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1. Introduction

0FY1 In this chapter we continue the discussion started in Derived Categories of Schemes,
Section 1. We will discuss Fourier-Mukai transforms, first studied by Mukai in
[Muk81]. We will prove Orlov’s theorem on derived equivalences ([Orl97]). We also
discuss the countability of derived equivalence classes proved by Anel and Toën in
[AT09].
A good introduction to this material is the book [Huy06] by Daniel Huybrechts.
Some other papers which helped popularize this topic are

(1) the paper by Bondal and Kapranov, see [BK89]
(2) the paper by Bondal and Orlov, see [BO01]
(3) the paper by Bondal and Van den Bergh, see [BV03]
(4) the papers by Beilinson, see [Bei78] and [Bei84]
(5) the paper by Orlov, see [Orl02]
(6) the paper by Orlov, see [Orl05]
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(7) the paper by Rouquier, see [Rou08]
(8) there are many more we could mention here.

2. Conventions and notation

0FY2 Let k be a field. A k-linear triangulated category T is a triangulated category (De-
rived Categories, Section 3) which is endowed with a k-linear structure (Differential
Graded Algebra, Section 24) such that the translation functors [n] : T → T are
k-linear for all n ∈ Z.

Let k be a field. We denote Vectk the category of k-vector spaces. For a k-vector
space V we denote V ∨ the k-linear dual of V , i.e., V ∨ = Homk(V, k).

Let X be a scheme. We denote Dperf (OX) the full subcategory of D(OX) con-
sisting of perfect complexes (Cohomology, Section 49). If X is Noetherian then
Dperf (OX) ⊂ Db

Coh(OX), see Derived Categories of Schemes, Lemma 11.6. If X is
Noetherian and regular, then Dperf (OX) = Db

Coh(OX), see Derived Categories of
Schemes, Lemma 11.8.

Let k be a field. Let X and Y be schemes over k. In this situation we will write
X × Y instead of X ×Spec(k) Y .

Let S be a scheme. Let X, Y be schemes over S. Let F be a OX -module and let
G be a OY -module. We set

F ⊠ G = pr∗
1F ⊗OX×S Y

pr∗
2G

as OX×SY -modules. If K ∈ D(OX) and M ∈ D(OY ) then we set

K ⊠ M = Lpr∗
1K ⊗L

OX×S Y
Lpr∗

2M

as an object of D(OX×SY ). Thus our notation is potentially ambiguous, but context
should make it clear which of the two is meant.

3. Serre functors

0FY3 The material in this section is taken from [BK89].

Lemma 3.1.0FY4 Let k be a field. Let T be a k-linear triangulated category such that
dimk HomT (X, Y ) <∞ for all X, Y ∈ Ob(T ). The following are equivalent

(1) there exists a k-linear equivalence S : T → T and k-linear isomorphisms
cX,Y : HomT (X, Y )→ HomT (Y, S(X))∨ functorial in X, Y ∈ Ob(T ),

(2) for every X ∈ Ob(T ) the functor Y 7→ HomT (X, Y )∨ is representable and
the functor Y 7→ HomT (Y, X)∨ is corepresentable.

Proof. Condition (1) implies (2) since given (S, c) and X ∈ Ob(T ) the object S(X)
represents the functor Y 7→ HomT (X, Y )∨ and the object S−1(X) corepresents the
functor Y 7→ HomT (Y, X)∨.

Assume (2). We will repeatedly use the Yoneda lemma, see Categories, Lemma 3.5.
For every X denote S(X) the object representing the functor Y 7→ HomT (X, Y )∨.
Given φ : X → X ′, we obtain a unique arrow S(φ) : S(X) → S(X ′) determined
by the corresponding transformation of functors HomT (X,−)∨ → HomT (X ′,−)∨.
Thus S is a functor and we obtain the isomorphisms cX,Y by construction. It
remains to show that S is an equivalence. For every X denote S′(X) the object

https://stacks.math.columbia.edu/tag/0FY4
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corepresenting the functor Y 7→ HomT (Y, X)∨. Arguing as above we find that S′

is a functor. We claim that S′ is quasi-inverse to S. To see this observe that

HomT (X, Y ) = HomT (Y, S(X))∨ = HomT (S′(S(X)), Y )

bifunctorially, i.e., we find S′ ◦ S ∼= idT . Similarly, we have

HomT (Y, X) = HomT (S′(X), Y )∨ = HomT (Y, S(S′(X)))

and we find S ◦ S′ ∼= idT . □

Definition 3.2.0FY5 Let k be a field. Let T be a k-linear triangulated category
such that dimk HomT (X, Y ) < ∞ for all X, Y ∈ Ob(T ). We say a Serre functor
exists if the equivalent conditions of Lemma 3.1 are satisfied. In this case a Serre
functor is a k-linear equivalence S : T → T endowed with k-linear isomorphisms
cX,Y : HomT (X, Y )→ HomT (Y, S(X))∨ functorial in X, Y ∈ Ob(T ).

Lemma 3.3.0FY6 In the situation of Definition 3.2. If a Serre functor exists, then
it is unique up to unique isomorphism and it is an exact functor of triangulated
categories.

Proof. Given a Serre functor S the object S(X) represents the functor Y 7→
HomT (X, Y )∨. Thus the object S(X) together with the functorial identification
HomT (X, Y )∨ = HomT (Y, S(X)) is determined up to unique isomorphism by the
Yoneda lemma (Categories, Lemma 3.5). Moreover, for φ : X → X ′, the arrow
S(φ) : S(X)→ S(X ′) is uniquely determined by the corresponding transformation
of functors HomT (X,−)∨ → HomT (X ′,−)∨.

For objects X, Y of T we have

Hom(Y, S(X)[1])∨ = Hom(Y [−1], S(X))∨

= Hom(X, Y [−1])
= Hom(X[1], Y )
= Hom(Y, S(X[1]))∨

By the Yoneda lemma we conclude that there is a unique isomorphism S(X[1])→
S(X)[1] inducing the isomorphism from top left to bottom right. Since each of
the isomorphisms above is functorial in both X and Y we find that this defines an
isomorphism of functors S ◦ [1]→ [1] ◦ S.

Let (A, B, C, f, g, h) be a distinguished triangle in T . We have to show that
the triangle (S(A), S(B), S(C), S(f), S(g), S(h)) is distinguished. Here we use the
canonical isomorphism S(A[1])→ S(A)[1] constructed above to identify the target
S(A[1]) of S(h) with S(A)[1]. We first observe that for any X in T the triangle
(S(A), S(B), S(C), S(f), S(g), S(h)) induces a long exact sequence

. . .→ Hom(X, S(A))→ Hom(X, S(B))→ Hom(X, S(C))→ Hom(X, S(A)[1])→ . . .

of finite dimensional k-vector spaces. Namely, this sequence is k-linear dual of the
sequence

. . .← Hom(A, X)← Hom(B, X)← Hom(C, X)← Hom(A[1], X)← . . .

which is exact by Derived Categories, Lemma 4.2. Next, we choose a distinguished
triangle (S(A), E, S(C), i, p, S(h)) which is possible by axioms TR1 and TR2. We

https://stacks.math.columbia.edu/tag/0FY5
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want to construct the dotted arrow making following diagram commute

S(C)[−1]
S(h[−1])

// S(A)
S(f)
// S(B)

S(g)
// S(C)

S(h)
// S(A)[1]

S(C)[−1]
S(h[−1])// S(A) i // E

p //

φ

OO

S(C)
S(h) // S(A)[1]

Namely, if we have φ, then we claim for any X the resulting map Hom(X, E) →
Hom(X, S(B)) will be an isomorphism of k-vector spaces. Namely, we will obtain
a commutative diagram

Hom(X, S(C)[−1]) // Hom(X, S(A)) // Hom(X, S(B)) // Hom(X, S(C)) // Hom(X, S(A)[1])

Hom(X, S(C)[−1]) // Hom(X, S(A)) // Hom(X, E) //

φ

OO

Hom(X, S(C)) // Hom(X, S(A)[1])

with exact rows (see above) and we can apply the 5 lemma (Homology, Lemma
5.20) to see that the middle arrow is an isomorphism. By the Yoneda lemma we
conclude that φ is an isomorphism. To find φ consider the following diagram

Hom(E, S(C)) // Hom(S(A), S(C))

Hom(E, S(B))

OO

// Hom(S(A), S(B))

OO

The elements p and S(f) in positions (0, 1) and (1, 0) define a cohomology class ξ
in the total complex of this double complex. The existence of φ is equivalent to
whether ξ is zero. If we take k-linear duals of this and we use the defining property
of S we obtain

Hom(C, E)

��

Hom(C, S(A))oo

��
Hom(B, E) Hom(B, S(A))oo

Since both A → B → C and S(A) → E → S(C) are distinguished triangles, we
know by TR3 that given elements α ∈ Hom(C, E) and β ∈ Hom(B, S(A)) map-
ping to the same element in Hom(B, E), there exists an element in Hom(C, S(A))
mapping to both α and β. In other words, the cohomology of the total complex
associated to this double complex is zero in degree 1, i.e., the degree correspond-
ing to Hom(C, E) ⊕ Hom(B, S(A)). Taking duals the same must be true for the
previous one which concludes the proof. □

4. Examples of Serre functors

0FY7 The lemma below is the standard example.

Lemma 4.1.0FY8 Let k be a field. Let X be a proper scheme over k which is Gorenstein.
Consider the complex ω•

X of Duality for Schemes, Lemmas 27.1. Then the functor

S : Dperf (OX) −→ Dperf (OX), K 7−→ S(K) = ω•
X ⊗L

OX
K

is a Serre functor.

https://stacks.math.columbia.edu/tag/0FY8
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Proof. The statement make sense because dim HomX(K, L) < ∞ for K, L ∈
Dperf (OX) by Derived Categories of Schemes, Lemma 11.7. Since X is Goren-
stein the dualizing complex ω•

X is an invertible object of D(OX), see Duality for
Schemes, Lemma 24.4. In particular, locally on X the complex ω•

X has one nonzero
cohomology sheaf which is an invertible module, see Cohomology, Lemma 52.2.
Thus S(K) lies in Dperf (OX). On the other hand, the invertibility of ω•

X clearly
implies that S is a self-equivalence of Dperf (OX). Finally, we have to find an
isomorphism

cK,L : HomX(K, L) −→ HomX(L, ω•
X ⊗L

OX
K)∨

bifunctorially in K, L. To do this we use the canonical isomorphisms
HomX(K, L) = H0(X, L⊗L

OX
K∨)

and
HomX(L, ω•

X ⊗L
OX

K) = H0(X, ω•
X ⊗L

OX
K ⊗L

OX
L∨)

given in Cohomology, Lemma 50.5. Since (L ⊗L
OX

K∨)∨ = (K∨)∨ ⊗L
OX

L∨ and
since there is a canonical isomorphism K → (K∨)∨ we find these k-vector spaces
are canonically dual by Duality for Schemes, Lemma 27.4. This produces the
isomorphisms cK,L. We omit the proof that these isomorphisms are functorial. □

5. Characterizing coherent modules

0FY9 This section is in some sense a continuation of the discussion in Derived Categories
of Schemes, Section 34 and More on Morphisms, Section 69.
Before we can state the result we need some notation. Let k be a field. Let n ≥ 0 be
an integer. Let S = k[X0, . . . , Xn]. For an integer e denote Se ⊂ S the homogeneous
polynomials of degree e. Consider the (noncommutative) k-algebra

R =


S0 S1 S2 . . . . . .
0 S0 S1 . . . . . .
0 0 S0 . . . . . .

. . . . . . . . . . . . . . .
0 . . . . . . . . . S0


(with n + 1 rows and columns) with obvious multiplication and addition.

Lemma 5.1.0FYA With k, n, and R as above, for an object K of D(R) the following
are equivalent

(1)
∑

i∈Z dimk Hi(K) <∞, and
(2) K is a compact object.

Proof. If K is a compact object, then K can be represented by a complex M•

which is finite projective as a graded R-module, see Differential Graded Algebra,
Lemma 36.6. Since dimk R < ∞ we conclude

∑
dimk M i < ∞ and a fortiori∑

dimk Hi(M•) <∞. (One can also easily deduce this implication from the easier
Differential Graded Algebra, Proposition 36.4.)
Assume K satisfies (1). Consider the distinguished triangle of trunctions τ≤mK →
K → τ≥m+1K, see Derived Categories, Remark 12.4. It is clear that both τ≤mK
and τ≥m+1K satisfy (1). If we can show both are compact, then so is K, see Derived
Categories, Lemma 37.2. Hence, arguing on the number of nonzero cohomology
modules of K we may assume Hi(K) is nonzero only for one i. Shifting, we may

https://stacks.math.columbia.edu/tag/0FYA
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assume K is given by the complex consisting of a single finite dimensional R-module
M sitting in degree 0.

Since dimk(M) <∞ we see that M is Artinian as an R-module. Thus it suffices to
show that every simple R-module represents a compact object of D(R). Observe
that

I =


0 S1 S2 . . . . . .
0 0 S1 . . . . . .
0 0 0 . . . . . .

. . . . . . . . . . . . . . .
0 . . . . . . . . . 0


is a nilpotent two sided ideal of R and that R/I is a commutative k-algebra iso-
morphic to a product of n + 1 copies of k (placed along the diagonal in the matrix,
i.e., R/I can be lifted to a k-subalgebra of R). It follows that R has exactly n + 1
isomorphism classes of simple modules M0, . . . , Mn (sitting along the diagonal).
Consider the right R-module Pi of row vectors

Pi =
(
0 . . . 0 S0 . . . Si−1 Si

)
with obvious multiplication Pi×R→ Pi. Then we see that R ∼= P0⊕ . . .⊕Pn as a
right R-module. Since clearly R is a compact object of D(R), we conclude each Pi

is a compact object of D(R). (We of course also conclude each Pi is projective as
an R-module, but this isn’t what we have to show in this proof.) Clearly, P0 = M0
is the first of our simple R-modules. For P1 we have a short exact sequence

0→ P ⊕n+1
0 → P1 →M1 → 0

which proves that M1 fits into a distinguished triangle whose other members are
compact objects and hence M1 is a compact object of D(R). More generally, there
exists a short exact sequence

0→ Ci → Pi →Mi → 0

where Ci is a finite dimensional R-module whose simple constituents are isomorphic
to Mj for j < i. By induction, we first conclude that Ci determines a compact object
of D(R) whereupon we conclude that Mi does too as desired. □

Lemma 5.2.0FYB Let k be a field. Let n ≥ 0. Let K ∈ DQCoh(OPn
k
). The following

are equivalent
(1) K is in Db

Coh(OPn
k
),

(2)
∑

i∈Z dimk Hi(Pn
k , E ⊗L K) <∞ for each perfect object E of D(OPn

k
),

(3)
∑

i∈Z dimk Exti
Pn

k
(E, K) <∞ for each perfect object E of D(OPn

k
),

(4)
∑

i∈Z dimk Hi(Pn
k , K ⊗L OPn

k
(d)) <∞ for d = 0, 1, . . . , n.

Proof. Parts (2) and (3) are equivalent by Cohomology, Lemma 50.5. If (1) is true,
then for E perfect the derived tensor product E ⊗L K is in Db

Coh(OPn
k
) and we see

that (2) holds by Derived Categories of Schemes, Lemma 11.3. It is clear that (2)
implies (4) as OPn

k
(d) can be viewed as a perfect object of the derived category of

Pn
k . Thus it suffices to prove that (4) implies (1).

Assume (4). Let R be as in Lemma 5.1. Let P =
⊕

d=0,...,nOPn
k
(−d). Recall that

R = EndPn
k
(P ) whereas all other self-Exts of P are zero and that P determines

https://stacks.math.columbia.edu/tag/0FYB
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an equivalence −⊗L P : D(R)→ DQCoh(OPn
k
) by Derived Categories of Schemes,

Lemma 20.1. Say K corresponds to L in D(R). Then

Hi(L) = Exti
D(R)(R, L)

= Exti
Pn

k
(P, K)

= Hi(Pn
k , K ⊗ P ∨)

=
⊕

d=0,...,n
Hi(Pn

k , K ⊗O(d))

by Differential Graded Algebra, Lemma 35.4 (and the fact that −⊗L P is an equiv-
alence) and Cohomology, Lemma 50.5. Thus our assumption (4) implies that L sat-
isfies condition (2) of Lemma 5.1 and hence is a compact object of D(R). Therefore
K is a compact object of DQCoh(OPn

k
). Thus K is perfect by Derived Categories of

Schemes, Proposition 17.1. Since Dperf (OPn
k
) = Db

Coh(OPn
k
) by Derived Categories

of Schemes, Lemma 11.8 we conclude (1) holds. □

Lemma 5.3.0FYC Let X be a scheme proper over a field k. Let K ∈ Db
Coh(OX) and

let E in D(OX) be perfect. Then
∑

i∈Z dimk Exti
X(E, K) <∞.

