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1. Introduction

0239 In the chapter on topologies on schemes (see Topologies, Section 1) we introduced
Zariski, étale, fppf, smooth, syntomic and fpqc coverings of schemes. In this chapter
we discuss what kind of structures over schemes can be descended through such
coverings. See for example [Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c], and
[Gro95d]. This is also meant to introduce the notions of descent, descent data,
effective descent data, in the less formal setting of descent questions for quasi-
coherent sheaves, schemes, etc. The formal notion, that of a stack over a site, is
discussed in the chapter on stacks (see Stacks, Section 1).

2. Descent data for quasi-coherent sheaves

023A In this chapter we will use the convention where the projection maps pri : X× . . .×
X → X are labeled starting with i = 0. Hence we have pr0,pr1 : X × X → X,
pr0,pr1,pr2 : X ×X ×X → X, etc.

Definition 2.1.023B Let S be a scheme. Let {fi : Si → S}i∈I be a family of morphisms
with target S.

(1) A descent datum (Fi, ϕij) for quasi-coherent sheaves with respect to the
given family is given by a quasi-coherent sheaf Fi on Si for each i ∈ I, an
isomorphism of quasi-coherent OSi×SSj -modules ϕij : pr∗0Fi → pr∗1Fj for

each pair (i, j) ∈ I2 such that for every triple of indices (i, j, k) ∈ I3 the
diagram

pr∗0Fi

pr∗01ϕij $$

pr∗02ϕik

// pr∗2Fk

pr∗1Fj
pr∗12ϕjk

::

of OSi×SSj×SSk -modules commutes. This is called the cocycle condition.
(2) A morphism ψ : (Fi, ϕij) → (F ′i , ϕ′ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms of OSi-modules ψi : Fi → F ′i such that all the
diagrams

pr∗0Fi ϕij
//

pr∗0ψi

��

pr∗1Fj

pr∗1ψj

��
pr∗0F ′i

ϕ′ij // pr∗1F ′j
commute.

A good example to keep in mind is the following. Suppose that S =
⋃
Si is an

open covering. In that case we have seen descent data for sheaves of sets in Sheaves,
Section 33 where we called them “glueing data for sheaves of sets with respect to the
given covering”. Moreover, we proved that the category of glueing data is equivalent

http://stacks.math.columbia.edu/tag/023B
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to the category of sheaves on S. We will show the analogue in the setting above
when {Si → S}i∈I is an fpqc covering.

In the extreme case where the covering {S → S} is given by idS a descent datum
is necessarily of the form (F , idF ). The cocycle condition guarantees that the
identity on F is the only permitted map in this case. The following lemma shows
in particular that to every quasi-coherent sheaf of OS-modules there is associated
a unique descent datum with respect to any given family.

Lemma 2.2.023C Let U = {Ui → U}i∈I and V = {Vj → V }j∈J be families of
morphisms of schemes with fixed target. Let (g, α : I → J, (gi)) : U → V be
a morphism of families of maps with fixed target, see Sites, Definition 8.1. Let
(Fj , ϕjj′) be a descent datum for quasi-coherent sheaves with respect to the family
{Vj → V }j∈J . Then

(1) The system (
g∗iFα(i), (gi × gi′)∗ϕα(i)α(i′)

)
is a descent datum with respect to the family {Ui → U}i∈I .

(2) This construction is functorial in the descent datum (Fj , ϕjj′).
(3) Given a second morphism (g′, α′ : I → J, (g′i)) of families of maps with fixed

target with g = g′ there exists a functorial isomorphism of descent data

(g∗iFα(i), (gi × gi′)∗ϕα(i)α(i′)) ∼= ((g′i)
∗Fα′(i), (g′i × g′i′)∗ϕα′(i)α′(i′)).

Proof. Omitted. Hint: The maps g∗iFα(i) → (g′i)
∗Fα′(i) which give the isomor-

phism of descent data in part (3) are the pullbacks of the maps ϕα(i)α′(i) by the
morphisms (gi, g

′
i) : Ui → Vα(i) ×V Vα′(i). �

Any family U = {Si → S}i∈I is a refinement of the trivial covering {S → S} in a
unique way. For a quasi-coherent sheaf F on S we denote simply (F|Si , can) the
descent datum with respect to U obtained by the procedure above.

Definition 2.3.023D Let S be a scheme. Let {Si → S}i∈I be a family of morphisms
with target S.

(1) Let F be a quasi-coherent OS-module. We call the unique descent on F
datum with respect to the covering {S → S} the trivial descent datum.

(2) The pullback of the trivial descent datum to {Si → S} is called the canon-
ical descent datum. Notation: (F|Si , can).

(3) A descent datum (Fi, ϕij) for quasi-coherent sheaves with respect to the
given covering is said to be effective if there exists a quasi-coherent sheaf
F on S such that (Fi, ϕij) is isomorphic to (F|Si , can).

Lemma 2.4.023E Let S be a scheme. Let S =
⋃
Ui be an open covering. Any descent

datum on quasi-coherent sheaves for the family U = {Ui → S} is effective. More-
over, the functor from the category of quasi-coherent OS-modules to the category of
descent data with respect to U is fully faithful.

Proof. This follows immediately from Sheaves, Section 33 and the fact that being
quasi-coherent is a local property, see Modules, Definition 10.1. �

To prove more we first need to study the case of modules over rings.

http://stacks.math.columbia.edu/tag/023C
http://stacks.math.columbia.edu/tag/023D
http://stacks.math.columbia.edu/tag/023E
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3. Descent for modules

023F Let R → A be a ring map. By Simplicial, Example 5.5 this gives rise to a cosim-
plicial R-algebra

A
//
// A⊗R Aoo

//
//
//
A⊗R A⊗R Aoo

oo

Let us denote this (A/R)• so that (A/R)n is the (n + 1)-fold tensor product of A
over R. Given a map ϕ : [n]→ [m] the R-algebra map (A/R)•(ϕ) is the map

a0 ⊗ . . .⊗ an 7−→
∏

ϕ(i)=0
ai ⊗

∏
ϕ(i)=1

ai ⊗ . . .⊗
∏

ϕ(i)=m
ai

where we use the convention that the empty product is 1. Thus the first few maps,
notation as in Simplicial, Section 5, are

δ1
0 : a0 7→ 1⊗ a0

δ1
1 : a0 7→ a0 ⊗ 1
σ0

0 : a0 ⊗ a1 7→ a0a1

δ2
0 : a0 ⊗ a1 7→ 1⊗ a0 ⊗ a1

δ2
1 : a0 ⊗ a1 7→ a0 ⊗ 1⊗ a1

δ2
2 : a0 ⊗ a1 7→ a0 ⊗ a1 ⊗ 1
σ1

0 : a0 ⊗ a1 ⊗ a2 7→ a0a1 ⊗ a2

σ1
1 : a0 ⊗ a1 ⊗ a2 7→ a0 ⊗ a1a2

and so on.

An R-module M gives rise to a cosimplicial (A/R)•-module (A/R)•⊗RM . In other
words Mn = (A/R)n ⊗R M and using the R-algebra maps (A/R)n → (A/R)m to
define the corresponding maps on M ⊗R (A/R)•.

The analogue to a descent datum for quasi-coherent sheaves in the setting of mod-
ules is the following.

Definition 3.1.023G Let R→ A be a ring map.

(1) A descent datum (N,ϕ) for modules with respect to R → A is given by an
A-module N and a isomorphism of A⊗R A-modules

ϕ : N ⊗R A→ A⊗R N
such that the cocycle condition holds: the diagram of A⊗RA⊗RA-module
maps

N ⊗R A⊗R A ϕ02

//

ϕ01 ((

A⊗R A⊗R N

A⊗R N ⊗R A
ϕ12

66

commutes (see below for notation).
(2) A morphism (N,ϕ)→ (N ′, ϕ′) of descent data is a morphism of A-modules

ψ : N → N ′ such that the diagram

N ⊗R A ϕ
//

ψ⊗idA
��

A⊗R N

idA⊗ψ
��

N ′ ⊗R A
ϕ′ // A⊗R N ′

is commutative.

http://stacks.math.columbia.edu/tag/023G
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In the definition we use the notation that ϕ01 = ϕ ⊗ idA, ϕ12 = idA ⊗ ϕ, and
ϕ02(n⊗ 1⊗ 1) =

∑
ai⊗ 1⊗ni if ϕ(n⊗ 1) =

∑
ai⊗ni. All three are A⊗RA⊗RA-

module homomorphisms. Equivalently we have

ϕij = ϕ⊗(A/R)1, (A/R)•(τ2
ij)

(A/R)2

where τ2
ij : [1] → [2] is the map 0 7→ i, 1 7→ j. Namely, (A/R)•(τ

2
02)(a0 ⊗ a1) =

a0 ⊗ 1⊗ a1, and similarly for the others1.

We need some more notation to be able to state the next lemma. Let (N,ϕ) be a
descent datum with respect to a ring map R→ A. For n ≥ 0 and i ∈ [n] we set

Nn,i = A⊗R . . .⊗R A⊗R N ⊗R A⊗R . . .⊗R A
with the factor N in the ith spot. It is an (A/R)n-module. If we introduce the
maps τni : [0]→ [n], 0 7→ i then we see that

Nn,i = N ⊗(A/R)0, (A/R)•(τni ) (A/R)n

For 0 ≤ i ≤ j ≤ n we let τnij : [1]→ [n] be the map such that 0 maps to i and 1 to
j. Similarly to the above the homomorphism ϕ induces isomorphisms

ϕnij = ϕ⊗(A/R)1, (A/R)•(τnij)
(A/R)n : Nn,i −→ Nn,j

of (A/R)n-modules when i < j. If i = j we set ϕnij = id. Since these are all
isomorphisms they allow us to move the factor N to any spot we like. And the
cocycle condition exactly means that it does not matter how we do this (e.g., as a
composition of two of these or at once). Finally, for any β : [n]→ [m] we define the
morphism

Nβ,i : Nn,i → Nm,β(i)

as the unique (A/R)•(β)-semi linear map such that

Nβ,i(1⊗ . . .⊗ n⊗ . . .⊗ 1) = 1⊗ . . .⊗ n⊗ . . .⊗ 1

for all n ∈ N . This hints at the following lemma.

Lemma 3.2.023H Let R → A be a ring map. Given a descent datum (N,ϕ) we can

associate to it a cosimplicial (A/R)•-module N•
2 by the rules Nn = Nn,n and given

β : [n]→ [m] setting we define

N•(β) = (ϕmβ(n)m) ◦Nβ,n : Nn,n −→ Nm,m.

This procedure is functorial in the descent datum.

Proof. Here are the first few maps where ϕ(n⊗ 1) =
∑
αi ⊗ xi

δ1
0 : N → A⊗N n 7→ 1⊗ n
δ1
1 : N → A⊗N n 7→

∑
αi ⊗ xi

σ0
0 : A⊗N → N a0 ⊗ n 7→ a0n
δ2
0 : A⊗N → A⊗A⊗N a0 ⊗ n 7→ 1⊗ a0 ⊗ n
δ2
1 : A⊗N → A⊗A⊗N a0 ⊗ n 7→ a0 ⊗ 1⊗ n
δ2
2 : A⊗N → A⊗A⊗N a0 ⊗ n 7→

∑
a0 ⊗ αi ⊗ xi

σ1
0 : A⊗A⊗N → A⊗N a0 ⊗ a1 ⊗ n 7→ a0a1 ⊗ n
σ1

1 : A⊗A⊗N → A⊗N a0 ⊗ a1 ⊗ n 7→ a0 ⊗ a1n

1Note that τ2ij = δ2k, if {i, j, k} = [2] = {0, 1, 2}, see Simplicial, Definition 2.1.
2We should really write (N,ϕ)•.

http://stacks.math.columbia.edu/tag/023H
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with notation as in Simplicial, Section 5. We first verify the two properties σ0
0 ◦

δ1
0 = id and σ0

0 ◦ δ1
1 = id. The first one, σ0

0 ◦ δ1
0 = id, is clear from the explicit

description of the morphisms above. To prove the second relation we have to
use the cocycle condition (because it does not holds for an arbitrary isomorphism
ϕ : N ⊗R A → A ⊗R N). Write p = σ0

0 ◦ δ1
1 : N → N . By the description of the

maps above we deduce that p is also equal to

p = ϕ⊗ id : N = (N ⊗R A)⊗(A⊗RA) A −→ (A⊗R N)⊗(A⊗RA) A = N

Since ϕ is an isomorphism we see that p is an isomorphism. Write ϕ(n ⊗ 1) =∑
αi ⊗ xi for certain αi ∈ A and xi ∈ N . Then p(n) =

∑
αixi. Next, write

ϕ(xi⊗ 1) =
∑
αij ⊗ yj for certain αij ∈ A and yj ∈ N . Then the cocycle condition

says that ∑
αi ⊗ αij ⊗ yj =

∑
αi ⊗ 1⊗ xi.

This means that p(n) =
∑
αixi =

∑
αiαijyj =

∑
αip(xi) = p(p(n)). Thus p is a

projector, and since it is an isomorphism it is the identity.

To prove fully that N• is a cosimplicial module we have to check all 5 types of
relations of Simplicial, Remark 5.3. The relations on composing σ’s are obvious.
The relations on composing δ’s come down to the cocycle condition for ϕ. In exactly
the same way as above one checks the relations σj ◦ δj = σj ◦ δj+1 = id. Finally,
the other relations on compositions of δ’s and σ’s hold for any ϕ whatsoever. �

Note that to an R-module M we can associate a canonical descent datum, namely
(M ⊗RA, can) where can : (M ⊗RA)⊗RA→ A⊗R (M ⊗RA) is the obvious map:
(m⊗ a)⊗ a′ 7→ a⊗ (m⊗ a′).

Lemma 3.3.023I Let R → A be a ring map. Let M be an R-module. The cosimpli-
cial (A/R)•-module associated to the canonical descent datum is isomorphic to the
cosimplicial module (A/R)• ⊗RM .

Proof. Omitted. �

Definition 3.4.023J Let R → A be a ring map. We say a descent datum (N,ϕ) is
effective if there exists an R-module M and an isomorphism of descent data from
(M ⊗R A, can) to (N,ϕ).

Let R → A be a ring map. Let (N,ϕ) be a descent datum. We may take the
cochain complex s(N•) associated with N• (see Simplicial, Section 25). It has the
following shape:

N → A⊗R N → A⊗R A⊗R N → . . .

We can describe the maps. The first map is the map

n 7−→ 1⊗ n− ϕ(n⊗ 1).

The second map on pure tensors has the values

a⊗ n 7−→ 1⊗ a⊗ n− a⊗ 1⊗ n+ a⊗ ϕ(n⊗ 1).

It is clear how the pattern continues.

In the special case where N = A ⊗R M we see that for any m ∈ M the element
1 ⊗ m is in the kernel of the first map of the cochain complex associated to the
cosimplicial module (A/R)• ⊗RM . Hence we get an extended cochain complex

(3.4.1)023K 0→M → A⊗RM → A⊗R A⊗RM → . . .

http://stacks.math.columbia.edu/tag/023I
http://stacks.math.columbia.edu/tag/023J
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Here we think of the 0 as being in degree −2, the module M in degree −1, the
module A⊗RM in degree 0, etc. Note that this complex has the shape

0→ R→ A→ A⊗R A→ A⊗R A⊗R A→ . . .

when M = R.

Lemma 3.5.023L Suppose that R → A has a section. Then for any R-module M the
extended cochain complex (3.4.1) is exact.

Proof. By Simplicial, Lemma 28.4 the mapR→ (A/R)• is a homotopy equivalence
of cosimplicial R-algebras (here R denotes the constant cosimplicial R-algebra).
Hence M → (A/R)•⊗RM is a homotopy equivalence in the category of cosimplicial
R-modules, because ⊗RM is a functor from the category of R-algebras to the
category of R-modules, see Simplicial, Lemma 28.3. This implies that the induced
map of associated complexes is a homotopy equivalence, see Simplicial, Lemma
28.5. Since the complex associated to the constant cosimplicial R-module M is the
complex

M
0 // M

1 // M
0 // M

1 // M . . .

we win (since the extended version simply puts an extra M at the beginning). �

Lemma 3.6.023M Suppose that R → A is faithfully flat, see Algebra, Definition 38.1.
Then for any R-module M the extended cochain complex (3.4.1) is exact.

Proof. Suppose we can show there exists a faithfully flat ring map R → R′ such
that the result holds for the ring map R′ → A′ = R′ ⊗R A. Then the result follows
for R→ A. Namely, for any R-module M the cosimplicial module (M ⊗R R′)⊗R′
(A′/R′)• is just the cosimplicial module R′⊗R (M⊗R (A/R)•). Hence the vanishing
of cohomology of the complex associated to (M ⊗R R′) ⊗R′ (A′/R′)• implies the
vanishing of the cohomology of the complex associated to M ⊗R (A/R)• by faithful
flatness of R → R′. Similarly for the vanishing of cohomology groups in degrees
−1 and 0 of the extended complex (proof omitted).

But we have such a faithful flat extension. Namely R′ = A works because the ring
map R′ = A→ A′ = A⊗RA has a section a⊗a′ 7→ aa′ and Lemma 3.5 applies. �

Here is how the complex relates to the question of effectivity.

Lemma 3.7.039W Let R → A be a faithfully flat ring map. Let (N,ϕ) be a descent
datum. Then (N,ϕ) is effective if and only if the canonical map

A⊗R H0(s(N•)) −→ N

is an isomorphism.

Proof. If (N,ϕ) is effective, then we may write N = A ⊗R M with ϕ = can. It
follows that H0(s(N•)) = M by Lemmas 3.3 and 3.6. Conversely, suppose the map
of the lemma is an isomorphism. In this case set M = H0(s(N•)). This is an
R-submodule of N , namely M = {n ∈ N | 1 ⊗ n = ϕ(n ⊗ 1)}. The only thing to
check is that via the isomorphism A⊗RM → N the canonical descent data agrees
with ϕ. We omit the verification. �

Lemma 3.8.039X Let R → A be a ring map, and let R → R′ be faithfully flat. Set
A′ = R′ ⊗R A. If all descent data for R′ → A′ are effective, then so are all descent
data for R→ A.

http://stacks.math.columbia.edu/tag/023L
http://stacks.math.columbia.edu/tag/023M
http://stacks.math.columbia.edu/tag/039W
http://stacks.math.columbia.edu/tag/039X
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Proof. Let (N,ϕ) be a descent datum for R→ A. Set N ′ = R′ ⊗R N = A′ ⊗A N ,
and denote ϕ′ = idR′ ⊗ ϕ the base change of the descent datum ϕ. Then (N ′, ϕ′)
is a descent datum for R′ → A′ and H0(s(N ′•)) = R′⊗RH0(s(N•)). Moreover, the
map A′ ⊗R′ H0(s(N ′•)) → N ′ is identified with the base change of the A-module
map A⊗R H0(s(N))→ N via the faithfully flat map A→ A′. Hence we conclude
by Lemma 3.7. �

Here is the main result of this section. Its proof may seem a little clumsy; for a
more highbrow approach see Remark 3.11 below.

Proposition 3.9.023N Let R→ A be a faithfully flat ring map. Then

(1) any descent datum on modules with respect to R→ A is effective,
(2) the functor M 7→ (A⊗RM, can) from R-modules to the category of descent

data is an equivalence, and
(3) the inverse functor is given by (N,ϕ) 7→ H0(s(N•)).

Proof. We only prove (1) and omit the proofs of (2) and (3). As R→ A is faithfully
flat, there exists a faithfully flat base change R→ R′ such that R′ → A′ = R′⊗RA
has a section (namely take R′ = A as in the proof of Lemma 3.6). Hence, using
Lemma 3.8 we may assume that R → A as a section, say σ : A → R. Let (N,ϕ)
be a descent datum relative to R→ A. Set

M = H0(s(N•)) = {n ∈ N | 1⊗ n = ϕ(n⊗ 1)} ⊂ N

By Lemma 3.7 it suffices to show that A⊗RM → N is an isomorphism.

Take an element n ∈ N . Write ϕ(n⊗1) =
∑
ai⊗xi for certain ai ∈ A and xi ∈ N .

By Lemma 3.2 we have n =
∑
aixi in N (because σ0

0 ◦ δ1
0 = id in any cosimplicial

object). Next, write ϕ(xi ⊗ 1) =
∑
aij ⊗ yj for certain aij ∈ A and yj ∈ N . The

cocycle condition means that∑
ai ⊗ aij ⊗ yj =

∑
ai ⊗ 1⊗ xi

in A ⊗R A ⊗R N . We conclude two things from this. First, by applying σ to
the first A we conclude that

∑
σ(ai)ϕ(xi ⊗ 1) =

∑
σ(ai) ⊗ xi which means that∑

σ(ai)xi ∈ M . Next, by applying σ to the middle A and multiplying out we
conclude that

∑
i ai(

∑
j σ(aij)yj) =

∑
aixi = n. Hence by the first conclusion we

see that A⊗RM → N is surjective. Finally, suppose that mi ∈M and
∑
aimi = 0.

Then we see by applying ϕ to
∑
aimi ⊗ 1 that

∑
ai ⊗ mi = 0. In other words

A⊗RM → N is injective and we win. �

Remark 3.10.023O Let R be a ring. Let f1, . . . , fn ∈ R generate the unit ideal. The
ring A =

∏
iRfi is a faithfully flat R-algebra. We remark that the cosimplicial ring

(A/R)• has the following ring in degree n:∏
i0,...,in

Rfi0 ...fin

Hence the results above recover Algebra, Lemmas 22.1, 22.2 and 23.4. But the
results above actually say more because of exactness in higher degrees. Namely, it
implies that Čech cohomology of quasi-coherent sheaves on affines is trivial. Thus
we get a second proof of Cohomology of Schemes, Lemma 2.1.

Remark 3.11.039Y Let R be a ring. Let A• be a cosimplicial R-algebra. In this setting
a descent datum corresponds to an cosimplicial A•-module M• with the property

http://stacks.math.columbia.edu/tag/023N
http://stacks.math.columbia.edu/tag/023O
http://stacks.math.columbia.edu/tag/039Y
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that for every n,m ≥ 0 and every ϕ : [n]→ [m] the map M(ϕ) : Mn →Mm induces
an isomorphism

Mn ⊗An,A(ϕ) Am −→Mm.

Let us call such a cosimplicial module a cartesian module. In this setting, the proof
of Proposition 3.9 can be split in the following steps

(1) If R → R′ is faithfully flat, R → A any ring map, then descent data for
A/R are effective if descent data for (R′ ⊗R A)/R′ are effective.

(2) Let A be an R-algebra. Descent data for A/R correspond to cartesian
(A/R)•-modules.

(3) If R → A has a section then (A/R)• is homotopy equivalent to R, the
constant cosimplicial R-algebra with value R.

(4) If A• → B• is a homotopy equivalence of cosimplicial R-algebras then the
functor M• 7→ M• ⊗A• B• induces an equivalence of categories between
cartesian A•-modules and cartesian B•-modules.

For (1) see Lemma 3.8. Part (2) uses Lemma 3.2. Part (3) we have seen in the
proof of Lemma 3.5 (it relies on Simplicial, Lemma 28.4). Moreover, part (4) is a
triviality if you think about it right!

4. Descent for universally injective morphisms

08WE Numerous constructions in algebraic geometry are made using techniques of descent,
such as constructing objects over a given space by first working over a somewhat
larger space which projects down to the given space, or verifying a property of a
space or a morphism by pulling back along a covering map. The utility of such tech-
niques is of course dependent on identification of a wide class of effective descent
morphisms. Early in the Grothendieckian development of modern algebraic geom-
etry, the class of morphisms which are quasi-compact and faithfully flat was shown
to be effective for descending objects, morphisms, and many properties thereof.

As usual, this statement comes down to a property of rings and modules. For
a homomorphism f : R → S to be an effective descent morphism for modules,
Grothendieck showed that it is sufficient for f to be faithfully flat. However, this
excludes many natural examples: for instance, any split ring homomorphism is an
effective descent morphism. One natural example of this even arises in the proof of
faithfully flat descent: for f : R→ S any ring homomorphism, 1S⊗f : S → S⊗RS
is split by the multiplication map whether or not it is flat.

One may then ask whether there is a natural ring-theoretic condition implying
effective descent for modules which includes both the case of a faithfully flat mor-
phism and that of a split ring homomorphism. It may surprise the reader (at least
it surprised this author) to learn that a complete answer to this question has been
known since around 1970! Namely, it is not hard to check that a necessary condition
for f : R → S to be an effective descent morphism for modules is that f must be
universally injective in the category of R-modules, that is, for any R-module M , the
map 1M⊗f : M →M⊗RS must be injective. This then turns out to be a sufficient
condition as well. For example, if f is split in the category of R-modules (but not
necessarily in the category of rings), then f is an effective descent morphism for
modules.



DESCENT 10

The history of this result is a bit involved: it was originally asserted by Olivier
[Oli70], who called universally injective morphisms pure, but without a clear indi-
cation of proof. One can extract the result from the work of Joyal and Tierney
[JT84], but to the best of our knowledge, the first free-standing proof to appear
in the literature is that of Mesablishvili [Mes00]. The first purpose of this section
is to expose Mesablishvili’s proof; this requires little modification of his original
presentation aside from correcting typos, with the one exception that we make
explicit the relationship between the customary definition of a descent datum in
algebraic geometry and the one used in [Mes00]. The proof turns out to be entirely
category-theoretic, and consequently can be put in the language of monads (and
thus applied in other contexts); see [JT04].

The second purpose of this section is to collect some information about which
properties of modules, algebras, and morphisms can be descended along universally
injective ring homomorphisms. The cases of finite modules and flat modules were
treated by Mesablishvili [Mes02].

4.1. Category-theoretic preliminaries.08WF We start by recalling a few basic no-
tions from category theory which will simplify the exposition. In this subsection,
fix an ambient category.

For two morphisms g1, g2 : B → C, recall that an equalizer of g1 and g2 is a
morphism f : A → B which satisfies g1 ◦ f = g2 ◦ f and is universal for this
property. This second statement means that any commutative diagram

A′

e

  ����
A

f // B
g1 //

g2

// C

without the dashed arrow can be uniquely completed. We also say in this situation
that the diagram

(4.1.1)08WG A
f // B

g1 //

g2

// C

is an equalizer. Reversing arrows gives the definition of a coequalizer. See Cate-
gories, Sections 10 and 11.

Since it involves a universal property, the property of being an equalizer is typically
not stable under applying a covariant functor. Just as for monomorphisms and
epimorphisms, one can get around this in some cases by exhibiting splittings.

Definition 4.2.08WH A split equalizer is a diagram (4.1.1) with g1 ◦f = g2 ◦f for which
there exist auxiliary morphisms h : B → A and i : C → B such that

(4.2.1)08WI h ◦ f = 1A, f ◦ h = i ◦ g1, i ◦ g2 = 1B .

The point is that the equalities among arrows force (4.1.1) to be an equalizer:
the map e factors uniquely through f by writing e = f ◦ (h ◦ e). Consequently,
applying a covariant functor to a split equalizer gives a split equalizer; applying a
contravariant functor gives a split coequalizer, whose definition is apparent.

http://stacks.math.columbia.edu/tag/08WH
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4.3. Universally injective morphisms.08WJ Recall that Rings denotes the category
of commutative rings with 1. For an object R of Rings we denote ModR the category
of R-modules.

Remark 4.4.08WK Any functor F : A → B of abelian categories which is exact and
takes nonzero objects to nonzero objects reflects injections and surjections. Namely,
exactness implies that F preserves kernels and cokernels (compare with Homology,
Section 7). For example, if f : R→ S is a faithfully flat ring homomorphism, then
• ⊗R S : ModR → ModS has these properties.

Let R be a ring. Recall that a morphism f : M → N in ModR is universally
injective if for all P ∈ ModR, the morphism f ⊗ 1P : M ⊗R P → N ⊗R P is
injective. See Algebra, Definition 81.1.

Definition 4.5.08WL A ring map f : R → S is universally injective if it is universally
injective as a morphism in ModR.

Example 4.6.08WM Any split injection in ModR is universally injective. In particular,
any split injection in Rings is universally injective.

Example 4.7.08WN For a ring R and f1, . . . , fn ∈ R generating the unit ideal, the
morphism R→ Rf1 ⊕ . . .⊕Rfn is universally injective. Although this is immediate
from Lemma 4.8, it is instructive to check it directly: we immediately reduce to
the case where R is local, in which case some fi must be a unit and so the map
R→ Rfi is an isomorphism.

Lemma 4.8.08WP Any faithfully flat ring map is universally injective.

Proof. This is a reformulation of Algebra, Lemma 81.11. �

The key observation from [Mes00] is that universal injectivity can be usefully re-
formulated in terms of a splitting, using the usual construction of an injective
cogenerator in ModR.

Definition 4.9.08WQ Let R be a ring. Define the contravariant functor C : ModR →
ModR by setting

C(M) = HomAb(M,Q/Z),

with the R-action on C(M) given by rf(s) = f(rs).

This functor was denoted M 7→M∨ in More on Algebra, Section 52.

Lemma 4.10.08WR For a ring R, the functor C : ModR → ModR is exact and reflects
injections and surjections.

Proof. Exactness is More on Algebra, Lemma 52.6 and the other properties follow
from this, see Remark 4.4. �

Remark 4.11.08WS We will use frequently the standard adjunction between Hom and
tensor product, in the form of the natural isomorphism of contravariant functors

(4.11.1)08WT C(•1 ⊗R •2) ∼= HomR(•1, C(•2)) : ModR ×ModR → ModR

taking f : M1⊗RM2 → Q/Z to the map m1 7→ (m2 7→ f(m1⊗m2)). See Algebra,
Lemma 13.5. A corollary of this observation is that if

C(M)
//
// C(N) // C(P )

http://stacks.math.columbia.edu/tag/08WK
http://stacks.math.columbia.edu/tag/08WL
http://stacks.math.columbia.edu/tag/08WM
http://stacks.math.columbia.edu/tag/08WN
http://stacks.math.columbia.edu/tag/08WP
http://stacks.math.columbia.edu/tag/08WQ
http://stacks.math.columbia.edu/tag/08WR
http://stacks.math.columbia.edu/tag/08WS
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is a split coequalizer diagram in ModR, then so is

C(M ⊗R Q)
//
// C(N ⊗R Q) // C(P ⊗R Q)

for any Q ∈ ModR.

