DIVIDED POWER ALGEBRA

09PD

Contents

1. Introduction 1
2. Divided powers 1
3. Divided power rings 5
4. Extending divided powers 6
5. Divided power polynomial algebras 8
6. Tate resolutions 11
7. Application to complete intersections 16
8. Local complete intersection rings 18
9. Local complete intersection maps 22
10. Smooth ring maps and diagonals 25
11. Other chapters 26
References 28

1. Introduction

09PE In this chapter we talk about divided power algebras and what you can do with them. A reference is the book [Ber74].

2. Divided powers

07GK In this section we collect some results on divided power rings. We will use the convention $0! = 1$ (as empty products should give 1).

Definition 2.1.

Let A be a ring. Let I be an ideal of A. A collection of maps $\gamma_n : I \to I$, $n > 0$ is called a divided power structure on I if for all $n \geq 0$, $m > 0$, $x, y \in I$, and $a \in A$ we have

1. $\gamma_1(x) = x$, we also set $\gamma_0(x) = 1$,
2. $\gamma_n(x)\gamma_m(x) = \frac{(n+m)!}{n!m!}\gamma_{n+m}(x)$,
3. $\gamma_n(ax) = a^n\gamma_n(x)$,
4. $\gamma_n(x + y) = \sum_{i=0}^{n} \binom{n}{i} \gamma_i(x)\gamma_{n-i}(y)$,
5. $\gamma_n(\gamma_m(x)) = \frac{(nm)!}{n!(m!)^n}\gamma_{nm}(x)$.

Note that the rational numbers $\frac{(n+m)!}{n!m!}$ and $\frac{(nm)!}{n!(m!)^n}$ occurring in the definition are in fact integers; the first is the number of ways to choose n out of $n + m$ and the second counts the number of ways to divide a group of nm objects into n groups of m. We make some remarks about the definition which show that $\gamma_n(x)$ is a replacement for $x^n/n!$ in I.

This is a chapter of the Stacks Project, version df9f4238, compiled on Sep 01, 2019.
Lemma 2.2. Let A be a ring. Let I be an ideal of A.

(1) If γ is a divided power structure on I, then $n! \gamma_n(x) = x^n$ for $n \geq 1$, $x \in I$.

Assume A is torsion free as a \mathbb{Z}-module.

(2) A divided power structure on I, if it exists, is unique.

(3) If $\gamma_n : I \to I$ are maps then

\[\gamma \text{ is a divided power structure} \iff n! \gamma_n(x) = x^n \quad \forall x \in I, n \geq 1. \]

(4) The ideal I has a divided power structure if and only if there exists a set of generators x_i of I as an ideal such that for all $n \geq 1$ we have $x_i^n \in (n!)I$.

Proof. Proof of (1). If γ is a divided power structure, then condition (2) (applied to 1 and $n-1$ instead of n and m) implies that $n \gamma_n(x) = \gamma_1(x) \gamma_{n-1}(x)$. Hence by induction and condition (1) we get $n! \gamma_n(x) = x^n$.

Assume A is torsion free as a \mathbb{Z}-module. Proof of (2). This is clear from (1).

Proof of (3). Assume that $n! \gamma_n(x) = x^n$ for all $x \in I$ and $n \geq 1$. Since $A \subseteq A \otimes \mathbb{Z} \mathbb{Q}$ it suffices to prove the axioms (1) – (5) of Definition 2.1 in case A is a \mathbb{Q}-algebra. In this case $\gamma_n(x) = x^n / n!$ and it is straightforward to verify (1) – (5); for example, (4) corresponds to the binomial formula

\[(x + y)^n = \sum_{i=0}^{n} \frac{n!}{i!(n-i)!} x^i y^{n-i} \]

We encourage the reader to do the verifications to make sure that we have the coefficients correct.

Proof of (4). Assume we have generators x_i of I as an ideal such that $x_i^n \in (n!)I$ for all $n \geq 1$. We claim that for all $x \in I$ we have $x^n \in (n!)I$. If the claim holds then we can set $\gamma_n(x) = x^n / n!$ which is a divided power structure by (3). To prove the claim we note that it holds for $x = ax_i$. Hence we see that the claim holds for a set of generators of I as an abelian group. By induction on the length of an expression in terms of these, it suffices to prove the claim for $x + y$ if it holds for x and y. This follows immediately from the binomial theorem.

Example 2.3. Let p be a prime number. Let A be a ring such that every integer n not divisible by p is invertible, i.e., A is a $\mathbb{Z}(p)$-algebra. Then $I = pA$ has a canonical divided power structure. Namely, given $x = pa \in I$ we set

\[\gamma_n(x) = \frac{p^n}{n!} a^n \]

The reader verifies immediately that $p^n / n! \in p\mathbb{Z}(p)$ for $n \geq 1$ (for instance, this can be derived from the fact that the exponent of p in the prime factorization of $n!$ is $\lfloor n/p \rfloor + \lfloor n/p^2 \rfloor + \lfloor n/p^3 \rfloor + \ldots$), so that the definition makes sense and gives us a sequence of maps $\gamma_n : I \to I$. It is a straightforward exercise to verify that conditions (1) – (5) of Definition 2.1 are satisfied. Alternatively, it is clear that the definition works for $A_0 = \mathbb{Z}(p)$ and then the result follows from Lemma 4.2.

We notice that $\gamma_n(0) = 0$ for any ideal I of A and any divided power structure γ on I. (This follows from axiom (3) in Definition 2.1 applied to $a = 0$.)

\[\gamma_n(0) = 0 \]

\[\text{for any ideal } I \text{ of } A \text{ and any divided power structure } \gamma \text{ on } I. (\text{This follows from axiom (3) in Definition 2.1 applied to } a = 0.) \]
Lemma 2.4. Let A be a ring. Let I be an ideal of A. Let $\gamma_n : I \to I$, $n \geq 1$ be a sequence of maps. Assume

(a) $(1), (3), \text{and } (4)$ of Definition 2.1 hold for all $x, y \in I$, and
(b) properties (2) and (5) hold for x in some set of generators of I as an ideal.

Then γ is a divided power structure on I.

Proof. The numbers $(1), (2), (3), (4), (5)$ in this proof refer to the conditions listed in Definition 2.1. Applying (3) we see that if (2) and (5) hold for x then (2) and (5) hold for ax for all $a \in A$. Hence we see (b) implies (2) and (5) hold for a set of generators of I as an abelian group. Hence, by induction of the length of an expression in terms of these it suffices to prove that, given $x, y \in I$ such that (2) and (5) hold for x and y, then (2) and (5) hold for $x + y$.

Proof of (2) for $x + y$. By (4) we have

$$
\gamma_n(x + y)\gamma_m(x + y) = \sum_{i+j=n, \ k+l=m} \gamma_i(x)\gamma_k(x)\gamma_j(y)\gamma_l(y)
$$

Using (2) for x and y this equals

$$
\sum \frac{(i+k)!(j+l)!}{i!k!j!l!} \gamma_{i+k}(x)\gamma_{j+l}(y)
$$

Comparing this with the expansion

$$
\gamma_{n+m}(x + y) = \sum \gamma_a(x)\gamma_b(y)
$$

we see that we have to prove that given $a + b = n + m$ we have

$$
\sum_{i+k=a, \ j+l=b, \ i+j=n, \ k+l=m} \frac{(i+k)!(j+l)!}{i!k!j!l!} = \frac{(n+m)!}{n!m!}.
$$

Instead of arguing this directly, we note that the result is true for the ideal $I = (x, y)$ in the polynomial ring $\mathbb{Q}[x, y]$ because $\gamma_n(f) = f^n/n!$, $f \in I$ defines a divided power structure on I. Hence the equality of rational numbers above is true.

Proof of (5) for $x + y$ given that $(1) - (4)$ hold and that (5) holds for x and y. We will again reduce the proof to an equality of rational numbers. Namely, using (4) we can write $\gamma_n(\gamma_m(x + y)) = \gamma_n(\sum \gamma_i(x)\gamma_j(y))$. Using (4) we can write $\gamma_n(\gamma_m(x + y))$ as a sum of terms which are products of factors of the form $\gamma_k(\gamma_i(x)\gamma_j(y))$. If $i > 0$ then

$$
\gamma_k(\gamma_i(x)\gamma_j(y)) = \gamma_j(y)^k\gamma_k(\gamma_i(x))
$$

$$
= \frac{(ki)!}{k!(i!)^k} \gamma_j(y)^k\gamma_{ki}(x)
$$

$$
= \frac{(ki)!}{k!(i!)^k} (kj)! \gamma_{ki}(x)\gamma_{kj}(y)
$$

using (3) in the first equality, (5) for x in the second, and (2) exactly k times in the third. Using (5) for y we see the same equality holds when $i = 0$. Continuing like this using all axioms but (5) we see that we can write

$$
\gamma_n(\gamma_m(x + y)) = \sum_{i+j=nm} c_{ij} \gamma_i(x)\gamma_j(y)
$$

for certain universal constants $c_{ij} \in \mathbb{Z}$. Again the fact that the equality is valid in the polynomial ring $\mathbb{Q}[x, y]$ implies that the coefficients c_{ij} are all equal to $(nm)!/(n!(m!)^n)$ as desired. \qed
Lemma 2.5. Let A be a ring with two ideals $I, J \subseteq A$. Let γ be a divided power structure on I and let δ be a divided power structure on J. Then

1. γ and δ agree on IJ,
2. if γ and δ agree on $I \cap J$ then they are the restriction of a unique divided power structure ϵ on $I + J$.

Proof. Let $x \in I$ and $y \in J$. Then

$$\gamma(x) = y^n \gamma_n(x) = n! \delta_n(y) \gamma_n(x) = \delta_n(y) x^n = \delta_n(xy).$$

Hence γ and δ agree on a set of (additive) generators of IJ. By property (4) of Definition 2.1, it follows that they agree on all of IJ.

Assume γ and δ agree on $I \cap J$. Let $z \in I + J$. Write $z = x + y$ with $x \in I$ and $y \in J$. Then we set

$$\epsilon_n(z) = \sum \gamma_i(x) \delta_{n-i}(y)$$

for all $n \geq 1$. To see that this is well defined, suppose that $z = x' + y'$ is another representation with $x' \in I$ and $y' \in J$. Then $w = x - x' = y' - y \in I \cap J$. Hence

$$\sum_{i+j=n} \gamma_i(x) \delta_j(y) = \sum_{i+j=n} \gamma_i(x' + w) \delta_j(y)$$

$$= \sum_{i+j=n} \gamma_i(x') \gamma_j(w) \delta_j(y)$$

$$= \sum_{i+j=n} \gamma_i(x') \delta_j(w) \delta_j(y)$$

$$= \sum_{i+j=n} \gamma_i(x') \delta_j(w) \delta_j(y + w)$$

$$= \sum_{i+j=n} \gamma_i(x') \delta_j(y')$$

as desired. Hence, we have defined maps $\epsilon_n : I + J \to I + J$ for all $n \geq 1$; it is easy to see that $\epsilon_n \mid_I = \gamma_n$ and $\epsilon_n \mid_J = \delta_n$. Next, we prove conditions (1) – (5) of Definition 2.1 for the collection of maps ϵ_n. Properties (1) and (3) are clear. To see (4), suppose that $z = x + y$ and $z' = x' + y'$ with $x, x' \in I$ and $y, y' \in J$ and compute

$$\epsilon_n(z + z') = \sum_{a+b=n} \gamma_a(x + x') \delta_b(y + y')$$

$$= \sum_{i+i' + j + j' = n} \gamma_i(x) \gamma_i(x') \delta_j(y) \delta_j(y')$$

$$= \sum_{k=0, \ldots, n} \sum_{i+j=k} \gamma_i(x) \delta_j(y) \sum_{i'+j'=n-k} \gamma_{i'}(x') \delta_{j'}(y')$$

$$= \sum_{k=0, \ldots, n} \epsilon_k(z) \epsilon_{n-k}(z')$$

as desired. Now we see that it suffices to prove (2) and (5) for elements of I or J, see Lemma 2.4. This is clear because γ and δ are divided power structures.

