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1. Introduction

024K In this Chapter, we discuss étale morphisms of schemes. We illustrate some of the
more important concepts by working with the Noetherian case. Our principal goal
is to collect for the reader enough commutative algebra results to start reading a
treatise on étale cohomology. An auxiliary goal is to provide enough evidence to
ensure that the reader stops calling the phrase “the étale topology of schemes” an
exercise in general nonsense, if (s)he does indulge in such blasphemy.

We will refer to the other chapters of the Stacks project for standard results in
algebraic geometry (on schemes and commutative algebra). We will provide detailed
proofs of the new results that we state here.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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2. Conventions

039F In this chapter, frequently schemes will be assumed locally Noetherian and fre-
quently rings will be assumed Noetherian. But in all the statements we will reit-
erate this when necessary, and make sure we list all the hypotheses! On the other
hand, here are some general facts that we will use often and are useful to keep in
mind:

(1) A ring homomorphism A → B of finite type with A Noetherian is of finite
presentation. See Algebra, Lemma 31.4.

(2) A morphism (locally) of finite type between locally Noetherian schemes is
automatically (locally) of finite presentation. See Morphisms, Lemma 21.9.

(3) Add more like this here.

3. Unramified morphisms

024L We first define “unramified homomorphisms of local rings” for Noetherian local
rings. We cannot use the term “unramified” as there already is a notion of an
unramified ring map (Algebra, Section 151) and it is different. After discussing the
notion a bit we globalize it to describe unramified morphisms of locally Noetherian
schemes.

Definition 3.1.024M Let A, B be Noetherian local rings. A local homomorphism
A → B is said to be unramified homomorphism of local rings if

(1) mAB = mB ,
(2) κ(mB) is a finite separable extension of κ(mA), and
(3) B is essentially of finite type over A (this means that B is the localization

of a finite type A-algebra at a prime).

This is the local version of the definition in Algebra, Section 151. In that section a
ring map R → S is defined to be unramified if and only if it is of finite type, and
ΩS/R = 0. We say R → S is unramified at a prime q ⊂ S if there exists a g ∈ S,
g ̸∈ q such that R → Sg is an unramified ring map. It is shown in Algebra, Lemmas
151.5 and 151.7 that given a ring map R → S of finite type, and a prime q of S
lying over p ⊂ R, then we have

R → S is unramified at q ⇔ pSq = qSq and κ(p) ⊂ κ(q) finite separable

Thus we see that for a local homomorphism of local rings the properties of our
definition above are closely related to the question of being unramified. In fact, we
have proved the following lemma.

Lemma 3.2.039G Let A → B be of finite type with A a Noetherian ring. Let q be
a prime of B lying over p ⊂ A. Then A → B is unramified at q if and only if
Ap → Bq is an unramified homomorphism of local rings.

Proof. See discussion above. □

We will characterize the property of being unramified in terms of completions. For
a Noetherian local ring A we denote A∧ the completion of A with respect to the
maximal ideal. It is also a Noetherian local ring, see Algebra, Lemma 97.6.

Lemma 3.3.039H Let A, B be Noetherian local rings. Let A → B be a local homo-
morphism.

https://stacks.math.columbia.edu/tag/024M
https://stacks.math.columbia.edu/tag/039G
https://stacks.math.columbia.edu/tag/039H
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(1) if A → B is an unramified homomorphism of local rings, then B∧ is a finite
A∧ module,

(2) if A → B is an unramified homomorphism of local rings and κ(mA) =
κ(mB), then A∧ → B∧ is surjective,

(3) if A → B is an unramified homomorphism of local rings and κ(mA) is
separably closed, then A∧ → B∧ is surjective,

(4) if A and B are complete discrete valuation rings, then A → B is an unram-
ified homomorphism of local rings if and only if the uniformizer for A maps
to a uniformizer for B, and the residue field extension is finite separable
(and B is essentially of finite type over A).

Proof. Part (1) is a special case of Algebra, Lemma 97.7. For part (2), note
that the κ(mA)-vector space B∧/mA∧B∧ is generated by 1. Hence by Nakayama’s
lemma (Algebra, Lemma 20.1) the map A∧ → B∧ is surjective. Part (3) is a special
case of part (2). Part (4) is immediate from the definitions. □

Lemma 3.4.039I Let A, B be Noetherian local rings. Let A → B be a local ho-
momorphism such that B is essentially of finite type over A. The following are
equivalent

(1) A → B is an unramified homomorphism of local rings
(2) A∧ → B∧ is an unramified homomorphism of local rings, and
(3) A∧ → B∧ is unramified.

Proof. The equivalence of (1) and (2) follows from the fact that mAA
∧ is the

maximal ideal of A∧ (and similarly for B) and faithful flatness of B → B∧. For
example if A∧ → B∧ is unramified, then mAB

∧ = (mAB)B∧ = mBB
∧ and hence

mAB = mB .

Assume the equivalent conditions (1) and (2). By Lemma 3.3 we see that A∧ → B∧

is finite. Hence A∧ → B∧ is of finite presentation, and by Algebra, Lemma 151.7
we conclude that A∧ → B∧ is unramified at mB∧ . Since B∧ is local we conclude
that A∧ → B∧ is unramified.

Assume (3). By Algebra, Lemma 151.5 we conclude that A∧ → B∧ is an unramified
homomorphism of local rings, i.e., (2) holds. □

Definition 3.5.024N (See Morphisms, Definition 35.1 for the definition in the general
case.) Let Y be a locally Noetherian scheme. Let f : X → Y be locally of finite
type. Let x ∈ X.

(1) We say f is unramified at x if OY,f(x) → OX,x is an unramified homomor-
phism of local rings.

(2) The morphism f : X → Y is said to be unramified if it is unramified at all
points of X.

Let us prove that this definition agrees with the definition in the chapter on mor-
phisms of schemes. This in particular guarantees that the set of points where a
morphism is unramified is open.

Lemma 3.6.039J Let Y be a locally Noetherian scheme. Let f : X → Y be locally
of finite type. Let x ∈ X. The morphism f is unramified at x in the sense of
Definition 3.5 if and only if it is unramified in the sense of Morphisms, Definition
35.1.

https://stacks.math.columbia.edu/tag/039I
https://stacks.math.columbia.edu/tag/024N
https://stacks.math.columbia.edu/tag/039J
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Proof. This follows from Lemma 3.2 and the definitions. □

Here are some results on unramified morphisms. The formulations as given in
this list apply only to morphisms locally of finite type between locally Noetherian
schemes. In each case we give a reference to the general result as proved earlier in
the project, but in some cases one can prove the result more easily in the Noetherian
case. Here is the list:

(1) Unramifiedness is local on the source and the target in the Zariski topology.
(2) Unramified morphisms are stable under base change and composition. See

Morphisms, Lemmas 35.5 and 35.4.
(3) Unramified morphisms of schemes are locally quasi-finite and quasi-compact

unramified morphisms are quasi-finite. See Morphisms, Lemma 35.10
(4) Unramified morphisms have relative dimension 0. See Morphisms, Defini-

tion 29.1 and Morphisms, Lemma 29.5.
(5) A morphism is unramified if and only if all its fibres are unramified. That

is, unramifiedness can be checked on the scheme theoretic fibres. See Mor-
phisms, Lemma 35.12.

