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1. Introduction

03N2 This chapter is the first in a series of chapter on the étale cohomology of schemes.
In this chapter we discuss the very basics of the étale topology and cohomology
of abelian sheaves in this topology. Many of the topics discussed may be safely
skipped on a first reading; please see the advice in the next section as to how to
decide what to skip.

The initial version of this chapter was formed by the notes of the first part of a
course on étale cohomology taught by Johan de Jong at Columbia University in the
Fall of 2009. The original note takers were Thibaut Pugin, Zachary Maddock and
Min Lee. The second part of the course can be found in the chapter on the trace
formula, see The Trace Formula, Section 1.

2. Which sections to skip on a first reading?

04JG We want to use the material in this chapter for the development of theory related
to algebraic spaces, Deligne-Mumford stacks, algebraic stacks, etc. Thus we have
added some pretty technical material to the original exposition of étale cohomology
for schemes. The reader can recognize this material by the frequency of the word
“topos”, or by discussions related to set theory, or by proofs dealing with very
general properties of morphisms of schemes. Some of these discussions can be
skipped on a first reading.

In particular, we suggest that the reader skip the following sections:
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(1) Comparing big and small topoi, Section 99.
(2) Recovering morphisms, Section 40.
(3) Push and pull, Section 41.
(4) Property (A), Section 42.
(5) Property (B), Section 43.
(6) Property (C), Section 44.
(7) Topological invariance of the small étale site, Section 45.
(8) Integral universally injective morphisms, Section 47.
(9) Big sites and pushforward, Section 48.

(10) Exactness of big lower shriek, Section 49.
Besides these sections there are some sporadic results that may be skipped that the
reader can recognize by the keywords given above.

3. Prologue

03N3 These lectures are about another cohomology theory. The first thing to remark is
that the Zariski topology is not entirely satisfactory. One of the main reasons that
it fails to give the results that we would want is that if X is a complex variety and
F is a constant sheaf then

Hi(X,F) = 0, for all i > 0.

The reason for that is the following. In an irreducible scheme (a variety in par-
ticular), any two nonempty open subsets meet, and so the restriction mappings of
a constant sheaf are surjective. We say that the sheaf is flasque. In this case, all
higher Čech cohomology groups vanish, and so do all higher Zariski cohomology
groups. In other words, there are “not enough” open sets in the Zariski topology
to detect this higher cohomology.

On the other hand, if X is a smooth projective complex variety, then

H2 dimX
Betti (X(C),Λ) = Λ for Λ = Z, Z/nZ,

where X(C) means the set of complex points of X. This is a feature that would be
nice to replicate in algebraic geometry. In positive characteristic in particular.

4. The étale topology

03N4 It is very hard to simply “add” extra open sets to refine the Zariski topology.
One efficient way to define a topology is to consider not only open sets, but also
some schemes that lie over them. To define the étale topology, one considers all
morphisms φ : U → X which are étale. If X is a smooth projective variety over C,
then this means

(1) U is a disjoint union of smooth varieties, and
(2) φ is (analytically) locally an isomorphism.

The word “analytically” refers to the usual (transcendental) topology over C. So
the second condition means that the derivative of φ has full rank everywhere (and
in particular all the components of U have the same dimension as X).

A double cover – loosely defined as a finite degree 2 map between varieties – for
example

Spec(C[t]) −→ Spec(C[t]), t 7−→ t2
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will not be an étale morphism if it has a fibre consisting of a single point. In the
example this happens when t = 0. For a finite map between varieties over C to
be étale all the fibers should have the same number of points. Removing the point
t = 0 from the source of the map in the example will make the morphism étale.
But we can remove other points from the source of the morphism also, and the
morphism will still be étale. To consider the étale topology, we have to look at
all such morphisms. Unlike the Zariski topology, these need not be merely open
subsets of X, even though their images always are.

Definition 4.1.03N5 A family of morphisms {φi : Ui → X}i∈I is called an étale
covering if each φi is an étale morphism and their images cover X, i.e., X =⋃
i∈I φi(Ui).

This “defines” the étale topology. In other words, we can now say what the sheaves
are. An étale sheaf F of sets (resp. abelian groups, vector spaces, etc) on X is the
data:

(1) for each étale morphism φ : U → X a set (resp. abelian group, vector space,
etc) F(U),

(2) for each pair U, U ′ of étale schemes over X, and each morphism U → U ′

overX (which is automatically étale) a restriction map ρU ′

U : F(U ′)→ F(U)
These data have to satisfy the condition that ρUU = id in case of the identity
morphism U → U and that ρU ′

U ◦ρU
′′

U ′ = ρU
′′

U when we have morphisms U → U ′ → U ′′

of schemes étale over X as well as the following sheaf axiom:
(*) for every étale covering {φi : Ui → U}i∈I , the diagram

∅ // F(U) // Πi∈IF(Ui)
//
// Πi,j∈IF(Ui ×U Uj)

is exact in the category of sets (resp. abelian groups, vector spaces, etc).

Remark 4.2.03N6 In the last statement, it is essential not to forget the case where i = j
which is in general a highly nontrivial condition (unlike in the Zariski topology).
In fact, frequently important coverings have only one element.

Since the identity is an étale morphism, we can compute the global sections of an
étale sheaf, and cohomology will simply be the corresponding right-derived functors.
In other words, once more theory has been developed and statements have been
made precise, there will be no obstacle to defining cohomology.

5. Feats of the étale topology

03N7 For a natural number n ∈ N = {1, 2, 3, 4, . . .} it is true that

H2
étale(P1

C,Z/nZ) = Z/nZ.

More generally, if X is a complex variety, then its étale Betti numbers with coeffi-
cients in a finite field agree with the usual Betti numbers of X(C), i.e.,

dimFq H
2i
étale(X,Fq) = dimFq H

2i
Betti(X(C),Fq).

This is extremely satisfactory. However, these equalities only hold for torsion coef-
ficients, not in general. For integer coefficients, one has

H2
étale(P1

C,Z) = 0.

https://stacks.math.columbia.edu/tag/03N5
https://stacks.math.columbia.edu/tag/03N6
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By contrast H2
Betti(P1(C),Z) = Z as the topological space P1(C) is homeomorphic

to a 2-sphere. There are ways to get back to nontorsion coefficients from torsion
ones by a limit procedure which we will come to shortly.

6. A computation

03N8 How do we compute the cohomology of P1
C with coefficients Λ = Z/nZ? We

use Čech cohomology. A covering of P1
C is given by the two standard opens

U0, U1, which are both isomorphic to A1
C, and whose intersection is isomorphic

to A1
C \ {0} = Gm,C. It turns out that the Mayer-Vietoris sequence holds in étale

cohomology. This gives an exact sequence

Hi−1
étale(U0∩U1,Λ)→ Hi

étale(P1
C ,Λ)→ Hi

étale(U0,Λ)⊕Hi
étale(U1,Λ)→ Hi

étale(U0∩U1,Λ).

To get the answer we expect, we would need to show that the direct sum in the
third term vanishes. In fact, it is true that, as for the usual topology,

Hq
étale(A

1
C,Λ) = 0 for q ≥ 1,

and

Hq
étale(A

1
C \ {0},Λ) =

{
Λ if q = 1, and
0 for q ≥ 2.

These results are already quite hard (what is an elementary proof?). Let us explain
how we would compute this once the machinery of étale cohomology is at our
disposal.

Higher cohomology. This is taken care of by the following general fact: if X is
an affine curve over C, then

Hq
étale(X,Z/nZ) = 0 for q ≥ 2.

This is proved by considering the generic point of the curve and doing some Galois
cohomology. So we only have to worry about the cohomology in degree 1.

Cohomology in degree 1. We use the following identifications:

H1
étale(X,Z/nZ) =

{
sheaves of sets F on the étale site Xétale endowed with an

action Z/nZ×F → F such that F is a Z/nZ-torsor.

} /
∼=

=
{

morphisms Y → X which are finite étale together
with a free Z/nZ action such that X = Y/(Z/nZ).

} /
∼= .

The first identification is very general (it is true for any cohomology theory on a
site) and has nothing to do with the étale topology. The second identification is
a consequence of descent theory. The last set describes a collection of geometric
objects on which we can get our hands.

The curve A1
C has no nontrivial finite étale covering and hence H1

étale(A1
C,Z/nZ) =

0. This can be seen either topologically or by using the argument in the next
paragraph.

Let us describe the finite étale coverings φ : Y → A1
C \ {0}. It suffices to consider

the case where Y is connected, which we assume. We are going to find out what Y
can be by applying the Riemann-Hurwitz formula (of course this is a bit silly, and
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you can go ahead and skip the next section if you like). Say that this morphism is
n to 1, and consider a projective compactification

Y �
� //

φ

��

Ȳ

φ̄

��
A1

C \ {0}
� � // P1

C

Even though φ is étale and does not ramify, φ̄ may ramify at 0 and ∞. Say that
the preimages of 0 are the points y1, . . . , yr with indices of ramification e1, . . . er,
and that the preimages of ∞ are the points y′

1, . . . , y
′
s with indices of ramification

d1, . . . ds. In particular,
∑
ei = n =

∑
dj . Applying the Riemann-Hurwitz formula,

we get
2gY − 2 = −2n+

∑
(ei − 1) +

∑
(dj − 1)

and therefore gY = 0, r = s = 1 and e1 = d1 = n. Hence Y ∼= A1
C \ {0}, and it

is easy to see that φ(z) = λzn for some λ ∈ C∗. After reparametrizing Y we may
assume λ = 1. Thus our covering is given by taking the nth root of the coordinate
on A1

C \ {0}.

Remember that we need to classify the coverings of A1
C \ {0} together with free

Z/nZ-actions on them. In our case any such action corresponds to an automor-
phism of Y sending z to ζnz, where ζn is a primitive nth root of unity. There are
ϕ(n) such actions (here ϕ(n) means the Euler function). Thus there are exactly
ϕ(n) connected finite étale coverings with a given free Z/nZ-action, each corre-
sponding to a primitive nth root of unity. We leave it to the reader to see that the
disconnected finite étale degree n coverings of A1

C \ {0} with a given free Z/nZ-
action correspond one-to-one with nth roots of 1 which are not primitive. In other
words, this computation shows that

H1
étale(A1

C \ {0},Z/nZ) = Hom(µn(C),Z/nZ) ∼= Z/nZ.

The first identification is canonical, the second isn’t, see Remark 69.5. Since the
proof of Riemann-Hurwitz does not use the computation of cohomology, the above
actually constitutes a proof (provided we fill in the details on vanishing, etc).

7. Nontorsion coefficients

03N9 To study nontorsion coefficients, one makes the following definition:

Hi
étale(X,Qℓ) :=

(
limnH

i
étale(X,Z/ℓnZ)

)
⊗Zℓ

Qℓ.

The symbol limn denote the limit of the system of cohomology groupsHi
étale(X,Z/ℓnZ)

indexed by n, see Categories, Section 21. Thus we will need to study systems of
sheaves satisfying some compatibility conditions.

8. Sheaf theory

03NA At this point we start talking about sites and sheaves in earnest. There is an
amazing amount of useful abstract material that could fit in the next few sections.
Some of this material is worked out in earlier chapters, such as the chapter on sites,
modules on sites, and cohomology on sites. We try to refrain from adding too much
material here, just enough so the material later in this chapter makes sense.
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9. Presheaves

03NB A reference for this section is Sites, Section 2.

Definition 9.1.03NC Let C be a category. A presheaf of sets (respectively, an abelian
presheaf) on C is a functor Copp → Sets (resp. Ab).

Terminology. If U ∈ Ob(C), then elements of F(U) are called sections of F over
U . For φ : V → U in C, the map F(φ) : F(U) → F(V ) is called the restriction
map and is often denoted s 7→ s|V or sometimes s 7→ φ∗s. The notation s|V is
ambiguous since the restriction map depends on φ, but it is a standard abuse of
notation. We also use the notation Γ(U,F) = F(U).

Saying that F is a functor means that if W → V → U are morphisms in C and
s ∈ Γ(U,F) then (s|V )|W = s|W , with the abuse of notation just seen. Moreover,
the restriction mappings corresponding to the identity morphisms idU : U → U are
the identity.

The category of presheaves of sets (respectively of abelian presheaves) on C is de-
noted PSh(C) (resp. PAb(C)). It is the category of functors from Copp to Sets (resp.
Ab), which is to say that the morphisms of presheaves are natural transformations
of functors. We only consider the categories PSh(C) and PAb(C) when the category
C is small. (Our convention is that a category is small unless otherwise mentioned,
and if it isn’t small it should be listed in Categories, Remark 2.2.)

Example 9.2.03ND Given an object X ∈ Ob(C), we consider the functor

hX : Copp −→ Sets
U 7−→ hX(U) = MorC(U,X)

V
φ−→ U 7−→ φ ◦ − : hX(U)→ hX(V ).

It is a presheaf, called the representable presheaf associated to X. It is not true
that representable presheaves are sheaves in every topology on every site.

Lemma 9.3 (Yoneda).03NE Let C be a category, and X,Y ∈ Ob(C). There is a natural
bijection

MorC(X,Y ) −→ MorPSh(C)(hX , hY )
ψ 7−→ hψ = ψ ◦ − : hX → hY .

Proof. See Categories, Lemma 3.5. □

10. Sites

03NF
Definition 10.1.03NG Let C be a category. A family of morphisms with fixed target
U = {φi : Ui → U}i∈I is the data of

(1) an object U ∈ C,
(2) a set I (possibly empty), and
(3) for all i ∈ I, a morphism φi : Ui → U of C with target U .

There is a notion of a morphism of families of morphisms with fixed target. A
special case of that is the notion of a refinement. A reference for this material is
Sites, Section 8.

https://stacks.math.columbia.edu/tag/03NC
https://stacks.math.columbia.edu/tag/03ND
https://stacks.math.columbia.edu/tag/03NE
https://stacks.math.columbia.edu/tag/03NG
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Definition 10.2.03NH A site1 consists of a category C and a set Cov(C) consisting of
families of morphisms with fixed target called coverings, such that

(1) (isomorphism) if φ : V → U is an isomorphism in C, then {φ : V → U} is
a covering,

(2) (locality) if {φi : Ui → U}i∈I is a covering and for all i ∈ I we are given a
covering {ψij : Uij → Ui}j∈Ii , then

{φi ◦ ψij : Uij → U}(i,j)∈
∏

i∈I
{i}×Ii

is also a covering, and
(3) (base change) if {Ui → U}i∈I is a covering and V → U is a morphism in C,

then
(a) for all i ∈ I the fibre product Ui ×U V exists in C, and
(b) {Ui ×U V → V }i∈I is a covering.

For us the category underlying a site is always “small”, i.e., its collection of objects
form a set, and the collection of coverings of a site is a set as well (as in the
definition above). We will mostly, in this chapter, leave out the arguments that cut
down the collection of objects and coverings to a set. For further discussion, see
Sites, Remark 6.3.

Example 10.3.03NI If X is a topological space, then it has an associated site XZar

defined as follows: the objects of XZar are the open subsets of X, the morphisms
between these are the inclusion mappings, and the coverings are the usual topolog-
ical (surjective) coverings. Observe that if U, V ⊂ W ⊂ X are open subsets then
U ×W V = U ∩ V exists: this category has fiber products. All the verifications are
trivial and everything works as expected.

11. Sheaves

03NJ
Definition 11.1.03NK A presheaf F of sets (resp. abelian presheaf) on a site C is said
to be a separated presheaf if for all coverings {φi : Ui → U}i∈I ∈ Cov(C) the map

F(U) −→
∏

i∈I
F(Ui)

is injective. Here the map is s 7→ (s|Ui
)i∈I . The presheaf F is a sheaf if for all

coverings {φi : Ui → U}i∈I ∈ Cov(C), the diagram

(11.1.1)03NL F(U) // ∏
i∈I F(Ui)

//
//
∏
i,j∈I F(Ui ×U Uj),

where the first map is s 7→ (s|Ui)i∈I and the two maps on the right are (si)i∈I 7→
(si|Ui×UUj

) and (si)i∈I 7→ (sj |Ui×UUj
), is an equalizer diagram in the category of

sets (resp. abelian groups).

Remark 11.2.03NM For the empty covering (where I = ∅), this implies that F(∅) is an
empty product, which is a final object in the corresponding category (a singleton,
for both Sets and Ab).

Example 11.3.03NN Working this out for the site XZar associated to a topological
space, see Example 10.3, gives the usual notion of sheaves.

1What we call a site is a called a category endowed with a pretopology in [AGV71, Exposé II,
Définition 1.3]. In [Art62] it is called a category with a Grothendieck topology.

https://stacks.math.columbia.edu/tag/03NH
https://stacks.math.columbia.edu/tag/03NI
https://stacks.math.columbia.edu/tag/03NK
https://stacks.math.columbia.edu/tag/03NM
https://stacks.math.columbia.edu/tag/03NN
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Definition 11.4.03NO We denote Sh(C) (resp. Ab(C)) the full subcategory of PSh(C)
(resp. PAb(C)) whose objects are sheaves. This is the category of sheaves of sets
(resp. abelian sheaves) on C.

12. The example of G-sets

03NP Let G be a group and define a site TG as follows: the underlying category is the
category of G-sets, i.e., its objects are sets endowed with a left G-action and the
morphisms are equivariant maps; and the coverings of TG are the families {φi :
Ui → U}i∈I satisfying U =

⋃
i∈I φi(Ui).

There is a special object in the site TG, namely the G-set G endowed with its natural
action by left translations. We denote it GG. Observe that there is a natural group
isomorphism

ρ : Gopp −→ AutG-Sets(GG)
g 7−→ (h 7→ hg).

In particular, for any presheaf F , the set F(GG) inherits a G-action via ρ. (Note
that by contravariance of F , the set F(GG) is again a left G-set.) In fact, the
functor

Sh(TG) −→ G-Sets
F 7−→ F(GG)

is an equivalence of categories. Its quasi-inverse is the functor X 7→ hX . Without
giving the complete proof (which can be found in Sites, Section 9) let us try to
explain why this is true.

(1) If S is a G-set, we can decompose it into orbits S =
∐
i∈I Oi. The sheaf

axiom for the covering {Oi → S}i∈I says that

F(S) // ∏
i∈I F(Oi)

//
//
∏
i,j∈I F(Oi ×S Oj)

is an equalizer. Observing that fibered products in G-Sets are induced from
fibered products in Sets, and using the fact that F(∅) is a G-singleton, we
get that ∏

i,j∈I
F(Oi ×S Oj) =

∏
i∈I
F(Oi)

and the two maps above are in fact the same. Therefore the sheaf axiom
merely says that F(S) =

∏
i∈I F(Oi).

(2) If S is the G-set S = G/H and F is a sheaf on TG, then we claim that

F(G/H) = F(GG)H

and in particular F({∗}) = F(GG)G. To see this, let’s use the sheaf axiom
for the covering {GG→ G/H} of S. We have

GG×G/H GG ∼= G×H
(g1, g2) 7−→ (g1, g

−1
1 g2)

is a disjoint union of copies of GG (as a G-set). Hence the sheaf axiom
reads

F(G/H) // F(GG) //
//
∏
h∈H F(GG)

where the two maps on the right are s 7→ (s)h∈H and s 7→ (hs)h∈H . There-
fore F(G/H) = F(GG)H as claimed.

https://stacks.math.columbia.edu/tag/03NO
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This doesn’t quite prove the claimed equivalence of categories, but it shows at least
that a sheaf F is entirely determined by its sections over GG. Details (and set
theoretical remarks) can be found in Sites, Section 9.

13. Sheafification

03NQ
Definition 13.1.03NR Let F be a presheaf on the site C and U = {Ui → U} ∈ Cov(C).
We define the zeroth Čech cohomology group of F with respect to U by

Ȟ0(U ,F) =
{

(si)i∈I ∈
∏

i∈I
F(Ui) such that si|Ui×UUj

= sj |Ui×UUj

}
.

There is a canonical map F(U) → Ȟ0(U ,F), s 7→ (s|Ui
)i∈I . We say that a mor-

phism of coverings from a covering V = {Vj → V }j∈J to U is a triple (χ, α, χj),
where χ : V → U is a morphism, α : J → I is a map of sets, and for all j ∈ J the
morphism χj fits into a commutative diagram

Vj χj

//

��

Uα(j)

��
V

χ // U.

Given the data χ, α, {χj}j∈J we define

Ȟ0(U ,F) −→ Ȟ0(V,F)
(si)i∈I 7−→

(
χ∗
j

(
sα(j)

))
j∈J .

We then claim that
(1) the map is well-defined, and
(2) depends only on χ and is independent of the choice of α, {χj}j∈J .

We omit the proof of the first fact. To see part (2), consider another triple (ψ, β, ψj)
with χ = ψ. Then we have the commutative diagram

Vj (χj ,ψj)
//

��

Uα(j) ×U Uβ(j)

xx &&
Uα(j)

''

Uβ(j)

ww
V

χ=ψ // U.

Given a section s ∈ F(U), its image in F(Vj) under the map given by (χ, α, {χj}j∈J)
is χ∗

jsα(j), and its image under the map given by (ψ, β, {ψj}j∈J) is ψ∗
j sβ(j). These

two are equal since by assumption s ∈ Ȟ0(U ,F) and hence both are equal to the
pullback of the common value

sα(j)|Uα(j)×UUβ(j) = sβ(j)|Uα(j)×UUβ(j)

pulled back by the map (χj , ψj) in the diagram.

Theorem 13.2.03NS Let C be a site and F a presheaf on C.

https://stacks.math.columbia.edu/tag/03NR
https://stacks.math.columbia.edu/tag/03NS
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(1) The rule

U 7→ F+(U) := colimU covering of U Ȟ
0(U ,F)

is a presheaf. And the colimit is a directed one.
(2) There is a canonical map of presheaves F → F+.
(3) If F is a separated presheaf then F+ is a sheaf and the map in (2) is

injective.
(4) F+ is a separated presheaf.
(5) F# = (F+)+ is a sheaf, and the canonical map induces a functorial iso-

morphism
HomPSh(C)(F ,G) = HomSh(C)(F#,G)

for any G ∈ Sh(C).

Proof. See Sites, Theorem 10.10. □

In other words, this means that the natural map F → F# is a left adjoint to the
forgetful functor Sh(C)→ PSh(C).

14. Cohomology

03NT The following is the basic result that makes it possible to define cohomology for
abelian sheaves on sites.

Theorem 14.1.03NU The category of abelian sheaves on a site is an abelian category
which has enough injectives.

Proof. See Modules on Sites, Lemma 3.1 and Injectives, Theorem 7.4. □

So we can define cohomology as the right-derived functors of the sections functor:
if U ∈ Ob(C) and F ∈ Ab(C),

Hp(U,F) := RpΓ(U,F) = Hp(Γ(U, I•))
where F → I• is an injective resolution. To do this, we should check that the
functor Γ(U,−) is left exact. This is true and is part of why the category Ab(C) is
abelian, see Modules on Sites, Lemma 3.1. For more general discussion of cohomol-
ogy on sites (including the global sections functor and its right derived functors),
see Cohomology on Sites, Section 2.

15. The fpqc topology

03NV Before doing étale cohomology we study a bit the fpqc topology, since it works well
for quasi-coherent sheaves.

Definition 15.1.03NW Let T be a scheme. An fpqc covering of T is a family {φi : Ti →
T}i∈I such that

(1) each φi is a flat morphism and
⋃
i∈I φi(Ti) = T , and

(2) for each affine open U ⊂ T there exists a finite set K, a map i : K → I and
affine opens Ui(k) ⊂ Ti(k) such that U =

⋃
k∈K φi(k)(Ui(k)).

Remark 15.2.03NX The first condition corresponds to fp, which stands for fidèlement
plat, faithfully flat in french, and the second to qc, quasi-compact. The second part
of the first condition is unnecessary when the second condition holds.

Example 15.3.03NY Examples of fpqc coverings.

https://stacks.math.columbia.edu/tag/03NU
https://stacks.math.columbia.edu/tag/03NW
https://stacks.math.columbia.edu/tag/03NX
https://stacks.math.columbia.edu/tag/03NY
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(1) Any Zariski open covering of T is an fpqc covering.
(2) A family {Spec(B)→ Spec(A)} is an fpqc covering if and only if A→ B is

a faithfully flat ring map.
(3) If f : X → Y is flat, surjective and quasi-compact, then {f : X → Y } is an

fpqc covering.
(4) The morphism φ :

∐
x∈A1

k
Spec(OA1

k
,x)→ A1

k, where k is a field, is flat and
surjective. It is not quasi-compact, and in fact the family {φ} is not an
fpqc covering.

(5) Write A2
k = Spec(k[x, y]). Denote ix : D(x) → A2

k and iy : D(y) → A2
k

the standard opens. Then the families {ix, iy,Spec(k[[x, y]]) → A2
k} and

{ix, iy,Spec(OA2
k
,0)→ A2

k} are fpqc coverings.

Lemma 15.4.03NZ The collection of fpqc coverings on the category of schemes satisfies
the axioms of site.

Proof. See Topologies, Lemma 9.7. □

It seems that this lemma allows us to define the fpqc site of the category of schemes.
However, there is a set theoretical problem that comes up when considering the fpqc
topology, see Topologies, Section 9. It comes from our requirement that sites are
“small”, but that no small category of schemes can contain a cofinal system of fpqc
coverings of a given nonempty scheme. Although this does not strictly speaking
prevent us from defining “partial” fpqc sites, it does not seem prudent to do so.
The work-around is to allow the notion of a sheaf for the fpqc topology (see below)
but to prohibit considering the category of all fpqc sheaves.

Definition 15.5.03X6 Let S be a scheme. The category of schemes over S is denoted
Sch/S. Consider a functor F : (Sch/S)opp → Sets, in other words a presheaf of sets.
We say F satisfies the sheaf property for the fpqc topology if for every fpqc covering
{Ui → U}i∈I of schemes over S the diagram (11.1.1) is an equalizer diagram.

We similarly say that F satisfies the sheaf property for the Zariski topology if for
every open covering U =

⋃
i∈I Ui the diagram (11.1.1) is an equalizer diagram. See

Schemes, Definition 15.3. Clearly, this is equivalent to saying that for every scheme
T over S the restriction of F to the opens of T is a (usual) sheaf.

Lemma 15.6.03O1 Let F be a presheaf on Sch/S. Then F satisfies the sheaf property
for the fpqc topology if and only if

(1) F satisfies the sheaf property with respect to the Zariski topology, and
(2) for every faithfully flat morphism Spec(B) → Spec(A) of affine schemes

over S, the sheaf axiom holds for the covering {Spec(B) → Spec(A)}.
Namely, this means that

F(Spec(A)) // F(Spec(B)) //
// F(Spec(B ⊗A B))

is an equalizer diagram.

Proof. See Topologies, Lemma 9.13. □

An alternative way to think of a presheaf F on Sch/S which satisfies the sheaf
condition for the fpqc topology is as the following data:

(1) for each T/S, a usual (i.e., Zariski) sheaf FT on TZar,
(2) for every map f : T ′ → T over S, a restriction mapping f−1FT → FT ′

https://stacks.math.columbia.edu/tag/03NZ
https://stacks.math.columbia.edu/tag/03X6
https://stacks.math.columbia.edu/tag/03O1
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such that
(a) the restriction mappings are functorial,
(b) if f : T ′ → T is an open immersion then the restriction mapping f−1FT →
FT ′ is an isomorphism, and

(c) for every faithfully flat morphism Spec(B)→ Spec(A) over S, the diagram

FSpec(A)(Spec(A)) // FSpec(B)(Spec(B)) //
// FSpec(B⊗AB)(Spec(B ⊗A B))

is an equalizer.
Data (1) and (2) and conditions (a), (b) give the data of a presheaf on Sch/S
satisfying the sheaf condition for the Zariski topology. By Lemma 15.6 condition
(c) then suffices to get the sheaf condition for the fpqc topology.

Example 15.7.03O2 Consider the presheaf

F : (Sch/S)opp −→ Ab
T/S 7−→ Γ(T,ΩT/S).

The compatibility of differentials with localization implies that F is a sheaf on the
Zariski site. However, it does not satisfy the sheaf condition for the fpqc topology.
Namely, consider the case S = Spec(Fp) and the morphism

φ : V = Spec(Fp[v])→ U = Spec(Fp[u])

given by mapping u to vp. The family {φ} is an fpqc covering, yet the restriction
mapping F(U)→ F(V ) sends the generator du to d(vp) = 0, so it is the zero map,
and the diagram

F(U) 0 // F(V ) //
// F(V ×U V )

is not an equalizer. We will see later that F does in fact give rise to a sheaf on the
étale and smooth sites.

Lemma 15.8.03O3 Any representable presheaf on Sch/S satisfies the sheaf condition
for the fpqc topology.

Proof. See Descent, Lemma 13.7. □

We will return to this later, since the proof of this fact uses descent for quasi-
coherent sheaves, which we will discuss in the next section. A fancy way of express-
ing the lemma is to say that the fpqc topology is weaker than the canonical topology,
or that the fpqc topology is subcanonical. In the setting of sites this is discussed in
Sites, Section 12.

Remark 15.9.03O4 The fpqc is finer than the Zariski, étale, smooth, syntomic, and
fppf topologies. Hence any presheaf satisfying the sheaf condition for the fpqc
topology will be a sheaf on the Zariski, étale, smooth, syntomic, and fppf sites. In
particular representable presheaves will be sheaves on the étale site of a scheme for
example.

Example 15.10.03O5 Let S be a scheme. Consider the additive group scheme Ga,S =
A1
S over S, see Groupoids, Example 5.3. The associated representable presheaf is

given by
hGa,S

(T ) = MorS(T,Ga,S) = Γ(T,OT ).

https://stacks.math.columbia.edu/tag/03O2
https://stacks.math.columbia.edu/tag/03O3
https://stacks.math.columbia.edu/tag/03O4
https://stacks.math.columbia.edu/tag/03O5
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By the above we now know that this is a presheaf of sets which satisfies the sheaf
condition for the fpqc topology. On the other hand, it is clearly a presheaf of rings
as well. Hence we can think of this as a functor

O : (Sch/S)opp −→ Rings
T/S 7−→ Γ(T,OT )

which satisfies the sheaf condition for the fpqc topology. Correspondingly there is
a notion of O-module, and so on and so forth.

16. Faithfully flat descent

03O6 In this section we discuss faithfully flat descent for quasi-coherent modules. More
precisely, we will prove quasi-coherent modules satisfy effective descent with respect
to fpqc coverings.

Definition 16.1.03O7 Let U = {ti : Ti → T}i∈I be a family of morphisms of schemes
with fixed target. A descent datum for quasi-coherent sheaves with respect to U is
a collection ((Fi)i∈I , (φij)i,j∈I) where

(1) Fi is a quasi-coherent sheaf on Ti, and
(2) φij : pr∗

0Fi → pr∗
1Fj is an isomorphism of modules on Ti ×T Tj ,

such that the cocycle condition holds: the diagrams

pr∗
0Fi

pr∗
02φik $$

pr∗
01φij // pr∗

1Fj

pr∗
12φjkzz

pr∗
2Fk

commute on Ti ×T Tj ×T Tk. This descent datum is called effective if there exist
a quasi-coherent sheaf F over T and OTi

-module isomorphisms φi : t∗iF ∼= Fi
compatible with the maps φij , namely

φij = pr∗
1(φj) ◦ pr∗

0(φi)−1.

In this and the next section we discuss some ingredients of the proof of the following
theorem, as well as some related material.

Theorem 16.2.03O8 If V = {Ti → T}i∈I is an fpqc covering, then all descent data for
quasi-coherent sheaves with respect to V are effective.

Proof. See Descent, Proposition 5.2. □

In other words, the fibered category of quasi-coherent sheaves is a stack on the
fpqc site. The proof of the theorem is in two steps. The first one is to realize that
for Zariski coverings this is easy (or well-known) using standard glueing of sheaves
(see Sheaves, Section 33) and the locality of quasi-coherence. The second step is
the case of an fpqc covering of the form {Spec(B) → Spec(A)} where A → B is a
faithfully flat ring map. This is a lemma in algebra, which we now present.

Descent of modules. If A→ B is a ring map, we consider the complex

(B/A)• : B → B ⊗A B → B ⊗A B ⊗A B → . . .

https://stacks.math.columbia.edu/tag/03O7
https://stacks.math.columbia.edu/tag/03O8
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where B is in degree 0, B ⊗A B in degree 1, etc, and the maps are given by

b 7→ 1⊗ b− b⊗ 1,
b0 ⊗ b1 7→ 1⊗ b0 ⊗ b1 − b0 ⊗ 1⊗ b1 + b0 ⊗ b1 ⊗ 1,

etc.

Lemma 16.3.03O9 If A → B is faithfully flat, then the complex (B/A)• is exact in
positive degrees, and H0((B/A)•) = A.

Proof. See Descent, Lemma 3.6. □

Grothendieck proves this in three steps. Firstly, he assumes that the map A → B
has a section, and constructs an explicit homotopy to the complex where A is the
only nonzero term, in degree 0. Secondly, he observes that to prove the result,
it suffices to do so after a faithfully flat base change A → A′, replacing B with
B′ = B ⊗A A′. Thirdly, he applies the faithfully flat base change A→ A′ = B and
remark that the map A′ = B → B′ = B ⊗A B has a natural section.

The same strategy proves the following lemma.

Lemma 16.4.03OA If A→ B is faithfully flat and M is an A-module, then the complex
(B/A)• ⊗AM is exact in positive degrees, and H0((B/A)• ⊗AM) = M .

Proof. See Descent, Lemma 3.6. □

Definition 16.5.03OB Let A → B be a ring map and N a B-module. A descent
datum for N with respect to A → B is an isomorphism φ : N ⊗A B ∼= B ⊗A N of
B ⊗A B-modules such that the diagram of B ⊗A B ⊗A B-modules

N ⊗A B ⊗A B

φ02 ((

φ01 // B ⊗A N ⊗A B

φ12vv
B ⊗A B ⊗A N

commutes where φ01 = φ⊗ idB and similarly for φ12 and φ02.

If N ′ = B⊗AM for some A-module M, then it has a canonical descent datum given
by the map

φcan : N ′ ⊗A B → B ⊗A N ′

b0 ⊗m⊗ b1 7→ b0 ⊗ b1 ⊗m.

Definition 16.6.03OC A descent datum (N,φ) is called effective if there exists an
A-module M such that (N,φ) ∼= (B ⊗A M,φcan), with the obvious notion of iso-
morphism of descent data.

Theorem 16.2 is a consequence the following result.

Theorem 16.7.03OD If A → B is faithfully flat then descent data with respect to
A→ B are effective.

Proof. See Descent, Proposition 3.9. See also Descent, Remark 3.11 for an alter-
native view of the proof. □

Remarks 16.8.03OE The results on descent of modules have several applications:

https://stacks.math.columbia.edu/tag/03O9
https://stacks.math.columbia.edu/tag/03OA
https://stacks.math.columbia.edu/tag/03OB
https://stacks.math.columbia.edu/tag/03OC
https://stacks.math.columbia.edu/tag/03OD
https://stacks.math.columbia.edu/tag/03OE
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(1) The exactness of the Čech complex in positive degrees for the covering
{Spec(B) → Spec(A)} where A → B is faithfully flat. This will give some
vanishing of cohomology.

(2) If (N,φ) is a descent datum with respect to a faithfully flat map A → B,
then the corresponding A-module is given by

M = Ker
(
N −→ B ⊗A N
n 7−→ 1⊗ n− φ(n⊗ 1)

)
.

See Descent, Proposition 3.9.

17. Quasi-coherent sheaves

03OF We can apply the descent of modules to study quasi-coherent sheaves.

Proposition 17.1.03OG For any quasi-coherent sheaf F on S the presheaf

Fa : Sch/S → Ab
(f : T → S) 7→ Γ(T, f∗F)

is an O-module which satisfies the sheaf condition for the fpqc topology.

Proof. This is proved in Descent, Lemma 8.1. We indicate the proof here. As
established in Lemma 15.6, it is enough to check the sheaf property on Zariski
coverings and faithfully flat morphisms of affine schemes. The sheaf property for
Zariski coverings is standard scheme theory, since Γ(U, i∗F) = F(U) when i : U ↪→
S is an open immersion.

For {Spec(B)→ Spec(A)} with A → B faithfully flat and F|Spec(A) = M̃ this
corresponds to the fact that M = H0 ((B/A)• ⊗AM), i.e., that

0→M → B ⊗AM → B ⊗A B ⊗AM

is exact by Lemma 16.4. □

There is an abstract notion of a quasi-coherent sheaf on a ringed site. We briefly
introduce this here. For more information please consult Modules on Sites, Section
23. Let C be a category, and let U be an object of C. Then C/U indicates the
category of objects over U , see Categories, Example 2.13. If C is a site, then
C/U is a site as well, namely the coverings of V/U are families {Vi/U → V/U}
of morphisms of C/U with fixed target such that {Vi → V } is a covering of C.
Moreover, given any sheaf F on C the restriction F|C/U (defined in the obvious
manner) is a sheaf as well. See Sites, Section 25 for details.

Definition 17.2.03OH Let C be a ringed site, i.e., a site endowed with a sheaf of rings
O. A sheaf of O-modules F on C is called quasi-coherent if for all U ∈ Ob(C) there
exists a covering {Ui → U}i∈I of C such that the restriction F|C/Ui

is isomorphic
to the cokernel of an O-linear map of free O-modules⊕

k∈K
O|C/Ui

−→
⊕

l∈L
O|C/Ui

.

The direct sum over K is the sheaf associated to the presheaf V 7→
⊕

k∈K O(V )
and similarly for the other.

Although it is useful to be able to give a general definition as above this notion is
not well behaved in general.

https://stacks.math.columbia.edu/tag/03OG
https://stacks.math.columbia.edu/tag/03OH
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Remark 17.3.03OI In the case where C has a final object, e.g. S, it suffices to check
the condition of the definition for U = S in the above statement. See Modules on
Sites, Lemma 23.3.

Theorem 17.4 (Meta theorem on quasi-coherent sheaves).03OJ Let S be a scheme.
Let C be a site. Assume that

(1) the underlying category C is a full subcategory of Sch/S,
(2) any Zariski covering of T ∈ Ob(C) can be refined by a covering of C,
(3) S/S is an object of C,
(4) every covering of C is an fpqc covering of schemes.

Then the presheaf O is a sheaf on C and any quasi-coherent O-module on (C,O) is
of the form Fa for some quasi-coherent sheaf F on S.

Proof. After some formal arguments this is exactly Theorem 16.2. Details omitted.
In Descent, Proposition 8.9 we prove a more precise version of the theorem for the
big Zariski, fppf, étale, smooth, and syntomic sites of S, as well as the small Zariski
and étale sites of S. □

In other words, there is no difference between quasi-coherent modules on the scheme
S and quasi-coherent O-modules on sites C as in the theorem. More precise state-
ments for the big and small sites (Sch/S)fppf , Sétale, etc can be found in Descent,
Sections 8, 9, and 10. In this chapter we will sometimes refer to a “site as in
Theorem 17.4” in order to conveniently state results which hold in any of those
situations.

18. Čech cohomology

03OK Our next goal is to use descent theory to show that Hi(C,Fa) = Hi
Zar(S,F) for

all quasi-coherent sheaves F on S, and any site C as in Theorem 17.4. To this end,
we introduce Čech cohomology on sites. See [Art62] and Cohomology on Sites,
Sections 8, 9 and 10 for more details.

Definition 18.1.03OL Let C be a category, U = {Ui → U}i∈I a family of morphisms
of C with fixed target, and F ∈ PAb(C) an abelian presheaf. We define the Čech
complex Č•(U ,F) by∏

i0∈I
F(Ui0)→

∏
i0,i1∈I

F(Ui0 ×U Ui1)→
∏

i0,i1,i2∈I
F(Ui0 ×U Ui1 ×U Ui2)→ . . .

where the first term is in degree 0, and the maps are the usual ones. Again, it is
essential to allow the case i0 = i1 etc. The Čech cohomology groups are defined by

Ȟp(U ,F) = Hp(Č•(U ,F)).

Lemma 18.2.03OM The functor Č•(U ,−) is exact on the category PAb(C).

In other words, if 0→ F1 → F2 → F3 → 0 is a short exact sequence of presheaves
of abelian groups, then

0→ Č• (U ,F1)→ Č•(U ,F2)→ Č•(U ,F3)→ 0

is a short exact sequence of complexes.

https://stacks.math.columbia.edu/tag/03OI
https://stacks.math.columbia.edu/tag/03OJ
https://stacks.math.columbia.edu/tag/03OL
https://stacks.math.columbia.edu/tag/03OM
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Proof. This follows at once from the definition of a short exact sequence of presheaves.
Namely, as the category of abelian presheaves is the category of functors on some
category with values in Ab, it is automatically an abelian category: a sequence
F1 → F2 → F3 is exact in PAb if and only if for all U ∈ Ob(C), the sequence
F1(U) → F2(U) → F3(U) is exact in Ab. So the complex above is merely a prod-
uct of short exact sequences in each degree. See also Cohomology on Sites, Lemma
9.1. □

This shows that Ȟ•(U ,−) is a δ-functor. We now proceed to show that it is a
universal δ-functor. We thus need to show that it is an effaceable functor. We start
by recalling the Yoneda lemma.
Lemma 18.3 (Yoneda Lemma).03ON For any presheaf F on a category C there is a
functorial isomorphism

HomPSh(C)(hU ,F) = F(U).
Proof. See Categories, Lemma 3.5. □

Given a set E we denote (in this section) Z[E] the free abelian group on E. In a
formula Z[E] =

⊕
e∈E Z, i.e., Z[E] is a free Z-module having a basis consisting of

the elements of E. Using this notation we introduce the free abelian presheaf on a
presheaf of sets.
Definition 18.4.03OO Let C be a category. Given a presheaf of sets G, we define the
free abelian presheaf on G, denoted ZG , by the rule

ZG(U) = Z[G(U)]
for U ∈ Ob(C) with restriction maps induced by the restriction maps of G. In the
special case G = hU we write simply ZU = ZhU

.
The functor G 7→ ZG is left adjoint to the forgetful functor PAb(C) → PSh(C).
Thus, for any presheaf F , there is a canonical isomorphism

HomPAb(C)(ZU ,F) = HomPSh(C)(hU ,F) = F(U)
the last equality by the Yoneda lemma. In particular, we have the following result.

Lemma 18.5.03OP The Čech complex Č•(U ,F) can be described explicitly as follows

Č•(U ,F) =

 ∏
i0∈I

HomPAb(C)(ZUi0
,F)→

∏
i0,i1∈I

HomPAb(C)(ZUi0 ×UUi1
,F)→ . . .


= HomPAb(C)

⊕
i0∈I

ZUi0
←

⊕
i0,i1∈I

ZUi0 ×UUi1
← . . .

 ,F


Proof. This follows from the formula above. See Cohomology on Sites, Lemma
9.3. □

This reduces us to studying only the complex in the first argument of the last Hom.
Lemma 18.6.03OQ The complex of abelian presheaves

Z•
U :

⊕
i0∈I

ZUi0
←

⊕
i0,i1∈I

ZUi0 ×UUi1
←

⊕
i0,i1,i2∈I

ZUi0 ×UUi1 ×UUi2
← . . .

is exact in all degrees except 0 in PAb(C).

https://stacks.math.columbia.edu/tag/03ON
https://stacks.math.columbia.edu/tag/03OO
https://stacks.math.columbia.edu/tag/03OP
https://stacks.math.columbia.edu/tag/03OQ
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Proof. For any V ∈ Ob(C) the complex of abelian groups Z•
U (V ) is

Z
[∐

i0∈I MorC(V,Ui0)
]
← Z

[∐
i0,i1∈I MorC(V,Ui0 ×U Ui1)

]
← . . . =⊕

φ:V→U

(
Z

[∐
i0∈I Morφ(V,Ui0)

]
← Z

[∐
i0,i1∈I Morφ(V,Ui0)×Morφ(V,Ui1)

]
← . . .

)
where

Morφ(V,Ui) = {V → Ui such that V → Ui → U equals φ}.
Set Sφ =

∐
i∈I Morφ(V,Ui), so that

Z•
U (V ) =

⊕
φ:V→U

(Z[Sφ]← Z[Sφ × Sφ]← Z[Sφ × Sφ × Sφ]← . . .) .

Thus it suffices to show that for each S = Sφ, the complex
Z[S]← Z[S × S]← Z[S × S × S]← . . .

is exact in negative degrees. To see this, we can give an explicit homotopy. Fix
s ∈ S and define K : n(s0,...,sp) 7→ n(s,s0,...,sp). One easily checks that K is a
nullhomotopy for the operator

δ : η(s0,...,sp) 7→
∑p

i=0
(−1)pη(s0,...,ŝi,...,sp).

See Cohomology on Sites, Lemma 9.4 for more details. □

Lemma 18.7.03OR Let C be a category. If I is an injective object of PAb(C) and U is
a family of morphisms with fixed target in C, then Ȟp(U , I) = 0 for all p > 0.

Proof. The Čech complex is the result of applying the functor HomPAb(C)(−, I) to
the complex Z•

U , i.e.,

Ȟp(U , I) = Hp(HomPAb(C)(Z•
U , I)).

But we have just seen that Z•
U is exact in negative degrees, and the functor

HomPAb(C)(−, I) is exact, hence HomPAb(C)(Z•
U , I) is exact in positive degrees. □

Theorem 18.8.03OS On PAb(C) the functors Ȟp(U ,−) are the right derived functors
of Ȟ0(U ,−).

Proof. By the Lemma 18.7, the functors Ȟp(U ,−) are universal δ-functors since
they are effaceable. So are the right derived functors of Ȟ0(U ,−). Since they agree
in degree 0, they agree by the universal property of universal δ-functors. For more
details see Cohomology on Sites, Lemma 9.6. □

Remark 18.9.03OT Observe that all of the preceding statements are about presheaves
so we haven’t made use of the topology yet.

19. The Čech-to-cohomology spectral sequence

03OU This spectral sequence is fundamental in proving foundational results on cohomol-
ogy of sheaves.

Lemma 19.1.03OV The forgetful functor Ab(C) → PAb(C) transforms injectives into
injectives.

Proof. This is formal using the fact that the forgetful functor has a left adjoint,
namely sheafification, which is an exact functor. For more details see Cohomology
on Sites, Lemma 10.1. □

https://stacks.math.columbia.edu/tag/03OR
https://stacks.math.columbia.edu/tag/03OS
https://stacks.math.columbia.edu/tag/03OT
https://stacks.math.columbia.edu/tag/03OV
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Theorem 19.2.03OW Let C be a site. For any covering U = {Ui → U}i∈I of U ∈ Ob(C)
and any abelian sheaf F on C there is a spectral sequence

Ep,q2 = Ȟp(U , Hq(F))⇒ Hp+q(U,F),

where Hq(F) is the abelian presheaf V 7→ Hq(V,F).

Proof. Choose an injective resolution F → I• in Ab(C), and consider the double
complex Č•(U , I•) and the maps

Γ(U, I•) // Č•(U , I•)

Č•(U ,F)

OO

Here the horizontal map is the natural map Γ(U, I•)→ Č0(U , I•) to the left column,
and the vertical map is induced by F → I0 and lands in the bottom row. By
assumption, I• is a complex of injectives in Ab(C), hence by Lemma 19.1, it is a
complex of injectives in PAb(C). Thus, the rows of the double complex are exact
in positive degrees (Lemma 18.7), and the kernel of Č0(U , I•)→ Č1(U , I•) is equal
to Γ(U, I•), since I• is a complex of sheaves. In particular, the cohomology of the
total complex is the standard cohomology of the global sections functor H0(U,F).

For the vertical direction, the qth cohomology group of the pth column is∏
i0,...,ip

Hq(Ui0 ×U . . .×U Uip ,F) =
∏

i0,...,ip

Hq(F)(Ui0 ×U . . .×U Uip)

in the entry Ep,q1 . So this is a standard double complex spectral sequence, and
the E2-page is as prescribed. For more details see Cohomology on Sites, Lemma
10.6. □

Remark 19.3.03OX This is a Grothendieck spectral sequence for the composition of
functors

Ab(C) −→ PAb(C) Ȟ0

−−→ Ab.

20. Big and small sites of schemes

03X7 Let S be a scheme. Let τ be one of the topologies we will be discussing. Thus
τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Of course if you are only interested
in the étale topology, then you can simply assume τ = étale throughout. Moreover,
we will discuss étale morphisms, étale coverings, and étale sites in more detail
starting in Section 25. In order to proceed with the discussion of cohomology
of quasi-coherent sheaves it is convenient to introduce the big τ -site and in case
τ ∈ {étale, Zariski}, the small τ -site of S. In order to do this we first introduce
the notion of a τ -covering.

Definition 20.1.03X8 (See Topologies, Definitions 7.1, 6.1, 5.1, 4.1, and 3.1.) Let
τ ∈ {fppf, syntomic, smooth, étale, Zariski}. A family of morphisms of schemes
{fi : Ti → T}i∈I with fixed target is called a τ -covering if and only if each fi is
flat of finite presentation, syntomic, smooth, étale, resp. an open immersion, and
we have

⋃
fi(Ti) = T .

https://stacks.math.columbia.edu/tag/03OW
https://stacks.math.columbia.edu/tag/03OX
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The class of all τ -coverings satisfies the axioms (1), (2) and (3) of Definition 10.2
(our definition of a site), see Topologies, Lemmas 7.3, 6.3, 5.3, 4.3, and 3.2.

Let us introduce the sites we will be working with. Contrary to what happens
in [AGV71], we do not want to choose a universe. Instead we pick a “partial
universe” (which is a suitably large set as in Sets, Section 5), and consider all
schemes contained in this set. Of course we make sure that our favorite base scheme
S is contained in the partial universe. Having picked the underlying category we
pick a suitably large set of τ -coverings which turns this into a site. The details are
in the chapter on topologies on schemes; there is a lot of freedom in the choices
made, but in the end the actual choices made will not affect the étale (or other)
cohomology of S (just as in [AGV71] the actual choice of universe doesn’t matter
at the end). Moreover, the way the material is written the reader who is happy
using strongly inaccessible cardinals (i.e., universes) can do so as a substitute.

Definition 20.2.03XB Let S be a scheme. Let τ ∈ {fppf, syntomic, smooth, étale,
Zariski}.

(1) A big τ -site of S is any of the sites (Sch/S)τ constructed as explained above
and in more detail in Topologies, Definitions 7.8, 6.8, 5.8, 4.8, and 3.7.

(2) If τ ∈ {étale, Zariski}, then the small τ -site of S is the full subcategory Sτ
of (Sch/S)τ whose objects are schemes T over S whose structure morphism
T → S is étale, resp. an open immersion. A covering in Sτ is a covering
{Ui → U} in (Sch/S)τ such that U is an object of Sτ .

The underlying category of the site (Sch/S)τ has reasonable “closure” properties,
i.e., given a scheme T in it any locally closed subscheme of T is isomorphic to an
object of (Sch/S)τ . Other such closure properties are: closed under fibre products of
schemes, taking countable disjoint unions, taking finite type schemes over a given
scheme, given an affine scheme Spec(R) one can complete, localize, or take the
quotient of R by an ideal while staying inside the category, etc. On the other hand,
for example arbitrary disjoint unions of schemes in (Sch/S)τ will take you outside
of it. Also note that, given an object T of (Sch/S)τ there will exist τ -coverings
{Ti → T}i∈I (as in Definition 20.1) which are not coverings in (Sch/S)τ for example
because the schemes Ti are not objects of the category (Sch/S)τ . But our choice
of the sites (Sch/S)τ is such that there always does exist a covering {Uj → T}j∈J
of (Sch/S)τ which refines the covering {Ti → T}i∈I , see Topologies, Lemmas 7.7,
6.7, 5.7, 4.7, and 3.6. We will mostly ignore these issues in this chapter.

If F is a sheaf on (Sch/S)τ or Sτ , then we denote

Hp
τ (U,F), in particular Hp

τ (S,F)

the cohomology groups of F over the object U of the site, see Section 14. Thus we
have Hp

fppf (S,F), Hp
syntomic(S,F), Hp

smooth(S,F), Hp
étale(S,F), and Hp

Zar(S,F).
The last two are potentially ambiguous since they might refer to either the big or
small étale or Zariski site. However, this ambiguity is harmless by the following
lemma.

Lemma 20.3.03YX Let τ ∈ {étale, Zariski}. If F is an abelian sheaf defined on
(Sch/S)τ , then the cohomology groups of F over S agree with the cohomology groups
of F|Sτ

over S.

https://stacks.math.columbia.edu/tag/03XB
https://stacks.math.columbia.edu/tag/03YX
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Proof. By Topologies, Lemmas 3.14 and 4.14 the functors Sτ → (Sch/S)τ satisfy
the hypotheses of Sites, Lemma 21.8. Hence our lemma follows from Cohomology
on Sites, Lemma 7.2. □

The category of sheaves on the big or small étale site of S depends only on the
full subcategory of (Sch/S)étale or Sétale consisting of affines and one only needs
to consider the standard étale coverings between them (as defined below). This
gives rise to sites (Aff/S)étale and Saffine,étale, see Topologies, Definition 4.8. The
comparison results are proven in Topologies, Lemmas 4.11 and 4.12. Here is our
definition of standard coverings in some of the topologies we will consider in this
chapter.

Definition 20.4.03X9 (See Topologies, Definitions 7.5, 6.5, 5.5, 4.5, and 3.4.) Let τ ∈
{fppf, syntomic, smooth, étale, Zariski}. Let T be an affine scheme. A standard
τ -covering of T is a family {fj : Uj → T}j=1,...,m with each Uj is affine, and each
fj flat and of finite presentation, standard syntomic, standard smooth, étale, resp.
the immersion of a standard principal open in T and T =

⋃
fj(Uj).

Lemma 20.5.03XA Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Any τ -covering
of an affine scheme can be refined by a standard τ -covering.

Proof. See Topologies, Lemmas 7.4, 6.4, 5.4, 4.4, and 3.3. □

For completeness we state and prove the invariance under choice of partial universe
of the cohomology groups we are considering. We will prove invariance of the small
étale topos in Lemma 21.2 below. For notation and terminology used in this lemma
we refer to Topologies, Section 12.

Lemma 20.6.03YY Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Let S be a
scheme. Let (Sch/S)τ and (Sch′/S)τ be two big τ -sites of S, and assume that the
first is contained in the second. In this case

(1) for any abelian sheaf F ′ defined on (Sch′/S)τ and any object U of (Sch/S)τ
we have

Hp
τ (U,F ′|(Sch/S)τ

) = Hp
τ (U,F ′)

In words: the cohomology of F ′ over U computed in the bigger site agrees
with the cohomology of F ′ restricted to the smaller site over U .

(2) for any abelian sheaf F on (Sch/S)τ there is an abelian sheaf F ′ on (Sch/S)′
τ

whose restriction to (Sch/S)τ is isomorphic to F .

Proof. By Topologies, Lemma 12.2 the inclusion functor (Sch/S)τ → (Sch′/S)τ
satisfies the assumptions of Sites, Lemma 21.8. This implies (2) and (1) follows
from Cohomology on Sites, Lemma 7.2. □

21. The étale topos

04HP A topos is the category of sheaves of sets on a site, see Sites, Definition 15.1. Hence
it is customary to refer to the use the phrase “étale topos of a scheme” to refer
to the category of sheaves on the small étale site of a scheme. Here is the formal
definition.

Definition 21.1.04HQ Let S be a scheme.
(1) The étale topos, or the small étale topos of S is the category Sh(Sétale) of

sheaves of sets on the small étale site of S.

https://stacks.math.columbia.edu/tag/03X9
https://stacks.math.columbia.edu/tag/03XA
https://stacks.math.columbia.edu/tag/03YY
https://stacks.math.columbia.edu/tag/04HQ
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(2) The Zariski topos, or the small Zariski topos of S is the category Sh(SZar)
of sheaves of sets on the small Zariski site of S.

(3) For τ ∈ {fppf, syntomic, smooth, étale, Zariski} a big τ -topos is the cate-
gory of sheaves of set on a big τ -topos of S.

Note that the small Zariski topos of S is simply the category of sheaves of sets on
the underlying topological space of S, see Topologies, Lemma 3.12. Whereas the
small étale topos does not depend on the choices made in the construction of the
small étale site, in general the big topoi do depend on those choices.

It turns out that the big or small étale topos only depends on the full subcategory
of (Sch/S)étale or Sétale consisting of affines, see Topologies, Lemmas 4.11 and 4.12.
We will use this for example in the proof of the following lemma.

Lemma 21.2.0958 Let S be a scheme. The étale topos of S is independent (up to
canonical equivalence) of the construction of the small étale site in Definition 20.2.

Proof. We have to show, given two big étale sites Schétale and Sch′
étale containing

S, then Sh(Sétale) ∼= Sh(S′
étale) with obvious notation. By Topologies, Lemma

12.1 we may assume Schétale ⊂ Sch′
étale. By Sets, Lemma 9.9 any affine scheme

étale over S is isomorphic to an object of both Schétale and Sch′
étale. Thus the

induced functor Saffine,étale → S′
affine,étale is an equivalence. Moreover, it is clear

that both this functor and a quasi-inverse map transform standard étale coverings
into standard étale coverings. Hence the result follows from Topologies, Lemma
4.12. □

22. Cohomology of quasi-coherent sheaves

03OY We start with a simple lemma (which holds in greater generality than stated). It
says that the Čech complex of a standard covering is equal to the Čech complex of
an fpqc covering of the form {Spec(B)→ Spec(A)} with A→ B faithfully flat.

Lemma 22.1.03OZ Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Let S be a
scheme. Let F be an abelian sheaf on (Sch/S)τ , or on Sτ in case τ = étale, and
let U = {Ui → U}i∈I be a standard τ -covering of this site. Let V =

∐
i∈I Ui. Then

(1) V is an affine scheme,
(2) V = {V → U} is an fpqc covering and also a τ -covering unless τ = Zariski,
(3) the Čech complexes Č•(U ,F) and Č•(V,F) agree.

Proof. The defintion of a standard τ -covering is given in Topologies, Definition
3.4, 4.5, 5.5, 6.5, and 7.5. By definition each of the schemes Ui is affine and I is a
finite set. Hence V is an affine scheme. It is clear that V → U is flat and surjective,
hence V is an fpqc covering, see Example 15.3. Excepting the Zariski case, the
covering V is also a τ -covering, see Topologies, Definition 4.1, 5.1, 6.1, and 7.1.

Note that U is a refinement of V and hence there is a map of Čech complexes
Č•(V,F)→ Č•(U ,F), see Cohomology on Sites, Equation (8.2.1). Next, we observe
that if T =

∐
j∈J Tj is a disjoint union of schemes in the site on which F is defined

then the family of morphisms with fixed target {Tj → T}j∈J is a Zariski covering,
and so

(22.1.1)03XC F(T ) = F(
∐

j∈J
Tj) =

∏
j∈J
F(Tj)

https://stacks.math.columbia.edu/tag/0958
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by the sheaf condition of F . This implies the map of Čech complexes above is an
isomorphism in each degree because

V ×U . . .×U V =
∐

i0,...ip
Ui0 ×U . . .×U Uip

as schemes. □

Note that Equality (22.1.1) is false for a general presheaf. Even for sheaves it does
not hold on any site, since coproducts may not lead to coverings, and may not be
disjoint. But it does for all the usual ones (at least all the ones we will study).

Remark 22.2.03P0 In the statement of Lemma 22.1 the covering U is a refinement of
V but not the other way around. Coverings of the form {V → U} do not form an
initial subcategory of the category of all coverings of U . Yet it is still true that we
can compute Čech cohomology Ȟn(U,F) (which is defined as the colimit over the
opposite of the category of coverings U of U of the Čech cohomology groups of F
with respect to U) in terms of the coverings {V → U}. We will formulate a precise
lemma (it only works for sheaves) and add it here if we ever need it.

Lemma 22.3 (Locality of cohomology).03P1 Let C be a site, F an abelian sheaf on C,
U an object of C, p > 0 an integer and ξ ∈ Hp(U,F). Then there exists a covering
U = {Ui → U}i∈I of U in C such that ξ|Ui

= 0 for all i ∈ I.

Proof. Choose an injective resolution F → I•. Then ξ is represented by a cocycle
ξ̃ ∈ Ip(U) with dp(ξ̃) = 0. By assumption, the sequence Ip−1 → Ip → Ip+1 in
exact in Ab(C), which means that there exists a covering U = {Ui → U}i∈I such
that ξ̃|Ui

= dp−1(ξi) for some ξi ∈ Ip−1(Ui). Since the cohomology class ξ|Ui
is

represented by the cocycle ξ̃|Ui which is a coboundary, it vanishes. For more details
see Cohomology on Sites, Lemma 7.3. □

Theorem 22.4.03P2 Let S be a scheme and F a quasi-coherent OS-module. Let C be
either (Sch/S)τ for τ ∈ {fppf, syntomic, smooth, étale, Zariski} or Sétale. Then

Hp(S,F) = Hp
τ (S,Fa)

for all p ≥ 0 where
(1) the left hand side indicates the usual cohomology of the sheaf F on the

underlying topological space of the scheme S, and
(2) the right hand side indicates cohomology of the abelian sheaf Fa (see Propo-

sition 17.1) on the site C.

Proof. We are going to show that Hp(U, f∗F) = Hp
τ (U,Fa) for any object f :

U → S of the site C. The result is true for p = 0 by the sheaf property.
Assume that U is affine. Then we want to prove that Hp

τ (U,Fa) = 0 for all p > 0.
We use induction on p.
p = 1 Pick ξ ∈ H1

τ (U,Fa). By Lemma 22.3, there exists an fpqc covering U =
{Ui → U}i∈I such that ξ|Ui = 0 for all i ∈ I. Up to refining U , we
may assume that U is a standard τ -covering. Applying the spectral se-
quence of Theorem 19.2, we see that ξ comes from a cohomology class
ξ̌ ∈ Ȟ1(U ,Fa). Consider the covering V = {

∐
i∈I Ui → U}. By Lemma

22.1, Ȟ•(U ,Fa) = Ȟ•(V,Fa). On the other hand, since V is a cover-
ing of the form {Spec(B) → Spec(A)} and f∗F = M̃ for some A-module

https://stacks.math.columbia.edu/tag/03P0
https://stacks.math.columbia.edu/tag/03P1
https://stacks.math.columbia.edu/tag/03P2
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M , we see the Čech complex Č•(V,F) is none other than the complex
(B/A)• ⊗A M . Now by Lemma 16.4, Hp((B/A)• ⊗A M) = 0 for p > 0,
hence ξ̌ = 0 and so ξ = 0.

p > 1 Pick ξ ∈ Hp
τ (U,Fa). By Lemma 22.3, there exists an fpqc covering U =

{Ui → U}i∈I such that ξ|Ui
= 0 for all i ∈ I. Up to refining U , we may

assume that U is a standard τ -covering. We apply the spectral sequence of
Theorem 19.2. Observe that the intersections Ui0 ×U . . .×U Uip are affine,
so that by induction hypothesis the cohomology groups

Ep,q2 = Ȟp(U , Hq(Fa))

vanish for all 0 < q < p. We see that ξ must come from a ξ̌ ∈ Ȟp(U ,Fa).
Replacing U with the covering V containing only one morphism and using
Lemma 16.4 again, we see that the Čech cohomology class ξ̌ must be zero,
hence ξ = 0.

Next, assume that U is separated. Choose an affine open covering U =
⋃
i∈I Ui of

U . The family U = {Ui → U}i∈I is then an fpqc covering, and all the intersections
Ui0×U . . .×UUip are affine since U is separated. So all rows of the spectral sequence
of Theorem 19.2 are zero, except the zeroth row. Therefore

Hp
τ (U,Fa) = Ȟp(U ,Fa) = Ȟp(U ,F) = Hp(U,F)

where the last equality results from standard scheme theory, see Cohomology of
Schemes, Lemma 2.6.
The general case is technical and (to extend the proof as given here) requires a
discussion about maps of spectral sequences, so we won’t treat it. It follows from
Descent, Proposition 9.3 (whose proof takes a slightly different approach) combined
with Cohomology on Sites, Lemma 7.1. □

Remark 22.5.03P3 Comment on Theorem 22.4. Since S is a final object in the cate-
gory C, the cohomology groups on the right-hand side are merely the right derived
functors of the global sections functor. In fact the proof shows that Hp(U, f∗F) =
Hp
τ (U,Fa) for any object f : U → S of the site C.

23. Examples of sheaves

03YZ Let S and τ be as in Section 20. We have already seen that any representable
presheaf is a sheaf on (Sch/S)τ or Sτ , see Lemma 15.8 and Remark 15.9. Here are
some special cases.

Definition 23.1.03P4 On any of the sites (Sch/S)τ or Sτ of Section 20.
(1) The sheaf T 7→ Γ(T,OT ) is denoted OS , or Ga, or Ga,S if we want to

indicate the base scheme.
(2) Similarly, the sheaf T 7→ Γ(T,O∗

T ) is denoted O∗
S , or Gm, or Gm,S if we

want to indicate the base scheme.
(3) The constant sheaf Z/nZ on any site is the sheafification of the constant

presheaf U 7→ Z/nZ.

The first is a sheaf by Theorem 17.4 for example. The second is a sub presheaf of the
first, which is easily seen to be a sheaf itself. The third is a sheaf by definition. Note
that each of these sheaves is representable. The first and second by the schemes
Ga,S and Gm,S , see Groupoids, Section 4. The third by the finite étale group

https://stacks.math.columbia.edu/tag/03P3
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scheme Z/nZS sometimes denoted (Z/nZ)S which is just n copies of S endowed
with the obvious group scheme structure over S, see Groupoids, Example 5.6 and
the following remark.

Remark 23.2.03P5 Let G be an abstract group. On any of the sites (Sch/S)τ or Sτ
of Section 20 the sheafification G of the constant presheaf associated to G in the
Zariski topology of the site already gives

Γ(U,G) = {Zariski locally constant maps U → G}

This Zariski sheaf is representable by the group scheme GS according to Groupoids,
Example 5.6. By Lemma 15.8 any representable presheaf satisfies the sheaf condi-
tion for the τ -topology as well, and hence we conclude that the Zariski sheafification
G above is also the τ -sheafification.

Definition 23.3.04HS Let S be a scheme. The structure sheaf of S is the sheaf of rings
OS on any of the sites SZar, Sétale, or (Sch/S)τ discussed above.

If there is some possible confusion as to which site we are working on then we will
indicate this by using indices. For example we may use OSétale

to stress the fact
that we are working on the small étale site of S.

Remark 23.4.03P6 In the terminology introduced above a special case of Theorem
22.4 is

Hp
fppf (X,Ga) = Hp

étale(X,Ga) = Hp
Zar(X,Ga) = Hp(X,OX)

for all p ≥ 0. Moreover, we could use the notation Hp
fppf (X,OX) to indicate the

cohomology of the structure sheaf on the big fppf site of X.

24. Picard groups

03P7 The following theorem is sometimes called “Hilbert 90”.

Theorem 24.1.03P8 For any scheme X we have canonical identifications

H1
fppf (X,Gm) = H1

syntomic(X,Gm)
= H1

smooth(X,Gm)
= H1

étale(X,Gm)
= H1

Zar(X,Gm)
= Pic(X)
= H1(X,O∗

X)

Proof. Let τ be one of the topologies considered in Section 20. By Cohomology
on Sites, Lemma 6.1 we see that H1

τ (X,Gm) = H1
τ (X,O∗

τ ) = Pic(Oτ ) where Oτ is
the structure sheaf of the site (Sch/X)τ . Now an invertible Oτ -module is a quasi-
coherent Oτ -module. By Theorem 17.4 or the more precise Descent, Proposition
8.9 we see that Pic(Oτ ) = Pic(X). The last equality is proved in the same way. □

25. The étale site

03P9 At this point we start exploring the étale site of a scheme in more detail. As a first
step we discuss a little the notion of an étale morphism.

https://stacks.math.columbia.edu/tag/03P5
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26. Étale morphisms

03PA For more details, see Morphisms, Section 36 for the formal definition and Étale
Morphisms, Sections 11, 12, 13, 14, 16, and 19 for a survey of interesting properties
of étale morphisms.

Recall that an algebra A over an algebraically closed field k is smooth if it is of
finite type and the module of differentials ΩA/k is finite locally free of rank equal
to the dimension. A scheme X over k is smooth over k if it is locally of finite type
and each affine open is the spectrum of a smooth k-algebra. If k is not algebraically
closed then a k-algebra A is a smooth k-algebra if A⊗k k is a smooth k-algebra. A
ring map A→ B is smooth if it is flat, finitely presented, and for all primes p ⊂ A
the fibre ring κ(p) ⊗A B is smooth over the residue field κ(p). More generally, a
morphism of schemes is smooth if it is flat, locally of finite presentation, and the
geometric fibers are smooth.

For these facts please see Morphisms, Section 34. Using this we may define an étale
morphism as follows.

Definition 26.1.03PB A morphism of schemes is étale if it is smooth of relative di-
mension 0.

In particular, a morphism of schemes X → S is étale if it is smooth and ΩX/S = 0.

Proposition 26.2.03PC Facts on étale morphisms.
(1) Let k be a field. A morphism of schemes U → Spec(k) is étale if and only

if U ∼=
∐
i∈I Spec(ki) such that for each i ∈ I the ring ki is a field which is

a finite separable extension of k.
(2) Let φ : U → S be a morphism of schemes. The following conditions are

equivalent:
(a) φ is étale,
(b) φ is locally finitely presented, flat, and all its fibres are étale,
(c) φ is flat, unramified and locally of finite presentation.

(3) A ring map A → B is étale if and only if B ∼= A[x1, . . . , xn]/(f1, . . . , fn)
such that ∆ = det

(
∂fi

∂xj

)
is invertible in B.

(4) The base change of an étale morphism is étale.
(5) Compositions of étale morphisms are étale.
(6) Fibre products and products of étale morphisms are étale.
(7) An étale morphism has relative dimension 0.
(8) Let Y → X be an étale morphism. If X is reduced (respectively regular)

then so is Y .
(9) Étale morphisms are open.

(10) If X → S and Y → S are étale, then any S-morphism X → Y is also étale.

Proof. We have proved these facts (and more) in the preceding chapters. Here is
a list of references: (1) Morphisms, Lemma 36.7. (2) Morphisms, Lemmas 36.8 and
36.16. (3) Algebra, Lemma 143.2. (4) Morphisms, Lemma 36.4. (5) Morphisms,
Lemma 36.3. (6) Follows formally from (4) and (5). (7) Morphisms, Lemmas 36.6
and 29.5. (8) See Algebra, Lemmas 163.7 and 163.5, see also more results of this
kind in Étale Morphisms, Section 19. (9) See Morphisms, Lemma 25.10 and 36.12.
(10) See Morphisms, Lemma 36.18. □
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Definition 26.3.03PD A ring map A → B is called standard étale if B ∼= (A[t]/(f))g
with f, g ∈ A[t], with f monic, and df/dt invertible in B.

It is true that a standard étale ring map is étale. Namely, suppose that B =
(A[t]/(f))g with f, g ∈ A[t], with f monic, and df/dt invertible in B. Then A[t]/(f)
is a finite free A-module of rank equal to the degree of the monic polynomial f .
Hence B, as a localization of this free algebra is finitely presented and flat over A.
To finish the proof that B is étale it suffices to show that the fibre rings

κ(p)⊗A B ∼= κ(p)⊗A (A[t]/(f))g ∼= κ(p)[t, 1/g]/(f)

are finite products of finite separable field extensions. Here f, g ∈ κ(p)[t] are the
images of f and g. Let

f = f1 . . . faf
e1
a+1 . . . f

eb

a+b

be the factorization of f into powers of pairwise distinct irreducible monic factors
f i with e1, . . . , eb > 0. By assumption df/dt is invertible in κ(p)[t, 1/g]. Hence we
see that at least all the f i, i > a are invertible. We conclude that

κ(p)[t, 1/g]/(f) ∼=
∏

i∈I
κ(p)[t]/(f i)

where I ⊂ {1, . . . , a} is the subset of indices i such that f i does not divide g.
Moreover, the image of df/dt in the factor κ(p)[t]/(f i) is clearly equal to a unit
times df i/dt. Hence we conclude that κi = κ(p)[t]/(f i) is a finite field extension
of κ(p) generated by one element whose minimal polynomial is separable, i.e., the
field extension κi/κ(p) is finite separable as desired.

It turns out that any étale ring map is locally standard étale. To formulate this we
introduce the following notation. A ring map A → B is étale at a prime q of B if
there exists h ∈ B, h ̸∈ q such that A→ Bh is étale. Here is the result.

Theorem 26.4.03PE A ring map A → B is étale at a prime q if and only if there
exists g ∈ B, g ̸∈ q such that Bg is standard étale over A.

Proof. See Algebra, Proposition 144.4. □

27. Étale coverings

03PF We recall the definition.

Definition 27.1.03PG An étale covering of a scheme U is a family of morphisms of
schemes {φi : Ui → U}i∈I such that

(1) each φi is an étale morphism,
(2) the Ui cover U , i.e., U =

⋃
i∈I φi(Ui).

Lemma 27.2.03PH Any étale covering is an fpqc covering.

Proof. (See also Topologies, Lemma 9.6.) Let {φi : Ui → U}i∈I be an étale
covering. Since an étale morphism is flat, and the elements of the covering should
cover its target, the property fp (faithfully flat) is satisfied. To check the property
qc (quasi-compact), let V ⊂ U be an affine open, and write φ−1

i (V ) =
⋃
j∈Ji

Vij
for some affine opens Vij ⊂ Ui. Since φi is open (as étale morphisms are open),
we see that V =

⋃
i∈I

⋃
j∈Ji

φi(Vij) is an open covering of V . Further, since V is
quasi-compact, this covering has a finite refinement. □
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So any statement which is true for fpqc coverings remains true a fortiori for étale
coverings. For instance, the étale site is subcanonical.

Definition 27.3.03PI (For more details see Section 20, or Topologies, Section 4.) Let
S be a scheme. The big étale site over S is the site (Sch/S)étale, see Definition
20.2. The small étale site over S is the site Sétale, see Definition 20.2. We define
similarly the big and small Zariski sites on S, denoted (Sch/S)Zar and SZar.

Loosely speaking the big étale site of S is made up out of schemes over S and
coverings the étale coverings. The small étale site of S is made up out of schemes
étale over S with coverings the étale coverings. Actually any morphism between
objects of Sétale is étale, in virtue of Proposition 26.2, hence to check that {Ui →
U}i∈I in Sétale is a covering it suffices to check that

∐
Ui → U is surjective.

The small étale site has fewer objects than the big étale site, it contains only the
“opens” of the étale topology on S. It is a full subcategory of the big étale site,
and its topology is induced from the topology on the big site. Hence it is true that
the restriction functor from the big étale site to the small one is exact and maps
injectives to injectives. This has the following consequence.

Proposition 27.4.03PJ Let S be a scheme and F an abelian sheaf on (Sch/S)étale.
Then F|Sétale

is a sheaf on Sétale and

Hp
étale(S,F|Sétale

) = Hp
étale(S,F)

for all p ≥ 0.

Proof. This is a special case of Lemma 20.3. □

In accordance with the general notation introduced in Section 20 we writeHp
étale(S,F)

for the above cohomology group.

28. Kummer theory

03PK Let n ∈ N and consider the functor µn defined by
Schopp −→ Ab
S 7−→ µn(S) = {t ∈ Γ(S,O∗

S) | tn = 1}.
By Groupoids, Example 5.2 this is a representable functor, and the scheme rep-
resenting it is denoted µn also. By Lemma 15.8 this functor satisfies the sheaf
condition for the fpqc topology (in particular, it also satisfies the sheaf condition
for the étale, Zariski, etc topology).

Lemma 28.1.03PL If n ∈ O∗
S then

0→ µn,S → Gm,S
(·)n

−−→ Gm,S → 0

is a short exact sequence of sheaves on both the small and big étale site of S.

Proof. By definition the sheaf µn,S is the kernel of the map (·)n. Hence it suffices
to show that the last map is surjective. Let U be a scheme over S. Let f ∈
Gm(U) = Γ(U,O∗

U ). We need to show that we can find an étale cover of U over
the members of which the restriction of f is an nth power. Set

U ′ = Spec
U

(OU [T ]/(Tn − f)) π−→ U.

https://stacks.math.columbia.edu/tag/03PI
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(See Constructions, Section 3 or 4 for a discussion of the relative spectrum.) Let
Spec(A) ⊂ U be an affine open, and say f |Spec(A) corresponds to the unit a ∈ A∗.
Then π−1(Spec(A)) = Spec(B) with B = A[T ]/(Tn − a). The ring map A → B
is finite free of rank n, hence it is faithfully flat, and hence we conclude that
Spec(B) → Spec(A) is surjective. Since this holds for every affine open in U
we conclude that π is surjective. In addition, n and Tn−1 are invertible in B,
so nTn−1 ∈ B∗ and the ring map A → B is standard étale, in particular étale.
Since this holds for every affine open of U we conclude that π is étale. Hence
U = {π : U ′ → U} is an étale covering. Moreover, f |U ′ = (f ′)n where f ′ is the
class of T in Γ(U ′,O∗

U ′), so U has the desired property. □

Remark 28.2.03PM Lemma 28.1 is false when “étale” is replaced with “Zariski”. Since
the étale topology is coarser than the smooth topology, see Topologies, Lemma 5.2
it follows that the sequence is also exact in the smooth topology.

By Theorem 24.1 and Lemma 28.1 and general properties of cohomology we obtain
the long exact cohomology sequence

0 // H0
étale(S, µn,S) // Γ(S,O∗

S)
(·)n

// Γ(S,O∗
S)

yy
H1
étale(S, µn,S) // Pic(S)

(·)n

// Pic(S)

yy
H2
étale(S, µn,S) // . . .

at least if n is invertible on S. When n is not invertible on S we can apply the
following lemma.

Lemma 28.3.040N For any n ∈ N the sequence

0→ µn,S → Gm,S
(·)n

−−→ Gm,S → 0
is a short exact sequence of sheaves on the site (Sch/S)fppf and (Sch/S)syntomic.

Proof. By definition the sheaf µn,S is the kernel of the map (·)n. Hence it suffices
to show that the last map is surjective. Since the syntomic topology is weaker
than the fppf topology, see Topologies, Lemma 7.2, it suffices to prove this for the
syntomic topology. Let U be a scheme over S. Let f ∈ Gm(U) = Γ(U,O∗

U ). We
need to show that we can find a syntomic cover of U over the members of which
the restriction of f is an nth power. Set

U ′ = Spec
U

(OU [T ]/(Tn − f)) π−→ U.

(See Constructions, Section 3 or 4 for a discussion of the relative spectrum.) Let
Spec(A) ⊂ U be an affine open, and say f |Spec(A) corresponds to the unit a ∈ A∗.
Then π−1(Spec(A)) = Spec(B) with B = A[T ]/(Tn − a). The ring map A → B
is finite free of rank n, hence it is faithfully flat, and hence we conclude that
Spec(B) → Spec(A) is surjective. Since this holds for every affine open in U we
conclude that π is surjective. In addition, B is a global relative complete intersection
over A, so the ring map A → B is standard syntomic, in particular syntomic.
Since this holds for every affine open of U we conclude that π is syntomic. Hence

https://stacks.math.columbia.edu/tag/03PM
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U = {π : U ′ → U} is a syntomic covering. Moreover, f |U ′ = (f ′)n where f ′ is the
class of T in Γ(U ′,O∗

U ′), so U has the desired property. □

Remark 28.4.040O Lemma 28.3 is false for the smooth, étale, or Zariski topology.

By Theorem 24.1 and Lemma 28.3 and general properties of cohomology we obtain
the long exact cohomology sequence

0 // H0
fppf (S, µn,S) // Γ(S,O∗

S)
(·)n

// Γ(S,O∗
S)

yy
H1
fppf (S, µn,S) // Pic(S)

(·)n

// Pic(S)

yy
H2
fppf (S, µn,S) // . . .

for any scheme S and any integer n. Of course there is a similar sequence with
syntomic cohomology.
Let n ∈ N and let S be any scheme. There is another more direct way to describe
the first cohomology group with values in µn. Consider pairs (L, α) where L is an
invertible sheaf on S and α : L⊗n → OS is a trivialization of the nth tensor power
of L. Let (L′, α′) be a second such pair. An isomorphism φ : (L, α) → (L′, α′) is
an isomorphism φ : L → L′ of invertible sheaves such that the diagram

L⊗n

φ⊗n

��

α
// OS

1
��

(L′)⊗n α′
// OS

commutes. Thus we have

(28.4.1)040P IsomS((L, α), (L′, α′)) =
{

∅ if they are not isomorphic
H0(S, µn,S) · φ if φ isomorphism of pairs

Moreover, given two pairs (L, α), (L′, α′) the tensor product
(L, α)⊗ (L′, α′) = (L ⊗ L′, α⊗ α′)

is another pair. The pair (OS , 1) is an identity for this tensor product operation,
and an inverse is given by

(L, α)−1 = (L⊗−1, α⊗−1).
Hence the collection of isomorphism classes of pairs forms an abelian group. Note
that

(L, α)⊗n = (L⊗n, α⊗n) α−→ (OS , 1)
is an isomorphism hence every element of this group has order dividing n. We warn
the reader that this group is in general not the n-torsion in Pic(S).

Lemma 28.5.040Q Let S be a scheme. There is a canonical identification

H1
étale(S, µn) = group of pairs (L, α) up to isomorphism as above

if n is invertible on S. In general we have
H1
fppf (S, µn) = group of pairs (L, α) up to isomorphism as above.

https://stacks.math.columbia.edu/tag/040O
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The same result holds with fppf replaced by syntomic.

Proof. We first prove the second isomorphism. Let (L, α) be a pair as above.
Choose an affine open covering S =

⋃
Ui such that L|Ui

∼= OUi
. Say si ∈ L(Ui)

is a generator. Then α(s⊗n
i ) = fi ∈ O∗

S(Ui). Writing Ui = Spec(Ai) we see there
exists a global relative complete intersection Ai → Bi = Ai[T ]/(Tn − fi) such that
fi maps to an nth power in Bi. In other words, setting Vi = Spec(Bi) we obtain a
syntomic covering V = {Vi → S}i∈I and trivializations φi : (L, α)|Vi → (OVi , 1).
We will use this result (the existence of the covering V) to associate to this pair a
cohomology class in H1

syntomic(S, µn,S). We give two (equivalent) constructions.

First construction: using Čech cohomology. Over the double overlaps Vi ×S Vj we
have the isomorphism

(OVi×SVj , 1)
pr∗

0φ
−1
i−−−−−→ (L|Vi×SVj , α|Vi×SVj ) pr∗

1φj−−−−→ (OVi×SVj , 1)
of pairs. By (28.4.1) this is given by an element ζij ∈ µn(Vi ×S Vj). We omit the
verification that these ζij ’s give a 1-cocycle, i.e., give an element (ζi0i1) ∈ Č(V, µn)
with d(ζi0i1) = 0. Thus its class is an element in Ȟ1(V, µn) and by Theorem 19.2
it maps to a cohomology class in H1

syntomic(S, µn,S).
Second construction: Using torsors. Consider the presheaf

µn(L, α) : U 7−→ IsomU ((OU , 1), (L, α)|U )
on (Sch/S)syntomic. We may view this as a subpresheaf of HomO(O,L) (internal
hom sheaf, see Modules on Sites, Section 27). Since the conditions defining this
subpresheaf are local, we see that it is a sheaf. By (28.4.1) this sheaf has a free
action of the sheaf µn,S . Hence the only thing we have to check is that it locally
has sections. This is true because of the existence of the trivializing cover V. Hence
µn(L, α) is a µn,S-torsor and by Cohomology on Sites, Lemma 4.3 we obtain a
corresponding element of H1

syntomic(S, µn,S).
Ok, now we have to still show the following

(1) The two constructions give the same cohomology class.
(2) Isomorphic pairs give rise to the same cohomology class.
(3) The cohomology class of (L, α) ⊗ (L′, α′) is the sum of the cohomology

classes of (L, α) and (L′, α′).
(4) If the cohomology class is trivial, then the pair is trivial.
(5) Any element of H1

syntomic(S, µn,S) is the cohomology class of a pair.
We omit the proof of (1). Part (2) is clear from the second construction, since
isomorphic torsors give the same cohomology classes. Part (3) is clear from the
first construction, since the resulting Čech classes add up. Part (4) is clear from
the second construction since a torsor is trivial if and only if it has a global section,
see Cohomology on Sites, Lemma 4.2.
Part (5) can be seen as follows (although a direct proof would be preferable). Sup-
pose ξ ∈ H1

syntomic(S, µn,S). Then ξ maps to an element ξ ∈ H1
syntomic(S,Gm,S)

with nξ = 0. By Theorem 24.1 we see that ξ corresponds to an invertible sheaf
L whose nth tensor power is isomorphic to OS . Hence there exists a pair (L, α′)
whose cohomology class ξ′ has the same image ξ′ in H1

syntomic(S,Gm,S). Thus it
suffices to show that ξ−ξ′ is the class of a pair. By construction, and the long exact
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cohomology sequence above, we see that ξ − ξ′ = ∂(f) for some f ∈ H0(S,O∗
S).