The existence of a divided power structure ϵ on $I + J$ whose restrictions to I and J are γ and δ is thus proven; its uniqueness is rather clear.

\[\square \]

Lemma 2.6. Let p be a prime number. Let A be a ring, let $I \subseteq A$ be an ideal, and let γ be a divided power structure on I. Assume p is nilpotent in A/I. Then I is locally nilpotent if and only if p is nilpotent in A.

\[\square \]
Proof. If $p^N = 0$ in A, then for $x \in I$ we have $x^{p^N} = (pN)! \gamma_{pN}(x) = 0$ because $(pN)!$ is divisible by p^N. Conversely, assume I is locally nilpotent. We’ve also assumed that p is nilpotent in A/I, hence $p^r \in I$ for some r, hence p^r nilpotent, hence p nilpotent.

3. Divided power rings

There is a category of divided power rings. Here is the definition.

Definition 3.1. A divided power ring is a triple (A, I, γ) where A is a ring, $I \subset A$ is an ideal, and $\gamma = (\gamma_n)_{n \geq 1}$ is a divided power structure on I. A homomorphism of divided power rings $\varphi : (A, I, \gamma) \to (B, J, \delta)$ is a ring homomorphism $\varphi : A \to B$ such that $\varphi(I) \subset J$ and such that $\delta_n(\varphi(x)) = \varphi(\gamma_n(x))$ for all $x \in I$ and $n \geq 1$.

We sometimes say “let (B, J, δ) be a divided power algebra over (A, I, γ)” to indicate that (B, J, δ) is a divided power ring which comes equipped with a homomorphism of divided power rings $(A, I, \gamma) \to (B, J, \delta)$.

Lemma 3.2. The category of divided power rings has all limits and they agree with limits in the category of rings.

Proof. The empty limit is the zero ring (that’s weird but we need it). The product of a collection of divided power rings (A_t, I_t, γ_t), $t \in T$ is given by $(\prod A_t, \prod I_t, \gamma)$ where $\gamma_t(x_t) = (\gamma_{t,n}(x_t))$. The equalizer of $\alpha, \beta : (A_t, I_t, \gamma_t) \to (B, J, \delta)$ is just $C = \{ a \in A : \alpha(a) = \beta(a) \}$ with ideal $C \cap I$ and induced divided powers. It follows that all limits exist, see Categories, Lemma [14.10]

The following lemma illustrates a very general category theoretic phenomenon in the case of divided power algebras.

Lemma 3.3. Let C be the category of divided power rings. Let $F : C \to \text{Sets}$ be a functor. Assume that

1. there exists a cardinal κ such that for every $f \in F(A, I, \gamma)$ there exists a morphism $(A', I', \gamma') \to (A, I, \gamma)$ of C such that f is the image of $f' \in F(A', I', \gamma')$ and $|A'| \leq \kappa$, and
2. F commutes with limits.

Then F is representable, i.e., there exists an object (B, J, δ) of C such that $F(A, I, \gamma) = \text{Hom}_C((B, J, \delta), (A, I, \gamma))$ functorially in (A, I, γ).

Proof. This is a special case of Categories, Lemma [25.1]

Lemma 3.4. The category of divided power rings has all colimits.

Proof. The empty colimit is \mathbf{Z} with divided power ideal (0). Let’s discuss general colimits. Let C be a category and let $c : (A_c, I_c, \gamma_c)$ be a diagram. Consider the functor

$$F(B, J, \delta) = \text{lim}_{c \in C} \text{Hom}((A_c, I_c, \gamma_c), (B, J, \delta))$$

Note that any $f = (f_c)_{c \in C} \in F(B, J, \delta)$ has the property that all the images $f_c(A_c)$ generate a subring B' of B of bounded cardinality κ and that all the images $f_c(I_c)$ generate a divided power sub ideal J' of B'. And we get a factorization of f as a f' in $F(B')$ followed by the inclusion $B' \to B$. Also, F commutes with limits. Hence we may apply Lemma [3.3] to see that F is representable and we win.

□
Remark 3.5. The forgetful functor \((A, I, \gamma) \mapsto A\) does not commute with colimits. For example, let

\[
\begin{array}{ccc}
(B, J, \delta) & \longrightarrow & (B'', J'', \delta'') \\
\uparrow & & \uparrow \\
(A, I, \gamma) & \longrightarrow & (B', J', \delta')
\end{array}
\]

be a pushout in the category of divided power rings. Then in general the map \(B \otimes_A B' \to B''\) isn’t an isomorphism. (It is always surjective.) An explicit example is given by \((A, I, \gamma) = (\mathbb{Z}, (0), \emptyset)\), \((B, J, \delta) = (\mathbb{Z}/4\mathbb{Z}, 2\mathbb{Z}/2\mathbb{Z}, \delta)\), and \((B', J', \delta') = (\mathbb{Z}/4\mathbb{Z}, 2\mathbb{Z}/4\mathbb{Z}, \delta')\) where \(\delta_2(2) = 2\) and \(\delta_2'(2) = 0\) and all higher divided powers equal to zero. Then \((B'', J'', \delta'') = (\mathbb{F}_2, (0), \emptyset)\) which doesn’t agree with the tensor product. However, note that it is always true that

\[
B''/J'' = B/J \otimes_{A/I} B'/J'
\]

as can be seen from the universal property of the pushout by considering maps into divided power algebras of the form \((C, (0), \emptyset)\).

4. Extending divided powers

Definition 4.1. Given a divided power ring \((A, I, \gamma)\) and a ring map \(A \to B\) we say \(\gamma\) extends to \(B\) if there exists a divided power structure \(\bar{\gamma}\) on \(IB\) such that \((A, I, \gamma) \to (B, IB, \bar{\gamma})\) is a homomorphism of divided power rings.

Lemma 4.2. Let \((A, I, \gamma)\) be a divided power ring. Let \(A \to B\) be a ring map. If \(\gamma\) extends to \(B\) then it extends uniquely. Assume (at least) one of the following conditions holds

- (1) \(IB = 0\),
- (2) \(I\) is principal, or
- (3) \(A \to B\) is flat.

Then \(\gamma\) extends to \(B\).

Proof. Any element of \(IB\) can be written as a finite sum \(\sum_{i=1}^t b_i x_i\) with \(b_i \in B\) and \(x_i \in I\). If \(\gamma\) extends to \(\bar{\gamma}\) on \(IB\) then \(\bar{\gamma}_n(x_i) = \gamma_n(x_i)\). Thus, conditions (3) and (4) in Definition 2.1 imply that

\[
\bar{\gamma}_n(\sum_{i=1}^t b_i x_i) = \sum_{n_1 + \ldots + n_t = n} \prod_{i=1}^t b_i^{n_i} \gamma_n(x_i)
\]

Thus we see that \(\bar{\gamma}\) is unique if it exists.

If \(IB = 0\) then setting \(\bar{\gamma}_n(0) = 0\) works. If \(I = (x)\) then we define \(\bar{\gamma}_n(bx) = b^n \gamma_n(x)\). This is well defined: if \(b'x = bx\), i.e., \((b - b')x = 0\) then

\[
\begin{align*}
b^n \gamma_n(x) - (b')^n \gamma_n(x) &= (b^n - (b')^n) \gamma_n(x) \\
&= (b^{n-1} + \ldots + (b')^{n-1})(b - b') \gamma_n(x) = 0
\end{align*}
\]

because \(\gamma_n(x)\) is divisible by \(x\) (since \(\gamma_n(I) \subseteq I\)) and hence annihilated by \(b - b'\). Next, we prove conditions (1) – (5) of Definition 2.1. Parts (1), (2), (3), (5) are
obvious from the construction. For (4) suppose that $y, z \in IB$, say $y = bx$ and $z = cx$. Then $y + z = (b + c)x$ hence

$$\bar{\gamma}_n(y + z) = (b + c)^n\gamma_n(x)$$

$$= \sum \frac{n!}{i!(n-i)!} b^i c^{n-i}\gamma_n(x)$$

$$= \sum b^i c^{n-i}\gamma_i(x)\gamma_{n-i}(x)$$

$$= \sum \bar{\gamma}_i(y)\bar{\gamma}_{n-i}(z)$$

as desired.

Assume $A \rightarrow B$ is flat. Suppose that $b_1, \ldots, b_r \in B$ and $x_1, \ldots, x_r \in I$. Then

$$\bar{\gamma}_n(\sum b_ix_i) = \sum b_i^r \cdot c_{\gamma}(x_1) \ldots c_{\gamma}(x_r)$$

where the sum is over $c_1 + \ldots + c_r = n$ if $\bar{\gamma}_n$ exists. Next suppose that we have $c_1, \ldots, c_r \in B$ and $a_{ij} \in A$ such that $b_i = \sum a_{ij}c_j$. Setting $y_j = \sum a_{ij}x_i$ we claim that

$$\sum b_i^r \cdot c_{\gamma}(x_1) \ldots c_{\gamma}(x_r) = \sum c_1^{d_1} \ldots c_r^{d_r}(y_1) \ldots c_{\gamma}(y_s)$$

in B where on the right hand side we are summing over $d_1 + \ldots + d_r = n$. Namely, using the axioms of a divided power structure we can expand both sides into a sum with coefficients in $\mathbb{Z}[a_{ij}]$ of terms of the form $c_1^{d_1} \ldots c_r^{d_r}(x_1) \ldots c_{\gamma}(x_r)$. To see that the coefficients agree we note that the result is true in $\mathbb{Q}[x_1, \ldots, x_r, c_1, \ldots, c_r, a_{ij}]$ with γ the unique divided power structure on (x_1, \ldots, x_r). By Lazard’s theorem (Algebra, Theorem 80.4) we can write B as a directed colimit of finite free A-modules. In particular, if $z \in IB$ is written as $z = \sum x_ib_i$ and $z = \sum x_i'c_i$, then we can find $c_1, \ldots, c_r \in B$ and $a_{ij}, a'_{ij} \in A$ such that $b_i = \sum a_{ij}c_j$ and $b_i' = \sum a'_{ij}c_j$ such that $y_j = \sum a_{ij}x_i = \sum x_i' c_j$, hold\footnote{This can also be proven without recourse to Algebra, Theorem 80.4. Indeed, if $z = \sum x_ib_i$ and $z = \sum x'_c$, then $\sum y_ib_i - \sum x'_c = 0$ is a relation in the A-module B. Thus, Algebra, Lemma 80.11 (applied to the x_i and x'_c, taking the place of the f_i, and the b_i and b'_c, taking the role of the x_i) yields the existence of the $e_1, \ldots, e_r \in B$ and $a_{ij}, a'_{ij} \in A$ as required.}. Hence the procedure above gives a well defined map $\bar{\gamma}_n$ on IB. By construction $\bar{\gamma}$ satisfies conditions (1), (3), and (4). Moreover, for $x \in I$ we have $\bar{\gamma}_n(x) = \gamma_n(x)$.

Hence it follows from Lemma 2.4 that $\bar{\gamma}$ is a divided power structure on IB.\]

\[\gamma_n(x) = a^n \gamma_n(x_i) \in I'\] for \(x = ax_i\). Hence we see that \(\gamma_n(x) \in I'\) for a set of generators of \(I'\) as an abelian group. By induction on the length of an expression in terms of these, it suffices to prove \(\forall n : \gamma_n(x + y) \in I'\) if \(\forall n : \gamma_n(x), \gamma_n(y) \in I'\). This follows immediately from the fourth axiom of a divided power structure. \(\square\)

Lemma 4.4. Let \((A, I, \gamma)\) be a divided power ring. Let \(E \subset I\) be a subset. Then the smallest ideal \(J \subset I\) preserved by \(\gamma\) and containing all \(f \in E\) is the ideal \(J\) generated by \(\gamma_n(f), n \geq 1, f \in E\).