(6) Let X and Y be unramified over a base scheme S. Any S-morphism from
X to Y is unramified. See Morphisms, Lemma 35.16.

4. Three other characterizations of unramified morphisms

024O The following theorem gives three equivalent notions of being unramified at a point.
See Morphisms, Lemma 35.14 for (part of) the statement for general schemes.
Theorem 4.1.024P Let Y be a locally Noetherian scheme. Let f : X → Y be a
morphism of schemes which is locally of finite type. Let x be a point of X. The
following are equivalent

(1) f is unramified at x,
(2) the stalk ΩX/Y,x of the module of relative differentials at x is trivial,
(3) there exist open neighbourhoods U of x and V of f(x), and a commutative

diagram
U

i
//

��

An
V

~~
V

where i is a closed immersion defined by a quasi-coherent sheaf of ideals I
such that the differentials dg for g ∈ Ii(x) generate ΩAn

V
/V,i(x), and

(4) the diagonal ∆X/Y : X → X ×Y X is a local isomorphism at x.
Proof. The equivalence of (1) and (2) is proved in Morphisms, Lemma 35.14.
If f is unramified at x, then f is unramified in an open neighbourhood of x; this
does not follow immediately from Definition 3.5 of this chapter but it does follow
from Morphisms, Definition 35.1 which we proved to be equivalent in Lemma 3.6.
Choose affine opens V ⊂ Y , U ⊂ X with f(U) ⊂ V and x ∈ U , such that f is
unramified on U , i.e., f |U : U → V is unramified. By Morphisms, Lemma 35.13
the morphism U → U ×V U is an open immersion. This proves that (1) implies (4).
If ∆X/Y is a local isomorphism at x, then ΩX/Y,x = 0 by Morphisms, Lemma 32.7.
Hence we see that (4) implies (2). At this point we know that (1), (2) and (4) are
all equivalent.

https://stacks.math.columbia.edu/tag/024P
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Assume (3). The assumption on the diagram combined with Morphisms, Lemma
32.15 show that ΩU/V,x = 0. Since ΩU/V,x = ΩX/Y,x we conclude (2) holds.
Finally, assume that (2) holds. To prove (3) we may localize onX and Y and assume
that X and Y are affine. Say X = Spec(B) and Y = Spec(A). The point x ∈ X
corresponds to a prime q ⊂ B. Our assumption is that ΩB/A,q = 0 (see Morphisms,
Lemma 32.5 for the relationship between differentials on schemes and modules of
differentials in commutative algebra). Since Y is locally Noetherian and f locally
of finite type we see that A is Noetherian and B ∼= A[x1, . . . , xn]/(f1, . . . , fm),
see Properties, Lemma 5.2 and Morphisms, Lemma 15.2. In particular, ΩB/A

is a finite B-module. Hence we can find a single g ∈ B, g ̸∈ q such that the
principal localization (ΩB/A)g is zero. Hence after replacing B by Bg we see that
ΩB/A = 0 (formation of modules of differentials commutes with localization, see
Algebra, Lemma 131.8). This means that d(fj) generate the kernel of the canonical
map ΩA[x1,...,xn]/A ⊗A B → ΩB/A. Thus the surjection A[x1, . . . , xn] → B of A-
algebras gives the commutative diagram of (3), and the theorem is proved. □

How can we use this theorem? Well, here are a few remarks:
(1) Suppose that f : X → Y and g : Y → Z are two morphisms locally of finite

type between locally Noetherian schemes. There is a canonical short exact
sequence

f∗(ΩY/Z) → ΩX/Z → ΩX/Y → 0
see Morphisms, Lemma 32.9. The theorem therefore implies that if g ◦ f is
unramified, then so is f . This is Morphisms, Lemma 35.16.

(2) Since ΩX/Y is isomorphic to the conormal sheaf of the diagonal morphism
(Morphisms, Lemma 32.7) we see that if X → Y is a monomorphism of
locally Noetherian schemes and locally of finite type, then X → Y is un-
ramified. In particular, open and closed immersions of locally Noetherian
schemes are unramified. See Morphisms, Lemmas 35.7 and 35.8.

(3) The theorem also implies that the set of points where a morphism f : X →
Y (locally of finite type of locally Noetherian schemes) is not unramified is
the support of the coherent sheaf ΩX/Y . This allows one to give a scheme
theoretic definition to the “ramification locus”.

5. The functorial characterization of unramified morphisms

024Q In basic algebraic geometry we learn that some classes of morphisms can be char-
acterized functorially, and that such descriptions are quite useful. Unramified mor-
phisms too have such a characterization.

Theorem 5.1.024R Let f : X → S be a morphism of schemes. Assume S is a locally
Noetherian scheme, and f is locally of finite type. Then the following are equivalent:

(1) f is unramified,
(2) the morphism f is formally unramified: for any affine S-scheme T and

subscheme T0 of T defined by a square-zero ideal, the natural map
HomS(T,X) −→ HomS(T0, X)

is injective.

Proof. See More on Morphisms, Lemma 6.8 for a more general statement and
proof. What follows is a sketch of the proof in the current case.

https://stacks.math.columbia.edu/tag/024R
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Firstly, one checks both properties are local on the source and the target. This we
may assume that S and X are affine. Say X = Spec(B) and S = Spec(R). Say
T = Spec(C). Let J be the square-zero ideal of C with T0 = Spec(C/J). Assume
that we are given the diagram

B

ϕ

��

ϕ̄

!!
R //

??

C // C/J

Secondly, one checks that the association ϕ′ 7→ ϕ′ −ϕ gives a bijection between the
set of liftings of ϕ̄ and the module DerR(B, J). Thus, we obtain the implication
(1) ⇒ (2) via the description of unramified morphisms having trivial module of
differentials, see Theorem 4.1.
To obtain the reverse implication, consider the surjection q : C = (B ⊗R B)/I2 →
B = C/J defined by the square zero ideal J = I/I2 where I is the kernel of
the multiplication map B ⊗R B → B. We already have a lifting B → C defined
by, say, b 7→ b ⊗ 1. Thus, by the same reasoning as above, we obtain a bijective
correspondence between liftings of id : B → C/J and DerR(B, J). The hypothesis
therefore implies that the latter module is trivial. But we know that J ∼= ΩB/R.
Thus, B/R is unramified. □

6. Topological properties of unramified morphisms

024S The first topological result that will be of utility to us is one which says that
unramified and separated morphisms have “nice” sections. The material in this
section does not require any Noetherian hypotheses.

