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1. Introduction

06NL In this chapter we study “local” properties of general algebraic spaces, i.e., those
algebraic spaces which aren’t quasi-separated. Quasi-separated algebraic spaces are
studied in [Knu71]. It turns out that essentially new phenomena happen, especially
regarding points and specializations of points, on more general algebraic spaces.
On the other hand, for most basic results on algebraic spaces, one needn’t worry
about these phenomena, which is why we have decided to have this material in a
separate chapter following the standard development of the theory.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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2. Conventions

06NM The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

3. Universally bounded fibres

03JK We briefly discuss what it means for a morphism from a scheme to an algebraic
space to have universally bounded fibres. Please refer to Morphisms, Section 57 for
similar definitions and results on morphisms of schemes.

Definition 3.1.03JL Let S be a scheme. Let X be an algebraic space over S, and let
U be a scheme over S. Let f : U → X be a morphism over S. We say the fibres
of f are universally bounded1 if there exists an integer n such that for all fields k
and all morphisms Spec(k)→ X the fibre product Spec(k)×X U is a finite scheme
over k whose degree over k is ≤ n.

This definition makes sense because the fibre product Spec(k) ×Y X is a scheme.
Moreover, if Y is a scheme we recover the notion of Morphisms, Definition 57.1 by
virtue of Morphisms, Lemma 57.2.

Lemma 3.2.03JM Let S be a scheme. Let X be an algebraic space over S. Let V → U
be a morphism of schemes over S, and let U → X be a morphism from U to X. If
the fibres of V → U and U → X are universally bounded, then so are the fibres of
V → X.

Proof. Let n be an integer which works for V → U , and let m be an integer which
works for U → X in Definition 3.1. Let Spec(k)→ X be a morphism, where k is a
field. Consider the morphisms

Spec(k)×X V −→ Spec(k)×X U −→ Spec(k).

By assumption the scheme Spec(k)×X U is finite of degree at most m over k, and n
is an integer which bounds the degree of the fibres of the first morphism. Hence by
Morphisms, Lemma 57.4 we conclude that Spec(k)×X V is finite over k of degree
at most nm. □

Lemma 3.3.03JN Let S be a scheme. Let Y → X be a representable morphism of
algebraic spaces over S. Let U → X be a morphism from a scheme to X. If the
fibres of U → X are universally bounded, then the fibres of U ×X Y → Y are
universally bounded.

Proof. This is clear from the definition, and properties of fibre products. (Note
that U ×X Y is a scheme as we assumed Y → X representable, so the definition
applies.) □

1This is probably nonstandard notation.

https://stacks.math.columbia.edu/tag/03JL
https://stacks.math.columbia.edu/tag/03JM
https://stacks.math.columbia.edu/tag/03JN
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Lemma 3.4.03JO Let S be a scheme. Let g : Y → X be a representable morphism of
algebraic spaces over S. Let f : U → X be a morphism from a scheme towards X.
Let f ′ : U ×X Y → Y be the base change of f . If

Im(|f | : |U | → |X|) ⊂ Im(|g| : |Y | → |X|)

and f ′ has universally bounded fibres, then f has universally bounded fibres.

Proof. Let n ≥ 0 be an integer bounding the degrees of the fibre products Spec(k)×Y
(U ×X Y ) as in Definition 3.1 for the morphism f ′. We claim that n works for f
also. Namely, suppose that x : Spec(k) → X is a morphism from the spectrum of
a field. Then either Spec(k)×X U is empty (and there is nothing to prove), or x is
in the image of |f |. By Properties of Spaces, Lemma 4.3 and the assumption of the
lemma we see that this means there exists a field extension k′/k and a commutative
diagram

Spec(k′) //

��

Y

��
Spec(k) // X

Hence we see that

Spec(k′)×Y (U ×X Y ) = Spec(k′)×Spec(k) (Spec(k)×X U)

Since the scheme Spec(k′) ×Y (U ×X Y ) is assumed finite of degree ≤ n over k′

it follows that also Spec(k) ×X U is finite of degree ≤ n over k as desired. (Some
details omitted.) □

Lemma 3.5.03JP Let S be a scheme. Let X be an algebraic space over S. Consider a
commutative diagram

U

g   

f
// V

h~~
X

where U and V are schemes. If g has universally bounded fibres, and f is surjective
and flat, then also h has universally bounded fibres.

Proof. Assume g has universally bounded fibres, and f is surjective and flat. Say
n ≥ 0 is an integer which bounds the degrees of the schemes Spec(k) ×X U as in
Definition 3.1. We claim n also works for h. Let Spec(k)→ X be a morphism from
the spectrum of a field to X. Consider the morphism of schemes

Spec(k)×X V −→ Spec(k)×X U

It is flat and surjective. By assumption the scheme on the left is finite of degree
≤ n over Spec(k). It follows from Morphisms, Lemma 57.10 that the degree of the
scheme on the right is also bounded by n as desired. □

Lemma 3.6.03JQ Let S be a scheme. Let X be an algebraic space over S, and let U
be a scheme over S. Let φ : U → X be a morphism over S. If the fibres of φ are
universally bounded, then there exists an integer n such that each fibre of |U | → |X|
has at most n elements.

https://stacks.math.columbia.edu/tag/03JO
https://stacks.math.columbia.edu/tag/03JP
https://stacks.math.columbia.edu/tag/03JQ
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Proof. The integer n of Definition 3.1 works. Namely, pick x ∈ |X|. Represent x
by a morphism x : Spec(k)→ X. Then we get a commutative diagram

Spec(k)×X U //

��

U

��
Spec(k) x // X

which shows (via Properties of Spaces, Lemma 4.3) that the inverse image of x in
|U | is the image of the top horizontal arrow. Since Spec(k)×X U is finite of degree
≤ n over k it has at most n points. □

4. Finiteness conditions and points

03JR In this section we elaborate on the question of when points can be represented by
monomorphisms from spectra of fields into the space.

Remark 4.1.03II Before we give the proof of the next lemma let us recall some facts
about étale morphisms of schemes:

(1) An étale morphism is flat and hence generalizations lift along an étale
morphism (Morphisms, Lemmas 36.12 and 25.9).

(2) An étale morphism is unramified, an unramified morphism is locally quasi-
finite, hence fibres are discrete (Morphisms, Lemmas 36.16, 35.10, and
20.6).

(3) A quasi-compact étale morphism is quasi-finite and in particular has finite
fibres (Morphisms, Lemmas 20.9 and 20.10).

(4) An étale scheme over a field k is a disjoint union of spectra of finite separable
field extension of k (Morphisms, Lemma 36.7).

For a general discussion of étale morphisms, please see Étale Morphisms, Section
11.

Lemma 4.2.03JS Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
The following are equivalent:

(1) there exists a family of schemes Ui and étale morphisms φi : Ui → X such
that

∐
φi :

∐
Ui → X is surjective, and such that for each i the fibre of

|Ui| → |X| over x is finite, and
(2) for every affine scheme U and étale morphism φ : U → X the fibre of
|U | → |X| over x is finite.

Proof. The implication (2) ⇒ (1) is trivial. Let φi : Ui → X be a family of étale
morphisms as in (1). Let φ : U → X be an étale morphism from an affine scheme
towards X. Consider the fibre product diagrams

U ×X Ui pi

//

qi

��

Ui

φi

��
U

φ // X

∐
U ×X Ui ∐

pi

//∐
qi

��

∐
Ui∐

φi

��
U

φ // X

Since qi is étale it is open (see Remark 4.1). Moreover, the morphism
∐
qi is

surjective. Hence there exist finitely many indices i1, . . . , in and a quasi-compact
opens Wij ⊂ U ×X Uij which surject onto U . The morphism pi is étale, hence
locally quasi-finite (see remark on étale morphisms above). Thus we may apply

https://stacks.math.columbia.edu/tag/03II
https://stacks.math.columbia.edu/tag/03JS
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Morphisms, Lemma 57.9 to see the fibres of pij |Wij
: Wij → Ui are finite. Hence by

Properties of Spaces, Lemma 4.3 and the assumption on φi we conclude that the
fibre of φ over x is finite. In other words (2) holds. □

Lemma 4.3.03JU Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
The following are equivalent:

(1) there exists a scheme U , an étale morphism φ : U → X, and points u, u′ ∈
U mapping to x such that setting R = U ×X U the fibre of

|R| → |U | ×|X| |U |
over (u, u′) is finite,

(2) for every scheme U , étale morphism φ : U → X and any points u, u′ ∈ U
mapping to x setting R = U ×X U the fibre of

|R| → |U | ×|X| |U |
over (u, u′) is finite,

(3) there exists a morphism Spec(k)→ X with k a field in the equivalence class
of x such that the projections Spec(k)×X Spec(k)→ Spec(k) are étale and
quasi-compact, and

(4) there exists a monomorphism Spec(k)→ X with k a field in the equivalence
class of x.

Proof. Assume (1), i.e., let φ : U → X be an étale morphism from a scheme
towards X, and let u, u′ be points of U lying over x such that the fibre of |R| →
|U | ×|X| |U | over (u, u′) is a finite set. In this proof we think of a point u =
Spec(κ(u)) as a scheme. Note that u → U , u′ → U are monomorphisms (see
Schemes, Lemma 23.7), hence u×X u′ → R = U ×X U is a monomorphism. In this
language the assumption really means that u ×X u′ is a scheme whose underlying
topological space has finitely many points. Let ψ : W → X be an étale morphism
from a scheme towards X. Let w,w′ ∈ W be points of W mapping to x. We have
to show that w ×X w′ is a scheme whose underlying topological space has finitely
many points. Consider the fibre product diagram

W ×X U
p

//

q

��

U

φ

��
W

ψ // X

As x is the image of u and u′ we may pick points w̃, w̃′ in W ×X U with q(w̃) = w,
q(w̃′) = w′, u = p(w̃) and u′ = p(w̃′), see Properties of Spaces, Lemma 4.3. As p,
q are étale the field extensions κ(w) ⊂ κ(w̃) ⊃ κ(u) and κ(w′) ⊂ κ(w̃′) ⊃ κ(u′) are
finite separable, see Remark 4.1. Then we get a commutative diagram

w ×X w′

��

w̃ ×X w̃′oo

��

// u×X u′

��
w ×X w′ w̃ ×S w̃′oo // u×S u′

where the squares are fibre product squares. The lower horizontal morphisms are
étale and quasi-compact, as any scheme of the form Spec(k) ×S Spec(k′) is affine,
and by our observations about the field extensions above. Thus we see that the
top horizontal arrows are étale and quasi-compact and hence have finite fibres. We

https://stacks.math.columbia.edu/tag/03JU
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have seen above that |u×X u′| is finite, so we conclude that |w ×X w′| is finite. In
other words, (2) holds.

Assume (2). Let U → X be an étale morphism from a scheme U such that x is in
the image of |U | → |X|. Let u ∈ U be a point mapping to x. Then we have seen
in the previous paragraph that u = Spec(κ(u))→ X has the property that u×X u
has a finite underlying topological space. On the other hand, the projection maps
u×X u→ u are the composition

u×X u −→ u×X U −→ u×X X = u,

i.e., the composition of a monomorphism (the base change of the monomorphism
u → U) by an étale morphism (the base change of the étale morphism U → X).
Hence u×X U is a disjoint union of spectra of fields finite separable over κ(u) (see
Remark 4.1). Since u ×X u is finite the image of it in u ×X U is a finite disjoint
union of spectra of fields finite separable over κ(u). By Schemes, Lemma 23.11 we
conclude that u ×X u is a finite disjoint union of spectra of fields finite separable
over κ(u). In other words, we see that u ×X u → u is quasi-compact and étale.
This means that (3) holds.

Let us prove that (3) implies (4). Let Spec(k) → X be a morphism from the
spectrum of a field into X, in the equivalence class of x such that the two projections
t, s : R = Spec(k)×X Spec(k)→ Spec(k) are quasi-compact and étale. This means
in particular that R is an étale equivalence relation on Spec(k). By Spaces, Theorem
10.5 we know that the quotient sheaf X ′ = Spec(k)/R is an algebraic space. By
Groupoids, Lemma 20.6 the map X ′ → X is a monomorphism. Since s, t are quasi-
compact, we see that R is quasi-compact and hence Properties of Spaces, Lemma
15.3 applies to X ′, and we see that X ′ = Spec(k′) for some field k′. Hence we get
a factorization

Spec(k) −→ Spec(k′) −→ X

which shows that Spec(k′)→ X is a monomorphism mapping to x ∈ |X|. In other
words (4) holds.

Finally, we prove that (4) implies (1). Let Spec(k)→ X be a monomorphism with k
a field in the equivalence class of x. Let U → X be a surjective étale morphism from
a scheme U to X. Let u ∈ U be a point over x. Since Spec(k) ×X u is nonempty,
and since Spec(k)×X u→ u is a monomorphism we conclude that Spec(k)×X u = u
(see Schemes, Lemma 23.11). Hence u → U → X factors through Spec(k) → X,
here is a picture

u //

��

U

��
Spec(k) // X

Since the right vertical arrow is étale this implies that κ(u)/k is a finite separable
extension. Hence we conclude that

u×X u = u×Spec(k) u

is a finite scheme, and we win by the discussion of the meaning of property (1) in
the first paragraph of this proof. □
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Lemma 4.4.040U Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
Let U be a scheme and let φ : U → X be an étale morphism. The following are
equivalent:

(1) x is in the image of |U | → |X|, and setting R = U ×X U the fibres of both
|U | −→ |X| and |R| −→ |X|

over x are finite,
(2) there exists a monomorphism Spec(k)→ X with k a field in the equivalence

class of x, and the fibre product Spec(k)×X U is a finite nonempty scheme
over k.

Proof. Assume (1). This clearly implies the first condition of Lemma 4.3 and
hence we obtain a monomorphism Spec(k)→ X in the class of x. Taking the fibre
product we see that Spec(k)×X U → Spec(k) is a scheme étale over Spec(k) with
finitely many points, hence a finite nonempty scheme over k, i.e., (2) holds.
Assume (2). By assumption x is in the image of |U | → |X|. The finiteness of the
fibre of |U | → |X| over x is clear since this fibre is equal to |Spec(k) ×X U | by
Properties of Spaces, Lemma 4.3. The finiteness of the fibre of |R| → |X| above x
is also clear since it is equal to the set underlying the scheme

(Spec(k)×X U)×Spec(k) (Spec(k)×X U)
which is finite over k. Thus (1) holds. □

Lemma 4.5.03JV Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
The following are equivalent:

(1) for every affine scheme U , any étale morphism φ : U → X setting R =
U ×X U the fibres of both

|U | −→ |X| and |R| −→ |X|
over x are finite,

(2) there exist schemes Ui and étale morphisms Ui → X such that
∐
Ui → X

is surjective and for each i, setting Ri = Ui ×X Ui the fibres of both
|Ui| −→ |X| and |Ri| −→ |X|

over x are finite,
(3) there exists a monomorphism Spec(k)→ X with k a field in the equivalence

class of x, and for any affine scheme U and étale morphism U → X the
fibre product Spec(k)×X U is a finite scheme over k,

(4) there exists a quasi-compact monomorphism Spec(k)→ X with k a field in
the equivalence class of x,

(5) there exists a quasi-compact morphism Spec(k) → X with k a field in the
equivalence class of x, and

(6) every morphism Spec(k)→ X with k a field in the equivalence class of x is
quasi-compact.

Proof. The equivalence of (1) and (3) follows on applying Lemma 4.4 to every étale
morphism U → X with U affine. It is clear that (3) implies (2). Assume Ui → X
and Ri are as in (2). We conclude from Lemma 4.2 that for any affine scheme U
and étale morphism U → X the fibre of |U | → |X| over x is finite. Say this fibre is
{u1, . . . , un}. Then, as Lemma 4.3 (1) applies to Ui → X for some i such that x is

https://stacks.math.columbia.edu/tag/040U
https://stacks.math.columbia.edu/tag/03JV
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in the image of |Ui| → |X|, we see that the fibre of |R = U ×X U | → |U | ×|X| |U | is
finite over (ua, ub), a, b ∈ {1, . . . , n}. Hence the fibre of |R| → |X| over x is finite.
In this way we see that (1) holds. At this point we know that (1), (2), and (3) are
equivalent.

If (4) holds, then for any affine scheme U and étale morphism U → X the scheme
Spec(k) ×X U is on the one hand étale over k (hence a disjoint union of spectra
of finite separable extensions of k by Remark 4.1) and on the other hand quasi-
compact over U (hence quasi-compact). Thus we see that (3) holds. Conversely, if
Ui → X is as in (2) and Spec(k)→ X is a monomorphism as in (3), then∐

Spec(k)×X Ui −→
∐

Ui

is quasi-compact (because over each Ui we see that Spec(k)×X Ui is a finite disjoint
union spectra of fields). Thus Spec(k) → X is quasi-compact by Morphisms of
Spaces, Lemma 8.8.

It is immediate that (4) implies (5). Conversely, let Spec(k) → X be a quasi-
compact morphism in the equivalence class of x. Let U → X be an étale morphism
with U affine. Consider the fibre product

F //

��

U

��
Spec(k) // X

Then F → U is quasi-compact, hence F is quasi-compact. On the other hand,
F → Spec(k) is étale, hence F is a finite disjoint union of spectra of finite separable
extensions of k (Remark 4.1). Since the image of |F | → |U | is the fibre of |U | → |X|
over x (Properties of Spaces, Lemma 4.3), we conclude that the fibre of |U | → |X|
over x is finite. The scheme F ×Spec(k) F is also a finite union of spectra of fields
because it is also quasi-compact and étale over Spec(k). There is a monomorphism
F ×X F → F ×Spec(k) F , hence F ×X F is a finite disjoint union of spectra of fields
(Schemes, Lemma 23.11). Thus the image of F ×X F → U ×X U = R is finite.
Since this image is the fibre of |R| → |X| over x by Properties of Spaces, Lemma
4.3 we conclude that (1) holds. At this point we know that (1) – (5) are equivalent.

It is clear that (6) implies (5). Conversly, assume Spec(k)→ X is as in (4) and let
Spec(k′)→ X be another morphism with k′ a field in the equivalence class of x. By
Properties of Spaces, Lemma 4.11 we have a factorization Spec(k′)→ Spec(k)→ X
of the given morphism. This is a composition of quasi-compact morphisms and
hence quasi-compact (Morphisms of Spaces, Lemma 8.5) as desired. □

Lemma 4.6.03JT Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent:

(1) there exist schemes Ui and étale morphisms Ui → X such that
∐
Ui → X

is surjective and each Ui → X has universally bounded fibres, and
(2) for every affine scheme U and étale morphism φ : U → X the fibres of

U → X are universally bounded.

Proof. The implication (2) ⇒ (1) is trivial. Assume (1). Let (φi : Ui → X)i∈I
be a collection of étale morphisms from schemes towards X, covering X, such that

https://stacks.math.columbia.edu/tag/03JT
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each φi has universally bounded fibres. Let ψ : U → X be an étale morphism from
an affine scheme towards X. For each i consider the fibre product diagram

U ×X Ui pi

//

qi

��

Ui

φi

��
U

ψ // X

Since qi is étale it is open (see Remark 4.1). Moreover, we have U =
⋃

Im(qi),
since the family (φi)i∈I is surjective. Since U is affine, hence quasi-compact we
can finite finitely many i1, . . . , in ∈ I and quasi-compact opens Wj ⊂ U ×X Uij
such that U =

⋃
pij (Wj). The morphism pij is étale, hence locally quasi-finite

(see remark on étale morphisms above). Thus we may apply Morphisms, Lemma
57.9 to see the fibres of pij |Wj : Wj → Uij are universally bounded. Hence by
Lemma 3.2 we see that the fibres of Wj → X are universally bounded. Thus also∐
j=1,...,nWj → X has universally bounded fibres. Since

∐
j=1,...,nWj → X factors

through the surjective étale map
∐
qij |Wj

:
∐
j=1,...,nWj → U we see that the fibres

of U → X are universally bounded by Lemma 3.5. In other words (2) holds. □

Lemma 4.7.03IH Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent:

(1) there exists a Zariski covering X =
⋃
Xi and for each i a scheme Ui and a

quasi-compact surjective étale morphism Ui → Xi, and
(2) there exist schemes Ui and étale morphisms Ui → X such that the projec-

tions Ui ×X Ui → Ui are quasi-compact and
∐
Ui → X is surjective.

Proof. If (1) holds then the morphisms Ui → Xi → X are étale (combine Mor-
phisms, Lemma 36.3 and Spaces, Lemmas 5.4 and 5.3 ). Moreover, as Ui ×X Ui =
Ui ×Xi

Ui, both projections Ui ×X Ui → Ui are quasi-compact.
If (2) holds then let Xi ⊂ X be the open subspace corresponding to the image of
the open map |Ui| → |X|, see Properties of Spaces, Lemma 4.10. The morphisms
Ui → Xi are surjective. Hence Ui → Xi is surjective étale, and the projections
Ui×Xi

Ui → Ui are quasi-compact, because Ui×Xi
Ui = Ui×X Ui. Thus by Spaces,

Lemma 11.4 the morphisms Ui → Xi are quasi-compact. □

5. Conditions on algebraic spaces

03JW In this section we discuss the relationship between various natural conditions on
algebraic spaces we have seen above. Please read Section 6 to get a feeling for the
meaning of these conditions.

