)/κ
we see that κ = κ1 = κ2. Since A is complete (and henselian by Algebra, Lemma
153.9) and A′ is finite over A we see that A′ = A1 × A2 (by Algebra, Lemma
153.4). Since A′ is a normal ring it follows that A1 and A2 are discrete valuation
rings. Hence A1 and A2 are isomorphic to κ[[t]] (as k-algebras) by More on Algebra,
Lemma 38.4. Since the δ-invariant is 1 we conclude that A is the wedge of A1 and
A2 (Varieties, Definition 40.4). It follows easily that A ∼= κ[[x, y]]/(xy).
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Case II: A′ has a single maximal ideal m′ with residue field κ′ and [κ′ : κ]s = 2.
Arguing exactly as in Case I we see that [κ′ : κ] = 2 and κ′ is separable over κ.
Since A′ is normal we see that A′ is isomorphic to κ′[[t]] (see reference above). Since
A′/A has length 1 we conclude that

A = {f ∈ κ′[[t]] | f(0) ∈ κ}

Then a simple computation shows that A as in case (1). □

Lemma 19.5.0C4B Let k be a field. Let A = k[[x1, . . . , xn]]. Let I = (f1, . . . , fm) ⊂ A
be an ideal. For any r ≥ 0 the ideal in A/I generated by the r × r-minors of the
matrix (∂fj/∂xi) is independent of the choice of the generators of I or the regular
system of parameters x1, . . . , xn of A.

Proof. The “correct” proof of this lemma is to prove that this ideal is the (n−r)th
Fitting ideal of a module of continuous differentials of A/I over k. Here is a direct
proof. If g1, . . . gl is a second set of generators of I, then we can write gs =

∑
asjfj

and we have the equality of matrices

(∂gs/∂xi) = (asj)(∂fj/∂xi) + (∂asj/∂xifj)

The final term is zero in A/I. By the Cauchy-Binet formula we see that the ideal
of minors for the gs is contained in the ideal for the fj . By symmetry these ideals
are the same. If y1, . . . , yn ∈ mA is a second regular system of parameters, then
the matrix (∂yj/∂xi) is invertible and we can use the chain rule for differentiation.
Some details omitted. □

Lemma 19.6.0C4C Let k be a field. Let A = k[[x1, . . . , xn]]. Let I = (f1, . . . , fm) ⊂ mA
be an ideal. The following are equivalent

(1) k → A/I is as in Lemma 19.3,
(2) A/I is reduced and the (n − 1) × (n − 1) minors of the matrix (∂fj/∂xi)

generate I + mA,
(3) depth(A/I) = 1 and the (n − 1) × (n − 1) minors of the matrix (∂fj/∂xi)

generate I + mA.

Proof. By Lemma 19.5 we may change our system of coordinates and the choice
of generators during the proof.

If (1) holds, then we may change coordinates such that x1, . . . , xn−2 map to zero
in A/I and A/I = k[[xn−1, xn]]/(ax2

n−1 + bxn−1xn + cx2
n) for some nondegenerate

quadric ax2
n−1 +bxn−1xn+cx2

n. Then we can explicitly compute to show that both
(2) and (3) are true.

Assume the (n−1)×(n−1) minors of the matrix (∂fj/∂xi) generate I+mA. Suppose
that for some i and j the partial derivative ∂fj/∂xi is a unit in A. Then we may
use the system of parameters fj , x1, . . . , xi−1, x̂i, xi+1, . . . , xn and the generators
fj , f1, . . . , fj−1, f̂j , fj+1, . . . , fm of I. Then we get a regular system of parameters
x1, . . . , xn and generators x1, f2, . . . , fm of I. Next, we look for an i ≥ 2 and
j ≥ 2 such that ∂fj/∂xi is a unit in A. If such a pair exists, then we can make
a replacement as above and assume that we have a regular system of parameters
x1, . . . , xn and generators x1, x2, f3, . . . , fm of I. Continuing, in finitely many steps
we reach the situation where we have a regular system of parameters x1, . . . , xn and
generators x1, . . . , xt, ft+1, . . . , fm of I such that ∂fj/∂xi ∈ mA for all i, j ≥ t+ 1.
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In this case the matrix of partial derivatives has the following block shape(
It×t ∗

0 mA

)
Hence every (n− 1)× (n− 1)-minor is in mn−1−t

A . Note that I ̸= mA otherwise the
ideal of minors would contain 1. It follows that n − 1 − t ≤ 1 because there is an
element of mA \ m2

A + I (otherwise I = mA by Nakayama). Thus t ≥ n − 2. We
have seen that t ̸= n above and similarly if t = n − 1, then there is an invertible
(n− 1)× (n− 1)-minor which is disallowed as well. Hence t = n− 2. Then A/I is a
quotient of k[[xn−1, xn]] and Lemma 19.2 implies in both cases (2) and (3) that I is
generated by x1, . . . , xn−2, f for some f = f(xn−1, xn). In this case the condition
on the minors exactly says that the quadratic term in f is nondegenerate, i.e., A/I
is as in Lemma 19.3. □

Lemma 19.7.0C4D Let k be a field. Let X be a 1-dimensional algebraic k-scheme. Let
x ∈ X be a closed point. The following are equivalent

(1) x is a node,
(2) k → OX,x is as in Lemma 19.3,
(3) any x ∈ Xk mapping to x defines a nodal singularity,
(4) κ(x)/k is separable, OX,x is reduced, and the first Fitting ideal of ΩX/k

generates mx in OX,x,
(5) κ(x)/k is separable, depth(OX,x) = 1, and the first Fitting ideal of ΩX/k

generates mx in OX,x,
(6) κ(x)/k is separable and OX,x is reduced, has δ-invariant 1, and has 2 geo-

metric branches.

Proof. First assume that k is algebraically closed. In this case the equivalence
of (1) and (3) is trivial. The equivalence of (1) and (3) with (2) holds because
the only nondegenerate quadric in two variables is xy up to change in coordinates.
The equivalence of (1) and (6) is Lemma 16.1. After replacing X by an affine
neighbourhood of x, we may assume there is a closed immersion X → An

k mapping
x to 0. Let f1, . . . , fm ∈ k[x1, . . . , xn] be generators for the ideal I of X in An

k . Then
ΩX/k corresponds to the R = k[x1, . . . , xn]/I-module ΩR/k which has a presentation

R⊕m (∂fj/∂xi)−−−−−−→ R⊕n → ΩR/k → 0

(See Algebra, Sections 131 and 134.) The first Fitting ideal of ΩR/k is thus the ideal
generated by the (n− 1)× (n− 1)-minors of the matrix (∂fj/∂xi). Hence (2), (4),
(5) are equivalent by Lemma 19.6 applied to the completion of k[x1, . . . , xn] → R
at the maximal ideal (x1, . . . , xn).

Now assume k is an arbitrary field. In cases (2), (4), (5), (6) the residue field
κ(x) is separable over k. Let us show this holds as well in cases (1) and (3).
Namely, let Z ⊂ X be the closed subscheme of X defined by the first Fitting ideal
of ΩX/k. The formation of Z commutes with field extension (Divisors, Lemma
10.1). If (1) or (3) is true, then there exists a point x of Xk such that x is an
isolated point of multiplicity 1 of Zk (as we have the equivalence of the conditions
of the lemma over k). In particular Zx is geometrically reduced at x (because k
is algebraically closed). Hence Z is geometrically reduced at x (Varieties, Lemma
6.6). In particular, Z is reduced at x, hence Z = Spec(κ(x)) in a neighbourhood of
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x and κ(x) is geometrically reduced over k. This means that κ(x)/k is separable
(Algebra, Lemma 44.1).
The argument of the previous paragraph shows that if (1) or (3) holds, then the first
Fitting ideal of ΩX/k generates mx. Since OX,x → OX

k
,x is flat and since OX

k
,x

is reduced and has depth 1, we see that (4) and (5) hold (use Algebra, Lemmas
164.2 and 163.2). Conversely, (4) implies (5) by Algebra, Lemma 157.3. If (5)
holds, then Z is geometrically reduced at x (because κ(x)/k separable and Z is x
in a neighbourhood). Hence Zk is reduced at any point x of Xk lying over x. In
other words, the first fitting ideal of ΩX

k
/k generates mx in OX

k,x
. Moreover, since

OX,x → OX
k
,x is flat we see that depth(OX

k
,x) = 1 (see reference above). Hence

(5) holds for x ∈ Xk and we conclude that (3) holds (because of the equivalence over
algebraically closed fields). In this way we see that (1), (3), (4), (5) are equivalent.
The equivalence of (2) and (6) follows from Lemma 19.4.
Finally, we prove the equivalence of (2) = (6) with (1) = (3) = (4) = (5). First we
note that the geometric number of branches of X at x and the geometric number
of branches of Xk at x are equal by Varieties, Lemma 40.2. We conclude from the
information available to us at this point that in all cases this number is equal to 2.
On the other hand, in case (1) it is clear that X is geometrically reduced at x, and
hence

δ-invariant of X at x ≤ δ-invariant of Xk at x
by Varieties, Lemma 39.8. Since in case (1) the right hand side is 1, this forces the
δ-invariant of X at x to be 1 (because if it were zero, then OX,x would be a discrete
valuation ring by Varieties, Lemma 39.4 which is unibranch, a contradiction). Thus
(5) holds. Conversely, if (2) = (5) is true, then assumptions (a), (b), (c) of Varieties,
Lemma 27.6 hold for x ∈ X by Lemma 19.4. Thus Varieties, Lemma 39.9 applies
and shows that we have equality in the above displayed inequality. We conclude
that (5) holds for x ∈ Xk and we are back in case (1) by the equivalence of the
conditions over an algebraically closed field. □

Remark 19.8 (The quadratic extension associated to a node).0CBT Let k be a field.
Let (A,m, κ) be a Noetherian local k-algebra. Assume that either (A,m, κ) is as in
Lemma 19.3, or A is Nagata as in Lemma 19.4, or A is complete and as in Lemma
19.6. Then A defines canonically a degree 2 separable κ-algebra κ′ as follows

(1) let q = ax2 + bxy+ cy2 be a nondegenerate quadric as in Lemma 19.3 with
coordinates x, y chosen such that a ̸= 0 and set κ′ = κ[x]/(ax2 + bx+ c),

(2) let A′ ⊃ A be the integral closure of A in its total ring of fractions and set
κ′ = A′/mA′, or

(3) let κ′ be the κ-algebra such that Proj(
⊕

n≥0 m
n/mn+1) = Spec(κ′).

