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1. Introduction

This chapter is the first in a series of chapter on the étale cohomology of schemes.
In this chapter we discuss the very basics of the étale topology and cohomology
of abelian sheaves in this topology. Many of the topics discussed may be safely
skipped on a first reading; please see the advice in the next section as to how to
decide what to skip.

The initial version of this chapter was formed by the notes of the first part of a
course on étale cohomology taught by Johan de Jong at Columbia University in the
Fall of 2009. The original note takers were Thibaut Pugin, Zachary Maddock and
Min Lee. The second part of the course can be found in the chapter on the trace
formula, see The Trace Formula, Section

2. Which sections to skip on a first reading?

We want to use the material in this chapter for the development of theory related
to algebraic spaces, Deligne-Mumford stacks, algebraic stacks, etc. Thus we have
added some pretty technical material to the original exposition of étale cohomology
for schemes. The reader can recognize this material by the frequency of the word
“topos”, or by discussions related to set theory, or by proofs dealing with very
general properties of morphisms of schemes. Some of these discussions can be
skipped on a first reading.

In particular, we suggest that the reader skip the following sections:
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(1) Comparing big and small topoi, Section
(2) Recovering morphisms, Section

(3) Push and pull, Section
(4) Property (A), Section
(5) Property (B), Section
(6)
(7)
(8)
9)

Property (C), Section
Topological invariance of the small étale site, Section
Integral universally injective morphisms, Section

Big sites and pushforward, Section

(10) Exactness of big lower shriek, Section

Besides these sections there are some sporadic results that may be skipped that the
reader can recognize by the keywords given above.

3. Prologue

These lectures are about another cohomology theory. The first thing to remark is
that the Zariski topology is not entirely satisfactory. One of the main reasons that
it fails to give the results that we would want is that if X is a complex variety and
F is a constant sheaf then

HY(X,F)=0, foralli>0.

The reason for that is the following. In an irreducible scheme (a variety in par-
ticular), any two nonempty open subsets meet, and so the restriction mappings of
a constant sheaf are surjective. We say that the sheaf is flasque. In this case, all
higher Cech cohomology groups vanish, and so do all higher Zariski cohomology
groups. In other words, there are “not enough” open sets in the Zariski topology
to detect this higher cohomology.

On the other hand, if X is a smooth projective complex variety, then
HEHmX(X(C),A)=A for A=1Z, Z/nZ,

where X (C) means the set of complex points of X. This is a feature that would be
nice to replicate in algebraic geometry. In positive characteristic in particular.

4. The étale topology

It is very hard to simply “add” extra open sets to refine the Zariski topology.
One efficient way to define a topology is to consider not only open sets, but also
some schemes that lie over them. To define the étale topology, one considers all
morphisms ¢ : U — X which are étale. If X is a smooth projective variety over C,
then this means

(1) U is a disjoint union of smooth varieties, and
(2) ¢ is (analytically) locally an isomorphism.
The word “analytically” refers to the usual (transcendental) topology over C. So

the second condition means that the derivative of ¢ has full rank everywhere (and
in particular all the components of U have the same dimension as X).

A double cover — loosely defined as a finite degree 2 map between varieties — for
example

Spec(CJt]) — Spec(C[t]), t+—— t*
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will not be an étale morphism if it has a fibre consisting of a single point. In the
example this happens when ¢ = 0. For a finite map between varieties over C to
be étale all the fibers should have the same number of points. Removing the point
t = 0 from the source of the map in the example will make the morphism étale.
But we can remove other points from the source of the morphism also, and the
morphism will still be étale. To consider the étale topology, we have to look at
all such morphisms. Unlike the Zariski topology, these need not be merely open
subsets of X, even though their images always are.

Definition 4.1. A family of morphisms {¢; : U; — X}ier is called an étale
covering if each ¢; is an étale morphism and their images cover X, ie., X =

Uie] ©i(U;).

This “defines” the étale topology. In other words, we can now say what the sheaves
are. An étale sheaf F of sets (resp. abelian groups, vector spaces, etc) on X is the
data:
(1) for each étale morphism ¢ : U — X a set (resp. abelian group, vector space,
etc) F(U),
(2) for each pair U, U’ of étale schemes over X, and each morphism U — U’
over X (which is automatically étale) a restriction map pg/ : F(U) — F(U)

These data have to satisfy the condition that pg = id in case of the identity
morphism U — U and that pg/opgj/ = pg” when we have morphisms U — U’ — U”
of schemes étale over X as well as the following sheaf axiom:

(*) for every étale covering {¢; : U; — U};cr, the diagram

) —— F(U) —— et F(U;) IL; jer F (Ui xu Uj)

R

is exact in the category of sets (resp. abelian groups, vector spaces, etc).

Remark|/4.2. In the last statement, it is essential not to forget the case where i = j
which is in general a highly nontrivial condition (unlike in the Zariski topology).
In fact, frequently important coverings have only one element.

Since the identity is an étale morphism, we can compute the global sections of an
étale sheaf, and cohomology will simply be the corresponding right-derived functors.
In other words, once more theory has been developed and statements have been
made precise, there will be no obstacle to defining cohomology.

5. Feats of the étale topology
For a natural number n € N = {1,2,3,4,...} it is true that
H?,,. (P&, Z/nZ) = Z/nZ.

étale
More generally, if X is a complex variety, then its étale Betti numbers with coeffi-
cients in a finite field agree with the usual Betti numbers of X (C), i.e.,

dimg, HZ/yo (X, Fy) = dimp, HE.,,;(X(C),F,).

étale
This is extremely satisfactory. However, these equalities only hold for torsion coef-
ficients, not in general. For integer coeflicients, one has

HZ,,. (P&, Z) =0.

étale
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By contrast H3,,,;(P'(C),Z) = Z as the topological space P!(C) is homeomorphic
to a 2-sphere. There are ways to get back to nontorsion coefficients from torsion
ones by a limit procedure which we will come to shortly.

6. A computation

03N8 How do we compute the cohomology of P%; with coefficients A = Z/nZ? We
use Cech cohomology. A covering of P is given by the two standard opens
Uy, Uy, which are both isomorphic to AC, and whose intersection is isomorphic
to A5\ {0} = G,,.c. It turns out that the Mayer-Vietoris sequence holds in étale
cohomology This gives an exact sequence
Hl y (UOOUl& A) - H’Ltale(Plc‘ﬂ A) - H’Ltale(UO’A)@Hétale(UbA) — Hztale(UomUhA)

étale
To get the answer we expect, we would need to show that the direct sum in the

third term vanishes. In fact, it is true that, as for the usual topology,
Hq

étale

(AG,A) =0 forq>1,

and

A ifg=1, and
HY 1 (AG\ {0}, A) = {0 for ¢ > 2.

These results are already quite hard (what is an elementary proof?). Let us explain
how we would compute this once the machinery of étale cohomology is at our
disposal.

Higher cohomology. This is taken care of by the following general fact: if X is
an affine curve over C, then

Hq

étale

(X,Z/nZ) =0 for q>2.

This is proved by considering the generic point of the curve and doing some Galois
cohomology. So we only have to worry about the cohomology in degree 1.

Cohomology in degree 1. We use the following identifications:

Hl,.0 (X, Z/nZ) = sheaves of sets F on the étale site X¢sqc endowed with an / ~
étate S S/TE) = action Z/nZ x F — F such that F is a Z/nZ-torsor. -

| morphisms ¥ — X which are finite étale together / ~
~ | with a free Z/nZ action such that X =Y/(Z/nZ).

The first identification is very general (it is true for any cohomology theory on a
site) and has nothing to do with the étale topology. The second identification is
a consequence of descent theory. The last set describes a collection of geometric
objects on which we can get our hands.

The curve A§ has no nontrivial finite étale covering and hence H}, ;. (A&, Z/nZ) =
0. This can be seen either topologically or by using the argument in the next
paragraph.

Let us describe the finite étale coverings ¢ : Y — A \ {0}. It suffices to consider
the case where Y is connected, which we assume. We are going to find out what Y
can be by applying the Riemann-Hurwitz formula (of course this is a bit silly, and
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you can go ahead and skip the next section if you like). Say that this morphism is
n to 1, and consider a projective compactification

Y Y

AL\ {0}——Pg

Even though ¢ is étale and does not ramify, ¢ may ramify at 0 and co. Say that
the preimages of 0 are the points ¥, ..., ¥y, with indices of ramification eq,...e,,
and that the preimages of co are the points ¥/, ...,y with indices of ramification
di,...ds. Inparticular, " e; =n =) d;. Applying the Riemann-Hurwitz formula,
we get

29y —2=-2n+» (es— 1)+ (dj —1)

and therefore gy = 0,7 = s =1and e; = d; = n. Hence Y = A{ \ {0}, and it
is easy to see that ¢(z) = Az" for some A € C*. After reparametrizing Y we may
assume A = 1. Thus our covering is given by taking the nth root of the coordinate

on AL\ {0}.

Remember that we need to classify the coverings of A§ \ {0} together with free
Z /nZ-actions on them. In our case any such action corresponds to an automor-
phism of Y sending z to (,z, where (,, is a primitive nth root of unity. There are
¢(n) such actions (here ¢(n) means the Euler function). Thus there are exactly
¢(n) connected finite étale coverings with a given free Z/nZ-action, each corre-
sponding to a primitive nth root of unity. We leave it to the reader to see that the
disconnected finite étale degree n coverings of A& \ {0} with a given free Z/nZ-
action correspond one-to-one with nth roots of 1 which are not primitive. In other
words, this computation shows that

H} o (ASN\ {0}, Z/nZ) = Hom(u,(C), Z/nZ) = Z/nZ.

étale

The first identification is canonical, the second isn’t, see Remark [69.5] Since the
proof of Riemann-Hurwitz does not use the computation of cohomology, the above
actually constitutes a proof (provided we fill in the details on vanishing, etc).

7. Nontorsion coefficients

03N9 To study nontorsion coefficients, one makes the following definition:
étale(X’ Qf) = (hmn étale(X7 Z/énz)) ®Ze QZ'

The symbol lim,, denote the limit of the system of cohomology groups HY, . (X, Z/("Z)
indexed by n, see Categories, Section Thus we will need to study systems of
sheaves satisfying some compatibility conditions.

8. Sheaf theory

03NA At this point we start talking about sites and sheaves in earnest. There is an
amazing amount of useful abstract material that could fit in the next few sections.
Some of this material is worked out in earlier chapters, such as the chapter on sites,
modules on sites, and cohomology on sites. We try to refrain from adding too much
material here, just enough so the material later in this chapter makes sense.
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9. Presheaves
A reference for this section is Sites, Section

Definition 9.1. Let C be a category. A presheaf of sets (respectively, an abelian
presheaf) on C is a functor C°PP — Sets (resp. Ab).

Terminology. If U € Ob(C), then elements of F(U) are called sections of F over
U. For ¢ : V. — U in C, the map F(y) : F(U) — F(V) is called the restriction
map and is often denoted s — s|y or sometimes s — @*s. The notation s|y is
ambiguous since the restriction map depends on ¢, but it is a standard abuse of
notation. We also use the notation I'(U, F) = F(U).

Saying that F is a functor means that if W — V — U are morphisms in C and
s € T'(U, F) then (s|v)|w = s|w, with the abuse of notation just seen. Moreover,
the restriction mappings corresponding to the identity morphisms idy : U — U are
the identity.

