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1. Introduction

09JE In this chapter we talk about differential graded algebras, modules, categories, etc.
A basic reference is [Kel94]. A survey paper is [Kel06].

Since we do not worry about length of exposition in the Stacks project we first
develop the material in the setting of categories of differential graded modules.
After that we redo the constructions in the setting of differential graded modules
over differential graded categories.

2. Conventions

09JF In this chapter we hold on to the convention that ring means commutative ring
with 1. If R is a ring, then an R-algebra A will be an R-module A endowed with an
R-bilinear map A×A→ A (multiplication) such that multiplication is associative
and has a unit. In other words, these are unital associative R-algebras such that
the structure map R→ A maps into the center of A.

Sign rules. In this chapter we will work with graded algebras and graded modules
often equipped with differentials. The sign rules on underlying complexes will
always be (compatible with) those introduced in More on Algebra, Section 72. This
will occasionally cause the multiplicative structure to be twisted in unexpected ways
especially when considering left modules or the relationship between left and right
modules.

3. Differential graded algebras

061U Just the definitions.

Definition 3.1.061V Let R be a commutative ring. A differential graded algebra over
R is either

(1) a chain complexA• ofR-modules endowed withR-bilinear mapsAn×Am →
An+m, (a, b) 7→ ab such that

dn+m(ab) = dn(a)b+ (−1)nadm(b)

and such that
⊕
An becomes an associative and unital R-algebra, or

(2) a cochain complex A• of R-modules endowed with R-bilinear maps An ×
Am → An+m, (a, b) 7→ ab such that

dn+m(ab) = dn(a)b+ (−1)nadm(b)

and such that
⊕
An becomes an associative and unital R-algebra.

We often just write A =
⊕
An or A =

⊕
An and think of this as an associative

unital R-algebra endowed with a Z-grading and an R-linear operator d whose square
is zero and which satisfies the Leibniz rule as explained above. In this case we often
say “Let (A,d) be a differential graded algebra”.

https://stacks.math.columbia.edu/tag/061V
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The Leibniz rule relating differentials and multiplication on a differential graded
R-algebra A exactly means that the multiplication map defines a map of cochain
complexes

Tot(A• ⊗R A•)→ A•

Here A• denote the underlying cochain complex of A.
Definition 3.2.061X A homomorphism of differential graded algebras f : (A,d) →
(B, d) is an algebra map f : A→ B compatible with the gradings and d.
Definition 3.3.061W A differential graded algebra (A,d) is commutative if ab =
(−1)nmba for a in degree n and b in degree m. We say A is strictly commuta-
tive if in addition a2 = 0 for deg(a) odd.
The following definition makes sense in general but is perhaps “correct” only when
tensoring commutative differential graded algebras.
Definition 3.4.065W Let R be a ring. Let (A,d), (B, d) be differential graded algebras
over R. The tensor product differential graded algebra of A and B is the algebra
A⊗R B with multiplication defined by

(a⊗ b)(a′ ⊗ b′) = (−1)deg(a′) deg(b)aa′ ⊗ bb′

endowed with differential d defined by the rule d(a⊗ b) = d(a)⊗ b+ (−1)ma⊗d(b)
where m = deg(a).
Lemma 3.5.065X Let R be a ring. Let (A, d), (B, d) be differential graded algebras
over R. Denote A•, B• the underlying cochain complexes. As cochain complexes
of R-modules we have

(A⊗R B)• = Tot(A• ⊗R B•).
Proof. Recall that the differential of the total complex is given by dp,q1 +(−1)pdp,q2
on Ap⊗RBq. And this is exactly the same as the rule for the differential on A⊗RB
in Definition 3.4. □

4. Differential graded modules

09JH Our default in this chapter is right modules; we discuss left modules in Section 11.
Definition 4.1.09JI Let R be a ring. Let (A,d) be a differential graded algebra over
R. A (right) differential graded module M over A is a right A-module M which has
a grading M =

⊕
Mn and a differential d such that MnAm ⊂ Mn+m, such that

d(Mn) ⊂Mn+1, and such that
d(ma) = d(m)a+ (−1)nmd(a)

for a ∈ A andm ∈Mn. A homomorphism of differential graded modules f : M → N
is an A-module map compatible with gradings and differentials. The category of
(right) differential graded A-modules is denoted Mod(A,d).
Note that we can think of M as a cochain complex M• of (right) R-modules.
Namely, for r ∈ R we have d(r) = 0 and r maps to a degree 0 element of A, hence
d(mr) = d(m)r.
The Leibniz rule relating differentials and multiplication on a differential graded
R-module M over a differential graded R-algebra A exactly means that the multi-
plication map defines a map of cochain complexes

Tot(M• ⊗R A•)→M•

https://stacks.math.columbia.edu/tag/061X
https://stacks.math.columbia.edu/tag/061W
https://stacks.math.columbia.edu/tag/065W
https://stacks.math.columbia.edu/tag/065X
https://stacks.math.columbia.edu/tag/09JI
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Here A• and M• denote the underlying cochain complexes of A and M .

Lemma 4.2.09JJ Let (A, d) be a differential graded algebra. The category Mod(A,d) is
abelian and has arbitrary limits and colimits.

Proof. Kernels and cokernels commute with taking underlying A-modules. Sim-
ilarly for direct sums and colimits. In other words, these operations in Mod(A,d)
commute with the forgetful functor to the category of A-modules. This is not the
case for products and limits. Namely, if Ni, i ∈ I is a family of differential graded
A-modules, then the product

∏
Ni in Mod(A,d) is given by setting (

∏
Ni)n =

∏
Nn
i

and
∏
Ni =

⊕
n(

∏
Ni)n. Thus we see that the product does commute with the

forgetful functor to the category of graded A-modules. A category with products
and equalizers has limits, see Categories, Lemma 14.11. □

Thus, if (A,d) is a differential graded algebra over R, then there is an exact functor
Mod(A,d) −→ Comp(R)

of abelian categories. For a differential graded module M the cohomology groups
Hn(M) are defined as the cohomology of the corresponding complex of R-modules.
Therefore, a short exact sequence 0 → K → L → M → 0 of differential graded
modules gives rise to a long exact sequence
(4.2.1)09JK Hn(K)→ Hn(L)→ Hn(M)→ Hn+1(K)
of cohomology modules, see Homology, Lemma 13.12.
Moreover, from now on we borrow all the terminology used for complexes of mod-
ules. For example, we say that a differential graded A-module M is acyclic if
Hk(M) = 0 for all k ∈ Z. We say that a homomorphism M → N of differential
graded A-modules is a quasi-isomorphism if it induces isomorphisms Hk(M) →
Hk(N) for all k ∈ Z. And so on and so forth.

Definition 4.3.09JL Let (A,d) be a differential graded algebra. Let M be a differential
graded module whose underlying complex of R-modules is M•. For any k ∈ Z we
define the k-shifted module M [k] as follows

(1) the underlying complex ofR-modules ofM [k] isM•[k], i.e., we haveM [k]n =
Mn+k and dM [k] = (−1)kdM and

(2) as A-module the multiplication
(M [k])n ×Am −→ (M [k])n+m

is equal to the given multiplication Mn+k ×Am →Mn+k+m.
For a morphism f : M → N of differential graded A-modules we let f [k] : M [k]→
N [k] be the map equal to f on underlying A-modules. This defines a functor
[k] : Mod(A,d) → Mod(A,d).

Let us check that with this choice the Leibniz rule is satisfied. Let x ∈ M [k]n =
Mn+k and a ∈ Am and denoting ·M [k] the product in M [k] then we see

dM [k](x ·M [k] a) = (−1)kdM (xa)
= (−1)kdM (x)a+ (−1)k+n+kxd(a)
= dM [k](x)a+ (−1)nxd(a)
= dM [k](x) ·M [k] a+ (−1)nx ·M [k] d(a)

https://stacks.math.columbia.edu/tag/09JJ
https://stacks.math.columbia.edu/tag/09JL
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This is what we want as x has degree n as a homogeneous element of M [k]. We
also observe that with these choices we may think of the multiplication map as the
map of complexes

Tot(M•[k]⊗R A•)→ Tot(M• ⊗R A•)[k]→M•[k]

where the first arrow is More on Algebra, Section 72 (7) which in this case does not
involve a sign. (In fact, we could have deduced that the Liebniz rule holds from
this observation.)

The remarks in Homology, Section 14 apply. In particular, we will identify the
cohomology groups of all shifts M [k] without the intervention of signs.

At this point we have enough structure to talk about triangles, see Derived Cate-
gories, Definition 3.1. In fact, our next goal is to develop enough theory to be able
to state and prove that the homotopy category of differential graded modules is a
triangulated category. First we define the homotopy category.

5. The homotopy category

09JM Our homotopies take into account the A-module structure and the grading, but not
the differential (of course).

Definition 5.1.09JN Let (A,d) be a differential graded algebra. Let f, g : M → N be
homomorphisms of differential graded A-modules. A homotopy between f and g is
an A-module map h : M → N such that

(1) h(Mn) ⊂ Nn−1 for all n, and
(2) f(x)− g(x) = dN (h(x)) + h(dM (x)) for all x ∈M .

If a homotopy exists, then we say f and g are homotopic.

Thus h is compatible with the A-module structure and the grading but not with
the differential. If f = g and h is a homotopy as in the definition, then h defines a
morphism h : M → N [−1] in Mod(A,d).

Lemma 5.2.09JP Let (A, d) be a differential graded algebra. Let f, g : L → M be
homomorphisms of differential graded A-modules. Suppose given further homomor-
phisms a : K → L, and c : M → N . If h : L → M is an A-module map which
defines a homotopy between f and g, then c ◦ h ◦ a defines a homotopy between
c ◦ f ◦ a and c ◦ g ◦ a.

Proof. Immediate from Homology, Lemma 13.7. □

This lemma allows us to define the homotopy category as follows.

Definition 5.3.09JQ Let (A,d) be a differential graded algebra. The homotopy cat-
egory, denoted K(Mod(A,d)), is the category whose objects are the objects of
Mod(A,d) and whose morphisms are homotopy classes of homomorphisms of dif-
ferential graded A-modules.

The notation K(Mod(A,d)) is not standard but at least is consistent with the use
of K(−) in other places of the Stacks project.

Lemma 5.4.09JR Let (A, d) be a differential graded algebra. The homotopy category
K(Mod(A,d)) has direct sums and products.

https://stacks.math.columbia.edu/tag/09JN
https://stacks.math.columbia.edu/tag/09JP
https://stacks.math.columbia.edu/tag/09JQ
https://stacks.math.columbia.edu/tag/09JR
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Proof. Omitted. Hint: Just use the direct sums and products as in Lemma 4.2.
This works because we saw that these functors commute with the forgetful functor
to the category of graded A-modules and because

∏
is an exact functor on the

category of families of abelian groups. □

6. Cones

09K9 We introduce cones for the category of differential graded modules.

Definition 6.1.09KA Let (A,d) be a differential graded algebra. Let f : K → L be a
homomorphism of differential graded A-modules. The cone of f is the differential
graded A-module C(f) given by C(f) = L⊕K with grading C(f)n = Ln ⊕Kn+1

and differential
dC(f) =

(
dL f
0 −dK

)
It comes equipped with canonical morphisms of complexes i : L → C(f) and
p : C(f)→ K[1] induced by the obvious maps L→ C(f) and C(f)→ K.

The formation of the cone triangle is functorial in the following sense.

Lemma 6.2.09KD Let (A, d) be a differential graded algebra. Suppose that

K1
f1

//

a

��

L1

b

��
K2

f2 // L2

is a diagram of homomorphisms of differential graded A-modules which is commu-
tative up to homotopy. Then there exists a morphism c : C(f1) → C(f2) which
gives rise to a morphism of triangles

(a, b, c) : (K1, L1, C(f1), f1, i1, p1)→ (K1, L1, C(f1), f2, i2, p2)
in K(Mod(A,d)).

Proof. Let h : K1 → L2 be a homotopy between f2 ◦ a and b ◦ f1. Define c by the
matrix

c =
(
b h
0 a

)
: L1 ⊕K1 → L2 ⊕K2

A matrix computation show that c is a morphism of differential graded modules.
It is trivial that c ◦ i1 = i2 ◦ b, and it is trivial also to check that p2 ◦ c = a ◦ p1. □

7. Admissible short exact sequences

09JS An admissible short exact sequence is the analogue of termwise split exact sequences
in the setting of differential graded modules.

Definition 7.1.09JT Let (A,d) be a differential graded algebra.
(1) A homomorphism K → L of differential graded A-modules is an admissible

monomorphism if there exists a graded A-module map L→ K which is left
inverse to K → L.

(2) A homomorphism L→M of differential graded A-modules is an admissible
epimorphism if there exists a graded A-module map M → L which is right
inverse to L→M .

https://stacks.math.columbia.edu/tag/09KA
https://stacks.math.columbia.edu/tag/09KD
https://stacks.math.columbia.edu/tag/09JT
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(3) A short exact sequence 0 → K → L → M → 0 of differential graded A-
modules is an admissible short exact sequence if it is split as a sequence of
graded A-modules.

Thus the splittings are compatible with all the data except for the differentials.
Given an admissible short exact sequence we obtain a triangle; this is the reason
that we require our splittings to be compatible with the A-module structure.

Lemma 7.2.09JU Let (A, d) be a differential graded algebra. Let 0 → K → L →
M → 0 be an admissible short exact sequence of differential graded A-modules. Let
s : M → L and π : L→ K be splittings such that Ker(π) = Im(s). Then we obtain
a morphism

δ = π ◦ dL ◦ s : M → K[1]
of Mod(A,d) which induces the boundary maps in the long exact sequence of coho-
mology (4.2.1).

Proof. The map π ◦ dL ◦ s is compatible with the A-module structure and the
gradings by construction. It is compatible with differentials by Homology, Lemmas
14.10. Let R be the ring that A is a differential graded algebra over. The equality of
maps is a statement about R-modules. Hence this follows from Homology, Lemmas
14.10 and 14.11. □

Lemma 7.3.09JV Let (A, d) be a differential graded algebra. Let

K
f
//

a

��

L

b
��

M
g // N

be a diagram of homomorphisms of differential graded A-modules commuting up to
homotopy.

(1) If f is an admissible monomorphism, then b is homotopic to a homomor-
phism which makes the diagram commute.

(2) If g is an admissible epimorphism, then a is homotopic to a morphism
which makes the diagram commute.

Proof. Let h : K → N be a homotopy between bf and ga, i.e., bf − ga = dh+hd.
Suppose that π : L → K is a graded A-module map left inverse to f . Take
b′ = b − dhπ − hπd. Suppose s : N → M is a graded A-module map right inverse
to g. Take a′ = a+ dsh+ shd. Computations omitted. □

Lemma 7.4.09JW Let (A, d) be a differential graded algebra. Let α : K → L be a
homomorphism of differential graded A-modules. There exists a factorization

K
α̃ //

α

77L̃
π // L

in Mod(A,d) such that
(1) α̃ is an admissible monomorphism (see Definition 7.1),
(2) there is a morphism s : L→ L̃ such that π ◦ s = idL and such that s ◦ π is

homotopic to idL̃.

https://stacks.math.columbia.edu/tag/09JU
https://stacks.math.columbia.edu/tag/09JV
https://stacks.math.columbia.edu/tag/09JW
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Proof. The proof is identical to the proof of Derived Categories, Lemma 9.6.
Namely, we set L̃ = L ⊕ C(1K) and we use elementary properties of the cone
construction. □

Lemma 7.5.09JX Let (A, d) be a differential graded algebra. Let L1 → L2 → . . . →
Ln be a sequence of composable homomorphisms of differential graded A-modules.
There exists a commutative diagram

L1 // L2 // . . . // Ln

M1 //

OO

M2 //

OO

. . . // Mn

OO

in Mod(A,d) such that each Mi → Mi+1 is an admissible monomorphism and each
Mi → Li is a homotopy equivalence.

Proof. The case n = 1 is without content. Lemma 7.4 is the case n = 2. Suppose
we have constructed the diagram except for Mn. Apply Lemma 7.4 to the compo-
sition Mn−1 → Ln−1 → Ln. The result is a factorization Mn−1 → Mn → Ln as
desired. □

Lemma 7.6.09JY Let (A, d) be a differential graded algebra. Let 0 → Ki → Li →
Mi → 0, i = 1, 2, 3 be admissible short exact sequence of differential graded A-
modules. Let b : L1 → L2 and b′ : L2 → L3 be homomorphisms of differential
graded modules such that

K1

0
��

// L1 //

b

��

M1

0
��

K2 // L2 // M2

and

K2

0
��

// L2 //

b′

��

M2

0
��

K3 // L3 // M3

commute up to homotopy. Then b′ ◦ b is homotopic to 0.

Proof. By Lemma 7.3 we can replace b and b′ by homotopic maps such that the
right square of the left diagram commutes and the left square of the right diagram
commutes. In other words, we have Im(b) ⊂ Im(K2 → L2) and Ker((b′)n) ⊃
Im(K2 → L2). Then b ◦ b′ = 0 as a map of modules. □

8. Distinguished triangles

09K5 The following lemma produces our distinguished triangles.

Lemma 8.1.09K6 Let (A, d) be a differential graded algebra. Let 0→ K → L→M → 0
be an admissible short exact sequence of differential graded A-modules. The triangle

(8.1.1)09K7 K → L→M
δ−→ K[1]

with δ as in Lemma 7.2 is, up to canonical isomorphism in K(Mod(A,d)), indepen-
dent of the choices made in Lemma 7.2.

Proof. Namely, let (s′, π′) be a second choice of splittings as in Lemma 7.2. Then
we claim that δ and δ′ are homotopic. Namely, write s′ = s+α◦h and π′ = π+g◦β
for some unique homomorphisms of A-modules h : M → K and g : M → K of
degree −1. Then g = −h and g is a homotopy between δ and δ′. The computations
are done in the proof of Homology, Lemma 14.12. □

https://stacks.math.columbia.edu/tag/09JX
https://stacks.math.columbia.edu/tag/09JY
https://stacks.math.columbia.edu/tag/09K6
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Definition 8.2.09K8 Let (A,d) be a differential graded algebra.
(1) If 0 → K → L → M → 0 is an admissible short exact sequence of differ-

ential graded A-modules, then the triangle associated to 0 → K → L →
M → 0 is the triangle (8.1.1) of K(Mod(A,d)).

(2) A triangle ofK(Mod(A,d)) is called a distinguished triangle if it is isomorphic
to a triangle associated to an admissible short exact sequence of differential
graded A-modules.

9. Cones and distinguished triangles

09P1 Let (A,d) be a differential graded algebra. Let f : K → L be a homomorphism of
differential graded A-modules. Then (K,L,C(f), f, i, p) forms a triangle:

K → L→ C(f)→ K[1]

in Mod(A,d) and hence in K(Mod(A,d)). Cones are not distinguished triangles in
general, but the difference is a sign or a rotation (your choice). Here are two precise
statements.

Lemma 9.1.09KB Let (A, d) be a differential graded algebra. Let f : K → L be a
homomorphism of differential graded modules. The triangle (L,C(f),K[1], i, p, f [1])
is the triangle associated to the admissible short exact sequence

0→ L→ C(f)→ K[1]→ 0

coming from the definition of the cone of f .

Proof. Immediate from the definitions. □

Lemma 9.2.09KC Let (A, d) be a differential graded algebra. Let α : K → L and
β : L→M define an admissible short exact sequence

0→ K → L→M → 0

of differential graded A-modules. Let (K,L,M,α, β, δ) be the associated triangle.
Then the triangles

(M [−1],K, L, δ[−1], α, β) and (M [−1],K,C(δ[−1]), δ[−1], i, p)

are isomorphic.

Proof. Using a choice of splittings we write L = K ⊕M and we identify α and β
with the natural inclusion and projection maps. By construction of δ we have

dB =
(
dK δ
0 dM

)
On the other hand the cone of δ[−1] : M [−1]→ K is given as C(δ[−1]) = K ⊕M
with differential identical with the matrix above! Whence the lemma. □

Lemma 9.3.09KE Let (A, d) be a differential graded algebra. Let f1 : K1 → L1 and
f2 : K2 → L2 be homomorphisms of differential graded A-modules. Let

(a, b, c) : (K1, L1, C(f1), f1, i1, p1) −→ (K1, L1, C(f1), f2, i2, p2)

be any morphism of triangles of K(Mod(A,d)). If a and b are homotopy equivalences
then so is c.

https://stacks.math.columbia.edu/tag/09K8
https://stacks.math.columbia.edu/tag/09KB
https://stacks.math.columbia.edu/tag/09KC
https://stacks.math.columbia.edu/tag/09KE
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Proof. Let a−1 : K2 → K1 be a homomorphism of differential graded A-modules
which is inverse to a in K(Mod(A,d)). Let b−1 : L2 → L1 be a homomorphism of
differential graded A-modules which is inverse to b inK(Mod(A,d)). Let c′ : C(f2)→
C(f1) be the morphism from Lemma 6.2 applied to f1◦a−1 = b−1◦f2. If we can show
that c◦c′ and c′ ◦c are isomorphisms in K(Mod(A,d)) then we win. Hence it suffices
to prove the following: Given a morphism of triangles (1, 1, c) : (K,L,C(f), f, i, p)
in K(Mod(A,d)) the morphism c is an isomorphism in K(Mod(A,d)). By assumption
the two squares in the diagram

L //

1
��

C(f) //

c

��

K[1]

1
��

L // C(f) // K[1]

commute up to homotopy. By construction of C(f) the rows form admissible short
exact sequences. Thus we see that (c − 1)2 = 0 in K(Mod(A,d)) by Lemma 7.6.
Hence c is an isomorphism in K(Mod(A,d)) with inverse 2− c. □

The following lemma shows that the collection of triangles of the homotopy category
given by cones and the distinguished triangles are the same up to isomorphisms, at
least up to sign!

Lemma 9.4.09KF Let (A, d) be a differential graded algebra.

(1) Given an admissible short exact sequence 0 → K
α−→ L → M → 0 of

differential graded A-modules there exists a homotopy equivalence C(α)→
M such that the diagram

K //

��

L

��

// C(α)
−p
//

��

K[1]

��
K

α // L
β // M

δ // K[1]

defines an isomorphism of triangles in K(Mod(A,d)).
(2) Given a morphism of complexes f : K → L there exists an isomorphism of

triangles
K //

��

L̃

��

// M
δ
//

��

K[1]

��
K // L // C(f) −p // K[1]

where the upper triangle is the triangle associated to a admissible short
exact sequence K → L̃→M .

Proof. Proof of (1). We have C(α) = L ⊕ K and we simply define C(α) → M
via the projection onto L followed by β. This defines a morphism of differential
graded modules because the compositions Kn+1 → Ln+1 →Mn+1 are zero. Choose
splittings s : M → L and π : L → K with Ker(π) = Im(s) and set δ = π ◦ dL ◦ s
as usual. To get a homotopy inverse we take M → C(α) given by (s,−δ). This
is compatible with differentials because δn can be characterized as the unique map
Mn → Kn+1 such that d ◦ sn − sn+1 ◦ d = α ◦ δn, see proof of Homology, Lemma

https://stacks.math.columbia.edu/tag/09KF
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14.10. The composition M → C(f)→M is the identity. The composition C(f)→
M → C(f) is equal to the morphism(

s ◦ β 0
−δ ◦ β 0

)
To see that this is homotopic to the identity map use the homotopy h : C(α) →
C(α) given by the matrix(

0 0
π 0

)
: C(α) = L⊕K → L⊕K = C(α)

It is trivial to verify that(
1 0
0 1

)
−

(
s
−δ

) (
β 0

)
=

(
d α
0 −d

) (
0 0
π 0

)
+

(
0 0
π 0

) (
d α
0 −d

)
To finish the proof of (1) we have to show that the morphisms −p : C(α) → K[1]
(see Definition 6.1) and C(α) → M → K[1] agree up to homotopy. This is clear
from the above. Namely, we can use the homotopy inverse (s,−δ) : M → C(α) and
check instead that the two maps M → K[1] agree. And note that p ◦ (s,−δ) = −δ
as desired.
Proof of (2). We let f̃ : K → L̃, s : L → L̃ and π : L → L be as in Lemma 7.4.
By Lemmas 6.2 and 9.3 the triangles (K,L,C(f), i, p) and (K, L̃, C(f̃), ĩ, p̃) are
isomorphic. Note that we can compose isomorphisms of triangles. Thus we may
replace L by L̃ and f by f̃ . In other words we may assume that f is an admissible
monomorphism. In this case the result follows from part (1). □

10. The homotopy category is triangulated

09KG We first prove that it is pre-triangulated.

Lemma 10.1.09KH Let (A, d) be a differential graded algebra. The homotopy category
K(Mod(A,d)) with its natural translation functors and distinguished triangles is a
pre-triangulated category.