Proposition 6.1.024T Sections of unramified morphisms.
(1) Any section of an unramified morphism is an open immersion.
(2) Any section of a separated morphism is a closed immersion.
(3) Any section of an unramified separated morphism is open and closed.

Proof. Fix a base scheme S. If f : X ′ → X is any S-morphism, then the graph
Γf : X ′ → X ′ ×S X is obtained as the base change of the diagonal ∆X/S : X →
X ×S X via the projection X ′ ×S X → X ×S X. If g : X → S is separated (resp.
unramified) then the diagonal is a closed immersion (resp. open immersion) by
Schemes, Definition 21.3 (resp. Morphisms, Lemma 35.13). Hence so is the graph
as a base change (by Schemes, Lemma 18.2). In the special case X ′ = S, we obtain
(1), resp. (2). Part (3) follows on combining (1) and (2). □

We can now explicitly describe the sections of unramified morphisms.

Theorem 6.2.024U Let Y be a connected scheme. Let f : X → Y be unramified
and separated. Every section of f is an isomorphism onto a connected component.
There exists a bijective correspondence

sections of f ↔
{

connected components X ′ of X such that
the induced map X ′ → Y is an isomorphism

}
In particular, given x ∈ X there is at most one section passing through x.

Proof. Direct from Proposition 6.1 part (3). □

https://stacks.math.columbia.edu/tag/024T
https://stacks.math.columbia.edu/tag/024U
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The preceding theorem gives us some idea of the “rigidity” of unramified morphisms.
Further indication is provided by the following proposition which, besides being
intrinsically interesting, is also useful in the theory of the algebraic fundamental
group (see [Gro71, Exposé V]). See also the more general Morphisms, Lemma 35.17.

Proposition 6.3.024V Let S is be a scheme. Let π : X → S be unramified and
separated. Let Y be an S-scheme and y ∈ Y a point. Let f, g : Y → X be two
S-morphisms. Assume

(1) Y is connected
(2) x = f(y) = g(y), and
(3) the induced maps f ♯, g♯ : κ(x) → κ(y) on residue fields are equal.

Then f = g.

Proof. The maps f, g : Y → X define maps f ′, g′ : Y → XY = Y ×S X which are
sections of the structure map XY → Y . Note that f = g if and only if f ′ = g′.
The structure map XY → Y is the base change of π and hence unramified and
separated also (see Morphisms, Lemmas 35.5 and Schemes, Lemma 21.12). Thus
according to Theorem 6.2 it suffices to prove that f ′ and g′ pass through the same
point of XY . And this is exactly what the hypotheses (2) and (3) guarantee, namely
f ′(y) = g′(y) ∈ XY . □

Lemma 6.4.0AKI Let S be a Noetherian scheme. Let X → S be a quasi-compact
unramified morphism. Let Y → S be a morphism with Y Noetherian. Then
MorS(Y,X) is a finite set.

Proof. Assume first X → S is separated (which is often the case in practice).
Since Y is Noetherian it has finitely many connected components. Thus we may
assume Y is connected. Choose a point y ∈ Y with image s ∈ S. Since X → S
is unramified and quasi-compact then fibre Xs is finite, say Xs = {x1, . . . , xn}
and κ(xi)/κ(s) is a finite field extension. See Morphisms, Lemma 35.10, 20.5, and
20.10. For each i there are at most finitely many κ(s)-algebra maps κ(xi) → κ(y)
(by elementary field theory). Thus MorS(Y,X) is finite by Proposition 6.3.
General case. There exists a nonempty open U ⊂ S such that XU → U is finite
(in particular separated), see Morphisms, Lemma 51.1 (the lemma applies since
we’ve already seen above that a quasi-compact unramified morphism is quasi-finite
and since X → S is quasi-separated by Morphisms, Lemma 15.7). Let Z ⊂ S be
the reduced closed subscheme supported on the complement of U . By Noetherian
induction, we see that MorZ(YZ , XZ) is finite (details omitted). By the result of
the first paragraph the set MorU (YU , XU ) is finite. Thus it suffices to show that

MorS(Y,X) −→ MorZ(YZ , XZ) × MorU (YU , XU )
is injective. This follows from the fact that the set of points where two morphisms
a, b : Y → X agree is open in Y , due to the fact that ∆ : X → X ×S X is open, see
Morphisms, Lemma 35.13. □

7. Universally injective, unramified morphisms

06ND Recall that a morphism of schemes f : X → Y is universally injective if any base
change of f is injective (on underlying topological spaces), see Morphisms, Defini-
tion 10.1. Universally injective and unramified morphisms can be characterized as
follows.

https://stacks.math.columbia.edu/tag/024V
https://stacks.math.columbia.edu/tag/0AKI
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Lemma 7.1.05VH Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is unramified and a monomorphism,
(2) f is unramified and universally injective,
(3) f is locally of finite type and a monomorphism,
(4) f is universally injective, locally of finite type, and formally unramified,
(5) f is locally of finite type and Xs is either empty or Xs → s is an isomor-

phism for all s ∈ S.
Proof. We have seen in More on Morphisms, Lemma 6.8 that being formally un-
ramified and locally of finite type is the same thing as being unramified. Hence
(4) is equivalent to (2). A monomorphism is certainly universally injective and
formally unramified hence (3) implies (4). It is clear that (1) implies (3). Finally, if
(2) holds, then ∆ : X → X ×S X is both an open immersion (Morphisms, Lemma
35.13) and surjective (Morphisms, Lemma 10.2) hence an isomorphism, i.e., f is a
monomorphism. In this way we see that (2) implies (1).
Condition (3) implies (5) because monomorphisms are preserved under base change
(Schemes, Lemma 23.5) and because of the description of monomorphisms towards
the spectra of fields in Schemes, Lemma 23.11. Condition (5) implies (4) by Mor-
phisms, Lemmas 10.2 and 35.12. □

This leads to the following useful characterization of closed immersions.
Lemma 7.2.04XV Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is a closed immersion,
(2) f is a proper monomorphism,
(3) f is proper, unramified, and universally injective,
(4) f is universally closed, unramified, and a monomorphism,
(5) f is universally closed, unramified, and universally injective,
(6) f is universally closed, locally of finite type, and a monomorphism,
(7) f is universally closed, universally injective, locally of finite type, and for-

mally unramified.
Proof. The equivalence of (4) – (7) follows immediately from Lemma 7.1.
Let f : X → S satisfy (6). Then f is separated, see Schemes, Lemma 23.3 and
has finite fibres. Hence More on Morphisms, Lemma 44.1 shows f is finite. Then
Morphisms, Lemma 44.15 implies f is a closed immersion, i.e., (1) holds.
Note that (1) ⇒ (2) because a closed immersion is proper and a monomorphism
(Morphisms, Lemma 41.6 and Schemes, Lemma 23.8). By Lemma 7.1 we see that
(2) implies (3). It is clear that (3) implies (5). □

Here is another result of a similar flavor.
Lemma 7.3.04DG Let π : X → S be a morphism of schemes. Let s ∈ S. Assume that

(1) π is finite,
(2) π is unramified,
(3) π−1({s}) = {x}, and
(4) κ(s) ⊂ κ(x) is purely inseparable1.

