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1. Introduction

This chapter is the first in a series of chapter on the étale cohomology of schemes.
In this chapter we discuss the very basics of the étale topology and cohomology
of abelian sheaves in this topology. Many of the topics discussed may be safely
skipped on a first reading; please see the advice in the next section as to how to
decide what to skip.

The initial version of this chapter was formed by the notes of the first part of a
course on étale cohomology taught by Johan de Jong at Columbia University in the
Fall of 2009. The original note takers were Thibaut Pugin, Zachary Maddock and
Min Lee. The second part of the course can be found in the chapter on the trace
formula, see The Trace Formula, Section

2. Which sections to skip on a first reading?

We want to use the material in this chapter for the development of theory related
to algebraic spaces, Deligne-Mumford stacks, algebraic stacks, etc. Thus we have
added some pretty technical material to the original exposition of étale cohomology
for schemes. The reader can recognize this material by the frequency of the word
“topos”, or by discussions related to set theory, or by proofs dealing with very
general properties of morphisms of schemes. Some of these discussions can be
skipped on a first reading.

In particular, we suggest that the reader skip the following sections:
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(1) Comparing big and small topoi, Section
(2) Recovering morphisms, Section

(3) Push and pull, Section
(4) Property (A), Section
(5) Property (B), Section
(6)
(7)
(8)
9)

Property (C), Section
Topological invariance of the small étale site, Section
Integral universally injective morphisms, Section

Big sites and pushforward, Section

(10) Exactness of big lower shriek, Section

Besides these sections there are some sporadic results that may be skipped that the
reader can recognize by the keywords given above.

3. Prologue

These lectures are about another cohomology theory. The first thing to remark is
that the Zariski topology is not entirely satisfactory. One of the main reasons that
it fails to give the results that we would want is that if X is a complex variety and
F is a constant sheaf then

HY(X,F)=0, foralli>0.

The reason for that is the following. In an irreducible scheme (a variety in par-
ticular), any two nonempty open subsets meet, and so the restriction mappings of
a constant sheaf are surjective. We say that the sheaf is flasque. In this case, all
higher Cech cohomology groups vanish, and so do all higher Zariski cohomology
groups. In other words, there are “not enough” open sets in the Zariski topology
to detect this higher cohomology.

On the other hand, if X is a smooth projective complex variety, then
HEHmX(X(C),A)=A for A=1Z, Z/nZ,

where X (C) means the set of complex points of X. This is a feature that would be
nice to replicate in algebraic geometry. In positive characteristic in particular.

4. The étale topology

It is very hard to simply “add” extra open sets to refine the Zariski topology.
One efficient way to define a topology is to consider not only open sets, but also
some schemes that lie over them. To define the étale topology, one considers all
morphisms ¢ : U — X which are étale. If X is a smooth projective variety over C,
then this means

(1) U is a disjoint union of smooth varieties, and
(2) ¢ is (analytically) locally an isomorphism.
The word “analytically” refers to the usual (transcendental) topology over C. So

the second condition means that the derivative of ¢ has full rank everywhere (and
in particular all the components of U have the same dimension as X).

A double cover — loosely defined as a finite degree 2 map between varieties — for
example

Spec(CJt]) — Spec(C[t]), t+—— t*
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will not be an étale morphism if it has a fibre consisting of a single point. In the
example this happens when ¢ = 0. For a finite map between varieties over C to
be étale all the fibers should have the same number of points. Removing the point
t = 0 from the source of the map in the example will make the morphism étale.
But we can remove other points from the source of the morphism also, and the
morphism will still be étale. To consider the étale topology, we have to look at
all such morphisms. Unlike the Zariski topology, these need not be merely open
subsets of X, even though their images always are.

Definition 4.1. A family of morphisms {¢; : U; — X}ier is called an étale
covering if each ¢; is an étale morphism and their images cover X, ie., X =

Uie] ©i(U;).

This “defines” the étale topology. In other words, we can now say what the sheaves
are. An étale sheaf F of sets (resp. abelian groups, vector spaces, etc) on X is the
data:
(1) for each étale morphism ¢ : U — X a set (resp. abelian group, vector space,
etc) F(U),
(2) for each pair U, U’ of étale schemes over X, and each morphism U — U’
over X (which is automatically étale) a restriction map pg/ : F(U) — F(U)

These data have to satisfy the condition that pg = id in case of the identity
morphism U — U and that pg/opgj/ = pg” when we have morphisms U — U’ — U”
of schemes étale over X as well as the following sheaf axiom:

(*) for every étale covering {¢; : U; — U};cr, the diagram

) —— F(U) —— et F(U;) IL; jer F (Ui xu Uj)

R

is exact in the category of sets (resp. abelian groups, vector spaces, etc).

Remark|/4.2. In the last statement, it is essential not to forget the case where i = j
which is in general a highly nontrivial condition (unlike in the Zariski topology).
In fact, frequently important coverings have only one element.

Since the identity is an étale morphism, we can compute the global sections of an
étale sheaf, and cohomology will simply be the corresponding right-derived functors.
In other words, once more theory has been developed and statements have been
made precise, there will be no obstacle to defining cohomology.

5. Feats of the étale topology
For a natural number n € N = {1,2,3,4,...} it is true that
H?,,. (P&, Z/nZ) = Z/nZ.

étale
More generally, if X is a complex variety, then its étale Betti numbers with coeffi-
cients in a finite field agree with the usual Betti numbers of X (C), i.e.,

dimg, HZ/yo (X, Fy) = dimp, HE.,,;(X(C),F,).

étale
This is extremely satisfactory. However, these equalities only hold for torsion coef-
ficients, not in general. For integer coeflicients, one has

HZ,,. (P&, Z) =0.

étale
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By contrast H3,,,;(P'(C),Z) = Z as the topological space P!(C) is homeomorphic
to a 2-sphere. There are ways to get back to nontorsion coefficients from torsion
ones by a limit procedure which we will come to shortly.

6. A computation

03N8 How do we compute the cohomology of P%; with coefficients A = Z/nZ? We
use Cech cohomology. A covering of P is given by the two standard opens
Uy, Uy, which are both isomorphic to AC, and whose intersection is isomorphic
to A5\ {0} = G,,.c. It turns out that the Mayer-Vietoris sequence holds in étale
cohomology This gives an exact sequence
Hl y (UOOUl& A) - H’Ltale(Plc‘ﬂ A) - H’Ltale(UO’A)@Hétale(UbA) — Hztale(UomUhA)

étale
To get the answer we expect, we would need to show that the direct sum in the

third term vanishes. In fact, it is true that, as for the usual topology,
Hq

étale

(AG,A) =0 forq>1,

and

A ifg=1, and
HY 1 (AG\ {0}, A) = {0 for ¢ > 2.

These results are already quite hard (what is an elementary proof?). Let us explain
how we would compute this once the machinery of étale cohomology is at our
disposal.

Higher cohomology. This is taken care of by the following general fact: if X is
an affine curve over C, then

Hq

étale

(X,Z/nZ) =0 for q>2.

This is proved by considering the generic point of the curve and doing some Galois
cohomology. So we only have to worry about the cohomology in degree 1.

Cohomology in degree 1. We use the following identifications:

Hl,.0 (X, Z/nZ) = sheaves of sets F on the étale site X¢sqc endowed with an / ~
étate S S/TE) = action Z/nZ x F — F such that F is a Z/nZ-torsor. -

| morphisms ¥ — X which are finite étale together / ~
~ | with a free Z/nZ action such that X =Y/(Z/nZ).

The first identification is very general (it is true for any cohomology theory on a
site) and has nothing to do with the étale topology. The second identification is
a consequence of descent theory. The last set describes a collection of geometric
objects on which we can get our hands.

The curve A§ has no nontrivial finite étale covering and hence H}, ;. (A&, Z/nZ) =
0. This can be seen either topologically or by using the argument in the next
paragraph.

Let us describe the finite étale coverings ¢ : Y — A \ {0}. It suffices to consider
the case where Y is connected, which we assume. We are going to find out what Y
can be by applying the Riemann-Hurwitz formula (of course this is a bit silly, and
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you can go ahead and skip the next section if you like). Say that this morphism is
n to 1, and consider a projective compactification

Y Y

AL\ {0}——Pg

Even though ¢ is étale and does not ramify, ¢ may ramify at 0 and co. Say that
the preimages of 0 are the points ¥, ..., ¥y, with indices of ramification eq,...e,,
and that the preimages of co are the points ¥/, ...,y with indices of ramification
di,...ds. Inparticular, " e; =n =) d;. Applying the Riemann-Hurwitz formula,
we get

29y —2=-2n+» (es— 1)+ (dj —1)

and therefore gy = 0,7 = s =1and e; = d; = n. Hence Y = A{ \ {0}, and it
is easy to see that ¢(z) = Az" for some A € C*. After reparametrizing Y we may
assume A = 1. Thus our covering is given by taking the nth root of the coordinate

on AL\ {0}.

Remember that we need to classify the coverings of A§ \ {0} together with free
Z /nZ-actions on them. In our case any such action corresponds to an automor-
phism of Y sending z to (,z, where (,, is a primitive nth root of unity. There are
¢(n) such actions (here ¢(n) means the Euler function). Thus there are exactly
¢(n) connected finite étale coverings with a given free Z/nZ-action, each corre-
sponding to a primitive nth root of unity. We leave it to the reader to see that the
disconnected finite étale degree n coverings of A& \ {0} with a given free Z/nZ-
action correspond one-to-one with nth roots of 1 which are not primitive. In other
words, this computation shows that

H} o (ASN\ {0}, Z/nZ) = Hom(u,(C), Z/nZ) = Z/nZ.

étale

The first identification is canonical, the second isn’t, see Remark [69.5] Since the
proof of Riemann-Hurwitz does not use the computation of cohomology, the above
actually constitutes a proof (provided we fill in the details on vanishing, etc).

7. Nontorsion coefficients

03N9 To study nontorsion coefficients, one makes the following definition:
étale(X’ Qf) = (hmn étale(X7 Z/énz)) ®Ze QZ'

The symbol lim,, denote the limit of the system of cohomology groups HY, . (X, Z/("Z)
indexed by n, see Categories, Section Thus we will need to study systems of
sheaves satisfying some compatibility conditions.

8. Sheaf theory

03NA At this point we start talking about sites and sheaves in earnest. There is an
amazing amount of useful abstract material that could fit in the next few sections.
Some of this material is worked out in earlier chapters, such as the chapter on sites,
modules on sites, and cohomology on sites. We try to refrain from adding too much
material here, just enough so the material later in this chapter makes sense.
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9. Presheaves
A reference for this section is Sites, Section

Definition 9.1. Let C be a category. A presheaf of sets (respectively, an abelian
presheaf) on C is a functor C°PP — Sets (resp. Ab).

Terminology. If U € Ob(C), then elements of F(U) are called sections of F over
U. For ¢ : V. — U in C, the map F(y) : F(U) — F(V) is called the restriction
map and is often denoted s — s|y or sometimes s — @*s. The notation s|y is
ambiguous since the restriction map depends on ¢, but it is a standard abuse of
notation. We also use the notation I'(U, F) = F(U).

Saying that F is a functor means that if W — V — U are morphisms in C and
s € T'(U, F) then (s|v)|w = s|w, with the abuse of notation just seen. Moreover,
the restriction mappings corresponding to the identity morphisms idy : U — U are
the identity.

The category of presheaves of sets (respectively of abelian presheaves) on C is de-
noted PSh(C) (resp. PAb(C)). It is the category of functors from CPP to Sets (resp.
Ab), which is to say that the morphisms of presheaves are natural transformations
of functors. We only consider the categories PSh(C) and PAb(C) when the category
C is small. (Our convention is that a category is small unless otherwise mentioned,
and if it isn’t small it should be listed in Categories, Remark [2.2])

Example 9.2. Given an object X € Ob(C), we consider the functor

hx : corp — Sets
U — hx(U) = MOI‘c(U,X)
VEHU — po—:hx(U)— hx(V).
It is a presheaf, called the representable presheaf associated to X. It is not true
that representable presheaves are sheaves in every topology on every site.

Lemma 9.3 (Yoneda). LetC be a category, and X,Y € Ob(C). There is a natural
bijection
More (X, Y) — MOTpSh(c) (hX7 hy)
w — hw:'(/JO—:hx—)hy.

Proof. See Categories, Lemma 3.5 O

10. Sites

Definition 10.1. Let C be a category. A family of morphisms with fized target
U ={p;:U; = Ulics is the data of

(1) an object U € C,

(2) a set I (possibly empty), and

(3) for all ¢ € I, a morphism ¢; : U; — U of C with target U.

There is a notion of a morphism of families of morphisms with fized target. A
special case of that is the notion of a refinement. A reference for this material is

Sites, Section


https://stacks.math.columbia.edu/tag/03NC
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Definition 10.2. A siteﬂ consists of a category C and a set Cov(C) consisting of
families of morphisms with fixed target called coverings, such that
(1) (isomorphism) if ¢ : V' — U is an isomorphism in C, then {¢ : V — U} is
a covering,
(2) (locality) if {¢; : U; — U}ier is a covering and for all ¢ € I we are given a
covering {w” : Uij — Ui}jEI“ then

{pioj 1 Uy — U}(i,j)eHie,{i}Xh

is also a covering, and
(3) (base change) if {U; — U}iey is a covering and V' — U is a morphism in C,
then
(a) for all ¢ € I the fibre product U; xy V exists in C, and
(b) {U; xu V= V}er is a covering.

For us the category underlying a site is always “small”, i.e., its collection of objects
form a set, and the collection of coverings of a site is a set as well (as in the
definition above). We will mostly, in this chapter, leave out the arguments that cut
down the collection of objects and coverings to a set. For further discussion, see
Sites, Remark

Example| 10.3. If X is a topological space, then it has an associated site Xz,
defined as follows: the objects of Xz, are the open subsets of X, the morphisms
between these are the inclusion mappings, and the coverings are the usual topolog-
ical (surjective) coverings. Observe that if U,V C W C X are open subsets then
U xw V =UNYV exists: this category has fiber products. All the verifications are
trivial and everything works as expected.

11. Sheaves

Definition 11.1. A presheaf F of sets (resp. abelian presheaf) on a site C is said
to be a separated presheaf if for all coverings {¢; : U; — U}ier € Cov(C) the map

FU) — Hiel F(U:)

is injective. Here the map is s — (s|y,)icr- The presheaf F is a sheaf if for all
coverings {y; : U; — U}ier € Cov(C), the diagram

(11.1.1) FU) —TLic; FWU) —_Z 11 jes FUi xv Uy),

R

where the first map is s — (s|y,)ier and the two maps on the right are (s;);cr —
(silu,xpu;) and (sq)ier = (sjlu,xpu;), is an equalizer diagram in the category of
sets (resp. abelian groups).

Remark 11.2. For the empty covering (where I = ), this implies that F(0) is an
empty product, which is a final object in the corresponding category (a singleton,
for both Sets and Ab).

Example 11.3. Working this out for the site Xz, associated to a topological

space, see Example gives the usual notion of sheaves.

What we call a site is a called a category endowed with a pretopology in [AGVTI], Exposé II,
Définition 1.3]. In [Art62] it is called a category with a Grothendieck topology.


https://stacks.math.columbia.edu/tag/03NH
https://stacks.math.columbia.edu/tag/03NI
https://stacks.math.columbia.edu/tag/03NK
https://stacks.math.columbia.edu/tag/03NM
https://stacks.math.columbia.edu/tag/03NN
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Definition 11.4. We denote Sh(C) (resp. Ab(C)) the full subcategory of PSh(C)
(resp. PAD(C)) whose objects are sheaves. This is the category of sheaves of sets
(resp. abelian sheaves) on C.

12. The example of G-sets

Let G be a group and define a site T¢ as follows: the underlying category is the
category of G-sets, i.e., its objects are sets endowed with a left G-action and the
morphisms are equivariant maps; and the coverings of Tg are the families {p; :
Ui — Ulier satistying U = ;¢ ¢:(Us).

There is a special object in the site 7g, namely the G-set G endowed with its natural
action by left translations. We denote it ¢G. Observe that there is a natural group
isomorphism
p: GPP — AutG—S@ts(GG)
g — (h — hg).
In particular, for any presheaf F, the set F(¢G) inherits a G-action via p. (Note
that by contravariance of F, the set F(¢G) is again a left G-set.) In fact, the

functor
Sh(Te¢) — G-Sets
F — f(GG)

is an equivalence of categories. Its quasi-inverse is the functor X — hx. Without
giving the complete proof (which can be found in Sites, Section @) let us try to
explain why this is true.
(1) If S is a G-set, we can decompose it into orbits S = [],.; O;. The sheaf
axiom for the covering {O; — S};cr says that
F(S) — Ilies F(O1) [Lijer F(Oi x5 O5)

_

i€l

is an equalizer. Observing that fibered products in G-Sets are induced from
fibered products in Sets, and using the fact that F(0) is a G-singleton, we
get that

H JT"(O,L X Oj) = HF(O'L)

ijel iel
and the two maps above are in fact the same. Therefore the sheaf axiom
merely says that F(S) = [[;c; F(O:).

(2) If S is the G-set S = G/H and F is a sheaf on T¢, then we claim that

F(G/H) = F(cG)"

and in particular F({*}) = F(gG)“. To see this, let’s use the sheaf axiom
for the covering {¢G — G/H} of S. We have

GG XG/H GG & Gx H
(91,92) +— (91,97 '92)

is a disjoint union of copies of ¢G (as a G-set). Hence the sheaf axiom
reads

F(G/H) — F(6¢G) —_ZIlpen F(cG)

where the two maps on the right are s — (s)pcy and s — (hs)pen. There-
fore F(G/H) = F(cG)" as claimed.


https://stacks.math.columbia.edu/tag/03NO
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This doesn’t quite prove the claimed equivalence of categories, but it shows at least
that a sheaf F is entirely determined by its sections over ¢G. Details (and set
theoretical remarks) can be found in Sites, Section [9]

13. Sheafification

Definition 13.1. Let F be a presheaf on the site C and U = {U; — U} € Cov(C).
We define the zeroth Cech cohomology group of F with respect to U by

HO(U,]:) = {(Si)ieI S HzeI‘F(Ul) such that 3i|U1:><UUj = 3j|Ui><UUj} .

There is a canonical map F(U) — HOU,F), s — (s|u,)ics. We say that a mor-
phism of coverings from a covering V = {V; — V};es to U is a triple (x, @, x;),
where y : V. — U is a morphism, « : J — [ is a map of sets, and for all j € J the
morphism x; fits into a commutative diagram

Vi 5 Uagj)

| |

vV—X U

Given the data x, «, {x;};cs we define
HU,F) — HW,F)
(si)ier — (X] (Sa(j)))ng'
We then claim that

(1) the map is well-defined, and
(2) depends only on x and is independent of the choice of o, {x;} e

We omit the proof of the first fact. To see part (2), consider another triple (¢, 8,1;)
with x = . Then we have the commutative diagram

Vi

Ua(y) Xu Up()

N

V U.

(X3>%3)

Us(j)

Given a section s € F(U), its image in F(V}) under the map given by (x, o, {x;}jes)
is X} 5a(j), and its image under the map given by (¢, 3, {1;}jer) is ¥} sg(;). These
two are equal since by assumption s € H° (U, F) and hence both are equal to the
pullback of the common value

Sa(i)[Uaiy xuUsy = 58)|Uags) x0Us0)

pulled back by the map (x;,;) in the diagram.

Theorem 13.2. Let C be a site and F a presheaf on C.


https://stacks.math.columbia.edu/tag/03NR
https://stacks.math.columbia.edu/tag/03NS
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(1) The rule
U FHU) = colimy covering of v HOU, F)

is a presheaf. And the colimit is a directed one.
) There is a canonical map of presheaves F — FT.
(3) If F is a separated presheaf then F7¥ is a sheaf and the map in (2) is
injective.

(4) F* is a separated presheaf.

) F#* = (F*)T is a sheaf, and the canonical map induces a functorial iso-
morphism

Hom pgy(c) (F,G) = Homgc) (F*,G)

for any G € Sh(C).

Proof. See Sites, Theorem [10.10 a

In other words, this means that the natural map F — F# is a left adjoint to the
forgetful functor Sh(C) — PSh(C).

14. Cohomology

The following is the basic result that makes it possible to define cohomology for
abelian sheaves on sites.

Theorem 14.1. The category of abelian sheaves on a site is an abelian category
which has enough injectives.

Proof. See Modules on Sites, Lemma [3.1] and Injectives, Theorem [7.4] O

So we can define cohomology as the right-derived functors of the sections functor:
if U € Ob(C) and F € Ab(C),

HP(U, F) := R'T(U, F) = H*(T'(U,I%))

where ' — Z° is an injective resolution. To do this, we should check that the
functor I'(U, —) is left exact. This is true and is part of why the category Ab(C) is
abelian, see Modules on Sites, Lemma|[3.I] For more general discussion of cohomol-
ogy on sites (including the global sections functor and its right derived functors),
see Cohomology on Sites, Section

15. The fpqc topology

Before doing étale cohomology we study a bit the fpqc topology, since it works well
for quasi-coherent sheaves.

Definition 15.1. Let T be a scheme. An fpqc covering of T is a family {p; : T; —
T}ier such that
(1) each ; is a flat morphism and (J;.; »i(T;) = T', and
(2) for each affine open U C T there exists a finite set K, amap i: K — I and
affine opens Uy C Ti) such that U = U,c x ©ie) Uigr))-

Remark| 15.2. The first condition corresponds to fp, which stands for fidélement
plat, faithfully flat in french, and the second to qc, quasi-compact. The second part
of the first condition is unnecessary when the second condition holds.

Example 15.3. Examples of fpqc coverings.
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(1) Any Zariski open covering of T is an fpqc covering.

(2) A family {Spec(B) — Spec(A)} is an fpqc covering if and only if A — B is
a faithfully flat ring map.

(3) If f: X — Y is flat, surjective and quasi-compact, then {f : X — Y} is an
fpqc covering.

(4) The morphism ¢ : [[,c a1 Spec(Oay ) = A}, where k is a field, is flat and
surjective. It is not quasi-compact, and in fact the family {p} is not an
fpqc covering.

(5) Write A7 = Spec(k[z,y]). Denote i, : D(z) — A% and i, : D(y) — A3
the standard opens. Then the families {i,,1%,, Spec(k[[z,y]]) — A%} and
{ig, iy, Spec(OAiyo) — A2} are fpqc coverings.

Lemma 15.4. The collection of fpqc coverings on the category of schemes satisfies
the axioms of site.

Proof. See Topologies, Lemma [9.7] O

It seems that this lemma allows us to define the fpqc site of the category of schemes.
However, there is a set theoretical problem that comes up when considering the fpqc
topology, see Topologies, Section [0] It comes from our requirement that sites are
“small”; but that no small category of schemes can contain a cofinal system of fpqc
coverings of a given nonempty scheme. Although this does not strictly speaking
prevent us from defining “partial” fpqc sites, it does not seem prudent to do so.
The work-around is to allow the notion of a sheaf for the fpqc topology (see below)
but to prohibit considering the category of all fpqc sheaves.

Definition 15.5. Let S be a scheme. The category of schemes over S is denoted
Sch/S. Consider a functor F : (Sch/S)°PP — Sets, in other words a presheaf of sets.
We say F satisfies the sheaf property for the fpqc topology if for every fpqc covering
{U; = U};er of schemes over S the diagram is an equalizer diagram.

We similarly say that F satisfies the sheaf property for the Zariski topology if for
every open covering U = |J,c; U; the diagram is an equalizer diagram. See
Schemes, Definition Clearly, this is equivalent to saying that for every scheme
T over S the restriction of F to the opens of T is a (usual) sheaf.

Lemma 15.6. Let F be a presheaf on Sch/S. Then F satisfies the sheaf property
for the fpqc topology if and only if
(1) F satisfies the sheaf property with respect to the Zariski topology, and
(2) for every faithfully flat morphism Spec(B) — Spec(A) of affine schemes
over S, the sheaf aziom holds for the covering {Spec(B) — Spec(A)}.
Namely, this means that

F(Spec(A)) — F(Spec(B)) F(Spec(B ®4 B))
is an equalizer diagram.
Proof. See Topologies, Lemma |9.13 O

An alternative way to think of a presheaf F on Sch/S which satisfies the sheaf
condition for the fpqc topology is as the following data:

(1) for each T'/S, a usual (i.e., Zariski) sheaf Fr on Tz,

(2) for every map f: T" — T over S, a restriction mapping f~'Fr — Fr


https://stacks.math.columbia.edu/tag/03NZ
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such that

(a) the restriction mappings are functorial,

(b) if f: T" — T is an open immersion then the restriction mapping f~1Fr —
Fr is an isomorphism, and

(¢c) for every faithfully flat morphism Spec(B) — Spec(A) over S, the diagram

Fspec(a)(Spec(A)) —— Fapee(n) (SPec(B)) —_— Fspec(BoaB)(Spec(B ®4 B))

is an equalizer.

Data (1) and (2) and conditions (a), (b) give the data of a presheaf on Sch/S
satisfying the sheaf condition for the Zariski topology. By Lemma [15.6| condition
(c) then suffices to get the sheaf condition for the fpqc topology.

Example 15.7. Consider the presheaf

F: (Sch/S)°rr — Ab
T/S — T'(T,Qr/s).

The compatibility of differentials with localization implies that F is a sheaf on the
Zariski site. However, it does not satisfy the sheaf condition for the fpgc topology.
Namely, consider the case S = Spec(F),) and the morphism

¢ : V = Spec(F,[v]) = U = Spec(F,[u])

given by mapping u to vP. The family {¢} is an fpqc covering, yet the restriction
mapping F(U) — F(V) sends the generator du to d(v?) = 0, so it is the zero map,
and the diagram

FU)—2=FV) __ZFV xy V)

R

is not an equalizer. We will see later that F does in fact give rise to a sheaf on the
étale and smooth sites.

Lemma 15.8. Any representable presheaf on Sch/S satisfies the sheaf condition
for the fpqc topology.

Proof. See Descent, Lemma [13.7] (I

We will return to this later, since the proof of this fact uses descent for quasi-
coherent sheaves, which we will discuss in the next section. A fancy way of express-
ing the lemma is to say that the fpqc topology is weaker than the canonical topology,
or that the fpqc topology is subcanonical. In the setting of sites this is discussed in
Sites, Section

Remark| 15.9. The fpqc is finer than the Zariski, étale, smooth, syntomic, and
fppf topologies. Hence any presheaf satisfying the sheaf condition for the fpqc
topology will be a sheaf on the Zariski, étale, smooth, syntomic, and fppf sites. In
particular representable presheaves will be sheaves on the étale site of a scheme for
example.

Example 15.10. Let S be a scheme. Consider the additive group scheme G, s =
A% over S, see Groupoids, Example The associated representable presheaf is
given by

hGn,,s(T) = MOI‘S(T, Ga,S) = F(T, OT)


https://stacks.math.columbia.edu/tag/03O2
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By the above we now know that this is a presheaf of sets which satisfies the sheaf
condition for the fpqc topology. On the other hand, it is clearly a presheaf of rings
as well. Hence we can think of this as a functor

O: (Sch/S)Pr —  Rings
T/S - I(T,0r)

which satisfies the sheaf condition for the fpqc topology. Correspondingly there is
a notion of O@-module, and so on and so forth.

16. Faithfully flat descent

In this section we discuss faithfully flat descent for quasi-coherent modules. More
precisely, we will prove quasi-coherent modules satisfy effective descent with respect
to fpqc coverings.

Definition 16.1. Let U = {t; : T; — T}ies be a family of morphisms of schemes
with fixed target. A descent datum for quasi-coherent sheaves with respect to U is
a collection ((F;)ier, (@ij)i,jer) where

(1) F; is a quasi-coherent sheaf on T;, and
(2) @ij : prgFi — priF; is an isomorphism of modules on T; x1 Tj,

such that the cocycle condition holds: the diagrams

pr31 Pij
* *
pryFi priF;
prm Aojk
*
prsFi

commute on T; x7 Tj X7 Tj,. This descent datum is called effective if there exist
a quasi-coherent sheaf 7 over T' and Or,-module isomorphisms ¢; : t;F = F;
compatible with the maps ¢;;, namely

@i = pri(e;) o pro(e:) '

In this and the next section we discuss some ingredients of the proof of the following
theorem, as well as some related material.

Theorem 16.2. IfV = {T;, — T}icr is an fpge covering, then all descent data for
quasi-coherent sheaves with respect to V are effective.

Proof. See Descent, Proposition [5.2 (]

In other words, the fibered category of quasi-coherent sheaves is a stack on the
fpqc site. The proof of the theorem is in two steps. The first one is to realize that
for Zariski coverings this is easy (or well-known) using standard glueing of sheaves
(see Sheaves, Section and the locality of quasi-coherence. The second step is
the case of an fpqc covering of the form {Spec(B) — Spec(A)} where A — B is a
faithfully flat ring map. This is a lemma in algebra, which we now present.

Descent of modules. If A — B is a ring map, we consider the complex

(B/A)e:B—-B®sB—+B®sB®aB— ...


https://stacks.math.columbia.edu/tag/03O7
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where B is in degree 0, B ® 4 B in degree 1, etc, and the maps are given by
b —» 1®b-0®1,
bp@by = 1®by®b —by®@1@b;+by @b @1,
etc.

Lemma 16.3. If A — B is faithfully flat, then the complex (B/A)e is exact in
positive degrees, and H°((B/A),) = A.

Proof. See Descent, Lemma |3.6 O

Grothendieck proves this in three steps. Firstly, he assumes that the map A — B
has a section, and constructs an explicit homotopy to the complex where A is the
only nonzero term, in degree 0. Secondly, he observes that to prove the result,
it suffices to do so after a faithfully flat base change A — A’, replacing B with
B’ = B®4 A’. Thirdly, he applies the faithfully flat base change A — A’ = B and
remark that the map A’ = B — B’ = B ® 4 B has a natural section.

The same strategy proves the following lemma.

Lemma 16.4. If A — B is faithfully flat and M is an A-module, then the complex
(B/A)e @4 M is ezact in positive degrees, and H°((B/A)e @4 M) = M.

Proof. See Descent, Lemma, 3.6 [

Definition 16.5. Let A — B be a ring map and N a B-module. A descent
datum for N with respect to A — B is an isomorphism ¢ : N @4 B = B®4 N of
B ® 4 B-modules such that the diagram of B ® 4 B ® 4 B-modules

$o1

N®sB®aB B®s N®aB

B®aB®a N
commutes where ¢p1 = ¢ ® idp and similarly for 15 and @gs.

If N = B®4 M for some A-module M, then it has a canonical descent datum given
by the map
Yean: N ®1B — B®y N’
b0®m®b1 — b0®b1®m

Definition 16.6. A descent datum (N, ) is called effective if there exists an
A-module M such that (N,¢) = (B ®a M, @can), with the obvious notion of iso-
morphism of descent data.

Theorem [16.2]is a consequence the following result.

Theorem 16.7. If A — B is faithfully flat then descent data with respect to
A — B are effective.

Proof. See Descent, Proposition See also Descent, Remark for an alter-
native view of the proof. O

Remarks| 16.8. The results on descent of modules have several applications:
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(1) The exactness of the Cech complex in positive degrees for the covering
{Spec(B) — Spec(A)} where A — B is faithfully flat. This will give some
vanishing of cohomology.

(2) If (N, ) is a descent datum with respect to a faithfully flat map A — B,
then the corresponding A-module is given by

- N — B®s N
M—Ker(n — 1®n—<p(n®1)>'

See Descent, Proposition [3.9

17. Quasi-coherent sheaves
We can apply the descent of modules to study quasi-coherent sheaves.
Proposition| 17.1. For any quasi-coherent sheaf F on S the presheaf

Fa:  Sch/S @ — Ab
(f:T—S8) — INT,f*F)

is an O-module which satisfies the sheaf condition for the fpqc topology.

Proof. This is proved in Descent, Lemma We indicate the proof here. As
established in Lemma [15.6] it is enough to check the sheaf property on Zariski
coverings and faithfully flat morphisms of affine schemes. The sheaf property for
Zariski coverings is standard scheme theory, since T'(U,i*F) = F(U) when i : U —
S is an open immersion.

For {Spec(B) — Spec(A)} with A — B faithfully flat and Flspeccay = M this
corresponds to the fact that M = H° (B/A)s ®4 M), i.e., that

0->M—>BIqgM —>BsBs M
is exact by Lemma [16.4} O

There is an abstract notion of a quasi-coherent sheaf on a ringed site. We briefly
introduce this here. For more information please consult Modules on Sites, Section
Let C be a category, and let U be an object of C. Then C/U indicates the
category of objects over U, see Categories, Example If C is a site, then
C/U is a site as well, namely the coverings of V/U are families {V;/U — V/U}
of morphisms of C/U with fixed target such that {V; — V} is a covering of C.
Moreover, given any sheaf F on C the restriction F|c;y (defined in the obvious
manner) is a sheaf as well. See Sites, Section [25|for details.

Definition 17.2. Let C be a ringed site, i.e., a site endowed with a sheaf of rings
O. A sheaf of O-modules F on C is called quasi-coherent if for all U € Ob(C) there
exists a covering {U; — U}ier of C such that the restriction F|¢,y, is isomorphic
to the cokernel of an O-linear map of free O-modules

@kel{ O|C/Ui - @IEL O|C/U'i'

The direct sum over K is the sheaf associated to the presheaf V — @, O(V)
and similarly for the other.

Although it is useful to be able to give a general definition as above this notion is
not well behaved in general.
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Remark| 17.3. In the case where C has a final object, e.g. S, it suffices to check
the condition of the definition for U = S in the above statement. See Modules on
Sites, Lemma [23.3

Theorem 17.4 (Meta theorem on quasi-coherent sheaves). Let S be a scheme.
Let C be a site. Assume that

(1) the underlying category C is a full subcategory of Sch/S,

(2) any Zariski covering of T € Ob(C) can be refined by a covering of C,

(3) S/S is an object of C,

(4) every covering of C is an fpgc covering of schemes.
Then the presheaf O is a sheaf on C and any quasi-coherent O-module on (C,O) is
of the form F® for some quasi-coherent sheaf F on S.

Proof. After some formal arguments this is exactly Theorem[16.2] Details omitted.
In Descent, Proposition we prove a more precise version of the theorem for the
big Zariski, fppf, étale, smooth, and syntomic sites of S, as well as the small Zariski
and étale sites of S. ]

In other words, there is no difference between quasi-coherent modules on the scheme
S and quasi-coherent O-modules on sites C as in the theorem. More precise state-
ments for the big and small sites (Sch/S) tpps, Sétaie, €tc can be found in Descent,
Sections [§ [ and In this chapter we will sometimes refer to a “site as in
Theorem [I7-4]’ in order to conveniently state results which hold in any of those
situations.

18. Cech cohomology

Our next goal is to use descent theory to show that H'(C, F*) = Hy,,.(S,F) for
all quasi-coherent sheaves F on S, and any site C as in Theorem To this end,
we introduce Cech cohomology on sites. See [Art62] and Cohomology on Sites,
Sections [§] [9] and [I0] for more details.

Definition 18.1. Let C be a category, Y = {U; — U}ier a family of morphisms
of C with fixed target, and F € PAb(C) an abelian presheaf. We define the Cech
complex C*(U, F) by

[[7Wi) = ] FWi, xvU)— ] FUi, xv Ui xvUs,) = ...

o€l 10,01 €1 %0,81,02€1

where the first term is in degree 0, and the maps are the usual ones. Again, it is
essential to allow the case ig = i1 etc. The Cech cohomology groups are defined by

HP(U, F) = HP(C*(U, F)).
Lemmal 18.2. The functor é'(lz[, —) is exact on the category PAb(C).

In other words, if 0 — F; — Fo — F3 — 0 is a short exact sequence of presheaves
of abelian groups, then

0—C* (U, F1) = C*(U,Fo) = C*(U, F3) = 0

is a short exact sequence of complexes.
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Proof. This follows at once from the definition of a short exact sequence of presheaves.
Namely, as the category of abelian presheaves is the category of functors on some
category with values in Ab, it is automatically an abelian category: a sequence
F1 — Fo2 — Fs is exact in PAb if and only if for all U € Ob(C), the sequence
F1(U) = Fo(U) — F3(U) is exact in Ab. So the complex above is merely a prod-
uct of short exact sequences in each degree. See also Cohomology on Sites, Lemma

Q.1 O

This shows that H *(U,—) is a 6-functor. We now proceed to show that it is a
universal J-functor. We thus need to show that it is an effaceable functor. We start
by recalling the Yoneda lemma.

Lemma 18.3 (Yoneda Lemma). For any presheaf F on a category C there is a
functorial isomorphism

Hom pgp(c)(hu, F) = F(U).
Proof. See Categories, Lemma [3.5 ]
Given a set E we denote (in this section) Z[E] the free abelian group on E. In a
formula Z[E] = @, 5 Z, i.e., Z[E] is a free Z-module having a basis consisting of

the elements of E. Using this notation we introduce the free abelian presheaf on a
presheaf of sets.

Definition 18.4. Let C be a category. Given a presheaf of sets G, we define the
free abelian presheaf on G, denoted Zg, by the rule

Zg(U) = Z[g(U)]

for U € Ob(C) with restriction maps induced by the restriction maps of G. In the
special case G = hy we write simply Zy = Zy,, .

The functor G — Zg is left adjoint to the forgetful functor PAb(C) — PSh(C).
Thus, for any presheaf F, there is a canonical isomorphism

Hom pap(cy(Zv, F) = Hompgpey (v, F) = F(U)
the last equality by the Yoneda lemma. In particular, we have the following result.

Lemma 18.5. The Cech complex ce (U, F) can be described explicitly as follows

é'(l/ﬂf) = H HompAb(c)(ZUiO,f) — H HomPAb(C)(ZUiOXUUi17'F) — ...
i0€l i0,i1€1
= HompAb(C) @ ZUiU — @ ZUiOXUUil — ... |, F
ig€l 10,01 €1

Proof. This follows from the formula above. See Cohomology on Sites, Lemma

Q.3 O
This reduces us to studying only the complex in the first argument of the last Hom.
Lemma 18.6. The complex of abelian presheaves

. .
zi o Do, D Zugwv, & D Zugxov, v, © o
o€l 0,41 €1 10,i1,i2€1

is exact in all degrees except 0 in PAb(C).
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Proof. For any V € Ob(C) the complex of abelian groups Z,(V) is
Z [[1,,c; Morc(V, Uy,)] + Z {Hio,ilel More(V, Ui, X1 Uil)] .. .=
DBy (2 [iger More(V.Uiy)] = Z [I1,, 5,0 Morg (V. Uy) x Mor, (V, Us,)] = ...)

where
Mor,(V,U;) = {V — U, such that V' — U; — U equals ¢}.
Set Sy, = [ ;e Mory,(V, U;), so that
Z,(V)= @ (Z[S,] < Z[S, x S,]  Z[Sy x Sy x S| < ...).
©:V—=U
Thus it suffices to show that for each S = S, the complex
Z[S| + Z[S x S|+ Z[S x S x S] + ...

is exact in negative degrees. To see this, we can give an explicit homotopy. Fix
s € § and define K : n(g ..s,) 7 Ns,so,....5,)- One easily checks that K is a
nullhomotopy for the operator

P
d: N(s0,...,8p) = Zizo(—l)pn(so,...,gi,.‘.75,9)-
See Cohomology on Sites, Lemma [9.4] for more details. O

030R Lemma 18.7. Let C be a category. If T is an injective object of PAb(C) and U is
a family of morphisms with fixed target in C, then FI”(U,I) =0 for allp > 0.
Proof. The Cech complex is the result of applying the functor Hom pas(e)(—,I) to
the complex Z7,, i.e.,
HP(U,T) = HP(Hompayc)(Zy, T))-

But we have just seen that Z;, is exact in negative degrees, and the functor
Hom papc)(—,Z) is exact, hence Hom papc)(Zg;,Z) is exact in positive degrees. [

030S 'Theorem 18.8. On PAb(C) the functors HP(U,—) are the right derived functors
of HO(U, —).
Proof. By the Lemma m the functors HP (U, —) are universal é-functors since
they are effaceable. So are the right derived functors of H° (U, —). Since they agree

in degree 0, they agree by the universal property of universal d-functors. For more
details see Cohomology on Sites, Lemma [9.6] O

030T Remark 18.9. Observe that all of the preceding statements are about presheaves
so we haven’t made use of the topology yet.

19. The Cech-to-cohomology spectral sequence

030U This spectral sequence is fundamental in proving foundational results on cohomol-
ogy of sheaves.

030V  Lemma 19.1. The forgetful functor Ab(C) — PAb(C) transforms injectives into
injectives.

Proof. This is formal using the fact that the forgetful functor has a left adjoint,
namely sheafification, which is an exact functor. For more details see Cohomology
on Sites, Lemma [10.1 (]
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Theorem 19.2. Let C be a site. For any coveringUd = {U; — Ul}ier of U € Ob(C)
and any abelian sheaf F on C there is a spectral sequence

EYT = HP(U, HY(F)) = HP (U, F),
where HY(F) is the abelian presheaf V — HY(V, F).

Proof. Choose an injective resolution F — Z* in Ab(C), and consider the double
complex C*(U,Z*) and the maps

(U, I°) — C*(U,1°)

|

C*(U,F)

Here the horizontal map is the natural map I'(U, I*) — C°(U, Z*) to the left column,
and the vertical map is induced by F — Z° and lands in the bottom row. By
assumption, Z*® is a complex of injectives in Ab(C), hence by Lemma m it is a
complex of injectives in PAb(C). Thus, the rows of the double complex are exact
in positive degrees (Lemma , and the kernel of CO(U,Z*) — C* (U, Z*) is equal
to T'(U,Z°*), since Z*® is a complex of sheaves. In particular, the cohomology of the
total complex is the standard cohomology of the global sections functor H°(U, F).

For the vertical direction, the gth cohomology group of the pth column is
I 7, xv ... x0 U, F) = HYF) (Ui, xv .. xv Us,)

0,0, 10senrip

in the entry E7’?. So this is a standard double complex spectral sequence, and
the Es-page is as prescribed. For more details see Cohomology on Sites, Lemma

[10.6l O

Remark| 19.3. This is a Grothendieck spectral sequence for the composition of
functors

Ab(C) —s PAb(C) 15 Ab.

20. Big and small sites of schemes

Let S be a scheme. Let 7 be one of the topologies we will be discussing. Thus
T € {fppf, syntomic, smooth, étale, Zariski}. Of course if you are only interested
in the étale topology, then you can simply assume 7 = étale throughout. Moreover,
we will discuss étale morphisms, étale coverings, and étale sites in more detail
starting in Section In order to proceed with the discussion of cohomology
of quasi-coherent sheaves it is convenient to introduce the big 7-site and in case
T € {étale, Zariski}, the small 7-site of S. In order to do this we first introduce
the notion of a 7-covering.

Definition 20.1. (See Topologies, Definitions and ) Let

T € {fppf, syntomic, smooth, étale, Zariski}. A family of morphisms of schemes
{fi : T; = T}ier with fixed target is called a 7-covering if and only if each f; is
flat of finite presentation, syntomic, smooth, étale, resp. an open immersion, and

we have | fi(T;) =T.
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The class of all T-coverings satisfies the axioms (1), (2) and (3) of Definition [10.2]

(our definition of a site), see Topologies, Lemmas and

Let us introduce the sites we will be working with. Contrary to what happens
in [AGVTI], we do not want to choose a universe. Instead we pick a “partial
universe” (which is a suitably large set as in Sets, Section , and consider all
schemes contained in this set. Of course we make sure that our favorite base scheme
S is contained in the partial universe. Having picked the underlying category we
pick a suitably large set of T-coverings which turns this into a site. The details are
in the chapter on topologies on schemes; there is a lot of freedom in the choices
made, but in the end the actual choices made will not affect the étale (or other)
cohomology of S (just as in [AGVTI] the actual choice of universe doesn’t matter
at the end). Moreover, the way the material is written the reader who is happy
using strongly inaccessible cardinals (i.e., universes) can do so as a substitute.

Definition 20.2. Let S be a scheme. Let 7 € {fppf, syntomic, smooth, étale,
Zariski}.

(1) A big T-site of S is any of the sites (Sch/.S), constructed as explained above
and in more detail in Topologies, Definitions and

(2) If 7 € {étale, Zariski}, then the small T-site of S is the full subcategory S-
of (Sch/S), whose objects are schemes T over S whose structure morphism
T — S is étale, resp. an open immersion. A covering in S, is a covering
{U; = U} in (Sch/S), such that U is an object of S;.

The underlying category of the site (Sch/S), has reasonable “closure” properties,
i.e., given a scheme T in it any locally closed subscheme of T' is isomorphic to an
object of (Sch/S),. Other such closure properties are: closed under fibre products of
schemes, taking countable disjoint unions, taking finite type schemes over a given
scheme, given an affine scheme Spec(R) one can complete, localize, or take the
quotient of R by an ideal while staying inside the category, etc. On the other hand,
for example arbitrary disjoint unions of schemes in (Sch/S), will take you outside
of it. Also note that, given an object T' of (Sch/S), there will exist T-coverings
{T; — T}ier (as in Definition [20.1]) which are not coverings in (Sch/S), for example
because the schemes T; are not objects of the category (Sch/S),. But our choice
of the sites (Sch/S), is such that there always does exist a covering {U; — T},
of (Sch/S), which refines the covering {T; — T'};cr, see Topologies, Lemmas
4.7 and We will mostly ignore these issues in this chapter.

If F is a sheaf on (Sch/S), or S;, then we denote
H?(U,F), in particular HEZ(S, F)

the cohomology groups of F over the object U of the site, see Section[T4] Thus we
have H?ppf(SV ‘F)’ nyntomic(57 'F)? Hfmooth(S7 ‘F)7 H(Zé)tale(S7 f)’ and Hgar(s7 ]:)
The last two are potentially ambiguous since they might refer to either the big or
small étale or Zariski site. However, this ambiguity is harmless by the following

lemma.

Lemma 20.3. Let 7 € {étale, Zariski}. If F is an abelian sheaf defined on
(Sch/S)., then the cohomology groups of F over S agree with the cohomology groups
of Fls, over S.
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Proof. By Topologies, Lemmas and the functors S, — (Sch/S), satisfy
the hypotheses of Sites, Lemma Hence our lemma follows from Cohomology
on Sites, Lemma O

The category of sheaves on the big or small étale site of S depends only on the
full subcategory of (Sch/S)staie OF Sétare consisting of affines and one only needs
to consider the standard étale coverings between them (as defined below). This
gives rise to sites (Aff/S)ctate and Saf fine étale, Se€ Topologies Deﬁnition The
comparison results are proven in Topologies, Lemmas [£.11] and [£.12] Here is our
definition of standard coverings in some of the topologles we will consider in this
chapter.

Definition 20.4. (See Topologies, Deﬁnitions n . . ﬂ, and . ) Let 7 €
{fppf, syntomic, smooth, étale, Zariski}. Let T be an affine scheme. A standard

T-covering of T is a family {f; : U; — T'}j=1,m with each U, is affine, and each
f; flat and of finite presentation, standard syntomic, standard smooth, étale, resp.
the immersion of a standard principal open in T"and T' = | f;(U;).

Lemma 20.5. Let T € {fppf, syntomic, smooth, étale, Zariski}. Any T-covering
of an affine scheme can be refined by a standard T-covering.

Proof. See Topologies, Lemmas and O

For completeness we state and prove the invariance under choice of partial universe
of the cohomology groups we are considering. We will prove invariance of the small
étale topos in Lemma [21.2 below. For notation and terminology used in this lemma
we refer to Topologies, Section

Lemma 20.6. Let 7 € {fppf, syntomic, smooth, étale, Zariski}. Let S be a
scheme. Let (Sch/S), and (Sch’/S), be two big T-sites of S, and assume that the
first is contained in the second. In this case
(1) for any abelian sheaf F' defined on (Sch'/S), and any object U of (Sch/S),
we have
HE(U, F'l(senss),) = H2(U, F')
In words: the cohomology of F' over U computed in the bigger site agrees
with the cohomology of F' restricted to the smaller site over U.
(2) for any abelian sheaf F on (Sch/S), there is an abelian sheaf F' on (Sch/S).
whose restriction to (Sch/S + s isomorphic to F.

Proof. By Topologies, Lemma [12.2| the inclusion functor (Sch/S), — (Sch’/S),
satisfies the assumptions of Sites Lemma [21.8 This implies (2) and (1) follows
from Cohomology on Sites, Lemma O

21. The étale topos

A topos is the category of sheaves of sets on a site, see Sites, Definition Hence
it is customary to refer to the use the phrase “étale topos of a scheme” to refer
to the category of sheaves on the small étale site of a scheme. Here is the formal
definition.

Definition 21.1. Let S be a scheme.

(1) The étale topos, or the small étale topos of S is the category Sh(Ssiare) of
sheaves of sets on the small étale site of S.
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(2) The Zariski topos, or the small Zariski topos of S is the category Sh(Sza:)
of sheaves of sets on the small Zariski site of .S.

(3) For 7 € {fppf, syntomic, smooth, étale, Zariski} a big T-topos is the cate-
gory of sheaves of set on a big 7-topos of S.

Note that the small Zariski topos of S is simply the category of sheaves of sets on
the underlying topological space of S, see Topologies, Lemma Whereas the
small étale topos does not depend on the choices made in the construction of the
small étale site, in general the big topoi do depend on those choices.

It turns out that the big or small étale topos only depends on the full subcategory
of (Sch/S)étaie Or Sstare consisting of affines; see Topologies, Lemmas and
We will use this for example in the proof of the following lemma.

Lemma 21.2. Let S be a scheme. The étale topos of S is independent (up to
canonical equivalence) of the construction of the small étale site in Definition ,

Proof. We have to show, given two big étale sites Schggqre and Schl,,;. containing

S, then Sh(S¢tare) = Sh(S%,,.) with obvious notation. By Topologies, Lemma

étale
we may assume Schgare C Schlyy.. By Sets, Lemma any affine scheme
étale over S is isomorphic to an object of both Sch¢sare and Schly,,.. Thus the

induced functor Suf fine,étate — Sy, f fine étale 1S A1l equivalence. Moreover, it is clear

that both this functor and a quasi-inverse map transform standard étale coverings
into standard étale coverings. Hence the result follows from Topologies, Lemma
4.12] O

22. Cohomology of quasi-coherent sheaves

We start with a simple lemma (which holds in greater generality than stated). It
says that the Cech complex of a standard covering is equal to the Cech complex of
an fpqc covering of the form {Spec(B) — Spec(A)} with A — B faithfully flat.

Lemma 22.1. Let 7 € {fppf,syntomic, smooth, étale, Zariski}. Let S be a
scheme. Let F be an abelian sheaf on (Sch/S)., or on S. in case T = étale, and
let U = {U; — Utier be a standard 7-covering of this site. Let V = [[,.; U;. Then
(1) V is an affine scheme,
(2) YV ={V — U} is an fpgc covering and also a T-covering unless T = Zariski,
(3) the Cech complexes C*(U, F) and C*(V, F) agree.

Proof. The defintion of a standard 7-covering is given in Topologies, Definition

and By definition each of the schemes U; is affine and I is a

finite set. Hence V is an affine scheme. It is clear that V' — U is flat and surjective,
hence V is an fpqc covering, see Example Excepting the Zariski case, the
covering V is also a T-covering, see Topologies, Definition and

Note that I is a refinement of V and hence there is a map of Cech complexes
é'(V, F)— ce (U, F), see Cohomology on Sites, Equation . Next, we observe
that if T =] jes T 1s a disjoint union of schemes in the site on which F is defined
then the family of morphisms with fixed target {T; — T’} ¢, is a Zariski covering,
and so

(22.1.1) Fo =rIL ., =11, 71
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by the sheaf condition of F. This implies the map of Cech complexes above is an
isomorphism in each degree because
\%4 Xy ... Xy V= Hio,...ip Uio XU ... Xy Uip

as schemes. O

Note that Equality (22.1.1)) is false for a general presheaf. Even for sheaves it does
not hold on any site, since coproducts may not lead to coverings, and may not be
disjoint. But it does for all the usual ones (at least all the ones we will study).

Remark| 22.2. In the statement of Lemma the covering U is a refinement of
V but not the other way around. Coverings of the form {V — U} do not form an
initial subcategory of the category of all coverings of U. Yet it is still true that we
can compute Cech cohomology H™(U, F) (which is defined as the colimit over the
opposite of the category of coverings U of U of the Cech cohomology groups of F
with respect to U) in terms of the coverings {V — U}. We will formulate a precise
lemma (it only works for sheaves) and add it here if we ever need it.

Lemma 22.3 (Locality of cohomology). Let C be a site, F an abelian sheaf on C,
U an object of C, p > 0 an integer and £ € HP(U, F). Then there exists a covering
U={U; = Uticr of U in C such that |y, =0 for alli € I.

Proof. Choose an injective resolution F — Z°. Then £ is represented by a cocycle
€ € IP(U) with d?(€) = 0. By assumption, the sequence ZP~! — 7P — ZP*1 in
exact in Ab(C), which means that there exists a covering U = {U; — U},¢cs such
that €|y, = dP~1(&;) for some & € ZP~'(U;). Since the cohomology class &|y, is
represented by the cocycle E |y, which is a coboundary, it vanishes. For more details
see Cohomology on Sites, Lemma [7.3 (|

Theorem 22.4. Let S be a scheme and F a quasi-coherent Og-module. Let C be
either (Sch/S), for T € {fppf, syntomic, smooth, étale, Zariski} or Setare. Then

HP(S,F) = HE(S, F*)
for all p > 0 where
(1) the left hand side indicates the usual cohomology of the sheaf F on the

underlying topological space of the scheme S, and
(2) the right hand side indicates cohomology of the abelian sheaf F* (see Propo-

sition on the site C.

Proof. We are going to show that HP(U, f*F) = HP(U,F?) for any object f :
U — S of the site C. The result is true for p = 0 by the sheaf property.

Assume that U is affine. Then we want to prove that H2(U, F*) = 0 for all p > 0.
We use induction on p.

p =1 Pick ¢ € H}(U,F*). By Lemma there exists an fpqc covering U =
{U; — U}er such that &|y, = 0 for all ¢ € I. Up to refining U, we
may assume that U/ is a standard 7-covering. Applying the spectral se-
quence of Theorem [19.2] we see that £ comes from a cohomology class
€ € H'(U, F*). Consider the covering V = {Il;c; Us — U}. By Lemma
H*U,F*) = H*(V,F*). On the other hand, since V is a cover-
ing of the form {Spec(B) — Spec(A)} and f*F = M for some A-module


https://stacks.math.columbia.edu/tag/03P0
https://stacks.math.columbia.edu/tag/03P1
https://stacks.math.columbia.edu/tag/03P2

03P3

03YZ

03P4

ETALE COHOMOLOGY 26

M, we sce the Cech complex C*(V,F) is none other than the complex
(B/A)e ®4 M. Now by Lemma [16.4] H?((B/A)s ®4 M) = 0 for p > 0,
hence 5: 0 and so £ = 0.

p > 1 Pick £ € HP(U, F*). By Lemma there exists an fpqc covering U =
{U; = U}er such that €|y, = 0 for all ¢ € I. Up to refining U, we may
assume that U is a standard 7-covering. We apply the spectral sequence of
Theorem @ Observe that the intersections U;, X ... Xy U;, are affine,
so that by induction hypothesis the cohomology groups

Ep" = H"(U, H'(F*"))

vanish for all 0 < ¢ < p. We see that & must come from a £ € ﬁp(u,fa).
Replacing ¢ with the covering V containing only one morphism and using
Lemma again, we see that the Cech cohomology class 5 must be zero,
hence £ = 0.
Next, assume that U is separated. Choose an affine open covering U = J;; U; of
U. The family U = {U; — U};er is then an fpqc covering, and all the intersections
Ui, Xu ... xyu U;, are affine since U is separated. So all rows of the spectral sequence
of Theorem [19.2] are zero, except the zeroth row. Therefore

HY(U, F*) = HPU, F*) = 0" (U, F) = H (U, F)

where the last equality results from standard scheme theory, see Cohomology of
Schemes, Lemma |2.6)

The general case is technical and (to extend the proof as given here) requires a
discussion about maps of spectral sequences, so we won’t treat it. It follows from
Descent, Proposition (whose proof takes a slightly different approach) combined
with Cohomology on Sites, Lemma [7.1 (]

Remark| 22.5. Comment on Theorem Since S is a final object in the cate-
gory C, the cohomology groups on the right-hand side are merely the right derived
functors of the global sections functor. In fact the proof shows that H?(U, f*F) =
HE(U, F*) for any object f: U — S of the site C.

23. Examples of sheaves

Let S and 7 be as in Section We have already seen that any representable
presheaf is a sheaf on (Sch/S). or S;, see Lemma and Remark Here are
some special cases.

Definition 23.1. On any of the sites (Sch/S), or S; of Section

(1) The sheaf T — I'(T,Or) is denoted Og, or G, or G, s if we want to
indicate the base scheme.

(2) Similarly, the sheaf T+ I'(T, O%) is denoted OF%, or Gy, or G, g if we
want to indicate the base scheme.

(3) The constant sheaf Z/nZ on any site is the sheafification of the constant
presheaf U — Z/nZ.

The first is a sheaf by Theorem [I7.4]for example. The second is a sub presheaf of the
first, which is easily seen to be a sheaf itself. The third is a sheaf by definition. Note
that each of these sheaves is representable. The first and second by the schemes
G5 and Gy, s, see Groupoids, Section [dl The third by the finite étale group
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scheme Z/nZg sometimes denoted (Z/nZ)s which is just n copies of S endowed
with the obvious group scheme structure over S, see Groupoids, Example [5.6] and
the following remark.

Remark 23.2. Let G be an abstract group. On any of the sites (Sch/S), or S,
of Section the sheafification G of the constant presheaf associated to G in the
Zariski topology of the site already gives

I'(U,G) = {Zariski locally constant maps U — G}

This Zariski sheaf is representable by the group scheme Gg according to Groupoids,
Example By Lemma any representable presheaf satisfies the sheaf condi-
tion for the 7-topology as well, and hence we conclude that the Zariski sheafification
G above is also the 7-sheafification.

Definition 23.3. Let S be a scheme. The structure sheaf of S is the sheaf of rings
Og on any of the sites Szqr, Sétaie, or (Sch/S), discussed above.

If there is some possible confusion as to which site we are working on then we will
indicate this by using indices. For example we may use Og to stress the fact
that we are working on the small étale site of S.

étale

Remark| 23.4. In the terminology introduced above a special case of Theorem
224 is

7

prpf

for all p > 0. Moreover, we could use the notation H]’prf (X,0x) to indicate the
cohomology of the structure sheaf on the big fppf site of X.

(X,G,) =HY,,,.(X,G,) =HY, (X,G,) = H’(X,0x)

24. Picard groups
The following theorem is sometimes called “Hilbert 90"
Theorem 24.1. For any scheme X we have canonical identifications

H}ppf(Xma):Hl (X, Gm)

syntomic

= H! (X,Gn)

smooth

= Hc}tale (X, Gm)

= Héar(X’ Gm)

= Pic(X)

=H' (X,0%)
Proof. Let 7 be one of the topologies considered in Section By Cohomology
on Sites, Lemma [6.1] we see that H1(X, G,,,) = H(X, Of) = Pic(O,) where O, is
the structure sheaf of the site (Sch/X),. Now an invertible O,-module is a quasi-

coherent O,-module. By Theorem [I7.4] or the more precise Descent, Proposition
8.9 we see that Pic(O;) = Pic(X). The last equality is proved in the same way. O

25. The étale site

At this point we start exploring the étale site of a scheme in more detail. As a first
step we discuss a little the notion of an étale morphism.
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26. Etale morphisms

For more details, see Morphisms, Section for the formal definition and Etale
Morphisms, Sections and [19]for a survey of interesting properties

of étale morphisms.

Recall that an algebra A over an algebraically closed field k is smooth if it is of
finite type and the module of differentials {24, is finite locally free of rank equal
to the dimension. A scheme X over k is smooth over k if it is locally of finite type
and each affine open is the spectrum of a smooth k-algebra. If k is not algebraically
closed then a k-algebra A is a smooth k-algebra if A ®y, k is a smooth k-algebra. A
ring map A — B is smooth if it is flat, finitely presented, and for all primes p C A
the fibre ring x(p) ® 4 B is smooth over the residue field x(p). More generally, a
morphism of schemes is smooth if it is flat, locally of finite presentation, and the
geometric fibers are smooth.

For these facts please see Morphisms, Section Using this we may define an étale
morphism as follows.

Definition 26.1. A morphism of schemes is étale if it is smooth of relative di-
mension 0.

In particular, a morphism of schemes X — § is étale if it is smooth and Qx5 = 0.

Proposition 26.2. Facts on étale morphisms.

(1) Let k be a field. A morphism of schemes U — Spec(k) is étale if and only
if U = [1,c; Spec(k;) such that for each i € I the ring k; is a field which is
a finite separable extension of k.

(2) Let ¢ : U — S be a morphism of schemes. The following conditions are
equivalent:
(a) ¢ is élale,
(b) @ is locally finitely presented, flat, and all its fibres are étale,
(¢c) ¢ is flat, unramified and locally of finite presentation.

(3) A ring map A — B is étale if and only if B = Alzy,...,zn)/(f1,-- s fn)

such that A = det (gg’;) 18 invertible in B.

) The base change of an étale morphism is étale.

) Compositions of étale morphisms are étale.

) Fibre products and products of étale morphisms are étale.

) An étale morphism has relative dimension 0.

) Let Y — X be an étale morphism. If X is reduced (respectively regular)
then so is Y.
(9) Etale morphisms are open.

(10) If X — S and Y — S are étale, then any S-morphism X — 'Y is also étale.

Proof. We have proved these facts (and more) in the preceding chapters. Here is
a list of references: (1) Morphisms, Lemma (2) Morphisms, Lemmas and
36.16] (3) Algebra, Lemma [143.2l (4) Morphisms, Lemma [36.4] (5) Morphisms,
Lemma [36.3] (6) Follows formally from (4) and (5). (7) Morphisms, Lemmas [36.6|
and (8) See Algebra, Lemmas [163.7] and [163.5] see also more results of this
kind in Etale Morphisms, Section @l (9) See Morphisms, Lemma and
(10) See Morphisms, Lemma O
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Definition 26.3. A ring map A — B is called standard étale if B = (A[t]/(f))
with f,g € A[t], with f monic, and df/d¢ invertible in B.

g

It is true that a standard étale ring map is étale. Namely, suppose that B =
(A[t]/(f)), with f,g € A[t], with f monic, and df/d¢ invertible in B. Then A[t]/(f)
is a finite free A-module of rank equal to the degree of the monic polynomial f.
Hence B, as a localization of this free algebra is finitely presented and flat over A.
To finish the proof that B is étale it suffices to show that the fibre rings

K(p) @4 B = k(p) @4 (A[t]/(f))g = k(0)[t, 1/9]/(F)

are finite products of finite separable field extensions. Here f,g € s(p)[t] are the
images of f and g. Let

F=Ffufd T
be the factorization of f into powers of pairwise distinct irreducible monic factors
f; with eq,..., e, > 0. By assumption df/dt is invertible in x(p)[t, 1/g]. Hence we
see that at least all the f,, i > a are invertible. We conclude that

w(e)[t,1/9)/ (D) = ., se) 11/ (F)

where I C {1,...,a} is the subset of indices i such that f, does not divide g.

Moreover, the image of df/dt in the factor s(p)[t]/( f;) is clearly equal to a unit
times df,/dt. Hence we conclude that x; = x(p)[t]/(f;) is a finite field extension
of k(p) generated by one element whose minimal polynomial is separable, i.e., the

field extension k;/k(p) is finite separable as desired.

It turns out that any étale ring map is locally standard étale. To formulate this we
introduce the following notation. A ring map A — B is étale at a prime q of B if
there exists h € B, h ¢ q such that A — B}, is étale. Here is the result.

Theorem 26.4. A ring map A — B is étale at a prime q if and only if there
exists g € B, g € q such that By is standard étale over A.

Proof. See Algebra, Proposition [144.4 O

27. Etale coverings
We recall the definition.

Definition 27.1. An étale covering of a scheme U is a family of morphisms of
schemes {p; : U; — U}ier such that

(1) each ¢; is an étale morphism,
(2) the U; cover U, ie., U = J,c; i (Us).

Lemmal 27.2.  Any étale covering is an fpge covering.

Proof. (See also Topologies, Lemma [0.6]) Let {p; : U; = U}ics be an étale
covering. Since an étale morphism is flat, and the elements of the covering should
cover its target, the property fp (faithfully flat) is satisfied. To check the property
qc (quasi-compact), let V' C U be an affine open, and write @;1(V) = UjeJi Vij
for some affine opens V;; C U;. Since ¢; is open (as étale morphisms are open),
we see that V' = {J;c; Uje s, i(Vij) is an open covering of V. Further, since V' is
quasi-compact, this covering has a finite refinement. [
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So any statement which is true for fpqc coverings remains true a fortiori for étale
coverings. For instance, the étale site is subcanonical.

03PI |Definition 27.3. (For more details see Section or Topologies, Section ) Let
S be a scheme. The big étale site over S is the site (Sch/S)¢taie, see Definition
[20.2] The small étale site over S is the site Seiqie, see Definition [20.2] We define
similarly the big and small Zariski sites on S, denoted (Sch/S) zar and Szq.-.

Loosely speaking the big étale site of S is made up out of schemes over S and
coverings the étale coverings. The small étale site of S is made up out of schemes
étale over S with coverings the étale coverings. Actually any morphism between
objects of Sgiqie is étale, in virtue of Proposition hence to check that {U; —
Ulier in Sgtaie is a covering it suffices to check that [[U; — U is surjective.

The small étale site has fewer objects than the big étale site, it contains only the
“opens” of the étale topology on S. It is a full subcategory of the big étale site,
and its topology is induced from the topology on the big site. Hence it is true that
the restriction functor from the big étale site to the small one is exact and maps
injectives to injectives. This has the following consequence.

03PJ |Proposition 27.4. Let S be a scheme and F an abelian sheaf on (Sch/S)etate-

Then Fls,,... is a sheaf on S¢tare and
Hgtale(sa FlSerare) = Hgtale(‘g’ F)
for allp > 0.
Proof. This is a special case of Lemma [20.3 O
In accordance with the general notation introduced in Sectionwe write HY, (S, F)

for the above cohomology group.

28. Kummer theory
03PK Let n € N and consider the functor p,, defined by

Sch°PP — Ab
S ()= {teT(S,05) |1 =1},

By Groupoids, Example this is a representable functor, and the scheme rep-
resenting it is denoted p, also. By Lemma this functor satisfies the sheaf
condition for the fpqc topology (in particular, it also satisfies the sheaf condition
for the étale, Zariski, etc topology).

03PL Lemma 28.1. Ifn € O% then

0= ptin,s = G5 L> Gps—0
is a short exact sequence of sheaves on both the small and big étale site of S.

Proof. By definition the sheaf p, g is the kernel of the map (-)". Hence it suffices
to show that the last map is surjective. Let U be a scheme over S. Let f €
G,,(U) =T'(U,0f;). We need to show that we can find an étale cover of U over
the members of which the restriction of f is an nth power. Set

U" = Spec, (Oy[T]/(T" - f)) = U.
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(See Constructions, Section 3| or [4] for a discussion of the relative spectrum.) Let
Spec(A) C U be an affine open, and say f|spec(a) corresponds to the unit a € A*.
Then 7 *(Spec(A)) = Spec(B) with B = A[T]/(T™ — a). The ring map A — B
is finite free of rank m, hence it is faithfully flat, and hence we conclude that
Spec(B) — Spec(A) is surjective. Since this holds for every affine open in U
we conclude that 7 is surjective. In addition, n and T"! are invertible in B,
so nI"~! € B* and the ring map A — B is standard étale, in particular étale.
Since this holds for every affine open of U we conclude that 7 is étale. Hence
U ={r:U" — U} is an étale covering. Moreover, f|gr = (f')™ where f’ is the
class of T in T'(U’, O, ), so U has the desired property. O

Remark| 28.2. Lemma is false when “étale” is replaced with “Zariski”. Since
the étale topology is coarser than the smooth topology, see Topologies, Lemma [5.2
it follows that the sequence is also exact in the smooth topology.

By Theorem and Lemma and general properties of cohomology we obtain
the long exact cohomology sequence

(S jtn.5) —= (5,0%) - 1(5,0%)

/{

(S, pin,5) — Pic(S) —— Pic(S)

T

(S, phn,g) — ...

s 0
0 Hétale

o}

étale

H?

étale

at least if n is invertible on S. When n is not invertible on S we can apply the
following lemma.

Lemma 28.3. For any n € N the sequence

0— HUn,s — Gm,s L} Gm7s — 0
is a short exact sequence of sheaves on the site (Sch/S) rppy and (Sch/S)syntomic-

Proof. By definition the sheaf p,, g is the kernel of the map (-)". Hence it suffices
to show that the last map is surjective. Since the syntomic topology is weaker
than the fppf topology, see Topologies, Lemma it suffices to prove this for the
syntomic topology. Let U be a scheme over S. Let f € G,,(U) =T'(U, 0f;). We
need to show that we can find a syntomic cover of U over the members of which
the restriction of f is an nth power. Set

U" = Spec,, (Ou[T)/(T" ~ )) 5 U.

(See Constructions, Section [3| or [4] for a discussion of the relative spectrum.) Let
Spec(A) C U be an affine open, and say f|spec(4) corresponds to the unit a € A*.
Then 7 1(Spec(A)) = Spec(B) with B = A[T]/(T™ — a). The ring map A — B
is finite free of rank m, hence it is faithfully flat, and hence we conclude that
Spec(B) — Spec(A) is surjective. Since this holds for every affine open in U we
conclude that 7 is surjective. In addition, B is a global relative complete intersection
over A, so the ring map A — B is standard syntomic, in particular syntomic.
Since this holds for every affine open of U we conclude that 7 is syntomic. Hence
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U= {r:U" — U} is a syntomic covering. Moreover, f|yr = (f')" where f’ is the

class of T in I'(U’, Of;/), so U has the desired property. O
Remark 28.4. Lemma is false for the smooth, étale, or Zariski topology.

By Theorem and Lemma and general properties of cohomology we obtain
the long exact cohomology sequence

O"
0——= HY, (S, ttn,5) —=I(S,05) ——T(S,0%)

. ) .
H}ppf(sv Nn,S) E—— PIC(S) _— PIC(S)

[ ——

fppf(s fin,g) ———> ...
for any scheme S and any integer n. Of course there is a similar sequence with
syntomic cohomology.

Let n € N and let S be any scheme. There is another more direct way to describe
the first cohomology group with values in p,. Consider pairs (£, «) where L is an
invertible sheaf on S and a : L& — Oy is a trivialization of the nth tensor power
of L. Let (£',a’) be a second such pair. An isomorphism ¢ : (£,«a) = (£',a) is
an isomorphism ¢ : £ — £’ of invertible sheaves such that the diagram

LO" — > Og

(L)% = O
commutes. Thus we have

(28.4.1) Isoms((L, ), (L' a")) = {

) if they are not isomorphic
HO(S, pin,s) - ¢ if ¢ isomorphism of pairs

Moreover, given two pairs (£, «), (L', a’) the tensor product
(L)@ (La) = (La Ll awa)

is another pair. The pair (Og, 1)

and an inverse is given by

is an identity for this tensor product operation,

(L)t = (L a®T).
Hence the collection of isomorphism classes of pairs forms an abelian group. Note
that
(L,a)®" = (L a®") % (Og,1)
is an isomorphism hence every element of this group has order dividing n. We warn
the reader that this group is in general not the n-torsion in Pic(5).
Lemma 28.5. Let S be a scheme. There is a canonical identification

HZ,010(S, in) = group of pairs (£, a) up to isomorphism as above
if n is invertible on S. In general we have

H}ppf(S, tn) = group of pairs (L, a) up to isomorphism as above.
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The same result holds with fppf replaced by syntomic.

Proof. We first prove the second isomorphism. Let (£,«) be a pair as above.
Choose an affine open covering S = |JU; such that L|y, & Opy,. Say s; € L(U;)
is a generator. Then a(s£") = f; € O%(U;). Writing U; = Spec(4;) we see there
exists a global relative complete intersection 4; — B; = A;[T]/(T™ — f;) such that
fi: maps to an nth power in B;. In other words, setting V; = Spec(B;) we obtain a
syntomic covering V = {V; — S}ies and trivializations ¢; : (£, a)|y, — (Oy,, 1).

We will use this result (the existence of the covering V) to associate to this pair a
cohomology class in H},.1omic(S, fin,s). We give two (equivalent) constructions.

First construction: using Cech cohomology. Over the double overlaps V; x g V; we
have the isomorphism

(Ovixsv;, Llvix v @lvixsv;) =2 (Ovixsvys 1)
of pairs. By this is given by an element (;; € p,(V; Xg V;). We omit the
verification that these (;;’s give a 1-cocycle, i.e., give an element (i, ) € CV, tin)
with d(Ciys,) = 0. Thus its class is an element in H*(V, s,,) and by Theorem
it maps to a cohomology class in Hsl‘,mtom-c(s7 Hn,S)-

1) PTo®; (

Second construction: Using torsors. Consider the presheaf
:U'n(ﬁv a) U — ISOmU((OUa 1)v (‘C, O‘)|U)

on (Sch/S)syntomic. We may view this as a subpresheaf of Homeo (O, L) (internal
hom sheaf, see Modules on Sites, Section . Since the conditions defining this
subpresheaf are local, we see that it is a sheaf. By this sheaf has a free
action of the sheaf y1,, 3. Hence the only thing we have to check is that it locally
has sections. This is true because of the existence of the trivializing cover V. Hence
(L, ) is a p, g-torsor and by Cohomology on Sites, Lemma we obtain a
corresponding element of HY, ;i (S, tin.s)-

Ok, now we have to still show the following

(1) The two constructions give the same cohomology class.

(2) Isomorphic pairs give rise to the same cohomology class.

(3) The cohomology class of (£,a) ® (£',a’) is the sum of the cohomology
classes of (£,a) and (L', /).

(4) If the cohomology class is trivial, then the pair is trivial.

(5) Any element of H},,,0mic(S; tin,s) is the cohomology class of a pair.

We omit the proof of (1). Part (2) is clear from the second construction, since
isomorphic torsors give the same cohomology classes. Part (3) is clear from the
first construction, since the resulting Cech classes add up. Part (4) is clear from
the second construction since a torsor is trivial if and only if it has a global section,
see Cohomology on Sites, Lemma

Part (5) can be seen as follows (although a direct proof would be preferable). Sup-
pose £ € HYiomic(S, fin,s). Then & maps to an element & € HY\\tomic(S; Gm.s)
with né = 0. By Theorem we see that & corresponds to an invertible sheaf
L whose nth tensor power is isomorphic to Og. Hence there exists a pair (£, a’)

& (S, vas). Thus it

whose cohomology class ¢’ has the same image & in H, Slyntomic
suffices to show that £ —¢’ is the class of a pair. By construction, and the long exact
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cohomology sequence above, we see that & — & = 9(f) for some f € HO(S, OF).
Consider the pair (Og, f). We omit the verification that the cohomology class
of this pair is 9(f), which finishes the proof of the first identification (with fppf
replaced with syntomic).