Consider the pair (OS , f). We omit the verification that the cohomology class
of this pair is ∂(f), which finishes the proof of the first identification (with fppf
replaced with syntomic).
To see the first, note that if n is invertible on S, then the covering V constructed
in the first part of the proof is actually an étale covering (compare with the proof
of Lemma 28.1). The rest of the proof is independent of the topology, apart from
the very last argument which uses that the Kummer sequence is exact, i.e., uses
Lemma 28.1. □

29. Neighborhoods, stalks and points

03PN We can associate to any geometric point of S a stalk functor which is exact. A
map of sheaves on Sétale is an isomorphism if and only if it is an isomorphism on
all these stalks. A complex of abelian sheaves is exact if and only if the complex of
stalks is exact at all geometric points. Altogether this means that the small étale
site of a scheme S has enough points. It also turns out that any point of the small
étale topos of S (an abstract notion) is given by a geometric point. Thus in some
sense the small étale topos of S can be understood in terms of geometric points
and neighbourhoods.
Definition 29.1.03PO Let S be a scheme.

(1) A geometric point of S is a morphism Spec(k)→ S where k is algebraically
closed. Such a point is usually denoted s, i.e., by an overlined small case
letter. We often use s to denote the scheme Spec(k) as well as the morphism,
and we use κ(s) to denote k.

(2) We say s lies over s to indicate that s ∈ S is the image of s.
(3) An étale neighborhood of a geometric point s of S is a commutative diagram

U

φ

��
s

s //

ū

??

S

where φ is an étale morphism of schemes. We write (U, u)→ (S, s).
(4) A morphism of étale neighborhoods (U, u) → (U ′, u′) is an S-morphism

h : U → U ′ such that u′ = h ◦ u.
Remark 29.2.03PP Since U and U ′ are étale over S, any S-morphism between them is
also étale, see Proposition 26.2. In particular all morphisms of étale neighborhoods
are étale.
Remark 29.3.04HT Let S be a scheme and s ∈ S a point. In More on Morphisms,
Definition 35.1 we defined the notion of an étale neighbourhood (U, u) → (S, s) of
(S, s). If s is a geometric point of S lying over s, then any étale neighbourhood
(U, u) → (S, s) gives rise to an étale neighbourhood (U, u) of (S, s) by taking u ∈
U to be the unique point of U such that u lies over u. Conversely, given an
étale neighbourhood (U, u) of (S, s) the residue field extension κ(u)/κ(s) is finite
separable (see Proposition 26.2) and hence we can find an embedding κ(u) ⊂ κ(s)
over κ(s). In other words, we can find a geometric point u of U lying over u such
that (U, u) is an étale neighbourhood of (S, s). We will use these observations to
go between the two types of étale neighbourhoods.
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Lemma 29.4.03PQ Let S be a scheme, and let s be a geometric point of S. The category
of étale neighborhoods is cofiltered. More precisely:

(1) Let (Ui, ui)i=1,2 be two étale neighborhoods of s in S. Then there exists a
third étale neighborhood (U, u) and morphisms (U, u)→ (Ui, ui), i = 1, 2.

(2) Let h1, h2 : (U, u)→ (U ′, u′) be two morphisms between étale neighborhoods
of s. Then there exist an étale neighborhood (U ′′, u′′) and a morphism h :
(U ′′, u′′)→ (U, u) which equalizes h1 and h2, i.e., such that h1 ◦h = h2 ◦h.

Proof. For part (1), consider the fibre product U = U1 ×S U2. It is étale over
both U1 and U2 because étale morphisms are preserved under base change, see
Proposition 26.2. The map s → U defined by (u1, u2) gives it the structure of an
étale neighborhood mapping to both U1 and U2. For part (2), define U ′′ as the
fibre product

U ′′ //

��

U

(h1,h2)
��

U ′ ∆ // U ′ ×S U ′.

Since u and u′ agree over S with s, we see that u′′ = (u, u′) is a geometric point
of U ′′. In particular U ′′ ̸= ∅. Moreover, since U ′ is étale over S, so is the fibre
product U ′ ×S U ′ (see Proposition 26.2). Hence the vertical arrow (h1, h2) is étale
by Remark 29.2 above. Therefore U ′′ is étale over U ′ by base change, and hence also
étale over S (because compositions of étale morphisms are étale). Thus (U ′′, u′′) is
a solution to the problem. □

Lemma 29.5.03PR Let S be a scheme. Let s be a geometric point of S. Let (U, u) be
an étale neighborhood of s. Let U = {φi : Ui → U}i∈I be an étale covering. Then
there exist i ∈ I and ui : s → Ui such that φi : (Ui, ui) → (U, u) is a morphism of
étale neighborhoods.

Proof. As U =
⋃
i∈I φi(Ui), the fibre product s ×u,U,φi

Ui is not empty for some
i. Then look at the cartesian diagram

s×u,U,φi
Ui

pr1

��

pr2
// Ui

φi

��
Spec(k) = s

σ

DD

u // U

The projection pr1 is the base change of an étale morphisms so it is étale, see
Proposition 26.2. Therefore, s ×u,U,φi

Ui is a disjoint union of finite separable
extensions of k, by Proposition 26.2. Here s = Spec(k). But k is algebraically
closed, so all these extensions are trivial, and there exists a section σ of pr1. The
composition pr2 ◦ σ gives a map compatible with u. □

Definition 29.6.040R Let S be a scheme. Let F be a presheaf on Sétale. Let s be a
geometric point of S. The stalk of F at s is

Fs = colim(U,u) F(U)
where (U, u) runs over all étale neighborhoods of s in S.

By Lemma 29.4, this colimit is over a filtered index category, namely the oppo-
site of the category of étale neighbourhoods. In other words, an element of Fs
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can be thought of as a triple (U, u, σ) where σ ∈ F(U). Two triples (U, u, σ),
(U ′, u′, σ′) define the same element of the stalk if there exists a third étale neigh-
bourhood (U ′′, u′′) and morphisms of étale neighbourhoods h : (U ′′, u′′) → (U, u),
h′ : (U ′′, u′′)→ (U ′, u′) such that h∗σ = (h′)∗σ′ in F(U ′′). See Categories, Section
19.

Lemma 29.7.04FM Let S be a scheme. Let s be a geometric point of S. Consider the
functor

u : Sétale −→ Sets,
U 7−→ |Us| = {u such that (U, u) is an étale neighbourhood of s}.

Here |Us| denotes the underlying set of the geometric fibre. Then u defines a point
p of the site Sétale (Sites, Definition 32.2) and its associated stalk functor F 7→ Fp
(Sites, Equation 32.1.1) is the functor F 7→ Fs defined above.

Proof. In the proof of Lemma 29.5 we have seen that the scheme Us is a disjoint
union of schemes isomorphic to s. Thus we can also think of |Us| as the set of
geometric points of U lying over s, i.e., as the collection of morphisms u : s → U
fitting into the diagram of Definition 29.1. From this it follows that u(S) is a
singleton, and that u(U ×V W ) = u(U)×u(V ) u(W ) whenever U → V and W → V
are morphisms in Sétale. And, given a covering {Ui → U}i∈I in Sétale we see
that

∐
u(Ui) → u(U) is surjective by Lemma 29.5. Hence Sites, Proposition 33.3

applies, so p is a point of the site Sétale. Finally, our functor F 7→ Fs is given by
exactly the same colimit as the functor F 7→ Fp associated to p in Sites, Equation
32.1.1 which proves the final assertion. □

Remark 29.8.04FN Let S be a scheme and let s : Spec(k)→ S and s′ : Spec(k′)→ S
be two geometric points of S. A morphism a : s→ s′ of geometric points is simply
a morphism a : Spec(k) → Spec(k′) such that s′ ◦ a = s. Given such a morphism
we obtain a functor from the category of étale neighbourhoods of s′ to the category
of étale neighbourhoods of s by the rule (U, u′) 7→ (U, u′ ◦ a). Hence we obtain a
canonical map

Fs′ = colim(U,u′) F(U) −→ colim(U,u) F(U) = Fs
from Categories, Lemma 14.8. Using the description of elements of stalks as triples
this maps the element of Fs′ represented by the triple (U, u′, σ) to the element
of Fs represented by the triple (U, u′ ◦ a, σ). Since the functor above is clearly
an equivalence we conclude that this canonical map is an isomorphism of stalk
functors.
Let us make sure we have the map of stalks corresponding to a pointing in the
correct direction. Note that the above means, according to Sites, Definition 37.2,
that a defines a morphism a : p → p′ between the points p, p′ of the site Sétale
associated to s, s′ by Lemma 29.7. There are more general morphisms of points
(corresponding to specializations of points of S) which we will describe later, and
which will not be isomorphisms, see Section 75.

Lemma 29.9.03PT Let S be a scheme. Let s be a geometric point of S.
(1) The stalk functor PAb(Sétale)→ Ab, F 7→ Fs is exact.
(2) We have (F#)s = Fs for any presheaf of sets F on Sétale.
(3) The functor Ab(Sétale)→ Ab, F 7→ Fs is exact.

https://stacks.math.columbia.edu/tag/04FM
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(4) Similarly the functors PSh(Sétale) → Sets and Sh(Sétale) → Sets given by
the stalk functor F 7→ Fx are exact (see Categories, Definition 23.1) and
commute with arbitrary colimits.

Proof. Before we indicate how to prove this by direct arguments we note that the
result follows from the general material in Modules on Sites, Section 36. This is
true because F 7→ Fs comes from a point of the small étale site of S, see Lemma
29.7. We will only give a direct proof of (1), (2) and (3), and omit a direct proof
of (4).
Exactness as a functor on PAb(Sétale) is formal from the fact that directed colimits
commute with all colimits and with finite limits. The identification of the stalks in
(2) is via the map

κ : Fs −→ (F#)s
induced by the natural morphism F → F#, see Theorem 13.2. We claim that this
map is an isomorphism of abelian groups. We will show injectivity and omit the
proof of surjectivity.
Let σ ∈ Fs. There exists an étale neighborhood (U, u) → (S, s) such that σ is the
image of some section s ∈ F(U). If κ(σ) = 0 in (F#)s then there exists a morphism
of étale neighborhoods (U ′, u′)→ (U, u) such that s|U ′ is zero in F#(U ′). It follows
there exists an étale covering {U ′

i → U ′}i∈I such that s|U ′
i

= 0 in F(U ′
i) for all

i. By Lemma 29.5 there exist i ∈ I and a morphism u′
i : s → U ′

i such that
(U ′

i , u
′
i) → (U ′, u′) → (U, u) are morphisms of étale neighborhoods. Hence σ = 0

since (U ′
i , u

′
i) → (U, u) is a morphism of étale neighbourhoods such that we have

s|U ′
i

= 0. This proves κ is injective.
To show that the functor Ab(Sétale) → Ab is exact, consider any short exact se-
quence in Ab(Sétale): 0 → F → G → H → 0. This gives us the exact sequence of
presheaves

0→ F → G → H → H/pG → 0,
where /p denotes the quotient in PAb(Sétale). Taking stalks at s, we see that
(H/pG)s̄ = (H/G)s̄ = 0, since the sheafification of H/pG is 0. Therefore,

0→ Fs → Gs → Hs → 0 = (H/pG)s
is exact, since taking stalks is exact as a functor from presheaves. □

Theorem 29.10.03PU Let S be a scheme. A map a : F → G of sheaves of sets is
injective (resp. surjective) if and only if the map on stalks as : Fs → Gs is injective
(resp. surjective) for all geometric points of S. A sequence of abelian sheaves on
Sétale is exact if and only if it is exact on all stalks at geometric points of S.
Proof. The necessity of exactness on stalks follows from Lemma 29.9. For the con-
verse, it suffices to show that a map of sheaves is surjective (respectively injective)
if and only if it is surjective (respectively injective) on all stalks. We prove this in
the case of surjectivity, and omit the proof in the case of injectivity.
Let α : F → G be a map of sheaves such that Fs → Gs is surjective for all geometric
points. Fix U ∈ Ob(Sétale) and s ∈ G(U). For every u ∈ U choose some u → U
lying over u and an étale neighborhood (Vu, vu) → (U, u) such that s|Vu

= α(sVu
)

for some sVu ∈ F(Vu). This is possible since α is surjective on stalks. Then
{Vu → U}u∈U is an étale covering on which the restrictions of s are in the image
of the map α. Thus, α is surjective, see Sites, Section 11. □

https://stacks.math.columbia.edu/tag/03PU


ÉTALE COHOMOLOGY 38

Remarks 29.11.040S On points of the geometric sites.
(1) Theorem 29.10 says that the family of points of Sétale given by the geometric

points of S (Lemma 29.7) is conservative, see Sites, Definition 38.1. In
particular Sétale has enough points.

(2) Suppose F is a sheaf on the big étale site04FP of S. Let T → S be an object of
the big étale site of S, and let t be a geometric point of T . Then we define
Ft as the stalk of the restriction F|Tétale

of F to the small étale site of T .
In other words, we can define the stalk of F at any geometric point of any
scheme T/S ∈ Ob((Sch/S)étale).

(3) The big étale site of S also has enough points, by considering all geometric
points of all objects of this site, see (2).

The following lemma should be skipped on a first reading.

Lemma 29.12.04HU Let S be a scheme.
(1) Let p be a point of the small étale site Sétale of S given by a functor u :

Sétale → Sets. Then there exists a geometric point s of S such that p is
isomorphic to the point of Sétale associated to s in Lemma 29.7.

(2) Let p : Sh(pt) → Sh(Sétale) be a point of the small étale topos of S. Then
p comes from a geometric point of S, i.e., the stalk functor F 7→ Fp is
isomorphic to a stalk functor as defined in Definition 29.6.

Proof. By Sites, Lemma 32.7 there is a one to one correspondence between points
of the site and points of the associated topos, hence it suffices to prove (1). By
Sites, Proposition 33.3 the functor u has the following properties: (a) u(S) = {∗},
(b) u(U ×V W ) = u(U)×u(V ) u(W ), and (c) if {Ui → U} is an étale covering, then∐
u(Ui)→ u(U) is surjective. In particular, if U ′ ⊂ U is an open subscheme, then

u(U ′) ⊂ u(U). Moreover, by Sites, Lemma 32.7 we can write u(U) = p−1(h#
U ), in

other words u(U) is the stalk of the representable sheaf hU . If U = V ⨿W , then
we see that hU = (hV ⨿ hW )# and we get u(U) = u(V )⨿ u(W ) since p−1 is exact.
Consider the restriction of u to SZar. By Sites, Examples 33.5 and 33.6 there exists
a unique point s ∈ S such that for S′ ⊂ S open we have u(S′) = {∗} if s ∈ S′ and
u(S′) = ∅ if s ̸∈ S′. Note that if φ : U → S is an object of Sétale then φ(U) ⊂ S
is open (see Proposition 26.2) and {U → φ(U)} is an étale covering. Hence we
conclude that u(U) = ∅ ⇔ s ∈ φ(U).
Pick a geometric point s : s → S lying over s, see Definition 29.1 for customary
abuse of notation. Suppose that φ : U → S is an object of Sétale with U affine.
Note that φ is separated, and that the fibre Us of φ over s is an affine scheme over
Spec(κ(s)) which is the spectrum of a finite product of finite separable extensions
ki of κ(s). Hence we may apply Étale Morphisms, Lemma 18.2 to get an étale
neighbourhood (V, v) of (S, s) such that

U ×S V = U1 ⨿ . . .⨿ Un ⨿W

with Ui → V an isomorphism and W having no point lying over v. Thus we
conclude that

u(U)× u(V ) = u(U ×S V ) = u(U1)⨿ . . .⨿ u(Un)⨿ u(W )
and of course also u(Ui) = u(V ). After shrinking V a bit we can assume that V
has exactly one point lying over s, and hence W has no point lying over s. By the

https://stacks.math.columbia.edu/tag/040S
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above this then gives u(W ) = ∅. Hence we obtain

u(U)× u(V ) = u(U1)⨿ . . .⨿ u(Un) =
∐

i=1,...,n
u(V )

Note that u(V ) ̸= ∅ as s is in the image of V → S. In particular, we see that in
this situation u(U) is a finite set with n elements.
Consider the limit

lim(V,v) u(V )
over the category of étale neighbourhoods (V, v) of s. It is clear that we get the
same value when taking the limit over the subcategory of (V, v) with V affine. By
the previous paragraph (applied with the roles of V and U switched) we see that
in this case u(V ) is always a finite nonempty set. Moreover, the limit is cofiltered,
see Lemma 29.4. Hence by Categories, Section 20 the limit is nonempty. Pick
an element x from this limit. This means we obtain a xV,v ∈ u(V ) for every étale
neighbourhood (V, v) of (S, s) such that for every morphism of étale neighbourhoods
φ : (V ′, v′)→ (V, v) we have u(φ)(xV ′,v′) = xV,v.
We will use the choice of x to construct a functorial bijective map

c : |Us| −→ u(U)
for U ∈ Ob(Sétale) which will conclude the proof. See Lemma 29.7 and its proof
for a description of |Us|. First we claim that it suffices to construct the map for U
affine. We omit the proof of this claim. Assume U → S in Sétale with U affine, and
let u : s→ U be an element of |Us|. Choose a (V, v) such that U ×S V decomposes
as in the third paragraph of the proof. Then the pair (u, v) gives a geometric
point of U ×S V lying over v and determines one of the components Ui of U ×S V .
More precisely, there exists a section σ : V → U ×S V of the projection prU such
that (u, v) = σ ◦ v. Set c(u) = u(prU )(u(σ)(xV,v)) ∈ u(U). We have to check
this is independent of the choice of (V, v). By Lemma 29.4 the category of étale
neighbourhoods is cofiltered. Hence it suffice to show that given a morphism of étale
neighbourhood φ : (V ′, v′) → (V, v) and a choice of a section σ′ : V ′ → U ×S V ′

of the projection such that (u, v′) = σ′ ◦ v′ we have u(σ′)(xV ′,v′) = u(σ)(xV,v).
Consider the diagram

V ′

σ′

��

φ
// V

σ

��
U ×S V ′ 1×φ // U ×S V

Now, it may not be the case that this diagram commutes. The reason is that the
schemes V ′ and V may not be connected, and hence the decompositions used to
construct σ′ and σ above may not be unique. But we do know that σ ◦ φ ◦ v′ =
(1× φ) ◦ σ′ ◦ v′ by construction. Hence, since U ×S V is étale over S, there exists
an open neighbourhood V ′′ ⊂ V ′ of v′ such that the diagram does commute when
restricted to V ′′, see Morphisms, Lemma 35.17. This means we may extend the
diagram above to

V ′′ //

σ′|V ′′

��

V ′

σ′

��

φ
// V

σ

��
U ×S V ′′ // U ×S V ′ 1×φ // U ×S V
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such that the left square and the outer rectangle commute. Since u is a functor
this implies that xV ′′,v′ maps to the same element in u(U ×S V ) no matter which
route we take through the diagram. On the other hand, it maps to the elements
xV ′,v′ and xV,v in u(V ′) and u(V ). This implies the desired equality u(σ′)(xV ′,v′) =
u(σ)(xV,v).

In a similar manner one proves that the construction c : |Us| → u(U) is functorial
in U ; details omitted. And finally, by the results of the third paragraph it is clear
that the map c is bijective which ends the proof of the lemma. □

30. Points in other topologies

06VW In this section we briefly discuss the existence of points for some sites other than
the étale site of a scheme. We refer to Sites, Section 38 and Topologies, Section 2
ff for the terminology used in this section. All of the geometric sites have enough
points.

Lemma 30.1.06VX Let S be a scheme. All of the following sites have enough points
Saffine,Zar, SZar, Saffine,étale, Sétale, (Sch/S)Zar, (Aff/S)Zar, (Sch/S)étale, (Aff/S)étale,
(Sch/S)smooth, (Aff/S)smooth, (Sch/S)syntomic, (Aff/S)syntomic, (Sch/S)fppf , and
(Aff/S)fppf .

Proof. For each of the big sites the associated topos is equivalent to the topos
defined by the site (Aff/S)τ , see Topologies, Lemmas 3.10, 4.11, 5.9, 6.9, and 7.11.
The result for the sites (Aff/S)τ follows immediately from Deligne’s result Sites,
Lemma 39.4.

The result for SZar is clear. The result for Saffine,Zar follows from Deligne’s
result. The result for Sétale either follows from (the proof of) Theorem 29.10 or
from Topologies, Lemma 4.12 and Deligne’s result applied to Saffine,étale. □

The lemma above guarantees the existence of points, but it doesn’t tell us what
these points look like. We can explicitly construct some points as follows. Suppose
s : Spec(k) → S is a geometric point with k algebraically closed. Consider the
functor

u : (Sch/S)fppf −→ Sets, u(U) = U(k) = MorS(Spec(k), U).

Note that U 7→ U(k) commutes with finite limits as S(k) = {s} and (U1 ×U
U2)(k) = U1(k) ×U(k) U2(k). Moreover, if {Ui → U} is an fppf covering, then∐
Ui(k) → U(k) is surjective. By Sites, Proposition 33.3 we see that u defines a

point p of (Sch/S)fppf with stalks

Fp = colim(U,x) F(U)

where the colimit is over pairs U → S, x ∈ U(k) as usual. But... this category has
an initial object, namely (Spec(k), id), hence we see that

Fp = F(Spec(k))

which isn’t terribly interesting! In fact, in general these points won’t form a con-
servative family of points. A more interesting type of point is described in the
following remark.

https://stacks.math.columbia.edu/tag/06VX
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Remark 30.2.06VY This is discussed in
[Sch14].

Let S = Spec(A) be an affine scheme. Let (p, u) be a point of
the site (Aff/S)fppf , see Sites, Sections 32 and 33. Let B = Op be the stalk of the
structure sheaf at the point p. Recall that

B = colim(U,x)O(U) = colim(Spec(C),xC) C

where xC ∈ u(Spec(C)). It can happen that Spec(B) is an object of (Aff/S)fppf
and that there is an element xB ∈ u(Spec(B)) mapping to the compatible system
xC . In this case the system of neighbourhoods has an initial object and it follows
that Fp = F(Spec(B)) for any sheaf F on (Aff/S)fppf . It is straightforward to
see that if F 7→ F(Spec(B)) defines a point of Sh((Aff/S)fppf ), then B has to
be a local A-algebra such that for every faithfully flat, finitely presented ring map
B → B′ there is a section B′ → B. Conversely, for any such A-algebra B the
functor F 7→ F(Spec(B)) is the stalk functor of a point. Details omitted. It is not
clear what a general point of the site (Aff/S)fppf looks like.

31. Supports of abelian sheaves

04FQ First we talk about supports of local sections.

Lemma 31.1.04HV Let S be a scheme. Let F be a subsheaf of the final object of the
étale topos of S (see Sites, Example 10.2). Then there exists a unique open W ⊂ S
such that F = hW .

Proof. The condition means that F(U) is a singleton or empty for all φ : U →
S in Ob(Sétale). In particular local sections always glue. If F(U) ̸= ∅, then
F(φ(U)) ̸= ∅ because {φ : U → φ(U)} is a covering. Hence we can take W =⋃
φ:U→S,F(U) ̸=∅ φ(U). □

Lemma 31.2.04FR Let S be a scheme. Let F be an abelian sheaf on Sétale. Let
σ ∈ F(U) be a local section. There exists an open subset W ⊂ U such that

(1) W ⊂ U is the largest Zariski open subset of U such that σ|W = 0,
(2) for every φ : V → U in Sétale we have

σ|V = 0⇔ φ(V ) ⊂W,
(3) for every geometric point u of U we have

(U, u, σ) = 0 in Fs ⇔ u ∈W
where s = (U → S) ◦ u.

Proof. Since F is a sheaf in the étale topology the restriction of F to UZar is a
sheaf on U in the Zariski topology. Hence there exists a Zariski open W having
property (1), see Modules, Lemma 5.2. Let φ : V → U be an arrow of Sétale. Note
that φ(V ) ⊂ U is an open subset and that {V → φ(V )} is an étale covering. Hence
if σ|V = 0, then by the sheaf condition for F we see that σ|φ(V ) = 0. This proves
(2). To prove (3) we have to show that if (U, u, σ) defines the zero element of Fs,
then u ∈ W . This is true because the assumption means there exists a morphism
of étale neighbourhoods (V, v) → (U, u) such that σ|V = 0. Hence by (2) we see
that V → U maps into W , and hence u ∈W . □

Let S be a scheme. Let s ∈ S. Let F be a sheaf on Sétale. By Remark 29.8 the
isomorphism class of the stalk of the sheaf F at a geometric points lying over s is
well defined.

https://stacks.math.columbia.edu/tag/06VY
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Definition 31.3.04FS Let S be a scheme. Let F be an abelian sheaf on Sétale.
(1) The support of F is the set of points s ∈ S such that Fs ̸= 0 for any (some)

geometric point s lying over s.
(2) Let σ ∈ F(U) be a section. The support of σ is the closed subset U \W ,

where W ⊂ U is the largest open subset of U on which σ restricts to zero
(see Lemma 31.2).

In general the support of an abelian sheaf is not closed. For example, suppose that
S = Spec(A1

C). Let it : Spec(C)→ S be the inclusion of the point t ∈ C. We will
see later that Ft = it,∗(Z/2Z) is an abelian sheaf whose support is exactly {t}, see
Section 46. Then ⊕

n∈N
Fn

is an abelian sheaf with support {1, 2, 3, . . .} ⊂ S. This is true because taking
stalks commutes with colimits, see Lemma 29.9. Thus an example of an abelian
sheaf whose support is not closed. Here are some basic facts on supports of sheaves
and sections.

Lemma 31.4.04FT Let S be a scheme. Let F be an abelian sheaf on Sétale. Let
U ∈ Ob(Sétale) and σ ∈ F(U).

(1) The support of σ is closed in U .
(2) The support of σ + σ′ is contained in the union of the supports of σ, σ′ ∈
F(U).

(3) If φ : F → G is a map of abelian sheaves on Sétale, then the support of
φ(σ) is contained in the support of σ ∈ F(U).

(4) The support of F is the union of the images of the supports of all local
sections of F .

(5) If F → G is surjective then the support of G is a subset of the support of F .
(6) If F → G is injective then the support of F is a subset of the support of G.

Proof. Part (1) holds by definition. Parts (2) and (3) hold because they holds
for the restriction of F and G to UZar, see Modules, Lemma 5.2. Part (4) is a
direct consequence of Lemma 31.2 part (3). Parts (5) and (6) follow from the other
parts. □

Lemma 31.5.04FU The support of a sheaf of rings on Sétale is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only
if 1 = 0, and hence the support of a sheaf of rings is the support of the unit
section. □

32. Henselian rings

03QD We begin by stating a theorem which has already been used many times in the
Stacks project. There are many versions of this result; here we just state the
algebraic version.

Theorem 32.1.03QE Let A → B be finite type ring map and p ⊂ A a prime ideal.
Then there exist an étale ring map A→ A′ and a prime p′ ⊂ A′ lying over p such
that

(1) κ(p) = κ(p′),
(2) B ⊗A A′ = B1 × . . .×Br × C,

https://stacks.math.columbia.edu/tag/04FS
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(3) A′ → Bi is finite and there exists a unique prime qi ⊂ Bi lying over p′, and
(4) all irreducible components of the fibre Spec(C ⊗A′ κ(p′)) of C over p′ have

dimension at least 1.

Proof. See Algebra, Lemma 145.3, or see [GD67, Théorème 18.12.1]. For a slew of
versions in terms of morphisms of schemes, see More on Morphisms, Section 41. □

Recall Hensel’s lemma. There are many versions of this lemma. Here are two:
(f) if f ∈ Zp[T ] monic and f mod p = g0h0 with gcd(g0, h0) = 1 then f factors

as f = gh with ḡ = g0 and h̄ = h0,
(r) if f ∈ Zp[T ], monic a0 ∈ Fp, f̄(a0) = 0 but f̄ ′(a0) ̸= 0 then there exists

a ∈ Zp with f(a) = 0 and ā = a0.
Both versions are true (we will see this later). The first version asks for lifts of
factorizations into coprime parts, and the second version asks for lifts of simple
roots modulo the maximal ideal. It turns out that requiring these conditions for a
general local ring are equivalent, and are equivalent to many other conditions. We
use the root lifting property as the definition of a henselian local ring as it is often
the easiest one to check.

Definition 32.2.03QF (See Algebra, Definition 153.1.) A local ring (R,m, κ) is called
henselian if for all f ∈ R[T ] monic, for all a0 ∈ κ such that f̄(a0) = 0 and f̄ ′(a0) ̸= 0,
there exists an a ∈ R such that f(a) = 0 and a mod m = a0.

A good example of henselian local rings to keep in mind is complete local rings.
Recall (Algebra, Definition 160.1) that a complete local ring is a local ring (R,m)
such that R ∼= limnR/m

n, i.e., it is complete and separated for the m-adic topology.

Theorem 32.3.03QG Complete local rings are henselian.

Proof. Newton’s method. See Algebra, Lemma 153.9. □

Theorem 32.4.03QH Let (R,m, κ) be a local ring. The following are equivalent:
(1) R is henselian,
(2) for any f ∈ R[T ] and any factorization f̄ = g0h0 in κ[T ] with gcd(g0, h0) =

1, there exists a factorization f = gh in R[T ] with ḡ = g0 and h̄ = h0,
(3) any finite R-algebra S is isomorphic to a finite product of local rings finite

over R,
(4) any finite type R-algebra A is isomorphic to a product A ∼= A′ × C where

A′ ∼= A1 × . . . × Ar is a product of finite local R-algebras and all the irre-
ducible components of C ⊗R κ have dimension at least 1,

(5) if A is an étale R-algebra and n is a maximal ideal of A lying over m such
that κ ∼= A/n, then there exists an isomorphism φ : A ∼= R × A′ such that
φ(n) = m×A′ ⊂ R×A′.

Proof. This is just a subset of the results from Algebra, Lemma 153.3. Note that
part (5) above corresponds to part (8) of Algebra, Lemma 153.3 but is formulated
slightly differently. □

Lemma 32.5.03QJ If R is henselian and A is a finite R-algebra, then A is a finite
product of henselian local rings.

Proof. See Algebra, Lemma 153.4. □
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Definition 32.6.03QK A local ring R is called strictly henselian if it is henselian and
its residue field is separably closed.

Example 32.7.03QI In the case R = C[[t]], the étale R-algebras are finite products
of the trivial extension R→ R and the extensions R→ R[X,X−1]/(Xn − t). The
latter ones factor through the open D(t) ⊂ Spec(R), so any étale covering can be
refined by the covering {id : Spec(R) → Spec(R)}. We will see below that this is
a somewhat general fact on étale coverings of spectra of henselian rings. This will
show that higher étale cohomology of the spectrum of a strictly henselian ring is
zero.

Theorem 32.8.03QL Let (R,m, κ) be a local ring and κ ⊂ κsep a separable algebraic
closure. There exist canonical flat local ring maps R→ Rh → Rsh where

(1) Rh, Rsh are filtered colimits of étale R-algebras,
(2) Rh is henselian, Rsh is strictly henselian,
(3) mRh (resp. mRsh) is the maximal ideal of Rh (resp. Rsh), and
(4) κ = Rh/mRh, and κsep = Rsh/mRsh as extensions of κ.

Proof. The structure of Rh and Rsh is described in Algebra, Lemmas 155.1 and
155.2. □

The rings constructed in Theorem 32.8 are called respectively the henselization and
the strict henselization of the local ring R, see Algebra, Definition 155.3. Many of
the properties of R are reflected in its (strict) henselization, see More on Algebra,
Section 45.

33. Stalks of the structure sheaf

04HW In this section we identify the stalk of the structure sheaf at a geometric point with
the strict henselization of the local ring at the corresponding “usual” point.

Lemma 33.1.04HX Let S be a scheme. Let s be a geometric point of S lying over
s ∈ S. Let κ = κ(s) and let κ ⊂ κsep ⊂ κ(s) denote the separable algebraic closure
of κ in κ(s). Then there is a canonical identification

(OS,s)sh ∼= (OS)s
where the left hand side is the strict henselization of the local ring OS,s as described
in Theorem 32.8 and right hand side is the stalk of the structure sheaf OS on Sétale
at the geometric point s.

Proof. Let Spec(A) ⊂ S be an affine neighbourhood of s. Let p ⊂ A be the
prime ideal corresponding to s. With these choices we have canonical isomorphisms
OS,s = Ap and κ(s) = κ(p). Thus we have κ(p) ⊂ κsep ⊂ κ(s). Recall that

(OS)s = colim(U,u)O(U)

where the limit is over the étale neighbourhoods of (S, s). A cofinal system is given
by those étale neighbourhoods (U, u) such that U is affine and U → S factors
through Spec(A). In other words, we see that

(OS)s = colim(B,q,ϕ) B

where the colimit is over étale A-algebras B endowed with a prime q lying over p
and a κ(p)-algebra map ϕ : κ(q) → κ(s). Note that since κ(q) is finite separable
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over κ(p) the image of ϕ is contained in κsep. Via these translations the result of
the lemma is equivalent to the result of Algebra, Lemma 155.11. □

Definition 33.2.03PS Let S be a scheme. Let s be a geometric point of S lying over
the point s ∈ S.

(1) The étale local ring of S at s is the stalk of the structure sheaf OS on Sétale
at s. We sometimes call this the strict henselization of OS,s relative to the
geometric point s. Notation used: OshS,s.

(2) The henselization of OS,s is the henselization of the local ring of S at s.
See Algebra, Definition 155.3, and Theorem 32.8. Notation: OhS,s.

(3) The strict henselization of S at s is the scheme Spec(OshS,s).
(4) The henselization of S at s is the scheme Spec(OhS,s).

Let f : T → S be a morphism of schemes. Let t be a geometric point of T with
image s in S. Let t ∈ T and s ∈ S be their images. Then we obtain a canonical
commutative diagram

Spec(OhT,t) //

��

Spec(Osh
T,t

) //

��

T

f

��
Spec(OhS,s) // Spec(OshS,s) // S

of henselizations and strict henselizations of T and S. You can prove this by
choosing affine neighbourhoods of t and s and using the functoriality of (strict)
henselizations given by Algebra, Lemmas 155.8 and 155.12.

Lemma 33.3.04HY Let S be a scheme. Let s ∈ S. Then we have

OhS,s = colim(U,u)O(U)

where the colimit is over the filtered category of étale neighbourhoods (U, u) of (S, s)
such that κ(s) = κ(u).

Proof. This lemma is a copy of More on Morphisms, Lemma 35.5. □

Remark 33.4.03QM Let S be a scheme. Let s ∈ S. If S is locally Noetherian then
OhS,s is also Noetherian and it has the same completion:

ÔS,s ∼= ÔhS,s.

In particular, OS,s ⊂ OhS,s ⊂ ÔS,s. The henselization of OS,s is in general much
smaller than its completion and inherits many of its properties. For example, if
OS,s is reduced, then so is OhS,s, but this is not true for the completion in general.
Insert future references here.

Lemma 33.5.04HZ Let S be a scheme. The small étale site Sétale endowed with its
structure sheaf OS is a locally ringed site, see Modules on Sites, Definition 40.4.

Proof. This follows because the stalks (OS)s = OshS,s are local, and because Sétale
has enough points, see Lemma 33.1, Theorem 29.10, and Remarks 29.11. See
Modules on Sites, Lemmas 40.2 and 40.3 for the fact that this implies the small
étale site is locally ringed. □
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34. Functoriality of small étale topos

04I0 So far we haven’t yet discussed the functoriality of the étale site, in other words
what happens when given a morphism of schemes. A precise formal discussion can
be found in Topologies, Section 4. In this and the next sections we discuss this
material briefly specifically in the setting of small étale sites.

Let f : X → Y be a morphism of schemes. We obtain a functor

(34.0.1)04I1 u : Yétale −→ Xétale, V/Y 7−→ X ×Y V/X.

This functor has the following important properties
(1) u(final object) = final object,
(2) u preserves fibre products,
(3) if {Vj → V } is a covering in Yétale, then {u(Vj) → u(V )} is a covering in

Xétale.
Each of these is easy to check (omitted). As a consequence we obtain what is called
a morphism of sites

fsmall : Xétale −→ Yétale,

see Sites, Definition 14.1 and Sites, Proposition 14.7. It is not necessary to know
about the abstract notion in detail in order to work with étale sheaves and étale co-
homology. It usually suffices to know that there are functors fsmall,∗ (pushforward)
and f−1

small (pullback) on étale sheaves, and to know some of their simple properties.
We will discuss these properties in the next sections, but we will sometimes refer
to the more abstract material for proofs since that is often the natural setting to
prove them.

35. Direct images

03PV Let us define the pushforward of a presheaf.

Definition 35.1.03PW Let f : X → Y be a morphism of schemes. Let F a presheaf of
sets on Xétale. The direct image, or pushforward of F (under f) is

f∗F : Y oppétale −→ Sets, (V/Y ) 7−→ F(X ×Y V/X).

We sometimes write f∗ = fsmall,∗ to distinguish from other direct image functors
(such as usual Zariski pushforward or fbig,∗).

This is a well-defined étale presheaf since the base change of an étale morphism is
again étale. A more categorical way of saying this is that f∗F is the composition
of functors F ◦ u where u is as in Equation (34.0.1). This makes it clear that the
construction is functorial in the presheaf F and hence we obtain a functor

f∗ = fsmall,∗ : PSh(Xétale) −→ PSh(Yétale)

Note that if F is a presheaf of abelian groups, then f∗F is also a presheaf of abelian
groups and we obtain

f∗ = fsmall,∗ : PAb(Xétale) −→ PAb(Yétale)

as before (i.e., defined by exactly the same rule).

https://stacks.math.columbia.edu/tag/03PW
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Remark 35.2.03PX We claim that the direct image of a sheaf is a sheaf. Namely, if
{Vj → V } is an étale covering in Yétale then {X ×Y Vj → X ×Y V } is an étale
covering in Xétale. Hence the sheaf condition for F with respect to {X ×Y Vi →
X ×Y V } is equivalent to the sheaf condition for f∗F with respect to {Vi → V }.
Thus if F is a sheaf, so is f∗F .

Definition 35.3.03PY Let f : X → Y be a morphism of schemes. Let F a sheaf of
sets on Xétale. The direct image, or pushforward of F (under f) is

f∗F : Y oppétale −→ Sets, (V/Y ) 7−→ F(X ×Y V/X)
which is a sheaf by Remark 35.2. We sometimes write f∗ = fsmall,∗ to distinguish
from other direct image functors (such as usual Zariski pushforward or fbig,∗).

The exact same discussion as above applies and we obtain functors
f∗ = fsmall,∗ : Sh(Xétale) −→ Sh(Yétale)

and
f∗ = fsmall,∗ : Ab(Xétale) −→ Ab(Yétale)

called direct image again.
The functor f∗ on abelian sheaves is left exact. (See Homology, Section 7 for
what it means for a functor between abelian categories to be left exact.) Namely,
if 0 → F1 → F2 → F3 is exact on Xétale, then for every U/X ∈ Ob(Xétale) the
sequence of abelian groups 0→ F1(U)→ F2(U)→ F3(U) is exact. Hence for every
V/Y ∈ Ob(Yétale) the sequence of abelian groups 0 → f∗F1(V ) → f∗F2(V ) →
f∗F3(V ) is exact, because this is the previous sequence with U = X ×Y V .

Definition 35.4.04I2 Let f : X → Y be a morphism of schemes. The right derived
functors {Rpf∗}p≥1 of f∗ : Ab(Xétale)→ Ab(Yétale) are called higher direct images.

The higher direct images and their derived category variants are discussed in more
detail in (insert future reference here).

36. Inverse image

03PZ In this section we briefly discuss pullback of sheaves on the small étale sites. The
precise construction of this is in Topologies, Section 4.

Definition 36.1.03Q0 Let f : X → Y be a morphism of schemes. The inverse image,
or pullback2 functors are the functors

f−1 = f−1
small : Sh(Yétale) −→ Sh(Xétale)

and
f−1 = f−1

small : Ab(Yétale) −→ Ab(Xétale)
which are left adjoint to f∗ = fsmall,∗. Thus f−1 is characterized by the fact that

HomSh(Xétale)(f−1G,F) = HomSh(Yétale)(G, f∗F)
functorially, for any F ∈ Sh(Xétale) and G ∈ Sh(Yétale). We similarly have

HomAb(Xétale)(f−1G,F) = HomAb(Yétale)(G, f∗F)
for F ∈ Ab(Xétale) and G ∈ Ab(Yétale).

2We use the notation f−1 for pullbacks of sheaves of sets or sheaves of abelian groups, and we
reserve f∗ for pullbacks of sheaves of modules via a morphism of ringed sites/topoi.
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It is not trivial that such an adjoint exists. On the other hand, it exists in a fairly
general setting, see Remark 36.3 below. The general machinery shows that f−1G
is the sheaf associated to the presheaf

(36.1.1)04I3 U/X 7−→ colimU→X×Y V G(V/Y )

where the colimit is over the category of pairs (V/Y, φ : U/X → X ×Y V/X). To
see this apply Sites, Proposition 14.7 to the functor u of Equation (34.0.1) and use
the description of us = (up )# in Sites, Sections 13 and 5. We will occasionally use
this formula for the pullback in order to prove some of its basic properties.

Lemma 36.2.03Q1 Let f : X → Y be a morphism of schemes.
(1) The functor f−1 : Ab(Yétale)→ Ab(Xétale) is exact.
(2) The functor f−1 : Sh(Yétale) → Sh(Xétale) is exact, i.e., it commutes with

finite limits and colimits, see Categories, Definition 23.1.
(3) Let x→ X be a geometric point. Let G be a sheaf on Yétale. Then there is

a canonical identification

(f−1G)x = Gy.

where y = f ◦ x.
(4) For any V → Y étale we have f−1hV = hX×Y V .

Proof. The exactness of f−1 on sheaves of sets is a consequence of Sites, Propo-
sition 14.7 applied to our functor u of Equation (34.0.1). In fact the exactness of
pullback is part of the definition of a morphism of topoi (or sites if you like). Thus
we see (2) holds. It implies part (1) since given an abelian sheaf G on Yétale the
underlying sheaf of sets of f−1F is the same as f−1 of the underlying sheaf of sets of
F , see Sites, Section 44. See also Modules on Sites, Lemma 31.2. In the literature
(1) and (2) are sometimes deduced from (3) via Theorem 29.10.

Part (3) is a general fact about stalks of pullbacks, see Sites, Lemma 34.2. We will
also prove (3) directly as follows. Note that by Lemma 29.9 taking stalks commutes
with sheafification. Now recall that f−1G is the sheaf associated to the presheaf

U −→ colimU→X×Y V G(V ),

see Equation (36.1.1). Thus we have

(f−1G)x = colim(U,u) f
−1G(U)

= colim(U,u) colima:U→X×Y V G(V )
= colim(V,v) G(V )
= Gy

in the third equality the pair (U, u) and the map a : U → X ×Y V corresponds to
the pair (V, a ◦ u).

Part (4) can be proved in a similar manner by identifying the colimits which define
f−1hV . Or you can use Yoneda’s lemma (Categories, Lemma 3.5) and the functorial
equalities

MorSh(Xétale)(f−1hV ,F) = MorSh(Yétale)(hV , f∗F) = f∗F(V ) = F(X ×Y V )

combined with the fact that representable presheaves are sheaves. See also Sites,
Lemma 13.5 for a completely general result. □
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The pair of functors (f∗, f
−1) define a morphism of small étale topoi

fsmall : Sh(Xétale) −→ Sh(Yétale)
Many generalities on cohomology of sheaves hold for topoi and morphisms of topoi.
We will try to point out when results are general and when they are specific to the
étale topos.

Remark 36.3.03Q2 More generally, let C1, C2 be sites, and assume they have final
objects and fibre products. Let u : C2 → C1 be a functor satisfying:

(1) if {Vi → V } is a covering of C2, then {u(Vi) → u(V )} is a covering of C1
(we say that u is continuous), and

(2) u commutes with finite limits (i.e., u is left exact, i.e., u preserves fibre
products and final objects).

Then one can define f∗ : Sh(C1)→ Sh(C2) by f∗F(V ) = F(u(V )). Moreover, there
exists an exact functor f−1 which is left adjoint to f∗, see Sites, Definition 14.1 and
Proposition 14.7. Warning: It is not enough to require simply that u is continuous
and commutes with fibre products in order to get a morphism of topoi.

37. Functoriality of big topoi

04DI Given a morphism of schemes f : X → Y there are a whole host of morphisms of
topoi associated to f , see Topologies, Section 11 for a list. Perhaps the most used
ones are the morphisms of topoi

fbig = fbig,τ : Sh((Sch/X)τ ) −→ Sh((Sch/Y )τ )
where τ ∈ {Zariski, étale, smooth, syntomic, fppf}. These each correspond to a
continuous functor

(Sch/Y )τ −→ (Sch/X)τ , V/Y 7−→ X ×Y V/X
which preserves final objects, fibre products and covering, and hence defines a
morphism of sites

fbig : (Sch/X)τ −→ (Sch/Y )τ .
See Topologies, Sections 3, 4, 5, 6, and 7. In particular, pushforward along fbig is
given by the rule

(fbig,∗F)(V/Y ) = F(X ×Y V/X)
It turns out that these morphisms of topoi have an inverse image functor f−1

big which
is very easy to describe. Namely, we have

(f−1
bigG)(U/X) = G(U/Y )

where the structure morphism of U/Y is the composition of the structure morphism
U → X with f , see Topologies, Lemmas 3.16, 4.16, 5.10, 6.10, and 7.12.

38. Functoriality and sheaves of modules

04I4 In this section we are going to reformulate some of the material explained in Descent,
Sections 8, 9, and 10 in the setting of étale topologies. Let f : X → Y be a morphism
of schemes. We have seen above, see Sections 34, 35, and 36 that this induces a
morphism fsmall of small étale sites. In Descent, Remark 8.4 we have seen that f
also induces a natural map

f ♯small : OYétale
−→ fsmall,∗OXétale
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of sheaves of rings on Yétale such that (fsmall, f ♯small) is a morphism of ringed sites.
See Modules on Sites, Definition 6.1 for the definition of a morphism of ringed sites.
Let us just recall here that f ♯small is defined by the compatible system of maps

pr♯V : O(V ) −→ O(X ×Y V )

for V varying over the objects of Yétale.

It is clear that this construction is compatible with compositions of morphisms of
schemes. More precisely, if f : X → Y and g : Y → Z are morphisms of schemes,
then we have

(gsmall, g♯small) ◦ (fsmall, f ♯small) = ((g ◦ f)small, (g ◦ f)♯small)

as morphisms of ringed topoi. Moreover, by Modules on Sites, Definition 13.1 we
see that given a morphism f : X → Y of schemes we get well defined pullback and
direct image functors

f∗
small : Mod(OYétale

) −→ Mod(OXétale
),

fsmall,∗ : Mod(OXétale
) −→ Mod(OYétale

)

which are adjoint in the usual way. If g : Y → Z is another morphism of schemes,
then we have (g ◦ f)∗

small = f∗
small ◦ g∗

small and (g ◦ f)small,∗ = gsmall,∗ ◦ fsmall,∗
because of what we said about compositions.

There is quite a bit of difference between the category of all OX modules on X and
the category between all OXétale

-modules on Xétale. But the results of Descent,
Sections 8, 9, and 10 tell us that there is not much difference between considering
quasi-coherent modules on S and quasi-coherent modules on Sétale. (We have
already seen this in Theorem 17.4 for example.) In particular, if f : X → Y
is any morphism of schemes, then the pullback functors f∗

small and f∗ match for
quasi-coherent sheaves, see Descent, Proposition 9.4. Moreover, the same is true for
pushforward provided f is quasi-compact and quasi-separated, see Descent, Lemma
9.5.

A few words about functoriality of the structure sheaf on big sites. Let f : X → Y
be a morphism of schemes. Choose any of the topologies τ ∈ {Zariski, étale,
smooth, syntomic, fppf}. Then the morphism fbig : (Sch/X)τ → (Sch/Y )τ be-
comes a morphism of ringed sites by a map

f ♯big : OY −→ fbig,∗OX

see Descent, Remark 8.4. In fact it is given by the same construction as in the case
of small sites explained above.

39. Comparing topologies

09XL In this section we start studying what happens when you compare sheaves with
respect to different topologies.

Lemma 39.1.09XM Let S be a scheme. Let F be a sheaf of sets on Sétale. Let s, t ∈
F(S). Then there exists an open W ⊂ S characterized by the following property:
A morphism f : T → S factors through W if and only if s|T = t|T (restriction is
pullback by fsmall).
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Proof. Consider the presheaf which assigns to U ∈ Ob(Sétale) the empty set if
s|U ̸= t|U and a singleton else. It is clear that this is a subsheaf of the final object
of Sh(Sétale). By Lemma 31.1 we find an open W ⊂ S representing this presheaf.
For a geometric point x of S we see that x ∈W if and only if the stalks of s and t
at x agree. By the description of stalks of pullbacks in Lemma 36.2 we see that W
has the desired property. □

Lemma 39.2.09XN Let S be a scheme. Let τ ∈ {Zariski, étale}. Consider the mor-
phism

πS : (Sch/S)τ −→ Sτ

of Topologies, Lemma 3.14 or 4.14. Let F be a sheaf on Sτ . Then π−1
S F is given

by the rule
(π−1
S F)(T ) = Γ(Tτ , f−1

smallF)
where f : T → S. Moreover, π−1

S F satisfies the sheaf condition with respect to fpqc
coverings.

Proof. Observe that we have a morphism if : Sh(Tτ ) → Sh(Sch/S)τ ) such that
πS ◦ if = fsmall as morphisms Tτ → Sτ , see Topologies, Lemmas 3.13, 3.17, 4.13,
and 4.17. Since pullback is transitive we see that i−1

f π−1
S F = f−1

smallF as desired.

Let {gi : Ti → T}i∈I be an fpqc covering. The final statement means the following:
Given a sheaf G on Tτ and given sections si ∈ Γ(Ti, g−1

i,smallG) whose pullbacks to
Ti ×T Tj agree, there is a unique section s of G over T whose pullback to Ti agrees
with si.

Let V → T be an object of Tτ and let t ∈ G(V ). For every i there is a largest open
Wi ⊂ Ti ×T V such that the pullbacks of si and t agree as sections of the pullback
of G to Wi ⊂ Ti ×T V , see Lemma 39.1. Because si and sj agree over Ti ×T Tj we
find that Wi and Wj pullback to the same open over Ti ×T Tj ×T V . By Descent,
Lemma 13.6 we find an open W ⊂ V whose inverse image to Ti ×T V recovers Wi.

By construction of g−1
i,smallG there exists a τ -covering {Tij → Ti}j∈Ji

, for each
j an open immersion or étale morphism Vij → T , a section tij ∈ G(Vij), and
commutative diagrams

Tij //

��

Vij

��
Ti // T

such that si|Tij
is the pullback of tij . In other words, after replacing the covering

{Ti → T} by {Tij → T} we may assume there are factorizations Ti → Vi → T with
Vi ∈ Ob(Tτ ) and sections ti ∈ G(Vi) pulling back to si over Ti. By the result of
the previous paragraph we find opens Wi ⊂ Vi such that ti|Wi “agrees with” every
sj over Tj ×T Wi. Note that Ti → Vi factors through Wi. Hence {Wi → T} is a
τ -covering and the lemma is proven. □

Lemma 39.3.0A3H Let S be a scheme. Let f : T → S be a morphism such that
(1) f is flat and quasi-compact, and
(2) the geometric fibres of f are connected.

Let F be a sheaf on Sétale. Then Γ(S,F) = Γ(T, f−1
smallF).
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Proof. There is a canonical map Γ(S,F) → Γ(T, f−1
smallF). Since f is surjective

(because its fibres are connected) we see that this map is injective.

To show that the map is surjective, let α ∈ Γ(T, f−1
smallF). Since {T → S} is an

fpqc covering we can use Lemma 39.2 to see that suffices to prove that α pulls back
to the same section over T ×S T by the two projections. Let s→ S be a geometric
point. It suffices to show the agreement holds over (T ×S T )s as every geometric
point of T ×S T is contained in one of these geometric fibres. In other words, we
are trying to show that α|Ts

pulls back to the same section over

(T ×S T )s = Ts ×s Ts

by the two projections to Ts. However, since F|Ts
is the pullback of F|s it is a

constant sheaf with value Fs. Since Ts is connected by assumption, any section of
a constant sheaf is constant. Hence α|Ts

corresponds to an element of Fs. Thus
the two pullbacks to (T ×S T )s both correspond to this same element and we
conclude. □

Here is a version of Lemma 39.3 where we do not assume that the morphism is flat.

Lemma 39.4.0EZK Let S be a scheme. Let f : X → S be a morphism such that
(1) f is submersive, and
(2) the geometric fibres of f are connected.

Let F be a sheaf on Sétale. Then Γ(S,F) = Γ(X, f−1
smallF).

Proof. There is a canonical map Γ(S,F) → Γ(X, f−1
smallF). Since f is surjective

(because its fibres are connected) we see that this map is injective.

To show that the map is surjective, let τ ∈ Γ(X, f−1
smallF). It suffices to find an étale

covering {Ui → S} and sections σi ∈ F(Ui) such that σi pulls back to τ |X×SUi .
Namely, the injectivity shown above guarantees that σi and σj restrict to the same
section of F over Ui ×S Uj . Thus we obtain a unique section σ ∈ F(S) which
restricts to σi over Ui. Then the pullback of σ to X is τ because this is true locally.

Let x be a geometric point of X with image s in S. Consider the image of τ in the
stalk

(f−1
smallF)x = Fs

See Lemma 36.2. We can find an étale neighbourhood U → S of s and a section
σ ∈ F(U) mapping to this image in the stalk. Thus after replacing S by U and
X by X ×S U we may assume there exits a section σ of F over S whose image in
(f−1
smallF)x is the same as τ .

By Lemma 39.1 there exists a maximal open W ⊂ X such that f−1
smallσ and τ agree

over W and the formation of W commutes with further pullback. Observe that the
pullback of F to the geometric fibre Xs is the pullback of Fs viewed as a sheaf on
s by Xs → s. Hence we see that τ and σ give sections of the constant sheaf with
value Fs on Xs which agree in one point. Since Xs is connected by assumption,
we conclude that W contains Xs. The same argument for different geometric fibres
shows that W contains every fibre it meets. Since f is submersive, we conclude
that W is the inverse image of an open neighbourhood of s in S. This finishes the
proof. □
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Lemma 39.5.0A3I Let K/k be an extension of fields with k separably algebraically
closed. Let S be a scheme over k. Denote p : SK = S ×Spec(k) Spec(K) → S the
projection. Let F be a sheaf on Sétale. Then Γ(S,F) = Γ(SK , p−1

smallF).

Proof. Follows from Lemma 39.3. Namely, it is clear that p is flat and quasi-
compact as the base change of Spec(K) → Spec(k). On the other hand, if s :
Spec(L) → S is a geometric point, then the fibre of p over s is the spectrum of
K ⊗k L which is irreducible hence connected by Algebra, Lemma 47.2. □

40. Recovering morphisms

04JH In this section we prove that the rule which associates to a scheme its locally ringed
small étale topos is fully faithful in a suitable sense, see Theorem 40.5.

Lemma 40.1.04I5 Let f : X → Y be a morphism of schemes. The morphism of
ringed sites (fsmall, f ♯small) associated to f is a morphism of locally ringed sites, see
Modules on Sites, Definition 40.9.

Proof. Note that the assertion makes sense since we have seen that (Xétale,OXétale
)

and (Yétale,OYétale
) are locally ringed sites, see Lemma 33.5. Moreover, we know

that Xétale has enough points, see Theorem 29.10 and Remarks 29.11. Hence it
suffices to prove that (fsmall, f ♯small) satisfies condition (3) of Modules on Sites,
Lemma 40.8. To see this take a point p of Xétale. By Lemma 29.12 p corresponds
to a geometric point x of X. By Lemma 36.2 the point q = fsmall ◦ p corresponds
to the geometric point y = f ◦x of Y . Hence the assertion we have to prove is that
the induced map of stalks

(OY )y −→ (OX)x
is a local ring map. Suppose that a ∈ (OY )y is an element of the left hand side
which maps to an element of the maximal ideal of the right hand side. Suppose
that a is the equivalence class of a triple (V, v, a) with V → Y étale, v : x → V

over Y , and a ∈ O(V ). It maps to the equivalence class of (X ×Y V, x× v,pr♯V (a))
in the local ring (OX)x. But it is clear that being in the maximal ideal means that
pulling back pr♯V (a) to an element of κ(x) gives zero. Hence also pulling back a to
κ(x) is zero. Which means that a lies in the maximal ideal of (OY )y. □

Lemma 40.2.04IJ Let X, Y be schemes. Let f : X → Y be a morphism of schemes.
Let t be a 2-morphism from (fsmall, f ♯small) to itself, see Modules on Sites, Definition
8.1. Then t = id.

Proof. This means that t : f−1
small → f−1

small is a transformation of functors such
that the diagram

f−1
smallOY

f♯
small $$

f−1
smallOYt

oo

f♯
smallzz

OX
is commutative. Suppose V → Y is étale with V affine. By Morphisms, Lemma 39.2
we may choose an immersion i : V → An

Y over Y . In terms of sheaves this means
that i induces an injection hi : hV →

∏
j=1,...,nOY of sheaves. The base change i′

of i to X is an immersion (Schemes, Lemma 18.2). Hence i′ : X ×Y V → An
X is an

immersion, which in turn means that hi′ : hX×Y V →
∏
j=1,...,nOX is an injection

https://stacks.math.columbia.edu/tag/0A3I
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of sheaves. Via the identification f−1
smallhV = hX×Y V of Lemma 36.2 the map hi′

is equal to

f−1
smallhV

f−1hi // ∏
j=1,...,n f

−1
smallOY

∏
f♯

// ∏
j=1,...,nOX

(verification omitted). This means that the map t : f−1
smallhV → f−1

smallhV fits into
the commutative diagram

f−1
smallhV

f−1hi //

t

��

∏
j=1,...,n f

−1
smallOY

∏
f♯

//∏
t

��

∏
j=1,...,nOX

id
��

f−1
smallhV

f−1hi // ∏
j=1,...,n f

−1
smallOY

∏
f♯

// ∏
j=1,...,nOX

The commutativity of the right square holds by our assumption on t explained
above. Since the composition of the horizontal arrows is injective by the discussion
above we conclude that the left vertical arrow is the identity map as well. Any
sheaf of sets on Yétale admits a surjection from a (huge) coproduct of sheaves of
the form hV with V affine (combine Topologies, Lemma 4.12 with Sites, Lemma
12.5). Thus we conclude that t : f−1

small → f−1
small is the identity transformation as

desired. □

Lemma 40.3.04LW Let X, Y be schemes. Any two morphisms a, b : X → Y of
schemes for which there exists a 2-isomorphism (asmall, a♯small) ∼= (bsmall, b♯small) in
the 2-category of ringed topoi are equal.

Proof. Let us argue this carefuly since it is a bit confusing. Let t : a−1
small → b−1

small

be the 2-isomorphism. Consider any open V ⊂ Y . Note that hV is a subsheaf
of the final sheaf ∗. Thus both a−1

smallhV = ha−1(V ) and b−1
smallhV = hb−1(V ) are

subsheaves of the final sheaf. Thus the isomorphism

t : a−1
smallhV = ha−1(V ) → b−1

smallhV = hb−1(V )

has to be the identity, and a−1(V ) = b−1(V ). It follows that a and b are equal on
underlying topological spaces. Next, take a section f ∈ OY (V ). This determines
and is determined by a map of sheaves of sets f : hV → OY . Pull this back and
apply t to get a commutative diagram

hb−1(V ) b−1
smallhV

b−1
small

(f)
��

a−1
smallhV

a−1
small

(f)
��

t
oo ha−1(V )

b−1
smallOY

b♯
$$

a−1
smallOYt

oo

a♯
zz

OX

where the triangle is commutative by definition of a 2-isomorphism in Modules on
Sites, Section 8. Above we have seen that the composition of the top horizontal
arrows comes from the identity a−1(V ) = b−1(V ). Thus the commutativity of the
diagram tells us that a♯small(f) = b♯small(f) in OX(a−1(V )) = OX(b−1(V )). Since

https://stacks.math.columbia.edu/tag/04LW
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this holds for every open V and every f ∈ OY (V ) we conclude that a = b as
morphisms of schemes. □

Lemma 40.4.04I6 Let X, Y be affine schemes. Let

(g, g#) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

be a morphism of locally ringed topoi. Then there exists a unique morphism of
schemes f : X → Y such that (g, g#) is 2-isomorphic to (fsmall, f ♯small), see Mod-
ules on Sites, Definition 8.1.

Proof. In this proof we write OX for the structure sheaf of the small étale site
Xétale, and similarly for OY . Say Y = Spec(B) and X = Spec(A). Since B =
Γ(Yétale,OY ), A = Γ(Xétale,OX) we see that g♯ induces a ring map φ : B → A.
Let f = Spec(φ) : X → Y be the corresponding morphism of affine schemes. We
will show this f does the job.

Let V → Y be an affine scheme étale over Y . Thus we may write V = Spec(C)
with C an étale B-algebra. We can write

C = B[x1, . . . , xn]/(P1, . . . , Pn)

with Pi polynomials such that ∆ = det(∂Pi/∂xj) is invertible in C, see for example
Algebra, Lemma 143.2. If T is a scheme over Y , then a T -valued point of V is given
by n sections of Γ(T,OT ) which satisfy the polynomial equations P1 = 0, . . . , Pn =
0. In other words, the sheaf hV on Yétale is the equalizer of the two maps∏

i=1,...,nOY
a //

b
//
∏
j=1,...,nOY

where b(h1, . . . , hn) = 0 and a(h1, . . . , hn) = (P1(h1, . . . , hn), . . . , Pn(h1, . . . , hn)).
Since g−1 is exact we conclude that the top row of the following solid commutative
diagram is an equalizer diagram as well:

g−1hV //

��

∏
i=1,...,n g

−1OY
g−1a //

g−1b

//∏
g♯

��

∏
j=1,...,n g

−1OY∏
g♯

��
hX×Y V

// ∏
i=1,...,nOX

a′
//

b′
//
∏
j=1,...,nOX

Here b′ is the zero map and a′ is the map defined by the images P ′
i = φ(Pi) ∈

A[x1, . . . , xn] via the same rule a′(h1, . . . , hn) = (P ′
1(h1, . . . , hn), . . . , P ′

n(h1, . . . , hn)).
that a was defined by. The commutativity of the diagram follows from the fact that
φ = g♯ on global sections. The lower row is an equalizer diagram also, by exactly
the same arguments as before since X ×Y V is the affine scheme Spec(A ⊗B C)
and A ⊗B C = A[x1, . . . , xn]/(P ′

1, . . . , P
′
n). Thus we obtain a unique dotted arrow

g−1hV → hX×Y V fitting into the diagram

We claim that the map of sheaves g−1hV → hX×Y V is an isomorphism. Since the
small étale site of X has enough points (Theorem 29.10) it suffices to prove this
on stalks. Hence let x be a geometric point of X, and denote p the associate point
of the small étale topos of X. Set q = g ◦ p. This is a point of the small étale

https://stacks.math.columbia.edu/tag/04I6
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topos of Y . By Lemma 29.12 we see that q corresponds to a geometric point y of
Y . Consider the map of stalks

(g♯)p : (OY )y = OY,q = (g−1OY )p −→ OX,p = (OX)x

Since (g, g♯) is a morphism of locally ringed topoi (g♯)p is a local ring homomorphism
of strictly henselian local rings. Applying localization to the big commutative dia-
gram above and Algebra, Lemma 153.12 we conclude that (g−1hV )p → (hX×Y V )p
is an isomorphism as desired.

We claim that the isomorphisms g−1hV → hX×Y V are functorial. Namely, suppose
that V1 → V2 is a morphism of affine schemes étale over Y . Write Vi = Spec(Ci)
with

Ci = B[xi,1, . . . , xi,ni ]/(Pi,1, . . . , Pi,ni)

The morphism V1 → V2 is given by a B-algebra map C2 → C1 which in turn is
given by some polynomials Qj ∈ B[x1,1, . . . , x1,n1 ] for j = 1, . . . , n2. Then it is an
easy matter to show that the diagram of sheaves

hV1

��

// ∏
i=1,...,n1

OY

Q1,...,Qn2

��
hV2

// ∏
i=1,...,n2

OY

is commutative, and pulling back toXétale we obtain the solid commutative diagram

g−1hV1

��

++

// ∏
i=1,...,n1

g−1OY

g♯

��

Q1,...,Qn2

++
g−1hV2

��

// ∏
i=1,...,n2

g−1OY

g♯

��

hX×Y V1
//

++

∏
i=1,...,n1

OX
Q′

1,...,Q
′
n2

++
hX×Y V2

// ∏
i=1,...,n2

OX

where Q′
j ∈ A[x1,1, . . . , x1,n1 ] is the image of Qj via φ. Since the dotted arrows

exist, make the two squares commute, and the horizontal arrows are injective we
see that the whole diagram commutes. This proves functoriality (and also that the
construction of g−1hV → hX×Y V is independent of the choice of the presentation,
although we strictly speaking do not need to show this).
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At this point we are able to show that fsmall,∗ ∼= g∗. Namely, let F be a sheaf on
Xétale. For every V ∈ Ob(Xétale) affine we have

(g∗F)(V ) = MorSh(Yétale)(hV , g∗F)
= MorSh(Xétale)(g−1hV ,F)
= MorSh(Xétale)(hX×Y V ,F)
= F(X ×Y V )
= fsmall,∗F(V )

where in the third equality we use the isomorphism g−1hV ∼= hX×Y V constructed
above. These isomorphisms are clearly functorial in F and functorial in V as
the isomorphisms g−1hV ∼= hX×Y V are functorial. Now any sheaf on Yétale is
determined by the restriction to the subcategory of affine schemes (Topologies,
Lemma 4.12), and hence we obtain an isomorphism of functors fsmall,∗ ∼= g∗ as
desired.
Finally, we have to check that, via the isomorphism fsmall,∗ ∼= g∗ above, the maps
f ♯small and g♯ agree. By construction this is already the case for the global sections
of OY , i.e., for the elements of B. We only need to check the result on sections over
an affine V étale over Y (by Topologies, Lemma 4.12 again). Writing V = Spec(C),
C = B[xi]/(Pj) as before it suffices to check that the coordinate functions xi are
mapped to the same sections of OX over X ×Y V . And this is exactly what it
means that the diagram

g−1hV //

��

∏
i=1,...,n g

−1OY∏
g♯

��
hX×Y V

// ∏
i=1,...,nOX

commutes. Thus the lemma is proved. □

Here is a version for general schemes.

Theorem 40.5.04I7 Let X, Y be schemes. Let

(g, g#) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )
be a morphism of locally ringed topoi. Then there exists a unique morphism of
schemes f : X → Y such that (g, g#) is isomorphic to (fsmall, f ♯small). In other
words, the construction

Sch −→ Locally ringed topoi, X −→ (Xétale,OX)
is fully faithful (morphisms up to 2-isomorphisms on the right hand side).

Proof. You can prove this theorem by carefuly adjusting the arguments of the
proof of Lemma 40.4 to the global setting. However, we want to indicate how we
can glue the result of that lemma to get a global morphism due to the rigidity
provided by the result of Lemma 40.2. Unfortunately, this is a bit messy.
Let us prove existence when Y is affine. In this case choose an affine open covering
X =

⋃
Ui. For each i the inclusion morphism ji : Ui → X induces a morphism

of locally ringed topoi (ji,small, j♯i,small) : (Sh(Ui,étale),OUi)→ (Sh(Xétale),OX) by

https://stacks.math.columbia.edu/tag/04I7
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Lemma 40.1. We can compose this with (g, g♯) to obtain a morphism of locally
ringed topoi

(g, g♯) ◦ (ji,small, j♯i,small) : (Sh(Ui,étale),OUi
)→ (Sh(Yétale),OY )

see Modules on Sites, Lemma 40.10. By Lemma 40.4 there exists a unique morphism
of schemes fi : Ui → Y and a 2-isomorphism

ti : (fi,small, f ♯i,small) −→ (g, g♯) ◦ (ji,small, j♯i,small).
Set Ui,i′ = Ui ∩ Ui′ , and denote ji,i′ : Ui,i′ → Ui the inclusion morphism. Since we
have ji ◦ ji,i′ = ji′ ◦ ji′,i we see that

(g, g♯) ◦ (ji,small, j♯i,small) ◦ (ji,i′,small, j♯i,i′,small) =

(g, g♯) ◦ (ji′,small, j♯i′,small) ◦ (ji′,i,small, j♯i′,i,small)
Hence by uniqueness (see Lemma 40.3) we conclude that fi ◦ ji,i′ = fi′ ◦ ji′,i, in
other words the morphisms of schemes fi = f ◦ ji are the restrictions of a global
morphism of schemes f : X → Y . Consider the diagram of 2-isomorphisms (where
we drop the components ♯ to ease the notation)

g ◦ ji,small ◦ ji,i′,small
ti⋆idj

i,i′,small// fsmall ◦ ji,small ◦ ji,i′,small

g ◦ ji′,small ◦ ji′,i,small
ti′⋆idj

i′,i,small// fsmall ◦ ji′,small ◦ ji′,i,small
The notation ⋆ indicates horizontal composition, see Categories, Definition 29.1
in general and Sites, Section 36 for our particular case. By the result of Lemma
40.2 this diagram commutes. Hence for any sheaf G on Yétale the isomorphisms
ti : f−1

smallG|Ui → g−1G|Ui agree over Ui,i′ and we obtain a global isomorphism
t : f−1

smallG → g−1G. It is clear that this isomorphism is functorial in G and is
compatible with the maps f ♯small and g♯ (because it is compatible with these maps
locally). This proves the theorem in case Y is affine.
In the general case, let V ⊂ Y be an affine open. Then hV is a subsheaf of the final
sheaf ∗ on Yétale. As g is exact we see that g−1hV is a subsheaf of the final sheaf
on Xétale. Hence by Lemma 31.1 there exists an open subscheme W ⊂ X such
that g−1hV = hW . By Modules on Sites, Lemma 40.12 there exists a commutative
diagram of morphisms of locally ringed topoi

(Sh(Wétale),OW ) //

g′

��

(Sh(Xétale),OX)

g

��
(Sh(Vétale),OV ) // (Sh(Yétale),OY )

where the horizontal arrows are the localization morphisms (induced by the inclu-
sion morphisms V → Y and W → X) and where g′ is induced from g. By the
result of the preceding paragraph we obtain a morphism of schemes f ′ : W → V
and a 2-isomorphism t : (f ′

small, (f ′
small)♯) → (g′, (g′)♯). Exactly as before these

morphisms f ′ (for varying affine opens V ⊂ Y ) agree on overlaps by uniqueness,
so we get a morphism f : X → Y . Moreover, the 2-isomorphisms t are com-
patible on overlaps by Lemma 40.2 again and we obtain a global 2-isomorphism
(fsmall, (fsmall)♯)→ (g, (g)♯). as desired. Some details omitted. □
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41. Push and pull

04C6 Let f : X → Y be a morphism of schemes. Here is a list of conditions we will
consider in the following:

(A) For every étale morphism U → X and u ∈ U there exist an étale morphism
V → Y and a disjoint union decomposition X ×Y V = W ⨿ W ′ and a
morphism h : W → U over X with u in the image of h.

(B) For every V → Y étale, and every étale covering {Ui → X×Y V } there exists
an étale covering {Vj → V } such that for each j we have X×Y Vj =

∐
Wij

where Wij → X ×Y V factors through Ui → X ×Y V for some i.
(C) For every U → X étale, there exists a V → Y étale and a surjective

morphism X ×Y V → U over X.
It turns out that each of these properties has meaning in terms of the behaviour of
the functor fsmall,∗. We will work this out in the next few sections.

42. Property (A)

04DJ Please see Section 41 for the definition of property (A).

Lemma 42.1.04DK Let f : X → Y be a morphism of schemes. Assume (A).
(1) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) reflects injections and surjections,
(2) f−1

smallfsmall,∗F → F is surjective for any abelian sheaf F on Xétale,
(3) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) is faithful.

Proof. Let F be an abelian sheaf on Xétale. Let U be an object of Xétale. By
assumption we can find a covering {Wi → U} in Xétale such that each Wi is an
open and closed subscheme of X ×Y Vi for some object Vi of Yétale. The sheaf
condition shows that

F(U) ⊂
∏
F(Wi)

and that F(Wi) is a direct summand of F(X ×Y Vi) = fsmall,∗F(Vi). Hence it is
clear that fsmall,∗ reflects injections.

Next, suppose that a : G → F is a map of abelian sheaves such that fsmall,∗a is
surjective. Let s ∈ F(U) with U as above. With Wi, Vi as above we see that
it suffices to show that s|Wi is étale locally the image of a section of G under
a. Since F(Wi) is a direct summand of F(X ×Y Vi) it suffices to show that for
any V ∈ Ob(Yétale) any element s ∈ F(X ×Y V ) is étale locally on X ×Y V the
image of a section of G under a. Since F(X ×Y V ) = fsmall,∗F(V ) we see by
assumption that there exists a covering {Vj → V } such that s is the image of
sj ∈ fsmall,∗G(Vj) = G(X ×Y Vj). This proves fsmall,∗ reflects surjections.

Parts (2), (3) follow formally from part (1), see Modules on Sites, Lemma 15.1. □

Lemma 42.2.04DL Let f : X → Y be a separated locally quasi-finite morphism of
schemes. Then property (A) above holds.

Proof. Let U → X be an étale morphism and u ∈ U . The geometric statement
(A) reduces directly to the case where U and Y are affine schemes. Denote x ∈ X
and y ∈ Y the images of u. Since X → Y is locally quasi-finite, and U → X
is locally quasi-finite (see Morphisms, Lemma 36.6) we see that U → Y is locally
quasi-finite (see Morphisms, Lemma 20.12). Moreover both X → Y and U → Y
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are separated. Thus More on Morphisms, Lemma 41.5 applies to both morphisms.
This means we may pick an étale neighbourhood (V, v)→ (Y, y) such that

X ×Y V = W ⨿R, U ×Y V = W ′ ⨿R′

and points w ∈W , w′ ∈W ′ such that
(1) W , R are open and closed in X ×Y V ,
(2) W ′, R′ are open and closed in U ×Y V ,
(3) W → V and W ′ → V are finite,
(4) w, w′ map to v,
(5) κ(v) ⊂ κ(w) and κ(v) ⊂ κ(w′) are purely inseparable, and
(6) no other point of W or W ′ maps to v.

Here is a commutative diagram

U

��

U ×Y Voo

��

W ′ ⨿R′

��

oo

X

��

X ×Y Voo

��

W ⨿Roo

Y Voo

After shrinking V we may assume that W ′ maps into W : just remove the image the
inverse image of R in W ′; this is a closed set (as W ′ → V is finite) not containing
v. Then W ′ → W is finite because both W → V and W ′ → V are finite. Hence
W ′ → W is finite étale, and there is exactly one point in the fibre over w with
κ(w) = κ(w′). Hence W ′ →W is an isomorphism in an open neighbourhood W ◦ of
w, see Étale Morphisms, Lemma 14.2. Since W → V is finite the image of W \W ◦

is a closed subset T of V not containing v. Thus after replacing V by V \T we may
assume that W ′ →W is an isomorphism. Now the decomposition X×Y V = W⨿R
and the morphism W → U are as desired and we win. □

Lemma 42.3.04DM Let f : X → Y be an integral morphism of schemes. Then property
(A) holds.

Proof. Let U → X be étale, and let u ∈ U be a point. We have to find V → Y
étale, a disjoint union decomposition X ×Y V = W ⨿ W ′ and an X-morphism
W → U with u in the image. We may shrink U and Y and assume U and Y are
affine. In this case also X is affine, since an integral morphism is affine by definition.
Write Y = Spec(A), X = Spec(B) and U = Spec(C). Then A → B is an integral
ring map, and B → C is an étale ring map. By Algebra, Lemma 143.3 we can find a
finite A-subalgebra B′ ⊂ B and an étale ring map B′ → C ′ such that C = B⊗B′C ′.
Thus the question reduces to the étale morphism U ′ = Spec(C ′)→ X ′ = Spec(B′)
over the finite morphism X ′ → Y . In this case the result follows from Lemma
42.2. □

Lemma 42.4.04C9 Let f : X → Y be a morphism of schemes. Denote fsmall :
Sh(Xétale) → Sh(Yétale) the associated morphism of small étale topoi. Assume at
least one of the following

(1) f is integral, or
(2) f is separated and locally quasi-finite.
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Then the functor fsmall,∗ : Ab(Xétale)→ Ab(Yétale) has the following properties
(1) the map f−1

smallfsmall,∗F → F is always surjective,
(2) fsmall,∗ is faithful, and
(3) fsmall,∗ reflects injections and surjections.

Proof. Combine Lemmas 42.2, 42.3, and 42.1. □

43. Property (B)

04DN Please see Section 41 for the definition of property (B).

Lemma 43.1.04DO Let f : X → Y be a morphism of schemes. Assume (B) holds.
Then the functor fsmall,∗ : Sh(Xétale) → Sh(Yétale) transforms surjections into
surjections.

Proof. This follows from Sites, Lemma 41.2. □

Lemma 43.2.04DP Let f : X → Y be a morphism of schemes. Suppose
(1) V → Y is an étale morphism of schemes,
(2) {Ui → X ×Y V } is an étale covering, and
(3) v ∈ V is a point.

Assume that for any such data there exists an étale neighbourhood (V ′, v′)→ (V, v),
a disjoint union decomposition X ×Y V ′ =

∐
W ′
i , and morphisms W ′

i → Ui over
X ×Y V . Then property (B) holds.

Proof. Omitted. □

Lemma 43.3.04DQ Let f : X → Y be a finite morphism of schemes. Then property
(B) holds.

Proof. Consider V → Y étale, {Ui → X ×Y V } an étale covering, and v ∈ V . We
have to find a V ′ → V and decomposition and maps as in Lemma 43.2. We may
shrink V and Y , hence we may assume that V and Y are affine. Since X is finite
over Y , this also implies that X is affine. During the proof we may (finitely often)
replace (V, v) by an étale neighbourhood (V ′, v′) and correspondingly the covering
{Ui → X ×Y V } by {V ′ ×V Ui → X ×Y V ′}.

Since X ×Y V → V is finite there exist finitely many (pairwise distinct) points
x1, . . . , xn ∈ X ×Y V mapping to v. We may apply More on Morphisms, Lemma
41.5 to X ×Y V → V and the points x1, . . . , xn lying over v and find an étale
neighbourhood (V ′, v′)→ (V, v) such that

X ×Y V ′ = R ⨿
∐

Ta

with Ta → V ′ finite with exactly one point pa lying over v′ and moreover κ(v′) ⊂
κ(pa) purely inseparable, and such that R → V ′ has empty fibre over v′. Because
X → Y is finite, also R → V ′ is finite. Hence after shrinking V ′ we may assume
that R = ∅. Thus we may assume that X ×Y V = X1 ⨿ . . .⨿Xn with exactly one
point xl ∈ Xl lying over v with moreover κ(v) ⊂ κ(xl) purely inseparable. Note
that this property is preserved under refinement of the étale neighbourhood (V, v).

For each l choose an il and a point ul ∈ Uil mapping to xl. Now we apply property
(A) for the finite morphism X ×Y V → V and the étale morphisms Uil → X ×Y V
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and the points ul. This is permissible by Lemma 42.3 This gives produces an étale
neighbourhood (V ′, v′)→ (V, v) and decompositions

X ×Y V ′ = Wl ⨿Rl

and X-morphisms al : Wl → Uil whose image contains uil . Here is a picture:

Uil

��
Wl

22

// Wl ⨿Rl X ×Y V ′ //

��

X ×Y V //

��

X

��
V ′ // V // Y

After replacing (V, v) by (V ′, v′) we conclude that each xl is contained in an open
and closed neighbourhood Wl such that the inclusion morphism Wl → X ×Y V
factors through Ui → X ×Y V for some i. Replacing Wl by Wl ∩ Xl we see
that these open and closed sets are disjoint and moreover that {x1, . . . , xn} ⊂
W1 ∪ . . . ∪Wn. Since X ×Y V → V is finite we may shrink V and assume that
X ×Y V = W1 ⨿ . . .⨿Wn as desired. □

Lemma 43.4.04DR Let f : X → Y be an integral morphism of schemes. Then property
(B) holds.

Proof. Consider V → Y étale, {Ui → X ×Y V } an étale covering, and v ∈ V .
We have to find a V ′ → V and decomposition and maps as in Lemma 43.2. We
may shrink V and Y , hence we may assume that V and Y are affine. Since X is
integral over Y , this also implies that X and X ×Y V are affine. We may refine the
covering {Ui → X ×Y V }, and hence we may assume that {Ui → X ×Y V }i=1,...,n
is a standard étale covering. Write Y = Spec(A), X = Spec(B), V = Spec(C), and
Ui = Spec(Bi). Then A→ B is an integral ring map, and B ⊗A C → Bi are étale
ring maps. By Algebra, Lemma 143.3 we can find a finite A-subalgebra B′ ⊂ B
and an étale ring map B′ ⊗A C → B′

i for i = 1, . . . , n such that Bi = B ⊗B′ B′
i.

Thus the question reduces to the étale covering {Spec(B′
i)→ X ′×Y V }i=1,...,n with

X ′ = Spec(B′) finite over Y . In this case the result follows from Lemma 43.3. □

Lemma 43.5.04C2 Let f : X → Y be a morphism of schemes. Assume f is integral
(for example finite). Then

(1) fsmall,∗ transforms surjections into surjections (on sheaves of sets and on
abelian sheaves),

(2) f−1
smallfsmall,∗F → F is surjective for any abelian sheaf F on Xétale,

(3) fsmall,∗ : Ab(Xétale) → Ab(Yétale) is faithful and reflects injections and
surjections, and

(4) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) is exact.

Proof. Parts (2), (3) we have seen in Lemma 42.4. Part (1) follows from Lemmas
43.4 and 43.1. Part (4) is a consequence of part (1), see Modules on Sites, Lemma
15.2. □

https://stacks.math.columbia.edu/tag/04DR
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44. Property (C)

04DS Please see Section 41 for the definition of property (C).

Lemma 44.1.04DT Let f : X → Y be a morphism of schemes. Assume (C) holds. Then
the functor fsmall,∗ : Sh(Xétale)→ Sh(Yétale) reflects injections and surjections.

Proof. Follows from Sites, Lemma 41.4. We omit the verification that property
(C) implies that the functor Yétale → Xétale, V 7→ X×Y V satisfies the assumption
of Sites, Lemma 41.4. □

Remark 44.2.04DU Property (C) holds if f : X → Y is an open immersion. Namely,
if U ∈ Ob(Xétale), then we can view U also as an object of Yétale and U ×Y X = U .
Hence property (C) does not imply that fsmall,∗ is exact as this is not the case for
open immersions (in general).

Lemma 44.3.04DV Let f : X → Y be a morphism of schemes. Assume that for any
V → Y étale we have that

(1) X ×Y V → V has property (C), and
(2) X ×Y V → V is closed.

Then the functor Yétale → Xétale, V 7→ X ×Y V is almost cocontinuous, see Sites,
Definition 42.3.