Lemma 4.12.08WU Let R be a ring. A morphism f : M → N in ModR is universally
injective if and only if C(f) : C(N)→ C(M) is a split surjection.

Proof. By (4.11.1), for any P ∈ ModR we have a commutative diagram

HomR(P,C(N))
HomR(P,C(f))

//

∼=
��

HomR(P,C(M))

∼=
��

C(P ⊗R N)
C(1P⊗f) // C(P ⊗RM).

If f is universally injective, then 1C(M)⊗f : C(M)⊗RM → C(M)⊗RN is injective,
so both rows in the above diagram are surjective for P = C(M). We may thus lift
1C(M) ∈ HomR(C(M), C(M)) to some g ∈ HomR(C(N), C(M)) splitting C(f).
Conversely, if C(f) is a split surjection, then both rows in the above diagram are
surjective, so by Lemma 4.10, 1P ⊗ f is injective. �

Remark 4.13.08WV Let f : M → N be a universally injective morphism in ModR. By
choosing a splitting g of C(f), we may construct a functorial splitting of C(1P ⊗f)
for each P ∈ ModR. Namely, by (4.11.1) this amounts to splitting HomR(P,C(f))
functorially in P , and this is achieved by the map g ◦ •.

4.14. Descent for modules and their morphisms.08WW Throughout this subsec-
tion, fix a ring map f : R → S. As seen in Section 3 we can use the language of
cosimplicial algebras to talk about descent data for modules, but in this subsection
we prefer a more down to earth terminology.

For i = 1, 2, 3, let Si be the i-fold tensor product of S over R. Define the ring
homomorphisms δ1

0 , δ
1
1 : S1 → S2, δ1

01, δ
1
02, δ

1
12 : S1 → S3, and δ2

0 , δ
2
1 , δ

2
2 : S2 → S3

by the formulas

δ1
0(a0) = 1⊗ a0

δ1
1(a0) = a0 ⊗ 1

δ2
0(a0 ⊗ a1) = 1⊗ a0 ⊗ a1

δ2
1(a0 ⊗ a1) = a0 ⊗ 1⊗ a1

δ2
2(a0 ⊗ a1) = a0 ⊗ a1 ⊗ 1

δ1
01(a0) = 1⊗ 1⊗ a0

δ1
02(a0) = 1⊗ a0 ⊗ 1

δ1
12(a0) = a0 ⊗ 1⊗ 1.

In other words, the upper index indicates the source ring, while the lower index
indicates where to insert factors of 1. (This notation is compatible with the notation
introduced in Section 3.)

http://stacks.math.columbia.edu/tag/08WU
http://stacks.math.columbia.edu/tag/08WV
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Recall3 from Definition 3.1 that for M ∈ ModS , a descent datum on M relative to
f is an isomorphism

θ : M ⊗S,δ1
0
S2 −→M ⊗S,δ1

1
S2

of S2-modules satisfying the cocycle condition

(4.14.1)08WX (θ ⊗ δ2
2) ◦ (θ ⊗ δ0

2) = (θ ⊗ δ1
2) : M ⊗S,δ1

01
S3 →M ⊗S,δ1

12
S3.

Let DDS/R be the category of S-modules equipped with descent data relative to f .

For example, for M0 ∈ ModR and a choice of isomorphism M ∼= M0 ⊗R S gives
rise to a descent datum by identifying M ⊗S,δ1

0
S2 and M ⊗S,δ1

1
S2 naturally with

M0 ⊗R S2. This construction in particular defines a functor f∗ : ModR → DDS/R.

Definition 4.15.08WY The functor f∗ : ModR → DDS/R is called base extension along
f . We say that f is a descent morphism for modules if f∗ is fully faithful. We
say that f is an effective descent morphism for modules if f∗ is an equivalence of
categories.

Our goal is to show that for f universally injective, we can use θ to locate M0

within M . This process makes crucial use of some equalizer diagrams.

Lemma 4.16.08WZ For (M, θ) ∈ DDS/R, the diagram
(4.16.1)

08X0 M
θ◦(1M⊗δ1

0) // M ⊗S,δ1
1
S2

(θ⊗δ2
2)◦(1M⊗δ2

0) //

1M⊗S2
⊗δ2

1

// M ⊗S,δ1
12
S3

is a split equalizer.

Proof. Define the ring homomorphisms σ0
0 : S2 → S1 and σ1

0 , σ
1
1 : S3 → S2 by the

formulas

σ0
0(a0 ⊗ a1) = a0a1

σ1
0(a0 ⊗ a1 ⊗ a2) = a0a1 ⊗ a2

σ1
1(a0 ⊗ a1 ⊗ a2) = a0 ⊗ a1a2.

We then take the auxiliary morphisms to be 1M ⊗ σ0
0 : M ⊗S,δ1

1
S2 → M and

1M ⊗σ1
0 : M ⊗S,δ1

12
S3 →M ⊗S,δ1

1
S2. Of the compatibilities required in (4.2.1), the

first follows from tensoring the cocycle condition (4.14.1) with σ1
1 and the others

are immediate. �

Lemma 4.17.08X1 For (M, θ) ∈ DDS/R, the diagram
(4.17.1)

08X2 C(M ⊗S,δ1
12
S3)

C((θ⊗δ2
2)◦(1M⊗δ2

0)) //

C(1M⊗S2
⊗δ2

1)

// C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) // C(M).

obtained by applying C to (4.16.1) is a split coequalizer.

Proof. Omitted. �

3To be precise, our θ here is the inverse of ϕ from Definition 3.1.

http://stacks.math.columbia.edu/tag/08WY
http://stacks.math.columbia.edu/tag/08WZ
http://stacks.math.columbia.edu/tag/08X1
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Lemma 4.18.08X3 The diagram

(4.18.1)08X4 S1

δ1
1 // S2

δ2
2 //

δ2
1

// S3

is a split equalizer.

Proof. In Lemma 4.16, take (M, θ) = f∗(S). �

This suggests a definition of a potential quasi-inverse functor for f∗.

Definition 4.19.08X5 Define the functor f∗ : DDS/R → ModR by taking f∗(M, θ) to
be the R-submodule of M for which the diagram

(4.19.1)08X6 f∗(M, θ) // M
θ◦(1M⊗δ1

0) //

1M⊗δ1
1

// M ⊗S,δ1
1
S2

is an equalizer.

Using Lemma 4.16 and the fact that the restriction functor ModS → ModR is right
adjoint to the base extension functor • ⊗R S : ModR → ModS , we deduce that f∗
is right adjoint to f∗.

We are ready for the key lemma. In the faithfully flat case this is a triviality (see
Remark 4.21), but in the general case some argument is needed.

Lemma 4.20.08X7 If f is universally injective, then the diagram
(4.20.1)

08X8 f∗(M, θ)⊗R S
θ◦(1M⊗δ1

0) // M ⊗S,δ1
1
S2

(θ⊗δ2
2)◦(1M⊗δ2

0) //

1M⊗S2
⊗δ2

1

// M ⊗S,δ1
12
S3

obtained by tensoring (4.19.1) over R with S is an equalizer.

Proof. By Lemma 4.12 and Remark 4.13, the map C(1N ⊗ f) : C(N ⊗R S) →
C(N) can be split functorially in N . This gives the upper vertical arrows in the
commutative diagram

C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) //

C(1M⊗δ1
1)

//

��

C(M) //

��

C(f∗(M, θ))

��
C(M ⊗S,δ1

12
S3)

C((θ⊗δ2
2)◦(1M⊗δ2

0)) //

C(1M⊗S2
⊗δ2

1)

//

��

C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) //

C(1M⊗δ1
1)

��

C(M)

��
C(M ⊗S,δ1

1
S2)

C(θ◦(1M⊗δ1
0)) //

C(1M⊗δ1
1)

// C(M) // C(f∗(M, θ))

in which the compositions along the columns are identity morphisms. The second
row is the coequalizer diagram (4.17.1); this produces the dashed arrow. From
the top right square, we obtain auxiliary morphisms C(f∗(M, θ)) → C(M) and
C(M)→ C(M⊗S,δ1

1
S2) which imply that the first row is a split coequalizer diagram.

http://stacks.math.columbia.edu/tag/08X3
http://stacks.math.columbia.edu/tag/08X5
http://stacks.math.columbia.edu/tag/08X7
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By Remark 4.11, we may tensor with S inside C to obtain the split coequalizer
diagram

C(M ⊗S,δ2
2◦δ1

1
S3)

C((θ⊗δ2
2)◦(1M⊗δ2

0)) //

C(1M⊗S2
⊗δ2

1)

// C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) // C(f∗(M, θ)⊗R S).

By Lemma 4.10, we conclude (4.20.1) must also be an equalizer. �

Remark 4.21.08X9 If f is a split injection in ModR, one can simplify the argument by
splitting f directly, without using C. Things are even simpler if f is faithfully flat;
in this case, the conclusion of Lemma 4.20 is immediate because tensoring over R
with S preserves all equalizers.

Theorem 4.22.08XA The following conditions are equivalent.

(a) The morphism f is a descent morphism for modules.
(b) The morphism f is an effective descent morphism for modules.
(c) The morphism f is universally injective.

Proof. It is clear that (b) implies (a). We now check that (a) implies (c). If f
is not universally injective, we can find M ∈ ModR such that the map 1M ⊗ f :
M → M ⊗R S has nontrivial kernel N . The natural projection M → M/N is not
an isomorphism, but its image in DDS/R is an isomorphism. Hence f∗ is not fully
faithful.

We finally check that (c) implies (b). By Lemma 4.20, for (M, θ) ∈ DDS/R, the
natural map f∗f∗(M, θ)→M is an isomorphism of S-modules. On the other hand,
for M0 ∈ ModR, we may tensor (4.18.1) with M0 over R to obtain an equalizer
sequence, so M0 → f∗f

∗M is an isomorphism. Consequently, f∗ and f∗ are quasi-
inverse functors, proving the claim. �

4.23. Descent for properties of modules.08XB Throughout this subsection, fix a
universally injective ring map f : R → S, an object M ∈ ModR, and a ring map
R → A. We now investigate the question of which properties of M or A can be
checked after base extension along f . We start with some results from [Mes02].

Lemma 4.24.08XC If M ∈ ModR is flat, then C(M) is an injective R-module.

Proof. Let 0→ N → P → Q→ 0 be an exact sequence in ModR. Since M is flat,

0→ N ⊗RM → P ⊗RM → Q⊗RM → 0

is exact. By Lemma 4.10,

0→ C(Q⊗RM)→ C(P ⊗RM)→ C(N ⊗RM)→ 0

is exact. By (4.11.1), this last sequence can be rewritten as

0→ HomR(Q,C(M))→ HomR(P,C(M))→ HomR(N,C(M))→ 0.

Hence C(M) is an injective object of ModR. �

Theorem 4.25.08XD If M ⊗R S has one of the following properties as an S-module

(a) finitely generated;
(b) finitely presented;
(c) flat;
(d) faithfully flat;

http://stacks.math.columbia.edu/tag/08X9
http://stacks.math.columbia.edu/tag/08XA
http://stacks.math.columbia.edu/tag/08XC
http://stacks.math.columbia.edu/tag/08XD
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(e) finite projective;

then so does M as an R-module (and conversely).

Proof. To prove (a), choose a finite set {ni} of generators of M ⊗R S in ModS .
Write each ni as

∑
jmij ⊗ sij with mij ∈M and sij ∈ S. Let F be the finite free

R-module with basis eij and let F →M be the R-module map sending eij to mij .
Then F ⊗R S → M ⊗R S is surjective, so Coker(F → M) ⊗R S is zero and hence
Coker(F →M) is zero. This proves (a).

To see (b) assume M⊗RS is finitely presented. Then M is finitely generated by (a).
Choose a surjection R⊕n →M with kernel K. Then K⊗RS → S⊕r →M⊗RS → 0
is exact. By Algebra, Lemma 5.3 the kernel of S⊕r →M ⊗RS is a finite S-module.
Thus we can find finitely many elements k1, . . . , kt ∈ K such that the images of
ki⊗1 in S⊕r generate the kernel of S⊕r →M⊗RS. Let K ′ ⊂ K be the submodule
generated by k1, . . . , kt. Then M ′ = R⊕r/K ′ is a finitely presented R-module with
a morphism M ′ → M such that M ′ ⊗R S → M ⊗R S is an isomorphism. Thus
M ′ ∼= M as desired.

To prove (c), let 0 → M ′ → M ′′ → M → 0 be a short exact sequence in ModR.
Since • ⊗R S is a right exact functor, M ′′ ⊗R S → M ⊗R S is surjective. So by
Lemma 4.10 the map C(M ⊗R S) → C(M ′′ ⊗R S) is injective. If M ⊗R S is
flat, then Lemma 4.24 shows C(M ⊗R S) is an injective object of ModS , so the
injection C(M ⊗R S) → C(M ′′ ⊗R S) is split in ModS and hence also in ModR.
Since C(M ⊗R S) → C(M) is a split surjection by Lemma 4.12, it follows that
C(M)→ C(M ′′) is a split injection in ModR. That is, the sequence

0→ C(M)→ C(M ′′)→ C(M ′)→ 0

is split exact. For N ∈ ModR, by (4.11.1) we see that

0→ C(M ⊗R N)→ C(M ′′ ⊗R N)→ C(M ′ ⊗R N)→ 0

is split exact. By Lemma 4.10,

0→M ′ ⊗R N →M ′′ ⊗R N →M ⊗R N → 0

is exact. This implies M is flat over R. Namely, taking M ′ a free module surjecting
onto M we conclude that TorR1 (M,N) = 0 for all modules N and we can use
Algebra, Lemma 74.8. This proves (c).

To deduce (d) from (c), note that if N ∈ ModR and M ⊗R N is zero, then M ⊗R
S ⊗S (N ⊗R S) ∼= (M ⊗R N)⊗R S is zero, so N ⊗R S is zero and hence N is zero.

To deduce (e) at this point, it suffices to recall that M is finitely generated and
projective if and only if it is finitely presented and flat. See Algebra, Lemma
77.2. �

There is a variant for R-algebras.

Theorem 4.26.08XE If A⊗R S has one of the following properties as an S-algebra

(a) of finite type;
(b) of finite presentation;
(c) formally unramified;
(d) unramified;
(e) étale;

then so does A as an R-algebra (and of course conversely).

http://stacks.math.columbia.edu/tag/08XE
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Proof. To prove (a), choose a finite set {xi} of generators of A⊗R S over S. Write
each xi as

∑
j yij ⊗ sij with yij ∈ A and sij ∈ S. Let F be the polynomial R-

algebra on variables eij and let F → M be the R-algebra map sending eij to yij .
Then F ⊗R S → A ⊗R S is surjective, so Coker(F → A) ⊗R S is zero and hence
Coker(F → A) is zero. This proves (a).

To see (b) assume A ⊗R S is a finitely presented S-algebra. Then A is finite
type over R by (a). Choose a surjection R[x1, . . . , xn] → A with kernel I. Then
I ⊗R S → S[x1, . . . , xn] → A ⊗R S → 0 is exact. By Algebra, Lemma 6.3 the
kernel of S[x1, . . . , xn] → A ⊗R S is a finitely generated ideal. Thus we can find
finitely many elements y1, . . . , yt ∈ I such that the images of yi⊗ 1 in S[x1, . . . , xn]
generate the kernel of S[x1, . . . , xn] → A ⊗R S. Let I ′ ⊂ I be the ideal generated
by y1, . . . , yt. Then A′ = R[x1, . . . , xn]/I ′ is a finitely presented R-algebra with a
morphism A′ → A such that A′ ⊗R S → A⊗R S is an isomorphism. Thus A′ ∼= A
as desired.

To prove (c), recall that A is formally unramified over R if and only if the module
of relative differentials ΩA/R vanishes, see Algebra, Lemma 144.2 or [GD67, Propo-
sition 17.2.1]. Since Ω(A⊗RS)/S = ΩA/R ⊗R S, the vanishing descends by Theorem
4.22.

To deduce (d) from the previous cases, recall that A is unramified over R if and
only if A is formally unramified and of finite type over R, see Algebra, Lemma
147.2.

To prove (e), recall that by Algebra, Lemma 147.8 or [GD67, Théorème 17.6.1]
the algebra A is étale over R if and only if A is flat, unramified, and of finite
presentation over R. �

Remark 4.27.08XF It would make things easier to have a faithfully flat ring homomor-
phism g : R→ T for which T → S ⊗R T has some extra structure. For instance, if
one could ensure that T → S⊗R T is split in Rings, then it would follow that every
property of a module or algebra which is stable under base extension and which
descends along faithfully flat morphisms also descends along universally injective
morphisms. An obvious guess would be to find g for which T is not only faithfully
flat but also injective in ModR, but even for R = Z no such homomorphism can
exist.

5. Fpqc descent of quasi-coherent sheaves

023R The main application of flat descent for modules is the corresponding descent state-
ment for quasi-coherent sheaves with respect to fpqc-coverings.

Lemma 5.1.023S Let S be an affine scheme. Let U = {fi : Ui → S}i=1,...,n be a
standard fpqc covering of S, see Topologies, Definition 9.9. Any descent datum
on quasi-coherent sheaves for U = {Ui → S} is effective. Moreover, the functor
from the category of quasi-coherent OS-modules to the category of descent data with
respect to U is fully faithful.

Proof. This is a restatement of Proposition 3.9 in terms of schemes. First, note
that a descent datum ξ for quasi-coherent sheaves with respect to U is exactly the
same as a descent datum ξ′ for quasi-coherent sheaves with respect to the covering
U ′ = {

∐
i=1,...,n Ui → S}. Moreover, effectivity for ξ is the same as effectivity for

http://stacks.math.columbia.edu/tag/08XF
http://stacks.math.columbia.edu/tag/023S
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ξ′. Hence we may assume n = 1, i.e., U = {U → S} where U and S are affine. In
this case descent data correspond to descent data on modules with respect to the
ring map

Γ(S,O) −→ Γ(U,O).

Since U → S is surjective and flat, we see that this ring map is faithfully flat. In
other words, Proposition 3.9 applies and we win. �

Proposition 5.2.023T Let S be a scheme. Let U = {ϕi : Ui → S} be an fpqc cover-
ing, see Topologies, Definition 9.1. Any descent datum on quasi-coherent sheaves
for U = {Ui → S} is effective. Moreover, the functor from the category of quasi-
coherent OS-modules to the category of descent data with respect to U is fully faith-
ful.

Proof. Let S =
⋃
j∈J Vj be an affine open covering. For j, j′ ∈ J we denote

Vjj′ = Vj ∩ Vj′ the intersection (which need not be affine). For V ⊂ S open we
denote UV = {V ×S Ui → V }i∈I which is a fpqc-covering (Topologies, Lemma 9.7).
By definition of an fpqc covering, we can find for each j ∈ J a finite set Kj , a map
i : Kj → I, affine opens Ui(k),k ⊂ Ui(k), k ∈ Kj such that Vj = {Ui(k),k → Vj}k∈Kj
is a standard fpqc covering of Vj . And of course, Vj is a refinement of UVj . Picture

Vj //

��

UVj //

��

U

��
Vj Vj // S

where the top horizontal arrows are morphisms of families of morphisms with fixed
target (see Sites, Definition 8.1).

To prove the proposition you show successively the faithfulness, fullness, and es-
sential surjectivity of the functor from quasi-coherent sheaves to descent data.

Faithfulness. Let F , G be quasi-coherent sheaves on S and let a, b : F → G be
homomorphisms of OS-modules. Suppose ϕ∗i (a) = ϕ∗(b) for all i. Pick s ∈ S.
Then s = ϕi(u) for some i ∈ I and u ∈ Ui. Since OS,s → OUi,u is flat, hence
faithfully flat (Algebra, Lemma 38.17) we see that as = bs : Fs → Gs. Hence a = b.

Fully faithfulness. Let F , G be quasi-coherent sheaves on S and let ai : ϕ∗iF → ϕ∗iG
be homomorphisms of OUi-modules such that pr∗0ai = pr∗1aj on Ui ×U Uj . We can
pull back these morphisms to get morphisms

ak : F|Ui(k),k
−→ G|Ui(k),k

k ∈ Kj with notation as above. Moreover, Lemma 2.2 assures us that these define
a morphism between (canonical) descent data on Vj . Hence, by Lemma 5.1, we get
correspondingly unique morphisms aj : F|Vj → G|Vj . To see that aj |Vjj′ = aj′ |Vjj′
we use that both aj and aj′ agree with the pullback of the morphism (ai)i∈I of
(canonical) descent data to any covering refining both Vj,Vjj′ and Vj′,Vjj′ , and using

the faithfulness already shown. For example the covering Vjj′ = {Vk ×S Vk′ →
Vjj′}k∈Kj ,k′∈Kj′ will do.

Essential surjectivity. Let ξ = (Fi, ϕii′) be a descent datum for quasi-coherent
sheaves relative to the covering U . Pull back this descent datum to get descent
data ξj for quasi-coherent sheaves relative to the coverings Vj of Vj . By Lemma 5.1

http://stacks.math.columbia.edu/tag/023T
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once again there exist quasi-coherent sheaves Fj on Vj whose associated canonical
descent datum is isomorphic to ξj . By fully faithfulness (proved above) we see there
are isomorphisms

φjj′ : Fj |Vjj′ −→ Fj′ |Vjj′
corresponding to the isomorphism of descent data between the pullback of ξj and ξj′

to Vjj′ . To see that these maps φjj′ satisfy the cocycle condition we use faithfulness
(proved above) over the triple intersections Vjj′j′′ . Hence, by Lemma 2.4 we see
that the sheaves Fj glue to a quasi-coherent sheaf F as desired. We still have to
verify that the canonical descent datum relative to U associated to F is isomorphic
to the descent datum we started out with. This verification is omitted. �

6. Galois descent for quasi-coherent sheaves

0CDQ Galois descent for quasi-coherent sheaves is just a special case of fpqc descent for
quasi-coherent sheaves. In this section we will explain how to translate from a
Galois descent to an fpqc descent and then apply earlier results to conclude.

Let k′/k be a field extension. Then {Spec(k′)→ Spec(k)} is an fpqc covering. Let
X be a scheme over k. For a k-algebra A we set XA = X ×Spec(k) Spec(A). By
Topologies, Lemma 9.7 we see that {Xk′ → X} is an fpqc covering. Observe that

Xk′ ×X Xk′ = Xk′⊗kk′ and Xk′ ×X Xk′ ×X Xk′ = Xk′⊗kk′⊗kk′

Thus a descent datum for quasi-coherent sheaves with respect to {Xk′ → X} is
given by a quasi-coherent sheaf F on Xk′ , an isomorphism ϕ : pr∗0F → pr∗1F on
Xk′⊗kk′ which satisfies an obvious cocycle condition on Xk′⊗kk′⊗kk′ . We will work
out what this means in the case of a Galois extension below.

Let k′/k be a finite Galois extension with Galois group G = Gal(k′/k). Then there
are k-algebra isomorphisms

k′ ⊗k k′ −→
∏

σ∈G
k′, a⊗ b −→

∏
aσ(b)

and

k′ ⊗k k′ ⊗k k′ −→
∏

(σ,τ)∈G×G
k′, a⊗ b⊗ c −→

∏
aσ(b)σ(τ(c))

The reason for choosing here aσ(b)σ(τ(c)) and not aσ(b)τ(c) is that the formulas
below simplify but it isn’t strictly necessary. Given σ ∈ G we denote

fσ = idX × Spec(σ) : Xk′ −→ Xk′

Please keep in mind that because Spec(−) is a contravariant functor we have fστ =
fτ ◦fσ and not the other way around. Using the first isomorphism above we obtain
an identification

Xk′⊗kk′ =
∐

σ∈G
Xk′

such that pr0 corresponds to the map∐
σ∈G

Xk′

∐
id−−−→ Xk′

and such that pr1 corresponds to the map∐
σ∈G

Xk′

∐
fσ−−−→ Xk′
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Thus we see that a descent datum ϕ on F over Xk′ corresponds to a family of
isomorphisms ϕσ : F → f∗σF . To work out the cocycle condition we use the
identification

Xk′⊗kk′⊗kk′ =
∐

(σ,τ)∈G×G
Xk′ .

we get from our isomorphism of algebras above. Via this identification the map
pr01 corresponds to the map∐

(σ,τ)∈G×G
Xk′ −→

∐
σ∈G

Xk′

which maps the summand with index (σ, τ) to the summand with index σ via the
identity morphism. The map pr12 corresponds to the map∐

(σ,τ)∈G×G
Xk′ −→

∐
σ∈G

Xk′

which maps the summand with index (σ, τ) to the summand with index τ via the
morphism fσ. Finally, the map pr02 corresponds to the map∐

(σ,τ)∈G×G
Xk′ −→

∐
σ∈G

Xk′

which maps the summand with index (σ, τ) to the summand with index στ via the
identity morphism. Thus the cocycle condition

pr∗02ϕ = pr∗12ϕ ◦ pr∗01ϕ

translates into one condition for each pair (σ, τ), namely

ϕστ = f∗σϕτ ◦ ϕσ
as maps F → f∗στF . (Everything works out beautifully; for example the target of
ϕσ is f∗σF and the source of f∗σϕτ is f∗σF as well.)

Lemma 6.1.0CDR Let k′/k be a (finite) Galois extension with Galois group G. Let X
be a scheme over k. The category of quasi-coherent OX-modules is equivalent to
the category of systems (F , (ϕσ)σ∈G) where

(1) F is a quasi-coherent module on Xk′ ,
(2) ϕσ : F → f∗σF is an isomorphism of modules,
(3) ϕστ = f∗σϕτ ◦ ϕσ for all σ, τ ∈ G.

Here fσ = idX × Spec(σ) : Xk′ → Xk′ .

Proof. As seen above a datum (F , (ϕσ)σ∈G) as in the lemma is the same thing as
a descent datum for the fpqc covering {Xk′ → X}. Thus the lemma follows from
Proposition 5.2. �

A slightly more general case of the above is the following. Suppose we have a
surjective finite étale morphism X → Y and a finite group G together with a group
homomorphism Gopp → AutY (X), σ 7→ fσ such that the map

G×X −→ X ×Y X, (σ, x) 7−→ (x, fσ(x))

is an isomorphism. Then the same result as above holds.

Lemma 6.2.0D1V Let X → Y , G, and fσ : X → X be as above. The category of
quasi-coherent OY -modules is equivalent to the category of systems (F , (ϕσ)σ∈G)
where

(1) F is a quasi-coherent OX-module,
(2) ϕσ : F → f∗σF is an isomorphism of modules,

http://stacks.math.columbia.edu/tag/0CDR
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(3) ϕστ = f∗σϕτ ◦ ϕσ for all σ, τ ∈ G.

Proof. Since X → Y is surjective finite étale {X → Y } is an fpqc covering.
Since G × X → X ×Y X, (σ, x) 7→ (x, fσ(x)) is an isomorphism, we see that
G×G×X → X ×Y X ×Y X, (σ, τ, x) 7→ (x, fσ(x), fστ (x)) is an isomorphism too.
Using these identifications, the category of data as in the lemma is the same as
the category of descent data for quasi-coherent sheaves for the covering {x → Y }.
Thus the lemma follows from Proposition 5.2. �

7. Descent of finiteness properties of modules

05AY In this section we prove that one can check quasi-coherent module has a certain
finiteness conditions by checking on the members of a covering.

Lemma 7.1.05AZ Let X be a scheme. Let F be a quasi-coherent OX-module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗i F is a finite type OXi-
module. Then F is a finite type OX-module.

Proof. Omitted. For the affine case, see Algebra, Lemma 82.2. �

Lemma 7.2.09UB Let f : (X,OX) → (Y,OY ) be a morphism of locally ringed spaces.
Let F be a sheaf of OY -modules. If

(1) f is open as a map of topological spaces,
(2) f is surjective and flat, and
(3) f∗F is of finite type,

then F is of finite type.

Proof. Let y ∈ Y be a point. Choose a point x ∈ X mapping to y. Choose an
open x ∈ U ⊂ X and elements s1, . . . , sn of f∗F(U) which generate f∗F over U .
Since f∗F = f−1F ⊗f−1OY OX we can after shrinking U assume si =

∑
tij ⊗ aij

with tij ∈ f−1F(U) and aij ∈ OX(U). After shrinking U further we may assume
that tij comes from a section sij ∈ F(V ) for some V ⊂ Y open with f(U) ⊂ V .
Let N be the number of sections sij and consider the map

σ = (sij) : O⊕NV → F|V
By our choice of the sections we see that f∗σ|U is surjective. Hence for every u ∈ U
the map

σf(u) ⊗OY,f(u)
OX,u : O⊕NX,u −→ Ff(u) ⊗OY,f(u)

OX,u
is surjective. As f is flat, the local ring map OY,f(u) → OX,u is flat, hence faithfully
flat (Algebra, Lemma 38.17). Hence σf(u) is surjective. Since f is open, f(U) is an
open neighbourhood of y and the proof is done. �

Lemma 7.3.05B0 Let X be a scheme. Let F be a quasi-coherent OX-module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗i F is an OXi-module of
finite presentation. Then F is an OX-module of finite presentation.