Proof. Follows immediately from Lemma [4.3] \(\square\)

Lemma 4.5. Let \((A, I, \gamma)\) be a divided power ring. Let \(p\) be a prime. If \(p\) is nilpotent in \(A/I\), then

1. the \(p\)-adic completion \(A^\wedge = \lim_n A/p^n A\) surjects onto \(A/I\),
2. the kernel of this map is the \(p\)-adic completion \(I^\wedge\) of \(I\), and
3. each \(\gamma_n\) is continuous for the \(p\)-adic topology and extends to \(\gamma_n^\wedge : I^\wedge \to I^\wedge\) defining a divided power structure on \(I^\wedge\).

If moreover \(A\) is a \(Z\)-algebra, then

4. for \(e\) large enough the ideal \(p^e A \subset I\) is preserved by the divided power structure \(\gamma\) and

\[(A^\wedge, I^\wedge, \gamma^\wedge) = \lim_n (A/p^e A, I/p^e A, \gamma)\]

in the category of divided power rings.

Proof. Let \(t \geq 1\) be an integer such that \(p^t A/I = 0\), i.e., \(p^t A \subset I\). The map \(A^\wedge \to A/I\) is the composition \(A^\wedge \to A/p^t A \to A/I\) which is surjective (for example by Algebra, Lemma [95.1]). As \(p^t I \subset p^e A \cap I \subset p^e A\) for \(e \geq t\) we see that the kernel of the composition \(A^\wedge \to A/I\) is the \(p\)-adic completion of \(I\). The map \(\gamma_n\) is continuous because

\[\gamma_n(x + p^e y) = \sum_{i+j=n} p^{ie} \gamma_i(x) \gamma_j(y) = \gamma_n(x) \mod p^e I\]

by the axioms of a divided power structure. It is clear that the axioms for divided power structures are inherited by the maps \(\gamma_n^\wedge\) from the maps \(\gamma_n\). Finally, to see the last statement, say \(e > t\). Then \(p^e A \subset I\) and \(\gamma_1(p^e A) \subset p^e A\) and for \(n > 1\) we have

\[\gamma_n(p^e a) = p^n \gamma_n(p^{e-1} a) = \frac{p^n}{n!} p^{n(e-1)} a^n \in p^e A\]

as \(p^n/n! \in Z\) and \(n \geq 2\) and \(e \geq 2\) so \(n(e-1) \geq e\). This proves that \(\gamma\) extends to \(A/p^e A\), see Lemma [4.3]. The statement on limits is clear from the construction of limits in the proof of Lemma [3.2] \(\square\)

5. Divided power polynomial algebras

A very useful example is the divided power polynomial algebra. Let \(A\) be a ring. Let \(t \geq 1\). We will denote \(A(x_1, \ldots, x_t)\) the following \(A\)-algebra: As an \(A\)-module we set

\[A(x_1, \ldots, x_t) = \bigoplus_{n_1, \ldots, n_t \geq 0} A x_1^{[n_1]} \cdots x_t^{[n_t]}\]

with multiplication given by

\[x_i^{[n]} x_i^{[m]} = \frac{(n + m)!}{n! m!} x_i^{[n+m]}\].
We also set $x_i = x_i^{[1]}$. Note that $1 = x_1^{[0]} \ldots x_t^{[0]}$. There is a similar construction which gives the divided power polynomial algebra in infinitely many variables.

There is an canonical A-algebra map $A(x_1, \ldots, x_t) \to A$ sending $x_i^{[m]}$ to zero for $n > 0$. The kernel of this map is denoted $A(x_1, \ldots, x_t)_+$.

Lemma 5.1. Let (A, I, γ) be a divided power ring. There exists a unique divided power structure δ on

$$J = IA(x_1, \ldots, x_t) + A(x_1, \ldots, x_t)_+$$

such that

1. $\delta_n(x_i) = x_i^{[n]}$, and
2. $(A, I, \gamma) \to (A(x_1, \ldots, x_t)_+, J, \delta)$ is a homomorphism of divided power rings.

Moreover, $(A(x_1, \ldots, x_t)_+, J, \delta)$ has the following universal property: A homomorphism of divided power rings $\varphi : (A(x_1, \ldots, x_t)_+, J, \delta) \to (C, K, \epsilon)$ is the same thing as a homomorphism of divided power rings $A \to C$ and elements $k_1, \ldots, k_t \in K$.

Proof. We will prove the lemma in case of a divided power polynomial algebra in one variable. The result for the general case can be argued in exactly the same way, or by noting that $A(x_1, \ldots, x_t)$ is isomorphic to the ring obtained by adjoining the divided power variables x_1, \ldots, x_t one by one.

Let $A(x)_+$ be the ideal generated by $x, x^{[2]}, x^{[3]}, \ldots$. Note that $J = IA(x) + A(x)_+$ and that

$$IA(x) \cap A(x)_+ = IA(x) \cdot A(x)_+$$

Hence by Lemma 2.5 it suffices to show that there exist divided power structures on the ideals $IA(x)$ and $A(x)_+$. The existence of the first follows from Lemma 4.2 as $A \to A(x)$ is flat. For the second, note that if A is torsion free, then we can apply Lemma 2.2 (4) to see that δ exists. Namely, choosing as generators the elements $x^{[m]}$ we see that $(x^{[m]})^n = \frac{(nm)!}{(m!)^n} x^{[nm]}$ and $n!$ divides the integer $\frac{(nm)!}{(m!)^n}$. In general write $A = R/a$ for some torsion free ring R (e.g., a polynomial ring over \mathbb{Z}). The kernel of $R(x) \to A(x)$ is $\bigoplus a x^{[m]}$. Applying criterion (2)(c) of Lemma 4.3 we see that the divided power structure on $R(x)_+$ extends to $A(x)$ as desired.

Proof of the universal property. Given a homomorphism $\varphi : A \to C$ of divided power rings and $k_1, \ldots, k_t \in K$ we consider

$$A(x_1, \ldots, x_t) \to C, \quad x_1^{[n_1]} \ldots x_t^{[n_t]} \mapsto \epsilon_{n_1}(k_1) \ldots \epsilon_{n_t}(k_t)$$

using φ on coefficients. The only thing to check is that this is an A-algebra homomorphism (details omitted). The inverse construction is clear. □

Remark 5.2. Let (A, I, γ) be a divided power ring. There is a variant of Lemma 5.1 for infinitely many variables. First note that if $s < t$ then there is a canonical map

$$A(x_1, \ldots, x_s) \to A(x_1, \ldots, x_t)$$

Hence if W is any set, then we set

$$A\langle x_w : w \in W \rangle = \operatorname{colim}_{E \subset W} A\langle x_e : e \in E \rangle$$

(colimit over E finite subset of W) with transition maps as above. By the definition of a colimit we see that the universal mapping property of $A\langle x_w : w \in W \rangle$ is completely analogous to the mapping property stated in Lemma 5.1.
Let two divided power structures not divisible by \(n \) on \(A \) in Lemma 5.3.

The following lemma can be found in [BO83].

Lemma 5.3. Let \(p \) be a prime number. Let \(A \) be a ring such that every integer \(n \) not divisible by \(p \) is invertible, i.e., \(A \) is a \(\mathbf{Z}(p) \)-algebra. Let \(I \subset A \) be an ideal. Two divided power structures \(\gamma, \gamma' \) on \(I \) are equal if and only if \(\gamma_p = \gamma'_p \). Moreover, given a map \(\delta : I \to I \) such that

1. \(p! \delta(x) = x^p \) for all \(x \in I \),
2. \(\delta(ax) = a^p \delta(x) \) for all \(a \in A \), \(x \in I \), and
3. \(\delta(x + y) = \delta(x) + \sum_{i+j=p, i, j \geq 1} \frac{1}{n!} x^i y^j + \delta(y) \) for all \(x, y \in I \),

then there exists a unique divided power structure \(\gamma \) on \(I \) such that \(\gamma_p = \delta \).

Proof. If \(n \) is not divisible by \(p \), then \(\gamma_n(x) = cx \gamma_{n-1}(x) \) where \(c \) is a unit in \(\mathbf{Z}(p) \).

Moreover, \(\gamma_{pn}(x) = c \gamma_m(\gamma_p(x)) \)

where \(c \) is a unit in \(\mathbf{Z}(p) \). Thus the first assertion is clear. For the second assertion, we can, working backwards, use these equalities to define all \(\gamma_n \). More precisely, if \(n = a_0 + a_1 p + \ldots + a_e p^e \) with \(a_i \in \{0, \ldots, p-1\} \) then we set

\[
\gamma_n(x) = c_n x^{a_0} \delta(x)^{a_1} \ldots \delta^e(x)^{a_e}
\]

for \(c_n \in \mathbf{Z}(p) \) defined by

\[
c_n = \frac{(n!)(1+p)! \ldots (1+p^e)!}{n!m!}.
\]

Now we have to show the axioms (1) – (5) of a divided power structure, see Definition 2.1. We observe that (1) and (3) are immediate. Verification of (2) and (5) is by a direct calculation which we omit. Let \(x, y \in I \). We claim there is a ring map

\[
\varphi : \mathbf{Z}(p)[u, v] \to A
\]

which maps \(u^n \) to \(\gamma_n(x) \) and \(v^n \) to \(\gamma_n(y) \). By construction of \(\mathbf{Z}(p)[u, v] \) this means we have to check that

\[
\gamma_n(x) \gamma_m(x) = \frac{(n+m)!}{n!m!} \gamma_{n+m}(x)
\]

in \(A \) and similarly for \(y \). This is true because (2) holds for \(\gamma \). Let \(\epsilon \) denote the divided power structure on the ideal \(\mathbf{Z}(p)[u, v]_+ \) of \(\mathbf{Z}(p)[u, v] \). Next, we claim that \(\varphi(\epsilon_n(f)) = \gamma_n(\varphi(f)) \) for \(f \in \mathbf{Z}(p)[u, v]_+ \) and all \(n \). This is clear for \(n = 0, 1, \ldots, p-1 \). For \(n = p \) it suffices to prove it for a set of generators of the ideal \(\mathbf{Z}(p)[u, v]_+ \) because both \(\epsilon_p \) and \(\gamma_p = \delta \) satisfy properties (1) and (3) of the lemma. Hence it suffices to prove that \(\gamma_p(\gamma_n(x)) = \frac{(pn)!}{(m!p^j)!} \gamma_{pn}(x) \) and similarly for \(y \), which follows as (5) holds for \(\gamma \). Now, if \(n = a_0 + a_1 p + \ldots + a_e p^e \) is an arbitrary integer written in \(p \)-adic expansion as above, then

\[
\epsilon_n(f) = c_n f^{a_0} \gamma_p(f)^{a_1} \ldots \gamma_p^e(f)^{a_e}
\]

because \(\epsilon \) is a divided power structure. Hence we see that \(\varphi(\epsilon_n(f)) = \gamma_n(\varphi(f)) \) holds for all \(n \). Applying this for \(f = u + v \) we see that axiom (4) for \(\gamma \) follows from the fact that \(\epsilon \) is a divided power structure. \(\square \)
6. Tate resolutions

In this section we briefly discuss the resolutions constructed in [Tat57] and [AH] which combine divided power structures with differential graded algebras. In this section we will use homological notation for differential graded algebras. Our differential graded algebras will sit in nonnegative homological degrees. Thus our differential graded algebras \((A,d)\) will be given as chain complexes
\[
\ldots \to A_2 \to A_1 \to A_0 \to 0 \to \ldots
\]
equipped with a multiplication.

Let \(R\) be a ring (commutative, as usual). In this section we will often consider graded \(R\)-algebras \(A = \bigoplus_{d \geq 0} A_d\) whose components are zero in negative degrees.

We will set \(A_+ = \bigoplus_{d > 0} A_d\). We will write \(A_{even} = \bigoplus_{d \geq 0} A_{2d}\) and \(A_{odd} = \bigoplus_{d \geq 0} A_{2d+1}\). Recall that \(A\) is graded commutative if \(xy = (-1)^{\deg(x) \deg(y)}yx\) for homogeneous elements \(x, y\). Recall that \(A\) is strictly graded commutative if in addition \(x^2 = 0\) for homogeneous elements \(x\) of odd degree. Finally, to understand the following definition, keep in mind that \(\gamma_n(x) = x^n/n!\) if \(A\) is an \(\mathbb{Q}\)-algebra.

