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1. Introduction

In this chapter we start with a discussion of the de Rham complex of a morphism
of schemes and we end with a proof that de Rham cohomology defines a Weil
cohomology theory when the base field has characteristic zero.

2. The de Rham complex
Let p: X — S be a morphism of schemes. There is a complex

Q;{/S = OX/S — QAIX/S — Q?X/S — ...
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of p~'Og-modules with Q% /s = A'(Q2x/s) placed in degree i and differential deter-

mined by the rule d(godgi A...Adgp) = dgoAdgi A...Adg, on local sections. See
Modules, Section

Given a commutative diagram
X —X
|
S ——= 5

of schemes, there are canonical maps of complexes f _193( /s Q% /s and Q% /s
f+9%, /s See Modules, Section Linearizing, for every p we obtain a linear map

P s —= Qg

In particular, if f : Y — X be a morphism of schemes over a base scheme S, then
there is a map of complexes

0%/ — [y
Linearizing, we see that for every p > 0 we obtain a canonical map
Q?{/S ®OX f*OY — f*Q;;J//S
Lemma 2.1. Let
X —X
|
S ——— 8

be a cartesian diagram of schemes. Then the maps discussed above induce isomor-
phisms f*Qg’(/S — OF st

Proof. Combine Morphisms, Lemma|32.10|with the fact that formation of exterior
power commutes with base change. O

Lemmal 2.2. Consider a commutative diagram of schemes

X —=X
|
S ——— 8

If X - X and 8" — S are étale, then the maps discussed above induce isomor-
phisms f*Q’;(/S — QI)O(//S"

Proof. We have (25,5 = 0 and Q2x/,x = 0, see for example Morphisms, Lemma

36.15] Then by the short exact sequences of Morphisms, Lemmas and
we see that Qx/ /g = Qx//g = f*Qx/g. Taking exterior powers we conclude.  [J
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3. de Rham cohomology

Let p: X — S be a morphism of schemes. We define the de Rham cohomology of
X over S to be the cohomology groups

Hyp(X/S) = H'(RD(X,Q%/s))
Since Q5 /s is a complex of p~!Og-modules, these cohomology groups are naturally
modules over H°(S, Og).
Given a commutative diagram
X —=X
|
S ——=5
of schemes, using the canonical maps of Section [2] we obtain pullback maps
f* : le()(7 Q;(/S) — RF(X/, Q;{//SI)
and _ _
f* i Hyp(X/S) — Hap(X'/S)
These pullbacks satisfy an obvious composition law. In particular, if we work over

a fixed base scheme S, then de Rham cohomology is a contravariant functor on the
category of schemes over S.

Lemmal 3.1. Let X — S be a morphism of affine schemes given by the ring map
R — A. Then RT(X, Q% 5) =Y g in D(R) and Hi(X/S) = Hi(Q;‘/R).

Proof. This follows from Cohomology of Schemes, Lemma [2.2]and Leray’s acyclic-
ity lemma (Derived Categories, Lemma [16.7)). O

Lemma 3.2. Letp: X — S be a morphism of schemes. If p is quasi-compact and
quasi-separated, then Rp*Q;(/S is an object of Dgcon(Os).

Proof. There is a spectral sequence with first page Ef b= Rp.Q4% g converging
to the cohomology of Rp,Q% 4 (see Derived Categories, Lemma . Hence by
Homology, Lemma it suffices to show that Rbp*Q§( /g s quasi-coherent. This
follows from Cohomology of Schemes, Lemma [4.5 O

Lemmal 3.3. Let p : X — S be a proper morphism of schemes with S locally
Noetherian. Then Rp*Q;(/S is an object of Dcon(Og).

Proof. In this case by Morphisms, Lemma |32.12 the modules QlX /g are coherent.
Hence we can use exactly the same argument as in the proof of Lemma [3.2] using
Cohomology of Schemes, Proposition [19.1 O

Lemmal 3.4. Let A be a Noetherian ring. Let X be a proper scheme over S =
Spec(A). Then Hip(X/S) is a finite A-module for all i.

Proof. This is a special case of Lemma [3.3 (]
Lemma 3.5. Let f : X — S be a proper smooth morphism of schemes. Then

Rf*Q’;(/S, p >0 and Rf*Q;(/S are perfect objects of D(Og) whose formation com-
mutes with arbitrary change of base.
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Proof. Since f is smooth the modules Qg( /g are finite locally free Ox-modules,
see Morphisms, Lemma [34.12] Their formation commutes with arbitrary change of
base by Lemma Hence Rf, Q% /s Is a perfect object of D(0Og) whose formation

commutes with arbitrary base change, see Derived Categories of Schemes, Lemma
This proves the first assertion of the lemma.

To prove that Rf.Q% /s is perfect on S we may work locally on S. Thus we may
assume S is quasi-compact. This means we may assume that % /s is zero for n
large enough. For every p > 0 we claim that Rf*UZpQ;(-/S is a perfect object of
D(Og) whose formation commutes with arbitrary change of base. By the above
we see that this is true for p > 0. Suppose the claim holds for p and consider the
distinguished triangle

0>p2% /5 = 02p-10% /g = Qé’{fs[—(p =] = (02p02%/5)[1]

in D(f~1Og). Applying the exact functor Rf, we obtain a distinguished triangle
in D(Og). Since we have the 2-out-of-3 property for being perfect (Cohomology,
Lemma i we conclude Rf.0>p-19% 5 is a perfect object of D(Og). Similarly

for the commutation with arbitrary base change. O

4. Cup product

Consider the maps Q’)’(/S X Qg(/s — Q’;;?g given by (w,n) — w A n. Using the

formula for d given in Section and the Leibniz rule for d : Ox — Qx/g we see that
d(wAn) =d(w) An+ (—=1)%e«y A d(n). This means that A defines a morphism
of complexes of p~!Og-modules.

Combining the cup product of Cohomology, Section with (4.0.1) we find a
H(S, Og)-bilinear cup product map

U: Hip(X/S) x Hyp(X/S) — Hyp! (X/9)

For example, if w € T'(X, Qfx/s) and n € T'(X, Qj}?/s) are closed, then the cup
product of the de Rham cohomology classes of w and 7 is the de Rham cohomology

class of w A 1, see discussion in Cohomology, Section
Given a commutative diagram
X —X
| ]
S —— S
of schemes, the pullback maps f* : RI'(X, Q;(/S) — RT(X', QB(,/S,) and f* :
H!n(X/S) — Hip(X'/S') are compatible with the cup product defined above.

Lemma 4.1. Let p : X — S be a morphism of schemes. The cup product on
H;p(X/S) is associative and graded commutative.

Proof. This follows from Cohomology, Lemmas and and the fact that A
is associative and graded commutative. [
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Remark| 4.2. Let p : X — S be a morphism of schemes. Then we can think
of Q% /g as a sheaf of differential graded p~—!g-algebras, see Differential Graded
Sheaves, Definition[I2.1] In particular, the discussion in Differential Graded Sheaves,
Section |32 applies. For example, this means that for any commutative diagram

X——Y

f
h
S——T
of schemes there is a canonical relative cup product

e Rf*QS(/S ®Z'71@T Rf*QS(/s — Rf*QS(/S

in D(Y,q 'Or) which is associative and which on cohomology reproduces the cup
product discussed above.

Remark 4.3. Let f: X — S be a morphism of schemes. Let { € Hjp(X/S).
According to the discussion Differential Graded Sheaves, Section [32] there exists a
canonical morphism

¢ Q%/s = Q%/sln]
in D(f~1Ogs) uniquely characterized by (1) and (2) of the following list of properties:

(1) & can be lifted to a map in the derived category of right differential graded
5% / g-modules, and

(2) €(1) =€ in HO(X, QY g[n]) = Hjr(X/S),

(3) the map & sends n € HjL(X/S) to EUn in HjA™(X/9),

(4) the construction of £’ commutes with restrictions to opens: for U C X open
the restriction |y is the map corresponding to the image &|y € HYz(U/S),

(5) for any diagram as in Remark we obtain a commutative diagram

RfOY /s Of 10, REQY s —— REQ% s

£/®idi \LE/

Rf.Q% sln) ®L., REQY s —— REQY 5[N]
in D(Y,q1O7).
5. Hodge cohomology

Let p: X — S be a morphism of schemes. We define the Hodge cohomology of X
over S to be the cohomology groups
Moo (X/8) = @D, HI(X,0% )
viewed as a graded H°(X,Ox)-module. The wedge product of forms combined
with the cup product of Cohomology, Section 31| defines a H?(X, Ox)-bilinear cup
product _ o
U: H;‘—Iodge(X/S) X H}{odge(X/S) — Hg:)jdge(X/S)

Of course if £ € H(X, Qi/s) and & € HY (X, Q’)’;/S) then £UE" € HITY (X, Qé’:}g)

Lemmal 5.1. Let p: X — S be a morphism of schemes. The cup product on
Hip 40 (X/S) is associative and graded commutative.
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Proof. The proof is identical to the proof of Lemma O
Given a commutative diagram

X —X

|

S ——=5

of schemes, there are pullback maps f* : Hy,4,.(X/S) — Hipg,e(X'/S") com-
patible with gradings and with the cup product defined above.

6. Two spectral sequences

Let p: X — S be a morphism of schemes. Since the category of p~'Og-modules
on X has enough injectives there exist a Cartan-Eilenberg resolution for €25 /s See
Derived Categories, Lemma Hence we can apply Derived Categories, Lemma
to get two spectral sequences both converging to the de Rham cohomology of
X over S.

The first is customarily called the Hodge-to-de Rham spectral sequence. The first
page of this spectral sequence has

EPY = HI(X, 0% )

which are the Hodge cohomology groups of X/S (Whence the name). The differ-

ential d; on this page is given by the maps dy"? : HI(X, Q’)’(/S) — HI(X. QI)’;;}?)

induced by the differential d : QF s~ Qz;;g Here is a picture

H%(X,0x) — H?(X, 0}

Ys ) —= H2(X, 03

x/s)

) — H2(X, Qs

— —
— —
— —
— —

a0 — a

H(X,0x) — H'(X, QX/S) s H? (X QX/S) —— HY(X, 0% 5)

— —
— —
— —
— —
— —
— —
— —

~ s To~as

) > HO(X, 0% /5) — H(X, 0% )

HO(X,0x) — H°(X, Q! 2 /s

X/8

where we have drawn striped arrows to indicate the source and target of the differ-
entials on the Fs page and a dotted arrow for a differential on the F3 page. Looking
in degree 0 we conclude that

Hyp(X/S) = Ker(d : H(X,0x) = H(X, Q%))

Of course, this is also immediately clear from the fact that the de Rham complex
starts in degree 0 with Ox — Qﬁ(/s.

The second spectral sequence is usually called the conjugate spectral sequence. The
second page of this spectral sequence has

Ep? = HP(X, H(Q%/s)) = HP (X, H7)
where H? = H(Q% / ) is the gth cohomology sheaf of the de Rham complex of
X/S. The differentials on this page are given by EEY — EFY*971 Here is a
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picture

HO(X,H?) HY(X,H?) H?(X,H?) H3(X,H?)

HO(X,HY) (X, H) HY(X,HY) H3 (X, H)

HO(X, 1) HY(X,H°) H2(X,H°) ' H3(X, H°)
Looking in degree 0 we conclude that
Hap(X/S) = H°(X,H")
which is obvious if you think about it. In degree 1 we get an exact sequence
0— HYX,H%) — Hjp(X/S) — H(X,H') — H*(X,H") — H3,(X/S)

It turns out that if X — S is smooth and S lives in characteristic p, then the
sheaves H? are computable (in terms of a certain sheaves of differentials) and the
conjugate spectral sequence is a valuable tool (insert future reference here).

7. The Hodge filtration

Let X — S be a morphism of schemes. The Hodge filtration on H}(X/S) is the fil-
tration induced by the Hodge-to-de Rham spectral sequence (Homology, Definition
24.5)). To avoid misunderstanding, we explicitly define it as follows.

Definition 7.1. Let X — S be a morphism of schemes. The Hodge filtration on
H,(X/S) is the filtration with terms

FPHjip(X/S) = Im (H™ (X, 0,9% 5) — Hin(X/9))
where o>,0% /s is as in Homology, Section

Of course 07,82y ¢ is a subcomplex of the relative de Rham complex and we obtain
a filtration

Q;(/S = 0‘209;(/5« D 0‘219;(/5 D UZQQ;(/S D 0'239;(/5 D...

of the relative de Rham complex with gr’(Q% ) = 98 /S[—p]. The spectral se-
quence constructed in Cohomology, Lemma for Q% /s viewed as a filtered com-
plex of sheaves is the same as the Hodge-to-de Rham spectral sequence constructed
in Section |§| by Cohomology, Example m Further the wedge product
sends Tot(0>i2% /5 ®p-105 0>;02% /) into 0>i4;02% 5. Hence we get commutative
diagrams

H™(X,02:0% ) X H™(X,05,Q% 5)) —= H™™ (X, 0511;% 5))

| |

Hip(X/S) x Hip(X/5) Hyg ™ (X/S)

In particular we find that

FIH}(X/S)UFIHTH(X/S) € FIHHE™(X/S)
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8. Kiinneth formula
An important feature of de Rham cohomology is that there is a Kiinneth formula.

Let a: X — S and b : Y — S be morphisms of schemes with the same target.
Let p: X XxgY — X and ¢ : X XxgY — Y be the projection morphisms and
f=aop=">bogq. Here is a picture

XXSY

In this section, given an Ox-module F and an Oy-module G let us set
]:@ g = p*]: ®OX><SY q*g
The bifunctor (F,G) — F X G on quasi-coherent modules extends to a bifunctor
on quasi-coherent modules and differential operators of finite over over S, see Mor-
phisms, Remark The differentials of the de Rham complexes 2%, /s and €25, /s
are differential operators of order 1 over .S by Modules, Lemma Thus it makes
sense to consider the complex
Tot(2%/s KRy /5)
Please see the discussion in Derived Categories of Schemes, Section
Lemma 8.1. In the situation above there is a canonical isomorphism
Tot(Q% s WO 5) — Qx v ovys

of complexes of f~'Og-modules.

Proof. We know that Qx . .yv/s = p*Qx/s®q*y,s by Morphisms, Lemma [32.11
Taking exterior powers we obtain

Xxsv/s = @Hj:np*wx/s R0Oxxgy €y /s = @szn Vs WY

by elementary properties of exterior powers. These identifications determine iso-
morphisms between the terms of the complexes on the left and the right of the
arrow in the lemma. We omit the verification that these maps are compatible with
differentials. O

Set A = T'(S,0g). Combining the result of Lemma with the map Derived
Categories of Schemes, Equation (24.0.2)) we obtain a cup product

RT(X,0%,5) ®% RT(Y,05/5) — RO(X x5 Y, 0% iy/s)

On the level of cohomology, using the discussion in More on Algebra, Section
we obtain a canonical map

Hjp(X/S) @a Hip(Y/S) — Hy? (X x5 Y/S), (£,¢) — p*€Uq*¢

We note that the construction above indeed proceeds by first pulling back and then
taking the cup product.
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Lemmal 8.2. Assume X and Y are smooth, quasi-compact, with affine diagonal
over S = Spec(A). Then the map

RT(X,Q%/5) ®4 RT(Y,9%,g) — RT(X x5V, Q% y/s)
is an isomorphism in D(A).

Proof. By Morphisms, Lemma the sheaves Q% ¢ and QY ¢ are finite locally
free Ox and Oy-modules. On the other hand, X and Y are flat over S (Morphisms,
Lemma and hence we find that Q’;(/S and Q%S are flat over S. Also, ob-
serve that Q% /s is a locally bounded. Thus the result by Lemma and Derived
Categories of Schemes, Lemma [24.1 O

There is a relative version of the cup product, namely a map
° L ° o
Ra/* X/S ®OS Rb*QY/S —>Rf*QX><sY/S

in D(Og). The construction combines Lemmawith the map Derived Categories
of Schemes, Equation (24.0.1)). The construction shows that this map is given by
the diagram

Ra. % /g B0 Rb Ay g

units of adjunction

Rf. (p%Q;(/S) ®%s Rf*(qflﬂ;f/s) — Rf. (QB(XSY/S) ‘g%s Rfs (Q;(XSY/S)
relative cup product relative cup product
Rf. (p%Q;{/S ®If—1os ‘1719;//5) E—— Rf*(QB(xsy/s ®If—1os Q;(XSY/S)
from derived to usual from derived to usual
Rf.Tot(p™' Q%5 @105 QY /) > R Tot(Q% o y/s @105 Ly gvys)

canonical map NRw—nAw

Rf*Tot(Q;(/S®Q;//S) Rf*QB(st/S
Here the first arrow uses the units id — Rp,p~! and id = Rgq.q¢~! of adjunction as
well as the identifications Rf,p~' = Ra.Rp.p~' and Rf.q ' = Rb,Rq.q~'. The
second arrow is the relative cup product of Cohomology, Remark The third
arrow is the map sending a derived tensor product of complexes to the totalization of
the tensor product of complexes. The final equality is Lemma[8.1] This construction
recovers on global section the construction given earlier.

Lemma 8.3. Assume X — S and Y — S are smooth and quasi-compact and
the morphisms X — X xg X and Y — 'Y XgY are affine. Then the relative cup
product

Ra, % /g ®p, Rb. s — REQ% . ov/s
is an isomorphism in D(Og).

Proof. Immediate consequence of Lemma [8.2 (]
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9. First Chern class in de Rham cohomology
Let X — S be a morphism of schemes. There is a map of complexes
dlog : Ox[-1] — Q%5

which sends the section g € O% (U) to the section dlog(g) = g~ 'dg of Qﬁ(/S(U).
Thus we can consider the map

Pic(X) = H'(X,0%) = H*(X, O [-1]) — H3(X/S)

where the first equality is Cohomology, Lemma [6.I] The image of the isomorphism
class of the invertible module £ is denoted c¢%(L) € H2,(X/S).

