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1. Introduction

0DWF This chapter studies relative duality for morphisms of schemes and the dualizing
complex on a scheme. A reference is [Har66].

Dualizing complexes for Noetherian rings were defined and studied in Dualizing
Complexes, Section 15 ff. In this chapter we continue this by studying dualizing
complexes on schemes, see Section 2.

The bulk of this chapter is devoted to studying the right adjoint of pushforward in
the setting of derived categories of sheaves of modules with quasi-coherent coho-
mology sheaves. See Sections 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, and 15. Here we follow
the papers [Nee96], [LN07], [Lip09], and [Nee14].

We discuss the important and useful upper shriek functors f ! for separated mor-
phisms of finite type between Noetherian schemes in Sections 16, 17, and 18 culmi-
nating in the overview Section 19.

In Section 20 we explain alternative theory of duality and dualizing complexes when
working over a fixed locally Noetherian base endowed with a dualizing complex (this
section corresponds to a remark in Hartshorne’s book).

In the remaining sections we give a few applications.

This chapter is continued by the chapter on duality on algebraic spaces, see Duality
for Spaces, Section 1.

2. Dualizing complexes on schemes

0A85 We define a dualizing complex on a locally Noetherian scheme to be a complex
which affine locally comes from a dualizing complex on the corresponding ring.
This is not completely standard but agrees with all definitions in the literature on
Noetherian schemes of finite dimension.

Lemma 2.1.0A86 Let X be a locally Noetherian scheme. Let K be an object of D(OX).
The following are equivalent

(1) For every affine open U = Spec(A) ⊂ X there exists a dualizing complex
ω•

A for A such that K|U is isomorphic to the image of ω•
A by the functor˜: D(A)→ D(OU ).

(2) There is an affine open covering X =
⋃
Ui, Ui = Spec(Ai) such that for

each i there exists a dualizing complex ω•
i for Ai such that K|Ui is isomor-

phic to the image of ω•
i by the functor˜: D(Ai)→ D(OUi

).

Proof. Assume (2) and let U = Spec(A) be an affine open of X. Since condition
(2) implies that K is in DQCoh(OX) we find an object ω•

A in D(A) whose associated
complex of quasi-coherent sheaves is isomorphic to K|U , see Derived Categories of
Schemes, Lemma 3.5. We will show that ω•

A is a dualizing complex for A which
will finish the proof.

Since X =
⋃
Ui is an open covering, we can find a standard open covering U =

D(f1) ∪ . . . ∪ D(fm) such that each D(fj) is a standard open in one of the affine
opens Ui, see Schemes, Lemma 11.5. Say D(fj) = D(gj) for gj ∈ Aij

. Then
Afj
∼= (Aij

)gj
and we have

(ω•
A)fj

∼= (ω•
i )gj

https://stacks.math.columbia.edu/tag/0A86
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in the derived category by Derived Categories of Schemes, Lemma 3.5. By Dualizing
Complexes, Lemma 15.6 we find that the complex (ω•

A)fj is a dualizing complex over
Afj for j = 1, . . . ,m. This implies that ω•

A is dualizing by Dualizing Complexes,
Lemma 15.7. □

Definition 2.2.0A87 Let X be a locally Noetherian scheme. An object K of D(OX)
is called a dualizing complex if K satisfies the equivalent conditions of Lemma 2.1.

Please see remarks made at the beginning of this section.

Lemma 2.3.0A88 Let A be a Noetherian ring and let X = Spec(A). Let K,L be objects
of D(A). If K ∈ DCoh(A) and L has finite injective dimension, then

RHomOX
(K̃, L̃) = ˜RHomA(K,L)

in D(OX).

Proof. We may assume that L is given by a finite complex I• of injective A-
modules. By induction on the length of I• and compatibility of the constructions
with distinguished triangles, we reduce to the case that L = I[0] where I is an
injective A-module. In this case, Derived Categories of Schemes, Lemma 10.8, tells
us that the nth cohomology sheaf of RHomOX

(K̃, L̃) is the sheaf associated to the
presheaf

D(f) 7−→ Extn
Af

(K ⊗A Af , I ⊗A Af )
Since A is Noetherian, the Af -module I ⊗A Af is injective (Dualizing Complexes,
Lemma 3.8). Hence we see that

Extn
Af

(K ⊗A Af , I ⊗A Af ) = HomAf
(H−n(K ⊗A Af ), I ⊗A Af )

= HomAf
(H−n(K)⊗A Af , I ⊗A Af )

= HomA(H−n(K), I)⊗A Af

The last equality because H−n(K) is a finite A-module, see Algebra, Lemma 10.2.
This proves that the canonical map

˜RHomA(K,L) −→ RHomOX
(K̃, L̃)

is a quasi-isomorphism in this case and the proof is done. □

Lemma 2.4.0G4I Let X be a Noetherian scheme. Let K,L,M ∈ DQCoh(OX). Then
the map

RHom(L,M)⊗L
OX

K −→ RHom(RHom(K,L),M)
of Cohomology, Lemma 42.9 is an isomorphism in the following two cases

(1) K ∈ D−
Coh(OX), L ∈ D+

Coh(OX), and M affine locally has finite injective
dimension (see proof), or

(2) K and L are in DCoh(OX), the object RHom(L,M) has finite tor dimen-
sion, and L and M affine locally have finite injective dimension (in partic-
ular L and M are bounded).

Proof. Proof of (1). We say M has affine locally finite injective dimension if X has
an open covering by affines U = Spec(A) such that the object ofD(A) corresponding
to M |U (Derived Categories of Schemes, Lemma 3.5) has finite injective dimension1.

1This condition is independent of the choice of the affine open cover of the Noetherian scheme
X. Details omitted.

https://stacks.math.columbia.edu/tag/0A87
https://stacks.math.columbia.edu/tag/0A88
https://stacks.math.columbia.edu/tag/0G4I
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To prove the lemma we may replace X by U , i.e., we may assume X = Spec(A) for
some Noetherian ring A. Observe that RHom(K,L) is in D+

Coh(OX) by Derived
Categories of Schemes, Lemma 11.5. Moreover, the formation of the left and right
hand side of the arrow commutes with the functor D(A)→ DQCoh(OX) by Lemma
2.3 and Derived Categories of Schemes, Lemma 10.8 (to be sure this uses the
assumptions on K, L, M and what we just proved about RHom(K,L)). Then
finally the arrow is an isomorphism by More on Algebra, Lemmas 98.1 part (2).

Proof of (2). We argue as above. A small change is that here we get RHom(K,L)
in DCoh(OX) because affine locally (which is allowable by Lemma 2.3) we may
appeal to Dualizing Complexes, Lemma 15.2. Then we finally conclude by More
on Algebra, Lemma 98.2. □

Lemma 2.5.0A89 Let K be a dualizing complex on a locally Noetherian scheme X.
Then K is an object of DCoh(OX) and D = RHomOX

(−,K) induces an anti-
equivalence

D : DCoh(OX) −→ DCoh(OX)
which comes equipped with a canonical isomorphism id → D ◦ D. If X is quasi-
compact, then D exchanges D+

Coh(OX) and D−
Coh(OX) and induces an equivalence

Db
Coh(OX)→ Db

Coh(OX).

Proof. Let U ⊂ X be an affine open. Say U = Spec(A) and let ω•
A be a dualizing

complex for A corresponding to K|U as in Lemma 2.1. By Lemma 2.3 the diagram

DCoh(A) //

R HomA(−,ω•
A)
��

DCoh(OU )

R HomOX
(−,K|U )

��
DCoh(A) // D(OU )

commutes. We conclude that D sends DCoh(OX) into DCoh(OX). Moreover, the
canonical map

L −→ RHomOX
(K,K)⊗L

OX
L −→ RHomOX

(RHomOX
(L,K),K)

(using Cohomology, Lemma 42.9 for the second arrow) is an isomorphism for all L
because this is true on affines by Dualizing Complexes, Lemma 15.32 and we have
already seen on affines that we recover what happens in algebra. The statement
on boundedness properties of the functor D in the quasi-compact case also follows
from the corresponding statements of Dualizing Complexes, Lemma 15.3. □

Let X be a locally ringed space. Recall that an object L of D(OX) is invertible if
it is an invertible object for the symmetric monoidal structure on D(OX) given by
derived tensor product. In Cohomology, Lemma 52.2 we have seen this means L
is perfect and there is an open covering X =

⋃
Ui such that L|Ui

∼= OUi [−ni] for
some integers ni. In this case, the function

x 7→ nx, where nx is the unique integer such that Hnx(Lx) ̸= 0

is locally constant on X. In particular, we have L =
⊕
Hn(L)[−n] which gives a

well defined complex of OX -modules (with zero differentials) representing L.

2An alternative is to first show that R HomOX
(K, K) = OX by working affine locally and then

use Lemma 2.4 part (2) to see the map is an isomorphism.

https://stacks.math.columbia.edu/tag/0A89
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Lemma 2.6.0ATP Let X be a locally Noetherian scheme. If K and K ′ are dualizing
complexes on X, then K ′ is isomorphic to K ⊗L

OX
L for some invertible object L

of D(OX).

Proof. Set
L = RHomOX

(K,K ′)
This is an invertible object of D(OX), because affine locally this is true, see Dual-
izing Complexes, Lemma 15.5 and its proof. The evaluation map L ⊗L

OX
K → K ′

is an isomorphism for the same reason. □

Lemma 2.7.0AWF Let X be a locally Noetherian scheme. Let ω•
X be a dualizing complex

on X. Then X is universally catenary and the function X → Z defined by
x 7−→ δ(x) such that ω•

X,x[−δ(x)] is a normalized dualizing complex over OX,x

is a dimension function.

Proof. Immediate from the affine case Dualizing Complexes, Lemma 17.3 and the
definitions. □

Lemma 2.8.0ECM Let X be a locally Noetherian scheme. Let ω•
X be a dualizing complex

on X with associated dimension function δ. Let F be a coherent OX-module. Set
E i = Ext−i

OX
(F , ω•

X). Then E i is a coherent OX-module and for x ∈ X we have
(1) E i

x is nonzero only for δ(x) ≤ i ≤ δ(x) + dim(Supp(Fx)),
(2) dim(Supp(E i+δ(x)

x )) ≤ i,
(3) depth(Fx) is the smallest integer i ≥ 0 such that E i+δ(x)

x ̸= 0, and
(4) we have x ∈ Supp(

⊕
j≤i Ej)⇔ depthOX,x

(Fx) + δ(x) ≤ i.

Proof. Lemma 2.5 tells us that E i is coherent. Choosing an affine neighbourhood
of x and using Derived Categories of Schemes, Lemma 10.8 and More on Algebra,
Lemma 99.2 part (3) we have

E i
x = Ext−i

OX
(F , ω•

X)x = Ext−i
OX,x

(Fx, ω
•
X,x) = Extδ(x)−i

OX,x
(Fx, ω

•
X,x[−δ(x)])

By construction of δ in Lemma 2.7 this reduces parts (1), (2), and (3) to Dualizing
Complexes, Lemma 16.5. Part (4) is a formal consequence of (3) and (1). □

3. Right adjoint of pushforward

0A9D References for this section and the following are [Nee96], [LN07], [Lip09], and
[Nee14].
Let f : X → Y be a morphism of schemes. In this section we consider the right
adjoint to the functor Rf∗ : DQCoh(OX) → DQCoh(OY ). In the literature, if this
functor exists, then it is sometimes denoted f×. This notation is not universally
accepted and we refrain from using it. We will not use the notation f ! for such a
functor, as this would clash (for general morphisms f) with the notation in [Har66].

Lemma 3.1.0A9E This is almost the
same as [Nee96,
Example 4.2].

Let f : X → Y be a morphism between quasi-separated and quasi-
compact schemes. The functor Rf∗ : DQCoh(X)→ DQCoh(Y ) has a right adjoint.

Proof. We will prove a right adjoint exists by verifying the hypotheses of Derived
Categories, Proposition 38.2. First off, the category DQCoh(OX) has direct sums,
see Derived Categories of Schemes, Lemma 3.1. The category DQCoh(OX) is com-
pactly generated by Derived Categories of Schemes, Theorem 15.3. Since X and

https://stacks.math.columbia.edu/tag/0ATP
https://stacks.math.columbia.edu/tag/0AWF
https://stacks.math.columbia.edu/tag/0ECM
https://stacks.math.columbia.edu/tag/0A9E
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Y are quasi-compact and quasi-separated, so is f , see Schemes, Lemmas 21.13 and
21.14. Hence the functor Rf∗ commutes with direct sums, see Derived Categories
of Schemes, Lemma 4.5. This finishes the proof. □

Example 3.2.0A9F Let A → B be a ring map. Let Y = Spec(A) and X = Spec(B)
and f : X → Y the morphism corresponding to A→ B. Then Rf∗ : DQCoh(OX)→
DQCoh(OY ) corresponds to restriction D(B)→ D(A) via the equivalences D(B)→
DQCoh(OX) and D(A)→ DQCoh(OY ). Hence the right adjoint corresponds to the
functor K 7−→ RHom(B,K) of Dualizing Complexes, Section 13.

Example 3.3.0A9G If f : X → Y is a separated finite type morphism of Noetherian
schemes, then the right adjoint of Rf∗ : DQCoh(OX)→ DQCoh(OY ) does not map
DCoh(OY ) into DCoh(OX). Namely, let k be a field and consider the morphism
f : A1

k → Spec(k). By Example 3.2 this corresponds to the question of whether
RHom(B,−) maps DCoh(A) into DCoh(B) where A = k and B = k[x]. This is not
true because

RHom(k[x], k) =
(∏

n≥0
k
)

[0]

which is not a finite k[x]-module. Hence a(OY ) does not have coherent cohomology
sheaves.

Example 3.4.0A9H If f : X → Y is a proper or even finite morphism of Noetherian
schemes, then the right adjoint of Rf∗ : DQCoh(OX)→ DQCoh(OY ) does not map
D−

QCoh(OY ) into D−
QCoh(OX). Namely, let k be a field, let k[ϵ] be the dual numbers

over k, let X = Spec(k), and let Y = Spec(k[ϵ]). Then Exti
k[ϵ](k, k) is nonzero for

all i ≥ 0. Hence a(OY ) is not bounded above by Example 3.2.

Lemma 3.5.0A9I Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes. Let a : DQCoh(OY )→ DQCoh(OX) be the right adjoint to Rf∗ of Lemma
3.1. Then a maps D+

QCoh(OY ) into D+
QCoh(OX). In fact, there exists an integer N

such that Hi(K) = 0 for i ≤ c implies Hi(a(K)) = 0 for i ≤ c−N .

Proof. By Derived Categories of Schemes, Lemma 4.1 the functor Rf∗ has fi-
nite cohomological dimension. In other words, there exist an integer N such that
Hi(Rf∗L) = 0 for i ≥ N + c if Hi(L) = 0 for i ≥ c. Say K ∈ D+

QCoh(OY ) has
Hi(K) = 0 for i ≤ c. Then

HomD(OX )(τ≤c−Na(K), a(K)) = HomD(OY )(Rf∗τ≤c−Na(K),K) = 0

by what we said above. Clearly, this implies that Hi(a(K)) = 0 for i ≤ c−N . □

Let f : X → Y be a morphism of quasi-separated and quasi-compact schemes.
Let a denote the right adjoint to Rf∗ : DQCoh(OX) → DQCoh(OY ). For every
K ∈ DQCoh(OY ) and L ∈ DQCoh(OX) we obtain a canonical map

(3.5.1)0B6H Rf∗RHomOX
(L, a(K)) −→ RHomOY

(Rf∗L,K)

Namely, this map is constructed as the composition

Rf∗RHomOX
(L, a(K))→ RHomOY

(Rf∗L,Rf∗a(K))→ RHomOY
(Rf∗L,K)

where the first arrow is Cohomology, Remark 42.11 and the second arrow is the
counit Rf∗a(K)→ K of the adjunction.

https://stacks.math.columbia.edu/tag/0A9F
https://stacks.math.columbia.edu/tag/0A9G
https://stacks.math.columbia.edu/tag/0A9H
https://stacks.math.columbia.edu/tag/0A9I
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Lemma 3.6.0A9Q Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes. Let a be the right adjoint to Rf∗ : DQCoh(OX) → DQCoh(OY ). Let
L ∈ DQCoh(OX) and K ∈ DQCoh(OY ). Then the map (3.5.1)

Rf∗RHomOX
(L, a(K)) −→ RHomOY

(Rf∗L,K)
becomes an isomorphism after applying the functor DQY : D(OY ) → DQCoh(OY )
discussed in Derived Categories of Schemes, Section 21.
Proof. The statement makes sense asDQY exists by Derived Categories of Schemes,
Lemma 21.1. Since DQY is the right adjoint to the inclusion functor DQCoh(OY )→
D(OY ) to prove the lemma we have to show that for any M ∈ DQCoh(OY ) the
map (3.5.1) induces an bijection

HomY (M,Rf∗RHomOX
(L, a(K))) −→ HomY (M,RHomOY

(Rf∗L,K))
To see this we use the following string of equalities

HomY (M,Rf∗RHomOX
(L, a(K))) = HomX(Lf∗M,RHomOX

(L, a(K)))
= HomX(Lf∗M ⊗L

OX
L, a(K))

= HomY (Rf∗(Lf∗M ⊗L
OX

L),K)
= HomY (M ⊗L

OY
Rf∗L,K)

= HomY (M,RHomOY
(Rf∗L,K))

The first equality holds by Cohomology, Lemma 28.1. The second equality by
Cohomology, Lemma 42.2. The third equality by construction of a. The fourth
equality by Derived Categories of Schemes, Lemma 22.1 (this is the important
step). The fifth by Cohomology, Lemma 42.2. □

Example 3.7.0GEU The statement of Lemma 3.6 is not true without applying the
“coherator” DQY . Indeed, suppose Y = Spec(R) and X = A1

R. Take L = OX and
K = OY . The left hand side of the arrow is in DQCoh(OY ) but the right hand side
of the arrow is isomorphic to

∏
n≥0OY which is not quasi-coherent.

Remark 3.8.0GEV In the situation of Lemma 3.6 we have
DQY (Rf∗RHomOX

(L, a(K))) = Rf∗DQX(RHomOX
(L, a(K)))

by Derived Categories of Schemes, Lemma 21.2. Thus if RHomOX
(L, a(K)) ∈

DQCoh(OX), then we can “erase” the DQY on the left hand side of the arrow. On
the other hand, if we know that RHomOY

(Rf∗L,K) ∈ DQCoh(OY ), then we can
“erase” the DQY from the right hand side of the arrow. If both are true then
we see that (3.5.1) is an isomorphism. Combining this with Derived Categories of
Schemes, Lemma 10.8 we see that Rf∗RHomOX

(L, a(K)) → RHomOY
(Rf∗L,K)

is an isomorphism if
(1) L and Rf∗L are perfect, or
(2) K is bounded below and L and Rf∗L are pseudo-coherent.

For (2) we use that a(K) is bounded below if K is bounded below, see Lemma 3.5.
Example 3.9.0GEW Let f : X → Y be a proper morphism of Noetherian schemes,
L ∈ D−

Coh(X) and K ∈ D+
QCoh(OY ). Then the map Rf∗RHomOX

(L, a(K)) →
RHomOY

(Rf∗L,K) is an isomorphism. Namely, the complexes L and Rf∗L are
pseudo-coherent by Derived Categories of Schemes, Lemmas 10.3 and 11.3 and the
discussion in Remark 3.8 applies.

https://stacks.math.columbia.edu/tag/0A9Q
https://stacks.math.columbia.edu/tag/0GEU
https://stacks.math.columbia.edu/tag/0GEV
https://stacks.math.columbia.edu/tag/0GEW
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Lemma 3.10.0B6I Let f : X → Y be a morphism of quasi-separated and quasi-
compact schemes. For all L ∈ DQCoh(OX) and K ∈ DQCoh(OY ) (3.5.1) induces
an isomorphism RHomX(L, a(K))→ RHomY (Rf∗L,K) of global derived homs.

Proof. By the construction in Cohomology, Section 44 we have

RHomX(L, a(K)) = RΓ(X,RHomOX
(L, a(K))) = RΓ(Y,Rf∗RHomOX

(L, a(K)))

and
RHomY (Rf∗L,K) = RΓ(Y,RHomOY

(Rf∗L,K))
Thus the lemma is a consequence of Lemma 3.6. Namely, a map E → E′ in
D(OY ) which induces an isomorphism DQY (E) → DQY (E′) induces a quasi-
isomorphism RΓ(Y,E) → RΓ(Y,E′). Indeed we have Hi(Y,E) = Exti

Y (OY , E) =
Hom(OY [−i], E) = Hom(OY [−i], DQY (E)) because OY [−i] is in DQCoh(OY ) and
DQY is the right adjoint to the inclusion functor DQCoh(OY )→ D(OY ). □

4. Right adjoint of pushforward and restriction to opens

0E4G In this section we study the question to what extend the right adjoint of pushforward
commutes with restriction to open subschemes. This is a base change question, so
let’s first discuss this more generally.

We often want to know whether the right adjoints to pushforward commutes with
base change. Thus we consider a cartesian square

(4.0.1)0A9J

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes. Denote

a : DQCoh(OY )→ DQCoh(OX) and a′ : DQCoh(OY ′)→ DQCoh(OX′)

the right adjoints to Rf∗ and Rf ′
∗ (Lemma 3.1). Consider the base change map of

Cohomology, Remark 28.3. It induces a transformation of functors

Lg∗ ◦Rf∗ −→ Rf ′
∗ ◦ L(g′)∗

on derived categories of sheaves with quasi-coherent cohomology. Hence a trans-
formation between the right adjoints in the opposite direction

a ◦Rg∗ ←− Rg′
∗ ◦ a′

Lemma 4.1.0A9K In diagram (4.0.1) assume that g is flat or more generally that f
and g are Tor independent. Then a ◦Rg∗ ← Rg′

∗ ◦ a′ is an isomorphism.

Proof. In this case the base change map Lg∗ ◦Rf∗K −→ Rf ′
∗ ◦L(g′)∗K is an iso-

morphism for every K in DQCoh(OX) by Derived Categories of Schemes, Lemma
22.5. Thus the corresponding transformation between adjoint functors is an iso-
morphism as well. □

Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let
V ⊂ Y be a quasi-compact open subscheme and set U = f−1(V ). This gives a

https://stacks.math.columbia.edu/tag/0B6I
https://stacks.math.columbia.edu/tag/0A9K
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cartesian square
U

j′
//

f |U

��

X

f

��
V

j // Y

as in (4.0.1). By Lemma 4.1 the map ξ : a◦Rj∗ ← Rj′
∗ ◦a′ is an isomorphism where

a and a′ are the right adjoints to Rf∗ and R(f |U )∗. We obtain a transformation of
functors DQCoh(OY )→ DQCoh(OU )

(4.1.1)0A9L (j′)∗ ◦ a→ (j′)∗ ◦ a ◦Rj∗ ◦ j∗ ξ−1

−−→ (j′)∗ ◦Rj′
∗ ◦ a′ ◦ j∗ → a′ ◦ j∗

where the first arrow comes from id → Rj∗ ◦ j∗ and the final arrow from the
isomorphism (j′)∗ ◦Rj′

∗ → id. In particular, we see that (4.1.1) is an isomorphism
when evaluated on K if and only if a(K)|U → a(Rj∗(K|V ))|U is an isomorphism.

Example 4.2.0A9M There is a finite morphism f : X → Y of Noetherian schemes
such that (4.1.1) is not an isomorphism when evaluated on some K ∈ DCoh(OY ).
Namely, let X = Spec(B) → Y = Spec(A) with A = k[x, ϵ] where k is a field and
ϵ2 = 0 and B = k[x] = A/(ϵ). For n ∈ N set Mn = A/(ϵ, xn). Observe that

Exti
A(B,Mn) = Mn, i ≥ 0

because B has the free periodic resolution . . . → A → A → A with maps given
by multiplication by ϵ. Consider the object K =

⊕
Mn[n] =

∏
Mn[n] of DCoh(A)

(equality in D(A) by Derived Categories, Lemmas 33.5 and 34.2). Then we see
that a(K) corresponds to RHom(B,K) by Example 3.2 and

H0(RHom(B,K)) = Ext0
A(B,K) =

∏
n≥1

Extn
A(B.Mn) =

∏
n≥1

Mn

by the above. But this module has elements which are not annihilated by any power
of x, whereas the complex K does have every element of its cohomology annihilated
by a power of x. In other words, for the map (4.1.1) with V = D(x) and U = D(x)
and the complex K cannot be an isomorphism because (j′)∗(a(K)) is nonzero and
a′(j∗K) is zero.

Lemma 4.3.0A9N Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes. Let a be the right adjoint to Rf∗ : DQCoh(OX) → DQCoh(OY ). Let
V ⊂ Y be quasi-compact open with inverse image U ⊂ X.

(1) For every Q ∈ D+
QCoh(OY ) supported on Y \V the image a(Q) is supported

on X \U if and only if (4.1.1) is an isomorphism on all K in D+
QCoh(OY ).

(2) For every Q ∈ DQCoh(OY ) supported on Y \V the image a(Q) is supported
on X \U if and only if (4.1.1) is an isomorphism on all K in DQCoh(OY ).

(3) If a commutes with direct sums, then the equivalent conditions of (1) imply
the equivalent conditions of (2).

Proof. Proof of (1). Let K ∈ D+
QCoh(OY ). Choose a distinguished triangle

K → Rj∗K|V → Q→ K[1]
Observe that Q is in D+

QCoh(OY ) (Derived Categories of Schemes, Lemma 4.1) and
is supported on Y \ V (Derived Categories of Schemes, Definition 6.1). Applying a
we obtain a distinguished triangle

a(K)→ a(Rj∗K|V )→ a(Q)→ a(K)[1]

https://stacks.math.columbia.edu/tag/0A9M
https://stacks.math.columbia.edu/tag/0A9N
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on X. If a(Q) is supported on X \ U , then restricting to U the map a(K)|U →
a(Rj∗K|V )|U is an isomorphism, i.e., (4.1.1) is an isomorphism on K. The converse
is immediate.

The proof of (2) is exactly the same as the proof of (1).

Proof of (3). Assume the equivalent conditions of (1) hold. Set T = Y \V . We will
use the notation DQCoh,T (OY ) and DQCoh,f−1(T )(OX) to denote complexes whose
cohomology sheaves are supported on T and f−1(T ). Since a commutes with direct
sums, the strictly full, saturated, triangulated subcategory D with objects

{Q ∈ DQCoh,T (OY ) | a(Q) ∈ DQCoh,f−1(T )(OX)}

is preserved by direct sums and hence derived colimits. On the other hand, the
category DQCoh,T (OY ) is generated by a perfect object E (see Derived Categories of
Schemes, Lemma 15.4). By assumption we see that E ∈ D. By Derived Categories,
Lemma 37.3 every object Q of DQCoh,T (OY ) is a derived colimit of a system Q1 →
Q2 → Q3 → . . . such that the cones of the transition maps are direct sums of shifts
of E. Arguing by induction we see that Qn ∈ D for all n and finally that Q is in
D. Thus the equivalent conditions of (2) hold. □

Lemma 4.4.0A9P Let Y be a quasi-compact and quasi-separated scheme. Let f : X →
Y be a proper morphism. If3

(1) f is flat and of finite presentation, or
(2) Y is Noetherian

then the equivalent conditions of Lemma 4.3 part (1) hold for all quasi-compact
opens V of Y .

Proof. Let Q ∈ D+
QCoh(OY ) be supported on Y \V . To get a contradiction, assume

that a(Q) is not supported on X \ U . Then we can find a perfect complex PU on
U and a nonzero map PU → a(Q)|U (follows from Derived Categories of Schemes,
Theorem 15.3). Then using Derived Categories of Schemes, Lemma 13.10 we may
assume there is a perfect complex P on X and a map P → a(Q) whose restriction
to U is nonzero. By definition of a this map is adjoint to a map Rf∗P → Q.

The complex Rf∗P is pseudo-coherent. In case (1) this follows from Derived Cat-
egories of Schemes, Lemma 30.5. In case (2) this follows from Derived Categories
of Schemes, Lemmas 11.3 and 10.3. Thus we may apply Derived Categories of
Schemes, Lemma 17.5 and get a map I → OY of perfect complexes whose restric-
tion to V is an isomorphism such that the composition I ⊗L

OY
Rf∗P → Rf∗P → Q

is zero. By Derived Categories of Schemes, Lemma 22.1 we have I ⊗L
OY

Rf∗P =
Rf∗(Lf∗I ⊗L

OX
P ). We conclude that the composition

Lf∗I ⊗L
OX

P → P → a(Q)

is zero. However, the restriction to U is the map P |U → a(Q)|U which we assumed
to be nonzero. This contradiction finishes the proof. □

3This proof works for those morphisms of quasi-compact and quasi-separated schemes such
that Rf∗P is pseudo-coherent for all P perfect on X. It follows easily from a theorem of Kiehl
[Kie72] that this holds if f is proper and pseudo-coherent. This is the correct generality for this
lemma and some of the other results in this chapter.

https://stacks.math.columbia.edu/tag/0A9P
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5. Right adjoint of pushforward and base change, I

0AA5 The map (4.1.1) is a special case of a base change map. Namely, suppose that we
have a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes, i.e., a diagram as in (4.0.1). Assume
f and g are Tor independent. Then we can consider the morphism of functors
DQCoh(OY )→ DQCoh(OX′) given by the composition

(5.0.1)0AA6 L(g′)∗ ◦ a→ L(g′)∗ ◦ a ◦Rg∗ ◦ Lg∗ ← L(g′)∗ ◦Rg′
∗ ◦ a′ ◦ Lg∗ → a′ ◦ Lg∗

The first arrow comes from the adjunction map id → Rg∗Lg
∗ and the last arrow

from the adjunction map L(g′)∗Rg′
∗ → id. We need the assumption on Tor inde-

pendence to invert the arrow in the middle, see Lemma 4.1. Alternatively, we can
think of (5.0.1) by adjointness of L(g′)∗ and R(g′)∗ as a natural transformation

a→ a ◦Rg∗ ◦ Lg∗ ← Rg′
∗ ◦ a′ ◦ Lg∗

were again the second arrow is invertible. If M ∈ DQCoh(OX) and K ∈ DQCoh(OY )
then on Yoneda functors this map is given by

HomX(M,a(K)) = HomY (Rf∗M,K)
→ HomY (Rf∗M,Rg∗Lg

∗K)
= HomY ′(Lg∗Rf∗M,Lg∗K)
← HomY ′(Rf ′

∗L(g′)∗M,Lg∗K)
= HomX′(L(g′)∗M,a′(Lg∗K))
= HomX(M,Rg′

∗a
′(Lg∗K))

(were the arrow pointing left is invertible by the base change theorem given in
Derived Categories of Schemes, Lemma 22.5) which makes things a little bit more
explicit.

In this section we first prove that the base change map satisfies some natural com-
patibilities with regards to stacking squares as in Cohomology, Remarks 28.4 and
28.5 for the usual base change map. We suggest the reader skip the rest of this
section on a first reading.

Lemma 5.1.0ATQ Consider a commutative diagram

X ′
k
//

f ′

��

X

f

��
Y ′ l //

g′

��

Y

g

��
Z ′ m // Z

of quasi-compact and quasi-separated schemes where both diagrams are cartesian
and where f and l as well as g and m are Tor independent. Then the maps (5.0.1)

https://stacks.math.columbia.edu/tag/0ATQ
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for the two squares compose to give the base change map for the outer rectangle
(see proof for a precise statement).

Proof. It follows from the assumptions that g ◦ f and m are Tor independent
(details omitted), hence the statement makes sense. In this proof we write k∗ in
place of Lk∗ and f∗ instead of Rf∗. Let a, b, and c be the right adjoints of Lemma
3.1 for f , g, and g◦f and similarly for the primed versions. The arrow corresponding
to the top square is the composition

γtop : k∗ ◦ a→ k∗ ◦ a ◦ l∗ ◦ l∗
ξtop←−− k∗ ◦ k∗ ◦ a′ ◦ l∗ → a′ ◦ l∗

where ξtop : k∗ ◦ a′ → a ◦ l∗ is an isomorphism (hence can be inverted) and is the
arrow “dual” to the base change map l∗ ◦f∗ → f ′

∗ ◦k∗. The outer arrows come from
the canonical maps 1→ l∗ ◦ l∗ and k∗ ◦ k∗ → 1. Similarly for the second square we
have

γbot : l∗ ◦ b→ l∗ ◦ b ◦m∗ ◦m∗ ξbot←−− l∗ ◦ l∗ ◦ b′ ◦m∗ → b′ ◦m∗

For the outer rectangle we get

γrect : k∗ ◦ c→ k∗ ◦ c ◦m∗ ◦m∗ ξrect←−−− k∗ ◦ k∗ ◦ c′ ◦m∗ → c′ ◦m∗

We have (g ◦ f)∗ = g∗ ◦ f∗ and hence c = a ◦ b and similarly c′ = a′ ◦ b′. The
statement of the lemma is that γrect is equal to the composition

k∗ ◦ c = k∗ ◦ a ◦ b γtop−−→ a′ ◦ l∗ ◦ b γbot−−→ a′ ◦ b′ ◦m∗ = c′ ◦m∗

To see this we contemplate the following diagram:

k∗ ◦ a ◦ b

��

tt

k∗ ◦ a ◦ l∗ ◦ l∗ ◦ b

tt
k∗ ◦ a ◦ b ◦m∗ ◦m∗ // k∗ ◦ a ◦ l∗ ◦ l∗ ◦ b ◦m∗ ◦m∗ k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ b

ξtop

OO

��tt
k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗ ◦m∗

ξtop

OO

**

a′ ◦ l∗ ◦ b

��
k∗ ◦ k∗ ◦ a′ ◦ b′ ◦m∗

ξrect

OO

**

k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′ ◦m∗

ξbot

OO

oo

**

a′ ◦ l∗ ◦ b ◦m∗ ◦m∗

a′ ◦ l∗ ◦ l∗ ◦ b′ ◦m∗

ξbot

OO

��
a′ ◦ b′ ◦m∗

Going down the right hand side we have the composition and going down the left
hand side we have γrect. All the quadrilaterals on the right hand side of this dia-
gram commute by Categories, Lemma 28.2 or more simply the discussion preceding
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Categories, Definition 28.1. Hence we see that it suffices to show the diagram

a ◦ l∗ ◦ l∗ ◦ b ◦m∗ a ◦ b ◦m∗oo

k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗

ξtop

OO

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′

ξbot

OO

// k∗ ◦ a′ ◦ b′

ξrect

OO

becomes commutative if we invert the arrows ξtop, ξbot, and ξrect (note that this is
different from asking the diagram to be commutative). However, the diagram

a ◦ l∗ ◦ l∗ ◦ b ◦m∗

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′

ξbot

55

k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗

ξtop

ii

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′
ξtop

ii

ξbot

55

commutes by Categories, Lemma 28.2. Since the diagrams

a ◦ l∗ ◦ l∗ ◦ b ◦m∗ a ◦ b ◦moo

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′

OO

a ◦ l∗ ◦ b′oo

OO

and

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′ // a ◦ l∗ ◦ b′

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′

OO

// k∗ ◦ a′ ◦ b′

OO

commute (see references cited) and since the composition of l∗ → l∗ ◦ l∗ ◦ l∗ → l∗ is
the identity, we find that it suffices to prove that

k ◦ a′ ◦ b′ ξbot−−→ a ◦ l∗ ◦ b
ξtop−−→ a ◦ b ◦m∗

is equal to ξrect (via the identifications a ◦ b = c and a′ ◦ b′ = c′). This is the
statement dual to Cohomology, Remark 28.4 and the proof is complete. □

Lemma 5.2.0ATR Consider a commutative diagram

X ′′
g′
//

f ′′

��

X ′
g
//

f ′

��

X

f

��
Y ′′ h′

// Y ′ h // Y

of quasi-compact and quasi-separated schemes where both diagrams are cartesian
and where f and h as well as f ′ and h′ are Tor independent. Then the maps (5.0.1)
for the two squares compose to give the base change map for the outer rectangle (see
proof for a precise statement).

