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1. Introduction

01WP In this chapter we study some very basic questions related to defining divisors, etc.
A basic reference is [DG67].

2. Associated points

02OI Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is associated
to M if there exists an element of M whose annihilator is p. See Algebra, Defini-
tion 62.1. Here is the definition of associated points for quasi-coherent sheaves on
schemes as given in [DG67, IV Definition 3.1.1].

Definition 2.1.02OJ Let X be a scheme. Let F be a quasi-coherent sheaf on X.

(1) We say x ∈ X is associated to F if the maximal ideal mx is associated to
the OX,x-module Fx.

(2) We denote Ass(F) or AssX(F) the set of associated points of F .
(3) The associated points of X are the associated points of OX .

These definitions are most useful when X is locally Noetherian and F of finite type.
For example it may happen that a generic point of an irreducible component of X
is not associated to X, see Example 2.7. In the non-Noetherian case it may be
more convenient to use weakly associated points, see Section 5. Let us link the
scheme theoretic notion with the algebraic notion on affine opens; note that this
correspondence works perfectly only for locally Noetherian schemes.

Lemma 2.2.02OK Let X be a scheme. Let F be a quasi-coherent sheaf on X. Let
Spec(A) = U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let
p ⊂ A be the corresponding prime.

(1) If p is associated to M , then x is associated to F .
(2) If p is finitely generated, then the converse holds as well.

In particular, if X is locally Noetherian, then the equivalence

p ∈ Ass(M)⇔ x ∈ Ass(F)

holds for all pairs (p, x) as above.

Proof. This follows from Algebra, Lemma 62.15. But we can also argue directly
as follows. Suppose p is associated to M . Then there exists an m ∈ M whose
annihilator is p. Since localization is exact we see that pAp is the annihilator of
m/1 ∈Mp. Since Mp = Fx (Schemes, Lemma 5.4) we conclude that x is associated
to F .

Conversely, assume that x is associated to F , and p is finitely generated. As x is
associated to F there exists an element m′ ∈ Mp whose annihilator is pAp. Write
m′ = m/f for some f ∈ A, f 6∈ p. The annihilator I of m is an ideal of A such that
IAp = pAp. Hence I ⊂ p, and (p/I)p = 0. Since p is finitely generated, there exists
a g ∈ A, g 6∈ p such that g(p/I) = 0. Hence the annihilator of gm is p and we win.

If X is locally Noetherian, then A is Noetherian (Properties, Lemma 5.2) and p is
always finitely generated. �

Lemma 2.3.05AD Let X be a scheme. Let F be a quasi-coherent OX-module. Then
Ass(F) ⊂ Supp(F).

Proof. This is immediate from the definitions. �

http://stacks.math.columbia.edu/tag/02OJ
http://stacks.math.columbia.edu/tag/02OK
http://stacks.math.columbia.edu/tag/05AD
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Lemma 2.4.05AE Let X be a scheme. Let 0 → F1 → F2 → F3 → 0 be a short exact
sequence of quasi-coherent sheaves on X. Then Ass(F2) ⊂ Ass(F1) ∪ Ass(F3) and
Ass(F1) ⊂ Ass(F2).

Proof. For every point x ∈ X the sequence of stalks 0→ F1,x → F2,x → F3,x → 0
is a short exact sequence of OX,x-modules. Hence the lemma follows from Algebra,
Lemma 62.3. �

Lemma 2.5.05AF Let X be a locally Noetherian scheme. Let F be a coherent OX-
module. Then Ass(F) ∩ U is finite for every quasi-compact open U ⊂ X.

Proof. This is true because the set of associated primes of a finite module over
a Noetherian ring is finite, see Algebra, Lemma 62.5. To translate from schemes
to algebra use that U is a finite union of affine opens, each of these opens is the
spectrum of a Noetherian ring (Properties, Lemma 5.2), F corresponds to a finite
module over this ring (Cohomology of Schemes, Lemma 9.1), and finally use Lemma
2.2. �

Lemma 2.6.05AG Let X be a locally Noetherian scheme. Let F be a quasi-coherent
OX-module. Then

F = 0⇔ Ass(F) = ∅.

Proof. If F = 0, then Ass(F) = ∅ by definition. Conversely, if Ass(F) = ∅, then
F = 0 by Algebra, Lemma 62.7. To translate from schemes to algebra, restrict to
any affine and use Lemma 2.2. �

Example 2.7.05AI Let k be a field. The ring R = k[x1, x2, x3, . . .]/(x
2
i ) is local

with locally nilpotent maximal ideal m. There exists no element of R which has
annihilator m. Hence Ass(R) = ∅, and X = Spec(R) is an example of a scheme
which has no associated points.

Lemma 2.8.0B3L Let X be a locally Noetherian scheme. Let F be a quasi-coherent
OX-module. If Ass(F) ⊂ U ⊂ X is open, then Γ(X,F)→ Γ(U,F) is injective.

Proof. Let s ∈ Γ(X,F) be a section which restricts to zero on U . Let F ′ ⊂ F be
the image of the map OX → F defined by s. Then Supp(F ′)∩U = ∅. On the other
hand, Ass(F ′) ⊂ Ass(F) by Lemma 2.4. Since also Ass(F ′) ⊂ Supp(F ′) (Lemma
2.3) we conclude Ass(F ′) = ∅. Hence F ′ = 0 by Lemma 2.6. �

Lemma 2.9.05AH Let X be a locally Noetherian scheme. Let F be a quasi-coherent OX-
module. Let x ∈ Supp(F) be a point in the support of F which is not a specialization
of another point of Supp(F). Then x ∈ Ass(F). In particular, any generic point of
an irreducible component of X is an associated point of X.

Proof. Since x ∈ Supp(F) the module Fx is not zero. Hence Ass(Fx) ⊂ Spec(OX,x)
is nonempty by Algebra, Lemma 62.7. On the other hand, by assumption Supp(Fx) =
{mx}. Since Ass(Fx) ⊂ Supp(Fx) (Algebra, Lemma 62.2) we see that mx is associ-
ated to Fx and we win. �

The following lemma is the analogue of More on Algebra, Lemma 21.10.

Lemma 2.10.0AVL Let X be a locally Noetherian scheme. Let ϕ : F → G be a map
of quasi-coherent OX-modules. Assume that for every x ∈ X at least one of the
following happens

http://stacks.math.columbia.edu/tag/05AE
http://stacks.math.columbia.edu/tag/05AF
http://stacks.math.columbia.edu/tag/05AG
http://stacks.math.columbia.edu/tag/05AI
http://stacks.math.columbia.edu/tag/0B3L
http://stacks.math.columbia.edu/tag/05AH
http://stacks.math.columbia.edu/tag/0AVL
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(1) Fx → Gx is injective, or
(2) x 6∈ Ass(F).

Then ϕ is injective.

Proof. The assumptions imply that Ass(Ker(ϕ)) = ∅ and hence Ker(ϕ) = 0 by
Lemma 2.6. �

Lemma 2.11.0AVM Let X be a locally Noetherian scheme. Let ϕ : F → G be a map of
quasi-coherent OX-modules. Assume F is coherent and that for every x ∈ X one
of the following happens

(1) Fx → Gx is an isomorphism, or
(2) depth(Fx) ≥ 2 and x 6∈ Ass(G).

Then ϕ is an isomorphism.

Proof. This is a translation of More on Algebra, Lemma 21.11 into the language
of schemes. �

3. Morphisms and associated points

05DA

Lemma 3.1.05DB Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X which is flat over S. Let G be a quasi-coherent sheaf on S. Then we
have

AssX(F ⊗OX f∗G) ⊃
⋃

s∈AssS(G)
AssXs(Fs)

and equality holds if S is locally Noetherian.

Proof. Let x ∈ X and let s = f(x) ∈ S. Set B = OX,x, A = OS,s, N = Fx, and
M = Gs. Note that the stalk of F ⊗OX f∗G at x is equal to the B-module M ⊗AN .
Hence x ∈ AssX(F ⊗OX f∗G) if and only if mB is in AssB(M ⊗A N). Similarly
s ∈ AssS(G) and x ∈ AssXs(Fs) if and only if mA ∈ AssA(M) and mB/mAB ∈
AssB⊗κ(mA)(N ⊗ κ(mA)). Thus the lemma follows from Algebra, Lemma 64.5. �

4. Embedded points

05AJ Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is an
embedded associated prime of M if it is an associated prime of M which is not
minimal among the associated primes of M . See Algebra, Definition 66.1. Here is
the definition of embedded associated points for quasi-coherent sheaves on schemes
as given in [DG67, IV Definition 3.1.1].

Definition 4.1.05AK Let X be a scheme. Let F be a quasi-coherent sheaf on X.

(1) An embedded associated point of F is an associated point which is not
maximal among the associated points of F , i.e., it is the specialization of
another associated point of F .

(2) A point x of X is called an embedded point if x is an embedded associated
point of OX .

(3) An embedded component of X is an irreducible closed subset Z = {x} where
x is an embedded point of X.

In the Noetherian case when F is coherent we have the following.

http://stacks.math.columbia.edu/tag/0AVM
http://stacks.math.columbia.edu/tag/05DB
http://stacks.math.columbia.edu/tag/05AK
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Lemma 4.2.05AL Let X be a locally Noetherian scheme. Let F be a coherent OX-
module. Then

(1) the generic points of irreducible components of Supp(F) are associated
points of F , and

(2) an associated point of F is embedded if and only if it is not a generic point
of an irreducible component of Supp(F).

In particular an embedded point of X is an associated point of X which is not a
generic point of an irreducible component of X.

Proof. Recall that in this case Z = Supp(F) is closed, see Morphisms, Lemma 5.3
and that the generic points of irreducible components of Z are associated points of
F , see Lemma 2.9. Finally, we have Ass(F) ⊂ Z, by Lemma 2.3. These results,
combined with the fact that Z is a sober topological space and hence every point
of Z is a specialization of a generic point of Z, imply (1) and (2). �

Lemma 4.3.0346 Let X be a locally Noetherian scheme. Let F be a coherent sheaf on
X. Then the following are equivalent:

(1) F has no embedded associated points, and
(2) F has property (S1).

Proof. This is Algebra, Lemma 151.2, combined with Lemma 2.2 above. �

Lemma 4.4.0BXG Let X be a locally Noetherian scheme of dimension ≤ 1. The
following are equivalent

(1) X is Cohen-Macaulay, and
(2) X has no embedded points.

Proof. Follows from Lemma 4.3 and the definitions. �

Lemma 4.5.083P Let X be a locally Noetherian scheme. Let U ⊂ X be an open
subscheme. The following are equivalent

(1) U is scheme theoretically dense in X (Morphisms, Definition 7.1),
(2) U is dense in X and U contains all embedded points of X.

Proof. The question is local on X, hence we may assume that X = Spec(A)
where A is a Noetherian ring. Then U is quasi-compact (Properties, Lemma 5.3)
hence U = D(f1) ∪ . . . ∪ D(fn) (Algebra, Lemma 28.1). In this situation U is
scheme theoretically dense in X if and only if A → Af1 × . . . × Afn is injective,
see Morphisms, Example 7.4. Condition (2) translated into algebra means that for
every associated prime p of A there exists an i with fi 6∈ p.

Assume (1), i.e., A→ Af1 × . . .×Afn is injective. If x ∈ A has annihilator a prime
p, then x maps to a nonzero element of Afi for some i and hence fi 6∈ p. Thus (2)
holds. Assume (2), i.e., every associated prime p of A corresponds to a prime of
Afi for some i. Then A→ Af1 × . . .× Afn is injective because A→

∏
p∈Ass(A)Ap

is injective by Algebra, Lemma 62.19. �

Lemma 4.6.02OL Let X be a locally Noetherian scheme. Let F be a coherent sheaf on
X. The set of coherent subsheaves

{K ⊂ F | Supp(K) is nowhere dense in Supp(F)}
has a maximal element K. Setting F ′ = F/K we have the following

http://stacks.math.columbia.edu/tag/05AL
http://stacks.math.columbia.edu/tag/0346
http://stacks.math.columbia.edu/tag/0BXG
http://stacks.math.columbia.edu/tag/083P
http://stacks.math.columbia.edu/tag/02OL


DIVISORS 6

(1) Supp(F ′) = Supp(F),
(2) F ′ has no embedded associated points, and
(3) there exists a dense open U ⊂ X such that U∩Supp(F) is dense in Supp(F)

and F ′|U ∼= F|U .

Proof. This follows from Algebra, Lemmas 66.2 and 66.3. Note that U can be
taken as the complement of the closure of the set of embedded associated points of
F . �

Lemma 4.7.02OM Let X be a locally Noetherian scheme. Let F be a coherent OX-
module without embedded associated points. Set

I = Ker(OX −→ HomOX (F ,F)).

This is a coherent sheaf of ideals which defines a closed subscheme Z ⊂ X without
embedded points. Moreover there exists a coherent sheaf G on Z such that (a)
F = (Z → X)∗G, (b) G has no associated embedded points, and (c) Supp(G) = Z
(as sets).

Proof. Some of the statements we have seen in the proof of Cohomology of Schemes,
Lemma 9.7. The others follow from Algebra, Lemma 66.4. �

5. Weakly associated points

056K Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is weakly
associated to M if there exists an element m of M such that p is minimal among
the primes containing the annihilator of m. See Algebra, Definition 65.1. If R is
a local ring with maximal ideal m, then m is associated to M if and only if there
exists an element m ∈ M whose annihilator has radical m, see Algebra, Lemma
65.2.

Definition 5.1.056L Let X be a scheme. Let F be a quasi-coherent sheaf on X.

(1) We say x ∈ X is weakly associated to F if the maximal ideal mx is weakly
associated to the OX,x-module Fx.

(2) We denote WeakAss(F) the set of weakly associated points of F .
(3) The weakly associated points of X are the weakly associated points of OX .

In this case, on any affine open, this corresponds exactly to the weakly associated
primes as defined above. Here is the precise statement.

Lemma 5.2.056M Let X be a scheme. Let F be a quasi-coherent sheaf on X. Let
Spec(A) = U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let
p ⊂ A be the corresponding prime. The following are equivalent

(1) p is weakly associated to M , and
(2) x is weakly associated to F .

Proof. This follows from Algebra, Lemma 65.2. �

Lemma 5.3.05AM Let X be a scheme. Let F be a quasi-coherent OX-module. Then

Ass(F) ⊂WeakAss(F) ⊂ Supp(F).

Proof. This is immediate from the definitions. �

Lemma 5.4.05AN Let X be a scheme. Let 0 → F1 → F2 → F3 → 0 be a short exact
sequence of quasi-coherent sheaves on X. Then WeakAss(F2) ⊂ WeakAss(F1) ∪
WeakAss(F3) and WeakAss(F1) ⊂WeakAss(F2).

http://stacks.math.columbia.edu/tag/02OM
http://stacks.math.columbia.edu/tag/056L
http://stacks.math.columbia.edu/tag/056M
http://stacks.math.columbia.edu/tag/05AM
http://stacks.math.columbia.edu/tag/05AN
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Proof. For every point x ∈ X the sequence of stalks 0→ F1,x → F2,x → F3,x → 0
is a short exact sequence of OX,x-modules. Hence the lemma follows from Algebra,
Lemma 65.3. �

Lemma 5.5.05AP Let X be a scheme. Let F be a quasi-coherent OX-module. Then

F = (0)⇔WeakAss(F) = ∅

Proof. Follows from Lemma 5.2 and Algebra, Lemma 65.4 �

Lemma 5.6.0B3M Let X be a scheme. Let F be a quasi-coherent OX-module. If
WeakAss(F) ⊂ U ⊂ X is open, then Γ(X,F)→ Γ(U,F) is injective.

Proof. Let s ∈ Γ(X,F) be a section which restricts to zero on U . Let F ′ ⊂ F be
the image of the map OX → F defined by s. Then Supp(F ′)∩U = ∅. On the other
hand, WeakAss(F ′) ⊂WeakAss(F) by Lemma 5.4. Since also Ass(F ′) ⊂ Supp(F ′)
(Lemma 5.3) we conclude WeakAss(F ′) = ∅. Hence F ′ = 0 by Lemma 5.5. �

Lemma 5.7.05AQ Let X be a scheme. Let F be a quasi-coherent OX-module. Let
x ∈ Supp(F) be a point in the support of F which is not a specialization of another
point of Supp(F). Then x ∈ WeakAss(F). In particular, any generic point of an
irreducible component of X is weakly associated to OX .

Proof. Since x ∈ Supp(F) the module Fx is not zero. Hence WeakAss(Fx) ⊂
Spec(OX,x) is nonempty by Algebra, Lemma 65.4. On the other hand, by assump-
tion Supp(Fx) = {mx}. Since WeakAss(Fx) ⊂ Supp(Fx) (Algebra, Lemma 65.5)
we see that mx is weakly associated to Fx and we win. �

Lemma 5.8.05AR Let X be a scheme. Let F be a quasi-coherent OX-module. If mx is
a finitely generated ideal of OX,x, then

x ∈ Ass(F)⇔ x ∈WeakAss(F).

In particular, if X is locally Noetherian, then Ass(F) = WeakAss(F).

Proof. See Algebra, Lemma 65.8. �

Lemma 5.9.0AVN Let f : X → S be a quasi-compact and quasi-separated morphism of
schemes. Let F be a quasi-coherent OX-module. Let s ∈ S be a point which is not
in the image of f . Then s is not weakly associated to f∗F .

Proof. The question is local so we may assume X = Spec(A). By Schemes, Lemma
24.1 the sheaf f∗F is quasi-coherent, say corresponding to the A-module M . Say s
corresponds to p ⊂ A. As s is not in the image of f we see that X =

⋃
a∈p f

−1D(a)
is an open covering. Since X is quasi-compact we can find a1, . . . , an ∈ p such that
X = f−1D(a1) ∪ . . . ∪ f−1D(an). It follows that

M →Ma1 ⊕ . . .⊕Mar

is injective. Hence for any nonzero element m of the stalk Mp there exists an i such
that anim is nonzero for all n ≥ 0. Thus pAp is not weakly associated to Mp. �

Lemma 5.10.0AVP Let X be a scheme. Let ϕ : F → G be a map of quasi-coherent
OX-modules. Assume that for every x ∈ X at least one of the following happens

(1) Fx → Gx is injective, or
(2) x 6∈WeakAss(F).

Then ϕ is injective.

http://stacks.math.columbia.edu/tag/05AP
http://stacks.math.columbia.edu/tag/0B3M
http://stacks.math.columbia.edu/tag/05AQ
http://stacks.math.columbia.edu/tag/05AR
http://stacks.math.columbia.edu/tag/0AVN
http://stacks.math.columbia.edu/tag/0AVP
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Proof. The assumptions imply that WeakAss(Ker(ϕ)) = ∅ and hence Ker(ϕ) = 0
by Lemma 5.5. �

6. Morphisms and weakly associated points

05EW

Lemma 6.1.05EX Let f : X → S be an affine morphism of schemes. Let F be a
quasi-coherent OX-module. Then we have

WeakAssS(f∗F) ⊂ f(WeakAssX(F))

Proof. We may assume X and S affine, so X → S comes from a ring map A→ B.

Then F = M̃ for some B-module M . By Lemma 5.2 the weakly associated points of
F correspond exactly to the weakly associated primes of M . Similarly, the weakly
associated points of f∗F correspond exactly to the weakly associated primes of M
as an A-module. Hence the lemma follows from Algebra, Lemma 65.10. �

Lemma 6.2.05EY Let f : X → S be an affine morphism of schemes. Let F be a
quasi-coherent OX-module. If X is locally Noetherian, then we have

f(AssX(F)) = AssS(f∗F) = WeakAssS(f∗F) = f(WeakAssX(F))

Proof. We may assume X and S affine, so X → S comes from a ring map A→ B.
As X is locally Noetherian the ring B is Noetherian, see Properties, Lemma 5.2.

Write F = M̃ for some B-module M . By Lemma 2.2 the associated points of F
correspond exactly to the associated primes of M , and any associated prime of M
as an A-module is an associated points of f∗F . Hence the inclusion

f(AssX(F)) ⊂ AssS(f∗F)

follows from Algebra, Lemma 62.13. We have the inclusion

AssS(f∗F) ⊂WeakAssS(f∗F)

by Lemma 5.3. We have the inclusion

WeakAssS(f∗F) ⊂ f(WeakAssX(F))

by Lemma 6.1. The outer sets are equal by Lemma 5.8 hence we have equality
everywhere. �

Lemma 6.3.05EZ Let f : X → S be a finite morphism of schemes. Let F be a
quasi-coherent OX-module. Then WeakAss(f∗F) = f(WeakAss(F)).

Proof. We may assume X and S affine, so X → S comes from a finite ring map

A→ B. Write F = M̃ for some B-module M . By Lemma 5.2 the weakly associated
points of F correspond exactly to the weakly associated primes of M . Similarly, the
weakly associated points of f∗F correspond exactly to the weakly associated primes
of M as an A-module. Hence the lemma follows from Algebra, Lemma 65.12. �

Lemma 6.4.05F0 Let f : X → S be a morphism of schemes. Let G be a quasi-coherent
OS-module. Let x ∈ X with s = f(x). If f is flat at x, the point x is a generic
point of the fibre Xs, and s ∈WeakAssS(G), then x ∈WeakAss(f∗G).

http://stacks.math.columbia.edu/tag/05EX
http://stacks.math.columbia.edu/tag/05EY
http://stacks.math.columbia.edu/tag/05EZ
http://stacks.math.columbia.edu/tag/05F0
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Proof. Let A = OS,s, B = OX,x, and M = Gs. Let m ∈ M be an element whose
annihilator I = {a ∈ A | am = 0} has radical mA. Then m⊗ 1 has annihilator IB

as A → B is faithfully flat. Thus it suffices to see that
√
IB = mB . This follows

from the fact that the maximal ideal of B/mAB is locally nilpotent (see Algebra,

Lemma 24.1) and the assumption that
√
I = mA. Some details omitted. �

Lemma 6.5.0CUC Let K/k be a field extension. Let X be a scheme over k. Let F
be a quasi-coherent OX-module. Let y ∈ XK with image x ∈ X. If y is a weakly
associated point of the pullback FK , then x is a weakly associated point of F .

Proof. This is the translation of Algebra, Lemma 65.18 into the language of
schemes. �

7. Relative assassin

05AS Let A→ B be a ring map. Let N be a B-module. Recall that a prime q ⊂ B is said
to be in the relative assassin of N over B/A if q is an associated prime of N⊗Aκ(p).
Here p = A ∩ q. Here is the definition of the relative assassin for quasi-coherent
sheaves over a morphism of schemes.

Definition 7.1.05AT Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. The relative assassin of F in X over S is the set

AssX/S(F) =
⋃

s∈S
AssXs(Fs)

where Fs = (Xs → X)∗F is the restriction of F to the fibre of f at s.

Again there is a caveat that this is best used when the fibres of f are locally
Noetherian and F is of finite type. In the general case we should probably use the
relative weak assassin (defined in the next section). Let us link the scheme theoretic
notion with the algebraic notion on affine opens; note that this correspondence
works perfectly only for morphisms of schemes whose fibres are locally Noetherian.

Lemma 7.2.0CU5 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let U ⊂ X and V ⊂ S be affine opens with f(U) ⊂ V . Write
U = Spec(A), V = Spec(R), and set M = Γ(U,F). Let x ∈ U , and let p ⊂ A be
the corresponding prime. Then

p ∈ AssA/R(M)⇒ x ∈ AssX/S(F)

If all fibres Xs of f are locally Noetherian, then p ∈ AssA/R(M)⇔ x ∈ AssX/S(F)
for all pairs (p, x) as above.

Proof. The set AssA/R(M) is defined in Algebra, Definition 64.2. Choose a pair
(p, x). Let s = f(x). Let r ⊂ R be the prime lying under p, i.e., the prime
corresponding to s. Let p′ ⊂ A⊗R κ(r) be the prime whose inverse image is p, i.e.,
the prime corresponding to x viewed as a point of its fibre Xs. Then p ∈ AssA/R(M)
if and only if p′ is an associated prime of M⊗Rκ(r), see Algebra, Lemma 64.1. Note
that the ring A⊗R κ(r) corresponds to Us and the module M ⊗R κ(r) corresponds
to the quasi-coherent sheaf Fs|Us . Hence x is an associated point of Fs by Lemma
2.2. The reverse implication holds if p′ is finitely generated which is how the last
sentence is seen to be true. �

http://stacks.math.columbia.edu/tag/0CUC
http://stacks.math.columbia.edu/tag/05AT
http://stacks.math.columbia.edu/tag/0CU5
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Lemma 7.3.05DC Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX-module. Let g : S′ → S be a morphism of schemes. Consider the base change
diagram

X ′

��

g′
// X

��
S′

g // S

and set F ′ = (g′)∗F . Let x′ ∈ X ′ be a point with images x ∈ X, s′ ∈ S′ and
s ∈ S. Assume f locally of finite type. Then x′ ∈ AssX′/S′(F ′) if and only if
x ∈ AssX/S(F) and x′ corresponds to a generic point of an irreducible component
of Spec(κ(s′)⊗κ(s) κ(x)).

Proof. Consider the morphism X ′s′ → Xs of fibres. As Xs′ = Xs ×Spec(κ(s))

Spec(κ(s′)) this is a flat morphism. Moreover F ′s′ is the pullback of Fs via this
morphism. As Xs is locally of finite type over the Noetherian scheme Spec(κ(s))
we have that Xs is locally Noetherian, see Morphisms, Lemma 14.6. Thus we may
apply Lemma 3.1 and we see that

AssX′
s′

(F ′s′) =
⋃

x∈Ass(Fs)
Ass((X ′s′)x).

Thus to prove the lemma it suffices to show that the associated points of the fibre
(X ′s′)x of the morphism X ′s′ → Xs over x are its generic points. Note that (X ′s′)x =
Spec(κ(s′)⊗κ(s)κ(x)) as schemes. By Algebra, Lemma 161.1 the ring κ(s′)⊗κ(s)κ(x)
is a Noetherian Cohen-Macaulay ring. Hence its associated primes are its minimal
primes, see Algebra, Proposition 62.6 (minimal primes are associated) and Algebra,
Lemma 151.2 (no embedded primes). �

Remark 7.4.05KL With notation and assumptions as in Lemma 7.3 we see that it is

always the case that (g′)−1(AssX/S(F)) ⊃ AssX′/S′(F ′). If the morphism S′ → S
is locally quasi-finite, then we actually have

(g′)−1(AssX/S(F)) = AssX′/S′(F ′)
because in this case the field extensions κ(s) ⊂ κ(s′) are always finite. In fact, this
holds more generally for any morphism g : S′ → S such that all the field extensions
κ(s) ⊂ κ(s′) are algebraic, because in this case all prime ideals of κ(s′) ⊗κ(s) κ(x)
are maximal (and minimal) primes, see Algebra, Lemma 35.19.

8. Relative weak assassin

05AU

Definition 8.1.05AV Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. The relative weak assassin of F in X over S is the set

WeakAssX/S(F) =
⋃

s∈S
WeakAss(Fs)

where Fs = (Xs → X)∗F is the restriction of F to the fibre of f at s.

Lemma 8.2.05F2 Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX-module. Then WeakAssX/S(F) = AssX/S(F).

Proof. This is true because the fibres of f are locally Noetherian schemes, and
associated and weakly associated points agree on locally Noetherian schemes, see
Lemma 5.8. �
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Lemma 8.3.0CUD Let f : X → S be a morphism of schemes. Let i : Z → X be a
finite morphism. Let F be a quasi-coherent OZ-module. Then WeakAssX/S(i∗F) =
i(WeakAssZ/S(F)).

Proof. Let is : Zs → Xs be the induced morphism between fibres. Then (i∗F)s =
is,∗(Fs) by Cohomology of Schemes, Lemma 5.1 and the fact that i is affine. Hence
we may apply Lemma 6.3 to conclude. �

9. Fitting ideals

0C3C This section is the continuation of the discussion in More on Algebra, Section 8. Let
S be a scheme. Let F be a finite type quasi-coherent OS-module. In this situation
we can construct the Fitting ideals

0 = Fit−1(F) ⊂ Fit0(F) ⊂ Fit1(F) ⊂ . . . ⊂ OS
as the sequence of quasi-coherent ideals characterized by the following property:
for every affine open U = Spec(A) of S if F|U corresponds to the A-module M ,
then Fiti(F)|U corresponds to the ideal Fiti(M) ⊂ A. This is well defined and a
quasi-coherent sheaf of ideals because if f ∈ A, then the ith Fitting ideal of Mf

over Af is equal to Fiti(M)Af by More on Algebra, Lemma 8.4.

Alternatively, we can construct the Fitting ideals in terms of local presentations of
F . Namely, if U ⊂ X is open, and⊕

i∈I
OU → O⊕nU → F|U → 0

is a presentation of F over U , then Fitr(F)|U is generated by the (n− r)× (n− r)-
minors of the matrix defining the first arrow of the presentation. This is compatible
with the construction above because this is how the Fitting ideal of a module over
a ring is actually defined. Some details omitted.

Lemma 9.1.0C3D Let f : T → S be a morphism of schemes. Let F be a finite type

quasi-coherent OS-module. Then f−1Fiti(F) · OT = Fiti(f
∗F).

Proof. Follows immediately from More on Algebra, Lemma 8.4 part (3). �

Lemma 9.2.0C3E Let S be a scheme. Let F be a finitely presented OS-module. Then
Fitr(F) is a quasi-coherent ideal of finite type.

Proof. Follows immediately from More on Algebra, Lemma 8.4 part (4). �

Lemma 9.3.0CYX Let S be a scheme. Let F be a finite type, quasi-coherent OS-module.
Let Z0 ⊂ S be the closed subscheme cut out by Fit0(F). Let Z ⊂ S be the scheme
theoretic support of F . Then

(1) Z ⊂ Z0 ⊂ S as closed subschemes,
(2) Z = Z0 = Supp(F) as closed subsets,
(3) there exists a finite type, quasi-coherent OZ0-module G0 with

(Z0 → X)∗G0 = F .