The equivalence of (1) and (2) was shown in the proof of Lemma 19.4. We omit the
equivalence of this with (3). If X is a locally Noetherian k-scheme and x ∈ X is a
point such that OX,x = A, then (3) shows that Spec(κ′) = Xν ×X Spec(κ) where
ν : Xν → X is the normalization morphism.

Remark 19.9 (Trivial quadratic extension).0CBU Let k be a field. Let (A,m, κ) be as
in Remark 19.8 and let κ′/κ be the associated separable algebra of degree 2. Then
the following are equivalent

(1) κ′ ∼= κ× κ as κ-algebra,
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(2) the form q of Lemma 19.3 can be chosen to be xy,
(3) A has two branches,
(4) the extension A′/A of Lemma 19.4 has two maximal ideals, and
(5) A∧ ∼= κ[[x, y]]/(xy) as a k-algebra.

The equivalence between these conditions has been shown in the proof of Lemma
19.4. If X is a locally Noetherian k-scheme and x ∈ X is a point such that OX,x =
A, then this means exactly that there are two points x1, x2 of the normalization
Xν lying over x and that κ(x) = κ(x1) = κ(x2).

Definition 19.10.0CBV Let k be a field. Let X be a 1-dimensional algebraic k-scheme.
Let x ∈ X be a closed point. We say x is a split node if x is a node, κ(x) = k, and
the equivalent assertions of Remark 19.9 hold for A = OX,x.

We formulate the obligatory lemma stating what we already know about this con-
cept.

Lemma 19.11.0CBW Let k be a field. Let X be a 1-dimensional algebraic k-scheme.
Let x ∈ X be a closed point. The following are equivalent

(1) x is a split node,
(2) x is a node and there are exactly two points x1, x2 of the normalization Xν

lying over x with k = κ(x1) = κ(x2),
(3) O∧

X,x
∼= k[[x, y]]/(xy) as a k-algebra, and

(4) add more here.

Proof. This follows from the discussion in Remark 19.9 and Lemma 19.7. □

Lemma 19.12.0C56 Let K/k be an extension of fields. Let X be a locally algebraic
k-scheme of dimension 1. Let y ∈ XK be a point with image x ∈ X. The following
are equivalent

(1) x is a closed point of X and a node, and
(2) y is a closed point of Y and a node.

Proof. If x is a closed point of X, then y is too (look at residue fields). But
conversely, this need not be the case, i.e., it can happen that a closed point of Y
maps to a nonclosed point of X. However, in this case y cannot be a node. Namely,
then X would be geometrically unibranch at x (because x would be a generic point
of X and OX,x would be Artinian and any Artinian local ring is geometrically
unibranch), hence Y is geometrically unibranch at y (Varieties, Lemma 40.3), which
means that y cannot be a node by Lemma 19.7. Thus we may and do assume that
both x and y are closed points.

Choose algebraic closures k, K and a map k → K extending the given map k → K.
Using the equivalence of (1) and (3) in Lemma 19.7 we reduce to the case where
k and K are algebraically closed. In this case we can argue as in the proof of
Lemma 19.7 that the geometric number of branches and δ-invariants of X at x and
Y at y are the same. Another argument can be given by choosing an isomorphism
k[[x1, . . . , xn]]/(g1, . . . , gm) → O∧

X,x of k-algebras as in Varieties, Lemma 21.1. By
Varieties, Lemma 21.2 this gives an isomorphism K[[x1, . . . , xn]]/(g1, . . . , gm) →
O∧
Y,y of K-algebras. By definition we have to show that

k[[x1, . . . , xn]]/(g1, . . . , gm) ∼= k[[s, t]]/(st)
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if and only if
K[[x1, . . . , xn]]/(g1, . . . , gm) ∼= K[[s, t]]/(st)

We encourage the reader to prove this for themselves. Since k and K are alge-
braically closed fields, this is the same as asking these rings to be as in Lemma
19.3. Via Lemma 19.6 this translates into a statement about the (n− 1)× (n− 1)-
minors of the matrix (∂gj/∂xi) which is clearly independent of the field used. We
omit the details. □

Lemma 19.13.0C57 Let k be a field. Let X be a locally algebraic k-scheme of dimension
1. Let Y → X be an étale morphism. Let y ∈ Y be a point with image x ∈ X. The
following are equivalent

(1) x is a closed point of X and a node, and
(2) y is a closed point of Y and a node.

Proof. By Lemma 19.12 we may base change to the algebraic closure of k. Then
the residue fields of x and y are k. Hence the map O∧

X,x → O∧
Y,y is an isomorphism

(for example by Étale Morphisms, Lemma 11.3 or More on Algebra, Lemma 43.9).
Thus the lemma is clear. □

Lemma 19.14.0CD6 Let k′/k be a finite separable field extension. Let X be a locally
algebraic k′-scheme of dimension 1. Let x ∈ X be a closed point. The following are
equivalent

(1) x is a node, and
(2) x is a node when X viewed as a locally algebraic k-scheme.

Proof. Follows immediately from the characterization of nodes in Lemma 19.7. □

Lemma 19.15.0C4E Let k be a field. Let X be a locally algebraic k-scheme equidimen-
sional of dimension 1. The following are equivalent

(1) the singularities of X are at-worst-nodal, and
(2) X is a local complete intersection over k and the closed subscheme Z ⊂ X

cut out by the first fitting ideal of ΩX/k is unramified over k.

Proof. We urge the reader to find their own proof of this lemma; what follows is
just putting together earlier results and may hide what is really going on.
Assume (2). Since Z → Spec(k) is quasi-finite (Morphisms, Lemma 35.10) we see
that the residue fields of points x ∈ Z are finite over k (as well as separable) by
Morphisms, Lemma 20.5. Hence each x ∈ Z is a closed point of X by Morphisms,
Lemma 20.2. The local ring OX,x is Cohen-Macaulay by Algebra, Lemma 135.3.
Since dim(OX,x) = 1 by dimension theory (Varieties, Section 20), we conclude that
depth(OX,x)) = 1. Thus x is a node by Lemma 19.7. If x ∈ X, x ̸∈ Z, then
X → Spec(k) is smooth at x by Divisors, Lemma 10.3.
Assume (1). Under this assumption X is geometrically reduced at every closed
point (see Varieties, Lemma 6.6). Hence X → Spec(k) is smooth on a dense open
by Varieties, Lemma 25.7. Thus Z is closed and consists of closed points. By
Divisors, Lemma 10.3 the morphism X \ Z → Spec(k) is smooth. Hence X \ Z
is a local complete intersection by Morphisms, Lemma 34.7 and the definition of
a local complete intersection in Morphisms, Definition 30.1. By Lemma 19.7 for
every point x ∈ Z the local ring OZ,x is equal to κ(x) and κ(x) is separable over
k. Thus Z → Spec(k) is unramified (Morphisms, Lemma 35.11). Finally, Lemma
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19.7 via part (3) of Lemma 19.3, shows that OX,x is a complete intersection in the
sense of Divided Power Algebra, Definition 8.5. However, Divided Power Algebra,
Lemma 8.8 and Morphisms, Lemma 30.9 show that this agrees with the notion
used to define a local complete intersection scheme over a field and the proof is
complete. □

Lemma 19.16.0E37 Let k be a field. Let X be a locally algebraic k-scheme equidimen-
sional of dimension 1 whose singularities are at-worst-nodal. Then X is Gorenstein
and geometrically reduced.

Proof. The Gorenstein assertion follows from Lemma 19.15 and Duality for Schemes,
Lemma 24.5. Or you can use that it suffices to check after passing to the algebraic
closure (Duality for Schemes, Lemma 25.1), then use that a Noetherian local ring
is Gorenstein if and only if its completion is so (by Dualizing Complexes, Lemma
21.8), and then prove that the local rings k[[t]] and k[[x, y]]/(xy) are Gorenstein by
hand.
To see that X is geometrically reduced, it suffices to show that Xk is reduced
(Varieties, Lemmas 6.3 and 6.4). But Xk is a nodal curve over an algebraically
closed field. Thus the complete local rings of Xk are isomorphic to either k[[t]] or
k[[x, y]]/(xy) which are reduced as desired. □

Lemma 19.17.0E38 Let k be a field. Let X be a locally algebraic k-scheme equidimen-
sional of dimension 1 whose singularities are at-worst-nodal. If Y ⊂ X is a reduced
closed subscheme equidimensional of dimension 1, then

(1) the singularities of Y are at-worst-nodal, and
(2) if Z ⊂ X is the scheme theoretic closure of X \ Y , then

(a) the scheme theoretic intersection Y ∩Z is the disjoint union of spectra
of finite separable extensions of k,

(b) each point of Y ∩ Z is a node of X, and
(c) Y → Spec(k) is smooth at every point of Y ∩ Z.

Proof. Since X and Y are reduced and equidimensional of dimension 1, we see
that Y is the scheme theoretic union of a subset of the irreducible components of
X (in a reduced ring (0) is the intersection of the minimal primes). Let y ∈ Y
be a closed point. If y is in the smooth locus of X → Spec(k), then y is on a
unique irreducible component of X and we see that Y and X agree in an open
neighbourhood of y. Hence Y → Spec(k) is smooth at y. If y is a node of X but
still lies on a unique irreducible component of X, then y is a node on Y by the same
argument. Suppose that y lies on more than 1 irreducible component of X. Since
the number of geometric branches of X at y is 2 by Lemma 19.7, there can be at
most 2 irreducible components passing through y by Properties, Lemma 15.5. If Y
contains both of these, then again Y = X in an open neighbourhood of y and y is
a node of Y . Finally, assume Y contains only one of the irreducible components.
After replacing X by an open neighbourhood of x we may assume Y is one of the
two irreducble components and Z is the other. By Properties, Lemma 15.5 again
we see that X has two branches at y, i.e., the local ring OX,y has two branches
and that these branches come from OY,y and OZ,y. Write O∧

X,y
∼= κ(y)[[u, v]]/(uv)

as in Remark 19.9. The field κ(y) is finite separable over k by Lemma 19.7 for
example. Thus, after possibly switching the roles of u and v, the completion of the
map OX,y → OY,Y corresponds to κ(y)[[u, v]]/(uv)→ κ(y)[[u]] and the completion
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of the map OX,y → OY,Y corresponds to κ(y)[[u, v]]/(uv)→ κ(y)[[v]]. The scheme
theoretic intersection of Y ∩ Z is cut out by the sum of their ideas which in the
completion is (u, v), i.e., the maximal ideal. Thus (2)(a) and (2)(b) are clear.
Finally, (2)(c) holds: the completion of OY,y is regular, hence OY,y is regular (More
on Algebra, Lemma 43.4) and κ(y)/k is separable, hence smoothness in an open
neighbourhood by Algebra, Lemma 140.5. □

20. Families of nodal curves

0C58 In the Stacks project curves are irreducible varieties of dimension 1, but in the
literature a “semi-stable curve” or a “nodal curve” is usually not irreducible and
often assumed to be proper, especially when used in a phrase such as “family of
semistable curves” or “family of nodal curves”, or “nodal family”. Thus it is a bit
difficult for us to choose a terminology which is consistent with the literature as
well as internally consistent. Moreover, we really want to first study the notion
introduced in the following lemma (which is local on the source).

