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1. Introduction

08XH In this chapter we discuss dualizing complexes in commutative algebra. A reference
is [Har66].
We begin with a discussion of essential surjections and essential injections, projec-
tive covers, injective hulls, duality for Artinian rings, and study injective hulls of
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residue fields, leading quickly to a proof of Matlis duality. See Sections 2, 3, 4, 5,
6, and 7 and Proposition 7.8.

This is followed by three sections discussing local cohomology in great generality,
see Sections 8, 9, and 10. We apply some of this to a discussion of depth in Section
11. In another application we show how, given a finitely generated ideal I of a
ring A, the “I-complete” and “I-torsion” objects of the derived category of A are
equivalent, see Section 12. To learn more about local cohomology, for example
the finiteness theorem (which relies on local duality – see below) please visit Local
Cohomology, Section 1.

The bulk of this chapter is devoted to duality for a ring map and dualizing com-
plexes. See Sections 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23. The key definition
is that of a dualizing complex ω•

A over a Noetherian ring A as an object ω•
A ∈ D+(A)

whose cohomology modules Hi(ω•
A) are finite A-modules, which has finite injective

dimension, and is such that the map

A −→ RHomA(ω•
A, ω

•
A)

is a quasi-isomorphism. After establishing some elementary properties of dualizing
complexes, we show a dualizing complex gives rise to a dimension function. Next,
we prove Grothendieck’s local duality theorem. After briefly discussing dualizing
modules and Cohen-Macaulay rings, we introduce Gorenstein rings and we show
many familiar Noetherian rings have dualizing complexes. In a last section we apply
the material to show there is a good theory of Noetherian local rings whose formal
fibres are Gorenstein or local complete intersections.

In the last few sections, we describe an algebraic construction of the “upper shriek
functors” used in algebraic geometry, for example in the book [Har66]. This topic is
continued in the chapter on duality for schemes. See Duality for Schemes, Section
1.

2. Essential surjections and injections

08XI We will mostly work in categories of modules, but we may as well make the definition
in general.

Definition 2.1.08XJ Let A be an abelian category.
(1) An injection A ⊂ B of A is essential, or we say that B is an essential

extension of A, if every nonzero subobject B′ ⊂ B has nonzero intersection
with A.

(2) A surjection f : A → B of A is essential if for every proper subobject
A′ ⊂ A we have f(A′) ̸= B.

Some lemmas about this notion.

Lemma 2.2.08XK Let A be an abelian category.
(1) If A ⊂ B and B ⊂ C are essential extensions, then A ⊂ C is an essential

extension.
(2) If A ⊂ B is an essential extension and C ⊂ B is a subobject, then A∩C ⊂ C

is an essential extension.
(3) If A→ B and B → C are essential surjections, then A→ C is an essential

surjection.

https://stacks.math.columbia.edu/tag/08XJ
https://stacks.math.columbia.edu/tag/08XK
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(4) Given an essential surjection f : A → B and a surjection A → C with
kernel K, the morphism C → B/f(K) is an essential surjection.

Proof. Omitted. □

Lemma 2.3.08XL Let R be a ring. Let M be an R-module. Let E = colimEi be
a filtered colimit of R-modules. Suppose given a compatible system of essential
injections M → Ei of R-modules. Then M → E is an essential injection.

Proof. Immediate from the definitions and the fact that filtered colimits are exact
(Algebra, Lemma 8.8). □

Lemma 2.4.08XM Let R be a ring. Let M ⊂ N be R-modules. The following are
equivalent

(1) M ⊂ N is an essential extension,
(2) for all x ∈ N nonzero there exists an f ∈ R such that fx ∈M and fx ̸= 0.

Proof. Assume (1) and let x ∈ N be a nonzero element. By (1) we have Rx∩M ̸=
0. This implies (2).

Assume (2). Let N ′ ⊂ N be a nonzero submodule. Pick x ∈ N ′ nonzero. By (2)
we can find f ∈ R with fx ∈M and fx ̸= 0. Thus N ′ ∩M ̸= 0. □

3. Injective modules

08XN Some results about injective modules over rings.

Lemma 3.1.08XP Let R be a ring. Any product of injective R-modules is injective.

Proof. Special case of Homology, Lemma 27.3. □

Lemma 3.2.08XQ Let R → S be a flat ring map. If E is an injective S-module, then
E is injective as an R-module.

Proof. This is true because HomR(M,E) = HomS(M⊗RS,E) by Algebra, Lemma
14.3 and the fact that tensoring with S is exact. □

Lemma 3.3.08YV Let R → S be an epimorphism of rings. Let E be an S-module. If
E is injective as an R-module, then E is an injective S-module.

Proof. This is true because HomR(N,E) = HomS(N,E) for any S-module N , see
Algebra, Lemma 107.14. □

Lemma 3.4.08XR Let R → S be a ring map. If E is an injective R-module, then
HomR(S,E) is an injective S-module.

Proof. This is true because HomS(N,HomR(S,E)) = HomR(N,E) by Algebra,
Lemma 14.4. □

Lemma 3.5.08XS Let R be a ring. Let I be an injective R-module. Let E ⊂ I be a
submodule. The following are equivalent

(1) E is injective, and
(2) for all E ⊂ E′ ⊂ I with E ⊂ E′ essential we have E = E′.

In particular, an R-module is injective if and only if every essential extension is
trivial.

https://stacks.math.columbia.edu/tag/08XL
https://stacks.math.columbia.edu/tag/08XM
https://stacks.math.columbia.edu/tag/08XP
https://stacks.math.columbia.edu/tag/08XQ
https://stacks.math.columbia.edu/tag/08YV
https://stacks.math.columbia.edu/tag/08XR
https://stacks.math.columbia.edu/tag/08XS
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Proof. The final assertion follows from the first and the fact that the category of
R-modules has enough injectives (More on Algebra, Section 55).
Assume (1). Let E ⊂ E′ ⊂ I as in (2). Then the map idE : E → E can be
extended to a map α : E′ → E. The kernel of α has to be zero because it intersects
E trivially and E′ is an essential extension. Hence E = E′.
Assume (2). Let M ⊂ N be R-modules and let φ : M → E be an R-module map.
In order to prove (1) we have to show that φ extends to a morphism N → E.
Consider the set S of pairs (M ′, φ′) where M ⊂ M ′ ⊂ N and φ′ : M ′ → E is an
R-module map agreeing with φ on M . We define an ordering on S by the rule
(M ′, φ′) ≤ (M ′′, φ′′) if and only if M ′ ⊂ M ′′ and φ′′|M ′ = φ′. It is clear that we
can take the maximum of a totally ordered subset of S. Hence by Zorn’s lemma we
may assume (M,φ) is a maximal element.
Choose an extension ψ : N → I of φ composed with the inclusion E → I. This is
possible as I is injective. If ψ(N) ⊂ E, then ψ is the desired extension. If ψ(N) is
not contained in E, then by (2) the inclusion E ⊂ E+ψ(N) is not essential. hence
we can find a nonzero submodule K ⊂ E +ψ(N) meeting E in 0. This means that
M ′ = ψ−1(E +K) strictly contains M . Thus we can extend φ to M ′ using

M ′ ψ|M′−−−→ E +K → (E +K)/K = E

This contradicts the maximality of (M,φ). □

Example 3.6.08XT Let R be a reduced ring. Let p ⊂ R be a minimal prime so
that K = Rp is a field (Algebra, Lemma 25.1). Then K is an injective R-module.
Namely, we have HomR(M,K) = HomK(Mp,K) for any R-module M . Since
localization is an exact functor and taking duals is an exact functor on K-vector
spaces we conclude HomR(−,K) is an exact functor, i.e., K is an injective R-
module.

Lemma 3.7.08XV Let R be a Noetherian ring. A direct sum of injective modules is
injective.

Proof. Let Ei be a family of injective modules parametrized by a set I. Set
E =

⊕
Ei. To show that E is injective we use Injectives, Lemma 2.6. Thus let

φ : I → E be a module map from an ideal of R into E. As I is a finite R-module
(because R is Noetherian) we can find finitely many elements i1, . . . , ir ∈ I such
that φ maps into

⊕
j=1,...,r Eij . Then we can extend φ into

⊕
j=1,...,r Eij using the

injectivity of the modules Eij . □

Lemma 3.8.0A6I Let R be a Noetherian ring. Let S ⊂ R be a multiplicative subset.
If E is an injective R-module, then S−1E is an injective S−1R-module.

Proof. Since R→ S−1R is an epimorphism of rings, it suffices to show that S−1E
is injective as an R-module, see Lemma 3.3. To show this we use Injectives, Lemma
2.6. Thus let I ⊂ R be an ideal and let φ : I → S−1E be an R-module map. As
I is a finitely presented R-module (because R is Noetherian) we can find an f ∈ S
and an R-module map I → E such that fφ is the composition I → E → S−1E
(Algebra, Lemma 10.2). Then we can extend I → E to a homomorphism R → E.
Then the composition

R→ E → S−1E
f−1

−−→ S−1E

https://stacks.math.columbia.edu/tag/08XT
https://stacks.math.columbia.edu/tag/08XV
https://stacks.math.columbia.edu/tag/0A6I


DUALIZING COMPLEXES 5

is the desired extension of φ to R. □

Lemma 3.9.08XW Let R be a Noetherian ring. Let I be an injective R-module.
(1) Let f ∈ R. Then E =

⋃
I[fn] = I[f∞] is an injective submodule of I.

(2) Let J ⊂ R be an ideal. Then the J-power torsion submodule I[J∞] is an
injective submodule of I.

Proof. We will use Lemma 3.5 to prove (1). Suppose that E ⊂ E′ ⊂ I and that
E′ is an essential extension of E. We will show that E′ = E. If not, then we can
find x ∈ E′ and x ̸∈ E. Let J = {a ∈ R | ax ∈ E}. Since R is Noetherian, we may
write J = (g1, . . . , gt) for some gi ∈ R. By definition E is the set of elements of I
annihilated by powers of f , so we may choose integers ni so that fnigix = 0. Set
n = max{ni}. Then x′ = fnx is an element of E′ not in E and is annihilated by
J . Set J ′ = {a ∈ R | ax′ ∈ E} so J ⊂ J ′. Conversely, we have a ∈ J ′ if and only
if ax′ ∈ E if and only if fmax′ = 0 for some m ≥ 0. But then fmax′ = fm+nax
implies ax ∈ E, i.e., a ∈ J . Hence J = J ′. Thus J = J ′ = Ann(x′), so Rx′∩E = 0.
Hence E′ is not an essential extension of E, a contradiction.
To prove (2) write J = (f1, . . . , ft). Then I[J∞] is equal to

(. . . ((I[f∞
1 ])[f∞

2 ]) . . .)[f∞
t ]

and the result follows from (1) and induction. □

Lemma 3.10.0A6J Let A be a Noetherian ring. Let E be an injective A-module. Then
E ⊗A A[x] has injective-amplitude [0, 1] as an object of D(A[x]). In particular,
E ⊗A A[x] has finite injective dimension as an A[x]-module.

Proof. Let us write E[x] = E ⊗A A[x]. Consider the short exact sequence of
A[x]-modules

0→ E[x]→ HomA(A[x], E[x])→ HomA(A[x], E[x])→ 0
where the first map sends p ∈ E[x] to f 7→ fp and the second map sends φ to
f 7→ φ(xf) − xφ(f). The second map is surjective because HomA(A[x], E[x]) =∏
n≥0 E[x] as an abelian group and the map sends (en) to (en+1 − xen) which is

surjective. As an A-module we have E[x] ∼=
⊕

n≥0 E which is injective by Lemma
3.7. Hence the A[x]-module HomA(A[x], E[x]) is injective by Lemma 3.4 and the
proof is complete. □

4. Projective covers

08XX In this section we briefly discuss projective covers.

Definition 4.1.08XY Let R be a ring. A surjection P →M of R-modules is said to be
a projective cover, or sometimes a projective envelope, if P is a projective R-module
and P →M is an essential surjection.

Projective covers do not always exist. For example, if k is a field and R = k[x] is
the polynomial ring over k, then the module M = R/(x) does not have a projective
cover. Namely, for any surjection f : P →M with P projective over R, the proper
submodule (x− 1)P surjects onto M . Hence f is not essential.

Lemma 4.2.08XZ Let R be a ring and let M be an R-module. If a projective cover of
M exists, then it is unique up to isomorphism.

https://stacks.math.columbia.edu/tag/08XW
https://stacks.math.columbia.edu/tag/0A6J
https://stacks.math.columbia.edu/tag/08XY
https://stacks.math.columbia.edu/tag/08XZ
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Proof. Let P → M and P ′ → M be projective covers. Because P is a projective
R-module and P ′ → M is surjective, we can find an R-module map α : P → P ′

compatible with the maps to M . Since P ′ → M is essential, we see that α is
surjective. As P ′ is a projectiveR-module we can choose a direct sum decomposition
P = Ker(α) ⊕ P ′. Since P ′ → M is surjective and since P → M is essential we
conclude that Ker(α) is zero as desired. □

Here is an example where projective covers exist.

Lemma 4.3.08Y0 Let (R,m, κ) be a local ring. Any finite R-module has a projective
cover.

Proof. Let M be a finite R-module. Let r = dimκ(M/mM). Choose x1, . . . , xr ∈
M mapping to a basis of M/mM . Consider the map f : R⊕r →M . By Nakayama’s
lemma this is a surjection (Algebra, Lemma 20.1). If N ⊂ R⊕r is a proper sub-
module, then N/mN → κ⊕r is not surjective (by Nakayama’s lemma again) hence
N/mN →M/mM is not surjective. Thus f is an essential surjection. □

5. Injective hulls

08Y1 In this section we briefly discuss injective hulls.

Definition 5.1.08Y2 Let R be a ring. A injection M → I of R-modules is said to be
an injective hull if I is a injective R-module and M → I is an essential injection.

Injective hulls always exist.

Lemma 5.2.08Y3 Let R be a ring. Any R-module has an injective hull.

Proof. Let M be an R-module. By More on Algebra, Section 55 the category of
R-modules has enough injectives. Choose an injection M → I with I an injective
R-module. Consider the set S of submodules M ⊂ E ⊂ I such that E is an essential
extension of M . We order S by inclusion. If {Eα} is a totally ordered subset of
S, then

⋃
Eα is an essential extension of M too (Lemma 2.3). Thus we can apply

Zorn’s lemma and find a maximal element E ∈ S. We claim M ⊂ E is an injective
hull, i.e., E is an injective R-module. This follows from Lemma 3.5. □

Lemma 5.3.08Y4 Let R be a ring. Let M , N be R-modules and let M → E and
N → E′ be injective hulls. Then

(1) for any R-module map φ : M → N there exists an R-module map ψ : E →
E′ such that

M //

φ

��

E

ψ

��
N // E′

commutes,
(2) if φ is injective, then ψ is injective,
(3) if φ is an essential injection, then ψ is an isomorphism,
(4) if φ is an isomorphism, then ψ is an isomorphism,
(5) if M → I is an embedding of M into an injective R-module, then there is

an isomorphism I ∼= E ⊕ I ′ compatible with the embeddings of M ,
In particular, the injective hull E of M is unique up to isomorphism.

https://stacks.math.columbia.edu/tag/08Y0
https://stacks.math.columbia.edu/tag/08Y2
https://stacks.math.columbia.edu/tag/08Y3
https://stacks.math.columbia.edu/tag/08Y4
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Proof. Part (1) follows from the fact that E′ is an injective R-module. Part (2)
follows as Ker(ψ) ∩M = 0 and E is an essential extension of M . Assume φ is an
essential injection. Then E ∼= ψ(E) ⊂ E′ by (2) which implies E′ = ψ(E) ⊕ E′′

because E is injective. Since E′ is an essential extension of M (Lemma 2.2) we get
E′′ = 0. Part (4) is a special case of (3). Assume M → I as in (5). Choose a map
α : E → I extending the map M → I. Arguing as before we see that α is injective.
Thus as before α(E) splits off from I. This proves (5). □

Example 5.4.08Y5 Let R be a domain with fraction field K. Then R ⊂ K is an
injective hull of R. Namely, by Example 3.6 we see that K is an injective R-module
and by Lemma 2.4 we see that R ⊂ K is an essential extension.

Definition 5.5.08Y6 An object X of an additive category is called indecomposable if
it is nonzero and if X = Y ⊕ Z, then either Y = 0 or Z = 0.

Lemma 5.6.08Y7 Let R be a ring. Let E be an indecomposable injective R-module.
Then

(1) E is the injective hull of any nonzero submodule of E,
(2) the intersection of any two nonzero submodules of E is nonzero,
(3) EndR(E,E) is a noncommutative local ring with maximal ideal those φ :

E → E whose kernel is nonzero, and
(4) the set of zerodivisors on E is a prime ideal p of R and E is an injective

Rp-module.

Proof. Part (1) follows from Lemma 5.3. Part (2) follows from part (1) and the
definition of injective hulls.
Proof of (3). Set A = EndR(E,E) and I = {φ ∈ A | Ker(φ) ̸= 0}. The statement
means that I is a two sided ideal and that any φ ∈ A, φ ̸∈ I is invertible. Suppose φ
and ψ are not injective. Then Ker(φ)∩Ker(ψ) is nonzero by (2). Hence φ+ψ ∈ I.
It follows that I is a two sided ideal. If φ ∈ A, φ ̸∈ I, then E ∼= φ(E) ⊂ E is an
injective submodule, hence E = φ(E) because E is indecomposable.
Proof of (4). Consider the ring map R → A and let p ⊂ R be the inverse image
of the maximal ideal I. Then it is clear that p is a prime ideal and that R → A
extends to Rp → A. Thus E is an Rp-module. It follows from Lemma 3.3 that E
is injective as an Rp-module. □

Lemma 5.7.08Y8 Let p ⊂ R be a prime of a ring R. Let E be the injective hull of
R/p. Then

(1) E is indecomposable,
(2) E is the injective hull of κ(p),
(3) E is the injective hull of κ(p) over the ring Rp.

Proof. By Lemma 2.4 the inclusion R/p ⊂ κ(p) is an essential extension. Then
Lemma 5.3 shows (2) holds. For f ∈ R, f ̸∈ p the map f : κ(p) → κ(p) is an
isomorphism hence the map f : E → E is an isomorphism, see Lemma 5.3. Thus
E is an Rp-module. It is injective as an Rp-module by Lemma 3.3. Finally, let
E′ ⊂ E be a nonzero injective R-submodule. Then J = (R/p) ∩ E′ is nonzero.
After shrinking E′ we may assume that E′ is the injective hull of J (see Lemma
5.3 for example). Observe that R/p is an essential extension of J for example by
Lemma 2.4. Hence E′ → E is an isomorphism by Lemma 5.3 part (3). Hence E is
indecomposable. □

https://stacks.math.columbia.edu/tag/08Y5
https://stacks.math.columbia.edu/tag/08Y6
https://stacks.math.columbia.edu/tag/08Y7
https://stacks.math.columbia.edu/tag/08Y8
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Lemma 5.8.08Y9 Let R be a Noetherian ring. Let E be an indecomposable injective
R-module. Then there exists a prime ideal p of R such that E is the injective hull
of κ(p).

Proof. Let p be the prime ideal found in Lemma 5.6. Say p = (f1, . . . , fr). Pick a
nonzero element x ∈

⋂
Ker(fi : E → E), see Lemma 5.6. Then (Rp)x is a module

isomorphic to κ(p) inside E. We conclude by Lemma 5.6. □

Proposition 5.9 (Structure of injective modules over Noetherian rings).08YA Let R
be a Noetherian ring. Every injective module is a direct sum of indecomposable
injective modules. Every indecomposable injective module is the injective hull of the
residue field at a prime.

Proof. The second statement is Lemma 5.8. For the first statement, let I be
an injective R-module. We will use transfinite recursion to construct Iα ⊂ I for
ordinals α which are direct sums of indecomposable injective R-modules Eβ+1 for
β < α. For α = 0 we let I0 = 0. Suppose given an ordinal α such that Iα has been
constructed. Then Iα is an injective R-module by Lemma 3.7. Hence I ∼= Iα ⊕ I ′.
If I ′ = 0 we are done. If not, then I ′ has an associated prime by Algebra, Lemma
63.7. Thus I ′ contains a copy of R/p for some prime p. Hence I ′ contains an
indecomposable submodule E by Lemmas 5.3 and 5.7. Set Iα+1 = Iα ⊕Eα. If α is
a limit ordinal and Iβ has been constructed for β < α, then we set Iα =

⋃
β<α Iβ .

Observe that Iα =
⊕

β<αEβ+1. This concludes the proof. □

6. Duality over Artinian local rings

08YW Let (R,m, κ) be an artinian local ring. Recall that this implies R is Noetherian and
that R has finite length as an R-module. Moreover an R-module is finite if and
only if it has finite length. We will use these facts without further mention in this
section. Please see Algebra, Sections 52 and 53 and Algebra, Proposition 60.7 for
more details.

Lemma 6.1.08YX Let (R,m, κ) be an artinian local ring. Let E be an injective hull of
κ. For every finite R-module M we have

lengthR(M) = lengthR(HomR(M,E))
In particular, the injective hull E of κ is a finite R-module.