The category of presheaves of sets (respectively of abelian presheaves) on C is de-
noted PSh(C) (resp. PAb(C)). It is the category of functors from CPP to Sets (resp.
Ab), which is to say that the morphisms of presheaves are natural transformations
of functors. We only consider the categories PSh(C) and PAb(C) when the category
C is small. (Our convention is that a category is small unless otherwise mentioned,
and if it isn’t small it should be listed in Categories, Remark [2.2])

Example 9.2. Given an object X € Ob(C), we consider the functor

hx : corp — Sets
U — hx(U) = MOI‘c(U,X)
VEHU — po—:hx(U)— hx(V).
It is a presheaf, called the representable presheaf associated to X. It is not true
that representable presheaves are sheaves in every topology on every site.

Lemma 9.3 (Yoneda). LetC be a category, and X,Y € Ob(C). There is a natural
bijection
More (X, Y) — MOTpSh(c) (hX7 hy)
w — hw:'(/JO—:hx—)hy.

Proof. See Categories, Lemma 3.5 O

10. Sites

Definition 10.1. Let C be a category. A family of morphisms with fized target
U ={p;:U; = Ulics is the data of

(1) an object U € C,

(2) a set I (possibly empty), and

(3) for all ¢ € I, a morphism ¢; : U; — U of C with target U.

There is a notion of a morphism of families of morphisms with fized target. A
special case of that is the notion of a refinement. A reference for this material is

Sites, Section
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Definition 10.2. A siteﬂ consists of a category C and a set Cov(C) consisting of
families of morphisms with fixed target called coverings, such that
(1) (isomorphism) if ¢ : V' — U is an isomorphism in C, then {¢ : V — U} is
a covering,
(2) (locality) if {¢; : U; — U}ier is a covering and for all ¢ € I we are given a
covering {w” : Uij — Ui}jEI“ then

{pioj 1 Uy — U}(i,j)eHie,{i}Xh

is also a covering, and
(3) (base change) if {U; — U}iey is a covering and V' — U is a morphism in C,
then
(a) for all ¢ € I the fibre product U; xy V exists in C, and
(b) {U; xu V= V}er is a covering.

For us the category underlying a site is always “small”, i.e., its collection of objects
form a set, and the collection of coverings of a site is a set as well (as in the
definition above). We will mostly, in this chapter, leave out the arguments that cut
down the collection of objects and coverings to a set. For further discussion, see
Sites, Remark

Example| 10.3. If X is a topological space, then it has an associated site Xz,
defined as follows: the objects of Xz, are the open subsets of X, the morphisms
between these are the inclusion mappings, and the coverings are the usual topolog-
ical (surjective) coverings. Observe that if U,V C W C X are open subsets then
U xw V =UNYV exists: this category has fiber products. All the verifications are
trivial and everything works as expected.

11. Sheaves

Definition 11.1. A presheaf F of sets (resp. abelian presheaf) on a site C is said
to be a separated presheaf if for all coverings {¢; : U; — U}ier € Cov(C) the map

FU) — Hiel F(U:)

is injective. Here the map is s — (s|y,)icr- The presheaf F is a sheaf if for all
coverings {y; : U; — U}ier € Cov(C), the diagram

(11.1.1) FU) —TLic; FWU) —_Z 11 jes FUi xv Uy),

R

where the first map is s — (s|y,)ier and the two maps on the right are (s;);cr —
(silu,xpu;) and (sq)ier = (sjlu,xpu;), is an equalizer diagram in the category of
sets (resp. abelian groups).

Remark 11.2. For the empty covering (where I = ), this implies that F(0) is an
empty product, which is a final object in the corresponding category (a singleton,
for both Sets and Ab).

Example 11.3. Working this out for the site Xz, associated to a topological

space, see Example gives the usual notion of sheaves.

What we call a site is a called a category endowed with a pretopology in [AGVTI], Exposé II,
Définition 1.3]. In [Art62] it is called a category with a Grothendieck topology.


https://stacks.math.columbia.edu/tag/03NH
https://stacks.math.columbia.edu/tag/03NI
https://stacks.math.columbia.edu/tag/03NK
https://stacks.math.columbia.edu/tag/03NM
https://stacks.math.columbia.edu/tag/03NN
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Definition 11.4. We denote Sh(C) (resp. Ab(C)) the full subcategory of PSh(C)
(resp. PAD(C)) whose objects are sheaves. This is the category of sheaves of sets
(resp. abelian sheaves) on C.

12. The example of G-sets

Let G be a group and define a site T¢ as follows: the underlying category is the
category of G-sets, i.e., its objects are sets endowed with a left G-action and the
morphisms are equivariant maps; and the coverings of Tg are the families {p; :
Ui — Ulier satistying U = ;¢ ¢:(Us).

There is a special object in the site 7g, namely the G-set G endowed with its natural
action by left translations. We denote it ¢G. Observe that there is a natural group
isomorphism
p: GPP — AutG—S@ts(GG)
g — (h — hg).
In particular, for any presheaf F, the set F(¢G) inherits a G-action via p. (Note
that by contravariance of F, the set F(¢G) is again a left G-set.) In fact, the

functor
Sh(Te¢) — G-Sets
F — f(GG)

is an equivalence of categories. Its quasi-inverse is the functor X — hx. Without
giving the complete proof (which can be found in Sites, Section @) let us try to
explain why this is true.
(1) If S is a G-set, we can decompose it into orbits S = [],.; O;. The sheaf
axiom for the covering {O; — S};cr says that
F(S) — Ilies F(O1) [Lijer F(Oi x5 O5)

_

i€l

is an equalizer. Observing that fibered products in G-Sets are induced from
fibered products in Sets, and using the fact that F(0) is a G-singleton, we
get that

H JT"(O,L X Oj) = HF(O'L)

ijel iel
and the two maps above are in fact the same. Therefore the sheaf axiom
merely says that F(S) = [[;c; F(O:).

(2) If S is the G-set S = G/H and F is a sheaf on T¢, then we claim that

F(G/H) = F(cG)"

and in particular F({*}) = F(gG)“. To see this, let’s use the sheaf axiom
for the covering {¢G — G/H} of S. We have

GG XG/H GG & Gx H
(91,92) +— (91,97 '92)

is a disjoint union of copies of ¢G (as a G-set). Hence the sheaf axiom
reads

F(G/H) — F(6¢G) —_ZIlpen F(cG)

where the two maps on the right are s — (s)pcy and s — (hs)pen. There-
fore F(G/H) = F(cG)" as claimed.


https://stacks.math.columbia.edu/tag/03NO
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This doesn’t quite prove the claimed equivalence of categories, but it shows at least
that a sheaf F is entirely determined by its sections over ¢G. Details (and set
theoretical remarks) can be found in Sites, Section [9]

13. Sheafification

Definition 13.1. Let F be a presheaf on the site C and U = {U; — U} € Cov(C).
We define the zeroth Cech cohomology group of F with respect to U by

HO(U,]:) = {(Si)ieI S HzeI‘F(Ul) such that 3i|U1:><UUj = 3j|Ui><UUj} .

There is a canonical map F(U) — HOU,F), s — (s|u,)ics. We say that a mor-
phism of coverings from a covering V = {V; — V};es to U is a triple (x, @, x;),
where y : V. — U is a morphism, « : J — [ is a map of sets, and for all j € J the
morphism x; fits into a commutative diagram

Vi 5 Uagj)

| |

vV—X U

Given the data x, «, {x;};cs we define
HU,F) — HW,F)
(si)ier — (X] (Sa(j)))ng'
We then claim that

(1) the map is well-defined, and
(2) depends only on x and is independent of the choice of o, {x;} e

We omit the proof of the first fact. To see part (2), consider another triple (¢, 8,1;)
with x = . Then we have the commutative diagram

Vi

Ua(y) Xu Up()

N

V U.

(X3>%3)

Us(j)

Given a section s € F(U), its image in F(V}) under the map given by (x, o, {x;}jes)
is X} 5a(j), and its image under the map given by (¢, 3, {1;}jer) is ¥} sg(;). These
two are equal since by assumption s € H° (U, F) and hence both are equal to the
pullback of the common value

Sa(i)[Uaiy xuUsy = 58)|Uags) x0Us0)

pulled back by the map (x;,;) in the diagram.

Theorem 13.2. Let C be a site and F a presheaf on C.


https://stacks.math.columbia.edu/tag/03NR
https://stacks.math.columbia.edu/tag/03NS
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(1) The rule
U FHU) = colimy covering of v HOU, F)

is a presheaf. And the colimit is a directed one.
) There is a canonical map of presheaves F — FT.
(3) If F is a separated presheaf then F7¥ is a sheaf and the map in (2) is
injective.

(4) F* is a separated presheaf.

) F#* = (F*)T is a sheaf, and the canonical map induces a functorial iso-
morphism

Hom pgy(c) (F,G) = Homgc) (F*,G)

for any G € Sh(C).

Proof. See Sites, Theorem [10.10 a

In other words, this means that the natural map F — F# is a left adjoint to the
forgetful functor Sh(C) — PSh(C).

14. Cohomology

The following is the basic result that makes it possible to define cohomology for
abelian sheaves on sites.

Theorem 14.1. The category of abelian sheaves on a site is an abelian category
which has enough injectives.

Proof. See Modules on Sites, Lemma [3.1] and Injectives, Theorem [7.4] O

So we can define cohomology as the right-derived functors of the sections functor:
if U € Ob(C) and F € Ab(C),

HP(U, F) := R'T(U, F) = H*(T'(U,I%))

where ' — Z° is an injective resolution. To do this, we should check that the
functor I'(U, —) is left exact. This is true and is part of why the category Ab(C) is
abelian, see Modules on Sites, Lemma|[3.I] For more general discussion of cohomol-
ogy on sites (including the global sections functor and its right derived functors),
see Cohomology on Sites, Section

15. The fpqc topology

Before doing étale cohomology we study a bit the fpqc topology, since it works well
for quasi-coherent sheaves.

Definition 15.1. Let T be a scheme. An fpqc covering of T is a family {p; : T; —
T}ier such that
(1) each ; is a flat morphism and (J;.; »i(T;) = T', and
(2) for each affine open U C T there exists a finite set K, amap i: K — I and
affine opens Uy C Ti) such that U = U,c x ©ie) Uigr))-

Remark| 15.2. The first condition corresponds to fp, which stands for fidélement
plat, faithfully flat in french, and the second to qc, quasi-compact. The second part
of the first condition is unnecessary when the second condition holds.

Example 15.3. Examples of fpqc coverings.
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(1) Any Zariski open covering of T is an fpqc covering.

(2) A family {Spec(B) — Spec(A)} is an fpqc covering if and only if A — B is
a faithfully flat ring map.

(3) If f: X — Y is flat, surjective and quasi-compact, then {f : X — Y} is an
fpqc covering.

(4) The morphism ¢ : [[,c a1 Spec(Oay ) = A}, where k is a field, is flat and
surjective. It is not quasi-compact, and in fact the family {p} is not an
fpqc covering.

(5) Write A7 = Spec(k[z,y]). Denote i, : D(z) — A% and i, : D(y) — A3
the standard opens. Then the families {i,,1%,, Spec(k[[z,y]]) — A%} and
{ig, iy, Spec(OAiyo) — A2} are fpqc coverings.

Lemma 15.4. The collection of fpqc coverings on the category of schemes satisfies
the axioms of site.