Lemma 20.1.0C59 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is flat, locally of finite presentation, every nonempty fibre Xs is equidi-
mensional of dimension 1, and Xs has at-worst-nodal singularities, and

(2) f is syntomic of relative dimension 1 and the closed subscheme Sing(f) ⊂ X
defined by the first Fitting ideal of ΩX/S is unramified over S.

Proof. Recall that the formation of Sing(f) commutes with base change, see Divi-
sors, Lemma 10.1. Thus the lemma follows from Lemma 19.15, Morphisms, Lemma
30.11, and Morphisms, Lemma 35.12. (We also use the trivial Morphisms, Lemmas
30.6 and 30.7.) □

Definition 20.2.0C5A Let f : X → S be a morphism of schemes. We say f is at-worst-
nodal of relative dimension 1 if f satisfies the equivalent conditions of Lemma 20.1.

Here are some reasons for the cumbersome terminology6. First, we want to make
sure this notion is not confused with any of the other notions in the literature (see
introduction to this section). Second, we can imagine several generalizations of
this notion to morphisms of higher relative dimension (for example, one can ask
for morphisms which are étale locally compositions of at-worst-nodal morphisms or
one can ask for morphisms whose fibres are higher dimensional but have at worst
ordinary double points).

Lemma 20.3.0CD7 A smooth morphism of relative dimension 1 is at-worst-nodal of
relative dimension 1.

Proof. Omitted. □

Lemma 20.4.0C5B Let f : X → S be at-worst-nodal of relative dimension 1. Then the
same is true for any base change of f .

Proof. This is true because the base change of a syntomic morphism is syntomic
(Morphisms, Lemma 30.4), the base change of a morphism of relative dimension
1 has relative dimension 1 (Morphisms, Lemma 29.2), the formation of Sing(f)

6But please email the maintainer of the Stacks project if you have a better suggestion.
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commutes with base change (Divisors, Lemma 10.1), and the base change of an
unramified morphism is unramified (Morphisms, Lemma 35.5). □

The following lemma tells us that we can check whether a morphism is at-worst-
nodal of relative dimension 1 on the fibres.

Lemma 20.5.0DSC Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. Then there is a maximal open subscheme U ⊂ X such that
f |U : U → S is at-worst-nodal of relative dimension 1. Moreover, formation of U
commutes with arbitrary base change.

Proof. By Morphisms, Lemma 30.12 we find that there is such an open where f
is syntomic. Hence we may assume that f is a syntomic morphism. In particular
f is a Cohen-Macaulay morphism (Duality for Schemes, Lemmas 25.5 and 25.4).
Thus X is a disjoint union of open and closed subschemes on which f has given
relative dimension, see Morphisms, Lemma 29.4. This decomposition is preserved
by arbitrary base change, see Morphisms, Lemma 29.2. Discarding all but one
piece we may assume f is syntomic of relative dimension 1. Let Sing(f) ⊂ X be
the closed subscheem defined by the first fitting ideal of ΩX/S . There is a maximal
open subscheme W ⊂ Sing(f) such that W → S is unramified and its formation
commutes with base change (Morphisms, Lemma 35.15). Since also formation of
Sing(f) commutes with base change (Divisors, Lemma 10.1), we see that

U = (X \ Sing(f)) ∪W

is the maximal open subscheme of X such that f |U : U → S is at-worst-nodal of
relative dimension 1 and that formation of U commutes with base change. □

Lemma 20.6.0C5C Let f : X → S be at-worst-nodal of relative dimension 1. If Y → X
is an étale morphism, then the composition g : Y → S is at-worst-nodal of relative
dimension 1.

Proof. Observe that g is flat and locally of finite presentation as a composition of
morphisms which are flat and locally of finite presentation (use Morphisms, Lemmas
36.11, 36.12, 21.3, and 25.6). Thus it suffices to prove the fibres have at-worst-nodal
singularities. This follows from Lemma 19.13 (and the fact that the composition
of an étale morphism and a smooth morphism is smooth by Morphisms, Lemmas
36.5 and 34.4). □

Lemma 20.7.0CD8 Let S′ → S be an étale morphism of schemes. Let f : X → S′

be at-worst-nodal of relative dimension 1. Then the composition g : X → S is
at-worst-nodal of relative dimension 1.

Proof. Observe that g is flat and locally of finite presentation as a composition of
morphisms which are flat and locally of finite presentation (use Morphisms, Lemmas
36.11, 36.12, 21.3, and 25.6). Thus it suffices to prove the fibres of g have at-worst-
nodal singularities. This follows from Lemma 19.14 and the analogous result for
smooth points. □

Lemma 20.8.0C5D Let f : X → S be a morphism of schemes. Let {Ui → X} be an
étale covering. The following are equivalent

(1) f is at-worst-nodal of relative dimension 1,
(2) each Ui → S is at-worst-nodal of relative dimension 1.

https://stacks.math.columbia.edu/tag/0DSC
https://stacks.math.columbia.edu/tag/0C5C
https://stacks.math.columbia.edu/tag/0CD8
https://stacks.math.columbia.edu/tag/0C5D


ALGEBRAIC CURVES 51

In other words, being at-worst-nodal of relative dimension 1 is étale local on the
source.

Proof. One direction we have seen in Lemma 20.6. For the other direction, observe
that being locally of finite presentation, flat, or to have relative dimension 1 is étale
local on the source (Descent, Lemmas 28.1, 27.1, and 33.8). Taking fibres we
reduce to the case where S is the spectrum of a field. In this case the result follows
from Lemma 19.13 (and the fact that being smooth is étale local on the source by
Descent, Lemma 30.1). □

Lemma 20.9.0C5E Let f : X → S be a morphism of schemes. Let {Ui → S} be an
fpqc covering. The following are equivalent

(1) f is at-worst-nodal of relative dimension 1,
(2) each X ×S Ui → Ui is at-worst-nodal of relative dimension 1.

In other words, being at-worst-nodal of relative dimension 1 is fpqc local on the
target.

Proof. One direction we have seen in Lemma 20.4. For the other direction, observe
that being locally of finite presentation, flat, or to have relative dimension 1 is fpqc
local on the target (Descent, Lemmas 23.11, 23.15, and Morphisms, Lemma 28.3).
Taking fibres we reduce to the case where S is the spectrum of a field. In this case
the result follows from Lemma 19.12 (and the fact that being smooth is fpqc local
on the target by Descent, Lemma 23.27). □

Lemma 20.10.0C5F Let S = limSi be a limit of a directed system of schemes with
affine transition morphisms. Let 0 ∈ I and let f0 : X0 → Y0 be a morphism of
schemes over S0. Assume S0, X0, Y0 are quasi-compact and quasi-separated. Let
fi : Xi → Yi be the base change of f0 to Si and let f : X → Y be the base change
of f0 to S. If

(1) f is at-worst-nodal of relative dimension 1, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is at-worst-nodal of relative dimension 1.

Proof. By Limits, Lemma 8.16 there exists an i such that fi is syntomic. Then
Xi =

∐
d≥0 Xi,d is a disjoint union of open and closed subschemes such that

Xi,d → Yi has relative dimension d, see Morphisms, Lemma 30.14. Because of the
behaviour of dimensions of fibres under base change given in Morphisms, Lemma
28.3 we see that X → Xi maps into Xi,1. Then there exists an i′ ≥ i such that
Xi′ → Xi maps into Xi,1, see Limits, Lemma 4.10. Thus fi′ : Xi′ → Yi′ is syn-
tomic of relative dimension 1 (by Morphisms, Lemma 28.3 again). Consider the
morphism Sing(fi′) → Yi′ . We know that the base change to Y is an unrami-
fied morphism. Hence by Limits, Lemma 8.4 we see that after increasing i′ the
morphism Sing(fi′)→ Yi′ becomes unramified. This finishes the proof. □

Lemma 20.11.0CBX Let f : T → S be a morphism of schemes. Let t ∈ T with image
s ∈ S. Assume

(1) f is flat at t,
(2) OS,s is Noetherian,
(3) f is locally of finite type,
(4) t is a split node of the fibre Ts.

https://stacks.math.columbia.edu/tag/0C5E
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Then there exists an h ∈ m∧
s and an isomorphism
O∧
T,t
∼= O∧

S,s[[x, y]]/(xy − h)

of O∧
S,s-algebras.

Proof. We replace S by Spec(OS,s) and T by the base change to Spec(OS,s). Then
T is locally Noetherian and hence OT,t is Noetherian. Set A = O∧

S,s, m = mA, and
B = O∧

T,t. By More on Algebra, Lemma 43.8 we see that A → B is flat. Since
OT,t/msOT,t = OTs,t we see that B/mB = O∧

Ts,t
. By assumption (4) and Lemma

19.11 we conclude there exist u, v ∈ B/mB such that the map
(A/m)[[x, y]] −→ B/mB, x 7−→ u, x 7−→ v

is surjective with kernel (xy).
Assume we have n ≥ 1 and u, v ∈ B mapping to u, v such that

uv = h+ δ

for some h ∈ A and δ ∈ mnB. We claim that there exist u′, v′ ∈ B with u− u′, v−
v′ ∈ mnB such that

u′v′ = h′ + δ′

for some h′ ∈ A and δ′ ∈ mn+1B. To see this, write δ =
∑
fibi with fi ∈ mn

and bi ∈ B. Then write bi = ai + ubi,1 + vbi,2 + δi with ai ∈ A, bi,1, bi,2 ∈ B and
δi ∈ mB. This is possible because the residue field of B agrees with the residue
field of A and the images of u and v in B/mB generate the maximal ideal. Then
we set

u′ = u−
∑

bi,2fi, v′ = v −
∑

bi,1fi

and we obtain
u′v′ = h+ δ−

∑
(bi,1u+ bi,2v)fi +

∑
cijfifj = h+

∑
aifi +

∑
fiδi +

∑
cijfifj

for some ci,j ∈ B. Thus we get a formula as above with h′ = h +
∑
aifi and

δ′ =
∑
fiδi +

∑
cijfifj .