Proof. Because E is an essential extension of κ we have κ = E[m] where E[m] is the
m-torsion in E (notation as in More on Algebra, Section 88). Hence HomR(κ,E) ∼=
κ and the equality of lengths holds for M = κ. We prove the displayed equality
of the lemma by induction on the length of M . If M is nonzero there exists a
surjection M → κ with kernel M ′. Since the functor M 7→ HomR(M,E) is exact
we obtain a short exact sequence

0→ HomR(κ,E)→ HomR(M,E)→ HomR(M ′, E)→ 0.
Additivity of length for this sequence and the sequence 0 → M ′ → M → κ → 0
and the equality for M ′ (induction hypothesis) and κ implies the equality for M .
The final statement of the lemma follows as E = HomR(R,E). □

Lemma 6.2.08YY Let (R,m, κ) be an artinian local ring. Let E be an injective hull of
κ. For any finite R-module M the evaluation map

M −→ HomR(HomR(M,E), E)

https://stacks.math.columbia.edu/tag/08Y9
https://stacks.math.columbia.edu/tag/08YA
https://stacks.math.columbia.edu/tag/08YX
https://stacks.math.columbia.edu/tag/08YY
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is an isomorphism. In particular R = HomR(E,E).

Proof. Observe that the displayed arrow is injective. Namely, if x ∈ M is a
nonzero element, then there is a nonzero map Rx → κ which we can extend to a
map φ : M → E that doesn’t vanish on x. Since the source and target of the arrow
have the same length by Lemma 6.1 we conclude it is an isomorphism. The final
statement follows on taking M = R. □

To state the next lemma, denote ModfgR the category of finite R-modules over a
ring R.

Lemma 6.3.08YZ Let (R,m, κ) be an artinian local ring. Let E be an injective hull of
κ. The functor D(−) = HomR(−, E) induces an exact anti-equivalence ModfgR →
ModfgR and D ◦D ∼= id.

Proof. We have seen that D ◦D = id on ModfgR in Lemma 6.2. It follows imme-
diately that D is an anti-equivalence. □

Lemma 6.4.08Z0 Assumptions and notation as in Lemma 6.3. Let I ⊂ R be an ideal
and M a finite R-module. Then

D(M [I]) = D(M)/ID(M) and D(M/IM) = D(M)[I]

Proof. Say I = (f1, . . . , ft). Consider the map

M⊕t f1,...,ft−−−−−→M

with cokernel M/IM . Applying the exact functor D we conclude that D(M/IM)
is D(M)[I]. The other case is proved in the same way. □

7. Injective hull of the residue field

08Z1 Most of our results will be for Noetherian local rings in this section.

Lemma 7.1.08Z2 Let R → S be a surjective map of local rings with kernel I. Let E
be the injective hull of the residue field of R over R. Then E[I] is the injective hull
of the residue field of S over S.

Proof. Observe that E[I] = HomR(S,E) as S = R/I. Hence E[I] is an injective
S-module by Lemma 3.4. Since E is an essential extension of κ = R/mR it follows
that E[I] is an essential extension of κ as well. The result follows. □

Lemma 7.2.08Z3 Let (R,m, κ) be a local ring. Let E be the injective hull of κ. Let M
be a m-power torsion R-module with n = dimκ(M [m]) <∞. Then M is isomorphic
to a submodule of E⊕n.

Proof. Observe that E⊕n is the injective hull of κ⊕n = M [m]. Thus there is an
R-module map M → E⊕n which is injective on M [m]. Since M is m-power torsion
the inclusion M [m] ⊂ M is an essential extension (for example by Lemma 2.4) we
conclude that the kernel of M → E⊕n is zero. □

Lemma 7.3.08Z4 Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ over R. Let En be an injective hull of κ over R/mn. Then E =

⋃
En and

En = E[mn].

Proof. We have En = E[mn] by Lemma 7.1. We have E =
⋃
En because

⋃
En =

E[m∞] is an injective R-submodule which contains κ, see Lemma 3.9. □

https://stacks.math.columbia.edu/tag/08YZ
https://stacks.math.columbia.edu/tag/08Z0
https://stacks.math.columbia.edu/tag/08Z2
https://stacks.math.columbia.edu/tag/08Z3
https://stacks.math.columbia.edu/tag/08Z4
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The following lemma tells us the injective hull of the residue field of a Noetherian
local ring only depends on the completion.

Lemma 7.4.08Z5 Let R → S be a flat local homomorphism of local Noetherian rings
such that R/mR ∼= S/mRS. Then the injective hull of the residue field of R is the
injective hull of the residue field of S.

Proof. Note that mRS = mS as the quotient by the former is a field. Set κ =
R/mR = S/mS . Let ER be the injective hull of κ over R. Let ES be the injective
hull of κ over S. Observe that ES is an injective R-module by Lemma 3.2. Choose
an extension ER → ES of the identification of residue fields. This map is an
isomorphism by Lemma 7.3 because R→ S induces an isomorphismR/mnR → S/mnS
for all n. □

Lemma 7.5.08Z6 Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ over R. Then HomR(E,E) is canonically isomorphic to the completion of R.

Proof. Write E =
⋃
En with En = E[mn] as in Lemma 7.3. Any endomorphism

of E preserves this filtration. Hence
HomR(E,E) = lim HomR(En, En)

The lemma follows as HomR(En, En) = HomR/mn(En, En) = R/mn by Lemma
6.2. □

Lemma 7.6.08Z7 Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ over R. Then E satisfies the descending chain condition.

Proof. If E ⊃M1 ⊃M2 ⊃ . . . is a sequence of submodules, then
HomR(E,E)→ HomR(M1, E)→ HomR(M2, E)→ . . .

is a sequence of surjections. By Lemma 7.5 each of these is a module over the
completion R∧ = HomR(E,E). Since R∧ is Noetherian (Algebra, Lemma 97.6) the
sequence stabilizes: HomR(Mn, E) = HomR(Mn+1, E) = . . .. Since E is injective,
this can only happen if HomR(Mn/Mn+1, E) is zero. However, if Mn/Mn+1 is
nonzero, then it contains a nonzero element annihilated by m, because E is m-
power torsion by Lemma 7.3. In this case Mn/Mn+1 has a nonzero map into E,
contradicting the assumed vanishing. This finishes the proof. □

Lemma 7.7.08Z8 Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ.

(1) For an R-module M the following are equivalent:
(a) M satisfies the ascending chain condition,
(b) M is a finite R-module, and
(c) there exist n,m and an exact sequence R⊕m → R⊕n →M → 0.

(2) For an R-module M the following are equivalent:
(a) M satisfies the descending chain condition,
(b) M is m-power torsion and dimκ(M [m]) <∞, and
(c) there exist n,m and an exact sequence 0→M → E⊕n → E⊕m.

Proof. We omit the proof of (1).
Let M be an R-module with the descending chain condition. Let x ∈ M . Then
mnx is a descending chain of submodules, hence stabilizes. Thus mnx = mn+1x
for some n. By Nakayama’s lemma (Algebra, Lemma 20.1) this implies mnx = 0,

https://stacks.math.columbia.edu/tag/08Z5
https://stacks.math.columbia.edu/tag/08Z6
https://stacks.math.columbia.edu/tag/08Z7
https://stacks.math.columbia.edu/tag/08Z8
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i.e., x is m-power torsion. Since M [m] is a vector space over κ it has to be finite
dimensional in order to have the descending chain condition.
Assume that M is m-power torsion and has a finite dimensional m-torsion sub-
module M [m]. By Lemma 7.2 we see that M is a submodule of E⊕n for some n.
Consider the quotient N = E⊕n/M . By Lemma 7.6 the module E has the descend-
ing chain condition hence so do E⊕n and N . Therefore N satisfies (2)(a) which
implies N satisfies (2)(b) by the second paragraph of the proof. Thus by Lemma
7.2 again we see that N is a submodule of E⊕m for some m. Thus we have a short
exact sequence 0→M → E⊕n → E⊕m.
Assume we have a short exact sequence 0→M → E⊕n → E⊕m. Since E satisfies
the descending chain condition by Lemma 7.6 so does M . □

Proposition 7.8 (Matlis duality).08Z9 Let (R,m, κ) be a complete local Noetherian
ring. Let E be an injective hull of κ over R. The functor D(−) = HomR(−, E)
induces an anti-equivalence{

R-modules with the
descending chain condition

}
←→

{
R-modules with the

ascending chain condition

}
and we have D ◦D = id on either side of the equivalence.

Proof. By Lemma 7.5 we have R = HomR(E,E) = D(E). Of course we have
E = HomR(R,E) = D(R). Since E is injective the functor D is exact. The result
now follows immediately from the description of the categories in Lemma 7.7. □

Remark 7.9.0EGL Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ over R. Here is an addendum to Matlis duality: If N is an m-power torsion
module and M = HomR(N,E) is a finite module over the completion of R, then N
satisfies the descending chain condition. Namely, for any submodules N ′′ ⊂ N ′ ⊂ N
with N ′′ ̸= N ′, we can find an embedding κ ⊂ N ′′/N ′ and hence a nonzero map
N ′ → E annihilating N ′′ which we can extend to a map N → E annihilating N ′′.
Thus N ⊃ N ′ 7→ M ′ = HomR(N/N ′, E) ⊂ M is an inclusion preserving map from
submodules of N to submodules of M , whence the conclusion.

8. Deriving torsion

0BJA Let A be a ring and let I ⊂ A be a finitely generated ideal (if I is not finitely
generated perhaps a different definition should be used). Let Z = V (I) ⊂ Spec(A).
Recall that the category I∞-torsion of I-power torsion modules only depends on
the closed subset Z and not on the choice of the finitely generated ideal I such that
Z = V (I), see More on Algebra, Lemma 88.6. In this section we will consider the
functor

H0
I : ModA −→ I∞-torsion, M 7−→M [I∞] =

⋃
M [In]

which sends M to the submodule of I-power torsion.
Let A be a ring and let I be a finitely generated ideal. Note that I∞-torsion
is a Grothendieck abelian category (direct sums exist, filtered colimits are exact,
and

⊕
A/In is a generator by More on Algebra, Lemma 88.2). Hence the derived

category D(I∞-torsion) exists, see Injectives, Remark 13.3. Our functor H0
I is left

exact and has a derived extension which we will denote
RΓI : D(A) −→ D(I∞-torsion).

https://stacks.math.columbia.edu/tag/08Z9
https://stacks.math.columbia.edu/tag/0EGL
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Warning: this functor does not deserve the name local cohomology unless the ring
A is Noetherian. The functors H0

I , RΓI , and the satellites Hp
I only depend on the

closed subset Z ⊂ Spec(A) and not on the choice of the finitely generated ideal I
such that V (I) = Z. However, we insist on using the subscript I for the functors
above as the notation RΓZ is going to be used for a different functor, see (9.0.1),
which agrees with the functor RΓI only (as far as we know) in case A is Noetherian
(see Lemma 10.1).

Lemma 8.1.0A6L Let A be a ring and let I ⊂ A be a finitely generated ideal. The
functor RΓI is right adjoint to the functor D(I∞-torsion)→ D(A).

Proof. This follows from the fact that taking I-power torsion submodules is the
right adjoint to the inclusion functor I∞-torsion→ ModA. See Derived Categories,
Lemma 30.3. □

Lemma 8.2.0954 Let A be a ring and let I ⊂ A be a finitely generated ideal. For any
object K of D(A) we have

RΓI(K) = hocolim RHomA(A/In,K)
in D(A) and

RqΓI(K) = colimn ExtqA(A/In,K)
as modules for all q ∈ Z.

Proof. Let J• be a K-injective complex representing K. Then
RΓI(K) = J•[I∞] = colim J•[In] = colim HomA(A/In, J•)

where the first equality is the definition of RΓI(K). By Derived Categories, Lemma
33.7 we obtain the first displayed equality in the statement of the lemma. The
second displayed equality in the statement of the lemma then follows because
Hq(HomA(A/In, J•)) = ExtqA(A/In,K) and because filtered colimits are exact
in the category of abelian groups. □

Lemma 8.3.0A6M Let A be a ring and let I ⊂ A be a finitely generated ideal. Let K•

be a complex of A-modules such that f : K• → K• is an isomorphism for some
f ∈ I, i.e., K• is a complex of Af -modules. Then RΓI(K•) = 0.

Proof. Namely, in this case the cohomology modules of RΓI(K•) are both f -power
torsion and f acts by automorphisms. Hence the cohomology modules are zero and
hence the object is zero. □

Let A be a ring and I ⊂ A a finitely generated ideal. By More on Algebra, Lemma
88.5 the category of I-power torsion modules is a Serre subcategory of the category
of all A-modules, hence there is a functor
(8.3.1)0A6N D(I∞-torsion)→ DI∞-torsion(A)
see Derived Categories, Section 17.

Lemma 8.4.0A6P Let A be a ring and let I be a finitely generated ideal. Let M and
N be I-power torsion modules.

(1) HomD(A)(M,N) = HomD(I∞-torsion)(M,N),
(2) Ext1

D(A)(M,N) = Ext1
D(I∞-torsion)(M,N),

(3) Ext2
D(I∞-torsion)(M,N)→ Ext2

D(A)(M,N) is not surjective in general,
(4) (8.3.1) is not an equivalence in general.

https://stacks.math.columbia.edu/tag/0A6L
https://stacks.math.columbia.edu/tag/0954
https://stacks.math.columbia.edu/tag/0A6M
https://stacks.math.columbia.edu/tag/0A6P
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Proof. Parts (1) and (2) follow immediately from the fact that I-power torsion
forms a Serre subcategory of ModA. Part (4) follows from part (3).
For part (3) let A be a ring with an element f ∈ A such that A[f ] contains a
nonzero element x annihilated by f and A contains elements xn with fnxn = x.
Such a ring A exists because we can take

A = Z[f, x, xn]/(fx, fnxn − x)
Given A set I = (f). Then the exact sequence

0→ A[f ]→ A
f−→ A→ A/fA→ 0

defines an element in Ext2
A(A/fA,A[f ]). We claim this element does not come from

an element of Ext2
D(f∞-torsion)(A/fA,A[f ]). Namely, if it did, then there would be

an exact sequence
0→ A[f ]→M → N → A/fA→ 0

where M and N are f -power torsion modules defining the same 2 extension class.
Since A→ A is a complex of free modules and since the 2 extension classes are the
same we would be able to find a map

0 // A[f ] //

��

A //

φ

��

A //

ψ

��

A/fA //

��

0

0 // A[f ] // M // N // A/fA // 0

(some details omitted). Then we could replace M by the image of φ and N by
the image of ψ. Then M would be a cyclic module, hence fnM = 0 for some
n. Considering φ(xn+1) we get a contradiction with the fact that fn+1xn = x is
nonzero in A[f ]. □

9. Local cohomology

0952 Let A be a ring and let I ⊂ A be a finitely generated ideal. Set Z = V (I) ⊂ Spec(A).
We will construct a functor
(9.0.1)0A6Q RΓZ : D(A) −→ DI∞-torsion(A).
which is right adjoint to the inclusion functor. For notation see Section 8. The
cohomology modules of RΓZ(K) are the local cohomology groups of K with respect
to Z. By Lemma 8.4 this functor will in general not be equal to RΓI(−) even
viewed as functors into D(A). In Section 10 we will show that if A is Noetherian,
then the two agree.
We will continue the discussion of local cohomology in the chapter on local coho-
mology, see Local Cohomology, Section 1. For example, there we will show that
RΓZ computes cohomology with support in Z for the associated complex of quasi-
coherent sheaves on Spec(A). See Local Cohomology, Lemma 2.1.

Lemma 9.1.0A6R Let A be a ring and let I ⊂ A be a finitely generated ideal. There
exists a right adjoint RΓZ (9.0.1) to the inclusion functor DI∞-torsion(A)→ D(A).
In fact, if I is generated by f1, . . . , fr ∈ A, then we have

RΓZ(K) = (A→
∏

i0
Afi0

→
∏

i0<i1
Afi0fi1

→ . . .→ Af1...fr )⊗L
A K

functorially in K ∈ D(A).

https://stacks.math.columbia.edu/tag/0A6R
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Proof. Say I = (f1, . . . , fr) is an ideal. Let K• be a complex of A-modules. There
is a canonical map of complexes

(A→
∏

i0
Afi0

→
∏

i0<i1
Afi0fi1

→ . . .→ Af1...fr
) −→ A.

from the extended Čech complex to A. Tensoring with K•, taking associated total
complex, we get a map

Tot
(
K• ⊗A (A→

∏
i0
Afi0

→
∏

i0<i1
Afi0fi1

→ . . .→ Af1...fr
)
)
−→ K•

in D(A). We claim the cohomology modules of the complex on the left are I-power
torsion, i.e., the LHS is an object of DI∞-torsion(A). Namely, we have

(A→
∏

i0
Afi0

→
∏

i0<i1
Afi0fi1

→ . . .→ Af1...fr
) = colimK(A, fn1 , . . . , fnr )

by More on Algebra, Lemma 29.6. Moreover, multiplication by fni on the complex
K(A, fn1 , . . . , fnr ) is homotopic to zero by More on Algebra, Lemma 28.6. Since

Hq (LHS) = colimHq(Tot(K• ⊗A K(A, fn1 , . . . , fnr )))
we obtain our claim. On the other hand, if K• is an object of DI∞-torsion(A), then
the complexes K• ⊗A Afi0 ...fip

have vanishing cohomology. Hence in this case the
map LHS → K• is an isomorphism in D(A). The construction

RΓZ(K•) = Tot
(
K• ⊗A (A→

∏
i0
Afi0

→
∏

i0<i1
Afi0fi1

→ . . .→ Af1...fr
)
)

is functorial in K• and defines an exact functor D(A) → DI∞-torsion(A) between
triangulated categories. It follows formally from the existence of the natural trans-
formation RΓZ → id given above and the fact that this evaluates to an isomorphism
on K• in the subcategory, that RΓZ is the desired right adjoint. □

Lemma 9.2.0BJB Let A → B be a ring homomorphism and let I ⊂ A be a finitely
generated ideal. Set J = IB. Set Z = V (I) and Y = V (J). Then

RΓZ(MA) = RΓY (M)A
functorially in M ∈ D(B). Here (−)A denotes the restriction functors D(B) →
D(A) and DJ∞-torsion(B)→ DI∞-torsion(A).

Proof. This follows from uniqueness of adjoint functors as both RΓZ((−)A) and
RΓY (−)A are right adjoint to the functor DI∞-torsion(A) → D(B), K 7→ K ⊗L

A B.
Alternatively, one can use the description of RΓZ and RΓY in terms of alternating
Čech complexes (Lemma 9.1). Namely, if I = (f1, . . . , fr) then J is generated by
the images g1, . . . , gr ∈ B of f1, . . . , fr. Then the statement of the lemma follows
from the existence of a canonical isomorphism

MA ⊗A (A→
∏

i0
Afi0

→
∏

i0<i1
Afi0fi1

→ . . .→ Af1...fr )

= M ⊗B (B →
∏

i0
Bgi0

→
∏

i0<i1
Bgi0gi1

→ . . .→ Bg1...gr
)

for any B-module M . □

Lemma 9.3.0ALZ Let A → B be a ring homomorphism and let I ⊂ A be a finitely
generated ideal. Set J = IB. Let Z = V (I) and Y = V (J). Then

RΓZ(K)⊗L
A B = RΓY (K ⊗L

A B)
functorially in K ∈ D(A).

https://stacks.math.columbia.edu/tag/0BJB
https://stacks.math.columbia.edu/tag/0ALZ
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Proof. Write I = (f1, . . . , fr). Then J is generated by the images g1, . . . , gr ∈ B
of f1, . . . , fr. Then we have

(A→
∏

Afi0
→ . . .→ Af1...fr

)⊗A B = (B →
∏

Bgi0
→ . . .→ Bg1...gr

)

as complexes of B-modules. Represent K by a K-flat complex K• of A-modules.
Since the total complexes associated to

K• ⊗A (A→
∏

Afi0
→ . . .→ Af1...fr

)⊗A B

and
K• ⊗A B ⊗B (B →

∏
Bgi0

→ . . .→ Bg1...gr
)

represent the left and right hand side of the displayed formula of the lemma (see
Lemma 9.1) we conclude. □

Lemma 9.4.0A6S Let A be a ring and let I ⊂ A be a finitely generated ideal. Let K•

be a complex of A-modules such that f : K• → K• is an isomorphism for some
f ∈ I, i.e., K• is a complex of Af -modules. Then RΓZ(K•) = 0.

Proof. Namely, in this case the cohomology modules of RΓZ(K•) are both f -power
torsion and f acts by automorphisms. Hence the cohomology modules are zero and
hence the object is zero. □

Lemma 9.5.0ALY Let A be a ring and let I ⊂ A be a finitely generated ideal. For
K,L ∈ D(A) we have

RΓZ(K ⊗L
A L) = K ⊗L

A RΓZ(L) = RΓZ(K)⊗L
A L = RΓZ(K)⊗L

A RΓZ(L)
If K or L is in DI∞-torsion(A) then so is K ⊗L

A L.