1In view of condition (2) this is equivalent to κ(s) = κ(x).

https://stacks.math.columbia.edu/tag/05VH
https://stacks.math.columbia.edu/tag/04XV
https://stacks.math.columbia.edu/tag/04DG
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Then there exists an open neighbourhood U of s such that π|π−1(U) : π−1(U) → U
is a closed immersion.

Proof. The question is local on S. Hence we may assume that S = Spec(A). By
definition of a finite morphism this implies X = Spec(B). Note that the ring map
φ : A → B defining π is a finite unramified ring map. Let p ⊂ A be the prime
corresponding to s. Let q ⊂ B be the prime corresponding to x. Conditions (2), (3)
and (4) imply that Bq/pBq = κ(p). By Algebra, Lemma 41.11 we have Bq = Bp

(note that a finite ring map satisfies going up, see Algebra, Section 41.) Hence
we see that Bp/pBp = κ(p). As B is a finite A-module we see from Nakayama’s
lemma (see Algebra, Lemma 20.1) that Bp = φ(Ap). Hence (using the finiteness
of B as an A-module again) there exists a f ∈ A, f ̸∈ p such that Bf = φ(Af ) as
desired. □

The topological results presented above will be used to give a functorial character-
ization of étale morphisms similar to Theorem 5.1.

8. Examples of unramified morphisms

024W Here are a few examples.

Example 8.1.024X Let k be a field. Unramified quasi-compact morphisms X →
Spec(k) are affine. This is true because X has dimension 0 and is Noetherian, hence
is a finite discrete set, and each point gives an affine open, so X is a finite disjoint
union of affines hence affine. Noether normalization forces X to be the spectrum
of a finite k-algebra A. This algebra is a product of finite separable field extensions
of k. Thus, an unramified quasi-compact morphism to Spec(k) corresponds to a
finite number of finite separable field extensions of k. In particular, an unramified
morphism with a connected source and a one point target is forced to be a finite
separable field extension. As we will see later, X → Spec(k) is étale if and only if it
is unramified. Thus, in this case at least, we obtain a very easy description of the
étale topology of a scheme. Of course, the cohomology of this topology is another
story.

Example 8.2.024Y Property (3) in Theorem 4.1 gives us a canonical source of examples
for unramified morphisms. Fix a ring R and an integer n. Let I = (g1, . . . , gm) be
an ideal in R[x1, . . . , xn]. Let q ⊂ R[x1, . . . , xn] be a prime. Assume I ⊂ q and
that the matrix (

∂gi

∂xj

)
mod q ∈ Mat(n×m,κ(q))

has rank n. Then the morphism f : Z = Spec(R[x1, . . . , xn]/I) → Spec(R) is
unramified at the point x ∈ Z ⊂ An

R corresponding to q. Clearly we must have
m ≥ n. In the extreme case m = n, i.e., the differential of the map An

R → An
R

defined by the gi’s is an isomorphism of the tangent spaces, then f is also flat x and,
hence, is an étale map (see Algebra, Definition 137.6, Lemma 137.7 and Example
137.8).

Example 8.3.024Z Fix an extension of number fields L/K with rings of integers OL

and OK . The injection K → L defines a morphism f : Spec(OL) → Spec(OK). As
discussed above, the points where f is unramified in our sense correspond to the
set of points where f is unramified in the conventional sense. In the conventional
sense, the locus of ramification in Spec(OL) can be defined by vanishing set of the

https://stacks.math.columbia.edu/tag/024X
https://stacks.math.columbia.edu/tag/024Y
https://stacks.math.columbia.edu/tag/024Z
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different; this is an ideal in OL. In fact, the different is nothing but the annihilator
of the module ΩOL/OK

. Similarly, the discriminant is an ideal in OK , namely it
is the norm of the different. The vanishing set of the discriminant is precisely
the set of points of K which ramify in L. Thus, denoting by X the complement
of the closed subset defined by the different in Spec(OL), we obtain a morphism
X → Spec(OK) which is unramified. Furthermore, this morphism is also flat, as
any local homomorphism of discrete valuation rings is flat, and hence this morphism
is actually étale. If L/K is finite Galois, then denoting by Y the complement of the
closed subset defined by the discriminant in Spec(OK), we see that we get even a
finite étale morphism X → Y . Thus, this is an example of a finite étale covering.

9. Flat morphisms

0250 This section simply exists to summarize the properties of flatness that will be useful
to us. Thus, we will be content with stating the theorems precisely and giving
references for the proofs.
After briefly recalling the necessary facts about flat modules over Noetherian rings,
we state a theorem of Grothendieck which gives sufficient conditions for “hyperplane
sections” of certain modules to be flat.
Definition 9.1.0251 Flatness of modules and rings.

(1) A module N over a ring A is said to be flat if the functor M 7→ M ⊗A N
is exact.

(2) If this functor is also faithful, we say that N is faithfully flat over A.
(3) A morphism of rings f : A → B is said to be flat (resp. faithfully flat) if

the functor M 7→ M ⊗A B is exact (resp. faithful and exact).
Here is a list of facts with references to the algebra chapter.

(1) Free and projective modules are flat. This is clear for free modules and
follows for projective modules as they are direct summands of free modules
and ⊗ commutes with direct sums.

(2) Flatness is a local property, that is, M is flat over A if and only if Mp is
flat over Ap for all p ∈ Spec(A). See Algebra, Lemma 39.18.

(3) If M is a flat A-module and A → B is a ring map, then M ⊗A B is a flat
B-module. See Algebra, Lemma 39.7.

(4) Finite flat modules over local rings are free. See Algebra, Lemma 78.5.
(5) If f : A → B is a morphism of arbitrary rings, f is flat if and only if the

induced maps Af−1(q) → Bq are flat for all q ∈ Spec(B). See Algebra,
Lemma 39.18

(6) If f : A → B is a local homomorphism of local rings, f is flat if and only if
it is faithfully flat. See Algebra, Lemma 39.17.

(7) A map A → B of rings is faithfully flat if and only if it is flat and the
induced map on spectra is surjective. See Algebra, Lemma 39.16.

(8) If A is a Noetherian local ring, the completion A∧ is faithfully flat over A.
See Algebra, Lemma 97.3.

(9) Let A be a Noetherian local ring and M an A-module. Then M is flat over
A if and only if M ⊗AA

∧ is flat over A∧. (Combine the previous statement
with Algebra, Lemma 39.8.)