We can also use the map dlog : O% — Qﬁ(/s to define a Chern class in Hodge
cohomology

Hodge .
S J :PIC(X) —>H1(X7Q}(/S) CHI%odge(X/S)
These constructions are compatible with pullbacks.
Lemma 9.1. Given a commutative diagram
X’ ? X
S ——85

of schemes the diagrams

Pic(X") <f— Pic(X) Pic(X") % Pic(X)
ch\L \Lc‘fR cf"dgel J{C{iodge
H3p(X'[8') <— H3a(X/S)  HY(X',QL, o) <— HY(X,Q )
commute.
Proof. Omitted. O

Let us “compute” the element c§(£) in Cech cohomology (with sign rules for
Cech differentials as in Cohomology, Section . Namely, choose an open covering
U : X = ;e Ui such that we have a trivializing section s; of L|y, for all .
On the overlaps U,,;, = U;, NU;, we have an invertible function f; ;, such that

_ . -1
fioin = Siy Uioilﬂ Of course we have

fivis

The cohomology class of £ in H'(X, 0%) is the image of the Cech cohomology class
of the cocycle {fi i, } in C*(U, O%). Therefore we see that {7 (L) is the image of
the cohomology class associated to the Cech cocycle {ay,..;, } in Tot(C*(U, Q%) s)
of degree 2 given by

(1) iy =0 in Q% 5(U,,),

(2> Qigiy = fi;illdfioil in Q}){/S(Uioil)? and

(3) igiriz = 01 Ox/5(Uipiin)-

Uigiy Sio

-1

Uigiyio fioig =1

Uigiyio fioil Uigiyig

IThe Cech differential of a 0-cycle {a;,} has aj; — a;, over Usy;, -
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Suppose we have invertible modules L, k = 1, ..., a each trivialized over U; for all
i € I giving rise to cocycles fi s, and oy = {Oék,io...ip} as above. Using the rule in
Cohomology, Section [25] we can compute

62061UO[2U...UO(@
to be given by the cocycle 8 = {f3;,...;, } described as follows

(1) Big...i, =0 1in Qi?/fgp(Uio,_ip) unless p = a, and

(2) Bigia = (1) 20y iy Aaiin Ao A Qi iy 10 Q% 5(Uig..0,)-
Thus this is a cocycle representing c§%(L£1) U ... U c§E(L,) Of course, the same

computation shows that the cocycle {85, } in C*(U, Q% /5)) represents the coho-

mology class ¢ °Me(L) U ... Uc¢(L,)

Remark| 9.2. Here is a reformulation of the calculations above in more abstract
terms. Let p : X — S be a morphism of schemes. Let £ be an invertible Ox-
module. If we view dlog as a map

Ox[=1] = 0210% 5
then using Pic(X) = H'(X, O%) as above we find a cohomology class
n(L) € H*(X,010%5)

The image of 71 (£) under the map 0>1Q% g — 2%/ g recovers c{R(L). In particular

we see that cf®(L) € F'H2,(X/S), see Section E The image of v1(£) under
the map 0>1Q% /5 — Q%{/s[_l] recovers ¢i'°%¢(L). Taking the cup product (see

Section @ we obtain

E=m(L1)U...Un(Ly) € H**(X,05a0%/5)
The commutative diagrams in Section [7|show that ¢ is mapped to c{f*(£y)U... U
ctR(L,) in H2%(X/S) by the map 0>afl% /g = Q% /5. Also, it follows R (Ly)U. ..U
c$R(L,) is contained in F*H32%(X/S). Similarly, the map 0>a2% /5 = /5[0l

sends € to % (L) UL .. UM (L,) in H(X, Q%/s)-

Remark| 9.3. Let p : X — S be a morphism of schemes. For ¢ > 0 denote
Qfx e QfX /s the abelian subsheaf generated by local sections of the form

dlog(ui) A ... Adlog(u;)
where u1,...,u, are invertible local sections of Ox. For ¢ = 0 the subsheaf
Qg(/S,log C Ox is the image of Z — Ox. For every ¢ > 0 we have a map of
complexes ,

Q%5101 — Q%5

because the derivative of a logarithmic form is zero. Moreover, wedging logarithmic
forms gives another, hence we find bilinear maps

. Ol Vi i+J
N s009 X /5105 — X510

compatible with (4.0.1) and the maps above. Let £ be an invertible Ox-module.
Using the map of abelian sheaves dlog : O% — Qﬁg /S,log and the identification
Pic(X) = H'(X,0%) we find a canonical cohomology class

’3/1(‘6) € Hl(Xv Q%(/S,log)
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These classes have the following properties

(1) the image of 41 (£) under the canonical map Qﬁ(/s’log [-1] = 0>19% 5 sends
71(L) to the class v1(£) € H*(X, 0>10% /) of Remark

(2) the image of 41(£) under the canonical map Qﬁ(/&log[—l] — Q% sends
51(£) to (L) in H2,(X/S),

(3) the image of 41 (£) under the canonical map Qk/s’log — Qk/s sends 31 (L)
to ¢y “¥°(L) in HY(X, QK 4),

(4) the construction of these classes is compatible with pullbacks,

(5) add more here.

10. de Rham cohomology of a line bundle

A line bundle is a special case of a vector bundle, which in turn is a cone endowed
with some extra structure. To intelligently talk about the de Rham complex of
these, it makes sense to discuss the de Rham complex of a graded ring.

Remark 10.1 (de Rham complex of a graded ring). Let G be an abelian monoid
written additively with neutral element 0. Let R — A be a ring map and assume
A comes with a grading A = @geG Ay by R-modules such that R maps into Ao
and Ay - Ay C Agyg. Then the module of differentials comes with a grading

Qa/r= @QGG Qa/r,g

where Q4 /g 4 is the R-submodule of Q4,5 generated by aopda; with a; € A, such
that ¢ = go + ¢1. Similarly, we obtain

p — P
QA/R - @QEG QA/R79

where QZ/R’Q is the R-submodule of QZ/R generated by agda; A ... A da, with

a; € Ay, such that g = go + 91 + ... + gp. Of course the differentials preserve
the grading and the wedge product is compatible with the gradings in the obvious
manner.

Let f : X — S be a morphism of schemes. Let 7 : ¢ — X be a cone, see
Constructions, Definition Recall that this means 7 is affine and we have a
grading m,.0c = @,,~¢An with Ay = Ox. Using the discussion in Remark

over affine opens we find thatf’]
T (Qgs) = @nZO Q%/5.m

is canonically a direct sum of subcomplexes. Moreover, we have a factorization
Q%/s = Q50 = T (QE)s)

and we know that w A n € nggg’n+m ifwe Q%/S,n and n € Q%/S’m.

Let f : X — S be a morphism of schemes. Let 7 : L. — X be the line bundle
associated to the invertible O x-module £. This means that 7 is the unique affine

morphism such that
mOL = @n>0 cen

2With excuses for the notation!
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as Ox-algebras. Thus L is a cone over X. By the discussion above we find a
canonical direct sum decomposition

7T*(Qi/s) = @n>0 Qi/s,n

compatible with wedge product, compatible with the decomposition of 7,0y, above,
and such that {2x,5 maps into the part Qg of degree 0.

There is another case which will be useful to us. Namely, consider the complememﬂ
L* C L of the zero section o : X — L in our line bundle L. A local computation
shows we have a canonical isomorphism
* — Qn
(L* = X),0p. = @nez L
of Ox-algebras. The right hand side is a Z-graded quasi-coherent O x-algebra.
Using the discussion in Remark [I0.1] over affine opens we find that

(L* — X)*(Q;n/s) = @nez Q::*/s,n

compatible with wedge product, compatible with the decomposition of (L* —
X).«Op+ above, and such that 1x,s maps into the part Q. g0 of degree 0. The
complex QF, /5,0 will be of particular interest to us.

Lemma 10.2. With notation as above, there is a short exact sequence of complezes
0— Q;(/S — Qi*/s,o — Q}/S[—l] —0
Proof. We have constructed the map QS(/S — Qi*/s o above.

Construction of Res : 7. ¢ ) — Q% 5[~1]. Let U C X be an open and let s € L(U)
and s’ € L271(U) be sections such that s’s = 1. Then s gives an invertible section
of the sheaf of algebras (L* — X),Op+ over U with inverse s’ = s~!. Then we
can consider the 1-form dlog(s) = s'd(s) which is an element of Q}J*/S}O(U) by our
construction of the grading on Q}, /5" Our computations on affines given below will
show that 1 and dlog(s) freely generate Q7. ¢ ,|v as a right module over Q% ¢|u.

Thus we can define Res over U by the rule
Res(w’ + dlog(s) Aw) = w

for all w',w € Q% / 5(U). This map is independent of the choice of local generator s
and hence glues to give a global map. Namely, another choice of s would be of the
form gs for some invertible g € Ox(U) and we would get dlog(gs) = g~ *d(g) +
dlog(s) from which the independence easily follows. Finally, observe that our rule
for Res is compatible with differentials as d(w’+dlog(s) Aw) = d(w’)—d log(s) Ad(w)
and because the differential on Q% 5[~1] sends w’ to —d(w’) by our sign convention
in Homology, Definition [14.7]

Local computation. We can cover X by affine opens U C X such that L]y = Oy
which moreover map into an affine open V' C S. Write U = Spec(A), V' = Spec(R)
and choose a generator s of £. We find that we have

L* xx U = Spec(A[s,s™])

3The scheme L* is the Gm-torsor over X associated to L. This is why the grading we get

below is a Z-grading, compare with Groupoids, Example and Lemmas and
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Computing differentials we see that
9}4[873—1]/1% = Als, s ®a Q}L‘/R ® Als, s !]dlog(s)
and therefore taking exterior powers we obtain
QZ[&S,I]/R = Als,s 1 ®a QZ/R @ Als, s ]dlog(s) ®a Qf’;/]l?
Taking degree 0 parts we find
-1

Vls.s—11/m0 = Payr © dlog(s) @4 Y

and the proof of the lemma is complete. O

Lemma 10.3. The “boundary” map 6 : Q% ¢ — Q% 5[2] in D(X, f~1Os) coming
@ is the map of Remark[{.3 for & =

from the short exact sequence in Lemma
R (L).
Proof. To be precise we consider the shift
0— 93(/5[1] — Q}J*/S)O[l] — Q;(/S —0
of the short exact sequence of Lemma As the degree zero part of a grading
on (L* — X).Q7. 5 we see that QF. ¢, is a differential graded Ox-algebra and
that the map Qf% /s Q3. /5,0 is a homomorphism of differential graded Ox-
algebras. Hence we may view Q% ¢[1] = Q7. ¢,[1] as a map of right differential
graded Q% g-modules on X. The map Res : Q7. ¢,[1] = Q% g is a map of right
differential graded Q5 / g-modules since it is locally defined by the rule Res(w’ +
dlog(s) A w) = w, see proof of Lemma Thus by the discussion in Differential
Graded Sheaves, Section we see that § comes from a map &' : Q% g — Q% 5[2]
in the derived category D (2% /s d) of right differential graded modules over the de
Rham complex. The uniqueness averted in Remark shows it suffices to prove
that §(1) = c4(L).

We claim that there is a commutative diagram

0 0% E zZ 0

J T

0 —=0%5[l] —= Q7. )50t —= 0%

—=0

where the top row is a short exact sequence of abelian sheaves whose boundary
map sends 1 to the class of £ in H'(X,0%). It suffices to prove the claim by the
compatibility of boundary maps with maps between short exact sequences. We
define E as the sheafification of the rule

U {(s,n) |n€Z, sec L£L"(U) generator}

with group structure given by (s,n) - (t,m) = (s ® t,n + m). The middle vertical
map sends (s,n) to dlog(s). This produces a map of short exact sequences because
the map Res : Qi* /s0 Ox constructed in the proof of Lemma [10.2| sends
dlog(s) to 1 if s is a local generator of £. To calculate the boundary of 1 in
the top row, choose local trivializations s; of £ over opens U; as in Section [0

On the overlaps U,,;, = U;, NU;, we have an invertible function f;,;, such that
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Jioiy = Sy |Umi1 Sig |(_]i101,’1 and the cohomology class of £ is given by the Cech cocycle
{fisi, }- Then of course we have

(fio'iuo) = (Si17 1)‘Ui0'i1 : (5i07 1)|51

igil

as sections of F which finishes the proof. O

Lemmal 10.4. With notation as above we have
(1) Qi*/sn = Q]z*/so Roy LO™ for alln € Z as quasi-coherent Ox-modules,
(2) Q%5 =97 /x as complezes, and

3) forn >0 and p > 0 we have QO =0
(3) f p

P
L/Xn L*/Sn’

Proof. In each case there is a globally defined canonical map which is an isomor-
phism by local calculations which we omit. ]

Lemma 10.5. In the situation above, assume there is a morphism S — Spec(Q).
Then Q% g — ™87 /g is a quasi-isomorphism and Hjp(X/S) = Hjp(L/S).

Proof. Let R be a Q-algebra. Let A be an R-algebra. The affine local statement
is that the map
Qyr — QLapyr

is a quasi-isomorphism of complexes of R-modules. In fact it is a homotopy equiv-
alence with homotopy inverse given by the map sending gw + ¢’dt Aw’ to g(0)w for
9,9 € Alt] and w,w’ € Q2% /- The homotopy sends gw + gdt Aw' to ([ ¢')w" were
[ ¢" € Alt] is the polynomial with vanishing constant term whose derivative with
respect to ¢ is g’. Of course, here we use that R contains Q as [ " = (1/n)t"*1. O

Example 10.6. Lemma is false in positive characteristic. The de Rham
complex of A} = Spec(k[z]) over a field k looks like a direct sum

k@ @@1(1; " D ke

Hence if the characteristic of k is p > 0, then we see that both Hlp(A}/k) and
H}.(A}/k) are infinite dimensional over k.

11. de Rham cohomology of projective space

Let A be a ring. Let n > 1. The structure morphism P’ — Spec(A) is a proper
smooth of relative dimension n. It is smooth of relative dimension n and of finite
type as P”} has a finite affine open covering by schemes each isomorphic to A", see
Constructions, Lemmal[I3.3] It is proper because it is also separated and universally
closed by Constructions, Lemmal[13.4] Let us denote O and O(d) the structure sheaf
Opn and the Serre twists Opn (d). Let us denote Q = QP’Z\/A the sheaf of relative
differentials and P its exterior powers.

Lemma 11.1. There exists a short exact sequence
0—Q— 0% 500

Proof. To explain this, we recall that P", = Proj(A[Ty,...,T,]), and we write

symbolically
o(-1)#" =P O(—1)dT;

7j=0,....,n
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The first arrow
Q- @j:o,.“,n O(—1)dT;

in the short exact sequence above is given on each of the standard opens D (T;) =
Spec(A[Ty/T;, . .., Tn/T;]) mentioned above by the rule

D BT/ Ty — Y /Ty = (3 0T/ T7)AT;
This makes sense because 1/T; is a section of O(—1) over D (T;). The map
@j:o,...,n O(-1)dT; — O

is given by sending d7; to T);, more precisely, on D (T;) we send the section ) g,;dT;
to > Tjg;. We omit the verification that this produces a short exact sequence. O

Given an integer k € Z and a quasi-coherent Op»-module F denote as usual F (k)
the kth Serre twist of F. See Constructions, Definition [I0.1}

Lemmal 11.2. In the situation above we have the following cohomology groups
(1) HY(P7%,QP) =0 unless 0 <p=gq <nmn,
(2) for 0 <p<n the A-module H?(P",QP) free of rank 1.
(3) forq>0, k>0, and p arbitrary we have H1(P", W (k)) =0, and
(4) add more here.

Proof. We are going to use the results of Cohomology of Schemes, Lemma [8.1
without further mention. In particular, the statements are true for H?(P"%, O(k)).

Proof for p = 1. Consider the short exact sequence
0= Q=01 500

of Lemma Since O(—1) has vanishing cohomology in all degrees, this gives that

H(P7, Q) is zero except in degree 1 where it is freely generated by the boundary

of 1 in HO(P%,0).

Assume p > 1. Let us think of the short exact sequence above as defining a 2 step

filtration on O(—1)®"*!. The induced filtration on APO(—1)®"*+1 looks like this
0— QP = AP (O(-1)*"H) - QP! =0

Observe that APO(—1)®"*! is isomorphic to a direct sum of n+ 1 choose p copies of
O(—p) and hence has vanishing cohomology in all degrees. By induction hypothesis,
this shows that H?(P", QP) is zero unless ¢ = p and H?(P";, ) is free of rank 1
with generator the boundary of the generator in HP~1(P"%, QP~1).

Let k > 0. Observe that Q" = O(—n — 1) for example by the short exact sequence
above for p = n + 1. Hence Q"(k) has vanishing cohomology in positive degrees.
Using the short exact sequences

0 — QP(k) — AP (O(=1)®"1) (k) — QP71 (k) —» 0

and descending induction on p we get the vanishing of cohomology of Q7 (k) in
positive degrees for all p. |

Lemma 11.3. We have HI(P7,QP) =0 unless 0 < p=qg <n. For0 <p<mn
the A-module H? (P, QP) free of rank 1 with basis element c¢I°¥9¢(O(1))P.


https://stacks.math.columbia.edu/tag/0FUK
https://stacks.math.columbia.edu/tag/0FMI

0FMJ

DE RHAM COHOMOLOGY 17

Proof. We have the vanishing and and freeness by Lemma [11.2 For p = 0 it is
certainly true that 1 € HY(P"%, 0) is a generator.

Proof for p = 1. Consider the short exact sequence
0-Q—0(-1)% 5050

of Lemma [11.1] In the proof of Lemma we have seen that the generator of
HY(P?, Q) is the boundary & of 1 € H°(P%,0). As in the proof of Lemma [L1.1]
we will identify O(—1)®"*! with @,_, , O(~1)dT;. Consider the open covering

uzpnzLjﬁanD+aw

We can lift the restriction of the global section 1 of O to U; = D (T;) by the section

T, 1dT; of @ O(—1)dT; over U;. Thus the cocyle representing ¢ is given by
71T, — T, dT;, = dlog(T;, /Tiy) € QUigi,)

On the other hand, for each i the section T; is a trivializing section of O(1) over U;.

Hence we see that f;;, = T3, /T, € O*(Usys,) is the cocycle representing O(1) in

Pic(P7), see Section |9} Hence ¢7°%¢(O(1)) is given by the cocycle dlog(T}, /T;,)

which agrees with what we got for £ above.

Proof for general p by induction. The base cases p = 0,1 were handled above.
Assume p > 1. In the proof of Lemma [I1.2] we have seen that the generator
of HP(P", QP) is the boundary of ¢I’°¥¢((0(1))?~1 in the long exact cohomology
sequence associated to

0— QF = AP (O(-1)*") - P! =0
By the calculation in Section |§| the cohomology class ¢7°%¢(O(1))P~1 is, up to a
sign, represented by the cocycle with terms
Bio.iy_y = dlog(Ti, /Tiy) Adlog(Ty, /Ti,) A ... Adlog(T;, ,/Ti, )
in Qp’l(UiO___ip_l ). These f;,...i,_, can be lifted to the sections BiO...ip_l = TigldTio/\
Big...i,_, of AP(@ O(—1)dTj) over Us,...;,_,. We conclude that the generator of
HP(P7,QP) is given by the cocycle whose components are
p an -1 P arp—1
Zazo(il) 510...1';4..11) = ,‘Til dT;, A 51’1---% + Za:1(71) Tio dT;, A ﬂio.“i;...il,
= (I, 'dT;, — T;,'dTy) A Biy.i, + Ty T3, A (D)
= dlog(T3, /Ti,) N Biy ..,

viewed as a section of QP over Uiy...i, - This is up to sign the same as the cocycle

representing ¢°%¢(O(1))? and the proof is complete. O

i0.mip

Lemmal 11.4. For 0 < i < n the de Rham cohomology H3%(P" /A) is a free A-
module of rank 1 with basis element c§%(O(1))!. In all other degrees the de Rham
cohomology of Py over A is zero.

Proof. Consider the Hodge-to-de Rham spectral sequence of Section [ By the
computation of the Hodge cohomology of P’} over A done in Lemma we see
that the spectral sequence degenerates on the F; page. In this way we see that
H2,(P7%/A) is a free A-module of rank 1 for 0 < i < n and zero else. Observe that
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cfR(O(1))! € H2,(P%/A) for i = 0,...,n and that for i = n this element is the

image of ¢7°%°(£)™ by the map of complexes

Qpn jal—n] — Qpn 4

This follows for example from the discussion in Remark [0.2] or from the explicit
description of cocycles representing these classes in Section[d] The spectral sequence
shows that the induced map

H"(Py, Qpn y4) — Hip(Ph/A)

is an isomorphism and since c{{"dge(ﬁ)" is a generator of of the source (Lemma
11.3)), we conclude that c{f(L£)" is a generator of the target. By the A-bilinearity
of the cup products, it follows that also ¢{#(L)" is a generator of H24(P%/A) for
0<s<n.

12. The spectral sequence for a smooth morphism

Consider a commutative diagram of schemes

X— =Y
f
N
S
where f is a smooth morphism. Then we obtain a locally split short exact sequence

0— f*Qy/S — Qx/s — Qx/y —0

by Morphisms, Lemma Let us think of this as a descending filtration F' on
QX/S with Foﬂx/s = Qx/s, Flgx/s = f*Qy/S, and F2Q)(/S = 0. Applylng the
functor AP we obtain for every p an induced filtration

_ FOQP

0F N/

%/s s D F'OL =0

R D F¥ gD D FPHIQE

X/8
whose successive quotients are

k k k * Ok —k —10k —k
gl o = Q% o/ F +1Q€(/S = "y ®ox W)y = f "0y s @10, Oy

for £k =0,...,p. In fact, the reader can check using the Leibniz rule that FkQ;(/S
is a subcomplex of Q% /s In this way Q% /s has the structure of a filtered complex.
We can also see this by observing that

FrQ% s = Tm (A Tot(f 1ok s @10, ys) — Vs)
is the image of a map of complexes on X. The filtered complex
0% /s = F'O% /g D F'O% g D F?Q% 5D ...
has the following associated graded parts
gfkﬂgc/s = f_lglff/s[_k] ®f-10y Qx/y

by what was said above.
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Lemma 12.1. Let f : X — Y be a quasi-compact, quasi-separated, and smooth
morphism of schemes over a base scheme S. There is a bounded spectral sequence
with first page
W _ L
EYT = HY(Qy, s ©6, REO%)y)
converging to Rp'*‘qf*Q;(/S.