Proof. Proof of TR1. By definition every triangle isomorphic to a distinguished
one is distinguished. Also, any triangle (K,K, 0, 1, 0, 0) is distinguished since
0 → K → K → 0 → 0 is an admissible short exact sequence. Finally, given
any homomorphism f : K → L of differential graded A-modules the triangle
(K,L,C(f), f, i,−p) is distinguished by Lemma 9.4.
Proof of TR2. Let (X,Y, Z, f, g, h) be a triangle. Assume (Y,Z,X[1], g, h,−f [1])
is distinguished. Then there exists an admissible short exact sequence 0 → K →
L → M → 0 such that the associated triangle (K,L,M,α, β, δ) is isomorphic
to (Y,Z,X[1], g, h,−f [1]). Rotating back we see that (X,Y, Z, f, g, h) is isomor-
phic to (M [−1],K, L,−δ[−1], α, β). It follows from Lemma 9.2 that the triangle
(M [−1],K, L, δ[−1], α, β) is isomorphic to (M [−1],K,C(δ[−1]), δ[−1], i, p). Pre-
composing the previous isomorphism of triangles with −1 on Y it follows that
(X,Y, Z, f, g, h) is isomorphic to (M [−1],K,C(δ[−1]), δ[−1], i,−p). Hence it is dis-
tinguished by Lemma 9.4. On the other hand, suppose that (X,Y, Z, f, g, h) is
distinguished. By Lemma 9.4 this means that it is isomorphic to a triangle of the
form (K,L,C(f), f, i,−p) for some morphism f of Mod(A,d). Then the rotated
triangle (Y,Z,X[1], g, h,−f [1]) is isomorphic to (L,C(f),K[1], i,−p,−f [1]) which

https://stacks.math.columbia.edu/tag/09KH
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is isomorphic to the triangle (L,C(f),K[1], i, p, f [1]). By Lemma 9.1 this triangle
is distinguished. Hence (Y,Z,X[1], g, h,−f [1]) is distinguished as desired.

Proof of TR3. Let (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′) be distinguished trian-
gles of K(A) and let a : X → X ′ and b : Y → Y ′ be morphisms such that f ′ ◦ a =
b ◦ f . By Lemma 9.4 we may assume that (X,Y, Z, f, g, h) = (X,Y,C(f), f, i,−p)
and (X ′, Y ′, Z ′, f ′, g′, h′) = (X ′, Y ′, C(f ′), f ′, i′,−p′). At this point we simply ap-
ply Lemma 6.2 to the commutative diagram given by f, f ′, a, b. □

Before we prove TR4 in general we prove it in a special case.

Lemma 10.2.09KI Let (A, d) be a differential graded algebra. Suppose that α : K → L
and β : L → M are admissible monomorphisms of differential graded A-modules.
Then there exist distinguished triangles (K,L,Q1, α, p1, d1), (K,M,Q2, β◦α, p2, d2)
and (L,M,Q3, β, p3, d3) for which TR4 holds.

Proof. Say π1 : L → K and π3 : M → L are homomorphisms of graded A-
modules which are left inverse to α and β. Then also K → M is an admissible
monomorphism with left inverse π2 = π1 ◦ π3. Let us write Q1, Q2 and Q3 for
the cokernels of K → L, K → M , and L → M . Then we obtain identifications
(as graded A-modules) Q1 = Ker(π1), Q3 = Ker(π3) and Q2 = Ker(π2). Then
L = K⊕Q1 and M = L⊕Q3 as graded A-modules. This implies M = K⊕Q1⊕Q3.
Note that π2 = π1 ◦ π3 is zero on both Q1 and Q3. Hence Q2 = Q1⊕Q3. Consider
the commutative diagram

0 → K → L → Q1 → 0
↓ ↓ ↓

0 → K → M → Q2 → 0
↓ ↓ ↓

0 → L → M → Q3 → 0
The rows of this diagram are admissible short exact sequences, and hence determine
distinguished triangles by definition. Moreover downward arrows in the diagram
above are compatible with the chosen splittings and hence define morphisms of
triangles

(K → L→ Q1 → K[1]) −→ (K →M → Q2 → K[1])
and

(K →M → Q2 → K[1]) −→ (L→M → Q3 → L[1]).
Note that the splittings Q3 → M of the bottom sequence in the diagram provides
a splitting for the split sequence 0 → Q1 → Q2 → Q3 → 0 upon composing with
M → Q2. It follows easily from this that the morphism δ : Q3 → Q1[1] in the
corresponding distinguished triangle

(Q1 → Q2 → Q3 → Q1[1])

is equal to the composition Q3 → L[1]→ Q1[1]. Hence we get a structure as in the
conclusion of axiom TR4. □

Here is the final result.

Proposition 10.3.09KJ Let (A, d) be a differential graded algebra. The homotopy
category K(Mod(A,d)) of differential graded A-modules with its natural translation
functors and distinguished triangles is a triangulated category.

https://stacks.math.columbia.edu/tag/09KI
https://stacks.math.columbia.edu/tag/09KJ
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Proof. We know that K(Mod(A,d)) is a pre-triangulated category. Hence it suffices
to prove TR4 and to prove it we can use Derived Categories, Lemma 4.15. Let
K → L and L→M be composable morphisms of K(Mod(A,d)). By Lemma 7.5 we
may assume that K → L and L→M are admissible monomorphisms. In this case
the result follows from Lemma 10.2. □

11. Left modules

0FPZ Everything we have said sofar has an analogue in the setting of left differential
graded modules, except that one has to take care with some sign rules.

Let (A,d) be a differential graded R-algebra. Exactly analogous to right modules,
we define a left differential graded A-module M as a left A-module M which has
a grading M =

⊕
Mn and a differential d, such that AnMm ⊂ Mn+m, such that

d(Mn) ⊂Mn+1, and such that

d(am) = d(a)m+ (−1)deg(a)ad(m)

for homogeneous elements a ∈ A and m ∈ M . As before this Leibniz rule exactly
signifies that the multiplication defines a map of complexes

Tot(A• ⊗RM•)→M•

Here A• and M• denote the complexes of R-modules underlying A and M .

Definition 11.1.09JG Let R be a ring. Let (A,d) be a differential graded algebra
over R. The opposite differential graded algebra is the differential graded algebra
(Aopp,d) over R where Aopp = A as a graded R-module, d = d, and multiplication
is given by

a ·opp b = (−1)deg(a) deg(b)ba

for homogeneous elements a, b ∈ A.

This makes sense because

d(a ·opp b) = (−1)deg(a) deg(b)d(ba)

= (−1)deg(a) deg(b)d(b)a+ (−1)deg(a) deg(b)+deg(b)bd(a)

= (−1)deg(a)a ·opp d(b) + d(a) ·opp b

as desired. In terms of underlying complexes of R-modules this means that the
diagram

Tot(A• ⊗R A•)
multiplication of Aopp

//

commutativity constraint
��

A•

id
��

Tot(A• ⊗R A•) multiplication of A // A•

commutes. Here the commutativity constraint on the symmetric monoidal category
of complexes of R-modules is given in More on Algebra, Section 72.

Let (A,d) be a differential graded algebra over R. Let M be a left differential graded
A-module. We will denote Mopp the module M viewed as a right Aopp-module with
multiplication ·opp defined by the rule

m ·opp a = (−1)deg(a) deg(m)am

https://stacks.math.columbia.edu/tag/09JG
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for a and m homogeneous. This is compatible with differentials because we could
have used the diagram

Tot(M• ⊗R A•)
multiplication on Mopp

//

commutativity constraint
��

M•

id
��

Tot(A• ⊗RM•) multiplication on M // M•

to define the multiplication ·opp on Mopp. To see that it is an associative multipli-
cation we compute for homogeneous elements a, b ∈ A and m ∈M that
m ·opp (a ·opp b) = (−1)deg(a) deg(b)m ·opp (ba)

= (−1)deg(a) deg(b)+deg(ab) deg(m)bam

= (−1)deg(a) deg(b)+deg(ab) deg(m)+deg(b) deg(am)(am) ·opp b

= (−1)deg(a) deg(b)+deg(ab) deg(m)+deg(b) deg(am)+deg(a) deg(m)(m ·opp a) ·opp b
= (m ·opp a) ·opp b

Of course, we could have been shown this using the compatibility between the
associativity and commutativity constraint on the symmetric monoidal category of
complexes of R-modules as well.

Lemma 11.2.0FQ0 Let (A, d) be a differential graded R-algebra. The functor M 7→
Mopp from the category of left differential graded A-modules to the category of right
differential graded Aopp-modules is an equivalence.

Proof. Omitted. □

Mext, we come to shifts. Let (A,d) be a differential graded algebra. Let M be a left
differential graded A-module whose underlying complex of R-modules is denoted
M•. For any k ∈ Z we define the k-shifted module M [k] as follows

(1) the underlying complex of R-modules of M [k] is M•[k]
(2) as A-module the multiplication

An × (M [k])m −→ (M [k])n+m

is equal to (−1)nk times the given multiplication An×Mm+k →Mn+m+k.
Let us check that with this choice the Leibniz rule is satisfied. Let a ∈ An and
x ∈M [k]m = Mm+k and denoting ·M [k] the product in M [k] then we see

dM [k](a ·M [k] x) = (−1)k+nkdM (ax)
= (−1)k+nkd(a)x+ (−1)k+nk+nadM (x)
= d(a) ·M [k] x+ (−1)nk+nadM [k](x)
= d(a) ·M [k] x+ (−1)na ·M [k] dM [k](x)

This is what we want as a has degree n as a homogeneous element of A. We also
observe that with these choices we may think of the multiplication map as the map
of complexes

Tot(A• ⊗RM•[k])→ Tot(A• ⊗RM•)[k]→M•[k]
where the first arrow is More on Algebra, Section 72 (7) which in this case involves
exactly the sign we chose above. (In fact, we could have deduced that the Liebniz
rule holds from this observation.)

https://stacks.math.columbia.edu/tag/0FQ0
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With the rule above we have canonical identifications

(M [k])opp = Mopp[k]

of right differential graded Aopp-modules defined without the intervention of signs,
in other words, the equivalence of Lemma 11.2 is compatible with shift functors.

Our choice above necessitates the following definition.

Definition 11.3.0FQ1 Let R be a ring. Let A be a Z-graded R-algebra.
(1) Given a right graded A-module M we define the kth shifted A-module M [k]

as the same as a right A-module but with grading (M [k])n = Mn+k.
(2) Given a left graded A-module M we define the kth shifted A-module M [k]

as the module with grading (M [k])n = Mn+k and multiplication An ×
(M [k])m → (M [k])n+m equal to (−1)nk times the given multiplication An×
Mm+k →Mn+m+k.

Let (A,d) be a differential graded algebra. Let f, g : M → N be homomorphisms
of left differential graded A-modules. A homotopy between f and g is a graded
A-module map h : M → N [−1] (observe the shift!) such that

f(x)− g(x) = dN (h(x)) + h(dM (x))

for all x ∈ M . If a homotopy exists, then we say f and g are homotopic. Thus
h is compatible with the A-module structure (with the shifted one on N) and the
grading (with shifted grading on N) but not with the differential. If f = g and h is
a homotopy, then h defines a morphism h : M → N [−1] of left differential graded
A-modules.

With the rule above we find that f, g : M → N are homotopic if and only if the
induced morphisms fopp, gopp : Mopp → Nopp are homotopic as right differential
graded Aopp-module homomorphisms (with the same homotopy).

The homotopy category, cones, admissible short exact sequences, distinguished tri-
angles are all defined in exactly the same manner as for right differential graded
modules (and everything agrees on underlying complexes of R-modules with the
constructions for complexes of R-modules). In this manner we obtain the analogue
of Proposition 10.3 for left modules as well, or we can deduce it by working with
right modules over the opposite algebra.

12. Tensor product

09LL Let R be a ring. Let A be an R-algebra (see Section 2). Given a right A-module
M and a left A-module N there is a tensor product

M ⊗A N

This tensor product is a module over R. As an R-module M ⊗AN is generated by
symbols x⊗ y with x ∈M and y ∈ N subject to the relations

(x1 + x2)⊗ y − x1 ⊗ y − x2 ⊗ y,
x⊗ (y1 + y2)− x⊗ y1 − x⊗ y2,

xa⊗ y − x⊗ ay
for a ∈ A, x, x1, x2 ∈ M and y, y1, y2 ∈ N . We list some properties of the tensor
product

https://stacks.math.columbia.edu/tag/0FQ1
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In each variable the tensor product is right exact, in fact commutes with direct
sums and arbitrary colimits.
The tensor product M ⊗A N is the receptacle of the universal A-bilinear map
M ×N →M ⊗A N , (x, y) 7→ x⊗ y. In a formula

BilinearA(M ×N,Q) = HomR(M ⊗A N,Q)
for any R-module Q.
If A is a Z-graded algebra and M , N are graded A-modules then M ⊗A N is a
graded R-module. Then nth graded piece (M ⊗A N)n of M ⊗A N is equal to

Coker
(⊕

r+t+s=n
Mr ⊗R At ⊗R Ns →

⊕
p+q=n

Mp ⊗R Nq
)

where the map sends x⊗ a⊗ y to x⊗ ay − xa⊗ y for x ∈Mr, y ∈ Ns, and a ∈ At
with r + s + t = n. In this case the map M × N → M ⊗A N is A-bilinear and
compatible with gradings and universal in the sense that

GradedBilinearA(M ×N,Q) = Homgraded R-modules(M ⊗A N,Q)
for any graded R-module Q with an obvious notion of graded bilinar map.
If (A,d) is a differential graded algebra and M and N are left and right differential
graded A-modules, then M⊗AN is a differential graded R-module with differential

d(x⊗ y) = d(x)⊗ y + (−1)deg(x)x⊗ d(y)
for x ∈M and y ∈ N homogeneous. In this case the map M ×N →M ⊗AN is A-
bilinear, compatible with gradings, and compatible with differentials and universal
in the sense that

DifferentialGradedBilinearA(M ×N,Q) = HomComp(R)(M ⊗A N,Q)
for any differential graded R-module Q with an obvious notion of differential graded
bilinar map.

13. Hom complexes and differential graded modules

0FQ2 We urge the reader to skip this section.
Let R be a ring and let M• be a complex of R-modules. Consider the complex of
R-modules

E• = Hom•(M•,M•)
introduced in More on Algebra, Section 71. By More on Algebra, Lemma 71.3 there
is a canonical composition law

Tot(E• ⊗R E•)→ E•

which is a map of complexes. Thus we see that E• with this multiplication is a
differential graded R-algebra which we will denote (E,d). Moreover, viewing M•

as Hom•(R,M•) we see that composition defines a multiplication
Tot(E• ⊗RM•)→M•

which turns M• into a left differential graded E-module which we will denote M .

Lemma 13.1.0FQ3 In the situation above, let A be a differential graded R-algebra. To
give a left A-module structure on M is the same thing as giving a homomorphism
A→ E of differential graded R-algebras.

https://stacks.math.columbia.edu/tag/0FQ3
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Proof. Proof omitted. Observe that no signs intervene in this correspondence. □

We continue with the discussion above and we assume given another complex N•

of R-modules. Consider the complex of R-modules Hom•(M•, N•) introduced in
More on Algebra, Section 71. As above we see that composition

Tot(Hom•(M•, N•)⊗R E•)→ Hom•(M•, N•)

defines a multiplication which turns Hom•(M•, N•) into a right differential graded
E-module. Using Lemma 13.1 we conclude that given a left differential graded A-
module M and a complex of R-modules N• there is a canonical right differential
graded A-module whose underlying complex of R-modules is Hom•(M•, N•) and
where multiplication

Homn(M•, N•)×Am −→ Homn+m(M•, N•)

sends f = (fp,q)p+q=n with fp,q ∈ Hom(M−q, Np) and a ∈ Am to the element
f · a = (fp,q ◦ a) where fp,q ◦ a is the map

M−q−m a−→M−q fp,q−−→ Np, x 7−→ fp,q(ax)

without the intervention of signs. Let us use the notation Hom(M,N•) to denote
this right differential graded A-module.

Lemma 13.2.0FQ4 Let R be a ring. Let (A, d) be a differential graded R-algebra. Let
M ′ be a right differential graded A-module and let M be a left differential graded
A-module. Let N• be a complex of R-modules. Then we have

HomMod(A,d)(M
′,Hom(M,N•)) = HomComp(R)(M ′ ⊗AM,N•)

where M ⊗AM is viewed as a complex of R-modules as in Section 12.

Proof. Let us show that both sides correspond to graded A-bilinear maps

M ′ ×M −→ N•

compatible with differentials. We have seen this is true for the right hand side
in Section 12. Given an element g of the left hand side, the equality of More on
Algebra, Lemma 71.1 determines a map of complexes of R-modules g′ : Tot(M ′⊗R
M)→ N•. In other words, we obtain a graded R-bilinear map g′′ : M ′ ×M → N•

compatible with differentials. The A-linearity of g translates immediately into A-
bilinarity of g′′. □

Let R, M•, E•, E, and M be as above. However, now suppose given a differential
graded R-algebra A and a right differential graded A-module structure on M .
Then we can consider the map

Tot(A• ⊗RM•) ψ−→ Tot(A• ⊗RM•)→M•

where the first arrow is the commutativity constraint on the differential graded
category of complexes of R-modules. This corresponds to a map

τ : A• −→ E•

of complexes of R-modules. Recall that En =
∏
p+q=n HomR(M−q,Mp) and write

τ(a) = (τp,q(a))p+q=n for a ∈ An. Then we see

τp,q(a) : M−q −→Mp, x 7−→ (−1)deg(a) deg(x)xa = (−1)−nqxa

https://stacks.math.columbia.edu/tag/0FQ4
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This is not compatible with the product on A as the readed should expect from the
discussion in Section 11. Namely, we have

τ(aa′) = (−1)deg(a) deg(a′)τ(a′)τ(a)
We conclude the following lemma is true

Lemma 13.3.0FQ5 In the situation above, let A be a differential graded R-algebra. To
give a right A-module structure on M is the same thing as giving a homomorphism
τ : A→ Eopp of differential graded R-algebras.

Proof. See discussion above and note that the construction of τ from the multi-
plication map Mn ×Am →Mn+m uses signs. □

Let R, M•, E•, E, A andM be as above and let a right differential graded A-module
structure on M be given as in the lemma. In this case there is a canonical left differ-
ential graded A-module whose underlying complex of R-modules is Hom•(M•, N•).
Namely, for multiplication we can use

Tot(A• ⊗R Hom•(M•, N•)) ψ−→ Tot(Hom•(M•, N•)⊗R A•)
τ−→ Tot(Hom•(M•, N•)⊗R Hom•(M•,M•))
→ Tot(Hom•(M•, N•)

The first arrow uses the commutativity constraint on the category of complexes
of R-modules, the second arrow is described above, and the third arrow is the
composition law for the Hom complex. Each map is a map of complexes, hence
the result is a map of complexes. In fact, this construction turns Hom•(M•, N•)
into a left differential graded A-module (associativity of the multiplication can be
shown using the symmetric monoidal structure or by a direct calculation using the
formulae below). Let us explicate the multiplication

An ×Homm(M•, N•) −→ Homn+m(M•, N•)
It sends a ∈ An and f = (fp,q)p+q=m with fp,q ∈ Hom(M−q, Np) to the element
a · f with constituents

(−1)nmfp,q ◦ τ−q,q+n(a) = (−1)nm−n(q+n)fp,q ◦ a = (−1)np+nfp,q ◦ a
in HomR(M−q−n, Np) where fp,q ◦ a is the map

M−q−n a−→M−q fp,q−−→ Np, x 7−→ fp,q(xa)
Here a sign of (−1)np+n does intervene. Let us use the notation Hom(M,N•) to
denote this left differential graded A-module.

Lemma 13.4.0FQ6 Let R be a ring. Let (A, d) be a differential graded R-algebra. Let
M be a right differential graded A-module and let M ′ be a left differential graded
A-module. Let N• be a complex of R-modules. Then we have

Homleft diff graded A-modules(M ′,Hom(M,N•)) = HomComp(R)(M ⊗AM ′, N•)
where M ⊗AM ′ is viewed as a complex of R-modules as in Section 12.

Proof. Let us show that both sides correspond to graded A-bilinear maps
M ×M ′ −→ N•

compatible with differentials. We have seen this is true for the right hand side
in Section 12. Given an element g of the left hand side, the equality of More on

https://stacks.math.columbia.edu/tag/0FQ5
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Algebra, Lemma 71.1 determines a map of complexes g′ : Tot(M ′ ⊗R M) → N•.
We precompose with the commutativity constraint to get

Tot(M ⊗RM ′) ψ−→ Tot(M ′ ⊗RM) g′

−→ N•

which corresponds to a graded R-bilinear map g′′ : M ×M ′ → N• compatible with
differentials. The A-linearity of g translates immediately into A-bilinarity of g′′.
Namely, say x ∈Me and x′ ∈ (M ′)e′ and a ∈ An. Then on the one hand we have

g′′(x, ax′) = (−1)e(n+e′)g′(ax′ ⊗ x)

= (−1)e(n+e′)g(ax′)(x)

= (−1)e(n+e′)(a · g(x′))(x)

= (−1)e(n+e′)+n(n+e+e′)+ng(x′)(xa)

and on the other hand we have

g′′(xa, x′) = (−1)(e+n)e′
g′(x′ ⊗ xa) = (−1)(e+n)e′

g(x′)(xa)

which is the same thing by a trivial mod 2 calculation of the exponents. □

Remark 13.5.0FQ7 Let R be a ring. Let A be a differential graded R-algebra. Let M
be a left differential graded A-module. Let N• be a complex of R-modules. The
constructions above produce a right differential graded A-module Hom(M,N•) and
then a leftt differential graded A-module Hom(Hom(M,N•), N•). We claim there
is an evaluation map

ev : M −→ Hom(Hom(M,N•), N•)

in the category of left differential graded A-modules. To define it, by Lemma 13.2
it suffices to construct an A-bilinear pairing

Hom(M,N•)×M −→ N•

compatible with grading and differentials. For this we take

(f, x) 7−→ f(x)

We leave it to the reader to verify this is compatible with grading, differentials, and
A-bilinear. The map ev on underlying complexes of R-modules is More on Algebra,
Item (17).

Remark 13.6.0FQ8 Let R be a ring. Let A be a differential graded R-algebra. Let M
be a right differential graded A-module. Let N• be a complex of R-modules. The
constructions above produce a left differential graded A-module Hom(M,N•) and
then a right differential graded A-module Hom(Hom(M,N•), N•). We claim there
is an evaluation map

ev : M −→ Hom(Hom(M,N•), N•)

in the category of right differential graded A-modules. To define it, by Lemma 13.2
it suffices to construct an A-bilinear pairing

M ×Hom(M,N•) −→ N•

compatible with grading and differentials. For this we take

(x, f) 7−→ (−1)deg(x) deg(f)f(x)

https://stacks.math.columbia.edu/tag/0FQ7
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We leave it to the reader to verify this is compatible with grading, differentials, and
A-bilinear. The map ev on underlying complexes of R-modules is More on Algebra,
Item (17).

Remark 13.7.0FQ9 Let R be a ring. Let A be a differential graded R-algebra. Let
M• and N• be complexes of R-modules. Let k ∈ Z and consider the isomorphism

Hom•(M•, N•)[−k] −→ Hom•(M•[k], N•)
of complexes of R-modules defined in More on Algebra, Item (18). If M• has the
structure of a left, resp. right differential graded A-module, then this is a map
of right, resp. left differential graded A-modules (with the module structures as
defined in this section). We omit the verification; we warn the reader that the
A-module structure on the shift of a left graded A-module is defined using a sign,
see Definition 11.3.

14. Projective modules over algebras

09JZ In this section we discuss projective modules over algebras analogous to Algebra,
Section 77. This section should probably be moved somewhere else.
Let R be a ring and let A be an R-algebra, see Section 2 for our conventions. It is
clear that A is a projective right A-module since HomA(A,M) = M for any right
A-module M (and thus HomA(A,−) is exact). Conversely, let P be a projective
right A-module. Then we can choose a surjection

⊕
i∈I A → P by choosing a set

{pi}i∈I of generators of P over A. Since P is projective there is a left inverse to the
surjection, and we find that P is isomorphic to a direct summand of a free module,
exactly as in the commutative case (Algebra, Lemma 77.2).
We conclude

(1) the category of A-modules has enough projectives,
(2) A is a projective A-module,
(3) every A-module is a quotient of a direct sum of copies of A,
(4) every projective A-module is a direct summand of a direct sum of copies of

A.

15. Projective modules over graded algebras

0FQA In this section we discuss projective graded modules over graded algebras analogous
to Algebra, Section 77.
Let R be a ring. Let A be a Z-graded algebra over R. Section 2 for our conventions.
Let ModA denote the category of graded right A-modules. For an integer k let A[k]
denote the shift of A. For a graded right A-module we have

HomModA
(A[k],M) = M−k

As the functor M 7→M−k is exact on ModA we conclude that A[k] is a projective
object of ModA. Conversely, suppose that P is a projective object of ModA. By
choosing a set of homogeneous generators of P as an A-module, we can find a
surjection ⊕

i∈I
A[ki] −→ P

Thus we conclude that a projective object of ModA is a direct summand of a direct
sum of the shifts A[k].

https://stacks.math.columbia.edu/tag/0FQ9
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We conclude
(1) the category of graded A-modules has enough projectives,
(2) A[k] is a projective A-module for every k ∈ Z,
(3) every graded A-module is a quotient of a direct sum of copies of the modules

A[k] for varying k,
(4) every projective A-module is a direct summand of a direct sum of copies of

the modules A[k] for varying k.