Proof. It follows from the assumptions that f and h ◦ h′ are Tor independent
(details omitted), hence the statement makes sense. In this proof we write g∗ in
place of Lg∗ and f∗ instead of Rf∗. Let a, a′, and a′′ be the right adjoints of

https://stacks.math.columbia.edu/tag/0ATR
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Lemma 3.1 for f , f ′, and f ′′. The arrow corresponding to the right square is the
composition

γright : g∗ ◦ a→ g∗ ◦ a ◦ h∗ ◦ h∗ ξright←−−−− g∗ ◦ g∗ ◦ a′ ◦ h∗ → a′ ◦ h∗

where ξright : g∗ ◦ a′ → a ◦ h∗ is an isomorphism (hence can be inverted) and is the
arrow “dual” to the base change map h∗ ◦ f∗ → f ′

∗ ◦ g∗. The outer arrows come
from the canonical maps 1→ h∗ ◦ h∗ and g∗ ◦ g∗ → 1. Similarly for the left square
we have

γleft : (g′)∗ ◦ a′ → (g′)∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ξleft←−−− (g′)∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ → a′′ ◦ (h′)∗

For the outer rectangle we get

γrect : k∗ ◦ a→ k∗ ◦ a ◦m∗ ◦m∗ ξrect←−−− k∗ ◦ k∗ ◦ a′′ ◦m∗ → a′′ ◦m∗

where k = g ◦ g′ and m = h ◦ h′. We have k∗ = (g′)∗ ◦ g∗ and m∗ = (h′)∗ ◦ h∗. The
statement of the lemma is that γrect is equal to the composition

k∗ ◦ a = (g′)∗ ◦ g∗ ◦ a γright−−−−→ (g′)∗ ◦ a′ ◦ h∗ γleft−−−→ a′′ ◦ (h′)∗ ◦ h∗ = a′′ ◦m∗

To see this we contemplate the following diagram

(g′)∗ ◦ g∗ ◦ a

��

ww

(g′)∗ ◦ g∗ ◦ a ◦ h∗ ◦ h∗

ss
(g′)∗ ◦ g∗ ◦ a ◦ h∗ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗ (g′)∗ ◦ g∗ ◦ g∗ ◦ a′ ◦ h∗

ξright

OO

��ss
(g′)∗ ◦ g∗ ◦ g∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗

ξright

OO

++

(g′)∗ ◦ a′ ◦ h∗

��
(g′)∗ ◦ g∗ ◦ g∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ ◦ h∗

ξleft

OO

''

++

(g′)∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗

(g′)∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ ◦ h∗

ξleft

OO

��
a′′ ◦ (h′)∗ ◦ h∗

Going down the right hand side we have the composition and going down the left
hand side we have γrect. All the quadrilaterals on the right hand side of this dia-
gram commute by Categories, Lemma 28.2 or more simply the discussion preceding
Categories, Definition 28.1. Hence we see that it suffices to show that

g∗ ◦ (g′)∗ ◦ a′′ ξleft−−−→ g∗ ◦ a′ ◦ (h′)∗
ξright−−−−→ a ◦ h∗ ◦ (h′)∗

is equal to ξrect. This is the statement dual to Cohomology, Remark 28.5 and the
proof is complete. □
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Remark 5.3.0ATS Consider a commutative diagram

X ′′
k′
//

f ′′

��

X ′
k
//

f ′

��

X

f

��
Y ′′ l′

//

g′′

��

Y ′ l //

g′

��

Y

g

��
Z ′′ m′

// Z ′ m // Z

of quasi-compact and quasi-separated schemes where all squares are cartesian and
where (f, l), (g,m), (f ′, l′), (g′,m′) are Tor independent pairs of maps. Let a, a′,
a′′, b, b′, b′′ be the right adjoints of Lemma 3.1 for f , f ′, f ′′, g, g′, g′′. Let us label
the squares of the diagram A, B, C, D as follows

A B
C D

Then the maps (5.0.1) for the squares are (where we use k∗ = Lk∗, etc)

γA : (k′)∗ ◦ a′ → a′′ ◦ (l′)∗ γB : k∗ ◦ a→ a′ ◦ l∗
γC : (l′)∗ ◦ b′ → b′′ ◦ (m′)∗ γD : l∗ ◦ b→ b′ ◦m∗

For the 2× 1 and 1× 2 rectangles we have four further base change maps

γA+B : (k ◦ k′)∗ ◦ a→ a′′ ◦ (l ◦ l′)∗

γC+D : (l ◦ l′)∗ ◦ b→ b′′ ◦ (m ◦m′)∗

γA+C : (k′)∗ ◦ (a′ ◦ b′)→ (a′′ ◦ b′′) ◦ (m′)∗

γB+D : k∗ ◦ (a ◦ b)→ (a′ ◦ b′) ◦m∗

By Lemma 5.2 we have

γA+B = γA ◦ γB , γC+D = γC ◦ γD

and by Lemma 5.1 we have

γA+C = γC ◦ γA, γB+D = γD ◦ γB

Here it would be more correct to write γA+B = (γA⋆idl∗)◦(id(k′)∗⋆γB) with notation
as in Categories, Section 28 and similarly for the others. However, we continue the
abuse of notation used in the proofs of Lemmas 5.1 and 5.2 of dropping ⋆ products
with identities as one can figure out which ones to add as long as the source and
target of the transformation is known. Having said all of this we find (a priori) two
transformations

(k′)∗ ◦ k∗ ◦ a ◦ b −→ a′′ ◦ b′′ ◦ (m′)∗ ◦m∗

namely
γC ◦ γA ◦ γD ◦ γB = γA+C ◦ γB+D

and
γC ◦ γD ◦ γA ◦ γB = γC+D ◦ γA+B

https://stacks.math.columbia.edu/tag/0ATS
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The point of this remark is to point out that these transformations are equal.
Namely, to see this it suffices to show that

(k′)∗ ◦ a′ ◦ l∗ ◦ b
γD

//

γA

��

(k′)∗ ◦ a′ ◦ b′ ◦m∗

γA

��
a′′ ◦ (l′)∗ ◦ l∗ ◦ b

γD // a′′ ◦ (l′)∗ ◦ b′ ◦m∗

commutes. This is true by Categories, Lemma 28.2 or more simply the discussion
preceding Categories, Definition 28.1.

6. Right adjoint of pushforward and base change, II

0BZF In this section we prove that the base change map of Section 5 is an isomorphism
in some cases. We first observe that it suffices to check over affine opens, provided
formation of the right adjoint of pushforward commutes with restriction to opens.

Remark 6.1.0E9S Consider a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes with (g, f) Tor independent. Let
V ⊂ Y and V ′ ⊂ Y ′ be affine opens with g(V ′) ⊂ V . Form the cartesian diagrams

U //

��

X

��
V // Y

and

U ′ //

��

X ′

��
V ′ // Y ′

Assume (4.1.1) with respect to K and the first diagram and (4.1.1) with respect to
Lg∗K and the second diagram are isomorphisms. Then the restriction of the base
change map (5.0.1)

L(g′)∗a(K) −→ a′(Lg∗K)
to U ′ is isomorphic to the base change map (5.0.1) for K|V and the cartesian
diagram

U ′ //

��

U

��
V ′ // V

This follows from the fact that (4.1.1) is a special case of the base change map (5.0.1)
and that the base change maps compose correctly if we stack squares horizontally,
see Lemma 5.2. Thus in order to check the base change map restricted to U ′ is an
isomorphism it suffices to work with the last diagram.

Lemma 6.2.0AA8 In diagram (4.0.1) assume
(1) g : Y ′ → Y is a morphism of affine schemes,
(2) f : X → Y is proper, and
(3) f and g are Tor independent.

https://stacks.math.columbia.edu/tag/0E9S
https://stacks.math.columbia.edu/tag/0AA8
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Then the base change map (5.0.1) induces an isomorphism
L(g′)∗a(K) −→ a′(Lg∗K)

in the following cases
(1) for all K ∈ DQCoh(OX) if f is flat of finite presentation,
(2) for all K ∈ DQCoh(OX) if f is perfect and Y Noetherian,
(3) for K ∈ D+

QCoh(OX) if g has finite Tor dimension and Y Noetherian.

Proof. Write Y = Spec(A) and Y ′ = Spec(A′). As a base change of an affine
morphism, the morphism g′ is affine. Let M be a perfect generator for DQCoh(OX),
see Derived Categories of Schemes, Theorem 15.3. Then L(g′)∗M is a generator for
DQCoh(OX′), see Derived Categories of Schemes, Remark 16.4. Hence it suffices to
show that (5.0.1) induces an isomorphism
(6.2.1)0E45 RHomX′(L(g′)∗M,L(g′)∗a(K)) −→ RHomX′(L(g′)∗M,a′(Lg∗K))
of global hom complexes, see Cohomology, Section 44, as this will imply the cone
of L(g′)∗a(K) → a′(Lg∗K) is zero. The structure of the proof is as follows: we
will first show that these Hom complexes are isomorphic and in the last part of the
proof we will show that the isomorphism is induced by (6.2.1).
The left hand side. Because M is perfect, the canonical map

RHomX(M,a(K))⊗L
A A′ −→ RHomX′(L(g′)∗M,L(g′)∗a(K))

is an isomorphism by Derived Categories of Schemes, Lemma 22.6. We can combine
this with the isomorphism RHomY (Rf∗M,K) = RHomX(M,a(K)) of Lemma
3.10 to get that the left hand side equals RHomY (Rf∗M,K)⊗L

A A′.
The right hand side. Here we first use the isomorphism

RHomX′(L(g′)∗M,a′(Lg∗K)) = RHomY ′(Rf ′
∗L(g′)∗M,Lg∗K)

of Lemma 3.10. Then we use the base change map Lg∗Rf∗M → Rf ′
∗L(g′)∗M is

an isomorphism by Derived Categories of Schemes, Lemma 22.5. Hence we may
rewrite this as RHomY ′(Lg∗Rf∗M,Lg∗K). Since Y , Y ′ are affine and K, Rf∗M
are in DQCoh(OY ) (Derived Categories of Schemes, Lemma 4.1) we have a canonical
map

β : RHomY (Rf∗M,K)⊗L
A A′ −→ RHomY ′(Lg∗Rf∗M,Lg∗K)

in D(A′). This is the arrow More on Algebra, Equation (99.1.1) where we have
used Derived Categories of Schemes, Lemmas 3.5 and 10.8 to translate back and
forth into algebra.

(1) If f is flat and of finite presentation, the complex Rf∗M is perfect on Y by
Derived Categories of Schemes, Lemma 30.4 and β is an isomorphism by
More on Algebra, Lemma 99.2 part (1).

(2) If f is perfect and Y Noetherian, the complex Rf∗M is perfect on Y by
More on Morphisms, Lemma 61.13 and β is an isomorphism as before.

(3) If g has finite tor dimension and Y is Noetherian, the complex Rf∗M is
pseudo-coherent on Y (Derived Categories of Schemes, Lemmas 11.3 and
10.3) and β is an isomorphism by More on Algebra, Lemma 99.2 part (4).

We conclude that we obtain the same answer as in the previous paragraph.
In the rest of the proof we show that the identifications of the left and right hand
side of (6.2.1) given in the second and third paragraph are in fact given by (6.2.1).
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To make our formulas manageable we will use (−,−)X = RHomX(−,−), use −⊗A′

in stead of −⊗L
A A′, and we will abbreviate g∗ = Lg∗ and f∗ = Rf∗. Consider the

following commutative diagram

((g′)∗M, (g′)∗a(K))X′

��

(M,a(K))X ⊗A′
α

oo

��

(f∗M,K)Y ⊗A′

��
((g′)∗M, (g′)∗a(g∗g

∗K))X′ (M,a(g∗g
∗K))X ⊗A′

α
oo (f∗M, g∗g

∗K)Y ⊗A′

µ′

''

((g′)∗M, (g′)∗g′
∗a

′(g∗K))X′

OO

��

(M, g′
∗a

′(g∗K))X ⊗A′

OO

α
oo

µ
tt

(f∗M,K)⊗A′

β

��
((g′)∗M,a′(g∗K))X′ (f ′

∗(g′)∗M, g∗K)Y ′ // (g∗f∗M, g∗K)Y ′

The arrows labeled α are the maps from Derived Categories of Schemes, Lemma
22.6 for the diagram with corners X ′, X, Y ′, Y . The upper part of the diagram
is commutative as the horizontal arrows are functorial in the entries. The middle
vertical arrows come from the invertible transformation g′

∗ ◦ a′ → a ◦ g∗ of Lemma
4.1 and therefore the middle square is commutative. Going down the left hand
side is (6.2.1). The upper horizontal arrows provide the identifications used in the
second paragraph of the proof. The lower horizontal arrows including β provide
the identifications used in the third paragraph of the proof. Given E ∈ D(A),
E′ ∈ D(A′), and c : E → E′ in D(A) we will denote µc : E ⊗ A′ → E′ the map
induced by c and the adjointness of restriction and base change; if c is clear we
write µ = µc, i.e., we drop c from the notation. The map µ in the diagram is of this
form with c given by the identification (M, g′

∗a(g∗K))X = ((g′)∗M,a′(g∗K))X′ ;
the triangle involving µ is commutative by Derived Categories of Schemes, Remark
22.7.

Observe that

(M,a(g∗g
∗K))X (f∗M, g∗g

∗K)Y (g∗f∗M, g∗K)Y ′

(M, g′
∗a

′(g∗K))X

OO

((g′)∗M,a′(g∗K))X′ (f ′
∗(g′)∗M, g∗K)Y ′

OO

is commutative by the very definition of the transformation g′
∗ ◦a′ → a◦g∗. Letting

µ′ be as above corresponding to the identification (f∗M, g∗g
∗K)X = (g∗f∗M, g∗K)Y ′ ,

then the hexagon commutes as well. Thus it suffices to show that β is equal to the
composition of (f∗M,K)Y ⊗A′ → (f∗M, g∗g

∗K)X ⊗A′ and µ′. To do this, it suf-
fices to prove the two induced maps (f∗M,K)Y → (g∗f∗M, g∗K)Y ′ are the same.
In other words, it suffices to show the diagram

RHomA(E,K)
induced by β

//

))

RHomA′(E ⊗L
A A′,K ⊗L

A A′)

RHomA(E,K ⊗L
A A′)

44
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commutes for all E,K ∈ D(A). Since this is how β is constructed in More on
Algebra, Section 99 the proof is complete. □

7. Right adjoint of pushforward and trace maps

0AWG Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes.
Let a : DQCoh(OY ) → DQCoh(OX) be the right adjoint as in Lemma 3.1. By
Categories, Section 24 we obtain a transformation of functors

Trf : Rf∗ ◦ a −→ id

The corresponding map Trf,K : Rf∗a(K) −→ K for K ∈ DQCoh(OY ) is sometimes
called the trace map. This is the map which has the property that the bijection

HomX(L, a(K)) −→ HomY (Rf∗L,K)

for L ∈ DQCoh(OX) which characterizes the right adjoint is given by

φ 7−→ Trf,K ◦Rf∗φ

The map (3.5.1)

Rf∗RHomOX
(L, a(K)) −→ RHomOY

(Rf∗L,K)

comes about by composition with Trf,K . Every trace map we are going to consider
in this section will be a special case of this trace map. Before we discuss some
special cases we show that formation of the trace map commutes with base change.

Lemma 7.1 (Trace map and base change).0B6J Suppose we have a diagram (4.0.1)
where f and g are tor independent. Then the maps 1 ⋆ Trf : Lg∗ ◦ Rf∗ ◦ a → Lg∗

and Trf ′ ⋆ 1 : Rf ′
∗ ◦ a′ ◦Lg∗ → Lg∗ agree via the base change maps β : Lg∗ ◦Rf∗ →

Rf ′
∗ ◦ L(g′)∗ (Cohomology, Remark 28.3) and α : L(g′)∗ ◦ a → a′ ◦ Lg∗ (5.0.1).

More precisely, the diagram

Lg∗ ◦Rf∗ ◦ a

β⋆1
��

1⋆Trf

// Lg∗

Rf ′
∗ ◦ L(g′)∗ ◦ a 1⋆α // Rf ′

∗ ◦ a′ ◦ Lg∗

Trf′ ⋆1

OO

of transformations of functors commutes.

Proof. In this proof we write f∗ for Rf∗ and g∗ for Lg∗ and we drop ⋆ products
with identities as one can figure out which ones to add as long as the source and
target of the transformation is known. Recall that β : g∗ ◦ f∗ → f ′

∗ ◦ (g′)∗ is an
isomorphism and that α is defined using the isomorphism β∨ : g′

∗ ◦ a′ → a ◦ g∗
which is the adjoint of β, see Lemma 4.1 and its proof. First we note that the top
horizontal arrow of the diagram in the lemma is equal to the composition

g∗ ◦ f∗ ◦ a→ g∗ ◦ f∗ ◦ a ◦ g∗ ◦ g∗ → g∗ ◦ g∗ ◦ g∗ → g∗

where the first arrow is the unit for (g∗, g∗), the second arrow is Trf , and the third
arrow is the counit for (g∗, g∗). This is a simple consequence of the fact that the
composition g∗ → g∗ ◦ g∗ ◦ g∗ → g∗ of unit and counit is the identity. Consider the

https://stacks.math.columbia.edu/tag/0B6J
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diagram

g∗ ◦ f∗ ◦ a
β

uu ��

Trf

// g∗

f ′
∗ ◦ (g′)∗ ◦ a

))

g∗ ◦ f∗ ◦ a ◦ g∗ ◦ g∗

β

��

44

g∗ ◦ f∗ ◦ g′
∗ ◦ a′ ◦ g∗β∨

oo

β

��

f ′
∗ ◦ a′ ◦ g∗

Trf′

ii

f ′
∗ ◦ (g′)∗ ◦ a ◦ g∗ ◦ g∗ f ′

∗ ◦ (g′)∗ ◦ g′
∗ ◦ a′ ◦ g∗

55

β∨
oo

In this diagram the two squares commute Categories, Lemma 28.2 or more simply
the discussion preceding Categories, Definition 28.1. The triangle commutes by the
discussion above. By Categories, Lemma 24.8 the square

g∗ ◦ f∗ ◦ g′
∗ ◦ a′

β∨

��

β
// f ′

∗ ◦ (g′)∗ ◦ g′
∗ ◦ a′

��
g∗ ◦ f∗ ◦ a ◦ g∗ // id

commutes which implies the pentagon in the big diagram commutes. Since β and
β∨ are isomorphisms, and since going on the outside of the big diagram equals
Trf ◦ α ◦ β by definition this proves the lemma. □

Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let
a : DQCoh(OY ) → DQCoh(OX) be the right adjoint of Rf∗ as in Lemma 3.1. By
Categories, Section 24 we obtain a transformation of functors

ηf : id→ a ◦Rf∗

which is called the unit of the adjunction.

Lemma 7.2.0B6K Suppose we have a diagram (4.0.1) where f and g are tor indepen-
dent. Then the maps 1 ⋆ ηf : L(g′)∗ → L(g′)∗ ◦ a ◦ Rf∗ and ηf ′ ⋆ 1 : L(g′)∗ →
a′ ◦ Rf ′

∗ ◦ L(g′)∗ agree via the base change maps β : Lg∗ ◦ Rf∗ → Rf ′
∗ ◦ L(g′)∗

(Cohomology, Remark 28.3) and α : L(g′)∗ ◦ a→ a′ ◦ Lg∗ (5.0.1). More precisely,
the diagram

L(g′)∗
1⋆ηf

//

ηf′ ⋆1
��

L(g′)∗ ◦ a ◦Rf∗

α

��
a′ ◦Rf ′

∗ ◦ L(g′)∗ a′ ◦ Lg∗ ◦Rf∗
βoo

of transformations of functors commutes.

Proof. This proof is dual to the proof of Lemma 7.1. In this proof we write f∗ for
Rf∗ and g∗ for Lg∗ and we drop ⋆ products with identities as one can figure out
which ones to add as long as the source and target of the transformation is known.
Recall that β : g∗ ◦ f∗ → f ′

∗ ◦ (g′)∗ is an isomorphism and that α is defined using
the isomorphism β∨ : g′

∗ ◦ a′ → a ◦ g∗ which is the adjoint of β, see Lemma 4.1 and
its proof. First we note that the left vertical arrow of the diagram in the lemma is
equal to the composition

(g′)∗ → (g′)∗ ◦ g′
∗ ◦ (g′)∗ → (g′)∗ ◦ g′

∗ ◦ a′ ◦ f ′
∗ ◦ (g′)∗ → a′ ◦ f ′

∗ ◦ (g′)∗

https://stacks.math.columbia.edu/tag/0B6K
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where the first arrow is the unit for ((g′)∗, g′
∗), the second arrow is ηf ′ , and the

third arrow is the counit for ((g′)∗, g′
∗). This is a simple consequence of the fact

that the composition (g′)∗ → (g′)∗ ◦ (g′)∗ ◦ (g′)∗ → (g′)∗ of unit and counit is the
identity. Consider the diagram

(g′)∗ ◦ a ◦ f∗ // (g′)∗ ◦ a ◦ g∗ ◦ g∗ ◦ f∗
β

tt
(g′)∗

ηf

55

ηf′

��

))

(g′)∗ ◦ a ◦ g∗ ◦ f ′
∗ ◦ (g′)∗ (g′)∗ ◦ g′

∗ ◦ a′ ◦ g∗ ◦ f∗

β∨

OO

β

tt ��
(g′)∗ ◦ g′

∗ ◦ a′ ◦ f ′
∗ ◦ (g′)∗

uu

β∨

OO

a′ ◦ g∗ ◦ f∗

β
rr

a′ ◦ f ′
∗ ◦ (g′)∗

In this diagram the two squares commute Categories, Lemma 28.2 or more simply
the discussion preceding Categories, Definition 28.1. The triangle commutes by the
discussion above. By the dual of Categories, Lemma 24.8 the square

id //

��

g′
∗ ◦ a′ ◦ g∗ ◦ f∗

β

��
g′

∗ ◦ a′ ◦ g∗ ◦ f∗
β∨
// a ◦ g∗ ◦ f ′

∗ ◦ (g′)∗

commutes which implies the pentagon in the big diagram commutes. Since β and
β∨ are isomorphisms, and since going on the outside of the big diagram equals
β ◦ α ◦ ηf by definition this proves the lemma. □

Example 7.3.0B6L Let A → B be a ring map. Let Y = Spec(A) and X = Spec(B)
and f : X → Y the morphism corresponding to A → B. As seen in Example
3.2 the right adjoint of Rf∗ : DQCoh(OX) → DQCoh(OY ) sends an object K of
D(A) = DQCoh(OY ) to RHom(B,K) in D(B) = DQCoh(OX). The trace map is
the map

Trf,K : RHom(B,K) −→ RHom(A,K) = K

induced by the A-module map A→ B.

8. Right adjoint of pushforward and pullback

0B6N Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let
a be the right adjoint of pushforward as in Lemma 3.1. For K,L ∈ DQCoh(OY )
there is a canonical map

Lf∗K ⊗L
OX

a(L) −→ a(K ⊗L
OY

L)
Namely, this map is adjoint to a map

Rf∗(Lf∗K ⊗L
OX

a(L)) = K ⊗L
OY

Rf∗(a(L)) −→ K ⊗L
OY

L

(equality by Derived Categories of Schemes, Lemma 22.1) for which we use the
trace map Rf∗a(L)→ L. When L = OY we obtain a map

(8.0.1)0A9S Lf∗K ⊗L
OX

a(OY ) −→ a(K)

https://stacks.math.columbia.edu/tag/0B6L
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functorial in K and compatible with distinguished triangles.

Lemma 8.1.0A9T Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes. The map Lf∗K ⊗L

OX
a(L) → a(K ⊗L

OY
L) defined above for K,L ∈

DQCoh(OY ) is an isomorphism if K is perfect. In particular, (8.0.1) is an isomor-
phism if K is perfect.

Proof. Let K∨ be the “dual” to K, see Cohomology, Lemma 50.5. For M ∈
DQCoh(OX) we have

HomD(OY )(Rf∗M,K ⊗L
OY

L) = HomD(OY )(Rf∗M ⊗L
OY

K∨, L)
= HomD(OX )(M ⊗L

OX
Lf∗K∨, a(L))

= HomD(OX )(M,Lf∗K ⊗L
OX

a(L))
Second equality by the definition of a and the projection formula (Cohomology,
Lemma 54.3) or the more general Derived Categories of Schemes, Lemma 22.1.
Hence the result by the Yoneda lemma. □

Lemma 8.2.0B6P Suppose we have a diagram (4.0.1) where f and g are tor indepen-
dent. Let K ∈ DQCoh(OY ). The diagram

L(g′)∗(Lf∗K ⊗L
OX

a(OY )) //

��

L(g′)∗a(K)

��
L(f ′)∗Lg∗K ⊗L

OX′ a
′(OY ′) // a′(Lg∗K)

commutes where the horizontal arrows are the maps (8.0.1) for K and Lg∗K and
the vertical maps are constructed using Cohomology, Remark 28.3 and (5.0.1).

Proof. In this proof we will write f∗ for Rf∗ and f∗ for Lf∗, etc, and we will write
⊗ for ⊗L

OX
, etc. Let us write (8.0.1) as the composition

f∗K ⊗ a(OY )→ a(f∗(f∗K ⊗ a(OY )))
← a(K ⊗ f∗a(OK))
→ a(K ⊗OY )
→ a(K)

Here the first arrow is the unit ηf , the second arrow is a applied to Cohomol-
ogy, Equation (54.2.1) which is an isomorphism by Derived Categories of Schemes,
Lemma 22.1, the third arrow is a applied to idK ⊗ Trf , and the fourth arrow is
a applied to the isomorphism K ⊗ OY = K. The proof of the lemma consists
in showing that each of these maps gives rise to a commutative square as in the
statement of the lemma. For ηf and Trf this is Lemmas 7.2 and 7.1. For the arrow
using Cohomology, Equation (54.2.1) this is Cohomology, Remark 54.5. For the
multiplication map it is clear. This finishes the proof. □

Lemma 8.3.0B6Q Let f : X → Y be a proper morphism of Noetherian schemes.
Let V ⊂ Y be an open such that f−1(V ) → V is an isomorphism. Then for
K ∈ D+

QCoh(OY ) the map (8.0.1) restricts to an isomorphism over f−1(V ).

Proof. By Lemma 4.4 the map (4.1.1) is an isomorphism for objects ofD+
QCoh(OY ).

Hence Lemma 8.2 tells us the restriction of (8.0.1) forK to f−1(V ) is the map (8.0.1)

https://stacks.math.columbia.edu/tag/0A9T
https://stacks.math.columbia.edu/tag/0B6P
https://stacks.math.columbia.edu/tag/0B6Q
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for K|V and f−1(V )→ V . Thus it suffices to show that the map is an isomorphism
when f is the identity morphism. This is clear. □

Lemma 8.4.0B6R Let f : X → Y and g : Y → Z be composable morphisms of quasi-
compact and quasi-separated schemes and set h = g ◦ f . Let a, b, c be the adjoints
of Lemma 3.1 for f, g, h. For any K ∈ DQCoh(OZ) the diagram

Lf∗(Lg∗K ⊗L
OY

b(OZ))⊗L
OX

a(OY ) // a(Lg∗K ⊗L
OY

b(OZ)) // a(b(K))

Lh∗K ⊗L
OX

Lf∗b(OZ)⊗L
OX

a(OY ) // Lh∗K ⊗L
OX

c(OZ) // c(K)

is commutative where the arrows are (8.0.1) and we have used Lh∗ = Lf∗ ◦ Lg∗

and c = a ◦ b.

Proof. In this proof we will write f∗ for Rf∗ and f∗ for Lf∗, etc, and we will write
⊗ for ⊗L

OX
, etc. The composition of the top arrows is adjoint to a map

g∗f∗(f∗(g∗K ⊗ b(OZ))⊗ a(OY ))→ K

The left hand side is equal to K⊗g∗f∗(f∗b(OZ)⊗a(OY )) by Derived Categories of
Schemes, Lemma 22.1 and inspection of the definitions shows the map comes from
the map

g∗f∗(f∗b(OZ)⊗ a(OY )) g∗ϵ←−− g∗(b(OZ)⊗ f∗a(OY )) g∗α−−→ g∗(b(OZ)) β−→ OZ

tensored with idK . Here ϵ is the isomorphism from Derived Categories of Schemes,
Lemma 22.1 and β comes from the counit map g∗b→ id. Similarly, the composition
of the lower horizontal arrows is adjoint to idK tensored with the composition

g∗f∗(f∗b(OZ)⊗ a(OY )) g∗f∗δ−−−→ g∗f∗(ab(OZ)) g∗γ−−→ g∗(b(OZ)) β−→ OZ

where γ comes from the counit map f∗a → id and δ is the map whose adjoint is
the composition

f∗(f∗b(OZ)⊗ a(OY )) ϵ←− b(OZ)⊗ f∗a(OY ) α−→ b(OZ)

By general properties of adjoint functors, adjoint maps, and counits (see Categories,
Section 24) we have γ ◦ f∗δ = α ◦ ϵ−1 as desired. □

9. Right adjoint of pushforward for closed immersions

0A74 Let i : (Z,OZ) → (X,OX) be a morphism of ringed spaces such that i is a home-
omorphism onto a closed subset and such that i♯ : OX → i∗OZ is surjective. (For
example a closed immersion of schemes.) Let I = Ker(i♯). For a sheaf of OX -
modules F the sheaf

HomOX
(i∗OZ ,F)

a sheaf of OX -modules annihilated by I. Hence by Modules, Lemma 13.4 there is
a sheaf of OZ-modules, which we will denote Hom(OZ ,F), such that

i∗Hom(OZ ,F) = HomOX
(i∗OZ ,F)

as OX -modules. We spell out what this means.

https://stacks.math.columbia.edu/tag/0B6R
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Lemma 9.1.0A75 With notation as above. The functor Hom(OZ ,−) is a right adjoint
to the functor i∗ : Mod(OZ)→ Mod(OX). For V ⊂ Z open we have

Γ(V,Hom(OZ ,F)) = {s ∈ Γ(U,F) | Is = 0}

where U ⊂ X is an open whose intersection with Z is V .

Proof. Let G be a sheaf of OZ-modules. Then

HomOX
(i∗G,F) = Homi∗OZ

(i∗G,HomOX
(i∗OZ ,F)) = HomOZ

(G,Hom(OZ ,F))

The first equality by Modules, Lemma 22.3 and the second by the fully faithfulness
of i∗, see Modules, Lemma 13.4. The description of sections is left to the reader. □

The functor
Mod(OX) −→ Mod(OZ), F 7−→ Hom(OZ ,F)

is left exact and has a derived extension

RHom(OZ ,−) : D(OX)→ D(OZ).

Lemma 9.2.0A76 With notation as above. The functor RHom(OZ ,−) is the right
adjoint of the functor Ri∗ : D(OZ)→ D(OX).

Proof. This is a consequence of the fact that i∗ and Hom(OZ ,−) are adjoint
functors by Lemma 9.1. See Derived Categories, Lemma 30.3. □

Lemma 9.3.0A77 With notation as above. We have

Ri∗RHom(OZ ,K) = RHomOX
(i∗OZ ,K)

in D(OX) for all K in D(OX).

Proof. This is immediate from the construction of the functor RHom(OZ ,−). □

Lemma 9.4.0E2I With notation as above. For M ∈ D(OZ) we have

RHomOX
(Ri∗M,K) = Ri∗RHomOZ

(M,RHom(OZ ,K))

in D(OZ) for all K in D(OX).

Proof. This is immediate from the construction of the functor RHom(OZ ,−) and
the fact that if K• is a K-injective complex of OX -modules, then Hom(OZ ,K•) is
a K-injective complex of OZ-modules, see Derived Categories, Lemma 31.9. □

Lemma 9.5.0A78 Let i : Z → X be a pseudo-coherent closed immersion of schemes
(any closed immersion if X is locally Noetherian). Then

(1) RHom(OZ ,−) maps D+
QCoh(OX) into D+

QCoh(OZ), and
(2) if X = Spec(A) and Z = Spec(B), then the diagram

D+(B) // D+
QCoh(OZ)

D+(A) //

R Hom(B,−)

OO

D+
QCoh(OX)

R Hom(OZ ,−)

OO

is commutative.

https://stacks.math.columbia.edu/tag/0A75
https://stacks.math.columbia.edu/tag/0A76
https://stacks.math.columbia.edu/tag/0A77
https://stacks.math.columbia.edu/tag/0E2I
https://stacks.math.columbia.edu/tag/0A78
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Proof. To explain the parenthetical remark, if X is locally Noetherian, then i is
pseudo-coherent by More on Morphisms, Lemma 60.9.

Let K be an object of D+
QCoh(OX). To prove (1), by Morphisms, Lemma 4.1 it

suffices to show that i∗ applied to Hn(RHom(OZ ,K)) produces a quasi-coherent
module on X. By Lemma 9.3 this means we have to show that RHomOX

(i∗OZ ,K)
is in DQCoh(OX). Since i is pseudo-coherent the sheaf OZ is a pseudo-coherent
OX -module. Hence the result follows from Derived Categories of Schemes, Lemma
10.8.

Assume X = Spec(A) and Z = Spec(B) as in (2). Let I• be a bounded below
complex of injective A-modules representing an object K of D+(A). Then we know
that RHom(B,K) = HomA(B, I•) viewed as a complex of B-modules. Choose a
quasi-isomorphism

Ĩ• −→ I•

where I• is a bounded below complex of injective OX -modules. It follows from the
description of the functor Hom(OZ ,−) in Lemma 9.1 that there is a map

HomA(B, I•) −→ Γ(Z,Hom(OZ , I•))

Observe thatHom(OZ , I•) representsRHom(OZ , K̃). Applying the universal prop-
erty of the ˜ functor we obtain a map

˜HomA(B, I•) −→ RHom(OZ , K̃)

in D(OZ). We may check that this map is an isomorphism in D(OZ) after applying
i∗. However, once we apply i∗ we obtain the isomorphism of Derived Categories of
Schemes, Lemma 10.8 via the identification of Lemma 9.3. □

Lemma 9.6.0A79 Let i : Z → X be a closed immersion of schemes. Assume X is a
locally Noetherian. Then RHom(OZ ,−) maps D+

Coh(OX) into D+
Coh(OZ).