Arguing by induction and starting with any lifts u1, v1 ∈ B of u, v the result of
the previous paragraph shows that we find a sequence of elements un, vn ∈ B and
hn ∈ A such that un − un+1 ∈ mnB, vn − vn+1 ∈ mnB, hn − hn+1 ∈ mn, and
such that unvn − hn ∈ mnB. Since A and B are complete we can set u∞ = lim un,
v∞ = lim vn, and h∞ = lim hn, and then we obtain u∞v∞ = h∞ in B. Thus we
have an A-algebra map

A[[x, y]]/(xy − h∞) −→ B

sending x to u∞ and v to v∞. This is a map of flat A-algebras which is an iso-
morphism after dividing by m. It is surjective modulo m and hence surjective by
completeness and Algebra, Lemma 96.1. Then we can apply Algebra, Lemma 99.1
to conclude it is an isomorphism. □

Consider the morphism of schemes
Spec(Z[u, v, a]/(uv − a)) −→ Spec(Z[a])

The next lemma shows that this morphism is a model for the étale local structure
of a nodal family of curves. If you know a proof of this lemma avoiding the use of
Artin approximation, then please email stacks.project@gmail.com.

mailto:stacks.project@gmail.com
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Lemma 20.12.0CBY Let f : X → S be a morphism of schemes. Assume that f is
at-worst-nodal of relative dimension 1. Let x ∈ X be a point which is a singular
point of the fibre Xs. Then there exists a commutative diagram of schemes

X

��

U //oo

��

W //

��

Spec(Z[u, v, a]/(uv − a))

��
S Voo // Spec(Z[a])

with X ← U , S ← V , and U →W étale morphisms, and with the right hand square
cartesian, such that there exists a point u ∈ U mapping to x in X.

Proof. We first use absolute Noetherian approximation to reduce to the case of
schemes of finite type over Z. The question is local on X and S. Hence we may
assume that X and S are affine. Then we can write S = Spec(R) and write R as a
filtered colimit R = colimRi of finite type Z-algebras. Using Limits, Lemma 10.1
we can find an i and a morphism fi : Xi → Spec(Ri) whose base change to S is f .
After increasing i we may assume that fi is at-worst-nodal of relative dimension 1,
see Lemma 20.10. The image xi ∈ Xi of x will be a singular point of its fibre, for
example because the formation of Sing(f) commutes with base change (Divisors,
Lemma 10.1). If we can prove the lemma for fi : Xi → Si and xi, then the lemma
follows for f : X → S by base change. Thus we reduce to the case studied in the
next paragraph.
Assume S is of finite type over Z. Let s ∈ S be the image of x. Recall that
κ(x) is a finite separable extension of κ(s), for example because Sing(f) → S is
unramified or because x is a node of the fibre Xs and we can apply Lemma 19.7.
Furthermore, let κ′/κ(x) be the degree 2 separable algebra associated to OXs,x

in Remark 19.8. By More on Morphisms, Lemma 35.2 we can choose an étale
neighbourhood (V, v)→ (S, s) such that the extension κ(v)/κ(s) realizes either the
extension κ(x)/κ(s) in case κ′ ∼= κ(x)×κ(x) or the extension κ′/κ(s) if κ′ is a field.
After replacing X by X ×S V and S by V we reduce to the situation described in
the next paragraph.
Assume S is of finite type over Z and x ∈ Xs is a split node, see Definition 19.10.
By Lemma 20.11 we see that there exists an OS,s-algebra isomorphism

O∧
X,x
∼= O∧

S,s[[s, t]]/(st− h)
for some h ∈ m∧

s ⊂ O∧
S,s. In other words, if we consider the homomorphism

σ : Z[a] −→ O∧
S,s

sending a to h, then there exists an OS,s-algebra isomorphism
O∧
X,x −→ O∧

Yσ,yσ

where
Yσ = Spec(Z[u, v, t]/(uv − a))×Spec(Z[a]),σ Spec(O∧

S,s)
and yσ is the point of Yσ lying over the closed point of Spec(O∧

S,s) and having coor-
dinates u, v equal to zero. Since OS,s is a G-ring by More on Algebra, Proposition
50.12 we may apply More on Morphisms, Lemma 39.3 to conclude. □

Lemma 20.13.0GKA Let f : X → S be a morphism of schemes. Assume
(1) f is proper,

https://stacks.math.columbia.edu/tag/0CBY
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(2) f is at-worst-nodal of relative dimension 1, and
(3) the geometric fibres of f are connected.

Then (a) f∗OX = OS and this holds after any base change, (b) R1f∗OX is a finite
locally free OS-module whose formation commutes with any base change, and (c)
Rqf∗OX = 0 for q ≥ 2.

Proof. Part (a) follows from Derived Categories of Schemes, Lemma 32.6. By
Derived Categories of Schemes, Lemma 32.5 locally on S we can write Rf∗OX =
OS ⊕ P where P is perfect of tor amplitude in [1,∞). Recall that formation
of Rf∗OX commutes with arbitrary base change (Derived Categories of Schemes,
Lemma 30.4). Thus for s ∈ S we have

Hi(P ⊗L
OS

κ(s)) = Hi(Xs,OXs
) for i ≥ 1

This is zero unless i = 1 since Xs is a 1-dimensional Noetherian scheme, see Co-
homology, Proposition 20.7. Then P = H1(P )[−1] and H1(P ) is finite locally free
for example by More on Algebra, Lemma 75.6. Since everything is compatible with
base change we conclude. □

21. More vanishing results

0E39 Continuation of Section 6.

Lemma 21.1.0E3A In Situation 6.2 assume X is integral and has genus g. Let L be an
invertible OX-module. Let Z ⊂ X be a 0-dimensional closed subscheme with ideal
sheaf I ⊂ OX . If H1(X, IL) is nonzero, then

deg(L) ≤ 2g − 2 + deg(Z)
with strict inequality unless IL ∼= ωX .

Proof. Any curve, e.g. X, is Cohen-Macaulay. If H1(X, IL) is nonzero, then there
is a nonzero map IL → ωX , see Lemma 4.2. Since IL is torsion free, this map is
injective. Since a field is Gorenstein and X is reduced, we find that the Gorenstein
locus U ⊂ X of X is nonempty, see Duality for Schemes, Lemma 24.4. This lemma
also tells us that ωX |U is invertible. In this way we see we have a short exact
sequence

0→ IL → ωX → Q→ 0
where the support of Q is zero dimensional. Hence we have

0 ≤ dim Γ(X,Q)
= χ(Q)
= χ(ωX)− χ(IL)
= χ(ωX)− deg(L)− χ(I)
= 2g − 2− deg(L) + deg(Z)

by Lemmas 5.1 and 5.2, by (8.1.1), and by Varieties, Lemmas 33.3 and 44.5. We
have also used that deg(Z) = dimk Γ(Z,OZ) = χ(OZ) and the short exact sequence
0→ I → OX → OZ → 0. The lemma follows. □

Lemma 21.2.0E3B [Lee05, Lemma 2]In Situation 6.2 assume X is integral and has genus g. Let L be an
invertible OX-module. Let Z ⊂ X be a 0-dimensional closed subscheme with ideal
sheaf I ⊂ OX . If deg(L) > 2g − 2 + deg(Z), then H1(X, IL) = 0 and one of the
following possibilities occurs

https://stacks.math.columbia.edu/tag/0E3A
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(1) H0(X, IL) ̸= 0, or
(2) g = 0 and deg(L) = deg(Z)− 1.

In case (2) if Z = ∅, then X ∼= P1
k and L corresponds to OP1(−1).

Proof. The vanishing of H1(X, IL) follows from Lemma 21.1. If H0(X, IL) = 0,
then χ(IL) = 0. From the short exact sequence 0 → IL → L → OZ → 0 we
conclude deg(L) = g − 1 + deg(Z). Thus g − 1 + deg(Z) > 2g − 2 + deg(Z) which
implies g = 0 hence (2) holds. If Z = ∅ in case (2), then L−1 is an invertible sheaf
of degree 1. This implies there is an isomorphism X → P1

k and L−1 is the pullback
of OP1(1) by Lemma 10.2. □

Lemma 21.3.0E3C [Lee05, Lemma 3]In Situation 6.2 assume X is integral and has genus g. Let L be
an invertible OX-module. If deg(L) ≥ 2g, then L is globally generated.

Proof. Let Z ⊂ X be the closed subscheme cut out by the global sections of L.
By Lemma 21.2 we see that Z ̸= X. Let I ⊂ OX be the ideal sheaf cutting out Z.
Consider the short exact sequence

0→ IL → L → OZ → 0

If Z ̸= ∅, then H1(X, IL) is nonzero as follows from the long exact sequence of
cohomology. By Lemma 4.2 this gives a nonzero and hence injective map

IL −→ ωX

In particular, we find an injective map H0(X,L) = H0(X, IL)→ H0(X,ωX). This
is impossible as

dimkH
0(X,L) = dimkH

1(X,L) + deg(L) + 1− g ≥ g + 1

and dimH0(X,ωX) = g by (8.1.1). □

Lemma 21.4.0E3D In Situation 6.2 assume X is integral and has genus g. Let L be
an invertible OX-module. Let Z ⊂ X be a nonempty 0-dimensional closed sub-
scheme. If deg(L) ≥ 2g−1 + deg(Z), then L is globally generated and H0(X,L)→
H0(X,L|Z) is surjective.

Proof. Global generation by Lemma 21.3. If I ⊂ OX is the ideal sheaf of Z, then
H1(X, IL) = 0 by Lemma 21.1. Hence surjectivity. □

Lemma 21.5.0H2V In Situation 6.2, assume X is geometrically integral over k and
has genus g. Let L be an invertible OX-module. If deg(L) ≥ 2g+ 1, then L is very
ample.