16. Projective modules and differential graded algebras

0FQB If (A,d) is a differential graded algebra and P is an object of Mod(A,d) then we say
P is projective as a graded A-module or sometimes P is graded projective to mean
that P is a projective object of the abelian category ModA of graded A-modules as
in Section 15.

Lemma 16.1.09K0 Let (A, d) be a differential graded algebra. Let M → P be a
surjective homomorphism of differential graded A-modules. If P is projective as a
graded A-module, then M → P is an admissible epimorphism.

Proof. This is immediate from the definitions. □

Lemma 16.2.09K1 Let (A, d) be a differential graded algebra. Then we have

HomMod(A,d)(A[k],M) = Ker(d : M−k →M−k+1)
and

HomK(Mod(A,d))(A[k],M) = H−k(M)
for any differential graded A-module M .

Proof. Immediate from the definitions. □

17. Injective modules over algebras

04JD In this section we discuss injective modules over algebras analogous to More on
Algebra, Section 55. This section should probably be moved somewhere else.
Let R be a ring and let A be an R-algebra, see Section 2 for our conventions. For
a right A-module M we set

M∨ = HomZ(M,Q/Z)
which we think of as a left A-module by the multiplication (af)(x) = f(xa).
Namely, ((ab)f)(x) = f(xab) = (bf)(xa) = (a(bf))(x). Conversely, if M is a
left A-module, then M∨ is a right A-module. Since Q/Z is an injective abelian
group (More on Algebra, Lemma 54.1), the functor M 7→ M∨ is exact (More on
Algebra, Lemma 55.6). Moreover, the evaluation map M → (M∨)∨ is injective for
all modules M (More on Algebra, Lemma 55.7).
We claim that A∨ is an injective right A-module. Namely, given a right A-module
N we have

HomA(N,A∨) = HomA(N,HomZ(A,Q/Z)) = N∨

and we conclude because the functor N 7→ N∨ is exact. The second equality holds
because

HomZ(N,HomZ(A,Q/Z)) = HomZ(N ⊗Z A,Q/Z)

https://stacks.math.columbia.edu/tag/09K0
https://stacks.math.columbia.edu/tag/09K1
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by Algebra, Lemma 12.8. Inside this module A-linearity exactly picks out the
bilinear maps φ : N × A → Q/Z which have the same value on x ⊗ a and xa ⊗ 1,
i.e., come from elements of N∨.

Finally, for every right A-module M we can choose a surjection
⊕

i∈I A→ M∨ to
get an injection M → (M∨)∨ →

∏
i∈I A

∨.

We conclude
(1) the category of A-modules has enough injectives,
(2) A∨ is an injective A-module, and
(3) every A-module injects into a product of copies of A∨.

18. Injective modules over graded algebras

0FQC In this section we discuss injective graded modules over graded algebras analogous
to More on Algebra, Section 55.

Let R be a ring. Let A be a Z-graded algebra over R. Section 2 for our conventions.
If M is a graded R-module we set

M∨ =
⊕

n∈Z
HomZ(M−n,Q/Z) =

⊕
n∈Z

(M−n)∨

as a graded R-module (no signs in the actions of R on the homogeneous parts).
If M has the structure of a left graded A-module, then we define a right graded
A-module structure on M∨ by letting a ∈ Am act by

(M−n)∨ → (M−n−m)∨, f 7→ f ◦ a

as in Section 13. If M has the structure of a right graded A-module, then we define
a left graded A-module structure on M∨ by letting a ∈ An act by

(M−m)∨ → (M−m−n)∨, f 7→ (−1)nmf ◦ a

as in Section 13 (the sign is forced on us because we want to use the same formula
for the case when working with differential graded modules — if you only care
about graded modules, then you can omit the sign here). On the category of (left
or right) graded A-modules the functor M 7→M∨ is exact (check on graded pieces).
Moreover, there is an injective evaluation map

ev : M −→ (M∨)∨, evn = (−1)n the evaluation map Mn → ((Mn)∨)∨

of graded R-modules, see More on Algebra, Item (17). This evaluation map is a
left, resp. right A-module homomorphism if M is a left, resp. right A-module, see
Remarks 13.5 and 13.6. Finally, given k ∈ Z there is a canonical isomorphism

M∨[−k] −→ (M [k])∨

of graded R-modules which uses a sign and which, if M is a left, resp. right A-
module, is an isomorphism of right, resp. left A-modules. See Remark 13.7.

We claim that A∨ is an injective object of the category ModA of graded right
A-modules. Namely, given a graded right A-module N we have

HomModA
(N,A∨) = HomComp(Z)(N ⊗A A,Q/Z)) = (N0)∨

by Lemma 13.2 (applied to the case where all the differentials are zero). We conclude
because the functor N 7→ (N0)∨ = (N∨)0 is exact.



DIFFERENTIAL GRADED ALGEBRA 23

Finally, for every graded right A-module M we can choose a surjection of graded
left A-modules ⊕

i∈I
A[ki]→M∨

where A[ki] denotes the shift of A by ki ∈ Z. We do this by choosing homogeneous
generators for M∨. In this way we get an injection

M → (M∨)∨ →
∏

A[ki]∨ =
∏

A∨[−ki]

Observe that the products in the formula above are products in the category of
graded modules (in other words, take products in each degree and then take the
direct sum of the pieces).
We conclude that

(1) the category of graded A-modules has enough injectives,
(2) for every k ∈ Z the module A∨[k] is injective, and
(3) every A-module injects into a product in the category of graded modules

of copies of shifts A∨[k].

19. Injective modules and differential graded algebras

0FQD If (A,d) is a differential graded algebra and I is an object of Mod(A,d) then we say
I is injective as a graded A-module or sometimes I is graded injective to mean that
I is a injective object of the abelian category ModA of graded A-modules.
Lemma 19.1.09K2 Let (A, d) be a differential graded algebra. Let I → M be an
injective homomorphism of differential graded A-modules. If I is graded injective,
then I →M is an admissible monomorphism.
Proof. This is immediate from the definitions. □

Let (A,d) be a differential graded algebra. If M is a left, resp. right differential
graded A-module, then

M∨ = Hom•(M•,Q/Z)
with A-module structure constructed in Section 18 is a right, resp. left differential
graded A-module by the discussion in Section 13. By Remarks 13.5 and 13.6 there
evaluation map of Section 18

M −→ (M∨)∨

is a homomorphism of left, resp. right differential graded A-modules
Lemma 19.2.09K3 Let (A, d) be a differential graded algebra. If M is a left differential
graded A-module and N is a right differential graded A-module, then

HomMod(A,d)(N,M
∨) = HomComp(Z)(N ⊗AM,Q/Z)

= DifferentialGradedBilinearA(N ×M,Q/Z)
Proof. The first equality is Lemma 13.2 and the second equality was shown in
Section 12. □

Lemma 19.3.09K4 Let (A, d) be a differential graded algebra. Then we have

HomMod(A,d)(M,A∨[k]) = Ker(d : (M∨)k → (M∨)k+1)
and

HomK(Mod(A,d))(M,A∨[k]) = Hk(M∨)
as functors in the differential graded A-module M .

https://stacks.math.columbia.edu/tag/09K2
https://stacks.math.columbia.edu/tag/09K3
https://stacks.math.columbia.edu/tag/09K4
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Proof. This is clear from the discussion above. □

20. P-resolutions

09KK This section is the analogue of Derived Categories, Section 29.
Let (A,d) be a differential graded algebra. Let P be a differential graded A-module.
We say P has property (P) if it there exists a filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ P
by differential graded submodules such that

(1) P =
⋃
FpP ,

(2) the inclusions FiP → Fi+1P are admissible monomorphisms,
(3) the quotients Fi+1P/FiP are isomorphic as differential graded A-modules

to a direct sum of A[k].
In fact, condition (2) is a consequence of condition (3), see Lemma 16.1. Moreover,
the reader can verify that as a graded A-module P will be isomorphic to a direct
sum of shifts of A.

Lemma 20.1.09KL Let (A, d) be a differential graded algebra. Let P be a differen-
tial graded A-module. If F• is a filtration as in property (P), then we obtain an
admissible short exact sequence

0→
⊕

FiP →
⊕

FiP → P → 0

of differential graded A-modules.

Proof. The second map is the direct sum of the inclusion maps. The first map
on the summand FiP of the source is the sum of the identity FiP → FiP and the
negative of the inclusion map FiP → Fi+1P . Choose homomorphisms si : Fi+1P →
FiP of graded A-modules which are left inverse to the inclusion maps. Composing
gives maps sj,i : FjP → FiP for all j > i. Then a left inverse of the first arrow
maps x ∈ FjP to (sj,0(x), sj,1(x), . . . , sj,j−1(x), 0, . . .) in

⊕
FiP . □

The following lemma shows that differential graded modules with property (P) are
the dual notion to K-injective modules (i.e., they are K-projective in some sense).
See Derived Categories, Definition 31.1.

Lemma 20.2.09KM Let (A, d) be a differential graded algebra. Let P be a differential
graded A-module with property (P). Then

HomK(Mod(A,d))(P,N) = 0
for all acyclic differential graded A-modules N .

Proof. We will use that K(Mod(A,d)) is a triangulated category (Proposition 10.3).
Let F• be a filtration on P as in property (P). The short exact sequence of Lemma
20.1 produces a distinguished triangle. Hence by Derived Categories, Lemma 4.2 it
suffices to show that

HomK(Mod(A,d))(FiP,N) = 0
for all acyclic differential graded A-modules N and all i. Each of the differential
graded modules FiP has a finite filtration by admissible monomorphisms, whose
graded pieces are direct sums of shifts A[k]. Thus it suffices to prove that

HomK(Mod(A,d))(A[k], N) = 0

https://stacks.math.columbia.edu/tag/09KL
https://stacks.math.columbia.edu/tag/09KM
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for all acyclic differential graded A-modules N and all k. This follows from Lemma
16.2. □

Lemma 20.3.09KN Let (A, d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism P → M of differential graded
A-modules with the following properties

(1) P →M is surjective,
(2) Ker(dP )→ Ker(dM ) is surjective, and
(3) P sits in an admissible short exact sequence 0→ P ′ → P → P ′′ → 0 where

P ′, P ′′ are direct sums of shifts of A.

Proof. Let Pk be the free A-module with generators x, y in degrees k and k + 1.
Define the structure of a differential graded A-module on Pk by setting d(x) = y
and d(y) = 0. For every element m ∈ Mk there is a homomorphism Pk → M
sending x to m and y to d(m). Thus we see that there is a surjection from a direct
sum of copies of Pk to M . This clearly produces P →M having properties (1) and
(3). To obtain property (2) note that if m ∈ Ker(dM ) has degree k, then there is a
map A[k]→M mapping 1 to m. Hence we can achieve (2) by adding a direct sum
of copies of shifts of A. □

Lemma 20.4.09KP Let (A, d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism P → M of differential graded
A-modules such that

(1) P →M is a quasi-isomorphism, and
(2) P has property (P).

Proof. Set M = M0. We inductively choose short exact sequences

0→Mi+1 → Pi →Mi → 0

where the maps Pi →Mi are chosen as in Lemma 20.3. This gives a “resolution”

. . .→ P2
f2−→ P1

f1−→ P0 →M → 0

Then we set
P =

⊕
i≥0

Pi

as an A-module with grading given by Pn =
⊕

a+b=n P
b
−a and differential (as in

the construction of the total complex associated to a double complex) by

dP (x) = f−a(x) + (−1)adP−a(x)

for x ∈ P b−a. With these conventions P is indeed a differential graded A-module.
Recalling that each Pi has a two step filtration 0→ P ′

i → Pi → P ′′
i → 0 we set

F2iP =
⊕

i≥j≥0
Pj ⊂

⊕
i≥0

Pi = P

and we add P ′
i+1 to F2iP to get F2i+1. These are differential graded submodules

and the successive quotients are direct sums of shifts of A. By Lemma 16.1 we
see that the inclusions FiP → Fi+1P are admissible monomorphisms. Finally, we
have to show that the map P → M (given by the augmentation P0 → M) is a
quasi-isomorphism. This follows from Homology, Lemma 26.2. □

https://stacks.math.columbia.edu/tag/09KN
https://stacks.math.columbia.edu/tag/09KP
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21. I-resolutions

09KQ This section is the dual of the section on P-resolutions.
Let (A,d) be a differential graded algebra. Let I be a differential graded A-module.
We say I has property (I) if it there exists a filtration

I = F0I ⊃ F1I ⊃ F2I ⊃ . . . ⊃ 0
by differential graded submodules such that

(1) I = lim I/FpI,
(2) the maps I/Fi+1I → I/FiI are admissible epimorphisms,
(3) the quotients FiI/Fi+1I are isomorphic as differential graded A-modules to

products of the modules A∨[k] constructed in Section 19.
In fact, condition (2) is a consequence of condition (3), see Lemma 19.1. The reader
can verify that as a graded module I will be isomorphic to a product of A∨[k].

Lemma 21.1.09KR Let (A, d) be a differential graded algebra. Let I be a differen-
tial graded A-module. If F• is a filtration as in property (I), then we obtain an
admissible short exact sequence

0→ I →
∏

I/FiI →
∏

I/FiI → 0

of differential graded A-modules.

Proof. Omitted. Hint: This is dual to Lemma 20.1. □

The following lemma shows that differential graded modules with property (I) are
the analogue of K-injective modules. See Derived Categories, Definition 31.1.

Lemma 21.2.09KS Let (A, d) be a differential graded algebra. Let I be a differential
graded A-module with property (I). Then

HomK(Mod(A,d))(N, I) = 0

for all acyclic differential graded A-modules N .

Proof. We will use that K(Mod(A,d)) is a triangulated category (Proposition 10.3).
Let F• be a filtration on I as in property (I). The short exact sequence of Lemma
21.1 produces a distinguished triangle. Hence by Derived Categories, Lemma 4.2 it
suffices to show that

HomK(Mod(A,d))(N, I/FiI) = 0
for all acyclic differential graded A-modules N and all i. Each of the differential
graded modules I/FiI has a finite filtration by admissible monomorphisms, whose
graded pieces are products of A∨[k]. Thus it suffices to prove that

HomK(Mod(A,d))(N,A∨[k]) = 0

for all acyclic differential graded A-modules N and all k. This follows from Lemma
19.3 and the fact that (−)∨ is an exact functor. □

Lemma 21.3.09KT Let (A, d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism M → I of differential graded
A-modules with the following properties

(1) M → I is injective,
(2) Coker(dM )→ Coker(dI) is injective, and

https://stacks.math.columbia.edu/tag/09KR
https://stacks.math.columbia.edu/tag/09KS
https://stacks.math.columbia.edu/tag/09KT
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(3) I sits in an admissible short exact sequence 0 → I ′ → I → I ′′ → 0 where
I ′, I ′′ are products of shifts of A∨.

Proof. We will use the functors N 7→ N∨ (from left to right differential graded
modules and from right to left differential graded modules) constructed in Section
19 and all of their properties. For every k ∈ Z let Qk be the free left A-module
with generators x, y in degrees k and k+1. Define the structure of a left differential
graded A-module on Qk by setting d(x) = y and d(y) = 0. Arguing exactly as in
the proof of Lemma 20.3 we find a surjection⊕

i∈I
Qki
−→M∨

of left differential graded A-modules. Then we can consider the injection

M → (M∨)∨ → (
⊕

i∈I
Qki)∨ =

∏
i∈I

Iki

where Ik = Q∨
−k is the “dual” right differential graded A-module. Further, the

short exact sequence 0 → A[−k − 1] → Qk → A[−k] → 0 produces a short exact
sequence 0→ A∨[k]→ Ik → A∨[k + 1]→ 0.
The result of the previous paragraph produces M → I having properties (1) and
(3). To obtain property (2), suppose m ∈ Coker(dM ) is a nonzero element of degree
k. Pick a map λ : Mk → Q/Z which vanishes on Im(Mk−1 →Mk) but not on m.
By Lemma 19.3 this corresponds to a homomorphism M → A∨[k] of differential
graded A-modules which does not vanish on m. Hence we can achieve (2) by adding
a product of copies of shifts of A∨. □

Lemma 21.4.09KU Let (A, d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism M → I of differential graded
A-modules such that

(1) M → I is a quasi-isomorphism, and
(2) I has property (I).

Proof. Set M = M0. We inductively choose short exact sequences
0→Mi → Ii →Mi+1 → 0

where the maps Mi → Ii are chosen as in Lemma 21.3. This gives a “resolution”

0→M → I0
f0−→ I1

f1−→ I1 → . . .

Denote I the differential graded A-module with graded parts

In =
∏

i≥0
In−i
i

and differential defined by
dI(x) = fi(x) + (−1)idIi(x)

for x ∈ In−i
i . With these conventions I is indeed a differential graded A-module.

Recalling that each Ii has a two step filtration 0→ I ′
i → Ii → I ′′

i → 0 we set

F2iI
n =

∏
j≥i

In−j
j ⊂

∏
i≥0

In−i
i = In

and we add a factor I ′
i+1 to F2iI to get F2i+1I. These are differential graded sub-

modules and the successive quotients are products of shifts of A∨. By Lemma 19.1
we see that the inclusions Fi+1I → FiI are admissible monomorphisms. Finally,

https://stacks.math.columbia.edu/tag/09KU
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we have to show that the map M → I (given by the augmentation M → I0) is a
quasi-isomorphism. This follows from Homology, Lemma 26.3. □

22. The derived category

09KV Recall that the notions of acyclic differential graded modules and quasi-isomorphism
of differential graded modules make sense (see Section 4).

Lemma 22.1.09KW Let (A, d) be a differential graded algebra. The full subcategory
Ac of K(Mod(A,d)) consisting of acyclic modules is a strictly full saturated tri-
angulated subcategory of K(Mod(A,d)). The corresponding saturated multiplicative
system (see Derived Categories, Lemma 6.10) of K(Mod(A,d)) is the class Qis of
quasi-isomorphisms. In particular, the kernel of the localization functor

Q : K(Mod(A,d))→ Qis−1K(Mod(A,d))
is Ac. Moreover, the functor H0 factors through Q.

Proof. We know that H0 is a homological functor by the long exact sequence of
homology (4.2.1). The kernel of H0 is the subcategory of acyclic objects and the
arrows with induce isomorphisms on all Hi are the quasi-isomorphisms. Thus this
lemma is a special case of Derived Categories, Lemma 6.11.
Set theoretical remark. The construction of the localization in Derived Categories,
Proposition 5.6 assumes the given triangulated category is “small”, i.e., that the
underlying collection of objects forms a set. Let Vα be a partial universe (as in
Sets, Section 5) containing (A,d) and where the cofinality of α is bigger than
ℵ0 (see Sets, Proposition 7.2). Then we can consider the category Mod(A,d),α of
differential graded A-modules contained in Vα. A straightforward check shows that
all the constructions used in the proof of Proposition 10.3 work inside of Mod(A,d),α
(because at worst we take finite direct sums of differential graded modules). Thus
we obtain a triangulated category Qis−1

α K(Mod(A,d),α). We will see below that if
β > α, then the transition functors

Qis−1
α K(Mod(A,d),α) −→ Qis−1

β K(Mod(A,d),β)
are fully faithful as the morphism sets in the quotient categories are computed
by maps in the homotopy categories from P-resolutions (the construction of a P-
resolution in the proof of Lemma 20.4 takes countable direct sums as well as direct
sums indexed over subsets of the given module). The reader should therefore think
of the category of the lemma as the union of these subcategories. □

Taking into account the set theoretical remark at the end of the proof of the pre-
ceding lemma we define the derived category as follows.

Definition 22.2.09KX Let (A,d) be a differential graded algebra. Let Ac and Qis be
as in Lemma 22.1. The derived category of (A, d) is the triangulated category

D(A,d) = K(Mod(A,d))/Ac = Qis−1K(Mod(A,d)).
We denote H0 : D(A,d) → ModR the unique functor whose composition with the
quotient functor gives back the functor H0 defined above.

Here is the promised lemma computing morphism sets in the derived category.

Lemma 22.3.09KY Let (A, d) be a differential graded algebra. Let M and N be differ-
ential graded A-modules.

https://stacks.math.columbia.edu/tag/09KW
https://stacks.math.columbia.edu/tag/09KX
https://stacks.math.columbia.edu/tag/09KY
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(1) Let P →M be a P-resolution as in Lemma 20.4. Then
HomD(A,d)(M,N) = HomK(Mod(A,d))(P,N)

(2) Let N → I be an I-resolution as in Lemma 21.4. Then
HomD(A,d)(M,N) = HomK(Mod(A,d))(M, I)

Proof. Let P →M be as in (1). Since P →M is a quasi-isomorphism we see that
HomD(A,d)(P,N) = HomD(A,d)(M,N)

by definition of the derived category. A morphism f : P → N in D(A,d) is equal
to s−1f ′ where f ′ : P → N ′ is a morphism and s : N → N ′ is a quasi-isomorphism.
Choose a distinguished triangle

N → N ′ → Q→ N [1]
As s is a quasi-isomorphism, we see thatQ is acyclic. Thus HomK(Mod(A,d))(P,Q[k]) =
0 for all k by Lemma 20.2. Since HomK(Mod(A,d))(P,−) is cohomological, we con-
clude that we can lift f ′ : P → N ′ uniquely to a morphism f : P → N . This
finishes the proof.
The proof of (2) is dual to that of (1) using Lemma 21.2 in stead of Lemma 20.2. □

Lemma 22.4.09QI Let (A, d) be a differential graded algebra. Then
(1) D(A, d) has both direct sums and products,
(2) direct sums are obtained by taking direct sums of differential graded modules,
(3) products are obtained by taking products of differential graded modules.

Proof. We will use that Mod(A,d) is an abelian category with arbitrary direct sums
and products, and that these give rise to direct sums and products in K(Mod(A,d)).
See Lemmas 4.2 and 5.4.
Let Mj be a family of differential graded A-modules. Consider the graded direct
sum M =

⊕
Mj which is a differential graded A-module with the obvious. For

a differential graded A-module N choose a quasi-isomorphism N → I where I is
a differential graded A-module with property (I). See Lemma 21.4. Using Lemma
22.3 we have

HomD(A,d)(M,N) = HomK(A,d)(M, I)

=
∏

HomK(A,d)(Mj , I)

=
∏

HomD(A,d)(Mj , N)

whence the existence of direct sums in D(A,d) as given in part (2) of the lemma.
Let Mj be a family of differential graded A-modules. Consider the product M =∏
Mj of differential graded A-modules. For a differential graded A-module N

choose a quasi-isomorphism P → N where P is a differential graded A-module
with property (P). See Lemma 20.4. Using Lemma 22.3 we have

HomD(A,d)(N,M) = HomK(A,d)(P,M)

=
∏

HomK(A,d)(P,Mj)

=
∏

HomD(A,d)(N,Mj)

whence the existence of direct sums in D(A,d) as given in part (3) of the lemma. □

https://stacks.math.columbia.edu/tag/09QI
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Remark 22.5.0FQE Let R be a ring. Let (A,d) be a differential graded R-algebra.
Using P-resolutions we can sometimes reduce statements about general objects of
D(A,d) to statements about A[k]. Namely, let T be a property of objects of D(A,d)
and assume that

(1) if Ki, i ∈ I is a family of objects of D(A,d) and T (Ki) holds for all i ∈ I,
then T (

⊕
Ki),

(2) if K → L→ M → K[1] is a distinguished triangle of D(A,d) and T holds
for two, then T holds for the third object, and

(3) T (A[k]) holds for all k ∈ Z.
Then T holds for all objects of D(A,d). This is clear from Lemmas 20.1 and 20.4.

23. The canonical delta-functor

09KZ Let (A,d) be a differential graded algebra. Consider the functor Mod(A,d) →
K(Mod(A,d)). This functor is not a δ-functor in general. However, it turns out
that the functor Mod(A,d) → D(A,d) is a δ-functor. In order to see this we have to
define the morphisms δ associated to a short exact sequence

0→ K
a−→ L

b−→M → 0

in the abelian category Mod(A,d). Consider the cone C(a) of the morphism a. We
have C(a) = L ⊕K and we define q : C(a) → M via the projection to L followed
by b. Hence a homomorphism of differential graded A-modules

q : C(a) −→M.

It is clear that q ◦ i = b where i is as in Definition 6.1. Note that, as a is injective,
the kernel of q is identified with the cone of idK which is acyclic. Hence we see that
q is a quasi-isomorphism. According to Lemma 9.4 the triangle

(K,L,C(a), a, i,−p)

is a distinguished triangle inK(Mod(A,d)). As the localization functorK(Mod(A,d))→
D(A,d) is exact we see that (K,L,C(a), a, i,−p) is a distinguished triangle in
D(A,d). Since q is a quasi-isomorphism we see that q is an isomorphism in D(A,d).
Hence we deduce that

(K,L,M, a, b,−p ◦ q−1)
is a distinguished triangle of D(A,d). This suggests the following lemma.

Lemma 23.1.09L0 Let (A, d) be a differential graded algebra. The functor Mod(A,d) →
D(A, d) defined has the natural structure of a δ-functor, with

δK→L→M = −p ◦ q−1

with p and q as explained above.