Lemma 5.1.03JX Let S be a scheme. Let X be an algebraic space over S. Consider
the following conditions on X:

(α) For every x ∈ |X|, the equivalent conditions of Lemma 4.2 hold.
(β) For every x ∈ |X|, the equivalent conditions of Lemma 4.3 hold.
(γ) For every x ∈ |X|, the equivalent conditions of Lemma 4.5 hold.
(δ) The equivalent conditions of Lemma 4.6 hold.
(ϵ) The equivalent conditions of Lemma 4.7 hold.
(ζ) The space X is Zariski locally quasi-separated.
(η) The space X is quasi-separated
(θ) The space X is representable, i.e., X is a scheme.

https://stacks.math.columbia.edu/tag/03IH
https://stacks.math.columbia.edu/tag/03JX
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(ι) The space X is a quasi-separated scheme.
We have

(θ)

�$
(ι)

:B

�$

(ζ) +3 (ϵ) +3 (δ) +3 (γ) ks +3 (α) + (β)

(η)

:B

Proof. The implication (γ) ⇔ (α) + (β) is immediate. The implications in the
diamond on the left are clear from the definitions.
Assume (ζ), i.e., that X is Zariski locally quasi-separated. Then (ϵ) holds by
Properties of Spaces, Lemma 6.6.
Assume (ϵ). By Lemma 4.7 there exists a Zariski open covering X =

⋃
Xi such that

for each i there exists a scheme Ui and a quasi-compact surjective étale morphism
Ui → Xi. Choose an i and an affine open subscheme W ⊂ Ui. It suffices to show
that W → X has universally bounded fibres, since then the family of all these
morphisms W → X covers X. To do this we consider the diagram

W ×X Ui p
//

q

��

Ui

��
W // X

Since W → X factors through Xi we see that W ×X Ui = W ×Xi Ui, and hence
q is quasi-compact. Since W is affine this implies that the scheme W ×X Ui is
quasi-compact. Thus we may apply Morphisms, Lemma 57.9 and we conclude that
p has universally bounded fibres. From Lemma 3.4 we conclude that W → X has
universally bounded fibres as well.
Assume (δ). Let U be an affine scheme, and let U → X be an étale morphism.
By assumption the fibres of the morphism U → X are universally bounded. Thus
also the fibres of both projections R = U ×X U → U are universally bounded, see
Lemma 3.3. And by Lemma 3.2 also the fibres of R→ X are universally bounded.
Hence for any x ∈ X the fibres of |U | → |X| and |R| → |X| over x are finite, see
Lemma 3.6. In other words, the equivalent conditions of Lemma 4.5 hold. This
proves that (δ)⇒ (γ). □

Lemma 5.2.03KE Let S be a scheme. Let P be one of the properties (α), (β), (γ), (δ),
(ϵ), (ζ), or (θ) of algebraic spaces listed in Lemma 5.1. Then if X is an algebraic
space over S, and X =

⋃
Xi is a Zariski open covering such that each Xi has P,

then X has P.

Proof. Let X be an algebraic space over S, and let X =
⋃
Xi is a Zariski open

covering such that each Xi has P.
The case P = (α). The condition (α) for Xi means that for every x ∈ |Xi| and
every affine scheme U , and étale morphism φ : U → Xi the fibre of φ : |U | → |Xi|
over x is finite. Consider x ∈ X, an affine scheme U and an étale morphism U → X.

https://stacks.math.columbia.edu/tag/03KE
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Since X =
⋃
Xi is a Zariski open covering there exits a finite affine open covering

U = U1∪ . . .∪Un such that each Uj → X factors through some Xij . By assumption
the fibres of |Uj | → |Xij | over x are finite for j = 1, . . . , n. Clearly this means that
the fibre of |U | → |X| over x is finite. This proves the result for (α).

The case P = (β). The condition (β) forXi means that every x ∈ |Xi| is represented
by a monomorphism from the spectrum of a field towards Xi. Hence the same
follows for X as Xi → X is a monomorphism and X =

⋃
Xi.

The case P = (γ). Note that (γ) = (α) + (β) by Lemma 5.1 hence the lemma for
(γ) follows from the cases treated above.

The case P = (δ). The condition (δ) for Xi means there exist schemes Uij and
étale morphisms Uij → Xi with universally bounded fibres which cover Xi. These
schemes also give an étale surjective morphism

∐
Uij → X and Uij → X still has

universally bounded fibres.

The case P = (ϵ). The condition (ϵ) for Xi means we can find a set Ji and
morphisms φij : Uij → Xi such that each φij is étale, both projections Uij ×Xi

Uij → Uij are quasi-compact, and
∐
j∈Ji

Uij → Xi is surjective. In this case the
compositions Uij → Xi → X are étale (combine Morphisms, Lemmas 36.3 and
36.9 and Spaces, Lemmas 5.4 and 5.3 ). Since Xi ⊂ X is a subspace we see that
Uij ×Xi

Uij = Uij ×X Uij , and hence the condition on fibre products is preserved.
And clearly

∐
i,j Uij → X is surjective. Hence X satisfies (ϵ).

The case P = (ζ). The condition (ζ) for Xi means that Xi is Zariski locally
quasi-separated. It is immediately clear that this means X is Zariski locally quasi-
separated.

For (θ), see Properties of Spaces, Lemma 13.1. □

Lemma 5.3.03KF Let S be a scheme. Let P be one of the properties (β), (γ), (δ), (ϵ),
or (θ) of algebraic spaces listed in Lemma 5.1. Let X, Y be algebraic spaces over
S. Let X → Y be a representable morphism. If Y has property P, so does X.

Proof. Assume f : X → Y is a representable morphism of algebraic spaces, and
assume that Y has P. Let x ∈ |X|, and set y = f(x) ∈ |Y |.

The case P = (β). Condition (β) for Y means there exists a monomorphism
Spec(k) → Y representing y. The fibre product Xy = Spec(k) ×Y X is a scheme,
and x corresponds to a point of Xy, i.e., to a monomorphism Spec(k′) → Xy. As
Xy → X is a monomorphism also we see that x is represented by the monomorphism
Spec(k′)→ Xy → X. In other words (β) holds for X.

The case P = (γ). Since (γ) ⇒ (β) we have seen in the preceding paragraph that
y and x can be represented by monomorphisms as in the following diagram

Spec(k′)
x
//

��

X

��
Spec(k) y // Y

Also, by definition of property (γ) via Lemma 4.5 (2) there exist schemes Vi and
étale morphisms Vi → Y such that

∐
Vi → Y is surjective and for each i, setting

https://stacks.math.columbia.edu/tag/03KF
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Ri = Vi ×Y Vi the fibres of both

|Vi| −→ |Y | and |Ri| −→ |Y |

over y are finite. This means that the schemes (Vi)y and (Ri)y are finite schemes
over y = Spec(k). As X → Y is representable, the fibre products Ui = Vi×Y X are
schemes. The morphisms Ui → X are étale, and

∐
Ui → X is surjective. Finally,

for each i we have

(Ui)x = (Vi ×Y X)x = (Vi)y ×Spec(k) Spec(k′)

and

(Ui ×X Ui)x = ((Vi ×Y X)×X (Vi ×Y X))x = (Ri)y ×Spec(k) Spec(k′)

hence these are finite over k′ as base changes of the finite schemes (Vi)y and (Ri)y.
This implies that (γ) holds for X, again via the second condition of Lemma 4.5.

The case P = (δ). Let V → Y be an étale morphism with V an affine scheme.
Since Y has property (δ) this morphism has universally bounded fibres. By Lemma
3.3 the base change V ×Y X → X also has universally bounded fibres. Hence the
first part of Lemma 4.6 applies and we see that Y also has property (δ).

The case P = (ϵ). We will repeatedly use Spaces, Lemma 5.5. Let Vi → Y be
as in Lemma 4.7 (2). Set Ui = X ×Y Vi. The morphisms Ui → X are étale, and∐
Ui → X is surjective. Because Ui ×X Ui = X ×Y (Vi ×Y Vi) we see that the

projections Ui ×Y Ui → Ui are base changes of the projections Vi ×Y Vi → Vi, and
so quasi-compact as well. Hence X satisfies Lemma 4.7 (2).

The case P = (θ). In this case the result is Categories, Lemma 8.3. □

6. Reasonable and decent algebraic spaces

03I7 In Lemma 5.1 we have seen a number of conditions on algebraic spaces related to
the behaviour of étale morphisms from affine schemes into X and related to the
existence of special étale coverings of X by schemes. We tabulate the different types
of conditions here:

(α) fibres of étale morphisms from affines are finite
(β) points come from monomorphisms of spectra of fields
(γ) points come from quasi-compact monomorphisms of spectra of fields
(δ) fibres of étale morphisms from affines are universally bounded
(ϵ) cover by étale morphisms from schemes quasi-compact onto their image

The conditions in the following definition are not exactly conditions on the diagonal
of X, but they are in some sense separation conditions on X.

Definition 6.1.03I8 Let S be a scheme. Let X be an algebraic space over S.
(1) We say X is decent if for every point x ∈ X the equivalent conditions of

Lemma 4.5 hold, in other words property (γ) of Lemma 5.1 holds.
(2) We say X is reasonable if the equivalent conditions of Lemma 4.6 hold, in

other words property (δ) of Lemma 5.1 holds.
(3) We say X is very reasonable if the equivalent conditions of Lemma 4.7 hold,

i.e., property (ϵ) of Lemma 5.1 holds.

https://stacks.math.columbia.edu/tag/03I8
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We have the following implications among these conditions on algebraic spaces:

representable

%-
very reasonable +3 reasonable +3 decent

quasi-separated

19

The notion of a very reasonable algebraic space is obsolete. It was introduced
because the assumption was needed to prove some results which are now proven for
the class of decent spaces. The class of decent spaces is the largest class of spaces
X where one has a good relationship between the topology of |X| and properties
of X itself.

Example 6.2.03ID The algebraic space A1
Q/Z constructed in Spaces, Example 14.8 is

not decent as its “generic point” cannot be represented by a monomorphism from
the spectrum of a field.

Remark 6.3.03JY Reasonable algebraic spaces are technically easier to work with
than very reasonable algebraic spaces. For example, if X → Y is a quasi-compact
étale surjective morphism of algebraic spaces and X is reasonable, then so is Y , see
Lemma 17.8 but we don’t know if this is true for the property “very reasonable”.
Below we give another technical property enjoyed by reasonable algebraic spaces.

Lemma 6.4.03K0 Let S be a scheme. Let X be a quasi-compact reasonable algebraic
space. Then there exists a directed system of quasi-compact and quasi-separated
algebraic spaces Xi such that X = colimiXi (colimit in the category of sheaves).
Moreover we can arrange it such that

(1) for every quasi-compact scheme T over S we have colimXi(T ) = X(T ),
(2) the transition morphisms Xi → Xi′ of the system and the coprojections

Xi → X are surjective and étale, and
(3) if X is a scheme, then the algebraic spaces Xi are schemes and the transition

morphisms Xi → Xi′ and the coprojections Xi → X are local isomorphisms.

Proof. We sketch the proof. By Properties of Spaces, Lemma 6.3 we have X =
U/R with U affine. In this case, reasonable means U → X is universally bounded.
Hence there exists an integer N such that the “fibres” of U → X have degree at
most N , see Definition 3.1. Denote s, t : R → U and c : R ×s,U,t R → R the
groupoid structural maps.
Claim: for every quasi-compact open A ⊂ R there exists an open R′ ⊂ R such that

(1) A ⊂ R′,
(2) R′ is quasi-compact, and
(3) (U,R′, s|R′ , t|R′ , c|R′×s,U,tR′) is a groupoid scheme.

Note that e : U → R is open as it is a section of the étale morphism s : R → U ,
see Étale Morphisms, Proposition 6.1. Moreover U is affine hence quasi-compact.
Hence we may replace A by A∪e(U) ⊂ R, and assume that A contains e(U). Next,
we define inductively A1 = A, and

An = c(An−1 ×s,U,t A) ⊂ R

https://stacks.math.columbia.edu/tag/03ID
https://stacks.math.columbia.edu/tag/03JY
https://stacks.math.columbia.edu/tag/03K0
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for n ≥ 2. Arguing inductively, we see that An is quasi-compact for all n ≥ 2, as
the image of the quasi-compact fibre product An−1×s,U,tA. If k is an algebraically
closed field over S, and we consider k-points then

An(k) =
{

(u, u′) ∈ U(k) : there exist u = u1, u2, . . . , un ∈ U(k) with
(ui, ui+1) ∈ A for all i = 1, . . . , n− 1.

}
But as the fibres of U(k) → X(k) have size at most N we see that if n >
N then we get a repeat in the sequence above, and we can shorten it proving
AN = An for all n ≥ N . This implies that R′ = AN gives a groupoid scheme
(U,R′, s|R′ , t|R′ , c|R′×s,U,tR′), proving the claim above.

Consider the map of sheaves on (Sch/S)fppf

colimR′⊂R U/R
′ −→ U/R

where R′ ⊂ R runs over the quasi-compact open subschemes of R which give étale
equivalence relations as above. Each of the quotients U/R′ is an algebraic space
(see Spaces, Theorem 10.5). Since R′ is quasi-compact, and U affine the morphism
R′ → U ×Spec(Z) U is quasi-compact, and hence U/R′ is quasi-separated. Finally,
if T is a quasi-compact scheme, then

colimR′⊂R U(T )/R′(T ) −→ U(T )/R(T )

is a bijection, since every morphism from T into R ends up in one of the open
subrelations R′ by the claim above. This clearly implies that the colimit of the
sheaves U/R′ is U/R. In other words the algebraic space X = U/R is the colimit
of the quasi-separated algebraic spaces U/R′.

Properties (1) and (2) follow from the discussion above. If X is a scheme, then if
we choose U to be a finite disjoint union of affine opens of X we will obtain (3).
Details omitted. □

Lemma 6.5.0ABT Let S be a scheme. Let X, Y be algebraic spaces over S. Let X → Y
be a representable morphism. If Y is decent (resp. reasonable), then so is X.

Proof. Translation of Lemma 5.3. □

Lemma 6.6.0ABU Let S be a scheme. Let X → Y be an étale morphism of algebraic
spaces over S. If Y is decent, resp. reasonable, then so is X.

Proof. Let U be an affine scheme and U → X an étale morphism. Set R = U×XU
and R′ = U ×Y U . Note that R→ R′ is a monomorphism.

Let x ∈ |X|. To show that X is decent, we have to show that the fibres of |U | → |X|
and |R| → |X| over x are finite. But if Y is decent, then the fibres of |U | → |Y |
and |R′| → |Y | are finite. Hence the result for “decent”.

To show that X is reasonable, we have to show that the fibres of U → X are
universally bounded. However, if Y is reasonable, then the fibres of U → Y are
universally bounded, which immediately implies the same thing for the fibres of
U → X. Hence the result for “reasonable”. □

https://stacks.math.columbia.edu/tag/0ABT
https://stacks.math.columbia.edu/tag/0ABU
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7. Points and specializations

03K1 There exists an étale morphism of algebraic spaces f : X → Y and a nontrivial
specialization between points in a fibre of |f | : |X| → |Y |, see Examples, Lemma
50.1. If the source of the morphism is a scheme we can avoid this by imposing
condition (α) on Y .

Lemma 7.1.03IM Let S be a scheme. Let X be an algebraic space over S. Let U → X
be an étale morphism from a scheme to X. Assume u, u′ ∈ |U | map to the same
point x of |X|, and u′ ⇝ u. If the pair (X,x) satisfies the equivalent conditions of
Lemma 4.2 then u = u′.

Proof. Assume the pair (X,x) satisfies the equivalent conditions for Lemma 4.2.
Let U be a scheme, U → X étale, and let u, u′ ∈ |U | map to x of |X|, and u′ ⇝ u.
We may and do replace U by an affine neighbourhood of u. Let t, s : R = U×XU →
U be the étale projection maps.
Pick a point r ∈ R with t(r) = u and s(r) = u′. This is possible by Properties
of Spaces, Lemma 4.5. Because generalizations lift along the étale morphism t
(Remark 4.1) we can find a specialization r′ ⇝ r with t(r′) = u′. Set u′′ = s(r′).
Then u′′ ⇝ u′. Thus we may repeat and find r′′ ⇝ r′ with t(r′′) = u′′. Set
u′′′ = s(r′′), and so on. Here is a picture:

r′′

s

!!

t

~~ ��
u′′

��

r′

s

!!

t

~~ ��

u′′′

��
u′

��

r

s

!!

t

~~

u′′

��
u u′

In Remark 4.1 we have seen that there are no specializations among points in
the fibres of the étale morphism s. Hence if u(n+1) = u(n) for some n, then also
r(n) = r(n−1) and hence also (by taking t) u(n) = u(n−1). This then forces the
whole tower to collapse, in particular u = u′. Thus we see that if u ̸= u′, then
all the specializations are strict and {u, u′, u′′, . . .} is an infinite set of points in U
which map to the point x in |X|. As we chose U affine this contradicts the second
part of Lemma 4.2, as desired. □

Lemma 7.2.0H1Q Let S be a scheme. Let X be an algebraic space over S. Let U → X
be an étale morphism from a scheme to X. Assume u, u′ ∈ |U | map to the same
point x of |X|, and u′ ⇝ u. If X is locally Noetherian, then u = u′.

Proof. The discussion in Schemes, Section 13 shows that OU,u′ is a localization
of the Noetherian local ring OU,u. By Properties of Spaces, Lemma 10.1 we have
dim(OU,u) = dim(OU,u′). By dimension theory for Noetherian local rings we con-
clude u = u′. □

Lemma 7.3.03K2 Let S be a scheme. Let X be an algebraic space over S. Let x, x′ ∈
|X| and assume x′ ⇝ x, i.e., x is a specialization of x′. Assume the pair (X,x′)

https://stacks.math.columbia.edu/tag/03IM
https://stacks.math.columbia.edu/tag/0H1Q
https://stacks.math.columbia.edu/tag/03K2
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satisfies the equivalent conditions of Lemma 4.5. Then for every étale morphism
φ : U → X from a scheme U and any u ∈ U with φ(u) = x, exists a point u′ ∈ U ,
u′ ⇝ u with φ(u′) = x′.

Proof. We may replace U by an affine open neighbourhood of u. Hence we may
assume that U is affine. As x is in the image of the open map |U | → |X|, so is
x′. Thus we may replace X by the Zariski open subspace corresponding to the
image of |U | → |X|, see Properties of Spaces, Lemma 4.10. In other words we may
assume that U → X is surjective and étale. Let s, t : R = U ×X U → U be the
projections. By our assumption that (X,x′) satisfies the equivalent conditions of
Lemma 4.5 we see that the fibres of |U | → |X| and |R| → |X| over x′ are finite. Say
{u′

1, . . . , u
′
n} ⊂ U and {r′

1, . . . , r
′
m} ⊂ R form the complete inverse image of {x′}.

Consider the closed sets

T = {u′
1} ∪ . . . ∪ {u′

n} ⊂ |U |, T ′ = {r′
1} ∪ . . . ∪ {r′

m} ⊂ |R|.

Trivially we have s(T ′) ⊂ T . Because R is an equivalence relation we also have
t(T ′) = s(T ′) as the set {r′

j} is invariant under the inverse of R by construction.
Let w ∈ T be any point. Then u′

i ⇝ w for some i. Choose r ∈ R with s(r) = w.
Since generalizations lift along s : R → U , see Remark 4.1, we can find r′ ⇝ r
with s(r′) = u′

i. Then r′ = r′
j for some j and we conclude that w ∈ s(T ′). Hence

T = s(T ′) = t(T ′) is an |R|-invariant closed set in |U |. This means T is the inverse
image of a closed (!) subset T ′′ = φ(T ) of |X|, see Properties of Spaces, Lemmas
4.5 and 4.6. Hence T ′′ = {x′}. Thus T contains some point u1 mapping to x as
x ∈ T ′′. I.e., we see that for some i there exists a specialization u′

i ⇝ u1 which
maps to the given specialization x′ ⇝ x.

To finish the proof, choose a point r ∈ R such that s(r) = u and t(r) = u1 (using
Properties of Spaces, Lemma 4.3). As generalizations lift along t, and u′

i ⇝ u1 we
can find a specialization r′ ⇝ r such that t(r′) = u′

i. Set u′ = s(r′). Then u′ ⇝ u
and φ(u′) = x′ as desired. □

Lemma 7.4.0B7W Let S be a scheme. Let f : Y → X be a flat morphism of algebraic
spaces over S. Let x, x′ ∈ |X| and assume x′ ⇝ x, i.e., x is a specialization of
x′. Assume the pair (X,x′) satisfies the equivalent conditions of Lemma 4.5 (for
example if X is decent, X is quasi-separated, or X is representable). Then for
every y ∈ |Y | with f(y) = x, there exists a point y′ ∈ |Y |, y′ ⇝ y with f(y′) = x′.

Proof. (The parenthetical statement holds by the definition of decent spaces and
the implications between the different separation conditions mentioned in Section
6.) Choose a scheme V and a surjective étale morphism V → Y . Choose v ∈ V
mapping to y. Then we see that it suffices to prove the lemma for V → X. Thus
we may assume Y is a scheme. Choose a scheme U and a surjective étale morphism
U → X. Choose u ∈ U mapping to x. By Lemma 7.3 we may choose u′ ⇝ u
mapping to x′. By Properties of Spaces, Lemma 4.3 we may choose z ∈ U ×X Y
mapping to y and u. Thus we reduce to the case of the flat morphism of schemes
U ×X Y → U which is Morphisms, Lemma 25.9. □

8. Stratifying algebraic spaces by schemes

0A4I In this section we prove that a quasi-compact and quasi-separated algebraic space
has a finite stratification by locally closed subspaces each of which is a scheme and

https://stacks.math.columbia.edu/tag/0B7W
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such that the glueing of the parts is by elementary distinguished squares. We first
prove a slightly weaker result for reasonable algebraic spaces.