Proof. Consider Q% /s as a filtered complex with the filtration introduced above.
The spectral sequence is the spectral sequence of Cohomology, Lemma [29.5] By
Derived Categories of Schemes, Lemma we have

Rf.gr* 0% s = Oy 5[k @6, Rf.Q%)y
and thus we conclude. (]
Remark| 12.2. In Lemma consider the cohomology sheaves
Hap(X/Y) = HY(RIQY ) y)

If f is proper in addition to being smooth and S is a scheme over Q then 3, (X/Y)
is finite locally free (insert future reference here). If we only assume H3,(X/Y) are
flat Oy-modules, then we obtain (tiny argument omitted)

B = 0 s o, Hip(X/Y)
and the differentials in the spectral sequence are maps
d11)7q : QZ;K/S ®oy HZR(X/Y) — Ql;j/_é Koy HZR(X/Y)

In particular, for p = 0 we obtain a map d)'? : HI(X/Y) — )5 @0y Hip(X/Y)
which turns out to be an integrable connection V (insert future reference here) and
the complex

Hip(X/Y) = Q%//S ®oy Hip(X/Y) — Q%f/:;‘ ®oy Hip(X/Y) — ...

with differentials given by d}'? is the de Rham complex of V. The connection V is
known as the Gauss-Manin connection.

13. Leray-Hirsch type theorems

In this section we prove that for a smooth proper morphism one can sometimes
express the de Rham cohomology upstairs in terms of the de Rham cohomology
downstairs.

Lemma 13.1. Let f: X — Y be a smooth proper morphism of schemes. Let N
and ny,...,ny > 0 be integers and let & € H j(X/Y), 1 <i < N. Assume for all
points y € Y the images of &1,...,&En in Hip(X,/y) form a basis over k(y). Then
the map

N
@izl Oy[-ni] — Rf.Q% )y
associated to &1, ...,EN 1s an isomorphism.

Proof. By Lemma Rf.Q%,y is a perfect object of D(Oy) whose formation
commutes with arbitrary base change. Thus the map of the lemma is a map a :
K — L between perfect objects of D(Oy) whose derived restriction to any point
is an isomorphism by our assumption on fibres. Then the cone C on a is a perfect
object of D(Oy) (Cohomology, Lemma whose derived restriction to any point
is zero. It follows that C' is zero by More on Algebra, Lemma and a is an
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isomorphism. (This also uses Derived Categories of Schemes, Lemmas [3.5| and
to translate into algebra.) O

We first prove the main result of this section in the following special case.

Lemma 13.2. Let f: X — Y be a smooth proper morphism of schemes over a
base S. Assume

(1) Y and S are affine, and

(2) there exist integers N and ny,...,ny >0 and & € Hjj(X/S), 1 <i <
such that for all points y € Y the images of &1,. .., En in Hp(X,/y) form
a basis over k(y).

N

Then the map
N * * *
@iledR(Y/S)HHdR(X/S% (al,...,aN)»—>Z§iUf a;

is an isomorphism.

Proof. Say Y = Spec(A) and S = Spec(R). In this case Q% p computes RT(Y, Qs
by Lemma Choose a finite affine open covering U : X = J;; U;. Consider the
complex

K* = Tot(C* (U, Q%/s))

as in Cohomology, Section Let us collect some facts about this complex most
of which can be found in the reference just given:

(1) K* is a complex of R-modules whose terms are A-modules,

(2) K* represents RT(X, QS(/S) in D(R) (Cohomology of Schemes, Lemma

and Cohomology, Lemma [25.2)),

(3) there is a natural map Q% /R K* of complexes of R-modules which is
A-linear on terms and induces the pullback map H},(Y/S) — H;r(X/S5)
on cohomology,

(4) K* has a multiplication denoted A which turns it into a differential graded
R-algebra,

(5) the multiplication on K*® induces the cup product on H},(X/S) (Coho-

mology, Section ,
(6) the filtration F' on Q% /s induces a filtration

K*=F'K* > F'K* > F’K* >
by subcomplexes on K*® such that
(a) FFK™ C K™ is an A-submmodule,
(b) FEK* A FUK® ¢ FFHES,
(c) grk K * is a complex of A—modules
(d) g = Tot(C*(U, Q%,y)) and represents RI'(X, Q% ) in D(A),
(e) mult1phcat1on induces an isomorphism Q% /rl—kl ®a gr'K® — gr"K*
We omit the detailed proofs of these statements; please see discussion leading up
to the construction of the spectral sequence in Lemma [T2.1]

For every i = 1,..., N we choose a cocycle z; € K™ representing &;. Next, we look
at the map of complexes

M = @izle Q% pl-ni] — K°
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which sends w in the ith summand to z; A w. All that remains is to show that this
map is a quasi-isomorphism. We endow M*® with the structure of a filtered complex
by the rule

Pt =@ (020 p)n)

With this choice the map % is a morph,ism of filtered complexes. Observe that
gr®’M* = @ A[—n;] and multiplication induces an isomorphism Q% /rl—k] ®a
gr®M® — grkM*. By construction and Lemma we see that

gr'z : gr®M°® — g’ K*
is an isomorphism in D(A). It follows that for all £ > 0 we obtain isomorphisms

grfz - grf M = QZ/R[—IC} @4 gr'M® — Qﬁ/R[—k] @4 gr’K® = gr*K*®

in D(A). Namely, the complex gr’ K® = Tot(C*(U, Q%/y)) is K-flat as a complex

of A-modules by Derived Categories of Schemes, Lemma Hence the tensor
product on the right hand side is the derived tensor product as is true by inspection
on the left hand side. Finally, taking the derived tensor product 2% / rl—k @Y% — is

a functor on D(A) and therefore sends isomorphisms to isomorphisms. Arguing by
induction on k we deduce that

i:M*/FF*M® — K*/FFK*®
is an isomorphism in D(R) since we have the short exact sequences
0— FFM®/FF M — M®JFFIM® — gt"M® — 0

and similarly for K®. This proves that Z is a quasi-isomorphism as the filtrations
are finite in any given degree. O

Proposition|13.3. Let f: X — Y be a smooth proper morphism of schemes over
a base S. Let N andny,...,ny > 0 be integers and let & € Hyj(X/S), 1 <i < N.
Assume for all points y € Y the images of &1,...,&n in Hjp(Xy/y) form a basis
over k(y). The map

£= @&[—ni] : @Q;//S[_ni] — Rf.Q%/s
(see proof) is an isomorphism in D(Y, (Y — S)"1Ogs) and correspondingly the map

N
@izl Hjp(Y/S) — Hjp(X/S), (ar,...,an)— > &U fa;
is an tsomorphism.

Proof. Denote p : X — S and ¢ : Y — S be the structure morphisms. Let
& Q%/s = Q;(/S[ni] be the map of Remark corresponding to &;. Denote

gi . Q;//S — Rf*Q;(/S[nJ
the composition of & with the canonical map Q;,/S — Rf*QS(/S. Using

on cohomology &; is the map 7 + & U f*n from HJ%(Y/S) to HJ5™(X/S). Further,
since the formation of £ commutes with restrictions to opens, so does the formation
of &; commute with restriction to opens.
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Thus we can consider the map
£=Pél-nl: POy sl-n] — REOYs

To prove the lemma it suffices to show that this is an isomorphism in D(Y, ¢ 1Og).
If we could show & comes from a map of filtered complexes (with suitable filtrations),
then we could appeal to the spectral sequence of Lemma to finish the proof.
This takes more work than is necessary and instead our approach will be to reduce
to the affine case (whose proof does in some sense use the spectral sequence).

Indeed, if Y/ C Y is is any open with inverse image X’ C X, then €| x induces the
map

D, | HinlY'/S) — Hin(X'/9), (ar,...an)— Y &lx U fa;

on cohomology over Y’, see discussion above. Thus it suffices to find a basis for
the topology on Y such that the proposition holds for the members of the basis (in
particular we can forget about the map € when we do this). This reduces us to the
case where Y and S are affine which is handled by Lemma and the proof is
complete. O

14. Projective space bundle formula
The title says it all.

Proposition 14.1. Let X — S be a morphism of schemes. Let € be a locally free
Ox-module of constant rank r. Consider the morphism p: P = P(E) — X. Then
the map

@izo =1 Hip(X/S) — Hip(P/S)
given by the rule

(ag,..vara) = AR(Op1) U (@)

is an isomorphism.

Proof. Choose an affine open Spec(A) C X such that & restricts to the triv-

ial locally free module (’)SapreC(A). Then P xx Spec(4) = P’;'. Thus we see

that p is proper and smooth, see Section Moreover, the classes c{%(Op(1))?,
i=0,1,...,r—1restricted to a fibre X, = P’ ~! freely generate the de Rham coho-
mology H}r(X,/y) over k(y), see Lemma Thus we’ve verified the conditions
of Proposition [I3:3 and we win. O

Remark|14.2. In the situation of Proposition we get moreover that the map

é : @t=0 ar—1 ‘.X/S[_Zt] — Rp*Q;D/S

is an isomorphism in D(X, (X — S) 1Ox) as follows immediately from the appli-
cation of Proposition [I3.3] Note that the arrow for ¢ = 0 is simply the canonical
map cp/x : QB(/S — Rp*Q}/S of Section In fact, we can pin down this map
further in this particular case. Namely, consider the canonical map

£ Q%5 = Qp (2]
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of Remark [4.3| corresponding to c¢#(Op(1)). Then
g2(t=1]o...0€'[2]0 & : Qp/g — O/ 5[21]
is the map of Remark corresponding to ¢{F(Op(1))t. Tracing through the
choices made in the proof of Proposition we find the value
€|Q;(/S[—2t] = Rp.&'[-2]o...0 Rp.£'[-2(t — 1)] o Rp.&'[-2t] 0 cpx[-21]

for the restriction of our isomorphism to the summand Q% ¢[—2¢]. This has the
following simple consequence we will use below: let

=L..,r 1. -4/~ Nt=0,...,

viewed as subcomplexes of the source of the arrow &. It follows formally from the
discussion above that

cp/x @§~|M : QS{/S oM — Rp*Q}/s
is an isomorphism and that the diagram

K—> M[2]

élKl J/@M)[Z]
. Rp.g .
Rp*QP/S s Rp*QP/S[Q]
commutes where id : K — M][2] identifies the summand corresponding to ¢ in the

deomposition of K to the summand corresponding to ¢+ 1 in the decomposition of
M.

15. Log poles along a divisor

Let X — S be a morphism of schemes. Let Y C X be an effective Cartier divisor.
If X étale locally along Y looks like Y x A!, then there is a canonical short exact
sequence of complexes

0— Q}/s — Q}/S(logY) — Q;/S[—l] -0

having many good properties we will discuss in this section. There is a variant of this
construction where one starts with a normal crossings divisor (Etale Morphisms,
Definition [21.1]) which we will discuss elsewhere (insert future reference here).

Definition 15.1. Let X — S be a morphism of schemes. Let Y C X be an
effective Cartier divisor. We say the de Rham complex of log poles is defined for
Y C X over S if for all y € Y and local equation f € Ox , of Y we have

(1) Ox,y — Qx/5,y, g+ gdf is a split injection, and

(2) QI))(/S,y is f-torsion free for all p.

An easy local calculation shows that it suffices for every y € Y to find one local
equation f for which conditions (1) and (2) hold.

Lemmal 15.2. Let X — S be a morphism of schemes. Let Y C X be an effective
Cartier divisor. Assume the de Rham complex of log poles is defined for Y C X
over S. There is a canonical short exact sequence of complezes

0— Q}/S — Q}/S(logY) — Q;//S[fl] —0
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Proof. Our assumption is that for every y € Y and local equation f € Ox , of Y
we have

QX/S'y =0x ydf@M and QF = /\P—l(M)df@/\p(M)

X/S,y —

for some module M with f-torsion free exterior powers AP(M). It follows that
O )5, = N(M/fM) = N (M)/f N (M)

Below we will tacitly use these facts. In particular the sheaves QI)’( /s have no
nonzero local sections supported on Y and we have a canonical inclusion

0% /s C Q% /6(Y)
see More on Flatness, Section [42] Let U = Spec(A) be an affine open subscheme
such that Y N U = V(f) for some nonzerodivisor f € A. Let us consider the
Oyp-submodule of QX/S( )| generated by QI)’(/S|U and dlog(f) A Q’)’(/S where

dlog(f) = f~d(f). This is independent of the choice of f as another generator of
the ideal of Y on U is equal to uf for a unit u € A and we get

dlog(uf) — dlog(f) = dlog(u) = v du
which is a section of Qx5 over U. These local sheaves glue to give a quasi-coherent
submodule
f /s C QX/S(logY) C Q?(/S( )

Let us agree to think of QY TRELE quasi-coherent Ox-module. There is a unique
surjective Ox-linear map

Res : QX/S(logY) Qf,/;

defined by the rule
Res(n’ + dlog(f) An) = nlynu
for all opens U as above and all ' € QX/S(U) and 7 € QX/S(U). If a form 7 over

U restricts to zero on Y NU, then n = df An’ + fn” for some forms n’ and 7" over
U. We conclude that we have a short exact sequence

0— O g = O o(logV) = Qg =0

X/S( Y/S

for all p. We still have to define the differentials QX/S(log Y)— Q?}}g(log Y). On
the subsheaf QF X/s We use the differential of the de Rham complex of X over S.

Finally, we define d(dlog(f) An) = —dlog(f) A dn. The sign is forced on us by
the Leibniz rule (on Q% ¢) and it is compatible with the differential on Q. 4[—1]
which is after all —dy,g by our sign convention in Homology, Definition In
this way we obtain a short exact sequence of complexes as stated in the lemma. O

Definition| 15.3. Let X — S be a morphism of schemes. Let Y C X be an
effective Cartier divisor. Assume the de Rham complex of log poles is defined for
Y C X over S. Then the complex

Q%/s(logY’)
constructed in Lemma is the de Rham complex of log poles for Y C X over S.

This complex has many good properties.
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OFUP Lemma 15.4. Letp: X — S be a morphism of schemes. Let Y C X be an
effective Cartier divisor. Assume the de Rham complex of log poles is defined for
Y C X overS.

(1) The maps A= Q% o x Q% /g — Qé’:;qs extend uniquely to Ox -bilinear maps

A Q’;(/S(logY) x Q1

%/s(logY) — Q214 (logY)

X/5
satisfying the Leibniz rule d(w An) = d(w) An+ (—1)3@)w A d(n),
(2) with multiplication as in (1) the map 0%/s = Qk/s(log(Y) is a homomor-
phism of differential graded Og-algebras,
(3) via the maps in (1) we have Qg(/s(log Y)= /\I’(Qk/s(log Y)), and
(4) the map Res: Qk/s(log Y)— Q;//S[—l] satisfies
Res(w A ) = Res(w) Anly
for w a local section of Q’;(/S(log Y) and n a local section of Q§/S.

Proof. This follows by direct calculation from the local construction of the complex
in the proof of Lemma Details omitted. O

Consider a commutative diagram

X’ ? X

S ——85
of schemes. Let Y C X be an effective Cartier divisor whose pullback Y’/ = f*Y
is defined (Divisors, Definition [13.12)). Assume the de Rham complex of log poles
is defined for Y C X over S and the de Rham complex of log poles is defined for
Y’ € X’ over S’. In this case we obtain a map of short exact sequences of complexes

Oﬂfflﬁs(/s HfﬁlQ;(./S(logY) HfﬁlQ;//S

| | |

0—— Q;{’/S/ —_— Q}//S,(log Y/) Q;///S" [—1] —0

[-1] ——=0

Linearizing, for every p we obtain a linear map f*Qg(/S(log Y)— O

X,/S,(log Y.

0FUQ Lemma 15.5. Let f : X — S be a morphism of schemes. Let Y C X be an
effective Cartier divisor. Assume the de Rham complex of log poles is defined for
Y C X over S. Denote

6: 03,6 — Q}/S[Q]
in D(X,f~1Og) the “boundary” map coming from the short exact sequence in
LemmalI524 Denote

¢ Q;(/S - QE{/S[Q}
in D(X, f~1Og) the map of Remaﬂc corresponding to & = ctF(Ox(=Y)). De-
note

(' Q%5 — QY52
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in D(Y, f|3'Os) the map of Remark corresponding to ¢ = ¢ (Ox(=Y)ly).
Then the diagram

B o 1)

Q%/s Y/S

7 6 ’

¢ l / ic
0%/s2l — Q5 5[2]
is commutative in D(X, f~10g).
Proof. More precisely, we define § as the boundary map corresponding to the
shifted short exact sequence

0 — Q%/s[l] = Q% /s(logY)[1] = QF /)¢ = 0

It suffices to prove each triangle commutes. Set £L = Ox(=Y). Denote 7 : L — X
the line bundle with 7.0r, = @, L*".

Commutativity of the upper left triangle. By Lemma the map &’ is the bound-
ary map of the triangle given in Lemma [I0.2} By functoriality it suffices to prove
there exists a morphism of short exact sequences

0 —= 0% g[l] ——= Q7. /50[1] 0%/ 0
00— 0% g[1] — Q% 5(log Y)[1] QY5 0

where the left and right vertical arrows are the obvious ones. We can define the
middle vertical arrow by the rule

W' +dlog(s) Aw— W' +dlog(f) Aw

where w’, w are local sections of Q% /s and where s is a local generator of £ and
f € Ox(-Y) is the corresponding section of the ideal sheaf of Y in X. Since the
constructions of the maps in Lemmas [10.2] and [I5.2) match exactly, this works.

Commutativity of the lower right triangle. Denote L the restriction of L to Y. By
Lemma the map ¢’ is the boundary map of the triangle given in Lemma [10.2
using the line bundle L on Y. By functoriality it suffices to prove there exists a
morphism of short exact sequences

0 — 3 g[1] — Q3 g (log V) [1] —> Qg —> 0
0—= 03 5[] — 05 (1] Qs —=0

where the left and right vertical arrows are the obvious ones. We can define the
middle vertical arrow by the rule

W+ dlog(f) Aw — W'y + dlog(s) Awly

where w’,w are local sections of Q% /s and where f is a local generator of Ox(-Y)

viewed as a function on X and where 35 is f|y viewed as a section of L]y =
Ox(=Y)|y. Since the constructions of the maps in Lemmas and match
exactly, this works. [
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Lemmal 15.6. Let X — S be a morphism of schemes. Let Y C X be an effective
Cartier divisor. Assume the de Rham complex of log poles is defined for Y C X
over S. Let b e HJL(X/S) be a de Rham cohomology class whose restriction to' Y
is zero. Then ci¥(Ox(Y))Ub =0 in H5?(X/S).

Proof. This follows immediately from Lemma Namely, we have
A Ox (V) Ub =~ (Ox(-Y))Ub= —£'(b) = =6(bly) = 0
as desired. For the second equality, see Remark [1.3] O

Lemma 15.7. Let X — T — S be morphisms of schemes. Let Y C X be an
effective Cartier divisor. If both X — T andY — T are smooth, then the de Rham
complex of log poles is defined for Y C X owver S.