Proof. We have already seen that this choice leads to a distinguished triangle
whenever given a short exact sequence of complexes. We have to show functorial-
ity of this construction, see Derived Categories, Definition 3.6. This follows from
Lemma 6.2 with a bit of work. Compare with Derived Categories, Lemma 12.1. □

Lemma 23.2.0CRL Let (A, d) be a differential graded algebra. Let Mn be a system
of differential graded modules. Then the derived colimit hocolimMn in D(A, d) is
represented by the differential graded module colimMn.

https://stacks.math.columbia.edu/tag/0FQE
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Proof. Set M = colimMn. We have an exact sequence of differential graded
modules

0→
⊕

Mn →
⊕

Mn →M → 0

by Derived Categories, Lemma 33.6 (applied the underlying complexes of abelian
groups). The direct sums are direct sums in D(A) by Lemma 22.4. Thus the result
follows from the definition of derived colimits in Derived Categories, Definition 33.1
and the fact that a short exact sequence of complexes gives a distinguished triangle
(Lemma 23.1). □

24. Linear categories

09MI Just the definitions.

Definition 24.1.09MJ Let R be a ring. An R-linear category A is a category where
every morphism set is given the structure of an R-module and where for x, y, z ∈
Ob(A) composition law

HomA(y, z)×HomA(x, y) −→ HomA(x, z)

is R-bilinear.

Thus composition determines an R-linear map

HomA(y, z)⊗R HomA(x, y) −→ HomA(x, z)

of R-modules. Note that we do not assume R-linear categories to be additive.

Definition 24.2.09MK Let R be a ring. A functor of R-linear categories, or an R-
linear functor is a functor F : A → B where for all objects x, y of A the map
F : HomA(x, y)→ HomB(F (x), F (y)) is a homomorphism of R-modules.

25. Graded categories

09L1 Just some definitions.

Definition 25.1.09L2 Let R be a ring. A graded category A over R is a category
where every morphism set is given the structure of a graded R-module and where
for x, y, z ∈ Ob(A) composition is R-bilinear and induces a homomorphism

HomA(y, z)⊗R HomA(x, y) −→ HomA(x, z)

of graded R-modules (i.e., preserving degrees).

In this situation we denote Homi
A(x, y) the degree i part of the graded object

HomA(x, y), so that

HomA(x, y) =
⊕

i∈Z
Homi

A(x, y)

is the direct sum decomposition into graded parts.

Definition 25.2.09L3 Let R be a ring. A functor of graded categories over R, or a
graded functor is a functor F : A → B where for all objects x, y of A the map
F : HomA(x, y)→ HomA(F (x), F (y)) is a homomorphism of graded R-modules.

Given a graded category we are often interested in the corresponding “usual” cat-
egory of maps of degree 0. Here is a formal definition.

https://stacks.math.columbia.edu/tag/09MJ
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Definition 25.3.09ML Let R be a ring. Let A be a graded category over R. We let
A0 be the category with the same objects as A and with

HomA0(x, y) = Hom0
A(x, y)

the degree 0 graded piece of the graded module of morphisms of A.

Definition 25.4.09P2 Let R be a ring. Let A be a graded category over R. A direct
sum (x, y, z, i, j, p, q) in A (notation as in Homology, Remark 3.6) is a graded direct
sum if i, j, p, q are homogeneous of degree 0.

Example 25.5 (Graded category of graded objects).09MM Let B be an additive cat-
egory. Recall that we have defined the category Gr(B) of graded objects of B in
Homology, Definition 16.1. In this example, we will construct a graded category
Grgr(B) over R = Z whose associated category Grgr(B)0 recovers Gr(B). As ob-
jects of Grgr(B) we take graded objects of B. Then, given graded objects A = (Ai)
and B = (Bi) of B we set

HomGrgr(B)(A,B) =
⊕

n∈Z
Homn(A,B)

where the graded piece of degree n is the abelian group of homogeneous maps of
degree n from A to B. Explicitly we have

Homn(A,B) =
∏

p+q=n
HomB(A−q, Bp)

(observe reversal of indices and observe that we have a product here and not a
direct sum). In other words, a degree n morphism f from A to B can be seen as
a system f = (fp,q) where p, q ∈ Z, p + q = n with fp,q : A−q → Bp a morphism
of B. Given graded objects A, B, C of B composition of morphisms in Grgr(B) is
defined via the maps

Homm(B,C)×Homn(A,B) −→ Homn+m(A,C)

by simple composition (g, f) 7→ g ◦ f of homogeneous maps of graded objects. In
terms of components we have

(g ◦ f)p,r = gp,q ◦ f−q,r

where q is such that p+ q = m and −q + r = n.

Example 25.6 (Graded category of graded modules).09MN Let A be a Z-graded algebra
over a ring R. We will construct a graded category ModgrA over R whose associated
category (ModgrA )0 is the category of graded A-modules. As objects of ModgrA we
take right graded A-modules (see Section 14). Given graded A-modules L and M
we set

HomModgr
A

(L,M) =
⊕

n∈Z
Homn(L,M)

where Homn(L,M) is the set of right A-module maps L → M which are homoge-
neous of degree n, i.e., f(Li) ⊂ M i+n for all i ∈ Z. In terms of components, we
have that

Homn(L,M) ⊂
∏

p+q=n
HomR(L−q,Mp)

(observe reversal of indices) is the subset consisting of those f = (fp,q) such that

fp,q(ma) = fp−i,q+i(m)a

https://stacks.math.columbia.edu/tag/09ML
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for a ∈ Ai and m ∈ L−q−i. For graded A-modules K, L, M we define composition
in ModgrA via the maps

Homm(L,M)×Homn(K,L) −→ Homn+m(K,M)

by simple composition of right A-module maps: (g, f) 7→ g ◦ f .

Remark 25.7.09P3 Let R be a ring. Let D be an R-linear category endowed with a
collection of R-linear functors [n] : D → D, x 7→ x[n] indexed by n ∈ Z such that
[n] ◦ [m] = [n+m] and [0] = idD (equality as functors). This allows us to construct
a graded category Dgr over R with the same objects of D setting

HomDgr (x, y) =
⊕

n∈Z
HomD(x, y[n])

for x, y in D. Observe that (Dgr)0 = D (see Definition 25.3). Moreover, the graded
category Dgr inherits R-linear graded functors [n] satisfying [n]◦ [m] = [n+m] and
[0] = idDgr with the property that

HomDgr (x, y[n]) = HomDgr (x, y)[n]

as graded R-modules compatible with composition of morphisms.

Conversely, suppose given a graded category A over R endowed with a collection
of R-linear graded functors [n] satisfying [n] ◦ [m] = [n + m] and [0] = idA which
are moreover equipped with isomorphisms

HomA(x, y[n]) = HomA(x, y)[n]

as graded R-modules compatible with composition of morphisms. Then the reader
easily shows that A = (A0)gr.

Here are two examples of the relationship D ↔ A we established above:
(1) Let B be an additive category. If D = Gr(B), then A = Grgr(B) as in

Example 25.5.
(2) If A is a graded ring and D = ModA is the category of graded right A-

modules, then A = ModgrA , see Example 25.6.

26. Differential graded categories

09L4 Note that if R is a ring, then R is a differential graded algebra over itself (with
R = R0 of course). In this case a differential graded R-module is the same thing as
a complex of R-modules. In particular, given two differential graded R-modules M
and N we denote M ⊗R N the differential graded R-module corresponding to the
total complex associated to the double complex obtained by the tensor product of
the complexes of R-modules associated to M and N .

Definition 26.1.09L5 Let R be a ring. A differential graded category A over R is a
category where every morphism set is given the structure of a differential graded
R-module and where for x, y, z ∈ Ob(A) composition is R-bilinear and induces a
homomorphism

HomA(y, z)⊗R HomA(x, y) −→ HomA(x, z)

of differential graded R-modules.

https://stacks.math.columbia.edu/tag/09P3
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The final condition of the definition signifies the following: if f ∈ Homn
A(x, y) and

g ∈ Homm
A (y, z) are homogeneous of degrees n and m, then

d(g ◦ f) = d(g) ◦ f + (−1)mg ◦ d(f)
in Homn+m+1

A (x, z). This follows from the sign rule for the differential on the total
complex of a double complex, see Homology, Definition 18.3.

Definition 26.2.09L6 Let R be a ring. A functor of differential graded categories over
R is a functor F : A → B where for all objects x, y of A the map F : HomA(x, y)→
HomA(F (x), F (y)) is a homomorphism of differential graded R-modules.

Given a differential graded category we are often interested in the corresponding
categories of complexes and homotopy category. Here is a formal definition.

Definition 26.3.09L7 Let R be a ring. Let A be a differential graded category over
R. Then we let

(1) the category of complexes of A1 be the category Comp(A) whose objects
are the same as the objects of A and with

HomComp(A)(x, y) = Ker(d : Hom0
A(x, y)→ Hom1

A(x, y))
(2) the homotopy category of A be the category K(A) whose objects are the

same as the objects of A and with
HomK(A)(x, y) = H0(HomA(x, y))

Our use of the symbol K(A) is nonstandard, but at least is compatible with the
use of K(−) in other chapters of the Stacks project.

Definition 26.4.09P4 Let R be a ring. Let A be a differential graded category over
R. A direct sum (x, y, z, i, j, p, q) in A (notation as in Homology, Remark 3.6) is
a differential graded direct sum if i, j, p, q are homogeneous of degree 0 and closed,
i.e., d(i) = 0, etc.

Lemma 26.5.09L8 Let R be a ring. A functor F : A → B of differential graded
categories over R induces functors Comp(A)→ Comp(B) and K(A)→ K(B).

Proof. Omitted. □

Example 26.6 (Differential graded category of complexes).09L9 Let B be an additive
category. We will construct a differential graded category Compdg(B) over R = Z
whose associated category of complexes is Comp(B) and whose associated homo-
topy category is K(B). As objects of Compdg(B) we take complexes of B. Given
complexes A• and B• of B, we sometimes also denote A• and B• the corresponding
graded objects of B (i.e., forget about the differential). Using this abuse of notation,
we set

HomCompdg(B)(A•, B•) = HomGrgr(B)(A•, B•) =
⊕

n∈Z
Homn(A,B)

as a graded Z-module with notation and definitions as in Example 25.5. In other
words, the nth graded piece is the abelian group of homogeneous morphism of
degree n of graded objects

Homn(A•, B•) =
∏

p+q=n
HomB(A−q, Bp)

1This may be nonstandard terminology.

https://stacks.math.columbia.edu/tag/09L6
https://stacks.math.columbia.edu/tag/09L7
https://stacks.math.columbia.edu/tag/09P4
https://stacks.math.columbia.edu/tag/09L8
https://stacks.math.columbia.edu/tag/09L9


DIFFERENTIAL GRADED ALGEBRA 35

Observe reversal of indices and observe we have a direct product and not a direct
sum. For an element f ∈ Homn(A•, B•) of degree n we set

d(f) = dB ◦ f − (−1)nf ◦ dA
The sign is exactly as in More on Algebra, Section 72. To make sense of this we
think of dB and dA as maps of graded objects of B homogeneous of degree 1 and
we use composition in the category Grgr(B) on the right hand side. In terms of
components, if f = (fp,q) with fp,q : A−q → Bp we have

(26.6.1)09LA d(fp,q) = dB ◦ fp,q − (−1)p+qfp,q ◦ dA
Note that the first term of this expression is in HomB(A−q, Bp+1) and the second
term is in HomB(A−q−1, Bp). The reader checks that

(1) d has square zero,
(2) an element f in Homn(A•, B•) has d(f) = 0 if and only if the morphism

f : A• → B•[n] of graded objects of B is actually a map of complexes,
(3) in particular, the category of complexes of Compdg(B) is equal to Comp(B),
(4) the morphism of complexes defined by f as in (2) is homotopy equivalent

to zero if and only if f = d(g) for some g ∈ Homn−1(A•, B•).
(5) in particular, we obtain a canonical isomorphism

HomK(B)(A•, B•) −→ H0(HomCompdg(B)(A•, B•))

and the homotopy category of Compdg(B) is equal to K(B).
Given complexes A•, B•, C• we define composition

Homm(B•, C•)×Homn(A•, B•) −→ Homn+m(A•, C•)

by composition (g, f) 7→ g ◦ f in the graded category Grgr(B), see Example 25.5.
This defines a map of differential graded modules

HomCompdg(B)(B•, C•)⊗R HomCompdg(B)(A•, B•) −→ HomCompdg(B)(A•, C•)

as required in Definition 26.1 because

d(g ◦ f) = dC ◦ g ◦ f − (−1)n+mg ◦ f ◦ dA
= (dC ◦ g − (−1)mg ◦ dB) ◦ f + (−1)mg ◦ (dB ◦ f − (−1)nf ◦ dA)
= d(g) ◦ f + (−1)mg ◦ d(f)

as desired.

Lemma 26.7.09LB Let F : B → B′ be an additive functor between additive categories.
Then F induces a functor of differential graded categories

F : Compdg(B)→ Compdg(B′)

of Example 26.6 inducing the usual functors on the category of complexes and the
homotopy categories.

Proof. Omitted. □

Example 26.8 (Differential graded category of differential graded modules).09LC Let
(A,d) be a differential graded algebra over a ring R. We will construct a differential
graded category Moddg(A,d) over R whose category of complexes is Mod(A,d) and
whose homotopy category is K(Mod(A,d)). As objects of Moddg(A,d) we take the

https://stacks.math.columbia.edu/tag/09LB
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differential graded A-modules. Given differential graded A-modules L and M we
set

HomModdg

(A,d)
(L,M) = HomModgr

A
(L,M) =

⊕
Homn(L,M)

as a graded R-module where the right hand side is defined as in Example 25.6. In
other words, the nth graded piece Homn(L,M) is the R-module of right A-module
maps homogeneous of degree n. For an element f ∈ Homn(L,M) we set

d(f) = dM ◦ f − (−1)nf ◦ dL
To make sense of this we think of dM and dL as graded R-module maps and we
use composition of graded R-module maps. It is clear that d(f) is homogeneous of
degree n+ 1 as a graded R-module map, and it is A-linear because
d(f)(xa) = dM (f(x)a)− (−1)nf(dL(xa))

= dM (f(x))a+ (−1)deg(x)+nf(x)d(a)− (−1)nf(dL(x))a− (−1)n+deg(x)f(x)d(a)
= d(f)(x)a

as desired (observe that this calculation would not work without the sign in the
definition of our differential on Hom). Similar formulae to those of Example 26.6
hold for the differential of f in terms of components. The reader checks (in the
same way as in Example 26.6) that

(1) d has square zero,
(2) an element f in Homn(L,M) has d(f) = 0 if and only if f : L→M [n] is a

homomorphism of differential graded A-modules,
(3) in particular, the category of complexes of Moddg(A,d) is Mod(A,d),
(4) the homomorphism defined by f as in (2) is homotopy equivalent to zero if

and only if f = d(g) for some g ∈ Homn−1(L,M).
(5) in particular, we obtain a canonical isomorphism

HomK(Mod(A,d))(L,M) −→ H0(HomModdg

(A,d)
(L,M))

and the homotopy category of Moddg(A,d) is K(Mod(A,d)).
Given differential graded A-modules K, L, M we define composition

Homm(L,M)×Homn(K,L) −→ Homn+m(K,M)
by composition of homogeneous right A-module maps (g, f) 7→ g ◦ f . This defines
a map of differential graded modules

HomModdg

(A,d)
(L,M)⊗R HomModdg

(A,d)
(K,L) −→ HomModdg

(A,d)
(K,M)

as required in Definition 26.1 because
d(g ◦ f) = dM ◦ g ◦ f − (−1)n+mg ◦ f ◦ dK

= (dM ◦ g − (−1)mg ◦ dL) ◦ f + (−1)mg ◦ (dL ◦ f − (−1)nf ◦ dK)
= d(g) ◦ f + (−1)mg ◦ d(f)

as desired.

Lemma 26.9.09LD Let φ : (A, d) → (E, d) be a homomorphism of differential graded
algebras. Then φ induces a functor of differential graded categories

F : Moddg(E,d) −→ Moddg(A,d)

https://stacks.math.columbia.edu/tag/09LD
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of Example 26.8 inducing obvious restriction functors on the categories of differen-
tial graded modules and homotopy categories.

Proof. Omitted. □

Lemma 26.10.09LE Let R be a ring. Let A be a differential graded category over R.
Let x be an object of A. Let

(E, d) = HomA(x, x)
be the differential graded R-algebra of endomorphisms of x. We obtain a functor

A −→ Moddg(E,d), y 7−→ HomA(x, y)

of differential graded categories by letting E act on HomA(x, y) via composition in
A. This functor induces functors

Comp(A)→ Mod(A,d) and K(A)→ K(Mod(A,d))
by an application of Lemma 26.5.

Proof. This lemma proves itself. □

27. Obtaining triangulated categories

09P5 In this section we discuss the most general setup to which the arguments proving
Derived Categories, Proposition 10.3 and Proposition 10.3 apply.
Let R be a ring. Let A be a differential graded category over R. To make our
argument work, we impose some axioms on A:

(A) A has a zero object and differential graded direct sums of two objects (as
in Definition 26.4).

(B) there are functors [n] : A −→ A of differential graded categories such that
[0] = idA and [n+m] = [n] ◦ [m] and given isomorphisms

HomA(x, y[n]) = HomA(x, y)[n]
of differential graded R-modules compatible with composition.

Given our differential graded category A we say
(1) a sequence x → y → z of morphisms of Comp(A) is an admissible short

exact sequence if there exists an isomorphism y ∼= x ⊕ z in the underlying
graded category such that x→ z and y → z are (co)projections.

(2) a morphism x→ y of Comp(A) is an admissible monomorphism if it extends
to an admissible short exact sequence x→ y → z.

(3) a morphism y → z of Comp(A) is an admissible epimorphism if it extends
to an admissible short exact sequence x→ y → z.

The next lemma tells us an admissible short exact sequence gives a triangle, pro-
vided we have axioms (A) and (B).

Lemma 27.1.09P6 Let A be a differential graded category satisfying axioms (A) and
(B). Given an admissible short exact sequence x → y → z we obtain (see proof) a
triangle

x→ y → z → x[1]
in Comp(A) with the property that any two compositions in z[−1]→ x→ y → z →
x[1] are zero in K(A).
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Proof. Choose a diagram
x

1
//

a
��

x

y

π

??

b

��
z

1 //

s

??

z

giving the isomorphism of graded objects y ∼= x ⊕ z as in the definition of an
admissible short exact sequence. Here are some equations that hold in this situation

(1) 1 = πa and hence d(π)a = 0,
(2) 1 = bs and hence bd(s) = 0,
(3) 1 = aπ + sb and hence ad(π) + d(s)b = 0,
(4) πs = 0 and hence d(π)s+ πd(s) = 0,
(5) d(s) = aπd(s) because d(s) = (aπ + sb)d(s) and bd(s) = 0,
(6) d(π) = d(π)sb because d(π) = d(π)(aπ + sb) and d(π)a = 0,
(7) d(πd(s)) = 0 because if we postcompose it with the monomorphism a we

get d(aπd(s)) = d(d(s)) = 0, and
(8) d(d(π)s) = 0 as by (4) it is the negative of d(πd(s)) which is 0 by (7).

We’ve used repeatedly that d(a) = 0, d(b) = 0, and that d(1) = 0. By (7) we see
that

δ = πd(s) = −d(π)s : z → x[1]
is a morphism in Comp(A). By (5) we see that the composition aδ = aπd(s) = d(s)
is homotopic to zero. By (6) we see that the composition δb = −d(π)sb = d(−π) is
homotopic to zero. □

Besides axioms (A) and (B) we need an axiom concerning the existence of cones.
We formalize everything as follows.

Situation 27.2.09QJ Here R is a ring and A is a differential graded category over R
having axioms (A), (B), and

(C) given an arrow f : x → y of degree 0 with d(f) = 0 there exists an
admissible short exact sequence y → c(f) → x[1] in Comp(A) such that
the map x[1]→ y[1] of Lemma 27.1 is equal to f [1].

We will call c(f) a cone of the morphism f . If (A), (B), and (C) hold, then cones
are functorial in a weak sense.

Lemma 27.3.09P7 In Situation 27.2 suppose that

x1
f1

//

a

��

y1

b

��
x2

f2 // y2

is a diagram of Comp(A) commutative up to homotopy. Then there exists a mor-
phism c : c(f1)→ c(f2) which gives rise to a morphism of triangles

(a, b, c) : (x1, y1, c(f1))→ (x1, y1, c(f1))

in K(A).

https://stacks.math.columbia.edu/tag/09QJ
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Proof. The assumption means there exists a morphism h : x1 → y2 of degree −1
such that d(h) = bf1−f2a. Choose isomorphisms c(fi) = yi⊕xi[1] of graded objects
compatible with the morphisms yi → c(fi) → xi[1]. Let’s denote ai : yi → c(fi),
bi : c(fi) → xi[1], si : xi[1] → c(fi), and πi : c(fi) → yi the given morphisms.
Recall that xi[1]→ yi[1] is given by πid(si). By axiom (C) this means that

fi = πid(si) = −d(πi)si
(we identify Hom(xi, yi) with Hom(xi[1], yi[1]) using the shift functor [1]). Set
c = a2bπ1 + s2ab1 + a2hb. Then, using the equalities found in the proof of Lemma
27.1 we obtain

d(c) = a2bd(π1) + d(s2)ab1 + a2d(h)b1

= −a2bf1b1 + a2f2ab1 + a2(bf1 − f2a)b1

= 0

(where we have used in particular that d(π1) = d(π1)s1b1 = f1b1 and d(s2) =
a2π2d(s2) = a2f2). Thus c is a degree 0 morphism c : c(f1)→ c(f2) of A compatible
with the given morphisms yi → c(fi)→ xi[1]. □

In Situation 27.2 we say that a triangle (x, y, z, f, g, h) in K(A) is a distinguished
triangle if there exists an admissible short exact sequence x′ → y′ → z′ such that
(x, y, z, f, g, h) is isomorphic as a triangle in K(A) to the triangle (x′, y′, z′, x′ →
y′, y′ → z′, δ) constructed in Lemma 27.1. We will show below that

K(A) is a triangulated category

This result, although not as general as one might think, applies to a number of
natural generalizations of the cases covered so far in the Stacks project. Here are
some examples:

(1) Let (X,OX) be a ringed space. Let (A, d) be a sheaf of differential graded
OX -algebras. Let A be the differential graded category of differential
graded A-modules. Then K(A) is a triangulated category.

(2) Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
O-algebras. Let A be the differential graded category of differential graded
A-modules. Then K(A) is a triangulated category. See Differential Graded
Sheaves, Proposition 22.4.

(3) Two examples with a different flavor may be found in Examples, Section
69.

The following simple lemma is a key to the construction.

Lemma 27.4.09QK In Situation 27.2 given any object x of A, and the cone C(1x) of
the identity morphism 1x : x→ x, the identity morphism on C(1x) is homotopic to
zero.

Proof. Consider the admissible short exact sequence given by axiom (C).

x
a // C(1x)
π

oo
b // x[1]
s
oo

Then by Lemma 27.1, identifying hom-sets under shifting, we have 1x = πd(s) =
−d(π)s where s is regarded as a morphism in Hom−1

A (x,C(1x)). Therefore a =

https://stacks.math.columbia.edu/tag/09QK
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aπd(s) = d(s) using formula (5) of Lemma 27.1, and b = −d(π)sb = −d(π) by
formula (6) of Lemma 27.1. Hence

1C(1x) = aπ + sb = d(s)π − sd(π) = d(sπ)
since s is of degree −1. □

A more general version of the above lemma will appear in Lemma 27.13. The
following lemma is the analogue of Lemma 7.3.

Lemma 27.5.09QL In Situation 27.2 given a diagram

x
f //

a

��

y

b

��
z

g // w

in Comp(A) commuting up to homotopy. Then
(1) If f is an admissible monomorphism, then b is homotopic to a morphism

b′ which makes the diagram commute.
(2) If g is an admissible epimorphism, then a is homotopic to a morphism a′

which makes the diagram commute.

Proof. To prove (1), observe that the hypothesis implies that there is some h ∈
HomA(x,w) of degree −1 such that bf − ga = d(h). Since f is an admissible
monomorphism, there is a morphism π : y → x in the category A of degree 0. Let
b′ = b− d(hπ). Then

b′f = bf − d(hπ)f =bf − d(hπf) (since d(f) = 0)
=bf − d(h)
=ga

as desired. The proof for (2) is omitted. □

The following lemma is the analogue of Lemma 7.4.

Lemma 27.6.09QM In Situation 27.2 let α : x→ y be a morphism in Comp(A). Then
there exists a factorization in Comp(A):

x
α̃ // ỹ

π // y
s

oo

such that
(1) α̃ is an admissible monomorphism, and πα̃ = α.
(2) There exists a morphism s : y → ỹ in Comp(A) such that πs = 1y and sπ

is homotopic to 1ỹ.