Proof. The question is local on X, hence we may assume that X is affine. Say X =
Spec(A) and Z = Spec(B) with A Noetherian and A→ B surjective. In this case,
we can apply Lemma 9.5 to translate the question into algebra. The corresponding
algebra result is a consequence of Dualizing Complexes, Lemma 13.4. □

Lemma 9.7.0A9X Let X be a quasi-compact and quasi-separated scheme. Let i : Z →
X be a pseudo-coherent closed immersion (if X is Noetherian, then any closed
immersion is pseudo-coherent). Let a : DQCoh(OX) → DQCoh(OZ) be the right
adjoint to Ri∗. Then there is a functorial isomorphism

a(K) = RHom(OZ ,K)

for K ∈ D+
QCoh(OX).

Proof. (The parenthetical statement follows from More on Morphisms, Lemma
60.9.) By Lemma 9.2 the functorRHom(OZ ,−) is a right adjoint toRi∗ : D(OZ)→
D(OX). Moreover, by Lemma 9.5 and Lemma 3.5 both RHom(OZ ,−) and a map
D+

QCoh(OX) into D+
QCoh(OZ). Hence we obtain the isomorphism by uniqueness of

adjoint functors. □

https://stacks.math.columbia.edu/tag/0A79
https://stacks.math.columbia.edu/tag/0A9X
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Example 9.8.0B6M If i : Z → X is closed immersion of Noetherian schemes, then the
diagram

i∗a(K)
Tri,K

// K

i∗RHom(OZ ,K) RHomOX
(i∗OZ ,K) // K

is commutative for K ∈ D+
QCoh(OX). Here the horizontal equality sign is Lemma

9.3 and the lower horizontal arrow is induced by the map OX → i∗OZ . The
commutativity of the diagram is a consequence of Lemma 9.7.

10. Right adjoint of pushforward for closed immersions and base
change

0E2J Consider a cartesian diagram of schemes

Z ′
i′
//

g

��

X ′

f

��
Z

i // X

where i is a closed immersion. If Z and X ′ are tor independent over X, then there
is a canonical base change map

(10.0.1)0E2K Lg∗RHom(OZ ,K) −→ RHom(OZ′ , Lf∗K)

in D(OZ′) functorial for K in D(OX). Namely, by adjointness of Lemma 9.2 such
an arrow is the same thing as a map

Ri′∗Lg
∗RHom(OZ ,K) −→ Lf∗K

in D(OX′). By tor independence we have Ri′∗ ◦ Lg∗ = Lf∗ ◦ Ri∗ (see Derived
Categories of Schemes, Lemma 22.9). Thus this is the same thing as a map

Lf∗Ri∗RHom(OZ ,K) −→ Lf∗K

For this we can use Lf∗(can) where can : Ri∗RHom(OZ ,K)→ K is the counit of
the adjunction.

Lemma 10.1.0E2L In the situation above, the map (10.0.1) is an isomorphism if and
only if the base change map

Lf∗RHomOX
(OZ ,K) −→ RHomOX′ (OZ′ , Lf∗K)

of Cohomology, Remark 42.13 is an isomorphism.

Proof. The statement makes sense because OZ′ = Lf∗OZ by the assumed tor
independence. Since i′∗ is exact and faithful we see that it suffices to show the map
(10.0.1) is an isomorphism after applying Ri′∗. Since Ri′∗ ◦ Lg∗ = Lf∗ ◦Ri∗ by the
assumed tor indepence and Derived Categories of Schemes, Lemma 22.9 we obtain
a map

Lf∗Ri∗RHom(OZ ,K) −→ Ri′∗RHom(OZ′ , Lf∗K)
whose source and target are as in the statement of the lemma by Lemma 9.3. We
omit the verification that this is the same map as the one constructed in Cohomol-
ogy, Remark 42.13. □
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Lemma 10.2.0E2M In the situation above, assume f is flat and i pseudo-coherent.
Then (10.0.1) is an isomorphism for K in D+

QCoh(OX).

Proof. First proof. To prove this map is an isomorphism, we may work locally.
Hence we may assume X, X ′, Z, Z ′ are affine, say corresponding to the rings A,
A′, B, B′. Then B and A′ are tor independent over A. By Lemma 10.1 it suffices
to check that

RHomA(B,K)⊗L
A A′ = RHomA′(B′,K ⊗L

A A′)
in D(A′) for all K ∈ D+(A). Here we use Derived Categories of Schemes, Lemma
10.8 and the fact that B, resp. B′ is pseudo-coherent as an A-module, resp. A′-
module to compare derived hom on the level of rings and schemes. The displayed
equality follows from More on Algebra, Lemma 98.3 part (3). See also the discussion
in Dualizing Complexes, Section 14.
Second proof4. Let z′ ∈ Z ′ with image z ∈ Z. First show that (10.0.1) on stalks at
z′ induces the map

RHom(OZ,z,Kz)⊗L
OZ,x

OZ′,z′ −→ RHom(OZ′,z′ ,Kz ⊗L
OX,z

OX′,z′)

from Dualizing Complexes, Equation (14.0.1). Namely, the constructions of these
maps are identical. Then apply Dualizing Complexes, Lemma 14.2. □

Lemma 10.3.0E2N Let i : Z → X be a pseudo-coherent closed immersion of schemes.
Let M ∈ DQCoh(OX) locally have tor-amplitude in [a,∞). Let K ∈ D+

QCoh(OX).
Then there is a canonical isomorphism

RHom(OZ ,K)⊗L
OZ

Li∗M = RHom(OZ ,K ⊗L
OX

M)
in D(OZ).

Proof. A map from LHS to RHS is the same thing as a map
Ri∗RHom(OZ ,K)⊗L

OX
M −→ K ⊗L

OX
M

by Lemmas 9.2 and 9.3. For this map we take the counit Ri∗RHom(OZ ,K)→ K
tensored with idM . To see this map is an isomorphism under the hypotheses given,
translate into algebra using Lemma 9.5 and then for example use More on Algebra,
Lemma 98.3 part (3). Instead of using Lemma 9.5 you can look at stalks as in the
second proof of Lemma 10.2. □

11. Right adjoint of pushforward for finite morphisms

0AWZ If i : Z → X is a closed immersion of schemes, then there is a right adjoint
Hom(OZ ,−) to the functor i∗ : Mod(OZ) → Mod(OX) whose derived extension
RHom(OZ ,−) is the right adjoint to Ri∗ : D(OZ) → D(OX). See Section 9. In
the case of a finite morphism f : Y → X this strategy cannot work, as the functor
f∗ : Mod(OY )→ Mod(OX) is not exact in general and hence does not have a right
adjoint. A replacement is to consider the exact functor Mod(f∗OY ) → Mod(OX)
and consider the corresponding right adjoint and its derived extension.
Let f : Y → X be an affine morphism of schemes. For a sheaf of OX -modules F
the sheaf

HomOX
(f∗OY ,F)

4This proof shows it suffices to assume K is in D+(OX).
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is a sheaf of f∗OY -modules. We obtain a functor Mod(OX) → Mod(f∗OY ) which
we will denote Hom(f∗OY ,−).

Lemma 11.1.0BUZ With notation as above. The functor Hom(f∗OY ,−) is a right
adjoint to the restriction functor Mod(f∗OY ) → Mod(OX). For an affine open
U ⊂ X we have

Γ(U,Hom(f∗OY ,F)) = HomA(B,F(U))

where A = OX(U) and B = OY (f−1(U)).

Proof. Adjointness follows from Modules, Lemma 22.3. As f is affine we see that
f∗OY is the quasi-coherent sheaf corresponding to B viewed as an A-module. Hence
the description of sections over U follows from Schemes, Lemma 7.1. □

The functor Hom(f∗OY ,−) is left exact. Let

RHom(f∗OY ,−) : D(OX) −→ D(f∗OY )

be its derived extension.

Lemma 11.2.0BV0 With notation as above. The functor RHom(f∗OY ,−) is the right
adjoint of the functor D(f∗OY )→ D(OX).

Proof. Follows from Lemma 11.1 and Derived Categories, Lemma 30.3. □

Lemma 11.3.0BV1 With notation as above. The composition

D(OX) R Hom(f∗OY ,−)−−−−−−−−−−−→ D(f∗OY )→ D(OX)

is the functor K 7→ RHomOX
(f∗OY ,K).

Proof. This is immediate from the construction. □

Lemma 11.4.0AX2 Let f : Y → X be a finite pseudo-coherent morphism of schemes (a
finite morphism of Noetherian schemes is pseudo-coherent). The functor RHom(f∗OY ,−)
maps D+

QCoh(OX) into D+
QCoh(f∗OY ). If X is quasi-compact and quasi-separated,

then the diagram

D+
QCoh(OX)

a
//

R Hom(f∗OY ,−) ''

D+
QCoh(OY )

Φww
D+

QCoh(f∗OY )

is commutative, where a is the right adjoint of Lemma 3.1 for f and Φ is the
equivalence of Derived Categories of Schemes, Lemma 5.4.

Proof. (The parenthetical remark follows from More on Morphisms, Lemma 60.9.)
Since f is pseudo-coherent, the OX -module f∗OY is pseudo-coherent, see More on
Morphisms, Lemma 60.8. ThusRHom(f∗OY ,−) mapsD+

QCoh(OX) intoD+
QCoh(f∗OY ),

see Derived Categories of Schemes, Lemma 10.8. Then Φ ◦ a and RHom(f∗OY ,−)
agree on D+

QCoh(OX) because these functors are both right adjoint to the restriction
functor D+

QCoh(f∗OY )→ D+
QCoh(OX). To see this use Lemmas 3.5 and 11.2. □

https://stacks.math.columbia.edu/tag/0BUZ
https://stacks.math.columbia.edu/tag/0BV0
https://stacks.math.columbia.edu/tag/0BV1
https://stacks.math.columbia.edu/tag/0AX2


DUALITY FOR SCHEMES 29

Remark 11.5.0AX3 If f : Y → X is a finite morphism of Noetherian schemes, then
the diagram

Rf∗a(K)
Trf,K

// K

RHomOX
(f∗OY ,K) // K

is commutative for K ∈ D+
QCoh(OX). This follows from Lemma 11.4. The lower

horizontal arrow is induced by the map OX → f∗OY and the upper horizontal
arrow is the trace map discussed in Section 7.

12. Right adjoint of pushforward for proper flat morphisms

0E4H For proper, flat, and finitely presented morphisms of quasi-compact and quasi-
separated schemes the right adjoint of pushforward enjoys some remarkable prop-
erties.

Lemma 12.1.0E4I Let Y be a quasi-compact and quasi-separated scheme. Let f : X →
Y be a morphism of schemes which is proper, flat, and of finite presentation. Let
a be the right adjoint for Rf∗ : DQCoh(OX)→ DQCoh(OY ) of Lemma 3.1. Then a
commutes with direct sums.

Proof. Let P be a perfect object of D(OX). By Derived Categories of Schemes,
Lemma 30.4 the complex Rf∗P is perfect on Y . Let Ki be a family of objects of
DQCoh(OY ). Then

HomD(OX )(P, a(
⊕

Ki)) = HomD(OY )(Rf∗P,
⊕

Ki)

=
⊕

HomD(OY )(Rf∗P,Ki)

=
⊕

HomD(OX )(P, a(Ki))

because a perfect object is compact (Derived Categories of Schemes, Proposition
17.1). Since DQCoh(OX) has a perfect generator (Derived Categories of Schemes,
Theorem 15.3) we conclude that the map

⊕
a(Ki)→ a(

⊕
Ki) is an isomorphism,

i.e., a commutes with direct sums. □

Lemma 12.2.0E4J Let Y be a quasi-compact and quasi-separated scheme. Let f : X →
Y be a morphism of schemes which is proper, flat, and of finite presentation. Let
a be the right adjoint for Rf∗ : DQCoh(OX)→ DQCoh(OY ) of Lemma 3.1. Then

(1) for every closed T ⊂ Y if Q ∈ DQCoh(Y ) is supported on T , then a(Q) is
supported on f−1(T ),

(2) for every open V ⊂ Y and any K ∈ DQCoh(OY ) the map (4.1.1) is an
isomorphism, and

Proof. This follows from Lemmas 4.3, 4.4, and 12.1. □

Lemma 12.3.0E4K Let Y be a quasi-compact and quasi-separated scheme. Let f : X →
Y be a morphism of schemes which is proper, flat, and of finite presentation. The
map (8.0.1) is an isomorphism for every object K of DQCoh(OY ).

Proof. By Lemma 12.1 we know that a commutes with direct sums. Hence the
collection of objects of DQCoh(OY ) for which (8.0.1) is an isomorphism is a strictly
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full, saturated, triangulated subcategory of DQCoh(OY ) which is moreover pre-
served under taking direct sums. Since DQCoh(OY ) is a module category (Derived
Categories of Schemes, Theorem 18.3) generated by a single perfect object (Derived
Categories of Schemes, Theorem 15.3) we can argue as in More on Algebra, Remark
59.11 to see that it suffices to prove (8.0.1) is an isomorphism for a single perfect
object. However, the result holds for perfect objects, see Lemma 8.1. □

The following lemma shows that the base change map (5.0.1) is an isomorphism for
proper, flat morphisms of finite presentation. We will see in Example 15.2 that this
does not remain true for perfect proper morphisms; in that case one has to make a
tor independence condition.

Lemma 12.4.0AAB Let g : Y ′ → Y be a morphism of quasi-compact and quasi-separated
schemes. Let f : X → Y be a proper, flat morphism of finite presentation. Then
the base change map (5.0.1) is an isomorphism for all K ∈ DQCoh(OY ).

Proof. By Lemma 12.2 formation of the functors a and a′ commutes with restric-
tion to opens of Y and Y ′. Hence we may assume Y ′ → Y is a morphism of affine
schemes, see Remark 6.1. In this case the statement follows from Lemma 6.2. □

Remark 12.5.0B6S Let Y be a quasi-compact and quasi-separated scheme. Let
f : X → Y be a proper, flat morphism of finite presentation. Let a be the ad-
joint of Lemma 3.1 for f . In this situation, ω•

X/Y = a(OY ) is sometimes called
the relative dualizing complex. By Lemma 12.3 there is a functorial isomorphism
a(K) = Lf∗K ⊗L

OX
ω•

X/Y for K ∈ DQCoh(OY ). Moreover, the trace map

Trf,OY
: Rf∗ω

•
X/Y → OY

of Section 7 induces the trace map for all K in DQCoh(OY ). More precisely the
diagram

Rf∗a(K)
Trf,K

// K

Rf∗(Lf∗K ⊗L
OX

ω•
X/Y ) K ⊗L

OY
Rf∗ω

•
X/Y

idK ⊗Trf,OY // K

where the equality on the lower right is Derived Categories of Schemes, Lemma
22.1. If g : Y ′ → Y is a morphism of quasi-compact and quasi-separated schemes
and X ′ = Y ′ ×Y X, then by Lemma 12.4 we have ω•

X′/Y ′ = L(g′)∗ω•
X/Y where

g′ : X ′ → X is the projection and by Lemma 7.1 the trace map

Trf ′,OY ′ : Rf ′
∗ω

•
X′/Y ′ → OY ′

for f ′ : X ′ → Y ′ is the base change of Trf,OY
via the base change isomorphism.

Remark 12.6.0G81 Let f : X → Y , ω•
X/Y , and Trf,OY

be as in Remark 12.5. Let K
and M be in DQCoh(OX) with M pseudo-coherent (for example perfect). Suppose
given a map K ⊗L

OX
M → ω•

X/Y which corresponds to an isomorphism K →
RHomOX

(M,ω•
X/Y ) via Cohomology, Equation (42.0.1). Then the relative cup

product (Cohomology, Remark 28.7)

Rf∗K ⊗L
OY

Rf∗M → Rf∗(K ⊗L
OX

M)→ Rf∗ω
•
X/Y

Trf,OY−−−−−→ OY

https://stacks.math.columbia.edu/tag/0AAB
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determines an isomorphismRf∗K → RHomOY
(Rf∗M,OY ). Namely, since ω•

X/Y =
a(OY ) the canonical map (3.5.1)

Rf∗RHomOX
(M,ω•

X/Y )→ RHomOY
(Rf∗M,OY )

is an isomorphism by Lemma 3.6 and Remark 3.8 and the fact that M and Rf∗M
are pseudo-coherent, see Derived Categories of Schemes, Lemma 30.5. To see that
the relative cup product induces this isomorphism use the commutativity of the
diagram in Cohomology, Remark 42.12.

Lemma 12.7.0E4L Let Y be a quasi-compact and quasi-separated scheme. Let f : X →
Y be a morphism of schemes which is proper, flat, and of finite presentation with
relative dualizing complex ω•

X/Y (Remark 12.5). Then

(1) ω•
X/Y is a Y -perfect object of D(OX),

(2) Rf∗ω
•
X/Y has vanishing cohomology sheaves in positive degrees,

(3) OX → RHomOX
(ω•

X/Y , ω
•
X/Y ) is an isomorphism.

Proof. In view of the fact that formation of ω•
X/Y commutes with base change (see

Remark 12.5), we may and do assume that Y is affine. For a perfect object E of
D(OX) we have

Rf∗(E ⊗L
OX

ω•
X/Y ) = Rf∗RHomOX

(E∨, ω•
X/Y )

= RHomOY
(Rf∗E

∨,OY )
= (Rf∗E

∨)∨

For the first equality, see Cohomology, Lemma 50.5. For the second equality, see
Lemma 3.6, Remark 3.8, and Derived Categories of Schemes, Lemma 30.4. The
third equality is the definition of the dual. In particular these references also show
that the outcome is a perfect object of D(OY ). We conclude that ω•

X/Y is Y -perfect
by More on Morphisms, Lemma 69.6. This proves (1).

Let M be an object of DQCoh(OY ). Then

HomY (M,Rf∗ω
•
X/Y ) = HomX(Lf∗M,ω•

X/Y )
= HomY (Rf∗Lf

∗M,OY )
= HomY (M ⊗L

OY
Rf∗OX ,OY )

The first equality holds by Cohomology, Lemma 28.1. The second equality by
construction of a. The third equality by Derived Categories of Schemes, Lemma
22.1. Recall Rf∗OX is perfect of tor amplitude in [0, N ] for some N , see Derived
Categories of Schemes, Lemma 30.4. Thus we can represent Rf∗OX by a complex
of finite projective modules sitting in degrees [0, N ] (using More on Algebra, Lemma
74.2 and the fact that Y is affine). Hence if M = OY [−i] for some i > 0, then the
last group is zero. Since Y is affine we conclude that Hi(Rf∗ω

•
X/Y ) = 0 for i > 0.

This proves (2).

https://stacks.math.columbia.edu/tag/0E4L
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Let E be a perfect object of DQCoh(OX). Then we have
HomX(E,RHomOX

(ω•
X/Y , ω

•
X/Y ) = HomX(E ⊗L

OX
ω•

X/Y , ω
•
X/Y )

= HomY (Rf∗(E ⊗L
OX

ω•
X/Y ),OY )

= HomY (Rf∗(RHomOX
(E∨, ω•

X/Y )),OY )
= HomY (RHomOY

(Rf∗E
∨,OY ),OY )

= RΓ(Y,Rf∗E
∨)

= HomX(E,OX)
The first equality holds by Cohomology, Lemma 42.2. The second equality is the
definition of ω•

X/Y . The third equality comes from the construction of the dual
perfect complex E∨, see Cohomology, Lemma 50.5. The fourth equality follows
from the equality Rf∗RHomOX

(E∨, ω•
X/Y ) = RHomOY

(Rf∗E
∨,OY ) shown in the

first paragraph of the proof. The fifth equality holds by double duality for perfect
complexes (Cohomology, Lemma 50.5) and the fact that Rf∗E is perfect by Derived
Categories of Schemes, Lemma 30.4. The last equality is Leray for f . This string
of equalities essentially shows (3) holds by the Yoneda lemma. Namely, the object
RHom(ω•

X/Y , ω
•
X/Y ) is in DQCoh(OX) by Derived Categories of Schemes, Lemma

10.8. Taking E = OX in the above we get a map α : OX → RHomOX
(ω•

X/Y , ω
•
X/Y )

corresponding to idOX
∈ HomX(OX ,OX). Since all the isomorphisms above are

functorial in E we see that the cone on α is an object C of DQCoh(OX) such
that Hom(E,C) = 0 for all perfect E. Since the perfect objects generate (Derived
Categories of Schemes, Theorem 15.3) we conclude that α is an isomorphism. □

Lemma 12.8 (Rigidity).0E2P Let Y be a quasi-compact and quasi-separated scheme.
Let f : X → Y be a proper, flat morphism of finite presentation with relative
dualizing complex ω•

X/Y (Remark 12.5). There is a canonical isomorphism

(12.8.1)0E2Q OX = c(Lpr∗
1ω

•
X/Y ) = c(Lpr∗

2ω
•
X/Y )

and a canonical isomorphism

(12.8.2)0E2R ω•
X/Y = c

(
Lpr∗

1ω
•
X/Y ⊗

L
OX×Y X

Lpr∗
2ω

•
X/Y

)
where c is the right adjoint of Lemma 3.1 for the diagonal ∆ : X → X ×Y X.

Proof. Let a be the right adjoint to Rf∗ as in Lemma 3.1. Consider the cartesian
square

X ×Y X
q

//

p

��

X

f

��
X

f // Y
Let b be the right adjoint for p as in Lemma 3.1. Then

ω•
X/Y = c(b(ω•

X/Y ))

= c(Lp∗ω•
X/Y ⊗

L
OX×Y X

b(OX))

= c(Lp∗ω•
X/Y ⊗

L
OX×Y X

Lq∗a(OY ))

= c(Lp∗ω•
X/Y ⊗

L
OX×Y X

Lq∗ω•
X/Y )

as in (12.8.2). Explanation as follows:

https://stacks.math.columbia.edu/tag/0E2P
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(1) The first equality holds as id = c ◦ b because idX = p ◦∆.
(2) The second equality holds by Lemma 12.3.
(3) The third holds by Lemma 12.4 and the fact that OX = Lf∗OY .
(4) The fourth holds because ω•

X/Y = a(OY ).
Equation (12.8.1) is proved in exactly the same way. □

Remark 12.9.0BRU Lemma 12.8 means our relative dualizing complex is rigid in a
sense analogous to the notion introduced in [vdB97]. Namely, since the functor on
the right of (12.8.2) is “quadratic” in ω•

X/Y and the functor on the left of (12.8.2) is
“linear” this “pins down” the complex ω•

X/Y to some extent. There is an approach to
duality theory using “rigid” (relative) dualizing complexes, see for example [Nee11],
[Yek10], and [YZ09]. We will return to this in Section 28.

13. Right adjoint of pushforward for perfect proper morphisms

0AA9 The correct generality for this section would be to consider perfect proper mor-
phisms of quasi-compact and quasi-separated schemes, see [LN07].

Lemma 13.1.0A9R Let f : X → Y be a perfect proper morphism of Noetherian
schemes. Let a be the right adjoint for Rf∗ : DQCoh(OX)→ DQCoh(OY ) of Lemma
3.1. Then a commutes with direct sums.

Proof. Let P be a perfect object of D(OX). By More on Morphisms, Lemma 61.13
the complex Rf∗P is perfect on Y . Let Ki be a family of objects of DQCoh(OY ).
Then

HomD(OX )(P, a(
⊕

Ki)) = HomD(OY )(Rf∗P,
⊕

Ki)

=
⊕

HomD(OY )(Rf∗P,Ki)

=
⊕

HomD(OX )(P, a(Ki))

because a perfect object is compact (Derived Categories of Schemes, Proposition
17.1). Since DQCoh(OX) has a perfect generator (Derived Categories of Schemes,
Theorem 15.3) we conclude that the map

⊕
a(Ki)→ a(

⊕
Ki) is an isomorphism,

i.e., a commutes with direct sums. □

Lemma 13.2.0AAA Let f : X → Y be a perfect proper morphism of Noetherian
schemes. Let a be the right adjoint for Rf∗ : DQCoh(OX)→ DQCoh(OY ) of Lemma
3.1. Then

(1) for every closed T ⊂ Y if Q ∈ DQCoh(Y ) is supported on T , then a(Q) is
supported on f−1(T ),

(2) for every open V ⊂ Y and any K ∈ DQCoh(OY ) the map (4.1.1) is an
isomorphism, and

Proof. This follows from Lemmas 4.3, 4.4, and 13.1. □

Lemma 13.3.0A9U Let f : X → Y be a perfect proper morphism of Noetherian
schemes. The map (8.0.1) is an isomorphism for every object K of DQCoh(OY ).

Proof. By Lemma 13.1 we know that a commutes with direct sums. Hence the
collection of objects of DQCoh(OY ) for which (8.0.1) is an isomorphism is a strictly
full, saturated, triangulated subcategory of DQCoh(OY ) which is moreover pre-
served under taking direct sums. Since DQCoh(OY ) is a module category (Derived
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Categories of Schemes, Theorem 18.3) generated by a single perfect object (Derived
Categories of Schemes, Theorem 15.3) we can argue as in More on Algebra, Remark
59.11 to see that it suffices to prove (8.0.1) is an isomorphism for a single perfect
object. However, the result holds for perfect objects, see Lemma 8.1. □

Lemma 13.4.0BZG Let f : X → Y be a perfect proper morphism of Noetherian
schemes. Let g : Y ′ → Y be a morphism with Y ′ Noetherian. If X and Y ′ are
tor independent over Y , then the base change map (5.0.1) is an isomorphism for
all K ∈ DQCoh(OY ).

Proof. By Lemma 13.2 formation of the functors a and a′ commutes with restric-
tion to opens of Y and Y ′. Hence we may assume Y ′ → Y is a morphism of affine
schemes, see Remark 6.1. In this case the statement follows from Lemma 6.2. □

14. Right adjoint of pushforward for effective Cartier divisors

0B4A Let X be a scheme and let i : D → X be the inclusion of an effective Cartier
divisor. Denote N = i∗OX(D) the normal sheaf of i, see Morphisms, Section 31
and Divisors, Section 13. Recall that RHom(OD,−) denotes the right adjoint to i∗ :
D(OD) → D(OX) and has the property i∗RHom(OD,−) = RHomOX

(i∗OD,−),
see Section 9.

Lemma 14.1.0B4B As above, let X be a scheme and let D ⊂ X be an effective Cartier
divisor. There is a canonical isomorphism RHom(OD,OX) = N [−1] in D(OD).

Proof. Equivalently, we are saying that RHom(OD,OX) has a unique nonzero
cohomology sheaf in degree 1 and that this sheaf is isomorphic to N . Since i∗ is
exact and fully faithful, it suffices to prove that i∗RHom(OD,OX) is isomorphic to
i∗N [−1]. We have i∗RHom(OD,OX) = RHomOX

(i∗OD,OX) by Lemma 9.3. We
have a resolution

0→ I → OX → i∗OD → 0
where I is the ideal sheaf ofD which we can use to compute. SinceRHomOX

(OX ,OX) =
OX and RHomOX

(I,OX) = OX(D) by a local computation, we see that

RHomOX
(i∗OD,OX) = (OX → OX(D))

where on the right hand side we have OX in degree 0 and OX(D) in degree 1. The
result follows from the short exact sequence

0→ OX → OX(D)→ i∗N → 0

coming from the fact that D is the zero scheme of the canonical section of OX(D)
and from the fact that N = i∗OX(D). □

For every object K of D(OX) there is a canonical map

(14.1.1)0B4C Li∗K ⊗L
OD

RHom(OD,OX) −→ RHom(OD,K)

in D(OD) functorial in K and compatible with distinguished triangles. Namely,
this map is adjoint to a map

i∗(Li∗K ⊗L
OD

RHom(OD,OX)) = K ⊗L
OX

RHomOX
(i∗OD,OX) −→ K

where the equality is Cohomology, Lemma 54.4 and the arrow comes from the
canonical map RHomOX

(i∗OD,OX)→ OX induced by OX → i∗OD.

https://stacks.math.columbia.edu/tag/0BZG
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If K ∈ DQCoh(OX), then (14.1.1) is equal to (8.0.1) via the identification a(K) =
RHom(OD,K) of Lemma 9.7. If K ∈ DQCoh(OX) and X is Noetherian, then the
following lemma is a special case of Lemma 13.3.
Lemma 14.2.0AA4 As above, let X be a scheme and let D ⊂ X be an effective Cartier
divisor. Then (14.1.1) combined with Lemma 14.1 defines an isomorphism

Li∗K ⊗L
OD
N [−1] −→ RHom(OD,K)

functorial in K in D(OX).
Proof. Since i∗ is exact and fully faithful on modules, to prove the map is an
isomorphism, it suffices to show that it is an isomorphism after applying i∗. We
will use the short exact sequences 0 → I → OX → i∗OD → 0 and 0 → OX →
OX(D)→ i∗N → 0 used in the proof of Lemma 14.1 without further mention. By
Cohomology, Lemma 54.4 which was used to define the map (14.1.1) the left hand
side becomes

K ⊗L
OX

i∗N [−1] = K ⊗L
OX

(OX → OX(D))
The right hand side becomes

RHomOX
(i∗OD,K) = RHomOX

((I → OX),K)
= RHomOX

((I → OX),OX)⊗L
OX

K

the final equality by Cohomology, Lemma 50.5. Since the map comes from the
isomorphism

RHomOX
((I → OX),OX) = (OX → OX(D))

the lemma is clear. □

15. Right adjoint of pushforward in examples

0BQV In this section we compute the right adjoint to pushforward in some examples.
The isomorphisms are canonical but only in the weakest possible sense, i.e., we do
not prove or claim that these isomorphisms are compatible with various operations
such as base change and compositions of morphisms. There is a huge literature
on these types of issues; the reader can start with the material in [Har66], [Con00]
(these citations use a different starting point for duality but address the issue of
constructing canonical representatives for relative dualizing complexes) and then
continue looking at works by Joseph Lipman and collaborators.
Lemma 15.1.0A9W Let Y be a Noetherian scheme. Let E be a finite locally free OY -
module of rank n + 1 with determinant L = ∧n+1(E). Let f : X = P(E) → Y be
the projection. Let a be the right adjoint for Rf∗ : DQCoh(OX) → DQCoh(OY ) of
Lemma 3.1. Then there is an isomorphism

c : f∗L(−n− 1)[n] −→ a(OY )
In particular, if E = O⊕n+1

Y , then X = Pn
Y and we obtain a(OY ) = OX(−n−1)[n].

Proof. In (the proof of) Cohomology of Schemes, Lemma 8.4 we constructed a
canonical isomorphism

Rnf∗(f∗L(−n− 1)) −→ OY

Moreover, Rf∗(f∗L(−n− 1))[n] = Rnf∗(f∗L(−n− 1)), i.e., the other higher direct
images are zero. Thus we find an isomorphism

Rf∗(f∗L(−n− 1)[n]) −→ OY

https://stacks.math.columbia.edu/tag/0AA4
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This isomorphism determines c as in the statement of the lemma because a is
the right adjoint of Rf∗. By Lemma 4.4 construction of the a is local on the
base. In particular, to check that c is an isomorphism, we may work locally on
Y . In other words, we may assume Y is affine and E = O⊕n+1

Y . In this case the
sheaves OX ,OX(−1), . . . ,OX(−n) generate DQCoh(X), see Derived Categories of
Schemes, Lemma 16.3. Hence it suffices to show that c : OX(−n− 1)[n]→ a(OY )
is transformed into an isomorphism under the functors

Fi,p(−) = HomD(OX )(OX(i), (−)[p])
for i ∈ {−n, . . . , 0} and p ∈ Z. For F0,p this holds by construction of the arrow c!
For i ∈ {−n, . . . ,−1} we have

HomD(OX )(OX(i),OX(−n− 1)[n+ p]) = Hp(X,OX(−n− 1− i)) = 0
by the computation of cohomology of projective space (Cohomology of Schemes,
Lemma 8.1) and we have

HomD(OX )(OX(i), a(OY )[p]) = HomD(OY )(Rf∗OX(i),OY [p]) = 0
because Rf∗OX(i) = 0 by the same lemma. Hence the source and the target of
Fi,p(c) vanish and Fi,p(c) is necessarily an isomorphism. This finishes the proof. □

Example 15.2.0AAC The base change map (5.0.1) is not an isomorphism if f is perfect
proper and g is perfect. Let k be a field. Let Y = A2

k and let f : X → Y be the
blowup of Y in the origin. Denote E ⊂ X the exceptional divisor. Then we can
factor f as

X
i−→ P1

Y
p−→ Y

This gives a factorization a = c◦b where a, b, and c are the right adjoints of Lemma
3.1 of Rf∗, Rp∗, and Ri∗. Denote O(n) the Serre twist of the structure sheaf on P1

Y

and denote OX(n) its restriction to X. Note that X ⊂ P1
Y is cut out by a degree

one equation, hence O(X) = O(1). By Lemma 15.1 we have b(OY ) = O(−2)[1].
By Lemma 9.7 we have

a(OY ) = c(b(OY )) = c(O(−2)[1]) = RHom(OX ,O(−2)[1]) = OX(−1)
Last equality by Lemma 14.2. Let Y ′ = Spec(k) be the origin in Y . The restriction
of a(OY ) toX ′ = E = P1

k is an invertible sheaf of degree−1 placed in cohomological
degree 0. But on the other hand, a′(OSpec(k)) = OE(−2)[1] which is an invertible
sheaf of degree −2 placed in cohomological degree −1, so different. In this example
the hypothesis of Tor indepence in Lemma 6.2 is violated.

Lemma 15.3.0BQW Let Y be a ringed space. Let I ⊂ OY be a sheaf of ideals. Set
OX = OY /I and N = HomOY

(I/I2,OX). There is a canonical isomorphism
c : N → Ext1

OY
(OX ,OX).

Proof. Consider the canonical short exact sequence
(15.3.1)0BQX 0→ I/I2 → OY /I2 → OX → 0
Let U ⊂ X be open and let s ∈ N (U). Then we can pushout (15.3.1) via s to
get an extension Es of OX |U by OX |U . This in turn defines a section c(s) of
Ext1

OY
(OX ,OX) over U . See Cohomology, Lemma 42.1 and Derived Categories,

Lemma 27.6. Conversely, given an extension
0→ OX |U → E → OX |U → 0

https://stacks.math.columbia.edu/tag/0AAC
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of OU -modules, we can find an open covering U =
⋃
Ui and sections ei ∈ E(Ui)

mapping to 1 ∈ OX(Ui). Then ei defines a map OY |Ui → E|Ui whose kernel
contains I2. In this way we see that E|Ui comes from a pushout as above. This
shows that c is surjective. We omit the proof of injectivity. □

Lemma 15.4.0BQY Let Y be a ringed space. Let I ⊂ OY be a sheaf of ideals. Set
OX = OY /I. If I is Koszul-regular (Divisors, Definition 20.2) then composition
on RHomOY

(OX ,OX) defines isomorphisms

∧i(Ext1
OY

(OX ,OX)) −→ Exti
OY

(OX ,OX)
for all i.