Lemma 8.1.07S8 Let S be a scheme. Let W → X be a morphism of a scheme W to
an algebraic space X which is flat, locally of finite presentation, separated, locally
quasi-finite with universally bounded fibres. There exist reduced closed subspaces

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = X

such that with Xr = Zr \ Zr−1 the stratification X =
∐
r=0,...,nXr is characterized

by the following universal property: Given g : T → X the projection W ×X T → T
is finite locally free of degree r if and only if g(|T |) ⊂ |Xr|.

Proof. Let n be an integer bounding the degrees of the fibres of W → X. Choose
a scheme U and a surjective étale morphism U → X. Apply More on Morphisms,
Lemma 45.3 to W ×X U → U . We obtain closed subsets

∅ = Y−1 ⊂ Y0 ⊂ Y1 ⊂ Y2 ⊂ . . . ⊂ Yn = U

characterized by the property stated in the lemma for the morphism W ×X U → U .
Clearly, the formation of these closed subsets commutes with base change. Setting
R = U ×X U with projection maps s, t : R→ U we conclude that

s−1(Yr) = t−1(Yr)

as closed subsets of R. In other words the closed subsets Yr ⊂ U are R-invariant.
This means that |Yr| is the inverse image of a closed subset Zr ⊂ |X|. Denote
Zr ⊂ X also the reduced induced algebraic space structure, see Properties of Spaces,
Definition 12.5.

Let g : T → X be a morphism of algebraic spaces. Choose a scheme V and a
surjective étale morphism V → T . To prove the final assertion of the lemma it
suffices to prove the assertion for the composition V → X (by our definition of
finite locally free morphisms, see Morphisms of Spaces, Section 46). Similarly, the
morphism of schemes W ×X V → V is finite locally free of degree r if and only if
the morphism of schemes

W ×X (U ×X V ) −→ U ×X V

is finite locally free of degree r (see Descent, Lemma 23.30). By construction this
happens if and only if |U ×X V | → |U | maps into |Yr|, which is true if and only if
|V | → |X| maps into |Zr|. □

Lemma 8.2.086T Let S be a scheme. Let W → X be a morphism of a scheme W
to an algebraic space X which is flat, locally of finite presentation, separated, and
locally quasi-finite. Then there exist open subspaces

X = X0 ⊃ X1 ⊃ X2 ⊃ . . .

such that a morphism Spec(k) → X where k is a field factors through Xd if and
only if W ×X Spec(k) has degree ≥ d over k.

Proof. Choose a scheme U and a surjective étale morphism U → X. Apply More
on Morphisms, Lemma 45.5 to W ×X U → U . We obtain open subschemes

U = U0 ⊃ U1 ⊃ U2 ⊃ . . .

https://stacks.math.columbia.edu/tag/07S8
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characterized by the property stated in the lemma for the morphism W ×X U → U .
Clearly, the formation of these closed subsets commutes with base change. Setting
R = U ×X U with projection maps s, t : R→ U we conclude that

s−1(Ud) = t−1(Ud)
as open subschemes of R. In other words the open subschemes Ud ⊂ U are R-
invariant. This means that Ud is the inverse image of an open subspace Xd ⊂ X
(Properties of Spaces, Lemma 12.2). □

Lemma 8.3.0BBN Let S be a scheme. Let X be a quasi-compact algebraic space over
S. There exist open subspaces

. . . ⊂ U4 ⊂ U3 ⊂ U2 ⊂ U1 = X

with the following properties:
(1) setting Tp = Up\Up+1 (with reduced induced subspace structure) there exists

a separated scheme Vp and a surjective étale morphism fp : Vp → Up such
that f−1

p (Tp)→ Tp is an isomorphism,
(2) if x ∈ |X| can be represented by a quasi-compact morphism Spec(k) → X

from a field, then x ∈ Tp for some p.

Proof. By Properties of Spaces, Lemma 6.3 we can choose an affine scheme U and
a surjective étale morphism U → X. For p ≥ 0 set

Wp = U ×X . . .×X U \ all diagonals
where the fibre product has p factors. Since U is separated, the morphism U → X
is separated and all fibre products U ×X . . . ×X U are separated schemes. Since
U → X is separated the diagonal U → U×XU is a closed immersion. Since U → X
is étale the diagonal U → U ×X U is an open immersion, see Morphisms of Spaces,
Lemmas 39.10 and 38.9. Similarly, all the diagonal morphisms are open and closed
immersions and Wp is an open and closed subscheme of U ×X . . .×X U . Moreover,
the morphism

U ×X . . .×X U −→ U ×Spec(Z) . . .×Spec(Z) U

is locally quasi-finite and separated (Morphisms of Spaces, Lemma 4.5) and its
target is an affine scheme. Hence every finite set of points of U ×X . . . ×X U is
contained in an affine open, see More on Morphisms, Lemma 45.1. Therefore, the
same is true for Wp. There is a free action of the symmetric group Sp on Wp over X
(because we threw out the fix point locus from U ×X . . .×X U). By the above and
Properties of Spaces, Proposition 14.1 the quotient Vp = Wp/Sp is a scheme. Since
the action of Sp on Wp was over X, there is a morphism Vp → X. Since Wp → X
is étale and since Wp → Vp is surjective étale, it follows that also Vp → X is étale,
see Properties of Spaces, Lemma 16.3. Observe that Vp is a separated scheme by
Properties of Spaces, Lemma 14.3.
We let Up ⊂ X be the open subspace which is the image of Vp → X. By construction
a morphism Spec(k) → X with k algebraically closed, factors through Up if and
only if U ×X Spec(k) has ≥ p points; as usual observe that U ×X Spec(k) is scheme
theoretically a disjoint union of (possibly infinitely many) copies of Spec(k), see
Remark 4.1. It follows that the Up give a filtration of X as stated in the lemma.
Moreover, our morphism Spec(k) → X factors through Tp if and only if U ×X
Spec(k) has exactly p points. In this case we see that Vp ×X Spec(k) has exactly
one point. Set Zp = f−1

p (Tp) ⊂ Vp. This is a closed subscheme of Vp. Then Zp → Tp

https://stacks.math.columbia.edu/tag/0BBN
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is an étale morphism between algebraic spaces which induces a bijection on k-valued
points for any algebraically closed field k. To be sure this implies that Zp → Tp is
universally injective, whence an open immersion by Morphisms of Spaces, Lemma
51.2 hence an isomorphism and (1) has been proved.
Let x : Spec(k) → X be a quasi-compact morphism where k is a field. Then
the composition Spec(k) → Spec(k) → X is quasi-compact as well (Morphisms of
Spaces, Lemma 8.5). In this case the scheme U ×X Spec(k) is quasi-compact. In
view of the fact (seen above) that it is a disjoint union of copies of Spec(k) we find
that it has finitely many points. If the number of points is p, then we see that
indeed x ∈ Tp and the proof is finished. □

Lemma 8.4.07S9 Let S be a scheme. Let X be a quasi-compact, reasonable algebraic
space over S. There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up \ Up+1 (with reduced induced subspace
structure) there exists a separated scheme Vp and a surjective étale morphism fp :
Vp → Up such that f−1

p (Tp)→ Tp is an isomorphism.

Proof. The proof of this lemma is identical to the proof of Lemma 8.3. Let n be an
integer bounding the degrees of the fibres of U → X which exists as X is reasonable,
see Definition 6.1. Then we see that Un+1 = ∅ and the proof is complete. □

Lemma 8.5.07SA Let S be a scheme. Let X be a quasi-compact, reasonable algebraic
space over S. There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

such that each Tp = Up\Up+1 (with reduced induced subspace structure) is a scheme.

Proof. Immediate consequence of Lemma 8.4. □

The following result is almost identical to [GR71, Proposition 5.7.8].

Lemma 8.6.07ST This result is almost
identical to [GR71,
Proposition 5.7.8].

Let X be a quasi-compact and quasi-separated algebraic space over
Spec(Z). There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up \ Up+1 (with reduced induced subspace
structure) there exists a quasi-compact separated scheme Vp and a surjective étale
morphism fp : Vp → Up such that f−1

p (Tp)→ Tp is an isomorphism.

Proof. The proof of this lemma is identical to the proof of Lemma 8.3. Observe
that a quasi-separated space is reasonable, see Lemma 5.1 and Definition 6.1. Hence
we find that Un+1 = ∅ as in Lemma 8.4. At the end of the argument we add
that since X is quasi-separated the schemes U ×X . . .×X U are all quasi-compact.
Hence the schemes Wp are quasi-compact. Hence the quotients Vp = Wp/Sp by the
symmetric group Sp are quasi-compact schemes. □

The following lemma probably belongs somewhere else.

Lemma 8.7.0ECZ Let S be a scheme. Let X be a quasi-separated algebraic space over
S. Let E ⊂ |X| be a subset. Then E is étale locally constructible (Properties
of Spaces, Definition 8.2) if and only if E is a locally constructible subset of the
topological space |X| (Topology, Definition 15.1).

https://stacks.math.columbia.edu/tag/07S9
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Proof. Assume E ⊂ |X| is a locally constructible subset of the topological space
|X|. Let f : U → X be an étale morphism where U is a scheme. We have to
show that f−1(E) is locally constructible in U . The question is local on U and
X, hence we may assume that X is quasi-compact, E ⊂ |X| is constructible, and
U is affine. In this case U → X is quasi-compact, hence f : |U | → |X| is quasi-
compact. Observe that retrocompact opens of |X|, resp. U are the same thing as
quasi-compact opens of |X|, resp. U , see Topology, Lemma 27.1. Thus f−1(E) is
constructible by Topology, Lemma 15.3.

Conversely, assume E is étale locally constructible. We want to show that E is
locally constructible in the topological space |X|. The question is local on X,
hence we may assume that X is quasi-compact as well as quasi-separated. We will
show that in this case E is constructible in |X|. Choose open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and surjective étale morphisms fp : Vp → Up inducing isomorphisms f−1
p (Tp) →

Tp = Up \Up+1 where Vp is a quasi-compact separated scheme as in Lemma 8.6. By
definition the inverse image Ep ⊂ Vp of E is locally constructible in Vp. Then Ep
is constructible in Vp by Properties, Lemma 2.5. Thus Ep ∩ |f−1

p (Tp)| = E ∩ |Tp|
is constructible in |Tp| by Topology, Lemma 15.7 (observe that Vp \ f−1

p (Tp) is
quasi-compact as it is the inverse image of the quasi-compact space Up+1 by the
quasi-compact morphism fp). Thus

E = (|Tn| ∩ E) ∪ (|Tn−1| ∩ E) ∪ . . . ∪ (|T1| ∩ E)

is constructible by Topology, Lemma 15.14. Here we use that |Tp| is constructible
in |X| which is clear from what was said above. □

9. Integral cover by a scheme

0D2T Here we prove that given any quasi-compact and quasi-separated algebraic space
X, there is a scheme Y and a surjective, integral morphism Y → X. After we
develop some theory about limits of algebraic spaces, we will prove that one can do
this with a finite morphism, see Limits of Spaces, Section 16.

Lemma 9.1.0G2D Let S be a scheme. Let j : V → Y be a quasi-compact open im-
mersion of algebraic spaces over S. Let π : Z → V be an integral morphism. Then
there exists an integral morphism ν : Y ′ → Y such that Z is V -isomorphic to the
inverse image of V in Y ′.

Proof. Since both j and π are quasi-compact and separated, so is j ◦ π. Let
ν : Y ′ → Y be the normalization of Y in Z, see Morphisms of Spaces, Section 48.
Of course ν is integral, see Morphisms of Spaces, Lemma 48.5. The final statement
follows formally from Morphisms of Spaces, Lemmas 48.4 and 48.10. □

Lemma 9.2.09YB Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S.

(1) There exists a surjective integral morphism Y → X where Y is a scheme,
(2) given a surjective étale morphism U → X we may choose Y → X such that

for every y ∈ Y there is an open neighbourhood V ⊂ Y such that V → X
factors through U .

https://stacks.math.columbia.edu/tag/0G2D
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Proof. Part (1) is the special case of part (2) where U = X. Choose a surjective
étale morphism U ′ → U where U ′ is a scheme. It is clear that we may replace U
by U ′ and hence we may assume U is a scheme. Since X is quasi-compact, there
exist finitely many affine opens Ui ⊂ U such that U ′ =

∐
Ui → X is surjective.

After replacing U by U ′ again, we see that we may assume U is affine. Since X
is quasi-separated, hence reasonable, there exists an integer d bounding the degree
of the geometric fibres of U → X (see Lemma 5.1). We will prove the lemma by
induction on d for all quasi-compact and separated schemes U mapping surjective
and étale onto X. If d = 1, then U = X and the result holds with Y = U . Assume
d > 1.
We apply Morphisms of Spaces, Lemma 52.2 and we obtain a factorization

U
j

//

  

Y

π~~
X

with π integral and j a quasi-compact open immersion. We may and do assume
that j(U) is scheme theoretically dense in Y . Then U ×X Y is a quasi-compact,
separated scheme (being finite over U) and we have

U ×X Y = U ⨿W

Here the first summand is the image of U → U×X Y (which is closed by Morphisms
of Spaces, Lemma 4.6 and open because it is étale as a morphism between algebraic
spaces étale over Y ) and the second summand is the (open and closed) complement.
The image V ⊂ Y of W is an open subspace containing Y \ U .
The étale morphism W → Y has geometric fibres of cardinality < d. Namely, this
is clear for geometric points of U ⊂ Y by inspection. Since |U | ⊂ |Y | is dense, it
holds for all geometric points of Y by Lemma 8.1 (the degree of the fibres of a quasi-
compact étale morphism does not go up under specialization). Thus we may apply
the induction hypothesis to W → V and find a surjective integral morphism Z → V
with Z a scheme, which Zariski locally factors through W . Choose a factorization
Z → Z ′ → Y with Z ′ → Y integral and Z → Z ′ open immersion (Lemma 9.1).
After replacing Z ′ by the scheme theoretic closure of Z in Z ′ we may assume that
Z is scheme theoretically dense in Z ′. After doing this we have Z ′ ×Y V = Z.
Finally, let T ⊂ Y be the induced closed subspace structure on Y \ V . Consider
the morphism

Z ′ ⨿ T −→ X

This is a surjective integral morphism by construction. Since T ⊂ U it is clear
that the morphism T → X factors through U . On the other hand, let z ∈ Z ′ be a
point. If z ̸∈ Z, then z maps to a point of Y \ V ⊂ U and we find a neighbourhood
of z on which the morphism factors through U . If z ∈ Z, then we have an open
neighbourhood of z in Z (which is also an open neighbourhood of z in Z ′) which
factors through W ⊂ U ×X Y and hence through U . □

Lemma 9.3.0GUL Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S such that |X| has finitely many irreducible components.

(1) There exists a surjective integral morphism Y → X where Y is a scheme
such that f is finite étale over a quasi-compact dense open U ⊂ X,

https://stacks.math.columbia.edu/tag/0GUL
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(2) given a surjective étale morphism V → X we may choose Y → X such that
for every y ∈ Y there is an open neighbourhood W ⊂ Y such that W → X
factors through V .

Proof. The proof is the (roughly) same as the proof of Lemma 9.2 with additional
technical comments to obtain the dense quasi-compact open U (and unfortunately
changes in notation to keep track of U).
Part (1) is the special case of part (2) where V = X.
Proof of (2). Choose a surjective étale morphism V ′ → V where V ′ is a scheme.
It is clear that we may replace V by V ′ and hence we may assume V is a scheme.
Since X is quasi-compact, there exist finitely many affine opens Vi ⊂ V such that
V ′ =

∐
Vi → X is surjective. After replacing V by V ′ again, we see that we may

assume V is affine. Since X is quasi-separated, hence reasonable, there exists an
integer d bounding the degree of the geometric fibres of V → X (see Lemma 5.1).
By induction on d ≥ 1 we will prove the following induction hypothesis (Hd):

• for any quasi-compact and quasi-separated algebraic space X with finitely
many irreducible components, for any m ≥ 0, for any quasi-compact and
separated schemes Vj , j = 1, . . . ,m, for any étale morphisms φj : Vj → X,
j = 1, . . . ,m such that d bounds the degree of the geometric fibres of
φj : Vj → X and φ =

∐
φj : V =

∐
Vj → X is surjective, the statement of

the lemma holds for φ : V → X.
If d = 1, then each φj is an open immersion. Hence X is a scheme and the result
holds with Y = V . Assume d > 1, assume (Hd−1) and let m, φ : Vj → X,
j = 1, . . . ,m be as in (Hd).
Let η1, . . . , ηn ∈ |X| be the generic points of the irreducible components of |X|.
By Properties of Spaces, Proposition 13.3 there is an open subscheme U ⊂ X with
η1, . . . , ηn ∈ U . By shrinking U we may assume U affine and by Morphisms, Lemma
51.1 we may assume each φj : Vj → X is finite étale over U . Of course, we see that
U is quasi-compact and dense in X and that φ−1

j (U) is dense in Vj . In particular
each Vj has finitely many irreducible components.
Fix j ∈ {1, . . . ,m}. As in Morphisms of Spaces, Lemma 52.2 we let Yj be the
normalization of X in Vj . We obtain a factorization

Vj //

φj   

Yj

πj~~
X

with πj integral and Vj → Yj a quasi-compact open immersion. Since Yj is the
normalization of X in Vj , we see from Morphisms of Spaces, Lemmas 48.4 and
48.10 that φ−1

j (U) → π−1
j (U) is an isomorphism. Thus πj is finite étale over U .

Observe that Vj is scheme theoretically dense in Yj because Yj is the normalization
of X in Vj (follows from the characterization of relative normalization in Morphisms
of Spaces, Lemma 48.5). Since Vj is quasi-compact we see that |Vj | ⊂ |Yj | is dense,
see Morphisms of Spaces, Section 17 (and especially Morphisms of Spaces, Lemma
17.7). It follows that |Yj | has finitely many irreducible components. Then Vj×X Yj
is a quasi-compact, separated scheme (being finite over Vj) and

Vj ×X Yj = Vj ⨿Wj
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Here the first summand is the image of Vj → Vj×XYj (which is closed by Morphisms
of Spaces, Lemma 4.6 and open because it is étale as a morphism between algebraic
spaces étale over Y ) and the second summand is the (open and closed) complement.
The étale morphism Wj → Yj has geometric fibres of cardinality < d. Namely, this
is clear for geometric points of Vj ⊂ Yj by inspection. Since |Vj | ⊂ |Yj | is dense,
it holds for all geometric points of Yj by Lemma 8.1 (the degree of the fibres of
a quasi-compact étale morphism does not go up under specialization). By (Hd−1)
applied to Vj ⨿ Wj → Yj we find a surjective integral morphism Y ′

j → Yj with
Y ′
j a scheme, which Zariski locally factors through Vj ⨿ Wj , and which is finite

étale over a quasi-compact dense open Uj ⊂ Yj . After shrinking U we may and
do assume that π−1

j (U) ⊂ Uj (we may and do choose the same U for all j; some
details omitted).
We claim that

Y =
∐

j=1,...,m
Y ′
j −→ X

is the solution to our problem. First, this morphism is integral as on each summand
we have the composition Y ′

j → Y → X of integral morphisms (Morphisms of Spaces,
Lemma 45.4). Second, this morphism Zariski locally factors through V =

∐
Vj

because we saw above that each Y ′
j → Yj factors Zariski locally through Vj ⨿Wj =

Vj ×X Yj . Finally, since both Y ′
j → Yj and Yj → X are finite étale over U , so is

the composition. This finishes the proof. □

10. Schematic locus

06NN In this section we prove that a decent algebraic space has a dense open subspace
which is a scheme. We first prove this for reasonable algebraic spaces.

Proposition 10.1.03JI Let S be a scheme. Let X be an algebraic space over S. If X
is reasonable, then there exists a dense open subspace of X which is a scheme.

Proof. By Properties of Spaces, Lemma 13.1 the question is local on X. Hence
we may assume there exists an affine scheme U and a surjective étale morphism
U → X (Properties of Spaces, Lemma 6.1). Let n be an integer bounding the
degrees of the fibres of U → X which exists as X is reasonable, see Definition 6.1.
We will argue by induction on n that whenever

(1) U → X is a surjective étale morphism whose fibres have degree ≤ n, and
(2) U is isomorphic to a locally closed subscheme of an affine scheme

then the schematic locus is dense in X.
Let Xn ⊂ X be the open subspace which is the complement of the closed subspace
Zn−1 ⊂ X constructed in Lemma 8.1 using the morphism U → X. Let Un ⊂ U be
the inverse image of Xn. Then Un → Xn is finite locally free of degree n. Hence
Xn is a scheme by Properties of Spaces, Proposition 14.1 (and the fact that any
finite set of points of Un is contained in an affine open of Un, see Properties, Lemma
29.5).
Let X ′ ⊂ X be the open subspace such that |X ′| is the interior of |Zn−1| in |X|
(see Topology, Definition 21.1). Let U ′ ⊂ U be the inverse image. Then U ′ → X ′

is surjective étale and has degrees of fibres bounded by n− 1. By induction we see
that the schematic locus of X ′ is an open dense X ′′ ⊂ X ′. By elementary topology
we see that X ′′ ∪Xn ⊂ X is open and dense and we win. □

https://stacks.math.columbia.edu/tag/03JI
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Theorem 10.2 (David Rydh).086U Let S be a scheme. Let X be an algebraic space
over S. If X is decent, then there exists a dense open subspace of X which is a
scheme.