Before we move on to the geometric category, we present Grothendieck’s theorem,
which provides a convenient recipe for producing flat modules.

https://stacks.math.columbia.edu/tag/0251
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Theorem 9.2.0252 Let A, B be Noetherian local rings. Let f : A → B be a local
homomorphism. If M is a finite B-module that is flat as an A-module, and t ∈ mB

is an element such that multiplication by t is injective on M/mAM , then M/tM is
also A-flat.

Proof. See Algebra, Lemma 99.1. See also [Mat70, Section 20]. □

Definition 9.3.0253 (See Morphisms, Definition 25.1). Let f : X → Y be a morphism
of schemes. Let F be a quasi-coherent OX -module.

(1) Let x ∈ X. We say F is flat over Y at x ∈ X if Fx is a flat OY,f(x)-module.
This uses the map OY,f(x) → OX,x to think of Fx as a OY,f(x)-module.

(2) Let x ∈ X. We say f is flat at x ∈ X if OY,f(x) → OX,x is flat.
(3) We say f is flat if it is flat at all points of X.
(4) A morphism f : X → Y that is flat and surjective is sometimes said to be

faithfully flat.

Once again, here is a list of results:
(1) The property (of a morphism) of being flat is, by fiat, local in the Zariski

topology on the source and the target.
(2) Open immersions are flat. (This is clear because it induces isomorphisms

on local rings.)
(3) Flat morphisms are stable under base change and composition. Morphisms,

Lemmas 25.8 and 25.6.
(4) If f : X → Y is flat, then the pullback functor QCoh(OY ) → QCoh(OX)

is exact. This is immediate by looking at stalks.
(5) Let f : X → Y be a morphism of schemes, and assume Y is quasi-compact

and quasi-separated. In this case if the functor f∗ is exact then f is flat.
(Proof omitted. Hint: Use Properties, Lemma 22.1 to see that Y has
“enough” ideal sheaves and use the characterization of flatness in Algebra,
Lemma 39.5.)

10. Topological properties of flat morphisms

0254 We “recall” below some openness properties that flat morphisms enjoy.

Theorem 10.1.0255 Let Y be a locally Noetherian scheme. Let f : X → Y be a
morphism which is locally of finite type. Let F be a coherent OX-module. The set
of points in X where F is flat over Y is an open set. In particular the set of points
where f is flat is open in X.

Proof. See More on Morphisms, Theorem 15.1. □

Theorem 10.2.039K Let Y be a locally Noetherian scheme. Let f : X → Y be a
morphism which is flat and locally of finite type. Then f is (universally) open.

Proof. See Morphisms, Lemma 25.10. □

Theorem 10.3.0256 A faithfully flat quasi-compact morphism is a quotient map for
the Zariski topology.

Proof. See Morphisms, Lemma 25.12. □

https://stacks.math.columbia.edu/tag/0252
https://stacks.math.columbia.edu/tag/0253
https://stacks.math.columbia.edu/tag/0255
https://stacks.math.columbia.edu/tag/039K
https://stacks.math.columbia.edu/tag/0256
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An important reason to study flat morphisms is that they provide the adequate
framework for capturing the notion of a family of schemes parametrized by the
points of another scheme. Naively one may think that any morphism f : X → S
should be thought of as a family parametrized by the points of S. However, without
a flatness restriction on f , really bizarre things can happen in this so-called family.
For instance, we aren’t guaranteed that relative dimension (dimension of the fibres)
is constant in a family. Other numerical invariants, such as the Hilbert polynomial,
too may change from fibre to fibre. Flatness prevents such things from happening
and, therefore, provides some “continuity” to the fibres.

11. Étale morphisms

0257 In this section, we will define étale morphisms and prove a number of important
properties about them. The most important one, no doubt, is the functorial char-
acterization presented in Theorem 16.1. Following this, we will also discuss a few
properties of rings which are insensitive to an étale extension (properties which
hold for a ring if and only if they hold for all its étale extensions) to motivate the
basic tenet of étale cohomology – étale morphisms are the algebraic analogue of
local isomorphisms.
As the title suggests, we will define the class of étale morphisms – the class of mor-
phisms (whose surjective families) we shall deem to be coverings in the category of
schemes over a base scheme S in order to define the étale site Sétale. Intuitively, an
étale morphism is supposed to capture the idea of a covering space and, therefore,
should be close to a local isomorphism. If we’re working with varieties over alge-
braically closed fields, this last statement can be made into a definition provided
we replace “local isomorphism” with “formal local isomorphism” (isomorphism af-
ter completion). One can then give a definition over any base field by asking that
the base change to the algebraic closure be étale (in the aforementioned sense).
But, rather than proceeding via such aesthetically displeasing constructions, we
will adopt a cleaner, albeit slightly more abstract, algebraic approach.
We first define “étale homomorphisms of local rings” for Noetherian local rings.
We cannot use the term “étale”, as there already is a notion of an étale ring map
(Algebra, Section 143) and it is different.

Definition 11.1.0258 Let A, B be Noetherian local rings. A local homomorphism
f : A → B is said to be an étale homomorphism of local rings if it is flat and an
unramified homomorphism of local rings (please see Definition 3.1).

This is the local version of the definition of an étale ring map in Algebra, Section
143. The exact definition given in that section is that it is a smooth ring map of
relative dimension 0. It is shown (in Algebra, Lemma 143.2) that an étale R-algebra
S always has a presentation

S = R[x1, . . . , xn]/(f1, . . . , fn)
such that

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2
. . . . . . . . . . . .

∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


maps to an invertible element in S. The following two lemmas link the two notions.

https://stacks.math.columbia.edu/tag/0258
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Lemma 11.2.039L Let A → B be of finite type with A a Noetherian ring. Let q be a
prime of B lying over p ⊂ A. Then A → B is étale at q if and only if Ap → Bq is
an étale homomorphism of local rings.

Proof. See Algebra, Lemmas 143.3 (flatness of étale maps), 143.5 (étale maps are
unramified) and 143.7 (flat and unramified maps are étale). □

Lemma 11.3.039M Let A, B be Noetherian local rings. Let A → B be a local ho-
momorphism such that B is essentially of finite type over A. The following are
equivalent

(1) A → B is an étale homomorphism of local rings
(2) A∧ → B∧ is an étale homomorphism of local rings, and
(3) A∧ → B∧ is étale.

Moreover, in this case B∧ ∼= (A∧)⊕n as A∧-modules for some n ≥ 1.

Proof. To see the equivalences of (1), (2) and (3), as we have the corresponding
results for unramified ring maps (Lemma 3.4) it suffices to prove that A → B is
flat if and only if A∧ → B∧ is flat. This is clear from our lists of properties of flat
maps since the ring maps A → A∧ and B → B∧ are faithfully flat. For the final
statement, by Lemma 3.3 we see that B∧ is a finite flat A∧ module. Hence it is
finite free by our list of properties on flat modules in Section 9. □

The integer n which occurs in the lemma above is nothing other than the degree
[κ(mB) : κ(mA)] of the residue field extension. In particular, if κ(mA) is separably
closed, we see that A∧ → B∧ is an isomorphism, which vindicates our earlier claims.