Proof. By composition we mean the map
RHomOY

(OX ,OX)⊗L
OY

RHomOY
(OX ,OX) −→ RHomOY

(OX ,OX)
of Cohomology, Lemma 42.5. This induces multiplication maps

Exta
OY

(OX ,OX)⊗OY
Extb

OY
(OX ,OX) −→ Exta+b

OY
(OX ,OX)

Please compare with More on Algebra, Equation (63.0.1). The statement of the
lemma means that the induced map

Ext1
OY

(OX ,OX)⊗ . . .⊗ Ext1
OY

(OX ,OX) −→ Exti
OY

(OX ,OX)
factors through the wedge product and then induces an isomorphism. To see this
is true we may work locally on Y . Hence we may assume that we have global sec-
tions f1, . . . , fr of OY which generate I and which form a Koszul regular sequence.
Denote

A = OY ⟨ξ1, . . . , ξr⟩
the sheaf of strictly commutative differential gradedOY -algebras which is a (divided
power) polynomial algebra on ξ1, . . . , ξr in degree −1 over OY with differential d
given by the rule dξi = fi. Let us denote A• the underlying complex of OY -modules
which is the Koszul complex mentioned above. Thus the canonical map A• → OX

is a quasi-isomorphism. We obtain quasi-isomorphisms
RHomOY

(OX ,OX)→ Hom•(A•,A•)→ Hom•(A•,OX)
by Cohomology, Lemma 46.9. The differentials of the latter complex are zero, and
hence

Exti
OY

(OX ,OX) ∼= HomOY
(A−i,OX)

For j ∈ {1, . . . , r} let δj : A → A be the derivation of degree 1 with δj(ξi) = δij

(Kronecker delta). A computation shows that δj ◦d = −d ◦ δj which shows that we
get a morphism of complexes.

δj : A• → A•[1].
Whence δj defines a section of the corresponding Ext-sheaf. Another computation
shows that δ1, . . . , δr map to a basis for HomOY

(A−1,OX) over OX . Since it is
clear that δj ◦ δj = 0 and δj ◦ δj′ = −δj′ ◦ δj as endomorphisms of A and hence in
the Ext-sheaves we obtain the statement that our map above factors through the
exterior power. To see we get the desired isomorphism the reader checks that the
elements

δj1 ◦ . . . ◦ δji

for j1 < . . . < ji map to a basis of the sheaf HomOY
(A−i,OX) over OX . □

https://stacks.math.columbia.edu/tag/0BQY
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Lemma 15.5.0BQZ Let Y be a ringed space. Let I ⊂ OY be a sheaf of ideals. Set OX =
OY /I and N = HomOY

(I/I2,OX). If I is Koszul-regular (Divisors, Definition
20.2) then

RHomOY
(OX ,OY ) = ∧rN [r]

where r : Y → {1, 2, 3, . . .} sends y to the minimal number of generators of I needed
in a neighbourhood of y.

Proof. We can use Lemmas 15.3 and 15.4 to see that we have isomorphisms ∧iN →
Exti

OY
(OX ,OX) for i ≥ 0. Thus it suffices to show that the map OY → OX induces

an isomorphism
Extr

OY
(OX ,OY ) −→ Extr

OY
(OX ,OX)

and that Exti
OY

(OX ,OY ) is zero for i ̸= r. These statements are local on Y . Thus
we may assume that we have global sections f1, . . . , fr of OY which generate I and
which form a Koszul regular sequence. Let A• be the Koszul complex on f1, . . . , fr

as introduced in the proof of Lemma 15.4. Then
RHomOY

(OX ,OY ) = Hom•(A•,OY )
by Cohomology, Lemma 46.9. Denote 1 ∈ H0(Hom•(A•,OY )) the identity map of
A0 = OY → OY . With δj as in the proof of Lemma 15.4 we get an isomorphism of
graded OY -modules

OY ⟨δ1, . . . , δr⟩ −→ Hom•(A•,OY )
by mapping δj1 . . . δji

to 1 ◦ δj1 ◦ . . . ◦ δji
in degree i. Via this isomorphism the

differential on the right hand side induces a differential d on the left hand side. By
our sign rules we have d(1) = −

∑
fjδj . Since δj : A• → A•[1] is a morphism of

complexes, it follows that

d(δj1 . . . δji
) = (−

∑
fjδj)δj1 . . . δji

Observe that we have d =
∑
fjδj on the differential graded algebra A. Therefore

the map defined by the rule
1 ◦ δj1 . . . δji

7−→ (δj1 ◦ . . . ◦ δji
)(ξ1 . . . ξr)

will define an isomorphism of complexes
Hom•(A•,OY ) −→ A•[−r]

if r is odd and commuting with differentials up to sign if r is even. In any case
these complexes have isomorphic cohomology, which shows the desired vanishing.
The isomorphism on cohomology in degree r under the map

Hom•(A•,OY ) −→ Hom•(A•,OX)
also follows in a straightforward manner from this. (We observe that our choice
of conventions regarding Koszul complexes does intervene in the definition of the
isomorphism RHomOX

(OX ,OY ) = ∧rN [r].) □

Lemma 15.6.0BR0 Let Y be a quasi-compact and quasi-separated scheme. Let i :
X → Y be a Koszul-regular closed immersion. Let a be the right adjoint of Ri∗ :
DQCoh(OX)→ DQCoh(OY ) of Lemma 3.1. Then there is an isomorphism

∧rN [−r] −→ a(OY )
where N = HomOX

(CX/Y ,OX) is the normal sheaf of i (Morphisms, Section 31)
and r is its rank viewed as a locally constant function on X.

https://stacks.math.columbia.edu/tag/0BQZ
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Proof. Recall, from Lemmas 9.7 and 9.3, that a(OY ) is an object of DQCoh(OX)
whose pushforward to Y is RHomOY

(i∗OX ,OY ). Thus the result follows from
Lemma 15.5. □

Lemma 15.7.0BRT Let S be a Noetherian scheme. Let f : X → S be a smooth proper
morphism of relative dimension d. Let a be the right adjoint of Rf∗ : DQCoh(OX)→
DQCoh(OS) as in Lemma 3.1. Then there is an isomorphism

∧dΩX/S [d] −→ a(OS)
in D(OX).

Proof. Set ω•
X/S = a(OS) as in Remark 12.5. Let c be the right adjoint of Lemma

3.1 for ∆ : X → X ×S X. Because ∆ is the diagonal of a smooth morphism it is a
Koszul-regular immersion, see Divisors, Lemma 22.11. In particular, ∆ is a perfect
proper morphism (More on Morphisms, Lemma 61.7) and we obtain

OX = c(Lpr∗
1ω

•
X/S)

= L∆∗(Lpr∗
1ω

•
X/S)⊗L

OX
c(OX×SX)

= ω•
X/S ⊗

L
OX

c(OX×SX)

= ω•
X/S ⊗

L
OX
∧d(N∆)[−d]

The first equality is (12.8.1) because ω•
X/S = a(OS). The second equality by Lemma

13.3. The third equality because pr1 ◦ ∆ = idX . The fourth equality by Lemma
15.6. Observe that ∧d(N∆) is an invertible OX -module. Hence ∧d(N∆)[−d] is
an invertible object of D(OX) and we conclude that a(OS) = ω•

X/S = ∧d(C∆)[d].
Since the conormal sheaf C∆ of ∆ is ΩX/S by Morphisms, Lemma 32.7 the proof is
complete. □

16. Upper shriek functors

0A9Y In this section, we construct the functors f ! for morphisms between schemes which
are of finite type and separated over a fixed Noetherian base using compactifications.
As is customary in coherent duality, there are a number of diagrams that have to be
shown to be commutative. We suggest the reader, after reading the construction,
skips the verification of the lemmas and continues to the next section where we
discuss properties of the upper shriek functors.

Situation 16.1.0F42 Here S is a Noetherian scheme and FTSS is the category whose
(1) objects are schemes X over S such that the structure morphism X → S is

both separated and of finite type, and
(2) morphisms f : X → Y between objects are morphisms of schemes over S.

In Situation 16.1 given a morphism f : X → Y in FTSS , we will define an exact
functor

f ! : D+
QCoh(OY )→ D+

QCoh(OX)
of triangulated categories. Namely, we choose a compactification X → X over Y
which is possible by More on Flatness, Theorem 33.8 and Lemma 32.2. Denote
f : X → Y the structure morphism. Let a : DQCoh(OY ) → DQCoh(OX) be the
right adjoint of Rf∗ constructed in Lemma 3.1. Then we set

f !K = a(K)|X

https://stacks.math.columbia.edu/tag/0BRT
https://stacks.math.columbia.edu/tag/0F42


DUALITY FOR SCHEMES 40

for K ∈ D+
QCoh(OY ). The result is an object of D+

QCoh(OX) by Lemma 3.5.

Lemma 16.2.0AA0 In Situation 16.1 let f : X → Y be a morphism of FTSS. The
functor f ! is, up to canonical isomorphism, independent of the choice of the com-
pactification.

Proof. The category of compactifications of X over Y is defined in More on
Flatness, Section 32. By More on Flatness, Theorem 33.8 and Lemma 32.2 it
is nonempty. To every choice of a compactification

j : X → X, f : X → Y

the construction above associates the functor j∗ ◦ a : D+
QCoh(OY ) → D+

QCoh(OX)
where a is the right adjoint of Rf∗ constructed in Lemma 3.1.

Suppose given a morphism g : X1 → X2 between compactifications ji : X → Xi

over Y such that g−1(j2(X)) = j1(X)5. Let c be the right adjoint of Lemma 3.1 for
g. Then c ◦ a2 = a1 because these functors are adjoint to Rf2,∗ ◦Rg∗ = R(f2 ◦ g)∗.
By (4.1.1) we have a canonical transformation

j∗
1 ◦ c −→ j∗

2

of functors D+
QCoh(OX2

) → D+
QCoh(OX) which is an isomorphism by Lemma 4.4.

The composition
j∗

1 ◦ a1 −→ j∗
1 ◦ c ◦ a2 −→ j∗

2 ◦ a2

is an isomorphism of functors which we will denote by αg.

Consider two compactifications ji : X → Xi, i = 1, 2 of X over Y . By More on
Flatness, Lemma 32.1 part (b) we can find a compactification j : X → X with dense
image and morphisms gi : X → Xi of compactifications. By More on Flatness,
Lemma 32.1 part (c) we have g−1

i (ji(X)) = j(X). Hence we get isomorpisms
αgi

: j∗ ◦ a −→ j∗
i ◦ ai

by the previous paragraph. We obtain an isomorphism
αg2 ◦ α−1

g1
: j∗

1 ◦ a1 → j∗
2 ◦ a2

To finish the proof we have to show that these isomorphisms are well defined.
We claim it suffices to show the composition of isomorphisms constructed in the
previous paragraph is another (for a precise statement see the next paragraph).
We suggest the reader check this is true on a napkin, but we will also completely
spell it out in the rest of this paragraph. Namely, consider a second choice of a
compactification j′ : X → X

′ with dense image and morphisms of compactifications
g′

i : X ′ → Xi. By More on Flatness, Lemma 32.1 we can find a compactification
j′′ : X → X

′′ with dense image and morphisms of compactifications h : X ′′ → X

and h′ : X ′′ → X
′. We may even assume g1 ◦ h = g′

1 ◦ h′ and g2 ◦ h = g′
2 ◦ h′. The

result of the next paragraph gives
αgi
◦ αh = αgi◦h = αg′

i
◦h′ = αg′

i
◦ αh′

for i = 1, 2. Since these are all isomorphisms of functors we conclude that αg2 ◦
α−1

g1
= αg′

2
◦ α−1

g′
1

as desired.

5This may fail with our definition of compactification. See More on Flatness, Section 32.

https://stacks.math.columbia.edu/tag/0AA0


DUALITY FOR SCHEMES 41

Suppose given compactifications ji : X → Xi for i = 1, 2, 3. Suppose given
morphisms g : X1 → X2 and h : X2 → X3 of compactifications such that
g−1(j2(X)) = j1(X) and h−1(j2(X)) = j3(X). Let ai be as above. The claim
above means that

αg ◦ αh = αg◦h : j∗
1 ◦ a1 → j∗

3 ◦ a3

Let c, resp. d be the right adjoint of Lemma 3.1 for g, resp. h. Then c ◦ a2 = a1
and d ◦ a3 = a2 and there are canonical transformations

j∗
1 ◦ c −→ j∗

2 and j∗
2 ◦ d −→ j∗

3

of functors D+
QCoh(OX2

) → D+
QCoh(OX) and D+

QCoh(OX3
) → D+

QCoh(OX) for the
same reasons as above. Denote e the right adjoint of Lemma 3.1 for h ◦ g. There is
a canonical transformation

j∗
1 ◦ e −→ j∗

3

of functors D+
QCoh(OX3

) → D+
QCoh(OX) given by (4.1.1). Spelling things out we

have to show that the composition

αh ◦ αg : j∗
1 ◦ a1 → j∗

1 ◦ c ◦ a2 → j∗
2 ◦ a2 → j∗

2 ◦ d ◦ a3 → j∗
3 ◦ a3

is the same as the composition

αh◦g : j∗
1 ◦ a1 → j∗

1 ◦ e ◦ a3 → j∗
3 ◦ a3

We split this into two parts. The first is to show that the diagram

a1 //

��

c ◦ a2

��
e ◦ a3 // c ◦ d ◦ a3

commutes where the lower horizontal arrow comes from the identification e = c ◦d.
This is true because the corresponding diagram of total direct image functors

Rf1,∗
//

��

Rg∗ ◦Rf2,∗

��
R(h ◦ g)∗ ◦Rf3,∗

// Rg∗ ◦Rh∗ ◦Rf3,∗

is commutative (insert future reference here). The second part is to show that the
composition

j∗
1 ◦ c ◦ d→ j∗

2 ◦ d→ j∗
3

is equal to the map
j∗

1 ◦ e→ j∗
3

via the identification e = c ◦ d. This was proven in Lemma 5.1 (note that in the
current case the morphisms f ′, g′ of that lemma are equal to idX). □

Lemma 16.3.0ATX In Situation 16.1 let f : X → Y and g : Y → Z be composable
morphisms of FTSS. Then there is a canonical isomorphism (g ◦ f)! → f ! ◦ g!.

https://stacks.math.columbia.edu/tag/0ATX
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Proof. Choose a compactification i : Y → Y of Y over Z. Choose a compactifica-
tion X → X of X over Y . This uses More on Flatness, Theorem 33.8 and Lemma
32.2 twice. Let a be the right adjoint of Lemma 3.1 for X → Y and let b be the
right adjoint of Lemma 3.1 for Y → Z. Then a ◦ b is the right adjoint of Lemma
3.1 for the composition X → Z. Hence g! = i∗ ◦ b and (g ◦ f)! = (X → X)∗ ◦ a ◦ b.
Let U be the inverse image of Y in X so that we get the commutative diagram

X
j
//

��

U

��

j′
// X

��
Y

i
//

��

Y

��
Z

Let a′ be the right adjoint of Lemma 3.1 for U → Y . Then f ! = j∗ ◦ a′. We obtain

γ : (j′)∗ ◦ a→ a′ ◦ i∗

by (4.1.1) and we can use it to define

(g ◦ f)! = (j′ ◦ j)∗ ◦ a ◦ b = j∗ ◦ (j′)∗ ◦ a ◦ b→ j∗ ◦ a′ ◦ i∗ ◦ b = f ! ◦ g!

which is an isomorphism on objects of D+
QCoh(OZ) by Lemma 4.4. To finish the

proof we show that this isomorphism is independent of choices made.

Suppose we have two diagrams

X
j1

//

��

U1

��

j′
1

// X1

~~
Y

i1

//

��

Y 1

~~
Z

and

X
j2

//

��

U2

��

j′
2

// X2

~~
Y

i2

//

��

Y 2

~~
Z

We can first choose a compactification i : Y → Y with dense image of Y over
Z which dominates both Y 1 and Y 2, see More on Flatness, Lemma 32.1. By
More on Flatness, Lemma 32.3 and Categories, Lemmas 27.13 and 27.14 we can
choose a compactification X → X with dense image of X over Y with morphisms
X → X1 and X → X2 and such that the composition X → Y → Y 1 is equal to the
composition X → X1 → Y 1 and such that the composition X → Y → Y 2 is equal
to the composition X → X2 → Y 2. Thus we see that it suffices to compare the
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maps determined by our diagrams when we have a commutative diagram as follows

X
j1

// U1

��

��

j′
1

// X1

��

��

X
j2 //

��

U2

��

j′
2 // X2

��

Y
i1 // Y 1

��
Y

i2 //

��

Y 2

xx
Z

and moreover the compactifications X → X1 and Y → Y 2 have dense image. We
use ai, a′

i, c, and c′ for the right adjoint of Lemma 3.1 for Xi → Y i, Ui → Y ,
X1 → X2, and U1 → U2. Each of the squares

X //

��
A

U1

��
X // U2

U2 //

��
B

X2

��
Y // Y 2

U1 //

��
C

X1

��
Y // Y 1

Y //

��
D

Y 1

��
Y // Y 2

X //

��
E

X1

��
X // X2

is cartesian (see More on Flatness, Lemma 32.1 part (c) for A, D, E and recall that
Ui is the inverse image of Y by Xi → Y i for B, C) and hence gives rise to a base
change map (4.1.1) as follows

γA : j∗
1 ◦ c′ → j∗

2 γB : (j′
2)∗ ◦ a2 → a′

2 ◦ i∗2 γC : (j′
1)∗ ◦ a1 → a′

1 ◦ i∗1
γD : i∗1 ◦ d→ i∗2 γE : (j′

1 ◦ j1)∗ ◦ c→ (j′
2 ◦ j2)∗

Denote f !
1 = j∗

1 ◦a′
1, f !

2 = j∗
2 ◦a′

2, g!
1 = i∗1◦b1, g!

2 = i∗2◦b2, (g◦f)!
1 = (j′

1◦j1)∗◦a1◦b1,
and (g ◦ f)!

2 = (j′
2 ◦ j2)∗ ◦ a2 ◦ b2. The construction given in the first paragraph of

the proof and in Lemma 16.2 uses
(1) γC for the map (g ◦ f)!

1 → f !
1 ◦ g!

1,
(2) γB for the map (g ◦ f)!

2 → f !
2 ◦ g!

2,
(3) γA for the map f !

1 → f !
2,

(4) γD for the map g!
1 → g!

2, and
(5) γE for the map (g ◦ f)!

1 → (g ◦ f)!
2.

We have to show that the diagram

(g ◦ f)!
1 γE

//

γC

��

(g ◦ f)!
2

γB

��
f !

1 ◦ g!
1

γA◦γD // f !
2 ◦ g!

2

is commutative. We will use Lemmas 5.1 and 5.2 and with (abuse of) notation as in
Remark 5.3 (in particular dropping ⋆ products with identity transformations from
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the notation). We can write γE = γA ◦ γF where

U1 //

��
F

X1

��
U2 // X2

Thus we see that
γB ◦ γE = γB ◦ γA ◦ γF = γA ◦ γB ◦ γF

the last equality because the two squares A andB only intersect in one point (similar
to the last argument in Remark 5.3). Thus it suffices to prove that γD◦γC = γB◦γF .
Since both of these are equal to the map (4.1.1) for the square

U1 //

��

X1

��
Y // Y 2

we conclude. □

Lemma 16.4.0ATY In Situation 16.1 the constructions of Lemmas 16.2 and 16.3 define
a pseudo functor from the category FTSS into the 2-category of categories (see
Categories, Definition 29.5).

Proof. To show this we have to prove given morphisms f : X → Y , g : Y → Z,
h : Z → T that

(h ◦ g ◦ f)!
γA+B

//

γB+C

��

f ! ◦ (h ◦ g)!

γC

��
(g ◦ f)! ◦ h! γA // f ! ◦ g! ◦ h!

is commutative (for the meaning of the γ’s, see below). To do this we choose a
compactification Z of Z over T , then a compactification Y of Y over Z, and then
a compactification X of X over Y . This uses More on Flatness, Theorem 33.8
and Lemma 32.2. Let W ⊂ Y be the inverse image of Z under Y → Z and let
U ⊂ V ⊂ X be the inverse images of Y ⊂ W under X → Y . This produces the
following diagram

X

f

��

// U //

��
A

V

��

//

B

X

��
Y

g

��

// Y //

��

W //

��
C

Y

��
Z

h

��

// Z

��

// Z

��

// Z

��
T // T // T // T

Without introducing tons of notation but arguing exactly as in the proof of Lemma
16.3 we see that the maps in the first displayed diagram use the maps (4.1.1) for
the rectangles A+B, B +C, A, and C as indicated. Since by Lemmas 5.1 and 5.2

https://stacks.math.columbia.edu/tag/0ATY
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we have γA+B = γA ◦γB and γB+C = γC ◦γB we conclude that the desired equality
holds provided γA ◦ γC = γC ◦ γA. This is true because the two squares A and C
only intersect in one point (similar to the last argument in Remark 5.3). □

Lemma 16.5.0B6T In Situation 16.1 let f : X → Y be a morphism of FTSS. There
are canonical maps

µf,K : Lf∗K ⊗L
OX

f !OY −→ f !K

functorial in K in D+
QCoh(OY ). If g : Y → Z is another morphism of FTSS, then

the diagram

Lf∗(Lg∗K ⊗L
OY

g!OZ)⊗L
OX

f !OY µf

// f !(Lg∗K ⊗L
OY

g!OZ)
f !µg

// f !g!K

Lf∗Lg∗K ⊗L
OX

Lf∗g!OZ ⊗L
OX

f !OY

µf // Lf∗Lg∗K ⊗L
OX

f !g!OZ

µg◦f // f !g!K

commutes for all K ∈ D+
QCoh(OZ).

Proof. If f is proper, then f ! = a and we can use (8.0.1) and if g is also proper,
then Lemma 8.4 proves the commutativity of the diagram (in greater generality).

Let us define the map µf,K . Choose a compactification j : X → X of X over Y .
Since f ! is defined as j∗ ◦ a we obtain µf,K as the restriction of the map (8.0.1)

Lf
∗
K ⊗L

O
X
a(OY ) −→ a(K)

to X. To see this is independent of the choice of the compactification we argue as
in the proof of Lemma 16.2. We urge the reader to read the proof of that lemma
first.

Assume given a morphism g : X1 → X2 between compactifications ji : X → Xi

over Y such that g−1(j2(X)) = j1(X). Denote c the right adjoint for pushforward
of Lemma 3.1 for the morphism g. The maps

Lf
∗
1K ⊗L

O
X
a1(OY ) −→ a1(K) and Lf

∗
2K ⊗L

O
X
a2(OY ) −→ a2(K)

fit into the commutative diagram

Lg∗(Lf∗
2K ⊗L a2(OY ))⊗L c(OX2

)
σ
// c(Lf∗

2K ⊗L a2(OY )) // c(a2(K))

Lf
∗
1K ⊗L Lg∗a2(OY )⊗L c(OX2

) 1⊗τ // Lf
∗
1K ⊗L a1(OY ) // a1(K)

by Lemma 8.4. By Lemma 8.3 the maps σ and τ restrict to an isomorphism over
X. In fact, we can say more. Recall that in the proof of Lemma 16.2 we used the
map (4.1.1) γ : j∗

1 ◦ c → j∗
2 to construct our isomorphism αg : j∗

1 ◦ a1 → j∗
2 ◦ a2.

Pulling back to map σ by j1 we obtain the identity map on j∗
2

(
Lf

∗
2K ⊗L a2(OY )

)
if we identify j∗

1c(OX2
) with OX via j∗

1 ◦ c → j∗
2 , see Lemma 8.2. Similarly, the

map τ : Lg∗a2(OY ) ⊗L c(OX2
) → a1(OY ) = c(a2(OY )) pulls back to the identity

https://stacks.math.columbia.edu/tag/0B6T
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map on j∗
2a2(OY ). We conclude that pulling back by j1 and applying γ wherever

we can we obtain a commutative diagram

j∗
2

(
Lf

∗
2K ⊗L a2(OY )

)
//

��

j∗
2a2(K)

j∗
1Lf

∗
1K ⊗L j∗

2a2(OY ) j∗
1 (Lf∗

1K ⊗L a1(OY )) //1⊗αgoo j∗
1a1(K)

αg

gg

The commutativity of this diagram exactly tells us that the map µf,K constructed
using the compactification X1 is the same as the map µf,K constructed using the
compactification X2 via the identification αg used in the proof of Lemma 16.2.
Some categorical arguments exactly as in the proof of Lemma 16.2 now show that
µf,K is well defined (small detail omitted).
Having said this, the commutativity of the diagram in the statement of our lemma
follows from the construction of the isomorphism (g ◦ f)! → f ! ◦ g! (first part of
the proof of Lemma 16.3 using X → Y → Z) and the result of Lemma 8.4 for
X → Y → Z. □

17. Properties of upper shriek functors

0ATZ Here are some properties of the upper shriek functors.
Lemma 17.1.0AU0 In Situation 16.1 let Y be an object of FTSS and let j : X → Y be
an open immersion. Then there is a canonical isomorphism j! = j∗ of functors.
For an étale morphism f : X → Y of FTSS we also have f∗ ∼= f !, see Lemma 18.2.

Proof. In this case we may choose X = Y as our compactification. Then the right
adjoint of Lemma 3.1 for id : Y → Y is the identity functor and hence j! = j∗ by
definition. □

Lemma 17.2.0G4J In Situation 16.1 let

U
j
//

g

��

X

f

��
V

j′
// Y

be a commutative diagram of FTSS where j and j′ are open immersions. Then
j∗ ◦ f ! = g! ◦ (j′)∗ as functors D+

QCoh(OY )→ D+(OU ).

Proof. Let h = f ◦ j = j′ ◦ g. By Lemma 16.3 we have h! = j! ◦ f ! = g! ◦ (j′)!. By
Lemma 17.1 we have j! = j∗ and (j′)! = (j′)∗. □

Lemma 17.3.0AA1 In Situation 16.1 let Y be an object of FTSS and let f : X =
A1

Y → Y be the projection. Then there is a (noncanonical) isomorphism f !(−) ∼=
Lf∗(−)[1] of functors.
Proof. Since X = A1

Y ⊂ P1
Y and since OP1

Y
(−2)|X ∼= OX this follows from

Lemmas 15.1 and 13.3. □

Lemma 17.4.0AA2 In Situation 16.1 let Y be an object of FTSS and let i : X → Y be a
closed immersion. Then there is a canonical isomorphism i!(−) = RHom(OX ,−)
of functors.

https://stacks.math.columbia.edu/tag/0AU0
https://stacks.math.columbia.edu/tag/0G4J
https://stacks.math.columbia.edu/tag/0AA1
https://stacks.math.columbia.edu/tag/0AA2
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Proof. This is a restatement of Lemma 9.7. □

Remark 17.5 (Local description upper shriek).0BV2 In Situation 16.1 let f : X → Y

be a morphism of FTSS . Using the lemmas above we can compute f ! locally as
follows. Suppose that we are given affine opens

U
j
//

g

��

X

f

��
V

i // Y

Since j! ◦ f ! = g! ◦ i! (Lemma 16.3) and since j! and i! are given by restriction
(Lemma 17.1) we see that

(f !E)|U = g!(E|V )
for any E ∈ D+

QCoh(OX). Write U = Spec(A) and V = Spec(R) and let φ : R→ A

be the finite type ring map corresponding to g. Choose a presentation A = P/I
where P = R[x1, . . . , xn] is a polynomial algebra in n variables over R. Choose an
object K ∈ D+(R) corresponding to E|V (Derived Categories of Schemes, Lemma
3.5). Then we claim that f !E|U corresponds to

φ!(K) = RHom(A,K ⊗L
R P )[n]

where RHom(A,−) : D(P )→ D(A) is the functor of Dualizing Complexes, Section
13 and where φ! : D(R) → D(A) is the functor of Dualizing Complexes, Section
24. Namely, the choice of presentation gives a factorization

U → An
V → An−1

V → . . .→ A1
V → V

Applying Lemma 17.3 exactly n times we see that (An
V → V )!(E|V ) corresponds

to K ⊗L
R P [n]. By Lemmas 9.5 and 17.4 the last step corresponds to applying

RHom(A,−).

Lemma 17.6.0AU1 In Situation 16.1 let f : X → Y be a morphism of FTSS. Then f !

maps D+
Coh(OY ) into D+

Coh(OX).

Proof. The question is local on X hence we may assume that X and Y are affine
schemes. In this case we can factor f : X → Y as

X
i−→ An

Y → An−1
Y → . . .→ A1

Y → Y

where i is a closed immersion. The lemma follows from By Lemmas 17.3 and 9.6
and Dualizing Complexes, Lemma 15.10 and induction. □

Lemma 17.7.0AA3 In Situation 16.1 let f : X → Y be a morphism of FTSS. If K is
a dualizing complex for Y , then f !K is a dualizing complex for X.

Proof. The question is local on X hence we may assume that X and Y are affine
schemes. In this case we can factor f : X → Y as

X
i−→ An

Y → An−1
Y → . . .→ A1

Y → Y

where i is a closed immersion. By Lemma 17.3 and Dualizing Complexes, Lemma
15.10 and induction we see that the p!K is a dualizing complex on An

Y where
p : An

Y → Y is the projection. Similarly, by Dualizing Complexes, Lemma 15.9 and
Lemmas 9.5 and 17.4 we see that i! transforms dualizing complexes into dualizing
complexes. □

https://stacks.math.columbia.edu/tag/0BV2
https://stacks.math.columbia.edu/tag/0AU1
https://stacks.math.columbia.edu/tag/0AA3
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Lemma 17.8.0AU2 In Situation 16.1 let f : X → Y be a morphism of FTSS. Let K
be a dualizing complex on Y . Set DY (M) = RHomOY

(M,K) for M ∈ DCoh(OY )
and DX(E) = RHomOX

(E, f !K) for E ∈ DCoh(OX). Then there is a canonical
isomorphism

f !M −→ DX(Lf∗DY (M))
for M ∈ D+

Coh(OY ).

Proof. Choose compactification j : X ⊂ X of X over Y (More on Flatness, Theo-
rem 33.8 and Lemma 32.2). Let a be the right adjoint of Lemma 3.1 for X → Y .
Set DX(E) = RHomO

X
(E, a(K)) for E ∈ DCoh(OX). Since formation of RHom

commutes with restriction to opens and since f ! = j∗ ◦ a we see that it suffices to
prove that there is a canonical isomorphism

a(M) −→ DX(Lf∗
DY (M))

for M ∈ DCoh(OY ). For F ∈ DQCoh(OX) we have

HomX(F,DX(Lf∗
DY (M))) = HomX(F ⊗L

OX
Lf

∗
DY (M), a(K))

= HomY (Rf∗(F ⊗L
OX

Lf
∗
DY (M)),K)

= HomY (Rf∗(F )⊗L
OY

DY (M),K)
= HomY (Rf∗(F ), DY (DY (M)))
= HomY (Rf∗(F ),M)
= HomX(F, a(M))

The first equality by Cohomology, Lemma 42.2. The second by definition of a. The
third by Derived Categories of Schemes, Lemma 22.1. The fourth equality by Co-
homology, Lemma 42.2 and the definition of DY . The fifth equality by Lemma 2.5.
The final equality by definition of a. Hence we see that a(M) = DX(Lf∗

DY (M))
by Yoneda’s lemma. □

Lemma 17.9.0B6U In Situation 16.1 let f : X → Y be a morphism of FTSS. Assume
f is perfect (e.g., flat). Then

(a) f ! maps Db
Coh(OY ) into Db

Coh(OX),
(b) the map µf,K : Lf∗K⊗L

OX
f !OY → f !K of Lemma 16.5 is an isomorphism

for all K ∈ D+
QCoh(OY ).

Proof. (A flat morphism of finite presentation is perfect, see More on Morphisms,
Lemma 61.5.) We begin with a series of preliminary remarks.

(1) We already know that f ! sends D+
Coh(OY ) into D+

Coh(OX), see Lemma 17.6.
(2) If f is an open immersion, then (a) and (b) are true because we can take

X = Y in the construction of f ! and µf . See also Lemma 17.1.
(3) If f is a perfect proper morphism, then (b) is true by Lemma 13.3.
(4) If there exists an open covering X =

⋃
Ui and (a) is true for Ui → Y , then

(a) is true for X → Y . Same for (b). This holds because the construction
of f ! and µf commutes with passing to open subschemes.

(5) If g : Y → Z is a second perfect morphism in FTSS and (b) holds for f
and g, then f !g!OZ = Lf∗g!OZ ⊗L

OX
f !OY and (b) holds for g ◦ f by the

commutative diagram of Lemma 16.5.

https://stacks.math.columbia.edu/tag/0AU2
https://stacks.math.columbia.edu/tag/0B6U
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(6) If (a) and (b) hold for both f and g, then (a) and (b) hold for g◦f . Namely,
then f !g!OZ is bounded above (by the previous point) and L(g ◦ f)∗ has
finite cohomological dimension and (a) follows from (b) which we saw above.

From these points we see it suffices to prove the result in case X is affine. Choose
an immersion X → An

Y (Morphisms, Lemma 39.2) which we factor as X → U →
An

Y → Y where X → U is a closed immersion and U ⊂ An
Y is open. Note that

X → U is a perfect closed immersion by More on Morphisms, Lemma 61.8. Thus
it suffices to prove the lemma for a perfect closed immersion and for the projection
An

Y → Y .

Let f : X → Y be a perfect closed immersion. We already know (b) holds.
Let K ∈ Db

Coh(OY ). Then f !K = RHom(OX ,K) (Lemma 17.4) and f∗f
!K =

RHomOY
(f∗OX ,K). Since f is perfect, the complex f∗OX is perfect and hence

RHomOY
(f∗OX ,K) is bounded above. This proves that (a) holds. Some details

omitted.

Let f : An
Y → Y be the projection. Then (a) holds by repeated application of

Lemma 17.3. Finally, (b) is true because it holds for Pn
Y → Y (flat and proper)

and because An
Y ⊂ Pn

Y is an open. □

Lemma 17.10.0E9T In Situation 16.1 let f : X → Y be a morphism of FTSS. If f is
flat, then f !OY is a Y -perfect object of D(OX) and OX → RHomOX

(f !OY , f
!OY )

is an isomorphism.