To see the first, note that if n is invertible on S, then the covering V constructed
in the first part of the proof is actually an étale covering (compare with the proof
of Lemma [28.1). The rest of the proof is independent of the topology, apart from
the very last argument which uses that the Kummer sequence is exact, i.e., uses
Lemma O

29. Neighborhoods, stalks and points

We can associate to any geometric point of S a stalk functor which is exact. A
map of sheaves on Sgtqie is an isomorphism if and only if it is an isomorphism on
all these stalks. A complex of abelian sheaves is exact if and only if the complex of
stalks is exact at all geometric points. Altogether this means that the small étale
site of a scheme S has enough points. It also turns out that any point of the small
étale topos of S (an abstract notion) is given by a geometric point. Thus in some
sense the small étale topos of S can be understood in terms of geometric points
and neighbourhoods.

Definition 29.1. Let S be a scheme.

(1) A geometric point of S is a morphism Spec(k) — S where k is algebraically
closed. Such a point is usually denoted s, i.e., by an overlined small case
letter. We often use s to denote the scheme Spec(k) as well as the morphism,
and we use k(3) to denote k.

(2) We say 3 lies over s to indicate that s € S is the image of 5.

(3) An étale neighborhood of a geometric point 5 of S is a commutative diagram

.
s—>5
where ¢ is an étale morphism of schemes. We write (U, @) — (5,53).

(4) A morphism of étale neighborhoods (U,u) — (U’,w’) is an S-morphism
h:U — U’ such that ' = ho.

Remark 29.2. Since U and U’ are étale over S, any S-morphism between them is
also étale, see Proposition In particular all morphisms of étale neighborhoods
are étale.

Remark| 29.3. Let S be a scheme and s € S a point. In More on Morphisms,
Definition we defined the notion of an étale neighbourhood (U, u) — (S, s) of
(S,s). If 5 is a geometric point of S lying over s, then any étale neighbourhood
(U,u) — (S,3) gives rise to an étale neighbourhood (U, u) of (S, s) by taking u €
U to be the unique point of U such that @ lies over u. Conversely, given an
étale neighbourhood (U, u) of (S,s) the residue field extension k(u)/k(s) is finite
separable (see Proposition and hence we can find an embedding x(u) C k(3)
over £(s). In other words, we can find a geometric point @ of U lying over u such
that (U,w) is an étale neighbourhood of (S,5). We will use these observations to
go between the two types of étale neighbourhoods.
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Lemma 29.4. Let S be a scheme, and let's be a geometric point of S. The category
of étale neighborhoods is cofiltered. More precisely:

(1) Let (Ui, T;)i=1,2 be two étale neighborhoods of 5 in S. Then there exists a
third étale neighborhood (U,w) and morphisms (U,u) — (U;,w;), i =1,2.

(2) Let hy,ho : (U,m) — (U, @) be two morphisms between étale neighborhoods
of 5. Then there exist an étale neighborhood (U” ") and a morphism h :
(U", @) — (U,u) which equalizes h1 and hs, i.e., such that hyoh = hyoh.

Proof. For part (1), consider the fibre product U = U; xg Us. It is étale over
both U; and Us because étale morphisms are preserved under base change, see
Proposition The map 3 — U defined by (u;,Us) gives it the structure of an
étale neighborhood mapping to both U; and U,. For part (2), define U” as the
fibre product

u” U

e

U —2> U xg U
Since u and @ agree over S with 5, we see that w”’ = (u,u’) is a geometric point
of U”. In particular U” # 0. Moreover, since U’ is étale over S, so is the fibre
product U’ x5 U’ (see Proposition [26.2)). Hence the vertical arrow (hq,hs) is étale
by Remarkabove. Therefore U"” is étale over U’ by base change, and hence also
étale over S (because compositions of étale morphisms are étale). Thus (U”,@") is
a solution to the problem. O

Lemma 29.5. Let S be a scheme. Lets be a geometric point of S. Let (U, ) be
an étale neighborhood of 3. Let U = {p; : U; — U}icr be an étale covering. Then
there exist i € I and u; : 3 — U; such that ¢; : (Ui, w;) — (U,@) is a morphism of
étale neighborhoods.

Proof. As U = UJ;c; ¢i(U;), the fibre product 5 xz v, U; is not empty for some
i. Then look at the cartesian diagram

S Xq,U,p; U; *)pr2 U;

Spec(k) =5 —~=U

The projection pr; is the base change of an étale morphisms so it is étale, see
Proposition @ Therefore, 5 X7 ,,, Us; is a disjoint union of finite separable
extensions of k, by Proposition m Here 5 = Spec(k). But k is algebraically
closed, so all these extensions are trivial, and there exists a section o of pr;. The
composition pry 0 o gives a map compatible with w. (I

Definition| 29.6. Let S be a scheme. Let F be a presheaf on Sgiq.. Let 5 be a
geometric point of S. The stalk of F at 5 is

]:g = COlim(Uﬂ) .F(U)
where (U, w) runs over all étale neighborhoods of 5 in S.

By Lemma [29.4] this colimit is over a filtered index category, namely the oppo-
site of the category of étale neighbourhoods. In other words, an element of Fz
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can be thought of as a triple (U,w,o) where ¢ € F(U). Two triples (U,w,o),
(U',u,0’) define the same element of the stalk if there exists a third étale neigh-
bourhood (U”, %) and morphisms of étale neighbourhoods h : (U”,u") — (U, ),
B (U", ") — (U',@') such that h*o = (h')*o’ in F(U"). See Categories, Section
L9l

Lemmal 29.7. Let S be a scheme. Let 5 be a geometric point of S. Consider the
functor

U : Serare — Sets,
U — |Us| = {@ such that (U,u) is an étale neighbourhood of s}.

Here |Us| denotes the underlying set of the geometric fibre. Then u defines a point
p of the site Sgiaie (Sites, Deﬁnitz’on and its associated stalk functor F — F,
(Sites, Equation|32.1.1)) is the functor F — Fz defined above.

Proof. In the proof of Lemma we have seen that the scheme Uz is a disjoint
union of schemes isomorphic to 3. Thus we can also think of |Uz| as the set of
geometric points of U lying over s, i.e., as the collection of morphisms @ : 5 — U
fitting into the diagram of Definition From this it follows that u(S) is a
singleton, and that u(U xy W) = u(U) Xy u(W) whenever U — V and W — V
are morphisms in Sgie. And, given a covering {U; — Ulicr in Sgraie We see
that [Tu(U;) — u(U) is surjective by Lemma [29.5] Hence Sites, Proposition [33.3]
applies, so p is a point of the site Sgiqie. Finally, our functor F — Fz is given by
exactly the same colimit as the functor F — F, associated to p in Sites, Equation
which proves the final assertion. O

Remark 29.8. Let S be a scheme and let 5: Spec(k) — S and 3 : Spec(k’) — S
be two geometric points of S. A morphism a : 5 — 3 of geometric points is simply
a morphism a : Spec(k) — Spec(k’) such that 3’ o a = 5. Given such a morphism
we obtain a functor from the category of étale neighbourhoods of 5’ to the category
of étale neighbourhoods of 5 by the rule (U, ') — (U,u’ o a). Hence we obtain a
canonical map

Fsr = colimy 5y F(U) — colimyz) F(U) = Fs

from Categories, Lemma [I[4.8] Using the description of elements of stalks as triples
this maps the element of Fy represented by the triple (U, @ ,0) to the element
of F5 represented by the triple (U, o a,c). Since the functor above is clearly
an equivalence we conclude that this canonical map is an isomorphism of stalk
functors.

Let us make sure we have the map of stalks corresponding to a pointing in the
correct direction. Note that the above means, according to Sites, Definition
that a defines a morphism a : p — p’ between the points p,p’ of the site Ssiqre
associated to 5,5 by Lemma There are more general morphisms of points
(corresponding to specializations of points of .S) which we will describe later, and
which will not be isomorphisms, see Section

Lemmal 29.9. Let S be a scheme. Let s be a geometric point of S.

(1) The stalk functor PAb(Se¢tare) — Ab, F — F5 is exact.
(2) We have (F#)s = Fs for any presheaf of sets F on Sgiate-
(3) The functor Ab(Setare) — Ab, F +— Fz is exact.
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(4) Similarly the functors PSh(Setaie) — Sets and Sh(Ssiaie) — Sets given by
the stalk functor F — JFz are exact (see Categories, Definition and
commute with arbitrary colimits.

Proof. Before we indicate how to prove this by direct arguments we note that the
result follows from the general material in Modules on Sites, Section This is
true because F +— F3 comes from a point of the small étale site of S, see Lemma
We will only give a direct proof of (1), (2) and (3), and omit a direct proof
of (4).
Exactness as a functor on PAb(Sstqic) is formal from the fact that directed colimits
commute with all colimits and with finite limits. The identification of the stalks in
(2) is via the map

K:JFs — (.7:#)3
induced by the natural morphism F — F#, see Theorem We claim that this
map is an isomorphism of abelian groups. We will show injectivity and omit the
proof of surjectivity.

Let o € F5. There exists an étale neighborhood (U, @) — (S,3) such that o is the
image of some section s € F(U). If k(o) = 0 in (F#)z then there exists a morphism
of étale neighborhoods (U, @) — (U, %) such that s|g is zero in F#(U’). It follows
there exists an étale covering {U; — U'};er such that slp = 0 in F(U]) for all
i. By Lemma there exist ¢ € I and a morphism u, : 5 — U/ such that
(U!,w}) — (U',u") — (U,u) are morphisms of étale neighborhoods. Hence o = 0
since (U/,u;) — (U,w) is a morphism of étale neighbourhoods such that we have
s| U= 0. This proves « is injective.
To show that the functor Ab(Setaie) — Ab is exact, consider any short exact se-
quence in Ab(S¢tare): 0 = F — G — H — 0. This gives us the exact sequence of
presheaves

0=>F—=>G—>H—=>H/G—0,
where /P denotes the quotient in PAb(Ssiqaie). Taking stalks at 5, we see that
(H/PG)s = (H/G)s = 0, since the sheafification of H /PG is 0. Therefore,

0—=Fs—=Gs = Hs = 0= (H/PG)s
is exact, since taking stalks is exact as a functor from presheaves. (]

Theorem 29.10. Let S be a scheme. A map a : F — G of sheaves of sets is
injective (resp. surjective) if and only if the map on stalks az : F5 — Gs is injective
(resp. surjective) for all geometric points of S. A sequence of abelian sheaves on
Setale s exact if and only if it is exact on all stalks at geometric points of S.

Proof. The necessity of exactness on stalks follows from Lemma|[29.9] For the con-
verse, it suffices to show that a map of sheaves is surjective (respectively injective)
if and only if it is surjective (respectively injective) on all stalks. We prove this in
the case of surjectivity, and omit the proof in the case of injectivity.

Let a : F — G be a map of sheaves such that /5 — Gz is surjective for all geometric
points. Fix U € Ob(Setare) and s € G(U). For every u € U choose some ©w — U
lying over u and an étale neighborhood (V,,,7,) — (U, @) such that s|y, = a(sy,)
for some sy, € F(V,). This is possible since « is surjective on stalks. Then
{Vi = U}uev is an étale covering on which the restrictions of s are in the image
of the map «. Thus, « is surjective, see Sites, Section (]
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Remarks| 29.11. On points of the geometric sites.

(1) Theoremsays that the family of points of S¢iq1e given by the geometric
points of S (Lemma is conservative, see Sites, Definition In
particular Sgsq;e has enough points.

(2) Suppose F is a sheaf on the big étale site of S. Let T'— S be an object of
the big étale site of S, and let ¢ be a geometric point of 7. Then we define
F; as the stalk of the restriction F|r,,,,, of F to the small étale site of T
In other words, we can define the stalk of F at any geometric point of any
scheme T'/S € Ob((Sch/S)eétaie)-

(3) The big étale site of S also has enough points, by considering all geometric
points of all objects of this site, see .

The following lemma should be skipped on a first reading.

Lemma 29.12. Let S be a scheme.

(1) Let p be a point of the small étale site Serare of S given by a functor u :
Setale — Sets. Then there exists a geometric point s of S such that p is
isomorphic to the point of Setare associated to s in Lemma [29.7.

(2) Let p: Sh(pt) — Sh(Sstate) be a point of the small étale topos of S. Then
p comes from a geometric point of S, i.e., the stalk functor F — F, is
isomorphic to a stalk functor as defined in Definition [29.0

Proof. By Sites, Lemma there is a one to one correspondence between points
of the site and points of the associated topos, hence it suffices to prove (1). By
Sites, Proposition the functor u has the following properties: (a) u(S) = {x},
(b) u(U xv W) = u(U) Xyyu(W), and (c) if {U; — U} is an étale covering, then
[Tu(U;) = w(U) is surjective. In particular, if U’ C U is an open subscheme, then
u(U") C u(U). Moreover, by Sites, Lemma we can write u(U) = p’l(h?}é), in
other words u(U) is the stalk of the representable sheaf hy. If U =V II W, then
we see that hy = (hy Il hy)# and we get u(U) = u(V) Hu(W) since p~*! is exact.

Consider the restriction of u to Sz4,. By Sites, Examples and [33.6) there exists
a unique point s € S such that for S’ C S open we have u(S’) = {x} if s € S’ and
u(S") =0 if s ¢ S’. Note that if o : U — S is an object of Seae then o(U) C S
is open (see Proposition and {U — ¢(U)} is an étale covering. Hence we
conclude that u(U) =0 < s € o(U).

Pick a geometric point 5 : 5 — S lying over s, see Definition for customary
abuse of notation. Suppose that ¢ : U — S is an object of Sgq;e with U affine.
Note that ¢ is separated, and that the fibre U of ¢ over s is an affine scheme over
Spec(k(s)) which is the spectrum of a finite product of finite separable extensions
k; of k(s). Hence we may apply Etale Morphisms, Lemma m to get an étale
neighbourhood (V, @) of (S,3) such that

UxgV=U,1.. U, TW

with U; — V an isomorphism and W having no point lying over v. Thus we
conclude that

w(U) xu(V)=u(U xg V) =u(Uy) II... MTu(U,) T u(W)

and of course also u(U;) = u(V). After shrinking V' a bit we can assume that V/
has exactly one point lying over s, and hence W has no point lying over s. By the
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above this then gives u(IW) = (). Hence we obtain

w(U) x w(V) = u(Uy) ... Tu(U,) =[] u(V)

i=1,...,n

Note that (V) # () as s is in the image of V' — S. In particular, we see that in
this situation u(U) is a finite set with n elements.

Consider the limit
lim(v’g) U(V)

over the category of étale neighbourhoods (V,v) of 5. It is clear that we get the
same value when taking the limit over the subcategory of (V,7) with V affine. By
the previous paragraph (applied with the roles of V' and U switched) we see that
in this case u(V) is always a finite nonempty set. Moreover, the limit is cofiltered,
see Lemma [29.4] Hence by Categories, Section the limit is nonempty. Pick
an element x from this limit. This means we obtain a zyv 5 € u(V) for every étale
neighbourhood (V,7) of (.9,3) such that for every morphism of étale neighbourhoods
o (V',0') = (V,7) we have u(¢)(zy: 7) = zvs.

We will use the choice of x to construct a functorial bijective map
c: |Us| — u(U)

for U € Ob(S¢tate) which will conclude the proof. See Lemma and its proof
for a description of |Us|. First we claim that it suffices to construct the map for U
affine. We omit the proof of this claim. Assume U — S in S¢;qe with U affine, and
let @:s — U be an element of |Uz|. Choose a (V,7) such that U xg V' decomposes
as in the third paragraph of the proof. Then the pair (@,7) gives a geometric
point of U xg V' lying over v and determines one of the components U; of U xg V.
More precisely, there exists a section o : V. — U x g V of the projection pry such
that (,7) = o ov. Set c¢(u) = u(pry)(u(o)(zvy)) € w(U). We have to check
this is independent of the choice of (V,7). By Lemma the category of étale
neighbourhoods is cofiltered. Hence it suffice to show that given a morphism of étale
neighbourhood ¢ : (V',7') — (V,7) and a choice of a section o’ : V! — U xg V'
of the projection such that (@,v’) = ¢’ o' we have u(o’)(zv' ) = u(o)(zvyz).
Consider the diagram
v’ \%

o
UxsV' =% UxgV

Now, it may not be the case that this diagram commutes. The reason is that the
schemes V’ and V may not be connected, and hence the decompositions used to
construct o’ and o above may not be unique. But we do know that 0 o p o ¥’ =
(1 x p) oo’ 0¥’ by construction. Hence, since U xg V is étale over S, there exists
an open neighbourhood V" C V' of v/ such that the diagram does commute when
restricted to V", see Morphisms, Lemma This means we may extend the
diagram above to

v Vv’ Vv

©
\LU/V” \LU' i”

UxgV" —>UxgV' =% UxgV
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such that the left square and the outer rectangle commute. Since w is a functor
this implies that 2y 7 maps to the same element in u(U xg V') no matter which
route we take through the diagram. On the other hand, it maps to the elements
zy, 5 and zyy in w(V’) and w(V'). This implies the desired equality u(o”)(zy: 5) =
u(o)(zvz).

In a similar manner one proves that the construction ¢ : |[Us| — w(U) is functorial
in U; details omitted. And finally, by the results of the third paragraph it is clear
that the map c is bijective which ends the proof of the lemma. O

30. Points in other topologies

06VW In this section we briefly discuss the existence of points for some sites other than
the étale site of a scheme. We refer to Sites, Section [38] and Topologies, Section
ff for the terminology used in this section. All of the geometric sites have enough
points.

06VX Lemma 30.1. Let S be a scheme. All of the following sites have enough points
Saffine,Zar; SZa'r; Saffine,étale; Sétal67 (SCh/S)ZaT7 (Aﬁ/S)Zar; (SCh/S)étal67 (A.ﬁ/s)étale7
(Sch/S) smooth, (Aff/S)smooth (SCh/S)syntomiw (Aﬁ/s)syntomiw (SCh/S)fppff and
(Aﬁ/S)fppf-

Proof. For each of the big sites the associated topos is equivalent to the topos

defined by the site (Aff/S),, see Topologies, Lemmas and

The result for the sites (Aff/S), follows immediately from Deligne’s result Sites,
Lemma [39.4]

The result for Sz, is clear. The result for Suffine,zqr follows from Deligne’s
result. The result for Sgiqe either follows from (the proof of) Theorem [29.10| or
from Topologies, Lemma and Deligne’s result applied to Suf fine,étate- O

The lemma above guarantees the existence of points, but it doesn’t tell us what
these points look like. We can explicitly construct some points as follows. Suppose
5 : Spec(k) — S is a geometric point with k algebraically closed. Consider the
functor

u: (Sch/S)fppy —> Sets, w(U) = U(k) = Morg(Spec(k),U).

Note that U — U(k) commutes with finite limits as S(k) = {5} and (U; Xy
Usz)(k) = Ui(k) xum) U2(k). Moreover, if {U; — U} is an fppf covering, then
[1Ui(k) — U(k) is surjective. By Sites, Proposition we see that u defines a
point p of (Sch/S)fppy with stalks

Fp = colimy 4y F(U)

where the colimit is over pairs U — S, x € U(k) as usual. But... this category has
an initial object, namely (Spec(k),id), hence we see that

Fp = F(Spec(k))

which isn’t terribly interesting! In fact, in general these points won’t form a con-
servative family of points. A more interesting type of point is described in the
following remark.
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Remark 30.2. Let S = Spec(A) be an affine scheme. Let (p,u) be a point of
the site (Aff/S) rpps, see Sites, Sections [32| and Let B = O, be the stalk of the
structure sheaf at the point p. Recall that

B = colimyy,;) O(U) = colimgpec(c),z0) C

where z¢ € u(Spec(C)). It can happen that Spec(B) is an object of (Aff/S)fpps
and that there is an element zp € u(Spec(B)) mapping to the compatible system
zc. In this case the system of neighbourhoods has an initial object and it follows
that F, = F(Spec(B)) for any sheaf F on (Aff/S)pps. It is straightforward to
see that if F — F(Spec(B)) defines a point of Sh((Aff/S)tpps), then B has to
be a local A-algebra such that for every faithfully flat, finitely presented ring map
B — B’ there is a section B’ — B. Conversely, for any such A-algebra B the
functor F — F(Spec(B)) is the stalk functor of a point. Details omitted. It is not
clear what a general point of the site (Aff/.S) sppy looks like.

31. Supports of abelian sheaves
First we talk about supports of local sections.

Lemmal 31.1. Let S be a scheme. Let F be a subsheaf of the final object of the
étale topos of S (see Sites, Example . Then there exists a unique open W C S
such that F = hy .

Proof. The condition means that F(U) is a singleton or empty for all ¢ : U —
S in Ob(Sstare). In particular local sections always glue. If F(U) # (), then
F(e(U)) # 0 because {¢ : U — ©(U)} is a covering. Hence we can take W =

ng:UﬁS,]—'(U);éw e(U). O

Lemma 31.2. Let S be a scheme. Let F be an abelian sheaf on Seqe. Let
o € F(U) be a local section. There exists an open subset W C U such that

(1) W C U is the largest Zariski open subset of U such that olyw =0,
(2) for every v : V. — U in Sgtare we have

oly =0& (V) CW,
(3) for every geometric point @ of U we have
(Um,0)=0inFsoueW
where s = (U — S) o .

Proof. Since F is a sheaf in the étale topology the restriction of F to Uz, is a
sheaf on U in the Zariski topology. Hence there exists a Zariski open W having
property (1), see Modules, Lemma Let ¢ : V — U be an arrow of Sg;q.. Note
that (V) C U is an open subset and that {V — ¢(V)} is an étale covering. Hence
if ol = 0, then by the sheaf condition for F we see that o[,y = 0. This proves
(2). To prove (3) we have to show that if (U, %, o) defines the zero element of F,
then w € W. This is true because the assumption means there exists a morphism
of étale neighbourhoods (V,7) — (U, u) such that o|yy = 0. Hence by (2) we see
that V' — U maps into W, and hence w € W. O

Let S be a scheme. Let s € S. Let F be a sheaf on S¢qre. By Remark 29.8] the
isomorphism class of the stalk of the sheaf F at a geometric points lying over s is
well defined.

This is discussed in
[Sch14].
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Definition 31.3. Let S be a scheme. Let F be an abelian sheaf on Sgiqe.

(1) The support of F is the set of points s € S such that Fz # 0 for any (some)
geometric point § lying over s.

(2) Let 0 € F(U) be a section. The support of o is the closed subset U \ W,
where W C U is the largest open subset of U on which o restricts to zero

(see Lemma [31.2)).

In general the support of an abelian sheaf is not closed. For example, suppose that
S = Spec(A§). Let i, : Spec(C) — S be the inclusion of the point ¢ € C. We will
see later that F; = i, .(Z/2Z) is an abelian sheaf whose support is exactly {t}, see
Section @6l Then
D,
neN

is an abelian sheaf with support {1,2,3,...} C S. This is true because taking
stalks commutes with colimits, see Lemma [29.9] Thus an example of an abelian
sheaf whose support is not closed. Here are some basic facts on supports of sheaves
and sections.

Lemmal 31.4. Let S be a scheme. Let F be an abelian sheaf on Seiqre. Let
U e Ob(Sétale) and o € ]:(U)
(1) The support of o is closed in U.
(2) The support of o 4+ o’ is contained in the union of the supports of 0,0’ €
F(U).
(3) If o : F — G is a map of abelian sheaves on Sstaie, then the support of
(o) is contained in the support of o € F(U).
(4) The support of F is the union of the images of the supports of all local
sections of F.
(5) If F — G is surjective then the support of G is a subset of the support of F.
(6) If F — G is injective then the support of F is a subset of the support of G.

Proof. Part (1) holds by definition. Parts (2) and (3) hold because they holds
for the restriction of 7 and G to Uzg,, see Modules, Lemma Part (4) is a
direct consequence of Lemma part (3). Parts (5) and (6) follow from the other
parts. U

Lemma 31.5. The support of a sheaf of rings on Sgtare is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only
if 1 = 0, and hence the support of a sheaf of rings is the support of the unit
section. (]

32. Henselian rings

We begin by stating a theorem which has already been used many times in the
Stacks project. There are many versions of this result; here we just state the
algebraic version.

Theorem 32.1. Let A — B be finite type ring map and p C A a prime ideal.
Then there exist an étale ring map A — A’ and a prime p’ C A’ lying over p such
that

(1) &(p) =r(p"),
(2) BeaA' =By x...x B. xC,


https://stacks.math.columbia.edu/tag/04FS
https://stacks.math.columbia.edu/tag/04FT
https://stacks.math.columbia.edu/tag/04FU
https://stacks.math.columbia.edu/tag/03QE

03QF

03QG

03QH

03QJ

ETALE COHOMOLOGY 43

(3) A" — B is finite and there exists a unique prime q; C B; lying over p’, and
(4) all irreducible components of the fibre Spec(C ® 4+ k(p’)) of C over p’ have
dimension at least 1.

Proof. See Algebra, Lemma [145.3] or see [GD67, Théoréme 18.12.1]. For a slew of
versions in terms of morphisms of schemes, see More on Morphisms, Section O

Recall Hensel’s lemma. There are many versions of this lemma. Here are two:
(f) if f € Zp[T] monic and f mod p = goho with gcd(go, ho) = 1 then f factors
as f = gh with § = go and h = hy,
(r) if f € Z,[T], monic ag € F,, f(ap) = 0 but f’(ag) # 0 then there exists
a € Z, with f(a) =0 and a = ay.
Both versions are true (we will see this later). The first version asks for lifts of
factorizations into coprime parts, and the second version asks for lifts of simple
roots modulo the maximal ideal. It turns out that requiring these conditions for a
general local ring are equivalent, and are equivalent to many other conditions. We
use the root lifting property as the definition of a henselian local ring as it is often
the easiest one to check.

Definition 32.2. (See Algebra, Definition [153.1}) A local ring (R, m, k) is called

henselian if for all f € R[T] monic, for all ag € & such that f(ag) = 0and f'(ag) # 0,
there exists an a € R such that f(a) =0 and a¢ mod m = ao.

A good example of henselian local rings to keep in mind is complete local rings.
Recall (Algebra, Definition [160.1)) that a complete local ring is a local ring (R, m)
such that R = lim,, R/m"™, i.e., it is complete and separated for the m-adic topology.

Theorem 32.3. Complete local rings are henselian.

Proof. Newton’s method. See Algebra, Lemma [153.9 O

Theorem 32.4. Let (R,m,k) be a local ring. The following are equivalent:

(1) R is henselian,

(2) for any f € R[T) and any factorization f = gohg in k[T] with gcd(go, ho) =
1, there exists a factorization f = gh in R[T] with § = go and h = hy,

(3) any finite R-algebra S is isomorphic to a finite product of local rings finite
over R,

(4) any finite type R-algebra A is isomorphic to a product A = A’ x C' where
A= Ay x ... x A, is a product of finite local R-algebras and all the irre-
ducible components of C ®pg k have dimension at least 1,

(5) if A is an étale R-algebra and n is a mazimal ideal of A lying over m such
that k = A/n, then there exists an isomorphism ¢ : A= R x A’ such that
pn)=mx A CRxA.

Proof. This is just a subset of the results from Algebra, Lemma [153.3] Note that
part (5) above corresponds to part (8) of Algebra, Lemma [153.3 but is formulated
slightly differently. O

Lemmal 32.5. If R is henselian and A is a finite R-algebra, then A is a finite
product of henselian local rings.

Proof. See Algebra, Lemma [153.4 (]
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Definition 32.6. A local ring R is called strictly henselian if it is henselian and
its residue field is separably closed.

Example 32.7. In the case R = CJ[t]], the étale R-algebras are finite products
of the trivial extension R — R and the extensions R — R[X, X ~!]/(X™ —t). The
latter ones factor through the open D(t) C Spec(R), so any étale covering can be
refined by the covering {id : Spec(R) — Spec(R)}. We will see below that this is
a somewhat general fact on étale coverings of spectra of henselian rings. This will
show that higher étale cohomology of the spectrum of a strictly henselian ring is
7ero.

Theorem 32.8. Let (R,m,k) be a local ring and K C k°P a separable algebraic
closure. There exist canonical flat local ring maps R — R" — R where

(1) R", R*" are filtered colimits of étale R-algebras,

(2) R" is henselian, R*" is strictly henselian,

(3) mR" (resp. mR*") is the mazimal ideal of R" (resp. R*"), and

(4) k= R"/mR", and k*P = R*" /mR*" as extensions of .

Proof. The structure of R" and R*" is described in Algebra, Lemmas [155.1] and
155.2) |

The rings constructed in Theorem [32.8]are called respectively the henselization and
the strict henselization of the local ring R, see Algebra, Definition [155.3] Many of
the properties of R are reflected in its (strict) henselization, see More on Algebra,

Section [45l

33. Stalks of the structure sheaf

In this section we identify the stalk of the structure sheaf at a geometric point with
the strict henselization of the local ring at the corresponding “usual” point.

Lemma 33.1. Let S be a scheme. Let s be a geometric point of S lying over
s€S. Let k = k(s) and let k C K*°P C K(3) denote the separable algebraic closure
of k in k(3). Then there is a canonical identification

(OS,S)S}L = (OS)E

where the left hand side is the strict henselization of the local ring Og s as described
in Theorem[32.8 and right hand side is the stalk of the structure sheaf Os on Seiaie
at the geometric point’s.

Proof. Let Spec(A) C S be an affine neighbourhood of s. Let p C A be the
prime ideal corresponding to s. With these choices we have canonical isomorphisms
Os,s = Ay and k(s) = k(p). Thus we have k(p) C £*? C £(5). Recall that

(Os)s = colimyz) O(U)

where the limit is over the étale neighbourhoods of (S,35). A cofinal system is given
by those étale neighbourhoods (U,u) such that U is affine and U — S factors
through Spec(A). In other words, we see that

(Os)g = CO].iIn(B7q7¢) B

where the colimit is over étale A-algebras B endowed with a prime q lying over p
and a k(p)-algebra map ¢ : k(q) — k(5). Note that since k(q) is finite separable
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over k(p) the image of ¢ is contained in x*¢P. Via these translations the result of
the lemma is equivalent to the result of Algebra, Lemma [155.11 (]

Definition 33.2. Let S be a scheme. Let s be a geometric point of S lying over
the point s € S.

(1) The étale local ring of S at s is the stalk of the structure sheaf Og on Setaie
at 5. We sometimes call this the strict henselization of Og s relative to the
geometric point 5. Notation used: Og’fg.

(2) The henselization of Og s is the henselization of the local ring of S at s.
See Algebra, Definition and Theorem Notation: Og,s'

(3) The strict henselization of S at 3 is the scheme Spec(ng%).

(4) The henselization of S at s is the scheme Spec(O% ).

Let f : T — S be a morphism of schemes. Let ¢ be a geometric point of T' with
image s in S. Let t € T and s € S be their images. Then we obtain a canonical
commutative diagram

Spec(O%. ;) — Spec(O3t) ——T

T

Spec((’)g’s) —_— Spec((’)f{%) — 5

of henselizations and strict henselizations of T and S. You can prove this by
choosing affine neighbourhoods of ¢ and s and using the functoriality of (strict)
henselizations given by Algebra, Lemmas [155.8| and [155.12]

Lemmal 33.3. Let S be a scheme. Let s € S. Then we have
Og,s = colim g,y O(U)
where the colimit is over the filtered category of étale neighbourhoods (U, w) of (S, s)
such that k(s) = k(u).
Proof. This lemma is a copy of More on Morphisms, Lemma [35.5] O

Remark| 33.4. Let S be a scheme. Let s € S. If S is locally Noetherian then
(93 . is also Noetherian and it has the same completion:

— ——
OS’S = OS,S'

In particular, Og, C (’)g,s C 65\5 The henselization of Og , is in general much
smaller than its completion and inherits many of its properties. For example, if
Og,s is reduced, then so is (’)g}s, but this is not true for the completion in general.
Insert future references here.

Lemma 33.5. Let S be a scheme. The small étale site Sgrqie endowed with its
structure sheaf Og is a locally ringed site, see Modules on Sites, Definition [{0.4)

Proof. This follows because the stalks (Og)z = Ofghg are local, and because S¢;qie
has enough points, see Lemma [33.1) Theorem [29.10, and Remarks See
Modules on Sites, Lemmas and for the fact that this implies the small
étale site is locally ringed. [


https://stacks.math.columbia.edu/tag/03PS
https://stacks.math.columbia.edu/tag/04HY
https://stacks.math.columbia.edu/tag/03QM
https://stacks.math.columbia.edu/tag/04HZ

0410

0411

03PV
03PW

ETALE COHOMOLOGY 46

34. Functoriality of small étale topos

So far we haven’t yet discussed the functoriality of the étale site, in other words
what happens when given a morphism of schemes. A precise formal discussion can
be found in Topologies, Section In this and the next sections we discuss this
material briefly specifically in the setting of small étale sites.

Let f: X — Y be a morphism of schemes. We obtain a functor
(3401) U Yetale — Xétale, V/Y — X Xy V/X

This functor has the following important properties
(1) wu(final object) = final object,
(2) wu preserves fibre products,
(3) if {V; — V} is a covering in Y., then {u(V;) — u(V)} is a covering in
Xétale~
Each of these is easy to check (omitted). As a consequence we obtain what is called
a morphism of sites

fsmall : Xétale — Yrétale;

see Sites, Definition and Sites, Proposition It is not necessary to know
about the abstract notion in detail in order to work with étale sheaves and étale co-
homology. It usually suffices to know that there are functors femau,« (pushforward)
and f s_nia” (pullback) on étale sheaves, and to know some of their simple properties.
We will discuss these properties in the next sections, but we will sometimes refer
to the more abstract material for proofs since that is often the natural setting to

prove them.

35. Direct images

Let us define the pushforward of a presheaf.

Definition 35.1. Let f: X — Y be a morphism of schemes. Let F a presheaf of
sets on X¢gare. The direct image, or pushforward of F (under f) is

LT YR Sets,  (V)Y) — F(X xy V/X).

étale

We sometimes write f, = fsmai,« to distinguish from other direct image functors
(such as usual Zariski pushforward or fuig ).

This is a well-defined étale presheaf since the base change of an étale morphism is
again étale. A more categorical way of saying this is that f.JF is the composition
of functors F o u where u is as in Equation . This makes it clear that the
construction is functorial in the presheaf F and hence we obtain a functor

f* = fsmall,* : PSh(Xétale) — PSh(Yétale)

Note that if F is a presheaf of abelian groups, then f,F is also a presheaf of abelian
groups and we obtain

f* = fsmall,* : PAb(Xétale) — PAb(Yétale)

as before (i.e., defined by exactly the same rule).
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Remark| 35.2. We claim that the direct image of a sheaf is a sheaf. Namely, if
{V; — V} is an étale covering in Ygqe then {X xy V; — X xy V} is an étale
covering in Xgtq1.. Hence the sheaf condition for F with respect to {X xy V; —
X xy V} is equivalent to the sheaf condition for f.F with respect to {V; — V}.
Thus if F is a sheaf, so is f.F.

Definition 35.3. Let f: X — Y be a morphism of schemes. Let F a sheaf of
sets on X¢pare. The direct image, or pushforward of F (under f) is

foF Y PP — Sets, (V/Y)— F(X xy V/X)

étale

which is a sheaf by Remark [35.2} We sometimes write f. = fomai,« to distinguish
from other direct image functors (such as usual Zariski pushforward or fpig «).

The exact same discussion as above applies and we obtain functors

f* = fsmall,* : Sh(Xétale) — Sh(yétale)
and

fs = fsmall,* : Ab(Xétale) — Ab(Yétale)
called direct image again.
The functor f. on abelian sheaves is left exact. (See Homology, Section [7| for
what it means for a functor between abelian categories to be left exact.) Namely,
if 0 > F1 — Fo — F3 is exact on X¢pqle, then for every U/X € Ob(Xgpqae) the
sequence of abelian groups 0 — F1(U) — F»(U) — F3(U) is exact. Hence for every
VY € Ob(Yiiaie) the sequence of abelian groups 0 — f.F1(V) — fuF2(V) —
f«F3(V) is exact, because this is the previous sequence with U = X xy V.

Definition 35.4. Let f: X — Y be a morphism of schemes. The right derived
functors {RP f.}p>1 of fi : Ab(Xe¢rate) = Ab(Yetare) are called higher direct images.

The higher direct images and their derived category variants are discussed in more
detail in (insert future reference here).

36. Inverse image

In this section we briefly discuss pullback of sheaves on the small étale sites. The
precise construction of this is in Topologies, Section

Definition 36.1. Let f: X — Y be a morphism of schemes. The inverse image,
or pullbackEI functors are the functors

f_l = siniall : Sh(Yétale) — Sh<Xétale)
and

=t Ab(Yirare) — Ab(Xeérare)

small *

which are left adjoint to fi = fsmau«. Thus f~! is characterized by the fact that
Homgp(x,,,..)(f'G, F) = Homgpy,,,,.) (G, fuF)

functorially, for any F € Sh(Xeta1e) and G € Sh(Yerare). We similarly have
Hom p(x ) (f 716G, F) = Hom pp(v,,.) (G foF)

for F € Ab(Xétale) and G € Ab(Yétale).

2We use the notation f~1 for pullbacks of sheaves of sets or sheaves of abelian groups, and we
reserve f* for pullbacks of sheaves of modules via a morphism of ringed sites/topoi.


https://stacks.math.columbia.edu/tag/03PX
https://stacks.math.columbia.edu/tag/03PY
https://stacks.math.columbia.edu/tag/04I2
https://stacks.math.columbia.edu/tag/03Q0

0413

03Q1

ETALE COHOMOLOGY 48

It is not trivial that such an adjoint exists. On the other hand, it exists in a fairly
general setting, see Remark below. The general machinery shows that f~'G
is the sheaf associated to the presheaf

(3611) U/X P—>COHII’1U*>X><YV Q(V/Y)

where the colimit is over the category of pairs (V/Y,¢ : U/X — X xy V/X). To
see this apply Sites, Proposition to the functor u of Equation and use
the description of us = (u, )# in Sites, Sections|13|and |5} We will occasionally use
this formula for the pullback in order to prove some of its basic properties.

Lemma 36.2. Let f: X — Y be a morphism of schemes.
(1) The functor f=1: Ab(Yetare) — Ab(Xstare) is ezact.
(2) The functor f=1 : Sh(Yerare) — Sh(Xestate) s evact, i.e., it commutes with
finite limits and colimits, see Categories, Definition [23.1].
(3) Let T — X be a geometric point. Let G be a sheaf on Yeiqie. Then there is
a canonical identification

(f'G)z= gy
where y = foT.
(4) For any V —Y étale we have f~ hy = hxx,v.
Proof. The exactness of f~! on sheaves of sets is a consequence of Sites, Propo-
sition m applied to our functor u of Equation (34.0.1). In fact the exactness of
pullback is part of the definition of a morphism of topoi (or sites if you like). Thus
we see (2) holds. It implies part (1) since given an abelian sheaf G on Y4, the
underlying sheaf of sets of f~1F is the same as f~! of the underlying sheaf of sets of

F, see Sites, Section See also Modules on Sites, Lemma, In the literature
(1) and (2) are sometimes deduced from (3) via Theorem [29.10

Part (3) is a general fact about stalks of pullbacks, see Sites, Lemma We will
also prove (3) directly as follows. Note that by Lemma taking stalks commutes
with sheafification. Now recall that f~'G is the sheaf associated to the presheaf

U — colimy xxyv G(V),
see Equation . Thus we have
(f7'G)z = colim ) f'G(U)

= colimyz) colima.7 5 x x v G(V)

= colim(y5 G(V)

=Gy
in the third equality the pair (U,u) and the map a : U — X xy V corresponds to
the pair (V,a o).

Part (4) can be proved in a similar manner by identifying the colimits which define
f~thy. Or you can use Yoneda’s lemma (Categories, Lemmal3.5) and the functorial
equalities

Morgh(xsp) (f 7 hy, F) = Motgp v, (hv, foF) = [ F(V) = F(X xy V)

combined with the fact that representable presheaves are sheaves. See also Sites,
Lemma for a completely general result. ([l
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The pair of functors (f., f~1) define a morphism of small étale topoi
fsmall : Sh(Xétale) — Sh(yétale)

Many generalities on cohomology of sheaves hold for topoi and morphisms of topoi.
We will try to point out when results are general and when they are specific to the
étale topos.

Remark| 36.3. More generally, let C1,Cy be sites, and assume they have final
objects and fibre products. Let u : Co — C; be a functor satisfying:
(1) if {V; — V} is a covering of Ca, then {u(V;) — u(V)} is a covering of C;
(we say that w is continuous), and
(2) u commutes with finite limits (i.e., u is left exact, i.e., u preserves fibre
products and final objects).
Then one can define f, : Sh(C1) — Sh(Cz) by f. F(V) = F(u(V)). Moreover, there
exists an exact functor f~! which is left adjoint to f,, see Sites, Deﬁnition and
Proposition Warning: It is not enough to require simply that « is continuous
and commutes with fibre products in order to get a morphism of topoi.

37. Functoriality of big topoi

Given a morphism of schemes f : X — Y there are a whole host of morphisms of
topoi associated to f, see Topologies, Section [L1] for a list. Perhaps the most used
ones are the morphisms of topoi

foig = foig,r : Sh((Sch/X)z) — Sh((Sch/Y):)
where T € {Zariski, étale, smooth, syntomic, fppf}. These each correspond to a
continuous functor

(Sch)Y )y — (Sch/X),, V/Y — X xy V/X

which preserves final objects, fibre products and covering, and hence defines a
morphism of sites
frig : (Sch/X)r — (Sch/Y),.
See Topologies, Sections 6l and [7] In particular, pushforward along fyi, is
given by the rule
(foignF)(V/Y) = F(X xy V/X)

It turns out that these morphisms of topoi have an inverse image functor f;; ; which
is very easy to describe. Namely, we have

(fig9)U/X) =G(U/Y)

where the structure morphism of U/Y is the composition of the structure morphism
U — X with f, see Topologies, Lemmas [3.16], [4.16] [5.10], [6.10] and [7.12]

38. Functoriality and sheaves of modules

In this section we are going to reformulate some of the material explained in Descent,
Sections[8} 9} and [10]in the setting of étale topologies. Let f : X — Y be a morphism
of schemes. We have seen above, see Sections and [30] that this induces a
morphism fg,q of small étale sites. In Descent, Remark we have seen that f
also induces a natural map

# .
fsmall : OYétale ’ fsmall,*OXétaze
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of sheaves of rings on Yg;qe such that (fsmair, ffma”) is a morphism of ringed sites.
See Modules on Sites, Definition for the definition of a morphism of ringed sites.
Let us just recall here that fgma” is defined by the compatible system of maps

pri, : O(V) — O(X xy V)
for V' varying over the objects of Ygtqe-

It is clear that this construction is compatible with compositions of morphisms of
schemes. More precisely, if f: X — Y and g : Y — Z are morphisms of schemes,
then we have

(gsmalla ggma”) o (fsmall; ffma”) = ((g © f)small; (g o f)gma”)

as morphisms of ringed topoi. Moreover, by Modules on Sites, Definition we
see that given a morphism f : X — Y of schemes we get well defined pullback and
direct image functors

f* : MOd(OYémle) — MOd(OXémle)a

small
fsmall,* : MOd(OX ) — MOd(OYétale)

étale

which are adjoint in the usual way. If g : Y — Z is another morphism of schemes,

*

then we have (g o f):mall = fsmall ° g:mall and (g ° f)small,* = Ysmall,x © fsmall,*
because of what we said about compositions.

There is quite a bit of difference between the category of all Ox modules on X and
the category between all Ox,,, . -modules on Xgqz.. But the results of Descent,
Sections [8] [9} and [I0] tell us that there is not much difference between considering
quasi-coherent modules on S and quasi-coherent modules on Sgiqe. (We have
already seen this in Theorem for example.) In particular, if f : X — YV
is any morphism of schemes, then the pullback functors f7 .., and f* match for
quasi-coherent sheaves, see Descent, Proposition[9.4f Moreover, the same is true for
pushforward provided f is quasi-compact and quasi-separated, see Descent, Lemma
.51

A few words about functoriality of the structure sheaf on big sites. Let f: X — Y
be a morphism of schemes. Choose any of the topologies 7 € {Zariski, étale,
smooth, syntomic, fppf}. Then the morphism fyig : (Sch/X); — (Sch/Y); be-
comes a morphism of ringed sites by a map

flig: Oy — foignOx

see Descent, Remark In fact it is given by the same construction as in the case
of small sites explained above.

39. Comparing topologies

In this section we start studying what happens when you compare sheaves with
respect to different topologies.

Lemma 39.1. Let S be a scheme. Let F be a sheaf of sets on Sgpare. Let s,t €
F(S). Then there exists an open W C S characterized by the following property:
A morphism f : T — S factors through W if and only if s|r = t|7 (restriction is
pullback by fsmait)-
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Proof. Consider the presheaf which assigns to U € Ob(Sgqie) the empty set if
sl # t|lu and a singleton else. It is clear that this is a subsheaf of the final object
of Sh(S¢tare). By Lemma we find an open W C S representing this presheaf.
For a geometric point T of S we see that T € W if and only if the stalks of s and ¢
at T agree. By the description of stalks of pullbacks in Lemma we see that W
has the desired property. O

Lemma 39.2. Let S be a scheme. Let T € {Zariski,étale}. Consider the mor-
phism
g : (Sch/S), — S,

of Topologies, Lemma or . Let F be a sheaf on S;. Then 7r§1.7-" s given
by the rule

(5 F)T) = T(Tr, f o F)

small

where f T — S. Moreover, 7r§1.7-" satisfies the sheaf condition with respect to fpqc
COVETings.

Proof. Observe that we have a morphism ¢y : Sh(T,) — Sh(Sch/S);) such that
Tg O @i = fsmau as morphisms T — S, see Topologies, Lemmas

and Since pullback is transitive we see that i;lﬂ';lf = f1 F as desired.

smal

Let {g; : T; — T}iecr be an fpqce covering. The final statement means the following:
Given a sheaf G on T; and given sections s; € I'(T;, g; L .uG) whose pullbacks to
T; x7 Tj agree, there is a unique section s of G over T whose pullback to T; agrees

Let V' — T be an object of T and let ¢t € G(V). For every i there is a largest open
W; C T; x7 V such that the pullbacks of s; and ¢ agree as sections of the pullback
of Gto W, CT; xp V, see Lemma@ Because s; and s; agree over T; X T we
find that W; and W; pullback to the same open over T; xp T X7 V. By Descent,
Lemma we find an open W C V whose inverse image to T; X7 V recovers W;.

By construction of 9. jma”g there exists a 7-covering {T;; — T;};cs,, for each
j an open immersion or étale morphism V;; — T, a section t¢;; € G(V;;), and
commutative diagrams

Tij —= Vi

L

T,—=T

such that s;|r,, is the pullback of ¢;;. In other words, after replacing the covering
{T; = T} by {T;; — T'} we may assume there are factorizations T; — V; — T with
V; € Ob(T;) and sections t; € G(V;) pulling back to s; over T;. By the result of
the previous paragraph we find opens W; C V; such that t;|y, “agrees with” every
sj over T; xp W;. Note that T; — V; factors through W;. Hence {W; — T} is a
T-covering and the lemma is proven. ([l

Lemma 39.3. Let S be a scheme. Let f: T — S be a morphism such that
(1) f is flat and quasi-compact, and
(2) the geometric fibres of f are connected.

Let F be a sheaf on S¢rare. Then T'(S, F) =T(T, -1 F).

small
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Proof. There is a canonical map I'(S,F) — I'(T, ;! . F). Since f is surjective
(because its fibres are connected) we see that this map is injective.

To show that the map is surjective, let a € T'(T, ;! . F). Since {T' — S} is an
fpqc covering we can use Lemma [39.2] to see that suffices to prove that « pulls back
to the same section over T' X g T by the two projections. Let s — S be a geometric
point. It suffices to show the agreement holds over (T' x g Tz as every geometric
point of T' X g T is contained in one of these geometric fibres. In other words, we
are trying to show that a|z. pulls back to the same section over

(T Xs T)gz Tg Xng

by the two projections to T5. However, since F|r. is the pullback of Flz it is a
constant sheaf with value F5. Since T% is connected by assumption, any section of
a constant sheaf is constant. Hence a|T§ corresponds to an element of F5. Thus
the two pullbacks to (T' xg T')s both correspond to this same element and we
conclude. O

Here is a version of Lemma, where we do not assume that the morphism is flat.

Lemma) 39.4. Let S be a scheme. Let f: X — S be a morphism such that

(1) f is submersive, and
(2) the geometric fibres of f are connected.

Let F be a sheaf on Setare. Then T'(S, F) =T(X, f.! F).

small

Proof. There is a canonical map I'(S, F) — T'(X, f..}_ F). Since f is surjective

small
(because its fibres are connected) we see that this map is injective.

To show that the map is surjective, let 7 € I'(X, f;ia”f). It suffices to find an étale
covering {U; — S} and sections o; € F(U;) such that o; pulls back to 7|xx.u,-
Namely, the injectivity shown above guarantees that o; and o; restrict to the same
section of F over U; xg U;. Thus we obtain a unique section o € F(S) which

restricts to o; over U;. Then the pullback of o to X is 7 because this is true locally.

Let T be a geometric point of X with image 5 in S. Consider the image of 7 in the
stalk

( s_n}ballf)f =Fs
See Lemma We can find an étale neighbourhood U — S of 5§ and a section
o € F(U) mapping to this image in the stalk. Thus after replacing S by U and
X by X xg U we may assume there exits a section o of F over S whose image in

1 .
(famauF )z is the same as 7.

By Lemma [39.1| there exists a maximal open W C X such that f_ !

mau @ and T agree
over W and the formation of W commutes with further pullback. Observe that the
pullback of F to the geometric fibre Xz is the pullback of F5 viewed as a sheaf on
5 by X5 — 5. Hence we see that 7 and o give sections of the constant sheaf with
value Fz on Xz which agree in one point. Since Xz is connected by assumption,
we conclude that W contains Xs. The same argument for different geometric fibres
shows that W contains every fibre it meets. Since f is submersive, we conclude
that W is the inverse image of an open neighbourhood of s in S. This finishes the
proof. [
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Lemma 39.5. Let K/k be an extension of fields with k separably algebraically
closed. Let S be a scheme over k. Denote p : Sk = S Xgpec(k) Spec(K) — S the
projection. Let F be a sheaf on S¢iare. Then T'(S, F) = I‘(SK,p;n{ba”}'),

Proof. Follows from Lemma Namely, it is clear that p is flat and quasi-
compact as the base change of Spec(K) — Spec(k). On the other hand, if 5 :
Spec(L) — S is a geometric point, then the fibre of p over 3 is the spectrum of
K ®;, L which is irreducible hence connected by Algebra, Lemma O

40. Recovering morphisms

In this section we prove that the rule which associates to a scheme its locally ringed
small étale topos is fully faithful in a suitable sense, see Theorem [£0.5}

Lemma 40.1. Let f : X — Y be a morphism of schemes. The morphism of
ringed sites (fsmall, fgma”) associated to f is a morphism of locally ringed sites, see

Modules on Sites, Definition[{0.9

Proof. Note that the assertion makes sense since we have seen that (X¢taie, Ox.,.,. )
and (Yza1e, Oy,,,,.) are locally ringed sites, see Lemma Moreover, we know
that X has enough points, see Theorem [29.10 and Remarks 29.11] Hence it
suffices to prove that (fsmair, fgma”) satisfies condition (3) of Modules on Sites,
Lemma To see this take a point p of X¢tqe. By Lemma [29.12) p corresponds
to a geometric point T of X. By Lemma the point ¢ = fsmay © p corresponds
to the geometric point § = foZ of Y. Hence the assertion we have to prove is that
the induced map of stalks
(Oy)y — (Ox)=

is a local ring map. Suppose that a € (Oy )y is an element of the left hand side
which maps to an element of the maximal ideal of the right hand side. Suppose
that a is the equivalence class of a triple (V,7,a) with V. — Y étale, v : T — V
over Y, and a € O(V). It maps to the equivalence class of (X xy V,T x 7, prg/(a))
in the local ring (Ox)z. But it is clear that being in the maximal ideal means that
pulling back pr%, (a) to an element of k(T) gives zero. Hence also pulling back a to
k() is zero. Which means that a lies in the maximal ideal of (Oy)y. O

Lemma 40.2. Let X, Y be schemes. Let f : X — Y be a morphism of schemes.
Let t be a 2-morphism from (fsmali, ffmall) to itself, see Modules on Sites, Definition
[81l Then t = id.

Proof. This means that ¢ : fs_nia” — fs_nia” is a transformation of functors such
that the diagram

-1 -1
smallOY t fsmallOY
# f
fsmazz Aﬂ
Ox

is commutative. Suppose V — Y is étale with V affine. By Morphisms, Lemma|39.2
we may choose an immersion i : V' — Ay over Y. In terms of sheaves this means
that ¢ induces an injection h; : hy — [[,_, , Oy of sheaves. The base change i’
of i to X is an immersion (Schemes, Lemma (18.2). Hence i’ : X xy V — A% is an
immersion, which in turn means that hy : hxx,v — Hj:me Ox is an injection
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of sheaves. Via the identification f mallhv = hxx,v of Lemma the map h;
is equal to

[1s

fsmallhv H e f‘;malloy H OX
verification omitted). This means that the map ¢ : hy — hy fits into
small emall
the commutative diagram
#
1 g
smallhv H ey smallOY Hg:l,. ,n OX
lt lHt lid
_ . H fﬁ
fsmallhv H ..... n fsmallOY Hj:l ..... n OX

The commutativity of the right square holds by our assumption on t explained
above. Since the composition of the horizontal arrows is injective by the discussion
above we conclude that the left vertical arrow is the identity map as well. Any
sheaf of sets on Yy e admits a surjection from a (huge) coproduct of sheaves of
the form hy with V affine (combine Topologies Lemma with Sites, Lemma
) Thus we conclude that ¢ : f_ mall = fsma” is the 1dent1ty transformation as
de51red (]

Lemma 40.3. Let X, Y be schemes. Any two morphisms a,b : X — Y of

schemes for which there exists a 2-isomorphism (asmaii, ausma”) 2 (bsmails bgma”) mn
the 2-category of ringed topoi are equal.

Proof. Let us argue this carefuly since it is a bit confusing. Let ¢ : asma” — bwm”
be the 2-isomorphism. Consider any open V C Y. Note that hy is a subsheaf
of the final sheaf x. Thus both asma”hv = hq-1(vy and b, . hv = hy-1(v) are
subsheaves of the final sheaf. Thus the isomorphism

small

t: 5mallhv =h a= (V) - b.smallhv = hb*l(v)

has to be the identity, and a=1(V) = b=1(V). It follows that a and b are equal on
underlying topological spaces. Next, take a section f € Oy (V). This determines
and is determined by a map of sheaves of sets f : hy — Oy. Pull this back and
apply t to get a commutative diagram

hbil(v) bs_wlw,llh’v smallhv

t
l emall(f) iasml,all(f)

<—
OY asmall Y

A

where the triangle is commutative by definition of a 2-isomorphism in Modules on
Sites, Section Above we have seen that the composition of the top horizontal
arrows comes from the identity a=1(V) = b=1(V). Thus the commutativity of the
diagram tells us that aima”(f) = bgma”(f) in Ox(a=Y(V)) = Ox(b=1(V)). Since

ha71(V)

-1

small
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this holds for every open V and every f € Oy (V) we conclude that a = b as
morphisms of schemes. ([

Lemma 40.4. Let X, Y be affine schemes. Let
(gag#) : (Sh(Xétale)a OX) — (Sh(YYétale)on)

be a morphism of locally ringed topoi. Then there exists a unique morphism of
schemes f : X — Y such that (g,g") is 2-isomorphic to (fsmalhf(gma”), see Mod-
ules on Sites, Definition |8.1].

Proof. In this proof we write Ox for the structure sheaf of the small étale site
Xeétale, and similarly for Oy. Say Y = Spec(B) and X = Spec(A). Since B =
I'(Yetate; Oy ), A = I'(Xeétate, Ox) we see that g* induces a ring map ¢ : B — A.
Let f = Spec(¢) : X — Y be the corresponding morphism of affine schemes. We
will show this f does the job.

Let V — Y be an affine scheme étale over Y. Thus we may write V' = Spec(C)
with C' an étale B-algebra. We can write

C:B[xl,...,xn]/(Pl,...,Pn)

with P; polynomials such that A = det(0F;/0z;) is invertible in C, see for example
Algebra, Lemma[143.2] If T is a scheme over Y, then a T-valued point of V' is given
by n sections of I'(T, Or) which satisfy the polynomial equations Py =0,..., P, =
0. In other words, the sheaf hy on Ygq . is the equalizer of the two maps

a
Hi:l,...,n OY  —— Hj:l,...,n OY
b

where b(hl, feay hn) = 0 and a(hl, ey hn) = (Pl(hl, ceey hn)7 . 7Pn(h1a ceey hn))~
Since g~ ! is exact we conclude that the top row of the following solid commutative
diagram is an equalizer diagram as well:

_1(1

g
9 thy =Ilic1,n9 'Oy —___1ljm1,. 09 'Oy
g b
Y

hXXYV Hi:17...,n OX %—H]’:L.wn OX
b

’
a

Here b is the zero map and o’ is the map defined by the images P/ = ¢(F;) €
Alxy,...,z,] viathe same rule a’(hy, ..., hy) = (P{(h1, ..., hp)s oo, Ph(hy, .o hy)).
that a was defined by. The commutativity of the diagram follows from the fact that
¢ = g* on global sections. The lower row is an equalizer diagram also, by exactly
the same arguments as before since X xy V is the affine scheme Spec(A ®p C)
and A®p C = Alzy,...,z,)/(P],..., P}). Thus we obtain a unique dotted arrow

g hy — hx v fitting into the diagram

We claim that the map of sheaves g~'hy — hxx, v is an isomorphism. Since the
small étale site of X has enough points (Theorem it suffices to prove this
on stalks. Hence let T be a geometric point of X, and denote p the associate point
of the small étale topos of X. Set ¢ = g op. This is a point of the small étale
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topos of Y. By Lemma [29.12] we see that g corresponds to a geometric point ¥ of
Y. Consider the map of stalks

(gu)p : (OY)ﬂ =0y,q = (g_loY)p — Oxp = (Ox)z

Since (g, g*) is a morphism of locally ringed topoi (gﬁ)p is a local ring homomorphism
of strictly henselian local rings. Applying localization to the big commutative dia-
gram above and Algebra, Lemma [153.12| we conclude that (g7 hy ), — (hxxyv)p

is an isomorphism as desired.

We claim that the isomorphisms g~ 'hy — hxx, v are functorial. Namely, suppose
that V4 — V4 is a morphism of affine schemes étale over Y. Write V; = Spec(C;)
with

Ci=Blzi, ., Tin,)/(Pins-- s Pin,)

The morphism V; — V5 is given by a B-algebra map Cs — C7 which in turn is
given by some polynomials Q; € Blz1 1,...,21,,,] for j =1,...,n2. Then it is an
easy matter to show that the diagram of sheaves

hy, > Hi:l,i..,nl Oy

l inv"'aQng

hy, —— Hi:l,...,ng Oy

is commutative, and pulling back to Xgsqie We obtain the solid commutative diagram

g_lh’V2 - Hi:l7...,n2 g_loy

QIIV'"Q[VLQ
v

hxxyve > Hi:l,“.,nz Ox

gilhvl Hi:l,...,nl 9710}/

where Q; € Alz11,...,21,n,] is the image of @Q; via ¢. Since the dotted arrows
exist, make the two squares commute, and the horizontal arrows are injective we
see that the whole diagram commutes. This proves functoriality (and also that the
construction of g7 hy — hxx, v is independent of the choice of the presentation,
although we strictly speaking do not need to show this).
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At this point we are able to show that femnau .« = g«. Namely, let F be a sheaf on
Xeétale- For every V € Ob(Xgiqe) affine we have

(9+F) (V) = Morsp(yy,.) (Bv, 95 F)
= MorSh(Xémle)(g*lhv,f)
= Morgn(xu10) (hx xy vy F)
=F(X xy V)
= fsmatt«F (V)

where in the third equality we use the isomorphism g=1hy = hx, v constructed
above. These isomorphisms are clearly functorial in F and functorial in V' as
the isomorphisms g~ 'hy = hxx, v are functorial. Now any sheaf on Y. is
determined by the restriction to the subcategory of affine schemes (Topologies,
Lemma , and hence we obtain an isomorphism of functors femai,« = g« as
desired.

Finally, we have to check that, via the isomorphism fomqu,« = g« above, the maps
fgmal ; and g" agree. By construction this is already the case for the global sections
of Oy, i.e., for the elements of B. We only need to check the result on sections over
an affine V étale over Y (by Topologies, Lemma again). Writing V' = Spec(C),
C = Blxz;]/(P;) as before it suffices to check that the coordinate functions z; are
mapped to the same sections of Ox over X xy V. And this is exactly what it
means that the diagram

g 'y ——Tliey .9 'Oy
\
hxxyv —= Hi:l,.‘.,n Ox
commutes. Thus the lemma is proved. ([l
Here is a version for general schemes.
Theorem 40.5. Let X, Y be schemes. Let

(gag#) : (Sh(Xétale)a OX) — (Sh(YYétale)on)

be a morphism of locally ringed topoi. Then there exists a unique morphism of
schemes f : X — Y such that (g, g%) is isomorphic to (fsmall,ffma”). In other
words, the construction

Sch — Locally ringed topoi, X — (X¢tate; Ox)
is fully faithful (morphisms up to 2-isomorphisms on the right hand side).

Proof. You can prove this theorem by carefuly adjusting the arguments of the
proof of Lemma [40.4] to the global setting. However, we want to indicate how we
can glue the result of that lemma to get a global morphism due to the rigidity
provided by the result of Lemma Unfortunately, this is a bit messy.

Let us prove existence when Y is affine. In this case choose an affine open covering
X = U;. For each i the inclusion morphism j; : U; — X induces a morphism
of locally ringed topoi (jz‘,small,jg,sma”) 2 (Sh(Ui ¢tate), Ov, ) — (SM(Xeétate), Ox) by
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Lemma m We can compose this with (g, g*) to obtain a morphism of locally
ringed topoi
(9,9%) 0 (ji,smazujf,smau) : (Sh(U; ¢tate), Ou,) = (Sh(Yeérate), Oy)

see Modules on Sites, Lemmal[40.10] By Lemma there exists a unique morphism
of schemes f; : U; = Y and a 2-isomorphism

ti : (fi,smalb fiﬁ,small) — (gagﬁ) o (ji,smallajfysmall)-
Set U; » = U; N Uy, and denote j; i : U; + — U; the inclusion morphism. Since we
have j; o j; i = jir © jir; We see that

(ga gﬂ) © (ji,smallajﬁsma”) o (ji,i’,small,jg,i/7s,mall) =

(g,gﬁ) © (ji’,smallajf/7small) © (jz”,i,small;j?/,i7small)

Hence by uniqueness (see Lemma we conclude that f; o j; i = fir o ji i, in
other words the morphisms of schemes f; = f o j; are the restrictions of a global
morphism of schemes f: X — Y. Consider the diagram of 2-isomorphisms (where
we drop the components  to ease the notation)

tixid;
v Ji,i! ,small

go ji,small o ji,i’,small fsmall © ji,small o ji,i’ﬁsmall
tyrxidy

i’ i,small

go ji’,small © ji’,i,small > fsmall o ji’,small © ji’,i,small

The notation * indicates horizontal composition, see Categories, Definition [29.1
in general and Sites, Section for our particular case. By the result of Lemma
this diagram commutes. Hence for any sheaf G on Yz the isomorphisms
ti + foruGlu. — 97'G|u, agree over U;; and we obtain a global isomorphism

t: ;,ga”g — g~ 'G. Tt is clear that this isomorphism is functorial in G and is
compatible with the maps ffma” and g% (because it is compatible with these maps

locally). This proves the theorem in case Y is affine.

In the general case, let V' C Y be an affine open. Then hy is a subsheaf of the final
sheaf * on Yyq.. As g is exact we see that g~ 'hy is a subsheaf of the final sheaf
on X¢iare. Hence by Lemma [B1.1] there exists an open subscheme W C X such
that g~'hy = hy. By Modules on Sites, Lemma there exists a commutative
diagram of morphisms of locally ringed topoi

(Sh(Wétale)a OW) - (Sh(Xétale)7 OX)

(Sh(‘/étale)a OV) —_— (Sh(}/étale)a OY)

where the horizontal arrows are the localization morphisms (induced by the inclu-
sion morphisms V' — Y and W — X) and where ¢’ is induced from g. By the
result of the preceding paragraph we obtain a morphism of schemes [/ : W — V
and a 2-isomorphism ¢ : (£, s (fiman)®) — (¢',(g")F). Exactly as before these
morphisms f’ (for varying affine opens V' C Y') agree on overlaps by uniqueness,
so we get a morphism f : X — Y. Moreover, the 2-isomorphisms ¢ are com-
patible on overlaps by Lemma [10.2] again and we obtain a global 2-isomorphism
(Fsmaits (fsman)¥) — (g, (g)%). as desired. Some details omitted. O
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41. Push and pull

Let f : X — Y be a morphism of schemes. Here is a list of conditions we will
consider in the following:

(A) For every étale morphism U — X and u € U there exist an étale morphism
V — Y and a disjoint union decomposition X xy V = W II W’ and a
morphism h : W — U over X with u in the image of h.

(B) Forevery V — Y étale, and every étale covering {U; — X xy V'} there exists
an étale covering {V; — V'} such that for each j we have X xy V; = [[W};
where W;; — X xy V factors through U; — X xy V for some 3.

(C) For every U — X étale, there exists a V — Y étale and a surjective
morphism X xy V — U over X.

It turns out that each of these properties has meaning in terms of the behaviour of
the functor fsmai,«. We will work this out in the next few sections.

42. Property (A)
Please see Section [41] for the definition of property (A).

Lemma 42.1. Let f: X — Y be a morphism of schemes. Assume (A).

(1) fsmatt, : Ab(Xerare) = Ab(Yerale) reflects injections and surjections,
(2) f;ia”fsmall,*f — F is surjective for any abelian sheaf F on Xeqie,
(3) fsmall,* : Ab(Xétale) — Ab(yvétale) 18 faZtthZ

Proof. Let F be an abelian sheaf on Xg4q.. Let U be an object of Xgiq1.. By
assumption we can find a covering {W; — U} in Xgpqie such that each W; is an
open and closed subscheme of X xy V; for some object V; of Yziq.. The sheaf
condition shows that

FU)c[[Fwy)

and that F(W;) is a direct summand of F(X Xy V;) = fsman«F (Vi). Hence it is
clear that fspqu,« reflects injections.

Next, suppose that a : § — F is a map of abelian sheaves such that fomnau «a is
surjective. Let s € F(U) with U as above. With W;, V; as above we see that
it suffices to show that s|y, is étale locally the image of a section of G under
a. Since F(W;) is a direct summand of F(X xy V;) it suffices to show that for
any V € Ob(Ysaie) any element s € F(X xy V) is étale locally on X xy V the
image of a section of G under a. Since F(X Xy V) = fomau+F (V) we see by
assumption that there exists a covering {V; — V} such that s is the image of
$j € foman,«G(Vj) = G(X xy V;). This proves femau,« reflects surjections.

Parts (2), (3) follow formally from part (1), see Modules on Sites, Lemma O

Lemma 42.2. Let f : X — Y be a separated locally quasi-finite morphism of
schemes. Then property (A) above holds.

Proof. Let U — X be an étale morphism and v € U. The geometric statement
(A) reduces directly to the case where U and Y are affine schemes. Denote z € X
and y € Y the images of u. Since X — Y is locally quasi-finite, and U — X
is locally quasi-finite (see Morphisms, Lemma we see that U — Y is locally
quasi-finite (see Morphisms, Lemma . Moreover both X — Y and U — Y
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are separated. Thus More on Morphisms, Lemma applies to both morphisms.
This means we may pick an étale neighbourhood (V,v) — (Y, y) such that

XxyV=WIHIR, UxyV=WIHIR
and points w € W, w’ € W' such that

1) W, R are open and closed in X xy V,

2) W' R’ are open and closed in U xy V|

3) W —V and W' — V are finite,

4) w, w’ map to v,

5) k(v) C k(w) and k(v) C kK(w') are purely inseparable, and
6) no other point of W or W’ maps to v.

Here is a commutative diagram

U<—UxyV<~——WIR

o

X<=—XXxyV=—WIR

]

Y v

After shrinking V' we may assume that W’ maps into W: just remove the image the
inverse image of R in W’; this is a closed set (as W’ — V is finite) not containing
v. Then W' — W is finite because both W — V and W’ — V are finite. Hence
W' — W is finite étale, and there is exactly one point in the fibre over w with
k(w) = k(w'). Hence W’ — W is an isomorphism in an open neighbourhood W° of
w, see Etale Morphisms, Lemma Since W — V is finite the image of W\ W°
is a closed subset T' of V not containing v. Thus after replacing V by V' \ T we may
assume that W’ — W is an isomorphism. Now the decomposition X xyV = WIIR
and the morphism W — U are as desired and we win. ([

Lemma 42.3. Let f: X — Y be an integral morphism of schemes. Then property
(A) holds.

Proof. Let U — X be étale, and let u € U be a point. We have to find V — Y
étale, a disjoint union decomposition X xy V = W II W’ and an X-morphism
W — U with u in the image. We may shrink U and Y and assume U and Y are
affine. In this case also X is affine, since an integral morphism is affine by definition.
Write Y = Spec(A), X = Spec(B) and U = Spec(C). Then A — B is an integral
ring map, and B — C is an étale ring map. By Algebra, Lemma [I43.3] we can find a
finite A-subalgebra B’ C B and an étale ring map B’ — C’ such that C = Bp, C".
Thus the question reduces to the étale morphism U’ = Spec(C’) — X' = Spec(B’)
over the finite morphism X’ — Y. In this case the result follows from Lemma
[42.2] O

Lemma 42.4. Let f : X — Y be a morphism of schemes. Denote fsman :
Sh(Xetate) = Sh(Yerale) the associated morphism of small étale topoi. Assume at
least one of the following

(1) f is integral, or

(2) f is separated and locally quasi-finite.


https://stacks.math.columbia.edu/tag/04DM
https://stacks.math.columbia.edu/tag/04C9

04DN
04DO

04DP

04DQ

ETALE COHOMOLOGY 61

Then the functor femai« @ Ab(Xeétare) = Ab(Yeraie) has the following properties

(1) the map fi,r . fsmauF — F is always surjective,
(2) fomali« ts faithful, and
(3) fsmaur,« reflects injections and surjections.

Proof. Combine Lemmas [42.2] [42.3] and [42.1] O

43. Property (B)
Please see Section 41| for the definition of property (B).

Lemma 43.1. Let f : X — Y be a morphism of schemes. Assume (B) holds.
Then the functor femau« @ SM( Xeétate) = Sh(Yerale) transforms surjections into
surjections.

Proof. This follows from Sites, Lemma [41.2 (]

Lemma 43.2. Let f: X — Y be a morphism of schemes. Suppose

(1) V=Y is an étale morphism of schemes,

(2) {U; = X xy V'} is an étale covering, and

(3) v eV is a point.
Assume that for any such data there exists an étale neighbourhood (V',v") — (V,v),
a disjoint union decomposition X Xy V' = [[ W/, and morphisms W] — U; over
X xy V. Then property (B) holds.

Proof. Omitted. O

Lemma 43.3. Let f: X = Y be a finite morphism of schemes. Then property
(B) holds.

Proof. Consider V — Y étale, {U; — X xy V'} an étale covering, and v € V. We
have to find a V' — V and decomposition and maps as in Lemma We may
shrink V and Y, hence we may assume that V and Y are affine. Since X is finite
over Y, this also implies that X is affine. During the proof we may (finitely often)
replace (V,v) by an étale neighbourhood (V',v’) and correspondingly the covering
{UZ' — X Xy V} by {V/ Xy U, = X Xy V/}

Since X xy V' — V is finite there exist finitely many (pairwise distinct) points
T1,...,Tn, € X Xy V mapping to v. We may apply More on Morphisms, Lemma
to X xy V. — V and the points z1,...,2, lying over v and find an étale
neighbourhood (V’;v") — (V,v) such that

X xy V’:RHHTa

with T, — V' finite with exactly one point p, lying over v’ and moreover x(v") C
k(pq) purely inseparable, and such that R — V’ has empty fibre over v’. Because
X — Y is finite, also R — V' is finite. Hence after shrinking V’ we may assume
that R = (). Thus we may assume that X xy V = X; II...1II X,, with exactly one
point x; € X; lying over v with moreover x(v) C x(x;) purely inseparable. Note
that this property is preserved under refinement of the étale neighbourhood (V,v).

For each I choose an i; and a point u; € U;, mapping to ;. Now we apply property
(A) for the finite morphism X Xy V — V and the étale morphisms U;, — X xy V
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and the points u;. This is permissible by Lemma [42.3] This gives produces an étale
neighbourhood (V’,v") — (V,v) and decompositions

X Xy VI = Wl I Rl
and X-morphisms a; : W; — U;, whose image contains u;,. Here is a picture:

U;,

|

XXyV/HXXyVHX

L

Vv’ |4 Y

W, ——= W, 1IR,

After replacing (V,v) by (V’,v") we conclude that each z; is contained in an open
and closed neighbourhood W; such that the inclusion morphism W; — X xy V
factors through U; — X xy V for some i. Replacing W; by W; N X; we see

that these open and closed sets are disjoint and moreover that {zy,...,z,} C
WiU...UW,. Since X xy V — V is finite we may shrink V' and assume that
X xy V=W LH...IW, as desired. O

Lemma 43.4. Let f: X — Y be an integral morphism of schemes. Then property
(B) holds.

Proof. Consider V' — Y étale, {U; — X Xy V} an étale covering, and v € V.
We have to find a V/ — V and decomposition and maps as in Lemma 43.2l We
may shrink V' and Y, hence we may assume that V and Y are affine. Since X is
integral over Y, this also implies that X and X xy V are affine. We may refine the
covering {U; — X xy V'}, and hence we may assume that {U; = X Xy V}i=1 n
is a standard étale covering. Write Y = Spec(A), X = Spec(B), V = Spec(C), and
U; = Spec(B;). Then A — B is an integral ring map, and B®4 C — B; are étale
ring maps. By Algebra, Lemma we can find a finite A-subalgebra B’ C B
and an étale ring map B’ ® 4 C — Bj for i = 1,...,n such that B; = B®p' B..
Thus the question reduces to the étale covering {Spec(B]) — X’ xy V}i=1, ., with
X' = Spec(B') finite over Y. In this case the result follows from Lemma[d3.3] O

Lemma 43.5. Let f: X — Y be a morphism of schemes. Assume f is integral
(for example finite). Then

(1) fomair« transforms surjections into surjections (on sheaves of sets and on
abelian sheaves),

(2) f;;a”fsmall,*f — F is surjective for any abelian sheaf F on Xeqie,

(3) fsmattx = Ab(Xetate) = Ab(Yitare) s faithful and reflects injections and
surjections, and

(4) fsmall,* : Ab(Xétale) — Ab(}/étale) is exact.