Definition 6.1. Let \(R\) be a ring. Let \(A = \bigoplus_{d \geq 0} A_d\) be a graded \(R\)-algebra which is strictly graded commutative. A collection of maps \(\gamma_n : A_{even,+} \to A_{even,+}\) defined for all \(n > 0\) is called a *divided power structure* on \(A\) if we have

1. \(\gamma_n(x) \in A_{2nd}\) if \(x \in A_{2d}\),
2. \(\gamma_1(x) = x\) for any \(x\), we also set \(\gamma_0(x) = 1\),
3. \(\gamma_n(x) \gamma_m(x) = (n+m)!^{1/nm!} \gamma_{n+m}(x)\),
4. \(\gamma_n(xy) = x^n \gamma_n(y)\) for all \(x \in A_{even}\) and \(y \in A_{even,+}\),
5. \(\gamma_n(xy) = 0\) if \(x, y \in A_{odd}\) homogeneous and \(n > 1\),
6. if \(x, y \in A_{even,+}\) then \(\gamma_n(x + y) = \sum_{i=0,\ldots,n} \gamma_i(x) \gamma_{n-i}(y)\),
7. \(\gamma_n(\gamma_m(x)) = (nm)!^{1/(nm)!} \gamma_{nm}(x)\) for \(x \in A_{even,+}\).

Observe that conditions (2), (3), (4), (6), and (7) imply that \(\gamma\) is a “usual” divided power structure on the ideal \(A_{even,+}\) of the (commutative) ring \(A_{even}\), see Sections 2, 3, and 5. In particular, we have \(n! \gamma_n(x) = x^n\) for all \(x \in A_{even,+}\). Condition (1) states that \(\gamma\) is compatible with grading and condition (5) tells us \(\gamma_n\) for \(n > 1\) vanishes on products of homogeneous elements of odd degree. But note that it may happen that
\[
\gamma_2(z_1 z_2 + z_3 z_4) = z_1 z_2 z_3 z_4
\]
is nonzero if \(z_1, z_2, z_3, z_4\) are homogeneous elements of odd degree.

Example 6.2 (Adjoining odd variable). Let \(R\) be a ring. Let \((A, \gamma)\) be a strictly graded commutative graded \(R\)-algebra endowed with a divided power structure as in the definition above. Let \(d > 0\) be an odd integer. In this setting we can adjoin a variable \(T\) of degree \(d\) to \(A\). Namely, set
\[
A(T) = A \oplus AT
\]
with grading given by \(A(T)_m = A_m \oplus A_{m-d} T\). We claim there is a unique divided power structure on \(A(T)\) compatible with the given divided power structure on \(A\). Namely, we set
\[
\gamma_n(x + yT) = \gamma_n(x) + \gamma_{n-1}(x)yT
\]
for \(x \in A_{even,+}\) and \(y \in A_{odd}\).
Example 6.3. (Adjoining even variable). Let R be a ring. Let (A, γ) be a strictly graded commutative graded R-algebra endowed with a divided power structure as in the definition above. Let $d > 0$ be an even integer. In this setting we can adjoin a variable T of degree d to A. Namely, set

$$A(T) = A \oplus AT \oplus AT^{(2)} \oplus AT^{(3)} \oplus \ldots$$

with multiplication given by

$$T^{(n)}T^{(m)} = \frac{(n + m)!}{n!m!} T^{(n+m)}$$

and with grading given by

$$A(T)_m = A_m \oplus A_{m-d}T \oplus A_{m-2d}T^{(2)} \oplus \ldots$$

We claim there is a unique divided power structure on $A(T)$ compatible with the given divided power structure on A such that $\gamma_n(T^{(i)}) = T^{(ni)}$. To define the divided power structure we first set

$$\gamma_n \left(\sum_{i \geq 0} x_i T^{(i)} \right) = \sum \prod_{n = \sum e_i} x_i^{e_i} T^{(\sum e_i)}$$

if x_i is in A_{even}. If $x_0 \in A_{\text{even}+,}$ then we take

$$\gamma_n \left(\sum_{i \geq 0} x_i T^{(i)} \right) = \sum_{a+b=n} \gamma_a(x_0) \gamma_b \left(\sum_{i > 0} x_i T^{(i)} \right)$$

where γ_b is as defined above.

Remark 6.4. We can also adjoin a set (possibly infinite) of exterior or divided power generators in a given degree $d > 0$, rather than just one as in Examples 6.2 and 6.3. Namely, following Remark 5.2, for (A, γ) as above and a set J, let $A(T_j : j \in J)$ be the directed colimit of the algebras $A(T_j : j \in S)$ over all finite subsets S of J. It is immediate that this algebra has a unique divided power structure, compatible with the given structure on A and on each generator T_j.

At this point we tie in the definition of divided power structures with differentials. To understand the definition note that $d(x^n/n!) = d(x)x^{n-1}/(n-1)!$ if A is a Q-algebra and $x \in A_{\text{even}+,}$.

Definition 6.5. Let R be a ring. Let $A = \bigoplus_{d \geq 0} A_d$ be a differential graded R-algebra which is strictly graded commutative. A divided power structure γ on A is compatible with the differential graded structure if $d(\gamma_n(x)) = d(x)\gamma_{n-1}(x)$ for all $x \in A_{\text{even}+,}$.

Warning: Let (A, d, γ) be as in Definition 6.5. It may not be true that $\gamma_n(x)$ is a boundary, if x is a boundary. Thus γ in general does not induce a divided power structure on the homology algebra $H(A)$. In some papers the authors put an additional compatibility condition in order to ensure that this is the case, but we elect not to do so.

Lemma 6.6. Let (A, d, γ) and (B, d, γ) be as in Definition 6.5. Let $f : A \to B$ be a map of differential graded algebras compatible with divided power structures. Assume

1. $H_k(A) = 0$ for $k > 0$, and
2. f is surjective.

Then γ induces a divided power structure on the graded R-algebra $H(B)$.
Proof. Suppose that \(x \) and \(x' \) are homogeneous of the same degree \(2d \) and define the same cohomology class in \(H(B) \). Say \(x' - x = d(w) \). Choose a lift \(y \in A_{2d} \) of \(x \) and a lift \(z \in A_{2d+1} \) of \(w \). Then \(y' = y + d(z) \) is a lift of \(x' \). Hence

\[
\gamma_n(y') = \sum \gamma_i(y)\gamma_{n-i}(d(z)) = \gamma_n(y) + \sum_{i<n} \gamma_i(y)\gamma_{n-i}(d(z))
\]

Since \(A \) is acyclic in positive degrees and since \(d(\gamma_j(d(z))) = 0 \) for all \(j \) we can write this as

\[
\gamma_n(y') = \gamma_n(y) + \sum_{i<n} \gamma_i(y)d(z_i)
\]

for some \(z_i \) in \(A \). Moreover, for \(0 < i < n \) we have

\[
d(\gamma_i(y)z_i) = d(\gamma_i(y))z_i + \gamma_i(y)d(z_i) = d(y)\gamma_{i-1}(y)z_i + \gamma_i(y)d(z_i)
\]

and the first term maps to zero in \(B \) as \(d(y) \) maps to zero in \(B \). Hence \(\gamma_n(x') \) and \(\gamma_n(x) \) map to the same element of \(H(B) \). Thus we obtain a well defined map \(\gamma_n : H_{2d}(B) \to H_{2d}(B) \) for all \(d > 0 \) and \(n > 0 \). We omit the verification that this defines a divided power structure on \(H(B) \).

\[\square\]

Lemma 6.7. Let \((A, d, \gamma)\) be as in Definition 6.5. Let \(R \to R' \) be a ring map. Then \(d \) and \(\gamma \) induce similar structures on \(A' = A \otimes_R R' \) such that \((A', d, \gamma)\) is as in Definition 6.5.

Proof. Observe that \(A'_{\text{even}} = A_{\text{even}} \otimes_R R' \) and \(A'_{\text{even},+} = A_{\text{even},+} \otimes_R R' \). Hence we are trying to show that the divided powers \(\gamma \) extend to \(A'_{\text{even}} \) (terminology as in Definition 6.5). Once we have shown \(\gamma \) extends it follows easily that this extension has all the desired properties.

Choose a polynomial \(R \)-algebra \(P \) (on any set of generators) and a surjection of \(R \)-algebras \(P \to R' \). The ring map \(A_{\text{even}} \to A_{\text{even}} \otimes_R P \) is flat, hence the divided powers \(\gamma \) extend to \(A_{\text{even}} \otimes_R P \) uniquely by Lemma 4.2. Let \(J = \text{Ker}(P \to R') \). To show that \(\gamma \) extends to \(A \otimes_R R' \) it suffices to show that \(I' = \text{Ker}(A_{\text{even},+} \otimes_R P \to A_{\text{even},+} \otimes_R R') \) is generated by elements \(z \) such that \(\gamma_n(z) \in I' \) for all \(n > 0 \). This is clear as \(I' \) is generated by elements of the form \(x \otimes f \) with \(x \in A_{\text{even},+} \) and \(f \in \text{Ker}(P \to R') \).

\[\square\]

Lemma 6.8. Let \((A, d, \gamma)\) be as in Definition 6.5. Let \(d \geq 1 \) be an integer. Let \(A(T) \) be the graded divided power polynomial algebra on \(T \) with \(\text{deg}(T) = d \) constructed in Example 6.2 or 6.3. Let \(f \in A_{d-1} \) be an element with \(d(f) = 0 \). There exists a unique differential \(d \) on \(A(T) \) such that \(d(T) = f \) and such that \(d \) is compatible with the divided power structure on \(A(T) \).

Proof. This is proved by a direct computation which is omitted. \[\square\]

Here is Tate’s construction, as extended by Avramov and Halperin.

Lemma 6.9. Let \(R \to S \) be a homomorphism of commutative rings. There exists a factorization

\[R \to A \to S\]

with the following properties:

1. \((A, d, \gamma)\) is as in Definition 6.5.
2. \(A \to S \) is a quasi-isomorphism (if we endow \(S \) with the zero differential),
3. \(A_0 = R[x_j : j \in J] \to S \) is any surjection of a polynomial ring onto \(S \), and
4. \(A \) is a graded divided power polynomial algebra over \(R \).
The last condition means that A is constructed out of A_0 by successively adjoining a set of variables T in each degree > 0 as in Example 6.2 or 6.3. Moreover, if R is Noetherian and $R \to S$ is of finite type, then A can be taken to have only finitely many generators in each degree.

Proof. We write out the construction for the case that R is Noetherian and $R \to S$ is of finite type. Without those assumptions, the proof is the same, except that we have to use some set (possibly infinite) of generators in each degree.

Start of the construction: Let $A(0) = R[x_1, \ldots, x_n]$ be a (usual) polynomial ring and let $A(0) \to S$ be a surjection. As grading we take $A(0)_0 = A(0)$ and $A(0)_d = 0$ for $d \neq 0$. Thus $d = 0$ and γ_n, $n > 0$, is zero as well.

Choose generators $f_1, \ldots, f_m \in R[x_1, \ldots, x_n]$ for the kernel of the given map $A(0) = R[x_1, \ldots, x_n] \to S$. We apply Example 6.2 m times to get $A(1) = A(0)(T_1, \ldots, T_m)$ with $\deg(T_i) = 1$ as a graded divided power polynomial algebra. We set $d(T_i) = f_i$. Since $A(1)$ is a divided power polynomial algebra over $A(0)$ and since $d(f_i) = 0$ this extends uniquely to a differential on $A(1)$ by Lemma 6.8.

Induction hypothesis: Assume we are given factorizations

$$R \to A(0) \to A(1) \to \cdots \to A(m) \to S$$

where $A(0)$ and $A(1)$ are as above and each $R \to A(m') \to S$ for $2 \leq m' \leq m$ satisfies properties (1) and (4) of the statement of the lemma and (2) replaced by the condition that $H_i(A(m')) \to H_i(S)$ is an isomorphism for $m' > i \geq 0$. The base case is $m = 1$.