Proof. Recall that Z is locally cut out by the annihilator of F , see Morphisms,
Definition 5.5 (which uses Morphisms, Lemma 5.4 to define Z). Hence we see that
Z ⊂ Z0 scheme theoretically by More on Algebra, Lemma 8.4 part (6). On the
other hand we have Z = Supp(F) set theoretically by Morphisms, Lemma 5.4 and
we have Z0 = Z set theoretically by More on Algebra, Lemma 8.4 part (7). Finally,
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to get G0 as in part (3) we can either use that we have G on Z as in Morphisms,
Lemma 5.4 and set G0 = (Z → Z0)∗G or we can use Morphisms, Lemma 4.1 and
the fact that Fit0(F) annihilates F by More on Algebra, Lemma 8.4 part (6). �

Lemma 9.4.0C3F Let S be a scheme. Let F be a finite type, quasi-coherent OS-module.
Let s ∈ S. Then F can be generated by r elements in a neighbourhood of s if and
only if Fitr(F)s = OS,s.

Proof. Follows immediately from More on Algebra, Lemma 8.6. �

Lemma 9.5.0C3G Let S be a scheme. Let F be a finite type, quasi-coherent OS-module.
Let r ≥ 0. The following are equivalent

(1) F is finite locally free of rank r
(2) Fitr−1(F) = 0 and Fitr(F) = OS, and
(3) Fitk(F) = 0 for k < r and Fitk(F) = OS for k ≥ r.

Proof. Follows immediately from More on Algebra, Lemma 8.7. �

Lemma 9.6.05P8 Let S be a scheme. Let F be a finite type, quasi-coherent OS-module.
The closed subschemes

S = Z−1 ⊃ Z0 ⊃ Z1 ⊃ Z2 . . .

defined by the Fitting ideals of F have the following properties

(1) The intersection
⋂
Zr is empty.

(2) The functor (Sch/S)opp → Sets defined by the rule

T 7−→
{
{∗} if FT is locally generated by ≤ r sections
∅ otherwise

is representable by the open subscheme S \ Zr.
(3) The functor Fr : (Sch/S)opp → Sets defined by the rule

T 7−→
{
{∗} if FT locally free rank r
∅ otherwise

is representable by the locally closed subscheme Zr−1 \ Zr of S.

If F is of finite presentation, then Zr → S, S \Zr → S, and Zr−1 \Zr → S are of
finite presentation.

Proof. Part (1) is true because over every affine open U there is an integer n such
that Fitn(F)|U = OU . Namely, we can take n to be the number of generators of F
over U , see More on Algebra, Section 8.

For any morphism g : T → S we see from Lemmas 9.1 and 9.4 that FT is locally
generated by ≤ r sections if and only if Fitr(F) · OT = OT . This proves (2).

For any morphism g : T → S we see from Lemmas 9.1 and 9.5 that FT is free of
rank r if and only if Fitr(F) · OT = OT and Fitr−1(F) · OT = 0. This proves (3).

Part (4) follows from the fact that if F is of finite presentation, then each of the
morphisms Zr → S is of finite presentation as Fitr(F) is of finite type (Lemma
9.2 and Morphisms, Lemma 20.7). This implies that Zr−1 \ Zr is a retrocompact
open in Zr (Properties, Lemma 24.1) and hence the morphism Zr−1 \ Zr → Zr is
of finite presentation as well. �
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Lemma 9.6 notwithstanding the following lemma does not hold if F is a finite type
quasi-coherent module. Namely, the stratification still exists but it isn’t true that
it represents the functor Fflat in general.

Lemma 9.7.05P9 Let S be a scheme. Let F be an OS-module of finite presentation.
Let S = Z−1 ⊂ Z0 ⊂ Z1 ⊂ . . . be as in Lemma 9.6. Set Sr = Zr−1 \ Zr. Then
S′ =

∐
r≥0 Sr represents the functor

Fflat : Sch/S −→ Sets, T 7−→
{
{∗} if FT flat over T
∅ otherwise

Moreover, F|Sr is locally free of rank r and the morphisms Sr → S and S′ → S are
of finite presentation.

Proof. Suppose that g : T → S is a morphism of schemes such that the pullback
FT = g∗F is flat. Then FT is a flat OT -module of finite presentation. Hence FT is
finite locally free, see Properties, Lemma 20.2. Thus T =

∐
r≥0 Tr, where FT |Tr is

locally free of rank r. This implies that

Fflat =
∐

r≥0
Fr

in the category of Zariski sheaves on Sch/S where Fr is as in Lemma 9.6. It follows
that Fflat is represented by

∐
r≥0(Zr−1 \ Zr) where Zr is as in Lemma 9.6. The

other statements also follow from the lemma. �

10. The singular locus of a morphism

0C3H Let f : X → S be a finite type morphism of schemes. The set U of points where f
is smooth is an open of X (by Morphisms, Definition 32.1). In many situations it
is useful to a have canonical closed subscheme Sing(f) ⊂ X whose complement is
U and whose formation commutes with arbitrary change of base.

If f is of finite presentation, then one choice would be to consider the closed sub-
scheme Z cut out by functions which are affine locally “strictly standard” in the
sense of Smoothing Ring Maps, Definition 2.3. It follows from Smoothing Ring
Maps, Lemma 2.7 that if f ′ : X ′ → S′ is the base change of f by a morphism
S′ → S, then Z ′ ⊂ S′ ×S Z where Z ′ is the closed subscheme of X ′ cut out by
functions which are affine locally strictly standard. However, equality isn’t clear.
The notion of a strictly standard element was useful in the chapter on Popescu’s
theorem. The closed subscheme defined by these elements is (as far as we know)
not used in the literature1.

If f is flat, of finite presentation, and the fibres of f all are equidimensional of
dimension d, then the dth fitting ideal of ΩX/S is used to get a good closed sub-
scheme. For any morphism of finite type the closed subschemes of X defined by
the fitting ideals of ΩX/S define a stratification of X in terms of the rank of ΩX/S
whose formation commutes with base change. This can be helpful; it is related to
embedding dimensions of fibres, see Varieties, Section 45.

Lemma 10.1.0C3I Let f : X → S be a morphism of schemes which is locally of finite
type. Let X = Z−1 ⊃ Z0 ⊃ Z1 ⊃ . . . be the closed subschemes defined by the fitting
ideals of ΩX/S. Then the formation of Zi commutes with arbitrary base change.

1If f is a local complete intersection morphism (More on Morphisms, Definition 51.2) then the
closed subscheme cut out by the locally strictly standard elements is the correct thing to look at.

http://stacks.math.columbia.edu/tag/05P9
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Proof. Observe that ΩX/S is a finite type quasi-coherent OX -module (Morphisms,
Lemma 31.12) hence the fitting ideals are defined. If f ′ : X ′ → S′ is the base change
of f by g : S′ → S, then ΩX′/S′ = (g′)∗ΩX/S where g′ : X ′ → X is the projection

(Morphisms, Lemma 31.10). Hence (g′)−1Fiti(ΩX/S) · OX′ = Fiti(ΩX′/S′). This
means that

Z ′i = (g′)−1(Zi) = Zi ×X X ′

scheme theoretically and this is the meaning of the statement of the lemma. �

The 0th fitting ideal of Ω cuts out the “ramified locus” of the morphism.

Lemma 10.2.0C3J Let f : X → S be a morphism of schemes which is locally of finite
type. The closed subscheme Z ⊂ X cut out by the 0th fitting ideal of ΩX/S is exactly
the set of points where f is not unramified.

Proof. By Lemma 9.3 the complement of Z is exactly the locus where ΩX/S is
zero. This is exactly the set of points where f is unramified by Morphisms, Lemma
33.2. �

Lemma 10.3.0C3K Let f : X → S be a morphism of schemes. Let d ≥ 0 be an integer.
Assume

(1) f is flat,
(2) f is locally of finite presentation, and
(3) every nonempty fibre of f is equidimensional of dimension d.

Let Z ⊂ X be the closed subscheme cut out by the dth fitting ideal of ΩX/S. Then
Z is exactly the set of points where f is not smooth.

Proof. By Lemma 9.6 the complement of Z is exactly the locus where ΩX/S can
be generated by at most d elements. Hence the lemma follows from Morphisms,
Lemma 32.14. �

11. Torsion free modules

0AVQ This section is the analogue of More on Algebra, Section 20 for quasi-coherent
modules.

Lemma 11.1.0AXR Let X be an integral scheme with generic point η. Let F be a
quasi-coherent OX-module. Let U ⊂ X be nonempty open and s ∈ F(U). The
following are equivalent

(1) for some x ∈ U the image of s in Fx is torsion,
(2) for all x ∈ U the image of s in Fx is torsion,
(3) the image of s in Fη is zero,
(4) the image of s in j∗Fη is zero, where j : η → X is the inclusion morphism.

Proof. Omitted. �

Definition 11.2.0AVR Let X be an integral scheme. Let F be a quasi-coherent OX -
module.

(1) We say a local section of F is torsion if it satisfies the equivalent conditions
of Lemma 11.1.

(2) We say F is torsion free if every torsion section of F is 0.

Here is the obligatory lemma comparing this to the usual algebraic notion.
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Lemma 11.3.0AXS Let X be an integral scheme. Let F be a quasi-coherent OX-module.
The following are equivalent

(1) F is torsion free,
(2) for U ⊂ X affine open F(U) is a torsion free O(U)-module.

Proof. Omitted. �

Lemma 11.4.0AXT Let X be an integral scheme. Let F be a quasi-coherent OX-module.
The torsion sections of F form a quasi-coherent OX-submodule Ftors ⊂ F . The
quotient module F/Ftors is torsion free.

Proof. Omitted. See More on Algebra, Lemma 20.2 for the algebraic analogue. �

Lemma 11.5.0AXU Let X be an integral scheme. Any flat quasi-coherent OX-module
is torsion free.

Proof. Omitted. See More on Algebra, Lemma 20.9. �

Lemma 11.6.0AXV Let f : X → Y be a flat morphism of integral schemes. Let G be a
torsion free quasi-coherent OY -module. Then f∗G is a torsion free OX-module.

Proof. Omitted. See More on Algebra, Lemma 20.4 for the algebraic analogue. �

Lemma 11.7.0BCM Let f : X → Y be a flat morphism of schemes. If Y is integral and
the generic fibre of f is integral, then X is integral.

Proof. The algebraic analogue is this: let A be a domain with fraction field K
and let B be a flat A-algebra such that B ⊗AK is a domain. Then B is a domain.
This is true because B is torsion free by More on Algebra, Lemma 20.9 and hence
B ⊂ B ⊗A K. �

Lemma 11.8.0AXW Let X be an integral scheme. Let F be a quasi-coherent OX-module.
Then F is torsion free if and only if Fx is a torsion free OX,x-module for all x ∈ X.

Proof. Omitted. See More on Algebra, Lemma 20.6. �

Lemma 11.9.0AXX Let X be an integral scheme. Let 0 → F → F ′ → F ′′ → 0 be a
short exact sequence of quasi-coherent OX-modules. If F and F ′′ are torsion free,
then F ′ is torsion free.

Proof. Omitted. See More on Algebra, Lemma 20.5 for the algebraic analogue. �

Lemma 11.10.0AXY Let X be a locally Noetherian integral scheme with generic point
η. Let F be a nonzero coherent OX-module. The following are equivalent

(1) F is torsion free,
(2) η is the only associated prime of F ,
(3) η is in the support of F and F has property (S1), and
(4) η is in the support of F and F has no embedded associated prime.

Proof. This is a translation of More on Algebra, Lemma 20.8 into the language of
schemes. We omit the translation. �

Lemma 11.11.0CC4 Let X be an integral regular scheme of dimension ≤ 1. Let F be
a coherent OX-module. The following are equivalent

(1) F is torsion free,
(2) F is finite locally free.
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Proof. It is clear that a finite locally free module is torsion free. For the converse,
we will show that if F is torsion free, then Fx is a free OX,x-module for all x ∈
X. This is enough by Algebra, Lemma 77.2 and the fact that F is coherent. If
dim(OX,x) = 0, then OX,x is a field and the statement is clear. If dim(OX,x) = 1,
then OX,x is a discrete valuation ring (Algebra, Lemma 118.7) and Fx is torsion
free. Hence Fx is free by More on Algebra, Lemma 20.11. �

Lemma 11.12.0AXZ Let X be an integral scheme. Let F , G be quasi-coherent OX-
modules. If G is torsion free and F is of finite presentation, then HomOX (F ,G) is
torsion free.

Proof. The statement makes sense because HomOX (F ,G) is quasi-coherent by
Schemes, Section 24. To see the statement is true, see More on Algebra, Lemma
20.12. Some details omitted. �

Lemma 11.13.0AVS Let X be an integral locally Noetherian scheme. Let ϕ : F → G
be a map of quasi-coherent OX-modules. Assume F is coherent, G is torsion free,
and that for every x ∈ X one of the following happens

(1) Fx → Gx is an isomorphism, or
(2) depth(Fx) ≥ 2.

Then ϕ is an isomorphism.

Proof. This is a translation of More on Algebra, Lemma 21.12 into the language
of schemes. �

12. Reflexive modules

0AVT This section is the analogue of More on Algebra, Section 21 for coherent modules
on locally Noetherian schemes. The reason for working with coherent modules is
that HomOX (F ,G) is coherent for every pair of coherent OX -modules F ,G, see
Modules, Lemma 20.5.

Definition 12.1.0AVU Let X be an integral locally Noetherian scheme. Let F be a
coherent OX -module. The reflexive hull of F is the OX -module

F∗∗ = HomOX (HomOX (F ,OX),OX)

We say F is reflexive if the natural map j : F −→ F∗∗ is an isomorphism.

It follows from Lemma 12.6 that the reflexive hull is a reflexive OX -module. You
can use the same definition to define reflexive modules in more general situations,
but this does not seem to be very useful. Here is the obligatory lemma comparing
this to the usual algebraic notion.

Lemma 12.2.0AY0 Let X be an integral locally Noetherian scheme. Let F be a coherent
OX-module. The following are equivalent

(1) F is reflexive,
(2) for U ⊂ X affine open F(U) is a reflexive O(U)-module.

Proof. Omitted. �

Remark 12.3.0AY1 If X is a scheme of finite type over a field, then sometimes a
different notion of reflexive modules is used (see for example [HL97, bottom of page
5 and Definition 1.1.9]). This other notion uses RHom into a dualizing complex
ω•X instead of into OX and should probably have a different name because it can
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be different when X is not Gorenstein. For example, if X = Spec(k[t3, t4, t5]), then
a computation shows the dualizing sheaf ωX is not reflexive in our sense, but it is
reflexive in the other sense as ωX → Hom(Hom(ωX , ωX), ωX) is an isomorphism.

Lemma 12.4.0AY2 Let X be an integral locally Noetherian scheme. Let F be a coherent
OX-module.

(1) If F is reflexive, then F is torsion free.
(2) The map j : F −→ F∗∗ is injective if and only if F is torsion free

Proof. Omitted. See More on Algebra, Lemma 21.2. �

Lemma 12.5.0AY3 Let X be an integral locally Noetherian scheme. Let F be a coherent
OX-module. The following are equivalent

(1) F is reflexive,
(2) Fx is a reflexive OX,x-module for all x ∈ X,
(3) Fx is a reflexive OX,x-module for all closed points x ∈ X.

Proof. By Modules, Lemma 20.3 we see that (1) and (2) are equivalent. Since
every point of X specializes to a closed point (Properties, Lemma 5.9) we see that
(2) and (3) are equivalent. �

Lemma 12.6.0AY4 Let X be an integral locally Noetherian scheme. Let F , G be
coherent OX-modules. If G is reflexive, then HomOX (F ,G) is reflexive.

Proof. The statement makes sense because HomOX (F ,G) is coherent by Coho-
mology of Schemes, Lemma 9.4. To see the statement is true, see More on Algebra,
Lemma 21.6. Some details omitted. �

Lemma 12.7.0AY5 Let X be an integral locally Noetherian scheme. Let F be a coherent
OX-module. The following are equivalent

(1) F is reflexive,
(2) for each x ∈ X one of the following happens

(a) Fx is a reflexive OX,x-module, or
(b) depth(OX,x) ≥ 2 and depth(Fx) ≥ 2.

Proof. Omitted. See More on Algebra, Lemma 21.13. �

If the scheme is normal, then reflexive is the same thing as torsion free and (S2).

Lemma 12.8.0AY6 Let X be an integral locally Noetherian normal scheme. Let F be
a coherent OX-module. The following are equivalent

(1) F is reflexive, and
(2) F is torsion free and has property (S2).

Proof. This is the scheme theoretic analogue of More on Algebra, Lemma 21.14.
To translate into algebra use Lemma 12.2. �

Lemma 12.9.0AY7 Let X be an integral locally Noetherian normal scheme with generic
point η. Let F , G be coherent OX-modules. Let T : Gη → Fη be a linear map. Then
T extends to a map G → F∗∗ of OX-modules if and only if

(∗) for every x ∈ X with dim(OX,x) = 1 we have

T (Im(Gx → Gη)) ⊂ Im(Fx → Fη).
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Proof. Because F∗∗ is torsion free and Fη = F∗∗η an extension, if it exists, is
unique. Thus it suffices to prove the lemma over the members of an open covering
of X, i.e., we may assume X is affine. In this case we are asking the following
algebra question: Let R be a Noetherian normal domain with fraction field K,
let M , N be finite R-modules, let T : M ⊗R K → N ⊗R K be a K-linear map.
When does T extend to a map N →M∗∗? By More on Algebra, Lemma 21.15 this
happens if and only if Np maps into (M/Mtors)p for every height 1 prime p of R.
This is exactly condition (∗) of the lemma. �

Lemma 12.10.0B3N Let X be a regular scheme of dimension ≤ 2. Let F be a coherent
OX-module. The following are equivalent

(1) F is reflexive,
(2) F is finite locally free.

Proof. It is clear that a finite locally free module is reflexive. For the converse, we
will show that if F is reflexive, then Fx is a free OX,x-module for all x ∈ X. This is
enough by Algebra, Lemma 77.2 and the fact that F is coherent. If dim(OX,x) = 0,
then OX,x is a field and the statement is clear. If dim(OX,x) = 1, then OX,x is a
discrete valuation ring (Algebra, Lemma 118.7) and Fx is torsion free. Hence Fx is
free by More on Algebra, Lemma 20.11. If dim(OX,x) = 2, then OX,x is a regular
local ring of dimension 2. By More on Algebra, Lemma 21.14 we see that Fx has
depth ≥ 2. Hence F is free by Algebra, Lemma 105.6. �

13. Effective Cartier divisors

01WQ We define the notion of an effective Cartier divisor before any other type of divisor.

Definition 13.1.01WR Let S be a scheme.

(1) A locally principal closed subscheme of S is a closed subscheme whose sheaf
of ideals is locally generated by a single element.

(2) An effective Cartier divisor on S is a closed subscheme D ⊂ S whose ideal
sheaf ID ⊂ OS is an invertible OS-module.

Thus an effective Cartier divisor is a locally principal closed subscheme, but the
converse is not always true. Effective Cartier divisors are closed subschemes of pure
codimension 1 in the strongest possible sense. Namely they are locally cut out by
a single element which is a nonzerodivisor. In particular they are nowhere dense.

Lemma 13.2.01WS Let S be a scheme. Let D ⊂ S be a closed subscheme. The following
are equivalent:

(1) The subscheme D is an effective Cartier divisor on S.
(2) For every x ∈ D there exists an affine open neighbourhood Spec(A) = U ⊂

S of x such that U ∩D = Spec(A/(f)) with f ∈ A a nonzerodivisor.

Proof. Assume (1). For every x ∈ D there exists an affine open neighbourhood
Spec(A) = U ⊂ S of x such that ID|U ∼= OU . In other words, there exists a section
f ∈ Γ(U, ID) which freely generates the restriction ID|U . Hence f ∈ A, and the
multiplication map f : A→ A is injective. Also, since ID is quasi-coherent we see
that D ∩ U = Spec(A/(f)).

Assume (2). Let x ∈ D. By assumption there exists an affine open neighbourhood
Spec(A) = U ⊂ S of x such that U∩D = Spec(A/(f)) with f ∈ A a nonzerodivisor.
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Then ID|U ∼= OU since it is equal to (̃f) ∼= Ã ∼= OU . Of course ID restricted to
the open subscheme S \D is isomorphic to OS\D. Hence ID is an invertible OS-
module. �

Lemma 13.3.07ZT Let S be a scheme. Let Z ⊂ S be a locally principal closed sub-
scheme. Let U = S \ Z. Then U → S is an affine morphism.

Proof. The question is local on S, see Morphisms, Lemmas 11.3. Thus we may
assume S = Spec(A) and Z = V (f) for some f ∈ A. In this case U = D(f) =
Spec(Af ) is affine hence U → S is affine. �

Lemma 13.4.07ZU Let S be a scheme. Let D ⊂ S be an effective Cartier divisor. Let
U = S \D. Then U → S is an affine morphism and U is scheme theoretically dense
in S.

Proof. Affineness is Lemma 13.3. The density question is local on S, see Mor-
phisms, Lemma 7.5. Thus we may assume S = Spec(A) and D corresponding to
the nonzerodivisor f ∈ A, see Lemma 13.2. Thus A ⊂ Af which implies that U ⊂ S
is scheme theoretically dense, see Morphisms, Example 7.4. �

Lemma 13.5.056N Let S be a scheme. Let D ⊂ S be an effective Cartier divisor. Let
s ∈ D. If dims(S) <∞, then dims(D) < dims(S).

Proof. Assume dims(S) < ∞. Let U = Spec(A) ⊂ S be an affine open neigh-
bourhood of s such that dim(U) = dims(S) and such that D = V (f) for some
nonzerodivisor f ∈ A (see Lemma 13.2). Recall that dim(U) is the Krull dimension
of the ring A and that dim(U ∩D) is the Krull dimension of the ring A/(f). Then
f is not contained in any minimal prime of A. Hence any maximal chain of primes
in A/(f), viewed as a chain of primes in A, can be extended by adding a minimal
prime. �

Definition 13.6.01WT Let S be a scheme. Given effective Cartier divisors D1, D2 on
S we set D = D1 + D2 equal to the closed subscheme of S corresponding to the
quasi-coherent sheaf of ideals ID1

ID2
⊂ OS . We call this the sum of the effective

Cartier divisors D1 and D2.

It is clear that we may define the sum
∑
niDi given finitely many effective Cartier

divisors Di on X and nonnegative integers ni.

Lemma 13.7.01WU The sum of two effective Cartier divisors is an effective Cartier
divisor.

Proof. Omitted. Locally f1, f2 ∈ A are nonzerodivisors, then also f1f2 ∈ A is a
nonzerodivisor. �

Lemma 13.8.02ON Let X be a scheme. Let D,D′ be two effective Cartier divisors on
X. If D ⊂ D′ (as closed subschemes of X), then there exists an effective Cartier
divisor D′′ such that D′ = D +D′′.

Proof. Omitted. �

Lemma 13.9.07ZV Let X be a scheme. Let Z, Y be two closed subschemes of X with
ideal sheaves I and J . If IJ defines an effective Cartier divisor D ⊂ X, then Z
and Y are effective Cartier divisors and D = Z + Y .
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Proof. Applying Lemma 13.2 we obtain the following algebra situation: A is a
ring, I, J ⊂ A ideals and f ∈ A a nonzerodivisor such that IJ = (f). Thus the
result follows from Algebra, Lemma 119.16. �

Lemma 13.10.0C4R Let X be a scheme. Let D,D′ ⊂ X be effective Cartier divisors
such that the scheme theoretic intersection D∩D′ is an effective Cartier divisor on
D′. Then D +D′ is the scheme theoretic union of D and D′.

Proof. See Morphisms, Definition 4.4 for the definition of scheme theoretic in-
tersection and union. To prove the lemma working locally (using Lemma 13.2) we
obtain the following algebra problem: Given a ring A and nonzerodivisors f1, f2 ∈ A
such that f1 maps to a nonzerodivisor in A/f2A, show that f1A ∩ f2A = f1f2A.
We omit the straightforward argument. �

Recall that we have defined the inverse image of a closed subscheme under any
morphism of schemes in Schemes, Definition 17.7.

Lemma 13.11.053P Let f : S′ → S be a morphism of schemes. Let Z ⊂ S be a locally

principal closed subscheme. Then the inverse image f−1(Z) is a locally principal
closed subscheme of S′.

Proof. Omitted. �

Definition 13.12.01WV Let f : S′ → S be a morphism of schemes. Let D ⊂ S be
an effective Cartier divisor. We say the pullback of D by f is defined if the closed
subscheme f−1(D) ⊂ S′ is an effective Cartier divisor. In this case we denote it
either f∗D or f−1(D) and we call it the pullback of the effective Cartier divisor.

The condition that f−1(D) is an effective Cartier divisor is often satisfied in prac-
tice. Here is an example lemma.

Lemma 13.13.02OO Let f : X → Y be a morphism of schemes. Let D ⊂ Y be an
effective Cartier divisor. The pullback of D by f is defined in each of the following
cases:

(1) X, Y integral and f dominant,
(2) X reduced, and for any generic point ξ of any irreducible component of X

we have f(ξ) 6∈ D,
(3) X is locally Noetherian and for any associated point x of X we have f(x) 6∈

D,
(4) X is locally Noetherian, has no embedded points, and for any generic point

ξ of any irreducible component of X we have f(ξ) 6∈ D,
(5) f is flat, and
(6) add more here as needed.

Proof. The question is local on X, and hence we reduce to the case where X =
Spec(A), Y = Spec(R), f is given by ϕ : R → A and D = Spec(R/(t)) where
t ∈ R is a nonzerodivisor. The goal in each case is to show that ϕ(t) ∈ A is a
nonzerodivisor.

In case (2) this follows as the intersection of all minimal primes of a ring is the
nilradical of the ring, see Algebra, Lemma 16.2.

Let us prove (3). By Lemma 2.2 the associated points of X correspond to the
primes p ∈ Ass(A). By Algebra, Lemma 62.9 we have

⋃
p∈Ass(A) p is the set of
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zerodivisors of A. The hypothesis of (3) is that ϕ(t) 6∈ p for all p ∈ Ass(A). Hence
ϕ(t) is a nonzerodivisor as desired.

Part (4) follows from (3) and the definitions. �

Lemma 13.14.01WW Let f : S′ → S be a morphism of schemes. Let D1, D2 be effective
Cartier divisors on S. If the pullbacks of D1 and D2 are defined then the pullback
of D = D1 +D2 is defined and f∗D = f∗D1 + f∗D2.

Proof. Omitted. �

14. Effective Cartier divisors and invertible sheaves

0C4S Since an effective Cartier divisor has an invertible ideal sheaf (Definition 13.1) the
following definition makes sense.

Definition 14.1.01WX Let S be a scheme. Let D ⊂ S be an effective Cartier divisor
with ideal sheaf ID.

(1) The invertible sheaf OS(D) associated to D is defined by

OS(D) = HomOS (ID,OS) = I⊗−1D .

(2) The canonical section, usually denoted 1 or 1D, is the global section of
OS(D) corresponding to the inclusion mapping ID → OS .

(3) We write OS(−D) = OS(D)⊗−1 = ID.
(4) Given a second effective Cartier divisor D′ ⊂ S we define OS(D − D′) =
OS(D)⊗OS OS(−D′).

Some comments. We will see below that the assignment D 7→ OS(D) turns addition
of effective Cartier divisors (Definition 13.6) into addition in the Picard group of
S (Lemma 14.4). However, the expression D −D′ in the definition above does not
have any geometric meaning. More precisely, we can think of the set of effective
Cartier divisors on S as a commutative monoid EffCart(S) whose zero element is
the empty effective Cartier divisor. Then the assignment (D,D′) 7→ OS(D − D′)
defines a group homomorphism

EffCart(S)gp −→ Pic(S)

where the left hand side is the group completion of EffCart(S). In other words,
when we write OS(D−D′) we may think of D−D′ as an element of EffCart(S)gp.

Lemma 14.2.0B3P Let S be a scheme and let D ⊂ S be an effective Cartier divisor.
Then the conormal sheaf is CD/S = ID|D = OS(−D)|D and the normal sheaf is
ND/S = OS(D)|D.

Proof. Omitted. �

Lemma 14.3.0C4T Let X be a scheme. Let D,C ⊂ X be effective Cartier divisors
with C ⊂ D and let D′ = D + C. Then there is a short exact sequence

0→ OX(−D)|C → OD′ → OD → 0

of OX-modules.
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Proof. In the statement of the lemma and in the proof we use the equivalence of
Morphisms, Lemma 4.1 to think of quasi-coherent modules on closed subschemes
of X as quasi-coherent modules on X. Let I be the ideal sheaf of D in D′. Then
there is a short exact sequence

0→ I → OD′ → OD → 0

because D → D′ is a closed immersion. There is a canonical surjection I → I/I2 =
CD/D′ . We have CD/X = OX(−D)|D by Lemma 14.2 and there is a canonical
surjective map

CD/X −→ CD/D′
see Morphisms, Lemmas 30.3 and 30.4. Thus it suffices to show: (a) I2 = 0 and (b)
I is an invertible OC-module. Both (a) and (b) can be checked locally, hence we
may assume X = Spec(A), D = Spec(A/fA) and C = Spec(A/gA) where f, g ∈ A
are nonzerodivisors (Lemma 13.2). Since C ⊂ D we see that f ∈ gA. Then
I = fA/fgA has square zero and is invertible as an A/gA-module as desired. �

Lemma 14.4.02OP Let S be a scheme. Let D1, D2 be effective Cartier divisors on S.
Let D = D1 +D2. Then there is a unique isomorphism

OS(D1)⊗OS OS(D2) −→ OS(D)

which maps 1D1
⊗ 1D2

to 1D.

Proof. Omitted. �

Lemma 14.5.0C4U Let f : S′ → S be a morphism of schemes. Let D be a effective
Cartier divisors on S. If the pullback of D is defined then f∗OS(D) = OS′(f∗D)
and the canonical section 1D pulls back to the canonical section 1f∗D.

Proof. Omitted. �

Definition 14.6.01WY Let (X,OX) be a locally ringed space. Let L be an invertible
sheaf on X. A global section s ∈ Γ(X,L) is called a regular section if the map
OX → L, f 7→ fs is injective.

Lemma 14.7.01WZ Let X be a locally ringed space. Let f ∈ Γ(X,OX). The following
are equivalent:

(1) f is a regular section, and
(2) for any x ∈ X the image f ∈ OX,x is a nonzerodivisor.