Proof. Omitted. For the affine case, see Algebra, Lemma 82.2. �

Lemma 7.4.082U Let X be a scheme. Let F be a quasi-coherent OX-module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗i F is locally generated
by r sections as an OXi-module. Then F is locally generated by r sections as an
OX-module.

http://stacks.math.columbia.edu/tag/05AZ
http://stacks.math.columbia.edu/tag/09UB
http://stacks.math.columbia.edu/tag/05B0
http://stacks.math.columbia.edu/tag/082U
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Proof. By Lemma 7.1 we see that F is of finite type. Hence Nakayama’s lemma
(Algebra, Lemma 19.1) implies that F is generated by r sections in the neighbour-
hood of a point x ∈ X if and only if dimκ(x) Fx ⊗ κ(x) ≤ r. Choose an i and a
point xi ∈ Xi mapping to x. Then dimκ(x) Fx ⊗ κ(x) = dimκ(xi)(f

∗
i F)xi ⊗ κ(xi)

which is ≤ r as f∗i F is locally generated by r sections. �

Lemma 7.5.05B1 Let X be a scheme. Let F be a quasi-coherent OX-module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗i F is a flat OXi-module.
Then F is a flat OX-module.

Proof. Omitted. For the affine case, see Algebra, Lemma 82.2. �

Lemma 7.6.05B2 Let X be a scheme. Let F be a quasi-coherent OX-module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗i F is a finite locally free
OXi-module. Then F is a finite locally free OX-module.

Proof. This follows from the fact that a quasi-coherent sheaf is finite locally free if
and only if it is of finite presentation and flat, see Algebra, Lemma 77.2. Namely, if
each f∗i F is flat and of finite presentation, then so is F by Lemmas 7.5 and 7.3. �

The definition of a locally projective quasi-coherent sheaf can be found in Proper-
ties, Section 21.

Lemma 7.7.05JZ Let X be a scheme. Let F be a quasi-coherent OX-module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗i F is a locally projective
OXi-module. Then F is a locally projective OX-module.

Proof. Omitted. For Zariski coverings this is Properties, Lemma 21.2. For the
affine case this is Algebra, Theorem 94.5. �

Remark 7.8.05VF Being locally free is a property of quasi-coherent modules which
does not descend in the fpqc topology. Namely, suppose that R is a ring and that
M is a projective R-module which is a countable direct sum M =

⊕
Ln of rank

1 locally free modules, but not locally free, see Examples, Lemma 27.5. Then M
becomes free on making the faithfully flat base change

R −→
⊕

m≥1

⊕
(i1,...,im)∈Z⊕m

L⊗i11 ⊗R . . .⊗R L⊗imm

But we don’t know what happens for fppf coverings. In other words, we don’t know
the answer to the following question: Suppose A→ B is a faithfully flat ring map
of finite presentation. Let M be an A-module such that M ⊗A B is free. Is M a
locally free A-module? It turns out that if A is Noetherian, then the answer is yes.
This follows from the results of [Bas63]. But in general we don’t know the answer.
If you know the answer, or have a reference, please email stacks.project@gmail.com.

We also add here two results which are related to the results above, but are of a
slightly different nature.

Lemma 7.9.05B3 Let f : X → Y be a morphism of schemes. Let F be a quasi-coherent
OX-module. Assume f is a finite morphism. Then F is an OX-module of finite
type if and only if f∗F is an OY -module of finite type.

Proof. As f is finite it is affine. This reduces us to the case where f is the morphism

Spec(B) → Spec(A) given by a finite ring map A → B. Moreover, then F = M̃
is the sheaf of modules associated to the B-module M . Note that M is finite as

http://stacks.math.columbia.edu/tag/05B1
http://stacks.math.columbia.edu/tag/05B2
http://stacks.math.columbia.edu/tag/05JZ
http://stacks.math.columbia.edu/tag/05VF
mailto:stacks.project@gmail.com
http://stacks.math.columbia.edu/tag/05B3
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a B-module if and only if M is finite as an A-module, see Algebra, Lemma 7.2.
Combined with Properties, Lemma 16.1 this proves the lemma. �

Lemma 7.10.05B4 Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX-module. Assume f is finite and of finite presentation. Then F is
an OX-module of finite presentation if and only if f∗F is an OY -module of finite
presentation.

Proof. As f is finite it is affine. This reduces us to the case where f is the
morphism Spec(B) → Spec(A) given by a finite and finitely presented ring map

A → B. Moreover, then F = M̃ is the sheaf of modules associated to the B-
module M . Note that M is finitely presented as a B-module if and only if M
is finitely presented as an A-module, see Algebra, Lemma 35.23. Combined with
Properties, Lemma 16.2 this proves the lemma. �

8. Quasi-coherent sheaves and topologies

03DR Let S be a scheme. Let F be a quasi-coherent OS-module. Consider the functor

(8.0.1)03DS (Sch/S)opp −→ Ab, (f : T → S) 7−→ Γ(T, f∗F).

Lemma 8.1.03DT Let S be a scheme. Let F be a quasi-coherent OS-module. Let
τ ∈ {Zariski, fpqc, fppf, étale, smooth, syntomic}. The functor defined in (8.0.1)
satisfies the sheaf condition with respect to any τ -covering {Ti → T}i∈I of any
scheme T over S.

Proof. For τ ∈ {Zariski, fppf, étale, smooth, syntomic} a τ -covering is also a
fpqc-covering, see the results in Topologies, Lemmas 4.2, 5.2, 6.2, 7.2, and 9.6.
Hence it suffices to prove the theorem for a fpqc covering. Assume that {fi : Ti →
T}i∈I is an fpqc covering where f : T → S is given. Suppose that we have a family
of sections si ∈ Γ(Ti, f

∗
i f
∗F) such that si|Ti×TTj = sj |Ti×TTj . We have to find the

correspond section s ∈ Γ(T, f∗F). We can reinterpret the si as a family of maps
ϕi : f∗i OT = OTi → f∗i f

∗F compatible with the canonical descent data associated
to the quasi-coherent sheaves OT and f∗F on T . Hence by Proposition 5.2 we see
that we may (uniquely) descend these to a map OT → f∗F which gives us our
section s. �

We may in particular make the following definition.

Definition 8.2.03DU Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}. Let S be a
scheme. Let Schτ be a big site containing S. Let F be a quasi-coherent OS-module.

(1) The structure sheaf of the big site (Sch/S)τ is the sheaf of rings T/S 7→
Γ(T,OT ) which is denoted O or OS .

(2) If τ = étale the structure sheaf of the small site Sétale is the sheaf of rings
T/S 7→ Γ(T,OT ) which is denoted O or OS .

(3) The sheaf of O-modules associated to F on the big site (Sch/S)τ is the
sheaf of O-modules (f : T → S) 7→ Γ(T, f∗F) which is denoted Fa (and
often simply F).

(4) Let τ = étale (resp. τ = Zariski). The sheaf of O-modules associated to
F on the small site Sétale (resp. SZar) is the sheaf of O-modules (f : T →
S) 7→ Γ(T, f∗F) which is denoted Fa (and often simply F).

http://stacks.math.columbia.edu/tag/05B4
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Note how we use the same notation Fa in each case. No confusion can really arise
from this as by definition the rule that defines the sheaf Fa is independent of the
site we choose to look at.

Remark 8.3.03FG In Topologies, Lemma 3.11 we have seen that the small Zariski
site of a scheme S is equivalent to S as a topological space in the sense that the
categories of sheaves are naturally equivalent. Now that SZar is also endowed with
a structure sheaf O we see that sheaves of modules on the ringed site (SZar,O)
agree with sheaves of modules on the ringed space (S,OS).

Remark 8.4.070R Let f : T → S be a morphism of schemes. Each of the morphisms
of sites fsites listed in Topologies, Section 10 becomes a morphism of ringed sites.
Namely, each of these morphisms of sites fsites : (Sch/T )τ → (Sch/S)τ ′ , or fsites :
(Sch/S)τ → Sτ ′ is given by the continuous functor S′/S 7→ T ×S S′/S. Hence,
given S′/S we let

f ]sites : O(S′/S) −→ fsites,∗O(S′/S) = O(S ×S S′/T )

be the usual map pr]S′ : O(S′)→ O(T×SS′). Similarly, the morphism if : Sh(Tτ )→
Sh((Sch/S)τ ) for τ ∈ {Zar, étale}, see Topologies, Lemmas 3.12 and 4.12, becomes
a morphism of ringed topoi because i−1

f O = O. Here are some special cases:

(1) The morphism of big sites fbig : (Sch/X)fppf → (Sch/Y )fppf , becomes a
morphism of ringed sites

(fbig, f
]
big) : ((Sch/X)fppf ,OX) −→ ((Sch/Y )fppf ,OY )

as in Modules on Sites, Definition 6.1. Similarly for the big syntomic,
smooth, étale and Zariski sites.

(2) The morphism of small sites fsmall : Xétale → Yétale becomes a morphism
of ringed sites

(fsmall, f
]
small) : (Xétale,OX) −→ (Yétale,OY )

as in Modules on Sites, Definition 6.1. Similarly for the small Zariski site.

Let S be a scheme. It is clear that given an O-module on (say) (Sch/S)Zar the
pullback to (say) (Sch/S)fppf is just the fppf-sheafification. To see what happens
when comparing big and small sites we have the following.

Lemma 8.5.070S Let S be a scheme. Denote

idτ,Zar : (Sch/S)τ → SZar, τ ∈ {Zar, étale, smooth, syntomic, fppf}
idτ,étale : (Sch/S)τ → Sétale, τ ∈ {étale, smooth, syntomic, fppf}

idsmall,étale,Zar : Sétale → SZar,

the morphisms of ringed sites of Remark 8.4. Let F be a sheaf of OS-modules which
we view a sheaf of O-modules on SZar. Then

(1) (idτ,Zar)
∗F is the τ -sheafification of the Zariski sheaf

(f : T → S) 7−→ Γ(T, f∗F)

on (Sch/S)τ , and
(2) (idsmall,étale,Zar)

∗F is the étale sheafification of the Zariski sheaf

(f : T → S) 7−→ Γ(T, f∗F)

on Sétale.

http://stacks.math.columbia.edu/tag/03FG
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Let G be a sheaf of O-modules on Sétale. Then

(3) (idτ,étale)
∗G is the τ -sheafification of the étale sheaf

(f : T → S) 7−→ Γ(T, f∗smallG)

where fsmall : Tétale → Sétale is the morphism of ringed small étale sites of
Remark 8.4.

Proof. Proof of (1). We first note that the result is true when τ = Zar because in
that case we have the morphism of topoi if : Sh(TZar)→ Sh(Sch/S)Zar) such that
idτ,Zar ◦ if = fsmall as morphisms TZar → SZar, see Topologies, Lemmas 3.12 and
3.16. Since pullback is transitive (see Modules on Sites, Lemma 13.3) we see that
i∗f (idτ,Zar)

∗F = f∗smallF as desired. Hence, by the remark preceding this lemma

we see that (idτ,Zar)
∗F is the τ -sheafification of the presheaf T 7→ Γ(T, f∗F).

The proof of (3) is exactly the same as the proof of (1), except that it uses Topolo-
gies, Lemmas 4.12 and 4.16. We omit the proof of (2). �

Remark 8.6.03FH Remark 8.4 and Lemma 8.5 have the following applications:

(1) Let S be a scheme. The construction F 7→ Fa is the pullback under
the morphism of ringed sites idτ,Zar : ((Sch/S)τ ,O) → (SZar,O) or the
morphism idsmall,étale,Zar : (Sétale,O)→ (SZar,O).

(2) Let f : X → Y be a morphism of schemes. For any of the morphisms fsites
of ringed sites of Remark 8.4 we have

(f∗F)a = f∗sitesFa.

This follows from (1) and the fact that pullbacks are compatible with com-
positions of morphisms of ringed sites, see Modules on Sites, Lemma 13.3.

Lemma 8.7.03DV Let S be a scheme. Let F be a quasi-coherent OS-module. Let
τ ∈ {Zariski, fppf, étale, smooth, syntomic}.

(1) The sheaf Fa is a quasi-coherent O-module on (Sch/S)τ , as defined in
Modules on Sites, Definition 23.1.

(2) If τ = étale (resp. τ = Zariski), then the sheaf Fa is a quasi-coherent
O-module on Sétale (resp. SZar) as defined in Modules on Sites, Definition
23.1.

Proof. Let {Si → S} be a Zariski covering such that we have exact sequences⊕
k∈Ki

OSi −→
⊕

j∈Ji
OSi −→ F −→ 0

for some index sets Ki and Ji. This is possible by the definition of a quasi-coherent
sheaf on a ringed space (See Modules, Definition 10.1).

Proof of (1). Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}. It is clear that
Fa|(Sch/Si)τ also sits in an exact sequence⊕

k∈Ki
O|(Sch/Si)τ −→

⊕
j∈Ji
O|(Sch/Si)τ −→ F

a|(Sch/Si)τ −→ 0

Hence Fa is quasi-coherent by Modules on Sites, Lemma 23.3.

Proof of (2). Let τ = étale. It is clear that Fa|(Si)étale also sits in an exact sequence⊕
k∈Ki

O|(Si)étale −→
⊕

j∈Ji
O|(Si)étale −→ F

a|(Si)étale −→ 0
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Hence Fa is quasi-coherent by Modules on Sites, Lemma 23.3. The case τ =
Zariski is similar (actually, it is really tautological since the corresponding ringed
topoi agree). �

Lemma 8.8.03FI Let S be a scheme. Let

(a) τ ∈ {Zariski, fppf, étale, smooth, syntomic} and C = (Sch/S)τ , or
(b) let τ = étale and C = Sétale, or
(c) let τ = Zariski and C = SZar.

Let F be an abelian sheaf on C. Let U ∈ Ob(C) be affine. Let U = {Ui → U}i=1,...,n

be a standard affine τ -covering in C. Then

(1) V = {
∐
i=1,...,n Ui → U} is a τ -covering of U ,

(2) U is a refinement of V, and
(3) the induced map on Čech complexes (Cohomology on Sites, Equation (9.2.1))

Č•(V,F) −→ Č•(U ,F)

is an isomorphism of complexes.

Proof. This follows because

(
∐

i0=1,...,n
Ui0)×U . . .×U (

∐
ip=1,...,n

Uip) =
∐

i0,...,ip∈{1,...,n}
Ui0 ×U . . .×U Uip

and the fact that F(
∐
a Va) =

∏
a F(Va) since disjoint unions are τ -coverings. �

Lemma 8.9.03FJ Let S be a scheme. Let F be a quasi-coherent sheaf on S. Let τ , C,
U , U be as in Lemma 8.8. Then there is an isomorphism of complexes

Č•(U ,Fa) ∼= s((A/R)• ⊗RM)

(see Section 3) where R = Γ(U,OU ), M = Γ(U,Fa) and R→ A is a faithfully flat
ring map. In particular

Ȟp(U ,Fa) = 0

for all p ≥ 1.

Proof. By Lemma 8.8 we see that Č•(U ,Fa) is isomorphic to Č•(V,Fa) where
V = {V → U} with V =

∐
i=1,...n Ui affine also. Set A = Γ(V,OV ). Since

{V → U} is a τ -covering we see that R → A is faithfully flat. On the other hand,
by definition of Fa we have that the degree p term Čp(V,Fa) is

Γ(V ×U . . .×U V,Fa) = Γ(Spec(A⊗R . . .⊗R A),Fa) = A⊗R . . .⊗R A⊗RM

We omit the verification that the maps of the Čech complex agree with the maps
in the complex s((A/R)• ⊗RM). The vanishing of cohomology is Lemma 3.6. �

Proposition 8.10.03DW Let S be a scheme. Let F be a quasi-coherent sheaf on S. Let
τ ∈ {Zariski, fppf, étale, smooth, syntomic}.

(1) There is a canonical isomorphism

Hq(S,F) = Hq((Sch/S)τ ,Fa).

(2) There are canonical isomorphisms

Hq(S,F) = Hq(SZar,Fa) = Hq(Sétale,Fa).
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Proof. The result for q = 0 is clear from the definition of Fa. Let C = (Sch/S)τ ,
or C = Sétale, or C = SZar.

We are going to apply Cohomology on Sites, Lemma 11.9 with F = Fa, B ⊂ Ob(C)
the set of affine schemes in C, and Cov ⊂ CovC the set of standard affine τ -coverings.
Assumption (3) of the lemma is satisfied by Lemma 8.9. Hence we conclude that
Hp(U,Fa) = 0 for every affine object U of C.

Next, let U ∈ Ob(C) be any separated object. Denote f : U → S the structure
morphism. Let U =

⋃
Ui be an affine open covering. We may also think of this as

a τ -covering U = {Ui → U} of U in C. Note that Ui0 ×U . . .×U Uip = Ui0 ∩ . . .∩Uip
is affine as we assumed U separated. By Cohomology on Sites, Lemma 11.7 and
the result above we see that

Hp(U,Fa) = Ȟp(U ,Fa) = Hp(U, f∗F)

the last equality by Cohomology of Schemes, Lemma 2.6. In particular, if S is
separated we can take U = S and f = idS and the proposition is proved. We suggest
the reader skip the rest of the proof (or rewrite it to give a clearer exposition).

Choose an injective resolution F → I• on S. Choose an injective resolution Fa →
J • on C. Denote J n|S the restriction of J n to opens of S; this is a sheaf on the
topological space S as open coverings are τ -coverings. We get a complex

0→ F → J 0|S → J 1|S → . . .

which is exact since its sections over any affine open U ⊂ S is exact (by the vanishing
of Hp(U,Fa), p > 0 seen above). Hence by Derived Categories, Lemma 18.6 there
exists map of complexes J •|S → I• which in particular induces a map

RΓ(C,Fa) = Γ(S,J •) −→ Γ(S, I•) = RΓ(S,F).

Taking cohomology gives the map Hn(C,Fa)→ Hn(S,F) which we have to prove
is an isomorphism. Let U : S =

⋃
Ui be an affine open covering which we may

think of as a τ -covering also. By the above we get a map of double complexes

Č•(U ,J ) = Č•(U ,J |S) −→ Č•(U , I).

This map induces a map of spectral sequences

τEp,q2 = Ȟp(U , Hq(Fa)) −→ Ep,q2 = Ȟp(U , Hq(F))

The first spectral sequence converges to Hp+q(C,F) and the second to Hp+q(S,F).
On the other hand, we have seen that the induced maps τEp,q2 → Ep,q2 are bijections
(as all the intersections are separated being opens in affines). Whence also the maps
Hn(C,Fa)→ Hn(S,F) are isomorphisms, and we win. �

Proposition 8.11.03DX Let S be a scheme. Let τ ∈ {Zariski, fppf, étale, smooth,
syntomic}.

(1) The functor F 7→ Fa defines an equivalence of categories

QCoh(OS) −→ QCoh((Sch/S)τ ,O)

between the category of quasi-coherent sheaves on S and the category of
quasi-coherent O-modules on the big τ site of S.
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(2) Let τ = étale, or τ = Zariski. The functor F 7→ Fa defines an equivalence
of categories

QCoh(OS) −→ QCoh(Sτ ,O)

between the category of quasi-coherent sheaves on S and the category of
quasi-coherent O-modules on the small τ site of S.

Proof. We have seen in Lemma 8.7 that the functor is well defined. It is straight-
forward to show that the functor is fully faithful (we omit the verification). To
finish the proof we will show that a quasi-coherent O-module on (Sch/S)τ gives
rise to a descent datum for quasi-coherent sheaves relative to a τ -covering of S.
Having produced this descent datum we will appeal to Proposition 5.2 to get the
corresponding quasi-coherent sheaf on S.

Let G be a quasi-coherent O-modules on the big τ site of S. By Modules on Sites,
Definition 23.1 there exists a τ -covering {Si → S}i∈I of S such that each of the
restrictions G|(Sch/Si)τ has a global presentation⊕

k∈Ki
O|(Sch/Si)τ −→

⊕
j∈Ji
O|(Sch/Si)τ −→ G|(Sch/Si)τ −→ 0

for some index sets Ji and Ki. We claim that this implies that G|(Sch/Si)τ is
Fai for some quasi-coherent sheaf Fi on Si. Namely, this is clear for the direct
sums

⊕
k∈Ki O|(Sch/Si)τ and

⊕
j∈Ji O|(Sch/Si)τ . Hence we see that G|(Sch/Si)τ is a

cokernel of a map ϕ : Kai → Lai for some quasi-coherent sheaves Ki, Li on Si. By
the fully faithfulness of ( )a we see that ϕ = φa for some map of quasi-coherent
sheaves φ : Ki → Li on Si. Then it is clear that G|(Sch/Si)τ ∼= Coker(φ)a as claimed.

Since G lives on all of the category (Sch/Si)τ we see that

(pr∗0Fi)a ∼= G|(Sch/(Si×SSj))τ ∼= (pr∗1F)a

as O-modules on (Sch/(Si ×S Sj))τ . Hence, using fully faithfulness again we get
canonical isomorphisms

φij : pr∗0Fi −→ pr∗1Fj
of quasi-coherent modules over Si×S Sj . We omit the verification that these satisfy
the cocycle condition. Since they do we see by effectivity of descent for quasi-
coherent sheaves and the covering {Si → S} (Proposition 5.2) that there exists a
quasi-coherent sheaf F on S with F|Si ∼= Fi compatible with the given descent
data. In other words we are given O-module isomorphisms

φi : Fa|(Sch/Si)τ −→ G|(Sch/Si)τ
which agree over Si ×S Sj . Hence, since HomO(Fa,G) is a sheaf (Modules on
Sites, Lemma 27.1), we conclude that there is a morphism of O-modules Fa → G
recovering the isomorphisms φi above. Hence this is an isomorphism and we win.

The case of the sites Sétale and SZar is proved in the exact same manner. �

Lemma 8.12.05VG Let S be a scheme. Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}.
Let P be one of the properties of modules4 defined in Modules on Sites, Definitions

4The list is: free, finite free, generated by global sections, generated by r global sections,

generated by finitely many global sections, having a global presentation, having a global finite
presentation, locally free, finite locally free, locally generated by sections, locally generated by r

sections, finite type, of finite presentation, coherent, or flat.
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17.1, 23.1, and 28.1. The equivalences of categories

QCoh(OS) −→ QCoh((Sch/S)τ ,O) and QCoh(OS) −→ QCoh(Sτ ,O)

defined by the rule F 7→ Fa seen in Proposition 8.11 have the property

F has P ⇔ Fa has P as an O-module

except (possibly) when P is “locally free” or “coherent”. If P =“coherent” the
equivalence holds for QCoh(OS)→ QCoh(Sτ ,O) when S is locally Noetherian and
τ is Zariski or étale.

Proof. This is immediate for the global properties, i.e., those defined in Modules
on Sites, Definition 17.1. For the local properties we can use Modules on Sites,
Lemma 23.3 to translate “Fa has P” into a property on the members of a covering
of X. Hence the result follows from Lemmas 7.1, 7.3, 7.4, 7.5, and 7.6. Being
coherent for a quasi-coherent module is the same as being of finite type over a
locally Noetherian scheme (see Cohomology of Schemes, Lemma 9.1) hence this
reduces to the case of finite type modules (details omitted). �

Lemma 8.13.06VE Let S be a scheme. Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}.
The functors

QCoh(OS) −→ Mod((Sch/S)τ ,O) and QCoh(OS) −→ Mod(Sτ ,O)

defined by the rule F 7→ Fa seen in Proposition 8.11 are

(1) fully faithful,
(2) compatible with direct sums,
(3) compatible with colimits,
(4) right exact,
(5) exact as a functor QCoh(OS)→ Mod(Sétale,O),
(6) not exact as a functor QCoh(OS)→ Mod((Sch/S)τ ,O) in general,
(7) given two quasi-coherent OS-modules F , G we have (F⊗OSG)a = Fa⊗OGa,
(8) given two quasi-coherent OS-modules F , G such that F is of finite presen-

tation we have (HomOS (F ,G))a = HomO(Fa,Ga), and
(9) given a short exact sequence 0→ Fa1 → E → Fa2 → 0 of O-modules then E

is quasi-coherent5, i.e., E is in the essential image of the functor.

Proof. Part (1) we saw in Proposition 8.11.

We have seen in Schemes, Section 24 that a colimit of quasi-coherent sheaves on a
scheme is a quasi-coherent sheaf. Moreover, in Remark 8.6 we saw that F 7→ Fa
is the pullback functor for a morphism of ringed sites, hence commutes with all
colimits, see Modules on Sites, Lemma 14.3. Thus (3) and its special case (3) hold.

This also shows that the functor is right exact (i.e., commutes with finite colimits),
hence (4).

The functor QCoh(OS)→ QCoh(Sétale,O), F 7→ Fa is left exact because an étale
morphism is flat, see Morphisms, Lemma 34.12. This proves (5).

To see (6), suppose that S = Spec(Z). Then 2 : OS → OS is injective but the
associated map of O-modules on (Sch/S)τ isn’t injective because 2 : F2 → F2 isn’t
injective and Spec(F2) is an object of (Sch/S)τ .

5Warning: This is misleading. See part (6).
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We omit the proofs of (7) and (8).

Let 0→ Fa1 → E → Fa2 → 0 be a short exact sequence of O-modules with F1 and
F2 quasi-coherent on S. Consider the restriction

0→ F1 → E|SZar → F2

to SZar. By Proposition 8.10 we see that on any affine U ⊂ S we have H1(U,Fa1 ) =
H1(U,F1) = 0. Hence the sequence above is also exact on the right. By Schemes,
Section 24 we conclude that F = E|SZar is quasi-coherent. Thus we obtain a
commutative diagram

Fa1 //

��

Fa //

��

Fa2 //

��

0

0 // Fa1 // E // Fa2 // 0

To finish the proof it suffices to show that the top row is also right exact. To do
this, denote once more U = Spec(A) ⊂ S an affine open of S. We have seen above
that 0 → F1(U) → E(U) → F2(U) → 0 is exact. For any affine scheme V/U ,
V = Spec(B) the map Fa1 (V )→ E(V ) is injective. We have Fa1 (V ) = F1(U)⊗A B
by definition. The injection Fa1 (V )→ E(V ) factors as

F1(U)⊗A B → E(U)⊗A B → E(U)

Considering A-algebras B of the form B = A ⊕M we see that F1(U) → E(U) is
universally injective (see Algebra, Definition 81.1). Since E(U) = F(U) we conclude
that F1 → F remains injective after any base change, or equivalently that Fa1 → Fa
is injective. �

Proposition 8.14.03LC Let f : T → S be a morphism of schemes.

(1) The equivalences of categories of Proposition 8.11 are compatible with pull-
back. More precisely, we have f∗(Ga) = (f∗G)a for any quasi-coherent sheaf
G on S.

(2) The equivalences of categories of Proposition 8.11 part (1) are not compat-
ible with pushforward in general.

(3) If f is quasi-compact and quasi-separated, and τ ∈ {Zariski, étale} then
f∗ and fsmall,∗ preserve quasi-coherent sheaves and the diagram

QCoh(OT )
f∗

//

F7→Fa

��

QCoh(OS)

G7→Ga

��
QCoh(Tτ ,O)

fsmall,∗ // QCoh(Sτ ,O)

is commutative, i.e., fsmall,∗(Fa) = (f∗F)a.

Proof. Part (1) follows from the discussion in Remark 8.6. Part (2) is just a
warning, and can be explained in the following way: First the statement cannot be
made precise since f∗ does not transform quasi-coherent sheaves into quasi-coherent
sheaves in general. Even if this is the case for f (and any base change of f), then
the compatibility over the big sites would mean that formation of f∗F commutes
with any base change, which does not hold in general. An explicit example is the
quasi-compact open immersion j : X = A2

k \ {0} → A2
k = Y where k is a field. We
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have j∗OX = OY but after base change to Spec(k) by the 0 map we see that the
pushforward is zero.

Let us prove (3) in case τ = étale. Note that f , and any base change of f , transforms
quasi-coherent sheaves into quasi-coherent sheaves, see Schemes, Lemma 24.1. The
equality fsmall,∗(Fa) = (f∗F)a means that for any étale morphism g : U → S we
have Γ(U, g∗f∗F) = Γ(U ×S T, (g′)∗F) where g′ : U ×S T → T is the projection.
This is true by Cohomology of Schemes, Lemma 5.2. �

Lemma 8.15.071N Let f : T → S be a quasi-compact and quasi-separated morphism
of schemes. Let F be a quasi-coherent sheaf on T . For either the étale or Zariski
topology, there are canonical isomorphisms Rifsmall,∗(Fa) = (Rif∗F)a.

Proof. We prove this for the étale topology; we omit the proof in the case of the
Zariski topology. By Cohomology of Schemes, Lemma 4.5 the sheaves Rif∗F are
quasi-coherent so that the assertion makes sense. The sheaf Rifsmall,∗Fa is the
sheaf associated to the presheaf

U 7−→ Hi(U ×S T,Fa)

where g : U → S is an object of Sétale, see Cohomology on Sites, Lemma 8.4. By
our conventions the right hand side is the étale cohomology of the restriction of Fa
to the localization Tétale/U ×S T which equals (U ×S T )étale. By Proposition 8.10
this is presheaf the same as the presheaf

U 7−→ Hi(U ×S T, (g′)∗F),

where g′ : U ×S T → T is the projection. If U is affine then this is the same
as H0(U,Rif ′∗(g

′)∗F), see Cohomology of Schemes, Lemma 4.6. By Cohomology
of Schemes, Lemma 5.2 this is equal to H0(U, g∗Rif∗F) which is the value of
(Rif∗F)a on U . Thus the values of the sheaves of modules Rifsmall,∗(Fa) and
(Rif∗F)a on every affine object of Sétale are canonically isomorphic which implies
they are canonically isomorphic. �

The results in this section say there is virtually no difference between quasi-coherent
sheaves on S and quasi-coherent sheaves on any of the sites associated to S in the
chapter on topologies. Hence one often sees statements on quasi-coherent sheaves
formulated in either language, without restatements in the other.