Proof. Let y € Y be a point. By More on Morphisms, Lemma there exists
an integer 0 > m and a commutative diagram

Y<~—V ——AT

l J{ \L(al7~--,U«m)'—>(a1,u-,am,o)

™ m—+1
X<~—U—— AT

where U C X is open, V =Y NU, 7 is étale, V = 771 (A%), and y € V. Denote
z € A7 the image of y. Then we have

D _ OP
/sy = QA;?“/S,Z ®OA;L+1,Z Ox.a

by Lemma Denote x1,...,2m41 the coordinate functions on A?H. Since
the conditions (1) and (2) in Definition do not depend on the choice of the
local coordinate, it suffices to check the conditions (1) and (2) when f is the image
of 41 by the flat local ring homomorphism O ATl Ox . In this way we
see that it suffices to check conditions (1) and (2) for A% C A% and the point
z. To prove this case we may assume S = Spec(A) and T = Spec(B) are affine.
Let A — B be the ring map corresponding to the morphism 7 — S and set
P = Blzy,...,Tmy1) so that AT = Spec(P). We have

Qp/a=Qp/a® P® EBFI _ Pdz; ® P

Hence the map P — Qp/a, g = gdzymi1 is a split injection and 11 is a nonze-
rodivisor on Q?D /A for all p > 0. Localizing at the prime ideal corresponding to z
finishes the proof. O

Remark| 15.8. Let S be a locally Noetherian scheme. Let X be locally of finite
type over S. Let Y C X be an effective Cartier divisor. If the map

A A
OX,y OY,y

has a section for all y € Y, then the de Rham complex of log poles is defined for
Y C X over S. If we ever need this result we will formulate a precise statement
and add a proof here.


https://stacks.math.columbia.edu/tag/0FMX
https://stacks.math.columbia.edu/tag/0FMY
https://stacks.math.columbia.edu/tag/0FMZ

0FNO

0FUB

OFUR

DE RHAM COHOMOLOGY 28

Remark| 15.9. Let S be a locally Noetherian scheme. Let X be locally of finite
type over S. Let Y C X be an effective Cartier divisor. If for every y € Y we can
find a diagram of schemes over S

xEuvhy
with ¢ étale and [, -1¢yy : @ 1(Y) — V étale, then the de Rham complex of log
poles is defined for Y C X over S. A special case is when the pair (X,Y) étale

locally looks like (V' x A,V x {0}). If we ever need this result we will formulate
a precise statement and add a proof here.

16. Calculations

In this section we calculate some Hodge and de Rham cohomology groups for a
standard blowing up.

We fix a ring R and we set S = Spec(R). Fix integers 0 < m and 1 < n. Consider
the closed immersion

Z =A% — Ag"""" =X, (a1,...,am) = (a1,...,am,0,...0).
We are going to consider the blowing up L of X along the closed subscheme Z.
Write
X = AP =Spec(A) with A=R[x1,...,Tm:Y1s---,Yn]
We will consider A = R[x1,...,Zm,¥1,---,Yn] as a graded R-algebra by setting
deg(z;) = 0 and deg(y;) = 1. With this grading we have
P =Proj(A) = A% xg Pl = Z xg Py =P !
Observe that the ideal cutting out Z in X is the ideal A,. Hence L is the Proj of
the Rees algebra

A@A+@(A+)2@...:@d>oA>d

Hence L is an example of the phenomenon studied in more generality in More on
Morphisms, Section we will use the observations we made there without further
mention. In particular, we have a commutative diagram

P——L——P

bk

Z—sX—>7Z

such that 7 : L — P is a line bundle over P = Z X g P271 with zero section 0 whose
image E = 0(P) C L is the exceptional divisor of the blowup b.
Lemma 16.1. For a > 0 we have
(1) the map 0% /g = 087 /g is an isomorphism,
(2) the map QY5 — Py g s an isomorphism, and
(3) the map Rb*QaL/S — i*Rp*QaP/S s am isomorphism on cohomology sheaves
in degree > 1.

Proof. Let us first prove part (2). Since P = Z xg P! we see that

Prs = @azr+s prifdys © PYEQ;EA/S
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Recalling that p = pr; by the projection formula (Cohomology, Lemma [54.2) we
obtain

P-Qys =D, _, |, Vars © 11D g
By the calculations in Section [[1] and in particular in the proof of Lemma [T1.3] we

have prl’*prgﬂiﬂ_l/s = 0 except if s = 0 in which case we get pr; ,Op = Oz. This
S

proves (2).

By the material in Section and in particular Lemma we have 7,07 /s =
Q%) sODj>1 7 55+ Since the composition 700 in the diagram above is the identity
morphism on P to prove part (3) it suffices to show that 27 ¢, has vanishing higher
cohomology for k > 0. By Lemmas [10.2] and there are short exact sequences

0= Qp/s ©Op(k) = QF /5y, = Q55 @ Op(k) = 0

where Q‘Eé =0ifa=0. Since P = Z Xg Pg_l we have

a _ i J
QP/S - @’H—j:a Z/S&Qngl/S
by Lemma ﬂ Since QY /s i free of finite rank we see that it suffices to show that

the higher cohomology of Oz X in,l y S(k:) is zero for k > 0. This follows from
S

Lemma applied to P = Z x g ng1 = ng1 and the proof of (3) is complete.

We still have to prove (1). If n = 1, then we are blowing up an effective Cartier
divisor and b is an isomorphism and we have (1). If n > 1, then the composition

(X, 9% /s) = (L, Qf )5) = T(L\ E,Q /5) = (X \ Z,9Q%5)

is an isomorphism as Q% /s is finite free (small detail omitted). Thus the only way
(1) can fail is if there are nonzero elements of I'(L, Q¢ / ) which vanish outside of
E = 0(P). Since L is a line bundle over P with zero section 0 : P — L, it suffices to
show that on a line bundle there are no nonzero sections of a sheaf of differentials
which vanish identically outside the zero section. The reader sees this is true either
(preferably) by a local calculation or by using that Q5 C Qg1 (see references
above). O

We suggest the reader skip to the next section at this point.
Lemma 16.2. For a > 0 there are canonical maps

b*ng/S — Q75 — b*Qg‘(/S ®o, Or((n—1)E)
whose composition is induced by the inclusion O, C Or((n — 1)E).

Proof. The first arrow in the displayed formula is discussed in Section [2| To get
the second arrow we have to show that if we view a local section of Q¢ /s 8s a
“meromorphic section” of b*(25 /87 then it has a pole of order at most n — 1 along
E. To see this we work on affine local charts on L. Namely, recall that L is
covered by the spectra of the affine blowup algebras A[i] where I = A, is the
ideal generated by y1,...,yn. See Algebra, Section [70] and Divisors, Lemma [32.2
By symmetry it is enough to work on the chart corresponding to ¢ = 1. Then
1

A[—
Y1

]:R[xl,...,xm,yl,tg,...,tn]
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where t; = y;/y1, see More on Algebra, Lemma I? Thus the module QF /s
is over the corresponding affine open freely generated by dzi,...,dz,,, dy;, and
dty,...,dt,. Of course, the first m + 1 of these generators come from b*Qk/S and
for the remaining n — 1 we have

; 1 j dy; —t;d
dtj:dy—]:—dyj—y—édylz Yj 54Y1
Y1 Y1 Y1 Y1
which has a pole of order 1 along F since E is cut out by y; on this chart. Since
the wedges of a of these elements give a basis of Q7 /g over this chart, and since

there are at most n — 1 of the dt; involved this finishes the proof. O

Lemma 16.3. Let E = 0(P) be the exceptional divisor of the blowing up b. For
any locally free Ox-module £ and 0 < < n —1 the map

£ — Rb*(b*g Ko, OL(ZE))
is an isomorphism in D(Ox).

Proof. By the projection formula it is enough to show this for £ = Ox, see Coho-
mology, Lemma Since X is affine it suffices to show that the maps

H°(X,0x) = H°(L,01) - H*(L,OL(iF))

are isomorphisms and that H/(X,OL(iE)) = 0 for j > 0and 0 < i < n — 1, see
Cohomology of Schemes, Lemma Since 7 is affine, we can compute global
sections and cohomology after taking m,, see Cohomology of Schemes, Lemma [2.4
If n =1, then L — X is an isomorphism and ¢ = 0 hence the first statement holds.
If n > 1, then we consider the composition

H°(X,0x) — H°(L,01) = H°(L,0L(iE)) = H°(L\ E,0.) = H*(X \ Z,0x)
Since HY(X \ Z,0x) = H°(X,Ox) in this case as Z has codimension n > 2 in X

(details omitted) we conclude the first statement holds. For the second, recall that
OL(E) = Or(—1), see Divisors, Lemma Hence we have

mOL(iE) = m.0L(~i) = P ., Op(k)

as discussed in More on Morphisms, Section Thus we conclude by the van-
ishing of the cohomology of twists of the structure sheaf on P = Pg‘l shown in
Cohomology of Schemes, Lemma [8.1 (]

k>

17. Blowing up and de Rham cohomology

Fix a base scheme S, a smooth morphism X — S, and a closed subscheme Z C X
which is also smooth over S. Denote b : X’ — X the blowing up of X along Z.
Denote E C X' the exceptional divisor. Picture

E——>X'
(17.0.1) pl J ib

75X
Our goal in this section is to prove that the map b* : Hj,(X/S) — Hjp(X'/S) is
injective (although a lot more can be said).

Lemma 17.1. With notation as in More on Morphisms, Lemma fora >0
we have
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(1) the map Qg(/s — b*Qg(,/S is an isomorphism,

(2) the map Q%/S — p*Q%/S is an isomorphism,

(3) the map Rb*Qg(,/S — i*Rp*Q%/S is an isomorphism on cohomology sheaves
in degree > 1.

Proof. Let € : X; — X be a surjective étale morphism. Denote 71 : 71 — X1, by :
X] — X1, Ey C X1, and p; : By — Z; the base changes of the objects considered
in More on Morphisms, Lemma Observe that i; is a closed immersion of
schemes smooth over S and that b; is the blowing up with center Z; by Divisors,
Lemma Suppose that we can prove (1), (2), and (3) for the morphisms by,
p1, and ;. Then by Lemma [2.2] we obtain that the pullback by € of the maps in
(1), (2), and (3) are isomorphisms. As € is a surjective flat morphism we conclude.
Thus working étale locally, by More on Morphisms, Lemma [17.1} we may assume
we are in the situation discussed in Section[[6l In this case the lemma is the same
as Lemma [16.1] O

Lemma 17.2. With notation as in More on Morphisms, Lemma and denoting
[+ X — S the structure morphism there is a canonical distinguished triangle

X5 = Bb(Q%/)5) @ 6:Q% /5 = i Rp. (U /5) — Q51
in D(X, f~1Og) where the four maps

QS(/S - Rb*(Q;@/s)v
O%/s - s
Rb, (QS(’/S) — Z*Rp*(Q?E/S),

Z.*Q.Z/s - i*Rp*(Q;E/S)
are the canonical ones (Section @/, except with sign reversed for one of them.
Proof. Choose a distinguished triangle
C = Rb.O%/ /s ® 180y, = 1. Rp Qg g — C[1]

in D(X, f~1O0g). It suffices to show that Q;(/s is isomorphic to C' in a manner
compatible with the canonical maps. By the axioms of triangulated categories
there exists a map of distinguished triangles

O b g D 1a Qg —— 1pa QY g — C'[1]

L ]

C——= RbQ%, g ® 0.0 g —> i Bp.QY, g —= C[1]

By Lemmaﬂpart (3) and Derived Categories, Propositionwe conclude that
C’" — C is an isomorphism. By Lemmampart (2) the map i*Q'Z/S — i*p*QJ'E/S
is an isomorphism. Thus C’' = b,Q%, /s in the derived category. Finally we use
Lemma part (1) tells us this is equal to Q% /s- We omit the verification this is
compatible with the canonical maps. g

Proposition| 17.3. With notation as in More on Morphisms, Lemma the
map Q%5 — Rb.QY%, ¢ has a splitting in D(X, (X — 5)~'Og).
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Proof. Consider the triangle constructed in Lemma We claim that the map
Rb.(Q%1)5) ® 107 /5 = i Rp.(Q5)

has a splitting whose image contains the summand 4,2%, /8" By Derived Categories,
Lemma [4.11] this will show that the first arrow of the triangle has a splitting which
vanishes on the summand 4,29, /s which proves the lemma. We will prove the claim
by decomposing Rp.(23, /s into a direct sum where the first piece corresponds to
Q‘Z/S and the second piece can be lifted through Rb*QB(,/S.

Proof of the claim. We may decompose X into open and closed subschemes having
fixed relative dimension to S, see Morphisms, Lemma [34.12] Since the derived
category D(X, f~10)g) correspondingly decomposes as a product of categories, we
may assume X has fixed relative dimension N over S. We may decompose Z =
11 Z,., into open and closed subschemes of relative dimension m > 0 over S. The
restriction i,, : Z,, = X of i to Z,, is a regular immersion of codimension N — m,
see Divisors, Lemma Let E = ][ E,, be the corresponding decomposition,
ie., we set B, = p Y (Z,). If pp : E;y — Zp, denotes the restriction of p to E,,,
then we have a canonical isomorphism

ém : @tzo,...,N—m—l Q.Z”L/S[_Qt] — Rpm’*Q.Em/S

in D(Zy, (Zm — S)~*Og) where in degree 0 we have the canonical map Q'Zm/s —
Rpm QY /5 See Remark |T4_7Z} Thus we have an isomorphism

g: @m @t:() N—-—m—1 .Zm/S[_Qt] — Rp*(Q.E/S)

.....

in D(Z,(Z — S)~1Og) whose restriction to the summand Q%5 =By g of the
source is the canonical map Q% /s~ Rp.(Q%, / 5)- Consider the subcomplexes M,
and Ky, of the complex @,_  n_m_1 9%,  s[—2t] introduced in Remark

We set
M=PM, and K=PK,
We have M = K[—2] and by construction the map
crz ® & s Qs ® M — Rp.(Q)s)
is an isomorphism (see remark referenced above).

Consider the map
5 . Q.E/S[72] — Q;{’/S

in D(X', (X" — S)7'Og) of Lemma with the property that the composition
’E/s[*ﬂ — 93«/5 — QJ.E/S

is the map 0’ of Remarkfor R (Ox:/(—E))|g) = ¢ (Og(1)). The final assertion
of Remark tells us that the diagram

K[-2] M

id
(éK)[ﬂl LilM
Rp.0'

Rp. Q% o[ —2] — Rp.Qy o
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commutes. Thus we see that we can obtain the desired splitting of the claim as the
map

(cp/z®Elm)™"

Rp. (%)) Q%s &M

id@id ! .
MO, 3 5 @ K[-2)

id® (€] x)[-2] e .
— 0%/s ® Rp. Qg s[—2]

RN /s ® Rb.O%

The relationship between 6" and J stated above together with the commutative
diagram involving ', £|k, and £|pr above are exactly what’s needed to show that
this is a section to the canonical map QY o @ Rb*(Q;(,/S) — Rp.(Q},5) and the
proof of the claim is complete. O

Lemma [I7.5] shows that producing the splitting on Hodge cohomology is a good
deal easier than the result of Proposition We urge the reader to skip ahead
to the next section.

Lemma 17.4. Leti: Z — X be a closed immersion of schemes which is regular
of codimension c. Then Ext%x (i F,E) =0 for q < ¢ for € locally free on X and
F any Oz-module.

Proof. By the local to global spectral sequence of Ext it suffices to prove this affine
locally on X. See Cohomology, Section Thus we may assume X = Spec(A) and
there exists a regular sequence f1,..., fc in A such that Z = Spec(4/(f1,-.., fc))-
We may assume ¢ > 1. Then we see that f; : £ — &£ is injective. Since i,F is
annihilated by f; this shows that the lemma holds for i = 0 and that we have a
surjection
Exty (i, F, £/ 1E) — Extd, (i.F,E)
Thus it suffices to show that the source of this arrow is zero. Next we repeat
this argument: if ¢ > 2 the map fo : £/f1€ — £/f1€ is injective. Since @, F is
annihilated by fo this shows that the lemma holds for ¢ = 1 and that we have a
surjection
Exth 2(i.F, /1€ + [2£) — Bxth (i, F, €/ f1E)

Continuing in this fashion the lemma is proved. (]

Lemma 17.5. With notation as in More on Morphisms, Lemma fora>0
there is a unique arrow Rb*Qg(,/S — QaX/S in D(Ox) whose composition with
ng/s — Rb*ng,/S is the identity on Q%{/S'

Proof. We may decompose X into open and closed subschemes having fixed rel-
ative dimension to S, see Morphisms, Lemma Since the derived category
D(X, f~10)s) correspondingly decomposes as a product of categories, we may as-
sume X has fixed relative dimension N over S. We may decompose Z = [[ Z,,
into open and closed subschemes of relative dimension m > 0 over S. The restric-
tion 4, : Zy — X of i to Z, is a regular immersion of codimension N — m, see
Divisors, Lemma, Let E =[] B be the corresponding decomposition, i.e.,
we set E,, = p~1(Z,,). We claim that there are natural maps

b*Q% s = kg = b5 Qo Ox (O (N —=m—1)Ey,)
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whose composition is induced by the inclusion Ox: — Ox/ (O (N —m — 1)E,,).
Namely, in order to prove this, it suffices to show that the cokernel of the first
arrow is locally on X’ annihilated by a local equation of the effective Cartier divisor
SI(N—m—1)E,,. To see this in turn we can work étale locally on X as in the proof
of Lemma[I7.1] and apply Lemma Computing étale locally using Lemma [16.9
we see that the induced composition

Qs = 0%y = Bb. (' )5 B0y, Oxr (3 (N =m—1)Ep))

is an isomorphism in D(Ox) which is how we obtain the existence of the map in
the lemma.

For uniqueness, it suffices to show that there are no nonzero maps from 7>1 Rb.{x/ /5
to Q% ¢ in D(Ox). For this it suffices in turn to show that there are no nonzero
maps from R7.Qx/5[—q] to Q%5 in D(Ox) for ¢ > 1 (details omitted). By
Lemma we see that qu*QX’/s = i*qu*Q%/s is the pushforward of a mod-
ule on Z = [[Z,,. Moreover, observe that the restriction of Rp,9, /s to L is

nonzero only for ¢ < N — m. Namely, the fibres of E,, — Z,, have dimension
N —m — 1 and we can apply Limits, Lemma Thus the desired vanishing
follows from Lemma [[7.4 O

18. Comparing sheaves of differential forms

The goal of this section is to compare the sheaves Q% /z and QF, /z when given a
locally quasi-finite syntomic morphism of schemes f : Y — X. The result will be
applied in Section [19] to the construction of the trace map on de Rham complexes
if f is finite.

Lemma 18.1. Let R be a ring and consider a commutative diagram

0 K° Lo MO 0
]
L—l M—l

of R-modules with exact top row and M° and M~ finite free of the same rank.
Then there are canonical maps

AN(HO(L®)) — N(K°) ®@p det(M*)
whose composition with N'(K°) — AY(HY(L®)) is equal to multiplication with 6(M*®).

Proof. Say M and M ! are free of rank n. For every i > 0 there is a canonical
surjection

i s AMTHLY) — AY(KC) @ AM(MO)
whose kernel is the submodule generated by wedges i1 A ... Al,+; such that > ¢ of
the [; are in K 9. On the other hand, the exact sequence

L' L= H(L*) =0
similarly produces canonical maps

AN(HO(L®*)) @ A"(L™Y) — A"T(LO)
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by sending n ® @ to 7j A 9(0) where 7j € AY(LY) is a lift of . The composition of
these two maps, combined with the identification A" (L) = A"(M 1) gives a map
A(HO(L*)) @ A" (M1 — AY(K) @ A"(MO)
Since det(M*®) = A"(M°)@ (A"(M~1))®~! this produces a map as in the statement
of the lemma. If 7 is the image of w € A(KD), then we see that 6 ® 7 is mapped
to mi(wA9(0) =w®0 in AY(K®) @ A"(MP) where 0 is the image of 6 in A"(MY).
Since §(M*®) is simply the determinant of the map M~! — MO this proves the last
statement. O

Remark 18.2. Let A bearing. Let P = Alxy,...,x,]. Let fi,..., fn € P and set
B=P/(f1,..., fn). Assume A — B is quasi-finite. Then B is a relative global com-
plete intersection over A (Algebra, Definition [136.5) and (fi,..., fn)/(f1,-- -, fn)?

is free with generators the classes f, by Algebra, Lemma [136.12 Consider the
following diagram

Qa/z®a B

Qpz @p B Qp/a@p B

! |

(o ) [(fro o o) == (f1, - o) [(fr,- s )

The right column represents NLpg,4 in D(B) hence has cohomology Q25,4 in degree
0. The top row is the split short exact sequence 0 — Q4,7 ®4 B — Qp/z @p B —
Qp/a®@p B — 0. The middle column has cohomology Q5,7 in degree 0 by Algebra,
Lemma Thus by Lemma we obtain canonical B-module maps

08 5 — Oy ©a det(NLp 1)

p
B/Z

whose composition with QF 7= Q /7 is multiplication by 6(NLp/a).