Proof. By Lemma 21.3, L is globally generated, and so it determines a morphism
f : X → Pn

k where n = h0(X,L)− 1. To show that L is very ample means to show
that f is a closed immersion. It suffices to check that the base change of f to an
algebraic closure k of k is a closed immersion (Descent, Lemma 23.19). So we may
assume that k is algebraically closed; X remains integral, by assumption. Lemma
21.4 gives that for every 0-dimensional closed subscheme Z ⊂ X of degree 2, the
restriction map H0(X,L) → H0(X,L|Z) is surjective. By Varieties, Lemma 23.2,
L is very ample. □

Lemma 21.6.0E3E Weak version of
[Lee05, Lemma 4]

Let k be a field. Let X be a proper scheme over k which is reduced,
connected, and of dimension 1. Let L be an invertible OX-module. Let Z ⊂ X be a

https://stacks.math.columbia.edu/tag/0E3C
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0-dimensional closed subscheme with ideal sheaf I ⊂ OX . If H1(X, IL) ̸= 0, then
there exists a reduced connected closed subscheme Y ⊂ X of dimension 1 such that

deg(L|Y ) ≤ −2χ(Y,OY ) + deg(Z ∩ Y )
where Z ∩ Y is the scheme theoretic intersection.

Proof. If H1(X, IL) is nonzero, then there is a nonzero map φ : IL → ωX , see
Lemma 4.2. Let Y ⊂ X be the union of the irreducible components C of X such
that φ is nonzero in the generic point of C. Then Y is a reduced closed subscheme.
Let J ⊂ OX be the ideal sheaf of Y . Since J IL has no embedded associated
points (as a submodule of L) and as φ is zero in the generic points of the support
of J (by choice of Y and as X is reduced), we find that φ factors as

IL → IL/J IL → ωX

We can view IL/J IL as the pushforward of a coherent sheaf on Y which by
abuse of notation we indicate with the same symbol. Since ωY = Hom(OY , ωX) by
Lemma 4.5 we find a map

IL/J IL → ωY

of OY -modules which is injective in the generic points of Y . Let I ′ ⊂ OY be the
ideal sheaf of Z ∩ Y . There is a map IL/J IL → I ′L|Y whose kernel is supported
in closed points. Since ωY is a Cohen-Macaulay module, the map above factors
through an injective map I ′L|Y → ωY . We see that we get an exact sequence

0→ I ′L|Y → ωY → Q→ 0
of coherent sheaves on Y where Q is supported in dimension 0 (this uses that ωY
is an invertible module in the generic points of Y ). We conclude that
0 ≤ dim Γ(Y,Q) = χ(Q) = χ(ωY )− χ(I ′L) = −2χ(OY )− deg(L|Y ) + deg(Z ∩ Y )
by Lemma 5.1 and Varieties, Lemma 33.3. If Y is connected, then this proves the
lemma. If not, then we repeat the last part of the argument for one of the connected
components of Y . □

Lemma 21.7.0E3F Let k be a field. Let X be a proper scheme over k which is reduced,
connected, and of dimension 1. Let L be an invertible OX-module. Assume that
for every reduced connected closed subscheme Y ⊂ X of dimension 1 we have

deg(L|Y ) ≥ 2 dimkH
1(Y,OY )

Then L is globally generated.

Proof. By induction on the number of irreducible components of X. If X is irre-
ducible, then the lemma holds by Lemma 21.3 applied to X viewed as a scheme over
the field k′ = H0(X,OX). Assume X is not irreducible. Before we continue, if k is
finite, then we replace k by a purely transcendental extension K. This is allowed
by Varieties, Lemmas 22.1, 44.2, 6.7, and 8.4, Cohomology of Schemes, Lemma 5.2,
Lemma 4.4 and the elementary fact that K is geometrically integral over k.
Assume that L is not globally generated to get a contradiction. Then we may
choose a coherent ideal sheaf I ⊂ OX such that H0(X, IL) = H0(X,L) and such
that OX/I is nonzero with support of dimension 0. For example, take I the ideal
sheaf of any closed point in the common vanishing locus of the global sections of
L. We consider the short exact sequence

0→ IL → L → L/IL → 0

https://stacks.math.columbia.edu/tag/0E3F
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Since the support of L/IL has dimension 0 we see that L/IL is generated by global
sections (Varieties, Lemma 33.3). From the short exact sequence, and the fact that
H0(X, IL) = H0(X,L) we get an injection H0(X,L/IL)→ H1(X, IL).
Recall that the k-vector space H1(X, IL) is dual to Hom(IL, ωX). Choose φ :
IL → ωX . By Lemma 21.6 we have H1(X,L) = 0. Hence
dimkH

0(X, IL) = dimkH
0(X,L) = deg(L)+χ(OX) > dimkH

1(X,OX) = dimkH
0(X,ωX)

We conclude that φ is not injective on global sections, in particular φ is not injective.
For every generic point η ∈ X of an irreducible component of X denote Vη ⊂
Hom(IL, ωX) the k-subvector space consisting of those φ which are zero at η.
Since every associated point of IL is a generic point of X, the above shows that
Hom(IL, ωX) =

⋃
Vη. As X has finitely many generic points and k is infinite,

we conclude Hom(IL, ωX) = Vη for some η. Let η ∈ C ⊂ X be the corresponding
irreducible component. Let Y ⊂ X be the union of the other irreducible components
ofX. Then Y is a nonempty reduced closed subscheme not equal toX. Let J ⊂ OX
be the ideal sheaf of Y . Please keep in mind that the support of J is C.
Let φ : IL → ωX be arbitrary. Since J IL has no embedded associated points (as
a submodule of L) and as φ is zero in the generic point η of the support of J , we
find that φ factors as

IL → IL/J IL → ωX

We can view IL/J IL as the pushforward of a coherent sheaf on Y which by
abuse of notation we indicate with the same symbol. Since ωY = Hom(OY , ωX) by
Lemma 4.5 we find a factorization

IL → IL/J IL φ′

−→ ωY → ωX

of φ. Let I ′ ⊂ OY be the image of I ⊂ OX . There is a surjective map IL/J IL →
I ′L|Y whose kernel is supported in closed points. Since ωY is a Cohen-Macaulay
module on Y , the map φ′ factors through a map φ′′ : I ′L|Y → ωY . Thus we have
commutative diagrams

0 // IL //

��

L //

��

L/IL //

��

0

0 // I ′L|Y // L|Y // L|Y /I ′L|Y // 0

and

IL
φ
//

��

ωX

I ′L|Y
φ′′

// ωY

OO

Now we can finish the proof as follows: Since for every φ we have a φ′′ and since
ωX ∈ Coh(OX) represents the functor F 7→ Homk(H1(X,F), k), we find that
H1(X, IL) → H1(Y, I ′L|Y ) is injective. Since the boundary H0(X,L/IL) →
H1(X, IL) is injective, we conclude the composition

H0(X,L/IL)→ H0(X,L|Y /I ′L|Y )→ H1(X, I ′L|Y )
is injective. Since L/IL → L|Y /I ′L|Y is a surjective map of coherent modules
whose supports have dimension 0, we see that the first map H0(X,L/IL) →
H0(X,L|Y /I ′L|Y ) is surjective (and hence bijective). But by induction we have
that L|Y is globally generated (if Y is disconnected this still works of course) and
hence the boundary map

H0(X,L|Y /I ′L|Y )→ H1(X, I ′L|Y )
cannot be injective. This contradiction finishes the proof. □
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22. Contracting rational tails

0E3G In this section we discuss the simplest possible case of contracting a scheme to
improve positivity properties of its canonical sheaf.

Example 22.1 (Contracting a rational tail).0E3H Let k be a field. Let X be a proper
scheme over k having dimension 1 and H0(X,OX) = k. Assume the singularities
of X are at-worst-nodal. A rational tail will be an irreducible component C ⊂ X
(viewed as an integral closed subscheme) with the following properties

(1) X ′ ̸= ∅ where X ′ ⊂ X is the scheme theoretic closure of X \ C,
(2) the scheme theoretic intersection C ∩X ′ is a single reduced point x,
(3) H0(C,OC) maps isomorphically to the residue field of x, and
(4) C has genus zero.

Since there are at least two irreducible components of X passing through x, we
conclude that x is a node. Set k′ = H0(C,OC) = κ(x). Then k′/k is a finite
separable extension of fields (Lemma 19.7). There is a canonical morphism

c : X −→ X ′

inducing the identity on X ′ and mapping C to x ∈ X ′ via the canonical morphism
C → Spec(k′) = x. This follows from Morphisms, Lemma 4.6 since X is the scheme
theoretic union of C and X ′ (as X is reduced). Moreover, we claim that

c∗OX = OX′ and R1c∗OX = 0

To see this, denote iC : C → X, iX′ : X ′ → X and ix : x→ X the embeddings and
use the exact sequence

0→ OX → iC,∗OC ⊕ iX′,∗OX′ → ix,∗κ(x)→ 0

of Morphisms, Lemma 4.6. Looking at the long exact sequence of higher direct
images, it follows that it suffices to show H0(C,OC) = k′ and H1(C,OC) = 0
which follows from the assumptions. Observe that X ′ is also a proper scheme
over k, of dimension 1 whose singularities are at-worst-nodal (Lemma 19.17) has
H0(X ′,OX′) = k, and X ′ has the same genus as X. We will say c : X → X ′ is the
contraction of a rational tail.

Lemma 22.2.0E63 Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Let
C ⊂ X be a rational tail (Example 22.1). Then deg(ωX |C) < 0.

Proof. Let X ′ ⊂ X be as in the example. Then we have a short exact sequence

0→ ωC → ωX |C → OC∩X′ → 0

See Lemmas 4.6, 19.16, and 19.17. With k′ as in the example we see that deg(ωC) =
−2[k′ : k] as C ∼= P1

k′ by Proposition 10.4 and deg(C ∩ X ′) = [k′ : k]. Hence
deg(ωX |C) = −[k′ : k] which is negative. □

Lemma 22.3.0E3I Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Let
C ⊂ X be a rational tail (Example 22.1). For any field extension K/k the base
change CK ⊂ XK is a finite disjoint union of rational tails.

https://stacks.math.columbia.edu/tag/0E3H
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Proof. Let x ∈ C and k′ = κ(x) be as in the example. Observe that C ∼= P1
k′ by

Proposition 10.4. Since k′/k is finite separable, we see that k′⊗kK = K ′
1× . . .×K ′

n

is a finite product of finite separable extensions K ′
i/K. Set Ci = P1

K′
i

and denote
xi ∈ Ci the inverse image of x. Then CK =

∐
Ci and X ′

K ∩Ci = xi as desired. □

Lemma 22.4.0E3J Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. If X does
not have a rational tail (Example 22.1), then for every reduced connected closed
subscheme Y ⊂ X, Y ̸= X of dimension 1 we have deg(ωX |Y ) ≥ dimkH

1(Y,OY ).