Proof. Assume X is a decent algebraic space for which the theorem is false. By
Properties of Spaces, Lemma 13.1 there exists a largest open subspace X ′ ⊂ X
which is a scheme. Since X ′ is not dense in X, there exists an open subspace
X ′′ ⊂ X such that |X ′′| ∩ |X ′| = ∅. Replacing X by X ′′ we get a nonempty decent
algebraic space X which does not contain any open subspace which is a scheme.
Choose a nonempty affine scheme U and an étale morphism U → X. We may and
do replace X by the open subscheme corresponding to the image of |U | → |X|.
Consider the sequence of open subspaces

X = X0 ⊃ X1 ⊃ X2 . . .

constructed in Lemma 8.2 for the morphism U → X. Note that X0 = X1 as
U → X is surjective. Let U = U0 = U1 ⊃ U2 . . . be the induced sequence of open
subschemes of U .
Choose a nonempty open affine V1 ⊂ U1 (for example V1 = U1). By induction we
will construct a sequence of nonempty affine opens V1 ⊃ V2 ⊃ . . . with Vn ⊂ Un.
Namely, having constructed V1, . . . , Vn−1 we can always choose Vn unless Vn−1 ∩
Un = ∅. But if Vn−1 ∩ Un = ∅, then the open subspace X ′ ⊂ X with |X ′| =
Im(|Vn−1| → |X|) is contained in |X|\|Xn|. Hence Vn−1 → X ′ is an étale morphism
whose fibres have degree bounded by n − 1. In other words, X ′ is reasonable (by
definition), hence X ′ contains a nonempty open subscheme by Proposition 10.1.
This is a contradiction which shows that we can pick Vn.
By Limits, Lemma 4.3 the limit V∞ = limVn is a nonempty scheme. Pick a
morphism Spec(k) → V∞. The composition Spec(k) → V∞ → U → X has image
contained in all Xd by construction. In other words, the fibred U ×X Spec(k) has
infinite degree which contradicts the definition of a decent space. This contradiction
finishes the proof of the theorem. □

Lemma 10.3.0BA1 Let S be a scheme. Let X → Y be a surjective finite locally free
morphism of algebraic spaces over S. For y ∈ |Y | the following are equivalent

(1) y is in the schematic locus of Y , and
(2) there exists an affine open U ⊂ X containing the preimage of y.

Proof. If y ∈ Y is in the schematic locus, then it has an affine open neighbourhood
V ⊂ Y and the inverse image U of V in X is an open finite over V , hence affine.
Thus (1) implies (2).
Conversely, assume that U ⊂ X as in (2) is given. Set R = X×Y X and denote the
projections s, t : R→ X. Consider Z = R\s−1(U)∩t−1(U). This is a closed subset
of R. The image t(Z) is a closed subset of X which can loosely be described as the
set of points of X which are R-equivalent to a point of X \U . Hence U ′ = X \ t(Z)
is an R-invariant, open subspace of X contained in U which contains the fibre of
X → Y over y. Since X → Y is open (Morphisms of Spaces, Lemma 30.6) the
image of U ′ is an open subspace V ′ ⊂ Y . Since U ′ is R-invariant and R = X×Y X,
we see that U ′ is the inverse image of V ′ (use Properties of Spaces, Lemma 4.3).
After replacing Y by V ′ and X by U ′ we see that we may assume X is a scheme
isomorphic to an open subscheme of an affine scheme.

https://stacks.math.columbia.edu/tag/086U
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Assume X is a scheme isomorphic to an open subscheme of an affine scheme. In this
case the fppf quotient sheaf X/R is a scheme, see Properties of Spaces, Proposition
14.1. Since Y is a sheaf in the fppf topology, obtain a canonical map X/R → Y
factoring X → Y . Since X → Y is surjective finite locally free, it is surjective as a
map of sheaves (Spaces, Lemma 5.9). We conclude that X/R→ Y is surjective as a
map of sheaves. On the other hand, since R = X×Y X as sheaves we conclude that
X/R → Y is injective as a map of sheaves. Hence X/R → Y is an isomorphism
and we see that Y is representable. □

At this point we have several different ways for proving the following lemma.

Lemma 10.4.06NG Let S be a scheme. Let X be an algebraic space over S. If there
exists a finite, étale, surjective morphism U → X where U is a scheme, then there
exists a dense open subspace of X which is a scheme.

First proof. The morphism U → X is finite locally free. Hence there is a decom-
position of X into open and closed subspaces Xd ⊂ X such that U ×X Xd → Xd is
finite locally free of degree d. Thus we may assume U → X is finite locally free of
degree d. In this case, let Ui ⊂ U , i ∈ I be the set of affine opens. For each i the
morphism Ui → X is étale and has universally bounded fibres (namely, bounded
by d). In other words, X is reasonable and the result follows from Proposition
10.1. □

Second proof. The question is local on X (Properties of Spaces, Lemma 13.1),
hence may assume X is quasi-compact. Then U is quasi-compact. Then there
exists a dense open subscheme W ⊂ U which is separated (Properties, Lemma
29.3). Set Z = U \W . Let R = U ×X U and s, t : R → U the projections. Then
t−1(Z) is nowhere dense in R (Topology, Lemma 21.6) and hence ∆ = s(t−1(Z))
is an R-invariant closed nowhere dense subset of U (Morphisms, Lemma 48.7). Let
u ∈ U \∆ be a generic point of an irreducible component. Since these points are
dense in U \ ∆ and since ∆ is nowhere dense, it suffices to show that the image
x ∈ X of u is in the schematic locus of X. Observe that t(s−1({u})) ⊂ W is a
finite set of generic points of irreducible components of W (compare with Properties
of Spaces, Lemma 11.1). By Properties, Lemma 29.1 we can find an affine open
V ⊂W such that t(s−1({u})) ⊂ V . Since t(s−1({u})) is the fibre of |U | → |X| over
x, we conclude by Lemma 10.3. □

Third proof. (This proof is essentially the same as the second proof, but uses
fewer references.) Assume X is an algebraic space, U a scheme, and U → X is
a finite étale surjective morphism. Write R = U ×X U and denote s, t : R → U
the projections as usual. Note that s, t are surjective, finite and étale. Claim: The
union of the R-invariant affine opens of U is topologically dense in U .
Proof of the claim. Let W ⊂ U be an affine open. Set W ′ = t(s−1(W )) ⊂ U . Since
s−1(W ) is affine (hence quasi-compact) we see that W ′ ⊂ U is a quasi-compact
open. By Properties, Lemma 29.3 there exists a dense open W ′′ ⊂ W ′ which is a
separated scheme. Set ∆′ = W ′\W ′′. This is a nowhere dense closed subset of W ′′.
Since t|s−1(W ) : s−1(W )→ W ′ is open (because it is étale) we see that the inverse
image (t|s−1(W ))−1(∆′) ⊂ s−1(W ) is a nowhere dense closed subset (see Topology,
Lemma 21.6). Hence, by Morphisms, Lemma 48.7 we see that

∆ = s
(
(t|s−1(W ))−1(∆′)

)

https://stacks.math.columbia.edu/tag/06NG
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is a nowhere dense closed subset of W . Pick any point η ∈ W , η ̸∈ ∆ which is a
generic point of an irreducible component of W (and hence of U). By our choices
above the finite set t(s−1({η})) = {η1, . . . , ηn} is contained in the separated scheme
W ′′. Note that the fibres of s is are finite discrete spaces, and that generalizations
lift along the étale morphism t, see Morphisms, Lemmas 36.12 and 25.9. In this
way we see that each ηi is a generic point of an irreducible component of W ′′.
Thus, by Properties, Lemma 29.1 we can find an affine open V ⊂ W ′′ such that
{η1, . . . , ηn} ⊂ V . By Groupoids, Lemma 24.1 this implies that η is contained in
an R-invariant affine open subscheme of U . The claim follows as W was chosen as
an arbitrary affine open of U and because the set of generic points of irreducible
components of W \∆ is dense in W .

Using the claim we can finish the proof. Namely, if W ⊂ U is an R-invariant
affine open, then the restriction RW of R to W equals RW = s−1(W ) = t−1(W )
(see Groupoids, Definition 19.1 and discussion following it). In particular the maps
RW → W are finite étale also. It follows in particular that RW is affine. Thus we
see that W/RW is a scheme, by Groupoids, Proposition 23.9. On the other hand,
W/RW is an open subspace of X by Spaces, Lemma 10.2. Hence having a dense
collection of points contained in R-invariant affine open of U certainly implies that
the schematic locus of X (see Properties of Spaces, Lemma 13.1) is open dense in
X. □

11. Residue fields and henselian local rings

0EMV For a decent algebraic space we can define the residue field and the henselian local
ring at a point. For example, the following lemma tells us the residue field of a
point on a decent space is defined.

Lemma 11.1.03K4 Let S be a scheme. Let X be an algebraic space over S. Consider
the map

{Spec(k)→ X monomorphism where k is a field} −→ |X|

This map is always injective. If X is decent then this map is a bijection.

Proof. We have seen in Properties of Spaces, Lemma 4.12 that the map is an
injection in general. By Lemma 5.1 it is surjective when X is decent (actually one
can say this is part of the definition of being decent). □

Let S be a scheme. Let X be an algebraic space over S. If a point x ∈ |X| can
be represented by a monomorphism Spec(k)→ X, then the field k is unique up to
unique isomorphism. For a decent algebraic space such a monomorphism exists for
every point by Lemma 11.1 and hence the following definition makes sense.

Definition 11.2.0EMW Let S be a scheme. Let X be a decent algebraic space over
S. Let x ∈ |X|. The residue field of X at x is the unique field κ(x) which comes
equipped with a monomorphism Spec(κ(x))→ X representing x.

Let S be a scheme. Let f : X → Y be a morphism of decent algebraic spaces over S.
Let x ∈ |X| be a point. Set y = f(x) ∈ |Y |. Then the composition Spec(κ(x))→ Y
is in the equivalence class defining y and hence factors through Spec(κ(y)) → Y .

https://stacks.math.columbia.edu/tag/03K4
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In other words we get a commutative diagram

Spec(κ(x))
x
//

��

X

f

��
Spec(κ(y)) y // Y

The left vertical morphism corresponds to a homomorphism κ(y)→ κ(x) of fields.
We will often simply call this the homomorphism induced by f .

Lemma 11.3.0EMX Let S be a scheme. Let f : X → Y be a morphism of decent
algebraic spaces over S. Let x ∈ |X| be a point with image y = f(x) ∈ |Y |. The
following are equivalent

(1) f induces an isomorphism κ(y)→ κ(x), and
(2) the induced morphism Spec(κ(x))→ Y is a monomorphism.

Proof. Immediate from the discussion above. □

The following lemma tells us that the henselian local ring of a point on a decent
algebraic space is defined.

Lemma 11.4.0BBP Let S be a scheme. Let X be a decent algebraic space over S. For
every point x ∈ |X| there exists an étale morphism

(U, u) −→ (X,x)
where U is an affine scheme, u is the only point of U lying over x, and the induced
homomorphism κ(x)→ κ(u) is an isomorphism.

Proof. We may assume that X is quasi-compact by replacing X with a quasi-
compact open containing x. Recall that x can be represented by a quasi-compact
(mono)morphism from the spectrum a field (by definition of decent spaces). Thus
the lemma follows from Lemma 8.3. □

Definition 11.5.0BGU Let S be a scheme. Let X be an algebraic space over S.
Let x ∈ X be a point. An elementary étale neighbourhood is an étale morphism
(U, u) → (X,x) where U is a scheme, u ∈ U is a point mapping to x, and the
morphism u = Spec(κ(u)) → X is a monomorphism. A morphism of elementary
étale neighbourhoods (U, u) → (U ′, u′) is defined as a morphism U → U ′ over X
mapping u to u′.

If X is not decent then the category of elementary étale neighbourhoods may be
empty.

Lemma 11.6.0BGV Let S be a scheme. Let X be a decent algebraic space over S.
Let x be a point of X. The category of elementary étale neighborhoods of (X,x) is
cofiltered (see Categories, Definition 20.1).

Proof. The category is nonempty by Lemma 11.4. Suppose that we have two
elementary étale neighbourhoods (Ui, ui)→ (X,x). Then consider U = U1 ×X U2.
Since Spec(κ(ui))→ X, i = 1, 2 are both monomorphisms in the class of x (Lemma
11.3) , we see that

u = Spec(κ(u1))×X Spec(κ(u2))
is the spectrum of a field κ(u) such that the induced maps κ(ui) → κ(u) are
isomorphisms. Then u → U is a point of U and we see that (U, u) → (X,x) is an
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elementary étale neighbourhood dominating (Ui, ui). If a, b : (U1, u1) → (U2, u2)
are two morphisms between our elementary étale neighbourhoods, then we consider
the scheme

U = U1 ×(a,b),(U2×XU2),∆ U2

Using Properties of Spaces, Lemma 16.6 we see that U → X is étale. Moreover, in
exactly the same manner as before we see that U has a point u such that (U, u)→
(X,x) is an elementary étale neighbourhood. Finally, U → U1 equalizes a and b
and the proof is finished. □

Definition 11.7.0BGW Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X|. The henselian local ring of X at x, is

OhX,x = colim Γ(U,OU )
where the colimit is over the elementary étale neighbourhoods (U, u)→ (X,x).

Here is the analogue of Properties of Spaces, Lemma 22.1.

Lemma 11.8.0EMY Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X|. Let (U, u)→ (X,x) be an elementary étale neighbourhood. Then

OhX,x = OhU,u
In words: the henselian local ring of X at x is equal to the henselization OhU,u of
the local ring OU,u of U at u.

Proof. Since the category of elementary étale neighbourhood of (X,x) is cofiltered
(Lemma 11.6) we see that the category of elementary étale neighbourhoods of (U, u)
is initial in the category of elementary étale neighbourhood of (X,x). Then the
equality follows from More on Morphisms, Lemma 35.5 and Categories, Lemma
17.2 (initial is turned into cofinal because the colimit definining henselian local
rings is over the opposite of the category of elementary étale neighbourhoods). □

Lemma 11.9.0EMZ Let S be a scheme. Let X be a decent algebraic space over S. Let
x be a geometric point of X lying over x ∈ |X|. The étale local ring OX,x of X at
x (Properties of Spaces, Definition 22.2) is the strict henselization of the henselian
local ring OhX,x of X at x.

Proof. Follows from Lemma 11.8, Properties of Spaces, Lemma 22.1 and the fact
that (Rh)sh = Rsh for a local ring (R,m, κ) and a given separable algebraic closure
κsep of κ. This equality follows from Algebra, Lemma 154.7. □

Lemma 11.10.0EN0 Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X|. The residue field of the henselian local ring of X at x (Definition 11.7) is
the residue field of X at x (Definition 11.2).

Proof. Choose an elementary étale neighbourhood (U, u) → (X,x). Then κ(u) =
κ(x) and OhX,x = OhU,u (Lemma 11.8). The residue field of OhU,u is κ(u) by Alge-
bra, Lemma 155.1 (the output of this lemma is the construction/definition of the
henselization of a local ring, see Algebra, Definition 155.3). □

Remark 11.11.0EPL Let S be a scheme. Let f : X → Y be a morphism of decent
algebraic spaces over S. Let x ∈ |X| with image y ∈ |Y |. Choose an elementary
étale neighbourhood (V, v) → (Y, y) (possible by Lemma 11.4). Then V ×Y X
is an algebraic space étale over X which has a unique point x′ mapping to x in
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X and to v in V . (Details omitted; use that all points can be represented by
monomorphisms from spectra of fields.) Choose an elementary étale neighbourhood
(U, u)→ (V ×Y X,x′). Then we obtain the following commutative diagram

Spec(OX,x) //

��

Spec(OhX,x) //

��

Spec(OU,u) //

��

U //

��

X

��
Spec(OY,y) // Spec(OhY,y) // Spec(OV,v) // V // Y

This comes from the identifications OX,x = OshU,u, OhX,x = OhU,u, OY,y = OshV,v,
OhY,y = OhV,v see in Lemma 11.8 and Properties of Spaces, Lemma 22.1 and the
functoriality of the (strict) henselization discussed in Algebra, Sections 154 and
155.

12. Points on decent spaces

03IG In this section we prove some properties of points on decent algebraic spaces. The
following lemma shows that specialization of points behaves well on decent algebraic
spaces. Spaces, Example 14.9 shows that this is not true in general.

Lemma 12.1.03K5 Let S be a scheme. Let X be a decent algebraic space over S. Let
U → X be an étale morphism from a scheme to X. If u, u′ ∈ |U | map to the same
point of |X|, and u′ ⇝ u, then u = u′.

Proof. Combine Lemmas 5.1 and 7.1. □

Lemma 12.2.03IL Let S be a scheme. Let X be a decent algebraic space over S. Let
x, x′ ∈ |X| and assume x′ ⇝ x, i.e., x is a specialization of x′. Then for every
étale morphism φ : U → X from a scheme U and any u ∈ U with φ(u) = x, exists
a point u′ ∈ U , u′ ⇝ u with φ(u′) = x′.

Proof. Combine Lemmas 5.1 and 7.3. □

Lemma 12.3.03K3 Let S be a scheme. Let X be a decent algebraic space over S. Then
|X| is Kolmogorov (see Topology, Definition 8.6).

Proof. Let x1, x2 ∈ |X| with x1 ⇝ x2 and x2 ⇝ x1. We have to show that x1 = x2.
Pick a scheme U and an étale morphism U → X such that x1, x2 are both in the
image of |U | → |X|. By Lemma 12.2 we can find a specialization u1 ⇝ u2 in U
mapping to x1 ⇝ x2. By Lemma 12.2 we can find u′

2 ⇝ u1 mapping to x2 ⇝ x1.
This means that u′

2 ⇝ u2 is a specialization between points of U mapping to the
same point of X, namely x2. This is not possible, unless u′

2 = u2, see Lemma 12.1.
Hence also u1 = u2 as desired. □

Proposition 12.4.03K6 Let S be a scheme. Let X be a decent algebraic space over S.
Then the topological space |X| is sober (see Topology, Definition 8.6).

Proof. We have seen in Lemma 12.3 that |X| is Kolmogorov. Hence it remains to
show that every irreducible closed subset T ⊂ |X| has a generic point. By Properties
of Spaces, Lemma 12.3 there exists a closed subspace Z ⊂ X with |Z| = |T |. By
definition this means that Z → X is a representable morphism of algebraic spaces.
Hence Z is a decent algebraic space by Lemma 5.3. By Theorem 10.2 we see that
there exists an open dense subspace Z ′ ⊂ Z which is a scheme. This means that
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|Z ′| ⊂ T is open dense. Hence the topological space |Z ′| is irreducible, which means
that Z ′ is an irreducible scheme. By Schemes, Lemma 11.1 we conclude that |Z ′|
is the closure of a single point η ∈ T and hence also T = {η}, and we win. □

For decent algebraic spaces dimension works as expected.

Lemma 12.5.0A4J Let S be a scheme. Dimension as defined in Properties of Spaces,
Section 9 behaves well on decent algebraic spaces X over S.

(1) If x ∈ |X|, then dimx(|X|) = dimx(X), and
(2) dim(|X|) = dim(X).

Proof. Proof of (1). Choose a scheme U with a point u ∈ U and an étale morphism
h : U → X mapping u to x. By definition the dimension of X at x is dimu(|U |).
Thus we may pick U such that dimx(X) = dim(|U |). Let d be an integer. If
dim(U) ≥ d, then there exists a sequence of nontrivial specializations ud ⇝ . . .⇝ u0
in U . Taking the image we find a corresponding sequence h(ud) ⇝ . . . ⇝ h(u0)
each of which is nontrivial by Lemma 12.1. Hence we see that the image of |U | in
|X| has dimension at least d. Conversely, suppose that xd ⇝ . . .⇝ x0 is a sequence
of specializations in |X| with x0 in the image of |U | → |X|. Then we can lift this
to a sequence of specializations in U by Lemma 12.2.
Part (2) is an immediate consequence of part (1), Topology, Lemma 10.2, and
Properties of Spaces, Section 9. □

Lemma 12.6.0ABW Let S be a scheme. Let X → Y be a locally quasi-finite morphism
of algebraic spaces over S. Let x ∈ |X| with image y ∈ |Y |. Then the dimension of
the local ring of Y at y is ≥ to the dimension of the local ring of X at x.

Proof. The definition of the dimension of the local ring of a point on an algebraic
space is given in Properties of Spaces, Definition 10.2. Choose an étale morphism
(V, v)→ (Y, y) where V is a scheme. Choose an étale morphism U → V ×Y X and
a point u ∈ U mapping to x ∈ |X| and v ∈ V . Then U → V is locally quasi-finite
and we have to prove that

dim(OV,v) ≥ dim(OU,u)
This is Algebra, Lemma 125.4. □

Lemma 12.7.0ED0 Let S be a scheme. Let X → Y be a locally quasi-finite morphism
of algebraic spaces over S. Then dim(X) ≤ dim(Y ).

Proof. This follows from Lemma 12.6 and Properties of Spaces, Lemma 10.3. □

The following lemma is a tiny bit stronger than Properties of Spaces, Lemma 15.3.
We will improve this lemma in Lemma 14.2.

Lemma 12.8.03IK Let S be a scheme. Let k be a field. Let X be an algebraic space
over S and assume that there exists a surjective étale morphism Spec(k) → X. If
X is decent, then X ∼= Spec(k′) where k/k′ is a finite separable extension.