Proof. Parts (2), (3) we have seen in Lemma [42.4] Part (1) follows from Lemmas
43.4] and Part (4) is a consequence of part (1), see Modules on Sites, Lemma
15.2 O
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44. Property (C)
Please see Section [41| for the definition of property (C).

Lemma 44.1. Let f : X — Y be a morphism of schemes. Assume (C) holds. Then
the functor fsmair,« : SM( Xeétare) = Sh(Yerare) reflects injections and surjections.

Proof. Follows from Sites, Lemma We omit the verification that property
(C) implies that the functor Ystare — Xetate, V — X Xy V satisfies the assumption
of Sites, Lemma [41.4 O

Remark 44.2. Property (C) holds if f: X — Y is an open immersion. Namely,
if U € Ob(X¢taie), then we can view U also as an object of Yeta1. and U xy X = U.
Hence property (C) does not imply that femnau,« is exact as this is not the case for
open immersions (in general).

Lemma 44.3. Let f : X — Y be a morphism of schemes. Assume that for any
V =Y étale we have that

(1) X xy V =V has property (C), and
(2) X xy V =V is closed.

Then the functor Yegie = Xeétale, V = X Xy V' is almost cocontinuous, see Sites,
Definition [{2.3

Proof. Let V — Y be an object of Ygiqie and let {U; — X Xy V};c1 be a covering
of X¢taie. By assumption (1) for each ¢ we can find an étale morphism h; : V; = V
and a surjective morphism X xy V; — U; over X xy V. Note that |Jh;(V;) C Visan
open set containing the closed set Z =Im(X xy V= V). Let hg : Vo =V\Z -V
be the open immersion. It is clear that {V; — V},ciuq0y is an étale covering
such that for each i € I U {0} we have either V; xy X = (§ (namely if ¢ = 0), or
Vi xy X = V xy X factors through U; — X xy V (if ¢ # 0). Hence the functor
Yitate — Xétale 18 almost cocontinuous. [l

Lemmal 44.4. Let f : X — Y be an integral morphism of schemes which defines
a homeomorphism of X with a closed subset of Y. Then property (C) holds.

Proof. Let g : U — X be an étale morphism. We need to find an object V — Y
of Y¢ia1e and a surjective morphism X xy V — U over X. Suppose that for every
u € U we can find an object V,, = Y of Y4 and a morphism h, : X xy V,, = U
over X with u € Im(h,). Then we can take V =[]V, and h =[] h, and we win.
Hence given a point u € U we find a pair (Vy, h,) as above. To do this we may
shrink U and assume that U is affine. In this case g : U — X is locally quasi-finite.
Let g1 (g({u})) = {u,ua,...,u,}. Since there are no specializations u; ~» u we
may replace U by an affine neighbourhood so that g=!(g({u})) = {u}.

The image g(U) C X is open, hence f(g(U)) is locally closed in Y. Choose an open
V C Y such that f(g(U)) = f(X)NV. It follows that g factors through X xy V
and that the resulting {U — X xy V} is an étale covering. Since f has property
(B) , see Lemma we see that there exists an étale covering {V; — V} such
that X xy V; — X Xy V factor through U. This implies that V' = [[V; is étale
over Y and that there is a morphism h : X xy V' — U whose image surjects onto
g(U). Since w is the only point in its fibre it must be in the image of h and we
win. O
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We urge the reader to think of the following lemma as a way statiorﬂ on the jour-
ney towards the ultimate truth regarding fsmau,» for integral universally injective
morphisms.

Lemma 44.5. Let f : X — Y be a morphism of schemes. Assume that f is
universally injective and integral (for example a closed immersion). Then

(1) fsmatr, : SM(Xetare) = Sh(Yerare) reflects injections and surjections,

(2) fsmatt,« : SM Xetare) = Sh(Yeraie) commutes with pushouts and coequalizers
(and more generally finite connected colimits),

(3) fsmaur,« transforms surjections into surjections (on sheaves of sets and on
abelian sheaves),

(4) the map fs_"}a”fsma”y*}" — F is surjective for any sheaf (of sets or of
abelian groups) F on Xeiaie,

(5) the functor fsmau,« s faithful (on sheaves of sets and on abelian sheaves),

(6) fsmatr,« : Ab(Xétate) = Ab(Yerale) is exact, and

(7) the functor Ysiaie = Xeétale, V = X Xy V is almost cocontinuous.

Proof. By Lemmas [2.3] [43.4] and [#4.4] we know that the morphism f has prop-
erties (A), (B), and (C). Moreover, by Lemma we know that the functor
Yeétate = Xeétale is almost cocontinuous. Now we have

(1) property (C) implies (1) by Lemma [44.1]

(2) almost continuous implies (2) by Sites, Lemma [42.6]

(3) property (B) implies (3) by Lemma [43.1]
Properties (4), (5), and (6) follow formally from the first three, see Sites, Lemma
and Modules on Sites, Lemma Property (7) we saw above. O

45. Topological invariance of the small étale site

In the following theorem we show that the small étale site is a topological invariant
in the following sense: If f: X — Y is a morphism of schemes which is a universal
homeomorphism, then Xgiq1e = Yirare as sites. This improves the result of Etale
Morphisms, Theorem We first prove the result for morphisms and then we
state the result for categories.

Theorem 45.1. Let X and Y be two schemes over a base scheme S. Let 8" — S
be a universal homeomorphism. Denote X' (resp. Y') the base change to S’. If X
is étale over S, then the map

Morg (Y, X) — Morg/ (Y', X")
is bijective.
Proof. After base changing via Y — S, we may assume that Y = S. Thus we
may and do assume both X and Y are étale over S. In other words, the theorem

states that the base change functor is a fully faithful functor from the category of
schemes étale over S to the category of schemes étale over S'.

Consider the forgetful functor

descent data (X', ¢’) relative to S'/S

!z !/
with X7 étale over S’ — schemes X' étale over S

(45.1.1)

3A way station is a place where people stop to eat and rest when they are on a long journey.
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We claim this functor is an equivalence. On the other hand, the functor

descent data (X', ¢') relative to S'/S

(45.1.2) schemes X étale over S — with X’ étale over S’

is fully faithful by Etale Morphisms, Lemma Thus the claim implies the
theorem.

Proof of the claim. Recall that a universal homeomorphism is the same thing as an
integral, universally injective, surjective morphism, see Morphisms, Lemma [45.5
In particular, the diagonal A : 8" — S’ x5’ is a thickening by Morphisms, Lemma
Thus by Etale Morphisms, Theorem we see that given X' — S’ étale
there is a unique isomorphism
QDIZX/XSS/%S/ XsXI

of schemes étale over S’ xg S’ which pulls back under A to id : X/ — X’ over
S’. Since §" — 5’ xg S’ x5 S’ is a thickening as well (it is bijective and a closed
immersion) we conclude that (X', ¢') is a descent datum relative to S’/S. The
canonical nature of the construction of ¢’ shows that it is compatible with mor-
phisms between schemes étale over S’. In other words, we obtain a quasi-inverse

X' — (X', ¢') of the functor (45.1.1). This proves the claim and finishes the proof
of the theorem. O

Theorem 45.2. Let f: X — Y be a morphism of schemes. Assume f is inte-
gral, universally injective and surjective (i.e., f is a universal homeomorphism, see

Morphisms, Lemma . The functor
Vi— Vx =X xy V
defines an equivalence of categories

{schemes V étale over Y} <+ {schemes U étale over X}

We give two proofs. The first uses effectivity of descent for quasi-compact, sepa-
rated, étale morphisms relative to surjective integral morphisms. The second uses
the material on properties (A), (B), and (C) discussed earlier in the chapter.

First proof. By Theorem [45.1| we see that the functor is fully faithful. It remains
to show that the functor is essentially surjective. Let U — X be an étale morphism
of schemes.

Suppose that the result holds if U and Y are affine. In that case, we choose an
affine open covering U = |JU; such that each U; maps into an affine open of
Y. By assumption (affine case) we can find étale morphisms V; — Y such that
X xy V; 2 U; as schemes over X. Let V;;; C V; be the open subscheme whose
underlying topological space corresponds to U;NU;,. Because we have isomorphisms

XXy Vig =2U;NUs =X Xy Vir;

as schemes over X we see by fully faithfulness that we obtain isomorphisms 6; ;: :
Viir — Vi of schemes over Y. We omit the verification that these isomorphisms
satisfy the cocycle condition of Schemes, Section Applying Schemes, Lemma
[I4.2] we obtain a scheme V — Y by glueing the schemes V; along the identifications
0; ;. 1t is clear that V' — Y is étale and X xy V = U by construction.

Thus it suffices to show the lemma in case U and Y are affine. Recall that in the
proof of Theorem we showed that U comes with a unique descent datum (U, ¢)

[DG67, TV Theorem
18.1.2]
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relative to X/Y. By Etale Morphisms, Proposition m (which applies because
U — X is quasi-compact and separated as well as étale by our reduction to the
affine case) there exists an étale morphism V' — Y such that X xy V =2 U and the
proof is complete. O

Second proof. By Theorem we see that the functor is fully faithful. It re-
mains to show that the functor is essentially surjective. Let U — X be an étale
morphism of schemes.

Suppose that the result holds if U and Y are affine. In that case, we choose an
affine open covering U = |JU,; such that each U; maps into an affine open of
Y. By assumption (affine case) we can find étale morphisms V; — Y such that
X xy V; 2 U; as schemes over X. Let V;;; C V; be the open subscheme whose
underlying topological space corresponds to U;NU;,. Because we have isomorphisms

X Xy ‘/;71‘/ = Ul ﬂUZ/ =X Xy ‘/;i’,i

as schemes over X we see by fully faithfulness that we obtain isomorphisms 6; ;: :
Viir — Vi of schemes over Y. We omit the verification that these isomorphisms
satisfy the cocycle condition of Schemes, Section Applying Schemes, Lemma
we obtain a scheme V' — Y by glueing the schemes V; along the identifications
0;4. It is clear that V' — Y is étale and X xy V = U by construction.

Thus it suffices to prove that the functor
(45.2.1)  {affine schemes V étale over Y} «+» {affine schemes U étale over X}
is essentially surjective when X and Y are affine.

Let U — X be an affine scheme étale over X. We have to find V — Y étale (and
affine) such that X xy V is isomorphic to U over X. Note that an étale morphism
of affines has universally bounded fibres, see Morphisms, Lemmas and
Hence we can do induction on the integer n bounding the degree of the fibres of
U — X. See Morphisms, Lemma for a description of this integer in the case
of an étale morphism. If n = 1, then U — X is an open immersion (see Etale
Morphisms, Theorem , and the result is clear. Assume n > 1.

By Lemma [44.4] there exists an étale morphism of schemes W — Y and a surjective
morphism Wx — U over X. As U is quasi-compact we may replace W by a disjoint
union of finitely many affine opens of W, hence we may assume that W is affine as
well. Here is a diagram

~—Ux

W=—=WxIIR

1
|

;,

The disjoint union decomposition arises because by construction the étale morphism
of affine schemes U xy W — Wx has a section. OK, and now we see that the
morphism R — X xy W is an étale morphism of affine schemes whose fibres have
degree universally bounded by n — 1. Hence by induction assumption there exists
a scheme V' — W étale such that R = Wy xy V'. Taking V" = W IV’ we find a
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scheme V' étale over W whose base change to W is isomorphic to U xy W over
X Xy Ww.

At this point we can use descent to find V over Y whose base change to X is
isomorphic to U over X. Namely, by the fully faithfulness of the functor
corresponding to the universal homeomorphism X xy (W xy W) — (W xy W)
there exists a unique isomorphism ¢ : V/ xy W — W xy V" whose base change
to X Xy (W xy W) is the canonical descent datum for U xy W over X xy W.
In particular ¢ satisfies the cocycle condition. Hence by Descent, Lemma we
see that ¢ is effective (recall that all schemes above are affine). Thus we obtain
V — Y and an isomorphism V" = W xy V such that the canonical descent datum
on W xy V/W/Y agrees with ¢. Note that V' — Y is étale, by Descent, Lemma
Moreover, there is an isomorphism Vx = U which comes from descending
the isomorphism

VX ><XWX :XXyVXyW: (XXyW) Xw(WXyV) = WX xWV” = UXyW
which we have by construction. Some details omitted. (]

Remark| 45.3. In the situation of Theorem it is also true that V — Vx
induces an equivalence between those étale morphisms V' — Y with V affine and
those étale morphisms U — X with U affine. This follows for example from Limits,
Proposition [I1.2]

Proposition| 45.4 (Topological invariance of étale cohomology). Let Xo — X be
a universal homeomorphism of schemes (for example the closed immersion defined
by a nilpotent sheaf of ideals). Then

(1) the étale sites Xspare and (Xo)etale are isomorphic,

(2) the étale topoi Sh(Xe¢tare) and Sh((Xo)etale) are equivalent, and

(3) HY, (X, F) = HY, ,.(Xo,F|x,) for all ¢ and for any abelian sheaf F on
Xétale-

Proof. The equivalence of categories X¢iaie — (X0)eétate is given by Theorem
‘We omit the proof that under this equivalence the étale coverings correspond. Hence
(1) holds. Parts (2) and (3) follow formally from (1). O

46. Closed immersions and pushforward

Before stating and proving Proposition [46.4]in its correct generality we briefly state
and prove it for closed immersions. Namely, some of the preceding arguments are
quite a bit easier to follow in the case of a closed immersion and so we repeat them
here in their simplified form.

In the rest of this section ¢ : Z — X is a closed immersion. The functor
Sch/X — Sch/Z, Ur—Uz=ZxxU
will be denoted U — Uy as indicated. Since being a closed immersion is preserved

under arbitrary base change the scheme Uy is a closed subscheme of U.

Lemmal 46.1. Leti: Z — X be a closed immersion of schemes. Let U, U’ be
schemes étale over X. Let h: Uz — Ul, be a morphism over Z. Then there exists
a diagram
U<*w s
1

such that az : Wz — Uy is an isomorphism and h = bz o (az)™*.
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Proof. Consider the scheme M = U xx U’. The graph I', C Mz of h is open.
This is true for example as I'j, is the image of a section of the étale morphism
pry 7+ Mz — Uz, see Etale Morphisms, Proposition Hence there exists an
open subscheme W C M whose intersection with the closed subset My is I'j,. Set
a = pry|w and b = pry|w. O

Lemma 46.2. Leti: Z — X be a closed immersion of schemes. Let V. — Z be an
étale morphism of schemes. There exist étale morphisms U; — X and morphisms
Uiz =V such that {U; z — V'} is a Zariski covering of V.

Proof. Since we only have to find a Zariski covering of V' consisting of schemes of
the form Uy with U étale over X, we may Zariski localize on X and V. Hence we
may assume X and V affine. In the affine case this is Algebra, Lemma [143.10] O

If T : Spec(k) — X is a geometric point of X, then either T factors (uniquely)
through the closed subscheme Z, or Zz = ). If T factors through Z we say that 7 is
a geometric point of Z (because it is) and we use the notation “T € Z” to indicate
this.

Lemma 46.3. Leti: Z — X be a closed immersion of schemes. Let G be a sheaf
of sets on Zgqie- Let T be a geometric point of X. Then

, _x dif zEZ
(Zsmall,*g)z - {gw 'Lf TeZ
where x denotes a singleton set.

Proof. Note that ismau,«Glu.,.,. = * is the final object in the category of étale
sheaves on U, i.e., the sheaf which associates a singleton set to each scheme étale
over U. This explains the value of (isma1«G)z if T & Z.

Next, suppose that T € Z. Note that
(tsmat1,+9)z = colimyz) G(Uz)
and on the other hand
Gz = colim(y ) g(v).
Let C; = {(U, u)}°PP be the opposite of the category of étale neighbourhoods of T in
X, and let Co = {(V,7)}°PP be the opposite of the category of étale neighbourhoods
of T in Z. The canonical map
gf — (ismall,*g)f

corresponds to the functor F : C; — Co, F(U,w) = (Uz,T). Now Lemmas and
[46.1) imply that C; is cofinal in Cy, see Categories, Definition Hence it follows
that the displayed arrow is an isomorphism, see Categories, Lemma O

Proposition|46.4. Leti: Z — X be a closed immersion of schemes.
(1) The functor
ismall,* : Sh(Zétale) — Sh(Xétale)

is fully faithful and its essential image is those sheaves of sets F on Xsiale
whose restriction to X \ Z is isomorphic to *, and
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(2) the functor
ismall,* : Ab(Zétale) — Ab(Xétale)

is fully faithful and its essential image is those abelian sheaves on Xgtale
whose support is contained in Z.

In both cases i;nlzall is a left inverse to the functor ismail -

Proof. Let’s discuss the case of sheaves of sets. For any sheaf G on Z the morphism
i;nlwllisma”,*g — @G is an isomorphism by Lemma (and Theorem . This
implies formally that isman,« is fully faithful, see Sites, Lemma[T.1] Tt is clear that
tsmail,«G|Uspa. = * where U = X \ Z. Conversely, suppose that F is a sheaf of sets

on X such that F|y 2 . Consider the adjunction mapping

étale

, .|
F— tsmall,x? F

small
Combining Lemmas and we see that it is an isomorphism. This finishes
the proof of (1). The proof of (2) is identical. O

47. Integral universally injective morphisms
Here is the general version of Proposition

Proposition| 47.1. Let f : X — Y be a morphism of schemes which is integral
and universally injective.

(1) The functor
fsmall,* . Sh(Xétale) — Sh(Yétale)

is fully faithful and its essential image is those sheaves of sets F on Yiale
whose restriction to Y \ f(X) is isomorphic to *, and
(2) the functor
fsmall,* : Ab(Xétale) — Ab(}/étale)
s fully faithful and its essential image is those abelian sheaves on Yiiqe

whose support is contained in f(X).

-1

In both cases f_ .,

; Us a left inverse to the functor fomaii -
Proof. We may factor f as

XLz "5y
where h is integral, universally injective and surjective and ¢ : Z — Y is a closed
immersion. Apply Proposition to ¢ and apply Theorem to h. (Il
48. Big sites and pushforward

In this section we prove some technical results on fy4 « for certain types of mor-
phisms of schemes.

Lemma 48.1. Let 7 € {Zariski, étale, smooth, syntomic, fppf}. Let f : X =Y
be a monomorphism of schemes. Then the canonical map fb;;fbig,*f — F is an
isomorphism for any sheaf F on (Sch/X),.

Proof. In this case the functor (Sch/X ), — (Sch/Y). is continuous, cocontinuous
and fully faithful. Hence the result follows from Sites, Lemma [21. (]
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Remark| 48.2. In the situation of Lemma it is true that the canonical map
F — fg;;glfbig!.;’: is an isomorphism for any sheaf of sets F on (Sch/X),. The proof
is the same. This also holds for sheaves of abelian groups. However, note that the
functor fu;g for sheaves of abelian groups is defined in Modules on Sites, Section
and is in general different from fy;; on sheaves of sets. The result for sheaves
of abelian groups follows from Modules on Sites, Lemma

Lemma 48.3. Let f: X — Y be a closed immersion of schemes. Let U — X be
a syntomic (resp. smooth, resp. étale) morphism. Then there exist syntomic (resp.
smooth, resp. étale) morphisms V; — Y and morphisms V; xy X — U such that
{Vi xy X = U} is a Zariski covering of U.

Proof. Let us prove the lemma when 7 = syntomic. The question is local on
U. Thus we may assume that U is an affine scheme mapping into an affine of Y.
Hence we reduce to proving the following case: ¥ = Spec(A4), X = Spec(4/I),
and U = Spec(B), where A/I — B be a syntomic ring map. By Algebra, Lemma
we can find elements g; € B such that By, = A;/IA; for certain syntomic
ring maps A — A;. This proves the lemma in the syntomic case. The proof of the
smooth case is the same except it uses Algebra, Lemma In the étale case
use Algebra, Lemma O

Lemma 48.4. Let f: X =Y be a closed immersion of schemes. Let {U; — X}
be a syntomic (resp. smooth, resp. étale) covering. There exists a syntomic (resp.
smooth, resp. étale) covering {V; — Y} such that for each j, either V; xy X =0,
or the morphism V; xy X — X factors through U; for some 1.

Proof. For each i we can choose syntomic (resp. smooth, resp. étale) morphisms
gij : Vij = Y and morphisms V;; xy X — U; over X, such that {V;; xy X — U}
are Zariski coverings, see Lemma This in particular implies that (,; gi;(Vij)
contains the closed subset f(X). Hence the family of syntomic (resp. smooth, resp.
étale) maps g;; together with the open immersion Y\ f(X) — Y forms the desired
syntomic (resp. smooth, resp. étale) covering of Y. O

Lemmal 48.5. Let f : X — Y be a closed immersion of schemes. Let T €
{syntomic, smooth, étale}. The functor V. — X xy V defines an almost cocon-
tinuous functor (see Sites, Definition [42.3) (Sch/Y); — (Sch/X). between big T

sites.

Proof. We have to show the following: given a morphism V' — Y and any syntomic
(resp. smooth, resp. étale) covering {U; — X xy V'}, there exists a smooth (resp.
smooth, resp. étale) covering {V; — V'} such that for each j, either X xy Vj is
empty, or X xy V; — Z Xy V factors through one of the U;. This follows on
applying Lemma above to the closed immersion X xy V — V. ([

Lemmal 48.6. Let f : X — Y be a closed immersion of schemes. Let T €
{syntomic, smooth, étale}.
(1) The pushforward fyig. @ Sh((Sch/X);) — Sh((Sch/Y);) commutes with
coequalizers and pushouts.
(2) The pushforward fig . : Ab((Sch/X);) — Ab((Sch/Y);) is exact.

Proof. This follows from Sites, Lemma Modules on Sites, Lemma [15.3] and
Lemma [48.5] above. (]
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04C5 |Remark 48.7. In Lemma the case 7 = fppf is missing. The reason is
that given a ring A, an ideal I and a faithfully flat, finitely presented ring map
A/I — B, there is no reason to think that one can find any flat finitely presented
ring map A — B with B/IB # 0 such that A/I — B/IB factors through B. Hence
the proof of Lemma [8.F] does not work for the fppf topology. In fact it is likely
false that fyig« : Ab((Sch/X)ppr) — Ab((Sch/Y ) ¢pps) is exact when f is a closed
immersion. If you know an example, please email stacks.project@gmail.com.

49. Exactness of big lower shriek

04CB  This is just the following technical result. Note that the functor fy;q has nothing
whatsoever to do with cohomology with compact support in general.

04CC Lemma 49.1. Let 7 € {Zariski, étale, smooth, syntomic, fppf}. Let f : X - Y
be a morphism of schemes. Let

Joig = Sh((Sch/X)z) — Sh((Sch/Y):)

be the corresponding morphism of topoi as in Topologies, Lemma [3.16],
(1) The functor fb_ig1 s Ab((Sch/Y) ) — Ab((Sch/X)7) has a left adjoint

Frigt : Ab((Sch/X),) — Ab((Sch/Y)s)

which is exact.
(2) The functor fy;, « Mod((Sch/Y )., O) — Mod((Sch/X),O) has a left ad-
joint
foigt : Mod((Sch/X)-,0) — Mod((Sch/Y),,O)
which is exact.

Moreover, the two functors fyigq agree on underlying sheaves of abelian groups.

Proof. Recall that fy;4 is the morphism of topoi associated to the continuous and
cocontinuous functor u : (Sch/X), — (Sch/Y),, U/X — U/Y. Moreover, we have
fb;.C’) = O. Hence the existence of fy; follows from Modules on Sites, Lemma
respectively Modules on Sites, Lemma Note that if U is an object of
(Sch/X), then the functor u induces an equivalence of categories

W' s (Sch)X)r /U — (Sch/Y), U

because both sides of the arrow are equal to (Sch/U),. Hence the agreement of
fvigt on underlying abelian sheaves follows from the discussion in Modules on Sites,
Remark [41.2] The exactness of fy;g follows from Modules on Sites, Lemma as
the functor v above which commutes with fibre products and equalizers. O

Next, we prove a technical lemma that will be useful later when comparing sheaves
of modules on different sites associated to algebraic stacks.

07AJ Lemma 49.2. Let X be a scheme. Let T € {Zariski, étale, smooth, syntomic, fppf}.
Let C; C Cy C (Sch/X); be full subcategories with the following properties:

(1) For an object U/X of Cy,
(a) if {U; = U} is a covering of (Sch/X),, then U;/X is an object of C,
(b) U x A'/X is an object of C;.

(2) X/X is an object of C;.
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We endow Cy with the structure of a site whose coverings are exactly those coverings
{U; = U} of (Sch/X), with U € Ob(C;). Then
(a) The functor C; — Ca is fully faithful, continuous, and cocontinuous.

Denote g : Sh(C1) — Sh(Cz) the corresponding morphism of topoi. Denote Oy the
restriction of O to Cy. Denote gy the functor of Modules on Sites, Definition[16.1]

(b) The canonical map 101 — Os is an isomorphism.

Proof. Assertion (a) is immediate from the definitions. In this proof all schemes
are schemes over X and all morphisms of schemes are morphisms of schemes over
X. Note that g—! is given by restriction, so that for an object U of C; we have
O1(U) = O5(U) = O(U). Recall that 1O is the sheaf associated to the presheaf
gp1O1 which associates to V' in Cy the group

colimy ,y O(U)

where U runs over the objects of C; and the colimit is taken in the category of
abelian groups. Below we will use frequently that if

V-sU—-U

are morphisms with U, U’ € Ob(Cy) and if f' € O(U’) restricts to f € O(U),
then (V — U, f) and (V — U’, f') define the same element of the colimit. Also,
9101 — Oz maps the element (V' — U, f) simply to the pullback of f to V.

Surjectivity. Let V' be a scheme and let h € O(V). Then we obtain a morphism
V — X x A' induced by h and the structure morphism V — X. Writing A! =
Spec(Z[z]) we see the element z € O(X x A') pulls back to h. Since X x A! is an
object of C; by assumptions (1)(b) and (2) we obtain the desired surjectivity.

Injectivity. Let V be a scheme. Let s = Zizl,_m(v — Uy, f;) be an element of the
colimit displayed above. For any i we can use the morphism f; : U; — X x Al to see
that (V — U, f;) defines the same element of the colimit as (f; : V — X x Al z).

Then we can consider
fAX. . xXfr:V=oXxA"

and we see that s is equivalent in the colimit to

2'71 (fix..Xfu: V= XxA" x;) = (fix..Xfn: V= XxXA" x1+...+x,)

Now, if 1 + ...+ x, restricts to zero on V', then we see that fi x ... x f, factors
through X x A"~! = V(21 + ...+ z,). Hence we see that s is equivalent to zero
in the colimit. (]

50. Etale cohomology

In the following sections we prove some basic results on étale cohomology. Here is
an example of something we know for cohomology of topological spaces which also
holds for étale cohomology.

Lemma 50.1 (Mayer-Vietoris for étale cohomology). Let X be a scheme. Suppose
that X = U UV is a union of two opens. For any abelian sheaf F on Xegiqie there
exists a long exact cohomology sequence

OHHgtale(X’f) %HO (Uﬂf)@Hgtale(V;f)*}H(’)

étale étale
_>He}tale(X7f)_>H} (U7F)®He}tale(v’f)_>Hl

étale étale
This long exact sequence is functorial in F.

UNV,F)
UNV,F) = ...
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Proof. Observe that if 7 is an injective abelian sheaf, then
0-Z(X)=Z({U)eZ(V) - Z(UNV) =0

is exact. This is true in the first and middle spots as Z is a sheaf. It is true on
the right, because Z(U) — Z(U NV) is surjective by Cohomology on Sites, Lemma
Another way to prove it would be to show that the cokernel of the map
Z(U) @ Z(V) — Z(U NV) is the first Cech cohomology group of Z with respect to
the covering X = UUV which vanishes by Lemmas and Thus, if F — Z°¢

is an injective resolution, then
0> X)=>Z°(U)®eZI*(V) - ZI°(UNV) =0

is a short exact sequence of complexes and the associated long exact cohomology
sequence is the sequence of the statement of the lemma. (Il

Lemma 50.2 (Relative Mayer-Vietoris). Let f : X — Y be a morphism of
schemes. Suppose that X = U UV is a union of two open subschemes. Denote
a=flu:U—=>Y,b=flyv:V =Y, andc= flyny : UNV = Y. For every
abelian sheaf F on Xgiqie there exists a long exact sequence

0 = fuF = a.(Flu) @ b (Flv) = co(Fluay) = R foF — ...
on Yziaie- This long exact sequence is functorial in F.

Proof. Let F — Z° be an injective resolution of F on Xgiq.. We claim that we
get a short exact sequence of complexes

0= fiI® = a. %y ® b.I°v — c.Z®lunv — 0.

Namely, for any W in Ygae, and for any n > 0 the corresponding sequence of
groups of sections over W

0= IM(W xy X) = IT(W xy U) @ I"(W xy V) = I"(W xy (UNV)) = 0

was shown to be short exact in the proof of Lemma [50.1] The lemma follows by
taking cohomology sheaves and using the fact that Z°®|y is an injective resolution
of Fly and similarly for Z°|y, Z*|unv. O

51. Colimits

We recall that if (F;, @) is a diagram of sheaves on a site C its colimit (in the
category of sheaves) is the sheafification of the presheaf U — colim; F;(U). See
Sites, Lemma If the system is directed, U is a quasi-compact object of C
which has a cofinal system of coverings by quasi-compact objects, then F(U) =
colim F;(U), see Sites, Lemma See Cohomology on Sites, Lemma for a
result dealing with higher cohomology groups of colimits of abelian sheaves.

In Cohomology on Sites, Lemma|16.5|we generalize this result to a system of sheaves
on an inverse system of sites. Here is the corresponding notion in the case of a
system of étale sheaves living on an inverse system of schemes.

Definition 51.1. Let I be a preordered set. Let (X, fi;) be an inverse system of
schemes over I. A system (F;, pir;) of sheaves on (X;, fir;) is given by

(1) a sheaf F; on (X;)etate for all ¢ € I,

(2) for ¢/ > i amap py; : fiTil}"i — Fir of sheaves on (X )etaie

such that ;; = @ 0 fﬁ%mpm whenever i > i’ > 1.
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In the situation of Definition assume [ is a directed set and the transition
morphisms f;/; affine. Let X = lim X; be the limit in the category of schemes, see
Limits, Section [2| Denote f; : X — X; the projection morphisms and consider the
maps
_1 1 p—1 f;ltpi"i -1

f’i ‘Fz:le fi/iﬂ fi/ fi/
This turns f;l}"i into a system of sheaves on Xgtq. over I (it is a good exercise to
check this). We often want to know whether there is an isomorphism

H (Xi, Fi)

étale

(X, colim f;l]-'i) = colim H?

étale

It will turn out this is true if X; is quasi-compact and quasi-separated for all 7, see
Theorem [51.3]

Lemma 51.2. Let I be a directed set. Let (X, fi;) be an inverse system of schemes
over I with affine transition morphisms. Let X = lim;c; X;. With notation as in

Topologies, Lemma[{.13 we have
Xaffine,étale = COhm(Xi)affine,étale
as sites in the sense of Sites, Lemma[18.9

Proof. Let us first prove this when X and X; are quasi-compact and quasi-
separated for all ¢ (as this is true in all cases of interest). In this case any object of
Xaffine étale, T€SP. (Xi)af fine étale is of finite presentation over X. Moreover, the
category of schemes of finite presentation over X is the colimit of the categories of
schemes of finite presentation over X;, see Limits, Lemma The same holds for
the subcategories of affine objects étale over X by Limits, Lemmas and
Finally, if {U7 — U} is a covering of X, fine étate and if U — U; is morphism of
affine schemes étale over X; whose base change to X is U J — U, then we see that
the base change of {U] — U} to some X, is a covering for i’ large enough, see
Limits, Lemma [8.15

In the general case, let U be an object of X,¢fine,state- Then U — X is étale and
separated (as U is separated) but in general not quasi-compact. Still, U — X is
locally of finite presentation and hence by Limits, Lemma there exists an i,
a quasi-compact and quasi-separated scheme U;, and a morphism U; — X; which
is locally of finite presentation whose base change to X is U — X. Then U =
lim; >; Uy where Uy = U; x x, X;r. After increasing ¢ we may assume Uj is affine, see
Limits, Lemma, To check that U; — X, is étale for i sufficiently large, choose
a finite affine open covering U; = U; 1 U ... UU; p, such that U; ; — U; — X; maps
into an affine open W; ; C X;. Then we can apply Limits, Lemma [8.10] to see that
Ui; — W, ; is étale after possibly increasing i. In this way we see that the functor
colim(X5)affine,étale — Xaffineétale 1S essentially surjective. Fully faithfulness
follows directly from the already used Limits, Lemma The statement on
coverings is proved in exactly the same manner as done in the first paragraph of
the proof. O

Using the above we get the following general result on colimits and cohomology.

Theorem 51.3. Let X = lim;c; X; be a limit of a directed system of schemes with
affine transition morphisms fi; + Xy — X;. We assume that X; is quasi-compact
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and quasi-separated for all i € I. Let (F;,@i;) be a system of abelian sheaves on
(X, firi). Denote f; : X — X; the projection and set F = colim fi_l]-'i. Then

COlimie] H? (X“]:l) = Hgtale(X’ ]:)

étale

for all p > 0.

Proof. By Topologies, Lemma we can compute the cohomology of F on
Xaffineétale- Thus the result by a combination of Lemma @ and Cohomology
on Sites, Lemma [16.5 O

The following two results are special cases of the theorem above.

Lemma 51.4. Let X be a quasi-compact and quasi-separated scheme. Let I be a
directed set. Let (F;,p;;) be a system of abelian sheaves on Xeqre over I. Then

(X,]:z) == Hp (X, COlimie[ fl)

. . p
colim;er H, Stale

étale

Proof. This is a special case of Theorem We also sketch a direct proof. We
prove it for all X at the same time, by induction on p.

(1) For any quasi-compact and quasi-separated scheme X and any étale cov-
ering U of X, show that there exists a refinement V = {V; — X};c;
with J finite and each V; quasi-compact and quasi-separated such that all
Vj, Xx ... Xx Vj, are also quasi-compact and quasi-separated.

(2) Using the previous step and the definition of colimits in the category of
sheaves, show that the theorem holds for p = 0 and all X.

(3) Using the locality of cohomology (Lemma , the Cech-to-cohomology
spectral sequence (Theorem and the fact that the induction hypothesis
applies to all Vj; Xx ... Xx Vj; in the above situation, prove the induction
stepp —p+ 1.

O

Lemmal 51.5. Let A be a ring, (I,<) a directed set and (B;,p;;) a system of
A-algebras. Set B = colim;er B;. Let X — Spec(A) be a quasi-compact and quasi-
separated morphism of schemes. Let F an abelian sheaf on Xgiqie. Denote Y; =
X X Spec(A) Spec(Bi), Y=X X Spec(A) Spec(B), G, = (E — X)_l]: and G = (Y —
X)"1F. Then

Hgtale()/’ g) = COhmiEI Hgtale(}/i’ gl)

Proof. This is a special case of Theorem We also outline a direct proof as
follows.
(1) Given V — Y étale with V quasi-compact and quasi-separated, there exist
1 €I and V; — Y; such that V =V, xy, Y. If all the schemes considered
were affine, this would correspond to the following algebra statement: if
B = colim B; and B — (' is étale, then there exist ¢ € I and B; — C; étale
such that C = B ®p, C;. This is proved in Algebra, Lemma
(2) In the situation of (1) show that G(V') = colim;>; Gis (Vi) where V;s is the
base change of V; to Y;.
(3) By (1), we see that for every étale covering V = {V; — Y'},c; with J finite
and the Vjs quasi-compact and quasi-separated, there exists ¢ € I and an
étale covering V; = {Vi; = Y;},es such that V=V, xy, Y.
(4) Show that (2) and (3) imply

T(V,G) = colim;e; H*(V;, Gs).
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(5) Cleverly use the Cech-to-cohomology spectral sequence (Theorem [19.2)).
(I

Lemma 51.6. Let f: X — Y be a morphism of schemes and F € Ab(Xegtaie)-
Then RP f,F is the sheaf associated to the presheaf

(V—>Y)}—>Hp (X Xy ‘/,]:|X><Yv).

étale
More generally, for K € D(X¢tare) we have that RP f. K is the sheaf associated to
the presheaf

(V—=Y)— HY

étale

(X Xy V. K|xxyv)-

Proof. This lemma is valid for topological spaces, and the proof in this case is
the same. See Cohomology on Sites, Lemma [7.4] for the case of a sheaf and see
Cohomology on Sites, Lemma for the case of a complex of abelian sheaves. [

Lemma 51.7. Let S be a scheme. Let X = lim;e; X; be a limit of a directed
system of schemes over S with affine transition morphisms fy; : Xy — X;. We
assume the structure morphisms g; : X; — S and g : X — S are quasi-compact and
quasi-separated. Let (F;, pii) be a system of abelian sheaves on (X, fir;). Denote
fi: X — X the projection and set F = colim f{l}}. Then

colim;e; RPg; « i = RP g F
for all p > 0.

Proof. Recall (Lemma that RPg; .JF; is the sheaf associated to the presheaf
Uw— HY, . (UxgX;, F;) and similarly for RPg,F. Moreover, the colimit of a system
of sheaves is the sheafification of the colimit on the level of presheaves. Note that
every object of Sgtqi has a covering by quasi-compact and quasi-separated objects
(e.g., affine schemes). Moreover, if U is a quasi-compact and quasi-separated object,

then we have

colim HY, , (U xs X;, F;) = HE, ;. (U x5 X, F)

by Theorem [51.3] Thus the lemma follows. O

Lemma 51.8. Let I be a directed set. Let g; : X; — S; be an inverse system of
morphisms of schemes over I. Assume g; is quasi-compact and quasi-separated and
for ¢! > 1 the transition morphisms f;; : Xi — X; and hy; @ Sy — S; are affine.
Let g : X — S be the limit of the morphisms g;, see Limits, Section [J Denote
fi: X = X; and h; : S — S; the projections. Let (F;, pii) be a system of sheaves
on (X, firi). Set F = colim f[l}'i, Then

RPg,F = colim;es hy ' RPg; . F;
for allp > 0.
Proof. How is the map of the lemma constructed? For i/ > ¢ we have a commuta-
tive diagram
X — Xi’ —_— Xi

fir firi
gi gi/i \Lgi
h;r h,r;

il

If we combine the base change map hi_/ilei,*}—i — Rgy « f;f]-"i (Cohomology on
Sites, Lemma or Remark [19.3) with the map Rg;/ ., then we obtain t/; :
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hi_,i1 RPg; . F; — RPg, JFy. Similarly, using the left square in the diagram we obtain
maps ¥; : hi_lRpgiy*]:i — RPg,F. The maps h;lwi/i and 1; are the maps used
in the statement of the lemma. For this to make sense, we have to check that
Wiy = Yy © h;,,li,wiri and ;s o h;1¢i,i = 1);; this follows from Cohomology on
Sites, Remark

Proof of the equality. First proof using dimension shiftinéﬂ For any U affine and
étale over X by Theorem we have

. F(U) = H(U x5 X, F) = colim H*(U; xs, X;, Fi) = colim g; .Fi(U;)

where the colimit is over ¢ large enough such that there exists an ¢ and U; affine
étale over S; whose base change is U over S (see Lemma [51.2)). The right hand side
is equal to (colim h; 'g; .F;)(U) by Sites, Lemma This proves the lemma for
p = 0. If (G, piri) is a system with G = colim f; "G; such that G; is an injective
abelian sheaf on X; for all ¢, then for any U affine and étale over X by Theorem
B3l we have
HP(U xg X,G) = colim HP(U; xg, X;,G;) =0

for p > 0 (same colimit as before). Hence RPg,.G = 0 and we get the result for p > 0
for such a system. In general we may choose a short exact sequence of systems

0 = (Fispiri) = (Gi, piri) = (Qis piri) — 0
where (G;, ¢i;) is as above, see Cohomology on Sites, Lemma [16.4] By induction

the lemma holds for p — 1 and by the above we have vanishing for p and (G;, vir;)-
Hence the result for p and (F;, ¢;+;) by the long exact sequence of cohomology.

Second proof. Recall that Sqffine étate = cOUM(S;)af fine,étaie, see Lemma
Thus if U is an object of Suf fine,étale, then we can write U = U; x g, S for some ¢
and some U; in (S;)af fine,étate and

(COlimie[ hi_lRpgi7*.7'-i)(U) = COlimi/Zi(Rpgi/7*fi/)(Ui X3, Sz/)

by Sites, Lemma and the construction of the transition maps in the system
described above. Since RPg; .Fi is the sheaf associated to the presheaf Uy
HP(Uy x5, Xy, Fy) and since RPg,F is the sheaf associated to the presheaf U
HP(U xg X, F) (Lemma we obtain a canonical commutative diagram

COlimi/Zi pr(UZ X3, Xi’vfi’) —_— COlimi/Zi(Rpgi/7*./—';/)(Ui X3, Si/)

i l

HP(U x5 X, F) RPg,. F(U)

Observe that the left hand vertical arrow is an isomorphism by Theorem[51.3] We're
trying to show that the right hand vertical arrow is an isomorphism. However, we
already know that the source and target of this arrow are sheaves on S f fine, staie-
Hence it suffices to show: (1) an element in the target, locally comes from an
element in the source and (2) an element in the source which maps to zero in the
target locally vanishes. Part (1) follows immediately from the above and the fact
that the lower horizontal arrow comes from a map of presheaves which becomes an
isomorphism after sheafification. For part (2), say & € colim;>;(RPg; Fi')(U; Xs,
S;7) is in the kernel. Choose an i’ > i and & € (RPg; «Fi)(U; x g, Si7) representing

4You can also use this method to produce the maps in the lemma.
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§. Choose a standard étale covering {Uy . — U; X5, Sy r=1,....m such that &|v,,
comes from &, € HP(Uy i X5, Xy, Fir). Since it is enough to prove that £ dies
locally, we may replace U by the members of the étale covering {Uy x xs, S —
U =U; xg, S}. After this replacement we see that £ is the image of an element
¢’ of the group colim; >; HP(U; xg, X, F;r) in the diagram above. Since ¢ maps
to zero in RPg,F(U) we can do another replacement and assume that & maps to
zero in HP(U xg X, F). However, since the left vertical arrow is an isomorphism
we then conclude & = 0 hence £ = 0 as desired. O

Lemma 51.9. Let X = lim;c; X; be a directed limit of schemes with affine tran-
sition morphisms fy; and projection morphisms f; : X — X;. Let F be a sheaf on
Xétale. Then
(1) there are canonical maps @;r; : fiTilfi,*]: — fir «F such that (fi «F, i) is
a system of sheaves on (X, fir;) as in Deﬁm’tion and
(2) F = colim f; ' fi .F.

Proof. Via Topologies, Lemma and Lemma this is a special case of Sites,
Lemma [18.5 O

Lemma 51.10. Let I be a directed set. Let g; : X; — S; be an inverse system of
morphisms of schemes over I. Assume g; is quasi-compact and quasi-separated and
for i’ > i the transition morphisms Xy — X; and Sy — S; are affine. Let g : X —
S be the limit of the morphisms g;, see Limits, Section[4. Denote f; : X — X; and
h; : S — S; the projections. Let F be an abelian sheaf on X. Then we have

Rpg*f = COlimiEI hl_lRpgl,*(fi,*-F)
Proof. Formal combination of Lemmas [F1.8 and [F1.9 O

52. Colimits and complexes

In this section we discuss taking cohomology of systems of complexes in various
settings, continuing the discussion for sheaves started in Section We strongly
urge the reader not to read this section unless absolutely necessary.

Lemma 52.1. Let X = lim;e; X; be a limit of a directed system of schemes
with affine transition morphisms fi; : Xy — X;. We assume that X; is quasi-
compact and quasi-separated for all i € I. Let F? be a complex of abelian sheaves
on X ¢tale- Let @i fiTile-' — F) be a map of complexes on X; ¢ra1e Such that
Qg = Py O fiT,%, iy whenever i > 1" > 1. Assume there is an integer a such that
Fi*=0 forn<a and alli € I. Then we have

HE, . (X, colim f'F?) = colim H?

étale étale

(Xiv ]:z.)
where f; : X — X; is the projection.

Proof. This is a consequence of Theorem Set F* = colim f; ' F?. The
theorem tells us that
(X;, F') = H,,

. . P
colim;cr H Stale

étale

(X, F")
for all n,p € Z. Let us use the spectral sequences
EY; = Hoyue(Xi, ) = Hyp (Xi, FY)

étale
and
EY' = HYy o (X, F*) = H3H(X, F*)

étale
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of Derived Categories, Lemma Since F}* = 0 for n < a (with a independent of
1) we see that only a fixed finite number of terms Eff (independent of i) and E"*

contribute to H, ;. (X;, F?) and H, (X, F*) and E;" = colim E;;. This implies
what we want. Some details omitted. (There is an alternative argument using

“stupid” truncations of complexes which avoids using spectral sequences.) (I

Lemma 52.2. Let X be a quasi-compact and quasi-sepated scheme. Let K; €
D(X¢taie), i € I be a family of objects. Assume given a € Z such that H"(K;) =0
forn <aandie€l. Then RT'(X, @, K;) = @, RT'(X, K;).

Proof. We have to show that H? (X, P, K;) = @, H? (X, K;) for all p € Z. Choose
complexes F? representing K, such that F' = 0 for n < a. The direct sum of the

complexes F; represents the object @ K; by Injectives, Lemma Since P F* is
the filtered colimit of the finite direct sums, the result follows from Lemma[21 O

Lemma 52.3. Let S be a scheme. Let X = lim;e; X; be a limit of a directed system
of schemes over S with affine transition morphisms fi1; : Xy — X;. We assume
that X; is quasi-compact and quasi-separated for all i € I. Let K € D7 (Sgaie)-
Then

(Xi, K|x,) = Hfpo (X, K| x).

. . P
colim;er H, Stale

étale

for all p € Z where K|x, and K|x are the pullbacks of K to X; and X.

Proof. We may represent K by a bounded below complex G* of abelian sheaves
on Setare. Say G" = 0 for n < a. Denote F? and F* the pullbacks of this complex
of X; and X. These complexes represent the objects K|x, and K|x and we have

F* = colim f; ' F? termwise. Hence the lemma follows from Lemma O

Lemmal 52.4. Let I, g;: X; = S;, g: X — S, fi, gi, hy be as in Lemma ,
Let 0 € I and Ko € D" (Xo,¢tate). For i > 0 denote K; the pullback of Ky to X,.
Denote K the pullback of K to X. Then

RPg, K = colim;>g h;lRpgi,*Ki

for allp € Z.

Proof. Fix an integer py € Z. Let a be an integer such that H’(Ky) = 0 for j < a.
We will prove the formula holds for all p < py by descending induction on a. If
a > po, then we see that the left and right hand side of the formula are zero for
p < po by trivial vanishing, see Derived Categories, Lemma Assume a < pg.
Consider the distinguished triangle

H*(Ko)[—a] = Ko = T>a4+1Ko
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Pulling back this distinguished triangle to X; and X gives compatible distinguished
triangles for K; and K. For p < py we consider the commutative diagram

COlimiZO h;lRpilgi,*(TZaJrlKi) Rpilg* (TZaJrlK)

a
colimixo hy ' RPgi . (H* (K;)[~a)) RPg.(H"(K)[—a])
colim;>q h;lRpgi,*Ki 5 RPg. K

colim;>o RP g« T>a+1K; RPg.T>q+1 K

COlimiZQ Rerlgi’*(Ha(Ki)[*a]) — s Rp+1g*(Ha (K)[—a])

with exact columns. The arrows 8 and € are isomorphisms by Lemma The ar-
rows « and § are isomorphisms by induction hypothesis. Hence ~y is an isomorphism
as desired. (]

Lemma 52.5. Letl, g, : X; — S;,9: X — S, fiir, fi, 9i, h; be as in Lemma,
Let F? be a complex of abelian sheaves on X staie. Let @y fiTile-' — F7 be a
map of complexes on X; érare Such that i = @iy o 17,1, pir; whenever i’ > 1 > 1.
Assume there is an integer a such that F]* =0 forn < a and alli € I. Then

RPg.(colim f; ' F?) = colim;>q h; ' RPg; . F;
for allp e Z.
Proof. This is a consequence of Lemma Set F* = colim f; ' F?. The lemma
tells us that
colimer h;lRpgi,*]:f = RPg, F"
for all n,p € Z. Let us use the spectral sequences
By = R'gi JFP = R*g, . T}
and
Ey' = R'g.F* = R*'g. F*
of Derived Categories, Lemma Since Fj* = 0 for n < a (with a independent
of i) we see that only a fixed finite number of terms E}’; (independent of i) and
E}" contribute and Ep** = colim E7. This implies what we want. Some details
omitted. (There is an alternative argument using “stupid” truncations of complexes
which avoids using spectral sequences.) O

Lemma 52.6. Let f: X — Y be a quasi-compact and quasi-sepated morphism of
schemes. Let K; € D(Xgaie), @ € I be a family of objects. Assume given a € Z
such that H"(K;) =0 forn < a andi € I. Then Rf. (P, K;) = @, Rf+K;.
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Proof. We have to show that RPf, (D, K;) = @, R? f.K; for all p € Z. Choose
complexes F;* representing K, such that 7' = 0 for n < a. The direct sum of the
complexes F? represents the object € K; by Injectives, Lemma Since @ F* is
the filtered colimit of the finite direct sums, the result follows from Lemma [52.5. [

53. Stalks of higher direct images

The stalks of higher direct images can often be computed as follows.

Theorem 53.1. Let f: X — S be a quasi-compact and quasi-separated morphism
of schemes, F an abelian sheaf on Xgsiqre, and s a geometric point of S lying over
s € S. Then

(Rnf*J:)§: gtale(X X3 Spec((’)fg’)%),p_lf)

where p: X Xg Spec(@%{%) — X is the projection. For K € DV(X¢ta1e) and n € Z
we have

(R" foK)s = 1o (X x5 Spec(OF5),p™'K)

étale

In fact, we have
(Rf*K)g = RFétale(X Xs Spec(og}fg)ap—lK)
in DT(AD).

Proof. Let Z be the category of étale neighborhoods of 5 on S. By Lemma [51.6
we have

(Rnf*f)g = Colim(v7§)610p[1 Hgfale(X X V, ]:|X><SV)-
We may replace Z by the initial subcategory consisting of affine étale neighbour-
hoods of 5. Observe that
Spec(0F%) = limyz)er V
by Lemma [33.1] and Limits, Lemma Since fibre products commute with limits
we also obtain
X xg Spec((’)g}fg) = limypez X xsV

We conclude by Lemma [51.5] For the second variant, use the same argument using
Lemma [52.3] instead of Lemma ET.5

To see that the last statement is true, it suffices to produce a map (Rf,K); —
RU¢ta1e(X x5 Spec(OF%), p~' K) in D (Ab) which realizes the ismorphisms on co-
homology groups in degree n above for all n. To do this, choose a bounded below
complex J°® of injective abelian sheaves on Xgiq representing K. The complex
f+J*® represents Rf,K. Thus the complex

(f+T*)s = colim(ym)ezors (fT*) (V)
represents (Rf.K)z. For each V we have maps
(fT*)(V) =T(X x5 V,J*) — T(X x5 Spec(OF),p~ ' T*)

and the target complex represents RT¢qe(X xg Spec(O3L),p~ 1K) in D (Ab).
Taking the colimit of these maps we obtain the result. [
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Remark 53.2. Let f: X — S be a morphism of schemes. Let K € D(Xgsaie)-
Let 5 be a geometric point of S. There are always canonical maps
(Rf.K)s — RT(X xs Spec(0F%),p~ ' K) — RT(Xs, K|x,)

where p: X Xg Spec(ngfg) — X is the projection. Namely, consider the commuta-
tive diagram

X5 — X x5 Spec(0gy) — X
lfs lf’ ‘/f
5— S

‘ Spec(Ogy) —

We have the base change maps
iT'Rf{(pT'K) = Rfs(K|x;) and jT'Rf.K = Rfi(p”'K)

(Cohomology on Sites, Remark for the two squares in this diagram. Taking
global sections we obtain the desired maps. By Cohomology on Sites, Remark
the composition of these two maps is the usual (base change) map (Rf.K)s —
RI'( X5, K|x.).

54. The Leray spectral sequence

Lemma 54.1. Let f : X — Y be a morphism and I an injective object of
Ab(Xétale). Let V € Ob(Kétale)- Then

(1) for any covering V = {V; — V},ec; we have H?(V, f,Z) =0 for all p > 0,
(2) f«T is acyclic for the functor T'(V,—), and
(3) ifg: Y = Z, then f.T is acyclic for g..

Proof. Observe that C*(V, f.Z) = C*(V xy X,Z) which has vanishing higher co-
homology groups by Lemma This proves (1). The second statement follows
as a sheaf which has vanishing higher Cech cohomology groups for any covering
has vanishing higher cohomology groups. This a wonderful exercise in using the
Cech-to-cohomology spectral sequence, but see Cohomology on Sites, Lemma m
for details and a more precise and general statement. Part (3) is a consequence of
(2) and the description of RPg, in Lemma [51.6] O

Using the formalism of Grothendieck spectral sequences, this gives the following.

Proposition| 54.2 (Leray spectral sequence). Let f : X — Y be a morphism of
schemes and F an étale sheaf on X. Then there is a spectral sequence

Eg,q = Hgtale(y’ qu*]:) = H(Z;t—i_z;ze (X7 ]:)
Proof. See Lemma [54.1| and see Derived Categories, Section O

55. Vanishing of finite higher direct images

The next goal is to prove that the higher direct images of a finite morphism of
schemes vanish.
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Lemma 55.1. Let R be a strictly henselian local ring. Set S = Spec(R) and let
S be its closed point. Then the global sections functor T'(S, —) : Ab(Sstaie) — Ab is
exact. In fact we have T'(S, F) = Fg for any sheaf of sets F. In particular

Vp Z 17 Hgtale(s’ ]:) =0
for all F € Ab(Setale)-

Proof. If we show that I'(S, F) = F5 then I'(S, —) is exact as the stalk functor is
exact. Let (U, @) be an étale neighbourhood of 5. Pick an affine open neighborhood
Spec(A) of win U. Then R — A is étale and k(5) = (u). By Theorem we see
that A = R x A’ as an R-algebra compatible with maps to x(5) = x(u). Hence we
get, a section

Spec(A) ——=U

N

S

It follows that in the system of étale neighbourhoods of 5 the identity map (S,35) —
(5,3) is cofinal. Hence I'(S, F) = F5. The final statement of the lemma follows
as the higher derived functors of an exact functor are zero, see Derived Categories,
Lemma [16.91 O

Proposition| 55.2. Let f: X — Y be a finite morphism of schemes.
(1) For any geometric point § : Spec(k) = Y we have

*J—: v = JT:E
(f )y HE:Spec(k)—)Xy f(@)=y
for F in Sh(Xestare) and

(f*]:)ﬂ - @E:Spec(k)—)X, f(z)=y 7z

for F in Ab(Xetate)-
(2) For any q > 1 we have R1f.F =0 for F in Ab(Xestaie)-

Proof. Let X;h denote the fiber product X xy Spec(O{%). By Theorem
the stalk of RYf,F at 7 is computed by Hgmle(X‘gh,]—"). Since f is finite, X" is
finite over Spec(Of}fg), thus Xgh = Spec(A) for some ring A finite over Of%. Since
the latter is strictly henselian, Lemma [32.5] implies that A is a finite product of
henselian local rings A = A; x ... x A,. Since the residue field of (’);}fy is separably
closed the same is true for each A;. Hence A; is strictly henselian. This implies that
Xgh =IIi_, Spec(A;). The vanishing of Lemmaimphes that (R?f,F)y = 0 for
¢ > 0 which implies (2) by Theorem[29.10} Part (1) follows from the corresponding
statement of Lemma B5.11 O

Lemma 55.3. Consider a cartesian square

XIH/X

1

Y ——=Y

of schemes with f a finite morphism. For any sheaf of sets F on Xe¢tare we have

filg) T F =g L.
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Proof. In great generality there is a pullback map g1 f.F — f.(g’)~*F, see Sites,
Section It suffices to check on stalks (Theorem [29.10). Let ¥’ : Spec(k) — Y’
be a geometric point. We have

(fl) ' Py =11 (@) P

z':Spec(k)— X', flox'=y

= ./—"/ =/
HE’:Spec(k)aX’, from =y~ 9°7

- HE:SpeC(k})ﬁX, foz=goy’

= (f*]:)gog’

= (g fF)y
The first equality by Proposition The second equality by Lemma [36.2 The
third equality holds because the diagram is a cartesian square and hence the map

{7’ : Spec(k) — X', f'oT' =%} — {T: Spec(k) = X, foT=go¥y'}
sending T’ to ¢’ o 7’ is a bijection. The fourth equality by Proposition m The
fifth equality by Lemma [36.2 O

Lemma 55.4. Consider a cartesian square
X/ H[ X
g
! ’l lf
yvi_ 9.y
of schemes with f an integral morphism. For any sheaf of sets F on Xegpqa1e we have
flg)y " F=g i F.
Proof. The question is local on Y and hence we may assume Y is affine. Then
we can write X = lim X; with f; : X; — Y finite (this is easy in the affine case,
but see Limits, Lemma [7.3| for a reference). Denote py; : Xy — X; the transition
morphisms and p; : X — X, the projections. Setting F; = p; . we obtain from
Lemma a system (F;, @i;) with F = colimp{lfi. We get f.F = colim f; ..F;
from Lemma Set X! =Y’ xy X; with projections f/ and g,. Then X’ = lim X/
as limits commute with limits. Denote p} : X’ — X/ the projections. We have
g fuF = g colim f; o F;
= colim g~ ' f; . F;
= colim f . (¢/) ™' Fi
= fi(colim(p)) ™" (g/) "' F)
= fi(colim(g")~'p; ' i)
= [i(g))™" colimp; ' F;
= filg) ' F
as desired. For the first equality see above. For the second use that pullback
commutes with colimits. For the third use the finite case, see Lemma For the

fourth use Lemma For the fifth use that g} o p} = p; o ¢’. For the sixth use
that pullback commutes with colimits. For the seventh use F = colim p; 7. O
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The following lemma is a case of cohomological descent dealing with étale sheaves
and finite surjective morphisms. We will significantly generalize this result once we
prove the proper base change theorem.

Lemmal 55.5. Let f : X — Y be a surjective finite morphism of schemes. Set
fn: Xn = Y equal to the (n+1)-fold fibre product of X overY. For F € Ab(Yetale)
set Fp, = fnfn ' F. There is an exact sequence

0—=>F—=Fo—F1—Fa— ...
on Xetale- Moreover, there is a spectral sequence
; -1
E{) 1= Hgtale(XI” fp f)
converging to HPT4(Ysa10, F). This spectral sequence is functorial in F.

Proof. If we prove the first statement of the lemma, then we obtain a spectral
sequence with EY'? = HY, , (Y, F) converging to H?T(Y¢qse, F), see Derived Cat-

egories, Lemma On the other hand, since Rifpy*fp’l}" =0 for ¢ > 0 (Propo-
sition [55.2)) we get
Hq

étale

(vafglf) = Hgtale(yv fp,*fg;lf) = H}

étale

(Y, Fp)
by Proposition [54.2] and we get the spectral sequence of the lemma.

To prove the first statement of the lemma, observe that X, forms a simplicial
scheme over Y, see Simplicial, Example Observe moreover, that for each of
the projections d; : X,,11 — X,, there is a map d;lfrjl}' — f;_&lf. These maps
induce maps
5]‘ cFn — ]:n+1

for j = 0,...,n+ 1. We use the alternating sum of these maps to define the
differentials F,, — F,+1. Similarly, there is a canonical augmentation F — Fy,
namely this is just the canonical map F — f,f~!F. To check that this sequence
of sheaves is an exact complex it suffices to check on stalks at geometric points
(Theorem [29.10). Thus we let 7 : Spec(k) — Y be a geometric point. Let E = {Z :
Spec(k) — X | f(Z) =7}. Then E is a finite nonempty set and we see that

(fn)g - @EEE"+1 ./_'.g

by Proposition p5.2] and Lemma [36.2] Thus we have to see that given an abelian
group M the sequence

0—>M—>@66EM—>@66E2M—>...

is exact. Here the first map is the diagonal map and the map @, cpni1 M —
@D.cpni> M is the alternating sum of the maps induced by the (n + 2) projections
E"t2  Entl. This can be shown directly or deduced by applying Simplicial,
Lemma [26.9] to the map E — {*}. g

Remark| 55.6. In the situation of Lemma if G is a sheaf of sets on Ygiqe,
then we have

I(Y,G) = Equalizer( T'(Xo, fy 'G) —___ T(X1, f1 'G))

This is proved in exactly the same way, by showing that the sheaf G is the equalizer
of the two maps foﬁ*fo_lg — fly*fl_lg.
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56. Galois action on stalks

In this section we define an action of the absolute Galois group of a residue field of
a point s of S on the stalk functor at any geometric point lying over s.

Galois action on stalks. Let S be a scheme. Let 5§ be a geometric point of S. Let
o € Aut(k(3)/k(s)). Define an action of o on the stalk F5 of a sheaf F as follows

.Fg — .Fg

(56.0.1) (U,u,t) — (U, uoSpec(o),t).

where we use the description of elements of the stalk in terms of triples as in the dis-
cussion following Definition [29.6] This is a left action, since if ; € Aut(x(3)/k(s))
then

o1 (o2 (U,a,t)) = o1 - (U,uwo Spec(oz), t)
= (U, u o Spec(o2) o Spec(o1), t)
= (U,u o Spec(oq 0 02),t)
= (01 009) - (U,4,1)

It is clear that this action is functorial in the sheaf F. We note that we could have
defined this action by referring directly to Remark [29.8]

Definition 56.1. Let S be a scheme. Let s be a geometric point lying over the
point s of S. Let £(s) C k(s)*® C k(5) denote the separable algebraic closure of
k(s) in the algebraically closed field k(3).

(1) In this situation the absolute Galois group of k(s) is Gal(k(s)*P/k(s)). It
is sometimes denoted Gal, ).

(2) The geometric point $ is called algebraic if k(s) C k(3) is an algebraic
closure of k(s).

Example 56.2. The geometric point Spec(C) — Spec(Q) is not algebraic.

Let k(s) C k(s)*P C k(3) be as in the definition. Note that as x(3) is algebraically
closed the map

Aut(k(5)/k(s)) — Gal(k(s)*P /k(s)) = Gal,s)

is surjective. Suppose (U, ) is an étale neighbourhood of 3, and say @ lies over the
point u of U. Since U — S is étale, the residue field extension x(u)/x(s) is finite
separable. This implies the following
(1) If o € Aut(k(3)/k(s)*P) then o acts trivially on F.
(2) More precisely, the action of Aut(k(5)/k(s)) determines and is determined
by an action of the absolute Galois group Galy () on Fs.
(3) Given (U,w,t) representing an element £ of 75 any element of Gal(x(s)*?/K)
acts trivially, where r(s) C K C #(s)*? is the image of @* : k(u) — k().
Altogether we see that F5 becomes a Gal,(,-set (see Fundamental Groups, Defini-
tion . Hence we may think of the stalk functor as a functor

Sh(Setate) — Galn(s)-56ts, F— Fs

and from now on we usually do think about the stalk functor in this way.
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Theorem 56.3. Let S = Spec(K) with K a field. Lets be a geometric point of
S. Let G = Galgy) denote the absolute Galois group. Taking stalks induces an
equivalence of categories

Sh(S¢tare) — G-Sets, F — Fs.

Proof. Let us construct the inverse to this functor. In Fundamental Groups,
Lemma we have seen that given a G-set M there exists an étale morphism
X — Spec(K) such that Morg (Spec(K?®°P), X) is isomorphic to M as a G-set.
Consider the sheaf F on Spec(K)¢tare defined by the rule U — Morg (U, X).
This is a sheaf as the étale topology is subcanonical. Then we see that Fz =
Mor g (Spec(K*°P), X) = M as G-sets (details omitted). This gives the inverse of
the functor and we win. |

Remark| 56.4. Another way to state the conclusion of Theorem and Fun-
damental Groups, Lemma, is to say that every sheaf on Spec(K)¢tqre is repre-
sentable by a scheme X étale over Spec(K). This does not mean that every sheaf
is representable in the sense of Sites, Definition The reason is that in our
construction of Spec(K)siaie we chose a sufficiently large set of schemes étale over
Spec(K), whereas sheaves on Spec(K )¢iq1e form a proper class.

Lemma 56.5. Assumptions and notations as in Theorem W There is a func-
torial bijection

(S8, F) = (F5)°

Proof. We can prove this using formal arguments and the result of Theorem [56.3
as follows. Given a sheaf F corresponding to the G-set M = F5 we have

L(S,F) = Morgy(s, ) (Pspec(r)s F)
MOFG—Sets({*}v M)
- M@

Here the first identification is explained in Sites, Sections [2] and the second
results from Theorem and the third is clear. We will also give a direct prooiﬂ

Suppose that ¢ € T'(S,F) is a global section. Then the triple (S,3,¢) defines an
element of F5 which is clearly invariant under the action of G. Conversely, suppose
that (U, @, t) defines an element of F5 which is invariant. Then we may shrink U and
assume U = Spec(L) for some finite separable field extension of K, see Proposition
In this case the map F(U) — F5 is injective, because for any morphism
of étale neighbourhoods (U’,uw') — (U,u) the restriction map F(U) — F(U’) is
injective since U’ — U is a covering of Sgqre. After enlarging L a bit we may
assume K C L is a finite Galois extension. At this point we use that

Spec(L) Xgpec(k) Spec(L) = H Spec(L)

where the maps Spec(L) — Spec(L ®k L) come from the ring maps a ® b —
ao(b). Hence we see that the condition that (U,w,t) is invariant under all of G
implies that ¢ € F(Spec(L)) maps to the same element of F(Spec(L) Xgpec(x)
Spec(L)) via restriction by either projection (this uses the injectivity mentioned
above; details omitted). Hence the sheaf condition of F for the étale covering

c€Gal(L/K)

5For the doubting Thomases out there.
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{Spec(L) — Spec(K)} kicks in and we conclude that ¢ comes from a unique section
of F over Spec(K). O

Remark 56.6. Let S be a scheme and let 5 : Spec(k) — S be a geometric
point of S. By definition this means that k is algebraically closed. In particular
the absolute Galois group of k is trivial. Hence by Theorem [56.3] the category of
sheaves on Spec(k)¢tare is equivalent to the category of sets. The equivalence is
given by taking sections over Spec(k). This finally provides us with an alternative
definition of the stalk functor. Namely, the functor

Sh(S¢tare) — Sets, F — Fs
is isomorphic to the functor
Sh(Setate) — Sh(Spec(k)¢tare) = Sets, F — 5" F

To prove this rigorously one can use Lemma part (3) with f = 5. Moreover,
having said this the general case of Lemma part (3) follows from functoriality
of pullbacks.

57. Group cohomology

In the following, if we write H(G, M) we will mean that G is a topological group
and M a discrete G-module with continuous G-action and H*(G, —) is the ith right
derived functor on the category Modg of such G-modules, see Definitions [57.1] and
This includes the case of an abstract group G, which simply means that G is
viewed as a topological group with the discrete topology.

cont (G’ M)
to indicate the continuous cohomology groups introduced in [Tat76], see Section

When the module has a nondiscrete topology, we will use the notation H?

Definition 57.1. Let G be a topological group.

(1) A G-module, sometimes called a discrete G-module, is an abelian group M
endowed with a left action a : G x M — M by group homomorphisms such
that a is continuous when M is given the discrete topology.

(2) A morphism of G-modules f : M — N is a G-equivariant homomorphism
from M to N.

(3) The category of G-modules is denoted Modg.

Let R be a ring.

(1) An R-G-module is an R-module M endowed with a left action a : G x M —
M by R-linear maps such that a is continuous when M is given the discrete
topology.

(2) A morphism of R-G-modules f : M — N is a G-equivariant R-module map
from M to N.

(3) The category of R-G-modules is denoted Modg, -

The condition that a : G x M — M is continuous is equivalent with the condition
that the stabilizer of any € M is open in G. If G is an abstract group then this
corresponds to the notion of an abelian group endowed with a G-action provided
we endow G with the discrete topology. Observe that Modz ¢ = Modg.

The category Modg has enough injectives, see Injectives, Lemma/[3.1] Consider the
left exact functor

Modg — Ab, M +— M% ={zeM|g-z=1xVgec G}
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We sometimes denote MY = H°(G, M) and sometimes we write M“ = T'g(M).
This functor has a total right derived functor RT'¢(M) and ith right derived functor
R'T¢(M) = HYG,M) for any i > 0.

The same construction works for H°(G, —) : Modgr,c — Modgr. We will see in
Lemma that this agrees with the cohomology of the underlying G-module.

Definition 57.2. Let G be a topological group. Let M be a discrete G-module
with continuous G-action. In other words, M is an object of the category Modg
introduced in Definition B7.11

(1) The right derived functors H(G, M) of H°(G, M) on the category Modg
are called the continuous group cohomology groups of M.

(2) If G is an abstract group endowed with the discrete topology then the
H(G, M) are called the group cohomology groups of M.

(3) If G is a Galois group, then the groups H*(G, M) are called the Galois
cohomology groups of M.

(4) If G is the absolute Galois group of a field K, then the groups H(G, M)
are sometimes called the Galois cohomology groups of K with coefficients
in M. In this case we sometimes write H*(K, M) instead of H! (G, M).

Lemma 57.3. Let G be a topological group. Let R be a ring. For every i > 0 the
diagram

Modr, ¢ ————— Modgr
I
Modg — 20 4y

whose vertical arrows are the forgetful functors is commutative.

Proof. Let us denote the forgetful functor F' : Modr ¢ — Modg. Then F has a
left adjoint H : Modg — Modg,¢ given by H(M) = M ®z R. Observe that every
object of Mod¢ is a quotient of a direct sum of modules of the form Z[G /U] where
U C G is an open subgroup. Here Z[G /U] denotes the G-modules of finite Z-linear
combinations of right U congruence classes in G endowed with left G-action. Thus
every bounded above complex in Modg is quasi-isomorphic to a bounded above
complex in Modg whose underlying terms are flat Z-modules (Derived Categories,
Lemma [15.4). Thus it is clear that LH exists on D~ (Modg) and is computed by
evaluating H on any complex whose terms are flat Z-modules; this follows from
Derived Categories, Lemma [I5.7] and Proposition We conclude from Derived
Categories, Lemma that

Ext'(Z, F(M)) = Ext'(R, M)

for M in Modpg . Observe that H°(G, —) = Hom(Z, —) on Modg where Z denotes
the G-module with trivial action. Hence H*(G, —) = Ext'(Z,—) on Modg. Sim-
ilarly we have H(G,—) = Ext‘(R, —) on Modpg . Combining everything we see
that the lemma is true. (]

Lemma 57.4. Let G be a topological group. Let R be a ring. Let M, N be R-G-
modules. If M is finite projective as an R-module, then Exti(]\/[, N)=H' (G,MV®pg
N) (for notation see proof).
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Proof. The module MV = Homg(M, R) endowed with the contragredient action
of G. Namely (g-\)(m) =X(g~'-m) for g € G, \ € MY, m € M. The action of G
on MY ®@pr N is the diagonal one, i.e., given by g-(A®n) = g-A®g-n. Note that for
a third R-G-module F we have Hom(E, MY @ N) = Hom(M ®pr E, N). Namely,
this is true on the level of R-modules by Algebra, Lemmas and and the
definitions of G-actions are chosen such that it remains true for R-G-modules. It
follows that MY ®@p N is an injective R-G-module if N is an injective R-G-module.
Hence if N — N* is an injective resolution, then MV @z N — MY @r N*® is an
injective resolution. Then

Hom(M, N®) = Hom(R, M"Y ®p N*) = (MY @r N*)¢

Since the left hand side computes Exti(M ,N) and the right hand side computes
HY(G,M" ®g N) the proof is complete. O

0DVF |Lemma 57.5. Let G be a topological group. Let k be a field. Let V' be a k-G-
module. If G is topologically finitely generated and dimy, (V) < oo, then dimy, HY(G,V) <
00.

Proof. Let g1,...,9, € G be elements which topologically generate G, i.e., this
means that the subgroup generated by g1,..., g, is dense. By Lemma we see
that H'(G, V) is the k-vector space of extensions

0V ->FE—k—0
of k-G-modules. Choose e € E mapping to 1 € k. Write
gire=vite

for some v; € V. This is possible because g; - 1 = 1. We claim that the list
of elements vy,...,v, € V determine the isomorphism class of the extension FE.
Once we prove this the lemma follows as this means that our Ext vector space is
isomorphic to a subquotient of the k-vector space V"; some details omitted. Since
FE is an object of the category defined in Definition we know there is an open
subgroup U such that u-e = e for all u € U. Now pick any g € G. Then gU
contains a word w in the elements gi,...,¢9,. Say gu = w. Since the element w - e
is determined by v1,...,v,, we see that g-e = (gu) - e =w - e is too. a

0DV3 Lemma 57.6. Let G be a profinite topological group. Then

(1) HY(G, M) is torsion for i >0 and any G-module M, and
(2) H(G,M) =0 if M is a Q-vector space.

Proof. Proof of (1). By dimension shifting we see that it suffices to show that
HY(G, M) is torsion for every G-module M. Choose an exact sequence 0 — M —
I - N — 0 with I an injective object of the category of G-modules. Then any
element of H'(G, M) is the image of an element y € N¢. Choose z € I mapping
to y. The stabilizer U C G of x is open, hence has finite index r. Let g1,...,9, € G
be a system of representatives for G/U. Then Y g;(x) is an invariant element of I
which maps to ry. Thus r kills the element of H!(G, M) we started with. Part (2)
follows as then H'(G, M) is both a Q-vector space and torsion. [
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58. Tate’s continuous cohomology

Tate’s continuous cohomology ([Tat76]) is defined by the complex of continuous
inhomogeneous cochains. We can define this when M is an arbitrary topologi-
cal abelian group endowed with a continuous G-action. Namely, we consider the
complex

L[]
Ccont

(G,M) : M — Maps,,,,+(G, M) — Maps
where the boundary map is defined for n > 1 by the rule
d(f)(gla v 7gn+1) = gl(f(g27 s agn+1))

+ ijlw')n(—l)jf(gl, o 19395+15 - -+ Gnt1)

+ (_1)n+1f(g13 s 7971)

and for n = 0 sends m € M to the map g — g(m) — m. We define

Héont(G7 M) = Hi(cc.’ont (G’ M))
Since the terms of the complex involve continuous maps from G and self products
of G into the topological module M, it is not clear that this turns a short exact

sequence of topological modules into a long exact cohomology sequence. Another
difficulty is that the category of topological abelian groups isn’t an abelian category!

GxG,M)—...

cont(

However, a short exact sequence of discrete G-modules does give rise to a short exact
sequence of complexes of continuous cochains and hence a long exact cohomology
sequence of continuous cohomology groups H¢,,,;(G, —). Therefore, on the category
Modg of Definition the functors H! ,,(G, M) form a cohomological é-functor
as defined in Homology, Section Since the cohomology H*(G, M) of Definition
is a universal é-functor (Derived Categories, Lemma we obtain canonical
maps

HY(G,M) — H_

cont(G7 M)

for M € Modg. It is known that these maps are isomorphisms when G is an abstract
group (i.e., G has the discrete topology) or when G is a profinite group (insert future
reference here). If you know an example showing this map is not an isomorphism for

a topological group G and M € Ob(Modg) please email stacks.project@gmail.com.