Proof. By axiom (A), we may let ỹ be the differential graded direct sum of y and
C(1x), i.e., there exists a diagram

y
s // y ⊕ C(1x)
π

oo
p // C(1x)
t

oo

where all morphisms are of degree zero, and in Comp(A). Let ỹ = y⊕C(1x). Then
1ỹ = sπ + tp. Consider now the diagram

x
α̃ // ỹ

π // y
s

oo

https://stacks.math.columbia.edu/tag/09QL
https://stacks.math.columbia.edu/tag/09QM
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where α̃ is induced by the morphism x
α−→ y and the natural morphism x→ C(1x)

fitting in the admissible short exact sequence

x // C(1x)oo // x[1]oo

So the morphism C(1x) → x of degree 0 in this diagram, together with the zero
morphism y → x, induces a degree-0 morphism β : ỹ → x. Then α̃ is an admissible
monomorphism since it fits into the admissible short exact sequence

x
α̃ // ỹ // x[1]

Furthermore, πα̃ = α by the construction of α̃, and πs = 1y by the first diagram.
It remains to show that sπ is homotopic to 1ỹ. Write 1x as d(h) for some degree
−1 map. Then, our last statement follows from

1ỹ − sπ =tp
=t(dh)p (by Lemma 27.4)
=d(thp)

since dt = dp = 0, and t is of degree zero. □

The following lemma is the analogue of Lemma 7.5.

Lemma 27.7.09QN In Situation 27.2 let x1 → x2 → . . . → xn be a sequence of
composable morphisms in Comp(A). Then there exists a commutative diagram in
Comp(A):

x1 // x2 // . . . // xn

y1 //

OO

y2 //

OO

. . . // yn

OO

such that each yi → yi+1 is an admissible monomorphism and each yi → xi is a
homotopy equivalence.

Proof. The case for n = 1 is trivial: one simply takes y1 = x1 and the identity
morphism on x1 is in particular a homotopy equivalence. The case n = 2 is given
by Lemma 27.6. Suppose we have constructed the diagram up to xn−1. We apply
Lemma 27.6 to the composition yn−1 → xn−1 → xn to obtain yn. Then yn−1 → yn
will be an admissible monomorphism, and yn → xn a homotopy equivalence. □

The following lemma is the analogue of Lemma 7.6.

Lemma 27.8.09QP In Situation 27.2 let xi → yi → zi be morphisms in A (i = 1, 2, 3)
such that x2 → y2 → z2 is an admissible short exact sequence. Let b : y1 → y2 and
b′ : y2 → y3 be morphisms in Comp(A) such that

x1

0
��

// y1 //

b

��

z1

0
��

x2 // y2 // z2

and

x2

0
��

// y2 //

b′

��

z2

0
��

x3 // y3 // z3

commute up to homotopy. Then b′ ◦ b is homotopic to 0.

https://stacks.math.columbia.edu/tag/09QN
https://stacks.math.columbia.edu/tag/09QP


DIFFERENTIAL GRADED ALGEBRA 42

Proof. By Lemma 27.5, we can replace b and b′ by homotopic maps b̃ and b̃′, such
that the right square of the left diagram commutes and the left square of the right
diagram commutes. Say b = b̃+ d(h) and b′ = b̃′ + d(h′) for degree −1 morphisms
h and h′ in A. Hence

b′b = b̃′b̃+ d(b̃′h+ h′b̃+ h′d(h))

since d(b̃) = d(b̃′) = 0, i.e. b′b is homotopic to b̃′b̃. We now want to show that
b̃′b̃ = 0. Because x2

f−→ y2
g−→ z2 is an admissible short exact sequence, there exist

degree 0 morphisms π : y2 → x2 and s : z2 → y2 such that idy2 = fπ+sg. Therefore

b̃′b̃ = b̃′(fπ + sg)b̃ = 0

since gb̃ = 0 and b̃′f = 0 as consequences of the two commuting squares. □

The following lemma is the analogue of Lemma 8.1.

Lemma 27.9.09QQ In Situation 27.2 let 0 → x → y → z → 0 be an admissible short
exact sequence in Comp(A). The triangle

x // y // z
δ // x[1]

with δ : z → x[1] as defined in Lemma 27.1 is up to canonical isomorphism in
K(A), independent of the choices made in Lemma 27.1.

Proof. Suppose δ is defined by the splitting

x
a // y

b //
π
oo z

s
oo

and δ′ is defined by the splitting with π′, s′ in place of π, s. Then

s′ − s = (aπ + sb)(s′ − s) = aπs′

since bs′ = bs = 1z and πs = 0. Similarly,

π′ − π = (π′ − π)(aπ + sb) = π′sb

Since δ = πd(s) and δ′ = π′d(s′) as constructed in Lemma 27.1, we may compute

δ′ = π′d(s′) = (π + π′sb)d(s+ aπs′) = δ + d(πs′)

using πa = 1x, ba = 0, and π′sbd(s′) = π′sbaπd(s′) = 0 by formula (5) in Lemma
27.1. □

The following lemma is the analogue of Lemma 9.1.

Lemma 27.10.09QR In Situation 27.2 let f : x → y be a morphism in Comp(A).
The triangle (y, c(f), x[1], i, p, f [1]) is the triangle associated to the admissible short
exact sequence

y // c(f) // x[1]

where the cone c(f) is defined as in Lemma 27.1.

Proof. This follows from axiom (C). □

The following lemma is the analogue of Lemma 9.2.

https://stacks.math.columbia.edu/tag/09QQ
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Lemma 27.11.09QS In Situation 27.2 let α : x→ y and β : y → z define an admissible
short exact sequence

x // y // z

in Comp(A). Let (x, y, z, α, β, δ) be the associated triangle in K(A). Then, the
triangles

(z[−1], x, y, δ[−1], α, β) and (z[−1], x, c(δ[−1]), δ[−1], i, p)
are isomorphic.

Proof. We have a diagram of the form

z[−1]
δ[−1] //

1
��

x
α //

1

��

y
β //

��

α̃
oo z

1

��

β̃

oo

z[−1]
δ[−1] // x

i // c(δ[−1])
p //

ĩ

oo z
p̃
oo

with splittings to α, β, i, and p given by α̃, β̃, ĩ, and p̃ respectively. Define a mor-
phism y → c(δ[−1]) by iα̃ + p̃β and a morphism c(δ[−1]) → y by αĩ + β̃p. Let us
first check that these define morphisms in Comp(A). We remark that by identities
from Lemma 27.1, we have the relation δ[−1] = α̃d(β̃) = −d(α̃)β̃ and the relation
δ[−1] = ĩd(p̃). Then

d(α̃) = d(α̃)β̃β
= −δ[−1]β

where we have used equation (6) of Lemma 27.1 for the first equality and the
preceeding remark for the second. Similarly, we obtain d(p̃) = iδ[−1]. Hence

d(iα̃+ p̃β) = d(i)α̃+ id(α̃) + d(p̃)β + p̃d(β)
= id(α̃) + d(p̃)β
= −iδ[−1]β + iδ[−1]β
= 0

so iα̃ + p̃β is indeed a morphism of Comp(A). By a similar calculation, αĩ + β̃p
is also a morphism of Comp(A). It is immediate that these morphisms fit in the
commutative diagram. We compute:

(iα̃+ p̃β)(αĩ+ β̃p) = iα̃αĩ+ iα̃β̃p+ p̃βαĩ+ p̃ββ̃p

= ĩi+ p̃p

= 1c(δ[−1])

where we have freely used the identities of Lemma 27.1. Similarly, we compute
(αĩ+ β̃p)(iα̃+ p̃β) = 1y, so we conclude y ∼= c(δ[−1]). Hence, the two triangles in
question are isomorphic. □

The following lemma is the analogue of Lemma 9.3.

Lemma 27.12.09QT In Situation 27.2 let f1 : x1 → y1 and f2 : x2 → y2 be morphisms
in Comp(A). Let

(a, b, c) : (x1, y1, c(f1), f1, i1, p1)→ (x2, y2, c(f2), f2, i1, p1)

https://stacks.math.columbia.edu/tag/09QS
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be any morphism of triangles in K(A). If a and b are homotopy equivalences, then
so is c.

Proof. Since a and b are homotopy equivalences, they are invertible in K(A) so
let a−1 and b−1 denote their inverses in K(A), giving us a commutative diagram

x2

a−1

��

f2 // y2

b−1

��

i2 // c(f2)

c′

��
x1

f1 // y1
i1 // c(f1)

where the map c′ is defined via Lemma 27.3 applied to the left commutative box of
the above diagram. Since the diagram commutes in K(A), it suffices by Lemma 27.8
to prove the following: given a morphism of triangle (1, 1, c) : (x, y, c(f), f, i, p) →
(x, y, c(f), f, i, p) in K(A), the map c is an isomorphism in K(A). We have the
commutative diagrams in K(A):

y

1

��

// c(f)

c

��

// x[1]

1
��

y // c(f) // x[1]

⇒

y

0

��

// c(f)

c−1
��

// x[1]

0
��

y // c(f) // x[1]

Since the rows are admissible short exact sequences, we obtain the identity (c−1)2 =
0 by Lemma 27.8, from which we conclude that 2 − c is inverse to c in K(A) so
that c is an isomorphism. □

The following lemma is the analogue of Lemma 9.4.

Lemma 27.13.09QU In Situation 27.2.

(1) Given an admissible short exact sequence x α−→ y
β−→ z. Then there exists a

homotopy equivalence e : C(α)→ z such that the diagram

(27.13.1)09QV

x
α //

��

y
b //

��

C(α) −c //

e

��

x[1]

��
x

α // y
β // z

δ // x[1]

defines an isomorphism of triangles in K(A). Here y b−→ C(α) c−→ x[1] is
the admissible short exact sequence given as in axiom (C).

(2) Given a morphism α : x→ y in Comp(A), let x α̃−→ ỹ → y be the factoriza-
tion given as in Lemma 27.6, where the admissible monomorphism x

α̃−→ y
extends to the admissible short exact sequence

x
α̃ // ỹ // z

Then there exists an isomorphism of triangles

x
α̃ //

��

ỹ //

��

z
δ //

e

��

x[1]

��
x

α // y // C(α) −c // x[1]

https://stacks.math.columbia.edu/tag/09QU
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where the upper triangle is the triangle associated to the sequence x α̃−→ ỹ →
z.

Proof. For (1), we consider the more complete diagram, without the sign change
on c:

x
α //

��

y
π
oo

b //

��

C(α)
p

oo
c //

e

��

x[1]
σ
oo

��

α // y[1]
π
oo

x
α // y

β //
π
oo z

δ //
s

oo

f

OO

x[1]

where the admissible short exact sequence x α−→ y
β−→ z is given the splitting π, s,

and the admissible short exact sequence y b−→ C(α) c−→ x[1] is given the splitting p,
σ. Note that (identifying hom-sets under shifting)

α = pd(σ) = −d(p)σ, δ = πd(s) = −d(π)s
by the construction in Lemma 27.1.
We define e = βp and f = bs − σδ. We first check that they are morphisms in
Comp(A). To show that d(e) = βd(p) vanishes, it suffices to show that βd(p)b and
βd(p)σ both vanish, whereas

βd(p)b = βd(pb) = βd(1y) = 0, βd(p)σ = −βα = 0
Similarly, to check that d(f) = bd(s) − d(σ)δ vanishes, it suffices to check the
post-compositions by p and c both vanish, whereas

pbd(s)− pd(σ)δ =d(s)− αδ = d(s)− απd(s) = 0
cbd(s)− cd(σ)δ =− cd(σ)δ = −d(cσ)δ = 0

The commutativity of left two squares of the diagram 27.13.1 follows directly from
definition. Before we prove the commutativity of the right square (up to homotopy),
we first check that e is a homotopy equivalence. Clearly,

ef = βp(bs− σδ) = βs = 1z
To check that fe is homotopic to 1C(α), we first observe

bα = bpd(α) = d(σ), αc = −d(p)σc = −d(p), d(π)p = d(π)sβp = −δβp
Using these identities, we compute

1C(α) =bp+ σc (from y
b−→ C(α) c−→ x[1])

=b(απ + sβ)p+ σ(πα)c (from x
α−→ y

β−→ z)
=d(σ)πp+ bsβp− σπd(p) (by the first two identities above)
=d(σ)πp+ bsβp− σδβp+ σδβp− σπd(p)
=(bs− σδ)βp+ d(σ)πp− σd(π)p− σπd(p) (by the third identity above)
=fe+ d(σπp)

since σ ∈ Hom−1(x,C(α)) (cf. proof of Lemma 27.4). Hence e and f are homotopy
inverses. Finally, to check that the right square of diagram 27.13.1 commutes up
to homotopy, it suffices to check that −cf = δ. This follows from

−cf = −c(bs− σδ) = cσδ = δ
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since cb = 0.
For (2), consider the factorization x

α̃−→ ỹ → y given as in Lemma 27.6, so the
second morphism is a homotopy equivalence. By Lemmas 27.3 and 27.12, there
exists an isomorphism of triangles between

x
α−→ y → C(α)→ x[1] and x

α̃−→ ỹ → C(α̃)→ x[1]
Since we can compose isomorphisms of triangles, by replacing α by α̃, y by ỹ, and
C(α) by C(α̃), we may assume α is an admissible monomorphism. In this case, the
result follows from (1). □

The following lemma is the analogue of Lemma 10.1.

Lemma 27.14.09QW In Situation 27.2 the homotopy category K(A) with its natural
translation functors and distinguished triangles is a pre-triangulated category.

Proof. We will verify each of TR1, TR2, and TR3.
Proof of TR1. By definition every triangle isomorphic to a distinguished one is
distinguished. Since

x
1x // x // 0

is an admissible short exact sequence, (x, x, 0, 1x, 0, 0) is a distinguished trian-
gle. Moreover, given a morphism α : x → y in Comp(A), the triangle given by
(x, y, c(α), α, i,−p) is distinguished by Lemma 27.13.
Proof of TR2. Let (x, y, z, α, β, γ) be a triangle and suppose (y, z, x[1], β, γ,−α[1])
is distinguished. Then there exists an admissible short exact sequence 0 → x′ →
y′ → z′ → 0 such that the associated triangle (x′, y′, z′, α′, β′, γ′) is isomorphic to
(y, z, x[1], β, γ,−α[1]). After rotating, we conclude that (x, y, z, α, β, γ) is isomor-
phic to (z′[−1], x′, y′, γ′[−1], α′, β′). By Lemma 27.11, we deduce that (z′[−1], x′, y′, γ′[−1], α′, β′)
is isomorphic to (z′[−1], x′, c(γ′[−1]), γ′[−1], i, p). Composing the two isomorphisms
with sign changes as indicated in the following diagram:

x
α //

��

y
β //

��

z
γ //

��

x[1]

��
z′[−1]

−γ′[−1] //

−1z′[−1]

��

x
α′

// y′ β′
//

��

z′

−1z′

��
z′[−1]

γ′[−1] // x
α′
// c(γ′[−1]) −p // z′

We conclude that (x, y, z, α, β, γ) is distinguished by Lemma 27.13 (2). Con-
versely, suppose that (x, y, z, α, β, γ) is distinguished, so that by Lemma 27.13
(1), it is isomorphic to a triangle of the form (x′, y′, c(α′), α′, i,−p) for some mor-
phism α′ : x′ → y′ in Comp(A). The rotated triangle (y, z, x[1], β, γ,−α[1])
is isomorphic to the triangle (y′, c(α′), x′[1], i,−p,−α[1]) which is isomorphic to
(y′, c(α′), x′[1], i, p, α[1]). By Lemma 27.10, this triangle is distinguished, from
which it follows that (y, z, x[1], β, γ,−α[1]) is distinguished.
Proof of TR3: Suppose (x, y, z, α, β, γ) and (x′, y′, z′, α′, β′, γ′) are distinguished
triangles of Comp(A) and let f : x → x′ and g : y → y′ be morphisms such
that α′ ◦ f = g ◦ α. By Lemma 27.13, we may assume that (x, y, z, α, β, γ) =

https://stacks.math.columbia.edu/tag/09QW
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(x, y, c(α), α, i,−p) and (x′, y′, z′, α′, β′, γ′) = (x′, y′, c(α′), α′, i′,−p′). Now apply
Lemma 27.3 and we are done. □

The following lemma is the analogue of Lemma 10.2.

Lemma 27.15.09QX In Situation 27.2 given admissible monomorphisms x α−→ y, y β−→ z
in A, there exist distinguished triangles (x, y, q1, α, p1, δ1), (x, z, q2, βα, p2, δ2) and
(y, z, q3, β, p3, δ3) for which TR4 holds.

Proof. Given admissible monomorphisms x α−→ y and y
β−→ z, we can find distin-

guished triangles, via their extensions to admissible short exact sequences,

x
α // y
π1
oo

p1 // q1
δ1 //

s1
oo x[1]

x
βα // z
π1π3
oo

p2 // q2
δ2 //

s2
oo x[1]

y
β // z
π3
oo

p3 // q3
δ3 //

s3
oo x[1]

In these diagrams, the maps δi are defined as δi = πid(si) analagous to the maps
defined in Lemma 27.1. They fit in the following solid commutative diagram

x
α //

βα

%%

y

β

��

π1
oo

p1 // q1
δ1 //

s1
oo

p2βs1

��

x[1]

z

π3

OO

p3

��

p2

%%

π1π3

ee

q3

s3

OO

δ3

��

q2p3s2
oo

s2

ee

δ2

%%
y[1] x[1]

where we have defined the dashed arrows as indicated. Clearly, their composition
p3s2p2βs1 = 0 since s2p2 = 0. We claim that they both are morphisms of Comp(A).
We can check this using equations in Lemma 27.1:

d(p2βs1) = p2βd(s1) = p2βαπ1d(s1) = 0

since p2βα = 0, and

d(p3s2) = p3d(s2) = p3βαπ1π3d(s2) = 0

since p3β = 0. To check that q1 → q2 → q3 is an admissible short exact sequence,
it remains to show that in the underlying graded category, q2 = q1 ⊕ q3 with the
above two morphisms as coprojection and projection. To do this, observe that in
the underlying graded category C, there hold

y = x⊕ q1, z = y ⊕ q3 = x⊕ q1 ⊕ q3

https://stacks.math.columbia.edu/tag/09QX
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where π1π3 gives the projection morphism onto the first factor: x⊕q1⊕q3 → z. By
axiom (A) on A, C is an additive category, hence we may apply Homology, Lemma
3.10 and conclude that

Ker(π1π3) = q1 ⊕ q3

in C. Another application of Homology, Lemma 3.10 to z = x⊕q2 gives Ker(π1π3) =
q2. Hence q2 ∼= q1 ⊕ q3 in C. It is clear that the dashed morphisms defined above
give coprojection and projection.

Finally, we have to check that the morphism δ : q3 → q1[1] induced by the admissible
short exact sequence q1 → q2 → q3 agrees with p1δ3. By the construction in Lemma
27.1, the morphism δ is given by

p1π3s2d(p2s3) =p1π3s2p2d(s3)
=p1π3(1− βαπ1π3)d(s3)
=p1π3d(s3) (since π3β = 0)
=p1δ3

as desired. The proof is complete. □

Putting everything together we finally obtain the analogue of Proposition 10.3.

Proposition 27.16.09QY In Situation 27.2 the homotopy category K(A) with its nat-
ural translation functors and distinguished triangles is a triangulated category.

Proof. By Lemma 27.14 we know that K(A) is pre-triangulated. Combining Lem-
mas 27.7 and 27.15 with Derived Categories, Lemma 4.15, we conclude that K(A)
is a triangulated category. □

Lemma 27.17.0FQF Let R be a ring. Let F : A → B be a functor between differential
graded categories over R satisfying axioms (A), (B), and (C) such that F (x[1]) =
F (x)[1]. Then F induces an exact functor K(A)→ K(B) of triangulated categories.

Proof. Namely, if x → y → z is an admissible short exact sequence in Comp(A),
then F (x) → F (y) → F (z) is an admissible short exact sequence in Comp(B).
Moreover, the “boundary” morphism δ = πd(s) : z → x[1] constructed in Lemma
27.1 produces the morphism F (δ) : F (z) → F (x[1]) = F (x)[1] which is equal to
the boundary map F (π)d(F (s)) for the admissible short exact sequence F (x) →
F (y)→ F (z). □

28. Bimodules

0FQG We continue the discussion started in Section 12.

Definition 28.1.0FQH Bimodules. Let R be a ring.
(1) Let A and B be R-algebras. An (A,B)-bimodule is an R-module M equip-

pend with R-bilinear maps

A×M →M, (a, x) 7→ ax and M ×B →M, (x, b) 7→ xb

such that the following hold
(a) a′(ax) = (a′a)x and (xb)b′ = x(bb′),
(b) a(xb) = (ax)b, and
(c) 1x = x = x1.

https://stacks.math.columbia.edu/tag/09QY
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(2) Let A and B be Z-graded R-algebras. A graded (A,B)-bimodule is an
(A,B)-bimodule M which has a grading M =

⊕
Mn such that AnMm ⊂

Mn+m and MnBm ⊂Mn+m.
(3) Let A and B be differential graded R-algebras. A differential graded (A,B)-

bimodule is a graded (A,B)-bimodule which comes equipped with a differ-
ential d : M → M homogeneous of degree 1 such that d(ax) = d(a)x +
(−1)deg(a)ad(x) and d(xb) = d(x)b+ (−1)deg(x)xd(b) for homogeneous ele-
ments a ∈ A, x ∈M , b ∈ B.

Observe that a differential graded (A,B)-bimodule M is the same thing as a right
differential graded B-module which is also a left differential graded A-module such
that the grading and differentials agree and such that the A-module structure com-
mutes with the B-module structure. Here is a precise statement.

Lemma 28.2.0FQI Let R be a ring. Let (A, d) and (B, d) be differential graded al-
gebras over R. Let M be a right differential graded B-module. There is a 1-to-1
correspondence between (A,B)-bimodule structures on M compatible with the given
differential graded B-module structure and homomorphisms

A −→ HomModdg

(B,d)
(M,M)

of differential graded R-algebras.

Proof. Let µ : A ×M → M define a left differential graded A-module structure
on the underlying complex of R-modules M• of M . By Lemma 13.1 the structure
µ corresponds to a map γ : A→ Hom•(M•,M•) of differential graded R-algebras.
The assertion of the lemma is simply that µ commutes with the B-action, if and
only if γ ends up inside

HomModdg

(B,d)
(M,M) ⊂ Hom•(M•,M•)

We omit the detailed calculation. □

Let M be a differential graded (A,B)-bimodule. Recall from Section 11 that the
left differential graded A-module structure corresponds to a right differential graded
Aopp-module structure. Since the A and B module structures commute this gives
M the structure of a differential graded Aopp ⊗R B-module:

x · (a⊗ b) = (−1)deg(a) deg(x)axb

Conversely, if we have a differential graded Aopp⊗R B-module M , then we can use
the formula above to get a differential graded (A,B)-bimodule.

Lemma 28.3.0FQJ Let R be a ring. Let (A, d) and (B, d) be differential graded algebras
over R. The construction above defines an equivalence of categories

differential graded
(A,B)-bimodules ←→

right differential graded
Aopp ⊗R B-modules

Proof. Immediate from discussion the above. □

Let R be a ring. Let (A,d) and (B, d) be differential graded R-algebras. Let P be
a differential graded (A,B)-bimodule. We say P has property (P) if it there exists
a filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ P
by differential graded (A,B)-bimodules such that

https://stacks.math.columbia.edu/tag/0FQI
https://stacks.math.columbia.edu/tag/0FQJ
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(1) P =
⋃
FpP ,

(2) the inclusions FiP → Fi+1P are split as graded (A,B)-bimodule maps,
(3) the quotients Fi+1P/FiP are isomorphic as differential graded (A,B)-bimodules

to a direct sum of (A⊗R B)[k].

Lemma 28.4.0FQK Let R be a ring. Let (A, d) and (B, d) be differential graded R-
algebras. Let M be a differential graded (A,B)-bimodule. There exists a homomor-
phism P →M of differential graded (A,B)-bimodules which is a quasi-isomorphism
such that P has property (P) as defined above.

Proof. Immediate from Lemmas 28.3 and 20.4. □

Lemma 28.5.0FQL Let R be a ring. Let (A, d) and (B, d) be differential graded R-
algebras. Let P be a differential graded (A,B)-bimodule having property (P) with
corresponding filtration F•, then we obtain a short exact sequence

0→
⊕

FiP →
⊕

FiP → P → 0

of differential graded (A,B)-bimodules which is split as a sequence of graded (A,B)-
bimodules.

Proof. Immediate from Lemmas 28.3 and 20.1. □

29. Bimodules and tensor product

0FQM Let R be a ring. Let A and B be R-algebras. Let M be a right A-module. Let N
be a (A,B)-bimodule. Then M ⊗A N is a right B-module.

If in the situation of the previous paragraph A and B are Z-graded algebras, M is
a graded A-module, and N is a graded (A,B)-bimodule, then M ⊗A N is a right
graded B-module. The construction is functorial in M and defines a functor

−⊗A N : ModgrA −→ ModgrB
of graded categories as in Example 25.6. Namely, if M and M ′ are graded A-
modules and f : M → M ′ is an A-module homomorphism homogeneous of degree
n, then f⊗ idN : M⊗AN →M ′⊗AN is a B-module homomorphism homogeneous
of degree n.