Proof. This follows for example by combining Derived Categories of Schemes, Lem-
mas 11.7 and 18.2. Alternative proof: combine Derived Categories of Schemes,
Lemmas 11.6 and 11.3. □

Lemma 5.4.0FYD In the projective
case this is [Rou08,
Lemma 7.46] and
implicit in [BV03,
Theorem A.1]

Let X be a proper scheme over a field k. Let K ∈ Ob(DQCoh(OX)).
The following are equivalent

(1) K ∈ Db
Coh(OX), and

(2)
∑

i∈Z dimk Exti
X(E, K) <∞ for all perfect E in D(OX).

Proof. The implication (1) ⇒ (2) follows from Lemma 5.3. The implication (2)
⇒ (1) follows from More on Morphisms, Lemma 69.6 (see Derived Categories of
Schemes, Example 35.2 for the meaning of a relatively perfect object over a field);
the easier proof in the projective case is in the next paragraph.

Assume (2) and X projective over k. Choose a closed immersion i : X → Pn
k . It

suffices to show that Ri∗K is in Db
Coh(Pn

k ) since a quasi-coherent module F on X
is coherent, resp. zero if and only if i∗F is coherent, resp. zero. For a perfect object
E of D(OPn

k
), Li∗E is a perfect object of D(OX) and

Extq
Pn

k
(E, Ri∗K) = Extq

X(Li∗E, K)

Hence by our assumption we see that
∑

q∈Z dimk Extq
Pn

k
(E, Ri∗K) < ∞. We con-

clude by Lemma 5.2. □

6. A representability theorem

0FYE The material in this section is taken from [BV03].

Let T be a k-linear triangulated category. In this section we consider k-linear
cohomological functors H from T to the category of k-vector spaces. This will
mean H is a functor

H : T opp −→ Vectk

https://stacks.math.columbia.edu/tag/0FYC
https://stacks.math.columbia.edu/tag/0FYD
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which is k-linear such that for any distinguished triangle X → Y → Z in T the
sequence H(Z) → H(Y ) → H(X) is an exact sequence of k-vector spaces. See
Derived Categories, Definition 3.5 and Differential Graded Algebra, Section 24.

Lemma 6.1.0FYF Let D be a triangulated category. Let D′ ⊂ D be a full triangulated
subcategory. Let X ∈ Ob(D). The category of arrows E → X with E ∈ Ob(D′) is
filtered.

Proof. We check the conditions of Categories, Definition 19.1. The category is
nonempty because it contains 0 → X. If Ei → X, i = 1, 2 are objects, then
E1 ⊕ E2 → X is an object and there are morphisms (Ei → X) → (E1 ⊕ E2 →
X). Finally, suppose that a, b : (E → X) → (E′ → X) are morphisms. Choose
a distinguished triangle E

a−b−−→ E′ → E′′ in D′. By Axiom TR3 we obtain a
morphism of triangles

E
a−b
//

��

E′

��

// E′′

��
0 // X // X

and we find that the resulting arrow (E′ → X)→ (E′′ → X) equalizes a and b. □

Lemma 6.2.0FYG [CKN01, Lemma
2.14]

Let k be a field. Let D be a k-linear triangulated category which
has direct sums and is compactly generated. Denote Dc the full subcategory of
compact objects. Let H : Dopp

c → Vectk be a k-linear cohomological functor such
that dimk H(X) < ∞ for all X ∈ Ob(Dc). Then H is isomorphic to the functor
X 7→ Hom(X, Y ) for some Y ∈ Ob(D).

Proof. We will use Derived Categories, Lemma 37.2 without further mention. De-
note G : Dc → Vectk the k-linear homological functor which sends X to H(X)∨.
For any object Y of D we set

G′(Y ) = colimX→Y,X∈Ob(Dc) G(X)

The colimit is filtered by Lemma 6.1. We claim that G′ is a k-linear homological
functor, the restriction of G′ to Dc is G, and G′ sends direct sums to direct sums.

Namely, suppose that Y1 → Y2 → Y3 is a distinguished triangle. Let ξ ∈ G′(Y2)
map to zero in G′(Y3). Since the colimit is filtered ξ is represented by some X → Y2
with X ∈ Ob(Dc) and g ∈ G(X). The fact that ξ maps to zero in G′(Y3) means
the composition X → Y2 → Y3 factors as X → X ′ → Y3 with X ′ ∈ Dc and
g mapping to zero in G(X ′). Choose a distinguished triangle X ′′ → X → X ′.
Then X ′′ ∈ Ob(Dc). Since G is homological we find that g is the image of some
g′′ ∈ G′(X ′′). By Axiom TR3 the maps X → Y2 and X ′ → Y3 fit into a morphism
of distinguished triangles (X ′′ → X → X ′) → (Y1 → Y2 → Y3) and we find
that indeed ξ is the image of the element of G′(Y1) represented by X ′′ → Y1 and
g′′ ∈ G(X ′′).

If Y ∈ Ob(Dc), then id : Y → Y is the final object in the category of arrows
X → Y with X ∈ Ob(Dc). Hence we see that G′(Y ) = G(Y ) in this case and the
statement on restriction holds. Let Y =

⊕
i∈I Yi be a direct sum. Let a : X → Y

with X ∈ Ob(Dc) and g ∈ G(X) represent an element ξ of G′(Y ). The morphism
a : X → Y can be uniquely written as a sum of morphisms ai : X → Yi almost all

https://stacks.math.columbia.edu/tag/0FYF
https://stacks.math.columbia.edu/tag/0FYG
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zero as X is a compact object of D. Let I ′ = {i ∈ I | ai ̸= 0}. Then we can factor
a as the composition

X
(1,...,1)−−−−−→

⊕
i∈I′

X

⊕
i∈I′ ai

−−−−−−→
⊕

i∈I
Yi = Y

We conclude that ξ =
∑

i∈I′ ξi is the sum of the images of the elements ξi ∈
G′(Yi) corresponding to ai : X → Yi and g ∈ G(X). Hence

⊕
G′(Yi) → G′(Y ) is

surjective. We omit the (trivial) verification that it is injective.

It follows that the functor Y 7→ G′(Y )∨ is cohomological and sends direct sums to
direct products. Hence by Brown representability, see Derived Categories, Proposi-
tion 38.2 we conclude that there exists a Y ∈ Ob(D) and an isomorphism G′(Z)∨ =
Hom(Z, Y ) functorially in Z. For X ∈ Ob(Dc) we have G′(X)∨ = G(X)∨ =
(H(X)∨)∨ = H(X) because dimk H(X) <∞ and the proof is complete. □

Theorem 6.3.0FYH In the projective
case this is [BV03,
Theorem A.1]

Let X be a proper scheme over a field k. Let F : Dperf (OX)opp →
Vectk be a k-linear cohomological functor such that∑

n∈Z
dimk F (E[n]) <∞

for all E ∈ Dperf (OX). Then F is isomorphic to a functor of the form E 7→
HomX(E, K) for some K ∈ Db

Coh(OX).

Proof. The derived category DQCoh(OX) has direct sums, is compactly generated,
and Dperf (OX) is the full subcategory of compact objects, see Derived Categories
of Schemes, Lemma 3.1, Theorem 15.3, and Proposition 17.1. By Lemma 6.2 we
may assume F (E) = HomX(E, K) for some K ∈ Ob(DQCoh(OX)). Then it follows
that K is in Db

Coh(OX) by Lemma 5.4. □

Lemma 6.4.0H4A Let X be a proper scheme over a field k which is regular. Let
G : Dperf (OX)→ Vectk be a k-linear homological functor such that∑

n∈Z
dimk G(E[n]) <∞

for all E ∈ Dperf (OX). Then G is isomorphic to a functor of the form E 7→
HomX(K, E) for some K ∈ Dperf (OX).

Proof. Consider the contravariant functor E 7→ E∨ on Dperf (OX), see Cohomol-
ogy, Lemma 50.5. This functor is an exact anti-self-equivalence of Dperf (OX).
Hence we may apply Theorem 6.3 to the functor F (E) = G(E∨) to find K ∈
Dperf (OX) such that G(E∨) = HomX(E, K). It follows that G(E) = HomX(E∨, K) =
HomX(K∨, E) and we conclude that taking K∨ works. □

7. Existence of adjoints

0FYM As a consequence of the results in the paper of Bondal and van den Bergh we get
the following automatic existence of adjoints.

Lemma 7.1.0FYN Let k be a field. Let X and Y be proper schemes over k. If X is
regular, then any k-linear exact functor F : Dperf (OX)→ Dperf (OY ) has an exact
right adjoint and an exact left adjoint.

https://stacks.math.columbia.edu/tag/0FYH
https://stacks.math.columbia.edu/tag/0H4A
https://stacks.math.columbia.edu/tag/0FYN
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Proof. If an adjoint exists it is an exact functor by the very general Derived Cat-
egories, Lemma 7.1.
Let us prove the existence of a right adjoint. To see existence, it suffices to show
that for M ∈ Dperf (OY ) the contravariant functor K 7→ HomY (F (K), M) is rep-
resentable. This functor is contravariant, k-linear, and cohomological. Hence by
Theorem 6.3 it suffices to show that∑

i∈Z
dimk Exti

Y (F (K), M) <∞

This follows from Lemma 5.3.
For the existence of the left adjoint we argue in the same manner using Lemma 6.4
in stead of Theorem 6.3. □

8. Fourier-Mukai functors

0FYP These functors were first introduced in [Muk81].

Definition 8.1.0FYQ Let S be a scheme. Let X and Y be schemes over S. Let
K ∈ D(OX×SY ). The exact functor

ΦK : D(OX) −→ D(OY ), M 7−→ Rpr2,∗(Lpr∗
1M ⊗L

OX×S Y
K)

of triangulated categories is called a Fourier-Mukai functor and K is called a
Fourier-Mukai kernel for this functor. Moreover,

(1) if ΦK sends DQCoh(OX) into DQCoh(OY ) then the resulting exact functor
ΦK : DQCoh(OX)→ DQCoh(OY ) is called a Fourier-Mukai functor,

(2) if ΦK sends Dperf (OX) into Dperf (OY ) then the resulting exact functor
ΦK : Dperf (OX)→ Dperf (OY ) is called a Fourier-Mukai functor, and

(3) if X and Y are Noetherian and ΦK sends Db
Coh(OX) into Db

Coh(OY ) then
the resulting exact functor ΦK : Db

Coh(OX) → Db
Coh(OY ) is called a

Fourier-Mukai functor. Similarly for DCoh, D+
Coh, D−

Coh.

Lemma 8.2.0FYR Let S be a scheme. Let X and Y be schemes over S. Let K ∈
D(OX×SY ). The corresponding Fourier-Mukai functor ΦK sends DQCoh(OX) into
DQCoh(OY ) if K is in DQCoh(OX×SY ) and X → S is quasi-compact and quasi-
separated.

Proof. This follows from the fact that derived pullback preserves DQCoh (Derived
Categories of Schemes, Lemma 3.8), derived tensor products preserve DQCoh (De-
rived Categories of Schemes, Lemma 3.9), the projection pr2 : X ×S Y → Y is
quasi-compact and quasi-separated (Schemes, Lemmas 19.3 and 21.12), and total
direct image along a quasi-separated and quasi-compact morphism preserves DQCoh
(Derived Categories of Schemes, Lemma 4.1). □

Lemma 8.3.0FYS Let S be a scheme. Let X, Y, Z be schemes over S. Assume
X → S, Y → S, and Z → S are quasi-compact and quasi-separated. Let K ∈
DQCoh(OX×SY ). Let K ′ ∈ DQCoh(OY ×SZ). Consider the Fourier-Mukai functors
ΦK : DQCoh(OX)→ DQCoh(OY ) and ΦK′ : DQCoh(OY )→ DQCoh(OZ). If X and
Z are tor independent over S and Y → S is flat, then

ΦK′ ◦ ΦK = ΦK′′ : DQCoh(OX) −→ DQCoh(OZ)
where

K ′′ = Rpr13,∗(Lpr∗
12K ⊗L

OX×S Y ×S Z
Lpr∗

23K ′)

https://stacks.math.columbia.edu/tag/0FYQ
https://stacks.math.columbia.edu/tag/0FYR
https://stacks.math.columbia.edu/tag/0FYS
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in DQCoh(OX×SZ).

Proof. The statement makes sense by Lemma 8.2. We are going to use Derived
Categories of Schemes, Lemmas 3.8, 3.9, and 4.1 and Schemes, Lemmas 19.3 and
21.12 without further mention. By Derived Categories of Schemes, Lemma 22.4 we
see that X×S Y and Y ×S Z are tor independent over Y . This means that we have
base change for the cartesian diagram

X ×S Y ×S Z

��

// Y ×S Z

pY Z
Y

��
X ×S Y

pXY
Y // Y

for complexes with quasi-coherent cohomology sheaves, see Derived Categories of
Schemes, Lemma 22.5. Abbreviating p∗ = Lp∗, p∗ = Rp∗ and ⊗ = ⊗L we have for
M ∈ DQCoh(OX) the sequence of equalities

ΦK′(ΦK(M)) = pY Z
Z,∗(pY Z,∗

Y pXY
Y,∗ (pXY,∗

X M ⊗K)⊗K ′)

= pY Z
Z,∗(pr23,∗pr∗

12(pXY,∗
X M ⊗K)⊗K ′)

= pY Z
Z,∗(pr23,∗(pr∗

1M ⊗ pr∗
12K)⊗K ′)

= pY Z
Z,∗(pr23,∗(pr∗

1M ⊗ pr∗
12K ⊗ pr∗

23K ′))
= pr3,∗(pr∗

1M ⊗ pr∗
12K ⊗ pr∗

23K ′)
= pXZ

Z,∗ pr13,∗(pr∗
1M ⊗ pr∗

12K ⊗ pr∗
23K ′)

= pXZ
Z,∗ (pXZ,∗

X M ⊗ pr13,∗(pr∗
12K ⊗ pr∗

23K ′))

as desired. Here we have used the remark on base change in the second equality
and we have use Derived Categories of Schemes, Lemma 22.1 in the 4th and last
equality. □

Lemma 8.4.0FYT Let S be a scheme. Let X and Y be schemes over S. Let K ∈
D(OX×SY ). The corresponding Fourier-Mukai functor ΦK sends Dperf (OX) into
Dperf (OY ) if at least one of the following conditions is satisfied:

(1) S is Noetherian, X → S and Y → S are of finite type, K ∈ Db
Coh(OX×SY ),

the support of Hi(K) is proper over Y for all i, and K has finite tor di-
mension as an object of D(pr−1

2 OY ),
(2) X → S is of finite presentation and K can be represented by a bounded

complex K• of finitely presented OX×SY -modules, flat over Y , with support
proper over Y ,

(3) X → S is a proper flat morphism of finite presentation and K is perfect,
(4) S is Noetherian, X → S is flat and proper, and K is perfect
(5) X → S is a proper flat morphism of finite presentation and K is Y -perfect,
(6) S is Noetherian, X → S is flat and proper, and K is Y -perfect.

Proof. If M is perfect on X, then Lpr∗
1M is perfect on X ×S Y , see Cohomology,

Lemma 49.6. We will use this without further mention below. We will also use
that if X → S is of finite type, or proper, or flat, or of finite presentation, then the
same thing is true for the base change pr2 : X ×S Y → Y , see Morphisms, Lemmas
15.4, 41.5, 25.8, and 21.4.

https://stacks.math.columbia.edu/tag/0FYT


DERIVED CATEGORIES OF VARIETIES 12

Part (1) follows from Derived Categories of Schemes, Lemma 27.1 combined with
Derived Categories of Schemes, Lemma 11.6.
Part (2) follows from Derived Categories of Schemes, Lemma 30.1.
Part (3) follows from Derived Categories of Schemes, Lemma 30.4.
Part (4) follows from part (3) and the fact that a finite type morphism of Noetherian
schemes is of finite presentation by Morphisms, Lemma 21.9.
Part (5) follows from Derived Categories of Schemes, Lemma 35.10 combined with
Derived Categories of Schemes, Lemma 35.5.
Part (6) follows from part (5) in the same way that part (4) follows from part
(3). □

Lemma 8.5.0FYU Let S be a Noetherian scheme. Let X and Y be schemes of finite
type over S. Let K ∈ Db

Coh(OX×SY ). The corresponding Fourier-Mukai functor
ΦK sends Db

Coh(OX) into Db
Coh(OY ) if at least one of the following conditions is

satisfied:
(1) the support of Hi(K) is proper over Y for all i, and K has finite tor di-

mension as an object of D(pr−1
1 OX),

(2) K can be represented by a bounded complex K• of coherent OX×SY -modules,
flat over X, with support proper over Y ,

(3) the support of Hi(K) is proper over Y for all i and X is a regular scheme,
(4) K is perfect, the support of Hi(K) is proper over Y for all i, and Y → S

is flat.
Furthermore in each case the support condition is automatic if X → S is proper.