Definition 11.4.0259 (See Morphisms, Definition 36.1.) Let Y be a locally Noetherian
scheme. Let f : X → Y be a morphism of schemes which is locally of finite type.

(1) Let x ∈ X. We say f is étale at x ∈ X if OY,f(x) → OX,x is an étale
homomorphism of local rings.

(2) The morphism is said to be étale if it is étale at all its points.

Let us prove that this definition agrees with the definition in the chapter on mor-
phisms of schemes. This in particular guarantees that the set of points where a
morphism is étale is open.

Lemma 11.5.039N Let Y be a locally Noetherian scheme. Let f : X → Y be locally
of finite type. Let x ∈ X. The morphism f is étale at x in the sense of Definition
11.4 if and only if it is étale at x in the sense of Morphisms, Definition 36.1.

Proof. This follows from Lemma 11.2 and the definitions. □

Here are some results on étale morphisms. The formulations as given in this list
apply only to morphisms locally of finite type between locally Noetherian schemes.
In each case we give a reference to the general result as proved earlier in the project,
but in some cases one can prove the result more easily in the Noetherian case. Here
is the list:

(1) An étale morphism is unramified. (Clear from our definitions.)
(2) Étaleness is local on the source and the target in the Zariski topology.
(3) Étale morphisms are stable under base change and composition. See Mor-

phisms, Lemmas 36.4 and 36.3.

https://stacks.math.columbia.edu/tag/039L
https://stacks.math.columbia.edu/tag/039M
https://stacks.math.columbia.edu/tag/0259
https://stacks.math.columbia.edu/tag/039N
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(4) Étale morphisms of schemes are locally quasi-finite and quasi-compact étale
morphisms are quasi-finite. (This is true because it holds for unramified
morphisms as seen earlier.)

(5) Étale morphisms have relative dimension 0. See Morphisms, Definition 29.1
and Morphisms, Lemma 29.5.

(6) A morphism is étale if and only if it is flat and all its fibres are étale. See
Morphisms, Lemma 36.8.

(7) Étale morphisms are open. This is true because an étale morphism is flat,
and Theorem 10.2.

(8) Let X and Y be étale over a base scheme S. Any S-morphism from X to
Y is étale. See Morphisms, Lemma 36.18.

12. The structure theorem

025A We present a theorem which describes the local structure of étale and unramified
morphisms. Besides its obvious independent importance, this theorem also allows
us to make the transition to another definition of étale morphisms that captures
the geometric intuition better than the one we’ve used so far.

To state it we need the notion of a standard étale ring map, see Algebra, Definition
144.1. Namely, suppose that R is a ring and f, g ∈ R[t] are polynomials such that

(a) f is a monic polynomial, and
(b) f ′ = df/dt is invertible in the localization R[t]g/(f).

Then the map
R −→ R[t]g/(f) = R[t, 1/g]/(f)

is a standard étale algebra, and any standard étale algebra is isomorphic to one of
these. It is a pleasant exercise to prove that such a ring map is flat, and unramified
and hence étale (as expected of course). A special case of a standard étale ring map
is any ring map

R −→ R[t]f ′/(f) = R[t, 1/f ′]/(f)
with f a monic polynomial, and any standard étale algebra is (isomorphic to) a
principal localization of one of these.

Theorem 12.1.025B Let f : A → B be an étale homomorphism of local rings. Then
there exist f, g ∈ A[t] such that

(1) B′ = A[t]g/(f) is standard étale – see (a) and (b) above, and
(2) B is isomorphic to a localization of B′ at a prime.

Proof. Write B = B′
q for some finite type A-algebra B′ (we can do this because

B is essentially of finite type over A). By Lemma 11.2 we see that A → B′ is
étale at q. Hence we may apply Algebra, Proposition 144.4 to see that a principal
localization of B′ is standard étale. □

Here is the version for unramified homomorphisms of local rings.

Theorem 12.2.039O Let f : A → B be an unramified morphism of local rings. Then
there exist f, g ∈ A[t] such that

(1) B′ = A[t]g/(f) is standard étale – see (a) and (b) above, and
(2) B is isomorphic to a quotient of a localization of B′ at a prime.

https://stacks.math.columbia.edu/tag/025B
https://stacks.math.columbia.edu/tag/039O
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Proof. Write B = B′
q for some finite type A-algebra B′ (we can do this because

B is essentially of finite type over A). By Lemma 3.2 we see that A → B′ is
unramified at q. Hence we may apply Algebra, Proposition 152.1 to see that a
principal localization of B′ is a quotient of a standard étale A-algebra. □

Via standard lifting arguments, one then obtains the following geometric statement
which will be of essential use to us.

Theorem 12.3.025C Let φ : X → Y be a morphism of schemes. Let x ∈ X. Let
V ⊂ Y be an affine open neighbourhood of φ(x). If φ is étale at x, then there exist
exists an affine open U ⊂ X with x ∈ U and φ(U) ⊂ V such that we have the
following diagram

X

��

Uoo

��

j
// Spec(R[t]f ′/(f))

��
Y Voo Spec(R)

where j is an open immersion, and f ∈ R[t] is monic.

Proof. This is equivalent to Morphisms, Lemma 36.14 although the statements
differ slightly. See also, Varieties, Lemma 18.3 for a variant for unramified mor-
phisms. □

13. Étale and smooth morphisms

039P An étale morphism is smooth of relative dimension zero. The projection An
S → S

is a standard example of a smooth morphism of relative dimension n. It turns
out that any smooth morphism is étale locally of this form. Here is the precise
statement.

Theorem 13.1.039Q Let φ : X → Y be a morphism of schemes. Let x ∈ X. If φ is
smooth at x, then there exist an integer n ≥ 0 and affine opens V ⊂ Y and U ⊂ X
with x ∈ U and φ(U) ⊂ V such that there exists a commutative diagram

X

��

Uoo

��

π
// An

R

��

Spec(R[x1, . . . , xn])

vv
Y Voo Spec(R)

where π is étale.

Proof. See Morphisms, Lemma 36.20. □

14. Topological properties of étale morphisms

025F We present a few of the topological properties of étale and unramified morphisms.
First, we give what Grothendieck calls the fundamental property of étale morphisms,
see [Gro71, Exposé I.5].

Theorem 14.1.025G Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f is an open immersion,
(2) f is universally injective and étale, and
(3) f is a flat monomorphism, locally of finite presentation.

https://stacks.math.columbia.edu/tag/025C
https://stacks.math.columbia.edu/tag/039Q
https://stacks.math.columbia.edu/tag/025G
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Proof. An open immersion is universally injective since any base change of an open
immersion is an open immersion. Moreover, it is étale by Morphisms, Lemma 36.9.
Hence (1) implies (2).

Assume f is universally injective and étale. Since f is étale it is flat and locally
of finite presentation, see Morphisms, Lemmas 36.12 and 36.11. By Lemma 7.1 we
see that f is a monomorphism. Hence (2) implies (3).