Proof. By Lemma 9.1 we know that RΓZ is given by C ⊗L− for some C ∈ D(A).
Hence, for K,L ∈ D(A) general we have

RΓZ(K ⊗L
A L) = K ⊗L L⊗L

A C = K ⊗L
A RΓZ(L)

The other equalities follow formally from this one. This also implies the last state-
ment of the lemma. □

Lemma 9.6.0BJC Let A be a ring and let I, J ⊂ A be finitely generated ideals. Set
Z = V (I) and Y = V (J). Then Z ∩ Y = V (I + J) and RΓY ◦ RΓZ = RΓY ∩Z as
functors D(A)→ D(I+J)∞-torsion(A). For K ∈ D+(A) there is a spectral sequence

Ep,q2 = Hp
Y (Hq

Z(K))⇒ Hp+q
Y ∩Z(K)

as in Derived Categories, Lemma 22.2.

Proof. There is a bit of abuse of notation in the lemma as strictly speaking we
cannot compose RΓY and RΓZ . The meaning of the statement is simply that we
are composing RΓZ with the inclusion DI∞-torsion(A)→ D(A) and then with RΓY .
Then the equality RΓY ◦RΓZ = RΓY ∩Z follows from the fact that

DI∞-torsion(A)→ D(A) RΓY−−−→ D(I+J)∞-torsion(A)
is right adjoint to the inclusion D(I+J)∞-torsion(A)→ DI∞-torsion(A). Alternatively
one can prove the formula using Lemma 9.1 and the fact that the tensor product
of extended Čech complexes on f1, . . . , fr and g1, . . . , gm is the extended Čech
complex on f1, . . . , fn.g1, . . . , gm. The final assertion follows from this and the
cited lemma. □

https://stacks.math.columbia.edu/tag/0A6S
https://stacks.math.columbia.edu/tag/0ALY
https://stacks.math.columbia.edu/tag/0BJC
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The following lemma is the analogue of More on Algebra, Lemma 91.24 for com-
plexes with torsion cohomologies.

Lemma 9.7.0AM0 Let A→ B be a flat ring map and let I ⊂ A be a finitely generated
ideal such that A/I = B/IB. Then base change and restriction induce quasi-inverse
equivalences DI∞-torsion(A) = D(IB)∞-torsion(B).

Proof. More precisely the functors are K 7→ K ⊗L
A B for K in DI∞-torsion(A) and

M 7→MA for M in D(IB)∞-torsion(B). The reason this works is that Hi(K⊗L
AB) =

Hi(K) ⊗A B = Hi(K). The first equality holds as A → B is flat and the second
by More on Algebra, Lemma 89.2. □

The following lemma was shown for Hom and Ext1 of modules in More on Algebra,
Lemmas 89.3 and 89.8.

Lemma 9.8.05EH Let A→ B be a flat ring map and let I ⊂ A be a finitely generated
ideal such that A/I → B/IB is an isomorphism. For K ∈ DI∞-torsion(A) and
L ∈ D(A) the map

RHomA(K,L) −→ RHomB(K ⊗A B,L⊗A B)
is a quasi-isomorphism. In particular, if M , N are A-modules and M is I-power
torsion, then the canonical map

ExtiA(M,N) −→ ExtiB(M ⊗A B,N ⊗A B)
is an isomorphism for all i.

Proof. Let Z = V (I) ⊂ Spec(A) and Y = V (IB) ⊂ Spec(B). Since the cohomol-
ogy modules of K are I power torsion, the canonical map RΓZ(L)→ L induces an
isomorphism

RHomA(K,RΓZ(L))→ RHomA(K,L)
in D(A). Similarly, the cohomology modules of K ⊗A B are IB power torsion and
we have an isomorphism

RHomB(K ⊗A B,RΓY (L⊗A B))→ RHomB(K ⊗A B,L⊗A B)
in D(B). By Lemma 9.3 we have RΓZ(L)⊗A B = RΓY (L⊗A B). Hence it suffices
to show that the map

RHomA(K,RΓZ(L))→ RHomB(K ⊗A B,RΓZ(L)⊗A B)
is a quasi-isomorphism. This follows from Lemma 9.7. □

10. Local cohomology for Noetherian rings

0BJD Let A be a ring and let I ⊂ A be a finitely generated ideal. Set Z = V (I) ⊂ Spec(A).
Recall that (8.3.1) is the functor

D(I∞-torsion)→ DI∞-torsion(A)
In fact, there is a natural transformation of functors
(10.0.1)0A6U (8.3.1) ◦RΓI(−) −→ RΓZ(−)
Namely, given a complex of A-modules K• the canonical map RΓI(K•) → K•

in D(A) factors (uniquely) through RΓZ(K•) as RΓI(K•) has I-power torsion
cohomology modules (see Lemma 8.1). In general this map is not an isomorphism
(we’ve seen this in Lemma 8.4).

https://stacks.math.columbia.edu/tag/0AM0
https://stacks.math.columbia.edu/tag/05EH
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Lemma 10.1.0955 Let A be a Noetherian ring and let I ⊂ A be an ideal.
(1) the adjunction RΓI(K)→ K is an isomorphism for K ∈ DI∞-torsion(A),
(2) the functor (8.3.1) D(I∞-torsion)→ DI∞-torsion(A) is an equivalence,
(3) the transformation of functors (10.0.1) is an isomorphism, in other words

RΓI(K) = RΓZ(K) for K ∈ D(A).

Proof. A formal argument, which we omit, shows that it suffices to prove (1).
Let M be an I-power torsion A-module. Choose an embedding M → J into an
injective A-module. Then J [I∞] is an injective A-module, see Lemma 3.9, and
we obtain an embedding M → J [I∞]. Thus every I-power torsion module has
an injective resolution M → J• with Jn also I-power torsion. It follows that
RΓI(M) = M (this is not a triviality and this is not true in general if A is not
Noetherian). Next, suppose that K ∈ D+

I∞-torsion(A). Then the spectral sequence
RqΓI(Hp(K))⇒ Rp+qΓI(K)

(Derived Categories, Lemma 21.3) converges and above we have seen that only the
terms with q = 0 are nonzero. Thus we see that RΓI(K)→ K is an isomorphism.
Suppose K is an arbitrary object of DI∞-torsion(A). We have

RqΓI(K) = colim ExtqA(A/In,K)
by Lemma 8.2. Choose f1, . . . , fr ∈ A generating I. Let K•

n = K(A, fn1 , . . . , fnr ) be
the Koszul complex with terms in degrees −r, . . . , 0. Since the pro-objects {A/In}
and {K•

n} in D(A) are the same by More on Algebra, Lemma 94.1, we see that
RqΓI(K) = colim ExtqA(K•

n,K)
Pick any complex K• of A-modules representing K. Since K•

n is a finite complex
of finite free modules we see that

ExtqA(Kn,K) = Hq(Tot((K•
n)∨ ⊗A K•))

where (K•
n)∨ is the dual of the complex K•

n. See More on Algebra, Lemma 73.2.
As (K•

n)∨ is a complex of finite free A-modules sitting in degrees 0, . . . , r we see
that the terms of the complex Tot((K•

n)∨ ⊗AK•) are the same as the terms of the
complex Tot((K•

n)∨⊗A τ≥q−r−2K
•) in degrees q− 1 and higher. Hence we see that

ExtqA(Kn,K) = ExtqA(Kn, τ≥q−r−2K)
for all n. It follows that

RqΓI(K) = RqΓI(τ≥q−r−2K) = Hq(τ≥q−r−2K) = Hq(K)
Thus we see that the map RΓI(K)→ K is an isomorphism. □

Lemma 10.2.0956 Let A be a Noetherian ring and let I = (f1, . . . , fr) be an ideal of
A. Set Z = V (I) ⊂ Spec(A). There are canonical isomorphisms

RΓI(A)→ (A→
∏

i0
Afi0

→
∏

i0<i1
Afi0fi1

→ . . .→ Af1...fr )→ RΓZ(A)

in D(A). If M is an A-module, then we have similarly

RΓI(M) ∼= (M →
∏

i0
Mfi0

→
∏

i0<i1
Mfi0fi1

→ . . .→Mf1...fr
) ∼= RΓZ(M)

in D(A).

Proof. This follows from Lemma 10.1 and the computation of the functor RΓZ in
Lemma 9.1. □

https://stacks.math.columbia.edu/tag/0955
https://stacks.math.columbia.edu/tag/0956
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Lemma 10.3.0957 If A → B is a homomorphism of Noetherian rings and I ⊂ A is
an ideal, then in D(B) we have

RΓI(A)⊗L
A B = RΓZ(A)⊗L

A B = RΓY (B) = RΓIB(B)
where Y = V (IB) ⊂ Spec(B).

Proof. Combine Lemmas 10.2 and 9.3. □

11. Depth

0AVY In this section we revisit the notion of depth introduced in Algebra, Section 72.

Lemma 11.1.0AVZ Let A be a Noetherian ring, let I ⊂ A be an ideal, and let M be a
finite A-module such that IM ̸= M . Then the following integers are equal:

(1) depthI(M),
(2) the smallest integer i such that ExtiA(A/I,M) is nonzero, and
(3) the smallest integer i such that Hi

I(M) is nonzero.
Moreover, we have ExtiA(N,M) = 0 for i < depthI(M) for any finite A-module N
annihilated by a power of I.

Proof. We prove the equality of (1) and (2) by induction on depthI(M) which is
allowed by Algebra, Lemma 72.4.
Base case. If depthI(M) = 0, then I is contained in the union of the associated
primes of M (Algebra, Lemma 63.9). By prime avoidance (Algebra, Lemma 15.2)
we see that I ⊂ p for some associated prime p. Hence HomA(A/I,M) is nonzero.
Thus equality holds in this case.
Assume that depthI(M) > 0. Let f ∈ I be a nonzerodivisor on M such that
depthI(M/fM) = depthI(M)− 1. Consider the short exact sequence

0→M →M →M/fM → 0

and the associated long exact sequence for Ext∗
A(A/I,−). Note that ExtiA(A/I,M)

is a finite A/I-module (Algebra, Lemmas 71.9 and 71.8). Hence we obtain

HomA(A/I,M/fM) = Ext1
A(A/I,M)

and short exact sequences
0→ ExtiA(A/I,M)→ ExtiA(A/I,M/fM)→ Exti+1

A (A/I,M)→ 0
Thus the equality of (1) and (2) by induction.
Observe that depthI(M) = depthIn(M) for all n ≥ 1 for example by Algebra,
Lemma 68.9. Hence by the equality of (1) and (2) we see that ExtiA(A/In,M) = 0
for all n and i < depthI(M). Let N be a finite A-module annihilated by a power
of I. Then we can choose a short exact sequence

0→ N ′ → (A/In)⊕m → N → 0

for some n,m ≥ 0. Then HomA(N,M) ⊂ HomA((A/In)⊕m,M) and ExtiA(N,M) ⊂
Exti−1

A (N ′,M) for i < depthI(M). Thus a simply induction argument shows that
the final statement of the lemma holds.
Finally, we prove that (3) is equal to (1) and (2). We haveHp

I (M) = colim ExtpA(A/In,M)
by Lemma 8.2. Thus we see that Hi

I(M) = 0 for i < depthI(M). For i =

https://stacks.math.columbia.edu/tag/0957
https://stacks.math.columbia.edu/tag/0AVZ
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depthI(M), using the vanishing of Exti−1
A (I/In,M) we see that the map ExtiA(A/I,M)→

Hi
I(M) is injective which proves nonvanishing in the correct degree. □

Lemma 11.2.0BUV Let A be a Noetherian ring. Let 0 → N ′ → N → N ′′ → 0 be a
short exact sequence of finite A-modules. Let I ⊂ A be an ideal.

(1) depthI(N) ≥ min{depthI(N ′), depthI(N ′′)}
(2) depthI(N ′′) ≥ min{depthI(N), depthI(N ′)− 1}
(3) depthI(N ′) ≥ min{depthI(N), depthI(N ′′) + 1}

Proof. Assume IN ̸= N , IN ′ ̸= N ′, and IN ′′ ̸= N ′′. Then we can use the
characterization of depth using the Ext groups Exti(A/I,N), see Lemma 11.1, and
use the long exact cohomology sequence

0→ HomA(A/I,N ′)→ HomA(A/I,N)→ HomA(A/I,N ′′)
→ Ext1

A(A/I,N ′)→ Ext1
A(A/I,N)→ Ext1

A(A/I,N ′′)→ . . .

from Algebra, Lemma 71.6. This argument also works if IN = N because in this
case ExtiA(A/I,N) = 0 for all i. Similarly in case IN ′ ̸= N ′ and/or IN ′′ ̸= N ′′. □

Lemma 11.3.0BUW Let A be a Noetherian ring, let I ⊂ A be an ideal, and let M a
finite A-module with IM ̸= M .

(1) If x ∈ I is a nonzerodivisor on M , then depthI(M/xM) = depthI(M)− 1.
(2) Any M -regular sequence x1, . . . , xr in I can be extended to an M -regular

sequence in I of length depthI(M).

Proof. Part (2) is a formal consequence of part (1). Let x ∈ I be as in (1). By
the short exact sequence 0 → M → M → M/xM → 0 and Lemma 11.2 we see
that depthI(M/xM) ≥ depthI(M) − 1. On the other hand, if x1, . . . , xr ∈ I is a
regular sequence for M/xM , then x, x1, . . . , xr is a regular sequence for M . Hence
(1) holds. □

Lemma 11.4.0BUX Let R be a Noetherian local ring. If M is a finite Cohen-Macaulay
R-module and I ⊂ R a nontrivial ideal. Then

depthI(M) = dim(Supp(M))− dim(Supp(M/IM)).

Proof. We will prove this by induction on depthI(M).

If depthI(M) = 0, then I is contained in one of the associated primes p of M
(Algebra, Lemma 63.18). Then p ∈ Supp(M/IM), hence dim(Supp(M/IM)) ≥
dim(R/p) = dim(Supp(M)) where equality holds by Algebra, Lemma 103.7. Thus
the lemma holds in this case.

If depthI(M) > 0, we pick x ∈ I which is a nonzerodivisor on M . Note that
(M/xM)/I(M/xM) = M/IM . On the other hand we have depthI(M/xM) =
depthI(M) − 1 by Lemma 11.3 and dim(Supp(M/xM)) = dim(Supp(M)) − 1 by
Algebra, Lemma 63.10. Thus the result by induction hypothesis. □

Lemma 11.5.0BUY Let R → S be a flat local ring homomorphism of Noetherian local
rings. Denote m ⊂ R the maximal ideal. Let I ⊂ S be an ideal. If S/mS is
Cohen-Macaulay, then

depthI(S) ≥ dim(S/mS)− dim(S/mS + I)

https://stacks.math.columbia.edu/tag/0BUV
https://stacks.math.columbia.edu/tag/0BUW
https://stacks.math.columbia.edu/tag/0BUX
https://stacks.math.columbia.edu/tag/0BUY
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Proof. By Algebra, Lemma 99.3 any sequence in S which maps to a regular se-
quence in S/mS is a regular sequence in S. Thus it suffices to prove the lemma in
case R is a field. This is a special case of Lemma 11.4. □

Lemma 11.6.0AW0 Let A be a ring and let I ⊂ A be a finitely generated ideal. Let M
be an A-module. Let Z = V (I). Then H0

I (M) = H0
Z(M). Let N be the common

value and set M ′ = M/N . Then
(1) H0

I (M ′) = 0 and Hp
I (M) = Hp

I (M ′) and Hp
I (N) = 0 for all p > 0,

(2) H0
Z(M ′) = 0 and Hp

Z(M) = Hp
Z(M ′) and Hp

Z(N) = 0 for all p > 0.

Proof. By definition H0
I (M) = M [I∞] is I-power torsion. By Lemma 9.1 we see

that
H0
Z(M) = Ker(M −→Mf1 × . . .×Mfr

)
if I = (f1, . . . , fr). Thus H0

I (M) ⊂ H0
Z(M) and conversely, if x ∈ H0

Z(M), then it
is annihilated by a fei

i for some ei ≥ 1 hence annihilated by some power of I. This
proves the first equality and moreover N is I-power torsion. By Lemma 8.1 we see
that RΓI(N) = N . By Lemma 9.1 we see that RΓZ(N) = N . This proves the
higher vanishing of Hp

I (N) and Hp
Z(N) in (1) and (2). The vanishing of H0

I (M ′)
and H0

Z(M ′) follow from the preceding remarks and the fact that M ′ is I-power
torsion free by More on Algebra, Lemma 88.4. The equality of higher cohomologies
for M and M ′ follow immediately from the long exact cohomology sequence. □

12. Torsion versus complete modules

0A6V Let A be a ring and let I be a finitely generated ideal. In this case we can consider
the derived category DI∞-torsion(A) of complexes with I-power torsion cohomology
modules (Section 9) and the derived category Dcomp(A, I) of derived complete
complexes (More on Algebra, Section 91). In this section we show these categories
are equivalent. A more general statement can be found in [DG02].

Lemma 12.1.0A6W Let A be a ring and let I be a finitely generated ideal. Let RΓZ be
as in Lemma 9.1. Let ∧ denote derived completion as in More on Algebra, Lemma
91.10. For an object K in D(A) we have

RΓZ(K∧) = RΓZ(K) and (RΓZ(K))∧ = K∧

in D(A).

Proof. Choose f1, . . . , fr ∈ A generating I. Recall that

K∧ = RHomA

(
(A→

∏
Afi0

→
∏

Afi0i1
→ . . .→ Af1...fr

),K
)

by More on Algebra, Lemma 91.10. Hence the cone C = Cone(K → K∧) is given
by

RHomA

(
(
∏

Afi0
→

∏
Afi0i1

→ . . .→ Af1...fr
),K

)
which can be represented by a complex endowed with a finite filtration whose
successive quotients are isomorphic to

RHomA(Afi0 ...fip
,K), p > 0

These complexes vanish on applying RΓZ , see Lemma 9.4. Applying RΓZ to the
distinguished triangle K → K∧ → C → K[1] we see that the first formula of the
lemma is correct.

https://stacks.math.columbia.edu/tag/0AW0
https://stacks.math.columbia.edu/tag/0A6W
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Recall that
RΓZ(K) = K ⊗L (A→

∏
Afi0

→
∏

Afi0i1
→ . . .→ Af1...fr

)

by Lemma 9.1. Hence the cone C = Cone(RΓZ(K)→ K) can be represented by a
complex endowed with a finite filtration whose successive quotients are isomorphic
to

K ⊗A Afi0 ...fip
, p > 0

These complexes vanish on applying ∧, see More on Algebra, Lemma 91.12. Ap-
plying derived completion to the distinguished triangle RΓZ(K) → K → C →
RΓZ(K)[1] we see that the second formula of the lemma is correct. □

The following result is a special case of a very general phenomenon concerning
admissible subcategories of a triangulated category.

Proposition 12.2.0A6X This is a special
case of [PSY14,
Theorem 1.1].

Let A be a ring and let I ⊂ A be a finitely generated ideal.
The functors RΓZ and ∧ define quasi-inverse equivalences of categories

DI∞-torsion(A)↔ Dcomp(A, I)

Proof. Follows immediately from Lemma 12.1. □

The following addendum of the proposition above makes the correspondence on
morphisms more precise.

Lemma 12.3.0A6Y With notation as in Lemma 12.1. For objects K,L in D(A) there
is a canonical isomorphism

RHomA(K∧, L∧) −→ RHomA(RΓZ(K), RΓZ(L))
in D(A).

Proof. Say I = (f1, . . . , fr). Denote C = (A →
∏
Afi → . . . → Af1...fr ) the

alternating Čech complex. Then derived completion is given by RHomA(C,−)
(More on Algebra, Lemma 91.10) and local cohomology by C ⊗L − (Lemma 9.1).
Combining the isomorphism

RHomA(K ⊗L C,L⊗L C) = RHomA(K,RHomA(C,L⊗L C))
(More on Algebra, Lemma 73.1) and the map

L→ RHomA(C,L⊗L C)
(More on Algebra, Lemma 73.6) we obtain a map

γ : RHomA(K,L) −→ RHomA(K ⊗L C,L⊗L C)
On the other hand, the right hand side is derived complete as it is equal to

RHomA(C,RHomA(K,L⊗L C)).
Thus γ factors through the derived completion of RHomA(K,L) by the universal
property of derived completion. However, the derived completion goes inside the
RHomA by More on Algebra, Lemma 91.13 and we obtain the desired map.
To show that the map of the lemma is an isomorphism we may assume that K and
L are derived complete, i.e., K = K∧ and L = L∧. In this case we are looking at
the map

γ : RHomA(K,L) −→ RHomA(RΓZ(K), RΓZ(L))

https://stacks.math.columbia.edu/tag/0A6X
https://stacks.math.columbia.edu/tag/0A6Y
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By Proposition 12.2 we know that the cohomology groups of the left and the right
hand side coincide. In other words, we have to check that the map γ sends a
morphism α : K → L in D(A) to the morphism RΓZ(α) : RΓZ(K)→ RΓZ(L). We
omit the verification (hint: note that RΓZ(α) is just the map α⊗ idC : K ⊗L C →
L⊗LC which is almost the same as the construction of the map in More on Algebra,
Lemma 73.6). □

Lemma 12.4.0EEW Let I and J be ideals in a Noetherian ring A. Let M be a finite
A-module. Set Z = V (J). Consider the derived I-adic completion RΓZ(M)∧ of
local cohomology. Then

(1) we have RΓZ(M)∧ = R limRΓZ(M/InM), and
(2) there are short exact sequences

0→ R1 limHi−1
Z (M/InM)→ Hi(RΓZ(M)∧)→ limHi

Z(M/InM)→ 0

In particular RΓZ(M)∧ has vanishing cohomology in negative degrees.