Proof. Let V → Y be an object of Yétale and let {Ui → X ×Y V }i∈I be a covering
of Xétale. By assumption (1) for each i we can find an étale morphism hi : Vi → V
and a surjective morphism X×Y Vi → Ui over X×Y V . Note that

⋃
hi(Vi) ⊂ V is an

open set containing the closed set Z = Im(X×Y V → V ). Let h0 : V0 = V \Z → V
be the open immersion. It is clear that {Vi → V }i∈I∪{0} is an étale covering
such that for each i ∈ I ∪ {0} we have either Vi ×Y X = ∅ (namely if i = 0), or
Vi ×Y X → V ×Y X factors through Ui → X ×Y V (if i ̸= 0). Hence the functor
Yétale → Xétale is almost cocontinuous. □

Lemma 44.4.04DW Let f : X → Y be an integral morphism of schemes which defines
a homeomorphism of X with a closed subset of Y . Then property (C) holds.

Proof. Let g : U → X be an étale morphism. We need to find an object V → Y
of Yétale and a surjective morphism X ×Y V → U over X. Suppose that for every
u ∈ U we can find an object Vu → Y of Yétale and a morphism hu : X ×Y Vu → U
over X with u ∈ Im(hu). Then we can take V =

∐
Vu and h =

∐
hu and we win.

Hence given a point u ∈ U we find a pair (Vu, hu) as above. To do this we may
shrink U and assume that U is affine. In this case g : U → X is locally quasi-finite.
Let g−1(g({u})) = {u, u2, . . . , un}. Since there are no specializations ui ⇝ u we
may replace U by an affine neighbourhood so that g−1(g({u})) = {u}.

The image g(U) ⊂ X is open, hence f(g(U)) is locally closed in Y . Choose an open
V ⊂ Y such that f(g(U)) = f(X) ∩ V . It follows that g factors through X ×Y V
and that the resulting {U → X ×Y V } is an étale covering. Since f has property
(B) , see Lemma 43.4, we see that there exists an étale covering {Vj → V } such
that X ×Y Vj → X ×Y V factor through U . This implies that V ′ =

∐
Vj is étale

over Y and that there is a morphism h : X ×Y V ′ → U whose image surjects onto
g(U). Since u is the only point in its fibre it must be in the image of h and we
win. □

https://stacks.math.columbia.edu/tag/04DT
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We urge the reader to think of the following lemma as a way station3 on the jour-
ney towards the ultimate truth regarding fsmall,∗ for integral universally injective
morphisms.

Lemma 44.5.04DX Let f : X → Y be a morphism of schemes. Assume that f is
universally injective and integral (for example a closed immersion). Then

(1) fsmall,∗ : Sh(Xétale)→ Sh(Yétale) reflects injections and surjections,
(2) fsmall,∗ : Sh(Xétale)→ Sh(Yétale) commutes with pushouts and coequalizers

(and more generally finite connected colimits),
(3) fsmall,∗ transforms surjections into surjections (on sheaves of sets and on

abelian sheaves),
(4) the map f−1

smallfsmall,∗F → F is surjective for any sheaf (of sets or of
abelian groups) F on Xétale,

(5) the functor fsmall,∗ is faithful (on sheaves of sets and on abelian sheaves),
(6) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) is exact, and
(7) the functor Yétale → Xétale, V 7→ X ×Y V is almost cocontinuous.

Proof. By Lemmas 42.3, 43.4 and 44.4 we know that the morphism f has prop-
erties (A), (B), and (C). Moreover, by Lemma 44.3 we know that the functor
Yétale → Xétale is almost cocontinuous. Now we have

(1) property (C) implies (1) by Lemma 44.1,
(2) almost continuous implies (2) by Sites, Lemma 42.6,
(3) property (B) implies (3) by Lemma 43.1.

Properties (4), (5), and (6) follow formally from the first three, see Sites, Lemma
41.1 and Modules on Sites, Lemma 15.2. Property (7) we saw above. □

45. Topological invariance of the small étale site

04DY In the following theorem we show that the small étale site is a topological invariant
in the following sense: If f : X → Y is a morphism of schemes which is a universal
homeomorphism, then Xétale

∼= Yétale as sites. This improves the result of Étale
Morphisms, Theorem 15.2. We first prove the result for morphisms and then we
state the result for categories.

Theorem 45.1.0BTY Let X and Y be two schemes over a base scheme S. Let S′ → S
be a universal homeomorphism. Denote X ′ (resp. Y ′) the base change to S′. If X
is étale over S, then the map

MorS(Y,X) −→ MorS′(Y ′, X ′)
is bijective.

Proof. After base changing via Y → S, we may assume that Y = S. Thus we
may and do assume both X and Y are étale over S. In other words, the theorem
states that the base change functor is a fully faithful functor from the category of
schemes étale over S to the category of schemes étale over S′.
Consider the forgetful functor

(45.1.1)0BTZ descent data (X ′, φ′) relative to S′/S
with X ′ étale over S′ −→ schemes X ′ étale over S′

3A way station is a place where people stop to eat and rest when they are on a long journey.

https://stacks.math.columbia.edu/tag/04DX
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We claim this functor is an equivalence. On the other hand, the functor

(45.1.2)0BU0 schemes X étale over S −→ descent data (X ′, φ′) relative to S′/S
with X ′ étale over S′

is fully faithful by Étale Morphisms, Lemma 20.3. Thus the claim implies the
theorem.
Proof of the claim. Recall that a universal homeomorphism is the same thing as an
integral, universally injective, surjective morphism, see Morphisms, Lemma 45.5.
In particular, the diagonal ∆ : S′ → S′×S S′ is a thickening by Morphisms, Lemma
10.2. Thus by Étale Morphisms, Theorem 15.1 we see that given X ′ → S′ étale
there is a unique isomorphism

φ′ : X ′ ×S S′ → S′ ×S X ′

of schemes étale over S′ ×S S′ which pulls back under ∆ to id : X ′ → X ′ over
S′. Since S′ → S′ ×S S′ ×S S′ is a thickening as well (it is bijective and a closed
immersion) we conclude that (X ′, φ′) is a descent datum relative to S′/S. The
canonical nature of the construction of φ′ shows that it is compatible with mor-
phisms between schemes étale over S′. In other words, we obtain a quasi-inverse
X ′ 7→ (X ′, φ′) of the functor (45.1.1). This proves the claim and finishes the proof
of the theorem. □

Theorem 45.2.04DZ [DG67, IV Theorem
18.1.2]

Let f : X → Y be a morphism of schemes. Assume f is inte-
gral, universally injective and surjective (i.e., f is a universal homeomorphism, see
Morphisms, Lemma 45.5). The functor

V 7−→ VX = X ×Y V
defines an equivalence of categories

{schemes V étale over Y } ↔ {schemes U étale over X}

We give two proofs. The first uses effectivity of descent for quasi-compact, sepa-
rated, étale morphisms relative to surjective integral morphisms. The second uses
the material on properties (A), (B), and (C) discussed earlier in the chapter.

First proof. By Theorem 45.1 we see that the functor is fully faithful. It remains
to show that the functor is essentially surjective. Let U → X be an étale morphism
of schemes.
Suppose that the result holds if U and Y are affine. In that case, we choose an
affine open covering U =

⋃
Ui such that each Ui maps into an affine open of

Y . By assumption (affine case) we can find étale morphisms Vi → Y such that
X ×Y Vi ∼= Ui as schemes over X. Let Vi,i′ ⊂ Vi be the open subscheme whose
underlying topological space corresponds to Ui∩Ui′ . Because we have isomorphisms

X ×Y Vi,i′ ∼= Ui ∩ Ui′ ∼= X ×Y Vi′,i
as schemes over X we see by fully faithfulness that we obtain isomorphisms θi,i′ :
Vi,i′ → Vi′,i of schemes over Y . We omit the verification that these isomorphisms
satisfy the cocycle condition of Schemes, Section 14. Applying Schemes, Lemma
14.2 we obtain a scheme V → Y by glueing the schemes Vi along the identifications
θi,i′ . It is clear that V → Y is étale and X ×Y V ∼= U by construction.
Thus it suffices to show the lemma in case U and Y are affine. Recall that in the
proof of Theorem 45.1 we showed that U comes with a unique descent datum (U,φ)

https://stacks.math.columbia.edu/tag/04DZ
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relative to X/Y . By Étale Morphisms, Proposition 20.6 (which applies because
U → X is quasi-compact and separated as well as étale by our reduction to the
affine case) there exists an étale morphism V → Y such that X ×Y V ∼= U and the
proof is complete. □

Second proof. By Theorem 45.1 we see that the functor is fully faithful. It re-
mains to show that the functor is essentially surjective. Let U → X be an étale
morphism of schemes.
Suppose that the result holds if U and Y are affine. In that case, we choose an
affine open covering U =

⋃
Ui such that each Ui maps into an affine open of

Y . By assumption (affine case) we can find étale morphisms Vi → Y such that
X ×Y Vi ∼= Ui as schemes over X. Let Vi,i′ ⊂ Vi be the open subscheme whose
underlying topological space corresponds to Ui∩Ui′ . Because we have isomorphisms

X ×Y Vi,i′ ∼= Ui ∩ Ui′ ∼= X ×Y Vi′,i
as schemes over X we see by fully faithfulness that we obtain isomorphisms θi,i′ :
Vi,i′ → Vi′,i of schemes over Y . We omit the verification that these isomorphisms
satisfy the cocycle condition of Schemes, Section 14. Applying Schemes, Lemma
14.2 we obtain a scheme V → Y by glueing the schemes Vi along the identifications
θi,i′ . It is clear that V → Y is étale and X ×Y V ∼= U by construction.
Thus it suffices to prove that the functor
(45.2.1)04E0 {affine schemes V étale over Y } ↔ {affine schemes U étale over X}
is essentially surjective when X and Y are affine.
Let U → X be an affine scheme étale over X. We have to find V → Y étale (and
affine) such that X ×Y V is isomorphic to U over X. Note that an étale morphism
of affines has universally bounded fibres, see Morphisms, Lemmas 36.6 and 57.9.
Hence we can do induction on the integer n bounding the degree of the fibres of
U → X. See Morphisms, Lemma 57.8 for a description of this integer in the case
of an étale morphism. If n = 1, then U → X is an open immersion (see Étale
Morphisms, Theorem 14.1), and the result is clear. Assume n > 1.
By Lemma 44.4 there exists an étale morphism of schemes W → Y and a surjective
morphism WX → U over X. As U is quasi-compact we may replace W by a disjoint
union of finitely many affine opens of W , hence we may assume that W is affine as
well. Here is a diagram

U

��

U ×Y Woo

��

WX ⨿R

X

��

WX
oo

��
Y Woo

The disjoint union decomposition arises because by construction the étale morphism
of affine schemes U ×Y W → WX has a section. OK, and now we see that the
morphism R→ X ×Y W is an étale morphism of affine schemes whose fibres have
degree universally bounded by n − 1. Hence by induction assumption there exists
a scheme V ′ →W étale such that R ∼= WX ×W V ′. Taking V ′′ = W ⨿V ′ we find a
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scheme V ′′ étale over W whose base change to WX is isomorphic to U ×Y W over
X ×Y W .
At this point we can use descent to find V over Y whose base change to X is
isomorphic to U over X. Namely, by the fully faithfulness of the functor (45.2.1)
corresponding to the universal homeomorphism X ×Y (W ×Y W ) → (W ×Y W )
there exists a unique isomorphism φ : V ′′ ×Y W → W ×Y V ′′ whose base change
to X ×Y (W ×Y W ) is the canonical descent datum for U ×Y W over X ×Y W .
In particular φ satisfies the cocycle condition. Hence by Descent, Lemma 37.1 we
see that φ is effective (recall that all schemes above are affine). Thus we obtain
V → Y and an isomorphism V ′′ ∼= W ×Y V such that the canonical descent datum
on W ×Y V/W/Y agrees with φ. Note that V → Y is étale, by Descent, Lemma
23.29. Moreover, there is an isomorphism VX ∼= U which comes from descending
the isomorphism
VX ×XWX = X×Y V ×Y W = (X×Y W )×W (W ×Y V ) ∼= WX ×W V ′′ ∼= U ×Y W
which we have by construction. Some details omitted. □

Remark 45.3.05YX In the situation of Theorem 45.2 it is also true that V 7→ VX
induces an equivalence between those étale morphisms V → Y with V affine and
those étale morphisms U → X with U affine. This follows for example from Limits,
Proposition 11.2.
Proposition 45.4 (Topological invariance of étale cohomology).03SI Let X0 → X be
a universal homeomorphism of schemes (for example the closed immersion defined
by a nilpotent sheaf of ideals). Then

(1) the étale sites Xétale and (X0)étale are isomorphic,
(2) the étale topoi Sh(Xétale) and Sh((X0)étale) are equivalent, and
(3) Hq

étale(X,F) = Hq
étale(X0,F|X0) for all q and for any abelian sheaf F on

Xétale.
Proof. The equivalence of categories Xétale → (X0)étale is given by Theorem 45.2.
We omit the proof that under this equivalence the étale coverings correspond. Hence
(1) holds. Parts (2) and (3) follow formally from (1). □

46. Closed immersions and pushforward

04E1 Before stating and proving Proposition 46.4 in its correct generality we briefly state
and prove it for closed immersions. Namely, some of the preceding arguments are
quite a bit easier to follow in the case of a closed immersion and so we repeat them
here in their simplified form.
In the rest of this section i : Z → X is a closed immersion. The functor

Sch/X −→ Sch/Z, U 7−→ UZ = Z ×X U

will be denoted U 7→ UZ as indicated. Since being a closed immersion is preserved
under arbitrary base change the scheme UZ is a closed subscheme of U .
Lemma 46.1.04FV Let i : Z → X be a closed immersion of schemes. Let U,U ′ be
schemes étale over X. Let h : UZ → U ′

Z be a morphism over Z. Then there exists
a diagram

U W
aoo b // U ′

such that aZ : WZ → UZ is an isomorphism and h = bZ ◦ (aZ)−1.

https://stacks.math.columbia.edu/tag/05YX
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Proof. Consider the scheme M = U ×X U ′. The graph Γh ⊂ MZ of h is open.
This is true for example as Γh is the image of a section of the étale morphism
pr1,Z : MZ → UZ , see Étale Morphisms, Proposition 6.1. Hence there exists an
open subscheme W ⊂ M whose intersection with the closed subset MZ is Γh. Set
a = pr1|W and b = pr2|W . □

Lemma 46.2.04FW Let i : Z → X be a closed immersion of schemes. Let V → Z be an
étale morphism of schemes. There exist étale morphisms Ui → X and morphisms
Ui,Z → V such that {Ui,Z → V } is a Zariski covering of V .

Proof. Since we only have to find a Zariski covering of V consisting of schemes of
the form UZ with U étale over X, we may Zariski localize on X and V . Hence we
may assume X and V affine. In the affine case this is Algebra, Lemma 143.10. □

If x : Spec(k) → X is a geometric point of X, then either x factors (uniquely)
through the closed subscheme Z, or Zx = ∅. If x factors through Z we say that x is
a geometric point of Z (because it is) and we use the notation “x ∈ Z” to indicate
this.

Lemma 46.3.04FX Let i : Z → X be a closed immersion of schemes. Let G be a sheaf
of sets on Zétale. Let x be a geometric point of X. Then

(ismall,∗G)x =
{
∗ if x ̸∈ Z
Gx if x ∈ Z

where ∗ denotes a singleton set.

Proof. Note that ismall,∗G|Uétale
= ∗ is the final object in the category of étale

sheaves on U , i.e., the sheaf which associates a singleton set to each scheme étale
over U . This explains the value of (ismall,∗G)x if x ̸∈ Z.

Next, suppose that x ∈ Z. Note that

(ismall,∗G)x = colim(U,u) G(UZ)

and on the other hand
Gx = colim(V,v) G(V ).

Let C1 = {(U, u)}opp be the opposite of the category of étale neighbourhoods of x in
X, and let C2 = {(V, v)}opp be the opposite of the category of étale neighbourhoods
of x in Z. The canonical map

Gx −→ (ismall,∗G)x
corresponds to the functor F : C1 → C2, F (U, u) = (UZ , x). Now Lemmas 46.2 and
46.1 imply that C1 is cofinal in C2, see Categories, Definition 17.1. Hence it follows
that the displayed arrow is an isomorphism, see Categories, Lemma 17.2. □

Proposition 46.4.04CA Let i : Z → X be a closed immersion of schemes.
(1) The functor

ismall,∗ : Sh(Zétale) −→ Sh(Xétale)

is fully faithful and its essential image is those sheaves of sets F on Xétale

whose restriction to X \ Z is isomorphic to ∗, and

https://stacks.math.columbia.edu/tag/04FW
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(2) the functor
ismall,∗ : Ab(Zétale) −→ Ab(Xétale)

is fully faithful and its essential image is those abelian sheaves on Xétale

whose support is contained in Z.
In both cases i−1

small is a left inverse to the functor ismall,∗.

Proof. Let’s discuss the case of sheaves of sets. For any sheaf G on Z the morphism
i−1
smallismall,∗G → G is an isomorphism by Lemma 46.3 (and Theorem 29.10). This

implies formally that ismall,∗ is fully faithful, see Sites, Lemma 41.1. It is clear that
ismall,∗G|Uétale

∼= ∗ where U = X \Z. Conversely, suppose that F is a sheaf of sets
on X such that F|Uétale

∼= ∗. Consider the adjunction mapping

F −→ ismall,∗i
−1
smallF

Combining Lemmas 46.3 and 36.2 we see that it is an isomorphism. This finishes
the proof of (1). The proof of (2) is identical. □

47. Integral universally injective morphisms

04FY Here is the general version of Proposition 46.4.

Proposition 47.1.04FZ Let f : X → Y be a morphism of schemes which is integral
and universally injective.

(1) The functor

fsmall,∗ : Sh(Xétale) −→ Sh(Yétale)

is fully faithful and its essential image is those sheaves of sets F on Yétale
whose restriction to Y \ f(X) is isomorphic to ∗, and

(2) the functor
fsmall,∗ : Ab(Xétale) −→ Ab(Yétale)

is fully faithful and its essential image is those abelian sheaves on Yétale
whose support is contained in f(X).

In both cases f−1
small is a left inverse to the functor fsmall,∗.

Proof. We may factor f as

X
h // Z

i // Y

where h is integral, universally injective and surjective and i : Z → Y is a closed
immersion. Apply Proposition 46.4 to i and apply Theorem 45.2 to h. □

48. Big sites and pushforward

04E2 In this section we prove some technical results on fbig,∗ for certain types of mor-
phisms of schemes.

Lemma 48.1.04C7 Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let f : X → Y

be a monomorphism of schemes. Then the canonical map f−1
big fbig,∗F → F is an

isomorphism for any sheaf F on (Sch/X)τ .

Proof. In this case the functor (Sch/X)τ → (Sch/Y )τ is continuous, cocontinuous
and fully faithful. Hence the result follows from Sites, Lemma 21.7. □

https://stacks.math.columbia.edu/tag/04FZ
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Remark 48.2.04C8 In the situation of Lemma 48.1 it is true that the canonical map
F → f−1

big fbig!F is an isomorphism for any sheaf of sets F on (Sch/X)τ . The proof
is the same. This also holds for sheaves of abelian groups. However, note that the
functor fbig! for sheaves of abelian groups is defined in Modules on Sites, Section
16 and is in general different from fbig! on sheaves of sets. The result for sheaves
of abelian groups follows from Modules on Sites, Lemma 16.4.

Lemma 48.3.04E3 Let f : X → Y be a closed immersion of schemes. Let U → X be
a syntomic (resp. smooth, resp. étale) morphism. Then there exist syntomic (resp.
smooth, resp. étale) morphisms Vi → Y and morphisms Vi ×Y X → U such that
{Vi ×Y X → U} is a Zariski covering of U .

Proof. Let us prove the lemma when τ = syntomic. The question is local on
U . Thus we may assume that U is an affine scheme mapping into an affine of Y .
Hence we reduce to proving the following case: Y = Spec(A), X = Spec(A/I),
and U = Spec(B), where A/I → B be a syntomic ring map. By Algebra, Lemma
136.18 we can find elements gi ∈ B such that Bgi

= Ai/IAi for certain syntomic
ring maps A→ Ai. This proves the lemma in the syntomic case. The proof of the
smooth case is the same except it uses Algebra, Lemma 137.20. In the étale case
use Algebra, Lemma 143.10. □

Lemma 48.4.04E4 Let f : X → Y be a closed immersion of schemes. Let {Ui → X}
be a syntomic (resp. smooth, resp. étale) covering. There exists a syntomic (resp.
smooth, resp. étale) covering {Vj → Y } such that for each j, either Vj ×Y X = ∅,
or the morphism Vj ×Y X → X factors through Ui for some i.

Proof. For each i we can choose syntomic (resp. smooth, resp. étale) morphisms
gij : Vij → Y and morphisms Vij ×Y X → Ui over X, such that {Vij ×Y X → Ui}
are Zariski coverings, see Lemma 48.3. This in particular implies that

⋃
ij gij(Vij)

contains the closed subset f(X). Hence the family of syntomic (resp. smooth, resp.
étale) maps gij together with the open immersion Y \ f(X)→ Y forms the desired
syntomic (resp. smooth, resp. étale) covering of Y . □

Lemma 48.5.04C3 Let f : X → Y be a closed immersion of schemes. Let τ ∈
{syntomic, smooth, étale}. The functor V 7→ X ×Y V defines an almost cocon-
tinuous functor (see Sites, Definition 42.3) (Sch/Y )τ → (Sch/X)τ between big τ
sites.

Proof. We have to show the following: given a morphism V → Y and any syntomic
(resp. smooth, resp. étale) covering {Ui → X ×Y V }, there exists a smooth (resp.
smooth, resp. étale) covering {Vj → V } such that for each j, either X ×Y Vj is
empty, or X ×Y Vj → Z ×Y V factors through one of the Ui. This follows on
applying Lemma 48.4 above to the closed immersion X ×Y V → V . □

Lemma 48.6.04C4 Let f : X → Y be a closed immersion of schemes. Let τ ∈
{syntomic, smooth, étale}.

(1) The pushforward fbig,∗ : Sh((Sch/X)τ ) → Sh((Sch/Y )τ ) commutes with
coequalizers and pushouts.

(2) The pushforward fbig,∗ : Ab((Sch/X)τ )→ Ab((Sch/Y )τ ) is exact.

Proof. This follows from Sites, Lemma 42.6, Modules on Sites, Lemma 15.3, and
Lemma 48.5 above. □
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Remark 48.7.04C5 In Lemma 48.6 the case τ = fppf is missing. The reason is
that given a ring A, an ideal I and a faithfully flat, finitely presented ring map
A/I → B, there is no reason to think that one can find any flat finitely presented
ring map A→ B with B/IB ̸= 0 such that A/I → B/IB factors through B. Hence
the proof of Lemma 48.5 does not work for the fppf topology. In fact it is likely
false that fbig,∗ : Ab((Sch/X)fppf )→ Ab((Sch/Y )fppf ) is exact when f is a closed
immersion. If you know an example, please email stacks.project@gmail.com.

49. Exactness of big lower shriek

04CB This is just the following technical result. Note that the functor fbig! has nothing
whatsoever to do with cohomology with compact support in general.

Lemma 49.1.04CC Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let f : X → Y
be a morphism of schemes. Let

fbig : Sh((Sch/X)τ ) −→ Sh((Sch/Y )τ )

be the corresponding morphism of topoi as in Topologies, Lemma 3.16, 4.16, 5.10,
6.10, or 7.12.

(1) The functor f−1
big : Ab((Sch/Y )τ )→ Ab((Sch/X)τ ) has a left adjoint

fbig! : Ab((Sch/X)τ )→ Ab((Sch/Y )τ )

which is exact.
(2) The functor f∗

big : Mod((Sch/Y )τ ,O) → Mod((Sch/X)τ ,O) has a left ad-
joint

fbig! : Mod((Sch/X)τ ,O)→ Mod((Sch/Y )τ ,O)
which is exact.

Moreover, the two functors fbig! agree on underlying sheaves of abelian groups.

Proof. Recall that fbig is the morphism of topoi associated to the continuous and
cocontinuous functor u : (Sch/X)τ → (Sch/Y )τ , U/X 7→ U/Y . Moreover, we have
f−1
bigO = O. Hence the existence of fbig! follows from Modules on Sites, Lemma

16.2, respectively Modules on Sites, Lemma 41.1. Note that if U is an object of
(Sch/X)τ then the functor u induces an equivalence of categories

u′ : (Sch/X)τ/U −→ (Sch/Y )τ/U

because both sides of the arrow are equal to (Sch/U)τ . Hence the agreement of
fbig! on underlying abelian sheaves follows from the discussion in Modules on Sites,
Remark 41.2. The exactness of fbig! follows from Modules on Sites, Lemma 16.3 as
the functor u above which commutes with fibre products and equalizers. □

Next, we prove a technical lemma that will be useful later when comparing sheaves
of modules on different sites associated to algebraic stacks.

Lemma 49.2.07AJ Let X be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}.
Let C1 ⊂ C2 ⊂ (Sch/X)τ be full subcategories with the following properties:

(1) For an object U/X of Ct,
(a) if {Ui → U} is a covering of (Sch/X)τ , then Ui/X is an object of Ct,
(b) U ×A1/X is an object of Ct.

(2) X/X is an object of Ct.

https://stacks.math.columbia.edu/tag/04C5
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We endow Ct with the structure of a site whose coverings are exactly those coverings
{Ui → U} of (Sch/X)τ with U ∈ Ob(Ct). Then

(a) The functor C1 → C2 is fully faithful, continuous, and cocontinuous.
Denote g : Sh(C1) → Sh(C2) the corresponding morphism of topoi. Denote Ot the
restriction of O to Ct. Denote g! the functor of Modules on Sites, Definition 16.1.

(b) The canonical map g!O1 → O2 is an isomorphism.

Proof. Assertion (a) is immediate from the definitions. In this proof all schemes
are schemes over X and all morphisms of schemes are morphisms of schemes over
X. Note that g−1 is given by restriction, so that for an object U of C1 we have
O1(U) = O2(U) = O(U). Recall that g!O1 is the sheaf associated to the presheaf
gp!O1 which associates to V in C2 the group

colimV→U O(U)
where U runs over the objects of C1 and the colimit is taken in the category of
abelian groups. Below we will use frequently that if

V → U → U ′

are morphisms with U,U ′ ∈ Ob(C1) and if f ′ ∈ O(U ′) restricts to f ∈ O(U),
then (V → U, f) and (V → U ′, f ′) define the same element of the colimit. Also,
g!O1 → O2 maps the element (V → U, f) simply to the pullback of f to V .
Surjectivity. Let V be a scheme and let h ∈ O(V ). Then we obtain a morphism
V → X ×A1 induced by h and the structure morphism V → X. Writing A1 =
Spec(Z[x]) we see the element x ∈ O(X ×A1) pulls back to h. Since X ×A1 is an
object of C1 by assumptions (1)(b) and (2) we obtain the desired surjectivity.
Injectivity. Let V be a scheme. Let s =

∑
i=1,...,n(V → Ui, fi) be an element of the

colimit displayed above. For any i we can use the morphism fi : Ui → X×A1 to see
that (V → Ui, fi) defines the same element of the colimit as (fi : V → X ×A1, x).
Then we can consider

f1 × . . .× fn : V → X ×An

and we see that s is equivalent in the colimit to∑
i=1,...,n

(f1×. . .×fn : V → X×An, xi) = (f1×. . .×fn : V → X×An, x1+. . .+xn)

Now, if x1 + . . .+ xn restricts to zero on V , then we see that f1 × . . .× fn factors
through X ×An−1 = V (x1 + . . . + xn). Hence we see that s is equivalent to zero
in the colimit. □

50. Étale cohomology

03Q3 In the following sections we prove some basic results on étale cohomology. Here is
an example of something we know for cohomology of topological spaces which also
holds for étale cohomology.

Lemma 50.1 (Mayer-Vietoris for étale cohomology).0A50 Let X be a scheme. Suppose
that X = U ∪ V is a union of two opens. For any abelian sheaf F on Xétale there
exists a long exact cohomology sequence

0→ H0
étale(X,F)→ H0

étale(U,F)⊕H0
étale(V,F)→ H0

étale(U ∩ V,F)
→ H1

étale(X,F)→ H1
étale(U,F)⊕H1

étale(V,F)→ H1
étale(U ∩ V,F)→ . . .

This long exact sequence is functorial in F .

https://stacks.math.columbia.edu/tag/0A50


ÉTALE COHOMOLOGY 73

Proof. Observe that if I is an injective abelian sheaf, then
0→ I(X)→ I(U)⊕ I(V )→ I(U ∩ V )→ 0

is exact. This is true in the first and middle spots as I is a sheaf. It is true on
the right, because I(U)→ I(U ∩ V ) is surjective by Cohomology on Sites, Lemma
12.6. Another way to prove it would be to show that the cokernel of the map
I(U)⊕ I(V )→ I(U ∩ V ) is the first Čech cohomology group of I with respect to
the covering X = U ∪V which vanishes by Lemmas 18.7 and 19.1. Thus, if F → I•

is an injective resolution, then
0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0

is a short exact sequence of complexes and the associated long exact cohomology
sequence is the sequence of the statement of the lemma. □

Lemma 50.2 (Relative Mayer-Vietoris).0EYK Let f : X → Y be a morphism of
schemes. Suppose that X = U ∪ V is a union of two open subschemes. Denote
a = f |U : U → Y , b = f |V : V → Y , and c = f |U∩V : U ∩ V → Y . For every
abelian sheaf F on Xétale there exists a long exact sequence

0→ f∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1f∗F → . . .

on Yétale. This long exact sequence is functorial in F .

Proof. Let F → I• be an injective resolution of F on Xétale. We claim that we
get a short exact sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.
Namely, for any W in Yétale, and for any n ≥ 0 the corresponding sequence of
groups of sections over W

0→ In(W ×Y X)→ In(W ×Y U)⊕ In(W ×Y V )→ In(W ×Y (U ∩ V ))→ 0
was shown to be short exact in the proof of Lemma 50.1. The lemma follows by
taking cohomology sheaves and using the fact that I•|U is an injective resolution
of F|U and similarly for I•|V , I•|U∩V . □

51. Colimits

03Q4 We recall that if (Fi, φii′) is a diagram of sheaves on a site C its colimit (in the
category of sheaves) is the sheafification of the presheaf U 7→ colimi Fi(U). See
Sites, Lemma 10.13. If the system is directed, U is a quasi-compact object of C
which has a cofinal system of coverings by quasi-compact objects, then F(U) =
colimFi(U), see Sites, Lemma 17.7. See Cohomology on Sites, Lemma 16.1 for a
result dealing with higher cohomology groups of colimits of abelian sheaves.
In Cohomology on Sites, Lemma 16.5 we generalize this result to a system of sheaves
on an inverse system of sites. Here is the corresponding notion in the case of a
system of étale sheaves living on an inverse system of schemes.

Definition 51.1.0EZL Let I be a preordered set. Let (Xi, fi′i) be an inverse system of
schemes over I. A system (Fi, φi′i) of sheaves on (Xi, fi′i) is given by

(1) a sheaf Fi on (Xi)étale for all i ∈ I,
(2) for i′ ≥ i a map φi′i : f−1

i′i Fi → Fi′ of sheaves on (Xi′)étale
such that φi′′i = φi′′i′ ◦ f−1

i′′i′φi′i whenever i′′ ≥ i′ ≥ i.

https://stacks.math.columbia.edu/tag/0EYK
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In the situation of Definition 51.1, assume I is a directed set and the transition
morphisms fi′i affine. Let X = limXi be the limit in the category of schemes, see
Limits, Section 2. Denote fi : X → Xi the projection morphisms and consider the
maps

f−1
i Fi = f−1

i′ f−1
i′i Fi

f−1
i′ φi′i−−−−−→ f−1

i′ Fi′

This turns f−1
i Fi into a system of sheaves on Xétale over I (it is a good exercise to

check this). We often want to know whether there is an isomorphism

Hq
étale(X, colim f−1

i Fi) = colimHq
étale(Xi,Fi)

It will turn out this is true if Xi is quasi-compact and quasi-separated for all i, see
Theorem 51.3.

Lemma 51.2.0EYL Let I be a directed set. Let (Xi, fi′i) be an inverse system of schemes
over I with affine transition morphisms. Let X = limi∈I Xi. With notation as in
Topologies, Lemma 4.12 we have

Xaffine,étale = colim(Xi)affine,étale

as sites in the sense of Sites, Lemma 18.2.

Proof. Let us first prove this when X and Xi are quasi-compact and quasi-
separated for all i (as this is true in all cases of interest). In this case any object of
Xaffine,étale, resp. (Xi)affine,étale is of finite presentation over X. Moreover, the
category of schemes of finite presentation over X is the colimit of the categories of
schemes of finite presentation over Xi, see Limits, Lemma 10.1. The same holds for
the subcategories of affine objects étale over X by Limits, Lemmas 4.13 and 8.10.
Finally, if {U j → U} is a covering of Xaffine,étale and if U ji → Ui is morphism of
affine schemes étale over Xi whose base change to X is U j → U , then we see that
the base change of {U ji → Ui} to some Xi′ is a covering for i′ large enough, see
Limits, Lemma 8.15.

In the general case, let U be an object of Xaffine,étale. Then U → X is étale and
separated (as U is separated) but in general not quasi-compact. Still, U → X is
locally of finite presentation and hence by Limits, Lemma 10.5 there exists an i,
a quasi-compact and quasi-separated scheme Ui, and a morphism Ui → Xi which
is locally of finite presentation whose base change to X is U → X. Then U =
limi′≥i Ui′ where Ui′ = Ui×Xi

Xi′ . After increasing i we may assume Ui is affine, see
Limits, Lemma 4.13. To check that Ui → Xi is étale for i sufficiently large, choose
a finite affine open covering Ui = Ui,1 ∪ . . . ∪ Ui,m such that Ui,j → Ui → Xi maps
into an affine open Wi,j ⊂ Xi. Then we can apply Limits, Lemma 8.10 to see that
Ui,j →Wi,j is étale after possibly increasing i. In this way we see that the functor
colim(Xi)affine,étale → Xaffine,étale is essentially surjective. Fully faithfulness
follows directly from the already used Limits, Lemma 10.5. The statement on
coverings is proved in exactly the same manner as done in the first paragraph of
the proof. □

Using the above we get the following general result on colimits and cohomology.

Theorem 51.3.09YQ Let X = limi∈I Xi be a limit of a directed system of schemes with
affine transition morphisms fi′i : Xi′ → Xi. We assume that Xi is quasi-compact

https://stacks.math.columbia.edu/tag/0EYL
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and quasi-separated for all i ∈ I. Let (Fi, φi′i) be a system of abelian sheaves on
(Xi, fi′i). Denote fi : X → Xi the projection and set F = colim f−1

i Fi. Then
colimi∈I H

p
étale(Xi,Fi) = Hp

étale(X,F).
for all p ≥ 0.
Proof. By Topologies, Lemma 4.12 we can compute the cohomology of F on
Xaffine,étale. Thus the result by a combination of Lemma 51.2 and Cohomology
on Sites, Lemma 16.5. □

The following two results are special cases of the theorem above.
Lemma 51.4.03Q5 Let X be a quasi-compact and quasi-separated scheme. Let I be a
directed set. Let (Fi, φij) be a system of abelian sheaves on Xétale over I. Then

colimi∈I H
p
étale(X,Fi) = Hp

étale(X, colimi∈I Fi).
Proof. This is a special case of Theorem 51.3. We also sketch a direct proof. We
prove it for all X at the same time, by induction on p.

(1) For any quasi-compact and quasi-separated scheme X and any étale cov-
ering U of X, show that there exists a refinement V = {Vj → X}j∈J
with J finite and each Vj quasi-compact and quasi-separated such that all
Vj0 ×X . . .×X Vjp

are also quasi-compact and quasi-separated.
(2) Using the previous step and the definition of colimits in the category of

sheaves, show that the theorem holds for p = 0 and all X.
(3) Using the locality of cohomology (Lemma 22.3), the Čech-to-cohomology

spectral sequence (Theorem 19.2) and the fact that the induction hypothesis
applies to all Vj0 ×X . . .×X Vjp

in the above situation, prove the induction
step p→ p+ 1.

□

Lemma 51.5.03Q6 Let A be a ring, (I,≤) a directed set and (Bi, φij) a system of
A-algebras. Set B = colimi∈I Bi. Let X → Spec(A) be a quasi-compact and quasi-
separated morphism of schemes. Let F an abelian sheaf on Xétale. Denote Yi =
X ×Spec(A) Spec(Bi), Y = X ×Spec(A) Spec(B), Gi = (Yi → X)−1F and G = (Y →
X)−1F . Then

Hp
étale(Y,G) = colimi∈I H

p
étale(Yi,Gi).

Proof. This is a special case of Theorem 51.3. We also outline a direct proof as
follows.

(1) Given V → Y étale with V quasi-compact and quasi-separated, there exist
i ∈ I and Vi → Yi such that V = Vi ×Yi

Y . If all the schemes considered
were affine, this would correspond to the following algebra statement: if
B = colimBi and B → C is étale, then there exist i ∈ I and Bi → Ci étale
such that C ∼= B ⊗Bi

Ci. This is proved in Algebra, Lemma 143.3.
(2) In the situation of (1) show that G(V ) = colimi′≥i Gi′(Vi′) where Vi′ is the

base change of Vi to Yi′ .
(3) By (1), we see that for every étale covering V = {Vj → Y }j∈J with J finite

and the Vjs quasi-compact and quasi-separated, there exists i ∈ I and an
étale covering Vi = {Vij → Yi}j∈J such that V ∼= Vi ×Yi

Y .
(4) Show that (2) and (3) imply

Ȟ∗(V,G) = colimi∈I Ȟ
∗(Vi,Gi).

https://stacks.math.columbia.edu/tag/03Q5
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(5) Cleverly use the Čech-to-cohomology spectral sequence (Theorem 19.2).
□

Lemma 51.6.03Q8 Let f : X → Y be a morphism of schemes and F ∈ Ab(Xétale).
Then Rpf∗F is the sheaf associated to the presheaf

(V → Y ) 7−→ Hp
étale(X ×Y V,F|X×Y V ).

More generally, for K ∈ D(Xétale) we have that Rpf∗K is the sheaf associated to
the presheaf

(V → Y ) 7−→ Hp
étale(X ×Y V,K|X×Y V ).

Proof. This lemma is valid for topological spaces, and the proof in this case is
the same. See Cohomology on Sites, Lemma 7.4 for the case of a sheaf and see
Cohomology on Sites, Lemma 20.3 for the case of a complex of abelian sheaves. □

Lemma 51.7.09Z1 Let S be a scheme. Let X = limi∈I Xi be a limit of a directed
system of schemes over S with affine transition morphisms fi′i : Xi′ → Xi. We
assume the structure morphisms gi : Xi → S and g : X → S are quasi-compact and
quasi-separated. Let (Fi, φi′i) be a system of abelian sheaves on (Xi, fi′i). Denote
fi : X → Xi the projection and set F = colim f−1

i Fi. Then
colimi∈I R

pgi,∗Fi = Rpg∗F
for all p ≥ 0.

Proof. Recall (Lemma 51.6) that Rpgi,∗Fi is the sheaf associated to the presheaf
U 7→ Hp

étale(U×SXi,Fi) and similarly for Rpg∗F . Moreover, the colimit of a system
of sheaves is the sheafification of the colimit on the level of presheaves. Note that
every object of Sétale has a covering by quasi-compact and quasi-separated objects
(e.g., affine schemes). Moreover, if U is a quasi-compact and quasi-separated object,
then we have

colimHp
étale(U ×S Xi,Fi) = Hp

étale(U ×S X,F)
by Theorem 51.3. Thus the lemma follows. □

Lemma 51.8.0EYM Let I be a directed set. Let gi : Xi → Si be an inverse system of
morphisms of schemes over I. Assume gi is quasi-compact and quasi-separated and
for i′ ≥ i the transition morphisms fi′i : Xi′ → Xi and hi′i : Si′ → Si are affine.
Let g : X → S be the limit of the morphisms gi, see Limits, Section 2. Denote
fi : X → Xi and hi : S → Si the projections. Let (Fi, φi′i) be a system of sheaves
on (Xi, fi′i). Set F = colim f−1

i Fi. Then
Rpg∗F = colimi∈I h

−1
i Rpgi,∗Fi

for all p ≥ 0.

Proof. How is the map of the lemma constructed? For i′ ≥ i we have a commuta-
tive diagram

X
fi′
//

g

��

Xi′
fi′i

//

gi′

��

Xi

gi

��
S

hi′ // Si′
hi′i // Si

If we combine the base change map h−1
i′i Rgi,∗Fi → Rgi′,∗f

−1
i′i Fi (Cohomology on

Sites, Lemma 15.1 or Remark 19.3) with the map Rgi′,∗φi′i, then we obtain ψi′i :

https://stacks.math.columbia.edu/tag/03Q8
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h−1
i′i R

pgi,∗Fi → Rpgi′,∗Fi′ . Similarly, using the left square in the diagram we obtain
maps ψi : h−1

i Rpgi,∗Fi → Rpg∗F . The maps h−1
i′ ψi′i and ψi are the maps used

in the statement of the lemma. For this to make sense, we have to check that
ψi′′i = ψi′′i′ ◦ h−1

i′′i′ψi′i and ψi′ ◦ h−1
i′ ψi′i = ψi; this follows from Cohomology on

Sites, Remark 19.5.
Proof of the equality. First proof using dimension shifting4. For any U affine and
étale over X by Theorem 51.3 we have

g∗F(U) = H0(U ×S X,F) = colimH0(Ui ×Si
Xi,Fi) = colim gi,∗Fi(Ui)

where the colimit is over i large enough such that there exists an i and Ui affine
étale over Si whose base change is U over S (see Lemma 51.2). The right hand side
is equal to (colim h−1

i gi,∗Fi)(U) by Sites, Lemma 18.4. This proves the lemma for
p = 0. If (Gi, φi′i) is a system with G = colim f−1

i Gi such that Gi is an injective
abelian sheaf on Xi for all i, then for any U affine and étale over X by Theorem
51.3 we have

Hp(U ×S X,G) = colimHp(Ui ×Si
Xi,Gi) = 0

for p > 0 (same colimit as before). Hence Rpg∗G = 0 and we get the result for p > 0
for such a system. In general we may choose a short exact sequence of systems

0→ (Fi, φi′i)→ (Gi, φi′i)→ (Qi, φi′i)→ 0
where (Gi, φi′i) is as above, see Cohomology on Sites, Lemma 16.4. By induction
the lemma holds for p− 1 and by the above we have vanishing for p and (Gi, φi′i).
Hence the result for p and (Fi, φi′i) by the long exact sequence of cohomology.
Second proof. Recall that Saffine,étale = colim(Si)affine,étale, see Lemma 51.2.
Thus if U is an object of Saffine,étale, then we can write U = Ui ×Si S for some i
and some Ui in (Si)affine,étale and

(colimi∈I h
−1
i Rpgi,∗Fi)(U) = colimi′≥i(Rpgi′,∗Fi′)(Ui ×Si

Si′)
by Sites, Lemma 18.4 and the construction of the transition maps in the system
described above. Since Rpgi′,∗Fi′ is the sheaf associated to the presheaf Ui′ 7→
Hp(Ui′ ×Si′ Xi′ ,Fi′) and since Rpg∗F is the sheaf associated to the presheaf U 7→
Hp(U ×S X,F) (Lemma 51.6) we obtain a canonical commutative diagram

colimi′≥iH
p(Ui ×Si

Xi′ ,Fi′) //

��

colimi′≥i(Rpgi′,∗Fi′)(Ui ×Si
Si′)

��
Hp(U ×S X,F) // Rpg∗F(U)

Observe that the left hand vertical arrow is an isomorphism by Theorem 51.3. We’re
trying to show that the right hand vertical arrow is an isomorphism. However, we
already know that the source and target of this arrow are sheaves on Saffine,étale.
Hence it suffices to show: (1) an element in the target, locally comes from an
element in the source and (2) an element in the source which maps to zero in the
target locally vanishes. Part (1) follows immediately from the above and the fact
that the lower horizontal arrow comes from a map of presheaves which becomes an
isomorphism after sheafification. For part (2), say ξ ∈ colimi′≥i(Rpgi′,∗Fi′)(Ui ×Si

Si′) is in the kernel. Choose an i′ ≥ i and ξi′ ∈ (Rpgi′,∗Fi′)(Ui×Si
Si′) representing

4You can also use this method to produce the maps in the lemma.
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ξ. Choose a standard étale covering {Ui′,k → Ui ×Si
Si′}k=1,...,m such that ξi′ |Ui′,k

comes from ξi′,k ∈ Hp(Ui′,k ×Si′ Xi′ ,Fi′). Since it is enough to prove that ξ dies
locally, we may replace U by the members of the étale covering {Ui′,k ×Si′ S →
U = Ui ×Si

S}. After this replacement we see that ξ is the image of an element
ξ′ of the group colimi′≥iH

p(Ui ×Si
Xi′ ,Fi′) in the diagram above. Since ξ′ maps

to zero in Rpg∗F(U) we can do another replacement and assume that ξ′ maps to
zero in Hp(U ×S X,F). However, since the left vertical arrow is an isomorphism
we then conclude ξ′ = 0 hence ξ = 0 as desired. □

Lemma 51.9.0EYN Let X = limi∈I Xi be a directed limit of schemes with affine tran-
sition morphisms fi′i and projection morphisms fi : X → Xi. Let F be a sheaf on
Xétale. Then

(1) there are canonical maps φi′i : f−1
i′i fi,∗F → fi′,∗F such that (fi,∗F , φi′i) is

a system of sheaves on (Xi, fi′i) as in Definition 51.1, and
(2) F = colim f−1

i fi,∗F .

Proof. Via Topologies, Lemma 4.12 and Lemma 51.2 this is a special case of Sites,
Lemma 18.5. □

Lemma 51.10.0DV2 Let I be a directed set. Let gi : Xi → Si be an inverse system of
morphisms of schemes over I. Assume gi is quasi-compact and quasi-separated and
for i′ ≥ i the transition morphisms Xi′ → Xi and Si′ → Si are affine. Let g : X →
S be the limit of the morphisms gi, see Limits, Section 2. Denote fi : X → Xi and
hi : S → Si the projections. Let F be an abelian sheaf on X. Then we have

Rpg∗F = colimi∈I h
−1
i Rpgi,∗(fi,∗F)

Proof. Formal combination of Lemmas 51.8 and 51.9. □

52. Colimits and complexes

0GIR In this section we discuss taking cohomology of systems of complexes in various
settings, continuing the discussion for sheaves started in Section 51. We strongly
urge the reader not to read this section unless absolutely necessary.

Lemma 52.1.0EZM Let X = limi∈I Xi be a limit of a directed system of schemes
with affine transition morphisms fi′i : Xi′ → Xi. We assume that Xi is quasi-
compact and quasi-separated for all i ∈ I. Let F•

i be a complex of abelian sheaves
on Xi,étale. Let φi′i : f−1

i′i F•
i → F•

i′ be a map of complexes on Xi,étale such that
φi′′i = φi′′i′ ◦ f−1

i′′i′φi′i whenever i′′ ≥ i′ ≥ i. Assume there is an integer a such that
Fni = 0 for n < a and all i ∈ I. Then we have

Hp
étale(X, colim f−1

i F
•
i ) = colimHp

étale(Xi,F•
i )

where fi : X → Xi is the projection.

Proof. This is a consequence of Theorem 51.3. Set F• = colim f−1
i F•

i . The
theorem tells us that

colimi∈I H
p
étale(Xi,Fni ) = Hp

étale(X,F
n)

for all n, p ∈ Z. Let us use the spectral sequences
Es,t1,i = Ht

étale(Xi,Fsi )⇒ Hs+t
étale(Xi,F•

i )
and

Es,t1 = Ht
étale(X,Fs)⇒ Hs+t

étale(X,F
•)

https://stacks.math.columbia.edu/tag/0EYN
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of Derived Categories, Lemma 21.3. Since Fni = 0 for n < a (with a independent of
i) we see that only a fixed finite number of terms Es,t1,i (independent of i) and Es,t1
contribute to Hq

étale(Xi,F•
i ) and Hq

étale(X,F•) and Es,t1 = colimEs,ti,i . This implies
what we want. Some details omitted. (There is an alternative argument using
“stupid” truncations of complexes which avoids using spectral sequences.) □

Lemma 52.2.0GIS Let X be a quasi-compact and quasi-sepated scheme. Let Ki ∈
D(Xétale), i ∈ I be a family of objects. Assume given a ∈ Z such that Hn(Ki) = 0
for n < a and i ∈ I. Then RΓ(X,

⊕
iKi) =

⊕
iRΓ(X,Ki).

Proof. We have to show thatHp(X,
⊕

iKi) =
⊕

iH
p(X,Ki) for all p ∈ Z. Choose

complexes F•
i representing Ki such that Fni = 0 for n < a. The direct sum of the

complexes F•
i represents the object

⊕
Ki by Injectives, Lemma 13.4. Since

⊕
F• is

the filtered colimit of the finite direct sums, the result follows from Lemma 52.1. □

Lemma 52.3.0GIT Let S be a scheme. Let X = limi∈I Xi be a limit of a directed system
of schemes over S with affine transition morphisms fi′i : Xi′ → Xi. We assume
that Xi is quasi-compact and quasi-separated for all i ∈ I. Let K ∈ D+(Sétale).
Then

colimi∈I H
p
étale(Xi,K|Xi

) = Hp
étale(X,K|X).

for all p ∈ Z where K|Xi
and K|X are the pullbacks of K to Xi and X.

Proof. We may represent K by a bounded below complex G• of abelian sheaves
on Sétale. Say Gn = 0 for n < a. Denote F•

i and F• the pullbacks of this complex
of Xi and X. These complexes represent the objects K|Xi and K|X and we have
F• = colim f−1

i F•
i termwise. Hence the lemma follows from Lemma 52.1. □

Lemma 52.4.0GIU Let I, gi : Xi → Si, g : X → S, fi, gi, hi be as in Lemma 51.8.
Let 0 ∈ I and K0 ∈ D+(X0,étale). For i ≥ 0 denote Ki the pullback of K0 to Xi.
Denote K the pullback of K to X. Then

Rpg∗K = colimi≥0 h
−1
i Rpgi,∗Ki

for all p ∈ Z.

Proof. Fix an integer p0 ∈ Z. Let a be an integer such that Hj(K0) = 0 for j < a.
We will prove the formula holds for all p ≤ p0 by descending induction on a. If
a > p0, then we see that the left and right hand side of the formula are zero for
p ≤ p0 by trivial vanishing, see Derived Categories, Lemma 16.1. Assume a ≤ p0.
Consider the distinguished triangle

Ha(K0)[−a]→ K0 → τ≥a+1K0

https://stacks.math.columbia.edu/tag/0GIS
https://stacks.math.columbia.edu/tag/0GIT
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Pulling back this distinguished triangle to Xi and X gives compatible distinguished
triangles for Ki and K. For p ≤ p0 we consider the commutative diagram

colimi≥0 h
−1
i Rp−1gi,∗(τ≥a+1Ki) α

//

��

Rp−1g∗(τ≥a+1K)

��
colimi≥0 h

−1
i Rpgi,∗(Ha(Ki)[−a])

β
//

��

Rpg∗(Ha(K)[−a])

��
colimi≥0 h

−1
i Rpgi,∗Ki γ

//

��

Rpg∗K

��
colimi≥0 R

pgi,∗τ≥a+1Ki
δ

//

��

Rpg∗τ≥a+1K

��
colimi≥0 R

p+1gi,∗(Ha(Ki)[−a]) ϵ // Rp+1g∗(Ha(K)[−a])

with exact columns. The arrows β and ϵ are isomorphisms by Lemma 51.8. The ar-
rows α and δ are isomorphisms by induction hypothesis. Hence γ is an isomorphism
as desired. □

Lemma 52.5.0GIV Let I, gi : Xi → Si, g : X → S, fii′ , fi, gi, hi be as in Lemma 51.8.
Let F•

i be a complex of abelian sheaves on Xi,étale. Let φi′i : f−1
i′i F•

i → F•
i′ be a

map of complexes on Xi,étale such that φi′′i = φi′′i′ ◦ f−1
i′′i′φi′i whenever i′′ ≥ i′ ≥ i.

Assume there is an integer a such that Fni = 0 for n < a and all i ∈ I. Then

Rpg∗(colim f−1
i F

•
i ) = colimi≥0 h

−1
i Rpgi,∗F•

i

for all p ∈ Z.

Proof. This is a consequence of Lemma 51.8. Set F• = colim f−1
i F•

i . The lemma
tells us that

colimi∈I h
−1
i Rpgi,∗Fni = Rpg∗Fn

for all n, p ∈ Z. Let us use the spectral sequences

Es,t1,i = Rtgi,∗Fsi ⇒ Rs+tgi,∗F•
i

and
Es,t1 = Rtg∗Fs ⇒ Rs+tg∗F•

of Derived Categories, Lemma 21.3. Since Fni = 0 for n < a (with a independent
of i) we see that only a fixed finite number of terms Es,t1,i (independent of i) and
Es,t1 contribute and Es,t1 = colimEs,ti,i . This implies what we want. Some details
omitted. (There is an alternative argument using “stupid” truncations of complexes
which avoids using spectral sequences.) □

Lemma 52.6.0GIW Let f : X → Y be a quasi-compact and quasi-sepated morphism of
schemes. Let Ki ∈ D(Xétale), i ∈ I be a family of objects. Assume given a ∈ Z
such that Hn(Ki) = 0 for n < a and i ∈ I. Then Rf∗(

⊕
iKi) =

⊕
iRf∗Ki.

https://stacks.math.columbia.edu/tag/0GIV
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Proof. We have to show that Rpf∗(
⊕

iKi) =
⊕

iR
pf∗Ki for all p ∈ Z. Choose

complexes F•
i representing Ki such that Fni = 0 for n < a. The direct sum of the

complexes F•
i represents the object

⊕
Ki by Injectives, Lemma 13.4. Since

⊕
F• is

the filtered colimit of the finite direct sums, the result follows from Lemma 52.5. □

53. Stalks of higher direct images

03Q7 The stalks of higher direct images can often be computed as follows.

Theorem 53.1.03Q9 Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes, F an abelian sheaf on Xétale, and s a geometric point of S lying over
s ∈ S. Then

(Rnf∗F)s = Hn
étale(X ×S Spec(OshS,s), p−1F)

where p : X ×S Spec(OshS,s)→ X is the projection. For K ∈ D+(Xétale) and n ∈ Z
we have

(Rnf∗K)s = Hn
étale(X ×S Spec(OshS,s), p−1K)

In fact, we have

(Rf∗K)s = RΓétale(X ×S Spec(OshS,s), p−1K)

in D+(Ab).

Proof. Let I be the category of étale neighborhoods of s on S. By Lemma 51.6
we have

(Rnf∗F)s = colim(V,v)∈Iopp Hn
étale(X ×S V,F|X×SV ).

We may replace I by the initial subcategory consisting of affine étale neighbour-
hoods of s. Observe that

Spec(OshS,s) = lim(V,v)∈I V

by Lemma 33.1 and Limits, Lemma 2.1. Since fibre products commute with limits
we also obtain

X ×S Spec(OshS,s) = lim(V,v)∈I X ×S V

We conclude by Lemma 51.5. For the second variant, use the same argument using
Lemma 52.3 instead of Lemma 51.5.

To see that the last statement is true, it suffices to produce a map (Rf∗K)s →
RΓétale(X ×S Spec(OshS,s), p−1K) in D+(Ab) which realizes the ismorphisms on co-
homology groups in degree n above for all n. To do this, choose a bounded below
complex J • of injective abelian sheaves on Xétale representing K. The complex
f∗J • represents Rf∗K. Thus the complex

(f∗J •)s = colim(V,v)∈Iopp(f∗J •)(V )

represents (Rf∗K)s. For each V we have maps

(f∗J •)(V ) = Γ(X ×S V,J •) −→ Γ(X ×S Spec(OshS,s), p−1J •)

and the target complex represents RΓétale(X ×S Spec(OshS,s), p−1K) in D+(Ab).
Taking the colimit of these maps we obtain the result. □

https://stacks.math.columbia.edu/tag/03Q9
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Remark 53.2.0GIX Let f : X → S be a morphism of schemes. Let K ∈ D(Xétale).
Let s be a geometric point of S. There are always canonical maps

(Rf∗K)s −→ RΓ(X ×S Spec(OshS,s), p−1K) −→ RΓ(Xs,K|Xs
)

where p : X ×S Spec(OshS,s)→ X is the projection. Namely, consider the commuta-
tive diagram

Xs
//

fs

��

X ×S Spec(OshS,s) p
//

f ′

��

X

f

��
s

i // Spec(OshS,s)
j // S

We have the base change maps

i−1Rf ′
∗(p−1K)→ Rfs,∗(K|Xs

) and j−1Rf∗K → Rf ′
∗(p−1K)

(Cohomology on Sites, Remark 19.3) for the two squares in this diagram. Taking
global sections we obtain the desired maps. By Cohomology on Sites, Remark 19.5
the composition of these two maps is the usual (base change) map (Rf∗K)s →
RΓ(Xs,K|Xs

).

54. The Leray spectral sequence

03QA
Lemma 54.1.03QB Let f : X → Y be a morphism and I an injective object of
Ab(Xétale). Let V ∈ Ob(Yétale). Then

(1) for any covering V = {Vj → V }j∈J we have Ȟp(V, f∗I) = 0 for all p > 0,
(2) f∗I is acyclic for the functor Γ(V,−), and
(3) if g : Y → Z, then f∗I is acyclic for g∗.

Proof. Observe that Č•(V, f∗I) = Č•(V ×Y X, I) which has vanishing higher co-
homology groups by Lemma 18.7. This proves (1). The second statement follows
as a sheaf which has vanishing higher Čech cohomology groups for any covering
has vanishing higher cohomology groups. This a wonderful exercise in using the
Čech-to-cohomology spectral sequence, but see Cohomology on Sites, Lemma 10.9
for details and a more precise and general statement. Part (3) is a consequence of
(2) and the description of Rpg∗ in Lemma 51.6. □

Using the formalism of Grothendieck spectral sequences, this gives the following.

Proposition 54.2 (Leray spectral sequence).03QC Let f : X → Y be a morphism of
schemes and F an étale sheaf on X. Then there is a spectral sequence

Ep,q2 = Hp
étale(Y,R

qf∗F)⇒ Hp+q
étale(X,F).

Proof. See Lemma 54.1 and see Derived Categories, Section 22. □

55. Vanishing of finite higher direct images

03QN The next goal is to prove that the higher direct images of a finite morphism of
schemes vanish.

https://stacks.math.columbia.edu/tag/0GIX
https://stacks.math.columbia.edu/tag/03QB
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Lemma 55.1.03QO Let R be a strictly henselian local ring. Set S = Spec(R) and let
s be its closed point. Then the global sections functor Γ(S,−) : Ab(Sétale)→ Ab is
exact. In fact we have Γ(S,F) = Fs for any sheaf of sets F . In particular

∀p ≥ 1, Hp
étale(S,F) = 0

for all F ∈ Ab(Sétale).

Proof. If we show that Γ(S,F) = Fs then Γ(S,−) is exact as the stalk functor is
exact. Let (U, u) be an étale neighbourhood of s. Pick an affine open neighborhood
Spec(A) of u in U . Then R→ A is étale and κ(s) = κ(u). By Theorem 32.4 we see
that A ∼= R×A′ as an R-algebra compatible with maps to κ(s) = κ(u). Hence we
get a section

Spec(A) // U

��
S

cc

It follows that in the system of étale neighbourhoods of s the identity map (S, s)→
(S, s) is cofinal. Hence Γ(S,F) = Fs. The final statement of the lemma follows
as the higher derived functors of an exact functor are zero, see Derived Categories,
Lemma 16.9. □

Proposition 55.2.03QP Let f : X → Y be a finite morphism of schemes.
(1) For any geometric point y : Spec(k)→ Y we have

(f∗F)y =
∏

x:Spec(k)→X, f(x)=y
Fx.

for F in Sh(Xétale) and

(f∗F)y =
⊕

x:Spec(k)→X, f(x)=y
Fx.

for F in Ab(Xétale).
(2) For any q ≥ 1 we have Rqf∗F = 0 for F in Ab(Xétale).

Proof. Let Xsh
y denote the fiber product X ×Y Spec(OshY,y). By Theorem 53.1

the stalk of Rqf∗F at y is computed by Hq
étale(Xsh

y ,F). Since f is finite, Xsh
ȳ is

finite over Spec(OshY,y), thus Xsh
ȳ = Spec(A) for some ring A finite over OshY,ȳ. Since

the latter is strictly henselian, Lemma 32.5 implies that A is a finite product of
henselian local rings A = A1× . . .×Ar. Since the residue field of OshY,y is separably
closed the same is true for each Ai. Hence Ai is strictly henselian. This implies that
Xsh
y =

∐r
i=1 Spec(Ai). The vanishing of Lemma 55.1 implies that (Rqf∗F)y = 0 for

q > 0 which implies (2) by Theorem 29.10. Part (1) follows from the corresponding
statement of Lemma 55.1. □

Lemma 55.3.0959 Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f a finite morphism. For any sheaf of sets F on Xétale we have
f ′

∗(g′)−1F = g−1f∗F .

https://stacks.math.columbia.edu/tag/03QO
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Proof. In great generality there is a pullback map g−1f∗F → f ′
∗(g′)−1F , see Sites,

Section 45. It suffices to check on stalks (Theorem 29.10). Let y′ : Spec(k) → Y ′

be a geometric point. We have

(f ′
∗(g′)−1F)y′ =

∏
x′:Spec(k)→X′, f ′◦x′=y′

((g′)−1F)x′

=
∏

x′:Spec(k)→X′, f ′◦x′=y′
Fg′◦x′

=
∏

x:Spec(k)→X, f◦x=g◦y′
Fx

= (f∗F)g◦y′

= (g−1f∗F)y′

The first equality by Proposition 55.2. The second equality by Lemma 36.2. The
third equality holds because the diagram is a cartesian square and hence the map

{x′ : Spec(k)→ X ′, f ′ ◦ x′ = y′} −→ {x : Spec(k)→ X, f ◦ x = g ◦ y′}

sending x′ to g′ ◦ x′ is a bijection. The fourth equality by Proposition 55.2. The
fifth equality by Lemma 36.2. □

Lemma 55.4.0EYP Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f an integral morphism. For any sheaf of sets F on Xétale we have
f ′

∗(g′)−1F = g−1f∗F .

Proof. The question is local on Y and hence we may assume Y is affine. Then
we can write X = limXi with fi : Xi → Y finite (this is easy in the affine case,
but see Limits, Lemma 7.3 for a reference). Denote pi′i : Xi′ → Xi the transition
morphisms and pi : X → Xi the projections. Setting Fi = pi,∗F we obtain from
Lemma 51.9 a system (Fi, φi′i) with F = colim p−1

i Fi. We get f∗F = colim fi,∗Fi
from Lemma 51.7. Set X ′

i = Y ′×Y Xi with projections f ′
i and g′

i. Then X ′ = limX ′
i

as limits commute with limits. Denote p′
i : X ′ → X ′

i the projections. We have

g−1f∗F = g−1 colim fi,∗Fi
= colim g−1fi,∗Fi
= colim f ′

i,∗(g′
i)−1Fi

= f ′
∗(colim(p′

i)−1(g′
i)−1Fi)

= f ′
∗(colim(g′)−1p−1

i Fi)
= f ′

∗(g′)−1 colim p−1
i Fi

= f ′
∗(g′)−1F

as desired. For the first equality see above. For the second use that pullback
commutes with colimits. For the third use the finite case, see Lemma 55.3. For the
fourth use Lemma 51.7. For the fifth use that g′

i ◦ p′
i = pi ◦ g′. For the sixth use

that pullback commutes with colimits. For the seventh use F = colim p−1
i Fi. □

https://stacks.math.columbia.edu/tag/0EYP
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The following lemma is a case of cohomological descent dealing with étale sheaves
and finite surjective morphisms. We will significantly generalize this result once we
prove the proper base change theorem.

Lemma 55.5.09Z2 Let f : X → Y be a surjective finite morphism of schemes. Set
fn : Xn → Y equal to the (n+1)-fold fibre product of X over Y . For F ∈ Ab(Yétale)
set Fn = fn,∗f

−1
n F . There is an exact sequence

0→ F → F0 → F1 → F2 → . . .

on Xétale. Moreover, there is a spectral sequence
Ep,q1 = Hq

étale(Xp, f
−1
p F)

converging to Hp+q(Yétale,F). This spectral sequence is functorial in F .

Proof. If we prove the first statement of the lemma, then we obtain a spectral
sequence with Ep,q1 = Hq

étale(Y,F) converging to Hp+q(Yétale,F), see Derived Cat-
egories, Lemma 21.3. On the other hand, since Rifp,∗f−1

p F = 0 for i > 0 (Propo-
sition 55.2) we get

Hq
étale(Xp, f

−1
p F) = Hq

étale(Y, fp,∗f
−1
p F) = Hq

étale(Y,Fp)
by Proposition 54.2 and we get the spectral sequence of the lemma.
To prove the first statement of the lemma, observe that Xn forms a simplicial
scheme over Y , see Simplicial, Example 3.5. Observe moreover, that for each of
the projections dj : Xn+1 → Xn there is a map d−1

j f−1
n F → f−1

n+1F . These maps
induce maps

δj : Fn → Fn+1

for j = 0, . . . , n + 1. We use the alternating sum of these maps to define the
differentials Fn → Fn+1. Similarly, there is a canonical augmentation F → F0,
namely this is just the canonical map F → f∗f

−1F . To check that this sequence
of sheaves is an exact complex it suffices to check on stalks at geometric points
(Theorem 29.10). Thus we let y : Spec(k)→ Y be a geometric point. Let E = {x :
Spec(k)→ X | f(x) = y}. Then E is a finite nonempty set and we see that

(Fn)y =
⊕

e∈En+1
Fy

by Proposition 55.2 and Lemma 36.2. Thus we have to see that given an abelian
group M the sequence

0→M →
⊕

e∈E
M →

⊕
e∈E2

M → . . .

is exact. Here the first map is the diagonal map and the map
⊕

e∈En+1 M →⊕
e∈En+2 M is the alternating sum of the maps induced by the (n+ 2) projections

En+2 → En+1. This can be shown directly or deduced by applying Simplicial,
Lemma 26.9 to the map E → {∗}. □

Remark 55.6.09Z3 In the situation of Lemma 55.5 if G is a sheaf of sets on Yétale,
then we have

Γ(Y,G) = Equalizer( Γ(X0, f
−1
0 G) //

// Γ(X1, f
−1
1 G) )

This is proved in exactly the same way, by showing that the sheaf G is the equalizer
of the two maps f0,∗f

−1
0 G → f1,∗f

−1
1 G.

https://stacks.math.columbia.edu/tag/09Z2
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56. Galois action on stalks

03QW In this section we define an action of the absolute Galois group of a residue field of
a point s of S on the stalk functor at any geometric point lying over s.

Galois action on stalks. Let S be a scheme. Let s be a geometric point of S. Let
σ ∈ Aut(κ(s)/κ(s)). Define an action of σ on the stalk Fs of a sheaf F as follows

(56.0.1)04JK Fs −→ Fs
(U, u, t) 7−→ (U, u ◦ Spec(σ), t).

where we use the description of elements of the stalk in terms of triples as in the dis-
cussion following Definition 29.6. This is a left action, since if σi ∈ Aut(κ(s)/κ(s))
then

σ1 · (σ2 · (U, u, t)) = σ1 · (U, u ◦ Spec(σ2), t)
= (U, u ◦ Spec(σ2) ◦ Spec(σ1), t)
= (U, u ◦ Spec(σ1 ◦ σ2), t)
= (σ1 ◦ σ2) · (U, u, t)

It is clear that this action is functorial in the sheaf F . We note that we could have
defined this action by referring directly to Remark 29.8.

Definition 56.1.03QX Let S be a scheme. Let s be a geometric point lying over the
point s of S. Let κ(s) ⊂ κ(s)sep ⊂ κ(s) denote the separable algebraic closure of
κ(s) in the algebraically closed field κ(s).

(1) In this situation the absolute Galois group of κ(s) is Gal(κ(s)sep/κ(s)). It
is sometimes denoted Galκ(s).

(2) The geometric point s is called algebraic if κ(s) ⊂ κ(s) is an algebraic
closure of κ(s).

Example 56.2.03QY The geometric point Spec(C)→ Spec(Q) is not algebraic.

Let κ(s) ⊂ κ(s)sep ⊂ κ(s) be as in the definition. Note that as κ(s) is algebraically
closed the map

Aut(κ(s)/κ(s)) −→ Gal(κ(s)sep/κ(s)) = Galκ(s)

is surjective. Suppose (U, u) is an étale neighbourhood of s, and say u lies over the
point u of U . Since U → S is étale, the residue field extension κ(u)/κ(s) is finite
separable. This implies the following

(1) If σ ∈ Aut(κ(s)/κ(s)sep) then σ acts trivially on Fs.
(2) More precisely, the action of Aut(κ(s)/κ(s)) determines and is determined

by an action of the absolute Galois group Galκ(s) on Fs.
(3) Given (U, u, t) representing an element ξ of Fs any element of Gal(κ(s)sep/K)

acts trivially, where κ(s) ⊂ K ⊂ κ(s)sep is the image of u♯ : κ(u)→ κ(s).
Altogether we see that Fs becomes a Galκ(s)-set (see Fundamental Groups, Defini-
tion 2.1). Hence we may think of the stalk functor as a functor

Sh(Sétale) −→ Galκ(s)-Sets, F 7−→ Fs

and from now on we usually do think about the stalk functor in this way.

https://stacks.math.columbia.edu/tag/03QX
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Theorem 56.3.03QT Let S = Spec(K) with K a field. Let s be a geometric point of
S. Let G = Galκ(s) denote the absolute Galois group. Taking stalks induces an
equivalence of categories

Sh(Sétale) −→ G-Sets, F 7−→ Fs.

Proof. Let us construct the inverse to this functor. In Fundamental Groups,
Lemma 2.2 we have seen that given a G-set M there exists an étale morphism
X → Spec(K) such that MorK(Spec(Ksep), X) is isomorphic to M as a G-set.
Consider the sheaf F on Spec(K)étale defined by the rule U 7→ MorK(U,X).
This is a sheaf as the étale topology is subcanonical. Then we see that Fs =
MorK(Spec(Ksep), X) = M as G-sets (details omitted). This gives the inverse of
the functor and we win. □

Remark 56.4.04JL Another way to state the conclusion of Theorem 56.3 and Fun-
damental Groups, Lemma 2.2 is to say that every sheaf on Spec(K)étale is repre-
sentable by a scheme X étale over Spec(K). This does not mean that every sheaf
is representable in the sense of Sites, Definition 12.3. The reason is that in our
construction of Spec(K)étale we chose a sufficiently large set of schemes étale over
Spec(K), whereas sheaves on Spec(K)étale form a proper class.

Lemma 56.5.04JM Assumptions and notations as in Theorem 56.3. There is a func-
torial bijection

Γ(S,F) = (Fs)G

Proof. We can prove this using formal arguments and the result of Theorem 56.3
as follows. Given a sheaf F corresponding to the G-set M = Fs we have

Γ(S,F) = MorSh(Sétale)(hSpec(K),F)
= MorG-Sets({∗},M)
= MG

Here the first identification is explained in Sites, Sections 2 and 12, the second
results from Theorem 56.3 and the third is clear. We will also give a direct proof5.
Suppose that t ∈ Γ(S,F) is a global section. Then the triple (S, s, t) defines an
element of Fs which is clearly invariant under the action of G. Conversely, suppose
that (U, u, t) defines an element of Fs which is invariant. Then we may shrink U and
assume U = Spec(L) for some finite separable field extension of K, see Proposition
26.2. In this case the map F(U) → Fs is injective, because for any morphism
of étale neighbourhoods (U ′, u′) → (U, u) the restriction map F(U) → F(U ′) is
injective since U ′ → U is a covering of Sétale. After enlarging L a bit we may
assume K ⊂ L is a finite Galois extension. At this point we use that

Spec(L)×Spec(K) Spec(L) =
∐

σ∈Gal(L/K)
Spec(L)

where the maps Spec(L) → Spec(L ⊗K L) come from the ring maps a ⊗ b 7→
aσ(b). Hence we see that the condition that (U, u, t) is invariant under all of G
implies that t ∈ F(Spec(L)) maps to the same element of F(Spec(L) ×Spec(K)
Spec(L)) via restriction by either projection (this uses the injectivity mentioned
above; details omitted). Hence the sheaf condition of F for the étale covering

5For the doubting Thomases out there.
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{Spec(L)→ Spec(K)} kicks in and we conclude that t comes from a unique section
of F over Spec(K). □

Remark 56.6.04JN Let S be a scheme and let s : Spec(k) → S be a geometric
point of S. By definition this means that k is algebraically closed. In particular
the absolute Galois group of k is trivial. Hence by Theorem 56.3 the category of
sheaves on Spec(k)étale is equivalent to the category of sets. The equivalence is
given by taking sections over Spec(k). This finally provides us with an alternative
definition of the stalk functor. Namely, the functor

Sh(Sétale) −→ Sets, F 7−→ Fs
is isomorphic to the functor

Sh(Sétale) −→ Sh(Spec(k)étale) = Sets, F 7−→ s∗F
To prove this rigorously one can use Lemma 36.2 part (3) with f = s. Moreover,
having said this the general case of Lemma 36.2 part (3) follows from functoriality
of pullbacks.

57. Group cohomology

0A2H In the following, if we write Hi(G,M) we will mean that G is a topological group
and M a discrete G-module with continuous G-action and Hi(G,−) is the ith right
derived functor on the category ModG of such G-modules, see Definitions 57.1 and
57.2. This includes the case of an abstract group G, which simply means that G is
viewed as a topological group with the discrete topology.
When the module has a nondiscrete topology, we will use the notation Hi

cont(G,M)
to indicate the continuous cohomology groups introduced in [Tat76], see Section 58.

Definition 57.1.04JP Let G be a topological group.
(1) A G-module, sometimes called a discrete G-module, is an abelian group M

endowed with a left action a : G×M →M by group homomorphisms such
that a is continuous when M is given the discrete topology.

(2) A morphism of G-modules f : M → N is a G-equivariant homomorphism
from M to N .

(3) The category of G-modules is denoted ModG.
Let R be a ring.

(1) An R-G-module is an R-module M endowed with a left action a : G×M →
M by R-linear maps such that a is continuous when M is given the discrete
topology.

(2) A morphism of R-G-modules f : M → N is a G-equivariant R-module map
from M to N .

(3) The category of R-G-modules is denoted ModR,G.

The condition that a : G×M → M is continuous is equivalent with the condition
that the stabilizer of any x ∈ M is open in G. If G is an abstract group then this
corresponds to the notion of an abelian group endowed with a G-action provided
we endow G with the discrete topology. Observe that ModZ,G = ModG.
The category ModG has enough injectives, see Injectives, Lemma 3.1. Consider the
left exact functor

ModG −→ Ab, M 7−→MG = {x ∈M | g · x = x ∀g ∈ G}

https://stacks.math.columbia.edu/tag/04JN
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We sometimes denote MG = H0(G,M) and sometimes we write MG = ΓG(M).
This functor has a total right derived functor RΓG(M) and ith right derived functor
RiΓG(M) = Hi(G,M) for any i ≥ 0.

The same construction works for H0(G,−) : ModR,G → ModR. We will see in
Lemma 57.3 that this agrees with the cohomology of the underlying G-module.

Definition 57.2.04JR Let G be a topological group. Let M be a discrete G-module
with continuous G-action. In other words, M is an object of the category ModG
introduced in Definition 57.1.

(1) The right derived functors Hi(G,M) of H0(G,M) on the category ModG
are called the continuous group cohomology groups of M .

(2) If G is an abstract group endowed with the discrete topology then the
Hi(G,M) are called the group cohomology groups of M .

(3) If G is a Galois group, then the groups Hi(G,M) are called the Galois
cohomology groups of M .

(4) If G is the absolute Galois group of a field K, then the groups Hi(G,M)
are sometimes called the Galois cohomology groups of K with coefficients
in M . In this case we sometimes write Hi(K,M) instead of Hi(G,M).

Lemma 57.3.0DVD Let G be a topological group. Let R be a ring. For every i ≥ 0 the
diagram

ModR,G
Hi(G,−)

//

��

ModR

��
ModG

Hi(G,−) // Ab
whose vertical arrows are the forgetful functors is commutative.

Proof. Let us denote the forgetful functor F : ModR,G → ModG. Then F has a
left adjoint H : ModG → ModR,G given by H(M) = M ⊗Z R. Observe that every
object of ModG is a quotient of a direct sum of modules of the form Z[G/U ] where
U ⊂ G is an open subgroup. Here Z[G/U ] denotes the G-modules of finite Z-linear
combinations of right U congruence classes in G endowed with left G-action. Thus
every bounded above complex in ModG is quasi-isomorphic to a bounded above
complex in ModG whose underlying terms are flat Z-modules (Derived Categories,
Lemma 15.4). Thus it is clear that LH exists on D−(ModG) and is computed by
evaluating H on any complex whose terms are flat Z-modules; this follows from
Derived Categories, Lemma 15.7 and Proposition 16.8. We conclude from Derived
Categories, Lemma 30.2 that

Exti(Z, F (M)) = Exti(R,M)

for M in ModR,G. Observe that H0(G,−) = Hom(Z,−) on ModG where Z denotes
the G-module with trivial action. Hence Hi(G,−) = Exti(Z,−) on ModG. Sim-
ilarly we have Hi(G,−) = Exti(R,−) on ModR,G. Combining everything we see
that the lemma is true. □

Lemma 57.4.0DVE Let G be a topological group. Let R be a ring. Let M , N be R-G-
modules. If M is finite projective as an R-module, then Exti(M,N) = Hi(G,M∨⊗R
N) (for notation see proof).

https://stacks.math.columbia.edu/tag/04JR
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Proof. The module M∨ = HomR(M,R) endowed with the contragredient action
of G. Namely (g ·λ)(m) = λ(g−1 ·m) for g ∈ G, λ ∈M∨, m ∈M . The action of G
on M∨⊗RN is the diagonal one, i.e., given by g ·(λ⊗n) = g ·λ⊗g ·n. Note that for
a third R-G-module E we have Hom(E,M∨ ⊗R N) = Hom(M ⊗R E,N). Namely,
this is true on the level of R-modules by Algebra, Lemmas 12.8 and 78.9 and the
definitions of G-actions are chosen such that it remains true for R-G-modules. It
follows that M∨⊗RN is an injective R-G-module if N is an injective R-G-module.
Hence if N → N• is an injective resolution, then M∨ ⊗R N → M∨ ⊗R N• is an
injective resolution. Then

Hom(M,N•) = Hom(R,M∨ ⊗R N•) = (M∨ ⊗R N•)G

Since the left hand side computes Exti(M,N) and the right hand side computes
Hi(G,M∨ ⊗R N) the proof is complete. □

Lemma 57.5.0DVF Let G be a topological group. Let k be a field. Let V be a k-G-
module. If G is topologically finitely generated and dimk(V ) <∞, then dimkH

1(G,V ) <
∞.

Proof. Let g1, . . . , gr ∈ G be elements which topologically generate G, i.e., this
means that the subgroup generated by g1, . . . , gr is dense. By Lemma 57.4 we see
that H1(G,V ) is the k-vector space of extensions

0→ V → E → k → 0

of k-G-modules. Choose e ∈ E mapping to 1 ∈ k. Write

gi · e = vi + e

for some vi ∈ V . This is possible because gi · 1 = 1. We claim that the list
of elements v1, . . . , vr ∈ V determine the isomorphism class of the extension E.
Once we prove this the lemma follows as this means that our Ext vector space is
isomorphic to a subquotient of the k-vector space V ⊕r; some details omitted. Since
E is an object of the category defined in Definition 57.1 we know there is an open
subgroup U such that u · e = e for all u ∈ U . Now pick any g ∈ G. Then gU
contains a word w in the elements g1, . . . , gr. Say gu = w. Since the element w · e
is determined by v1, . . . , vr, we see that g · e = (gu) · e = w · e is too. □

Lemma 57.6.0DV3 Let G be a profinite topological group. Then

(1) Hi(G,M) is torsion for i > 0 and any G-module M , and
(2) Hi(G,M) = 0 if M is a Q-vector space.

Proof. Proof of (1). By dimension shifting we see that it suffices to show that
H1(G,M) is torsion for every G-module M . Choose an exact sequence 0→ M →
I → N → 0 with I an injective object of the category of G-modules. Then any
element of H1(G,M) is the image of an element y ∈ NG. Choose x ∈ I mapping
to y. The stabilizer U ⊂ G of x is open, hence has finite index r. Let g1, . . . , gr ∈ G
be a system of representatives for G/U . Then

∑
gi(x) is an invariant element of I

which maps to ry. Thus r kills the element of H1(G,M) we started with. Part (2)
follows as then Hi(G,M) is both a Q-vector space and torsion. □

https://stacks.math.columbia.edu/tag/0DVF
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58. Tate’s continuous cohomology

0DVG Tate’s continuous cohomology ([Tat76]) is defined by the complex of continuous
inhomogeneous cochains. We can define this when M is an arbitrary topologi-
cal abelian group endowed with a continuous G-action. Namely, we consider the
complex

C•
cont(G,M) : M → Mapscont(G,M)→ Mapscont(G×G,M)→ . . .

where the boundary map is defined for n ≥ 1 by the rule
d(f)(g1, . . . , gn+1) = g1(f(g2, . . . , gn+1))

+
∑

j=1,...,n
(−1)jf(g1, . . . , gjgj+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn)
and for n = 0 sends m ∈M to the map g 7→ g(m)−m. We define

Hi
cont(G,M) = Hi(C•

cont(G,M))
Since the terms of the complex involve continuous maps from G and self products
of G into the topological module M , it is not clear that this turns a short exact
sequence of topological modules into a long exact cohomology sequence. Another
difficulty is that the category of topological abelian groups isn’t an abelian category!
However, a short exact sequence of discreteG-modules does give rise to a short exact
sequence of complexes of continuous cochains and hence a long exact cohomology
sequence of continuous cohomology groups Hi

cont(G,−). Therefore, on the category
ModG of Definition 57.1 the functors Hi

cont(G,M) form a cohomological δ-functor
as defined in Homology, Section 12. Since the cohomology Hi(G,M) of Definition
57.2 is a universal δ-functor (Derived Categories, Lemma 16.6) we obtain canonical
maps

Hi(G,M) −→ Hi
cont(G,M)

forM ∈ ModG. It is known that these maps are isomorphisms whenG is an abstract
group (i.e., G has the discrete topology) or when G is a profinite group (insert future
reference here). If you know an example showing this map is not an isomorphism for
a topological group G and M ∈ Ob(ModG) please email stacks.project@gmail.com.

59. Cohomology of a point

03QQ As a consequence of the discussion in the preceding sections we obtain the equiva-
lence of étale cohomology of the spectrum of a field with Galois cohomology.

Lemma 59.1.04JQ Let S = Spec(K) with K a field. Let s be a geometric point of
S. Let G = Galκ(s) denote the absolute Galois group. The stalk functor induces an
equivalence of categories

Ab(Sétale) −→ ModG, F 7−→ Fs.

Proof. In Theorem 56.3 we have seen the equivalence between sheaves of sets and
G-sets. The current lemma follows formally from this as an abelian sheaf is just
a sheaf of sets endowed with a commutative group law, and a G-module is just a
G-set endowed with a commutative group law. □

Lemma 59.2.03QU Notation and assumptions as in Lemma 59.1. Let F be an abelian
sheaf on Spec(K)étale which corresponds to the G-module M . Then

mailto:stacks.project@gmail.com
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(1) in D(Ab) we have a canonical isomorphism RΓ(S,F) = RΓG(M),
(2) H0

étale(S,F) = MG, and
(3) Hq

étale(S,F) = Hq(G,M).

Proof. Combine Lemma 59.1 with Lemma 56.5. □

Example 59.3.03QV Sheaves on Spec(K)étale. Let G = Gal(Ksep/K) be the absolute
Galois group of K.

(1) The constant sheaf Z/nZ corresponds to the module Z/nZ with trivial
G-action,

(2) the sheaf Gm|Spec(K)étale
corresponds to (Ksep)∗ with its G-action,

(3) the sheaf Ga|Spec(Ksep) corresponds to (Ksep,+) with its G-action, and
(4) the sheaf µn|Spec(Ksep) corresponds to µn(Ksep) with its G-action.