Lemma 18.3. There exists a unique rule that to every locally quasi-finite syntomic
morphism of schemes f:Y — X assigns Oy -module maps
C?,/X : Q[;//Z — f*Q[))(/Z ®OY det(NLy/X)
satisfying the following two properties
(1) the composition with f*Qﬁ(/Z — in)//z is multiplication by 6(NLy,x ), and
(2) the rule is compatible with restriction to opens and with base change.

Proof. This proof is very similar to the proof of Discriminants, Proposition [13.2]
and we suggest the reader look at that proof first. We fix p > 0 throughout the
proof.

Let us reformulate the statement. Consider the category C whose objects, denoted
Y/X, are locally quasi-finite syntomic morphism f : Y — X of schemes and whose
morphisms b/a : Y'/X" — Y/X are commutative diagrams

Y/?Y
f/l lf
X s X

which induce an isomorphism of Y’ with an open subscheme of X’ xx Y. The
lemma means that for every object Y/X of C we have maps cf, /X with property
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(1) and for every morphism b/a : Y'/X' — Y /X of C we have b*cf,/X =d., . via
the identifications b* det(NLy,x) = det(NLy,x) (Discriminants, Section and
b*Qf,/X = Qf,,/X, (Lemma

Given Y/X in C and y € Y we can find an affine open V C Y and U C X with
f(V) C U such that there exists some maps

K gl — (£ o0, det(NLy x) ) Iv
with property (1). This follows from picking affine opens as in Discriminants,
Lemma part (5) and Remark 18.2} If OF /z 18 finite locally free and annihilator
of the section §(NLy, x) is zero, then these local maps are unique and automatically
glue!
Let Cpjce C C denote the full subcategory of Y/X such that

(1) X is of finite type over Z,

(2) Qx/z is locally free, and

(3) the annihilator of 6(NLy,x) is zero.
By the remarks in the previous paragraph, we see that for any object Y/X of
Chice We have a unique map cgj,/X satisfying condition (1). If b/a : Y'/X' - Y/X

is a morphism of C,jce, then b*cgj,/x is equal to cp,/X, because b*d(NLy,x) =
§(NLy:,x:) (see Discriminants, Section . In other words, we have solved the
problem on the full subcategory Cpice. For Y/X in Cpiee we continue to denote
ey /x the solution we've just found.

Consider morphisms

Yi X, &y x 2y, x,
in C such that Y7 /X; and Y2/ X5 are objects of Cpjce.. Claim. b’l‘c’;/l/X1 = bgcgj,z/xz.
We will first show that the claim implies the lemma and then we will prove the
claim.

Let d,n > 1 and consider the locally quasi-finite syntomic morphism Y,, ¢ — X, 4
constructed in Discriminants, Example Then Y, 4 and Y, 4 are irreducible
schemes of finite type and smooth over Z. Namely, X, 4 is a spectrum of a
polynomial ring over Z and Y, 4 is an open subscheme of such. The morphism
Yn,a = X,,q is locally quasi-finite syntomic and étale over a dense open, see Dis-
criminants, Lemma m Thus §(NLy, ,/x, ) is nonzero: for example we have
the local description of §(NLy,x) in Discriminants, Remark nd we have the
local description of étale morphisms in Morphisms, Lemma part (8). Now
a nonzero section of an invertible module over an irreducible regular scheme has
vanishing annihilator. Thus Y;, 4/ X, 4 is an object of Cpice-

Let Y/X be an arbitrary object of C. Let y € Y. By Discriminants, Lemma [10.7]
we can find n,d > 1 and morphisms

Y/X VU Y% Y0/ Xpa

of C such that V C Y and U C X are open. Thus we can pullback the canonical
morphism c};,n)d X constructed above by b to V. The claim guarantees these local
isomorphisms glue! Thus we get a well defined global maps ¢}, /X with property
(1). If b/a : Y'/X' — Y/X is a morphism of C, then the claim also implies that



DE RHAM COHOMOLOGY 37

the similarly constructed map ¢}, /X7 is the pullback by b of the locally constructed
map ¢}, /x- Thus it remains to prove the claim.

In the rest of the proof we prove the claim. We may pick a point y € Y and
prove the maps agree in an open neighbourhood of y. Thus we may replace Y7,
Y5 by open neighbourhoods of the image of y in Y; and Y5. Thus we may assume
Y, X, Y1, X1,Ys, X5 are affine. We may write X = lim X as a cofiltered limit of
affine schemes of finite type over X; x X5. For each A we get

YiXXlX)\ and X>\><X2}/2
If we take limits we obtain
lim Y7 xXlXA:Yl ><X1XDYCXXX2Y2:11IHX)\ XXQY-Q

By Limits, Lemma we can find a A and opens V3, C Y1 xx, X and Vo, C
X Xx, Ys whose base change to X recovers Y (on both sides). After increasing A
we may assume there is an isomorphism Vi 5 — V5 \ whose base change to X is the
identity on Y, see Limits, Lemma Then we have the commutative diagram

Y/X

|

YV1/X1<—Via\/ X\ —=Y2 /X,

Thus it suffices to prove the claim for the lower row of the diagram and we reduce
to the case discussed in the next paragraph.

Assume Y, X, Y7, X1, Y2, X5 are affine of finite type over Z. Write X = Spec(A),
X; = Spec(A;). The ring map A; — A corresponding to X — X; is of finite
type and hence we may choose a surjection Aj[zq,...,2,] — A. Similarly, we
may choose a surjection As[y1,...,ym] = A. Set X| = Spec(4;[x1,...,z,]) and
X35 = Spec(Az[y1; ..., ym]). Observe that Qx/,z is the direct sum of the pullback
of Qx, /z and a finite free module. Similarly for Xj. Set Yy = Y1 xx, X| and
Y] =Y3 xx, X}, We get the following diagram

Yi/X1 « Y//X] < Y/X =Y, /X, - Y/ X,

Since X| — X7 and X} — X, are flat, the same is true for Y] — Y7 and Yy — V5.
It follows easily that the annihilators of 6(NLy,,x/) and 6(NLyy, x;) are zero.
Hence Y{/X{ and Y3 /X} are in Cpjce. Thus the outer morphisms in the displayed
diagram are morphisms of C,;.. for which we know the desired compatibilities.
Thus it suffices to prove the claim for Y{/X] + Y/X — YJ/X}. This reduces us
to the case discussed in the next paragraph.

Assume Y, X, Y7, X7, Y5, Xo are affine of finite type over Z and X — X; and X —
Xs are closed immersions. Consider the open embeddings Y7 xx, X DY C X xx,
Y5. There is an open neighbourhood V' C Y of y which is a standard open of both
Y1 xx, X and X Xx, Y. This follows from Schemes, Lemma applied to the
scheme obtained by glueing Y7 x x, X and X X x, Ys along Y'; details omitted. Since
X xx, Ys is a closed subscheme of Y5 we can find a standard open Vo C Y3 such
that Vo xx, X = V. Similarly, we can find a standard open V; C Y7 such that
Vi xx, X = V. After replacing Y, Y1, Y5 by V, V1, V5 we reduce to the case discussed
in the next paragraph.
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Assume Y, X, Y7, X7, Y5, X5 are affine of finite type over Z and X — X; and X —
X are closed immersions and Y7 xx, X =Y = X xx, Y. Write X = Spec(A4),
X, = Spec(4;), Y = Spec(B), Y; = Spec(B;). Then we can consider the affine
schemes

X' = Spec(A; x4 Az) = Spec(A’) and Y’ = Spec(By xp Bs) = Spec(B’)
Observe that X' = X I1x X5 and Y’ = Y IIy Y5, see More on Morphisms, Lemma
By More on Algebra, Lemma [5.1] the rings A’ and B’ are of finite type over
Z. By More on Algebra, Lemma we have B’ ®4 A1 = By and B’ x4 Ay = Bs.
In particular a fibre of Y’ — X’ over a point of X' = X; ITx X» is always equal
to either a fibre of Y1 — X7 or a fibre of Y5 — X5. By More on Algebra, Lemma
the ring map A’ — B’ is flat. Thus by Discriminants, Lemma m part (3) we
conclude that Y//X’ is an object of C. Consider now the commutative diagram

Y/X
NG

Y1/X, Yo/ Xo

~ 7

Y//X/
Now we would be done if Y'/X’ is an object of Cpjce, but this is almost never the
case. Namely, then pulling back cf,, /X around the two sides of the square, we

would obtain the desired conclusion. To get around the problem that Y'/X' is
not in Cy;.e we note the arguments above show that, after possibly shrinking all of
the schemes X,Y, X1,Y7, X5, Y5, X', Y’ we can find some n,d > 1, and extend the

diagram like so:
Y/X
S

Y1/X, Y2/ X
\ /
Y'/X'
|
Yoa/Xn,a

and then we can use the already given argument by pulling back from ¢}, )X
This finishes the proof. '

19. Trace maps on de Rham complexes

A reference for some of the material in this section is [Gar84]. Let S be a scheme.
Let f: Y — X be a finite locally free morphism of schemes over S. Then there is
a trace map Tracey : f,Oy — Ox, see Discriminants, Section 3} In this situation
a trace map on de Rham complexes is a map of complexes

Oy/x : iy — Q%5
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such that ©y,y is equal to Tracey in degree 0 and satisfies

Oy /x(wAN) =wAOy,x(n)
for local sections w of Q% /s and 7 of f,Q3, /5 It is not clear to us whether such a

trace map Oy, x exists for every finite locally free morphism Y — X; please email
stacks.project@gmail.com if you have a counterexample or a proof.

Example 19.1. Here is an example where we do not have a trace map on de
Rham complexes. For example, consider the C-algebra B = C|z,y] with action
of G = {#1} given by 2 + —z and y + —y. The invariants A = B® form a
normal domain of finite type over C generated by z2,zy,y?. We claim that for
the inclusion A C B there is no reasonable trace map Qp/c — Q4/c on 1-forms.
Namely, consider the element w = zdy € Qp,c. Since w is invariant under the
action of G if a “reasonable” trace map exists, then 2w should be in the image
of Q4,c — Qp/c. This is not the case: there is no way to write 2w as a linear
combination of d(z?), d(zy), and d(y?) even with coefficients in B. This example
contradicts the main theorem in [Zan99.

Lemma 19.2. There exists a unique rule that to every finite syntomic morphism
of schemes f:Y — X assigns Ox-module maps

911)//)( : f*QI;f/z g Q?{/z

satisfying the following properties
(1) the composition with Q?(/z ®oyx [+Oy — f*Q’;,/Z is equal to id ® Tracey
where Traces : f.Oy — Ox is the map from Discriminants, Section@
(2) the rule is compatible with base change.

Proof. First, assume that X is locally Noetherian. By Lemma we have a
canonical map

Cgf/X : Q[;//S — f*QT))(/S ®Oy det(NLy/X)
By Discriminants, Proposition we have a canonical isomorphism

Cy/x - det(NLy/X) — Wy/x
mapping §(NLy,x) to Ty, x. Combined these maps give
CZ;//X ®Cy/X : QZ;//S — f*QZ))(/S R0y Wy/x
By Discriminants, Section [B this is the same thing as a map

@g/x : f*QI;//s — QI.;(/S

Recall that the relationship between cf, /x @ cy/x and @’;, /x uses the evaluation
map f.wy,x — Ox which sends 7y,x to Tracey (1), see Discriminants, Section
Hence property (1) holds. Property (2) holds for base changes by X' — X with
X’ locally Noetherian because both c@ /X and cy,x are compatible with such base
changes. For f : Y — X finite syntomic and X locally Noetherian, we will continue
to denote ©F, /X the solution we’ve just found.

Uniqueness. Suppose that we have a finite syntomic morphism f : Y — X such
that X is smooth over Spec(Z) and f is étale over a dense open of X. We claim
that in this case ©Y, /x is uniquely determined by property (1). Namely, consider
the maps

Q’)’{/Z ®oyx [+Oy — f*Qf,/Z — Q’;{/Z
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The sheaf OQF /z s torsion free (by the assumed smoothness), hence it suffices to
check that the restriction of @f, /X is uniquely determined over the dense open
over which f is étale, i.e., we may assume f is étale. However, if f is étale, then
J*Qx/z = Qy/z hence the first arrow in the displayed equation is an isomorphism.
Since we’ve pinned down the composition, this guarantees uniqueness.

Let f:Y — X be a finite syntomic morphism of locally Noetherian schemes. Let
xz € X. By Discriminants, Lemma we can find d > 1 and a commutative
diagram

Y ~—V——=V;

L]

X=—U——Uy
such that € U C X is open, V = f~1(U) and V = U xy, V4. Thus @I;//Xh/ is
the pullback of the map @I"/ v, However, by the discussion on uniqueness above

and Discriminants, Lemmas [11.4| and the map @i’,d Ju, is uniquely determined

by the requirement (1). Hence uniqueness holds.

At this point we know that we have existence and uniqueness for all finite syntomic
morphisms ¥ — X with X locally Noetherian. We could now give an argument
similar to the proof of Lemma to extend to general X. However, instead
it possible to directly use absolute Noetherian approximation to finish the proof.
Namely, to construct @7;/ /X it suffices to do so Zariski locally on X (provided we
also show the uniqueness). Hence we may assume X is affine (small detail omitted).
Then we can write X = lim;c; X; as the limit over a directed set I of Noetherian
affine schemes. By Algebra, Lemma we can find 0 € I and a finitely presented
morphism of affines fy : Yy — X whose base change to X is Y — X. After
increasing 0 we may assume Yy — X is finite and syntomic, see Algebra, Lemma
and For i > 0 also the base change f; : YV; = Yy xx, X; — X; is finite
syntomic. Then

F(X, f*QZ;//Z) = F(K QI;,/Z) = colimizo F(}/Z, QZ;G/Z) = colimizo F(X“ fl’*QI;/L/Z)

Hence we can (and are forced to) define ©F, /x as the colimit of the maps ©F, X
This map is compatible with any cartesian diagram

Y —=Y

|

X —-X
with X’ affine as we know this for the case of Noetherian affine schemes by the
arguments given above (small detail omitted; hint: if we also write X’ = lim;e s X

then for every ¢ € I there is a j € J and a morphism X J’ — X; compatible with the
morphism X’ — X). This finishes the proof. O

Proposition| 19.3. Let f : Y — X be a finite syntomic morphism of schemes.
The maps @Iijf/X of Lemma define a map of complexes

Oy/x 1 [,z — Q%7

with the following properties

[Gar84]
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(1) in degree 0 we get Tracey : f.Oy — Ox, see Discriminants, Sectz’on@

(2) we have Oy, x(w A1) =w A Oy x(n) forw in A%,z and 1 in f.Q3,,,

(3) if f is a morphism over a base scheme S, then Oy x induces a map of
complexes f*Q;,/S — Q;(/S.

Proof. By Discriminants, Lemma for every x € X we can find d > 1 and a
commutative diagram

Y \% Vy Yy = Spec(Bg)
X U Uy Xa = Spec(Aq)

such that # € U C X is affine open, V = f~1(U) and V = U xy, V. Write
U = Spec(A) and V = Spec(B) and observe that B = A ®4, By and recall that
By = Agey @ ... ® Ageq. Suppose we have ay,...,a, € A and by,...,bs € B.
We may write b; = > a;eq with a;; € A. Set N = r + sd and consider the
factorizations

V4>V/=AN XVdHVd

]

UHU,:ANXUdHUd

Here the horizontal lower right arrow is given by the morphism U — U, (from
the earlier diagram) and the morphism U — A¥ given by ay, ..., a,, A1y Cs,d-
Then we see that the functions aq, .. ., a, are in the image of I'(U’, Oy ) — T(U, Oy)
and the functions by,...,bs are in the image of I'(V',Oy+) — I'(V,Oy). In this
way we see that for any finite collection of elementﬁ of the groups

D(V,Q%)z), i=0,1,2,... and F(U,Qg(/z), j=0,1,2,...

we can find a factorizations V — V' = Vyand U = U’ — Uy with V! = AN x V,;

and U’ = AN x Uy as above such that these sections are the pullbacks of sections
from

(V' Q% ), i=0,1,2,... and F(U’,Q{J,/Z), j=0,1,2,...

The upshot of this is that to check d o Oy, x = Oy, x od it suffices to check this is
true for Oy ,y. Similarly, for property (2) of the lemma.

By Discriminants, Lemmas and the scheme U, is smooth and the mor-
phism V; — Uy is étale over a dense open of U,;. Hence the same is true for the
morphism V' — U’. Since Q7 is locally free and hence QF, /7 1s torsion free, it
suffices to check the desired relations after restricting to the open over which V' is
finite étale. Then we may check the relations after a surjective étale base change.
Hence we may split the finite étale cover and assume we are looking at a morphism
of the form
11 W—W
i=1,...,d

with W smooth over Z. In this case any local properties of our construction are
trivial to check (provided they are true). This finishes the proof of (1) and (2).

4After all these elements will be finite sums of elements of the form apgdai A ... A da; with
ag,...,a; € A or finite sums of elements of the form bodby A ... A db; with bg,...,b; € B.
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Finally, we observe that (3) follows from (2) because 2y g is the quotient of Qy /7
by the submodule generated by pullbacks of local sections of {g/z. ([

Example 19.4. Let A be a ring. Let f = 2% + Y 1, aa-i2’ € Alz]. Let
B = Alz]/(f). By Proposition we have a morphism of complexes
Opja: Qp — QY
In particular, if ¢ € B denotes the image of x € A[z] we can consider the elements
Op/at'dt) €QYy, i=0,...,d—1

What are these elements? By the same principle as used in the proof of Proposition
it suffices to compute this in the universal case, i.e., when A = Z[aq, ..., aq] or
even when A is replaced by the fraction field Q(aq,...,aq). Writing symbolically

f= Hi:l,...,d(x i)

we see that over Q(aq,...,aq) the algebra B becomes split:
Q(a()a cee 7ad—1)[z]/(f) — Hi:l 4 Q(al, CE ad)v t— (alv ceey ad)
Thus for example
Odt) =Y da; = —day
Next, we have
@(tdt) = Z Ozid()éi = aldal — dClQ
Next, we have
O(t%dt) = Za?dai = —a?da; + ayday + apda; — das

d

(modulo calculation error), and so on. This suggests that if f(z) = 2 — a then

; 0 if i=0,....d—2
G)B/A(tdt):{da it i=d—1

in Q4. This is true for in this particular case one can do the calculation for the
extension Q(a)[z]/(z? — a) to verify this directly.

Lemmal 19.5. Let p be a prime number. Let X — S be a smooth morphism
of relative dimension d of schemes in characteristic p. The relative Frobenius
Fx/s: X — X®) of X/S (Varieties, Definition is finite syntomic and the
corresponding map

Ox/xw  Fx/s:Q% /s = Vs /s

is zero in all degrees except in degree d where it defines a surjection.