Proof. Suppose that J = (g1, . . . , gm). Then RΓZ(M) is computed by the complex

M →
∏

Mgj0
→

∏
Mgj0gj1

→ . . .→Mg1g2...gm

by Lemma 9.1. By More on Algebra, Lemma 94.6 the derived I-adic completion of
this complex is given by the complex

limM/InM →
∏

lim(M/InM)gj0
→ . . .→ lim(M/InM)g1g2...gm

of usual completions. Since RΓZ(M/InM) is computed by the complex M/InM →∏
(M/InM)gj0

→ . . . → (M/InM)g1g2...gm
and since the transition maps between

these complexes are surjective, we conclude that (1) holds by More on Algebra,
Lemma 87.1. Part (2) then follows from More on Algebra, Lemma 87.4. □

Lemma 12.5.0EEX With notation and hypotheses as in Lemma 12.4 assume A is
I-adically complete. Then

H0(RΓZ(M)∧) = colimH0
V (J′)(M)

where the filtered colimit is over J ′ ⊂ J such that V (J ′) ∩ V (I) = V (J) ∩ V (I).

Proof. Since M is a finite A-module, we have that M is I-adically complete. The
proof of Lemma 12.4 shows that

H0(RΓZ(M)∧) = Ker(M∧ →
∏

M∧
gj

) = Ker(M →
∏

M∧
gj

)

where on the right hand side we have usual I-adic completion. The kernel Kj of
Mgj

→ M∧
gj

is
⋂
InMgj

. By Algebra, Lemma 51.5 for every p ∈ V (IAgj
) we find

an f ∈ Agj
, f ̸∈ p such that (Kj)f = 0.

Let s ∈ H0(RΓZ(M)∧). By the above we may think of s as an element of M . The
support Z ′ of s intersected withD(gj) is disjoint fromD(gj)∩V (I) by the arguments
above. Thus Z ′ is a closed subset of Spec(A) with Z ′ ∩ V (I) ⊂ V (J). Then
Z ′ ∪ V (J) = V (J ′) for some ideal J ′ ⊂ J with V (J ′) ∩ V (I) ⊂ V (J) and we have
s ∈ H0

V (J′)(M). Conversely, any s ∈ H0
V (J′)(M) with J ′ ⊂ J and V (J ′) ∩ V (I) ⊂

V (J) maps to zero in M∧
gj

for all j. This proves the lemma. □

https://stacks.math.columbia.edu/tag/0EEW
https://stacks.math.columbia.edu/tag/0EEX
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13. Trivial duality for a ring map

0A6Z Let A→ B be a ring homomorphism. Consider the functor

HomA(B,−) : ModA −→ ModB , M 7−→ HomA(B,M)

This functor is left exact and has a derived extension RHom(B,−) : D(A)→ D(B).

Lemma 13.1.0A70 Let A → B be a ring homomorphism. The functor RHom(B,−)
constructed above is right adjoint to the restriction functor D(B)→ D(A).

Proof. This is a consequence of the fact that restriction and HomA(B,−) are
adjoint functors by Algebra, Lemma 14.4. See Derived Categories, Lemma 30.3. □

Lemma 13.2.0C0F Let A→ B → C be ring maps. Then RHom(C,−)◦RHom(B,−) :
D(A)→ D(C) is the functor RHom(C,−) : D(A)→ D(C).

Proof. Follows from uniqueness of right adjoints and Lemma 13.1. □

Lemma 13.3.0A71 Let φ : A→ B be a ring homomorphism. For K in D(A) we have

φ∗RHom(B,K) = RHomA(B,K)

where φ∗ : D(B)→ D(A) is restriction. In particular Rq Hom(B,K) = ExtqA(B,K).

Proof. Choose a K-injective complex I• representing K. Then RHom(B,K) is
represented by the complex HomA(B, I•) of B-modules. Since this complex, as a
complex of A-modules, represents RHomA(B,K) we see that the lemma is true. □

Let A be a Noetherian ring. We will denote

DCoh(A) ⊂ D(A)

the full subcategory consisting of those objects K of D(A) whose cohomology mod-
ules are all finite A-modules. This makes sense by Derived Categories, Section 17
because as A is Noetherian, the subcategory of finite A-modules is a Serre subcat-
egory of ModA.

Lemma 13.4.0A72 With notation as above, assume A → B is a finite ring map of
Noetherian rings. Then RHom(B,−) maps D+

Coh(A) into D+
Coh(B).

Proof. We have to show: if K ∈ D+(A) has finite cohomology modules, then the
complex RHom(B,K) has finite cohomology modules too. This follows for example
from Lemma 13.3 if we can show the ext modules ExtiA(B,K) are finite A-modules.
Since K is bounded below there is a convergent spectral sequence

ExtpA(B,Hq(K))⇒ Extp+q
A (B,K)

This finishes the proof as the modules ExtpA(B,Hq(K)) are finite by Algebra,
Lemma 71.9. □

Remark 13.5.0A73 Let A be a ring and let I ⊂ A be an ideal. Set B = A/I. In this
case the functor HomA(B,−) is equal to the functor

ModA −→ ModB , M 7−→M [I]

which sends M to the submodule of I-torsion.

https://stacks.math.columbia.edu/tag/0A70
https://stacks.math.columbia.edu/tag/0C0F
https://stacks.math.columbia.edu/tag/0A71
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https://stacks.math.columbia.edu/tag/0A73
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Situation 13.6.0BZB Let R → A be a ring map. We will give an alternative con-
struction of RHom(A,−) which will stand us in good stead later in this chapter.
Namely, suppose we have a differential graded algebra (E, d) over R and a quasi-
isomorphism E → A where we view A as a differential graded algebra over R with
zero differential. Then we have commutative diagrams

D(E,d)

$$

D(A)oo

{{
D(R)

and

D(E,d)
−⊗L

EA

// D(A)

D(R)
−⊗L

RE

dd

−⊗L
RA

;;

where the horizontal arrows are equivalences of categories (Differential Graded Al-
gebra, Lemma 37.1). It is clear that the first diagram commutes. The second dia-
gram commutes because the first one does and our functors are their left adjoints
(Differential Graded Algebra, Example 33.6) or because we have E⊗L

EA = E⊗EA
and we can use Differential Graded Algebra, Lemma 34.1.

Lemma 13.7.0BZC In Situation 13.6 the functor RHom(A,−) is equal to the compo-
sition of RHom(E,−) : D(R)→ D(E, d) and the equivalence −⊗L

E A : D(E, d)→
D(A).

Proof. This is true because RHom(E,−) is the right adjoint to − ⊗L
R E, see

Differential Graded Algebra, Lemma 33.5. Hence this functor plays the same role
as the functor RHom(A,−) for the map R → A (Lemma 13.1), whence these
functors must correspond via the equivalence −⊗L

E A : D(E,d)→ D(A). □

Lemma 13.8.0BZD In Situation 13.6 assume that
(1) E viewed as an object of D(R) is compact, and
(2) N = Hom•

R(E•, R) computes RHom(E,R).
Then RHom(E,−) : D(R)→ D(E) is isomorphic to K 7→ K ⊗L

R N .

Proof. Special case of Differential Graded Algebra, Lemma 33.9. □

Lemma 13.9.0BZE In Situation 13.6 assume A is a perfect R-module. Then

RHom(A,−) : D(R)→ D(A)

is given by K 7→ K ⊗L
RM where M = RHom(A,R) ∈ D(A).

Proof. We apply Divided Power Algebra, Lemma 6.10 to choose a Tate resolution
(E,d) of A over R. Note that Ei = 0 for i > 0, E0 = R[x1, . . . , xn] is a polynomial
algebra, and Ei is a finite free E0-module for i < 0. It follows that E viewed
as a complex of R-modules is a bounded above complex of free R-modules. We
check the assumptions of Lemma 13.8. The first holds because A is perfect (hence
compact by More on Algebra, Proposition 78.3) and the second by More on Algebra,
Lemma 73.2. From the lemma conclude that K 7→ RHom(E,K) is isomorphic to
K 7→ K ⊗L

R N for some differential graded E-module N . Observe that

(R⊗R E)⊗L
E A = R⊗E E ⊗E A

in D(A). Hence by Differential Graded Algebra, Lemma 34.2 we conclude that the
composition of − ⊗L

R N and − ⊗L
R A is of the form − ⊗RM for some M ∈ D(A).

To finish the proof we apply Lemma 13.7. □

https://stacks.math.columbia.edu/tag/0BZB
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Lemma 13.10.0BZH Let R→ A be a surjective ring map whose kernel I is an invertible
R-module. The functor RHom(A,−) : D(R) → D(A) is isomorphic to K 7→
K ⊗L

R N [−1] where N is inverse of the invertible A-module I ⊗R A.

Proof. Since A has the finite projective resolution
0→ I → R→ A→ 0

we see that A is a perfect R-module. By Lemma 13.9 it suffices to prove that
RHom(A,R) is represented by N [−1] in D(A). This means RHom(A,R) has a
unique nonzero cohomology module, namely N in degree 1. As ModA → ModR
is fully faithful it suffice to prove this after applying the restriction functor i∗ :
D(A)→ D(R). By Lemma 13.3 we have

i∗RHom(A,R) = RHomR(A,R)
Using the finite projective resolution above we find that the latter is represented by
the complex R → I⊗−1 with R in degree 0. The map R → I⊗−1 is injective and
the cokernel is N . □

14. Base change for trivial duality

0E28 In this section we consider a cocartesian square of rings

A
α
// A′

R

φ

OO

ρ // R′

φ′

OO

In other words, we have A′ = A⊗R R′. If A and R′ are tor independent over R
then there is a canonical base change map
(14.0.1)0E29 RHom(A,K)⊗L

A A
′ −→ RHom(A′,K ⊗L

R R
′)

in D(A′) functorial for K in D(R). Namely, by the adjointness of Lemma 13.1 such
an arrow is the same thing as a map

φ′
∗

(
RHom(A,K)⊗L

A A
′) −→ K ⊗L

R R
′

in D(R′) where φ′
∗ : D(A′)→ D(R′) is the restriction functor. We may apply More

on Algebra, Lemma 61.2 to the left hand side to get that this is the same thing as
a map

φ∗(RHom(A,K))⊗L
R R

′ −→ K ⊗L
R R

′

in D(R′) where φ∗ : D(A)→ D(R) is the restriction functor. For this we can choose
can ⊗L idR′ where can : φ∗(RHom(A,K)) → K is the counit of the adjunction
between RHom(A,−) and φ∗.

Lemma 14.1.0E2A In the situation above, the map (14.0.1) is an isomorphism if and
only if the map

RHomR(A,K)⊗L
R R

′ −→ RHomR(A,K ⊗L
R R

′)
of More on Algebra, Lemma 73.5 is an isomorphism.

Proof. To see that the map is an isomorphism, it suffices to prove it is an isomor-
phism after applying φ′

∗. Applying the functor φ′
∗ to (14.0.1) and using that A′ =

A⊗L
R R

′ we obtain the base change map RHomR(A,K)⊗L
R R

′ → RHomR′(A⊗L
R

R′,K ⊗L
R R

′) for derived hom of More on Algebra, Equation (99.1.1). Unwinding

https://stacks.math.columbia.edu/tag/0BZH
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the left and right hand side exactly as in the proof of More on Algebra, Lemma 99.2
and in particular using More on Algebra, Lemma 99.1 gives the desired result. □

Lemma 14.2.0BZM Let R→ A and R→ R′ be ring maps and A′ = A⊗R R′. Assume
(1) A is pseudo-coherent as an R-module,
(2) R′ has finite tor dimension as an R-module (for example R→ R′ is flat),
(3) A and R′ are tor independent over R.

Then (14.0.1) is an isomorphism for K ∈ D+(R).

Proof. Follows from Lemma 14.1 and More on Algebra, Lemma 98.3 part (4). □

Lemma 14.3.0BZP Let R→ A and R→ R′ be ring maps and A′ = A⊗R R′. Assume
(1) A is perfect as an R-module,
(2) A and R′ are tor independent over R.

Then (14.0.1) is an isomorphism for all K ∈ D(R).

Proof. Follows from Lemma 14.1 and More on Algebra, Lemma 98.3 part (1). □

15. Dualizing complexes

0A7A In this section we define dualizing complexes for Noetherian rings.

Definition 15.1.0A7B Let A be a Noetherian ring. A dualizing complex is a complex
of A-modules ω•

A such that
(1) ω•

A has finite injective dimension,
(2) Hi(ω•

A) is a finite A-module for all i, and
(3) A→ RHomA(ω•

A, ω
•
A) is a quasi-isomorphism.

This definition takes some time getting used to. It is perhaps a good idea to prove
some of the following lemmas yourself without reading the proofs.

Lemma 15.2.0G4H Let A be a Noetherian ring. Let K,L ∈ DCoh(A) and assume L
has finite injective dimension. Then RHomA(K,L) is in DCoh(A).

Proof. Pick an integer n and consider the distinguished triangle

τ≤nK → K → τ≥n+1K → τ≤nK[1]

see Derived Categories, Remark 12.4. Since L has finite injective dimension we
see that RHomA(τ≥n+1K,L) has vanishing cohomology in degrees ≥ c − n for
some constant c. Hence, given i, we see that ExtiA(K,L) → ExtiA(τ≤nK,L) is an
isomorphism for some n ≫ −i. By Derived Categories of Schemes, Lemma 11.5
applied to τ≤nK and L we see conclude that ExtiA(K,L) is a finite A-module for
all i. Hence RHomA(K,L) is indeed an object of DCoh(A). □

Lemma 15.3.0A7C Let A be a Noetherian ring. If ω•
A is a dualizing complex, then the

functor
D : K 7−→ RHomA(K,ω•

A)
is an anti-equivalence DCoh(A)→ DCoh(A) which exchanges D+

Coh(A) and D−
Coh(A)

and induces an anti-equivalence Db
Coh(A)→ Db

Coh(A). Moreover D ◦D is isomor-
phic to the identity functor.

https://stacks.math.columbia.edu/tag/0BZM
https://stacks.math.columbia.edu/tag/0BZP
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https://stacks.math.columbia.edu/tag/0G4H
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Proof. Let K be an object of DCoh(A). From Lemma 15.2 we see RHomA(K,ω•
A)

is an object of DCoh(A). By More on Algebra, Lemma 98.2 and the assumptions
on the dualizing complex we obtain a canonical isomorphism

K = RHomA(ω•
A, ω

•
A)⊗L

A K −→ RHomA(RHomA(K,ω•
A), ω•

A)

Thus our functor has a quasi-inverse and the proof is complete. □

Let R be a ring. Recall that an object L of D(R) is invertible if it is an invert-
ible object for the symmetric monoidal structure on D(R) given by derived tensor
product. In More on Algebra, Lemma 126.4 we have seen this means L is perfect,
L =

⊕
Hn(L)[−n], this is a finite sum, each Hn(L) is finite projective, and there

is an open covering Spec(R) =
⋃
D(fi) such that L ⊗R Rfi

∼= Rfi [−ni] for some
integers ni.

Lemma 15.4.0A7E Let A be a Noetherian ring. Let F : Db
Coh(A) → Db

Coh(A) be an
A-linear equivalence of categories. Then F (A) is an invertible object of D(A).

Proof. Let m ⊂ A be a maximal ideal with residue field κ. Consider the object
F (κ). Since κ = HomD(A)(κ, κ) we find that all cohomology groups of F (κ) are
annihilated by m. We also see that

ExtiA(κ, κ) = ExtiA(F (κ), F (κ)) = HomD(A)(F (κ), F (κ)[i])

is zero for i < 0. Say Ha(F (κ)) ̸= 0 and Hb(F (κ)) ̸= 0 with a minimal and b
maximal (so in particular a ≤ b). Then there is a nonzero map

F (κ)→ Hb(F (κ))[−b]→ Ha(F (κ))[−b]→ F (κ)[a− b]

in D(A) (nonzero because it induces a nonzero map on cohomology). This proves
that b = a. We conclude that F (κ) = κ[−a].

Let G be a quasi-inverse to our functor F . Arguing as above we find an integer
b such that G(κ) = κ[−b]. On composing we find a + b = 0. Let E be a finite
A-module wich is annihilated by a power of m. Arguing by induction on the length
of E we find that G(E) = E′[−b] for some finite A-module E′ annihilated by a
power of m. Then E[−a] = F (E′). Next, we consider the groups

ExtiA(A,E′) = ExtiA(F (A), F (E′)) = HomD(A)(F (A), E[−a+ i])

The left hand side is nonzero if and only if i = 0 and then we get E′. Applying
this with E = E′ = κ and using Nakayama’s lemma this implies that Hj(F (A))m
is zero for j > a and generated by 1 element for j = a. On the other hand, if
Hj(F (A))m is not zero for some j < a, then there is a map F (A)→ E[−a+ i] for
some i < 0 and some E (More on Algebra, Lemma 65.7) which is a contradiction.
Thus we see that F (A)m = M [−a] for some Am-module M generated by 1 element.
However, since

Am = HomD(A)(A,A)m = HomD(A)(F (A), F (A))m = HomAm
(M,M)

we see that M ∼= Am. We conclude that there exists an element f ∈ A, f ̸∈ m such
that F (A)f is isomorphic to Af [−a]. This finishes the proof. □

Lemma 15.5.0A7F Let A be a Noetherian ring. If ω•
A and (ω′

A)• are dualizing com-
plexes, then (ω′

A)• is quasi-isomorphic to ω•
A ⊗L

A L for some invertible object L of
D(A).

https://stacks.math.columbia.edu/tag/0A7E
https://stacks.math.columbia.edu/tag/0A7F
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Proof. By Lemmas 15.3 and 15.4 the functorK 7→ RHomA(RHomA(K,ω•
A), (ω′

A)•)
maps A to an invertible object L. In other words, there is an isomorphism

L −→ RHomA(ω•
A, (ω′

A)•)

Since L has finite tor dimension, this means that we can apply More on Algebra,
Lemma 98.2 to see that

RHomA(ω•
A, (ω′

A)•)⊗L
A K −→ RHomA(RHomA(K,ω•

A), (ω′
A)•)

is an isomorphism for K in Db
Coh(A). In particular, setting K = ω•

A finishes the
proof. □

Lemma 15.6.0A7G Let A be a Noetherian ring. Let B = S−1A be a localization. If
ω•
A is a dualizing complex, then ω•

A ⊗A B is a dualizing complex for B.

Proof. Let ω•
A → I• be a quasi-isomorphism with I• a bounded complex of injec-

tives. Then S−1I• is a bounded complex of injective B = S−1A-modules (Lemma
3.8) representing ω•

A ⊗A B. Thus ω•
A ⊗A B has finite injective dimension. Since

Hi(ω•
A⊗AB) = Hi(ω•

A)⊗AB by flatness of A→ B we see that ω•
A⊗AB has finite

cohomology modules. Finally, the map

B −→ RHomA(ω•
A ⊗A B,ω•

A ⊗A B)

is a quasi-isomorphism as formation of internal hom commutes with flat base change
in this case, see More on Algebra, Lemma 99.2. □

Lemma 15.7.0A7H Let A be a Noetherian ring. Let f1, . . . , fn ∈ A generate the unit
ideal. If ω•

A is a complex of A-modules such that (ω•
A)fi

is a dualizing complex for
Afi for all i, then ω•

A is a dualizing complex for A.

Proof. Consider the double complex∏
i0

(ω•
A)fi0

→
∏

i0<i1
(ω•
A)fi0fi1

→ . . .

The associated total complex is quasi-isomorphic to ω•
A for example by Descent,

Remark 3.10 or by Derived Categories of Schemes, Lemma 9.4. By assumption the
complexes (ω•

A)fi
have finite injective dimension as complexes of Afi

-modules. This
implies that each of the complexes (ω•

A)fi0 ...fip
, p > 0 has finite injective dimension

over Afi0 ...fip
, see Lemma 3.8. This in turn implies that each of the complexes

(ω•
A)fi0 ...fip

, p > 0 has finite injective dimension over A, see Lemma 3.2. Hence ω•
A

has finite injective dimension as a complex of A-modules (as it can be represented by
a complex endowed with a finite filtration whose graded parts have finite injective
dimension). Since Hn(ω•

A)fi
is a finite Afi

module for each i we see that Hi(ω•
A) is

a finite A-module, see Algebra, Lemma 23.2. Finally, the (derived) base change of
the map A → RHomA(ω•

A, ω
•
A) to Afi is the map Afi → RHomA((ω•

A)fi , (ω•
A)fi)

by More on Algebra, Lemma 99.2. Hence we deduce that A→ RHomA(ω•
A, ω

•
A) is

an isomorphism and the proof is complete. □

Lemma 15.8.0AX0 Let A→ B be a finite ring map of Noetherian rings. Let ω•
A be a

dualizing complex. Then RHom(B,ω•
A) is a dualizing complex for B.