By Remark 23.4 and Theorem 24.1 we have the following identifications for coho-
mology groups:

H0
étale(Sétale,Gm) = Γ(S,O∗

S)
H1
étale(Sétale,Gm) = H1

Zar(S,O∗
S) = Pic(S)

Hi
étale(Sétale,Ga) = Hi

Zar(S,OS)
Also, for any quasi-coherent sheaf F on Sétale we have

Hi(Sétale,F) = Hi
Zar(S,F),

see Theorem 22.4. In particular, this gives the following sequence of equalities
0 = Pic(Spec(K)) = H1

étale(Spec(K)étale,Gm) = H1(G, (Ksep)∗)
which is none other than Hilbert’s 90 theorem. Similarly, for i ≥ 1,

0 = Hi(Spec(K),O) = Hi
étale(Spec(K)étale,Ga) = Hi(G,Ksep)

where the Ksep indicates Ksep as a Galois module with addition as group law. In
this way we may consider the work we have done so far as a complicated way of
computing Galois cohomology groups.

The following result is a curiosity and should be skipped on a first reading.

Lemma 59.4.0D1W Let R be a local ring of dimension 0. Let S = Spec(R). Then
every OS-module on Sétale is quasi-coherent.

Proof. Let F be an OS-module on Sétale. We have to show that F is determined
by the R-module M = Γ(S,F). More precisely, if π : X → S is étale we have to
show that Γ(X,F) = Γ(X,π∗M̃).
Let m ⊂ R be the maximal ideal and let κ be the residue field. By Algebra,
Lemma 153.10 the local ring R is henselian. If X → S is étale, then the underlying
topological space of X is discrete by Morphisms, Lemma 36.7 and hence X is a
disjoint union of affine schemes each having one point. Moreover, if X = Spec(A)
is affine and has one point, then R → A is finite étale by Algebra, Lemma 153.5.
We have to show that Γ(X,F) = M ⊗R A in this case.
The functor A 7→ A/mA defines an equivalence of the category of finite étale R-
algebras with the category of finite separable κ-algebras by Algebra, Lemma 153.7.
Let us first consider the case where A/mA is a Galois extension of κ with Galois
group G. For each σ ∈ G let σ : A → A denote the corresponding automorphism

https://stacks.math.columbia.edu/tag/03QV
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of A over R. Let N = Γ(X,F). Then Spec(σ) : X → X is an automorphism
over S and hence pullback by this defines a map σ : N → N which is a σ-linear
map: σ(an) = σ(a)σ(n) for a ∈ A and n ∈ N . We will apply Galois descent to
the quasi-coherent module Ñ on X endowed with the isomorphisms coming from
the action on σ on N . See Descent, Lemma 6.2. This lemma tells us there is an
isomorphism N = NG ⊗R A. On the other hand, it is clear that NG = M by the
sheaf property for F . Thus the required isomorphism holds.
The general case (with A local and finite étale over R) is deduced from the Galois
case as follows. Choose A → B finite étale such that B is local with residue field
Galois over κ. Let G = Aut(B/R) = Gal(κB/κ). Let H ⊂ G be the Galois
group corresponding to the Galois extension κB/κA. Then as above one shows that
Γ(X,F) = Γ(Spec(B),F)H . By the result for Galois extensions (used twice) we
get

Γ(X,F) = (M ⊗R B)H = M ⊗R A
as desired. □

60. Cohomology of curves

03R0 The next task at hand is to compute the étale cohomology of a smooth curve over
an algebraically closed field with torsion coefficients, and in particular show that
it vanishes in degree at least 3. To prove this, we will compute cohomology at the
generic point, which amounts to some Galois cohomology.

61. Brauer groups

03R1 Brauer groups of fields are defined using finite central simple algebras. In this sec-
tion we review the relevant facts about Brauer groups, most of which are discussed
in the chapter Brauer Groups, Section 1. For other references, see [Ser62], [Ser97]
or [Wei48].

Theorem 61.1.03R2 Let K be a field. For a unital, associative (not necessarily com-
mutative) K-algebra A the following are equivalent

(1) A is finite central simple K-algebra,
(2) A is a finite dimensional K-vector space, K is the center of A, and A has

no nontrivial two-sided ideal,
(3) there exists d ≥ 1 such that A⊗K K̄ ∼= Mat(d× d, K̄),
(4) there exists d ≥ 1 such that A⊗K Ksep ∼= Mat(d× d,Ksep),
(5) there exist d ≥ 1 and a finite Galois extension K ′/K such that A⊗K K ′ ∼=

Mat(d× d,K ′),
(6) there exist n ≥ 1 and a finite central skew field D over K such that A ∼=

Mat(n× n,D).
The integer d is called the degree of A.

Proof. This is a copy of Brauer Groups, Lemma 8.6. □

Lemma 61.2.03R4 Let A be a finite central simple algebra over K. Then

A⊗K Aopp −→ EndK(A)
a⊗ a′ 7−→ (x 7→ axa′)

is an isomorphism of algebras over K.

https://stacks.math.columbia.edu/tag/03R2
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Proof. See Brauer Groups, Lemma 4.10. □

Definition 61.3.03R3 Two finite central simple algebras A1 and A2 over K are called
similar, or equivalent if there exist m,n ≥ 1 such that Mat(n× n,A1) ∼= Mat(m×
m,A2). We write A1 ∼ A2.

By Brauer Groups, Lemma 5.1 this is an equivalence relation.

Definition 61.4.03R5 Let K be a field. The Brauer group of K is the set Br(K) of
similarity classes of finite central simple algebras over K, endowed with the group
law induced by tensor product (over K). The class of A in Br(K) is denoted by
[A]. The neutral element is [K] = [Mat(d× d,K)] for any d ≥ 1.

The previous lemma implies that inverses exist and that −[A] = [Aopp]. The Brauer
group of a field is always torsion. In fact, we will see that [A] has order dividing
deg(A) for any finite central simple algebra A (see Lemma 62.2). In general the
Brauer group is not finitely generated, for example the Brauer group of a non-
Archimedean local field is Q/Z. The Brauer group of C(x, y) is uncountable.

Lemma 61.5.03R6 Let K be a field and let Ksep be a separable algebraic closure. Then
the set of isomorphism classes of central simple algebras of degree d over K is in
bijection with the non-abelian cohomology H1(Gal(Ksep/K),PGLd(Ksep)).

Sketch of proof. The Skolem-Noether theorem (see Brauer Groups, Theorem 6.1)
implies that for any field L the group AutL-Algebras(Matd(L)) equals PGLd(L). By
Theorem 61.1, we see that central simple algebras of degree d correspond to forms
of the K-algebra Matd(K). Combined we see that isomorphism classes of degree d
central simple algebras correspond to elements of H1(Gal(Ksep/K),PGLd(Ksep)).
For more details on twisting, see for example [Sil86]. □

If A is a finite central simple algebra of degree d over a field K, we denote ξA the
corresponding cohomology class in H1(Gal(Ksep/K),PGLd(Ksep)). Consider the
short exact sequence

1→ (Ksep)∗ → GLd(Ksep)→ PGLd(Ksep)→ 1,
which gives rise to a long exact cohomology sequence (up to degree 2) with cobound-
ary map

δd : H1(Gal(Ksep/K),PGLd(Ksep)) −→ H2(Gal(Ksep/K), (Ksep)∗).
Explicitly, this is given as follows: if ξ is a cohomology class represented by the
1-cocycle (gσ), then δd(ξ) is the class of the 2-cocycle
(61.5.1)0A2I (σ, τ) 7−→ g̃−1

σ g̃στσ(g̃−1
τ ) ∈ (Ksep)∗

where g̃σ ∈ GLd(Ksep) is a lift of gσ. Using this we can make explicit the map
δ : Br(K) −→ H2(Gal(Ksep/K), (Ksep)∗), [A] 7−→ δdegA(ξA)

as follows. AssumeA has degree d overK. Choose an isomorphism φ : Matd(Ksep)→
A ⊗K Ksep. For σ ∈ Gal(Ksep/K) choose an element g̃σ ∈ GLd(Ksep) such that
φ−1 ◦ σ(φ) is equal to the map x 7→ g̃σxg̃

−1
σ . The class in H2 is defined by the two

cocycle (61.5.1).

Theorem 61.6.03R7 Let K be a field with separable algebraic closure Ksep. The map
δ : Br(K)→ H2(Gal(Ksep/K), (Ksep)∗) defined above is a group isomorphism.
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Sketch of proof. To prove that δ defines a group homomorphism, i.e., that δ(A⊗K
B) = δ(A) + δ(B), one computes directly with cocycles.
Injectivity of δ. In the abelian case (d = 1), one has the identification

H1(Gal(Ksep/K),GLd(Ksep)) = H1
étale(Spec(K),GLd(O))

the latter of which is trivial by fpqc descent. If this were true in the non-abelian
case, this would readily imply injectivity of δ. (See [Del77].) Rather, to prove this,
one can reinterpret δ([A]) as the obstruction to the existence of a K-vector space V
with a left A-module structure and such that dimK V = degA. In the case where
V exists, one has A ∼= EndK(V ).
For surjectivity, pick a cohomology class ξ ∈ H2(Gal(Ksep/K), (Ksep)∗), then there
exists a finite Galois extension Ksep/K ′/K such that ξ is the image of some ξ′ ∈
H2(Gal(K ′|K), (K ′)∗). Then write down an explicit central simple algebra over K
using the data K ′, ξ′. □

62. The Brauer group of a scheme

0A2J Let S be a scheme. An OS-algebra A is called Azumaya if it is étale locally a
matrix algebra, i.e., if there exists an étale covering U = {φi : Ui → S}i∈I such
that φ∗

iA ∼= Matdi
(OUi

) for some di ≥ 1. Two such A and B are called equivalent
if there exist finite locally free OS-modules F and G which have positive rank at
every s ∈ S such that

A⊗OS
HomOS

(F ,F) ∼= B ⊗OS
HomOS

(G,G)
as OS-algebras. The Brauer group of S is the set Br(S) of equivalence classes of
Azumaya OS-algebras with the operation induced by tensor product (over OS).

Lemma 62.1.0A2K Let S be a scheme. Let F and G be finite locally free sheaves
of OS-modules of positive rank. If there exists an isomorphism HomOS

(F ,F) ∼=
HomOS

(G,G) of OS-algebras, then there exists an invertible sheaf L on S such that
F ⊗OS

L ∼= G and such that this isomorphism induces the given isomorphism of
endomorphism algebras.

Proof. Fix an isomorphism HomOS
(F ,F) → HomOS

(G,G). Consider the sheaf
L ⊂ Hom(F ,G) generated as an OS-module by the local isomorphisms φ : F → G
such that conjugation by φ is the given isomorphism of endomorphism algebras. A
local calculation (reducing to the case that F and G are finite free and S is affine)
shows that L is invertible. Another local calculation shows that the evaluation map

F ⊗OS
L −→ G

is an isomorphism. □

The argument given in the proof of the following lemma can be found in [Sal81].

Lemma 62.2.0A2L Argument taken
from [Sal81].

Let S be a scheme. Let A be an Azumaya algebra which is locally
free of rank d2 over S. Then the class of A in the Brauer group of S is annihilated
by d.

Proof. Choose an étale covering {Ui → S} and choose isomorphisms A|Ui
→

Hom(Fi,Fi) for some locally free OUi
-modules Fi of rank d. (We may assume Fi

is free.) Consider the composition
pi : F⊗d

i → ∧d(Fi)→ F⊗d
i

https://stacks.math.columbia.edu/tag/0A2K
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The first arrow is the usual projection and the second arrow is the isomorphism of
the top exterior power of Fi with the submodule of sections of F⊗d

i which transform
according to the sign character under the action of the symmetric group on d
letters. Then p2

i = d!pi and the rank of pi is 1. Using the given isomorphism
A|Ui

→ Hom(Fi,Fi) and the canonical isomorphism

Hom(Fi,Fi)⊗d = Hom(F⊗d
i ,F⊗d

i )
we may think of pi as a section ofA⊗d over Ui. We claim that pi|Ui×SUj

= pj |Ui×SUj

as sections of A⊗d. Namely, applying Lemma 62.1 we obtain an invertible sheaf
Lij and a canonical isomorphism

Fi|Ui×SUj
⊗ Lij −→ Fj |Ui×SUj

.

Using this isomorphism we see that pi maps to pj . Since A⊗d is a sheaf on Sétale
(Proposition 17.1) we find a canonical global section p ∈ Γ(S,A⊗d). A local calcu-
lation shows that

H = Im(A⊗d → A⊗d, f 7→ fp)
is a locally free module of rank dd and that (left) multiplication by A⊗d induces an
isomorphism A⊗d → Hom(H,H). In other words, A⊗d is the trivial element of the
Brauer group of S as desired. □

In this setting, the analogue of the isomorphism δ of Theorem 61.6 is a map
δS : Br(S)→ H2

étale(S,Gm).
It is true that δS is injective. If S is quasi-compact or connected, then Br(S) is
a torsion group, so in this case the image of δS is contained in the cohomological
Brauer group of S

Br′(S) := H2
étale(S,Gm)torsion.

So if S is quasi-compact or connected, there is an inclusion Br(S) ⊂ Br′(S). This
is not always an equality: there exists a nonseparated singular surface S for which
Br(S) ⊂ Br′(S) is a strict inclusion. If S is quasi-projective, then Br(S) = Br′(S).
However, it is not known whether this holds for a smooth proper variety over C,
say.

63. The Artin-Schreier sequence

0A3J Let p be a prime number. Let S be a scheme in characteristic p. The Artin-Schreier
sequence is the short exact sequence

0 −→ Z/pZ
S
−→ Ga,S

F−1−−−→ Ga,S −→ 0

where F − 1 is the map x 7→ xp − x.

Lemma 63.1.0A3K Let p be a prime. Let S be a scheme of characteristic p.
(1) If S is affine, then Hq

étale(S,Z/pZ) = 0 for all q ≥ 2.
(2) If S is a quasi-compact and quasi-separated scheme of dimension d, then

Hq
étale(S,Z/pZ) = 0 for all q ≥ 2 + d.

Proof. Recall that the étale cohomology of the structure sheaf is equal to its co-
homology on the underlying topological space (Theorem 22.4). The first statement
follows from the Artin-Schreier exact sequence and the vanishing of cohomology of
the structure sheaf on an affine scheme (Cohomology of Schemes, Lemma 2.2). The

https://stacks.math.columbia.edu/tag/0A3K
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second statement follows by the same argument from the vanishing of Cohomol-
ogy, Proposition 22.4 and the fact that S is a spectral space (Properties, Lemma
2.4). □

Lemma 63.2.0A3L Let k be an algebraically closed field of characteristic p > 0. Let V
be a finite dimensional k-vector space. Let F : V → V be a frobenius linear map,
i.e., an additive map such that F (λv) = λpF (v) for all λ ∈ k and v ∈ V . Then
F − 1 : V → V is surjective with kernel a finite dimensional Fp-vector space of
dimension ≤ dimk(V ).

Proof. If F = 0, then the statement holds. If we have a filtration of V by F -stable
subvector spaces such that the statement holds for each graded piece, then it holds
for (V, F ). Combining these two remarks we may assume the kernel of F is zero.
Choose a basis v1, . . . , vn of V and write F (vi) =

∑
aijvj . Observe that v =

∑
λivi

is in the kernel if and only if
∑
λpi aijvj = 0. Since k is algebraically closed this

implies the matrix (aij) is invertible. Let (bij) be its inverse. Then to see that
F − 1 is surjective we pick w =

∑
µivi ∈ V and we try to solve

(F − 1)(
∑

λivi) =
∑

λpi aijvj −
∑

λjvj =
∑

µjvj

This is equivalent to ∑
λpjvj −

∑
bijλivj =

∑
bijµivj

in other words
λpj −

∑
bijλi =

∑
bijµi, j = 1, . . . ,dim(V ).

The algebra
A = k[x1, . . . , xn]/(xpj −

∑
bijxi −

∑
bijµi)

is standard smooth over k (Algebra, Definition 137.6) because the matrix (bij) is
invertible and the partial derivatives of xpj are zero. A basis of A over k is the set
of monomials xe1

1 . . . xen
n with ei < p, hence dimk(A) = pn. Since k is algebraically

closed we see that Spec(A) has exactly pn points. It follows that F − 1 is surjective
and every fibre has pn points, i.e., the kernel of F−1 is a group with pn elements. □

Lemma 63.3.0A3M Let X be a separated scheme of finite type over a field k. Let F be
a coherent sheaf of OX-modules. Then dimkH

d(X,F) <∞ where d = dim(X).

Proof. We will prove this by induction on d. The case d = 0 holds because in that
case X is the spectrum of a finite dimensional k-algebra A (Varieties, Lemma 20.2)
and every coherent sheaf F corresponds to a finite A-module M = H0(X,F) which
has dimkM <∞.
Assume d > 0 and the result has been shown for separated schemes of finite type of
dimension < d. The scheme X is Noetherian. Consider the property P of coherent
sheaves on X defined by the rule

P(F)⇔ dimkH
d(X,F) <∞

We are going to use the result of Cohomology of Schemes, Lemma 12.4 to prove
that P holds for every coherent sheaf on X.
Let

0→ F1 → F → F2 → 0

https://stacks.math.columbia.edu/tag/0A3L
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be a short exact sequence of coherent sheaves on X. Consider the long exact
sequence of cohomology

Hd(X,F1)→ Hd(X,F)→ Hd(X,F2)

Thus if P holds for F1 and F2, then it holds for F .

Let Z ⊂ X be an integral closed subscheme. Let I be a coherent sheaf of ideals
on Z. To finish the proof we have to show that Hd(X, i∗I) = Hd(Z, I) is finite
dimensional. If dim(Z) < d, then the result holds because the cohomology group
will be zero (Cohomology, Proposition 20.7). In this way we reduce to the situation
discussed in the following paragraph.

Assume X is a variety of dimension d and F = I is a coherent ideal sheaf. In this
case we have a short exact sequence

0→ I → OX → i∗OZ → 0

where i : Z → X is the closed subscheme defined by I. By induction hypothesis
we see that Hd−1(Z,OZ) = Hd−1(X, i∗OZ) is finite dimensional. Thus we see that
it suffices to prove the result for the structure sheaf.

We can apply Chow’s lemma (Cohomology of Schemes, Lemma 18.1) to the mor-
phism X → Spec(k). Thus we get a diagram

X

g
""

X ′

g′

��

π
oo

i
// Pn

k

{{
Spec(k)

as in the statement of Chow’s lemma. Also, let U ⊂ X be the dense open subscheme
such that π−1(U)→ U is an isomorphism. We may assume X ′ is a variety as well,
see Cohomology of Schemes, Remark 18.2. The morphism i′ = (i, π) : X ′ → Pn

X is
a closed immersion (loc. cit.). Hence

L = i∗OPn
k
(1) ∼= (i′)∗OPn

X
(1)

is π-relatively ample (for example by Morphisms, Lemma 39.7). Hence by Coho-
mology of Schemes, Lemma 16.2 there exists an n ≥ 0 such that Rpπ∗L⊗n = 0 for
all p > 0. Set G = π∗L⊗n. Choose any nonzero global section s of L⊗n. Since
G = π∗L⊗n, the section s corresponds to section of G, i.e., a map OX → G. Since
s|U ̸= 0 as X ′ is a variety and L invertible, we see that OX |U → G|U is nonzero.
As G|U = L⊗n|π−1(U) is invertible we conclude that we have a short exact sequence

0→ OX → G → Q→ 0

where Q is coherent and supported on a proper closed subscheme of X. Ar-
guing as before using our induction hypothesis, we see that it suffices to prove
dimHd(X,G) <∞.

By the Leray spectral sequence (Cohomology, Lemma 13.6) we see that Hd(X,G) =
Hd(X ′,L⊗n). Let X ′ ⊂ Pn

k be the closure of X ′. Then X
′ is a projective variety

of dimension d over k and X ′ ⊂ X
′ is a dense open. The invertible sheaf L is the

restriction of O
X

′(n) to X. By Cohomology, Proposition 22.4 the map

Hd(X ′
,O

X
′(n)) −→ Hd(X ′,L⊗n)
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is surjective. Since the cohomology group on the left has finite dimension by Co-
homology of Schemes, Lemma 14.1 the proof is complete. □

Lemma 63.4.0A3N Let X be separated of finite type over an algebraically closed field
k of characteristic p > 0. Then Hq

étale(X,Z/pZ) = 0 for q ≥ dim(X) + 1.

Proof. Let d = dim(X). By the vanishing established in Lemma 63.1 it suffices to
show that Hd+1

étale(X,Z/pZ) = 0. By Lemma 63.3 we see that Hd(X,OX) is a finite
dimensional k-vector space. Hence the long exact cohomology sequence associated
to the Artin-Schreier sequence ends with

Hd(X,OX) F−1−−−→ Hd(X,OX)→ Hd+1
étale(X,Z/pZ)→ 0

By Lemma 63.2 the map F − 1 in this sequence is surjective. This proves the
lemma. □

Lemma 63.5.0A3P Let X be a proper scheme over an algebraically closed field k of
characteristic p > 0. Then

(1) Hq
étale(X,Z/pZ) is a finite Z/pZ-module for all q, and

(2) Hq
étale(X,Z/pZ) → Hq

étale(Xk′ ,Z/pZ)) is an isomorphism if k′/k is an
extension of algebraically closed fields.

Proof. By Cohomology of Schemes, Lemma 19.2) and the comparison of coho-
mology of Theorem 22.4 the cohomology groups Hq

étale(X,Ga) = Hq(X,OX) are
finite dimensional k-vector spaces. Hence by Lemma 63.2 the long exact coho-
mology sequence associated to the Artin-Schreier sequence, splits into short exact
sequences

0→ Hq
étale(X,Z/pZ)→ Hq(X,OX) F−1−−−→ Hq(X,OX)→ 0

and moreover the Fp-dimension of the cohomology groups Hq
étale(X,Z/pZ) is equal

to the k-dimension of the vector space Hq(X,OX). This proves the first state-
ment. The second statement follows as Hq(X,OX) ⊗k k′ → Hq(Xk′ ,OXk′ ) is an
isomorphism by flat base change (Cohomology of Schemes, Lemma 5.2). □

64. Locally constant sheaves

09Y8 This section is the analogue of Modules on Sites, Section 43 for the étale site.

Definition 64.1.03RU Let X be a scheme. Let F be a sheaf of sets on Xétale.
(1) Let E be a set. We say F is the constant sheaf with value E if F is the

sheafification of the presheaf U 7→ E. Notation: EX or E.
(2) We say F is a constant sheaf if it is isomorphic to a sheaf as in (1).
(3) We say F is locally constant if there exists a covering {Ui → X} such that
F|Ui

is a constant sheaf.
(4) We say that F is finite locally constant if it is locally constant and the

values are finite sets.
Let F be a sheaf of abelian groups on Xétale.

(1) Let A be an abelian group. We say F is the constant sheaf with value A if
F is the sheafification of the presheaf U 7→ A. Notation: AX or A.

(2) We say F is a constant sheaf if it is isomorphic as an abelian sheaf to a
sheaf as in (1).

https://stacks.math.columbia.edu/tag/0A3N
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(3) We say F is locally constant if there exists a covering {Ui → X} such that
F|Ui is a constant sheaf.

(4) We say that F is finite locally constant if it is locally constant and the
values are finite abelian groups.

Let Λ be a ring. Let F be a sheaf of Λ-modules on Xétale.
(1) Let M be a Λ-module. We say F is the constant sheaf with value M if F

is the sheafification of the presheaf U 7→M . Notation: MX or M .
(2) We say F is a constant sheaf if it is isomorphic as a sheaf of Λ-modules to

a sheaf as in (1).
(3) We say F is locally constant if there exists a covering {Ui → X} such that
F|Ui is a constant sheaf.

Lemma 64.2.095A Let f : X → Y be a morphism of schemes. If G is a locally constant
sheaf of sets, abelian groups, or Λ-modules on Yétale, the same is true for f−1G on
Xétale.

Proof. Holds for any morphism of topoi, see Modules on Sites, Lemma 43.2. □

Lemma 64.3.095B Let f : X → Y be a finite étale morphism of schemes. If F
is a (finite) locally constant sheaf of sets, (finite) locally constant sheaf of abelian
groups, or (finite type) locally constant sheaf of Λ-modules on Xétale, the same is
true for f∗F on Yétale.

Proof. The construction of f∗ commutes with étale localization. A finite étale
morphism is locally isomorphic to a disjoint union of isomorphisms, see Étale Mor-
phisms, Lemma 18.3. Thus the lemma says that if Fi, i = 1, . . . , n are (finite)
locally constant sheaves of sets, then

∏
i=1,...,n Fi is too. This is clear. Similarly

for sheaves of abelian groups and modules. □

Lemma 64.4.03RV Let X be a scheme and F a sheaf of sets on Xétale. Then the
following are equivalent

(1) F is finite locally constant, and
(2) F = hU for some finite étale morphism U → X.

Proof. A finite étale morphism is locally isomorphic to a disjoint union of isomor-
phisms, see Étale Morphisms, Lemma 18.3. Thus (2) implies (1). Conversely, if
F is finite locally constant, then there exists an étale covering {Xi → X} such
that F|Xi is representable by Ui → Xi finite étale. Arguing exactly as in the proof
of Descent, Lemma 39.1 we obtain a descent datum for schemes (Ui, φij) relative
to {Xi → X} (details omitted). This descent datum is effective for example by
Descent, Lemma 37.1 and the resulting morphism of schemes U → X is finite étale
by Descent, Lemmas 23.23 and 23.29. □

Lemma 64.5.095C Let X be a scheme.
(1) Let φ : F → G be a map of locally constant sheaves of sets on Xétale. If F

is finite locally constant, there exists an étale covering {Ui → X} such that
φ|Ui

is the map of constant sheaves associated to a map of sets.
(2) Let φ : F → G be a map of locally constant sheaves of abelian groups

on Xétale. If F is finite locally constant, there exists an étale covering
{Ui → X} such that φ|Ui

is the map of constant abelian sheaves associated
to a map of abelian groups.

https://stacks.math.columbia.edu/tag/095A
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(3) Let Λ be a ring. Let φ : F → G be a map of locally constant sheaves of Λ-
modules on Xétale. If F is of finite type, then there exists an étale covering
{Ui → X} such that φ|Ui is the map of constant sheaves of Λ-modules
associated to a map of Λ-modules.

Proof. This holds on any site, see Modules on Sites, Lemma 43.3. □

Lemma 64.6.03RX Let X be a scheme.
(1) The category of finite locally constant sheaves of sets is closed under finite

limits and colimits inside Sh(Xétale).
(2) The category of finite locally constant abelian sheaves is a weak Serre sub-

category of Ab(Xétale).
(3) Let Λ be a Noetherian ring. The category of finite type, locally constant

sheaves of Λ-modules on Xétale is a weak Serre subcategory of Mod(Xétale,Λ).

Proof. This holds on any site, see Modules on Sites, Lemma 43.5. □

Lemma 64.7.095D Let X be a scheme. Let Λ be a ring. The tensor product of two
locally constant sheaves of Λ-modules on Xétale is a locally constant sheaf of Λ-
modules.

Proof. This holds on any site, see Modules on Sites, Lemma 43.6. □

Lemma 64.8.09BF Let X be a connected scheme. Let Λ be a ring and let F be a
locally constant sheaf of Λ-modules. Then there exists a Λ-module M and an étale
covering {Ui → X} such that F|Ui

∼= M |Ui
.

Proof. Choose an étale covering {Ui → X} such that F|Ui is constant, say F|Ui
∼=

MiUi
. Observe that Ui ×X Uj is empty if Mi is not isomorphic to Mj . For each

Λ-module M let IM = {i ∈ I |Mi
∼= M}. As étale morphisms are open we see that

UM =
⋃
i∈IM

Im(Ui → X) is an open subset of X. Then X =
∐
UM is a disjoint

open covering of X. As X is connected only one UM is nonempty and the lemma
follows. □

65. Locally constant sheaves and the fundamental group

0DV4 We can relate locally constant sheaves to the fundamental group of a scheme in
some cases.

Lemma 65.1.0DV5 Let X be a connected scheme. Let x be a geometric point of X.
(1) There is an equivalence of categories{

finite locally constant
sheaves of sets on Xétale

}
←→

{
finite π1(X,x)-sets

}
(2) There is an equivalence of categories{

finite locally constant
sheaves of abelian groups on Xétale

}
←→

{
finite π1(X,x)-modules

}
(3) Let Λ be a finite ring. There is an equivalence of categories{

finite type, locally constant
sheaves of Λ-modules on Xétale

}
←→

{
finite π1(X,x)-modules endowed

with commuting Λ-module structure

}

https://stacks.math.columbia.edu/tag/03RX
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Proof. We observe that π1(X,x) is a profinite topological group, see Fundamental
Groups, Definition 6.1. The left hand categories are defined in Section 64. The
notation used in the right hand categories is taken from Fundamental Groups,
Definition 2.1 for sets and Definition 57.1 for abelian groups. This explains the
notation.

Assertion (1) follows from Lemma 64.4 and Fundamental Groups, Theorem 6.2.
Parts (2) and (3) follow immediately from this by endowing the underlying (sheaves
of) sets with additional structure. For example, a finite locally constant sheaf of
abelian groups on Xétale is the same thing as a finite locally constant sheaf of
sets F together with a map + : F × F → F satisfying the usual axioms. The
equivalence in (1) sends products to products and hence sends + to an addition on
the corresponding finite π1(X,x)-set. Since π1(X,x)-modules are the same thing
as π1(X,x)-sets with a compatible abelian group structure we obtain (2). Part (3)
is proved in exactly the same way. □

Lemma 65.2.0GIY Let X be an irreducible, geometrically unibranch scheme. Let x be
a geometric point of X. Let Λ be a ring. There is an equivalence of categories{

finite type, locally constant
sheaves of Λ-modules on Xétale

}
←→

{
finite Λ-modules M endowed

with a continuous π1(X,x)-action

}
Proof. The proof given in Lemma 65.1 does not work as a finite Λ-module M may
not have a finite underlying set.

Let ν : Xν → X be the normalization morphism. By Morphisms, Lemma 54.11
this is a universal homeomorphism. By Fundamental Groups, Proposition 8.4 this
induces an isomorphism π1(Xν , x) → π1(X,x) and by Theorem 45.2 we get an
equivalence of category between finite type, locally constant Λ-modules on Xétale

and on Xν
étale. This reduces us to the case where X is an integral normal scheme.

Assume X is an integral normal scheme. Let η ∈ X be the generic point. Let η be
a geometric point lying over η. By Fundamental Groups, Proposition 11.3 have a
continuous surjection

Gal(κ(η)sep/κ(η)) = π1(η, η) −→ π1(X, η)

whose kernel is described in Fundamental Groups, Lemma 13.2. Let F be a finite
type, locally constant sheaf of Λ-modules on Xétale. Let M = Fη be the stalk
of F at η. We obtain a continuous action of Gal(κ(η)sep/κ(η)) on M by Section
56. Our goal is to show that this action factors through the displayed surjection.
Since F is of finite type, M is a finite Λ-module. Since F is locally constant, for
every x ∈ X the restriction of F to Spec(OshX,x) is constant. Hence the action of
Gal(Ksep/Ksh

x ) (with notation as in Fundamental Groups, Lemma 13.2) on M is
trivial. We conclude we have the factorization as desired.

On the other hand, suppose we have a finite Λ-module M with a continuous action
of π1(X, η). We are going to construct an F such that M ∼= Fη as Λ[π1(X, η)]-
modules. Choose generators m1, . . . ,mr ∈ M . Since the action of π1(X, η) on M
is continuous, for each i there exists an open subgroup Ni of the profinite group
π1(X, η) such that every γ ∈ Hi fixes mi. We conclude that every element of the
open subgroup H =

⋂
i=1,...,rHi fixes every element of M . After shrinking H we

may assume H is an open normal subgroup of π1(X, η). Set G = π1(X, η)/H. Let

https://stacks.math.columbia.edu/tag/0GIY
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f : Y → X be the corresponding Galois finite étale G-cover. We can view f∗Z as a
sheaf of Z[G]-modules on Xétale. Then we just take

F = f∗Z⊗Z[G] M

We leave it to the reader to compute Fη. We also omit the verification that this
construction is the inverse to the construction in the previous paragraph. □

Remark 65.3.0DV6 The equivalences of Lemmas 65.1 and 65.2 are compatible with
pullbacks. For example, suppose f : Y → X is a morphism of connected schemes.
Let y be geometric point of Y and set x = f(y). Then the diagram

finite locally constant sheaves of sets on Yétale // finite π1(Y, y)-sets

finite locally constant sheaves of sets on Xétale
//

f−1

OO

finite π1(X,x)-sets

OO

is commutative, where the vertical arrow on the right comes from the continuous
homomorphism π1(Y, y) → π1(X,x) induced by f . This follows immediately from
the commutative diagram in Fundamental Groups, Theorem 6.2. A similar result
holds for the other cases.

66. Méthode de la trace

03SH A reference for this section is [AGV71, Exposé IX, §5]. The material here will be
used in the proof of Lemma 83.9 below.
Let f : Y → X be an étale morphism of schemes. There is a sequence

f!, f
−1, f∗

of adjoint functors between Ab(Xétale) and Ab(Yétale). The functor f! is discussed in
Section 70. The adjunction map id → f∗f

−1 is called restriction. The adjunction
map f!f

−1 → id is often called the trace map. If f is finite étale, then f∗ = f!
(Lemma 70.7) and we can view this as a map f∗f

−1 → id.

Definition 66.1.03SE Let f : Y → X be a finite étale morphism of schemes. The map
f∗f

−1 → id described above and explicitly below is called the trace.

Let f : Y → X be a finite étale morphism of schemes. The trace map is character-
ized by the following two properties:

(1) it commutes with étale localization on X and
(2) if Y =

∐d
i=1 X then the trace map is the sum map f∗f

−1F = F⊕d → F .
By Étale Morphisms, Lemma 18.3 every finite étale morphism f : Y → X is étale
locally on X of the form given in (2) for some integer d ≥ 0. Hence we can define the
trace map using the characterization given; in particular we do not need to know
about the existence of f! and the agreement of f! with f∗ in order to construct
the trace map. This description shows that if f has constant degree d, then the
composition

F res−−→ f∗f
−1F trace−−−→ F

is multiplication by d. The “méthode de la trace” is the following observation: if F
is an abelian sheaf on Xétale such that multiplication by d on F is an isomorphism,
then the map

Hn
étale(X,F) −→ Hn

étale(Y, f−1F)

https://stacks.math.columbia.edu/tag/0DV6
https://stacks.math.columbia.edu/tag/03SE
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is injective. Namely, we have

Hn
étale(Y, f−1F) = Hn

étale(X, f∗f
−1F)

by the vanishing of the higher direct images (Proposition 55.2) and the Leray spec-
tral sequence (Proposition 54.2). Thus we can consider the maps

Hn
étale(X,F)→ Hn

étale(Y, f−1F) = Hn
étale(X, f∗f

−1F) trace−−−→ Hn
étale(X,F)

and the composition is an isomorphism (under our assumption on F and f). In
particular, if Hq

étale(Y, f−1F) = 0 then Hq
étale(X,F) = 0 as well. Indeed, mul-

tiplication by d induces an isomorphism on Hq
étale(X,F) which factors through

Hq
étale(Y, f−1F) = 0.

This is often combined with the following.

Lemma 66.2.0A3R Let S be a connected scheme. Let ℓ be a prime number. Let F be
a finite type, locally constant sheaf of Fℓ-vector spaces on Sétale. Then there exists
a finite étale morphism f : T → S of degree prime to ℓ such that f−1F has a finite
filtration whose successive quotients are Z/ℓZ

T
.

Proof. Choose a geometric point s of S. Via the equivalence of Lemma 65.1 the
sheaf F corresponds to a finite dimensional Fℓ-vector space V with a continuous
π1(S, s)-action. Let G ⊂ Aut(V ) be the image of the homomorphism ρ : π1(S, s)→
Aut(V ) giving the action. Observe that G is finite. The surjective continuous
homomorphism ρ : π1(S, s) → G corresponds to a Galois object Y → S of FÉtS
with automorphism group G = Aut(Y/S), see Fundamental Groups, Section 7. Let
H ⊂ G be an ℓ-Sylow subgroup. We claim that T = Y/H → S works. Namely, let
t ∈ T be a geometric point over s. The image of π1(T, t) → π1(S, s) is (ρ)−1(H)
as follows from the functorial nature of fundamental groups. Hence the action of
π1(T, t) on V corresponding to f−1F is through the map π1(T, t)→ H, see Remark
65.3. As H is a finite ℓ-group, the irreducible constituents of the representation
ρ|π1(T,t) are each trivial of rank 1 (this is a simple lemma on representation theory
of finite groups; insert future reference here). Via the equivalence of Lemma 65.1
this means f−1F is a successive extension of constant sheaves with value Z/ℓZ

T
.

Moreover the degree of T = Y/H → S is prime to ℓ as it is equal to the index of H
in G. □

Lemma 66.3.0GIZ Let Λ be a Noetherian ring. Let ℓ be a prime number and n ≥ 1.
Let H be a finite ℓ-group. Let M be a finite Λ[H]-module annihilated by ℓn. Then
there is a finite filtration 0 = M0 ⊂M1 ⊂ . . . ⊂Mt = M by Λ[H]-submodules such
that H acts trivially on Mi+1/Mi for all i = 0, . . . , t− 1.

Proof. Omitted. Hint: Show that the augmentation ideal m of the noncommuta-
tive ring Z/ℓnZ[H] is nilpotent. □

Lemma 66.4.0GJ0 Let S be an irreducible, geometrically unibranch scheme. Let ℓ be a
prime number and n ≥ 1. Let Λ be a Noetherian ring. Let F be a finite type, locally
constant sheaf of Λ-modules on Sétale which is annihilated by ℓn. Then there exists
a finite étale morphism f : T → S of degree prime to ℓ such that f−1F has a finite
filtration whose successive quotients are of the form MT for some finite Λ-modules
M .

https://stacks.math.columbia.edu/tag/0A3R
https://stacks.math.columbia.edu/tag/0GIZ
https://stacks.math.columbia.edu/tag/0GJ0
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Proof. Choose a geometric point s of S. Via the equivalence of Lemma 65.2 the
sheaf F corresponds to a finite Λ-module M with a continuous π1(S, s)-action. Let
G ⊂ Aut(V ) be the image of the homomorphism ρ : π1(S, s)→ Aut(M) giving the
action. Observe that G is finite as M is a finite Λ-module (see proof of Lemma
65.2). The surjective continuous homomorphism ρ : π1(S, s) → G corresponds
to a Galois object Y → S of FÉtS with automorphism group G = Aut(Y/S), see
Fundamental Groups, Section 7. LetH ⊂ G be an ℓ-Sylow subgroup. We claim that
T = Y/H → S works. Namely, let t ∈ T be a geometric point over s. The image of
π1(T, t)→ π1(S, s) is (ρ)−1(H) as follows from the functorial nature of fundamental
groups. Hence the action of π1(T, t) on M corresponding to f−1F is through the
map π1(T, t) → H, see Remark 65.3. Let 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mt = M be as in
Lemma 66.3. This induces a filtration 0 = F0 ⊂ F1 ⊂ . . . ⊂ Ft = f−1F such that
the successive quotients are constant with value Mi+1/Mi. Finally, the degree of
T = Y/H → S is prime to ℓ as it is equal to the index of H in G. □

67. Galois cohomology

0A2M In this section we prove a result on Galois cohomology (Proposition 67.4) using étale
cohomology and the trick from Section 66. This will allow us to prove vanishing of
higher étale cohomology groups over the spectrum of a field.

Lemma 67.1.0DV7 Let ℓ be a prime number and n an integer > 0. Let S be a quasi-
compact and quasi-separated scheme. Let X = limi∈I Xi be the limit of a directed
system of S-schemes each Xi → S being finite étale of constant degree relatively
prime to ℓ. The following are equivalent:

(1) there exists an ℓ-power torsion sheaf G on S such that Hn
étale(S,G) ̸= 0 and

(2) there exists an ℓ-power torsion sheaf F on X such that Hn
étale(X,F) ̸= 0.

In fact, given G we can take F = g−1F and given F we can take G = g∗F .

Proof. Let g : X → S and gi : Xi → S denote the structure morphisms. Fix an
ℓ-power torsion sheaf G on S with Hn

étale(S,G) ̸= 0. The system given by Gi = g−1
i G

satisify the conditions of Theorem 51.3 with colimit sheaf given by g−1G. This tells
us that:

colimi∈I H
n
étale(Xi, g

−1
i G) = Hn

étale(X,G)
By virtue of the gi being finite étale morphism of degree prime to ℓ we can apply
“la méthode de la trace” and we find the maps

Hn
étale(S,G)→ Hn

étale(Xi, g
−1
i G)

are all injective (and compatible with the transition maps). See Section 66. Thus,
the colimit is non-zero, i.e., Hn(X, g−1G) ̸= 0, giving us the desired result with
F = g−1G.
Conversely, suppose given an ℓ-power torsion sheaf F on X with Hn

étale(X,F) ̸= 0.
We note that since the gi are finite morphisms the higher direct images vanish
(Proposition 55.2). Then, by applying Lemma 51.7 we may also conclude the
same for g. The vanishing of the higher direct images tells us that Hn

étale(X,F) =
Hn(S, g∗F) ̸= 0 by Leray (Proposition 54.2) giving us what we want with G =
g∗F . □

Lemma 67.2.0DV8 Let ℓ be a prime number and n an integer > 0. Let K be a field with
G = Gal(Ksep/K) and let H ⊂ G be a maximal pro-ℓ subgroup with L/K being the

https://stacks.math.columbia.edu/tag/0DV7
https://stacks.math.columbia.edu/tag/0DV8
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corresponding field extension. Then Hn
étale(Spec(K),F) = 0 for all ℓ-power torsion

F if and only if Hn
étale(Spec(L),Z/ℓZ) = 0.

Proof. Write L =
⋃
Li as the union of its finite subextensions over K. Our choice

of H implies that [Li : K] is prime to ℓ. Thus Spec(L) = limi∈I Spec(Li) as in
Lemma 67.1. Thus we may replace K by L and assume that the absolute Galois
group G of K is a profinite pro-ℓ group.
AssumeHn(Spec(K),Z/ℓZ) = 0. Let F be an ℓ-power torsion sheaf on Spec(K)étale.
We will show that Hn

étale(Spec(K),F) = 0. By the correspondence specified in
Lemma 59.1 our sheaf F corresponds to an ℓ-power torsion G-module M . Any
finite set of elements x1, . . . , xm ∈ M must be fixed by an open subgroup U by
continuity. Let M ′ be the module spanned by the orbits of x1, . . . , xm. This is a
finite abelian ℓ-group as each xi is killed by a power of ℓ and the orbits are finite.
Since M is the filtered colimit of these submodules M ′, we see that F is the filtered
colimit of the corresponding subsheaves F ′ ⊂ F . Applying Theorem 51.3 to this
colimit, we reduce to the case where F is a finite locally constant sheaf.
Let M be a finite abelian ℓ-group with a continuous action of the profinite pro-ℓ
group G. Then there is a G-invariant filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mr = M

such that Mi+1/Mi
∼= Z/ℓZ with trivial G-action (this is a simple lemma on rep-

resentation theory of finite groups; insert future reference here). Thus the corre-
sponding sheaf F has a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fr = F
with successive quotients isomorphic to Z/ℓZ. Thus by induction and the long
exact cohomology sequence we conclude. □

Lemma 67.3.0DV9 Let ℓ be a prime number and n an integer > 0. Let K be a field
with G = Gal(Ksep/K) and let H ⊂ G be a maximal pro-ℓ subgroup with L/K
being the corresponding field extension. Then Hq

étale(Spec(K),F) = 0 for q ≥ n
and all ℓ-torsion sheaves F if and only if Hn

étale(Spec(L),Z/ℓZ) = 0.

Proof. The forward direction is trivial, so we need only prove the reverse direction.
We proceed by induction on q. The case of q = n is Lemma 67.2. Now let F be an
ℓ-power torsion sheaf on Spec(K). Let f : Spec(Ksep)→ Spec(K) be the inclusion
of a geometric point. Then consider the exact sequence:

0→ F res−−→ f∗f
−1F → f∗f

−1F/F → 0
Note that Ksep may be written as the filtered colimit of finite separable extensions.
Thus f is the limit of a directed system of finite étale morphisms. We may, as
was seen in the proof of Lemma 67.1, conclude that f has vanishing higher direct
images. Thus, we may express the higher cohomology of f∗f

−1F as the higher
cohomology on the geometric point which clearly vanishes. Hence, as everything
here is still ℓ-torsion, we may use the inductive hypothesis in conjunction with the
long-exact cohomology sequence to conclude the result for q + 1. □

Proposition 67.4.03R8 [Ser97, Chapter II,
Section 3,
Proposition 5]

Let K be a field with separable algebraic closure Ksep. Assume
that for any finite extension K ′ of K we have Br(K ′) = 0. Then

(1) Hq(Gal(Ksep/K), (Ksep)∗) = 0 for all q ≥ 1, and

https://stacks.math.columbia.edu/tag/0DV9
https://stacks.math.columbia.edu/tag/03R8
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(2) Hq(Gal(Ksep/K),M) = 0 for any torsion Gal(Ksep/K)-module M and
any q ≥ 2,

Proof. Set p = char(K). By Lemma 59.2, Theorem 61.6, and Example 59.3 the
proposition is equivalent to showing that if H2(Spec(K ′),Gm|Spec(K′)étale

) = 0 for
all finite extensions K ′/K then:

• Hq(Spec(K),Gm|Spec(K)étale
) = 0 for all q ≥ 1, and

• Hq(Spec(K),F) = 0 for any torsion sheaf F and any q ≥ 2.
We prove the second part first. Since F is a torsion sheaf, we may use the ℓ-primary
decomposition as well as the compatibility of cohomology with colimits (i.e, direct
sums, see Theorem 51.3) to reduce to showing Hq(Spec(K),F) = 0, q ≥ 2 for all
ℓ-power torsion sheaves for every prime ℓ. This allows us to analyze each prime
individually.
Suppose that ℓ ̸= p. For any extension K ′/K consider the Kummer sequence
(Lemma 28.1)

0→ µℓ,SpecK′ → Gm,SpecK′
(·)ℓ

−−→ Gm,SpecK′ → 0
Since Hq(SpecK ′,Gm|Spec(K′)étale

) = 0 for q = 2 by assumption and for q = 1 by
Theorem 24.1 combined with Pic(K) = (0). Thus, by the long-exact cohomology
sequence we may conclude that H2(SpecK ′, µℓ) = 0 for any separable K ′/K. Now
let H be a maximal pro-ℓ subgroup of the absolute Galois group of K and let L
be the corresponding extension. We can write L as the colimit of finite extensions,
applying Theorem 51.3 to this colimit we see that H2(Spec(L), µℓ) = 0. Now µℓ
must be the constant sheaf. If it weren’t, that would imply there exists a Galois
extension of degree relatively prime to ℓ of L which is not true by definition of L
(namely, the extension one gets by adjoining the ℓth roots of unity to L). Hence,
via Lemma 67.3, we conclude the result for ℓ ̸= p.
Now suppose that ℓ = p. We consider the Artin-Schrier exact sequence (Section
63)

0 −→ Z/pZ
SpecK

−→ Ga,SpecK
F−1−−−→ Ga,SpecK −→ 0

where F − 1 is the map x 7→ xp − x. Then note that the higher Cohomology of
Ga,SpecK vanishes, by Remark 23.4 and the vanishing of the higher cohomology
of the structure sheaf of an affine scheme (Cohomology of Schemes, Lemma 2.2).
Note this can be applied to any field of characteristic p. In particular, we can apply
it to the field extension L defined by a maximal pro-p subgroup H. This allows us
to conclude Hn(SpecL,Z/pZ

SpecL
) = 0 for n ≥ 2, from which the result follows

for ℓ = p, by Lemma 67.3.
To finish the proof we still have to show that Hq(Gal(Ksep/K), (Ksep)∗) = 0 for
all q ≥ 1. Set G = Gal(Ksep/K) and set M = (Ksep)∗ viewed as a G-module. We
have already shown (above) that H1(G,M) = 0 and H2(G,M) = 0. Consider the
exact sequence

0→ A→M →M ⊗Q→ B → 0
of G-modules. By the above we have Hi(G,A) = 0 and Hi(G,B) = 0 for i > 1
since A and B are torsion G-modules. By Lemma 57.6 we have Hi(G,M ⊗Q) = 0
for i > 0. It is a pleasant exercise to see that this implies that Hi(G,M) = 0 also
for i ≥ 3. □
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Definition 67.5.03R9 A field K is called Cr if for every 0 < dr < n and every
f ∈ K[T1, . . . , Tn] homogeneous of degree d, there exist α = (α1, . . . , αn), αi ∈ K
not all zero, such that f(α) = 0. Such an α is called a nontrivial solution of f .

Example 67.6.03RA An algebraically closed field is Cr.

In fact, we have the following simple lemma.

Lemma 67.7.03RB Let k be an algebraically closed field. Let f1, . . . , fs ∈ k[T1, . . . , Tn]
be homogeneous polynomials of degree d1, . . . , ds with di > 0. If s < n, then f1 =
. . . = fs = 0 have a common nontrivial solution.

Proof. This follows from dimension theory, for example in the form of Varieties,
Lemma 34.2 applied s− 1 times. □

The following result computes the Brauer group of C1 fields.

Theorem 67.8.03RC Let K be a C1 field. Then Br(K) = 0.

Proof. Let D be a finite dimensional division algebra over K with center K. We
have seen that

D ⊗K Ksep ∼= Matd(Ksep)
uniquely up to inner isomorphism. Hence the determinant det : Matd(Ksep) →
Ksep is Galois invariant and descends to a homogeneous degree d map

det = Nred : D −→ K

called the reduced norm. Since K is C1, if d > 1, then there exists a nonzero
x ∈ D with Nred(x) = 0. This clearly implies that x is not invertible, which is a
contradiction. Hence Br(K) = 0. □

Definition 67.9.03RE Let k be a field. A variety is separated, integral scheme of finite
type over k. A curve is a variety of dimension 1.

Theorem 67.10 (Tsen’s theorem).03RD The function field of a variety of dimension
r over an algebraically closed field k is Cr.

Proof. For projective space one can show directly that the field k(x1, . . . , xr) is Cr
(exercise).
General case. Without loss of generality, we may assumeX to be projective. Let f ∈
k(X)[T1, . . . , Tn]d with 0 < dr < n. Say the coefficients of f are in Γ(X,OX(H))
for some ample H ⊂ X. Let α = (α1, . . . , αn) with αi ∈ Γ(X,OX(eH)). Then
f(α) ∈ Γ(X,OX((de+1)H)). Consider the system of equations f(α) = 0. Then by
asymptotic Riemann-Roch (Varieties, Proposition 45.13) there exists a c > 0 such
that

• the number of variables is ndimk Γ(X,OX(eH)) ∼ nerc, and
• the number of equations is dimk Γ(X,OX((de+ 1)H)) ∼ (de+ 1)rc.

Since n > dr, there are more variables than equations. The equations are homoge-
neous hence there is a solution by Lemma 67.7. □

Lemma 67.11.03RF Let C be a curve over an algebraically closed field k. Then the
Brauer group of the function field of C is zero: Br(k(C)) = 0.

Proof. This is clear from Tsen’s theorem, Theorem 67.10 and Theorem 67.8. □

https://stacks.math.columbia.edu/tag/03R9
https://stacks.math.columbia.edu/tag/03RA
https://stacks.math.columbia.edu/tag/03RB
https://stacks.math.columbia.edu/tag/03RC
https://stacks.math.columbia.edu/tag/03RE
https://stacks.math.columbia.edu/tag/03RD
https://stacks.math.columbia.edu/tag/03RF
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Lemma 67.12.03RG Let k be an algebraically closed field and K/k a field extension of
transcendence degree 1. Then for all q ≥ 1, Hq

étale(Spec(K),Gm) = 0.

Proof. Recall that Hq
étale(Spec(K),Gm) = Hq(Gal(Ksep/K), (Ksep)∗) by Lemma

59.2. Thus by Proposition 67.4 it suffices to show that if K ′/K is a finite field
extension, then Br(K ′) = 0. Now observe that K ′ = colimK ′′, where K ′′ runs over
the finitely generated subextensions of k contained in K ′ of transcendence degree
1. Note that Br(K ′) = colim Br(K ′′) which reduces us to a finitely generated field
extension K ′′/k of transcendence degree 1. Such a field is the function field of a
curve over k, hence has trivial Brauer group by Lemma 67.11. □

68. Higher vanishing for the multiplicative group

03RH In this section, we fix an algebraically closed field k and a smooth curve X over
k. We denote ix : x ↪→ X the inclusion of a closed point of X and j : η ↪→ X the
inclusion of the generic point. We also denote X0 the set of closed points of X.

Theorem 68.1 (The Fundamental Exact Sequence).03RI There is a short exact se-
quence of étale sheaves on X

0 −→ Gm,X −→ j∗Gm,η −→
⊕

x∈X0
ix∗Z −→ 0.

Proof. Let φ : U → X be an étale morphism. Then by properties of étale mor-
phisms (Proposition 26.2), U =

∐
i Ui where each Ui is a smooth curve mapping to

X. The above sequence for U is a product of the corresponding sequences for each
Ui, so it suffices to treat the case where U is connected, hence irreducible. In this
case, there is a well known exact sequence

1 −→ Γ(U,O∗
U ) −→ k(U)∗ −→

⊕
y∈U0

Zy.

This amounts to a sequence

0 −→ Γ(U,O∗
U ) −→ Γ(η ×X U,O∗

η×XU ) −→
⊕

x∈X0
Γ(x×X U,Z)

which, unfolding definitions, is nothing but a sequence

0 −→ Gm(U) −→ j∗Gm,η(U) −→
(⊕

x∈X0
ix∗Z

)
(U).

This defines the maps in the Fundamental Exact Sequence and shows it is exact
except possibly at the last step. To see surjectivity, let us recall that if U is a
nonsingular curve and D is a divisor on U , then there exists a Zariski open covering
{Uj → U} of U such that D|Uj = div(fj) for some fj ∈ k(U)∗. □

Lemma 68.2.03RJ For any q ≥ 1, Rqj∗Gm,η = 0.

Proof. We need to show that (Rqj∗Gm,η)x̄ = 0 for every geometric point x̄ of X.
Assume that x̄ lies over a closed point x of X. Let Spec(A) be an affine open
neighbourhood of x in X, and K the fraction field of A. Then

Spec(OshX,x̄)×X η = Spec(OshX,x̄ ⊗A K).

The ring OshX,x̄ ⊗A K is a localization of the discrete valuation ring OshX,x̄, so it is
either OshX,x̄ again, or its fraction field Ksh

x̄ . But since some local uniformizer gets
inverted, it must be the latter. Hence

(Rqj∗Gm,η)(X,x̄) = Hq
étale(SpecKsh

x̄ ,Gm).

https://stacks.math.columbia.edu/tag/03RG
https://stacks.math.columbia.edu/tag/03RI
https://stacks.math.columbia.edu/tag/03RJ
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Now recall that OshX,x̄ = colim(U,ū)→x̄O(U) = colimA⊂B B where A → B is étale,
hence Ksh

x̄ is an algebraic extension of K = k(X), and we may apply Lemma 67.12
to get the vanishing.
Assume that x̄ = η̄ lies over the generic point η of X (in fact, this case is superflu-
ous). Then OshX,η̄ = κ(η)sep and thus

(Rqj∗Gm,η)η̄ = Hq
étale(Spec(κ(η)sep)×X η,Gm)

= Hq
étale(Spec(κ(η)sep),Gm)

= 0 for q ≥ 1
since the corresponding Galois group is trivial. □

Lemma 68.3.03RK For all p ≥ 1, Hp
étale(X, j∗Gm,η) = 0.

Proof. The Leray spectral sequence reads
Ep,q2 = Hp

étale(X,R
qj∗Gm,η)⇒ Hp+q

étale(η,Gm,η),
which vanishes for p + q ≥ 1 by Lemma 67.12. Taking q = 0, we get the desired
vanishing. □

Lemma 68.4.03RL For all q ≥ 1, Hq
étale(X,

⊕
x∈X0

ix∗Z) = 0.

Proof. For X quasi-compact and quasi-separated, cohomology commutes with col-
imits, so it suffices to show the vanishing of Hq

étale(X, ix∗Z). But then the inclusion
ix of a closed point is finite so Rpix∗Z = 0 for all p ≥ 1 by Proposition 55.2. Apply-
ing the Leray spectral sequence, we see that Hq

étale(X, ix∗Z) = Hq
étale(x,Z). Finally,

since x is the spectrum of an algebraically closed field, all higher cohomology on x
vanishes. □

Concluding this series of lemmata, we get the following result.

Theorem 68.5.03RM Let X be a smooth curve over an algebraically closed field. Then
Hq
étale(X,Gm) = 0 for all q ≥ 2.

Proof. See discussion above. □

We also get the cohomology long exact sequence

0→ H0
étale(X,Gm)→ H0

étale(X, j∗Gmη)→ H0
étale(X,

⊕
ix∗Z)→ H1

étale(X,Gm)→ 0

although this is the familiar
0→ H0

Zar(X,O∗
X)→ k(X)∗ → Div(X)→ Pic(X)→ 0.

69. Picard groups of curves

03RN Our next step is to use the Kummer sequence to deduce some information about
the cohomology group of a curve with finite coefficients. In order to get vanishing
in the long exact sequence, we review some facts about Picard groups.
Let X be a smooth projective curve over an algebraically closed field k. Let g =
dimkH

1(X,OX) be the genus of X. There exists a short exact sequence

0→ Pic0(X)→ Pic(X) deg−−→ Z→ 0.
The abelian group Pic0(X) can be identified with Pic0(X) = Pic0

X/k(k), i.e., the
k-valued points of an abelian variety Pic0

X/k over k of dimension g. Consequently,

https://stacks.math.columbia.edu/tag/03RK
https://stacks.math.columbia.edu/tag/03RL
https://stacks.math.columbia.edu/tag/03RM
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if n ∈ k∗ then Pic0(X)[n] ∼= (Z/nZ)2g as abelian groups. See Picard Schemes of
Curves, Section 6 and Groupoids, Section 9. This key fact, namely the description
of the torsion in the Picard group of a smooth projective curve over an algebraically
closed field does not appear to have an elementary proof.

Lemma 69.1.03RQ Let X be a smooth projective curve of genus g over an algebraically
closed field k and let n ≥ 1 be invertible in k. Then there are canonical identifica-
tions

Hq
étale(X,µn) =


µn(k) if q = 0,

Pic0(X)[n] if q = 1,
Z/nZ if q = 2,

0 if q ≥ 3.
Since µn ∼= Z/nZ, this gives (noncanonical) identifications

Hq
étale(X,Z/nZ) ∼=


Z/nZ if q = 0,

(Z/nZ)2g if q = 1,
Z/nZ if q = 2,

0 if q ≥ 3.

Proof. Theorems 24.1 and 68.5 determine the étale cohomology of Gm on X in
terms of the Picard group of X. The Kummer sequence 0 → µn,X → Gm,X →
Gm,X → 0 (Lemma 28.1) then gives us the long exact cohomology sequence

0 // µn(k) // k∗ (·)n

// k∗

zz
H1
étale(X,µn) // Pic(X)

(·)n

// Pic(X)

zz
H2
étale(X,µn) // 0 // 0 . . .

The nth power map k∗ → k∗ is surjective since k is algebraically closed. So we need
to compute the kernel and cokernel of the map n : Pic(X)→ Pic(X). Consider the
commutative diagram with exact rows

0 // Pic0(X) //

(·)n

����

Pic(X)
deg
//

(·)n

��

Z //� _

n

��

0

0 // Pic0(X) // Pic(X) deg // Z // 0

The group Pic0(X) is the k-points of the group scheme Pic0
X/k, see Picard Schemes

of Curves, Lemma 6.7. The same lemma tells us that Pic0
X/k is a g-dimensional

abelian variety over k as defined in Groupoids, Definition 9.1. Hence the left vertical
map is surjective by Groupoids, Proposition 9.11. Applying the snake lemma gives
canonical identifications as stated in the lemma.

To get the noncanonical identifications of the lemma we need to show the kernel of
n : Pic0(X)→ Pic0(X) is isomorphic to (Z/nZ)⊕2g. This is also part of Groupoids,
Proposition 9.11. □

https://stacks.math.columbia.edu/tag/03RQ
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Lemma 69.2.0AMB Let π : X → Y be a nonconstant morphism of smooth projective
curves over an algebraically closed field k and let n ≥ 1 be invertible in k. The map

π∗ : H2
étale(Y, µn) −→ H2

étale(X,µn)
is given by multiplication by the degree of π.

Proof. Observe that the statement makes sense as we have identified both coho-
mology groups H2

étale(Y, µn) and H2
étale(X,µn) with Z/nZ in Lemma 69.1. In fact,

if L is a line bundle of degree 1 on Y with class [L] ∈ H1
étale(Y,Gm), then the

coboundary of [L] is the generator of H2
étale(Y, µn). Here the coboundary is the

coboundary of the long exact sequence of cohomology associated to the Kummer
sequence. Thus the result of the lemma follows from the fact that the degree of the
line bundle π∗L on X is deg(π). Some details omitted. □

Lemma 69.3.03RR Let X be an affine smooth curve over an algebraically closed field k
and n ∈ k∗. Let X ⊂ X be a smooth projective compactification (Varieties, Remark
43.9). Let g be the genus of X and let r be the number of points of X \X. Then

(1) H0
étale(X,µn) = µn(k);

(2) H1
étale(X,µn) ∼= (Z/nZ)2g+r−1, and

(3) Hq
étale(X,µn) = 0 for all q ≥ 2.

Proof. Write X = X − {x1, . . . , xr}. Then Pic(X) = Pic(X)/R, where R is the
subgroup generated by OX(xi), 1 ≤ i ≤ r. Since r ≥ 1, we see that Pic0(X) →
Pic(X) is surjective, hence Pic(X) is divisible (see discussion in proof of Lemma
69.1). Applying the Kummer sequence, we get (1) and (3). For (2), recall that

H1
étale(X,µn) = {(L, α)|L ∈ Pic(X), α : L⊗n → OX}/ ∼=

= {(L̄, D, ᾱ)}/R̃

where L̄ ∈ Pic0(X), D is a divisor on X supported on {x1, . . . , xr} and ᾱ :
L̄⊗n ∼= OX̄(D) is an isomorphism. Note that D must have degree 0. Further
R̃ is the subgroup of triples of the form (OX(D′), nD′, 1⊗n) where D′ is supported
on {x1, . . . , xr} and has degree 0. Thus, we get an exact sequence

0 −→ H1
étale(X,µn) −→ H1

étale(X,µn) −→
r⊕
i=1

Z/nZ
∑
−−−→ Z/nZ −→ 0

where the middle map sends the class of a triple (L̄, D, ᾱ) with D =
∑r
i=1 ai(xi)

to the r-tuple (ai)ri=1. It now suffices to use Lemma 69.1 to count ranks. □

Remark 69.4.03RS The “natural” way to prove the previous corollary is to excise X
from X̄. This is possible, we just haven’t developed that theory.

Remark 69.5.0A44 Let k be an algebraically closed field. Let n be an integer prime
to the characteristic of k. Recall that

Gm,k = A1
k \ {0} = P1

k \ {0,∞}
We claim there is a canonical isomorphism

H1
étale(Gm,k, µn) = Z/nZ

What does this mean? This means there is an element 1k in H1
étale(Gm,k, µn) such

that for every morphism Spec(k′)→ Spec(k) the pullback map on étale cohomology
for the map Gm,k′ → Gm,k maps 1k to 1k′ . (In particular this element is fixed under
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all automorphisms of k.) To see this, consider the µn,Z-torsor Gm,Z → Gm,Z,
x 7→ xn. By the identification of torsors with first cohomology, this pulls back
to give our canonical elements 1k. Twisting back we see that there are canonical
identifications

H1
étale(Gm,k,Z/nZ) = Hom(µn(k),Z/nZ),

i.e., these isomorphisms are compatible with respect to maps of algebraically closed
fields, in particular with respect to automorphisms of k.

70. Extension by zero

03S2 The general material in Modules on Sites, Section 19 allows us to make the following
definition.

Definition 70.1.03S3 Let j : U → X be an étale morphism of schemes.
(1) The restriction functor j−1 : Sh(Xétale) → Sh(Uétale) has a left adjoint

jSh! : Sh(Uétale)→ Sh(Xétale).
(2) The restriction functor j−1 : Ab(Xétale) → Ab(Uétale) has a left adjoint

which is denoted j! : Ab(Uétale)→ Ab(Xétale) and called extension by zero.
(3) Let Λ be a ring. The restriction functor j−1 : Mod(Xétale,Λ)→ Mod(Uétale,Λ)

has a left adjoint which is denoted j! : Mod(Uétale,Λ)→ Mod(Xétale,Λ) and
called extension by zero.

If F is an abelian sheaf on Xétale, then j!F ̸= jSh! F in general. On the other hand j!
for sheaves of Λ-modules agrees with j! on underlying abelian sheaves (Modules on
Sites, Remark 19.6). The functor j! is characterized by the functorial isomorphism

HomX(j!F ,G) = HomU (F , j−1G)

for all F ∈ Ab(Uétale) and G ∈ Ab(Xétale). Similarly for sheaves of Λ-modules.

To describe the functors in Definition 70.1 more explicitly, recall that j−1 is just the
restriction via the functor Uétale → Xétale. In other words, j−1G(U ′) = G(U ′) for
U ′ étale over U . On the other hand, for F ∈ Ab(Uétale) we consider the presheaf

(70.1.1)0F4K jp!F : Xétale −→ Ab, V 7−→
⊕

V→U
F(V → U)

Then j!F is the sheafification of jp!F . This is proven in Modules on Sites, Lemma
19.2; more generally see the discussion in Modules on Sites, Sections 19 and 16.

Exercise 70.2.03S4 Prove directly that the functor j! defined as the sheafification of
the functor jp! given in (70.1.1) is a left adjoint to j−1.

Proposition 70.3.03S5 Let j : U → X be an étale morphism of schemes. Let F in
Ab(Uétale). If x : Spec(k)→ X is a geometric point of X, then

(j!F)x =
⊕

u:Spec(k)→U, j(u)=x
Fū.

In particular, j! is an exact functor.

Proof. Exactness of j! is very general, see Modules on Sites, Lemma 19.3. Of
course it does also follow from the description of stalks. The formula for the stalk
follows from Modules on Sites, Lemma 38.1 and the description of points of the
small étale site in terms of geometric points, see Lemma 29.12.
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For later use we note that the isomorphism
(j!F)x = (jp!F)x

= colim(V,v) jp!F(V )

= colim(V,v)
⊕

φ:V→U
F(V φ−→ U)

→
⊕

u:Spec(k)→U, j(u)=x
Fū.

constructed in Modules on Sites, Lemma 38.1 sends (V, v, φ, s) to the class of s in
the stalk of F at u = φ(v). □

Lemma 70.4.0F70 Let j : U → X be an open immersion of schemes. For any abelian
sheaf F on Uétale, the adjunction mappings j−1j∗F → F and F → j−1j!F are
isomorphisms. In fact, j!F is the unique abelian sheaf on Xétale whose restriction
to U is F and whose stalks at geometric points of X \ U are zero.

Proof. We encourage the reader to prove the first statement by working through
the definitions, but here we just use that it is a special case of the very general
Modules on Sites, Lemma 19.8. For the second statement, observe that if G is an
abelian sheaf on Xétale whose restriction to U is F , then we obtain by adjointness
a map j!F → G. This map is then an isomorphism at stalks of geometric points of
U by Proposition 70.3. Thus if G has vanishing stalks at geometric points of X \U ,
then j!F → G is an isomorphism by Theorem 29.10. □

Lemma 70.5 (Extension by zero commutes with base change).03S6 Let f : Y → X be
a morphism of schemes. Let j : V → X be an étale morphism. Consider the fibre
product

V ′ = Y ×X V

f ′

��

j′
// Y

f

��
V

j // X

Then we have j′
!f

′−1 = f−1j! on abelian sheaves and on sheaves of modules.

Proof. This is true because j′
!f

′−1 is left adjoint to f ′
∗(j′)−1 and f−1j! is left adjoint

to j−1f∗. Further f ′
∗(j′)−1 = j−1f∗ because f∗ commutes with étale localization (by

construction). In fact, the lemma holds very generally in the setting of a morphism
of sites, see Modules on Sites, Lemma 20.1. □

Lemma 70.6.0F4L Let j : U → X be separated and étale. Then there is a functorial
injective map j!F → j∗F on abelian sheaves and sheaves of Λ-modules.

Proof. We prove this in the case of abelian sheaves. Let us construct a canonical
map

jp!F → j∗F
of abelian presheaves on Xétale for any abelian sheaf F on Uétale where jp! is as in
(70.1.1). Sheafification of this map will be the desired map j!F → j∗F . Evaluating
both sides on V → X étale we obtain

jp!F(V ) =
⊕

φ:V→U
F(V φ−→ U) and j∗F(V ) = F(V ×X U)

For each φ we have an open and closed immersion
Γφ = (1, φ) : V −→ V ×X U
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over U . It is open as it is a morphism between schemes étale over U and it is closed
as it is a section of a scheme separated over V (Schemes, Lemma 21.11). Thus for
a section sφ ∈ F(V φ−→ U) there exists a unique section s′

φ in F(V ×X U) which
pulls back to sφ by Γφ and which restricts to zero on the complement of the image
of Γφ.

To show that our map is injective suppose that
∑
i=1,...,n sφi

is an element of
jp!F(V ) in the formula above maps to zero in j∗F(V ). Our task is to show that∑
i=1,...,n sφi

restricts to zero on the members of an étale covering of V . Looking
at all pairwise equalizers (which are open and closed in V ) of the morphisms φi :
V → U and working locally on V , we may assume the images of the morphisms
Γφ1 , . . . ,Γφn

are pairwise disjoint. Since our assumption is that
∑
i=1,...,n s

′
φi

= 0
we then immediately conclude that s′

φi
= 0 for each i (by the disjointness of the

supports of these sections), whence sφi
= 0 for all i as desired. □

Lemma 70.7.03S7 Let j : U → X be finite and étale. Then the map j! → j∗ of Lemma
70.6 is an isomorphism on abelian sheaves and sheaves of Λ-modules.

Proof. It suffices to check j!F → j∗F is an isomorphism étale locally on X. Thus
we may assume U → X is a finite disjoint union of isomorphisms, see Étale Mor-
phisms, Lemma 18.3. We omit the proof in this case. □

Lemma 70.8.095L Let X be a scheme. Let Z ⊂ X be a closed subscheme and let
U ⊂ X be the complement. Denote i : Z → X and j : U → X the inclusion
morphisms. For every abelian sheaf F on Xétale there is a canonical short exact
sequence

0→ j!j
−1F → F → i∗i

−1F → 0

on Xétale.

Proof. We obtain the maps by the adjointness properties of the functors involved.
For a geometric point x in X we have either x ∈ U in which case the map on the
left hand side is an isomorphism on stalks and the stalk of i∗i−1F is zero or x ∈ Z
in which case the map on the right hand side is an isomorphism on stalks and the
stalk of j!j

−1F is zero. Here we have used the description of stalks of Lemma 46.3
and Proposition 70.3. □

Lemma 70.9.0GJ1 Consider a cartesian diagram of schemes

U

g

��

j′
// X

f

��
V

j // Y

where f is finite, g is étale, and j is an open immersion. Then f∗ ◦ j′
! = j! ◦ g∗ as

functors Ab(Uétale)→ Ab(Yétale).

Proof. Let F be an object of Ab(Uétale). Let y be a geometric point of Y not
contained in the open V . Then

(f∗j
′
!F)y =

⊕
x, f(x)=y

(j′
!F)x = 0
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by Proposition 55.2 and because the stalk of j′
!F at x ̸∈ U are zero by Lemma 70.4.

On the other hand, we have
j−1f∗j

′
!F = g∗(j′)−1j′

!F = g∗F
by Lemmas 55.3 and Lemma 70.4. Hence by the characterization of j! in Lemma
70.4 we see that f∗j

′
!F = j!g∗F . We omit the verification that this identification is

functorial in F . □

71. Constructible sheaves

05BE Let X be a scheme. A constructible locally closed subscheme of X is a locally closed
subscheme T ⊂ X such that the underlying topological space of T is a constructible
subset of X. If T, T ′ ⊂ X are locally closed subschemes with the same underlying
topological space, then Tétale ∼= T ′

étale by the topological invariance of the étale site
(Theorem 45.2). Thus in the following definition we may assume our locally closed
subschemes are reduced.

Definition 71.1.03RW Let X be a scheme.
(1) A sheaf of sets on Xétale is constructible if for every affine open U ⊂ X

there exists a finite decomposition of U into constructible locally closed
subschemes U =

∐
i Ui such that F|Ui is finite locally constant for all i.

(2) A sheaf of abelian groups on Xétale is constructible if for every affine open
U ⊂ X there exists a finite decomposition of U into constructible locally
closed subschemes U =

∐
i Ui such that F|Ui

is finite locally constant for
all i.

(3) Let Λ be a Noetherian ring. A sheaf of Λ-modules on Xétale is constructible
if for every affine open U ⊂ X there exists a finite decomposition of U
into constructible locally closed subschemes U =

∐
i Ui such that F|Ui

is of
finite type and locally constant for all i.

It seems that this is the accepted definition. An alternative, which lends itself more
readily to generalizations beyond the étale site of a scheme, would have been to
define constructible sheaves by starting with hU , jU !Z/nZ, and jU !Λ where U runs
over all quasi-compact and quasi-separated objects of Xétale, and then take the
smallest full subcategory of Sh(Xétale), Ab(Xétale), and Mod(Xétale,Λ) containing
these and closed under finite limits and colimits. It follows from Lemma 71.6 and
Lemmas 73.5, 73.7, and 73.6 that this produces the same category if X is quasi-
compact and quasi-separated. In general this does not produce the same category
however.
A disjoint union decomposition U =

∐
Ui of a scheme by locally closed subschemes

will be called a partition of U (compare with Topology, Section 28).

Lemma 71.2.095E Let X be a quasi-compact and quasi-separated scheme. Let F be a
sheaf of sets on Xétale. The following are equivalent

(1) F is constructible,
(2) there exists an open covering X =

⋃
Ui such that F|Ui

is constructible, and
(3) there exists a partition X =

⋃
Xi by constructible locally closed subschemes

such that F|Xi
is finite locally constant.

A similar statement holds for abelian sheaves and sheaves of Λ-modules if Λ is
Noetherian.
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Proof. It is clear that (1) implies (2).
Assume (2). For every x ∈ X we can find an i and an affine open neighbourhood
Vx ⊂ Ui of x. Hence we can find a finite affine open covering X =

⋃
Vj such that for

each j there exists a finite decomposition Vj =
∐
Vj,k by locally closed constructible

subsets such that F|Vj,k
is finite locally constant. By Topology, Lemma 15.5 each

Vj,k is constructible as a subset of X. By Topology, Lemma 28.7 we can find a finite
stratification X =

∐
Xl with constructible locally closed strata such that each Vj,k

is a union of Xl. Thus (3) holds.
Assume (3) holds. Let U ⊂ X be an affine open. Then U ∩Xi is a constructible
locally closed subset of U (for example by Properties, Lemma 2.1) and U =

∐
U∩Xi

is a partition of U as in Definition 71.1. Thus (1) holds. □

Lemma 71.3.09YR Let X be a quasi-compact and quasi-separated scheme. Let F be
a sheaf of sets, abelian groups, Λ-modules (with Λ Noetherian) on Xétale. If there
exist constructible locally closed subschemes Ti ⊂ X such that (a) X =

⋃
Tj and

(b) F|Tj
is constructible, then F is constructible.

Proof. First, we can assume the covering is finite as X is quasi-compact in the
spectral topology (Topology, Lemma 23.2 and Properties, Lemma 2.4). Observe
that each Ti is a quasi-compact and quasi-separated scheme in its own right (be-
cause it is constructible in X; details omitted). Thus we can find a finite partition
Ti =

∐
Ti,j into locally closed constructible parts of Ti such that F|Ti,j

is finite
locally constant (Lemma 71.2). By Topology, Lemma 15.12 we see that Ti,j is a
constructible locally closed subscheme of X. Then we can apply Topology, Lemma
28.7 to X =

⋃
Ti,j to find the desired partition of X. □

Lemma 71.4.095F Let X be a scheme. Checking constructibility of a sheaf of sets,
abelian groups, Λ-modules (with Λ Noetherian) can be done Zariski locally on X.

Proof. The statement means if X =
⋃
Ui is an open covering such that F|Ui

is
constructible, then F is constructible. If U ⊂ X is affine open, then U =

⋃
U ∩ Ui

and F|U∩Ui is constructible (it is trivial that the restriction of a constructible sheaf
to an open is constructible). It follows from Lemma 71.2 that F|U is constructible,
i.e., a suitable partition of U exists. □

Lemma 71.5.095G Let f : X → Y be a morphism of schemes. If F is a constructible
sheaf of sets, abelian groups, or Λ-modules (with Λ Noetherian) on Yétale, the same
is true for f−1F on Xétale.

Proof. By Lemma 71.4 this reduces to the case where X and Y are affine. By
Lemma 71.2 it suffices to find a finite partition of X by constructible locally closed
subschemes such that f−1F is finite locally constant on each of them. To find it
we just pull back the partition of Y adapted to F and use Lemma 64.2. □

Lemma 71.6.03RZ Let X be a scheme.
(1) The category of constructible sheaves of sets is closed under finite limits

and colimits inside Sh(Xétale).
(2) The category of constructible abelian sheaves is a weak Serre subcategory of

Ab(Xétale).
(3) Let Λ be a Noetherian ring. The category of constructible sheaves of Λ-

modules on Xétale is a weak Serre subcategory of Mod(Xétale,Λ).
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Proof. We prove (3). We will use the criterion of Homology, Lemma 10.3. Suppose
that φ : F → G is a map of constructible sheaves of Λ-modules. We have to show
that K = Ker(φ) and Q = Coker(φ) are constructible. Similarly, suppose that
0 → F → E → G → 0 is a short exact sequence of sheaves of Λ-modules with F ,
G constructible. We have to show that E is constructible. In both cases we can
replace X with the members of an affine open covering. Hence we may assume X
is affine. Then we may further replace X by the members of a finite partition of X
by constructible locally closed subschemes on which F and G are of finite type and
locally constant. Thus we may apply Lemma 64.6 to conclude.
The proofs of (1) and (2) are very similar and are omitted. □

Lemma 71.7.09YS Let X be a quasi-compact and quasi-separated scheme.
(1) Let F → G be a map of constructible sheaves of sets on Xétale. Then the

set of points x ∈ X where Fx → Gx is surjective, resp. injective, resp. is
isomorphic to a given map of sets, is constructible in X.

(2) Let F be a constructible abelian sheaf on Xétale. The support of F is con-
structible.

(3) Let Λ be a Noetherian ring. Let F be a constructible sheaf of Λ-modules on
Xétale. The support of F is constructible.

Proof. Proof of (1). Let X =
∐
Xi be a partition of X by locally closed con-

structible subschemes such that both F and G are finite locally constant over the
parts (use Lemma 71.2 for both F and G and choose a common refinement). Then
apply Lemma 64.5 to the restriction of the map to each part.
The proof of (2) and (3) is omitted. □

The following lemma will turn out to be very useful later on. It roughly says that
the category of constructible sheaves has a kind of weak “Noetherian” property.

Lemma 71.8.095P Let X be a quasi-compact and quasi-separated scheme. Let F =
colimi∈I Fi be a filtered colimit of sheaves of sets, abelian sheaves, or sheaves of
modules.

(1) If F and Fi are constructible sheaves of sets, then the ind-object Fi is
essentially constant with value F .

(2) If F and Fi are constructible sheaves of abelian groups, then the ind-object
Fi is essentially constant with value F .

(3) Let Λ be a Noetherian ring. If F and Fi are constructible sheaves of Λ-
modules, then the ind-object Fi is essentially constant with value F .

Proof. Proof of (1). We will use without further mention that finite limits and
colimits of constructible sheaves are constructible (Lemma 64.6). For each i let
Ti ⊂ X be the set of points x ∈ X where Fi,x → Fx is not surjective. Because Fi
and F are constructible Ti is a constructible subset of X (Lemma 71.7). Since the
stalks of F are finite and since F = colimi∈I Fi we see that for all x ∈ X we have
x ̸∈ Ti for i large enough. Since X is a spectral space by Properties, Lemma 2.4
the constructible topology on X is quasi-compact by Topology, Lemma 23.2. Thus
Ti = ∅ for i large enough. Thus Fi → F is surjective for i large enough. Assume
now that Fi → F is surjective for all i. Choose i ∈ I. For i′ ≥ i denote Si′ ⊂ X the
set of points x such that the number of elements in Im(Fi,x → Fx) is equal to the
number of elements in Im(Fi,x → Fi′,x). Because Fi, Fi′ and F are constructible
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Si′ is a constructible subset of X (details omitted; hint: use Lemma 71.7). Since
the stalks of Fi and F are finite and since F = colimi′≥i Fi′ we see that for all
x ∈ X we have x ̸∈ Si′ for i′ large enough. By the same argument as above we can
find a large i′ such that Si′ = ∅. Thus Fi → Fi′ factors through F as desired.
Proof of (2). Observe that a constructible abelian sheaf is a constructible sheaf of
sets. Thus case (2) follows from (1).
Proof of (3). We will use without further mention that the category of constructible
sheaves of Λ-modules is abelian (Lemma 64.6). For each i let Qi be the cokernel
of the map Fi → F . The support Ti of Qi is a constructible subset of X as Qi is
constructible (Lemma 71.7). Since the stalks of F are finite Λ-modules and since
F = colimi∈I Fi we see that for all x ∈ X we have x ̸∈ Ti for i large enough. Since
X is a spectral space by Properties, Lemma 2.4 the constructible topology on X
is quasi-compact by Topology, Lemma 23.2. Thus Ti = ∅ for i large enough. This
proves the first assertion. For the second, assume now that Fi → F is surjective
for all i. Choose i ∈ I. For i′ ≥ i denote Ki′ the image of Ker(Fi → F) in Fi′ .
The support Si′ of Ki′ is a constructible subset of X as Ki′ is constructible. Since
the stalks of Ker(Fi → F) are finite Λ-modules and since F = colimi′≥i Fi′ we see
that for all x ∈ X we have x ̸∈ Si′ for i′ large enough. By the same argument as
above we can find a large i′ such that Si′ = ∅. Thus Fi → Fi′ factors through F
as desired. □

Lemma 71.9.095I Let X be a scheme. Let Λ be a Noetherian ring. The tensor
product of two constructible sheaves of Λ-modules on Xétale is a constructible sheaf
of Λ-modules.

Proof. The question immediately reduces to the case where X is affine. Since
any two partitions of X with constructible locally closed strata have a common
refinement of the same type and since pullbacks commute with tensor product we
reduce to Lemma 64.7. □

Lemma 71.10.0GKB Let Λ→ Λ′ be a homomorphism of Noetherian rings. Let X be a
scheme. Let F be a constructible sheaf of Λ-modules on Xétale. Then F ⊗Λ Λ′ is a
constructible sheaf of Λ′-modules.

Proof. Omitted. Hint: affine locally you can use the same stratification. □

72. Auxiliary lemmas on morphisms

095J Some lemmas that are useful for proving functoriality properties of constructible
sheaves.

Lemma 72.1.03S0 Let U → X be an étale morphism of quasi-compact and quasi-
separated schemes (for example an étale morphism of Noetherian schemes). Then
there exists a partition X =

∐
iXi by constructible locally closed subschemes such

that Xi ×X U → Xi is finite étale for all i.

Proof. If U → X is separated, then this is More on Morphisms, Lemma 45.4. In
general, we may assume X is affine. Choose a finite affine open covering U =

⋃
Uj .