Proof. The assumption implies that |X| = {x} is a singleton. Since X is decent
we can find a quasi-compact monomorphism Spec(k′)→ X whose image is x. Then
the projection U = Spec(k′) ×X Spec(k) → Spec(k) is a monomorphism, whence
U = Spec(k), see Schemes, Lemma 23.11. Hence the projection Spec(k) = U →
Spec(k′) is étale and we win. □

https://stacks.math.columbia.edu/tag/0A4J
https://stacks.math.columbia.edu/tag/0ABW
https://stacks.math.columbia.edu/tag/0ED0
https://stacks.math.columbia.edu/tag/03IK


DECENT ALGEBRAIC SPACES 31

13. Reduced singleton spaces

06QU A singleton space is an algebraic space X such that |X| is a singleton. It turns
out that these can be more interesting than just being the spectrum of a field, see
Spaces, Example 14.7. We develop a tiny bit of machinery to be able to talk about
these.

Lemma 13.1.06QV Let S be a scheme. Let Z be an algebraic space over S. Let k be a
field and let Spec(k)→ Z be surjective and flat. Then any morphism Spec(k′)→ Z
where k′ is a field is surjective and flat.

Proof. Consider the fibre square

T

��

// Spec(k)

��
Spec(k′) // Z

Note that T → Spec(k′) is flat and surjective hence T is not empty. On the other
hand T → Spec(k) is flat as k is a field. Hence T → Z is flat and surjective. It
follows from Morphisms of Spaces, Lemma 31.5 that Spec(k′) → Z is flat. It is
surjective as by assumption |Z| is a singleton. □

Lemma 13.2.06QW Let S be a scheme. Let Z be an algebraic space over S. The
following are equivalent

(1) Z is reduced and |Z| is a singleton,
(2) there exists a surjective flat morphism Spec(k)→ Z where k is a field, and
(3) there exists a locally of finite type, surjective, flat morphism Spec(k) → Z

where k is a field.

Proof. Assume (1). Let W be a scheme and let W → Z be a surjective étale
morphism. Then W is a reduced scheme. Let η ∈W be a generic point of an irre-
ducible component of W . Since W is reduced we have OW,η = κ(η). It follows that
the canonical morphism η = Spec(κ(η))→W is flat. We see that the composition
η → Z is flat (see Morphisms of Spaces, Lemma 30.3). It is also surjective as |Z| is
a singleton. In other words (2) holds.
Assume (2). Let W be a scheme and let W → Z be a surjective étale morphism.
Choose a field k and a surjective flat morphism Spec(k)→ Z. Then W ×Z Spec(k)
is a scheme étale over k. Hence W ×Z Spec(k) is a disjoint union of spectra of fields
(see Remark 4.1), in particular reduced. Since W ×Z Spec(k) → W is surjective
and flat we conclude that W is reduced (Descent, Lemma 19.1). In other words (1)
holds.
It is clear that (3) implies (2). Finally, assume (2). Pick a nonempty affine scheme
W and an étale morphism W → Z. Pick a closed point w ∈ W and set k = κ(w).
The composition

Spec(k) w−→W −→ Z

is locally of finite type by Morphisms of Spaces, Lemmas 23.2 and 39.9. It is also
flat and surjective by Lemma 13.1. Hence (3) holds. □

The following lemma singles out a slightly better class of singleton algebraic spaces
than the preceding lemma.

https://stacks.math.columbia.edu/tag/06QV
https://stacks.math.columbia.edu/tag/06QW


DECENT ALGEBRAIC SPACES 32

Lemma 13.3.06QX Let S be a scheme. Let Z be an algebraic space over S. The
following are equivalent

(1) Z is reduced, locally Noetherian, and |Z| is a singleton, and
(2) there exists a locally finitely presented, surjective, flat morphism Spec(k)→

Z where k is a field.

Proof. Assume (2) holds. By Lemma 13.2 we see that Z is reduced and |Z| is
a singleton. Let W be a scheme and let W → Z be a surjective étale morphism.
Choose a field k and a locally finitely presented, surjective, flat morphism Spec(k)→
Z. Then W ×Z Spec(k) is a scheme étale over k, hence a disjoint union of spectra
of fields (see Remark 4.1), hence locally Noetherian. Since W ×Z Spec(k)→ W is
flat, surjective, and locally of finite presentation, we see that {W ×Z Spec(k)→W}
is an fppf covering and we conclude that W is locally Noetherian (Descent, Lemma
16.1). In other words (1) holds.
Assume (1). Pick a nonempty affine scheme W and an étale morphism W → Z.
Pick a closed point w ∈W and set k = κ(w). Because W is locally Noetherian the
morphism w : Spec(k)→ W is of finite presentation, see Morphisms, Lemma 21.7.
Hence the composition

Spec(k) w−→W −→ Z

is locally of finite presentation by Morphisms of Spaces, Lemmas 28.2 and 39.8. It
is also flat and surjective by Lemma 13.1. Hence (2) holds. □

Lemma 13.4.06QY Let S be a scheme. Let Z ′ → Z be a monomorphism of alge-
braic spaces over S. Assume there exists a field k and a locally finitely presented,
surjective, flat morphism Spec(k)→ Z. Then either Z ′ is empty or Z ′ = Z.

Proof. We may assume that Z ′ is nonempty. In this case the fibre product
T = Z ′ ×Z Spec(k) is nonempty, see Properties of Spaces, Lemma 4.3. Now
T is an algebraic space and the projection T → Spec(k) is a monomorphism.
Hence T = Spec(k), see Morphisms of Spaces, Lemma 10.8. We conclude that
Spec(k)→ Z factors through Z ′. But as Spec(k)→ Z is surjective, flat and locally
of finite presentation, we see that Spec(k)→ Z is surjective as a map of sheaves on
(Sch/S)fppf (see Spaces, Remark 5.2) and we conclude that Z ′ = Z. □

The following lemma says that to each point of an algebraic space we can associate
a canonical reduced, locally Noetherian singleton algebraic space.

Lemma 13.5.06QZ Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. Then there exists a unique monomorphism Z → X of algebraic spaces
over S such that Z is an algebraic space which satisfies the equivalent conditions of
Lemma 13.3 and such that the image of |Z| → |X| is {x}.

Proof. Choose a scheme U and a surjective étale morphism U → X. Set R =
U ×X U so that X = U/R is a presentation (see Spaces, Section 9). Set

U ′ =
∐

u∈U lying over x
Spec(κ(u)).

The canonical morphism U ′ → U is a monomorphism. Let
R′ = U ′ ×X U ′ = R×(U×SU) (U ′ ×S U ′).

Because U ′ → U is a monomorphism we see that the projections s′, t′ : R′ → U ′

factor as a monomorphism followed by an étale morphism. Hence, as U ′ is a disjoint
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union of spectra of fields, using Remark 4.1, and using Schemes, Lemma 23.11 we
conclude that R′ is a disjoint union of spectra of fields and that the morphisms
s′, t′ : R′ → U ′ are étale. Hence Z = U ′/R′ is an algebraic space by Spaces,
Theorem 10.5. As R′ is the restriction of R by U ′ → U we see Z → X is a
monomorphism by Groupoids, Lemma 20.6. Since Z → X is a monomorphism
we see that |Z| → |X| is injective, see Morphisms of Spaces, Lemma 10.9. By
Properties of Spaces, Lemma 4.3 we see that

|U ′| = |Z ×X U ′| → |Z| ×|X| |U ′|

is surjective which implies (by our choice of U ′) that |Z| → |X| has image {x}. We
conclude that |Z| is a singleton. Finally, by construction U ′ is locally Noetherian
and reduced, i.e., we see that Z satisfies the equivalent conditions of Lemma 13.3.

Let us prove uniqueness of Z → X. Suppose that Z ′ → X is a second such
monomorphism of algebraic spaces. Then the projections

Z ′ ←− Z ′ ×X Z −→ Z

are monomorphisms. The algebraic space in the middle is nonempty by Properties
of Spaces, Lemma 4.3. Hence the two projections are isomorphisms by Lemma 13.4
and we win. □

We introduce the following terminology which foreshadows the residual gerbes we
will introduce later, see Properties of Stacks, Definition 11.8.

Definition 13.6.06R0 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The residual space of X at x2 is the monomorphism Zx → X constructed
in Lemma 13.5.

In particular we know that Zx is a locally Noetherian, reduced, singleton algebraic
space and that there exists a field and a surjective, flat, locally finitely presented
morphism

Spec(k) −→ Zx.

The residual space is often given by a monomorphism from the spectrum of a field.

Lemma 13.7.0H1R Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The residual space Zx of X at x is isomorphic to the spectrum of a field
if and only if x can be represented by a monomorphism Spec(k)→ X where k is a
field. If X is decent, this holds for all x ∈ |X|.

Proof. Since Zx → X is a monomorphism, if Zx = Spec(k) for some field k, then x
is represented by the monomorphism Spec(k) = Zx → X. Conversely, if Spec(k)→
X is a monomorphism which represents x, then Zx ×X Spec(k) → Spec(k) is a
monomorphism whose source is nonempty by Properties of Spaces, Lemma 4.3.
Hence Zx ×X Spec(k) = Spec(k) by Morphisms of Spaces, Lemma 10.8. Hence we
get a monomorphism Spec(k)→ Zx. This is an isomorphism by Lemma 13.4. The
final statement follows from Lemma 11.1. □

The residual space is a regular algebraic space by the following lemma.

Lemma 13.8.06R1 A reduced, locally Noetherian singleton algebraic space Z is regular.

2This is nonstandard notation.
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Proof. Let Z be a reduced, locally Noetherian singleton algebraic space over a
scheme S. Let W → Z be a surjective étale morphism where W is a scheme. Let k
be a field and let Spec(k)→ Z be surjective, flat, and locally of finite presentation
(see Lemma 13.3). The scheme T = W ×Z Spec(k) is étale over k in particular
regular, see Remark 4.1. Since T → W is locally of finite presentation, flat, and
surjective it follows that W is regular, see Descent, Lemma 19.2. By definition this
means that Z is regular. □

Lemma 13.9.0H1S Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let x ∈ |X| be a point. Assume

(1) |f |(|Y |) is contained in {x} ⊂ |X|,
(2) Y is reduced, and
(3) X is locally Noetherian.

Then f factors through the residual space Zx of X at x.

Proof. Preliminary remark: since Zx → X is a monomorphism, it suffices to find
a surjective étale morphism Y ′ → Y such that Y ′ → X factors through Zx. A
remark here is that Y ′ is reduced as well.

Let U be an affine scheme and let U → X be an étale morphism such that x is in
the image of |U | → |X|. Since X is locally Noetherian, U is a Noetherian affine
scheme. By assumption (1) we see that Y ′ = U ×X Y → Y is surjective as well
as étale. Denote E ⊂ |U | the set of points mapping to x. There are no nontrivial
specializations between the elements of E, see Lemma 7.2. The morphism Y ′ → U
maps |Y ′| into E. By our construction of Zx in the proof of Lemma 13.5 we know
that

∐
u∈E u → X factors through Zx. Hence it suffices to prove that Y ′ → U

factors through
∐
u∈E u→ X. After replacing Y ′ by an étale covering by a scheme

(which we are allowed by our preliminary remark), this follows from Morphisms,
Lemma 58.2. □

Lemma 13.10.0H1T Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let x ∈ |X| be a point. Assume

(1) |f |(|Y |) is contained in {x} ⊂ |X|,
(2) Y is reduced, and
(3) x can be represented by a quasi-compact monomorphism x : Spec(k) → X

where k is a field (for example if X is decent).
Then f factors through the residual space Zx = Spec(k) of X at x.

Proof. By Lemma 13.7 we have Zx = Spec(k).

Preliminary remark: since Spec(k) → X is a monomorphism, it suffices to find a
surjective étale morphism Y ′ → Y such that Y ′ → X factors through Zx. A remark
here is that Y ′ is reduced as well.

After replacing X by a quasi-compact open neighbourhood of x, we may assume
X quasi-compact. By Lemma 8.3, x is a point of T ⊂ U ⊂ X where T → U (resp.
U → X) is a closed (resp. open) immersion, and T is a scheme. By Properties of
Spaces, Lemma 4.9, f factors through U , so we may assume U = X. Then f factors
through T because Y is reduced, see Properties of Spaces, Lemma 12.4. So we may
assume that X = T is a scheme. By our preliminary remark we may assume Y is
a scheme too. This reduces us to Morphisms, Lemma 58.1. □
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Example 13.11.0H2Y Here is a counter example to Lemmas 13.9 and 13.10 in case
X is neither locally Noetherian nor decent. Let k be a field. Let G be an infinite
profinite group. Let Y be G viewed as a zero-dimensional affine k-group scheme,
i.e., Y = Spec(locally constant maps G → k). Let Γ be G viewed as a discrete
k-group scheme, acting on X by translations. Put X = Y/Γ. This is a one-point
algebraic space, with projection q : Y → X. Let e ∈ G be the origin (any element
would do), and view it as a k-point of Y . We get a k-point x : Spec(k)→ X which is
a monomorphism since it is a section of X → Spec(k). We claim that (although Y
is affine and reduced and |X| = {x}), the morphism q does not factor through any
morphism Spec(K)→ X, where K is a field. Otherwise it would factor through x
by Properties of Spaces, Lemma 4.11. Now the pullback of q by x is Γ→ Spec(k),
with the projection Γ→ Y being the orbit map g 7→ g ·e. The latter has no section,
whence the claim.

Lemma 13.12.0H1U Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| with residual space Zx ⊂ X. Assume X is locally Noetherian. Then x is a
closed point of |X| if and only if the morphism Zx → X is a closed immersion.

Proof. If Zx → X is a closed immersion, then x is a closed point of |X|, see
Morphisms of Spaces, Lemma 12.3. Conversely, assume x is a closed point of |X|.
Let Z ⊂ X be the reduced closed subspace with |Z| = {x} (Properties of Spaces,
Lemma 12.3). Then Z is locally Noetherian by Morphisms of Spaces, Lemmas 23.7
and 23.5. Since also Z is reduced and |Z| = {x} it Z = Zx is the residual space by
definition. □

14. Decent spaces

047Y In this section we collect some useful facts on decent spaces.

Lemma 14.1.0BB6 Any locally Noetherian decent algebraic space is quasi-separated.

Proof. Namely, let X be an algebraic space (over some base scheme, for example
over Z) which is decent and locally Noetherian. Let U → X and V → X be étale
morphisms with U and V affine schemes. We have to show that W = U ×X V is
quasi-compact (Properties of Spaces, Lemma 3.3). Since X is locally Noetherian,
the schemes U , V are Noetherian and W is locally Noetherian. Since X is decent,
the fibres of the morphism W → U are finite. Namely, we can represent any
x ∈ |X| by a quasi-compact monomorphism Spec(k) → X. Then Uk and Vk are
finite disjoint unions of spectra of finite separable extensions of k (Remark 4.1)
and we see that Wk = Uk ×Spec(k) Vk is finite. Let n be the maximum degree of a
fibre of W → U at a generic point of an irreducible component of U . Consider the
stratification

U = U0 ⊃ U1 ⊃ U2 ⊃ . . .
associated to W → U in More on Morphisms, Lemma 45.5. By our choice of n
above we conclude that Un+1 is empty. Hence we see that the fibres of W → U are
universally bounded. Then we can apply More on Morphisms, Lemma 45.3 to find
a stratification

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = U

by closed subsets such that with Sr = Zr \ Zr−1 the morphism W ×U Sr → Sr is
finite locally free. Since U is Noetherian, the schemes Sr are Noetherian, whence
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the schemes W ×U Sr are Noetherian, whence W =
∐
W ×U Sr is quasi-compact

as desired. □

Lemma 14.2.047Z Let S be a scheme. Let X be a decent algebraic space over S.
(1) If |X| is a singleton then X is a scheme.
(2) If |X| is a singleton and X is reduced, then X ∼= Spec(k) for some field k.

Proof. Assume |X| is a singleton. It follows immediately from Theorem 10.2 that
X is a scheme, but we can also argue directly as follows. Choose an affine scheme
U and a surjective étale morphism U → X. Set R = U ×X U . Then U and R have
finitely many points by Lemma 4.5 (and the definition of a decent space). All of
these points are closed in U and R by Lemma 12.1. It follows that U and R are
affine schemes. We may shrink U to a singleton space. Then U is the spectrum
of a henselian local ring, see Algebra, Lemma 153.10. The projections R → U are
étale, hence finite étale because U is the spectrum of a 0-dimensional henselian
local ring, see Algebra, Lemma 153.3. It follows that X is a scheme by Groupoids,
Proposition 23.9.
Part (2) follows from (1) and the fact that a reduced singleton scheme is the spec-
trum of a field. □

Remark 14.3.049D We will see in Limits of Spaces, Lemma 15.3 that an algebraic
space whose reduction is a scheme is a scheme.

Lemma 14.4.07U5 Let S be a scheme. Let X be a decent algebraic space over S.
Consider a commutative diagram

Spec(k) //

##

X

��
S

Assume that the image point s ∈ S of Spec(k) → S is a closed point and that
κ(s) ⊂ k is algebraic. Then the image x of Spec(k)→ X is a closed point of |X|.

Proof. Suppose that x⇝ x′ for some x′ ∈ |X|. Choose an étale morphism U → X
where U is a scheme and a point u′ ∈ U ′ mapping to x′. Choose a specialization
u ⇝ u′ in U with u mapping to x in X, see Lemma 12.2. Then u is the image of
a point w of the scheme W = Spec(k) ×X U . Since the projection W → Spec(k)
is étale we see that κ(w) ⊃ k is finite. Hence κ(w) ⊃ κ(s) is algebraic. Hence
κ(u) ⊃ κ(s) is algebraic. Thus u is a closed point of U by Morphisms, Lemma 20.2.
Thus u = u′, whence x = x′. □

Lemma 14.5.08AL Let S be a scheme. Let X be a decent algebraic space over S.
Consider a commutative diagram

Spec(k) //

##

X

��
S

Assume that the image point s ∈ S of Spec(k) → S is a closed point and that
the field extension k/κ(s) is finite. Then Spec(k) → X is a finite morphism. If
κ(s) = k then Spec(k)→ X is a closed immersion.

https://stacks.math.columbia.edu/tag/047Z
https://stacks.math.columbia.edu/tag/049D
https://stacks.math.columbia.edu/tag/07U5
https://stacks.math.columbia.edu/tag/08AL


DECENT ALGEBRAIC SPACES 37

Proof. By Lemma 14.4 the image point x ∈ |X| is closed. Let Z ⊂ X be the
reduced closed subspace with |Z| = {x} (Properties of Spaces, Lemma 12.3). Note
that Z is a decent algebraic space by Lemma 6.5. By Lemma 14.2 we see that
Z = Spec(k′) for some field k′. Of course k ⊃ k′ ⊃ κ(s). Then Spec(k) → Z is
a finite morphism of schemes and Z → X is a finite morphism as it is a closed
immersion. Hence Spec(k) → X is finite (Morphisms of Spaces, Lemma 45.4). If
k = κ(s), then Spec(k) = Z and Spec(k)→ X is a closed immersion. □

Lemma 14.6.0AHB Let S be a scheme. Suppose X is a decent algebraic space over S.
Let x ∈ |X| be a closed point. Then x can be represented by a closed immersion
i : Spec(k)→ X from the spectrum of a field.

Proof. We know that x can be represented by a quasi-compact monomorphism
i : Spec(k) → X where k is a field (Definition 6.1). Let U → X be an étale
morphism where U is an affine scheme. As x is closed and X decent, the fibre F of
|U | → |X| over x consists of closed points (Lemma 12.1). As i is a monomorphism,
so is Uk = U ×X Spec(k) → U . In particular, the map |Uk| → F is injective.
Since Uk is quasi-compact and étale over a field, we see that Uk is a finite disjoint
union of spectra of fields (Remark 4.1). Say Uk = Spec(k1) ⨿ . . . ⨿ Spec(kr).
Since Spec(ki)→ U is a monomorphism, we see that its image ui has residue field
κ(ui) = ki. Since ui ∈ F is a closed point we conclude the morphism Spec(ki)→ U
is a closed immersion. As the ui are pairwise distinct, Uk → U is a closed immersion.
Hence i is a closed immersion (Morphisms of Spaces, Lemma 12.1). This finishes
the proof. □

15. Locally separated spaces

088H It turns out that a locally separated algebraic space is decent.

Lemma 15.1.088I Let A be a ring. Let k be a field. Let pn, n ≥ 1 be a sequence of
pairwise distinct primes of A. Moreover, for each n let k → κ(pn) be an embedding.
Then the closure of the image of∐

n ̸=m
Spec(κ(pn)⊗k κ(pm)) −→ Spec(A⊗A)

meets the diagonal.

Proof. Set kn = κ(pn). We may assume that A =
∏
kn. Denote xn = Spec(kn)

the open and closed point corresponding to A → kn. Then Spec(A) = Z ⨿ {xn}
where Z is a nonempty closed subset. Namely, Z = V (en;n ≥ 1) where en is the
idempotent of A corresponding to the factor kn and Z is nonempty as the ideal
generated by the en is not equal to A. We will show that the closure of the image
contains ∆(Z). The kernel of the map

(
∏

kn)⊗k (
∏

km) −→
∏

n ̸=m
kn ⊗k km

is the ideal generated by en⊗ en, n ≥ 1. Hence the closure of the image of the map
on spectra is V (en⊗ en;n ≥ 1) whose intersection with ∆(Spec(A)) is ∆(Z). Thus
it suffices to show that∐

n ̸=m
Spec(kn ⊗k km) −→ Spec(

∏
n ̸=m

kn ⊗k km)

has dense image. This follows as the family of ring maps
∏
n ̸=m kn⊗kkm → kn⊗kkm

is jointly injective. □
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Lemma 15.2 (David Rydh).088J A locally separated algebraic space is decent.