9. Parasitic modules

07AF Parasitic modules are those which are zero when restricted to schemes flat over the
base scheme. Here is the formal definition.

Definition 9.1.06ZL Let S be a scheme. Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.
Let F be a presheaf of O-modules on (Sch/S)τ .

(1) F is called parasitic6 if for every flat morphism U → S we have F(U) = 0.
(2) F is called parasitic for the τ -topology if for every τ -covering {Ui → S}i∈I

we have F(Ui) = 0 for all i.

If τ = fppf this means that F|UZar = 0 whenever U → S is flat and locally of
finite presentation; similar for the other cases.

6This may be nonstandard notation.

http://stacks.math.columbia.edu/tag/071N
http://stacks.math.columbia.edu/tag/06ZL


DESCENT 32

Lemma 9.2.0755 Let S be a scheme. Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.
Let G be a presheaf of O-modules on (Sch/S)τ .

(1) If G is parasitic for the τ -topology, then Hp
τ (U,G) = 0 for every U open in

S, resp. étale over S, resp. smooth over S, resp. syntomic over S, resp. flat
and locally of finite presentation over S.

(2) If G is parasitic then Hp
τ (U,G) = 0 for every U flat over S.

Proof. Proof in case τ = fppf ; the other cases are proved in the exact same
way. The assumption means that G(U) = 0 for any U → S flat and locally of
finite presentation. Apply Cohomology on Sites, Lemma 11.9 to the subset B ⊂
Ob((Sch/S)fppf ) consisting of U → S flat and locally of finite presentation and the
collection Cov of all fppf coverings of elements of B. �

Lemma 9.3.07AG Let f : T → S be a morphism of schemes. For any parasitic O-

module on (Sch/T )τ the pushforward f∗F and the higher direct images Rif∗F are
parasitic O-modules on (Sch/S)τ .

Proof. Recall that Rif∗F is the sheaf associated to the presheaf

U 7→ Hi((Sch/U ×S T )τ ,F)

see Cohomology on Sites, Lemma 8.4. If U → S is flat, then U ×S T → T is flat as
a base change. Hence the displayed group is zero by Lemma 9.2. If {Ui → U} is a
τ -covering then Ui ×S T → T is also flat. Hence it is clear that the sheafification
of the displayed presheaf is zero on schemes U flat over S. �

Lemma 9.4.0756 Let S be a scheme. Let τ ∈ {Zar, étale}. Let G be a sheaf of
O-modules on (Sch/S)fppf such that

(1) G|Sτ is quasi-coherent, and
(2) for every flat, locally finitely presented morphism g : U → S the canonical

map g∗τ,small(G|Sτ )→ G|Uτ is an isomorphism.

Then Hp(U,G) = Hp(U,G|Uτ ) for every U flat and locally of finite presentation
over S.

Proof. Let F be the pullback of G|Sτ to the big fppf site (Sch/S)fppf . Note that
F is quasi-coherent. There is a canonical comparison map ϕ : F → G which by
assumptions (1) and (2) induces an isomorphism F|Uτ → G|Uτ for all g : U → S
flat and locally of finite presentation. Hence in the short exact sequences

0→ Ker(ϕ)→ F → Im(ϕ)→ 0

and
0→ Im(ϕ)→ G → Coker(ϕ)→ 0

the sheaves Ker(ϕ) and Coker(ϕ) are parasitic for the fppf topology. By Lemma
9.2 we conclude that Hp(U,F) → Hp(U,G) is an isomorphism for g : U → S flat
and locally of finite presentation. Since the result holds for F by Proposition 8.10
we win. �

10. Fpqc coverings are universal effective epimorphisms

023P We apply the material above to prove an interesting result, namely Lemma 10.3.
By Sites, Section 12 this lemma implies that the representable presheaves on any
of the sites (Sch/S)τ are sheaves for τ ∈ {Zariski, fppf, étale, smooth, syntomic}.
First we prove a helper lemma.
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Lemma 10.1.02KI For a scheme X denote |X| the underlying set. Let f : X → S be
a morphism of schemes. Then

|X ×S X| → |X| ×|S| |X|
is surjective.

Proof. Follows immediately from the description of points on the fibre product in
Schemes, Lemma 17.5. �

Lemma 10.2.03N0 Let {fi : Ti → T}i∈I be a fpqc covering. Suppose that for each i we

have an open subset Wi ⊂ Ti such that for all i, j ∈ I we have pr−1
0 (Wi) = pr−1

1 (Wj)
as open subsets of Ti ×T Tj. Then there exists a unique open subset W ⊂ T such

that Wi = f−1
i (W ) for each i.

Proof. Apply Lemma 10.1 to the map
∐
i∈I Ti → T . It implies there exists a

subset W ⊂ T such that Wi = f−1
i (W ) for each i, namely W =

⋃
fi(Wi). To see

that W is open we may work Zariski locally on T . Hence we may assume that T
is affine. Using the definition of a fpqc covering, this reduces us to the case where
{fi : Ti → T} is a standard fpqc covering. In this case we may apply Morphisms,
Lemma 24.11 to the morphism

∐
Ti → T to conclude that W is open. �

Lemma 10.3.023Q Let {Ti → T} be an fpqc covering, see Topologies, Definition 9.1.
Then {Ti → T} is a universal effective epimorphism in the category of schemes, see
Sites, Definition 12.1. In other words, every representable functor on the category of
schemes satisfies the sheaf condition for the fpqc topology, see Topologies, Definition
9.12.

Proof. Let S be a scheme. We have to show the following: Given morphisms
ϕi : Ti → S such that ϕi|Ti×TTj = ϕj |Ti×TTj there exists a unique morphism
T → S which restricts to ϕi on each Ti. In other words, we have to show that the
functor hS = MorSch(−, S) satisfies the sheaf property for the fpqc topology.

Thus Topologies, Lemma 9.13 reduces us to the case of a Zariski covering and a
covering {Spec(A) → Spec(R)} with R → A faithfully flat. The case of a Zariski
covering follows from Schemes, Lemma 14.1.

Suppose that R → A is a faithfully flat ring map. Denote π : Spec(A) → Spec(R)
the corresponding morphism of schemes. It is surjective and flat. Let f : Spec(A)→
S be a morphism such that f ◦pr1 = f ◦pr2 as maps Spec(A⊗RA)→ S. By Lemma
10.1 we see that as a map on the underlying sets f is of the form f = g ◦π for some
(set theoretic) map g : Spec(R) → S. By Morphisms, Lemma 24.11 and the fact
that f is continuous we see that g is continuous.

Pick x ∈ Spec(R). Choose U ⊂ S affine open containing g(x). Say U = Spec(B).
By the above we may choose an r ∈ R such that x ∈ D(r) ⊂ g−1(U). The
restriction of f to π−1(D(r)) into U corresponds to a ring map B → Ar. The two
induced ring maps B → Ar ⊗Rr Ar = (A ⊗R A)r are equal by assumption on f .
Note that Rr → Ar is faithfully flat. By Lemma 3.6 the equalizer of the two arrows
Ar → Ar ⊗Rr Ar is Rr. We conclude that B → Ar factors uniquely through a
map B → Rr. This map in turn gives a morphism of schemes D(r)→ U → S, see
Schemes, Lemma 6.4.

What have we proved so far? We have shown that for any prime p ⊂ R, there
exists a standard affine open D(r) ⊂ Spec(R) such that the morphism f |π−1(D(r)) :
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π−1(D(r))→ S factors uniquely though some morphism of schemes D(r)→ S. We
omit the verification that these morphisms glue to the desired morphism Spec(R)→
S. �

Lemma 10.4.0BMN Consider schemes X,Y, Z and morphisms a, b : X → Y and a
morphism c : Y → Z with c ◦ a = c ◦ b. Set d = c ◦ a = c ◦ b. If there exists an fpqc
covering {Zi → Z} such that

(1) for all i the morphism Y ×c,Z Zi → Zi is the coequalizer of (a, 1) : X ×d,Z
Zi → Y ×c,Z Zi and (b, 1) : X ×d,Z Zi → Y ×c,Z Zi, and

(2) for all i and i′ the morphism Y ×c,Z (Zi ×Z Zi′) → (Zi ×Z Zi′) is the
coequalizer of (a, 1) : X ×d,Z (Zi ×Z Zi′)→ Y ×c,Z (Zi ×Z Zi′) and (b, 1) :
X ×d,Z (Zi ×Z Zi′)→ Y ×c,Z (Zi ×Z Zi′)

then c is the coequalizer of a and b.

Proof. Namely, for a scheme T a morphism Z → T is the same thing as a collection
of morphism Zi → T which agree on overlaps by Lemma 10.3. �

11. Descent of finiteness and smoothness properties of morphisms

02KJ In this section we show that several properties of morphisms (being smooth, locally
of finite presentation, and so on) descend under faithfully flat morphisms. We start
with an algebraic version. (The “Noetherian” reader should consult Lemma 11.2
instead of the next lemma.)

Lemma 11.1.02KK Let R → A → B be ring maps. Assume R → B is of finite
presentation and A → B faithfully flat and of finite presentation. Then R → A is
of finite presentation.

Proof. Consider the algebra C = B ⊗A B together with the pair of maps p, q :
B → C given by p(b) = b ⊗ 1 and q(b) = 1 ⊗ b. Of course the two compositions
A→ B → C are the same. Note that as p : B → C is flat and of finite presentation
(base change of A → B), the ring map R → C is of finite presentation (as the
composite of R→ B → C).

We are going to use the criterion Algebra, Lemma 126.3 to show that R → A is
of finite presentation. Let S be any R-algebra, and suppose that S = colimλ∈Λ Sλ
is written as a directed colimit of R-algebras. Let A → S be an R-algebra homo-
morphism. We have to show that A → S factors through one of the Sλ. Consider
the rings B′ = S ⊗A B and C ′ = S ⊗A C = B′ ⊗S B′. As B is faithfully flat of
finite presentation over A, also B′ is faithfully flat of finite presentation over S. By
Algebra, Lemma 162.1 part (2) applied to the pair (S → B′, B′) and the system
(Sλ) there exists a λ0 ∈ Λ and a flat, finitely presented Sλ0-algebra Bλ0 such that
B′ = S ⊗Sλ0

Bλ0 . For λ ≥ λ0 set Bλ = Sλ ⊗Sλ0
Bλ0 and Cλ = Bλ ⊗Sλ Bλ.

We interrupt the flow of the argument to show that Sλ → Bλ is faithfully flat for λ
large enough. (This should really be a separate lemma somewhere else, maybe in the
chapter on limits.) Since Spec(Bλ0

) → Spec(Sλ0
) is flat and of finite presentation

it is open (see Morphisms, Lemma 24.9). Let I ⊂ Sλ0
be an ideal such that

V (I) ⊂ Spec(Sλ0) is the complement of the image. Note that formation of the
image commutes with base change. Hence, since Spec(B′)→ Spec(S) is surjective,
and B′ = Bλ0

⊗Sλ0
S we see that IS = S. Thus for some λ ≥ λ0 we have ISλ = Sλ.

For this and all greater λ the morphism Spec(Bλ)→ Spec(Sλ) is surjective.
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By analogy with the notation in the first paragraph of the proof denote pλ, qλ :
Bλ → Cλ the two canonical maps. ThenB′ = colimλ≥λ0 Bλ and C ′ = colimλ≥λ0 Cλ.
Since B and C are finitely presented over R there exist (by Algebra, Lemma 126.3
applied several times) a λ ≥ λ0 and an R-algebra maps B → Bλ, C → Cλ such
that the diagram

C // Cλ

B //

p

OO

q

OO

Bλ

pλ

OO
qλ

OO

is commutative. OK, and this means that A→ B → Bλ maps into the equalizer of
pλ and qλ. By Lemma 3.6 we see that Sλ is the equalizer of pλ and qλ. Thus we
get the desired ring map A→ Sλ and we win. �

Here is an easier version of this dealing with the property of being of finite type.

Lemma 11.2.0367 Let R → A → B be ring maps. Assume R → B is of finite type
and A→ B faithfully flat and of finite presentation. Then R→ A is of finite type.

Proof. By Algebra, Lemma 162.2 there exists a commutative diagram

R // A0

��

// B0

��
R // A // B

with R → A0 of finite presentation, A0 → B0 faithfully flat of finite presentation
and B = A⊗A0

B0. Since R→ B is of finite type by assumption, we may add some
elements to A0 and assume that the map B0 → B is surjective! In this case, since
A0 → B0 is faithfully flat, we see that as

(A0 → A)⊗A0 B0
∼= (B0 → B)

is surjective, also A0 → A is surjective. Hence we win. �

Lemma 11.3.02KL [DG67, IV, 17.7.5
(i) and (ii)].

Let

X
f

//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that f is surjective,
flat and locally of finite presentation and assume that p is locally of finite presen-
tation (resp. locally of finite type). Then q is locally of finite presentation (resp.
locally of finite type).

Proof. The problem is local on S and Y . Hence we may assume that S and Y
are affine. Since f is flat and locally of finite presentation, we see that f is open
(Morphisms, Lemma 24.9). Hence, since Y is quasi-compact, there exist finitely
many affine opens Xi ⊂ X such that Y =

⋃
f(Xi). Clearly we may replace X

by
∐
Xi, and hence we may assume X is affine as well. In this case the lemma is

equivalent to Lemma 11.1 (resp. Lemma 11.2) above. �

We use this to improve some of the results on morphisms obtained earlier.

http://stacks.math.columbia.edu/tag/0367
http://stacks.math.columbia.edu/tag/02KL


DESCENT 36

Lemma 11.4.02KM Let

X
f

//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that

(1) f is surjective, and syntomic (resp. smooth, resp. étale),
(2) p is syntomic (resp. smooth, resp. étale).

Then q is syntomic (resp. smooth, resp. étale).

Proof. Combine Morphisms, Lemmas 29.16, 32.19, and 34.19 with Lemma 11.3
above. �

Actually we can strengthen this result as follows.

Lemma 11.5.05B5 Let

X
f

//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that

(1) f is surjective, flat, and locally of finite presentation,
(2) p is smooth (resp. étale).

Then q is smooth (resp. étale).

Proof. Assume (1) and that p is smooth. By Lemma 11.3 we see that q is locally
of finite presentation. By Morphisms, Lemma 24.12 we see that q is flat. Hence
now it suffices to show that the fibres of q are smooth, see Morphisms, Lemma 32.3.
Apply Varieties, Lemma 25.9 to the flat surjective morphisms Xs → Ys for s ∈ S
to conclude. We omit the proof of the étale case. �

Remark 11.6.05B6 With the assumptions (1) and p smooth in Lemma 11.5 it is not
automatically the case that X → Y is smooth. A counter example is S = Spec(k),
X = Spec(k[s]), Y = Spec(k[t]) and f given by t 7→ s2. But see also Lemma 11.7
for some information on the structure of f .

Lemma 11.7.05B7 Let

X
f

//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that

(1) f is surjective, flat, and locally of finite presentation,
(2) p is syntomic.

Then both q and f are syntomic.

Proof. By Lemma 11.3 we see that q is of finite presentation. By Morphisms,
Lemma 24.12 we see that q is flat. By Morphisms, Lemma 29.10 it now suffices to
show that the local rings of the fibres of Y → S and the fibres of X → Y are local
complete intersection rings. To do this we may take the fibre of X → Y → S at a
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point s ∈ S, i.e., we may assume S is the spectrum of a field. Pick a point x ∈ X
with image y ∈ Y and consider the ring map

OY,y −→ OX,x

This is a flat local homomorphism of local Noetherian rings. The local ring OX,x
is a complete intersection. Thus may use Avramov’s result, see Divided Power
Algebra, Lemma 8.9, to conclude that both OY,y and OX,x/myOX,x are complete
intersection rings. �

The following type of lemma is occasionally useful.

Lemma 11.8.06NB Let X → Y → Z be morphism of schemes. Let P be one of the
following properties of morphisms of schemes: flat, locally finite type, locally finite
presentation. Assume that X → Z has P and that {X → Y } can be refined by an
fppf covering of Y . Then Y → Z is P .

Proof. Let Spec(C) ⊂ Z be an affine open and let Spec(B) ⊂ Y be an affine open
which maps into Spec(C). The assumption on X → Y implies we can find a stan-
dard affine fppf covering {Spec(Bj)→ Spec(B)} and lifts xj : Spec(Bj)→ X. Since
Spec(Bj) is quasi-compact we can find finitely many affine opens Spec(Ai) ⊂ X
lying over Spec(B) such that the image of each xj is contained in the union⋃

Spec(Ai). Hence after replacing each Spec(Bj) by a standard affine Zariski cov-
erings of itself we may assume we have a standard affine fppf covering {Spec(Bi)→
Spec(B)} such that each Spec(Bi)→ Y factors through an affine open Spec(Ai) ⊂
X lying over Spec(B). In other words, we have ring maps C → B → Ai → Bi for
each i. Note that we can also consider

C → B → A =
∏

Ai → B′ =
∏

Bi

and that the ring map B →
∏
Bi is faithfully flat and of finite presentation.

The case P = flat. In this case we know that C → A is flat and we have to
prove that C → B is flat. Suppose that N → N ′ → N ′′ is an exact sequence of
C-modules. We want to show that N ⊗C B → N ′ ⊗C B → N ′′ ⊗C B is exact. Let
H be its cohomology and let H ′ be the cohomology of N ⊗C B′ → N ′ ⊗C B′ →
N ′′ ⊗C B′. As B → B′ is flat we know that H ′ = H ⊗B B′. On the other hand
N ⊗C A → N ′ ⊗C A → N ′′ ⊗C A is exact hence has zero cohomology. Hence the
map H → H ′ is zero (as it factors through the zero module). Thus H ′ = 0. As
B → B′ is faithfully flat we conclude that H = 0 as desired.

The case P = locally finite type. In this case we know that C → A is of finite type
and we have to prove that C → B is of finite type. Because B → B′ is of finite
presentation (hence of finite type) we see that A→ B′ is of finite type, see Algebra,
Lemma 6.2. Therefore C → B′ is of finite type and we conclude by Lemma 11.2.

The case P = locally finite presentation. In this case we know that C → A is
of finite presentation and we have to prove that C → B is of finite presentation.
Because B → B′ is of finite presentation and B → A of finite type we see that
A→ B′ is of finite presentation, see Algebra, Lemma 6.2. Therefore C → B′ is of
finite presentation and we conclude by Lemma 11.1. �

http://stacks.math.columbia.edu/tag/06NB


DESCENT 38

12. Local properties of schemes

0347 It often happens one can prove the members of a covering of a scheme have a
certain property. In many cases this implies the scheme has the property too. For
example, if S is a scheme, and f : S′ → S is a surjective flat morphism such that
S′ is a reduced scheme, then S is reduced. You can prove this by looking at local
rings and using Algebra, Lemma 158.2. We say that the property of being reduced
descends through flat surjective morphisms. Some results of this type are collected
in Algebra, Section 158 and for schemes in Section 16. Some analogous results on
descending properties of morphisms are in Section 11.

On the other hand, there are examples of surjective flat morphisms f : S′ → S
with S reduced and S′ not, for example the morphism Spec(k[x]/(x2))→ Spec(k).
Hence the property of being reduced does not ascend along flat morphisms. Having
infinite residue fields is a property which does ascend along flat morphisms (but
does not descend along surjective flat morphisms of course). Some results of this
type are collected in Algebra, Section 157.

Finally, we say that a property is local for the flat topology if it ascends along
flat morphisms and descends along flat surjective morphisms. A somewhat silly
example is the property of having residue fields of a given characteristic. To be
more precise, and to tie this in with the various topologies on schemes, we make
the following formal definition.

Definition 12.1.0348 Let P be a property of schemes. Let τ ∈ {fpqc, fppf, syntomic,
smooth, étale, Zariski}. We say P is local in the τ -topology if for any τ -covering
{Si → S}i∈I (see Topologies, Section 2) we have

S has P ⇔ each Si has P.

To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for S if and only if it holds for any scheme S′ isomorphic to S. In fact,
if τ = fpqc, fppf, syntomic, smooth, étale, or Zariski, then if S has P and S′ → S
is flat, flat and locally of finite presentation, syntomic, smooth, étale, or an open
immersion, then S′ has P. This is true because we can always extend {S′ → S} to
a τ -covering.

We have the following implications: P is local in the fpqc topology ⇒ P is local in
the fppf topology⇒ P is local in the syntomic topology⇒ P is local in the smooth
topology ⇒ P is local in the étale topology ⇒ P is local in the Zariski topology.
This follows from Topologies, Lemmas 4.2, 5.2, 6.2, 7.2, and 9.6.

Lemma 12.2.0349 Let P be a property of schemes. Let τ ∈ {fpqc, fppf, étale, smooth,
syntomic}. Assume that

(1) the property is local in the Zariski topology,
(2) for any morphism of affine schemes S′ → S which is flat, flat of finite

presentation, étale, smooth or syntomic depending on whether τ is fpqc,
fppf, étale, smooth, or syntomic, property P holds for S′ if property P
holds for S, and

(3) for any surjective morphism of affine schemes S′ → S which is flat, flat
of finite presentation, étale, smooth or syntomic depending on whether τ is
fpqc, fppf, étale, smooth, or syntomic, property P holds for S if property P
holds for S′.
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Then P is τ local on the base.

Proof. This follows almost immediately from the definition of a τ -covering, see
Topologies, Definition 9.1 7.1 4.1 5.1, or 6.1 and Topologies, Lemma 9.8, 7.4, 4.4,
5.4, or 6.4. Details omitted. �

Remark 12.3.034A In Lemma 12.2 above if τ = smooth then in condition (3) we may
assume that the morphism is a (surjective) standard smooth morphism. Similarly,
when τ = syntomic or τ = étale.

13. Properties of schemes local in the fppf topology

034B In this section we find some properties of schemes which are local on the base in
the fppf topology.

Lemma 13.1.034C The property P(S) =“S is locally Noetherian” is local in the fppf
topology.

Proof. We will use Lemma 12.2. First we note that “being locally Noetherian”
is local in the Zariski topology. This is clear from the definition, see Properties,
Definition 5.1. Next, we show that if S′ → S is a flat, finitely presented morphism
of affines and S is locally Noetherian, then S′ is locally Noetherian. This is Mor-
phisms, Lemma 14.6. Finally, we have to show that if S′ → S is a surjective flat,
finitely presented morphism of affines and S′ is locally Noetherian, then S is locally
Noetherian. This follows from Algebra, Lemma 158.1. Thus (1), (2) and (3) of
Lemma 12.2 hold and we win. �

Lemma 13.2.0368 The property P(S) =“S is Jacobson” is local in the fppf topology.

Proof. We will use Lemma 12.2. First we note that “being Jacobson” is local
in the Zariski topology. This is Properties, Lemma 6.3. Next, we show that if
S′ → S is a flat, finitely presented morphism of affines and S is Jacobson, then
S′ is Jacobson. This is Morphisms, Lemma 15.9. Finally, we have to show that
if f : S′ → S is a surjective flat, finitely presented morphism of affines and S′ is
Jacobson, then S is Jacobson. Say S = Spec(A) and S′ = Spec(B) and S′ → S
given by A → B. Then A → B is finitely presented and faithfully flat. Moreover,
the ring B is Jacobson, see Properties, Lemma 6.3.

By Algebra, Lemma 162.10 there exists a diagram

B // B′

A

>>__

with A→ B′ finitely presented, faithfully flat and quasi-finite. In particular, B →
B′ is finite type, and we see from Algebra, Proposition 34.19 that B′ is Jacobson.
Hence we may assume that A → B is quasi-finite as well as faithfully flat and of
finite presentation.

Assume A is not Jacobson to get a contradiction. According to Algebra, Lemma
34.5 there exists a nonmaximal prime p ⊂ A and an element f ∈ A, f 6∈ p such
that V (p) ∩D(f) = {p}.
This leads to a contradiction as follows. First let p ⊂ m be a maximal ideal of A.
Pick a prime m′ ⊂ B lying over m (exists because A → B is faithfully flat, see
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Algebra, Lemma 38.16). As A → B is flat, by going down see Algebra, Lemma
38.18, we can find a prime q ⊂ m′ lying over p. In particular we see that q is not
maximal. Hence according to Algebra, Lemma 34.5 again the set V (q) ∩ D(f) is
infinite (here we finally use that B is Jacobson). All points of V (q)∩D(f) map to
V (p)∩D(f) = {p}. Hence the fibre over p is infinite. This contradicts the fact that
A → B is quasi-finite (see Algebra, Lemma 121.4 or more explicitly Morphisms,
Lemma 19.10). Thus the lemma is proved. �

Lemma 13.3.0BAL The property P(S) =“every quasi-compact open of S has a finite
number of irreducible components” is local in the fppf topology.

Proof. We will use Lemma 12.2. First we note that P is local in the Zariski
topology. Next, we show that if T → S is a flat, finitely presented morphism
of affines and S has a finite number of irreducible components, then so does T .
Namely, since T → S is flat, the generic points of T map to the generic points of
S, see Morphisms, Lemma 24.8. Hence it suffices to show that for s ∈ S the fibre
Ts has a finite number of generic points. Note that Ts is an affine scheme of finite
type over κ(s), see Morphisms, Lemma 14.4. Hence Ts is Noetherian and has a
finite number of irreducible components (Morphisms, Lemma 14.6 and Properties,
Lemma 5.7). Finally, we have to show that if T → S is a surjective flat, finitely
presented morphism of affines and T has a finite number of irreducible components,
then so does S. In this case the arguments above show that every generic point of
S is the image of a generic point of T and the result is clear. Thus (1), (2) and (3)
of Lemma 12.2 hold and we win. �

14. Properties of schemes local in the syntomic topology

0369 In this section we find some properties of schemes which are local on the base in
the syntomic topology.

Lemma 14.1.036A The property P(S) =“S is locally Noetherian and (Sk)” is local in
the syntomic topology.

Proof. We will check (1), (2) and (3) of Lemma 12.2. As a syntomic morphism
is flat of finite presentation (Morphisms, Lemmas 29.7 and 29.6) we have already
checked this for “being locally Noetherian” in the proof of Lemma 13.1. We will
use this without further mention in the proof. First we note that P is local in
the Zariski topology. This is clear from the definition, see Cohomology of Schemes,
Definition 11.1. Next, we show that if S′ → S is a syntomic morphism of affines and
S has P, then S′ has P. This is Algebra, Lemma 157.4 (use Morphisms, Lemma
29.2 and Algebra, Definition 134.1 and Lemma 133.3). Finally, we show that if
S′ → S is a surjective syntomic morphism of affines and S′ has P, then S has P.
This is Algebra, Lemma 158.5. Thus (1), (2) and (3) of Lemma 12.2 hold and we
win. �

Lemma 14.2.036B The property P(S) =“S is Cohen-Macaulay” is local in the syn-
tomic topology.

Proof. This is clear from Lemma 14.1 above since a scheme is Cohen-Macaulay if
and only if it is locally Noetherian and (Sk) for all k ≥ 0, see Properties, Lemma
12.3. �
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15. Properties of schemes local in the smooth topology

034D In this section we find some properties of schemes which are local on the base in
the smooth topology.

Lemma 15.1.034E The property P(S) =“S is reduced” is local in the smooth topology.

Proof. We will use Lemma 12.2. First we note that “being reduced” is local in
the Zariski topology. This is clear from the definition, see Schemes, Definition 12.1.
Next, we show that if S′ → S is a smooth morphism of affines and S is reduced,
then S′ is reduced. This is Algebra, Lemma 157.7. Finally, we show that if S′ → S
is a surjective smooth morphism of affines and S′ is reduced, then S is reduced.
This is Algebra, Lemma 158.2. Thus (1), (2) and (3) of Lemma 12.2 hold and we
win. �

Lemma 15.2.034F The property P(S) =“S is normal” is local in the smooth topology.

Proof. We will use Lemma 12.2. First we show “being normal” is local in the
Zariski topology. This is clear from the definition, see Properties, Definition 7.1.
Next, we show that if S′ → S is a smooth morphism of affines and S is normal, then
S′ is normal. This is Algebra, Lemma 157.9. Finally, we show that if S′ → S is a
surjective smooth morphism of affines and S′ is normal, then S is normal. This is
Algebra, Lemma 158.3. Thus (1), (2) and (3) of Lemma 12.2 hold and we win. �

Lemma 15.3.036C The property P(S) =“S is locally Noetherian and (Rk)” is local in
the smooth topology.

Proof. We will check (1), (2) and (3) of Lemma 12.2. As a smooth morphism
is flat of finite presentation (Morphisms, Lemmas 32.9 and 32.8) we have already
checked this for “being locally Noetherian” in the proof of Lemma 13.1. We will
use this without further mention in the proof. First we note that P is local in the
Zariski topology. This is clear from the definition, see Properties, Definition 12.1.
Next, we show that if S′ → S is a smooth morphism of affines and S has P, then
S′ has P. This is Algebra, Lemmas 157.5 (use Morphisms, Lemma 32.2, Algebra,
Lemmas 135.4 and 138.3). Finally, we show that if S′ → S is a surjective smooth
morphism of affines and S′ has P, then S has P. This is Algebra, Lemma 158.6.
Thus (1), (2) and (3) of Lemma 12.2 hold and we win. �

Lemma 15.4.036D The property P(S) =“S is regular” is local in the smooth topology.

Proof. This is clear from Lemma 15.3 above since a locally Noetherian scheme is
regular if and only if it is locally Noetherian and (Rk) for all k ≥ 0. �

Lemma 15.5.036E The property P(S) =“S is Nagata” is local in the smooth topology.

Proof. We will check (1), (2) and (3) of Lemma 12.2. First we note that being
Nagata is local in the Zariski topology. This is Properties, Lemma 13.6. Next, we
show that if S′ → S is a smooth morphism of affines and S is Nagata, then S′ is
Nagata. This is Morphisms, Lemma 17.1. Finally, we show that if S′ → S is a
surjective smooth morphism of affines and S′ is Nagata, then S is Nagata. This is
Algebra, Lemma 158.7. Thus (1), (2) and (3) of Lemma 12.2 hold and we win. �
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16. Variants on descending properties

06QL Sometimes one can descend properties, which are not local. We put results of this
kind in this section. See also Section 11 on descending properties of morphisms,
such as smoothness.