If in the situation of the previous paragraph (A,d) and (B, d) are differential graded
algebras, M is a differential graded A-module, and N is a differential graded (A,B)-
bimodule, then M ⊗A N is a right differential graded B-module.

Lemma 29.1.09LM Let R be a ring. Let (A, d) and (B, d) be differential graded algebras
over R. Let N be a differential graded (A,B)-bimodule. Then M 7→M⊗AN defines
a functor

−⊗A N : Moddg(A,d) −→ Moddg(B,d)

of differential graded categories. This functor induces functors

Mod(A,d) → Mod(B,d) and K(Mod(A,d))→ K(Mod(B,d))

by an application of Lemma 26.5.

https://stacks.math.columbia.edu/tag/0FQK
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Proof. Above we have seen how the construction defines a functor of underlying
graded categories. Thus it suffices to show that the construction is compatible with
differentials. Let M and M ′ be differential graded A-modules and let f : M →M ′

be an A-module homomorphism which is homogeneous of degree n. Then we have
d(f) = dM ′ ◦ f − (−1)nf ◦ dM

On the other hand, we have
d(f ⊗ idN ) = dM ′⊗AN ◦ (f ⊗ idN )− (−1)n(f ⊗ idN ) ◦ dM⊗AN

Applying this to an element x⊗ y with x ∈M and y ∈ N homogeneous we get
d(f ⊗ idN )(x⊗ y) =dM ′(f(x))⊗ y + (−1)n+deg(x)f(x)⊗ dN (y)

− (−1)nf(dM (x))⊗ y − (−1)n+deg(x)f(x)⊗ dN (y)
=d(f)(x⊗ y)

Thus we see that d(f)⊗ idN = d(f ⊗ idN ) and the proof is complete. □

Remark 29.2.0FQN Let R be a ring. Let (A,d) and (B, d) be differential graded
algebras over R. Let N be a differential graded (A,B)-bimodule. Let M be a right
differential graded A-module. Then for every k ∈ Z there is an isomorphism

(M ⊗A N)[k] −→M [k]⊗A N
of right differential graded B-modules defined without the intervention of signs, see
More on Algebra, Section 72.

If we have a ring R and R-algebras A, B, and C, a right A-module M , an (A,B)-
bimodule N , and a (B,C)-bimodule N ′, then N ⊗B N ′ is a (A,C)-bimodule and
we have

(M ⊗A N)⊗B N ′ = M ⊗A (N ⊗B N ′)
This equality continuous to hold in the graded and in the differential graded case.
See More on Algebra, Section 72 for sign rules.

30. Bimodules and internal hom

0FQP Let R be a ring. If A is an R-algebra (see our conventions in Section 2) and M ,
M ′ are right A-modules, then we define

HomA(M,M ′) = {f : M →M ′ | f is A-linear}
as usual.
Let R-be a ring. Let A and B be R-algebras. Let N be an (A,B)-bimodule. Let
N ′ be a right B-module. In this situation we will think of

HomB(N,N ′)
as a right A-module using precomposition.
Let R-be a ring. Let A and B be Z-graded R-algebras. Let N be a graded (A,B)-
bimodule. Let N ′ be a right graded B-module. In this situation we will think of
the graded R-module

HomModgr
B

(N,N ′)
defined in Example 25.6 as a right graded A-module using precomposition. The
construction is functorial in N ′ and defines a functor

HomModgr
B

(N,−) : ModgrB −→ ModgrA

https://stacks.math.columbia.edu/tag/0FQN
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of graded categories as in Example 25.6. Namely, if N1 and N2 are graded B-
modules and f : N1 → N2 is a B-module homomorphism homogeneous of degree
n, then the induced map HomModgr

B
(N,N1) → HomModgr

B
(N,N2) is an A-module

homomorphism homogeneous of degree n.

Let R be a ring. Let A and B be differential Z-graded R-algebras. Let N be a
differential graded (A,B)-bimodule. LetN ′ be a right differential graded B-module.
In this situation we will think of the differential graded R-module

HomModdg

(B,d)
(N,N ′)

defined in Example 26.8 as a right differential graded A-module using precomposi-
tion as in the graded case. This is compatible with differentials because multipli-
cation is the composition

HomModdg
B

(N,N ′)⊗RA→ HomModdg
B

(N,N ′)⊗RHomModdg
B

(N,N)→ HomModdg
B

(N,N ′)

The first arrow uses the map of Lemma 28.2 and the second arrow is the composition
in the differential graded category Moddg(B,d).

Lemma 30.1.0FQQ Let R be a ring. Let (A, d) and (B, d) be differential graded algebras
over R. Let N be a differential graded (A,B)-bimodule. The construction above
defines a functor

HomModdg

(B,d)
(N,−) : Moddg(B,d) −→ Moddg(A,d)

of differential graded categories. This functor induces functors

Mod(B,d) → Mod(A,d) and K(Mod(B,d))→ K(Mod(A,d))

by an application of Lemma 26.5.

Proof. Above we have seen how the construction defines a functor of underlying
graded categories. Thus it suffices to show that the construction is compatible with
differentials. Let N1 and N2 be differential graded B-modules. Write

H12 = HomModdg

(B,d)
(N1, N2), H1 = HomModdg

(B,d)
(N,N1), H2 = HomModdg

(B,d)
(N,N2)

Consider the composition
c : H12 ⊗R H1 −→ H2

in the differential graded category Moddg(B,d). Let f : N1 → N2 be a B-module
homomorphism which is homogeneous of degree n, in other words, f ∈ Hn

12. The
functor in the lemma sends f to cf : H1 → H2, g 7→ c(f, g). Simlarly for d(f). On
the other hand, the differential on

HomModdg

(A,d)
(H1, H2)

sends cf to dH2 ◦cf −(−1)ncf ◦dH1 . As c is a morphism of complexes of R-modules
we have dc(f, g) = c(df, g) + (−1)nc(f, dg). Hence we see that

(dcf )(g) = dc(f, g)− (−1)nc(f, dg)
= c(df, g) + (−1)nc(f, dg)− (−1)nc(f, dg)
= c(df, g) = cdf (g)

and the proof is complete. □

https://stacks.math.columbia.edu/tag/0FQQ
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Remark 30.2.0FQR Let R be a ring. Let (A,d) and (B, d) be differential graded
algebras over R. Let N be a differential graded (A,B)-bimodule. Let N ′ be a right
differential graded B-module. Then for every k ∈ Z there is an isomorphism

HomModgr
B

(N,N ′)[k] −→ HomModgr
B

(N,N ′[k])
of right differential graded A-modules defined without the intervention of signs, see
More on Algebra, Section 72.
Lemma 30.3.09LN Let R be a ring. Let A and B be R-algebras. Let M be a right A-
module, N an (A,B)-bimodule, and N ′ a right B-module. Then we have a canonical
isomorphism

HomB(M ⊗A N,N ′) = HomA(M,HomB(N,N ′))
of R-modules. If A, B, M , N , N ′ are compatibly graded, then we have a canonical
isomorphism

HomModgr
B

(M ⊗A N,N ′) = HomModgr
A

(M,HomModgr
B

(N,N ′))

of graded R-modules If A, B, M , N , N ′ are compatibly differential graded, then we
have a canonical isomorphism

HomModdg

(B,d)
(M ⊗A N,N ′) = HomModdg

(A,d)
(M,HomModdg

(B,d)
(N,N ′))

of complexes of R-modules.
Proof. Omitted. Hint: in the ungraded case interpret both sides as A-bilinear
maps ψ : M × N → N ′ which are B-linear on the right. In the (differential)
graded case, use the isomorphism of More on Algebra, Lemma 71.1 and check it
is compatible with the module structures. Alternatively, use the isomorphism of
Lemma 13.2 and show that it is compatible with the B-module structures. □

31. Derived Hom

09LF This section is analogous to More on Algebra, Section 73.
Let R be a ring. Let (A,d) and (B, d) be differential graded algebras over R. Let
N be a differential graded (A,B)-bimodule. Consider the functor
(31.0.1)09LG HomModdg

(B,d)
(N,−) : Mod(B,d) −→ Mod(A,d)

of Section 30.
Lemma 31.1.09LH The functor (31.0.1) defines an exact functor K(Mod(B,d)) →
K(Mod(A,d)) of triangulated categories.
Proof. Via Lemma 30.1 and Remark 30.2 this follows from the general principle
of Lemma 27.17. □

Recall that we have an exact functor of triangulated categories
HomModdg

(B,d)
(N,−) : K(Mod(B,d))→ K(Mod(A,d))

see Lemma 31.1. Consider the diagram

K(Mod(B,d))

��

see above
//

F
))

K(Mod(A,d))

��
D(B, d) // D(A,d)

https://stacks.math.columbia.edu/tag/0FQR
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We would like to construct a dotted arrow as the right derived functor of the com-
position F . (Warning: in most interesting cases the diagram will not commute.)
Namely, in the general setting of Derived Categories, Section 14 we want to com-
pute the right derived functor of F with respect to the multiplicative system of
quasi-isomorphisms in K(Mod(A,d)).

Lemma 31.2.09LI In the situation above, the right derived functor of F exists. We
denote it RHom(N,−) : D(B, d)→ D(A, d).

Proof. We will use Derived Categories, Lemma 14.15 to prove this. As our collec-
tion I of objects we will use the objects with property (I). Property (1) was shown
in Lemma 21.4. Property (2) holds because if s : I → I ′ is a quasi-isomorphism of
modules with property (I), then s is a homotopy equivalence by Lemma 22.3. □

Lemma 31.3.0BYV Let R be a ring. Let (A, d) and (B, d) be differential graded
R-algebras. Let f : N → N ′ be a homomorphism of differential graded (A,B)-
bimodules. Then f induces a morphism of functors

− ◦ f : RHom(N ′,−) −→ RHom(N,−)

If f is a quasi-isomorphism, then f ◦ − is an isomorphism of functors.

Proof. Write B = Moddg(B,d) the differential graded category of differential graded
B-modules, see Example 26.8. Let I be a differential graded B-module with prop-
erty (I). Then f ◦ − : HomB(N ′, I) → HomB(N, I) is a map of differential graded
A-modules. Moreover, this is functorial with respect to I. Since the functors
RHom(N ′,−) and RHom(N,−) are computed by applying HomB into objects with
property (I) (Lemma 31.2) we obtain a transformation of functors as indicated.

Assume that f is a quasi-isomorphism. Let F• be the given filtration on I. Since
I = lim I/FpI we see that HomB(N ′, I) = lim HomB(N ′, I/FpI) and HomB(N, I) =
lim HomB(N, I/FpI). Since the transition maps in the system I/FpI are split as
graded modules, we see that the transition maps in the systems HomB(N ′, I/FpI)
and HomB(N, I/FpI) are surjective. Hence HomB(N ′, I), resp. HomB(N, I) viewed
as a complex of abelian groups computesR lim of the system of complexes HomB(N ′, I/FpI),
resp. HomB(N, I/FpI). See More on Algebra, Lemma 86.1. Thus it suffices to prove
each

HomB(N ′, I/FpI)→ HomB(N, I/FpI)

is a quasi-isomorphism. Since the surjections I/Fp+1I → I/FpI are split as maps
of graded B-modules we see that

0→ HomB(N ′, FpI/Fp+1I)→ HomB(N ′, I/Fp+1I)→ HomB(N ′, I/FpI)→ 0

is a short exact sequence of differential graded A-modules. There is a similar
sequence for N and f induces a map of short exact sequences. Hence by induc-
tion on p (starting with p = 0 when I/F0I = 0) we conclude that it suffices
to show that the map HomB(N ′, FpI/Fp+1I) → HomB(N,FpI/Fp+1I) is a quasi-
isomorphism. Since FpI/Fp+1I is a product of shifts of A∨ it suffice to prove
HomB(N ′, B∨[k]) → HomB(N,B∨[k]) is a quasi-isomorphism. By Lemma 19.3 it
suffices to show (N ′)∨ → N∨ is a quasi-isomorphism. This is true because f is a
quasi-isomorphism and ( )∨ is an exact functor. □

https://stacks.math.columbia.edu/tag/09LI
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Lemma 31.4.0CS5 Let (A, d) and (B, d) be differential graded algebras over a ring R.
Let N be a differential graded (A,B)-bimodule. Then for every n ∈ Z there are
isomorphisms

Hn(RHom(N,M)) = ExtnD(B,d)(N,M)
of R-modules functorial in M . It is also functorial in N with respect to the operation
described in Lemma 31.3.

Proof. In the proof of Lemma 31.2 we have seen

RHom(N,M) = HomModdg

(B,d)
(N, I)

as a differential graded A-module where M → I is a quasi-isomorphism of M into a
differential graded B-module with property (I). Hence this complex has the correct
cohomology modules by Lemma 22.3. We omit a discussion of the functorial nature
of these identifications. □

Lemma 31.5.0BYW Let R be a ring. Let (A, d) and (B, d) be differential graded R-
algebras. Let N be a differential graded (A,B)-bimodule. If HomD(B,d)(N,N ′) =
HomK(Mod(B,d))(N,N ′) for all N ′ ∈ K(B, d), for example if N has property (P) as
a differential graded B-module, then

RHom(N,M) = HomModdg

(B,d)
(N,M)

functorially in M in D(B, d).

Proof. By construction (Lemma 31.2) to find RHom(N,M) we choose a quasi-
isomorphism M → I where I is a differential graded B-module with property (I)
and we set RHom(N,M) = HomModdg

(B,d)
(N, I). By assumption the map

HomModdg

(B,d)
(N,M) −→ HomModdg

(B,d)
(N, I)

induced by M → I is a quasi-isomorphism, see discussion in Example 26.8. This
proves the lemma. If N has property (P) as a B-module, then we see that the
assumption is satisfied by Lemma 22.3. □

32. Variant of derived Hom

09LJ Let A be an abelian category. Consider the differential graded category Compdg(A)
of complexes of A, see Example 26.6. Let K• be a complex of A. Set

(E,d) = HomCompdg(A)(K•,K•)

and consider the functor of differential graded categories

Compdg(A) −→ Moddg(E,d), X• 7−→ HomCompdg(A)(K•, X•)

of Lemma 26.10.

Lemma 32.1.09LK In the situation above. If the right derived functor RHom(K•,−)
of Hom(K•,−) : K(A)→ D(Ab) is everywhere defined on D(A), then we obtain a
canonical exact functor

RHom(K•,−) : D(A) −→ D(E, d)

of triangulated categories which reduces to the usual one on taking associated com-
plexes of abelian groups.

https://stacks.math.columbia.edu/tag/0CS5
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Proof. Note that we have an associated functor K(A)→ K(Mod(E,d)) by Lemma
26.10. We claim this functor is an exact functor of triangulated categories. Namely,
let f : A• → B• be a map of complexes of A. Then a computation shows that

HomCompdg(A)(K•, C(f)•) = C
(
HomCompdg(A)(K•, A•)→ HomCompdg(A)(K•, B•)

)
where the right hand side is the cone in Mod(E,d) defined earlier in this chapter.
This shows that our functor is compatible with cones, hence with distinguished tri-
angles. Let X• be an object of K(A). Consider the category of quasi-isomorphisms
s : X• → Y •. We are given that the functor (s : X• → Y •) 7→ HomA(K•, Y •)
is essentially constant when viewed in D(Ab). But since the forgetful functor
D(E,d)→ D(Ab) is compatible with taking cohomology, the same thing is true in
D(E,d). This proves the lemma. □

Warning: Although the lemma holds as stated and may be useful as stated, the
differential algebra E isn’t the “correct” one unless Hn(E) = ExtnD(A)(K•,K•) for
all n ∈ Z.

33. Derived tensor product

09LP This section is analogous to More on Algebra, Section 60.

Let R be a ring. Let (A,d) and (B, d) be differential graded algebras over R. Let
N be a differential graded (A,B)-bimodule. Consider the functor

(33.0.1)09LQ Mod(A,d) −→ Mod(B,d), M 7−→M ⊗A N

defined in Section 29.

Lemma 33.1.09LR The functor (33.0.1) defines an exact functor of triangulated cat-
egories K(Mod(A,d))→ K(Mod(B,d)).

Proof. Via Lemma 29.1 and Remark 29.2 this follows from the general principle
of Lemma 27.17. □

At this point we can consider the diagram

K(Mod(A,d))

��

−⊗AN
//

F
))

K(Mod(B,d))

��
D(A,d) // D(B, d)

The dotted arrow that we will construct below will be the left derived functor of the
composition F . (Warning: the diagram will not commute.) Namely, in the general
setting of Derived Categories, Section 14 we want to compute the left derived
functor of F with respect to the multiplicative system of quasi-isomorphisms in
K(Mod(A,d)).

Lemma 33.2.09LS In the situation above, the left derived functor of F exists. We
denote it −⊗L

A N : D(A, d)→ D(B, d).

Proof. We will use Derived Categories, Lemma 14.15 to prove this. As our collec-
tion P of objects we will use the objects with property (P). Property (1) was shown
in Lemma 20.4. Property (2) holds because if s : P → P ′ is a quasi-isomorphism of
modules with property (P), then s is a homotopy equivalence by Lemma 22.3. □
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Lemma 33.3.09S3 Let R be a ring. Let (A, d) and (B, d) be differential graded
R-algebras. Let f : N → N ′ be a homomorphism of differential graded (A,B)-
bimodules. Then f induces a morphism of functors

1⊗ f : −⊗L
A N −→ −⊗L

A N
′

If f is a quasi-isomorphism, then 1⊗ f is an isomorphism of functors.

Proof. Let M be a differential graded A-module with property (P). Then 1⊗ f :
M ⊗A N → M ⊗A N ′ is a map of differential graded B-modules. Moreover, this
is functorial with respect to M . Since the functors − ⊗L

A N and − ⊗L
A N ′ are

computed by tensoring on objects with property (P) (Lemma 33.2) we obtain a
transformation of functors as indicated.
Assume that f is a quasi-isomorphism. Let F• be the given filtration on M . Observe
that M ⊗A N = colimFi(M) ⊗A N and M ⊗A N ′ = colimFi(M) ⊗A N ′. Hence
it suffices to show that Fn(M) ⊗A N → Fn(M) ⊗A N ′ is a quasi-isomorphism
(filtered colimits are exact, see Algebra, Lemma 8.8). Since the inclusions Fn(M)→
Fn+1(M) are split as maps of graded A-modules we see that

0→ Fn(M)⊗A N → Fn+1(M)⊗A N → Fn+1(M)/Fn(M)⊗A N → 0
is a short exact sequence of differential graded B-modules. There is a similar
sequence for N ′ and f induces a map of short exact sequences. Hence by induction
on n (starting with n = −1 when F−1(M) = 0) we conclude that it suffices to
show that the map Fn+1(M)/Fn(M)⊗A N → Fn+1(M)/Fn(M)⊗A N ′ is a quasi-
isomorphism. This is true because Fn+1(M)/Fn(M) is a direct sum of shifts of A
and the result is true for A[k] as f : N → N ′ is a quasi-isomorphism. □

Lemma 33.4.0GZ2 Let R be a ring. Let (A, d) and (B, d) be differential graded R-
algebras. Let N be a differential graded (A,B)-bimodule which has property (P) as
a left differential graded A-module. Then M ⊗L

A N is computed by M ⊗A N for all
differential graded A-modules M .

Proof. Let f : M → M ′ be a homomorphism of differential graded A-modules
which is a quasi-isomorphism. We claim that f ⊗ id : M ⊗A N → M ′ ⊗A N is a
quasi-isomorphism. If this is true, then by the construction of the derived tensor
product in the proof of Lemma 33.2 we obtain the desired result. The construction
of the map f ⊗ id only depends on the left differential graded A-module structure
on N . Moreover, we have M ⊗A N = N ⊗Aopp M = N ⊗L

Aopp M because N has
property (P) as a differential graded Aopp-module. Hence the claim follows from
Lemma 33.3. □

Lemma 33.5.09LT Let R be a ring. Let (A, d) and (B, d) be differential graded R-
algebras. Let N be a differential graded (A,B)-bimodule. Then the functor

−⊗L
A N : D(A, d) −→ D(B, d)

of Lemma 33.2 is a left adjoint to the functor
RHom(N,−) : D(B, d) −→ D(A, d)

of Lemma 31.2.

Proof. This follows from Derived Categories, Lemma 30.1 and the fact that −⊗AN
and HomModdg

(B,d)
(N,−) are adjoint by Lemma 30.3. □
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Example 33.6.0BYX Let R be a ring. Let (A,d) → (B, d) be a homomorphism of
differential graded R-algebras. Then we can view B as a differential graded (A,B)-
bimodule and we get a functor

−⊗A B : D(A,d) −→ D(B, d)
By Lemma 33.5 the left adjoint of this is the functor RHom(B,−). For a differential
graded B-module let us denote NA the differential graded A-module obtained from
N by restriction via A→ B. Then we clearly have a canonical isomorphism

HomModdg

(B,d)
(B,N) −→ NA, f 7−→ f(1)

functorial in the B-module N . Thus we see that RHom(B,−) is the restriction
functor and we obtain

HomD(A,d)(M,NA) = HomD(B,d)(M ⊗L
A B,N)

bifunctorially in M and N exactly as in the case of commutative rings. Finally,
observe that restriction is a tensor functor as well, since NA = N ⊗B BBA =
N ⊗L

B BBA where BBA is B viewed as a differential graded (B,A)-bimodule.

Lemma 33.7.09R9 With notation and assumptions as in Lemma 33.5. Assume
(1) N defines a compact object of D(B, d), and
(2) the map Hk(A)→ HomD(B,d)(N,N [k]) is an isomorphism for all k ∈ Z.

Then the functor −⊗L
A N is fully faithful.

Proof. Our functor has a left adjoint given by RHom(N,−) by Lemma 33.5. By
Categories, Lemma 24.4 it suffices to show that for a differential graded A-module
M the map

M −→ RHom(N,M ⊗L
A N)

is an isomorphism in D(A,d). For this it suffices to show that
Hn(M) −→ ExtnD(B,d)(N,M ⊗L

A N)
is an isomorphism, see Lemma 31.4. Since N is a compact object the right hand
side commutes with direct sums. Thus by Remark 22.5 it suffices to prove this
map is an isomorphism for M = A[k]. Since (A[k]⊗L

A N) = N [k] by Remark 29.2,
assumption (2) on N is that the result holds for these. □

Lemma 33.8.0BYZ Let R → R′ be a ring map. Let (A, d) be a differential graded
R-algebra. Let (A′, d) be the base change, i.e., A′ = A ⊗R R′. If A is K-flat as a
complex of R-modules, then

(1) −⊗L
A A

′ : D(A, d)→ D(A′, d) is equal to the right derived functor of
K(A, d) −→ K(A′, d), M 7−→M ⊗R R′

(2) the diagram

D(A, d)
−⊗L

AA
′
//

restriction

��

D(A′, d)

restriction

��
D(R)

−⊗L
RR

′
// D(R′)

commutes, and
(3) if M is K-flat as a complex of R-modules, then the differential graded A′-

module M ⊗R R′ represents M ⊗L
A A

′.
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Proof. For any differential graded A-module M there is a canonical map
cM : M ⊗R R′ −→M ⊗A A′

Let P be a differential graded A-module with property (P). We claim that cP is an
isomorphism and that P is K-flat as a complex of R-modules. This will prove all
the results stated in the lemma by formal arguments using the definition of derived
tensor product in Lemma 33.2 and More on Algebra, Section 59.
Let F• be the filtration on P showing that P has property (P). Note that cA is an
isomorphism and A is K-flat as a complex of R-modules by assumption. Hence the
same is true for direct sums of shifts of A (you can use More on Algebra, Lemma
59.8 to deal with direct sums if you like). Hence this holds for the complexes
Fp+1P/FpP . Since the short exact sequences

0→ FpP → Fp+1P → Fp+1P/FpP → 0
are split exact as sequences of graded modules, we can argue by induction that cFpP

is an isomorphism for all p and that FpP is K-flat as a complex of R-modules (use
More on Algebra, Lemma 59.5). Finally, using that P = colimFpP we conclude
that cP is an isomorphism and that P is K-flat as a complex of R-modules (use
More on Algebra, Lemma 59.8). □

Lemma 33.9.0BZ0 Let R be a ring. Let (A, d) and (B, d) be differential graded R-
algebras. Let T be a differential graded (A,B)-bimodule. Assume

(1) T defines a compact object of D(B, d), and
(2) S = HomModdg

(B,d)
(T,B) represents RHom(T,B) in D(A, d).

Then S has a structure of a differential graded (B,A)-bimodule and there is an
isomorphism

N ⊗L
B S −→ RHom(T,N)

functorial in N in D(B, d).