Proof. Let S be a scheme and let X be a locally separated algebraic space over S.
We may assume S = Spec(Z), see Properties of Spaces, Definition 3.1. Unadorned
fibre products will be over Z. Let x ∈ |X|. Choose a scheme U , an étale morphism
U → X, and a point u ∈ U mapping to x in |X|. As usual we identify u =
Spec(κ(u)). As X is locally separated the morphism

u×X u→ u× u

is an immersion (Morphisms of Spaces, Lemma 4.5). Hence More on Groupoids,
Lemma 11.5 tells us that it is a closed immersion (use Schemes, Lemma 10.4). As
u×X u→ u×X U is a monomorphism (base change of u→ U) and as u×X U → u
is étale we conclude that u×X u is a disjoint union of spectra of fields (see Remark
4.1 and Schemes, Lemma 23.11). Since it is also closed in the affine scheme u × u
we conclude u ×X u is a finite disjoint union of spectra of fields. Thus x can be
represented by a monomorphism Spec(k)→ X where k is a field, see Lemma 4.3.

Next, let U = Spec(A) be an affine scheme and let U → X be an étale morphism.
To finish the proof it suffices to show that F = U ×X Spec(k) is finite. Write
F =

∐
i∈I Spec(ki) as the disjoint union of finite separable extensions of k. We

have to show that I is finite. Set R = U ×X U . As X is locally separated, the
morphism j : R → U × U is an immersion. Let U ′ ⊂ U × U be an open such that
j factors through a closed immersion j′ : R → U ′. Let e : U → R be the diagonal
map. Using that e is a morphism between schemes étale over U such that ∆ = j ◦ e
is a closed immersion, we conclude that R = e(U) ⨿W for some open and closed
subscheme W ⊂ R. Since j′ is a closed immersion we conclude that j′(W ) ⊂ U ′ is
closed and disjoint from j′(e(U)). Therefore j(W )∩∆(U) = ∅ in U ×U . Note that
W contains Spec(ki⊗k ki′) for all i ̸= i′, i, i′ ∈ I. By Lemma 15.1 we conclude that
I is finite as desired. □

16. Valuative criterion

06NP For a quasi-compact morphism from a decent space the valuative criterion is nec-
essary in order for the morphism to be universally closed.

Proposition 16.1.03KJ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact, and X is decent. Then f is universally
closed if and only if the existence part of the valuative criterion holds.

Proof. In Morphisms of Spaces, Lemma 42.1 we have seen one of the implications.
To prove the other, assume that f is universally closed. Let

Spec(K) //

��

X

��
Spec(A) // Y
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be a diagram as in Morphisms of Spaces, Definition 41.1. Let XA = Spec(A)×Y X,
so that we have

Spec(K) //

%%

XA

��
Spec(A)

By Morphisms of Spaces, Lemma 8.4 we see that XA → Spec(A) is quasi-compact.
Since XA → X is representable, we see that XA is decent also, see Lemma 5.3.
Moreover, as f is universally closed, we see that XA → Spec(A) is universally
closed. Hence we may and do replace X by XA and Y by Spec(A).

Let x′ ∈ |X| be the equivalence class of Spec(K) → X. Let y ∈ |Y | = |Spec(A)|
be the closed point. Set y′ = f(x′); it is the generic point of Spec(A). Since f
is universally closed we see that f({x′}) contains {y′}, and hence contains y. Let
x ∈ {x′} be a point such that f(x) = y. Let U be a scheme, and φ : U → X an
étale morphism such that there exists a u ∈ U with φ(u) = x. By Lemma 7.3 and
our assumption that X is decent there exists a specialization u′ ⇝ u on U with
φ(u′) = x′. This means that there exists a common field extension K ⊂ K ′ ⊃ κ(u′)
such that

Spec(K ′) //

��

U

��
Spec(K) //

&&

X

��
Spec(A)

is commutative. This gives the following commutative diagram of rings

K ′ OU,uoo

K

OO

A

bb

OO

By Algebra, Lemma 50.2 we can find a valuation ring A′ ⊂ K ′ dominating the
image of OU,u in K ′. Since by construction OU,u dominates A we see that A′

dominates A also. Hence we obtain a diagram resembling the second diagram of
Morphisms of Spaces, Definition 41.1 and the proposition is proved. □

17. Relative conditions

03KW This is a (yet another) technical section dealing with conditions on algebraic spaces
having to do with points. It is probably a good idea to skip this section.

Definition 17.1.03KZ Let S be a scheme. We say an algebraic space X over S has
property (β) if X has the corresponding property of Lemma 5.1. Let f : X → Y be
a morphism of algebraic spaces over S.

https://stacks.math.columbia.edu/tag/03KZ
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(1) We say f has property (β) if for any scheme T and morphism T → Y the
fibre product T ×Y X has property (β).

(2) We say f is decent if for any scheme T and morphism T → Y the fibre
product T ×Y X is a decent algebraic space.

(3) We say f is reasonable if for any scheme T and morphism T → Y the fibre
product T ×Y X is a reasonable algebraic space.

(4) We say f is very reasonable if for any scheme T and morphism T → Y the
fibre product T ×Y X is a very reasonable algebraic space.

We refer to Remark 17.10 for an informal discussion. It will turn out that the class
of very reasonable morphisms is not so useful, but that the classes of decent and
reasonable morphisms are useful.

Lemma 17.2.03M5 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We have the following implications among the conditions on f :

representable

$,
very reasonable +3 reasonable +3 decent +3 (β)

quasi-separated

2:

Proof. This is clear from the definitions, Lemma 5.1 and Morphisms of Spaces,
Lemma 4.12. □

Here is another sanity check.

Lemma 17.3.0ABX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If X is decent (resp. is reasonable, resp. has property (β) of Lemma
5.1), then f is decent (resp. reasonable, resp. has property (β)).

Proof. Let T be a scheme and let T → Y be a morphism. Then T → Y is
representable, hence the base change T ×Y X → X is representable. Hence if X is
decent (or reasonable), then so is T ×Y X, see Lemma 6.5. Similarly, for property
(β), see Lemma 5.3. □

Lemma 17.4.03L0 Having property (β), being decent, or being reasonable is preserved
under arbitrary base change.

Proof. This is immediate from the definition. □

Lemma 17.5.0ABY Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let ω ∈ {β, decent, reasonable}. Suppose that Y has property (ω)
and f : X → Y has (ω). Then X has (ω).

Proof. Let us prove the lemma in case ω = β. In this case we have to show that
any x ∈ |X| is represented by a monomorphism from the spectrum of a field into
X. Let y = f(x) ∈ |Y |. By assumption there exists a field k and a monomorphism
Spec(k) → Y representing y. Then x corresponds to a point x′ of Spec(k) ×Y X.
By assumption x′ is represented by a monomorphism Spec(k′) → Spec(k) ×Y X.
Clearly the composition Spec(k′)→ X is a monomorphism representing x.
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Let us prove the lemma in case ω = decent. Let x ∈ |X| and y = f(x) ∈ |Y |. By
the result of the preceding paragraph we can choose a diagram

Spec(k′)
x

//

��

X

f

��
Spec(k) y // Y

whose horizontal arrows monomorphisms. As Y is decent the morphism y is quasi-
compact. As f is decent the algebraic space Spec(k) ×Y X is decent. Hence the
monomorphism Spec(k′) → Spec(k) ×Y X is quasi-compact. Then the monomor-
phism x : Spec(k′)→ X is quasi-compact as a composition of quasi-compact mor-
phisms (use Morphisms of Spaces, Lemmas 8.4 and 8.5). As the point x was
arbitrary this implies X is decent.
Let us prove the lemma in case ω = reasonable. Choose V → Y étale with V an
affine scheme. Choose U → V ×Y X étale with U an affine scheme. By assumption
V → Y has universally bounded fibres. By Lemma 3.3 the morphism V ×Y X → X
has universally bounded fibres. By assumption on f we see that U → V ×Y X has
universally bounded fibres. By Lemma 3.2 the composition U → X has universally
bounded fibres. Hence there exists sufficiently many étale morphisms U → X from
schemes with universally bounded fibres, and we conclude that X is reasonable. □

Lemma 17.6.03L1 Having property (β), being decent, or being reasonable is preserved
under compositions.

Proof. Let ω ∈ {β, decent, reasonable}. Let f : X → Y and g : Y → Z be
morphisms of algebraic spaces over the scheme S. Assume f and g both have
property (ω). Then we have to show that for any scheme T and morphism T → Z
the space T ×Z X has (ω). By Lemma 17.4 this reduces us to the following claim:
Suppose that Y is an algebraic space having property (ω), and that f : X → Y is
a morphism with (ω). Then X has (ω). This is the content of Lemma 17.5. □

Lemma 17.7.0ABZ Let S be a scheme. Let f : X → Y , g : Z → Y be morphisms
of algebraic spaces over S. If X and Z are decent (resp. reasonable, resp. have
property (β) of Lemma 5.1), then so does X ×Y Z.

Proof. Namely, by Lemma 17.3 the morphism X → Y has the property. Then
the base change X ×Y Z → Z has the property by Lemma 17.4. And finally this
implies X ×Y Z has the property by Lemma 17.5. □

Lemma 17.8.03L2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let P ∈ {(β), decent, reasonable}. Assume

(1) f is quasi-compact,
(2) f is étale,
(3) |f | : |X| → |Y | is surjective, and
(4) the algebraic space X has property P.

Then Y has property P.

Proof. Let us prove this in case P = (β). Let y ∈ |Y | be a point. We have to
show that y can be represented by a monomorphism from a field. Choose a point
x ∈ |X| with f(x) = y. By assumption we may represent x by a monomorphism
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Spec(k)→ X, with k a field. By Lemma 4.3 it suffices to show that the projections
Spec(k)×Y Spec(k)→ Spec(k) are étale and quasi-compact. We can factor the first
projection as

Spec(k)×Y Spec(k) −→ Spec(k)×Y X −→ Spec(k)
The first morphism is a monomorphism, and the second is étale and quasi-compact.
By Properties of Spaces, Lemma 16.8 we see that Spec(k)×Y X is a scheme. Hence
it is a finite disjoint union of spectra of finite separable field extensions of k. By
Schemes, Lemma 23.11 we see that the first arrow identifies Spec(k) ×Y Spec(k)
with a finite disjoint union of spectra of finite separable field extensions of k. Hence
the projection morphism is étale and quasi-compact.
Let us prove this in case P = decent. We have already seen in the first para-
graph of the proof that this implies that every y ∈ |Y | can be represented by a
monomorphism y : Spec(k) → Y . Pick such a y. Pick an affine scheme U and
an étale morphism U → X such that the image of |U | → |Y | contains y. By
Lemma 4.5 it suffices to show that Uy is a finite scheme over k. The fibre product
Xy = Spec(k) ×Y X is a quasi-compact étale algebraic space over k. Hence by
Properties of Spaces, Lemma 16.8 it is a scheme. So it is a finite disjoint union of
spectra of finite separable extensions of k. Say Xy = {x1, . . . , xn} so xi is given by
xi : Spec(ki) → X with [ki : k] < ∞. By assumption X is decent, so the schemes
Uxi

= Spec(ki) ×X U are finite over ki. Finally, we note that Uy =
∐
Uxi

as a
scheme and we conclude that Uy is finite over k as desired.
Let us prove this in case P = reasonable. Pick an affine scheme V and an étale
morphism V → Y . We have the show the fibres of V → Y are universally bounded.
The algebraic space V ×Y X is quasi-compact. Thus we can find an affine scheme
W and a surjective étale morphism W → V ×Y X, see Properties of Spaces, Lemma
6.3. Here is a picture (solid diagram)

W //

$$

V ×Y X //

��

X

f

��

Spec(k)
x

oo

y
{{

V // Y

The morphism W → X is universally bounded by our assumption that the space
X is reasonable. Let n be an integer bounding the degrees of the fibres of W → X.
We claim that the same integer works for bounding the fibres of V → Y . Namely,
suppose y ∈ |Y | is a point. Then there exists a x ∈ |X| with f(x) = y (see above).
This means we can find a field k and morphisms x, y given as dotted arrows in the
diagram above. In particular we get a surjective étale morphism

Spec(k)×x,X W → Spec(k)×x,X (V ×Y X) = Spec(k)×y,Y V
which shows that the degree of Spec(k)×y,Y V over k is less than or equal to the de-
gree of Spec(k)×x,XW over k, i.e., ≤ n, and we win. (This last part of the argument
is the same as the argument in the proof of Lemma 3.4. Unfortunately that lemma
is not general enough because it only applies to representable morphisms.) □

Lemma 17.9.03L3 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let P ∈ {(β), decent, reasonable, very reasonable}. The following
are equivalent

(1) f is P,
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(2) for every affine scheme Z and every morphism Z → Y the base change
Z ×Y X → Z of f is P,

(3) for every affine scheme Z and every morphism Z → Y the algebraic space
Z ×Y X is P, and

(4) there exists a Zariski covering Y =
⋃
Yi such that each morphism f−1(Yi)→

Yi has P.
If P ∈ {(β), decent, reasonable}, then this is also equivalent to

(5) there exists a scheme V and a surjective étale morphism V → Y such that
the base change V ×Y X → V has P.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are trivial. The implication (3)
⇒ (1) can be seen as follows. Let Z → Y be a morphism whose source is a scheme
over S. Consider the algebraic space Z ×Y X. If we assume (3), then for any affine
open W ⊂ Z, the open subspace W ×Y X of Z ×Y X has property P. Hence by
Lemma 5.2 the space Z ×Y X has property P, i.e., (1) holds. A similar argument
(omitted) shows that (4) implies (1).

The implication (1) ⇒ (5) is trivial. Let V → Y be an étale morphism from a
scheme as in (5). Let Z be an affine scheme, and let Z → Y be a morphism.
Consider the diagram

Z ×Y V q
//

p

��

V

��
Z // Y

Since p is étale, and hence open, we can choose finitely many affine open subschemes
Wi ⊂ Z ×Y V such that Z =

⋃
p(Wi). Consider the commutative diagram

V ×Y X

��

(
∐
Wi)×Y Xoo

��

// Z ×Y X

��
V

∐
Wi

oo // Z

We know V ×Y X has property P. By Lemma 5.3 we see that (
∐
Wi) ×Y X has

property P. Note that the morphism (
∐
Wi)×Y X → Z ×Y X is étale and quasi-

compact as the base change of
∐
Wi → Z. Hence by Lemma 17.8 we conclude that

Z ×Y X has property P. □

Remark 17.10.03L4 An informal description of the properties (β), decent, reasonable,
very reasonable was given in Section 6. A morphism has one of these properties if
(very) loosely speaking the fibres of the morphism have the corresponding proper-
ties. Being decent is useful to prove things about specializations of points on |X|.
Being reasonable is a bit stronger and technically quite easy to work with.

Here is a lemma we promised earlier which uses decent morphisms.

Lemma 17.11.03M6 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact and decent. (For example if f is repre-
sentable, or quasi-separated, see Lemma 17.2.) Then f is universally closed if and
only if the existence part of the valuative criterion holds.
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Proof. In Morphisms of Spaces, Lemma 42.1 we proved that any quasi-compact
morphism which satisfies the existence part of the valuative criterion is universally
closed. To prove the other, assume that f is universally closed. In the proof of
Proposition 16.1 we have seen that it suffices to show, for any valuation ring A, and
any morphism Spec(A) → Y , that the base change fA : XA → Spec(A) satisfies
the existence part of the valuative criterion. By definition the algebraic space XA

has property (γ) and hence Proposition 16.1 applies to the morphism fA and we
win. □

18. Points of fibres

0AC0 Let S be a scheme. Consider a cartesian diagram

(18.0.1)0AC1 W
q
//

p

��

Z

g

��
X

f // Y

of algebraic spaces over S. Let x ∈ |X| and z ∈ |Z| be points mapping to the same
point y ∈ |Y |. We may ask: When is the set

(18.0.2)0AC2 Fx,z = {w ∈ |W | such that p(w) = x and q(w) = z}

finite?

Example 18.1.0AC3 If X,Y, Z are schemes, then the set Fx,z is equal to the spectrum
of κ(x) ⊗κ(y) κ(z) (Schemes, Lemma 17.5). Thus we obtain a finite set if either
κ(y) ⊂ κ(x) is finite or if κ(y) ⊂ κ(z) is finite. In particular, this is always the case
if g is quasi-finite at z (Morphisms, Lemma 20.5).

Example 18.2.0AC4 Let K be a characteristic 0 field endowed with an automorphism
σ of infinite order. Set Y = Spec(K)/Z and X = A1

K/Z where Z acts on K via σ
and on A1

K = Spec(K[t]) via t 7→ t+1. Let Z = Spec(K). Then W = A1
K . Picture

A1
K q

//

p

��

Spec(K)

g

��
A1
K/Z

f // Spec(K)/Z

Take x corresponding to t = 0 and z the unique point of Spec(K). Then we see
that Fx,z = Z as a set.

Lemma 18.3.0AC5 In the situation of (18.0.1) if Z ′ → Z is a morphism and z′ ∈ |Z ′|
maps to z, then the induced map Fx,z′ → Fx,z is surjective.

Proof. Set W ′ = X ×Y Z ′ = W ×Z Z ′. Then |W ′| → |W | ×|Z| |Z ′| is surjective by
Properties of Spaces, Lemma 4.3. Hence the surjectivity of Fx,z′ → Fx,z. □

Lemma 18.4.0AC6 In diagram (18.0.1) the set (18.0.2) is finite if f is of finite type
and f is quasi-finite at x.

Proof. The morphism q is quasi-finite at every w ∈ Fx,z, see Morphisms of Spaces,
Lemma 27.2. Hence the lemma follows from Morphisms of Spaces, Lemma 27.9. □
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Lemma 18.5.0AC7 In diagram (18.0.1) the set (18.0.2) is finite if y can be represented
by a monomorphism Spec(k) → Y where k is a field and g is quasi-finite at z.
(Special case: Y is decent and g is étale.)

Proof. By Lemma 18.3 applied twice we may replace Z by Zk = Spec(k) ×Y Z
and X by Xk = Spec(k) ×Y X. We may and do replace Y by Spec(k) as well.
Note that Zk → Spec(k) is quasi-finite at z by Morphisms of Spaces, Lemma 27.2.
Choose a scheme V , a point v ∈ V , and an étale morphism V → Zk mapping v to
z. Choose a scheme U , a point u ∈ U , and an étale morphism U → Xk mapping u
to x. Again by Lemma 18.3 it suffices to show Fu,v is finite for the diagram

U ×Spec(k) V //

��

V

��
U // Spec(k)

The morphism V → Spec(k) is quasi-finite at v (follows from the general discussion
in Morphisms of Spaces, Section 22 and the definition of being quasi-finite at a
point). At this point the finiteness follows from Example 18.1. The parenthetical
remark of the statement of the lemma follows from the fact that on decent spaces
points are represented by monomorphisms from fields and from the fact that an
étale morphism of algebraic spaces is locally quasi-finite. □

Lemma 18.6.0AC8 Let S be a scheme. Let f : X → Y be a morphism of alge-
braic spaces over S. Let y ∈ |Y | and assume that y is represented by a quasi-
compact monomorphism Spec(k) → Y . Then |Xk| → |X| is a homeomorphism
onto f−1({y}) ⊂ |X| with induced topology.

Proof. We will use Properties of Spaces, Lemma 16.7 and Morphisms of Spaces,
Lemma 10.9 without further mention. Let V → Y be an étale morphism with V
affine such that there exists a v ∈ V mapping to y. Since Spec(k) → Y is quasi-
compact there are a finite number of points of V mapping to y (Lemma 4.5). After
shrinking V we may assume v is the only one. Choose a scheme U and a surjective
étale morphism U → X. Consider the commutative diagram

U

��

UVoo

��

Uvoo

��
X

��

XV
oo

��

Xv
oo

��
Y Voo voo

Since Uv → UV identifies Uv with a subset of UV with the induced topology
(Schemes, Lemma 18.5), and since |UV | → |XV | and |Uv| → |Xv| are surjective
and open, we see that |Xv| → |XV | is a homeomorphism onto its image (with in-
duced topology). On the other hand, the inverse image of f−1({y}) under the open
map |XV | → |X| is equal to |Xv|. We conclude that |Xv| → f−1({y}) is open. The
morphism Xv → X factors through Xk and |Xk| → |X| is injective with image
f−1({y}) by Properties of Spaces, Lemma 4.3. Using |Xv| → |Xk| → f−1({y}) the
lemma follows because Xv → Xk is surjective. □
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Lemma 18.7.0AC9 Let X be an algebraic space locally of finite type over a field k. Let
x ∈ |X|. Consider the conditions

(1) dimx(|X|) = 0,
(2) x is closed in |X| and if x′ ⇝ x in |X| then x′ = x,
(3) x is an isolated point of |X|,
(4) dimx(X) = 0,
(5) X → Spec(k) is quasi-finite at x.

Then (2), (3), (4), and (5) are equivalent. If X is decent, then (1) is equivalent to
the others.