Lemma 16.1.06QM If f : X → Y is a flat and surjective morphism of schemes and X
is reduced, then Y is reduced.

Proof. The result follows by looking at local rings (Schemes, Definition 12.1) and
Algebra, Lemma 158.2. �

Lemma 16.2.06QN Let f : X → Y be a morphism of algebraic spaces. If f is locally
of finite presentation, flat, and surjective and X is regular, then Y is regular.

Proof. This lemma reduces to the following algebra statement: If A → B is a
faithfully flat, finitely presented ring homomorphism with B Noetherian and reg-
ular, then A is Noetherian and regular. We see that A is Noetherian by Algebra,
Lemma 158.1 and regular by Algebra, Lemma 109.9. �

17. Germs of schemes

04QQ

Definition 17.1.04QR Germs of schemes.

(1) A pair (X,x) consisting of a scheme X and a point x ∈ X is called the
germ of X at x.

(2) A morphism of germs f : (X,x) → (S, s) is an equivalence class of mor-
phisms of schemes f : U → S with f(x) = s where U ⊂ X is an open
neighbourhood of x. Two such f , f ′ are said to be equivalent if and only if
f and f ′ agree in some open neighbourhood of x.

(3) We define the composition of morphisms of germs by composing represen-
tatives (this is well defined).

Before we continue we need one more definition.

Definition 17.2.04QS Let f : (X,x) → (S, s) be a morphism of germs. We say f is
étale (resp. smooth) if there exists a representative f : U → S of f which is an étale
morphism (resp. a smooth morphism) of schemes.

18. Local properties of germs

04QT

Definition 18.1.04N1 Let P be a property of germs of schemes. We say that P is
étale local (resp. smooth local) if for any étale (resp. smooth) morphism of germs
(U ′, u′)→ (U, u) we have P(U, u)⇔ P(U ′, u′).

Let (X,x) be a germ of a scheme. The dimension of X at x is the minimum of
the dimensions of open neighbourhoods of x in X, and any small enough open
neighbourhood has this dimension. Hence this is an invariant of the isomorphism
class of the germ. We denote this simply dimx(X). The following lemma tells us
that the assertion dimx(X) = d is an étale local property of germs.

Lemma 18.2.04N4 Let f : U → V be an étale morphism of schemes. Let u ∈ U and
v = f(u). Then dimu(U) = dimv(V ).
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Proof. In the statement dimu(U) is the dimension of U at u as defined in Topology,
Definition 10.1 as the minimum of the Krull dimensions of open neighbourhoods of
u in U . Similarly for dimv(V ).

Let us show that dimv(V ) ≥ dimu(U). Let V ′ be an open neighbourhood of v in V .
Then there exists an open neighbourhood U ′ of u in U contained in f−1(V ′) such
that dimu(U) = dim(U ′). Suppose that Z0 ⊂ Z1 ⊂ . . . ⊂ Zn is a chain of irreducible
closed subschemes of U ′. If ξi ∈ Zi is the generic point then we have specializations
ξn  ξn−1  . . .  ξ0. This gives specializations f(ξn)  f(ξn−1)  . . .  f(ξ0)
in V ′. Note that f(ξj) 6= f(ξi) if i 6= j as the fibres of f are discrete (see Morphisms,
Lemma 34.7). Hence we see that dim(V ′) ≥ n. The inequality dimv(V ) ≥ dimu(U)
follows formally.

Let us show that dimu(U) ≥ dimv(V ). Let U ′ be an open neighbourhood of u in U .
Note that V ′ = f(U ′) is an open neighbourhood of v by Morphisms, Lemma 24.9.
Hence dim(V ′) ≥ dimv(V ). Pick a chain Z0 ⊂ Z1 ⊂ . . . ⊂ Zn of irreducible closed
subschemes of V ′. Let ξi ∈ Zi be the generic point, so we have specializations
ξn  ξn−1  . . .  ξ0. Since ξ0 ∈ f(U ′) we can find a point η0 ∈ U ′ with
f(η0) = ξ0. Consider the map of local rings

OV ′,ξ0 −→ OU ′,η0

which is a flat local ring map by Morphisms, Lemma 34.12. Note that the points
ξi correspond to primes of the ring on the left by Schemes, Lemma 13.2. Hence
by going down (see Algebra, Section 40) for the displayed ring map we can find a
sequence of specializations ηn  ηn−1  . . .  η0 in U ′ mapping to the sequence
ξn  ξn−1  . . . ξ0 under f . This implies that dimu(U) ≥ dimv(V ). �

Let (X,x) be a germ of a scheme. The isomorphism class of the local ring OX,x is an
invariant of the germ. The following lemma says that the property dim(OX,x) = d
is an étale local property of germs.

Lemma 18.3.04N8 Let f : U → V be an étale morphism of schemes. Let u ∈ U and
v = f(u). Then dim(OU,u) = dim(OV,v).

Proof. The algebraic statement we are asked to prove is the following: If A→ B is
an étale ring map and q is a prime of B lying over p ⊂ A, then dim(Ap) = dim(Bq).
This is More on Algebra, Lemma 41.2. �

Let (X,x) be a germ of a scheme. The isomorphism class of the local ring OX,x
is an invariant of the germ. The following lemma says that the property “OX,x is
regular” is an étale local property of germs.

Lemma 18.4.0AH7 Let f : U → V be an étale morphism of schemes. Let u ∈ U and
v = f(u). Then OU,u is a regular local ring if and only if OV,v is a regular local
ring.

Proof. The algebraic statement we are asked to prove is the following: If A → B
is an étale ring map and q is a prime of B lying over p ⊂ A, then Ap is regular if
and only if Bq is regular. This is More on Algebra, Lemma 41.3. �
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19. Properties of morphisms local on the target

02KN Suppose that f : X → Y is a morphism of schemes. Let g : Y ′ → Y be a morphism
of schemes. Let f ′ : X ′ → Y ′ be the base change of f by g:

X ′

f ′

��

g′
// X

f

��
Y ′

g // Y

Let P be a property of morphisms of schemes. Then we can wonder if (a) P(f)⇒
P(f ′), and also whether the converse (b) P(f ′) ⇒ P(f) is true. If (a) holds
whenever g is flat, then we say P is preserved under flat base change. If (b) holds
whenever g is surjective and flat, then we say P descends through flat surjective
base changes. If P is preserved under flat base changes and descends through flat
surjective base changes, then we say P is flat local on the target. Compare with
the discussion in Section 12. This turns out to be a very important notion which
we formalize in the following definition.

Definition 19.1.02KO Let P be a property of morphisms of schemes over a base. Let
τ ∈ {fpqc, fppf, syntomic, smooth, étale, Zariski}. We say P is τ local on the base,
or τ local on the target, or local on the base for the τ -topology if for any τ -covering
{Yi → Y }i∈I (see Topologies, Section 2) and any morphism of schemes f : X → Y
over S we have

f has P ⇔ each Yi ×Y X → Yi has P.

To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for X → Y if and only if it holds for any arrow X ′ → Y ′ isomorphic to
X → Y . If a property is τ -local on the target then it is preserved by base changes
by morphisms which occur in τ -coverings. Here is a formal statement.

Lemma 19.2.04QU Let τ ∈ {fpqc, fppf, syntomic, smooth, étale, Zariski}. Let P be
a property of morphisms which is τ local on the target. Let f : X → Y have
property P. For any morphism Y ′ → Y which is flat, resp. flat and locally of finite
presentation, resp. syntomic, resp. étale, resp. an open immersion, the base change
f ′ : Y ′ ×Y X → Y ′ of f has property P.

Proof. This is true because we can fit Y ′ → Y into a family of morphisms which
forms a τ -covering. �

A simple often used consequence of the above is that if f : X → Y has property P
which is τ -local on the target and f(X) ⊂ V for some open subscheme V ⊂ Y , then
also the induced morphism X → V has P. Proof: The base change f by V → Y
gives X → V .

Lemma 19.3.06QP Let τ ∈ {fppf, syntomic, smooth, étale}. Let P be a property of
morphisms which is τ local on the target. For any morphism of schemes f : X → Y
there exists a largest open W (f) ⊂ Y such that the restriction XW (f) →W (f) has
P. Moreover,

(1) if g : Y ′ → Y is flat and locally of finite presentation, syntomic, smooth, or
étale and the base change f ′ : XY ′ → Y ′ has P, then g(Y ′) ⊂W (f),

(2) if g : Y ′ → Y is flat and locally of finite presentation, syntomic, smooth, or
étale, then W (f ′) = g−1(W (f)), and
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(3) if {gi : Yi → Y } is a τ -covering, then g−1
i (W (f)) = W (fi), where fi is the

base change of f by Yi → Y .

Proof. Consider the union W of the images g(Y ′) ⊂ Y of morphisms g : Y ′ → Y
with the properties:

(1) g is flat and locally of finite presentation, syntomic, smooth, or étale, and
(2) the base change Y ′ ×g,Y X → Y ′ has property P.

Since such a morphism g is open (see Morphisms, Lemma 24.9) we see that W ⊂ Y
is an open subset of Y . Since P is local in the τ topology the restriction XW →W
has property P because we are given a covering {Y ′ → W} of W such that the
pullbacks have P. This proves the existence and proves that W (f) has property
(1). To see property (2) note that W (f ′) ⊃ g−1(W (f)) because P is stable under
base change by flat and locally of finite presentation, syntomic, smooth, or étale
morphisms, see Lemma 19.2. On the other hand, if Y ′′ ⊂ Y ′ is an open such that
XY ′′ → Y ′′ has property P, then Y ′′ → Y factors through W by construction, i.e.,
Y ′′ ⊂ g−1(W (f)). This proves (2). Assertion (3) follows from (2) because each
morphism Yi → Y is flat and locally of finite presentation, syntomic, smooth, or
étale by our definition of a τ -covering. �

Lemma 19.4.02KP Let P be a property of morphisms of schemes over a base. Let
τ ∈ {fpqc, fppf, étale, smooth, syntomic}. Assume that

(1) the property is preserved under flat, flat and locally of finite presentation,
étale, smooth, or syntomic base change depending on whether τ is fpqc,
fppf, étale, smooth, or syntomic (compare with Schemes, Definition 18.3),

(2) the property is Zariski local on the base.
(3) for any surjective morphism of affine schemes S′ → S which is flat, flat

of finite presentation, étale, smooth or syntomic depending on whether τ
is fpqc, fppf, étale, smooth, or syntomic, and any morphism of schemes
f : X → S property P holds for f if property P holds for the base change
f ′ : X ′ = S′ ×S X → S′.

Then P is τ local on the base.

Proof. This follows almost immediately from the definition of a τ -covering, see
Topologies, Definition 9.1 7.1 4.1 5.1, or 6.1 and Topologies, Lemma 9.8, 7.4, 4.4,
5.4, or 6.4. Details omitted. �

Remark 19.5.034G (This is a repeat of Remark 12.3 above.) In Lemma 19.4 above if
τ = smooth then in condition (3) we may assume that the morphism is a (surjective)
standard smooth morphism. Similarly, when τ = syntomic or τ = étale.

20. Properties of morphisms local in the fpqc topology on the target

02YJ In this section we find a large number of properties of morphisms of schemes which
are local on the base in the fpqc topology. By contrast, in Examples, Section 56
we will show that the properties “projective” and “quasi-projective” are not local
on the base even in the Zariski topology.

Lemma 20.1.02KQ The property P(f) =“f is quasi-compact” is fpqc local on the base.

Proof. A base change of a quasi-compact morphism is quasi-compact, see Schemes,
Lemma 19.3. Being quasi-compact is Zariski local on the base, see Schemes, Lemma
19.2. Finally, let S′ → S be a flat surjective morphism of affine schemes, and let
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f : X → S be a morphism. Assume that the base change f ′ : X ′ → S′ is quasi-
compact. Then X ′ is quasi-compact, and X ′ → X is surjective. Hence X is quasi-
compact. This implies that f is quasi-compact. Therefore Lemma 19.4 applies and
we win. �

Lemma 20.2.02KR The property P(f) =“f is quasi-separated” is fpqc local on the
base.

Proof. Any base change of a quasi-separated morphism is quasi-separated, see
Schemes, Lemma 21.13. Being quasi-separated is Zariski local on the base (from
the definition or by Schemes, Lemma 21.7). Finally, let S′ → S be a flat surjective
morphism of affine schemes, and let f : X → S be a morphism. Assume that the
base change f ′ : X ′ → S′ is quasi-separated. This means that ∆′ : X ′ → X ′×S′ X ′
is quasi-compact. Note that ∆′ is the base change of ∆ : X → X×SX via S′ → S.
By Lemma 20.1 this implies ∆ is quasi-compact, and hence f is quasi-separated.
Therefore Lemma 19.4 applies and we win. �

Lemma 20.3.02KS The property P(f) =“f is universally closed” is fpqc local on the
base.

Proof. A base change of a universally closed morphism is universally closed by
definition. Being universally closed is Zariski local on the base (from the definition
or by Morphisms, Lemma 39.2). Finally, let S′ → S be a flat surjective morphism
of affine schemes, and let f : X → S be a morphism. Assume that the base change
f ′ : X ′ → S′ is universally closed. Let T → S be any morphism. Consider the
diagram

X ′

��

S′ ×S T ×S X

��

//oo T ×S X

��
S′ S′ ×S T //oo T

in which both squares are cartesian. Thus the assumption implies that the middle
vertical arrow is closed. The right horizontal arrows are flat, quasi-compact and
surjective (as base changes of S′ → S). Hence a subset of T is closed if and only
if its inverse image in S′ ×S T is closed, see Morphisms, Lemma 24.11. An easy
diagram chase shows that the right vertical arrow is closed too, and we conclude
X → S is universally closed. Therefore Lemma 19.4 applies and we win. �

Lemma 20.4.02KT The property P(f) =“f is universally open” is fpqc local on the
base.

Proof. The proof is the same as the proof of Lemma 20.3. �

Lemma 20.5.0CEW The property P(f) =“f is universally submersive” is fpqc local on
the base.

Proof. The proof is the same as the proof of Lemma 20.3 using that a quasi-
compact flat surjective morphism is universally submersive by Morphisms, Lemma
24.11. �

Lemma 20.6.02KU The property P(f) =“f is separated” is fpqc local on the base.
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Proof. A base change of a separated morphism is separated, see Schemes, Lemma
21.13. Being separated is Zariski local on the base (from the definition or by
Schemes, Lemma 21.8). Finally, let S′ → S be a flat surjective morphism of affine
schemes, and let f : X → S be a morphism. Assume that the base change f ′ :
X ′ → S′ is separated. This means that ∆′ : X ′ → X ′×S′ X ′ is a closed immersion,
hence universally closed. Note that ∆′ is the base change of ∆ : X → X ×S X
via S′ → S. By Lemma 20.3 this implies ∆ is universally closed. Since it is an
immersion (Schemes, Lemma 21.2) we conclude ∆ is a closed immersion. Hence f
is separated. Therefore Lemma 19.4 applies and we win. �

Lemma 20.7.02KV The property P(f) =“f is surjective” is fpqc local on the base.

Proof. This is clear. �

Lemma 20.8.02KW The property P(f) =“f is universally injective” is fpqc local on the
base.

Proof. A base change of a universally injective morphism is universally injective
(this is formal). Being universally injective is Zariski local on the base; this is
clear from the definition. Finally, let S′ → S be a flat surjective morphism of
affine schemes, and let f : X → S be a morphism. Assume that the base change
f ′ : X ′ → S′ is universally injective. Let K be a field, and let a, b : Spec(K) → X
be two morphisms such that f ◦ a = f ◦ b. As S′ → S is surjective and by the
discussion in Schemes, Section 13 there exists a field extension K ⊂ K ′ and a
morphism Spec(K ′)→ S′ such that the following solid diagram commutes

Spec(K ′)

))
a′,b′ $$

��

X ′ //

��

S′

��
Spec(K)

a,b // X // S

As the square is cartesian we get the two dotted arrows a′, b′ making the diagram
commute. Since X ′ → S′ is universally injective we get a′ = b′, by Morphisms,
Lemma 10.2. Clearly this forces a = b (by the discussion in Schemes, Section 13).
Therefore Lemma 19.4 applies and we win.

An alternative proof would be to use the characterization of a universally injective
morphism as one whose diagonal is surjective, see Morphisms, Lemma 10.2. The
lemma then follows from the fact that the property of being surjective is fpqc local
on the base, see Lemma 20.7. (Hint: use that the base change of the diagonal is
the diagonal of the base change.) �

Lemma 20.9.0CEX The property P(f) =“f is a universal homeomorphism” is fpqc
local on the base.

Proof. This can be proved in exactly the same manner as Lemma 20.3. Alterna-
tively, one can use that a map of topological spaces is a homeomorphism if and
only if it is injective, surjective, and open. Thus a universal homeomorphism is the
same thing as a surjective, universally injective, and universally open morphism.
Thus the lemma follows from Lemmas 20.7, 20.8, and 20.4. �
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Lemma 20.10.02KX The property P(f) =“f is locally of finite type” is fpqc local on
the base.

Proof. Being locally of finite type is preserved under base change, see Morphisms,
Lemma 14.4. Being locally of finite type is Zariski local on the base, see Morphisms,
Lemma 14.2. Finally, let S′ → S be a flat surjective morphism of affine schemes,
and let f : X → S be a morphism. Assume that the base change f ′ : X ′ → S′ is
locally of finite type. Let U ⊂ X be an affine open. Then U ′ = S′ ×S U is affine
and of finite type over S′. Write S = Spec(R), S′ = Spec(R′), U = Spec(A), and
U ′ = Spec(A′). We know that R→ R′ is faithfully flat, A′ = R′⊗RA and R′ → A′

is of finite type. We have to show that R→ A is of finite type. This is the result of
Algebra, Lemma 125.1. It follows that f is locally of finite type. Therefore Lemma
19.4 applies and we win. �

Lemma 20.11.02KY The property P(f) =“f is locally of finite presentation” is fpqc
local on the base.

Proof. Being locally of finite presentation is preserved under base change, see
Morphisms, Lemma 20.4. Being locally of finite type is Zariski local on the base,
see Morphisms, Lemma 20.2. Finally, let S′ → S be a flat surjective morphism
of affine schemes, and let f : X → S be a morphism. Assume that the base
change f ′ : X ′ → S′ is locally of finite presentation. Let U ⊂ X be an affine
open. Then U ′ = S′ ×S U is affine and of finite type over S′. Write S = Spec(R),
S′ = Spec(R′), U = Spec(A), and U ′ = Spec(A′). We know that R → R′ is
faithfully flat, A′ = R′⊗RA and R′ → A′ is of finite presentation. We have to show
that R → A is of finite presentation. This is the result of Algebra, Lemma 125.2.
It follows that f is locally of finite presentation. Therefore Lemma 19.4 applies and
we win. �

Lemma 20.12.02KZ The property P(f) =“f is of finite type” is fpqc local on the base.

Proof. Combine Lemmas 20.1 and 20.10. �

Lemma 20.13.02L0 The property P(f) =“f is of finite presentation” is fpqc local on
the base.

Proof. Combine Lemmas 20.1, 20.2 and 20.11. �

Lemma 20.14.02L1 The property P(f) =“f is proper” is fpqc local on the base.

Proof. The lemma follows by combining Lemmas 20.3, 20.6 and 20.12. �

Lemma 20.15.02L2 The property P(f) =“f is flat” is fpqc local on the base.

Proof. Being flat is preserved under arbitrary base change, see Morphisms, Lemma
24.7. Being flat is Zariski local on the base by definition. Finally, let S′ → S be
a flat surjective morphism of affine schemes, and let f : X → S be a morphism.
Assume that the base change f ′ : X ′ → S′ is flat. Let U ⊂ X be an affine open.
Then U ′ = S′×SU is affine. Write S = Spec(R), S′ = Spec(R′), U = Spec(A), and
U ′ = Spec(A′). We know that R→ R′ is faithfully flat, A′ = R′⊗RA and R′ → A′

is flat. Goal: Show that R → A is flat. This follows immediately from Algebra,
Lemma 38.8. Hence f is flat. Therefore Lemma 19.4 applies and we win. �

Lemma 20.16.02L3 The property P(f) =“f is an open immersion” is fpqc local on
the base.
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Proof. The property of being an open immersion is stable under base change, see
Schemes, Lemma 18.2. The property of being an open immersion is Zariski local
on the base (this is obvious). Finally, let S′ → S be a flat surjective morphism
of affine schemes, and let f : X → S be a morphism. Assume that the base
change f ′ : X ′ → S′ is an open immersion. Then f ′ is universally open, and
universally injective. Hence we conclude that f is universally open by Lemma 20.4,
and universally injective by Lemma 20.8. In particular f(X) ⊂ S is open, and we
may replace S by f(S) and assume that f is surjective. This implies that f ′ is
an isomorphism and we have to show that f is an isomorphism also. Since f is
universally injective we see that f is bijective. Hence f is a homeomorphism. Let
x ∈ X and choose U ⊂ X an affine open neighbourhood of x. Since f(U) ⊂ S is
open, and S is affine we may choose a standard open D(g) ⊂ f(U) containing f(x)
where g ∈ Γ(S,OS). It is clear that U ∩ f−1(D(g)) is still affine and still an open
neighbourhood of x. Replace U by U ∩ f−1(D(g)) and write V = D(g) ⊂ S and
V ′ the inverse image of V in S′. Note that V ′ is a standard open of S′ as well and
in particular that V ′ is affine. Since f ′ is an isomorphism we have V ′ ×V U → V ′

is an isomorphism. In terms of rings this means that

O(V ′) −→ O(V ′)⊗O(V ) O(U)

is an isomorphism. Since O(V )→ O(V ′) is faithfully flat this implies that O(V )→
O(U) is an isomorphism. Hence U ∼= V and we see that f is an isomorphism.
Therefore Lemma 19.4 applies and we win. �

Lemma 20.17.02L4 The property P(f) =“f is an isomorphism” is fpqc local on the
base.

Proof. Combine Lemmas 20.7 and 20.16. �

Lemma 20.18.02L5 The property P(f) =“f is affine” is fpqc local on the base.

Proof. A base change of an affine morphism is affine, see Morphisms, Lemma 11.8.
Being affine is Zariski local on the base, see Morphisms, Lemma 11.3. Finally, let
g : S′ → S be a flat surjective morphism of affine schemes, and let f : X → S be a
morphism. Assume that the base change f ′ : X ′ → S′ is affine. In other words, X ′

is affine, say X ′ = Spec(A′). Also write S = Spec(R) and S′ = Spec(R′). We have
to show that X is affine.

By Lemmas 20.1 and 20.6 we see that X → S is separated and quasi-compact.
Thus f∗OX is a quasi-coherent sheaf of OS-algebras, see Schemes, Lemma 24.1.

Hence f∗OX = Ã for some R-algebra A. In fact A = Γ(X,OX) of course. Also,
by flat base change (see for example Cohomology of Schemes, Lemma 5.2) we have
g∗f∗OX = f ′∗OX′ . In other words, we have A′ = R′ ⊗R A. Consider the canonical
morphism

X −→ Spec(A)

over S from Schemes, Lemma 6.4. By the above the base change of this morphism
to S′ is an isomorphism. Hence it is an isomorphism by Lemma 20.17. Therefore
Lemma 19.4 applies and we win. �

Lemma 20.19.02L6 The property P(f) =“f is a closed immersion” is fpqc local on
the base.
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Proof. Let f : X → Y be a morphism of schemes. Let {Yi → Y } be an fpqc
covering. Assume that each fi : Yi ×Y X → Yi is a closed immersion. This implies
that each fi is affine, see Morphisms, Lemma 11.9. By Lemma 20.18 we conclude
that f is affine. It remains to show that OY → f∗OX is surjective. For every y ∈ Y
there exists an i and a point yi ∈ Yi mapping to y. By Cohomology of Schemes,
Lemma 5.2 the sheaf fi,∗(OYi×YX) is the pullback of f∗OX . By assumption it is a
quotient of OYi . Hence we see that(

OY,y −→ (f∗OX)y

)
⊗OY,y OYi,yi

is surjective. Since OYi,yi is faithfully flat over OY,y this implies the surjectivity of
OY,y −→ (f∗OX)y as desired. �

Lemma 20.20.02L7 The property P(f) =“f is quasi-affine” is fpqc local on the base.

Proof. Let f : X → Y be a morphism of schemes. Let {gi : Yi → Y } be an fpqc
covering. Assume that each fi : Yi ×Y X → Yi is quasi-affine. This implies that
each fi is quasi-compact and separated. By Lemmas 20.1 and 20.6 this implies that
f is quasi-compact and separated. Consider the sheaf of OY -algebras A = f∗OX .
By Schemes, Lemma 24.1 it is a quasi-coherent OY -algebra. Consider the canonical
morphism

j : X −→ Spec
Y

(A)

see Constructions, Lemma 4.7. By flat base change (see for example Cohomology
of Schemes, Lemma 5.2) we have g∗i f∗OX = fi,∗OX′ where gi : Yi → Y are the
given flat maps. Hence the base change ji of j by gi is the canonical morphism of
Constructions, Lemma 4.7 for the morphism fi. By assumption and Morphisms,
Lemma 12.3 all of these morphisms ji are quasi-compact open immersions. Hence,
by Lemmas 20.1 and 20.16 we see that j is a quasi-compact open immersion. Hence
by Morphisms, Lemma 12.3 again we conclude that f is quasi-affine. �

Lemma 20.21.02L8 The property P(f) =“f is a quasi-compact immersion” is fpqc
local on the base.

Proof. Let f : X → Y be a morphism of schemes. Let {Yi → Y } be an fpqc
covering. Write Xi = Yi ×Y X and fi : Xi → Yi the base change of f . Also
denote qi : Yi → Y the given flat morphisms. Assume each fi is a quasi-compact
immersion. By Schemes, Lemma 23.8 each fi is separated. By Lemmas 20.1 and
20.6 this implies that f is quasi-compact and separated. Let X → Z → Y be
the factorization of f through its scheme theoretic image. By Morphisms, Lemma
6.3 the closed subscheme Z ⊂ Y is cut out by the quasi-coherent sheaf of ideals
I = Ker(OY → f∗OX) as f is quasi-compact. By flat base change (see for example
Cohomology of Schemes, Lemma 5.2; here we use f is separated) we see fi,∗OXi
is the pullback q∗i f∗OX . Hence Yi ×Y Z is cut out by the quasi-coherent sheaf
of ideals q∗i I = Ker(OYi → fi,∗OXi). By Morphisms, Lemma 7.7 the morphisms
Xi → Yi×Y Z are open immersions. Hence by Lemma 20.16 we see that X → Z is
an open immersion and hence f is a immersion as desired (we already saw it was
quasi-compact). �

Lemma 20.22.02L9 The property P(f) =“f is integral” is fpqc local on the base.
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Proof. An integral morphism is the same thing as an affine, universally closed
morphism. See Morphisms, Lemma 42.7. Hence the lemma follows on combining
Lemmas 20.3 and 20.18. �

Lemma 20.23.02LA The property P(f) =“f is finite” is fpqc local on the base.

Proof. An finite morphism is the same thing as an integral morphism which is
locally of finite type. See Morphisms, Lemma 42.4. Hence the lemma follows on
combining Lemmas 20.10 and 20.22. �

Lemma 20.24.02VI The properties P(f) =“f is locally quasi-finite” and P(f) =“f is
quasi-finite” are fpqc local on the base.

Proof. Let f : X → S be a morphism of schemes, and let {Si → S} be an fpqc
covering such that each base change fi : Xi → Si is locally quasi-finite. We have
already seen (Lemma 20.10) that “locally of finite type” is fpqc local on the base,
and hence we see that f is locally of finite type. Then it follows from Morphisms,
Lemma 19.13 that f is locally quasi-finite. The quasi-finite case follows as we have
already seen that “quasi-compact” is fpqc local on the base (Lemma 20.1). �

Lemma 20.25.02VJ The property P(f) =“f is locally of finite type of relative dimen-
sion d” is fpqc local on the base.

Proof. This follows immediately from the fact that being locally of finite type is
fpqc local on the base and Morphisms, Lemma 27.3. �

Lemma 20.26.02VK The property P(f) =“f is syntomic” is fpqc local on the base.

Proof. A morphism is syntomic if and only if it is locally of finite presentation,
flat, and has locally complete intersections as fibres. We have seen already that
being flat and locally of finite presentation are fpqc local on the base (Lemmas
20.15, and 20.11). Hence the result follows for syntomic from Morphisms, Lemma
29.12. �

Lemma 20.27.02VL The property P(f) =“f is smooth” is fpqc local on the base.

Proof. A morphism is smooth if and only if it is locally of finite presentation, flat,
and has smooth fibres. We have seen already that being flat and locally of finite
presentation are fpqc local on the base (Lemmas 20.15, and 20.11). Hence the result
follows for smooth from Morphisms, Lemma 32.15. �

Lemma 20.28.02VM The property P(f) =“f is unramified” is fpqc local on the base.
The property P(f) =“f is G-unramified” is fpqc local on the base.

Proof. A morphism is unramified (resp. G-unramified) if and only if it is locally
of finite type (resp. finite presentation) and its diagonal morphism is an open im-
mersion (see Morphisms, Lemma 33.13). We have seen already that being locally
of finite type (resp. locally of finite presentation) and an open immersion is fpqc
local on the base (Lemmas 20.11, 20.10, and 20.16). Hence the result follows for-
mally. �

Lemma 20.29.02VN The property P(f) =“f is étale” is fpqc local on the base.