Proof. See Topologies, Lemma [9.7] O

It seems that this lemma allows us to define the fpqc site of the category of schemes.
However, there is a set theoretical problem that comes up when considering the fpqc
topology, see Topologies, Section [0] It comes from our requirement that sites are
“small”; but that no small category of schemes can contain a cofinal system of fpqc
coverings of a given nonempty scheme. Although this does not strictly speaking
prevent us from defining “partial” fpqc sites, it does not seem prudent to do so.
The work-around is to allow the notion of a sheaf for the fpqc topology (see below)
but to prohibit considering the category of all fpqc sheaves.

Definition 15.5. Let S be a scheme. The category of schemes over S is denoted
Sch/S. Consider a functor F : (Sch/S)°PP — Sets, in other words a presheaf of sets.
We say F satisfies the sheaf property for the fpqc topology if for every fpqc covering
{U; = U};er of schemes over S the diagram is an equalizer diagram.

We similarly say that F satisfies the sheaf property for the Zariski topology if for
every open covering U = |J,c; U; the diagram is an equalizer diagram. See
Schemes, Definition Clearly, this is equivalent to saying that for every scheme
T over S the restriction of F to the opens of T is a (usual) sheaf.

Lemma 15.6. Let F be a presheaf on Sch/S. Then F satisfies the sheaf property
for the fpqc topology if and only if
(1) F satisfies the sheaf property with respect to the Zariski topology, and
(2) for every faithfully flat morphism Spec(B) — Spec(A) of affine schemes
over S, the sheaf aziom holds for the covering {Spec(B) — Spec(A)}.
Namely, this means that

F(Spec(A)) — F(Spec(B)) F(Spec(B ®4 B))
is an equalizer diagram.
Proof. See Topologies, Lemma |9.13 O

An alternative way to think of a presheaf F on Sch/S which satisfies the sheaf
condition for the fpqc topology is as the following data:

(1) for each T'/S, a usual (i.e., Zariski) sheaf Fr on Tz,

(2) for every map f: T" — T over S, a restriction mapping f~'Fr — Fr


https://stacks.math.columbia.edu/tag/03NZ
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such that

(a) the restriction mappings are functorial,

(b) if f: T" — T is an open immersion then the restriction mapping f~1Fr —
Fr is an isomorphism, and

(¢c) for every faithfully flat morphism Spec(B) — Spec(A) over S, the diagram

Fspec(a)(Spec(A)) —— Fapee(n) (SPec(B)) —_— Fspec(BoaB)(Spec(B ®4 B))

is an equalizer.

Data (1) and (2) and conditions (a), (b) give the data of a presheaf on Sch/S
satisfying the sheaf condition for the Zariski topology. By Lemma [15.6| condition
(c) then suffices to get the sheaf condition for the fpqc topology.

Example 15.7. Consider the presheaf

F: (Sch/S)°rr — Ab
T/S — T'(T,Qr/s).

The compatibility of differentials with localization implies that F is a sheaf on the
Zariski site. However, it does not satisfy the sheaf condition for the fpgc topology.
Namely, consider the case S = Spec(F),) and the morphism

¢ : V = Spec(F,[v]) = U = Spec(F,[u])

given by mapping u to vP. The family {¢} is an fpqc covering, yet the restriction
mapping F(U) — F(V) sends the generator du to d(v?) = 0, so it is the zero map,
and the diagram

FU)—2=FV) __ZFV xy V)

R

is not an equalizer. We will see later that F does in fact give rise to a sheaf on the
étale and smooth sites.

Lemma 15.8. Any representable presheaf on Sch/S satisfies the sheaf condition
for the fpqc topology.

Proof. See Descent, Lemma [13.7] (I

We will return to this later, since the proof of this fact uses descent for quasi-
coherent sheaves, which we will discuss in the next section. A fancy way of express-
ing the lemma is to say that the fpqc topology is weaker than the canonical topology,
or that the fpqc topology is subcanonical. In the setting of sites this is discussed in
Sites, Section

Remark| 15.9. The fpqc is finer than the Zariski, étale, smooth, syntomic, and
fppf topologies. Hence any presheaf satisfying the sheaf condition for the fpqc
topology will be a sheaf on the Zariski, étale, smooth, syntomic, and fppf sites. In
particular representable presheaves will be sheaves on the étale site of a scheme for
example.

Example 15.10. Let S be a scheme. Consider the additive group scheme G, s =
A% over S, see Groupoids, Example The associated representable presheaf is
given by

hGn,,s(T) = MOI‘S(T, Ga,S) = F(T, OT)


https://stacks.math.columbia.edu/tag/03O2
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By the above we now know that this is a presheaf of sets which satisfies the sheaf
condition for the fpqc topology. On the other hand, it is clearly a presheaf of rings
as well. Hence we can think of this as a functor

O: (Sch/S)Pr —  Rings
T/S - I(T,0r)

which satisfies the sheaf condition for the fpqc topology. Correspondingly there is
a notion of O@-module, and so on and so forth.

16. Faithfully flat descent

In this section we discuss faithfully flat descent for quasi-coherent modules. More
precisely, we will prove quasi-coherent modules satisfy effective descent with respect
to fpqc coverings.

Definition 16.1. Let U = {t; : T; — T}ies be a family of morphisms of schemes
with fixed target. A descent datum for quasi-coherent sheaves with respect to U is
a collection ((F;)ier, (@ij)i,jer) where

(1) F; is a quasi-coherent sheaf on T;, and
(2) @ij : prgFi — priF; is an isomorphism of modules on T; x1 Tj,

such that the cocycle condition holds: the diagrams

pr31 Pij
* *
pryFi priF;
prm Aojk
*
prsFi

commute on T; x7 Tj X7 Tj,. This descent datum is called effective if there exist
a quasi-coherent sheaf 7 over T' and Or,-module isomorphisms ¢; : t;F = F;
compatible with the maps ¢;;, namely

@i = pri(e;) o pro(e:) '

In this and the next section we discuss some ingredients of the proof of the following
theorem, as well as some related material.

Theorem 16.2. IfV = {T;, — T}icr is an fpge covering, then all descent data for
quasi-coherent sheaves with respect to V are effective.

Proof. See Descent, Proposition [5.2 (]

In other words, the fibered category of quasi-coherent sheaves is a stack on the
fpqc site. The proof of the theorem is in two steps. The first one is to realize that
for Zariski coverings this is easy (or well-known) using standard glueing of sheaves
(see Sheaves, Section and the locality of quasi-coherence. The second step is
the case of an fpqc covering of the form {Spec(B) — Spec(A)} where A — B is a
faithfully flat ring map. This is a lemma in algebra, which we now present.

Descent of modules. If A — B is a ring map, we consider the complex

(B/A)e:B—-B®sB—+B®sB®aB— ...


https://stacks.math.columbia.edu/tag/03O7
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where B is in degree 0, B ® 4 B in degree 1, etc, and the maps are given by
b —» 1®b-0®1,
bp@by = 1®by®b —by®@1@b;+by @b @1,
etc.

Lemma 16.3. If A — B is faithfully flat, then the complex (B/A)e is exact in
positive degrees, and H°((B/A),) = A.

Proof. See Descent, Lemma |3.6 O

Grothendieck proves this in three steps. Firstly, he assumes that the map A — B
has a section, and constructs an explicit homotopy to the complex where A is the
only nonzero term, in degree 0. Secondly, he observes that to prove the result,
it suffices to do so after a faithfully flat base change A — A’, replacing B with
B’ = B®4 A’. Thirdly, he applies the faithfully flat base change A — A’ = B and
remark that the map A’ = B — B’ = B ® 4 B has a natural section.

The same strategy proves the following lemma.

Lemma 16.4. If A — B is faithfully flat and M is an A-module, then the complex
(B/A)e @4 M is ezact in positive degrees, and H°((B/A)e @4 M) = M.

Proof. See Descent, Lemma, 3.6 [

Definition 16.5. Let A — B be a ring map and N a B-module. A descent
datum for N with respect to A — B is an isomorphism ¢ : N @4 B = B®4 N of
B ® 4 B-modules such that the diagram of B ® 4 B ® 4 B-modules

$o1

N®sB®aB B®s N®aB

B®aB®a N
commutes where ¢p1 = ¢ ® idp and similarly for 15 and @gs.

If N = B®4 M for some A-module M, then it has a canonical descent datum given
by the map
Yean: N ®1B — B®y N’
b0®m®b1 — b0®b1®m

Definition 16.6. A descent datum (N, ) is called effective if there exists an
A-module M such that (N,¢) = (B ®a M, @can), with the obvious notion of iso-
morphism of descent data.

Theorem [16.2]is a consequence the following result.

Theorem 16.7. If A — B is faithfully flat then descent data with respect to
A — B are effective.

Proof. See Descent, Proposition See also Descent, Remark for an alter-
native view of the proof. O

Remarks| 16.8. The results on descent of modules have several applications:


https://stacks.math.columbia.edu/tag/03O9
https://stacks.math.columbia.edu/tag/03OA
https://stacks.math.columbia.edu/tag/03OB
https://stacks.math.columbia.edu/tag/03OC
https://stacks.math.columbia.edu/tag/03OD
https://stacks.math.columbia.edu/tag/03OE

030F
030G

030H

ETALE COHOMOLOGY 17

(1) The exactness of the Cech complex in positive degrees for the covering
{Spec(B) — Spec(A)} where A — B is faithfully flat. This will give some
vanishing of cohomology.

(2) If (N, ) is a descent datum with respect to a faithfully flat map A — B,
then the corresponding A-module is given by

- N — B®s N
M—Ker(n — 1®n—<p(n®1)>'

See Descent, Proposition [3.9

17. Quasi-coherent sheaves
We can apply the descent of modules to study quasi-coherent sheaves.
Proposition| 17.1. For any quasi-coherent sheaf F on S the presheaf

Fa:  Sch/S @ — Ab
(f:T—S8) — INT,f*F)

is an O-module which satisfies the sheaf condition for the fpqc topology.

Proof. This is proved in Descent, Lemma We indicate the proof here. As
established in Lemma [15.6] it is enough to check the sheaf property on Zariski
coverings and faithfully flat morphisms of affine schemes. The sheaf property for
Zariski coverings is standard scheme theory, since T'(U,i*F) = F(U) when i : U —
S is an open immersion.

For {Spec(B) — Spec(A)} with A — B faithfully flat and Flspeccay = M this
corresponds to the fact that M = H° (B/A)s ®4 M), i.e., that

0->M—>BIqgM —>BsBs M
is exact by Lemma [16.4} O

There is an abstract notion of a quasi-coherent sheaf on a ringed site. We briefly
introduce this here. For more information please consult Modules on Sites, Section
Let C be a category, and let U be an object of C. Then C/U indicates the
category of objects over U, see Categories, Example If C is a site, then
C/U is a site as well, namely the coverings of V/U are families {V;/U — V/U}
of morphisms of C/U with fixed target such that {V; — V} is a covering of C.
Moreover, given any sheaf F on C the restriction F|c;y (defined in the obvious
manner) is a sheaf as well. See Sites, Section [25|for details.

Definition 17.2. Let C be a ringed site, i.e., a site endowed with a sheaf of rings
O. A sheaf of O-modules F on C is called quasi-coherent if for all U € Ob(C) there
exists a covering {U; — U}ier of C such that the restriction F|¢,y, is isomorphic
to the cokernel of an O-linear map of free O-modules

@kel{ O|C/Ui - @IEL O|C/U'i'

The direct sum over K is the sheaf associated to the presheaf V — @, O(V)
and similarly for the other.