Induction step: Assume we have $R \to A(m) \to S$ as in the induction hypothesis. Consider the group $H_m(A(m))$. This is a module over $H_0(A(m)) = S$. In fact, it is a subquotient of $A(m)_m$ which is a finite type module over $A(m)_0 = R[x_1, \ldots, x_n]$. Thus we can pick finitely many elements $e_1, \ldots, e_t \in \text{Ker}(d : A(m)_m \to A(m)_{m-1})$

which map to generators of this module. Applying Example 6.2 or 6.3 t times we get $A(m+1) = A(m)(T_1, \ldots, T_t)$ with $\deg(T_i) = m + 1$ as a graded divided power algebra. We set $d(T_i) = e_i$. Since $A(m+1)$ is a divided power polynomial algebra over $A(m)$ and since $d(e_i) = 0$ this extends uniquely to a differential on $A(m+1)$ compatible with the divided power structure. Since we’ve added only material in degree $m + 1$ and higher we see that $H_i(A(m+1)) = H_i(A(m))$ for $i < m$. Moreover, it is clear that $H_m(A(m+1)) = 0$ by construction.

To finish the proof we observe that we have shown there exists a sequence of maps

$$R \to A(0) \to A(1) \to \cdots \to A(m) \to A(m+1) \to \cdots \to S$$

and to finish the proof we set $A = \text{colim} A(m)$. \square

Lemma 6.10. Let $R \to S$ be a pseudo-coherent ring map (More on Algebra, Definition 75.1). Then Lemma 6.9 holds, with the resolution A of S having finitely many generators in each degree.
Proof. This is proved in exactly the same way as Lemma 6.9. The only additional twist is that, given \(A(m) \to S \) we have to show that \(H_m = H_m(A(m)) \) is a finite \(R[x_1, \ldots, x_m] \)-module (so that in the next step we need only add finitely many variables). Consider the complex
\[
\ldots \to A(m)_{m-1} \to A(m)_m \to A(m)_{m-1} \to \ldots \to A(m)_0 \to S \to 0
\]
Since \(S \) is a pseudo-coherent \(R[x_1, \ldots, x_n] \)-module and since \(A(m)_i \) is a finite free \(R[x_1, \ldots, x_n] \)-module we conclude that this is a pseudo-coherent complex, see More on Algebra, Lemma 62.10. Since the complex is exact in (homological) degrees > \(m \) we conclude that \(H_m \) is a finite \(R \)-module by More on Algebra, Lemma 62.3. \(\square \)

Lemma 6.11. Let \(R \) be a commutative ring. Suppose that \((A, d, \gamma) \) and \((B, d, \gamma) \) are as in Definition 6.3. Let \(\varphi : H_0(A) \to H_0(B) \) be an \(R \)-algebra map. Assume

1. \(A \) is a graded divided power polynomial algebra over \(R \).
2. \(H_k(B) = 0 \) for \(k > 0 \).

Then there exists a map \(\varphi : A \to B \) of differential graded \(R \)-algebras compatible with divided powers that lifts \(\varphi \).

Proof. The assumption means that \(A \) is obtained from \(R \) by successively adjoining some set of polynomial generators in degree zero, exterior generators in positive odd degrees, and divided power generators in positive even degrees. So we have a filtration \(R \subset A(0) \subset A(1) \subset \ldots \) of \(A \) such that \(A(m+1) \) is obtained from \(A(m) \) by adjoining generators of the appropriate type (which we simply call “divided power generators”) in degree \(m+1 \). In particular, \(A(0) \to H_0(A) \) is a surjection from a (usual) polynomial algebra over \(R \) onto \(H_0(A) \). Thus we can lift \(\varphi \) to an \(R \)-algebra map \(\varphi(0) : A(0) \to B_0 \).

Write \(A(1) = A(0)(T_j : j \in J) \) for some set \(J \) of divided power variables \(T_j \) of degree 1. Let \(f_j \in B_0 \) be \(f_j = \varphi(0)(d(T_j)) \). Observe that \(f_j \) maps to zero in \(H_0(B) \) as \(dT_j \) maps to zero in \(H_0(A) \). Thus we can find \(b_j \in B_1 \) with \(db_j = f_j \). By the universal property of divided power polynomial algebras from Lemma 6.1 we find a lift \(\varphi(1) : A(1) \to B \) of \(\varphi(0) \) mapping \(T_j \) to \(f_j \).

Having constructed \(\varphi(m) \) for some \(m \geq 1 \) we can construct \(\varphi(m+1) : A(m+1) \to B \) in exactly the same manner. We omit the details. \(\square \)

Lemma 6.12. Let \(R \) be a commutative ring. Let \(S \) and \(T \) be commutative \(R \)-algebras. Then there is a canonical structure of a strictly graded commutative \(R \)-algebra with divided powers on \(\text{Tor}^R(S, T) \).

Proof. Choose a factorization \(R \to A \to S \) as above. Since \(A \to S \) is a quasi-isomorphism and since \(A_d \) is a free \(R \)-module, we see that the differential graded algebra \(B = A \otimes_R T \) computes the Tor groups displayed in the lemma. Choose a surjection \(R[y_j : j \in J] \to T \). Then we see that \(B \) is a quotient of the differential graded algebra \(A[y_j : j \in J] \) whose homology sits in degree 0 (it is equal to \(S[y_j : j \in J] \)). By Lemma 6.7 the differential graded algebras \(B \) and \(A[y_j : j \in J] \) have divided power structures compatible with the differentials. Hence we obtain our divided power structure on \(H(B) \) by Lemma 6.6.

The divided power algebra structure constructed in this way is independent of the choice of \(A \). Namely, if \(A' \) is a second choice, then Lemma 6.11 implies there is
a map $A \to A'$ preserving all structure and the augmentations towards S. Then the induced map $B = A \otimes_R T \to A' \otimes_R T' = B'$ also preserves all structure and is a quasi-isomorphism. The induced isomorphism of Tor algebras is therefore compatible with products and divided powers. □

7. Application to complete intersections

Let R be a ring. Let (A, d, γ) be as in Definition 6.5. A derivation of degree 2 is an R-linear map $\theta : A \to A$ with the following properties:

1. $\theta(A_d) \subset A_{d-2}$,
2. $\theta(xy) = \theta(x)y + x\theta(y)$,
3. θ commutes with d,
4. $\theta(\gamma_n(x)) = \theta(x)\gamma_{n-1}(x)$ for all $x \in A_{2d}$ all d.

In the following lemma we construct a derivation.

Lemma 7.1. Let R be a ring. Let (A, d, γ) be as in Definition 6.5. Let $R' \to R$ be a surjection of rings whose kernel has square zero and is generated by one element f. If A is a graded divided power polynomial algebra over R with finitely many variables in each degree, then we obtain a derivation $\theta : A/IA \to A/IA$ where I is the annihilator of f in R.

Proof. Since A is a divided power polynomial algebra, we can find a divided power polynomial algebra A' over R' such that $A = A' \otimes_R R'$. Moreover, we can lift d to an R'-linear operator d on A' such that

1. $d(xy) = d(x)y + (-1)^{\deg(x)} xd(y)$ for $x, y \in A'$ homogeneous, and
2. $d(\gamma_n(x)) = d(x)\gamma_{n-1}(x)$ for $x \in A'_{\text{even}+}$.

We omit the details (hint: proceed one variable at the time). However, it may not be the case that d^2 is zero on A'. It is clear that d^2 maps A' into $fA' \simeq A/IA$. Hence d^2 annihilates fA' and factors as a map $A \to A/IA$. Since d^2 is R-linear we obtain our map $\theta : A/IA \to A/IA$. The verification of the properties of a derivation is immediate. □

Lemma 7.2. Assumption and notation as in Lemma 7.1. Suppose $S = H_0(A)$ is isomorphic to $R[x_1, \ldots, x_n]/(f_1, \ldots, f_m)$ for some n, m, and $f_j \in R[x_1, \ldots, x_n]$. Moreover, suppose given a relation

$$\sum r_j f_j = 0$$

with $r_j \in R[x_1, \ldots, x_n]$. Choose $r'_j, f'_j \in R'[x_1, \ldots, x_n]$ lifting r_j, f_j. Write $\sum r'_j f'_j = gf$ for some $g \in R/I[x_1, \ldots, x_n]$. If $H_1(A) = 0$ and all the coefficients of each r_j are in I, then there exists an element $\xi \in H_2(A/IA)$ such that $\theta(\xi) = g$ in S/IS.

Proof. Let $A(0) \subset A(1) \subset A(2) \subset \ldots$ be the filtration of A such that $A(m)$ is gotten from $A(m-1)$ by adjoining divided power variables of degree m. Then $A(0)$ is a polynomial algebra over R equipped with an R-algebra surjection $A(0) \to S$. Thus we can choose a map

$$\varphi : R[x_1, \ldots, x_n] \to A(0)$$

lifting the augmentations to S. Next, $A(1) = A(0)(T_1, \ldots, T_t)$ for some divided power variables T_i of degree 1. Since $H_0(A) = S$ we can pick $\xi_j \in \sum A(0)T_i$ with
\[
d(\xi_j) = \varphi(f_j).
\]
Then
\[
d \left(\sum \varphi(r_j)\xi_j \right) = \sum \varphi(r_j)\varphi(f_j) = \sum \varphi(r_jf_j) = 0
\]

Since \(H_1(A) = 0\) we can pick \(\xi \in A_2\) with \(d(\xi) = \sum \varphi(r_j)\xi_j\). If the coefficients of \(r_j\) are in \(I\), then the same is true for \(\varphi(r_j)\). In this case \(d(\xi)\) dies in \(A_1/I\) and hence \(\xi\) defines a class in \(H_2(A/I)\).

The construction of \(\theta\) in the proof of Lemma 7.1 proceeds by successively lifting \(A(i)\) to \(A'(i)\) and lifting the differential \(d\). We lift \(\varphi\) to \(\varphi' : R'[x_1, \ldots, x_n] \to A'(0)\). Next, we have \(A'(1) = A'(0)(T_1, \ldots, T_i)\). Moreover, we can lift \(\xi_j\) to \(\xi'_j \in \sum A'(0)T_i\). Then \(d(\xi'_j) = \varphi'(f'_j) + fa_j\) for some \(a_j \in A'(0)\). Consider a lift \(\xi' \in A'_2\) of \(\xi\). Then we know that
\[
d(\xi') = \sum \varphi'(r'_j)\xi'_j + \sum fb_iT_i
\]
for some \(b_i \in A(0)\). Applying \(d\) again we find
\[
\theta(\xi) = \sum \varphi'(r'_j)\varphi'(f'_j) + \sum f\varphi'(r'_j)a_j + \sum fb_id(T_i)
\]
The first term gives us what we want. The second term is zero because the coefficients of \(r_j\) are in \(I\) and hence are annihilated by \(f\). The third term maps to zero in \(H_0\) because \(d(T_i)\) maps to zero. \(\Box\)

The method of proof of the following lemma is apparently due to Gulliksen.

Lemma 7.3. Let \(R' \to R\) be a surjection of Noetherian rings whose kernel has square zero and is generated by one element \(f\). Let \(S = R[x_1, \ldots, x_n]/(f_1, \ldots, f_m)\). Let \(\sum r_jf_j = 0\) be a relation in \(R[x_1, \ldots, x_n]\). Assume that
\begin{enumerate}
\item each \(r_j\) has coefficients in the annihilator \(I\) of \(f\) in \(R\),
\item for some lifts \(r'_j, f'_j \in R'[x_1, \ldots, x_n]\) we have \(\sum r'_jf'_j = gf\) where \(g\) is not nilpotent in \(S\).
\end{enumerate}

Then \(S\) does not have finite tor dimension over \(R\) (i.e., \(S\) is not a perfect \(R\)-algebra).

Proof. Choose a Tate resolution \(R \to A \to S\) as in Lemma 6.9. Let \(\xi \in H_2(A/I)\) and \(\theta : A/I \to A/I\) be the element and derivation found in Lemmas 7.1 and 7.2. Observe that
\[
\theta^n(\gamma_n(\xi)) = g^n
\]
Hence if \(g\) is not nilpotent, then \(\xi^n\) is nonzero in \(H_2n(A/I)\) for all \(n > 0\). Since \(H_2n(A/I) = \text{Tor}^R_{2n}(S, R/I)\) we conclude. \(\Box\)

The following result can be found in [Rod88].