Proof. Let Y ⊂ X be as in the statement. Then k′ = H0(Y,OY ) is a field and a
finite extension of k and [k′ : k] divides all numerical invariants below associated
to Y and coherent sheaves on Y , see Varieties, Lemma 44.10. Let Z ⊂ X be as in
Lemma 4.6. We will use the results of this lemma and of Lemmas 19.16 and 19.17
without further mention. Then we get a short exact sequence

0→ ωY → ωX |Y → OY ∩Z → 0
See Lemma 4.6. We conclude that

deg(ωX |Y ) = deg(Y ∩ Z) + deg(ωY ) = deg(Y ∩ Z)− 2χ(Y,OY )
Hence, if the lemma is false, then

2[k′ : k] > deg(Y ∩ Z) + dimkH
1(Y,OY )

Since Y ∩ Z is nonempty and by the divisiblity mentioned above, this can happen
only if Y ∩Z is a single k′-rational point of the smooth locus of Y and H1(Y,OY ) =
0. If Y is irreducible, then this implies Y is a rational tail. If Y is reducible, then
since deg(ωX |Y ) = −[k′ : k] we find there is some irreducible component C of Y
such that deg(ωX |C) < 0, see Varieties, Lemma 44.6. Then the analysis above
applied to C gives that C is a rational tail. □

Lemma 22.5.0E3K Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Assume
X does not have a rational tail (Example 22.1). If

(1) the genus of X is 0, then X is isomorphic to an irreducible plane conic and
ω⊗−1
X is very ample,

(2) the genus of X is 1, then ωX ∼= OX ,
(3) the genus of X is ≥ 2, then ω⊗m

X is globally generated for m ≥ 2.

Proof. By Lemma 19.16 we find that X is Gorenstein, i.e., ωX is an invertible
OX -module.
If the genus ofX is zero, then deg(ωX) < 0, hence ifX has more than one irreducible
component, we get a contradiction with Lemma 22.4. In the irreducible case we
see that X is isomorphic to an irreducible plane conic and ω⊗−1

X is very ample by
Lemma 10.3.
If the genus of X is 1, then ωX has a global section and deg(ωX |C) = 0 for all
irreducible components. Namely, deg(ωX |C) ≥ 0 for all irreducible components C
by Lemma 22.4, the sum of these numbers is 0 by Lemma 8.3, and we can apply
Varieties, Lemma 44.6. Then ωX ∼= OX by Varieties, Lemma 44.13.
Assume the genus g of X is greater than or equal to 2. If X is irreducible, then we
are done by Lemma 21.3. Assume X reducible. By Lemma 22.4 the inequalities

https://stacks.math.columbia.edu/tag/0E3J
https://stacks.math.columbia.edu/tag/0E3K


ALGEBRAIC CURVES 60

of Lemma 21.7 hold for every Y ⊂ X as in the statement, except for Y = X.
Analyzing the proof of Lemma 21.7 we see that (in the reducible case) the only
inequality used for Y = X are

deg(ω⊗m
X ) > −2χ(OX) and deg(ω⊗m

X ) + χ(OX) > dimkH
1(X,OX)

Since these both hold under the assumption g ≥ 2 and m ≥ 2 we win. □

Lemma 22.6.0E3L Let k be a field. Let X be a proper scheme over k of dimension 1
with H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Consider
a sequence

X = X0 → X1 → . . .→ Xn = X ′

of contractions of rational tails (Example 22.1) until none are left. Then
(1) if the genus of X is 0, then X ′ is an irreducible plane conic,
(2) if the genus of X is 1, then ωX′ ∼= OX ,
(3) if the genus of X is > 1, then ω⊗m

X′ is globally generated for m ≥ 2.
If the genus of X is ≥ 1, then the morphism X → X ′ is independent of choices and
formation of this morphism commutes with base field extensions.

Proof. We proceed by contracting rational tails until there are none left. Then we
see that (1), (2), (3) hold by Lemma 22.5.
Uniqueness. To see that f : X → X ′ is independent of the choices made, it
suffices to show: any rational tail C ⊂ X is mapped to a point by X → X ′; some
details omitted. If not, then we can find a section s ∈ Γ(X ′, ω⊗2

X′ ) which does not
vanish in the generic point of the irreducible component f(C). Since in each of the
contractions Xi → Xi+1 we have a section Xi+1 → Xi, there is a section X ′ → X
of f . Then we have an exact sequence

0→ ωX′ → ωX → ωX |X′′ → 0
where X ′′ ⊂ X is the union of the irreducible components contracted by f . See
Lemma 4.6. Thus we get a map ω⊗2

X′ → ω⊗2
X and we can take the image of s to get a

section of ω⊗2
X not vanishing in the generic point of C. This is a contradiction with

the fact that the restriction of ωX to a rational tail has negative degree (Lemma
22.2).
The statement on base field extensions follows from Lemma 22.3. Some details
omitted. □

23. Contracting rational bridges

0E7M In this section we discuss the next simplest possible case (after the case discussed in
Section 22) of contracting a scheme to improve positivity properties of its canonical
sheaf.

Example 23.1 (Contracting a rational bridge).0E3M Let k be a field. Let X be a proper
scheme over k having dimension 1 and H0(X,OX) = k. Assume the singularities
of X are at-worst-nodal. A rational bridge will be an irreducible component C ⊂ X
(viewed as an integral closed subscheme) with the following properties

(1) X ′ ̸= ∅ where X ′ ⊂ X is the scheme theoretic closure of X \ C,
(2) the scheme theoretic interesection C∩X ′ has degree 2 over H0(C,OC), and
(3) C has genus zero.

https://stacks.math.columbia.edu/tag/0E3L
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Set k′ = H0(C,OC) and k′′ = H0(C ∩ X ′,OC∩X′). Then k′ is a field (Varieties,
Lemma 9.3) and dimk′(k′′) = 2. Since there are at least two irreducible components
of X passing through each point of C ∩X ′, we conclude these points are nodes of
X and smooth points on both C and X ′ (Lemma 19.17). Hence k′/k is a finite
separable extension of fields and k′′/k′ is either a degree 2 separable extension of
fields or k′′ = k′ × k′ (Lemma 19.7). By Section 14 there exists a pushout

C ∩X ′ //

��

X ′

a

��
Spec(k′) // Y

with many good properties (all of which we will use below without futher mention).
Let y ∈ Y be the image of Spec(k′)→ Y . Then

O∧
Y,y
∼= k′[[s, t]]/(st) or O∧

Y,y
∼= {f ∈ k′′[[s]] : f(0) ∈ k′}

depending on whether C ∩X ′ has 2 or 1 points. This follows from Lemma 14.1 and
the fact that OX′,p

∼= κ(p)[[t]] for p ∈ C ∩ X ′ by More on Algebra, Lemma 38.4.
Thus we see that y ∈ Y is a node, see Lemmas 19.7 and 19.4 and in particular the
discussion of Case II in the proof of (2)⇒ (1) in Lemma 19.4. Thus the singularities
of Y are at-worst-nodal.

We can extend the commutative diagram above to a diagram

C ∩X ′ //

��

X ′

a

��

// X

c
zz

C

{{

oo

Spec(k′) // Y Spec(k′)oo

where the two lower horizontal arrows are the same. Namely, X is the scheme
theoretic union of X ′ and C (thus a pushout by Morphisms, Lemma 4.6) and the
morphisms C → Y and X ′ → Y agree on C ∩X ′. Finally, we claim that

c∗OX = OY and R1c∗OX = 0

To see this use the exact sequence

0→ OX → OC ⊕OX′ → OC∩X′ → 0

of Morphisms, Lemma 4.6. The long exact sequence of higher direct images is

0→ c∗OX → c∗OC ⊕ c∗OX′ → c∗OC∩X′ → R1c∗OX → R1c∗OC ⊕R1c∗OX′

Since c|X′ = a is affine we see that R1c∗OX′ = 0. Since c|C factors as C →
Spec(k′) → X and since C has genus zero, we find that R1c∗OC = 0. Since
OX′ → OC∩X′ is surjective and since c|X′ is affine, we see that c∗OX′ → c∗OC∩X′

is surjective. This proves that R1c∗OX = 0. Finally, we have OY = c∗OX by the
exact sequence and the description of the structure sheaf of the pushout in More
on Morphisms, Proposition 67.3.