If X is a scheme these are also equivalent to

(3) for any affine open Spec(A) = U ⊂ X the image f ∈ A is a nonzerodivisor,
(4) there exists an affine open covering X =

⋃
Spec(Ai) such that the image of

f in Ai is a nonzerodivisor for all i.

Proof. Omitted. �

Note that a global section s of an invertible OX -module L may be seen as an OX -
module map s : OX → L. Its dual is therefore a map s : L⊗−1 → OX . (See
Modules, Definition 22.6 for the definition of the dual invertible sheaf.)

Definition 14.8.02OQ Let X be a scheme. Let L be an invertible sheaf. Let s ∈ Γ(X,L)
be a global section. The zero scheme of s is the closed subscheme Z(s) ⊂ X
defined by the quasi-coherent sheaf of ideals I ⊂ OX which is the image of the map
s : L⊗−1 → OX .
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Lemma 14.9.02OR Let X be a scheme. Let L be an invertible sheaf. Let s ∈ Γ(X,L).

(1) Consider closed immersions i : Z → X such that i∗s ∈ Γ(Z, i∗L) is zero
ordered by inclusion. The zero scheme Z(s) is the maximal element of this
ordered set.

(2) For any morphism of schemes f : Y → X we have f∗s = 0 in Γ(Y, f∗L) if
and only if f factors through Z(s).

(3) The zero scheme Z(s) is a locally principal closed subscheme.
(4) The zero scheme Z(s) is an effective Cartier divisor if and only if s is a

regular section of L.

Proof. Omitted. �

Lemma 14.10.01X0 Let X be a scheme.

(1) If D ⊂ X is an effective Cartier divisor, then the canonical section 1D of
OX(D) is regular.

(2) Conversely, if s is a regular section of the invertible sheaf L, then there
exists a unique effective Cartier divisor D = Z(s) ⊂ X and a unique iso-
morphism OX(D)→ L which maps 1D to s.

The constructions D 7→ (OX(D), 1D) and (L, s) 7→ Z(s) give mutually inverse maps{
effective Cartier divisors on X

}
↔
{

pairs (L, s) consisting of an invertible
OX-module and a regular global section

}
Proof. Omitted. �

Remark 14.11.0C6K Let X be a scheme, L an invertible OX -module, and s a regular
section of L. Then the zero scheme D = Z(s) is an effective Cartier divisor on X
and there are short exact sequences

0→ OX → L → i∗(L|D)→ 0 and 0→ L⊗−1 → OX → i∗OD → 0.

Given an effective Cartier divisor D ⊂ X using Lemmas 14.10 and 14.2 we get

0→ OX → OX(D)→ i∗(ND/X)→ 0 and 0→ OX(−D)→ OX → i∗(OD)→ 0

15. Effective Cartier divisors on Noetherian schemes

0B3Q In the locally Noetherian setting most of the discussion of effective Cartier divisors
and regular sections simplifies somewhat.

Lemma 15.1.0AYL Let X be a locally Noetherian scheme. Let L be an invertible OX-
module. Let s ∈ Γ(X,L). Then s is a regular section if and only if s does not
vanish in the associated points of X.

Proof. Omitted. Hint: reduce to the affine case and L trivial and then use Lemma
14.7 and Algebra, Lemma 62.9. �

Lemma 15.2.0AG8 Let X be a locally Noetherian scheme. Let D ⊂ X be a closed
subscheme corresponding to the quasi-coherent ideal sheaf I ⊂ OX .

(1) If for every x ∈ D the ideal Ix ⊂ OX,x can be generated by one element,
then D is locally principal.

(2) If for every x ∈ D the ideal Ix ⊂ OX,x can be generated by a single nonze-
rodivisor, then D is an effective Cartier divisor.
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Proof. Let Spec(A) be an affine neighbourhood of a point x ∈ D. Let p ⊂ A be
the prime corresponding to x. Let I ⊂ A be the ideal defining the trace of D on
Spec(A). Since A is Noetherian (as X is Noetherian) the ideal I is generated by
finitely many elements, say I = (f1, . . . , fr). Under the assumption of (1) we have
Ip = (f) for some f ∈ Ap. Then fi = gif for some gi ∈ Ap. Write gi = ai/hi
and f = f ′/h for some hi, h ∈ A, hi, h 6∈ p. Then Ih1...hrh ⊂ Ah1...hrh is principal,
because it is generated by f ′. This proves (1). For (2) we may assume I = (f).
The assumption implies that the image of f in Ap is a nonzerodivisor. Then f is
a nonzerodivisor on a neighbourhood of x by Algebra, Lemma 67.6. This proves
(2). �

Lemma 15.3.0BCN Let X be a locally Noetherian scheme.

(1) Let D ⊂ X be a locally principal closed subscheme. Let ξ ∈ D be a generic
point of an irreducible component of D. Then dim(OX,ξ) ≤ 1.

(2) Let D ⊂ X be an effective Cartier divisor. Let ξ ∈ D be a generic point of
an irreducible component of D. Then dim(OX,ξ) = 1.

Proof. Proof of (1). By assumption we may assume X = Spec(A) and D =
Spec(A/(f)) where A is a Noetherian ring and f ∈ A. Let ξ correspond to the
prime ideal p ⊂ A. The assumption that ξ is a generic point of an irreducible
component of D signifies p is minimal over (f). Thus dim(Ap) ≤ 1 by Algebra,
Lemma 59.10.

Proof of (2). By part (1) we see that dim(OX,ξ) ≤ 1. On the other hand, the local
equation f is a nonzerodivisor in Ap by Lemma 13.2 which implies the dimension is
at least 1 (because there must be a prime in Ap not containing f by the elementary
Algebra, Lemma 16.2). �

Lemma 15.4.0AG9 Let X be a Noetherian scheme. Let D ⊂ X be an integral closed
subscheme which is also an effective Cartier divisor. Then the local ring of X at
the generic point of D is a discrete valuation ring.

Proof. By Lemma 13.2 we may assume X = Spec(A) and D = Spec(A/(f)) where
A is a Noetherian ring and f ∈ A is a nonzerodivisor. The assumption that D is
integral signifies that (f) is prime. Hence the local ring of X at the generic point
is A(f) which is a Noetherian local ring whose maximal ideal is generated by a
nonzerodivisor. Thus it is a discrete valuation ring by Algebra, Lemma 118.7. �

Lemma 15.5.0B3R Let X be a locally Noetherian scheme. Let D ⊂ X be an effective
Cartier divisor. If X is (Sk), then D is (Sk−1).

Proof. Let x ∈ D. Then OD,x = OX,x/(f) where f ∈ OX,x is a nonzerodi-
visor. By assumption we have depth(OX,x) ≥ min(dim(OX,x), k). By Algebra,
Lemma 71.7 we have depth(OD,x) = depth(OX,x)−1 and by Algebra, Lemma 59.12
dim(OD,x) = dim(OX,x)− 1. It follows that depth(OD,x) ≥ min(dim(OD,x), k− 1)
as desired. �

Lemma 15.6.0B3S Let X be a locally Noetherian normal scheme. Let D ⊂ X be an
effective Cartier divisor. Then D is (S1).

Proof. By Properties, Lemma 12.5 we see that X is (S2). Thus we conclude by
Lemma 15.5. �
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Lemma 15.7.0AGA Let X be a Noetherian scheme. Let D ⊂ X be a integral closed
subscheme. Assume that

(1) D has codimension 1 in X, and
(2) OX,x is a UFD for all x ∈ D.

Then D is an effective Cartier divisor.

Proof. Let x ∈ D and set A = OX,x. Let p ⊂ A correspond to the generic point of
D. Then Ap has dimension 1 by assumption (1). Thus p is a prime ideal of height
1. Since A is a UFD this implies that p = (f) for some f ∈ A. Of course f is a
nonzerodivisor and we conclude by Lemma 15.2. �

Lemma 15.8.0AGB Let X be a Noetherian scheme. Let Z ⊂ X be a closed subscheme.
Assume there exist integral effective Cartier divisors Di ⊂ X and a closed subset
Z ′ ⊂ X of codimension ≥ 2 such that Z ⊂ Z ′ ∪

⋃
Di set-theoretically. Then there

exists an effective Cartier divisor of the form

D =
∑

aiDi ⊂ Z

such that D → Z is an isomorphism away from codimension 2 in X. The existence
of the Di is guaranteed if OX,x is a UFD for all x ∈ Z or if X is regular.

Proof. Let ξi ∈ Di be the generic point and let Oi = OX,ξi be the local ring which
is a discrete valuation ring by Lemma 15.4. Let ai ≥ 0 be the minimal valuation of
an element of IZ,ξi ⊂ Oi. We claim that the effective Cartier divisor D =

∑
aiDi

works.

Namely, suppose that x ∈ X. Let A = OX,x. Let fi ∈ A be a local equation for
Di; we only consider those i such that x ∈ Di. Then fi is a prime element of A and
Oi = A(fi). Let I = IZ,x ⊂ A. By our choice of ai we have IA(fi) = faii A(fi). It
follows that I ⊂ (

∏
faii ) because the fi are prime elements of A. This proves that

IZ ⊂ ID, i.e., that D ⊂ Z. Moreover, we also see that D and Z agree at the ξi,
which proves the final assertion.

To see the final statements we argue as follows. A regular local ring is a UFD (More
on Algebra, Lemma 96.7) hence it suffices to argue in the UFD case. In that case,
let Di be the irreducible components of Z which have codimension 1 in X. By
Lemma 15.7 each Di is an effective Cartier divisor. �

Lemma 15.9.0BXH Let Z ⊂ X be a closed subscheme of a Noetherian scheme. Assume

(1) Z has no embedded points,
(2) every irreducible component of Z has codimension 1 in X,
(3) every local ring OX,x, x ∈ Z is a UFD or X is regular.

Then Z is an effective Cartier divisor.

Proof. Let D =
∑
aiDi be as in Lemma 15.8 where Di ⊂ Z are the irreducible

components of Z. If D → Z is not an isomorphism, then OZ → OD has a nonzero
kernel sitting in codimension ≥ 2. This would mean that Z has embedded points,
which is forbidden by assumption (1). Hence D ∼= Z as desired. �

Lemma 15.10.0BXI Let R be a Noetherian UFD. Let I ⊂ R be an ideal such that R/I
has no embedded primes and such that every minimal prime over I has height 1.
Then I = (f) for some f ∈ R.
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Proof. By Lemma 15.9 the ideal sheaf Ĩ is invertible on Spec(R). By More on
Algebra, Lemma 96.3 it is generated by a single element. �

Lemma 15.11.0BCP Let X be a Noetherian scheme. Let D ⊂ X be an effective Cartier
divisor. Assume that there exist integral effective Cartier divisors Di ⊂ X such that
D ⊂

⋃
Di set theoretically. Then D =

∑
aiDi for some ai ≥ 0. The existence of

the Di is guaranteed if OX,x is a UFD for all x ∈ D or if X is regular.

Proof. Choose ai as in Lemma 15.8 and set D′ =
∑
aiDi. Then D′ → D is an

inclusion of effective Cartier divisors which is an isomorphism away from codimen-
sion 2 on X. Pick x ∈ X. Set A = OX,x and let f, f ′ ∈ A be the nonzerodivisor
generating the ideal of D,D′ in A. Then f = gf ′ for some g ∈ A. Moreover, for
every prime p of height ≤ 1 of A we see that g maps to a unit of Ap. This implies
that g is a unit because the minimal primes over (g) have height 1 (Algebra, Lemma
59.10). �

Lemma 15.12.0AYM Let X be a Noetherian scheme which has an ample invertible
sheaf. Then every invertible OX-module is isomorphic to

OX(D −D′) = OX(D)⊗OX OX(D′)⊗−1

for some effective Cartier divisors D,D′ in X.

Proof. Let x1, . . . , xn be the associated points of X (Lemma 2.5). Let L be an
ample invertible sheaf. There exists an n > 0 and a section s ∈ Γ(X,L⊗n) such
that Xs = Spec(A) is affine and such that xi ∈ Xs for i = 1, . . . , n (Properties,
Lemma 29.6). Let p1, . . . , pn ⊂ A be the prime ideals corresponding to x1, . . . , xn.

Then N|Xs corresponds to an invertible A-module N . Choose an element t ∈ N ,
t 6∈ piN for all i. Such an element exists. This is clear if n = 1. If n > 1 first
rearrange the primes such that pi 6⊂ pn for all i < n. Then using induction choose
an element t ∈ N with t 6∈ piN for i < n. Then we are done if t 6∈ pnN . Otherwise,
pick an t′ ∈ N , t′ 6∈ pnN and fi ∈ pi, fi 6∈ pn. The element t + f1f2 . . . fn−1t

′ will
be as desired.

By Properties, Lemma 17.2 we see that for some e ≥ 0 the section se|U t extends to
a global section τ of L⊗e ⊗N . Thus both L⊗e ⊗N and L⊗e are invertible sheaves
which have global sections which generate the stalks at the associated points of X.
Thus these are regular sections by Lemma 15.1. Hence L⊗e ⊗ N ∼= OX(D) and
L⊗e ∼= OX(D′) for some effective Cartier divisors, see Lemma 14.10. �

Lemma 15.13.0B3T Let X be an integral regular scheme of dimension 2. Let i : D → X
be the immersion of an effective Cartier divisor. Let F → F ′ → i∗G → 0 be an
exact sequence of coherent OX-modules. Assume

(1) F ,F ′ are locally free of rank r on a nonempty open of X,
(2) D is an integral scheme,
(3) G is a finite locally free OD-module of rank s.

Then L = (∧rF)∗∗ and L′ = (∧rF ′)∗∗ are invertible OX-modules and L′ ∼= L(kD)
for some k ∈ {0, . . . ,min(s, r)}.

Proof. The first statement follows from Lemma 12.10 as assumption (1) implies
that L and L′ have rank 1. Taking ∧r and double duals are functors, hence we
obtain a canonical map σ : L → L′ which is an isomorphism over the nonempty
open of (1), hence nonzero. To finish the proof, it suffices to see that σ viewed as a
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global section of L′⊗L⊗−1 does not vanish at any codimension point of X, except
at the generic point of D and there with vanishing order at most min(s, r).

Translated into algebra, we arrive at the following problem: Let (A,m, κ) be a
discrete valuation ring with fraction field K. Let M → M ′ → N → 0 be an exact
sequence of finite A-modules with dimK(M ⊗K) = dimK(M ′ ⊗K) = r and with
N ∼= κ⊕s. Show that the induced map L = ∧r(M)∗∗ → L′ = ∧r(M ′)∗∗ vanishes
to order at most min(s, r). We will use the structure theorem for modules over
A, see More on Algebra, Lemma 98.3 or 98.9. Dividing out a finite A-module by
a torsion submodule does not change the double dual. Thus we may replace M
by M/Mtors and M ′ by M ′/ Im(Mtors → M ′) and assume that M is torsion free.
Then M →M ′ is injective and M ′tors → N is injective. Hence we may replace M ′

by M ′/M ′tors and N by N/M ′tors. Thus we reduce to the case where M and M ′

are free of rank r and N ∼= κ⊕s. In this case σ is the determinant of M →M ′ and
vanishes to order s for example by Algebra, Lemma 120.7. �

16. Complements of affine opens

0BCQ In this section we discuss the result that the complement of an affine open in a
variety has pure codimension 1.

Lemma 16.1.0BCR Let (A,m) be a Noetherian local ring. The punctured spectrum
U = Spec(A) \ {m} of A is affine if and only if dim(A) ≤ 1.

Proof. If dim(A) = 0, then U is empty hence affine (equal to the spectrum of the
0 ring). If dim(A) = 1, then we can choose an element f ∈ m not contained in
any of the finite number of minimal primes of A (Algebra, Lemmas 30.6 and 14.2).
Then U = Spec(Af ) is affine.

The converse is more interesting. We will give a somewhat nonstandard proof and
discuss the standard argument in a remark below. Assume U = Spec(B) is affine.
Since affineness and dimension are not affecting by going to the reduction we may
replace A by the quotient by its ideal of nilpotent elements and assume A is reduced.
Set Q = B/A viewed as an A-module. The support of Q is {m} as Ap = Bp for all
nonmaximal primes p of A. We may assume dim(A) ≥ 1, hence as above we can
pick f ∈ m not contained in any of the minimal ideals of A. Since A is reduced
this implies that f is a nonzerodivisor. In particular dim(A/fA) = dim(A)− 1, see
Algebra, Lemma 59.12. Applying the snake lemma to multiplication by f on the
short exact sequence 0→ A→ B → Q→ 0 we obtain

0→ Q[f ]→ A/fA→ B/fB → Q/fQ→ 0

where Q[f ] = Ker(f : Q → Q). This implies that Q[f ] is a finite A-module. Since
the support of Q[f ] is {m} we see l = lengthA(Q[f ]) <∞ (Algebra, Lemma 61.3).
Set ln = lengthA(Q[fn]). The exact sequence

0→ Q[fn]→ Q[fn+1]
fn−−→ Q[f ]

shows inductively that ln <∞ and that ln ≤ ln+1. Considering the exact sequence

0→ Q[f ]→ Q[fn+1]
f−→ Q[fn]→ Q/fQ

and we see that the image of Q[fn] in Q/fQ has length ln− ln+1 + l ≤ l. Since Q =⋃
Q[fn] we find that the length of Q/fQ is at most l, i.e., bounded. Thus Q/fQ is

a finite A-module. Hence A/fA→ B/fB is a finite ring map, in particular induces
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a closed map on spectra (Algebra, Lemmas 35.22 and 40.6). On the other hand
Spec(B/fB) is the punctured spectrum of Spec(A/fA). This is a contradiction
unless Spec(B/fB) = ∅ which means that dim(A/fA) = 0 as desired. �

Remark 16.2.0BCS If (A,m) is a Noetherian local normal domain of dimension ≥ 2
and U is the punctured spectrum of A, then Γ(U,OU ) = A. This algebraic version
of Hartog’s theorem follows from the fact that A =

⋂
height(p)=1Ap we’ve seen in

Algebra, Lemma 151.6. Thus in this case U cannot be affine (since it would force m
to be a point of U). This is often used as the starting point of the proof of Lemma
16.1. To reduce the case of a general Noetherian local ring to this case, we first
complete (to get a Nagata local ring), then replace A by A/q for a suitable minimal
prime, and then normalize. Each of these steps does not change the dimension
and we obtain a contradiction. You can skip the completion step, but then the
normalization in general is not a Noetherian domain. However, it is still a Krull
domain of the same dimension (this is proved using Krull-Akizuki) and one can
apply the same argument.

Remark 16.3.0BCT It is not clear how to characterize the non-Noetherian local rings
(A,m) whose punctured spectrum is affine. Such a ring has a finitely generated

ideal I with m =
√
I. Of course if we can take I generated by 1 element, then

A has an affine puncture spectrum; this gives lots of non-Noetherian examples.
Conversely, it follows from the argument in the proof of Lemma 16.1 that such a
ring cannot possess a nonzerodivisor f ∈ m with H0

I (A/fA) = 0 (so A cannot have
a regular sequence of length 2). Moreover, the same holds for any ring A′ which is

the target of a local homomorphism of local rings A→ A′ such that mA′ =
√
mA′.

Lemma 16.4.0BCU [GD67, EGA IV,
Corollaire 21.12.7]

Let X be a locally Noetherian scheme. Let U ⊂ X be an open
subscheme such that the inclusion morphism U → X is affine. For every generic
point ξ of an irreducible component of X \U the local ring OX,ξ has dimension ≤ 1.
If U is dense or if ξ is in the closure of U , then dim(OX,ξ) = 1.

Proof. Since ξ is a generic point of X \ U , we see that

Uξ = U ×X Spec(OX,ξ) ⊂ Spec(OX,ξ)

is the punctured spectrum of OX,ξ (hint: use Schemes, Lemma 13.2). As U → X
is affine, we see that Uξ → Spec(OX,ξ) is affine (Morphisms, Lemma 11.8) and

we conclude that Uξ is affine. Hence dim(OX,ξ) ≤ 1 by Lemma 16.1. If ξ ∈ U ,
then there is a specialization η → ξ where η ∈ U (just take η a generic point of
an irreducible component of U which contains ξ; since U is locally Noetherian,
hence locally has finitely many irreducible components, we see that η ∈ U). Then
η ∈ Spec(OX,ξ) and we see that the dimension cannot be 0. �

Lemma 16.5.0BCV Let X be a separated locally Noetherian scheme. Let U ⊂ X be
an affine open. For every generic point ξ of an irreducible component of X \U the
local ring OX,ξ has dimension ≤ 1. If U is dense or if ξ is in the closure of U , then
dim(OX,ξ) = 1.

Proof. This follows from Lemma 16.4 because the morphism U → X is affine by
Morphisms, Lemma 11.11. �

The following lemma can sometimes be used to produce effective Cartier divisors.
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Lemma 16.6.0BCW Let X be a Noetherian separated scheme. Let U ⊂ X be a dense
affine open. If OX,x is a UFD for all x ∈ X \ U , then there exists an effective
Cartier divisor D ⊂ X with U = X \D.

Proof. Since X is Noetherian, the complement X \U has finitely many irreducible
components D1, . . . , Dr (Properties, Lemma 5.7 applied to the reduced induced
subscheme structure on X \ U). Each Di ⊂ X has codimension 1 by Lemma 16.5
(and Properties, Lemma 10.3). Thus Di is an effective Cartier divisor by Lemma
15.7. Hence we can take D = D1 + . . .+Dr. �

17. Norms

0BCX Let π : X → Y be a finite morphism of schemes and let d ≥ 1 be an integer. Let
us say there exists a norm of degree d for π2 if there exists a multiplicative map

Normπ : π∗OX → OY
of sheaves such that

(1) the composition OY
π]−→ π∗OX

Normπ−−−−→ OY equals g 7→ gd, and
(2) if f ∈ OX(π−1V ) is zero at x ∈ π−1(V ), then Normπ(f) is zero at π(x).

We observe that condition (1) forces π to be surjective. Since Normπ is multiplica-
tive it sends units to units hence, given y ∈ Y , if f is a regular function on X defined
at but nonvanishing at any x ∈ X with π(x) = y, then Normπ(f) is defined and
does not vanish at y. This holds without requiring (2); in fact, the constructions
in this section will only require condition (1) and only certain vanishing properties
(which are used in particular in the proof of Lemma 17.4) will require property (2).

Lemma 17.1.0BUT Let π : X → Y be a finite morphism of schemes. Let L be an
invertible OX-module. Let y ∈ Y . There exists an open neighbourhood V ⊂ Y of y
such that L|π−1(V ) is trivial.

Proof. Clearly we may assume Y and hence X affine. Since π is finite the fibre
π−1({y}) over y is finite. Since X is affine, we can pick s ∈ Γ(X,L) not vanishing
in any point of π−1({y}). Namely, we can pick a finite set E ⊂ X of closed points
such that every x ∈ π−1({y}) specializes to some point of E. For x ∈ E denote
ix : x → X the closed immersion. Then L →

⊕
x∈E ix,∗i

∗
xL is a surjective map of

quasi-coherent OX -modules, and hence the map

Γ(X,L)→
⊕

x∈E
Lx/mxLx

is surjective (as taking global sections is an exact functor on the category of quasi-
coherent OX -modules, see Schemes, Lemma 7.5). Thus we can find an s ∈ Γ(X,L)
not vanishing at any point specializing to a point of E. Then Xs ⊂ X is an open
neighbourhood of π−1({y}). Since π is finite, hence closed, we conclude that there
is an open neighbourhood V ⊂ Y of y whose inverse image is contained in Xs as
desired. �

Lemma 17.2.0BCY Let π : X → Y be a finite morphism of schemes. If there exists a
norm of degree d for π, then there exists a homomorphism of abelian groups

Normπ : Pic(X)→ Pic(Y )

such that Normπ(π∗N ) ∼= N⊗d for all invertible OY -modules N .

2This is nonstandard notation.
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Proof. We will use the correspondence between isomorphism classes of invertible
OX -modules and elements of H1(X,O∗X) given in Cohomology, Lemma 7.1 without
further mention. We explain how to take the norm of an invertible OX -module L.
Namely, by Lemma 17.1 there exists an open covering Y =

⋃
Vj such that L|π−1Vj

is trivial. Choose a generating section sj ∈ L(π−1Vj) for each j. On the overlaps
π−1Vj ∩ π−1Vj′ we can write

sj = ujj′sj′

for a unique ujj′ ∈ O∗X(π−1Vj ∩ π−1Vj′). Thus we can consider the elements

vjj′ = Normπ(ujj′) ∈ O∗Y (Vj ∩ Vj′)
These elements satisfy the cocycle condition (because the ujj′ do and Normπ is
multiplicative) and therefore define an invertible OY -module. We omit the verifica-
tion that: this is well defined, additive on Picard groups, and satisfies the property
Normπ(π∗N ) ∼= N⊗d for all invertible OY -modules N . �

Lemma 17.3.0BCZ Let π : X → Y be a finite morphism of schemes. Assume there
exists a norm of degree d for π. For any OX-linear map ϕ : L → L′ of invertible
OX-modules there is an OY -linear map

Normπ(ϕ) : Normπ(L) −→ Normπ(L′)
with Normπ(L), Normπ(L′) as in Lemma 17.2. Moreover, for y ∈ Y the following
are equivalent

(1) ϕ is zero at a point of x ∈ X with π(x) = y, and
(2) Normπ(ϕ) is zero at y.

Proof. We choose an open covering Y =
⋃
Vj such that L and L′ are trivial over

the opens π−1Vj . This is possible by Lemma 17.1. Choose generating sections
sj and s′j of L and L′ over the opens π−1Vj . Then ϕ(sj) = fjs

′
j for some fj ∈

OX(π−1Vj). Define Normπ(ϕ) to be multiplication by Normπ(fj) on Vj . An simple
calculation involving the cocycles used to construct Normπ(L), Normπ(L′) in the
proof of Lemma 17.2 shows that this defines a map as stated in the lemma. The
final statement follows from condition (2) in the definition of a norm map of degree
d. Some details omitted. �

Lemma 17.4.0BD0 Let π : X → Y be a finite morphism of schemes. Assume X has
an ample invertible sheaf and there exists a norm of degree d for π. Then Y has
an ample invertible sheaf.

Proof. Let L be the ample invertible sheaf on X given to us by assumption. We
will prove that N = Normπ(L) is ample on Y .

Since X is quasi-compact (Properties, Definition 26.1) and X → Y surjective (by
the existence of Normπ) we see that Y is quasi-compact. Let y ∈ Y be a point. To
finish the proof we will show that there exists a section t of some positive tensor
power of N which does not vanish at y such that Yt is affine. To do this, choose an
affine open neighbourhood V ⊂ Y of y. Choose n� 0 and a section s ∈ Γ(X,L⊗n)
such that

π−1({y}) ⊂ Xs ⊂ π−1V
by Properties, Lemma 29.6. Then t = Normπ(s) is a section of N⊗n which does
not vanish at x and with Yt ⊂ V , see Lemma 17.3. Then Yt is affine by Properties,
Lemma 26.4. �
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Lemma 17.5.0BD1 Let π : X → Y be a finite morphism of schemes. Assume X is
quasi-affine and there exists a norm of degree d for π. Then Y is quasi-affine.

Proof. By Properties, Lemma 27.1 we see that OX is an ample invertible sheaf on
X. The proof of Lemma 17.4 shows that Normπ(OX) = OY is an ample invertible
OY -module. Hence Properties, Lemma 27.1 shows that Y is quasi-affine. �

Lemma 17.6.0BD2 Let π : X → Y be a finite locally free morphism of degree d ≥ 1.
Then there exists a canonical norm of degree d whose formation commutes with
arbitrary base change.

Proof. Let V ⊂ Y be an affine open such that (π∗OX)|V is finite free of rank d.
Choosing a basis we obtain an isomorphism

O⊕dV ∼= (π∗OX)|V
For every f ∈ π∗OX(V ) = OX(π−1(V )) multiplication by f defines a OV -linear
endomorphism mf of the displayed free vector bundle. Thus we get a d× d matrix
Mf ∈ Mat(d× d,OY (V )) and we can set

Normπ(f) = det(Mf )

Since the determinant of a matrix is independent of the choice of the basis chosen
we see that this is well defined which also means that this construction will glue to
a global map as desired. Compatibility with base change is straightforward from
the construction.

Property (1) follows from the fact that the determinant of a d× d diagonal matrix
with entries g, g, . . . , g is gd. To see property (2) we may base change and assume
that Y is the spectrum of a field k. Then X = Spec(A) with A a k-algebra with
dimk(A) = d. If there exists an x ∈ X such that f ∈ A vanishes at x, then there
exists a map A → κ into a field such that f maps to zero in κ. Then f : A → A
cannot be surjective, hence det(f : A→ A) = 0 as desired. �

Lemma 17.7.0BD3 Let π : X → Y be a finite surjective morphism with X and Y
integral and Y normal. Then there exists a norm of degree [R(X) : R(Y )] for π.

Proof. Let Spec(B) ⊂ Y be an affine open subset and let Spec(A) ⊂ X be its
inverse image. Then A and B are domains. Let K be the fraction field of A and L
the fraction field of B. Picture:

L // K

B

OO

// A

OO

Since K/L is a finite extension, there is a norm map NormK/L : K∗ → L∗ of degree
d = [K : L]; this is given by mapping f ∈ K to detL(f : K → K) as in the proof of
Lemma 17.6. Observe that the characteristic polynomial of f : K → K is a power
of the minimal polynomial of f over L; in particular NormK/L(f) is a power of
the constant coefficient of the minimal polynomial of f over L. Hence by Algebra,
Lemma 37.6 NormK/L maps A into B. This determines a compatible system of
maps on sections over affines and hence a global norm map Normπ of degree d.

Property (1) is immediate from the construction. To see property (2) let f ∈ A be
contained in the prime ideal p ⊂ A. Let fm + b1f

m−1 + . . . + bm be the minimal
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polynomial of f over L. By Algebra, Lemma 37.6 we have bi ∈ B. Hence b0 ∈ B∩p.

Since NormK/L(f) = b
d/m
0 (see above) we conclude that the norm vanishes in the

image point of p. �

Lemma 17.8.0BDZ Let X be a Noetherian scheme. Let p be a prime number such that
pOX = 0. Then for some e > 0 there exists a norm of degree pe for Xred → X
where Xred is the reduction of X.