Proof. Observe that Fx,s is a finite morphism by Varieties, Lemma To prove
that Fy g is flat, it suffices to show that the morphism Fx /g, : Xs — Xsp) between

fibres is flat for all s € S, see More on Morphisms, Theorem Flatness of
Xs— X §p ) follows from Algebra, Lemma(and the finiteness already shown).
By More on Morphisms, Lemma the morphism Fx/,s is a local complete
intersection morphism. Hence Fx /g is finite syntomic (see More on Morphisms,

Lemma [62.8]).
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For every point z € X we may choose a commutative diagram
X<~—U
\L ﬂ-i
d
S<——A¢%

where 7 is étale and = € U is open in X, see Morphisms, Lemma [36.20 Observe
that A% — AL, (21,...,2q4) — (2},...,2%) is the relative Frobenius for A% over
S. The commutative diagram

U—->y
Fx/s
Trl J{,ﬁm

d ¢ d
AS AS

of Varieties, Lemma form:U — AdS is cartesian by Etale Morphisms, Lemma
Since the construction of © is compatible with base change and since 2;7/g =
W*QAé/S (Lemma we conclude that it suffices to show the lemma for A%.

Let A be a ring of characteristic p. Consider the unique A-algebra homomorphism
Alyr, ..., ya] = Alz1,. .., x4] sending y; to 2. The arguments above reduce us to
computing the map

Ot Ve, wal/a = Lapy,,..yal/A

We urge the reader to do the computation in this case for themselves. Asin Example
we may reduce this to computing a formula for ©* in the universal case

Zly1,....ya = Zlz1, ..., zd), i b

In turn, we can find the formula for ©% by computing in the complex case, i.e., for
the C-algebra map

C[yh---ayd]—>C[$1,-~-7$d]7 yszf

We may even invert x1,...,zq and y1, ..., yq. In this case, we have dx; = p_lxi_p+1dyi.
Hence we see that
Oz ...aftdey A .. Aday) = pT i@ (aP TP L. .xfﬁpﬂxfﬂl coadtdyr A A dy)

= pTrace(z Pt a:f"'_p"’leff cxf)dyn AL A dy;
by the properties of ©'. An elementary computation shows that the trace in
the expression above is zero unless eq,...,e; are congruent to —1 modulo p and
€i+1,---,€q are divisible by p. Moreover, in this case we obtain

pd—iygelfzﬂrl)/l’ . yl(ei*erl)/nyrrll/P o ysd/pdzn A Ady;

We conclude that we get zero in characteristic p unless d = ¢ and in this case we
get every possible d-form. (I
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20. Poincaré duality
In this section we prove Poincar’e duality for the de Rham cohomology of a proper
smooth scheme over a field. Let us first explain how this works for Hodge cohomol-
ogy.
Lemma 20.1. Let k be a field. Let X be a nonempty smooth proper scheme over
k equidimensional of dimension d. There exists a k-linear map

t: HY(X,0% ) — k

unique up to precomposing by multiplication by a unit of HY(X,Ox) with the fol-
lowing property: for all p,q the pairing

HI(X, 08 ) x (X Q08 — b, (6,€) — t(6U¢€)

is perfect.

Proof. By Duality for Schemes, Lemma we have w% = lec/k[d}. Since Qx/y,
is locally free of rank d (Morphisms, Lemma [34.12)) we have

~ Od—
Q?{/k ®ox (ngk)v = Qx/i

Thus we obtain a k-linear map ¢ : H%(X, Qgi(/k) — k such that the statement is

true by Duality for Schemes, Lemma In particular the pairing H°(X, Ox) x
HY(X, le(/k) — k is perfect, which implies that any k-linear map ¢’ : H(X, Qg(/k) —
k is of the form & s t(g¢) for some g € H%(X, Ox). Of course, in order for ' to still
produce a duality between H°(X,Ox) and HY(X, Q5% /) we need g to be a unit.
Denote (—, —)p 4 the pairing constructed using ¢ and denote (—,—); , the pairing
constructed using t’. Clearly we have

<§7 £/>;),q = <g€a §/>qu

for £ € HI(X, Qf)’(/k) and ¢ € H479(X, Q;l(_/Z) Since g is a unit, i.e., invertible, we

see that using ' instead of ¢ we still get perfect pairings for all p, q. O

Lemmal 20.2. Let k be a field. Let X be a smooth proper scheme over k. The
map
d: H(X,0x) = H°(X, Q%)

18 Zero.
Proof. Since X is smooth over k it is geometrically reduced over k, see Varieties,
Lemma Hence H°(X,Ox) = [] ki is a finite product of finite separable field

extensions k; /k, see Varieties, Lemma It follows that Qpo(x,0)/k = [ Qi =
0 (see for example Algebra, Lemma [158.1)). Since the map of the lemma factors as

HO(X, Ox) — QHO(X,OX)/k — HO(X, QX/k)
by functoriality of the de Rham complex (see Section , we conclude. (]
Lemma 20.3. Let k be a field. Let X be a smooth proper scheme over k equidi-
mensional of dimension d. The map
d: HY(X, Q%) = HY(X, Q%)

S zero.
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Proof. It is tempting to think this follows from a combination of Lemmas and
However this doesn’t work because the maps Ox — Qﬁ(/k and Qi_/i — Qi/k
are not Ox-linear and hence we cannot use the functoriality discussed in Duality
for Schemes, Remark to conclude the map in Lemma [20.2] is dual to the one

in this lemma.

We may replace X by a connected component of X. Hence we may assume X is
irreducible. By Varieties, Lemmas and we see that k¥ = HY(X,Ox) is a
finite separable extension k'/k. Since €/ = 0 (see for example Algebra, Lemma
158.1) we see that Qx/, = Qx/u (see Morphisms, Lemma . Thus we may
replace k by k’ and assume that H°(X,Ox) = k.

Assume H°(X, Ox) = k. We conclude that dim H?¢(X, QdX/k) = 1 by Lemma
Assume first that the characteristic of k is a prime number p. Denote Fy;, : X —

X (@) the relative Frobenius of X over k; please keep in mind the facts proved about
this morphism in Lemma [I9.5] Consider the commutative diagram

X/k X /k

| | |

®d
HY(X, Q%)) — HY(X®), Fx),.Q% ) — HY(X®), 9%, )

Hd(X7 Qd—l) —>Hd(X(p),FX/k,*9§(7i)FHd(X(p),Qd_l )

)

The left two horizontal arrows are isomorphisms as Fy;, is finite, see Cohomology
of Schemes, Lemma, The right square commutes as © x),x is a morphism of
complexes and ©9~! is zero. Thus it suffices to show that ©¢ is nonzero (because
the dimension of the source of the map ©¢ is 1 by the discussion above). However,
we know that

ot FX/k,*Qg(/k — Q;l((p)/k

is surjective and hence surjective after applying the right exact functor H%(X ®) )
(right exactness by the vanishing of cohomology beyond d as follows from Cohomol-

ogy, Proposition . Finally, Hd(X(d), Q?(M)/k) is nonzero for example because

it is dual to H*(X 4, Oy () by Lemma applied to X®) over k. This finishes
the proof in this case.

Finally, assume the characteristic of k is 0. We can write k as the filtered colimit
of its finite type Z-subalgebras R. For one of these we can find a cartesian diagram
of schemes

X——Y

L

Spec(k) — Spec(R)

such that Y — Spec(R) is smooth of relative dimension d and proper. See Limits,

Lemmas [10.1] 184 and [13.1} The modules M*/ = H/(Y, Q) are finite
R-modules, see Cohomology of Schemes, Lemma Thus after replacing R

by a localization we may assume all of these modules are finite free. We have
M4 @r k = H/ (X, Qg(/k) by flat base change (Cohomology of Schemes, Lemma

5.2). Thus it suffices to show that M?=14 — M99 is zero. This is a map of finite
free modules over a domain, hence it suffices to find a dense set of primes p C R
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such that after tensoring with x(p) we get zero. Since R is of finite type over Z, we
can take the collection of primes p whose residue field has positive characteristic
(details omitted). Observe that

M @r () = H V) 0 e

for example by Limits, Lemma Similarly for M %9, Thus we see that M9~ 1@ p
k(p) = M*?@gK(p) is zero by the case of positive characteristic handled above. [
Proposition| 20.4. Let k be a field. Let X be a nonempty smooth proper scheme
over k equidimensional of dimension d. There exists a k-linear map
t:H¥(X/k) — k

unique up to precomposing by multiplication by a unit of HY(X,Ox) with the fol-
lowing property: for all i the pairing

Hin(X/k) x H3S U (X/k) — Kk, (£,&) — t(EUE)
is perfect.

Proof. By the Hodge-to-de Rham spectral sequence (Section [6]), the vanishing of
le Ik for i > d, the vanishing in Cohomology, Proposition and the results of

Lemmas and we see that H),(X/k) = H°(X,Ox) and H(X, Q%{/k) =
Hfl%(X /k). More precisely, these identifications come from the maps of complexes

0%/, = Ox[0] and 0% Jkl=dl = Q%

Let us choose t : H2%4(X/k) — k which via this identification corresponds to a t as
in Lemma Then in any case we see that the pairing displayed in the lemma
is perfect for ¢ = 0.

Denote k the constant sheaf with value & on X. Let us abbreviate Q° = Qf e
Consider the map (4.0.1) which in our situation reads

A Tot(Q° ®, Q%) — Q°

For every integer p = 0,1,...,d this map annihilates the subcomplex Tot (o ,°® @4
0>4—p§2®) for degree reasons. Hence we find that the restriction of A to the sub-
complex Tot(2* @ 0>q—p2°*) factors through a map of complexes

p : Tot(0<pQ® Qp 054-p02°) — Q°
Using the same procedure as in Section [ we obtain cup products
H{(X,02,0%) x H**{(X,054_,0°%) — H3%(X,0°)

We will prove by induction on p that these cup products via t induce perfect pairings
between H'(X,0<,0°%) and H*~(X,054_,Q*). For p = d this is the assertion of
the proposition.

The base case is p = 0. In this case we simply obtain the pairing between H*(X, Ox)
and H97%(X,0%) of Lemma and the result is true.

Induction step. Say we know the result is true for p. Then we consider the distin-
guished triangle

QP p — 1] = 0<p31Q° — 0, Q° — QP —p]
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and the distinguished triangle
UdepQ. — O'Zd,pflg. — Qd_p_l[—d +p+ 1] — (O’Zd,pQ.)[l]

Observe that both are distinguished triangles in the homotopy category of com-
plexes of sheaves of k-modules; in particular the maps 0<,Q* — QPT![—p] and
Q4=P=1[—d+p+1] — (65a—p*)[1] are given by actual maps of complexes, namely
using the differential QP — QP*! and the differential Q4—P~1 — Q4P Consider
the long exact cohomology sequences associated to these distinguished triangles

Hi_l(X, USPQ.) H2d—i+1 (X, Uzdpr.)
Hi(X, Qrt [—p —1]) H2={(X, Q=P [—d + p+1])
b b’
HY(X,0<p110°%) H*H(X,054-p-10%)
HY(X,0<,0°%) H* (X, 059-p0°)
d d’
H™*H X, QP [—p —1]) H2==1(X, Q=P —d + p+1])

By induction and Lemma[20.1]we know that the pairings constructed above between
the k-vectorspaces on the first, second, fourth, and fifth rows are perfect. By the
5-lemma, in order to show that the pairing between the cohomology groups in the
middle row is perfect, it suffices to show that the pairs (a,a’), (b,'), (¢,¢'), and
(d,d') are compatible with the given pairings (see below).

Let us prove this for the pair (¢,¢’). Here we observe simply that we have a
commutative diagram

TOt(O'SpQ. ®k UZd—pQ.) -~ TOt(O'Sp_HQ. Rk O’Zd_pQ')

y |

Q° ias Tot(0<p+192° ® 0>4—p-10°)

Hence if we have o € H'(X,0<,110°) and 8 € H*"{(X,054_,Q°) then we get
V(U (B)) = vpt1(c(e) U B) by functoriality of the cup product.

Similarly for the pair (b,b') we use the commutative diagram

Tot(0<p1Q° ®p 0>a—p-10°) <—— Tot(QFH[—p — 1] @k 0>4—p—19°)

Q° QP —p — 1] @ QP [—d +p + 1]

and argue in the same manner.



0FW8

0FW9

DE RHAM COHOMOLOGY 48

For the pair (d,d’) we use the commutative diagram

QP —p] @) Q4P —d + p] =<—— Tot(0<,Q° @) Q4P —d + p])

| |

Q° TOt(ngQ. Qk O’Zd,pQ')

and we look at cohomology classes in H(X,0<,Q°%) and H??~4(X, Q4=P~1[—d+p]).
Changing i to i — 1 we get the result for the pair (a,a’) thereby finishing the proof
that our pairings are perfect.

We omit the argument showing the uniqueness of ¢ up to precomposing by multi-
plication by a unit in H%(X, Ox). O

21. Chern classes

The results proved so far suffice to use the discussion in Weil Cohomology Theories,
Section [12] to produce Chern classes in de Rham cohomology.

Lemma 21.1. There is a unique rule which assigns to every quasi-compact and
quasi-separated scheme X a total Chern class

B Ko (Veet( X)) — Hizo H%.(X/Z)

with the following properties

(1) we have c*B(a + B) = B (a)cB(B) for a, B € Ko(Vect(X)),

(2) if f: X = X' is a morphism of quasi-compact and quasi-separated schemes,
then ¢ (f*a) = f*cif(a),

(3) given L € Pic(X) we have c?F([L]) = 1+ c¢(L)

The construction can easily be extended to all schemes, but to do so one needs to
slightly upgrade the discussion in Weil Cohomology Theories, Section

Proof. We will apply Weil Cohomology Theories, Proposition to get this.

Let C be the category of all quasi-compact and quasi-separated schemes. This
certainly satisfies conditions (1), (2), and (3) (a), (b), and (c) of Weil Cohomology
Theories, Section

As our contravariant functor A from C to the category of graded algebras will send
X to A(X) = @,50H35(X/Z) endowed with its cup product. Functoriality is
discussed in Section [3|and the cup product in Section |4l For the additive maps c{*
we take c{? constructed in Section

In fact, we obtain commutative algebras by Lemma [£.1] which shows we have axiom
(1) for A.

To check axiom (2) for A it suffices to check that H,(X [[Y/Z) = H}p(X/Z) x
H}p(Y/Z). This is a consequence of the fact that de Rham cohomology is con-
structed by taking the cohomology of a sheaf of differential graded algebras (in the
Zariski topology).

Axiom (3) for A is just the statement that taking first Chern classes of invertible
modules is compatible with pullbacks. This follows from the more general Lemma
9. 1]
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Axiom (4) for A is the projective space bundle formula which we proved in Propo-

sition [T4.11

Axiom (5). Let X be a quasi-compact and quasi-separated scheme and let & — F
be a surjection of finite locally free Ox-modules of ranks r + 1 and r. Denote
i: P'=P(F) = P(€) = P the corresponding incusion morphism. This is a
morphism of smooth projective schemes over X which exhibits P’ as an effective
Cartier divisor on P. Thus by Lemma the complex of log poles for P’ C P
over Z is defined. Hence for a € A(P) with i*a = 0 we have a U ¢{{(Op(P")) =0
by Lemma [15.6] This finishes the proof. O

Remark| 21.2. The analogues of Weil Cohomology Theories, Lemmas @I (split-
ting principle) and (chern classes of tensor products) hold for de Rham Chern
classes on quasi-compact and quasi-separated schemes. This is clear as we’ve shown
in the proof of Lemma that all the axioms of Weil Cohomology Theories, Sec-
tion [[2] are satisfied.

Working with schemes over Q we can construct a Chern character.

Lemma 21.3. There is a unique rule which assigns to every quasi-compact and
quasi-separated scheme X over Q a “chern character”

ch™ : Ko(Vect(X)) — HiZO HiR(X/Q)

with the following properties
(1) ch?® is a ring map for all X,
(2) if f: X' = X is a morphism of quasi-compact and quasi-separated schemes
over Q, then f* o ch™ = ch®®o f*, and
(3) given L € Pic(X) we have ch®([L]) = exp(ciE(L)).

The construction can easily be extended to all schemes over Q, but to do so one
needs to slightly upgrade the discussion in Weil Cohomology Theories, Section

Proof. Exactly as in the proof of Lemma [21.1|one shows that the category of quasi-
compact and quasi-separated schemes over Q together with the functor A*(X) =
@D, H¥(X/Q) satisfy the axioms of Weil Cohomology Theories, Section
Moreover, in this case A(X) is a Q-algebra for all X. Hence the lemma follows
from Weil Cohomology Theories, Proposition O

22. A Weil cohomology theory
Let k be a field of characteristic 0. In this section we prove that the functor
X — Hjp(X/E)

defines a Weil cohomology theory over k with coefficients in k as defined in Weil
Cohomology Theories, Definition We will proceed by checking the construc-
tions earlier in this chapter provide us with data (D0), (D1), and (D2’) satisfying
axioms (Al) — (A9) of Weil Cohomology Theories, Section

Throughout the rest of this section we fix the field k& of characteristic 0 and we set
F = k. Next, we take the following data

(DO) For our 1-dimensional F' vector space F'(1) we take F'(1) = F = k.
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(D1) For our functor H* we take the functor sending a smooth projective scheme
X over k to H},(X/k). Functoriality is discussed in Section [3|and the cup
product in Section[d] We obtain graded commutative F-algebras by Lemma
Z8I)

(D2’) For the maps cif : Pic(X) — H?(X)(1) we use the de Rham first Chern
class introduced in Section [0

We are going to show axioms (A1) — (A9) hold.

In this paragraph, we are going to reduce the checking of the axioms to the case
where k is algebraically closed by using Weil Cohomology Theories, Lemma [14.1§
Denote k' the algebraic closure of k. Set F’ = k’. We obtain data (DO0), (D1), (D2’)

over k' with coefficient field F’ in exactly the same way as above. By Lemma
there are functorial isomorphisms

H2(X/k) @ k' — H3 (X /K

for X smooth and projective over k. Moreover, the diagrams

Pic(X) ——=> Hp(X/k)
€1
l cdR l
Pic(Xy) — H3p( Xk /K')
commute by Lemma This finishes the proof of the reduction.

Assume k is algebraically closed field of characteristic zero. We will show axioms
(A1) — (A9) for the data (D0), (D1), and (D2’) given above.

Axiom (A1l). Here we have to check that H (X [[Y/k) = H};p(X/k) x H;r(Y/k).
This is a consequence of the fact that de Rham cohomology is constructed by taking
the cohomology of a sheaf of differential graded algebras (in the Zariski topology).

Axiom (A2). This is just the statement that taking first Chern classes of invertible
modules is compatible with pullbacks. This follows from the more general Lemma
9.1l

Axiom (A3). This follows from the more general Proposition m
Axiom (A4). This follows from the more general Lemma [15.6]

Already at this point, using Weil Cohomology Theories, Lemmas and we
obtain a Chern character and cycle class maps

v : CH*(X) — @ (X /k)

for X smooth projective over k which are graded ring homomorphisms compatible
with pullbacks between morphisms f : X — Y of smooth projective schemes over

k.

Axiom (A5). We have H},(Spec(k)/k) = k = F in degree 0. We have the Kiinneth
formula for the product of two smooth projective k-schemes by Lemma (observe
that the derived tensor products in the statement are harmless as we are tensoring
over the field k).

Axiom (A7). This follows from Proposition [I7.3]
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Axiom (A8). Let X be a smooth projective scheme over k. By the explanatory text
to this axiom in Weil Cohomology Theories, Sectionwe see that k' = H(X, Ox)
is a finite separable k-algebra. It follows that H},(Spec(k’)/k) = k' sitting in degree
0 because Q4 = 0. By Lemma we also have HIp(X,Ox) = k' and we get

the axiom.