Proof. Let M be an object of Db
Coh(OX). In each case we will use Derived Cate-

gories of Schemes, Lemma 11.3 to show that
ΦK(M) = Rpr2,∗(Lpr∗

1M ⊗L
OX×S Y

K)

is in Db
Coh(OY ). The derived tensor product Lpr∗

1M⊗L
OX×S Y

K is a pseudo-coherent
object of D(OX×SY ) (by Cohomology, Lemma 47.3, Derived Categories of Schemes,
Lemma 10.3, and Cohomology, Lemma 47.5) whence has coherent cohomology
sheaves (by Derived Categories of Schemes, Lemma 10.3 again). In each case the
supports of the cohomology sheaves Hi(Lpr∗

1M ⊗L
OX×S Y

K) is proper over Y as
these supports are contained in the union of the supports of the Hi(K). Hence in
each case it suffices to prove that this tensor product is bounded below.
Case (1). By Cohomology, Lemma 27.4 we have

Lpr∗
1M ⊗L

OX×S Y
K ∼= pr−1

1 M ⊗L
pr−1

1 OX
K

with obvious notation. Hence the assumption on tor dimension and the fact that
M has only a finite number of nonzero cohomology sheaves, implies the bound we
want.
Case (2) follows because here the assumption implies that K has finite tor dimension
as an object of D(pr−1

1 OX) hence the argument in the previous paragraph applies.
In Case (3) it is also the case that K has finite tor dimension as an object of
D(pr−1

1 OX). Namely, choose affine opens U = Spec(A) and V = Spec(B) of X
and Y mapping into the affine open W = Spec(R) of S. Then K|U×V is given by a

https://stacks.math.columbia.edu/tag/0FYU
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bounded complex of finite A⊗R B-modules M•. Since A is a regular ring of finite
dimension we see that each M i has finite projective dimension as an A-module
(Algebra, Lemma 110.8) and hence finite tor dimension as an A-module. Thus
M• has finite tor dimension as a complex of A-modules (More on Algebra, Lemma
66.8). Since X × Y is quasi-compact we conclude there exist [a, b] such that for
every point z ∈ X × Y the stalk Kz has tor amplitude in [a, b] over OX,pr1(z). This
implies K has bounded tor dimension as an object of D(pr−1

1 OX), see Cohomology,
Lemma 48.5. We conclude as in the previous to paragraphs.

Case (4). With notation as above, the ring map R → B is flat. Hence the ring
map A → A ⊗R B is flat. Hence any projective A ⊗R B-module is A-flat. Thus
any perfect complex of A ⊗R B-modules has finite tor dimension as a complex of
A-modules and we conclude as before. □

Example 8.6.0FYV Let X → S be a separated morphism of schemes. Then the diagonal
∆ : X → X ×S X is a closed immersion and hence O∆ = ∆∗OX = R∆∗OX is a
quasi-coherent OX×SX -module of finite type which is flat over X (under either
projection). The Fourier-Mukai functor ΦO∆ is equal to the identity in this case.
Namely, for any M ∈ D(OX) we have

Lpr∗
1M ⊗L

OX×S X
O∆ = Lpr∗

1M ⊗L
OX×S X

R∆∗OX

= R∆∗(L∆∗Lpr∗
1M ⊗L

OX
OX)

= R∆∗(M)

The first equality we discussed above. The second equality is Cohomology, Lemma
54.4. The third because pr1 ◦∆ = idX and we have Cohomology, Lemma 27.2. If
we push this to X using Rpr2,∗ we obtain M by Cohomology, Lemma 28.2 and the
fact that pr2 ◦∆ = idX .

Lemma 8.7.0FYW Compare with
discussion in
[Riz17].

Let X → S and Y → S be morphisms of quasi-compact and quasi-
separated schemes. Let Φ : DQCoh(OX) → DQCoh(OY ) be a Fourier-Mukai func-
tor with pseudo-coherent kernel K ∈ DQCoh(OX×SY ). Let a : DQCoh(OY ) →
DQCoh(OX×SY ) be the right adjoint to Rpr2,∗, see Duality for Schemes, Lemma
3.1. Denote

K ′ = (Y ×S X → X ×S Y )∗RHomOX×S Y
(K, a(OY )) ∈ DQCoh(OY ×SX)

and denote Φ′ : DQCoh(OY )→ DQCoh(OX) the corresponding Fourier-Mukai trans-
form. There is a canonical map

HomX(M, Φ′(N)) −→ HomY (Φ(M), N)

functorial in M in DQCoh(OX) and N in DQCoh(OY ) which is an isomorphism if
(1) N is perfect, or
(2) K is perfect and X → S is proper flat and of finite presentation.

Proof. By Lemma 8.2 we obtain a functor Φ as in the statement. Observe that
a(OY ) is in D+

QCoh(OX×SY ) by Duality for Schemes, Lemma 3.5. Hence for K

pseudo-coherent we have K ′ ∈ DQCoh(OY ×SX) by Derived Categories of Schemes,
Lemma 10.8 we we obtain Φ′ as indicated.

https://stacks.math.columbia.edu/tag/0FYV
https://stacks.math.columbia.edu/tag/0FYW
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We abbreviate ⊗L = ⊗L
OX×S Y

and Hom = RHomOX×S Y
. Let M be in DQCoh(OX)

and let N be in DQCoh(OY ). We have

HomY (Φ(M), N) = HomY (Rpr2,∗(Lpr∗
1M ⊗L K), N)

= HomX×SY (Lpr∗
1M ⊗L K, a(N))

= HomX×SY (Lpr∗
1M, RHom(K, a(N)))

= HomX(M, Rpr1,∗RHom(K, a(N)))

where we have used Cohomology, Lemmas 42.2 and 28.1. There are canonical maps

Lpr∗
2N ⊗L RHom(K, a(OY )) α−→ RHom(K, Lpr∗

2N ⊗L a(OY )) β−→ RHom(K, a(N))

Here α is Cohomology, Lemma 42.6 and β is Duality for Schemes, Equation (8.0.1).
Combining all of these arrows we obtain the functorial displayed arrow in the state-
ment of the lemma.

The arrow α is an isomorphism by Derived Categories of Schemes, Lemma 10.9 as
soon as either K or N is perfect. The arrow β is an isomorphism if N is perfect
by Duality for Schemes, Lemma 8.1 or in general if X → S is flat proper of finite
presentation by Duality for Schemes, Lemma 12.3. □

Lemma 8.8.0FYX Compare with
discussion in
[Riz17].

Let S be a Noetherian scheme. Let Y → S be a flat proper Gorenstein
morphism and let X → S be a finite type morphism. Denote ω•

Y/S the relative
dualizing complex of Y over S. Let Φ : DQCoh(OX) → DQCoh(OY ) be a Fourier-
Mukai functor with perfect kernel K ∈ DQCoh(OX×SY ). Denote

K ′ = (Y ×S X → X ×S Y )∗(K∨ ⊗L
OX×S Y

Lpr∗
2ω•

Y/S) ∈ DQCoh(OY ×SX)

and denote Φ′ : DQCoh(OY )→ DQCoh(OX) the corresponding Fourier-Mukai trans-
form. There is a canonical isomorphism

HomY (N, Φ(M)) −→ HomX(Φ′(N), M)

functorial in M in DQCoh(OX) and N in DQCoh(OY ).

Proof. By Lemma 8.2 we obtain a functor Φ as in the statement.

Observe that formation of the relative dualizing complex commutes with base
change in our setting, see Duality for Schemes, Remark 12.5. Thus Lpr∗

2ω•
Y/S =

ω•
X×SY/X . Moreover, we observe that ω•

Y/S is an invertible object of the derived
category, see Duality for Schemes, Lemma 25.10, and a fortiori perfect.

To actually prove the lemma we’re going to cheat. Namely, we will show that if we
replace the roles of X and Y and K and K ′ then these are as in Lemma 8.7 and we
get the result. It is clear that K ′ is perfect as a tensor product of perfect objects
so that the discussion in Lemma 8.7 applies to it. To show that the procedure of
Lemma 8.7 applied to K ′ on Y ×S X produces a complex isomorphic to K it suffices
(details omitted) to show that

RHom(RHom(K, ω•
X×SY/X), ω•

X×SY/X) = K

This is clear because K is perfect and ω•
X×SY/X is invertible; details omitted. Thus

Lemma 8.7 produces a map

HomY (N, Φ(M)) −→ HomX(Φ′(N), M)

https://stacks.math.columbia.edu/tag/0FYX
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functorial in M in DQCoh(OX) and N in DQCoh(OY ) which is an isomorphism
because K ′ is perfect. This finishes the proof. □

Lemma 8.9.0FYY Let S be a Noetherian scheme.
(1) For X, Y proper and flat over S and K in Dperf (OX×SY ) we obtain a

Fourier-Mukai functor ΦK : Dperf (OX)→ Dperf (OY ).
(2) For X, Y , Z proper and flat over S, K ∈ Dperf (OX×SY ), K ′ ∈ Dperf (OY ×SZ)

the composition ΦK′ ◦ΦK : Dperf (OX)→ Dperf (OZ) is equal to ΦK′′ with
K ′′ ∈ Dperf (OX×SZ) computed as in Lemma 8.3,

(3) For X, Y , K, ΦK as in (1) if X → S is Gorenstein, then ΦK′ : Dperf (OY )→
Dperf (OX) is a right adjoint to ΦK where K ′ ∈ Dperf (OY ×SX) is the pull-
back of Lpr∗

1ω•
X/S ⊗

L
OX×S Y

K∨ by Y ×S X → X ×S Y .
(4) For X, Y , K, ΦK as in (1) if Y → S is Gorenstein, then ΦK′′ : Dperf (OY )→

Dperf (OX) is a left adjoint to ΦK where K ′′ ∈ Dperf (OY ×SX) is the pull-
back of Lpr∗

2ω•
Y/S ⊗

L
OX×S Y

K∨ by Y ×S X → X ×S Y .

Proof. Part (1) is immediate from Lemma 8.4 part (4).

Part (2) follows from Lemma 8.3 and the fact that K ′′ = Rpr13,∗(Lpr∗
12K⊗L

OX×S Y ×S Z

Lpr∗
23K ′) is perfect for example by Derived Categories of Schemes, Lemma 27.4.

The adjointness in part (3) on all complexes with quasi-coherent cohomology sheaves
follows from Lemma 8.7 with K ′ equal to the pullback of RHomOX×S Y

(K, a(OY ))
by Y ×S X → X ×S Y where a is the right adjoint to Rpr2,∗ : DQCoh(OX×SY )→
DQCoh(OY ). Denote f : X → S the structure morphism of X. Since f is proper
the functor f ! : D+

QCoh(OS)→ D+
QCoh(OX) is the restriction to D+

QCoh(OS) of the
right adjoint to Rf∗ : DQCoh(OX)→ DQCoh(OS), see Duality for Schemes, Section
16. Hence the relative dualizing complex ω•

X/S as defined in Duality for Schemes,
Remark 12.5 is equal to ω•

X/S = f !OS . Since formation of the relative dualizing
complex commutes with base change (see Duality for Schemes, Remark 12.5) we
see that a(OY ) = Lpr∗

1ω•
X/S . Thus

RHomOX×S Y
(K, a(OY )) ∼= Lpr∗

1ω•
X/S ⊗

L
OX×S Y

K∨

by Cohomology, Lemma 50.5. Finally, since X → S is assumed Gorenstein the
relative dualizing complex is invertible: this follows from Duality for Schemes,
Lemma 25.10. We conclude that ω•

X/S is perfect (Cohomology, Lemma 52.2) and
hence K ′ is perfect. Therefore ΦK′ does indeed map Dperf (OY ) into Dperf (OX)
which finishes the proof of (3).

The proof of (4) is the same as the proof of (3) except one uses Lemma 8.8 instead
of Lemma 8.7. □

9. Resolutions and bounds

0FYZ The diagonal of a smooth proper scheme has a nice resolution.

Lemma 9.1.0FZ0 Let R be a Noetherian ring. Let X, Y be finite type schemes over
R having the resolution property. For any coherent OX×RY -module F there exist a
surjection E ⊠ G → F where E is a finite locally free OX-module and G is a finite
locally free OY -module.

https://stacks.math.columbia.edu/tag/0FYY
https://stacks.math.columbia.edu/tag/0FZ0
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Proof. Let U ⊂ X and V ⊂ Y be affine open subschemes. Let I ⊂ OX be the
ideal sheaf of the reduced induced closed subscheme structure on X \U . Similarly,
let I ′ ⊂ OY be the ideal sheaf of the reduced induced closed subscheme structure
on Y \ V . Then the ideal sheaf

J = Im(pr∗
1I ⊗OX×RY

pr∗
2I ′ → OX×RY )

satisfies V (J ) = X ×R Y \ U ×R V . For any section s ∈ F(U ×R V ) we can find
an integer n > 0 and a map J n → F whose restriction to U ×R V gives s, see
Cohomology of Schemes, Lemma 10.5. By assumption we can choose surjections
E → I and G → I ′. These produce corresponding surjections

E ⊠ G → J and E⊗n ⊠ G⊗n → J n

and hence a map E⊗n ⊠G⊗n → F whose image contains the section s over U ×R V .
Since we can cover X ×R Y by a finite number of affine opens of the form U ×R V
and since F|U×RV is generated by finitely many sections (Properties, Lemma 16.1)
we conclude that there exists a surjection⊕

j=1,...,N
E⊗nj

j ⊠ G⊗nj

j → F

where Ej is finite locally free on X and Gj is finite locally free on Y . Setting
E =

⊕
E⊗nj

j and G =
⊕
G⊗nj

j we conclude that the lemma is true. □

Lemma 9.2.0FZ1 Let R be a ring. Let X, Y be quasi-compact and quasi-separated
schemes over R having the resolution property. For any finite type quasi-coherent
OX×RY -module F there exist a surjection E ⊠ G → F where E is a finite locally
free OX-module and G is a finite locally free OY -module.

Proof. Follows from Lemma 9.1 by a limit argument. We urge the reader to skip
the proof. Since X×R Y is a closed subscheme of X×Z Y it is harmless if we replace
R by Z. We can write F as the quotient of a finitely presented OX×RY -module by
Properties, Lemma 22.8. Hence we may assume F is of finite presentation. Next we
can write X = lim Xi with Xi of finite presentation over Z and similarly Y = lim Yj ,
see Limits, Proposition 5.4. Then F will descend to Fij on some Xi×R Yj (Limits,
Lemma 10.2) and so does the property of having the resolution property (Derived
Categories of Schemes, Lemma 36.9). Then we apply Lemma 9.1 to Fij and we
pullback. □

Lemma 9.3.0FZ2 Let R be a Noetherian ring. Let X be a separated finite type scheme
over R which has the resolution property. Set O∆ = ∆∗(OX) where ∆ : X →
X ×R X is the diagonal of X/k. There exists a resolution

. . .→ E2 ⊠ G2 → E1 ⊠ G1 → E0 ⊠ G0 → O∆ → 0
where each Ei and Gi is a finite locally free OX-module.

Proof. Since X is separated, the diagonal morphism ∆ is a closed immersion and
hence O∆ is a coherent OX×RX -module (Cohomology of Schemes, Lemma 9.8).
Thus the lemma follows immediately from Lemma 9.1. □

Lemma 9.4.0FZ3 Let X be a regular Noetherian scheme of dimension d <∞. Then
(1) for F , G coherent OX-modules we have Extn

X(F ,G) = 0 for n > d, and
(2) for K, L ∈ Db

Coh(OX) and a ∈ Z if Hi(K) = 0 for i < a+d and Hi(L) = 0
for i ≥ a then HomX(K, L) = 0.

https://stacks.math.columbia.edu/tag/0FZ1
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Proof. To prove (1) we use the spectral sequence
Hp(X, Extq(F ,G))⇒ Extp+q

X (F ,G)
of Cohomology, Section 43. Let x ∈ X. We have

Extq(F ,G)x = Extq
OX,x

(Fx,Gx)

see Cohomology, Lemma 51.4 (this also uses that F is pseudo-coherent by Derived
Categories of Schemes, Lemma 10.3). Set dx = dim(OX,x). Since OX,x is regu-
lar the ring OX,x has global dimension dx, see Algebra, Proposition 110.1. Thus
Extq

OX,x
(Fx,Gx) is zero for q > dx. It follows that the modules Extq(F ,G) have

support of dimension at most d − q. Hence we have Hp(X, Extq(F ,G)) = 0 for
p > d− q by Cohomology, Proposition 20.7. This proves (1).
Proof of (2). We may use induction on the number of nonzero cohomology sheaves
of K and L. The case where these numbers are 0, 1 follows from (1). If the number
of nonzero cohomology sheaves of K is > 1, then we let i ∈ Z be minimal such that
Hi(K) is nonzero. We obtain a distinguished triangle

Hi(K)[−i]→ K → τ≥i+1K

(Derived Categories, Remark 12.4) and we get the vanishing of Hom(K, L) from
the vanishing of Hom(Hi(K)[−i], L) and Hom(τ≥i+1K, L) by Derived Categories,
Lemma 4.2. Simlarly if L has more than one nonzero cohomology sheaf. □

Lemma 9.5.0FZ4 Let X be a regular Noetherian scheme of dimension d <∞. Let K ∈
Db

Coh(OX) and a ∈ Z. If Hi(K) = 0 for a < i < a + d, then K = τ≤aK ⊕ τ≥a+dK.

Proof. We have τ≤aK = τ≤a+d−1K by the assumed vanishing of cohomology
sheaves. By Derived Categories, Remark 12.4 we have a distinguished triangle

τ≤aK → K → τ≥a+dK
δ−→ (τ≤aK)[1]

By Derived Categories, Lemma 4.11 it suffices to show that the morphism δ is zero.
This follows from Lemma 9.4. □

Lemma 9.6.0FZ5 Let k be a field. Let X be a quasi-compact separated smooth scheme
over k. There exist finite locally free OX-modules E and G such that

O∆ ∈ ⟨E ⊠ G⟩
in D(OX×X) where the notation is as in Derived Categories, Section 36.