Proof. Let A be a Noetherian ring with pA = 0. Let I ⊂ A be the ideal of
nilpotent elements. Then In = 0 for some n (Algebra, Lemma 31.4). Pick e such
that pe ≥ n. Then

A/I −→ A, f mod I 7−→ fp
e

is well defined. This produces a norm of degree pe for Spec(A/I)→ Spec(A). Now
if X is obtained by glueing some affine schemes Spec(Ai) then for some e� 0 these
maps glue to a norm map for Xred → X. Details omitted. �

Proposition 17.9.0BD4 Let f : X → Y be a finite surjective morphism of schemes.
Assume that X has an ample invertible OX-module. If

(1) π is finite locally free, or
(2) Y is an integral normal scheme, or
(3) Y is Noetherian, pOY = 0, and X = Yred,

then Y has an ample invertible OY -module.

Proof. Case (1) follows from a combination of Lemmas 17.6 and 17.4. Case (3)
follows from a combination of Lemmas 17.8 and 17.4. In case (2) we first replace X
by an irreducible component of X which dominates Y (viewed as a reduced closed
subscheme of X). Then we can apply Lemma 17.7. �

Lemma 17.10.0BD5 Let f : X → Y be a finite surjective morphism of schemes.
Assume that X is quasi-affine. If either

(1) π is finite locally free, or
(2) Y is an integral normal scheme

then Y is quasi-affine.

Proof. Case (1) follows from a combination of Lemmas 17.6 and 17.5. In case (2)
we first replace X by an irreducible component of X which dominates Y (viewed
as a reduced closed subscheme of X). Then we can apply Lemma 17.7. �

18. Relative effective Cartier divisors

056P The following lemma shows that an effective Cartier divisor which is flat over the
base is really a “family of effective Cartier divisors” over the base. For example the
restriction to any fibre is an effective Cartier divisor.

Lemma 18.1.056Q Let f : X → S be a morphism of schemes. Let D ⊂ X be a closed
subscheme. Assume

(1) D is an effective Cartier divisor, and
(2) D → S is a flat morphism.

Then for every morphism of schemes g : S′ → S the pullback (g′)−1D is an effective
Cartier divisor on X ′ = S′ ×S X where g′ : X ′ → X is the projection.
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Proof. Using Lemma 13.2 we translate this as follows into algebra. Let A→ B be
a ring map and h ∈ B. Assume h is a nonzerodivisor and that B/hB is flat over
A. Then

0→ B
h−→ B → B/hB → 0

is a short exact sequence of A-modules with B/hB flat over A. By Algebra, Lemma
38.12 this sequence remains exact on tensoring over A with any module, in partic-
ular with any A-algebra A′. �

This lemma is the motivation for the following definition.

Definition 18.2.062T Let f : X → S be a morphism of schemes. A relative effective
Cartier divisor on X/S is an effective Cartier divisor D ⊂ X such that D → S is a
flat morphism of schemes.

We warn the reader that this may be nonstandard notation. In particular, in [DG67,
IV, Section 21.15] the notion of a relative divisor is discussed only when X → S is
flat and locally of finite presentation. Our definition is a bit more general. However,
it turns out that if x ∈ D then X → S is flat at x in many cases (but not always).

Lemma 18.3.0B8U Let f : X → S be a morphism of schemes. If D1, D2 ⊂ X are
relative effective Cartier divisor on X/S then so is D1 +D2 (Definition 13.6).

Proof. This translates into the following algebra fact: Let A → B be a ring map
and h1, h2 ∈ B. Assume the hi are nonzerodivisors and that B/hiB is flat over A.
Then h1h2 is a nonzerodivisor and B/h1h2B is flat over A. The reason is that we
have a short exact sequence

0→ B/h1B → B/h1h2B → B/h2B → 0

where the first arrow is given by multiplication by h2. Since the outer two are flat
modules over A, so is the middle one, see Algebra, Lemma 38.13. �

Lemma 18.4.0B8V Let f : X → S be a morphism of schemes. If D1, D2 ⊂ X are
relative effective Cartier divisor on X/S and D1 ⊂ D2 as closed subschemes, then
the effective Cartier divisor D such that D2 = D1 +D (Lemma 13.8) is a relative
effective Cartier divisor on X/S.

Proof. This translates into the following algebra fact: Let A → B be a ring map
and h1, h2 ∈ B. Assume the hi are nonzerodivisors, that B/hiB is flat over A, and
that (h2) ⊂ (h1). Then we can write h2 = hh1 where h ∈ B is a nonzerodivisor.
We get a short exact sequence

0→ B/hB → B/h2B → B/h1B → 0

where the first arrow is given by multiplication by h1. Since the right two are flat
modules over A, so is the middle one, see Algebra, Lemma 38.13. �

Lemma 18.5.062U Let f : X → S be a morphism of schemes. Let D ⊂ X be a relative
effective Cartier divisor on X/S. If x ∈ D and OX,x is Noetherian, then f is flat
at x.

Proof. Set A = OS,f(x) and B = OX,x. Let h ∈ B be an element which generates
the ideal of D. Then h is a nonzerodivisor in B such that B/hB is a flat local
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A-algebra. Let I ⊂ A be a finitely generated ideal. Consider the commutative
diagram

0 // B
h

// B // B/hB // 0

0 // B ⊗A I
h //

OO

B ⊗A I //

OO

B/hB ⊗A I //

OO

0

The lower sequence is short exact as B/hB is flat over A, see Algebra, Lemma
38.12. The right vertical arrow is injective as B/hB is flat over A, see Algebra,
Lemma 38.5. Hence multiplication by h is surjective on the kernel K of the middle
vertical arrow. By Nakayama’s lemma, see Algebra, Lemma 19.1 we conclude that
K = 0. Hence B is flat over A, see Algebra, Lemma 38.5. �

The following lemma relies on the algebraic version of openness of the flat locus.
The scheme theoretic version can be found in More on Morphisms, Section 15.

Lemma 18.6.062V Let f : X → S be a morphism of schemes. Let D ⊂ X be a relative
effective Cartier divisor. If f is locally of finite presentation, then there exists an
open subscheme U ⊂ X such that D ⊂ U and such that f |U : U → S is flat.

Proof. Pick x ∈ D. It suffices to find an open neighbourhood U ⊂ X of x such
that f |U is flat. Hence the lemma reduces to the case that X = Spec(B) and
S = Spec(A) are affine and that D is given by a nonzerodivisor h ∈ B. By
assumption B is a finitely presented A-algebra and B/hB is a flat A-algebra. We
are going to use absolute Noetherian approximation.

Write B = A[x1, . . . , xn]/(g1, . . . , gm). Assume h is the image of h′ ∈ A[x1, . . . , xn].
Choose a finite type Z-subalgebra A0 ⊂ A such that all the coefficients of the poly-
nomials h′, g1, . . . , gm are in A0. Then we can set B0 = A0[x1, . . . , xn]/(g1, . . . , gm)
and h0 the image of h′ in B0. Then B = B0 ⊗A0

A and B/hB = B0/h0B0 ⊗A0
A.

By Algebra, Lemma 162.1 we may, after enlarging A0, assume that B0/h0B0 is flat
over A0. Let K0 = Ker(h0 : B0 → B0). As B0 is of finite type over Z we see
that K0 is a finitely generated ideal. Let A1 ⊂ A be a finite type Z-subalgebra
containing A0 and denote B1, h1, K1 the corresponding objects over A1. By More
on Algebra, Lemma 28.1 the map K0 ⊗A0

A1 → K1 is surjective. On the other
hand, the kernel of h : B → B is zero by assumption. Hence every element of
K0 maps to zero in K1 for sufficiently large subrings A1 ⊂ A. Since K0 is finitely
generated, we conclude that K1 = 0 for a suitable choice of A1.

Set f1 : X1 → S1 equal to Spec of the ring mapA1 → B1. SetD1 = Spec(B1/h1B1).
Since B = B1 ⊗A1

A, i.e., X = X1 ×S1
S, it now suffices to prove the lemma for

X1 → S1 and the relative effective Cartier divisor D1, see Morphisms, Lemma 24.6.
Hence we have reduced to the case where A is a Noetherian ring. In this case
we know that the ring map A → B is flat at every prime q of V (h) by Lemma
18.5. Combined with the fact that the flat locus is open in this case, see Algebra,
Theorem 128.4 we win. �

There is also the following lemma (whose idea is apparently due to Michael Artin,
see [Nob77]) which needs no finiteness assumptions at all.

Lemma 18.7.062W Let f : X → S be a morphism of schemes. Let D ⊂ X be a relative
effective Cartier divisor on X/S. If f is flat at all points of X \D, then f is flat.
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Proof. This translates into the following algebra fact: Let A → B be a ring map
and h ∈ B. Assume h is a nonzerodivisor, that B/hB is flat over A, and that the
localization Bh is flat over A. Then B is flat over A. The reason is that we have a
short exact sequence

0→ B → Bh → colimn(1/hn)B/B → 0

and that the second and third terms are flat over A, which implies that B is flat over
A (see Algebra, Lemma 38.13). Note that a filtered colimit of flat modules is flat
(see Algebra, Lemma 38.3) and that by induction on n each (1/hn)B/B ∼= B/hnB
is flat over A since it fits into the short exact sequence

0→ B/hn−1B
h−→ B/hnB → B/hB → 0

Some details omitted. �

Example 18.8.062X Here is an example of a relative effective Cartier divisor D where
the ambient scheme is not flat in a neighbourhood of D. Namely, let A = k[t] and

B = k[t, x, y, x−1y, x−2y, . . .]/(ty, tx−1y, tx−2y, . . .)

Then B is not flat over A but B/xB ∼= A is flat over A. Moreover x is a nonzerodi-
visor and hence defines a relative effective Cartier divisor in Spec(B) over Spec(A).

If the ambient scheme is flat and locally of finite presentation over the base, then
we can characterize a relative effective Cartier divisor in terms of its fibres. See
also More on Morphisms, Lemma 21.1 for a slightly different take on this lemma.

Lemma 18.9.062Y Let ϕ : X → S be a flat morphism which is locally of finite presen-
tation. Let Z ⊂ X be a closed subscheme. Let x ∈ Z with image s ∈ S.

(1) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x, then there exists
an open U ⊂ X and a relative effective Cartier divisor D ⊂ U such that
Z ∩ U ⊂ D and Zs ∩ U = Ds.

(2) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x, the morphism
Z → X is of finite presentation, and Z → S is flat at x, then we can
choose U and D such that Z ∩ U = D.

(3) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x and Z is a locally
principal closed subscheme of X in a neighbourhood of x, then we can choose
U and D such that Z ∩ U = D.

In particular, if Z → S is locally of finite presentation and flat and all fibres
Zs ⊂ Xs are effective Cartier divisors, then Z is a relative effective Cartier divisor.
Similarly, if Z is a locally principal closed subscheme of X such that all fibres
Zs ⊂ Xs are effective Cartier divisors, then Z is a relative effective Cartier divisor.

Proof. Choose affine open neighbourhoods Spec(A) of s and Spec(B) of x such
that ϕ(Spec(B)) ⊂ Spec(A). Let p ⊂ A be the prime ideal corresponding to s. Let
q ⊂ B be the prime ideal corresponding to x. Let I ⊂ B be the ideal corresponding
to Z. By the initial assumption of the lemma we know that A → B is flat and of
finite presentation. The assumption in (1) means that, after shrinking Spec(B), we
may assume I(B⊗Aκ(p)) is generated by a single element which is a nonzerodivisor
in B ⊗A κ(p). Say f ∈ I maps to this generator. We claim that after inverting
an element g ∈ B, g 6∈ q the closed subscheme D = V (f) ⊂ Spec(Bg) is a relative
effective Cartier divisor.
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By Algebra, Lemma 162.1 we can find a flat finite type ring map A0 → B0 of
Noetherian rings, an element f0 ∈ B0, a ring map A0 → A and an isomorphism
A⊗A0 B0

∼= B. If p0 = A0 ∩ p then we see that

B ⊗A κ(p) = (B0 ⊗A0
κ(p0))⊗κ(p0)) κ(p)

hence f0 is a nonzerodivisor in B0 ⊗A0
κ(p0). By Algebra, Lemma 98.2 we see

that f0 is a nonzerodivisor in (B0)q0
where q0 = B0 ∩ q and that (B0/f0B0)q0

is
flat over A0. Hence by Algebra, Lemma 67.6 and Algebra, Theorem 128.4 there
exists a g0 ∈ B0, g0 6∈ q0 such that f0 is a nonzerodivisor in (B0)g0 and such that
(B0/f0B0)g0 is flat over A0. Hence we see that D0 = V (f0) ⊂ Spec((B0)g0) is
a relative effective Cartier divisor. Since we know that this property is preserved
under base change, see Lemma 18.1, we obtain the claim mentioned above with g
equal to the image of g0 in B.

At this point we have proved (1). To see (2) consider the closed immersion Z → D.
The surjective ring map u : OD,x → OZ,x is a map of flat local OS,s-algebras which
are essentially of finite presentation, and which becomes an isomorphisms after
dividing by ms. Hence it is an isomorphism, see Algebra, Lemma 127.4. It follows
that Z → D is an isomorphism in a neighbourhood of x, see Algebra, Lemma
125.6. To see (3), after possibly shrinking U we may assume that the ideal of D
is generated by a single nonzerodivisor f and the ideal of Z is generated by an
element g. Then f = gh. But g|Us and f |Us cut out the same effective Cartier
divisor in a neighbourhood of x. Hence h|Xs is a unit in OXs,x, hence h is a unit
in OX,x hence h is a unit in an open neighbourhood of x. I.e., Z ∩ U = D after
shrinking U .

The final statements of the lemma follow immediately from parts (2) and (3),
combined with the fact that Z → S is locally of finite presentation if and only if
Z → X is of finite presentation, see Morphisms, Lemmas 20.3 and 20.11. �

19. The normal cone of an immersion

062Z Let i : Z → X be a closed immersion. Let I ⊂ OX be the corresponding quasi-
coherent sheaf of ideals. Consider the quasi-coherent sheaf of graded OX -algebras⊕

n≥0 In/In+1. Since the sheaves In/In+1 are each annihilated by I this graded
algebra corresponds to a quasi-coherent sheaf of graded OZ-algebras by Morphisms,
Lemma 4.1. This quasi-coherent graded OZ-algebra is called the conormal algebra
of Z in X and is often simply denoted

⊕
n≥0 In/In+1 by the abuse of notation

mentioned in Morphisms, Section 4.

Let f : Z → X be an immersion. We define the conormal algebra of f as the
conormal sheaf of the closed immersion i : Z → X \ ∂Z, where ∂Z = Z \ Z. It is
often denoted

⊕
n≥0 In/In+1 where I is the ideal sheaf of the closed immersion

i : Z → X \ ∂Z.

Definition 19.1.0630 Let f : Z → X be an immersion. The conormal algebra CZ/X,∗
of Z in X or the conormal algebra of f is the quasi-coherent sheaf of graded OZ-
algebras

⊕
n≥0 In/In+1 described above.

Thus CZ/X,1 = CZ/X is the conormal sheaf of the immersion. Also CZ/X,0 = OZ
and CZ/X,n is a quasi-coherent OZ-module characterized by the property

(19.1.1)0631 i∗CZ/X,n = In/In+1
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where i : Z → X \ ∂Z and I is the ideal sheaf of i as above. Finally, note that
there is a canonical surjective map

(19.1.2)0632 Sym∗(CZ/X) −→ CZ/X,∗
of quasi-coherent graded OZ-algebras which is an isomorphism in degrees 0 and 1.

Lemma 19.2.0633 Let i : Z → X be an immersion. The conormal algebra of i has
the following properties:

(1) Let U ⊂ X be any open such that i(Z) is a closed subset of U . Let I ⊂ OU
be the sheaf of ideals corresponding to the closed subscheme i(Z) ⊂ U . Then

CZ/X,∗ = i∗
(⊕

n≥0
In
)

= i−1
(⊕

n≥0
In/In+1

)
(2) For any affine open Spec(R) = U ⊂ X such that Z ∩ U = Spec(R/I) there

is a canonical isomorphism Γ(Z ∩ U, CZ/X,∗) =
⊕

n≥0 I
n/In+1.

Proof. Mostly clear from the definitions. Note that given a ring R and an ideal I
of R we have In/In+1 = In ⊗R R/I. Details omitted. �

Lemma 19.3.0634 Let

Z
i
//

f

��

X

g

��
Z ′

i′ // X ′

be a commutative diagram in the category of schemes. Assume i, i′ immersions.
There is a canonical map of graded OZ-algebras

f∗CZ′/X′,∗ −→ CZ/X,∗
characterized by the following property: For every pair of affine opens (Spec(R) =
U ⊂ X,Spec(R′) = U ′ ⊂ X ′) with f(U) ⊂ U ′ such that Z ∩ U = Spec(R/I) and
Z ′ ∩ U ′ = Spec(R′/I ′) the induced map

Γ(Z ′ ∩ U ′, CZ′/X′,∗) =
⊕

(I ′)n/(I ′)n+1 −→
⊕

n≥0
In/In+1 = Γ(Z ∩ U, CZ/X,∗)

is the one induced by the ring map f ] : R′ → R which has the property f ](I ′) ⊂ I.

Proof. Let ∂Z ′ = Z ′ \ Z ′ and ∂Z = Z \ Z. These are closed subsets of X ′ and of
X. Replacing X ′ by X ′ \ ∂Z ′ and X by X \

(
g−1(∂Z ′) ∪ ∂Z

)
we see that we may

assume that i and i′ are closed immersions.

The fact that g ◦ i factors through i′ implies that g∗I ′ maps into I under the
canonical map g∗I ′ → OX , see Schemes, Lemmas 4.6 and 4.7. Hence we get an
induced map of quasi-coherent sheaves g∗((I ′)n/(I ′)n+1)→ In/In+1. Pulling back
by i gives i∗g∗((I ′)n/(I ′)n+1) → i∗(In/In+1). Note that i∗(In/In+1) = CZ/X,n.

On the other hand, i∗g∗((I ′)n/(I ′)n+1) = f∗(i′)∗((I ′)n/(I ′)n+1) = f∗CZ′/X′,n.
This gives the desired map.

Checking that the map is locally described as the given map (I ′)n/(I ′)n+1 →
In/In+1 is a matter of unwinding the definitions and is omitted. Another ob-
servation is that given any x ∈ i(Z) there do exist affine open neighbourhoods U ,
U ′ with f(U) ⊂ U ′ and Z ∩ U as well as U ′ ∩ Z ′ closed such that x ∈ U . Proof
omitted. Hence the requirement of the lemma indeed characterizes the map (and
could have been used to define it). �

http://stacks.math.columbia.edu/tag/0633
http://stacks.math.columbia.edu/tag/0634


DIVISORS 38

Lemma 19.4.0635 Let

Z
i
//

f

��

X

g

��
Z ′

i′ // X ′

be a fibre product diagram in the category of schemes with i, i′ immersions. Then
the canonical map f∗CZ′/X′,∗ → CZ/X,∗ of Lemma 19.3 is surjective. If g is flat,
then it is an isomorphism.

Proof. Let R′ → R be a ring map, and I ′ ⊂ R′ an ideal. Set I = I ′R. Then
(I ′)n/(I ′)n+1⊗R′R→ In/In+1 is surjective. If R′ → R is flat, then In = (I ′)n⊗R′R
and we see the map is an isomorphism. �

Definition 19.5.0636 Let i : Z → X be an immersion of schemes. The normal cone
CZX of Z in X is

CZX = Spec
Z

(CZ/X,∗)
see Constructions, Definitions 7.1 and 7.2. The normal bundle of Z in X is the
vector bundle

NZX = Spec
Z

(Sym(CZ/X))

see Constructions, Definitions 6.1 and 6.2.

Thus CZX → Z is a cone over Z and NZX → Z is a vector bundle over Z (recall
that in our terminology this does not imply that the conormal sheaf is a finite
locally free sheaf). Moreover, the canonical surjection (19.1.2) of graded algebras
defines a canonical closed immersion

(19.5.1)0637 CZX −→ NZX

of cones over Z.

20. Regular ideal sheaves

067M In this section we generalize the notion of an effective Cartier divisor to higher codi-
mension. Recall that a sequence of elements f1, . . . , fr of a ring R is a regular se-
quence if for each i = 1, . . . , r the element fi is a nonzerodivisor on R/(f1, . . . , fi−1)
and R/(f1, . . . , fr) 6= 0, see Algebra, Definition 67.1. There are three closely re-
lated weaker conditions that we can impose. The first is to assume that f1, . . . , fr
is a Koszul-regular sequence, i.e., that Hi(K•(f1, . . . , fr)) = 0 for i > 0, see
More on Algebra, Definition 27.1. The sequence is called an H1-regular sequence
if H1(K•(f1, . . . , fr)) = 0. Another condition we can impose is that with J =
(f1, . . . , fr), the map

R/J [T1, . . . , Tr] −→
⊕

n≥0
Jn/Jn+1

which maps Ti to fi mod J2 is an isomorphism. In this case we say that f1, . . . , fr
is a quasi-regular sequence, see Algebra, Definition 68.1. Given an R-module M
there is also a notion of M -regular and M -quasi-regular sequence.

We can generalize this to the case of ringed spaces as follows. Let X be a ringed
space and let f1, . . . , fr ∈ Γ(X,OX). We say that f1, . . . , fr is a regular sequence if
for each i = 1, . . . , r the map

(20.0.1)0639 fi : OX/(f1, . . . , fi−1) −→ OX/(f1, . . . , fi−1)
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is an injective map of sheaves. We say that f1, . . . , fr is a Koszul-regular sequence
if the Koszul complex

(20.0.2)063A K•(OX , f•),
see Modules, Definition 21.2, is acyclic in degrees > 0. We say that f1, . . . , fr is a
H1-regular sequence if the Koszul complex K•(OX , f•) is exact in degree 1. Finally,
we say that f1, . . . , fr is a quasi-regular sequence if the map

(20.0.3)063B OX/J [T1, . . . , Tr] −→
⊕

d≥0
J d/J d+1

is an isomorphism of sheaves where J ⊂ OX is the sheaf of ideals generated by
f1, . . . , fr. (There is also a notion of F-regular and F-quasi-regular sequence for a
given OX -module F which we will introduce here if we ever need it.)

Lemma 20.1.063C Let X be a ringed space. Let f1, . . . , fr ∈ Γ(X,OX). We have
the following implications f1, . . . , fr is a regular sequence ⇒ f1, . . . , fr is a Koszul-
regular sequence ⇒ f1, . . . , fr is an H1-regular sequence ⇒ f1, . . . , fr is a quasi-
regular sequence.

Proof. Since we may check exactness at stalks, a sequence f1, . . . , fr is a regular
sequence if and only if the maps

fi : OX,x/(f1, . . . , fi−1) −→ OX,x/(f1, . . . , fi−1)

are injective for all x ∈ X. In other words, the image of the sequence f1, . . . , fr in
the ring OX,x is a regular sequence for all x ∈ X. The other types of regularity can
be checked stalkwise as well (details omitted). Hence the implications follow from
More on Algebra, Lemmas 27.2, 27.3, and 27.6. �

Definition 20.2.063D Let X be a ringed space. Let J ⊂ OX be a sheaf of ideals.

(1) We say J is regular if for every x ∈ Supp(OX/J ) there exists an open
neighbourhood x ∈ U ⊂ X and a regular sequence f1, . . . , fr ∈ OX(U)
such that J |U is generated by f1, . . . , fr.

(2) We say J is Koszul-regular if for every x ∈ Supp(OX/J ) there exists an
open neighbourhood x ∈ U ⊂ X and a Koszul-regular sequence f1, . . . , fr ∈
OX(U) such that J |U is generated by f1, . . . , fr.

(3) We say J is H1-regular if for every x ∈ Supp(OX/J ) there exists an open
neighbourhood x ∈ U ⊂ X and a H1-regular sequence f1, . . . , fr ∈ OX(U)
such that J |U is generated by f1, . . . , fr.

(4) We say J is quasi-regular if for every x ∈ Supp(OX/J ) there exists an
open neighbourhood x ∈ U ⊂ X and a quasi-regular sequence f1, . . . , fr ∈
OX(U) such that J |U is generated by f1, . . . , fr.

Many properties of this notion immediately follow from the corresponding notions
for regular and quasi-regular sequences in rings.

Lemma 20.3.063E Let X be a ringed space. Let J be a sheaf of ideals. We have the
following implications: J is regular ⇒ J is Koszul-regular ⇒ J is H1-regular ⇒
J is quasi-regular.

Proof. The lemma immediately reduces to Lemma 20.1. �

Lemma 20.4.063H Let X be a locally ringed space. Let J ⊂ OX be a sheaf of ideals.
Then J is quasi-regular if and only if the following conditions are satisfied:
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(1) J is an OX-module of finite type,
(2) J /J 2 is a finite locally free OX/J -module, and
(3) the canonical maps

Symn
OX/J (J /J 2) −→ J n/J n+1

are isomorphisms for all n ≥ 0.

Proof. It is clear that if U ⊂ X is an open such that J |U is generated by a
quasi-regular sequence f1, . . . , fr ∈ OX(U) then J |U is of finite type, J |U/J 2|U is
free with basis f1, . . . , fr, and the maps in (3) are isomorphisms because they are
coordinate free formulation of the degree n part of (20.0.3). Hence it is clear that
being quasi-regular implies conditions (1), (2), and (3).

Conversely, suppose that (1), (2), and (3) hold. Pick a point x ∈ Supp(OX/J ).
Then there exists a neighbourhood U ⊂ X of x such that J |U/J 2|U is free of rank
r over OU/J |U . After possibly shrinking U we may assume there exist f1, . . . , fr ∈
J (U) which map to a basis of J |U/J 2|U as an OU/J |U -module. In particular
we see that the images of f1, . . . , fr in Jx/J 2

x generate. Hence by Nakayama’s
lemma (Algebra, Lemma 19.1) we see that f1, . . . , fr generate the stalk Jx. Hence,
since J is of finite type, by Modules, Lemma 9.4 after shrinking U we may assume
that f1, . . . , fr generate J . Finally, from (3) and the isomorphism J |U/J 2|U =⊕
OU/J |Ufi it is clear that f1, . . . , fr ∈ OX(U) is a quasi-regular sequence. �

Lemma 20.5.067N Let (X,OX) be a locally ringed space. Let J ⊂ OX be a sheaf of
ideals. Let x ∈ X and f1, . . . , fr ∈ Jx whose images give a basis for the κ(x)-vector
space Jx/mxJx.

(1) If J is quasi-regular, then there exists an open neighbourhood such that
f1, . . . , fr ∈ OX(U) form a quasi-regular sequence generating J |U .

(2) If J is H1-regular, then there exists an open neighbourhood such that f1, . . . , fr ∈
OX(U) form an H1-regular sequence generating J |U .

(3) If J is Koszul-regular, then there exists an open neighbourhood such that
f1, . . . , fr ∈ OX(U) form an Koszul-regular sequence generating J |U .

Proof. First assume that J is quasi-regular. We may choose an open neighbour-
hood U ⊂ X of x and a quasi-regular sequence g1, . . . , gs ∈ OX(U) which gen-
erates J |U . Note that this implies that J /J 2 is free of rank s over OU/J |U
(see Lemma 20.4 and its proof) and hence r = s. We may shrink U and assume
f1, . . . , fr ∈ J (U). Thus we may write

fi =
∑

aijgj

for some aij ∈ OX(U). By assumption the matrix A = (aij) maps to an invertible
matrix over κ(x). Hence, after shrinking U once more, we may assume that (aij)
is invertible. Thus we see that f1, . . . , fr give a basis for (J /J 2)|U which proves
that f1, . . . , fr is a quasi-regular sequence over U .

Note that in order to prove (2) and (3) we may, because the assumptions of (2) and
(3) are stronger than the assumption in (1), already assume that f1, . . . , fr ∈ J (U)
and fi =

∑
aijgj with (aij) invertible as above, where now g1, . . . , gr is a H1-regular

or Koszul-regular sequence. Since the Koszul complex on f1, . . . , fr is isomorphic to
the Koszul complex on g1, . . . , gr via the matrix (aij) (see More on Algebra, Lemma
26.4) we conclude that f1, . . . , fr is H1-regular or Koszul-regular as desired. �
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Lemma 20.6.063F Any regular, Koszul-regular, H1-regular, or quasi-regular sheaf of
ideals on a scheme is a finite type quasi-coherent sheaf of ideals.

Proof. This follows as such a sheaf of ideals is locally generated by finitely many
sections. And any sheaf of ideals locally generated by sections on a scheme is
quasi-coherent, see Schemes, Lemma 10.1. �

Lemma 20.7.063G Let X be a scheme. Let J be a sheaf of ideals. Then J is reg-
ular (resp. Koszul-regular, H1-regular, quasi-regular) if and only if for every x ∈
Supp(OX/J ) there exists an affine open neighbourhood x ∈ U ⊂ X, U = Spec(A)

such that J |U = Ĩ and such that I is generated by a regular (resp. Koszul-regular,
H1-regular, quasi-regular) sequence f1, . . . , fr ∈ A.

Proof. By assumption we can find an open neighbourhood U of x over which J
is generated by a regular (resp. Koszul-regular, H1-regular, quasi-regular) sequence
f1, . . . , fr ∈ OX(U). After shrinking U we may assume that U is affine, say U =

Spec(A). Since J is quasi-coherent by Lemma 20.6 we see that J |U = Ĩ for some
ideal I ⊂ A. Now we can use the fact that˜ : ModA −→ QCoh(OU )

is an equivalence of categories which preserves exactness. For example the fact
that the functions fi generate J means that the fi, seen as elements of A generate
I. The fact that (20.0.1) is injective (resp. (20.0.2) is exact, (20.0.2) is exact in
degree 1, (20.0.3) is an isomorphism) implies the corresponding property of the
map A/(f1, . . . , fi−1)→ A/(f1, . . . , fi−1) (resp. the complex K•(A, f1, . . . , fr), the
map A/I[T1, . . . , Tr]→

⊕
In/In+1). Thus f1, . . . , fr ∈ A is a regular (resp. Koszul-

regular, H1-regular, quasi-regular) sequence of the ring A. �

Lemma 20.8.063I Let X be a locally Noetherian scheme. Let J ⊂ OX be a quasi-
coherent sheaf of ideals. Let x be a point of the support of OX/J . The following
are equivalent

(1) Jx is generated by a regular sequence in OX,x,
(2) Jx is generated by a Koszul-regular sequence in OX,x,
(3) Jx is generated by an H1-regular sequence in OX,x,
(4) Jx is generated by a quasi-regular sequence in OX,x,

(5) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ
and I is generated by a regular sequence in A, and

(6) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ
and I is generated by a Koszul-regular sequence in A, and

(7) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ
and I is generated by an H1-regular sequence in A, and

(8) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ
and I is generated by a quasi-regular sequence in A,

(9) there exists a neighbourhood U of x such that J |U is regular, and
(10) there exists a neighbourhood U of x such that J |U is Koszul-regular, and
(11) there exists a neighbourhood U of x such that J |U is H1-regular, and
(12) there exists a neighbourhood U of x such that J |U is quasi-regular.