Proof. A morphism is étale if and only if it flat and G-unramified. See Morphisms,
Lemma 34.16. We have seen already that being flat and G-unramified are fpqc local
on the base (Lemmas 20.15, and 20.28). Hence the result follows. �
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Lemma 20.30.02VO The property P(f) =“f is finite locally free” is fpqc local on the
base. Let d ≥ 0. The property P(f) =“f is finite locally free of degree d” is fpqc
local on the base.

Proof. Being finite locally free is equivalent to being finite, flat and locally of finite
presentation (Morphisms, Lemma 45.2). Hence this follows from Lemmas 20.23,
20.15, and 20.11. If f : Z → U is finite locally free, and {Ui → U} is a surjective
family of morphisms such that each pullback Z ×U Ui → Ui has degree d, then
Z → U has degree d, for example because we can read off the degree in a point
u ∈ U from the fibre (f∗OZ)u ⊗OU,u κ(u). �

Lemma 20.31.02YK The property P(f) =“f is a monomorphism” is fpqc local on the
base.

Proof. Let f : X → S be a morphism of schemes. Let {Si → S} be an fpqc
covering, and assume each of the base changes fi : Xi → Si of f is a monomorphism.
Let a, b : T → X be two morphisms such that f ◦ a = f ◦ b. We have to show that
a = b. Since fi is a monomorphism we see that ai = bi, where ai, bi : Si×S T → Xi

are the base changes. In particular the compositions Si ×S T → T → X are
equal. Since

∐
Si×S T → T is an epimorphism (see e.g. Lemma 10.3) we conclude

a = b. �

Lemma 20.32.0694 The properties

P(f) =“f is a Koszul-regular immersion”,
P(f) =“f is an H1-regular immersion”, and
P(f) =“f is a quasi-regular immersion”

are fpqc local on the base.

Proof. We will use the criterion of Lemma 19.4 to prove this. By Divisors, Def-
inition 21.1 being a Koszul-regular (resp. H1-regular, quasi-regular) immersion is
Zariski local on the base. By Divisors, Lemma 21.4 being a Koszul-regular (resp.
H1-regular, quasi-regular) immersion is preserved under flat base change. The fi-
nal hypothesis (3) of Lemma 19.4 translates into the following algebra statement:
Let A → B be a faithfully flat ring map. Let I ⊂ A be an ideal. If IB is lo-
cally on Spec(B) generated by a Koszul-regular (resp. H1-regular, quasi-regular)
sequence in B, then I ⊂ A is locally on Spec(A) generated by a Koszul-regular
(resp. H1-regular, quasi-regular) sequence in A. This is More on Algebra, Lemma
29.4. �

21. Properties of morphisms local in the fppf topology on the target

02YL In this section we find some properties of morphisms of schemes for which we could
not (yet) show they are local on the base in the fpqc topology which, however, are
local on the base in the fppf topology.

Lemma 21.1.02YM The property P(f) =“f is an immersion” is fppf local on the base.

Proof. The property of being an immersion is stable under base change, see
Schemes, Lemma 18.2. The property of being an immersion is Zariski local on
the base. Finally, let π : S′ → S be a surjective morphism of affine schemes, which
is flat and locally of finite presentation. Note that π : S′ → S is open by Mor-
phisms, Lemma 24.9. Let f : X → S be a morphism. Assume that the base change
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f ′ : X ′ → S′ is an immersion. In particular we see that f ′(X ′) = π−1(f(X)) is
locally closed. Hence by Topology, Lemma 6.4 we see that f(X) ⊂ S is locally

closed. Let Z ⊂ S be the closed subset Z = f(X) \ f(X). By Topology, Lemma
6.4 again we see that f ′(X ′) is closed in S′ \Z ′. Hence we may apply Lemma 20.19
to the fpqc covering {S′ \Z ′ → S \Z} and conclude that f : X → S \Z is a closed
immersion. In other words, f is an immersion. Therefore Lemma 19.4 applies and
we win. �

22. Application of fpqc descent of properties of morphisms

02LB The following lemma may seem a bit frivolous but turns out is a useful tool in
studying étale and unramified morphisms.

Lemma 22.1.06NC Let f : X → Y be a flat, quasi-compact, surjective monomorphism.
Then f is an isomorphism.

Proof. As f is a flat, quasi-compact, surjective morphism we see {X → Y } is an
fpqc covering of Y . The diagonal ∆ : X → X ×Y X is an isomorphism. This
implies that the base change of f by f is an isomorphism. Hence we see f is an
isomorphism by Lemma 20.17. �

We can use this lemma to show the following important result; we also give a proof
avoiding fpqc descent. We will discuss this and related results in more detail in
Étale Morphisms, Section 14.

Lemma 22.2.02LC A universally injective étale morphism is an open immersion.

First proof. Let f : X → Y be an étale morphism which is universally injective.
Then f is open (Morphisms, Lemma 34.13) hence we can replace Y by f(X) and
we may assume that f is surjective. Then f is bijective and open hence a homeo-
morphism. Hence f is quasi-compact. Thus by Lemma 22.1 it suffices to show that
f is a monomorphism. As X → Y is étale the morphism ∆X/Y : X → X ×Y X is
an open immersion by Morphisms, Lemma 33.13 (and Morphisms, Lemma 34.16).
As f is universally injective ∆X/Y is also surjective, see Morphisms, Lemma 10.2.
Hence ∆X/Y is an isomorphism, i.e., X → Y is a monomorphism. �

Second proof. Let f : X → Y be an étale morphism which is universally injective.
Then f is open (Morphisms, Lemma 34.13) hence we can replace Y by f(X) and
we may assume that f is surjective. Since the hypotheses remain satisfied after
any base change, we conclude that f is a universal homeomorphism. Therefore f
is integral, see Morphisms, Lemma 43.5. It follows that f is finite by Morphisms,
Lemma 42.4. It follows that f is finite locally free by Morphisms, Lemma 45.2. To
finish the proof, it suffices that f is finite locally free of degree 1 (a finite locally
free morphism of degree 1 is an isomorphism). There is decomposition of Y into
open and closed subschemes Vd such that f−1(Vd) → Vd is finite locally free of
degree d, see Morphisms, Lemma 45.5. If Vd is not empty, we can pick a morphism
Spec(k) → Vd ⊂ Y where k is an algebraically closed field (just take the algebraic
closure of the residue field of some point of Vd). Then Spec(k)×Y X → Spec(k) is
a disjoint union of copies of Spec(k), by Morphisms, Lemma 34.7 and the fact that
k is algebraically closed. However, since f is universally injective, there can only
be one copy and hence d = 1 as desired. �
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We can reformulate the hypotheses in the lemma above a bit by using the following
characterization of flat universally injective morphisms.

Lemma 22.3.09NP Let f : X → Y be a morphism of schemes. Let X0 denote the set
of generic points of irreducible components of X. If

(1) f is flat and separated,
(2) for ξ ∈ X0 we have κ(f(ξ)) = κ(ξ), and
(3) if ξ, ξ′ ∈ X0, ξ 6= ξ′, then f(ξ) 6= f(ξ′),

then f is universally injective.

Proof. We have to show that ∆ : X → X ×Y X is surjective, see Morphisms,
Lemma 10.2. As X → Y is separated, the image of ∆ is closed. Thus if ∆ is not
surjective, we can find a generic point η ∈ X ×S X of an irreducible component of
X ×S X which is not in the image of ∆. The projection pr1 : X ×Y X → X is
flat as a base change of the flat morphism X → Y , see Morphisms, Lemma 24.7.
Hence generalizations lift along pr1, see Morphisms, Lemma 24.8. We conclude that
ξ = pr1(η) ∈ X0. However, assumptions (2) and (3) guarantee that the scheme
(X ×Y X)f(ξ) has at most one point for every ξ ∈ X0. In other words, we have
∆(ξ) = η a contradiction. �

Thus we can reformulate Lemma 22.2 as follows.

Lemma 22.4.09NQ Let f : X → Y be a morphism of schemes. Let X0 denote the set
of generic points of irreducible components of X. If

(1) f is étale and separated,
(2) for ξ ∈ X0 we have κ(f(ξ)) = κ(ξ), and
(3) if ξ, ξ′ ∈ X0, ξ 6= ξ′, then f(ξ) 6= f(ξ′),

then f is an open immersion.

Proof. Immediate from Lemmas 22.3 and 22.2. �

Lemma 22.5.0D2P Let f : X → S be a morphism of schemes. Let L be an invertible
OX-module. Let {gi : Si → S}i∈I be an fpqc covering. Let fi : Xi → Si be the base
change of f and let Li be the pullback of L to Xi. The following are equivalent

(1) L is ample on X/S, and
(2) Li is ample on Xi/Si for every i ∈ I.

Proof. The implication (1) ⇒ (2) follows from Morphisms, Lemma 35.9. Assume
Li is ample on Xi/Si for every i ∈ I. By Morphisms, Definition 35.1 this implies
that Xi → Si is quasi-compact and by Morphisms, Lemma 35.3 this implies Xi → S
is separated. Hence f is quasi-compact and separated by Lemmas 20.1 and 20.6.

This means that A =
⊕

d≥0 f∗L⊗d is a quasi-coherent graded OS-algebra (Schemes,

Lemma 24.1). Moreover, the formation of A commutes with flat base change by

Cohomology of Schemes, Lemma 5.2. In particular, if we set Ai =
⊕

d≥0 fi,∗L
⊗d
i

then we have Ai = g∗iA. It follows that the natural maps ψd : f∗Ad → L⊗d
of OX pullback to give the natural maps ψi,d : f∗i (Ai)d → L⊗di of OXi-modules.
Since Li is ample on Xi/Si we see that for any point xi ∈ Xi, there exists a

d ≥ 1 such that f∗i (Ai)d → L⊗di is surjective on stalks at xi. This follows either
directly from the definition of a relatively ample module or from Morphisms, Lemma
35.4. If x ∈ X, then we can choose an i and an xi ∈ Xi mapping to x. Since
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OX,x → OXi,xi is flat hence faithfully flat, we conclude that for every x ∈ X there
exists a d ≥ 1 such that f∗Ad → L⊗d is surjective on stalks at x. This implies
that the open subset U(ψ) ⊂ X of Constructions, Lemma 19.1 corresponding to
the map ψ : f∗A →

⊕
d≥0 L⊗d of graded OX -algebras is equal to X. Consider the

corresponding morphism
rL,ψ : X −→ Proj

S
(A)

It is clear from the above that the base change of rL,ψ to Si is the morphism rLi,ψi
which is an open immersion by Morphisms, Lemma 35.4. Hence rL,ψ is an open
immersion by Lemma 20.16 and we conclude L is ample on X/S by Morphisms,
Lemma 35.4. �

23. Properties of morphisms local on the source

036F It often happens one can prove a morphism has a certain property after precom-
posing with some other morphism. In many cases this implies the morphism has
the property too. We formalize this in the following definition.

Definition 23.1.036G Let P be a property of morphisms of schemes. Let τ ∈ {Zariski,
fpqc, fppf, étale, smooth, syntomic}. We say P is τ local on the source, or local on
the source for the τ -topology if for any morphism of schemes f : X → Y over S,
and any τ -covering {Xi → X}i∈I we have

f has P ⇔ each Xi → Y has P.

To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for X → Y if and only if it holds for any arrow X ′ → Y ′ isomorphic to
X → Y . If a property is τ -local on the source then it is preserved by precomposing
with morphisms which occur in τ -coverings. Here is a formal statement.

Lemma 23.2.04QV Let τ ∈ {fpqc, fppf, syntomic, smooth, étale, Zariski}. Let P be a
property of morphisms which is τ local on the source. Let f : X → Y have property
P. For any morphism a : X ′ → X which is flat, resp. flat and locally of finite
presentation, resp. syntomic, resp. étale, resp. an open immersion, the composition
f ◦ a : X ′ → Y has property P.

Proof. This is true because we can fit X ′ → X into a family of morphisms which
forms a τ -covering. �

Lemma 23.3.0CEY Let τ ∈ {fppf, syntomic, smooth, étale}. Let P be a property of
morphisms which is τ local on the source. For any morphism of schemes f : X → Y
there exists a largest open W (f) ⊂ X such that the restriction f |W (f) : W (f)→ Y
has P. Moreover, if g : X ′ → X is flat and locally of finite presentation, syntomic,
smooth, or étale and f ′ = f ◦ g : X ′ → Y , then g−1(W (f)) = W (f ′).

Proof. Consider the union W of the images g(X ′) ⊂ X of morphisms g : X ′ → X
with the properties:

(1) g is flat and locally of finite presentation, syntomic, smooth, or étale, and
(2) the composition X ′ → X → Y has property P.

Since such a morphism g is open (see Morphisms, Lemma 24.9) we see that W ⊂ X
is an open subset of X. Since P is local in the τ topology the restriction f |W :
W → Y has property P because we are given a τ covering {X ′ → W} of W such
that the pullbacks have P. This proves the existence of W (f). The compatibility
stated in the last sentence follows immediately from the construction of W (f). �
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Lemma 23.4.036H Let P be a property of morphisms of schemes. Let τ ∈ {fpqc, fppf,
étale, smooth, syntomic}. Assume that

(1) the property is preserved under precomposing with flat, flat locally of finite
presentation, étale, smooth or syntomic morphisms depending on whether
τ is fpqc, fppf, étale, smooth, or syntomic,

(2) the property is Zariski local on the source,
(3) the property is Zariski local on the target,
(4) for any morphism of affine schemes X → Y , and any surjective morphism

of affine schemes X ′ → X which is flat, flat of finite presentation, étale,
smooth or syntomic depending on whether τ is fpqc, fppf, étale, smooth, or
syntomic, property P holds for f if property P holds for the composition
f ′ : X ′ → Y .

Then P is τ local on the source.

Proof. This follows almost immediately from the definition of a τ -covering, see
Topologies, Definition 9.1 7.1 4.1 5.1, or 6.1 and Topologies, Lemma 9.8, 7.4, 4.4,
5.4, or 6.4. Details omitted. (Hint: Use locality on the source and target to reduce
the verification of property P to the case of a morphism between affines. Then
apply (1) and (4).) �

Remark 23.5.036I (This is a repeat of Remarks 12.3 and 19.5 above.) In Lemma
23.4 above if τ = smooth then in condition (4) we may assume that the morphism
is a (surjective) standard smooth morphism. Similarly, when τ = syntomic or
τ = étale.

24. Properties of morphisms local in the fpqc topology on the source

036J Here are some properties of morphisms that are fpqc local on the source.

Lemma 24.1.036K The property P(f) =“f is flat” is fpqc local on the source.

Proof. Since flatness is defined in terms of the maps of local rings (Morphisms,
Definition 24.1) what has to be shown is the following algebraic fact: Suppose
A → B → C are local homomorphisms of local rings, and assume B → C is flat.
Then A→ B is flat if and only if A→ C is flat. If A→ B is flat, then A→ C is flat
by Algebra, Lemma 38.4. Conversely, assume A → C is flat. Note that B → C is
faithfully flat, see Algebra, Lemma 38.17. Hence A→ B is flat by Algebra, Lemma
38.10. (Also see Morphisms, Lemma 24.12 for a direct proof.) �

Lemma 24.2.036L Then property P(f : X → Y ) =“for every x ∈ X the map of local
rings OY,f(x) → OX,x is injective” is fpqc local on the source.

Proof. Omitted. This is just a (probably misguided) attempt to be playful. �

25. Properties of morphisms local in the fppf topology on the source

036M Here are some properties of morphisms that are fppf local on the source.

Lemma 25.1.036N The property P(f) =“f is locally of finite presentation” is fppf local
on the source.

Proof. Being locally of finite presentation is Zariski local on the source and the
target, see Morphisms, Lemma 20.2. It is a property which is preserved under
composition, see Morphisms, Lemma 20.3. This proves (1), (2) and (3) of Lemma
23.4. The final condition (4) is Lemma 11.1. Hence we win. �
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Lemma 25.2.036O The property P(f) =“f is locally of finite type” is fppf local on the
source.

Proof. Being locally of finite type is Zariski local on the source and the target, see
Morphisms, Lemma 14.2. It is a property which is preserved under composition,
see Morphisms, Lemma 14.3, and a flat morphism locally of finite presentation is
locally of finite type, see Morphisms, Lemma 20.8. This proves (1), (2) and (3) of
Lemma 23.4. The final condition (4) is Lemma 11.2. Hence we win. �

Lemma 25.3.036P The property P(f) =“f is open” is fppf local on the source.

Proof. Being an open morphism is clearly Zariski local on the source and the
target. It is a property which is preserved under composition, see Morphisms,
Lemma 22.3, and a flat morphism of finite presentation is open, see Morphisms,
Lemma 24.9 This proves (1), (2) and (3) of Lemma 23.4. The final condition (4)
follows from Morphisms, Lemma 24.11. Hence we win. �

Lemma 25.4.036Q The property P(f) =“f is universally open” is fppf local on the
source.

Proof. Let f : X → Y be a morphism of schemes. Let {Xi → X}i∈I be an
fppf covering. Denote fi : Xi → X the compositions. We have to show that f is
universally open if and only if each fi is universally open. If f is universally open,
then also each fi is universally open since the maps Xi → X are universally open
and compositions of universally open morphisms are universally open (Morphisms,
Lemmas 24.9 and 22.3). Conversely, assume each fi is universally open. Let Y ′ → Y
be a morphism of schemes. Denote X ′ = Y ′ ×Y X and X ′i = Y ′ ×Y Xi. Note that
{X ′i → X ′}i∈I is an fppf covering also. The morphisms f ′i : X ′i → Y ′ are open by
assumption. Hence by the Lemma 25.3 above we conclude that f ′ : X ′ → Y ′ is
open as desired. �

26. Properties of morphisms local in the syntomic topology on the
source

036R Here are some properties of morphisms that are syntomic local on the source.

Lemma 26.1.036S The property P(f) =“f is syntomic” is syntomic local on the
source.

Proof. Combine Lemma 23.4 with Morphisms, Lemma 29.2 (local for Zariski on
source and target), Morphisms, Lemma 29.3 (pre-composing), and Lemma 11.4
(part (4)). �

27. Properties of morphisms local in the smooth topology on the source

036T Here are some properties of morphisms that are smooth local on the source. ote also
the (in some respects stronger) result on descending smoothness via flat morphisms,
Lemma 11.5.

Lemma 27.1.036U The property P(f) =“f is smooth” is smooth local on the source.

Proof. Combine Lemma 23.4 with Morphisms, Lemma 32.2 (local for Zariski on
source and target), Morphisms, Lemma 32.4 (pre-composing), and Lemma 11.4
(part (4)). �
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28. Properties of morphisms local in the étale topology on the source

036V Here are some properties of morphisms that are étale local on the source.

Lemma 28.1.036W The property P(f) =“f is étale” is étale local on the source.

Proof. Combine Lemma 23.4 with Morphisms, Lemma 34.2 (local for Zariski on
source and target), Morphisms, Lemma 34.3 (pre-composing), and Lemma 11.4
(part (4)). �

Lemma 28.2.03X4 The property P(f) =“f is locally quasi-finite” is étale local on the
source.

Proof. We are going to use Lemma 23.4. By Morphisms, Lemma 19.11 the prop-
erty of being locally quasi-finite is local for Zariski on source and target. By Mor-
phisms, Lemmas 19.12 and 34.6 we see the precomposition of a locally quasi-finite
morphism by an étale morphism is locally quasi-finite. Finally, suppose that X → Y
is a morphism of affine schemes and that X ′ → X is a surjective étale morphism of
affine schemes such that X ′ → Y is locally quasi-finite. Then X ′ → Y is of finite
type, and by Lemma 11.2 we see that X → Y is of finite type also. Moreover, by
assumption X ′ → Y has finite fibres, and hence X → Y has finite fibres also. We
conclude that X → Y is quasi-finite by Morphisms, Lemma 19.10. This proves the
last assumption of Lemma 23.4 and finishes the proof. �

Lemma 28.3.03YV The property P(f) =“f is unramified” is étale local on the source.
The property P(f) =“f is G-unramified” is étale local on the source.

Proof. We are going to use Lemma 23.4. By Morphisms, Lemma 33.3 the prop-
erty of being unramified (resp. G-unramified) is local for Zariski on source and
target. By Morphisms, Lemmas 33.4 and 34.5 we see the precomposition of an un-
ramified (resp. G-unramified) morphism by an étale morphism is unramified (resp.
G-unramified). Finally, suppose that X → Y is a morphism of affine schemes and
that f : X ′ → X is a surjective étale morphism of affine schemes such that X ′ → Y
is unramified (resp. G-unramified). Then X ′ → Y is of finite type (resp. finite
presentation), and by Lemma 11.2 (resp. Lemma 11.1) we see that X → Y is of
finite type (resp. finite presentation) also. By Morphisms, Lemma 32.16 we have a
short exact sequence

0→ f∗ΩX/Y → ΩX′/Y → ΩX′/X → 0.

As X ′ → Y is unramified we see that the middle term is zero. Hence, as f is faith-
fully flat we see that ΩX/Y = 0. Hence X → Y is unramified (resp. G-unramified),
see Morphisms, Lemma 33.2. This proves the last assumption of Lemma 23.4 and
finishes the proof. �

29. Properties of morphisms étale local on source-and-target

04QW Let P be a property of morphisms of schemes. There is an intuitive meaning to the
phrase “P is étale local on the source and target”. However, it turns out that this
notion is not the same as asking P to be both étale local on the source and étale
local on the target. Before we discuss this further we give two silly examples.

Example 29.1.04QX Consider the property P of morphisms of schemes defined by the
rule P(X → Y ) =“Y is locally Noetherian”. The reader can verify that this is
étale local on the source and étale local on the target (omitted, see Lemma 13.1).

http://stacks.math.columbia.edu/tag/036W
http://stacks.math.columbia.edu/tag/03X4
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But it is not true that if f : X → Y has P and g : Y → Z is étale, then g ◦ f has
P. Namely, f could be the identity on Y and g could be an open immersion of a
locally Noetherian scheme Y into a non locally Noetherian scheme Z.

The following example is in some sense worse.

Example 29.2.04QY Consider the property P of morphisms of schemes defined by the
rule P(f : X → Y ) =“for every y ∈ Y which is a specialization of some f(x),
x ∈ X the local ring OY,y is Noetherian”. Let us verify that this is étale local on
the source and étale local on the target. We will freely use Schemes, Lemma 13.2.

Local on the target: Let {gi : Yi → Y } be an étale covering. Let fi : Xi → Yi be
the base change of f , and denote hi : Xi → X the projection. Assume P(f). Let
f(xi)  yi be a specialization. Then f(hi(xi))  gi(yi) so P(f) implies OY,gi(yi)
is Noetherian. Also OY,gi(yi) → OYi,yi is a localization of an étale ring map. Hence
OYi,yi is Noetherian by Algebra, Lemma 30.1. Conversely, assume P(fi) for all i.
Let f(x)  y be a specialization. Choose an i and yi ∈ Yi mapping to y. Since
x can be viewed as a point of Spec(OY,y) ×Y X and OY,y → OYi,yi is faithfully
flat, there exists a point xi ∈ Spec(OYi,yi) ×Y X mapping to x. Then xi ∈ Xi,
and fi(xi) specializes to yi. Thus we see that OYi,yi is Noetherian by P(fi) which
implies that OY,y is Noetherian by Algebra, Lemma 158.1.

Local on the source: Let {hi : Xi → X} be an étale covering. Let fi : Xi → Y be
the composition f ◦ hi. Assume P(f). Let f(xi)  y be a specialization. Then
f(hi(xi))  y so P(f) implies OY,y is Noetherian. Thus P(fi) holds. Conversely,
assume P(fi) for all i. Let f(x) y be a specialization. Choose an i and xi ∈ Xi

mapping to x. Then y is a specialization of fi(xi) = f(x). Hence P(fi) implies
OY,y is Noetherian as desired.

We claim that there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with surjective étale vertical arrows, such that h has P and f does not have P.
Namely, let

Y = Spec
(
C[xn;n ∈ Z]/(xnxm;n 6= m)

)
and let X ⊂ Y be the open subscheme which is the complement of the point all of
whose coordinates xn = 0. Let U = X, let V = X q Y , let a, b the obvious map,
and let h : U → V be the inclusion of U = X into the first summand of V . The
claim above holds because U is locally Noetherian, but Y is not.

What should be the correct notion of a property which is étale local on the source-
and-target? We think that, by analogy with Morphisms, Definition 13.1 it should
be the following.

Definition 29.3.04QZ Let P be a property of morphisms of schemes. We say P is étale
local on source-and-target if

(1) (stable under precomposing with étale maps) if f : X → Y is étale and
g : Y → Z has P, then g ◦ f has P,

http://stacks.math.columbia.edu/tag/04QY
http://stacks.math.columbia.edu/tag/04QZ
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(2) (stable under étale base change) if f : X → Y has P and Y ′ → Y is étale,
then the base change f ′ : Y ′ ×Y X → Y ′ has P, and

(3) (locality) given a morphism f : X → Y the following are equivalent
(a) f has P,
(b) for every x ∈ X there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with étale vertical arrows and u ∈ U with a(u) = x such that h has P.

It turns out this definition excludes the behavior seen in Examples 29.1 and 29.2.
We will compare this to the definition in the paper [DM69] by Deligne and Mumford
in Remark 29.8. Moreover, a property which is étale local on the source-and-target
is étale local on the source and étale local on the target. Finally, the converse is
almost true as we will see in Lemma 29.6.

Lemma 29.4.04R0 Let P be a property of morphisms of schemes which is étale local
on source-and-target. Then

(1) P is étale local on the source,
(2) P is étale local on the target,
(3) P is stable under postcomposing with étale morphisms: if f : X → Y has
P and g : Y → Z is étale, then g ◦ f has P, and

(4) P has a permanence property: given f : X → Y and g : Y → Z étale such
that g ◦ f has P, then f has P.

Proof. We write everything out completely.

Proof of (1). Let f : X → Y be a morphism of schemes. Let {Xi → X}i∈I be an
étale covering of X. If each composition hi : Xi → Y has P, then for each x ∈ X
we can find an i ∈ I and a point xi ∈ Xi mapping to x. Then (Xi, xi) → (X,x)
is an étale morphism of germs, and idY : Y → Y is an étale morphism, and hi is
as in part (3) of Definition 29.3. Thus we see that f has P. Conversely, if f has P
then each Xi → Y has P by Definition 29.3 part (1).

Proof of (2). Let f : X → Y be a morphism of schemes. Let {Yi → Y }i∈I be an
étale covering of Y . Write Xi = Yi ×Y X and hi : Xi → Yi for the base change of
f . If each hi : Xi → Yi has P, then for each x ∈ X we pick an i ∈ I and a point
xi ∈ Xi mapping to x. Then (Xi, xi) → (X,x) is an étale morphism of germs,
Yi → Y is étale, and hi is as in part (3) of Definition 29.3. Thus we see that f has
P. Conversely, if f has P, then each Xi → Yi has P by Definition 29.3 part (2).

Proof of (3). Assume f : X → Y has P and g : Y → Z is étale. For every x ∈ X
we can think of (X,x)→ (X,x) as an étale morphism of germs, Y → Z is an étale
morphism, and h = f is as in part (3) of Definition 29.3. Thus we see that g ◦ f
has P.

Proof of (4). Let f : X → Y be a morphism and g : Y → Z étale such that g ◦ f
has P. Then by Definition 29.3 part (2) we see that prY : Y ×Z X → Y has P.
But the morphism (f, 1) : X → Y ×Z X is étale as a section to the étale projection
prX : Y ×Z X → X, see Morphisms, Lemma 34.18. Hence f = prY ◦ (f, 1) has P
by Definition 29.3 part (1). �

http://stacks.math.columbia.edu/tag/04R0
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The following lemma is the analogue of Morphisms, Lemma 13.4.

Lemma 29.5.04R1 Let P be a property of morphisms of schemes which is étale local
on source-and-target. Let f : X → Y be a morphism of schemes. The following are
equivalent:

(a) f has property P,
(b) for every x ∈ X there exists an étale morphism of germs a : (U, u)→ (X,x),

an étale morphism b : V → Y , and a morphism h : U → V such that
f ◦ a = b ◦ h and h has P,

(c) for any commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b étale the morphism h has P,
(d) for some diagram as in (c) with a : U → X surjective h has P,
(e) there exists an étale covering {Yi → Y }i∈I such that each base change

Yi ×Y X → Yi has P,
(f) there exists an étale covering {Xi → X}i∈I such that each composition

Xi → Y has P,
(g) there exists an étale covering {Yi → Y }i∈I and for each i ∈ I an étale

covering {Xij → Yi ×Y X}j∈Ji such that each morphism Xij → Yi has P.

Proof. The equivalence of (a) and (b) is part of Definition 29.3. The equivalence
of (a) and (e) is Lemma 29.4 part (2). The equivalence of (a) and (f) is Lemma
29.4 part (1). As (a) is now equivalent to (e) and (f) it follows that (a) equivalent
to (g).

It is clear that (c) implies (a). If (a) holds, then for any diagram as in (c) the
morphism f ◦ a has P by Definition 29.3 part (1), whereupon h has P by Lemma
29.4 part (4). Thus (a) and (c) are equivalent. It is clear that (c) implies (d). To see
that (d) implies (a) assume we have a diagram as in (c) with a : U → X surjective
and h having P. Then b ◦ h has P by Lemma 29.4 part (3). Since {a : U → X} is
an étale covering we conclude that f has P by Lemma 29.4 part (1). �

It seems that the result of the following lemma is not a formality, i.e., it actually
uses something about the geometry of étale morphisms.

Lemma 29.6.04R2 Let P be a property of morphisms of schemes. Assume

(1) P is étale local on the source,
(2) P is étale local on the target, and
(3) P is stable under postcomposing with open immersions: if f : X → Y has
P and Y ⊂ Z is an open subscheme then X → Z has P.

Then P is étale local on the source-and-target.