Proof. Parts (4) and (5) are equivalent for example by Morphisms of Spaces, Lem-
mas 34.7 and 34.8.
Let U → X be an étale morphism where U is an affine scheme and let u ∈ U be a
point mapping to x. Moreover, if x is a closed point, e.g., in case (2) or (3), then
we may and do assume that u is a closed point. Observe that dimu(U) = dimx(X)
by definition and that this is equal to dim(OU,u) if u is a closed point, see Algebra,
Lemma 114.6.
If dimx(X) > 0 and u is closed, by the arguments above we can choose a nontrivial
specialization u′ ⇝ u in U . Then the transcendence degree of κ(u′) over k exceeds
the transcendence degree of κ(u) over k. It follows that the images x and x′ in X
are distinct, because the transcendence degree of x/k and x′/k are well defined, see
Morphisms of Spaces, Definition 33.1. This applies in particular in cases (2) and
(3) and we conclude that (2) and (3) imply (4).
Conversely, if X → Spec(k) is locally quasi-finite at x, then U → Spec(k) is locally
quasi-finite at u, hence u is an isolated point of U (Morphisms, Lemma 20.6). It
follows that (5) implies (2) and (3) as |U | → |X| is continuous and open.
Assume X is decent and (1) holds. Then dimx(X) = dimx(|X|) by Lemma 12.5
and the proof is complete. □

Lemma 18.8.0ACA Let X be an algebraic space locally of finite type over a field k.
Consider the conditions

(1) |X| is a finite set,
(2) |X| is a discrete space,
(3) dim(|X|) = 0,
(4) dim(X) = 0,
(5) X → Spec(k) is locally quasi-finite,

Then (2), (3), (4), and (5) are equivalent. If X is decent, then (1) implies the
others.

Proof. Parts (4) and (5) are equivalent for example by Morphisms of Spaces,
Lemma 34.7.
Let U → X be a surjective étale morphism where U is a scheme.
If dim(U) > 0, then choose a nontrivial specialization u ⇝ u′ in U and the tran-
scendence degree of κ(u) over k exceeds the transcendence degree of κ(u′) over k.
It follows that the images x and x′ in X are distinct, because the transcendence
degree of x/k and x′/k is well defined, see Morphisms of Spaces, Definition 33.1.
We conclude that (2) and (3) imply (4).

https://stacks.math.columbia.edu/tag/0AC9
https://stacks.math.columbia.edu/tag/0ACA


DECENT ALGEBRAIC SPACES 47

Conversely, if X → Spec(k) is locally quasi-finite, then U is locally Noetherian
(Morphisms, Lemma 15.6) of dimension 0 (Morphisms, Lemma 29.5) and hence is
a disjoint union of spectra of Artinian local rings (Properties, Lemma 10.5). Hence
U is a discrete topological space, and since |U | → |X| is continuous and open, the
same is true for |X|. In other words, (4) implies (2) and (3).
Assume X is decent and (1) holds. Then we may choose U above to be affine.
The fibres of |U | → |X| are finite (this is a part of the defining property of decent
spaces). Hence U is a finite type scheme over k with finitely many points. Hence
U is quasi-finite over k (Morphisms, Lemma 20.7) which by definition means that
X → Spec(k) is locally quasi-finite. □

Lemma 18.9.0ACB Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let x ∈ |X| with image y ∈ |Y |. Let
F = f−1({y}) with induced topology from |X|. Let k be a field and let Spec(k)→ Y
be in the equivalence class defining y. Set Xk = Spec(k)×Y X. Let x̃ ∈ |Xk| map
to x ∈ |X|. Consider the following conditions

(1)0ACC dimx(F ) = 0,
(2)0ACD x is isolated in F ,
(3)0ACE x is closed in F and if x′ ⇝ x in F , then x = x′,
(4)0ACF dimx̃(|Xk|) = 0,
(5)0ACG x̃ is isolated in |Xk|,
(6)0ACH x̃ is closed in |Xk| and if x̃′ ⇝ x̃ in |Xk|, then x̃ = x̃′,
(7)0ACI dimx̃(Xk) = 0,
(8)0ACJ f is quasi-finite at x.

Then we have
(4)

f decent
+3 (5) ks +3 (6) ks +3 (7) ks +3 (8)

If Y is decent, then conditions (2) and (3) are equivalent to each other and to
conditions (5), (6), (7), and (8). If Y and X are decent, then all conditions are
equivalent.

Proof. By Lemma 18.7 conditions (5), (6), and (7) are equivalent to each other
and to the condition that Xk → Spec(k) is quasi-finite at x̃. Thus by Morphisms
of Spaces, Lemma 27.2 they are also equivalent to (8). If f is decent, then Xk is a
decent algebraic space and Lemma 18.7 shows that (4) implies (5).
If Y is decent, then we can pick a quasi-compact monomorphism Spec(k′) → Y
in the equivalence class of y. In this case Lemma 18.6 tells us that |Xk′ | → F
is a homeomorphism. Combined with the arguments given above this implies the
remaining statements of the lemma; details omitted. □

Lemma 18.10.0ACK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let y ∈ |Y |. Let k be a field and
let Spec(k) → Y be in the equivalence class defining y. Set Xk = Spec(k) ×Y X
and let F = f−1({y}) with the induced topology from |X|. Consider the following
conditions

(1)0ACL F is finite,
(2)0ACM F is a discrete topological space,
(3)0ACN dim(F ) = 0,
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(4)0ACP |Xk| is a finite set,
(5)0ACQ |Xk| is a discrete space,
(6)0ACR dim(|Xk|) = 0,
(7)0ACS dim(Xk) = 0,
(8)0ACT f is quasi-finite at all points of |X| lying over y.

Then we have
(1) (4)ks

f decent
+3 (5) ks +3 (6) ks +3 (7) ks +3 (8)

If Y is decent, then conditions (2) and (3) are equivalent to each other and to
conditions (5), (6), (7), and (8). If Y and X are decent, then (1) implies all the
other conditions.
Proof. By Lemma 18.8 conditions (5), (6), and (7) are equivalent to each other
and to the condition that Xk → Spec(k) is locally quasi-finite. Thus by Morphisms
of Spaces, Lemma 27.2 they are also equivalent to (8). If f is decent, then Xk is a
decent algebraic space and Lemma 18.8 shows that (4) implies (5).
The map |Xk| → F is surjective by Properties of Spaces, Lemma 4.3 and we see
(4) ⇒ (1).
If Y is decent, then we can pick a quasi-compact monomorphism Spec(k′) → Y
in the equivalence class of y. In this case Lemma 18.6 tells us that |Xk′ | → F
is a homeomorphism. Combined with the arguments given above this implies the
remaining statements of the lemma; details omitted. □

19. Monomorphisms

06RY Here is another case where monomorphisms are representable. Please see More on
Morphisms of Spaces, Section 4 for more information.
Lemma 19.1.06RZ Let S be a scheme. Let Y be a disjoint union of spectra of zero
dimensional local rings over S. Let f : X → Y be a monomorphism of algebraic
spaces over S. Then f is representable, i.e., X is a scheme.
Proof. This immediately reduces to the case Y = Spec(A) where A is a zero
dimensional local ring, i.e., Spec(A) = {mA} is a singleton. If X = ∅, then there
is nothing to prove. If not, choose a nonempty affine scheme U = Spec(B) and an
étale morphism U → X. As |X| is a singleton (as a subset of |Y |, see Morphisms
of Spaces, Lemma 10.9) we see that U → X is surjective. Note that U ×X U =
U ×Y U = Spec(B ⊗A B). Thus we see that the ring maps B → B ⊗A B are étale.
Since

(B ⊗A B)/mA(B ⊗A B) = (B/mAB)⊗A/mA
(B/mAB)

we see that B/mAB → (B⊗AB)/mA(B⊗AB) is flat and in fact free of rank equal to
the dimension of B/mAB as a A/mA-vector space. Since B → B⊗AB is étale, this
can only happen if this dimension is finite (see for example Morphisms, Lemmas
57.8 and 57.9). Every prime of B lies over mA (the unique prime of A). Hence
Spec(B) = Spec(B/mA) as a topological space, and this space is a finite discrete
set as B/mAB is an Artinian ring, see Algebra, Lemmas 53.2 and 53.6. Hence all
prime ideals of B are maximal and B = B1× . . .×Bn is a product of finitely many
local rings of dimension zero, see Algebra, Lemma 53.5. Thus B → B⊗AB is finite
étale as all the local rings Bi are henselian by Algebra, Lemma 153.10. Thus X is
an affine scheme by Groupoids, Proposition 23.9. □
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20. Generic points

0BB7 This section is a continuation of Properties of Spaces, Section 11.

Lemma 20.1.0ABV Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X|. The following are equivalent

(1) x is a generic point of an irreducible component of |X|,
(2) for any étale morphism (Y, y) → (X,x) of pointed algebraic spaces, y is a

generic point of an irreducible component of |Y |,
(3) for some étale morphism (Y, y)→ (X,x) of pointed algebraic spaces, y is a

generic point of an irreducible component of |Y |,
(4) the dimension of the local ring of X at x is zero, and
(5) x is a point of codimension 0 on X

Proof. Conditions (4) and (5) are equivalent for any algebraic space by definition,
see Properties of Spaces, Definition 10.2. Observe that any Y as in (2) and (3) is
decent by Lemma 6.6. Thus it suffices to prove the equivalence of (1) and (4) as
then the equivalence with (2) and (3) follows since the dimension of the local ring
of Y at y is equal to the dimension of the local ring of X at x. Let f : U → X be
an étale morphism from an affine scheme and let u ∈ U be a point mapping to x.
Assume (1). Let u′ ⇝ u be a specialization in U . Then f(u′) = f(u) = x. By
Lemma 12.1 we see that u′ = u. Hence u is a generic point of an irreducible
component of U . Thus dim(OU,u) = 0 and we see that (4) holds.
Assume (4). The point x is contained in an irreducible component T ⊂ |X|. Since
|X| is sober (Proposition 12.4) we T has a generic point x′. Of course x′ ⇝ x.
Then we can lift this specialization to u′ ⇝ u in U (Lemma 12.2). This contradicts
the assumption that dim(OU,u) = 0 unless u′ = u, i.e., x′ = x. □

Lemma 20.2.0ED1 Let S be a scheme. Let X be a decent algebraic space over S. Let
T ⊂ |X| be an irreducible closed subset. Let ξ ∈ T be the generic point (Proposition
12.4). Then codim(T, |X|) (Topology, Definition 11.1) is the dimension of the local
ring of X at ξ (Properties of Spaces, Definition 10.2).

Proof. Choose a scheme U , a point u ∈ U , and an étale morphism U → X sending
u to ξ. Then any sequence of nontrivial specializations ξe ⇝ . . . ⇝ ξ0 = ξ can be
lifted to a sequence ue ⇝ . . . ⇝ u0 = u in U by Lemma 12.2. Conversely, any
sequence of nontrivial specializations ue ⇝ . . .⇝ u0 = u in U maps to a sequence
of nontrivial specializations ξe ⇝ . . .⇝ ξ0 = ξ by Lemma 12.1. Because |X| and U
are sober topological spaces we conclude that the codimension of T in |X| and of
{u} in U are the same. In this way the lemma reduces to the schemes case which
is Properties, Lemma 10.3. □

Lemma 20.3.0BB8 Let S be a scheme. Let X be an algebraic space over S. Assume
(1) every quasi-compact scheme étale over X has finitely many irreducible com-

ponents, and
(2) every x ∈ |X| of codimension 0 on X can be represented by a monomor-

phism Spec(k)→ X.
Then X is a reasonable algebraic space.

Proof. Let U be an affine scheme and let a : U → X be an étale morphism. We
have to show that the fibres of a are universally bounded. By assumption (1) the
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scheme U has finitely many irreducible components. Let u1, . . . , un ∈ U be the
generic points of these irreducible components. Let {x1, . . . , xm} ⊂ |X| be the
image of {u1, . . . , un}. Each xj is a point of codimension 0. By assumption (2)
we may choose a monomorphism Spec(kj)→ X representing xj . By Properties of
Spaces, Lemma 11.1 we have

U ×X Spec(kj) =
∐

a(ui)=xj

Spec(κ(ui))

This is a scheme finite over Spec(kj) of degree dj =
∑
a(ui)=xj

[κ(ui) : kj ]. Set
n = max dj .
Observe that a is separated (Properties of Spaces, Lemma 6.4). Consider the strat-
ification

X = X0 ⊃ X1 ⊃ X2 ⊃ . . .
associated to U → X in Lemma 8.2. By our choice of n above we conclude that
Xn+1 is empty. Namely, if not, then a−1(Xn+1) is a nonempty open of U and hence
would contain one of the xi. This would mean that Xn+1 contains xj = a(ui) which
is impossible. Hence we see that the fibres of U → X are universally bounded (in
fact by the integer n). □

Lemma 20.4.0BB9 Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent

(1) X is decent and |X| has finitely many irreducible components,
(2) every quasi-compact scheme étale over X has finitely many irreducible com-

ponents, there are finitely many x ∈ |X| of codimension 0 on X, and each
of these can be represented by a monomorphism Spec(k)→ X,

(3) there exists a dense open X ′ ⊂ X which is a scheme, X ′ has finitely many
irreducible components with generic points {x′

1, . . . , x
′
m}, and the morphism

x′
j → X is quasi-compact for j = 1, . . . ,m.

Moreover, if these conditions hold, then X is reasonable and the points x′
j ∈ |X|

are the generic points of the irreducible components of |X|.
Proof. In the proof we use Properties of Spaces, Lemma 11.1 without further
mention. Assume (1). Then X has a dense open subscheme X ′ by Theorem 10.2.
Since the closure of an irreducible component of |X ′| is an irreducible component
of |X|, we see that |X ′| has finitely many irreducible components. Thus (3) holds.
Assume X ′ ⊂ X is as in (3). Let {x′

1, . . . , x
′
m} be the generic points of the ir-

reducible components of X ′. Let a : U → X be an étale morphism with U a
quasi-compact scheme. To prove (2) it suffices to show that U has finitely many
irreducible components whose generic points lie over {x′

1, . . . , x
′
m}. It suffices to

prove this for the members of a finite affine open cover of U , hence we may and do
assume U is affine. Note that U ′ = a−1(X ′) ⊂ U is a dense open. Since U ′ → X ′ is
an étale morphism of schemes, we see the generic points of irreducible components
of U ′ are the points lying over {x′

1, . . . , x
′
m}. Since x′

j → X is quasi-compact there
are finitely many points of U lying over x′

j (Lemma 4.5). Hence U ′ has finitely
many irreducible components, which implies that the closures of these irreducible
components are the irreducible components of U . Thus (2) holds.
Assume (2). This implies (1) and the final statement by Lemma 20.3. (We also
use that a reasonable algebraic space is decent, see discussion following Definition
6.1.) □
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21. Generically finite morphisms

0BBA This section discusses for morphisms of algebraic spaces the material discussed in
Morphisms, Section 51 and Varieties, Section 17 for morphisms of schemes.

Lemma 21.1.0ACZ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that f is quasi-separated of finite type. Let y ∈ |Y | be a
point of codimension 0 on Y . The following are equivalent:

(1) the space |Xk| is finite where Spec(k)→ Y represents y,
(2) X → Y is quasi-finite at all points of |X| over y,
(3) there exists an open subspace Y ′ ⊂ Y with y ∈ |Y ′| such that Y ′×Y X → Y ′

is finite.
If Y is decent these are also equivalent to

(4) the set f−1({y}) is finite.

Proof. The equivalence of (1) and (2) follows from Lemma 18.10 (and the fact
that a quasi-separated morphism is decent by Lemma 17.2).
Assume the equivalent conditions of (1) and (2). Choose an affine scheme V and
an étale morphism V → Y mapping a point v ∈ V to y. Then v is a generic point
of an irreducible component of V by Properties of Spaces, Lemma 11.1. Choose an
affine scheme U and a surjective étale morphism U → V ×Y X. Then U → V is of
finite type. The morphism U → V is quasi-finite at every point lying over v by (2).
It follows that the fibre of U → V over v is finite (Morphisms, Lemma 20.14). By
Morphisms, Lemma 51.1 after shrinking V we may assume that U → V is finite.
Let

R = U ×V×Y X U

Since f is quasi-separated, we see that V ×Y X is quasi-separated and hence R is
a quasi-compact scheme. Moreover the morphisms R → V is quasi-finite as the
composition of an étale morphism R→ U and a finite morphism U → V . Hence we
may apply Morphisms, Lemma 51.1 once more and after shrinking V we may assume
that R→ V is finite as well. This of course implies that the two projections R→ V
are finite étale. It follows that V/R = V ×Y X is an affine scheme, see Groupoids,
Proposition 23.9. By Morphisms, Lemma 41.9 we conclude that V ×Y X → V is
proper and by Morphisms, Lemma 44.11 we conclude that V ×Y X → V is finite.
Finally, we let Y ′ ⊂ Y be the open subspace of Y corresponding to the image of
|V | → |Y |. By Morphisms of Spaces, Lemma 45.3 we conclude that Y ′×Y X → Y ′

is finite as the base change to V is finite and as V → Y ′ is a surjective étale
morphism.
If Y is decent and f is quasi-separated, then we see that X is decent too; use
Lemmas 17.2 and 17.5. Hence Lemma 18.10 applies to show that (4) implies (1)
and (2). On the other hand, we see that (2) implies (4) by Morphisms of Spaces,
Lemma 27.9. □

Lemma 21.2.0AD0 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that f is quasi-separated and locally of finite type and Y
quasi-separated. Let y ∈ |Y | be a point of codimension 0 on Y . The following are
equivalent:

(1) the set f−1({y}) is finite,
(2) the space |Xk| is finite where Spec(k)→ Y represents y,
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(3) there exist open subspaces X ′ ⊂ X and Y ′ ⊂ Y with f(X ′) ⊂ Y ′, y ∈ |Y ′|,
and f−1({y}) ⊂ |X ′| such that f |X′ : X ′ → Y ′ is finite.

Proof. Since quasi-separated algebraic spaces are decent, the equivalence of (1)
and (2) follows from Lemma 18.10. To prove that (1) and (2) imply (3) we may
and do replace Y by a quasi-compact open containing y. Since f−1({y}) is finite,
we can find a quasi-compact open subspace of X ′ ⊂ X containing the fibre. The
restriction f |X′ : X ′ → Y is quasi-compact and quasi-separated by Morphisms of
Spaces, Lemma 8.10 (this is where we use that Y is quasi-separated). Applying
Lemma 21.1 to f |X′ : X ′ → Y we see that (3) holds. We omit the proof that (3)
implies (2). □

Lemma 21.3.0BBB Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. Let X0 ⊂ |X|, resp. Y 0 ⊂ |Y |
denote the set of codimension 0 points of X, resp. Y . Let y ∈ Y 0. The following
are equivalent

(1) f−1({y}) ⊂ X0,
(2) f is quasi-finite at all points lying over y,
(3) f is quasi-finite at all x ∈ X0 lying over y.

Proof. Let V be a scheme and let V → Y be a surjective étale morphism. Let
U be a scheme and let U → V ×Y X be a surjective étale morphism. Then f is
quasi-finite at the image x of a point u ∈ U if and only if U → V is quasi-finite at u.
Moreover, x ∈ X0 if and only if u is the generic point of an irreducible component
of U (Properties of Spaces, Lemma 11.1). Thus the lemma reduces to the case of
the morphism U → V , i.e., to Morphisms, Lemma 51.4. □

Lemma 21.4.0BBC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. Let X0 ⊂ |X|, resp. Y 0 ⊂ |Y |
denote the set of codimension 0 points of X, resp. Y . Assume

(1) Y is decent,
(2) X0 and Y 0 are finite and f−1(Y 0) = X0,
(3) either f is quasi-compact or f is separated.

Then there exists a dense open V ⊂ Y such that f−1(V )→ V is finite.

Proof. By Lemmas 20.4 and 20.1 we may assume Y is a scheme with finitely many
irreducible components. Shrinking further we may assume Y is an irreducible affine
scheme with generic point y. Then the fibre of f over y is finite.

Assume f is quasi-compact and Y affine irreducible. Then X is quasi-compact and
we may choose an affine scheme U and a surjective étale morphism U → X. Then
U → Y is of finite type and the fibre of U → Y over y is the set U0 of generic
points of irreducible components of U (Properties of Spaces, Lemma 11.1). Hence
U0 is finite (Morphisms, Lemma 20.14) and after shrinking Y we may assume that
U → Y is finite (Morphisms, Lemma 51.1). Next, consider R = U ×X U . Since
the projection s : R → U is étale we see that R0 = s−1(U0) lies over y. Since
R → U ×Y U is a monomorphism, we conclude that R0 is finite as U ×Y U → Y
is finite. And R is separated (Properties of Spaces, Lemma 6.4). Thus we may
shrink Y once more to reach the situation where R is finite over Y (Morphisms,
Lemma 51.5). In this case it follows that X = U/R is finite over Y by exactly the
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same arguments as given in the proof of Lemma 21.1 (or we can simply apply that
lemma because it follows immediately that X is quasi-separated as well).

Assume f is separated and Y affine irreducible. Choose V ⊂ Y and U ⊂ X as in
Lemma 21.2. Since f |U : U → V is finite, we see that U ⊂ f−1(V ) is closed as well
as open (Morphisms of Spaces, Lemmas 40.6 and 45.9). Thus f−1(V ) = U ⨿W
for some open subspace W of X. However, since U contains all the codimension
0 points of X we conclude that W = ∅ (Properties of Spaces, Lemma 11.2) as
desired. □

22. Birational morphisms

0ACU The following definition of a birational morphism of algebraic spaces seems to be
the closest to our definition (Morphisms, Definition 50.1) of a birational morphism
of schemes.

Definition 22.1.0ACV Let S be a scheme. Let X and Y algebraic spaces over S.
Assume X and Y are decent and that |X| and |Y | have finitely many irreducible
components. We say a morphism f : X → Y is birational if

(1) |f | induces a bijection between the set of generic points of irreducible com-
ponents of |X| and the set of generic points of the irreducible components
of |Y |, and

(2) for every generic point x ∈ |X| of an irreducible component the local ring
map OY,f(x) → OX,x is an isomorphism (see clarification below).