Although it is useful to be able to give a general definition as above this notion is
not well behaved in general.
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Remark| 17.3. In the case where C has a final object, e.g. S, it suffices to check
the condition of the definition for U = S in the above statement. See Modules on
Sites, Lemma [23.3

Theorem 17.4 (Meta theorem on quasi-coherent sheaves). Let S be a scheme.
Let C be a site. Assume that

(1) the underlying category C is a full subcategory of Sch/S,

(2) any Zariski covering of T € Ob(C) can be refined by a covering of C,

(3) S/S is an object of C,

(4) every covering of C is an fpgc covering of schemes.
Then the presheaf O is a sheaf on C and any quasi-coherent O-module on (C,O) is
of the form F® for some quasi-coherent sheaf F on S.

Proof. After some formal arguments this is exactly Theorem[16.2] Details omitted.
In Descent, Proposition we prove a more precise version of the theorem for the
big Zariski, fppf, étale, smooth, and syntomic sites of S, as well as the small Zariski
and étale sites of S. ]

In other words, there is no difference between quasi-coherent modules on the scheme
S and quasi-coherent O-modules on sites C as in the theorem. More precise state-
ments for the big and small sites (Sch/S) tpps, Sétaie, €tc can be found in Descent,
Sections [§ [ and In this chapter we will sometimes refer to a “site as in
Theorem [I7-4]’ in order to conveniently state results which hold in any of those
situations.

18. Cech cohomology

Our next goal is to use descent theory to show that H'(C, F*) = Hy,,.(S,F) for
all quasi-coherent sheaves F on S, and any site C as in Theorem To this end,
we introduce Cech cohomology on sites. See [Art62] and Cohomology on Sites,
Sections [§] [9] and [I0] for more details.

Definition 18.1. Let C be a category, Y = {U; — U}ier a family of morphisms
of C with fixed target, and F € PAb(C) an abelian presheaf. We define the Cech
complex C*(U, F) by

[[7Wi) = ] FWi, xvU)— ] FUi, xv Ui xvUs,) = ...

o€l 10,01 €1 %0,81,02€1

where the first term is in degree 0, and the maps are the usual ones. Again, it is
essential to allow the case ig = i1 etc. The Cech cohomology groups are defined by

HP(U, F) = HP(C*(U, F)).
Lemmal 18.2. The functor é'(lz[, —) is exact on the category PAb(C).

In other words, if 0 — F; — Fo — F3 — 0 is a short exact sequence of presheaves
of abelian groups, then

0—C* (U, F1) = C*(U,Fo) = C*(U, F3) = 0

is a short exact sequence of complexes.
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Proof. This follows at once from the definition of a short exact sequence of presheaves.
Namely, as the category of abelian presheaves is the category of functors on some
category with values in Ab, it is automatically an abelian category: a sequence
F1 — Fo2 — Fs is exact in PAb if and only if for all U € Ob(C), the sequence
F1(U) = Fo(U) — F3(U) is exact in Ab. So the complex above is merely a prod-
uct of short exact sequences in each degree. See also Cohomology on Sites, Lemma

Q.1 O

This shows that H *(U,—) is a 6-functor. We now proceed to show that it is a
universal J-functor. We thus need to show that it is an effaceable functor. We start
by recalling the Yoneda lemma.

Lemma 18.3 (Yoneda Lemma). For any presheaf F on a category C there is a
functorial isomorphism

Hom pgp(c)(hu, F) = F(U).
Proof. See Categories, Lemma [3.5 ]
Given a set E we denote (in this section) Z[E] the free abelian group on E. In a
formula Z[E] = @, 5 Z, i.e., Z[E] is a free Z-module having a basis consisting of

the elements of E. Using this notation we introduce the free abelian presheaf on a
presheaf of sets.

Definition 18.4. Let C be a category. Given a presheaf of sets G, we define the
free abelian presheaf on G, denoted Zg, by the rule

Zg(U) = Z[g(U)]

for U € Ob(C) with restriction maps induced by the restriction maps of G. In the
special case G = hy we write simply Zy = Zy,, .

The functor G — Zg is left adjoint to the forgetful functor PAb(C) — PSh(C).
Thus, for any presheaf F, there is a canonical isomorphism

Hom pap(cy(Zv, F) = Hompgpey (v, F) = F(U)
the last equality by the Yoneda lemma. In particular, we have the following result.

Lemma 18.5. The Cech complex ce (U, F) can be described explicitly as follows

é'(l/ﬂf) = H HompAb(c)(ZUiO,f) — H HomPAb(C)(ZUiOXUUi17'F) — ...
i0€l i0,i1€1
= HompAb(C) @ ZUiU — @ ZUiOXUUil — ... |, F
ig€l 10,01 €1

Proof. This follows from the formula above. See Cohomology on Sites, Lemma

Q.3 O
This reduces us to studying only the complex in the first argument of the last Hom.
Lemma 18.6. The complex of abelian presheaves

. .
zi o Do, D Zugwv, & D Zugxov, v, © o
o€l 0,41 €1 10,i1,i2€1

is exact in all degrees except 0 in PAb(C).
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Proof. For any V € Ob(C) the complex of abelian groups Z,(V) is
Z [[1,,c; Morc(V, Uy,)] + Z {Hio,ilel More(V, Ui, X1 Uil)] .. .=
DBy (2 [iger More(V.Uiy)] = Z [I1,, 5,0 Morg (V. Uy) x Mor, (V, Us,)] = ...)

where
Mor,(V,U;) = {V — U, such that V' — U; — U equals ¢}.
Set Sy, = [ ;e Mory,(V, U;), so that
Z,(V)= @ (Z[S,] < Z[S, x S,]  Z[Sy x Sy x S| < ...).
©:V—=U
Thus it suffices to show that for each S = S, the complex
Z[S| + Z[S x S|+ Z[S x S x S] + ...

is exact in negative degrees. To see this, we can give an explicit homotopy. Fix
s € § and define K : n(g ..s,) 7 Ns,so,....5,)- One easily checks that K is a
nullhomotopy for the operator

P
d: N(s0,...,8p) = Zizo(—l)pn(so,...,gi,.‘.75,9)-
See Cohomology on Sites, Lemma [9.4] for more details. O

030R Lemma 18.7. Let C be a category. If T is an injective object of PAb(C) and U is
a family of morphisms with fixed target in C, then FI”(U,I) =0 for allp > 0.
Proof. The Cech complex is the result of applying the functor Hom pas(e)(—,I) to
the complex Z7,, i.e.,
HP(U,T) = HP(Hompayc)(Zy, T))-

But we have just seen that Z;, is exact in negative degrees, and the functor
Hom papc)(—,Z) is exact, hence Hom papc)(Zg;,Z) is exact in positive degrees. [

030S 'Theorem 18.8. On PAb(C) the functors HP(U,—) are the right derived functors
of HO(U, —).
Proof. By the Lemma m the functors HP (U, —) are universal é-functors since
they are effaceable. So are the right derived functors of H° (U, —). Since they agree

in degree 0, they agree by the universal property of universal d-functors. For more
details see Cohomology on Sites, Lemma [9.6] O

030T Remark 18.9. Observe that all of the preceding statements are about presheaves
so we haven’t made use of the topology yet.

19. The Cech-to-cohomology spectral sequence

030U This spectral sequence is fundamental in proving foundational results on cohomol-
ogy of sheaves.

030V  Lemma 19.1. The forgetful functor Ab(C) — PAb(C) transforms injectives into
injectives.

Proof. This is formal using the fact that the forgetful functor has a left adjoint,
namely sheafification, which is an exact functor. For more details see Cohomology
on Sites, Lemma [10.1 (]
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Theorem 19.2. Let C be a site. For any coveringUd = {U; — Ul}ier of U € Ob(C)
and any abelian sheaf F on C there is a spectral sequence

EYT = HP(U, HY(F)) = HP (U, F),
where HY(F) is the abelian presheaf V — HY(V, F).

Proof. Choose an injective resolution F — Z* in Ab(C), and consider the double
complex C*(U,Z*) and the maps

(U, I°) — C*(U,1°)

|

C*(U,F)

Here the horizontal map is the natural map I'(U, I*) — C°(U, Z*) to the left column,
and the vertical map is induced by F — Z° and lands in the bottom row. By
assumption, Z*® is a complex of injectives in Ab(C), hence by Lemma m it is a
complex of injectives in PAb(C). Thus, the rows of the double complex are exact
in positive degrees (Lemma , and the kernel of CO(U,Z*) — C* (U, Z*) is equal
to T'(U,Z°*), since Z*® is a complex of sheaves. In particular, the cohomology of the
total complex is the standard cohomology of the global sections functor H°(U, F).

For the vertical direction, the gth cohomology group of the pth column is
I 7, xv ... x0 U, F) = HYF) (Ui, xv .. xv Us,)

0,0, 10senrip

in the entry E7’?. So this is a standard double complex spectral sequence, and
the Es-page is as prescribed. For more details see Cohomology on Sites, Lemma

[10.6l O

Remark| 19.3. This is a Grothendieck spectral sequence for the composition of
functors

Ab(C) —s PAb(C) 15 Ab.

20. Big and small sites of schemes

Let S be a scheme. Let 7 be one of the topologies we will be discussing. Thus
T € {fppf, syntomic, smooth, étale, Zariski}. Of course if you are only interested
in the étale topology, then you can simply assume 7 = étale throughout. Moreover,
we will discuss étale morphisms, étale coverings, and étale sites in more detail
starting in Section In order to proceed with the discussion of cohomology
of quasi-coherent sheaves it is convenient to introduce the big 7-site and in case
T € {étale, Zariski}, the small 7-site of S. In order to do this we first introduce
the notion of a 7-covering.

Definition 20.1. (See Topologies, Definitions and ) Let

T € {fppf, syntomic, smooth, étale, Zariski}. A family of morphisms of schemes
{fi : T; = T}ier with fixed target is called a 7-covering if and only if each f; is
flat of finite presentation, syntomic, smooth, étale, resp. an open immersion, and

we have | fi(T;) =T.
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The class of all T-coverings satisfies the axioms (1), (2) and (3) of Definition [10.2]

(our definition of a site), see Topologies, Lemmas and

Let us introduce the sites we will be working with. Contrary to what happens
in [AGVTI], we do not want to choose a universe. Instead we pick a “partial
universe” (which is a suitably large set as in Sets, Section , and consider all
schemes contained in this set. Of course we make sure that our favorite base scheme
S is contained in the partial universe. Having picked the underlying category we
pick a suitably large set of T-coverings which turns this into a site. The details are
in the chapter on topologies on schemes; there is a lot of freedom in the choices
made, but in the end the actual choices made will not affect the étale (or other)
cohomology of S (just as in [AGVTI] the actual choice of universe doesn’t matter
at the end). Moreover, the way the material is written the reader who is happy
using strongly inaccessible cardinals (i.e., universes) can do so as a substitute.

Definition 20.2. Let S be a scheme. Let 7 € {fppf, syntomic, smooth, étale,
Zariski}.

(1) A big T-site of S is any of the sites (Sch/.S), constructed as explained above
and in more detail in Topologies, Definitions and

(2) If 7 € {étale, Zariski}, then the small T-site of S is the full subcategory S-
of (Sch/S), whose objects are schemes T over S whose structure morphism
T — S is étale, resp. an open immersion. A covering in S, is a covering
{U; = U} in (Sch/S), such that U is an object of S;.