Proof. Both assertions are local on X. Thus we may assume X and Y are affine.
Then Remark 17.5 turns the lemma into an algebra lemma, namely Dualizing Com-
plexes, Lemma 25.2. (Use Derived Categories of Schemes, Lemma 35.3 to match
the languages.) □

Lemma 17.11.0B6V In Situation 16.1 let f : X → Y be a morphism of FTSS. Assume
f : X → Y is a local complete intersection morphism. Then

(1) f !OY is an invertible object of D(OX), and
(2) f ! maps perfect complexes to perfect complexes.

Proof. Recall that a local complete intersection morphism is perfect, see More
on Morphisms, Lemma 62.4. By Lemma 17.9 it suffices to show that f !OY is
an invertible object in D(OX). This question is local on X and Y . Hence we
may assume that X → Y factors as X → An

Y → Y where the first arrow is
a Koszul regular immersion. See More on Morphisms, Section 62. The result
holds for An

Y → Y by Lemma 17.3. Thus it suffices to prove the lemma when
f is a Koszul regular immersion. Working locally once again we reduce to the
case X = Spec(A) and Y = Spec(B), where A = B/(f1, . . . , fr) for some regular
sequence f1, . . . , fr ∈ B (use that for Noetherian local rings the notion of Koszul
regular and regular are the same, see More on Algebra, Lemma 30.7). Thus X → Y
is a composition

X = Xr → Xr−1 → . . .→ X1 → X0 = Y

where each arrow is the inclusion of an effective Cartier divisor. In this way we
reduce to the case of an inclusion of an effective Cartier divisor i : D → X. In this
case i!OX = N [1] by Lemma 14.1 and the proof is complete. □

https://stacks.math.columbia.edu/tag/0E9T
https://stacks.math.columbia.edu/tag/0B6V
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18. Base change for upper shriek

0BZX In Situation 16.1 let
X ′

g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram in FTSS such that X and Y ′ are Tor independent over Y .
Our setup is currently not sufficient to construct a base change map L(g′)∗ ◦ f ! →
(f ′)! ◦ Lg∗ in this generality. The reason is that in general it will not be possible
to choose a compactification j : X → X over Y such that X and Y ′ are tor
independent over Y and hence our construction of the base change map in Section
5 does not apply6.
A partial remedy will be found in Section 28. Namely, if the morphism f is flat,
then there is a good notion of a relative dualizing complex and using Lemmas 28.9
28.6, and 17.9 we may construct a canonical base change isomorphism. If we ever
need to use this, we will add precise statements and proofs later in this chapter.

Lemma 18.1.0E9U In Situation 16.1 let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of FTSS with g flat. Then there is an isomorphism L(g′)∗ ◦
f ! → (f ′)! ◦ Lg∗ on D+

QCoh(OY ).

Proof. Namely, because g is flat, for every choice of compactification j : X → X

of X over Y the scheme X is Tor independent of Y ′. Denote j′ : X ′ → X
′ the base

change of j and g′ : X ′ → X the projection. We define the base change map as the
composition
L(g′)∗ ◦ f ! = L(g′)∗ ◦ j∗ ◦ a = (j′)∗ ◦ L(g′)∗ ◦ a −→ (j′)∗ ◦ a′ ◦ Lg∗ = (f ′)! ◦ Lg∗

where the middle arrow is the base change map (5.0.1) and a and a′ are the right
adjoints to pushforward of Lemma 3.1 for X → Y and X ′ → Y ′. This construction
is independent of the choice of compactification (we will formulate a precise lemma
and prove it, if we ever need this result).
To finish the proof it suffices to show that the base change map L(g′)∗◦a→ a′◦Lg∗

is an isomorphism on D+
QCoh(OY ). By Lemma 4.4 formation of a and a′ commutes

with restriction to affine opens of Y and Y ′. Thus by Remark 6.1 we may assume
that Y and Y ′ are affine. Thus the result by Lemma 6.2. □

Lemma 18.2.0FWI In Situation 16.1 let f : X → Y be an étale morphism of FTSS.
Then f ! ∼= f∗ as functors on D+

QCoh(OY ).

6The reader who is well versed with derived algebraic geometry will realize this is not a “real”
problem. Namely, taking X

′ to be the derived fibre product of X and Y ′ over Y , one can argue
exactly as in the proof of Lemma 18.1 to define this map. After all, the Tor independence of X

and Y ′ guarantees that X′ will be an open subscheme of the derived scheme X
′.

https://stacks.math.columbia.edu/tag/0E9U
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Proof. We are going to use that an étale morphism is flat, syntomic, and a local
complete intersection morphism (Morphisms, Lemma 36.10 and 36.12 and More on
Morphisms, Lemma 62.8). By Lemma 17.9 it suffices to show f !OY = OX . By
Lemma 17.11 we know that f !OY is an invertible module. Consider the commuta-
tive diagram

X ×Y X
p2

//

p1

��

X

f

��
X

f // Y

and the diagonal ∆ : X → X×Y X. Since ∆ is an open immersion (by Morphisms,
Lemmas 35.13 and 36.5), by Lemma 17.1 we have ∆! = ∆∗. By Lemma 16.3 we have
∆! ◦ p!

1 ◦ f ! = f !. By Lemma 18.1 applied to the diagram we have p!
1OX = p∗

2f
!OY .

Hence we conclude

f !OY = ∆!p!
1f

!OY = ∆∗(p∗
1f

!OY ⊗ p!
1OX) = ∆∗(p∗

2f
!OY ⊗ p∗

1f
!OY ) = (f !OY )⊗2

where in the second step we have used Lemma 17.9 once more. Thus f !OY = OX

as desired. □

In the rest of this section, we formulate some easy to prove results which would be
consequences of a good theory of the base change map.

Lemma 18.3 (Makeshift base change).0BZY In Situation 16.1 let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of FTSS. Let E ∈ D+
QCoh(OY ) be an object such that Lg∗E

is in D+(OY ). If f is flat, then L(g′)∗f !E and (f ′)!Lg∗E restrict to isomorphic
objects of D(OU ′) for U ′ ⊂ X ′ affine open mapping into affine opens of Y , Y ′, and
X.

Proof. By our assumptions we immediately reduce to the case where X, Y , Y ′, and
X ′ are affine. Say Y = Spec(R), Y ′ = Spec(R′), X = Spec(A), and X ′ = Spec(A′).
Then A′ = A ⊗R R′. Let E correspond to K ∈ D+(R). Denoting φ : R → A
and φ′ : R′ → A′ the given maps we see from Remark 17.5 that L(g′)∗f !E and
(f ′)!Lg∗E correspond to φ!(K)⊗L

AA
′ and (φ′)!(K⊗L

RR
′) where φ! and (φ′)! are the

functors from Dualizing Complexes, Section 24. The result follows from Dualizing
Complexes, Lemma 24.6. □

Lemma 18.4.0BZZ In Situation 16.1 let f : X → Y be a morphism of FTSS. Assume
f is flat. Set ω•

X/Y = f !OY in Db
Coh(X). Let y ∈ Y and h : Xy → X the projection.

Then Lh∗ω•
X/Y is a dualizing complex on Xy.

Proof. The complex ω•
X/Y is in Db

Coh by Lemma 17.9. Being a dualizing complex
is a local property. Hence by Lemma 18.3 it suffices to show that (Xy → y)!Oy is
a dualizing complex on Xy. This follows from Lemma 17.7. □

https://stacks.math.columbia.edu/tag/0BZY
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19. A duality theory

0AU3 In this section we spell out what kind of a duality theory our very general results
above give for finite type separated schemes over a fixed Noetherian base scheme.

Recall that a dualizing complex on a Noetherian scheme X, is an object of D(OX)
which affine locally gives a dualizing complex for the corresponding rings, see Def-
inition 2.2.

Given a Noetherian scheme S denote FTSS the category of schemes which are of
finite type and separated over S. Then:

(1) the functors f ! turn D+
QCoh into a pseudo functor on FTSS ,

(2) if f : X → Y is a proper morphism in FTSS , then f ! is the restriction of
the right adjoint of Rf∗ : DQCoh(OX) → DQCoh(OY ) to D+

QCoh(OY ) and
there is a canonical isomorphism

Rf∗RHomOX
(K, f !M)→ RHomOY

(Rf∗K,M)

for all K ∈ D−
Coh(OX) and M ∈ D+

QCoh(OY ),
(3) if an object X of FTSS has a dualizing complex ω•

X , then the functor DX =
RHomOX

(−, ω•
X) defines an involution of DCoh(OX) switching D+

Coh(OX)
and D−

Coh(OX) and fixing Db
Coh(OX),

(4) if f : X → Y is a morphism of FTSS and ω•
Y is a dualizing complex on Y ,

then
(a) ω•

X = f !ω•
Y is a dualizing complex for X,

(b) f !M = DX(Lf∗DY (M)) canonically for M ∈ D+
Coh(OY ), and

(c) if in addition f is proper then

Rf∗RHomOX
(K,ω•

X) = RHomOY
(Rf∗K,ω

•
Y )

for K in D−
Coh(OX),

(5) if f : X → Y is a closed immersion in FTSS , then f !(−) = RHom(OX ,−),
(6) if f : Y → X is a finite morphism in FTSS , then f∗f

!(−) = RHomOX
(f∗OY ,−),

(7) if f : X → Y is the inclusion of an effective Cartier divisor into an object
of FTSS , then f !(−) = Lf∗(−)⊗OX

OY (−X)[−1],
(8) if f : X → Y is a Koszul regular immersion of codimension c into an object

of FTSS , then f !(−) ∼= Lf∗(−)⊗OX
∧cN [−c], and

(9) if f : X → Y is a smooth proper morphism of relative dimension d in FTSS ,
then f !(−) ∼= Lf∗(−)⊗OX

Ωd
X/Y [d].

This follows from Lemmas 2.5, 3.6, 9.7, 11.4, 14.2, 15.6, 15.7, 16.3, 16.4, 17.4, 17.7,
17.8, and 17.9 and Example 3.9. We have obtained our functors by a very abstract
procedure which finally rests on invoking an existence theorem (Derived Categories,
Proposition 38.2). This means we have, in general, no explicit description of the
functors f !. This can sometimes be a problem. But in fact, it is often enough to
know the existence of a dualizing complex and the duality isomorphism to pin down
f !.

20. Glueing dualizing complexes

0AU5 We will now use glueing of dualizing complexes to get a theory which works for all
finite type schemes over S given a pair (S, ω•

S) as in Situation 20.1. This is similar
to [Har66, Remark on page 310].
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Situation 20.1.0AU4 Here S is a Noetherian scheme and ω•
S is a dualizing complex.

In Situation 20.1 let X be a scheme of finite type over S. Let U : X =
⋃

i=1,...,n Ui

be a finite open covering of X by objects of FTSS , see Situation 16.1. All this means
is that the morphisms Ui → S are separated (as they are already of finite type).
Every affine scheme of finite type over S is an object of FTSS by Schemes, Lemma
21.13 hence such open coverings certainly exist. Then for each i, j, k ∈ {1, . . . , n}
the morphisms pi : Ui → S, pij : Ui ∩ Uj → S, and pijk : Ui ∩ Uj ∩ Uk → S are
separated and each of these schemes is an object of FTSS . From such an open
covering we obtain

(1) ω•
i = p!

iω
•
S a dualizing complex on Ui, see Section 19,

(2) for each i, j a canonical isomorphism φij : ω•
i |Ui∩Uj → ω•

j |Ui∩Uj , and
(3)0AU6 for each i, j, k we have

φik|Ui∩Uj∩Uk
= φjk|Ui∩Uj∩Uk

◦ φij |Ui∩Uj∩Uk

in D(OUi∩Uj∩Uk
).

Here, in (2) we use that (Ui ∩ Uj → Ui)! is given by restriction (Lemma 17.1) and
that we have canonical isomorphisms

(Ui ∩ Uj → Ui)! ◦ p!
i = p!

ij = (Ui ∩ Uj → Uj)! ◦ p!
j

by Lemma 16.3 and to get (3) we use that the upper shriek functors form a pseudo
functor by Lemma 16.4.

In the situation just described a dualizing complex normalized relative to ω•
S and

U is a pair (K,αi) where K ∈ D(OX) and αi : K|Ui
→ ω•

i are isomorphisms such
that φij is given by αj |Ui∩Uj

◦ α−1
i |Ui∩Uj

. Since being a dualizing complex on a
scheme is a local property we see that dualizing complexes normalized relative to
ω•

S and U are indeed dualizing complexes.

Lemma 20.2.0AU7 In Situation 20.1 let X be a scheme of finite type over S and let
U be a finite open covering of X by schemes separated over S. If there exists a
dualizing complex normalized relative to ω•

S and U , then it is unique up to unique
isomorphism.

Proof. If (K,αi) and (K ′, α′
i) are two, then we consider L = RHomOX

(K,K ′).
By Lemma 2.6 and its proof, this is an invertible object of D(OX). Using αi and
α′

i we obtain an isomorphism

αt
i ⊗ α′

i : L|Ui
−→ RHomOX

(ω•
i , ω

•
i ) = OUi

[0]

This already implies that L = H0(L)[0] in D(OX). Moreover, H0(L) is an invertible
sheaf with given trivializations on the opens Ui of X. Finally, the condition that
αj |Ui∩Uj

◦ α−1
i |Ui∩Uj

and α′
j |Ui∩Uj

◦ (α′
i)−1|Ui∩Uj

both give φij implies that the
transition maps are 1 and we get an isomorphism H0(L) = OX . □

Lemma 20.3.0AU8 In Situation 20.1 let X be a scheme of finite type over S and let
U , V be two finite open coverings of X by schemes separated over S. If there exists
a dualizing complex normalized relative to ω•

S and U , then there exists a dualiz-
ing complex normalized relative to ω•

S and V and these complexes are canonically
isomorphic.

https://stacks.math.columbia.edu/tag/0AU4
https://stacks.math.columbia.edu/tag/0AU7
https://stacks.math.columbia.edu/tag/0AU8
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Proof. It suffices to prove this when U is given by the opens U1, . . . , Un and V
by the opens U1, . . . , Un+m. In fact, we may and do even assume m = 1. To go
from a dualizing complex (K,αi) normalized relative to ω•

S and V to a dualizing
complex normalized relative to ω•

S and U is achieved by forgetting about αi for
i = n + 1. Conversely, let (K,αi) be a dualizing complex normalized relative to
ω•

S and U . To finish the proof we need to construct a map αn+1 : K|Un+1 → ω•
n+1

satisfying the desired conditions. To do this we observe that Un+1 =
⋃
Ui ∩ Un+1

is an open covering. It is clear that (K|Un+1 , αi|Ui∩Un+1) is a dualizing complex
normalized relative to ω•

S and the covering Un+1 =
⋃
Ui ∩ Un+1. On the other

hand, by condition (3) the pair (ω•
n+1|Un+1 , φn+1i) is another dualizing complex

normalized relative to ω•
S and the covering Un+1 =

⋃
Ui ∩ Un+1. By Lemma 20.2

we obtain a unique isomorphism
αn+1 : K|Un+1 −→ ω•

n+1

compatible with the given local isomorphisms. It is a pleasant exercise to show that
this means it satisfies the required property. □

Lemma 20.4.0AU9 In Situation 20.1 let X be a scheme of finite type over S and let
U be a finite open covering of X by schemes separated over S. Then there exists a
dualizing complex normalized relative to ω•

S and U .

Proof. Say U : X =
⋃

i=1,...,n Ui. We prove the lemma by induction on n. The
base case n = 1 is immediate. Assume n > 1. Set X ′ = U1 ∪ . . . ∪ Un−1 and
let (K ′, {α′

i}i=1,...,n−1) be a dualizing complex normalized relative to ω•
S and U ′ :

X ′ =
⋃

i=1,...,n−1 Ui. It is clear that (K ′|X′∩Un
, α′

i|Ui∩Un
) is a dualizing complex

normalized relative to ω•
S and the covering X ′ ∩ Un =

⋃
i=1,...,n−1 Ui ∩ Un. On the

other hand, by condition (3) the pair (ω•
n|X′∩Un

, φni) is another dualizing complex
normalized relative to ω•

S and the covering X ′ ∩ Un =
⋃

i=1,...,n−1 Ui ∩ Un. By
Lemma 20.2 we obtain a unique isomorphism

ϵ : K ′|X′∩Un
−→ ω•

i |X′∩Un

compatible with the given local isomorphisms. By Cohomology, Lemma 45.1 we
obtain K ∈ D(OX) together with isomorphisms β : K|X′ → K ′ and γ : K|Un

→ ω•
n

such that ϵ = γ|X′∩Un
◦ β|−1

X′∩Un
. Then we define

αi = α′
i ◦ β|Ui , i = 1, . . . , n− 1, and αn = γ

We still need to verify that φij is given by αj |Ui∩Uj
◦ α−1

i |Ui∩Uj
. For i, j ≤ n − 1

this follows from the corresponding condition for α′
i. For i = j = n it is clear as

well. If i < j = n, then we get
αn|Ui∩Un

◦α−1
i |Ui∩Un

= γ|Ui∩Un
◦β−1|Ui∩Un

◦(α′
i)−1|Ui∩Un

= ϵ|Ui∩Un
◦(α′

i)−1|Ui∩Un

This is equal to αin exactly because ϵ is the unique map compatible with the maps
α′

i and αni. □

Let (S, ω•
S) be as in Situation 20.1. The upshot of the lemmas above is that given

any scheme X of finite type over S, there is a pair (K,αU ) given up to unique
isomorphism, consisting of an object K ∈ D(OX) and isomorphisms αU : K|U →
ω•

U for every open subscheme U ⊂ X which is separated over S. Here ω•
U = (U →

S)!ω•
S is a dualizing complex on U , see Section 19. Moreover, if U : X =

⋃
Ui

is a finite open covering by opens which are separated over S, then (K,αUi
) is

a dualizing complex normalized relative to ω•
S and U . Namely, uniqueness up to

https://stacks.math.columbia.edu/tag/0AU9
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unique isomorphism by Lemma 20.2, existence for one open covering by Lemma
20.4, and the fact that K then works for all open coverings is Lemma 20.3.
Definition 20.5.0AUA Let S be a Noetherian scheme and let ω•

S be a dualizing complex
on S. Let X be a scheme of finite type over S. The complex K constructed above
is called the dualizing complex normalized relative to ω•

S and is denoted ω•
X .

As the terminology suggest, a dualizing complex normalized relative to ω•
S is not

just an object of the derived category of X but comes equipped with the local
isomorphisms described above. This does not conflict with setting ω•

X = p!ω•
S

where p : X → S is the structure morphism if X is separated over S. More
generally we have the following sanity check.
Lemma 20.6.0AUB Let (S, ω•

S) be as in Situation 20.1. Let f : X → Y be a morphism
of finite type schemes over S. Let ω•

X and ω•
Y be dualizing complexes normalized

relative to ω•
S. Then ω•

X is a dualizing complex normalized relative to ω•
Y .

Proof. This is just a matter of bookkeeping. Choose a finite affine open covering
V : Y =

⋃
Vj . For each j choose a finite affine open covering f−1(Vj) = Uji. Set

U : X =
⋃
Uji. The schemes Vj and Uji are separated over S, hence we have

the upper shriek functors for qj : Vj → S, pji : Uji → S and fji : Uji → Vj and
f ′

ji : Uji → Y . Let (L, βj) be a dualizing complex normalized relative to ω•
S and

V. Let (K, γji) be a dualizing complex normalized relative to ω•
S and U . (In other

words, L = ω•
Y and K = ω•

X .) We can define

αji : K|Uji

γji−−→ p!
jiω

•
S = f !

jiq
!
jω

•
S

f !
jiβ−1

j−−−−→ f !
ji(L|Vj ) = (f ′

ji)!(L)

To finish the proof we have to show that αji|Uji∩Uj′i′ ◦α−1
j′i′ |Uji∩Uj′i′ is the canonical

isomorphism (f ′
ji)!(L)|Uji∩Uj′i′ → (f ′

j′i′)!(L)|Uji∩Uj′i′ . This is formal and we omit
the details. □

Lemma 20.7.0AUC Let (S, ω•
S) be as in Situation 20.1. Let j : X → Y be an open

immersion of schemes of finite type over S. Let ω•
X and ω•

Y be dualizing complexes
normalized relative to ω•

S. Then there is a canonical isomorphism ω•
X = ω•

Y |X .
Proof. Immediate from the construction of normalized dualizing complexes given
just above Definition 20.5. □

Lemma 20.8.0AUD Let (S, ω•
S) be as in Situation 20.1. Let f : X → Y be a proper

morphism of schemes of finite type over S. Let ω•
X and ω•

Y be dualizing complexes
normalized relative to ω•

S. Let a be the right adjoint of Lemma 3.1 for f . Then
there is a canonical isomorphism a(ω•

Y ) = ω•
X .

Proof. Let p : X → S and q : Y → S be the structure morphisms. If X and Y
are separated over S, then this follows from the fact that ω•

X = p!ω•
S , ω•

Y = q!ω•
S ,

f ! = a, and f ! ◦ q! = p! (Lemma 16.3). In the general case we first use Lemma 20.6
to reduce to the case Y = S. In this case X and Y are separated over S and we’ve
just seen the result. □

Let (S, ω•
S) be as in Situation 20.1. For a scheme X of finite type over S de-

note ω•
X the dualizing complex for X normalized relative to ω•

S . Define DX(−) =
RHomOX

(−, ω•
X) as in Lemma 2.5. Let f : X → Y be a morphism of finite type

schemes over S. Define
f !

new = DX ◦ Lf∗ ◦DY : D+
Coh(OY )→ D+

Coh(OX)

https://stacks.math.columbia.edu/tag/0AUA
https://stacks.math.columbia.edu/tag/0AUB
https://stacks.math.columbia.edu/tag/0AUC
https://stacks.math.columbia.edu/tag/0AUD
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If f : X → Y and g : Y → Z are composable morphisms between schemes of finite
type over S, define

(g ◦ f)!
new = DX ◦ L(g ◦ f)∗ ◦DZ

= DX ◦ Lf∗ ◦ Lg∗ ◦DZ

→ DX ◦ Lf∗ ◦DY ◦DY ◦ Lg∗ ◦DZ

= f !
new ◦ g!

new

where the arrow is defined in Lemma 2.5. We collect the results together in the
following lemma.

Lemma 20.9.0AUE Let (S, ω•
S) be as in Situation 20.1. With f !

new and ω•
X defined for

all (morphisms of) schemes of finite type over S as above:
(1) the functors f !

new and the arrows (g ◦ f)!
new → f !

new ◦ g!
new turn D+

Coh into
a pseudo functor from the category of schemes of finite type over S into the
2-category of categories,

(2) ω•
X = (X → S)!

newω
•
S,

(3) the functor DX defines an involution of DCoh(OX) switching D+
Coh(OX)

and D−
Coh(OX) and fixing Db

Coh(OX),
(4) ω•

X = f !
newω

•
Y for f : X → Y a morphism of finite type schemes over S,

(5) f !
newM = DX(Lf∗DY (M)) for M ∈ D+

Coh(OY ), and
(6) if in addition f is proper, then f !

new is isomorphic to the restriction of the
right adjoint of Rf∗ : DQCoh(OX) → DQCoh(OY ) to D+

Coh(OY ) and there
is a canonical isomorphism

Rf∗RHomOX
(K, f !

newM)→ RHomOY
(Rf∗K,M)

for K ∈ D−
Coh(OX) and M ∈ D+

Coh(OY ), and

Rf∗RHomOX
(K,ω•

X) = RHomOY
(Rf∗K,ω

•
Y )

for K ∈ D−
Coh(OX) and

If X is separated over S, then ω•
X is canonically isomorphic to (X → S)!ω•

S and
if f is a morphism between schemes separated over S, then there is a canonical
isomorphism7 f !

newK = f !K for K in D+
Coh.

Proof. Let f : X → Y , g : Y → Z, h : Z → T be morphisms of schemes of finite
type over S. We have to show that

(h ◦ g ◦ f)!
new

//

��

f !
new ◦ (h ◦ g)!

new

��
(g ◦ f)!

new ◦ h!
new

// f !
new ◦ g!

new ◦ h!
new

is commutative. Let ηY : id→ D2
Y and ηZ : id→ D2

Z be the canonical isomorphisms
of Lemma 2.5. Then, using Categories, Lemma 28.2, a computation (omitted) shows
that both arrows (h ◦ g ◦ f)!

new → f !
new ◦ g!

new ◦ h!
new are given by

1⋆ηY ⋆1⋆ηZ ⋆1 : DX ◦Lf∗ ◦Lg∗ ◦Lh∗ ◦DT −→ DX ◦Lf∗ ◦D2
Y ◦Lg∗ ◦D2

Z ◦Lh∗ ◦DT

7We haven’t checked that these are compatible with the isomorphisms (g ◦ f)! → f ! ◦ g! and
(g ◦ f)!

new → f !
new ◦ g!

new. We will do this here if we need this later.

https://stacks.math.columbia.edu/tag/0AUE
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This proves (1). Part (2) is immediate from the definition of (X → S)!
new and

the fact that DS(ω•
S) = OS . Part (3) is Lemma 2.5. Part (4) follows by the same

argument as part (2). Part (5) is the definition of f !
new.

Proof of (6). Let a be the right adjoint of Lemma 3.1 for the proper morphism
f : X → Y of schemes of finite type over S. The issue is that we do not know
X or Y is separated over S (and in general this won’t be true) hence we cannot
immediately apply Lemma 17.8 to f over S. To get around this we use the canonical
identification ω•

X = a(ω•
Y ) of Lemma 20.8. Hence f !

new is the restriction of a to
D+

Coh(OY ) by Lemma 17.8 applied to f : X → Y over the base scheme Y ! The
displayed equalities hold by Example 3.9.

The final assertions follow from the construction of normalized dualizing complexes
and the already used Lemma 17.8. □

Remark 20.10.0BV3 Let S be a Noetherian scheme which has a dualizing complex.
Let f : X → Y be a morphism of schemes of finite type over S. Then the functor

f !
new : D+

Coh(OY )→ D+
Coh(OX)

is independent of the choice of the dualizing complex ω•
S up to canonical isomor-

phism. We sketch the proof. Any second dualizing complex is of the form ω•
S⊗L

OS
L

where L is an invertible object of D(OS), see Lemma 2.6. For any separated mor-
phism p : U → S of finite type we have p!(ω•

S ⊗L
OS
L) = p!(ω•

S) ⊗L
OU

Lp∗L by
Lemma 8.1. Hence, if ω•

X and ω•
Y are the dualizing complexes normalized relative

to ω•
S we see that ω•

X ⊗L
OX

La∗L and ω•
Y ⊗L

OY
Lb∗L are the dualizing complexes

normalized relative to ω•
S⊗L

OS
L (where a : X → S and b : Y → S are the structure

morphisms). Then the result follows as

RHomOX
(Lf∗RHomOY

(K,ω•
Y ⊗L

OY
Lb∗L), ω•

X ⊗L
OX

La∗L)
= RHomOX

(Lf∗R(HomOY
(K,ω•

Y )⊗L
OY

Lb∗L), ω•
X ⊗L

OX
La∗L)

= RHomOX
(Lf∗RHomOY

(K,ω•
Y )⊗L

OX
La∗L, ω•

X ⊗L
OX

La∗L)
= RHomOX

(Lf∗RHomOY
(K,ω•

Y ), ω•
X)

for K ∈ D+
Coh(OY ). The last equality because La∗L is invertible in D(OX).

Example 20.11.0B6X Let S be a Noetherian scheme and let ω•
S be a dualizing complex.

Let f : X → Y be a proper morphism of finite type schemes over S. Let ω•
X and

ω•
Y be dualizing complexes normalized relative to ω•

S . In this situation we have
a(ω•

Y ) = ω•
X (Lemma 20.8) and hence the trace map (Section 7) is a canonical

arrow
Trf : Rf∗ω

•
X −→ ω•

Y

which produces the isomorphisms (Lemma 20.9)

HomX(L, ω•
X) = HomY (Rf∗L, ω

•
Y )

and
Rf∗RHomOX

(L, ω•
X) = RHomOY

(Rf∗L, ω
•
Y )

for L in DQCoh(OX).

https://stacks.math.columbia.edu/tag/0BV3
https://stacks.math.columbia.edu/tag/0B6X
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Remark 20.12.0AX4 Let S be a Noetherian scheme and let ω•
S be a dualizing complex.

Let f : X → Y be a finite morphism between schemes of finite type over S. Let
ω•

X and ω•
Y be dualizing complexes normalized relative to ω•

S . Then we have

f∗ω
•
X = RHom(f∗OX , ω

•
Y )

in D+
QCoh(f∗OX) by Lemmas 11.4 and 20.8 and the trace map of Example 20.11 is

the map
Trf : Rf∗ω

•
X = f∗ω

•
X = RHom(f∗OX , ω

•
Y ) −→ ω•

Y

which often goes under the name “evaluation at 1”.

Remark 20.13.0B6W Let f : X → Y be a flat proper morphism of finite type schemes
over a pair (S, ω•

S) as in Situation 20.1. The relative dualizing complex (Remark
12.5) is ω•

X/Y = a(OY ). By Lemma 20.8 we have the first canonical isomorphism
in

ω•
X = a(ω•

Y ) = Lf∗ω•
Y ⊗L

OX
ω•

X/Y

in D(OX). The second canonical isomorphism follows from the discussion in Re-
mark 12.5.

21. Dimension functions

0BV4 We need a bit more information about how the dimension functions change when
passing to a scheme of finite type over another.

Lemma 21.1.0AWL Let S be a Noetherian scheme and let ω•
S be a dualizing complex. Let

X be a scheme of finite type over S and let ω•
X be the dualizing complex normalized

relative to ω•
S. If x ∈ X is a closed point lying over a closed point s of S, then

ω•
X,x is a normalized dualizing complex over OX,x provided that ω•

S,s is a normalized
dualizing complex over OS,s.

Proof. We may replace X by an affine neighbourhood of x, hence we may and
do assume that f : X → S is separated. Then ω•

X = f !ω•
S . We have to show

that RHomOX,x
(κ(x), ω•

X,x) is sitting in degree 0. Let ix : x → X denote the
inclusion morphism which is a closed immersion as x is a closed point. Hence
RHomOX,x

(κ(x), ω•
X,x) represents i!xω•

X by Lemma 17.4. Consider the commutative
diagram

x
ix

//

π

��

X

f

��
s

is // S

By Morphisms, Lemma 20.3 the extension κ(x)/κ(s) is finite and hence π is a finite
morphism. We conclude that

i!xω
•
X = i!xf

!ω•
S = π!i!sω

•
S

Thus if ω•
S,s is a normalized dualizing complex over OS,s, then i!sω

•
S = κ(s)[0] by

the same reasoning as above. We have

Rπ∗(π!(κ(s)[0])) = RHomOs(Rπ∗(κ(x)[0]), κ(s)[0]) = ˜Homκ(s)(κ(x), κ(s))

The first equality by Example 3.9 applied with L = κ(x)[0]. The second equality
holds because π∗ is exact. Thus π!(κ(s)[0]) is supported in degree 0 and we win. □

https://stacks.math.columbia.edu/tag/0AX4
https://stacks.math.columbia.edu/tag/0B6W
https://stacks.math.columbia.edu/tag/0AWL
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Lemma 21.2.0AWM Let S be a Noetherian scheme and let ω•
S be a dualizing complex.

Let f : X → S be of finite type and let ω•
X be the dualizing complex normalized

relative to ω•
S. For all x ∈ X we have

δX(x)− δS(f(x)) = trdegκ(f(x))(κ(x))

where δS, resp. δX is the dimension function of ω•
S, resp. ω•

X , see Lemma 2.7.

Proof. We may replace X by an affine neighbourhood of x. Hence we may and
do assume there is a compactification X ⊂ X over S. Then we may replace X by
X and assume that X is proper over S. We may also assume X is connected by
replacing X by the connected component of X containing x. Next, recall that both
δX and the function x 7→ δS(f(x)) + trdegκ(f(x))(κ(x)) are dimension functions
on X, see Morphisms, Lemma 52.3 (and the fact that S is universally catenary
by Lemma 2.7). By Topology, Lemma 20.3 we see that the difference is locally
constant, hence constant as X is connected. Thus it suffices to prove equality in
any point of X. By Properties, Lemma 5.9 the scheme X has a closed point x.
Since X → S is proper the image s of x is closed in S. Thus we may apply Lemma
21.1 to conclude. □

Lemma 21.3.0BV5 In Situation 16.1 let f : X → Y be a morphism of FTSS. Let
x ∈ X with image y ∈ Y . Then

Hi(f !OY )x ̸= 0⇒ −dimx(Xy) ≤ i.

Proof. Since the statement is local on X we may assume X and Y are affine
schemes. Write X = Spec(A) and Y = Spec(R). Then f !OY corresponds to the
relative dualizing complex ω•

A/R of Dualizing Complexes, Section 25 by Remark
17.5. Thus the lemma follows from Dualizing Complexes, Lemma 25.7. □

Lemma 21.4.0BV6 In Situation 16.1 let f : X → Y be a morphism of FTSS. Let
x ∈ X with image y ∈ Y . If f is flat, then

Hi(f !OY )x ̸= 0⇒ −dimx(Xy) ≤ i ≤ 0.

In fact, if all fibres of f have dimension ≤ d, then f !OY has tor-amplitude in [−d, 0]
as an object of D(X, f−1OY ).

Proof. Arguing exactly as in the proof of Lemma 21.3 this follows from Dualizing
Complexes, Lemma 25.8. □

Lemma 21.5.0E9V In Situation 16.1 let f : X → Y be a morphism of FTSS. Let
x ∈ X with image y ∈ Y . Assume

(1) OY,y is Cohen-Macaulay, and
(2) trdegκ(f(ξ))(κ(ξ)) ≤ r for any generic point ξ of an irreducible component

of X containing x.
Then

Hi(f !OY )x ̸= 0⇒ −r ≤ i
and the stalk H−r(f !OY )x is (S2) as an OX,x-module.

Proof. After replacing X by an open neighbourhood of x, we may assume every
irreducible component of X passes through x. Then arguing exactly as in the proof
of Lemma 21.3 this follows from Dualizing Complexes, Lemma 25.9. □
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Lemma 21.6.0BV7 In Situation 16.1 let f : X → Y be a morphism of FTSS. If f is
flat and quasi-finite, then

f !OY = ωX/Y [0]

for some coherent OX-module ωX/Y flat over Y .

Proof. Consequence of Lemma 21.4 and the fact that the cohomology sheaves of
f !OY are coherent by Lemma 17.6. □

Lemma 21.7.0BV8 In Situation 16.1 let f : X → Y be a morphism of FTSS. If f is
Cohen-Macaulay (More on Morphisms, Definition 22.1), then

f !OY = ωX/Y [d]

for some coherent OX-module ωX/Y flat over Y where d is the locally constant
function on X which gives the relative dimension of X over Y .

Proof. The relative dimension d is well defined and locally constant by Morphisms,
Lemma 29.4. The cohomology sheaves of f !OY are coherent by Lemma 17.6. We
will get flatness of ωX/Y from Lemma 21.4 if we can show the other cohomology
sheaves of f !OY are zero.