Proof. Write B = Moddg(B,d). The right A-module structure on S comes from
the map A → HomB(T, T ) and the composition HomB(T,B) ⊗ HomB(T, T ) →
HomB(T,B) defined in Example 26.8. Using this multiplication a second time
there is a map

cN : N ⊗B S = HomB(B,N)⊗B HomB(T,B) −→ HomB(T,N)
functorial in N . Given N we can choose quasi-isomorphisms P → N → I where P ,
resp. I is a differential graded B-module with property (P), resp. (I). Then using cN
we obtain a map P ⊗B S → HomB(T, I) between the objects representing S ⊗L

B N
and RHom(T,N). Clearly this defines a transformation of functors c as in the
lemma.
To prove that c is an isomorphism of functors, we may assume N is a differential
graded B-module which has property (P). Since T defines a compact object in
D(B, d) and since both sides of the arrow define exact functors of triangulated
categories, we reduce using Lemma 20.1 to the case where N has a finite filtration
whose graded pieces are direct sums of B[k]. Using again that both sides of the
arrow are exact functors of triangulated categories and compactness of T we reduce
to the case N = B[k]. Assumption (2) is exactly the assumption that c is an
isomorphism in this case. □

https://stacks.math.columbia.edu/tag/0BZ0
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34. Composition of derived tensor products

0BZ1 We encourage the reader to skip this section.
Let R be a ring. Let (A,d), (B, d), and (C, d) be differential graded R-algebras.
Let N be a differential graded (A,B)-bimodule. Let N ′ be a differential graded
(B,C)-module. We denote NB the bimodule N viewed as a differential graded
B-module (forgetting about the A-structure). There is a canonical map
(34.0.1)0BZ2 NB ⊗L

B N
′ −→ (N ⊗B N ′)C

in D(C, d). Here (N ⊗B N ′)C denotes the (A,C)-bimodule N ⊗B N ′ viewed as
a differential graded C-module. Namely, this map comes from the fact that the
derived tensor product always maps to the plain tensor product (as it is a left
derived functor).

Lemma 34.1.0BZ3 Let R be a ring. Let (A, d), (B, d), and (C, d) be differential graded
R-algebras. Let N be a differential graded (A,B)-bimodule. Let N ′ be a differential
graded (B,C)-module. Assume (34.0.1) is an isomorphism. Then the composition

D(A, d)
−⊗L

AN // D(B, d)
−⊗L

BN
′
// D(C, d)

is isomorphic to −⊗L
A N

′′ with N ′′ = N ⊗B N ′ viewed as (A,C)-bimodule.

Proof. Let us define a transformation of functors
(−⊗L

A N)⊗L
B N

′ −→ −⊗L
A N

′′

To do this, let M be a differential graded A-module with property (P). According
to the construction of the functor − ⊗L

A N
′′ of the proof of Lemma 33.2 the plain

tensor product M ⊗A N ′′ represents M ⊗L
A N

′′ in D(C, d). Then we write
M ⊗A N ′′ = M ⊗A (N ⊗B N ′) = (M ⊗A N)⊗B N ′

The module M ⊗AN represents M ⊗L
AN in D(B, d). Choose a quasi-isomorphism

Q→M ⊗A N where Q is a differential graded B-module with property (P). Then
Q⊗B N ′ represents (M ⊗L

A N)⊗L
B N

′ in D(C, d). Thus we can define our map via
(M ⊗L

A N)⊗L
B N

′ = Q⊗B N ′ →M ⊗A N ⊗B N ′ = M ⊗L
A N

′′

The construction of this map is functorial in M and compatible with distinguished
triangles and direct sums; we omit the details. Consider the property T of objects
M of D(A,d) expressing that this map is an isomorphism. Then

(1) if T holds for Mi then T holds for
⊕
Mi,

(2) if T holds for 2-out-of-3 in a distinguished triangle, then it holds for the
third, and

(3) T holds for A[k] because here we obtain a shift of the map (34.0.1) which
we have assumed is an isomorphism.

Thus by Remark 22.5 property T always holds and the proof is complete. □

Let R be a ring. Let (A,d), (B, d), and (C,d) be differential graded R-algebras.
We temporarily denote (A⊗R B)B the differential graded algebra A⊗R B viewed
as a (right) differential graded B-module, and B(B ⊗R C)C the differential graded
algebra B ⊗R C viewed as a differential graded (B,C)-bimodule. Then there is a
canonical map
(34.1.1)0BZ4 (A⊗R B)B ⊗L

B B(B ⊗R C)C −→ (A⊗R B ⊗R C)C

https://stacks.math.columbia.edu/tag/0BZ3
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in D(C, d) where (A⊗R B ⊗R C)C denotes the differential graded R-algebra A⊗R
B⊗R C viewed as a (right) differential graded C-module. Namely, this map comes
from the identification

(A⊗R B)B ⊗B B(B ⊗R C)C = (A⊗R B ⊗R C)C
and the fact that the derived tensor product always maps to the plain tensor product
(as it is a left derived functor).

Lemma 34.2.0BZ5 Let R be a ring. Let (A, d), (B, d), and (C, d) be differential
graded R-algebras. Assume that (34.1.1) is an isomorphism. Let N be a differential
graded (A,B)-bimodule. Let N ′ be a differential graded (B,C)-bimodule. Then the
composition

D(A, d)
−⊗L

AN // D(B, d)
−⊗L

BN
′
// D(C, d)

is isomorphic to − ⊗L
A N

′′ for a differential graded (A,C)-bimodule N ′′ described
in the proof.

Proof. By Lemma 33.3 we may replace N and N ′ by quasi-isomorphic bimodules.
Thus we may assume N , resp. N ′ has property (P) as differential graded (A,B)-
bimodule, resp. (B,C)-bimodule, see Lemma 28.4. We claim the lemma holds with
the (A,C)-bimodule N ′′ = N ⊗B N ′. To prove this, it suffices to show that

NB ⊗L
B N

′ −→ (N ⊗B N ′)C
is an isomorphism in D(C,d), see Lemma 34.1.
Let F• be the filtration on N as in property (P) for bimodules. By Lemma 28.5
there is a short exact sequence

0→
⊕

FiN →
⊕

FiN → N → 0

of differential graded (A,B)-bimodules which is split as a sequence of graded (A,B)-
bimodules. A fortiori this is an admissible short exact sequence of differential graded
B-modules and this produces a distinguished triangle⊕

FiNB →
⊕

FiNB → NB →
⊕

FiNB [1]

in D(B, d). Using that − ⊗L
B N ′ is an exact functor of triangulated categories

and commutes with direct sums and using that − ⊗B N ′ transforms admissible
exact sequences into admissible exact sequences and commutes with direct sums
we reduce to proving that

(FpN)B ⊗L
B N

′ −→ (FpN)B ⊗B N ′

is a quasi-isomorphism for all p. Repeating the argument with the short exact
sequences of (A,B)-bimodules

0→ FpN → Fp+1N → Fp+1N/FpN → 0
which are split as graded (A,B)-bimodules we reduce to showing the same state-
ment for Fp+1N/FpN . Since these modules are direct sums of shifts of (A⊗R B)B
we reduce to showing that

(A⊗R B)B ⊗L
B N

′ −→ (A⊗R B)B ⊗B N ′

is a quasi-isomorphism.

https://stacks.math.columbia.edu/tag/0BZ5
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Choose a filtration F• on N ′ as in property (P) for bimodules. Choose a quasi-
isomorphism P → (A⊗R B)B of differential graded B-modules where P has prop-
erty (P). We have to show that P⊗BN ′ → (A⊗RB)B⊗BN ′ is a quasi-isomorphism
because P ⊗B N ′ represents (A ⊗R B)B ⊗L

B N
′ in D(C, d) by the construction in

Lemma 33.2. As N ′ = colimFpN
′ we find that it suffices to show that P⊗BFpN ′ →

(A ⊗R B)B ⊗B FpN
′ is a quasi-isomorphism. Using the short exact sequences

0 → FpN
′ → Fp+1N

′ → Fp+1N
′/FpN

′ → 0 which are split as graded (B,C)-
bimodules we reduce to showing P⊗BFp+1N

′/FpN
′ → (A⊗RB)B⊗BFp+1N

′/FpN
′

is a quasi-isomorphism for all p. Then finally using that Fp+1N
′/FpN

′ is a direct
sum of shifts of B(B ⊗R C)C we conclude that it suffices to show that

P ⊗B B(B ⊗R C)C → (A⊗R B)B ⊗B B(B ⊗R C)C
is a quasi-isomorphism. Since P → (A⊗RB)B is a resolution by a module satisfying
property (P) this map of differential graded C-modules represents the morphism
(34.1.1) in D(C,d) and the proof is complete. □

Lemma 34.3.09S4 Let R be a ring. Let (A, d), (B, d), and (C, d) be differential
graded R-algebras. If C is K-flat as a complex of R-modules, then (34.1.1) is an
isomorphism and the conclusion of Lemma 34.2 is valid.

Proof. Choose a quasi-isomorphism P → (A ⊗R B)B of differential graded B-
modules, where P has property (P). Then we have to show that

P ⊗B (B ⊗R C) −→ (A⊗R B)⊗B (B ⊗R C)

is a quasi-isomorphism. Equivalently we are looking at

P ⊗R C −→ A⊗R B ⊗R C

This is a quasi-isomorphism if C is K-flat as a complex of R-modules by More on
Algebra, Lemma 59.2. □

35. Variant of derived tensor product

09LU Let (C,O) be a ringed site. Then we have the functors

Comp(O)→ K(O)→ D(O)

and as we’ve seen above we have differential graded enhancement Compdg(O).
Namely, this is the differential graded category of Example 26.6 associated to the
abelian category Mod(O). Let K• be a complex of O-modules in other words, an
object of Compdg(O). Set

(E,d) = HomCompdg(O)(K•,K•)

This is a differential graded Z-algebra. We claim there is an analogue of the derived
base change in this situation.

Lemma 35.1.09LV In the situation above there is a functor

−⊗E K• : Moddg(E,d) −→ Compdg(O)

of differential graded categories. This functor sends E to K• and commutes with
direct sums.
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Proof. Let M be a differential graded E-module. For every object U of C the
complex K•(U) is a left differential graded E-module as well as a right O(U)-
module. The actions commute, so we have a bimodule. Thus, by the constructions
in Sections 12 and 28 we can form the tensor product

M ⊗E K•(U)
which is a differential graded O(U)-module, i.e., a complex of O(U)-modules. This
construction is functorial with respect to U , hence we can sheafify to get a complex
of O-modules which we denote

M ⊗E K•

Moreover, for each U the construction determines a functor Moddg(E,d) → Compdg(O(U))
of differential graded categories by Lemma 29.1. It is therefore clear that we obtain
a functor as stated in the lemma. □

Lemma 35.2.09LW The functor of Lemma 35.1 defines an exact functor of triangulated
categories K(Mod(E,d))→ K(O).

Proof. The functor induces a functor between homotopy categories by Lemma
26.5. We have to show that − ⊗E K• transforms distinguished triangles into dis-
tinguished triangles. Suppose that 0 → K → L → M → 0 is an admissible short
exact sequence of differential graded E-modules. Let s : M → L be a graded
E-module homomorphism which is left inverse to L → M . Then s defines a map
M ⊗E K• → L ⊗E K• of graded O-modules (i.e., respecting O-module structure
and grading, but not differentials) which is left inverse to L ⊗E K• → M ⊗E K•.
Thus we see that

0→ K ⊗E K• → L⊗E K• →M ⊗E K• → 0
is a termwise split short exact sequences of complexes, i.e., a defines a distinguished
triangle in K(O). □

Lemma 35.3.09LX The functor K(Mod(E,d))→ K(O) of Lemma 35.2 has a left derived
version defined on all of D(E, d). We denote it −⊗L

E K
• : D(E, d)→ D(O).

Proof. We will use Derived Categories, Lemma 14.15 to prove this. As our collec-
tion P of objects we will use the objects with property (P). Property (1) was shown
in Lemma 20.4. Property (2) holds because if s : P → P ′ is a quasi-isomorphism of
modules with property (P), then s is a homotopy equivalence by Lemma 22.3. □

Lemma 35.4.0CS6 Let R be a ring. Let C be a site. Let O be a sheaf of commutative
R-algebras. Let K• be a complex of O-modules. The functor of Lemma 35.3 has
the following property: For every M , N in D(E, d) there is a canonical map

RHom(M,N) −→ RHomO(M ⊗L
E K

•, N ⊗L
E K

•)
in D(R) which on cohomology modules gives the maps

ExtnD(E,d)(M,N)→ ExtnD(O)(M ⊗L
E K

•, N ⊗L
E K

•)

induced by the functor −⊗L
E K

•.

Proof. The right hand side of the arrow is the global derived hom introduced in
Cohomology on Sites, Section 36 which has the correct cohomology modules. For
the left hand side we think of M as a (R,A)-bimodule and we have the derived
Hom introduced in Section 31 which also has the correct cohomology modules.
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To prove the lemma we may assume M and N are differential graded E-modules
with property (P); this does not change the left hand side of the arrow by Lemma
31.3. By Lemma 31.5 this means that the left hand side of the arrow becomes
HomModdg

(B,d)
(M,N). In Lemmas 35.1, 35.2, and 35.3 we have constructed a functor

−⊗E K• : Moddg(E,d) −→ Compdg(O)

of differential graded categories and we have shown that −⊗L
E K

• is computed by
evaluating this functor on differential graded E-modules with property (P). Hence
we obtain a map of complexes of R-modules

HomModdg

(B,d)
(M,N) −→ HomCompdg(O)(M ⊗E K•, N ⊗E K•)

For any complexes of O-modules F•, G• there is a canonical map
HomCompdg(O)(F•,G•) = Γ(C,Hom•(F•,G•)) −→ RHomO(F•,G•).

Combining these maps we obtain the desired map of the lemma. □

Lemma 35.5.09LY Let (C,O) be a ringed site. Let K• be a complex of O-modules.
Then the functor

−⊗L
E K

• : D(E, d) −→ D(O)
of Lemma 35.3 is a left adjoint of the functor

RHom(K•,−) : D(O) −→ D(E, d)
of Lemma 32.1.

Proof. The statement means that we have
HomD(E,d)(M,RHom(K•, L•)) = HomD(O)(M ⊗L

E K
•, L•)

bifunctorially in M and L•. To see this we may replace M by a differential graded
E-module P with property (P). We also may replace L• by a K-injective complex
of O-modules I•. The computation of the derived functors given in the lemmas
referenced in the statement combined with Lemma 22.3 translates the above into

HomK(Mod(E,d))(P,HomB(K•, I•)) = HomK(O)(P ⊗E K•, I•)

where B = Compdg(O). There is an evaluation map from right to left functorial
in P and I• (details omitted). Choose a filtration F• on P as in the definition
of property (P). By Lemma 20.1 and the fact that both sides of the equation are
homological functors in P on K(Mod(E,d)) we reduce to the case where P is replaced
by the differential graded E-module

⊕
FiP . Since both sides turn direct sums in

the variable P into direct products we reduce to the case where P is one of the
differential graded E-modules FiP . Since each FiP has a finite filtration (given by
admissible monomorphisms) whose graded pieces are graded projective E-modules
we reduce to the case where P is a graded projective E-module. In this case we
clearly have

HomModdg

(E,d)
(P,HomB(K•, I•)) = HomCompdg(O)(P ⊗E K•, I•)

as graded Z-modules (because this statement reduces to the case P = E[k] where
it is obvious). As the isomorphism is compatible with differentials we conclude. □

Lemma 35.6.09LZ Let (C,O) be a ringed site. Let K• be a complex of O-modules.
Assume
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(1) K• represents a compact object of D(O), and
(2) E = HomCompdg(O)(K•,K•) computes the ext groups of K• in D(O).

Then the functor
−⊗L

E K
• : D(E, d) −→ D(O)

of Lemma 35.3 is fully faithful.

Proof. Because our functor has a left adjoint given by RHom(K•,−) by Lemma
35.5 it suffices to show for a differential graded E-module M that the map

H0(M) −→ HomD(O)(K•,M ⊗L
E K

•)
is an isomorphism. We may assume that M = P is a differential graded E-module
which has property (P). Since K• defines a compact object, we reduce using Lemma
20.1 to the case where P has a finite filtration whose graded pieces are direct sums
of E[k]. Again using compactness we reduce to the case P = E[k]. The assumption
on K• is that the result holds for these. □

36. Characterizing compact objects

09QZ Compact objects of additive categories are defined in Derived Categories, Definition
37.1. In this section we characterize compact objects of the derived category of a
differential graded algebra.

Remark 36.1.09R0 Let (A,d) be a differential graded algebra. Is there a characteri-
zation of those differential graded A-modules P for which we have

HomK(A,d)(P,M) = HomD(A,d)(P,M)
for all differential graded A-modules M? Let D ⊂ K(A,d) be the full subcate-
gory whose objects are the objects P satisfying the above. Then D is a strictly
full saturated triangulated subcategory of K(A,d). If P is projective as a graded
A-module, then to see where P is an object of D it is enough to check that
HomK(A,d)(P,M) = 0 whenever M is acyclic. However, in general it is not enough
to assume that P is projective as a graded A-module. Example: take A = R = k[ϵ]
where k is a field and k[ϵ] = k[x]/(x2) is the ring of dual numbers. Let P be the
object with Pn = R for all n ∈ Z and differential given by multiplication by ϵ.
Then idP ∈ HomK(A,d)(P, P ) is a nonzero element but P is acyclic.

Remark 36.2.09R1 Let (A,d) be a differential graded algebra. Let us say a differential
graded A-moduleM is finite ifM is generated, as a right A-module, by finitely many
elements. If P is a differential graded A-module which is finite graded projective,
then we can ask: Does P give a compact object of D(A,d)? Presumably, this is
not true in general, but we do not know a counter example. However, if P is also
an object of the category D of Remark 36.1, then this is the case (this follows from
the fact that direct sums in D(A,d) are given by direct sums of modules; details
omitted).

Lemma 36.3.09R2 Let (A, d) be a differential graded algebra. Let E be a compact object
of D(A, d). Let P be a differential graded A-module which has a finite filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ FnP = P

by differential graded submodules such that

Fi+1P/FiP ∼=
⊕

j∈Ji

A[ki,j ]

https://stacks.math.columbia.edu/tag/09R0
https://stacks.math.columbia.edu/tag/09R1
https://stacks.math.columbia.edu/tag/09R2
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as differential graded A-modules for some sets Ji and integers ki,j. Let E → P be
a morphism of D(A, d). Then there exists a differential graded submodule P ′ ⊂ P
such that Fi+1P ∩ P ′/(FiP ∩ P ′) is equal to

⊕
j∈J′

i
A[ki,j ] for some finite subsets

J ′
i ⊂ Ji and such that E → P factors through P ′.

Proof. We will prove by induction on −1 ≤ m ≤ n that there exists a differential
graded submodule P ′ ⊂ P such that

(1) FmP ⊂ P ′,
(2) for i ≥ m the quotient Fi+1P ∩P ′/(FiP ∩P ′) is isomorphic to

⊕
j∈J′

i
A[ki,j ]

for some finite subsets J ′
i ⊂ Ji, and

(3) E → P factors through P ′.
The base case is m = n where we can take P ′ = P .

Induction step. Assume P ′ works for m. For i ≥ m and j ∈ J ′
i let xi,j ∈ Fi+1P ∩P ′

be a homogeneous element of degree ki,j whose image in Fi+1P ∩ P ′/(FiP ∩ P ′) is
the generator in the summand corresponding to j ∈ Ji. The xi,j generate P ′/FmP
as an A-module. Write

d(xi,j) =
∑

xi′,j′ai
′,j′

i,j + yi,j

with yi,j ∈ FmP and ai
′,j′

i,j ∈ A. There exists a finite subset J ′
m−1 ⊂ Jm−1 such that

each yi,j maps to an element of the submodule
⊕

j∈J′
m−1

A[km−1,j ] of FmP/Fm−1P .
Let P ′′ ⊂ FmP be the inverse image of

⊕
j∈J′

m−1
A[km−1,j ] under the map FmP →

FmP/Fm−1P . Then we see that the A-submodule

P ′′ +
∑

xi,jA

is a differential graded submodule of the type we are looking for. Moreover

P ′/(P ′′ +
∑

xi,jA) =
⊕

j∈Jm−1\J′
m−1

A[km−1,j ]

Since E is compact, the composition of the given map E → P ′ with the quotient
map, factors through a finite direct subsum of the module displayed above. Hence
after enlarging J ′

m−1 we may assume E → P ′ factors through P ′′ +
∑
xi,jA as

desired. □

It is not true that every compact object of D(A,d) comes from a finite graded
projective differential graded A-module, see Examples, Section 68.

Proposition 36.4.09R3 Let (A, d) be a differential graded algebra. Let E be an object
of D(A, d). Then the following are equivalent

(1) E is a compact object,
(2) E is a direct summand of an object of D(A, d) which is represented by a

differential graded module P which has a finite filtration F• by differential
graded submodules such that FiP/Fi−1P are finite direct sums of shifts of
A.

Proof. Assume E is compact. By Lemma 20.4 we may assume that E is repre-
sented by a differential graded A-module P with property (P). Consider the distin-
guished triangle ⊕

FiP →
⊕

FiP → P
δ−→

⊕
FiP [1]

https://stacks.math.columbia.edu/tag/09R3
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coming from the admissible short exact sequence of Lemma 20.1. Since E is compact
we have δ =

∑
i=1,...,n δi for some δi : P → FiP [1]. Since the composition of δ with

the map
⊕
FiP [1]→

⊕
FiP [1] is zero (Derived Categories, Lemma 4.1) it follows

that δ = 0 (follows as
⊕
FiP →

⊕
FiP maps the summand FiP via the difference

of id and the inclusion map into Fi−1P ). Thus we see that the identity on E factors
through

⊕
FiP in D(A,d) (by Derived Categories, Lemma 4.11). Next, we use that

P is compact again to see that the map E →
⊕
FiP factors through

⊕
i=1,...,n FiP

for some n. In other words, the identity on E factors through
⊕

i=1,...,n FiP . By
Lemma 36.3 we see that the identity of E factors as E → P → E where P is as in
part (2) of the statement of the lemma. In other words, we have proven that (1)
implies (2).
Assume (2). By Derived Categories, Lemma 37.2 it suffices to show that P gives a
compact object. Observe that P has property (P), hence we have

HomD(A,d)(P,M) = HomK(A,d)(P,M)
for any differential graded module M by Lemma 22.3. As direct sums in D(A,d) are
given by direct sums of graded modules (Lemma 22.4) we reduce to showing that
HomK(A,d)(P,M) commutes with direct sums. Using that K(A,d) is a triangulated
category, that Hom is a cohomological functor in the first variable, and the filtration
on P , we reduce to the case that P is a finite direct sum of shifts of A. Thus we
reduce to the case P = A[k] which is clear. □

Lemma 36.5.09RA Let (A, d) be a differential graded algebra. For every compact
object E of D(A, d) there exist integers a ≤ b such that HomD(A,d)(E,M) = 0 if
Hi(M) = 0 for i ∈ [a, b].

Proof. Observe that the collection of objects of D(A,d) for which such a pair
of integers exists is a saturated, strictly full triangulated subcategory of D(A,d).
Thus by Proposition 36.4 it suffices to prove this when E is represented by a dif-
ferential graded module P which has a finite filtration F• by differential graded
submodules such that FiP/Fi−1P are finite direct sums of shifts of A. Using the
compatibility with triangles, we see that it suffices to prove it for P = A. In this
case HomD(A,d)(A,M) = H0(M) and the result holds with a = b = 0. □

If (A,d) is just an algebra placed in degree 0 with zero differential or more gener-
ally lives in only a finite number of degrees, then we do obtain the more precise
description of compact objects.

Lemma 36.6.09RB Let (A, d) be a differential graded algebra. Assume that An = 0 for
|n| ≫ 0. Let E be an object of D(A, d). The following are equivalent

(1) E is a compact object, and
(2) E can be represented by a differential graded A-module P which is fi-

nite projective as a graded A-module and satisfies HomK(A,d)(P,M) =
HomD(A,d)(P,M) for every differential graded A-module M .

Proof. Let D ⊂ K(A,d) be the triangulated subcategory discussed in Remark
36.1. Let P be an object of D which is finite projective as a graded A-module.
Then P represents a compact object of D(A,d) by Remark 36.2.
To prove the converse, let E be a compact object of D(A,d). Fix a ≤ b as in
Lemma 36.5. After decreasing a and increasing b if necessary, we may also assume

https://stacks.math.columbia.edu/tag/09RA
https://stacks.math.columbia.edu/tag/09RB
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that Hi(E) = 0 for i ̸∈ [a, b] (this follows from Proposition 36.4 and our assumption
on A). Moreover, fix an integer c > 0 such that An = 0 if |n| ≥ c.
By Proposition 36.4 we see that E is a direct summand, in D(A,d), of a differential
graded A-module P which has a finite filtration F• by differential graded submod-
ules such that FiP/Fi−1P are finite direct sums of shifts of A. In particular, P
has property (P) and we have HomD(A,d)(P,M) = HomK(A,d)(P,M) for any dif-
ferential graded module M by Lemma 22.3. In other words, P is an object of the
triangulated subcategory D ⊂ K(A,d) discussed in Remark 36.1. Note that P is
finite free as a graded A-module.
Choose n > 0 such that b + 4c − n < a. Represent the projector onto E by
an endomorphism φ : P → P of differential graded A-modules. Consider the
distinguished triangle

P
1−φ−−−→ P → C → P [1]

in K(A,d) where C is the cone of the first arrow. Then C is an object of D, we have
C ∼= E ⊕E[1] in D(A,d), and C is a finite graded free A-module. Next, consider a
distinguished triangle

C[1]→ C → C ′ → C[2]
in K(A,d) where C ′ is the cone on a morphism C[1]→ C representing the compo-
sition

C[1] ∼= E[1]⊕ E[2]→ E[1]→ E ⊕ E[1] ∼= C

in D(A,d). Then we see that C ′ represents E ⊕ E[2]. Continuing in this manner
we see that we can find a differential graded A-module P which is an object of D,
is a finite free as a graded A-module, and represents E ⊕ E[n].
Choose a basis xi, i ∈ I of homogeneous elements for P as an A-module. Let
di = deg(xi). Let P1 be the A-submodule of P generated by xi and d(xi) for
di ≤ a − c − 1. Let P2 be the A-submodule of P generated by xi and d(xi) for
di ≥ b− n+ c. We observe

(1) P1 and P2 are differential graded submodules of P ,
(2) P t1 = 0 for t ≥ a,
(3) P t1 = P t for t ≤ a− 2c,
(4) P t2 = 0 for t ≤ b− n,
(5) P t2 = P t for t ≥ b− n+ 2c.