The underlying category of the site (Sch/S), has reasonable “closure” properties,
i.e., given a scheme T in it any locally closed subscheme of T' is isomorphic to an
object of (Sch/S),. Other such closure properties are: closed under fibre products of
schemes, taking countable disjoint unions, taking finite type schemes over a given
scheme, given an affine scheme Spec(R) one can complete, localize, or take the
quotient of R by an ideal while staying inside the category, etc. On the other hand,
for example arbitrary disjoint unions of schemes in (Sch/S), will take you outside
of it. Also note that, given an object T' of (Sch/S), there will exist T-coverings
{T; — T}ier (as in Definition [20.1]) which are not coverings in (Sch/S), for example
because the schemes T; are not objects of the category (Sch/S),. But our choice
of the sites (Sch/S), is such that there always does exist a covering {U; — T},
of (Sch/S), which refines the covering {T; — T'};cr, see Topologies, Lemmas
4.7 and We will mostly ignore these issues in this chapter.

If F is a sheaf on (Sch/S), or S;, then we denote
H?(U,F), in particular HEZ(S, F)

the cohomology groups of F over the object U of the site, see Section[T4] Thus we
have H?ppf(SV ‘F)’ nyntomic(57 'F)? Hfmooth(S7 ‘F)7 H(Zé)tale(S7 f)’ and Hgar(s7 ]:)
The last two are potentially ambiguous since they might refer to either the big or
small étale or Zariski site. However, this ambiguity is harmless by the following

lemma.

Lemma 20.3. Let 7 € {étale, Zariski}. If F is an abelian sheaf defined on
(Sch/S)., then the cohomology groups of F over S agree with the cohomology groups
of Fls, over S.


https://stacks.math.columbia.edu/tag/03XB
https://stacks.math.columbia.edu/tag/03YX

03X9

03XA

03YY

04HP

04HQ

ETALE COHOMOLOGY 23

Proof. By Topologies, Lemmas and the functors S, — (Sch/S), satisfy
the hypotheses of Sites, Lemma Hence our lemma follows from Cohomology
on Sites, Lemma O

The category of sheaves on the big or small étale site of S depends only on the
full subcategory of (Sch/S)staie OF Sétare consisting of affines and one only needs
to consider the standard étale coverings between them (as defined below). This
gives rise to sites (Aff/S)ctate and Saf fine étale, Se€ Topologies Deﬁnition The
comparison results are proven in Topologies, Lemmas [£.11] and [£.12] Here is our
definition of standard coverings in some of the topologles we will consider in this
chapter.

Definition 20.4. (See Topologies, Deﬁnitions n . . ﬂ, and . ) Let 7 €
{fppf, syntomic, smooth, étale, Zariski}. Let T be an affine scheme. A standard

T-covering of T is a family {f; : U; — T'}j=1,m with each U, is affine, and each
f; flat and of finite presentation, standard syntomic, standard smooth, étale, resp.
the immersion of a standard principal open in T"and T' = | f;(U;).

Lemma 20.5. Let T € {fppf, syntomic, smooth, étale, Zariski}. Any T-covering
of an affine scheme can be refined by a standard T-covering.

Proof. See Topologies, Lemmas and O

For completeness we state and prove the invariance under choice of partial universe
of the cohomology groups we are considering. We will prove invariance of the small
étale topos in Lemma [21.2 below. For notation and terminology used in this lemma
we refer to Topologies, Section

Lemma 20.6. Let 7 € {fppf, syntomic, smooth, étale, Zariski}. Let S be a
scheme. Let (Sch/S), and (Sch’/S), be two big T-sites of S, and assume that the
first is contained in the second. In this case
(1) for any abelian sheaf F' defined on (Sch'/S), and any object U of (Sch/S),
we have
HE(U, F'l(senss),) = H2(U, F')
In words: the cohomology of F' over U computed in the bigger site agrees
with the cohomology of F' restricted to the smaller site over U.
(2) for any abelian sheaf F on (Sch/S), there is an abelian sheaf F' on (Sch/S).
whose restriction to (Sch/S + s isomorphic to F.

Proof. By Topologies, Lemma [12.2| the inclusion functor (Sch/S), — (Sch’/S),
satisfies the assumptions of Sites Lemma [21.8 This implies (2) and (1) follows
from Cohomology on Sites, Lemma O

21. The étale topos

A topos is the category of sheaves of sets on a site, see Sites, Definition Hence
it is customary to refer to the use the phrase “étale topos of a scheme” to refer
to the category of sheaves on the small étale site of a scheme. Here is the formal
definition.

Definition 21.1. Let S be a scheme.

(1) The étale topos, or the small étale topos of S is the category Sh(Ssiare) of
sheaves of sets on the small étale site of S.
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(2) The Zariski topos, or the small Zariski topos of S is the category Sh(Sza:)
of sheaves of sets on the small Zariski site of .S.

(3) For 7 € {fppf, syntomic, smooth, étale, Zariski} a big T-topos is the cate-
gory of sheaves of set on a big 7-topos of S.

Note that the small Zariski topos of S is simply the category of sheaves of sets on
the underlying topological space of S, see Topologies, Lemma Whereas the
small étale topos does not depend on the choices made in the construction of the
small étale site, in general the big topoi do depend on those choices.

It turns out that the big or small étale topos only depends on the full subcategory
of (Sch/S)étaie Or Sstare consisting of affines; see Topologies, Lemmas and
We will use this for example in the proof of the following lemma.

Lemma 21.2. Let S be a scheme. The étale topos of S is independent (up to
canonical equivalence) of the construction of the small étale site in Definition ,

Proof. We have to show, given two big étale sites Schggqre and Schl,,;. containing

S, then Sh(S¢tare) = Sh(S%,,.) with obvious notation. By Topologies, Lemma

étale
we may assume Schgare C Schlyy.. By Sets, Lemma any affine scheme
étale over S is isomorphic to an object of both Sch¢sare and Schly,,.. Thus the

induced functor Suf fine,étate — Sy, f fine étale 1S A1l equivalence. Moreover, it is clear

that both this functor and a quasi-inverse map transform standard étale coverings
into standard étale coverings. Hence the result follows from Topologies, Lemma
4.12] O

22. Cohomology of quasi-coherent sheaves

We start with a simple lemma (which holds in greater generality than stated). It
says that the Cech complex of a standard covering is equal to the Cech complex of
an fpqc covering of the form {Spec(B) — Spec(A)} with A — B faithfully flat.

Lemma 22.1. Let 7 € {fppf,syntomic, smooth, étale, Zariski}. Let S be a
scheme. Let F be an abelian sheaf on (Sch/S)., or on S. in case T = étale, and
let U = {U; — Utier be a standard 7-covering of this site. Let V = [[,.; U;. Then
(1) V is an affine scheme,
(2) YV ={V — U} is an fpgc covering and also a T-covering unless T = Zariski,
(3) the Cech complexes C*(U, F) and C*(V, F) agree.

Proof. The defintion of a standard 7-covering is given in Topologies, Definition

and By definition each of the schemes U; is affine and I is a

finite set. Hence V is an affine scheme. It is clear that V' — U is flat and surjective,
hence V is an fpqc covering, see Example Excepting the Zariski case, the
covering V is also a T-covering, see Topologies, Definition and

Note that I is a refinement of V and hence there is a map of Cech complexes
é'(V, F)— ce (U, F), see Cohomology on Sites, Equation . Next, we observe
that if T =] jes T 1s a disjoint union of schemes in the site on which F is defined
then the family of morphisms with fixed target {T; — T’} ¢, is a Zariski covering,
and so

(22.1.1) Fo =rIL ., =11, 71
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by the sheaf condition of F. This implies the map of Cech complexes above is an
isomorphism in each degree because
\%4 Xy ... Xy V= Hio,...ip Uio XU ... Xy Uip

as schemes. O

Note that Equality (22.1.1)) is false for a general presheaf. Even for sheaves it does
not hold on any site, since coproducts may not lead to coverings, and may not be
disjoint. But it does for all the usual ones (at least all the ones we will study).

Remark| 22.2. In the statement of Lemma the covering U is a refinement of
V but not the other way around. Coverings of the form {V — U} do not form an
initial subcategory of the category of all coverings of U. Yet it is still true that we
can compute Cech cohomology H™(U, F) (which is defined as the colimit over the
opposite of the category of coverings U of U of the Cech cohomology groups of F
with respect to U) in terms of the coverings {V — U}. We will formulate a precise
lemma (it only works for sheaves) and add it here if we ever need it.

Lemma 22.3 (Locality of cohomology). Let C be a site, F an abelian sheaf on C,
U an object of C, p > 0 an integer and £ € HP(U, F). Then there exists a covering
U={U; = Uticr of U in C such that |y, =0 for alli € I.

Proof. Choose an injective resolution F — Z°. Then £ is represented by a cocycle
€ € IP(U) with d?(€) = 0. By assumption, the sequence ZP~! — 7P — ZP*1 in
exact in Ab(C), which means that there exists a covering U = {U; — U},¢cs such
that €|y, = dP~1(&;) for some & € ZP~'(U;). Since the cohomology class &|y, is
represented by the cocycle E |y, which is a coboundary, it vanishes. For more details
see Cohomology on Sites, Lemma [7.3 (|

Theorem 22.4. Let S be a scheme and F a quasi-coherent Og-module. Let C be
either (Sch/S), for T € {fppf, syntomic, smooth, étale, Zariski} or Setare. Then

HP(S,F) = HE(S, F*)
for all p > 0 where
(1) the left hand side indicates the usual cohomology of the sheaf F on the

underlying topological space of the scheme S, and
(2) the right hand side indicates cohomology of the abelian sheaf F* (see Propo-

sition on the site C.

Proof. We are going to show that HP(U, f*F) = HP(U,F?) for any object f :
U — S of the site C. The result is true for p = 0 by the sheaf property.

Assume that U is affine. Then we want to prove that H2(U, F*) = 0 for all p > 0.
We use induction on p.

p =1 Pick ¢ € H}(U,F*). By Lemma there exists an fpqc covering U =
{U; — U}er such that &|y, = 0 for all ¢ € I. Up to refining U, we
may assume that U/ is a standard 7-covering. Applying the spectral se-
quence of Theorem [19.2] we see that £ comes from a cohomology class
€ € H'(U, F*). Consider the covering V = {Il;c; Us — U}. By Lemma
H*U,F*) = H*(V,F*). On the other hand, since V is a cover-
ing of the form {Spec(B) — Spec(A)} and f*F = M for some A-module
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M, we sce the Cech complex C*(V,F) is none other than the complex
(B/A)e ®4 M. Now by Lemma [16.4] H?((B/A)s ®4 M) = 0 for p > 0,
hence 5: 0 and so £ = 0.

p > 1 Pick £ € HP(U, F*). By Lemma there exists an fpqc covering U =
{U; = U}er such that €|y, = 0 for all ¢ € I. Up to refining U, we may
assume that U is a standard 7-covering. We apply the spectral sequence of
Theorem @ Observe that the intersections U;, X ... Xy U;, are affine,
so that by induction hypothesis the cohomology groups

Ep" = H"(U, H'(F*"))

vanish for all 0 < ¢ < p. We see that & must come from a £ € ﬁp(u,fa).
Replacing ¢ with the covering V containing only one morphism and using
Lemma again, we see that the Cech cohomology class 5 must be zero,
hence £ = 0.
Next, assume that U is separated. Choose an affine open covering U = J;; U; of
U. The family U = {U; — U};er is then an fpqc covering, and all the intersections
Ui, Xu ... xyu U;, are affine since U is separated. So all rows of the spectral sequence
of Theorem [19.2] are zero, except the zeroth row. Therefore

HY(U, F*) = HPU, F*) = 0" (U, F) = H (U, F)

where the last equality results from standard scheme theory, see Cohomology of
Schemes, Lemma |2.6)

The general case is technical and (to extend the proof as given here) requires a
discussion about maps of spectral sequences, so we won’t treat it. It follows from
Descent, Proposition (whose proof takes a slightly different approach) combined
with Cohomology on Sites, Lemma [7.1 (]

Remark| 22.5. Comment on Theorem Since S is a final object in the cate-
gory C, the cohomology groups on the right-hand side are merely the right derived
functors of the global sections functor. In fact the proof shows that H?(U, f*F) =
HE(U, F*) for any object f: U — S of the site C.