Proof. Recall that X is regular by Varieties, Lemma 25.3. Hence X has the
resolution property by Derived Categories of Schemes, Lemma 36.8. Hence we may
choose a resolution as in Lemma 9.3. Say dim(X) = d. Since X×X is smooth over
k it is regular. Hence X×X is a regular Noetherian scheme with dim(X×X) = 2d.
The object

K = (E2d ⊠ G2d → . . .→ E0 ⊠ G0)
of Dperf (OX×X) has cohomology sheaves O∆ in degree 0 and Ker(E2d ⊠ G2d →
E2d−1 ⊠ G2d−1) in degree −2d and zero in all other degrees. Hence by Lemma 9.5
we see that O∆ is a summand of K in Dperf (OX×X). Clearly, the object K is in〈⊕

i=0,...,2d
Ei ⊠ Gi

〉
⊂

〈(⊕
i=0,...,2d

Ei

)
⊠

(⊕
i=0,...,2d

Gi

)〉
which finishes the proof. (The reader may consult Derived Categories, Lemmas
36.1 and 35.7 to see that our object is contained in this category.) □

https://stacks.math.columbia.edu/tag/0FZ4
https://stacks.math.columbia.edu/tag/0FZ5
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Lemma 9.7.0FZ6 Let k be a field. Let X be a scheme proper and smooth over k. Then
Dperf (OX) has a strong generator.

Proof. Using Lemma 9.6 choose finite locally free OX -modules E and G such that
O∆ ∈ ⟨E ⊠ G⟩ in D(OX×X). We claim that G is a strong generator for Dperf (OX).
With notation as in Derived Categories, Section 35 choose m, n ≥ 1 such that

O∆ ∈ smd(add(E ⊠ G[−m, m])⋆n)
This is possible by Derived Categories, Lemma 36.2. Let K be an object of
Dperf (OX). Since Lpr∗

1K ⊗L
OX×X

− is an exact functor and since

Lpr∗
1K ⊗L

OX×X
(E ⊠ G) = (K ⊗L

OX
E) ⊠ G

we conclude from Derived Categories, Remark 35.5 that
Lpr∗

1K ⊗L
OX×X

O∆ ∈ smd(add((K ⊗L
OX
E) ⊠ G[−m, m])⋆n)

Applying the exact functor Rpr2,∗ and observing that

Rpr2,∗
(
(K ⊗L

OX
E) ⊠ G

)
= RΓ(X, K ⊗L

OX
E)⊗k G

by Derived Categories of Schemes, Lemma 22.1 we conclude that
K = Rpr2,∗(Lpr∗

1K ⊗L
OX×X

O∆) ∈ smd(add(RΓ(X, K ⊗L
OX
E)⊗k G[−m, m])⋆n)

The equality follows from the discussion in Example 8.6. Since K is perfect, there
exist a ≤ b such that Hi(X, K) is nonzero only for i ∈ [a, b]. Since X is proper, each
Hi(X, K) is finite dimensional. We conclude that the right hand side is contained
in smd(add(G[−m + a, m + b])⋆n) which is itself contained in ⟨G⟩n by one of the
references given above. This finishes the proof. □

Lemma 9.8.0FZ7 Let k be a field. Let X be a proper smooth scheme over k. There
exists integers m, n ≥ 1 and a finite locally free OX-module G such that every
coherent OX-module is contained in smd(add(G[−m, m])⋆n) with notation as in
Derived Categories, Section 35.

Proof. In the proof of Lemma 9.7 we have shown that there exist m′, n ≥ 1 such
that for any coherent OX -module F ,

F ∈ smd(add(G[−m′ + a, m′ + b])⋆n)
for any a ≤ b such that Hi(X,F) is nonzero only for i ∈ [a, b]. Thus we can take
a = 0 and b = dim(X). Taking m = max(m′, m′ + b) finishes the proof. □

The following lemma is the boundedness result referred to in the title of this section.

Lemma 9.9.0FZ8 Let k be a field. Let X be a smooth proper scheme over k. Let A
be an abelian category. Let H : Dperf (OX)→ A be a homological functor (Derived
Categories, Definition 3.5) such that for all K in Dperf (OX) the object Hi(K) is
nonzero for only a finite number of i ∈ Z. Then there exists an integer m ≥ 1 such
that Hi(F) = 0 for any coherent OX-module F and i ̸∈ [−m, m]. Similarly for
cohomological functors.

Proof. Combine Lemma 9.8 with Derived Categories, Lemma 35.8. □

Lemma 9.10.0FZ9 Let k be a field. Let X, Y be finite type schemes over k. Let
K0 → K1 → K2 → . . . be a system of objects of Dperf (OX×Y ) and m ≥ 0 an
integer such that

https://stacks.math.columbia.edu/tag/0FZ6
https://stacks.math.columbia.edu/tag/0FZ7
https://stacks.math.columbia.edu/tag/0FZ8
https://stacks.math.columbia.edu/tag/0FZ9
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(1) Hq(Ki) is nonzero only for q ≤ m,
(2) for every coherent OX-module F with dim(Supp(F)) = 0 the object

Rpr2,∗(pr∗
1F ⊗L

OX×Y
Kn)

has vanishing cohomology sheaves in degrees outside [−m, m]∪[−m−n, m−
n] and for n > 2m the transition maps induce isomorphisms on cohomology
sheaves in degrees in [−m, m].

Then Kn has vanishing cohomology sheaves in degrees outside [−m, m] ∪ [−m −
n, m− n] and for n > 2m the transition maps induce isomorphisms on cohomology
sheaves in degrees in [−m, m]. Moreover, if X and Y are smooth over k, then for
n large enough we find Kn = K ⊕ Cn in Dperf (OX×Y ) where K has cohomology
only indegrees [−m, m] and Cn only in degrees [−m− n, m− n] and the transition
maps define isomorphisms between various copies of K.

Proof. Let Z be the scheme theoretic support of an F as in (2). Then Z → Spec(k)
is finite, hence Z×Y → Y is finite. It follows that for an object M of DQCoh(OX×Y )
with cohomology sheaves supported on Z×Y we have Hi(Rpr2,∗(M)) = pr2,∗Hi(M)
and the functor pr2,∗ is faithful on quasi-coherent modules supported on Z × Y ;
details omitted. Hence we see that the objects

pr∗
1F ⊗L

OX×Y
Kn

in Dperf (OX×Y ) have vanishing cohomology sheaves outside [−m, m]∪[−m−n, m−
n] and for n > 2m the transition maps induce isomorphisms on cohomology sheaves
in [−m, m]. Let z ∈ X × Y be a closed point mapping to the closed point x ∈ X.
Then we know that

Kn,z ⊗L
OX×Y,z

OX×Y,z/mt
xOX×Y,z

has nonzero cohomology only in the intervals [−m, m] ∪ [−m − n, m − n]. We
conclude by More on Algebra, Lemma 100.2 that Kn,z only has nonzero cohomology
in degrees [−m, m] ∪ [−m − n, m − n]. Since this holds for all closed points of
X×Y , we conclude Kn only has nonzero cohomology sheaves in degrees [−m, m]∪
[−m − n, m − n]. In exactly the same way we see that the maps Kn → Kn+1 are
isomorphisms on cohomology sheaves in degrees [−m, m] for n > 2m.
If X and Y are smooth over k, then X × Y is smooth over k and hence regular by
Varieties, Lemma 25.3. Thus we will obtain the direct sum decomposition of Kn as
soon as n > 2m + dim(X × Y ) from Lemma 9.5. The final statement is clear from
this. □

10. Sibling functors

0FZS In this section we prove some categorical result on the following notion.

Definition 10.1.0FZT Let A be an abelian category. Let D be a triangulated category.
We say two exact functors of triangulated categories

F, F ′ : Db(A) −→ D
are siblings, or we say F ′ is a sibling of F , if the following two conditions are satisfied

(1) the functors F ◦ i and F ′ ◦ i are isomorphic where i : A → Db(A) is the
inclusion functor, and

(2) F (K) ∼= F ′(K) for any K in Db(A).

Sometimes the second condition is a consequence of the first.

https://stacks.math.columbia.edu/tag/0FZT
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Lemma 10.2.0FZU Let A be an abelian category. Let D be a triangulated category.
Let F, F ′ : Db(A) −→ D be exact functors of triangulated categories. Assume

(1) the functors F ◦ i and F ′ ◦ i are isomorphic where i : A → Db(A) is the
inclusion functor, and

(2) for all X, Y ∈ Ob(A) we have Extq
D(F (X), F (Y )) = 0 for q < 0 (for

example if F is fully faithful).
Then F and F ′ are siblings.

Proof. Let K ∈ Db(A). We will show F (K) is isomorphic to F ′(K). We can
represent K by a bounded complex A• of objects of A. After replacing K by a
translation we may assume Ai = 0 for i > 0. Choose n ≥ 0 such that A−i = 0 for
i > n. The objects

Mi = (A−i → . . .→ A0)[−i], i = 0, . . . , n

form a Postnikov system in Db(A) for the complex A• = A−n → . . . → A0 in
Db(A). See Derived Categories, Example 41.2. Since both F and F ′ are exact
functors of triangulated categories both

F (Mi) and F ′(Mi)

form a Postnikov system in D for the complex

F (A−n)→ . . .→ F (A0) = F ′(A−n)→ . . .→ F ′(A0)

Since all negative Exts between these objects vanish by assumption we conclude by
uniqueness of Postnikov systems (Derived Categories, Lemma 41.6) that F (K) =
F (Mn[n]) ∼= F ′(Mn[n]) = F ′(K). □

Lemma 10.3.0FZV Let F and F ′ be siblings as in Definition 10.1. Then
(1) if F is essentially surjective, then F ′ is essentially surjective,
(2) if F is fully faithful, then F ′ is fully faithful.

Proof. Part (1) is immediate from property (2) for siblings.

Assume F is fully faithful. Denote D′ ⊂ D the essential image of F so that F :
Db(A)→ D′ is an equivalence. Since the functor F ′ factors through D′ by property
(2) for siblings, we can consider the functor H = F −1 ◦ F ′ : Db(A) → Db(A).
Observe that H is a sibling of the identity functor. Since it suffices to prove that
H is fully faithful, we reduce to the problem discussed in the next paragraph.

Set D = Db(A). We have to show a sibling F : D → D of the identity functor is fully
faithful. Denote aX : X → F (X) the functorial isomorphism for X ∈ Ob(A) given
to us by Definition 10.1. For any K in D and distinguished triangle K1 → K2 → K3
of D if the maps

F : Hom(K, Ki[n])→ Hom(F (K), F (Ki[n]))

are isomorphisms for all n ∈ Z and i = 1, 3, then the same is true for i = 2 and
all n ∈ Z. This uses the 5-lemma Homology, Lemma 5.20 and Derived Categories,
Lemma 4.2; details omitted. Similarly, if the maps

F : Hom(Ki[n], K)→ Hom(F (Ki[n]), F (K))

https://stacks.math.columbia.edu/tag/0FZU
https://stacks.math.columbia.edu/tag/0FZV
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are isomorphisms for all n ∈ Z and i = 1, 3, then the same is true for i = 2 and all
n ∈ Z. Using the canonical truncations and induction on the number of nonzero
cohomology objects, we see that it is enough to show

F : Extq(X, Y )→ Extq(F (X), F (Y ))

is bijective for all X, Y ∈ Ob(A) and all q ∈ Z. Since F is a sibling of id we have
F (X) ∼= X and F (Y ) ∼= Y hence the right hand side is zero for q < 0. The case
q = 0 is OK by our assumption that F is a sibling of the identity functor. It remains
to prove the cases q > 0.

The case q = 1: Injectivity. An element ξ of Ext1(X, Y ) gives rise to a distinguished
triangle

Y → E → X
ξ−→ Y [1]

Observe that E ∈ Ob(A). Since F is a sibling of the identity functor we obtain a
commutative diagram

E

��

// X

��
F (E) // F (X)

whose vertical arrows are the isomorphisms aE and aX . By TR3 the distinguished
triangle associated to ξ we started with is isomorphic to the distinguished triangle

F (Y )→ F (E)→ F (X) F (ξ)−−−→ F (Y [1]) = F (Y )[1]

Thus ξ = 0 if and only if F (ξ) is zero, i.e., we see that F : Ext1(X, Y ) →
Ext1(F (X), F (Y )) is injective.

The case q = 1: Surjectivity. Let θ be an element of Ext1(F (X), F (Y )). This
defines an extension of F (X) by F (Y ) in A which we may write as F (E) as F is a
sibling of the identity functor. We thus get a distinguished triangle

F (Y ) F (α)−−−→ F (E) F (β)−−−→ F (X) θ−→ F (Y [1]) = F (Y )[1]

for some morphisms α : Y → E and β : E → X. Since F is a sibling of the identity
functor, the sequence 0→ Y → E → X → 0 is a short exact sequence in A! Hence
we obtain a distinguished triangle

Y
α−→ E

β−→ X
δ−→ Y [1]

for some morphism δ : X → Y [1]. Applying the exact functor F we obtain the
distinguished triangle

F (Y ) F (α)−−−→ F (E) F (β)−−−→ F (X) F (δ)−−−→ F (Y )[1]

Arguing as above, we see that these triangles are isomorphic. Hence there exists a
commutative diagram

F (X)

γ

��

F (δ)
// F (Y [1])

ϵ

��
F (X) θ // F (Y [1])
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for some isomorphisms γ, ϵ (we can say more but we won’t need more information).
We may write γ = F (γ′) and ϵ = F (ϵ′). Then we have θ = F (ϵ′ ◦ δ ◦ (γ′)−1) and
we see the surjectivity holds.
The case q > 1: surjectivity. Using Yoneda extensions, see Derived Categories,
Section 27, we find that for any element ξ in Extq(F (X), F (Y )) we can find F (X) =
B0, B1, . . . , Bq−1, Bq = F (Y ) ∈ Ob(A) and elements

ξi ∈ Ext1(Bi−1, Bi)
such that ξ is the composition ξq ◦ . . . ◦ ξ1. Write Bi = F (Ai) (of course we have
Ai = Bi but we don’t need to use this) so that

ξi = F (ηi) ∈ Ext1(F (Ai−1), F (Ai)) with ηi ∈ Ext1(Ai−1, Ai)
by surjectivity for q = 1. Then η = ηq ◦ . . . ◦ η1 is an element of Extq(X, Y ) with
F (η) = ξ.
The case q > 1: injectivity. An element ξ of Extq(X, Y ) gives rise to a distinguished
triangle

Y [q − 1]→ E → X
ξ−→ Y [q]

Applying F we obtain a distinguished triangle

F (Y )[q − 1]→ F (E)→ F (X) F (ξ)−−−→ F (Y )[q]
If F (ξ) = 0, then F (E) ∼= F (Y )[q−1]⊕F (X) in D, see Derived Categories, Lemma
4.11. Since F is a sibling of the identity functor we have E ∼= F (E) and hence

E ∼= F (E) ∼= F (Y )[q − 1]⊕ F (X) ∼= Y [q − 1]⊕X

In other words, E is isomorphic to the direct sum of its cohomology objects. This
implies that the initial distinguished triangle is split, i.e., ξ = 0. □

Let us make a nonstandard definition. Let A be an abelian category. Let us say A
has enough negative objects if given any X ∈ Ob(A) there exists an object N such
that

(1) there is a surjection N → X and
(2) Hom(X, N) = 0.

Let us prove a couple of lemmas about this notion in order to help with the proof
of Proposition 10.6.

Lemma 10.4.0GWF Let A be an abelian category with enough negative objects. Let X ∈
Db(A). Let b ∈ Z with Hi(X) = 0 for i > b. Then there exists a map N [−b]→ X
such that the induced map N → Hb(X) is surjective and Hom(Hb(X), N) = 0.

Proof. Using the truncation functors we can represent X by a complex Aa →
Aa+1 → . . .→ Ab of objects of A. Choose N in A such that there exists a surjection
t : N → Ab and such that Hom(Ab, N) = 0. Then the surjection t defines a map
N [−b]→ X as desired. □

Lemma 10.5.0GWG Let A be an abelian category with enough negative objects. Let
f : X → X ′ be a morphism of Db(A). Let b ∈ Z such that Hi(X) = 0 for i > b and
Hi(X ′) = 0 for i ≥ b. Then there exists a map N [−b] → X such that the induced
map N → Hb(X) is surjective, such that Hom(Hb(X), N) = 0, and such that the
composition N [−b]→ X → X ′ is zero.

https://stacks.math.columbia.edu/tag/0GWF
https://stacks.math.columbia.edu/tag/0GWG
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Proof. We can represent f by a map f• : A• → B• of bounded complexes of
objects of A, see for example Derived Categories, Lemma 11.6. Consider the object

C = Ker(Ab → Ab+1)×Ker(Bb→Bb+1) Bb−1

of A. Since Hb(B•) = 0 we see that C → Hb(A•) is surjective. On the other
hand, the map C → Ab → Bb is the same as the map C → Bb−1 → Bb and
hence the composition C[−b] → X → X ′ is zero. Since A has enough negative
objects, we can find an object N which has a surjection N → C⊕Hb(X) such that
Hom(C⊕Hb(X), N) = 0. Then N together with the map N [−b]→ X is a solution
to the problem posed by the lemma. □

We encourage the reader to read the original [Orl97, Proposition 2.16] for the
marvellous ideas that go into the proof of the following proposition.