Apply the previous case to all the morphisms Uj → X and Uj ∩ Uj′ → X and
choose a common refinement X =

∐
Xi of the resulting partitions. After refining

the partition further we may assume Xi affine as well. Fix i and set V = U ×X Xi.
The morphisms Vj = Uj ×X Xi → Xi and Vjj′ = (Uj ∩ Uj′)×X Xi → Xi are finite
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étale. Hence Vj and Vjj′ are affine schemes and Vjj′ ⊂ Vj is closed as well as open
(since Vjj′ → Xi is proper, so Morphisms, Lemma 41.7 applies). Then V =

⋃
Vj is

separated because O(Vj)→ O(Vjj′) is surjective, see Schemes, Lemma 21.7. Thus
the previous case applies to V → Xi and we can further refine the partition if
needed (it actually isn’t but we don’t need this). □

In the Noetherian case one can prove the preceding lemma by Noetherian induction
and the following amusing lemma.

Lemma 72.2.03S1 Let f : X → Y be a morphism of schemes which is quasi-compact,
quasi-separated, and locally of finite type. If η is a generic point of an irreducible
component of Y such that f−1(η) is finite, then there exists an open V ⊂ Y con-
taining η such that f−1(V )→ V is finite.

Proof. This is Morphisms, Lemma 51.1. □

The statement of the following lemma can be strengthened a bit.

Lemma 72.3.095K Let f : Y → X be a quasi-finite and finitely presented morphism
of affine schemes.

(1) There exists a surjective morphism of affine schemes X ′ → X and a closed
subscheme Z ′ ⊂ Y ′ = X ′ ×X Y such that
(a) Z ′ ⊂ Y ′ is a thickening, and
(b) Z ′ → X ′ is a finite étale morphism.

(2) There exists a finite partition X =
∐
Xi by locally closed, constructible,

affine strata, and surjective finite locally free morphisms X ′
i → Xi such

that the reduction of Y ′
i = X ′

i×X Y → X ′
i is isomorphic to

∐ni

j=1(X ′
i)red →

(X ′
i)red for some ni.

Proof. Setting X ′ =
∐
X ′
i we see that (2) implies (1). Write X = Spec(A) and

Y = Spec(B). Write A as a filtered colimit of finite type Z-algebras Ai. Since B
is an A-algebra of finite presentation, we see that there exists 0 ∈ I and a finite
type ring map A0 → B0 such that B = colimBi with Bi = Ai⊗A0 B0, see Algebra,
Lemma 127.8. For i sufficiently large we see that Ai → Bi is quasi-finite, see Limits,
Lemma 18.2. Thus we reduce to the case of finite type algebras over Z, in particular
we reduce to the Noetherian case. (Details omitted.)
Assume X and Y Noetherian. In this case any locally closed subset of X is con-
structible. By Lemma 72.2 and Noetherian induction we see that there is a finite
partition X =

∐
Xi of X by locally closed strata such that Y ×X Xi → Xi is

finite. We can refine this partition to get affine strata. Thus after replacing X by
X ′ =

∐
Xi we may assume Y → X is finite.

Assume X and Y Noetherian and Y → X finite. Suppose that we can prove (2)
after base change by a surjective, flat, quasi-finite morphism U → X. Thus we
have a partition U =

∐
Ui and finite locally free morphisms U ′

i → Ui such that
U ′
i ×X Y → U ′

i is isomorphic to
∐ni

j=1(U ′
i)red → (U ′

i)red for some ni. Then, by the
argument in the previous paragraph, we can find a partition X =

∐
Xj with locally

closed affine strata such that Xj ×X Ui → Xj is finite for all i, j. By Morphisms,
Lemma 48.2 each Xj ×X Ui → Xj is finite locally free. Hence Xj ×X U ′

i → Xj

is finite locally free (Morphisms, Lemma 48.3). It follows that X =
∐
Xj and

X ′
j =

∐
iXj ×X U ′

i is a solution for Y → X. Thus it suffices to prove the result (in
the Noetherian case) after a surjective flat quasi-finite base change.
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Applying Morphisms, Lemma 48.6 we see we may assume that Y is a closed sub-
scheme of an affine scheme Z which is (set theoretically) a finite union Z =

⋃
i∈I Zi

of closed subschemes mapping isomorphically to X. In this case we will find a finite
partition of X =

∐
Xj with affine locally closed strata that works (in other words

X ′
j = Xj). Set Ti = Y ∩ Zi. This is a closed subscheme of X. As X is Noetherian

we can find a finite partition of X =
∐
Xj by affine locally closed subschemes, such

that each Xj ×X Ti is (set theoretically) a union of strata Xj ×X Zi. Replacing X
by Xj we see that we may assume I = I1⨿I2 with Zi ⊂ Y for i ∈ I1 and Zi∩Y = ∅
for i ∈ I2. Replacing Z by

⋃
i∈I1

Zi we see that we may assume Y = Z. Finally,
we can replace X again by the members of a partition as above such that for every
i, i′ ⊂ I the intersection Zi ∩ Zi′ is either empty or (set theoretically) equal to Zi
and Zi′ . This clearly means that Y is (set theoretically) equal to a disjoint union
of the Zi which is what we wanted to show. □

73. More on constructible sheaves

095M Let Λ be a Noetherian ring. Let X be a scheme. We often consider Xétale as a
ringed site with sheaf of rings Λ. In case of abelian sheaves we often take Λ = Z/nZ
for a suitable integer n.

Lemma 73.1.03S8 Let j : U → X be an étale morphism of quasi-compact and quasi-
separated schemes.

(1) The sheaf hU is a constructible sheaf of sets.
(2) The sheaf j!M is a constructible abelian sheaf for a finite abelian group M .
(3) If Λ is a Noetherian ring and M is a finite Λ-module, then j!M is a con-

structible sheaf of Λ-modules on Xétale.

Proof. By Lemma 72.1 there is a partition
∐
iXi such that πi : j−1(Xi) → Xi is

finite étale. The restriction of hU to Xi is hj−1(Xi) which is finite locally constant
by Lemma 64.4. For cases (2) and (3) we note that

j!(M)|Xi
= πi!(M) = πi∗(M)

by Lemmas 70.5 and 70.7. Thus it suffices to show the lemma for π : Y → X finite
étale. This is Lemma 64.3. □

Lemma 73.2.03SA Let X be a quasi-compact and quasi-separated scheme.
(1) Let F be a sheaf of sets on Xétale. Then F is a filtered colimit of con-

structible sheaves of sets.
(2) Let F be a torsion abelian sheaf on Xétale. Then F is a filtered colimit of

constructible abelian sheaves.
(3) Let Λ be a Noetherian ring and F a sheaf of Λ-modules on Xétale. Then F

is a filtered colimit of constructible sheaves of Λ-modules.

Proof. Let B be the collection of quasi-compact and quasi-separated objects of
Xétale. By Modules on Sites, Lemma 30.7 any sheaf of sets is a filtered colimit of
sheaves of the form

Coequalizer
( ∐

j=1,...,m hVj

//
//
∐
i=1,...,n hUi

)
with Vj and Ui quasi-compact and quasi-separated objects of Xétale. By Lemmas
73.1 and 71.6 these coequalizers are constructible. This proves (1).

https://stacks.math.columbia.edu/tag/03S8
https://stacks.math.columbia.edu/tag/03SA


ÉTALE COHOMOLOGY 122

Let Λ be a Noetherian ring. By Modules on Sites, Lemma 30.7 Λ-modules F is a
filtered colimit of modules of the form

Coker
(⊕

j=1,...,m
jVj !ΛVj

−→
⊕

i=1,...,n
jUi!ΛUi

)
with Vj and Ui quasi-compact and quasi-separated objects of Xétale. By Lemmas
73.1 and 71.6 these cokernels are constructible. This proves (3).
Proof of (2). First write F =

⋃
F [n] where F [n] is the n-torsion subsheaf. Then

we can view F [n] as a sheaf of Z/nZ-modules and apply (3). □

Lemma 73.3.095Q Let f : X → Y be a surjective morphism of quasi-compact and
quasi-separated schemes.

(1) Let F be a sheaf of sets on Yétale. Then F is constructible if and only if
f−1F is constructible.

(2) Let F be an abelian sheaf on Yétale. Then F is constructible if and only if
f−1F is constructible.

(3) Let Λ be a Noetherian ring. Let F be sheaf of Λ-modules on Yétale. Then
F is constructible if and only if f−1F is constructible.

Proof. One implication follows from Lemma 71.5. For the converse, assume f−1F
is constructible. Write F = colimFi as a filtered colimit of constructible sheaves
(of sets, abelian groups, or modules) using Lemma 73.2. Since f−1 is a left adjoint
it commutes with colimits (Categories, Lemma 24.5) and we see that f−1F =
colim f−1Fi. By Lemma 71.8 we see that f−1Fi → f−1F is surjective for all i
large enough. Since f is surjective we conclude (by looking at stalks using Lemma
36.2 and Theorem 29.10) that Fi → F is surjective for all i large enough. Thus F is
the quotient of a constructible sheaf G. Applying the argument once more to G×F G
or the kernel of G → F we conclude using that f−1 is exact and that the category
of constructible sheaves (of sets, abelian groups, or modules) is preserved under
finite (co)limits or (co)kernels inside Sh(Yétale), Sh(Xétale), Ab(Yétale), Ab(Xétale),
Mod(Yétale,Λ), and Mod(Xétale,Λ), see Lemma 71.6. □

Lemma 73.4.095H Let f : X → Y be a finite étale morphism of schemes. Let Λ be a
Noetherian ring. If F is a constructible sheaf of sets, constructible sheaf of abelian
groups, or constructible sheaf of Λ-modules on Xétale, the same is true for f∗F on
Yétale.

Proof. By Lemma 71.4 it suffices to check this Zariski locally on Y and by Lemma
73.3 we may replace Y by an étale cover (the construction of f∗ commutes with
étale localization). A finite étale morphism is étale locally isomorphic to a disjoint
union of isomorphisms, see Étale Morphisms, Lemma 18.3. Thus, in the case of
sheaves of sets, the lemma says that if Fi, i = 1, . . . , n are constructible sheaves of
sets, then

∏
i=1,...,n Fi is too. This is clear. Similarly for sheaves of abelian groups

and modules. □

Lemma 73.5.09Y9 Let X be a quasi-compact and quasi-separated scheme. The category
of constructible sheaves of sets is the full subcategory of Sh(Xétale) consisting of
sheaves F which are coequalizers

F1
//
// F0 // F

such that Fi, i = 0, 1 is a finite coproduct of sheaves of the form hU with U a
quasi-compact and quasi-separated object of Xétale.
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Proof. In the proof of Lemma 73.2 we have seen that sheaves of this form are
constructible. For the converse, suppose that for every constructible sheaf of sets
F we can find a surjection F0 → F with F0 as in the lemma. Then we find our
surjection F1 → F0 ×F F0 because the latter is constructible by Lemma 71.6.

By Topology, Lemma 28.7 we may choose a finite stratification X =
∐
i∈I Xi such

that F is finite locally constant on each stratum. We will prove the result by
induction on the cardinality of I. Let i ∈ I be a minimal element in the partial
ordering of I. Then Xi ⊂ X is closed. By induction, there exist finitely many
quasi-compact and quasi-separated objects Uα of (X \ Xi)étale and a surjective
map

∐
hUα → F|X\Xi

. These determine a map∐
hUα
→ F

which is surjective after restricting toX\Xi. By Lemma 64.4 we see that F|Xi = hV
for some scheme V finite étale over Xi. Let v be a geometric point of V lying over
x ∈ Xi. We may think of v as an element of the stalk Fx = Vx. Thus we can find
an étale neighbourhood (U, u) of x and a section s ∈ F(U) whose stalk at x gives
v. Thinking of s as a map s : hU → F , restricting to Xi we obtain a morphism
s|Xi

: U ×X Xi → V over Xi which maps u to v. Since V is quasi-compact (finite
over the closed subscheme Xi of the quasi-compact scheme X) a finite number
s(1), . . . , s(m) of these sections of F over U (1), . . . , U (m) will determine a jointly
surjective map ∐

s(j)|Xi
:
∐

U (j) ×X Xi −→ V

Then we obtain the surjection∐
hUα ⨿

∐
hU(j) → F

as desired. □

Lemma 73.6.095N Let X be a quasi-compact and quasi-separated scheme. Let Λ be a
Noetherian ring. The category of constructible sheaves of Λ-modules is exactly the
category of modules of the form

Coker
(⊕

j=1,...,m
jVj !ΛVj

−→
⊕

i=1,...,n
jUi!ΛUi

)
with Vj and Ui quasi-compact and quasi-separated objects of Xétale. In fact, we can
even assume Ui and Vj affine.

Proof. In the proof of Lemma 73.2 we have seen modules of this form are con-
structible. Since the category of constructible modules is abelian (Lemma 71.6) it
suffices to prove that given a constructible module F there is a surjection⊕

i=1,...,n
jUi!ΛUi

−→ F

for some affine objects Ui in Xétale. By Modules on Sites, Lemma 30.7 there is a
surjection

Ψ :
⊕

i∈I
jUi!ΛUi

−→ F

with Ui affine and the direct sum over a possibly infinite index set I. For every
finite subset I ′ ⊂ I set

TI′ = Supp(Coker(
⊕

i∈I′
jUi!ΛUi

−→ F))
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By the very definition of constructible sheaves, the set TI′ is a constructible subset
of X. We want to show that TI′ = ∅ for some I ′. Since every stalk Fx is a finite
type Λ-module and since Ψ is surjective, for every x ∈ X there is an I ′ such that
x ̸∈ TI′ . In other words we have ∅ =

⋂
I′⊂I finite TI′ . Since X is a spectral space

by Properties, Lemma 2.4 the constructible topology on X is quasi-compact by
Topology, Lemma 23.2. Thus TI′ = ∅ for some I ′ ⊂ I finite as desired. □

Lemma 73.7.09YT Let X be a quasi-compact and quasi-separated scheme. The category
of constructible abelian sheaves is exactly the category of abelian sheaves of the form

Coker
(⊕

j=1,...,m
jVj !Z/mjZ

Vj

−→
⊕

i=1,...,n
jUi!Z/niZ

Ui

)
with Vj and Ui quasi-compact and quasi-separated objects of Xétale and mj, ni
positive integers. In fact, we can even assume Ui and Vj affine.

Proof. This follows from Lemma 73.6 applied with Λ = Z/nZ and the fact that,
since X is quasi-compact, every constructible abelian sheaf is annihilated by some
positive integer n (details omitted). □

Lemma 73.8.09Z4 Let X be a quasi-compact and quasi-separated scheme. Let Λ be
a Noetherian ring. Let F be a constructible sheaf of sets, abelian groups, or Λ-
modules on Xétale. Let G = colimGi be a filtered colimit of sheaves of sets, abelian
groups, or Λ-modules. Then

Mor(F ,G) = colim Mor(F ,Gi)

in the category of sheaves of sets, abelian groups, or Λ-modules on Xétale.

Proof. The case of sheaves of sets. By Lemma 73.5 it suffices to prove the lemma
for hU where U is a quasi-compact and quasi-separated object of Xétale. Recall
that Mor(hU ,G) = G(U). Hence the result follows from Sites, Lemma 17.7.

In the case of abelian sheaves or sheaves of modules, the result follows in the same
way using Lemmas 73.7 and 73.6. For the case of abelian sheaves, we add that
Mor(jU !Z/nZ,G) is equal to the n-torsion elements of G(U). □

Lemma 73.9.095R Let f : X → Y be a finite and finitely presented morphism of
schemes. Let Λ be a Noetherian ring. If F is a constructible sheaf of sets, abelian
groups, or Λ-modules on Xétale, then f∗F is too.

Proof. It suffices to prove this when X and Y are affine by Lemma 71.4. By
Lemmas 55.3 and 73.3 we may base change to any affine scheme surjective over
X. By Lemma 72.3 this reduces us to the case of a finite étale morphism (because
a thickening leads to an equivalence of étale topoi and even small étale sites, see
Theorem 45.2). The finite étale case is Lemma 73.4. □

Lemma 73.10.09YU Let X = limi∈I Xi be a limit of a directed system of schemes
with affine transition morphisms. We assume that Xi is quasi-compact and quasi-
separated for all i ∈ I.

(1) The category of constructible sheaves of sets on Xétale is the colimit of the
categories of constructible sheaves of sets on (Xi)étale.

(2) The category of constructible abelian sheaves on Xétale is the colimit of the
categories of constructible abelian sheaves on (Xi)étale.
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(3) Let Λ be a Noetherian ring. The category of constructible sheaves of Λ-
modules on Xétale is the colimit of the categories of constructible sheaves of
Λ-modules on (Xi)étale.

Proof. Proof of (1). Denote fi : X → Xi the projection maps. There are 3 parts to
the proof corresponding to “faithful”, “fully faithful”, and “essentially surjective”.
Faithful. Choose 0 ∈ I and let F0, G0 be constructible sheaves on X0. Suppose that
a, b : F0 → G0 are maps such that f−1

0 a = f−1
0 b. Let E ⊂ X0 be the set of points

x ∈ X0 such that ax = bx. By Lemma 71.7 the subset E ⊂ X0 is constructible. By
assumption X → X0 maps into E. By Limits, Lemma 4.10 we find an i ≥ 0 such
that Xi → X0 maps into E. Hence f−1

i0 a = f−1
i0 b.

Fully faithful. Choose 0 ∈ I and let F0, G0 be constructible sheaves on X0. Suppose
that a : f−1

0 F0 → f−1
0 G0 is a map. We claim there is an i and a map ai : f−1

i0 F0 →
f−1
i0 G0 which pulls back to a on X. By Lemma 73.5 we can replace F0 by a finite

coproduct of sheaves represented by quasi-compact and quasi-separated objects of
(X0)étale. Thus we have to show: If U0 → X0 is such an object of (X0)étale, then

f−1
0 G(U) = colimi≥0 f

−1
i0 G(Ui)

where U = X ×X0 U0 and Ui = Xi ×X0 U0. This is a special case of Theorem 51.3.
Essentially surjective. We have to show every constructible F on X is isomorphic
to f−1

i F for some constructible Fi on Xi. Applying Lemma 73.5 and using the
results of the previous two paragraphs, we see that it suffices to prove this for hU
for some quasi-compact and quasi-separated object U of Xétale. In this case we
have to show that U is the base change of a quasi-compact and quasi-separated
scheme étale over Xi for some i. This follows from Limits, Lemmas 10.1 and 8.10.
Proof of (3). The argument is very similar to the argument for sheaves of sets, but
using Lemma 73.6 instead of Lemma 73.5. Details omitted. Part (2) follows from
part (3) because every constructible abelian sheaf over a quasi-compact scheme is
a constructible sheaf of Z/nZ-modules for some n. □

Lemma 73.11.0GL2 Let X = limi∈I Xi be a limit of a directed system of schemes
with affine transition morphisms. We assume that Xi is quasi-compact and quasi-
separated for all i ∈ I.

(1) The category of finite locally constant sheaves on Xétale is the colimit of the
categories of finite locally constant sheaves on (Xi)étale.

(2) The category of finite locally constant abelian sheaves on Xétale is the colimit
of the categories of finite locally constant abelian sheaves on (Xi)étale.

(3) Let Λ be a Noetherian ring. The category of finite type, locally constant
sheaves of Λ-modules on Xétale is the colimit of the categories of finite
type, locally constant sheaves of Λ-modules on (Xi)étale.

Proof. By Lemma 73.10 the functor in each case is fully faithful. By the same
lemma, all we have to show to finish the proof in case (1) is the following: given a
constructible sheaf Fi on Xi whose pullback F to X is finite locally constant, there
exists an i′ ≥ i such that the pullback Fi′ of Fi to Xi′ is finite locally constant. By
assumption there exists an étale covering U = {Uj → X}j∈J such that F|Uj

∼= Sj
for some finite set Sj . We may assume Uj is affine for all j ∈ J . Since X is
quasi-compact, we may assume J finite. By Lemma 51.2 we can find an i′ ≥ i
and an étale covering Ui′ = {Ui′,j → Xi′}j∈J whose base change to X is U . Then
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Fi′ |Ui′,j
and Sj are constructible sheaves on (Ui′,j)étale whose pullbacks to Uj are

isomorphic. Hence after increasing i′ we get that Fi′ |Ui′,j
and Sj are isomorphic.

Thus Fi′ is finite locally constant. The proof in cases (2) and (3) is exactly the
same. □

Lemma 73.12.09BG Let X be an irreducible scheme with generic point η.
(1) Let S′ ⊂ S be an inclusion of sets. If we have S′ ⊂ G ⊂ S in Sh(Xétale)

and S′ = Gη, then G = S′.
(2) Let A′ ⊂ A be an inclusion of abelian groups. If we have A′ ⊂ G ⊂ A in

Ab(Xétale) and A′ = Gη, then G = A′.
(3) Let M ′ ⊂ M be an inclusion of modules over a ring Λ. If we have M ′ ⊂
G ⊂M in Mod(Xétale,Λ) and M ′ = Gη, then G = M ′.

Proof. This is true because for every étale morphism U → X with U ̸= ∅ the point
η is in the image. □

Lemma 73.13.09Z5 Let X be an integral normal scheme with function field K. Let
E be a set.

(1) Let g : Spec(K)→ X be the inclusion of the generic point. Then g∗E = E.
(2) Let j : U → X be the inclusion of a nonempty open. Then j∗E = E.

Proof. Proof of (1). Let x ∈ X be a point. Let OshX,x be a strict henselization of
OX,x. By More on Algebra, Lemma 45.6 we see that OshX,x is a normal domain.
Hence Spec(K) ×X Spec(OshX,x) is irreducible. It follows that the stalk (g∗Ex is
equal to E, see Theorem 53.1.
Proof of (2). Since g factors through j there is a map j∗E → g∗E. This map is
injective because for every scheme V étale over X the set Spec(K) ×X V is dense
in U ×X V . On the other hand, we have a map E → j∗E and we conclude. □

Lemma 73.14.0F0M Let X be a quasi-compact and quasi-separated scheme. Let η ∈ X
be a generic point of an irreducible component of X.

(1) Let F be a torsion abelian sheaf on Xétale whose stalk Fη is zero. Then
F = colimFi is a filtered colimit of constructible abelian sheaves Fi such
that for each i the support of Fi is contained in a closed subscheme not
containing η.

(2) Let Λ be a Noetherian ring and F a sheaf of Λ-modules on Xétale whose
stalk Fη is zero. Then F = colimFi is a filtered colimit of constructible
sheaves of Λ-modules Fi such that for each i the support of Fi is contained
in a closed subscheme not containing η.

Proof. Proof of (1). We can write F = colimi∈I Fi with Fi constructible abelian
by Lemma 73.2. Choose i ∈ I. Since F|η is zero by assumption, we see that
there exists an i′(i) ≥ i such that Fi|η → Fi′(i)|η is zero, see Lemma 71.8. Then
Gi = Im(Fi → Fi′(i)) is a constructible abelian sheaf (Lemma 71.6) whose stalk at η
is zero. Hence the support Ei of Gi is a constructible subset of X not containing η.
Since η is a generic point of an irreducible component of X, we see that η ̸∈ Zi = Ei
by Topology, Lemma 15.15. Define a new directed set I ′ by using the set I with
ordering defined by the rule i1 is bigger or equal to i2 if and only if i1 ≥ i′(i2). Then
the sheaves Gi form a system over I ′ with colimit F and the proof is complete.
The proof in case (2) is exactly the same and we omit it. □
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74. Constructible sheaves on Noetherian schemes

03RY If X is a Noetherian scheme then any locally closed subset is a constructible locally
closed subset (Topology, Lemma 16.1). Hence an abelian sheaf F on Xétale is
constructible if and only if there exists a finite partition X =

∐
Xi such that F|Xi is

finite locally constant. (By convention a partition of a topological space has locally
closed parts, see Topology, Section 28.) In other words, we can omit the adjective
“constructible” in Definition 71.1. Actually, the category of constructible sheaves
on Noetherian schemes has some additional properties which we will catalogue in
this section.

Proposition 74.1.09BH Let X be a Noetherian scheme. Let Λ be a Noetherian ring.
(1) Any sub or quotient sheaf of a constructible sheaf of sets is constructible.
(2) The category of constructible abelian sheaves on Xétale is a (strong) Serre

subcategory of Ab(Xétale). In particular, every sub and quotient sheaf of a
constructible abelian sheaf on Xétale is constructible.

(3) The category of constructible sheaves of Λ-modules on Xétale is a (strong)
Serre subcategory of Mod(Xétale,Λ). In particular, every submodule and
quotient module of a constructible sheaf of Λ-modules on Xétale is con-
structible.

Proof. Proof of (1). Let G ⊂ F with F a constructible sheaf of sets on Xétale.
Let η ∈ X be a generic point of an irreducible component of X. By Noetherian
induction it suffices to find an open neighbourhood U of η such that G|U is locally
constant. To do this we may replace X by an étale neighbourhood of η. Hence we
may assume F is constant and X is irreducible.
Say F = S for some finite set S. Then S′ = Gη ⊂ S say S′ = {s1, . . . , st}. Pick an
étale neighbourhood (U, u) of η and sections σ1, . . . , σt ∈ G(U) which map to si in
Gη ⊂ S. Since σi maps to an element si ∈ S′ ⊂ S = Γ(X,F) we see that the two
pullbacks of σi to U ×X U are the same as sections of G. By the sheaf condition
for G we find that σi comes from a section of G over the open Im(U → X) of X.
Shrinking X we may assume S′ ⊂ G ⊂ S. Then we see that S′ = G by Lemma
73.12.
Let F → Q be a surjection with F a constructible sheaf of sets on Xétale. Then
set G = F ×Q F . By the first part of the proof we see that G is constructible as a
subsheaf of F × F . This in turn implies that Q is constructible, see Lemma 71.6.
Proof of (3). we already know that constructible sheaves of modules form a weak
Serre subcategory, see Lemma 71.6. Thus it suffices to show the statement on
submodules.
Let G ⊂ F be a submodule of a constructible sheaf of Λ-modules on Xétale. Let η ∈
X be a generic point of an irreducible component of X. By Noetherian induction it
suffices to find an open neighbourhood U of η such that G|U is locally constant. To
do this we may replace X by an étale neighbourhood of η. Hence we may assume
F is constant and X is irreducible.
Say F = M for some finite Λ-module M . Then M ′ = Gη ⊂ M . Pick finitely
many elements s1, . . . , st generating M ′ as a Λ-module. (This is possible as Λ is
Noetherian and M is finite.) Pick an étale neighbourhood (U, u) of η and sections
σ1, . . . , σt ∈ G(U) which map to si in Gη ⊂ M . Since σi maps to an element
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si ∈ M ′ ⊂ M = Γ(X,F) we see that the two pullbacks of σi to U ×X U are the
same as sections of G. By the sheaf condition for G we find that σi comes from
a section of G over the open Im(U → X) of X. Shrinking X we may assume
M ′ ⊂ G ⊂M . Then we see that M ′ = G by Lemma 73.12.
Proof of (2). This follows in the usual manner from (3). Details omitted. □

The following lemma tells us that every object of the abelian category of con-
structible sheaves on X is “Noetherian”, i.e., satisfies a.c.c. for subobjects.

Lemma 74.2.09YV Let X be a Noetherian scheme. Let Λ be a Noetherian ring. Con-
sider inclusions

F1 ⊂ F2 ⊂ F3 ⊂ . . . ⊂ F
in the category of sheaves of sets, abelian groups, or Λ-modules. If F is con-
structible, then for some n we have Fn = Fn+1 = Fn+2 = . . ..

Proof. By Proposition 74.1 we see that Fi and colimFi are constructible. Then
the lemma follows from Lemma 71.8. □

Lemma 74.3.09Z6 Let X be a Noetherian scheme.
(1) Let F be a constructible sheaf of sets on Xétale. There exist an injective

map of sheaves
F −→

∏
i=1,...,n

fi,∗Ei

where fi : Yi → X is a finite morphism and Ei is a finite set.
(2) Let F be a constructible abelian sheaf on Xétale. There exist an injective

map of abelian sheaves

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite morphism and Mi is a finite abelian group.
(3) Let Λ be a Noetherian ring. Let F be a constructible sheaf of Λ-modules on

Xétale. There exist an injective map of sheaves of modules

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite morphism and Mi is a finite Λ-module.
Moreover, we may assume each Yi is irreducible, reduced, maps onto an irreducible
and reduced closed subscheme Zi ⊂ X such that Yi → Zi is finite étale over a
nonempty open of Zi.

Proof. Proof of (1). Because we have the ascending chain condition for subsheaves
of F (Lemma 74.2), it suffices to show that for every point x ∈ X we can find a
map φ : F → f∗E where f : Y → X is finite and E is a finite set such that
φx : Fx → (f∗S)x is injective. (This argument can be avoided by picking a partition
of X as in Lemma 71.2 and constructing a Yi → X for each irreducible component
of each part.) Let Z ⊂ X be the induced reduced scheme structure (Schemes,
Definition 12.5) on {x}. Since F is constructible, there is a finite separable extension
K/κ(x) such that F|Spec(K) is the constant sheaf with value E for some finite set E.
Let Y → Z be the normalization of Z in Spec(K). By Morphisms, Lemma 53.13
we see that Y is a normal integral scheme. As K/κ(x) is a finite extension, it is
clear that K is the function field of Y . Denote g : Spec(K)→ Y the inclusion. The
map F|Spec(K) → E is adjoint to a map F|Y → g∗E = E (Lemma 73.13). This in
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turn is adjoint to a map φ : F → f∗E. Observe that the stalk of φ at a geometric
point x is injective: we may take a lift y ∈ Y of x and the commutative diagram

Fx

��

(F|Y )y

(f∗E)x // Ey

proves the injectivity. We are not yet done, however, as the morphism f : Y → Z
is integral but in general not finite6.
To fix the problem stated in the last sentence of the previous paragraph, we write
Y = limi∈I Yi with Yi irreducible, integral, and finite over Z. Namely, apply Prop-
erties, Lemma 22.13 to f∗OY viewed as a sheaf of OZ-algebras and apply the
functor Spec

Z
. Then f∗E = colim fi,∗E by Lemma 51.7. By Lemma 73.8 the map

F → f∗E factors through fi,∗E for some i. Since Yi → Z is a finite morphism of
integral schemes and since the function field extension induced by this morphism
is finite separable, we see that the morphism is finite étale over a nonempty open
of Z (use Algebra, Lemma 140.9; details omitted). This finishes the proof of (1).
The proofs of (2) and (3) are identical to the proof of (1). □

In the following lemma we use a standard trick to reduce a very general statement
to the Noetherian case.

Lemma 74.4.09Z7 [AGV71, Exposee
IX, Proposition
2.14]

Let X be a quasi-compact and quasi-separated scheme.
(1) Let F be a constructible sheaf of sets on Xétale. There exist an injective

map of sheaves
F −→

∏
i=1,...,n

fi,∗Ei

where fi : Yi → X is a finite and finitely presented morphism and Ei is a
finite set.

(2) Let F be a constructible abelian sheaf on Xétale. There exist an injective
map of abelian sheaves

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite and finitely presented morphism and Mi is a
finite abelian group.

(3) Let Λ be a Noetherian ring. Let F be a constructible sheaf of Λ-modules on
Xétale. There exist an injective map of sheaves of modules

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite and finitely presented morphism and Mi is a
finite Λ-module.

Proof. We will reduce this lemma to the Noetherian case by absolute Noetherian
approximation. Namely, by Limits, Proposition 5.4 we can write X = limt∈T Xt

with each Xt of finite type over Spec(Z) and with affine transition morphisms. By
Lemma 73.10 the category of constructible sheaves (of sets, abelian groups, or Λ-
modules) on Xétale is the colimit of the corresponding categories for Xt. Thus our

6If X is a Nagata scheme, for example of finite type over a field, then Y → Z is finite.
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constructible sheaf F is the pullback of a similar constructible sheaf Ft over Xt for
some t. Then we apply the Noetherian case (Lemma 74.3) to find an injection

Ft −→
∏

i=1,...,n
fi,∗Ei or Ft −→

⊕
i=1,...,n

fi,∗Mi

over Xt for some finite morphisms fi : Yi → Xt. Since Xt is Noetherian the
morphisms fi are of finite presentation. Since pullback is exact and since formation
of fi,∗ commutes with base change (Lemma 55.3), we conclude. □

Lemma 74.5.0F0N Let X be a Noetherian scheme. Let E ⊂ X be a subset closed
under specialization.

(1) Let F be a torsion abelian sheaf on Xétale whose support is contained in
E. Then F = colimFi is a filtered colimit of constructible abelian sheaves
Fi such that for each i the support of Fi is contained in a closed subset
contained in E.

(2) Let Λ be a Noetherian ring and F a sheaf of Λ-modules on Xétale whose
support is contained in E. Then F = colimFi is a filtered colimit of con-
structible sheaves of Λ-modules Fi such that for each i the support of Fi is
contained in a closed subset contained in E.

Proof. Proof of (1). We can write F = colimi∈I Fi with Fi constructible abelian
by Lemma 73.2. By Proposition 74.1 the image F ′

i ⊂ F of the map Fi → F is
constructible. Thus F = colimF ′

i and the support of F ′
i is contained in E. Since

the support of F ′
i is constructible (by our definition of constructible sheaves), we

see that its closure is also contained in E, see for example Topology, Lemma 23.6.

The proof in case (2) is exactly the same and we omit it. □

75. Specializations and étale sheaves

0GJ2 Topological picture: Let X be a topological space and let x′ ⇝ x be a specialization
of points in X. Then every open neighbourhood of x contains x′. Hence for any
sheaf F on X there is a specialization map

sp : Fx −→ Fx′

of stalks sending the equivalence class of the pair (U, s) in Fx to the equivalence
class of the pair (U, s) in Fx′ ; see Sheaves, Section 11 for the description of stalks
in terms of equivalence classes of pairs. Of course this map is functorial in F , i.e.,
sp is a transformation of functors.

For sheaves in the étale topology we can mimick this construction, see [AGV71,
Exposee VII, 7.7, page 397]. To do this suppose we have a scheme S, a geometric
point s of S, and a geometric point t of Spec(OshS,s). For any sheaf F on Sétale we
will construct the specialization map

sp : Fs −→ Ft
Here we have abused language: instead of writing Ft we should write Fp(t) where
p : Spec(OshS,s)→ S is the canonical morphism. Recall that

Fs = colim(U,u) F(U)
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where the colimit is over all étale neighbourhoods (U, u) of (S, s), see Section 29.
Since OshS,s is the stalk of the structure sheaf, we find for every étale neighbourhood
(U, u) of (S, s) a canonical map OU,u → OshS,s. Hence we get a unique factorization

Spec(OshS,s)→ U → S

If v denotes the image of t in U , then we see that (U, v) is an étale neighbourhood of
(S, t). This construction defines a functor from the category of étale neighbourhoods
of (S, s) to the category of étale neighbourhoods of (S, t). Thus we may define the
map sp : Fs → Ft by sending the equivalence class of (U, u, σ) where σ ∈ F(U) to
the equivalence class of (U, v, σ).

Let K ∈ D(Sétale). With s and t as above we have the specialization map

sp : Ks −→ Kt in D(Ab)

Namely, if K is represented by the complex F• of abelian sheaves, then we simply
that the map

Ks = F•
s −→ F•

t
= Kt

which is termwise given by the specialization maps for sheaves constructed above.
This is independent of the choice of complex representing K by the exactness of
the stalk functors (i.e., taking stalks of complexes is well defined on the derived
category).

Clearly the construction is functorial in the sheaf F on Sétale. If we think of the
stalk functors as morphisms of topoi s, t : Sets→ Sh(Sétale), then we may think of
sp as a 2-morphism

Sets
t ,,

s

22�� sp Sh(Sétale)

of topoi.

Remark 75.1 (Alternative description of sp).0GJ3 Let S, s, and t be as above. Another
way to describe the specialization map is to use that

Fs = Γ(Spec(OshS,s), p−1F) and Ft = Γ(t, t−1
p−1F)

The first equality follows from Theorem 53.1 applied to idS : S → S and the second
equality follows from Lemma 36.2. Then we can think of sp as the map

sp : Fs = Γ(Spec(OshS,s), p−1F) pullback by t−−−−−−−−→ Γ(t, t−1
p−1F) = Ft

Remark 75.2 (Yet another description of sp).0GJ4 Let S, s, and t be as above.
Another alternative is to use the unique morphism

c : Spec(Osh
S,t

) −→ Spec(OshS,s)

over S which is compatible with the given morphism t → Spec(OshS,s) and the
morphism t → Spec(Osh

t,t
). The uniqueness and existence of the displayed arrow

follows from Algebra, Lemma 154.6 applied to OS,s, OshS,t, and OshS,s → κ(t). We
obtain

sp : Fs = Γ(Spec(OshS,s),F) pullback by c−−−−−−−−→ Γ(Spec(Osh
S,t

),F) = Ft
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(with obvious notational conventions). In fact this procedure also works for objects
K in D(Sétale): the specialization map for K is equal to the map

sp : Ks = RΓ(Spec(OshS,s),K) pullback by c−−−−−−−−→ RΓ(Spec(Osh
S,t

),K) = Kt

The equality signs are valid as taking global sections over the striclty henselian
schemes Spec(OshS,s) and Spec(Osh

S,t
) is exact (and the same as taking stalks at s

and t) and hence no subtleties related to the fact that K may be unbounded arise.
Remark 75.3 (Lifting specializations).0GJ5 Let S be a scheme and let t ⇝ s be a
specialization of point on S. Choose geometric points t and s lying over t and s.
Since t corresponds to a point of Spec(OS,s) by Schemes, Lemma 13.2 and since
OS,s → OshS,s is faithfully flat, we can find a point t′ ∈ Spec(OshS,s) mapping to t. As
Spec(OshS,s) is a limit of schemes étale over S we see that κ(t′)/κ(t) is a separable
algebraic extension (usually not finite of course). Since κ(t) is algebraically closed,
we can choose an embedding κ(t′) → κ(t) as extensions of κ(t). This choice gives
us a commutative diagram

t

��

// Spec(OshS,s)

��

soo

��
t // S soo

of points and geometric points. Thus if t⇝ s we can always “lift” t to a geometric
point of the strict henselization of S at s and get specialization maps as above.
Lemma 75.4.0GJ6 Let g : S′ → S be a morphism of schemes. Let F be a sheaf
on Sétale. Let s′ be a geometric point of S′, and let t′ be a geometric point of
Spec(OshS′,s′). Denote s = g(s′) and t = h(t′) where h : Spec(OshS′,s′) → Spec(OshS,s)
is the canonical morphism. For any sheaf F on Sétale the specialization map

sp : (f−1F)s′ −→ (f−1F)t′
is equal to the specialization map sp : Fs → Ft via the identifications (f−1F)s′ = Fs
and (f−1F)t′ = Ft of Lemma 36.2.
Proof. Omitted. □

Lemma 75.5.0GJ7 Let S be a scheme such that every quasi-compact open of S has finite
number of irreducible components (for example if S has a Noetherian underlying
topological space, or if S is locally Noetherian). Let F be a sheaf of sets on Sétale.
The following are equivalent

(1) F is finite locally constant, and
(2) all stalks of F are finite sets and all specialization maps sp : Fs → Ft are

bijective.
Proof. Assume (2). Let s be a geometric point of S lying over s ∈ S. In order to
prove (1) we have to find an étale neighbourhood (U, u) of (S, s) such that F|U is
constant. We may and do assume S is affine.
Since Fs is finite, we can choose (U, u), n ≥ 0, and pairwise distinct elements
σ1, . . . , σn ∈ F(U) such that {σ1, . . . , σn} ⊂ F(U) maps bijectively to Fs via the
map F(U)→ Fs. Consider the map

φ : {1, . . . , n} −→ F|U

https://stacks.math.columbia.edu/tag/0GJ5
https://stacks.math.columbia.edu/tag/0GJ6
https://stacks.math.columbia.edu/tag/0GJ7


ÉTALE COHOMOLOGY 133

on Uétale defined by σ1, . . . , σn. This map is a bijection on stalks at u by construc-
tion. Let us consider the subset

E = {u′ ∈ U | φu′ is bijective} ⊂ U
Here u′ is any geometric point of U lying over u′ (the condition is independent of
the choice by Remark 29.8). The image u ∈ U of u is in E. By our assumption on
the specialization maps for F , by Remark 75.3, and by Lemma 75.4 we see that E
is closed under specializations and generalizations in the topological space U .
After shrinking U we may assume U is affine too. By Descent, Lemma 16.3 we
see that U has a finite number of irreducible components. After removing the irre-
ducible components which do not pass through u, we may assume every irreducible
component of U passes through u. Since U is a sober topological space it follows
that E = U and we conclude that φ is an isomorphism by Theorem 29.10. Thus
(1) follows.
We omit the proof that (1) implies (2). □

Lemma 75.6.0GKC Let S be a scheme such that every quasi-compact open of S has finite
number of irreducible components (for example if S has a Noetherian underlying
topological space, or if S is locally Noetherian). Let Λ be a Noetherian ring. Let F
be a sheaf of Λ-modules on Sétale. The following are equivalent

(1) F is a finite type, locally constant sheaf of Λ-modules, and
(2) all stalks of F are finite Λ-modules and all specialization maps sp : Fs → Ft

are bijective.

Proof. The proof of this lemma is the same as the proof of Lemma 75.5. Assume
(2). Let s be a geometric point of S lying over s ∈ S. In order to prove (1) we have
to find an étale neighbourhood (U, u) of (S, s) such that F|U is constant. We may
and do assume S is affine.
Since M = Fs is a finite Λ-module and Λ is Noetherian, we can choose a presenta-
tion

Λ⊕m A−→ Λ⊕n →M → 0
for some matrix A = (aji) with coefficients in Λ. We can choose (U, u) and elements
σ1, . . . , σn ∈ F(U) such that

∑
ajiσi = 0 in F(U) and such that the images of σi

in Fs = M are the images of the standard basis element of Λn in the presentation
of M given above. Consider the map

φ : M −→ F|U
on Uétale defined by σ1, . . . , σn. This map is a bijection on stalks at u by construc-
tion. Let us consider the subset

E = {u′ ∈ U | φu′ is bijective} ⊂ U
Here u′ is any geometric point of U lying over u′ (the condition is independent of
the choice by Remark 29.8). The image u ∈ U of u is in E. By our assumption on
the specialization maps for F , by Remark 75.3, and by Lemma 75.4 we see that E
is closed under specializations and generalizations in the topological space U .
After shrinking U we may assume U is affine too. By Descent, Lemma 16.3 we
see that U has a finite number of irreducible components. After removing the irre-
ducible components which do not pass through u, we may assume every irreducible
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component of U passes through u. Since U is a sober topological space it follows
that E = U and we conclude that φ is an isomorphism by Theorem 29.10. Thus
(1) follows.
We omit the proof that (1) implies (2). □

Lemma 75.7.0GJ8 Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let K ∈ D+(Xétale). Let s be a geometric point of S and let t be a
geometric point of Spec(OshS,s). We have a commutative diagram

(Rf∗K)s sp
// (Rf∗K)t

RΓ(X ×S Spec(OshS,s),K) // RΓ(X ×S Spec(Osh
S,t

),K)

where the bottom horizontal arrow arises as pullback by the morphism idX × c
where c : Spec(Osh

S,t
) → Spec(Osh

S,S
) is the morphism introduced in Remark 75.2.

The vertical arrows are given by Theorem 53.1.

Proof. This follows immediately from the description of sp in Remark 75.2. □

Remark 75.8.0GJ9 Let f : X → S be a morphism of schemes. Let K ∈ D(Xétale).
Let s be a geometric point of S and let t be a geometric point of Spec(OshS,s). Let
c be as in Remark 75.2. We can always make a commutative diagram

(Rf∗K)s //

sp

��

RΓ(X ×S Spec(OshS,s),K) //

(idX ×c)−1

��

RΓ(Xs,K)

(Rf∗K)t // RΓ(X ×S Spec(Osh
S,t

),K) // RΓ(Xt,K)

where the horizontal arrows are those of Remark 53.2. In general there won’t be a
vertical map on the right between the cohomologies of K on the fibres fitting into
this diagram, even in the case of Lemma 75.7.

76. Complexes with constructible cohomology

095V Let Λ be a ring. Denote D(Xétale,Λ) the derived category of sheaves of Λ-modules
on Xétale. We denote by Db(Xétale,Λ) (respectively D+, D−) the full subcategory
of bounded (resp. above, below) complexes in D(Xétale,Λ).

Definition 76.1.095W Let X be a scheme. Let Λ be a Noetherian ring. We denote
Dc(Xétale,Λ) the full subcategory of D(Xétale,Λ) of complexes whose cohomology
sheaves are constructible sheaves of Λ-modules.

This definition makes sense by Lemma 71.6 and Derived Categories, Section 17.
Thus we see that Dc(Xétale,Λ) is a strictly full, saturated triangulated subcategory
of D(Xétale,Λ).

Lemma 76.2.095X Let Λ be a Noetherian ring. If j : U → X is an étale morphism of
schemes, then

(1) K|U ∈ Dc(Uétale,Λ) if K ∈ Dc(Xétale,Λ), and
(2) j!M ∈ Dc(Xétale,Λ) if M ∈ Dc(Uétale,Λ) and the morphism j is quasi-

compact and quasi-separated.
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Proof. The first assertion is clear. The second follows from the fact that j! is exact
and Lemma 73.1. □

Lemma 76.3.095Y Let Λ be a Noetherian ring. Let f : X → Y be a morphism of
schemes. If K ∈ Dc(Yétale,Λ) then Lf∗K ∈ Dc(Xétale,Λ).

Proof. This follows as f−1 = f∗ is exact and Lemma 71.5. □

Lemma 76.4.095Z Let X be a quasi-compact and quasi-separated scheme. Let Λ be a
Noetherian ring. Let K ∈ D(Xétale,Λ) and b ∈ Z such that Hb(K) is constructible.
Then there exist a sheaf F which is a finite direct sum of jU !Λ with U ∈ Ob(Xétale)
affine and a map F [−b]→ K in D(Xétale,Λ) inducing a surjection F → Hb(K).

Proof. Represent K by a complex K• of sheaves of Λ-modules. Consider the
surjection

Ker(Kb → Kb+1) −→ Hb(K)

By Modules on Sites, Lemma 30.6 we may choose a surjection
⊕

i∈I jUi!Λ →
Ker(Kb → Kb+1) with Ui affine. For I ′ ⊂ I finite, denote HI′ ⊂ Hb(K) the
image of

⊕
i∈I′ jUi!Λ. By Lemma 71.8 we see that HI′ = Hb(K) for some I ′ ⊂ I

finite. The lemma follows taking F =
⊕

i∈I′ jUi!Λ. □

Lemma 76.5.0960 Let X be a quasi-compact and quasi-separated scheme. Let Λ be a
Noetherian ring. Let K ∈ D−(Xétale,Λ). Then the following are equivalent

(1) K is in Dc(Xétale,Λ),
(2) K can be represented by a bounded above complex whose terms are finite

direct sums of jU !Λ with U ∈ Ob(Xétale) affine,
(3) K can be represented by a bounded above complex of flat constructible

sheaves of Λ-modules.

Proof. It is clear that (2) implies (3) and that (3) implies (1). Assume K is in
D−
c (Xétale,Λ). Say Hi(K) = 0 for i > b. By induction on a we will construct

a complex Fa → . . . → Fb such that each F i is a finite direct sum of jU !Λ with
U ∈ Ob(Xétale) affine and a map F• → K which induces an isomorphismHi(F•)→
Hi(K) for i > a and a surjection Ha(F•) → Ha(K). For a = b this can be done
by Lemma 76.4. Given such a datum choose a distinguished triangle

F• → K → L→ F•[1]

Then we see that Hi(L) = 0 for i ≥ a. Choose Fa−1[−a + 1] → L as in Lemma
76.4. The composition Fa−1[−a+ 1]→ L→ F• corresponds to a map Fa−1 → Fa
such that the composition with Fa → Fa+1 is zero. By TR4 we obtain a map

(Fa−1 → . . .→ Fb)→ K

in D(Xétale,Λ). This finishes the induction step and the proof of the lemma. □

Lemma 76.6.0961 Let X be a scheme. Let Λ be a Noetherian ring. Let K,L ∈
D−
c (Xétale,Λ). Then K ⊗L

Λ L is in D−
c (Xétale,Λ).

Proof. This follows from Lemmas 76.5 and 71.9. □
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77. Tor finite with constructible cohomology

0F4M Let X be a scheme and let Λ be a Noetherian ring. An often used subcategory
of the derived category Dc(Xétale,Λ) defined in Section 76 is the full subcategory
consisting of objects having (locally) finite tor dimension. Here is the formal defi-
nition.

Definition 77.1.03TQ Let X be a scheme. Let Λ be a Noetherian ring. We denote
Dctf (Xétale,Λ) the full subcategory of Dc(Xétale,Λ) consisting of objects having
locally finite tor dimension.

This is a strictly full, saturated triangulated subcategory of Dc(Xétale,Λ) and
D(Xétale,Λ). By our conventions, see Cohomology on Sites, Definition 46.1, we
see that

Dctf (Xétale,Λ) ⊂ Db
c(Xétale,Λ) ⊂ Db(Xétale,Λ)

if X is quasi-compact. A good way to think about objects of Dctf (Xétale,Λ) is
given in Lemma 77.3.

Remark 77.2.03TS Objects in the derived category Dctf (Xétale,Λ) in some sense
have better global properties than the perfect objects in D(OX). Namely, it can
happen that a complex of OX -modules is locally quasi-isomorphic to a finite com-
plex of finite locally free OX -modules, without being globally quasi-isomorphic to
a bounded complex of locally free OX -modules. The following lemma shows this
does not happen for Dctf on a Noetherian scheme.

Lemma 77.3.03TT Let Λ be a Noetherian ring. Let X be a quasi-compact and quasi-
separated scheme. Let K ∈ D(Xétale,Λ). The following are equivalent

(1) K ∈ Dctf (Xétale,Λ), and
(2) K can be represented by a finite complex of constructible flat sheaves of

Λ-modules.
In fact, if K has tor amplitude in [a, b] then we can represent K by a complex
Fa → . . .→ Fb with Fp a constructible flat sheaf of Λ-modules.

Proof. It is clear that a finite complex of constructible flat sheaves of Λ-modules
has finite tor dimension. It is also clear that it is an object of Dc(Xétale,Λ). Thus
we see that (2) implies (1).
Assume (1). Choose a, b ∈ Z such that Hi(K ⊗L

Λ G) = 0 if i ̸∈ [a, b] for all sheaves
of Λ-modules G. We will prove the final assertion holds by induction on b − a. If
a = b, then K = Ha(K)[−a] is a flat constructible sheaf and the result holds. Next,
assume b > a. Represent K by a complex K• of sheaves of Λ-modules. Consider
the surjection

Ker(Kb → Kb+1) −→ Hb(K)
By Lemma 73.6 we can find finitely many affine schemes Ui étale over X and a
surjection

⊕
jUi!ΛUi

→ Hb(K). After replacing Ui by standard étale coverings
{Uij → Ui} we may assume this surjection lifts to a map F =

⊕
jUi!ΛUi

→
Ker(Kb → Kb+1). This map determines a distinguished triangle

F [−b]→ K → L→ F [−b+ 1]
in D(Xétale,Λ). Since Dctf (Xétale,Λ) is a triangulated subcategory we see that L is
in it too. In fact L has tor amplitude in [a, b−1] as F surjects onto Hb(K) (details
omitted). By induction hypothesis we can find a finite complex Fa → . . .→ Fb−1
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of flat constructible sheaves of Λ-modules representing L. The map L→ F [−b+ 1]
corresponds to a map Fb → F annihilating the image of Fb−1 → Fb. Then it
follows from axiom TR3 that K is represented by the complex

Fa → . . .→ Fb−1 → Fb

which finishes the proof. □

Remark 77.4.03TR Let Λ be a Noetherian ring. Let X be a scheme. For a bounded
complex K• of constructible flat Λ-modules on Xétale each stalk Kp

x is a finite
projective Λ-module. Hence the stalks of the complex are perfect complexes of
Λ-modules.

Lemma 77.5.0962 Let Λ be a Noetherian ring. If j : U → X is an étale morphism of
schemes, then

(1) K|U ∈ Dctf (Uétale,Λ) if K ∈ Dctf (Xétale,Λ), and
(2) j!M ∈ Dctf (Xétale,Λ) if M ∈ Dctf (Uétale,Λ) and the morphism j is quasi-

compact and quasi-separated.

Proof. Perhaps the easiest way to prove this lemma is to reduce to the case where
X is affine and then apply Lemma 77.3 to translate it into a statement about finite
complexes of flat constructible sheaves of Λ-modules where the result follows from
Lemma 73.1. □

Lemma 77.6.0963 Let Λ be a Noetherian ring. Let f : X → Y be a morphism of
schemes. If K ∈ Dctf (Yétale,Λ) then Lf∗K ∈ Dctf (Xétale,Λ).

Proof. Apply Lemma 77.3 to reduce this to a question about finite complexes of
flat constructible sheaves of Λ-modules. Then the statement follows as f−1 = f∗ is
exact and Lemma 71.5. □

Lemma 77.7.09BI Let X be a connected scheme. Let Λ be a Noetherian ring. Let
K ∈ Dctf (Xétale,Λ) have locally constant cohomology sheaves. Then there exists a
finite complex of finite projective Λ-modules M• and an étale covering {Ui → X}
such that K|Ui

∼= M•|Ui in D(Ui,étale,Λ).

Proof. Choose an étale covering {Ui → X} such that K|Ui
is constant, say K|Ui

∼=
M•
i Ui

for some finite complex of finite Λ-modules M•
i . See Cohomology on Sites,

Lemma 53.1. Observe that Ui ×X Uj is empty if M•
i is not isomorphic to M•

j in
D(Λ). For each complex of Λ-modules M• let IM• = {i ∈ I |M•

i
∼= M• in D(Λ)}.

As étale morphisms are open we see that UM• =
⋃
i∈IM• Im(Ui → X) is an open

subset of X. Then X =
∐
UM• is a disjoint open covering of X. As X is connected

only one UM• is nonempty. As K is in Dctf (Xétale,Λ) we see that M• is a perfect
complex of Λ-modules, see More on Algebra, Lemma 74.2. Hence we may assume
M• is a finite complex of finite projective Λ-modules. □

78. Torsion sheaves

0DDB A brief section on torsion abelian sheaves and their étale cohomology. Let C be a
site. We have shown in Cohomology on Sites, Lemma 19.8 that any object in D(C)
whose cohomology sheaves are torsion sheaves, can be represented by a complex all
of whose terms are torsion.

Lemma 78.1.0DDC Let X be a quasi-compact and quasi-separated scheme.
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(1) If F is a torsion abelian sheaf on Xétale, then Hn
étale(X,F) is a torsion

abelian group for all n.
(2) If K in D+(Xétale) has torsion cohomology sheaves, then Hn

étale(X,K) is
a torsion abelian group for all n.

Proof. To prove (1) we write F =
⋃
F [n] where F [d] is the d-torsion subsheaf.

By Lemma 51.4 we have Hn
étale(X,F) = colimHn

étale(X,F [d]). This proves (1) as
Hn
étale(X,F [d]) is annihilated by d.

To prove (2) we can use the spectral sequence Ep,q2 = Hp
étale(X,Hq(K)) converging

to Hn
étale(X,K) (Derived Categories, Lemma 21.3) and the result for sheaves. □

Lemma 78.2.0DDD Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes.

(1) If F is a torsion abelian sheaf on Xétale, then Rnf∗F is a torsion abelian
sheaf on Yétale for all n.

(2) If K in D+(Xétale) has torsion cohomology sheaves, then Rf∗K is an object
of D+(Yétale) whose cohomology sheaves are torsion abelian sheaves.

Proof. Proof of (1). Recall that Rnf∗F is the sheaf associated to the presheaf
V 7→ Hn

étale(X ×Y V,F) on Yétale. See Cohomology on Sites, Lemma 7.4. If we
choose V affine, then X ×Y V is quasi-compact and quasi-separated because f is,
hence we can apply Lemma 78.1 to see that Hn

étale(X ×Y V,F) is torsion.
Proof of (2). Recall that Rnf∗K is the sheaf associated to the presheaf V 7→
Hn
étale(X ×Y V,K) on Yétale. See Cohomology on Sites, Lemma 20.6. If we choose

V affine, then X ×Y V is quasi-compact and quasi-separated because f is, hence
we can apply Lemma 78.1 to see that Hn

étale(X ×Y V,K) is torsion. □

79. Cohomology with support in a closed subscheme

09XP Let X be a scheme and let Z ⊂ X be a closed subscheme. Let F be an abelian
sheaf on Xétale. We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}
be the sections with support in Z (Definition 31.3). This is a left exact functor
which is not exact in general. Hence we obtain a derived functor

RΓZ(X,−) : D(Xétale) −→ D(Ab)
and cohomology groups with support in Z defined by Hq

Z(X,F) = RqΓZ(X,F).
Let I be an injective abelian sheaf on Xétale. Let U = X \Z. Then the restriction
map I(X) → I(U) is surjective (Cohomology on Sites, Lemma 12.6) with kernel
ΓZ(X, I). It immediately follows that for K ∈ D(Xétale) there is a distinguished
triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]
in D(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .

for any K in D(Xétale).
For an abelian sheaf F on Xétale we can consider the subsheaf of sections with
support in Z, denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ×X Z}

https://stacks.math.columbia.edu/tag/0DDD
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Here we use the support of a section from Definition 31.3. Using the equivalence
of Proposition 46.4 we may view HZ(F) as an abelian sheaf on Zétale. Thus we
obtain a functor

Ab(Xétale) −→ Ab(Zétale), F 7−→ HZ(F)
which is left exact, but in general not exact.

Lemma 79.1.09XQ Let i : Z → X be a closed immersion of schemes. Let I be an
injective abelian sheaf on Xétale. Then HZ(I) is an injective abelian sheaf on Zétale.

Proof. Observe that for any abelian sheaf G on Zétale we have
HomZ(G,HZ(F)) = HomX(i∗G,F)

because after all any section of i∗G has support in Z. Since i∗ is exact (Section 46)
and as I is injective on Xétale we conclude that HZ(I) is injective on Zétale. □

Denote
RHZ : D(Xétale) −→ D(Zétale)

the derived functor. We set HqZ(F) = RqHZ(F) so that H0
Z(F) = HZ(F). By the

lemma above we have a Grothendieck spectral sequence
Ep,q2 = Hp(Z,HqZ(F))⇒ Hp+q

Z (X,F)

Lemma 79.2.09XR Let i : Z → X be a closed immersion of schemes. Let G be an
injective abelian sheaf on Zétale. Then HpZ(i∗G) = 0 for p > 0.

Proof. This is true because the functor i∗ is exact and transforms injective abelian
sheaves into injective abelian sheaves (Cohomology on Sites, Lemma 14.2). □

Lemma 79.3.0A45 Let i : Z → X be a closed immersion of schemes. Let j : U → X be
the inclusion of the complement of Z. Let F be an abelian sheaf on Xétale. There
is a distinguished triangle

i∗RHZ(F)→ F → Rj∗(F|U )→ i∗RHZ(F)[1]
in D(Xétale). This produces an exact sequence

0→ i∗HZ(F)→ F → j∗(F|U )→ i∗H1
Z(F)→ 0

and isomorphisms Rpj∗(F|U ) ∼= i∗Hp+1
Z (F) for p ≥ 1.

Proof. To get the distinguished triangle, choose an injective resolution F → I•.
Then we obtain a short exact sequence of complexes

0→ i∗HZ(I•)→ I• → j∗(I•|U )→ 0
by the discussion above. Thus the distinguished triangle by Derived Categories,
Section 12. □

Let X be a scheme and let Z ⊂ X be a closed subscheme. We denote DZ(Xétale) the
strictly full saturated triangulated subcategory of D(Xétale) consisting of complexes
whose cohomology sheaves are supported on Z. Note that DZ(Xétale) only depends
on the underlying closed subset of X.

Lemma 79.4.0AEG Let i : Z → X be a closed immersion of schemes. The map
Rismall,∗ = ismall,∗ : D(Zétale) → D(Xétale) induces an equivalence D(Zétale) →
DZ(Xétale) with quasi-inverse

i−1
small|DZ (Xétale) = RHZ |DZ (Xétale)
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Proof. Recall that i−1
small and ismall,∗ is an adjoint pair of exact functors such

that i−1
smallismall,∗ is isomorphic to the identify functor on abelian sheaves. See

Proposition 46.4 and Lemma 36.2. Thus ismall,∗ : D(Zétale)→ DZ(Xétale) is fully
faithful and i−1

small determines a left inverse. On the other hand, suppose that K
is an object of DZ(Xétale) and consider the adjunction map K → ismall,∗i

−1
smallK.

Using exactness of ismall,∗ and i−1
small this induces the adjunction maps Hn(K) →

ismall,∗i
−1
smallH

n(K) on cohomology sheaves. Since these cohomology sheaves are
supported on Z we see these adjunction maps are isomorphisms and we conclude
that D(Zétale)→ DZ(Xétale) is an equivalence.
To finish the proof we have to show that RHZ(K) = i−1

smallK if K is an object of
DZ(Xétale). To do this we can use that K = ismall,∗i

−1
smallK as we’ve just proved

this is the case. Then we can choose a K-injective representative I• for i−1
smallK.

Since ismall,∗ is the right adjoint to the exact functor i−1
small, the complex ismall,∗I•

is K-injective (Derived Categories, Lemma 31.9). We see that RHZ(K) is computed
by HZ(ismall,∗I•) = I• as desired. □

Lemma 79.5.0A46 Let X be a scheme. Let Z ⊂ X be a closed subscheme. Let F be
a quasi-coherent OX-module and denote Fa the associated quasi-coherent sheaf on
the small étale site of X (Proposition 17.1). Then

(1) Hq
Z(X,F) agrees with Hq

Z(Xétale,Fa),
(2) if the complement of Z is retrocompact in X, then i∗HqZ(Fa) is a quasi-

coherent sheaf of OX-modules equal to (i∗HqZ(F))a.
Proof. Let j : U → X be the inclusion of the complement of Z. The statement (1)
on cohomology groups follows from the long exact sequences for cohomology with
supports and the agreements Hq(Xétale,Fa) = Hq(X,F) and Hq(Uétale,Fa) =
Hq(U,F), see Theorem 22.4. If j : U → X is a quasi-compact morphism, i.e., if
U ⊂ X is retrocompact, then Rqj∗ transforms quasi-coherent sheaves into quasi-
coherent sheaves (Cohomology of Schemes, Lemma 4.5) and commutes with taking
associated sheaf on étale sites (Descent, Lemma 9.5). We conclude by applying
Lemma 79.3. □

80. Schemes with strictly henselian local rings

0EZN In this section we collect some results about the étale cohomology of schemes whose
local rings are strictly henselian. For example, here is a fun generalization of Lemma
55.1.
Lemma 80.1.09AX Let S be a scheme all of whose local rings are strictly henselian.
Then for any abelian sheaf F on Sétale we have Hi(Sétale,F) = Hi(SZar,F).
Proof. Let ϵ : Sétale → SZar be the morphism of sites given by the inclusion
functor. The Zariski sheaf Rpϵ∗F is the sheaf associated to the presheaf U 7→
Hp
étale(U,F). Thus the stalk at x ∈ X is colimHp

étale(U,F) = Hp
étale(Spec(OX,x),Gx)

where Gx denotes the pullback of F to Spec(OX,x), see Lemma 51.5. Thus the
higher direct images of Rpϵ∗F are zero by Lemma 55.1 and we conclude by the
Leray spectral sequence. □

Lemma 80.2.0GY0 Let R be a ring all of whose local rings are strictly henselian. Let
F be a sheaf on Spec(R)étale. Assume that for all f, g ∈ R the kernel of

H1
étale(D(f + g),F) −→ H1

étale(D(f(f + g)),F)⊕H1
étale(D(g(f + g)),F)
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is zero. Then Hq
étale(Spec(R),F) = 0 for q > 0.

Proof. By Lemma 80.1 we see that étale cohomology of F agrees with Zariski
cohomology on any open of Spec(R). We will prove by induction on i the statement:
for h ∈ R we have Hq

étale(D(h),F) = 0 for 1 ≤ q ≤ i. The base case i = 0 is trivial.
Assume i ≥ 1.

Let ξ ∈ Hq
étale(D(h),F) for some 1 ≤ q ≤ i and h ∈ R. If q < i then we are

done by induction, so we assume q = i. After replacing R by Rh we may assume
ξ ∈ Hi

étale(Spec(R),F); some details omitted. Let I ⊂ R be the set of elements
f ∈ R such that ξ|D(f) = 0. Since ξ is Zariski locally trivial, it follows that for
every prime p of R there exists an f ∈ I with f ̸∈ p. Thus if we can show that I is
an ideal, then 1 ∈ I and we’re done. It is clear that f ∈ I, r ∈ R implies rf ∈ I.
Thus we assume that f, g ∈ I and we show that f + g ∈ I. If q = i = 1, then this is
exactly the assumption of the lemma! Whence the result for i = 1. For q = i > 1,
note that

D(f + g) = D(f(f + g)) ∪D(g(f + g))
By Mayer-Vietoris (Cohomology, Lemma 8.2 which applies as étale cohomology on
open subschemes of Spec(R) equals Zariski cohomology) we have an exact sequence

Hi−1
étale(D(fg(f + g)),F)

��
Hi
étale(D(f + g),F)

��
Hi
étale(D(f(f + g)),F)⊕Hi

étale(D(g(f + g)),F)

and the result follows as the first group is zero by induction. □

Lemma 80.3.09AY Let S be an affine scheme such that (1) all points are closed, and
(2) all residue fields are separably algebraically closed. Then for any abelian sheaf
F on Sétale we have Hi(Sétale,F) = 0 for i > 0.

Proof. Condition (1) implies that the underlying topological space of S is profinite,
see Algebra, Lemma 26.5. Thus the higher cohomology groups of an abelian sheaf
on the topological space S (i.e., Zariski cohomology) is trivial, see Cohomology,
Lemma 22.3. The local rings are strictly henselian by Algebra, Lemma 153.10.
Thus étale cohomology of S is computed by Zariski cohomology by Lemma 80.1
and the proof is done. □

The spectrum of an absolutely integrally closed ring is an example of a scheme all
of whose local rings are strictly henselian, see More on Algebra, Lemma 14.7. It
turns out that normal domains with separably closed fraction fields have an even
stronger property as explained in the following lemma.

Lemma 80.4.09Z9 Let X be an integral normal scheme with separably closed function
field.

(1) A separated étale morphism U → X is a disjoint union of open immersions.
(2) All local rings of X are strictly henselian.
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Proof. Let R be a normal domain whose fraction field is separably algebraically
closed. Let R → A be an étale ring map. Then A ⊗R K is as a K-algebra a
finite product

∏
i=1,...,nK of copies of K. Let ei, i = 1, . . . , n be the corresponding

idempotents of A⊗RK. Since A is normal (Algebra, Lemma 163.9) the idempotents
ei are in A (Algebra, Lemma 37.12). Hence A =

∏
Aei and we may assume

A⊗RK = K. Since A ⊂ A⊗RK = K (by flatness of R→ A and since R ⊂ K) we
conclude that A is a domain. By the same argument we conclude that A ⊗R A ⊂
(A ⊗R A) ⊗R K = K. It follows that the map A ⊗R A → A is injective as well as
surjective. Thus R → A defines an open immersion by Morphisms, Lemma 10.2
and Étale Morphisms, Theorem 14.1.

Let f : U → X be a separated étale morphism. Let η ∈ X be the generic point and
let f−1({η}) = {ξi}i∈I . The result of the previous paragraph shows the following:
For any affine open U ′ ⊂ U whose image in X is contained in an affine we have
U ′ =

∐
i∈I U

′
i where U ′

i is the set of point of U ′ which are specializations of ξi.
Moreover, the morphism U ′

i → X is an open immersion. It follows that Ui =
{ξi} is an open and closed subscheme of U and that Ui → X is locally on the
source an isomorphism. By Morphisms, Lemma 49.7 the fact that Ui → X is
separated, implies that Ui → X is injective and we conclude that Ui → X is an
open immersion, i.e., (1) holds.

Part (2) follows from part (1) and the description of the strict henselization of OX,x
as the local ring at x on the étale site of X (Lemma 33.1). It can also be proved
directly, see Fundamental Groups, Lemma 12.2. □

Lemma 80.5.0EZP Let f : X → Y be a morphism of schemes where X is an integral
normal scheme with separably closed function field. Then Rqf∗M = 0 for q > 0
and any abelian group M .

Proof. Recall that Rqf∗M is the sheaf associated to the presheaf V 7→ Hq
étale(V ×Y

X,M) on Yétale, see Lemma 51.6. If V is affine, then V ×Y X → X is separated and
étale. Hence V ×Y X =

∐
Ui is a disjoint union of open subschemes Ui of X, see

Lemma 80.4. By Lemma 80.1 we see that Hq
étale(Ui,M) is equal to Hq

Zar(Ui,M).
This vanishes by Cohomology, Lemma 20.2. □

Lemma 80.6.09ZA Let X be an affine integral normal scheme with separably closed
function field. Let Z ⊂ X be a closed subscheme. Let V → Z be an étale morphism
with V affine. Then V is a finite disjoint union of open subschemes of Z. If V → Z
is surjective and finite étale, then V → Z has a section.

Proof. By Algebra, Lemma 143.10 we can lift V to an affine scheme U étale over
X. Apply Lemma 80.4 to U → X to get the first statement.

The final statement is a consequence of the first. Let V =
∐
i=1,...,n Vi be a finite

decomposition into open and closed subschemes with Vi → Z an open immersion.
As V → Z is finite we see that Vi → Z is also closed. Let Ui ⊂ Z be the image.
Then we have a decomposition into open and closed subschemes

Z =
∐

(A,B)

⋂
i∈A

Ui ∩
⋂

i∈B
U ci

where the disjoint union is over {1, . . . , n} = A ⨿ B where A has at least one
element. Each of the strata is contained in a single Ui and we find our section. □
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Lemma 80.7.09ZB Let X be a normal integral affine scheme with separably closed
function field. Let Z ⊂ X be a closed subscheme. For any finite abelian group M
we have H1

étale(Z,M) = 0.

Proof. By Cohomology on Sites, Lemma 4.3 an element of H1
étale(Z,M) corre-

sponds to a M -torsor F on Zétale. Such a torsor is clearly a finite locally constant
sheaf. Hence F is representable by a scheme V finite étale over Z, Lemma 64.4. Of
course V → Z is surjective as a torsor is locally trivial. Since V → Z has a section
by Lemma 80.6 we are done. □

Lemma 80.8.09ZC Let X be a normal integral affine scheme with separably closed
function field. Let Z ⊂ X be a closed subscheme. For any finite abelian group M
we have Hq

étale(Z,M) = 0 for q ≥ 1.

Proof. Write X = Spec(R) and Z = Spec(R′) so that we have a surjection of rings
R → R′. All local rings of R′ are strictly henselian by Lemma 80.4 and Algebra,
Lemma 156.4. Furthermore, we see that for any f ′ ∈ R′ there is a surjection
Rf → R′

f ′ where f ∈ R is a lift of f ′. Since Rf is a normal domain with separably
closed fraction field we see that H1

étale(D(f ′),M) = 0 by Lemma 80.7. Thus we
may apply Lemma 80.2 to Z = Spec(R′) to conclude. □

Lemma 80.9.09ZD Let X be an affine scheme.
(1) There exists an integral surjective morphism X ′ → X such that for every

closed subscheme Z ′ ⊂ X ′, every finite abelian group M , and every q ≥ 1
we have Hq

étale(Z ′,M) = 0.
(2) For any closed subscheme Z ⊂ X, finite abelian group M , q ≥ 1, and

ξ ∈ Hq
étale(Z,M) there exists a finite surjective morphism X ′ → X of finite

presentation such that ξ pulls back to zero in Hq
étale(X ′ ×X Z,M).

Proof. Write X = Spec(A). Write A = Z[xi]/J for some ideal J . Let R be the
integral closure of Z[xi] in an algebraic closure of the fraction field of Z[xi]. Let
A′ = R/JR and set X ′ = Spec(A′). This gives an example as in (1) by Lemma
80.8.

Proof of (2). Let X ′ → X be the integral surjective morphism we found above.
Certainly, ξ maps to zero in Hq

étale(X ′ ×X Z,M). We may write X ′ as a limit
X ′ = limX ′

i of schemes finite and of finite presentation over X; this is easy to do in
our current affine case, but it is a special case of the more general Limits, Lemma
7.3. By Lemma 51.5 we see that ξ maps to zero in Hq

étale(X ′
i ×X Z,M) for some i

large enough. □

81. Absolutely integrally closed vanishing

0GY1 Recall that we say a ring R is absolutely integrally closed if every monic polynomial
over R has a root in R (More on Algebra, Definition 14.1). In this section we prove
that the étale cohomology of Spec(R) with coefficients in a finite torsion group
vanishes in positive degrees (Proposition 81.5) thereby slightly improving the earlier
Lemma 80.8. We suggest the reader skip this section.

Lemma 81.1.0GY2 Let A be a ring. Let a, b ∈ A such that aA+ bA = A and a mod bA
is a root of unity. Then there exists a monogenic extension A ⊂ B and an element
y ∈ B such that u = a− by is a unit.
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Proof. Say an ≡ 1 mod bA. In particular ai is a unit modulo bmA for all i,m ≥ 1.
We claim there exist a1, . . . , an ∈ A such that

1 = an + a1a
n−1b+ a2a

n−2b2 + . . .+ anb
n

Namely, since 1−an ∈ bA we can find an element a1 ∈ A such that 1−an−a1a
n−1b ∈

b2A using the unit property of an−1 modulo bA. Next, we can find an element
a2 ∈ A such that 1−an−a1a

n−1b−a2a
n−2b2 ∈ b3A. And so on. Eventually we find

a1, . . . , an−1 ∈ A such that 1− (an+a1a
n−1b+a2a

n−2b2 + . . .+an−1ab
n−1) ∈ bnA.

This allows us to find an ∈ A such that the displayed equality holds.

With a1, . . . , an as above we claim that setting

B = A[y]/(yn + a1y
n−1 + a2y

n−2 + . . .+ an)

works. Namely, suppose that q ⊂ B is a prime ideal lying over p ⊂ A. To get
a contradiction assume u = a − by is in q. If b ∈ p then a ̸∈ p as aA + bA = A
and hence u is not in q. Thus we may assume b ̸∈ p, i.e., b ̸∈ q. This implies that
y mod q is equal to a/b mod q. However, then we obtain

0 = yn+a1y
n−1+a2y

n−2+. . .+an = b−n(an+a1a
n−1b+a2a

n−2b2+. . .+anbn) = b−n

a contradiction. This finishes the proof. □

In order to explain the proof we need to introduce some group schemes. Fix a prime
number ℓ. Let

A = Z[ζ] = Z[x]/(xℓ−1 + xℓ−2 + . . .+ 1)
In other words A is the monogenic extension of Z generated by a primitive ℓth root
of unity ζ. We set

π = ζ − 1
A calculation (omitted) shows that ℓ is divisible by πℓ−1 in A. Our first group
scheme over A is

G = Spec(A[s, 1
πs+ 1])

with group law given by the comultiplication

µ : A[s, 1
πs+ 1] −→ A[s, 1

πs+ 1]⊗A A[s, 1
πs+ 1], s 7−→ πs⊗ s+ s⊗ 1 + 1⊗ s

With this choice we have

µ(πs+ 1) = (πs+ 1)⊗ (πs+ 1)

and hence we indeed have an A-algebra map as indicated. We omit the verification
that this indeed defines a group law. Our second group scheme over A is

H = Spec(A[t, 1
πℓt+ 1])

with group law given by the comultiplication

µ : A[t, 1
πℓt+ 1] −→ A[t, 1

πℓt+ 1]⊗A A[t, 1
πℓt+ 1], t 7−→ πℓt⊗ t+ t⊗ 1 + 1⊗ t

The same verification as before shows that this defines a group law. Next, we
observe that the polynomial

Φ(s) = (πs+ 1)ℓ − 1
πℓ
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is in A[s] and of degree ℓ and monic in s. Namely, the coefficicient of si for 0 < i < ℓ

is equal to
(
ℓ
i

)
πi−ℓ and since πℓ−1 divides ℓ in A this is an element of A. We obtain

a ring map
A[t, 1

πℓt+ 1] −→ A[s, 1
πs+ 1], t 7−→ Φ(s)

which the reader easily verifies is compatible with the comultiplications. Thus we
get a morphism of group schemes

f : G→ H

The following lemma in particular shows that this morphism is faithfully flat (in
fact we will see that it is finite étale surjective).

Lemma 81.2.0GY3 We have

A[s, 1
πs+ 1] =

(
A[t, 1

πℓt+ 1]
)

[s]/(Φ(s)− t)

In particular, the Hopf algebra of G is a monogenic extension of the Hopf algebra
of H.

Proof. Follows from the discussion above and the shape of Φ(s). In particular,
note that using Φ(s) = t the element 1

πℓt+1 becomes the element 1
(πs+1)ℓ . □

Next, let us compute the kernel of f . Since the origin of H is given by t = 0 in H
we see that the kernel of f is given by Φ(s) = 0. Now observe that the A-valued
points σ0, . . . , σℓ−1 of G given by

σi : s = ζi − 1
π

= ζi − 1
ζ − 1 = ζi−1 + ζi−2 + . . .+ 1, i = 0, 1, . . . , ℓ− 1

are certainly contained in Ker(f). Moreover, these are all pairwise distinct in all
fibres of G → Spec(A). Also, the reader computes that σi +G σj = σi+j mod ℓ.
Hence we find a closed immersion of group schemes

Z/ℓZ
A
−→ Ker(f)

sending i to σi. However, by construction Ker(f) is finite flat over Spec(A) of degree
ℓ. Hence we conclude that this map is an isomorphism. All in all we conclude that
we have a short exact sequence
(81.2.1)0GY4 0→ Z/ℓZ

A
→ G→ H → 0

of group schemes over A.

Lemma 81.3.0GY5 Let R be an A-algebra which is absolutely integrally closed. Then
G(R)→ H(R) is surjective.

Proof. Let h ∈ H(R) correspond to the A-algebra map A[t, 1
πℓt+1 ]→ R sending t

to a ∈ A. Since Φ(s) is monic we can find b ∈ A with Φ(b) = a. By Lemma 81.2
sending s to b we obtain a unique A-algebra map A[s, 1

πs+1 ]→ R compatible with
the map A[t, 1

πℓt+1 ]→ R above. This in turn corresponds to an element g ∈ G(R)
mapping to h ∈ H(R). □

Lemma 81.4.0GY6 Let R be an A-algebra which is absolutely integrally closed. Let
I, J ⊂ R be ideals with I+J = R. There exists a g ∈ G(R) such that g mod I = σ0
and g mod J = σ1.

https://stacks.math.columbia.edu/tag/0GY3
https://stacks.math.columbia.edu/tag/0GY5
https://stacks.math.columbia.edu/tag/0GY6
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Proof. Choose x ∈ I such that x ≡ 1 mod J . We may and do replace I by xR and
J by (x− 1)R. Then we are looking for an s ∈ R such that

(1) 1 + πs is a unit,
(2) s ≡ 0 mod xR, and
(3) s ≡ 1 mod (x− 1)R.

The last two conditions say that s = x + x(x − 1)y for some y ∈ R. The first
condition says that 1 +πs = 1 +πx+πx(x− 1)y needs to be a unit of R. However,
note that 1 + πx and πx(x− 1) generate the unit ideal of R and that 1 + πx is an
ℓth root of 1 modulo πx(x− 1)7. Thus we win by Lemma 81.1 and the fact that R
is absolutely integrally closed. □

Proposition 81.5.0GY7 Let R be an absolutely integrally closed ring. Let M be a finite
abelian group. Then Hi

étale(Spec(R),M) = 0 for i > 0.

Proof. Since any finite abelian group has a finite filtration whose subquotients are
cyclic of prime order, we may assume M = Z/ℓZ where ℓ is a prime number.
Observe that all local rings of R are strictly henselian, see More on Algebra, Lemma
14.7. Furthermore, any localization of R is also absolutely integrally closed by More
on Algebra, Lemma 14.3. Thus Lemma 80.2 tells us it suffices to show that the
kernel of
H1
étale(D(f + g),Z/ℓZ) −→ H1

étale(D(f(f + g)),Z/ℓZ)⊕H1
étale(D(g(f + g)),Z/ℓZ)

is zero for any f, g ∈ R. After replacing R by Rf+g we reduce to the following claim:
given ξ ∈ H1

étale(Spec(R),Z/ℓZ) and an affine open covering Spec(R) = U ∪V such
that ξ|U and ξ|V are trivial, then ξ = 0.
Let A = Z[ζ] as above. Since Z ⊂ A is monogenic, we can find a ring map A→ R.
From now on we think of R as an A-algebra and we think of Spec(R) as a scheme
over Spec(A). If we base change the short exact sequence (81.2.1) to Spec(R) and
take étale cohomology we obtain

G(R)→ H(R)→ H1
étale(Spec(R),Z/ℓZ)→ H1

étale(Spec(R), G)
Please keep this in mind during the rest of the proof.
Let τ ∈ Γ(U∩V,Z/ℓZ) be a section whose boundary in the Mayer-Vietoris sequence
(Lemma 50.1) gives ξ. For i = 0, 1, . . . , ℓ − 1 let Ai ⊂ U ∩ V be the open and
closed subset where τ has the value i mod ℓ. Thus we have a finite disjoint union
decomposition

U ∩ V = A0 ⨿ . . .⨿Aℓ−1

such that τ is constant on each Ai. For i = 0, 1, . . . , ℓ − 1 denote τi ∈ H0(U ∩
V,Z/ℓZ) the element which is equal to 1 on Ai and equal to 0 on Aj for j ̸= i.
Then τ is a sum of multiples of the τi8. Hence it suffices to show that the cohomology
class corresponding to τi is trivial. This reduces us to the case where τ takes only
two distinct values, namely 1 and 0.
Assume τ takes only the values 1 and 0. Write

U ∩ V = A⨿B

7Because 1 + πx is congruent to 1 modulo π, congruent to 1 modulo x, and congruent to
1 + π = ζ modulo x− 1 and because we have (π) ∩ (x) ∩ (x− 1) = (πx(x− 1)) in A[x].

8Modulo calculation errors we have τ =
∑

iτi.

https://stacks.math.columbia.edu/tag/0GY7
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where A is the locus where τ = 0 and B is the locus where τ = 1. Then A and B
are disjoint closed subsets. Denote A and B the closures of A and B in Spec(R).
Then we have a “banana”: namely we have

A ∩B = Z1 ⨿ Z2

with Z1 ⊂ U and Z2 ⊂ V disjoint closed subsets. Set T1 = Spec(R) \ V and
T2 = Spec(R) \ U . Observe that Z1 ⊂ T1 ⊂ U , Z2 ⊂ T2 ⊂ V , and T1 ∩ T2 = ∅.
Topologically we can write

Spec(R) = A ∪B ∪ T1 ∪ T2

We suggest drawing a picture to visualize this. In order to prove that ξ is zero, we
may and do replace R by its reduction (Proposition 45.4). Below, we think of A, A,
B, B, T1, T2 as reduced closed subschemes of Spec(R). Next, as scheme structures
on Z1 and Z2 we use

Z1 = A ∩ (B ∪ T1) and Z2 = A ∩ (B ∪ T2)

(scheme theoretic unions and intersections as in Morphisms, Definition 4.4).

DenoteX theG-torsor over Spec(R) corresponding to the image of ξ inH1(Spec(R), G).
If X is trivial, then ξ comes from an element h ∈ H(R) (see exact sequence of co-
homology above). However, then by Lemma 81.3 the element h lifts to an element
of G(R) and we conclude ξ = 0 as desired. Thus our goal is to prove that X is
trivial.

Recall that the embedding Z/ℓZ → G(R) sends i mod ℓ to σi ∈ G(R). Observe
that A is the spectrum of an absolutely integrally closed ring (namely a qotient
of R). By Lemma 81.4 we can find g ∈ G(A) with g|A∩Z1

= σ0 and g|A∩Z2
= σ1

(scheme theoretically). Then we can define
(1) g1 ∈ G(U) which is g on A ∩ U , which is σ0 on B ∩ U , and σ0 on T1, and
(2) g2 ∈ G(V ) which is g on A ∩ V , which is σ1 on B ∩ V , and σ1 on T2.