Proof. Let P be a property of morphisms of schemes which satisfies conditions
(1), (2) and (3) of the lemma. By Lemma 23.2 we see that P is stable under
precomposing with étale morphisms. By Lemma 19.2 we see that P is stable under
étale base change. Hence it suffices to prove part (3) of Definition 29.3 holds.

http://stacks.math.columbia.edu/tag/04R1
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More precisely, suppose that f : X → Y is a morphism of schemes which satisfies
Definition 29.3 part (3)(b). In other words, for every x ∈ X there exists an étale
morphism ax : Ux → X, a point ux ∈ Ux mapping to x, an étale morphism
bx : Vx → Y , and a morphism hx : Ux → Vx such that f ◦ ax = bx ◦ hx and hx has
P. The proof of the lemma is complete once we show that f has P. Set U =

∐
Ux,

a =
∐
ax, V =

∐
Vx, b =

∐
bx, and h =

∐
hx. We obtain a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b étale, a surjective. Note that h has P as each hx does and P is étale local
on the target. Because a is surjective and P is étale local on the source, it suffices
to prove that b◦h has P. This reduces the lemma to proving that P is stable under
postcomposing with an étale morphism.

During the rest of the proof we let f : X → Y be a morphism with property P and
g : Y → Z is an étale morphism. Consider the following statements:

(∅) With no additional assumptions g ◦ f has property P.
(A) Whenever Z is affine g ◦ f has property P.

(AA) Whenever X and Z are affine g ◦ f has property P.
(AAA) Whenever X, Y , and Z are affine g ◦ f has property P.

Once we have proved (∅) the proof of the lemma will be complete.

Claim 1: (AAA)⇒ (AA). Namely, let f : X → Y , g : Y → Z be as above with X, Z
affine. As X is affine hence quasi-compact we can find finitely many affine open Yi ⊂
Y , i = 1, . . . , n such that X =

⋃
i=1,...,n f

−1(Yi). Set Xi = f−1(Yi). By Lemma 19.2

each of the morphisms Xi → Yi has P. Hence
∐
i=1,...,nXi →

∐
i=1,...,n Yi has P as

P is étale local on the target. By (AAA) applied to
∐
i=1,...,nXi →

∐
i=1,...,n Yi and

the étale morphism
∐
i=1,...,n Yi → Z we see that

∐
i=1,...,nXi → Z has P. Now

{
∐
i=1,...,nXi → X} is an étale covering, hence as P is étale local on the source we

conclude that X → Z has P as desired.

Claim 2: (AAA) ⇒ (A). Namely, let f : X → Y , g : Y → Z be as above with
Z affine. Choose an affine open covering X =

⋃
Xi. As P is étale local on the

source we see that each f |Xi : Xi → Y has P. By (AA), which follows from (AAA)
according to Claim 1, we see that Xi → Z has P for each i. Since {Xi → X} is an
étale covering and P is étale local on the source we conclude that X → Z has P.

Claim 3: (AAA) ⇒ (∅). Namely, let f : X → Y , g : Y → Z be as above. Choose
an affine open covering Z =

⋃
Zi. Set Yi = g−1(Zi) and Xi = f−1(Yi). By Lemma

19.2 each of the morphisms Xi → Yi has P. By (A), which follows from (AAA)
according to Claim 2, we see that Xi → Zi has P for each i. Since P is local on
the target and Xi = (g ◦ f)−1(Zi) we conclude that X → Z has P.

Thus to prove the lemma it suffices to prove (AAA). Let f : X → Y and g : Y → Z
be as above X,Y, Z affine. Note that an étale morphism of affines has universally
bounded fibres, see Morphisms, Lemma 34.6 and Lemma 53.10. Hence we can
do induction on the integer n bounding the degree of the fibres of Y → Z. See
Morphisms, Lemma 53.9 for a description of this integer in the case of an étale
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morphism. If n = 1, then Y → Z is an open immersion, see Lemma 22.2, and the
result follows from assumption (3) of the lemma. Assume n > 1.

Consider the following commutative diagram

X ×Z Y

��

fY

// Y ×Z Y

��

pr
// Y

��
X

f // Y
g // Z

Note that we have a decomposition into open and closed subschemes Y ×Z Y =
∆Y/Z(Y )q Y ′, see Morphisms, Lemma 33.13. As a base change the degrees of the
fibres of the second projection pr : Y ×Z Y → Y are bounded by n, see Morphisms,
Lemma 53.6. On the other hand, pr|∆(Y ) : ∆(Y ) → Y is an isomorphism and
every fibre has exactly one point. Thus, on applying Morphisms, Lemma 53.9 we
conclude the degrees of the fibres of the restriction pr|Y ′ : Y ′ → Y are bounded by
n− 1. Set X ′ = f−1

Y (Y ′). Picture

X qX ′
fqf ′

// ∆(Y )q Y ′ // Y

X ×Z Y
fY // Y ×Z Y

pr // Y

As P is étale local on the target and hence stable under étale base change (see
Lemma 19.2) we see that fY has P. Hence, as P is étale local on the source,
f ′ = fY |X′ has P. By induction hypothesis we see that X ′ → Y has P. As P
is local on the source, and {X → X ×Z Y,X ′ → X ×Y Z} is an étale covering,
we conclude that pr ◦ fY has P. Note that g ◦ f can be viewed as a morphism
g ◦ f : X → g(Y ). As pr ◦ fY is the pullback of g ◦ f : X → g(Y ) via the étale
covering {Y → g(Y )}, and as P is étale local on the target, we conclude that
g ◦ f : X → g(Y ) has property P. Finally, applying assumption (3) of the lemma
once more we conclude that g ◦ f : X → Z has property P. �

Remark 29.7.04R3 Using Lemma 29.6 and the work done in the earlier sections of
this chapter it is easy to make a list of types of morphisms which are étale local on
the source-and-target. In each case we list the lemma which implies the property
is étale local on the source and the lemma which implies the property is étale local
on the target. In each case the third assumption of Lemma 29.6 is trivial to check,
and we omit it. Here is the list:

(1) flat, see Lemmas 24.1 and 20.15,
(2) locally of finite presentation, see Lemmas 25.1 and 20.11,
(3) locally finite type, see Lemmas 25.2 and 20.10,
(4) universally open, see Lemmas 25.4 and 20.4,
(5) syntomic, see Lemmas 26.1 and 20.26,
(6) smooth, see Lemmas 27.1 and 20.27,
(7) étale, see Lemmas 28.1 and 20.29,
(8) locally quasi-finite, see Lemmas 28.2 and 20.24,
(9) unramified, see Lemmas 28.3 and 20.28,

(10) G-unramified, see Lemmas 28.3 and 20.28, and
(11) add more here as needed.

http://stacks.math.columbia.edu/tag/04R3
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Remark 29.8.04R4 At this point we have three possible definitions of what it means
for a property P of morphisms to be “étale local on the source and target”:

(ST) P is étale local on the source and P is étale local on the target,
(DM) (the definition in the paper [DM69, Page 100] by Deligne and Mumford)

for every diagram

U

a

��

h
// V

b
��

X
f // Y

with surjective étale vertical arrows we have P(h)⇔ P(f), and
(SP) P is étale local on the source-and-target.

In this section we have seen that (SP) ⇒ (DM) ⇒ (ST). The Examples 29.1 and
29.2 show that neither implication can be reversed. Finally, Lemma 29.6 shows
that the difference disappears when looking at properties of morphisms which are
stable under postcomposing with open immersions, which in practice will always
be the case.

Lemma 29.9.0CEZ Let P be a property of morphisms of schemes which is étale local
on the source-and-target. Given a commutative diagram of schemes

X ′

g′

��

f ′
// Y ′

g

��
X

f // Y

with points

x′

��

// y′

��
x // y

such that g′ is étale at x′ and g is étale at y′, then x ∈W (f)⇔ x′ ∈W (f ′) where
W (−) is as in Lemma 23.3.

Proof. Lemma 23.3 applies since P is étale local on the source by Lemma 29.4.

Assume x ∈ W (f). Let U ′ ⊂ X ′ and V ′ ⊂ Y ′ be open neighbourhoods of x′

and y′ such that f ′(U ′) ⊂ V ′, g′(U ′) ⊂ W (f) and g′|U ′ and g|V ′ are étale. Then
f ◦ g′|U ′ = g ◦ f ′|U ′ has P by property (1) of Definition 29.3. Then f ′|U ′ : U ′ → V ′

has property P by (4) of Lemma 29.4. Then by (3) of Lemma 29.4 we conclude
that f ′U ′ : U ′ → Y ′ has P. Hence U ′ ⊂W (f ′) by definition. Hence x′ ∈W (f ′).

Assume x′ ∈ W (f ′). Let U ′ ⊂ X ′ and V ′ ⊂ Y ′ be open neighbourhoods of x′ and
y′ such that f ′(U ′) ⊂ V ′, U ′ ⊂ W (f ′) and g′|U ′ and g|V ′ are étale. Then U ′ → Y ′

has P by definition of W (f ′). Then U ′ → V ′ has P by (4) of Lemma 29.4. Then
U ′ → Y has P by (3) of Lemma 29.4. Let U ⊂ X be the image of the étale (hence
open) morphism g′|′U : U ′ → X. Then {U ′ → U} is an étale covering and we
conclude that U → Y has P by (1) of Lemma 29.4. Thus U ⊂W (f) by definition.
Hence x ∈W (f). �

Lemma 29.10.0CF0 Let k be a field. Let n ≥ 2. For 1 ≤ i, j ≤ n with i 6= j and d ≥ 0
denote Ti,j,d the automorphism of An

k given in coordinates by

(x1, . . . , xn) 7−→ (x1, . . . , xi−1, xi + xdj , xi+1, . . . , xn)

Let W ⊂ An
k be a nonempty open subscheme such that Ti,j,d(W ) = W for all i, j, d

as above. Then either W = An
k or the characteristic of k is p > 0 and An

k \W is
a finite set of closed points whose coordinates are algebraic over Fp.

http://stacks.math.columbia.edu/tag/04R4
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Proof. We may replace k by any extension field in order to prove this. Let Z be an
irreducible component of An

k \W . Assume dim(Z) ≥ 1, to get a contradiction. Then
there exists an extension field k′/k and a k′-valued point ξ = (ξ1, . . . , ξn) ∈ (k′)n

of Zk′ ⊂ An
k′ such that at least one of x1, . . . , xn is transcendental over the prime

field. Claim: the orbit of ξ under the group generated by the transformations Ti,j,d
is Zariski dense in An

k′ . The claim will give the desired contradiction.

If the characteristic of k′ is zero, then already the operators Ti,j,0 will be enough
since these transform ξ into the points

(ξ1 + a1, . . . , ξn + an)

for arbitrary (a1, . . . , an) ∈ Zn≥0. If the characteristic is p > 0, we may assume
after renumbering that ξn is transcendental over Fp. By successively applying the
operators Ti,n,d for i < n we see the orbit of ξ contains the elements

(ξ1 + P1(ξn), . . . , ξn−1 + Pn−1(ξn), ξn)

for arbitrary (P1, . . . , Pn−1) ∈ Fp[t]. Thus the Zariski closure of the orbit contains
the coordinate hyperplane xn = ξn. Repeating the argument with a different
coordinate, we conclude that the Zariski closure contains xi = ξi + P (ξn) for any
P ∈ Fp[t] such that ξi + P (ξn) is transcendental over Fp. Since there are infinitely
many such P the claim follows.

Of course the argument in the preceding paragraph also applies if Z = {z} has
dimension 0 and the coordinates of z in κ(z) are not algebraic over Fp. The lemma
follows. �

Lemma 29.11.0CF1 Let P be a property of morphisms of schemes. Assume

(1) P is étale local on the source,
(2) P is smooth local on the target,
(3) P is stable under postcomposing with open immersions: if f : X → Y has
P and Y ⊂ Z is an open subscheme then X → Z has P.

Given a commutative diagram of schemes

X ′

g′

��

f ′
// Y ′

g

��
X

f // Y

with points

x′

��

// y′

��
x // y

such that g is smooth y′ and X ′ → X ×Y Y ′ is étale at x′, then x ∈ W (f)⇔ x′ ∈
W (f ′) where W (−) is as in Lemma 23.3.

Proof. Since P is étale local on the source we see that x ∈W (f) if and only if the
image of x in X×Y Y ′ is in W (X×Y Y ′ → Y ′). Hence we may assume the diagram
in the lemma is cartesian.

Assume x ∈W (f). Since P is smooth local on the target we see that (g′)−1W (f) =
W (f)×Y Y ′ → Y ′ has P. Hence (g′)−1W (f) ⊂W (f ′). We conclude x′ ∈W (f ′).

Assume x′ ∈ W (f ′). For any open neighbourhood V ′ ⊂ Y ′ of y′ we may replace
Y ′ by V ′ and X ′ by U ′ = (f ′)−1V ′ because V ′ → Y ′ is smooth and hence the base
change W (f ′) ∩ U ′ → V ′ of W (f ′) → Y ′ has property P. Thus we may assume

http://stacks.math.columbia.edu/tag/0CF1
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there exists an étale morphism Y ′ → An
Y over Y , see Morphisms, Lemma 34.20.

Picture

X ′ //

��

Y ′

��
An
X fn

//

��

An
Y

��
X

f // Y

By Lemma 29.6 (and because étale coverings are smooth coverings) we see that P
is étale local on the source-and-target. By Lemma 29.9 we see that W (f ′) is the
inverse image of the open W (fn) ⊂ An

X . In particular W (fn) contains a point lying
over x. After replacing X by the image of W (fn) (which is open) we may assume
W (fn) → X is surjective. Claim: W (fn) = An

X . The claim implies f has P as P
is local in the smooth topology and {An

Y → Y } is a smooth covering.

Essentially, the claim follows as W (fn) ⊂ An
X is a “translation invariant” open

which meets every fibre of An
X → X. However, to produce an argument along

these lines one has to do étale localization on Y to produce enough translations
and it becomes a bit annoying. Instead we use the automorphisms of Lemma 29.10
and étale morphisms of affine spaces. We may assume n ≥ 2. Namely, if n = 0,
then we are done. If n = 1, then we consider the diagram

A2
X f2

//

p

��

A2
Y

��
A1
X

f1 // A1
Y

We have p−1(W (f1)) ⊂W (f2) (see first paragraph of the proof). Thus W (f2)→ X
is still surjective and we may work with f2. Assume n ≥ 2.

For any 1 ≤ i, j ≤ n with i 6= j and d ≥ 0 denote Ti,j,d the automorphism of An

defined in Lemma 29.10. Then we get a commutative diagram

An
X fn

//

Ti,j,d

��

An
Y

Ti,j,d

��
An
X

fn // An
Y

whose vertical arrows are isomorphisms. We conclude that Ti,j,d(W (fn)) = W (fn).
Applying Lemma 29.10 we conclude for any x ∈ X the fibre W (fn)x ⊂ An

x is either
An
x (this is what we want) or κ(x) has characteristic p > 0 and W (fn)x is the

complement of a finite set Zx ⊂ An
x of closed points. The second possibility cannot

occur. Namely, consider the morphism Tp : An → An given by

(x1, . . . , xn) 7→ (x1 − xp1, . . . , xn − xpn)
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As above we get a commutative diagram

An
X fn

//

Tp

��

An
Y

Tp

��
An
X

fn // An
Y

The morphism Tp : An
X → An

X is étale at every point lying over x and the morphism
Tp : An

Y → An
Y is étale at every point lying over the image of x in Y . (Details

omitted; hint: compute the derivatives.) We conclude that

T−1
p (W ) ∩An

x = W ∩An
x

by Lemma 29.9 (we’ve already seen P is étale local on the source-and-target). Since
Tp : An

x → An
x is finite étale of degree pn > 1 we see that if Zx is not empty then

it contains T−1
p (Zx) which is bigger. This contradiction finishes the proof. �

30. Properties of morphisms of germs local on source-and-target

04R5 In this section we discuss the analogue of the material in Section 29 for morphisms
of germs of schemes.

Definition 30.1.04NB Let Q be a property of morphisms of germs of schemes. We say
Q is étale local on the source-and-target if for any commutative diagram

(U ′, u′)

a

��

h′
// (V ′, v′)

b

��
(U, u)

h // (V, v)

of germs with étale vertical arrows we have Q(h)⇔ Q(h′).

Lemma 30.2.04R6 Let P be a property of morphisms of schemes which is étale local
on the source-and-target. Consider the property Q of morphisms of germs defined
by the rule

Q((X,x)→ (S, s))⇔ there exists a representative U → S which has P
Then Q is étale local on the source-and-target as in Definition 30.1.

Proof. If a morphism of germs (X,x) → (S, s) has Q, then there are arbitrarily
small neighbourhoods U ⊂ X of x and V ⊂ S of s such that a representative
U → V of (X,x)→ (S, s) has P. This follows from Lemma 29.4. Let

(U ′, u′)
h′
//

a

��

(V ′, v′)

b

��
(U, u)

h // (V, v)

be as in Definition 30.1. Choose U1 ⊂ U and a representative h1 : U1 → V of h.
Choose V ′1 ⊂ V ′ and an étale representative b1 : V ′1 → V of b (Definition 17.2).
Choose U ′1 ⊂ U ′ and representatives a1 : U ′1 → U1 and h′1 : U ′1 → V ′1 of a and h′

with a1 étale. After shrinking U ′1 we may assume h1 ◦ a1 = b1 ◦ h′1. By the initial
remark of the proof, we are trying to show u′ ∈W (h′1)⇔ u ∈W (h1) where W (−)
is as in Lemma 23.3. Thus the lemma follows from Lemma 29.9. �

http://stacks.math.columbia.edu/tag/04NB
http://stacks.math.columbia.edu/tag/04R6


DESCENT 68

Lemma 30.3.04R7 Let P be a property of morphisms of schemes which is étale local
on source-and-target. Let Q be the associated property of morphisms of germs,
see Lemma 30.2. Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f has property P, and
(2) for every x ∈ X the morphism of germs (X,x)→ (Y, f(x)) has property Q.

Proof. The implication (1) ⇒ (2) is direct from the definitions. The implication
(2) ⇒ (1) also follows from part (3) of Definition 29.3. �

A morphism of germs (X,x)→ (S, s) determines a well defined map of local rings.
Hence the following lemma makes sense.

Lemma 30.4.04ND The property of morphisms of germs

P((X,x)→ (S, s)) = OS,s → OX,x is flat

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 30.1 we obtain the following diagram of
local homomorphisms of local rings

OU ′,u′ OV ′,v′oo

OU,u

OO

OV,voo

OO

Note that the vertical arrows are localizations of étale ring maps, in particular they
are essentially of finite presentation, flat, and unramified (see Algebra, Section 141).
In particular the vertical maps are faithfully flat, see Algebra, Lemma 38.17. Now,
if the upper horizontal arrow is flat, then the lower horizontal arrow is flat by an
application of Algebra, Lemma 38.10 with R = OV,v, S = OU,u and M = OU ′,u′ .
If the lower horizontal arrow is flat, then the ring map

OV ′,v′ ⊗OV,v OU,u ←− OV ′,v′
is flat by Algebra, Lemma 38.7. And the ring map

OU ′,u′ ←− OV ′,v′ ⊗OV,v OU,u
is a localization of a map between étale ring extensions of OU,u, hence flat by
Algebra, Lemma 141.8. �

Lemma 30.5.04NI Consider a commutative diagram of morphisms of schemes

U ′ //

��

V ′

��
U // V

with étale vertical arrows and a point v′ ∈ U ′ mapping to v ∈ U . Then the morphism
of fibres U ′v′ → Uv is étale.

Proof. Note that U ′v → Uv is étale as a base change of the étale morphism U ′ → U .
The scheme U ′v is a scheme over V ′v . By Morphisms, Lemma 34.7 the scheme V ′v is
a disjoint union of spectra of finite separable field extensions of κ(v). One of these
is v′ = Spec(κ(v′)). Hence U ′v′ is an open and closed subscheme of U ′v and it follows

http://stacks.math.columbia.edu/tag/04R7
http://stacks.math.columbia.edu/tag/04ND
http://stacks.math.columbia.edu/tag/04NI
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that U ′v′ → U ′v → Uv is étale (as a composition of an open immersion and an étale
morphism, see Morphisms, Section 34). �

Given a morphism of germs of schemes (X,x) → (S, s) we can define the fibre as
the isomorphism class of germs (Us, x) where U → S is any representative. We will
often abuse notation and just write (Xs, x).

Lemma 30.6.04NJ Let d ∈ {0, 1, 2, . . . ,∞}. The property of morphisms of germs

Pd((X,x)→ (S, s)) = the local ring OXs,x of the fibre has dimension d

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 30.1 we obtain an étale morphism of fibres
U ′v′ → Uv mapping u′ to u, see Lemma 30.5. Hence the result follows from Lemma
18.3. �

Lemma 30.7.04NK Let r ∈ {0, 1, 2, . . . ,∞}. The property of morphisms of germs

Pr((X,x)→ (S, s))⇔ trdegκ(s)κ(x) = r

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 30.1 we obtain the following diagram of
local homomorphisms of local rings

OU ′,u′ OV ′,v′oo

OU,u

OO

OV,voo

OO

Note that the vertical arrows are localizations of étale ring maps, in particular they
are unramified (see Algebra, Section 141). Hence κ(u) ⊂ κ(u′) and κ(v) ⊂ κ(v′)
are finite separable field extensions. Thus we have trdegκ(v)κ(u) = trdegκ(v′)κ(u)
which proves the lemma. �

Let (X,x) be a germ of a scheme. The dimension of X at x is the minimum of
the dimensions of open neighbourhoods of x in X, and any small enough open
neighbourhood has this dimension. Hence this is an invariant of the isomorphism
class of the germ. We denote this simply dimx(X).

Lemma 30.8.04NL Let d ∈ {0, 1, 2, . . . ,∞}. The property of morphisms of germs

Pd((X,x)→ (S, s))⇔ dimx(Xs) = d

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 30.1 we obtain an étale morphism of fibres
U ′v′ → Uv mapping u′ to u, see Lemma 30.5. Hence now the equality dimu(Uv) =
dimu′(U

′
v′) follows from Lemma 18.2. �

31. Descent data for schemes over schemes

023U Most of the arguments in this section are formal relying only on the definition of a
descent datum. In Simplicial Spaces, Section 28 we will examine the relationship
with simplicial schemes which will somewhat clarify the situation.

Definition 31.1.023V Let f : X → S be a morphism of schemes.

http://stacks.math.columbia.edu/tag/04NJ
http://stacks.math.columbia.edu/tag/04NK
http://stacks.math.columbia.edu/tag/04NL
http://stacks.math.columbia.edu/tag/023V
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(1) Let V → X be a scheme over X. A descent datum for V/X/S is an
isomorphism ϕ : V ×SX → X ×S V of schemes over X ×SX satisfying the
cocycle condition that the diagram

V ×S X ×S X
ϕ01

((

ϕ02

// X ×S X ×S V

X ×S V ×S X

ϕ12

66

commutes (with obvious notation).
(2) We also say that the pair (V/X,ϕ) is a descent datum relative to X → S.
(3) A morphism f : (V/X,ϕ)→ (V ′/X,ϕ′) of descent data relative to X → S

is a morphism f : V → V ′ of schemes over X such that the diagram

V ×S X ϕ
//

f×idX
��

X ×S V

idX×f
��

V ′ ×S X
ϕ′ // X ×S V ′

commutes.

There are all kinds of “miraculous” identities which arise out of the definition above.
For example the pullback of ϕ via the diagonal morphism ∆ : X → X ×S X can
be seen as a morphism ∆∗ϕ : V → V . This because X ×∆,X×SX (V ×S X) = V
and also X ×∆,X×SX (X ×S V ) = V . In fact, ∆∗ϕ is equal to the identity. This is
a good exercise if you are unfamiliar with this material.

Remark 31.2.02VP Let X → S be a morphism of schemes. Let (V/X,ϕ) be a descent
datum relative to X → S. We may think of the isomorphism ϕ as an isomorphism

(X ×S X)×pr0,X V −→ (X ×S X)×pr1,X V

of schemes over X ×S X. So loosely speaking one may think of ϕ as a map ϕ :
pr∗0V → pr∗1V

7. The cocycle condition then says that pr∗02ϕ = pr∗12ϕ ◦ pr∗01ϕ. In
this way it is very similar to the case of a descent datum on quasi-coherent sheaves.

Here is the definition in case you have a family of morphisms with fixed target.

Definition 31.3.023W Let S be a scheme. Let {Xi → S}i∈I be a family of morphisms
with target S.

(1) A descent datum (Vi, ϕij) relative to the family {Xi → S} is given by a
scheme Vi over Xi for each i ∈ I, an isomorphism ϕij : Vi×SXj → Xi×SVj
of schemes over Xi×S Xj for each pair (i, j) ∈ I2 such that for every triple
of indices (i, j, k) ∈ I3 the diagram

Vi ×S Xj ×S Xk

pr∗01ϕij

))

pr∗02ϕik

// Xi ×S Xj ×S Vk

Xi ×S Vj ×S Xk

pr∗12ϕjk
55

of schemes over Xi ×S Xj ×S Xk commutes (with obvious notation).

7Unfortunately, we have chosen the “wrong” direction for our arrow here. In Definitions 31.1
and 31.3 we should have the opposite direction to what was done in Definition 2.1 by the general

principle that “functions” and “spaces” are dual.

http://stacks.math.columbia.edu/tag/02VP
http://stacks.math.columbia.edu/tag/023W
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(2) A morphism ψ : (Vi, ϕij) → (V ′i , ϕ
′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms of Xi-schemes ψi : Vi → V ′i such that all the
diagrams

Vi ×S Xj ϕij
//

ψi×id

��

Xi ×S Vj

id×ψj
��

V ′i ×S Xj

ϕ′ij // Xi ×S V ′j

commute.

This is the notion that comes up naturally for example when the question arises
whether the fibred category of relative curves is a stack in the fpqc topology (it
isn’t – at least not if you stick to schemes).

Remark 31.4.02VQ Let S be a scheme. Let {Xi → S}i∈I be a family of morphisms
with target S. Let (Vi, ϕij) be a descent datum relative to {Xi → S}. We may
think of the isomorphisms ϕij as isomorphisms

(Xi ×S Xj)×pr0,Xi Vi −→ (Xi ×S Xj)×pr1,Xj Vj

of schemes over Xi ×S Xj . So loosely speaking one may think of ϕij as an iso-
morphism pr∗0Vi → pr∗1Vj over Xi ×S Xj . The cocycle condition then says that
pr∗02ϕik = pr∗12ϕjk ◦ pr∗01ϕij . In this way it is very similar to the case of a descent
datum on quasi-coherent sheaves.

The reason we will usually work with the version of a family consisting of a single
morphism is the following lemma.

Lemma 31.5.023X Let S be a scheme. Let {Xi → S}i∈I be a family of morphisms with
target S. Set X =

∐
i∈I Xi, and consider it as an S-scheme. There is a canonical

equivalence of categories

category of descent data
relative to the family {Xi → S}i∈I

−→ category of descent data
relative to X/S

which maps (Vi, ϕij) to (V, ϕ) with V =
∐
i∈I Vi and ϕ =

∐
ϕij.

Proof. Observe that X ×S X =
∐
ij Xi ×S Xj and similarly for higher fibre prod-

ucts. Giving a morphism V → X is exactly the same as giving a family Vi → Xi.
And giving a descent datum ϕ is exactly the same as giving a family ϕij . �

Lemma 31.6.023Y Pullback of descent data for schemes over schemes.

(1) Let

X ′
f
//

a′

��

X

a

��
S′

h // S

be a commutative diagram of morphisms of schemes. The construction

(V → X,ϕ) 7−→ f∗(V → X,ϕ) = (V ′ → X ′, ϕ′)

http://stacks.math.columbia.edu/tag/02VQ
http://stacks.math.columbia.edu/tag/023X
http://stacks.math.columbia.edu/tag/023Y
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where V ′ = X ′ ×X V and where ϕ′ is defined as the composition

V ′ ×S′ X ′ (X ′ ×X V )×S′ X ′ (X ′ ×S′ X ′)×X×SX (V ×S X)

id×ϕ
��

X ′ ×S′ V ′ X ′ ×S′ (X ′ ×X V ) (X ′ ×S′ X ′)×X×SX (X ×S V )

defines a functor from the category of descent data relative to X → S to
the category of descent data relative to X ′ → S′.

(2) Given two morphisms fi : X ′ → X, i = 0, 1 making the diagram commute
the functors f∗0 and f∗1 are canonically isomorphic.

Proof. We omit the proof of (1), but we remark that the morphism ϕ′ is the
morphism (f×f)∗ϕ in the notation introduced in Remark 31.2. For (2) we indicate
which morphism f∗0V → f∗1V gives the functorial isomorphism. Namely, since f0

and f1 both fit into the commutative diagram we see there is a unique morphism
r : X ′ → X ×S X with fi = pri ◦ r. Then we take

f∗0V = X ′ ×f0,X V

= X ′ ×pr0◦r,X V

= X ′ ×r,X×SX (X ×S X)×pr0,X V
ϕ−→ X ′ ×r,X×SX (X ×S X)×pr1,X V

= X ′ ×pr1◦r,X V

= X ′ ×f1,X V

= f∗1V

We omit the verification that this works. �

Definition 31.7.02VR With S, S′, X,X ′, f, a, a′, h as in Lemma 31.6 the functor

(V, ϕ) 7−→ f∗(V, ϕ)

constructed in that lemma is called the pullback functor on descent data.

Lemma 31.8 (Pullback of descent data for schemes over families).02VS Let U =
{Ui → S′}i∈I and V = {Vj → S}j∈J be families of morphisms with fixed target.
Let α : I → J , h : S′ → S and gi : Ui → Vα(i) be a morphism of families of maps
with fixed target, see Sites, Definition 8.1.