Proposition 10.6.0FZW [Orl97, Proposition
2.16]; the fact that
we do not need to
assume vanishing of
Extq(N, X) for
q > 0 in the
definition of
negative objects
above is due to
[CS14].

Let F and F ′ be siblings as in Definition 10.1. Assume that
F is fully faithful and that A has enough negative objects (see above). Then F and
F ′ are isomorphic functors.

Proof. By part (2) of Definition 10.1 the image of the functor F ′ is contained in
the essential image of the functor F . Hence the functor H = F −1 ◦F ′ is a sibling of
the identity functor. This reduces us to the case described in the next paragraph.

Let D = Db(A). We have to show a sibling F : D → D of the identity functor
is isomorphic to the identity functor. Given an object X of D let us say X has
width w = w(X) if w ≥ 0 is minimal such that there exists an integer a ∈ Z with
Hi(X) = 0 for i ̸∈ [a, a + w − 1]. Since F is a sibling of the identity and since
F ◦ [n] = [n] ◦ F we are aready given isomorphisms

cX : X → F (X)

for w(X) ≤ 1 compatible with shifts. Moreover, if X = A[−a] and X ′ = A′[−a] for
some A, A′ ∈ Ob(A) then for any morphism f : X → X ′ the diagram

(10.6.1)0FZX

X

cX

��

f
// X ′

cX′

��
F (X)

F (f) // F (X ′)

is commutative.

Next, let us show that for any morphism f : X → X ′ with w(X), w(X ′) ≤ 1 the
diagram (10.6.1) commutes. If X or X ′ is zero, this is clear. If not then we can
write X = A[−a] and X ′ = A′[−a′] for unique A, A′ in A and a, a′ ∈ Z. The case
a = a′ was discussed above. If a′ > a, then f = 0 (Derived Categories, Lemma 27.3)
and the result is clear. If a′ < a then f corresponds to an element ξ ∈ Extq(A, A′)
with q = a − a′. Using Yoneda extensions, see Derived Categories, Section 27, we
can find A = A0, A1, . . . , Aq−1, Aq = A′ ∈ Ob(A) and elements

ξi ∈ Ext1(Ai−1, Ai)

such that ξ is the composition ξq ◦ . . . ◦ ξ1. In other words, setting Xi = Ai[−a + i]
we obtain morphisms

X = X0
f1−→ X1 → . . .→ Xq−1

fq−→ Xq = X ′

https://stacks.math.columbia.edu/tag/0FZW
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whose compostion is f . Since the commutativity of (10.6.1) for f1, . . . , fq implies it
for f , this reduces us to the case q = 1. In this case after shifting we may assume
we have a distinguished triangle

A′ → E → A
f−→ A′[1]

Observe that E is an object of A. Consider the following diagram

E

cE

��

// A

cA

��

f
// A′[1]

cA′ [1]
��

γ

��
ϵ

zz

// E[1]

cE [1]
��

F (E) // F (A)
F (f) // F (A′)[1] // F (E)[1]

whose rows are distinguished triangles. The square on the right commutes already
but we don’t yet know that the middle square does. By the axioms of a triangulated
category we can find a morphism γ which does make the diagram commute. Then
γ − cA′ [1] composed with F (A′)[1]→ F (E)[1] is zero hence we can find ϵ : A′[1]→
F (A) such that γ − cA′ [1] = F (f) ◦ ϵ. However, any arrow A′[1]→ F (A) is zero as
it is a negative ext class between objects of A. Hence γ = cA′ [1] and we conclude
the middle square commutes too which is what we wanted to show.

To finish the proof we are going to argue by induction on w that there exist isomor-
phisms cX : X → F (X) for all X with w(X) ≤ w compatible with all morphisms
between such objects. The base case w = 1 was shown above. Assume we know
the result for some w ≥ 1.

Let X be an object with w(X) = w+1. Pick a ∈ Z with Hi(X) = 0 for i ̸∈ [a, a+w].
Set b = a + w so that Hb(X) is nonzero. Choose N [−b] → X as in Lemma 10.4.
Choose a distinguished diagram

N [−b]→ X → Y → N [−b + 1]

Computing the long exact cohomology sequence we find w(Y ) ≤ w. Hence by
induction we find the solid arrows in the following diagram

N [−b] //

cN [−b]
��

X //

cN[−b]→X

��

Y //

cY

��

N [−b + 1]

cN [−b+1]
��

F (N)[−b] // F (X) // F (Y ) // F (N)[−b + 1]

We obtain the dotted arrow cN [−b]→X . By Derived Categories, Lemma 4.8 the
dotted arrow is unique because Hom(X, F (N)[−b]) ∼= Hom(X, N [−b]) = 0 by our
choice of N . In fact, cN [−b]→X is the unique dotted arrow making the square with
vertices X, Y, F (X), F (Y ) commute.

Let N ′[−b]→ X be another map as in Lemma 10.4 and let us prove that cN [−b]→X =
cN ′[−b]→X . Observe that the map (N⊕N ′)[−b]→ X also satisfies the conditions of
Lemma 10.4. Thus we may assume N ′[−b] → X factors as N ′[−b] → N [−b] → X
for some morphism N ′ → N . Choose distinguished triangles N [−b] → X → Y →
N [−b + 1] and N ′[−b] → X → Y ′ → N ′[−b + 1]. By axiom TR3 we can find a
morphism g : Y ′ → Y which joint with idX and N ′ → N forms a morphism of
triangles. Since we have (10.6.1) for g we conclude that

(F (X)→ F (Y )) ◦ cN ′[−b]→X = (F (X)→ F (Y )) ◦ cN [−b]→X
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The uniqueness of cN [−b]→X pointed out in the construction above now shows that
cN ′[−b]→X = cN [−b]→X .
Thus we can now define for X of width w + 1 the isomorphism cX : X → F (X) as
the common value of the maps cN [−b]→X where N [−b] → X is as in Lemma 10.4.
To finish the proof, we have to show that the diagrams (10.6.1) commute for all
morphisms f : X → X ′ between objects with w(X) ≤ w + 1 and w(X ′) ≤ w + 1.
Choose a ≤ b ≤ a + w such that Hi(X) = 0 for i ̸∈ [a, b] and a′ ≤ b′ ≤ a′ + w such
that Hi(X ′) = 0 for i ̸∈ [a′, b′]. We will use induction on (b′− a′) + (b− a) to show
the claim. (The base case is when this number is zero which is OK because w ≥ 1.)
We distinguish two cases.
Case I: b′ < b. In this case, by Lemma 10.5 we may choose N [−b]→ X as in Lemma
10.4 such that the composition N [−b] → X → X ′ is zero. Choose a distuiguished
triangle N [−b]→ X → Y → N [−b + 1]. Since N [−b]→ X ′ is zero, we find that f
factors as X → Y → X ′. Since Hi(Y ) is nonzero only for i ∈ [a, b − 1] we see by
induction that (10.6.1) commutes for Y → X ′. The diagram (10.6.1) commutes for
X → Y by construction if w(X) = w + 1 and by our first induction hypothesis if
w(X) ≤ w. Hence (10.6.1) commutes for f .
Case II: b′ ≥ b. In this case we choose N ′[−b′] → X ′ as in Lemma 10.4. We may
also assume that Hom(Hb′(X), N ′) = 0 (this is relevant only if b′ = b), for exam-
ple because we can replace N ′ by an object N ′′ which surjects onto N ′ ⊕Hb′(X)
and such that Hom(N ′ ⊕ Hb′(X), N ′′) = 0. We choose a distinguished triangle
N ′[−b′] → X ′ → Y ′ → N ′[−b′ + 1]. Since Hom(X, X ′) → Hom(X, Y ′) is injec-
tive by our choice of N ′ (details omitted) the same is true for Hom(X, F (X ′)) →
Hom(X, F (Y ′)). Hence it suffices in this case to check that (10.6.1) commutes for
the composition X → Y ′ of the morphisms X → X ′ → Y ′. Since Hi(Y ′) is nonzero
only for i ∈ [a′, b′ − 1] we conclude by induction hypothesis. □

11. Deducing fully faithfulness

0G23 It will be useful for us to know when a functor is fully faithful we offer the following
variant of [Orl97, Lemma 2.15].

Lemma 11.1.0G24 Variant of [Orl97,
Lemma 2.15]

Let F : D → D′ be an exact functor of triangulated categories. Let
S ⊂ Ob(D) be a set of objects. Assume

(1) F has both right and left adjoints,
(2) for K ∈ D if Hom(E, K[i]) = 0 for all E ∈ S and i ∈ Z then K = 0,
(3) for K ∈ D if Hom(K, E[i]) = 0 for all E ∈ S and i ∈ Z then K = 0,
(4) the map Hom(E, E′[i]) → Hom(F (E), F (E′)[i]) induced by F is bijective

for all E, E′ ∈ S and i ∈ Z.
Then F is fully faithful.

Proof. Denote Fr and Fl the right and left adjoints of F . For E ∈ S choose a
distinguished triangle

E → Fr(F (E))→ C → E[1]
where the first arrow is the unit of the adjunction. For E′ ∈ S we have

Hom(E′, Fr(F (E))[i]) = Hom(F (E′), F (E)[i]) = Hom(E′, E[i])
The last equality holds by assumption (4). Hence applying the homological functor
Hom(E′,−) (Derived Categories, Lemma 4.2) to the distinguished triangle above

https://stacks.math.columbia.edu/tag/0G24
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we conclude that Hom(E′, C[i]) = 0 for all i ∈ Z and E′ ∈ S. By assumption (2)
we conclude that C = 0 and E = Fr(F (E)).

For K ∈ Ob(D) choose a distinguished triangle

Fl(F (K))→ K → C → Fl(F (K))[1]

where the first arrow is the counit of the adjunction. For E ∈ S we have

Hom(Fl(F (K)), E[i]) = Hom(F (K), F (E)[i]) = Hom(K, Fr(F (E))[i]) = Hom(K, E[i])

where the last equality holds by the result of the first paragraph. Thus we conclude
as before that Hom(C, E[i]) = 0 for all E ∈ S and i ∈ Z. Hence C = 0 by
assumption (3). Thus F is fully faithful by Categories, Lemma 24.4. □

Lemma 11.2.0G02 Let k be a field. Let X be a scheme of finite type over k which is
regular. Let x ∈ X be a closed point. For a coherent OX-module F supported at
x choose a coherent OX-module F ′ supported at x such that Fx and F ′

x are Matlis
dual. Then there is an isomorphism

HomX(F , M) = H0(X, M ⊗L
OX
F ′[−dx])

where dx = dim(OX,x) functorial in M in Dperf (OX).

Proof. Since F is supported at x we have

HomX(F , M) = HomOX,x
(Fx, Mx)

and similarly we have

H0(X, M ⊗L
OX
F ′[−dx]) = TorOX,x

dx
(Mx,F ′

x)

Thus it suffices to show that given a Noetherian regular local ring A of dimension
d and a finite length A-module N , if N ′ is the Matlis dual to N , then there exists
a functorial isomorphism

HomA(N, K) = TorA
d (K, N ′)

for K in Dperf (A). We can write the left hand side as H0(R HomA(N, A) ⊗L
A K)

by More on Algebra, Lemma 74.15 and the fact that N determines a perfect object
of D(A). Hence the formula holds because

R HomA(N, A) = R HomA(N, A[d])[−d] = N ′[−d]

by Dualizing Complexes, Lemma 16.4 and the fact that A[d] is a normalized dual-
izing complex over A (A is Gorenstein by Dualizing Complexes, Lemma 21.3). □

Lemma 11.3.0G03 Let k be a field. Let X be a scheme of finite type over k which is
regular. Let x ∈ X be a closed point and denote Ox the skyscraper sheaf at x with
value κ(x). Let K in Dperf (OX).

(1) If Exti
X(Ox, K) = 0 then there exists an open neighbourhood U of x such

that Hi−dx(K)|U = 0 where dx = dim(OX,x).
(2) If HomX(Ox, K[i]) = 0 for all i ∈ Z, then K is zero in an open neighbour-

hood of x.
(3) If Exti

X(K,Ox) = 0 then there exists an open neighbourhood U of x such
that Hi(K∨)|U = 0.

(4) If HomX(K,Ox[i]) = 0 for all i ∈ Z, then K is zero in an open neighbour-
hood of x.

https://stacks.math.columbia.edu/tag/0G02
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(5) If Hi(X, K ⊗L
OX
Ox) = 0 then there exists an open neighbourhood U of x

such that Hi(K)|U = 0.
(6) If Hi(X, K⊗L

OX
Ox) = 0 for i ∈ Z then K is zero in an open neighbourhood

of x.

Proof. Observe that Hi(X, K ⊗L
OX
Ox) is equal to Kx⊗L

OX,x
κ(x). Hence part (5)

follows from More on Algebra, Lemma 76.4. Part (6) follows from part (5). Part
(1) follows from part (5), Lemma 11.2, and the fact that the Matlis dual of κ(x)
is κ(x). Part (2) follows from part (1). Part (3) follows from part (5) and the fact
that Exti(K,Ox) = Hi(X, K∨ ⊗L

OX
Ox) by Cohomology, Lemma 50.5. Part (4)

follows from part (3) and the fact that K ∼= (K∨)∨ by the lemma just cited. □

Lemma 11.4.0GWZ Let X be a Noetherian scheme. Let x ∈ X be a closed point and
denote Ox the skyscraper sheaf at x with value κ(x). Let K in Db

Coh(OX). Let
b ∈ Z. The following are equivalent

(1) Hi(K)x = 0 for all i > b and
(2) HomX(K,Ox[−i]) = 0 for all i > b.

Proof. Consider the complex Kx in Db
Coh(OX,x). There exist an integer bx ∈ Z

such that Kx can be represented by a bounded above complex

. . .→ O⊕nbx−2
X,x → O⊕nbx−1

X,x → O⊕nbx

X,x → 0→ . . .

with O⊕ni

X,x sitting in degree i where all the transition maps are given by matrices
whose coefficients are in mx. See More on Algebra, Lemma 75.5. The result follows
easily from this (and the equivalent conditions hold if and only if b ≥ bx). □

Lemma 11.5.0G25 Let k be a field. Let X and Y be proper schemes over k. Assume
X is regular. Then a k-linear exact functor F : Dperf (OX) → Dperf (OY ) is fully
faithful if and only if for any closed points x, x′ ∈ X the maps

F : Exti
X(Ox,Ox′) −→ Exti

Y (F (Ox), F (Ox′))

are isomorphisms for all i ∈ Z. Here Ox is the skyscraper sheaf at x with value
κ(x).

Proof. By Lemma 7.1 the functor F has both a left and a right adjoint. Thus we
may apply the criterion of Lemma 11.1 because assumptions (2) and (3) of that
lemma follow from Lemma 11.3. □

Lemma 11.6.0G26 Email from Noah
Olander of Jun 9,
2020

Let k be a field. Let X be a proper scheme over k which is regular.
Let F : Dperf (OX) → Dperf (OX) be a k-linear exact functor. Assume for every
coherent OX-module F with dim(Supp(F)) = 0 there is an isomorphism F ∼= F (F).
Then F is fully faithful.

Proof. By Lemma 11.5 it suffices to show that the maps

F : Exti
X(Ox,Ox′) −→ Exti

X(F (Ox), F (Ox′))

are isomorphisms for all i ∈ Z and all closed points x, x′ ∈ X. By assumption, the
source and the target are isomorphic. If x ̸= x′, then both sides are zero and the
result is true. If x = x′, then it suffices to prove that the map is either injective
or surjective. For i < 0 both sides are zero and the result is true. For i = 0 any
nonzero map α : Ox → Ox of OX -modules is an isomorphism. Hence F (α) is an

https://stacks.math.columbia.edu/tag/0GWZ
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isomorphism too and so F (α) is nonzero. Thus the result for i = 0. For i = 1 a
nonzero element ξ in Ext1(Ox,Ox) corresponds to a nonsplit short exact sequence

0→ Ox → F → Ox → 0
Since F (F) ∼= F we see that F (F) is a nonsplit extension of Ox by Ox as well.
Since Ox

∼= F (Ox) is a simple OX -module and F ∼= F (F) has length 2, we see that
in the distinguished triangle

F (Ox)→ F (F)→ F (Ox) F (ξ)−−−→ F (Ox)[1]
the first two arrows must form a short exact sequence which must be isomorphic
to the above short exact sequence and hence is nonsplit. It follows that F (ξ) is
nonzero and we conclude for i = 1. For i > 1 composition of ext classes defines a
surjection

Ext1(F (Ox), F (Ox))⊗ . . .⊗ Ext1(F (Ox), F (Ox)) −→ Exti(F (Ox), F (Ox))
See Duality for Schemes, Lemma 15.4. Hence surjectivity in degree 1 implies sur-
jectivity for i > 0. This finishes the proof. □

12. Special functors

0FZY In this section we prove some results on functors of a special type that we will use
later in this chapter.