Lemma 7.4. Let \((A, m)\) be a Noetherian local ring. Let \(I \subseteq J \subseteq A\) be proper ideals. If \(A/J\) has finite tor dimension over \(A/I\), then \(I/mI \to J/mJ\) is injective.

Proof. Let \(f \in I\) be an element mapping to a nonzero element of \(I/mI\) which is mapped to zero in \(J/mJ\). We can choose an ideal \(I'\) with \(mI \subseteq I' \subseteq I\) such that \(I/I'\) is generated by the image of \(f\). Set \(R = A/I\) and \(R' = A/I'\). Let \(J = (a_1, \ldots, a_m)\) for some \(a_j \in A\). Then \(f = \sum b_ja_j\) for some \(b_j \in m\). Let \(r, f_j \in R\) resp. \(r', f'_j \in R'\) be the image of \(b_j, a_j\). Then we see we are in the situation of Lemma 7.3 (with the ideal \(J\) of that lemma equal to \(mJ\)) and the lemma is proved. \(\Box\)

Lemma 7.5. Let \((A, m)\) be a Noetherian local ring. Let \(I \subseteq J \subseteq A\) be proper ideals. Assume
(1) A/J has finite tor dimension over A/I, and
(2) J is generated by a regular sequence.

Then I is generated by a regular sequence and J/I is generated by a regular sequence.

Proof. By Lemma 7.4 we see that $I/mI \to J/mJ$ is injective. Thus we can find $s \leq r$ and a minimal system of generators f_1, \ldots, f_s of J such that f_1, \ldots, f_s are in I and form a minimal system of generators of I. The lemma follows as any minimal system of generators of J is a regular sequence by More on Algebra, Lemmas 29.15 and 29.7. □

Lemma 7.6. Let $R \to S$ be a local ring map of Noetherian local rings. Let $I \subset R$ and $J \subset S$ be ideals with $IS \subset J$. If $R \to S$ is flat and S/m_RS is regular, then the following are equivalent

(1) J is generated by a regular sequence and S/J has finite tor dimension as a module over R/I,
(2) J is generated by a regular sequence and $\text{Tor}_p^{R/I}(S/J, R/m_R)$ is nonzero for only finitely many p,
(3) I is generated by a regular sequence and J/IS is generated by a regular sequence in S/IS.

Proof. If (3) holds, then J is generated by a regular sequence, see for example More on Algebra, Lemmas 29.13 and 29.7. Moreover, if (3) holds, then $S/J = (S/I)/(J/I)$ has finite projective dimension over S/IS because the Koszul complex will be a finite free resolution of S/J over S/IS. Since $R/I \to S/IS$ is flat, it then follows that S/J has finite tor dimension over R/I by More on Algebra, Lemma 63.11. Thus (3) implies (1).

The implication (1) ⇒ (2) is trivial. Assume (2). By More on Algebra, Lemma 71.9 we find that S/J has finite tor dimension over S/IS. Thus we can apply Lemma 7.5 to conclude that IS and J/IS are generated by regular sequences. Let $f_1, \ldots, f_r \in I$ be a minimal system of generators of I. Since $R \to S$ is flat, we see that f_1, \ldots, f_r form a minimal system of generators for IS in S. Thus $f_1, \ldots, f_r \in R$ is a sequence of elements whose images in S form a regular sequence by More on Algebra, Lemmas 29.15 and 29.7. Thus f_1, \ldots, f_r is a regular sequence in R by Algebra, Lemma 67.5. □

8. Local complete intersection rings

Let (A, m) be a Noetherian complete local ring. By the Cohen structure theorem (see Algebra, Theorem 154.8) we can write A as the quotient of a regular Noetherian complete local ring R. Let us say that A is a complete intersection if there exists some surjection $R \to A$ with R a regular local ring such that the kernel is generated by a regular sequence. The following lemma shows this notion is independent of the choice of the surjection.

Lemma 8.1. Let (A, m) be a Noetherian complete local ring. The following are equivalent

(1) for every surjection of local rings $R \to A$ with R a regular local ring, the kernel of $R \to A$ is generated by a regular sequence, and
(2) for some surjection of local rings $R \to A$ with R a regular local ring, the kernel of $R \to A$ is generated by a regular sequence.
Proof. Let \(k \) be the residue field of \(A \). If the characteristic of \(k \) is \(p > 0 \), then we denote \(\Lambda \) a Cohen ring (Algebra, Definition 154.5) with residue field \(k \) (Algebra, Lemma 154.6). If the characteristic of \(k \) is \(0 \) we set \(\Lambda = k \). Recall that \(\Lambda[[x_1, \ldots, x_n]] \) for any \(n \) is formally smooth over \(\mathbb{Z} \), resp. \(\mathbb{Q} \) in the \(m \)-adic topology, see More on Algebra, Lemma 38.1. Fix a surjection \(\Lambda[[x_1, \ldots, x_n]] \to A \) as in the Cohen structure theorem (Algebra, Theorem 154.8).

Let \(R \to A \) be a surjection from a regular local ring \(R \). Let \(f_1, \ldots, f_r \) be a minimal sequence of generators of \(\text{Ker}(R \to A) \). We will use without further mention that an ideal in a Noetherian local ring is generated by a regular sequence if and only if any minimal set of generators is a regular sequence. Observe that \(f_1, \ldots, f_r \) is a regular sequence in \(R \) if and only if \(f_1, \ldots, f_r \) is a regular sequence in the completion \(R^\wedge \) by Algebra, Lemmas 67.5 and 96.2. Moreover, we have
\[
R^\wedge/(f_1, \ldots, f_r)R^\wedge = (R/(f_1, \ldots, f_r))^\wedge = A^\wedge = A
\]
because \(A \) is \(\mathfrak{m}_A \)-adically complete (first equality by Algebra, Lemma 96.1). Finally, the ring \(R^\wedge \) is regular since \(R \) is regular (More on Algebra, Lemma 42.4). Hence we may assume \(R \) is complete.

If \(R \) is complete we can choose a map \(\Lambda[[x_1, \ldots, x_n]] \to R \) lifting the given map \(\Lambda[[x_1, \ldots, x_n]] \to A \), see More on Algebra, Lemma 36.5. By adding some more variables \(y_1, \ldots, y_m \) mapping to generators of the kernel of \(R \to A \) we may assume that \(\Lambda[[x_1, \ldots, x_n, y_1, \ldots, y_m]] \to R \) is surjective (some details omitted). Then we can consider the commutative diagram

\[
\begin{array}{ccc}
\Lambda[[x_1, \ldots, x_n, y_1, \ldots, y_m]] & \longrightarrow & R \\
\downarrow & & \downarrow \\
\Lambda[[x_1, \ldots, x_n]] & \longrightarrow & A
\end{array}
\]

By Algebra, Lemma 133.6 we see that the condition for \(R \to A \) is equivalent to the condition for the fixed chosen map \(\Lambda[[x_1, \ldots, x_n]] \to A \). This finishes the proof of the lemma. \(\square \)

The following two lemmas are sanity checks on the definition given above.

09Q0 Lemma 8.2. Let \(R \) be a regular ring. Let \(p \subset R \) be a prime. Let \(f_1, \ldots, f_r \in p \) be a regular sequence. Then the completion of
\[
A = (R/(f_1, \ldots, f_r))_p = R_p/(f_1, \ldots, f_r)R_p
\]
is a complete intersection in the sense defined above.

Proof. The completion of \(A \) is equal to \(A^\wedge = R^\wedge_p/(f_1, \ldots, f_r)_p \) because completion for finite modules over the Noetherian ring \(R_p \) is exact (Algebra, Lemma 96.1). The image of the sequence \(f_1, \ldots, f_r \) in \(R_p \) is a regular sequence by Algebra, Lemmas 96.2 and 97.5. Moreover, \(R^\wedge_p \) is a regular local ring by More on Algebra, Lemma 42.4. Hence the result holds by our definition of complete intersection for complete local rings. \(\square \)

The following lemma is the analogue of Algebra, Lemma 133.4.

09Q1 Lemma 8.3. Let \(R \) be a regular ring. Let \(p \subset R \) be a prime. Let \(I \subset p \) be an ideal. Set \(A = (R/I)_p = R_p/I_p \). The following are equivalent
the completion of A is a complete intersection in the sense above,
(2) $I_p \subset R_p$ is generated by a regular sequence,
(3) the module $(I/I^2)_p$ can be generated by $\dim(R_p) - \dim(A)$ elements,
(4) add more here.

Proof. We may and do replace R by its localization at p. Then $p = m$ is the maximal ideal of R and $A = R/I$. Let $f_1, \ldots, f_r \in I$ be a minimal sequence of generators. The completion of A is equal to $A^\wedge = R^\wedge/(f_1, \ldots, f_r)R^\wedge$ because completion for finite modules over the Noetherian ring R_p is exact (Algebra, Lemma 96.1).

If (1) holds, then the image of the sequence f_1, \ldots, f_r in R^\wedge is a regular sequence by assumption. Hence it is a regular sequence in R by Algebra, Lemmas 96.2 and 67.5. Thus (1) implies (2).

Assume (3) holds. Set $c = \dim(R) - \dim(A)$ and let $f_1, \ldots, f_c \in I$ map to generators of I/I^2. by Nakayama’s lemma (Algebra, Lemma 19.1) we see that $I = (f_1, \ldots, f_c)$.

Since R is regular and hence Cohen-Macaulay (Algebra, Proposition 102.4) we see that f_1, \ldots, f_c is a regular sequence by Algebra, Proposition 102.4. Thus (3) implies (2). Finally, (2) implies (1) by Lemma 8.2. □

The following result is due to Avramov, see [Avr75].

Proposition 8.4. Let $A \to B$ be a flat local homomorphism of Noetherian local rings. Then the following are equivalent

1. B^\wedge is a complete intersection,
2. A^\wedge and $(B/m_A B)^\wedge$ are complete intersections.

Proof. Consider the diagram

$$
\begin{array}{ccc}
B & \longrightarrow & B^\wedge \\
\uparrow & & \uparrow \\
A & \longrightarrow & A^\wedge
\end{array}
$$

Since the horizontal maps are faithfully flat (Algebra, Lemma 96.3) we conclude that the right vertical arrow is flat (for example by Algebra, Lemma 98.15). Moreover, we have $(B/m_A B)^\wedge = B^\wedge/m_A^\wedge B^\wedge$ by Algebra, Lemma 96.1. Thus we may assume A and B are complete local Noetherian rings.

Assume A and B are complete local Noetherian rings. Choose a diagram

$$
\begin{array}{ccc}
S & \longrightarrow & B \\
\uparrow & & \uparrow \\
R & \longrightarrow & A
\end{array}
$$

as in More on Algebra, Lemma 38.3. Let $I = \text{Ker}(R \to A)$ and $J = \text{Ker}(S \to B)$. Note that since $R/I = A \to B = S/J$ is flat the map $J/IS \otimes_R R/m_R \to J/J \cap m_R S$ is an isomorphism. Hence a minimal system of generators of J/IS maps to a minimal system of generators of $\text{Ker}(S/m_R S \to B/m_A B)$. Finally, $S/m_R S$ is a regular local ring.

Assume (1) holds, i.e., J is generated by a regular sequence. Since $A = R/I \to B = S/J$ is flat we see Lemma 7.6 applies and we deduce that I and J/IS are generated
by regular sequences. We have \(\dim(B) = \dim(A) + \dim(B/\mathfrak{m}_A B) \) and \(\dim(S/IS) = \dim(A) + \dim(S/m_R S) \) (Algebra, Lemma 111.7). Thus \(J/IS \) is generated by
\[
\dim(S/J) = \dim(S/IS) - \dim(B/m_A B)
\]
elements (Algebra, Lemma 59.12). It follows that \(\text{Ker}(S/m_R S \to B/m_A B) \) is generated by the same number of elements (see above). Hence \(\text{Ker}(S/m_R S \to B/m_A B) \) is generated by a regular sequence, see for example Lemma 8.3. In this way we see that (2) holds.