(1) Let (Yj , ϕjj′) be a descent datum relative to the family {Vj → S′}. The
system (

g∗i Yα(i), (gi × gi′)∗ϕα(i)α(i′)

)
(with notation as in Remark 31.4) is a descent datum relative to V.

(2) This construction defines a functor between descent data relative to U and
descent data relative to V.

(3) Given a second α′ : I → J , h′ : S′ → S and g′i : Ui → Vα′(i) morphism of
families of maps with fixed target, then if h = h′ the two resulting functors
between descent data are canonically isomorphic.

(4) These functors agree, via Lemma 31.5, with the pullback functors con-
structed in Lemma 31.6.

Proof. This follows from Lemma 31.6 via the correspondence of Lemma 31.5. �

http://stacks.math.columbia.edu/tag/02VR
http://stacks.math.columbia.edu/tag/02VS
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Definition 31.9.02VT With U = {Ui → S′}i∈I , V = {Vj → S}j∈J , α : I → J ,
h : S′ → S, and gi : Ui → Vα(i) as in Lemma 31.8 the functor

(Yj , ϕjj′) 7−→ (g∗i Yα(i), (gi × gi′)∗ϕα(i)α(i′))

constructed in that lemma is called the pullback functor on descent data.

If U and V have the same target S, and if U refines V (see Sites, Definition 8.1) but
no explicit pair (α, gi) is given, then we can still talk about the pullback functor
since we have seen in Lemma 31.8 that the choice of the pair does not matter (up
to a canonical isomorphism).

Definition 31.10.023Z Let S be a scheme. Let f : X → S be a morphism of schemes.

(1) Given a scheme U over S we have the trivial descent datum of U relative
to id : S → S, namely the identity morphism on U .

(2) By Lemma 31.6 we get a canonical descent datum on X ×S U relative to
X → S by pulling back the trivial descent datum via f . We often denote
(X ×S U, can) this descent datum.

(3) A descent datum (V, ϕ) relative to X/S is is called effective if (V, ϕ) is
isomorphic to the canonical descent datum (X ×S U, can) for some scheme
U over S.

Thus being effective means there exists a scheme U over S and an isomorphism
ψ : V → X ×S U of X-schemes such that ϕ is equal to the composition

V ×S X
ψ×idX−−−−→ X ×S U ×S X = X ×S X ×S U

idX×ψ−1

−−−−−−→ X ×S V

Definition 31.11.02VU Let S be a scheme. Let {Xi → S} be a family of morphisms
with target S.

(1) Given a scheme U over S we have a canonical descent datum on the family
of schemes Xi×SU by pulling back the trivial descent datum for U relative
to {id : S → S}. We denote this descent datum (Xi ×S U, can).

(2) A descent datum (Vi, ϕij) relative to {Xi → S} is called effective if there
exists a scheme U over S such that (Vi, ϕij) is isomorphic to (Xi×SU, can).

32. Fully faithfulness of the pullback functors

02VV It turns out that the pullback functor between descent data for fpqc-coverings is
fully faithful. In other words, morphisms of schemes satisfy fpqc descent. The
goal of this section is to prove this. The reader is encouraged instead to prove this
him/herself. The key is to use Lemma 10.3.

Lemma 32.1.02VW A surjective and flat morphism is an epimorphism in the category
of schemes.

Proof. Suppose we have h : X ′ → X surjective and flat and a, b : X → Y mor-
phisms such that a ◦ h = b ◦ h. As h is surjective we see that a and b agree on
underlying topological spaces. Pick x′ ∈ X ′ and set x = h(x′) and y = a(x) = b(x).
Consider the local ring maps

a]x, b
]
x : OY,y → OX,x

These become equal when composed with the flat local homomorphism h]x′ : OX,x →
OX′,x′ . Since a flat local homomorphism is faithfully flat (Algebra, Lemma 38.17)

we conclude that h]x′ is injective. Hence a]x = b]x which implies a = b as desired. �

http://stacks.math.columbia.edu/tag/02VT
http://stacks.math.columbia.edu/tag/023Z
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Lemma 32.2.02VX Let h : S′ → S be a surjective, flat morphism of schemes. The base
change functor

Sch/S −→ Sch/S′, X 7−→ S′ ×S X
is faithful.

Proof. Let X1, X2 be schemes over S. Let α, β : X2 → X1 be morphisms over S.
If α, β base change to the same morphism then we get a commutative diagram as
follows

X2

α

��

S′ ×S X2
oo

��

// X2

β

��
X1 S′ ×S X1
oo // X1

Hence it suffices to show that S′ ×S X2 → X2 is an epimorphism. As the base
change of a surjective and flat morphism it is surjective and flat (see Morphisms,
Lemmas 9.4 and 24.7). Hence the lemma follows from Lemma 32.1. �

Lemma 32.3.0240 In the situation of Lemma 31.6 assume that f : X ′ → X is surjec-
tive and flat. Then the pullback functor is faithful.

Proof. Let (Vi, ϕi), i = 1, 2 be descent data for X → S. Let α, β : V1 → V2 be
morphisms of descent data. Suppose that f∗α = f∗β. Our task is to show that
α = β. Note that α, β are morphisms of schemes over X, and that f∗α, f∗β are
simply the base changes of α, β to morphisms over X ′. Hence the lemma follows
from Lemma 32.2. �

Here is the key lemma of this section.

Lemma 32.4.0241 In the situation of Lemma 31.6 assume

(1) {f : X ′ → X} is an fpqc covering (for example if f is surjective, flat, and
quasi-compact), and

(2) f × f : X ′ ×S′ X ′ → X ×S X is surjective and flat8.

Then the pullback functor is fully faithful.

Proof. Assumption (1) implies that f is surjective and flat. Hence the pullback
functor is faithful by Lemma 32.3. Let (V, ϕ) and (W,ψ) be two descent data relative
to X → S. Set (V ′, ϕ′) = f∗(V, ϕ) and (W ′, ψ′) = f∗(W,ψ). Let α′ : V ′ →W ′ be a
morphism of descent data for X ′ over S′. We have to show there exists a morphism
α : V →W of descent data for X over S whose pullback is α′.

Recall that V ′ is the base change of V by f and that ϕ′ is the base change of ϕ by
f × f (see Remark 31.2). By assumption the diagram

V ′ ×S′ X ′
ϕ′
//

α′×id

��

X ′ ×S′ V ′

id×α′

��
W ′ ×S′ X ′

ψ′ // X ′ ×S′ W ′

commutes. We claim the two compositions

V ′ ×V V ′
pri // V ′

α′ // W ′ // W , i = 0, 1

8This follows from (1) if S = S′.

http://stacks.math.columbia.edu/tag/02VX
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DESCENT 75

are the same. The reader is advised to prove this themselves rather than read the
rest of this paragraph. (Please email if you find a nice clean argument.) Let v0, v1

be points of V ′ which map to the same point v ∈ V . Let xi ∈ X ′ be the image of vi,
and let x be the point of X which is the image of v in X. In other words, vi = (xi, v)
in V ′ = X ′ ×X V . Write ϕ(v, x) = (x, v′) for some point v′ of V . This is possible
because ϕ is a morphism over X ×S X. Denote v′i = (xi, v

′) which is a point of
V ′. Then a calculation (using the definition of ϕ′) shows that ϕ′(vi, xj) = (xi, v

′
j).

Denote wi = α′(vi) and w′i = α′(v′i). Now we may write wi = (xi, ui) for some
point ui of W , and w′i = (xi, u

′
i) for some point u′i of W . The claim is equivalent to

the assertion: u0 = u1. A formal calculation using the definition of ψ′ (see Lemma
31.6) shows that the commutativity of the diagram displayed above says that

((xi, xj), ψ(ui, x)) = ((xi, xj), (x, u
′
j))

as points of (X ′ ×S′ X ′) ×X×SX (X ×S W ) for all i, j ∈ {0, 1}. This shows that
ψ(u0, x) = ψ(u1, x) and hence u0 = u1 by taking ψ−1. This proves the claim
because the argument above was formal and we can take scheme points (in other
words, we may take (v0, v1) = idV ′×V V ′).

At this point we can use Lemma 10.3. Namely, {V ′ → V } is a fpqc covering as the
base change of the morphism f : X ′ → X. Hence, by Lemma 10.3 the morphism
α′ : V ′ → W ′ → W factors through a unique morphism α : V → W whose base
change is necessarily α′. Finally, we see the diagram

V ×S X ϕ
//

α×id

��

X ×S V

id×α
��

W ×S X
ψ // X ×S W

commutes because its base change to X ′×S′X ′ commutes and the morphism X ′×S′
X ′ → X ×S X is surjective and flat (use Lemma 32.2). Hence α is a morphism of
descent data (V, ϕ)→ (W,ψ) as desired. �

The following two lemmas have been obsoleted by the improved exposition of the
previous material. But they are still true!

Lemma 32.5.0242 Let X → S be a morphism of schemes. Let f : X → X be a selfmap
of X over S. In this case pullback by f is isomorphic to the identity functor on the
category of descent data relative to X → S.

Proof. This is clear from Lemma 31.6 since it tells us that f∗ ∼= id∗. �

Lemma 32.6.0243 Let f : X ′ → X be a morphism of schemes over a base scheme
S. Assume there exists a morphism g : X → X ′ over S, for example if f has
a section. Then the pullback functor of Lemma 31.6 defines an equivalence of
categories between the category of descent data relative to X/S and X ′/S.

Proof. Let g : X → X ′ be a morphism over S. Lemma 32.5 above shows that the
functors f∗ ◦ g∗ = (g ◦ f)∗ and g∗ ◦ f∗ = (f ◦ g)∗ are isomorphic to the respective
identity functors as desired. �

Lemma 32.7.040J Let f : X → X ′ be a morphism of schemes over a base scheme
S. Assume X → S is surjective and flat. Then the pullback functor of of Lemma
31.6 is a faithful functor from the category of descent data relative to X ′/S to the
category of descent data relative to X/S.
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Proof. We may factor X → X ′ as X → X ×S X ′ → X ′. The first morphism has
a section, hence induces an equivalence of categories of descent data by Lemma
32.6. The second morphism is surjective and flat, hence induces a faithful functor
by Lemma 32.3. �

Lemma 32.8.040K Let f : X → X ′ be a morphism of schemes over a base scheme S.
Assume {X → S} is an fpqc covering (for example if f is surjective, flat and quasi-
compact). Then the pullback functor of of Lemma 31.6 is a fully faithful functor
from the category of descent data relative to X ′/S to the category of descent data
relative to X/S.

Proof. We may factor X → X ′ as X → X×SX ′ → X ′. The first morphism has a
section, hence induces an equivalence of categories of descent data by Lemma 32.6.
The second morphism is an fpqc covering hence induces a fully faithful functor by
Lemma 32.4. �

Lemma 32.9.02VZ Let S be a scheme. Let U = {Ui → S}i∈I , and V = {Vj → S}j∈J ,
be families of morphisms with target S. Let α : I → J , id : S → S and gi : Ui →
Vα(i) be a morphism of families of maps with fixed target, see Sites, Definition 8.1.
Assume that for each j ∈ J the family {gi : Ui → Vj}α(i)=j is an fpqc covering of
Vj. Then the pullback functor

descent data relative to V −→ descent data relative to U

of Lemma 31.8 is fully faithful.

Proof. Consider the morphism of schemes

g : X =
∐

i∈I
Ui −→ Y =

∐
j∈J

Vj

over S which on the ith component maps into the α(i)th component via the mor-
phism gα(i). We claim that {g : X → Y } is an fpqc covering of schemes. Namely,
by Topologies, Lemma 9.3 for each j the morphism {

∐
α(i)=j Ui → Vj} is an fpqc

covering. Thus for every affine open V ⊂ Vj (which we may think of as an affine
open of Y ) we can find finitely many affine opens W1, . . . ,Wn ⊂

∐
α(i)=j Ui (which

we may think of as affine opens of X) such that V =
⋃
i=1,...,n g(Wi). This provides

enough affine opens of Y which can be covered by finitely many affine opens of X
so that Topologies, Lemma 9.2 part (3) applies, and the claim follows. Let us write
DD(X/S), resp. DD(U) for the category of descent data with respect to X/S, resp.
U , and similarly for Y/S and V. Consider the diagram

DD(Y/S) // DD(X/S)

DD(V)

Lemma 31.5

OO

// DD(U)

Lemma 31.5

OO

This diagram is commutative, see the proof of Lemma 31.8. The vertical arrows
are equivalences. Hence the lemma follows from Lemma 32.4 which shows the top
horizontal arrow of the diagram is fully faithful. �

The next lemma shows that, in order to check effectiveness, we may always Zariski
refine the given family of morphisms with target S.
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Lemma 32.10.02VY Let S be a scheme. Let U = {Ui → S}i∈I , and V = {Vj → S}j∈J ,
be families of morphisms with target S. Let α : I → J , id : S → S and gi : Ui →
Vα(i) be a morphism of families of maps with fixed target, see Sites, Definition 8.1.
Assume that for each j ∈ J the family {gi : Ui → Vj}α(i)=j is a Zariski covering
(see Topologies, Definition 3.1) of Vj. Then the pullback functor

descent data relative to V −→ descent data relative to U
of Lemma 31.8 is an equivalence of categories. In particular, the category of schemes
over S is equivalent to the category of descent data relative to any Zariski covering
of S.

Proof. The functor is faithful and fully faithful by Lemma 32.9. Let us indicate
how to prove that it is essentially surjective. Let (Xi, ϕii′) be a descent datum
relative to U . Fix j ∈ J and set Ij = {i ∈ I | α(i) = j}. For i, i′ ∈ Ij note that
there is a canonical morphism

cii′ : Ui ×gi,Vj ,gi′ Ui′ → Ui ×S Ui′ .
Hence we can pullback ϕii′ by this morphism and set ψii′ = c∗ii′ϕii′ for i, i′ ∈ Ij .
In this way we obtain a descent datum (Xi, ψii′) relative to the Zariski covering
{gi : Ui → Vj}i∈Ij . Note that ψii′ is an isomorphism from the open Xi,Ui×VjUi′
of Xi to the corresponding open of Xi′ . It follows from Schemes, Section 14 that
we may glue (Xi, ψii′) into a scheme Yj over Vj . Moreover, the morphisms ϕii′ for
i ∈ Ij and i′ ∈ Ij′ glue to a morphism ϕjj′ : Yj ×S Vj′ → Vj ×S Yj′ satisfying the
cocycle condition (details omitted). Hence we obtain the desired descent datum
(Yj , ϕjj′) relative to V. �

Lemma 32.11.02W0 Let S be a scheme. Let U = {Ui → S}i∈I , and V = {Vj → S}j∈J ,
be fpqc-coverings of S. If U is a refinement of V, then the pullback functor

descent data relative to V −→ descent data relative to U
is fully faithful. In particular, the category of schemes over S is identified with a
full subcategory of the category of descent data relative to any fpqc-covering of S.

Proof. Consider the fpqc-covering W = {Ui ×S Vj → S}(i,j)∈I×J of S. It is a
refinement of both U and V. Hence we have a 2-commutative diagram of functors
and categories

DD(V)

%%

// DD(U)

yy
DD(W)

Notation as in the proof of Lemma 32.9 and commutativity by Lemma 31.8 part (3).
Hence clearly it suffices to prove the functors DD(V) → DD(W) and DD(U) →
DD(W) are fully faithful. This follows from Lemma 32.9 as desired. �

Remark 32.12.040L Lemma 32.11 says that morphisms of schemes satisfy fpqc de-
scent. In other words, given a scheme S and schemes X, Y over S the functor

(Sch/S)opp −→ Sets, T 7−→ MorT (XT , YT )

satisfies the sheaf condition for the fpqc topology. The simplest case of this is
the following. Suppose that T → S is a surjective flat morphism of affines. Let
ψ0 : XT → YT be a morphism of schemes over T which is compatible with the
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canonical descent data. Then there exists a unique morphism ψ : X → Y whose
base change to T is ψ0. In fact this special case follows in a straightforward manner
from Lemma 32.4. And, in turn, that lemma is a formal consequence of the following
two facts: (a) the base change functor by a faithfully flat morphism is faithful, see
Lemma 32.2 and (b) a scheme satisfies the sheaf condition for the fpqc topology,
see Lemma 10.3.

Lemma 32.13.0AP4 Let X → S be a surjective, quasi-compact, flat morphism of
schemes. Let (V, ϕ) be a descent datum relative to X/S. Suppose that for all v ∈ V
there exists an open subscheme v ∈ W ⊂ V such that ϕ(W ×S X) ⊂ X ×S W and
such that the descent datum (W,ϕ|W×SX) is effective. Then (V, ϕ) is effective.

Proof. Let V =
⋃
Wi be an open covering with ϕ(Wi×S X) ⊂ X ×SWi and such

that the descent datum (Wi, ϕ|Wi×SX) is effective. Let Ui → S be a scheme and let
αi : (X ×S Ui, can)→ (Wi, ϕ|Wi×SX) be an isomorphism of descent data. For each
pair of indices (i, j) consider the open α−1

i (Wi∩Wj) ⊂ X×SUi. Because everything
is compatible with descent data and since {X → S} is an fpqc covering, we may
apply Lemma 10.2 to find an open Vij ⊂ Vj such that α−1

i (Wi ∩Wj) = X ×S Vij .
Now the identity morphism on Wi ∩ Wj is compatible with descent data, hence
comes from a unique morphism ϕij : Uij → Uji over S (see Remark 32.12). Then
(Ui, Uij , ϕij) is a glueing data as in Schemes, Section 14 (proof omitted). Thus we
may assume there is a scheme U over S such that Ui ⊂ U is open, Uij = Ui ∩ Uj
and ϕij = idUi∩Uj , see Schemes, Lemma 14.1. Pulling back to X we can use the αi
to get the desired isomorphism α : X ×S U → V . �

33. Descending types of morphisms

02W1 In the following we study the question as to whether descent data for schemes
relative to a fpqc-covering are effective. The first remark to make is that this is not
always the case. We will see this in Algebraic Spaces, Example 14.2. Even projective
morphisms do not always satisfy descent for fpqc-coverings, by Examples, Lemma
57.1.

On the other hand, if the schemes we are trying to descend are particularly sim-
ple, then it is sometime the case that for whole classes of schemes descent data
are effective. We will introduce terminology here that describes this phenomenon
abstractly, even though it may lead to confusion if not used correctly later on.

Definition 33.1.02W2 Let P be a property of morphisms of schemes over a base. Let
τ ∈ {Zariski, fpqc, fppf, étale, smooth, syntomic}. We say morphisms of type P
satisfy descent for τ -coverings if for any τ -covering U : {Ui → S}i∈I (see Topologies,
Section 2), any descent datum (Xi, ϕij) relative to U such that each morphism
Xi → Ui has property P is effective.

Note that in each of the cases we have already seen that the functor from schemes
over S to descent data over U is fully faithful (Lemma 32.11 combined with the
results in Topologies that any τ -covering is also a fpqc-covering). We have also seen
that descent data are always effective with respect to Zariski coverings (Lemma
32.10). It may be prudent to only study the notion just introduced when P is
either stable under any base change or at least local on the base in the τ -topology
(see Definition 19.1) in order to avoid erroneous arguments (relying on P when
descending halfway).
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Here is the obligatory lemma reducing this question to the case of a covering given
by a single morphism of affines.

Lemma 33.2.02W3 Let P be a property of morphisms of schemes over a base. Let
τ ∈ {fpqc, fppf, étale, smooth, syntomic}. Suppose that

(1) P is stable under any base change (see Schemes, Definition 18.3), and
(2) for any surjective morphism of affines X → S which is flat, flat of finite

presentation, étale, smooth or syntomic depending on whether τ is fpqc,
fppf, étale, smooth, or syntomic, any descent datum (V, ϕ) relative to X
over S such that P holds for V → X is effective.

Then morphisms of type P satisfy descent for τ -coverings.

Proof. Let S be a scheme. Let U = {ϕi : Ui → S}i∈I be a τ -covering of S.
Let (Xi, ϕii′) be a descent datum relative to U and assume that each morphism
Xi → Ui has property P. We have to show there exists a scheme X → S such that
(Xi, ϕii′) ∼= (Ui ×S X, can).

Before we start the proof proper we remark that for any family of morphisms
V : {Vj → S} and any morphism of families V → U , if we pullback the descent
datum (Xi, ϕii′) to a descent datum (Yj , ϕjj′) over V, then each of the morphisms
Yj → Vj has property P also. This is true because we assumed that P is stable
under any base change and the definition of pullback (see Definition 31.9). We will
use this without further mention.

First, let us prove the lemma when S is affine. By Topologies, Lemma 9.8, 7.4, 4.4,
5.4, or 6.4 there exists a standard τ -covering V : {Vj → S}j=1,...,m which refines U .
The pullback functor DD(U)→ DD(V) between categories of descent data is fully
faithful by Lemma 32.11. Hence it suffices to prove that the descent datum over
the standard τ -covering V is effective. By Lemma 31.5 this reduces to the covering
{
∐
j=1,...,m Vj → S} for which we have assumed the result in property (2) of the

lemma. Hence the lemma holds when S is affine.

Assume S is general. Let V ⊂ S be an affine open. By the properties of site
the family UV = {V ×S Ui → V }i∈I is a τ -covering of V . Denote (Xi, ϕii′)V the
restriction (or pullback) of the given descent datum to UV . Hence by what we just
saw we obtain a scheme XV over V whose canonical descent datum with respect to
UV is isomorphic to (Xi, ϕii′)V . Suppose that V ′ ⊂ V is an affine open of V . Then
both XV ′ and V ′ ×V XV have canonical descent data isomorphic to (Xi, ϕii′)V ′ .
Hence, by Lemma 32.11 again we obtain a canonical morphism ρVV ′ : XV ′ → XV

over S which identifies XV ′ with the inverse image of V ′ in XV . We omit the
verification that given affine opens V ′′ ⊂ V ′ ⊂ V of S we have ρVV ′′ = ρVV ′ ◦ ρV

′

V ′′ .

By Constructions, Lemma 2.1 the data (XV , ρ
V
V ′) glue to a scheme X → S. More-

over, we are given isomorphisms V ×S X → XV which recover the maps ρVV ′ .
Unwinding the construction of the schemes XV we obtain isomorphisms

V ×S Ui ×S X −→ V ×S Xi

compatible with the maps ϕii′ and compatible with restricting to smaller affine
opens in X. This implies that the canonical descent datum on Ui×SX is isomorphic
to the given descent datum and we win. �
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34. Descending affine morphisms

0244 In this section we show that “affine morphisms satisfy descent for fpqc-coverings”.
Here is the formal statement.

Lemma 34.1.0245 Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering, see
Topologies, Definition 9.1. Let (Vi/Xi, ϕij) be a descent datum relative to {Xi →
S}. If each morphism Vi → Xi is affine, then the descent datum is effective.

Proof. Being affine is a property of morphisms of schemes which is preserved under
any base change, see Morphisms, Lemma 11.8. Hence Lemma 33.2 applies and it
suffices to prove the statement of the lemma in case the fpqc-covering is given
by a single {X → S} flat surjective morphism of affines. Say X = Spec(A) and
S = Spec(R) so that R → A is a faithfully flat ring map. Let (V, ϕ) be a descent
datum relative to X over S and assume that V → X is affine. Then V → X being
affine implies that V = Spec(B) for some A-algebra B (see Morphisms, Definition
11.1). The isomorphism ϕ corresponds to an isomorphism of rings

ϕ] : B ⊗R A←− A⊗R B
as A⊗R A-algebras. The cocycle condition on ϕ says that

B ⊗R A⊗R A A⊗R A⊗R Boo

vv
A⊗R B ⊗R A

hh

is commutative. Inverting these arrows we see that we have a descent datum for
modules with respect to R → A as in Definition 3.1. Hence we may apply Propo-
sition 3.9 to obtain an R-module C = Ker(B → A ⊗R B) and an isomorphism
A⊗RC ∼= B respecting descent data. Given any pair c, c′ ∈ C the product cc′ in B
lies in C since the map ϕ is an algebra homomorphism. Hence C is an R-algebra
whose base change to A is isomorphic to B compatibly with descent data. Applying
Spec we obtain a scheme U over S such that (V, ϕ) ∼= (X×S U, can) as desired. �

Lemma 34.2.03I0 Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering, see
Topologies, Definition 9.1. Let (Vi/Xi, ϕij) be a descent datum relative to {Xi →
S}. If each morphism Vi → Xi is a closed immersion, then the descent datum is
effective.

Proof. This is true because a closed immersion is an affine morphism (Morphisms,
Lemma 11.9), and hence Lemma 34.1 applies. �

35. Descending quasi-affine morphisms

0246 In this section we show that “quasi-affine morphisms satisfy descent for fpqc-
coverings”. Here is the formal statement.

Lemma 35.1.0247 Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering, see
Topologies, Definition 9.1. Let (Vi/Xi, ϕij) be a descent datum relative to {Xi →
S}. If each morphism Vi → Xi is quasi-affine, then the descent datum is effective.

Proof. Being quasi-affine is a property of morphisms of schemes which is preserved
under any base change, see Morphisms, Lemma 12.5. Hence Lemma 33.2 applies
and it suffices to prove the statement of the lemma in case the fpqc-covering is given
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by a single {X → S} flat surjective morphism of affines. Say X = Spec(A) and
S = Spec(R) so that R → A is a faithfully flat ring map. Let (V, ϕ) be a descent
datum relative to X over S and assume that π : V → X is quasi-affine.

According to Morphisms, Lemma 12.3 this means that

V −→ Spec
X

(π∗OV ) = W

is a quasi-compact open immersion of schemes over X. The projections pri : X ×S
X → X are flat and hence we have

pr∗0π∗OV = (π × idX)∗OV×SX , pr∗1π∗OV = (idX × π)∗OX×SV
by flat base change (Cohomology of Schemes, Lemma 5.2). Thus the isomorphism
ϕ : V ×S X → X ×S V (which is an isomorphism over X ×S X) induces an
isomorphism of quasi-coherent sheaves of algebras

ϕ] : pr∗0π∗OV −→ pr∗1π∗OV
on X ×S X. The cocycle condition for ϕ implies the cocycle condition for ϕ].
Another way to say this is that it produces a descent datum ϕ′ on the affine scheme
W relative to X over S, which moreover has the property that the morphism V →
W is a morphism of descent data. Hence by Lemma 34.1 (or by effectivity of descent
for quasi-coherent algebras) we obtain a scheme U ′ → S with an isomorphism
(W,ϕ′) ∼= (X ×S U ′, can) of descent data. We note in passing that U ′ is affine by
Lemma 20.18.

And now we can think of V as a (quasi-compact) open V ⊂ X ×S U ′ with the
property that it is stable under the descent datum

can : X ×S U ′ ×S X → X ×S X ×S U ′, (x0, u
′, x1) 7→ (x0, x1, u

′).

In other words (x0, u
′) ∈ V ⇒ (x1, u

′) ∈ V for any x0, x1, u
′ mapping to the same

point of S. Because X → S is surjective we immediately find that V is the inverse
image of a subset U ⊂ U ′ under the morphism X ×S U ′ → U ′. Because X → S
is quasi-compact, flat and surjective also X ×S U ′ → U ′ is quasi-compact flat and
surjective. Hence by Morphisms, Lemma 24.11 this subset U ⊂ U ′ is open and we
win. �

36. Descent data in terms of sheaves

02W4 Here is another way to think about descent data in case of a covering on a site.

Lemma 36.1.02W5 Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}9. Let Schτ be a
big τ -site. Let S ∈ Ob(Schτ ). Let {Si → S}i∈I be a covering in the site (Sch/S)τ .
There is an equivalence of categories{

descent data (Xi, ϕii′) such that
each Xi ∈ Ob((Sch/S)τ )

}
↔
{

sheaves F on (Sch/S)τ such that
each hSi × F is representable

}
.

Moreover,

(1) the objects representing hSi × F on the right hand side correspond to the
schemes Xi on the left hand side, and

(2) the sheaf F is representable if and only if the corresponding descent datum
(Xi, ϕii′) is effective.

9The fact that fpqc is missing is not a typo. See discussion in Topologies, Section 9.
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Proof. We have seen in Section 10 that representable presheaves are sheaves on the
site (Sch/S)τ . Moreover, the Yoneda lemma (Categories, Lemma 3.5) guarantees
that maps between representable sheaves correspond one to one with maps between
the representing objects. We will use these remarks without further mention during
the proof.

Let us construct the functor from right to left. Let F be a sheaf on (Sch/S)τ such
that each hSi × F is representable. In this case let Xi be a representing object in
(Sch/S)τ . It comes equipped with a morphism Xi → Si. Then both Xi×S Si′ and
Si ×S Xi′ represent the sheaf hSi × F × hSi′ and hence we obtain an isomorphism

ϕii′ : Xi ×S Si′ → Si ×S Xi′

It is straightforward to see that the maps ϕii′ are morphisms over Si ×S Si′ and
satisfy the cocycle condition. The functor from right to left is given by this con-
struction F 7→ (Xi, ϕii′).

Let us construct a functor from left to right. For each i denote Fi the sheaf hXi .
The isomorphisms ϕii′ give isomorphisms

ϕii′ : Fi × hSi′ −→ hSi × Fi′
over hSi × hSi′ . Set F equal to the coequalizer in the following diagram

∐
i,i′ Fi × hSi′

pr0 //

pr1◦ϕii′
//
∐
i Fi

// F

The cocycle condition guarantees that hSi ×F is isomorphic to Fi and hence repre-
sentable. The functor from left to right is given by this construction (Xi, ϕii′) 7→ F .

We omit the verification that these constructions are mutually quasi-inverse func-
tors. The final statements (1) and (2) follow from the constructions. �

Remark 36.2.02W6 In the statement of Lemma 36.1 the condition that hSi × F is
representable is equivalent to the condition that the restriction of F to (Sch/Si)τ
is representable.
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