In particular, on a locally Noetherian scheme the notions of regular, Koszul-regular,
H1-regular, or quasi-regular ideal sheaf all agree.
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Proof. It follows from Lemma 20.7 that (5) ⇔ (9), (6) ⇔ (10), (7) ⇔ (11), and
(8) ⇔ (12). It is clear that (5) ⇒ (1), (6) ⇒ (2), (7) ⇒ (3), and (8) ⇒ (4). We
have (1) ⇒ (5) by Algebra, Lemma 67.6. We have (9) ⇒ (10) ⇒ (11) ⇒ (12) by
Lemma 20.3. Finally, (4) ⇒ (1) by Algebra, Lemma 68.6. Now all 12 statements
are equivalent. �

21. Regular immersions

0638 Let i : Z → X be an immersion of schemes. By definition this means there exists
an open subscheme U ⊂ X such that Z is identified with a closed subscheme of U .
Let I ⊂ OU be the corresponding quasi-coherent sheaf of ideals. Suppose U ′ ⊂ X
is a second such open subscheme, and denote I ′ ⊂ OU ′ the corresponding quasi-
coherent sheaf of ideals. Then I|U∩U ′ = I ′|U∩U ′ . Moreover, the support of OU/I
is Z which is contained in U ∩U ′ and is also the support of OU ′/I ′. Hence it follows
from Definition 20.2 that I is a regular ideal if and only if I ′ is a regular ideal.
Similarly for being Koszul-regular, H1-regular, or quasi-regular.

Definition 21.1.063J Let i : Z → X be an immersion of schemes. Choose an open
subscheme U ⊂ X such that i identifies Z with a closed subscheme of U and denote
I ⊂ OU the corresponding quasi-coherent sheaf of ideals.

(1) We say i is a regular immersion if I is regular.
(2) We say i is a Koszul-regular immersion if I is Koszul-regular.
(3) We say i is a H1-regular immersion if I is H1-regular.
(4) We say i is a quasi-regular immersion if I is quasi-regular.

The discussion above shows that this is independent of the choice of U . The condi-
tions are listed in decreasing order of strength, see Lemma 21.2. A Koszul-regular
closed immersion is smooth locally a regular immersion, see Lemma 21.11. In the
locally Noetherian case all four notions agree, see Lemma 20.8.

Lemma 21.2.063K Let i : Z → X be an immersion of schemes. We have the following
implications: i is regular ⇒ i is Koszul-regular ⇒ i is H1-regular ⇒ i is quasi-
regular.

Proof. The lemma immediately reduces to Lemma 20.3. �

Lemma 21.3.063L Let i : Z → X be an immersion of schemes. Assume X is locally
Noetherian. Then i is regular ⇔ i is Koszul-regular ⇔ i is H1-regular ⇔ i is
quasi-regular.

Proof. Follows immediately from Lemma 21.2 and Lemma 20.8. �

Lemma 21.4.067P Let i : Z → X be a regular (resp. Koszul-regular, H1-regular,
quasi-regular) immersion. Let X ′ → X be a flat morphism. Then the base change
i′ : Z ×X X ′ → X ′ is a regular (resp. Koszul-regular, H1-regular, quasi-regular)
immersion.

Proof. Via Lemma 20.7 this translates into the algebraic statements in Algebra,
Lemmas 67.5 and 68.3 and More on Algebra, Lemma 27.5. �

Lemma 21.5.063M Let i : Z → X be an immersion of schemes. Then i is a quasi-
regular immersion if and only if the following conditions are satisfied

(1) i is locally of finite presentation,
(2) the conormal sheaf CZ/X is finite locally free, and
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(3) the map (19.1.2) is an isomorphism.

Proof. An open immersion is locally of finite presentation. Hence we may replace
X by an open subscheme U ⊂ X such that i identifies Z with a closed subscheme
of U , i.e., we may assume that i is a closed immersion. Let I ⊂ OX be the
corresponding quasi-coherent sheaf of ideals. Recall, see Morphisms, Lemma 20.7
that I is of finite type if and only if i is locally of finite presentation. Hence the
equivalence follows from Lemma 20.4 and unwinding the definitions. �

Lemma 21.6.063N Let Z → Y → X be immersions of schemes. Assume that Z → Y
is H1-regular. Then the canonical sequence of Morphisms, Lemma 30.5

0→ i∗CY/X → CZ/X → CZ/Y → 0

is exact and locally split.

Proof. Since CZ/Y is finite locally free (see Lemma 21.5 and Lemma 20.3) it suffices
to prove that the sequence is exact. By what was proven in Morphisms, Lemma 30.5
it suffices to show that the first map is injective. Working affine locally this reduces
to the following question: Suppose that we have a ring A and ideals I ⊂ J ⊂ A.
Assume that J/I ⊂ A/I is generated by an H1-regular sequence. Does this imply
that I/I2 ⊗A A/J → J/J2 is injective? Note that I/I2 ⊗A A/J = I/IJ . Hence
we are trying to prove that I ∩ J2 = IJ . This is the result of More on Algebra,
Lemma 27.9. �

A composition of quasi-regular immersions may not be quasi-regular, see Algebra,
Remark 68.8. The other types of regular immersions are preserved under composi-
tion.

Lemma 21.7.067Q Let i : Z → Y and j : Y → X be immersions of schemes.

(1) If i and j are regular immersions, so is j ◦ i.
(2) If i and j are Koszul-regular immersions, so is j ◦ i.
(3) If i and j are H1-regular immersions, so is j ◦ i.
(4) If i is an H1-regular immersion and j is a quasi-regular immersion, then

j ◦ i is a quasi-regular immersion.

Proof. The algebraic version of (1) is Algebra, Lemma 67.7. The algebraic version
of (2) is More on Algebra, Lemma 27.13. The algebraic version of (3) is More on
Algebra, Lemma 27.11. The algebraic version of (4) is More on Algebra, Lemma
27.10. �

Lemma 21.8.068Z Let i : Z → Y and j : Y → X be immersions of schemes. Assume
that the sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0

of Morphisms, Lemma 30.5 is exact and locally split.

(1) If j ◦ i is a quasi-regular immersion, so is i.
(2) If j ◦ i is a H1-regular immersion, so is i.
(3) If both j and j ◦ i are Koszul-regular immersions, so is i.

Proof. After shrinking Y and X we may assume that i and j are closed immersions.
Denote I ⊂ OX the ideal sheaf of Y and J ⊂ OX the ideal sheaf of Z. The conormal
sequence is 0 → I/IJ → J /J 2 → J /(I + J 2) → 0. Let z ∈ Z and set y = i(z),
x = j(y) = j(i(z)). Choose f1, . . . , fn ∈ Ix which map to a basis of Ix/mzIx.
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Extend this to f1, . . . , fn, g1, . . . , gm ∈ Jx which map to a basis of Jx/mzJx. This
is possible as we have assumed that the sequence of conormal sheaves is split in a
neighbourhood of z, hence Ix/mxIx → Jx/mxJx is injective.

Proof of (1). By Lemma 20.5 we can find an affine open neighbourhood U of x such
that f1, . . . , fn, g1, . . . , gm forms a quasi-regular sequence generating J . Hence by
Algebra, Lemma 68.5 we see that g1, . . . , gm induces a quasi-regular sequence on
Y ∩ U cutting out Z.

Proof of (2). Exactly the same as the proof of (1) except using More on Algebra,
Lemma 27.12.

Proof of (3). By Lemma 20.5 (applied twice) we can find an affine open neigh-
bourhood U of x such that f1, . . . , fn forms a Koszul-regular sequence generating
I and f1, . . . , fn, g1, . . . , gm forms a Koszul-regular sequence generating J . Hence
by More on Algebra, Lemma 27.14 we see that g1, . . . , gm induces a Koszul-regular
sequence on Y ∩ U cutting out Z. �

Lemma 21.9.0690 Let i : Z → Y and j : Y → X be immersions of schemes. Pick
z ∈ Z and denote y ∈ Y , x ∈ X the corresponding points. Assume X is locally
Noetherian. The following are equivalent

(1) i is a regular immersion in a neighbourhood of z and j is a regular immer-
sion in a neighbourhood of y,

(2) i and j ◦ i are regular immersions in a neighbourhood of z,
(3) j ◦ i is a regular immersion in a neighbourhood of z and the conormal

sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0

is split exact in a neighbourhood of z.

Proof. Since X (and hence Y ) is locally Noetherian all 4 types of regular immer-
sions agree, and moreover we may check whether a morphism is a regular immersion
on the level of local rings, see Lemma 20.8. The implication (1) ⇒ (2) is Lemma
21.7. The implication (2) ⇒ (3) is Lemma 21.6. Thus it suffices to prove that (3)
implies (1).

Assume (3). Set A = OX,x. Denote I ⊂ A the kernel of the surjective map
OX,x → OY,y and denote J ⊂ A the kernel of the surjective map OX,x → OZ,z.
Note that any minimal sequence of elements generating J in A is a quasi-regular
hence regular sequence, see Lemma 20.5. By assumption the conormal sequence

0→ I/IJ → J/J2 → J/(I + J2)→ 0

is split exact as a sequence of A/J-modules. Hence we can pick a minimal system
of generators f1, . . . , fn, g1, . . . , gm of J with f1, . . . , fn ∈ I a minimal system of
generators of I. As pointed out above f1, . . . , fn, g1, . . . , gm is a regular sequence
in A. It follows directly from the definition of a regular sequence that f1, . . . , fn is
a regular sequence in A and g1, . . . , gm is a regular sequence in A/I. Thus j is a
regular immersion at y and i is a regular immersion at z. �

Remark 21.10.0691 In the situation of Lemma 21.9 parts (1), (2), (3) are not
equivalent to “j ◦ i and j are regular immersions at z and y”. An example is
X = A1

k = Spec(k[x]), Y = Spec(k[x]/(x2)) and Z = Spec(k[x]/(x)).
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Lemma 21.11.0692 Let i : Z → X be a Koszul regular closed immersion. Then
there exists a surjective smooth morphism X ′ → X such that the base change i′ :
Z ×X X ′ → X ′ of i is a regular immersion.

Proof. We may assume that X is affine and the ideal of Z generated by a Koszul-
regular sequence by replacing X by the members of a suitable affine open covering
(affine opens as in Lemma 20.7). The affine case is More on Algebra, Lemma
27.17. �

22. Relative regular immersions

063P In this section we consider the base change property for regular immersions. The
following lemma does not hold for regular immersions or for Koszul immersions,
see Examples, Lemma 13.2.

Lemma 22.1.063R Let f : X → S be a morphism of schemes. Let i : Z ⊂ X be an
immersion. Assume

(1) i is an H1-regular (resp. quasi-regular) immersion, and
(2) Z → S is a flat morphism.

Then for every morphism of schemes g : S′ → S the base change Z ′ = S′ ×S Z →
X ′ = S′ ×S X is an H1-regular (resp. quasi-regular) immersion.

Proof. Unwinding the definitions and using Lemma 20.7 this translates into More
on Algebra, Lemma 28.2. �

This lemma is the motivation for the following definition.

Definition 22.2.063S Let f : X → S be a morphism of schemes. Let i : Z → X be
an immersion.

(1) We say i is a relative quasi-regular immersion if Z → S is flat and i is a
quasi-regular immersion.

(2) We say i is a relative H1-regular immersion if Z → S is flat and i is an
H1-regular immersion.

We warn the reader that this may be nonstandard notation. Lemma 22.1 guarantees
that relative quasi-regular (resp. H1-regular) immersions are preserved under any
base change. A relative H1-regular immersion is a relative quasi-regular immersion,
see Lemma 21.2. Please take a look at Lemma 22.5 (or Lemma 22.4) which shows
that if Z → X is a relative H1-regular (or quasi-regular) immersion and the ambient
scheme is (flat and) locally of finite presentation over S, then Z → X is actually a
regular immersion and the same remains true after any base change.

Lemma 22.3.063T Let f : X → S be a morphism of schemes. Let Z → X be a relative
quasi-regular immersion. If x ∈ Z and OX,x is Noetherian, then f is flat at x.

Proof. Let f1, . . . , fr ∈ OX,x be a quasi-regular sequence cutting out the ideal of
Z at x. By Algebra, Lemma 68.6 we know that f1, . . . , fr is a regular sequence.
Hence fr is a nonzerodivisor on OX,x/(f1, . . . , fr−1) such that the quotient is a
flat OS,f(x)-module. By Lemma 18.5 we conclude that OX,x/(f1, . . . , fr−1) is a
flat OS,f(x)-module. Continuing by induction we find that OX,x is a flat OS,s-
module. �

Lemma 22.4.063U Let X → S be a morphism of schemes. Let Z → X be an immer-
sion. Assume
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(1) X → S is flat and locally of finite presentation,
(2) Z → X is a relative quasi-regular immersion.

Then Z → X is a regular immersion and the same remains true after any base
change.

Proof. Pick x ∈ Z with image s ∈ S. To prove this it suffices to find an affine
neighbourhood of x contained in U such that the result holds on that affine open.
Hence we may assume that X is affine and there exist a quasi-regular sequence
f1, . . . , fr ∈ Γ(X,OX) such that Z = V (f1, . . . , fr). By More on Algebra, Lemma
28.2 the sequence f1|Xs , . . . , fr|Xs is a quasi-regular sequence in Γ(Xs,OXs). Since
Xs is Noetherian, this implies, possibly after shrinking X a bit, that f1|Xs , . . . , fr|Xs
is a regular sequence, see Algebra, Lemmas 68.6 and 67.6. By Lemma 18.9 it follows
that Z1 = V (f1) ⊂ X is a relative effective Cartier divisor, again after possibly
shrinking X a bit. Applying the same lemma again, but now to Z2 = V (f1, f2) ⊂ Z1

we see that Z2 ⊂ Z1 is a relative effective Cartier divisor. And so on until on reaches
Z = Zn = V (f1, . . . , fn). Since being a relative effective Cartier divisor is preserved
under arbitrary base change, see Lemma 18.1, we also see that the final statement
of the lemma holds. �

Lemma 22.5.063V Let X → S be a morphism of schemes. Let Z → X be a relative
H1-regular immersion. Assume X → S is locally of finite presentation. Then

(1) there exists an open subscheme U ⊂ X such that Z ⊂ U and such that
U → S is flat, and

(2) Z → X is a regular immersion and the same remains true after any base
change.

Proof. Pick x ∈ Z. To prove (1) suffices to find an open neighbourhood U ⊂ X of x
such that U → S is flat. Hence the lemma reduces to the case thatX = Spec(B) and
S = Spec(A) are affine and that Z is given by an H1-regular sequence f1, . . . , fr ∈
B. By assumption B is a finitely presented A-algebra and B/(f1, . . . , fr)B is a flat
A-algebra. We are going to use absolute Noetherian approximation.

Write B = A[x1, . . . , xn]/(g1, . . . , gm). Assume fi is the image of f ′i ∈ A[x1, . . . , xn].
Choose a finite type Z-subalgebra A0 ⊂ A such that all the coefficients of the poly-
nomials f ′1, . . . , f

′
r, g1, . . . , gm are in A0. We set B0 = A0[x1, . . . , xn]/(g1, . . . , gm)

and we denote fi,0 the image of f ′i in B0. Then B = B0 ⊗A0 A and

B/(f1, . . . , fr) = B0/(f0,1, . . . , f0,r)⊗A0
A.

By Algebra, Lemma 162.1 we may, after enlargingA0, assume thatB0/(f0,1, . . . , f0,r)
is flat over A0. It may not be the case at this point that the Koszul cohomology
group H1(K•(B0, f0,1, . . . , f0,r)) is zero. On the other hand, as B0 is Noetherian,
it is a finitely generated B0-module. Let ξ1, . . . , ξn ∈ H1(K•(B0, f0,1, . . . , f0,r)) be
generators. Let A0 ⊂ A1 ⊂ A be a larger finite type Z-subalgebra of A. Denote
f1,i the image of f0,i in B1 = B0 ⊗A0 A1. By More on Algebra, Lemma 28.1 the
map

H1(K•(B0, f0,1, . . . , f0,r))⊗A0
A1 −→ H1(K•(B1, f1,1, . . . , f1,r))

is surjective. Furthermore, it is clear that the colimit (over all choices of A1

as above) of the complexes K•(B1, f1,1, . . . , f1,r) is the complex K•(B, f1, . . . , fr)
which is acyclic in degree 1. Hence

colimA0⊂A1⊂AH1(K•(B1, f1,1, . . . , f1,r)) = 0
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by Algebra, Lemma 8.8. Thus we can find a choice of A1 such that ξ1, . . . , ξn all
map to zero in H1(K•(B1, f1,1, . . . , f1,r)). In other words, the Koszul cohomology
group H1(K•(B1, f1,1, . . . , f1,r)) is zero.

Consider the morphism of affine schemes X1 → S1 equal to Spec of the ring map
A1 → B1 and Z1 = Spec(B1/(f1,1, . . . , f1,r)). Since B = B1 ⊗A1

A, i.e., X =
X1×S1 S, and similarly Z = Z1×S S1, it now suffices to prove (1) for X1 → S1 and
the relative H1-regular immersion Z1 → X1, see Morphisms, Lemma 24.6. Hence
we have reduced to the case where X → S is a finite type morphism of Noetherian
schemes. In this case we know that X → S is flat at every point of Z by Lemma
22.3. Combined with the fact that the flat locus is open in this case, see Algebra,
Theorem 128.4 we see that (1) holds. Part (2) then follows from an application of
Lemma 22.4. �

If the ambient scheme is flat and locally of finite presentation over the base, then
we can characterize a relative quasi-regular immersion in terms of its fibres.

Lemma 22.6.063W Let ϕ : X → S be a flat morphism which is locally of finite presen-
tation. Let T ⊂ X be a closed subscheme. Let x ∈ T with image s ∈ S.

(1) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, then there
exists an open U ⊂ X and a relative quasi-regular immersion Z ⊂ U such
that Zs = Ts ∩ Us and T ∩ U ⊂ Z.

(2) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, the mor-
phism T → X is of finite presentation, and T → S is flat at x, then we can
choose U and Z as in (1) such that T ∩ U = Z.

(3) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, and T
is cut out by c equations in a neighbourhood of x, where c = dimx(Xs) −
dimx(Ts), then we can choose U and Z as in (1) such that T ∩ U = Z.

In each case Z → U is a regular immersion by Lemma 22.4. In particular, if
T → S is locally of finite presentation and flat and all fibres Ts ⊂ Xs are quasi-
regular immersions, then T → X is a relative quasi-regular immersion.

Proof. Choose affine open neighbourhoods Spec(A) of s and Spec(B) of x such
that ϕ(Spec(B)) ⊂ Spec(A). Let p ⊂ A be the prime ideal corresponding to s. Let
q ⊂ B be the prime ideal corresponding to x. Let I ⊂ B be the ideal corresponding
to T . By the initial assumption of the lemma we know that A → B is flat and
of finite presentation. The assumption in (1) means that, after shrinking Spec(B),
we may assume I(B⊗A κ(p)) is generated by a quasi-regular sequence of elements.
After possibly localizing B at some g ∈ B, g 6∈ q we may assume there exist
f1, . . . , fr ∈ I which map to a quasi-regular sequence in B⊗A κ(p) which generates
I(B ⊗A κ(p)). By Algebra, Lemmas 68.6 and 67.6 we may assume after another
localization that f1, . . . , fr ∈ I form a regular sequence in B ⊗A κ(p). By Lemma
18.9 it follows that Z1 = V (f1) ⊂ Spec(B) is a relative effective Cartier divisor,
again after possibly localizing B. Applying the same lemma again, but now to
Z2 = V (f1, f2) ⊂ Z1 we see that Z2 ⊂ Z1 is a relative effective Cartier divisor.
And so on until one reaches Z = Zn = V (f1, . . . , fn). Then Z → Spec(B) is a
regular immersion and Z is flat over S, in particular Z → Spec(B) is a relative
quasi-regular immersion over Spec(A). This proves (1).

To see (2) consider the closed immersion Z → D. The surjective ring map u :
OD,x → OZ,x is a map of flat local OS,s-algebras which are essentially of finite
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presentation, and which becomes an isomorphisms after dividing by ms. Hence
it is an isomorphism, see Algebra, Lemma 127.4. It follows that Z → D is an
isomorphism in a neighbourhood of x, see Algebra, Lemma 125.6.

To see (3), after possibly shrinking U we may assume that the ideal of Z is generated
by a regular sequence f1, . . . , fr (see our construction of Z above) and the ideal of
T is generated by g1, . . . , gc. We claim that c = r. Namely,

dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)),

dimx(Ts) = dim(OTs,x) + trdegκ(s)(κ(x)),

dim(OXs,x) = dim(OTs,x) + r

the first two equalities by Algebra, Lemma 115.3 and the second by r times applying
Algebra, Lemma 59.12. As T ⊂ Z we see that fi =

∑
bijgj . But the ideals of Z

and T cut out the same quasi-regular closed subscheme of Xs in a neighbourhood
of x. Hence the matrix (bij) mod mx is invertible (some details omitted). Hence
(bij) is invertible in an open neighbourhood of x. In other words, T ∩ U = Z after
shrinking U .

The final statements of the lemma follow immediately from part (2), combined with
the fact that Z → S is locally of finite presentation if and only if Z → X is of finite
presentation, see Morphisms, Lemmas 20.3 and 20.11. �

The following lemma is an enhancement of Morphisms, Lemma 32.20.

Lemma 22.7.067R Let f : X → S be a smooth morphism of schemes. Let σ : S → X
be a section of f . Then σ is a regular immersion.

Proof. By Schemes, Lemma 21.11 the morphism σ is an immersion. After re-
placing X by an open neighbourhood of σ(S) we may assume that σ is a closed
immersion. Let T = σ(S) be the corresponding closed subscheme of X. Since
T → S is an isomorphism it is flat and of finite presentation. Also a smooth mor-
phism is flat and locally of finite presentation, see Morphisms, Lemmas 32.9 and
32.8. Thus, according to Lemma 22.6, it suffices to show that Ts ⊂ Xs is a quasi-
regular closed subscheme. This follows immediately from Morphisms, Lemma 32.20
but we can also see it directly as follows. Let k be a field and let A be a smooth
k-algebra. Let m ⊂ A be a maximal ideal whose residue field is k. Then m is
generated by a quasi-regular sequence, possibly after replacing A by Ag for some
g ∈ A, g 6∈ m. In Algebra, Lemma 138.3 we proved that Am is a regular local ring,
hence mAm is generated by a regular sequence. This does indeed imply that m is
generated by a regular sequence (after replacing A by Ag for some g ∈ A, g 6∈ m),
see Algebra, Lemma 67.6. �

The following lemma has a kind of converse, see Lemma 22.11.

Lemma 22.8.067S Let

Y

j ��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume X → S smooth, and
i, j immersions. If j is a regular (resp. Koszul-regular, H1-regular, quasi-regular)
immersion, then so is i.
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Proof. We can write i as the composition

Y → Y ×S X → X

By Lemma 22.7 the first arrow is a regular immersion. The second arrow is a flat
base change of Y → S, hence is a regular (resp. Koszul-regular, H1-regular, quasi-
regular) immersion, see Lemma 21.4. We conclude by an application of Lemma
21.7. �

Lemma 22.9.067T Let

Y

��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume that Y → S is syn-
tomic, X → S smooth, and i an immersion. Then i is a regular immersion.

Proof. After replacing X by an open neighbourhood of i(Y ) we may assume that
i is a closed immersion. Let T = i(Y ) be the corresponding closed subscheme of X.
Since T ∼= Y the morphism T → S is flat and of finite presentation (Morphisms,
Lemmas 29.6 and 29.7). Also a smooth morphism is flat and locally of finite pre-
sentation (Morphisms, Lemmas 32.9 and 32.8). Thus, according to Lemma 22.6, it
suffices to show that Ts ⊂ Xs is a quasi-regular closed subscheme. As Xs is locally
of finite type over a field, it is Noetherian (Morphisms, Lemma 14.6). Thus we
can check that Ts ⊂ Xs is a quasi-regular immersion at points, see Lemma 20.8.
Take t ∈ Ts. By Morphisms, Lemma 29.9 the local ring OTs,t is a local complete
intersection over κ(s). The local ring OXs,t is regular, see Algebra, Lemma 138.3.
By Algebra, Lemma 133.7 we see that the kernel of the surjection OXs,t → OTs,t
is generated by a regular sequence, which is what we had to show. �

Lemma 22.10.067U Let

Y

��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume that Y → S is smooth,
X → S smooth, and i an immersion. Then i is a regular immersion.

Proof. This is a special case of Lemma 22.9 because a smooth morphism is syn-
tomic, see Morphisms, Lemma 32.7. �

Lemma 22.11.0693 Let

Y

j ��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume X → S smooth, and i,
j immersions. If i is a Koszul-regular (resp. H1-regular, quasi-regular) immersion,
then so is j.
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Proof. Let y ∈ Y be any point. Set x = i(y) and set s = j(y). It suffices to prove
the result after replacing X,S by open neighbourhoods U, V of x, s and Y by an
open neighbourhood of y in i−1(U) ∩ j−1(V ). Hence we may assume that Y , X
and S are affine. In this case we can choose a closed immersion h : X → An

S over
S for some n. Note that h is a regular immersion by Lemma 22.10. Hence h ◦ i is a
Koszul-regular (resp. H1-regular, quasi-regular) immersion, see Lemmas 21.7 and
21.2. In this way we reduce to the case X = An

S and S affine.

After replacing S by an affine open V and replacing Y by j−1(V ) we may assume
that i is a closed immersion and S affine. Write S = Spec(A). Then j : Y → S
defines an isomorphism of Y to the closed subscheme Spec(A/I) for some ideal
I ⊂ A. The map i : Y = Spec(A/I) → An

S = Spec(A[x1, . . . , xn]) corresponds to
an A-algebra homomorphism i] : A[x1, . . . , xn] → A/I. Choose ai ∈ A which map
to i](xi) in A/I. Observe that the ideal of the closed immersion i is

J = (x1 − a1, . . . , xn − an) + IA[x1, . . . , xn].

Set K = (x1 − a1, . . . , xn − an). We claim the sequence

0→ K/KJ → J/J2 → J/(K + J2)→ 0

is split exact. To see this note that K/K2 is free with basis xi − ai over the ring
A[x1, . . . , xn]/K ∼= A. Hence K/KJ is free with the same basis over the ring
A[x1, . . . , xn]/J ∼= A/I. On the other hand, taking derivatives gives a map

dA[x1,...,xn]/A : J/J2 −→ ΩA[x1,...,xn]/A ⊗A[x1,...,xn] A[x1, . . . , xn]/J

which maps the generators xi − ai to the basis elements dxi of the free module on
the right. The claim follows. Moreover, note that x1 − a1, . . . , xn − an is a regular
sequence in A[x1, . . . , xn] with quotient ring A[x1, . . . , xn]/(x1− a1, . . . , xn− an) ∼=
A. Thus we have a factorization

Y → V (x1 − a1, . . . , xn − an)→ An
S

of our closed immersion i where the composition is Koszul-regular (resp. H1-regular,
quasi-regular), the second arrow is a regular immersion, and the associated conor-
mal sequence is split. Now the result follows from Lemma 21.8. �

23. Meromorphic functions and sections

01X1 See [Kle79] for some possible pitfalls3.

Let (X,OX) be a locally ringed space. For any open U ⊂ X we have defined the
set S(U) ⊂ OX(U) of regular sections of OX over U , see Definition 14.6. The
restriction of a regular section to a smaller open is regular. Hence S : U 7→ S(U)
is a subsheaf (of sets) of OX . We sometimes denote S = SX if we want to indicate
the dependence on X. Moreover, S(U) is a multiplicative subset of the ring OX(U)
for each U . Hence we may consider the presheaf of rings

U 7−→ S(U)−1OX(U),

see Modules, Lemma 24.1.

Definition 23.1.01X2 Let (X,OX) be a locally ringed space. The sheaf of meromorphic
functions on X is the sheaf KX associated to the presheaf displayed above. A
meromorphic function on X is a global section of KX .

3Danger, Will Robinson!
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Since each element of each S(U) is a nonzerodivisor on OX(U) we see that the
natural map of sheaves of rings OX → KX is injective.

Example 23.2.01X3 Let A = C[x, {yα}α∈C]/((x − α)yα, yαyβ). Any element of A
can be written uniquely as f(x) +

∑
λαyα with f(x) ∈ C[x] and λα ∈ C. Let

X = Spec(A). In this case OX = KX , since on any affine open D(f) the ring Af
any nonzerodivisor is a unit (proof omitted).

Definition 23.3.02OT Let f : (X,OX) → (Y,OY ) be a morphism of locally ringed
spaces. We say that pullbacks of meromorphic functions are defined for f if for every
pair of open U ⊂ X, V ⊂ Y such that f(U) ⊂ V , and any section s ∈ Γ(V,SY ) the
pullback f ](s) ∈ Γ(U,OX) is an element of Γ(U,SX).

In this case there is an induced map f ] : f−1KY → KX , in other words we obtain
a commutative diagram of morphisms of ringed spaces

(X,KX) //

f

��

(X,OX)

f

��
(Y,KY ) // (Y,OX)

We sometimes denote f∗(s) = f ](s) for a section s ∈ Γ(Y,KY ).

Lemma 23.4.02OU Let f : X → Y be a morphism of schemes. In each of the following
cases pullbacks of meromorphic sections are defined.