If (2) holds, then \(I \) and \(J/J \cap m_R S \) are generated by regular sequences. Lifting these generators (see above), using flatness of \(R/I \to S/IS \), and using Grothendieck’s lemma (Algebra, Lemma 98.3) we find that \(J/IS \) is generated by a regular sequence in \(S/IS \). Thus Lemma 7.6 tells us that \(J \) is generated by a regular sequence, whence (1) holds.

\[\square\]

Definition 8.5. Let \(A \) be a Noetherian ring.

1. If \(A \) is local, then we say \(A \) is a **complete intersection** if its completion is a complete intersection in the sense above.
2. In general we say \(A \) is a **local complete intersection** if all of its local rings are complete intersections.

We will check below that this does not conflict with the terminology introduced in Algebra, Definitions 133.1 and 133.5. But first, we show this “makes sense” by showing that if \(A \) is a Noetherian local complete intersection, then \(A \) is a local complete intersection, i.e., all of its local rings are complete intersections.

\[\square\]

Lemma 8.6. Let \((A, \mathfrak{m})\) be a Noetherian local ring. Let \(\mathfrak{p} \subset A \) be a prime ideal. If \(A \) is a complete intersection, then \(A_{\mathfrak{p}} \) is a complete intersection too.

Proof. Choose a prime \(q \) of \(A^{\wedge} \) lying over \(\mathfrak{p} \) (this is possible as \(A \to A^{\wedge} \) is faithfully flat by Algebra, Lemma 96.3). Then \(A_{\mathfrak{p}} \to (A^{\wedge})_q \) is a flat local ring homomorphism. Thus by Proposition 8.4 we see that \(A_{\mathfrak{p}} \) is a complete intersection if and only if \((A^{\wedge})_q \) is a complete intersection. Thus it suffices to prove the lemma in case \(A \) is complete (this is the key step of the proof).

Assume \(A \) is complete. By definition we may write \(A = R/(f_1, \ldots, f_r) \) for some regular sequence \(f_1, \ldots, f_r \) in a regular local ring \(R \). Let \(q \subset R \) be the prime corresponding to \(\mathfrak{p} \). Observe that \(f_1, \ldots, f_r \in q \) and that \(A_{\mathfrak{p}} = R_q / (f_1, \ldots, f_r) R_q \). Hence \(A_{\mathfrak{p}} \) is a complete intersection by Lemma 8.2.

\[\square\]

Lemma 8.7. Let \(A \) be a Noetherian ring. Then \(A \) is a local complete intersection if and only if \(A_{\mathfrak{m}} \) is a complete intersection for every maximal ideal \(\mathfrak{m} \) of \(A \).

Proof. This follows immediately from Lemma 8.6 and the definitions.

\[\square\]

Lemma 8.8. Let \(S \) be a finite type algebra over a field \(k \).

1. for a prime \(q \subset S \) the local ring \(S_q \) is a complete intersection in the sense of Algebra, Definition 133.3 if and only if \(S_q \) is a complete intersection in the sense of Definition 8.3.4, and
2. \(S \) is a local complete intersection in the sense of Algebra, Definition 133.1 if and only if \(S \) is a local complete intersection in the sense of Definition 8.5.
Proof. Proof of (1). Let $k[x_1, \ldots, x_n] \to S$ be a surjection. Let $\mathfrak{p} \subset k[x_1, \ldots, x_n]$ be the prime ideal corresponding to q. Let $I \subset k[x_1, \ldots, x_n]$ be the kernel of our surjection. Note that $k[x_1, \ldots, x_n]/\mathfrak{p} \to S_q$ is surjective with kernel $I_\mathfrak{p}$. Observe that $k[x_1, \ldots, x_n]$ is a regular ring by Algebra, Proposition 113.2. Hence the equivalence of the two notions in (1) follows by combining Lemma 8.3 with Algebra, Lemma 133.7.

Having proved (1) the equivalence in (2) follows from the definition and Algebra, Lemma 133.9. □

Lemma 8.9. Let $A \to B$ be a flat local homomorphism of Noetherian local rings. Then the following are equivalent

1. B is a complete intersection,
2. A and $B/\mathfrak{m}AB$ are complete intersections.

Proof. Now that the definition makes sense this is a trivial reformulation of the (nontrivial) Proposition 8.4. □

9. Local complete intersection maps

Let $A \to B$ be a local homomorphism of Noetherian complete local rings. A consequence of the Cohen structure theorem is that we can find a commutative diagram

\[
\begin{array}{ccc}
S & \longrightarrow & B \\
\downarrow & & \downarrow \\
A & \uparrow & \\
\end{array}
\]

of Noetherian complete local rings with $S \to B$ surjective, $A \to S$ flat, and $S/\mathfrak{m}A S$ a regular local ring. This follows from More on Algebra, Lemma 38.3. Let us (temporarily) say $A \to S \to B$ is a good factorization of $A \to B$ if S is a Noetherian local ring, $A \to S \to B$ are local ring maps, $S \to B$ surjective, $A \to S$ flat, and $S/\mathfrak{m}A S$ regular. Let us say that $A \to B$ is a complete intersection homomorphism if there exists some good factorization $A \to S \to B$ such that the kernel of $S \to B$ is generated by a regular sequence. The following lemma shows this notion is independent of the choice of the diagram.

Lemma 9.1. Let $A \to B$ be a local homomorphism of Noetherian complete local rings. The following are equivalent

1. for some good factorization $A \to S \to B$ the kernel of $S \to B$ is generated by a regular sequence, and
2. for every good factorization $A \to S \to B$ the kernel of $S \to B$ is generated by a regular sequence.

Proof. Let $A \to S \to B$ be a good factorization. As B is complete we obtain a factorization $A \to S^\wedge \to B$ where S^\wedge is the completion of S. Note that this is also a good factorization: The ring map $S \to S^\wedge$ is flat (Algebra, Lemma 96.2), hence $A \to S^\wedge$ is flat. The ring $S^\wedge/\mathfrak{m}A S^\wedge = (S/\mathfrak{m}A S)^\wedge$ is regular since $S/\mathfrak{m}A S$ is regular (More on Algebra, Lemma 32.4). Let f_1, \ldots, f_r be a minimal sequence of generators of $\text{Ker}(S \to B)$. We will use without further mention that an ideal in a Noetherian local ring is generated by a regular sequence if and only if any minimal set of generators is a regular sequence. Observe that f_1, \ldots, f_r is a regular sequence
in \(S \) if and only if \(f_1, \ldots, f_r \) is a regular sequence in the completion \(S^\wedge \) by Algebra, Lemma \[67.5\]. Moreover, we have

\[
S^\wedge/(f_1, \ldots, f_r)R^\wedge = (S/(f_1, \ldots, f_n))^\wedge = B^\wedge = B
\]

because \(B \) is \(\mathfrak{m}_B \)-adically complete (first equality by Algebra, Lemma \[96.1\]). Thus the kernel of \(S \to B \) is generated by a regular sequence if and only if the kernel of \(S^\wedge \to B \) is generated by a regular sequence. Hence it suffices to consider good factorizations where \(S \) is complete.

Assume we have two factorizations \(A \to S \to B \) and \(A \to S' \to B \) with \(S \) and \(S' \) complete. By More on Algebra, Lemma \[38.4\] the ring \(S \times_B S' \) is a Noetherian complete local ring. Hence, using More on Algebra, Lemma \[38.3\] we can choose a good factorization \(A \to S'' \to S \times_B S' \) with \(S'' \) complete. Thus it suffices to show: If \(A \to S'' \to S \to B \) are comparable good factorizations, then \(\text{Ker}(S \to B) \) is generated by a regular sequence if and only if \(\text{Ker}(S' \to B) \) is generated by a regular sequence.

Let \(A \to S'' \to S \to B \) be comparable good factorizations. First, since \(S'/\mathfrak{m}_R S' \to S/\mathfrak{m}_R S \) is a surjection of regular local rings, the kernel is generated by a regular sequence \(\pi_1, \ldots, \pi_\ell \in \mathfrak{m}_S/\mathfrak{m}_RS' \) which can be extended to a regular system of parameters for the regular local ring \(S'/\mathfrak{m}_RS' \), see (Algebra, Lemma \[105.4\]). Set \(I = \text{Ker}(S'' \to S) \). By flatness of \(S \) over \(R \) we have

\[
I/\mathfrak{m}_R I = \text{Ker}(S'/\mathfrak{m}_RS' \to S/\mathfrak{m}_RS) = (\pi_1, \ldots, \pi_\ell).
\]

Choose lifts \(x_1, \ldots, x_\ell \in I \). These lifts form a regular sequence generating \(I \) as \(S' \) is flat over \(R \), see Algebra, Lemma \[98.3\].

We conclude that if also \(\text{Ker}(S \to B) \) is generated by a regular sequence, then so is \(\text{Ker}(S' \to B) \), see More on Algebra, Lemmas \[29.13\] and \[29.7\]. Conversely, assume that \(J = \text{Ker}(S' \to B) \) is generated by a regular sequence. Because the generators \(x_1, \ldots, x_\ell \) of \(I \) map to linearly independent elements of \(\mathfrak{m}_{S'}/\mathfrak{m}_{S'}^2 \), we see that \(I/\mathfrak{m}_S I \to J/\mathfrak{m}_S J \) is injective. Hence there exists a minimal system of generators \(x_1, \ldots, x_\ell, y_1, \ldots, y_d \) for \(J \). Then \(x_1, \ldots, x_\ell, y_1, \ldots, y_d \) is a regular sequence and it follows that the images of \(y_1, \ldots, y_d \) in \(S \) form a regular sequence generating \(\text{Ker}(S \to B) \). This finishes the proof of the lemma. \(\square \)

In the following proposition observe that the condition on vanishing of \(\text{Tor} \)'s applies in particular if \(B \) has finite tor dimension over \(A \) and thus in particular if \(B \) is flat over \(A \).

Proposition 9.2. Let \(A \to B \) be a local homomorphism of Noetherian local rings. Then the following are equivalent:

1. \(B \) is a complete intersection and \(\text{Tor}_p^A(B, A/\mathfrak{m}_A) \) is nonzero for only finitely many \(p \).
2. \(A \) is a complete intersection and \(A^\wedge \to B^\wedge \) is a complete intersection homomorphism in the sense defined above.

Proof. Let \(F_\bullet \to A/\mathfrak{m}_A \) be a resolution by finite free \(A \)-modules. Observe that \(\text{Tor}_p^A(B, A/\mathfrak{m}_A) \) is the \(p \)th homology of the complex \(F_\bullet \otimes_A B \). Let \(F_\bullet^\wedge = F_\bullet \otimes_A A^\wedge \) be the completion. Then \(F_\bullet^\wedge \) is a resolution of \(A^\wedge/\mathfrak{m}_A^\wedge \) by finite free \(A^\wedge \)-modules...
(as $A \to A^\wedge$ is flat and completion on finite modules is exact, see Algebra, Lemmas 96.1 and 96.2). It follows that

$$F^\wedge \otimes_{A^\wedge} B^\wedge = F \otimes_A B \otimes_B B^\wedge$$

By flatness of $B \to B^\wedge$ we conclude that

$$\text{Tor}_p^A(B^\wedge, A^\wedge/\mathfrak{m}_A^\wedge) = \text{Tor}_p^A(B, A/\mathfrak{m}_A) \otimes_B B^\wedge$$

In this way we see that the condition in (1) on the local ring map $A \to B$ is equivalent to the same condition for the local ring map $A^\wedge \to B^\wedge$. Thus we may assume A and B are complete local Noetherian rings (since the other conditions are formulated in terms of the completions in any case).