59. Cohomology of a point

As a consequence of the discussion in the preceding sections we obtain the equiva-
lence of étale cohomology of the spectrum of a field with Galois cohomology.

Lemma 59.1. Let S = Spec(K) with K a field. Let's be a geometric point of
S. Let G = Gal, s denote the absolute Galois group. The stalk functor induces an
equivalence of categories

Ab(Sétale) — Modg, F— .7:5.

Proof. In Theorem [56.3| we have seen the equivalence between sheaves of sets and
G-sets. The current lemma follows formally from this as an abelian sheaf is just
a sheaf of sets endowed with a commutative group law, and a G-module is just a
G-set endowed with a commutative group law. O

Lemma 59.2. Notation and assumptions as in Lemma , Let F be an abelian
sheaf on Spec(K)¢tare which corresponds to the G-module M. Then
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(1) in D(Ab) we have a canonical isomorphism RI'(S,F) = RT'¢(M),
(2) Hgtale(s7f) - MG7 and
(3) Hgtale(s7 f) = Hq(GvM)

Proof. Combine Lemma [59.1] with Lemma [56.5] O

Example 59.3. Sheaves on Spec(K)¢tqie- Let G = Gal(K®P/K) be the absolute
Galois group of K.
(1) The constant sheaf Z/nZ corresponds to the module Z/nZ with trivial
G-action,
(2) the sheaf Gy, [spec()sya,. cOrresponds to (K°°P)* with its G-action,
(3) the sheaf Gglgpec(kser) corresponds to (K*°P, 4) with its G-action, and
(4) the sheaf f,[gpec(iser) corresponds to pu, (K*P) with its G-action.
By Remark and Theorem we have the following identifications for coho-
mology groups:

HY,10(Seétate, Gm) = T'(S, OF)
H}io(Setate, Gm) = H,, (S, 0%) = Pic(S)
H}yo1e(Seétates Ga) = Hy o, (S, Os)
Also, for any quasi-coherent sheaf F on Sgiq;e we have
Hi(Sétalev}—) = H%ar(sv F)s
see Theorem 22.4] In particular, this gives the following sequence of equalities
0 = Pic(Spec(K)) = H}, 10 (Spec(K)étate, Gm) = HY (G, (K*)*)

étale

which is none other than Hilbert’s 90 theorem. Similarly, for ¢ > 1,
0= H'(Spec(K), 0) = Hyge(Spec(K)state, Ga) = H' (G, K°P)

where the K*° indicates K*°P as a Galois module with addition as group law. In
this way we may consider the work we have done so far as a complicated way of
computing Galois cohomology groups.

The following result is a curiosity and should be skipped on a first reading.

Lemma 59.4. Let R be a local ring of dimension 0. Let S = Spec(R). Then
every Og-module on Sepqare 1S quasi-coherent.

Proof. Let F be an Og-module on Sgq.. We have to show that F is determined
by the R-module M = T'(S,F). More precisely, if 7 : X — S is étale we have to
show that T'(X, F) = T'(X,7n*M).

Let m C R be the maximal ideal and let x be the residue field. By Algebra,
Lemma[153.10] the local ring R is henselian. If X — S is étale, then the underlying
topological space of X is discrete by Morphisms, Lemma [36.7] and hence X is a
disjoint union of affine schemes each having one point. Moreover, if X = Spec(A)
is affine and has one point, then R — A is finite étale by Algebra, Lemma [153.5
We have to show that I'(X, F) = M ®g A in this case.

The functor A — A/mA defines an equivalence of the category of finite étale R-
algebras with the category of finite separable k-algebras by Algebra, Lemma
Let us first consider the case where A/mA is a Galois extension of k with Galois
group G. For each 0 € G let 0 : A — A denote the corresponding automorphism
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of A over R. Let N = I'(X,F). Then Spec(o) : X — X is an automorphism
over S and hence pullback by this defines a map ¢ : N — N which is a o-linear
map: o(an) = o(a)o(n) for a € A and n € N. We will apply Galois descent to
the quasi-coherent module N on X endowed with the isomorphisms coming from
the action on o on IN. See Descent, Lemma This lemma tells us there is an
isomorphism N = N¢ ®z A. On the other hand, it is clear that N = M by the
sheaf property for F. Thus the required isomorphism holds.

The general case (with A local and finite étale over R) is deduced from the Galois
case as follows. Choose A — B finite étale such that B is local with residue field
Galois over k. Let G = Aut(B/R) = Gal(kp/k). Let H C G be the Galois
group corresponding to the Galois extension kg /k4. Then as above one shows that
['(X,F) = I'(Spec(B), F)H. By the result for Galois extensions (used twice) we
get
I(X,F)=(M®rB)" =M®cgA

as desired. O

60. Cohomology of curves

The next task at hand is to compute the étale cohomology of a smooth curve over
an algebraically closed field with torsion coefficients, and in particular show that
it vanishes in degree at least 3. To prove this, we will compute cohomology at the
generic point, which amounts to some Galois cohomology.

61. Brauer groups

Brauer groups of fields are defined using finite central simple algebras. In this sec-
tion we review the relevant facts about Brauer groups, most of which are discussed
in the chapter Brauer Groups, Section [1} For other references, see [Ser62], [Ser97]
or [Weidg].

Theorem 61.1. Let K be a field. For a unital, associative (not necessarily com-
mutative) K -algebra A the following are equivalent
(1) A is finite central simple K -algebra,
(2) A is a finite dimensional K-vector space, K is the center of A, and A has
no nontrivial two-sided ideal,
) there exists d > 1 such that A @k K = Mat(d x d, K),
) there exists d > 1 such that A @k K*P = Mat(d x d, K*°P),
) there exist d > 1 and a finite Galois extension K'/K such that A @y K' =
Mat(d x d, K'),
(6) there exist n > 1 and a finite central skew field D over K such that A =
Mat(n x n, D).
The integer d is called the degree of A.

Proof. This is a copy of Brauer Groups, Lemma O

3
4

(
(
(5

Lemmal 61.2. Let A be a finite central simple algebra over K. Then

ARy APP — EndK(A)
a®a —  (z— axd)

is an isomorphism of algebras over K.
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Proof. See Brauer Groups, Lemma [4.10! ([

03R3 |Definition 61.3. Two finite central simple algebras A; and A, over K are called
stmilar, or equivalent if there exist m,n > 1 such that Mat(n x n, A1) = Mat(m X
m, As). We write A1 ~ As.

By Brauer Groups, Lemma this is an equivalence relation.

03R5 Definition 61.4. Let K be a field. The Brauer group of K is the set Br(K) of
similarity classes of finite central simple algebras over K, endowed with the group
law induced by tensor product (over K). The class of A in Br(K) is denoted by
[A]. The neutral element is [K] = [Mat(d x d, K)] for any d > 1.

The previous lemma implies that inverses exist and that —[A] = [A°PP]. The Brauer
group of a field is always torsion. In fact, we will see that [A] has order dividing
deg(A) for any finite central simple algebra A (see Lemma [62.2). In general the
Brauer group is not finitely generated, for example the Brauer group of a non-
Archimedean local field is Q/Z. The Brauer group of C(z,y) is uncountable.

03R6 Lemma 61.5. Let K be a field and let K*°P be a separable algebraic closure. Then
the set of isomorphism classes of central simple algebras of degree d over K is in
bijection with the non-abelian cohomology H'(Gal(K**?/K), PGLy(K*°P)).

Sketch of proof. The Skolem-Noether theorem (see Brauer Groups, Theorem|6.1))
implies that for any field L the group Autz.aigebras(Matq(L)) equals PGL4(L). By
Theorem we see that central simple algebras of degree d correspond to forms
of the K-algebra Maty(K). Combined we see that isomorphism classes of degree d
central simple algebras correspond to elements of H'(Gal(K*?/K), PGLg4(K*P)).
For more details on twisting, see for example [Sil86]. a

If A is a finite central simple algebra of degree d over a field K, we denote £4 the
corresponding cohomology class in H(Gal(K*°? /K ), PGL4(K*)). Consider the
short exact sequence
1= (K°P)" — GL4(K*P) = PGLy(K*P) — 1,
which gives rise to a long exact cohomology sequence (up to degree 2) with cobound-
ary map
8a: HY(Gal(K*?/K),PGLg(K*%")) — H*(Gal(K*?/K), (KP)*).
Explicitly, this is given as follows: if £ is a cohomology class represented by the
1-cocycle (g5 ), then §4(€) is the class of the 2-cocycle
0A21 (61.5.1) (0,7) — G5 G0 (37 ") € (K5P)*
where g, € GL4(K*°P) is a lift of g,. Using this we can make explicit the map
§: Br(K) — H*(Gal(K*?/K), (K*%?)*), [A] — 0qeg a(€a)

as follows. Assume A has degree d over K. Choose an isomorphism ¢ : Matg(K*P) —
A®kg K*°P. For o € Gal(K*?/K) choose an element g, € GLg(K*°?) such that

o too(p) is equal to the map x — Goxd, . The class in H? is defined by the two

cocycle (61.5.1)).

03R7 Theorem 61.6. Let K be a field with separable algebraic closure K*°P. The map
§: Br(K) — H*(Gal(K*°P | K), (K*°P)*) defined above is a group isomorphism.
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Sketch of proof. To prove that § defines a group homomorphism, i.e., that 6(A® x
B) = §(A) + §(B), one computes directly with cocycles.

Injectivity of §. In the abelian case (d = 1), one has the identification
HY(Gal(K**?/K), GLq(K*%P)) = H},,;.(Spec(K), GL4(O))

étale
the latter of which is trivial by fpqc descent. If this were true in the non-abelian
case, this would readily imply injectivity of . (See [Del77].) Rather, to prove this,
one can reinterpret d([A]) as the obstruction to the existence of a K-vector space V
with a left A-module structure and such that dimyx V = deg A. In the case where
V exists, one has A = Endg (V).

For surjectivity, pick a cohomology class & € H?(Gal(K*°?/K), (K*°P)*), then there
exists a finite Galois extension K*?/K'/K such that £ is the image of some & €
H?(Gal(K'|K),(K')*). Then write down an explicit central simple algebra over K
using the data K’, ¢’ O

62. The Brauer group of a scheme

Let S be a scheme. An Og-algebra A is called Azumaya if it is étale locally a
matrix algebra, i.e., if there exists an étale covering U = {¢; : U; — S}ties such
that ¢f A = Matgy, (Op,) for some d; > 1. Two such A and B are called equivalent
if there exist finite locally free Og-modules F and G which have positive rank at

every s € S such that
A ®os %mos (]:a ‘F) =B Rog HOmos (g, g)

as Og-algebras. The Brauer group of S is the set Br(S) of equivalence classes of
Azumaya Og-algebras with the operation induced by tensor product (over Og).

Lemma 62.1. Let S be a scheme. Let F and G be finite locally free sheaves
of Og-modules of positive rank. If there exists an isomorphism Homog(F,F) =
Homo4(G,G) of Og-algebras, then there exists an invertible sheaf L on S such that
F ®os L = G and such that this isomorphism induces the given isomorphism of
endomorphism algebras.

Proof. Fix an isomorphism Homo(F,F) — Homo,(G,G). Consider the sheaf
L C Hom(F,G) generated as an Og-module by the local isomorphisms ¢ : F — G
such that conjugation by ¢ is the given isomorphism of endomorphism algebras. A
local calculation (reducing to the case that F and G are finite free and S is affine)
shows that L is invertible. Another local calculation shows that the evaluation map

F Rog L—G
is an isomorphism. O
The argument given in the proof of the following lemma can be found in [Sal81].

Lemmal 62.2. Let S be a scheme. Let A be an Azumaya algebra which is locally
free of rank d? over S. Then the class of A in the Brauer group of S is annihilated
by d.

Proof. Choose an étale covering {U; — S} and choose isomorphisms Aly, —
Hom(F;, F;) for some locally free Opy,-modules F; of rank d. (We may assume F;
is free.) Consider the composition

pi: FP— AY(F) — FPA

Argument taken
from [Sal81].
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The first arrow is the usual projection and the second arrow is the isomorphism of
the top exterior power of F; with the submodule of sections of .7-"? 4 which transform
according to the sign character under the action of the symmetric group on d
letters. Then p? = d!p; and the rank of p; is 1. Using the given isomorphism
Al|y, = Hom(F;, F;) and the canonical isomorphism

Hom(F;, Fi)®* = Hom(F24, FE7)

we may think of p; as a section of A®? over U;. We claim that p;|y, xsU; = Pjluixsu;
as sections of A®?, Namely, applying Lemma we obtain an invertible sheaf
L;; and a canonical isomorphism

Filvixsu; ® Lij — Fjluixsu;-

Using this isomorphism we see that p; maps to p;. Since A®d ig a sheaf on Ssraie
(Proposition we find a canonical global section p € I'(S,.4%%). A local calcu-
lation shows that

H =Im(A®? — A% f s fp)
is a locally free module of rank d¢ and that (left) multiplication by A®? induces an
isomorphism A®? — Hom(H,H). In other words, A®? is the trivial element of the
Brauer group of S as desired. O

In this setting, the analogue of the isomorphism § of Theorem [61.6]is a map

s : Br(S) — H%,,.(S, Gp).

étale

It is true that dg is injective. If S is quasi-compact or connected, then Br(S) is
a torsion group, so in this case the image of dg is contained in the cohomological
Brauer group of S
Br/(S) = Hegtale(s7 Gn)torsion-

So if S is quasi-compact or connected, there is an inclusion Br(S) C Br'(S). This
is not always an equality: there exists a nonseparated singular surface S for which
Br(S) C Br/(S) is a strict inclusion. If S is quasi-projective, then Br(S) = Br’(S).
However, it is not known whether this holds for a smooth proper variety over C,
say.

63. The Artin-Schreier sequence

Let p be a prime number. Let S be a scheme in characteristic p. The Artin-Schreier
sequence is the short exact sequence

0— Z/pZ, — Gas —— Gas — 0
where F' — 1 is the map x — 2P — x.

Lemma 63.1. Let p be a prime. Let S be a scheme of characteristic p.
(1) If S is affine, then HY, , (S,Z/pZ) =0 for all ¢ > 2.

étale
(2) If S is a quasi-compact and quasi-separated scheme of dimension d, then

Hgtaze(SaM) =0 forallq>2+d.

Proof. Recall that the étale cohomology of the structure sheaf is equal to its co-
homology on the underlying topological space (Theorem . The first statement
follows from the Artin-Schreier exact sequence and the vanishing of cohomology of
the structure sheaf on an affine scheme (Cohomology of Schemes, Lemma . The
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second statement follows by the same argument from the vanishing of Cohomol-
ogy, Proposition and the fact that S is a spectral space (Properties, Lemma

2.4). 0

Lemmal 63.2. Let k be an algebraically closed field of characteristic p > 0. Let V'
be a finite dimensional k-vector space. Let F : V — V be a frobenius linear map,
i.e., an additive map such that F(Av) = NWF(v) for all A € k and v € V. Then
F—1:V =V is surjective with kernel a finite dimensional Fy-vector space of
dimension < dimg (V).

Proof. If F =0, then the statement holds. If we have a filtration of V' by F-stable
subvector spaces such that the statement holds for each graded piece, then it holds
for (V, F). Combining these two remarks we may assume the kernel of F is zero.

Choose a basis v, ..., v, of V and write F(v;) = ) a;;v;. Observe that v =) A\jv;
is in the kernel if and only if Y Aa;;v; = 0. Since k is algebraically closed this
implies the matrix (a;;) is invertible. Let (b;;) be its inverse. Then to see that
F — 1 is surjective we pick w =Y pu;v; € V and we try to solve

(F =1 Awi) = Y Naigvj — D Ajog = D v
This is equivalent to
Z )\?Uj — Z bm‘)\ﬂ)j = Z bij‘LLi”Uj

/\g - Zbij/\i = Zbijﬂz‘, j=1,...,dim(V).

in other words

The algebra

A= k‘[l‘l, ce ,J;,J/(x? - Zbuxt - sz]ﬂz)
is standard smooth over k (Algebra, Definition [137.6)) because the matrix (b;;) is
invertible and the partial derivatives of x? are zero. A basis of A over k is the set
of monomials x7* ... x5 with e; < p, hence dimy(A4) = p™. Since k is algebraically
closed we see that Spec(A) has exactly p™ points. It follows that F'—1 is surjective
and every fibre has p™ points, i.e., the kernel of F'—1 is a group with p” elements. [

Lemmal 63.3. Let X be a separated scheme of finite type over a field k. Let F be
a coherent sheaf of Ox-modules. Then dimy, H*(X,F) < oo where d = dim(X).

Proof. We will prove this by induction on d. The case d = 0 holds because in that
case X is the spectrum of a finite dimensional k-algebra A (Varieties, Lemma
and every coherent sheaf F corresponds to a finite A-module M = H°(X, F) which
has dimy M < oo.

Assume d > 0 and the result has been shown for separated schemes of finite type of
dimension < d. The scheme X is Noetherian. Consider the property P of coherent
sheaves on X defined by the rule

P(F) & dimy HY(X,F) < 00
We are going to use the result of Cohomology of Schemes, Lemma to prove
that P holds for every coherent sheaf on X.

Let
0—+Fr—=F—=Fa—0
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be a short exact sequence of coherent sheaves on X. Consider the long exact
sequence of cohomology

HYX,Fi) » HYX,F) - HY(X, F»)
Thus if P holds for F; and Fs, then it holds for F.
Let Z C X be an integral closed subscheme. Let Z be a coherent sheaf of ideals
on Z. To finish the proof we have to show that H(X,i,Z) = H%(Z,T) is finite
dimensional. If dim(Z) < d, then the result holds because the cohomology group

will be zero (Cohomology, Proposition [20.7]). In this way we reduce to the situation
discussed in the following paragraph.

Assume X is a variety of dimension d and F = Z is a coherent ideal sheaf. In this
case we have a short exact sequence

0—-7Z—0x —1,.07—0

where ¢ : Z — X is the closed subscheme defined by Z. By induction hypothesis
we see that H4=Y(Z,0z) = H¥1(X,i,0y) is finite dimensional. Thus we see that
it suffices to prove the result for the structure sheaf.

We can apply Chow’s lemma (Cohomology of Schemes, Lemma [18.1]) to the mor-
phism X — Spec(k). Thus we get a diagram

X~——X ——P}
\ lg/
9

Spec(k)

as in the statement of Chow’s lemma. Also, let U C X be the dense open subscheme
such that 7=1(U) — U is an isomorphism. We may assume X' is a variety as well,
see Cohomology of Schemes, Remark The morphism ' = (i,7) : X' — P% is
a closed immersion (loc. cit.). Hence

L =i O0py(1) = ()" Opy (1)

is m-relatively ample (for example by Morphisms, Lemma . Hence by Coho-
mology of Schemes, Lemma there exists an n > 0 such that RPm,L%" = 0 for
all p > 0. Set G = m,L®". Choose any nonzero global section s of £®". Since
G = m,.L®", the section s corresponds to section of G, i.e., a map Ox — G. Since
sly # 0 as X' is a variety and £ invertible, we see that Ox|y — G|y is nonzero.
As Gly = L®"| -1 () is invertible we conclude that we have a short exact sequence

0—-0x —-G—-9—0

where Q is coherent and supported on a proper closed subscheme of X. Ar-
guing as before using our induction hypothesis, we see that it suffices to prove
dim H4(X, G) < oo.

By the Leray spectral sequence (Cohomology, Lemma we see that HY(X,G) =
HYX', L), Let X c P} be the closure of X’. Then X isa projective variety
of dimension d over k and X’ C X is a dense open. The invertible sheaf £ is the
restriction of O (n) to X. By Cohomology, Proposition the map

HYX', 05 (n)) — HU(X', L")
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is surjective. Since the cohomology group on the left has finite dimension by Co-
homology of Schemes, Lemma the proof is complete. O

Lemma 63.4. Let X be separated of finite type over an algebraically closed field
k of characteristic p > 0. Then HY, , (X,Z/pZ) =0 for q > dim(X) + 1.

étale

Proof. Let d = dim(X). By the vanishing established in Lemma it suffices to
show that H&H (X, Z/pZ) = 0. By Lemma we see that H(X,Ox) is a finite
dimensional k-vector space. Hence the long exact cohomology sequence associated

to the Artin-Schreier sequence ends with

HY(X,0x) =5 HYX,0x) — HEL (X, Z/pZ) — 0

étale

By Lemma [63.2] the map F' — 1 in this sequence is surjective. This proves the
lemma. (Il

Lemma 63.5. Let X be a proper scheme over an algebraically closed field k of
characteristic p > 0. Then

(1) H},,,.(X,Z/pZ) is a finite Z/pZ-module for all q, and
(2) HY,,,.(X,Z/pZ) — H},,.(Xw,Z/pZ)) is an isomorphism if k'/k is an

extension of algebraically closed fields.

Proof. By Cohomology of Schemes, Lemma and the comparison of coho-
mology of Theorem the cohomology groups HY,,,.(X,G,) = HI(X,Ox) are
finite dimensional k-vector spaces. Hence by Lemma the long exact coho-
mology sequence associated to the Artin-Schreier sequence, splits into short exact
sequences

0— H!

4 (X,Z/pZ) = HI(X,0x) T HI(X,0x) = 0

and moreover the Fj,-dimension of the cohomology groups H}, ,.(X,Z/pZ) is equal
to the k-dimension of the vector space HY(X,Ox). This proves the first state-
ment. The second statement follows as HY(X,Ox) @ k' — H9(Xy,0x,,) is an

isomorphism by flat base change (Cohomology of Schemes, Lemma . (]

64. Locally constant sheaves
This section is the analogue of Modules on Sites, Section [43] for the étale site.

Definition| 64.1. Let X be a scheme. Let F be a sheaf of sets on Xgiqze.

(1) Let E be a set. We say F is the constant sheaf with value E if F is the
sheafification of the presheaf U — E. Notation: Ey or E.

(2) We say F is a constant sheaf if it is isomorphic to a sheaf as in (1).

(3) We say F is locally constant if there exists a covering {U; — X} such that
Flu, is a constant sheaf.

(4) We say that F is finite locally constant if it is locally constant and the
values are finite sets.

Let F be a sheaf of abelian groups on Xggqc-
(1) Let A be an abelian group. We say F is the constant sheaf with value A if
F is the sheafification of the presheaf U — A. Notation: Ay or A.
(2) We say F is a constant sheaf if it is isomorphic as an abelian sheaf to a
sheaf as in (1).
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(3) We say F is locally constant if there exists a covering {U; — X} such that
Flu, is a constant sheaf.

(4) We say that F is finite locally constant if it is locally constant and the
values are finite abelian groups.

Let A be a ring. Let F be a sheaf of A-modules on Xgzqe-

(1) Let M be a A-module. We say F is the constant sheaf with value M if F
is the sheafification of the presheaf U — M. Notation: M x or M.

(2) We say F is a constant sheaf if it is isomorphic as a sheaf of A-modules to
a sheaf as in (1).

(3) We say F is locally constant if there exists a covering {U; — X} such that
Flu, is a constant sheaf.

Lemma|64.2. Let f: X — Y be a morphism of schemes. If G is a locally constant

sheaf of sets, abelian groups, or A-modules on Yeqie, the same is true for f~'G on
Xétale'

Proof. Holds for any morphism of topoi, see Modules on Sites, Lemma O

Lemma 64.3. Let f : X — Y be a finite étale morphism of schemes. If F
is a (finite) locally constant sheaf of sets, (finite) locally constant sheaf of abelian
groups, or (finite type) locally constant sheaf of A-modules on X¢tqale, the same is
true for foF on Yiae-

Proof. The construction of f. commutes with étale localization. A finite étale
morphism is locally isomorphic to a disjoint union of isomorphisms, see Etale Mor-
phisms, Lemma Thus the lemma says that if F;, ¢ = 1,...,n are (finite)
locally constant sheaves of sets, then szln}] is too. This is clear. Similarly
for sheaves of abelian groups and modules. O

Lemma 64.4. Let X be a scheme and F a sheaf of sets on Xgtare- Then the
following are equivalent

(1) F is finite locally constant, and
(2) F = hy for some finite étale morphism U — X.

Proof. A finite étale morphism is locally isomorphic to a disjoint union of isomor-
phisms, see Etale Morphisms, Lemma Thus (2) implies (1). Conversely, if
F is finite locally constant, then there exists an étale covering {X; — X} such
that F|x, is representable by U; — X finite étale. Arguing exactly as in the proof
of Descent, Lemma we obtain a descent datum for schemes (U;, ¢;;) relative
to {X; — X} (details omitted). This descent datum is effective for example by
Descent, Lemma and the resulting morphism of schemes U — X is finite étale

by Descent, Lemmas [23.23| and [23.29 (Il

Lemma 64.5. Let X be a scheme.

(1) Let p : F — G be a map of locally constant sheaves of sets on Xgpare- If F
is finite locally constant, there exists an étale covering {U; — X} such that
@lu, is the map of constant sheaves associated to a map of sets.

(2) Let ¢ : F — G be a map of locally constant sheaves of abelian groups
on Xgtale- If F is finite locally constant, there exists an étale covering
{U; — X} such that ¢|y, is the map of constant abelian sheaves associated
to a map of abelian groups.
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(3) Let A be a ring. Let ¢ : F — G be a map of locally constant sheaves of A-
modules on Xeaie- If F is of finite type, then there exists an étale covering
{U; — X} such that |y, is the map of constant sheaves of A-modules
associated to a map of A-modules.

Proof. This holds on any site, see Modules on Sites, Lemma [43.3 (Il

Lemma 64.6. Let X be a scheme.

(1) The category of finite locally constant sheaves of sets is closed under finite
limits and colimits inside Sh(X¢tale)-

(2) The category of finite locally constant abelian sheaves is a weak Serre sub-
category of Ab(Xestaie)-

(3) Let A be a Noetherian ring. The category of finite type, locally constant
sheaves of A-modules on X¢iaie is a weak Serre subcategory of Mod(Xsiaie, N).

Proof. This holds on any site, see Modules on Sites, Lemma [43.5] O

Lemma 64.7. Let X be a scheme. Let A be a ring. The tensor product of two
locally constant sheaves of A-modules on Xgtaie s a locally constant sheaf of A-
modules.

Proof. This holds on any site, see Modules on Sites, Lemma [43.6 ]

Lemmal 64.8. Let X be a connected scheme. Let A be a ring and let F be a
locally constant sheaf of A-modules. Then there exists a A-module M and an étale
covering {U; — X} such that Fly, & M

Proof. Choose an étale covering {U; — X} such that F|y, is constant, say F|y, =
MiUi' Observe that U; x x U; is empty if M; is not isomorphic to M;. For each
A-module M let Iny = {i € I | M; = M}. As étale morphisms are open we see that
Unv = Uier,, Im(U; — X)) is an open subset of X. Then X = [[Uy is a disjoint
open covering of X. As X is connected only one Uy, is nonempty and the lemma
follows. O

65. Locally constant sheaves and the fundamental group

We can relate locally constant sheaves to the fundamental group of a scheme in
some cases.
Lemma 65.1. Let X be a connected scheme. Let T be a geometric point of X.

(1) There is an equivalence of categories

{ finite locally constant

sheaves of sets on Xétale} {ﬁmte m (X, ac)—sets}

(2) There is an equivalence of categories

finite locally constant
sheaves of abelian groups on Xgiale

} +— {finite 1 (X, T)-modules}
(3) Let A be a finite ring. There is an equivalence of categories

finite type, locally constant finite w1 (X, T)-modules endowed
sheaves of A-modules on Xegtqre with commuting A-module structure
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Proof. We observe that m (X, T) is a profinite topological group, see Fundamental
Groups, Definition [6.1] The left hand categories are defined in Section [64] The
notation used in the right hand categories is taken from Fundamental Groups,
Definition for sets and Definition for abelian groups. This explains the

notation.

Assertion (1) follows from Lemma and Fundamental Groups, Theorem [6.2
Parts (2) and (3) follow immediately from this by endowing the underlying (sheaves
of) sets with additional structure. For example, a finite locally constant sheaf of
abelian groups on X4 is the same thing as a finite locally constant sheaf of
sets F together with a map + : F x F — F satisfying the usual axioms. The
equivalence in (1) sends products to products and hence sends + to an addition on
the corresponding finite m (X, Z)-set. Since 71 (X, Z)-modules are the same thing
as 1 (X, T)-sets with a compatible abelian group structure we obtain (2). Part (3)
is proved in exactly the same way. O

Lemma 65.2. Let X be an irreducible, geometrically unibranch scheme. Let T be
a geometric point of X. Let A be a ring. There is an equivalence of categories

finite type, locally constant finite A-modules M endowed
sheaves of A-modules on Xegpqre with a continuous 71(X, T)-action

Proof. The proof given in Lemma does not work as a finite A-module M may
not have a finite underlying set.

Let v : X¥ — X be the normalization morphism. By Morphisms, Lemma
this is a universal homeomorphism. By Fundamental Groups, Proposition this
induces an isomorphism (X", Z) — m1(X,Z) and by Theorem we get an
equivalence of category between finite type, locally constant A-modules on Xg;qe

and on X7, ;.. This reduces us to the case where X is an integral normal scheme.

Assume X is an integral normal scheme. Let n € X be the generic point. Let 77 be
a geometric point lying over . By Fundamental Groups, Proposition have a
continuous surjection

Gal(r(n)** /k(n)) = m1(n,7) — m(X,7)

whose kernel is described in Fundamental Groups, Lemma Let F be a finite
type, locally constant sheaf of A-modules on Xeaiqre. Let M = F5 be the stalk
of F at 7. We obtain a continuous action of Gal(k(n)**/k(n)) on M by Section
Our goal is to show that this action factors through the displayed surjection.
Since F is of finite type, M is a finite A-module. Since F is locally constant, for
every x € X the restriction of F to Spec(Oj’éﬁx) is constant. Hence the action of
Gal(K*¢?/K3") (with notation as in Fundamental Groups, Lemma on M is
trivial. We conclude we have the factorization as desired.

On the other hand, suppose we have a finite A-module M with a continuous action
of 7 (X,7). We are going to construct an F such that M = F5 as A[mi(X,7)]-
modules. Choose generators mq,...,m, € M. Since the action of 71 (X,7) on M
is continuous, for each i there exists an open subgroup N; of the profinite group
m1(X,7) such that every v € H; fixes m;. We conclude that every element of the
open subgroup H = mi:L...,r H, fixes every element of M. After shrinking H we
may assume H is an open normal subgroup of m1(X,7). Set G = m1(X,7)/H. Let
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f:Y — X be the corresponding Galois finite étale G-cover. We can view f.Z as a
sheaf of Z[G]-modules on Xsi4i.. Then we just take

]:Zf*Z®@M

We leave it to the reader to compute F3. We also omit the verification that this
construction is the inverse to the construction in the previous paragraph. (I

Remark| 65.3. The equivalences of Lemmas and are compatible with
pullbacks. For example, suppose f : Y — X is a morphism of connected schemes.
Let g be geometric point of Y and set Z = f(7). Then the diagram

finite locally constant sheaves of sets on Yg;q. — finite m (Y, 7)-sets

Tfl T
finite locally constant sheaves of sets on Xgiq;e — finite 71 (X, T)-sets

is commutative, where the vertical arrow on the right comes from the continuous
homomorphism 71 (Y,y) — m1 (X, T) induced by f. This follows immediately from
the commutative diagram in Fundamental Groups, Theorem A similar result
holds for the other cases.

66. Méthode de la trace

A reference for this section is [AGVT1 Exposé IX, §5]. The material here will be
used in the proof of Lemma [83.9] below.

Let f:Y — X be an étale morphism of schemes. There is a sequence

f!a f_17 f*
of adjoint functors between Ab(X¢iqie) and Ab(Yeiare). The functor fi is discussed in
Section The adjunction map id — f.f~! is called restriction. The adjunction
map fif ' — id is often called the trace map. If f is finite étale, then f, = fi
(Lemma and we can view this as a map f.f~1 — id.

Definition 66.1. Let f: Y — X be a finite étale morphism of schemes. The map
f«f 1 — id described above and explicitly below is called the trace.

Let f:Y — X be a finite étale morphism of schemes. The trace map is character-
ized by the following two properties:

(1) it commutes with étale localization on X and

(2) ifY = ]_[f.l:1 X then the trace map is the sum map f,f~'F = F — F.

By Etale Morphisms, Lemma every finite étale morphism f:Y — X is étale
locally on X of the form given in (2) for some integer d > 0. Hence we can define the
trace map using the characterization given; in particular we do not need to know
about the existence of f; and the agreement of f; with f, in order to construct
the trace map. This description shows that if f has constant degree d, then the
composition

]:ES_) f*ffl‘/__. trace F

is multiplication by d. The “méthode de la trace” is the following observation: if F
is an abelian sheaf on X4 such that multiplication by d on F is an isomorphism,
then the map

rate(X, F) — Hio(Y, f 7 F)

étale étale
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is injective. Namely, we have

etale(Y f 1]:) etale(X f*f )

by the vanishing of the higher dlrect images (Proposition [55.2)) and the Leray spec-
tral sequence (Proposition [54.2)). Thus we can consider the maps

etale(X ]:) - etale(YMf_lf) = etale(X f*f )M) etale(X ]:)

and the composition is an isomorphism (under our assumption on F and f). In
particular, if H?, , (Y, f71F) = 0 then HY, , (X,F) = 0 as well. Indeed, mul-

étale étale
tiplication by d induces an isomorphism on HY, , (X, F) which factors through
Hgtale()/’ f 1‘F) =0.

This is often combined with the following.

Lemma 66.2. Let S be a connected scheme. Let £ be a prime number. Let F be
a finite type, locally constant sheaf of ¥ y-vector spaces on Setqre- Then there exists
a finite étale morphism f : T — S of degree prime to £ such that f~'F has a finite
filtration whose successive quotients are Z/EZT.

Proof. Choose a geometric point s of S. Via the equivalence of Lemma the
sheaf F corresponds to a finite dimensional F,-vector space V' with a continuous
m1(S,3)-action. Let G C Aut(V) be the image of the homomorphism p : m1(S,35) —
Aut(V) giving the action. Observe that G is finite. The surjective continuous
homomorphism 7 : m(S,5) — G corresponds to a Galois object Y — S of FEtg
with automorphism group G = Aut(Y/S), see Fundamental Groups, Section[7] Let
H C G be an {-Sylow subgroup. We claim that T =Y/H — S works. Namely, let
t € T be a geometric point over 3. The image of 7 (T,%) — m1(9,3) is (p)~1(H)
as follows from the functorial nature of fundamental groups. Hence the action of
71(T, %) on V corresponding to f~1F is through the map m(T,%) — H, see Remark
As H is a finite ¢-group, the irreducible constituents of the representation
Plx, (7.7) are each trivial of rank 1 (this is a simple lemma on representation theory
of finite groups; insert future reference here). Via the equivalence of Lemma
this means f~!F is a successive extension of constant sheaves with value Z /EZT.
Moreover the degree of T = Y/H — S is prime to £ as it is equal to the index of H
in G. U

Lemma 66.3. Let A be a Noetherian ring. Let £ be a prime number and n > 1.
Let H be a finite £-group. Let M be a ﬁm'te A[H]-module annihilated by €™. Then
there is a finite filtration 0 = Mo C My C ... C My = M by A[H]-submodules such
that H acts trivially on M;11/M; for alli=0,...,t— 1.

Proof. Omitted. Hint: Show that the augmentation ideal m of the noncommuta-
tive ring Z/¢"Z[H] is nilpotent. O

Lemmal 66.4. Let S be an irreducible, geometrically unibranch scheme. Let £ be a
prime number and n > 1. Let A be a Noetherian ring. Let F be a finite type, locally
constant sheaf of A-modules on Sgtare which is annihilated by €. Then there exists
a finite étale morphism f : T — S of degree prime to £ such that f~'F has a finite
filtration whose successive quotients are of the form M for some finite A-modules

M.
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Proof. Choose a geometric point 5 of S. Via the equivalence of Lemma the
sheaf F corresponds to a finite A-module M with a continuous (S, 5)-action. Let
G C Aut(V) be the image of the homomorphism p : 71 (5,3) — Aut(M) giving the
action. Observe that G is finite as M is a finite A-module (see proof of Lemma
65.2). The surjective continuous homomorphism p : m1(S5,3) — G corresponds
to a Galois object Y — S of FEtg with automorphism group G = Aut(Y/S), see
Fundamental Groups, Section[7] Let H C G be an ¢-Sylow subgroup. We claim that
T =Y/H — S works. Namely, let ¢t € T be a geometric point over 5. The image of
71 (T, 1) — m1(S,3) is (p) "1 (H) as follows from the functorial nature of fundamental
groups. Hence the action of 71(T,#) on M corresponding to f~1F is through the
map m (T,t) — H, see Remark Let 0= My C My C...C My= M beas in
Lemma m This induces a filtration 0 = Fy C F; C ... C F; = f~LF such that
the successive quotients are constant with value M;;1/M;. Finally, the degree of
T =Y/H — S is prime to ¢ as it is equal to the index of H in G. d

67. Galois cohomology

In this section we prove a result on Galois cohomology (Proposition [67.4)) using étale
cohomology and the trick from Section This will allow us to prove vanishing of
higher étale cohomology groups over the spectrum of a field.

Lemma 67.1. Let ¢ be a prime number and n an integer > 0. Let S be a quasi-
compact and quasi-separated scheme. Let X = lim;c; X; be the limit of a directed
system of S-schemes each X; — S being finite étale of constant degree relatively
prime to £. The following are equivalent:

(1) there exists an £-power torsion sheaf G on S such that HY, ,,.(S,G) # 0 and
(2) there exists an (-power torsion sheaf F on X such that HY, ,.(X,F) # 0.

In fact, given G we can take F = g~ F and given F we can take G = g, F.

Proof. Let g: X — S and g; : X; — S denote the structure morphisms. Fix an
l-power torsion sheaf G on S with HZ, ,.(S,G) # 0. The system given by G; = 9;7'G
satisify the conditions of Theorem with colimit sheaf given by g~'G. This tells
us that:

COhmiEI Hc?tale(Xi’gi_lg) = gtale(Xv g)
By virtue of the g; being finite étale morphism of degree prime to ¢ we can apply
“la méthode de la trace” and we find the maps

g‘,ale(sﬁ g) — gtale(Xia g;lg)

are all injective (and compatible with the transition maps). See Section Thus,
the colimit is non-zero, i.e., H"(X,g~1G) # 0, giving us the desired result with
F=g1G.

Conversely, suppose given an ¢-power torsion sheaf F on X with HZ, . (X,F) # 0.
We note that since the g; are finite morphisms the higher direct images vanish
(Proposition . Then, by applying Lemma we may also conclude the
same for g. The vanishing of the higher direct images tells us that H, ;. (X, F) =
H™(S,g+F) # 0 by Leray (Proposition giving us what we want with G =

gxF. O

Lemmal67.2. Let{ be a prime number and n an integer > 0. Let K be a field with
G = Gal(K**?/K) and let H C G be a mazimal pro-¢ subgroup with L/K being the
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corresponding field extension. Then HJ, . (Spec(K),F) =0 for all {-power torsion
F if and only if HY,,,.(Spec(L),Z/{Z) = 0.

étale

Proof. Write L = |J L; as the union of its finite subextensions over K. Our choice
of H implies that [L; : K] is prime to ¢. Thus Spec(L) = lim;cs Spec(L;) as in
Lemma [67.1] Thus we may replace K by L and assume that the absolute Galois
group G of K is a profinite pro-¢ group.

Assume H™(Spec(K),Z/¢Z) = 0. Let F be an £-power torsion sheaf on Spec(K)etale-

We will show that HZ, ;. (Spec(K),F) = 0. By the correspondence specified in
Lemma our sheaf F corresponds to an f-power torsion G-module M. Any
finite set of elements x1,...,z,, € M must be fixed by an open subgroup U by
continuity. Let M’ be the module spanned by the orbits of z1,...,x,,. Thisis a
finite abelian /-group as each z; is killed by a power of ¢ and the orbits are finite.
Since M is the filtered colimit of these submodules M’ we see that F is the filtered
colimit of the corresponding subsheaves ' C F. Applying Theorem to this
colimit, we reduce to the case where F is a finite locally constant sheaf.

Let M be a finite abelian /-group with a continuous action of the profinite pro-¢
group G. Then there is a G-invariant filtration

O=MycM;C...CM,=M

such that M;1/M; = Z/{Z with trivial G-action (this is a simple lemma on rep-
resentation theory of finite groups; insert future reference here). Thus the corre-
sponding sheaf F has a filtration

0O=FCcHC...CF.=F

with successive quotients isomorphic to Z/¢Z. Thus by induction and the long
exact cohomology sequence we conclude. (I

Lemmal 67.3. Let ¢ be a prime number and n an integer > 0. Let K be a field
with G = Gal(K*?/K) and let H C G be a mazimal pro-f subgroup with L/K
being the corresponding field extension. Then HY, . (Spec(K),F) = 0 for ¢ > n
and all L-torsion sheaves F if and only if HY, ;. (Spec(L),Z/lZ) = 0.

étale

Proof. The forward direction is trivial, so we need only prove the reverse direction.
We proceed by induction on g. The case of ¢ = n is Lemma [67.2] Now let F be an
¢-power torsion sheaf on Spec(K). Let f : Spec(K*°P) — Spec(K) be the inclusion
of a geometric point. Then consider the exact sequence:

0> F 5 ff ' F = fuf ' FIF >0

Note that K*°P? may be written as the filtered colimit of finite separable extensions.
Thus f is the limit of a directed system of finite étale morphisms. We may, as
was seen in the proof of Lemma conclude that f has vanishing higher direct
images. Thus, we may express the higher cohomology of f,.f 'F as the higher
cohomology on the geometric point which clearly vanishes. Hence, as everything
here is still /-torsion, we may use the inductive hypothesis in conjunction with the
long-exact cohomology sequence to conclude the result for ¢ + 1. O

Proposition|67.4. Let K be a field with separable algebraic closure K*°P. Assume
that for any finite extension K' of K we have Br(K') = 0. Then

(1) HY(Gal(K*?/K), (K*®®)*) =0 for all ¢ > 1, and

[Ser97, Chapter II,
Section 3,
Proposition 5]


https://stacks.math.columbia.edu/tag/0DV9
https://stacks.math.columbia.edu/tag/03R8

ETALE COHOMOLOGY 107

(2) HY(Gal(K*¢?/K),M) = 0 for any torsion Gal(K**/K)-module M and
any q = 2,

Proof. Set p = char(K). By Lemma Theorem and Example the
proposition is equivalent to showing that if H2(Spec(K”), Gmlspec(k”)sar.) = 0 for
all finite extensions K’/K then:

e H9(Spec(K), Gmlspec(K)ern.) = 0 for all ¢ > 1, and

e HY(Spec(K),F) =0 for any torsion sheaf F and any ¢ > 2.
We prove the second part first. Since F is a torsion sheaf, we may use the ¢-primary
decomposition as well as the compatibility of cohomology with colimits (i.e, direct
sums, see Theorem to reduce to showing H9(Spec(K),F) = 0, ¢ > 2 for all
{-power torsion sheaves for every prime ¢. This allows us to analyze each prime
individually.

Suppose that ¢ # p. For any extension K’/K consider the Kummer sequence

(Lemma [28.1])

()"
0— e, Spec K’ — Gm,Spec K — Gm,Spec K’ — 0

Since HY(Spec K', Gunlspec(K')erar.) = 0 for ¢ = 2 by assumption and for ¢ = 1 by
Theorem combined with Pic(K) = (0). Thus, by the long-exact cohomology
sequence we may conclude that H2(Spec K', iy) = 0 for any separable K’'/K. Now
let H be a maximal pro-¢ subgroup of the absolute Galois group of K and let L
be the corresponding extension. We can write L as the colimit of finite extensions,
applying Theorem m to this colimit we see that H?(Spec(L), i) = 0. Now fi
must be the constant sheaf. If it weren’t, that would imply there exists a Galois
extension of degree relatively prime to ¢ of L which is not true by definition of L
(namely, the extension one gets by adjoining the ¢th roots of unity to L). Hence,
via Lemma we conclude the result for ¢ £ p.

Now suppose that £ = p. We consider the Artin-Schrier exact sequence (Section
63)

F-1
0 ? Z/pZSpch ? Ga,SpecK ” Ga,SpecK —0

where F' — 1 is the map « — aP — . Then note that the higher Cohomology of
G, spec & Vanishes, by Remark and the vanishing of the higher cohomology
of the structure sheaf of an affine scheme (Cohomology of Schemes, Lemma [2.2).
Note this can be applied to any field of characteristic p. In particular, we can apply
it to the field extension L defined by a maximal pro-p subgroup H. This allows us
to conclude H"(Spec L, Z/pZSpe = 0 for n > 2, from which the result follows

for £ = p, by Lemma [67.3
To finish the proof we still have to show that H?(Gal(K*?/K), (K*?)*) = 0 for
all ¢ > 1. Set G = Gal(K*°?/K) and set M = (K°°P)* viewed as a G-module. We

have already shown (above) that H'(G, M) = 0 and H*(G, M) = 0. Consider the
exact sequence

CL)

0>A—->M-—->MxQ—B—0
of G-modules. By the above we have H (G, A) = 0 and H(G,B) = 0 for i > 1
since A and B are torsion G-modules. By Lemma we have H'(G,M ® Q) =0
for i > 0. It is a pleasant exercise to see that this implies that H*(G, M) = 0 also
for ¢ > 3. [l
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Definition 67.5. A field K is called C, if for every 0 < d" < n and every
f € K[Ty,...,T,] homogeneous of degree d, there exist a« = (a,..., ), a; € K
not all zero, such that f(«) = 0. Such an « is called a nontrivial solution of f.

Example| 67.6. An algebraically closed field is Ci..
In fact, we have the following simple lemma.

Lemma 67.7. Let k be an algebraically closed field. Let f1,..., fs € k[T1,...,Ty]
be homogeneous polynomials of degree d1,...,ds with d; > 0. If s < n, then f1 =
... = fs =0 have a common nontrivial solution.

Proof. This follows from dimension theory, for example in the form of Varieties,
Lemma applied s — 1 times. O

The following result computes the Brauer group of C; fields.
Theorem 67.8. Let K be a Cy field. Then Br(K) = 0.

Proof. Let D be a finite dimensional division algebra over K with center K. We
have seen that

D ®x K*°P = Matq(K°P)
uniquely up to inner isomorphism. Hence the determinant det : Maty(K*P) —
K*°P is Galois invariant and descends to a homogeneous degree d map

det:NredZD—>K

called the reduced norm. Since K is C1, if d > 1, then there exists a nonzero
x € D with Nyeq(z) = 0. This clearly implies that = is not invertible, which is a
contradiction. Hence Br(K) = 0. O

Definition 67.9. Let k be a field. A wvariety is separated, integral scheme of finite
type over k. A curve is a variety of dimension 1.

Theorem 67.10 (Tsen’s theorem). The function field of a variety of dimension
r over an algebraically closed field k is C,..

Proof. For projective space one can show directly that the field k(z1,...,x,) is C,
(exercise).

General case. Without loss of generality, we may assume X to be projective. Let f €
E(X)[Ty,...,Th]a with 0 < d" < n. Say the coefficients of f are in I'(X,Ox (H))
for some ample H C X. Let « = (a1,...,q,) with «; € T'(X,Ox(eH)). Then
f(a) eT(X,0x((de+1)H)). Consider the system of equations f(«) = 0. Then by
asymptotic Riemann-Roch (Varieties, Proposition there exists a ¢ > 0 such
that

e the number of variables is n dimy I'(X, Ox (eH)) ~ ne”c, and
e the number of equations is dimy T'(X, Ox ((de + 1)H)) ~ (de + 1)"c.

Since n > d”, there are more variables than equations. The equations are homoge-
neous hence there is a solution by Lemma [67.7} O

Lemmal 67.11. Let C be a curve over an algebraically closed field k. Then the
Brauer group of the function field of C is zero: Br(k(C)) = 0.

Proof. This is clear from Tsen’s theorem, Theorem [67.10| and Theorem [67.8] [
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Lemma 67.12. Let k be an algebraically closed field and K/k a field extension of
transcendence degree 1. Then for all ¢ > 1, H}, . (Spec(K), Gy,) = 0.

Proof. Recall that HY, , (Spec(K), G,,) = HI(Gal(K*? /K), (K*%)*) by Lemma
59.2 Thus by Proposition it suffices to show that if K'/K is a finite field
extension, then Br(K”’) = 0. Now observe that K’ = colim K", where K" runs over
the finitely generated subextensions of k contained in K’ of transcendence degree
1. Note that Br(K”’) = colim Br(K") which reduces us to a finitely generated field
extension K" /k of transcendence degree 1. Such a field is the function field of a
curve over k, hence has trivial Brauer group by Lemma [

68. Higher vanishing for the multiplicative group

In this section, we fix an algebraically closed field & and a smooth curve X over
k. We denote i, : £ — X the inclusion of a closed point of X and j : n — X the
inclusion of the generic point. We also denote Xy the set of closed points of X.

Theorem 68.1 (The Fundamental Exact Sequence). There is a short exact se-
quence of étale sheaves on X

0— Gux — JsGmypy — @IGXO Tods — 0.

Proof. Let o : U — X be an étale morphism. Then by properties of étale mor-
phisms (Proposition [26 , U =[], Ui where each U; is a smooth curve mapping to
X. The above sequence for U is a product of the corresponding sequences for each
U;, so it suffices to treat the case where U is connected, hence irreducible. In this
case, there is a well known exact sequence

1 —TU0;) — kU — @y% y-
This amounts to a sequence
0— T(U,0) — T(n xx U, 0} /) — @%XO [(z xx U,7Z)
which, unfolding definitions, is nothing but a sequence
0— Gn(U) — j.Gua(U) — (D, i2-Z) (V).

This defines the maps in the Fundamental Exact Sequence and shows it is exact
except possibly at the last step. To see surjectivity, let us recall that if U is a
nonsingular curve and D is a divisor on U, then there exists a Zariski open covering
{U; = U} of U such that D|y, = div(f;) for some f; € k(U)*. O

Lemma 68.2. For any ¢ > 1, R5,.G,,, =0.

Proof. We need to show that (R%j.Gy, )z = 0 for every geometric point z of X.

Assume that Z lies over a closed point = of X. Let Spec(A) be an affine open
neighbourhood of z in X, and K the fraction field of A. Then

Spec((’)Shf) Xx 1N = Spec(OShf ®4 K).
The ring (’)Sh ®4 K is a localization of the discrete valuation ring (’)X z, S0 it is

either (’)X - again, or its fraction field K2". But since some local uniformizer gets
inverted, it must be the latter. Hence

(qu*van)(va) etale(speCK oh .G )
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Now recall that Oggi = colimy )z O(U) = colimscp B where A — B is étale,
hence K2" is an algebraic extension of K = k(X), and we may apply Lemma [67.12
to get the vanishing.

Assume that z = 77 lies over the generic point i of X (in fact, this case is superflu-
ous). Then (’)ﬁ(hﬁ = £(n)* and thus

(BxGmn)y = Hi e (Spec(s(n)™™) xx 0, Gm)
= Hgtale(SpeC(/{O?)“p), Gm)
= 0 forg>1

since the corresponding Galois group is trivial. O

03RK Lemma 68.3. Forallp>1, H., , (X,j.Gpn,) =0.

étale
Proof. The Leray spectral sequence reads
qu = Hp (X’ qu*Gm,n) = H%H_q (77’ Gmﬂl)?

étale étale
which vanishes for p+ ¢ > 1 by Lemma [67.12] Taking ¢ = 0, we get the desired
vanishing. 0
03RL Lemma 68.4. Forallq>1, Hf, (X, @D, cx, iz:L) = 0.

Proof. For X quasi-compact and quasi-separated, cohomology commutes with col-

imits, so it suffices to show the vanishing of HY, , (X,i,.Z). But then the inclusion

i, of a closed point is finite so RPi,,Z = 0 for all p > 1 by Proposition Apply-
ing the Leray spectral sequence, we see that HY, , (X,i,,Z) = HY, , (z,Z). Finally,

étale étale
since x is the spectrum of an algebraically closed field, all higher cohomology on z

vanishes. ]
Concluding this series of lemmata, we get the following result.
03RM |Theorem| 68.5. Let X be a smooth curve over an algebraically closed field. Then
HY, .. (X, Gy) =0 forallg > 2.

Proof. See discussion above. O

We also get the cohomology long exact sequence

0— Hgtale(X3 Gm) - Hgtale(Xa j*Gmn) - Hgtale(X7 @Zf*z) - Hl (X7 Gm) —0

étale
although this is the familiar
0— HY,.(X,0%) = k(X)* = Div(X) — Pic(X) — 0.

69. Picard groups of curves

03RN  Our next step is to use the Kummer sequence to deduce some information about
the cohomology group of a curve with finite coefficients. In order to get vanishing
in the long exact sequence, we review some facts about Picard groups.

Let X be a smooth projective curve over an algebraically closed field k. Let g =
dimy H'(X,Ox) be the genus of X. There exists a short exact sequence

0 = Pic’(X) — Pic(X) <5 7 — 0.

The abelian group Pic’(X) can be identified with Pic’(X) = @8%(1@), i.e., the
k-valued points of an abelian variety @2( /1 over k of dimension g. Consequently,
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if n € k* then Pic’(X)[n] = (Z/nZ)? as abelian groups. See Picard Schemes of
Curves, Section [6] and Groupoids, Section[J] This key fact, namely the description
of the torsion in the Picard group of a smooth projective curve over an algebraically
closed field does not appear to have an elementary proof.

Lemma 69.1. Let X be a smooth projective curve of genus g over an algebraically
closed field k and let n > 1 be invertible in k. Then there are canonical identifica-
tions
,un(k) ifq=0,
Pic’(X)[n] ifq=1,
Z/nZ ifq=2,
0 if > 3.

Since pn, = Z/nZ, this gives (noncanonical) identifications

Hgtale(X’ /'L”) =

Z/nZ if ¢ =0,
(@/nZ)  ifq=1,
Z/nZ ifq=2,
0 if ¢ > 3.

Proof. Theorems and determine the étale cohomology of G,, on X in
terms of the Picard group of X. The Kummer sequence 0 = pp, x — G x —
G,,,x — 0 (Lemma [28.1]) then gives us the long exact cohomology sequence

Hq

étale

(X,Z/nZ) =

0 tin (k) T

L

(X, i) —— Pic(X) — L Pic(X)

/

He?tale(Xvun) 0 0...

Hl

étale

The nth power map k* — k* is surjective since k is algebraically closed. So we need
to compute the kernel and cokernel of the map n : Pic(X) — Pic(X). Consider the
commutative diagram with exact rows

0 — Pic’(X) — Pic(X) —>Z——0

eg
QL(‘)" J{(‘)” [ﬂ

0 — > Pic®(X) — > Pic(X) 4.7 — >0

The group PiCO(X ) is the k-points of the group scheme @9( /k» see Picard Schemes

of Curves, Lemma The same lemma tells us that Pic /i 18 a g-dimensional
abelian variety over k as defined in Groupoids, Definition[9.1] Hence the left vertical
map is surjective by Groupoids, Proposition Applying the snake lemma gives
canonical identifications as stated in the lemma.

To get the noncanonical identifications of the lemma we need to show the kernel of
n : Pic’(X) — Pic”(X) is isomorphic to (Z/nZ)®29. This is also part of Groupoids,
Proposition [9.11 (]
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Lemma 69.2. Let w: X — Y be a nonconstant morphism of smooth projective
curves over an algebraically closed field k and let n > 1 be invertible in k. The map

T Hgtale(K lu’n) — H2 (Xa ,U/n)

étale

is given by multiplication by the degree of m.

Proof. Observe that the statement makes sense as we have identified both coho-
mology groups HZ,,,. (Y, un) and HZ, ;. (X, pun) with Z/nZ in Lemma In fact,
if £ is a line bundle of degree 1 on Y with class [£] € H},,;.(Y,Gy,), then the
coboundary of [£] is the generator of HZ,,; (Y, ). Here the coboundary is the
coboundary of the long exact sequence of cohomology associated to the Kummer
sequence. Thus the result of the lemma follows from the fact that the degree of the
line bundle 7*L£ on X is deg(m). Some details omitted. O

Lemma 69.3. Let X be an affine smooth curve over an algebraically closed field k

andn € k*. Let X C X be a smooth projective compactification (Varieties, Remark
. Let g be the genus of X and let v be the number of points of X \ X. Then
(1) Hgtale(X’ /J/n) = /J/n(ki),
(2) H; (Xa U7L> = (Z/nz)2g+r—1, and

étale

(3) HL , (X, un) =0 for all ¢ > 2.

étale
Proof. Write X = X — {z1,...,2,}. Then Pic(X) = Pic(X)/R, where R is the
subgroup generated by O (z;), 1 <4 < r. Since r > 1, we see that Pic’(X) —
Pic(X) is surjective, hence Pic(X) is divisible (see discussion in proof of Lemma
[69.1). Applying the Kummer sequence, we get (1) and (3). For (2), recall that

Hpq1e(X, ) = {(£,@)|L € Pie(X),a: L — Ox}/ =
={(L, D, a)}/R
where L € Pic’(X), D is a divisor on X supported on {z1,...,z,} and & :
LE" =2 0% (D) is an isomorphism. Note that D must have degree 0. Further

R is the subgroup of triples of the form (Ox(D"),nD’,1¥™) where D’ is supported
on {z1,...,2,} and has degree 0. Thus, we get an exact sequence

O—>H1 (yaﬂn)HHl (X,Mn)H@Z/nZLZ/nZ—)O

étale étale
i=1

where the middle map sends the class of a triple (£, D,&) with D = >7_, a;(z;)
to the r-tuple (a;)7_;. It now suffices to use Lemma to count ranks. O

Remark| 69.4. The “natural” way to prove the previous corollary is to excise X
from X. This is possible, we just haven’t developed that theory.

Remark| 69.5. Let k& be an algebraically closed field. Let n be an integer prime
to the characteristic of k. Recall that

Gk = A\ {0} = P} \ {0,00}
We claim there is a canonical isomorphism

H}tale(Gm,kv Mn) = Z/nz

€

What does this mean? This means there is an element 15 in H}, ;. (G k, ftn) such
that for every morphism Spec(k’) — Spec(k) the pullback map on étale cohomology

for the map Gy, k7 — Gy, maps 1, to 1. (In particular this element is fixed under
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all automorphisms of k.) To see this, consider the p, z-torsor G,z — G, z,
x — z". By the identification of torsors with first cohomology, this pulls back
to give our canonical elements 1;. Twisting back we see that there are canonical
identifications

Hétale(Gm,kv Z/’FLZ) = Hom(:un (k)a Z/TLZ),

i.e., these isomorphisms are compatible with respect to maps of algebraically closed
fields, in particular with respect to automorphisms of k.

70. Extension by zero

03S2 The general material in Modules on Sites, Section[I9allows us to make the following
definition.

03S3 |Definition| 70.1. Let j : U — X be an étale morphism of schemes.

(1) The restriction functor j=1 : Sh(Xgrare) — Sh(Ustare) has a left adjoint
jfgh : Sh(Uétale) — Sh(Xétale)~

(2) The restriction functor j =1 : Ab(X¢sare) — Ab(Ugiare) has a left adjoint
which is denoted 7 : Ab(Ugtare) — Ab(Xeétaie) and called extension by zero.

(3) Let A be aring. The restriction functor j =1 : Mod(X¢tare, A) — Mod(Ugsare, A)
has a left adjoint which is denoted ji : Mod(Ustate, A) = Mod(Xstaie, A) and
called extension by zero.

If F is an abelian sheaf on Xgqe, then jiF # j!Sh]: in general. On the other hand j
for sheaves of A-modules agrees with j; on underlying abelian sheaves (Modules on
Sites, Remark [19.6)). The functor ji is characterized by the functorial isomorphism

Homx (j1.F,G) = Homy (F,j71G)
for all F € Ab(Ugtare) and G € Ab(X¢iare). Similarly for sheaves of A-modules.

To describe the functors in Definition more explicitly, recall that j 7! is just the
restriction via the functor Ugare — Xetate- In other words, j=1G(U’) = G(U') for
U’ étale over U. On the other hand, for F € Ab(Ugtqre) we consider the presheaf

OF4K  (70.1.1) G0 F : Xetare — Ab,  V — EBV ,FV =)
—

Then jF is the sheafification of j,F. This is proven in Modules on Sites, Lemma
more generally see the discussion in Modules on Sites, Sections [I9] and

0354 |Exercise 70.2. Prove directly that the functor j, defined as the sheafification of
the functor j, given in (70.1.1) is a left adjoint to j 1.

03S5 |Proposition| 70.3. Let j : U — X be an étale morphism of schemes. Let F in
Ab(Ugtate). If T : Spec(k) — X is a geometric point of X, then

(']!J:)E - @E:Spcc(k)ﬁU, j(u)=z Fa-

In particular, j) is an exact functor.

Proof. Exactness of j, is very general, see Modules on Sites, Lemma Of
course it does also follow from the description of stalks. The formula for the stalk
follows from Modules on Sites, Lemma and the description of points of the
small étale site in terms of geometric points, see Lemma [29.12]
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For later use we note that the isomorphism

(1 F)z = (JpF)z
= COlim(Vﬁg) ]p|]:(V)

= colimy 3 @WHU F(V 50U)

u-

- @E:Spec(k)aU, ju)==
constructed in Modules on Sites, Lemma sends (V,7, p, s) to the class of s in
the stalk of F at u = (7). O

Lemma 70.4. Let j: U — X be an open immersion of schemes. For any abelian
sheaf F on Ugtqre, the adjunction mappings j~'j.F — F and F — j~ 15 F are
isomorphisms. In fact, jiF is the unique abelian sheaf on Xgiq1e whose restriction
to U is F and whose stalks at geometric points of X \ U are zero.

Proof. We encourage the reader to prove the first statement by working through
the definitions, but here we just use that it is a special case of the very general
Modules on Sites, Lemma For the second statement, observe that if G is an
abelian sheaf on X4 whose restriction to U is F, then we obtain by adjointness
a map jiF — G. This map is then an isomorphism at stalks of geometric points of
U by Proposition m Thus if G has vanishing stalks at geometric points of X \ U,
then jiF — G is an isomorphism by Theorem O

Lemma 70.5 (Extension by zero commutes with base change). Let f:Y — X be
a morphism of schemes. Let j: V. — X be an étale morphism. Consider the fibre
product

V=Y xxV—>Y
J
f’l lf
v— 1 ox
Then we have ji f'~* = f~1j on abelian sheaves and on sheaves of modules.
Proof. This is true because ji f'~! is left adjoint to f,(j')~* and f~1ji is left adjoint
to 71 f.. Further f.(5)~% = j~!f. because f. commutes with étale localization (by

construction). In fact, the lemma holds very generally in the setting of a morphism
of sites, see Modules on Sites, Lemma [20.1 (]

Lemmal 70.6. Let j: U — X be separated and étale. Then there is a functorial
injective map HF — j«F on abelian sheaves and sheaves of A-modules.

Proof. We prove this in the case of abelian sheaves. Let us construct a canonical
map
jp!]:_> ,7*]:

of abelian presheaves on X¢iq1c for any abelian sheaf F on Ugqie Where jp is as in
(70.1.1). Sheafification of this map will be the desired map 5 F — j.F. Evaluating
both sides on V' — X étale we obtain

. © .
JuF (V) = @WV_)U}"(V 5 U) and jF(V)=F(V xxU)
For each ¢ we have an open and closed immersion
F,=1,9):V —=VxxU
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over U. It is open as it is a morphism between schemes étale over U and it is closed

as it is a section of a scheme separated over V' (Schemes, Lemma [21.11]). Thus for

a section s, € F(V %5 U) there exists a unique section sy, in F(V xx U) which

pulls back to s, by I', and which restricts to zero on the complement of the image
of I'y.

To show that our map is injective suppose that > ,_, sy, is an element of
JptF (V) in the formula above maps to zero in 7, F (V). Our task is to show that
Zi:l,u.,n s, Testricts to zero on the members of an étale covering of V. Looking
at all pairwise equalizers (which are open and closed in V') of the morphisms ¢; :
V — U and working locally on V', we may assume the images of the morphisms

Iy,,..., Ty, are pairwise disjoint. Since our assumption is that -, , 5:0 =0
we then immediately conclude that s{, = 0 for each i (by the disjointness of the
supports of these sections), whence s,, = 0 for all ¢ as desired. (]

Lemma 70.7. Letj:U — X be finite and étale. Then the map jy — j. of Lemma
s an isomorphism on abelian sheaves and sheaves of A-modules.

Proof. It suffices to check jiF — j.JF is an isomorphism étale locally on X. Thus
we may assume U — X is a finite disjoint union of isomorphisms, see Etale Mor-
phisms, Lemma We omit the proof in this case. O

Lemma 70.8. Let X be a scheme. Let Z C X be a closed subscheme and let
U C X be the complement. Denote i : Z — X and j : U — X the inclusion
morphisms. For every abelian sheaf F on Xegiaie there is a canonical short exact
sequence

0= jj ' FoF—idlF—=0

on Xétale .

Proof. We obtain the maps by the adjointness properties of the functors involved.
For a geometric point T in X we have either * € U in which case the map on the
left hand side is an isomorphism on stalks and the stalk of i,i~'F is zero or T € Z
in which case the map on the right hand side is an isomorphism on stalks and the
stalk of 7,5 ~1F is zero. Here we have used the description of stalks of Lemma m
and Proposition [70.3] (I

Lemma 70.9. Consider a cartesian diagram of schemes

J
|
v—.y

where f is finite, g is étale, and j is an open immersion. Then f. o j| = jio g, as

functors Ab(Ustaie) — Ab(Yetate)-

Proof. Let F be an object of Ab(Ugtqare). Let T be a geometric point of Y not
contained in the open V. Then

(FoilFlg = €D, ), i1F)z =0
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by Proposition and because the stalk of j|F at T ¢ U are zero by Lemma
On the other hand, we have

J U GF = 9.3 T F = g F
by Lemmas [55.3] and Lemma Hence by the characterization of 5 in Lemma

we see that f.jiF = jig.F. We omit the verification that this identification is
functorial in F. O

71. Constructible sheaves

Let X be a scheme. A constructible locally closed subscheme of X is a locally closed
subscheme T' C X such that the underlying topological space of T is a constructible
subset of X. If T,T" C X are locally closed subschemes with the same underlying
topological space, then Ti¢q1e = T7,,,. by the topological invariance of the étale site
(Theorem . Thus in the following definition we may assume our locally closed
subschemes are reduced.

Definition 71.1. Let X be a scheme.

(1) A sheaf of sets on Xgqie is constructible if for every affine open U C X
there exists a finite decomposition of U into constructible locally closed
subschemes U = [, U; such that F|y, is finite locally constant for all 4.

(2) A sheaf of abelian groups on X1 is constructible if for every affine open
U C X there exists a finite decomposition of U into constructible locally
closed subschemes U = [[, U; such that F|y, is finite locally constant for
all 4.

(3) Let A be a Noetherian ring. A sheaf of A-modules on X4 is constructible
if for every affine open U C X there exists a finite decomposition of U
into constructible locally closed subschemes U = [ [, U; such that F|y, is of
finite type and locally constant for all 4.

It seems that this is the accepted definition. An alternative, which lends itself more
readily to generalizations beyond the étale site of a scheme, would have been to
define constructible sheaves by starting with hy, jinZ/nZ, and jinA where U runs
over all quasi-compact and quasi-separated objects of Xgiqie, and then take the
smallest full subcategory of Sh(Xgtaie), Ab(Xetale), and Mod(Xetaie, A) containing
these and closed under finite limits and colimits. It follows from Lemma and
Lemmas [73.5], [73.7, and [73.6] that this produces the same category if X is quasi-
compact and quasi-separated. In general this does not produce the same category
however.

A disjoint union decomposition U = [[ U; of a scheme by locally closed subschemes
will be called a partition of U (compare with Topology, Section .

Lemma 71.2. Let X be a quasi-compact and quasi-separated scheme. Let F be a
sheaf of sets on Xgqie. The following are equivalent

(1) F is constructible,

(2) there exists an open covering X = |JU; such that F|y, is constructible, and

(3) there exists a partition X = |J X; by constructible locally closed subschemes
such that F|x, is finite locally constant.

A similar statement holds for abelian sheaves and sheaves of A-modules if A is
Noetherian.
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Proof. It is clear that (1) implies (2).

Assume (2). For every x € X we can find an ¢ and an affine open neighbourhood
Vi C U; of . Hence we can find a finite affine open covering X = | J V; such that for
each j there exists a finite decomposition V; = [[ V; x by locally closed constructible
subsets such that Fly, , is finite locally constant. By Topology, Lemma each
Vi i is constructible as a subset of X. By Topology, Lemma we can find a finite
stratification X = [[ X; with constructible locally closed strata such that each Vj
is a union of X;. Thus (3) holds.

Assume (3) holds. Let U C X be an affine open. Then U N X; is a constructible
locally closed subset of U (for example by Properties, Lemma andU =[JUNX;
is a partition of U as in Definition Thus (1) holds. O

Lemma 71.3. Let X be a quasi-compact and quasi-separated scheme. Let F be
a sheaf of sets, abelian groups, A-modules (with A Noetherian) on Xsiaie. If there
exist constructible locally closed subschemes T; C X such that (a) X = JT; and
(b) F|r, is constructible, then F is constructible.

Proof. First, we can assume the covering is finite as X is quasi-compact in the
spectral topology (Topology, Lemma and Properties, Lemma . Observe
that each T; is a quasi-compact and quasi-separated scheme in its own right (be-
cause it is constructible in X; details omitted). Thus we can find a finite partition
T, = ]_[T” into locally closed constructible parts of T; such that ‘F|Ti,j is finite

locally constant (Lemma [71.2). By Topology, Lemma |15.12| we see that T; ; is a
constructible locally closed subscheme of X. Then we can apply Topology, Lemma

to X = J7T;,; to find the desired partition of X. a

Lemma 71.4. Let X be a scheme. Checking constructibility of a sheaf of sets,
abelian groups, A-modules (with A Noetherian) can be done Zariski locally on X.

Proof. The statement means if X = (JU; is an open covering such that F|y, is
constructible, then F is constructible. If U C X is affine open, then U = |JU N U;
and F|ynu, is constructible (it is trivial that the restriction of a constructible sheaf
to an open is constructible). It follows from Lemma that F|y is constructible,
i.e., a suitable partition of U exists. ([l

Lemmal 71.5. Let f: X — Y be a morphism of schemes. If F is a constructible
sheaf of sets, abelian groups, or A-modules (with A Noetherian) on Ysiqie, the same
is true for f71F on Xerate.

Proof. By Lemma this reduces to the case where X and Y are affine. By
Lemma [71.2] it suffices to find a finite partition of X by constructible locally closed
subschemes such that f~!'F is finite locally constant on each of them. To find it
we just pull back the partition of Y adapted to F and use Lemma [64:2] O

Lemma 71.6. Let X be a scheme.

(1) The category of constructible sheaves of sets is closed under finite limits
and colimits inside Sh(Xestaie)-

(2) The category of constructible abelian sheaves is a weak Serre subcategory of
Ab(Xétale)~

(3) Let A be a Noetherian ring. The category of constructible sheaves of A-
modules on Xsiaie 1s a weak Serre subcategory of Mod(Xetate, A)-
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Proof. We prove (3). We will use the criterion of Homology, Lemmal[10.3] Suppose
that ¢ : F — G is a map of constructible sheaves of A-modules. We have to show
that K = Ker(p) and Q = Coker(p) are constructible. Similarly, suppose that
0— F = & — G — 0is a short exact sequence of sheaves of A-modules with F,
G constructible. We have to show that & is constructible. In both cases we can
replace X with the members of an affine open covering. Hence we may assume X
is affine. Then we may further replace X by the members of a finite partition of X
by constructible locally closed subschemes on which F and G are of finite type and
locally constant. Thus we may apply Lemma to conclude.

The proofs of (1) and (2) are very similar and are omitted. O

Lemma 71.7. Let X be a quasi-compact and quasi-separated scheme.

(1) Let F — G be a map of constructible sheaves of sets on Xegiare. Then the
set of points x € X where Fz — Gz is surjective, resp. injective, resp. is
isomorphic to a given map of sets, is constructible in X .

(2) Let F be a constructible abelian sheaf on Xetare. The support of F is con-
structible.

(3) Let A be a Noetherian ring. Let F be a constructible sheaf of A-modules on
Xeétale- The support of F is constructible.

Proof. Proof of (1). Let X = []X; be a partition of X by locally closed con-
structible subschemes such that both F and G are finite locally constant over the
parts (use Lemma [T1.2] for both F and G and choose a common refinement). Then
apply Lemma [64.5] to the restriction of the map to each part.

The proof of (2) and (3) is omitted. O

The following lemma will turn out to be very useful later on. It roughly says that
the category of constructible sheaves has a kind of weak “Noetherian” property.

Lemma 71.8. Let X be a quasi-compact and quasi-separated scheme. Let F =
colim;ey F; be a filtered colimit of sheaves of sets, abelian sheaves, or sheaves of
modules.

(1) If F and F; are constructible sheaves of sets, then the ind-object F; is
essentially constant with value F.

(2) If F and F; are constructible sheaves of abelian groups, then the ind-object
F; is essentially constant with value F.

(3) Let A be a Noetherian ring. If F and F; are constructible sheaves of A-
modules, then the ind-object F; is essentially constant with value F.

Proof. Proof of (1). We will use without further mention that finite limits and
colimits of constructible sheaves are constructible (Lemma . For each ¢ let
T; C X be the set of points € X where F; z — Fz is not surjective. Because F;
and F are constructible T} is a constructible subset of X (Lemma [71.7)). Since the
stalks of F are finite and since F = colim;c; F; we see that for all x € X we have
x ¢ T; for i large enough. Since X is a spectral space by Properties, Lemma [2.4
the constructible topology on X is quasi-compact by Topology, Lemma Thus
T; = () for i large enough. Thus F; — F is surjective for i large enough. Assume
now that F; — F is surjective for all 7. Choose i € I. For i’ > ¢ denote S C X the
set of points x such that the number of elements in Im(F; z — Fz) is equal to the
number of elements in Im(F; z — Fir z). Because F;, F;; and F are constructible
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Sy is a constructible subset of X (details omitted; hint: use Lemma . Since
the stalks of F; and F are finite and since F = colim;/>; iy we see that for all
x € X we have x ¢ Sy for ¢/ large enough. By the same argument as above we can
find a large i’ such that S;; = 0. Thus F; — F; factors through F as desired.

Proof of (2). Observe that a constructible abelian sheaf is a constructible sheaf of
sets. Thus case (2) follows from (1).