Proof. Let ω•
A → I• be a quasi-isomorphism with I• a bounded complex of injec-

tives. Then HomA(B, I•) is a bounded complex of injective B-modules (Lemma

https://stacks.math.columbia.edu/tag/0A7G
https://stacks.math.columbia.edu/tag/0A7H
https://stacks.math.columbia.edu/tag/0AX0
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3.4) representing RHom(B,ω•
A). Thus RHom(B,ω•

A) has finite injective dimen-
sion. By Lemma 13.4 it is an object of DCoh(B). Finally, we compute

HomD(B)(RHom(B,ω•
A), RHom(B,ω•

A)) = HomD(A)(RHom(B,ω•
A), ω•

A) = B

and for n ̸= 0 we compute

HomD(B)(RHom(B,ω•
A), RHom(B,ω•

A)[n]) = HomD(A)(RHom(B,ω•
A), ω•

A[n]) = 0

which proves the last property of a dualizing complex. In the displayed equations,
the first equality holds by Lemma 13.1 and the second equality holds by Lemma
15.3. □

Lemma 15.9.0A7I Let A → B be a surjective homomorphism of Noetherian rings.
Let ω•

A be a dualizing complex. Then RHom(B,ω•
A) is a dualizing complex for B.

Proof. Special case of Lemma 15.8. □

Lemma 15.10.0A7J Let A be a Noetherian ring. If ω•
A is a dualizing complex, then

ω•
A ⊗A A[x] is a dualizing complex for A[x].

Proof. Set B = A[x] and ω•
B = ω•

A ⊗A B. It follows from Lemma 3.10 and More
on Algebra, Lemma 69.5 that ω•

B has finite injective dimension. Since Hi(ω•
B) =

Hi(ω•
A) ⊗A B by flatness of A → B we see that ω•

A ⊗A B has finite cohomology
modules. Finally, the map

B −→ RHomB(ω•
B , ω

•
B)

is a quasi-isomorphism as formation of internal hom commutes with flat base change
in this case, see More on Algebra, Lemma 99.2. □

Proposition 15.11.0A7K Let A be a Noetherian ring which has a dualizing complex.
Then any A-algebra essentially of finite type over A has a dualizing complex.

Proof. This follows from a combination of Lemmas 15.6, 15.9, and 15.10. □

Lemma 15.12.0A7L Let A be a Noetherian ring. Let ω•
A be a dualizing complex. Let

m ⊂ A be a maximal ideal and set κ = A/m. Then RHomA(κ, ω•
A) ∼= κ[n] for some

n ∈ Z.

Proof. This is true because RHomA(κ, ω•
A) is a dualizing complex over κ (Lemma

15.9), because dualizing complexes over κ are unique up to shifts (Lemma 15.5),
and because κ is a dualizing complex over κ. □

16. Dualizing complexes over local rings

0A7M In this section (A,m, κ) will be a Noetherian local ring endowed with a dualizing
complex ω•

A such that the integer n of Lemma 15.12 is zero. More precisely, we
assume that RHomA(κ, ω•

A) = κ[0]. In this case we will say that the dualizing
complex is normalized. Observe that a normalized dualizing complex is unique up
to isomorphism and that any other dualizing complex for A is isomorphic to a shift
of a normalized one (Lemma 15.5).

Lemma 16.1.0AX1 Let (A,m, κ)→ (B,m′, κ′) be a finite local map of Noetherian local
rings. Let ω•

A be a normalized dualizing complex. Then ω•
B = RHom(B,ω•

A) is a
normalized dualizing complex for B.

https://stacks.math.columbia.edu/tag/0A7I
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Proof. By Lemma 15.8 the complex ω•
B is dualizing for B. We have

RHomB(κ′, ω•
B) = RHomB(κ′, RHom(B,ω•

A)) = RHomA(κ′, ω•
A)

by Lemma 13.1. Since κ′ is isomorphic to a finite direct sum of copies of κ as an A-
module and since ω•

A is normalized, we see that this complex only has cohomology
placed in degree 0. Thus ω•

B is a normalized dualizing complex as well. □

Lemma 16.2.0A7N Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let A→ B be surjective. Then ω•
B = RHomA(B,ω•

A) is a normalized
dualizing complex for B.

Proof. Special case of Lemma 16.1. □

Lemma 16.3.0A7P Let (A,m, κ) be a Noetherian local ring. Let F be an A-linear
self-equivalence of the category of finite length A-modules. Then F is isomorphic
to the identity functor.

Proof. Since κ is the unique simple object of the category we have F (κ) ∼= κ. Since
our category is abelian, we find that F is exact. Hence F (E) has the same length
as E for all finite length modules E. Since Hom(E, κ) = Hom(F (E), F (κ)) ∼=
Hom(F (E), κ) we conclude from Nakayama’s lemma that E and F (E) have the
same number of generators. Hence F (A/mn) is a cyclic A-module. Pick a generator
e ∈ F (A/mn). Since F is A-linear we conclude that mne = 0. The map A/mn →
F (A/mn) has to be an isomorphism as the lengths are equal. Pick an element

e ∈ limF (A/mn)
which maps to a generator for all n (small argument omitted). Then we obtain
a system of isomorphisms A/mn → F (A/mn) compatible with all A-module maps
A/mn → A/mn

′ (by A-linearity of F again). Since any finite length module is a
cokernel of a map between direct sums of cyclic modules, we obtain the isomorphism
of the lemma. □

Lemma 16.4.0A7Q Let (A,m, κ) be a Noetherian local ring with normalized dualiz-
ing complex ω•

A. Let E be an injective hull of κ. Then there exists a functorial
isomorphism

RHomA(N,ω•
A) = HomA(N,E)[0]

for N running through the finite length A-modules.

Proof. By induction on the length of N we see that RHomA(N,ω•
A) is a module of

finite length sitting in degree 0. Thus RHomA(−, ω•
A) induces an anti-equivalence

on the category of finite length modules. Since the same is true for HomA(−, E)
by Proposition 7.8 we see that

N 7−→ HomA(RHomA(N,ω•
A), E)

is an equivalence as in Lemma 16.3. Hence it is isomorphic to the identity functor.
Since HomA(−, E) applied twice is the identity (Proposition 7.8) we obtain the
statement of the lemma. □

Lemma 16.5.0A7U Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let M be a finite A-module and let d = dim(Supp(M)). Then
(1) if ExtiA(M,ω•

A) is nonzero, then i ∈ {−d, . . . , 0},
(2) the dimension of the support of ExtiA(M,ω•

A) is at most −i,

https://stacks.math.columbia.edu/tag/0A7N
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https://stacks.math.columbia.edu/tag/0A7Q
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(3) depth(M) is the smallest integer δ ≥ 0 such that Ext−δ
A (M,ω•

A) ̸= 0.

Proof. We prove this by induction on d. If d = 0, this follows from Lemma 16.4
and Matlis duality (Proposition 7.8) which guarantees that HomA(M,E) is nonzero
if M is nonzero.
Assume the result holds for modules with support of dimension < d and that M
has depth > 0. Choose an f ∈ m which is a nonzerodivisor on M and consider the
short exact sequence

0→M →M →M/fM → 0
Since dim(Supp(M/fM)) = d − 1 (Algebra, Lemma 63.10) we may apply the
induction hypothesis. Writing Ei = ExtiA(M,ω•

A) and F i = ExtiA(M/fM,ω•
A) we

obtain a long exact sequence

. . .→ F i → Ei
f−→ Ei → F i+1 → . . .

By induction Ei/fEi = 0 for i+1 ̸∈ {−dim(Supp(M/fM)), . . . ,−depth(M/fM)}.
By Nakayama’s lemma (Algebra, Lemma 20.1) and Algebra, Lemma 72.7 we con-
clude Ei = 0 for i ̸∈ {−dim(Supp(M)), . . . ,−depth(M)}. Moreover, in the bound-
ary case i = −depth(M) we deduce that Ei is nonzero as F i+1 is nonzero by
induction. Since Ei/fEi ⊂ F i+1 we get

dim(Supp(F i+1)) ≥ dim(Supp(Ei/fEi)) ≥ dim(Supp(Ei))− 1
(see lemma used above) we also obtain the dimension estimate (2).
If M has depth 0 and d > 0 we let N = M [m∞] and set M ′ = M/N (compare with
Lemma 11.6). Then M ′ has depth > 0 and dim(Supp(M ′)) = d. Thus we know
the result for M ′ and since RHomA(N,ω•

A) = HomA(N,E) (Lemma 16.4) the long
exact cohomology sequence of Ext’s implies the result for M . □

Remark 16.6.0BUJ Let (A,m) and ω•
A be as in Lemma 16.5. By More on Algebra,

Lemma 69.2 we see that ω•
A has injective-amplitude in [−d, 0] because part (3) of

that lemma applies. In particular, for any A-module M (not necessarily finite) we
have ExtiA(M,ω•

A) = 0 for i ̸∈ {−d, . . . , 0}.

Lemma 16.7.0B5A Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let M be a finite A-module. The following are equivalent
(1) M is Cohen-Macaulay,
(2) ExtiA(M,ω•

A) is nonzero for a single i,
(3) Ext−i

A (M,ω•
A) is zero for i ̸= dim(Supp(M)).

Denote CMd the category of finite Cohen-Macaulay A-modules of depth d. Then
M 7→ Ext−d

A (M,ω•
A) defines an anti-auto-equivalence of CMd.

Proof. We will use the results of Lemma 16.5 without further mention. Fix a finite
module M . If M is Cohen-Macaulay, then only Ext−d

A (M,ω•
A) can be nonzero,

hence (1) ⇒ (3). The implication (3) ⇒ (2) is immediate. Assume (2) and let
N = Ext−δ

A (M,ω•
A) be the nonzero Ext where δ = depth(M). Then, since

M [0] = RHomA(RHomA(M,ω•
A), ω•

A) = RHomA(N [δ], ω•
A)

(Lemma 15.3) we conclude that M = Ext−δ
A (N,ω•

A). Thus δ ≥ dim(Supp(M)).
However, since we also know that δ ≤ dim(Supp(M)) (Algebra, Lemma 72.3) we
conclude that M is Cohen-Macaulay.

https://stacks.math.columbia.edu/tag/0BUJ
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To prove the final statement, it suffices to show that N = Ext−d
A (M,ω•

A) is in CMd

for M in CMd. Above we have seen that M [0] = RHomA(N [d], ω•
A) and this proves

the desired result by the equivalence of (1) and (3). □

Lemma 16.8.0A7R Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. If dim(A) = 0, then ω•
A
∼= E[0] where E is an injective hull of the

residue field.

Proof. Immediate from Lemma 16.4. □

Lemma 16.9.0A7S Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex. Let I ⊂ m be an ideal of finite length. Set B = A/I. Then there is a
distinguished triangle

ω•
B → ω•

A → HomA(I, E)[0]→ ω•
B [1]

in D(A) where E is an injective hull of κ and ω•
B is a normalized dualizing complex

for B.

Proof. Use the short exact sequence 0→ I → A→ B → 0 and Lemmas 16.4 and
16.2. □

Lemma 16.10.0A7T Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let f ∈ m be a nonzerodivisor. Set B = A/(f). Then there is a
distinguished triangle

ω•
B → ω•

A → ω•
A → ω•

B [1]
in D(A) where ω•

B is a normalized dualizing complex for B.

Proof. Use the short exact sequence 0→ A→ A→ B → 0 and Lemma 16.2. □

Lemma 16.11.0A7V Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let p be a minimal prime of A with dim(A/p) = e. Then Hi(ω•
A)p is

nonzero if and only if i = −e.

Proof. Since Ap has dimension zero, there exists an integer n > 0 such that pnAp

is zero. Set B = A/pn and ω•
B = RHomA(B,ω•

A). Since Bp = Ap we see that

(ω•
B)p = RHomA(B,ω•

A)⊗L
A Ap = RHomAp

(Bp, (ω•
A)p) = (ω•

A)p
The second equality holds by More on Algebra, Lemma 99.2. By Lemma 16.2 we
may replace A by B. After doing so, we see that dim(A) = e. Then we see that
Hi(ω•

A)p can only be nonzero if i = −e by Lemma 16.5 parts (1) and (2). On the
other hand, since (ω•

A)p is a dualizing complex for the nonzero ring Ap (Lemma
15.6) we see that the remaining module has to be nonzero. □

17. Dualizing complexes and dimension functions

0A7W Our results in the local setting have the following consequence: a Noetherian ring
which has a dualizing complex is a universally catenary ring of finite dimension.

Lemma 17.1.0A7X Let A be a Noetherian ring. Let p be a minimal prime of A. Then
Hi(ω•

A)p is nonzero for exactly one i.

Proof. The complex ω•
A ⊗A Ap is a dualizing complex for Ap (Lemma 15.6). The

dimension of Ap is zero as p is minimal. Hence the result follows from Lemma
16.8. □
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Let A be a Noetherian ring and let ω•
A be a dualizing complex. Lemma 15.12 allows

us to define a function
δ = δω•

A
: Spec(A) −→ Z

by mapping p to the integer of Lemma 15.12 for the dualizing complex (ω•
A)p over

Ap (Lemma 15.6) and the residue field κ(p). To be precise, we define δ(p) to be
the unique integer such that

(ω•
A)p[−δ(p)]

is a normalized dualizing complex over the Noetherian local ring Ap.

Lemma 17.2.0A7Y Let A be a Noetherian ring and let ω•
A be a dualizing complex.

Let A → B be a surjective ring map and let ω•
B = RHom(B,ω•

A) be the dualizing
complex for B of Lemma 15.9. Then we have

δω•
B

= δω•
A
|Spec(B)

Proof. This follows from the definition of the functions and Lemma 16.2. □

Lemma 17.3.0A7Z Let A be a Noetherian ring and let ω•
A be a dualizing complex. The

function δ = δω•
A

defined above is a dimension function (Topology, Definition 20.1).

Proof. Let p ⊂ q be an immediate specialization. We have to show that δ(p) =
δ(q) + 1. We may replace A by A/p, the complex ω•

A by ω•
A/p = RHom(A/p, ω•

A),
the prime p by (0), and the prime q by q/p, see Lemma 17.2. Thus we may assume
that A is a domain, p = (0), and q is a prime ideal of height 1.
Then Hi(ω•

A)(0) is nonzero for exactly one i, say i0, by Lemma 17.1. In fact
i0 = −δ((0)) because (ω•

A)(0)[−δ((0))] is a normalized dualizing complex over the
field A(0).
On the other hand (ω•

A)q[−δ(q)] is a normalized dualizing complex for Aq. By
Lemma 16.11 we see that

He((ω•
A)q[−δ(q)])(0) = He−δ(q)(ω•

A)(0)

is nonzero only for e = −dim(Aq) = −1. We conclude
−δ((0)) = −1− δ(q)

as desired. □

Lemma 17.4.0A80 Let A be a Noetherian ring which has a dualizing complex. Then
A is universally catenary of finite dimension.

Proof. Because Spec(A) has a dimension function by Lemma 17.3 it is catenary,
see Topology, Lemma 20.2. Hence A is catenary, see Algebra, Lemma 105.2. It
follows from Proposition 15.11 that A is universally catenary.
Because any dualizing complex ω•

A is in Db
Coh(A) the values of the function δω•

A
in

minimal primes are bounded by Lemma 17.1. On the other hand, for a maximal
ideal m with residue field κ the integer i = −δ(m) is the unique integer such that
ExtiA(κ, ω•

A) is nonzero (Lemma 15.12). Since ω•
A has finite injective dimension

these values are bounded too. Since the dimension of A is the maximal value of
δ(p) − δ(m) where p ⊂ m are a pair consisting of a minimal prime and a maximal
prime we find that the dimension of Spec(A) is bounded. □

Lemma 17.5.0AWE Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let d = dim(A) and ωA = H−d(ω•
A). Then
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(1) the support of ωA is the union of the irreducible components of Spec(A) of
dimension d,

(2) ωA satisfies (S2), see Algebra, Definition 157.1.

Proof. We will use Lemma 16.5 without further mention. By Lemma 16.11 the
support of ωA contains the irreducible components of dimension d. Let p ⊂ A be a
prime. By Lemma 17.3 the complex (ω•

A)p[− dim(A/p)] is a normalized dualizing
complex for Ap. Hence if dim(A/p)+dim(Ap) < d, then (ωA)p = 0. This proves the
support of ωA is the union of the irreducible components of dimension d, because
the complement of this union is exactly the primes p of A for which dim(A/p) +
dim(Ap) < d as A is catenary (Lemma 17.4). On the other hand, if dim(A/p) +
dim(Ap) = d, then

(ωA)p = H− dim(Ap) ((ω•
A)p[−dim(A/p)])

Hence in order to prove ωA has (S2) it suffices to show that the depth of ωA is at
least min(dim(A), 2). We prove this by induction on dim(A). The case dim(A) = 0
is trivial.
Assume depth(A) > 0. Choose a nonzerodivisor f ∈ m and set B = A/fA. Then
dim(B) = dim(A)−1 and we may apply the induction hypothesis to B. By Lemma
16.10 we see that multiplication by f is injective on ωA and we get ωA/fωA ⊂ ωB .
This proves the depth of ωA is at least 1. If dim(A) > 1, then dim(B) > 0 and ωB
has depth > 0. Hence ωA has depth > 1 and we conclude in this case.
Assume dim(A) > 0 and depth(A) = 0. Let I = A[m∞] and set B = A/I. Then
B has depth ≥ 1 and ωA = ωB by Lemma 16.9. Since we proved the result for ωB
above the proof is done. □

18. The local duality theorem

0A81 The main result in this section is due to Grothendieck.

Lemma 18.1.0A82 Let (A,m, κ) be a Noetherian local ring. Let ω•
A be a normalized

dualizing complex. Let Z = V (m) ⊂ Spec(A). Then E = R0ΓZ(ω•
A) is an injective

hull of κ and RΓZ(ω•
A) = E[0].

Proof. By Lemma 10.1 we have RΓm = RΓZ . Thus
RΓZ(ω•

A) = RΓm(ω•
A) = hocolim RHomA(A/mn, ω•

A)
by Lemma 8.2. Let E′ be an injective hull of the residue field. By Lemma 16.4 we
can find isomorphisms

RHomA(A/mn, ω•
A) ∼= HomA(A/mn, E′)[0]

compatible with transition maps. Since E′ =
⋃
E′[mn] = colim HomA(A/mn, E′)

by Lemma 7.3 we conclude that E ∼= E′ and that all other cohomology groups of
the complex RΓZ(ω•

A) are zero. □

Remark 18.2.0A83 Let (A,m, κ) be a Noetherian local ring with a normalized dualizing
complex ω•

A. By Lemma 18.1 above we see that RΓZ(ω•
A) is an injective hull of the

residue field placed in degree 0. In fact, this gives a “construction” or “realization” of
the injective hull which is slightly more canonical than just picking any old injective
hull. Namely, a normalized dualizing complex is unique up to isomorphism, with
group of automorphisms the group of units of A, whereas an injective hull of κ is

https://stacks.math.columbia.edu/tag/0A82
https://stacks.math.columbia.edu/tag/0A83


DUALIZING COMPLEXES 35

unique up to isomorphism, with group of automorphisms the group of units of the
completion A∧ of A with respect to m.

Here is the main result of this section.

Theorem 18.3.0A84 Let (A,m, κ) be a Noetherian local ring. Let ω•
A be a normalized

dualizing complex. Let E be an injective hull of the residue field. Let Z = V (m) ⊂
Spec(A). Denote ∧ derived completion with respect to m. Then

RHomA(K,ω•
A)∧ ∼= RHomA(RΓZ(K), E[0])

for K in D(A).

Proof. Observe that E[0] ∼= RΓZ(ω•
A) by Lemma 18.1. By More on Algebra,

Lemma 91.13 completion on the left hand side goes inside. Thus we have to prove
RHomA(K∧, (ω•

A)∧) = RHomA(RΓZ(K), RΓZ(ω•
A))

This follows from the equivalence between Dcomp(A,m) and Dm∞-torsion(A) given
in Proposition 12.2. More precisely, it is a special case of Lemma 12.3. □

Here is a special case of the theorem above.

Lemma 18.4.0AAK Let (A,m, κ) be a Noetherian local ring. Let ω•
A be a normalized

dualizing complex. Let E be an injective hull of the residue field. Let K ∈ DCoh(A).
Then

Ext−i
A (K,ω•

A)∧ = HomA(Hi
m(K), E)

where ∧ denotes m-adic completion.

Proof. By Lemma 15.3 we see that RHomA(K,ω•
A) is an object of DCoh(A). It

follows that the cohomology modules of the derived completion of RHomA(K,ω•
A)

are equal to the usual completions ExtiA(K,ω•
A)∧ by More on Algebra, Lemma 94.4.