Definition 12.1.0FZZ Let k be a field. Let X, Y be finite type schemes over k. Recall
that Db

Coh(OX) = Db(Coh(OX)) by Derived Categories of Schemes, Proposition
11.2. We say two k-linear exact functors

F, F ′ : Db
Coh(OX) = Db(Coh(OX)) −→ Db

Coh(OY )
are siblings, or we say F ′ is a sibling of F if F and F ′ are siblings in the sense
of Definition 10.1 with abelian category being Coh(OX). If X is regular then
Dperf (OX) = Db

Coh(OX) by Derived Categories of Schemes, Lemma 11.6 and we use
the same terminology for k-linear exact functors F, F ′ : Dperf (OX)→ Dperf (OY ).

Lemma 12.2.0G00 Let k be a field. Let X, Y be finite type schemes over k with X

separated. Let F : Db
Coh(OX) → Db

Coh(OY ) be a k-linear exact functor sending
Coh(OX) ⊂ Db

Coh(OX) into Coh(OY ) ⊂ Db
Coh(OY ). Then there exists a Fourier-

Mukai functor F ′ : Db
Coh(OX) → Db

Coh(OY ) whose kernel is a coherent OX×Y -
module K flat over X and with support finite over Y which is a sibling of F .

Proof. Denote H : Coh(OX)→ Coh(OY ) the restriction of F . Since F is an exact
functor of triangulated categories, we see that H is an exact functor of abelian
categories. Of course H is k-linear as F is. By Functors and Morphisms, Lemma
7.5 we obtain a coherent OX×Y -module K which is flat over X and has support
finite over Y . Let F ′ be the Fourier-Mukai functor defined using K so that F ′

restricts to H on Coh(OX). The functor F ′ sends Db
Coh(OX) into Db

Coh(OY ) by
Lemma 8.5. Observe that F and F ′ satisfy the first and second condition of Lemma
10.2 and hence are siblings. □

Remark 12.3.0G01 If F, F ′ : Db
Coh(OX) → D are siblings, F is fully faithful, and X

is reduced and projective over k then F ∼= F ′; this follows from Proposition 10.6
via the argument given in the proof of Theorem 13.3. However, in general we do
not know whether siblings are isomorphic. Even in the situation of Lemma 12.2 it

https://stacks.math.columbia.edu/tag/0FZZ
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seems difficult to prove that the siblings F and F ′ are isomorphic functors. If X
is smooth and proper over k and F is fully faithful, then F ∼= F ′ as is shown in
[Ola20]. If you have a proof or a counter example in more general situations, please
email stacks.project@gmail.com.

Lemma 12.4.0GX0 Let k be a field. Let X, Y be proper schemes over k. Assume X is
regular. Let F, G : Dperf (OX)→ Dperf (OY ) be k-linear exact functors such that

(1) F (F) ∼= G(F) for any coherent OX-module F with dim(Supp(F)) = 0,
(2) F is fully faithful.

Then the essential image of G is contained in the essential image of F .

Proof. Recall that F and G have both adjoints, see Lemma 7.1. In particular the
essential image A ⊂ Dperf (OY ) of F satisfies the equivalent conditions of Derived
Categories, Lemma 40.7. We claim that G factors through A. Since A = ⊥(A⊥)
by Derived Categories, Lemma 40.7 it suffices to show that HomY (G(M), N) = 0
for all M in Dperf (OX) and N ∈ A⊥. We have

HomY (G(M), N) = HomX(M, Gr(N))

where Gr is the right adjoint to G. Thus it suffices to prove that Gr(N) = 0. Since
G(F) ∼= F (F) for F as in (1) we see that

HomX(F , Gr(N)) = HomY (G(F), N) = HomY (F (F), N) = 0

as N is in the right orthogonal to the essential image A of F . Of course, the same
vanishing holds for HomX(F , Gr(N)[i]) for any i ∈ Z. Thus Gr(N) = 0 by Lemma
11.3 and we win. □

Lemma 12.5.0G27 Email from Noah
Olander of Jun 8,
2020

Let k be a field. Let X be a proper scheme over k which is regular.
Let F : Dperf (OX) → Dperf (OX) be a k-linear exact functor. Assume for every
coherent OX-module F with dim(Supp(F)) = 0 there is an isomorphism F ∼= F (F).
Then there exists an automorphism f : X → X over k which induces the identity
on the underlying topological space1 and an invertible OX-module L such that F
and F ′(M) = f∗M ⊗L

OX
L are siblings.

Proof. By Lemma 11.6 the functor F is fully faithful. By Lemma 12.4 the essential
image of the identity functor is contained in the essential image of F , i.e., we see
that F is essentially surjective. Thus F is an equivalence. Observe that the quasi-
inverse F −1 satisfies the same assumptions as F .

Let M ∈ Dperf (OX) and say Hi(M) = 0 for i > b. Since F is fully faithful, we see
that

HomX(M,Ox[−i]) = HomX(F (M), F (Ox)[−i]) ∼= HomX(F (M),Ox[−i])

for any i ∈ Z for any closed point x of X. Thus by Lemma 11.4 we see that F (M)
has vanishing cohomology sheaves in degrees > b.

Let F be a coherent OX -module. By the above F (F) has nonzero cohomology
sheaves only in degrees ≤ 0. Set G = H0(F (F)). Choose a distinguished triangle

K → F (F)→ G → K[1]

1This often forces f to be the identity, see Varieties, Lemma 32.1.
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Then K has nonvanishing cohomology sheaves only in degrees ≤ −1. Applying
F −1 we obtain a distinguished triangle

F −1(K)→ F → F −1(G)→ F −1(K ′)[1]

Since F −1(K) has nonvanishing cohomology sheaves only in degrees ≤ −1 (by the
previous paragraph applied to F −1) we see that the arrow F −1(K) → F is zero
(Derived Categories, Lemma 27.3). Hence K → F (F) is zero, which implies that
F (F) = G by our choice of the first distinguished triangle.

From the preceding paragraph, we deduce that F preserves Coh(OX) and indeed
defines an equivalence H : Coh(OX) → Coh(OX). By Functors and Morphisms,
Lemma 7.8 we get an automorphism f : X → X over k and an invertible OX -
module L such that H(F) = f∗F ⊗ L. Set F ′(M) = f∗M ⊗L

OX
L. Using Lemma

10.2 we see that F and F ′ are siblings. To see that f is the identity on the underlying
topological space of X, we use that F (Ox) ∼= Ox and that the support of Ox is {x}.
This finishes the proof. □

Lemma 12.6.0G06 Let k be a field. Let X, Y be proper schemes over k. Assume X
regular. Let F, G : Dperf (OX)→ Dperf (OY ) be k-linear exact functors such that

(1) F (F) ∼= G(F) for any coherent OX-module F with dim(Supp(F)) = 0,
(2) F is fully faithful, and
(3) G is a Fourier-Mukai functor whose kernel is in Dperf (OX×Y ).

Then there exists a Fourier-Mukai functor F ′ : Dperf (OX) → Dperf (OY ) whose
kernel is in Dperf (OX×Y ) such that F and F ′ are siblings.

Proof. The essential image of G is contained in the essential image of F by Lemma
12.4. Consider the functor H = F −1◦G which makes sense as F is fully faithful. By
Lemma 12.5 we obtain an automorphism f : X → X and an invertible OX -module
L such that the functor H ′ : K 7→ f∗K ⊗L is a sibling of H. In particular H is an
auto-equivalence by Lemma 10.3 and H induces an auto-equivalence of Coh(OX) (as
this is true for its sibling functor H ′). Thus the quasi-inverses H−1 and (H ′)−1 exist,
are siblings (small detail omitted), and (H ′)−1 sends M to (f−1)∗(M ⊗L

OX
L⊗−1)

which is a Fourier-Mukai functor (details omitted). Then of course F = G ◦H−1 is
a sibling of G ◦ (H ′)−1. Since compositions of Fourier-Mukai functors are Fourier-
Mukai by Lemma 8.3 we conclude. □

13. Fully faithful functors

0G07 Our goal is to prove fully faithful functors between derived categories are siblings
of Fourier-Mukai functors, following [Orl97] and [Bal08].

Situation 13.1.0G08 Here k is a field. We have proper smooth schemes X and Y over
k. We have a k-linear, exact, fully faithful functor F : Dperf (OX)→ Dperf (OY ).

Before reading on, it makes sense to read at least some of Derived Categories,
Section 41.

Recall that X is regular and hence has the resolution property (Varieties, Lemma
25.3 and Derived Categories of Schemes, Lemma 36.8). Thus on X × X we may
choose a resolution

. . .→ E2 ⊠ G2 → E1 ⊠ G1 → E0 ⊠ G0 → O∆ → 0

https://stacks.math.columbia.edu/tag/0G06
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where each Ei and Gi is a finite locally free OX -module, see Lemma 9.3. Using the
complex
(13.1.1)0G09 . . .→ E2 ⊠ G2 → E1 ⊠ G1 → E0 ⊠ G0

in Dperf (OX×X) as in Derived Categories, Example 41.2 if for each n we denote
Mn = (En ⊠ Gn → . . .→ E0 ⊠ G0)[−n]

we obtain an infinite Postnikov system for the complex (13.1.1). This means the
morphisms M0 →M1[1]→M2[2]→ . . . and Mn → En ⊠ Gn and En ⊠ Gn →Mn−1
satisfy certain conditions documented in Derived Categories, Definition 41.1. Set

Fn = Ker(En ⊠ Gn → En−1 ⊠ Gn−1)
Observe that since O∆ is flat over X via pr1 the same is true for Fn for all n (this
is a convenient though not essential observation). We have

Hq(Mn[n]) =

O∆ if q = 0
Fn if q = −n
0 if q ̸= 0,−n

Thus for n ≥ dim(X ×X) we have
Mn[n] ∼= O∆ ⊕Fn[n]

in Dperf (OX×X) by Lemma 9.5.
We are interested in the complex
(13.1.2)0G0A . . .→ E2 ⊠ F (G2)→ E1 ⊠ F (G1)→ E0 ⊠ F (G0)
in Dperf (OX×Y ) as the “totalization” of this complex should give us the kernel of
the Fourier-Mukai functor we are trying to construct. For all i, j ≥ 0 we have

Extq
X×Y (Ei ⊠ F (Gi), Ej ⊠ F (Gj)) =

⊕
p

Extq+p
X (Ei, Ej)⊗k Ext−p

Y (F (Gi), F (Gj))

=
⊕

p
Extq+p

X (Ei, Ej)⊗k Ext−p
X (Gi,Gj)

The second equality holds because F is fully faithful and the first by Derived Cat-
egories of Schemes, Lemma 25.1. We find these Extq are zero for q < 0. Hence
by Derived Categories, Lemma 41.6 we can build an infinite Postnikov system
K0, K1, K2, . . . in Dperf (OX×Y ) for the complex (13.1.2). Parallel to what happens
with M0, M1, M2, . . . this means we obtain morphisms K0 → K1[1]→ K2[2]→ . . .
and Kn → En ⊠F (Gn) and En ⊠F (Gn)→ Kn−1 in Dperf (OX×Y ) satisfying certain
conditions documented in Derived Categories, Definition 41.1.
Let F be a coherent OX -module whose support has a finite number of points, i.e.,
with dim(Supp(F)) = 0. Consider the exact functor of triangulated categories

Dperf (OX×Y ) −→ Dperf (OY ), N 7−→ Rpr2,∗(pr∗
1F ⊗L

OX×Y
N)

It follows that the objects Rpr2,∗(pr∗
1F ⊗L

OX×Y
Ki) form a Postnikov system for the

complex in Dperf (OY ) with terms
Rpr2,∗((F ⊗ Ei) ⊠ F (Gi)) = Γ(X,F ⊗ Ei)⊗k F (Gi) = F (Γ(X,F ⊗ Ei)⊗k Gi)

Here we have used that F ⊗Ei has vanishing higher cohomology as its support has
dimension 0. On the other hand, applying the exact functor

Dperf (OX×X) −→ Dperf (OY ), N 7−→ F (Rpr2,∗(pr∗
1F ⊗L

OX×X
N))
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we find that the objects F (Rpr2,∗(pr∗
1F ⊗L

OX×X
Mn)) form a second infinite Post-

nikov system for the complex in Dperf (OY ) with terms
F (Rpr2,∗((F ⊗ Ei) ⊠ Gi)) = F (Γ(X,F ⊗ Ei)⊗k Gi)

This is the same as before! By uniqueness of Postnikov systems (Derived Categories,
Lemma 41.6) which applies because

Extq
Y (F (Γ(X,F ⊗ Ei)⊗k Gi), F (Γ(X,F ⊗ Ej)⊗k Gj)) = 0, q < 0

as F is fully faithful, we find a system of isomorphisms
F (Rpr2,∗(pr∗

1F ⊗L
OX×X

Mn[n])) ∼= Rpr2,∗(pr∗
1F ⊗L

OX×Y
Kn[n])

in Dperf (OY ) compatible with the morphisms in Dperf (OY ) induced by the mor-
phisms

Mn−1[n− 1]→Mn[n] and Kn−1[n− 1]→ Kn[n]
Mn → En ⊠ Gn and Kn → En ⊠ F (Gn)

En ⊠ Gn →Mn−1 and En ⊠ F (Gn)→ Kn−1

which are part of the structure of Postnikov systems. For n sufficiently large we
obtain a direct sum decomposition

F (Rpr2,∗(pr∗
1F ⊗L

OX×X
Mn[n])) = F (F)⊕ F (Rpr2,∗(pr∗

1F ⊗OX×Y
Fn))[n]

corresponding to the direct sum decomposition of Mn constructed above (we are
using the flatness of Fn over X via pr1 to write a usual tensor product in the
formula above, but this isn’t essential for the argument). By Lemma 9.9 we find
there exists an integer m ≥ 0 such that the first summand in this direct sum
decomposition has nonzero cohomology sheaves only in the interval [−m, m] and
the second summand in this direct sum decomposition has nonzero cohomology
sheaves only in the interval [−m − n, m + dim(X) − n]. We conclude the system
K0 → K1[1] → K2[2] → . . . in Dperf (OX×Y ) satisfies the assumptions of Lemma
9.10 after possibly replacing m by a larger integer. We conclude we can write

Kn[n] = K ⊕ Cn

for n≫ 0 compatible with transition maps and with Cn having nonzero cohomology
sheaves only in the range [−m − n, m − n]. Denote G the Fourier-Mukai functor
corresponding to K. Putting everything together we find

G(F)⊕Rpr2,∗(pr∗
1F ⊗L

OX×Y
Cn) ∼=

Rpr2,∗(pr∗
1F ⊗L

OX×Y
Kn[n]) ∼=

F (Rpr2,∗(pr∗
1F ⊗L

OX×X
Mn[n])) ∼=

F (F)⊕ F (Rpr2,∗(pr∗
1F ⊗OX×Y

Fn))[n]
Looking at the degrees that objects live in we conclude that for n ≫ m we obtain
an isomorphism

F (F) ∼= G(F)
Moreover, recall that this holds for every coherent F on X whose support has
dimension 0.

Lemma 13.2.0G0B Let k be a field. Let X and Y be smooth proper schemes over k.
Given a k-linear, exact, fully faithful functor F : Dperf (OX) → Dperf (OY ) there
exists a Fourier-Mukai functor F ′ : Dperf (OX) → Dperf (OY ) whose kernel is in
Dperf (OX×Y ) which is a sibling to F .

https://stacks.math.columbia.edu/tag/0G0B
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Proof. Apply Lemma 12.6 to F and the functor G constructed above. □

The following theorem is also true without assuming X is projective, see [Ola20].

Theorem 13.3 (Orlov).0G0C [Orl97, Theorem
2.2]; this is shown in
[Ola20] without the
assumption that X
be projective

Let k be a field. Let X and Y be smooth proper schemes
over k with X projective over k. Any k-linear fully faithful exact functor F :
Dperf (OX)→ Dperf (OY ) is a Fourier-Mukai functor for some kernel in Dperf (OX×Y ).

Proof. Let F ′ be the Fourier-Mukai functor which is a sibling of F as in Lemma
13.2. By Proposition 10.6 we have F ∼= F ′ provided we can show that Coh(OX)
has enough negative objects. However, if X = Spec(k) for example, then this isn’t
true. Thus we first decompose X =

∐
Xi into its connected (and irreducible)

components and we argue that it suffices to prove the result for each of the (fully
faithful) composition functors

Fi : Dperf (OXi
)→ Dperf (OX)→ Dperf (OY )

Details omitted. Thus we may assume X is irreducible.

The case dim(X) = 0. Here X is the spectrum of a finite (separable) extension
k′/k and hence Dperf (OX) is equivalent to the category of graded k′-vector spaces
such that OX corresponds to the trivial 1-dimensional vector space in degree 0. It
is straightforward to see that any two siblings F, F ′ : Dperf (OX)→ Dperf (OY ) are
isomorphic. Namely, we are given an isomorphism F (OX) ∼= F ′(OX) compatible
the action of the k-algebra k′ = EndDperf (OX )(OX) which extends canonically to
an isomorphism on any graded k′-vector space.