Proof of (3). We will use without further mention that the category of constructible
sheaves of A-modules is abelian (Lemma [64.6)). For each i let Q; be the cokernel
of the map F; — F. The support T; of Q; is a constructible subset of X as Q; is
constructible (Lemma [71.7). Since the stalks of F are finite A-modules and since
F = colim;¢1 F; we see that for all z € X we have x ¢ T; for ¢ large enough. Since
X is a spectral space by Properties, Lemma the constructible topology on X
is quasi-compact by Topology, Lemma Thus T; = 0 for i large enough. This
proves the first assertion. For the second, assume now that F; — F is surjective
for all . Choose ¢ € I. For i’ > i denote K; the image of Ker(F; — F) in Fy.
The support S;» of ;s is a constructible subset of X as K;/ is constructible. Since
the stalks of Ker(F; — F) are finite A-modules and since F = colim; >; Fi» we see
that for all x € X we have x € Sy for i’ large enough. By the same argument as
above we can find a large i’ such that S;; = (. Thus F; — F;s factors through F
as desired. O

Lemmal 71.9. Let X be a scheme. Let A be a Noetherian ring. The tensor
product of two constructible sheaves of A-modules on Xgpare 15 a constructible sheaf

of A-modules.

Proof. The question immediately reduces to the case where X is affine. Since
any two partitions of X with constructible locally closed strata have a common
refinement of the same type and since pullbacks commute with tensor product we
reduce to Lemma O

Lemmal 71.10. Let A — A’ be a homomorphism of Noetherian rings. Let X be a
scheme. Let F be a constructible sheaf of A-modules on Xgq1e. Then }-®A£ is a
constructible sheaf of A'-modules.

Proof. Omitted. Hint: affine locally you can use the same stratification. O

72. Auxiliary lemmas on morphisms

Some lemmas that are useful for proving functoriality properties of constructible
sheaves.

Lemma 72.1. Let U — X be an étale morphism of quasi-compact and quasi-
separated schemes (for example an étale morphism of Noetherian schemes). Then
there exists a partition X =[], X; by constructible locally closed subschemes such
that X; x x U — X; is finite étale for all i.

Proof. If U — X is separated, then this is More on Morphisms, Lemma In
general, we may assume X is affine. Choose a finite affine open covering U = |J U;.
Apply the previous case to all the morphisms U; — X and U; N Uy — X and
choose a common refinement X = [] X; of the resulting partitions. After refining
the partition further we may assume X; affine as well. Fix ¢ and set V =U x x X;.
The morphisms V; = U; xx X; = X; and V5 = (U; NUj ) xx X; — X, are finite
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étale. Hence V; and Vs are affine schemes and V;;; C Vj is closed as well as open
(since Vj;» — X, is proper, so Morphisms, Lemmam applies). Then V = JVj is
separated because O(V;) — O(Vj;) is surjective, see Schemes, Lemma [21.7] Thus
the previous case applies to V' — X; and we can further refine the partition if
needed (it actually isn’t but we don’t need this). O

In the Noetherian case one can prove the preceding lemma by Noetherian induction
and the following amusing lemma.

Lemma 72.2. Let f: X — Y be a morphism of schemes which is quasi-compact,
quasti-separated, and locally of finite type. If n is a generic point of an irreducible
component of Y such that f=1(n) is finite, then there exists an open V C Y con-
taining n such that f~1(V) — V is finite.

Proof. This is Morphisms, Lemma [51.1 U
The statement of the following lemma can be strengthened a bit.

Lemma 72.3. Let f:Y — X be a quasi-finite and finitely presented morphism
of affine schemes.

(1) There exists a surjective morphism of affine schemes X' — X and a closed
subscheme Z' CY' = X' xx Y such that
(a) Z' C Y’ is a thickening, and
(b) Z' = X' is a finite étale morphism.

(2) There exists a finite partition X = [[ X; by locally closed, constructible,
affine strata, and surjective finite locally free morphisms X — X; such
that the reduction of Y = X[ xx Y — X! is isomorphic to H?;l(XZ{)red —
(X)red for some n,;.

Proof. Setting X' = [ X| we see that (2) implies (1). Write X = Spec(4) and
Y = Spec(B). Write A as a filtered colimit of finite type Z-algebras A;. Since B
is an A-algebra of finite presentation, we see that there exists 0 € I and a finite
type ring map Ay — By such that B = colim B; with B; = A; ® 4, Bo, see Algebra,
Lemmal[I27.8] For i sufficiently large we see that A; — B; is quasi-finite, see Limits,
Lemmal[I8.2] Thus we reduce to the case of finite type algebras over Z, in particular
we reduce to the Noetherian case. (Details omitted.)

Assume X and Y Noetherian. In this case any locally closed subset of X is con-
structible. By Lemma and Noetherian induction we see that there is a finite
partition X = [[X; of X by locally closed strata such that ¥ xx X; — X; is
finite. We can refine this partition to get affine strata. Thus after replacing X by
X' =]] X; we may assume Y — X is finite.

Assume X and Y Noetherian and Y — X finite. Suppose that we can prove (2)
after base change by a surjective, flat, quasi-finite morphism U — X. Thus we
have a partition U = [[U; and finite locally free morphisms U] — U; such that
Ul xx Y — U] is isomorphic to H;;l(Ui’)Ted — (U/)req for some n;. Then, by the
argument in the previous paragraph, we can find a partition X = [[ X; with locally
closed affine strata such that X; xx U; — X is finite for all 4, j. By Morphisms,
Lemma each X; xx U; — X is finite locally free. Hence X; xx U/ — X;
is finite locally free (Morphisms, Lemma . It follows that X = J[X, and
X = 11; Xj xx U] is a solution for Y — X. Thus it suffices to prove the result (in
the Noetherian case) after a surjective flat quasi-finite base change.
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Applying Morphisms, Lemma we see we may assume that Y is a closed sub-
scheme of an affine scheme Z which is (set theoretically) a finite union Z = {J;; Z;
of closed subschemes mapping isomorphically to X. In this case we will find a finite
partition of X = [[ X, with affine locally closed strata that works (in other words
X} = Xj). Set T; =Y N Z;. This is a closed subscheme of X. As X is Noetherian
we can find a finite partition of X = [[ X, by affine locally closed subschemes, such
that each X; x x T; is (set theoretically) a union of strata X; X x Z;. Replacing X
by X; we see that we may assume I = I; 11, with Z; C Y fori € I; and Z;NY = 1]
for i € I. Replacing Z by UZ.GI1 Z; we see that we may assume Y = Z. Finally,
we can replace X again by the members of a partition as above such that for every
1,4 C I the intersection Z; N Z; is either empty or (set theoretically) equal to Z;
and Z;. This clearly means that Y is (set theoretically) equal to a disjoint union
of the Z; which is what we wanted to show. O

73. More on constructible sheaves

Let A be a Noetherian ring. Let X be a scheme. We often consider Xgiqie as a
ringed site with sheaf of rings A. In case of abelian sheaves we often take A = Z/nZ
for a suitable integer n.

Lemma 73.1. Let j:U — X be an étale morphism of quasi-compact and quasi-
separated schemes.
(1) The sheaf hy is a constructible sheaf of sets.
(2) The sheaf jHM is a constructible abelian sheaf for a finite abelian group M.
(3) If A is a Noetherian ring and M is a finite A-module, then jM is a con-
structible sheaf of A-modules on Xgqie-

Proof. By Lemma there is a partition [[, X; such that m; : j=1(X;) — X is
finite étale. The restriction of hy to X; is hj-1(x,) which is finite locally constant
by Lemma For cases (2) and (3) we note that

H(M)|x, = m(M) = mi (M)

by Lemmas and Thus it suffices to show the lemma for 7 : Y — X finite
étale. This is Lemma [64.3 ]

Lemma 73.2. Let X be a quasi-compact and quasi-separated scheme.

(1) Let F be a sheaf of sets on Xerare. Then F is a filtered colimit of con-
structible sheaves of sets.

(2) Let F be a torsion abelian sheaf on Xgiare- Then F is a filtered colimit of
constructible abelian sheaves.

(3) Let A be a Noetherian ring and F a sheaf of A-modules on Xe¢tare. Then F
1s a filtered colimit of constructible sheaves of A-modules.

Proof. Let B be the collection of quasi-compact and quasi-separated objects of
X¢étale- By Modules on Sites, Lemma [30.7] any sheaf of sets is a filtered colimit of
sheaves of the form

Coequalizer ( e v, —1licy, 0 ho )

with V; and U; quasi-compact and quasi-separated objects of X¢iq1.. By Lemmas
and these coequalizers are constructible. This proves (1).
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Let A be a Noetherian ring. By Modules on Sites, Lemma A-modules F is a
filtered colimit of modules of the form

Coker (@jzl,...,m Jvphy, — @izl,...,n jU”AU’i)

with V; and U; quasi-compact and quasi-separated objects of X¢;q7.. By Lemmas
and these cokernels are constructible. This proves (3).

Proof of (2). First write F = |JF[n] where F[n] is the n-torsion subsheaf. Then
we can view F|[n] as a sheaf of Z/nZ-modules and apply (3). O

Lemma 73.3. Let f: X — Y be a surjective morphism of quasi-compact and
quasi-separated schemes.

(1) Let F be a sheaf of sets on Yerare. Then F is constructible if and only if
f~LF is constructible.

(2) Let F be an abelian sheaf on Yerqie. Then F is constructible if and only if
f~LF is constructible.

(3) Let A be a Noetherian ring. Let F be sheaf of A-modules on Yga1e. Then
F is constructible if and only if f~1F is constructible.

Proof. One implication follows from Lemma For the converse, assume f~1F
is constructible. Write F = colim F; as a filtered colimit of constructible sheaves
(of sets, abelian groups, or modules) using Lemma Since f~! is a left adjoint
it commutes with colimits (Categories, Lemma [24.5) and we see that f~1F =
colim f~'F;. By Lemma we see that f~1F; — f~1F is surjective for all i
large enough. Since f is surjective we conclude (by looking at stalks using Lemma
and Theorem that F; — F is surjective for all ¢ large enough. Thus F is
the quotient of a constructible sheaf G. Applying the argument once more to G x G
or the kernel of G — F we conclude using that f~! is exact and that the category
of constructible sheaves (of sets, abelian groups, or modules) is preserved under
finite (co)limits or (co)kernels inside Sh(Yeraie), SM(Xetate)s Ab(Yetare)s Ab(Xétaie),
Mod(Yestate, N), and Mod(Xstaie, A), see Lemma O

Lemmal 73.4. Let f: X — Y be a finite étale morphism of schemes. Let A be a
Noetherian ring. If F is a constructible sheaf of sets, constructible sheaf of abelian
groups, or constructible sheaf of A-modules on X¢iqe, the same is true for f.JF on
Yétale-

Proof. By Lemma it suffices to check this Zariski locally on Y and by Lemma
we may replace Y by an étale cover (the construction of f, commutes with
étale localization). A finite étale morphism is étale locally isomorphic to a disjoint
union of isomorphisms, see Etale Morphisms, Lemma Thus, in the case of

sheaves of sets, the lemma says that if F;, ¢ = 1,...,n are constructible sheaves of
sets, then [[,_,  F;is too. This is clear. Similarly for sheaves of abelian groups
and modules. (]

Lemma 73.5. Let X be a quasi-compact and quasi-separated scheme. The category
of constructible sheaves of sets is the full subcategory of Sh(X¢tare) consisting of
sheaves F which are coequalizers

Fi~ _ Fo——>F

such that F;, i = 0,1 is a finite coproduct of sheaves of the form hy with U a
quasi-compact and quasi-separated object of X¢iale-
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Proof. In the proof of Lemma [73.2] we have seen that sheaves of this form are
constructible. For the converse, suppose that for every constructible sheaf of sets
F we can find a surjection Fy — F with Fy as in the lemma. Then we find our
surjection F; — Fo X r Fp because the latter is constructible by Lemma |71.6]

By Topology, Lemma @ we may choose a finite stratification X = [[,.; X; such
that F is finite locally constant on each stratum. We will prove the result by
induction on the cardinality of I. Let ¢ € I be a minimal element in the partial
ordering of I. Then X; C X is closed. By induction, there exist finitely many
quasi-compact and quasi-separated objects U, of (X \ X;)etare and a surjective
map [[hy, = Flx\x,- These determine a map

ho. —F

which is surjective after restricting to X\ X;. By Lemmawe see that F|x, = hy
for some scheme V finite étale over X;. Let ¥ be a geometric point of V' lying over
T € X;. We may think of v as an element of the stalk /7 = V. Thus we can find
an étale neighbourhood (U, @) of T and a section s € F(U) whose stalk at T gives
. Thinking of s as a map s : hy — F, restricting to X; we obtain a morphism
slx, : U xx X; = V over X; which maps @ to ©. Since V is quasi-compact (finite
over the closed subscheme X; of the quasi-compact scheme X) a finite number
s .. st™) of these sections of F over UM, ..., U will determine a jointly

surjective map
Hs(j)|xi : HU(j) Xx Xl —V

Then we obtain the surjection

HhUO‘ HHhU(j) — F

as desired. O

Lemmal 73.6. Let X be a quasi-compact and quasi-separated scheme. Let A be a
Noetherian ring. The category of constructible sheaves of A-modules is exactly the
category of modules of the form

Coker (@jzl,...,m jVJ'AVJ - @izl,...,n jU'iIAUi)

with V; and U; quasi-compact and quasi-separated objects of X¢tare. In fact, we can
even assume U; and V; affine.

Proof. In the proof of Lemma we have seen modules of this form are con-
structible. Since the category of constructible modules is abelian (Lemma [71.6) it
suffices to prove that given a constructible module F there is a surjection

P juahy, — F
i=1,...,n *
for some affine objects U; in X¢qi.. By Modules on Sites, Lemma there is a

surjection
v @iel Jualy, — F

with U; affine and the direct sum over a possibly infinite index set I. For every
finite subset I’ C I set

Ty = Supp(COker(@iep jualdy, — F))
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By the very definition of constructible sheaves, the set T is a constructible subset
of X. We want to show that T;, = () for some I’. Since every stalk Fz is a finite
type A-module and since ¥ is surjective, for every x € X there is an I’ such that
x & Tp. In other words we have ) = (/- guie 11~ Since X is a spectral space
by Properties, Lemma the constructible topology on X is quasi-compact by
Topology, Lemma Thus Ty = ) for some I’ C I finite as desired. O

Lemma 73.7. Let X be a quasi-compact and quasi-separated scheme. The category
of constructible abelian sheaves is exactly the category of abelian sheaves of the form

Coker (@ ) jV].!Z/ijV — @ ) jUi!Z/niZU>
J= m —_—V; =1,....,n —U;

with V; and U; quasi-compact and quasi-separated objects of Xstqie and mj, n;
positive integers. In fact, we can even assume U; and V; affine.

Proof. This follows from Lemma applied with A = Z/nZ and the fact that,
since X is quasi-compact, every constructible abelian sheaf is annihilated by some
positive integer n (details omitted). O

Lemma 73.8. Let X be a quasi-compact and quasi-separated scheme. Let A be
a Noetherian ring. Let F be a constructible sheaf of sets, abelian groups, or A-
modules on Xgiq1e. Let G = colim G; be a filtered colimit of sheaves of sets, abelian
groups, or A-modules. Then

Mor(F, G) = colim Mor(F, G;)
in the category of sheaves of sets, abelian groups, or A-modules on Xgiqe-

Proof. The case of sheaves of sets. By Lemma |73.5|it suffices to prove the lemma
for hy where U is a quasi-compact and quasi-separated object of Xgiq.. Recall
that Mor(hy,G) = G(U). Hence the result follows from Sites, Lemma [17.7]

In the case of abelian sheaves or sheaves of modules, the result follows in the same
way using Lemmas and For the case of abelian sheaves, we add that
Mor(jinZ/nZ,G) is equal to the n-torsion elements of G(U). O

Lemma 73.9. Let f : X — Y be a finite and finitely presented morphism of
schemes. Let A be a Noetherian ring. If F is a constructible sheaf of sets, abelian
groups, or A-modules on Xeqie, then foF is too.

Proof. It suffices to prove this when X and Y are affine by Lemma |71.4, By
Lemmas [55.3] and [73.3] we may base change to any affine scheme surjective over
X. By Lemma this reduces us to the case of a finite étale morphism (because
a thickening leads to an equivalence of étale topoi and even small étale sites, see
Theorem . The finite étale case is Lemma O

Lemma 73.10. Let X = lim;ec; X; be a limit of a directed system of schemes
with affine transition morphisms. We assume that X; is quasi-compact and quasi-
separated for all i € I.

(1) The category of constructible sheaves of sets on Xetare is the colimit of the
categories of constructible sheaves of sets on (X;)staie-

(2) The category of constructible abelian sheaves on Xgiaie is the colimit of the
categories of constructible abelian sheaves on (X;)stale-


https://stacks.math.columbia.edu/tag/09YT
https://stacks.math.columbia.edu/tag/09Z4
https://stacks.math.columbia.edu/tag/095R
https://stacks.math.columbia.edu/tag/09YU

0GL2

ETALE COHOMOLOGY 125

(3) Let A be a Noetherian ring. The category of constructible sheaves of A-
modules on Xegiare s the colimit of the categories of constructible sheaves of
A-modules on (X;)étale-

Proof. Proof of (1). Denote f; : X — X; the projection maps. There are 3 parts to
the proof corresponding to “faithful”, “fully faithful”, and “essentially surjective”.

Faithful. Choose 0 € I and let Fy, Gy be constructible sheaves on Xg. Suppose that
a,b: Fo — Gy are maps such that fgla = f(;lb. Let E C Xg be the set of points
z € X such that az = bz. By Lemma [71.7] the subset E C X is constructible. By
assumption X — Xy maps into F. By Limits, Lemma we find an 7 > 0 such
that X; — Xy maps into E. Hence fi_ola = figlb.

Fully faithful. Choose 0 € I and let Fy, Gy be constructible sheaves on Xy. Suppose
that a : fo_l]-'o — fo_lgo is a map. We claim there is an ¢ and a map a; : fial]-'o —
f;olgo which pulls back to @ on X. By Lemma we can replace Fy by a finite

coproduct of sheaves represented by quasi-compact and quasi-separated objects of
(X0)étate- Thus we have to show: If Uy — X is such an object of (Xo)¢tale, then

fo16(U) = colimzo f5,' G(U3)
where U = X xx, Up and U; = X; xx, Up. This is a special case of Theorem

Essentially surjective. We have to show every constructible F on X is isomorphic
to f;l}' for some constructible F; on X;. Applying Lemma and using the
results of the previous two paragraphs, we see that it suffices to prove this for hy
for some quasi-compact and quasi-separated object U of Xgsqre- In this case we
have to show that U is the base change of a quasi-compact and quasi-separated
scheme étale over X; for some 4. This follows from Limits, Lemmas and

Proof of (3). The argument is very similar to the argument for sheaves of sets, but
using Lemma instead of Lemma Details omitted. Part (2) follows from
part (3) because every constructible abelian sheaf over a quasi-compact scheme is
a constructible sheaf of Z/nZ-modules for some n. O

Lemma 73.11. Let X = lim;e; X; be a limit of a directed system of schemes
with affine transition morphisms. We assume that X; is quasi-compact and quasi-
separated for all i € I.

(1) The category of finite locally constant sheaves on X¢tqaie @S the colimit of the
categories of finite locally constant sheaves on (X;)eétate-

(2) The category of finite locally constant abelian sheaves on Xgiqie is the colimit
of the categories of finite locally constant abelian sheaves on (X;)estaie-

(3) Let A be a Noetherian ring. The category of finite type, locally constant
sheaves of A-modules on Xgiqie s the colimit of the categories of finite
type, locally constant sheaves of A-modules on (X;)staie-

Proof. By Lemma the functor in each case is fully faithful. By the same
lemma, all we have to show to finish the proof in case (1) is the following: given a
constructible sheaf F; on X; whose pullback F to X is finite locally constant, there
exists an i’ > ¢ such that the pullback F;; of F; to X,/ is finite locally constant. By
assumption there exists an étale covering U = {U; — X };cs such that Fly, = 5,
for some finite set S;. We may assume U, is affine for all j € J. Since X is
quasi-compact, we may assume J finite. By Lemma we can find an i/ > i
and an étale covering Uy = {Uy ; — Xis};cs whose base change to X is &. Then
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]:i"Uu.j and S; are constructible sheaves on (Uys ;)eérqre Whose pullbacks to U, are
isomorphic. Hence after increasing ' we get that .7-'1-/|Ui,.j and S; are isomorphic.

Thus F;: is finite locally constant. The proof in cases (2) and (3) is exactly the
same. O

Lemma 73.12. Let X be an irreducible scheme with generic point 0.

(1) Let 8" C S be an inclusion of sets. If we have S’ C G C S in Sh(Xsiae)
and S’ = Gy, then G = S’.

(2) Let A’ C A be an inclusion of abelian groups. If we have A’ C G C A in
Ab(X¢tare) and A’ = Gy, then G = A'.

(3) Let M’ C M be an inclusion of modules over a ring A. If we have M’ C
G C M in Mod(Xe¢tate, A) and M' = Gy, then G = M.

Proof. This is true because for every étale morphism U — X with U # ) the point
71 is in the image. (]

Lemma 73.13. Let X be an integral normal scheme with function field K. Let
E be a set.
(1) Let g : Spec(K) — X be the inclusion of the generic point. Then g.E = E.
(2) Let j : U — X be the inclusion of a nonempty open. Then j.E = E.

Proof. Proof of (1). Let # € X be a point. Let Oﬁ(hj be a strict henselization of
Ox. By More on Algebra, Lemma we see that Ogghf is a normal domain.

Hence Spec(K) xx Spec((’)ggi) is irreducible. It follows that the stalk (g.E, is
equal to E, see Theorem [53.1]

Proof of (2). Since g factors through j there is a map j.E — ¢.E. This map is
injective because for every scheme V étale over X the set Spec(K) xx V is dense
in U xx V. On the other hand, we have a map £ — j,E and we conclude. O

Lemma 73.14. Let X be a quasi-compact and quasi-separated scheme. Letn € X
be a generic point of an irreducible component of X .

(1) Let F be a torsion abelian sheaf on Xgiqie whose stalk Fi is zero. Then
F = colim F; is a filtered colimit of constructible abelian sheaves F; such
that for each i the support of F; is contained in a closed subscheme not
containing 7.

(2) Let A be a Noetherian ring and F a sheaf of A-modules on Xgtq1e whose
stalk F5 is zero. Then F = colim F; is a filtered colimit of constructible
sheaves of A-modules F; such that for each i the support of F; is contained
in a closed subscheme not containing n.

Proof. Proof of (1). We can write F = colim;c; F; with F; constructible abelian
by Lemma Choose ¢ € I. Since F|, is zero by assumption, we see that
there exists an i'(i) > i such that F;|,, — Fy (|, is zero, see Lemma Then
Gi = Im(F; — Fy(5)) is a constructible abelian sheaf (Lemma|71.6) whose stalk at n
is zero. Hence the support E; of G; is a constructible subset of X not containing 7.
Since 7 is a generic point of an irreducible component of X, we see that n ¢ Z; = E;
by Topology, Lemma Define a new directed set I’ by using the set I with
ordering defined by the rule i; is bigger or equal to iy if and only if i; > i’(i2). Then
the sheaves G; form a system over I’ with colimit F and the proof is complete.

The proof in case (2) is exactly the same and we omit it. ]
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74. Constructible sheaves on Noetherian schemes

If X is a Noetherian scheme then any locally closed subset is a constructible locally
closed subset (Topology, Lemma . Hence an abelian sheaf F on Xgiqe is
constructible if and only if there exists a finite partition X = [ X; such that F|x, is
finite locally constant. (By convention a partition of a topological space has locally
closed parts, see Topology, Section ) In other words, we can omit the adjective
“constructible” in Definition [71.1] Actually, the category of constructible sheaves
on Noetherian schemes has some additional properties which we will catalogue in
this section.

Proposition| 74.1. Let X be a Noetherian scheme. Let A be a Noetherian ring.

(1) Any sub or quotient sheaf of a constructible sheaf of sets is constructible.

(2) The category of constructible abelian sheaves on Xegare is a (strong) Serre
subcategory of Ab(X¢tale). In particular, every sub and quotient sheaf of a
constructible abelian sheaf on Xgqie 1 constructible.

(3) The category of constructible sheaves of A-modules on X¢tale s a (strong)
Serre subcategory of Mod(Xetare, N). In particular, every submodule and
quotient module of a constructible sheaf of A-modules on Xgpqie s con-
structible.

Proof. Proof of (1). Let G C F with F a constructible sheaf of sets on Xsaze.
Let n € X be a generic point of an irreducible component of X. By Noetherian
induction it suffices to find an open neighbourhood U of 7 such that G|y is locally
constant. To do this we may replace X by an étale neighbourhood of 1. Hence we
may assume F is constant and X is irreducible.

Say F = S for some finite set S. Then S’ = G5 C S say S’ = {s1,...,5¢}. Pick an
étale neighbourhood (U, u) of 77 and sections o1, ...,0; € G(U) which map to s; in
Gy C S. Since o; maps to an element s; € S’ C S =T'(X,F) we see that the two
pullbacks of o; to U xx U are the same as sections of G. By the sheaf condition
for G we find that o; comes from a section of G over the open Im(U — X) of X.
Shrinking X we may assume S’ C G C S. Then we see that S’ = G by Lemma

Let F — Q be a surjection with F a constructible sheaf of sets on X¢;4;.. Then
set G = F xg F. By the first part of the proof we see that G is constructible as a
subsheaf of F x F. This in turn implies that Q is constructible, see Lemma [71.6]

Proof of (3). we already know that constructible sheaves of modules form a weak
Serre subcategory, see Lemma [71.6] Thus it suffices to show the statement on
submodules.

Let G C F be a submodule of a constructible sheaf of A-modules on Xg4q1.. Let 5 €
X be a generic point of an irreducible component of X. By Noetherian induction it
suffices to find an open neighbourhood U of 7 such that G|y is locally constant. To
do this we may replace X by an étale neighbourhood of 1. Hence we may assume
F is constant and X is irreducible.

Say F = M for some finite A-module M. Then M’ = Gz C M. Pick finitely
many elements sq,...,s; generating M’ as a A-module. (This is possible as A is
Noetherian and M is finite.) Pick an étale neighbourhood (U, @) of 7 and sections
01,...,0¢ € G(U) which map to s; in Gz C M. Since o; maps to an element
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s; € M ¢ M =T(X,F) we see that the two pullbacks of o; to U x x U are the
same as sections of G. By the sheaf condition for G we find that o; comes from
a section of G over the open Im(U — X) of X. Shrinking X we may assume
M' € G C M. Then we see that M’ = G by Lemma [73.12

Proof of (2). This follows in the usual manner from (3). Details omitted. O

The following lemma tells us that every object of the abelian category of con-
structible sheaves on X is “Noetherian”, i.e., satisfies a.c.c. for subobjects.

Lemmal 74.2. Let X be a Noetherian scheme. Let A be a Noetherian ring. Con-
sider inclusions
FiCFCF3C...CF

in the category of sheaves of sets, abelian groups, or A-modules. If F is con-
structible, then for some n we have Fp = Fpy1 = Fpya = ....

Proof. By Proposition [74.1] we see that F; and colim F; are constructible. Then
the lemma follows from Lemma [71.8 O

Lemma 74.3. Let X be a Noetherian scheme.

(1) Let F be a constructible sheaf of sets on Xegpqie. There exist an injective
map of sheaves

F— Hi:l e FinEi

where f; 1 Y; — X is a finite morphism and E; is a finite set.
(2) Let F be a constructible abelian sheaf on Xe¢are. There exist an injective
map of abelian sheaves

;= 69i:l on fisM;

where f; 1 Y; = X is a finite morphism and M; is a finite abelian group.
(3) Let A be a Noetherian ring. Let F be a constructible sheaf of A-modules on
Xeétaie- There exist an injective map of sheaves of modules

;= 69i:1 s FieMs

where f; 1 Y; = X is a finite morphism and M; is a finite A-module.
Moreover, we may assume each Y; is irreducible, reduced, maps onto an irreducible
and reduced closed subscheme Z; C X such that Y; — Z; is finite étale over a
nonempty open of Z;.

Proof. Proof of (1). Because we have the ascending chain condition for subsheaves
of F (Lemma , it suffices to show that for every point z € X we can find a
map ¢ : F — f.E where f : Y — X is finite and F is a finite set such that
vz : Fz — (f«S)z is injective. (This argument can be avoided by picking a partition
of X as in Lemma [T1.2] and constructing a ¥; — X for each irreducible component
of each part.) Let Z C X be the induced reduced scheme structure (Schemes,
Deﬁnition on {z}. Since F is constructible, there is a finite separable extension
K /k(x) such that Flgpec(k) is the constant sheaf with value E for some finite set E.
Let Y — Z be the normalization of Z in Spec(K). By Morphisms, Lemma
we see that Y is a normal integral scheme. As K/k(z) is a finite extension, it is
clear that K is the function field of Y. Denote g : Spec(K) — Y the inclusion. The
map Flgpec(k) — £ is adjoint to a map Fly — ¢g.E = E (Lemma (73.13). This in
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turn is adjoint to a map ¢ : F — fyE. Observe that the stalk of ¢ at a geometric
point T is injective: we may take a lift 7 € Y of T and the commutative diagram

Fr == (Flv)y

|

proves the injectivity. We are not yet done, however, as the morphism f:Y — Z
is integral but in general not ﬁniteﬂ

To fix the problem stated in the last sentence of the previous paragraph, we write
Y = lim;¢; Y; with Y; irreducible, integral, and finite over Z. Namely, apply Prop-
erties, Lemma to f.Oy viewed as a sheaf of Oz-algebras and apply the
functor Spec,. Then f.E = colim f; .E by Lemma By Lemma the map
F — f«E factors through f; .E for some 4. Since Y; — Z is a finite morphism of
integral schemes and since the function field extension induced by this morphism
is finite separable, we see that the morphism is finite étale over a nonempty open
of Z (use Algebra, Lemma details omitted). This finishes the proof of (1).

The proofs of (2) and (3) are identical to the proof of (1). O

In the following lemma we use a standard trick to reduce a very general statement
to the Noetherian case.

09727 Lemma 74.4. Let X be a quasi-compact and quasi-separated scheme. [AGVTIl Exposee
(1) Let F be a constructible sheaf of sets on Xgpqie. There exist an injective IX, Proposition
map of sheaves 2.14]

F— Hi:l,...,n finEi

where f; 1 Y; = X is a finite and finitely presented morphism and E; is a
finite set.

(2) Let F be a constructible abelian sheaf on Xgtaie. There exist an injective
map of abelian sheaves

;= ®i:1 on fisM;

where f; 1 Y; — X is a finite and finitely presented morphism and M; is a
finite abelian group.

(3) Let A be a Noetherian ring. Let F be a constructible sheaf of A-modules on
Xeétaie- There exist an injective map of sheaves of modules

where f; : Y; — X is a finite and finitely presented morphism and M; is a
finite A-module.

Proof. We will reduce this lemma to the Noetherian case by absolute Noetherian
approximation. Namely, by Limits, Proposition we can write X = limser X}
with each X; of finite type over Spec(Z) and with affine transition morphisms. By
Lemma the category of constructible sheaves (of sets, abelian groups, or A-
modules) on X¢gqe is the colimit of the corresponding categories for X;. Thus our

61f X is a Nagata scheme, for example of finite type over a field, then Y — Z is finite.


https://stacks.math.columbia.edu/tag/09Z7

0FON

0GJ2

ETALE COHOMOLOGY 130

constructible sheaf F is the pullback of a similar constructible sheaf F; over X; for
some t. Then we apply the Noetherian case (Lemma [74.3)) to find an injection

F—]] fisBi or Fo— P fixM;
i=1,...,n — i=1,...,n —

over X; for some finite morphisms f; : Y; — X;. Since X; is Noetherian the
morphisms f; are of finite presentation. Since pullback is exact and since formation
of f; . commutes with base change (Lemma [55.3), we conclude. O

Lemma 74.5. Let X be a Noetherian scheme. Let E C X be a subset closed
under specialization.

(1) Let F be a torsion abelian sheaf on Xegiaie whose support is contained in
E. Then F = colim F; is a filtered colimit of constructible abelian sheaves
F; such that for each i the support of F; is contained in a closed subset
contained in E.

(2) Let A be a Noetherian ring and F a sheaf of A-modules on Xgtq1e whose
support is contained in E. Then F = colim F; is a filtered colimit of con-
structible sheaves of A-modules F; such that for each i the support of F; is
contained in a closed subset contained in E.

Proof. Proof of (1). We can write F = colim;c; F; with F; constructible abelian
by Lemma By Proposition the image F; C F of the map F; — F is
constructible. Thus F = colim ] and the support of F, is contained in E. Since

the support of F/ is constructible (by our definition of constructible sheaves), we

see that its closure is also contained in F, see for example Topology, Lemma [23.6

The proof in case (2) is exactly the same and we omit it. (]

75. Specializations and étale sheaves

Topological picture: Let X be a topological space and let 2’ ~ x be a specialization
of points in X. Then every open neighbourhood of x contains x’. Hence for any
sheaf F on X there is a specialization map

sp:Fp — For

of stalks sending the equivalence class of the pair (U, s) in F, to the equivalence
class of the pair (U, s) in F,-; see Sheaves, Section |11] for the description of stalks
in terms of equivalence classes of pairs. Of course this map is functorial in F, i.e.,
sp is a transformation of functors.

For sheaves in the étale topology we can mimick this construction, see [AGVTI]
Exposee VII, 7.7, page 397]. To do this suppose we have a scheme S, a geometric
point 5 of S, and a geometric point ¢ of Spec(O¢%). For any sheaf F on S¢rae we
will construct the specialization map

sp:Fs — Fp

Here we have abused language: instead of writing J5 we should write Fo@ where
p: Spec((’)g%) — S is the canonical morphism. Recall that

fg = colim(Uﬁ) .F(U)
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where the colimit is over all étale neighbourhoods (U, %) of (5,3), see Section
Since Og{‘g is the stalk of the structure sheaf, we find for every étale neighbourhood

(U,w) of (S,3) a canonical map Oy, — ngfg. Hence we get a unique factorization
Spec(0g%) = U — S

If ¥ denotes the image of ¢ in U, then we see that (U, v) is an étale neighbourhood of
(S,%). This construction defines a functor from the category of étale neighbourhoods
of (S,3) to the category of étale neighbourhoods of (S,t). Thus we may define the
map sp : Fg — F; by sending the equivalence class of (U, 4, o) where o € F(U) to
the equivalence class of (U,7,0).
Let K € D(S¢tare).- With 5 and ¢ as above we have the specialization map

sp: Ks — K; in D(Ab)
Namely, if K is represented by the complex F*® of abelian sheaves, then we simply
that the map
which is termwise given by the specialization maps for sheaves constructed above.
This is independent of the choice of complex representing K by the exactness of

the stalk functors (i.e., taking stalks of complexes is well defined on the derived
category).

Clearly the construction is functorial in the sheaf F on Sgiqie- If we think of the
stalk functors as morphisms of topoi s, : Sets — Sh(Setale), then we may think of
sp as a 2-morphism

I

Sets /\U/SNP Sh(Sétale)
T
of topoi.

Remark 75.1 (Alternative description of sp). Let S, 3, and  be as above. Another
way to describe the specialization map is to use that

Fs = F(Spec((’)g{%),p_lf) and JF; =T'(t, fflp_l]:)
The first equality follows from Theorem [53.]applied to idg : S — S and the second
equality follows from Lemma [36.2] Then we can think of sp as the map

pullback by
_—

sp : Fs = [ (Spec(OFy), p~ ' F) TEE 'p ' F)=F

Remark 75.2 (Yet another description of sp). Let S, 5, and ¢ be as above.
Another alternative is to use the unique morphism

c: Spec((’)ghz) — Spec((’)fgf%)

over S which is compatible with the given morphism ¢ — Spec((’)gffg) and the
morphism ¢ — Spec(@f’%). The uniqueness and existence of the displayed arrow

follows from Algebra, Lemma [154.6 applied to Og s, Oghz, and Og’:‘g — k(t). We
obtain 7

pullback by ¢
—_—>

sp : Fs = T'(Spec(Og%), F) ['(Spec(0yY), F) = F;
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(with obvious notational conventions). In fact this procedure also works for objects
K in D(S¢tale): the specialization map for K is equal to the map

sp: Kz = RF(Spec(O%f%), K)

The equality signs are valid as taking global sections over the striclty henselian
schemes Spec(Og%) and Spec(Oth) is exact (and the same as taking stalks at 3

PuIback Y €, RT(Spec(O:), K) = K7

and ¢) and hence no subtleties related to the fact that K may be unbounded arise.

Remark 75.3 (Lifting specializations). Let S be a scheme and let ¢ ~» s be a
specialization of point on S. Choose geometric points ¢ and s lying over ¢ and s.
Since ¢ corresponds to a point of Spec(Og s) by Schemes, Lemma and since
Og,s — Og’% is faithfully flat, we can find a point t' € Spec(@%’fg) mapping to t. As
Spec((’)‘é{%) is a limit of schemes étale over S we see that k(t')/k(t) is a separable
algebraic extension (usually not finite of course). Since «(¢) is algebraically closed,
we can choose an embedding x(t') — k(f) as extensions of k(t). This choice gives
us a commutative diagram

t — Spec(OF) <—
t S
of points and geometric points. Thus if ¢ ~ s we can always “lift” ¢ to a geometric
point of the strict henselization of S at 5 and get specialization maps as above.

o <—- U

Lemma 75.4. Let g : S’ — S be a morphism of schemes. Let F be a sheaf
on Sgiale. Let 3 be a geometric point of S’, and let 7 be a geometric point of
Spec(O%! ). Denote’s = g(3') and t = h(t') where h : Spec(O ) — Spec(@%”%)
is the canonical morphism. For any sheaf F on Sgiqie the specialization map
sp: (f TV F)sy — (f 1 F)y

is equal to the specialization map sp : Fs — F; via the identifications (f "' F)y = Fs
and (f~'F)py = F; of Lemma .

Proof. Omitted. (]

Lemma 75.5. Let S be a scheme such that every quasi-compact open of S has finite
number of irreducible components (for example if S has a Noetherian underlying
topological space, or if S is locally Noetherian). Let F be a sheaf of sets on Setale.
The following are equivalent

(1) F is finite locally constant, and

(2) all stalks of F are finite sets and all specialization maps sp : Fs — Fy are

bijective.

Proof. Assume (2). Let § be a geometric point of S lying over s € S. In order to
prove (1) we have to find an étale neighbourhood (U, @) of (5,3) such that F|y is
constant. We may and do assume S is affine.

Since F5 is finite, we can choose (U,w), n > 0, and pairwise distinct elements
01,...,0n € F(U) such that {o1,...,0,} C F(U) maps bijectively to Fz via the
map F(U) — Fs. Consider the map

p:{l,....,n} — Flu
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on Ugtqie defined by o1, ...,0,. This map is a bijection on stalks at u by construc-
tion. Let us consider the subset

E ={u €U | ¢y is bijective} C U

Here @ is any geometric point of U lying over u’ (the condition is independent of
the choice by Remark . The image v € U of @ is in E. By our assumption on
the specialization maps for F, by Remark and by Lemma we see that
is closed under specializations and generalizations in the topological space U.

After shrinking U we may assume U is affine too. By Descent, Lemma we
see that U has a finite number of irreducible components. After removing the irre-
ducible components which do not pass through u, we may assume every irreducible
component of U passes through u. Since U is a sober topological space it follows
that E = U and we conclude that ¢ is an isomorphism by Theorem [29.10] Thus
(1) follows.

We omit the proof that (1) implies (2). O

Lemmal75.6. Let S be a scheme such that every quasi-compact open of S has finite
number of irreducible components (for example if S has a Noetherian underlying
topological space, or if S is locally Noetherian). Let A be a Noetherian ring. Let F
be a sheaf of A-modules on Se¢qie. The following are equivalent
(1) F is a finite type, locally constant sheaf of A-modules, and
(2) all stalks of F are finite A-modules and all specialization maps sp : Fs — F
are bijective.

Proof. The proof of this lemma is the same as the proof of Lemma Assume
(2). Let s be a geometric point of S lying over s € S. In order to prove (1) we have
to find an étale neighbourhood (U, @) of (S,3) such that F|y is constant. We may
and do assume S is affine.

Since M = F5 is a finite A-module and A is Noetherian, we can choose a presenta-
tion

AP A A8 M50
for some matrix A = (a;;) with coefficients in A. We can choose (U, @) and elements
o1,...,0n € F(U) such that )" ajio; = 0 in F(U) and such that the images of o;
in F5 = M are the images of the standard basis element of A™ in the presentation
of M given above. Consider the map

p: M — Fly
on Ugiqre defined by o1, ...,0,. This map is a bijection on stalks at u by construc-
tion. Let us consider the subset
E ={u' € U | gy is bijective} C U

Here u' is any geometric point of U lying over u' (the condition is independent of
the choice by Remark [29.8)). The image u € U of @ is in E. By our assumption on
the specialization maps for 7, by Remark [75.3] and by Lemma[75.4] we see that E
is closed under specializations and generalizations in the topological space U.

After shrinking U we may assume U is affine too. By Descent, Lemma we
see that U has a finite number of irreducible components. After removing the irre-
ducible components which do not pass through u, we may assume every irreducible
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component of U passes through u. Since U is a sober topological space it follows
that F = U and we conclude that ¢ is an isomorphism by Theorem [29.10] Thus
(1) follows.

We omit the proof that (1) implies (2). O

Lemmal 75.7. Let f: X — S be a quasi-compact and quasi-separated morphism
of schemes. Let K € DV (Xgq1e). Let 5 be a geometric point of S and let T be a
geometric point of Spec((’)%f%). We have a commutative diagram

(RfK)s (RfK)y

RI(X x5 Spec(Og), K) — RT(X x5 Spec(O), K)

sp

where the bottom horizontal arrow arises as pullback by the morphism idx X c
where ¢ : Spec(Oghz) — Spec(OZf‘g) is the morphism introduced in Remark 75,%.

The vertical arrows are given by Theorem [53.1}
Proof. This follows immediately from the description of sp in Remark O

Remark 75.8. Let f: X — S be a morphism of schemes. Let K € D(Xsaie)-
Let 5 be a geometric point of S and let  be a geometric point of Spec(OF). Let
¢ be as in Remark[75.2] We can always make a commutative diagram

(Rf.K)s — RI'(X xg Spec(0%), K) — RI'(X5, K)

sp (idx XC)I\L
(Rf.K); — RI(X xg Spec((’)é’}z), K) —— RI(X7, K)

where the horizontal arrows are those of Remark In general there won'’t be a
vertical map on the right between the cohomologies of K on the fibres fitting into
this diagram, even in the case of Lemma

76. Complexes with constructible cohomology

Let A be a ring. Denote D(X¢ta1e, A) the derived category of sheaves of A-modules
on X¢tare. We denote by D(Xgq1e, A) (vespectively DY, D7) the full subcategory
of bounded (resp. above, below) complexes in D(X¢tqa1e, A).

Definition 76.1. Let X be a scheme. Let A be a Noetherian ring. We denote
D.(X¢taie, A) the full subcategory of D(Xetqre, A) of complexes whose cohomology
sheaves are constructible sheaves of A-modules.

This definition makes sense by Lemma and Derived Categories, Section
Thus we see that D.(Xstare, A) is a strictly full, saturated triangulated subcategory
Of D(Xétale, A)

Lemmal 76.2. Let A be a Noetherian ring. If j : U — X is an étale morphism of
schemes, then
(1) K|U S Dc(UétaleaA) ZfK € Dc(XétaleaA)7 and
(2) 4iM € D.(Xétate,N) if M € D.(Ugtate, \) and the morphism j is quasi-
compact and quasi-separated.
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Proof. The first assertion is clear. The second follows from the fact that j, is exact
and Lemma [73.1] O

Lemma 76.3. Let A be a Noetherian ring. Let f : X — Y be a morphism of
schemes. If K € D.(Ystaie, A) then Lf*K € Do(Xetate, N).

Proof. This follows as f~! = f* is exact and Lemma O

Lemma 76.4. Let X be a quasi-compact and quasi-separated scheme. Let A be a
Noetherian ring. Let K € D(Xgtate, A) and b € Z such that H*(K) is constructible.
Then there exist a sheaf F which is a finite direct sum of jinA with U € Ob(X¢taie)
affine and a map F[—b] — K in D(X¢tate, A) inducing a surjection F — H°(K).

Proof. Represent K by a complex K® of sheaves of A-modules. Consider the
surjection

Ker(K? — K1) — HY(K)

By Modules on Sites, Lemma we may choose a surjection €P,c;jvaA —
Ker(K® — K'*1) with U; affine. For I’ C I finite, denote Hy C H°(K) the
image of @, ju,1A. By Lemma we see that Hp = H®(K) for some I' C I
finite. The lemma follows taking F = @iel, Jua. [l

Lemma 76.5. Let X be a quasi-compact and quasi-separated scheme. Let A be a
Noetherian ring. Let K € D™ (Xegtaie, A). Then the following are equivalent
(1) K isin DC(Xétale7A),
(2) K can be represented by a bounded above complex whose terms are finite
direct sums of jinA with U € Ob(X¢tale) affine,
(3) K can be represented by a bounded above complex of flat constructible
sheaves of A-modules.

Proof. It is clear that (2) implies (3) and that (3) implies (1). Assume K is in
D7 (X¢tates A). Say HY(K) = 0 for i > b. By induction on a we will construct
a complex F* — ... — F° such that each F* is a finite direct sum of jynA with
U € Ob(X¢pare) affine and a map F* — K which induces an isomorphism H*(F*®) —
HY(K) for i > a and a surjection H*(F*) — H%(K). For a = b this can be done
by Lemma Given such a datum choose a distinguished triangle

F*—- K —L— F°[1]

Then we see that H*(L) = 0 for i > a. Choose F* !}[—a + 1] — L as in Lemma
The composition F¢~[—a+1] — L — F* corresponds to a map F¢~1 — F¢
such that the composition with F¢ — Fo*! is zero. By TR4 we obtain a map

(F 'l o F) = K

in D(X¢tate, A). This finishes the induction step and the proof of the lemma. O

Lemmal 76.6. Let X be a scheme. Let A be a Noetherian ring. Let K, L €
D: (Xétale,A). Then K ®k L is in D: (Xétale7A).

Proof. This follows from Lemmas [76.5 and [T1.9 O
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77. Tor finite with constructible cohomology

Let X be a scheme and let A be a Noetherian ring. An often used subcategory
of the derived category D.(Xetaie, A) defined in Section is the full subcategory
consisting of objects having (locally) finite tor dimension. Here is the formal defi-
nition.

Definition 77.1. Let X be a scheme. Let A be a Noetherian ring. We denote
Dt (Xétaie, A) the full subcategory of D.(X¢tqie, ) consisting of objects having
locally finite tor dimension.

This is a strictly full, saturated triangulated subcategory of D.(Xgtare, A) and
D(Xstate, A). By our conventions, see Cohomology on Sites, Definition we
see that

Dctf(XétalevA) - Dg(Xétalm A) C Db(Xétalea A)
if X is quasi-compact. A good way to think about objects of D r(Xeraie, A) is
given in Lemma [77.3]

Remark 77.2. Objects in the derived category Dcir(Xetate, A) in some sense
have better global properties than the perfect objects in D(Ox). Namely, it can
happen that a complex of Ox-modules is locally quasi-isomorphic to a finite com-
plex of finite locally free Ox-modules, without being globally quasi-isomorphic to
a bounded complex of locally free Ox-modules. The following lemma shows this
does not happen for D s on a Noetherian scheme.

Lemma 77.3. Let A be a Noetherian ring. Let X be a quasi-compact and quasi-
separated scheme. Let K € D(X¢tate, A). The following are equivalent
(1) K e Dctf(XétaleaA); and
(2) K can be represented by a finite complex of constructible flat sheaves of
A-modules.

In fact, if K has tor amplitude in [a,b] then we can represent K by a complex
F* — ... — Fb with FP a constructible flat sheaf of A-modules.

Proof. It is clear that a finite complex of constructible flat sheaves of A-modules
has finite tor dimension. It is also clear that it is an object of D.(X¢tate, A). Thus
we see that (2) implies (1).
Assume (1). Choose a,b € Z such that H (K ®@% G) = 0 if i & [a,b] for all sheaves
of A-modules G. We will prove the final assertion holds by induction on b — a. If
a =b, then K = H%(K)[—a] is a flat constructible sheaf and the result holds. Next,
assume b > a. Represent K by a complex IC® of sheaves of A-modules. Consider
the surjection

Ker(K? — K'!) — HY(K)
By Lemma we can find finitely many affine schemes U; étale over X and a
surjection @ ju Ay, — HY(K). After replacing U; by standard étale coverings
{Ui; — U;} we may assume this surjection lifts to a map F = @ ju Ay, —
Ker(K® — K’*1). This map determines a distinguished triangle

F[-b] - K - L — F[-b+1]
in D(X¢tate, A). Since Dt g (Xetare, A) is a triangulated subcategory we see that L is

in it too. In fact L has tor amplitude in [a,b— 1] as F surjects onto H°(K) (details
omitted). By induction hypothesis we can find a finite complex F¢ — ... — F0~1
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of flat constructible sheaves of A-modules representing L. The map L — F[—b+ 1]
corresponds to a map F° — F annihilating the image of F°~! — F®. Then it
follows from axiom TR3 that K is represented by the complex

Fos o Frt o
which finishes the proof. O

Remark| 77.4. Let A be a Noetherian ring. Let X be a scheme. For a bounded
complex K°® of constructible flat A-modules on X, each stalk Kg is a finite
projective A-module. Hence the stalks of the complex are perfect complexes of
A-modules.

Lemma 77.5. Let A be a Noetherian ring. If j : U — X is an étale morphism of
schemes, then
(1) K|U S Dctf(UétaleaA) ZfK € Dctf(XétaleaA); and
(2) 1M € Derf(Xetate, A) if M € Derf(Uetare, A) and the morphism j is quasi-
compact and quasi-separated.

Proof. Perhaps the easiest way to prove this lemma is to reduce to the case where
X is affine and then apply Lemmal[77.3] to translate it into a statement about finite
complexes of flat constructible sheaves of A-modules where the result follows from
Lemma [73.11 (I

Lemma 77.6. Let A be a Noetherian ring. Let f : X — Y be a morphism of
schemes. If K € Deif(Yerate, A) then Lf*K € Deyp(Xetate, N).

Proof. Apply Lemma to reduce this to a question about finite complexes of
flat constructible sheaves of A-modules. Then the statement follows as f~! = f* is
exact and Lemma O

Lemmal 77.7. Let X be a connected scheme. Let A be a Noetherian ring. Let
K € D¢ j(Xetate, A) have locally constant cohomology sheaves. Then there exists a
finite complex of finite projective A-modules M*® and an étale covering {U; — X}
such that K|y, = M®|y, in D(U; ¢tate; A).

Proof. Choose an étale covering {U; — X} such that K|y, is constant, say K|y, =
M? . for some finite complex of finite A-modules M. See Cohomology on Sites,
Lemma Observe that U; x x U; is empty if M7 is not isomorphic to M? in
D(A). For each complex of A-modules M*® let Ipje = {i € 1| M? = M*in D(A)}.
As étale morphisms are open we see that Une = Uy, , Im(U; — X) is an open
subset of X. Then X = [[ Uy is a disjoint open covering of X. As X is connected
only one Upse is nonempty. As K is in Dep(Xetare, A) we see that M® is a perfect
complex of A-modules, see More on Algebra, Lemma Hence we may assume
M?* is a finite complex of finite projective A-modules. O

78. Torsion sheaves

A brief section on torsion abelian sheaves and their étale cohomology. Let C be a
site. We have shown in Cohomology on Sites, Lemma that any object in D(C)
whose cohomology sheaves are torsion sheaves, can be represented by a complex all
of whose terms are torsion.

Lemma 78.1. Let X be a quasi-compact and quasi-separated scheme.
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(1) If F is a torsion abelian sheaf on Xeqre, then H, ..
abelian group for all n.

(2) If K in D" (X¢iate) has torsion cohomology sheaves, then HY .
a torsion abelian group for all n.

Proof. To prove (1) we write 7 = |J F[n] where F[d] is the d-torsion subsheaf.
By Lemma we have HZ, , (X, F) = colim HY, (X, F[d]). This proves (1) as
HY, ...(X, F[d]) is annihilated by d.

To prove (2) we can use the spectral sequence EY = HY, | (X, HI(K)) converging
to HZ ,;.(X, K) (Derived Categories, Lemma [21.3) and the result for sheaves. O

(X, F) is a torsion

(X,K) is

Lemma 78.2. Let f: X — Y be a quasi-compact and quasi-separated morphism
of schemes.
(1) If F is a torsion abelian sheaf on Xsiqie, then R™foF is a torsion abelian
sheaf on Yeiqre for all n.
(2) If K in DT (Xsta1e) has torsion cohomology sheaves, then Rf K is an object
of D+(Yémle) whose cohomology sheaves are torsion abelian sheaves.

Proof. Proof of (1). Recall that R™f.F is the sheaf associated to the presheaf
Vi HZ (X xy V,F) on Yeqe. See Cohomology on Sites, Lemma If we
choose V' affine, then X xy V is quasi-compact and quasi-separated because f is,

hence we can apply Lemma to see that HY, . (X xy V,F) is torsion.

étale
Proof of (2). Recall that R™f,K is the sheaf associated to the presheaf V
HY (X xy V,K) on Yéa.. See Cohomology on Sites, Lemma If we choose

étale
V affine, then X Xy V is quasi-compact and quasi-separated because f is, hence

we can apply Lemma to see that HY, ;. (X xy V, K) is torsion. O

étale
79. Cohomology with support in a closed subscheme

Let X be a scheme and let Z C X be a closed subscheme. Let F be an abelian
sheaf on X¢tq1e. We let

I'z(X,F) = {s € F(X) | Supp(s) C 2}

be the sections with support in Z (Definition [31.3). This is a left exact functor
which is not exact in general. Hence we obtain a derived functor

er(X, —) : D(Xétale) — D(Ab)
and cohomology groups with support in Z defined by HZ(X,F) = RITz(X, F).

Let Z be an injective abelian sheaf on X¢tq1.. Let U = X \ Z. Then the restriction
map Z(X) — Z(U) is surjective (Cohomology on Sites, Lemma [12.6)) with kernel
I'z(X,Z). It immediately follows that for K € D(Xgq1e) there is a distinguished
triangle
RI'z(X,K) - RT'(X,K) - RI'(U,K) — RT'z(X, K)[1]

in D(Ab). As a consequence we obtain a long exact cohomology sequence

.= Hy(X,K) - H(X,K) - H(U,K) = H,/'(X,K) — ...
for any K in D(X¢tale)-
For an abelian sheaf F on X¢ 4 we can consider the subsheaf of sections with
support in Z, denoted Hz(F), defined by the rule

Hz(F)(U) = {s € F(U) | Supp(s) C U xx Z}
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Here we use the support of a section from Definition [B1.3] Using the equivalence
of Proposition we may view Hz(F) as an abelian sheaf on Z .. Thus we
obtain a functor

Ab(X¢tate) — Ab(Zstare),  F — Hz(F)
which is left exact, but in general not exact.

Lemma 79.1. Leti: Z — X be a closed immersion of schemes. Let T be an
injective abelian sheaf on Xetare. Then Hz(T) is an injective abelian sheaf on Zsiqie.

Proof. Observe that for any abelian sheaf G on Zs;4;. we have
Homy (G, Hz(F)) = Homx (i.G, F)

because after all any section of ¢.G has support in Z. Since 4, is exact (Section
and as 7 is injective on Xetq1. we conclude that Hz(Z) is injective on Zgigre. O
Denote

RHz : D(Xétate) — D(Zetate)
the derived functor. We set H%(F) = R1H 7 (F) so that HY(F) = Hz(F). By the
lemma above we have a Grothendieck spectral sequence

EY® = H"(Z,Hy(F)) = Hy"*(X, F)

Lemma 79.2. Leti: Z — X be a closed immersion of schemes. Let G be an
injective abelian sheaf on Zeqre. Then HY(i.G) =0 for p > 0.

Proof. This is true because the functor i, is exact and transforms injective abelian
sheaves into injective abelian sheaves (Cohomology on Sites, Lemma [14.2]). O

Lemma 79.3. Leti: Z — X be a closed immersion of schemes. Let j : U — X be
the inclusion of the complement of Z. Let F be an abelian sheaf on Xepqre. There
is a distinguished triangle

ixBRHz(F) = F = Rju(Flu) = i« RHz(F)[1]
in D(Xstate). This produces an exact sequence

0 iHz(F) = F = ju(Flv) = iHL(F) = 0
and isomorphisms RPj.(Flu) = i HY (F) forp > 1.
Proof. To get the distinguished triangle, choose an injective resolution F — Z°.
Then we obtain a short exact sequence of complexes

0—iHz(Z®) = I° = j.(Z°v) = 0

by the discussion above. Thus the distinguished triangle by Derived Categories,
Section [121 O

Let X be a scheme and let Z C X be a closed subscheme. We denote Dz (X¢tq1e) the
strictly full saturated triangulated subcategory of D(X¢tq1e) consisting of complexes
whose cohomology sheaves are supported on Z. Note that Dz (Xetaie) only depends
on the underlying closed subset of X.

Lemma 79.4. Leti : Z — X be a closed immersion of schemes. The map
Rismatix = tsmallx © D(Zetate) = D(Xetate) induces an equivalence D(Zgpqre) —
Dz (X¢tale) with quasi-inverse

1 o
Zsmall|DZ(Xétale) = RHZ|DZ(Xétale)
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Proof. Recall that is_nlm” and Zgmai,« is an adjoint pair of exact functors such
that lsmau’small,* is isomorphic to the identify functor on abelian sheaves. See
Proposition and Lemma Thus ismait « : D(Zetate) = Dz(Xeétare) is fully
faithful and i_ ,, determines a left inverse. On the other hand, suppose that K
is an object of Dz (Xetare) and con51der the adjunction map K — igman *zgn{m”K
Using exactness of igmaqi,» and zsma” this induces the adjunction maps H"(K) —
isma”,*i;}m”H "(K) on cohomology sheaves. Since these cohomology sheaves are
supported on Z we see these adjunction maps are isomorphisms and we conclude
that D(Zetaie) = Dz(Xeétare) is an equivalence.

To finish the proof we have to show that RHz(K) =
Dz(Xétare). To do this we can use that K = ismai iy,
this is the case. Then we can choose a K-injective representatlve Z° for zmlm”K
Since ismaqlr,« is the right adjoint to the exact functor ’smam the complex tgmq11,+L°
is K-injective (Derived Categories, Lemmam We see that RH z(K) is computed

by Hz(ismau L) =I° as desired. |

0A46 |Lemmal 79.5. Let X be a scheme. Let Z C X be a closed subscheme. Let F be
a quasi-coherent Ox -module and denote F* the associated quasi-coherent sheaf on
the small étale site of X (Proposition m) Then
(1) HL(X,F) agrees with HL(X¢tate, F*),
(2) if the complement of Z is retrocompact in X, then i, H%(F*) is a quasi-
coherent sheaf of Ox-modules equal to (i, HY(F))*.

Proof. Let j : U — X be the inclusion of the complement of Z. The statement (1)
on cohomology groups follows from the long exact sequences for cohomology with
supports and the agreements H?(X¢iqie, F*) = HUX,F) and HY(Ugtae, F*) =
H%(U, F), see Theorem 22.4] If j : U — X is a quasi-compact morphism, i.e., if
U C X is retrocompact, then R%j, transforms quasi-coherent sheaves into quasi-
coherent sheaves (Cohomology of Schemes, Lemma and commutes with taking
associated sheaf on étale sites (Descent, Lemma . We conclude by applying
Lemma [79.3 O

Sma”K if K is an object of
K as we’ve just proved

80. Schemes with strictly henselian local rings

OEZN In this section we collect some results about the étale cohomology of schemes whose
local rings are strictly henselian. For example, here is a fun generalization of Lemma

B5.T1

09AX Lemma 80.1. Let S be a scheme all of whose local rings are strictly henselian.
Then for any abelian sheaf F on Sgrare we have H(Setare, F) = H (Szar, F).

Proof. Let € : S¢taie — Szar be the morphism of sites given by the inclusion
functor. The Zariski sheaf RPe,F is the sheaf associated to the presheaf U —

HY, (U, F). Thus the stalk at z € X is colim H, ,, (U, F) = emle(Spec((’)X 2), Gx)
where G, denotes the pullback of F to Spec(Ox ), see Lemma Thus the
higher direct images of RPe,F are zero by Lemma and we conclude by the
Leray spectral sequence. O

0GY0 Lemma 80.2. Let R be a ring all of whose local rings are strictly henselian. Let
F be a sheaf on Spec(R)¢tare. Assume that for all f,g € R the kernel of

Hetale( (f+g) )—> Hltale( (f(f+g))7f)@Hetale( (g(f+g))7f)
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. q
is zero. Then Hg, .

(Spec(R), F) =0 for g > 0.

Proof. By Lemma [80.1] we see that étale cohomology of F agrees with Zariski
cohomology on any open of Spec(R). We will prove by induction on 4 the statement:
for h € R we have H},,,.(D(h),F) =0 for 1 < ¢ <i. The base case i = 0 is trivial.
Assume 7 > 1.

Let £ € HY,,,.(D(h),F) for some 1 < ¢ < iand h € R. If ¢ < i then we are
done by induction, so we assume g = i. After replacing R by R; we may assume
¢ € H.,,,.(Spec(R), F); some details omitted. Let I C R be the set of elements
[ € R such that &|ps) = 0. Since £ is Zariski locally trivial, it follows that for
every prime p of R there exists an f € I with f & p. Thus if we can show that I is
an ideal, then 1 € I and we’re done. It is clear that f € I, r € R implies rf € I.
Thus we assume that f, g € I and we show that f+g¢g € I. If ¢ =¢ =1, then this is
exactly the assumption of the lemma! Whence the result for i = 1. For ¢ =i > 1,
note that

D(f+g)=D(f(f+9)UD(g(f+g))

By Mayer-Vietoris (Cohomology, Lemma which applies as étale cohomology on
open subschemes of Spec(R) equals Zariski cohomology) we have an exact sequence

Hib (D(fg(f + 9)). F)

|

Hétale(D<f + g)’]:)

|

Hia1o(D(F(f +9)), F) © Hiyaro(D(9(f + 9)), F)

and the result follows as the first group is zero by induction. O

Lemma 80.3. Let S be an affine scheme such that (1) all points are closed, and
(2) all residue fields are separably algebraically closed. Then for any abelian sheaf
F on Sstare we have H (S¢are, F) = 0 fori > 0.

Proof. Condition (1) implies that the underlying topological space of S is profinite,
see Algebra, Lemma Thus the higher cohomology groups of an abelian sheaf
on the topological space S (i.e., Zariski cohomology) is trivial, see Cohomology,
Lemma The local rings are strictly henselian by Algebra, Lemma
Thus étale cohomology of S is computed by Zariski cohomology by Lemma [80.1]
and the proof is done. ([l

The spectrum of an absolutely integrally closed ring is an example of a scheme all
of whose local rings are strictly henselian, see More on Algebra, Lemma It
turns out that normal domains with separably closed fraction fields have an even
stronger property as explained in the following lemma.

Lemma 80.4. Let X be an integral normal scheme with separably closed function
field.

(1) A separated étale morphism U — X is a disjoint union of open immersions.
(2) All local rings of X are strictly henselian.
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Proof. Let R be a normal domain whose fraction field is separably algebraically
closed. Let R — A be an étale ring map. Then A @i K is as a K-algebra a
finite product Hi:l,...,n K of copies of K. Let e;, 1 =1,...,n be the corresponding
idempotents of AQ g K. Since A is normal (Algebra, Lemma[163.9) the idempotents
e; are in A (Algebra, Lemma [37.12). Hence A = []Ae; and we may assume
A®r K = K. Since A C AQr K = K (by flatness of R — A and since R C K) we
conclude that A is a domain. By the same argument we conclude that A @ A C
(A®r A) ®r K = K. Tt follows that the map A ®g A — A is injective as well as
surjective. Thus R — A defines an open immersion by Morphisms, Lemma [10.2
and Etale Morphisms, Theorem m

Let f: U — X be a separated étale morphism. Let n € X be the generic point and
let f~1({n}) = {&}icr. The result of the previous paragraph shows the following:
For any affine open U’ C U whose image in X is contained in an affine we have
U" = [I,c; Ui where Uj is the set of point of U’ which are specializations of ;.
Moreover, the morphism U] — X is an open immersion. It follows that U; =
{&7} is an open and closed subscheme of U and that U; — X is locally on the
source an isomorphism. By Morphisms, Lemma the fact that U; — X is
separated, implies that U; — X is injective and we conclude that U; — X is an
open immersion, i.e., (1) holds.

Part (2) follows from part (1) and the description of the strict henselization of Ox
as the local ring at T on the étale site of X (Lemma [33.1]). It can also be proved
directly, see Fundamental Groups, Lemma [12.2 (]

Lemma 80.5. Let f: X — Y be a morphism of schemes where X is an integral
normal scheme with separably closed function field. Then RIf.M = 0 for ¢ > 0
and any abelian group M.

Proof. Recall that RYf, M is the sheaf associated to the presheaf V — HY, , (V xy
X, M) on Ygqie, see Lemma[51.6] If V' is affine, then V xy X — X is separated and
étale. Hence V xy X =[] U; is a disjoint union of open subschemes U; of X, see
Lemma, m By Lemma we see that HY,,, (U;, M) is equal to H, (U;, M).

étale

This vanishes by Cohomology, Lemma [20.2 [

Lemma 80.6. Let X be an affine integral normal scheme with separably closed
function field. Let Z C X be a closed subscheme. Let V. — Z be an étale morphism
with V' affine. ThenV is a finite disjoint union of open subschemes of Z. If V — Z
is surjective and finite étale, then V. — Z has a section.

Proof. By Algebra, Lemma [143.10| we can lift V' to an affine scheme U étale over
X. Apply Lemma [80.4] to U — X to get the first statement.

The final statement is a consequence of the first. Let V = [[,_,  V; be a finite
decomposition into open and closed subschemes with V; — Z an oi)en immersion.
As V — Z is finite we see that V; — Z is also closed. Let U; C Z be the image.
Then we have a decomposition into open and closed subschemes

Z= H(A,B) mieA Uin ﬂieB o

where the disjoint union is over {1,...,n} = A Il B where A has at least one
element. FEach of the strata is contained in a single U; and we find our section. [
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Lemma 80.7. Let X be a normal integral affine scheme with separably closed
function field. Let Z C X be a closed subscheme. For any finite abelian group M

we have H},,,.(Z, M) = 0.
Proof. By Cohomology on Sites, Lemma an element of H},,, (Z,M) corre-

sponds to a M-torsor F on Zgiq.. Such a torsor is clearly a finite locally constant
sheaf. Hence F is representable by a scheme V finite étale over Z, Lemmal[64.4] Of
course V — Z is surjective as a torsor is locally trivial. Since V — Z has a section
by Lemma [80.6| we are done. O

Lemma 80.8. Let X be a normal integral affine scheme with separably closed
function field. Let Z C X be a closed subscheme. For any finite abelian group M
we have HY, , (Z, M) =0 for ¢ > 1.

étale

Proof. Write X = Spec(R) and Z = Spec(R’) so that we have a surjection of rings
R — R’. All local rings of R’ are strictly henselian by Lemma and Algebra,
Lemma Furthermore, we see that for any f’ € R’ there is a surjection
Ry — R}, where f € R is a lift of f’. Since Ry is a normal domain with separably
closed fraction field we see that H},,,.(D(f’),M) = 0 by Lemma Thus we
may apply Lemma to Z = Spec(R’) to conclude. O

Lemmal 80.9. Let X be an affine scheme.

(1) There exists an integral surjective morphism X' — X such that for every
closed subscheme Z' C X', every finite abelian group M, and every q > 1
we have HY, , (Z',M) = 0.
(2) For any closed subscheme Z C X, finite abelian group M, q > 1, and
e HY,,,.(Z, M) there exists a finite surjective morphism X' — X of finite
(X' xx Z,M).

presentation such that & pulls back to zero in HY, .

Proof. Write X = Spec(A4). Write A = Z[x;]/J for some ideal J. Let R be the
integral closure of Z[z;] in an algebraic closure of the fraction field of Z[x;]. Let
A" = R/JR and set X' = Spec(A’). This gives an example as in (1) by Lemma
30,3

Proof of (2). Let X’ — X be the integral surjective morphism we found above.
Certainly, ¢ maps to zero in HY, , (X' xx Z,M). We may write X' as a limit
X' = lim X of schemes finite and of finite presentation over X; this is easy to do in
our current affine case, but it is a special case of the more general Limits, Lemma
7.3l By Lemma we see that ¢ maps to zero in HY, . (X! X x Z, M) for some i

large enough. O

81. Absolutely integrally closed vanishing

Recall that we say a ring R is absolutely integrally closed if every monic polynomial
over R has a root in R (More on Algebra, Definition [14.1)). In this section we prove
that the étale cohomology of Spec(R) with coefficients in a finite torsion group
vanishes in positive degrees (Proposition thereby slightly improving the earlier
Lemma [80.8] We suggest the reader skip this section.

Lemma| 81.1. Let A be a ring. Let a,b € A such that aA+bA = A and a mod bA
s a root of unity. Then there exists a monogenic extension A C B and an element
y € B such that u = a — by is a unit.
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Proof. Say a"™ =1 mod bA. In particular a' is a unit modulo ™A for all 3, m > 1.
We claim there exist aq,...,a, € A such that

1=a" 4+ a1 b+ aa” 2% + ... + a,b"

Namely, since 1—a™ € bA we can find an element a; € A such that 1—a”—a,a" " 'b €
b2 A using the unit property of ™! modulo bA. Next, we can find an element
as € Asuch that 1 —a” —ai1a™ 'b—aqa™ 2% € b¥A. And so on. Eventually we find
ai,...,a,_1 € Asuch that 1 —(a" +a1a" *b+aza" 26>+ ...+ a,_1ab" 1) € B"A.
This allows us to find a, € A such that the displayed equality holds.

With a4, ...,a, as above we claim that setting
B=A)/(y" +ary" " +ay" P+ +an)

works. Namely, suppose that ¢ C B is a prime ideal lying over p C A. To get
a contradiction assume v = a — by isin q. If b € p then a € p as aA+bA = A
and hence v is not in q. Thus we may assume b € p, i.e., b € q. This implies that
y mod q is equal to a/b mod ¢q. However, then we obtain

0=y "+ary" " Hay" 2 +. . +a, = b " (a"+ara"  btaza™ 203+ . Hanb™) =b7"
a contradiction. This finishes the proof. O

In order to explain the proof we need to introduce some group schemes. Fix a prime
number £. Let

A=Z[¢) =Z]/(«" T+ 22+ 1)
In other words A is the monogenic extension of Z generated by a primitive £th root
of unity ¢. We set

T=(—1

A calculation (omitted) shows that ¢ is divisible by 7/~! in A. Our first group
scheme over A is

1
G=S A
pec(Als, s+ 1]>
with group law given by the comultiplication
: A A A 1+1
a [S,WS+1]—> [877r5+1}®A [877T5+1]7 Sroms@stseltles

With this choice we have
wrs+1)=(rs+1)® (ms+ 1)

and hence we indeed have an A-algebra map as indicated. We omit the verification
that this indeed defines a group law. Our second group scheme over A is

1
H=S Alt, ——
pec(Alt, =)
with group law given by the comultiplication
1
AL, —— — Aft, —— Alt, ——— t— rt@t+te1+1t
e Al ) b ) @Al T ) rrertteiele

The same verification as before shows that this defines a group law. Next, we
observe that the polynomial
(s +1)¢ -1

q)(s) = "
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is in A[s] and of degree £ and monic in s. Namely, the coefficicient of s* for 0 < i < ¢
is equal to (f) 7% and since ¢~ divides £ in A this is an element of A. We obtain
a ring map
A[ta %} — A[Sa
it + 1 s+ 1
which the reader easily verifies is compatible with the comultiplications. Thus we
get a morphism of group schemes

l, t— ®(s)

f:G—H

The following lemma in particular shows that this morphism is faithfully flat (in
fact we will see that it is finite étale surjective).

Lemma 81.2. We have

Als, }(A[t ! 1)[s1/<<1><s>t>

"ms+1 bt 4+ 1

In particular, the Hopf algebra of G is a monogenic extension of the Hopf algebra
of H.

Proof. Follows from the discussion above and the shape of ®(s). In particular,

note that using ®(s) = ¢ the element —1— becomes the element (]

1
wtt+1 (ms+1)¢"

Next, let us compute the kernel of f. Since the origin of H is given by t =0 in H
we see that the kernel of f is given by ®(s) = 0. Now observe that the A-valued
points g, ...,00—1 of G given by
i 1 i 1 . .
:C :C :Clil+cli2+.‘.+1, iZO,l,...,€—1
T ¢—1
are certainly contained in Ker(f). Moreover, these are all pairwise distinct in all

fibres of G — Spec(A4). Also, the reader computes that o; +¢ 0 = Tit+j mod ¢-
Hence we find a closed immersion of group schemes

Z/ﬂA — Ker(f)

g; .8

sending i to o;. However, by construction Ker(f) is finite flat over Spec(A) of degree
{. Hence we conclude that this map is an isomorphism. All in all we conclude that
we have a short exact sequence

(81.2.1) OHZ/EZA%G%HHO
of group schemes over A.

Lemma 81.3. Let R be an A-algebra which is absolutely integrally closed. Then
G(R) — H(R) is surjective.

Proof. Let h € H(R) correspond to the A-algebra map A[t, #—H] — R sending ¢
to a € A. Since ®(s) is monic we can find b € A with ®(b) = a. By Lemma
sending s to b we obtain a unique A-algebra map Als, ﬁ] — R compatible with
the map Alt, ﬁﬂ] — R above. This in turn corresponds to an element g € G(R)
mapping to h € H(R). O

Lemmal 81.4. Let R be an A-algebra which is absolutely integrally closed. Let
1,J C R be ideals with I+ J = R. There exists a g € G(R) such that g mod I = o
and g mod J = o7.
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Proof. Choose z € I such that x = 1 mod J. We may and do replace I by xR and
J by (z — 1)R. Then we are looking for an s € R such that

(1) 1+ 7s is a unit,

(2) s=0mod zR, and

(3) s=1mod (z —1)R.
The last two conditions say that s = = + z(x — 1)y for some y € R. The first
condition says that 1+ ms = 1+ 7z + 7wz (x — 1)y needs to be a unit of R. However,
note that 1 + 7wz and mx(x — 1) generate the unit ideal of R and that 14 7z is an
{th root of 1 modulo mx(z — 1)ﬂ Thus we win by Lemma and the fact that R
is absolutely integrally closed. O

Proposition|81.5. Let R be an absolutely integrally closed ring. Let M be a finite
abelian group. Then H, . (Spec(R),M) =0 fori > 0.

tale ==

Proof. Since any finite abelian group has a finite filtration whose subquotients are
cyclic of prime order, we may assume M = Z/¢Z where ¢ is a prime number.

Observe that all local rings of R are strictly henselian, see More on Algebra, Lemma
Furthermore, any localization of R is also absolutely integrally closed by More
on Algebra, Lemma Thus Lemma [80.2] tells us it suffices to show that the
kernel of

Hétale(D(f+g)7 Z/ZZ) — Hétale(D(f<f+g))’ Z/KZ) @He}tale(D(g(f—’—g))? Z/fZ)

is zero for any f, g € R. After replacing R by Rf44 we reduce to the following claim:
given & € H},,,.(Spec(R),Z/{Z) and an affine open covering Spec(R) = UUV such
that ¢|y and |y are trivial, then & = 0.