Assume f is flat, locally of finite presentation, and a monomorphism. Then f is
open, see Morphisms, Lemma 25.10. Thus we may replace Y by f(X) and we may
assume f is surjective. Then f is open and bijective hence a homeomorphism. Hence
f is quasi-compact. Hence Descent, Lemma 25.1 shows that f is an isomorphism
and we win. □

Here is another result of a similar flavor.

Lemma 14.2.04DH Let π : X → S be a morphism of schemes. Let s ∈ S. Assume that
(1) π is finite,
(2) π is étale,
(3) π−1({s}) = {x}, and
(4) κ(s) ⊂ κ(x) is purely inseparable2.

Then there exists an open neighbourhood U of s such that π|π−1(U) : π−1(U) → U
is an isomorphism.

Proof. By Lemma 7.3 there exists an open neighbourhood U of s such that
π|π−1(U) : π−1(U) → U is a closed immersion. But a morphism which is étale and
a closed immersion is an open immersion (for example by Theorem 14.1). Hence
after shrinking U we obtain an isomorphism. □

Lemma 14.3.0EBS Let U → X be an étale morphism of schemes where X is a scheme
in characteristic p. Then the relative Frobenius FU/X : U → U ×X,FX

X is an
isomorphism.

Proof. The morphism FU/X is a universal homeomorphism by Varieties, Lemma
36.6. The morphism FU/X is étale as a morphism between schemes étale over X
(Morphisms, Lemma 36.18). Hence FU/X is an isomorphism by Theorem 14.1. □

15. Topological invariance of the étale topology

06NE Next, we present an extremely crucial theorem which, roughly speaking, says that
étaleness is a topological property.

Theorem 15.1.025H Let X and Y be two schemes over a base scheme S. Let S0 be
a closed subscheme of S with the same underlying topological space (for example if
the ideal sheaf of S0 in S has square zero). Denote X0 (resp. Y0) the base change
S0 ×S X (resp. S0 ×S Y ). If X is étale over S, then the map

MorS(Y,X) −→ MorS0(Y0, X0)

is bijective.

2In view of condition (2) this is equivalent to κ(s) = κ(x).

https://stacks.math.columbia.edu/tag/04DH
https://stacks.math.columbia.edu/tag/0EBS
https://stacks.math.columbia.edu/tag/025H
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Proof. After base changing via Y → S, we may assume that Y = S. In this case
the theorem states that any S-morphism σ0 : S0 → X actually factors uniquely
through a section S → X of the étale structure morphism f : X → S.

Uniqueness. Suppose we have two sections σ, σ′ through which σ0 factors. Because
X → S is étale we see that ∆ : X → X ×S X is an open immersion (Morphisms,
Lemma 35.13). The morphism (σ, σ′) : S → X ×S X factors through this open
because for any s ∈ S we have (σ, σ′)(s) = (σ0(s), σ0(s)). Thus σ = σ′.

To prove existence we first reduce to the affine case (we suggest the reader skip
this step). Let X =

⋃
Xi be an affine open covering such that each Xi maps into

an affine open Si of S. For every s ∈ S we can choose an i such that σ0(s) ∈ Xi.
Choose an affine open neighbourhood U ⊂ Si of s such that σ0(U0) ⊂ Xi,0. Note
that X ′ = Xi ×S U = Xi ×Si U is affine. If we can lift σ0|U0 : U0 → X ′

0 to U → X ′,
then by uniqueness these local lifts will glue to a global morphism S → X. Thus
we may assume S and X are affine.

Existence when S and X are affine. Write S = Spec(A) and X = Spec(B). Then
A → B is étale and in particular smooth (of relative dimension 0). As |S0| = |S|
we see that S0 = Spec(A/I) with I ⊂ A locally nilpotent. Thus existence follows
from Algebra, Lemma 138.17. □

From the proof of preceeding theorem, we also obtain one direction of the promised
functorial characterization of étale morphisms. The following theorem will be
strengthened in Étale Cohomology, Theorem 45.2.

Theorem 15.2 (Une equivalence remarquable de catégories).039R [DG67, IV,
Theorem 18.1.2]

Let S be a scheme.
Let S0 ⊂ S be a closed subscheme with the same underlying topological space (for
example if the ideal sheaf of S0 in S has square zero). The functor

X 7−→ X0 = S0 ×S X

defines an equivalence of categories

{schemes X étale over S} ↔ {schemes X0 étale over S0}

Proof. By Theorem 15.1 we see that this functor is fully faithful. It remains to
show that the functor is essentially surjective. Let Y → S0 be an étale morphism
of schemes.

Suppose that the result holds if S and Y are affine. In that case, we choose an
affine open covering Y =

⋃
Vj such that each Vj maps into an affine open of S. By

assumption (affine case) we can find étale morphisms Wj → S such that Wj,0 ∼= Vj

(as schemes over S0). Let Wj,j′ ⊂ Wj be the open subscheme whose underlying
topological space corresponds to Vj ∩ Vj′ . Because we have isomorphisms

Wj,j′,0 ∼= Vj ∩ Vj′ ∼= Wj′,j,0

as schemes over S0 we see by fully faithfulness that we obtain isomorphisms θj,j′ :
Wj,j′ → Wj′,j of schemes over S. We omit the verification that these isomorphisms
satisfy the cocycle condition of Schemes, Section 14. Applying Schemes, Lemma
14.2 we obtain a scheme X → S by glueing the schemes Wj along the identifications
θj,j′ . It is clear that X → S is étale and X0 ∼= Y by construction.

https://stacks.math.columbia.edu/tag/039R
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Thus it suffices to show the lemma in case S and Y are affine. Say S = Spec(R)
and S0 = Spec(R/I) with I locally nilpotent. By Algebra, Lemma 143.2 we know
that Y is the spectrum of a ring A with

A = (R/I)[x1, . . . , xn]/(f1, . . . , fn)
such that

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2
. . . . . . . . . . . .

∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


maps to an invertible element in A. Choose any lifts fi ∈ R[x1, . . . , xn]. Set

A = R[x1, . . . , xn]/(f1, . . . , fn)
Since I is locally nilpotent the ideal IA is locally nilpotent (Algebra, Lemma 32.3).
Observe that A = A/IA. It follows that the determinant of the matrix of partials
of the fi is invertible in the algebra A by Algebra, Lemma 32.4. Hence R → A is
étale and the proof is complete. □

16. The functorial characterization

025J We finally present the promised functorial characterization. Thus there are four
ways to think about étale morphisms of schemes:

(1) as a smooth morphism of relative dimension 0,
(2) as locally finitely presented, flat, and unramified morphisms,
(3) using the structure theorem, and
(4) using the functorial characterization.