Axiom (A6). Let X be a nonempty smooth projective scheme over k which is
equidimensional of dimension d. Denote A : X — X Xgpeer) X the diagonal
morphism of X over k. We have to show that there exists a k-linear map

N HX(X/k) — k
such that (1 ® A\)y([A]) =1 in Hz(X/k). Let us write

Y=7(AD)=v%+...+72

with v; € Hip(X/k) @y Hg;i%_i(X/k) the Kiinneth components. Our problem is to
show that there is a linear map A : H3%4(X/k) — k such that (1 ® Ay = 1 in
Hgp(X/k).

Let X = J] X; be the decomposition of X into connected and hence irreducible
components. Then we have correspondingly A = []A; with A; € X; x X;. Tt
follows that

y([AD) =D (A

and moreover v([A;]) corresponds to the class of A; C X; x X; via the decomposition
Hip(X x X) = Hij Hip(Xi x Xj)

We omit the details; one way to show this is to use that in CH*(X x X) we have
idempotents e; ; corresponding to the open and closed subschemes X; x X; and to
use that v is a ring map which sends e; ; to the corresponding idempotent in the
displayed product decomposition of cohomology. If we can find \; : H3%4(X;/k) — k
with (1®A;)7([A;]) = 1 in HI,(X;/k) then taking A = >~ A; will solve the problem
for X. Thus we may and do assume X is irreducible.

Proof of Axiom (A6) for X irreducible. Since k is algebraically closed we have
HY,(X/k) = k because H°(X,Ox) = k as X is a projective variety over an alge-
braically closed field (see Varieties, Lemma for example). Let © € X be any
closed point. Consider the cartesian diagram

r——> X

.

X——X XSpec(k) X

Compatibility of v with pullbacks implies that v([A]) maps to v([z]) in H3%(X/k),
in other words, we have v9 = 1 ® y([x]). We conclude two things from this: (a) the
class y([z]) is independent of x, (b) it suffices to show the class y([z]) is nonzero,
and hence (c) it suffices to find any zero cycle @ on X such that y(a) # 0. To do
this we choose a finite morphism

f: X —P¢
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To see such a morphism exist, see Intersection Theory, Section [23|and in particular
Lemma Observe that f is finite syntomic (local complete intersection mor-
phism by More on Morphisms, Lemma and flat by Algebra, Lemma .
By Proposition we have a trace map

O : [ %k — Dpayy

whose composition with the canonical map
Qpay, — [ O0%
is multiplication by the degree of f. Hence we see that we get a map
© : Hip(X/k) — Hif(Pi/k)

such that © o f* is multiplication by a positive integer. Hence if we can find a zero
cycle on PZ whose class is nonzero, then we conclude by the compatibility of v with
pullbacks. This is true by Lemma and this finishes the proof of axiom (A6).

Below we will use the following without further mention. First, by Weil Cohomology
Theories, Remarkthe map A\x : H3%(X/k) — k is unique. Second, in the proof
of axiom (AG) we have seen that Ax(y([z])) = 1 when X is irreducible, i.e., the
composition of the cycle class map v : CHY(X) — H?%(X/k) with Ax is the degree
map.

Axiom (A9). Let Y C X be a nonempty smooth divisor on a nonempty smooth
equidimensional projective scheme X over k of dimension d. We have to show that
the diagram

H2d72 X/k HQd X

B O0K) e HE()
restrictionl \LAX

H3g > (Y/k) ~ k

commutes where Ax and Ay are as in axiom (A6). Above we have seen that if
we decompose X = [[X; into connected (equivalently irreducible) components,
then we have correspondingly Ax = ) Ax,. Similarly, if we decompoese Y = [[Y;
into connected (equivalently irreducible) components, then we have Ay = _ \y,.
Moreover, in this case we have Ox(Y) = ®,;0x(Y;) and hence

A(Ox (V) =) (0x(Y)))

in H2,(X/k). A straightforward diagram chase shows that it suffices to prove
the commutativity of the diagram in case X and Y are both irreducible. Then
H 3%72 (Y/k) is 1-dimensional as we have Poincaré duality for Y by Weil Cohomology
Theories, Lemma[14.5] By axiom (A4) the kernel of restriction (left vertical arrow)
is contained in the kernel of cupping with c#(Ox(Y)). This means it suffices to
find one cohomology class a € Hdzf{Z(X ) whose restriction to Y is nonzero such
that we have commutativity in the diagram for a. Take any ample invertible module
L and set
a = c{R (L)1
Then we know that aly = c{%(L]y)?~! and hence

Ay (aly) = deg(er (L) N [Y])
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by our description of Ay above. This is a positive integer by Chow Homology,
Lemma combined with Varieties, Lemma Similarly, we find

Ax (e (Ox(Y)) Na) = deg(c1(Ox (Y)) Nex (L) N [X])

Since we know that ¢;(Ox(Y)) N [X] = [Y] more or less by definition we have an
equality of zero cycles

(Y = X)u (a1 (L) N [Y]) = e (Ox (V) Nea (L) N [X]
on X. Thus these cycles have the same degree and the proof is complete.

Proposition| 22.1. Let k be a field of characteristic zero. The functor that sends
a smooth projective scheme X over k to H}n(X/k) is a Weil cohomology theory in
the sense of Weil Cohomology Theories, Definition |11.4).

Proof. In the discussion above we showed that our data (D0), (D1), (D2’) satisfies
axioms (Al) — (A9) of Weil Cohomology Theories, Section Hence we conclude
by Weil Cohomology Theories, Proposition

Please don’t read what follows. In the proof of the assertions we also used Lemmas
[3:5 O] [15.6} B2} 20-2] and [I1.4] Propositions [I4.1} [I7.3] and [19.3] Weil Coho-
mology Theories, Lemmas [14.18], [T4.7] [14.2], and [I4.5] Weil Cohomology Theories,
Remark Varieties, Lemmas [9.3] and Intersection Theory, Section [23] and
Lemma[23.1] More on Morphisms, Lemma[62.10, Algebra, Lemma [128.1] and Chow
Homology, Lemma [41.4] O

Remark| 22.2. In exactly the same manner as above one can show that Hodge
cohomology X — Hiy,q,.(X/k) equipped with F1°49¢ determines a Weil cohomol-
ogy theory. If we ever need this, we will precisely formulate and prove this here.
This leads to the following amusing consequence: If the betti numbers of a Weil
cohomology theory are independent of the chosen Weil cohomology theory (over
our field k of characteristic 0), then the Hodge-to-de Rham spectral sequence de-
generates at Fp! Of course, the degeneration of the Hodge-to-de Rham spectral
sequence is known (see for example [DI87] for a marvelous algebraic proof), but it
is by no means an easy result! This suggests that proving the independence of betti
numbers is a hard problem as well and as far as we know is still an open problem.
See Weil Cohomology Theories, Remark for a related question.

23. Gysin maps for closed immersions
In this section we define the gysin map for closed immersions.

Remark 23.1. Let X — S be a morphism of schemes. Let fi,..., f. € T'(X,Ox).
Let Z C X be the closed subscheme cut out by fi,..., f.. Below we will study the
gysin map

(23.1.1) Vet Vys — HZ(QRTS)

defined as follows. Given a local section w of QZ /s which is the restriction of a
section @ of Q. /5 We set

7})1 ..... fc(w)=Cf1,...,fc(@\z)/\df1/\.../\dfc

where ¢f, s Qi/s ® 0z — HCZ(Q&/S) is the map constructed in Derived Cat-
egories of Schemes, Remark This is well defined: given w we can change our
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choice of & by elements of the form " fiw] + > d(f;) A w) which are mapped to
zero by the construction.

Lemmal|23.2. The gysin map (23.1.1) is compatible with the de Rham differentials

on QB(/S and Q'Z/S.

Proof. This follows from an almost trivial calculation once we correctly interpret
this. First, we recall that the functor #¢, computed on the category of Ox-modules
agrees with the similarly defined functor on the category of abelian sheaves on X,
see Cohomology, Lemma Hence, the differential d : QF /s~ Q’;}}g induces a
map Hg (% /s) = HCZ(Q‘IQ ). Moreover, the formation of the extended alternating

Cech complex in Derived Categories of Schemes, Remark works on the category
of abelian sheaves. The map

Coker (@ Fi i o= -Fl...c) — i HZ(F)

used in the construction of cg, . ¢ in Derived Categories of Schemes, Remark
is well defined and functorial on the category of all abelian sheaves on X. Hence
we see that the lemma follows from the equality

d(d)/\dfl/\.../\dfc) d@)Adfi AL Adfe
fio.. fe B fio.. fe

which is clear. O

Lemma 23.3. Let X — S be a morphism of schemes. Let Z — X be a closed
immersion of finite presentation whose conormal sheaf Cz,x is locally free of rank
c. Then there is a canonical map

Ve = HP(QR)%)
which is locally given by the maps ’yfﬂh___ﬁ of Remark (25.1,

Proof. The assumptions imply that given x € Z C X there exists an open neigh-
bourhood U of z such that Z is cut out by ¢ elements fi,..., f. € Ox(U). Thus it
suffices to show that given f1,..., fc and g1, ..., g. in Ox (U) cutting out ZNU, the
"""" 5. and 7% o are the same. To do this, after shrinking U we may as-
sume g; = y_ a;; f; for some a;; € Ox(U). Then we have cy, . ;. = det(aji)cq, .. g,
by Derived Categories of Schemes, Lemma On the other hand we have

d(gl) VANPAN d(gc) = det(aji)d(fl) AL A d(fc) mod (f17 e fC)Q§</S

Combining these relations, a straightforward calculation gives the desired equality.
O

Lemma 23.4. Let X — S andi: Z — X be as in Lemma . The gysin map
P is compatible with the de Rham differentials on 93{/5 and Q'Z/S.

Proof. We may check this locally and then it follows from Lemma [23.2 [

Lemma 23.5. Let X — S andi: Z — X be as in Lemma . Given o €

HY(X, QI;(/S) we have YP(alz) = i ta Ay°(1) in HY(Z, HCZ(Q&J;;)) Please see

proof for notation.
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Proof. The restriction a|z is the element of H?(Z,Q, /S) given by functoriality
for Hodge cohomology. Applying functoriality for cohomology using +* : Q7 /s
HS (QA’Q/CS) we get get VP (alz) in HI(Z, H (Q’)’?/CS)) This explains the left hand
side of the formula.

To explain the right hand side, we first pullback by the map of ringed spaces
i:(Z,i7'0x) — (X,0x) to get the element i o € HY(Z, z’lﬁg(/s) Let v°(1) €
HO(Z,1%(Q%s)) be the image of 1 € H%(Z,0z) = H%(Z,9%,5) by 7°. Using
cup product we obtain an element
itaUn’(1) € HTY(Z,im 1Ok x/s ®i-rox H7 (%))
Using Cohomology, Remark and wedge product there are canonical maps
i g ©tio, RHZ(0%s) = RHz(0% 5 ©6, V/s) = RHz(Q55)

By Derived Categories of Schemes, Lemma the objects RHZ(Qg(/S)
ishing cohomology sheaves in degrees > c¢. Hence on cohomology sheaves in degree
¢ we obtain a map

have van-

T s @m0y HE(Q%/s) — HS (Qz;;cs)

The expression i ~'a A4°(1) is the image of the cup product i ~taU~°(1) by the
functoriality of cohomology.

Having explained the content of the formula in this manner, by general properties
of cup products (Cohomology, Section , it now suffices to prove that the diagram

im0k @ 0 — i @ HG(QK)
id®~y
\L l/\
Q) ® QY > Q) ———> Hy (W)

is commutative in the category of sheaves on Z (with obvious abuse of notation).
This boils down to a simple computation for the maps vf e which we omit; in

fact these maps are chosen exactly such that this works and such that 1 maps to
dfin. . Adfe (Il
fl---fc :

Lemma 23.6. Let ¢ > 0 be a integer. Let

7 — X ——5

|

Z——X—-S5

be a commutative diagram of schemes. Assume
(1) Z = X and Z' — X' satisfy the assumptions of Lemma[25.3,

(2) the left square in the diagram is cartesian, and

(3) h*Cz/x — Cziyx: (Morphisms, Lemma is an isomorphism.
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Then the diagram

h*Qg/s Ox'|z' ®h-10x|z h_IHCZ(ngJ;g)

T

& (50 s)

Q

D
7'/8"

is commutative. The left vertical arrow is functoriality of modules of differentials

and the right vertical arrow uses Cohomology, Remark[3/.12,

Proof. More precisely, consider the composition

h RHZ(5) — RHz (L™ Q%)

— RHz (9" %)

— RHz (7))

where the first arrow is given by Cohomology, Remark and the last one by
functoriality of differentials. Since we have the vanishing of cohomology sheaves in
degrees > ¢ by Derived Categories of Schemes, Lemma this induces the right
vertical arrow. We can check the commutativity locally. Thus we may assume Z
is cut out by fi,..., fo € I'(X,0x). Then Z’ is cut out by f/ = ¢g*(fi). The maps
Chryonfe and cpr g fit into the commutative diagram

L
OX'|Z’ ®h—1ox‘z

R o e Ox'lz @n-10x1, MTHEZ(Q /)
l’ Cf{ ..... fh l

()%, He ()

See Derived Categories of Schemes, Remark Recall given a p-form w on Z
we define 4P (w) by choosing (locally on X and Z) a p-form @ on X lifting w and
taking vP(w) = c¢p,,...p. (@) Adfi A ... Adfe. Since the form dfs A ... A df. pulls
back to dff A...Adf. we conclude. O

Remark|23.7. Let X — S,i: Z — X,and ¢ > 0 be as in Lemma Let p>0
and assume that HlZ(ng/CS) =0fori=0,...,c—1. This vanishing holds if X — S

is smooth and Z — X is a Koszul regular immersion, see Derived Categories of
Schemes, Lemma Then we obtain a map

VP9 HY(Z,00 ) — HO (X, 080%)

by first using v : QZ/S — ’HCZ(Q’;;CS) to map into

HY(Z,HG(5)5)) = H(Z, RHZ (5 5)[d]) = HI(X, i RHZ (5 5)[e])

and then using the adjunction map i, RH Z(Qgg;‘;) — Qg;;cs to continue on to the

desired Hodge cohomology module.

Lemmal 23.8. Let X — S andi: Z — X be as in Lemma , Assume X — S
is smooth and Z — X Koszul regular. The gysin maps v?? are compatible with the
de Rham differentials on Q;qs and Q'Z/S.

Proof. This follows immediately from Lemma [23.4 (]
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Lemma 23.9. Let X —» S,i:Z — X, and ¢ > 0 be as in Lemma . Assume
X — S smooth and Z — X Koszul regular. Given o € H(X, Q% iS) we have

YP(alz) = aUy0(1) in HITC(X, Q’;};) with v*° as in Remark .

Proof. This lemma follows from Lemma and Cohomology, Lemma [34.11} We
suggest the reader skip over the more detailed discussion below.

We will use without further mention that RHZ(QQ/S) = HCZ(Q&/S)[—C] for all
J as pointed out in Remark ‘We will also silently use the identifications
H%J’C(X,QJX/S) = H7(Z,RHz(Qy,q) = HU(Z,NHG(Qy/5)), see Cohomology,
Lemma, [34.4] for the first one. With these identifications

(1) v°(1) € Hg (X, QS(/S) maps to v°(1) in H¢(X, QS{/S)v

(2) the right hand side i"taA7°(1) of the equality in Lemma is the (image
by wedge product of the) cup product of Cohomology, Remark of the
elements o and +°(1), in other words, the constructions in the proof of
Lemma and in Cohomology, Remark match,

(3) by Cohomology, Lemma [34.11| this maps to a U~%(1) in HI+¢(X, Q’)’(/S ®

Q%/s), and
(4) the left hand side v?(«|z) of the equality in Lemma maps to Y79 (alz).
This finishes the proof. O

Lemma 23.10. Let ¢ >0 and
7 — X' ——5
N
Z——X—>S5

satisfy the assumptions of Lemma [253.0| and assume in addition that X — S and
X' — S’ are smooth and that Z — X and Z' — X' are Koszul regular immersions.
Then the diagram

c “+c
HU(Z, 00 ) ——— = HO(X,050%)

L

v c c
HY(Z', Y, ) ———= HTH (X Q07 )

is commutative where 479 is as in Remark[23.7]

Proof. This follows on combining Lemma and Cohomology, Lemma|34.13, O

Lemma 23.11. Let k be a field. Let X be an irreducible smooth proper scheme
over k of dimension d. Let Z C X be the reduced closed subscheme consisting of a
single k-rational point x. Then the image of 1 € k = H%(Z,0z) = H%(Z,Q% ;) by

the map H®(Z, Q()Z/k) — HY(X, QdX/k) of Remark is monzero.
Proof. The map 7/°: Oz — "HdZ(Q‘)i(/k) = RHZ(Q_?(/k)[d] is adjoint to a map

9" 1.0z — Q% [d]
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in D(Ox). Recall that Q¢ /k = wx is a dualizing sheaf for X /k, see Duality for
Schemes, Lemma Hence the k-linear dual of the map in the statement of the
lemma is the map
H(X,0x) = Ext% (.07, wx)

which sends 1 to ¢°. Thus it suffices to show that ¢° is nonzero. This we may do in
any neighbourhood U of the point x. Choose U such that there exist fi,..., fq €
Ox (U) vanishing only at x and generating the maximal ideal m, C Ox ,. We may
assume assume U = Spec(R) is affine. Looking over the construction of 4° we find
that our extension is given by

k— (R— @io Ry, — @z‘o«l Ry, fi = o= Ry p,)d] — R[d]

where 1 maps to 1/f; ... f. under the first map. This is nonzero because 1/f; ... fe.
is a nonzero element of local cohomology group H, (df1 fd)(R) in this case, ]

24. Relative Poincaré duality

In this section we prove Poincar’e duality for the relative de Rham cohomology of a
proper smooth scheme over a base. We strongly urge the reader to look at Section
first.

Situation| 24.1. Here S is a quasi-compact and quasi-separated scheme and f :
X — S is a proper smooth morphism of schemes all of whose fibres are nonempty
and equidimensional of dimension n.

Lemmal 24.2. [In Situation the pushforward f.Ox is a finite étale Og-algebra
and locally on S we have Rf,Ox = f.Ox & P in D(Og) with P perfect of tor
amplitude in [1,00). The map d: f.Ox — f.Qx/g is zero.

Proof. The first part of the statement follows from Derived Categories of Schemes,
Lemma @ Setting S’ = Spec(f.Ox) we get a factorization X — " — S (this
is the Stein factorization, see More on Morphisms, Section although we don’t
need this) and we see that Qg = Qs for example by Morphisms, Lemma
and [36.150 This of course implies that d : f,Ox — f.Qx/s is zero. [

Lemma 24.3. In Situatz’on there exists an Og-module map
t: RfQ% g[n] — Os

unique up to precomposing by multiplication by a unit of H°(X,Ox) with the fol-
lowing property: for all p the pairing

RIOK ¢ @6, REQY 5[N] — Os

given by the relative cup product composed with t is a perfect pairing of perfect
complexes on S.

Proof. Let w$ /s be the relative dualizing complex of X over S as in Duality for
Schemes, Remark [12.5( and let Rf*w;(/s — Og be its trace map. By Duality for

Schemes, Lemma 15.7| there exists an isomorphism w$ o = Q% s[n] and using this

isomorphism we obtain t. The complexes R [ % /g are perfect by Lemma Since

r /s is locally free and since Q% /s @ox Q?{;g — Q% /8 exhibits an isomorphism
F /s = Homoy (9}757 Iy 5) we see that the pairing induced by the relative cup
product is perfect by Duality for Schemes, Remark
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Uniqueness of t. Choose a distinguished triangle f.Ox — Rf.Ox — P — f.Ox[1].
By Lemma the object P is perfect of tor amplitude in [1, c0) and the triangle is
locally on S split. Thus R Home, (P, Ox) is perfect of tor amplitude in (—oo, —1J.
Hence duality (above) shows that locally on S we have

Rf*Q?(/S[n] = RHOTTL@S (f*Ox, Os> (&) R’Homox (P, Ox)
This shows that R" f, 0% /s s finite locally free and that we obtain a perfect Og-

bilinear pairing

[:Ox x R" [V g — Og
using ¢. This implies that any Og-linear map t’ : R"f*Qﬁ/S — Qg is of the form
t' =tog for some g € T'(S, f.Ox) =T(X,0Ox). In order for ' to still determine a
perfect pairing g will have to be a unit. This finishes the proof. O

Lemma 24.4. In Situation the map d : R”f*Qﬁgé — R”f*Q}/S 18 zero.