23. Examples of sheaves

Let S and 7 be as in Section We have already seen that any representable
presheaf is a sheaf on (Sch/S). or S;, see Lemma and Remark Here are
some special cases.

Definition 23.1. On any of the sites (Sch/S), or S; of Section

(1) The sheaf T — I'(T,Or) is denoted Og, or G, or G, s if we want to
indicate the base scheme.

(2) Similarly, the sheaf T+ I'(T, O%) is denoted OF%, or Gy, or G, g if we
want to indicate the base scheme.

(3) The constant sheaf Z/nZ on any site is the sheafification of the constant
presheaf U — Z/nZ.

The first is a sheaf by Theorem [I7.4]for example. The second is a sub presheaf of the
first, which is easily seen to be a sheaf itself. The third is a sheaf by definition. Note
that each of these sheaves is representable. The first and second by the schemes
G5 and Gy, s, see Groupoids, Section [dl The third by the finite étale group
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scheme Z/nZg sometimes denoted (Z/nZ)s which is just n copies of S endowed
with the obvious group scheme structure over S, see Groupoids, Example [5.6] and
the following remark.

Remark 23.2. Let G be an abstract group. On any of the sites (Sch/S), or S,
of Section the sheafification G of the constant presheaf associated to G in the
Zariski topology of the site already gives

I'(U,G) = {Zariski locally constant maps U — G}

This Zariski sheaf is representable by the group scheme Gg according to Groupoids,
Example By Lemma any representable presheaf satisfies the sheaf condi-
tion for the 7-topology as well, and hence we conclude that the Zariski sheafification
G above is also the 7-sheafification.

Definition 23.3. Let S be a scheme. The structure sheaf of S is the sheaf of rings
Og on any of the sites Szqr, Sétaie, or (Sch/S), discussed above.

If there is some possible confusion as to which site we are working on then we will
indicate this by using indices. For example we may use Og to stress the fact
that we are working on the small étale site of S.

étale

Remark| 23.4. In the terminology introduced above a special case of Theorem
224 is

7

prpf

for all p > 0. Moreover, we could use the notation H]’prf (X,0x) to indicate the
cohomology of the structure sheaf on the big fppf site of X.

(X,G,) =HY,,,.(X,G,) =HY, (X,G,) = H’(X,0x)

24. Picard groups
The following theorem is sometimes called “Hilbert 90"
Theorem 24.1. For any scheme X we have canonical identifications

H}ppf(Xma):Hl (X, Gm)

syntomic

= H! (X,Gn)

smooth

= Hc}tale (X, Gm)

= Héar(X’ Gm)

= Pic(X)

=H' (X,0%)
Proof. Let 7 be one of the topologies considered in Section By Cohomology
on Sites, Lemma [6.1] we see that H1(X, G,,,) = H(X, Of) = Pic(O,) where O, is
the structure sheaf of the site (Sch/X),. Now an invertible O,-module is a quasi-

coherent O,-module. By Theorem [I7.4] or the more precise Descent, Proposition
8.9 we see that Pic(O;) = Pic(X). The last equality is proved in the same way. O

25. The étale site

At this point we start exploring the étale site of a scheme in more detail. As a first
step we discuss a little the notion of an étale morphism.
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26. Etale morphisms

For more details, see Morphisms, Section for the formal definition and Etale
Morphisms, Sections and [19]for a survey of interesting properties

of étale morphisms.

Recall that an algebra A over an algebraically closed field k is smooth if it is of
finite type and the module of differentials {24, is finite locally free of rank equal
to the dimension. A scheme X over k is smooth over k if it is locally of finite type
and each affine open is the spectrum of a smooth k-algebra. If k is not algebraically
closed then a k-algebra A is a smooth k-algebra if A ®y, k is a smooth k-algebra. A
ring map A — B is smooth if it is flat, finitely presented, and for all primes p C A
the fibre ring x(p) ® 4 B is smooth over the residue field x(p). More generally, a
morphism of schemes is smooth if it is flat, locally of finite presentation, and the
geometric fibers are smooth.

For these facts please see Morphisms, Section Using this we may define an étale
morphism as follows.

Definition 26.1. A morphism of schemes is étale if it is smooth of relative di-
mension 0.

In particular, a morphism of schemes X — § is étale if it is smooth and Qx5 = 0.

Proposition 26.2. Facts on étale morphisms.

(1) Let k be a field. A morphism of schemes U — Spec(k) is étale if and only
if U = [1,c; Spec(k;) such that for each i € I the ring k; is a field which is
a finite separable extension of k.

(2) Let ¢ : U — S be a morphism of schemes. The following conditions are
equivalent:
(a) ¢ is élale,
(b) @ is locally finitely presented, flat, and all its fibres are étale,
(¢c) ¢ is flat, unramified and locally of finite presentation.

(3) A ring map A — B is étale if and only if B = Alzy,...,zn)/(f1,-- s fn)

such that A = det (gg’;) 18 invertible in B.

) The base change of an étale morphism is étale.

) Compositions of étale morphisms are étale.

) Fibre products and products of étale morphisms are étale.

) An étale morphism has relative dimension 0.

) Let Y — X be an étale morphism. If X is reduced (respectively regular)
then so is Y.
(9) Etale morphisms are open.

(10) If X — S and Y — S are étale, then any S-morphism X — 'Y is also étale.

Proof. We have proved these facts (and more) in the preceding chapters. Here is
a list of references: (1) Morphisms, Lemma (2) Morphisms, Lemmas and
36.16] (3) Algebra, Lemma [143.2l (4) Morphisms, Lemma [36.4] (5) Morphisms,
Lemma [36.3] (6) Follows formally from (4) and (5). (7) Morphisms, Lemmas [36.6|
and (8) See Algebra, Lemmas [163.7] and [163.5] see also more results of this
kind in Etale Morphisms, Section @l (9) See Morphisms, Lemma and
(10) See Morphisms, Lemma O
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Definition 26.3. A ring map A — B is called standard étale if B = (A[t]/(f))
with f,g € A[t], with f monic, and df/d¢ invertible in B.

g

It is true that a standard étale ring map is étale. Namely, suppose that B =
(A[t]/(f)), with f,g € A[t], with f monic, and df/d¢ invertible in B. Then A[t]/(f)
is a finite free A-module of rank equal to the degree of the monic polynomial f.
Hence B, as a localization of this free algebra is finitely presented and flat over A.
To finish the proof that B is étale it suffices to show that the fibre rings

K(p) @4 B = k(p) @4 (A[t]/(f))g = k(0)[t, 1/9]/(F)

are finite products of finite separable field extensions. Here f,g € s(p)[t] are the
images of f and g. Let

F=Ffufd T
be the factorization of f into powers of pairwise distinct irreducible monic factors
f; with eq,..., e, > 0. By assumption df/dt is invertible in x(p)[t, 1/g]. Hence we
see that at least all the f,, i > a are invertible. We conclude that

w(e)[t,1/9)/ (D) = ., se) 11/ (F)

where I C {1,...,a} is the subset of indices i such that f, does not divide g.

Moreover, the image of df/dt in the factor s(p)[t]/( f;) is clearly equal to a unit
times df,/dt. Hence we conclude that x; = x(p)[t]/(f;) is a finite field extension
of k(p) generated by one element whose minimal polynomial is separable, i.e., the

field extension k;/k(p) is finite separable as desired.

It turns out that any étale ring map is locally standard étale. To formulate this we
introduce the following notation. A ring map A — B is étale at a prime q of B if
there exists h € B, h ¢ q such that A — B}, is étale. Here is the result.

Theorem 26.4. A ring map A — B is étale at a prime q if and only if there
exists g € B, g € q such that By is standard étale over A.

Proof. See Algebra, Proposition [144.4 O

27. Etale coverings
We recall the definition.

Definition 27.1. An étale covering of a scheme U is a family of morphisms of
schemes {p; : U; — U}ier such that

(1) each ¢; is an étale morphism,
(2) the U; cover U, ie., U = J,c; i (Us).

Lemmal 27.2.  Any étale covering is an fpge covering.

Proof. (See also Topologies, Lemma [0.6]) Let {p; : U; = U}ics be an étale
covering. Since an étale morphism is flat, and the elements of the covering should
cover its target, the property fp (faithfully flat) is satisfied. To check the property
qc (quasi-compact), let V' C U be an affine open, and write @;1(V) = UjeJi Vij
for some affine opens V;; C U;. Since ¢; is open (as étale morphisms are open),
we see that V' = {J;c; Uje s, i(Vij) is an open covering of V. Further, since V' is
quasi-compact, this covering has a finite refinement. [
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So any statement which is true for fpqc coverings remains true a fortiori for étale
coverings. For instance, the étale site is subcanonical.

03PI |Definition 27.3. (For more details see Section or Topologies, Section ) Let
S be a scheme. The big étale site over S is the site (Sch/S)¢taie, see Definition
[20.2] The small étale site over S is the site Seiqie, see Definition [20.2] We define
similarly the big and small Zariski sites on S, denoted (Sch/S) zar and Szq.-.

Loosely speaking the big étale site of S is made up out of schemes over S and
coverings the étale coverings. The small étale site of S is made up out of schemes
étale over S with coverings the étale coverings. Actually any morphism between
objects of Sgiqie is étale, in virtue of Proposition hence to check that {U; —
Ulier in Sgtaie is a covering it suffices to check that [[U; — U is surjective.

The small étale site has fewer objects than the big étale site, it contains only the
“opens” of the étale topology on S. It is a full subcategory of the big étale site,
and its topology is induced from the topology on the big site. Hence it is true that
the restriction functor from the big étale site to the small one is exact and maps
injectives to injectives. This has the following consequence.

03PJ |Proposition 27.4. Let S be a scheme and F an abelian sheaf on (Sch/S)etate-

Then Fls,,... is a sheaf on S¢tare and
Hgtale(sa FlSerare) = Hgtale(‘g’ F)
for allp > 0.
Proof. This is a special case of Lemma [20.3 O
In accordance with the general notation introduced in Sectionwe write HY, (S, F)

for the above cohomology group.

28. Kummer theory
03PK Let n € N and consider the functor p,, defined by

Sch°PP — Ab
S ()= {teT(S,05) |1 =1},

By Groupoids, Example this is a representable functor, and the scheme rep-
resenting it is denoted p, also. By Lemma this functor satisfies the sheaf
condition for the fpqc topology (in particular, it also satisfies the sheaf condition
for the étale, Zariski, etc topology).