All of this means that Y is also a proper scheme over k having dimension 1 and
H0(Y,OY ) = k whose singularities are at-worst-nodal (Lemma 19.17) and that Y
has the same genus as X. We will say c : X → Y is the contraction of a rational
bridge.
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Lemma 23.2.0E64 Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Let
C ⊂ X be a rational bridge (Example 23.1). Then deg(ωX |C) = 0.
Proof. Let X ′ ⊂ X be as in the example. Then we have a short exact sequence

0→ ωC → ωX |C → OC∩X′ → 0
See Lemmas 4.6, 19.16, and 19.17. With k′′/k′/k as in the example we see that
deg(ωC) = −2[k′ : k] as C has genus 0 (Lemma 5.2) and deg(C ∩X ′) = [k′′ : k] =
2[k′ : k]. Hence deg(ωX |C) = 0. □

Lemma 23.3.0E65 Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Let
C ⊂ X be a rational bridge (Example 23.1). For any field extension K/k the base
change CK ⊂ XK is a finite disjoint union of rational bridges.
Proof. Let k′′/k′/k be as in the example. Since k′/k is finite separable, we see that
k′⊗kK = K ′

1×. . .×K ′
n is a finite product of finite separable extensions K ′

i/K. The
corresponding product decomposition k′′ ⊗k K =

∏
K ′′
i gives degree 2 separable

algebra extensions K ′′
i /K

′
i. Set Ci = CK′

i
. Then CK =

∐
Ci and therefore each Ci

has genus 0 (viewed as a curve over K ′
i), because H1(CK ,OCK

) = 0 by flat base
change. Finally, we have X ′

K ∩Ci = Spec(K ′′
i ) has degree 2 over K ′

i as desired. □

Lemma 23.4.0E3N Let c : X → Y be the contraction of a rational bridge (Example
23.1). Then c∗ωY ∼= ωX .
Proof. You can prove this by direct computation, but we prefer to use the charac-
terization of ωX as the coherentOX -module which represents the functor Coh(OX)→
Sets, F 7→ Homk(H1(X,F), k) = H1(X,F)∨, see Lemma 4.2 or Duality for Schemes,
Lemma 22.5.
To be precise, denote CY the category whose objects are invertible OY -modules
and whose maps are OY -module homomorphisms. Denote CX the category whose
objects are invertible OX -modules L with L|C ∼= OC and whose maps are OY -
module homomorphisms. We claim that the functor

c∗ : CY → CX
is an equivalence of categories. Namely, by More on Morphisms, Lemma 72.8 it
is essentially surjective. Then the projection formula (Cohomology, Lemma 54.2)
shows c∗c

∗N = N and hence c∗ is an equivalence with quasi-inverse given by c∗.
We claim ωX is an object of CX . Namely, we have a short exact sequence

0→ ωC → ωX |C → OC∩X′ → 0
See Lemma 4.6. Taking degrees we find deg(ωX |C) = 0 (small detail omitted).
Thus ωX |C is trivial by Lemma 10.1 and ωX is an object of CX .
Since R1c∗OX = 0 the projection formula shows that R1c∗c

∗N = 0 for N ∈
Ob(CY ). Therefore the Leray spectral sequence (Cohomology, Lemma 13.6) the
diagram

CY
c∗

//

H1(Y,−)∨ ""

CX

H1(X,−)∨||
Sets
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of categories and functors is commutative. Since ωY ∈ Ob(CY ) represents the
south-east arrow and ωX ∈ Ob(CX) represents the south-east arrow we conclude
by the Yoneda lemma (Categories, Lemma 3.5). □

Lemma 23.5.0E3P Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume

(1) the singularities of X are at-worst-nodal,
(2) X does not have a rational tail (Example 22.1),
(3) X does not have a rational bridge (Example 23.1),
(4) the genus g of X is ≥ 2.

Then ωX is ample.

Proof. It suffices to show that deg(ωX |C) > 0 for every irreducible component
C of X, see Varieties, Lemma 44.15. If X = C is irreducible, this follows from
g ≥ 2 and Lemma 8.3. Otherwise, set k′ = H0(C,OC). This is a field and a finite
extension of k and [k′ : k] divides all numerical invariants below associated to C
and coherent sheaves on C, see Varieties, Lemma 44.10. Let X ′ ⊂ X be the closure
of X \ C as in Lemma 4.6. We will use the results of this lemma and of Lemmas
19.16 and 19.17 without further mention. Then we get a short exact sequence

0→ ωC → ωX |C → OC∩X′ → 0
See Lemma 4.6. We conclude that

deg(ωX |C) = deg(C ∩X ′) + deg(ωC) = deg(C ∩X ′)− 2χ(C,OC)
Hence, if the lemma is false, then

2[k′ : k] ≥ deg(C ∩X ′) + 2 dimkH
1(C,OC)

Since C ∩X ′ is nonempty and by the divisiblity mentioned above, this can happen
only if either

(a) C ∩X ′ is a single k′-rational point of C and H1(C,OC) = 0, and
(b) C ∩X ′ has degree 2 over k′ and H1(C,OC) = 0.

The first possibility means C is a rational tail and the second that C is a rational
bridge. Since both are excluded the proof is complete. □

Lemma 23.6.0E3Q Let k be a field. Let X be a proper scheme over k of dimension
1 with H0(X,OX) = k having genus g ≥ 2. Assume the singularities of X are
at-worst-nodal and that X has no rational tails. Consider a sequence

X = X0 → X1 → . . .→ Xn = X ′

of contractions of rational bridges (Example 23.1) until none are left. Then ωX′

ample. The morphism X → X ′ is independent of choices and formation of this
morphism commutes with base field extensions.

Proof. We proceed by contracting rational bridges until there are none left. Then
ωX′ is ample by Lemma 23.5.
Denote f : X → X ′ the composition. By Lemma 23.4 and induction we see that
f∗ωX′ = ωX . We have f∗OX = OX′ because this is true for contraction of a
rational bridge. Thus the projection formula says that f∗f

∗L = L for all invertible
OX′-modules L. Hence

Γ(X ′, ω⊗m
X′ ) = Γ(X,ω⊗m

X )

https://stacks.math.columbia.edu/tag/0E3P
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for all m. Since X ′ is the Proj of the direct sum of these by Morphisms, Lemma
43.17 we conclude that the morphism X → X ′ is completely canonical.
Let K/k be an extension of fields, then ωXK

is the pullback of ωX (Lemma 4.4)
and we have Γ(X,ω⊗m

X )⊗kK is equal to Γ(XK , ω
⊗m
XK

) by Cohomology of Schemes,
Lemma 5.2. Thus formation of f : X → X ′ commutes with base change by K/k
by the arguments given above. Some details omitted. □

24. Contracting to a stable curve

0E7N In this section we combine the contraction morphisms found in Sections 22 and 23.
Namely, suppose that k is a field and let X be a proper scheme over k of dimension
1 with H0(X,OX) = k having genus g ≥ 2. Assume the singularities of X are
at-worst-nodal. Composing the morphism of Lemma 22.6 with the morphism of
Lemma 23.6 we get a morphism

c : X −→ Y

such that Y also is a proper scheme over k of dimension 1 whose singularities are at
worst nodal, with k = H0(Y,OY ) and having genus g, such that OY = c∗OX and
R1c∗OX = 0, and such that ωY is ample on Y . Lemma 24.2 shows these conditions
in fact characterize this morphism.

Lemma 24.1.0E7P Let k be a field. Let c : X → Y be a morphism of proper schemes
over k Assume

(1) OY = c∗OX and R1c∗OX = 0,
(2) X and Y are reduced, Gorenstein, and have dimension 1,
(3) ∃ m ∈ Z with H1(X,ω⊗m

X ) = 0 and ω⊗m
X generated by global sections.

Then c∗ωY ∼= ωX .

Proof. The fibres of c are geometrically connected by More on Morphisms, The-
orem 53.4. In particular c is surjective. There are finitely many closed points
y = y1, . . . , yr of Y where Xy has dimension 1 and over Y \ {y1, . . . , yr} the mor-
phism c is an isomorphism. Some details omitted; hint: outside of {y1, . . . , yr} the
morphism c is finite, see Cohomology of Schemes, Lemma 21.1.
Let us carefully construct a map b : c∗ωY → ωX . Denote f : X → Spec(k) and
g : Y → Spec(k) the structure morphisms. We have f !k = ωX [1] and g!k = ωY [1],
see Lemma 4.1 and its proof. Then f ! = c! ◦ g! and hence c!ωY = ωX . Thus there
is a functorial isomorphism

HomD(OX )(F , ωX) −→ HomD(OY )(Rc∗F , ωY )

for coherent OX -modules F by definition of c!7. This isomorphism is induced by
a trace map t : Rc∗ωX → ωY (the counit of the adjunction). By the projection
formula (Cohomology, Lemma 54.2) the canonical map a : ωY → Rc∗c

∗ωY is an
isomorphism. Combining the above we see there is a canonical map b : c∗ωY → ωX
such that

t ◦Rc∗(b) = a−1

In particular, if we restrict b to c−1(Y \ {y1, . . . , yr}) then it is an isomorphism
(because it is a map between invertible modules whose composition with another
gives the isomorphism a−1).

7As the restriction of the right adjoint of Duality for Schemes, Lemma 3.1 to D+
QCoh(OY ).
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Choose m ∈ Z as in (3) consider the map
b⊗m : Γ(Y, ω⊗m

Y ) −→ Γ(X,ω⊗m
X )

This map is injective because Y is reduced and by the last property of bmentioned in
its construction. By Riemann-Roch (Lemma 5.2) we have χ(X,ω⊗m

X ) = χ(Y, ω⊗m
Y ).

Thus
dimk Γ(Y, ω⊗m

Y ) ≥ dimk Γ(X,ω⊗m
X ) = χ(X,ω⊗m

X )
and we conclude b⊗m induces an isomorphism on global sections. So b⊗m : c∗ω⊗m

Y →
ω⊗m
X is surjective as generators of ω⊗m

X are in the image. Hence b⊗m is an isomor-
phism. Thus b is an isomorphism. □

Lemma 24.2.0E7Q Let k be a field. Let X be a proper scheme over k of dimension
1 with H0(X,OX) = k having genus g ≥ 2. Assume the singularities of X are
at-worst-nodal. There is a unique morphism (up to unique isomorphism)

c : X −→ Y

of schemes over k having the following properties:
(1) Y is proper over k, dim(Y ) = 1, the singularities of Y are at-worst-nodal,
(2) OY = c∗OX and R1c∗OX = 0, and
(3) ωY is ample on Y .

Proof. Existence: A morphism with all the properties listed exists by combining
Lemmas 22.6 and 23.6 as discussed in the introduction to this section. Moreover,
we see that it can be written as a composition

X → X1 → X2 . . .→ Xn → Xn+1 → . . .→ Xn+n′

where the first n morphisms are contractions of rational tails and the last n′ mor-
phisms are contractions of rational bridges. Note that property (2) holds for each
contraction of a rational tail (Example 22.1) and contraction of a rational bridge
(Example 23.1). It is easy to see that this property is inherited by compositions of
morphisms.
Uniqueness: Let c : X → Y be a morphism satisfying conditions (1), (2), and (3).
We will show that there is a unique isomorphism Xn+n′ → Y compatible with the
morphisms X → Xn+n′ and c.
Before we start the proof we make some observations about c. We first observe
that the fibres of c are geometrically connected by More on Morphisms, Theorem
53.4. In particular c is surjective. For a closed point y ∈ Y the fibre Xy satisfies

H1(Xy,OXy
) = 0 and H0(Xy,OXy

) = κ(y)
The first equality by More on Morphisms, Lemma 72.1 and the second by More
on Morphisms, Lemma 72.4. Thus either Xy = x where x is the unique point of
X mapping to y and has the same residue field as y, or Xy is a 1-dimensional
proper scheme over κ(y). Observe that in the second case Xy is Cohen-Macaulay
(Lemma 6.1). However, since X is reduced, we see that Xy must be reduced at
all of its generic points (details omitted), and hence Xy is reduced by Properties,
Lemma 12.4. It follows that the singularities of Xy are at-worst-nodal (Lemma
19.17). Note that the genus of Xy is zero (see above). Finally, there are only a
finite number of points y where the fibre Xy has dimension 1, say {y1, . . . , yr}, and
c−1(Y \ {y1, . . . , yr}) maps isomorphically to Y \ {y1, . . . , yr} by c. Some details
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omitted; hint: outside of {y1, . . . , yr} the morphism c is finite, see Cohomology of
Schemes, Lemma 21.1.