The question is local on X, hence we may assume X and Y are affine and the
morphism has relative dimension d. If d = 0, then the result follows directly from
Lemma 21.6. If d > 0, then we may assume there is a factorization

X
g−→ Ad

Y
p−→ Y

with g quasi-finite and flat, see More on Morphisms, Lemma 22.8. Then f ! = g!◦p!.
By Lemma 17.3 we see that p!OY

∼= OAd
Y

[−d]. We conclude by the case d = 0. □

Remark 21.8.0BV9 Let S be a Noetherian scheme endowed with a dualizing complex
ω•

S . In this case Lemmas 21.3, 21.4, 21.6, and 21.7 are true for any morphism
f : X → Y of finite type schemes over S but with f ! replaced by f !

new. This is
clear because in each case the proof reduces immediately to the affine case and then
f ! = f !

new by Lemma 20.9.

22. Dualizing modules

0AWH This section is a continuation of Dualizing Complexes, Section 19.

Let X be a Noetherian scheme and let ω•
X be a dualizing complex. Let n ∈ Z be the

smallest integer such that Hn(ω•
X) is nonzero. In other words, −n is the maximal

value of the dimension function associated to ω•
X (Lemma 2.7). Sometimes Hn(ω•

X)
is called a dualizing module or dualizing sheaf for X and then it is often denoted by
ωX . We will say “let ωX be a dualizing module” to indicate the above.

Care has to be taken when using dualizing modules ωX on Noetherian schemes X:
(1) the integer n may change when passing from X to an open U of X and

then it won’t be true that ωX |U = ωU ,
(2) the dualizing complex isn’t unique; the dualizing module is only unique up

to tensoring by an invertible module.
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The second problem will often be irrelevant because we will work with X of finite
type over a base change S which is endowed with a fixed dualizing complex ω•

S

and ω•
X will be the dualizing complex normalized relative to ω•

S . The first problem
will not occur if X is equidimensional, more precisely, if the dimension function
associated to ω•

X (Lemma 2.7) maps every generic point of X to the same integer.

Example 22.1.0AWI Say S = Spec(A) with (A,m, κ) a local Noetherian ring, and ω•
S

corresponds to a normalized dualizing complex ω•
A. Then if f : X → S is proper

over S and ω•
X = f !ω•

S the coherent sheaf

ωX = H− dim(X)(ω•
X)

is a dualizing module and is often called the dualizing module of X (with S and
ω•

S being understood). We will see that this has good properties.

Example 22.2.0AWJ Say X is an equidimensional scheme of finite type over a field k.
Then it is customary to take ω•

X the dualizing complex normalized relative to k[0]
and to refer to

ωX = H− dim(X)(ω•
X)

as the dualizing module of X. If X is separated over k, then ω•
X = f !OSpec(k) where

f : X → Spec(k) is the structure morphism by Lemma 20.9. If X is proper over k,
then this is a special case of Example 22.1.
Lemma 22.3.0AWK Let X be a connected Noetherian scheme and let ωX be a dualizing
module on X. The support of ωX is the union of the irreducible components of
maximal dimension with respect to any dimension function and ωX is a coherent
OX-module having property (S2).
Proof. By our conventions discussed above there exists a dualizing complex ω•

X

such that ωX is the leftmost nonvanishing cohomology sheaf. Since X is connected,
any two dimension functions differ by a constant (Topology, Lemma 20.3). Hence
we may use the dimension function associated to ω•

X (Lemma 2.7). With these
remarks in place, the lemma now follows from Dualizing Complexes, Lemma 17.5
and the definitions (in particular Cohomology of Schemes, Definition 11.1). □

Lemma 22.4.0AWN Let X/A with ω•
X and ωX be as in Example 22.1. Then

(1) Hi(ω•
X) ̸= 0⇒ i ∈ {−dim(X), . . . , 0},

(2) the dimension of the support of Hi(ω•
X) is at most −i,

(3) Supp(ωX) is the union of the components of dimension dim(X), and
(4) ωX has property (S2).

Proof. Let δX and δS be the dimension functions associated to ω•
X and ω•

S as in
Lemma 21.2. As X is proper over A, every closed subscheme of X contains a closed
point x which maps to the closed point s ∈ S and δX(x) = δS(s) = 0. Hence
δX(ξ) = dim({ξ}) for any point ξ ∈ X. Hence we can check each of the statements
of the lemma by looking at what happens over Spec(OX,x) in which case the result
follows from Dualizing Complexes, Lemmas 16.5 and 17.5. Some details omitted.
The last two statements can also be deduced from Lemma 22.3. □

Lemma 22.5.0AWP Let X/A with dualizing module ωX be as in Example 22.1. Let
d = dim(Xs) be the dimension of the closed fibre. If dim(X) = d + dim(A), then
the dualizing module ωX represents the functor

F 7−→ HomA(Hd(X,F), ωA)

https://stacks.math.columbia.edu/tag/0AWI
https://stacks.math.columbia.edu/tag/0AWJ
https://stacks.math.columbia.edu/tag/0AWK
https://stacks.math.columbia.edu/tag/0AWN
https://stacks.math.columbia.edu/tag/0AWP


DUALITY FOR SCHEMES 62

on the category of coherent OX-modules.

Proof. We have

HomX(F , ωX) = Ext− dim(X)
X (F , ω•

X)
= HomX(F [dim(X)], ω•

X)
= HomX(F [dim(X)], f !(ω•

A))
= HomS(Rf∗F [dim(X)], ω•

A)
= HomA(Hd(X,F), ωA)

The first equality because Hi(ω•
X) = 0 for i < −dim(X), see Lemma 22.4 and

Derived Categories, Lemma 27.3. The second equality is follows from the definition
of Ext groups. The third equality is our choice of ω•

X . The fourth equality holds
because f ! is the right adjoint of Lemma 3.1 for f , see Section 19. The final equality
holds because Rif∗F is zero for i > d (Cohomology of Schemes, Lemma 20.9) and
Hj(ω•

A) is zero for j < − dim(A). □

23. Cohen-Macaulay schemes

0AWQ This section is the continuation of Dualizing Complexes, Section 20. Duality takes
a particularly simple form for Cohen-Macaulay schemes.

Lemma 23.1.0AWT Let X be a locally Noetherian scheme with dualizing complex ω•
X .

(1) X is Cohen-Macaulay⇔ ω•
X locally has a unique nonzero cohomology sheaf,

(2) OX,x is Cohen-Macaulay ⇔ ω•
X,x has a unique nonzero cohomology,

(3) U = {x ∈ X | OX,x is Cohen-Macaulay} is open and Cohen-Macaulay.
If X is connected and Cohen-Macaulay, then there is an integer n and a coherent
Cohen-Macaulay OX-module ωX such that ω•

X = ωX [−n].

Proof. By definition and Dualizing Complexes, Lemma 15.6 for every x ∈ X the
complex ω•

X,x is a dualizing complex over OX,x. By Dualizing Complexes, Lemma
20.2 we see that (2) holds.

To see (3) assume that OX,x is Cohen-Macaulay. Let nx be the unique integer such
that Hnx(ω•

X,x) is nonzero. For an affine neighbourhood V ⊂ X of x we have ω•
X |V

is in Db
Coh(OV ) hence there are finitely many nonzero coherent modules Hi(ω•

X)|V .
Thus after shrinking V we may assume only Hnx is nonzero, see Modules, Lemma
9.5. In this way we see that OX,v is Cohen-Macaulay for every v ∈ V . This proves
that U is open as well as a Cohen-Macaulay scheme.

Proof of (1). The implication ⇐ follows from (2). The implication ⇒ follows from
the discussion in the previous paragraph, where we showed that if OX,x is Cohen-
Macaulay, then in a neighbourhood of x the complex ω•

X has only one nonzero
cohomology sheaf.

Assume X is connected and Cohen-Macaulay. The above shows that the map
x 7→ nx is locally constant. Since X is connected it is constant, say equal to n.
Setting ωX = Hn(ω•

X) we see that the lemma holds because ωX is Cohen-Macaulay
by Dualizing Complexes, Lemma 20.2 (and Cohomology of Schemes, Definition
11.4). □
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Lemma 23.2.0AWU Let X be a locally Noetherian scheme. If there exists a coherent
sheaf ωX such that ωX [0] is a dualizing complex on X, then X is a Cohen-Macaulay
scheme.

Proof. This follows immediately from Dualizing Complexes, Lemma 20.3 and our
definitions. □

Lemma 23.3.0C0Z In Situation 16.1 let f : X → Y be a morphism of FTSS. Let
x ∈ X. If f is flat, then the following are equivalent

(1) f is Cohen-Macaulay at x,
(2) f !OY has a unique nonzero cohomology sheaf in a neighbourhood of x.

Proof. One direction of the lemma follows from Lemma 21.7. To prove the con-
verse, we may assume f !OY has a unique nonzero cohomology sheaf. Let y = f(x).
Let ξ1, . . . , ξn ∈ Xy be the generic points of the fibre Xy specializing to x. Let
d1, . . . , dn be the dimensions of the corresponding irreducible components of Xy.
The morphism f : X → Y is Cohen-Macaulay at ηi by More on Morphisms, Lemma
22.7. Hence by Lemma 21.7 we see that d1 = . . . = dn. If d denotes the common
value, then d = dimx(Xy). After shrinking X we may assume all fibres have di-
mension at most d (Morphisms, Lemma 28.4). Then the only nonzero cohomology
sheaf ω = H−d(f !OY ) is flat over Y by Lemma 21.4. Hence, if h : Xy → X de-
notes the canonical morphism, then Lh∗(f !OY ) = Lh∗(ω[d]) = (h∗ω)[d] by Derived
Categories of Schemes, Lemma 22.8. Thus h∗ω[d] is the dualizing complex of Xy

by Lemma 18.4. Hence Xy is Cohen-Macaulay by Lemma 23.1. This proves f is
Cohen-Macaulay at x as desired. □

Remark 23.4.0C10 In Situation 16.1 let f : X → Y be a morphism of FTSS . Assume
f is a Cohen-Macaulay morphism of relative dimension d. Let ωX/Y = H−d(f !OY )
be the unique nonzero cohomology sheaf of f !OY , see Lemma 21.7. Then there is
a canonical isomorphism

f !K = Lf∗K ⊗L
OX

ωX/Y [d]

for K ∈ D+
QCoh(OY ), see Lemma 17.9. In particular, if S has a dualizing complex

ω•
S , ω•

Y = (Y → S)!ω•
S , and ω•

X = (X → S)!ω•
S then we have

ω•
X = Lf∗ω•

Y ⊗L
OX

ωX/Y [d]

Thus if further X and Y are connected and Cohen-Macaulay and if ωY and ωX

denote the unique nonzero cohomology sheaves of ω•
Y and ω•

X , then we have

ωX = f∗ωY ⊗OX
ωX/Y .

Similar results hold for X and Y arbitrary finite type schemes over S (i.e., not
necessarily separated over S) with dualizing complexes normalized with respect to
ω•

S as in Section 20.

24. Gorenstein schemes

0AWV This section is the continuation of Dualizing Complexes, Section 21.

Definition 24.1.0AWW Let X be a scheme. We say X is Gorenstein if X is locally
Noetherian and OX,x is Gorenstein for all x ∈ X.
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This definition makes sense because a Noetherian ring is said to be Gorenstein if
and only if all of its local rings are Gorenstein, see Dualizing Complexes, Definition
21.1.

Lemma 24.2.0C00 A Gorenstein scheme is Cohen-Macaulay.

Proof. Looking affine locally this follows from the corresponding result in algebra,
namely Dualizing Complexes, Lemma 21.2. □

Lemma 24.3.0DWG A regular scheme is Gorenstein.

Proof. Looking affine locally this follows from the corresponding result in algebra,
namely Dualizing Complexes, Lemma 21.3. □

Lemma 24.4.0BFQ Let X be a locally Noetherian scheme.
(1) If X has a dualizing complex ω•

X , then
(a) X is Gorenstein ⇔ ω•

X is an invertible object of D(OX),
(b) OX,x is Gorenstein ⇔ ω•

X,x is an invertible object of D(OX,x),
(c) U = {x ∈ X | OX,x is Gorenstein} is an open Gorenstein subscheme.

(2) If X is Gorenstein, then X has a dualizing complex if and only if OX [0] is
a dualizing complex.

Proof. Looking affine locally this follows from the corresponding result in algebra,
namely Dualizing Complexes, Lemma 21.4. □

Lemma 24.5.0BVA If f : Y → X is a local complete intersection morphism with X a
Gorenstein scheme, then Y is Gorenstein.

Proof. By More on Morphisms, Lemma 62.5 it suffices to prove the corresponding
statement about ring maps. This is Dualizing Complexes, Lemma 21.7. □

Lemma 24.6.0C01 The property P(S) =“S is Gorenstein” is local in the syntomic
topology.

Proof. Let {Si → S} be a syntomic covering. The scheme S is locally Noetherian
if and only if each Si is Noetherian, see Descent, Lemma 16.1. Thus we may
now assume S and Si are locally Noetherian. If S is Gorenstein, then each Si is
Gorenstein by Lemma 24.5. Conversely, if each Si is Gorenstein, then for each point
s ∈ S we can pick i and t ∈ Si mapping to s. Then OS,s → OSi,t is a flat local
ring homomorphism with OSi,t Gorenstein. Hence OS,s is Gorenstein by Dualizing
Complexes, Lemma 21.8. □

25. Gorenstein morphisms

0C02 This section is one in a series. The corresponding sections for normal morphisms,
regular morphisms, and Cohen-Macaulay morphisms can be found in More on Mor-
phisms, Sections 20, 21, and 22.
The following lemma says that it does not make sense to define geometrically Goren-
stein schemes, since these would be the same as Gorenstein schemes.

Lemma 25.1.0C03 Let X be a locally Noetherian scheme over the field k. Let k′/k
be a finitely generated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a
point lying over x. Then we have

OX,x is Gorenstein⇔ OXk′ ,x′ is Gorenstein
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If X is locally of finite type over k, the same holds for any field extension k′/k.

Proof. In both cases the ring map OX,x → OXk′ ,x′ is a faithfully flat local homo-
morphism of Noetherian local rings. Thus if OXk′ ,x′ is Gorenstein, then so is OX,x

by Dualizing Complexes, Lemma 21.8. To go up, we use Dualizing Complexes,
Lemma 21.8 as well. Thus we have to show that

OXk′ ,x′/mxOXk′ ,x′ = κ(x)⊗k k
′

is Gorenstein. Note that in the first case k → k′ is finitely generated and in the
second case k → κ(x) is finitely generated. Hence this follows as property (A) holds
for Gorenstein, see Dualizing Complexes, Lemma 23.1. □

The lemma above guarantees that the following is the correct definition of Goren-
stein morphisms.

Definition 25.2.0C04 Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X, and y = f(x). We say that f is Gorenstein at x if f is flat at
x, and the local ring of the scheme Xy at x is Gorenstein.

(2) We say f is a Gorenstein morphism if f is Gorenstein at every point of X.

Here is a translation.

Lemma 25.3.0C05 Let f : X → Y be a morphism of schemes. Assume all fibres of f
are locally Noetherian. The following are equivalent

(1) f is Gorenstein, and
(2) f is flat and its fibres are Gorenstein schemes.

Proof. This follows directly from the definitions. □

Lemma 25.4.0C06 A Gorenstein morphism is Cohen-Macaulay.

Proof. Follows from Lemma 24.2 and the definitions. □

Lemma 25.5.0C15 A syntomic morphism is Gorenstein. Equivalently a flat local
complete intersection morphism is Gorenstein.

Proof. Recall that a syntomic morphism is flat and its fibres are local complete
intersections over fields, see Morphisms, Lemma 30.11. Since a local complete inter-
section over a field is a Gorenstein scheme by Lemma 24.5 we conclude. The proper-
ties “syntomic” and “flat and local complete intersection morphism” are equivalent
by More on Morphisms, Lemma 62.8. □

Lemma 25.6.0C11 Let f : X → Y and g : Y → Z be morphisms. Assume that the
fibres Xy, Yz and Xz of f , g, and g ◦ f are locally Noetherian.

(1) If f is Gorenstein at x and g is Gorenstein at f(x), then g◦f is Gorenstein
at x.

(2) If f and g are Gorenstein, then g ◦ f is Gorenstein.
(3) If g ◦ f is Gorenstein at x and f is flat at x, then f is Gorenstein at x and

g is Gorenstein at f(x).
(4) If g◦f is Gorenstein and f is flat, then f is Gorenstein and g is Gorenstein

at every point in the image of f .

Proof. After translating into algebra this follows from Dualizing Complexes, Lemma
21.8. □
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Lemma 25.7.0C12 Let f : X → Y be a flat morphism of locally Noetherian schemes.
If X is Gorenstein, then f is Gorenstein and OY,f(x) is Gorenstein for all x ∈ X.

Proof. After translating into algebra this follows from Dualizing Complexes, Lemma
21.8. □

Lemma 25.8.0C07 Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes. Let Y ′ → Y be locally of finite type. Let
f ′ : X ′ → Y ′ be the base change of f . Let x′ ∈ X ′ be a point with image x ∈ X.

(1) If f is Gorenstein at x, then f ′ : X ′ → Y ′ is Gorenstein at x′.
(2) If f is flat at x and f ′ is Gorenstein at x′, then f is Gorenstein at x.
(3) If Y ′ → Y is flat at f ′(x′) and f ′ is Gorenstein at x′, then f is Gorenstein

at x.

Proof. Note that the assumption on Y ′ → Y implies that for y′ ∈ Y ′ mapping
to y ∈ Y the field extension κ(y′)/κ(y) is finitely generated. Hence also all the
fibres X ′

y′ = (Xy)κ(y′) are locally Noetherian, see Varieties, Lemma 11.1. Thus the
lemma makes sense. Set y′ = f ′(x′) and y = f(x). Hence we get the following
commutative diagram of local rings

OX′,x′ OX,x
oo

OY ′,y′

OO

OY,y
oo

OO

where the upper left corner is a localization of the tensor product of the upper right
and lower left corners over the lower right corner.

Assume f is Gorenstein at x. The flatness of OY,y → OX,x implies the flatness
of OY ′,y′ → OX′,x′ , see Algebra, Lemma 100.1. The fact that OX,x/myOX,x is
Gorenstein implies that OX′,x′/my′OX′,x′ is Gorenstein, see Lemma 25.1. Hence
we see that f ′ is Gorenstein at x′.

Assume f is flat at x and f ′ is Gorenstein at x′. The fact that OX′,x′/my′OX′,x′

is Gorenstein implies that OX,x/myOX,x is Gorenstein, see Lemma 25.1. Hence we
see that f is Gorenstein at x.

Assume Y ′ → Y is flat at y′ and f ′ is Gorenstein at x′. The flatness of OY ′,y′ →
OX′,x′ and OY,y → OY ′,y′ implies the flatness of OY,y → OX,x, see Algebra, Lemma
100.1. The fact that OX′,x′/my′OX′,x′ is Gorenstein implies that OX,x/myOX,x is
Gorenstein, see Lemma 25.1. Hence we see that f is Gorenstein at x. □

Lemma 25.9.0E0Q Let f : X → Y be a morphism of schemes which is flat and locally
of finite type. Then formation of the set {x ∈ X | f is Gorenstein at x} commutes
with arbitrary base change.

Proof. The assumption implies any fibre of f is locally of finite type over a field
and hence locally Noetherian and the same is true for any base change. Thus the
statement makes sense. Looking at fibres we reduce to the following problem: let
X be a scheme locally of finite type over a field k, let K/k be a field extension,
and let xK ∈ XK be a point with image x ∈ X. Problem: show that OXK ,xK

is
Gorenstein if and only if OX,x is Gorenstein.
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The problem can be solved using a bit of algebra as follows. Choose an affine open
Spec(A) ⊂ X containing x. Say x corresponds to p ⊂ A. With AK = A ⊗k K we
see that Spec(AK) ⊂ XK contains xK . Say xK corresponds to pK ⊂ AK . Let ω•

A

be a dualizing complex for A. By Dualizing Complexes, Lemma 25.3 ω•
A ⊗A AK

is a dualizing complex for AK . Now we are done because Ap → (AK)pK
is a flat

local homomorphism of Noetherian rings and hence (ω•
A)p is an invertible object

of D(Ap) if and only if (ω•
A)p ⊗Ap

(AK)pK
is an invertible object of D((AK)pK

).
Some details omitted; hint: look at cohomology modules. □

Lemma 25.10.0C08 In Situation 16.1 let f : X → Y be a morphism of FTSS. Let
x ∈ X. If f is flat, then the following are equivalent

(1) f is Gorenstein at x,
(2) f !OY is isomorphic to an invertible object in a neighbourhood of x.

In particular, the set of points where f is Gorenstein is open in X.

Proof. Set ω• = f !OY . By Lemma 18.4 this is a bounded complex with coherent
cohomology sheaves whose derived restriction Lh∗ω• to the fibre Xy is a dualizing
complex on Xy. Denote i : x → Xy the inclusion of a point. Then the following
are equivalent

(1) f is Gorenstein at x,
(2) OXy,x is Gorenstein,
(3) Lh∗ω• is invertible in a neighbourhood of x,
(4) Li∗Lh∗ω• has exactly one nonzero cohomology of dimension 1 over κ(x),
(5) L(h ◦ i)∗ω• has exactly one nonzero cohomology of dimension 1 over κ(x),
(6) ω• is invertible in a neighbourhood of x.

The equivalence of (1) and (2) is by definition (as f is flat). The equivalence
of (2) and (3) follows from Lemma 24.4. The equivalence of (3) and (4) follows
from More on Algebra, Lemma 77.1. The equivalence of (4) and (5) holds because
Li∗Lh∗ = L(h ◦ i)∗. The equivalence of (5) and (6) holds by More on Algebra,
Lemma 77.1. Thus the lemma is clear. □

Lemma 25.11.0C09 Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. Let x ∈ X with image s ∈ S. Set d = dimx(Xs). The
following are equivalent

(1) f is Gorenstein at x,
(2) there exists an open neighbourhood U ⊂ X of x and a locally quasi-finite

morphism U → Ad
S over S which is Gorenstein at x,

(3) there exists an open neighbourhood U ⊂ X of x and a locally quasi-finite
Gorenstein morphism U → Ad

S over S,
(4) for any S-morphism g : U → Ad

S of an open neighbourhood U ⊂ X of x we
have: g is quasi-finite at x ⇒ g is Gorenstein at x.

In particular, the set of points where f is Gorenstein is open in X.

Proof. Choose affine open U = Spec(A) ⊂ X with x ∈ U and V = Spec(R) ⊂ S
with f(U) ⊂ V . Then R→ A is a flat ring map of finite presentation. Let p ⊂ A be
the prime ideal corresponding to x. After replacing A by a principal localization we
may assume there exists a quasi-finite map R[x1, . . . , xd]→ A, see Algebra, Lemma
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125.2. Thus there exists at least one pair (U, g) consisting of an open neighbourhood
U ⊂ X of x and a locally8 quasi-finite morphism g : U → Ad

S .

Having said this, the lemma translates into the following algebra problem (trans-
lation omitted). Given R → A flat and of finite presentation, a prime p ⊂ A and
φ : R[x1, . . . , xd]→ A quasi-finite at p the following are equivalent

(a) Spec(φ) is Gorenstein at p, and
(b) Spec(A)→ Spec(R) is Gorenstein at p.
(c) Spec(A)→ Spec(R) is Gorenstein in an open neighbourhood of p.

In each case R[x1, . . . , xn]→ A is flat at p hence by openness of flatness (Algebra,
Theorem 129.4), we may assume R[x1, . . . , xn] → A is flat (replace A by a suit-
able principal localization). By Algebra, Lemma 168.1 there exists R0 ⊂ R and
R0[x1, . . . , xn]→ A0 such that R0 is of finite type over Z and R0 → A0 is of finite
type and R0[x1, . . . , xn]→ A0 is flat. Note that the set of points where a flat finite
type morphism is Gorenstein commutes with base change by Lemma 25.8. In this
way we reduce to the case where R is Noetherian.

Thus we may assume X and S affine and that we have a factorization of f of the
form

X
g−→ An

S
p−→ S

with g flat and quasi-finite and S Noetherian. Then X and An
S are separated over

S and we have
f !OS = g!p!OS = g!OAn

S
[n]

by know properties of upper shriek functors (Lemmas 16.3 and 17.3). Hence the
equivalence of (a), (b), and (c) by Lemma 25.10. □

Lemma 25.12.0C0A The property P(f) =“the fibres of f are locally Noetherian and f
is Gorenstein” is local in the fppf topology on the target and local in the syntomic
topology on the source.

Proof. We have P(f) = P1(f)∧P2(f) where P1(f) =“f is flat”, and P2(f) =“the
fibres of f are locally Noetherian and Gorenstein”. We know that P1 is local in the
fppf topology on the source and the target, see Descent, Lemmas 23.15 and 27.1.
Thus we have to deal with P2.

Let f : X → Y be a morphism of schemes. Let {φi : Yi → Y }i∈I be an fppf
covering of Y . Denote fi : Xi → Yi the base change of f by φi. Let i ∈ I and let
yi ∈ Yi be a point. Set y = φi(yi). Note that

Xi,yi
= Spec(κ(yi))×Spec(κ(y)) Xy.

and that κ(yi)/κ(y) is a finitely generated field extension. Hence if Xy is locally
Noetherian, then Xi,yi

is locally Noetherian, see Varieties, Lemma 11.1. And if in
addition Xy is Gorenstein, then Xi,yi

is Gorenstein, see Lemma 25.1. Thus P2 is
fppf local on the target.

Let {Xi → X} be a syntomic covering of X. Let y ∈ Y . In this case {Xi,y → Xy} is
a syntomic covering of the fibre. Hence the locality of P2 for the syntomic topology
on the source follows from Lemma 24.6. □

8If S is quasi-separated, then g will be quasi-finite.

https://stacks.math.columbia.edu/tag/0C0A


DUALITY FOR SCHEMES 69

26. More on dualizing complexes

0E4M Some lemmas which don’t fit anywhere else very well.

Lemma 26.1.0E4N Let f : X → Y be a morphism of locally Noetherian schemes.
Assume

(1) f is syntomic and surjective, or
(2) f is a surjective flat local complete intersection morphism, or
(3) f is a surjective Gorenstein morphism of finite type.

Then K ∈ DQCoh(OY ) is a dualizing complex on Y if and only if Lf∗K is a
dualizing complex on X.

Proof. Taking affine opens and using Derived Categories of Schemes, Lemma 3.5
this translates into Dualizing Complexes, Lemma 26.2. □

27. Duality for proper schemes over fields

0FVU In this section we work out the consequences of the very general material above on
dualizing complexes and duality for proper schemes over fields.

Lemma 27.1.0FVV Let X be a proper scheme over a field k. There exists a dualizing
complex ω•

X with the following properties
(1) Hi(ω•

X) is nonzero only for i ∈ [− dim(X), 0],
(2) ωX = H− dim(X)(ω•

X) is a coherent (S2)-module whose support is the irre-
ducible components of dimension dim(X),

(3) the dimension of the support of Hi(ω•
X) is at most −i,

(4) for x ∈ X closed the module Hi(ω•
X,x) ⊕ . . . ⊕H0(ω•

X,x) is nonzero if and
only if depth(OX,x) ≤ −i,

(5) for K ∈ DQCoh(OX) there are functorial isomorphisms9

Exti
X(K,ω•

X) = Homk(H−i(X,K), k)

compatible with shifts and distinguished triangles,
(6) there are functorial isomorphisms Hom(F , ωX) = Homk(Hdim(X)(X,F), k)

for F quasi-coherent on X, and
(7) if X → Spec(k) is smooth of relative dimension d, then ω•

X
∼= ∧dΩX/k[d]

and ωX
∼= ∧dΩX/k.

Proof. Denote f : X → Spec(k) the structure morphism. Let a be the right
adjoint of pushforward of this morphism, see Lemma 3.1. Consider the relative
dualizing complex

ω•
X = a(OSpec(k))

Compare with Remark 12.5. Since f is proper we have f !(OSpec(k)) = a(OSpec(k))
by definition, see Section 16. Applying Lemma 17.7 we find that ω•

X is a dualizing
complex. Moreover, we see that ω•

X and ωX are as in Example 22.1 and as in
Example 22.2.

Parts (1), (2), and (3) follow from Lemma 22.4.

9This property characterizes ω•
X in DQCoh(OX) up to unique isomorphism by the Yoneda

lemma. Since ω•
X is in Db

Coh(OX) in fact it suffices to consider K ∈ Db
Coh(OX).
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For a closed point x ∈ X we see that ω•
X,x is a normalized dualizing complex over

OX,x, see Lemma 21.1. Part (4) then follows from Dualizing Complexes, Lemma
20.1.

Part (5) holds by construction as a is the right adjoint to Rf∗ : DQCoh(OX) →
D(OSpec(k)) = D(k) which we can identify with K 7→ RΓ(X,K). We also use
that the derived category D(k) of k-modules is the same as the category of graded
k-vector spaces.

Part (6) follows from Lemma 22.5 for coherent F and in general by unwinding (5)
for K = F [0] and i = −dim(X).

Part (7) follows from Lemma 15.7. □

Remark 27.2.0FVW Let k, X, and ω•
X be as in Lemma 27.1. The identity on the

complex ω•
X corresponds, via the functorial isomorphism in part (5), to a map

t : H0(X,ω•
X) −→ k

For an arbitrary K in DQCoh(OX) the identification Hom(K,ω•
X) with H0(X,K)∨

in part (5) corresponds to the pairing

HomX(K,ω•
X)×H0(X,K) −→ k, (α, β) 7−→ t(α(β))

This follows from the functoriality of the isomorphisms in (5). Similarly for any
i ∈ Z we get the pairing

Exti
X(K,ω•

X)×H−i(X,K) −→ k, (α, β) 7−→ t(α(β))

Here we think of α as a morphismK[−i]→ ω•
X and β as an element ofH0(X,K[−i])

in order to define α(β). Observe that if K is general, then we only know that
this pairing is nondegenerate on one side: the pairing induces an isomorphism
of HomX(K,ω•

X), resp. Exti
X(K,ω•

X) with the k-linear dual of H0(X,K), resp.
H−i(X,K) but in general not vice versa. If K is in Db

Coh(OX), then HomX(K,ω•
X),

ExtX(K,ω•
X), H0(X,K), and Hi(X,K) are finite dimensional k-vector spaces (by

Derived Categories of Schemes, Lemmas 11.5 and 11.4) and the pairings are perfect
in the usual sense.

Remark 27.3.0FVX We continue the discussion in Remark 27.2 and we use the same
notation k, X, ω•

X , and t. If F is a coherent OX -module we obtain perfect pairings

⟨−,−⟩ : Exti
X(F , ω•

X)×H−i(X,F) −→ k, (α, β) 7−→ t(α(β))

of finite dimensional k-vector spaces. These pairings satisfy the following (obvious)
functoriality: if φ : F → G is a homomorphism of coherent OX -modules, then we
have

⟨α ◦ φ, β⟩ = ⟨α,φ(β)⟩
for α ∈ Exti

X(G, ω•
X) and β ∈ H−i(X,F). In other words, the k-linear map

Exti
X(G, ω•

X) → Exti
X(F , ω•

X) induced by φ is, via the pairings, the k-linear dual
of the k-linear map H−i(X,F) → H−i(X,G) induced by φ. Formulated in this
manner, this still works if φ is a homomorphism of quasi-coherent OX -modules.

Lemma 27.4.0FVY Let k, X, and ω•
X be as in Lemma 27.1. Let t : H0(X,ω•

X) → k
be as in Remark 27.2. Let E ∈ D(OX) be perfect. Then the pairings

Hi(X,ω•
X ⊗L

OX
E∨)×H−i(X,E) −→ k, (ξ, η) 7−→ t((1ω•

X
⊗ ϵ)(ξ ∪ η))
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are perfect for all i. Here ∪ denotes the cupproduct of Cohomology, Section 31 and
ϵ : E∨ ⊗L

OX
E → OX is as in Cohomology, Example 50.7.

Proof. By replacing E with E[−i] this reduces to the case i = 0. By Cohomology,
Lemma 51.2 we see that the pairing is the same as the one discussed in Remark
27.2 whence the result by the discussion in that remark. □

Lemma 27.5.0FVZ Let X be a proper scheme over a field k which is Cohen-Macaulay
and equidimensional of dimension d. The module ωX of Lemma 27.1 has the fol-
lowing properties

(1) ωX is a dualizing module on X (Section 22),
(2) ωX is a coherent Cohen-Macaulay module whose support is X,
(3) there are functorial isomorphisms Exti

X(K,ωX [d]) = Homk(H−i(X,K), k)
compatible with shifts and distinguished triangles for K ∈ DQCoh(X),

(4) there are functorial isomorphisms Extd−i(F , ωX) = Homk(Hi(X,F), k) for
F quasi-coherent on X.

Proof. It is clear from Lemma 27.1 that ωX is a dualizing module (as it is the left
most nonvanishing cohomology sheaf of a dualizing complex). We have ω•

X = ωX [d]
and ωX is Cohen-Macaulay as X is Cohen-Macualay, see Lemma 23.1. The other
statements follow from this combined with the corresponding statements of Lemma
27.1. □

Remark 27.6.0FW0 Let X be a proper Cohen-Macaulay scheme over a field k which is
equidimensional of dimension d. Let ω•

X and ωX be as in Lemma 27.1. By Lemma
27.5 we have ω•

X = ωX [d]. Let t : Hd(X,ωX)→ k be the map of Remark 27.2. Let
E be a finite locally free OX -module with dual E∨. Then we have perfect pairings

Hi(X,ωX ⊗OX
E∨)×Hd−i(X, E) −→ k, (ξ, η) 7−→ t(1⊗ ϵ)(ξ ∪ η))

where ∪ is the cup-product and ϵ : E∨⊗OX
E → OX is the evaluation map. This is

a special case of Lemma 27.4.

Here is a sanity check for the dualizing complex.

Lemma 27.7.0FW1 Let X be a proper scheme over a field k. Let ω•
X and ωX be as in

Lemma 27.1.
(1) If X → Spec(k) factors as X → Spec(k′)→ Spec(k) for some field k′, then

ω•
X and ωX are as in Lemma 27.1 for the morphism X → Spec(k′).

(2) If K/k is a field extension, then the pullback of ω•
X and ωX to the base

change XK are as in Lemma 27.1 for the morphism XK → Spec(K).