(1) X, Y are integral and f is dominant,
(2) X is integral and the generic point of X maps to a generic point of an

irreducible component of Y ,
(3) X is reduced and every generic point of every irreducible component of X

maps to the generic point of an irreducible component of Y ,
(4) X is locally Noetherian, and any associated point of X maps to a generic

point of an irreducible component of Y , and
(5) X is locally Noetherian, has no embedded points and any generic point of

an irreducible component of X maps to the generic point of an irreducible
component of Y .

Proof. Omitted. Hint: Similar to the proof of Lemma 13.13, using the following
fact (on Y ): if an element x ∈ R maps to a nonzerodivisor in Rp for a minimal
prime p of R, then x 6∈ p. See Algebra, Lemma 24.1. �

Let (X,OX) be a locally ringed space. Let F be a sheaf of OX -modules. Consider
the presheaf U 7→ S(U)−1F(U). Its sheafification is the sheaf F ⊗OX KX , see
Modules, Lemma 24.2.

Definition 23.5.01X4 LetX be a locally ringed space. Let F be a sheaf ofOX -modules.

(1) We denote KX(F) the sheaf of KX -modules which is the sheafification of
the presheaf U 7→ S(U)−1F(U). Equivalently KX(F) = F ⊗OX KX (see
above).

(2) A meromorphic section of F is a global section of KX(F).

In particular we have

KX(F)x = Fx ⊗OX,x KX,x = S−1x Fx

http://stacks.math.columbia.edu/tag/01X3
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for any point x ∈ X. However, one has to be careful since it may not be the case
that Sx is the set of nonzerodivisors in the local ring OX,x. Namely, there is always
an injective map

KX,x −→ Q(OX,x)

to the total quotient ring. It is also surjective if and only if Sx is the set of nonzero-
divisors in OX,x. The sheaves of meromorphic sections aren’t quasi-coherent mod-
ules in general, but they do have some properties in common with quasi-coherent
modules.

Lemma 23.6.08I7 Let X be a quasi-compact scheme. Let h ∈ Γ(X,OX) and f ∈
Γ(X,KX) such that f restricts to zero on Xh. Then hnf = 0 for some n� 0.

Proof. We can find a covering of X by affine opens U such that f |U = s−1a
with a ∈ OX(U) and s ∈ S(U). Since X is quasi-compact we can cover it by
finitely many affine opens of this form. Thus it suffices to prove the lemma when
X = Spec(A) and f = s−1a. Note that s ∈ A is a nonzerodivisor hence it suffices
to prove the result when f = a. The condition f |Xh = 0 implies that a maps to
zero in Ah = OX(Xh) as OX ⊂ KX . Thus hna = 0 for some n > 0 as desired. �

Lemma 23.7.02OV Let X be a locally Noetherian scheme.

(1) For any x ∈ X we have Sx ⊂ OX,x is the set of nonzerodivisors, and hence
KX,x is the total quotient ring of OX,x.

(2) For any affine open U ⊂ X the ring KX(U) equals the total quotient ring
of OX(U).

Proof. To prove this lemma we may assume X is the spectrum of a Noetherian
ring A. Say x ∈ X corresponds to p ⊂ A.

Proof of (1). It is clear that Sx is contained in the set of nonzerodivisors of OX,x =
Ap. For the converse, let f, g ∈ A, g 6∈ p and assume f/g is a nonzerodivisor in Ap.
Let I = {a ∈ A | af = 0}. Then we see that Ip = 0 by exactness of localization.
Since A is Noetherian we see that I is finitely generated and hence that g′I = 0
for some g′ ∈ A, g′ 6∈ p. Hence f is a nonzerodivisor in Ag′ , i.e., in a Zariski open
neighbourhood of p. Thus f/g is an element of Sx.

Proof of (2). Let f ∈ Γ(X,KX) be a meromorphic function. Set I = {a ∈ A | af ∈
A}. Fix a prime p ⊂ A corresponding to the point x ∈ X. By (1) we can write
the image of f in the stalk at p as a/b, a, b ∈ Ap with b ∈ Ap not a zerodivisor.
Write b = c/d with c, d ∈ A, d 6∈ p. Then ad− cf is a section of KX which vanishes
in an open neighbourhood of x. Say it vanishes on D(e) with e ∈ A, e 6∈ p. Then
en(ad − cf) = 0 for some n � 0 by Lemma 23.6. Thus enc ∈ I and enc maps to
a nonzerodivisor in Ap. Let Ass(A) = {q1, . . . , qt} be the associated primes of A.
By looking at IAqi and using Algebra, Lemma 62.15 the above says that I 6⊂ qi
for each i. By Algebra, Lemma 14.2 there exists an element x ∈ I, x 6∈

⋃
qi. By

Algebra, Lemma 62.9 we see that x is not a zerodivisor on A. Hence f = (xf)/x is
an element of the total ring of fractions of A. This proves (2). �

Lemma 23.8.02OW Let X be a scheme. Assume X is reduced and any quasi-compact
open U ⊂ X has a finite number of irreducible components.

(1) The sheaf KX is a quasi-coherent sheaf of OX-algebras.
(2) For any x ∈ X we have Sx ⊂ OX,x is the set of nonzerodivisors. In

particular KX,x is the total quotient ring of OX,x.

http://stacks.math.columbia.edu/tag/08I7
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(3) For any affine open Spec(A) = U ⊂ X we have that KX(U) equals the total
quotient ring of A.

Proof. Let X be as in the lemma. Let X(0) ⊂ X be the set of generic points of
irreducible components of X. Let

f : Y =
∐

η∈X(0)
Spec(κ(η)) −→ X

be the inclusion of the generic points into X using the canonical maps of Schemes,
Section 13. (This morphism was used in Morphisms, Definition 51.1 to define the
normalization of X.) We claim that KX = f∗OY . First note that KY = OY as Y
is a disjoint union of spectra of field. Next, note that pullbacks of meromorphic
functions are defined for f , by Lemma 23.4. This gives a map

KX −→ f∗OY .

Let Spec(A) = U ⊂ X be an affine open. Then A is a reduced ring with finitely
many minimal primes q1, . . . , qt. Then we have Q(A) =

∏
Aqi =

∏
κ(qi) by Al-

gebra, Lemmas 24.4 and 24.1. In other words, already the value of the presheaf
U 7→ S(U)−1OX(U) agrees with f∗OY (U) on our affine open U . Hence the dis-
played map is an isomorphism.

Now we are ready to prove (1), (2) and (3). The morphism f is quasi-compact by
our assumption that the set of irreducible components of X is locally finite. Hence
f is quasi-compact and quasi-separated (as Y is separated). By Schemes, Lemma
24.1 f∗OY is quasi-coherent. This proves (1). Let x ∈ X. Then

(f∗OY )x =
∏

η∈X(0), x∈{η}
κ(η)

On the other hand, OX,x is reduced and has finitely minimal primes qi correspond-

ing exactly to those η ∈ X(0) such that x ∈ {η}κ(η). Hence by Algebra, Lemmas
24.4 and 24.1 again we see that Q(OX,x) =

∏
κ(qi) is the same as (f∗OY )x. This

proves (2). Part (3) we saw during the course of the proof that KX = f∗OY . �

Lemma 23.9.035T Let X be a scheme. Assume X is reduced and any quasi-compact
open U ⊂ X has a finite number of irreducible components. Then the normalization
morphism ν : Xν → X is the morphism

Spec
X

(O′) −→ X

where O′ ⊂ KX is the integral closure of OX in the sheaf of meromorphic functions.

Proof. Compare the definition of the normalization morphism ν : Xν → X (see
Morphisms, Definition 51.1) with the result KX = f∗OY obtained in the proof of
Lemma 23.8 above. �

Lemma 23.10.01X5 Let X be an integral scheme with generic point η. We have

(1) the sheaf of meromorphic functions is isomorphic to the constant sheaf with
value the function field (see Morphisms, Definition 46.6) of X.

(2) for any quasi-coherent sheaf F on X the sheaf KX(F) is isomorphic to the
constant sheaf with value Fη.

Proof. Omitted. �

http://stacks.math.columbia.edu/tag/035T
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Definition 23.11.02OX Let X be a locally ringed space. Let L be an invertible OX -
module. A meromorphic section s of L is said to be regular if the induced map
KX → KX(L) is injective. (In other words, this means that s is a regular section
of the invertible KX -module KX(L). See Definition 14.6.)

First we spell out when (regular) meromorphic sections can be pulled back. After
that we discuss the existence of regular meromorphic sections and consequences.

Lemma 23.12.02OY Let f : X → Y be a morphism of locally ringed spaces. Assume
that pullbacks of meromorphic functions are defined for f (see Definition 23.3).

(1) Let F be a sheaf of OY -modules. There is a canonical pullback map f∗ :
Γ(Y,KY (F))→ Γ(X,KX(f∗F)) for meromorphic sections of F .

(2) Let L be an invertible OX-module. A regular meromorphic section s of L
pulls back to a regular meromorphic section f∗s of f∗L.

Proof. Omitted. �

In some cases we can show regular meromorphic sections exist.

Lemma 23.13.02OZ Let X be a scheme. Let L be an invertible OX-module. In each
of the following cases L has a regular meromorphic section:

(1) X is integral,
(2) X is reduced and any quasi-compact open has a finite number of irreducible

components, and
(3) X is locally Noetherian and has no embedded points.

Proof. In case (1) we have seen in Lemma 23.10 that KX(L) is a constant sheaf
with value Lη, and hence the result is clear.

Suppose X is a scheme. Let G ⊂ X be the set of generic points of irreducible
components of X. For each η ∈ G denote jη : η → X the canonical morphism of
η = Spec(κ(η)) into X (see Schemes, Lemma 13.3). Consider the sheaf

GX(L) =
∏

η∈G
jη,∗(Lη).

There is a canonical map

ϕ : KX(L) −→ GX(L)

coming from the maps KX(L)η → Lη and adjunction (see Sheaves, Lemma 27.3).

We claim that in cases (2) and (3) the map ϕ is an isomorphism for any invertible
sheaf L. Before proving this let us show that cases (2) and (3) follow from this.
Namely, we can choose sη ∈ Lη which generate Lη, i.e., such that Lη = OX,ηsη.
Since the claim applied to OX gives KX = GX(OX) it is clear that the global section
s =

∏
η∈G sη is regular as desired.

To prove that ϕ is an isomorphism we may work locally onX. For example it suffices
to show that sections of KX(L) and GX(L) agree over small affine opens U . Say
U = Spec(A) and L|U ∼= OU . By Lemmas 23.7 and 23.8 we see that Γ(U,KX) =
Q(A) is the total ring of fractions of A. On the other hand, Γ(U,GX(OX)) =∏

q⊂A minimalAq. In both cases we see that the set of minimal primes of A is finite,

say q1, . . . , qt, and that the set of zerodivisors of A is equal to q1 ∪ . . . ∪ qt (see
Algebra, Lemma 62.9). Hence the result follows from Algebra, Lemma 24.4. �
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Lemma 23.14.02P0 Let X be a scheme. Let L be an invertible OX-module. Let s
be a regular meromorphic section of L. Let us denote I ⊂ OX the sheaf of ideals
defined by the rule

I(V ) = {f ∈ OX(V ) | fs ∈ L(V )}.
The formula makes sense since L(V ) ⊂ KX(L)(V ). Then I is a quasi-coherent
sheaf of ideals and we have injective maps

1 : I −→ OX , s : I −→ L
whose cokernels are supported on closed nowhere dense subsets of X.

Proof. The question is local on X. Hence we may assume that X = Spec(A), and
L = OX . After shrinking further we may assume that s = x/y with a, b ∈ A both
nonzerodivisors in A. Set I = {x ∈ A | x(a/b) ∈ A}.
To show that I is quasi-coherent we have to show that If = {x ∈ Af | x(a/b) ∈ Af}
for every f ∈ A. If c/fn ∈ Af , (c/fn)(a/b) ∈ Af , then we see that fmc(a/b) ∈ A
for some m, hence c/fn ∈ If . Conversely it is easy to see that If is contained in
{x ∈ Af | x(a/b) ∈ Af}. This proves quasi-coherence.

Let us prove the final statement. It is clear that (b) ⊂ I. Hence V (I) ⊂ V (b) is a
nowhere dense subset as b is a nonzerodivisor. Thus the cokernel of 1 is supported
in a nowhere dense closed set. The same argument works for the cokernel of s since
s(b) = (a) ⊂ sI ⊂ A. �

Definition 23.15.02P1 Let X be a scheme. Let L be an invertible OX -module. Let s
be a regular meromorphic section of L. The sheaf of ideals I constructed in Lemma
23.14 is called the ideal sheaf of denominators of s.

Here is a lemma which will be used later.

Lemma 23.16.02P2 Suppose given

(1) X a locally Noetherian scheme,
(2) L an invertible OX-module,
(3) s a regular meromorphic section of L, and
(4) F coherent on X without embedded associated points and Supp(F) = X.

Let I ⊂ OX be the ideal of denominators of s. Let T ⊂ X be the union of the
supports of OX/I and L/s(I) which is a nowhere dense closed subset T ⊂ X
according to Lemma 23.14. Then there are canonical injective maps

1 : IF → F , s : IF → F ⊗OX L
whose cokernels are supported on T .

Proof. Reduce to the affine case with L ∼= OX , and s = a/b with a, b ∈ A both

nonzerodivisors. Proof of reduction step omitted. Write F = M̃ . Let I = {x ∈
A | x(a/b) ∈ A} so that I = Ĩ (see proof of Lemma 23.14). Note that T =
V (I) ∪ V ((a/b)I). For any A-module M consider the map 1 : IM → M ; this is
the map that gives rise to the map 1 of the lemma. Consider on the other hand
the map σ : IM → Mb, x 7→ ax/b. Since b is not a zerodivisor in A, and since M
has support Spec(A) and no embedded primes we see that b is a nonzerodivisor on
M also. Hence M ⊂ Mb. By definition of I we have σ(IM) ⊂ M as submodules
of Mb. Hence we get an A-module map s : IM → M (namely the unique map
such that s(z)/1 = σ(z) in Mb for all z ∈ IM). It is injective because a is a
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nonzerodivisor also (on both A and M). It is clear that M/IM is annihilated by I
and that M/s(IM) is annihilated by (a/b)I. Thus the lemma follows. �

24. Weil divisors

0BE0 We will introduce Weil divisors and rational equivalence of Weil divisors for locally
Noetherian integral schemes. Since we are not assuming our schemes are quasi-
compact we have to be a little careful when defining Weil divisors. We have to
allow infinite sums of prime divisors because a rational function may have infinitely
many poles for example. For quasi-compact schemes our Weil divisors are finite
sums as usual. Here is a basic lemma we will often use to prove collections of closed
subschemes are locally finite.

Lemma 24.1.0BE1 Let X be a locally Noetherian scheme. Let Z ⊂ X be a closed
subscheme. The collection of irreducible components of Z is locally finite in X.

Proof. Let U ⊂ X be a quasi-compact open subscheme. Then U is a Noether-
ian scheme, and hence has a Noetherian underlying topological space (Properties,
Lemma 5.5). Hence every subspace is Noetherian and has finitely many irreducible
components (see Topology, Lemma 9.2). �

Recall that if Z is an irreducible closed subset of a scheme X, then the codimension
of Z in X is equal to the dimension of the local ring OX,ξ, where ξ ∈ Z is the generic
point. See Properties, Lemma 10.3.

Definition 24.2.0BE2 Let X be a locally Noetherian integral scheme.

(1) A prime divisor is an integral closed subscheme Z ⊂ X of codimension 1.
(2) A Weil divisor is a formal sum D =

∑
nZZ where the sum is over prime

divisors of X and the collection {Z | nZ 6= 0} is locally finite (Topology,
Definition 28.4).

The group of all Weil divisors on X is denoted Div(X).

Our next task is to define the Weil divisor associated to a rational function. In
order to do this we use the order of vanishing of a rational function along a prime
divisor which is defined as follows.

Definition 24.3.02RJ Let X be a locally Noetherian integral scheme. Let f ∈ R(X)∗.
For every prime divisor Z ⊂ X we define the order of vanishing of f along Z as
the integer

ordZ(f) = ordOX,ξ(f)

where the right hand side is the notion of Algebra, Definition 120.2 and ξ is the
generic point of Z.

Note that for f, g ∈ R(X)∗ we have

ordZ(fg) = ordZ(f) + ordZ(g).

Of course it can happen that ordZ(f) < 0. In this case we say that f has a pole
along Z and that −ordZ(f) > 0 is the order of pole of f along Z. It is important
to note that the condition ordZ(f) ≥ 0 is not equivalent to the condition f ∈ OX,ξ
unless the local ring OX,ξ is a discrete valuation ring.
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Lemma 24.4.02RL Let X be a locally Noetherian integral scheme. Let f ∈ R(X)∗.
Then the collections

{Z ⊂ X | Z a prime divisor with generic point ξ and f not in OX,ξ}
and

{Z ⊂ X | Z a prime divisor and ordZ(f) 6= 0}
are locally finite in X.

Proof. There exists a nonempty open subscheme U ⊂ X such that f corresponds
to a section of Γ(U,O∗X). Hence the prime divisors which can occur in the sets of
the lemma are all irreducible components of X \ U . Hence Lemma 24.1 gives the
desired result. �

This lemma allows us to make the following definition.

Definition 24.5.0BE3 Let X be a locally Noetherian integral scheme. Let f ∈ R(X)∗.
The principal Weil divisor associated to f is the Weil divisor

div(f) = divX(f) =
∑

ordZ(f)[Z]

where the sum is over prime divisors and ordZ(f) is as in Definition 24.3. This
makes sense by Lemma 24.4.

Lemma 24.6.02RP Let X be a locally Noetherian integral scheme. Let f, g ∈ R(X)∗.
Then

divX(fg) = divX(f) + divX(g)

as Weil divisors on X.

Proof. This is clear from the additivity of the ord functions. �

We see from the lemma above that the collection of principal Weil divisors form a
subgroup of the group of all Weil divisors. This leads to the following definition.

Definition 24.7.0BE4 Let X be a locally Noetherian integral scheme. The Weil divisor
class group of X is the quotient of the group of Weil divisors by the subgroup of
principal Weil divisors. Notation: Cl(X).

By construction we obtain an exact complex

(24.7.1)0BE5 R(X)∗
div−−→ Div(X)→ Cl(X)→ 0

which we can think of as a presentation of Cl(X). Our next task is to relate the
Weil divisor class group to the Picard group.

25. The Weil divisor class associated to an invertible module

02SE In this section we go through exactly the same progression as in Section 24 to define
a canonical map Pic(X)→ Cl(X) on a locally Noetherian integral scheme.

Let X be a scheme. Let L be an invertible OX -module. Let ξ ∈ X be a point. If
sξ, s

′
ξ ∈ Lξ generate Lξ as OX,ξ-module, then there exists a unit u ∈ O∗X,ξ such

that sξ = us′ξ. The stalk of the sheaf of meromorphic sections KX(L) of L at x
is equal to KX,x ⊗OX,x Lx. Thus the image of any meromorphic section s of L in
the stalk at x can be written as s = fsξ with f ∈ KX,x. Below we will abbreviate
this by saying f = s/sξ. Also, if X is integral we have KX,x = R(X) is equal to
the function field of X, so s/sξ ∈ R(X). If s is a regular meromorphic section,
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then actually s/sξ ∈ R(X)∗. On an integral scheme a regular meromorphic section
is the same thing as a nonzero meromorphic section. Finally, we see that s/sξ is
independent of the choice of sξ up to multiplication by a unit of the local ring OX,x.
Putting everything together we see the following definition makes sense.

Definition 25.1.02SF Let X be a locally Noetherian integral scheme. Let L be an
invertible OX -module. Let s ∈ Γ(X,KX(L)) be a regular meromorphic section of
L. For every prime divisor Z ⊂ X we define the order of vanishing of s along Z as
the integer

ordZ,L(s) = ordOX,ξ(s/sξ)

where the right hand side is the notion of Algebra, Definition 120.2, ξ ∈ Z is the
generic point, and sξ ∈ Lξ is a generator.

As in the case of principal divisors we have the following lemma.

Lemma 25.2.02SG Let X be a locally Noetherian integral scheme. Let L be an invertible
OX-module. Let s ∈ KX(L) be a regular (i.e., nonzero) meromorphic section of L.
Then the sets

{Z ⊂ X | Z a prime divisor with generic point ξ and s not in Lξ}

and

{Z ⊂ X | Z is a prime divisor and ordZ,L(s) 6= 0}
are locally finite in X.

Proof. There exists a nonempty open subscheme U ⊂ X such that s corresponds
to a section of Γ(U,L) which generates L over U . Hence the prime divisors which
can occur in the sets of the lemma are all irreducible components of X \ U . Hence
Lemma 24.1. gives the desired result. �

Lemma 25.3.02SH Let X be a locally Noetherian integral scheme. Let L be an invertible
OX-module. Let s, s′ ∈ KX(L) be nonzero meromorphic sections of L. Then f =
s/s′ is an element of R(X)∗ and we have∑

ordZ,L(s)[Z] =
∑

ordZ,L(s′)[Z] + div(f)

as Weil divisors.

Proof. This is clear from the definitions. Note that Lemma 25.2 guarantees that
the sums are indeed Weil divisors. �

Definition 25.4.0BE6 Let X be a locally Noetherian integral scheme. Let L be an
invertible OX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor
associated to s as

divL(s) =
∑

ordZ,L(s)[Z] ∈ Div(X)

where the sum is over prime divisors.
(2) We define Weil divisor class associated to L as the image of divL(s) in

Cl(X) where s is any nonzero meromorphic section of L over X. This is
well defined by Lemma 25.3.

As expected this construction is additive in the invertible module.

http://stacks.math.columbia.edu/tag/02SF
http://stacks.math.columbia.edu/tag/02SG
http://stacks.math.columbia.edu/tag/02SH
http://stacks.math.columbia.edu/tag/0BE6


DIVISORS 59

Lemma 25.5.02SL Let X be a locally Noetherian integral scheme. Let L, N be invert-
ible OX-modules. Let s, resp. t be a nonzero meromorphic section of L, resp. N .
Then st is a nonzero meromorphic section of L ⊗N , and

divL⊗N (st) = divL(s) + divN (t)

in Div(X). In particular, the Weil divisor class of L⊗OX N is the sum of the Weil
divisor classes of L and N .

Proof. Let s, resp. t be a nonzero meromorphic section of L, resp. N . Then st
is a nonzero meromorphic section of L ⊗ N . Let Z ⊂ X be a prime divisor. Let
ξ ∈ Z be its generic point. Choose generators sξ ∈ Lξ, and tξ ∈ Nξ. Then sξtξ is
a generator for (L ⊗N )ξ. So st/(sξtξ) = (s/sξ)(t/tξ). Hence we see that

divL⊗N ,Z(st) = divL,Z(s) + divN ,Z(t)

by the additivity of the ordZ function. �

In this way we obtain a homomorphism of abelian groups

(25.5.1)0BE7 Pic(X) −→ Cl(X)

which assigns to an invertible module its Weil divisor class.

Lemma 25.6.0BE8 Let X be a locally Noetherian integral scheme. If X is normal,
then the map (25.5.1) Pic(X)→ Cl(X) is injective.

Proof. Let L be an invertible OX -module whose associated Weil divisor class is
trivial. Let s be a regular meromorphic section of L. The assumption means that
divL(s) = div(f) for some f ∈ R(X)∗. Then we see that t = f−1s is a regular
meromorphic section of L with divL(t) = 0, see Lemma 25.3. We will show that
t defines a trivialization of L which finishes the proof of the lemma. In order to
prove this we may work locally on X. Hence we may assume that X = Spec(A)
is affine and that L is trivial. Then A is a Noetherian normal domain and t is an
element of its fraction field such that ordAp

(t) = 0 for all height 1 primes p of A.
Our goal is to show that t is a unit of A. Since Ap is a discrete valuation ring for
height one primes of A (Algebra, Lemma 151.4), the condition signifies that t ∈ A∗p
for all primes p of height 1. This implies t ∈ A and t−1 ∈ A by Algebra, Lemma
151.6 and the proof is complete. �

Lemma 25.7.0BE9 Let X be a locally Noetherian integral scheme. Consider the map
(25.5.1) Pic(X)→ Cl(X). The following are equivalent

(1) the local rings of X are UFDs, and
(2) X is normal and Pic(X)→ Cl(X) is surjective.

In this case Pic(X)→ Cl(X) is an isomorphism.

Proof. If (1) holds, then X is normal by Algebra, Lemma 119.11. Hence the map
(25.5.1) is injective by Lemma 25.6. Moreover, every prime divisor D ⊂ X is an
effective Cartier divisor by Lemma 15.7. In this case the canonical section 1D of
OX(D) (Definition 14.1) vanishes exactly along D and we see that the class of D
is the image of OX(D) under the map (25.5.1). Thus the map is surjective as well.

Assume (2) holds. Pick a prime divisor D ⊂ X. Since (25.5.1) is surjective there
exists an invertible sheaf L, a regular meromorphic section s, and f ∈ R(X)∗ such
that divL(s) + div(f) = [D]. In other words, divL(fs) = [D]. Let x ∈ X and
let A = OX,x. Thus A is a Noetherian local normal domain with fraction field
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K = R(X). Every height 1 prime of A corresponds to a prime divisor on X and
every invertible OX -module restricts to the trivial invertible module on Spec(A).
It follows that for every height 1 prime p ⊂ A there exists an element f ∈ K such
that ordAp

(f) = 1 and ordAp′ (f) = 0 for every other height one prime p′. Then
f ∈ A by Algebra, Lemma 151.6. Arguing in the same fashion we see that every
element g ∈ p is of the form g = af for some a ∈ A. Thus we see that every height
one prime ideal of A is principal and A is a UFD by Algebra, Lemma 119.6. �

26. More on invertible modules

0BD6 In this section we discuss some properties of invertible modules.

Lemma 26.1.0BD7 Let ϕ : X → Y be a morphism of schemes. Let L be an invertible
OX-module. Assume that

(1) X is locally Noetherian,
(2) Y is locally Noetherian, integral, and normal,
(3) ϕ is flat with integral (hence nonempty) fibres,
(4) ϕ is either quasi-compact or locally of finite type,
(5) L is trivial when restricted to the generic fibre of ϕ.

Then L ∼= ϕ∗N for some invertible OY -module N .

Proof. Let ξ ∈ Y be the generic point. Let Xξ be the scheme theoretic fibre of ϕ
over ξ. Denote Lξ the pullback of L to Xξ. Assumption (5) means that Lξ is trivial.
Choose a trivializing section s ∈ Γ(Xξ,Lξ). Observe that X is integral by Lemma
11.7. Hence we can think of s as a regular meromorphic section of L. Pullbacks
of meromorphic functions are defined for ϕ by Lemma 23.4. Let N ⊂ KY be the
OY -module whose sections over an open V ⊂ Y are those meromorphic functions
g ∈ KY (V ) such that ϕ∗(g)s ∈ L(ϕ−1V ). A priori ϕ∗(g)s is a section of KX(L)
over ϕ−1V . We claim that N is an invertible OY -module and that the map

ϕ∗N −→ L, g 7−→ gs

is an isomorphism.

We first prove the claim in the following situation: X and Y are affine and L trivial.
Say Y = Spec(R), X = Spec(A) and s given by the element s ∈ A⊗R K where K
is the fraction field of R. We can write s = a/r for some nonzero r ∈ R and a ∈ A.
Since s generates L on the generic fibre we see that there exists an s′ ∈ A⊗RK such
that ss′ = 1. Thus we see that s = r′/a′ for some nonzero r′ ∈ R and a′ ∈ A. Let
p1, . . . , pn ⊂ R be the minimal primes over rr′. Each Rpi is a discrete valuation ring
(Algebra, Lemmas 59.10 and 151.4). By assumption qi = piA is a prime. Hence
qiAqi is generated by a single element and we find that Aqi is a discrete valuation
ring as well (Algebra, Lemma 118.7). Of course Rpi → Aqi has ramification index
1. Let ei, e

′
i ≥ 0 be the valuation of a, a′ in Aqi . Then ei + e′i is the valuation of rr′

in Rpi . Note that

p
(e1+e

′
1)

1 ∩ . . . ∩ p
(en+e

′
n)

i = (rr′)

in R by Algebra, Lemma 151.6. Set

I = p
(e1)
1 ∩ . . . ∩ p

(en)
i and I ′ = p

(e′1)
1 ∩ . . . ∩ p

(e′n)
i

so that II ′ ⊂ (rr′). Observe that

IA = (p
(e1)
1 ∩ . . . ∩ p

(en)
i )A = (p1A)(e1) ∩ . . . ∩ (piA)(en)
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by Algebra, Lemmas 63.3 and 38.2. Similarly for I ′A. Hence a ∈ IA and a′ ∈ I ′A.
We conclude that IA ⊗A I ′A → rr′A is surjective. By faithful flatness of R → A
we find that I ⊗R I ′ → (rr′) is surjective as well. It follows that II ′ = (rr′) and
I and I ′ are finite locally free of rank 1, see Algebra, Lemma 119.16. Thus Zariski
locally on R we can write I = (g) and I ′ = (g′) with gg′ = rr′. Then a = ug and
a′ = u′g′ for some u, u′ ∈ A. We conclude that u, u′ are units. Thus Zariski locally
on R we have s = ug/r and the claim follows in this case.

Let y ∈ Y be a point. Pick x ∈ X mapping to y. We may apply the result of
the previous paragraph to Spec(OX,x)→ Spec(OY,y). We conclude there exists an
element g ∈ R(Y )∗ well defined up to multiplication by an element of O∗Y,y such

that ϕ∗(g)s generates Lx. Hence ϕ∗(g)s generates L in a neighbourhood U of x.
Suppose x′ is a second point lying over y and g′ ∈ R(Y )∗ is such that ϕ∗(g′)s
generates L in an open neighbourhood U ′ of x′. Then we can choose a point x′′ in
U ∩ U ′ ∩ ϕ−1({y}) because the fibre is irreducible. By the uniqueness for the ring
map OY,y → OX,x′′ we find that g and g′ differ (multiplicatively) by an element in
O∗Y,y. Hence we see that ϕ∗(g)s is a generator for L on an open neighbourhood of

ϕ−1(y). Let Z ⊂ X be the set of points z ∈ X such that ϕ∗(g)s does not generate
Lz. The arguments above show that Z is closed and that Z = ϕ−1(T ) for some
subset T ⊂ Y with y 6∈ T . If we can show that T is closed, then g will be a generator
for N as an OY -module in the open neighbourhood Y \T of y thereby finishing the
proof (some details omitted).