As b − n + 2c ≥ a − 2c by our choice of n we obtain a short exact sequence of
differential graded A-modules

0→ P1 ∩ P2 → P1 ⊕ P2
π−→ P → 0

Since P is projective as a graded A-module this is an admissible short exact sequence
(Lemma 16.1). Hence we obtain a boundary map δ : P → (P1 ∩ P2)[1] in K(A,d),
see Lemma 7.2. Since P = E⊕E[n] and since P1 ∩P2 lives in degrees (b−n, a) we
find that HomD(A,d)(E⊕E[n], (P1∩P2)[1]) is zero. Therefore δ = 0 as a morphism
in K(A,d) as P is an object of D. By Derived Categories, Lemma 4.11 we can find
a map s : P → P1⊕P2 such that π◦s = idP +dh+hd for some h : P → P of degree
−1. Since P1⊕P2 → P is surjective and since P is projective as a graded A-module
we can choose a homogeneous lift h̃ : P → P1 ⊕ P2 of h. Then we change s into
s+ dh̃+ h̃d to get π ◦ s = idP . This means we obtain a direct sum decomposition
P = s−1(P1)⊕ s−1(P2). Since s−1(P2) is equal to P in degrees ≥ b− n+ 2c we see
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that s−1(P2) → P → E is a quasi-isomorphism, i.e., an isomorphism in D(A,d).
This finishes the proof. □

37. Equivalences of derived categories

09S5 Let R be a ring. Let (A,d) and (B, d) be differential graded R-algebras. A natural
question that arises in nature is what it means that D(A,d) is equivalent to D(B, d)
as an R-linear triangulated category. This is a rather subtle question and it will
turn out it isn’t always the correct question to ask. Nonetheless, in this section we
collection some conditions that guarantee this is the case.

We strongly urge the reader to take a look at the groundbreaking paper [Ric89] on
this topic.

Lemma 37.1.09S6 Let R be a ring. Let (A, d) → (B, d) be a homomorphism of
differential graded algebras over R, which induces an isomorphism on cohomology
algebras. Then

−⊗L
A B : D(A, d)→ D(B, d)

gives an R-linear equivalence of triangulated categories with quasi-inverse the re-
striction functor N 7→ NA.

Proof. By Lemma 33.7 the functor M 7−→ M ⊗L
A B is fully faithful. By Lemma

33.5 the functor N 7−→ RHom(B,N) = NA is a right adjoint, see Example 33.6.
It is clear that the kernel of RHom(B,−) is zero. Hence the result follows from
Derived Categories, Lemma 7.2. □

When we analyze the proof above we see that we obtain the following generalization
for free.

Lemma 37.2.09S7 Let R be a ring. Let (A, d) and (B, d) be differential graded algebras
over R. Let N be a differential graded (A,B)-bimodule. Assume that

(1) N defines a compact object of D(B, d),
(2) if N ′ ∈ D(B, d) and HomD(B,d)(N,N ′[n]) = 0 for n ∈ Z, then N ′ = 0, and
(3) the map Hk(A)→ HomD(B,d)(N,N [k]) is an isomorphism for all k ∈ Z.

Then
−⊗L

A N : D(A, d)→ D(B, d)
gives an R-linear equivalence of triangulated categories.

Proof. By Lemma 33.7 the functor M 7−→ M ⊗L
A N is fully faithful. By Lemma

33.5 the functor N ′ 7−→ RHom(N,N ′) is a right adjoint. By assumption (3) the
kernel of RHom(N,−) is zero. Hence the result follows from Derived Categories,
Lemma 7.2. □

Remark 37.3.09SS In Lemma 37.2 we can replace condition (2) by the condition that
N is a classical generator for Dcompact(B, d), see Derived Categories, Proposition
37.6. Moreover, if we knew that RHom(N,B) is a compact object of D(A,d), then
it suffices to check that N is a weak generator for Dcompact(B, d). We omit the
proof; we will add it here if we ever need it in the Stacks project.

Sometimes the B-module P in the lemma below is called an “(A,B)-tilting com-
plex”.

https://stacks.math.columbia.edu/tag/09S6
https://stacks.math.columbia.edu/tag/09S7
https://stacks.math.columbia.edu/tag/09SS
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Lemma 37.4.09S8 Let R be a ring. Let (A, d) and (B, d) be differential graded R-
algebras. Assume that A = H0(A). The following are equivalent

(1) D(A, d) and D(B, d) are equivalent as R-linear triangulated categories, and
(2) there exists an object P of D(B, d) such that

(a) P is a compact object of D(B, d),
(b) if N ∈ D(B, d) with HomD(B,d)(P,N [i]) = 0 for i ∈ Z, then N = 0,
(c) HomD(B,d)(P, P [i]) = 0 for i ̸= 0 and equal to A for i = 0.

The equivalence D(A, d)→ D(B, d) constructed in (2) sends A to P .

Proof. Let F : D(A,d)→ D(B, d) be an equivalence. Then F maps compact ob-
jects to compact objects. Hence P = F (A) is compact, i.e., (2)(a) holds. Conditions
(2)(b) and (2)(c) are immediate from the fact that F is an equivalence.

Let P be an object as in (2). Represent P by a differential graded module with
property (P). Set

(E,d) = HomModdg

(B,d)
(P, P )

Then H0(E) = A and Hk(E) = 0 for k ̸= 0 by Lemma 22.3 and assumption (2)(c).
Viewing P as a (E,B)-bimodule and using Lemma 37.2 and assumption (2)(b) we
obtain an equivalence

D(E,d)→ D(B, d)
sending E to P . Let E′ ⊂ E be the differential graded R-subalgebra with

(E′)i =

 Ei if i < 0
Ker(E0 → E1) if i = 0

0 if i > 0

Then there are quasi-isomorphisms of differential graded algebras (A,d)← (E′,d)→
(E,d). Thus we obtain equivalences

D(A,d)← D(E′,d)→ D(E,d)→ D(B, d)

by Lemma 37.1. □

Remark 37.5.09S9 Let R be a ring. Let (A,d) and (B, d) be differential graded
R-algebras. Suppose given an R-linear equivalence

F : D(A,d) −→ D(B, d)

of triangulated categories. Set N = F (A). Then N is a differential graded B-
module. Since F is an equivalence and A is a compact object of D(A,d), we
conclude that N is a compact object of D(B, d). Since A generates D(A,d)
and F is an equivalence, we see that N generates D(B, d). Finally, Hk(A) =
HomD(A,d)(A,A[k]) and as F an equivalence we see that F induces an isomor-
phism Hk(A) = HomD(B,d)(N,N [k]) for all k. In order to conclude that there is
an equivalence D(A,d) −→ D(B, d) which arises from the construction in Lemma
37.2 all we need is a left A-module structure on N compatible with derivation and
commuting with the given right B-module structure. In fact, it suffices to do this
after replacing N by a quasi-isomorphic differential graded B-module. The module
structure can be constructed in certain cases. For example, if we assume that F
can be lifted to a differential graded functor

F dg : Moddg(A,d) −→ Moddg(B,d)

https://stacks.math.columbia.edu/tag/09S8
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(for notation see Example 26.8) between the associated differential graded cate-
gories, then this holds. Another case is discussed in the proposition below.

Proposition 37.6.09SA Let R be a ring. Let (A, d) and (B, d) be differential graded
R-algebras. Let F : D(A, d) → D(B, d) be an R-linear equivalence of triangulated
categories. Assume that

(1) A = H0(A), and
(2) B is K-flat as a complex of R-modules.

Then there exists an (A,B)-bimodule N as in Lemma 37.2.

Proof. As in Remark 37.5 above, we set N = F (A) in D(B, d). We may assume
that N is a differential graded B-module with property (P). Set

(E,d) = HomModdg

(B,d)
(N,N)

Then H0(E) = A and Hk(E) = 0 for k ̸= 0 by Lemma 22.3. Moreover, by the
discussion in Remark 37.5 and by Lemma 37.2 we see that N as a (E,B)-bimodule
induces an equivalence −⊗L

EN : D(E,d)→ D(B, d). Let E′ ⊂ E be the differential
graded R-subalgebra with

(E′)i =

 Ei if i < 0
Ker(E0 → E1) if i = 0

0 if i > 0

Then there are quasi-isomorphisms of differential graded algebras (A,d)← (E′,d)→
(E,d). Thus we obtain equivalences

D(A,d)← D(E′,d)→ D(E,d)→ D(B, d)

by Lemma 37.1. Note that the quasi-inverse D(A,d)→ D(E′,d) of the left vertical
arrow is given by M 7→ M ⊗L

A A where A is viewed as a (A,E′)-bimodule, see
Example 33.6. On the other hand the functor D(E′,d) → D(B, d) is given by
M 7→M ⊗L

E′ N where N is as above. We conclude by Lemma 34.3. □

Remark 37.7.09SB Let A,B, F,N be as in Proposition 37.6. It is not clear that
F and the functor G(−) = − ⊗L

A N are isomorphic. By construction there is an
isomorphism N = G(A)→ F (A) in D(B, d). It is straightforward to extend this to
a functorial isomorphism G(M) → F (M) for M is a differential graded A-module
which is graded projective (e.g., a sum of shifts of A). Then one can conclude that
G(M) ∼= F (M) when M is a cone of a map between such modules. We don’t know
whether more is true in general.

Lemma 37.8.09SC Let R be a ring. Let A and B be R-algebras. The following are
equivalent

(1) there is an R-linear equivalence D(A)→ D(B) of triangulated categories,
(2) there exists an object P of D(B) such that

(a) P can be represented by a finite complex of finite projective B-modules,
(b) if K ∈ D(B) with ExtiB(P,K) = 0 for i ∈ Z, then K = 0, and
(c) ExtiB(P, P ) = 0 for i ̸= 0 and equal to A for i = 0.

Moreover, if B is flat as an R-module, then this is also equivalent to
(3) there exists an (A,B)-bimodule N such that −⊗L

AN : D(A)→ D(B) is an
equivalence.

https://stacks.math.columbia.edu/tag/09SA
https://stacks.math.columbia.edu/tag/09SB
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Proof. The equivalence of (1) and (2) is a special case of Lemma 37.4 combined
with the result of Lemma 36.6 characterizing compact objects of D(B) (small detail
omitted). The equivalence with (3) if B is R-flat follows from Proposition 37.6. □

Remark 37.9.09SD Let R be a ring. Let A and B be R-algebras. If D(A) and D(B)
are equivalent as R-linear triangulated categories, then the centers of A and B
are isomorphic as R-algebras. In particular, if A and B are commutative, then
A ∼= B. The rather tricky proof can be found in [Ric89, Proposition 9.2] or [KZ98,
Proposition 6.3.2]. Another approach might be to use Hochschild cohomology (see
remark below).

Remark 37.10.09ST Let R be a ring. Let (A,d) and (B, d) be differential graded
R-algebras which are derived equivalent, i.e., such that there exists an R-linear
equivalence D(A,d) → D(B, d) of triangulated categories. We would like to show
that certain invariants of (A,d) and (B, d) coincide. In many situations one has
more control of the situation. For example, it may happen that there is an equiva-
lence of the form

−⊗A Ω : D(A,d) −→ D(B, d)
for some differential graded (A,B)-bimodule Ω (this happens in the situation of
Proposition 37.6 and is often true if the equivalence comes from a geometric con-
struction). If also the quasi-inverse of our functor is given as

−⊗L
B Ω′ : D(B, d) −→ D(A,d)

for a differential graded (B,A)-bimodule Ω′ (and as before such a module Ω′ often
exists in practice). In this case we can consider the functor

D(Aopp ⊗R A,d) −→ D(Bopp ⊗R B, d), M 7−→ Ω′ ⊗L
AM ⊗L

A Ω
on derived categories of bimodules (use Lemma 28.3 to turn bimodules into right
modules). Observe that this functor sends the (A,A)-bimodule A to the (B,B)-
bimodule B. Under suitable conditions (e.g., flatness of A, B, Ω over R, etc) this
functor will be an equivalence as well. If this is the case, then it follows that we
have isomorphisms of Hochschild cohomology groups
HHi(A,d) = HomD(Aopp⊗RA,d)(A,A[i]) −→ HomD(Bopp⊗RB,d)(B,B[i]) = HHi(B, d).
For example, if A = H0(A), then HH0(A,d) is equal to the center of A, and this
gives a conceptual proof of the result mentioned in Remark 37.9. If we ever need
this remark we will provide a precise statement with a detailed proof here.

38. Resolutions of differential graded algebras

0BZ6 Let R be a ring. Under our assumptions the free R-algebra R⟨S⟩ on a set S is the
algebra with R-basis the expressions

s1s2 . . . sn

where n ≥ 0 and s1, . . . , sn ∈ S is a sequence of elements of S. Multiplication is
given by concatenation

(s1s2 . . . sn) · (s′
1s

′
2 . . . s

′
m) = s1 . . . sns

′
1 . . . s

′
m

This algebra is characterized by the property that the map
MorR-alg(R⟨S⟩, A)→ Map(S,A), φ 7−→ (s 7→ φ(s))

is a bijection for every R-algebra A.

https://stacks.math.columbia.edu/tag/09SD
https://stacks.math.columbia.edu/tag/09ST
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In the category of graded R-algebras our set S should come with a grading, which
we think of as a map deg : S → Z. Then R⟨S⟩ has a grading such that the
monomials have degree

deg(s1s2 . . . sn) = deg(s1) + . . .+ deg(sn)
In this setting we have

Morgraded R-alg(R⟨S⟩, A)→ Mapgraded sets(S,A), φ 7−→ (s 7→ φ(s))
is a bijection for every graded R-algebra A.
If A is a graded R-algebra and S is a graded set, then we can similarly form A⟨S⟩.
Elements of A⟨S⟩ are sums of elements of the form

a0s1a1s2 . . . an−1snan

with ai ∈ A modulo the relations that these expressions are R-multilinear in
(a0, . . . , an). Thus for every sequence s1, . . . , sn of elements of S there is an in-
clusion

A⊗R . . .⊗R A ⊂ A⟨S⟩
and the algebra is the direct sum of these. With this definition the reader shows
that the map

Morgraded R-alg(A⟨S⟩, B)→ Morgraded R-alg(A,B)×Mapgraded sets(S,B),
sending φ to (φ|A, (s 7→ φ(s))) is a bijection for every graded R-algebra A. We
observe that if A was a free graded R-algebra, then so is A⟨S⟩.
Suppose that A is a differential graded R-algebra and that S is a graded set. Sup-
pose moreover for every s ∈ S we are given a homogeneous element fs ∈ A with
deg(fs) = deg(s) + 1 and dfs = 0. Then there exists a unique structure of differ-
ential graded algebra on A⟨S⟩ with d(s) = fs. For example, given a, b, c ∈ A and
s, t ∈ S we would define
d(asbtc) = d(a)sbtc+ (−1)deg(a)afsbtc+ (−1)deg(a)+deg(s)asd(b)tc

+ (−1)deg(a)+deg(s)+deg(b)asbftc+ (−1)deg(a)+deg(s)+deg(b)+deg(t)asbtd(c)
We omit the details.

Lemma 38.1.0BZ7 Let R be a ring. Let (B, d) be a differential graded R-algebra.
There exists a quasi-isomorphism (A, d) → (B, d) of differential graded R-algebras
with the following properties

(1) A is K-flat as a complex of R-modules,
(2) A is a free graded R-algebra.

Proof. First we claim we can find (A0,d) → (B, d) having (1) and (2) inducing
a surjection on cohomology. Namely, take a graded set S and for each s ∈ S a
homogeneous element bs ∈ Ker(d : B → B) of degree deg(s) such that the classes
bs in H∗(B) generate H∗(B) as an R-module. Then we can set A0 = R⟨S⟩ with
zero differential and A0 → B given by mapping s to bs.
Given A0 → B inducing a surjection on cohomology we construct a sequence

A0 → A1 → A2 → . . . B

by induction. Given An → B we set Sn be a graded set and for each s ∈ Sn we let
as ∈ Ker(An → An) be a homogeneous element of degree deg(s) + 1 mapping to a

https://stacks.math.columbia.edu/tag/0BZ7


DIFFERENTIAL GRADED ALGEBRA 74

class as in H∗(An) which maps to zero in H∗(B). We choose Sn large enough so
that the elements as generate Ker(H∗(An) → H∗(B)) as an R-module. Then we
set

An+1 = An⟨Sn⟩
with differential given by d(s) = as see discussion above. Then each (An,d) satisfies
(1) and (2), we omit the details. The map H∗(An) → H∗(B) is surjective as this
was true for n = 0.

It is clear that A = colimAn is a free graded R-algebra. It is K-flat by More
on Algebra, Lemma 59.8. The map H∗(A) → H∗(B) is an isomorphism as it is
surjective and injective: every element of H∗(A) comes from an element of H∗(An)
for some n and if it dies in H∗(B), then it dies in H∗(An+1) hence in H∗(A). □

As an application we prove the “correct” version of Lemma 34.2.

Lemma 38.2.0BZ8 Let R be a ring. Let (A, d), (B, d), and (C, d) be differential graded
R-algebras. Assume A ⊗R C represents A ⊗L

R C in D(R). Let N be a differential
graded (A,B)-bimodule. Let N ′ be a differential graded (B,C)-bimodule. Then the
composition

D(A, d)
−⊗L

AN // D(B, d)
−⊗L

BN
′
// D(C, d)

is isomorphic to −⊗L
A N

′′ for some differential graded (A,C)-bimodule N ′′.

Proof. Using Lemma 38.1 we choose a quasi-isomorphism (B′,d) → (B, d) with
B′ K-flat as a complex of R-modules. By Lemma 37.1 the functor − ⊗L

B′ B :
D(B′,d)→ D(B, d) is an equivalence with quasi-inverse given by restriction. Note
that restriction is canonically isomorphic to the functor − ⊗L

B B : D(B, d) →
D(B′,d) where B is viewed as a (B,B′)-bimodule. Thus it suffices to prove the
lemma for the compositions

D(A)→ D(B)→ D(B′), D(B′)→ D(B)→ D(C), D(A)→ D(B′)→ D(C).

The first one is Lemma 34.3 because B′ is K-flat as a complex of R-modules. The
second one is true because B ⊗L

B N ′ = N ′ = B ⊗B N ′ and hence Lemma 34.1
applies. Thus we reduce to the case where B is K-flat as a complex of R-modules.

Assume B is K-flat as a complex of R-modules. It suffices to show that (34.1.1)
is an isomorphism, see Lemma 34.2. Choose a quasi-isomorphism L → A where
L is a differential graded R-module which has property (P). Then it is clear that
P = L ⊗R B has property (P) as a differential graded B-module. Hence we have
to show that P → A⊗R B induces a quasi-isomorphism

P ⊗B (B ⊗R C) −→ (A⊗R B)⊗B (B ⊗R C)

We can rewrite this as

P ⊗R B ⊗R C −→ A⊗R B ⊗R C

Since B is K-flat as a complex of R-modules, it follows from More on Algebra,
Lemma 59.2 that it is enough to show that

P ⊗R C → A⊗R C

is a quasi-isomorphism, which is exactly our assumption. □

https://stacks.math.columbia.edu/tag/0BZ8
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The following lemma does not really belong in this section, but there does not seem
to be a good natural spot for it.

Lemma 38.3.0CRM Let (A, d) be a differential graded algebra with Hi(A) countable for
each i. Let M be an object of D(A, d). Then the following are equivalent

(1) M = hocolimEn with En compact in D(A, d), and
(2) Hi(M) is countable for each i.

Proof. Assume (1) holds. Then we have Hi(M) = colimHi(En) by Derived Cat-
egories, Lemma 33.8. Thus it suffices to prove that Hi(En) is countable for each n.
By Proposition 36.4 we see that En is isomorphic in D(A,d) to a direct summand
of a differential graded module P which has a finite filtration F• by differential
graded submodules such that FjP/Fj−1P are finite direct sums of shifts of A. By
assumption the groups Hi(FjP/Fj−1P ) are countable. Arguing by induction on the
length of the filtration and using the long exact cohomology sequence we conclude
that (2) is true. The interesting implication is the other one.

We claim there is a countable differential graded subalgebra A′ ⊂ A such that the
inclusion map A′ → A defines an isomorphism on cohomology. To construct A′ we
choose countable differential graded subalgebras

A1 ⊂ A2 ⊂ A3 ⊂ . . .

such that (a) Hi(A1) → Hi(A) is surjective, and (b) for n > 1 the kernel of
the map Hi(An−1) → Hi(An) is the same as the kernel of the map Hi(An−1) →
Hi(A). To construct A1 take any countable collection of cochains S ⊂ A generating
the cohomology of A (as a ring or as a graded abelian group) and let A1 be the
differential graded subalgebra of A generated by S. To construct An given An−1
for each cochain a ∈ Ain−1 which maps to zero in Hi(A) choose sa ∈ Ai−1 with
d(sa) = a and let An be the differential graded subalgebra of A generated by An−1
and the elements sa. Finally, take A′ =

⋃
An.

By Lemma 37.1 the restriction map D(A,d) → D(A′,d), M 7→ MA′ is an equiv-
alence. Since the cohomology groups of M and MA′ are the same, we see that it
suffices to prove the implication (2) ⇒ (1) for (A′,d).

Assume A is countable. By the exact same type of argument as given above we see
that for M in D(A,d) the following are equivalent: Hi(M) is countable for each
i and M can be represented by a countable differential graded module. Hence in
order to prove the implication (2) ⇒ (1) we reduce to the situation described in
the next paragraph.

Assume A is countable and that M is a countable differential graded module over A.
We claim there exists a homomorphism P → M of differential graded A-modules
such that

(1) P →M is a quasi-isomorphism,
(2) P has property (P), and
(3) P is countable.

Looking at the proof of the construction of P-resolutions in Lemma 20.4 we see
that it suffices to show that we can prove Lemma 20.3 in the setting of countable
differential graded modules. This is immediate from the proof.

https://stacks.math.columbia.edu/tag/0CRM
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Assume that A is countable and that M is a countable differential graded module
with property (P). Choose a filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ P
by differential graded submodules such that we have

(1) P =
⋃
FpP ,

(2) FiP → Fi+1P is an admissible monomorphism,
(3) isomorphisms of differential graded modules FiP/Fi−1P →

⊕
j∈Ji

A[kj ] for
some sets Ji and integers kj .

Of course Ji is countable for each i. For each i and j ∈ Ji choose xi,j ∈ FiP of
degree kj whose image in FiP/Fi−1P generates the summand corresponding to j.
Claim: Given n and finite subsets Si ⊂ Ji, i = 1, . . . , n there exist finite subsets
Si ⊂ Ti ⊂ Ji, i = 1, . . . , n such that P ′ =

⊕
i≤n

⊕
j∈Ti

Axi,j is a differential
graded submodule of P . This was shown in the proof of Lemma 36.3 but it is also
easily shown directly: the elements xi,j freely generate P as a right A-module. The
structure of P shows that

d(xi,j) =
∑

i′<i
xi′,j′ai′,j′

where of course the sum is finite. Thus given S0, . . . , Sn we can first choose S0 ⊂
S′

0, . . . , Sn−1 ⊂ S′
n−1 with d(xn,j) ∈

⊕
i′<n,j′∈S′

i′
xi′,j′A for all j ∈ Sn. Then

by induction on n we can choose S′
0 ⊂ T0, . . . , S

′
n−1 ⊂ Tn−1 to make sure that⊕

i′<n,j′∈Ti′ xi′,j′A is a differential graded A-submodule. Setting Tn = Sn we find
that P ′ =

⊕
i≤n,j∈Ti

xi,jA is as desired.
From the claim it is clear that P =

⋃
P ′
n is a countable rising union of P ′

n as above.
By construction each P ′

n is a differential graded module with property (P) such that
the filtration is finite and the succesive quotients are finite direct sums of shifts of
A. Hence P ′

n defines a compact object of D(A,d), see for example Proposition 36.4.
Since P = hocolimP ′

n in D(A,d) by Lemma 23.2 the proof of the implication (2)
⇒ (1) is complete. □
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