Proof. Denote f : X → Spec(k) the structure morphism and denote f ′ : X →
Spec(k′) the given factorization. In the proof of Lemma 27.1 we took ω•

X =
a(OSpec(k)) where a be is the right adjoint of Lemma 3.1 for f . Thus we have
to show a(OSpec(k)) ∼= a′(OSpec(k)) where a′ be is the right adjoint of Lemma 3.1
for f ′. Since k′ ⊂ H0(X,OX) we see that k′/k is a finite extension (Cohomology
of Schemes, Lemma 19.2). By uniqueness of adjoints we have a = a′ ◦ b where b
is the right adjoint of Lemma 3.1 for g : Spec(k′) → Spec(k). Another way to say
this: we have f ! = (f ′)! ◦ g!. Thus it suffices to show that Homk(k′, k) ∼= k′ as
k′-modules, see Example 3.2. This holds because these are k′-vector spaces of the
same dimension (namely dimension 1).
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Proof of (2). This holds because we have base change for a by Lemma 6.2. See
discussion in Remark 12.5. □

28. Relative dualizing complexes

0E2S For a proper, flat morphism of finite presentation we have a rigid relative dualizing
complex, see Remark 12.5 and Lemma 12.8. For a separated and finite type mor-
phism f : X → Y of Noetherian schemes, we can consider f !OY . In this section
we define relative dualizing complexes for morphisms which are flat and locally
of finite presentation (but not necessarily quasi-separated or quasi-compact) be-
tween schemes (not necessarily locally Noetherian). We show such complexes exist,
are unique up to unique isomorphism, and agree with the cases mentioned above.
Before reading this section, please read Dualizing Complexes, Section 27.

Definition 28.1.0E2T Let X → S be a morphism of schemes which is flat and locally
of finite presentation. Let W ⊂ X ×S X be any open such that the diagonal
∆X/S : X → X ×S X factors through a closed immersion ∆ : X → W . A relative
dualizing complex is a pair (K, ξ) consisting of an object K ∈ D(OX) and a map

ξ : ∆∗OX −→ Lpr∗
1K|W

in D(OW ) such that
(1) K is S-perfect (Derived Categories of Schemes, Definition 35.1), and
(2) ξ defines an isomorphism of ∆∗OX with RHomOW

(∆∗OX , Lpr∗
1K|W ).

By Lemma 9.3 condition (2) is equivalent to the existence of an isomorphism
OX −→ RHom(OX , Lpr∗

1K|W )
in D(OX) whose pushforward via ∆ is equal to ξ. Since RHom(OX , Lpr∗

1K|W )
is independent of the choice of the open W , so is the category of pairs (K, ξ). If
X → S is separated, then we can choose W = X ×S X. We will reduce many of
the arguments to the case of rings using the following lemma.

Lemma 28.2.0E2U Let X → S be a morphism of schemes which is flat and locally
of finite presentation. Let (K, ξ) be a relative dualizing complex. Then for any
commutative diagram

Spec(A)

��

// X

��
Spec(R) // S

whose horizontal arrows are open immersions, the restriction of K to Spec(A)
corresponds via Derived Categories of Schemes, Lemma 3.5 to a relative dualizing
complex for R→ A in the sense of Dualizing Complexes, Definition 27.1.

Proof. Since formation of RHom commutes with restrictions to opens we may as
well assume X = Spec(A) and S = Spec(R). Observe that relatively perfect objects
of D(OX) are pseudo-coherent and hence are in DQCoh(OX) (Derived Categories of
Schemes, Lemma 10.1). Thus the statement makes sense. Observe that taking ∆∗,
Lpr∗

1, and RHom is compatible with what happens on the algebraic side by Derived
Categories of Schemes, Lemmas 3.7, 3.8, 10.8. For the last one we observe that
Lpr∗

1K is S-perfect (hence bounded below) and that ∆∗OX is a pseudo-coherent
object of D(OW ); translated into algebra this means that A is pseudo-coherent as
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an A ⊗R A-module which follows from More on Algebra, Lemma 82.8 applied to
R→ A⊗RA→ A. Thus we recover exactly the conditions in Dualizing Complexes,
Definition 27.1. □

Lemma 28.3.0E2V Let X → S be a morphism of schemes which is flat and locally
of finite presentation. Let (K, ξ) be a relative dualizing complex. Then OX →
RHomOX

(K,K) is an isomorphism.

Proof. Looking affine locally this reduces using Lemma 28.2 to the algebraic case
which is Dualizing Complexes, Lemma 27.5. □

Lemma 28.4.0E2W Let X → S be a morphism of schemes which is flat and locally
of finite presentation. If (K, ξ) and (L, η) are two relative dualizing complexes on
X/S, then there is a unique isomorphism K → L sending ξ to η.

Proof. Let U ⊂ X be an affine open mapping into an affine open of S. Then there
is an isomorphism K|U → L|U by Lemma 28.2 and Dualizing Complexes, Lemma
27.2. The reader can reuse the argument of that lemma in the schemes case to
obtain a proof in this case. We will instead use a glueing argument.
Suppose we have an isomorphism α : K → L. Then α(ξ) = uη for some invertible
section u ∈ H0(W,∆∗OX) = H0(X,OX). (Because both η and α(ξ) are generators
of an invertible ∆∗OX -module by assumption.) Hence after replacing α by u−1α
we see that α(ξ) = η. Since the automorphism group of K is H0(X,O∗

X) by Lemma
28.3 there is at most one such α.
Let B be the collection of affine opens of X which map into an affine open of S. For
each U ∈ B we have a unique isomorphism αU : K|U → L|U mapping ξ to η by the
discussion in the previous two paragraphs. Observe that Exti(K|U ,K|U ) = 0 for
i < 0 and any open U of X by Lemma 28.3. By Cohomology, Lemma 45.2 applied
to id : X → X we get a unique morphism α : K → L agreeing with αU for all
U ∈ B. Then α sends ξ to η as this is true locally. □

Lemma 28.5.0E2X Let X → S be a morphism of schemes which is flat and locally of
finite presentation. There exists a relative dualizing complex (K, ξ).

Proof. Let B be the collection of affine opens of X which map into an affine open
of S. For each U we have a relative dualizing complex (KU , ξU ) for U over S.
Namely, choose an affine open V ⊂ S such that U → X → S factors through
V . Write U = Spec(A) and V = Spec(R). By Dualizing Complexes, Lemma
27.4 there exists a relative dualizing complex KA ∈ D(A) for R → A. Arguing
backwards through the proof of Lemma 28.2 this determines an V -perfect object
KU ∈ D(OU ) and a map

ξ : ∆∗OU → Lpr∗
1KU

in D(OU×V U ). Since being V -perfect is the same as being S-perfect and since
U ×V U = U ×S U we find that (KU , ξU ) is as desired.
If U ′ ⊂ U ⊂ X with U ′, U ∈ B, then we have a unique isomorphism ρU

U ′ : KU |U ′ →
KU ′ in D(OU ′) sending ξU |U ′×SU ′ to ξU ′ by Lemma 28.4 (note that trivially the
restriction of a relative dualizing complex to an open is a relative dualizing com-
plex). The uniqueness guarantees that ρU

U ′′ = ρV
U ′′ ◦ ρU

U ′ |U ′′ for U ′′ ⊂ U ′ ⊂ U in
B. Observe that Exti(KU ,KU ) = 0 for i < 0 for U ∈ B by Lemma 28.3 applied
to U/S and KU . Thus the BBD glueing lemma (Cohomology, Theorem 45.8) tells
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us there is a unique solution, namely, an object K ∈ D(OX) and isomorphisms
ρU : K|U → KU such that we have ρU

U ′ ◦ ρU |U ′ = ρU ′ for all U ′ ⊂ U , U,U ′ ∈ B.
To finish the proof we have to construct the map

ξ : ∆∗OX −→ Lpr∗
1K|W

in D(OW ) inducing an isomorphism from ∆∗OX to RHomOW
(∆∗OX , Lpr∗

1K|W ).
Since we may change W , we choose W =

⋃
U∈B U ×S U . We can use ρU to get

isomorphisms

RHomOW
(∆∗OX , Lpr∗

1K|W )|U×SU
ρU−−→ RHomOU×S U

(∆∗OU , Lpr∗
1KU )

As W is covered by the opens U ×S U we conclude that the cohomology sheaves
of RHomOW

(∆∗OX , Lpr∗
1K|W ) are zero except in degree 0. Moreover, we obtain

isomorphisms

H0 (U ×S U,RHomOW
(∆∗OX , Lpr∗

1K|W )) ρU−−→ H0
(

(RHomOU×S U
(∆∗OU , Lpr∗

1KU )
)

Let τU in the LHS be an element mapping to ξU under this map. The compati-
bilities between ρU

U ′ , ξU , ξU ′ , ρU , and ρU ′ for U ′ ⊂ U ⊂ X open U ′, U ∈ B imply
that τU |U ′×SU ′ = τU ′ . Thus we get a global section τ of the 0th cohomology
sheaf H0(RHomOW

(∆∗OX , Lpr∗
1K|W )). Since the other cohomology sheaves of

RHomOW
(∆∗OX , Lpr∗

1K|W ) are zero, this global section τ determines a morphism
ξ as desired. Since the restriction of ξ to U ×S U gives ξU , we see that it satisfies
the final condition of Definition 28.1. □

Lemma 28.6.0E2Y Consider a cartesian square

X ′

f ′

��

g′
// X

f

��
S′ g // S

of schemes. Assume X → S is flat and locally of finite presentation. Let (K, ξ) be
a relative dualizing complex for f . Set K ′ = L(g′)∗K. Let ξ′ be the derived base
change of ξ (see proof). Then (K ′, ξ′) is a relative dualizing complex for f ′.

Proof. Consider the cartesian square

X ′

∆X′/S′

��

// X

∆X/S

��
X ′ ×S′ X ′ g′×g′

// X ×S X

Choose W ⊂ X ×S X open such that ∆X/S factors through a closed immersion
∆ : X → W . Choose W ′ ⊂ X ′ ×S′ X ′ open such that ∆X′/S′ factors through a
closed immersion ∆′ : X → W ′ and such that (g′ × g′)(W ′) ⊂ W . Let us still
denote g′ × g′ : W ′ →W the induced morphism. We have

L(g′ × g′)∗∆∗OX = ∆′
∗OX′ and L(g′ × g′)∗Lpr∗

1K|W = Lpr∗
1K

′|W ′

The first equality holds because X and X ′×S′ X ′ are tor independent over X×S X
(see for example More on Morphisms, Lemma 69.1). The second holds by transi-
tivity of derived pullback (Cohomology, Lemma 27.2). Thus ξ′ = L(g′ × g′)∗ξ can
be viewed as a map

ξ′ : ∆′
∗OX′ −→ Lpr∗

1K
′|W ′

https://stacks.math.columbia.edu/tag/0E2Y


DUALITY FOR SCHEMES 75

Having said this the proof of the lemma is straightforward. First, K ′ is S′-perfect
by Derived Categories of Schemes, Lemma 35.6. To check that ξ′ induces an isomor-
phism of ∆′

∗OX′ to RHomOW ′ (∆′
∗OX′ , Lpr∗

1K
′|W ′) we may work affine locally. By

Lemma 28.2 we reduce to the corresponding statement in algebra which is proven
in Dualizing Complexes, Lemma 27.4. □

Lemma 28.7.0E2Z Let S be a quasi-compact and quasi-separated scheme. Let f : X →
S be a proper, flat morphism of finite presentation. The relative dualizing complex
ω•

X/S of Remark 12.5 together with (12.8.1) is a relative dualizing complex in the
sense of Definition 28.1.

Proof. In Lemma 12.7 we proved that ω•
X/S is S-perfect. Let c be the right adjoint

of Lemma 3.1 for the diagonal ∆ : X → X×SX. Then we can apply ∆∗ to (12.8.1)
to get an isomorphism

∆∗OX → ∆∗(c(Lpr∗
1ω

•
X/S)) = RHomOX×S X

(∆∗OX , Lpr∗
1ω

•
X/S)

The equality holds by Lemmas 9.7 and 9.3. This finishes the proof. □

Remark 28.8.0E4P Let X → S be a morphism of schemes which is flat, proper, and
of finite presentation. By Lemma 28.5 there exists a relative dualizing complex
(ω•

X/S , ξ) in the sense of Definition 28.1. Consider any morphism g : S′ → S where
S′ is quasi-compact and quasi-separated (for example an affine open of S). By
Lemma 28.6 we see that (L(g′)∗ω•

X/S , L(g′)∗ξ) is a relative dualizing complex for
the base change f ′ : X ′ → S′ in the sense of Definition 28.1. Let ω•

X′/S′ be the
relative dualizing complex for X ′ → S′ in the sense of Remark 12.5. Combining
Lemmas 28.7 and 28.4 we see that there is a unique isomorphism

ω•
X′/S′ −→ L(g′)∗ω•

X/S

compatible with (12.8.1) and L(g′)∗ξ. These isomorphisms are compatible with
morphisms between quasi-compact and quasi-separated schemes over S and the
base change isomorphisms of Lemma 12.4 (if we ever need this compatibility we
will carefully state and prove it here).

Lemma 28.9.0E9W In Situation 16.1 let f : X → Y be a morphism of FTSS. If f is
flat, then f !OY is (the first component of) a relative dualizing complex for X over
Y in the sense of Definition 28.1.

Proof. By Lemma 17.10 we have that f !OY is Y -perfect. As f is separated the di-
agonal ∆ : X → X×Y X is a closed immersion and ∆∗∆!(−) = RHomOX×Y X

(OX ,−),
see Lemmas 9.7 and 9.3. Hence to finish the proof it suffices to show ∆!(Lpr∗

1f
!(OY )) ∼=

OX where pr1 : X ×Y X → X is the first projection. We have

OX = ∆!pr!
1OX = ∆!pr!

1Lpr∗
2OY = ∆!(Lpr∗

1f
!OY )

where pr2 : X ×Y X → X is the second projection and where we have used the
base change isomorphism pr!

1 ◦ Lpr∗
2 = Lpr∗

1 ◦ f ! of Lemma 18.1. □

Lemma 28.10.0E30 Let f : Y → X and X → S be morphisms of schemes which are
flat and of finite presentation. Let (K, ξ) and (M,η) be a relative dualizing complex
for X → S and Y → X. Set E = M⊗L

OY
Lf∗K. Then (E, ζ) is a relative dualizing

complex for Y → S for a suitable ζ.

https://stacks.math.columbia.edu/tag/0E2Z
https://stacks.math.columbia.edu/tag/0E4P
https://stacks.math.columbia.edu/tag/0E9W
https://stacks.math.columbia.edu/tag/0E30
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Proof. Using Lemma 28.2 and the algebraic version of this lemma (Dualizing Com-
plexes, Lemma 27.6) we see that E is affine locally the first component of a relative
dualizing complex. In particular we see that E is S-perfect since this may be
checked affine locally, see Derived Categories of Schemes, Lemma 35.3.

Let us first prove the existence of ζ in case the morphisms X → S and Y → X
are separated so that ∆X/S , ∆Y/X , and ∆Y/S are closed immersions. Consider the
following diagram

Y Y

f

��
Y

∆Y/X

// Y ×X Y

m

��

δ
//

q

88

Y ×S Y

f×f

��

p

::

X

X
∆X/S // X ×S X

r

;;

where p, q, r are the first projections. By Lemma 9.4 we have

RHomOY ×S Y
(∆Y/S,∗OY , Lp

∗E) = Rδ∗

(
RHomOY ×X Y

(∆Y/X,∗OY , RHom(OY ×X Y , Lp
∗E))

)
By Lemma 10.3 we have

RHom(OY ×X Y , Lp
∗E) = RHom(OY ×X Y , L(f × f)∗Lr∗K)⊗L

OY ×S Y
Lq∗M

By Lemma 10.2 we have

RHom(OY ×X Y , L(f × f)∗Lr∗K) = Lm∗RHom(OX , Lr
∗K)

The last expression is isomorphic (via ξ) to Lm∗OX = OY ×X Y . Hence the expres-
sion preceding is isomorphic to Lq∗M . Hence

RHomOY ×S Y
(∆Y/S,∗OY , Lp

∗E) = Rδ∗

(
RHomOY ×X Y

(∆Y/X,∗OY , Lq
∗M)

)
The material inside the parentheses is isomorphic to ∆Y/X,∗ ∗ OX via η. This
finishes the proof in the separated case.

In the general case we choose an open W ⊂ X×SX such that ∆X/S factors through
a closed immersion ∆ : X → W and we choose an open V ⊂ Y ×X Y such that
∆Y/X factors through a closed immersion ∆′ : Y → V . Finally, choose an open
W ′ ⊂ Y ×S Y whose intersection with Y ×X Y gives V and which maps into W .
Then we consider the diagram

Y Y

f

��
Y

∆′
// V

m

��

δ
//

q

==

W ′

f×f

��

p

==

X

X
∆ // W

r

==

and we use exactly the same argument as before. □
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29. The fundamental class of an lci morphism

0E9X In this section we will use the computations made in Section 15. Thus our result
will suffer from the same kind of non-uniqueness as we have in that section.

Lemma 29.1.0E9Y Let X be a locally ringed space. Let

E1
α−→ E0 → F → 0

be a short exact sequence of OX-modules. Assume E1 and E0 are locally free of
ranks r1, r0. Then there is a canonical map

∧r0−r1F −→ ∧r1(E∨
1 )⊗ ∧r0E0

which is an isomorphism on the stalk at x ∈ X if and only if F is locally free of
rank r0 − r1 in an open neighbourhood of x.

Proof. If r1 > r0 then ∧r0−r1F = 0 by convention and the unique map cannot be
an isomorphism. Thus we may assume r = r0 − r1 ≥ 0. Define the map by the
formula

s1 ∧ . . . ∧ sr 7→ t∨1 ∧ . . . ∧ t∨r1
⊗ α(t1) ∧ . . . ∧ α(tr1) ∧ s̃1 ∧ . . . ∧ s̃r

where t1, . . . , tr1 is a local basis for E1, correspondingly t∨1 , . . . , t∨r1
is the dual basis

for E∨
1 , and s′

i is a local lift of si to a section of E0. We omit the proof that this is
well defined.

If F is locally free of rank r, then it is straightforward to verify that the map is
an isomorphism. Conversely, assume the map is an isomorphism on stalks at x.
Then ∧rFx is invertible. This implies that Fx is generated by at most r elements.
This can only happen if α has rank r modulo mx, i.e., α has maximal rank modulo
mx. This implies that α has maximal rank in a neighbourhood of x and hence F is
locally free of rank r in a neighbourhood as desired. □

Lemma 29.2.0E9Z Let Y be a Noetherian scheme. Let f : X → Y be a local complete
intersection morphism which factors as an immersion X → P followed by a proper
smooth morphism P → Y . Let r be the locally constant function on X such that
ωX/Y = H−r(f !OY ) is the unique nonzero cohomology sheaf of f !OY , see Lemma
17.11. Then there is a map

∧rΩX/Y −→ ωX/Y

which is an isomorphism on the stalk at a point x if and only if f is smooth at x.

Proof. The assumption implies that X is compactifiable over Y hence f ! is defined,
see Section 16. Let j : W → P be an open subscheme such that X → P factors
through a closed immersion i : X → W . Moreover, we have f ! = i! ◦ j! ◦ g! where
g : P → Y is the given morphism. We have g!OY = ∧dΩP/Y [d] by Lemma 15.7
where d is the locally constant function giving the relative dimension of P over
Y . We have j! = j∗. We have i!OW = ∧cN [−c] where c is the codimension of X
in W (a locally constant function on X) and where N is the normal sheaf of the
Koszul-regular immersion i, see Lemma 15.6. Combining the above we find

f !OY =
(
∧cN ⊗OX

∧dΩP/Y |X
)

[d− c]

https://stacks.math.columbia.edu/tag/0E9Y
https://stacks.math.columbia.edu/tag/0E9Z
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where we have also used Lemma 17.9. Thus r = d|X−c as locally constant functions
on X. The conormal sheaf of X → P is the module I/I2 where I ⊂ OW is the
ideal sheaf of i, see Morphisms, Section 31. Consider the canonical exact sequence

I/I2 → ΩP/Y |X → ΩX/Y → 0

of Morphisms, Lemma 32.15. We obtain our map by an application of Lemma 29.1.

If f is smooth at x, then the map is an isomorphism by an application of Lemma
29.1 and the fact that ΩX/Y is locally free at x of rank r. Conversely, assume
that our map is an isomorphism on stalks at x. Then the lemma shows that
ΩX/Y is free of rank r after replacing X by an open neighbourhood of x. On
the other hand, we may also assume that X = Spec(A) and Y = Spec(R) where
A = R[x1, . . . , xn]/(f1, . . . , fm) and where f1, . . . , fm is a Koszul regular sequence
(this follows from the definition of local complete intersection morphisms). Clearly
this implies r = n−m. We conclude that the rank of the matrix of partials ∂fj/∂xi

in the residue field at x is m. Thus after reordering the variables we may assume
the determinant of (∂fj/∂xi)1≤i,j≤m is invertible in an open neighbourhood of x.
It follows that R → A is smooth at this point, see for example Algebra, Example
137.8. □

Lemma 29.3.0EA0 Let f : X → Y be a morphism of schemes. Let r ≥ 0. Assume
(1) Y is Cohen-Macaulay (Properties, Definition 8.1),
(2) f factors as X → P → Y where the first morphism is an immersion and

the second is smooth and proper,
(3) if x ∈ X and dim(OX,x) ≤ 1, then f is Koszul at x (More on Morphisms,

Definition 62.2), and
(4) if ξ is a generic point of an irreducible component of X, then we have

trdegκ(f(ξ))κ(ξ) = r.
Then with ωX/Y = H−r(f !OY ) there is a map

∧rΩX/Y −→ ωX/Y

which is an isomorphism on the locus where f is smooth.

Proof. Let U ⊂ X be the open subscheme over which f is a local complete in-
tersection morphism. Since f has relative dimension r at all generic points by
assumption (4) we see that the locally constant function of Lemma 29.2 is constant
with value r and we obtain a map

∧rΩX/Y |U = ∧rΩU/Y −→ ωU/Y = ωX/Y |U
which is an isomorphism in the smooth points of f (this locus is contained in
U because a smooth morphism is a local complete intersection morphism). By
Lemma 21.5 and the assumption that Y is Cohen-Macaulay the module ωX/Y is
(S2). Since U contains all the points of codimension 1 by condition (3) and using
Divisors, Lemma 5.11 we see that j∗ωU/Y = ωX/Y . Hence the map over U extends
to X and the proof is complete. □

30. Extension by zero for coherent modules

0G2G The material in this section and the next few can be found in the appendix by
Deligne of [Har66].

https://stacks.math.columbia.edu/tag/0EA0
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In this section j : U → X will be an open immersion of Noetherian schemes. We are
going to consider inverse systems (Kn) in Db

Coh(OX) constructed as follows. Let F•

be a bounded complex of coherent OX -modules. Let I ⊂ OX be a quasi-coherent
sheaf of ideals with V (I) = X \ U . Then we can set

Kn = InF•

More precisely, Kn is the object of Db
Coh(OX) represented by the complex whose

term in degree q is the coherent submodule InFq of Fq. Observe that the maps
. . .→ K3 → K2 → K1 induce isomorphisms on restriction to U . Let us call such a
system a Deligne system.

Lemma 30.1.0G2H Let j : U → X be an open immersion of Noetherian schemes. Let
(Kn) be a Deligne system and denote K ∈ Db

Coh(OU ) the value of the constant
system (Kn|U ). Let L be an object of Db

Coh(OX). Then colim HomX(Kn, L) =
HomU (K,L|U ).

Proof. Let L → M → N → L[1] be a distinguished triangle in Db
Coh(OX). Then

we obtain a commutative diagram

. . . // colim HomX(Kn, L) //

��

colim HomX(Kn,M) //

��

colim HomX(Kn, N) //

��

. . .

. . . // HomU (K,L|U ) // HomU (K,M |U ) // HomU (K,N |U ) // . . .

whose rows are exact by Derived Categories, Lemma 4.2 and Algebra, Lemma 8.8.
Hence if the statement of the lemma holds for N [−1], L, N , and L[1] then it holds
for M by the 5-lemma. Thus, using the distinguished triangles for the canonical
truncations of L (see Derived Categories, Remark 12.4) we reduce to the case that
L has only one nonzero cohomology sheaf.

Choose a bounded complex F• of coherent OX -modules and a quasi-coherent ideal
I ⊂ OX cutting out X \ U such that Kn is represented by InF•. Using “stupid”
truncations we obtain compatible termwise split short exact sequences of complexes

0→ σ≥a+1InF• → InF• → σ≤aInF• → 0

which in turn correspond to compatible systems of distinguished triangles inDb
Coh(OX).

Arguing as above we reduce to the case where F• has only one nonzero term. This
reduces us to the case discussed in the next paragraph.

Given a coherent OX -module F and a coherent OX -module G we have to show that
the canonical map

colim Exti
X(InF ,G) −→ Exti

U (F|U ,G|U )

is an isomorphism for all i ≥ 0. For i = 0 this is Cohomology of Schemes, Lemma
10.5. Assume i > 0.

Injectivity. Let ξ ∈ Exti
X(InF ,G) be an element whose restriction to U is zero.

We have to show there exists an m ≥ n such that the restriction of ξ to ImF =
Im−nInF is zero. After replacing F by InF we may assume n = 0, i.e., we have
ξ ∈ Exti

X(F ,G) whose restriction to U is zero. By Derived Categories of Schemes,
Proposition 11.2 we have Db

Coh(OX) = Db(Coh(OX)). Hence we can compute the
Ext group in the abelian category of coherent OX -modules. This implies there

https://stacks.math.columbia.edu/tag/0G2H
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exists an surjection α : F ′′ → F such that ξ ◦ α = 0 (this is where we use that
i > 0). Set F ′ = Ker(α) so that we have a short exact sequence

0→ F ′ → F ′′ → F → 0
It follows that ξ is the image of an element ξ′ ∈ Exti−1

X (F ′,G) whose restriction
to U is in the image of Exti−1

U (F ′′|U ,G|U ) → Exti−1
U (F ′|U ,G|U ). By Artin-Rees

the inverse systems (InF ′) and (InF ′′ ∩ F ′) are pro-isomorphic, see Cohomology
of Schemes, Lemma 10.3. Since we have the compatible system of short exact
sequences

0→ F ′ ∩ InF ′′ → InF ′′ → InF → 0
we obtain a commutativew diagram

colim Exti−1
X (InF ′′,G) //

��

colim Exti−1
X (F ′ ∩ InF ′′,G) //

��

colim Exti
X(InF ,G)

��
Exti−1

U (F ′′|U ,G|U ) // Exti−1
U (F ′|U ,G|U ) // Exti−1

U (F|U ,G|U )

with exact rows. By induction on i and the comment on inverse systems above we
find that the left two vertical arrows are isomorphisms. Now ξ gives an element in
the top right group which is the image of ξ′ in the middle top group, which in turn
maps to an element of the bottom middle group coming from some element in the
left bottom group. We conclude that ξ maps to zero in Exti

X(InF ,G) for some n
as desired.
Surjectivity. Let ξ ∈ Exti

U (F|U ,G|U ). Arguing as above using that i > 0 we can
find an surjection H → F|U of coherent OU -modules such that ξ maps to zero
in Exti

U (H,G|U ). Then we can find a map φ : F ′′ → F of coherent OX -modules
whose restriction to U is H → F|U , see Properties, Lemma 22.4. Observe that the
lemma doesn’t guarantee φ is surjective but this won’t matter (it is possible to pick
a surjective φ with a little bit of additional work). Denote F ′ = Ker(φ). The short
exact sequence

0→ F ′|U → F ′′|U → F|U → 0
shows that ξ is the image of ξ′ in Exti−1

U (F ′|U ,G|U ). By induction on i we can find
an n such that ξ′ is the image of some ξ′

n in Exti−1
X (InF ′,G). By Artin-Rees we

can find an m ≥ n such that F ′ ∩ ImF ′′ ⊂ InF ′. Using the short exact sequence
0→ F ′ ∩ ImF ′′ → ImF ′′ → Im Im(φ)→ 0

the image of ξ′
n in Exti−1

X (F ′∩ImF ′′,G) maps by the boundary map to an element
ξm of Exti

X(Im Im(φ),G) which maps to ξ. Since Im(φ) and F agree over U we see
that F/Im Im(φ) is supported on X \ U . Hence there exists an l ≥ m such that
IlF ⊂ Im Im(φ), see Cohomology of Schemes, Lemma 10.2. Taking the image of
ξm in Exti

X(IlF ,G) we win. □

Lemma 30.2.0G4K The result of Lemma 30.1 holds even for L ∈ D+
Coh(OX).

Proof. Namely, if (Kn) is a Deligne system then there exists a b ∈ Z such that
Hi(Kn) = 0 for i > b. Then Hom(Kn, L) = Hom(Kn, τ≤bL) and Hom(K,L) =
Hom(K, τ≤bL). Hence using the result of the lemma for τ≤bL we win. □

Lemma 30.3.0G4L Let j : U → X be an open immersion of Noetherian schemes.

https://stacks.math.columbia.edu/tag/0G4K
https://stacks.math.columbia.edu/tag/0G4L
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(1) Let (Kn) and (Ln) be Deligne systems. Let K and L be the values of
the constant systems (Kn|U ) and (Ln|U ). Given a morphism α : K → L
of D(OU ) there is a unique morphism of pro-systems (Kn) → (Ln) of
Db

Coh(OX) whose restriction to U is α.
(2) Given K ∈ Db

Coh(OU ) there exists a Deligne system (Kn) such that (Kn|U )
is constant with value K.

(3) The pro-object (Kn) of Db
Coh(OX) of (2) is unique up to unique isomor-

phism (as a pro-object).

Proof. Part (1) is an immediate consequence of Lemma 30.1 and the fact that
morphisms between pro-systems are the same as morphisms between the functors
they corepresent, see Categories, Remark 22.7.
Let K be as in (2). We can choose K ′ ∈ Db

Coh(OX) whose restriction to U is
isomorphic to K, see Derived Categories of Schemes, Lemma 13.2. By Derived
Categories of Schemes, Proposition 11.2 we can represent K ′ by a bounded complex
F• of coherent OX -modules. Choose a quasi-coherent sheaf of ideals I ⊂ OX whose
vanishing locus is X \U (for example choose I to correspond to the reduced induced
subscheme structure on X \U). Then we can set Kn equal to the object represented
by the complex InF• as in the introduction to this section.
Part (3) is immediate from parts (1) and (2). □

Lemma 30.4.0G4M Let j : U → X be an open immersion of Noetherian schemes. Let
K → L→M → K[1]

be a distinguished triangle of Db
Coh(OU ). Then there exists an inverse system of

distinguished triangles
Kn → Ln →Mn → Kn[1]

in Db
Coh(OX) such that (Kn), (Ln), (Mn) are Deligne systems and such that the

restriction of these distinguished triangles to U is isomorphic to the distinguished
triangle we started out with.

Proof. Let (Kn) be as in Lemma 30.3 part (2). Choose an object L′ of Db
Coh(OX)

whose restriction to U is L (we can do this as the lemma shows). By Lemma 30.1
we can find an n and a morphism Kn → L′ on X whose restriction to U is the given
arrow K → L. We conclude there is a morphism K ′ → L′ of Db

Coh(OX) whose
restriction to U is the given arrow K → L.
By Derived Categories of Schemes, Proposition 11.2 we can find a morphism α• :
F• → G• of bounded complexes of coherent OX -modules representing K ′ → L′.
Choose a quasi-coherent sheaf of ideals I ⊂ OX whose vanishing locus is X \ U .
Then we let Kn = InF• and Ln = InG•. Observe that α• induces a morphism
of complexes α•

n : InF• → InG•. From the construction of cones in Derived
Categories, Section 9 it is clear that

C(αn)• = InC(α•)
and hence we can set Mn = C(αn)•. Namely, we have a compatible system of
distinguished triangles (see discussion in Derived Categories, Section 12)

Kn → Ln →Mn → Kn[1]
whose restriction to U is isomorphic to the distinguished triangle we started out
with by axiom TR3 and Derived Categories, Lemma 4.3. □

https://stacks.math.columbia.edu/tag/0G4M
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Remark 30.5.0G4N Let j : U → X be an open immersion of Noetherian schemes.
Sending K ∈ Db

Coh(OU ) to a Deligne system whose restriction to U is K determines
a functor

Rj! : Db
Coh(OU ) −→ Pro-Db

Coh(OX)
which is “exact” by Lemma 30.4 and which is “left adjoint” to the functor j∗ :
Db

Coh(OX)→ Db
Coh(OU ) by Lemma 30.1.

Remark 30.6.0G4P Let (An) and (Bn) be inverse systems of a category C. Let us
say a linear-pro-morphism from (An) to (Bn) is given by a compatible family of
morphisms φn : Acn+d → Bn for all n ≥ 1 for some fixed integers c, d ≥ 1. We’ll say
(φn : Acn+d → Bn) and (ψn : Ac′n+d′ → Bn) determine the same morphism if there
exist c′′ ≥ max(c, c′) and d′′ ≥ max(d, d′) such that the two induced morphisms
Ac′′n+d′′ → Bn are the same for all n. It seems likely that Deligne systems (Kn)
with given value on U are well defined up to linear-pro-isomorphisms. If we ever
need this we will carefully formulate and prove this here.

Lemma 30.7.0G4Q Let j : U → X be an open immersion of Noetherian schemes. Let

Kn → Ln →Mn → Kn[1]

be an inverse system of distinguished triangles in Db
Coh(OX). If (Kn) and (Mn)

are pro-isomorphic to Deligne systems, then so is (Ln).

Proof. Observe that the systems (Kn|U ) and (Mn|U ) are essentially constant as
they are pro-isomorphic to constant systems. Denote K and M their values. By
Derived Categories, Lemma 42.2 we see that the inverse system Ln|U is essentially
constant as well. Denote L its value. Let N ∈ Db

Coh(OX). Consider the commuta-
tive diagram

. . . // colim HomX(Mn, N) //

��

colim HomX(Ln, N) //

��

colim HomX(Kn, N) //

��

. . .

. . . // HomU (M,N |U ) // HomU (L,N |U ) // HomU (K,N |U ) // . . .

By Lemma 30.1 and the fact that isomorphic ind-systems have the same colimit,
we see that the vertical arrows two to the right and two to the left of the mid-
dle one are isomorphisms. By the 5-lemma we conclude that the middle verti-
cal arrow is an isomorphism. Now, if (L′

n) is a Deligne system whose restric-
tion to U has constant value L (which exists by Lemma 30.3), then we have
colim HomX(L′

n, N) = HomU (L,N |U ) as well. Hence the pro-systems (Ln) and
(L′

n) are pro-isomorphic by Categories, Remark 22.7. □

Lemma 30.8.0G4R Let X be a Noetherian scheme. Let I ⊂ OX be a quasi-coherent
sheaf of ideals. Let F• be a complex of coherent OX-modules. Let p ∈ Z. Set
H = Hp(F•) and Hn = Hp(InF•). Then there are canonical OX-module maps

. . .→ H3 → H2 → H1 → H

There exists a c > 0 such that for n ≥ c the image of Hn → H is contained
in In−cH and there is a canonical OX-module map InH → Hn−c such that the
compositions

InH → Hn−c → In−2cH and Hn → In−cH → Hn−2c

https://stacks.math.columbia.edu/tag/0G4N
https://stacks.math.columbia.edu/tag/0G4P
https://stacks.math.columbia.edu/tag/0G4Q
https://stacks.math.columbia.edu/tag/0G4R
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are the canonical ones. In particular, the inverse systems (Hn) and (InH) are
isomorphic as pro-objects of Mod(OX).