Let A = Z[(] as above. Since Z C A is monogenic, we can find a ring map A — R.
From now on we think of R as an A-algebra and we think of Spec(R) as a scheme
over Spec(A). If we base change the short exact sequence to Spec(R) and

take étale cohomology we obtain

G(R) — H(R) — H},,.(Spec(R), Z/lZ) — H},,,.(Spec(R), G)

étale

Please keep this in mind during the rest of the proof.

Let 7 € I(UNV, Z/{Z) be a section whose boundary in the Mayer-Vietoris sequence
(Lemma gives £&. For i =0,1,...,£ —11let A; C UNV be the open and
closed subset where 7 has the value ¢ mod ¢. Thus we have a finite disjoint union
decomposition
UNV=Ap10...11 Ay,

such that 7 is constant on each A;. For i = 0,1,...,¢ — 1 denote 7; € H°(U N
V,Z/{Z) the element which is equal to 1 on A; and equal to 0 on A; for j # i.
Then 7 is a sum of multiples of the T1E|. Hence it suffices to show that the cohomology
class corresponding to 7; is trivial. This reduces us to the case where 7 takes only
two distinct values, namely 1 and 0.

Assume 7 takes only the values 1 and 0. Write

UNnVv=AUDB

"Because 1 4 mz is congruent to 1 modulo 7, congruent to 1 modulo x, and congruent to
1+ 7 = ¢ modulo  — 1 and because we have (7) N (z) N (z — 1) = (7z(z — 1)) in Alz].
8Modulo calculation errors we have 7 = Z iT;.
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where A is the locus where 7 = 0 and B is the locus where 7 = 1. Then A and B
are disjoint closed subsets. Denote A and B the closures of A and B in Spec(R).
Then we have a “banana”: namely we have

ANB=2,112,

with Z; C U and Z; C V disjoint closed subsets. Set T3 = Spec(R) \ V and
Ty = Spec(R) \ U. Observe that Zy C Ty C U, Zy C To C V, and T) N Ty = 0.
Topologically we can write

Spec(R) = AUBUT, UTy

We suggest drawing a picture to visualize this. In order to prove that ¢ is zero, we
may and do replace R by its reduction (Proposition. Below, we think of A4, A,
B, B, Ty, Ty as reduced closed subschemes of Spec(R). Next, as scheme structures
on Z1 and Zs we use

Z1:ZO(EUT1) and ZQZZQ(FUTQ)
(scheme theoretic unions and intersections as in Morphisms, Definition .

Denote X the G-torsor over Spec(R) corresponding to the image of £ in H'(Spec(R), G).
If X is trivial, then & comes from an element h € H(R) (see exact sequence of co-
homology above). However, then by Lemma the element h lifts to an element

of G(R) and we conclude ¢ = 0 as desired. Thus our goal is to prove that X is
trivial.

Recall that the embedding Z/¢Z — G(R) sends i mod £ to o; € G(R). Observe
that A is the spectrum of an absolutely integrally closed ring (namely a qotient
of R). By Lemma we can find g € G(A4) with g|z, = oo and g|7,, = 01
(scheme theoretically). Then we can define

(1) g1 € G(U) which is g on AN U, which is 09 on BN U, and o on T}, and

(2) g2 € G(V) which is g on ANV, which is o3 on BNV, and o1 on T.
Namely, to find g; as in (1) we glue the section g on Q@ = (BUT;) NU to
the restriction of the section g on ' = ANU. Note that U = Q U Q' (scheme
theoretically) because U is reduced and Q N = Z; (scheme theoretically) by our
choice of Z;. Hence by Morphisms, Lemma [4.6) we have that U is the pushout of
Q and Q' along Z;. Thus we can find g;. Similarly for the existence of go in (2).
Then we have

T = g2|laus — 91laup (addition in group law)

and we see that X is trivial thereby finishing the proof. (]

82. Affine analog of proper base change

09Z8 In this section we discuss a result by Ofer Gabber, see [Gab94]. This was also
proved by Roland Huber, see [Hub93]. We have already done some of the work
needed for Gabber’s proof in Section

09ZE Lemma 82.1. Let X be an affine scheme. Let F be a torsion abelian sheaf on
Xetale- Let Z C X be a closed subscheme. Let & € HY,,,.(Z,F|z) for some ¢ > 0.
Then there exists an injective map F — F' of torsion abelian sheaves on Xgtae
such that the image of € in HY, ., (Z,F'|z) is zero.

étale
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Proof. By Lemmas and [61.4) we can find a map G — F with G a constructible
abelian sheaf and £ coming from an element ¢ of HY,,,.(Z,G|z). Suppose we can
find an injective map G — G’ of torsion abelian sheaves on Xg;q;. such that the
image of ¢ in HY, ,.(Z,G'|z) is zero. Then we can take F' to be the pushout

F'=¢lgF
and we conclude the result of the lemma holds. (Observe that restriction to Z is
exact, so commutes with finite limits and colimits and moreover it commutes with

arbitrary colimits as a left adjoint to pushforward.) Thus we may assume F is
constructible.

Assume F is constructible. By Lemma it suffices to prove the result when F
is of the form f,M where M is a finite abelian group and f : Y — X is a finite
morphism of finite presentation (such sheaves are still constructible by Lemma
but we won’t need this). Since formation of f. commutes with any base change
(Lemma we see that the restriction of f, M to Z is equal to the pushforward
of M viaY xx Z — Z. By the Leray spectral sequence (Proposition and
vanishing of higher direct images (Proposition , we find

HY (Z, fM|z)=H (Y xx Z,M).

étale étale

By Lemma we can find a finite surjective morphism Y’ — Y of finite presen-
tation such that & maps to zero in H4(Y' xx Z, M). Denoting f’' : Y/ — X the
composition Y’ — Y — X we claim the map

fiM — fIM

is injective which finishes the proof by what was said above. To see the desired
injectivity we can look at stalks. Namely, if T : Spec(k) — X is a geometric point,

then
.} *lu T —

by Proposition and similarly for the other sheaf. Since Y’ — Y is surjective
and finite we see that the induced map on geometric points lifting T is surjective
too and we conclude. O

The lemma above will take care of higher cohomology groups in Gabber’s result.
The following lemma will be used to deal with global sections.

Lemma 82.2. Let X be a quasi-compact and quasi-separated scheme. Leti: Z —
X be a closed immersion. Assume that
(1) for any sheaf F on X zq, the map T'(X, F) — I'(Z,i~1F) is bijective, and
(2) for any finite morphism X' — X assumption (1) holds for Z x x X' — X'.

Then for any sheaf F on Xeare we have T(X, F) =T(Z,i_} ).

small

Proof. Let F be a sheaf on X¢tq1.. There is a canonical (base change) map
i_l(‘F|XZa'r) — (i;rrlzallf)|ZZar

of sheaves on Zz,,.. We will show this map is injective by looking at stalks. The

stalk on the left hand side at z € Z is the stalk of F|x,,. at z. The stalk on the right

hand side is the colimit over all elementary étale neighbourhoods (U,u) — (X, 2)

such that U X x Z — Z has a section over a neighbourhood of z. As étale morphisms

are open, the image of U — X is an open neighbourhood Uy of z in X. The map
F(Up) — F(U) is injective by the sheaf condition for F with respect to the étale
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covering U — Up. Taking the colimit over all U and Uy we obtain injectivity on
stalks.

It follows from this and assumption (1) that the map T'(X,F) — I'(Z,i,} ,,F) is
injective. By (2) the same thing is true on all X’ finite over X.

Let s € T'(Z, zsma”]-'). By construction of zsma”]: there exists an étale covering
{V; = Z}, étale morphisms U; — X, sections s; € F(U;) and morphisms V; — U;
over X such that s|y, is the pullback of s;. Observe that every nonempty closed
subscheme T C X meets Z by assumption (1) applied to the sheaf (T — X).Z
for example. Thus we see that [[U; — X is surjective. By More on Morphisms,
Lemma we can find a finite surjective morphism X’ — X such that X’ — X
Zariski locally factors through [[U; — X. It follows that s|z Zariski locally
comes from a section of F|x. In other words, s|z comes from ¢’ € T'(X’, F|x/) by
assumption (2). By injectivity we conclude that the two pullbacks of ¢’ to X’ x x X'
are the same (after all this is true for the pullbacks of s to Z’ xz Z’). Hence we
conclude ' comes from a section of F over X by Remark O

Lemmal 82.3. Let Z C X be a closed subset of a topological space X. Assume

(1) X is a spectral space (Topology, Definition , and

(2) for x € X the intersection Z N {x} is connected (in particular nonempty).
If Z = Z1 11 Zy with Z; closed in Z, then there exists a decomposition X = X111 X5
with X; closed in X and Z; = Z N X;.

Proof. Observe that Z; is quasi-compact. Hence the set of points W; specializing
to Z; is closed in the constructible topology by Topology, Lemma [24.7] Assumptlon
(2) implies that X = W; I1 Wy. Let € W;. By Topology, Lemma - part (1)
there exists a specialization z1 ~» x with x; € Wi. Thus {z} C {21} and we see
that £ € W;. In other words, setting X; = W, does the job. O

Lemmal 82.4. Let Z C X be a closed subset of a topological space X. Assume

(1) X is a spectral space (Topology, Definition , and
(2) for x € X the intersection Z N {x} is connected (in particular nonempty).
Then for any sheaf F on X we have T'(X, F) =T(Z, F|z).

Proof. If z ~ 2’ is a specialization of points, then there is a canonical map F,» —
F. compatible with sections over opens and functorial in F. Since every point of
X specializes to a point of Z it follows that I'(X, F) — I'(Z, F|z) is injective. The
difficult part is to show that it is surjective.

Denote B be the set of all quasi-compact opens of X. Write F as a filtered colimit
F = colim F; where each F; is as in Modules, Equation . See Modules,
Lemmal[19.2] Then F|z = colim F;| 7 as restriction to Z is a left adjoint (Categories,
Lemma and Sheaves, Lemma . By Sheaves, Lemma the functors
I'(X,—) and I'(Z, —) commute with filtered colimits. Hence we may assume our

sheaf F is as in Modules, Equation ((19.2.1)).
Suppose that we have an embedding F C G. Then we have

INX,F)=T(Z,F|z) nT'(X,G)

where the intersection takes place in I'(Z, G| z). This follows from the first remark
of the proof because we can check whether a global section of G is in F by looking
at the stalks and because every point of X specializes to a point of Z.
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By Modules, Lemma there is an injection 7 — [[(Z; — X).S; where the

product is finite, Z; C X is closed, and S; is finite. Thus it suffices to prove
surjectivity for the sheaves (Z; — X),.S;. Observe that

I'(X,(Z; = X).8:) =T(Z;,8;) and T'(X,(Z; = X).Silz) =T(ZNZ;, S;)

Moreover, conditions (1) and (2) are inherited by Z;; this is clear for (2) and follows
from Topology, Lemmafor (1). Thus it suffices to prove the lemma in the case
of a (finite) constant sheaf. This case is a restatement of Lemma which finishes
the proof. O

Example 82.5. Lemma is false if X is not spectral. Here is an example:
Let Y be a T3 topological space, and y € Y a non-open point. Let X =Y II {z},
endowed with the topology whose closed sets are 0, {y}, and all F Il {z}, where F'
is a closed subset of Y. Then Z = {x,y} is a closed subset of X, which satisfies
assumption (2) of Lemma But X is connected, while Z is not. The conclusion
of the lemma thus fails for the constant sheaf with value {0,1} on X.

Lemma 82.6. Let (A,I) be a henselian pair. Set X = Spec(A4) and Z =
Spec(A/I). For any sheaf F on Xetare we have T(X, F) =T(Z, F|z).

Proof. Recall that the spectrum of any ring is a spectral space, see Algebra,
Lemma By More on Algebra, Lemma we see that {z} N Z is con-
nected for every x € X. By Lemma we see that the statement is true for
sheaves on X z,,-. For any finite morphism X’ — X we have X’ = Spec(A’) and
Z xx X' = Spec(A’/IA") with (A’,TA’) a henselian pair, see More on Algebra,
Lemma and we get the same statement for sheaves on (X’)z,,.. Thus we can
apply Lemma to conclude. O

Finally, we can state and prove Gabber’s theorem.

Theorem 82.7 (Gabber). Let (A,I) be a henselian pair. Set X = Spec(A) and
Z = Spec(A/I). For any torsion abelian sheaf F on X¢iare we have HY, , (X, F) =
HY  (Z,F|z).

étale

Proof. The result holds for ¢ = 0 by Lemma Let ¢ > 1. Suppose the result
has been shown in all degrees < ¢q. Let F be a torsion abelian sheaf. Let F — F’
be an injective map of torsion abelian sheaves (to be chosen later) with cokernel Q
so that we have the short exact sequence

0F—>F 500
of torsion abelian sheaves on Xgtq.. This gives a map of long exact cohomology
sequences over X and Z part of which looks like

Hgt;lle(X7 ]:/) Hgt;lle (X7 Q) Hgtale(X’ ‘F) - Hgtale(X’ ]:/)

| | | |

HYy (2, F'|z) —= HY%1.(Z,Qlz) —= HY, 1 (2, F|z) —= HY, 1 (2, F| 2)

étale étale étale étale

Using this commutative diagram of abelian groups with exact rows we will finish
the proof.

Injectivity for F. Let & be a nonzero element of HY, , (X,F). By Lemma
applied with Z = X (!) we can find F C F’ such that £ maps to zero to the right.
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Then ¢ is the image of an element of H? ! (X, Q) and bijectivity for ¢ — 1 implies

étale

¢ does not map to zero in HY, ,.(Z, F|z).

Surjectivity for F. Let £ be an element of HY, ,.(Z, F|z). By Lemma applied
with Z = Z we can find F C F’ such that £ maps to zero to the right. Then ¢ is
the image of an element of Hgmlle(Z7 Q|z) and bijectivity for ¢ — 1 implies ¢ is in
the image of the vertical map. O

Lemma 82.8. Let X be a scheme with affine diagonal which can be covered by
n + 1 affine opens. Let Z C X be a closed subscheme. Let A be a torsion sheaf
of rings on Xegare and let T be an injective sheaf of A-modules on Xegpqre- Then
HY,1.(Z,T)|7) =0 for g >n.

Proof. We will prove this by induction on n. If n = 0, then X is affine. Say
X = Spec(A) and Z = Spec(A/I). Let A" be the filtered colimit of étale A-algebras
B such that A/I — B/IB is an isomorphism. Then (A" IA") is a henselian
pair and A/I = A"/IA" see More on Algebra, Lemma and its proof. Set
X" = Spec(A"). By Theorem we see that

Hetale(Z I‘Z)
By Theorem [51.3] we have
Hq

étale

(X", Z|xn)

etale

(X I‘Xh —COhmAaBHetale(speC(B)aI‘Spec(B))

where the colimit is over the A-algebras B as above. Since the morphisms Spec(B) —
Spec(A) are étale, the restriction Z|gpec(p) is an injective sheaf of A|gpec(p)-modules
(Cohomology on Sites, Lemma [7.1)). Thus the cohomology groups on the right are
zero and we get the result in this case.

Induction step. We can use Mayer-Vietoris to do the induction step. Namely,
suppose that X = U UV where U is a union of n affine opens and V is affine.
Then, using that the diagonal of X is affine, we see that U NV is the union of n
affine opens. Mayer-Vietoris gives an exact sequence

HI D (UNVNZT|z) = H,(Z,T)2) = HY  (UNZ,I|2) © HY,, (VN Z,T2)
and by our induction hypothesis we obtain vanishing for ¢ > n as desired. (]

83. Cohomology of torsion sheaves on curves

The goal of this section is to prove the basic finiteness and vanishing results for
cohomology of torsion sheaves on curves, see Theorem [83.10} In Section [84] we will
discuss constructible sheaves of torsion modules over a Noetherian ring.

Situation 83.1. Here £ is an algebraically closed field, X is a separated, finite
type scheme of dimension < 1 over k, and F is a torsion abelian sheaf on Xg;qie.

In Situation [83.1] we want to prove the following statements

(1) Hgtale(X F)=0for g > 2,
(2) H} . (X,F)=0for ¢ > 1if X is affine,
(3) etale(X F) =0 for ¢ > 1 if p = char(k) > 0 and F is p-power torsion,
(4) etale(X7 F) is finite if F is constructible and torsion prime to char(k),
(5) Hiyare(X, F)
(6)

etale

9

, F) is finite if X is proper and F constructible,
H}, (X, F) = Hf, (X, Flx,) is an isomorphism for any extension

k' /k of algebraically closed fields if F is torsion prime to char(k),

etale


https://stacks.math.columbia.edu/tag/0A51
https://stacks.math.columbia.edu/tag/0A52

0A59

0A5A

0A5B

0A47

0A5C

ETALE COHOMOLOGY 152
(7) HY, 1o (X, F) — HY, .. (Xi, Flx,,) is an isomorphism for any extension
k' /k of algebraically closed fields if X is proper,
(8) HZ,.(X,F)— HZ . (U F) is surjective for all U C X open.
Given any Situation we will say that “statements - hold” if those
statements that apply to the given situation are true. We start the proof with the
following consequence of our computation of cohomology with constant coefficients.

Lemmal 83.2. In Situation assume X is smooth and F = Z/UZ for some
prime number . Then statements - (@) hold for F.

Proof. Since X is smooth, we see that X is a finite disjoint union of smooth curves.
Hence we may assume X is a smooth curve.

Case I: ¢ different from the characteristic of k. This case follows from Lemma
69.1] (projective case) and Lemma (affine case). Statement () on cohomology
and extension of algebraically closed ground field follows from the fact that the
genus g and the number of “punctures” r do not change when passing from k to k'.
Statement (8) follows as HZ,,,. (U, F) is zero as soon as U # X, because then U is

étale

affine (Varieties, Lemmas and [43.10)).

Case II: ¢ is equal to the characteristic of k. Vanishing by Lemma Statements
and follow from Lemma m O

Remark 83.3 (Invariance under extension of algebraically closed ground field).
Let k be an algebraically closed field of characteristic p > 0. In Section |63| we have
seen that there is an exact sequence

klx] — k[x] — H}, (AL, Z/pZ) — 0

étale

where the first arrow maps f(z) to f? — f. A set of representatives for the cokernel
is formed by the polynomials
Anz"
plp "
with A, € k. (If k is not algebraically closed you have to add some constants to
this as well.) In particular when k’/k is an algebraically closed extension, then the
map

Hl (Allcv Z/pZ) — He}tale (Allc’a Z/pZ)

étale
is not an isomorphism in general. In particular, the map (A}, ) — m1(A}) between
étale fundamental groups (insert future reference here) is not an isomorphism either.
Thus the étale homotopy type of the affine line depends on the algebraically closed
ground field. From Lemma[83.2]above we see that this is a phenomenon which only
happens in characteristic p with p-power torsion coefficients.

Lemma 83.4. Let k be an algebraically closed field. Let X be a separated finite
type scheme over k of dimension < 1. Let 0 — F; — F — Fo — 0 be a short exact
sequence of torsion abelian sheaves on X. If statements - (@ hold for F1 and
Fa, then they hold for F.

Proof. This is mostly immediate from the definitions and the long exact sequence
of cohomology. Also observe that F is constructible (resp. of torsion prime to the
characteristic of k) if and only if both F; and F3 are constructible (resp. of torsion
prime to the characteristic of k). See Proposition Some details omitted. [
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0A5D |Lemma 83.5. Let k be an algebraically closed field. Let f : X — Y be a finite
morphism of separated finite type schemes over k of dimension < 1. Let F be a
torsion abelian sheaf on X. If statements - (@ hold for F, then they hold for
feF.

Proof. Namely, we have HY, , (X, F) = H},,,.(Y, f.F) by the vanishing of R?f,
for ¢ > 0 (Proposition [55.2]) and the Leray spectral sequence (Cohomology on Sites,
Lemma|14.6)). For (8) use that formation of f, commutes with arbitrary base change

(Lemma [55.3]). O

0GJA |Lemma 83.6. In Situation assume F constructible. Let j : X' — X be the
inclusion of a dense open subscheme. Then statements - (@ hold for F if and
only if they hold for 5,5 1 F.

Proof. Since X' is dense, we see that Z = X \ X’ has dimension 0 and hence is a
finite set Z = {x1,...,x,} of k-rational points. Consider the short exact sequence

0= jij '\ FoF—oii lF—=0

of Lemma Observe that HY, . (X,i.i ' F) = HY,,, (Z,i*F). Namely, i :
Z — X is a closed immersion, hence finite, hence we have the vanishing of R%¢, for
g > 0 by Proposition [55.2] and hence the equality follows from the Leray spectral
sequence (Cohomology on Sites, Lemma. Since Z is a disjoint union of spectra

of algebraically closed fields, we conclude that HY, . (Z,i*F) = 0 for ¢ > 0 and
Hgtale(Zviil}-) = @i— ‘FM

which is finite as F;, is finite due to the assumption that F is constructible. The
long exact cohomology sequence gives an exact sequence

O%Hgtale(Xaj’.]il]:)_)HO (X7-F)—>HO (Zalilf’)%Hl

étale étale étale

and isomorphisms HY, , (X, jij ~'F) = H% (X, F) for ¢ > 1.

étale étale
At this point it is easy to deduce each of - holds for F if and only if it
holds for jjj~'F. We make a few small remarks to help the reader: (a) if F is
torsion prime to the characteristic of k, then so is j1j~'F, (b) the sheaf jij =1 F
is constructible, (c) we have HY,,, . (Z,i"'F) = HY,,, . (Zy,i ' F|z,,), and (d) if

U C X is an open, then U’ = U N X’ is dense in U. O

03SG Lemma 83.7. In Situation assume X is smooth. Let j : U — X an open
immersion. Let ¢ be a prime number. Let F = jiZ/lZ. Then statements - (@)
hold for F.

(X, 5157 F) = H, o (X, F) = 0

étale

Proof. Since X is smooth, it is a disjoint union of smooth curves and hence we
may assume X is a curve (i.e., irreducible). Then either U = () and there is nothing
to prove or U C X is dense. In this case the lemma follows from Lemmas 83.2] and
83.6l (]

0A3Q |Lemma 83.8. [In Situation assume X reduced. Let j : U — X an open
immersion. Let £ be a prime number and F = jiZ/VZ. Then statements - (@)
hold for F.

Proof. The difference with Lemma [83.7]is that here we do not assume X is smooth.
Let v : XY — X be the normalization morphism. Then v is finite (Varieties, Lemma
27.1) and X" is smooth (Varieties, Lemma [43.8). Let j¥ : U¥ — X" be the inverse
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image of U. By Lemma W the result holds for jf'Z/¢Z. By Lemma the
result holds for v,j/'Z/¢Z. In general it won’t be true that v,j/Z/¢Z is equal to
J1Z/¢Z but we can work around this as follows. As X is reduced the morphism
v : XY — X is an isomorphism over a dense open j' : X' — X (Varieties, Lemma
. Over this open we have agreement

() vy 2/0Z) = (5') " (112/¢2Z)
Using Lemma twice for 7/ : X’ — X and the sheaves above we conclude. [

Lemma 83.9. In Situation assume X reduced. Let j : U — X an open
tmmersion with U connected. Let £ be a prime number. Let G a finite locally
constant sheaf of ¥y-vector spaces on U. Let F = j1iG. Then statements - (@
hold for F.

Proof. Let f: V — U be a finite étale morphism of degree prime to ¢ as in Lemma
The discussion in Section [66| gives maps

G— f.f'G6=g

whose composition is an isomorphism. Hence it suffices to prove the lemma with
F = jifof1G. By Zariski’s Main theorem (More on Morphisms, Lemma [43.3) we
can choose a diagram

V—Y

j/
17
U *J> X

with ? : Y — X finite and j’ an open immersion with dense image. We may replace

Y by its reduction (this does not change V' as V is reduced being étale over U).
Since f is finite and V dense in Y we have V = U x x Y. By Lemma [70.9] we have

gfef1G = Faif!
By Lemma, it suffices to consider j{f~'G. The existence of the filtration given

by Lemma the fact that j| is exact, and Lemma reduces us to the case
F = j{Z/¢Z which is Lemma 0O

Theorem 83.10. If k is an algebraically closed field, X is a separated, finite type
scheme of dimension < 1 over k, and F is a torsion abelian sheaf on Xegpare, then
Hgtale(X F) =0 forq> 2,

(X, F) =0 forq>1if X is affine,

(X, F) =0 forqg>1if p=char(k) >0 and F is p-power torsion,
(X, F) is finite if F is constructible and torsion prime to char(k),

(X, F) is finite if X is proper and F constructible,

H} (X, F) = H},(Xw, Flx,,) is an isomorphism for any extension
k' /k of algebraically closed fields if F is torsion prime to char(k),
(7) HY, (X, F) — HY, (X, Flx,,) is an isomorphism for any extension

k' /k of algebmzcally closed fields if X is proper,
(8) H%,,. (X, F) — (U, F) is surjective for allU C X open.

étale

Proof. The theorem says that in Situation statements (1)) — (8) hold. Our first
step is to replace X by its reduction, which is permissible by Proposition §5.4] By
Lemma [73.2] we can write F as a filtered colimit of constructible abelian sheaves.

etale

etale

eta e

)
) H,
) etale
) H,
) H,
)

etale
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Taking cohomology commutes with colimits, see Lemma Moreover, pullback
via Xr — X commutes with colimits as a left adjoint. Thus it suffices to prove the
statements for a constructible sheaf.

In this paragraph we use Lemma [83.4] without further mention. Writing F =
F1®...0F, where F; is {;-primary for some prime ¢;, we may assume that £ kills
F for some prime ¢. Now consider the exact sequence

0— F[¢] = F = F/F[{] — 0.
Thus we see that it suffices to assume that F is ¢-torsion. This means that F is a

constructible sheaf of Fy-vector spaces for some prime number /.

By definition this means there is a dense open U C X such that F|y is finite
locally constant sheaf of Fy-vector spaces. Since dim(X) < 1 we may assume, after
shrinking U, that U = U; II....11 U, is a disjoint union of irreducible schemes (just
remove the closed points which lie in the intersections of > 2 components of U).
By Lemma we reduce to the case F = jiG where G is a finite locally constant
sheaf of Fy-vector spaces on U.

Since we chose U = Uy II... 11 U,, with U; irreducible we have
731G =1Glu,) ® ... D jn(Glu,)

where j; : U; — X is the inclusion morphism. The case of j;(G|y,) is handled in
Lemma [R3.9 |

Theorem 83.11. Let X be a finite type, dimension 1 scheme over an algebraically
closed field k. Let F be a torsion sheaf on Xgiaie. Then

HY, (X, F)=0, Vq>3.

étale

If X affine then also HZ, , (X, F) = 0.

étale

Proof. If X is separated, this follows immediately from the more precise Theorem
If X is nonseparated, choose an affine open covering X = X; U...U X,,.
By induction on n we may assume the vanishing holds over U = X7 U ... U X, _1.
Then Mayer-Vietoris (Lemma gives

H?,, (U F)® H? . (X,,F) — H?

étale étale étale

(UNnX,,F)— H:

étale

(X, F)—0

However, since U N X, is an open of an affine scheme and hence affine by our
dimension assumption, the group H?, ;. (UNX,, F) vanishes by Theorem[83.10, [

étale
Lemma 83.12. Let k'/k be an extension of separably closed fields. Let X be a
proper scheme over k of dimension < 1. Let F be a torsion abelian sheaf on X.
Then the map HY, . (X, F) — Hf, (X, Flx,,) is an isomorphism for ¢ > 0.

étale

Proof. We have seen this for algebraically closed fields in Theorem [83.10} Given
k C k' as in the statement of the lemma we can choose a diagram

K —sF

k——sk
where k C k& and &' C k are the algebraic closures. Since k and k' are separably
closed the field extensions k/k and i /k' are algebraic and purely inseparable. In
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this case the morphisms X7 — X and X3» — Xj- are universal homeomorphisms.
Thus the cohomology of 7 may be computed on X3 and the cohomology of F|x,,
may be computed on X, see Proposition Hence we deduce the general case
from the case of algebraically closed fields. O

84. Cohomology of torsion modules on curves

In this section we repeat the arguments of Section [83] for constructible sheaves
of modules over a Noetherian ring which are torsion. We start with the most
interesting step.

Lemmal 84.1. Let A be a Noetherian ring, let M be a finite A-module which is
annthilated by an integer n > 0, let k be an algebraically closed field, and let X be
a separated, finite type scheme of dimension < 1 over k. Then

(1) HL , (X, M) is a finite A-module if n is prime to char(k),

étale
(2) HL , (X, M) is a finite A-module if X is proper.

étale

Proof. If n = ¢n/ for some prime number ¢, then we get a short exact sequence
0— M[{] = M — M’ — 0 of finite A-modules and M’ is annihilated by n’. This
produces a corresponding short exact sequence of constant sheaves, which in turn
gives rise to an exact sequence of cohomology modules

HL (X, Mn]) — H. . (X,M) — H?

étale étale étale

(X, M)

Thus, if we can show the result in case M is annihilated by a prime number, then
by induction on n we win.

Let £ be a prime number such that ¢ annihilates M. Then we can replace A by the
Fy-algebra A/¢A. Namely, the cohomology of F as a sheaf of A-modules is the same
as the cohomology of F as a sheaf of A/¢A-modules, for example by Cohomology
on Sites, Lemma [12.4

Assume ¢ be a prime number such that ¢ annihilates M and A. Let us reduce to
the case where M is a finite free A-module. Namely, choose a short exact sequence

0—-N—=A"" 5 M0
This determines an exact sequence

HY, (X, A®™) = HY

étale étale

(X, M) — HE (X, N)

étale

By descending induction on ¢ we get the result for M if we know the result for
A®™, Here we use that we know that our cohomology groups vanish in degrees > 2
by Theorem [83.10

Let £ be a prime number and assume that ¢ annihilates A. It remains to show that
the cohomology groups HY, . (X,A) are finite A-modules. We will use a trick to
show this; the “correct” argument uses a coefficient theorem which we will show
later. Choose a basis A = @iel Fe; such that eg = 1 for some 0 € I. The choice

of this basis determines an isomorphism

A= @&ei

of sheaves on X¢q1.. Thus we see that

Hgtale(XvA) = Hgtale(X7 @&62) = @Hgtale(X’ &)el
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since taking cohomology over X commutes with direct sums by Theorem (or
Lemma or Lemma . Since we already know that HY, , (X,F,) is a finite
d1mens1onal F-vector space (by Theorem , we see that HY, ;. (X,A) is free
over A of the same rank. Namely, given a ba51s &,...,&n of H X, Fy) we see

etale(
that &ieg, ..., &mneo form a A-basis for HY, , (X, A). O

0GJD Lemma 84.2. Let A be a Noetherian ring, let k be an algebraically closed field,
let f: X — Y be a finite morphism of separated finite type schemes over k of
dimension < 1, and let F be a sheaf of A-modules on Xe¢iare. If HY, (X, F) is a
finite A-module, then so is HY,,, (Y, f«F).

Proof. Namely, we have HY, , (X, F) = HY,,,.(Y, f.F) by the vanishing of R?f,

for ¢ > 0 (Proposition [55.2| E and the Leray spectral sequence (Cohomology on Sites,
Lemma, [14.6|). O

0GJE Lemma 84.3. Let A be a Noetherian ring, let k be an algebraically closed field, let
X be a separated finite type scheme over k of dimension < 1, let F be a constructible
sheaf of A-modules on Xgiqie, and let j : X' — X be the inclusion of a dense open
subscheme. Then HY, , (X, F) is a finite A-module if and only if HY, , (X, jij ' F)
is a finite A-module.

Proof. Since X' is dense, we see that Z = X \ X’ has dimension 0 and hence is a
finite set Z = {x1,...,2,} of k-rational points. Consider the short exact sequence

0= jij '\ FoF—=idilF—=0

of Lemma [70.§] - Observe that HY, , (X,ii 'F) = HY , (Z,i*F). Namely, i :
Z — X is a closed immersion, hence finite, hence we have the vanishing of R%:, for
q > 0 by Proposition [55.2] and hence the equality follows from the Leray spectral
sequence (Cohomology on Sites, Lemma . Since Z is a disjoint union of spectra
of algebraically closed fields, we conclude that HL  (Z,i*F) =0 for ¢ >0 and

étale
Hetale(Z ’L—l‘/—-‘) @i:l_“, n]:m

which is a finite A-module F,, is finite due to the assumption that F is a con-
structible sheaf of A-modules. The long exact cohomology sequence gives an exact
sequence

0— Hetale(X j'] ]:) - Hetale(X ‘7:) etale(Z i 1‘/—:) - Hetale(X ]'] ]:) - Hetale(X7‘F) —0
and isomorphisms HY, , (X, 51j *F) — HY,,.(X,F) for ¢ > 1. The lemma follows

étale étale

easily from this. O

0GJF Lemma 84.4. Let A be a Noetherian ring, let M be a finite A-module which is
annihilated by an integer n > 0, let k be an algebraically closed field, let X be a
separated, finite type scheme of dimension < 1 over k, and let j : U — X be an
open immersion. Then

(1) HL , (X,51M) is a finite A-module if n is prime to char(k),

étale

(2) HY,,,.(X, M) is a finite A-module if X is proper.

Proof. Since dim(X) < 1 there is an open V' C X which is disjoint from U such
that X/ = U UV is dense open in X (details omitted). If 5/ : X’ — X denotes the
inclusion morphism, then we see that jiM is a direct summand of j{M. Hence it
suffices to prove the lemma in case U is open and dense in X. This case follows
from Lemmas [R4.3] and R4.1] O
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Lemmal 84.5. Let A be a Noetherian ring, let k be an algebraically closed field,
let X be a separated finite type scheme over k of dimension < 1, and let 0 — F; —
F — Fo — 0 be a short exact sequence of sheaves of A-modules on Xepqre. If
H! (X, F;), i=1,2 are finite A-modules then HY, , (X, F) is a finite A-module.

étale étale

Proof. Immediate from the long exact sequence of cohomology. O

Lemma 84.6. Let A be a Noetherian ring, let k be an algebraically closed field,
let X be a separated, finite type scheme of dimension <1 over k, let j : U — X be
an open immersion with U connected, let ¢ be a prime number, let n > 0, and let
G be a finite type, locally constant sheaf of A-modules on Ugiqre annihilated by £".
Then

1) HY

étale

(2) HY

étale

(X,51G) is a finite A-module if € is prime to char(k),
(X,71G) is a finite A-module if X is proper.

Proof. Let f: V — U be a finite étale morphism of degree prime to £ as in Lemma
[66.4] The discussion in Section [66] gives maps

G— ff'G6—=g

whose composition is an isomorphism. Hence it suffices to prove the finiteness
of HY, ,.(X,jif«f~1G). By Zariski’s Main theorem (More on Morphisms, Lemma
43.3) we can choose a diagram

J
o
U—j>

with f : Y — X finite and j’ an open immersion with dense image. Since f is finite
and V dense in Y we have V =U x x Y. By Lemma [70.9| we have

aff G =Falf G
By Lemma it suffices to consider j{ f~'G. The existence of the filtration given

by Lemma the fact that j| is exact, and Lemma reduces us to the case
F = jiM for a finite A-module M which is Lemma O

Theorem 84.7. Let A be a Noetherian ring, let k be an algebraically closed field,
let X be a separated, finite type scheme of dimension < 1 over k, and let F be a
constructible sheaf of A-modules on Xgiq1e which is torsion. Then

(1) HY,.(X,F) is a finite A-module if F is torsion prime to char(k),

(X, F) is a finite A-module if X is proper.

(2) Hgtale
Proof. without further mention. Write F = 71 & ...® F, where F; is annihilated
by ¢ for some prime ¢; and integer n; > 0. By Lemma it suffices to prove
the theorem for F;. Thus we may and do assume that ¢ kills F for some prime /¢
and integer n > 0.

Since F is constructible as a sheaf of A-modules, there is a dense open U C X such
that F|y is a finite type, locally constant sheaf of A-modules. Since dim(X) <1
we may assume, after shrinking U, that U = Uy I ... I U, is a disjoint union of
irreducible schemes (just remove the closed points which lie in the intersections of
> 2 components of U). By Lemma we reduce to the case F = 51§ where G is
a finite type, locally constant sheaf of A-modules on U (and annihilated by ¢™).
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Since we chose U = Uy II... I U,, with U; irreducible we have
716 =juGlv,) ®...® jn(Glu,)
where j; : U; — X is the inclusion morphism. The case of j;i1(G|y,) is handled in
Lemma [84.60 O
85. First cohomology of proper schemes

In Fundamental Groups, Section @] we have seen, in some sense, that taking R f.G
commutes with base change if f : X — Y is a proper morphism and G is a finite
group (not necessarily commutative). In this section we deduce a useful consequence
of these results.

Lemma 85.1. Let A be a henselian local ring. Let X be a proper scheme over

A with closed fibre Xo. Let M be a finite abelian group. Then H}, . (X, M) =
Hétale(X07M)'
Proof. By Cohomology on Sites, Lemma an element of H}, , (X, M) corre-

sponds to a M-torsor F on Xggare. Such a torsor is clearly a finite locally constant
sheaf. Hence F is representable by a scheme V finite étale over X, Lemma
Conversely, a scheme V finite étale over X with an M-action which turns it into an
M-torsor over X gives rise to a cohomology class. The same translation between
cohomology classes over X and torsors finite étale over Xy holds. Thus the lemma
is a consequence of the equivalence of categories of Fundamental Groups, Lemma

Q.1 O

The following technical lemma is a key ingredient in the proof of the proper base
change theorem. The argument works word for word for any proper scheme over
A whose special fibre has dimension < 1, but in fact the conclusion will be a
consequence of the proper base change theorem and we only need this particular
version in its proof.

Lemma 85.2. Let A be a henselian local ring. Let X = PY. Let Xo C X be the
closed fibre. Let £ be a prime number. Let T be an injective sheaf of Z/CZ-modules
on Xetare- Then HY, ., (Xo,Z|x,) =0 for g > 0.

étale

Proof. Observe that X is a separated scheme which can be covered by 2 affine
opens. Hence for ¢ > 1 this follows from Gabber’s affine variant of the proper
base change theorem, see Lemma [82.8] Thus we may assume q = 1. Let & €
H},0(X0,Z]x,). Goal: show that ¢ is 0. By Lemmas and we can find
a map F — Z with F a constructible sheaf of Z/¢Z-modules and £ coming from
an element ¢ of H},,;.(Xo,F|x,). Suppose we have an injective map F — F' of
sheaves of Z/¢Z-modules on X¢pqe. Since Z is injective we can extend the given
map F — Z to a map F' — Z. In this situation we may replace F by F’ and ¢ by
the image of ¢ in H},,;.(Xo, F'|x,). Also, if F = F; & Fs is a direct sum, then we
may replace F by F; and ¢ by the image of ¢ in H},,;.(Xo, Fi|x,)-

By Lemma and the remarks above we may assume F is of the form f.M
where M is a finite Z/¢Z-module and f : Y — X is a finite morphism of finite
presentation (such sheaves are still constructible by Lemmabut we won’t need
this). Since formation of f, commutes with any base change (Lemma we see
that the restriction of f, M to X is equal to the pushforward of M via the induced
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morphism Yy — X of special fibres. By the Leray spectral sequence (Proposition
54.2)) and vanishing of higher direct images (Proposition [55.2)), we find

H} o (Xo, foM | xy) = Hbe (Yo, M).

étale étale

Since Y — Spec(A) is proper we can use Lemma to see that the H!

étale (YOa M)
is equal to H},,,.(Y,M). Thus we see that our cohomology class ¢ lifts to a coho-
mology class

(€ Hlyo(Y, M) = H}ppo(X, f.M)

étale étale

However, ¢ maps to zero in H},,, (X,Z) as T is injective and by commutativity of

H!

etale(X7 f*M) - He}tale(X7 Z)

| l

Hy1e(Xo, (feM)|x) — Hyg10 (X0, Z| x,)

we conclude that the image & of ( is zero as well. O

86. Preliminaries on base change

If you are interested in either the smooth base change theorem or the proper base
change theorem, you should skip directly to the corresponding sections. In this
section and the next few sections we consider commutative diagrams

X<~—Y
h
s<? 71

of schemes; we usually assume this diagram is cartesian, ie., Y = X xgT. A
commutative diagram as above gives rise to a commutative diagram

Xétale < étale

Rsmall
fsmaul lesmall

S 9small
étale < étale

of small étale sites. Let us use the notation
fil = s_yialla G« = Gsmall,*, 671 = e;,lmlp and h, = hsmall,*-
By Sites, Section [45] we get a base change or pullback map
frgF — hye ' F

for a sheaf F on Tgrqre- If F is an abelian sheaf on Tgiqe, then we get a derived
base change map

f'Rg,F — Rh,e 'F

see Cohomology on Sites, Lemma Finally, if K is an arbitrary object of
D(Tstq1c) there is a base change map

f'Rg.K — Rh,e 'K
see Cohomology on Sites, Remark
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0OEZR Lemmal 86.1. Consider a cartesian diagram of schemes

O0EZS

X<=—Y

h
Nk
s<? T
Let {U; — X} be an étale covering such that U; — S factors as U; — V; — S with
Vi — S étale and consider the cartesian diagrams

UiﬁU,;XXY

V; <% VixgT

Let F be a sheaf on Tsrqre. Let K in D(Tetare). Set K; = Klv,xor and F; =
‘F‘WXST'

(1) If fi_lgiy*}"i = hiy*ei_l]-} for all i, then f~1g.F = h.e LF.

(2) If f7'Rg; . K; = Rh,.e; 'K, for all i, then f'Rg,K = Rh,e 'K.

(3) If F is an abelian sheaf and f; 'Rig; . F; = Rih; .e;'F; for all i, then

Ff1RIg,F = Rih,e ' F.

Proof. Proof of (1). First we observe that

(F g P)lu, = 7 N9 Flv) = fi ' ginTi
The first equality because U; — X — S is equal to U; — V; — S and the second
equality because g, F|y, = g; +F; by Sites, Lemma Similarly we have
(hwe ' F)|y, = hin(e” ' F
Thus if the base change maps f[l GixFi — hise; ! F; are isomorphisms for all 4,

then the base change map f~'¢.F — h,e'F restricts to an isomorphism over U;
for all 4 and we conclude it is an isomorphism as {U; — X} is an étale covering.

For the other two statements we replace the appeal to Sites, Lemma by an
appeal to Cohomology on Sites, Lemma O

—1
UsxxY) = hixe;  F;

Lemmal 86.2. Consider a tower of cartesian diagrams of schemes

17 )

X<~V
h

fl le

sS<2 T

Let K in D(Titare). If
f'Rg,K — Rhye 'K and i 'Rh,e 'K — Rj.k e 'K

are isomorphisms, then (f 0oi) 1 Rg.K — Rj.(e o k) 1K is an isomorphism. Sim-
ilarly, if F is an abelian sheaf on Tyiqre and if

f'RYg,F - Rlh,e 'F and i 'Rih,e 'F — Rk~ te ' F

are isomorphisms, then (f o) 1 Rig,F — Rij.(eo k)~ 1F is an isomorphism.
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Proof. This is formal, provided one checks that the composition of these base
change maps is the base change maps for the outer rectangle, see Cohomology on

Sites, Remark O

Lemma 86.3. Let I be a directed set. Consider an inverse system of cartesian
diagrams of schemes

fii iei
S <"1,
with affine transition morphisms and with g; quasi-compact and quasi-separated.
Set X =limX;, S =1limsS;, T = limT; and Y = limY; to obtain the cartesian
diagram
X<—Y
h
o
S<2 T
Let (Fi,@ir;) be a system of sheaves on (T;) as in Definition |51.1L Set F =
colimpi_l]:i on T where p; : T — T; is the projection. Then we have the following

(1) If £ giwFi = hiwe; ' Fi for all i, then f~1g.F = hye ' F.
(2) If F; is an abelian sheaf for all i and fi_qugL*}"i = thi,*ei_l]:i for all i,
then f'Ri¢,F = Rlh.e ' F.

Proof. We prove (2) and we omit the proof of (1). We will use without further men-
tion that pullback of sheaves commutes with colimits as it is a left adjoint. Observe
that h; is quasi-compact and quasi-separated as a base change of g;. Denoting ¢; :
Y — Y; the projections, observe that e ™' F = colim eflpifl}"i = colim q[lejlfi.
By Lemma this gives

Rih,e 'F = colimr{quhMe;l}]
where r; : X — X is the projection. Similarly, we have
fRg.F = f~!colim si_qugi,*]-"i = colim ri_lfi_qugw.E
where s; : S — S; is the projection. The lemma follows. O

Lemma 86.4. Let I, X;, Y;, S;, T3, fi, hi, ei, g5, X, Y, S, T, f, h, e, g be as
in the statement of Lemma . Let 0 € I and let Ko € D™ (Tp ¢ta1e). Fori €1,
1 > 0 denote K; the pullback of Ko to T;. Denote K the pullback of Ky to T. If
fi'Rg; . K; = Rhj .e; 'K; for alli >0, then f"'Rg.K = Rh,e 'K.

3

Proof. It suffices to show that the base change map f~'Rg.K — Rh,e 'K in-
duces an isomorphism on cohomology sheaves. In other words, we have to show
that f~!RPg,K — RPh,e 'K is an isomorphism for all p € Z if we are given that
f'RPg; .K; — RPh, .e;'K; is an isomorphism for all i > 0 and p € Z. At this
point we can argue exactly as in the proof of Lemma [86.3 replacing reference to

Lemma [51.8 by a reference to Lemma [52.4] O
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Lemma 86.5. Consider a cartesian diagram of schemes

X<=—Y
h
ol
s<L T
where g : T — S is quasi-compact and quasi-separated. Let F be an abelian sheaf
on Teaie. Let ¢ > 0. The following are equivalent
(1) For every geometric point T of X with image s = f(T) we have
H%(Spec(0¥'z) xs T, F) = H(Spec(0¥%) xs T, F)
(2) f'Rig,F — Rih.e ' F is an isomorphism.
Proof. Since Y = X xg T we have Spec(Og(h’E) XxY = Spec((’)%‘i) xg T. Thus
the map in (1) is the map of stalks at Z for the map in (2) by Theorem [53.1] (and
Lemma [36.2). Thus the result by Theorem [29.10 (]

Lemma 86.6. Let f: X — S be a morphism of schemes. Let T be a geometric
point of X with image s in S. Let Spec(K) — Spec(@%{%) be a morphism with K
a separably closed field. Let F be an abelian sheaf on Spec(K)e¢tare. Let ¢ > 0. The
following are equivalent

(1) H9(Spec(O%'5) x5 Spec(K), F) = H(Spec(Og) xs Spec(K), F)
(2) Hq(Spec((’)ﬁ(hE) X Spec(0zh) Spec(K), F) = H%(Spec(K), F)
Proof. Observe that Spec(K) xg Spec((’)g}fg) is the spectrum of a filtered colimit

of étale algebras over K. Since K is separably closed, each étale K-algebra is a
finite product of copies of K. Thus we can write

Spec(K) xg Spec(@fg}fg) = lim;e; HaeA_ Spec(K)

as a cofiltered limit where each term is a disjoint union of copies of Spec(K’) over
a finite set A;. Note that A; is nonempty as we are given Spec(K) — Spec(OgY).
It follows that

Spec((’):}%) X g Spec(K) = Spec((’)ﬁfhj) X Spec(O3h) (Spec((’)fg’:%) x g Spec(K))

= lim;e; HaeAi Spec(@j}hj) X Spec(OF™) Spec(K)

Since taking cohomology in our setting commutes with limits of schemes (Theorem

51.3]) we conclude. O

87. Base change for pushforward

This section is preliminary and should be skipped on a first reading. In this section
we discuss for what morphisms f : X — S we have f~'g, = h,e™! on all sheaves
(of sets) for every cartesian diagram

X=<=—Y
h
o
s<? T

with g quasi-compact and quasi-separated.
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Lemma 87.1. Consider the cartesian diagram of schemes

X~—Y

s<? 7T

Assume that [ is flat and every object U of Xetare has a covering {U; — U} such
that U; — S factors as U; — V; — S with V; — S étale and U; — V; quasi-compact
with geometrically connected fibres. Then for any sheaf F of sets on Tgpq1e we have

flg.F =he ' F.

Proof. Let U — X be an étale morphism such that U — S factorsas U — V — S
with V' — S étale and U — V quasi-compact with geometrically connected fibres.
Observe that U — V is flat (More on Flatness, Lemma [2.3)). We claim that

[l F(U) = g.F(V)
=F(V xsT)
=e ' F(U xxY)
= h.e ' F(U)

Namely, thinking of U as an object of Xgiqe and V' as an object of Sgae We
see that the first equality follows from Lemma [39.3| Thinking of V xg T as an
object of Tgiqie the second equality follows from the definition of g,. Observe that
UxxY =UxgT (because Y = X xgT) and hence U xx Y — V xg T has
geometrically connected fibres as a base change of U — V. Thinking of U xx Y
as an object of Yiqe, we see that the third equality follows from Lemma [39.3] as
before. Finally, the fourth equality follows from the definition of h,.

Since by assumption every object of Xgsqe has an étale covering to which the
argument of the previous paragraph applies we see that the lemma is true. ([

Lemmal 87.2. Consider a cartesian diagram of schemes
X<~—Y
h
Lok
s<? T

where f is flat and locally of finite presentation with geometrically reduced fibres.
Then f~1g,F = hoe ' F for any sheaf F on Tsiare.

Proof. Combine Lemma with More on Morphisms, Lemma |46.3] (I
Lemma 87.3. Consider the cartesian diagrams of schemes
X<~—Y
h
Lok
S<2-T

9Strictly speaking, we are also using that the restriction of f~1g.F to Ugqre is the pullback
via U — V of the restriction of g«F to Viiqie. See Sites, Lemmam
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Assume that S is the spectrum of a separably closed field. Then f~1g.F = h,e ' F
for any sheaf F on Terate.

Proof. We may work locally on X. Hence we may assume X is affine. Then we can
write X as a cofiltered limit of affine schemes of finite type over S. By Lemma
we may assume that X is of finite type over S. Then Lemma [87.1] applies because
any scheme of finite type over a separably closed field is a finite disjoint union of
connected and geometrically connected schemes (see Varieties, Lemma . (]

Lemma 87.4. Consider a cartesian diagram of schemes

X<~—Y
h

fl l
g9

S<~—T

Assume that

(1) f is flat and open,

(2) the residue fields of S are separably algebraically closed,

(3) given an étale morphism U — X with U affine we can write U as a finite
disjoint union of open subschemes of X (for example if X is a normal
integral scheme with separably closed function field),

(4) any nonempty open of a fibre X, of [ is connected (for example if X, is
irreducible or empty).

Then for any sheaf F of sets on Tgiqe we have f~1g,F = hoe L F.

Proof. Omitted. Hint: the assumptions almost trivially imply the condition of
Lemma m The for example in part (3) follows from Lemma m [

The following lemma doesn’t really belong here but there does not seem to be a
good place for it anywhere.

Lemma 87.5. Let f: X — S be a morphism of schemes which is flat and locally
of finite presentation with geometrically reduced fibres. Then f~% : Sh(Setare) —
Sh(Xeétale) commutes with products.

Proof. Let I be a set and let G; be a sheaf on S¢iqe for ¢ € I. Let U — X be
an étale morphism such that U — S factors as U — V — S with V' — S étale
and U — V flat of finite presentation with geometrically connected fibres. Then
we have

FHqTenw) = qIg0v)
=[[g:)
=11 ')
= (Hf_lgz')(U)

where we have used Lemma in the first and third equality (we are also using
that the restriction of f~'G to Ugqie is the pullback via U — V of the restriction
of G to Vgiaie, see Sites, Lemma . By More on Morphisms, Lemma every
object U of X¢iq1e has an étale covering {U; — U} such that the discussion in the
previous paragraph applies to U;. The lemma follows. (]
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Lemma 87.6. Let f: X — S be a flat morphism of schemes such that for every
geometric point T of X the map

h h
Osis@ — Oxz
has geometrically connected fibres. Then for every cartesian diagram of schemes
X<=—Y
h
.
P

with g quasi-compact and quasi-separated we have f~'g,F = h.e ' F for any sheaf
F of sets on Tgqle-

Proof. It suffices to check equality on stalks, see Theorem[29.10] By Theorem [53.1]
we have
(hoe ' F)z = I‘(Spec((’)ﬁ(hi) xx Y,e 1 F)
and we have similarly
(f 7192 ' F)z = (9" F)p@ = T(Spec(OFY 7)) xs T, F)
These sets are equal by an application of Lemma to the morphism
Spec((’)ﬁ%) xxY — Spec((’)g?f@) xgT

which is a base change of Spec(Og(hj) — Spec(Oghf@) because Y = X xgT. O

88. Base change for higher direct images

This section is the analogue of Section [87] for higher direct images. This section is
preliminary and should be skipped on a first reading.

Remark| 88.1. Let f: X — S be a morphism of schemes. Let n be an integer.
We will say BC(f,n,qo) is true if for every commutative diagram

X<~—X -~ Y
o)
S5 <L T
with X' = X xg 8" and Y = X’ Xxg T and g quasi-compact and quasi-separated,
and every abelian sheaf F on Ty, annihilated by n the base change map
(f)"'R1g,F — Rih.e 'F
is an isomorphism for ¢ < qo.

Lemmal 88.2. With f: X — S and n as in Remark assume for some q > 1
we have BC(f,n,q —1). Then for every commutative diagram

X<~—X ~— Y
I
S<~—8<~—T
with X' = X xg 8" and Y = X' xg T and g quasi-compact and quasi-separated,

and every abelian sheaf F on Teqie annihilated by n
(1) the base change map (f')"'Rig.F — Rih.e L F is injective,
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(2) if F C G where G on Tspaie s annihilated by n, then

Coker ((f')"'R%g.F — Rh.e”'F) C Coker ((f')"'R%g.G — R'h,e'G)

(3) if in (2) the sheaf G is an injective sheaf of Z/nZ-modules, then
Coker ((f')"'Rig.F — Rh.e " F) C R'h.e™'G

Proof. Choose a short exact sequence 0 — F — 7 — Q — 0 where Z is an
injective sheaf of Z/nZ-modules. Consider the induced diagram

()R9I —— (f) 'R 1. Q —— (f') ' RIgF ———=0

|

R~ th,e 1T R~ 1p.e710Q Rih,e ' F Rih,e T

with exact rows. We have the zero in the right upper corner as Z is injective. The
left two vertical arrows are isomorphisms by BC(f,n,q—1). We conclude that part
(1) holds. The above also shows that

Coker ((f)"'R%g.F — Rih.e ' F) C Rih,e™'T
hence part (3) holds. To prove (2) choose F C G C Z. O

Lemma 88.3. With f: X — S and n as in Remark assume for some q > 1
we have BC(f,n,q —1). Consider commutative diagrams

X X' Y Y’ X' Y’
h T{'/ h/:hOﬂ',
fl f’i ie lef and f’l/ ie/
s [P S o < Y=

where all squares are cartesian, g quasi-compact and quasi-separated, and 7 is in-
tegral surjective. Let F be an abelian sheaf on Tgiqe annihilated by n and set
F' = n=LF. If the base change map

(/') RIgLF — RN ()1 F
is an isomorphism, then the base change map (f')"'R%g.F — Rih.e ' F is an
isomorphism.

Proof. Observe that F — w71 F" is injective as 7 is surjective (check on stalks).
Thus by Lemma [88:2 we see that it suffices to show that the base change map

(fY *Rig,m,F — Rlh.e 'm, F'
is an isomorphism. This follows from the assumption because we have RYg,m, F' =
Rig.F' wehave e lm, F' = 7. (¢/)"LF', and we have Rih, 7’ (e/) "1 F' = RIL, (/)L F'.
This follows from Lemmas [55.4) and [£3.5] and the relative leray spectral sequence
(Cohomology on Sites, Lemma [14.7]). ]

Lemma 88.4. With f: X — S and n as in Remark assume for some q > 1
we have BC(f,n,q —1). Consider commutative diagrams

X X' X" Y X ~—Y

7’ n' h=h'on’
fl f’l f”i \Le and f’l le

S < grd T S < I
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where all squares are cartesian, g quasi-compact and quasi-separated, and T is
integral. Let F be an abelian sheaf on Tgiq1. annihilated by n. If the base change
map

(fY *Rig.F — Rih,e ' F
is an isomorphism, then the base change map (f")"'Rig.F — RIh.e 'F is an
isomorphism.

Proof. Since m and 7’ are integral we have R, = 7, and Rz, = 7/, see Lemma
We also have (f')~'m, = wL(f"”)~1. Thus we see that 7 (f"”)"1Rig.F =
(f)"'Rig,F and w,RIh,e ' F = Rih.e ' F. Thus the assumption means that
our map becomes an isomorphism after applying the functor #”,. Hence we see that
it is an isomorphism by Lemma (3.5 O

Lemma 88.5. Let T be a quasi-compact and quasi-separated scheme. Let P be a
property for quasi-compact and quasi-separated schemes over T. Assume

(1) If T" — T' is a thickening of quasi-compact and quasi-separated schemes
over T, then P(T") if and only if P(T").

(2) If T" = limT; is a limit of an inverse system of quasi-compact and quasi-
separated schemes over T' with affine transition morphisms and P(T;) holds
for all i, then P(T") holds.

(3) If Z C T’ is a closed subscheme with quasi-compact complement V- C T’
and P(T") holds, then either P(V') or P(Z) holds.

Then P(T) implies P(Spec(K)) for some morphism Spec(K) — T where K is a
field.

Proof. Consider the set ¥ of closed subschemes 7" C T such that P(T"). By
assumption (2) this set has a minimal element, say 7’. By assumption (1) we see
that 7" is reduced. Let 7 € T” be the generic point of an irreducible component of
T'. Then n = Spec(K) for some field K and n = lim V where the limit is over the
affine open subschemes V' C T” containing 7. By assumption (3) and the minimality
of T” we see that P(V) holds for all these V. Hence P(n) by (2) and the proof is
complete. O

Lemma 88.6. With f: X — S and n as in Remark assume for some q > 1
we have that BC(f,n,q — 1) is true, but BC(f,n,q) is not. Then there exist a
commutative diagram

X X' - Y
ok
S<— 8§ < Spec(K)
where X' = X x5 8", Y = X' xg Spec(K), K is a field, and F is an abelian

sheaf on Spec(K) annihilated by n such that (f') ' R%g.F — Rih.e L F is not an
isomorphism.

Proof. Choose a commutative diagram
X<~—X<~—Y

17

[ N
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with X' = X xg 8" and Y = X’ xg T and g quasi-compact and quasi-separated,
and an abelian sheaf F on Tgq. annihilated by n such that the base change map
(f)"'Rig,F — Rih.e ' F is not an isomorphism. Of course we may and do
replace S’ by an affine open of S’; this implies that T is quasi-compact and quasi-
separated. By Lemma we see (f')"1RYg.F — Rih.e L'F is injective. Pick
a geometric point T of X’ and an element ¢ of (R%h,q 1 F)z which is not in the
image of the map ((f')"*RY¢.F)z — (R%h.e 1 F)z.

Consider a morphism 7 : 77 — T with T" quasi-compact and quasi-separated and
denote 7/ = 7' F. Denote 7’ : Y’ =Y xp T' — Y the base change of 7 and
e’ : Y — T’ the base change of e. Picture

X' Y Y Xy
w’ h'=hon’
fll le \LEI and f’i J(e/
IR L S § < Y=

Using pullback maps we obtain a canonical commutative diagram

(f)'Rig.F —— (f') ' RigL.F'

| |

Rih,e ' F RN ()1 F

of abelian sheaves on X’. Let P(T") be the property
e The image ¢ of ¢ in (Rh.(e')"'F')z is not in the image of the map
(F1RIG,F' Yy — (RIBL () 1)
We claim that hypotheses (1), (2), and (3) of Lemma hold for P which proves
our lemma.

Condition (1) of Lemma holds for P because the étale topology of a scheme
and a thickening of the scheme is the same. See Proposition [45.4]

Suppose that I is a directed set and that T; is an inverse system over I of quasi-
compact and quasi-separated schemes over T' with affine transition morphisms. Set
T’ = limT;. Denote F' and F; the pullback of F to T”, resp. T;. Consider the
diagrams

X=——Y~<—-Y Yi

X
h 7r£ hi:hOﬂ'g
f’l \Le \Lei and f’i iei
st 1T, [ A}

as in the previous paragraph. It is clear that 7’ on T” is the colimit of the pullbacks
of F; to T' and that (¢/)'F’ is the colimit of the pullbacks of e; ' F; to Y’. By
Lemma [51.8 we have

RIK, (€)' F' = colim Rih; we; ' F; and (f) " 'Rig.F' = colim(f') ' Rig; . F;
It follows that if P(T;) is true for all ¢, then P(T”) holds. Thus condition (2) of
Lemma holds for P.

The most interesting is condition (3) of Lemma Assume T" is a quasi-compact
and quasi-separated scheme over T such that P(T") is true. Let Z C T” be a closed
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subscheme with complement V' C T’ quasi-compact. Consider the diagram

Y’ XT/Z_/*>Y,<7‘,YI><T/V

Z— " o<’ vy

Choose an injective map j~'F’ — J where J is an injective sheaf of Z/nZ-modules
on V. Looking at stalks we see that the map

F = G=5J@ii 'F

is injective. Thus ¢ maps to a nonzero element of

Coker (((f)"'R9.G)z — (R, (') 7'G)z) =

Coker (((f') ' RIg,j.T )z — (RU.(e') 1T )z) @

Coker (((f) ' RigLii™ ' F)z — (RN, () Hiui™ ' F')z)
by part (2) of Lemma If ¢’ does not map to zero in the second summand,
then we use

(f)'RigLiiT F = (f)) T RY(g 0i)ui” ' F
(because Ri, = i, by Proposition and
RIN (") riyi™ ' F = RWile, i™' F = RI(W o )we, i 1 F/

(first equality by Lemma and the second because Ri, = i/, by Proposition

55.2)) to we see that we have P(Z). Finally, suppose £ does not map to zero in the
first summand. We have

(&) 1T =jley' T and R%le,'J =0, a=1,...,q-1
by BC(f,n,q — 1) applied to the diagram
XY =V
7
S~ T <l v

and the fact that 7 is injective. By the relative Leray spectral sequence for h’ o j/
(Cohomology on Sites, Lemma [14.7)) we deduce that

RN, ()1 juT = R, jle,' T — RU(KW o j)eey' T
is injective. Thus £ maps to a nonzero element of (R%(h'cj').ey,* J)z. Applying part
(3) of Lemma m to the injection j71F" — J we conclude that P(V) holds. [

Lemma 88.7. With f: X — S and n as in Remark assume for some q > 1
we have that BC(f,n,q — 1) is true, but BC(f,n,q) is not. Then there exist a
commutative diagram
X X' Y
h
ol

S <—— 8 <— Spec(K)

with both squares cartesian, where

(1) S’ is affine, integral, and normal with algebraically closed function field,
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(2) K is algebraically closed and Spec(K) — S’ is dominant (in other words
K is an extension of the function field of S')

and there exists an integer d|n such that Rh.(Z/dZ) is nonzero.

Conversely, nonvanishing of R%h.(Z/dZ) in the lemma implies BC(f,n,q) isn’t
true as Lemma shows that R?(Spec(K) — S').Z/dZ = 0.

Proof. First choose a diagram and F as in Lemma [88.6] We may and do assume
S’ is affine (this is obvious, but see proof of the lemma in case of doubt). By
Lemma [B8.3] we may assume K is algebraically closed. Then F corresponds to a
Z/nZ-module. Such a modules is a direct sum of copies of Z/dZ for varying d|n
hence we may assume F is constant with value Z/dZ. By Lemma we may
replace S’ by the normalization of S’ in Spec(K) which finishes the proof. O

89. Smooth base change
In this section we prove the smooth base change theorem.

Lemma 89.1. Let K/k be an extension of fields. Let X be a smooth affine curve
over k with a rational point © € X (k). Let F be an abelian sheaf on Spec(K)
annshilated by an integer n invertible in k. Let ¢ > 0 and

¢ € H(Xg, (X — Spec(K))'F)

There exist
(1) finite extensions K'/K and k' /k with k' C K',
(2) a finite étale Galois cover Z — Xy with group G

such that the order of G divides a power of n, such that Z — Xy is split over xy,
and such that & dies in H1(Zy, (Zr: — Spec(K))~LF).

Proof. For ¢ > 1 we know that ¢ dies in H%(X, (X7 — Spec(K))~*F) (Theorem
83.10). By Lemma we see that this means there is a finite extension K'/K
such that ¢ dies in H9(X g, (Xgr — Spec(K))~1F). Thus we can take k' = k and
Z = X in this case.

Assume ¢ = 1. Recall that F corresponds to a discrete module M with continuous
Galg-action, see Lemma[59.1] Since M is n-torsion, it is the uninon of finite Galg-
stable subgroups. Thus we reduce to the case where M is a finite abelian group
annihilated by n, see Lemma After replacing K by a finite extension we may
assume that the action of Galg on M is trivial. Thus we may assume F = M is
the constant sheaf with value a finite abelian group M annihilated by n.

We can write M as a direct sum of cyclic groups. Any two finite étale Galois
coverings whose Galois groups have order invertible in k, can be dominated by
a third one whose Galois group has order invertible in k& (Fundamental Groups,
Section @ Thus it suffices to prove the lemma when M = Z/dZ where d|n.

Assume M = Z/dZ where d|n. In this case £ = §|x is an element of
HY(X%,Z/dZ) = H (X%, Z/dZ)

See Theorem [83.10} This group classifies Z /dZ-torsors, see Cohomology on Sites,
Lemma The torsor corresponding to & (viewed as a sheaf on X7 ., ) in turn
gives rise to a finite étale morphism 7' — X3 endowed an action of Z/dZ transitive

on the fibre of T" over x7, see Lemma Choose a connected component TV C T
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(if € has order d, then T is already connected). Then 7" — X7 is a finite étale Galois
cover whose Galois group is a subgroup G C Z/dZ (small detail omitted). Moreover
the element £ maps to zero under the map H'(X3, Z/dZ) — H*(T’,Z/dZ) as this
is one of the defining properties of T'.

Next, we use a limit argument to choose a finite extension &’/k contained in k such
that 7" — X7 descends to a finite étale Galois cover Z — Xy, with group G. See
Limits, Lemmas and After increasing k' we may assume that Z
splits over @j/. The image of £ in H'(Z%,Z/dZ) is zero by construction. Thus by
Lemma we can find a finite subextension K /K'/K containing k' such that ¢
dies in H'(Zg,Z/dZ) and this finishes the proof. O

Theorem 89.2 (Smooth base change). Consider a cartesian diagram of schemes

X<=—Y

h
o
P

where f is smooth and g quasi-compact and quasi-separated. Then
f'R1g,F = R'h,e ' F

for any q and any abelian sheaf F on Tgpqie all of whose stalks at geometric points
are torsion of orders invertible on S.

First proof of smooth base change. This proof is very long but more direct
(using less general theory) than the second proof given below.

The theorem is local on X¢t4;.. More precisely, suppose we have U — X étale such
that U — S factors as U — V — S with V' — § étale. Then we can consider the
cartesian square

U 'ﬁ U Xx Y
1
V<2 VxgT
and setting 7/ = Fly x o1 we have f "' Rig, Fly = (f/)"tRig.F' and Rih.e 1 F|y =
RIR (e')~1F" (as follows from the compatibility of localization with morphisms of
sites, see Sites, Lemma and and Cohomology on Sites, Lemma [20.4]). Thus it

suffices to produce an étale covering of X by U — X and factorizationsU — V — S
as above such that the theorem holds for the diagram with f/, 1/, ¢/, €.

By the local structure of smooth morphisms, see Morphisms, Lemma [36.20] we
may assume X and S are affine and X — S factors through an étale morphism
X — A%. If we have a tower of cartesian diagrams

X ~—

Y

h
|,k
S T

g
-~
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and the theorem holds for the bottom and top squares, then the theorem holds for
the outer rectangle; this is formal. Writing X — S as the composition

X—=ASt 5 AL? 5 L 5 AL S

we conclude that it suffices to prove the theorem when X and S are affine and
X — S has relative dimension 1.

For every n > 1 invertible on S, let F[n] be the subsheaf of sections of F annihilated
by n. Then F = colim F[n] by our assumption on the stalks of F. The functors
e ! and f~! commute with colimits as they are left adjoints. The functors R7h,
and RYg, commute with filtered colimits by Lemma [51.7] Thus it suffices to prove
the theorem for F[n|. From now on we fix an integer n, we work with sheaves of
Z /nZ-modules and we assume S is a scheme over Spec(Z[1/n]).

Next, we reduce to the case where T is affine. Since g is quasi-compact and quasi-
separate and S is affine, the scheme T is quasi-compact and quasi-separated. Thus
we can use the induction principle of Cohomology of Schemes, Lemma [4.1] Hence
it suffices to show that if 7= W U W’ is an open covering and the theorem holds
for the squares

X<—ie*1(W) X<—je’1(W’) X<Te*1(WﬂW’)
S<—24 W S~ w S<~—WnWw
then the theorem holds for the original diagram. To see this we consider the diagram
iR e, Flwaw — f1RIg.F IR, Flw @ f1RIbF|w

] ]

qu*e_l]:|ef1(WmW/) — Rih,e ' F —— qu*e_l]:‘e—l(w) (&) qu*e_l]:|e—1(w/)

whose rows are the long exact sequences of Lemma Thus the 5-lemma gives
the desired conclusion.

Summarizing, we may assume S, X, T, and Y affine, F is n torsion, X — S is
smooth of relative dimension 1, and S is a scheme over Z[1/n|. We will prove the
theorem by induction on ¢g. The base case ¢ = 0 is handled by Lemma[87.2] Assume
q > 0 and the theorem holds for all smaller degrees. Choose a short exact sequence
0= F =7 — Q — 0 where Z is an injective sheaf of Z/nZ-modules. Consider
the induced diagram

f1RI g T —— 1R 19, Q —> 'R F ———— 0

N

R 'h,e T ——= R 'h,e 'Q —— Rih,e ' F ——= Rih,e T

with exact rows. We have the zero in the right upper corner as Z is injective. The
left two vertical arrows are isomorphisms by induction hypothesis. Thus it suffices
to prove that Rh,e 1T = 0.

Write S = Spec(A) and T' = Spec(B) and say the morphism 7" — S is given by the
ring map A — B. We can write A — B = colim;c;(A4; — B;) as a filtered colimit
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of maps of rings of finite type over Z[1/n] (see Algebra, Lemma [127.14). For i € I
we set S; = Spec(A;) and T; = Spec(B;). For i large enough we can find a smooth
morphism X; — 5; of relative dimension 1 such that X = X; xg, S, see Limits,

Lemmas and Set Y; = X; xg, T; to get squares
Xi<=——Y;

h;
I

Observe that Z; = (T' — T;).Z is an injective sheaf of Z/nZ-modules on T;, see
Cohomology on Sites, Lemma We have Z = colim(T — T;)~'Z; by Lemma
51.9l Pulling back by e we get e~ 'Z = colim(Y — Y;)"'e;'Z;. By Lemma
applied to the system of morphisms Y; — X; with limit Y — X we have

Rih,e T = colim(X — X;) 'R, .e; 'T;
This reduces us to the case where T and S are affine of finite type over Z[1/n].

Summarizing, we have an integer ¢ > 1 such that the theorem holds in degrees < ¢,
the schemes S and T affine of finite type type over Z[1/n], we have X — S smooth
of relative dimension 1 with X affine, and 7 is an injective sheaf of Z/nZ-modules
and we have to show that R7h.e 7 = 0. We will do this by induction on dim(T).

The base case is T = 0, i.e., dim(7) < 0. If you don’t like this, you can take as
your base case the case dim(T) = 0. In this case T' — S is finite (in fact even
T — Spec(Z[1/n]) is finite as the target is Jacobson; details omitted), so h is finite
too and hence has vanishing higher direct images (see references below).

Assume dim(7) = d > 0 and we know the result for all situations where T' has
lower dimension. Pick U affine and étale over X and a section & of Rih,q~'T
over U. We have to show that ¢ is zero. Of course, we may replace X by U (and
correspondingly Y by U x x Y) and assume ¢ € H°(X, R9h,e'Z). Moreover, since
RIh,e 1T is a sheaf, it suffices to prove that ¢ is zero locally on X. Hence we may
replace X by the members of an étale covering. In particular, using Lemma[5T.6] we
may assume that ¢ is the image of an element & € H4(Y,e 'T). In terms of £ our
task is to show that & dies in H(U; x x Y, e~'Z) for some étale covering {U; — X }.

By More on Morphisms, Lemma we may assume that X — S factors as
X —»V — S where V — S is étale and X — V is a smooth morphism of affine
schemes of relative dimension 1, has a section, and has geometrically connected
fibres. Observe that dim(V xgT) < dim(7T") = d for example by More on Algebra,
Lemma Hence we may then replace S by V and T by V xg T (exactly as in
the discussion in the first paragraph of the proof). Thus we may assume X — S is
smooth of relative dimension 1, geometrically connected fibres, and has a section
oc:85—>X.

Let 7w : 77 — T be a finite surjective morphism. We will use below that dim(7”) <
dim(T") = d, see Algebra, Lemma Choose an injective map 7~ 'Z — Z’ into
an injective sheaf of Z/nZ-modules. Then Z — 7,7’ is injective and hence has a
splitting (as Z is an injective sheaf of Z/nZ-modules). Denote 7’ : Y' =Y x7 T —
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Y the base change of m and ¢’ : Y’ — T” the base change of e. Picture

X<~—Y~<~—Y

17k

S<~——T<"—1T

By Proposition and Lemma we have Rrl(¢/)™17" = e~'n,Z'. Thus by
the Leray spectral sequence (Cohomology on Sites, Lemma [14.5)) we have

HYY' ()T = HY(Y,e 'n,T') D HI(Y,e ‘1)

and this remains true after base change by any U — X étale. Thus we may replace
T by T', Z by T’ and £ by its image in HY(Y”, (e/)~1T").

Suppose we have a factorization T' — S’ — S where 7 : S’ — S is finite. Setting
X' = 8" xg X we can consider the induced diagram

X<7/X'<7Y

g h’

b

S<T g9 7
Since 7/ has vanishing higher direct images we see that R7h,e 'Z = w.RIh’ e 'T
by the Leray spectral sequence. Hence H®(X, Rih.e 'T) = H°(X',Rih,e 1T).
Thus € is zero if and only if the corresponding section of Rk’ e~'7 is zerﬂ Thus
we may replace S by S’ and X by X’. Observe that o : S — X base changes to
o'+ 8" — X’ and hence after this replacement it is still true that X — S has a
section ¢ and geometrically connected fibres.

We will use that S and T  are Nagata schemes, see Algebra, Proposition[162.16|which
will guarantee that various normalizations are finite, see Morphisms, Lemmas[53.15
and In particular, we may first replace T' by its normalization and then
replace S by the normalization of S in 7. Then T' — S is a disjoint union of
dominant morphisms of integral normal schemes, see Morphisms, Lemma [53.13]
Clearly we may argue one connnected component at a time, hence we may assume
T — S is a dominant morphism of integral normal schemes.