03PL Lemma 28.1. Ifn € O% then

0= ptin,s = G5 L> Gps—0
is a short exact sequence of sheaves on both the small and big étale site of S.

Proof. By definition the sheaf p, g is the kernel of the map (-)". Hence it suffices
to show that the last map is surjective. Let U be a scheme over S. Let f €
G,,(U) =T'(U,0f;). We need to show that we can find an étale cover of U over
the members of which the restriction of f is an nth power. Set

U" = Spec, (Oy[T]/(T" - f)) = U.
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(See Constructions, Section 3| or [4] for a discussion of the relative spectrum.) Let
Spec(A) C U be an affine open, and say f|spec(a) corresponds to the unit a € A*.
Then 7 *(Spec(A)) = Spec(B) with B = A[T]/(T™ — a). The ring map A — B
is finite free of rank m, hence it is faithfully flat, and hence we conclude that
Spec(B) — Spec(A) is surjective. Since this holds for every affine open in U
we conclude that 7 is surjective. In addition, n and T"! are invertible in B,
so nI"~! € B* and the ring map A — B is standard étale, in particular étale.
Since this holds for every affine open of U we conclude that 7 is étale. Hence
U ={r:U" — U} is an étale covering. Moreover, f|gr = (f')™ where f’ is the
class of T in T'(U’, O, ), so U has the desired property. O

Remark| 28.2. Lemma is false when “étale” is replaced with “Zariski”. Since
the étale topology is coarser than the smooth topology, see Topologies, Lemma [5.2
it follows that the sequence is also exact in the smooth topology.

By Theorem and Lemma and general properties of cohomology we obtain
the long exact cohomology sequence

(S jtn.5) —= (5,0%) - 1(5,0%)

/{

(S, pin,5) — Pic(S) —— Pic(S)

T

(S, phn,g) — ...

s 0
0 Hétale

o}

étale

H?

étale

at least if n is invertible on S. When n is not invertible on S we can apply the
following lemma.

Lemma 28.3. For any n € N the sequence

0— HUn,s — Gm,s L} Gm7s — 0
is a short exact sequence of sheaves on the site (Sch/S) rppy and (Sch/S)syntomic-

Proof. By definition the sheaf p,, g is the kernel of the map (-)". Hence it suffices
to show that the last map is surjective. Since the syntomic topology is weaker
than the fppf topology, see Topologies, Lemma it suffices to prove this for the
syntomic topology. Let U be a scheme over S. Let f € G,,(U) =T'(U, 0f;). We
need to show that we can find a syntomic cover of U over the members of which
the restriction of f is an nth power. Set

U" = Spec,, (Ou[T)/(T" ~ )) 5 U.

(See Constructions, Section [3| or [4] for a discussion of the relative spectrum.) Let
Spec(A) C U be an affine open, and say f|spec(4) corresponds to the unit a € A*.
Then 7 1(Spec(A)) = Spec(B) with B = A[T]/(T™ — a). The ring map A — B
is finite free of rank m, hence it is faithfully flat, and hence we conclude that
Spec(B) — Spec(A) is surjective. Since this holds for every affine open in U we
conclude that 7 is surjective. In addition, B is a global relative complete intersection
over A, so the ring map A — B is standard syntomic, in particular syntomic.
Since this holds for every affine open of U we conclude that 7 is syntomic. Hence
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U= {r:U" — U} is a syntomic covering. Moreover, f|yr = (f')" where f’ is the

class of T in I'(U’, Of;/), so U has the desired property. O
Remark 28.4. Lemma is false for the smooth, étale, or Zariski topology.

By Theorem and Lemma and general properties of cohomology we obtain
the long exact cohomology sequence

O"
0——= HY, (S, ttn,5) —=I(S,05) ——T(S,0%)

. ) .
H}ppf(sv Nn,S) E—— PIC(S) _— PIC(S)

[ ——

fppf(s fin,g) ———> ...
for any scheme S and any integer n. Of course there is a similar sequence with
syntomic cohomology.

Let n € N and let S be any scheme. There is another more direct way to describe
the first cohomology group with values in p,. Consider pairs (£, «) where L is an
invertible sheaf on S and a : L& — Oy is a trivialization of the nth tensor power
of L. Let (£',a’) be a second such pair. An isomorphism ¢ : (£,«a) = (£',a) is
an isomorphism ¢ : £ — £’ of invertible sheaves such that the diagram

LO" — > Og

(L)% = O
commutes. Thus we have

(28.4.1) Isoms((L, ), (L' a")) = {

) if they are not isomorphic
HO(S, pin,s) - ¢ if ¢ isomorphism of pairs

Moreover, given two pairs (£, «), (L', a’) the tensor product
(L)@ (La) = (La Ll awa)

is another pair. The pair (Og, 1)

and an inverse is given by

is an identity for this tensor product operation,

(L)t = (L a®T).
Hence the collection of isomorphism classes of pairs forms an abelian group. Note
that
(L,a)®" = (L a®") % (Og,1)
is an isomorphism hence every element of this group has order dividing n. We warn
the reader that this group is in general not the n-torsion in Pic(5).
Lemma 28.5. Let S be a scheme. There is a canonical identification

HZ,010(S, in) = group of pairs (£, a) up to isomorphism as above
if n is invertible on S. In general we have

H}ppf(S, tn) = group of pairs (L, a) up to isomorphism as above.
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The same result holds with fppf replaced by syntomic.

Proof. We first prove the second isomorphism. Let (£,«) be a pair as above.
Choose an affine open covering S = |JU; such that L|y, & Opy,. Say s; € L(U;)
is a generator. Then a(s£") = f; € O%(U;). Writing U; = Spec(4;) we see there
exists a global relative complete intersection 4; — B; = A;[T]/(T™ — f;) such that
fi: maps to an nth power in B;. In other words, setting V; = Spec(B;) we obtain a
syntomic covering V = {V; — S}ies and trivializations ¢; : (£, a)|y, — (Oy,, 1).

We will use this result (the existence of the covering V) to associate to this pair a
cohomology class in H},.1omic(S, fin,s). We give two (equivalent) constructions.

First construction: using Cech cohomology. Over the double overlaps V; x g V; we
have the isomorphism

(Ovixsv;, Llvix v @lvixsv;) =2 (Ovixsvys 1)
of pairs. By this is given by an element (;; € p,(V; Xg V;). We omit the
verification that these (;;’s give a 1-cocycle, i.e., give an element (i, ) € CV, tin)
with d(Ciys,) = 0. Thus its class is an element in H*(V, s,,) and by Theorem
it maps to a cohomology class in Hsl‘,mtom-c(s7 Hn,S)-

1) PTo®; (

Second construction: Using torsors. Consider the presheaf
:U'n(ﬁv a) U — ISOmU((OUa 1)v (‘C, O‘)|U)

on (Sch/S)syntomic. We may view this as a subpresheaf of Homeo (O, L) (internal
hom sheaf, see Modules on Sites, Section . Since the conditions defining this
subpresheaf are local, we see that it is a sheaf. By this sheaf has a free
action of the sheaf y1,, 3. Hence the only thing we have to check is that it locally
has sections. This is true because of the existence of the trivializing cover V. Hence
(L, ) is a p, g-torsor and by Cohomology on Sites, Lemma we obtain a
corresponding element of HY, ;i (S, tin.s)-

Ok, now we have to still show the following

(1) The two constructions give the same cohomology class.

(2) Isomorphic pairs give rise to the same cohomology class.

(3) The cohomology class of (£,a) ® (£',a’) is the sum of the cohomology
classes of (£,a) and (L', /).

(4) If the cohomology class is trivial, then the pair is trivial.

(5) Any element of H},,,0mic(S; tin,s) is the cohomology class of a pair.

We omit the proof of (1). Part (2) is clear from the second construction, since
isomorphic torsors give the same cohomology classes. Part (3) is clear from the
first construction, since the resulting Cech classes add up. Part (4) is clear from
the second construction since a torsor is trivial if and only if it has a global section,
see Cohomology on Sites, Lemma

Part (5) can be seen as follows (although a direct proof would be preferable). Sup-
pose £ € HYiomic(S, fin,s). Then & maps to an element & € HY\\tomic(S; Gm.s)
with né = 0. By Theorem we see that & corresponds to an invertible sheaf
L whose nth tensor power is isomorphic to Og. Hence there exists a pair (£, a’)

& (S, vas). Thus it

whose cohomology class ¢’ has the same image & in H, Slyntomic
suffices to show that £ —¢’ is the class of a pair. By construction, and the long exact
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cohomology sequence above, we see that & — & = 9(f) for some f € HO(S, OF).
Consider the pair (Og, f). We omit the verification that the cohomology class
of this pair is 9(f), which finishes the proof of the first identification (with fppf
replaced with syntomic).

To see the first, note that if n is invertible on S, then the covering V constructed
in the first part of the proof is actually an étale covering (compare with the proof
of Lemma [28.1). The rest of the proof is independent of the topology, apart from
the very last argument which uses that the Kummer sequence is exact, i.e., uses
Lemma O

29. Neighborhoods, stalks and points

We can associate to any geometric point of S a stalk functor which is exact. A
map of sheaves on Sgtqie is an isomorphism if and only if it is an isomorphism on
all these stalks. A complex of abelian sheaves is exact if and only if the complex of
stalks is exact at all geometric points. Altogether this means that the small étale
site of a scheme S has enough points. It also turns out that any point of the small
étale topos of S (an abstract notion) is given by a geometric point. Thus in some
sense the small étale topos of S can be understood in terms of geometric points
and neighbourhoods.

Definition 29.1. Let S be a scheme.

(1) A geometric point of S is a morphism Spec(k) — S where k is algebraically
closed. Such a point is usually denoted s, i.e., by an overlined small case
letter. We often use s to denote the scheme Spec(k) as well as the morphism,
and we use k(3) to denote k.

(2) We say 3 lies over s to indicate that s € S is the image of 5.

(3) An étale neighborhood of a geometric point 5 of S is a commutative diagram

.
s—>5
where ¢ is an étale morphism of schemes. We write (U, @) — (5,53).

(4) A morphism of étale neighborhoods (U,u) — (U’,w’) is an S-morphism
h:U — U’ such that ' = ho.

Remark 29.2. Since U and U’ are étale over S, any S-morphism between them is
also étale, see Proposition In particular all morphisms of étale neighborhoods
are étale.

Remark| 29.3. Let S be a scheme and s € S a point. In More on Morphisms,
Definition we defined the notion of an étale neighbourhood (U, u) — (S, s) of
(S,s). If 5 is a geometric point of S lying over s, then any étale neighbourhood
(U,u) — (S,3) gives rise to an étale neighbourhood (U, u) of (S, s) by taking u €
U to be the unique point of U such that @ lies over u. Conversely, given an
étale neighbourhood (U, u) of (S,s) the residue field extension k(u)/k(s) is finite
separable (see Proposition and hence we can find an embedding x(u) C k(3)
over £(s). In other words, we can find a geometric point @ of U lying over u such
that (U,w) is an étale neighbourhood of (S,5). We will use these observations to
go between the two types of étale neighbourhoods.
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Lemma 29.4. Let S be a scheme, and let's be a geometric point of S. The category
of étale neighborhoods is cofiltered. More precisely:

(1) Let (Ui, T;)i=1,2 be two étale neighborhoods of 5 in S. Then there exists a
third étale neighborhood (U,w) and morphisms (U,u) — (U;,w;), i =1,2.