Assume A and B are complete local Noetherian rings. Choose a diagram

$$\begin{array}{ccc}
S & \to & B \\
\uparrow & & \uparrow \\
R & \to & A
\end{array}$$

as in More on Algebra, Lemma 38.3. Let $I = \text{Ker}(R \to A)$ and $J = \text{Ker}(S \to B)$. The proposition now follows from Lemma 7.6. \qed

09QC Remark 9.3. It appears difficult to define a good notion of “local complete intersection homomorphisms” for maps between general Noetherian rings. The reason is that, for a local Noetherian ring A, the fibres of $A \to A^\wedge$ are not local complete intersection rings. Thus, if $A \to B$ is a local homomorphism of local Noetherian rings, and the map of completions $A^\wedge \to B^\wedge$ is a complete intersection homomorphism in the sense defined above, then $(A_p)^\wedge \to (B_q)^\wedge$ is in general not a complete intersection homomorphism in the sense defined above. A solution can be had by working exclusively with excellent Noetherian rings. More generally, one could work with those Noetherian rings whose formal fibres are complete intersections, see [Rod87]. We will develop this theory in Dualizing Complexes, Section 23.

To finish of this section we compare the notion defined above with the notion introduced in More on Algebra, Section 8.

09QD Lemma 9.4. Consider a commutative diagram

$$\begin{array}{ccc}
S & \to & B \\
\downarrow & & \downarrow \\
A & \to & S
\end{array}$$

of Noetherian local rings with $S \to B$ surjective, $A \to S$ flat, and $S/\mathfrak{m}_A S$ a regular local ring. The following are equivalent

1. $\text{Ker}(S \to B)$ is generated by a regular sequence, and
2. $A^\wedge \to B^\wedge$ is a complete intersection homomorphism as defined above.

Proof. Omitted. Hint: the proof is identical to the argument given in the first paragraph of the proof of Lemma 9.1. \qed

09QE Lemma 9.5. Let A be a Noetherian ring. Let $A \to B$ be a finite type ring map. The following are equivalent
(1) $A \to B$ is a local complete intersection in the sense of More on Algebra, Definition 32.2.
(2) for every prime $q \subset B$ and with $p = A \cap q$ the ring map $(A_p)^\wedge \to (B_q)^\wedge$ is a complete intersection homomorphism in the sense defined above.

Proof. Choose a surjection $R = A[x_1, \ldots, x_n] \to B$. Observe that $A \to R$ is flat with regular fibres. Let I be the kernel of $R \to B$. Assume (2). Then we see that I is locally generated by a regular sequence by Lemma 9.4 and Algebra, Lemma 67.6. In other words, (1) holds. Conversely, assume (1). Then after localizing on R and B we can assume that I is generated by a Koszul regular sequence. By More on Algebra, Lemma 29.7 we find that I is locally generated by a regular sequence. Hence (2) hold by Lemma 9.4. Some details omitted. □

Lemma 9.6. Let A be a Noetherian ring. Let $A \to B$ be a finite type ring map such that the image of $\text{Spec}(B) \to \text{Spec}(A)$ contains all closed points of $\text{Spec}(A)$. Then the following are equivalent

1. B is a complete intersection and $A \to B$ has finite tor dimension,
2. A is a complete intersection and $A \to B$ is a local complete intersection in the sense of More on Algebra, Definition 32.2.

Proof. This is a reformulation of Proposition 9.2 via Lemma 9.5. We omit the details. □

10. Smooth ring maps and diagonals

Lemma 10.1. Let $A \to B$ be a local ring homomorphism of Noetherian local rings such that B is flat and essentially of finite type over A. If $B \otimes_A B \to B$ is a perfect ring map, i.e., if B has finite tor dimension over $B \otimes_A B$, then B is the localization of a smooth A-algebra.

Proof. As B is essentially of finite type over A, so is $B \otimes_A B$ and in particular $B \otimes_A B$ is Noetherian. Hence the quotient B of $B \otimes_A B$ is pseudo-coherent over $B \otimes_A B$ (More on Algebra, Lemma 62.18) which explains why perfectness of the ring map (More on Algebra, Definition 76.1) agrees with the condition of finite tor dimension.

We may write $B = R/K$ where R is the localization of $A[x_1, \ldots, x_n]$ at a prime ideal and $K \subset R$ is an ideal. Denote $m \subset R \otimes_A R$ the maximal ideal which is the inverse image of the maximal ideal of B via the surjection $R \otimes_A R \to B \otimes_A B \to B$. Then we have surjections

$$(R \otimes_A R)_m \to (B \otimes_A B)_m \to B$$

and hence ideals $I \subset J \subset (R \otimes_A R)_m$ as in Lemma 7.4. We conclude that $I/mI \to J/mJ$ is injective.

Let $K = (f_1, \ldots, f_r)$ with r minimal. We may and do assume that $f_i \in R$ is the image of an element of $A[x_1, \ldots, x_n]$ which we also denote f_i. Observe that I is generated by $f_1 \otimes 1, \ldots, f_r \otimes 1$ and $1 \otimes f_1, \ldots, 1 \otimes f_r$. We claim that this is a minimal set of generators of I. Namely, if k is the common residue field of R, B,

$(R \otimes_A R)_m$, and $(B \otimes_A B)_m$ then we have a map $R \otimes_A R \to R \otimes_A \kappa \oplus \kappa \otimes_A R$ which factors through $(R \otimes_A R)_m$. Since B is flat over A and since we have the short exact sequence $0 \to K \to R \to B \to 0$ we see that $K \otimes_A \kappa \subset R \otimes_A \kappa$, see Algebra, Lemma 38.12. Thus restricting the map $(R \otimes_A R)_m \to R \otimes_A \kappa \oplus \kappa \otimes_A R$ to I we obtain a map

$$I \to K \otimes_A \kappa \oplus \kappa \otimes_A K \to K \otimes_B \kappa \oplus \kappa \otimes_B K.$$

The elements $f_1 \otimes 1, \ldots, f_r \otimes 1, 1 \otimes f_1, \ldots, 1 \otimes f_r$ map to a basis of the target of this map, since by Nakayama’s lemma (Algebra, Lemma 10.1) f_1, \ldots, f_r map to a basis of $K \otimes_B \kappa$. This proves our claim.

The ideal J is generated by $f_1 \otimes 1, \ldots, f_r \otimes 1$ and the elements $x_1 \otimes 1 - 1 \otimes x_1, \ldots, x_n \otimes 1 - 1 \otimes x_n$ (for the proof it suffices to see that these elements are contained in the ideal J). Now we can write

$$f_i \otimes 1 - 1 \otimes f_i = \sum g_{ij}(x_j \otimes 1 - 1 \otimes x_j)$$

for some g_{ij} in $(R \otimes_A R)_m$. This is a general fact about elements of $A[x_1, \ldots, x_n]$ whose proof we omit. Denote $a_{ij} \in \kappa$ the image of g_{ij}. Another computation shows that a_{ij} is the image of $\partial f_i/\partial x_j$ in κ. The injectivity of $I/mI \to J/mJ$ and the remarks made above forces the matrix (a_{ij}) to have maximal rank r. Set

$$C = A[x_1, \ldots, x_n]/(f_1, \ldots, f_r)$$

and consider the naive cotangent complex $NL_{C/A} \cong (C^{\oplus r} \to C^{\oplus n})$ where the map is given by the matrix of partial derivatives. Thus $NL_{C/A} \otimes_A B$ is isomorphic to a free B-module of rank $n - r$ placed in degree 0. Hence C_g is smooth over A for some $g \in C$ mapping to a unit in B, see Algebra, Lemma 135.12. This finishes the proof. □

Lemma 10.2. Let $A \to B$ be a flat finite type ring map of Noetherian rings. If $B \otimes_A B \to B$ is a perfect ring map, i.e., if B has finite tor dimension over $B \otimes_A B$, then B is a smooth A-algebra.

Proof. This follows from Lemma 10.1 and general facts about smooth ring maps, see Algebra, Lemmas 135.12 and 135.13. Alternatively, the reader can slightly modify the proof of Lemma 10.1 to prove this lemma. □

11. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields
(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypercoverings</td>
<td>27</td>
</tr>
<tr>
<td>Schemes</td>
<td></td>
</tr>
<tr>
<td>Hypercoverings</td>
<td>27</td>
</tr>
<tr>
<td>Schemes</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>26</td>
</tr>
<tr>
<td>Constructions of Schemes</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>27</td>
</tr>
<tr>
<td>Properties of Schemes</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>28</td>
</tr>
<tr>
<td>Morphisms of Schemes</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>29</td>
</tr>
<tr>
<td>Cohomology of Schemes</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>30</td>
</tr>
<tr>
<td>Divisors</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>31</td>
</tr>
<tr>
<td>Limits of Schemes</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>32</td>
</tr>
<tr>
<td>Varieties</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>33</td>
</tr>
<tr>
<td>Topologies on Schemes</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>34</td>
</tr>
<tr>
<td>Descent</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>35</td>
</tr>
<tr>
<td>Derived Categories of Schemes</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>36</td>
</tr>
<tr>
<td>More on Morphisms</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>37</td>
</tr>
<tr>
<td>More on Flatness</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>38</td>
</tr>
<tr>
<td>Groupoid Schemes</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>39</td>
</tr>
<tr>
<td>More on Groupoid Schemes</td>
<td></td>
</tr>
<tr>
<td>Schemes</td>
<td>40</td>
</tr>
<tr>
<td>Étale Morphisms of Schemes</td>
<td></td>
</tr>
<tr>
<td>Topics in Scheme Theory</td>
<td></td>
</tr>
<tr>
<td>Chow Homology</td>
<td>41</td>
</tr>
<tr>
<td>Intersection Theory</td>
<td></td>
</tr>
<tr>
<td>Picard Schemes of Curves</td>
<td>43</td>
</tr>
<tr>
<td>Weil Cohomology Theories</td>
<td></td>
</tr>
<tr>
<td>Adequate Modules</td>
<td>45</td>
</tr>
<tr>
<td>Dualizing Complexes</td>
<td></td>
</tr>
<tr>
<td>Duality for Schemes</td>
<td>46</td>
</tr>
<tr>
<td>Discriminants and Differences</td>
<td></td>
</tr>
<tr>
<td>Local Cohomology</td>
<td>49</td>
</tr>
<tr>
<td>Algebraic and Formal Geometry</td>
<td></td>
</tr>
<tr>
<td>Algebraic Curves</td>
<td>50</td>
</tr>
<tr>
<td>Resolution of Surfaces</td>
<td></td>
</tr>
<tr>
<td>Semistable Reduction</td>
<td>51</td>
</tr>
<tr>
<td>Fundamental Groups of Schemes</td>
<td></td>
</tr>
<tr>
<td>Étale Cohomology</td>
<td>54</td>
</tr>
<tr>
<td>Crystalline Cohomology</td>
<td></td>
</tr>
<tr>
<td>Pro-étale Cohomology</td>
<td>56</td>
</tr>
<tr>
<td>More Étale Cohomology</td>
<td></td>
</tr>
<tr>
<td>The Trace Formula</td>
<td>58</td>
</tr>
<tr>
<td>Algebraic Spaces</td>
<td>60</td>
</tr>
<tr>
<td>Algebraic Spaces</td>
<td></td>
</tr>
<tr>
<td>Properties of Algebraic Spaces</td>
<td>61</td>
</tr>
<tr>
<td>Morphisms of Algebraic Spaces</td>
<td></td>
</tr>
<tr>
<td>Decent Algebraic Spaces</td>
<td>62</td>
</tr>
<tr>
<td>Cohomology of Algebraic Spaces</td>
<td></td>
</tr>
<tr>
<td>Limits of Algebraic Spaces</td>
<td>63</td>
</tr>
<tr>
<td>Divisors on Algebraic Spaces</td>
<td></td>
</tr>
<tr>
<td>Algebraic Spaces over Fields</td>
<td>67</td>
</tr>
<tr>
<td>Miscellany</td>
<td></td>
</tr>
<tr>
<td>Examples</td>
<td>105</td>
</tr>
<tr>
<td>Exercises</td>
<td>106</td>
</tr>
<tr>
<td>Guide to Literature</td>
<td>107</td>
</tr>
<tr>
<td>Desirables</td>
<td>108</td>
</tr>
<tr>
<td>Coding Style</td>
<td>109</td>
</tr>
</tbody>
</table>
References