Let s € S and t € T be the generic points. By Lemma there exist finite
field extensions K/k(t) and k/k(s) such that k is contained in K and a finite étale
Galois covering Z — X}, with Galois group G of order dividing a power of n split
over o(Spec(k)) such that £ maps to zero in HY(Zx,e 'Z|z,). Let T' — T be
the normalization of T in Spec(K) and let S’ — S be the normalization of S in

10This step can also be seen another way. Namely, we have to show that there is an étale
covering {U; — X} such that £ dies in H4(U; x x Y, e~ 'T). However, if we prove there is an étale
covering {U/ — X'} such that € dies in H9(U! x x/ Y,e~1Z), then by property (B) for X’ — X
(Lemma there exists an étale covering {U; — X} such that U; x x X’ is a disjoint union
of schemes over X’ each of which factors through UJ’. for some j. Thus we see that £ dies in

HY(U; xx Y,e"'Z) as desired.
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Spec(k). Then we obtain a commutative diagram

S/ T/

|

S<~——T

whose vertical arrows are finite. By the arguments given above we may and do
replace S and T by S’ and T” (and correspondingly X by X xg S’ and Y by
Y xpT"). After this replacement we conclude we have a finite étale Galois covering
Z — X, of the generic fibre of X — S with Galois group G of order dividing a
power of n split over o(s) such that & maps to zero in HY(Z;,(Z; — Y) le 7).
Here Z, = Z xgt = Z X3t = Z x x, Y;. Since n is invertible on S, by Fundamental
Groups, Lemma we can find a finite étale morphism U — X whose restriction
to X, is Z.

At this point we replace X by U and Y by U xx Y. After this replacement it
may no longer be the case that the fibres of X — S are geometrically connected
(there still is a section but we won’t use this), but what we gain is that after this

replacement € maps to zero in H1(Y;, e 'T), e, € restricts to zero on the generic
fibre of Y — T.

Recall that ¢ is the spectrum of the function field of T, i.e., as a scheme t is the
limit of the nonempty affine open subschemes of T. By Lemma [51.5| we conclude
there exists a nonempty open subscheme V C T such that §~ maps to zero in
Hq(Y X7 ‘/, 6711|Y><TV)~

Denote Z =T\ V. Consider the diagram

Z— ' 1< 1 vy

Choose an injection i~'Z — Z’ into an injective sheaf of Z/nZ-modules on Z.
Looking at stalks we see that the map

T = j Iy &I

is injective and hence splits as Z is an injective sheaf of Z/nZ-modules. Thus it
suffices to show that £ maps to zero in

HY(Y,e ' Ilv) ® HY(Y,e i.T')
at least after replacing X by the members of an étale covering. Observe that
e Il = jley Iy, e li.T =ile,'T
By induction hypothesis on g we see that
Rjley' Iy =0, a=1,...,q—1
By the Leray spectral sequence for j' and the vanishing above it follows that

HIUY, (e, ' Ilv)) — HUY x7 V,ey,'Ty) = HU(Y xr Ve 'Ilywrv)
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is injective. Thus the vanishing of the image of ¢ in the first summand above because
we know & vanishes in H9(Y x7 V,e 'Z|yx,v). Since dim(Z) < dim(T) = d by
induction the image of £ in the second summand

HYY,e Vi, T') = HI(Y,iLe ' T') = HU(Y xr Z,e,;'T")

dies after replacing X by the members of a suitable étale covering. This finishes
the proof of the smooth base change theorem. O

Second proof of smooth base change. This proof is the same as the longer
first proof; it is shorter only in that we have split out the arguments used in a
number of lemmas.

The case of ¢ = 0 is Lemma[87.2] Thus we may assume ¢ > 0 and the result is true
for all smaller degrees.

For every n > 1 invertible on S, let F[n] be the subsheaf of sections of F annihilated
by n. Then F = colim F|[n| by our assumption on the stalks of F. The functors
e~ ! and f~! commute with colimits as they are left adjoints. The functors R%h,
and R%g, commute with filtered colimits by Lemma Thus it suffices to prove
the theorem for F[n]. From now on we fix an integer n invertible on S and we work
with sheaves of Z/nZ-modules.

By Lemma the question is étale local on X and S. By the local structure of
smooth morphisms, see Morphisms, Lemma we may assume X and S are
affine and X — S factors through an étale morphism X — A%¢. Writing X — S as
the composition

XA AL 5 AL S
we conclude from Lemma [86.2] that it suffices to prove the theorem when X and S
are affine and X — S has relative dimension 1.

By Lemma it suffices to show that R%h,Z/dZ = 0 for d|n whenever we have a
cartesian diagram

X Y
|
S <—— Spec(K)

where X — S is affine and smooth of relative dimension 1, S is the spectrum of a
normal domain A with algebraically closed fraction field L, and K/L is an extension
of algebraically closed fields.

Recall that R%h.Z/dZ is the sheaf associated to the presheaf
U HI(U xx Y,Z/dZ) = HY(U xg Spec(K),Z/dZ)
on Xgigre (Lemma [51.6). Thus it suffices to show: given U and £ € HY(U Xxg

Spec(K),Z/dZ) there exists an étale covering {U; — U} such that ¢ dies in
HY(U; xg Spec(K),Z/dZ).

Of course we may take U affine. Then U xg Spec(K) is a (smooth) affine curve
over K and hence we have vanishing for ¢ > 1 by Theorem [83.10]

Final case: ¢ = 1. We may replace U by the members of an étale covering as in
More on Morphisms, Lemma Then U — S factors as U — V — S where
U — V has geometrically connected fibres, U, V are affine, V' — S is étale, and
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there is a section o : V' — U. By Lemma [80.4] we see that V is isomorphic to a
(finite) disjoint union of (affine) open subschemes of S. Clearly we may replace S
by one of these and X by the corresponding component of U. Thus we may assume
X — S has geometrically connected fibres, has a section o, and £ € H* (Y, Z/dZ).
Since K and L are algebraically closed we have

HY(X,Z/dZ) = H'(Y,Z/dZ)

See Lemma, Thus there is a finite étale Galois covering Z — X, with Galois
group G C Z/dZ which annihilates £. You can either see this by looking at the
statement or proof of Lemma [89.1] or by using directly that £ corresponds to a
Z/dZ-torsor over X ;. Finally, by Fundamental Groups, Lemma we find a
(necessarily surjective) finite étale morphism X’ — X whose restriction to X, is
Z — Xp,. Since £ dies in X, this finishes the proof. (]

The following immediate consquence of the smooth base change theorem is what is
often used in practice.

Lemmal 89.3. Let S be a scheme. Let 8" = 1im S; be a directed inverse limit of
schemes S; smooth over S with affine transition morphisms. Let f : X — S be
quasi-compact and quasi-separated and form the fibre square

X/ﬁX

g
17
g9 .3
Then
9'Rf.E=R(f").(¢)'E
for any E € DT (Xsia1e) whose cohomology sheaves HY(E) have stalks which are
torsion of orders invertible on S.

Proof. Consider the spectral sequences
BT = RPLHAE) and  E'S = ROFLHO(g) 7 E) = RPf1(g) " HO(E)

converging to R"f.E and R"f.(¢')~'E. These spectral sequences are constructed
in Derived Categories, Lemma Combining the smooth base change theorem

(Theorem [89.2)) with Lemma we see that
g~ RPf.HY(E) = RP(f')«(¢) " H(E)

Combining all of the above we get the lemma. ]

90. Applications of smooth base change

In this section we discuss some more or less immediate consequences of the smooth
base change theorem.

Lemma 90.1. Let L/K be an extension of fields. Let g : T — S be a quasi-
compact and quasi-separated morphism of schemes over K. Denote gy, : T, — Sp,
the base change of g to Spec(L). Let E € DT (Tsq10) have cohomology sheaves
whose stalks are torsion of orders invertible in K. Let Ey be the pullback of E to
(Tr)étate- Then Rgr «Er is the pullback of Rg.E to Sr.
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Proof. If L/K is separable, then L is a filtered colimit of smooth K-algebras,
see Algebra, Lemma Thus the lemma in this case follows immediately
from Lemma In the general case, let K’ and L’ be the perfect closures
(Algebra, Definition [45.5)) of K and L. Then Spec(K’) — Spec(K) and Spec(L') —
Spec(L) are universal homeomorphisms as K'/K and L'/L are purely inseparable
(see Algebra, Lemma [46.7)). Thus we have (Tk')state = Tetates (Sk*)étate = Sétates
(Tr)étate = (Tr)étale, and (Sp/)eétate = (SL)étale by the topological invariance of
étale cohomology, see Proposition [I5.4] This reduces the lemma to the case of the
field extension L'/ K’ which is separable (by definition of perfect fields, see Algebra,

Definition [45.1)). O

Lemma 90.2. Let K/k be an extension of separably closed fields. Let X be a quasi-
compact and quasi-separated scheme over k. Let E € DT (Xgsaie) have cohomology
sheaves whose stalks are torsion of orders invertible in k. Then

(1) the maps HY,,,,(X,E) — H}, ,.(XKk, E|x,) are isomorphisms, and
(2) E— R(Xk — X).E|x, is an isomorphism.

Proof. Proof of (1). First let k and K be the algebraic closures of k and K. The
morphisms Spec(k) — Spec(k) and Spec(K) — Spec(K) are universal homeomor-
phisms as k/k and K /K are purely inseparable (see Algebra, Lemma [46.7). Thus
HY} (X, F)=H},, (X5, ]:XE) by the topological invariance of étale cohomology,
see Proposition Similarly for Xx and X3. Thus we may assume k and K
are algebraically closed. In this case K is a limit of smooth k-algebras, see Alge-
bra, Lemma We conclude our lemma is a special case of Theorem [89.2] as

reformulated in Lemma [89.3]

Proof of (2). For any quasi-compact and quasi-separated U in X¢q1e the above
shows that the restriction of the map £ — R(Xg — X).F|x, determines an
isomorphism on cohomology. Since every object of X¢iqc has an étale covering by
such U this proves the desired statement. ([

Lemmal 90.3. With f: X — S and n as in Remark assume n s invertible
on S and that for some q > 1 we have that BC(f,n,q — 1) is true, but BC(f,n,q)
is not. Then there exist a commutative diagram

X X' Y

N

S <—— 85 <—— Spec(K)

with both squares cartesian, where S’ is affine, integral, and normal with alge-
braically closed function field K and there exists an integer d|n such that R%h.(Z/dZ)
18 NONZETo.

Proof. First choose a diagram and F as in Lemma We may and do assume
S’ is affine (this is obvious, but see proof of the lemma in case of doubt). Let K’
be the function field of S’ and let Y' = X’ x g/ Spec(K’) to get the diagram

X X' Y’ Y

]

S <~—— 8" <— Spec(K') <—— Spec(K)
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By Lemma the total direct image R(Y — Y’).Z/dZ is isomorphic to Z/dZ in

D(Y/,,,.); here we use that n is invertible on S. Thus Rh[Z/dZ = Rh,Z/dZ by
the relative Leray spectral sequence. This finishes the proof. O

91. The proper base change theorem

The proper base change theorem is stated and proved in this section. Our approach
follows roughly the proof in [AGVTI) XII, Theorem 5.1] using Gabber’s ideas (from
the affine case) to slightly simplify the arguments.

Lemma 91.1. Let (A,I) be a henselian pair. Let f : X — Spec(A) be a proper
morphism of schemes. Let Z = X Xgpec(a) Spec(A/I). For any sheaf F on the
topological space associated to X we have I'(X, F) =T(Z,F|z).

Proof. We will use Lemma to prove this. First observe that the underlying
topological space of X is spectral by Properties, Lemma Let Y C X be an
irreducible closed subscheme. To finish the proof we show that Y NZ =Y Xgpec(a)
Spec(A/I) is connected. Replacing X by Y we may assume that X is irreducible
and we have to show that Z is connected. Let X — Spec(B) — Spec(A) be the
Stein factorization of f (More on Morphisms, Theorem . Then A — B is
integral and (B,IB) is a henselian pair (More on Algebra, Lemma . Thus
we may assume the fibres of X — Spec(A) are geometrically connected. On the
other hand, the image T C Spec(A) of f is irreducible and closed as X is proper
over A. Hence T N V(I) is connected by More on Algebra, Lemma Now
Y Xgpec(a) Spec(A/I) — TNV (I) is a surjective closed map with connected fibres.
The result now follows from Topology, Lemma O

Lemma 91.2. Let (A, I) be a henselian pair. Let f : X — Spec(A) be a proper
morphism of schemes. Let i : Z — X be the closed immersion of X Xgpec(a)
Spec(A/I) into X. For any sheaf F on Xga1e we have T'(X, F) =T(Z,i* . F).

» “small

Proof. This follows from Lemma and and the fact that any scheme finite
over X is proper over Spec(A). O

Lemma 91.3. Let A be a henselian local ring. Let f: X — Spec(A) be a proper
morphism of schemes. Let Xg C X be the fibre of f over the closed point. For any
sheaf F on Xetare we have T(X, F) = T'(Xo, Flx,)-

Proof. This is a special case of Lemma [91.2 (]

Let f : X — S be a morphism of schemes. Let 5 : Spec(k) — S be a geometric
point. The fibre of f at S is the scheme X7 = Spec(k) x5, X viewed as a scheme
over Spec(k). If F is a sheaf on X¢i4e, then denote Fz = ps_nlzall]: the pullback of
F to (Xz)étate- In the following we will consider the set

F(X§7 ]:?)

Let s € S be the image point of 5. Let x(s)**? be the separable algebraic closure
of k(s) in k as in Definition m By Lemma m pullback defines a bijection

F(XK(S)SCP7psie%nf) — F(X§7 f?)

where pgep : Xy(s)se» = Spec(k(s)*P) xs X — X is the projection.
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Lemma 91.4. Let f: X — S be a proper morphism of schemes. Lets — S be a
geometric point. For any sheaf F on Xgiqie the canonical map

(f+F)s — I'(X5, F5)
is bijective.
Proof. By Theorem (for sheaves of sets) we have
(foF)s = T(X xs Spec(OF5), por )

where p : X Xg Spec((’)gf%) — X is the projection. Since the residue field of the

strictly henselian local ring O™ is k(s)*P we conclude from the discussion above
the lemma and Lemma [01.3 O

Lemma 91.5. Let f: X — Y be a proper morphism of schemes. Let g : Y' =Y
be a morphism of schemes. Set X' =Y’ xy X with projections ' : X' — Y’ and
g : X' — X. Let F be any sheaf on X¢iare. Then g~ L fo F = fl(g') "L F.

Proof. There is a canonical map g~ f.F — f.(¢’)"'F. Namely, it is adjoint to
the map
FF — g fU(g) I F = fugilg) I F

which is f. applied to the canonical map F — g.(g')"'F. To check this map is an
isomorphism we can compute what happens on stalks. Let 3’ : Spec(k) — Y’ be
a geometric point with image y in Y. By Lemma the stalks are I'(X,, Fy/)
and I'(X,, F,) respectively. Here the sheaves F, and F,s are the pullbacks of F
by the projections X, — X and Xz//’ — X. Thus we see that the groups agree by
Lemma [39.5] We omit the verification that this isomorphism is compatible with
our map. O

At this point we start discussing the proper base change theorem. To do so we
introduce some notation. consider a commutative diagram

X/ H" X
g
(91.5.1) f/l lf

yvi_ 9.y
of morphisms of schemes. Then we obtain a commutative diagram of sites

X! — X

étale étale

9small
!
fsmalli fsmatt

Gsmall
U
Yétale > Y:étale

For any object E of D(X¢tq1e) We obtain a canonical base change map

(91.5.2) Goman B fsmatt B — Rl o (Goman) " E
in D(YY/,,.).- See Cohomology on Sites, Remark where we use the constant

étale
sheaf Z as our sheaf of rings. We will usually omit the subscripts gmqy in this
formula. For example, if F = F[0] where F is an abelian sheaf on X4, the base

change map is a map
(91.5.3) g 'Rf.F — Rf.(¢)'F
in D(Yé/tale)'
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The map has no chance of being an isomorphism in the generality given
above. The goal is to show it is an isomorphism if the diagram is cartesian,
f : X — Y proper, the cohomology sheaves of E are torsion, and F is bounded
below. To study this question we introduce the following terminology. Let us
say that cohomology commutes with base change for f : X — Y if is an
isomorphism for every diagram where X’ = Y’ Xy X and every torsion
abelian sheaf F.

Lemma 91.6. Let f: X — Y be a proper morphism of schemes. The following
are equivalent
(1) cohomology commutes with base change for f (see above),
(2) for every prime number ¢ and every injective sheaf of Z/0Z-modules T
on X¢are and every diagram where X' = Y’ xy X the sheaves
RIfI(g") "L are zero for q > 0.

Proof. It is clear that (1) implies (2). Conversely, assume (2) and let F be a
torsion abelian sheaf on Xgiq.. Let Y/ — Y be a morphism of schemes and let
X' =Y’ xy X with projections ¢’ : X’ — X and f’ : X’ — Y’ as in diagram
(191.5.1). We want to show the maps of sheaves

g 'RULF — R ) F
are isomorphisms for all ¢ > 0.
For every n > 1, let F[n] be the subsheaf of sections of F annihilated by n. Then
F = colim F[n]. The functors g=! and (¢’)~! commute with arbitrary colimits (as
left adjoints). Taking higher direct images along f or f’ commutes with filtered
colimits by Lemma [51.7] Hence we see that

g 'RUf,F =colimg 'RIf, F[n] and RIf.(¢")"'F = colim R?f.(¢') "  F[n]

Thus it suffices to prove the result in case F is annihilated by a positive integer n.
If n = ¢n’ for some prime number ¢, then we obtain a short exact sequence

0— Fl¢] - F — F/F[¢] -0

Observe that F/F[{] is annihilated by n’. Moreover, if the result holds for both
F[¢] and F/F[], then the result holds by the long exact sequence of higher direct
images (and the 5 lemma). In this way we reduce to the case that F is annihilated
by a prime number .

Assume F is annihilated by a prime number ¢. Choose an injective resolution
F — I* in D(X¢tate, Z/¢Z). Applying assumption (2) and Leray’s acyclicity lemma
(Derived Categories, Lemma [16.7)) we see that

fulgh'ze
computes Rf.(g')~1F. We conclude by applying Lemma O

Lemma 91.7. Let f: X — Y and g: Y — Z be proper morphisms of schemes.
Assume

(1) cohomology commutes with base change for f,
(2) cohomology commutes with base change for go f, and
(3) f is surjective.

Then cohomology commutes with base change for g.
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Proof. We will use the equivalence of Lemma [91.6] without further mention. Let ¢
be a prime number. Let Z be an injective sheaf of Z/¢Z-modules on Y¢;4.. Choose
an injective map of sheaves f~1Z — J where J is an injective sheaf of Z/(Z-
modules on Zgtqe. Since f is surjective the map 7 — f,.J is injective (look at
stalks in geometric points). Since 7 is injective we see that Z is a direct summand
of foJ. Thus it suffices to prove the desired vanishing for f..J.

Let Z' — Z be a morphism of schemes and set Y = Z' Xz Y and X' = 7' xz X =
Y’'xyX. Denotea: X' — X,b:Y' = Y,and c: Z' — Z the projections. Similarly
for f/: X' >Y and¢ :Y' — Z'. By Lemmawe have b= f,J = fla=1J. On
the other hand, we know that RYf.a=17 and RI(g' o f').a~1J are zero for q > 0.
Using the spectral sequence (Cohomology on Sites, Lemma

RPg.Rfla™'T = RP*I(g o f')ua™'T
we conclude that RPg. (b= f.J) = RPg.(fla=tJ) = 0 for p > 0 as desired. O

Lemma 91.8. Let f: X — Y and g:Y — Z be proper morphisms of schemes.
Assume

(1) cohomology commutes with base change for f, and
(2) cohomology commutes with base change for g.

Then cohomology commutes with base change for go f.

Proof. We will use the equivalence of Lemma [91.6] without further mention. Let ¢
be a prime number. Let Z be an injective sheaf of Z/¢Z-modules on X¢tq.. Then
f+Z is an injective sheaf of Z/¢Z-modules on Ygiq. (Cohomology on Sites, Lemma
[14.2)). The result follows formally from this, but we will also spell it out.

Let Z' — Z be a morphism of schemes andset Y = Z' Xz Y and X' = 7' xz X =
Y'xyX. Denotea: X' — X,b:Y' —Y,and c: Z' — Z the projections. Similarly
for f/: X' > Y and ¢ : Y — Z'. By Lemmawe have b= f, 7 = fla 'T.
On the other hand, we know that R?f.a='Z and R9(g').b=! f.T are zero for ¢ > 0.
Using the spectral sequence (Cohomology on Sites, Lemma

RPG.Rfla™'T = R"*4(g o f).a™'T
we conclude that RP(¢’ o f'),a™*Z = 0 for p > 0 as desired. O

Lemma 91.9. Let f: X — Y be a finite morphism of schemes. Then cohomology
commutes with base change for f.

Proof. Observe that a finite morphism is proper, see Morphisms, Lemma [44.11
Moreover, the base change of a finite morphism is finite, see Morphisms, Lemma
Thus the result follows from Lemma combined with Proposition[s5.2l [

Lemma 91.10. To prove that cohomology commutes with base change for every
proper morphism of schemes it suffices to prove it holds for the morphism P§ — S
for every scheme S.

Proof. Let f : X — Y be a proper morphism of schemes. Let Y = (JY; be an
affine open covering and set X; = f~*(Y;). If we can prove cohomology commutes
with base change for X; — Y;, then cohomology commutes with base change for
f. Namely, the formation of the higher direct images commutes with Zariski (and
even étale) localization on the base, see Lemma Thus we may assume Y is
affine.
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Let Y be an affine scheme and let X — Y be a proper morphism. By Chow’s
lemma there exists a commutative diagram

X<TX’*>P§}
Y

where X’ — P¥ is an immersion, and 7 : X’ — X is proper and surjective, see
Limits, Lemma Since X — Y is proper, we find that X’ — Y is proper
(Morphisms, Lemma . Hence X’ — P% is a closed immersion (Morphisms,
Lemma [1.7)). It follows that X’ — X xy P} = P% is a closed immersion (as an
immersion with closed image).

By Lemma it suffices to prove cohomology commutes with base change for
m and X’ — Y. These morphisms both factor as a closed immersion followed by
a projection P% — S (for some S). By Lemma the result holds for closed
immersions (as closed immersions are finite). By Lemma it suffices to prove
the result for projections P — S.

For every n > 1 there is a finite surjective morphism
P{ x5... x5 Py — P4
given on coordinates by
((x1:91), (@2 y2), ooy (@n tyn)) — (Fo i oo i Fy)
where Fy,...,F, in z1,...,y, are the polynomials with integer coefficients such
that
[[@it+w) = Fot" + Fit" ' + ...+ F,

Applying Lemmas [91.7} [01.9] and [91.8 one more time we conclude that the lemma
is true. (I

Theorem 91.11. Let f : X — Y be a proper morphism of schemes. Let g :
Y’ =Y be a morphism of schemes. Set X' =Y’ xy X and consider the cartesian
diagram

X —X
f’l ’ lf
N
Let F be an abelian torsion sheaf on Xgiqie. Then the base change map
9 'Rf.F — Rfl(g)'F
is an isomorphism.

Proof. In the terminology introduced above, this means that cohomology com-
mutes with base change for every proper morphism of schemes. By Lemma
it suffices to prove that cohomology commutes with base change for the morphism
PL — S for every scheme S.
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Let S be the spectrum of a strictly henselian local ring with closed point s. Set
X = P}g and Xg = X, = Pi. Let F be a sheaf of Z/¢Z-modules on X¢iq7.. The
key to our proof is that

Hq

étale

(X, F)=H, ;. (X0, Flx,)-

étale

Namely, choose a resolution F — Z*® by injective sheaves of Z/¢Z-modules. Then
7°|x, is a resolution of F|x, by right HY, . (Xo, —)-acyclic objects, see Lemma
Leray’s acyclicity lemma tells us the right hand side is computed by the
complex HY, ;. (Xo,Z%|x,) which is equal to HY,,,.(X,Z*) by Lemma This
complex computes the left hand side.

Assume S is general and F is a sheaf of Z/¢Z-modules on X¢;q.. Let 5 : Spec(k) —
S be a geometric point of S lying over s € S. We have
(qu*]:)g = Hgtale(P}ng"g’]:|P:DSh ) = Hgtale(Pflﬂ(s)“P7 f‘Pi(S>sﬁp)

S,s

where r(s)* is the residue field of OF, i.e., the separable algebraic closure of £ (s)
in k. The first equality by Theorem and the second equality by the displayed
formula in the previous paragraph.

Finally, consider any morphism of schemes g : T'— S where S and F are as above.
Set f': P — T the projection and let ¢’ : P% — PL the morphism induced by g.
Consider the base change map

g 'RULF — R )F
Let ¢ be a geometric point of T with image 5 = g(¢). By our discussion above the
map on stalks at ¢ is the map

HY, 1o (P sysens Flpr ) — Hiy 1o (P iyoen Flp )

k(s)sep r(t)5ep
Since k(s)%P C k(t)*°P this map is an isomorphism by Lemma |83.12

This proves cohomology commutes with base change for P}; — S and sheaves of
Z/¢Z-modules. In particular, for an injective sheaf of Z/¢Z-modules the higher
direct images of any base change are zero. In other words, condition (2) of Lemma
holds and the proof is complete. O

Lemmal 91.12. Let f : X — Y be a proper morphism of schemes. Let g:Y' —Y
be a morphism of schemes. Set X' = Y’ xy X and denote f' : X' — Y’ and
g : X' = X the projections. Let E € DV (Xga1e) have torsion cohomology sheaves.
Then the base change map g 'Rf.E — Rf.(¢')"1E is an isomorphism.

Proof. This is a simple consequence of the proper base change theorem (Theorem
91.11)) using the spectral sequences

B = RPfHY(E) and B’} = R fl(¢) HY(E)

converging to R" f.E and R"f.(¢’) "1 E. The spectral sequences are constructed in
Derived Categories, Lemma Some details omitted. O

Lemma) 91.13. Let f: X — Y be a proper morphism of schemes. Lety — Y be
a geometric point.
(1) For a torsion abelian sheaf F on X¢iaie we have (R" fo F )y = HZ, 1. ( Xy, Fy).
(2) For E € D" (X¢iare) with torsion cohomology sheaves we have (R" foE)g =
H, (X, Elx)-

étale
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Proof. In the statement, /3 denotes the pullback of F to the scheme theoretic
fibre X5 =¥ xy X. Since pulling back by ¥ — Y produces the stalk of F, the first
statement of the lemma is a special case of Theorem 0I.11} The second one is a
special case of Lemma [91.12 [

92. Applications of proper base change

In this section we discuss some more or less immediate consequences of the proper
base change theorem.

Lemma 92.1. Let K/k be an extension of separably closed fields. Let X be a
proper scheme over k. Let F be a torsion abelian sheaf on Xgiqie. Then the map
HY (X, F)— HY, , (Xk,Flx,) is an isomorphism for q > 0.

étale étale

Proof. Looking at stalks we see that this is a special case of Theorem [91.11 (]

Lemma 92.2. Let f : X — Y be a proper morphism of schemes all of whose
fibres have dimension < n. Then for any abelian torsion sheaf F on Xgtqre we have
RIf,F =0 for q > 2n.

Proof. We will prove this by induction on n for all proper morphisms.

If n =0, then f is a finite morphism (More on Morphisms, Lemma [44.1]) and the
result is true by Proposition

If n > 0, then using Lemma [91.13| we see that it suffices to prove HY, . (X, F) =0
for i > 2n and X a proper scheme, dim(X) < n over an algebraically closed field k

and F is a torsion abelian sheaf on X.

If n = 1 this follows from Theorem [B3.11] Assume n > 1. By Proposition [5.4]
we may replace X by its reduction. Let v : X¥ — X be the normalization. This
is a surjective birational finite morphism (see Varieties, Lemma and hence
an isomorphism over a dense open U C X (Morphisms, Lemma . Then we
see that ¢ : F — v,v~1F is injective (as v is surjective) and an isomorphism over
U. Denote i : Z — X the inclusion of the complement of U. Since U is dense in
X we have dim(Z) < dim(X) = n. By Proposition have Coker(c) = .G for
some abelian torsion sheaf G on Zgqre. Then HY, , (X, Coker(c)) = HY, , (Z,F)
(by Proposition and the Leray spectral sequence) and by induction hypothesis
we conclude that the cokernel of ¢ has cohomology in degrees < 2(n — 1). Thus it
suffices to prove the result for v, =1 F. As v is finite this reduces us to showing that
Hi, (XY, v=LF) is zero for i > 2n. This case is treated in the next paragraph.

étale
Assume X is integral normal proper scheme over k of dimension n. Choose a
nonconstant rational function f on X. The graph X’ C X x P}, of f sits into a
diagram

x&x Lpl
Observe that b is an isomorphism over an open subscheme U C X whose comple-
ment is a closed subscheme Z C X of codimension > 2. Namely, U is the domain of
definition of f which contains all codimension 1 points of X, see Morphisms, Lem-
mas and (combined with Serre’s criterion for normality, see Properties,
Lemma . Moreover the fibres of b have dimension < 1 (as closed subschemes
of P1). Hence R'b,b~1F is nonzero only if i € {0,1,2} by induction. Choose a
distinguished triangle
F = Rbb'F - Q — F[1]
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Using that F — b,b~'F is injective as before and using what we just said, we
see that ) has nonzero cohomology sheaves only in degrees 0,1,2 sitting on Z.
Moreover, these cohomology sheaves are torsion by Lemma [78.2] By induction we
see that H'(X,Q) is zero for i > 2+ 2dim(Z) < 2+ 2(n — 2) = 2n — 2. Thus
it suffices to prove that H'(X’,b=1F) = 0 for i > 2n. At this point we use the
morphism
f:X —P;

whose fibres have dimension < n. Hence by induction we see that R’ f.b~'F = 0
for i > 2(n — 1). We conclude by the Leray spectral seqence

H' (P, R f07 F) = HT(X' b1 F)
and the fact that dim(P}) = 1. O

When working with mod n coefficients we can do proper base change for unbounded
complexes.

Lemmal 92.3. Let f: X =Y be a proper morphism of schemes. Let g:Y' =Y
be a morphism of schemes. Set X' = Y’ xy X and denote f' : X' — Y’ and
g : X' = X the projections. Let n > 1 be an integer. Let E € D(X¢tale, Z/nZ).
Then the base change map g 'Rf.E — Rf.(¢")"1E is an isomorphism.

Proof. It is enough to prove this when Y and Y’ are quasi-compact. By Mor-
phisms, Lemma we see that the dimension of the fibres of f : X — Y and
f': X" =Y’ are bounded. Thus Lemma implies that

fi s Mod(X¢tate, Z/nZ) — Mod(Yerate, Z/nZ)

and
fo: Mod(X¢14, Z/nZ) — Mod(Yyy., Z/nZ)

have finite cohomological dimension in the sense of Derived Categories, Lemma
Choose a K-injective complex Z® of Z/nZ-modules each of whose terms Z" is
an injective sheaf of Z/nZ-modules representing E. See Injectives, Theorem m
By the usual proper base change theorem we find that RYf.(¢g’)~*Z" = 0 for q > 0,
see Theorem [91.11] Hence we conclude by Derived Categories, Lemma that
we may compute Rf/(¢')"'E by the complex f.(¢’)"'Z°®. Another application
of the usual proper base change theorem shows that this is equal to g~ f.Z*® as
desired. O

Lemma 92.4. Let X be a quasi-compact and quasi-separated scheme. Let FE €
DT (X¢tare) and K € DY(Z). Then

RT(X,E®% K) = RT(X,E) 5 K
Proof. Say HY(E) = 0 for i > a and H’(K) = 0 for j > b. We may represent
K by a bounded below complex K* of torsion free Z-modules. (Choose a K-flat
complex L® representing K and then take K*® = 7>,_1L°®. This works because Z

has global dimension 1. See More on Algebra, Lemma ) We may represent F
by a bounded below complex £°. Then F ®]i K is represented by

Tot(E® @z K°®)
Using distinguished triangles

UZ—b+n+1K. — K*®* — Ug—b+nK.
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and the trivial vanishing
H"(X, TOt(g. Rz 02,a+n+1K.) =0

and
H"(RT(X,E) ®% 0> _aint1K®) =0

we reduce to the case where K* is a bounded complex of flat Z-modules. Repeating
the argument we reduce to the case where K*® is equal to a single flat Z-module
sitting in some degree. Next, using the stupid trunctions for £° we reduce in
exactly the same manner to the case where £° is a single abelian sheaf sitting in
some degree. Thus it suffices to show that

H™(X,E ®z M) = H"(X,E) @z M

when M is a flat Z-module and £ is an abelian sheaf on X. In this case we write
M is a filtered colimit of finite free Z-modules (Lazard’s theorem, see Algebra,
Theorem . By Theorem this reduces us to the case of finite free Z-module
M in which case the result is trivially true. O

Lemma 92.5. Let f : X — Y be a proper morphism of schemes. Let E €
DT (X¢tare) have torsion cohomology sheaves. Let K € DV (Ygaie). Then

Rf.E®y K = Rf.(E®y f'K)
m D+(Yétale).

Proof. There is a canonical map from left to right by Cohomology on Sites, Section
We will check the equality on stalks. Recall that computing derived tensor
products commutes with pullbacks. See Cohomology on Sites, Lemma Thus
we have
(E @y [ K)z = Bz 97 Ky

where 7 is the image of T in Y. Since Z has global dimension 1 we see that this
complex has vanishing cohomology in degree < —1+a + b if H/(E) =0 fori > a
and H7(K) = 0 for j > b. Moreover, since H'(E) is a torsion abelian sheaf for each
i, the same is true for the cohomology sheaves of the complex E ®% K. Namely, we
have

(Boz ['K)©zQ=(EezQ) e (f 'Kz Q)
which is zero in the derived category. In this way we see that Lemma [01.13] applies
to both sides to see that it suffices to show
RT(Xy, E|x, ®7 (Xy = )~ ' Ky) = RU(Xy, E|x,) ©% Ky
This is shown in Lemma [92.4] ([l

93. Local acyclicity

In this section we deduce local acyclicity of smooth morphisms from the smooth
base change theorem. In SGA 4 or SGA 4.5 the authors first prove a version of
local acyclicity for smooth morphisms and then deduce the smooth base change
theorem.

We will use the formulation of local acyclicity given by Deligne [Del77, Definition
2.12, page 242]. Let f : X — S be a morphism of schemes. Let T be a geometric
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point of X with image 5 = f(Z) in S. Let  be a geometric point of Spec(OgY).
We obtain a commutative diagram

FE,Z =t XSpeC(O‘;’%) Spec((/);(h,f) - Spec(ogchj) H)Jf
t Spec(Ogy) — S

The scheme F3; is called a variety of vanishing cycles of f at T. Let K be an
object of D(X¢tare). For any morphism of schemes ¢g : Y — X we write RI'(Y, K)
instead of RI‘(Yémle,g;}m”K). Since Oj}hj is strictly henselian we have Kz =

RF(Spec((’)_ﬁ(}%), K). Thus we obtain a canonical map
(93.0.1) sz Kz — RU(Fy 7, K)

w,f’
by pulling back cohomology along Fy; — Spec(O%'5).-

Definition 93.1. Let f: X — S be a morphism of schemes. Let K be an object
of D(Xétale).

(1) Let T be a geometric point of X with image 5 = f(T). We say f is locally
acyclic at T relative to K if for every geometric point ¢ of Spec((’)gf%) the
map is an isomorphisnﬂ

(2) We say f is locally acyclic relative to K if f is locally acyclic at T relative
to K for every geometric point T of X.

(3) We say f is universally locally acyclic relative to K if for any morphism
S’ — S of schemes the base change f’ : X' — S’ is locally acyclic relative
to the pullback of K to X’.

(4) We say f is locally acyclic if for all geometric points T of X and any integer
n prime to the characteristic of x(Z), the morphism f is locally acyclic at
T relative to the constant sheaf with value Z/nZ.

(5) We say f is undversally locally acyclic if for any morphism S° — S of
schemes the base change f': X’ — S’ is locally acyclic.

Let M be an abelian group. Then local acyclicity of f : X — S with respect to the
constant sheaf M boils down to the requirement that
M if ¢g=0
Hq(Fz,tvM)_{O if ¢#0
for any geometric point Z of X and any geometric point ¢ of Spec(ng‘f@)). In this
way we see that being locally acyclic corresponds to the vanishing of the higher

cohomology groups of the geometric fibres F; of the maps between the strict
henselizations at = and 5.

Proposition| 93.2. Let f: X — S be a smooth morphism of schemes. Then f is
universally locally acyclic.

Proof. Since the base change of a smooth morphism is smooth, it suffices to show
that smooth morphisms are locally acyclic. Let T be a geometric point of X with
image s = f(T). Let t be a geometric point of Spec(Oghf(E)). Since we are trying to

1We do not assume % is an algebraic geometric point of Spec(Oghg). Often using Lemmaw

one may reduce to this case.

[Del77, Definition
2.12, page 242] and
[Del77, Definition
(1.3), page 54|
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prove a property of the ring map Og — Oz (see discussion following Definition

| we may and do replace f : X — S by the base change X Xxg Spec(@%’_fg) —

Spec(Og). Thus we may and do assume that S is the spectrum of a strictly
henselian local ring and that s lies over the closed point of S.

We will apply Lemma to the diagram
X <~—— X{
h

"
S<——1
and the sheaf 7 = M where M = Z/nZ for some integer n prime to the charac-
teristic of the residue field of . We know that the map f~'R%¢,F — Rih,e ' F
is an isomorphism by smooth base change, see Theorem (the assumption on
torsion holds by our choice of n). Thus Lemmam gives us the middle equality in
HY(F. 3, M) = H%(Spec(O¥'3) xs t, M) = H'(Spec(0%s) x5, M) = HI(t, M)

Tt

For the outer two equalities we use that S = Spec(@%’%). Since ¢ is the spectrum
of a separably closed field we conclude that

M if ¢g=0

which is what we had to show (see discussion following Definition [93.1)). O

Lemmal 93.3. Let f : X — S be a morphism of schemes. Let F be a locally
constant abelian sheaf on Xgaie such that for every geometric point T of X the
abelian group Fz is a torsion group all of whose elements have order prime to the
characteristic of the residue field of T. If f is locally acyclic, then f is locally acyclic
relative to F.

Proof. Namely, let T be a geometric point of X. Since F is locally constant we

see that the restriction of F to Spec(O%‘E) is isomorphic to the constant sheaf M

with M = Fz. By assumption we can write M = colim M; as a filtered colimit of

finite abelian groups M; of order prime to the characteristic of the residue field of

7. Consider a geometric point ¢ of Spec(Oghf(I ). Since F 7 is affine, we have
HY(Fy3, M) = colim HY(Fy 3, M;)

Tt z,t

by Lemma For each i we can write M; = @ Z/n; ;Z as a finite direct sum
for some integers n; ; prime to the characteristic of the residue field of . Since f
is locally acyclic we see that

Z/n;;Z if ¢q=0
H( xt7Z/nZ,] ) { /OJ lf q7é0

See discussion following Definition Taking the direct sums and the colimit we
conclude that

HY(F. ;

RS

y_[M it a=0
10 if g#0

and we win. O
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Lemma 93.4. Let

X/H/'X
g

f/l lf
g9

S ——= 85
be a cartesian diagram of schemes. Let K be an object of D(Xgpare). Let T be a
geometric point of X' with image T in X. If

(1) f is locally acyclic at T relative to K and

(2) g is locally quasi-finite, or S’ = lim S; is a directed inverse limit of schemes
locally quasi-finite over S with affine transition morphisms, or g : S — S
is integral,

then f' locally acyclic at T relative to (¢') K.
Proof. Denote § and 5 the images of 7 and T in S’ and S. Let  be a geometric

point of the spectrum of Spec(O%) ) and denote ¢ the image in Spec(Og%). By
Algebra, Lemma [156.6] and our assumptions on g we have

h h h
Oﬁ(,i ®O;h? Ogl’gl — (9;(,’5/
is an isomorphism. Since by our conventions k(t) = ﬁ(f/) we conclude that
FE’E’ = SpeC (O;?/’E/ ®O§}/z‘? /{(i/)> = SpeC (Og(b;f ®Ogi% I{(f)) = FE,E

In other words, the varieties of vanishing cycles of f’ at T’ are examples of varieties
of vanishing cycles of f at T. The lemma follows immediately from this and the
definitions. O

94. The cospecialization map
Let f: X — S be a morphism of schemes. Let T be a geometric point of X with
image s = f(Z) in S. Let t be a geometric point of Spec(@%{%). Let K € D(Xgtaie)-
For any morphism ¢g : ¥ — X of schemes we write K|y instead of g K and
RI(Y, K) instead of RT'(Yerate, 9oy K)- We claim that if

(1) K is bounded below, i.e., K € D™ (Xgsaie),
(2) f is locally acyclic relative to K

—1
small

then there is a cospecialization map
cosp : RI'(X3, K) — RI' (X5, K)

which will be closely related to the specialization map considered in Section [75]and
especially Remark [75.8]

To construct the map we consider the morphisms
X; 25 X x5 Spec(OFy) - X5
The unit of the adjunction between h~! and Rh, gives a map

ﬁK,E,i : K|X><sSpec((9§’f§) — Rh, (K|X;)
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in D((X x 5Spec(OF%))étate)- Lemma below shows that the pullback i ™!y 5 7
is an isomorphism under the assumptions above. Thus we can define the cospecial-
ization map as the composition

RI(X7, K) = RT(X xg Spec(0%%), Rh.(K|x,))

L RT(Xs,i ' Rh.(K|x.)
(7 Bpz )

RF(X§7 i71 (K|X><SSpec((9;f%)))
— RI(X, K)

Lemma 94.1. The map i_lﬁK’gi s an isomorphism.

Proof. The construction of the maps h, i, 3 K3 only depends on the base change of
X and K to Spec((’)i{%). Thus we may and do assume that S is a strictly henselian
scheme with closed point 5. Observe that the local acyclicity of f relative to K
is preserved by this base change (for example by Lemma or just directly by
comparing strictly henselian rings in this very special case).

Let T be a geometric point of X5. Or equivalently, let T be a geometric point whose
image by f is 5. Let us compute the stalk of 713 K51 at T. First, we have

(flﬁK,E,E)i = (ﬂK,E,Z)f
since pullback preserves stalks, see Lemma Since we are in the situation S =
Spec(Og) we see that h : X7 — X has the property that X3 x x Spec(O%'z) = Fy -
Thus we see that

(Brs7)7: Kz — Rh(K|x.)z = RU(Fy 7, K)

0

where the equal sign is Theorem It follows that the map (5 K 51)7 1s none
other than the map a 77 used in Definition The result follows as we may
check whether a map is an isomorphism in stalks by Theorem [29.10] a

The cospecialization map when it exists is trying to be the inverse of the special-
ization map.

Lemma 94.2. In the situation above, if in addition f is quasi-compact and quasi-
separated, then the diagram

(Rf<K)s — RI'(X5, K)

spl Tcosp

(Rf«K); — RI'(X3, K)
is commutative.
Proof. As in the proof of Lemma we may replace S by Spec(Og’%). Then our
maps simplify to b : Xz = X, i : X5 — X, and Br 57 : K — Rh.(K|x,). Using
that (Rf.K)s = RT'(X, K) by Theorem the composition of sp with the base

change map (Rf.K); — RI'(X;, K) is just pullback of cohomology along h. This
is the same as the map

ﬂK§¥
RT(X,K) —=% RI(X, Rh.(K|x,)) = RT(X7, K)
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Now the map cosp first inverts the = sign in this displayed formula, then pulls
back along i, and finally applies the inverse of i~'3 K57 Hence we get the desired
commutativity. O

Lemma 94.3. Let f: X — S be a morphism of schemes. Let K € D(Xgtaie)-
Assume

(1) K is bounded below, i.e., K € DT (Xgtaie),

(2) f is locally acyclic relative to K,

(3) f is proper, and

(4) K has torsion cohomology sheaves.
Then for every geometric point 5 of S and every geometric point t of Spec((’)%”%)
both the specialization map sp : (Rf+K)s — (Rf+K)7 and the cospecialization map
cosp : RI'(X3, K) — RI'(X5, K) are isomorphisms.

Proof. By the proper base change theorem (in the form of Lemma we have
(Rf.K)s = RT'(X3, K) and similarly for ¢. The “correct” proof would be to show
that the argument in Lemma[94.2] shows that sp and cosp are inverse isomorphisms
in this case. Instead we will show directly that cosp is an isomorphism. From the
discussion above we see that cosp is an isomorphism if and only if pullback by 4

RT(X xg Spec(0g%), Rh.(K|x,)) — RT(X5,i" 'Rh.(K|x,))

is an isomorphism in D*(Ab). This is true by the proper base change theorem
for the proper morphism f' : X xg Spec(Og%) — Spec(Og%) by the morphism
5 — Spec(Of{%) and the complex K’ = Rh.(K|x.). The complex K’ is bounded
below and has torsion cohomology sheaves by Lemma Since Spec(@%{%) is
strictly henselian with 35 lying over the closed point, we see that the source of
the displayed arrow equals (Rf.K')s and the target equals RI'(X5, K') and the
displayed map is an isomorphism by the already used Lemma [91.13] Thus we see
that three out of the four arrows in the diagram of Lemma are isomorphisms
and we conclude. O

Lemmal 94.4. Let f : X — S be a morphism of schemes. Let F be an abelian
sheaf on Xspare. Assume

(1) f is smooth and proper

(2) F is locally constant, and

(3) Fz is a torsion group all of whose elements have order prime to the residue

characteristic of T for every geometric point T of X.

Then for every geometric point 3 of S and every geometric point t of Spec(@%’fg)
the specialization map sp : (Rf+F)s — (Rf.F)z is an isomorphism.

Proof. This follows from Lemmas and and Proposition [93.2] O

95. Cohomological dimension

We can deduce some bounds on the cohomological dimension of schemes and on
the cohomological dimension of fields using the results in Section [83]and one, seem-
ingly innocuous, application of the proper base change theorem (in the proof of

Proposition [95.6)).
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Definition/ 95.1. Let X be a quasi-compact and quasi-separated scheme. The
cohomological dimension of X is the smallest element

cd(X) € {0,1,2,...} U {oo}

such that for any abelian torsion sheaf F on Xgtq;. we have Hétale(X, F) =0 for

i > cd(X). If X = Spec(A) we sometimes call this the cohomological dimension of
A.

If the scheme is in characteristic p, then we often can obtain sharper bounds for the
vanishing of cohomology of p-power torsion sheaves. We will address this elsewhere
(insert future reference here).

Lemma 95.2. Let X = lim X; be a directed limit of a system of quasi-compact
and quasi-separated schemes with affine transition morphisms. Then cd(X) <
max cd(X;).

Proof. Denote f; : X — X; the projections. Let F be an abelian torsion sheaf

on X¢iqre- Then we have F = lim f[lf,»7*.7-' by Lemma Thus HY, . (X, F) =
colim HY, , (X;, fi,«+F) by Theorem The lemma follows. a

Lemma) 95.3. Let K be a field. Let X be a 1-dimensional affine scheme of finite
type over K. Then cd(X) <1+ cd(K).

Proof. Let F be an abelian torsion sheaf on X¢;4.. Consider the Leray spectral
sequence for the morphism f : X — Spec(K). We obtain

EP? = HP(Spec(K), R1f.F)
converging to H%M? (X, F). The stalk of RIf,F at a geometric point Spec(K) —

étale
Spec(K) is the cohomology of the pullback of F to X4. Hence it vanishes in degrees
> 2 by Theorem [83.10 O

Lemma 95.4. Let L/K be a field extension. Then we have cd(L) < cd(K) +
trdegy (L).

Proof. If trdegy (L) = oo, then this is clear. If not then we can find a sequence
of extensions L = L,./L,_1/.../L1/Ly = K such that trdeg; (L;y1) = 1 and
r = trdegy (L). Hence it suffices to prove the lemma in the case that » = 1. In this
case we can write L = colim A; as a filtered colimit of its finite type K-subalgebras.
By Lemma [95.2] it suffices to prove that cd(4;) < 1+ cd(K). This follows from
Lemma [05.3 t

Lemma 95.5. Let K be a field. Let X be a scheme of finite type over K. Let
x € X. Set a = trdegy (k(x)) and d = dim,(X). Then there is a map

K(ty,....ta)*? — 0%,

such that
(1) the residue field of(’)ﬁ(h@ is a purely inseparable extension of K (t1,...,t,)%P,
(2) Og(h,x is a filtered colimit of finite type K (t1, ... ,tq)%P-algebras of dimension
<d-a.

Proof. We may assume X is affine. By Noether normalization, after possibly
shrinking X again, we can choose a finite morphism 7 : X — A%, see Algebra,
Lemma [115.5] Since k(x) is a finite extension of the residue field of 7(z), this
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residue field has transcendence degree a over K as well. Thus we can find a finite
morphism 7/ : A% — A% such that 7'(7(x)) corresponds to the generic point of
the linear subspace A%, C A?( given by setting the last d — a coordinates equal to
zero. Hence the composition

o d P a
X — A% = A%

of 7’ o and the projection p onto the first a coordinates maps x to the generic
point n € A% . The induced map

Kltiseo 1) = O3, — O,

on étale local rings satisfies (1) since it is clear that the residue field of (’)ﬁ(h’z
is an algebraic extension of the separably closed field K(t1,...,t,)°?. On the
other hand, if X = Spec(B), then Oﬁ(h@ = colim B; is a filtered colimit of étale
B-algebras B;. Observe that B; is quasi-finite over Klt1,...,tq] as B is finite
over K[t1,...,tq]. We may similarly write K (¢1,...,t,)%P = colim 4; as a filtered
colimit of étale Klti,...,t,]-algebras. For every ¢ we can find an j such that
A = K(ty,...,t,)%P — (’)%LI factors through a map ; ; : A; — B;. Then Bj is
quasi-finite over A;[ta41,...,tq). Hence

B;; = B; Qp; ;A K(ty,...,ta)%?

has dimension < d — a as it is quasi-finite over K(t1,...,tq)*P[ta+1,-..,tqa]. The
proof of (2) is now finished as O, is a filtered colimitE| of the algebras B, ;. Some
details omitted. [

Proposition|95.6. Let K be a field. Let X be an affine scheme of finite type over
K. Then we have cd(X) < dim(X) + cd(K).

Proof. We will prove this by induction on dim(X). Let F be an abelian torsion
sheaf on Xgiqie.

The case dim(X) = 0. In this case the structure morphism f : X — Spec(K)
is finite. Hence we see that R'f,F = 0 for i > 0, see Proposition m Thus
Lo (X, F) = (Spec(K), f«F) by the Leray spectral sequence for f (Coho-

1
étale étale

mology on Sites, Lemma [14.5)) and the result is clear.
The case dim(X) = 1. This is Lemma [95.3]

Assume d = dim(X) > 1 and the proposition holds for finite type affine schemes
of dimension < d over fields. By Noether normalization, see for example Varieties,
Lemma there exists a finite morphism f : X — A%. Recall that R'f.F = 0
for i > 0 by Proposition m By the Leray spectral sequence for f (Cohomology
on Sites, Lemma we conclude that it suffices to prove the result for 7w,F on
AL

Interlude I. Let j : X — Y be an open immersion of smooth d-dimensional varieties
over K (not necessarily affine) whose complement is the support of an effective
Cartier divisor D. The sheaves R?j,F for ¢ > 0 are supported on D. We claim

12Iet Rbea ring. Let A = colim;ecs A; be a filtered colimit of finitely presented R-algebras.
Let B = colimj¢ y B; be a filtered colimit of R-algebras. Let A — B be an R-algebra map. Assume
that for all 4 € I there is a j € J and an R-algebra map v; ; : A; — Bj. Say (i/,j',¢ j1) >
(4,4,%i,5) ifi' >4, 77 > j, and 4; ; and ;s i+ are compatible. Then the collection of triples forms
a directed set and B = colim B; Qup; ;A A.
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that (R9j,F)y = 0 for a = trdegg (k(y)) > d — q. Namely, by Theorem we
have
(R9j,F)y = HY(Spec(O3",)) xy X, F)
Choose a local equation f € my = Oy,, for D. Then we have
Spec(03”,) xy X = Spec(O3/,[1/f])
Using Lemma [95.5) we get an embedding
Kt 1a) () = K(t1,... ta) P[]y [1/2] — O3 [1/1]

Since the transcendence degree over K of the fraction field of Of,hy is d, we see that
(’)f,hy [1/f] is a filtered colimit of (d —a — 1)-dimensional finite type algebras over the
field K (t1,...,t,)*(z) which itself has cohomological dimension 1 by Lemmal[95.4]
Thus by induction hypothesis and Lemma [95.2| we obtain the desired vanishing.

Interlude II. Let Z be a smooth variety over K of dimension d — 1. Let E, C Z
be the set of points z € Z with trdegy (k(z)) < a. Observe that E, is closed under
specialization, see Varieties, Lemma [20.3] Suppose that G is a torsion abelian sheaf
on Z whose support is contained in F,. Then we claim that H%,,,.(Z,G) = 0 for
b > a+ cd(K). Namely, we can write G = colim G; with G; a torsion abelian sheaf
supported on a closed subscheme Z; contained in E,, see Lemma Then the
induction hypothesis kicks in to imply the desired vanishing for G Finally, we

conclude by Theorem [F1.3]

Consider the commutative diagram

d 1 d—1
Al - Pl xx AL

N

d—1
AK

Observe that j is an open immersion of smooth d-dimensional varieties whose com-
plement is an effective Cartier divisor D. Thus we may use the results obtained in
interlude I. We are going to study the relative Leray spectral sequence

EP' = RPg,R1j.F = RPHIf.F

Since R%j,F for ¢ > 0 is supported on D and since g|p : D — A;lgl is an isomor-
phism, we find RPg,R%j,F = 0 for p > 0 and ¢ > 0. Moreover, we have R?j,F =0
for ¢ > d. On the other hand, ¢ is a proper morphism of relative dimension 1.
Hence by Lemma [02.2] we see that RPg,j.F = 0 for p > 2. Thus the E>-page of
the spectral sequence looks like this

g*Rdj*]: 0 0
g+ R?j. F 0 0
g*le*}' 0 0

L3Here we first use Proposition m to write G; as the pushforward of a sheaf on Z;, the
induction hypothesis gives the vanishing for this sheaf on Z;, and the Leray spectral sequence for
Z; — Z gives the vanishing for G;.
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We conclude that RYf,F = g.R%j.F for ¢ > 2. By interlude I we see that the
support of R?f,F for ¢ > 2 is contained in the set of points of A}i(_l whose residue
field has transcendence degree < d — ¢. By interlude II

HP(ASY RIf,F)=0forp>d—q+cd(K)and ¢ > 2
On the other hand, by Theorem we have R? f.JF; = H?(AL, F) = 0 (vanishing

by the case of dimension 1) where 7 is the generic point of A‘[igl. Hence by interlude
IT again we see

HP (A5 R f.F) = 0 for p > d = 2+ cd(K)
Finally, we have
HP(AS Y RIf,F)y=0forp>d—1+cd(K)and q=0,1

by induction hypothesis. Combining everything we just said with the Leray spectral
sequence HP(A% ', R1f, F) = HPT9(A%, F) we conclude. O

Lemma 95.7. Let K be a field. Let X be an affine scheme of finite type over K.
Let E, C X be the set of points x € X with trdegy (k(z)) < a. Let F be an abelian
torsion sheaf on Xgiare whose support is contained in E,. Then Hé?tale(X, F)=0
forb>a+ cd(K).

Proof. We can write F = colim F; with F; a torsion abelian sheaf supported on
a closed subscheme Z; contained in E,, see Lemma [74.5] Then Proposition [95.6]
gives the desired vanishing for F;. Details omitted; hints: first use Proposition [£6.4]
to write F; as the pushforward of a sheaf on Z;, use the vanishing for this sheaf
on Z;, and use the Leray spectral sequence for Z; — Z to get the vanishing for F;.
Finally, we conclude by Theorem [51.3 O

Lemma 95.8. Let f: X — Y be an affine morphism of schemes of finite type
over a field K. Let E,(X) be the set of points x € X with trdegy (k(x)) < a. Let
F be an abelian torsion sheaf on Xgiqre whose support is contained in E,. Then
RIf.F has support contained in E,_,(Y).

Proof. The question is local on Y hence we can assume Y is affine. Then X is
affine too and we can choose a diagram

X — A?("'m

i
J
Y —— A}

where the horizontal arrows are closed immersions and the vertical arrow on the
right is the projection (details omitted). Then j,R?f.F = Ripr,i.F by the van-
ishing of the higher direct images of ¢ and j, see Proposition Moreover, the
description of the stalks of j, in the proposition shows that it suffices to prove
the vanishing for j,R?f.F. Thus we may assume f is the projection morphism
pr: A% — A% and an abelian torsion sheaf F on A% satisfying the assump-
tion in the statement of the lemma.

Let y be a point in A%. By Theorem [53.1] we have
(Ripr, F)y = HI(ARH™ x ay. Spec(O3,), F) = HY(A.,. , F)

sh 4
OY,y
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Say b = trdegy (k(y)). From Lemma we get an embedding
L=K(t,...,ts)*" — O3,

Write O3 = colim B; as the filtered colimit of finite type L-subalgebras B; C Oy,
containing the ring K[T1,...,T,] of regular functions on A’%. Then we get

o = lim A}
OY},Ly Bi

If z € A} is a point in the support of F, then the image z of z in A?J’" sat-
isfies trdegg (k(z)) < a by our assumption on F in the lemma. Since Of/hy is a
filtered colimit of étale algebras over K[T1,...,T,] and since B; C (’);,hy we see that
k(z)/k(x) is algebraic (some details omitted). Then trdeg, (k(z)) < a and hence
trdeg; (k(z)) < a — b. By Lemma we see that

HI(A% ,F)=0forqg>a—0b

Thus by Theorem we get (Rf.F)y =0 for ¢ > a — b as desired. O

96. Finite cohomological dimension
We continue the discussion started in Section [05]

Definition 96.1. Let f: X — Y be a quasi-compact and quasi-separated mor-
phism of schemes. The cohomological dimension of f is the smallest element

cd(f) € {0,1,2,...} U{oo}
such that for any abelian torsion sheaf F on X¢¢qie we have R f, F = 0 for i > cd(f).

Lemma 96.2. Let K be a field.

(1) If f: X =Y is a morphism of finite type schemes over K, then cd(f) < oc.
(2) If cd(K) < o0, then cd(X) < oo for any finite type scheme X over K.

Proof. Proofof (1). We may assume Y is affine. We will use the induction principle
of Cohomology of Schemes, Lemma to prove this. If X is affine too, then the
result holds by Lemma [95.8] Thus it suffices to show that if X = U UV and the
result is true for U - Y, V — Y, and UNV — Y, then it is true for f. This
follows from the relative Mayer-Vietoris sequence, see Lemma

Proof of (2). We will use the induction principle of Cohomology of Schemes, Lemma
to prove this. If X is affine, then the result holds by Proposition [95.6f Thus
it suffices to show that if X = U UV and the result is true for U, V, and U NV,
then it is true for X. This follows from the Mayer-Vietoris sequence, see Lemma
00, 1} O

Lemma 96.3. Cohomology and direct sums. Let n > 1 be an integer.

(1) Let f : X = Y be a quasi-compact and quasi-separated morphism of
schemes with cd(f) < co. Then the functor

Rf* : D(Xétale, Z/nZ) — D(Yémle, Z/?’LZ)

commutes with direct sums.
(2) Let X be a quasi-compact and quasi-separated scheme with c¢d(X) < oo.
Then the functor

RT(X, ) : D(Xérate, Z/nZ) — D(Z/nZ)

commutes with direct sums.
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Proof. Proof of (1). Since cd(f) < oo we see that
[ s Mod(X¢tate, Z/nZ) — Mod(Yerate, Z/nZ)

has finite cohomological dimension in the sense of Derived Categories, Lemma [32.2
Let I be a set and for i € I let E; be an object of D(Xgtaie, Z/nZ). Choose a K-
injective complex Z? of Z/nZ-modules each of whose terms Z7 is an injective sheaf
of Z/nZ-modules representing E;. See Injectives, Theorem Then @ F; is
represented by the complex @Z? (termwise direct sum), see Injectives, Lemma
By Lemma [51.7] we have

Rf(PI) =P RI(T) =0

for ¢ > 0 and any n. Hence we conclude by Derived Categories, Lemma that
we may compute Rf.(€D E;) by the complex

P =P rz)

(equality again by Lemma [51.7) which represents @ Rf.E; by the already used
Injectives, Lemma [13.4]

Proof of (2). This is identical to the proof of (1) and we omit it. O

Lemma 96.4. Let f: X — Y be a proper morphism of schemes. Let n > 1 be an
integer. Then the functor

Rf. : D(Xeétate, Z/nZ) — D(Ysate, Z/n7Z)
commutes with direct sums.

Proof. It is enough to prove this when Y is quasi-compact. By Morphisms, Lemma
28.5| we see that the dimension of the fibres of f : X — Y is bounded. Thus Lemma
92.2) implies that cd(f) < co. Hence the result by Lemma [96.3} O

Lemma 96.5. Let X be a quasi-compact and quasi-separated scheme such that
cd(X) < 00. Let A be a torsion ring. Let E € D(X¢taie, A) and K € D(A). Then

RU(X,E@% K)=RI'(X,E) ok K

Proof. There is a canonical map from left to right by Cohomology on Sites, Section
Let T'(K) be the property that the statement of the lemma holds for K € D(A).
We will check conditions (1), (2), and (3) of More on Algebra, Remark hold
for T' to conclude. Property (1) holds because both sides of the equality commute
with direct sums, see Lemma m Property (2) holds because we are comparing
exact functors between triangulated categories and we can use Derived Categories,
Lemma Property (3) says the lemma holds when K = A[k] for any shift k € Z
and this is obvious. d

Lemma 96.6. Let f : X — Y be a proper morphism of schemes. Let A be a
torsion ring. Let E € D(Xgqie, A) and K € D(Ygqie, N). Then

Rf.E®; K = Rf.(E®} [~'K)
mn D(Y’étaleaA)'
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Proof. There is a canonical map from left to right by Cohomology on Sites, Section
We will check the equality on stalks at . By the proper base change (in the
form of Lemmawhere Y’ = 7) this reduces to the case where Y is the spectrum
of an algebraically closed field. This is shown in Lemma where we use that

cd(X) < oo by Lemma O

97. Kiinneth in étale cohomology

We first prove a Kiinneth formula in case one of the factors is proper. Then we
use this formula to prove a base change property for open immersions. This then
gives a “base change by morphisms towards spectra of fields” (akin to smooth base
change). Finally we use this to get a more general Kiinneth formula.

Remark| 97.1. Consider a cartesian diagram in the category of schemes:
X X5 Y T> Y
) l \ lg
(&
x—1 2g

Let A be a ring and let £ € D(X¢tate, A) and K € D(Yeraie, A). Then there is a
canonical map

Rf.E®Y Rg.K — Re.(p7'E @Y ¢'K)
For example we can define this using the canonical maps Rf.E — Rc,p~'E and
Rg.K — Rc,q 'K and the relative cup product defined in Cohomology on Sites,
Remark Or you can use the adjoint to the map

¢ (Rf.E®% Rg.K)=p ' f'RA.E® ¢ 'g ' Rg. K - p 'E®} ¢ 'K
which uses the adjunction maps f'Rf,E — FE and g 'Rg, K — K.

Lemma 97.2. Let k be a separably closed field. Let X be a proper scheme over
k. LetY be a quasi-compact and quasi-separated scheme over k.

(1) If E € DY(X¢tare) has torsion cohomology sheaves and K € DV (Yipare),
then

RU(X Xspectry Y1 B ©% pry 'K) = RT(X, E) ©% RU(Y, K)

(2) Ifn > 1 is an integer, Y is of finite type over k, E € D(X¢tale, Z/nZ), and
K € D(Yqie,Z/nZ), then

RT(X Xspec() Y, 011 ' E @7 7 pry  K) = RU(X, E) © .7 RU(Y, K)
Proof. Proof of (1). By Lemma we have
Rprs,, (pry ' E @7 pry | K) = Rpry (pry ' B) 9 K
By proper base change (in the form of Lemma this is equal to the object
RI(X,E) @5 K

of D(Ysta1e). Taking RT(Y,—) on this object reproduces the left hand side of the
equality in (1) by the Leray spectral sequence for pry. Thus we conclude by Lemma
92.4]

Proof of (2). This is exactly the same as the proof of (1) except that we use Lemmas
[96.6] [923] and [96.5] as well as cd(Y) < oo by Lemma [96.2] O
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Lemma 97.3. Let K be a separably closed field. Let X be a scheme of finite type
over K. Let F be an abelian sheaf on Xgiq1e whose support is contained in the set
of closed points of X. Then H1(X,F) =0 for ¢ >0 and F is globally generated.

Proof. (If F is torsion, then the vanishing follows immediately from Lemma W)
By Lemma [74.5] we can write F as a filtered colimit of constructible sheaves F; of
Z-modules whose supports Z; C X are finite sets of closed points. By Proposition
46.4] such a sheaf is of the form (Z; — X).G; where G; is a sheaf on Z;. As K is
separably closed, the scheme Z; is a finite disjoint union of spectra of separably
closed fields. Recall that H9(Z;,G;) = H%(X,F;) by the Leray spectral sequence
for Z; — X and vanising of higher direct images for this morphism (Proposition
55.2)). By Lemmas and we see that H(Z;,G;) is zero for ¢ > 0 and that
H(Z;,G;) generates G;. We conclude the vanishing of H4(X, F;) for ¢ > 0 and that
F; is generated by global sections. By Theorem we see that HI(X,F) =0
for ¢ > 0. The proof is now done because a filtered colimit of globally generated
sheaves of abelian groups is globally generated (details omitted). ([l

Lemma 97.4. Let K be a separably closed field. Let X be a scheme of finite type
over K. Let Q € D(X¢tate). Assume that Qz is nonzero only if x is a closed point
of X. Then

Q=0s H(X,Q)=0 for all i

Proof. The implication from left to right is trivial. Thus we need to prove the
reverse implication.

Assume @ is bounded below; this cases suffices for almost all applications. If @
Is not zero, then we can look at the smallest ¢ such that the cohomology sheaf
H'(Q) is nonzero. By Lemma we have H (X,Q) = HY(X, H(Q)) # 0 and we
conclude.

General case. Let B C Ob(X¢ga1e) be the quasi-compact objects. By Lemma m
the assumptions of Cohomology on Sites, Lemma are satisfied. We conclude
that H4(U,Q) = H°(U, H1(Q)) for all U € B. In particular, this holds for U = X.
Thus the conclusion by Lemma as @ is zero in D(Xeta1) if and only if H4(Q)
is zero for all q. ([

Lemma 97.5. Let K be a field. Let j : U — X be an open immersion of schemes
of finite type over K. LetY be a scheme of finite type over K. Consider the
diagram

Y XSpec(K) X <T Y X Spec(K) U

Then the base change map ¢ 'Rj,F — Rh,p~'F is an isomorphism for F an
abelian sheaf on Ugiqre whose stalks are torsion of orders invertible in K.

Proof. Write F = colim F[n] where the colimit is over the multiplicative system of
integers invertible in K. Since cohomology commutes with filtered colimits in our
situation (for a precise reference see Lemma , it suffices to prove the lemma
for F[n]. Thus we may assume F is a sheaf of Z/nZ-modules for some n invertible
in K (we will use this at the very end of the proof). In the proof we use the short
hand X Xk Y for the fibre product over Spec(K). We will prove the lemma by
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induction on dim(X) + dim(Y). The lemma is trivial if dim(X) < 0, since in this
case U is an open and closed subscheme of X. Choose a point z € X xg Y. We
will show the stalk at Z is an isomorphism.

Suppose that z — x € X and assume trdegy (x(z)) > 0. Set X’ = Spec(O¥',) and
denote U' C X’ the inverse image of U. Consider the base change

YXKX/TYXKU/

o, b

X/ J U’

of our diagram by X’ — X. Observe that X’ — X is a filtered colimit of étale
morphisms. By smooth base change in the form of Lemma the pullback of
¢ 'Rj.F — Rh.p ' F to X' to Y xx X' is the map (¢') " 'Rj.F" — Rj.(p')*F'
where F' is the pullback of F to U’. (In this step it would suffice to use étale
base change which is an essentially trivial result.) So it suffices to show that
(¢ ) 'RjLF" — Rj.(p')~1F is an isomorphism in order to prove that our origi-
nal map is an isomorphism on stalks at Z. By Lemma [05.5] there is a separably
closed field L/K such that X’ = lim X; with X; affine of finite type over L and
dim(X;) < dim(X). For i large enough there exists an open U; C X restricting to
U’ in X’. We may apply the induction hypothesis to the diagram

YXKXi'TYXKUi YLXLXiTYLxLUi
Qi\L ipi equal to qzi lpi
Xi~—"—U; Xi~—"— U

over the field L and the pullback of F to these diagrams. By Lemma [36.3] we
conclude that the map (¢/) "' Rj.F" — Rj.(p')~1F is an isomorphism.

Suppose that z — y € Y and assume trdegy (x(y)) > 0. Let Y = Spec(Og(’fm). By
Lemma, there is a separably closed field L/K such that Y’ = limY; with Y;
affine of finite type over L and dim(Y;) < dim(Y"). In particular Y is a scheme over
L. Denote with a subscript L the base change from schemes over K to schemes
over L. Consider the commutative diagrams

Y’XKXTY'XKU Y’xLXLTY’xLUL
fi lf’ q’l J{p’

Y xg X <——Y xgU and Xp<————1Up
: k | l
X1 7 X1 5

and observe the top and bottom rows are the same on the left and the right. By
smooth base change we see that f~'Rh,p~'F = Rh.,(f')"p~LF (similarly to the
previous paragraph). By smooth base change for Spec(L) — Spec(K) (Lemma
we see that Rjr .Fr is the pullback of Rj.F to X;. Combining these two
observations, we conclude that it suffices to prove the base change map for the upper
square in the diagram on the right is an isomorphism in order to prove that our
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original map is an isomorphism on stalks at EE Then using that Y’ = limY; and
argueing exactly as in the previous paragraph we see that the induction hypothesis
forces our map over Y’ x i X to be an isomorphism.

Thus any counter example with dim(X) + dim(Y") minimal would only have noni-
somorphisms ¢ ' Rj,F — Rh.p~'F on stalks at closed points of X x Y (because
a point z of X X Y is a closed point if and only if both the image of z in X
and in Y are closed). Since it is enough to prove the isomorphism locally, we may
assume X and Y are affine. However, then we can choose an open dense immersion
Y — Y’ with Y’ projective. (Choose a closed immersion ¥ — A% and let Y’ be
the scheme theoretic closure of Y in P%.) Then dim(Y”) = dim(Y") and hence we
get a “minimal” counter example with Y projective over K. In the next paragraph
we show that this can’t happen.

Consider a diagram as in the statement of the lemma such that ¢ 'Rj,F —
Rh.p~'F is an isomorphism at all non-closed points of X xx Y and such that
Y is projective. The restriction of the map to (X X g Y)gser is the corresponding
map for the diagram of the lemma base changed to K**?. Thus we may and do
assume K is separably algebraically closed. Choose a distinguished triangle

¢ 'Rj.F — Rh.p 'F = Q — (¢ ' Rj.F)[1]

in D((X X Y)staie). Since Q is supported in closed points we see that it suffices
to prove H(X xg Y,Q) = 0 for all i, see Lemma m Thus it suffices to prove
that ¢ 'Rj,F — Rh,p ' F induces an isomorphism on cohomology. Recall that
F is annihilated by n invertible in K. By the Kiinneth formula of Lemma [97.2] we
have

RU(X xg Y,q 'Rj.F) = RU(X, Rj.F) 7,7 RU(Y,Z/nZ)
= RU(U, F) ©7 7z RU(Y, Z/nZ)
and
RT(X xg Y, Rh.p~'F) = RU(U xx Y,p~ ' F) = RT(U, F) ®%,,7 RU(Y, Z/nZ)
This finishes the proof. (]

Lemma 97.6. Let K be a field. For any commutative diagram

X X' Y

|

Spec(K)<—— &' <2—T

of schemes over K with X' = X Xgpeq(x) S’ andY = X' x5 T and g quasi-compact
and quasi-separated, and every abelian sheaf F on Tgqe whose stalks are torsion
of orders invertible in K the base change map

(f)Y 'Rg.F — Rh,e ' F

is an isomorphism.

1Here we use that a “vertical composition” of base change maps is a base change map as
explained in Cohomology on Sites, Remark m
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Proof. The question is local on X, hence we may assume X is affine. By Limits,
Lemma we can write X = lim X, as a cofiltered limit with affine transition
morphisms of schemes X; of finite type over K. Denote X| = X; Xgpec(i) S” and
Y, = X/xgsT. By Lemmamit suffices to prove the statement for the squares with
corners X;,Y;,.5;,T;. Thus we may assume X is of finite type over K. Similarly,
we may write F = colim F[n] where the colimit is over the multiplicative system of
integers invertible in K. The same lemma used above reduces us to the case where
F is a sheaf of Z/nZ-modules for some n invertible in K.

We may replace K by its algebraic closure K. Namely, formation of direct image
commutes with base change to K according to Lemma (works for both g and h).
And it suffices to prove the agreement after restriction to X’f. Next, we may replace
X by its reduction as we have the topological invariance of étale cohomology, see
Proposition After this replacement the morphism X — Spec(K) is flat, finite
presentation, with geometrically reduced fibres and the same is true for any base
change, in particular for X’ — S’. Hence (f')~'g.F — Rh.e™1F is an isomorphism

by Lemma [87.2

At this point we may apply Lemma [90.3] to see that it suffices to prove: given a
commutative diagram

X X' Y

h
|
Spec(K) <—— 5" <—— Spec(L)

with both squares cartesian, where S’ is affine, integral, and normal with alge-
braically closed function field K, then Rh.(Z/dZ) is zero for ¢ > 0 and d|n.
Observe that this vanishing is equivalent to the statement that

(f")"'RY(Spec(L) — S').Z/dZ — R'h,Z/dZ
is an isomorphism, because the left hand side is zero for example by Lemma [80.5

Write S" = Spec(B) so that L is the fraction field of B. Write B = (J;.; B; as the
union of its finite type K-subalgebras B;. Let J be the set of pairs (¢,g) wherei € I
and g € B; nonzero with ordering (¢, ¢’) > (¢, ¢) if and only if i’ > ¢ and g maps to
an invertible element of (Bj/),. Then L = colim; g)cs(B;)y. For j = (i,9) € J set
S; = Spec(B;) and U; = Spec((B;)4). Then

X' - Y XXK57<TXXKUJ
j

l l is the colimit of J{ l

S’ <—— Spec(L) S; U,

Thus we may apply Lemma to see that it suffices to prove base change holds
in the diagrams on the right which is what we proved in Lemma O



0F1J

ETALE COHOMOLOGY 205

Lemma 97.7. Let K be a field. Let n > 1 be invertible in K. Consider a
commutative diagram

X X’ Y

|k

Spec(K) <—— 8" <2—T

of schemes with X' = X Xgpee(ry 8" and Y = X' xg T and g quasi-compact and
quasi-separated. The canonical map

P E @Yz (f)'Rg.F — Rh(h'p 'E®F, 5 e 'F)

is an isomorphism if E in DT (Xgsare, Z/nZ) has tor amplitude in [a,00] for some
a€Z and F in DY (Tsare, Z/nZ).