The case dim(X) > 0. Here X is a projective smooth variety of dimension > 1.
Let F be a coherent OX -module. We have to show there exists a coherent module
N such that

(1) there is a surjection N → F and
(2) Hom(F ,N ) = 0.

Choose an ample invertible OX -module L. We claim that N = (L⊗n)⊕r will work
for n ≪ 0 and r large enough. Condition (1) follows from Properties, Proposition
26.13. Finally, we have

Hom(F ,L⊗n) = H0(X,Hom(F ,L⊗n)) = H0(X,Hom(F ,OX)⊗ L⊗n)

Since the dual Hom(F ,OX) is torsion free, this vanishes for n ≪ 0 by Varieties,
Lemma 48.1. This finishes the proof. □

Proposition 13.4.0G0D Let k be a field. Let X and Y be smooth proper schemes over
k. If F : Dperf (OX) → Dperf (OY ) is a k-linear exact equivalence of triangulated
categories then there exists a Fourier-Mukai functor F ′ : Dperf (OX)→ Dperf (OY )
whose kernel is in Dperf (OX×Y ) which is an equivalence and a sibling of F .

Proof. The functor F ′ of Lemma 13.2 is an equivalence by Lemma 10.3. □

Lemma 13.5.0G0E Let k be a field. Let X be a smooth proper scheme over k. Let
K ∈ Dperf (OX×X). If the Fourier-Mukai functor ΦK : Dperf (OX) → Dperf (OX)
is isomorphic to the identity functor, then K ∼= ∆∗OX in perf (OX×X).

https://stacks.math.columbia.edu/tag/0G0C
https://stacks.math.columbia.edu/tag/0G0D
https://stacks.math.columbia.edu/tag/0G0E
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Proof. Let i be the minimal integer such that the cohomology sheaf Hi(K) is
nonzero. Let E and G be finite locally free OX -modules. Then

Hi(X ×X, K ⊗L
OX×X

(E ⊠ G)) = Hi(X, Rpr2,∗(K ⊗L
OX×X

(E ⊠ G)))
= Hi(X, ΦK(E)⊗L

OX
G)

∼= Hi(X, E ⊗ G)

which is zero if i < 0. On the other hand, we can choose E and G such that there
is a surjection E∨ ⊠ G∨ → Hi(K) by Lemma 9.1. In this case the left hand side of
the equalities is nonzero. Hence we conclude that Hi(K) = 0 for i < 0.

Let i be the maximal integer such that Hi(K) is nonzero. The same argument with
E and G support of dimension 0 shows that i ≤ 0. Hence we conclude that K is
given by a single coherent OX×X -module K sitting in degree 0.

Since Rpr2,∗(pr∗
1F ⊗ K) is F , by taking F supported at closed points we see that

the support of K is finite over X via pr2. Since Rpr2,∗(K) ∼= OX we conclude by
Functors and Morphisms, Lemma 7.6 that K = s∗OX for some section s : X →
X ×X of the second projection. Then ΦK(M) = f∗M where f = pr1 ◦ s and this
can happen only if s is the diagonal morphism as desired. □

14. A category of Fourier-Mukai kernels

0G0F Let S be a scheme. We claim there is a category with
(1) Objects are proper smooth schemes over S.
(2) Morphisms from X to Y are isomorphism classes of objects of Dperf (OX×SY ).
(3) Composition of the isomorphism class of K ∈ Dperf (OX×SY ) and the iso-

morphism class of K ′ in Dperf (OY ×SZ) is the isomorphism class of

Rpr13,∗(Lpr∗
12K ⊗L

OX×S Y ×S Z
Lpr∗

23K ′)

which is in Dperf (OX×SZ) by Derived Categories of Schemes, Lemma 30.4.
(4) The identity morphism from X to X is the isomorphism class of ∆X/S,∗OX

which is in Dperf (OX×SX) by More on Morphisms, Lemma 61.12 and the
fact that ∆X/S is a perfect morphism by Divisors, Lemma 22.11 and More
on Morphisms, Lemma 61.7.

Let us check that associativity of composition of morphisms holds; we omit verifying
that the identity morphisms are indeed identities. To see this suppose we have
X, Y, Z, W and c ∈ Dperf (OX×SY ), c′ ∈ Dperf (OY ×SZ), and c′′ ∈ Dperf (OZ×SW ).
Then we have

c′′ ◦ (c′ ◦ c) ∼= pr134
14,∗(pr134,∗

13 pr123
13,∗(pr123,∗

12 c⊗ pr123,∗
23 c′)⊗ pr134,∗

34 c′′)
∼= pr134

14,∗(pr1234
134,∗pr1234,∗

123 (pr123,∗
12 c⊗ pr123,∗

23 c′)⊗ pr134,∗
34 c′′)

∼= pr134
14,∗(pr1234

134,∗(pr1234,∗
12 c⊗ pr1234,∗

23 c′)⊗ pr134,∗
34 c′′)

∼= pr134
14,∗pr1234

134,∗((pr1234,∗
12 c⊗ pr1234,∗

23 c′)⊗ pr1234,∗
34 c′′)

∼= pr1234
14,∗ ((pr1234,∗

12 c⊗ pr1234,∗
23 c′)⊗ pr1234,∗

34 c′′)

Here we use the notation

p1234
134 : X×S Y ×S Z×S W → X×S Z×S W and p134

14 : X×S Z×S W → X×S W
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the projections and similarly for other indices. We also write pr∗ instead of Rpr∗ and
pr∗ instead of Lpr∗ and we drop all super and sub scripts on ⊗. The first equality is
the definition of the composition. The second equality holds because pr134,∗

13 pr123
13,∗ =

pr1234
134,∗pr1234,∗

123 by base change (Derived Categories of Schemes, Lemma 22.5). The
third equality holds because pullbacks compose correctly and pass through tensor
products, see Cohomology, Lemmas 27.2 and 27.3. The fourth equality follows from
the “projection formula” for p1234

134 , see Derived Categories of Schemes, Lemma 22.1.
The fifth equality is that proper pushforward is compatible with composition, see
Cohomology, Lemma 28.2. Since tensor product is associative this concludes the
proof of associativity of composition.

Lemma 14.1.0G0G Let S′ → S be a morphism of schemes. The rule which sends
(1) a smooth proper scheme X over S to X ′ = S′ ×S X, and
(2) the isomorphism class of an object K of Dperf (OX×SY ) to the isomorphism

class of L(X ′ ×S′ Y ′ → X ×S Y )∗K in Dperf (OX′×S′ Y ′)
is a functor from the category defined for S to the category defined for S′.

Proof. To see this suppose we have X, Y, Z and K ∈ Dperf (OX×SY ) and M ∈
Dperf (OY ×SZ). Denote K ′ ∈ Dperf (OX′×S′ Y ′) and M ′ ∈ Dperf (OY ′×S′ Z′) their
pullbacks as in the statement of the lemma. The diagram

X ′ ×S′ Y ′ ×S′ Z ′ //

pr′
13
��

X ×S Y ×S Z

pr13

��
X ′ ×S′ Z ′ // X ×S Z

is cartesian and pr13 is proper and smooth. By Derived Categories of Schemes,
Lemma 30.4 we see that the derived pullback by the lower horizontal arrow of the
composition

Rpr13,∗(Lpr∗
12K ⊗L

OX×S Y ×S Z
Lpr∗

23M)
indeed is (canonically) isomorphic to

Rpr′
13,∗(L(pr′

12)∗K ′ ⊗L
OX′×

S′ Y ′×
S′ Z′ L(pr′

23)∗M ′)

as desired. Some details omitted. □

15. Relative equivalences

0G0H In this section we prove some lemmas about the following concept.

Definition 15.1.0G0I Let S be a scheme. Let X → S and Y → S be smooth
proper morphisms. An object K ∈ Dperf (OX×SY ) is said to be the Fourier-Mukai
kernel of a relative equivalence from X to Y over S if there exist an object K ′ ∈
Dperf (OX×SY ) such that

∆X/S,∗OX
∼= Rpr13,∗(Lpr∗

12K ⊗L
OX×S Y ×S X

Lpr∗
23K ′)

in D(OX×SX) and
∆Y/S,∗OY

∼= Rpr13,∗(Lpr∗
12K ′ ⊗L

OY ×S X×S Y
Lpr∗

23K)

in D(OY ×SY ). In other words, the isomorphism class of K defines an invertible
arrow in the category defined in Section 14.

The language is intentionally cumbersome.

https://stacks.math.columbia.edu/tag/0G0G
https://stacks.math.columbia.edu/tag/0G0I


DERIVED CATEGORIES OF VARIETIES 36

Lemma 15.2.0G0J With notation as in Definition 15.1 let K be the Fourier-Mukai
kernel of a relative equivalence from X to Y over S. Then the corresponding
Fourier-Mukai functors ΦK : DQCoh(OX) → DQCoh(OY ) (Lemma 8.2) and ΦK :
Dperf (OX)→ Dperf (OY ) (Lemma 8.4) are equivalences.
Proof. Immediate from Lemma 8.3 and Example 8.6. □

Lemma 15.3.0G0K With notation as in Definition 15.1 let K be the Fourier-Mukai
kernel of a relative equivalence from X to Y over S. Let S1 → S be a morphism
of schemes. Let X1 = S1 ×S X and Y1 = S1 ×S Y . Then the pullback K1 =
L(X1 ×S1 Y1 → X ×S Y )∗K is the Fourier-Mukai kernel of a relative equivalence
from X1 to Y1 over S1.
Proof. Let K ′ ∈ Dperf (OY ×SX) be the object assumed to exist in Definition 15.1.
Denote K ′

1 the pullback of K ′ by Y1 ×S1 X1 → Y ×S X. Then it suffices to prove
that we have

∆X1/S1,∗OX
∼= Rpr13,∗(Lpr∗

12K1 ⊗L
OX1×S1 Y1×S1 X1

Lpr∗
23K ′

1)

in D(OX1×S1 X1) and similarly for the other condition. Since

X1 ×S1 Y1 ×S1 X1 //

pr13

��

X ×S Y ×S X

pr13

��
X1 ×S1 X1 // X ×S X

is cartesian it suffices by Derived Categories of Schemes, Lemma 30.4 to prove that
∆X1/S1,∗OX1

∼= L(X1 ×S1 X1 → X ×S X)∗∆X/S,∗OX

This in turn will be true if X and X1×S1 X1 are tor independent over X×S X, see
Derived Categories of Schemes, Lemma 22.5. This tor independence can be seen
directly but also follows from the more general More on Morphisms, Lemma 69.1
applied to the square with corners X, X, X, S and its base change by S1 → S. □

Lemma 15.4.0G0L Let S = limi∈I Si be a limit of a directed system of schemes with
affine transition morphisms gi′i : Si′ → Si. We assume that Si is quasi-compact
and quasi-separated for all i ∈ I. Let 0 ∈ I. Let X0 → S0 and Y0 → S0 be smooth
proper morphisms. We set Xi = Si ×S0 X0 for i ≥ 0 and X = S ×S0 X0 and
similarly for Y0. If K is the Fourier-Mukai kernel of a relative equivalence from X
to Y over S then for some i ≥ 0 there exists a Fourier-Mukai kernel of a relative
equivalence from Xi to Yi over Si.
Proof. Let K ′ ∈ Dperf (OY ×SX) be the object assumed to exist in Definition
15.1. Since X ×S Y = lim Xi ×Si

Yi there exists an i and objects Ki and K ′
i in

Dperf (OYi×Si
Xi

) whose pullbacks to Y ×S X give K and K ′. See Derived Categories
of Schemes, Lemma 29.3. By Derived Categories of Schemes, Lemma 30.4 the object

Rpr13,∗(Lpr∗
12Ki ⊗L

OXi×Si
Yi×Si

Xi
Lpr∗

23K ′
i)

is perfect and its pullback to X ×S X is equal to
Rpr13,∗(Lpr∗

12K ⊗L
OX×S Y ×S X

Lpr∗
23K ′) ∼= ∆X/S,∗OX

See proof of Lemma 15.3. On the other hand, since Xi → S is smooth and separated
the object

∆i,∗OXi

https://stacks.math.columbia.edu/tag/0G0J
https://stacks.math.columbia.edu/tag/0G0K
https://stacks.math.columbia.edu/tag/0G0L
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of D(OXi×Si
Xi

) is also perfect (by More on Morphisms, Lemmas 62.18 and 61.13)
and its pullback to X ×S X is equal to

∆X/S,∗OX

See proof of Lemma 15.3. Thus by Derived Categories of Schemes, Lemma 29.3
after increasing i we may assume that

∆i,∗OXi
∼= Rpr13,∗(Lpr∗

12Ki ⊗L
OXi×Si

Yi×Si
Xi

Lpr∗
23K ′

i)

as desired. The same works for the roles of K and K ′ reversed. □

16. No deformations

0G0M The title of this section refers to Lemma 16.4

Lemma 16.1.0G0N Let (R,m, κ) → (A, n, λ) be a flat local ring homorphism of local
rings which is essentially of finite presentation. Let f1, . . . , fr ∈ n/mA ⊂ A/mA be
a regular sequence. Let K ∈ D(A). Assume

(1) K is perfect,
(2) K⊗L

AA/mA is isomorphic in D(A/mA) to the Koszul complex on f1, . . . , fr.
Then K is isomorphic in D(A) to a Koszul complex on a regular sequence f1, . . . , fr ∈
A lifting the given elements f1, . . . , fr. Moreover, A/(f1, . . . , fr) is flat over R.

Proof. Let us use chain complexes in the proof of this lemma. The Koszul complex
K•(f1, . . . , fr) is defined in More on Algebra, Definition 28.2. By More on Algebra,
Lemma 75.4 we can represent K by a complex

K• : A→ A⊕r → . . .→ A⊕r → A

whose tensor product with A/mA is equal (!) to K•(f1, . . . , fr). Denote f1, . . . , fr ∈
A the components of the arrow A⊕r → A. These fi are lifts of the f i. By Algebra,
Lemma 128.6 f1, . . . , fr form a regular sequence in A and A/(f1, . . . , fr) is flat over
R. Let J = (f1, . . . , fr) ⊂ A. Consider the diagram

K•

!!

φ•
// K•(f1, . . . , fr)

xx
A/J

Since f1, . . . , fr is a regular sequence the south-west arrow is a quasi-isomorphism
(see More on Algebra, Lemma 30.2). Hence we can find the dotted arrow making
the diagram commute for example by Algebra, Lemma 71.4. Reducing modulo m
we obtain a commutative diagram

K•(f1, . . . , fr)

))

φ•

// K•(f1, . . . , fr)

uu
(A/mA)/(f1, . . . , fr)

by our choice of K•. Thus φ is an isomorphism in the derived category D(A/mA).
It follows that φ⊗L

A/mA λ is an isomorphism. Since f i ∈ n/mA we see that

TorA/mA
i (K•(f1, . . . , fr), λ) = Ki(f1, . . . , fr)⊗A/mA λ

https://stacks.math.columbia.edu/tag/0G0N
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Hence φi mod n is invertible. Since A is local this means that φi is an isomorphism
and the proof is complete. □

Lemma 16.2.0G0P Let R → S be a finite type flat ring map of Noetherian rings.
Let q ⊂ S be a prime ideal lying over p ⊂ R. Let K ∈ D(S) be perfect. Let
f1, . . . , fr ∈ qSq be a regular sequence such that Sq/(f1, . . . , fr) is flat over R and
such that K ⊗L

S Sq is isomorphic to the Koszul complex on f1, . . . , fr. Then there
exists a g ∈ S, g ̸∈ q such that

(1) f1, . . . , fr are the images of f ′
1, . . . , f ′

r ∈ Sg,
(2) f ′

1, . . . , f ′
r form a regular sequence in Sg,

(3) Sg/(f ′
1, . . . , f ′

r) is flat over R,
(4) K ⊗L

S Sg is isomorphic to the Koszul complex on f1, . . . , fr.

Proof. We can find g ∈ S, g ̸∈ q with property (1) by the definition of localizations.
After replacing g by gg′ for some g′ ∈ S, g′ ̸∈ q we may assume (2) holds, see
Algebra, Lemma 68.6. By Algebra, Theorem 129.4 we find that Sg/(f ′

1, . . . , f ′
r) is

flat over R in an open neighbourhood of q. Hence after once more replacing g by
gg′ for some g′ ∈ S, g′ ̸∈ q we may assume (3) holds as well. Finally, we get (4) for
a further replacement by More on Algebra, Lemma 74.17. □

For a generalization of the following lemma, please see More on Morphisms of
Spaces, Lemma 49.6.

Lemma 16.3.0G0Q Let S be a Noetherian scheme. Let s ∈ S. Let p : X → Y be a
morphism of schemes over S. Assume

(1) Y → S and X → S proper,
(2) X is flat over S,
(3) Xs → Ys an isomorphism.

Then there exists an open neighbourhood U ⊂ S of s such that the base change
XU → YU is an isomorphism.