Proof. If X is affine, translated into algebra this is More on Algebra, Lemma
101.1. In the general case, argue exactly as in the proof of that lemma replacing
the reference to Artin-Rees in algebra with a reference to Cohomology of Schemes,
Lemma 10.3. Details omitted. □

Lemma 30.9.0G4S Let j : U → X be an open immersion of Noetherian schemes.
Let a ≤ b be integers. Let (Kn) be an inverse system of Db

Coh(OX) such that
Hi(Kn) = 0 for i ̸∈ [a, b]. The following are equivalent

(1) (Kn) is pro-isomorphic to a Deligne system,
(2) for every p ∈ Z there exists a coherent OX-module F such that the pro-

systems (Hp(Kn)) and (InF) are pro-isomorphic.

Proof. Assume (1). To prove (2) holds we may assume (Kn) is a Deligne system.
By definition we may choose a bounded complex F• of coherent OX -modules and
a quasi-coherent sheaf of ideals cutting out X \ U such that Kn is represented by
InF•. Thus the result follows from Lemma 30.8.

Assume (2). We will prove that (Kn) is as in (1) by induction on b − a. If a = b
then (1) holds essentially by assumption. If a < b then we consider the compatible
system of distinguished triangles

τ≤aKn → Kn → τ≥a+1Kn → (τ≤aKn)[1]

See Derived Categories, Remark 12.4. By induction on b− a we know that τ≤aKn

and τ≥a+1Kn are pro-isomorphic to Deligne systems. We conclude by Lemma
30.7. □

Lemma 30.10.0G4T Let j : U → X be an open immersion of Noetherian schemes.
Let (Kn) be an inverse system in Db

Coh(OX). Let X = W1 ∪ . . . ∪Wr be an open
covering. The following are equivalent

(1) (Kn) is pro-isomorphic to a Deligne system,
(2) for each i the restriction (Kn|Wi) is pro-isomorphic to a Deligne system

with respect to the open immersion U ∩Wi →Wi.

Proof. By induction on r. If r = 1 then the result is clear. Assume r > 1. Set
V = W1 ∪ . . . ∪Wr−1. By induction we see that (Kn|V ) is a Deligne system. This
reduces us to the discussion in the next paragraph.

Assume X = V ∪W is an open covering and (Kn|W ) and (Kn|V ) are pro-isomorphic
to Deligne systems. We have to show that (Kn) is pro-isomorphic to a Deligne
system. Observe that (Kn|V ∩W ) is pro-isomorphic to a Deligne system (it fol-
lows immediately from the construction of Deligne systems that restrictions to
opens preserves them). In particular the pro-systems (Kn|U∩V ), (Kn|U∩W ), and
(Kn|U∩V ∩W ) are essentially constant. It follows from the distinguished triangles
in Cohomology, Lemma 33.2 and Derived Categories, Lemma 42.2 that (Kn|U ) is
essentially constant. Denote K ∈ Db

Coh(OU ) the value of this system. Let L be an

https://stacks.math.columbia.edu/tag/0G4S
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object of Db
Coh(OX). Consider the diagram

colim Ext−1(Kn|V , L|V )⊕ colim Ext−1(Kn|W , L|W ) //

��

Ext−1(K|U∩V , L|U∩V )⊕ Ext−1(K|U∩W , L|U∩W )

��
colim Ext−1(Kn|V ∩W , L|V ∩W ) //

��

Ext−1(K|U∩V ∩W , L|U∩V ∩W )

��
colim Hom(Kn, L)

��

// Hom(K|U , L|U )

��
colim Hom(Kn|V , L|V )⊕ colim Hom(Kn|W , L|W ) //

��

Hom(K|U∩V , L|U∩V )⊕Hom(K|U∩W , L|U∩W )

��
colim Hom(Kn|V ∩W , L|V ∩W ) // Hom(K|U∩V ∩W , L|U∩V ∩W )

The vertical sequences are exact by Cohomology, Lemma 33.3 and the fact that
filtered colimits are exact. All horizontal arrows except for the middle one are
isomorphisms by Lemma 30.1 and the fact that pro-isomorphic systems have the
same colimits. Hence the middle one is an isomorphism too by the 5-lemma. It
follows that (Kn) is pro-isomorphic to a Deligne system for K. Namey, if (K ′

n)
is a Deligne system whose restriction to U has constant value K (which exists by
Lemma 30.3), then we have colim HomX(K ′

n, L) = HomU (K,L|U ) as well. Hence
the pro-systems (Kn) and (K ′

n) are pro-isomorphic by Categories, Remark 22.7. □

Lemma 30.11.0G4U Let j : U → X be an open immersion of Noetherian schemes.
Let I ⊂ OX be a quasi-coherent sheaf of ideals with V (I) = X \ U . Let K be in
Db

Coh(OX). Then

K ⊗L
OX
In

is pro-isomorphic to a Deligne system with constant value K|U over U .

Proof. By Lemma 30.10 the question is local on X. Thus we may assume X is the
spectrum of a Noetherian ring. In this case the statement follows from the algebra
version which is More on Algebra, Lemma 101.6. □

31. Preliminaries to compactly supported cohomology

0G4V In Situation 16.1 let f : X → Y be a morphism in the category FTSS . Using the
constructions in the previous section, we will construct a functor

Rf! : Db
Coh(OX) −→ Pro-Db

Coh(OY )

which reduces to the functor of Remark 30.5 if f is an open immersion and in
general is constructed using a compactification of f . Before we do this, we need
the following lemmas to prove our construction is well defined.

https://stacks.math.columbia.edu/tag/0G4U
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Lemma 31.1.0G4W Let f : X → Y be a proper morphism of Noetherian schemes. Let
V ⊂ Y be an open subscheme and set U = f−1(V ). Picture

U
j
//

g

��

X

f

��
V

j′
// Y

Then we have a canonical isomorphism Rj′
!◦Rg∗ → Rf∗◦Rj! of functors Db

Coh(OU )→
Pro-Db

Coh(OY ) where Rj! and Rj′
! are as in Remark 30.5.

First proof. Let K be an object of Db
Coh(OU ). Let (Kn) be a Deligne system

for U → X whose restriction to U is constant with value K. Of course this
means that (Kn) represents Rj!K in Pro-Db

Coh(OX). Observe that both Rj′
!Rg∗K

and Rf∗Rj!K restrict to the constant pro-object with value Rg∗K on V . This
is immediate for the first one and for the second one it follows from the fact
that (Rf∗Kn)|V = Rg∗(Kn|U ) = Rg∗K. By the uniqueness of Deligne systems
in Lemma 30.3 it suffices to show that (Rf∗Kn) is pro-isomorphic to a Deligne
system. The lemma referenced will also show that the isomorphism we obtain is
functorial.

Proof that (Rf∗Kn) is pro-isomorphic to a Deligne system. First, we observe that
the question is independent of the choice of the Deligne system (Kn) corresponding
to K (by the aforementioned uniqueness). By Lemmas 30.4 and 30.7 if we have a
distinguished triangle

K → L→M → K[1]

in Db
Coh(OU ) and the result holds for K and M , then the result holds for L. Using

the distinguished triangles of canonical truncations (Derived Categories, Remark
12.4) we reduce to the problem studied in the next paragraph.

Let F be a coherent OX -module. Let J ⊂ OY be a quasi-coherent sheaf of ideals
cutting out Y \ V . Denote J nF the image of f∗J n ⊗ F → F . We have to show
that (Rf∗(J nF)) is a Deligne system. By Lemma 30.10 the question is local on
Y . Thus we may assume Y = Spec(A) is affine and J corresponds to an ideal
I ⊂ A. By Lemma 30.9 it suffices to show that the inverse system of cohomology
modules (Hp(X, InF)) is pro-isomorphic to the inverse system (InM) for some
finite A-module M . This is shown in Cohomology of Schemes, Lemma 20.3. □

Second proof. Let K be an object of Db
Coh(OU ). Let L be an object of Db

Coh(OY ).
We will construct a bijection

HomPro-Db
Coh(OY )(Rj′

!Rg∗K,L) −→ HomPro-Db
Coh(OY )(Rf∗Rj!K,L)

functorial in K and L. Fixing K this will determine an isomorphism of pro-objects
Rf∗Rj!K → Rj′

!Rg∗K by Categories, Remark 22.7 and varying K we obtain that
this determines an isomorphism of functors. To actually produce the isomorphism

https://stacks.math.columbia.edu/tag/0G4W
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we use the sequence of functorial equalities

HomPro-Db
Coh(OY )(Rj′

!Rg∗K,L) = HomV (Rg∗K,L|V )

= HomU (K, g!(L|V ))
= HomU (K, f !L|U ))
= HomPro-Db

Coh(OX )(Rj!K, f
!L)

= HomPro-Db
Coh(OY )(Rf∗Rj!K,L)

The first equality is true by Lemma 30.1. The second equality is true because g is
proper (as the base change of f to V ) and hence g! is the right adjoint of pushforward
by construction, see Section 16. The third equality holds as g!(L|V ) = f !L|U by
Lemma 17.2. Since f !L is in D+

Coh(OX) by Lemma 17.6 the fourth equality follows
from Lemma 30.2. The fifth equality holds again because f ! is the right adjoint to
Rf∗ as f is proper. □

Lemma 31.2.0G4X Let j : U → X be an open immersion of Noetherian schemes. Let
j′ : U → X ′ be a compactification of U over X (see proof) and denote f : X ′ → X
the structure morphism. Then we have a canonical isomorphism Rj! → Rf∗◦R(j′)!
of functors Db

Coh(OU )→ Pro-Db
Coh(OX) where Rj! and Rj′

! are as in Remark 30.5.

Proof. The fact that X ′ is a compactification of U over X means precisely that
f : X ′ → X is proper, that j′ is an open immersion, and j = f ◦ j′. See More on
Flatness, Section 32. If j′(U) = f−1(j(U)), then the lemma follows immediately
from Lemma 31.1. If j′(U) ̸= f−1(j(U)), then denoteX ′′ ⊂ X ′ the scheme theoretic
closure of j′ : U → X ′ and denote j′′ : U → X ′′ the corresponding open immersion.
Picture

X ′′

f ′

��
X ′

f

��
U

j //

j′
77

j′′

@@

X

By More on Flatness, Lemma 32.1 part (c) and the discussion above we have
isomorphisms Rf ′

∗ ◦ Rj′′
! = Rj′

! and R(f ◦ f ′)∗ ◦ Rj′′
! = Rj!. Since R(f ◦ f ′)∗ =

Rf∗ ◦Rf ′
∗ we conclude. □

Remark 31.3.0G4Y Let X ⊃ U ⊃ U ′ be open subschemes of a Noetherian scheme X.
Denote j : U → X and j′ : U ′ → X the inclusion morphisms. We claim there is a
canonical map

Rj′
!(K|U ′) −→ Rj!K

functorial for K in Db
Coh(OU ). Namely, by Lemma 30.1 we have for any L in

Db
Coh(OX) the map

HomPro-Db
Coh(OX )(Rj!K,L) = HomU (K,L|U )

→ HomU ′(K|U ′ , L|U ′)
= HomPro-Db

Coh(OX )(Rj′
!(K|U ′), L)

https://stacks.math.columbia.edu/tag/0G4X
https://stacks.math.columbia.edu/tag/0G4Y
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functorial in L and K ′. The functoriality in L shows by Categories, Remark 22.7
that we obtain a canonical map Rj′

!(K|U ′)→ Rj!K which is functorial in K by the
functoriality of the arrow above in K.
Here is an explicit construction of this arrow. Namely, suppose that F• is a bounded
complex of coherent OX -modules whose restriction to U represents K in the derived
category. We have seen in the proof of Lemma 30.3 that such a complex always
exists. Let I, resp. I ′ be a quasi-coherent sheaf of ideals on X with V (I) = X \U ,
resp. V (I ′) = X \ U ′. After replacing I by I + I ′ we may assume I ′ ⊂ I. By
construction Rj!K, resp. Rj′

!(K|U ′) is represented by the inverse system (Kn), resp.
(K ′

n) of Db
Coh(OX) with

Kn = InF• resp. K ′
n = (I ′)nF•

Clearly the map constructed above is given by the maps K ′
n → Kn coming from

the inclusions (I ′)n ⊂ In.

32. Compactly supported cohomology for coherent modules

0G4Z In Situation 16.1 given a morphism f : X → Y in FTSS , we will define a functor
Rf! : Db

Coh(OX) −→ Pro-Db
Coh(OY )

Namely, we choose a compactification j : X → X over Y which is possible by More
on Flatness, Theorem 33.8 and Lemma 32.2. Denote f : X → Y the structure
morphism. Then we set

Rf!K = Rf∗Rj!K

for K ∈ Db
Coh(OX) where Rj! is as in Remark 30.5.

Lemma 32.1.0G50 The functor Rf! is, up to isomorphism, independent of the choice
of the compactification.

In fact, the functor Rf! will be characterized as a “left adjoint” to f ! which will
determine it up to unique isomorphism.

Proof. Consider the category of compactifications of X over Y , which is cofiltered
according to More on Flatness, Theorem 33.8 and Lemmas 32.1 and 32.2. To every
choice of a compactification

j : X → X, f : X → Y

the construction above associates the functor Rf∗ ◦Rj!. Suppose given a morphism
g : X1 → X2 between compactifications ji : X → Xi over Y . Then we get an
isomorphism

Rf2,∗ ◦Rj2,! = Rf2,∗ ◦Rg∗ ◦ j1,! = Rf1,∗ ◦Rj1,!

using Lemma 31.2 in the first equality. In this way we see our functor is independent
of the choice of compactification up to isomorphism. □

Proposition 32.2.0G51 In Situation 16.1 let f : X → Y be a morphism of FTSS. Then
the functors Rf! and f ! are adjoint in the following sense: for all K ∈ Db

Coh(OX)
and L ∈ D+

Coh(OY ) we have

HomX(K, f !L) = HomPro-D+
Coh(OY )(Rf!K,L)

bifunctorially in K and L.

https://stacks.math.columbia.edu/tag/0G50
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Proof. Choose a compactification j : X → X over Y and denote f : X → Y the
structure morphism. Then we have

HomX(K, f !L) = HomX(K, j∗f !L)
= HomPro-D+

Coh(O
X

)(Rj!K, f
!L)

= HomPro-D+
Coh(OY )(Rf∗Rj!K,L)

= HomPro-D+
Coh(OY )(Rf!K,L)

The first equality follows immediately from the construction of f ! in Section 16.
By Lemma 17.6 we have f !L in D+

Coh(OX) hence the second equality follows from
Lemma 30.2. Since f is proper the functor f ! is the right adjoint of pushforward
by construction. This is why we have the third equality. The fourth equality holds
because Rf! = Rf∗Rj!. □

Lemma 32.3.0G52 In Situation 16.1 let f : X → Y be a morphism of FTSS. Let
K → L→M → K[1]

be a distinguished triangle of Db
Coh(OX). Then there exists an inverse system of

distinguished triangles
Kn → Ln →Mn → Kn[1]

in Db
Coh(OY ) such that the pro-systems (Kn), (Ln), and (Mn) give Rf!K, Rf!L,

and Rf!M .

Proof. Choose a compactification j : X → X over Y and denote f : X → Y the
structure morphism. Choose an inverse system of distinguished triangles

Kn → Ln →Mn → Kn[1]
in Db

Coh(OX) as in Lemma 30.4 corresponding to the open immersion j and the
given distinguished triangle. Take Kn = Rf∗Kn and similarly for Ln and Mn.
This works by the very definition of Rf!. □

Remark 32.4.0G53 Let C be a category. Suppose given an inverse system

. . .
α4−→ (M3,n) α3−→ (M2,n) α2−→ (M1,n)

of inverse systems in the category of pro-objects of C. In other words, the arrows
αi are morphisms of pro-objects. By Categories, Example 22.6 we can represent
each αi by a pair (mi, ai) where mi : N → N is an increasing function and ai,n :
Mi,mi(n) →Mi−1,n is a morphism of C making the diagrams

. . . // Mi,mi(3)

ai,3

��

// Mi,mi(2)

ai,2

��

// Mi,mi(1)

ai,1

��
. . . // Mi−1,3 // Mi−1,2 // Mi−1,1

commute. By replacing mi(n) by max(n,mi(n)) and adjusting the morphisms ai(n)
accordingly (as in the example referenced) we may assume that mi(n) ≥ n. In this
situation consider the inverse system

. . .→M4,m4(m3(m2(4))) →M3,m3(m2(3)) →M2,m2(2) →M1,1

with general term
Mk = Mk,mk(mk−1(...(m2(k))...))

https://stacks.math.columbia.edu/tag/0G52
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For any object N of C we have
colimi colimn MorC(Mi,n, N) = colimk MorC(Mk, N)

We omit the details. In other words, we see that the inverse system (Mk) has the
property

colimi MorPro-C((Mi,n), N) = MorPro-C((Mk), N)
This property determines the inverse system (Mk) up to pro-isomorphism by the
discussion in Categories, Remark 22.7. In this way we can turn certain inverse
systems in Pro-C into pro-objects with countable index categories.

Remark 32.5.0G54 In Situation 16.1 let f : X → Y and g : Y → Z be composable
morphisms of FTSS . Let us define the composition

Rg! ◦Rf! : Db
Coh(OX) −→ Pro-Db

Coh(OZ)
Namely, by the very construction of Rf! for K in Db

Coh(OX) the output Rf!K is
the pro-isomorphism class of an inverse system (Mn) in Db

Coh(OY ). Then, since
Rg! is constructed similarly, we see that

. . .→ Rg!M3 → Rg!M2 → Rg!M1

is an inverse system of Pro-Db
Coh(OY ). By the discussion in Remark 32.4 there is

a unique pro-isomorphism class, which we will denote Rg!Rf!K, of inverse systems
in Db

Coh(OZ) such that
HomPro-Db

Coh(OZ )(Rg!Rf!K,L) = colimn HomPro-Db
Coh(OZ )(Rg!Mn, L)

We omit the discussion necessary to see that this construction is functorial in K as
it will immediately follow from the next lemma.

Lemma 32.6.0G55 In Situation 16.1 let f : X → Y and g : Y → Z be composable
morphisms of FTSS. With notation as in Remark 32.5 we have Rg!◦Rf! = R(g◦f)!.

Proof. By the discussion in Categories, Remark 22.7 it suffices to show that we
obtain the same answer if we compute Hom into L in Db

Coh(OZ). To do this we
compute, using the notation in Remark 32.5, as follows

HomZ(Rg!Rf!K,L) = colimn HomZ(Rg!Mn, L)
= colimn HomY (Mn, g

!L)
= HomY (Rf!K, g

!L)
= HomX(K, f !g!L)
= HomX(K, (g ◦ f)!L)
= HomZ(R(g ◦ f)!K,L)

The first equality is the definition of Rg!Rf!K. The second equality is Proposition
32.2 for g. The third equality is the fact that Rf!K is given by (Mn). The fourth
equality is Proposition 32.2 for f . The fifth equality is Lemma 16.3. The sixth is
Proposition 32.2 for g ◦ f . □

Remark 32.7.0G56 In Situation 16.1 let f : X → Y be a morphism of FTSS and let
U ⊂ X be an open. Set g = f |U : U → Y . Then there is a canonical morphism

Rg!(K|U ) −→ Rf!K

functorial in K in Db
Coh(OX) which can be defined in at least 3 ways.

https://stacks.math.columbia.edu/tag/0G54
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(1) Denote i : U → X the inclusion morphism. We have Rg! = Rf! ◦ Ri! by
Lemma 32.6 and we can use Rf! applied to the map Ri!(K|U )→ K which
is a special case of Remark 31.3.

(2) Choose a compactification j : X → X of X over Y with structure morphism
f : X → Y . Set j′ = j ◦ i : U → X. We can use that Rf! = Rf∗ ◦Rj! and
Rg! = Rf∗ ◦Rj′

! and we can use Rf∗ applied to the map Rj′
!(K|U )→ Rj!K

of Remark 31.3.
(3) We can use

HomPro-Db
Coh(OY )(Rf!K,L) = HomX(K, f !L)

→ HomU (K|U , f !L|U )
= HomU (K|U , g!L)
= HomPro-Db

Coh(OY )(Rg!(K|U ), L)

functorial in L and K. Here we have used Proposition 32.2 twice and
the construction of upper shriek functors which shows that g! = i∗ ◦ f !.
The functoriality in L shows by Categories, Remark 22.7 that we obtain a
canonical map Rg!(K|U ) → Rf!K in Pro-Db

Coh(OY ) which is functorial in
K by the functoriality of the arrow above in K.

Each of these three constructions gives the same arrow; we omit the details.

Remark 32.8.0G57 Let us generalize the covariance of compactly supported cohomol-
ogy given in Remark 32.7 to étale morphisms. Namely, in Situation 16.1 suppose
given a commutative diagram

U
h

//

g
��

X

f~~
Y

of FTSS with h étale. Then there is a canonical morphism
Rg!(h∗K) −→ Rf!K

functorial in K in Db
Coh(OX). We define this transformation using the sequence of

maps
HomPro-Db

Coh(OY )(Rf!K,L) = HomX(K, f !L)

→ HomU (h∗K,h∗(f !L))
= HomU (h∗K,h!f !L)
= HomU (h∗K, g!L)
= HomPro-Db

Coh(OY )(Rg!(h∗K), L)

functorial in L and K. Here we have used Proposition 32.2 twice, we have used
the equality h∗ = h! of Lemma 18.2, and we have used the equality h! ◦ f ! = g!

of Lemma 16.3. The functoriality in L shows by Categories, Remark 22.7 that we
obtain a canonical map Rg!(h∗K)→ Rf!K in Pro-Db

Coh(OY ) which is functorial in
K by the functoriality of the arrow above in K.

Remark 32.9.0G58 In Remarks 32.7 and 32.8 we have seen that the construction
of compactly supported cohomology is covariant with respect to open immersions

https://stacks.math.columbia.edu/tag/0G57
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and étale morphisms. In fact, the correct generality is that given a commutative
diagram

U
h

//

g
��

X

f~~
Y

of FTSS with h flat and quasi-finite there exists a canonical transformation
Rg! ◦ h∗ −→ Rf!

As in Remark 32.8 this map can be constructed using a transformation of functors
h∗ → h! on D+

Coh(OX). Recall that h!K = h∗K ⊗ ωU/X where ωU/X = h!OX is
the relative dualizing sheaf of the flat quasi-finite morphism h (see Lemmas 17.9
and 21.6). Recall that ωU/X is the same as the relative dualizing module which
will be constructed in Discriminants, Remark 2.11 by Discriminants, Lemma 15.1.
Thus we can use the trace element τU/X : OU → ωU/X which will be constructed
in Discriminants, Remark 4.7 to define our transformation. If we ever need this,
we will precisely formulate and prove the result here.

33. Duality for compactly supported cohomology

0G59 Let k be a field. Let U be a separated scheme of finite type over k. Let K be an
object of Db

Coh(OU ). Let us define the compactly supported cohomology Hi
c(U,K)

of K as follows. Choose an open immersion j : U → X into a scheme proper over k
and a Deligne system (Kn) for j : U → X whose restriction to U is constant with
value K. Then we set

Hi
c(U,K) = limHi(X,Kn)

We view this as a topological k-vector space using the limit topology (see More on
Algebra, Section 36). There are several points to make here.
First, this definition is independent of the choice of X and (Kn). Namely, if p :
U → Spec(k) denotes the structure morphism, then we already know that Rp!K =
(RΓ(X,Kn)) is well defined up to pro-isomorphism in D(k) hence so is the limit
defining Hi

c(U,K).
Second, it may seem more natural to use the expression

Hi(R limRΓ(X,Kn)) = RΓ(X,R limKn)
but this would give the same answer: since the k-vector spaces Hj(X,Kn) are finite
dimensional, these inverse systems satisfy Mittag-Leffler and hence R1 lim terms of
Cohomology, Lemma 37.1 vanish.
If U ′ ⊂ U is an open subscheme, then there is a canonical map

Hi
c(U ′,K|U ′) −→ Hi

c(U,K)
functorial for K in Db

Coh(OU ). See for example Remark 32.7. In fact, using Remark
32.8 we see that more generally such a map exists for an étale morphism U ′ → U
of separated schemes of finite type over k.
If V is a k-vector space then we put a topology on Homk(V, k) as follows: write V =⋃
Vi as the filtered union of its finite dimensional k-subvector spaces and use the

limit topology on Homk(V, k) = lim Homk(Vi, k). If dimk V <∞ then the topology
on Homk(V, k) is discrete. More generally, if V = colimn Vn is written as a directed
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colimit of finite dimensional vector spaces, then Homk(V, k) = lim Homk(Vn, k) as
topological vector spaces.

Lemma 33.1.0G5A Let p : U → Spec(k) be separated of finite type where k is a field.
Let ω•

U/k = p!OSpec(k). There are canonical isomorphisms

Homk(Hi(U,K), k) = H−i
c (U,RHomOU

(K,ω•
U/k))

of topological k-vector spaces functorial for K in Db
Coh(OU ).

Proof. Choose a compactification j : U → X over k. Let I ⊂ OX be a quasi-
coherent ideal sheaf with V (I) = X \U . By Derived Categories of Schemes, Propo-
sition 11.2 we may choose M ∈ Db

Coh(OX) with K = M |U . We have

Hi(U,K) = Exti
U (OU ,M |U ) = colim Exti

X(In,M) = colimHi(X,RHomOX
(In,M))

by Lemma 30.1. Since In is a coherentOX -module, we have In in D−
Coh(OX), hence

RHomOX
(In,M) is in D+

Coh(OX) by Derived Categories of Schemes, Lemma 11.5.

Let ω•
X/k = q!OSpec(k) where q : X → Spec(k) is the structure morphism, see

Section 27. We find that

Homk(Hi(X,RHomOX
(In,M)), k)

= Ext−i
X (RHomOX

(In,M), ω•
X/k)

= H−i(X,RHomOX
(RHomOX

(In,M), ω•
X/k))

by Lemma 27.1. By Lemma 2.4 part (1) the canonical map

RHomOX
(M,ω•

X/k)⊗L
OX
In −→ RHomOX

(RHomOX
(In,M), ω•

X/k)

is an isomorphism. Observe that ω•
U/k = ω•

X/k|U because p! is constructed as q! com-
posed with restriction to U . Hence RHomOX

(M,ω•
X/k) is an object of Db

Coh(OX)
which restricts to RHomOU

(K,ω•
U/k) on U . Hence by Lemma 30.11 we conclude

that
limH−i(X,RHomOX

(M,ω•
X/k)⊗L

OX
In)

is an avatar for the right hand side of the equality of the lemma. Combining all the
isomorphisms obtained in this manner we get the isomorphism of the lemma. □

Lemma 33.2.0G5B With notation as in Lemma 33.1 suppose U ′ ⊂ U is an open
subscheme. Then the diagram

Homk(Hi(U,K), k) // H−i
c (U,RHomOU

(K,ω•
U/k))

Homk(Hi(U ′,K|U ′), k) //

OO

H−i
c (U ′, RHomOU′ (K,ω•

U ′/k))

OO

is commutative. Here the horizontal arrows are the isomorphisms of Lemma 33.1,
the vertical arrow on the left is the contragredient to the restriction map Hi(U,K)→
Hi(U ′,K|U ′), and the right vertical arrow is Remark 32.7 (see discussion before the
lemma).

https://stacks.math.columbia.edu/tag/0G5A
https://stacks.math.columbia.edu/tag/0G5B
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Proof. We strongly urge the reader to skip this proof. Choose X and M as in the
proof of Lemma 33.1. We are going to drop the subscript OX from RHom and ⊗L.
We write

Hi(U,K) = colimHi(X,RHom(In,M))
and

Hi(U ′,K|U ′) = colimHi(X,RHom((I ′)n,M))
as in the proof of Lemma 33.1 where we choose I ′ ⊂ I as in the discussion in
Remark 31.3 so that the map Hi(U,K) → Hi(U ′,K|U ′) is induced by the maps
(I ′)n → In. We similarly write

Hi
c(U,RHom(K,ω•

U/k)) = limHi(X,RHom(M,ω•
X/k)⊗L In)

and
Hi

c(U ′, RHom(K|U ′ , ω•
U ′/k)) = limHi(X,RHom(M,ω•

X/k)⊗L (I ′)n)

so that the arrow Hi
c(U ′, RHom(K|U ′ , ω•

U ′/k)) → Hi
c(U,RHom(K,ω•

U/k)) is simi-
larly deduced from the maps (I ′)n → In. The diagrams

RHom(M,ω•
X/k)⊗L In // RHom(RHom(In,M), ω•

X/k)

RHom(M,ω•
X/k)⊗L (I ′)n //

OO

RHom(RHom((I ′)n,M), ω•
X/k)

OO

commute because the construction of the horizontal arrows in Cohomology, Lemma
42.9 is functorial in all three entries. Hence we finally come down to the assertion
that the diagrams

Homk(Hi(X,RHom(In,M)), k) // H−i(X,RHom(RHom(In,M), ω•
X/k))

Homk(Hi(X,RHom((I ′)n,M)), k) //

OO

H−i(X,RHom(RHom((I ′)n,M), ω•
X/k))

OO

commute. This is true because the duality isomorphism
Homk(Hi(X,L), k) = Ext−i

X (L, ω•
X/k) = H−i(X,RHom(L, ω•

X/k))

is functorial for L in DQCoh(OX). □

Lemma 33.3.0G5C Let X be a proper scheme over a field k. Let K ∈ Db
Coh(OX) with

Hi(K) = 0 for i < 0. Set F = H0(K). Let Z ⊂ X be closed with complement
U = X \ U . Then

H0
c (U,K|U ) ⊂ H0(X,F)

is given by those global sections of F which vanish in an open neighbourhood of Z.

Proof. Consider the map H0
c (U,K|U ) → H0

X(X,K) = H0(X,K) = H0(X,F) of
Remark 32.7. To study this we represent K by a bounded complex F• with F i = 0
for i < 0. Then we have by definition

H0
c (U,K|U ) = limH0(X, InF•) = lim Ker(H0(X, InF0)→ H0(X, InF1))

By Artin-Rees (Cohomology of Schemes, Lemma 10.3) this is the same as limH0(X, InF).
Thus the arrow H0

c (U,K|U )→ H0(X,F) is injective and the image consists of those

https://stacks.math.columbia.edu/tag/0G5C
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global sections of F which are contained in the subsheaf InF for any n. The char-
acterization of these as the sections which vanish in a neighbourhood of Z comes
from Krull’s intersection theorem (Algebra, Lemma 51.4) by looking at stalks of F .
See discussion in Algebra, Remark 51.6 for the case of functions. □

34. Lichtenbaum’s theorem

0G5D The theorem below was conjectured by Lichtenbaum and proved by Grothendieck
(see [Har67]). There is a very nice proof of the theorem by Kleiman in [Kle67]. A
generalization of the theorem to the case of cohomology with supports can be found
in [Lyu91]. The most interesting part of the argument is contained in the proof of
the following lemma.

Lemma 34.1.0G5E Let U be a variety. Let F be a coherent OU -module. If Hd(U,F)
is nonzero, then dim(U) ≥ d and if equality holds, then U is proper.

Proof. By the Grothendieck’s vanishing result in Cohomology, Proposition 20.7
we conclude that dim(U) ≥ d. Assume dim(U) = d. Choose a compactification
U → X such that U is dense in X. (This is possible by More on Flatness, Theorem
33.8 and Lemma 32.2.) After replacing X by its reduction we find that X is a
proper variety of dimension d and we see that U is proper if and only if U = X.
Set Z = X \ U . We will show that Hd(U,F) is zero if Z is nonempty.

Choose a coherentOX -module G whose restriction to U is F , see Properties, Lemma
22.5. Let ω•

X denote the dualizing complex of X as in Section 27. Set ω•
U = ω•

X |U .
Then Hd(U,F) is dual to

H−d
c (U,RHomOU

(F , ω•
U ))

by Lemma 33.1. By Lemma 27.1 we see that the cohomology sheaves of ω•
X vanish

in degrees < −d and H−d(ω•
X) = ωX is a coherent OX -module which is (S2) and

whose support is X. In particular, ωX is torsion free, see Divisors, Lemma 11.10.
Thus we see that the cohomology sheaf

H−d(RHomOX
(G, ω•

X)) = Hom(G, ωX)

is torsion free, see Divisors, Lemma 11.12. Consequently this sheaf has no nonzero
sections vanishing on any nonempty open of X (those would be torsion sections).
Thus it follows from Lemma 33.3 that H−d

c (U,RHomOU
(F , ω•

U )) is zero, and hence
Hd(U,F) is zero as desired. □

Theorem 34.2.0G5F Let X be a nonempty separated scheme of finite type over a field
k. Let d = dim(X). The following are equivalent

(1) Hd(X,F) = 0 for all coherent OX-modules F on X,
(2) Hd(X,F) = 0 for all quasi-coherent OX-modules F on X, and
(3) no irreducible component X ′ ⊂ X of dimension d is proper over k.

Proof. Assume there exists an irreducible component X ′ ⊂ X (which we view as
an integral closed subscheme) which is proper and has dimension d. Let ωX′ be a
dualizing module ofX ′ over k, see Lemma 27.1. ThenHd(X ′, ωX′) is nonzero as it is
dual to H0(X ′,OX′) by the lemma. Hence we see that Hd(X,ωX′) = Hd(X ′, ωX′)
is nonzero and we conclude that (1) does not hold. In this way we see that (1)
implies (3).

https://stacks.math.columbia.edu/tag/0G5E
https://stacks.math.columbia.edu/tag/0G5F
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Let us prove that (3) implies (1). Let F be a coherent OX -module such that
Hd(X,F) is nonzero. Choose a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
as in Cohomology of Schemes, Lemma 12.3. We obtain exact sequences

Hd(X,Fi)→ Hd(X,Fi+1)→ Hd(X,Fi+1/Fi)
Thus for some i ∈ {1, . . . ,m} we find thatHd(X,Fi+1/Fi) is nonzero. By our choice
of the filtration this means that there exists an integral closed subscheme Z ⊂ X
and a nonzero coherent sheaf of ideals I ⊂ OZ such that Hd(Z, I) is nonzero. By
Lemma 34.1 we conclude dim(Z) = d and Z is proper over k contradicting (3).
Hence (3) implies (1).
Finally, let us show that (1) and (2) are equivalent for any Noetherian scheme X.
Namely, (2) trivially implies (1). On the other hand, assume (1) and let F be a
quasi-coherent OX -module. Then we can write F = colimFi as the filtered colimit
of its coherent submodules, see Properties, Lemma 22.3. Then we have Hd(X,F) =
colimHd(X,Fi) = 0 by Cohomology, Lemma 19.1. Thus (2) is true. □
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