Proof. This lemma is a generalization of Lemma to objects of the derived
category; the assertion of our lemma is true because in Lemma [97.6] the scheme
X over K is arbitrary. We strongly urge the reader to skip the laborious proof
(alternative: read only the last paragraph).

We may represent E by a bounded below K-flat complex £° consisting of flat Z /nZ-
modules. See Cohomology on Sites, Lemma Choose an integer b such that
Hi(F) = 0 for i < b. Choose a large integer N and consider the short exact
sequence
0— UZN+1€. —E* = USNS. —0

of stupid truncations. This produces a distinguished triangle E” — E — E' —
E"[1] in D(X¢tate, Z/nZ). For fixed F both sides of the arrow in the statement of
the lemma are exact functors in E. Observe that

P E" @% )z (f)'Rg.F and  Rh.(h'pT'E" ©F )5 ¢ F)

are sitting in degrees > N +b. Hence, if we can prove the lemma for the object E’,
then we see that the lemma holds in degrees < N + b and we will conclude. Some
details omitted. Thus we may assume E is represented by a bounded complex of
flat Z/nZ-modules. Doing another argument of the same nature, we may assume
E is given by a single flat Z/nZ-module £.

Next, we use the same arguments for the variable F' to reduce to the case where F’
is given by a single sheaf of Z/nZ-modules F. Say F is annihilated by an integer
m|n. If £ is a prime number dividing m and m > ¢, then we can look at the short
exact sequence 0 — F[{] — F — F/F[{] — 0 and reduce to smaller m. This finally
reduces us to the case where F is annihilated by a prime number ¢ dividing n. In
this case observe that

pE@f g (f) T Rg.F =p N (E/LE) @F, (f)) 'Ry F

by the flatness of £. Similarly for the other term. This reduces us to the case where
we are working with sheaves of Fy-vector spaces which is discussed

Assume / is a prime number invertible in K. Assume &, F are sheaves of F,-vector
spaces on Xgiqre and Tgq1.. We want to show that

p @, (f ) 'RYg.F — R (h 'p '€ ®F, e 1 F)

is an isomorphism for every ¢ > 0. This question is local on X hence we may
assume X is affine. We can write £ as a filtered colimit of constructible sheaves
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of Fy-vector spaces on Xeiqie, see Lemma [73.2] Since tensor products commute
with filtered colimits and since higher direct images do too (Lemma we may
assume & is a constructible sheaf of Fy-vector spaces on X¢;q;.. Then we can choose
an integer m and finite and finitely presented morphisms 7; : X; — X,i=1,...,m
such that there is an injective map

E— @ T «Fy
i=1,....m

See Lemma [[44l Observe that the direct sum is a constructible sheaf as well
(Lemma. Thus the cokernel is constructible too (Lemma. By dimension
shifting, i.e., induction on ¢, on the category of constructible sheaves of F,-vector
spaces on X¢qle, it suffices to prove the result for the sheaves m; . F, (details omit-
ted; hint: start with proving injectivity for ¢ = 0 for all constructible £). To prove
this case we extend the diagram of the lemma to

X; o XZ/ » Y;
\Lﬂ'i i‘n’i \Lpi
X ! Y
P h
L
Spec(K) <—— ' <2—T

with all squares cartesian. In the equations below we are going to use that Rm; . =

7 and similarly for 7}, p;, we are going to use the Leray spectral sequence, we

are going to use Lemma [55.3] and we are going to use Lemma (although this

lemma is almost trivial for finite morphisms) for m;, 7}, p;. Doing so we see that
p_lﬂ-lﬁ*Fé ®F, (fl)_qug*]: = 7727*F€ QF, (fl)_qug*]:

= ()" ()T RYg.F)

Similarly, we have
Rih (h'p~ 7 .Fy ®@F, e ' F) = R, (pi . Fr @p, e ' F)
— Rih(p e F)
=T Rihiwp; eV F)
Simce Rih; .p; e ' F = (71)~'(f') "' R%.F by Lemma we conclude. O

Lemma 97.8. Let K be a field. Let n > 1 be invertible in K. Consider a
commutative diagram

X X’ Y

p h
L]
Spec(K) <—— &' <2—1T
of schemes of finite type over K with X' = X Xgpec(r) 5" and Y = X' xg T. The
canonical map

P E @F/nz (f')'RgF — Rh(h™'p ' E®Z )5 ¢ 'F)
is an isomorphism for E in D(X¢tate, Z/nZ) and F in D(Terate, Z/nZ).
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Proof. We will reduce this to Lemma using that our functors commute with
direct sums. We suggest the reader skip the proof. Recall that derived tensor
product commutes with direct sums. Recall that (derived) pullback commutes with
direct sums. Recall that Rh, and Rg, commute with direct sums, see Lemmas
and (this is where we use our schemes are of finite type over K).

To finish the proof we can argue as follows. First we write £ = hocolim7< E. Since
our functors commute with direct sums, they commute with homotopy colimits.
Hence it suffices to prove the lemma for £ bounded above. Similarly for F' we may
assume F' is bounded above. Then we can represent £ by a bounded above complex
& of sheaves of Z/nZ-modules. Then

E® =colimo>_nE°®

(stupid truncations). Thus we may assume £°® is a bounded complex of sheaves of
Z/nZ-modules. For F' we choose a bounded above complex of flat(!) sheaves of
Z /nZ-modules. Then we reduce to the case where F' is represented by a bounded
complex of flat sheaves of Z/nZ-modules. At this point Lemma kicks in and
we conclude. O

Lemma 97.9. Let k be a separably closed field. Let X andY be finite type schemes
over k. Let n > 1 be an integer invertible in k. Then for E € D(X¢tale, Z/nZ) and
K € D(Ytate, Z/nZ) we have

RT(X Xspee(k) Y 01y E © 7 975 ' K) = RT(X, E) ®% ), RT(Y, K)
Proof. By Lemma 97.8 we have
Rprl,*(prl_lE ®%/nz pr2_1K) =F ®%/nz RF(Y7 K)

We conclude by Lemma which we may use because cd(X) < oo by Lemma
196.2 (I

98. Comparing chaotic and Zariski topologies

When constructing the structure sheaf of an affine scheme, we first construct the
values on affine opens, and then we extend to all opens. A similar construction is of-
ten useful for constructing complexes of abelian groups on a scheme X. Recall that
Xaffine,zar denotes the category of affine opens of X with topology given by stan-
dard Zariski coverings, see Topologies, Definition We remind the reader that
the topos of X ¢ fine, zar is the small Zariski topos of X, see Topologies, Lemma
In this section we denote X,f fine the same underlying category with the chaotic
topology, i.e., such that sheaves agree with presheaves. We obtain a morphisms of
sites
€: Xaffine,Zar — Xaffine
as in Cohomology on Sites, Section

Lemma 98.1. In the situation above let K be an object of D (Xaffine). Then
K is in the essential image of the (fully faithful) functor Re.; D(Xaffine,zar) —
D(Xagpine) if and only if the following two conditions hold
(1) RT(0, K) is zero in D(Ab), and
(2) f U = VUW with U V,W C X affine open and VW C U standard
open (Algebra, Definition , then the map CIU(,V,W,VHW of Cohomology
on Sites, Lemma[26.1] is a quasi-isomorphism.
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Proof. (The functor Re, is fully faithful by the discussion in Cohomology on Sites,
Section ) Except for a snafu having to do with the empty set, this follows from
the very general Cohomology on Sites, Lemma whose hypotheses hold by
Schemes, Lemma [11.7] and Cohomology on Sites, Lemma [29.3

To get around the snafu, denote Xg¢fine aimost—chaotic the site where the empty
object () has two coverings, namely, {f — 0} and the empty covering (see Sites,
Example [6.4] for a discussion). Then we have morphisms of sites

Xaffine,Zar — Xaffine,almostfchaotic — Xaffine

The argument above works for the first arrow. Then we leave it to the reader to
see that an object K of DV (X, ine) is in the essential image of the (fully faithful)
functor D(Xaf fine,almost—chaotic) = D(Xaffine) if and only if RT'(0, K) is zero in
D(Ab). O

99. Comparing big and small topoi

Let S be a scheme. In Topologies, Lemma we have introduced comparison
morphisms TS (SCh/S)étale — Sétale and g : Sh(Sétale) — Sh((SCh/S)étale)
with mg 0 ig = id and 7g, = i;l. More generally, if f : T — S is an object of
(Sch/S)¢tate, then there is a morphism iy : Sh(Teqre) — Sh((Sch/S)étate) such that
fsmaut = Tg o iy, see Topologies, Lemmas and In Descent, Remark
we have extended these to a morphism of ringed sites
s ¢ ((Sch/S)étate; O) = (Setate, Os)

and morphisms of ringed topoi

is : (Sh(Sétale)7OS) — (Sh((SCh/S)émle),O)
and

i+ (Sh(Tetate), Or) — (Sh((Sch/S)étaie, O))
Note that the restriction i;l = g« (see Topologies, Definition D transforms O
into Og. Similarly, i;l transforms O into Op. See Descent, Remark Hence
igF = i;l]-' and i} F = i;l}' for any O-module F on (Sch/S)eétare. In particular
is and i} are exact functors. The functor i§ is often denoted F — Fls,,,,. (and
this does not conflict with the notation in Topologies, Definition [4.15|).

Lemma 99.1. Let S be a scheme. Let T be an object of (Sch/S)¢taie-
(1) If T is injective in Ab((Sch/S)etaie), then
(a) i;lI is injective in Ab(Tetale),
(b) Zls,,.,. is injective in Ab(Setale),
(2) IfZ°* is a K-injective complex in Ab((Sch/S)¢tate), then
(a) i;ll' is a K-injective complex in Ab(T¢iale),
(b) Z°|s.,... s a K-injective complex in Ab(Setale),

The corresponding statements for modules do not hold.

Proof. Parts (1)(b) and (2)(b) follow formally from the fact that the restriction
functor mg . = igl is a right adjoint of the exact functor 7r§1, see Homology, Lemma
and Derived Categories, Lemma [31.9

Parts (1)(a) and (2)(a) can be seen in two ways. First proof: We can use that i;l is
a right adjoint of the exact functor iy,. This functor is constructed in Topologies,
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Lemma [4.13] for sheaves of sets and for abelian sheaves in Modules on Sites, Lemma
It is shown in Modules on Sites, Lemma that it is exact. Second proof.
We can use that iy = ir o fy;, as is shown in Topologies, Lemma Since fuig
is a localization, we see that pullback by it preserves injectives and K-injectives,
see Cohomology on Sites, Lemmas and Then we apply the already proved
parts (1)(b) and (2)(b) to the functor i7" to conclude.

Let S = Spec(Z) and consider the map 2 : Og — Og. This is an injective map
of Og-modules on Setqr.. However, the pullback 75(2) : O — O is not injective
as we see by evaluating on Spec(F2). Now choose an injection « : @ — 7 into an
injective O-module Z on (Sch/S)etare. Then consider the diagram

Os
a‘sétak“ 7

s

s

étale

Then the dotted arrow cannot exist in the category of Og-modules because it would
mean (by adjunction) that the injective map « factors through the noninjective map
m%5(2) which cannot be the case. Thus Z|g is not an injective Og-module. [

étale

Let f: T'— S be a morphism of schemes. The commutative diagram of Topologies,
Lemma m (3) leads to a commutative diagram of ringed sites

(Tetate, Or) < ((Sch/T)étate, O)

fsmalli \Lfbig

(Setate, Os) <——= ((Sch/S)etate; O)

as one easily sees by writing out the definitions of f‘fma”, fgig, wﬁs, and ﬂﬁT. In
particular this means that

(99'1'1) (fbig,*f) Sétate — mea”,*(‘F|Tétale)

for any sheaf F on (Sch/T)¢taie and if F is a sheaf of O-modules, then (99.1.1)) is
an isomorphism of Og-modules on S¢;qe.

Lemma 99.2. Let f: T — S be a morphism of schemes.
(1) For K in D((Sch/T)étare) we have (RfvigK)|s. 0. = Rfsmait(K|Ts00..)
mn D(Sétale).
(2) For K in D((Sch/T)¢tqate, O) we have (R fyig,«IK)
mn D(MOd(Sémle, OS))
More generally, let g : S — S be an object of (Sch/S)¢tare- Consider the fibre
product

Sétate — Rfsma”7*(K|Tétale)

T/ﬁT

g
f’l lf
S
Then
(3) For K in D((Sch/T)étare) we have iy (RfyigK) = Rf;mall’*(ig,lK) in
D(S%,0)-

étale
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(4) For K in D((Sch/T)étate; O) we have iy(RfoigK) = Rf . (i5K) in
D(MOd(Sétale’ OS'))‘
(5) For K in D((Sch/T)stare) we have gb_i;(bem*K) = Rféigﬁ*((géig)_ll() in

D((Sch/S’)émle).
(6) For K in D((Sch/T)etate; O) we have giy,(Rfvig ) = Ry, ((ghig)* K)
in D(Mod(S%,;,;..Os'))-

Proof. Part (1) follows from Lemma [99.1| and (99.1.1) on choosing a K-injective
complex of abelian sheaves representing K.

Part (3) follows from Lemma and Topologies, Lemma on choosing a K-
injective complex of abelian sheaves representing K.

Part (5) is Cohomology on Sites, Lemma
Part (6) is Cohomology on Sites, Lemma

Part (2) can be proved as follows. Above we have seen that mg o fyig = fsmau © Tr
as morphisms of ringed sites. Hence we obtain Rmg . 0 Rfpig« = Rfsmail,« © R«
by Cohomology on Sites, Lemma Since the restriction functors 7g . and 77 .
are exact, we conclude.

Part (4) follows from part (6) and part (2) applied to f': 7" — S’ O

Let S be a scheme and let H be an abelian sheaf on (Sch/S)etare- Recall that
HY ..(U,H) denotes the cohomology of H over an object U of (Sch/S)erqte-

Lemma 99.3. Let f: T — S be a morphism of schemes. Then
¢tale) we have HY, ..

1) For K in D(S (S,m5"K) = H"(Setate, K).

) For K in D(S¢tate, Og) we have HZ, , (S, LK) = H™(S¢tate, K).
) For K in D(Sstare) we have HY, ;. (T, WEIK) = H"(Terate: fopan)-
) For K in D(S,

)
)

s_mall
ctates Os) we have HE, (T, LK) = H" (Tetate, LIE, .0 K)-

étale
5) For M in D((Sch/S)etare) we have HY, ;. (T, M) = H"(Terqie, z}lM)
(6) For M in D((Sch/S)etate, O) we have HE, (T, M) = H" (Terate, i3 M).

Proof. To prove (5) represent M by a K-injective complex of abelian sheaves and
apply Lemma and work out the definitions. Part (3) follows from this as

i;lwgl = f 1. Part (1) is a special case of (3).

Part (6) follows from the very general Cohomology on Sites, Lemma Then
part (4) follows because Lf},,,; =i} o Lwg. Part (2) is a special case of (4). [

Lemma 99.4. Let S be a scheme. For K € D(S¢ta1e) the map
K — Rrg,mg'K
is an isomorphism.

Proof. This is true because both 75! and 7g . = ig' are exact functors and the
composition mg 4 o 7T§1 is the identity functor. O

Lemma 99.5. Let f:T — S be a proper morphism of schemes. Then we have
(1> 7(51 o fsmalh* = fbig7* o 77’17“1 as funCtOTS Sh(Tétale) — Sh((SCh/S)étale)7
(2) ﬂglRfsma”,*K = beig,*ﬂ;lK for K in DT (Tsa1e) whose cohomology
sheaves are torsion,

(3) 75 Rfsman K = Rfpigamyp K for K in D(Teiare, Z/nZ), and
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(4) ﬂglRfsnlall,*K = beigv*ﬂ'flK for all K in D(Teraie) if f is finite.

Proof. Proof of (1). Let F be a sheaf on Tgqi.. Let g : S — S be an object of
(Sch/S)étate- Consider the fibre product

T — 5

f/
|k
f

T——S

Then we have

(fbig,*ﬂ-;l]:)(sl) = (W;lf)(Tl) = ((g;mall)_l]:)(T/) = (f;mall,*(g;mall)_l‘/r)(sl)
the second equality by Lemma On the other hand

(ﬂ'glfsmall,*]:)(sl) = (gs}lmllfsmall,*}—)(sl)
again by Lemma m Hence by proper base change for sheaves of sets (Lemma
91.5) we conclude the two sets are canonically isomorphic. The isomorphism is
compatible with restriction mappings and defines an isomorphism 7751 fematl «F =
fbig,*ﬂ;l]:. Thus an isomorphism of functors 7r§1 0 fsmatl,x = foigx © 71';1.

Proof of (2). There is a canonical base change map ﬂglRfsmall7*K — beig,*ﬂflK
for any K in D(Tgsa), see Cohomology on Sites, Remark To prove it is
an isomorphism, it suffices to prove the pull back of the base change map by i, :
Sh(S%ia1e) — Sh((Sch/S)étate) is an isomorphism for any object g : S” — S of

(Sch/S)étaie- Let T',g', f' be as in the previous paragraph. The pullback of the
base change map is

-1 1 _—1
gsma”Rfsmall,*K =1y Tg Rfsmall,*K
1 —1

i Rfpig i K

_ / —1_—1

- Rfsmall,*(lg’ Tr K)

_ / / —1

- Rfsmalh*((Qsmall) K)

where we have used g 0%y = Gsmall, T1 by’ = rpans 20d Lemma This map

is an isomorphism by the proper base change theorem (Lemma [91.12)) provided K
is bounded below and the cohomology sheaves of K are torsion.

The proof of part (3) is the same as the proof of part (2), except we use Lemma
92,3 instead of Lemma [91.12)

Proof of (4). If f is finite, then the functors fsmau,« and fuig« are exact. This
follows from Proposition for feman. Since any base change f’ of f is finite
too, we conclude from Lemma m part (3) that fi,g« is exact too (as the higher
derived functors are zero). Thus this case follows from part (1). O

100. Comparing fppf and étale topologies

A model for this section is the section on the comparison of the usual topology and
the qc topology on locally compact topological spaces as discussed in Cohomology
on Sites, Section We first review some material from Topologies, Sections
and 4

Let S be a scheme and let (Sch/S)ppr be an fppf site. On the same underlying
category we have a second topology, namely the étale topology, and hence a second
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site (Sch/S)etate- The identity functor (Sch/S)etaie — (Sch/S) ppy is continuous
and defines a morphism of sites
€S (SCh/S)fppf — (SCh/S)éta[e

See Cohomology on Sites, Section Please note that eg . is the identity func-
tor on underlying presheaves and that egl associates to an étale sheaf the fppf
sheafification. Let Sgiq;e be the small étale site. There is a morphism of sites

s (SCh/S)étale — Sétale

given by the continuous functor Sgiare — (S¢h/S)staie, U — U. Namely, Sstqie has
fibre products and a final object and the functor above commutes with these and

Sites, Proposition applies.
Lemma 100.1. With notation as above. Let F be a sheaf on Setqre- The rule
(Sch/S) ppps — Sets,  (f: X — S) — T(X, fo1 . F)

small

is a sheaf and a fortiori a sheaf on (Sch/S)state. In fact this sheaf is equal to mg'F
on (Sch/S)¢rate and €5 g ' F on (Sch/S) fppy-

Proof. The statement about the étale topology is the content of Lemma To
finish the proof it suffices to show that 71'51]: is a sheaf for the fppf topology. This
is shown in Lemma [39.2] as well. O

In the situation of Lemma [I00.]] the composition of €s and 7g and the equality
determine a morphism of sites

as (SCh/S)fppf — Sétale

Lemma 100.2. With notation as above. Let f : X — Y be a morphism of
(Sch/S) ¢pps. Then there are commutative diagrams of topoi

Sh((SCh/X)fppf) - Sh((SCh/Y)fppf)

Foig, fops

Sh((Sch/X)étate) Sh((Sch/Y )étate)

frig étale

and
Sh((Sch/X) ppps) — = Sh((Sch/Y ) tppy)

Foig, fopf

Sh(Xétale) Sh(Yétale)

with ax =Tx oex and ay = Tx O €x.

fsmall

Proof. The commutativity of the diagrams follows from the discussion in Topolo-
gies, Section O
Lemma 100.3. In Lemma if f is proper, then we have a;l O fsmail,x =
Toig.fops.» © a)_(l-

Proof. You can prove this by repeating the proof of Lemma [99.5] part (1); we
will instead deduce the result from this. As ey, is the identity functor on un-
derlying presheaves, it reflects isomorphisms. The description in Lemma [T00.1]
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shows that ey, o ay! = 3" and similarly for X. To show that the canonical map
a{,lfsmalh*}“ — fbig,fppf,*a;(lf is an isomorphism, it suffices to show that

7T;lfsrrLCLll7>¢<]'—‘: GY,*ay_/lfsmall,*]:
= ey foig fons.eax' F
= fbig,étale,*eX,*a;(lf
= fbig,étale,*w;(lf
is an isomorphism. This is part (1) of Lemma m (]

Lemmal 100.4. In Lemma assume f is flat, locally of finite presentation,
and surjective. Then the functor

Sh(Yétale) — {(g, Ha Oé)

G € Sh(Xetate), H € Sh{((Sch/Y ) tpps),
«: a;g — fl;-gl,fppf?-l an isomorphism

sending F to (fs_"}a”}-, a{,l}', can) is an equivalence.

Proof. The functor a)_(1 is fully faithful (as a X7*a)_(l =1id by Lemma. Hence
the forgetful functor (G,H,«) — H identifies the category of triples with a full
subcategory of Sh((Sch/Y) fppy). Moreover, the functor ay ' is fully faithful, hence
the functor in the lemma is fully faithful as well.

Suppose that we have an étale covering {Y; — Y'}. Let f; : X; — Y; be the base
change of f. Denote f;; = f; x f;j : Xi xx X; = Y; xy Y;. Claim: if the lemma is
true for f; and f;; for all 4, j, then the lemma is true for f. To see this, note that the
given étale covering determines an étale covering of the final object in each of the
four sites Yeiqie, Xetate, (Sch/Y) rpps, (Sch/X) gpps. Thus the category of sheaves is
equivalent to the category of glueing data for this covering (Sites, Lemma in
each of the four cases. A huge commutative diagram of categories then finishes the
proof of the claim. We omit the details. The claim shows that we may work étale
locally on Y.

Note that {X — Y} is an fppf covering. Working étale locally on Y, we may assume
there exists a morphism s : X’ — X such that the composition f' = fos: X' =Y
is surjective finite locally free, see More on Morphisms, Lemma Claim: if the
lemma is true for f’, then it is true for f. Namely, given a triple (G, H, a) for f,
we can pullback by s to get a triple (sg;w”g,?{, sb_i;’fppfoz) for f’. A solution for
this triple gives a sheaf F on Y4 with a{/l}" = H. By the first paragraph of the
proof this means the triple is in the essential image. This reduces us to the case
described in the next paragraph.

Assume f is surjective finite locally free. Let (G, H,«) be a triple. In this case
consider the triple

—1 -1
(G1, Hs n) = (fnan fsman +9, fbigafppf»*fbig,fppfﬂ’ 1)
where «; comes from the identifications
—1p-1 —1 -1
ax Smallfsmall,*g = fbig,fppfaY fsmall,*g
_ o1 ) -1
= fbig,fppffblg,fppf,*ax g

1 1
= Trig.fops foig. fons« Foig rops H
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where the third equality is Lemma [[00.3] and the arrow is given by a. This triple
is in the image of our functor because F1 = fsmau «F is a solution (to see this use
Lemma [100.3| again; details omitted). There is a canonical map of triples

(G, H,0a) = (G1, Hi,01)

which uses the unit id — fbig,fppf,*fb;glvfppf on the second entry (it is enough to
prescribe morphisms on the second entry by the first paragraph of the proof). Since
{f : X — Y} is an fppf covering the map H — H; is injective (details omitted).
Set
Go=G1 g G1 Ho=HilyHs

and let as be the induced isomorphism (pullback functors are exact, so this makes
sense). Then H is the equalizer of the two maps Hi; — Ha. Repeating the argu-
ments above for the triple (Ga, Ha, @2) we find an injective morphism of triples

(9237—[23 QZ) — (QBaHSa Oég)

such that this last triple is in the image of our functor. Say it corresponds to F3
in Sh(Yitare). By fully faithfulness we obtain two maps F; — F3 and we can let F
be the equalizer of these two maps. By exactness of the pullback functors involved
we find that a;l}" = H as desired. |

OFOH Lemma 100.5. Consider the comparison morphisme : (Sch/S) rppr — (Sch/S)etate-
Let P denote the class of finite morphisms of schemes. For X in (Sch/S)¢tate de-
note Ay C Ab((Sch/X)etate) the full subcategory consisting of sheaves of the form
7T)_(1]: with F in Ab(Xstate). Then Cohomology on Sites, Properties , @), (@,
). and (3)) of Cohomology on Sites, Situation hold.

Proof. We first show that Ay C Ab((Sch/X)erate) is a weak Serre subcategory by
checking conditions (1), (2), (3), and (4) of Homology, Lemma [10.3] Parts (1), (2),
(3) are immediate as w5 is exact and fully faithful for example by Lemma [99.4l Tf
0= 7' F = G — n' F' — 0 is a short exact sequence in Ab((Sch/X )stare) then
0—=F = 7mx:G — F' — 0 is exact by Lemma m Hence G = w;(le,*g is in

's which checks the final condition.

Cohomology on Sites, Property holds by the existence of fibre products of
schemes and the fact that the base change of a finite morphism of schemes is a
finite morphism of schemes, see Morphisms, Lemma [44.6

Cohomology on Sites, Property follows from the commutative diagram (3) in
Topologies, Lemma [£.17]

Cohomology on Sites, Property is Lemma |100.1

Cohomology on Sites, Property holds by Lemma m part (4).

Cohomology on Sites, Property is implied by More on Morphisms, Lemma
481l a

0DDS Lemma 100.6. With notation as above.

(1) For X € Ob((Sch/S)sppr) and an abelian sheaf F on Xgiqre we have
ex’*a)zl]: = W;(l]: and Riex’*(a;{l}') =0 fori > 0.

(2) For a finite morphism f : X =Y in (Sch/S)pps and abelian sheaf F on
X we have a;l(Rifsma”,*]-") = Rifbigyfppfy*(a;(l}") for all i.
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(3) For a scheme X and K in D (X¢rare) the map n' K — Rex .(ax' K) is
an isomorphism.

(4) For a finite morphism f : X — Y of schemes and K in DV (Xegq1e) we
have a;l(Rfsmall,*K) = beig,fppf-,*(a;(lK)'

(5) For a proper morphism f: X — Y of schemes and K in DV (Xegq1e) with
torsion cohomology sheaves we have a;l(Rfsma”’*K) = beig,fppf,*(a;(lK).

Proof. By Lemma the lemmas in Cohomology on Sites, Section [30] all apply
to our current setting. To translate the results observe that the category Ax of
Cohomology on Sites, Lemma is the essential image of a}l s AW Xgtare) —
Ab((Sch/X) ppy)-

Part (1) is equivalent to (V) for all n which holds by Cohomology on Sites, Lemma
0.8

Part (2) follows by applying e;l to the conclusion of Cohomology on Sites, Lemma
90,9l

Part (3) follows from Cohomology on Sites, Lemmam part (1) because 7y K is
in D:Z/X((SC}L/X)étale) and ay' = e oay’.

Part (4) follows from Cohomology on Sites, Lemma part (2) for the same

reaso1.
Part (5). We use that
REY,*beig,fppf,*a;(lK = beig,étale,*ReX,*a;(lK

= Rfpig italesTx K

=7y Rfsmau K

= Rey,.ay' R foma K
The first equality by the commutative diagram in Lemma [[00.2] and Cohomology
on Sites, Lemma m The second equality is (3). The third is Lemma m part

(2). The fourth is (3) again. Thus the base change map ay' (R fsmau «K) —
Rfig fops.+(ax' K) induces an isomorphism

—1 —1
RGY,*ay Rfsmall,*K — RGY,*beig,fppf,*aX K

The proof is finished by the following remark: a map « : a{,lL — M with L in
D (Yéare) and M in DT ((Sch/Y) pppr) such that Rey, .« is an isomorphism, is an
isomorphism. Namely, we show by induction on i that H'(«) is an isomorphism.
This is true for all sufficiently small 7. If it holds for ¢ < igp, then we see that
Riey ,H (M) =0 for j >0 and i < ig by (1) because H (M) = ay' H(L) in this
range. Hence ey Ht (M) = H"(Rey,.M) by a spectral sequence argument.
Thus ey H°TY(M) = ny' Hot(L) = ey ay Ho+1(L). This implies Ho+!(a) is
an isomorphism (because ey, reflects isomorphisms as it is the identity on under-
lying presheaves) as desired. O

Lemma 100.7. Let X be a scheme. For K € DT (Xgsq1e) the map
K — Rax.ax' K

is an isomorphism with ax : Sh((Sch/X) tpps) = Sh(Xétaie) as above.


https://stacks.math.columbia.edu/tag/0DDT

ETALE COHOMOLOGY 216

Proof. We first reduce the statement to the case where K is given by a single
abelian sheaf. Namely, represent K by a bounded below complex F*. By the case
of a sheaf we see that F" = axy*a;(l}"” and that the sheaves RanV*a}l}"" are zero
for ¢ > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma applied
to a;(l]:' and the functor ax . we conclude. From now on assume K = F.

By Lemmal100.1|we have axy*a;(l]: = F. Thus it suffices to show that Ran_’*a;(l}' =
0 for ¢ > 0. For this we can use ax = ex o wx and the Leray spectral sequence

(Cohomology on Sites, Lemma [14.7). By Lemma [100.6{ we have Riex .(ayx'F) =0
for i > 0 and ex .ay'F = 7' F. By Lemma we have Rimx (7' F) = 0 for
7 > 0. This concludes the proof.

0DDU Lemma 100.8. For a scheme X and ax : Sh((Sch/X)fpps) — Sh(Xétaie) as

above:
(1) HY(Xstate, F) = Hf,, (X, ax'F) for an abelian sheaf F on Xsiate,
(2) HYXetate, K) = H}prf(Xv a;(lK) for K € D¥(Xetate)-

Ezample: if A is an abelian group, then HY, , (X, A) = H;{ppf(X,A).

Proof. This follows from Lemma by Cohomology on Sites, Remark O

101. Comparing fppf and étale topologies: modules

O0DEV  We continue the discussion in Section but in this section we briefly discuss what
happens for sheaves of modules.

Let S be a scheme. The morphisms of sites eg, mg, and their composition ag
introduced in Section [I00] have natural enhancements to morphisms of ringed sites.
The first is written as

€s = ((Sch/S) rpps, O) — ((Sch/S)étate, O)

Note that we can use the same symbol for the structure sheaf as indeed the sheaves
have the same underlying presheaf. The second is

s 1 ((Sch/S)etate, O) — (Setate, Os)
The third is the morphism
as : ((Sch/S) fppg, O) — (Setate, Os)

We already know that the category of quasi-coherent modules on the scheme S is
the same as the category of quasi-coherent modules on (Sgiaie, Os), see Descent,
Proposition Since we are interested in stating a comparison between étale
and fppf cohomology, we will in the rest of this section think of quasi-coherent
sheaves in terms of the small étale site. Let us review what we already know about
quasi-coherent modules on these sites.

0DEW Lemmal 101.1. Let S be a scheme. Let F be a quasi-coherent Og-module on
Seétale-
(1) The rule
Fe:(Sch/S)etare — Ab, (f T — S)— T, fi..uF)
satisfies the sheaf condition for fppf and a fortiori étale coverings,
(2) F* =mEF on (Sch/S)etates
(3) F* =atF on (Sch/S)fpps,
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(4) the rule F — F° defines an equivalence between quasi-coherent Og-modules
and quasi-coherent modules on ((Sch/S)¢tate, O),

(5) the rule F — F° defines an equivalence between quasi-coherent Og-modules
and quasi-coherent modules on ((Sch/S)fppt, O),

(6) we have eg agF = n&F and agasF = F,

(7) we have Ries (a5F) =0 and Rlag . (agF) =0 fori > 0.

Proof. We urge the reader to find their own proof of these results based on the
material in Descent, Sections 8] [9 and

We first explain why the notation in this lemma is consistent with our earlier use of
the notation F* in Sections[I7] and 2] and in Descent, Section[8] Namely, we know
by Descent, Proposition that there exists a quasi-coherent module F; on the
scheme S (in other words on the small Zariski site) such that F is the restriction
of the rule

F& o (Sch/S)etate — Ab,  (f : T — 8) — T(T, f*F)

to the subcategory Ssiaie C (Sch/S)étale where here f* denotes usual pullback of
sheaves of modules on schemes. Since F§ is pullback by the morphism of ringed
sites
((SCh/S)étalev O) — (SZar7 OSZ,")

by Descent, Remark it follows immediately (from composition of pullbacks)
that ¢ = F§. This proves the sheaf property even for fpqc coverings by Descent,
Lemma (see also Proposition [17.1)). Then (2) and (3) follow again by Descent,
Remark [8.6|and (4) and (5) follow from Descent, Proposition [8.9] (see also the meta
result Theorem .

Part (6) is immediate from the description of the sheaf F* = 1§ F = a§F.

For any abelian #H on (Sch/S)jpps the higher direct image RPeg . H is the sheaf
associated to the presheaf U — HY (U, H) on (Sch/S)sare. See Cohomology
on Sites, Lemma @ Hence to prove RPeg.agF = RPeg.F* = 0 for p > 0 it
suffices to show that any scheme U over S has an étale covering {U; — U };¢; such
that szppf(Ui,fa) = 0 for p > 0. If we take an open covering by affines, then
the required vanishing follows from comparison with usual cohomology (Descent,
Proposition or Theorem and the vanishing of cohomology of quasi-coherent
sheaves on affine schemes afforded by Cohomology of Schemes, Lemma [2.2

To show that Rpasﬁ*agl}' = RPag F* =0 for p > 0 we argue in exactly the same
manner. This finishes the proof. O

Lemma 101.2. Let S be a scheme. For F a quasi-coherent Og-module on Sepqie
the maps
mgF — Reg . (asF) and F — Rag .(agF)

are isomorphisms with ag : Sh((Sch/S) tpps) — Sh(Sétare) as above.
Proof. This is an immediate consequence of parts (6) and (7) of Lemma(101.1] O

Lemma 101.3. Let S = Spec(A) be an affine scheme. Let M*® be a complex of
A-modules. Consider the complex F* of presheaves of O-modules on (Aff/S)tpps
given by the rule

(U/S) = (Spec(B)/ Spec(A)) — M* ®4 B
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Then this is a complex of modules and the canonical map
M® — RU((Aff/9) fpps: F*)
is a quasi-isomorphism.

Proof. Each F™ is a sheaf of modules as it agrees with the restriction of the module
G" = (M™)* of Lemma [101.1| to (Aff/S)sppr C (Sch/S)spps. Since this inclusion
defines an equivalence of ringed topoi (Topologies, Lemma , we have

RF((Aﬁ/S)fppfvf.) = Rr((SCh/S)fppfag.)

We observe that M*® = RI'(S, M *) for example by Derived Categories of Schemes,
Lemma [3.5] Hence we are trying to show the comparison map

RI(S,M*) — RT((Sch/S) pps, (M*)?)

is an isomorphism. If M* is bounded below, then this holds by Descent, Proposition
[0.3] and the first spectral sequence of Derived Categories, Lemma For the
general case, let us write M*® = lim M with M3 = 7>_, M*. Whence the system
MP is eventually constant with value MP. We claim that

(M*)* = Rlim(M?)*
Namely, it suffices to show that the natural map from left to right induces an

isomorphism on cohomology over any affine object U = Spec(B) of (Sch/S) rppys-
For i € Z and n > |i| we have

Hi(U, (M2)*) = H (rs_aM* ®4 B) = H'(M* © 4 B)

The first equality holds by the bounded below case treated above. Thus we see
from Cohomology on Sites, Lemma that the claim holds. Then we finally get

RT((Sch/S) pppy, (M*)*) = RT((Sch/S) ppps, RUm(M)®)

— Rlim RT((S6h/S) pypy, (V12)%)
= Rlim M,
= M.

as desired. The second equality holds because Rlim commutes with RI", see Coho-
mology on Sites, Lemma, [23.2 O

102. Comparing ph and étale topologies

A model for this section is the section on the comparison of the usual topology and
the qc topology on locally compact topological spaces as discussed in Cohomology
on Sites, Section We first review some material from Topologies, Sections
and [

Let S be a scheme and let (Sch/S)p, be a ph site. On the same underlying cat-
egory we have a second topology, namely the étale topology, and hence a second
site (Sch/S)e¢tate- The identity functor (Sch/S)siare — (Sch/S)pn is continuous
(by More on Morphisms, Lemma and Topologies, Lemma and defines a
morphism of sites

€s : (Sch/S)pr, — (Sch/S)eétate
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See Cohomology on Sites, Section |27, Please note that €g . is the identity functor on
underlying presheaves and that €5 associates to an étale sheaf the ph sheafification.
Let Sgiaie be the small étale site. There is a morphism of sites

7s : (Sch/S)étate — Sétate

given by the continuous functor S¢iare — (Sch/S)etate, U — U. Namely, Se¢iqre has
fibre products and a final object and the functor above commutes with these and
Sites, Proposition [I4.7) applies.

Lemma 102.1. With notation as above. Let F be a sheaf on Setare. The rule
(Sch/S)pn, — Sets, (f: X — 8)—T(X, £ .uF)

is a sheaf and a fortiori a sheaf on (Sch/S)state. In fact this sheaf is equal to g ' F
on (Sch/S)¢rare and €5'mg' F on (Sch/S)ph.

Proof. The statement about the étale topology is the content of Lemma [39.2] To
finish the proof it suffices to show that wglf is a sheaf for the ph topology. By
Topologies, Lemma [8.15]it suffices to show that given a proper surjective morphism
V' — U of schemes over S we have an equalizer diagram

(m5 F)U) —= (r5 " F)(V) (75 PV xu V)

P

Set G = 7T§1]:|Uétale. Consider the commutative diagram
VxgV——V
l x lf
v—I U
We have

(5 ' F)(V) =T(V, f71G) = T(U, f. 1)

where we use f, and f~! to denote functorialities between small étale sites. Second,
we have

(n ' F)V xu V) =T(V xu V,g7'G) = T(U, 9.97'9)

The two maps in the equalizer diagram come from the two maps
f*f_lg — g*g_lg

Thus it suffices to prove G is the equalizer of these two maps of sheaves. Let w be
a geometric point of U. Set Q = Gy. Taking stalks at w by Lemma [91.4] we obtain
the two maps

H(V, Q) — H((V xp Vg, Q) = HO (Vi xz Vi, Q)

where € indicates the constant sheaf with value Q2. Of course these maps are the
pullback by the projection maps. Then it is clear that the sections coming from
pullback by projection onto the first factor are constant on the fibres of the first
projection, and sections coming from pullback by projection onto the first factor
are constant on the fibres of the first projection. The sections in the intersection of
the images of these pullback maps are constant on all of Vi Xz Vg, i.e., these come
from elements of €2 as desired. O
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In the situation of Lemma [T02.1] the composition of €5 and g and the equality
determine a morphism of sites

ag : (SCh/S)ph — Sétale

Lemma 102.2. With notation as above. Let f : X — Y be a morphism of
(Sch/S)pn. Then there are commutative diagrams of topoi

Sh((SCh/X)ph) T Sh((SCh/Y)ph)

SH((Seh) X )etate) —22251 o Sh(Seh/Y ) state)
and

Sh((Seh/X)pn) ———= Sh((Sch/Y 1)

fsmal, L
Sh(Xétale) : Sh(}/étale)

with ax =Tx oex and ay = Tx O€x.

Proof. The commutativity of the diagrams follows from the discussion in Topolo-
gies, Section O

Lemma 102.3. In Lemma if f is proper, then we have a;l O fsmail,x =
fbig,ph,* o ag_(l-

Proof. You can prove this by repeating the proof of Lemma part (1); we
will instead deduce the result from this. As ey, is the identity functor on un-
derlying presheaves, it reflects isomorphisms. The description in Lemma [T02.]]
shows that ey . o a;l = 7r{,1 and similarly for X. To show that the canonical map
a{,l fsmair«F — fbig,phy*a;(l]: is an isomorphism, it suffices to show that

7T;Ifswmzll,>c<-7:: EY,*a;/lfsmall,*]:
— 6Y,*fbig,ph,>|<a/;(1—r
= fbig,étale,*eX,*a;(lf
= fbig,étale,*ﬂ)_(lf

is an isomorphism. This is part (1) of Lemma [99.5] O

Lemma 102.4. Consider the comparison morphism € : (Sch/S)pn, — (Sch/S)e¢tate -
Let P denote the class of proper morphisms of schemes. For X in (Sch/S)staie
denote Ay C Ab((Sch/X)etale) the full subcategory consisting of sheaves of the
form W;(l}' where F is a torsion abelian sheaf on Xgiqie Then Cohomology on

Sites, Properties , (@, (@, , and @ of Cohomology on Sites, Situatz’on
hold.

Proof. We first show that Ay C Ab((Sch/X)eraie) is a weak Serre subcategory by
checking conditions (1), (2), (3), and (4) of Homology, Lemma [10.3] Parts (1), (2),
(3) are immediate as w5 is exact and fully faithful for example by Lemma [99.4l Tf
0= 7' F = G — ny' F' — 0 is a short exact sequence in Ab((Sch/X )stare) then
0= F = 7mx.G — F' — 0 is exact by Lemma In particular we see that



https://stacks.math.columbia.edu/tag/0DDX
https://stacks.math.columbia.edu/tag/0DDY
https://stacks.math.columbia.edu/tag/0F0I

0DE4

0DE5

ETALE COHOMOLOGY 221

mx G is an abelian torsion sheaf on X¢iq.. Hence G = w;}wx,*g is in A’y which
checks the final condition.

Cohomology on Sites, Property holds by the existence of fibre products of
schemes and the fact that the base change of a proper morphism of schemes is a
proper morphism of schemes, see Morphisms, Lemma [41.5

Cohomology on Sites, Property follows from the commutative diagram (3) in
Topologies, Lemma [4.17]

Cohomology on Sites, Property is Lemma [102.1

Cohomology on Sites, Property holds by Lemmam part (2) and the fact that
R fomauF is torsion if F is an abelian torsion sheaf on Xgqie, see Lemma

Cohomology on Sites, Property follows from More on Morphisms, Lemma m
combined with the fact that a finite morphism is proper and a surjective proper
morphism defines a ph covering, see Topologies, Lemma O

Lemma 102.5. With notation as above.

(1) For X € Ob((Sch/S)pr) and an abelian torsion sheaf F on Xetare we have
exay' F=nx'F and Riex .(ax'F) =0 fori> 0.

(2) For a proper morphism f: X —Y in (Sch/S)pn and abelian torsion sheaf
F on X we have a;l(RifsmalL*f) = R"fbig,ph,*(a)zlf) for all 1.

(3) For a scheme X and K in DV (X¢ta1e) with torsion cohomology sheaves the
map T K — Rex .(ax'K) is an isomorphism.

(4) For a proper morphism f: X — Y of schemes and K in DV (Xgtq1e) with
torsion cohomology sheaves we have a;l(Rfsmalh*K) = beig,pm*(a)_(lK).

Proof. By Lemma the lemmas in Cohomology on Sites, Section [30] all apply
to our current setting. To translate the results observe that the category Ax
of Cohomology on Sites, Lemma is the full subcategory of Ab((Sch/X),n)
consisting of sheaves of the form ay F where F is an abelian torsion sheaf on
Xétale-

Part (1) is equivalent to (V4,) for all n which holds by Cohomology on Sites, Lemma
30.8]

Part (2) follows by applying e;l to the conclusion of Cohomology on Sites, Lemma
90,9l

Part (3) follows from Cohomology on Sites, Lemmam part (1) because 73" K is
in D;/X((Sch/X)émle) and ay' = €' oay

Part (4) follows from Cohomology on Sites, Lemma [30.8] part (2) for the same
reason. g

Lemma/ 102.6. Let X be a scheme. For K € D" (Xgq1e) with torsion cohomology
sheaves the map
K — Rax.ax' K
is an isomorphism with ax : Sh((Sch/X)pn) = Sh(Xe¢tale) as above.
Proof. We first reduce the statement to the case where K is given by a single

abelian sheaf. Namely, represent K by a bounded below complex F* of torsion
abelian sheaves. This is possible by Cohomology on Sites, Lemma By the
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case of a sheaf we see that F" = ax .ay'F" and that the sheaves Rlax .ay' F"
are zero for ¢ > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma
applied to a)_(l]-' * and the functor ax . we conclude. From now on assume K = F
where F is a torsion abelian sheaf.

By Lemmawe have axy*a;(l]: = F. Thus it suffices to show that Ran_’*a;(l}' =
0 for ¢ > 0. For this we can use ax = e€x o wx and the Leray spectral sequence
(Cohomology on Sites, Lemma . By Lemma we have Rlex .(ax'F) =0
for i > 0 and ex .ay'F = 7' F. By Lemma we have Rimx (7' F) = 0 for
7 > 0. This concludes the proof.

ODE6 Lemma 102.7. For a scheme X and ax : Sh((Sch/X)pn) = Sh(Xétaie) as above:
(1) HYXétale, F) = H2, (X, ax'F) for a torsion abelian sheaf F on Xsale,
(2) HY(X¢tate, K) = H}, (X, ax'K) for K € DY (Xgta1e) with torsion cohomol-
ogy sheaves.

Ezample: if A is a torsion abelian group, then H?

étale(Xvé) = th(Xvé)-
Proof. This follows from Lemma [102.6| by Cohomology on Sites, Remark (]

103. Comparing h and étale topologies

0EWT7 A model for this section is the section on the comparison of the usual topology and
the qc topology on locally compact topological spaces as discussed in Cohomology
on Sites, Section Moreover, this section is almost word for word the same as
the section comparing the ph and étale topologies. We first review some material
from Topologies, Sections |11 and [4f and More on Flatness, Section

Let S be a scheme and let (Sch/S), be an h site. On the same underlying category
we have a second topology, namely the étale topology, and hence a second site
(Sch/S)étate- The identity functor (Sch/S)etaie — (Sch/S)y is continuous (by More
on Flatness, Lemma and Topologies, Lemma and defines a morphism of
sites
€5 : (SCh/S)h — (SCh/S)étale

See Cohomology on Sites, Section Please note that €g . is the identity functor on
underlying presheaves and that e~ associates to an étale sheaf the h sheafification.
Let S¢iqie be the small étale site. There is a morphism of sites

s - (SCh/S)étale — Sétale

given by the continuous functor Sgiare — (S¢h/S)staie, U — U. Namely, Sstqie has
fibre products and a final object and the functor above commutes with these and
Sites, Proposition [I4.7) applies.

0EWS |Lemmal 103.1. With notation as above. Let F be a sheaf on Sstaie. The rule
(Sch/S)p, — Sets, (f: X = S)—T(X, £} .1 F)

mall

is a sheaf and a fortiori a sheaf on (Sch/S)state. In fact this sheaf is equal to mg'F
on (Sch/S)etare and 6517751]: on (Sch/S)y,.

Proof. The statement about the étale topology is the content of Lemma [39.2
To finish the proof it suffices to show that 7r§1.7-" is a sheaf for the h topology.
However, in Lemma we have shown that 7r§1]-" is a sheaf even in the stronger
ph topology. O
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In the situation of Lemma [T03.1] the composition of €5 and g and the equality
determine a morphism of sites

as : (SCh/S)h — Sétale

Lemmal 103.2. With notation as above. Let f : X — Y be a morphism of
(Sch/S)y. Then there are commutative diagrams of topoi

Sh((Sch/X)p) fb—g;> Sh((Sch/Y)r)
Sh((Sch/ X )tate) —22 o Sh((Sch/Y erate)

and
Sh((Sch/X)p) ———— Sh((Sch/Y)p)

big,h
axl iay

Sh(Xe¢tate) Sh(Yetate)

with ax = Tx oex and ay = Tx O €x.

fsmall

Proof. The commutativity of the diagrams follows similarly to what was said in
Topologies, Section (]

Lemma 103.3. In Lemma if f is proper, then we have a;l O femail,x =
fbig,h,* o a;(l'

Proof. You can prove this by repeating the proof of Lemma M part (1); we
will instead deduce the result from this. As ey, is the identity functor on un-
derlying presheaves, it reflects isomorphisms. The description in Lemma [103.1
shows that ey, o a;l = 7r;1 and similarly for X. To show that the canonical map
a;lfsmalh*f — fbig,hv*a}l}" is an isomorphism, it suffices to show that

Tyt fsmati«F = €y +a5" fsmatt «F
— 6y7*fb¢g7h7*a)_(1]:
= fbig,étale,*eX,*a)_(lf
= foig.ctate«Tx F
is an isomorphism. This is part (1) of Lemma m (]

Lemma 103.4. Consider the comparison morphism € : (Sch/S)n — (Sch/S)etale-
Let P denote the class of proper morphisms. For X in (Sch/S)étale denote Ay C
Ab((Sch/X)étale) the full subcategory consisting of sheaves of the form wy* F where
F is a torsion abelian sheaf on Xgiqie Then Cohomology on Sites, Properties ,

(@, @, , and @ of Cohomology on Sites, Situation hold.

Proof. We first show that Ay, C Ab((Sch/X)etale) is a weak Serre subcategory by
checking conditions (1), (2), (3), and (4) of Homology, Lemma [10.3] Parts (1), (2),
(3) are immediate as w;(l is exact and fully faithful for example by Lemma M If
0= 7' F = G — ny' F' — 0 is a short exact sequence in Ab((Sch/X )stare) then
0= F — 7x.G — F — 0 is exact by Lemma M In particular we see that
mx G is an abelian torsion sheaf on X¢iq.. Hence G = W}lwx,*g is in A’y which
checks the final condition.
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Cohomology on Sites, Property holds by the existence of fibre products of
schemes, the fact that the base change of a proper morphism of schemes is a proper
morphism of schemes, see Morphisms, Lemma and the fact that the base
change of a morphism of finite presentation is a morphism of finite presentation,
see Morphisms, Lemma [21.4

Cohomology on Sites, Property follows from the commutative diagram (3) in
Topologies, Lemma [4.17

Cohomology on Sites, Property is Lemma |103.1

Cohomology on Sites, Property holds by Lemma part (2) and the fact that
R fomauF is torsion if F is an abelian torsion sheaf on X¢;qse, see Lemma

Cohomology on Sites, Property is implied by More on Morphisms, Lemma, m
combined with the fact that a surjective finite locally free morphism is surjective,
proper, and of finite presentation and hence defines a h-covering by More on Flat-
ness, Lemma [34.7] O

Lemma 103.5. With notation as above.

(1) For X € Ob((Sch/S)n) and an abelian torsion sheaf F on Xstare we have
eX’*a)_(l]: = 71')_(1]: and Riexv*(a}l}—) =0 fori>0.

(2) For a proper morphism f: X — Y in (Sch/S)y and abelian torsion sheaf
F on X we have a;l(R"fsma”y*}') = R"fbl-gth(a}l}') for all i.

(3) For a scheme X and K in DV (Xetq1e) with torsion cohomology sheaves the
map 7' K — Rex .(ax' K) is an isomorphism.

(4) For a proper morphism f: X — Y of schemes and K in DV (Xegtq1e) with
torsion cohomology sheaves we have a;l(Rfsma”,*K) = beig,h’*(a;(IK).

Proof. By Lemma the lemmas in Cohomology on Sites, Section [30] all apply
to our current setting. To translate the results observe that the category Ax of Co-
homology on Sites, Lemma is the full subcategory of Ab((Sch/X);) consisting
of sheaves of the form a;(l]: where F is an abelian torsion sheaf on Xgqe.

Part (1) is equivalent to (V},) for all n which holds by Cohomology on Sites, Lemma
120.8

Part (2) follows by applying 6;1 to the conclusion of Cohomology on Sites, Lemma
0.3

Part (3) follows from Cohomology on Sites, Lemmam part (1) because 7y K is
in D:Z/X((SC}L/X)étale) and ay' = e oay’.

Part (4) follows from Cohomology on Sites, Lemma [30.8| part (2) for the same
reason. g

Lemma 103.6. Let X be a scheme. For K € DV (Xgtq1) with torsion cohomology
sheaves the map

K — Rax.ax'K
is an isomorphism with ax : Sh((Sch/X)n) = Sh(Xstaie) as above.

Proof. We first reduce the statement to the case where K is given by a single
abelian sheaf. Namely, represent K by a bounded below complex F* of torsion
abelian sheaves. This is possible by Cohomology on Sites, Lemma [19.8 By the
case of a sheaf we see that F" = aXV*a;(l}"" and that the sheaves Rqax7*a}1‘7-"”
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are zero for ¢ > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma [16.7))
applied to a}l}" * and the functor ax . we conclude. From now on assume K = F
where F is a torsion abelian sheaf.

By Lemmal103.1|we have axy*a)_(l]-" = F. Thus it suffices to show that Ran_,*a)_(l}" =
0 for ¢ > 0. For this we can use ax = ex o wx and the Leray spectral sequence

(Cohomology on Sites, Lemma [14.7). By Lemma [103.5| we have Riex .(ayx'F) =0
for i > 0 and ex .ay'F = 7' F. By Lemma we have Rimx (' F) = 0 for
j > 0. This concludes the proof. O
OEWH |Lemmal 103.7. For a scheme X and ax : Sh((Sch/X)p) — Sh(X¢tare) as above:
(1) HYX¢tate, F) = H{(X,ax' F) for a torsion abelian sheaf F on Xetate,
(2) HY X gpate, K) = H (X, a}lK) for K € DY (X¢ta1e) with torsion cohomol-
ogy sheaves.

étu,le(X7 A) = HZ (X7 A) :
Proof. This follows from Lemma [103.6| by Cohomology on Sites, Remark O

Ezample: if A is a torsion abelian group, then H?

104. Descending étale sheaves

0GEX We prove that étale sheaves “glue” in the fppf and h topology and related results.
We have already shown the following related results

(1) Lemma tells us that a sheaf on the small étale site of a scheme S
determines a sheaf on the big étale site of S satisfying the sheaf condition
for fpqc coverings (and a fortiori for Zariski, étale, smooth, syntomic, and
fppf coverings),

) Lemma [100.1}is a restatement of the previous point for the fppf topology,

) Lemma [102.1| proves the same for the ph topology,

) Lemma [103.1| proves the same for the h topology,

)

)

Lemma [100.4] is a version of fppf descent for étale sheaves, and
Remark [55.6| tells us that we have descent of étale sheaves for finite surjec-
tive morphisms (we will clarify and strengthen this below).

In the chapter on simplicial spaces we will prove some additional results on this,
see for example Simplicial Spaces, Sections [33] and

In order to conveniently express our results we need some notation. Let U = {f; :
X; — X} be a family of morphisms of schemes with fixed target. A descent datum
for étale sheaves with respect to U is a family ((F;)icr, (¢ij)i,jer) where

(1) F; isin Sh(Xi7étale)a and
(2) wij: pra;m”}'i — pr;ima”}"j is an isomorphism in Sh((X; X x X;)eétale)
such that the cocycle condition holds: the diagrams

—1
PTo1,smat1Pii

1 —1
prO,small‘Fi prl,smallfj

-1 -1
PTo2 smallPik Au%k

—1
pr2,smallfk

commute in Sh((X; xx X; Xx Xk)eétale). There is an obvious notion of mor-
phisms of descent data and we obtain a category of descent data. A descent datum
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((Fi)ier, (ij)ijer) is called effective if there exist a F in Sh(X¢iq1e) and isomor-
phisms ¢; : f.jslma”]-' — Fi in Sh(X; ¢tale) compatible with the ¢;;, i.e., such that

i
-1 -1 -1
Pij = prl,small(wj) 0 prO,small (901 )

Another way to say this is the following. Given an object F of Sh(X¢tqie) We obtain
-1

the canonical descent datum (f; . ... Fi,Cij) where ¢;; is the canonical isomorphism

. —1 —1 —1 —1
Cij - prO,smallfi,smallf prl,smallf‘,small‘/—:

The descent datum ((F;)ier, (¢ij)i,jer) is effective if and only if it is isomorphic to
the canonical descent datum associated to some F in Sh(Xgaie)-

If the family consists of a single morphism {X — Y}, then we think of a descent

datum as a pair (F, ) where F is an object of Sh(X¢taie) and ¢ is an isomorphism
pr&ima”f —sopryl o F

1,small

in Sh((X Xy X)etale) such that the cocycle condition holds:

-1
prOl,s'mallSO

-1 -1
prO,small]: prl,small]:
\ /
Plos sman®? Py smau®
—1
pr2,small‘F

commutes in Sh((X Xy X Xy X)¢taie). There is a notion of morphisms of descent
data and effectivity exactly as before.

We first prove effective descent for surjective integral morphisms.

Lemma 104.1. Let f: X — Y be a morphism of schemes which has a section.
Then the functor

Sh(Yeétale) — descent data for étale sheaves wrt {X — Y}

sending G in Sh(Ygiaie) to the canonical descent datum is an equivalence of cate-
gories.

Proof. This is formal and depends only on functoriality of the pullback functors.
We omit the details. Hint: If s : Y — X is a section, then a quasi-inverse is the
functor sending (F,¢) to s} F O

smallY *

Lemma 104.2. Let f: X — Y be a surjective integral morphism of schemes. The
functor

Sh(Yeétare) — descent data for étale sheaves wrt {X — Y}
is an equivalence of categories.

Proof. In this proof we drop the subscript gy,q from our pullback and pushforward
functors. Denote X; = X xy X and denote f; : X3 — Y the morphism f o pry =
fopr;. Let (F, ) be a descent datum for {X — Y}. Let us set F; = pry ' F. We
may think of ¢ as defining an isomorphism F; — prfl]-' . We claim that the rule
which sends a descent datum (F, ¢) to the sheaf

G = Eaqualizer ( f.F 2 fi.F1 )
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is a quasi-inverse to the functor in the statement of the lemma. The first of the two
arrows comes from the map
foF — f*pro’*pral}': 1.1

and the second arrow comes from the map

foF — f*prl’*prfl]: na f*proﬁ*pral]-' = f1.F1

where the arrow pointing left is invertible. To prove this works we have to show
that the canonical map f~'G — F is an isomorphism; details omitted. In order
to prove this it suffices to check after pulling back by any collection of morphisms
Spec(k) — Y where k is an algebraically closed field. Namely, the corresponing
base changes X; — X are jointly surjective and we can check whether a map of
sheaves on X4 is an isomorphism by looking at stalks on geometric points, see
Theorem 29.10] By Lemma the construction of G from the descent datum
(F, ) commutes with any base change. Thus we may assume Y is the spectrum
of an algebraically closed point (note that base change preserves the properties of
the morphism f, see Morphisms, Lemma and . In this case the morphism
X — Y has a section, so we know that the functor is an equivalence by Lemma
However, the reader may show that the functor is an equivalence if and
only if the construction above is a quasi-inverse; details omitted. This finishes the
proof. |

Lemma 104.3. Let f: X — Y be a surjective proper morphism of schemes. The
functor

Sh(Ystaie) — descent data for étale sheaves wrt {X — Y}

is an equivalence of categories.

Proof. The exact same proof as given in Lemma works, except the appeal
to Lemma should be replaced by an appeal to Lemma a

Lemma 104.4. Let f : X — Y be a morphism of schemes. Let Z —Y be a sur-
jective integral morphism of schemes or a surjective proper morphism of schemes.
If the functors

Sh(Zstaie) — descent data for étale sheaves wrt {X xy Z — Z}
and
Sh((Z Xy Z)stare) — descent data for étale sheaves wrt {X xy(ZxyZ) = Zxy Z}
are equivalences of categories, then
Sh(Yitare) — descent data for étale sheaves wrt {X — Y}

is an equivalence.

Proof. Formal consequence of the definitions and Lemmas[I04.2)and Details
omitted. O

Lemma 104.5. Let f : X — Y be a morphism of schemes which is surjective,
flat, locally of finite presentation. The functor

Sh(Yeétale) — descent data for étale sheaves wrt {X — Y}

is an equivalence of categories.
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Proof. Exactly as in the proof of Lemma [104.2] we claim a quasi-inverse is given
by the functor sending (F,¢) to

G = Equalizer ( foF fi«F1 )

and in order to prove this it suffices to show that f~'G — F is an isomorphism.
This we may check locally, hence we may and do assume Y is affine. Then we can
find a finite surjective morphism Z — Y such that there exists an open covering
7Z = |JW; such that W; — Y factors through X. See More on Morphisms, Lemma
Applying Lemma [I04.4] we see that it suffices to prove the lemma after
replacing Y by Z and Z Xy Z and f by its base change. Thus we may assume
f has sections Zariski locally. Of course, using that the problem is local on Y we
reduce to the case where we have a section which is Lemma [[04.11 ([

Lemma 104.6. Let {f; : X; — X} be an fppf covering of schemes. The functor
Sh(Xestare) — descent data for étale sheaves wrt {f; : X; — X}

is an equivalence of categories.

Proof. We have Lemma for the morphism f : [[X; — X. Then a formal

argument shows that descent data for f are the same thing as descent data for the
covering, compare with Descent, Lemma [34.5] Details omitted. ([l

Lemmal 104.7. Let f : X' — X be a proper morphism of schemes. Leti: Z — X
be a closed immersion. Set E = Z xx X'. Picture

E —_— X/
J

|

Z—t.oX
If f is an isomorphism over X \ Z, then the functor

Sh(Xétale) — Sh(Xétale) X Sh(Estate) Sh(Zétale)
is an equivalence of categories.
Proof. We will work with the 2-fibre product category as constructed in Cate-
gories, Example The functor sends F to the triple (f~1F,i~1F, c) where
c:j 1 f'F — g~ 1i~'F is the canonical isomorphism. We will construct a quasi-
inverse functor. Let (F’,G, «) be an object of the right hand side of the arrow. We
obtain an isomorphism
iV TF =g F S 997G
The first equality is Lemma Using this we obtain maps .G — i,g.9~'G and
fLF —i.9.97'G. We set
]: = f*]:/ Xi*g*gflg Z*g

and we claim that F is an object of the left hand side of the arrow whose image in
the right hand side is isomorphic to the triple we started out with. Let us compute
the stalk of F at a geometric point T of X.

If 7 is not in Z, then on the one hand Z comes from a unique geometric point =’ of
X' and FL, = (f«F')z and on the other hand we have (i.G)z and (i+9.971G)z are
singletons. Hence we see that 75 equals FL,.
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If 7 is in Z, ie., T is the image of a geometric point Z of Z, then we obtain

(i+G)z = Gz and
(ix9+97'G)z = (9:97'G)z = I(Ez, 97 'Gl)
(by the proper base change for pushforward used above) and similarly
(f.F)z = (X F'lx2)

Since we have the identification Ez = XL and since « defines an isomorphism
between the sheaves F'|x, and g~'G|g_ we conclude that we get

Fz=0Gz
in this case.

To finish the proof, we observe that there are canonical maps i 'F — G and
f~'F — F' compatible with o which on stalks produce the isomorphisms we saw
above. We omit the careful construction of these maps. [

Lemma 104.8. Let S be a scheme. Then the category fibred in groupoids
p:S — (Sch/S)n

whose fibre category over U is the category Sh(Ustare) of sheaves on the small étale
site of U is a stack in groupoids.

Proof. To prove the lemma we will check conditions (1), (2), and (3) of More on
Flatness, Lemma [37.13

Condition (1) holds because we have glueing for sheaves (and Zariski coverings are
étale coverings). See Sites, Lemma [26.4]

To see condition (2), suppose that f : X — Y is a surjective, flat, proper morphism
of finite presentation over S with Y affine. Then we have descent for {X — Y} by
either Lemma [104.5] or Lemma [104.3]

Condition (3) follows immediately from the more general Lemma [104.7] O

105. Blow up squares and étale cohomology

Blow up squares are introduced in More on Flatness, Section Using the proper
base change theorem we can see that we have a Mayer-Vietoris type result for blow
up squares.

Lemma 105.1. Let X be a scheme and let Z C X be a closed subscheme cut out
by a quasi-coherent ideal of finite type. Consider the corresponding blow up square

E —_— X/
J
|
Z—sX
For K € D™ (Xgga1e) with torsion cohomology sheaves we have a distinguished tri-
angle
K — Ri.(K|z)® Rb.(K|x/) = Re.(K|g) = K[1]

in D(Xstare) where c=iom =boj.
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Proof. The notation K|y stands for b,} K. Choose a bounded below complex
F* of abelian sheaves representing K. Observe that i, (F®|z) represents Ri.(K|z)
because i, is exact (Proposition . Choose a quasi-isomorphism b_*  F® — Z°

small

where Z* is a bounded below complex of injective abelian sheaves on X7, ;.. This

map is adjoint to a map F* — b.(Z°*) and b.(Z*) represents Rb.(K|x:). We have

(2% 5) = (b+Z°)|z by Lemma and by Lemma [91.12| this complex represents
Rn.(K|g). Hence the map

Ri.(K|z) @ Rb.(K|x') = Reo(K|g)
is represented by the surjective map of bounded below complexes
ix(F°|2) @ b«(Z%) = i (b4(Z%)]2)

To get our distinguished triangle it suffices to show that the canonical map F* —
ix(F°*|z) @ b.(Z*) maps quasi-isomorphically onto the kernel of the map of com-
plexes displayed above (namely a short exact sequence of complexes determines a
distinguished triangle in the derived category, see Derived Categories, Section .
We may check this on stalks at a geometric point T of X. If T is not in Z, then
X’ — X is an isomorphism over an open neighbourhood of Z. Thus, if Z’ denotes
the corresponding geometric point of X’ in this case, then we have to show that

Fe =13

is a quasi-isomorphism. This is true by our choice of Z°. If 7 is in Z, then b Z*®)z —
i (b+(Z*)|z)5 is an isomorphism of complexes of abelian groups. Hence the kernel
is equal to i, (F*|z)z = Fa as desired. O

OEW3 Lemmal 105.2. Let X be a scheme and let K € DT (Xgpq1e) have torsion coho-
mology sheaves. Let Z C X be a closed subscheme cut out by a quasi-coherent ideal
of finite type. Consider the corresponding blow up square

E——sX'
b
Z—X

Then there is a canonical long exact sequence

HY, o (X K) — HE, (X K| x )0 HY (2, K 2) = HYy g,

First proof. This follows immediately from Lemma and the fact that

RI(X, Rb.(K|x)) = RT(X', K|x)
(see Cohomology on Sites, Section and similarly for the others. (I

(E,K|g) = H>M (X, K)

étale

Second proof. By Lemma these cohomology groups are the cohomology of
X, X', E, Z with values in some complex of abelian sheaves on the site (Sch/X)pp.

(Namely, the object a;(lK of the derived category, see Lemma [102.1| above and
recall that K|x» = b_! K.) By More on Flatness, Lemma the ph sheafifi-

small™™ "
cation of the diagram of representable presheaves is cocartesian. Thus the lemma
follows from the very general Cohomology on Sites, Lemma [26.3| applied to the site

(Sch/X)pn and the commutative diagram of the lemma. O
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Lemma 105.3. Let X be a scheme and let Z C X be a closed subscheme cut out
by a quasi-coherent ideal of finite type. Consider the corresponding blow up square

E——X'
J
7o X

Suppose given

(1) an object K' of D (X, ,,.) with torsion cohomology sheaves,

(2) an object L of DV (Zstare) with torsion cohomology sheaves, and

(3) an isomorphism v : K'|p — L|g.
Then there exists an object K of DT (Xstare) and isomorphisms f : K|x — K',
g: K|z — L such that v = g|g o f|g. Moreover, given

(1) an object M of DV (Xetare) with torsion cohomology sheaves,
(2) @ morphism o : K' — M|x+ of D(X/;.10)5
(3) a morphism B : L — M|z of D(Zeétaie),
such that
alg = Blron.

Then there exists a morphism M — K in D(Xgq1) whose restriction to X' is ao f
and whose restriction to Z is bo g.

Proof. If K exists, then Lemma [105.1] tells us a distinguished triangle that it fits
in. Thus we simply choose a distinguished triangle

K — Ri.(L) ® Rb.(K'") = Re.(L|g) — K[1]

where ¢ = iom = boj. Here the map Ri.(L) — Rec.(L|g) is Ri. applied to
the adjunction mapping F — Rm.(L|g). The map Rb.(K’) — Rec.(L|g) is the
composition of the canonical map Rb.(K') — Re.(K'|g)) = R and Rc.(y). The
maps g and f of the statement of the lemma are the adjoints of these maps. If we
restrict this distinguished triangle to Z then the map Rb.(K) — Re.(L|g) becomes
an isomorphism by the base change theorem (Lemma and hence the map
g : K|z — L is an isomorphism. Looking at the distinguished triangle we see
that f : K|x — K’ is an isomorphism over X’ \ E = X \ Z. Moreover, we have
v o flg = g|g by construction. Then since v and ¢ are isomorphisms we conclude
that f induces isomorphisms on stalks at geometric points of E as well. Thus f is
an isomorphism.

For the final statement, we may replace K’ by K|x/, L by K|z, and v by the
canonical identification. Observe that o and S induce a commutative square

ﬁ@al OZE\L
\ \
M —— Ri,(M]|7) & Rby(M|x/) — Res (M) —— M[1]

Thus by the axioms of a derived category we get a dotted arrow producing a
morphism of distinguished triangles. [
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106. Almost blow up squares and the h topology

In this section we continue the discussion in More on Flatness, Section For the
convenience of the reader we recall that an almost blow up square is a commutative
diagram

!/

E X
(106.0.1) l lb

7 ——X

of schemes satisfying the following conditions:

R

(1) Z2— X is a closed immersion of finite presentation,

(2) E=b"1(2) is a locally principal closed subscheme of X’,

(3) b is proper and of finite presentation,

(4) the closed subscheme X” C X’ cut out by the qua51 coherent ideal of
sections of Ox/ supported on E (Properties, Lemma [24.5)) is the blow up
of X in Z.

It follows that the morphism b induces an isomorphism X'\ E — X \ Z.

We are going to give a criterion for “h sheafiness” for objects in the derived category
of the big fppf site (Sch/S)pps of a scheme S. On the same underlying category
we have a second topology, namely the h topology (More on Flatness, Section .
Recall that fppf coverings are h coverings (More on Flatness, Lemma . Hence
we may consider the morphism

€ (SCh/S)h — (SCh/S)fppf
See Cohomology on Sites, Section [27] In particular, we have a fully faithful functor
Re. : D((Sch/S)n) — D((Sch/S) fppr)
and we can ask: what is the essential image of this functor?

Lemma 106.1. With notation as above, if K is in the essential image of Re,, then
the maps c?Z’X,’E of Cohomology on Sites, Lemma are quasi-isomorphisms.

Proof. Denote # sheafification in the h topology. We have seen in More on Flat-

ness, Lemma|37.7|that hﬁ = h? 0, + hﬁ,. On the other hand, the map hﬁ — hﬁ/ is
E

injective as F — X’ is a monomorphism. Thus this lemma is a special case of Coho-

mology on Sites, Lemma (which itself is a formal consequence of Cohomology
on Sites, Lemma, [26.3]). O

Proposition 106.2. Let K be an object of D" ((Sch/S)fpps). Then K is in the
essential image of Re, : D((Sch/S)n) — D((Sch/S) ppps) if and only if ¢5 x/ 4
is a quasi-isomorphism for every almost blow up square (106.0.1]) in (Sch/S)y with
X affine.

Proof. We prove this by applying Cohomology on Sites, Lemma whose hy-
potheses hold by Lemma [106.1] and More on Flatness, Proposition O

Lemma 106.3. Let K be an object of DV ((Sch/S)¢pps). Then K is in the es-
sential image of Re,. : D((Sch/S)n) — D((Sch/S)pps) if and only if c§7X,}Z)E
is a quasi-isomorphism for every almost blow up square as in More on Flatness,

Examples|37.100 and [37.11].
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Proof. We prove this by applying Cohomology on Sites, Lemma whose hy-
potheses hold by Lemma [T106.1] and More on Flatness, Lemma [37.12 O

107. Cohomology of the structure sheaf in the h topology

Let p be a prime number. Let (C,O) be a ringed site with pO = 0. Then we set
colimp O equal to the colimit in the category of sheaves of rings of the system

oLoLol .
where F': O = O, f — fP is the Frobenius endomorphism.

Lemma 107.1. Let p be a prime number. Let S be a scheme over Fy,. Consider
the sheaf OP¢"/ = colimp O on (Sch/S)ppr. Then O is in the essential image
of Re, : D((Sch/S)n) — D((Sch/S) fpps)-

Proof. We prove this using the criterion of Lemma Before check the condi-
tions, we note that for a quasi-compact and quasi-separated object X of (Sch/S) tpps
we have

Hj,p (X,07T) = colimp H},, (X, 0)
See Cohomology on Sites, Lemma We will also use that H;;ppf(X7 0) =
Hi(X,0), see Descent, Proposition

Let A, f,J be as in More on Flatness, Example [37.10| and consider the associated
almost blow up square. Since X, X', Z, FE are affine, we have no higher cohomology
of O. Hence we only have to check that

0 = 0P (X) — 0! (X') @ OPerf (Z) — OP"f (E) — 0

is a short exact sequence. This was shown in (the proof of) More on Flatness,

Lemma 3821

Let X, X', Z, E be as in More on Flatness, Example|37.11] Since X and Z are affine
we have HP(X,0x) = HP(Z,0x) = 0 for p > 0. By More on Flatness, Lemma
we have HP(X',Ox:) = 0 for p > 0. Since E = P}, and Z is affine we also
have HP(E,Og) = 0 for p > 0. As in the previous paragraph we reduce to checking
that
0 — OrI(X) = OPr i (X' @ 0PI (Z) — OP"I(E) = 0

is a short exact sequence. This was shown in (the proof of) More on Flatness,
Lemma, [38.21 O

Proposition| 107.2. Let p be a prime number. Let S be a quasi-compact and
quasi-separated scheme over F,,. Then

H((Sch/S)p, O") = colimp H'(S, O)
Here on the left hand side by O" we mean the h sheafification of the structure sheaf.

Proof. This is just a reformulation of Lemma Recall that O" = Qrerf =
colimp O, see More on Flatness, Lemma By Lemma we see that
Orerl viewed as an object of D((Sch/S)fpps) is of the form Re, K for some K €
D((Sch/S)n). Then K = e~ t0OPe"f which is actually equal to OP"f because OPe"f
is an h sheaf. See Cohomology on Sites, Section Hence Re, 0P/ = Orerf (with
apologies for the confusing notation). Thus the lemma now follows from Leray

RT},(S, 07"y = RT 4,4 (S, Re.OP")) = RT 4,4 (S, OP"F)
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and the fact that

Hjy (5,077

= H},,; (S, colimp O) = colimp Ht,, (S, 0)
as S is quasi-compact and quasi-separated (see proof of Lemma [107.1)). (I
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