Proof. The morphism p is proper by Morphisms, Lemma 41.6. By Cohomology of
Schemes, Lemma 21.2 there is an open Ys ⊂ V ⊂ Y such that p|p−1(V ) : p−1(V )→
V is finite. By More on Morphisms, Theorem 16.1 there is an open Xs ⊂ U ⊂ X
such that p|U : U → Y is flat. After removing the images of X \U and Y \V (which
are closed subsets not containing s) we may assume p is flat and finite. Then p is
open (Morphisms, Lemma 25.10) and Ys ⊂ p(X) ⊂ Y hence after shrinking S we
may assume p is surjective. As ps : Xs → Ys is an isomorphism, the map

p♯ : OY −→ p∗OX

of coherent OY -modules (p is finite) becomes an isomorphism after pullback by
i : Ys → Y (by Cohomology of Schemes, Lemma 5.1 for example). By Nakayama’s
lemma, this implies that OY,y → (p∗OX)y is surjective for all y ∈ Ys. Hence
there is an open Ys ⊂ V ⊂ Y such that p♯|V is surjective (Modules, Lemma 9.4).
Hence after shrinking S once more we may assume p♯ is surjective which means
that p is a closed immersion (as p is already finite). Thus now p is a surjective flat
closed immersion of Noetherian schemes and hence an isomorphism, see Morphisms,
Section 26. □

Lemma 16.4.0G0R Let k be a field. Let S be a finite type scheme over k with k-
rational point s. Let Y → S be a smooth proper morphism. Let X = Ys×S → S be

https://stacks.math.columbia.edu/tag/0G0P
https://stacks.math.columbia.edu/tag/0G0Q
https://stacks.math.columbia.edu/tag/0G0R
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the constant family with fibre Ys. Let K be the Fourier-Mukai kernel of a relative
equivalence from X to Y over S. Assume the restriction

L(Ys ×S Ys → X ×S Y )∗K ∼= ∆Ys/k,∗OYs

in D(OYs×Ys). Then there is an open neighbourhood s ∈ U ⊂ S such that Y |U is
isomorphic to Ys × U over U .

Proof. Denote i : Ys×Ys = Xs×Ys → X×S Y the natural closed immersion. (We
will write Ys and not Xs for the fibre of X over s from now on.) Let z ∈ Ys × Ys =
(X×S Y )s ⊂ X×S Y be a closed point. As indicated we think of z both as a closed
point of Ys × Ys as well as a closed point of X ×S Y .
Case I: z ̸∈ ∆Ys/k(Ys). Denote Oz the coherent OYs×Ys

-module supported at z
whose value is κ(z). Then i∗Oz is the coherent OX×SY -module supported at z
whose value is κ(z). Our assumption means that

K ⊗L
OX×S Y

i∗Oz = Li∗K ⊗L
OYs×Ys

Oz = 0

Hence by Lemma 11.3 we find an open neighbourhood U(z) ⊂ X ×S Y of z such
that K|U(z) = 0. In this case we set Z(z) = ∅ as closed subscheme of U(z).
Case II: z ∈ ∆Ys/k(Ys). Since Ys is smooth over k we know that ∆Ys/k : Ys → Ys×Ys

is a regular immersion, see More on Morphisms, Lemma 62.18. Choose a regular
sequence f1, . . . , fr ∈ OYs×Ys,z cutting out the ideal sheaf of ∆Ys/k(Ys). Since a
regular sequence is Koszul-regular (More on Algebra, Lemma 30.2) our assumption
means that

Kz ⊗L
OX×S Y,z

OYs×Ys,z ∈ D(OYs×Ys,z)

is represented by the Koszul complex on f1, . . . , fr over OYs×Ys,z. By Lemma 16.1
applied to OS,s → OX×SY,z we conclude that Kz ∈ D(OX×SY,z) is represented by
the Koszul complex on a regular sequence f1, . . . , fr ∈ OX×SY,z lifting the regular
sequence f1, . . . , fr such that moreover OX×SY /(f1, . . . , fr) is flat over OS,s. By
some limit arguments (Lemma 16.2) we conclude that there exists an affine open
neighbourhood U(z) ⊂ X×S Y of z and a closed subscheme Z(z) ⊂ U(z) such that

(1) Z(z)→ U(z) is a regular closed immersion,
(2) K|U(z) is quasi-isomorphic to OZ(z),
(3) Z(z)→ S is flat,
(4) Z(z)s = ∆Ys/k(Ys) ∩ U(z)s as closed subschemes of U(z)s.

By property (2), for z, z′ ∈ Ys × Ys, we find that Z(z) ∩ U(z′) = Z(z′) ∩ U(z) as
closed subschemes. Hence we obtain an open neighbourhood

U =
⋃

z∈Ys×Ys closed
U(z)

of Ys × Ys in X ×S Y and a closed subscheme Z ⊂ U such that (1) Z → U is
a regular closed immersion, (2) Z → S is flat, and (3) Zs = ∆Ys/k(Ys). Since
X ×S Y → S is proper, after replacing S by an open neighbourhood of s we
may assume U = X ×S Y . Since the projections Zs → Ys and Zs → Xs are
isomorphisms, we conclude that after shrinking S we may assume Z → Y and
Z → X are isomorphisms, see Lemma 16.3. This finishes the proof. □

Lemma 16.5.0G0S Let k be an algebraically closed field. Let X be a smooth proper
scheme over k. Let f : Y → S be a smooth proper morphism with S of finite type
over k. Let K be the Fourier-Mukai kernel of a relative equivalence from X × S

https://stacks.math.columbia.edu/tag/0G0S
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to Y over S. Then S can be covered by open subschemes U such that there is a
U -isomorphism f−1(U) ∼= Y0 × U for some Y0 proper and smooth over k.

Proof. Choose a closed point s ∈ S. Since k is algebraically closed this is a k-
rational point. Set Y0 = Ys. The restriction K0 of K to X×Y0 is the Fourier-Mukai
kernel of a relative equivalence from X to Y0 over Spec(k) by Lemma 15.3. Let
K ′

0 in Dperf (OY0×X) be the object assumed to exist in Definition 15.1. Then K ′
0

is the Fourier-Mukai kernel of a relative equivalence from Y0 to X over Spec(k) by
the symmetry inherent in Definition 15.1. Hence by Lemma 15.3 we see that the
pullback

M = (Y0 ×X × S → Y0 ×X)∗K ′
0

on (Y0 × S) ×S (X × S) = Y0 × X × S is the Fourier-Mukai kernel of a relative
equivalence from Y0 × S to X × S over S. Now consider the kernel

Knew = Rpr13,∗(Lpr∗
12M ⊗L

O(Y0×S)×S (X×S)×S Y
Lpr∗

23K)

on (Y0 × S)×S Y . This is the Fourier-Mukai kernel of a relative equivalence from
Y0×S to Y over S since it is the composition of two invertible arrows in the category
constructed in Section 14. Moreover, this composition passes through base change
(Lemma 14.1). Hence we see that the pullback of Knew to ((Y0×S)×S Y )s = Y0×Y0
is equal to the composition of K0 and K ′

0 and hence equal to the identity in this
category. In other words, we have

L(Y0 × Y0 → (Y0 × S)×S Y )∗Knew
∼= ∆Y0/k,∗OY0

Thus by Lemma 16.4 we conclude that Y → S is isomorphic to Y0 × S in an open
neighbourhood of s. This finishes the proof. □

17. Countability

0G0T In this section we prove some elementary lemmas about countability of certain sets.
Let C be a category. In this section we will say that C is countable if

(1) for any X, Y ∈ Ob(C) the set MorC(X, Y ) is countable, and
(2) the set of isomorphism classes of objects of C is countable.

Lemma 17.1.0G0U Let R be a countable Noetherian ring. Then the category of schemes
of finite type over R is countable.

Proof. Omitted. □

Lemma 17.2.0G0V Let A be a countable abelian category. Then Db(A) is countable.

Proof. It suffices to prove the statement for D(A) as the others are full subcat-
egories of this one. Since every object in D(A) is a complex of objects of A it
is immediate that the set of isomorphism classes of objects of Db(A) is countable.
Moreover, for bounded complexes A• and B• of A it is clear that HomKb(A)(A•, B•)
is countable. We have

HomDb(A)(A•, B•) = colims:(A′)•→A• qis and (A′)• bounded HomKb(A)((A′)•, B•)
by Derived Categories, Lemma 11.6. Thus this is a countable set as a countable
colimit of □

Lemma 17.3.0G0W Let X be a scheme of finite type over a countable Noetherian ring.
Then the categories Dperf (OX) and Db

Coh(OX) are countable.
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https://stacks.math.columbia.edu/tag/0G0V
https://stacks.math.columbia.edu/tag/0G0W


DERIVED CATEGORIES OF VARIETIES 41

Proof. Observe that X is Noetherian by Morphisms, Lemma 15.6. Hence Dperf (OX)
is a full subcategory of Db

Coh(OX) by Derived Categories of Schemes, Lemma 11.6.
Thus it suffices to prove the result for Db

Coh(OX). Recall that Db
Coh(OX) =

Db(Coh(OX)) by Derived Categories of Schemes, Proposition 11.2. Hence by
Lemma 17.2 it suffices to prove that Coh(OX) is countable. This we omit. □

Lemma 17.4.0G0X Let K be an algebraically closed field. Let S be a finite type scheme
over K. Let X → S and Y → S be finite type morphisms. There exists a countable
set I and for i ∈ I a pair (Si → S, hi) with the following properties

(1) Si → S is a morphism of finite type, set Xi = X ×S Si and Yi = Y ×S Si,
(2) hi : Xi → Yi is an isomorphism over Si, and
(3) for any closed point s ∈ S(K) if Xs

∼= Ys over K = κ(s) then s is in the
image of Si → S for some i.

Proof. The field K is the filtered union of its countable subfields. Dually, Spec(K)
is the cofiltered limit of the spectra of the countable subfields of K. Hence Limits,
Lemma 10.1 guarantees that we can find a countable subfield k and morphisms
X0 → S0 and Y0 → S0 of schemes of finite type over k such that X → S and
Y → S are the base changes of these.

By Lemma 17.1 there is a countable set I and pairs (S0,i → S0, h0,i) such that
(1) S0,i → S0 is a morphism of finite type, set X0,i = X0 ×S0 S0,i and Y0,i =

Y0 ×S0 S0,i,
(2) h0,i : X0,i → Y0,i is an isomorphism over S0,i.

such that every pair (T → S0, hT ) with T → S0 of finite type and hT : X0×S0 T →
Y0 ×S0 T an isomorphism is isomorphic to one of these. Denote (Si → S, hi) the
base change of (S0,i → S0, h0,i) by Spec(K)→ Spec(k). We claim this works.

Let s ∈ S(K) and let hs : Xs → Ys be an isomorphism over K = κ(s). We can write
K as the filtered union of its finitely generated k-subalgebras. Hence by Limits,
Proposition 6.1 and Lemma 10.1 we can find such a finitely generated k-subalgebra
K ⊃ A ⊃ k such that

(1) there is a commutative diagram

Spec(K)

s

��

// Spec(A)

s′

��
S // S0

for some morphism s′ : Spec(A)→ S0 over k,
(2) hs is the base change of an isomorphism hs′ : X0×S0,s′ Spec(A)→ X0×S0,s′

Spec(A) over A.
Of course, then (s′ : Spec(A) → S0, hs′) is isomorphic to the pair (S0,i → S0, h0,i)
for some i ∈ I. This concludes the proof because the commutative diagram in (1)
shows that s is in the image of the base change of s′ to Spec(K). □

Lemma 17.5.0G0Y Let K be an algebraically closed field. There exists a countable set
I and for i ∈ I a pair (Si/K, Xi → Si, Yi → Si, Mi) with the following properties

(1) Si is a scheme of finite type over K,
(2) Xi → Si and Yi → Si are proper smooth morphisms of schemes,

https://stacks.math.columbia.edu/tag/0G0X
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(3) Mi ∈ Dperf (OXi×Si
Yi

) is the Fourier-Mukai kernel of a relative equivalence
from Xi to Yi over Si, and

(4) for any smooth proper schemes X and Y over K such that there is a K-
linear exact equivalence Dperf (OX)→ Dperf (OY ) there exists an i ∈ I and
a s ∈ Si(K) such that X ∼= (Xi)s and Y ∼= (Yi)s.

Proof. Choose a countable subfield k ⊂ K for example the prime field. By Lemmas
17.1 and 17.3 there exists a countable set of isomorphism classes of systems over k
satisfying parts (1), (2), (3) of the lemma. Thus we can choose a countable set I
and for each i ∈ I such a system

(S0,i/k, X0,i → S0,i, Y0,i → S0,i, M0,i)
over k such that each isomorphism class occurs at least once. Denote (Si/K, Xi →
Si, Yi → Si, Mi) the base change of the displayed system to K. This system has
properties (1), (2), (3), see Lemma 15.3. Let us prove property (4).
Consider smooth proper schemes X and Y over K such that there is a K-linear ex-
act equivalence F : Dperf (OX)→ Dperf (OY ). By Proposition 13.4 we may assume
that there exists an object M ∈ Dperf (OX×Y ) such that F = ΦM is the corre-
sponding Fourier-Mukai functor. By Lemma 8.9 there is an M ′ in Dperf (OY ×X)
such that ΦM ′ is the right adjoint to ΦM . Since ΦM is an equivalence, this means
that ΦM ′ is the quasi-inverse to ΦM . By Lemma 8.9 we see that the Fourier-Mukai
functors defined by the objects

A = Rpr13,∗(Lpr∗
12M ⊗L

OX×Y ×X
Lpr∗

23M ′)
in Dperf (OX×X) and

B = Rpr13,∗(Lpr∗
12M ′ ⊗L

OY ×X×Y
Lpr∗

23M)
in Dperf (OY ×Y ) are isomorphic to id : Dperf (OX)→ Dperf (OX) and id : Dperf (OY )→
Dperf (OY ) Hence A ∼= ∆X/K,∗OX and B ∼= ∆Y/K,∗OY by Lemma 13.5. Hence we
see that M is the Fourier-Mukai kernel of a relative equivalence from X to Y over
K by definition.
We can write K as the filtered colimit of its finite type k-subalgebras A ⊂ K. By
Limits, Lemma 10.1 we can find X0, Y0 of finite type over A whose base changes to
K produces X and Y . By Limits, Lemmas 13.1 and 8.9 after enlarging A we may
assume X0 and Y0 are smooth and proper over A. By Lemma 15.4 after enlarging A
we may assume M is the pullback of some M0 ∈ Dperf (OX0×Spec(A)Y0) which is the
Fourier-Mukai kernel of a relative equivalence from X0 to Y0 over Spec(A). Thus we
see that (S0/k, X0 → S0, Y0 → S0, M0) is isomorphic to (S0,i/k, X0,i → S0,i, Y0,i →
S0,i, M0,i) for some i ∈ I. Since Si = S0,i ×Spec(k) Spec(K) we conclude that (4) is
true with s : Spec(K) → Si induced by the morphism Spec(K) → Spec(A) ∼= S0,i

we get from A ⊂ K. □

18. Countability of derived equivalent varieties

0G0Z In this section we prove a result of Anel and Toën, see [AT09].

Definition 18.1.0G10 Let k be a field. Let X and Y be smooth projective schemes
over k. We say X and Y are derived equivalent if there exists a k-linear exact
equivalence Dperf (OX)→ Dperf (OY ).

Here is the result

https://stacks.math.columbia.edu/tag/0G10
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Theorem 18.2.0G11 Slight improvement
of [AT09]

Let K be an algebraically closed field. Let X be a smooth proper
scheme over K. There are at most countably many isomorphism classes of smooth
proper schemes Y over K which are derived equivalent to X.

Proof. Choose a countable set I and for i ∈ I systems (Si/K, Xi → Si, Yi →
Si, Mi) satisfying properties (1), (2), (3), and (4) of Lemma 17.5. Pick i ∈ I and
set S = Si, X = Xi, Y = Yi, and M = Mi. Clearly it suffice to show that the set
of isomorphism classes of fibres Ys for s ∈ S(K) such that Xs

∼= X is countable.
This we prove in the next paragraph.
Let S be a finite type scheme over K, let X → S and Y → S be proper smooth
morphisms, and let M ∈ Dperf (OX×SY ) be the Fourier-Mukai kernel of a relative
equivalence from X to Y over S. We will show the set of isomorphism classes of
fibres Ys for s ∈ S(K) such that Xs

∼= X is countable. By Lemma 17.4 applied to
the families X× S → S and X → S there exists a countable set I and for i ∈ I a
pair (Si → S, hi) with the following properties

(1) Si → S is a morphism of finite type, set Xi = X ×S Si,
(2) hi : X× Si → Xi is an isomorphism over Si, and
(3) for any closed point s ∈ S(K) if X ∼= Xs over K = κ(s) then s is in the

image of Si → S for some i.
Set Yi = Y ×S Si. Denote Mi ∈ Dperf (OXi×Si

Yi) the pullback of M . By Lemma
15.3 Mi is the Fourier-Mukai kernel of a relative equivalence from Xi to Yi over Si.
Since I is countable, by property (3) it suffices to prove that the set of isomorphism
classes of fibres Yi,s for s ∈ Si(K) is countable. In fact, this number is finite by
Lemma 16.5 and the proof is complete. □
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