On the other hand, we have RΓm = RΓZ for Z = V (m) by Lemma 10.1. Moreover,
the functor HomA(−, E) is exact hence factors through cohomology. Hence the
lemma is consequence of Theorem 18.3. □

19. Dualizing modules

0DW3 If (A,m, κ) is a Noetherian local ring and ω•
A is a normalized dualizing complex, then

we say the module ωA = H− dim(A)(ω•
A), described in Lemma 17.5, is a dualizing

module for A. This module is a canonical module of A. It seems generally agreed
upon to define a canonical module for a Noetherian local ring (A,m, κ) to be a finite
A-module K such that

HomA(K,E) ∼= H
dim(A)
m (A)

where E is an injective hull of the residue field. A dualizing module is canonical
because

HomA(Hdim(A)
m (A), E) = (ωA)∧

by Lemma 18.4 and hence applying HomA(−, E) we get
HomA(ωA, E) = HomA((ωA)∧, E)

= HomA(HomA(Hdim(A)
m (A), E), E)

= H
dim(A)
m (A)

the first equality because E is m-power torsion, the second by the above, and the
third by Matlis duality (Proposition 7.8). The utility of the definition of a canonical
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module given above lies in the fact that it makes sense even if A does not have a
dualizing complex.

20. Cohen-Macaulay rings

0DW4 Cohen-Macaulay modules and rings were studied in Algebra, Sections 103 and 104.

Lemma 20.1.0AWR Let (A,m, κ) be a Noetherian local ring with normalized dualiz-
ing complex ω•

A. Then depth(A) is equal to the smallest integer δ ≥ 0 such that
H−δ(ω•

A) ̸= 0.

Proof. This follows immediately from Lemma 16.5. Here are two other ways to
see that it is true.
First alternative. By Nakayama’s lemma we see that δ is the smallest integer such
that HomA(H−δ(ω•

A), κ) ̸= 0. In other words, it is the smallest integer such that
Ext−δ

A (ω•
A, κ) is nonzero. Using Lemma 15.3 and the fact that ω•

A is normalized
this is equal to the smallest integer such that ExtδA(κ,A) is nonzero. This is equal
to the depth of A by Algebra, Lemma 72.5.
Second alternative. By the local duality theorem (in the form of Lemma 18.4) δ is
the smallest integer such that Hδ

m(A) is nonzero. This is equal to the depth of A
by Lemma 11.1. □

Lemma 20.2.0AWS Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A and dualizing module ωA = H− dim(A)(ω•
A). The following are equiva-

lent
(1) A is Cohen-Macaulay,
(2) ω•

A is concentrated in a single degree, and
(3) ω•

A = ωA[dim(A)].
In this case ωA is a maximal Cohen-Macaulay module.

Proof. Follows immediately from Lemma 16.7. □

Lemma 20.3.0DW5 Let A be a Noetherian ring. If there exists a finite A-module ωA
such that ωA[0] is a dualizing complex, then A is Cohen-Macaulay.

Proof. We may replace A by the localization at a prime (Lemma 15.6 and Algebra,
Definition 104.6). In this case the result follows immediately from Lemma 20.2. □

Lemma 20.4.0EHS Let A be a Noetherian ring with dualizing complex ω•
A. Let M be

a finite A-module. Then
U = {p ∈ Spec(A) |Mp is Cohen-Macaulay}

is an open subset of Spec(A) whose intersection with Supp(M) is dense.

Proof. If p is a generic point of Supp(M), then depth(Mp) = dim(Mp) = 0 and
hence p ∈ U . This proves denseness. If p ∈ U , then we see that

RHomA(M,ω•
A)p = RHomAp

(Mp, (ω•
A)p)

has a unique nonzero cohomology module, say in degree i0, by Lemma 16.7. Since
RHomA(M,ω•

A) has only a finite number of nonzero cohomology modules Hi and
since each of these is a finite A-module, we can find an f ∈ A, f ̸∈ p such that
(Hi)f = 0 for i ̸= i0. Then RHomA(M,ω•

A)f has a unique nonzero cohomology
module and reversing the arguments just given we find that D(f) ⊂ U . □
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Lemma 20.5.0EHT Let A be a Noetherian ring. If A has a dualizing complex ω•
A, then

{p ∈ Spec(A) | Ap is Cohen-Macaulay} is a dense open subset of Spec(A).

Proof. Immediate consequence of Lemma 20.4 and the definitions. □

21. Gorenstein rings

0DW6 So far, the only explicit dualizing complex we’ve seen is κ on κ for a field κ, see proof
of Lemma 15.12. By Proposition 15.11 this means that any finite type algebra over
a field has a dualizing complex. However, it turns out that there are Noetherian
(local) rings which do not have a dualizing complex. Namely, we have seen that
a ring which has a dualizing complex is universally catenary (Lemma 17.4) but
there are examples of Noetherian local rings which are not catenary, see Examples,
Section 18.
Nonetheless many rings in algebraic geometry have dualizing complexes simply
because they are quotients of Gorenstein rings. This condition is in fact both
necessary and sufficient. That is: a Noetherian ring has a dualizing complex if
and only if it is a quotient of a finite dimensional Gorenstein ring. This is Sharp’s
conjecture ([Sha79]) which can be found as [Kaw02, Corollary 1.4] in the literature.
Returning to our current topic, here is the definition of Gorenstein rings.

Definition 21.1.0DW7 Gorenstein rings.
(1) Let A be a Noetherian local ring. We say A is Gorenstein if A[0] is a

dualizing complex for A.
(2) Let A be a Noetherian ring. We say A is Gorenstein if Ap is Gorenstein for

every prime p of A.

This definition makes sense, because if A[0] is a dualizing complex for A, then
S−1A[0] is a dualizing complex for S−1A by Lemma 15.6. We will see later that a
finite dimensional Noetherian ring is Gorenstein if it has finite injective dimension
as a module over itself.

Lemma 21.2.0DW8 A Gorenstein ring is Cohen-Macaulay.

Proof. Follows from Lemma 20.2. □

An example of a Gorenstein ring is a regular ring.

Lemma 21.3.0AWX A regular local ring is Gorenstein. A regular ring is Gorenstein.

Proof. Let A be a regular ring of finite dimension d. Then A has finite global
dimension d, see Algebra, Lemma 110.8. Hence Extd+1

A (M,A) = 0 for all A-modules
M , see Algebra, Lemma 109.8. Thus A has finite injective dimension as an A-
module by More on Algebra, Lemma 69.2. It follows that A[0] is a dualizing
complex, hence A is Gorenstein by the remark following the definition. □

Lemma 21.4.0DW9 Let A be a Noetherian ring.
(1) If A has a dualizing complex ω•

A, then
(a) A is Gorenstein ⇔ ω•

A is an invertible object of D(A),
(b) Ap is Gorenstein ⇔ (ω•

A)p is an invertible object of D(Ap),
(c) {p ∈ Spec(A) | Ap is Gorenstein} is an open subset.

(2) If A is Gorenstein, then A has a dualizing complex if and only if A[0] is a
dualizing complex.
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Proof. For invertible objects of D(A), see More on Algebra, Lemma 126.4 and the
discussion in Section 15.
By Lemma 15.6 for every p the complex (ω•

A)p is a dualizing complex over Ap. By
definition and uniqueness of dualizing complexes (Lemma 15.5) we see that (1)(b)
holds.
To see (1)(c) assume that Ap is Gorenstein. Let nx be the unique integer such that
Hnx((ω•

A)p) is nonzero and isomorphic to Ap. Since ω•
A is in Db

Coh(A) there are
finitely many nonzero finite A-modules Hi(ω•

A). Thus there exists some f ∈ A, f ̸∈
p such that only Hnx((ω•

A)f ) is nonzero and generated by 1 element over Af . Since
dualizing complexes are faithful (by definition) we conclude that Af ∼= Hnx((ω•

A)f ).
In this way we see that Aq is Gorenstein for every q ∈ D(f). This proves that the
set in (1)(c) is open.
Proof of (1)(a). The implication ⇐ follows from (1)(b). The implication ⇒ follows
from the discussion in the previous paragraph, where we showed that if Ap is
Gorenstein, then for some f ∈ A, f ̸∈ p the complex (ω•

A)f has only one nonzero
cohomology module which is invertible.
If A[0] is a dualizing complex then A is Gorenstein by part (1). Conversely, we see
that part (1) shows that ω•

A is locally isomorphic to a shift of A. Since being a
dualizing complex is local (Lemma 15.7) the result is clear. □

Lemma 21.5.0BJI Let (A,m, κ) be a Noetherian local ring. Then A is Gorenstein if
and only if ExtiA(κ,A) is zero for i≫ 0.
Proof. Observe that A[0] is a dualizing complex for A if and only if A has finite
injective dimension as an A-module (follows immediately from Definition 15.1).
Thus the lemma follows from More on Algebra, Lemma 69.7. □

Lemma 21.6.0BJJ Let (A,m, κ) be a Noetherian local ring. Let f ∈ m be a nonzero-
divisor. Set B = A/(f). Then A is Gorenstein if and only if B is Gorenstein.
Proof. If A is Gorenstein, then B is Gorenstein by Lemma 16.10. Conversely,
suppose that B is Gorenstein. Then ExtiB(κ,B) is zero for i ≫ 0 (Lemma 21.5).
Recall that RHom(B,−) : D(A)→ D(B) is a right adjoint to restriction (Lemma
13.1). Hence

RHomA(κ,A) = RHomB(κ,RHom(B,A)) = RHomB(κ,B[1])
The final equality by direct computation or by Lemma 13.10. Thus we see that
ExtiA(κ,A) is zero for i≫ 0 and A is Gorenstein (Lemma 21.5). □

Lemma 21.7.0DWA If A→ B is a local complete intersection homomorphism of rings
and A is a Noetherian Gorenstein ring, then B is a Gorenstein ring.
Proof. By More on Algebra, Definition 33.2 we can write B = A[x1, . . . , xn]/I
where I is a Koszul-regular ideal. Observe that a polynomial ring over a Gorenstein
ring A is Gorenstein: reduce to A local and then use Lemmas 15.10 and 21.4. A
Koszul-regular ideal is by definition locally generated by a Koszul-regular sequence,
see More on Algebra, Section 32. Looking at local rings of A[x1, . . . , xn] we see it
suffices to show: if R is a Noetherian local Gorenstein ring and f1, . . . , fc ∈ mR
is a Koszul regular sequence, then R/(f1, . . . , fc) is Gorenstein. This follows from
Lemma 21.6 and the fact that a Koszul regular sequence in R is just a regular
sequence (More on Algebra, Lemma 30.7). □
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Lemma 21.8.0BJL Let A→ B be a flat local homomorphism of Noetherian local rings.
The following are equivalent

(1) B is Gorenstein, and
(2) A and B/mAB are Gorenstein.

Proof. Below we will use without further mention that a local Gorenstein ring has
finite injective dimension as well as Lemma 21.5. By More on Algebra, Lemma 65.4
we have

ExtiA(κA, A)⊗A B = ExtiB(B/mAB,B)
for all i.

Assume (2). Using that RHom(B/mAB,−) : D(B) → D(B/mAB) is a right
adjoint to restriction (Lemma 13.1) we obtain

RHomB(κB , B) = RHomB/mAB(κB , RHom(B/mAB,B))

The cohomology modules ofRHom(B/mAB,B) are the modules ExtiB(B/mAB,B) =
ExtiA(κA, A)⊗AB. Since A is Gorenstein, we conclude only a finite number of these
are nonzero and each is isomorphic to a direct sum of copies of B/mAB. Hence
since B/mAB is Gorenstein we conclude that RHomB(B/mB , B) has only a finite
number of nonzero cohomology modules. Hence B is Gorenstein.

Assume (1). Since B has finite injective dimension, ExtiB(B/mAB,B) is 0 for i≫ 0.
Since A → B is faithfully flat we conclude that ExtiA(κA, A) is 0 for i ≫ 0. We
conclude that A is Gorenstein. This implies that ExtiA(κA, A) is nonzero for exactly
one i, namely for i = dim(A), and Extdim(A)

A (κA, A) ∼= κA (see Lemmas 16.1, 20.2,
and 21.2). Thus we see that ExtiB(B/mAB,B) is zero except for one i, namely
i = dim(A) and Extdim(A)

B (B/mAB,B) ∼= B/mAB. Thus B/mAB is Gorenstein by
Lemma 16.1. □

Lemma 21.9.0EBT Let (A,m, κ) be a Noetherian local Gorenstein ring of dimension d.
Let E be the injective hull of κ. Then TorAi (E, κ) is zero for i ̸= d and TorAd (E, κ) =
κ.

Proof. Since A is Gorenstein ω•
A = A[d] is a normalized dualizing complex for A.

Also E is the only nonzero cohomology module of RΓm(ω•
A) sitting in degree 0, see

Lemma 18.1. By Lemma 9.5 we have

E ⊗L
A κ = RΓm(ω•

A)⊗L
A κ = RΓm(ω•

A ⊗L
A κ) = RΓm(κ[d]) = κ[d]

and the lemma follows. □

22. The ubiquity of dualizing complexes

0DWB Many Noetherian rings have dualizing complexes.

Lemma 22.1.0AWD Let A → B be a local homomorphism of Noetherian local rings.
Let ω•

A be a normalized dualizing complex. If A→ B is flat and mAB = mB, then
ω•
A ⊗A B is a normalized dualizing complex for B.

Proof. It is clear that ω•
A⊗AB is in Db

Coh(B). Let κA and κB be the residue fields
of A and B. By More on Algebra, Lemma 99.2 we see that

RHomB(κB , ω•
A ⊗A B) = RHomA(κA, ω•

A)⊗A B = κA[0]⊗A B = κB [0]
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Thus ω•
A ⊗A B has finite injective dimension by More on Algebra, Lemma 69.7.

Finally, we can use the same arguments to see that

RHomB(ω•
A ⊗A B,ω•

A ⊗A B) = RHomA(ω•
A, ω

•
A)⊗A B = A⊗A B = B

as desired. □

Lemma 22.2.0DWC Let A → B be a flat map of Noetherian rings. Let I ⊂ A be an
ideal such that A/I = B/IB and such that IB is contained in the Jacobson radical
of B. Let ω•

A be a dualizing complex. Then ω•
A ⊗A B is a dualizing complex for B.

Proof. It is clear that ω•
A ⊗A B is in Db

Coh(B). By More on Algebra, Lemma 99.2
we see that

RHomB(K ⊗A B,ω•
A ⊗A B) = RHomA(K,ω•

A)⊗A B

for any K ∈ Db
Coh(A). For any ideal IB ⊂ J ⊂ B there is a unique ideal I ⊂ J ′ ⊂ A

such that A/J ′⊗AB = B/J . Thus ω•
A⊗AB has finite injective dimension by More

on Algebra, Lemma 69.6. Finally, we also have

RHomB(ω•
A ⊗A B,ω•

A ⊗A B) = RHomA(ω•
A, ω

•
A)⊗A B = A⊗A B = B

as desired. □

Lemma 22.3.0DWD Let A be a Noetherian ring and let I ⊂ A be an ideal. Let ω•
A be a

dualizing complex.
(1) ω•

A ⊗A Ah is a dualizing complex on the henselization (Ah, Ih) of the pair
(A, I),

(2) ω•
A ⊗A A∧ is a dualizing complex on the I-adic completion A∧, and

(3) if A is local, then ω•
A⊗A Ah, resp. ω•

A⊗A Ash is a dualzing complex on the
henselization, resp. strict henselization of A.

Proof. Immediate from Lemmas 22.1 and 22.2. See More on Algebra, Sections 11,
43, and 45 and Algebra, Sections 96 and 97 for information on completions and
henselizations. □

Lemma 22.4.0BFR The following types of rings have a dualizing complex:
(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains,
(5) any ring which is obtained from one of the rings above by taking an algebra

essentially of finite type, or by taking an ideal-adic completion, or by taking
a henselization, or by taking a strict henselization.

Proof. Part (5) follows from Proposition 15.11 and Lemma 22.3. By Lemma 21.3 a
regular local ring has a dualizing complex. A complete Noetherian local ring is the
quotient of a regular local ring by the Cohen structure theorem (Algebra, Theorem
160.8). Let A be a Dedekind domain. Then every ideal I is a finite projective
A-module (follows from Algebra, Lemma 78.2 and the fact that the local rings of
A are discrete valuation ring and hence PIDs). Thus every A-module has finite
injective dimension at most 1 by More on Algebra, Lemma 69.2. It follows easily
that A[0] is a dualizing complex. □

https://stacks.math.columbia.edu/tag/0DWC
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23. Formal fibres

0BJM This section is a continuation of More on Algebra, Section 51. There we saw
there is a (fairly) good theory of Noetherian rings A whose local rings have Cohen-
Macaulay formal fibres. Namely, we proved (1) it suffices to check the formal fibres
of localizations at maximal ideals are Cohen-Macaulay, (2) the property is inherited
by rings of finite type over A, (3) the fibres of A → A∧ are Cohen-Macaulay for
any completion A∧ of A, and (4) the property is inherited by henselizations of A.
See More on Algebra, Lemma 51.4, Proposition 51.5, Lemma 51.6, and Lemma
51.7. Similarly, for Noetherian rings whose local rings have formal fibres which
are geometrically reduced, geometrically normal, (Sn), and geometrically (Rn). In
this section we will see that the same is true for Noetherian rings whose local rings
have formal fibres which are Gorenstein or local complete intersections. This is
relevant to this chapter because a Noetherian ring which has a dualizing complex
is an example.

Lemma 23.1.0BJN Properties (A), (B), (C), (D), and (E) of More on Algebra, Section
51 hold for P (k → R) =“R is a Gorenstein ring”.

Proof. Since we already know the result holds for Cohen-Macaulay instead of
Gorenstein, we may in each step assume the ring we have is Cohen-Macaulay. This
is not particularly helpful for the proof, but psychologically may be useful.
Part (A). Let K/k be a finitely generated field extension. Let R be a Gorenstein
k-algebra. We can find a global complete intersection A = k[x1, . . . , xn]/(f1, . . . , fc)
over k such that K is isomorphic to the fraction field of A, see Algebra, Lemma
158.11. Then R→ R⊗k A is a relative global complete intersection. Hence R⊗k A
is Gorenstein by Lemma 21.7. Thus R⊗k K is too as a localization.
Proof of (B). This is clear because a ring is Gorenstein if and only if all of its local
rings are Gorenstein.
Part (C). Let A→ B → C be flat maps of Noetherian rings. Assume the fibres of
A→ B are Gorenstein and B → C is regular. We have to show the fibres of A→ C
are Gorenstein. Clearly, we may assume A = k is a field. Then we may assume
that B → C is a regular local homomorphism of Noetherian local rings. Then B is
Gorenstein and C/mBC is regular, in particular Gorenstein (Lemma 21.3). Then
C is Gorenstein by Lemma 21.8.
Part (D). This follows from Lemma 21.8. Part (E) is immediate as the condition
does not refer to the ground field. □

Lemma 23.2.0AWY Let A be a Noetherian local ring. If A has a dualizing complex,
then the formal fibres of A are Gorenstein.

Proof. Let p be a prime of A. The formal fibre of A at p is isomorphic to the formal
fibre of A/p at (0). The quotient A/p has a dualizing complex (Lemma 15.9). Thus
it suffices to check the statement when A is a local domain and p = (0). Let ω•

A be a
dualizing complex for A. Then ω•

A⊗AA∧ is a dualizing complex for the completion
A∧ (Lemma 22.1). Then ω•

A⊗AK is a dualizing complex for the fraction field K of
A (Lemma 15.6). Hence ω•

A⊗AK is isomorphic ot K[n] for some n ∈ Z. Similarly,
we conclude a dualizing complex for the formal fibre A∧ ⊗A K is

ω•
A ⊗A A∧ ⊗A∧ (A∧ ⊗A K) = (ω•

A ⊗A K)⊗K (A∧ ⊗A K) ∼= (A∧ ⊗A K)[n]

https://stacks.math.columbia.edu/tag/0BJN
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as desired. □

Here is the verification promised in Divided Power Algebra, Remark 9.3.

Lemma 23.3.0BJP Properties (A), (B), (C), (D), and (E) of More on Algebra, Section
51 hold for P (k → R) =“R is a local complete intersection”. See Divided Power
Algebra, Definition 8.5.

Proof. Part (A). Let K/k be a finitely generated field extension. Let R be a
k-algebra which is a local complete intersection. We can find a global complete
intersection A = k[x1, . . . , xn]/(f1, . . . , fc) over k such that K is isomorphic to the
fraction field of A, see Algebra, Lemma 158.11. Then R → R ⊗k A is a relative
global complete intersection. It follows that R⊗kA is a local complete intersection
by Divided Power Algebra, Lemma 8.9.

Proof of (B). This is clear because a ring is a local complete intersection if and only
if all of its local rings are complete intersections.

Part (C). Let A→ B → C be flat maps of Noetherian rings. Assume the fibres of
A→ B are local complete intersections and B → C is regular. We have to show the
fibres of A → C are local complete intersections. Clearly, we may assume A = k
is a field. Then we may assume that B → C is a regular local homomorphism of
Noetherian local rings. Then B is a complete intersection and C/mBC is regular, in
particular a complete intersection (by definition). Then C is a complete intersection
by Divided Power Algebra, Lemma 8.9.

Part (D). This follows by the same arguments as in (C) from the other implication
in Divided Power Algebra, Lemma 8.9. Part (E) is immediate as the condition does
not refer to the ground field. □

24. Upper shriek algebraically

0BZI For a finite type homomorphism R → A of Noetherian rings we will construct a
functor φ! : D(R)→ D(A) well defined up to nonunique isomorphism which as we
will see in Duality for Schemes, Remark 17.5 agrees up to isomorphism with the
upper shriek functors one encounters in the duality theory for schemes. To motivate
the construction we mention two additional properties:

(1) φ! sends a dualizing complex for R (if it exists) to a dualizing complex for
A, and

(2) ω•
A/R = φ!(R) is a kind of relative dualizing complex: it lies in Db

Coh(A)
and restricts to a dualizing complex on the fibres provided R→ A is flat.