As we mentioned in the proof of Lemma[20.3| this lemma is not an easy consequence

of Lemmas and

Proof in case S is reduced. Assume S is reduced. Observe thatd : R™ f*Q;Zé —
R™ f,.Q0% /s is an Og-linear map of (quasi-coherent) Og-modules. The Og-module

R™ f.Q07% /s is finite locally free (as the dual of the finite locally free Og-module

f+Ox by Lemmas and . Since S is reduced it suffices to show that the

stalk of d in every generic point 1 € S is zero; this follows by looking at sections

over affine opens, using that the target of d is locally free, and Algebra, Lemma

25.2| part (2). Since S is reduced we have Og,, = k(n), see Algebra, Lemma

Thus d,, is identified with the map

n n—1 n n
d N H (XU7QXW/K(77)) — H (X777QX77/K‘(77))

which is zero by Lemma [20.3] (]

Proof in the general case. Observe that the question is flat local on S: if 8" —
S is a surjective flat morphism of schemes and the map is zero after pullback to S’,
then the map is zero. Also, formation of the map commutes with base change by
flat morphisms by flat base change (Cohomology of Schemes, Lemma .

Consider the Stein factorization X — S’ — S as in More on Morphisms, Theorem
53.50 By Lemma the morphism 7 : S’ — S is finite étale. The morphism
f:X — 5 is proper (by the theorem), smooth (by More on Morphisms, Lemma
13.12) with geometrically connected fibres by the theorem on Stein factorization.
In the proof of Lemma we saw that Qy, g = Qx/g because S" — S is étale.
Hence Q;(/S = Q;(/S,. We have

RO g = mRIfLO0 g,

for all p, ¢ by the Leray spectral sequence (Cohomology, Lemma , the fact that
7 is finite hence affine, and Cohomology of Schemes, Lemma (of course we also
use that R? fiQ];(/ /s is quasi-coherent). Thus the map of the lemma is 7, applied

tod: R"f;Q};;, — R"fiQ?(/S,. In other words, in order to prove the lemma we
may replace f: X — S by f': X — 5 to reduce to the case discussed in the next

pargraph.
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Assume f has geometrically connected fibres and f,Ox = Og. For every s € S
we can choose an étale neighbourhood (5’,s") — (5, s) such that the base change
X" — S’ of S has a section. See More on Morphisms, Lemma [38.6] By the initial
remarks of the proof this reduces us to the case discussed in the next paragraph.

Assume f has geometrically connected fibres, f,Ox = Og, and we have a section
s: 8 = X of f. We may and do assume S = Spec(A) is affine. The map
s* : RT'(X,0x) — RI'(S,0g) = A is a splitting of the map A — RI'(X,Ox).
Thus we can write
RT'(X,0x)=A®P

where P is the “kernel” of s*. By Lemma the object P of D(A) is perfect of
tor amplitude in [1,n]. As in the proof of Lemma we see that H"(X, Q% o)
is a locally free A-module of rank 1 (and in fact dual to A so free of rank 1 — we
will soon choose a generator but we don’t want to check it is the same generator
nor will it be necessary to do so).

Denote Z C X the image of s which is a closed subscheme of X by Schemes, Lemma
Observe that Z — X is a regular (and a fortiori Koszul regular by Divisors,
Lemma closed immersion by Divisors, Lemma Of course Z — X has
codimension n. Thus by Remark [23.7] we can consider the map

700 HO(Z,9%5) — H'(X, Q%)

and we set § =7"%(1) € H"(X, Q g).

We claim £ is a basis element. Namely, since we have base change in top degree (see
for example Limits, Lemma D we see that H™(X, Q% o) ®@ak = H™(Xy, Q% 1)
for any ring map A — k. By the compatibility of the construction of £ with base
change, see Lemma [23.10 we see that the image of £ in H™ (X}, ank/k) is nonzero
by Lemma [23.11]if k is a field. Thus € is a nowhere vanishing section of an invertible
module and hence a generator.

Let 0 € H"(X, Q};é) We have to show that d(f) is zero in H"(X, Q% ¢). We
may write d(0) = a€ for some a € A as ¢ is a basis element. Then we have to show

a=0.
Consider the closed immersion
A X 5 X xgX

This is also a section of a smooth morphism (namely either projection) and hence
a regular and Koszul immersion of codimension n as well. Thus we can consider
the maps

AP0 HY(X, Q8 o) — HYM(X x5 X, 080 )

of Remark 23.7] Consider the image
Y 0) € HP™M(X x5 X, Q% 1x)
By Lemma [8.I] we have
2n—1 n—1 n n n—1
O xsx = Uy s W5 /5 ® Uy g WAy o
By the Kinneth formula (either Derived Categories of Schemes, Lemma or
Derived Categories of Schemes, Lemma [23.4)) we see that

H*"(X x5 X, Q% ¢ WOy ) = H"(X,Q%§) ©a H"(X, Q% /s)
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and
H> (X x5 X, s QY L) = HM(X, 0% g) @4 H"(X, Q5 8)
Namely, since we are looking in top degree there no higher tor groups that intervene.
Combined with the fact that £ is a generator this means we can write
YTI0) = 01 @£+ E® 6,

with 01,0, € H"(X, Q"Xﬁ.) Arguing in exactly the same manner we can write

YPHE) = bE®E

in H2"(XxgX, 0%, /o) = H"(X,Q% )@ AH"(X, Q3 5) for some b € HO(S, Og).
Claim: 6, =60, 05 =60, and b = 1. Let us show that the claim implies the desired
result ¢ = 0. Namely, by Lemma [23.8| we have

YMA(B)) = d(y"TH"(9))
By our choices above this gives

a®E=7""(af) =d0®{+{®0) =al @+ (-1)"ag ® ¢

The right most equality comes from the fact that the map d : Q%ggslx /s Q%?XS X/s
by Lemmais the sum of the differential dX1 : Q}?é &Q’;{/S — Q’;(/S&Q}/S and
the differential (—1)"1Xd : Q% ¢ X Q’)Zé — Q% g BO% o Please see discussion
in Section [§] and Derived Categories of Schemes, Section [24] for more information.
Since £ ® £ is a basis for the rank 1 free A-module H" (X, Q?{/s) ®4 H"(X, Q% /s)
we conclude

a=a+(-1)"a=a=0
as desired.
In the rest of the proof we prove the claim above. Let us denote n = ~%9(1) €
H"(X XSX,Q’;(XSX/S). Since Q?{xsx/s:@ l

nN=m+m+...+0n

where 7, is in H*(X xg X, Q’)’(/S X Q};g) For p = 0 we can write

ot pi=n Q?{/S X Q’;(/S we may write

H"(X x5 X,0x ®Q%/5) = H'(RT(X,Ox) @5 RO(X, 0% /g))
= A®a H"(X,0% g) ® H"(P ®}§ RT(X,Q%/5))
by our previously given decomposition RT'(X,Ox) = A®P. Consider the morphism
(s,id) : X — X xg X. Then (s,id)"*(A) = Z scheme theoretically. Hence we see
that (s,id)*n = £ by Lemma [23.10} This means that
& = (5,id)"n = (5" @id)(no)

This means exactly that the first component of 7y in the direct sum decomposition
above is €. In other words, we can write

no=1®E&+mn,

with ) € H*(P ®% RT(X, % /5))- In exactly the same manner for p = n we can
write

H™(X x5 X,Q%,s ¥ Ox) = H"(RT(X, Q% /) ©% RT(X,0x))
= H"(X,(y/s) ®4 A® H"(RL(X, Q% 5) ©% P)
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and we can write

=¢@1+m,
with 77, € H"(RT(X, Q% ) % P).
Observe that prif = 6 ® 1 and prif = 1 ® 6 are Hodge cohomology classes on
X xg X which pull back to # by A. Hence by Lemma we have

LREFERI L =7""1"0) =@ )Un=(100)un
in the Hodge cohomology ring of X xg X over S. In terms of the direct sum
decomposition on the modules of differentials of X xg X/S we obtain
hE=01)Un and £®6,=(1®0)Un,

Looking at the formula 79 = 1 ® £ + 1, we found above, we see that to show that
0, = 0 it suffices to prove that

OBe1)un,=0

To do this, observe that cupping with § ® 1 is given by the action on cohomology
of the map

(P @5 RD(X, Q% ¢))[—n] 225 RD(X, Q%) @ BRI(X, 0% )

in the derived category, see Cohomology, Remark This map is the derived
tensor product of the two maps

6: Pl-n] = RI(X,Q% ) and 1:RI(X,Q%s) — RI(X, Q%))

by Derived Categories of Schemes, Remark However, the first of these is zero
in D(A) because it is a map from a perfect complex of tor amplitude in [n + 1,2n]
to a complex with cohomology only in degrees 0,1,...,n, see More on Algebra,
Lemma A similar argument works to show the vanishing of (1 ® 6) U 7],.
Finally, in exactly the same manner we obtain
bE@E=~""(&) = (E@1)Uno

and we conclude as before by showing that (£ ® 1) Un = 0 in the same manner as
above. This finishes the proof. O

Proposition 24.5. Let S be a quasi-compact and quasi-separated scheme. Let f :
X — S be a proper smooth morphism of schemes all of whose fibres are nonempty
and equidimensional of dimension n. There exists an Og-module map

t: R f.Q% s — Os
unique up to precomposing by multiplication by a unit of HY(X,Ox) with the fol-
lowing property: the pairing

Rf.O% /s ®6, RIQ%/s2n] — Os,  (£,€) — H(EUE)
is a perfect pairing of perfect complexes on S.
Proof. The proof is exactly the same as the proof of Proposition
By the relative Hodge-to-de Rham spectral sequence
EPT = qu*Q’;(/S = RPTaf, X/s

(Section @ the vanishing of QfX /s for i > n, the vanishing in for example Limits,
Lemma and the results of Lemmas and we see that Rf,Qy g =
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Rf,Ox and R™f. Q% /s = R f.Q5% /5 More precisely, these identifications come
from the maps of complexes

Q;{/S_)OX[O] and Q}/S[—n]%Q}/S

Let us choose t : R?" f,Qx /s — Os which via this identification corresponds to a t
as in Lemma P4.3]

Let us abbreviate Q* = Q% . Consider the map 1) which in our situation
reads

VAN TOt(Q. ®f_1os Q.) — Q.
For every integer p = 0, 1,. .., n this map annihilates the subcomplex Tot (0 ,Q°®;-10

0>n—pQ2®) for degree reasons. Hence we find that the restriction of A to the sub-
complex Tot(Q°®f-104 >n—p N°) factors through a map of complexes

Yp : Tot(0<pQ°® @104 05n—pQ2°*) — Q°
Using the same procedure as in Section [l we obtain relative cup products
Rf.0<p)Q° @, Rfo5n—pQ® — RFQ°
We will prove by induction on p that these cup products via ¢t induce perfect pairings
between Rf.0<,Q* and Rf,0>,—p°[2n]. For p = n this is the assertion of the
proposition.
The base case is p = 0. In this case we have

Rf.o<pQ® = Rf,.Ox and Rf.0>,-,Q°[2n] = Rf.(Q"[—n])[2n] = Rf.Q"[n]

In this case we simply obtain the pairing between Rf,Ox and Rf.Q"[n] of Lemma
24.3] and the result is true.

Induction step. Say we know the result is true for p. Then we consider the distin-
guished triangle

Qp+1[—p —1] = 0<p419° = 0<,Q° — QPH[—p}
and the distinguished triangle
Oon—pQ® = 05n_p10° = QP n 4 p+ 1] = (05,,Q°)[1]
Observe that both are distinguished triangles in the homotopy category of com-
plexes of sheaves of f~!Og-modules; in particular the maps 0<,Q°* — QP [—p]

and Q" P7H—d+p+ 1] = (05,-p°)[1] are given by actual maps of complexes,
namely using the differential QP — QP*! and the differential Q?~P~1 — Qr—P,
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Consider the distinguished triangles associated gotten from these distinguished tri-
angles by applying R f.

Rf*O'SpQ. Rf*UZn,pQ.
REPH[p—1  RAEQ P ntp+1]
b v
Rf*USerlQ. Rf*Uanpflﬂ.
Rf*ngQ. Rf*UZn,pQ.
d d
Rf.QPTH—p — 1] Rf QP —n+p+1]

We will show below that the pairs (a,a’), (b,0'), (¢,c'), and (d,d’) are compatible
with the given pairings. This means we obtain a map from the distinguished triangle
on the left to the distuiguished triangle obtained by applying R Hom(—, Og) to the
distinguished triangle on the right. By induction and Lemma we know that
the pairings constructed above between the complexes on the first, second, fourth,
and fifth rows are perfect, i.e., determine isomorphisms after taking duals. By
Derived Categories, Lemma we conclude the pairing between the complexes in
the middle row is perfect as desired.

Let e: K — K" and €’ : M’ — M be maps of objects of D(Og) and let K ©g_ M —
Og and K’ (X%S M' — Og be pairings. Then we say these pairings are compatible
if the diagram

L L
K' g, M’ <o K®s, M'

Os<—— K ®§ <M
commutes. This indeed means that the diagram
K —— RHom (M, Og)
EJ( lRHom(e’,)
K' —— RHom(M',Og)
commutes and hence is sufficient for our purposes.

Let us prove this for the pair (¢,¢/). Here we observe simply that we have a
commutative diagram

Tot(0<pQ® @ -104 O5n—pQ*) <—— Tot(0<p11Q° Dp-10, O>n—pQ°)

Q° s TOt(O‘SerlQ. Qf-104 Uanple.)
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By functoriality of the cup product we obtain commutativity of the desired diagram.

Similarly for the pair (b,b") we use the commutative diagram

Tot(0<p+19° @ j-105 03n—p-1Q2*) =<—— Tot (P [—p — 1] ®-105 0>n—p-19°)

'Yp+1l

Q.

|

P =p -] @10, ¥ [0t p+ 1]

For the pairs (d,d") and (a,a’) we use the commutative diagram

Q;D-‘r-l[_p] ®f—1os Q”_p_l[—n —I-p] <~ TOt(O'SpQ. ®f—1@s Q"‘p_l[—n +p])

|

Q.

|

Tot(o<,2° Qf-104 O>n—p®)

We omit the argument showing the uniqueness of ¢ up to precomposing by multi-

plication by a unit in H%(X,Ox).

O

25. Other chapters

Preliminaries

—~
N =
~—

Sheaves on Spaces|
Sites and Sheaves|
Stacks

Fields

Commutative Algebra
Brauer Groups
Homological Algebral
Derived Categories|
Simplicial Methods|

More on Algebral
Smoothing Ring Maps|
Sheaves of Modules|
Modules on Sites|

Injectives|

Cohomology of Sheaves|
Cohomology on Sites|
Differential Graded Algebral
Divided Power Algebral
Differential Graded Sheaves|

Hypercoverings|

Schemes

(26)

R I N I R T e e
B WNHFHE O OWOWO U W - O OO O Ui Ww

T O DD DD I T D D

AN AN AN N AN N N N N N N N S N S

[\.}
Ut

Constructions of Schemes|

Properties of Schemes|

Morphisms of Schemes|

Cohomology of Schemes|

Divisors|

Limits of Schemes|

Varieties|

"Topologies on Schemes|

[Descent|

Derived Categories of Schemes|

More on Morphisms|

More on Flatness|

Groupoid Schemes|

More on Groupoid Schemes|

Etale Morphisms of Schemes|

Chow Homology|

Intersection Theory|

Picard Schemes of Curves|

'Weil Cohomology Theories|

Adequate Modules|

Dualizing Complexes|

Duality for Schemes|

Discriminants and Differents|

de Rham Cohomology|

Local Cohomology|

Algebraic and Formal Geometry|

Algebraic Curves|




DE RHAM COHOMOLOGY 66

Resolution of Surfaces|
Semistable Reduction|
Functors and Morphisms|
Derived Categories of Varieties|
Fundamental Groups of Schemes|
Ftale Cohomology|

Crystalline Cohomology|
Pro-étale Cohomology|
Relative Cycles|

More Etale Cohomology|

The Trace Formulal

Algebraic Spaces

R R =IO R e G
NGNS NN NN

NN N N N N N N N S
SO OOy O Ot Ot Ot Ot Ot Ot

Algebraic Spaces|

Properties of Algebraic Spaces|
Morphisms of Algebraic Spaces|
Decent Algebraic Spaces|
Cohomology of Algebraic Spaces|
Limits of Algebraic Spaces|
Divisors on Algebraic Spaces|
Algebraic Spaces over Fields|
Topologies on Algebraic Spaces|
Descent and Algebraic Spaces|
Derived Categories of Spaces|
More on Morphisms of Spaces]|
Flatness on Algebraic Spaces|
Groupoids in Algebraic Spaces|
More on Groupoids in Spaces|
Bootstrap|

Pushouts of Algebraic Spaces|

AAAAAAAAAAAAAAAAA
I NN NN N oo e
RO 0O U A WN RO DGR
CCEEIEZ LRSS

ics in Geometry

5
e

2) [Chow Groups of Spaces|

3) [Quotients of Groupoids|

4) [More on Cohomology of Spaces|
5) [Simplicial Spaces|
6)
7)

Duality for Spaces|
Formal Algebraic Spaces|

NN N N N

(88)
(89)
Deformation Theory
(90)
(91)

Algebraization of Formal Spaces
Resolution of Surfaces Revisited

Formal Deformation Theory|
Deformation Theory]|

(92) [The Cotangent Complex|
(93) [Deformation Problems|

Algebraic Stacks

Algebraic Stacks|

) [Examples of Stacks|

) [Sheaves on Algebraic Stacks
) [Criteria for Representability]
) |Artin’s Axioms|

) |Quot and Hilbert Spaces|

) [Properties of Algebraic Stacks|
)

)

)

)

)

)

Morphisms of Algebraic Stacks|
Limits of Algebraic Stacks|
Cohomology of Algebraic Stacks|
Derived Categories of Stacks|
Introducing Algebraic Stacks|
More on Morphisms of Stacks|
The Geometry of Stacks|

Topics in Moduli Theory

(108) [Moduli Stacks|

(109) Moduli of Curves|
Miscellany

Examples

Exercises

Guide to Literature|

Desirables

Coding Style

Obsolete

GNU Free Documentation Li-|
(117) [Auto Generated Index]

References

[DI87]

Pierre Deligne and Luc Illusie, Relévements modulo p? et décomposition du complexe de

de Rham, Invent. Math. 89 (1987), no. 2, 247-270.
[Gar84] Emmanuelle Garel, An extension of the trace map, J. Pure Appl. Algebra 32 (1984),

no. 3, 301-313.

[Zan99] Umberto Zannier, A note on traces of differential forms, J. Pure Appl. Algebra 142

(1999), no. 1, 91-97.



	1. Introduction
	2. The de Rham complex
	3. de Rham cohomology
	4. Cup product
	5. Hodge cohomology
	6. Two spectral sequences
	7. The Hodge filtration
	8. Künneth formula
	9. First Chern class in de Rham cohomology
	10. de Rham cohomology of a line bundle
	11. de Rham cohomology of projective space
	12. The spectral sequence for a smooth morphism
	13. Leray-Hirsch type theorems
	14. Projective space bundle formula
	15. Log poles along a divisor
	16. Calculations
	17. Blowing up and de Rham cohomology
	18. Comparing sheaves of differential forms
	19. Trace maps on de Rham complexes
	20. Poincaré duality
	21. Chern classes
	22. A Weil cohomology theory
	23. Gysin maps for closed immersions
	24. Relative Poincaré duality
	25. Other chapters
	References