Let C ⊂ X be a rational tail. We claim that c maps C to a point. Assume that
this is not the case to get a contradiction. Then the image of C is an irreducible
component D ⊂ Y . Recall that H0(C,OC) = k′ is a finite separable extension
of k and that C has a k′-rational point x which is also the unique intersection
of C with the “rest” of X. We conclude from the general discussion above that
C \ {x} ⊂ c−1(Y \ {y1, . . . , yr}) maps isomorphically to an open V of D. Let
y = c(x) ∈ D. Observe that y is the only point of D meeting the “rest” of Y . If
y ̸∈ {y1, . . . , yr}, then C ∼= D and it is clear that D is a rational tail of Y which
is a contradiction with the ampleness of ωY (Lemma 22.2). Thus y ∈ {y1, . . . , yr}
and dim(Xy) = 1. Then x ∈ Xy ∩C and x is a smooth point of Xy and C (Lemma
19.17). If y ∈ D is a singular point of D, then y is a node and then Y = D
(because there cannot be another component of Y passing through y by Lemma
19.17). Then X = Xy ∪ C which means g = 0 because it is equal to the genus of
Xy by the discussion in Example 22.1; a contradiction. If y ∈ D is a smooth point
of D, then C → D is an isomorphism (because the nonsingular projective model is
unique and C and D are birational, see Section 2). Then D is a rational tail of Y
which is a contradiction with ampleness of ωY .

Assume n ≥ 1. If C ⊂ X is the rational tail contracted by X → X1, then we see
that C is mapped to a point of Y by the previous paragraph. Hence c : X → Y
factors through X → X1 (because X is the pushout of C and X1, see discussion
in Example 22.1). After replacing X by X1 we have decreased n. By induction we
may assume n = 0, i.e., X does not have a rational tail.

Assume n = 0, i.e., X does not have any rational tails. Then ω⊗2
X and ω⊗3

X are
globally generated by Lemma 22.5. It follows that H1(X,ω⊗3

X ) = 0 by Lemma 6.4.
By Lemma 24.1 applied with m = 3 we find that c∗ωY ∼= ωX . We also have that
ωX = (X → Xn′)∗ωXn′ by Lemma 23.4 and induction. Applying the projection
formula for both c and X → Xn′ we conclude that

Γ(Xn′ , ω⊗m
Xn′ ) = Γ(X,ω⊗m

X ) = Γ(Y, ω⊗m
Y )

for all m. Since Xn′ and Y are the Proj of the direct sum of these by Morphisms,
Lemma 43.17 we conclude that there is a canonical isomorphismXn′ = Y as desired.
We omit the verification that this is the unique isomorphism making the diagram
commute. □

Lemma 24.3.0E8X Let k be a field. Let X be a proper scheme over k of dimension
1 with H0(X,OX) = k having genus g ≥ 2. Assume the singularities of X are
at-worst-nodal and ωX is ample. Then ω⊗3

X is very ample and H1(X,ω⊗3
X ) = 0.

Proof. Combining Varieties, Lemma 44.15 and Lemmas 22.2 and 23.2 we see that
X contains no rational tails or bridges. Then we see that ω⊗3

X is globally generated
by Lemma 22.6. Choose a k-basis s0, . . . , sn of H0(X,ω⊗3

X ). We get a morphism

φω⊗3
X
,(s0,...,sn) : X −→ Pn

k

See Constructions, Section 13. The lemma asserts that this morphism is a closed
immersion. To check this we may replace k by its algebraic closure, see Descent,
Lemma 23.19. Thus we may assume k is algebraically closed.

https://stacks.math.columbia.edu/tag/0E8X
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Assume k is algebraically closed. We will use Varieties, Lemma 23.2 to prove the
lemma. Let Z ⊂ X be a closed subscheme of degree 2 over Z with ideal sheaf
I ⊂ OX . We have to show that

H0(X,L)→ H0(Z,L|Z)
is surjective. Thus it suffices to show that H1(X, IL) = 0. To do this we will use
Lemma 21.6. Thus it suffices to show that

3 deg(ωX |Y ) > −2χ(Y,OY ) + deg(Z ∩ Y )
for every reduced connected closed subscheme Y ⊂ X. Since k is algebraically
closed and Y connected and reduced we have H0(Y,OY ) = k (Varieties, Lemma
9.3). Hence χ(Y,OY ) = 1− dimH1(Y,OY ). Thus we have to show

3 deg(ωX |Y ) > −2 + 2 dimH1(Y,OY ) + deg(Z ∩ Y )
which is true by Lemma 22.4 except possibly if Y = X or if deg(ωX |Y ) = 0. Since
ωX is ample the second possibility does not occur (see first lemma cited in this
proof). Finally, if Y = X we can use Riemann-Roch (Lemma 5.2) and the fact that
g ≥ 2 to see that the inquality holds. The same argument with Z = ∅ shows that
H1(X,ω⊗3

X ) = 0. □

25. Vector fields

0E66 In this section we study the space of vector fields on a curve. Vector fields corre-
spond to infinitesimal automorphisms, see More on Morphisms, Section 9, hence
play an important role in moduli theory.
Let k be an algebraically closed field. Let X be a finite type scheme over k. Let
x ∈ X be a closed point. We will say an element D ∈ Derk(OX ,OX) fixes x if
D(I) ⊂ I where I ⊂ OX is the ideal sheaf of x.

Lemma 25.1.0E67 Let k be an algebraically closed field. Let X be a smooth, proper,
connected curve over k. Let g be the genus of X.

(1) If g ≥ 2, then Derk(OX ,OX) is zero,
(2) if g = 1 and D ∈ Derk(OX ,OX) is nonzero, then D does not fix any closed

point of X, and
(3) if g = 0 and D ∈ Derk(OX ,OX) is nonzero, then D fixes at most 2 closed

points of X.

Proof. Recall that we have a universal k-derivation d : OX → ΩX/k and hence
D = θ ◦ d for some OX -linear map θ : ΩX/k → OX . Recall that ΩX/k ∼= ωX , see
Lemma 4.1. By Riemann-Roch we have deg(ωX) = 2g − 2 (Lemma 5.2). Thus we
see that θ is forced to be zero if g > 1 by Varieties, Lemma 44.12. This proves
part (1). If g = 1, then a nonzero θ does not vanish anywhere and if g = 0, then
a nonzero θ vanishes in a divisor of degree 2. Thus parts (2) and (3) follow if we
show that vanishing of θ at a closed point x ∈ X is equivalent to the statement
that D fixes x (as defined above). Let z ∈ OX,x be a uniformizer. Then dz is a
basis element for ΩX,x, see Lemma 12.3. Since D(z) = θ(dz) we conclude. □

Lemma 25.2.0E68 Let k be an algebraically closed field. Let X be an at-worst-nodal,
proper, connected 1-dimensional scheme over k. Let ν : Xν → X be the normaliza-
tion. Let S ⊂ Xν be the set of points where ν is not an isomorphism. Then

Derk(OX ,OX) = {D′ ∈ Derk(OXν ,OXν ) | D′ fixes every xν ∈ S}

https://stacks.math.columbia.edu/tag/0E67
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Proof. Let x ∈ X be a node. Let x′, x′′ ∈ Xν be the inverse images of x. (Every
node is a split node since k is algebriacally closed, see Definition 19.10 and Lemma
19.11.) Let u ∈ OXν ,x′ and v ∈ OXν ,x′′ be uniformizers. Observe that we have an
exact sequence

0→ OX,x → OXν ,x′ ×OXν ,x′′ → k → 0
This follows from Lemma 16.3. Thus we can view u and v as elements of OX,x with
uv = 0.
LetD ∈ Derk(OX ,OX). Then 0 = D(uv) = vD(u)+uD(v). Since (u) is annihilator
of v in OX,x and vice versa, we see that D(u) ∈ (u) and D(v) ∈ (v). As OXν ,x′ =
k + (u) we conclude that we can extend D to OXν ,x′ and moreover the extension
fixes x′. This produces a D′ in the right hand side of the equality. Conversely, given
a D′ fixing x′ and x′′ we find that D′ preserves the subring OX,x ⊂ OXν ,x′×OXν ,x′′

and this is how we go from right to left in the equality. □

Lemma 25.3.0E69 Let k be an algebraically closed field. Let X be an at-worst-nodal,
proper, connected 1-dimensional scheme over k. Assume the genus of X is at least
2 and that X has no rational tails or bridges. Then Derk(OX ,OX) = 0.

Proof. Let D ∈ Derk(OX ,OX). Let Xν be the normalization of X. Let D′ ∈
Derk(OXν ,OXν ) be the element corresponding to D via Lemma 25.2. Let C ⊂ Xν

be an irreducible component. If the genus of C is > 1, then D′|OC
= 0 by Lemma

25.1 part (1). If the genus of C is 1, then there is at least one closed point c of C
which maps to a node on X (since otherwise X ∼= C would have genus 1). By the
correspondence this means that D′|OC

fixes c hence is zero by Lemma 25.1 part (2).
Finally, if the genus of C is zero, then there are at least 3 pairwise distinct closed
points c1, c2, c3 ∈ C mapping to nodes in X, since otherwise either X is C with
two points glued (two points of C mapping to the same node), or C is a rational
bridge (two points mapping to different nodes of X), or C is a rational tail (one
point mapping to a node of X). These three possibilities are not permitted since
C has genus ≥ 2 and has no rational bridges, or rational tails. Whence D′|OC

fixes
c1, c2, c3 hence is zero by Lemma 25.1 part (3). □
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