These statemens are Lemmas 24.3 and 25.2.

Let φ : R→ A be a finite type homomorphism of Noetherian rings. We will define
a functor φ! : D(R)→ D(A) in the following way

(1) If φ : R → A is surjective we set φ!(K) = RHom(A,K). Here we use the
functor RHom(A,−) : D(R)→ D(A) of Section 13, and

(2) in general we choose a surjection ψ : P → A with P = R[x1, . . . , xn] and
we set φ!(K) = ψ!(K ⊗L

R P )[n]. Here we use the functor −⊗L
R P : D(R)→

D(P ) of More on Algebra, Section 60.

https://stacks.math.columbia.edu/tag/0BJP
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Note the shift [n] by the number of variables in the polynomial ring. This con-
struction is not canonical and the functor φ! will only be well defined up to a
(nonunique) isomorphism of functors1.

Lemma 24.1.0BZJ Let φ : R→ A be a finite type homomorphism of Noetherian rings.
The functor φ! is well defined up to isomorphism.

Proof. Suppose that ψ1 : P1 = R[x1, . . . , xn] → A and ψ2 : P2 = R[y1, . . . , ym] →
A are two surjections from polynomial rings onto A. Then we get a commutative
diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi

��

yj 7→fj

// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

where fj and gi are chosen such that ψ1(fj) = ψ2(yj) and ψ2(gi) = ψ1(xi). By
symmetry it suffices to prove the functors defined using P → A and P [y1, . . . , ym]→
A are isomorphic. By induction we may assume m = 1. This reduces us to the case
discussed in the next paragraph.
Here ψ : P → A is given and χ : P [y]→ A induces ψ on P . Write Q = P [y]. Choose
g ∈ P with ψ(g) = χ(y). Denote π : Q → P the P -algebra map with π(y) = g.
Then χ = ψ ◦π and hence χ! = ψ! ◦π! as both are adjoint to the restriction functor
D(A)→ D(Q) by the material in Section 13. Thus

χ! (
K ⊗L

R Q
)

[n+ 1] = ψ! (
π! (

K ⊗L
R Q

)
[1]

)
[n]

Hence it suffices to show that π!(K ⊗L
R Q[1]) = K ⊗L

R P Thus it suffices to show
that the functor π!(−) : D(Q) → D(P ) is isomorphic to K 7→ K ⊗L

Q P [−1]. This
follows from Lemma 13.10. □

Lemma 24.2.0BZK Let φ : R→ A be a finite type homomorphism of Noetherian rings.
(1) φ! maps D+(R) into D+(A) and D+

Coh(R) into D+
Coh(A).

(2) if φ is perfect, then φ! maps D−(R) into D−(A), D−
Coh(R) into D−

Coh(A),
and Db

Coh(R) into Db
Coh(A).

Proof. Choose a factorization R→ P → A as in the definition of φ!. The functor
−⊗L

R : D(R)→ D(P ) preserves the subcategories D+, D+
Coh, D

−, D−
Coh, D

b
Coh. The

functor RHom(A,−) : D(P ) → D(A) preserves D+ and D+
Coh by Lemma 13.4. If

R → A is perfect, then A is perfect as a P -module, see More on Algebra, Lemma
82.2. Recall that the restriction of RHom(A,K) to D(P ) is RHomP (A,K). By
More on Algebra, Lemma 74.15 we have RHomP (A,K) = E⊗L

P K for some perfect
E ∈ D(P ). Since we can represent E by a finite complex of finite projective P -
modules it is clear that RHomP (A,K) is in D−(P ), D−

Coh(P ), Db
Coh(P ) as soon as

K is. Since the restriction functor D(A) → D(P ) reflects these subcategories, the
proof is complete. □

Lemma 24.3.0BZL Let φ be a finite type homomorphism of Noetherian rings. If ω•
R

is a dualizing complex for R, then φ!(ω•
R) is a dualizing complex for A.

1It is possible to make the construction canonical: use Ωn
P/R

[n] instead of P [n] in the con-
struction and use this in Lemma 24.1. The material in this section becomes a lot more involved
if one wants to do this.

https://stacks.math.columbia.edu/tag/0BZJ
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Proof. Follows from Lemmas 15.10 and 15.9, □

Lemma 24.4.0BZN Let R → R′ be a flat homomorphism of Noetherian rings. Let
φ : R → A be a finite type ring map. Let φ′ : R′ → A′ = A ⊗R R′ be the map
induced by φ. Then we have a functorial maps

φ!(K)⊗L
A A

′ −→ (φ′)!(K ⊗L
R R

′)
for K in D(R) which are isomorphisms for K ∈ D+(R).

Proof. Choose a factorization R → P → A where P is a polynomial ring over R.
This gives a corresponding factorization R′ → P ′ → A′ by base change. Since we
have (K ⊗L

R P ) ⊗L
P P

′ = (K ⊗L
R R

′) ⊗L
R′ P ′ by More on Algebra, Lemma 60.5 it

suffices to construct maps
RHom(A,K ⊗L

R P [n])⊗L
A A

′ −→ RHom(A′, (K ⊗L
R P [n])⊗L

P P
′)

functorial in K. For this we use the map (14.0.1) constructed in Section 14 for
P,A, P ′, A′. The map is an isomorphism for K ∈ D+(R) by Lemma 14.2. □

Lemma 24.5.0BZR Let R→ R′ be a homomorphism of Noetherian rings. Let φ : R→
A be a perfect ring map (More on Algebra, Definition 82.1) such that R′ and A are
tor independent over R. Let φ′ : R′ → A′ = A ⊗R R′ be the map induced by φ.
Then we have a functorial isomorphism

φ!(K)⊗L
A A

′ = (φ′)!(K ⊗L
R R

′)
for K in D(R).

Proof. We may choose a factorization R → P → A where P is a polynomial ring
over R such that A is a perfect P -module, see More on Algebra, Lemma 82.2. This
gives a corresponding factorization R′ → P ′ → A′ by base change. Since we have
(K ⊗L

R P )⊗L
P P

′ = (K ⊗L
R R

′)⊗L
R′ P ′ by More on Algebra, Lemma 60.5 it suffices

to construct maps
RHom(A,K ⊗L

R P [n])⊗L
A A

′ −→ RHom(A′, (K ⊗L
R P [n])⊗L

P P
′)

functorial in K. We have
A⊗L

P P
′ = A⊗L

R R
′ = A′

The first equality by More on Algebra, Lemma 61.2 applied to R,R′, P, P ′. The
second equality because A and R′ are tor independent over R. Hence A and P ′ are
tor independent over P and we can use the map (14.0.1) constructed in Section 14
for P,A, P ′, A′ get the desired arrow. By Lemma 14.3 to finish the proof it suffices
to prove that A is a perfect P -module which we saw above. □

Lemma 24.6.0BZS Let R→ R′ be a homomorphism of Noetherian rings. Let φ : R→
A be flat of finite type. Let φ′ : R′ → A′ = A⊗RR′ be the map induced by φ. Then
we have a functorial isomorphism

φ!(K)⊗L
A A

′ = (φ′)!(K ⊗L
R R

′)
for K in D(R).

Proof. Special case of Lemma 24.5 by More on Algebra, Lemma 82.4. □

Lemma 24.7.0BZT Let A a−→ B
b−→ C be finite type homomorphisms of Noetherian

rings. Then there is a transformation of functors b! ◦ a! → (b ◦ a)! which is an
isomorphism on D+(A).

https://stacks.math.columbia.edu/tag/0BZN
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Proof. Choose a polynomial ring P = A[x1, . . . , xn] over A and a surjection P →
B. Choose elements c1, . . . , cm ∈ C generating C over B. Set Q = P [y1, . . . , ym]
and denote Q′ = Q⊗P B = B[y1, . . . , ym]. Let χ : Q′ → C be the surjection sending
yj to cj . Picture

Q
ψ′
// Q′

χ
// C

A // P
ψ //

OO

B

OO

By Lemma 14.2 for M ∈ D(P ) we have an arrow ψ!(M)⊗L
B Q

′ → (ψ′)!(M ⊗L
P Q)

which is an isomorphism whenever M is bounded below. Also we have χ! ◦ (ψ′)! =
(χ ◦ ψ′)! as both functors are adjoint to the restriction functor D(C) → D(Q) by
Section 13. Then we see

b!(a!(K)) = χ!(ψ!(K ⊗L
A P )[n]⊗L

B Q)[m]
→ χ!((ψ′)!(K ⊗L

A P ⊗L
P Q))[n+m]

= (χ ◦ ψ′)!(K ⊗L
A Q)[n+m]

= (b ◦ a)!(K)
where we have used in addition to the above More on Algebra, Lemma 60.5. □

Lemma 24.8.0C0G Let φ : R → A be a finite map of Noetherian rings. Then φ! is
isomorphic to the functor RHom(A,−) : D(R)→ D(A) from Section 13.

Proof. Suppose that A is generated by n > 1 elements over R. Then can factor
R→ A as a composition of two finite ring maps where in both steps the number of
generators is < n. Since we have Lemma 24.7 and Lemma 13.2 we conclude that it
suffices to prove the lemma when A is generated by one element over R. Since A
is finite over R, it follows that A is a quotient of B = R[x]/(f) where f is a monic
polynomial in x (Algebra, Lemma 36.3). Again using the lemmas on composition
and the fact that we have agreement for surjections by definition, we conclude that
it suffices to prove the lemma for R → B = R[x]/(f). In this case, the functor φ!

is isomorphic to K 7→ K ⊗L
R B; you prove this by using Lemma 13.10 for the map

R[x] → B (note that the shift in the definition of φ! and in the lemma add up to
zero). For the functor RHom(B,−) : D(R)→ D(B) we can use Lemma 13.9 to see
that it suffices to show HomR(B,R) ∼= B as B-modules. Suppose that f has degree
d. Then an R-basis for B is given by 1, x, . . . , xd−1. Let δi : B → R, i = 0, . . . , d−1
be the R-linear map which picks off the coefficient of xi with respect to the given
basis. Then δ0, . . . , δd−1 is a basis for HomR(B,R). Finally, for 0 ≤ i ≤ d − 1 a
computation shows that

xiδd−1 = δd−1−i + b1δd−i + . . .+ biδd−1

for some c1, . . . , cd ∈ R2. Hence HomR(B,R) is a principal B-module with genera-
tor δd−1. By looking at ranks we conclude that it is a rank 1 free B-module. □

Lemma 24.9.0C0H Let R be a Noetherian ring and let f ∈ R. If φ denotes the map
R → Rf , then φ! is isomorphic to − ⊗L

R Rf . More generally, if φ : R → R′ is a
map such that Spec(R′) → Spec(R) is an open immersion, then φ! is isomorphic
to −⊗L

R R
′.

2If f = xd + a1xd−1 + . . . + ad, then c1 = −a1, c2 = a2
1 − a2, c3 = −a3

1 + 2a1a2 − a3, etc.

https://stacks.math.columbia.edu/tag/0C0G
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Proof. Choose the presentation R → R[x] → R[x]/(fx − 1) = Rf and observe
that fx− 1 is a nonzerodivisor in R[x]. Thus we can apply using Lemma 13.10 to
compute the functor φ!. Details omitted; note that the shift in the definition of φ!

and in the lemma add up to zero.

In the general case note that R′⊗RR′ = R′. Hence the result follows from the base
change results above. Either Lemma 24.4 or Lemma 24.5 will do. □

Lemma 24.10.0BZU Let φ : R → A be a perfect homomorphism of Noetherian rings
(for example φ is flat of finite type). Then φ!(K) = K ⊗L

R φ
!(R) for K ∈ D(R).

Proof. (The parenthetical statement follows from More on Algebra, Lemma 82.4.)
We can choose a factorization R → P → A where P is a polynomial ring in n
variables over R and then A is a perfect P -module, see More on Algebra, Lemma
82.2. Recall that φ!(K) = RHom(A,K ⊗L

R P [n]). Thus the result follows from
Lemma 13.9 and More on Algebra, Lemma 60.5. □

Lemma 24.11.0E9L Let φ : A → B be a finite type homomorphism of Noetherian
rings. Let ω•

A be a dualizing complex for A. Set ω•
B = φ!(ω•

A). Denote DA(K) =
RHomA(K,ω•

A) for K ∈ DCoh(A) and DB(L) = RHomB(L, ω•
B) for L ∈ DCoh(B).

Then there is a functorial isomorphism

φ!(K) = DB(DA(K)⊗L
A B)

for K ∈ DCoh(A).

Proof. Observe that ω•
B is a dualizing complex for B by Lemma 24.3. Let A →

B → C be finite type homomorphisms of Noetherian rings. If the lemma holds for
A → B and B → C, then the lemma holds for A → C. This follows from Lemma
24.7 and the fact that DB ◦DB

∼= id by Lemma 15.3. Thus it suffices to prove the
lemma in case A→ B is a surjection and in the case where B is a polynomial ring
over A.

Assume B = A[x1, . . . , xn]. Since DA ◦DA
∼= id, it suffices to prove DB(K⊗AB) ∼=

DA(K) ⊗A B[n] for K in DCoh(A). Choose a bounded complex I• of injectives
representing ω•

A. Choose a quasi-isomorphism I•⊗AB → J• where J• is a bounded
complex of B-modules. Given a complex K• of A-modules, consider the obvious
map of complexes

Hom•(K•, I•)⊗A B[n] −→ Hom•(K• ⊗A B, J•[n])

The left hand side represents DA(K) ⊗A B[n] and the right hand side represents
DB(K ⊗A B). Thus it suffices to prove this map is a quasi-isomorphism if the
cohomology modules of K• are finite A-modules. Observe that the cohomology of
the complex in degree r (on either side) only depends on finitely many of the Ki.
Thus we may replace K• by a truncation, i.e., we may assume K• represents an
object of D−

Coh(A). Then K• is quasi-isomorphic to a bounded above complex of
finite free A-modules. Therefore we may assume K• is a bounded above complex
of finite free A-modules. In this case it is easy to that the displayed map is an
isomorphism of complexes which finishes the proof in this case.

Assume that A→ B is surjective. Denote i∗ : D(B)→ D(A) the restriction functor
and recall that φ!(−) = RHom(A,−) is a right adjoint to i∗ (Lemma 13.1). For

https://stacks.math.columbia.edu/tag/0BZU
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F ∈ D(B) we have

HomB(F,DB(DA(K)⊗L
A B)) = HomB((DA(K)⊗L

A B)⊗L
B F, ω

•
B)

= HomA(DA(K)⊗L
A i∗F, ω

•
A)

= HomA(i∗F,DA(DA(K)))
= HomA(i∗F,K)
= HomB(F,φ!(K))

The first equality follows from More on Algebra, Lemma 73.1 and the definition
of DB . The second equality by the adjointness mentioned above and the equality
i∗((DA(K)⊗L

A B)⊗L
B F ) = DA(K)⊗L

A i∗F (More on Algebra, Lemma 60.1). The
third equality follows from More on Algebra, Lemma 73.1. The fourth because
DA ◦ DA = id. The final equality by adjointness again. Thus the result holds by
the Yoneda lemma. □

25. Relative dualizing complexes in the Noetherian case

0E9M Let φ : R→ A be a finite type homomorphism of Noetherian rings. Then we define
the relative dualizing complex of A over R as the object

ω•
A/R = φ!(R)

of D(A). Here φ! is as in Section 24. From the material in that section we see that
ω•
A/R is well defined up to (non-unique) isomorphism.

Lemma 25.1.0BZV Let R→ R′ be a homomorphism of Noetherian rings. Let R→ A
be of finite type. Set A′ = A⊗R R′. If

(1) R→ R′ is flat, or
(2) R→ A is flat, or
(3) R→ A is perfect and R′ and A are tor independent over R,

then there is an isomorphism ω•
A/R ⊗

L
A A

′ → ω•
A′/R′ in D(A′).

Proof. Follows from Lemmas 24.4, 24.6, and 24.5 and the definitions. □

Lemma 25.2.0BZW Let φ : R→ A be a flat finite type map of Noetherian rings. Then
(1) ω•

A/R is in Db
Coh(A) and R-perfect (More on Algebra, Definition 83.1),

(2) A→ RHomA(ω•
A/R, ω

•
A/R) is an isomorphism, and

(3) for every map R → k to a field the base change ω•
A/R ⊗

L
A (A ⊗R k) is a

dualizing complex for A⊗R k.

Proof. Choose R → P → A as in the definition of φ!. Recall that R → A is
a perfect ring map (More on Algebra, Lemma 82.4) and hence A is perfect as a
P -modue (More on Algebra, Lemma 82.2). This shows that ω•

A/R is in Db
Coh(A) by

Lemma 24.2. To show ω•
A/R isR-perfect it suffices to show it has finite tor dimension

as a complex of R-modules. This is true because ω•
A/R = φ!(R) = RHom(A,P )[n]

maps to RHomP (A,P )[n] in D(P ), which is perfect in D(P ) (More on Algebra,
Lemma 74.15), hence has finite tor dimension in D(R) as R → P is flat. This
proves (1).
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Proof of (2). The object RHomA(ω•
A/R, ω

•
A/R) of D(A) maps in D(P ) to

RHomP (ω•
A/R, RHom(A,P )[n]) = RHomP (RHomP (A,P )[n], P )[n]

= RHomP (RHomP (A,P ), P )

This is equal to A by the already used More on Algebra, Lemma 74.15.

Proof of (3). By Lemma 25.1 there is an isomorphism

ω•
A/R ⊗

L
A (A⊗R k) ∼= ω•

A⊗Rk/k

and the right hand side is a dualizing complex by Lemma 24.3. □

Lemma 25.3.0E0P Let K/k be an extension of fields. Let A be a finite type k-algebra.
Let AK = A⊗kK. If ω•

A is a dualizing complex for A, then ω•
A⊗AAK is a dualizing

complex for AK .

Proof. By the uniqueness of dualizing complexes, it doesn’t matter which dualizing
complex we pick for A; we omit the detailed proof. Denote φ : k → A the algebra
structure. We may take ω•

A = φ!(k[0]) by Lemma 24.3. We conclude by Lemma
25.2. □

Lemma 25.4.0E4B Let φ : R → A be a local complete intersection homomorphism
of Noetherian rings. Then ω•

A/R is an invertible object of D(A) and φ!(K) =
K ⊗L

R ω
•
A/R for all K ∈ D(R).

Proof. Recall that a local complete intersection homomorphism is a perfect ring
map by More on Algebra, Lemma 82.6. Hence the final statement holds by Lemma
24.10. By More on Algebra, Definition 33.2 we can write A = R[x1, . . . , xn]/I
where I is a Koszul-regular ideal. The construction of φ! in Section 24 shows that
it suffices to show the lemma in case A = R/I where I ⊂ R is a Koszul-regular
ideal. Checking ω•

A/R is invertible in D(A) is local on Spec(A) by More on Algebra,
Lemma 126.4. Moreover, formation of ω•

A/R commutes with localization on R by
Lemma 24.4. Combining More on Algebra, Definition 32.1 and Lemma 30.7 and
Algebra, Lemma 68.6 we can find g1, . . . , gr ∈ R generating the unit ideal in A
such that Igj ⊂ Rgj is generated by a regular sequence. Thus we may assume
A = R/(f1, . . . , fc) where f1, . . . , fc is a regular sequence in R. Then we consider
the ring maps

R→ R/(f1)→ R/(f1, f2)→ . . .→ R/(f1, . . . , fc) = A

and we use Lemma 24.7 (and the final statement already proven) to see that it
suffices to prove the lemma for each step. Finally, in case A = R/(f) for some
nonzerodivisor f we see that the lemma is true since φ!(R) = RHom(A,R) is
invertible by Lemma 13.10. □

Lemma 25.5.0E4C Let φ : R → A be a flat finite type homomorphism of Noetherian
rings. The following are equivalent

(1) the fibres A⊗R κ(p) are Gorenstein for all primes p ⊂ R, and
(2) ω•

A/R is an invertible object of D(A), see More on Algebra, Lemma 126.4.

Proof. If (2) holds, then the fibre rings A ⊗R κ(p) have invertible dualizing com-
plexes, and hence are Gorenstein. See Lemmas 25.2 and 21.4.
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For the converse, assume (1). Observe that ω•
A/R is in Db

Coh(A) by Lemma 24.2
(since flat finite type homomorphisms of Noetherian rings are perfect, see More on
Algebra, Lemma 82.4). Take a prime q ⊂ A lying over p ⊂ R. Then

ω•
A/R ⊗

L
A κ(q) = ω•

A/R ⊗
L
A (A⊗R κ(p))⊗L

(A⊗Rκ(p)) κ(q)

Applying Lemmas 25.2 and 21.4 and assumption (1) we find that this complex has
1 nonzero cohomology group which is a 1-dimensional κ(q)-vector space. By More
on Algebra, Lemma 77.1 we conclude that (ω•

A/R)f is an invertible object of D(Af )
for some f ∈ A, f ̸∈ q. This proves (2) holds. □

The following lemma is useful to see how dimension functions change when passing
to a finite type algebra over a Noetherian ring.