If ϕ is quasi-compact, then T is closed by Morphisms, Lemma 24.11. If ϕ is locally
of finite type, then ϕ is open by Morphisms, Lemma 24.9. Then Y \ T is open as
the image of the open X \ Z. �

Lemma 26.2.0BD8 Let X be a locally Noetherian scheme. Let U ⊂ X be an open and
let D ⊂ U be an effective Cartier divisor. If OX,x is a UFD for all x ∈ X \U , then
there exists an effective Cartier divisor D′ ⊂ X with D = U ∩D′.

Proof. Let D′ ⊂ X be the scheme theoretic image of the morphism D → X. Since
X is locally Noetherian the morphism D → X is quasi-compact, see Properties,
Lemma 5.3. Hence the formation of D′ commutes with passing to opens in X by
Morphisms, Lemma 6.3. Thus we may assume X = Spec(A) is affine. Let I ⊂ A
be the ideal corresponding to D′. Let p ⊂ A be a prime ideal corresponding to a
point of X \U . To finish the proof it is enough to show that Ip is generated by one
element, see Lemma 15.2. Thus we may replace X by Spec(Ap), see Morphisms,
Lemma 24.15. In other words, we may assume that X is the spectrum of a local
UFD A. Then all local rings of A are UFD’s. It follows that D =

∑
aiDi with

Di ⊂ U an integral effective Cartier divisor, see Lemma 15.11. The generic points
ξi of Di correspond to prime ideals pi ⊂ A of height 1, see Lemma 15.3. Then
pi = (fi) for some prime element fi ∈ A and we conclude that D′ is cut out by∏
faii as desired. �

Lemma 26.3.0BD9 Let X be a locally Noetherian scheme. Let U ⊂ X be an open and
let L be an invertible OU -module. If OX,x is a UFD for all x ∈ X \ U , then there
exists an invertible OX-module L′ with L ∼= L′|U .

Proof. Choose x ∈ X, x 6∈ U . We will show there exists an affine open neighbour-
hood W ⊂ X, such that L|W∩U extends to an invertible sheaf on W . This implies
by glueing of sheaves (Sheaves, Section 33) that we can extend L to the strictly
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bigger open U ∪W . Let W = Spec(A) be an affine open neighbourhood. Since
U ∩W is quasi-affine, we see that we can can write L|W∩U as O(D1)⊗O(D2)⊗−1

for some effective Cartier divisors D1, D2 ⊂ W ∩ U , see Lemma 15.12. Then D1

and D2 extend to effective Cartier divisors of W by Lemma 26.2 which gives us the
extension of the invertible sheaf.

If X is Noetherian (which is the case most used in practice), the above combined
with Noetherian induction finishes the proof. In the general case we argue as
follows. First, because every local ring of a point outside of U is a domain and
X is locally Noetherian, we see that the closure of U in X is open. Thus we may
assume that U ⊂ X is dense and schematically dense. Now we consider the set T
of triples (U ′,L′, α) where U ⊂ U ′ ⊂ X is an open subscheme, L′ is an invertible
OU ′ -module, and α : L′|U → L is an isomorphism. We endow T with a partial
ordering ≤ defined by the rule (U ′,L′, α) ≤ (U ′′,L′′, α′) if and only if U ′ ⊂ U ′′ and
there exists an isomorphism β : L′′|U ′ → L′ compatible with α and α′. Observe
that β is unique (if it exists) because U ⊂ X is dense. The first part of the proof
shows that for any element t = (U ′,L′, α) of T with U ′ 6= X there exists a t′ ∈ T
with t′ > t. Hence to finish the proof it suffices to show that Zorn’s lemma applies.
Thus consider a totally ordered subset I ⊂ T . If i ∈ I corresponds to the triple
(Ui,Li, αi), then we can construct an invertible module L′ on U ′ =

⋃
Ui as follows.

For W ⊂ U ′ open and quasi-compact we see that W ⊂ Ui for some i and we set

L′(W ) = Li(W )

For the transition maps we use the β’s (which are unique and hence compose
correctly). This defines an invertible O-module L′ on the basis of quasi-compact
opens of U ′ which is sufficient to define an invertible module (Sheaves, Section 30).
We omit the details. �

Lemma 26.4.0BDA Let R be a UFD. The Picard groups of the following are trivial.

(1) Spec(R) and any open subscheme of it.
(2) An

R = Spec(R[x1, . . . , xn]) and any open subscheme of it.

In particular, the Picard group of any open subscheme of affine n-space An
k over a

field k is trivial.

Proof. Since R is a UFD so is any localization of it and any polynomial ring over
it (Algebra, Lemma 119.10). Thus if U ⊂ An

R is open, then the map Pic(An
R) →

Pic(U) is surjective by Lemma 26.3. The vanishing of Pic(An
R) is equivalent to the

vanishing of the picard group of the UFD R[x1, . . . , xn] which is proved in More on
Algebra, Lemma 96.3. �

Lemma 26.5.0BXJ Let R be a UFD. The Picard group of Pn
R is Z. More precisely,

there is an isomorphism

Z −→ Pic(Pn
R), m 7−→ OPnR

(m)

In particular, the Picard group of Pn
k of projective space over a field k is Z.

Proof. Observe that the local rings of X = Pn
R are UFDs because X is covered

by affine pieces isomorphic to An
R and R[x1, . . . , xn] is a UFD (Algebra, Lemma

119.10). Hence X is an integral Noetherian scheme all of whose local rings are
UFDs and we see that Pic(X) = Cl(X) by Lemma 25.7.
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The displayed map is a group homomorphism by Constructions, Lemma 10.3. The
map is injective because H0 of OX and OX(m) are non-isomorphic R-modules if
m > 0, see Cohomology of Schemes, Lemma 8.1. Let L be an invertible module
on X. Consider the open U = D+(T0) ∼= An

R. The complement H = X \ U is
a prime divisor because it is isomorphic to Proj(R[T1, . . . , Tn]) which is integral
by the discussion in the previous paragraph. In fact H is the zero scheme of the
regular global section T0 of OX(1) hence OX(1) maps to the class of H in Cl(X).
By Lemma 26.4 we see that L|U ∼= OU . Let s ∈ L(U) be a trivializing section.
Then we can think of s as a regular meromorphic section of L and we see that
necessarily divL(s) = m[H] for some m ∈ Z as H is the only prime divisor of X not
meeting U . In other words, we see that L and OX(m) map to the same element of
Cl(X) and hence L ∼= OX(m) as desired. �

27. Relative Proj

07ZW Some results on relative Proj. First some very basic results. Recall that a relative
Proj is always separated over the base, see Constructions, Lemma 16.9.

Lemma 27.1.07ZX Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A)→ S be the relative Proj of A. If one of the following holds

(1) A is of finite type as a sheaf of A0-algebras,
(2) A is generated by A1 as an A0-algebra and A1 is a finite type A0-module,
(3) there exists a finite type quasi-coherent A0-submodule F ⊂ A+ such that
A+/FA is a locally nilpotent sheaf of ideals of A/FA,

then p is quasi-compact.

Proof. The question is local on the base, see Schemes, Lemma 19.2. Thus we
may assume S is affine. Say S = Spec(R) and A corresponds to the graded R-
algebra A. Then X = Proj(A), see Constructions, Section 15. In case (1) we may
after possibly localizing more assume that A is generated by homogeneous elements
f1, . . . , fn ∈ A+ over A0. Then A+ = (f1, . . . , fn) by Algebra, Lemma 57.1. In case

(3) we see that F = M̃ for some finite type A0-module M ⊂ A+. Say M =
∑
A0fi.

Say fi =
∑
fi,j is the decomposition into homogeneous pieces. The condition in

(3) signifies that A+ ⊂
√

(fi,j). Thus in both cases we conclude that Proj(A) is
quasi-compact by Constructions, Lemma 8.9. Finally, (2) follows from (1). �

Lemma 27.2.07ZY Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A)→ S be the relative Proj of A. If A is of finite type as a sheaf

of OS-algebras, then p is of finite type and OX(d) is a finite type OX-module.

Proof. The assumption implies that p is quasi-compact, see Lemma 27.1. Hence
it suffices to show that p is locally of finite type. Thus the question is local on the
base and target, see Morphisms, Lemma 14.2. Say S = Spec(R) and A corresponds
to the graded R-algebra A. After further localizing on S we may assume that A is
a finite type R-algebra. The scheme X is constructed out of glueing the spectra of
the rings A(f) for f ∈ A+ homogeneous. Each of these is of finite type over R by
Algebra, Lemma 56.9 part (1). Thus Proj(A) is of finite type over R. To see the
statement on OX(d) use part (2) of Algebra, Lemma 56.9. �
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Lemma 27.3.07ZZ Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. If OS → A0 is an integral

algebra map4 and A is of finite type as an A0-algebra, then p is universally closed.

Proof. The question is local on the base. Thus we may assume thatX = Spec(R) is
affine. Let A be the quasi-coherent OX -algebra associated to the graded R-algebra
A. The assumption is that R → A0 is integral and A is of finite type over A0.
Write X → Spec(R) as the composition X → Spec(A0)→ Spec(R). Since R→ A0

is an integral ring map, we see that Spec(A0) → Spec(R) is universally closed,
see Morphisms, Lemma 42.7. The quasi-compact (see Constructions, Lemma 8.9)
morphism

X = Proj(A)→ Spec(A0)

satisfies the existence part of the valuative criterion by Constructions, Lemma 8.11
and hence it is universally closed by Schemes, Proposition 20.6. Thus X → Spec(R)
is universally closed as a composition of universally closed morphisms. �

Lemma 27.4.0800 Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. The following conditions are

equivalent

(1) A0 is a finite type OS-module and A is of finite type as an A0-algebra,
(2) A0 is a finite type OS-module and A is of finite type as an OS-algebra

If these conditions hold, then p is locally projective and in particular proper.

Proof. Assume that A0 is a finite type OS-module. Choose an affine open U =
Spec(R) ⊂ X such that A corresponds to a graded R-algebra A with A0 a finite
R-module. Condition (1) means that (after possibly localizing further on S) that
A is a finite type A0-algebra and condition (2) means that (after possibly localizing
further on S) that A is a finite type R-algebra. Thus these conditions imply each
other by Algebra, Lemma 6.2.

A locally projective morphism is proper, see Morphisms, Lemma 41.5. Thus we may
now assume that S = Spec(R) and X = Proj(A) and that A0 is finite over R and
A of finite type over R. We will show that X = Proj(A) → Spec(R) is projective.
We urge the reader to prove this for themselves, by directly constructing a closed
immersion of X into a projective space over R, instead of reading the argument we
give below.

By Lemma 27.2 we see that X is of finite type over Spec(R). Constructions, Lemma
10.6 tells us that OX(d) is ample on X for some d ≥ 1 (see Properties, Section
26). Hence X → Spec(R) is quasi-projective (by Morphisms, Definition 38.1). By
Morphisms, Lemma 41.12 we conclude that X is isomorphic to an open subscheme
of a scheme projective over Spec(R). Therefore, to finish the proof, it suffices to
show that X → Spec(R) is universally closed (use Morphisms, Lemma 39.7). This
follows from Lemma 27.3. �

Lemma 27.5.0B3U Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A)→ S be the relative Proj of A. If A is generated by A1 over

A0 and A1 is a finite type OS-module, then p is projective.

4In other words, the integral closure of OS in A0, see Morphisms, Definition 50.2, equals A0.
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Proof. Namely, the morphism associated to the graded OS-algebra map

Sym∗OX (A1) −→ A
is a closed immersion X → P(A1), see Constructions, Lemma 18.5. �

Lemma 27.6.0D4C Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A)→ S be the relative Proj of A. If Ad is a flat OS-module for

d� 0, then p is flat and OX(d) is flat over S.

Proof. Affine locally flatness of X over S reduces to the following statement: Let R
be a ring, let A be a graded R-algebra with Ad flat over R for d� 0, let f ∈ Ad for
some d > 0, then A(f) is flat over R. Since A(f) = colimAnd where the transition
maps are given by multiplication by f , this follows from Algebra, Lemma 38.3.
Argue similarly to get flatness of OX(d) over S. �

Lemma 27.7.0D4D Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. If A is a finitely presented

OS-algebra, then p is of finite presentation and OX(d) is an OX-module of finite
presentation.

Proof. Affine locally this reduces to the following statement: Let R be a ring and
let A be a finitely presented graded R-algebra. Then Proj(A)→ Spec(R) is of finite
presentation and OProj(A)(d) is a OProj(A)-module of finite presentation. The finite
presentation condition implies we can choose a presentation

A = R[X1, . . . , Xn]/(F1, . . . , Fm)

where R[X1, . . . , Xn] is a polynomial ring graded by giving weights di to Xi and
F1, . . . , Fm are homogeneous polynomials of degree ej . Let R0 ⊂ R be the sub-
ring generated by the coefficients of the polynomials F1, . . . , Fm. Then we set
A0 = R0[X1, . . . , Xn]/(F1, . . . , Fm). By construction A = A0 ⊗R0

R. Thus by
Constructions, Lemma 11.6 it suffices to prove the result for X0 = Proj(A0) over
R0. By Lemma 27.2 we know X0 is of finite type over R0 and OX0(d) is a quasi-
coherent OX0

-module of finite type. Since R0 is Noetherian (as a finitely generated
Z-algebra) we see that X0 is of finite presentation over R0 (Morphisms, Lemma
20.9) and OX0

(d) is of finite presentation by Cohomology of Schemes, Lemma 9.1.
This finishes the proof. �

28. Closed subschemes of relative proj

084M Some auxiliary lemmas about closed subschemes of relative proj.

Lemma 28.1.0801 Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. Let i : Z → X be a closed

subscheme. Denote I ⊂ A the kernel of the canonical map

A −→
⊕

d≥0
p∗ ((i∗OZ)(d))

If p is quasi-compact, then there is an isomorphism Z = Proj
S

(A/I).

Proof. The morphism p is separated by Constructions, Lemma 16.9. As p is
quasi-compact, p∗ transforms quasi-coherent modules into quasi-coherent modules,
see Schemes, Lemma 24.1. Hence I is a quasi-coherent OS-module. In particu-
lar, B = A/I is a quasi-coherent graded OS-algebra. The functoriality morphism
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Z ′ = Proj
S

(B)→ Proj
S

(A) is everywhere defined and a closed immersion, see Con-

structions, Lemma 18.3. Hence it suffices to prove Z = Z ′ as closed subschemes of
X.

Having said this, the question is local on the base and we may assume that S =

Spec(R) and that X = Proj(A) for some graded R-algebra A. Assume I = Ĩ for
I ⊂ A a graded ideal. By Constructions, Lemma 8.9 there exist f0, . . . , fn ∈ A+

such that A+ ⊂
√

(f0, . . . , fn) in other words X =
⋃
D+(fi). Therefore, it suffices

to check that Z∩D+(fi) = Z ′∩D+(fi) for each i. By renumbering we may assume
i = 0. Say Z∩D+(f0), resp. Z ′∩D+(f0) is cut out by the ideal J , resp. J ′ of A(f0).

The inclusion J ′ ⊂ J . Let d be the least common multiple of deg(f0), . . . ,deg(fn).

Note that each of the twists OX(nd) is invertible, trivialized by f
nd/ deg(fi)
i over

D+(fi), and that for any quasi-coherent module F on X the multiplication maps
OX(nd) ⊗OX F(m) → F(nd + m) are isomorphisms, see Constructions, Lemma
10.2. Observe that J ′ is the ideal generated by the elements g/fe0 where g ∈ I
is homogeneous of degree edeg(f0) (see proof of Constructions, Lemma 11.3). Of
course, by replacing g by f l0g for suitable l we may always assume that d|e. Then,
since g vanishes as a section of OX(edeg(f0)) restricted to Z we see that g/fd0 is
an element of J . Thus J ′ ⊂ J .

Conversely, suppose that g/fe0 ∈ J . Again we may assume d|e. Pick i ∈ {1, . . . , n}.
Then Z ∩D+(fi) is cut out by some ideal Ji ⊂ A(fi). Moreover,

J ·A(f0fi) = Ji ·A(f0fi)

The right hand side is the localization of Ji with respect to f
deg(fi)
0 /f

deg(f0)
i . It

follows that

fei0 g/f
(ei+e) deg(f0)/ deg(fi)
i ∈ Ji

for some ei � 0 sufficiently divisible. This proves that f
max(ei)
0 g is an element of I,

because its restriction to each affine open D+(fi) vanishes on the closed subscheme
Z ∩D+(fi). Hence g ∈ J ′ and we conclude J ⊂ J ′ as desired. �

Example 28.2.0BXK Let A be a graded ring. Let X = Proj(A) and S = Spec(A0).
Given a graded ideal I ⊂ A we obtain a closed subscheme V+(I) = Proj(A/I)→ X
by Constructions, Lemma 11.3. Translating the result of Lemma 28.1 we see that
if X is quasi-compact, then any closed subscheme Z is of the form V+(I(Z)) where
the graded ideal I(Z) ⊂ A is given by the rule

I(Z) = Ker(A −→
⊕

n≥0
Γ(Z,OZ(n)))

Then we can ask the following two natural questions:

(1) Which ideals I are of the form I(Z)?
(2) Can we describe the operation I 7→ I(V+(I))?

We will answer this when A is Noetherian.

First, assume that A is generated by A1 over A0. In this case, for any ideal I ⊂ A
the kernel of the map A/I →

⊕
Γ(Proj(A/I),O) is the set of torsion elements of

A/I, see Cohomology of Schemes, Proposition 14.4. Hence we conclude that

I(V+(I)) = {x ∈ A | Anx ⊂ I for some n ≥ 0}
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The ideal on the right is sometimes called the saturation of I. This answers (2) and
the answer to (1) is that an ideal is of the form I(Z) if and only if it is saturated,
i.e., equal to its own saturation.

If A is a general Noetherian graded ring, then we use Cohomology of Schemes,
Proposition 14.4. Thus we see that for d equal to the lcm of the degrees of generators
of A over A0 we get

I(V+(I)) = {x ∈ A | (Ax)nd ⊂ I for all n� 0}

This can be different from the saturation of I if d 6= 1. For example, suppose that
A = Q[x, y] with deg(x) = 2 and deg(y) = 3. Then d = 6. Let I = (y2). Then
we see y ∈ I(V+(I)) because for any homogeneous f ∈ A such that 6|deg(fy) we
have y|f , hence fy ∈ I. It follows that I(V+(I)) = (y) but xny 6∈ I for all n hence
I(V+(I)) is not equal to the saturation.

Lemma 28.3.0BXL Let R be a UFD. Let Z ⊂ Pn
R be a closed subscheme which has no

embedded points such that every irreducible component of Z has codimension 1 in
Pn
R. Then the ideal I(Z) ⊂ R[T0, . . . , Tn] corresponding to Z is principal.

Proof. Observe that the local rings of X = Pn
R are UFDs because X is covered

by affine pieces isomorphic to An
R and R[x1, . . . , xn] is a UFD (Algebra, Lemma

119.10). Thus Z is an effective Cartier divisor by Lemma 15.9. Let I ⊂ OX be
the quasi-coherent sheaf of ideals corresponding to Z. Choose an isomorphism
O(m)→ I for some m ∈ Z, see Lemma 26.5. Then the composition

OX(m)→ I → OX

is nonzero. We conclude that m ≤ 0 and that the corresponding section of
OX(m)⊗−1 = OX(−m) is given by some F ∈ R[T0, . . . , Tn] of degree −m, see
Cohomology of Schemes, Lemma 8.1. Thus on the ith standard open Ui = D+(Ti)
the closed subscheme Z ∩ Ui is cut out by the ideal

(F (T0/Ti, . . . , Tn/Ti)) ⊂ R[T0/Ti, . . . , Tn/Ti]

Thus the homogeneous elements of the graded ideal I(Z) = Ker(R[T0, . . . , Tn] →⊕
Γ(OZ(m))) is the set of homogeneous polynomials G such that

G(T0/Ti, . . . , Tn/Ti) ∈ (F (T0/Ti, . . . , Tn/Ti))

for i = 0, . . . , n. Clearing denominators, we see there exist ei ≥ 0 such that

T eii G ∈ (F )

for i = 0, . . . , n. As R is a UFD, so is R[T0, . . . , Tn]. Then F |T e00 G and F |T e11 G
implies F |G as T e00 and T e11 have no factor in common. Thus I(Z) = (F ). �

In case the closed subscheme is locally cut out by finitely many equations we can
define it by a finite type ideal sheaf of A.

Lemma 28.4.0802 Let S be a quasi-compact and quasi-separated scheme. Let A be
a quasi-coherent graded OS-algebra. Let p : X = Proj

S
(A) → S be the relative

Proj of A. Let i : Z → X be a closed subscheme. If p is quasi-compact and i
of finite presentation, then there exists a d > 0 and a quasi-coherent finite type
OS-submodule F ⊂ Ad such that Z = Proj

S
(A/FA).
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Proof. By Lemma 28.1 we know there exists a quasi-coherent graded sheaf of ideals
I ⊂ A such that Z = Proj(A/I). Since S is quasi-compact we can choose a finite
affine open covering S = U1 ∪ . . . ∪ Un. Say Ui = Spec(Ri). Let A|Ui correspond
to the graded Ri-algebra Ai and I|Ui to the graded ideal Ii ⊂ Ai. Note that
p−1(Ui) = Proj(Ai) as schemes over Ri. Since p is quasi-compact we can choose
finitely many homogeneous elements fi,j ∈ Ai,+ such that p−1(Ui) = D+(fi,j). The
condition on Z → X means that the ideal sheaf of Z in OX is of finite type, see
Morphisms, Lemma 20.7. Hence we can find finitely many homogeneous elements
hi,j,k ∈ Ii ∩ Ai,+ such that the ideal of Z ∩D+(fi,j) is generated by the elements
hi,j,k/f

ei,j,k
i,j . Choose d > 0 to be a common multiple of all the integers deg(fi,j)

and deg(hi,j,k). By Properties, Lemma 22.7 there exists a finite type quasi-coherent
F ⊂ Id such that all the local sections

hi,j,kf
(d−deg(hi,j,k))/ deg(fi,j)
i,j

are sections of F . By construction F is a solution. �

The following version of Lemma 28.4 will be used in the proof of Lemma 31.2.

Lemma 28.5.0803 Let S be a quasi-compact and quasi-separated scheme. Let A be a
quasi-coherent graded OS-algebra. Let p : X = Proj

S
(A) → S be the relative Proj

of A. Let i : Z → X be a closed subscheme. Let U ⊂ X be an open. Assume that

(1) p is quasi-compact,
(2) i of finite presentation,
(3) U ∩ p(i(Z)) = ∅,
(4) U is quasi-compact,
(5) An is a finite type OS-module for all n.

Then there exists a d > 0 and a quasi-coherent finite type OS-submodule F ⊂ Ad
with (a) Z = Proj

S
(A/FA) and (b) the support of Ad/F is disjoint from U .

Proof. Let I ⊂ A be the sheaf of quasi-coherent graded ideals constructed in
Lemma 28.1. Let Ui, Ri, Ai, Ii, fi,j , hi,j,k, and d be as constructed in the proof of
Lemma 28.4. Since U∩p(i(Z)) = ∅ we see that Id|U = Ad|U (by our construction of
I as a kernel). Since U is quasi-compact we can choose a finite affine open covering
U = W1 ∪ . . . ∪Wm. Since Ad is of finite type we can find finitely many sections
gt,s ∈ Ad(Wt) which generate Ad|Wt

= Id|Wt
as an OWt

-module. To finish the
proof, note that by Properties, Lemma 22.7 there exists a finite type F ⊂ Id such
that all the local sections

hi,j,kf
(d−deg(hi,j,k))/ deg(fi,j)
i,j and gt,s

are sections of F . By construction F is a solution. �

Lemma 28.6.0B3V Let X be a scheme. Let E be a quasi-coherent OX-module. There
is a bijection{

sections σ of the
morphism P(E)→ X

}
↔
{

surjections E → L where
L is an invertible OX-module

}
In this case σ is a closed immersion and there is a canonical isomorphism

Ker(E → L)⊗OX L⊗−1 −→ Cσ(X)/P(E)

Both the bijection and isomorphism are compatible with base change.
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Proof. Recall that π : P(E)→ X is the relative proj of the symmetric algebra on
E , see Constructions, Definition 21.1. Hence the descriptions of sections σ follows
immediately from the description of the functor of points of P(E) in Constructions,
Lemma 16.11. Since π is separated, any section is a closed immersion (Construc-
tions, Lemma 16.9 and Schemes, Lemma 21.12). Let U ⊂ X be an affine open
and k ∈ E(U) and s ∈ E(U) be local sections such that k maps to zero in L and s
maps to a generator s of L. Then f = k/s is a section of OP(E) defined in an open

neighbourhood D+(s) of s(U) in π−1(U). Moreover, since k maps to zero in L we
see that f is a section of the ideal sheaf of s(U) in π−1(U). Thus we can take the
image f of f in Cσ(X)/P(E)(U). We claim (1) that the image f depends only on the
sections k and s and not on the choice of s and (2) that we get an isomorphism
over U in this manner (see below). However, once (1) and (2) are established, we
see that the construction is compatible with base change by U ′ → U where U ′ is
affine, which proves that these local maps glue and are compatible with arbitrary
base change.

To prove (1) and (2) we make explicit what is going on. Namely, say U = Spec(A)
and say E → L corresponds to the map of A-modules M → N . Then k ∈ K =
Ker(M → N) and s ∈M maps to a generator s of N . Hence M = K ⊕As. Thus

Sym(M) = Sym(K)[s]

Consider the identification Sym(K) → Sym(M)(s) via the rule g 7→ g/sn for
g ∈ Symn(K). This gives an isomorphism D+(s) = Spec(Sym(K)) such that σ
corresponds to the ring map Sym(K) → A mapping K to zero. Via this isomor-
phism we see that the quasi-coherent module corresponding to K is identified with
Cσ(U)/D+(s) proving (2). Finally, suppose that s′ = k′ + s for some k′ ∈ K. Then

k/s′ = (k/s)(s/s′) = (k/s)(s′/s)−1 = (k/s)(1 + k′/s)−1

in an open neighbourhood of σ(U) in D+(s). Thus we see that s′/s restricts to 1
on σ(U) and we see that k/s′ maps to the same element of the conormal sheaf as
does k/s thereby proving (1). �

29. Blowing up

01OF Blowing up is an important tool in algebraic geometry.

Definition 29.1.01OG Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals, and let Z ⊂ X be the closed subscheme corresponding to I, see Schemes,
Definition 10.2. The blowing up of X along Z, or the blowing up of X in the ideal
sheaf I is the morphism

b : Proj
X

(⊕
n≥0
In
)
−→ X

The exceptional divisor of the blow up is the inverse image b−1(Z). Sometimes Z
is called the center of the blowup.

We will see later that the exceptional divisor is an effective Cartier divisor. More-
over, the blowing up is characterized as the “smallest” scheme over X such that
the inverse image of Z is an effective Cartier divisor.

If b : X ′ → X is the blow up of X in Z, then we often denote OX′(n) the
twists of the structure sheaf. Note that these are invertible OX′ -modules and that
OX′(n) = OX′(1)⊗n because X ′ is the relative Proj of a quasi-coherent graded
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OX -algebra which is generated in degree 1, see Constructions, Lemma 16.11. Note
that OX′(1) is b-relatively very ample, even though b need not be of finite type
or even quasi-compact, because X ′ comes equipped with a closed immersion into
P(I), see Morphisms, Example 36.3.

Lemma 29.2.0804 Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. Let U = Spec(A) be an affine open subscheme of X and let I ⊂ A be the
ideal corresponding to I|U . If b : X ′ → X is the blow up of X in I, then there is a
canonical isomorphism

b−1(U) = Proj(
⊕

d≥0
Id)

of b−1(U) with the homogeneous spectrum of the Rees algebra of I in A. Moreover,
b−1(U) has an affine open covering by spectra of the affine blowup algebras A[ Ia ].

Proof. The first statement is clear from the construction of the relative Proj via
glueing, see Constructions, Section 15. For a ∈ I denote a(1) the element a seen as
an element of degree 1 in the Rees algebra

⊕
n≥0 I

n. Since these elements generate

the Rees algebra over A we see that Proj(
⊕

d≥0 I
d) is covered by the affine opens

D+(a(1)). The affine scheme D+(a(1)) is the spectrum of the affine blowup algebra
A′ = A[ Ia ], see Algebra, Definition 69.1. This finishes the proof. �

Lemma 29.3.0805 Let X1 → X2 be a flat morphism of schemes. Let Z2 ⊂ X2 be a
closed subscheme. Let Z1 be the inverse image of Z2 in X1. Let X ′i be the blow up
of Zi in Xi. Then there exists a cartesian diagram

X ′1 //

��

X ′2

��
X1

// X2

of schemes.

Proof. Let I2 be the ideal sheaf of Z2 in X2. Denote g : X1 → X2 the given
morphism. Then the ideal sheaf I1 of Z1 is the image of g∗I2 → OX1

(by definition
of the inverse image, see Schemes, Definition 17.7). By Constructions, Lemma 16.10
we see that X1×X2

X ′2 is the relative Proj of
⊕

n≥0 g
∗In2 . Because g is flat the map

g∗In2 → OX1 is injective with image In1 . Thus we see that X1 ×X2 X
′
2 = X ′1. �

Lemma 29.4.02OS Let X be a scheme. Let Z ⊂ X be a closed subscheme. The blowing
up b : X ′ → X of Z in X has the following properties:

(1) b|b−1(X\Z) : b−1(X \ Z)→ X \ Z is an isomorphism,

(2) the exceptional divisor E = b−1(Z) is an effective Cartier divisor on X ′,
(3) there is a canonical isomorphism OX′(−1) = OX′(E)

Proof. As blowing up commutes with restrictions to open subschemes (Lemma
29.3) the first statement just means that X ′ = X if Z = ∅. In this case we are
blowing up in the ideal sheaf I = OX and the result follows from Constructions,
Example 8.14.

The second statement is local on X, hence we may assume X affine. Say X =
Spec(A) and Z = Spec(A/I). By Lemma 29.2 we see that X ′ is covered by the
spectra of the affine blowup algebras A′ = A[ Ia ]. Then IA′ = aA′ and a maps to a
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nonzerodivisor in A′ according to Algebra, Lemma 69.2. This proves the lemma as
the inverse image of Z in Spec(A′) corresponds to Spec(A′/IA′) ⊂ Spec(A′).