(2) Let hy,ho : (U,m) — (U, @) be two morphisms between étale neighborhoods
of 5. Then there exist an étale neighborhood (U” ") and a morphism h :
(U", @) — (U,u) which equalizes h1 and hs, i.e., such that hyoh = hyoh.

Proof. For part (1), consider the fibre product U = U; xg Us. It is étale over
both U; and Us because étale morphisms are preserved under base change, see
Proposition The map 3 — U defined by (u;,Us) gives it the structure of an
étale neighborhood mapping to both U; and U,. For part (2), define U” as the
fibre product

u” U

e

U —2> U xg U
Since u and @ agree over S with 5, we see that w”’ = (u,u’) is a geometric point
of U”. In particular U” # 0. Moreover, since U’ is étale over S, so is the fibre
product U’ x5 U’ (see Proposition [26.2)). Hence the vertical arrow (hq,hs) is étale
by Remarkabove. Therefore U"” is étale over U’ by base change, and hence also
étale over S (because compositions of étale morphisms are étale). Thus (U”,@") is
a solution to the problem. O

Lemma 29.5. Let S be a scheme. Lets be a geometric point of S. Let (U, ) be
an étale neighborhood of 3. Let U = {p; : U; — U}icr be an étale covering. Then
there exist i € I and u; : 3 — U; such that ¢; : (Ui, w;) — (U,@) is a morphism of
étale neighborhoods.

Proof. As U = UJ;c; ¢i(U;), the fibre product 5 xz v, U; is not empty for some
i. Then look at the cartesian diagram

S Xq,U,p; U; *)pr2 U;

Spec(k) =5 —~=U

The projection pr; is the base change of an étale morphisms so it is étale, see
Proposition @ Therefore, 5 X7 ,,, Us; is a disjoint union of finite separable
extensions of k, by Proposition m Here 5 = Spec(k). But k is algebraically
closed, so all these extensions are trivial, and there exists a section o of pr;. The
composition pry 0 o gives a map compatible with w. (I

Definition| 29.6. Let S be a scheme. Let F be a presheaf on Sgiq.. Let 5 be a
geometric point of S. The stalk of F at 5 is

]:g = COlim(Uﬂ) .F(U)
where (U, w) runs over all étale neighborhoods of 5 in S.

By Lemma [29.4] this colimit is over a filtered index category, namely the oppo-
site of the category of étale neighbourhoods. In other words, an element of Fz
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can be thought of as a triple (U,w,o) where ¢ € F(U). Two triples (U,w,o),
(U',u,0’) define the same element of the stalk if there exists a third étale neigh-
bourhood (U”, %) and morphisms of étale neighbourhoods h : (U”,u") — (U, ),
B (U", ") — (U',@') such that h*o = (h')*o’ in F(U"). See Categories, Section
L9l

Lemmal 29.7. Let S be a scheme. Let 5 be a geometric point of S. Consider the
functor

U : Serare — Sets,
U — |Us| = {@ such that (U,u) is an étale neighbourhood of s}.

Here |Us| denotes the underlying set of the geometric fibre. Then u defines a point
p of the site Sgiaie (Sites, Deﬁnitz’on and its associated stalk functor F — F,
(Sites, Equation|32.1.1)) is the functor F — Fz defined above.

Proof. In the proof of Lemma we have seen that the scheme Uz is a disjoint
union of schemes isomorphic to 3. Thus we can also think of |Uz| as the set of
geometric points of U lying over s, i.e., as the collection of morphisms @ : 5 — U
fitting into the diagram of Definition From this it follows that u(S) is a
singleton, and that u(U xy W) = u(U) Xy u(W) whenever U — V and W — V
are morphisms in Sgie. And, given a covering {U; — Ulicr in Sgraie We see
that [Tu(U;) — u(U) is surjective by Lemma [29.5] Hence Sites, Proposition [33.3]
applies, so p is a point of the site Sgiqie. Finally, our functor F — Fz is given by
exactly the same colimit as the functor F — F, associated to p in Sites, Equation
which proves the final assertion. O

Remark 29.8. Let S be a scheme and let 5: Spec(k) — S and 3 : Spec(k’) — S
be two geometric points of S. A morphism a : 5 — 3 of geometric points is simply
a morphism a : Spec(k) — Spec(k’) such that 3’ o a = 5. Given such a morphism
we obtain a functor from the category of étale neighbourhoods of 5’ to the category
of étale neighbourhoods of 5 by the rule (U, ') — (U,u’ o a). Hence we obtain a
canonical map

Fsr = colimy 5y F(U) — colimyz) F(U) = Fs

from Categories, Lemma [I[4.8] Using the description of elements of stalks as triples
this maps the element of Fy represented by the triple (U, @ ,0) to the element
of F5 represented by the triple (U, o a,c). Since the functor above is clearly
an equivalence we conclude that this canonical map is an isomorphism of stalk
functors.

Let us make sure we have the map of stalks corresponding to a pointing in the
correct direction. Note that the above means, according to Sites, Definition
that a defines a morphism a : p — p’ between the points p,p’ of the site Ssiqre
associated to 5,5 by Lemma There are more general morphisms of points
(corresponding to specializations of points of .S) which we will describe later, and
which will not be isomorphisms, see Section

Lemmal 29.9. Let S be a scheme. Let s be a geometric point of S.

(1) The stalk functor PAb(Se¢tare) — Ab, F — F5 is exact.
(2) We have (F#)s = Fs for any presheaf of sets F on Sgiate-
(3) The functor Ab(Setare) — Ab, F +— Fz is exact.
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(4) Similarly the functors PSh(Setaie) — Sets and Sh(Ssiaie) — Sets given by
the stalk functor F — JFz are exact (see Categories, Definition and
commute with arbitrary colimits.

Proof. Before we indicate how to prove this by direct arguments we note that the
result follows from the general material in Modules on Sites, Section This is
true because F +— F3 comes from a point of the small étale site of S, see Lemma
We will only give a direct proof of (1), (2) and (3), and omit a direct proof
of (4).
Exactness as a functor on PAb(Sstqic) is formal from the fact that directed colimits
commute with all colimits and with finite limits. The identification of the stalks in
(2) is via the map

K:JFs — (.7:#)3
induced by the natural morphism F — F#, see Theorem We claim that this
map is an isomorphism of abelian groups. We will show injectivity and omit the
proof of surjectivity.

Let o € F5. There exists an étale neighborhood (U, @) — (S,3) such that o is the
image of some section s € F(U). If k(o) = 0 in (F#)z then there exists a morphism
of étale neighborhoods (U, @) — (U, %) such that s|g is zero in F#(U’). It follows
there exists an étale covering {U; — U'};er such that slp = 0 in F(U]) for all
i. By Lemma there exist ¢ € I and a morphism u, : 5 — U/ such that
(U!,w}) — (U',u") — (U,u) are morphisms of étale neighborhoods. Hence o = 0
since (U/,u;) — (U,w) is a morphism of étale neighbourhoods such that we have
s| U= 0. This proves « is injective.
To show that the functor Ab(Setaie) — Ab is exact, consider any short exact se-
quence in Ab(S¢tare): 0 = F — G — H — 0. This gives us the exact sequence of
presheaves

0=>F—=>G—>H—=>H/G—0,
where /P denotes the quotient in PAb(Ssiqaie). Taking stalks at 5, we see that
(H/PG)s = (H/G)s = 0, since the sheafification of H /PG is 0. Therefore,

0—=Fs—=Gs = Hs = 0= (H/PG)s
is exact, since taking stalks is exact as a functor from presheaves. (]

Theorem 29.10. Let S be a scheme. A map a : F — G of sheaves of sets is
injective (resp. surjective) if and only if the map on stalks az : F5 — Gs is injective
(resp. surjective) for all geometric points of S. A sequence of abelian sheaves on
Setale s exact if and only if it is exact on all stalks at geometric points of S.

Proof. The necessity of exactness on stalks follows from Lemma|[29.9] For the con-
verse, it suffices to show that a map of sheaves is surjective (respectively injective)
if and only if it is surjective (respectively injective) on all stalks. We prove this in
the case of surjectivity, and omit the proof in the case of injectivity.

Let a : F — G be a map of sheaves such that /5 — Gz is surjective for all geometric
points. Fix U € Ob(Setare) and s € G(U). For every u € U choose some ©w — U
lying over u and an étale neighborhood (V,,,7,) — (U, @) such that s|y, = a(sy,)
for some sy, € F(V,). This is possible since « is surjective on stalks. Then
{Vi = U}uev is an étale covering on which the restrictions of s are in the image
of the map «. Thus, « is surjective, see Sites, Section (]


https://stacks.math.columbia.edu/tag/03PU

0408

04FP

04HU

ETALE COHOMOLOGY 38

Remarks| 29.11. On points of the geometric sites.

(1) Theoremsays that the family of points of S¢iq1e given by the geometric
points of S (Lemma is conservative, see Sites, Definition In
particular Sgsq;e has enough points.

(2) Suppose F is a sheaf on the big étale site of S. Let T'— S be an object of
the big étale site of S, and let ¢ be a geometric point of 7. Then we define
F; as the stalk of the restriction F|r,,,,, of F to the small étale site of T
In other words, we can define the stalk of F at any geometric point of any
scheme T'/S € Ob((Sch/S)eétaie)-

(3) The big étale site of S also has enough points, by considering all geometric
points of all objects of this site, see .

The following lemma should be skipped on a first reading.

Lemma 29.12. Let S be a scheme.

(1) Let p be a point of the small étale site Serare of S given by a functor u :
Setale — Sets. Then there exists a geometric point s of S such that p is
isomorphic to the point of Setare associated to s in Lemma [29.7.

(2) Let p: Sh(pt) — Sh(Sstate) be a point of the small étale topos of S. Then
p comes from a geometric point of S, i.e., the stalk functor F — F, is
isomorphic to a stalk functor as defined in Definition [29.0

Proof. By Sites, Lemma there is a one to one correspondence between points
of the site and points of the associated topos, hence it suffices to prove (1). By
Sites, Proposition the functor u has the following properties: (a) u(S) = {x},
(b) u(U xv W) = u(U) Xyyu(W), and (c) if {U; — U} is an étale covering, then
[Tu(U;) = w(U) is surjective. In particular, if U’ C U is an open subscheme, then
u(U") C u(U). Moreover, by Sites, Lemma we can write u(U) = p’l(h?}é), in
other words u(U) is the stalk of the representable sheaf hy. If U =V II W, then
we see that hy = (hy Il hy)# and we get u(U) = u(V) Hu(W) since p~*! is exact.

Consider the restriction of u to Sz4,. By Sites, Examples and [33.6) there exists
a unique point s € S such that for S’ C S open we have u(S’) = {x} if s € S’ and
u(S") =0 if s ¢ S’. Note that if o : U — S is an object of Seae then o(U) C S
is open (see Proposition and {U — ¢(U)} is an étale covering. Hence we
conclude that u(U) =0 < s € o(U).

Pick a geometric point 5 : 5 — S lying over s, see Definition for customary
abuse of notation. Suppose that ¢ : U — S is an object of Sgq;e with U affine.
Note that ¢ is separated, and that the fibre U of ¢ over s is an affine scheme over
Spec(k(s)) which is t