Lemma 25.6.0E9N Let φ : R→ A be a finite type homomorphism of Noetherian rings.
Assume R local and let m ⊂ A be a maximal ideal lying over the maximal ideal of
R. If ω•

R is a normalized dualizing complex for R, then φ!(ω•
R)m is a normalized

dualizing complex for Am.

Proof. We already know that φ!(ω•
R) is a dualizing complex for A, see Lemma 24.3.

Choose a factorization R → P → A with P = R[x1, . . . , xn] as in the construction
of φ!. If we can prove the lemma for R → P and the maximal ideal m′ of P
corresponding to m, then we obtain the result for R→ A by applying Lemma 16.2
to Pm′ → Am or by applying Lemma 17.2 to P → A. In the case A = R[x1, . . . , xn]
we see that dim(Am) = dim(R)+n for example by Algebra, Lemma 112.7 (combined
with Algebra, Lemma 114.1 to compute the dimension of the fibre). The fact that
ω•
R is normalized means that i = −dim(R) is the smallest index such that Hi(ω•

R)
is nonzero (follows from Lemmas 16.5 and 16.11). Then φ!(ω•

R)m = ω•
R ⊗R Am[n]

has its first nonzero cohomology module in degree − dim(R) − n and therefore is
the normalized dualizing complex for Am. □

Lemma 25.7.0E9P Let R → A be a finite type homomorphism of Noetherian rings.
Let q ⊂ A be a prime ideal lying over p ⊂ R. Then

Hi(ω•
A/R)q ̸= 0⇒ −d ≤ i

where d is the dimension of the fibre of Spec(A)→ Spec(R) over p at the point q.

Proof. Choose a factorization R → P → A with P = R[x1, . . . , xn] as in Section
24 so that ω•

A/R = RHom(A,P )[n]. We have to show that RHom(A,P )q has
vanishing cohomology in degrees < n − d. By Lemma 13.3 this means we have to
show that ExtiP (P/I, P )r = 0 for i < n−d where r ⊂ P is the prime corresponding
to q and I is the kernel of P → A. We may rewrite this as ExtiPr

(Pr/IPr, Pr) by
More on Algebra, Lemma 65.4. Thus we have to show

depthIPr
(Pr) ≥ n− d

by Lemma 11.1. By Lemma 11.5 we have
depthIPr

(Pr) ≥ dim((P ⊗R κ(p))r)− dim((P/I ⊗R κ(p))r)
The two expressions on the right hand side agree by Algebra, Lemma 116.4. □

Lemma 25.8.0E9Q Let R→ A be a flat finite type homomorphism of Noetherian rings.
Let q ⊂ A be a prime ideal lying over p ⊂ R. Then

Hi(ω•
A/R)q ̸= 0⇒ −d ≤ i ≤ 0

https://stacks.math.columbia.edu/tag/0E9N
https://stacks.math.columbia.edu/tag/0E9P
https://stacks.math.columbia.edu/tag/0E9Q


DUALIZING COMPLEXES 50

where d is the dimension of the fibre of Spec(A)→ Spec(R) over p at the point q. If
all fibres of Spec(A)→ Spec(R) have dimension ≤ d, then ω•

A/R has tor amplitude
in [−d, 0] as a complex of R-modules.

Proof. The lower bound has been shown in Lemma 25.7. Choose a factoriza-
tion R → P → A with P = R[x1, . . . , xn] as in Section 24 so that ω•

A/R =
RHom(A,P )[n]. The upper bound means that ExtiP (A,P ) is zero for i > n.
This follows from More on Algebra, Lemma 77.5 which shows that A is a perfect
P -module with tor amplitude in [−n, 0].
Proof of the final statement. Let R → R′ be a ring homomorphism of Noetherian
rings. Set A′ = A⊗R R′. Then

ω•
A′/R′ = ω•

A/R ⊗
L
A A

′ = ω•
A/R ⊗

L
R R

′

The first isomorphism by Lemma 25.1 and the second, which takes place in D(R′),
by More on Algebra, Lemma 61.2. By the first part of the proof (note that the
fibres of Spec(A′) → Spec(R′) have dimension ≤ d) we conclude that ω•

A/R ⊗
L
R R

′

has cohomology only in degrees [−d, 0]. Taking R′ = R ⊕ M to be the square
zero thickening of R by a finite R-module M , we see that RHom(A,P )⊗L

RM has
cohomology only in the interval [−d, 0] for any finite R-module M . Since any R-
module is a filtered colimit of finite R-modules and since tensor products commute
with colimits we conclude. □

Lemma 25.9.0E9R Let R → A be a finite type homomorphism of Noetherian rings.
Let p ⊂ R be a prime ideal. Assume

(1) Rp is Cohen-Macaulay, and
(2) for any minimal prime q ⊂ A we have trdegκ(R∩q)κ(q) ≤ r.

Then
Hi(ω•

A/R)p ̸= 0⇒ −r ≤ i
and H−r(ω•

A/R)p is (S2) as an Ap-module.

Proof. We may replace R by Rp by Lemma 25.1. Thus we may assume R is a
Cohen-Macaulay local ring and we have to show the assertions of the lemma for
the A-modules Hi(ω•

A/R).

Let R∧ be the completion of R. The map R→ R∧ is flat and R∧ is Cohen-Macaulay
(More on Algebra, Lemma 43.3). Observe that the minimal primes of A⊗R R∧ lie
over minimal primes of A by the flatness of A → A ⊗R R∧ (and going down for
flatness, see Algebra, Lemma 39.19). Thus condition (2) holds for the finite type
ring map R∧ → A⊗R R∧ by Morphisms, Lemma 28.3. Appealing to Lemma 25.1
once again it suffices to prove the lemma for R∧ → A ⊗R R∧. In this way, using
Lemma 22.4, we may assume R is a Noetherian local Cohen-Macaulay ring which
has a dualizing complex ω•

R.
Let m ⊂ A be a maximal ideal. It suffices to show that the assertions of the lemma
hold for Hi(ω•

A/R)m. If m does not lie over the maximal ideal of R, then we replace
R by a localization to reduce to this case (small detail omitted).
We may assume ω•

R is normalized. Setting d = dim(R) we see that ω•
R = ωR[d] for

some R-module ωR, see Lemma 20.2. Set ω•
A = φ!(ω•

R). By Lemma 24.11 we have
ω•
A/R = RHomA(ωR[d]⊗L

R A,ω
•
A)
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By the dimension formula we have dim(Am) ≤ d+ r, see Morphisms, Lemma 52.2
and use that κ(m) is finite over the residue field of R by the Hilbert Nullstellensatz.
By Lemma 25.6 we see that (ω•

A)m is a normalized dualizing complex for Am. Hence
Hi((ω•

A)m) is nonzero only for −d− r ≤ i ≤ 0, see Lemma 16.5. Since ωR[d]⊗L
R A

lives in degrees ≤ −d we conclude the vanishing holds. Finally, we also see that
H−r(ω•

A/R)m = HomA(ωR ⊗R A,H−d−r(ω•
A))m

Since H−d−r(ω•
A)m is (S2) by Lemma 17.5 we find that the final statement is true

by More on Algebra, Lemma 23.11. □

26. More on dualizing complexes

0E49 Some lemmas which don’t fit anywhere else very well.
Lemma 26.1.0E4A Let A → B be a faithfully flat map of Noetherian rings. If K ∈
D(A) and K ⊗L

A B is a dualizing complex for B, then K is a dualizing complex for
A.
Proof. Since A→ B is flat we have Hi(K)⊗AB = Hi(K⊗L

AB). Since K⊗L
AB is

in Db
Coh(B) we first find that K is in Db(A) and then we see that Hi(K) is a finite

A-module by Algebra, Lemma 83.2. Let M be a finite A-module. Then
RHomA(M,K)⊗A B = RHomB(M ⊗A B,K ⊗L

A B)
by More on Algebra, Lemma 99.2. Since K ⊗L

A B has finite injective dimension,
say injective-amplitude in [a, b], we see that the right hand side has vanishing coho-
mology in degrees > b. Since A→ B is faithfully flat, we find that RHomA(M,K)
has vanishing cohomology in degrees > b. Thus K has finite injective dimension
by More on Algebra, Lemma 69.2. To finish the proof we have to show that the
map A → RHomA(K,K) is an isomorphism. For this we again use More on
Algebra, Lemma 99.2 and the fact that B → RHomB(K ⊗L

A B,K ⊗L
A B) is an

isomorphism. □

Lemma 26.2.0E4D Let φ : A→ B be a homomorphism of Noetherian rings. Assume
(1) A→ B is syntomic and induces a surjective map on spectra, or
(2) A→ B is a faithfully flat local complete intersection, or
(3) A→ B is faithfully flat of finite type with Gorenstein fibres.

Then K ∈ D(A) is a dualizing complex for A if and only if K ⊗L
A B is a dualizing

complex for B.
Proof. Observe that A→ B satisfies (1) if and only if A→ B satisfies (2) by More
on Algebra, Lemma 33.5. Observe that in both (2) and (3) the relative dualzing
complex φ!(A) = ω•

B/A is an invertible object of D(B), see Lemmas 25.4 and 25.5.
Moreover we have φ!(K) = K ⊗L

A ω
•
B/A in both cases, see Lemma 24.10 for case

(3). Thus φ!(K) is the same as K ⊗L
A B up to tensoring with an invertible object

of D(B). Hence φ!(K) is a dualizing complex for B if and only if K ⊗L
A B is (as

being a dualizing complex is local and invariant under shifts). Thus we see that if
K is dualizing for A, then K ⊗L

A B is dualizing for B by Lemma 24.3. To descend
the property, see Lemma 26.1. □

Lemma 26.3.0E4E Let (A,m, κ) → (B, n, l) be a flat local homorphism of Noetherian
rings such that n = mB. If E is the injective hull of κ, then E⊗AB is the injective
hull of l.
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Proof. Write E =
⋃
En as in Lemma 7.3. It suffices to show that En⊗A/mn B/nn

is the injective hull of l over B/n. This reduces us to the case where A and B
are Artinian local. Observe that lengthA(A) = lengthB(B) and lengthA(E) =
lengthB(E⊗AB) by Algebra, Lemma 52.13. By Lemma 6.1 we have lengthA(E) =
lengthA(A) and lengthB(E′) = lengthB(B) where E′ is the injective hull of l over
B. We conclude lengthB(E′) = lengthB(E ⊗A B). Observe that

diml((E ⊗A B)[n]) = diml(E[m]⊗A B) = dimκ(E[m]) = 1

where we have used flatness of A → B and n = mB. Thus there is an injective
B-module map E ⊗A B → E′ by Lemma 7.2. By equality of lengths shown above
this is an isomorphism. □

Lemma 26.4.0E4F Let φ : A→ B be a flat homorphism of Noetherian rings such that
for all primes q ⊂ B we have pBq = qBq where p = φ−1(q), for example if φ is
étale. If I is an injective A-module, then I ⊗A B is an injective B-module.

Proof. Étale maps satisfy the assumption by Algebra, Lemma 143.5. By Lemma
3.7 and Proposition 5.9 we may assume I is the injective hull of κ(p) for some prime
p ⊂ A. Then I is a module over Ap. It suffices to prove I ⊗A B = I ⊗Ap

Bp is
injective as a Bp-module, see Lemma 3.2. Thus we may assume (A,m, κ) is local
Noetherian and I = E is the injective hull of the residue field κ. Our assumption
implies that the Noetherian ring B/mB is a product of fields (details omitted). Thus
there are finitely many prime ideals m1, . . . ,mn in B lying over m and they are all
maximal ideals. Write E =

⋃
En as in Lemma 7.3. Then E ⊗A B =

⋃
En ⊗A B

and En ⊗A B is a finite B-module with support {m1, . . . ,mn} hence decomposes
as a product over the localizations at mi. Thus E ⊗A B =

∏
(E ⊗A B)mi . Since

(E ⊗A B)mi = E ⊗A Bmi is the injective hull of the residue field of mi by Lemma
26.3 we conclude. □

27. Relative dualizing complexes

0E2B For a finite type ring map φ : R → A of Noetherian rings we have the relative
dualizing complex ω•

A/R = φ!(R) considered in Section 25. If R is not Noetherian,
a similarly constructed complex will in general not have good properties. In this
section, we give a definition of a relative dualizing complex for a flat and finitely
presented ring maps R → A of non-Noetherian rings. The definition is chosen
to globalize to flat and finitely presented morphisms of schemes, see Duality for
Schemes, Section 28. We will show that relative dualizing complexes exist (when
the definition applies), are unique up to (noncanonical) isomorphism, and that in
the Noetherian case we recover the complex of Section 25.

The Noetherian reader may safely skip this section!

Definition 27.1.0E2C Let R→ A be a flat ring map of finite presentation. A relative
dualizing complex is an object K ∈ D(A) such that

(1) K is R-perfect (More on Algebra, Definition 83.1), and
(2) RHomA⊗RA(A,K ⊗L

A (A⊗R A)) is isomorphic to A.

To understand this definition you may have to read and understand some of the
following lemmas. Lemmas 27.3 and 27.2 show this definition does not clash with
the definition in Section 25.
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Lemma 27.2.0E2D Let R → A be a flat ring map of finite presentation. Any two
relative dualizing complexes for R→ A are isomorphic.

Proof. Let K and L be two relative dualizing complexes for R → A. Denote
K1 = K ⊗L

A (A ⊗R A) and L2 = (A ⊗R A) ⊗L
A L the derived base changes via the

first and second coprojections A → A ⊗R A. By symmetry the assumption on L2
implies that RHomA⊗RA(A,L2) is isomorphic to A. By More on Algebra, Lemma
98.3 part (3) applied twice we have

A⊗L
A⊗RA L2 ∼= RHomA⊗RA(A,K1 ⊗L

A⊗RA L2) ∼= A⊗L
A⊗RA K1

Applying the restriction functor D(A ⊗R A) → D(A) for either coprojection we
obtain the desired result. □

Lemma 27.3.0E2E Let φ : R → A be a flat finite type ring map of Noetherian rings.
Then the relative dualizing complex ω•

A/R = φ!(R) of Section 25 is a relative dual-
izing complex in the sense of Definition 27.1.

Proof. From Lemma 25.2 we see that φ!(R) is R-perfect. Denote δ : A⊗R A→ A
the multiplication map and p1, p2 : A→ A⊗R A the coprojections. Then

φ!(R)⊗L
A (A⊗R A) = φ!(R)⊗L

A,p1
(A⊗R A) = p!

2(A)

by Lemma 24.4. Recall that RHomA⊗RA(A,φ!(R) ⊗L
A (A ⊗R A)) is the image of

δ!(φ!(R)⊗L
A (A⊗RA)) under the restriction map δ∗ : D(A)→ D(A⊗RA). Use the

definition of δ! from Section 24 and Lemma 13.3. Since δ!(p!
2(A)) ∼= A by Lemma

24.7 we conclude. □

Lemma 27.4.0E2F Let R→ A be a flat ring map of finite presentation. Then
(1) there exists a relative dualizing complex K in D(A), and
(2) for any ring map R → R′ setting A′ = A ⊗R R′ and K ′ = K ⊗L

A A
′, then

K ′ is a relative dualizing complex for R′ → A′.
Moreover, if

ξ : A −→ K ⊗L
A (A⊗R A)

is a generator for the cyclic module HomD(A⊗RA)(A,K ⊗L
A (A ⊗R A)) then in (2)

the derived base change of ξ by A ⊗R A → A′ ⊗R′ A′ is a generator for the cyclic
module HomD(A′⊗R′A′)(A′,K ′ ⊗L

A′ (A′ ⊗R′ A′))

Proof. We first reduce to the Noetherian case. By Algebra, Lemma 168.1 there
exists a finite type Z subalgebra R0 ⊂ R and a flat finite type ring map R0 → A0
such that A = A0⊗R0 R. By Lemma 27.3 there exists a relative dualizing complex
K0 ∈ D(A0). Thus if we show (2) for K0, then we find that K0⊗L

A0
A is a dualizing

complex for R → A and that it also satisfies (2) by transitivity of derived base
change. The uniqueness of relative dualizing complexes (Lemma 27.2) then shows
that this holds for any relative dualizing complex.
Assume R Noetherian and let K be a relative dualizing complex for R → A.
Given a ring map R → R′ set A′ = A ⊗R R′ and K ′ = K ⊗L

A A′. To finish
the proof we have to show that K ′ is a relative dualizing complex for R′ → A′.
By More on Algebra, Lemma 83.5 we see that K ′ is R′-perfect in all cases. By
Lemmas 25.1 and 27.3 if R′ is Noetherian, then K ′ is a relative dualizing complex
for R′ → A′ (in either sense). Transitivity of derived tensor product shows that
K ⊗L

A (A ⊗R A) ⊗L
A⊗RA

(A′ ⊗R′ A′) = K ′ ⊗L
A′ (A′ ⊗R′ A′). Flatness of R →
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A guarantees that A ⊗L
A⊗RA

(A′ ⊗R′ A′) = A′; namely A ⊗R A and R′ are tor
independent over R so we can apply More on Algebra, Lemma 61.2. Finally, A is
pseudo-coherent as an A⊗RA-module by More on Algebra, Lemma 82.8. Thus we
have checked all the assumptions of More on Algebra, Lemma 83.6. We find there
exists a bounded below complex E• of R-flat finitely presented A ⊗R A-modules
such that E• ⊗R R′ represents RHomA′⊗R′A′(A′,K ′ ⊗L

A′ (A′ ⊗R′ A′)) and these
identifications are compatible with derived base change. Let n ∈ Z, n ̸= 0. Define
Qn by the sequence

En−1 → En → Qn → 0
Since κ(p) is a Noetherian ring, we know that Hn(E• ⊗R κ(p)) = 0, see remarks
above. Chasing diagrams this means that

Qn ⊗R κ(p)→ En+1 ⊗R κ(p)

is injective. Hence for a prime q of A ⊗R A lying over p we have Qnq is Rp-flat
and Qnp → En+1

q is Rp-universally injective, see Algebra, Lemma 99.1. Since this
holds for all primes, we conclude that Qn is R-flat and Qn → En+1 is R-universally
injective. In particular Hn(E• ⊗R R′) = 0 for any ring map R → R′. Let Z0 =
Ker(E0 → E1). Since there is an exact sequence 0 → Z0 → E0 → E1 → Q1 → 0
we see that Z0 is R-flat and that Z0 ⊗R R′ = Ker(E0 ⊗R R′ → E1 ⊗R R′) for all
R → R′. Then the short exact sequence 0 → Q−1 → Z0 → H0(E•) → 0 shows
that

H0(E• ⊗R R′) = H0(E•)⊗R R′ = A⊗R R′ = A′

as desired. This equality furthermore gives the final assertion of the lemma. □

Lemma 27.5.0E2G Let R → A be a flat ring map of finite presentation. Let K be a
relative dualizing complex. Then A→ RHomA(K,K) is an isomorphism.

Proof. By Algebra, Lemma 168.1 there exists a finite type Z subalgebra R0 ⊂ R
and a flat finite type ring map R0 → A0 such that A = A0 ⊗R0 R. By Lemmas
27.2, 27.3, and 27.4 there exists a relative dualizing complex K0 ∈ D(A0) and its
derived base change is K. This reduces us to the situation discussed in the next
paragraph.

Assume R Noetherian and let K be a relative dualizing complex for R→ A. Given
a ring map R → R′ set A′ = A ⊗R R′ and K ′ = K ⊗L

A A
′. To finish the proof we

show RHomA′(K ′,K ′) = A′. By Lemma 25.2 we know this is true whenever R′ is
Noetherian. Since a general R′ is a filtered colimit of Noetherian R-algebras, we
find the result holds by More on Algebra, Lemma 83.7. □

Lemma 27.6.0E2H Let R → A → B be a ring maps which are flat and of finite
presentation. Let KA/R and KB/A be relative dualizing complexes for R → A and
A→ B. Then K = KA/R ⊗L

A KB/A is a relative dualizing complex for R→ B.

Proof. We will use reduction to the Noetherian case. Namely, by Algebra, Lemma
168.1 there exists a finite type Z subalgebra R0 ⊂ R and a flat finite type ring
map R0 → A0 such that A = A0 ⊗R0 R. After increasing R0 and correspondingly
replacing A0 we may assume there is a flat finite type ring map A0 → B0 such that
B = B0 ⊗R0 R (use the same lemma). If we prove the lemma for R0 → A0 → B0,
then the lemma follows by Lemmas 27.2, 27.3, and 27.4. This reduces us to the
situation discussed in the next paragraph.

https://stacks.math.columbia.edu/tag/0E2G
https://stacks.math.columbia.edu/tag/0E2H


DUALIZING COMPLEXES 55

Assume R is Noetherian and denote φ : R → A and ψ : A → B the given ring
maps. Then KA/R

∼= φ!(R) and KB/A
∼= ψ!(A), see references given above. Then

K = KA/R ⊗L
A KB/A

∼= φ!(R)⊗L
A ψ

!(A) ∼= ψ!(φ!(R)) ∼= (ψ ◦ φ)!(R)
by Lemmas 24.10 and 24.7. Thus K is a relative dualizing complex for R→ B. □
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