Consider the canonical map ψuniv,1 : b∗I → OX′(1), see discussion following Con-
structions, Definition 16.7. We claim that this factors through an isomorphism
IE → OX′(1) (which proves the final assertion). Namely, on the affine open corre-
sponding to the blowup algebra A′ = A[ Ia ] mentioned above ψuniv,1 corresponds to
the A′-module map

I ⊗A A′ −→
((⊕

d≥0
Id
)
a(1)

)
1

where a(1) is as in Algebra, Definition 69.1. We omit the verification that this is
the map I ⊗A A′ → IA′ = aA′. �

Lemma 29.5 (Universal property blowing up).0806 Let X be a scheme. Let Z ⊂ X be
a closed subscheme. Let C be the full subcategory of (Sch/X) consisting of Y → X
such that the inverse image of Z is an effective Cartier divisor on Y . Then the
blowing up b : X ′ → X of Z in X is a final object of C.

Proof. We see that b : X ′ → X is an object of C according to Lemma 29.4. Let
f : Y → X be an object of C. We have to show there exists a unique morphism
Y → X ′ over X. Let D = f−1(Z). Let I ⊂ OX be the ideal sheaf of Z and
let ID be the ideal sheaf of D. Then f∗I → ID is a surjection to an invertible
OY -module. This extends to a map ψ :

⊕
f∗Id →

⊕
IdD of graded OY -algebras.

(We observe that IdD = I⊗dD as D is an effective Cartier divisor.) By the material in
Constructions, Section 16 the triple (1, f : Y → X,ψ) defines a morphism Y → X ′

over X. The restriction

Y \D −→ X ′ \ b−1(Z) = X \ Z
is unique. The open Y \D is scheme theoretically dense in Y according to Lemma
13.4. Thus the morphism Y → X ′ is unique by Morphisms, Lemma 7.10 (also b is
separated by Constructions, Lemma 16.9). �

Lemma 29.6.0BFL Let b : X ′ → X be the blowing up of the scheme X along a closed
subscheme Z. Let U = Spec(A) be an affine open of X and let I ⊂ A be the ideal
corresponding to Z ∩U . Let a ∈ I and let x′ ∈ X ′ be a point mapping to a point of
U . Then x′ is a point of the affine open U ′ = Spec(A[ Ia ]) if and only if the image
of a in OX′,x′ cuts out the exceptional divisor.

Proof. Since the exceptional divisor over U ′ is cut out by the image of a in A′ =
A[ Ia ] one direction is clear. Conversely, assume that the image of a in OX′,x′ cuts
out E. Since every element of I maps to an element of the ideal defining E over
b−1(U) we see that elements of I become divisible by a in OX′,x′ . Thus for f ∈ In
we can write f = ψ(f)an for some ψ(f) ∈ OX′,x′ . Observe that since a maps to a
nonzerodivisor of OX′,x′ the element ψ(f) is uniquely characterized by this. Then
we define

A′ −→ OX′,x′ , f/an 7−→ ψ(f)

Here we use the description of blowup algebras given following Algebra, Definition
29.1. The uniqueness mentioned above shows that this is an A-algebra homomor-
phism. This gives a morphism Spec(OX′,x”) → Spec(A′) = U ′. By the universal
property of blowing up (Lemma 29.5) this is a morphism over X ′, which of course
implies that x′ ∈ U ′. �
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Lemma 29.7.0807 Let X be a scheme. Let Z ⊂ X be an effective Cartier divisor.
The blowup of X in Z is the identity morphism of X.

Proof. Immediate from the universal property of blowups (Lemma 29.5). �

Lemma 29.8.0808 Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals.
If X is reduced, then the blow up X ′ of X in I is reduced.

Proof. Combine Lemma 29.2 with Algebra, Lemma 69.6. �

Lemma 29.9.02ND Let X be a scheme. Let I ⊂ OX be a nonzero quasi-coherent sheaf
of ideals. If X is integral, then the blow up X ′ of X in I is integral.

Proof. Combine Lemma 29.2 with Algebra, Lemma 69.7. �

Lemma 29.10.0BFM Let X be a scheme. Let Z ⊂ X be a closed subscheme. Let
b : X ′ → X be the blowing up of X along Z. Then b induces an bijective map from
the set of generic points of irreducible components of X ′ to the set of generic points
of irreducible components of X which are not in Z.

Proof. The exceptional divisor E ⊂ X ′ is an effective Cartier divisor (Lemma 29.4)
hence is nowhere dense in X ′ (Lemma 13.4). On the other hand, X ′ \ E → X \ Z
is an isomorphism. The lemma follows. �

Lemma 29.11.0809 Let X be a scheme. Let b : X ′ → X be a blow up of X in a closed

subscheme. For any effective Cartier divisor D on X the pullback b−1D is defined
(see Definition 13.12).

Proof. By Lemmas 29.2 and 13.2 this reduces to the following algebra fact: Let
A be a ring, I ⊂ A an ideal, a ∈ I, and x ∈ A a nonzerodivisor. Then the image
of x in A[ Ia ] is a nonzerodivisor. Namely, suppose that x(y/an) = 0 in A[ Ia ]. Then
amxy = 0 in A for some m. Hence amy = 0 as x is a nonzerodivisor. Whence y/an

is zero in A[ Ia ] as desired. �

Lemma 29.12.080A Let X be a scheme. Let I ⊂ OX and J be quasi-coherent sheaves
of ideals. Let b : X ′ → X be the blowing up of X in I. Let b′ : X ′′ → X ′ be the
blowing up of X ′ in b−1JOX′ . Then X ′′ → X is canonically isomorphic to the
blowing up of X in IJ .

Proof. Let E ⊂ X ′ be the exceptional divisor of b which is an effective Cartier
divisor by Lemma 29.4. Then (b′)−1E is an effective Cartier divisor on X ′′ by
Lemma 29.11. Let E′ ⊂ X ′′ be the exceptional divisor of b′ (also an effective
Cartier divisor). Consider the effective Cartier divisor E′′ = E′ + (b′)−1E. By
construction the ideal of E′′ is (b ◦ b′)−1I(b ◦ b′)−1JOX′′ . Hence according to
Lemma 29.5 there is a canonical morphism from X ′′ to the blowup c : Y → X of
X in IJ . Conversely, as IJ pulls back to an invertible ideal we see that c−1IOY
defines an effective Cartier divisor, see Lemma 13.9. Thus a morphism c′ : Y → X ′

over X by Lemma 29.5. Then (c′)−1b−1JOY = c−1JOY which also defines an
effective Cartier divisor. Thus a morphism c′′ : Y → X ′′ over X ′. We omit the
verification that this morphism is inverse to the morphism X ′′ → Y constructed
earlier. �

Lemma 29.13.02NS Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. Let b : X ′ → X be the blowing up of X in the ideal sheaf I. If I is of finite
type, then
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(1) b : X ′ → X is a projective morphism, and
(2) OX′(1) is a b-relatively ample invertible sheaf.

Proof. The surjection of graded OX -algebras

Sym∗OX (I) −→
⊕

d≥0
Id

defines via Constructions, Lemma 18.5 a closed immersion

X ′ = Proj
X

(
⊕

d≥0
Id) −→ P(I).

Hence b is projective, see Morphisms, Definition 41.1. The second statement fol-
lows for example from the characterization of relatively ample invertible sheaves in
Morphisms, Lemma 35.4. Some details omitted. �

Lemma 29.14.080B Let X be a quasi-compact and quasi-separated scheme. Let Z ⊂ X
be a closed subscheme of finite presentation. Let b : X ′ → X be the blowing up with
center Z. Let Z ′ ⊂ X ′ be a closed subscheme of finite presentation. Let X ′′ → X ′

be the blowing up with center Z ′. There exists a closed subscheme Y ⊂ X of finite
presentation, such that

(1) Y = Z ∪ b(Z ′) set theoretically, and
(2) the composition X ′′ → X is isomorphic to the blowing up of X in Y .

Proof. The condition that Z → X is of finite presentation means that Z is cut out
by a finite type quasi-coherent sheaf of ideals I ⊂ OX , see Morphisms, Lemma 20.7.
Write A =

⊕
n≥0 In so that X ′ = Proj(A). Note that X \ Z is a quasi-compact

open of X by Properties, Lemma 24.1. Since b−1(X \Z)→ X \Z is an isomorphism
(Lemma 29.4) the same result shows that b−1(X \Z) \Z ′ is quasi-compact open in
X ′. Hence U = X \ (Z ∪ b(Z ′)) is quasi-compact open in X. By Lemma 28.5 there
exist a d > 0 and a finite type OX -submodule F ⊂ Id such that Z ′ = Proj(A/FA)

and such that the support of Id/F is contained in X \ U .

Since F ⊂ Id is an OX -submodule we may think of F ⊂ Id ⊂ OX as a finite type
quasi-coherent sheaf of ideals on X. Let’s denote this J ⊂ OX to prevent confusion.
Since Id/J and O/Id are supported on X \ U we see that V (J ) is contained in
X \ U . Conversely, as J ⊂ Id we see that Z ⊂ V (J ). Over X \ Z ∼= X ′ \ b−1(Z)
the sheaf of ideals J cuts out Z ′ (see displayed formula below). Hence V (J ) equals
Z ∪ b(Z ′). It follows that also V (IJ ) = Z ∪ b(Z ′) set theoretically. Moreover,
IJ is an ideal of finite type as a product of two such. We claim that X ′′ → X is
isomorphic to the blowing up of X in IJ which finishes the proof of the lemma by
setting Y = V (IJ ).

First, recall that the blow up of X in IJ is the same as the blow up of X ′ in
b−1JOX′ , see Lemma 29.12. Hence it suffices to show that the blow up of X ′ in
b−1JOX′ agrees with the blow up of X ′ in Z ′. We will show that

b−1JOX′ = IdEIZ′

as ideal sheaves on X ′′. This will prove what we want as IdE cuts out the effective
Cartier divisor dE and we can use Lemmas 29.7 and 29.12.

To see the displayed equality of the ideals we may work locally. With notation A,
I, a ∈ I as in Lemma 29.2 we see that F corresponds to an R-submodule M ⊂ Id

mapping isomorphically to an ideal J ⊂ R. The condition Z ′ = Proj(A/FA)
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means that Z ′∩Spec(A[ Ia ]) is cut out by the ideal generated by the elements m/ad,
m ∈ M . Say the element m ∈ M corresponds to the function f ∈ J . Then in the
affine blowup algebra A′ = A[ Ia ] we see that f = (adm)/ad = ad(m/ad). Thus the
equality holds. �

30. Strict transform

080C In this section we briefly discuss strict transform under blowing up. Let S be a
scheme and let Z ⊂ S be a closed subscheme. Let b : S′ → S be the blowing up of
S in Z and denote E ⊂ S′ the exceptional divisor E = b−1Z. In the following we
will often consider a scheme X over S and form the cartesian diagram

pr−1S′ E
//

��

X ×S S′ prX
//

prS′

��

X

f

��
E // S′ // S

Since E is an effective Cartier divisor (Lemma 29.4) we see that pr−1S′ E ⊂ X ×S S′
is locally principal (Lemma 13.11). Thus the complement of pr−1S′ E in X ×S S′ is
retrocompact (Lemma 13.3). Consequently, for a quasi-coherent OX×SS′ -module
G the subsheaf of sections supported on pr−1S′ E is a quasi-coherent submodule,
see Properties, Lemma 24.5. If G is a quasi-coherent sheaf of algebras, e.g., G =
OX×SS′ , then this subsheaf is an ideal of G.

Definition 30.1.080D With Z ⊂ S and f : X → S as above.

(1) Given a quasi-coherent OX -module F the strict transform of F with respect
to the blowup of S in Z is the quotient F ′ of pr∗XF by the submodule of

sections supported on pr−1S′ E.
(2) The strict transform of X is the closed subscheme X ′ ⊂ X ×S S′ cut out

by the quasi-coherent ideal of sections of OX×SS′ supported on pr−1S′ E.

Note that taking the strict transform along a blowup depends on the closed sub-
scheme used for the blowup (and not just on the morphism S′ → S). This notion
is often used for closed subschemes of S. It turns out that the strict transform of
X is a blowup of X.

Lemma 30.2.080E In the situation of Definition 30.1.

(1) The strict transform X ′ of X is the blowup of X in the closed subscheme
f−1Z of X.

(2) For a quasi-coherent OX-module F the strict transform F ′ is canonically
isomorphic to the pushforward along X ′ → X ×S S′ of the strict transform
of F relative to the blowing up X ′ → X.

Proof. Let X ′′ → X be the blowup of X in f−1Z. By the universal property of
blowing up (Lemma 29.5) there exists a commutative diagram

X ′′ //

��

X

��
S′ // S

whence a morphism X ′′ → X ×S S′. Thus the first assertion is that this morphism
is a closed immersion with image X ′. The question is local on X. Thus we may
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assume X and S are affine. Say that S = Spec(A), X = Spec(B), and Z is cut
out by the ideal I ⊂ A. Set J = IB. The map B ⊗A

⊕
n≥0 I

n →
⊕

n≥0 J
n defines

a closed immersion X ′′ → X ×S S′, see Constructions, Lemmas 11.6 and 11.5.
We omit the verification that this morphism is the same as the one constructed
above from the universal property. Pick a ∈ I corresponding to the affine open
Spec(A[ Ia ]) ⊂ S′, see Lemma 29.2. The inverse image of Spec(A[ Ia ]) in the strict
transform X ′ of X is the spectrum of

B′ = (B ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 24.5. On the other hand, letting b ∈ J be the image of
a we see that Spec(B[Jb ]) is the inverse image of Spec(A[ Ia ]) in X ′′. By Alge-

bra, Lemma 69.3 the open Spec(B[Jb ]) maps isomorphically to the open subscheme

pr−1S′ (Spec(A[ Ia ])) of X ′. Thus X ′′ → X ′ is an isomorphism.

In the notation above, let F correspond to the B-module N . The strict transform
of F corresponds to the B ⊗A A[ Ia ]-module

N ′ = (N ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 24.5. The strict transform of F relative to the blowup of X
in f−1Z corresponds to the B[Jb ]-module N ⊗B B[Jb ]/b-power-torsion. In exactly
the same way as above one proves that these two modules are isomorphic. Details
omitted. �

Lemma 30.3.080F In the situation of Definition 30.1.

(1) If X is flat over S at all points lying over Z, then the strict transform of
X is equal to the base change X ×S S′.

(2) Let F be a quasi-coherent OX-module. If F is flat over S at all points lying
over Z, then the strict transform F ′ of F is equal to the pullback pr∗XF .

Proof. We will prove part (2) as it implies part (1) by the definition of the strict
transform of a scheme over S. The question is local on X. Thus we may assume
that S = Spec(A), X = Spec(B), and that F corresponds to the B-module N .
Then F ′ over the open Spec(B ⊗A A[ Ia ]) of X ×S S′ corresponds to the module

N ′ = (N ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 24.5. Thus we have to show that the a-power-torsion of
N ⊗AA[ Ia ] is zero. Let y ∈ N ⊗AA[ Ia ] with any = 0. If q ⊂ B is a prime and a 6∈ q,

then y maps to zero in (N ⊗A A[ Ia ])q. on the other hand, if a ∈ q, then Nq is a flat

A-module and we see that Nq ⊗A A[ Ia ] = (N ⊗A A[ Ia ])q has no a-power torsion (as

A[ Ia ] doesn’t). Hence y maps to zero in this localization as well. We conclude that
y is zero by Algebra, Lemma 23.1. �

Lemma 30.4.080G Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let b : S′ → S
be the blowing up of Z in S. Let g : X → Y be an affine morphism of schemes over
S. Let F be a quasi-coherent sheaf on X. Let g′ : X ×S S′ → Y ×S S′ be the base
change of g. Let F ′ be the strict transform of F relative to b. Then g′∗F ′ is the
strict transform of g∗F .

Proof. Observe that g′∗pr∗XF = pr∗Y g∗F by Cohomology of Schemes, Lemma 5.1.
Let K ⊂ pr∗XF be the subsheaf of sections supported in the inverse image of Z
in X ×S S′. By Properties, Lemma 24.7 the pushforward g′∗K is the subsheaf of
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sections of pr∗Y g∗F supported in the inverse image of Z in Y ×S S′. As g′ is affine
(Morphisms, Lemma 11.8) we see that g′∗ is exact, hence we conclude. �

Lemma 30.5.080H Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let D ⊂ S
be an effective Cartier divisor. Let Z ′ ⊂ S be the closed subscheme cut out by the
product of the ideal sheaves of Z and D. Let S′ → S be the blowup of S in Z.

(1) The blowup of S in Z ′ is isomorphic to S′ → S.
(2) Let f : X → S be a morphism of schemes and let F be a quasi-coherent
OX-module. If F has no nonzero local sections supported in f−1D, then
the strict transform of F relative to the blowing up in Z agrees with the
strict transform of F relative to the blowing up of S in Z ′.

Proof. The first statement follows on combining Lemmas 29.12 and 29.7. Using
Lemma 29.2 the second statement translates into the following algebra problem.
Let A be a ring, I ⊂ A an ideal, x ∈ A a nonzerodivisor, and a ∈ I. Let M be an
A-module whose x-torsion is zero. To show: the a-power torsion in M ⊗A A[ Ia ] is
equal to the xa-power torsion. The reason for this is that the kernel and cokernel of
the map A → A[ Ia ] is a-power torsion, so this map becomes an isomorphism after

inverting a. Hence the kernel and cokernel of M →M ⊗AA[ Ia ] are a-power torsion
too. This implies the result. �

Lemma 30.6.080I Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let b : S′ → S
be the blowing up with center Z. Let Z ′ ⊂ S′ be a closed subscheme. Let S′′ → S′

be the blowing up with center Z ′. Let Y ⊂ S be a closed subscheme such that
Y = Z ∪ b(Z ′) set theoretically and the composition S′′ → S is isomorphic to
the blowing up of S in Y . In this situation, given any scheme X over S and
F ∈ QCoh(OX) we have

(1) the strict transform of F with respect to the blowing up of S in Y is equal to
the strict transform with respect to the blowup S′′ → S′ in Z ′ of the strict
transform of F with respect to the blowup S′ → S of S in Z, and

(2) the strict transform of X with respect to the blowing up of S in Y is equal
to the strict transform with respect to the blowup S′′ → S′ in Z ′ of the strict
transform of X with respect to the blowup S′ → S of S in Z.

Proof. Let F ′ be the strict transform of F with respect to the blowup S′ → S of
S in Z. Let F ′′ be the strict transform of F ′ with respect to the blowup S′′ → S′

of S′ in Z ′. Let G be the strict transform of F with respect to the blowup S′′ → S
of S in Y . We also label the morphisms

X ×S S′′ q
//

f ′′

��

X ×S S′ p
//

f ′

��

X

f

��
S′′ // S′ // S

By definition there is a surjection p∗F → F ′ and a surjection q∗F ′ → F ′′ which
combine by right exactness of q∗ to a surjection (p ◦ q)∗F → F ′′. Also we have the
surjection (p ◦ q)∗F → G. Thus it suffices to prove that these two surjections have
the same kernel.

The kernel of the surjection p∗F → F ′ is supported on (f ◦ p)−1Z, so this map
is an isomorphism at points in the complement. Hence the kernel of q∗p∗F →
q∗F ′ is supported on (f ◦ p ◦ q)−1Z. The kernel of q∗F ′ → F ′′ is supported on
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(f ′ ◦ q)−1Z ′. Combined we see that the kernel of (p ◦ q)∗F → F ′′ is supported
on (f ◦ p ◦ q)−1Z ∪ (f ′ ◦ q)−1Z ′ = (f ◦ p ◦ q)−1Y . By construction of G we see
that we obtain a factorization (p ◦ q)∗F → F ′′ → G. To finish the proof it suffices
to show that F ′′ has no nonzero (local) sections supported on (f ◦ p ◦ q)−1(Y ) =
(f ◦p◦q)−1Z∪(f ′◦q)−1Z ′. This follows from Lemma 30.5 applied to F ′ on X×SS′
over S′, the closed subscheme Z ′ and the effective Cartier divisor b−1Z. �

Lemma 30.7.080W In the situation of Definition 30.1. Suppose that

0→ F1 → F2 → F3 → 0

is an exact sequence of quasi-coherent sheaves on X which remains exact after any
base change T → S. Then the strict transforms of F ′i relative to any blowup S′ → S
form a short exact sequence 0→ F ′1 → F ′2 → F ′3 → 0 too.

Proof. We may localize on S and X and assume both are affine. Then we may
push Fi to S, see Lemma 30.4. We may assume that our blowup is the morphism
1 : S → S associated to an effective Cartier divisor D ⊂ S. Then the translation
into algebra is the following: Suppose that A is a ring and 0→M1 →M2 →M3 →
0 is a universally exact sequence of A-modules. Let a ∈ A. Then the sequence

0→M1/a-power torsion→M2/a-power torsion→M3/a-power torsion→ 0

is exact too. Namely, surjectivity of the last map and injectivity of the first map are
immediate. The problem is exactness in the middle. Suppose that x ∈ M2 maps
to zero in M3/a-power torsion. Then y = anx ∈ M1 for some n. Then y maps to
zero in M2/a

nM2. Since M1 → M2 is universally injective we see that y maps to
zero in M1/a

nM1. Thus y = anz for some z ∈ M1. Thus an(x − y) = 0. Hence y
maps to the class of x in M2/a-power torsion as desired. �

Lemma 30.8.0CZP Let S be a scheme. Let F be a finite type quasi-coherent OS-
module. Let Zk ⊂ S be the closed subscheme cut out by Fitk(F), see Section 9. Let
S′ → S be the blowup of S in Zk and let F ′ be the strict transform of F . Then F ′
can locally be generated by ≤ k sections.

Proof. Recall that F ′ can locally be generated by ≤ k sections if and only if
Fitk(F ′) = OS′ , see Lemma 9.4. Hence this lemma is a translation of More on
Algebra, Lemma 24.3. �

Lemma 30.9.0CZQ Let S be a scheme. Let F be a finite type quasi-coherent OS-
module. Let Zk ⊂ S be the closed subscheme cut out by Fitk(F), see Section 9.
Assume that F is locally free of rank k on S \ Zk. Let S′ → S be the blowup of S
in Zk and let F ′ be the strict transform of F . Then F ′ is locally free of rank k.

Proof. Translation of More on Algebra, Lemma 24.4. �

31. Admissible blowups

080J To have a bit more control over our blowups we introduce the following standard
terminology.

Definition 31.1.080K Let X be a scheme. Let U ⊂ X be an open subscheme. A
morphism X ′ → X is called a U -admissible blowup if there exists a closed immersion
Z → X of finite presentation with Z disjoint from U such that X ′ is isomorphic to
the blow up of X in Z.
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We recall that Z → X is of finite presentation if and only if the ideal sheaf IZ ⊂ OX
is of finite type, see Morphisms, Lemma 20.7. In particular, a U -admissible blowup
is a projective morphism, see Lemma 29.13. Note that there can be multiple centers
which give rise to the same morphism. Hence the requirement is just the existence
of some center disjoint from U which produces X ′. Finally, as the morphism b :
X ′ → X is an isomorphism over U (see Lemma 29.4) we will often abuse notation
and think of U as an open subscheme of X ′ as well.

Lemma 31.2.080L Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open subscheme. Let b : X ′ → X be a U -admissible blowup.
Let X ′′ → X ′ be a U -admissible blowup. Then the composition X ′′ → X is a
U -admissible blowup.

Proof. Immediate from the more precise Lemma 29.14. �

Lemma 31.3.080M Let X be a quasi-compact and quasi-separated scheme. Let U, V ⊂
X be quasi-compact open subschemes. Let b : V ′ → V be a U∩V -admissible blowup.
Then there exists a U -admissible blowup X ′ → X whose restriction to V is V ′.

Proof. Let I ⊂ OV be the finite type quasi-coherent sheaf of ideals such that V (I)
is disjoint from U ∩V and such that V ′ is isomorphic to the blow up of V in I. Let
I ′ ⊂ OU∪V be the quasi-coherent sheaf of ideals whose restriction to U is OU and
whose restriction to V is I (see Sheaves, Section 33). By Properties, Lemma 22.2
there exists a finite type quasi-coherent sheaf of ideals J ⊂ OX whose restriction
to U ∪ V is I ′. The lemma follows. �

Lemma 31.4.080N Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open subscheme. Let bi : Xi → X, i = 1, . . . , n be U -admissible
blowups. There exists a U -admissible blowup b : X ′ → X such that (a) b factors
as X ′ → Xi → X for i = 1, . . . , n and (b) each of the morphisms X ′ → Xi is a
U -admissible blowup.

Proof. Let Ii ⊂ OX be the finite type quasi-coherent sheaf of ideals such that
V (Ii) is disjoint from U and such that Xi is isomorphic to the blow up of X in Ii.
Set I = I1 · . . . · In and let X ′ be the blowup of X in I. Then X ′ → X factors
through bi by Lemma 29.12. �

Lemma 31.5.080P Let X be a quasi-compact and quasi-separated scheme. Let U, V be
quasi-compact disjoint open subschemes of X. Then there exist a U ∪V -admissible
blowup b : X ′ → X such that X ′ is a disjoint union of open subschemes X ′ =
X ′1 qX ′2 with b−1(U) ⊂ X ′1 and b−1(V ) ⊂ X ′2.

Proof. Choose a finite type quasi-coherent sheaf of ideals I, resp. J such that
X \U = V (I), resp. X \V = V (J ), see Properties, Lemma 24.1. Then V (IJ ) = X
set theoretically, hence IJ is a locally nilpotent sheaf of ideals. Since I and J are
of finite type and X is quasi-compact there exists an n > 0 such that InJ n = 0.
We may and do replace I by In and J by J n. Whence IJ = 0. Let b : X ′ → X
be the blowing up in I + J . This is U ∪ V -admissible as V (I + J ) = X \ U ∪ V .
We will show that X ′ is a disjoint union of open subschemes X ′ = X ′1 qX ′2 such
that b−1I|X′2 = 0 and b−1J |X′1 = 0 which will prove the lemma.

We will use the description of the blowing up in Lemma 29.2. Suppose that U =
Spec(A) ⊂ X is an affine open such that I|U , resp. J |U corresponds to the finitely
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generated ideal I ⊂ A, resp. J ⊂ A. Then

b−1(U) = Proj(A⊕ (I + J)⊕ (I + J)2 ⊕ . . .)

This is covered by the affine open subsets A[ I+Jx ] and A[ I+Jy ] with x ∈ I and y ∈ J .

Since x ∈ I is a nonzerodivisor in A[ I+Jx ] and IJ = 0 we see that JA[ I+Jx ] = 0.

Since y ∈ J is a nonzerodivisor in A[ I+Jy ] and IJ = 0 we see that IA[ I+Jy ] = 0.

Moreover,

Spec(A[ I+Jx ]) ∩ Spec(A[ I+Jy ]) = Spec(A[ I+Jxy ]) = ∅

because xy is both a nonzerodivisor and zero. Thus b−1(U) is the disjoint union of
the open subscheme U1 defined as the union of the standard opens Spec(A[ I+Jx ])
for x ∈ I and the open subscheme U2 which is the union of the affine opens
Spec(A[ I+Jy ]) for y ∈ J . We have seen that b−1IOX′ restricts to zero on U2

and b−1IOX′ restricts to zero on U1. We omit the verification that these open
subschemes glue to global open subschemes X ′1 and X ′2. �

32. Modifications

0AYN In this section we will collect results of the type: after a modification such and
such are true. We will later see that a modification can be dominated by a blow
up (More on Flatness, Lemma 31.4).

Lemma 32.1.0AYP Let X be an integral scheme. Let E be a finite locally free OX-
module. There exists a modification f : X ′ → X such that f∗E has a filtration
whose successive quotients are invertible OX′-modules.

Proof. We prove this by induction on the rank r of E . If r = 1 or r = 0 the lemma
is obvious. Assume r > 1. Let P = P(E) with structure morphism π : P → X, see
Constructions, Section 21. Then π is proper (Lemma 27.4). There is a canonical
surjection

π∗E → OP (1)

whose kernel is finite locally free of rank r−1. Choose a nonempty open subscheme
U ⊂ X such that E|U ∼= O⊕rU . Then PU = π−1(U) is isomorphic to Pr−1

U . In
particular, there exists a section s : U → PU of π. Let X ′ ⊂ P be the scheme
theoretic image of the morphism U → PU → P . Then X ′ is integral (Morphisms,
Lemma 6.7), the morphism f = π|X′ : X ′ → X is proper (Morphisms, Lemmas
39.6 and 39.4), and f−1(U) → U is an isomorphism. Hence f is a modification
(Morphisms, Definition 48.11). By construction the pullback f∗E has a two step
filtration whose quotient is invertible because it is equal to OP (1)|X′ and whose
sub E ′ is locally free of rank r − 1. By induction we can find a modification
g : X ′′ → X ′ such that g∗E ′ has a filtration as in the statement of the lemma.
Thus f ◦ g : X ′′ → X is the required modification. �

Lemma 32.2.0C4V Let S be a scheme. Let X, Y be schemes over S. Assume X is
Noetherian and Y is proper over S. Given an S-rational map f : U → Y from X
to Y there exists a morphism p : X ′ → X and an S-morphism f ′ : X ′ → Y such
that

(1) p is proper and p−1(U)→ U is an isomorphism,
(2) f ′|p−1(U) is equal to f ◦ p|p−1(U).
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Proof. Denote j : U → X the inclusion morphism. Let X ′ ⊂ Y ×S X be the
scheme theoretic image of (f, j) : U → Y ×S X (Morphisms, Definition 6.2). The
projection g : Y ×S X → X is proper (Morphisms, Lemma 39.5). The composition
p : X ′ → X of X ′ → Y ×S X and g is proper (Morphisms, Lemmas 39.6 and
39.4). Since g is separated and U ⊂ X is retrocompact (as X is Noetherian) we
conclude that p−1(U)→ U is an isomorphism by Morphisms, Lemma 6.8. On the
other hand, the composition f ′ : X ′ → Y of X ′ → Y ×S X and the projection
Y ×S X → Y agrees with f on p−1(U). �
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