Namely, to find g1 as in (1) we glue the section σ0 on Ω = (B ∪ T1) ∩ U to
the restriction of the section g on Ω′ = A ∩ U . Note that U = Ω ∪ Ω′ (scheme
theoretically) because U is reduced and Ω ∩Ω′ = Z1 (scheme theoretically) by our
choice of Z1. Hence by Morphisms, Lemma 4.6 we have that U is the pushout of
Ω and Ω′ along Z1. Thus we can find g1. Similarly for the existence of g2 in (2).
Then we have

τ = g2|A∪B − g1|A∪B (addition in group law)

and we see that X is trivial thereby finishing the proof. □

82. Affine analog of proper base change

09Z8 In this section we discuss a result by Ofer Gabber, see [Gab94]. This was also
proved by Roland Huber, see [Hub93]. We have already done some of the work
needed for Gabber’s proof in Section 80.

Lemma 82.1.09ZE Let X be an affine scheme. Let F be a torsion abelian sheaf on
Xétale. Let Z ⊂ X be a closed subscheme. Let ξ ∈ Hq

étale(Z,F|Z) for some q > 0.
Then there exists an injective map F → F ′ of torsion abelian sheaves on Xétale

such that the image of ξ in Hq
étale(Z,F ′|Z) is zero.

https://stacks.math.columbia.edu/tag/09ZE


ÉTALE COHOMOLOGY 148

Proof. By Lemmas 73.2 and 51.4 we can find a map G → F with G a constructible
abelian sheaf and ξ coming from an element ζ of Hq

étale(Z,G|Z). Suppose we can
find an injective map G → G′ of torsion abelian sheaves on Xétale such that the
image of ζ in Hq

étale(Z,G′|Z) is zero. Then we can take F ′ to be the pushout
F ′ = G′ ⨿G F

and we conclude the result of the lemma holds. (Observe that restriction to Z is
exact, so commutes with finite limits and colimits and moreover it commutes with
arbitrary colimits as a left adjoint to pushforward.) Thus we may assume F is
constructible.
Assume F is constructible. By Lemma 74.4 it suffices to prove the result when F
is of the form f∗M where M is a finite abelian group and f : Y → X is a finite
morphism of finite presentation (such sheaves are still constructible by Lemma 73.9
but we won’t need this). Since formation of f∗ commutes with any base change
(Lemma 55.3) we see that the restriction of f∗M to Z is equal to the pushforward
of M via Y ×X Z → Z. By the Leray spectral sequence (Proposition 54.2) and
vanishing of higher direct images (Proposition 55.2), we find

Hq
étale(Z, f∗M |Z) = Hq

étale(Y ×X Z,M).
By Lemma 80.9 we can find a finite surjective morphism Y ′ → Y of finite presen-
tation such that ξ maps to zero in Hq(Y ′ ×X Z,M). Denoting f ′ : Y ′ → X the
composition Y ′ → Y → X we claim the map

f∗M −→ f ′
∗M

is injective which finishes the proof by what was said above. To see the desired
injectivity we can look at stalks. Namely, if x : Spec(k)→ X is a geometric point,
then

(f∗M)x =
⊕

f(y)=x
M

by Proposition 55.2 and similarly for the other sheaf. Since Y ′ → Y is surjective
and finite we see that the induced map on geometric points lifting x is surjective
too and we conclude. □

The lemma above will take care of higher cohomology groups in Gabber’s result.
The following lemma will be used to deal with global sections.

Lemma 82.2.09ZF Let X be a quasi-compact and quasi-separated scheme. Let i : Z →
X be a closed immersion. Assume that

(1) for any sheaf F on XZar the map Γ(X,F)→ Γ(Z, i−1F) is bijective, and
(2) for any finite morphism X ′ → X assumption (1) holds for Z ×X X ′ → X ′.

Then for any sheaf F on Xétale we have Γ(X,F) = Γ(Z, i−1
smallF).

Proof. Let F be a sheaf on Xétale. There is a canonical (base change) map
i−1(F|XZar

) −→ (i−1
smallF)|ZZar

of sheaves on ZZar. We will show this map is injective by looking at stalks. The
stalk on the left hand side at z ∈ Z is the stalk of F|XZar

at z. The stalk on the right
hand side is the colimit over all elementary étale neighbourhoods (U, u) → (X, z)
such that U×XZ → Z has a section over a neighbourhood of z. As étale morphisms
are open, the image of U → X is an open neighbourhood U0 of z in X. The map
F(U0) → F(U) is injective by the sheaf condition for F with respect to the étale

https://stacks.math.columbia.edu/tag/09ZF
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covering U → U0. Taking the colimit over all U and U0 we obtain injectivity on
stalks.
It follows from this and assumption (1) that the map Γ(X,F) → Γ(Z, i−1

smallF) is
injective. By (2) the same thing is true on all X ′ finite over X.
Let s ∈ Γ(Z, i−1

smallF). By construction of i−1
smallF there exists an étale covering

{Vj → Z}, étale morphisms Uj → X, sections sj ∈ F(Uj) and morphisms Vj → Uj
over X such that s|Vj is the pullback of sj . Observe that every nonempty closed
subscheme T ⊂ X meets Z by assumption (1) applied to the sheaf (T → X)∗Z
for example. Thus we see that

∐
Uj → X is surjective. By More on Morphisms,

Lemma 45.7 we can find a finite surjective morphism X ′ → X such that X ′ → X
Zariski locally factors through

∐
Uj → X. It follows that s|Z′ Zariski locally

comes from a section of F|X′ . In other words, s|Z′ comes from t′ ∈ Γ(X ′,F|X′) by
assumption (2). By injectivity we conclude that the two pullbacks of t′ to X ′×XX ′

are the same (after all this is true for the pullbacks of s to Z ′ ×Z Z ′). Hence we
conclude t′ comes from a section of F over X by Remark 55.6. □

Lemma 82.3.0CAM Let Z ⊂ X be a closed subset of a topological space X. Assume
(1) X is a spectral space (Topology, Definition 23.1), and
(2) for x ∈ X the intersection Z ∩ {x} is connected (in particular nonempty).

If Z = Z1⨿Z2 with Zi closed in Z, then there exists a decomposition X = X1⨿X2
with Xi closed in X and Zi = Z ∩Xi.
Proof. Observe that Zi is quasi-compact. Hence the set of points Wi specializing
to Zi is closed in the constructible topology by Topology, Lemma 24.7. Assumption
(2) implies that X = W1 ⨿W2. Let x ∈ W1. By Topology, Lemma 23.6 part (1)
there exists a specialization x1 ⇝ x with x1 ∈ W1. Thus {x} ⊂ {x1} and we see
that x ∈W1. In other words, setting Xi = Wi does the job. □

Lemma 82.4.09ZG Let Z ⊂ X be a closed subset of a topological space X. Assume
(1) X is a spectral space (Topology, Definition 23.1), and
(2) for x ∈ X the intersection Z ∩ {x} is connected (in particular nonempty).

Then for any sheaf F on X we have Γ(X,F) = Γ(Z,F|Z).
Proof. If x⇝ x′ is a specialization of points, then there is a canonical map Fx′ →
Fx compatible with sections over opens and functorial in F . Since every point of
X specializes to a point of Z it follows that Γ(X,F)→ Γ(Z,F|Z) is injective. The
difficult part is to show that it is surjective.
Denote B be the set of all quasi-compact opens of X. Write F as a filtered colimit
F = colimFi where each Fi is as in Modules, Equation (19.2.1). See Modules,
Lemma 19.2. Then F|Z = colimFi|Z as restriction to Z is a left adjoint (Categories,
Lemma 24.5 and Sheaves, Lemma 21.8). By Sheaves, Lemma 29.1 the functors
Γ(X,−) and Γ(Z,−) commute with filtered colimits. Hence we may assume our
sheaf F is as in Modules, Equation (19.2.1).
Suppose that we have an embedding F ⊂ G. Then we have

Γ(X,F) = Γ(Z,F|Z) ∩ Γ(X,G)
where the intersection takes place in Γ(Z,G|Z). This follows from the first remark
of the proof because we can check whether a global section of G is in F by looking
at the stalks and because every point of X specializes to a point of Z.

https://stacks.math.columbia.edu/tag/0CAM
https://stacks.math.columbia.edu/tag/09ZG
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By Modules, Lemma 19.4 there is an injection F →
∏

(Zi → X)∗Si where the
product is finite, Zi ⊂ X is closed, and Si is finite. Thus it suffices to prove
surjectivity for the sheaves (Zi → X)∗Si. Observe that

Γ(X, (Zi → X)∗Si) = Γ(Zi, Si) and Γ(X, (Zi → X)∗Si|Z) = Γ(Z ∩ Zi, Si)
Moreover, conditions (1) and (2) are inherited by Zi; this is clear for (2) and follows
from Topology, Lemma 23.5 for (1). Thus it suffices to prove the lemma in the case
of a (finite) constant sheaf. This case is a restatement of Lemma 82.3 which finishes
the proof. □

Example 82.5.0CAF Lemma 82.4 is false if X is not spectral. Here is an example:
Let Y be a T1 topological space, and y ∈ Y a non-open point. Let X = Y ⨿ {x},
endowed with the topology whose closed sets are ∅, {y}, and all F ⨿ {x}, where F
is a closed subset of Y . Then Z = {x, y} is a closed subset of X, which satisfies
assumption (2) of Lemma 82.4. But X is connected, while Z is not. The conclusion
of the lemma thus fails for the constant sheaf with value {0, 1} on X.

Lemma 82.6.09ZH Let (A, I) be a henselian pair. Set X = Spec(A) and Z =
Spec(A/I). For any sheaf F on Xétale we have Γ(X,F) = Γ(Z,F|Z).

Proof. Recall that the spectrum of any ring is a spectral space, see Algebra,
Lemma 26.2. By More on Algebra, Lemma 11.16 we see that {x} ∩ Z is con-
nected for every x ∈ X. By Lemma 82.4 we see that the statement is true for
sheaves on XZar. For any finite morphism X ′ → X we have X ′ = Spec(A′) and
Z ×X X ′ = Spec(A′/IA′) with (A′, IA′) a henselian pair, see More on Algebra,
Lemma 11.8 and we get the same statement for sheaves on (X ′)Zar. Thus we can
apply Lemma 82.2 to conclude. □

Finally, we can state and prove Gabber’s theorem.

Theorem 82.7 (Gabber).09ZI Let (A, I) be a henselian pair. Set X = Spec(A) and
Z = Spec(A/I). For any torsion abelian sheaf F on Xétale we have Hq

étale(X,F) =
Hq
étale(Z,F|Z).

Proof. The result holds for q = 0 by Lemma 82.6. Let q ≥ 1. Suppose the result
has been shown in all degrees < q. Let F be a torsion abelian sheaf. Let F → F ′

be an injective map of torsion abelian sheaves (to be chosen later) with cokernel Q
so that we have the short exact sequence

0→ F → F ′ → Q→ 0
of torsion abelian sheaves on Xétale. This gives a map of long exact cohomology
sequences over X and Z part of which looks like

Hq−1
étale(X,F ′)

��

// Hq−1
étale(X,Q)

��

// Hq
étale(X,F)

��

// Hq
étale(X,F ′)

��
Hq−1
étale(Z,F ′|Z) // Hq−1

étale(Z,Q|Z) // Hq
étale(Z,F|Z) // Hq

étale(Z,F ′|Z)

Using this commutative diagram of abelian groups with exact rows we will finish
the proof.
Injectivity for F . Let ξ be a nonzero element of Hq

étale(X,F). By Lemma 82.1
applied with Z = X (!) we can find F ⊂ F ′ such that ξ maps to zero to the right.

https://stacks.math.columbia.edu/tag/0CAF
https://stacks.math.columbia.edu/tag/09ZH
https://stacks.math.columbia.edu/tag/09ZI
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Then ξ is the image of an element of Hq−1
étale(X,Q) and bijectivity for q − 1 implies

ξ does not map to zero in Hq
étale(Z,F|Z).

Surjectivity for F . Let ξ be an element of Hq
étale(Z,F|Z). By Lemma 82.1 applied

with Z = Z we can find F ⊂ F ′ such that ξ maps to zero to the right. Then ξ is
the image of an element of Hq−1

étale(Z,Q|Z) and bijectivity for q − 1 implies ξ is in
the image of the vertical map. □

Lemma 82.8.0A51 Let X be a scheme with affine diagonal which can be covered by
n + 1 affine opens. Let Z ⊂ X be a closed subscheme. Let A be a torsion sheaf
of rings on Xétale and let I be an injective sheaf of A-modules on Xétale. Then
Hq
étale(Z, I|Z) = 0 for q > n.

Proof. We will prove this by induction on n. If n = 0, then X is affine. Say
X = Spec(A) and Z = Spec(A/I). Let Ah be the filtered colimit of étale A-algebras
B such that A/I → B/IB is an isomorphism. Then (Ah, IAh) is a henselian
pair and A/I = Ah/IAh, see More on Algebra, Lemma 12.1 and its proof. Set
Xh = Spec(Ah). By Theorem 82.7 we see that

Hq
étale(Z, I|Z) = Hq

étale(X
h, I|Xh)

By Theorem 51.3 we have
Hq
étale(X

h, I|Xh) = colimA→B H
q
étale(Spec(B), I|Spec(B))

where the colimit is over theA-algebrasB as above. Since the morphisms Spec(B)→
Spec(A) are étale, the restriction I|Spec(B) is an injective sheaf of A|Spec(B)-modules
(Cohomology on Sites, Lemma 7.1). Thus the cohomology groups on the right are
zero and we get the result in this case.
Induction step. We can use Mayer-Vietoris to do the induction step. Namely,
suppose that X = U ∪ V where U is a union of n affine opens and V is affine.
Then, using that the diagonal of X is affine, we see that U ∩ V is the union of n
affine opens. Mayer-Vietoris gives an exact sequence
Hq−1
étale(U ∩ V ∩Z, I|Z)→ Hq

étale(Z, I|Z)→ Hq
étale(U ∩Z, I|Z)⊕Hq

étale(V ∩Z, I|Z)
and by our induction hypothesis we obtain vanishing for q > n as desired. □

83. Cohomology of torsion sheaves on curves

03SB The goal of this section is to prove the basic finiteness and vanishing results for
cohomology of torsion sheaves on curves, see Theorem 83.10. In Section 84 we will
discuss constructible sheaves of torsion modules over a Noetherian ring.

Situation 83.1.0A52 Here k is an algebraically closed field, X is a separated, finite
type scheme of dimension ≤ 1 over k, and F is a torsion abelian sheaf on Xétale.

In Situation 83.1 we want to prove the following statements
(1)0A53 Hq

étale(X,F) = 0 for q > 2,
(2)0A54 Hq

étale(X,F) = 0 for q > 1 if X is affine,
(3)0A55 Hq

étale(X,F) = 0 for q > 1 if p = char(k) > 0 and F is p-power torsion,
(4)0A56 Hq

étale(X,F) is finite if F is constructible and torsion prime to char(k),
(5)0A57 Hq

étale(X,F) is finite if X is proper and F constructible,
(6)0A58 Hq

étale(X,F) → Hq
étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension

k′/k of algebraically closed fields if F is torsion prime to char(k),

https://stacks.math.columbia.edu/tag/0A51
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(7)0A59 Hq
étale(X,F) → Hq

étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension
k′/k of algebraically closed fields if X is proper,

(8)0A5A H2
étale(X,F)→ H2

étale(U,F) is surjective for all U ⊂ X open.
Given any Situation 83.1 we will say that “statements (1) – (8) hold” if those
statements that apply to the given situation are true. We start the proof with the
following consequence of our computation of cohomology with constant coefficients.

Lemma 83.2.0A5B In Situation 83.1 assume X is smooth and F = Z/ℓZ for some
prime number ℓ. Then statements (1) – (8) hold for F .

Proof. Since X is smooth, we see that X is a finite disjoint union of smooth curves.
Hence we may assume X is a smooth curve.

Case I: ℓ different from the characteristic of k. This case follows from Lemma
69.1 (projective case) and Lemma 69.3 (affine case). Statement (6) on cohomology
and extension of algebraically closed ground field follows from the fact that the
genus g and the number of “punctures” r do not change when passing from k to k′.
Statement (8) follows as H2

étale(U,F) is zero as soon as U ̸= X, because then U is
affine (Varieties, Lemmas 43.2 and 43.10).

Case II: ℓ is equal to the characteristic of k. Vanishing by Lemma 63.4. Statements
(5) and (7) follow from Lemma 63.5. □

Remark 83.3 (Invariance under extension of algebraically closed ground field).
0A47 Let k be an algebraically closed field of characteristic p > 0. In Section 63 we have

seen that there is an exact sequence

k[x]→ k[x]→ H1
étale(A1

k,Z/pZ)→ 0

where the first arrow maps f(x) to fp− f . A set of representatives for the cokernel
is formed by the polynomials ∑

p ̸|n
λnx

n

with λn ∈ k. (If k is not algebraically closed you have to add some constants to
this as well.) In particular when k′/k is an algebraically closed extension, then the
map

H1
étale(A1

k,Z/pZ)→ H1
étale(A1

k′ ,Z/pZ)
is not an isomorphism in general. In particular, the map π1(A1

k′)→ π1(A1
k) between

étale fundamental groups (insert future reference here) is not an isomorphism either.
Thus the étale homotopy type of the affine line depends on the algebraically closed
ground field. From Lemma 83.2 above we see that this is a phenomenon which only
happens in characteristic p with p-power torsion coefficients.

Lemma 83.4.0A5C Let k be an algebraically closed field. Let X be a separated finite
type scheme over k of dimension ≤ 1. Let 0→ F1 → F → F2 → 0 be a short exact
sequence of torsion abelian sheaves on X. If statements (1) – (8) hold for F1 and
F2, then they hold for F .

Proof. This is mostly immediate from the definitions and the long exact sequence
of cohomology. Also observe that F is constructible (resp. of torsion prime to the
characteristic of k) if and only if both F1 and F2 are constructible (resp. of torsion
prime to the characteristic of k). See Proposition 74.1. Some details omitted. □
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Lemma 83.5.0A5D Let k be an algebraically closed field. Let f : X → Y be a finite
morphism of separated finite type schemes over k of dimension ≤ 1. Let F be a
torsion abelian sheaf on X. If statements (1) – (8) hold for F , then they hold for
f∗F .

Proof. Namely, we have Hq
étale(X,F) = Hq

étale(Y, f∗F) by the vanishing of Rqf∗
for q > 0 (Proposition 55.2) and the Leray spectral sequence (Cohomology on Sites,
Lemma 14.6). For (8) use that formation of f∗ commutes with arbitrary base change
(Lemma 55.3). □

Lemma 83.6.0GJA In Situation 83.1 assume F constructible. Let j : X ′ → X be the
inclusion of a dense open subscheme. Then statements (1) – (8) hold for F if and
only if they hold for j!j

−1F .

Proof. Since X ′ is dense, we see that Z = X \X ′ has dimension 0 and hence is a
finite set Z = {x1, . . . , xn} of k-rational points. Consider the short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0
of Lemma 70.8. Observe that Hq

étale(X, i∗i−1F) = Hq
étale(Z, i∗F). Namely, i :

Z → X is a closed immersion, hence finite, hence we have the vanishing of Rqi∗ for
q > 0 by Proposition 55.2, and hence the equality follows from the Leray spectral
sequence (Cohomology on Sites, Lemma 14.6). Since Z is a disjoint union of spectra
of algebraically closed fields, we conclude that Hq

étale(Z, i∗F) = 0 for q > 0 and

H0
étale(Z, i−1F) =

⊕
i=1,...,n

Fxi

which is finite as Fxi
is finite due to the assumption that F is constructible. The

long exact cohomology sequence gives an exact sequence
0→ H0

étale(X, j!j
−1F)→ H0

étale(X,F)→ H0
étale(Z, i−1F)→ H1

étale(X, j!j
−1F)→ H1

étale(X,F)→ 0
and isomorphisms Hq

étale(X, j!j
−1F)→ Hq

étale(X,F) for q > 1.
At this point it is easy to deduce each of (1) – (8) holds for F if and only if it
holds for j!j

−1F . We make a few small remarks to help the reader: (a) if F is
torsion prime to the characteristic of k, then so is j!j

−1F , (b) the sheaf j!j
−1F

is constructible, (c) we have H0
étale(Z, i−1F) = H0

étale(Zk′ , i−1F|Zk′ ), and (d) if
U ⊂ X is an open, then U ′ = U ∩X ′ is dense in U . □

Lemma 83.7.03SG In Situation 83.1 assume X is smooth. Let j : U → X an open
immersion. Let ℓ be a prime number. Let F = j!Z/ℓZ. Then statements (1) – (8)
hold for F .

Proof. Since X is smooth, it is a disjoint union of smooth curves and hence we
may assume X is a curve (i.e., irreducible). Then either U = ∅ and there is nothing
to prove or U ⊂ X is dense. In this case the lemma follows from Lemmas 83.2 and
83.6. □

Lemma 83.8.0A3Q In Situation 83.1 assume X reduced. Let j : U → X an open
immersion. Let ℓ be a prime number and F = j!Z/ℓZ. Then statements (1) – (8)
hold for F .

Proof. The difference with Lemma 83.7 is that here we do not assume X is smooth.
Let ν : Xν → X be the normalization morphism. Then ν is finite (Varieties, Lemma
27.1) and Xν is smooth (Varieties, Lemma 43.8). Let jν : Uν → Xν be the inverse

https://stacks.math.columbia.edu/tag/0A5D
https://stacks.math.columbia.edu/tag/0GJA
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image of U . By Lemma 83.7 the result holds for jν! Z/ℓZ. By Lemma 83.5 the
result holds for ν∗j

ν
! Z/ℓZ. In general it won’t be true that ν∗j

ν
! Z/ℓZ is equal to

j!Z/ℓZ but we can work around this as follows. As X is reduced the morphism
ν : Xν → X is an isomorphism over a dense open j′ : X ′ → X (Varieties, Lemma
27.1). Over this open we have agreement

(j′)−1(ν∗j
ν
! Z/ℓZ) = (j′)−1(j!Z/ℓZ)

Using Lemma 83.6 twice for j′ : X ′ → X and the sheaves above we conclude. □

Lemma 83.9.03SD In Situation 83.1 assume X reduced. Let j : U → X an open
immersion with U connected. Let ℓ be a prime number. Let G a finite locally
constant sheaf of Fℓ-vector spaces on U . Let F = j!G. Then statements (1) – (8)
hold for F .

Proof. Let f : V → U be a finite étale morphism of degree prime to ℓ as in Lemma
66.2. The discussion in Section 66 gives maps

G → f∗f
−1G → G

whose composition is an isomorphism. Hence it suffices to prove the lemma with
F = j!f∗f

−1G. By Zariski’s Main theorem (More on Morphisms, Lemma 43.3) we
can choose a diagram

V
j′
//

f

��

Y

f
��

U
j // X

with f : Y → X finite and j′ an open immersion with dense image. We may replace
Y by its reduction (this does not change V as V is reduced being étale over U).
Since f is finite and V dense in Y we have V = U ×X Y . By Lemma 70.9 we have

j!f∗f
−1G = f∗j

′
!f

−1G
By Lemma 83.5 it suffices to consider j′

!f
−1G. The existence of the filtration given

by Lemma 66.2, the fact that j′
! is exact, and Lemma 83.4 reduces us to the case

F = j′
!Z/ℓZ which is Lemma 83.8. □

Theorem 83.10.03SC If k is an algebraically closed field, X is a separated, finite type
scheme of dimension ≤ 1 over k, and F is a torsion abelian sheaf on Xétale, then

(1) Hq
étale(X,F) = 0 for q > 2,

(2) Hq
étale(X,F) = 0 for q > 1 if X is affine,

(3) Hq
étale(X,F) = 0 for q > 1 if p = char(k) > 0 and F is p-power torsion,

(4) Hq
étale(X,F) is finite if F is constructible and torsion prime to char(k),

(5) Hq
étale(X,F) is finite if X is proper and F constructible,

(6) Hq
étale(X,F) → Hq

étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension
k′/k of algebraically closed fields if F is torsion prime to char(k),

(7) Hq
étale(X,F) → Hq

étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension
k′/k of algebraically closed fields if X is proper,

(8) H2
étale(X,F)→ H2

étale(U,F) is surjective for all U ⊂ X open.

Proof. The theorem says that in Situation 83.1 statements (1) – (8) hold. Our first
step is to replace X by its reduction, which is permissible by Proposition 45.4. By
Lemma 73.2 we can write F as a filtered colimit of constructible abelian sheaves.

https://stacks.math.columbia.edu/tag/03SD
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Taking cohomology commutes with colimits, see Lemma 51.4. Moreover, pullback
via Xk′ → X commutes with colimits as a left adjoint. Thus it suffices to prove the
statements for a constructible sheaf.
In this paragraph we use Lemma 83.4 without further mention. Writing F =
F1⊕ . . .⊕Fr where Fi is ℓi-primary for some prime ℓi, we may assume that ℓn kills
F for some prime ℓ. Now consider the exact sequence

0→ F [ℓ]→ F → F/F [ℓ]→ 0.
Thus we see that it suffices to assume that F is ℓ-torsion. This means that F is a
constructible sheaf of Fℓ-vector spaces for some prime number ℓ.
By definition this means there is a dense open U ⊂ X such that F|U is finite
locally constant sheaf of Fℓ-vector spaces. Since dim(X) ≤ 1 we may assume, after
shrinking U , that U = U1 ⨿ . . .⨿Un is a disjoint union of irreducible schemes (just
remove the closed points which lie in the intersections of ≥ 2 components of U).
By Lemma 83.6 we reduce to the case F = j!G where G is a finite locally constant
sheaf of Fℓ-vector spaces on U .
Since we chose U = U1 ⨿ . . .⨿ Un with Ui irreducible we have

j!G = j1!(G|U1)⊕ . . .⊕ jn!(G|Un)
where ji : Ui → X is the inclusion morphism. The case of ji!(G|Ui

) is handled in
Lemma 83.9. □

Theorem 83.11.03RT Let X be a finite type, dimension 1 scheme over an algebraically
closed field k. Let F be a torsion sheaf on Xétale. Then

Hq
étale(X,F) = 0, ∀q ≥ 3.

If X affine then also H2
étale(X,F) = 0.

Proof. If X is separated, this follows immediately from the more precise Theorem
83.10. If X is nonseparated, choose an affine open covering X = X1 ∪ . . . ∪ Xn.
By induction on n we may assume the vanishing holds over U = X1 ∪ . . . ∪Xn−1.
Then Mayer-Vietoris (Lemma 50.1) gives

H2
étale(U,F)⊕H2

étale(Xn,F)→ H2
étale(U ∩Xn,F)→ H3

étale(X,F)→ 0
However, since U ∩ Xn is an open of an affine scheme and hence affine by our
dimension assumption, the group H2

étale(U∩Xn,F) vanishes by Theorem 83.10. □

Lemma 83.12.0A5E Let k′/k be an extension of separably closed fields. Let X be a
proper scheme over k of dimension ≤ 1. Let F be a torsion abelian sheaf on X.
Then the map Hq

étale(X,F)→ Hq
étale(Xk′ ,F|Xk′ ) is an isomorphism for q ≥ 0.

Proof. We have seen this for algebraically closed fields in Theorem 83.10. Given
k ⊂ k′ as in the statement of the lemma we can choose a diagram

k′ // k
′

k

OO

// k

OO

where k ⊂ k and k′ ⊂ k
′ are the algebraic closures. Since k and k′ are separably

closed the field extensions k/k and k
′
/k′ are algebraic and purely inseparable. In

https://stacks.math.columbia.edu/tag/03RT
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this case the morphisms Xk → X and X
k

′ → Xk′ are universal homeomorphisms.
Thus the cohomology of F may be computed on Xk and the cohomology of F|Xk′

may be computed on X
k

′ , see Proposition 45.4. Hence we deduce the general case
from the case of algebraically closed fields. □

84. Cohomology of torsion modules on curves

0GJB In this section we repeat the arguments of Section 83 for constructible sheaves
of modules over a Noetherian ring which are torsion. We start with the most
interesting step.

Lemma 84.1.0GJC Let Λ be a Noetherian ring, let M be a finite Λ-module which is
annihilated by an integer n > 0, let k be an algebraically closed field, and let X be
a separated, finite type scheme of dimension ≤ 1 over k. Then

(1) Hq
étale(X,M) is a finite Λ-module if n is prime to char(k),

(2) Hq
étale(X,M) is a finite Λ-module if X is proper.

Proof. If n = ℓn′ for some prime number ℓ, then we get a short exact sequence
0 → M [ℓ] → M → M ′ → 0 of finite Λ-modules and M ′ is annihilated by n′. This
produces a corresponding short exact sequence of constant sheaves, which in turn
gives rise to an exact sequence of cohomology modules

Hq
étale(X,M [n])→ Hq

étale(X,M)→ Hq
étale(X,M

′)

Thus, if we can show the result in case M is annihilated by a prime number, then
by induction on n we win.

Let ℓ be a prime number such that ℓ annihilates M . Then we can replace Λ by the
Fℓ-algebra Λ/ℓΛ. Namely, the cohomology of F as a sheaf of Λ-modules is the same
as the cohomology of F as a sheaf of Λ/ℓΛ-modules, for example by Cohomology
on Sites, Lemma 12.4.

Assume ℓ be a prime number such that ℓ annihilates M and Λ. Let us reduce to
the case where M is a finite free Λ-module. Namely, choose a short exact sequence

0→ N → Λ⊕m →M → 0

This determines an exact sequence

Hq
étale(X,Λ

⊕m)→ Hq
étale(X,M)→ Hq+1

étale(X,N)

By descending induction on q we get the result for M if we know the result for
Λ⊕m. Here we use that we know that our cohomology groups vanish in degrees > 2
by Theorem 83.10.

Let ℓ be a prime number and assume that ℓ annihilates Λ. It remains to show that
the cohomology groups Hq

étale(X,Λ) are finite Λ-modules. We will use a trick to
show this; the “correct” argument uses a coefficient theorem which we will show
later. Choose a basis Λ =

⊕
i∈I Fℓei such that e0 = 1 for some 0 ∈ I. The choice

of this basis determines an isomorphism

Λ =
⊕

Fℓei

of sheaves on Xétale. Thus we see that

Hq
étale(X,Λ) = Hq

étale(X,
⊕

Fℓei) =
⊕

Hq
étale(X,Fℓ)ei

https://stacks.math.columbia.edu/tag/0GJC
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since taking cohomology over X commutes with direct sums by Theorem 51.3 (or
Lemma 51.4 or Lemma 52.2). Since we already know that Hq

étale(X,Fℓ) is a finite
dimensional Fℓ-vector space (by Theorem 83.10), we see that Hq

étale(X,Λ) is free
over Λ of the same rank. Namely, given a basis ξ1, . . . , ξm of Hq

étale(X,Fℓ) we see
that ξ1e0, . . . , ξme0 form a Λ-basis for Hq

étale(X,Λ). □

Lemma 84.2.0GJD Let Λ be a Noetherian ring, let k be an algebraically closed field,
let f : X → Y be a finite morphism of separated finite type schemes over k of
dimension ≤ 1, and let F be a sheaf of Λ-modules on Xétale. If Hq

étale(X,F) is a
finite Λ-module, then so is Hq

étale(Y, f∗F).

Proof. Namely, we have Hq
étale(X,F) = Hq

étale(Y, f∗F) by the vanishing of Rqf∗
for q > 0 (Proposition 55.2) and the Leray spectral sequence (Cohomology on Sites,
Lemma 14.6). □

Lemma 84.3.0GJE Let Λ be a Noetherian ring, let k be an algebraically closed field, let
X be a separated finite type scheme over k of dimension ≤ 1, let F be a constructible
sheaf of Λ-modules on Xétale, and let j : X ′ → X be the inclusion of a dense open
subscheme. Then Hq

étale(X,F) is a finite Λ-module if and only if Hq
étale(X, j!j

−1F)
is a finite Λ-module.

Proof. Since X ′ is dense, we see that Z = X \X ′ has dimension 0 and hence is a
finite set Z = {x1, . . . , xn} of k-rational points. Consider the short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0
of Lemma 70.8. Observe that Hq

étale(X, i∗i−1F) = Hq
étale(Z, i∗F). Namely, i :

Z → X is a closed immersion, hence finite, hence we have the vanishing of Rqi∗ for
q > 0 by Proposition 55.2, and hence the equality follows from the Leray spectral
sequence (Cohomology on Sites, Lemma 14.6). Since Z is a disjoint union of spectra
of algebraically closed fields, we conclude that Hq

étale(Z, i∗F) = 0 for q > 0 and

H0
étale(Z, i−1F) =

⊕
i=1,...,n

Fxi

which is a finite Λ-module Fxi
is finite due to the assumption that F is a con-

structible sheaf of Λ-modules. The long exact cohomology sequence gives an exact
sequence
0→ H0

étale(X, j!j
−1F)→ H0

étale(X,F)→ H0
étale(Z, i−1F)→ H1

étale(X, j!j
−1F)→ H1

étale(X,F)→ 0
and isomorphisms H0

étale(X, j!j
−1F)→ H0

étale(X,F) for q > 1. The lemma follows
easily from this. □

Lemma 84.4.0GJF Let Λ be a Noetherian ring, let M be a finite Λ-module which is
annihilated by an integer n > 0, let k be an algebraically closed field, let X be a
separated, finite type scheme of dimension ≤ 1 over k, and let j : U → X be an
open immersion. Then

(1) Hq
étale(X, j!M) is a finite Λ-module if n is prime to char(k),

(2) Hq
étale(X, j!M) is a finite Λ-module if X is proper.

Proof. Since dim(X) ≤ 1 there is an open V ⊂ X which is disjoint from U such
that X ′ = U ∪ V is dense open in X (details omitted). If j′ : X ′ → X denotes the
inclusion morphism, then we see that j!M is a direct summand of j′

!M . Hence it
suffices to prove the lemma in case U is open and dense in X. This case follows
from Lemmas 84.3 and 84.1. □
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Lemma 84.5.0GJG Let Λ be a Noetherian ring, let k be an algebraically closed field,
let X be a separated finite type scheme over k of dimension ≤ 1, and let 0→ F1 →
F → F2 → 0 be a short exact sequence of sheaves of Λ-modules on Xétale. If
Hq
étale(X,Fi), i = 1, 2 are finite Λ-modules then Hq

étale(X,F) is a finite Λ-module.

Proof. Immediate from the long exact sequence of cohomology. □

Lemma 84.6.0GJH Let Λ be a Noetherian ring, let k be an algebraically closed field,
let X be a separated, finite type scheme of dimension ≤ 1 over k, let j : U → X be
an open immersion with U connected, let ℓ be a prime number, let n > 0, and let
G be a finite type, locally constant sheaf of Λ-modules on Uétale annihilated by ℓn.
Then

(1) Hq
étale(X, j!G) is a finite Λ-module if ℓ is prime to char(k),

(2) Hq
étale(X, j!G) is a finite Λ-module if X is proper.

Proof. Let f : V → U be a finite étale morphism of degree prime to ℓ as in Lemma
66.4. The discussion in Section 66 gives maps

G → f∗f
−1G → G

whose composition is an isomorphism. Hence it suffices to prove the finiteness
of Hq

étale(X, j!f∗f
−1G). By Zariski’s Main theorem (More on Morphisms, Lemma

43.3) we can choose a diagram

V
j′
//

f

��

Y

f
��

U
j // X

with f : Y → X finite and j′ an open immersion with dense image. Since f is finite
and V dense in Y we have V = U ×X Y . By Lemma 70.9 we have

j!f∗f
−1G = f∗j

′
!f

−1G
By Lemma 84.2 it suffices to consider j′

!f
−1G. The existence of the filtration given

by Lemma 66.4, the fact that j′
! is exact, and Lemma 84.5 reduces us to the case

F = j′
!M for a finite Λ-module M which is Lemma 84.4. □

Theorem 84.7.0GJI Let Λ be a Noetherian ring, let k be an algebraically closed field,
let X be a separated, finite type scheme of dimension ≤ 1 over k, and let F be a
constructible sheaf of Λ-modules on Xétale which is torsion. Then

(1)0GJJ Hq
étale(X,F) is a finite Λ-module if F is torsion prime to char(k),

(2)0GJK Hq
étale(X,F) is a finite Λ-module if X is proper.

Proof. without further mention. Write F = F1⊕ . . .⊕Fr where Fi is annihilated
by ℓni

i for some prime ℓi and integer ni > 0. By Lemma 84.5 it suffices to prove
the theorem for Fi. Thus we may and do assume that ℓn kills F for some prime ℓ
and integer n > 0.
Since F is constructible as a sheaf of Λ-modules, there is a dense open U ⊂ X such
that F|U is a finite type, locally constant sheaf of Λ-modules. Since dim(X) ≤ 1
we may assume, after shrinking U , that U = U1 ⨿ . . . ⨿ Un is a disjoint union of
irreducible schemes (just remove the closed points which lie in the intersections of
≥ 2 components of U). By Lemma 84.3 we reduce to the case F = j!G where G is
a finite type, locally constant sheaf of Λ-modules on U (and annihilated by ℓn).
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Since we chose U = U1 ⨿ . . .⨿ Un with Ui irreducible we have

j!G = j1!(G|U1)⊕ . . .⊕ jn!(G|Un)

where ji : Ui → X is the inclusion morphism. The case of ji!(G|Ui) is handled in
Lemma 84.6. □

85. First cohomology of proper schemes

0A5F In Fundamental Groups, Section 9 we have seen, in some sense, that taking R1f∗G
commutes with base change if f : X → Y is a proper morphism and G is a finite
group (not necessarily commutative). In this section we deduce a useful consequence
of these results.

Lemma 85.1.0A5G Let A be a henselian local ring. Let X be a proper scheme over
A with closed fibre X0. Let M be a finite abelian group. Then H1

étale(X,M) =
H1
étale(X0,M).

Proof. By Cohomology on Sites, Lemma 4.3 an element of H1
étale(X,M) corre-

sponds to a M -torsor F on Xétale. Such a torsor is clearly a finite locally constant
sheaf. Hence F is representable by a scheme V finite étale over X, Lemma 64.4.
Conversely, a scheme V finite étale over X with an M -action which turns it into an
M -torsor over X gives rise to a cohomology class. The same translation between
cohomology classes over X0 and torsors finite étale over X0 holds. Thus the lemma
is a consequence of the equivalence of categories of Fundamental Groups, Lemma
9.1. □

The following technical lemma is a key ingredient in the proof of the proper base
change theorem. The argument works word for word for any proper scheme over
A whose special fibre has dimension ≤ 1, but in fact the conclusion will be a
consequence of the proper base change theorem and we only need this particular
version in its proof.

Lemma 85.2.0A5H Let A be a henselian local ring. Let X = P1
A. Let X0 ⊂ X be the

closed fibre. Let ℓ be a prime number. Let I be an injective sheaf of Z/ℓZ-modules
on Xétale. Then Hq

étale(X0, I|X0) = 0 for q > 0.

Proof. Observe that X is a separated scheme which can be covered by 2 affine
opens. Hence for q > 1 this follows from Gabber’s affine variant of the proper
base change theorem, see Lemma 82.8. Thus we may assume q = 1. Let ξ ∈
H1
étale(X0, I|X0). Goal: show that ξ is 0. By Lemmas 73.2 and 51.4 we can find

a map F → I with F a constructible sheaf of Z/ℓZ-modules and ξ coming from
an element ζ of H1

étale(X0,F|X0). Suppose we have an injective map F → F ′ of
sheaves of Z/ℓZ-modules on Xétale. Since I is injective we can extend the given
map F → I to a map F ′ → I. In this situation we may replace F by F ′ and ζ by
the image of ζ in H1

étale(X0,F ′|X0). Also, if F = F1 ⊕F2 is a direct sum, then we
may replace F by Fi and ζ by the image of ζ in H1

étale(X0,Fi|X0).

By Lemma 74.4 and the remarks above we may assume F is of the form f∗M
where M is a finite Z/ℓZ-module and f : Y → X is a finite morphism of finite
presentation (such sheaves are still constructible by Lemma 73.9 but we won’t need
this). Since formation of f∗ commutes with any base change (Lemma 55.3) we see
that the restriction of f∗M to X0 is equal to the pushforward of M via the induced

https://stacks.math.columbia.edu/tag/0A5G
https://stacks.math.columbia.edu/tag/0A5H


ÉTALE COHOMOLOGY 160

morphism Y0 → X0 of special fibres. By the Leray spectral sequence (Proposition
54.2) and vanishing of higher direct images (Proposition 55.2), we find

H1
étale(X0, f∗M |X0) = H1

étale(Y0,M).

Since Y → Spec(A) is proper we can use Lemma 85.1 to see that the H1
étale(Y0,M)

is equal to H1
étale(Y,M). Thus we see that our cohomology class ζ lifts to a coho-

mology class
ζ̃ ∈ H1

étale(Y,M) = H1
étale(X, f∗M)

However, ζ̃ maps to zero in H1
étale(X, I) as I is injective and by commutativity of

H1
étale(X, f∗M) //

��

H1
étale(X, I)

��
H1
étale(X0, (f∗M)|X0) // H1

étale(X0, I|X0)

we conclude that the image ξ of ζ is zero as well. □

86. Preliminaries on base change

0EZQ If you are interested in either the smooth base change theorem or the proper base
change theorem, you should skip directly to the corresponding sections. In this
section and the next few sections we consider commutative diagrams

X

f

��

Y
h
oo

e

��
S T

goo

of schemes; we usually assume this diagram is cartesian, i.e., Y = X ×S T . A
commutative diagram as above gives rise to a commutative diagram

Xétale

fsmall

��

Yétale

esmall

��

hsmall

oo

Sétale Tétale
gsmalloo

of small étale sites. Let us use the notation

f−1 = f−1
small, g∗ = gsmall,∗, e−1 = e−1

small, and h∗ = hsmall,∗.

By Sites, Section 45 we get a base change or pullback map

f−1g∗F −→ h∗e
−1F

for a sheaf F on Tétale. If F is an abelian sheaf on Tétale, then we get a derived
base change map

f−1Rg∗F −→ Rh∗e
−1F

see Cohomology on Sites, Lemma 15.1. Finally, if K is an arbitrary object of
D(Tétale) there is a base change map

f−1Rg∗K −→ Rh∗e
−1K

see Cohomology on Sites, Remark 19.3.
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Lemma 86.1.0EZR Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

Let {Ui → X} be an étale covering such that Ui → S factors as Ui → Vi → S with
Vi → S étale and consider the cartesian diagrams

Ui

fi

��

Ui ×X Y
hi

oo

ei

��
Vi Vi ×S T

gioo

Let F be a sheaf on Tétale. Let K in D(Tétale). Set Ki = K|Vi×ST and Fi =
F|Vi×ST .

(1) If f−1
i gi,∗Fi = hi,∗e

−1
i Fi for all i, then f−1g∗F = h∗e

−1F .
(2) If f−1

i Rgi,∗Ki = Rhi,∗e
−1
i Ki for all i, then f−1Rg∗K = Rh∗e

−1K.
(3) If F is an abelian sheaf and f−1

i Rqgi,∗Fi = Rqhi,∗e
−1
i Fi for all i, then

f−1Rqg∗F = Rqh∗e
−1F .

Proof. Proof of (1). First we observe that
(f−1g∗F)|Ui

= f−1
i (g∗F|Vi

) = f−1
i gi,∗Fi

The first equality because Ui → X → S is equal to Ui → Vi → S and the second
equality because g∗F|Vi

= gi,∗Fi by Sites, Lemma 28.2. Similarly we have
(h∗e

−1F)|Ui
= hi,∗(e−1F|Ui×XY ) = hi,∗e

−1
i Fi

Thus if the base change maps f−1
i gi,∗Fi → hi,∗e

−1
i Fi are isomorphisms for all i,

then the base change map f−1g∗F → h∗e
−1F restricts to an isomorphism over Ui

for all i and we conclude it is an isomorphism as {Ui → X} is an étale covering.
For the other two statements we replace the appeal to Sites, Lemma 28.2 by an
appeal to Cohomology on Sites, Lemma 20.4. □

Lemma 86.2.0EZS Consider a tower of cartesian diagrams of schemes

W

i

��

Z
j
oo

k
��

X

f

��

Y
h
oo

e

��
S T

goo

Let K in D(Tétale). If
f−1Rg∗K → Rh∗e

−1K and i−1Rh∗e
−1K → Rj∗k

−1e−1K

are isomorphisms, then (f ◦ i)−1Rg∗K → Rj∗(e ◦ k)−1K is an isomorphism. Sim-
ilarly, if F is an abelian sheaf on Tétale and if

f−1Rqg∗F → Rqh∗e
−1F and i−1Rqh∗e

−1F → Rqj∗k
−1e−1F

are isomorphisms, then (f ◦ i)−1Rqg∗F → Rqj∗(e ◦ k)−1F is an isomorphism.

https://stacks.math.columbia.edu/tag/0EZR
https://stacks.math.columbia.edu/tag/0EZS
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Proof. This is formal, provided one checks that the composition of these base
change maps is the base change maps for the outer rectangle, see Cohomology on
Sites, Remark 19.5. □

Lemma 86.3.0EZT Let I be a directed set. Consider an inverse system of cartesian
diagrams of schemes

Xi

fi

��

Yi
hi

oo

ei

��
Si Ti

gioo

with affine transition morphisms and with gi quasi-compact and quasi-separated.
Set X = limXi, S = limSi, T = limTi and Y = lim Yi to obtain the cartesian
diagram

X

f

��

Y
h
oo

e

��
S T

goo

Let (Fi, φi′i) be a system of sheaves on (Ti) as in Definition 51.1. Set F =
colim p−1

i Fi on T where pi : T → Ti is the projection. Then we have the following
(1) If f−1

i gi,∗Fi = hi,∗e
−1
i Fi for all i, then f−1g∗F = h∗e

−1F .
(2) If Fi is an abelian sheaf for all i and f−1

i Rqgi,∗Fi = Rqhi,∗e
−1
i Fi for all i,

then f−1Rqg∗F = Rqh∗e
−1F .

Proof. We prove (2) and we omit the proof of (1). We will use without further men-
tion that pullback of sheaves commutes with colimits as it is a left adjoint. Observe
that hi is quasi-compact and quasi-separated as a base change of gi. Denoting qi :
Y → Yi the projections, observe that e−1F = colim e−1p−1

i Fi = colim q−1
i e−1

i Fi.
By Lemma 51.8 this gives

Rqh∗e
−1F = colim r−1

i Rqhi,∗e
−1
i Fi

where ri : X → Xi is the projection. Similarly, we have

f−1Rg∗F = f−1 colim s−1
i Rqgi,∗Fi = colim r−1

i f−1
i Rqgi,∗Fi

where si : S → Si is the projection. The lemma follows. □

Lemma 86.4.0GJL Let I, Xi, Yi, Si, Ti, fi, hi, ei, gi, X, Y , S, T , f , h, e, g be as
in the statement of Lemma 86.3. Let 0 ∈ I and let K0 ∈ D+(T0,étale). For i ∈ I,
i ≥ 0 denote Ki the pullback of K0 to Ti. Denote K the pullback of K0 to T . If
f−1
i Rgi,∗Ki = Rhi,∗e

−1
i Ki for all i ≥ 0, then f−1Rg∗K = Rh∗e

−1K.

Proof. It suffices to show that the base change map f−1Rg∗K → Rh∗e
−1K in-

duces an isomorphism on cohomology sheaves. In other words, we have to show
that f−1Rpg∗K → Rph∗e

−1K is an isomorphism for all p ∈ Z if we are given that
f−1
i Rpgi,∗Ki → Rphi,∗e

−1
i Ki is an isomorphism for all i ≥ 0 and p ∈ Z. At this

point we can argue exactly as in the proof of Lemma 86.3 replacing reference to
Lemma 51.8 by a reference to Lemma 52.4. □

https://stacks.math.columbia.edu/tag/0EZT
https://stacks.math.columbia.edu/tag/0GJL
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Lemma 86.5.0EZU Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

where g : T → S is quasi-compact and quasi-separated. Let F be an abelian sheaf
on Tétale. Let q ≥ 0. The following are equivalent

(1) For every geometric point x of X with image s = f(x) we have
Hq(Spec(OshX,x)×S T,F) = Hq(Spec(OshS,s)×S T,F)

(2) f−1Rqg∗F → Rqh∗e
−1F is an isomorphism.

Proof. Since Y = X ×S T we have Spec(OshX,x) ×X Y = Spec(OshX,x) ×S T . Thus
the map in (1) is the map of stalks at x for the map in (2) by Theorem 53.1 (and
Lemma 36.2). Thus the result by Theorem 29.10. □

Lemma 86.6.0EZV Let f : X → S be a morphism of schemes. Let x be a geometric
point of X with image s in S. Let Spec(K) → Spec(OshS,s) be a morphism with K

a separably closed field. Let F be an abelian sheaf on Spec(K)étale. Let q ≥ 0. The
following are equivalent

(1) Hq(Spec(OshX,x)×S Spec(K),F) = Hq(Spec(OshS,s)×S Spec(K),F)
(2) Hq(Spec(OshX,x)×Spec(Osh

S,s
) Spec(K),F) = Hq(Spec(K),F)

Proof. Observe that Spec(K) ×S Spec(OshS,s) is the spectrum of a filtered colimit
of étale algebras over K. Since K is separably closed, each étale K-algebra is a
finite product of copies of K. Thus we can write

Spec(K)×S Spec(OshS,s) = limi∈I
∐

a∈Ai

Spec(K)

as a cofiltered limit where each term is a disjoint union of copies of Spec(K) over
a finite set Ai. Note that Ai is nonempty as we are given Spec(K) → Spec(OshS,s).
It follows that

Spec(OshX,x)×S Spec(K) = Spec(OshX,x)×Spec(Osh
S,s

)
(
Spec(OshS,s)×S Spec(K)

)
= limi∈I

∐
a∈Ai

Spec(OshX,x)×Spec(Osh
S,s

) Spec(K)

Since taking cohomology in our setting commutes with limits of schemes (Theorem
51.3) we conclude. □

87. Base change for pushforward

0EZW This section is preliminary and should be skipped on a first reading. In this section
we discuss for what morphisms f : X → S we have f−1g∗ = h∗e

−1 on all sheaves
(of sets) for every cartesian diagram

X

f

��

Y
h
oo

e

��
S T

goo

with g quasi-compact and quasi-separated.

https://stacks.math.columbia.edu/tag/0EZU
https://stacks.math.columbia.edu/tag/0EZV


ÉTALE COHOMOLOGY 164

Lemma 87.1.0EZX Consider the cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

Assume that f is flat and every object U of Xétale has a covering {Ui → U} such
that Ui → S factors as Ui → Vi → S with Vi → S étale and Ui → Vi quasi-compact
with geometrically connected fibres. Then for any sheaf F of sets on Tétale we have
f−1g∗F = h∗e

−1F .

Proof. Let U → X be an étale morphism such that U → S factors as U → V → S
with V → S étale and U → V quasi-compact with geometrically connected fibres.
Observe that U → V is flat (More on Flatness, Lemma 2.3). We claim that

f−1g∗F(U) = g∗F(V )
= F(V ×S T )
= e−1F(U ×X Y )
= h∗e

−1F(U)

Namely, thinking of U as an object of Xétale and V as an object of Sétale we
see that the first equality follows from Lemma 39.39. Thinking of V ×S T as an
object of Tétale the second equality follows from the definition of g∗. Observe that
U ×X Y = U ×S T (because Y = X ×S T ) and hence U ×X Y → V ×S T has
geometrically connected fibres as a base change of U → V . Thinking of U ×X Y
as an object of Yétale, we see that the third equality follows from Lemma 39.3 as
before. Finally, the fourth equality follows from the definition of h∗.

Since by assumption every object of Xétale has an étale covering to which the
argument of the previous paragraph applies we see that the lemma is true. □

Lemma 87.2.0EYS Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

where f is flat and locally of finite presentation with geometrically reduced fibres.
Then f−1g∗F = h∗e

−1F for any sheaf F on Tétale.

Proof. Combine Lemma 87.1 with More on Morphisms, Lemma 46.3. □

Lemma 87.3.0EZY Consider the cartesian diagrams of schemes

X

f

��

Y
h
oo

e

��
S T

goo

9Strictly speaking, we are also using that the restriction of f−1g∗F to Uétale is the pullback
via U → V of the restriction of g∗F to Vétale. See Sites, Lemma 28.2.

https://stacks.math.columbia.edu/tag/0EZX
https://stacks.math.columbia.edu/tag/0EYS
https://stacks.math.columbia.edu/tag/0EZY
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Assume that S is the spectrum of a separably closed field. Then f−1g∗F = h∗e
−1F

for any sheaf F on Tétale.

Proof. We may work locally on X. Hence we may assume X is affine. Then we can
write X as a cofiltered limit of affine schemes of finite type over S. By Lemma 86.3
we may assume that X is of finite type over S. Then Lemma 87.1 applies because
any scheme of finite type over a separably closed field is a finite disjoint union of
connected and geometrically connected schemes (see Varieties, Lemma 7.6). □

Lemma 87.4.0EZZ Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

Assume that
(1) f is flat and open,
(2) the residue fields of S are separably algebraically closed,
(3) given an étale morphism U → X with U affine we can write U as a finite

disjoint union of open subschemes of X (for example if X is a normal
integral scheme with separably closed function field),

(4) any nonempty open of a fibre Xs of f is connected (for example if Xs is
irreducible or empty).

Then for any sheaf F of sets on Tétale we have f−1g∗F = h∗e
−1F .

Proof. Omitted. Hint: the assumptions almost trivially imply the condition of
Lemma 87.1. The for example in part (3) follows from Lemma 80.4. □

The following lemma doesn’t really belong here but there does not seem to be a
good place for it anywhere.

Lemma 87.5.0EYR Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation with geometrically reduced fibres. Then f−1 : Sh(Sétale) →
Sh(Xétale) commutes with products.

Proof. Let I be a set and let Gi be a sheaf on Sétale for i ∈ I. Let U → X be
an étale morphism such that U → S factors as U → V → S with V → S étale
and U → V flat of finite presentation with geometrically connected fibres. Then
we have

f−1(
∏
Gi)(U) = (

∏
Gi)(V )

=
∏
Gi(V )

=
∏

f−1Gi(U)

= (
∏

f−1Gi)(U)

where we have used Lemma 39.3 in the first and third equality (we are also using
that the restriction of f−1G to Uétale is the pullback via U → V of the restriction
of G to Vétale, see Sites, Lemma 28.2). By More on Morphisms, Lemma 46.3 every
object U of Xétale has an étale covering {Ui → U} such that the discussion in the
previous paragraph applies to Ui. The lemma follows. □

https://stacks.math.columbia.edu/tag/0EZZ
https://stacks.math.columbia.edu/tag/0EYR
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Lemma 87.6.0F00 Let f : X → S be a flat morphism of schemes such that for every
geometric point x of X the map

OshS,f(x) −→ O
sh
X,x

has geometrically connected fibres. Then for every cartesian diagram of schemes
X

f

��

Y
h
oo

e

��
S T

goo

with g quasi-compact and quasi-separated we have f−1g∗F = h∗e
−1F for any sheaf

F of sets on Tétale.

Proof. It suffices to check equality on stalks, see Theorem 29.10. By Theorem 53.1
we have

(h∗e
−1F)x = Γ(Spec(OshX,x)×X Y, e−1F)

and we have similarly
(f−1g−1

∗ F)x = (g−1
∗ F)f(x) = Γ(Spec(OshS,f(x))×S T,F)

These sets are equal by an application of Lemma 39.3 to the morphism
Spec(OshX,x)×X Y −→ Spec(OshS,f(x))×S T

which is a base change of Spec(OshX,x)→ Spec(OshS,f(x)) because Y = X ×S T . □

88. Base change for higher direct images

0F01 This section is the analogue of Section 87 for higher direct images. This section is
preliminary and should be skipped on a first reading.

Remark 88.1.0F02 Let f : X → S be a morphism of schemes. Let n be an integer.
We will say BC(f, n, q0) is true if for every commutative diagram

X

f

��

X ′oo

f ′

��

Y
h
oo

e

��
S S′oo T

goo

with X ′ = X ×S S′ and Y = X ′ ×S′ T and g quasi-compact and quasi-separated,
and every abelian sheaf F on Tétale annihilated by n the base change map

(f ′)−1Rqg∗F −→ Rqh∗e
−1F

is an isomorphism for q ≤ q0.

Lemma 88.2.0F03 With f : X → S and n as in Remark 88.1 assume for some q ≥ 1
we have BC(f, n, q − 1). Then for every commutative diagram

X

f

��

X ′oo

f ′

��

Y
h
oo

e

��
S S′oo T

goo

with X ′ = X ×S S′ and Y = X ′ ×S′ T and g quasi-compact and quasi-separated,
and every abelian sheaf F on Tétale annihilated by n

(1) the base change map (f ′)−1Rqg∗F → Rqh∗e
−1F is injective,

https://stacks.math.columbia.edu/tag/0F00
https://stacks.math.columbia.edu/tag/0F02
https://stacks.math.columbia.edu/tag/0F03
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(2) if F ⊂ G where G on Tétale is annihilated by n, then
Coker

(
(f ′)−1Rqg∗F → Rqh∗e

−1F
)
⊂ Coker

(
(f ′)−1Rqg∗G → Rqh∗e

−1G
)

(3) if in (2) the sheaf G is an injective sheaf of Z/nZ-modules, then
Coker

(
(f ′)−1Rqg∗F → Rqh∗e

−1F
)
⊂ Rqh∗e

−1G

Proof. Choose a short exact sequence 0 → F → I → Q → 0 where I is an
injective sheaf of Z/nZ-modules. Consider the induced diagram

(f ′)−1Rq−1g∗I

∼=
��

// (f ′)−1Rq−1g∗Q

∼=
��

// (f ′)−1Rqg∗F

��

// 0

��
Rq−1h∗e

−1I // Rq−1h∗e
−1Q // Rqh∗e

−1F // Rqh∗e
−1I

with exact rows. We have the zero in the right upper corner as I is injective. The
left two vertical arrows are isomorphisms by BC(f, n, q−1). We conclude that part
(1) holds. The above also shows that

Coker
(
(f ′)−1Rqg∗F → Rqh∗e

−1F
)
⊂ Rqh∗e

−1I
hence part (3) holds. To prove (2) choose F ⊂ G ⊂ I. □

Lemma 88.3.0F04 With f : X → S and n as in Remark 88.1 assume for some q ≥ 1
we have BC(f, n, q − 1). Consider commutative diagrams

X

f

��

X ′

f ′

��

oo Y
h
oo

e

��

Y ′
π′
oo

e′

��
S S′oo T

goo T ′πoo

and

X ′

f ′

��

Y ′
h′=h◦π′

oo

e′

��
S′ T ′g′=g◦πoo

where all squares are cartesian, g quasi-compact and quasi-separated, and π is in-
tegral surjective. Let F be an abelian sheaf on Tétale annihilated by n and set
F ′ = π−1F . If the base change map

(f ′)−1Rqg′
∗F ′ −→ Rqh′

∗(e′)−1F ′

is an isomorphism, then the base change map (f ′)−1Rqg∗F → Rqh∗e
−1F is an

isomorphism.

Proof. Observe that F → π∗π
−1F ′ is injective as π is surjective (check on stalks).

Thus by Lemma 88.2 we see that it suffices to show that the base change map
(f ′)−1Rqg∗π∗F ′ −→ Rqh∗e

−1π∗F ′

is an isomorphism. This follows from the assumption because we have Rqg∗π∗F ′ =
Rqg′

∗F ′, we have e−1π∗F ′ = π′
∗(e′)−1F ′, and we haveRqh∗π

′
∗(e′)−1F ′ = Rqh′

∗(e′)−1F ′.
This follows from Lemmas 55.4 and 43.5 and the relative leray spectral sequence
(Cohomology on Sites, Lemma 14.7). □

Lemma 88.4.0F05 With f : X → S and n as in Remark 88.1 assume for some q ≥ 1
we have BC(f, n, q − 1). Consider commutative diagrams

X

f

��

X ′

f ′

��

oo X ′′
π′
oo

f ′′

��

Y
h′
oo

e

��
S S′oo S′′πoo T

g′
oo

and

X ′

f ′

��

Y
h=h′◦π′

oo

e

��
S′ T

g=g′◦πoo

https://stacks.math.columbia.edu/tag/0F04
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where all squares are cartesian, g′ quasi-compact and quasi-separated, and π is
integral. Let F be an abelian sheaf on Tétale annihilated by n. If the base change
map

(f ′)−1Rqg∗F −→ Rqh∗e
−1F

is an isomorphism, then the base change map (f ′′)−1Rqg′
∗F → Rqh′

∗e
−1F is an

isomorphism.

Proof. Since π and π′ are integral we have Rπ∗ = π∗ and Rπ′
∗ = π′

∗, see Lemma
43.5. We also have (f ′)−1π∗ = π′

∗(f ′′)−1. Thus we see that π′
∗(f ′′)−1Rqg′

∗F =
(f ′)−1Rqg∗F and π′

∗R
qh′

∗e
−1F = Rqh∗e

−1F . Thus the assumption means that
our map becomes an isomorphism after applying the functor π′

∗. Hence we see that
it is an isomorphism by Lemma 43.5. □

Lemma 88.5.0F06 Let T be a quasi-compact and quasi-separated scheme. Let P be a
property for quasi-compact and quasi-separated schemes over T . Assume

(1) If T ′′ → T ′ is a thickening of quasi-compact and quasi-separated schemes
over T , then P (T ′′) if and only if P (T ′).

(2) If T ′ = limTi is a limit of an inverse system of quasi-compact and quasi-
separated schemes over T with affine transition morphisms and P (Ti) holds
for all i, then P (T ′) holds.

(3) If Z ⊂ T ′ is a closed subscheme with quasi-compact complement V ⊂ T ′

and P (T ′) holds, then either P (V ) or P (Z) holds.
Then P (T ) implies P (Spec(K)) for some morphism Spec(K) → T where K is a
field.

Proof. Consider the set T of closed subschemes T ′ ⊂ T such that P (T ′). By
assumption (2) this set has a minimal element, say T ′. By assumption (1) we see
that T ′ is reduced. Let η ∈ T ′ be the generic point of an irreducible component of
T ′. Then η = Spec(K) for some field K and η = limV where the limit is over the
affine open subschemes V ⊂ T ′ containing η. By assumption (3) and the minimality
of T ′ we see that P (V ) holds for all these V . Hence P (η) by (2) and the proof is
complete. □

Lemma 88.6.0F07 With f : X → S and n as in Remark 88.1 assume for some q ≥ 1
we have that BC(f, n, q − 1) is true, but BC(f, n, q) is not. Then there exist a
commutative diagram

X

f

��

X ′

f ′

��

oo Y
h

oo

e

��
S S′oo Spec(K)goo

where X ′ = X ×S S′, Y = X ′ ×S′ Spec(K), K is a field, and F is an abelian
sheaf on Spec(K) annihilated by n such that (f ′)−1Rqg∗F → Rqh∗e

−1F is not an
isomorphism.

Proof. Choose a commutative diagram

X

f

��

X ′oo

f ′

��

Y
h
oo

e

��
S S′oo T

goo

https://stacks.math.columbia.edu/tag/0F06
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with X ′ = X ×S S′ and Y = X ′ ×S′ T and g quasi-compact and quasi-separated,
and an abelian sheaf F on Tétale annihilated by n such that the base change map
(f ′)−1Rqg∗F → Rqh∗e

−1F is not an isomorphism. Of course we may and do
replace S′ by an affine open of S′; this implies that T is quasi-compact and quasi-
separated. By Lemma 88.2 we see (f ′)−1Rqg∗F → Rqh∗e

−1F is injective. Pick
a geometric point x of X ′ and an element ξ of (Rqh∗q

−1F)x which is not in the
image of the map ((f ′)−1Rqg∗F)x → (Rqh∗e

−1F)x.

Consider a morphism π : T ′ → T with T ′ quasi-compact and quasi-separated and
denote F ′ = π−1F . Denote π′ : Y ′ = Y ×T T ′ → Y the base change of π and
e′ : Y ′ → T ′ the base change of e. Picture

X ′

f ′

��

Y
h
oo

e

��

Y ′
π′
oo

e′

��
S′ T

goo T ′πoo

and

X ′

f ′

��

Y ′
h′=h◦π′

oo

e′

��
S′ T ′g′=g◦πoo

Using pullback maps we obtain a canonical commutative diagram

(f ′)−1Rqg∗F //

��

(f ′)−1Rqg′
∗F ′

��
Rqh∗e

−1F // Rqh′
∗(e′)−1F ′

of abelian sheaves on X ′. Let P (T ′) be the property
• The image ξ′ of ξ in (Rh′

∗(e′)−1F ′)x is not in the image of the map
(f−1Rqg′

∗F ′)x → (Rqh′
∗(e′)−1F ′)x.

We claim that hypotheses (1), (2), and (3) of Lemma 88.5 hold for P which proves
our lemma.

Condition (1) of Lemma 88.5 holds for P because the étale topology of a scheme
and a thickening of the scheme is the same. See Proposition 45.4.

Suppose that I is a directed set and that Ti is an inverse system over I of quasi-
compact and quasi-separated schemes over T with affine transition morphisms. Set
T ′ = limTi. Denote F ′ and Fi the pullback of F to T ′, resp. Ti. Consider the
diagrams

X

f ′

��

Y
h
oo

e

��

Yi
π′

i

oo

ei

��
S T

goo Ti
πioo

and

X

f ′

��

Yi
hi=h◦π′

i

oo

ei

��
S Ti

gi=g◦πioo

as in the previous paragraph. It is clear that F ′ on T ′ is the colimit of the pullbacks
of Fi to T ′ and that (e′)−1F ′ is the colimit of the pullbacks of e−1

i Fi to Y ′. By
Lemma 51.8 we have

Rqh′
∗(e′)−1F ′ = colimRqhi,∗e

−1
i Fi and (f ′)−1Rqg′

∗F ′ = colim(f ′)−1Rqgi,∗Fi
It follows that if P (Ti) is true for all i, then P (T ′) holds. Thus condition (2) of
Lemma 88.5 holds for P .

The most interesting is condition (3) of Lemma 88.5. Assume T ′ is a quasi-compact
and quasi-separated scheme over T such that P (T ′) is true. Let Z ⊂ T ′ be a closed
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subscheme with complement V ⊂ T ′ quasi-compact. Consider the diagram

Y ′ ×T ′ Z

eZ

��

i′
// Y ′

e′

��

Y ′ ×T ′ V
j′

oo

eV

��
Z

i // T ′ V
joo

Choose an injective map j−1F ′ → J where J is an injective sheaf of Z/nZ-modules
on V . Looking at stalks we see that the map

F ′ → G = j∗J ⊕ i∗i−1F ′

is injective. Thus ξ′ maps to a nonzero element of
Coker

(
((f ′)−1Rqg′

∗G)x → (Rqh′
∗(e′)−1G)x

)
=

Coker
(
((f ′)−1Rqg′

∗j∗J )x → (Rqh′
∗(e′)−1j∗J )x

)
⊕

Coker
(
((f ′)−1Rqg′

∗i∗i
−1F ′)x → (Rqh′

∗(e′)−1i∗i
−1F ′)x

)
by part (2) of Lemma 88.2. If ξ′ does not map to zero in the second summand,
then we use

(f ′)−1Rqg′
∗i∗i

−1F ′ = (f ′)−1Rq(g′ ◦ i)∗i
−1F ′

(because Ri∗ = i∗ by Proposition 55.2) and
Rqh′

∗(e′)−1i∗i
−1F = Rqh′

∗i
′
∗e

−1
Z i−1F = Rq(h′ ◦ i′)∗e

−1
Z i−1F ′

(first equality by Lemma 55.3 and the second because Ri′∗ = i′∗ by Proposition
55.2) to we see that we have P (Z). Finally, suppose ξ′ does not map to zero in the
first summand. We have

(e′)−1j∗J = j′
∗e

−1
V J and Raj′

∗e
−1
V J = 0, a = 1, . . . , q − 1

by BC(f, n, q − 1) applied to the diagram

X

f

��

Y ′oo

e′

��

Y
j′
oo

eV

��
S T ′oo V

joo

and the fact that J is injective. By the relative Leray spectral sequence for h′ ◦ j′

(Cohomology on Sites, Lemma 14.7) we deduce that
Rqh′

∗(e′)−1j∗J = Rqh′
∗j

′
∗e

−1
V J −→ Rq(h′ ◦ j′)∗e

−1
V J

is injective. Thus ξ maps to a nonzero element of (Rq(h′◦j′)∗e
−1
V J )x. Applying part

(3) of Lemma 88.2 to the injection j−1F ′ → J we conclude that P (V ) holds. □

Lemma 88.7.0F08 With f : X → S and n as in Remark 88.1 assume for some q ≥ 1
we have that BC(f, n, q − 1) is true, but BC(f, n, q) is not. Then there exist a
commutative diagram

X

f

��

X ′

��

oo Y
h

oo

��
S S′oo Spec(K)oo

with both squares cartesian, where
(1) S′ is affine, integral, and normal with algebraically closed function field,

https://stacks.math.columbia.edu/tag/0F08
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(2) K is algebraically closed and Spec(K) → S′ is dominant (in other words
K is an extension of the function field of S′)

and there exists an integer d|n such that Rqh∗(Z/dZ) is nonzero.

Conversely, nonvanishing of Rqh∗(Z/dZ) in the lemma implies BC(f, n, q) isn’t
true as Lemma 80.5 shows that Rq(Spec(K)→ S′)∗Z/dZ = 0.

Proof. First choose a diagram and F as in Lemma 88.6. We may and do assume
S′ is affine (this is obvious, but see proof of the lemma in case of doubt). By
Lemma 88.3 we may assume K is algebraically closed. Then F corresponds to a
Z/nZ-module. Such a modules is a direct sum of copies of Z/dZ for varying d|n
hence we may assume F is constant with value Z/dZ. By Lemma 88.4 we may
replace S′ by the normalization of S′ in Spec(K) which finishes the proof. □

89. Smooth base change

0EYQ In this section we prove the smooth base change theorem.

Lemma 89.1.0EYT Let K/k be an extension of fields. Let X be a smooth affine curve
over k with a rational point x ∈ X(k). Let F be an abelian sheaf on Spec(K)
annihilated by an integer n invertible in k. Let q > 0 and

ξ ∈ Hq(XK , (XK → Spec(K))−1F)
There exist

(1) finite extensions K ′/K and k′/k with k′ ⊂ K ′,
(2) a finite étale Galois cover Z → Xk′ with group G

such that the order of G divides a power of n, such that Z → Xk′ is split over xk′ ,
and such that ξ dies in Hq(ZK′ , (ZK′ → Spec(K))−1F).

Proof. For q > 1 we know that ξ dies in Hq(XK , (XK → Spec(K))−1F) (Theorem
83.10). By Lemma 51.5 we see that this means there is a finite extension K ′/K
such that ξ dies in Hq(XK′ , (XK′ → Spec(K))−1F). Thus we can take k′ = k and
Z = X in this case.
Assume q = 1. Recall that F corresponds to a discrete module M with continuous
GalK-action, see Lemma 59.1. Since M is n-torsion, it is the uninon of finite GalK-
stable subgroups. Thus we reduce to the case where M is a finite abelian group
annihilated by n, see Lemma 51.4. After replacing K by a finite extension we may
assume that the action of GalK on M is trivial. Thus we may assume F = M is
the constant sheaf with value a finite abelian group M annihilated by n.
We can write M as a direct sum of cyclic groups. Any two finite étale Galois
coverings whose Galois groups have order invertible in k, can be dominated by
a third one whose Galois group has order invertible in k (Fundamental Groups,
Section 7). Thus it suffices to prove the lemma when M = Z/dZ where d|n.
Assume M = Z/dZ where d|n. In this case ξ = ξ|X

K
is an element of

H1(Xk,Z/dZ) = H1(XK ,Z/dZ)
See Theorem 83.10. This group classifies Z/dZ-torsors, see Cohomology on Sites,
Lemma 4.3. The torsor corresponding to ξ (viewed as a sheaf on Xk,étale) in turn
gives rise to a finite étale morphism T → Xk endowed an action of Z/dZ transitive
on the fibre of T over xk, see Lemma 64.4. Choose a connected component T ′ ⊂ T

https://stacks.math.columbia.edu/tag/0EYT
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(if ξ has order d, then T is already connected). Then T ′ → Xk is a finite étale Galois
cover whose Galois group is a subgroup G ⊂ Z/dZ (small detail omitted). Moreover
the element ξ maps to zero under the map H1(Xk,Z/dZ)→ H1(T ′,Z/dZ) as this
is one of the defining properties of T .
Next, we use a limit argument to choose a finite extension k′/k contained in k such
that T ′ → Xk descends to a finite étale Galois cover Z → Xk′ with group G. See
Limits, Lemmas 10.1, 8.3, and 8.10. After increasing k′ we may assume that Z
splits over xk′ . The image of ξ in H1(ZK ,Z/dZ) is zero by construction. Thus by
Lemma 51.5 we can find a finite subextension K/K ′/K containing k′ such that ξ
dies in H1(ZK′ ,Z/dZ) and this finishes the proof. □

Theorem 89.2 (Smooth base change).0EYU Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

where f is smooth and g quasi-compact and quasi-separated. Then
f−1Rqg∗F = Rqh∗e

−1F

for any q and any abelian sheaf F on Tétale all of whose stalks at geometric points
are torsion of orders invertible on S.

First proof of smooth base change. This proof is very long but more direct
(using less general theory) than the second proof given below.
The theorem is local on Xétale. More precisely, suppose we have U → X étale such
that U → S factors as U → V → S with V → S étale. Then we can consider the
cartesian square

U

f ′

��

U ×X Y
h′

oo

e′

��
V V ×S T

g′
oo

and setting F ′ = F|V×ST we have f−1Rqg∗F|U = (f ′)−1Rqg′
∗F ′ andRqh∗e

−1F|U =
Rqh′

∗(e′)−1F ′ (as follows from the compatibility of localization with morphisms of
sites, see Sites, Lemma 28.2 and and Cohomology on Sites, Lemma 20.4). Thus it
suffices to produce an étale covering of X by U → X and factorizations U → V → S
as above such that the theorem holds for the diagram with f ′, h′, g′, e′.
By the local structure of smooth morphisms, see Morphisms, Lemma 36.20, we
may assume X and S are affine and X → S factors through an étale morphism
X → Ad

S . If we have a tower of cartesian diagrams

W

i

��

Z
j
oo

k
��

X

f

��

Y
h
oo

e

��
S T

goo

https://stacks.math.columbia.edu/tag/0EYU
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and the theorem holds for the bottom and top squares, then the theorem holds for
the outer rectangle; this is formal. Writing X → S as the composition

X → Ad−1
S → Ad−2

S → . . .→ A1
S → S

we conclude that it suffices to prove the theorem when X and S are affine and
X → S has relative dimension 1.
For every n ≥ 1 invertible on S, let F [n] be the subsheaf of sections of F annihilated
by n. Then F = colimF [n] by our assumption on the stalks of F . The functors
e−1 and f−1 commute with colimits as they are left adjoints. The functors Rqh∗
and Rqg∗ commute with filtered colimits by Lemma 51.7. Thus it suffices to prove
the theorem for F [n]. From now on we fix an integer n, we work with sheaves of
Z/nZ-modules and we assume S is a scheme over Spec(Z[1/n]).
Next, we reduce to the case where T is affine. Since g is quasi-compact and quasi-
separate and S is affine, the scheme T is quasi-compact and quasi-separated. Thus
we can use the induction principle of Cohomology of Schemes, Lemma 4.1. Hence
it suffices to show that if T = W ∪W ′ is an open covering and the theorem holds
for the squares

X

��

e−1(W )
i

oo

��
S W

aoo

X

��

e−1(W ′)
j

oo

��
S W ′boo

X

��

e−1(W ∩W ′)
k
oo

��
S W ∩W ′coo

then the theorem holds for the original diagram. To see this we consider the diagram

f−1Rq−1c∗F|W∩W ′

∼=
��

// f−1Rqg∗F

��

// f−1Rqa∗F|W ⊕ f−1Rqb∗F|W ′

∼=
��

Rqk∗e
−1F|e−1(W∩W ′) // Rqh∗e

−1F // Rqi∗e−1F|e−1(W ) ⊕Rqj∗e
−1F|e−1(W ′)

whose rows are the long exact sequences of Lemma 50.2. Thus the 5-lemma gives
the desired conclusion.
Summarizing, we may assume S, X, T , and Y affine, F is n torsion, X → S is
smooth of relative dimension 1, and S is a scheme over Z[1/n]. We will prove the
theorem by induction on q. The base case q = 0 is handled by Lemma 87.2. Assume
q > 0 and the theorem holds for all smaller degrees. Choose a short exact sequence
0 → F → I → Q → 0 where I is an injective sheaf of Z/nZ-modules. Consider
the induced diagram

f−1Rq−1g∗I

∼=
��

// f−1Rq−1g∗Q

∼=
��

// f−1Rqg∗F

��

// 0

��
Rq−1h∗e

−1I // Rq−1h∗e
−1Q // Rqh∗e

−1F // Rqh∗e
−1I

with exact rows. We have the zero in the right upper corner as I is injective. The
left two vertical arrows are isomorphisms by induction hypothesis. Thus it suffices
to prove that Rqh∗e

−1I = 0.
Write S = Spec(A) and T = Spec(B) and say the morphism T → S is given by the
ring map A → B. We can write A → B = colimi∈I(Ai → Bi) as a filtered colimit
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of maps of rings of finite type over Z[1/n] (see Algebra, Lemma 127.14). For i ∈ I
we set Si = Spec(Ai) and Ti = Spec(Bi). For i large enough we can find a smooth
morphism Xi → Si of relative dimension 1 such that X = Xi ×Si S, see Limits,
Lemmas 10.1, 8.9, and 18.4. Set Yi = Xi ×Si

Ti to get squares

Xi

fi

��

Yi
hi

oo

ei

��
Si Ti

gioo

Observe that Ii = (T → Ti)∗I is an injective sheaf of Z/nZ-modules on Ti, see
Cohomology on Sites, Lemma 14.2. We have I = colim(T → Ti)−1Ii by Lemma
51.9. Pulling back by e we get e−1I = colim(Y → Yi)−1e−1

i Ii. By Lemma 51.8
applied to the system of morphisms Yi → Xi with limit Y → X we have

Rqh∗e
−1I = colim(X → Xi)−1Rqhi,∗e

−1
i Ii

This reduces us to the case where T and S are affine of finite type over Z[1/n].

Summarizing, we have an integer q ≥ 1 such that the theorem holds in degrees < q,
the schemes S and T affine of finite type type over Z[1/n], we have X → S smooth
of relative dimension 1 with X affine, and I is an injective sheaf of Z/nZ-modules
and we have to show that Rqh∗e

−1I = 0. We will do this by induction on dim(T ).

The base case is T = ∅, i.e., dim(T ) < 0. If you don’t like this, you can take as
your base case the case dim(T ) = 0. In this case T → S is finite (in fact even
T → Spec(Z[1/n]) is finite as the target is Jacobson; details omitted), so h is finite
too and hence has vanishing higher direct images (see references below).

Assume dim(T ) = d ≥ 0 and we know the result for all situations where T has
lower dimension. Pick U affine and étale over X and a section ξ of Rqh∗q

−1I
over U . We have to show that ξ is zero. Of course, we may replace X by U (and
correspondingly Y by U ×X Y ) and assume ξ ∈ H0(X,Rqh∗e

−1I). Moreover, since
Rqh∗e

−1I is a sheaf, it suffices to prove that ξ is zero locally on X. Hence we may
replace X by the members of an étale covering. In particular, using Lemma 51.6 we
may assume that ξ is the image of an element ξ̃ ∈ Hq(Y, e−1I). In terms of ξ̃ our
task is to show that ξ̃ dies in Hq(Ui×X Y, e−1I) for some étale covering {Ui → X}.

By More on Morphisms, Lemma 38.8 we may assume that X → S factors as
X → V → S where V → S is étale and X → V is a smooth morphism of affine
schemes of relative dimension 1, has a section, and has geometrically connected
fibres. Observe that dim(V ×S T ) ≤ dim(T ) = d for example by More on Algebra,
Lemma 44.2. Hence we may then replace S by V and T by V ×S T (exactly as in
the discussion in the first paragraph of the proof). Thus we may assume X → S is
smooth of relative dimension 1, geometrically connected fibres, and has a section
σ : S → X.

Let π : T ′ → T be a finite surjective morphism. We will use below that dim(T ′) ≤
dim(T ) = d, see Algebra, Lemma 112.3. Choose an injective map π−1I → I ′ into
an injective sheaf of Z/nZ-modules. Then I → π∗I ′ is injective and hence has a
splitting (as I is an injective sheaf of Z/nZ-modules). Denote π′ : Y ′ = Y ×T T ′ →
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Y the base change of π and e′ : Y ′ → T ′ the base change of e. Picture

X

f

��

Y
h
oo

e

��

Y ′
π′
oo

e′

��
S T

goo T ′πoo

By Proposition 55.2 and Lemma 55.3 we have Rπ′
∗(e′)−1I ′ = e−1π∗I ′. Thus by

the Leray spectral sequence (Cohomology on Sites, Lemma 14.5) we have

Hq(Y ′, (e′)−1I ′) = Hq(Y, e−1π∗I ′) ⊃ Hq(Y, e−1I)

and this remains true after base change by any U → X étale. Thus we may replace
T by T ′, I by I ′ and ξ̃ by its image in Hq(Y ′, (e′)−1I ′).

Suppose we have a factorization T → S′ → S where π : S′ → S is finite. Setting
X ′ = S′ ×S X we can consider the induced diagram

X

f

��

X ′
π′
oo

f ′

��

Y
h′
oo

e

��
S S′πoo T

goo

Since π′ has vanishing higher direct images we see that Rqh∗e
−1I = π′

∗R
qh′

∗e
−1I

by the Leray spectral sequence. Hence H0(X,Rqh∗e
−1I) = H0(X ′, Rqh′

∗e
−1I).

Thus ξ is zero if and only if the corresponding section of Rqh′
∗e

−1I is zero10. Thus
we may replace S by S′ and X by X ′. Observe that σ : S → X base changes to
σ′ : S′ → X ′ and hence after this replacement it is still true that X → S has a
section σ and geometrically connected fibres.

We will use that S and T are Nagata schemes, see Algebra, Proposition 162.16 which
will guarantee that various normalizations are finite, see Morphisms, Lemmas 53.15
and 54.10. In particular, we may first replace T by its normalization and then
replace S by the normalization of S in T . Then T → S is a disjoint union of
dominant morphisms of integral normal schemes, see Morphisms, Lemma 53.13.
Clearly we may argue one connnected component at a time, hence we may assume
T → S is a dominant morphism of integral normal schemes.

Let s ∈ S and t ∈ T be the generic points. By Lemma 89.1 there exist finite
field extensions K/κ(t) and k/κ(s) such that k is contained in K and a finite étale
Galois covering Z → Xk with Galois group G of order dividing a power of n split
over σ(Spec(k)) such that ξ̃ maps to zero in Hq(ZK , e−1I|ZK

). Let T ′ → T be
the normalization of T in Spec(K) and let S′ → S be the normalization of S in

10This step can also be seen another way. Namely, we have to show that there is an étale
covering {Ui → X} such that ξ̃ dies in Hq(Ui ×X Y, e−1I). However, if we prove there is an étale
covering {U ′

j → X′} such that ξ̃ dies in Hq(U ′
i ×X′ Y, e−1I), then by property (B) for X′ → X

(Lemma 43.3) there exists an étale covering {Ui → X} such that Ui ×X X′ is a disjoint union
of schemes over X′ each of which factors through U ′

j for some j. Thus we see that ξ̃ dies in
Hq(Ui ×X Y, e−1I) as desired.
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Spec(k). Then we obtain a commutative diagram

S′

��

T ′oo

��
S Too

whose vertical arrows are finite. By the arguments given above we may and do
replace S and T by S′ and T ′ (and correspondingly X by X ×S S′ and Y by
Y ×T T ′). After this replacement we conclude we have a finite étale Galois covering
Z → Xs of the generic fibre of X → S with Galois group G of order dividing a
power of n split over σ(s) such that ξ̃ maps to zero in Hq(Zt, (Zt → Y )−1e−1I).
Here Zt = Z ×S t = Z ×s t = Z ×Xs

Yt. Since n is invertible on S, by Fundamental
Groups, Lemma 31.8 we can find a finite étale morphism U → X whose restriction
to Xs is Z.