Clarification: Since X and Y are decent the topological spaces |X| and |Y | are
sober (Proposition 12.4). Hence condition (1) makes sense. Moreover, because we
have assumed that |X| and |Y | have finitely many irreducible components, we see
that the generic points x1, . . . , xn ∈ |X|, resp. y1, . . . , yn ∈ |Y | are contained in any
dense open of |X|, resp. |Y |. In particular, they are contained in the schematic
locus of X, resp. Y by Theorem 10.2. Thus we can define OX,xi , resp. OY,yi to be
the local ring of this scheme at xi, resp. yi.

We conclude that if the morphism f : X → Y is birational, then there exist dense
open subspaces X ′ ⊂ X and Y ′ ⊂ Y such that

(1) f(X ′) ⊂ Y ′,
(2) X ′ and Y ′ are representable, and
(3) f |X′ : X ′ → Y ′ is birational in the sense of Morphisms, Definition 50.1.

However, we do insist that X and Y are decent with finitely many irreducible com-
ponents. Other ways to characterize decent algebraic spaces with finitely many
irreducible components are given in Lemma 20.4. In most cases birational mor-
phisms are isomorphisms over dense opens.

Lemma 22.2.0ACW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which are decent and have finitely many irreducible components. If
f is birational then f is dominant.

Proof. Follows immediately from the definitions. See Morphisms of Spaces, Defi-
nition 18.1. □
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Lemma 22.3.0BBD Let S be a scheme. Let f : X → Y be a birational morphism of
algebraic spaces over S which are decent and have finitely many irreducible com-
ponents. If y ∈ Y is the generic point of an irreducible component, then the base
change X ×Y Spec(OY,y)→ Spec(OY,y) is an isomorphism.

Proof. Let X ′ ⊂ X and Y ′ ⊂ Y be the maximal open subspaces which are
representable, see Lemma 20.4. By Lemma 21.3 the fibre of f over y is con-
sists of points of codimension 0 of X and is therefore contained in X ′. Hence
X ×Y Spec(OY,y) = X ′ ×Y ′ Spec(OY ′,y) and the result follows from Morphisms,
Lemma 50.3. □

Lemma 22.4.0BBE Let S be a scheme. Let f : X → Y be a birational morphism of
algebraic spaces over S which are decent and have finitely many irreducible compo-
nents. Assume one of the following conditions is satisfied

(1) f is locally of finite type and Y reduced (i.e., integral),
(2) f is locally of finite presentation.

Then there exist dense opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V and f |U :
U → V is an isomorphism.

Proof. By Lemma 20.4 we may assume that X and Y are schemes. In this case
the result is Morphisms, Lemma 50.5. □

Lemma 22.5.0BBF Let S be a scheme. Let f : X → Y be a birational morphism of
algebraic spaces over S which are decent and have finitely many irreducible compo-
nents. Assume

(1) either f is quasi-compact or f is separated, and
(2) either f is locally of finite type and Y is reduced or f is locally of finite

presentation.
Then there exists a dense open V ⊂ Y such that f−1(V )→ V is an isomorphism.

Proof. By Lemma 20.4 we may assume Y is a scheme. By Lemma 21.4 we may
assume that f is finite. Then X is a scheme too and the result follows from Mor-
phisms, Lemma 51.6. □

Lemma 22.6.0B4D Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which are decent and have finitely many irreducible components. If
f is birational and V → Y is an étale morphism with V affine, then X ×Y V is
decent with finitely many irreducible components and X ×Y V → V is birational.

Proof. The algebraic space U = X ×Y V is decent (Lemma 6.6). The generic
points of V and U are the elements of |V | and |U | which lie over generic points of
|Y | and |X| (Lemma 20.1). Since Y is decent we conclude there are finitely many
generic points on V . Let ξ ∈ |X| be a generic point of an irreducible component.
By the discussion following Definition 22.1 we have a cartesian square

Spec(OX,ξ)

��

// X

��
Spec(OY,f(ξ)) // Y
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whose horizontal morphisms are monomorphisms identifying local rings and where
the left vertical arrow is an isomorphism. It follows that in the diagram

Spec(OX,ξ)×X U

��

// U

��
Spec(OY,f(ξ))×Y V // V

the vertical arrow on the left is an isomorphism. The horizonal arrows have image
contained in the schematic locus of U and V and identify local rings (some details
omitted). Since the image of the horizontal arrows are the points of |U |, resp. |V |
lying over ξ, resp. f(ξ) we conclude. □

Lemma 22.7.0BBG Let S be a scheme. Let f : X → Y be a birational morphism
between algebraic spaces over S which are decent and have finitely many irreducible
components. Then the normalizations Xν → X and Y ν → Y exist and there is a
commutative diagram

Xν //

��

Y ν

��
X // Y

of algebraic spaces over S. The morphism Xν → Y ν is birational.

Proof. By Lemma 20.4 we see that X and Y satisfy the equivalent conditions of
Morphisms of Spaces, Lemma 49.1 and the normalizations are defined. By Mor-
phisms of Spaces, Lemma 49.8 the algebraic space Xν is normal and maps codi-
mension 0 points to codimension 0 points. Since f maps codimension 0 points
to codimension 0 points (this is the same as generic points on decent spaces by
Lemma 20.1) we obtain from Morphisms of Spaces, Lemma 49.8 a factorization of
the composition Xν → X → Y through Y ν .

Observe that Xν and Y ν are decent for example by Lemma 6.5. Moreover the maps
Xν → X and Y ν → Y induce bijections on irreducible components (see references
above) hence Xν and Y ν both have a finite number of irreducible components and
the map Xν → Y ν induces a bijection between their generic points. To prove that
Xν → Y ν is birational, it therefore suffices to show it induces an isomorphism
on local rings at these points. To do this we may replace X and Y by open
neighbourhoods of their generic points, hence we may assume X and Y are affine
irreducible schemes with generic points x and y. Since f is birational the map
OX,x → OY,y is an isomorphism. Let xν ∈ Xν and yν ∈ Y ν be the points lying
over x and y. By construction of the normalization we see that OXν ,xν = OX,x/mx
and similarly on Y . Thus the map OXν ,xν → OY ν ,yν is an isomorphism as well. □

Lemma 22.8.0B4E Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) X and Y are decent and have finitely many irreducible components,
(2) f is integral and birational,
(3) Y is normal, and
(4) X is reduced.

Then f is an isomorphism.
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Proof. Let V → Y be an étale morphism with V affine. It suffices to show that
U = X ×Y V → V is an isomorphism. By Lemma 22.6 and its proof we see that U
and V are decent and have finitely many irreducible components and that U → V
is birational. By Properties, Lemma 7.5 V is a finite disjoint union of integral
schemes. Thus we may assume V is integral. As f is birational, we see that U
is irreducible and reduced, i.e., integral (note that U is a scheme as f is integral,
hence representable). Thus we may assume that X and Y are integral schemes and
the result follows from the case of schemes, see Morphisms, Lemma 54.8. □

Lemma 22.9.0BBH Let S be a scheme. Let f : X → Y be an integral birational
morphism of decent algebraic spaces over S which have finitely many irreducible
components. Then there exists a factorization Y ν → X → Y and Y ν → X is the
normalization of X.

Proof. Consider the map Xν → Y ν of Lemma 22.7. This map is integral by
Morphisms of Spaces, Lemma 45.12. Hence it is an isomorphism by Lemma 22.8.

□

23. Jacobson spaces

0BA2 We have defined the Jacobson property for algebraic spaces in Properties of Spaces,
Remark 7.3. For representable algebraic spaces it agrees with the property discussed
in Properties, Section 6. The relationship between the Jacobson property and the
behaviour of the topological space |X| is not evident for general algebraic spaces
|X|. However, a decent (for example quasi-separated or locally separated) algebraic
space X is Jacobson if and only if |X| is Jacobson (see Lemma 23.4).

Lemma 23.1.0BA3 Let S be a scheme. Let X be a Jacobson algebraic space over S.
Any algebraic space locally of finite type over X is Jacobson.

Proof. Let U → X be a surjective étale morphism where U is a scheme. Then U
is Jacobson (by definition) and for a morphism of schemes V → U which is locally
of finite type we see that V is Jacobson by the corresponding result for schemes
(Morphisms, Lemma 16.9). Thus if Y → X is a morphism of algebraic spaces which
is locally of finite type, then setting V = U ×X Y we see that Y is Jacobson by
definition. □

Lemma 23.2.0BA4 Let S be a scheme. Let X be a Jacobson algebraic space over S. For
x ∈ Xft-pts and g : W → X locally of finite type with W a scheme, if x ∈ Im(|g|),
then there exists a closed point of W mapping to x.

Proof. Let U → X be an étale morphism with U a scheme and with u ∈ U closed
mapping to x, see Morphisms of Spaces, Lemma 25.3. Observe that W , W ×X U ,
and U are Jacobson schemes by Lemma 23.1. Hence finite type points on these
schemes are the same thing as closed points by Morphisms, Lemma 16.8. The
inverse image T ⊂ W ×X U of u is a nonempty (as x in the image of W → X)
closed subset. By Morphisms, Lemma 16.7 there is a closed point t of W ×X U
which maps to u. As W ×X U →W is locally of finite type the image of t in W is
closed by Morphisms, Lemma 16.8. □

Lemma 23.3.0BA5 Let S be a scheme. Let X be a decent Jacobson algebraic space
over S. Then Xft-pts ⊂ |X| is the set of closed points.

https://stacks.math.columbia.edu/tag/0BBH
https://stacks.math.columbia.edu/tag/0BA3
https://stacks.math.columbia.edu/tag/0BA4
https://stacks.math.columbia.edu/tag/0BA5


DECENT ALGEBRAIC SPACES 57

Proof. If x ∈ |X| is closed, then we can represent x by a closed immersion
Spec(k)→ X, see Lemma 14.6. Hence x is certainly a finite type point.

Conversely, let x ∈ |X| be a finite type point. We know that x can be represented
by a quasi-compact monomorphism Spec(k)→ X where k is a field (Definition 6.1).
On the other hand, by definition, there exists a morphism Spec(k′) → X which is
locally of finite type and represents x (Morphisms, Definition 16.3). We obtain a
factorization Spec(k′) → Spec(k) → X. Let U → X be any étale morphism with
U affine and consider the morphisms

Spec(k′)×X U → Spec(k)×X U → U

The quasi-compact scheme Spec(k) ×X U is étale over Spec(k) hence is a finite
disjoint union of spectra of fields (Remark 4.1). Moreover, the first morphism is
surjective and locally of finite type (Morphisms, Lemma 15.8) hence surjective on
finite type points (Morphisms, Lemma 16.6) and the composition (which is locally
of finite type) sends finite type points to closed points as U is Jacobson (Morphisms,
Lemma 16.8). Thus the image of Spec(k)×X U → U is a finite set of closed points
hence closed. Since this is true for every affine U and étale morphism U → X, we
conclude that x ∈ |X| is closed. □

Lemma 23.4.0BA6 Let S be a scheme. Let X be a decent algebraic space over S. Then
X is Jacobson if and only if |X| is Jacobson.

Proof. Assume X is Jacobson and that T ⊂ |X| is a closed subset. By Morphisms
of Spaces, Lemma 25.6 we see that T ∩ Xft-pts is dense in T . By Lemma 23.3 we
see that Xft-pts are the closed points of |X|. Thus |X| is indeed Jacobson.

Assume |X| is Jacobson. Let f : U → X be an étale morphism with U an affine
scheme. We have to show that U is Jacobson. If x ∈ |X| is closed, then the fibre
F = f−1({x}) is a finite (by definition of decent) closed (by construction of the
topology on |X|) subset of U . Since there are no specializations between points
of F (Lemma 12.1) we conclude that every point of F is closed in U . If U is not
Jacobson, then there exists a non-closed point u ∈ U such that {u} is locally closed
(Topology, Lemma 18.3). We will show that f(u) ∈ |X| is closed; by the above
u is closed in U which is a contradiction and finishes the proof. To prove this
we may replace U by an affine open neighbourhood of u. Thus we may assume
that {u} is closed in U . Let R = U ×X U with projections s, t : R → U . Then
s−1({u}) = {r1, . . . , rm} is finite (by definition of decent spaces). After replacing
U by a smaller affine open neighbourhood of u we may assume that t(rj) = u for
j = 1, . . . ,m. It follows that {u} is an R-invariant closed subset of U . Hence {f(u)}
is a locally closed subset of X as it is closed in the open |f |(|U |) of |X|. Since |X|
is Jacobson we conclude that f(u) is closed in |X| as desired. □

Lemma 23.5.0ED2 Let S be a scheme. Let X be a decent locally Noetherian algebraic
space over S. Let x ∈ |X|. Then

W = {x′ ∈ |X| : x′ ⇝ x, x′ ̸= x}

is a Noetherian, spectral, sober, Jacobson topological space.

Proof. We may replace by any open subspace containing x. Thus we may assume
that X is quasi-compact. Then |X| is a Noetherian topological space (Properties
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of Spaces, Lemma 24.2). Thus W is a Noetherian topological space (Topology,
Lemma 9.2).

Combining Lemma 14.1 with Properties of Spaces, Lemma 15.2 we see that |X| is
a spectral toplogical space. By Topology, Lemma 24.7 we see that W ∪ {x} is a
spectral topological space. Now W is a quasi-compact open of W ∪ {x} and hence
W is spectral by Topology, Lemma 23.5.

Let E ⊂ W be an irreducible closed subset. Then if Z ⊂ |X| is the closure of E
we see that x ∈ Z. There is a unique generic point η ∈ Z by Proposition 12.4. Of
course η ∈ W and hence η ∈ E. We conclude that E has a unique generic point,
i.e., W is sober.

Let x′ ∈W be a point such that {x′} is locally closed in W . To finish the proof we
have to show that x′ is a closed point of W . If not, then there exists a nontrivial
specialization x′ ⇝ x′

1 in W . Let U be an affine scheme, u ∈ U a point, and let
U → X be an étale morphism mapping u to x. By Lemma 12.2 we can choose
specializations u′ ⇝ u′

1 ⇝ u mapping to x′ ⇝ x′
1 ⇝ x. Let p′ ⊂ OU,u be the

prime ideal corresponding to u′. The existence of the specializations implies that
dim(OU,u/p′) ≥ 2. Hence every nonempty open of Spec(OU,u/p′) is infinite by
Algebra, Lemma 61.1. By Lemma 12.1 we obtain a continuous map

Spec(OU,u/p′) \ {mu/p′} −→W

Since the generic point of the LHS maps to x′ the image is contained in {x′}. We
conclude the inverse image of {x′} under the displayed arrow is nonempty open
hence infinite. However, the fibres of U → X are finite as X is decent and we
conclude that {x′} is infinite. This contradiction finishes the proof. □

24. Local irreducibility

0DQ5 We have already defined the geometric number of branches of an algebraic space at
a point in Properties of Spaces, Section 23. The number of branches of an algebraic
space at a point can only be defined for decent algebraic spaces.

Lemma 24.1.0DQ6 Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X| be a point. The following are equivalent

(1) for any elementary étale neighbourhood (U, u)→ (X,x) the local ring OU,u
has a unique minimal prime,

(2) for any elementary étale neighbourhood (U, u) → (X,x) there is a unique
irreducible component of U through u,

(3) for any elementary étale neighbourhood (U, u)→ (X,x) the local ring OU,u
is unibranch,

(4) the henselian local ring OhX,x has a unique minimal prime.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible com-
ponents of U passing through u are in 1-1 correspondence with minimal primes of
the local ring of U at u. The ring OhX,x is the henselization of OU,u, see discus-
sion following Definition 11.7. In particular (3) and (4) are equivalent by More
on Algebra, Lemma 106.3. The equivalence of (2) and (3) follows from More on
Morphisms, Lemma 36.2. □
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Definition 24.2.0DQ7 Let S be a scheme. Let X be a decent algebraic space over
S. Let x ∈ |X|. We say that X is unibranch at x if the equivalent conditions of
Lemma 24.1 hold. We say that X is unibranch if X is unibranch at every x ∈ |X|.

This is consistent with the definition for schemes (Properties, Definition 15.1).

Lemma 24.3.0DQ8 Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X| be a point. Let n ∈ {1, 2, . . .} be an integer. The following are equivalent

(1) for any elementary étale neighbourhood (U, u)→ (X,x) the number of min-
imal primes of the local ring OU,u is ≤ n and for at least one choice of
(U, u) it is n,

(2) for any elementary étale neighbourhood (U, u) → (X,x) the number irre-
ducible components of U passing through u is ≤ n and for at least one
choice of (U, u) it is n,

(3) for any elementary étale neighbourhood (U, u) → (X,x) the number of
branches of U at u is ≤ n and for at least one choice of (U, u) it is n,

(4) the number of minimal prime ideals of OhX,x is n.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible com-
ponents of U passing through u are in 1-1 correspondence with minimal primes of
the local ring of U at u. The ring OX,x is the henselization of OU,u, see discus-
sion following Definition 11.7. In particular (3) and (4) are equivalent by More
on Algebra, Lemma 106.3. The equivalence of (2) and (3) follows from More on
Morphisms, Lemma 36.2. □

Definition 24.4.0DQ9 Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X|. The number of branches of X at x is either n ∈ N if the equivalent
conditions of Lemma 24.3 hold, or else ∞.

25. Catenary algebraic spaces

0ED3 This section extends the material in Properties, Section 11 and Morphisms, Section
17 to algebraic spaces.

Definition 25.1.0ED4 Let S be a scheme. Let X be a decent algebraic space over S.
We say X is catenary if |X| is catenary (Topology, Definition 11.4).

If X is representable, then this is equivalent to the corresponding notion for the
scheme representing X.

Lemma 25.2.0ED5 Let S be a locally Noetherian and universally catenary scheme. Let
δ : S → Z be a dimension function. Let X be a decent algebraic space over S such
that the structure morphism X → S is locally of finite type. Let δX : |X| → Z be
the map sending x to δ(f(x)) plus the transcendence degree of x/f(x). Then δX is
a dimension function on |X|.

Proof. Let φ : U → X be a surjective étale morphism where U is a scheme.
Then the similarly defined function δU is a dimension function on U by Morphisms,
Lemma 52.3. On the other hand, by the definition of relative transcendence degree
in (Morphisms of Spaces, Definition 33.1) we see that δU (u) = δX(φ(u)).
Let x ⇝ x′ be a specialization of points in |X|. by Lemma 12.2 we can find a
specialization u ⇝ u′ of points of U with φ(u) = x and φ(u′) = x′. Moreover,
we see that x = x′ if and only if u = u′, see Lemma 12.1. Thus the fact that

https://stacks.math.columbia.edu/tag/0DQ7
https://stacks.math.columbia.edu/tag/0DQ8
https://stacks.math.columbia.edu/tag/0DQ9
https://stacks.math.columbia.edu/tag/0ED4
https://stacks.math.columbia.edu/tag/0ED5


DECENT ALGEBRAIC SPACES 60

δU is a dimension function implies that δX is a dimension function, see Topology,
Definition 20.1. □

Lemma 25.3.0ED6 Let S be a locally Noetherian and universally catenary scheme. Let
X be an algebraic space over S such that X is decent and such that the structure
morphism X → S is locally of finite type. Then X is catenary.

Proof. The question is local on S (use Topology, Lemma 11.5). Thus we may
assume that S has a dimension function, see Topology, Lemma 20.4. Then we
conclude that |X| has a dimension function by Lemma 25.2. Since |X| is sober
(Proposition 12.4) we conclude that |X| is catenary by Topology, Lemma 20.2. □

By Lemma 25.3 the following definition is compatible with the already existing
notion for representable algebraic spaces.

Definition 25.4.0ED7 Let S be a scheme. Let X be a decent and locally Noetherian
algebraic space over S. We say X is universally catenary if for every morphism
Y → X of algebraic spaces which is locally of finite type and with Y decent, the
algebraic space Y is catenary.

If X is an algebraic space, then the condition “X is decent and locally Noetherian”
is equivalent to “X is quasi-separated and locally Noetherian”. This is Lemma
14.1. Thus another way to understand the definition above is that X is universally
catenary if and only if Y is catenary for all morphisms Y → X which are quasi-
separated and locally of finite type.

Lemma 25.5.0ED8 Let S be a scheme. Let X be a decent, locally Noetherian, and
universally catenary algebraic space over S. Then any decent algebraic space locally
of finite type over X is universally catenary.

Proof. This is formal from the definitions and the fact that compositions of mor-
phisms locally of finite type are locally of finite type (Morphisms of Spaces, Lemma
23.2). □

Lemma 25.6.0ED9 Let S be a scheme. Let f : Y → X be a surjective finite morphism
of decent and locally Noetherian algebraic spaces. Let δ : |X| → Z be a function. If
δ ◦ |f | is a dimension function, then δ is a dimension function.

Proof. Let x 7→ x′, x ̸= x′ be a specialization in |X|. Choose y ∈ |Y | with |f |(y) =
x. Since |f | is closed (Morphisms of Spaces, Lemma 45.9) we find a specialization
y ⇝ y′ with |f |(y′) = x′. Thus we conclude that δ(x) = δ(|f |(y)) > δ(|f |(y′)) =
δ(x′) (see Topology, Definition 20.1). If x⇝ x′ is an immediate specialization, then
y ⇝ y′ is an immediate specialization too: namely if y ⇝ y′′ ⇝ y′, then |f |(y′′)
must be either x or x′ and there are no nontrivial specializations between points of
fibres of |f | by Lemma 18.10. □

The discussion will be continued in More on Morphisms of Spaces, Section 32.
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