At this point we replace X by U and Y by U ×X Y . After this replacement it
may no longer be the case that the fibres of X → S are geometrically connected
(there still is a section but we won’t use this), but what we gain is that after this
replacement ξ̃ maps to zero in Hq(Yt, e−1I), i.e., ξ̃ restricts to zero on the generic
fibre of Y → T .

Recall that t is the spectrum of the function field of T , i.e., as a scheme t is the
limit of the nonempty affine open subschemes of T . By Lemma 51.5 we conclude
there exists a nonempty open subscheme V ⊂ T such that ξ̃ maps to zero in
Hq(Y ×T V, e−1I|Y×TV ).

Denote Z = T \ V . Consider the diagram

Y ×T Z

eZ

��

i′
// Y

e

��

Y ×T V
j′

oo

eV

��
Z

i // T V
joo

Choose an injection i−1I → I ′ into an injective sheaf of Z/nZ-modules on Z.
Looking at stalks we see that the map

I → j∗I|V ⊕ i∗I ′

is injective and hence splits as I is an injective sheaf of Z/nZ-modules. Thus it
suffices to show that ξ̃ maps to zero in

Hq(Y, e−1j∗I|V )⊕Hq(Y, e−1i∗I ′)

at least after replacing X by the members of an étale covering. Observe that

e−1j∗I|V = j′
∗e

−1
V I|V , e−1i∗I ′ = i′∗e

−1
Z I

′

By induction hypothesis on q we see that

Raj′
∗e

−1
V I|V = 0, a = 1, . . . , q − 1

By the Leray spectral sequence for j′ and the vanishing above it follows that

Hq(Y, j′
∗(e−1

V I|V )) −→ Hq(Y ×T V, e−1
V IV ) = Hq(Y ×T V, e−1I|Y×TV )
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is injective. Thus the vanishing of the image of ξ̃ in the first summand above because
we know ξ̃ vanishes in Hq(Y ×T V, e−1I|Y×TV ). Since dim(Z) < dim(T ) = d by
induction the image of ξ̃ in the second summand

Hq(Y, e−1i∗I ′) = Hq(Y, i′∗e−1
Z I

′) = Hq(Y ×T Z, e−1
Z I

′)
dies after replacing X by the members of a suitable étale covering. This finishes
the proof of the smooth base change theorem. □

Second proof of smooth base change. This proof is the same as the longer
first proof; it is shorter only in that we have split out the arguments used in a
number of lemmas.
The case of q = 0 is Lemma 87.2. Thus we may assume q > 0 and the result is true
for all smaller degrees.
For every n ≥ 1 invertible on S, let F [n] be the subsheaf of sections of F annihilated
by n. Then F = colimF [n] by our assumption on the stalks of F . The functors
e−1 and f−1 commute with colimits as they are left adjoints. The functors Rqh∗
and Rqg∗ commute with filtered colimits by Lemma 51.7. Thus it suffices to prove
the theorem for F [n]. From now on we fix an integer n invertible on S and we work
with sheaves of Z/nZ-modules.
By Lemma 86.1 the question is étale local on X and S. By the local structure of
smooth morphisms, see Morphisms, Lemma 36.20, we may assume X and S are
affine and X → S factors through an étale morphism X → Ad

S . Writing X → S as
the composition

X → Ad−1
S → Ad−2

S → . . .→ A1
S → S

we conclude from Lemma 86.2 that it suffices to prove the theorem when X and S
are affine and X → S has relative dimension 1.
By Lemma 88.7 it suffices to show that Rqh∗Z/dZ = 0 for d|n whenever we have a
cartesian diagram

X

��

Y

��

h
oo

S Spec(K)oo

where X → S is affine and smooth of relative dimension 1, S is the spectrum of a
normal domain A with algebraically closed fraction field L, and K/L is an extension
of algebraically closed fields.
Recall that Rqh∗Z/dZ is the sheaf associated to the presheaf

U 7−→ Hq(U ×X Y,Z/dZ) = Hq(U ×S Spec(K),Z/dZ)
on Xétale (Lemma 51.6). Thus it suffices to show: given U and ξ ∈ Hq(U ×S
Spec(K),Z/dZ) there exists an étale covering {Ui → U} such that ξ dies in
Hq(Ui ×S Spec(K),Z/dZ).
Of course we may take U affine. Then U ×S Spec(K) is a (smooth) affine curve
over K and hence we have vanishing for q > 1 by Theorem 83.10.
Final case: q = 1. We may replace U by the members of an étale covering as in
More on Morphisms, Lemma 38.8. Then U → S factors as U → V → S where
U → V has geometrically connected fibres, U , V are affine, V → S is étale, and
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there is a section σ : V → U . By Lemma 80.4 we see that V is isomorphic to a
(finite) disjoint union of (affine) open subschemes of S. Clearly we may replace S
by one of these and X by the corresponding component of U . Thus we may assume
X → S has geometrically connected fibres, has a section σ, and ξ ∈ H1(Y,Z/dZ).
Since K and L are algebraically closed we have

H1(XL,Z/dZ) = H1(Y,Z/dZ)

See Lemma 83.12. Thus there is a finite étale Galois covering Z → XL with Galois
group G ⊂ Z/dZ which annihilates ξ. You can either see this by looking at the
statement or proof of Lemma 89.1 or by using directly that ξ corresponds to a
Z/dZ-torsor over XL. Finally, by Fundamental Groups, Lemma 31.9 we find a
(necessarily surjective) finite étale morphism X ′ → X whose restriction to XL is
Z → XL. Since ξ dies in X ′

K this finishes the proof. □

The following immediate consquence of the smooth base change theorem is what is
often used in practice.

Lemma 89.3.0F09 Let S be a scheme. Let S′ = limSi be a directed inverse limit of
schemes Si smooth over S with affine transition morphisms. Let f : X → S be
quasi-compact and quasi-separated and form the fibre square

X ′

f ′

��

g′
// X

f

��
S′ g // S

Then
g−1Rf∗E = R(f ′)∗(g′)−1E

for any E ∈ D+(Xétale) whose cohomology sheaves Hq(E) have stalks which are
torsion of orders invertible on S.

Proof. Consider the spectral sequences

Ep,q2 = Rpf∗H
q(E) and E′p,q

2 = Rpf ′
∗H

q((g′)−1E) = Rpf ′
∗(g′)−1Hq(E)

converging to Rnf∗E and Rnf ′
∗(g′)−1E. These spectral sequences are constructed

in Derived Categories, Lemma 21.3. Combining the smooth base change theorem
(Theorem 89.2) with Lemma 86.3 we see that

g−1Rpf∗H
q(E) = Rp(f ′)∗(g′)−1Hq(E)

Combining all of the above we get the lemma. □

90. Applications of smooth base change

0F0A In this section we discuss some more or less immediate consequences of the smooth
base change theorem.

Lemma 90.1.0F1C Let L/K be an extension of fields. Let g : T → S be a quasi-
compact and quasi-separated morphism of schemes over K. Denote gL : TL → SL
the base change of g to Spec(L). Let E ∈ D+(Tétale) have cohomology sheaves
whose stalks are torsion of orders invertible in K. Let EL be the pullback of E to
(TL)étale. Then RgL,∗EL is the pullback of Rg∗E to SL.

https://stacks.math.columbia.edu/tag/0F09
https://stacks.math.columbia.edu/tag/0F1C
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Proof. If L/K is separable, then L is a filtered colimit of smooth K-algebras,
see Algebra, Lemma 158.11. Thus the lemma in this case follows immediately
from Lemma 89.3. In the general case, let K ′ and L′ be the perfect closures
(Algebra, Definition 45.5) of K and L. Then Spec(K ′)→ Spec(K) and Spec(L′)→
Spec(L) are universal homeomorphisms as K ′/K and L′/L are purely inseparable
(see Algebra, Lemma 46.7). Thus we have (TK′)étale = Tétale, (SK′)étale = Sétale,
(TL′)étale = (TL)étale, and (SL′)étale = (SL)étale by the topological invariance of
étale cohomology, see Proposition 45.4. This reduces the lemma to the case of the
field extension L′/K ′ which is separable (by definition of perfect fields, see Algebra,
Definition 45.1). □

Lemma 90.2.0F0B Let K/k be an extension of separably closed fields. Let X be a quasi-
compact and quasi-separated scheme over k. Let E ∈ D+(Xétale) have cohomology
sheaves whose stalks are torsion of orders invertible in k. Then

(1) the maps Hq
étale(X,E)→ Hq

étale(XK , E|XK
) are isomorphisms, and

(2) E → R(XK → X)∗E|XK
is an isomorphism.

Proof. Proof of (1). First let k and K be the algebraic closures of k and K. The
morphisms Spec(k) → Spec(k) and Spec(K) → Spec(K) are universal homeomor-
phisms as k/k and K/K are purely inseparable (see Algebra, Lemma 46.7). Thus
Hq
étale(X,F) = Hq

étale(Xk,FXk
) by the topological invariance of étale cohomology,

see Proposition 45.4. Similarly for XK and XK . Thus we may assume k and K
are algebraically closed. In this case K is a limit of smooth k-algebras, see Alge-
bra, Lemma 158.11. We conclude our lemma is a special case of Theorem 89.2 as
reformulated in Lemma 89.3.
Proof of (2). For any quasi-compact and quasi-separated U in Xétale the above
shows that the restriction of the map E → R(XK → X)∗E|XK

determines an
isomorphism on cohomology. Since every object of Xétale has an étale covering by
such U this proves the desired statement. □

Lemma 90.3.0F1D With f : X → S and n as in Remark 88.1 assume n is invertible
on S and that for some q ≥ 1 we have that BC(f, n, q − 1) is true, but BC(f, n, q)
is not. Then there exist a commutative diagram

X

f

��

X ′

��

oo Y
h

oo

��
S S′oo Spec(K)oo

with both squares cartesian, where S′ is affine, integral, and normal with alge-
braically closed function field K and there exists an integer d|n such that Rqh∗(Z/dZ)
is nonzero.

Proof. First choose a diagram and F as in Lemma 88.7. We may and do assume
S′ is affine (this is obvious, but see proof of the lemma in case of doubt). Let K ′

be the function field of S′ and let Y ′ = X ′ ×S′ Spec(K ′) to get the diagram

X

f

��

X ′

��

oo Y ′
h′

oo

��

Yoo

��
S S′oo Spec(K ′)oo Spec(K)oo

https://stacks.math.columbia.edu/tag/0F0B
https://stacks.math.columbia.edu/tag/0F1D
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By Lemma 90.2 the total direct image R(Y → Y ′)∗Z/dZ is isomorphic to Z/dZ in
D(Y ′

étale); here we use that n is invertible on S. Thus Rh′
∗Z/dZ = Rh∗Z/dZ by

the relative Leray spectral sequence. This finishes the proof. □

91. The proper base change theorem

095S The proper base change theorem is stated and proved in this section. Our approach
follows roughly the proof in [AGV71, XII, Theorem 5.1] using Gabber’s ideas (from
the affine case) to slightly simplify the arguments.

Lemma 91.1.0A0B Let (A, I) be a henselian pair. Let f : X → Spec(A) be a proper
morphism of schemes. Let Z = X ×Spec(A) Spec(A/I). For any sheaf F on the
topological space associated to X we have Γ(X,F) = Γ(Z,F|Z).

Proof. We will use Lemma 82.4 to prove this. First observe that the underlying
topological space of X is spectral by Properties, Lemma 2.4. Let Y ⊂ X be an
irreducible closed subscheme. To finish the proof we show that Y ∩Z = Y ×Spec(A)
Spec(A/I) is connected. Replacing X by Y we may assume that X is irreducible
and we have to show that Z is connected. Let X → Spec(B) → Spec(A) be the
Stein factorization of f (More on Morphisms, Theorem 53.5). Then A → B is
integral and (B, IB) is a henselian pair (More on Algebra, Lemma 11.8). Thus
we may assume the fibres of X → Spec(A) are geometrically connected. On the
other hand, the image T ⊂ Spec(A) of f is irreducible and closed as X is proper
over A. Hence T ∩ V (I) is connected by More on Algebra, Lemma 11.16. Now
Y ×Spec(A) Spec(A/I)→ T ∩ V (I) is a surjective closed map with connected fibres.
The result now follows from Topology, Lemma 7.5. □

Lemma 91.2.0A0C Let (A, I) be a henselian pair. Let f : X → Spec(A) be a proper
morphism of schemes. Let i : Z → X be the closed immersion of X ×Spec(A)
Spec(A/I) into X. For any sheaf F on Xétale we have Γ(X,F) = Γ(Z, i−1

smallF).

Proof. This follows from Lemma 82.2 and 91.1 and the fact that any scheme finite
over X is proper over Spec(A). □

Lemma 91.3.0A3S Let A be a henselian local ring. Let f : X → Spec(A) be a proper
morphism of schemes. Let X0 ⊂ X be the fibre of f over the closed point. For any
sheaf F on Xétale we have Γ(X,F) = Γ(X0,F|X0).

Proof. This is a special case of Lemma 91.2. □

Let f : X → S be a morphism of schemes. Let s : Spec(k) → S be a geometric
point. The fibre of f at s is the scheme Xs = Spec(k) ×s,S X viewed as a scheme
over Spec(k). If F is a sheaf on Xétale, then denote Fs = p−1

smallF the pullback of
F to (Xs)étale. In the following we will consider the set

Γ(Xs,Fs)

Let s ∈ S be the image point of s. Let κ(s)sep be the separable algebraic closure
of κ(s) in k as in Definition 56.1. By Lemma 39.5 pullback defines a bijection

Γ(Xκ(s)sep , p−1
sepF) −→ Γ(Xs,Fs)

where psep : Xκ(s)sep = Spec(κ(s)sep)×S X → X is the projection.

https://stacks.math.columbia.edu/tag/0A0B
https://stacks.math.columbia.edu/tag/0A0C
https://stacks.math.columbia.edu/tag/0A3S
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Lemma 91.4.0A3T Let f : X → S be a proper morphism of schemes. Let s→ S be a
geometric point. For any sheaf F on Xétale the canonical map

(f∗F)s −→ Γ(Xs,Fs)
is bijective.

Proof. By Theorem 53.1 (for sheaves of sets) we have
(f∗F)s = Γ(X ×S Spec(OshS,s), p−1

smallF)

where p : X ×S Spec(OshS,s) → X is the projection. Since the residue field of the
strictly henselian local ring OshS,s is κ(s)sep we conclude from the discussion above
the lemma and Lemma 91.3. □

Lemma 91.5.0A3U Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y
be a morphism of schemes. Set X ′ = Y ′ ×Y X with projections f ′ : X ′ → Y ′ and
g′ : X ′ → X. Let F be any sheaf on Xétale. Then g−1f∗F = f ′

∗(g′)−1F .

Proof. There is a canonical map g−1f∗F → f ′
∗(g′)−1F . Namely, it is adjoint to

the map
f∗F −→ g∗f

′
∗(g′)−1F = f∗g

′
∗(g′)−1F

which is f∗ applied to the canonical map F → g′
∗(g′)−1F . To check this map is an

isomorphism we can compute what happens on stalks. Let y′ : Spec(k) → Y ′ be
a geometric point with image y in Y . By Lemma 91.4 the stalks are Γ(X ′

y′ ,Fy′)
and Γ(Xy,Fy) respectively. Here the sheaves Fy and Fy′ are the pullbacks of F
by the projections Xy → X and X ′

y′ → X. Thus we see that the groups agree by
Lemma 39.5. We omit the verification that this isomorphism is compatible with
our map. □

At this point we start discussing the proper base change theorem. To do so we
introduce some notation. consider a commutative diagram

(91.5.1)0A29

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of morphisms of schemes. Then we obtain a commutative diagram of sites

X ′
étale g′

small

//

f ′
small

��

Xétale

fsmall

��
Y ′
étale

gsmall // Yétale

For any object E of D(Xétale) we obtain a canonical base change map
(91.5.2)0A2A g−1

smallRfsmall,∗E −→ Rf ′
small,∗(g′

small)−1E

in D(Y ′
étale). See Cohomology on Sites, Remark 19.3 where we use the constant

sheaf Z as our sheaf of rings. We will usually omit the subscripts small in this
formula. For example, if E = F [0] where F is an abelian sheaf on Xétale, the base
change map is a map
(91.5.3)0A4A g−1Rf∗F −→ Rf ′

∗(g′)−1F
in D(Y ′

étale).

https://stacks.math.columbia.edu/tag/0A3T
https://stacks.math.columbia.edu/tag/0A3U
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The map (91.5.2) has no chance of being an isomorphism in the generality given
above. The goal is to show it is an isomorphism if the diagram (91.5.1) is cartesian,
f : X → Y proper, the cohomology sheaves of E are torsion, and E is bounded
below. To study this question we introduce the following terminology. Let us
say that cohomology commutes with base change for f : X → Y if (91.5.3) is an
isomorphism for every diagram (91.5.1) where X ′ = Y ′ ×Y X and every torsion
abelian sheaf F .

Lemma 91.6.0A4B Let f : X → Y be a proper morphism of schemes. The following
are equivalent

(1) cohomology commutes with base change for f (see above),
(2) for every prime number ℓ and every injective sheaf of Z/ℓZ-modules I

on Xétale and every diagram (91.5.1) where X ′ = Y ′ ×Y X the sheaves
Rqf ′

∗(g′)−1I are zero for q > 0.

Proof. It is clear that (1) implies (2). Conversely, assume (2) and let F be a
torsion abelian sheaf on Xétale. Let Y ′ → Y be a morphism of schemes and let
X ′ = Y ′ ×Y X with projections g′ : X ′ → X and f ′ : X ′ → Y ′ as in diagram
(91.5.1). We want to show the maps of sheaves

g−1Rqf∗F −→ Rqf ′
∗(g′)−1F

are isomorphisms for all q ≥ 0.
For every n ≥ 1, let F [n] be the subsheaf of sections of F annihilated by n. Then
F = colimF [n]. The functors g−1 and (g′)−1 commute with arbitrary colimits (as
left adjoints). Taking higher direct images along f or f ′ commutes with filtered
colimits by Lemma 51.7. Hence we see that
g−1Rqf∗F = colim g−1Rqf∗F [n] and Rqf ′

∗(g′)−1F = colimRqf ′
∗(g′)−1F [n]

Thus it suffices to prove the result in case F is annihilated by a positive integer n.
If n = ℓn′ for some prime number ℓ, then we obtain a short exact sequence

0→ F [ℓ]→ F → F/F [ℓ]→ 0
Observe that F/F [ℓ] is annihilated by n′. Moreover, if the result holds for both
F [ℓ] and F/F [ℓ], then the result holds by the long exact sequence of higher direct
images (and the 5 lemma). In this way we reduce to the case that F is annihilated
by a prime number ℓ.
Assume F is annihilated by a prime number ℓ. Choose an injective resolution
F → I• in D(Xétale,Z/ℓZ). Applying assumption (2) and Leray’s acyclicity lemma
(Derived Categories, Lemma 16.7) we see that

f ′
∗(g′)−1I•

computes Rf ′
∗(g′)−1F . We conclude by applying Lemma 91.5. □

Lemma 91.7.0A4C Let f : X → Y and g : Y → Z be proper morphisms of schemes.
Assume

(1) cohomology commutes with base change for f ,
(2) cohomology commutes with base change for g ◦ f , and
(3) f is surjective.

Then cohomology commutes with base change for g.

https://stacks.math.columbia.edu/tag/0A4B
https://stacks.math.columbia.edu/tag/0A4C
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Proof. We will use the equivalence of Lemma 91.6 without further mention. Let ℓ
be a prime number. Let I be an injective sheaf of Z/ℓZ-modules on Yétale. Choose
an injective map of sheaves f−1I → J where J is an injective sheaf of Z/ℓZ-
modules on Zétale. Since f is surjective the map I → f∗J is injective (look at
stalks in geometric points). Since I is injective we see that I is a direct summand
of f∗J . Thus it suffices to prove the desired vanishing for f∗J .
Let Z ′ → Z be a morphism of schemes and set Y ′ = Z ′×Z Y and X ′ = Z ′×Z X =
Y ′×YX. Denote a : X ′ → X, b : Y ′ → Y , and c : Z ′ → Z the projections. Similarly
for f ′ : X ′ → Y ′ and g′ : Y ′ → Z ′. By Lemma 91.5 we have b−1f∗J = f ′

∗a
−1J . On

the other hand, we know that Rqf ′
∗a

−1J and Rq(g′ ◦ f ′)∗a
−1J are zero for q > 0.

Using the spectral sequence (Cohomology on Sites, Lemma 14.7)
Rpg′

∗R
qf ′

∗a
−1J ⇒ Rp+q(g′ ◦ f ′)∗a

−1J
we conclude that Rpg′

∗(b−1f∗J ) = Rpg′
∗(f ′

∗a
−1J ) = 0 for p > 0 as desired. □

Lemma 91.8.0A4D Let f : X → Y and g : Y → Z be proper morphisms of schemes.
Assume

(1) cohomology commutes with base change for f , and
(2) cohomology commutes with base change for g.

Then cohomology commutes with base change for g ◦ f .

Proof. We will use the equivalence of Lemma 91.6 without further mention. Let ℓ
be a prime number. Let I be an injective sheaf of Z/ℓZ-modules on Xétale. Then
f∗I is an injective sheaf of Z/ℓZ-modules on Yétale (Cohomology on Sites, Lemma
14.2). The result follows formally from this, but we will also spell it out.
Let Z ′ → Z be a morphism of schemes and set Y ′ = Z ′×Z Y and X ′ = Z ′×Z X =
Y ′×YX. Denote a : X ′ → X, b : Y ′ → Y , and c : Z ′ → Z the projections. Similarly
for f ′ : X ′ → Y ′ and g′ : Y ′ → Z ′. By Lemma 91.5 we have b−1f∗I = f ′

∗a
−1I.

On the other hand, we know that Rqf ′
∗a

−1I and Rq(g′)∗b
−1f∗I are zero for q > 0.

Using the spectral sequence (Cohomology on Sites, Lemma 14.7)
Rpg′

∗R
qf ′

∗a
−1I ⇒ Rp+q(g′ ◦ f ′)∗a

−1I
we conclude that Rp(g′ ◦ f ′)∗a

−1I = 0 for p > 0 as desired. □

Lemma 91.9.0A4E Let f : X → Y be a finite morphism of schemes. Then cohomology
commutes with base change for f .

Proof. Observe that a finite morphism is proper, see Morphisms, Lemma 44.11.
Moreover, the base change of a finite morphism is finite, see Morphisms, Lemma
44.6. Thus the result follows from Lemma 91.6 combined with Proposition 55.2. □

Lemma 91.10.0A4F To prove that cohomology commutes with base change for every
proper morphism of schemes it suffices to prove it holds for the morphism P1

S → S
for every scheme S.

Proof. Let f : X → Y be a proper morphism of schemes. Let Y =
⋃
Yi be an

affine open covering and set Xi = f−1(Yi). If we can prove cohomology commutes
with base change for Xi → Yi, then cohomology commutes with base change for
f . Namely, the formation of the higher direct images commutes with Zariski (and
even étale) localization on the base, see Lemma 51.6. Thus we may assume Y is
affine.

https://stacks.math.columbia.edu/tag/0A4D
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Let Y be an affine scheme and let X → Y be a proper morphism. By Chow’s
lemma there exists a commutative diagram

X

  

X ′

��

π
oo // Pn

Y

}}
Y

where X ′ → Pn
Y is an immersion, and π : X ′ → X is proper and surjective, see

Limits, Lemma 12.1. Since X → Y is proper, we find that X ′ → Y is proper
(Morphisms, Lemma 41.4). Hence X ′ → Pn

Y is a closed immersion (Morphisms,
Lemma 41.7). It follows that X ′ → X ×Y Pn

Y = Pn
X is a closed immersion (as an

immersion with closed image).

By Lemma 91.7 it suffices to prove cohomology commutes with base change for
π and X ′ → Y . These morphisms both factor as a closed immersion followed by
a projection Pn

S → S (for some S). By Lemma 91.9 the result holds for closed
immersions (as closed immersions are finite). By Lemma 91.8 it suffices to prove
the result for projections Pn

S → S.

For every n ≥ 1 there is a finite surjective morphism

P1
S ×S . . .×S P1

S −→ Pn
S

given on coordinates by

((x1 : y1), (x2 : y2), . . . , (xn : yn)) 7−→ (F0 : . . . : Fn)

where F0, . . . , Fn in x1, . . . , yn are the polynomials with integer coefficients such
that ∏

(xit+ yi) = F0t
n + F1t

n−1 + . . .+ Fn

Applying Lemmas 91.7, 91.9, and 91.8 one more time we conclude that the lemma
is true. □

Theorem 91.11.095T Let f : X → Y be a proper morphism of schemes. Let g :
Y ′ → Y be a morphism of schemes. Set X ′ = Y ′ ×Y X and consider the cartesian
diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

Let F be an abelian torsion sheaf on Xétale. Then the base change map

g−1Rf∗F −→ Rf ′
∗(g′)−1F

is an isomorphism.

Proof. In the terminology introduced above, this means that cohomology com-
mutes with base change for every proper morphism of schemes. By Lemma 91.10
it suffices to prove that cohomology commutes with base change for the morphism
P1
S → S for every scheme S.

https://stacks.math.columbia.edu/tag/095T
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Let S be the spectrum of a strictly henselian local ring with closed point s. Set
X = P1

S and X0 = Xs = P1
s. Let F be a sheaf of Z/ℓZ-modules on Xétale. The

key to our proof is that
Hq
étale(X,F) = Hq

étale(X0,F|X0).
Namely, choose a resolution F → I• by injective sheaves of Z/ℓZ-modules. Then
I•|X0 is a resolution of F|X0 by right H0

étale(X0,−)-acyclic objects, see Lemma
85.2. Leray’s acyclicity lemma tells us the right hand side is computed by the
complex H0

étale(X0, I•|X0) which is equal to H0
étale(X, I•) by Lemma 91.3. This

complex computes the left hand side.
Assume S is general and F is a sheaf of Z/ℓZ-modules on Xétale. Let s : Spec(k)→
S be a geometric point of S lying over s ∈ S. We have

(Rqf∗F)s = Hq
étale(P

1
Osh

S,s

,F|P1
Osh

S,s

) = Hq
étale(P

1
κ(s)sep ,F|P1

κ(s)sep
)

where κ(s)sep is the residue field of OshS,s, i.e., the separable algebraic closure of κ(s)
in k. The first equality by Theorem 53.1 and the second equality by the displayed
formula in the previous paragraph.
Finally, consider any morphism of schemes g : T → S where S and F are as above.
Set f ′ : P1

T → T the projection and let g′ : P1
T → P1

S the morphism induced by g.
Consider the base change map

g−1Rqf∗F −→ Rqf ′
∗(g′)−1F

Let t be a geometric point of T with image s = g(t). By our discussion above the
map on stalks at t is the map

Hq
étale(P

1
κ(s)sep ,F|P1

κ(s)sep
) −→ Hq

étale(P
1
κ(t)sep ,F|P1

κ(t)sep
)

Since κ(s)sep ⊂ κ(t)sep this map is an isomorphism by Lemma 83.12.
This proves cohomology commutes with base change for P1

S → S and sheaves of
Z/ℓZ-modules. In particular, for an injective sheaf of Z/ℓZ-modules the higher
direct images of any base change are zero. In other words, condition (2) of Lemma
91.6 holds and the proof is complete. □

Lemma 91.12.0DDE Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y
be a morphism of schemes. Set X ′ = Y ′ ×Y X and denote f ′ : X ′ → Y ′ and
g′ : X ′ → X the projections. Let E ∈ D+(Xétale) have torsion cohomology sheaves.
Then the base change map (91.5.2) g−1Rf∗E → Rf ′

∗(g′)−1E is an isomorphism.

Proof. This is a simple consequence of the proper base change theorem (Theorem
91.11) using the spectral sequences

Ep,q2 = Rpf∗H
q(E) and E′p,q

2 = Rpf ′
∗(g′)−1Hq(E)

converging to Rnf∗E and Rnf ′
∗(g′)−1E. The spectral sequences are constructed in

Derived Categories, Lemma 21.3. Some details omitted. □

Lemma 91.13.0DDF Let f : X → Y be a proper morphism of schemes. Let y → Y be
a geometric point.

(1) For a torsion abelian sheaf F on Xétale we have (Rnf∗F)y = Hn
étale(Xy,Fy).

(2) For E ∈ D+(Xétale) with torsion cohomology sheaves we have (Rnf∗E)y =
Hn
étale(Xy, E|Xy

).
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Proof. In the statement, Fy denotes the pullback of F to the scheme theoretic
fibre Xy = y×Y X. Since pulling back by y → Y produces the stalk of F , the first
statement of the lemma is a special case of Theorem 91.11. The second one is a
special case of Lemma 91.12. □

92. Applications of proper base change

0A5I In this section we discuss some more or less immediate consequences of the proper
base change theorem.

Lemma 92.1.0DDG Let K/k be an extension of separably closed fields. Let X be a
proper scheme over k. Let F be a torsion abelian sheaf on Xétale. Then the map
Hq
étale(X,F)→ Hq

étale(XK ,F|XK
) is an isomorphism for q ≥ 0.

Proof. Looking at stalks we see that this is a special case of Theorem 91.11. □

Lemma 92.2.095U Let f : X → Y be a proper morphism of schemes all of whose
fibres have dimension ≤ n. Then for any abelian torsion sheaf F on Xétale we have
Rqf∗F = 0 for q > 2n.

Proof. We will prove this by induction on n for all proper morphisms.
If n = 0, then f is a finite morphism (More on Morphisms, Lemma 44.1) and the
result is true by Proposition 55.2.
If n > 0, then using Lemma 91.13 we see that it suffices to prove Hi

étale(X,F) = 0
for i > 2n and X a proper scheme, dim(X) ≤ n over an algebraically closed field k
and F is a torsion abelian sheaf on X.
If n = 1 this follows from Theorem 83.11. Assume n > 1. By Proposition 45.4
we may replace X by its reduction. Let ν : Xν → X be the normalization. This
is a surjective birational finite morphism (see Varieties, Lemma 27.1) and hence
an isomorphism over a dense open U ⊂ X (Morphisms, Lemma 50.5). Then we
see that c : F → ν∗ν

−1F is injective (as ν is surjective) and an isomorphism over
U . Denote i : Z → X the inclusion of the complement of U . Since U is dense in
X we have dim(Z) < dim(X) = n. By Proposition 46.4 have Coker(c) = i∗G for
some abelian torsion sheaf G on Zétale. Then Hq

étale(X,Coker(c)) = Hq
étale(Z,F)

(by Proposition 55.2 and the Leray spectral sequence) and by induction hypothesis
we conclude that the cokernel of c has cohomology in degrees ≤ 2(n− 1). Thus it
suffices to prove the result for ν∗ν

−1F . As ν is finite this reduces us to showing that
Hi
étale(Xν , ν−1F) is zero for i > 2n. This case is treated in the next paragraph.

Assume X is integral normal proper scheme over k of dimension n. Choose a
nonconstant rational function f on X. The graph X ′ ⊂ X × P1

k of f sits into a
diagram

X
b←− X ′ f−→ P1

k

Observe that b is an isomorphism over an open subscheme U ⊂ X whose comple-
ment is a closed subscheme Z ⊂ X of codimension ≥ 2. Namely, U is the domain of
definition of f which contains all codimension 1 points of X, see Morphisms, Lem-
mas 49.9 and 42.5 (combined with Serre’s criterion for normality, see Properties,
Lemma 12.5). Moreover the fibres of b have dimension ≤ 1 (as closed subschemes
of P1). Hence Rib∗b

−1F is nonzero only if i ∈ {0, 1, 2} by induction. Choose a
distinguished triangle

F → Rb∗b
−1F → Q→ F [1]

https://stacks.math.columbia.edu/tag/0DDG
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Using that F → b∗b
−1F is injective as before and using what we just said, we

see that Q has nonzero cohomology sheaves only in degrees 0, 1, 2 sitting on Z.
Moreover, these cohomology sheaves are torsion by Lemma 78.2. By induction we
see that Hi(X,Q) is zero for i > 2 + 2 dim(Z) ≤ 2 + 2(n − 2) = 2n − 2. Thus
it suffices to prove that Hi(X ′, b−1F) = 0 for i > 2n. At this point we use the
morphism

f : X ′ → P1
k

whose fibres have dimension < n. Hence by induction we see that Rif∗b
−1F = 0

for i > 2(n− 1). We conclude by the Leray spectral seqence

Hi(P1
k, R

jf∗b
−1F)⇒ Hi+j(X ′, b−1F)

and the fact that dim(P1
k) = 1. □

When working with mod n coefficients we can do proper base change for unbounded
complexes.

Lemma 92.3.0F0C Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y
be a morphism of schemes. Set X ′ = Y ′ ×Y X and denote f ′ : X ′ → Y ′ and
g′ : X ′ → X the projections. Let n ≥ 1 be an integer. Let E ∈ D(Xétale,Z/nZ).
Then the base change map (91.5.2) g−1Rf∗E → Rf ′

∗(g′)−1E is an isomorphism.

Proof. It is enough to prove this when Y and Y ′ are quasi-compact. By Mor-
phisms, Lemma 28.5 we see that the dimension of the fibres of f : X → Y and
f ′ : X ′ → Y ′ are bounded. Thus Lemma 92.2 implies that

f∗ : Mod(Xétale,Z/nZ) −→ Mod(Yétale,Z/nZ)
and

f ′
∗ : Mod(X ′

étale,Z/nZ) −→ Mod(Y ′
étale,Z/nZ)

have finite cohomological dimension in the sense of Derived Categories, Lemma
32.2. Choose a K-injective complex I• of Z/nZ-modules each of whose terms In is
an injective sheaf of Z/nZ-modules representing E. See Injectives, Theorem 12.6.
By the usual proper base change theorem we find that Rqf ′

∗(g′)−1In = 0 for q > 0,
see Theorem 91.11. Hence we conclude by Derived Categories, Lemma 32.2 that
we may compute Rf ′

∗(g′)−1E by the complex f ′
∗(g′)−1I•. Another application

of the usual proper base change theorem shows that this is equal to g−1f∗I• as
desired. □

Lemma 92.4.0F0E Let X be a quasi-compact and quasi-separated scheme. Let E ∈
D+(Xétale) and K ∈ D+(Z). Then

RΓ(X,E ⊗L
Z K) = RΓ(X,E)⊗L

Z K

Proof. Say Hi(E) = 0 for i ≥ a and Hj(K) = 0 for j ≥ b. We may represent
K by a bounded below complex K• of torsion free Z-modules. (Choose a K-flat
complex L• representing K and then take K• = τ≥b−1L

•. This works because Z
has global dimension 1. See More on Algebra, Lemma 66.2.) We may represent E
by a bounded below complex E•. Then E ⊗L

Z K is represented by
Tot(E• ⊗Z K

•)
Using distinguished triangles

σ≥−b+n+1K
• → K• → σ≤−b+nK

•

https://stacks.math.columbia.edu/tag/0F0C
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and the trivial vanishing

Hn(X,Tot(E• ⊗Z σ≥−a+n+1K
•) = 0

and
Hn(RΓ(X,E)⊗L

Z σ≥−a+n+1K
•) = 0

we reduce to the case where K• is a bounded complex of flat Z-modules. Repeating
the argument we reduce to the case where K• is equal to a single flat Z-module
sitting in some degree. Next, using the stupid trunctions for E• we reduce in
exactly the same manner to the case where E• is a single abelian sheaf sitting in
some degree. Thus it suffices to show that

Hn(X, E ⊗Z M) = Hn(X, E)⊗Z M

when M is a flat Z-module and E is an abelian sheaf on X. In this case we write
M is a filtered colimit of finite free Z-modules (Lazard’s theorem, see Algebra,
Theorem 81.4). By Theorem 51.3 this reduces us to the case of finite free Z-module
M in which case the result is trivially true. □

Lemma 92.5.0F0F Let f : X → Y be a proper morphism of schemes. Let E ∈
D+(Xétale) have torsion cohomology sheaves. Let K ∈ D+(Yétale). Then

Rf∗E ⊗L
Z K = Rf∗(E ⊗L

Z f
−1K)

in D+(Yétale).

Proof. There is a canonical map from left to right by Cohomology on Sites, Section
50. We will check the equality on stalks. Recall that computing derived tensor
products commutes with pullbacks. See Cohomology on Sites, Lemma 18.4. Thus
we have

(E ⊗L
Z f

−1K)x = Ex ⊗L
Z Ky

where y is the image of x in Y . Since Z has global dimension 1 we see that this
complex has vanishing cohomology in degree < −1 + a + b if Hi(E) = 0 for i ≥ a
and Hj(K) = 0 for j ≥ b. Moreover, since Hi(E) is a torsion abelian sheaf for each
i, the same is true for the cohomology sheaves of the complex E⊗L

ZK. Namely, we
have

(E ⊗L
Z f

−1K)⊗L
Z Q = (E ⊗L

Z Q)⊗L
Q (f−1K ⊗L

Z Q)
which is zero in the derived category. In this way we see that Lemma 91.13 applies
to both sides to see that it suffices to show

RΓ(Xy, E|Xy
⊗L

Z (Xy → y)−1Ky) = RΓ(Xy, E|Xy
)⊗L

Z Ky

This is shown in Lemma 92.4. □

93. Local acyclicity

0GJM In this section we deduce local acyclicity of smooth morphisms from the smooth
base change theorem. In SGA 4 or SGA 4.5 the authors first prove a version of
local acyclicity for smooth morphisms and then deduce the smooth base change
theorem.

We will use the formulation of local acyclicity given by Deligne [Del77, Definition
2.12, page 242]. Let f : X → S be a morphism of schemes. Let x be a geometric

https://stacks.math.columbia.edu/tag/0F0F
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point of X with image s = f(x) in S. Let t be a geometric point of Spec(OshS,s).
We obtain a commutative diagram

Fx,t = t×Spec(Osh
S,s

) Spec(OshX,x) //

��

Spec(OshX,x) //

��

X

��
t // Spec(OshS,s) // S

The scheme Fx,t is called a variety of vanishing cycles of f at x. Let K be an
object of D(Xétale). For any morphism of schemes g : Y → X we write RΓ(Y,K)
instead of RΓ(Yétale, g−1

smallK). Since OshX,x is strictly henselian we have Kx =
RΓ(Spec(OshX,x),K). Thus we obtain a canonical map

(93.0.1)0GJN αK,x,t : Kx −→ RΓ(Fx,t,K)

by pulling back cohomology along Fx,t → Spec(OshX,x).

Definition 93.1.0GJP [Del77, Definition
2.12, page 242] and
[Del77, Definition
(1.3), page 54]

Let f : X → S be a morphism of schemes. Let K be an object
of D(Xétale).

(1) Let x be a geometric point of X with image s = f(x). We say f is locally
acyclic at x relative to K if for every geometric point t of Spec(OshS,s) the
map (93.0.1) is an isomorphism11.

(2) We say f is locally acyclic relative to K if f is locally acyclic at x relative
to K for every geometric point x of X.

(3) We say f is universally locally acyclic relative to K if for any morphism
S′ → S of schemes the base change f ′ : X ′ → S′ is locally acyclic relative
to the pullback of K to X ′.

(4) We say f is locally acyclic if for all geometric points x of X and any integer
n prime to the characteristic of κ(x), the morphism f is locally acyclic at
x relative to the constant sheaf with value Z/nZ.

(5) We say f is universally locally acyclic if for any morphism S′ → S of
schemes the base change f ′ : X ′ → S′ is locally acyclic.

Let M be an abelian group. Then local acyclicity of f : X → S with respect to the
constant sheaf M boils down to the requirement that

Hq(Fx,t,M) =
{
M if q = 0
0 if q ̸= 0

for any geometric point x of X and any geometric point t of Spec(OshS,f(x)). In this
way we see that being locally acyclic corresponds to the vanishing of the higher
cohomology groups of the geometric fibres Fx,t of the maps between the strict
henselizations at x and s.
Proposition 93.2.0GJQ Let f : X → S be a smooth morphism of schemes. Then f is
universally locally acyclic.
Proof. Since the base change of a smooth morphism is smooth, it suffices to show
that smooth morphisms are locally acyclic. Let x be a geometric point of X with
image s = f(x). Let t be a geometric point of Spec(OshS,f(x)). Since we are trying to

11We do not assume t is an algebraic geometric point of Spec(Osh
S,s

). Often using Lemma 90.2
one may reduce to this case.
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prove a property of the ring map OshS,s → OshX,x (see discussion following Definition
93.1) we may and do replace f : X → S by the base change X ×S Spec(OshS,s) →
Spec(OshS,s). Thus we may and do assume that S is the spectrum of a strictly
henselian local ring and that s lies over the closed point of S.

We will apply Lemma 86.5 to the diagram

X

f

��

Xth
oo

e

��
S t

goo

and the sheaf F = M where M = Z/nZ for some integer n prime to the charac-
teristic of the residue field of x. We know that the map f−1Rqg∗F → Rqh∗e

−1F
is an isomorphism by smooth base change, see Theorem 89.2 (the assumption on
torsion holds by our choice of n). Thus Lemma 86.5 gives us the middle equality in

Hq(Fx,t,M) = Hq(Spec(OshX,x)×S t,M) = Hq(Spec(OshS,s)×S t,M) = Hq(t,M)

For the outer two equalities we use that S = Spec(OshS,s). Since t is the spectrum
of a separably closed field we conclude that

Hq(Fx,t,M) =
{
M if q = 0
0 if q ̸= 0

which is what we had to show (see discussion following Definition 93.1). □

Lemma 93.3.0GJR Let f : X → S be a morphism of schemes. Let F be a locally
constant abelian sheaf on Xétale such that for every geometric point x of X the
abelian group Fx is a torsion group all of whose elements have order prime to the
characteristic of the residue field of x. If f is locally acyclic, then f is locally acyclic
relative to F .

Proof. Namely, let x be a geometric point of X. Since F is locally constant we
see that the restriction of F to Spec(OshX,x) is isomorphic to the constant sheaf M
with M = Fx. By assumption we can write M = colimMi as a filtered colimit of
finite abelian groups Mi of order prime to the characteristic of the residue field of
x. Consider a geometric point t of Spec(OshS,f(x)). Since Fx,t is affine, we have

Hq(Fx,t,M) = colimHq(Fx,t,Mi)

by Lemma 51.4. For each i we can write Mi =
⊕

Z/ni,jZ as a finite direct sum
for some integers ni,j prime to the characteristic of the residue field of x. Since f
is locally acyclic we see that

Hq(Fx,t,Z/ni,jZ) =
{

Z/ni,jZ if q = 0
0 if q ̸= 0

See discussion following Definition 93.1. Taking the direct sums and the colimit we
conclude that

Hq(Fx,t,M) =
{
M if q = 0
0 if q ̸= 0

and we win. □

https://stacks.math.columbia.edu/tag/0GJR
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Lemma 93.4.0GJS Let

X ′
g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let K be an object of D(Xétale). Let x′ be a
geometric point of X ′ with image x in X. If

(1) f is locally acyclic at x relative to K and
(2) g is locally quasi-finite, or S′ = limSi is a directed inverse limit of schemes

locally quasi-finite over S with affine transition morphisms, or g : S′ → S
is integral,

then f ′ locally acyclic at x′ relative to (g′)−1K.

Proof. Denote s′ and s the images of x′ and x in S′ and S. Let t′ be a geometric
point of the spectrum of Spec(OshS′,s′) and denote t the image in Spec(OshS,s). By
Algebra, Lemma 156.6 and our assumptions on g we have

OshX,x ⊗Osh
S,s
OshS′,s′ −→ OshX′,x′

is an isomorphism. Since by our conventions κ(t) = κ(t′) we conclude that

Fx′,t
′ = Spec

(
OshX′,x′ ⊗Osh

S′,s′
κ(t′)

)
= Spec

(
OshX,x ⊗Osh

S,s
κ(t)

)
= Fx,t

In other words, the varieties of vanishing cycles of f ′ at x′ are examples of varieties
of vanishing cycles of f at x. The lemma follows immediately from this and the
definitions. □

94. The cospecialization map

0GJT Let f : X → S be a morphism of schemes. Let x be a geometric point of X with
image s = f(x) in S. Let t be a geometric point of Spec(OshS,s). Let K ∈ D(Xétale).
For any morphism g : Y → X of schemes we write K|Y instead of g−1

smallK and
RΓ(Y,K) instead of RΓ(Yétale, g−1

smallK). We claim that if
(1) K is bounded below, i.e., K ∈ D+(Xétale),
(2) f is locally acyclic relative to K

then there is a cospecialization map

cosp : RΓ(Xt,K) −→ RΓ(Xs,K)

which will be closely related to the specialization map considered in Section 75 and
especially Remark 75.8.

To construct the map we consider the morphisms

Xt
h−→ X ×S Spec(OshS,s)

i←− Xs

The unit of the adjunction between h−1 and Rh∗ gives a map

βK,s,t : K|X×SSpec(Osh
S,s

) −→ Rh∗(K|X
t
)

https://stacks.math.columbia.edu/tag/0GJS
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in D((X×S Spec(OshS,s))étale). Lemma 94.1 below shows that the pullback i−1βK,s,t
is an isomorphism under the assumptions above. Thus we can define the cospecial-
ization map as the composition

RΓ(Xt,K) = RΓ(X ×S Spec(OshS,s), Rh∗(K|X
t
))

i−1

−−→ RΓ(Xs, i
−1Rh∗(K|X

t
))

(i−1β
K,s,t

)−1

−−−−−−−−−→ RΓ(Xs, i
−1(K|X×SSpec(Osh

S,s
)))

= RΓ(Xs,K)

Lemma 94.1.0GJU The map i−1βK,s,t is an isomorphism.

Proof. The construction of the maps h, i, βK,s,t only depends on the base change of
X and K to Spec(OshS,s). Thus we may and do assume that S is a strictly henselian
scheme with closed point s. Observe that the local acyclicity of f relative to K
is preserved by this base change (for example by Lemma 93.4 or just directly by
comparing strictly henselian rings in this very special case).

Let x be a geometric point of Xs. Or equivalently, let x be a geometric point whose
image by f is s. Let us compute the stalk of i−1βK,s,t at x. First, we have

(i−1βK,s,t)x = (βK,s,t)x
since pullback preserves stalks, see Lemma 36.2. Since we are in the situation S =
Spec(OshS,s) we see that h : Xt → X has the property that Xt×X Spec(OshX,x) = Fx,t.
Thus we see that

(βK,s,t)x : Kx −→ Rh∗(K|X
t
)x = RΓ(Fx,t,K)

where the equal sign is Theorem 53.1. It follows that the map (βK,s,t)x is none
other than the map αK,x,t used in Definition 93.1. The result follows as we may
check whether a map is an isomorphism in stalks by Theorem 29.10. □

The cospecialization map when it exists is trying to be the inverse of the special-
ization map.

Lemma 94.2.0GJV In the situation above, if in addition f is quasi-compact and quasi-
separated, then the diagram

(Rf∗K)s //

sp

��

RΓ(Xs,K)

(Rf∗K)t // RΓ(Xt,K)

cosp

OO

is commutative.

Proof. As in the proof of Lemma 94.1 we may replace S by Spec(OshS,s). Then our
maps simplify to h : Xt → X, i : Xs → X, and βK,s,t : K → Rh∗(K|X

t
). Using

that (Rf∗K)s = RΓ(X,K) by Theorem 53.1 the composition of sp with the base
change map (Rf∗K)t → RΓ(Xt,K) is just pullback of cohomology along h. This
is the same as the map

RΓ(X,K)
β

K,s,t−−−−→ RΓ(X,Rh∗(K|X
t
)) = RΓ(Xt,K)
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Now the map cosp first inverts the = sign in this displayed formula, then pulls
back along i, and finally applies the inverse of i−1βK,s,t. Hence we get the desired
commutativity. □

Lemma 94.3.0GJW Let f : X → S be a morphism of schemes. Let K ∈ D(Xétale).
Assume

(1) K is bounded below, i.e., K ∈ D+(Xétale),
(2) f is locally acyclic relative to K,
(3) f is proper, and
(4) K has torsion cohomology sheaves.

Then for every geometric point s of S and every geometric point t of Spec(OshS,s)
both the specialization map sp : (Rf∗K)s → (Rf∗K)t and the cospecialization map
cosp : RΓ(Xt,K)→ RΓ(Xs,K) are isomorphisms.

Proof. By the proper base change theorem (in the form of Lemma 91.13) we have
(Rf∗K)s = RΓ(Xs,K) and similarly for t. The “correct” proof would be to show
that the argument in Lemma 94.2 shows that sp and cosp are inverse isomorphisms
in this case. Instead we will show directly that cosp is an isomorphism. From the
discussion above we see that cosp is an isomorphism if and only if pullback by i

RΓ(X ×S Spec(OshS,s), Rh∗(K|X
t
)) −→ RΓ(Xs, i

−1Rh∗(K|X
t
))

is an isomorphism in D+(Ab). This is true by the proper base change theorem
for the proper morphism f ′ : X ×S Spec(OshS,s) → Spec(OshS,s) by the morphism
s → Spec(OshS,s) and the complex K ′ = Rh∗(K|X

t
). The complex K ′ is bounded

below and has torsion cohomology sheaves by Lemma 78.2. Since Spec(OshS,s) is
strictly henselian with s lying over the closed point, we see that the source of
the displayed arrow equals (Rf ′

∗K
′)s and the target equals RΓ(Xs,K

′) and the
displayed map is an isomorphism by the already used Lemma 91.13. Thus we see
that three out of the four arrows in the diagram of Lemma 94.2 are isomorphisms
and we conclude. □

Lemma 94.4.0GKD Let f : X → S be a morphism of schemes. Let F be an abelian
sheaf on Xétale. Assume

(1) f is smooth and proper
(2) F is locally constant, and
(3) Fx is a torsion group all of whose elements have order prime to the residue

characteristic of x for every geometric point x of X.
Then for every geometric point s of S and every geometric point t of Spec(OshS,s)
the specialization map sp : (Rf∗F)s → (Rf∗F)t is an isomorphism.

Proof. This follows from Lemmas 94.3 and 93.3 and Proposition 93.2. □

95. Cohomological dimension

0F0P We can deduce some bounds on the cohomological dimension of schemes and on
the cohomological dimension of fields using the results in Section 83 and one, seem-
ingly innocuous, application of the proper base change theorem (in the proof of
Proposition 95.6).
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Definition 95.1.0F0Q Let X be a quasi-compact and quasi-separated scheme. The
cohomological dimension of X is the smallest element

cd(X) ∈ {0, 1, 2, . . .} ∪ {∞}
such that for any abelian torsion sheaf F on Xétale we have Hi

étale(X,F) = 0 for
i > cd(X). If X = Spec(A) we sometimes call this the cohomological dimension of
A.

If the scheme is in characteristic p, then we often can obtain sharper bounds for the
vanishing of cohomology of p-power torsion sheaves. We will address this elsewhere
(insert future reference here).

Lemma 95.2.0F0R Let X = limXi be a directed limit of a system of quasi-compact
and quasi-separated schemes with affine transition morphisms. Then cd(X) ≤
max cd(Xi).

Proof. Denote fi : X → Xi the projections. Let F be an abelian torsion sheaf
on Xétale. Then we have F = lim f−1

i fi,∗F by Lemma 51.9. Thus Hq
étale(X,F) =

colimHq
étale(Xi, fi,∗F) by Theorem 51.3. The lemma follows. □

Lemma 95.3.0F0S Let K be a field. Let X be a 1-dimensional affine scheme of finite
type over K. Then cd(X) ≤ 1 + cd(K).

Proof. Let F be an abelian torsion sheaf on Xétale. Consider the Leray spectral
sequence for the morphism f : X → Spec(K). We obtain

Ep,q2 = Hp(Spec(K), Rqf∗F)

converging to Hp+q
étale(X,F). The stalk of Rqf∗F at a geometric point Spec(K) →

Spec(K) is the cohomology of the pullback of F to XK . Hence it vanishes in degrees
≥ 2 by Theorem 83.10. □

Lemma 95.4.0F0T Let L/K be a field extension. Then we have cd(L) ≤ cd(K) +
trdegK(L).

Proof. If trdegK(L) = ∞, then this is clear. If not then we can find a sequence
of extensions L = Lr/Lr−1/ . . . /L1/L0 = K such that trdegLi

(Li+1) = 1 and
r = trdegK(L). Hence it suffices to prove the lemma in the case that r = 1. In this
case we can write L = colimAi as a filtered colimit of its finite type K-subalgebras.
By Lemma 95.2 it suffices to prove that cd(Ai) ≤ 1 + cd(K). This follows from
Lemma 95.3. □

Lemma 95.5.0F0U Let K be a field. Let X be a scheme of finite type over K. Let
x ∈ X. Set a = trdegK(κ(x)) and d = dimx(X). Then there is a map

K(t1, . . . , ta)sep −→ OshX,x
such that

(1) the residue field of OshX,x is a purely inseparable extension of K(t1, . . . , ta)sep,
(2) OshX,x is a filtered colimit of finite type K(t1, . . . , ta)sep-algebras of dimension
≤ d− a.

Proof. We may assume X is affine. By Noether normalization, after possibly
shrinking X again, we can choose a finite morphism π : X → Ad

K , see Algebra,
Lemma 115.5. Since κ(x) is a finite extension of the residue field of π(x), this

https://stacks.math.columbia.edu/tag/0F0Q
https://stacks.math.columbia.edu/tag/0F0R
https://stacks.math.columbia.edu/tag/0F0S
https://stacks.math.columbia.edu/tag/0F0T
https://stacks.math.columbia.edu/tag/0F0U
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residue field has transcendence degree a over K as well. Thus we can find a finite
morphism π′ : Ad

K → Ad
K such that π′(π(x)) corresponds to the generic point of

the linear subspace Aa
K ⊂ Ad

K given by setting the last d− a coordinates equal to
zero. Hence the composition

X
π′◦π−−−→ Ad

K
p−→ Aa

K

of π′ ◦ π and the projection p onto the first a coordinates maps x to the generic
point η ∈ Aa

K . The induced map

K(t1, . . . , ta)sep = OshAa
k
,η −→ OshX,x

on étale local rings satisfies (1) since it is clear that the residue field of OshX,x
is an algebraic extension of the separably closed field K(t1, . . . , ta)sep. On the
other hand, if X = Spec(B), then OshX,x = colimBj is a filtered colimit of étale
B-algebras Bj . Observe that Bj is quasi-finite over K[t1, . . . , td] as B is finite
over K[t1, . . . , td]. We may similarly write K(t1, . . . , ta)sep = colimAi as a filtered
colimit of étale K[t1, . . . , ta]-algebras. For every i we can find an j such that
Ai → K(t1, . . . , ta)sep → OshX,x factors through a map ψi,j : Ai → Bj . Then Bj is
quasi-finite over Ai[ta+1, . . . , td]. Hence

Bi,j = Bj ⊗ψi,j ,Ai
K(t1, . . . , ta)sep

has dimension ≤ d − a as it is quasi-finite over K(t1, . . . , ta)sep[ta+1, . . . , td]. The
proof of (2) is now finished as OshX,x is a filtered colimit12 of the algebras Bi,j . Some
details omitted. □

Proposition 95.6.0F0V Let K be a field. Let X be an affine scheme of finite type over
K. Then we have cd(X) ≤ dim(X) + cd(K).

Proof. We will prove this by induction on dim(X). Let F be an abelian torsion
sheaf on Xétale.
The case dim(X) = 0. In this case the structure morphism f : X → Spec(K)
is finite. Hence we see that Rif∗F = 0 for i > 0, see Proposition 55.2. Thus
Hi
étale(X,F) = Hi

étale(Spec(K), f∗F) by the Leray spectral sequence for f (Coho-
mology on Sites, Lemma 14.5) and the result is clear.
The case dim(X) = 1. This is Lemma 95.3.
Assume d = dim(X) > 1 and the proposition holds for finite type affine schemes
of dimension < d over fields. By Noether normalization, see for example Varieties,
Lemma 18.2, there exists a finite morphism f : X → Ad

K . Recall that Rif∗F = 0
for i > 0 by Proposition 55.2. By the Leray spectral sequence for f (Cohomology
on Sites, Lemma 14.5) we conclude that it suffices to prove the result for π∗F on
Ad
K .

Interlude I. Let j : X → Y be an open immersion of smooth d-dimensional varieties
over K (not necessarily affine) whose complement is the support of an effective
Cartier divisor D. The sheaves Rqj∗F for q > 0 are supported on D. We claim

12Let R be a ring. Let A = colimi∈I Ai be a filtered colimit of finitely presented R-algebras.
Let B = colimj∈J Bj be a filtered colimit of R-algebras. Let A → B be an R-algebra map. Assume
that for all i ∈ I there is a j ∈ J and an R-algebra map ψi,j : Ai → Bj . Say (i′, j′, ψi′,j′ ) ≥
(i, j, ψi,j) if i′ ≥ i, j′ ≥ j, and ψi,j and ψi′,j′ are compatible. Then the collection of triples forms
a directed set and B = colimBj ⊗ψi,jAi

A.

https://stacks.math.columbia.edu/tag/0F0V
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that (Rqj∗F)y = 0 for a = trdegK(κ(y)) > d − q. Namely, by Theorem 53.1 we
have

(Rqj∗F)y = Hq(Spec(OshY,y)×Y X,F)
Choose a local equation f ∈ my = OY,y for D. Then we have

Spec(OshY,y)×Y X = Spec(OshY,y[1/f ])

Using Lemma 95.5 we get an embedding

K(t1, . . . , ta)sep(x) = K(t1, . . . , ta)sep[x](x)[1/x] −→ OshY,y[1/f ]

Since the transcendence degree over K of the fraction field of OshY,y is d, we see that
OshY,y[1/f ] is a filtered colimit of (d−a−1)-dimensional finite type algebras over the
field K(t1, . . . , ta)sep(x) which itself has cohomological dimension 1 by Lemma 95.4.
Thus by induction hypothesis and Lemma 95.2 we obtain the desired vanishing.

Interlude II. Let Z be a smooth variety over K of dimension d − 1. Let Ea ⊂ Z
be the set of points z ∈ Z with trdegK(κ(z)) ≤ a. Observe that Ea is closed under
specialization, see Varieties, Lemma 20.3. Suppose that G is a torsion abelian sheaf
on Z whose support is contained in Ea. Then we claim that Hb

étale(Z,G) = 0 for
b > a+ cd(K). Namely, we can write G = colimGi with Gi a torsion abelian sheaf
supported on a closed subscheme Zi contained in Ea, see Lemma 74.5. Then the
induction hypothesis kicks in to imply the desired vanishing for Gi13. Finally, we
conclude by Theorem 51.3.

Consider the commutative diagram

Ad
K

f ""

j
// P1

K ×K Ad−1
K

g
xx

Ad−1
K

Observe that j is an open immersion of smooth d-dimensional varieties whose com-
plement is an effective Cartier divisor D. Thus we may use the results obtained in
interlude I. We are going to study the relative Leray spectral sequence

Ep,q2 = Rpg∗R
qj∗F ⇒ Rp+qf∗F

Since Rqj∗F for q > 0 is supported on D and since g|D : D → Ad−1
K is an isomor-

phism, we find Rpg∗R
qj∗F = 0 for p > 0 and q > 0. Moreover, we have Rqj∗F = 0

for q > d. On the other hand, g is a proper morphism of relative dimension 1.
Hence by Lemma 92.2 we see that Rpg∗j∗F = 0 for p > 2. Thus the E2-page of
the spectral sequence looks like this

g∗R
dj∗F 0 0
. . . . . . . . .

g∗R
2j∗F 0 0

g∗R
1j∗F 0 0

g∗j∗F R1g∗j∗F R2g∗j∗F

13Here we first use Proposition 46.4 to write Gi as the pushforward of a sheaf on Zi, the
induction hypothesis gives the vanishing for this sheaf on Zi, and the Leray spectral sequence for
Zi → Z gives the vanishing for Gi.
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We conclude that Rqf∗F = g∗R
qj∗F for q > 2. By interlude I we see that the

support of Rqf∗F for q > 2 is contained in the set of points of Ad−1
K whose residue

field has transcendence degree ≤ d− q. By interlude II
Hp(Ad−1

K , Rqf∗F) = 0 for p > d− q + cd(K) and q > 2
On the other hand, by Theorem 53.1 we have R2f∗Fη = H2(A1

η,F) = 0 (vanishing
by the case of dimension 1) where η is the generic point of Ad−1

K . Hence by interlude
II again we see

Hp(Ad−1
K , R2f∗F) = 0 for p > d− 2 + cd(K)

Finally, we have
Hp(Ad−1

K , Rqf∗F) = 0 for p > d− 1 + cd(K) and q = 0, 1
by induction hypothesis. Combining everything we just said with the Leray spectral
sequence Hp(Ad−1

K , Rqf∗F)⇒ Hp+q(Ad
K ,F) we conclude. □

Lemma 95.7.0F0W Let K be a field. Let X be an affine scheme of finite type over K.
Let Ea ⊂ X be the set of points x ∈ X with trdegK(κ(x)) ≤ a. Let F be an abelian
torsion sheaf on Xétale whose support is contained in Ea. Then Hb

étale(X,F) = 0
for b > a+ cd(K).

Proof. We can write F = colimFi with Fi a torsion abelian sheaf supported on
a closed subscheme Zi contained in Ea, see Lemma 74.5. Then Proposition 95.6
gives the desired vanishing for Fi. Details omitted; hints: first use Proposition 46.4
to write Fi as the pushforward of a sheaf on Zi, use the vanishing for this sheaf
on Zi, and use the Leray spectral sequence for Zi → Z to get the vanishing for Fi.
Finally, we conclude by Theorem 51.3. □

Lemma 95.8.0F0X Let f : X → Y be an affine morphism of schemes of finite type
over a field K. Let Ea(X) be the set of points x ∈ X with trdegK(κ(x)) ≤ a. Let
F be an abelian torsion sheaf on Xétale whose support is contained in Ea. Then
Rqf∗F has support contained in Ea−q(Y ).

Proof. The question is local on Y hence we can assume Y is affine. Then X is
affine too and we can choose a diagram

X

f

��

i
// An+m

K

pr

��
Y

j // An
K

where the horizontal arrows are closed immersions and the vertical arrow on the
right is the projection (details omitted). Then j∗R

qf∗F = Rqpr∗i∗F by the van-
ishing of the higher direct images of i and j, see Proposition 55.2. Moreover, the
description of the stalks of j∗ in the proposition shows that it suffices to prove
the vanishing for j∗R

qf∗F . Thus we may assume f is the projection morphism
pr : An+m

K → An
K and an abelian torsion sheaf F on An+m

K satisfying the assump-
tion in the statement of the lemma.
Let y be a point in An

K . By Theorem 53.1 we have

(Rqpr∗F)y = Hq(An+m
K ×An

K
Spec(OshY,y),F) = Hq(Am

Osh
Y,y
,F)

https://stacks.math.columbia.edu/tag/0F0W
https://stacks.math.columbia.edu/tag/0F0X
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Say b = trdegK(κ(y)). From Lemma 95.5 we get an embedding
L = K(t1, . . . , tb)sep −→ OshY,y

Write OshY,y = colimBi as the filtered colimit of finite type L-subalgebras Bi ⊂ OshY,y
containing the ring K[T1, . . . , Tn] of regular functions on An

K . Then we get
Am

Osh
Y,y

= lim Am
Bi

If z ∈ Am
Bi

is a point in the support of F , then the image x of z in Am+n
K sat-

isfies trdegK(κ(x)) ≤ a by our assumption on F in the lemma. Since OshY,y is a
filtered colimit of étale algebras over K[T1, . . . , Tn] and since Bi ⊂ OshY,y we see that
κ(z)/κ(x) is algebraic (some details omitted). Then trdegK(κ(z)) ≤ a and hence
trdegL(κ(z)) ≤ a− b. By Lemma 95.7 we see that

Hq(Am
Bi
,F) = 0 for q > a− b

Thus by Theorem 51.3 we get (Rf∗F)y = 0 for q > a− b as desired. □

96. Finite cohomological dimension

0F0Y We continue the discussion started in Section 95.

Definition 96.1.0F0Z Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of schemes. The cohomological dimension of f is the smallest element

cd(f) ∈ {0, 1, 2, . . .} ∪ {∞}
such that for any abelian torsion sheaf F on Xétale we have Rif∗F = 0 for i > cd(f).

Lemma 96.2.0F10 Let K be a field.
(1) If f : X → Y is a morphism of finite type schemes over K, then cd(f) <∞.
(2) If cd(K) <∞, then cd(X) <∞ for any finite type scheme X over K.

Proof. Proof of (1). We may assume Y is affine. We will use the induction principle
of Cohomology of Schemes, Lemma 4.1 to prove this. If X is affine too, then the
result holds by Lemma 95.8. Thus it suffices to show that if X = U ∪ V and the
result is true for U → Y , V → Y , and U ∩ V → Y , then it is true for f . This
follows from the relative Mayer-Vietoris sequence, see Lemma 50.2.
Proof of (2). We will use the induction principle of Cohomology of Schemes, Lemma
4.1 to prove this. If X is affine, then the result holds by Proposition 95.6. Thus
it suffices to show that if X = U ∪ V and the result is true for U , V , and U ∩ V ,
then it is true for X. This follows from the Mayer-Vietoris sequence, see Lemma
50.1. □

Lemma 96.3.0F11 Cohomology and direct sums. Let n ≥ 1 be an integer.
(1) Let f : X → Y be a quasi-compact and quasi-separated morphism of

schemes with cd(f) <∞. Then the functor
Rf∗ : D(Xétale,Z/nZ) −→ D(Yétale,Z/nZ)

commutes with direct sums.
(2) Let X be a quasi-compact and quasi-separated scheme with cd(X) < ∞.

Then the functor
RΓ(X,−) : D(Xétale,Z/nZ) −→ D(Z/nZ)

commutes with direct sums.

https://stacks.math.columbia.edu/tag/0F0Z
https://stacks.math.columbia.edu/tag/0F10
https://stacks.math.columbia.edu/tag/0F11
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Proof. Proof of (1). Since cd(f) <∞ we see that

f∗ : Mod(Xétale,Z/nZ) −→ Mod(Yétale,Z/nZ)

has finite cohomological dimension in the sense of Derived Categories, Lemma 32.2.
Let I be a set and for i ∈ I let Ei be an object of D(Xétale,Z/nZ). Choose a K-
injective complex I•

i of Z/nZ-modules each of whose terms Ini is an injective sheaf
of Z/nZ-modules representing Ei. See Injectives, Theorem 12.6. Then

⊕
Ei is

represented by the complex
⊕
I•
i (termwise direct sum), see Injectives, Lemma

13.4. By Lemma 51.7 we have

Rqf∗(
⊕
Ini ) =

⊕
Rqf∗(Ini ) = 0

for q > 0 and any n. Hence we conclude by Derived Categories, Lemma 32.2 that
we may compute Rf∗(

⊕
Ei) by the complex

f∗(
⊕
I•
i ) =

⊕
f∗(I•

i )

(equality again by Lemma 51.7) which represents
⊕
Rf∗Ei by the already used

Injectives, Lemma 13.4.

Proof of (2). This is identical to the proof of (1) and we omit it. □

Lemma 96.4.0F0D Let f : X → Y be a proper morphism of schemes. Let n ≥ 1 be an
integer. Then the functor

Rf∗ : D(Xétale,Z/nZ) −→ D(Yétale,Z/nZ)

commutes with direct sums.

Proof. It is enough to prove this when Y is quasi-compact. By Morphisms, Lemma
28.5 we see that the dimension of the fibres of f : X → Y is bounded. Thus Lemma
92.2 implies that cd(f) <∞. Hence the result by Lemma 96.3. □

Lemma 96.5.0F12 Let X be a quasi-compact and quasi-separated scheme such that
cd(X) <∞. Let Λ be a torsion ring. Let E ∈ D(Xétale,Λ) and K ∈ D(Λ). Then

RΓ(X,E ⊗L
Λ K) = RΓ(X,E)⊗L

Λ K

Proof. There is a canonical map from left to right by Cohomology on Sites, Section
50. Let T (K) be the property that the statement of the lemma holds for K ∈ D(Λ).
We will check conditions (1), (2), and (3) of More on Algebra, Remark 59.11 hold
for T to conclude. Property (1) holds because both sides of the equality commute
with direct sums, see Lemma 96.3. Property (2) holds because we are comparing
exact functors between triangulated categories and we can use Derived Categories,
Lemma 4.3. Property (3) says the lemma holds when K = Λ[k] for any shift k ∈ Z
and this is obvious. □

Lemma 96.6.0F0G Let f : X → Y be a proper morphism of schemes. Let Λ be a
torsion ring. Let E ∈ D(Xétale,Λ) and K ∈ D(Yétale,Λ). Then

Rf∗E ⊗L
Λ K = Rf∗(E ⊗L

Λ f
−1K)

in D(Yétale,Λ).

https://stacks.math.columbia.edu/tag/0F0D
https://stacks.math.columbia.edu/tag/0F12
https://stacks.math.columbia.edu/tag/0F0G


ÉTALE COHOMOLOGY 200

Proof. There is a canonical map from left to right by Cohomology on Sites, Section
50. We will check the equality on stalks at y. By the proper base change (in the
form of Lemma 92.3 where Y ′ = y) this reduces to the case where Y is the spectrum
of an algebraically closed field. This is shown in Lemma 96.5 where we use that
cd(X) <∞ by Lemma 92.2. □

97. Künneth in étale cohomology

0F13 We first prove a Künneth formula in case one of the factors is proper. Then we
use this formula to prove a base change property for open immersions. This then
gives a “base change by morphisms towards spectra of fields” (akin to smooth base
change). Finally we use this to get a more general Künneth formula.

Remark 97.1.0F1E Consider a cartesian diagram in the category of schemes:

X ×S Y

p

��

q
//

c
##

Y

g

��
X

f // S

Let Λ be a ring and let E ∈ D(Xétale,Λ) and K ∈ D(Yétale,Λ). Then there is a
canonical map

Rf∗E ⊗L
Λ Rg∗K −→ Rc∗(p−1E ⊗L

Λ q
−1K)

For example we can define this using the canonical maps Rf∗E → Rc∗p
−1E and

Rg∗K → Rc∗q
−1K and the relative cup product defined in Cohomology on Sites,

Remark 19.7. Or you can use the adjoint to the map
c−1(Rf∗E ⊗L

Λ Rg∗K) = p−1f−1Rf∗E ⊗L
Λ q

−1g−1Rg∗K → p−1E ⊗L
Λ q

−1K

which uses the adjunction maps f−1Rf∗E → E and g−1Rg∗K → K.

Lemma 97.2.0F14 Let k be a separably closed field. Let X be a proper scheme over
k. Let Y be a quasi-compact and quasi-separated scheme over k.

(1) If E ∈ D+(Xétale) has torsion cohomology sheaves and K ∈ D+(Yétale),
then
RΓ(X ×Spec(k) Y, pr−1

1 E ⊗L
Z pr−1

2 K) = RΓ(X,E)⊗L
Z RΓ(Y,K)

(2) If n ≥ 1 is an integer, Y is of finite type over k, E ∈ D(Xétale,Z/nZ), and
K ∈ D(Yétale,Z/nZ), then
RΓ(X ×Spec(k) Y, pr−1

1 E ⊗L
Z/nZ pr−1

2 K) = RΓ(X,E)⊗L
Z/nZ RΓ(Y,K)

Proof. Proof of (1). By Lemma 92.5 we have
Rpr2,∗(pr−1

1 E ⊗L
Z pr−1

2 K) = Rpr2,∗(pr−1
1 E)⊗L

Z K

By proper base change (in the form of Lemma 91.12) this is equal to the object
RΓ(X,E)⊗L

Z K

of D(Yétale). Taking RΓ(Y,−) on this object reproduces the left hand side of the
equality in (1) by the Leray spectral sequence for pr2. Thus we conclude by Lemma
92.4.
Proof of (2). This is exactly the same as the proof of (1) except that we use Lemmas
96.6, 92.3, and 96.5 as well as cd(Y ) <∞ by Lemma 96.2. □

https://stacks.math.columbia.edu/tag/0F1E
https://stacks.math.columbia.edu/tag/0F14


ÉTALE COHOMOLOGY 201

Lemma 97.3.0F1F Let K be a separably closed field. Let X be a scheme of finite type
over K. Let F be an abelian sheaf on Xétale whose support is contained in the set
of closed points of X. Then Hq(X,F) = 0 for q > 0 and F is globally generated.

Proof. (If F is torsion, then the vanishing follows immediately from Lemma 95.7.)
By Lemma 74.5 we can write F as a filtered colimit of constructible sheaves Fi of
Z-modules whose supports Zi ⊂ X are finite sets of closed points. By Proposition
46.4 such a sheaf is of the form (Zi → X)∗Gi where Gi is a sheaf on Zi. As K is
separably closed, the scheme Zi is a finite disjoint union of spectra of separably
closed fields. Recall that Hq(Zi,Gi) = Hq(X,Fi) by the Leray spectral sequence
for Zi → X and vanising of higher direct images for this morphism (Proposition
55.2). By Lemmas 59.1 and 59.2 we see that Hq(Zi,Gi) is zero for q > 0 and that
H0(Zi,Gi) generates Gi. We conclude the vanishing of Hq(X,Fi) for q > 0 and that
Fi is generated by global sections. By Theorem 51.3 we see that Hq(X,F) = 0
for q > 0. The proof is now done because a filtered colimit of globally generated
sheaves of abelian groups is globally generated (details omitted). □

Lemma 97.4.0F1G Let K be a separably closed field. Let X be a scheme of finite type
over K. Let Q ∈ D(Xétale). Assume that Qx is nonzero only if x is a closed point
of X. Then

Q = 0⇔ Hi(X,Q) = 0 for all i

Proof. The implication from left to right is trivial. Thus we need to prove the
reverse implication.
Assume Q is bounded below; this cases suffices for almost all applications. If Q
is not zero, then we can look at the smallest i such that the cohomology sheaf
Hi(Q) is nonzero. By Lemma 97.3 we have Hi(X,Q) = H0(X,Hi(Q)) ̸= 0 and we
conclude.
General case. Let B ⊂ Ob(Xétale) be the quasi-compact objects. By Lemma 97.3
the assumptions of Cohomology on Sites, Lemma 23.11 are satisfied. We conclude
that Hq(U,Q) = H0(U,Hq(Q)) for all U ∈ B. In particular, this holds for U = X.
Thus the conclusion by Lemma 97.3 as Q is zero in D(Xétale) if and only if Hq(Q)
is zero for all q. □

Lemma 97.5.0F1H Let K be a field. Let j : U → X be an open immersion of schemes
of finite type over K. Let Y be a scheme of finite type over K. Consider the
diagram

Y ×Spec(K) X

q

��

Y ×Spec(K) U
h
oo

p

��
X U

joo

Then the base change map q−1Rj∗F → Rh∗p
−1F is an isomorphism for F an

abelian sheaf on Uétale whose stalks are torsion of orders invertible in K.

Proof. Write F = colimF [n] where the colimit is over the multiplicative system of
integers invertible in K. Since cohomology commutes with filtered colimits in our
situation (for a precise reference see Lemma 86.3), it suffices to prove the lemma
for F [n]. Thus we may assume F is a sheaf of Z/nZ-modules for some n invertible
in K (we will use this at the very end of the proof). In the proof we use the short
hand X ×K Y for the fibre product over Spec(K). We will prove the lemma by

https://stacks.math.columbia.edu/tag/0F1F
https://stacks.math.columbia.edu/tag/0F1G
https://stacks.math.columbia.edu/tag/0F1H
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induction on dim(X) + dim(Y ). The lemma is trivial if dim(X) ≤ 0, since in this
case U is an open and closed subscheme of X. Choose a point z ∈ X ×K Y . We
will show the stalk at z is an isomorphism.

Suppose that z 7→ x ∈ X and assume trdegK(κ(x)) > 0. Set X ′ = Spec(OshX,x) and
denote U ′ ⊂ X ′ the inverse image of U . Consider the base change

Y ×K X ′

q′

��

Y ×K U ′
h′
oo

p′

��
X ′ U ′j′
oo

of our diagram by X ′ → X. Observe that X ′ → X is a filtered colimit of étale
morphisms. By smooth base change in the form of Lemma 89.3 the pullback of
q−1Rj∗F → Rh∗p

−1F to X ′ to Y ×K X ′ is the map (q′)−1Rj′
∗F ′ → Rj′

∗(p′)−1F ′

where F ′ is the pullback of F to U ′. (In this step it would suffice to use étale
base change which is an essentially trivial result.) So it suffices to show that
(q′)−1Rj′

∗F ′ → Rj′
∗(p′)−1F ′ is an isomorphism in order to prove that our origi-

nal map is an isomorphism on stalks at z. By Lemma 95.5 there is a separably
closed field L/K such that X ′ = limXi with Xi affine of finite type over L and
dim(Xi) < dim(X). For i large enough there exists an open Ui ⊂ Xi restricting to
U ′ in X ′. We may apply the induction hypothesis to the diagram

Y ×K Xi

qi

��

Y ×K Ui
hi

oo

pi

��
Xi Ui

jioo

equal to

YL ×L Xi

qi

��

YL ×L Ui
hi

oo

pi

��
Xi Ui

jioo

over the field L and the pullback of F to these diagrams. By Lemma 86.3 we
conclude that the map (q′)−1Rj′

∗F ′ → Rj′
∗(p′)−1F is an isomorphism.

Suppose that z 7→ y ∈ Y and assume trdegK(κ(y)) > 0. Let Y ′ = Spec(OshX,x). By
Lemma 95.5 there is a separably closed field L/K such that Y ′ = limYi with Yi
affine of finite type over L and dim(Yi) < dim(Y ). In particular Y ′ is a scheme over
L. Denote with a subscript L the base change from schemes over K to schemes
over L. Consider the commutative diagrams

Y ′ ×K X

f

��

Y ′ ×K U
h′
oo

f ′

��
Y ×K X

q

��

Y ×K U
h

oo

p

��
X U

joo

and

Y ′ ×L XL

q′

��

Y ′ ×L UL
h′
oo

p′

��
XL

��

UL
jL

oo

��
X U

joo

and observe the top and bottom rows are the same on the left and the right. By
smooth base change we see that f−1Rh∗p

−1F = Rh′
∗(f ′)−1p−1F (similarly to the

previous paragraph). By smooth base change for Spec(L) → Spec(K) (Lemma
90.1) we see that RjL,∗FL is the pullback of Rj∗F to XL. Combining these two
observations, we conclude that it suffices to prove the base change map for the upper
square in the diagram on the right is an isomorphism in order to prove that our
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original map is an isomorphism on stalks at z14. Then using that Y ′ = limYi and
argueing exactly as in the previous paragraph we see that the induction hypothesis
forces our map over Y ′ ×K X to be an isomorphism.

Thus any counter example with dim(X) + dim(Y ) minimal would only have noni-
somorphisms q−1Rj∗F → Rh∗p

−1F on stalks at closed points of X ×K Y (because
a point z of X ×K Y is a closed point if and only if both the image of z in X
and in Y are closed). Since it is enough to prove the isomorphism locally, we may
assume X and Y are affine. However, then we can choose an open dense immersion
Y → Y ′ with Y ′ projective. (Choose a closed immersion Y → An

K and let Y ′ be
the scheme theoretic closure of Y in Pn

K .) Then dim(Y ′) = dim(Y ) and hence we
get a “minimal” counter example with Y projective over K. In the next paragraph
we show that this can’t happen.

Consider a diagram as in the statement of the lemma such that q−1Rj∗F →
Rh∗p

−1F is an isomorphism at all non-closed points of X ×K Y and such that
Y is projective. The restriction of the map to (X ×K Y )Ksep is the corresponding
map for the diagram of the lemma base changed to Ksep. Thus we may and do
assume K is separably algebraically closed. Choose a distinguished triangle

q−1Rj∗F → Rh∗p
−1F → Q→ (q−1Rj∗F)[1]

in D((X ×K Y )étale). Since Q is supported in closed points we see that it suffices
to prove Hi(X ×K Y,Q) = 0 for all i, see Lemma 97.4. Thus it suffices to prove
that q−1Rj∗F → Rh∗p

−1F induces an isomorphism on cohomology. Recall that
F is annihilated by n invertible in K. By the Künneth formula of Lemma 97.2 we
have

RΓ(X ×K Y, q−1Rj∗F) = RΓ(X,Rj∗F)⊗L
Z/nZ RΓ(Y,Z/nZ)

= RΓ(U,F)⊗L
Z/nZ RΓ(Y,Z/nZ)

and

RΓ(X ×K Y,Rh∗p
−1F) = RΓ(U ×K Y, p−1F) = RΓ(U,F)⊗L

Z/nZ RΓ(Y,Z/nZ)

This finishes the proof. □

Lemma 97.6.0F1I Let K be a field. For any commutative diagram

X

��

X ′oo

f ′

��

Y
h
oo

e

��
Spec(K) S′oo T

goo

of schemes over K with X ′ = X×Spec(K)S
′ and Y = X ′×S′ T and g quasi-compact

and quasi-separated, and every abelian sheaf F on Tétale whose stalks are torsion
of orders invertible in K the base change map

(f ′)−1Rg∗F −→ Rh∗e
−1F

is an isomorphism.

14Here we use that a “vertical composition” of base change maps is a base change map as
explained in Cohomology on Sites, Remark 19.4.

https://stacks.math.columbia.edu/tag/0F1I
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Proof. The question is local on X, hence we may assume X is affine. By Limits,
Lemma 7.2 we can write X = limXi as a cofiltered limit with affine transition
morphisms of schemes Xi of finite type over K. Denote X ′

i = Xi ×Spec(K) S
′ and

Yi = X ′
i×S′T . By Lemma 86.3 it suffices to prove the statement for the squares with

corners Xi, Yi, Si, Ti. Thus we may assume X is of finite type over K. Similarly,
we may write F = colimF [n] where the colimit is over the multiplicative system of
integers invertible in K. The same lemma used above reduces us to the case where
F is a sheaf of Z/nZ-modules for some n invertible in K.

We may replace K by its algebraic closure K. Namely, formation of direct image
commutes with base change toK according to Lemma 90.1 (works for both g and h).
And it suffices to prove the agreement after restriction to X ′

K
. Next, we may replace

X by its reduction as we have the topological invariance of étale cohomology, see
Proposition 45.4. After this replacement the morphism X → Spec(K) is flat, finite
presentation, with geometrically reduced fibres and the same is true for any base
change, in particular for X ′ → S′. Hence (f ′)−1g∗F → Rh∗e

−1F is an isomorphism
by Lemma 87.2.

At this point we may apply Lemma 90.3 to see that it suffices to prove: given a
commutative diagram

X

f

��

X ′

��

oo Y
h

oo

��
Spec(K) S′oo Spec(L)oo

with both squares cartesian, where S′ is affine, integral, and normal with alge-
braically closed function field K, then Rqh∗(Z/dZ) is zero for q > 0 and d|n.
Observe that this vanishing is equivalent to the statement that

(f ′)−1Rq(Spec(L)→ S′)∗Z/dZ −→ Rqh∗Z/dZ

is an isomorphism, because the left hand side is zero for example by Lemma 80.5.

Write S′ = Spec(B) so that L is the fraction field of B. Write B =
⋃
i∈I Bi as the

union of its finite type K-subalgebras Bi. Let J be the set of pairs (i, g) where i ∈ I
and g ∈ Bi nonzero with ordering (i′, g′) ≥ (i, g) if and only if i′ ≥ i and g maps to
an invertible element of (Bi′)g′ . Then L = colim(i,g)∈J(Bi)g. For j = (i, g) ∈ J set
Sj = Spec(Bi) and Uj = Spec((Bi)g). Then

X ′

��

Y
h

oo

��
S′ Spec(L)oo

is the colimit of

X ×K Sj

��

X ×K Uj
hj

oo

��
Sj Ujoo

Thus we may apply Lemma 86.3 to see that it suffices to prove base change holds
in the diagrams on the right which is what we proved in Lemma 97.5. □
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Lemma 97.7.0F1J Let K be a field. Let n ≥ 1 be invertible in K. Consider a
commutative diagram

X

��

X ′
p

oo

f ′

��

Y
h
oo

e

��
Spec(K) S′oo T

goo

of schemes with X ′ = X ×Spec(K) S
′ and Y = X ′ ×S′ T and g quasi-compact and

quasi-separated. The canonical map
p−1E ⊗L

Z/nZ (f ′)−1Rg∗F −→ Rh∗(h−1p−1E ⊗L
Z/nZ e

−1F )

is an isomorphism if E in D+(Xétale,Z/nZ) has tor amplitude in [a,∞] for some
a ∈ Z and F in D+(Tétale,Z/nZ).

Proof. This lemma is a generalization of Lemma 97.6 to objects of the derived
category; the assertion of our lemma is true because in Lemma 97.6 the scheme
X over K is arbitrary. We strongly urge the reader to skip the laborious proof
(alternative: read only the last paragraph).
We may represent E by a bounded below K-flat complex E• consisting of flat Z/nZ-
modules. See Cohomology on Sites, Lemma 46.4. Choose an integer b such that
Hi(F ) = 0 for i < b. Choose a large integer N and consider the short exact
sequence

0→ σ≥N+1E• → E• → σ≤NE• → 0
of stupid truncations. This produces a distinguished triangle E′′ → E → E′ →
E′′[1] in D(Xétale,Z/nZ). For fixed F both sides of the arrow in the statement of
the lemma are exact functors in E. Observe that

p−1E′′ ⊗L
Z/nZ (f ′)−1Rg∗F and Rh∗(h−1p−1E′′ ⊗L

Z/nZ e
−1F )

are sitting in degrees ≥ N + b. Hence, if we can prove the lemma for the object E′,
then we see that the lemma holds in degrees ≤ N + b and we will conclude. Some
details omitted. Thus we may assume E is represented by a bounded complex of
flat Z/nZ-modules. Doing another argument of the same nature, we may assume
E is given by a single flat Z/nZ-module E .
Next, we use the same arguments for the variable F to reduce to the case where F
is given by a single sheaf of Z/nZ-modules F . Say F is annihilated by an integer
m|n. If ℓ is a prime number dividing m and m > ℓ, then we can look at the short
exact sequence 0→ F [ℓ]→ F → F/F [ℓ]→ 0 and reduce to smaller m. This finally
reduces us to the case where F is annihilated by a prime number ℓ dividing n. In
this case observe that

p−1E ⊗L
Z/nZ (f ′)−1Rg∗F = p−1(E/ℓE)⊗L

Fℓ
(f ′)−1Rg∗F

by the flatness of E . Similarly for the other term. This reduces us to the case where
we are working with sheaves of Fℓ-vector spaces which is discussed
Assume ℓ is a prime number invertible in K. Assume E , F are sheaves of Fℓ-vector
spaces on Xétale and Tétale. We want to show that

p−1E ⊗Fℓ
(f ′)−1Rqg∗F −→ Rqh∗(h−1p−1E ⊗Fℓ

e−1F)
is an isomorphism for every q ≥ 0. This question is local on X hence we may
assume X is affine. We can write E as a filtered colimit of constructible sheaves

https://stacks.math.columbia.edu/tag/0F1J
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of Fℓ-vector spaces on Xétale, see Lemma 73.2. Since tensor products commute
with filtered colimits and since higher direct images do too (Lemma 51.7) we may
assume E is a constructible sheaf of Fℓ-vector spaces on Xétale. Then we can choose
an integer m and finite and finitely presented morphisms πi : Xi → X, i = 1, . . . ,m
such that there is an injective map

E →
⊕

i=1,...,m
πi,∗Fℓ

See Lemma 74.4. Observe that the direct sum is a constructible sheaf as well
(Lemma 73.9). Thus the cokernel is constructible too (Lemma 71.6). By dimension
shifting, i.e., induction on q, on the category of constructible sheaves of Fℓ-vector
spaces on Xétale, it suffices to prove the result for the sheaves πi,∗Fℓ (details omit-
ted; hint: start with proving injectivity for q = 0 for all constructible E). To prove
this case we extend the diagram of the lemma to

Xi

πi

��

X ′
ipi

oo

π′
i

��

Yi
hi

oo

ρi

��
X

��

X ′
p

oo

f ′

��

Y
h
oo

e

��
Spec(K) S′oo T

goo

with all squares cartesian. In the equations below we are going to use that Rπi,∗ =
πi,∗ and similarly for π′

i, ρi, we are going to use the Leray spectral sequence, we
are going to use Lemma 55.3, and we are going to use Lemma 96.6 (although this
lemma is almost trivial for finite morphisms) for πi, π′

i, ρi. Doing so we see that

p−1πi,∗Fℓ ⊗Fℓ
(f ′)−1Rqg∗F = π′

i,∗Fℓ ⊗Fℓ
(f ′)−1Rqg∗F

= π′
i,∗((π′

i)−1(f ′)−1Rqg∗F)

Similarly, we have

Rqh∗(h−1p−1πi,∗Fℓ ⊗Fℓ
e−1F) = Rqh∗(ρi,∗Fℓ ⊗Fℓ

e−1F)
= Rqh∗(ρ−1

i e−1F)
= π′

i,∗R
qhi,∗ρ

−1
i e−1F)

Simce Rqhi,∗ρ−1
i e−1F = (π′

i)−1(f ′)−1Rqg∗F by Lemma 97.6 we conclude. □

Lemma 97.8.0F1N Let K be a field. Let n ≥ 1 be invertible in K. Consider a
commutative diagram

X

��

X ′
p

oo

f ′

��

Y
h
oo

e

��
Spec(K) S′oo T

goo

of schemes of finite type over K with X ′ = X ×Spec(K) S
′ and Y = X ′ ×S′ T . The

canonical map

p−1E ⊗L
Z/nZ (f ′)−1Rg∗F −→ Rh∗(h−1p−1E ⊗L

Z/nZ e
−1F )

is an isomorphism for E in D(Xétale,Z/nZ) and F in D(Tétale,Z/nZ).

https://stacks.math.columbia.edu/tag/0F1N
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Proof. We will reduce this to Lemma 97.7 using that our functors commute with
direct sums. We suggest the reader skip the proof. Recall that derived tensor
product commutes with direct sums. Recall that (derived) pullback commutes with
direct sums. Recall that Rh∗ and Rg∗ commute with direct sums, see Lemmas 96.2
and 96.3 (this is where we use our schemes are of finite type over K).
To finish the proof we can argue as follows. First we write E = hocolimτ≤NE. Since
our functors commute with direct sums, they commute with homotopy colimits.
Hence it suffices to prove the lemma for E bounded above. Similarly for F we may
assume F is bounded above. Then we can represent E by a bounded above complex
E• of sheaves of Z/nZ-modules. Then

E• = colim σ≥−NE•

(stupid truncations). Thus we may assume E• is a bounded complex of sheaves of
Z/nZ-modules. For F we choose a bounded above complex of flat(!) sheaves of
Z/nZ-modules. Then we reduce to the case where F is represented by a bounded
complex of flat sheaves of Z/nZ-modules. At this point Lemma 97.7 kicks in and
we conclude. □

Lemma 97.9.0F1P Let k be a separably closed field. Let X and Y be finite type schemes
over k. Let n ≥ 1 be an integer invertible in k. Then for E ∈ D(Xétale,Z/nZ) and
K ∈ D(Yétale,Z/nZ) we have

RΓ(X ×Spec(k) Y, pr−1
1 E ⊗L

Z/nZ pr−1
2 K) = RΓ(X,E)⊗L

Z/nZ RΓ(Y,K)

Proof. By Lemma 97.8 we have
Rpr1,∗(pr−1

1 E ⊗L
Z/nZ pr−1

2 K) = E ⊗L
Z/nZ RΓ(Y,K)

We conclude by Lemma 96.5 which we may use because cd(X) < ∞ by Lemma
96.2. □

98. Comparing chaotic and Zariski topologies

0F1K When constructing the structure sheaf of an affine scheme, we first construct the
values on affine opens, and then we extend to all opens. A similar construction is of-
ten useful for constructing complexes of abelian groups on a scheme X. Recall that
Xaffine,Zar denotes the category of affine opens of X with topology given by stan-
dard Zariski coverings, see Topologies, Definition 3.7. We remind the reader that
the topos ofXaffine,Zar is the small Zariski topos ofX, see Topologies, Lemma 3.11.
In this section we denote Xaffine the same underlying category with the chaotic
topology, i.e., such that sheaves agree with presheaves. We obtain a morphisms of
sites

ϵ : Xaffine,Zar −→ Xaffine

as in Cohomology on Sites, Section 27.

Lemma 98.1.0F1L In the situation above let K be an object of D+(Xaffine). Then
K is in the essential image of the (fully faithful) functor Rϵ∗;D(Xaffine,Zar) →
D(Xaffine) if and only if the following two conditions hold

(1) RΓ(∅,K) is zero in D(Ab), and
(2) if U = V ∪ W with U, V,W ⊂ X affine open and V,W ⊂ U standard

open (Algebra, Definition 17.3), then the map cKU,V,W,V ∩W of Cohomology
on Sites, Lemma 26.1 is a quasi-isomorphism.

https://stacks.math.columbia.edu/tag/0F1P
https://stacks.math.columbia.edu/tag/0F1L
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Proof. (The functor Rϵ∗ is fully faithful by the discussion in Cohomology on Sites,
Section 27.) Except for a snafu having to do with the empty set, this follows from
the very general Cohomology on Sites, Lemma 29.2 whose hypotheses hold by
Schemes, Lemma 11.7 and Cohomology on Sites, Lemma 29.3.
To get around the snafu, denote Xaffine,almost−chaotic the site where the empty
object ∅ has two coverings, namely, {∅ → ∅} and the empty covering (see Sites,
Example 6.4 for a discussion). Then we have morphisms of sites

Xaffine,Zar → Xaffine,almost−chaotic → Xaffine

The argument above works for the first arrow. Then we leave it to the reader to
see that an object K of D+(Xaffine) is in the essential image of the (fully faithful)
functor D(Xaffine,almost−chaotic) → D(Xaffine) if and only if RΓ(∅,K) is zero in
D(Ab). □

99. Comparing big and small topoi

0757 Let S be a scheme. In Topologies, Lemma 4.14 we have introduced comparison
morphisms πS : (Sch/S)étale → Sétale and iS : Sh(Sétale) → Sh((Sch/S)étale)
with πS ◦ iS = id and πS,∗ = i−1

S . More generally, if f : T → S is an object of
(Sch/S)étale, then there is a morphism if : Sh(Tétale)→ Sh((Sch/S)étale) such that
fsmall = πS ◦ if , see Topologies, Lemmas 4.13 and 4.17. In Descent, Remark 8.4
we have extended these to a morphism of ringed sites

πS : ((Sch/S)étale,O)→ (Sétale,OS)
and morphisms of ringed topoi

iS : (Sh(Sétale),OS)→ (Sh((Sch/S)étale),O)
and

if : (Sh(Tétale),OT )→ (Sh((Sch/S)étale,O))
Note that the restriction i−1

S = πS,∗ (see Topologies, Definition 4.15) transforms O
into OS . Similarly, i−1

f transforms O into OT . See Descent, Remark 8.4. Hence
i∗SF = i−1

S F and i∗fF = i−1
f F for any O-module F on (Sch/S)étale. In particular

i∗S and i∗f are exact functors. The functor i∗S is often denoted F 7→ F|Sétale
(and

this does not conflict with the notation in Topologies, Definition 4.15).

Lemma 99.1.0758 Let S be a scheme. Let T be an object of (Sch/S)étale.
(1) If I is injective in Ab((Sch/S)étale), then

(a) i−1
f I is injective in Ab(Tétale),

(b) I|Sétale
is injective in Ab(Sétale),

(2) If I• is a K-injective complex in Ab((Sch/S)étale), then
(a) i−1

f I• is a K-injective complex in Ab(Tétale),
(b) I•|Sétale

is a K-injective complex in Ab(Sétale),
The corresponding statements for modules do not hold.

Proof. Parts (1)(b) and (2)(b) follow formally from the fact that the restriction
functor πS,∗ = i−1

S is a right adjoint of the exact functor π−1
S , see Homology, Lemma

29.1 and Derived Categories, Lemma 31.9.
Parts (1)(a) and (2)(a) can be seen in two ways. First proof: We can use that i−1

f is
a right adjoint of the exact functor if,!. This functor is constructed in Topologies,

https://stacks.math.columbia.edu/tag/0758
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Lemma 4.13 for sheaves of sets and for abelian sheaves in Modules on Sites, Lemma
16.2. It is shown in Modules on Sites, Lemma 16.3 that it is exact. Second proof.
We can use that if = iT ◦ fbig as is shown in Topologies, Lemma 4.17. Since fbig
is a localization, we see that pullback by it preserves injectives and K-injectives,
see Cohomology on Sites, Lemmas 7.1 and 20.1. Then we apply the already proved
parts (1)(b) and (2)(b) to the functor i−1

T to conclude.

Let S = Spec(Z) and consider the map 2 : OS → OS . This is an injective map
of OS-modules on Sétale. However, the pullback π∗

S(2) : O → O is not injective
as we see by evaluating on Spec(F2). Now choose an injection α : O → I into an
injective O-module I on (Sch/S)étale. Then consider the diagram

OS

2
��

α|Sétale

// I|Sétale

OS

77

Then the dotted arrow cannot exist in the category of OS-modules because it would
mean (by adjunction) that the injective map α factors through the noninjective map
π∗
S(2) which cannot be the case. Thus I|Sétale

is not an injective OS-module. □

Let f : T → S be a morphism of schemes. The commutative diagram of Topologies,
Lemma 4.17 (3) leads to a commutative diagram of ringed sites

(Tétale,OT )

fsmall

��

((Sch/T )étale,O)

fbig

��

πT

oo

(Sétale,OS) ((Sch/S)étale,O)πSoo

as one easily sees by writing out the definitions of f ♯small, f
♯
big, π

♯
S , and π♯T . In

particular this means that

(99.1.1)0759 (fbig,∗F)|Sétale
= fsmall,∗(F|Tétale

)

for any sheaf F on (Sch/T )étale and if F is a sheaf of O-modules, then (99.1.1) is
an isomorphism of OS-modules on Sétale.

Lemma 99.2.075A Let f : T → S be a morphism of schemes.
(1) For K in D((Sch/T )étale) we have (Rfbig,∗K)|Sétale

= Rfsmall,∗(K|Tétale
)

in D(Sétale).
(2) For K in D((Sch/T )étale,O) we have (Rfbig,∗K)|Sétale

= Rfsmall,∗(K|Tétale
)

in D(Mod(Sétale,OS)).
More generally, let g : S′ → S be an object of (Sch/S)étale. Consider the fibre
product

T ′
g′
//

f ′

��

T

f

��
S′ g // S

Then
(3) For K in D((Sch/T )étale) we have i−1

g (Rfbig,∗K) = Rf ′
small,∗(i−1

g′ K) in
D(S′

étale).

https://stacks.math.columbia.edu/tag/075A
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(4) For K in D((Sch/T )étale,O) we have i∗g(Rfbig,∗K) = Rf ′
small,∗(i∗g′K) in

D(Mod(S′
étale,OS′)).

(5) For K in D((Sch/T )étale) we have g−1
big(Rfbig,∗K) = Rf ′

big,∗((g′
big)−1K) in

D((Sch/S′)étale).
(6) For K in D((Sch/T )étale,O) we have g∗

big(Rfbig,∗K) = Rf ′
big,∗((g′

big)∗K)
in D(Mod(S′

étale,OS′)).

Proof. Part (1) follows from Lemma 99.1 and (99.1.1) on choosing a K-injective
complex of abelian sheaves representing K.
Part (3) follows from Lemma 99.1 and Topologies, Lemma 4.19 on choosing a K-
injective complex of abelian sheaves representing K.
Part (5) is Cohomology on Sites, Lemma 21.1.
Part (6) is Cohomology on Sites, Lemma 21.2.
Part (2) can be proved as follows. Above we have seen that πS ◦ fbig = fsmall ◦ πT
as morphisms of ringed sites. Hence we obtain RπS,∗ ◦Rfbig,∗ = Rfsmall,∗ ◦RπT,∗
by Cohomology on Sites, Lemma 19.2. Since the restriction functors πS,∗ and πT,∗
are exact, we conclude.
Part (4) follows from part (6) and part (2) applied to f ′ : T ′ → S′. □

Let S be a scheme and let H be an abelian sheaf on (Sch/S)étale. Recall that
Hn
étale(U,H) denotes the cohomology of H over an object U of (Sch/S)étale.

Lemma 99.3.0DDH Let f : T → S be a morphism of schemes. Then
(1) For K in D(Sétale) we have Hn

étale(S, π
−1
S K) = Hn(Sétale,K).

(2) For K in D(Sétale,OS) we have Hn
étale(S,Lπ∗

SK) = Hn(Sétale,K).
(3) For K in D(Sétale) we have Hn

étale(T, π
−1
S K) = Hn(Tétale, f−1

smallK).
(4) For K in D(Sétale,OS) we have Hn

étale(T, Lπ∗
SK) = Hn(Tétale, Lf∗

smallK).
(5) For M in D((Sch/S)étale) we have Hn

étale(T,M) = Hn(Tétale, i−1
f M).

(6) For M in D((Sch/S)étale,O) we have Hn
étale(T,M) = Hn(Tétale, i∗fM).

Proof. To prove (5) represent M by a K-injective complex of abelian sheaves and
apply Lemma 99.1 and work out the definitions. Part (3) follows from this as
i−1
f π−1

S = f−1
small. Part (1) is a special case of (3).

Part (6) follows from the very general Cohomology on Sites, Lemma 37.5. Then
part (4) follows because Lf∗

small = i∗f ◦ Lπ∗
S . Part (2) is a special case of (4). □

Lemma 99.4.0DDI Let S be a scheme. For K ∈ D(Sétale) the map

K −→ RπS,∗π
−1
S K

is an isomorphism.

Proof. This is true because both π−1
S and πS,∗ = i−1

S are exact functors and the
composition πS,∗ ◦ π−1

S is the identity functor. □

Lemma 99.5.0DDJ Let f : T → S be a proper morphism of schemes. Then we have
(1) π−1

S ◦ fsmall,∗ = fbig,∗ ◦ π−1
T as functors Sh(Tétale)→ Sh((Sch/S)étale),

(2) π−1
S Rfsmall,∗K = Rfbig,∗π

−1
T K for K in D+(Tétale) whose cohomology

sheaves are torsion,
(3) π−1

S Rfsmall,∗K = Rfbig,∗π
−1
T K for K in D(Tétale,Z/nZ), and

https://stacks.math.columbia.edu/tag/0DDH
https://stacks.math.columbia.edu/tag/0DDI
https://stacks.math.columbia.edu/tag/0DDJ
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(4) π−1
S Rfsmall,∗K = Rfbig,∗π

−1
T K for all K in D(Tétale) if f is finite.

Proof. Proof of (1). Let F be a sheaf on Tétale. Let g : S′ → S be an object of
(Sch/S)étale. Consider the fibre product

T ′
f ′
//

g′

��

S′

g

��
T

f // S

Then we have
(fbig,∗π−1

T F)(S′) = (π−1
T F)(T ′) = ((g′

small)−1F)(T ′) = (f ′
small,∗(g′

small)−1F)(S′)
the second equality by Lemma 39.2. On the other hand

(π−1
S fsmall,∗F)(S′) = (g−1

smallfsmall,∗F)(S′)
again by Lemma 39.2. Hence by proper base change for sheaves of sets (Lemma
91.5) we conclude the two sets are canonically isomorphic. The isomorphism is
compatible with restriction mappings and defines an isomorphism π−1

S fsmall,∗F =
fbig,∗π

−1
T F . Thus an isomorphism of functors π−1

S ◦ fsmall,∗ = fbig,∗ ◦ π−1
T .

Proof of (2). There is a canonical base change map π−1
S Rfsmall,∗K → Rfbig,∗π

−1
T K

for any K in D(Tétale), see Cohomology on Sites, Remark 19.3. To prove it is
an isomorphism, it suffices to prove the pull back of the base change map by ig :
Sh(S′

étale) → Sh((Sch/S)étale) is an isomorphism for any object g : S′ → S of
(Sch/S)étale. Let T ′, g′, f ′ be as in the previous paragraph. The pullback of the
base change map is

g−1
smallRfsmall,∗K = i−1

g π−1
S Rfsmall,∗K

→ i−1
g Rfbig,∗π

−1
T K

= Rf ′
small,∗(i−1

g′ π
−1
T K)

= Rf ′
small,∗((g′

small)−1K)
where we have used πS ◦ ig = gsmall, πT ◦ ig′ = g′

small, and Lemma 99.2. This map
is an isomorphism by the proper base change theorem (Lemma 91.12) provided K
is bounded below and the cohomology sheaves of K are torsion.
The proof of part (3) is the same as the proof of part (2), except we use Lemma
92.3 instead of Lemma 91.12.
Proof of (4). If f is finite, then the functors fsmall,∗ and fbig,∗ are exact. This
follows from Proposition 55.2 for fsmall. Since any base change f ′ of f is finite
too, we conclude from Lemma 99.2 part (3) that fbig,∗ is exact too (as the higher
derived functors are zero). Thus this case follows from part (1). □

100. Comparing fppf and étale topologies

0DDK A model for this section is the section on the comparison of the usual topology and
the qc topology on locally compact topological spaces as discussed in Cohomology
on Sites, Section 31. We first review some material from Topologies, Sections 11
and 4.
Let S be a scheme and let (Sch/S)fppf be an fppf site. On the same underlying
category we have a second topology, namely the étale topology, and hence a second
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site (Sch/S)étale. The identity functor (Sch/S)étale → (Sch/S)fppf is continuous
and defines a morphism of sites

ϵS : (Sch/S)fppf −→ (Sch/S)étale
See Cohomology on Sites, Section 27. Please note that ϵS,∗ is the identity func-
tor on underlying presheaves and that ϵ−1

S associates to an étale sheaf the fppf
sheafification. Let Sétale be the small étale site. There is a morphism of sites

πS : (Sch/S)étale −→ Sétale

given by the continuous functor Sétale → (Sch/S)étale, U 7→ U . Namely, Sétale has
fibre products and a final object and the functor above commutes with these and
Sites, Proposition 14.7 applies.

Lemma 100.1.0DDL With notation as above. Let F be a sheaf on Sétale. The rule

(Sch/S)fppf −→ Sets, (f : X → S) 7−→ Γ(X, f−1
smallF)

is a sheaf and a fortiori a sheaf on (Sch/S)étale. In fact this sheaf is equal to π−1
S F

on (Sch/S)étale and ϵ−1
S π−1

S F on (Sch/S)fppf .

Proof. The statement about the étale topology is the content of Lemma 39.2. To
finish the proof it suffices to show that π−1

S F is a sheaf for the fppf topology. This
is shown in Lemma 39.2 as well. □

In the situation of Lemma 100.1 the composition of ϵS and πS and the equality
determine a morphism of sites

aS : (Sch/S)fppf −→ Sétale

Lemma 100.2.0DDM With notation as above. Let f : X → Y be a morphism of
(Sch/S)fppf . Then there are commutative diagrams of topoi

Sh((Sch/X)fppf )
fbig,fppf

//

ϵX

��

Sh((Sch/Y )fppf )

ϵY

��
Sh((Sch/X)étale)

fbig,étale // Sh((Sch/Y )étale)

and
Sh((Sch/X)fppf )

fbig,fppf

//

aX

��

Sh((Sch/Y )fppf )

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)
with aX = πX ◦ ϵX and aY = πX ◦ ϵX .

Proof. The commutativity of the diagrams follows from the discussion in Topolo-
gies, Section 11. □

Lemma 100.3.0DDN In Lemma 100.2 if f is proper, then we have a−1
Y ◦ fsmall,∗ =

fbig,fppf,∗ ◦ a−1
X .

Proof. You can prove this by repeating the proof of Lemma 99.5 part (1); we
will instead deduce the result from this. As ϵY,∗ is the identity functor on un-
derlying presheaves, it reflects isomorphisms. The description in Lemma 100.1

https://stacks.math.columbia.edu/tag/0DDL
https://stacks.math.columbia.edu/tag/0DDM
https://stacks.math.columbia.edu/tag/0DDN
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shows that ϵY,∗ ◦ a−1
Y = π−1

Y and similarly for X. To show that the canonical map
a−1
Y fsmall,∗F → fbig,fppf,∗a

−1
X F is an isomorphism, it suffices to show that

π−1
Y fsmall,∗F = ϵY,∗a

−1
Y fsmall,∗F

→ ϵY,∗fbig,fppf,∗a
−1
X F

= fbig,étale,∗ϵX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 99.5. □

Lemma 100.4.0DEU In Lemma 100.2 assume f is flat, locally of finite presentation,
and surjective. Then the functor

Sh(Yétale) −→
{

(G,H, α)
∣∣∣∣G ∈ Sh(Xétale), H ∈ Sh((Sch/Y )fppf ),
α : a−1

X G → f−1
big,fppfH an isomorphism

}
sending F to (f−1

smallF , a
−1
Y F , can) is an equivalence.

Proof. The functor a−1
X is fully faithful (as aX,∗a−1

X = id by Lemma 100.1). Hence
the forgetful functor (G,H, α) 7→ H identifies the category of triples with a full
subcategory of Sh((Sch/Y )fppf ). Moreover, the functor a−1

Y is fully faithful, hence
the functor in the lemma is fully faithful as well.

Suppose that we have an étale covering {Yi → Y }. Let fi : Xi → Yi be the base
change of f . Denote fij = fi × fj : Xi ×X Xj → Yi ×Y Yj . Claim: if the lemma is
true for fi and fij for all i, j, then the lemma is true for f . To see this, note that the
given étale covering determines an étale covering of the final object in each of the
four sites Yétale, Xétale, (Sch/Y )fppf , (Sch/X)fppf . Thus the category of sheaves is
equivalent to the category of glueing data for this covering (Sites, Lemma 26.5) in
each of the four cases. A huge commutative diagram of categories then finishes the
proof of the claim. We omit the details. The claim shows that we may work étale
locally on Y .

Note that {X → Y } is an fppf covering. Working étale locally on Y , we may assume
there exists a morphism s : X ′ → X such that the composition f ′ = f ◦ s : X ′ → Y
is surjective finite locally free, see More on Morphisms, Lemma 48.1. Claim: if the
lemma is true for f ′, then it is true for f . Namely, given a triple (G,H, α) for f ,
we can pullback by s to get a triple (s−1

smallG,H, s
−1
big,fppfα) for f ′. A solution for

this triple gives a sheaf F on Yétale with a−1
Y F = H. By the first paragraph of the

proof this means the triple is in the essential image. This reduces us to the case
described in the next paragraph.

Assume f is surjective finite locally free. Let (G,H, α) be a triple. In this case
consider the triple

(G1,H1, α1) = (f−1
smallfsmall,∗G, fbig,fppf,∗f

−1
big,fppfH, α1)

where α1 comes from the identifications

a−1
X f−1

smallfsmall,∗G = f−1
big,fppfa

−1
Y fsmall,∗G

= f−1
big,fppffbig,fppf,∗a

−1
X G

→ f−1
big,fppffbig,fppf,∗f

−1
big,fppfH

https://stacks.math.columbia.edu/tag/0DEU
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where the third equality is Lemma 100.3 and the arrow is given by α. This triple
is in the image of our functor because F1 = fsmall,∗F is a solution (to see this use
Lemma 100.3 again; details omitted). There is a canonical map of triples

(G,H, α)→ (G1,H1, α1)

which uses the unit id → fbig,fppf,∗f
−1
big,fppf on the second entry (it is enough to

prescribe morphisms on the second entry by the first paragraph of the proof). Since
{f : X → Y } is an fppf covering the map H → H1 is injective (details omitted).
Set

G2 = G1 ⨿G G1 H2 = H1 ⨿H H1

and let α2 be the induced isomorphism (pullback functors are exact, so this makes
sense). Then H is the equalizer of the two maps H1 → H2. Repeating the argu-
ments above for the triple (G2,H2, α2) we find an injective morphism of triples

(G2,H2, α2)→ (G3,H3, α3)

such that this last triple is in the image of our functor. Say it corresponds to F3
in Sh(Yétale). By fully faithfulness we obtain two maps F1 → F3 and we can let F
be the equalizer of these two maps. By exactness of the pullback functors involved
we find that a−1

Y F = H as desired. □

Lemma 100.5.0F0H Consider the comparison morphism ϵ : (Sch/S)fppf → (Sch/S)étale.
Let P denote the class of finite morphisms of schemes. For X in (Sch/S)étale de-
note A′

X ⊂ Ab((Sch/X)étale) the full subcategory consisting of sheaves of the form
π−1
X F with F in Ab(Xétale). Then Cohomology on Sites, Properties (1), (2), (3),

(4), and (5) of Cohomology on Sites, Situation 30.1 hold.

Proof. We first show that A′
X ⊂ Ab((Sch/X)étale) is a weak Serre subcategory by

checking conditions (1), (2), (3), and (4) of Homology, Lemma 10.3. Parts (1), (2),
(3) are immediate as π−1

X is exact and fully faithful for example by Lemma 99.4. If
0 → π−1

X F → G → π−1
X F ′ → 0 is a short exact sequence in Ab((Sch/X)étale) then

0 → F → πX,∗G → F ′ → 0 is exact by Lemma 99.4. Hence G = π−1
X πX,∗G is in

A′
X which checks the final condition.

Cohomology on Sites, Property (1) holds by the existence of fibre products of
schemes and the fact that the base change of a finite morphism of schemes is a
finite morphism of schemes, see Morphisms, Lemma 44.6.

Cohomology on Sites, Property (2) follows from the commutative diagram (3) in
Topologies, Lemma 4.17.

Cohomology on Sites, Property (3) is Lemma 100.1.

Cohomology on Sites, Property (4) holds by Lemma 99.5 part (4).

Cohomology on Sites, Property (5) is implied by More on Morphisms, Lemma
48.1. □

Lemma 100.6.0DDS With notation as above.
(1) For X ∈ Ob((Sch/S)fppf ) and an abelian sheaf F on Xétale we have

ϵX,∗a
−1
X F = π−1

X F and RiϵX,∗(a−1
X F) = 0 for i > 0.

(2) For a finite morphism f : X → Y in (Sch/S)fppf and abelian sheaf F on
X we have a−1

Y (Rifsmall,∗F) = Rifbig,fppf,∗(a−1
X F) for all i.

https://stacks.math.columbia.edu/tag/0F0H
https://stacks.math.columbia.edu/tag/0DDS
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(3) For a scheme X and K in D+(Xétale) the map π−1
X K → RϵX,∗(a−1

X K) is
an isomorphism.

(4) For a finite morphism f : X → Y of schemes and K in D+(Xétale) we
have a−1

Y (Rfsmall,∗K) = Rfbig,fppf,∗(a−1
X K).

(5) For a proper morphism f : X → Y of schemes and K in D+(Xétale) with
torsion cohomology sheaves we have a−1

Y (Rfsmall,∗K) = Rfbig,fppf,∗(a−1
X K).

Proof. By Lemma 100.5 the lemmas in Cohomology on Sites, Section 30 all apply
to our current setting. To translate the results observe that the category AX of
Cohomology on Sites, Lemma 30.2 is the essential image of a−1

X : Ab(Xétale) →
Ab((Sch/X)fppf ).

Part (1) is equivalent to (Vn) for all n which holds by Cohomology on Sites, Lemma
30.8.

Part (2) follows by applying ϵ−1
Y to the conclusion of Cohomology on Sites, Lemma

30.3.

Part (3) follows from Cohomology on Sites, Lemma 30.8 part (1) because π−1
X K is

in D+
A′

X
((Sch/X)étale) and a−1

X = ϵ−1
X ◦ a

−1
X .

Part (4) follows from Cohomology on Sites, Lemma 30.8 part (2) for the same
reason.

Part (5). We use that

RϵY,∗Rfbig,fppf,∗a
−1
X K = Rfbig,étale,∗RϵX,∗a

−1
X K

= Rfbig,étale,∗π
−1
X K

= π−1
Y Rfsmall,∗K

= RϵY,∗a
−1
Y Rfsmall,∗K

The first equality by the commutative diagram in Lemma 100.2 and Cohomology
on Sites, Lemma 19.2. The second equality is (3). The third is Lemma 99.5 part
(2). The fourth is (3) again. Thus the base change map a−1

Y (Rfsmall,∗K) →
Rfbig,fppf,∗(a−1

X K) induces an isomorphism

RϵY,∗a
−1
Y Rfsmall,∗K → RϵY,∗Rfbig,fppf,∗a

−1
X K

The proof is finished by the following remark: a map α : a−1
Y L → M with L in

D+(Yétale) and M in D+((Sch/Y )fppf ) such that RϵY,∗α is an isomorphism, is an
isomorphism. Namely, we show by induction on i that Hi(α) is an isomorphism.
This is true for all sufficiently small i. If it holds for i ≤ i0, then we see that
RjϵY,∗H

i(M) = 0 for j > 0 and i ≤ i0 by (1) because Hi(M) = a−1
Y Hi(L) in this

range. Hence ϵY,∗Hi0+1(M) = Hi0+1(RϵY,∗M) by a spectral sequence argument.
Thus ϵY,∗Hi0+1(M) = π−1

Y Hi0+1(L) = ϵY,∗a
−1
Y Hi0+1(L). This implies Hi0+1(α) is

an isomorphism (because ϵY,∗ reflects isomorphisms as it is the identity on under-
lying presheaves) as desired. □

Lemma 100.7.0DDT Let X be a scheme. For K ∈ D+(Xétale) the map

K −→ RaX,∗a
−1
X K

is an isomorphism with aX : Sh((Sch/X)fppf )→ Sh(Xétale) as above.

https://stacks.math.columbia.edu/tag/0DDT
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Proof. We first reduce the statement to the case where K is given by a single
abelian sheaf. Namely, represent K by a bounded below complex F•. By the case
of a sheaf we see that Fn = aX,∗a

−1
X Fn and that the sheaves RqaX,∗a−1

X Fn are zero
for q > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma 16.7) applied
to a−1

X F• and the functor aX,∗ we conclude. From now on assume K = F .

By Lemma 100.1 we have aX,∗a−1
X F = F . Thus it suffices to show thatRqaX,∗a−1

X F =
0 for q > 0. For this we can use aX = ϵX ◦ πX and the Leray spectral sequence
(Cohomology on Sites, Lemma 14.7). By Lemma 100.6 we have RiϵX,∗(a−1

X F) = 0
for i > 0 and ϵX,∗a

−1
X F = π−1

X F . By Lemma 99.4 we have RjπX,∗(π−1
X F) = 0 for

j > 0. This concludes the proof. □

Lemma 100.8.0DDU For a scheme X and aX : Sh((Sch/X)fppf ) → Sh(Xétale) as
above:

(1) Hq(Xétale,F) = Hq
fppf (X, a−1

X F) for an abelian sheaf F on Xétale,
(2) Hq(Xétale,K) = Hq

fppf (X, a−1
X K) for K ∈ D+(Xétale).

Example: if A is an abelian group, then Hq
étale(X,A) = Hq

fppf (X,A).

Proof. This follows from Lemma 100.7 by Cohomology on Sites, Remark 14.4. □

101. Comparing fppf and étale topologies: modules

0DEV We continue the discussion in Section 100 but in this section we briefly discuss what
happens for sheaves of modules.
Let S be a scheme. The morphisms of sites ϵS , πS , and their composition aS
introduced in Section 100 have natural enhancements to morphisms of ringed sites.
The first is written as

ϵS : ((Sch/S)fppf ,O) −→ ((Sch/S)étale,O)
Note that we can use the same symbol for the structure sheaf as indeed the sheaves
have the same underlying presheaf. The second is

πS : ((Sch/S)étale,O) −→ (Sétale,OS)
The third is the morphism

aS : ((Sch/S)fppf ,O) −→ (Sétale,OS)
We already know that the category of quasi-coherent modules on the scheme S is
the same as the category of quasi-coherent modules on (Sétale,OS), see Descent,
Proposition 8.9. Since we are interested in stating a comparison between étale
and fppf cohomology, we will in the rest of this section think of quasi-coherent
sheaves in terms of the small étale site. Let us review what we already know about
quasi-coherent modules on these sites.

Lemma 101.1.0DEW Let S be a scheme. Let F be a quasi-coherent OS-module on
Sétale.

(1) The rule
Fa : (Sch/S)étale −→ Ab, (f : T → S) 7−→ Γ(T, f∗

smallF)
satisfies the sheaf condition for fppf and a fortiori étale coverings,

(2) Fa = π∗
SF on (Sch/S)étale,

(3) Fa = a∗
SF on (Sch/S)fppf ,

https://stacks.math.columbia.edu/tag/0DDU
https://stacks.math.columbia.edu/tag/0DEW
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(4) the rule F 7→ Fa defines an equivalence between quasi-coherent OS-modules
and quasi-coherent modules on ((Sch/S)étale,O),

(5) the rule F 7→ Fa defines an equivalence between quasi-coherent OS-modules
and quasi-coherent modules on ((Sch/S)fppf ,O),

(6) we have ϵS,∗a∗
SF = π∗

SF and aS,∗a∗
SF = F ,

(7) we have RiϵS,∗(a∗
SF) = 0 and RiaS,∗(a∗

SF) = 0 for i > 0.

Proof. We urge the reader to find their own proof of these results based on the
material in Descent, Sections 8, 9, and 10.
We first explain why the notation in this lemma is consistent with our earlier use of
the notation Fa in Sections 17 and 22 and in Descent, Section 8. Namely, we know
by Descent, Proposition 8.9 that there exists a quasi-coherent module F0 on the
scheme S (in other words on the small Zariski site) such that F is the restriction
of the rule

Fa0 : (Sch/S)étale −→ Ab, (f : T → S) 7−→ Γ(T, f∗F)
to the subcategory Sétale ⊂ (Sch/S)étale where here f∗ denotes usual pullback of
sheaves of modules on schemes. Since Fa0 is pullback by the morphism of ringed
sites

((Sch/S)étale,O) −→ (SZar,OSZar
)

by Descent, Remark 8.6 it follows immediately (from composition of pullbacks)
that Fa = Fa0 . This proves the sheaf property even for fpqc coverings by Descent,
Lemma 8.1 (see also Proposition 17.1). Then (2) and (3) follow again by Descent,
Remark 8.6 and (4) and (5) follow from Descent, Proposition 8.9 (see also the meta
result Theorem 17.4).
Part (6) is immediate from the description of the sheaf Fa = π∗

SF = a∗
SF .

For any abelian H on (Sch/S)fppf the higher direct image RpϵS,∗H is the sheaf
associated to the presheaf U 7→ Hp

fppf (U,H) on (Sch/S)étale. See Cohomology
on Sites, Lemma 7.4. Hence to prove RpϵS,∗a∗

SF = RpϵS,∗Fa = 0 for p > 0 it
suffices to show that any scheme U over S has an étale covering {Ui → U}i∈I such
that Hp

fppf (Ui,Fa) = 0 for p > 0. If we take an open covering by affines, then
the required vanishing follows from comparison with usual cohomology (Descent,
Proposition 9.3 or Theorem 22.4) and the vanishing of cohomology of quasi-coherent
sheaves on affine schemes afforded by Cohomology of Schemes, Lemma 2.2.
To show that RpaS,∗a−1

S F = RpaS,∗Fa = 0 for p > 0 we argue in exactly the same
manner. This finishes the proof. □

Lemma 101.2.0DEX Let S be a scheme. For F a quasi-coherent OS-module on Sétale
the maps

π∗
SF −→ RϵS,∗(a∗

SF) and F −→ RaS,∗(a∗
SF)

are isomorphisms with aS : Sh((Sch/S)fppf )→ Sh(Sétale) as above.

Proof. This is an immediate consequence of parts (6) and (7) of Lemma 101.1. □

Lemma 101.3.0H0U Let S = Spec(A) be an affine scheme. Let M• be a complex of
A-modules. Consider the complex F• of presheaves of O-modules on (Aff/S)fppf
given by the rule

(U/S) = (Spec(B)/Spec(A)) 7−→M• ⊗A B

https://stacks.math.columbia.edu/tag/0DEX
https://stacks.math.columbia.edu/tag/0H0U
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Then this is a complex of modules and the canonical map

M• −→ RΓ((Aff/S)fppf ,F•)

is a quasi-isomorphism.

Proof. Each Fn is a sheaf of modules as it agrees with the restriction of the module
Gn = (M̃n)a of Lemma 101.1 to (Aff/S)fppf ⊂ (Sch/S)fppf . Since this inclusion
defines an equivalence of ringed topoi (Topologies, Lemma 7.11), we have

RΓ((Aff/S)fppf ,F•) = RΓ((Sch/S)fppf ,G•)

We observe that M• = RΓ(S, M̃•) for example by Derived Categories of Schemes,
Lemma 3.5. Hence we are trying to show the comparison map

RΓ(S, M̃•) −→ RΓ((Sch/S)fppf , (M̃•)a)

is an isomorphism. If M• is bounded below, then this holds by Descent, Proposition
9.3 and the first spectral sequence of Derived Categories, Lemma 21.3. For the
general case, let us write M• = limM•

n with M•
n = τ≥−nM

•. Whence the system
Mp
n is eventually constant with value Mp. We claim that

(M̃•)a = R lim(M̃•
n)a

Namely, it suffices to show that the natural map from left to right induces an
isomorphism on cohomology over any affine object U = Spec(B) of (Sch/S)fppf .
For i ∈ Z and n > |i| we have

Hi(U, (M̃•
n)a) = Hi(τ≥−nM

• ⊗A B) = Hi(M• ⊗A B)

The first equality holds by the bounded below case treated above. Thus we see
from Cohomology on Sites, Lemma 23.2 that the claim holds. Then we finally get

RΓ((Sch/S)fppf , (M̃•)a) = RΓ((Sch/S)fppf , R lim(M̃•
n)a)

= R limRΓ((Sch/S)fppf , (M̃•
n)a)

= R limM•
n

= M•

as desired. The second equality holds because R lim commutes with RΓ, see Coho-
mology on Sites, Lemma 23.2. □

102. Comparing ph and étale topologies

0DDV A model for this section is the section on the comparison of the usual topology and
the qc topology on locally compact topological spaces as discussed in Cohomology
on Sites, Section 31. We first review some material from Topologies, Sections 11
and 4.

Let S be a scheme and let (Sch/S)ph be a ph site. On the same underlying cat-
egory we have a second topology, namely the étale topology, and hence a second
site (Sch/S)étale. The identity functor (Sch/S)étale → (Sch/S)ph is continuous
(by More on Morphisms, Lemma 48.7 and Topologies, Lemma 7.2) and defines a
morphism of sites

ϵS : (Sch/S)ph −→ (Sch/S)étale
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See Cohomology on Sites, Section 27. Please note that ϵS,∗ is the identity functor on
underlying presheaves and that ϵ−1

S associates to an étale sheaf the ph sheafification.
Let Sétale be the small étale site. There is a morphism of sites

πS : (Sch/S)étale −→ Sétale

given by the continuous functor Sétale → (Sch/S)étale, U 7→ U . Namely, Sétale has
fibre products and a final object and the functor above commutes with these and
Sites, Proposition 14.7 applies.

Lemma 102.1.0DDW With notation as above. Let F be a sheaf on Sétale. The rule

(Sch/S)ph −→ Sets, (f : X → S) 7−→ Γ(X, f−1
smallF)

is a sheaf and a fortiori a sheaf on (Sch/S)étale. In fact this sheaf is equal to π−1
S F

on (Sch/S)étale and ϵ−1
S π−1

S F on (Sch/S)ph.

Proof. The statement about the étale topology is the content of Lemma 39.2. To
finish the proof it suffices to show that π−1

S F is a sheaf for the ph topology. By
Topologies, Lemma 8.15 it suffices to show that given a proper surjective morphism
V → U of schemes over S we have an equalizer diagram

(π−1
S F)(U) // (π−1

S F)(V ) //
// (π−1

S F)(V ×U V )

Set G = π−1
S F|Uétale

. Consider the commutative diagram

V ×U V //

g
##��

V

f

��
V

f // U

We have
(π−1
S F)(V ) = Γ(V, f−1G) = Γ(U, f∗f

−1G)
where we use f∗ and f−1 to denote functorialities between small étale sites. Second,
we have

(π−1
S F)(V ×U V ) = Γ(V ×U V, g−1G) = Γ(U, g∗g

−1G)
The two maps in the equalizer diagram come from the two maps

f∗f
−1G −→ g∗g

−1G

Thus it suffices to prove G is the equalizer of these two maps of sheaves. Let u be
a geometric point of U . Set Ω = Gu. Taking stalks at u by Lemma 91.4 we obtain
the two maps

H0(Vu,Ω) −→ H0((V ×U V )u,Ω) = H0(Vu ×u Vu,Ω)

where Ω indicates the constant sheaf with value Ω. Of course these maps are the
pullback by the projection maps. Then it is clear that the sections coming from
pullback by projection onto the first factor are constant on the fibres of the first
projection, and sections coming from pullback by projection onto the first factor
are constant on the fibres of the first projection. The sections in the intersection of
the images of these pullback maps are constant on all of Vu ×u Vu, i.e., these come
from elements of Ω as desired. □

https://stacks.math.columbia.edu/tag/0DDW
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In the situation of Lemma 102.1 the composition of ϵS and πS and the equality
determine a morphism of sites

aS : (Sch/S)ph −→ Sétale

Lemma 102.2.0DDX With notation as above. Let f : X → Y be a morphism of
(Sch/S)ph. Then there are commutative diagrams of topoi

Sh((Sch/X)ph)
fbig,ph

//

ϵX

��

Sh((Sch/Y )ph)

ϵY

��
Sh((Sch/X)étale)

fbig,étale // Sh((Sch/Y )étale)

and
Sh((Sch/X)ph)

fbig,ph

//

aX

��

Sh((Sch/Y )ph)

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)
with aX = πX ◦ ϵX and aY = πX ◦ ϵX .

Proof. The commutativity of the diagrams follows from the discussion in Topolo-
gies, Section 11. □

Lemma 102.3.0DDY In Lemma 102.2 if f is proper, then we have a−1
Y ◦ fsmall,∗ =

fbig,ph,∗ ◦ a−1
X .

Proof. You can prove this by repeating the proof of Lemma 99.5 part (1); we
will instead deduce the result from this. As ϵY,∗ is the identity functor on un-
derlying presheaves, it reflects isomorphisms. The description in Lemma 102.1
shows that ϵY,∗ ◦ a−1

Y = π−1
Y and similarly for X. To show that the canonical map

a−1
Y fsmall,∗F → fbig,ph,∗a

−1
X F is an isomorphism, it suffices to show that

π−1
Y fsmall,∗F = ϵY,∗a

−1
Y fsmall,∗F

→ ϵY,∗fbig,ph,∗a
−1
X F

= fbig,étale,∗ϵX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 99.5. □

Lemma 102.4.0F0I Consider the comparison morphism ϵ : (Sch/S)ph → (Sch/S)étale.
Let P denote the class of proper morphisms of schemes. For X in (Sch/S)étale
denote A′

X ⊂ Ab((Sch/X)étale) the full subcategory consisting of sheaves of the
form π−1

X F where F is a torsion abelian sheaf on Xétale Then Cohomology on
Sites, Properties (1), (2), (3), (4), and (5) of Cohomology on Sites, Situation 30.1
hold.

Proof. We first show that A′
X ⊂ Ab((Sch/X)étale) is a weak Serre subcategory by

checking conditions (1), (2), (3), and (4) of Homology, Lemma 10.3. Parts (1), (2),
(3) are immediate as π−1

X is exact and fully faithful for example by Lemma 99.4. If
0 → π−1

X F → G → π−1
X F ′ → 0 is a short exact sequence in Ab((Sch/X)étale) then

0 → F → πX,∗G → F ′ → 0 is exact by Lemma 99.4. In particular we see that

https://stacks.math.columbia.edu/tag/0DDX
https://stacks.math.columbia.edu/tag/0DDY
https://stacks.math.columbia.edu/tag/0F0I
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πX,∗G is an abelian torsion sheaf on Xétale. Hence G = π−1
X πX,∗G is in A′

X which
checks the final condition.
Cohomology on Sites, Property (1) holds by the existence of fibre products of
schemes and the fact that the base change of a proper morphism of schemes is a
proper morphism of schemes, see Morphisms, Lemma 41.5.
Cohomology on Sites, Property (2) follows from the commutative diagram (3) in
Topologies, Lemma 4.17.
Cohomology on Sites, Property (3) is Lemma 102.1.
Cohomology on Sites, Property (4) holds by Lemma 99.5 part (2) and the fact that
RifsmallF is torsion if F is an abelian torsion sheaf on Xétale, see Lemma 78.2.
Cohomology on Sites, Property (5) follows from More on Morphisms, Lemma 48.1
combined with the fact that a finite morphism is proper and a surjective proper
morphism defines a ph covering, see Topologies, Lemma 8.6. □

Lemma 102.5.0DE4 With notation as above.
(1) For X ∈ Ob((Sch/S)ph) and an abelian torsion sheaf F on Xétale we have

ϵX,∗a
−1
X F = π−1

X F and RiϵX,∗(a−1
X F) = 0 for i > 0.

(2) For a proper morphism f : X → Y in (Sch/S)ph and abelian torsion sheaf
F on X we have a−1

Y (Rifsmall,∗F) = Rifbig,ph,∗(a−1
X F) for all i.

(3) For a scheme X and K in D+(Xétale) with torsion cohomology sheaves the
map π−1

X K → RϵX,∗(a−1
X K) is an isomorphism.

(4) For a proper morphism f : X → Y of schemes and K in D+(Xétale) with
torsion cohomology sheaves we have a−1

Y (Rfsmall,∗K) = Rfbig,ph,∗(a−1
X K).

Proof. By Lemma 102.4 the lemmas in Cohomology on Sites, Section 30 all apply
to our current setting. To translate the results observe that the category AX
of Cohomology on Sites, Lemma 30.2 is the full subcategory of Ab((Sch/X)ph)
consisting of sheaves of the form a−1

X F where F is an abelian torsion sheaf on
Xétale.
Part (1) is equivalent to (Vn) for all n which holds by Cohomology on Sites, Lemma
30.8.
Part (2) follows by applying ϵ−1

Y to the conclusion of Cohomology on Sites, Lemma
30.3.
Part (3) follows from Cohomology on Sites, Lemma 30.8 part (1) because π−1

X K is
in D+

A′
X

((Sch/X)étale) and a−1
X = ϵ−1

X ◦ a
−1
X .

Part (4) follows from Cohomology on Sites, Lemma 30.8 part (2) for the same
reason. □

Lemma 102.6.0DE5 Let X be a scheme. For K ∈ D+(Xétale) with torsion cohomology
sheaves the map

K −→ RaX,∗a
−1
X K

is an isomorphism with aX : Sh((Sch/X)ph)→ Sh(Xétale) as above.

Proof. We first reduce the statement to the case where K is given by a single
abelian sheaf. Namely, represent K by a bounded below complex F• of torsion
abelian sheaves. This is possible by Cohomology on Sites, Lemma 19.8. By the

https://stacks.math.columbia.edu/tag/0DE4
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case of a sheaf we see that Fn = aX,∗a
−1
X Fn and that the sheaves RqaX,∗a−1

X Fn
are zero for q > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma 16.7)
applied to a−1

X F• and the functor aX,∗ we conclude. From now on assume K = F
where F is a torsion abelian sheaf.
By Lemma 102.1 we have aX,∗a−1

X F = F . Thus it suffices to show thatRqaX,∗a−1
X F =

0 for q > 0. For this we can use aX = ϵX ◦ πX and the Leray spectral sequence
(Cohomology on Sites, Lemma 14.7). By Lemma 102.5 we have RiϵX,∗(a−1

X F) = 0
for i > 0 and ϵX,∗a

−1
X F = π−1

X F . By Lemma 99.4 we have RjπX,∗(π−1
X F) = 0 for

j > 0. This concludes the proof. □

Lemma 102.7.0DE6 For a scheme X and aX : Sh((Sch/X)ph)→ Sh(Xétale) as above:
(1) Hq(Xétale,F) = Hq

ph(X, a−1
X F) for a torsion abelian sheaf F on Xétale,

(2) Hq(Xétale,K) = Hq
ph(X, a−1

X K) for K ∈ D+(Xétale) with torsion cohomol-
ogy sheaves.

Example: if A is a torsion abelian group, then Hq
étale(X,A) = Hq

ph(X,A).

Proof. This follows from Lemma 102.6 by Cohomology on Sites, Remark 14.4. □

103. Comparing h and étale topologies

0EW7 A model for this section is the section on the comparison of the usual topology and
the qc topology on locally compact topological spaces as discussed in Cohomology
on Sites, Section 31. Moreover, this section is almost word for word the same as
the section comparing the ph and étale topologies. We first review some material
from Topologies, Sections 11 and 4 and More on Flatness, Section 34.
Let S be a scheme and let (Sch/S)h be an h site. On the same underlying category
we have a second topology, namely the étale topology, and hence a second site
(Sch/S)étale. The identity functor (Sch/S)étale → (Sch/S)h is continuous (by More
on Flatness, Lemma 34.6 and Topologies, Lemma 7.2) and defines a morphism of
sites

ϵS : (Sch/S)h −→ (Sch/S)étale
See Cohomology on Sites, Section 27. Please note that ϵS,∗ is the identity functor on
underlying presheaves and that ϵ−1

S associates to an étale sheaf the h sheafification.
Let Sétale be the small étale site. There is a morphism of sites

πS : (Sch/S)étale −→ Sétale

given by the continuous functor Sétale → (Sch/S)étale, U 7→ U . Namely, Sétale has
fibre products and a final object and the functor above commutes with these and
Sites, Proposition 14.7 applies.

Lemma 103.1.0EW8 With notation as above. Let F be a sheaf on Sétale. The rule

(Sch/S)h −→ Sets, (f : X → S) 7−→ Γ(X, f−1
smallF)

is a sheaf and a fortiori a sheaf on (Sch/S)étale. In fact this sheaf is equal to π−1
S F

on (Sch/S)étale and ϵ−1
S π−1

S F on (Sch/S)h.

Proof. The statement about the étale topology is the content of Lemma 39.2.
To finish the proof it suffices to show that π−1

S F is a sheaf for the h topology.
However, in Lemma 102.1 we have shown that π−1

S F is a sheaf even in the stronger
ph topology. □

https://stacks.math.columbia.edu/tag/0DE6
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In the situation of Lemma 103.1 the composition of ϵS and πS and the equality
determine a morphism of sites

aS : (Sch/S)h −→ Sétale

Lemma 103.2.0EW9 With notation as above. Let f : X → Y be a morphism of
(Sch/S)h. Then there are commutative diagrams of topoi

Sh((Sch/X)h)
fbig,h

//

ϵX

��

Sh((Sch/Y )h)

ϵY

��
Sh((Sch/X)étale)

fbig,étale // Sh((Sch/Y )étale)

and
Sh((Sch/X)h)

fbig,h

//

aX

��

Sh((Sch/Y )h)

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)
with aX = πX ◦ ϵX and aY = πX ◦ ϵX .

Proof. The commutativity of the diagrams follows similarly to what was said in
Topologies, Section 11. □

Lemma 103.3.0EWA In Lemma 103.2 if f is proper, then we have a−1
Y ◦ fsmall,∗ =

fbig,h,∗ ◦ a−1
X .

Proof. You can prove this by repeating the proof of Lemma 99.5 part (1); we
will instead deduce the result from this. As ϵY,∗ is the identity functor on un-
derlying presheaves, it reflects isomorphisms. The description in Lemma 103.1
shows that ϵY,∗ ◦ a−1

Y = π−1
Y and similarly for X. To show that the canonical map

a−1
Y fsmall,∗F → fbig,h,∗a

−1
X F is an isomorphism, it suffices to show that
π−1
Y fsmall,∗F = ϵY,∗a

−1
Y fsmall,∗F

→ ϵY,∗fbig,h,∗a
−1
X F

= fbig,étale,∗ϵX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 99.5. □

Lemma 103.4.0F0J Consider the comparison morphism ϵ : (Sch/S)h → (Sch/S)étale.
Let P denote the class of proper morphisms. For X in (Sch/S)étale denote A′

X ⊂
Ab((Sch/X)étale) the full subcategory consisting of sheaves of the form π−1

X F where
F is a torsion abelian sheaf on Xétale Then Cohomology on Sites, Properties (1),
(2), (3), (4), and (5) of Cohomology on Sites, Situation 30.1 hold.

Proof. We first show that A′
X ⊂ Ab((Sch/X)étale) is a weak Serre subcategory by

checking conditions (1), (2), (3), and (4) of Homology, Lemma 10.3. Parts (1), (2),
(3) are immediate as π−1

X is exact and fully faithful for example by Lemma 99.4. If
0 → π−1

X F → G → π−1
X F ′ → 0 is a short exact sequence in Ab((Sch/X)étale) then

0 → F → πX,∗G → F ′ → 0 is exact by Lemma 99.4. In particular we see that
πX,∗G is an abelian torsion sheaf on Xétale. Hence G = π−1

X πX,∗G is in A′
X which

checks the final condition.

https://stacks.math.columbia.edu/tag/0EW9
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Cohomology on Sites, Property (1) holds by the existence of fibre products of
schemes, the fact that the base change of a proper morphism of schemes is a proper
morphism of schemes, see Morphisms, Lemma 41.5, and the fact that the base
change of a morphism of finite presentation is a morphism of finite presentation,
see Morphisms, Lemma 21.4.
Cohomology on Sites, Property (2) follows from the commutative diagram (3) in
Topologies, Lemma 4.17.
Cohomology on Sites, Property (3) is Lemma 103.1.
Cohomology on Sites, Property (4) holds by Lemma 99.5 part (2) and the fact that
RifsmallF is torsion if F is an abelian torsion sheaf on Xétale, see Lemma 78.2.
Cohomology on Sites, Property (5) is implied by More on Morphisms, Lemma 48.1
combined with the fact that a surjective finite locally free morphism is surjective,
proper, and of finite presentation and hence defines a h-covering by More on Flat-
ness, Lemma 34.7. □

Lemma 103.5.0EWF With notation as above.
(1) For X ∈ Ob((Sch/S)h) and an abelian torsion sheaf F on Xétale we have

ϵX,∗a
−1
X F = π−1

X F and RiϵX,∗(a−1
X F) = 0 for i > 0.

(2) For a proper morphism f : X → Y in (Sch/S)h and abelian torsion sheaf
F on X we have a−1

Y (Rifsmall,∗F) = Rifbig,h,∗(a−1
X F) for all i.

(3) For a scheme X and K in D+(Xétale) with torsion cohomology sheaves the
map π−1

X K → RϵX,∗(a−1
X K) is an isomorphism.

(4) For a proper morphism f : X → Y of schemes and K in D+(Xétale) with
torsion cohomology sheaves we have a−1

Y (Rfsmall,∗K) = Rfbig,h,∗(a−1
X K).

Proof. By Lemma 103.4 the lemmas in Cohomology on Sites, Section 30 all apply
to our current setting. To translate the results observe that the category AX of Co-
homology on Sites, Lemma 30.2 is the full subcategory of Ab((Sch/X)h) consisting
of sheaves of the form a−1

X F where F is an abelian torsion sheaf on Xétale.
Part (1) is equivalent to (Vn) for all n which holds by Cohomology on Sites, Lemma
30.8.
Part (2) follows by applying ϵ−1

Y to the conclusion of Cohomology on Sites, Lemma
30.3.
Part (3) follows from Cohomology on Sites, Lemma 30.8 part (1) because π−1

X K is
in D+

A′
X

((Sch/X)étale) and a−1
X = ϵ−1

X ◦ a
−1
X .

Part (4) follows from Cohomology on Sites, Lemma 30.8 part (2) for the same
reason. □

Lemma 103.6.0EWG Let X be a scheme. For K ∈ D+(Xétale) with torsion cohomology
sheaves the map

K −→ RaX,∗a
−1
X K

is an isomorphism with aX : Sh((Sch/X)h)→ Sh(Xétale) as above.

Proof. We first reduce the statement to the case where K is given by a single
abelian sheaf. Namely, represent K by a bounded below complex F• of torsion
abelian sheaves. This is possible by Cohomology on Sites, Lemma 19.8. By the
case of a sheaf we see that Fn = aX,∗a

−1
X Fn and that the sheaves RqaX,∗a−1

X Fn

https://stacks.math.columbia.edu/tag/0EWF
https://stacks.math.columbia.edu/tag/0EWG


ÉTALE COHOMOLOGY 225

are zero for q > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma 16.7)
applied to a−1

X F• and the functor aX,∗ we conclude. From now on assume K = F
where F is a torsion abelian sheaf.

By Lemma 103.1 we have aX,∗a−1
X F = F . Thus it suffices to show thatRqaX,∗a−1

X F =
0 for q > 0. For this we can use aX = ϵX ◦ πX and the Leray spectral sequence
(Cohomology on Sites, Lemma 14.7). By Lemma 103.5 we have RiϵX,∗(a−1

X F) = 0
for i > 0 and ϵX,∗a

−1
X F = π−1

X F . By Lemma 99.4 we have RjπX,∗(π−1
X F) = 0 for

j > 0. This concludes the proof. □

Lemma 103.7.0EWH For a scheme X and aX : Sh((Sch/X)h)→ Sh(Xétale) as above:
(1) Hq(Xétale,F) = Hq

h(X, a−1
X F) for a torsion abelian sheaf F on Xétale,

(2) Hq(Xétale,K) = Hq
h(X, a−1

X K) for K ∈ D+(Xétale) with torsion cohomol-
ogy sheaves.

Example: if A is a torsion abelian group, then Hq
étale(X,A) = Hq

h(X,A).

Proof. This follows from Lemma 103.6 by Cohomology on Sites, Remark 14.4. □

104. Descending étale sheaves

0GEX We prove that étale sheaves “glue” in the fppf and h topology and related results.
We have already shown the following related results

(1) Lemma 39.2 tells us that a sheaf on the small étale site of a scheme S
determines a sheaf on the big étale site of S satisfying the sheaf condition
for fpqc coverings (and a fortiori for Zariski, étale, smooth, syntomic, and
fppf coverings),

(2) Lemma 100.1 is a restatement of the previous point for the fppf topology,
(3) Lemma 102.1 proves the same for the ph topology,
(4) Lemma 103.1 proves the same for the h topology,
(5) Lemma 100.4 is a version of fppf descent for étale sheaves, and
(6) Remark 55.6 tells us that we have descent of étale sheaves for finite surjec-

tive morphisms (we will clarify and strengthen this below).
In the chapter on simplicial spaces we will prove some additional results on this,
see for example Simplicial Spaces, Sections 33 and 36.

In order to conveniently express our results we need some notation. Let U = {fi :
Xi → X} be a family of morphisms of schemes with fixed target. A descent datum
for étale sheaves with respect to U is a family ((Fi)i∈I , (φij)i,j∈I) where

(1) Fi is in Sh(Xi,étale), and
(2) φij : pr−1

0,smallFi −→ pr−1
1,smallFj is an isomorphism in Sh((Xi ×X Xj)étale)

such that the cocycle condition holds: the diagrams

pr−1
0,smallFi

pr−1
02,small

φik &&

pr−1
01,small

φij
// pr−1

1,smallFj

pr−1
12,small

φjkxx
pr−1

2,smallFk

commute in Sh((Xi ×X Xj ×X Xk)étale). There is an obvious notion of mor-
phisms of descent data and we obtain a category of descent data. A descent datum

https://stacks.math.columbia.edu/tag/0EWH
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((Fi)i∈I , (φij)i,j∈I) is called effective if there exist a F in Sh(Xétale) and isomor-
phisms φi : f−1

i,smallF → Fi in Sh(Xi,étale) compatible with the φij , i.e., such that

φij = pr−1
1,small(φj) ◦ pr−1

0,small(φ
−1
i )

Another way to say this is the following. Given an object F of Sh(Xétale) we obtain
the canonical descent datum (f−1

i,smallFi, cij) where cij is the canonical isomorphism

cij : pr−1
0,smallf

−1
i,smallF −→ pr−1

1,smallf
−1
j,smallF

The descent datum ((Fi)i∈I , (φij)i,j∈I) is effective if and only if it is isomorphic to
the canonical descent datum associated to some F in Sh(Xétale).

If the family consists of a single morphism {X → Y }, then we think of a descent
datum as a pair (F , φ) where F is an object of Sh(Xétale) and φ is an isomorphism

pr−1
0,smallF −→ pr−1

1,smallF

in Sh((X ×Y X)étale) such that the cocycle condition holds:

pr−1
0,smallF

pr−1
02,small

φ &&

pr−1
01,small

φ
// pr−1

1,smallF

pr−1
12,small

φxx
pr−1

2,smallF

commutes in Sh((X ×Y X ×Y X)étale). There is a notion of morphisms of descent
data and effectivity exactly as before.

We first prove effective descent for surjective integral morphisms.

Lemma 104.1.0GEY Let f : X → Y be a morphism of schemes which has a section.
Then the functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }

sending G in Sh(Yétale) to the canonical descent datum is an equivalence of cate-
gories.

Proof. This is formal and depends only on functoriality of the pullback functors.
We omit the details. Hint: If s : Y → X is a section, then a quasi-inverse is the
functor sending (F , φ) to s−1

smallF . □

Lemma 104.2.0GEZ Let f : X → Y be a surjective integral morphism of schemes. The
functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }

is an equivalence of categories.

Proof. In this proof we drop the subscript small from our pullback and pushforward
functors. Denote X1 = X ×Y X and denote f1 : X1 → Y the morphism f ◦ pr0 =
f ◦ pr1. Let (F , φ) be a descent datum for {X → Y }. Let us set F1 = pr−1

0 F . We
may think of φ as defining an isomorphism F1 → pr−1

1 F . We claim that the rule
which sends a descent datum (F , φ) to the sheaf

G = Equalizer
(
f∗F

//
// f1,∗F1

)

https://stacks.math.columbia.edu/tag/0GEY
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is a quasi-inverse to the functor in the statement of the lemma. The first of the two
arrows comes from the map

f∗F → f∗pr0,∗pr−1
0 F = f1,∗F1

and the second arrow comes from the map

f∗F → f∗pr1,∗pr−1
1 F

φ←− f∗pr0,∗pr−1
0 F = f1,∗F1

where the arrow pointing left is invertible. To prove this works we have to show
that the canonical map f−1G → F is an isomorphism; details omitted. In order
to prove this it suffices to check after pulling back by any collection of morphisms
Spec(k) → Y where k is an algebraically closed field. Namely, the corresponing
base changes Xk → X are jointly surjective and we can check whether a map of
sheaves on Xétale is an isomorphism by looking at stalks on geometric points, see
Theorem 29.10. By Lemma 55.4 the construction of G from the descent datum
(F , φ) commutes with any base change. Thus we may assume Y is the spectrum
of an algebraically closed point (note that base change preserves the properties of
the morphism f , see Morphisms, Lemma 9.4 and 44.6). In this case the morphism
X → Y has a section, so we know that the functor is an equivalence by Lemma
104.1. However, the reader may show that the functor is an equivalence if and
only if the construction above is a quasi-inverse; details omitted. This finishes the
proof. □

Lemma 104.3.0GF0 Let f : X → Y be a surjective proper morphism of schemes. The
functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence of categories.

Proof. The exact same proof as given in Lemma 104.2 works, except the appeal
to Lemma 55.4 should be replaced by an appeal to Lemma 91.5. □

Lemma 104.4.0GF1 Let f : X → Y be a morphism of schemes. Let Z → Y be a sur-
jective integral morphism of schemes or a surjective proper morphism of schemes.
If the functors

Sh(Zétale) −→ descent data for étale sheaves wrt {X ×Y Z → Z}
and
Sh((Z×Y Z)étale) −→ descent data for étale sheaves wrt {X×Y (Z×Y Z)→ Z×Y Z}
are equivalences of categories, then

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence.

Proof. Formal consequence of the definitions and Lemmas 104.2 and 104.3. Details
omitted. □

Lemma 104.5.0GF2 Let f : X → Y be a morphism of schemes which is surjective,
flat, locally of finite presentation. The functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence of categories.

https://stacks.math.columbia.edu/tag/0GF0
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Proof. Exactly as in the proof of Lemma 104.2 we claim a quasi-inverse is given
by the functor sending (F , φ) to

G = Equalizer
(
f∗F

//
// f1,∗F1

)
and in order to prove this it suffices to show that f−1G → F is an isomorphism.
This we may check locally, hence we may and do assume Y is affine. Then we can
find a finite surjective morphism Z → Y such that there exists an open covering
Z =

⋃
Wi such that Wi → Y factors through X. See More on Morphisms, Lemma

48.6. Applying Lemma 104.4 we see that it suffices to prove the lemma after
replacing Y by Z and Z ×Y Z and f by its base change. Thus we may assume
f has sections Zariski locally. Of course, using that the problem is local on Y we
reduce to the case where we have a section which is Lemma 104.1. □

Lemma 104.6.0GF3 Let {fi : Xi → X} be an fppf covering of schemes. The functor
Sh(Xétale) −→ descent data for étale sheaves wrt {fi : Xi → X}

is an equivalence of categories.

Proof. We have Lemma 104.5 for the morphism f :
∐
Xi → X. Then a formal

argument shows that descent data for f are the same thing as descent data for the
covering, compare with Descent, Lemma 34.5. Details omitted. □

Lemma 104.7.0GF4 Let f : X ′ → X be a proper morphism of schemes. Let i : Z → X
be a closed immersion. Set E = Z ×X X ′. Picture

E

g

��

j
// X ′

f

��
Z

i // X

If f is an isomorphism over X \ Z, then the functor
Sh(Xétale) −→ Sh(X ′

étale)×Sh(Eétale) Sh(Zétale)
is an equivalence of categories.

Proof. We will work with the 2-fibre product category as constructed in Cate-
gories, Example 31.3. The functor sends F to the triple (f−1F , i−1F , c) where
c : j−1f−1F → g−1i−1F is the canonical isomorphism. We will construct a quasi-
inverse functor. Let (F ′,G, α) be an object of the right hand side of the arrow. We
obtain an isomorphism

i−1f∗F ′ = g∗j
−1F ′ g∗α−−→ g∗g

−1G
The first equality is Lemma 91.5. Using this we obtain maps i∗G → i∗g∗g

−1G and
f ′

∗F ′ → i∗g∗g
−1G. We set

F = f∗F ′ ×i∗g∗g−1G i∗G
and we claim that F is an object of the left hand side of the arrow whose image in
the right hand side is isomorphic to the triple we started out with. Let us compute
the stalk of F at a geometric point x of X.
If x is not in Z, then on the one hand x comes from a unique geometric point x′ of
X ′ and F ′

x′ = (f∗F ′)x and on the other hand we have (i∗G)x and (i∗g∗g
−1G)x are

singletons. Hence we see that Fx equals F ′
x′ .

https://stacks.math.columbia.edu/tag/0GF3
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If x is in Z, i.e., x is the image of a geometric point z of Z, then we obtain
(i∗G)x = Gz and

(i∗g∗g
−1G)x = (g∗g

−1G)z = Γ(Ez, g−1G|Ez
)

(by the proper base change for pushforward used above) and similarly

(f∗F ′)x = Γ(X ′
x,F ′|X′

x
)

Since we have the identification Ez = X ′
x and since α defines an isomorphism

between the sheaves F ′|X′
x

and g−1G|Ez
we conclude that we get

Fx = Gz
in this case.

To finish the proof, we observe that there are canonical maps i−1F → G and
f−1F → F ′ compatible with α which on stalks produce the isomorphisms we saw
above. We omit the careful construction of these maps. □

Lemma 104.8.0GF5 Let S be a scheme. Then the category fibred in groupoids

p : S −→ (Sch/S)h
whose fibre category over U is the category Sh(Uétale) of sheaves on the small étale
site of U is a stack in groupoids.

Proof. To prove the lemma we will check conditions (1), (2), and (3) of More on
Flatness, Lemma 37.13.

Condition (1) holds because we have glueing for sheaves (and Zariski coverings are
étale coverings). See Sites, Lemma 26.4.

To see condition (2), suppose that f : X → Y is a surjective, flat, proper morphism
of finite presentation over S with Y affine. Then we have descent for {X → Y } by
either Lemma 104.5 or Lemma 104.3.

Condition (3) follows immediately from the more general Lemma 104.7. □

105. Blow up squares and étale cohomology

0EW4 Blow up squares are introduced in More on Flatness, Section 36. Using the proper
base change theorem we can see that we have a Mayer-Vietoris type result for blow
up squares.

Lemma 105.1.0EW5 Let X be a scheme and let Z ⊂ X be a closed subscheme cut out
by a quasi-coherent ideal of finite type. Consider the corresponding blow up square

E

π

��

j
// X ′

b

��
Z

i // X

For K ∈ D+(Xétale) with torsion cohomology sheaves we have a distinguished tri-
angle

K → Ri∗(K|Z)⊕Rb∗(K|X′)→ Rc∗(K|E)→ K[1]
in D(Xétale) where c = i ◦ π = b ◦ j.

https://stacks.math.columbia.edu/tag/0GF5
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Proof. The notation K|X′ stands for b−1
smallK. Choose a bounded below complex

F• of abelian sheaves representing K. Observe that i∗(F•|Z) represents Ri∗(K|Z)
because i∗ is exact (Proposition 55.2). Choose a quasi-isomorphism b−1

smallF• → I•

where I• is a bounded below complex of injective abelian sheaves on X ′
étale. This

map is adjoint to a map F• → b∗(I•) and b∗(I•) represents Rb∗(K|X′). We have
π∗(I•|E) = (b∗I•)|Z by Lemma 91.5 and by Lemma 91.12 this complex represents
Rπ∗(K|E). Hence the map

Ri∗(K|Z)⊕Rb∗(K|X′)→ Rc∗(K|E)

is represented by the surjective map of bounded below complexes

i∗(F•|Z)⊕ b∗(I•)→ i∗ (b∗(I•)|Z)

To get our distinguished triangle it suffices to show that the canonical map F• →
i∗(F•|Z) ⊕ b∗(I•) maps quasi-isomorphically onto the kernel of the map of com-
plexes displayed above (namely a short exact sequence of complexes determines a
distinguished triangle in the derived category, see Derived Categories, Section 12).
We may check this on stalks at a geometric point x of X. If x is not in Z, then
X ′ → X is an isomorphism over an open neighbourhood of x. Thus, if x′ denotes
the corresponding geometric point of X ′ in this case, then we have to show that

F•
x → I•

x′

is a quasi-isomorphism. This is true by our choice of I•. If x is in Z, then b(I•)x →
i∗ (b∗(I•)|Z)x is an isomorphism of complexes of abelian groups. Hence the kernel
is equal to i∗(F•|Z)x = F•

x as desired. □

Lemma 105.2.0EW3 Let X be a scheme and let K ∈ D+(Xétale) have torsion coho-
mology sheaves. Let Z ⊂ X be a closed subscheme cut out by a quasi-coherent ideal
of finite type. Consider the corresponding blow up square

E

��

// X ′

b

��
Z // X

Then there is a canonical long exact sequence

Hp
étale(X,K)→ Hp

étale(X
′,K|X′)⊕Hp

étale(Z,K|Z)→ Hp
étale(E,K|E)→ Hp+1

étale(X,K)

First proof. This follows immediately from Lemma 105.1 and the fact that

RΓ(X,Rb∗(K|X′)) = RΓ(X ′,K|X′)

(see Cohomology on Sites, Section 14) and similarly for the others. □

Second proof. By Lemma 102.7 these cohomology groups are the cohomology of
X,X ′, E, Z with values in some complex of abelian sheaves on the site (Sch/X)ph.
(Namely, the object a−1

X K of the derived category, see Lemma 102.1 above and
recall that K|X′ = b−1

smallK.) By More on Flatness, Lemma 36.1 the ph sheafifi-
cation of the diagram of representable presheaves is cocartesian. Thus the lemma
follows from the very general Cohomology on Sites, Lemma 26.3 applied to the site
(Sch/X)ph and the commutative diagram of the lemma. □

https://stacks.math.columbia.edu/tag/0EW3
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Lemma 105.3.0EW6 Let X be a scheme and let Z ⊂ X be a closed subscheme cut out
by a quasi-coherent ideal of finite type. Consider the corresponding blow up square

E

π

��

j
// X ′

b

��
Z

i // X

Suppose given
(1) an object K ′ of D+(X ′

étale) with torsion cohomology sheaves,
(2) an object L of D+(Zétale) with torsion cohomology sheaves, and
(3) an isomorphism γ : K ′|E → L|E.

Then there exists an object K of D+(Xétale) and isomorphisms f : K|X′ → K ′,
g : K|Z → L such that γ = g|E ◦ f−1|E. Moreover, given

(1) an object M of D+(Xétale) with torsion cohomology sheaves,
(2) a morphism α : K ′ →M |X′ of D(X ′

étale),
(3) a morphism β : L→M |Z of D(Zétale),

such that
α|E = β|E ◦ γ.

Then there exists a morphism M → K in D(Xétale) whose restriction to X ′ is a◦f
and whose restriction to Z is b ◦ g.

Proof. If K exists, then Lemma 105.1 tells us a distinguished triangle that it fits
in. Thus we simply choose a distinguished triangle

K → Ri∗(L)⊕Rb∗(K ′)→ Rc∗(L|E)→ K[1]

where c = i ◦ π = b ◦ j. Here the map Ri∗(L) → Rc∗(L|E) is Ri∗ applied to
the adjunction mapping E → Rπ∗(L|E). The map Rb∗(K ′) → Rc∗(L|E) is the
composition of the canonical map Rb∗(K ′) → Rc∗(K ′|E)) = R and Rc∗(γ). The
maps g and f of the statement of the lemma are the adjoints of these maps. If we
restrict this distinguished triangle to Z then the map Rb∗(K)→ Rc∗(L|E) becomes
an isomorphism by the base change theorem (Lemma 91.12) and hence the map
g : K|Z → L is an isomorphism. Looking at the distinguished triangle we see
that f : K|X′ → K ′ is an isomorphism over X ′ \ E = X \ Z. Moreover, we have
γ ◦ f |E = g|E by construction. Then since γ and g are isomorphisms we conclude
that f induces isomorphisms on stalks at geometric points of E as well. Thus f is
an isomorphism.

For the final statement, we may replace K ′ by K|X′ , L by K|Z , and γ by the
canonical identification. Observe that α and β induce a commutative square

K //

��

Ri∗(K|Z)⊕Rb∗(K|X′) //

β⊕α
��

Rc∗(K|E) //

α|E

��

K[1]

��
M // Ri∗(M |Z)⊕Rb∗(M |X′) // Rc∗(M |E) // M [1]

Thus by the axioms of a derived category we get a dotted arrow producing a
morphism of distinguished triangles. □

https://stacks.math.columbia.edu/tag/0EW6
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106. Almost blow up squares and the h topology

0EWL In this section we continue the discussion in More on Flatness, Section 37. For the
convenience of the reader we recall that an almost blow up square is a commutative
diagram

(106.0.1)0EWM

E

��

// X ′

b

��
Z // X

of schemes satisfying the following conditions:
(1) Z → X is a closed immersion of finite presentation,
(2) E = b−1(Z) is a locally principal closed subscheme of X ′,
(3) b is proper and of finite presentation,
(4) the closed subscheme X ′′ ⊂ X ′ cut out by the quasi-coherent ideal of

sections of OX′ supported on E (Properties, Lemma 24.5) is the blow up
of X in Z.

It follows that the morphism b induces an isomorphism X ′ \ E → X \ Z.
We are going to give a criterion for “h sheafiness” for objects in the derived category
of the big fppf site (Sch/S)fppf of a scheme S. On the same underlying category
we have a second topology, namely the h topology (More on Flatness, Section 34).
Recall that fppf coverings are h coverings (More on Flatness, Lemma 34.6). Hence
we may consider the morphism

ϵ : (Sch/S)h −→ (Sch/S)fppf
See Cohomology on Sites, Section 27. In particular, we have a fully faithful functor

Rϵ∗ : D((Sch/S)h) −→ D((Sch/S)fppf )
and we can ask: what is the essential image of this functor?

Lemma 106.1.0EWN With notation as above, if K is in the essential image of Rϵ∗, then
the maps cKX,Z,X′,E of Cohomology on Sites, Lemma 26.1 are quasi-isomorphisms.

Proof. Denote # sheafification in the h topology. We have seen in More on Flat-
ness, Lemma 37.7 that h#

X = h#
Z ⨿h#

E
h#
X′ . On the other hand, the map h#

E → h#
X′ is

injective as E → X ′ is a monomorphism. Thus this lemma is a special case of Coho-
mology on Sites, Lemma 29.3 (which itself is a formal consequence of Cohomology
on Sites, Lemma 26.3). □

Proposition 106.2.0EWQ Let K be an object of D+((Sch/S)fppf ). Then K is in the
essential image of Rϵ∗ : D((Sch/S)h) → D((Sch/S)fppf ) if and only if cKX,X′,Z,E

is a quasi-isomorphism for every almost blow up square (106.0.1) in (Sch/S)h with
X affine.

Proof. We prove this by applying Cohomology on Sites, Lemma 29.2 whose hy-
potheses hold by Lemma 106.1 and More on Flatness, Proposition 37.9. □

Lemma 106.3.0EWR Let K be an object of D+((Sch/S)fppf ). Then K is in the es-
sential image of Rϵ∗ : D((Sch/S)h) → D((Sch/S)fppf ) if and only if cKX,X′,Z,E

is a quasi-isomorphism for every almost blow up square as in More on Flatness,
Examples 37.10 and 37.11.
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Proof. We prove this by applying Cohomology on Sites, Lemma 29.2 whose hy-
potheses hold by Lemma 106.1 and More on Flatness, Lemma 37.12 □

107. Cohomology of the structure sheaf in the h topology

0EWS Let p be a prime number. Let (C,O) be a ringed site with pO = 0. Then we set
colimF O equal to the colimit in the category of sheaves of rings of the system

O F−→ O F−→ O F−→ . . .

where F : O → O, f 7→ fp is the Frobenius endomorphism.

Lemma 107.1.0EWT Let p be a prime number. Let S be a scheme over Fp. Consider
the sheaf Operf = colimF O on (Sch/S)fppf . Then Operf is in the essential image
of Rϵ∗ : D((Sch/S)h)→ D((Sch/S)fppf ).

Proof. We prove this using the criterion of Lemma 106.3. Before check the condi-
tions, we note that for a quasi-compact and quasi-separated objectX of (Sch/S)fppf
we have

Hi
fppf (X,Operf ) = colimF H

i
fppf (X,O)

See Cohomology on Sites, Lemma 16.1. We will also use that Hi
fppf (X,O) =

Hi(X,O), see Descent, Proposition 9.3.
Let A, f, J be as in More on Flatness, Example 37.10 and consider the associated
almost blow up square. Since X, X ′, Z, E are affine, we have no higher cohomology
of O. Hence we only have to check that

0→ Operf (X)→ Operf (X ′)⊕Operf (Z)→ Operf (E)→ 0
is a short exact sequence. This was shown in (the proof of) More on Flatness,
Lemma 38.2.
Let X,X ′, Z,E be as in More on Flatness, Example 37.11. Since X and Z are affine
we have Hp(X,OX) = Hp(Z,OX) = 0 for p > 0. By More on Flatness, Lemma
38.1 we have Hp(X ′,OX′) = 0 for p > 0. Since E = P1

Z and Z is affine we also
have Hp(E,OE) = 0 for p > 0. As in the previous paragraph we reduce to checking
that

0→ Operf (X)→ Operf (X ′)⊕Operf (Z)→ Operf (E)→ 0
is a short exact sequence. This was shown in (the proof of) More on Flatness,
Lemma 38.2. □

Proposition 107.2.0EWU Let p be a prime number. Let S be a quasi-compact and
quasi-separated scheme over Fp. Then

Hi((Sch/S)h,Oh) = colimF H
i(S,O)

Here on the left hand side by Oh we mean the h sheafification of the structure sheaf.

Proof. This is just a reformulation of Lemma 107.1. Recall that Oh = Operf =
colimF O, see More on Flatness, Lemma 38.7. By Lemma 107.1 we see that
Operf viewed as an object of D((Sch/S)fppf ) is of the form Rϵ∗K for some K ∈
D((Sch/S)h). Then K = ϵ−1Operf which is actually equal to Operf because Operf
is an h sheaf. See Cohomology on Sites, Section 27. Hence Rϵ∗Operf = Operf (with
apologies for the confusing notation). Thus the lemma now follows from Leray

RΓh(S,Operf ) = RΓfppf (S,Rϵ∗Operf ) = RΓfppf (S,Operf )
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and the fact that
Hi
fppf (S,Operf ) = Hi

fppf (S, colimF O) = colimF H
i
fppf (S,O)

as S is quasi-compact and quasi-separated (see proof of Lemma 107.1). □
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