Theorem 16.1.025K Let f : X → S be a morphism that is locally of finite presentation.
The following are equivalent

(1) f is étale,
(2) for all affine S-schemes Y , and closed subschemes Y0 ⊂ Y defined by

square-zero ideals, the natural map
MorS(Y,X) −→ MorS(Y0, X)

is bijective.

Proof. This is More on Morphisms, Lemma 8.9. □

This characterization says that solutions to the equations defining X can be lifted
uniquely through nilpotent thickenings.

17. Étale local structure of unramified morphisms

04HG In the chapter More on Morphisms, Section 41 the reader can find some results
on the étale local structure of quasi-finite morphisms. In this section we want to
combine this with the topological properties of unramified morphisms we have seen
in this chapter. The basic overall picture to keep in mind is

V //

!!

XU

��

// X

f

��
U // S

https://stacks.math.columbia.edu/tag/025K
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see More on Morphisms, Equation (41.0.1). We start with a very general case.

Lemma 17.1.04HH Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is unramified at each xi. Then there
exists an étale neighbourhood (U, u) → (S, s) and opens Vi,j ⊂ XU , i = 1, . . . , n,
j = 1, . . . ,mi such that

(1) Vi,j → U is a closed immersion passing through u,
(2) u is not in the image of Vi,j ∩ Vi′,j′ unless i = i′ and j = j′, and
(3) any point of (XU )u mapping to xi is in some Vi,j.

Proof. By Morphisms, Definition 35.1 there exists an open neighbourhood of each
xi which is locally of finite type over S. Replacing X by an open neighbourhood of
{x1, . . . , xn} we may assume f is locally of finite type. Apply More on Morphisms,
Lemma 41.3 to get the étale neighbourhood (U, u) and the opens Vi,j finite over
U . By Lemma 7.3 after possibly shrinking U we get that Vi,j → U is a closed
immersion. □

Lemma 17.2.04HI Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is separated and f is unramified
at each xi. Then there exists an étale neighbourhood (U, u) → (S, s) and a disjoint
union decomposition

XU = W ⨿
∐

i,j
Vi,j

such that
(1) Vi,j → U is a closed immersion passing through u,
(2) the fibre Wu contains no point mapping to any xi.

In particular, if f−1({s}) = {x1, . . . , xn}, then the fibre Wu is empty.

Proof. Apply Lemma 17.1. We may assume U is affine, so XU is separated. Then
Vi,j → XU is a closed map, see Morphisms, Lemma 41.7. Suppose (i, j) ̸= (i′, j′).
Then Vi,j ∩Vi′,j′ is closed in Vi,j and its image in U does not contain u. Hence after
shrinking U we may assume that Vi,j ∩ Vi′,j′ = ∅. Moreover,

⋃
Vi,j is a closed and

open subscheme of XU and hence has an open and closed complement W . This
finishes the proof. □

The following lemma is in some sense much weaker than the preceding one but it
may be useful to state it explicitly here. It says that a finite unramified morphism
is étale locally on the base a closed immersion.

Lemma 17.3.04HJ Let f : X → S be a finite unramified morphism of schemes. Let
s ∈ S. There exists an étale neighbourhood (U, u) → (S, s) and a finite disjoint
union decomposition

XU =
∐

j
Vj

such that each Vj → U is a closed immersion.

Proof. Since X → S is finite the fibre over s is a finite set {x1, . . . , xn} of points of
X. Apply Lemma 17.2 to this set (a finite morphism is separated, see Morphisms,
Section 44). The image of W in U is a closed subset (as XU → U is finite, hence
proper) which does not contain u. After removing this from U we see that W = ∅
as desired. □

https://stacks.math.columbia.edu/tag/04HH
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18. Étale local structure of étale morphisms

04HK This is a bit silly, but perhaps helps form intuition about étale morphisms. We
simply copy over the results of Section 17 and change “closed immersion” into
“isomorphism”.

Lemma 18.1.04HL Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is étale at each xi. Then there
exists an étale neighbourhood (U, u) → (S, s) and opens Vi,j ⊂ XU , i = 1, . . . , n,
j = 1, . . . ,mi such that

(1) Vi,j → U is an isomorphism,
(2) u is not in the image of Vi,j ∩ Vi′,j′ unless i = i′ and j = j′, and
(3) any point of (XU )u mapping to xi is in some Vi,j.

Proof. An étale morphism is unramified, hence we may apply Lemma 17.1. Now
Vi,j → U is a closed immersion and étale. Hence it is an open immersion, for
example by Theorem 14.1. Replace U by the intersection of the images of Vi,j → U
to get the lemma. □

Lemma 18.2.04HM Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is separated and f is étale at each
xi. Then there exists an étale neighbourhood (U, u) → (S, s) and a finite disjoint
union decomposition

XU = W ⨿
∐

i,j
Vi,j

of schemes such that
(1) Vi,j → U is an isomorphism,
(2) the fibre Wu contains no point mapping to any xi.

In particular, if f−1({s}) = {x1, . . . , xn}, then the fibre Wu is empty.

Proof. An étale morphism is unramified, hence we may apply Lemma 17.2. As in
the proof of Lemma 18.1 the morphisms Vi,j → U are open immersions and we win
after replacing U by the intersection of their images. □

The following lemma is in some sense much weaker than the preceding one but it
may be useful to state it explicitly here. It says that a finite étale morphism is étale
locally on the base a “topological covering space”, i.e., a finite product of copies of
the base.

Lemma 18.3.04HN Let f : X → S be a finite étale morphism of schemes. Let s ∈ S.
There exists an étale neighbourhood (U, u) → (S, s) and a finite disjoint union
decomposition

XU =
∐

j
Vj

of schemes such that each Vj → U is an isomorphism.

Proof. An étale morphism is unramified, hence we may apply Lemma 17.3. As in
the proof of Lemma 18.1 we see that Vi,j → U is an open immersion and we win
after replacing U by the intersection of their images. □

https://stacks.math.columbia.edu/tag/04HL
https://stacks.math.columbia.edu/tag/04HM
https://stacks.math.columbia.edu/tag/04HN


ÉTALE MORPHISMS OF SCHEMES 21

19. Permanence properties

025L In what follows, we present a few “permanence” properties of étale homomorphisms
of Noetherian local rings (as defined in Definition 11.1). See More on Algebra, Sec-
tions 43 and 45 for the analogue of this material for the completion and henselization
of a Noetherian local ring.

Lemma 19.1.039S Let A, B be Noetherian local rings. Let A → B be a étale homo-
morphism of local rings. Then dim(A) = dim(B).

Proof. See for example Algebra, Lemma 112.7. □

Proposition 19.2.039T Let A, B be Noetherian local rings. Let f : A → B be an étale
homomorphism of local rings. Then depth(A) = depth(B)

Proof. See Algebra, Lemma 163.2. □

Proposition 19.3.025Q Let A, B be Noetherian local rings. Let f : A → B be an étale
homomorphism of local rings. Then A is Cohen-Macaulay if and only if B is so.

Proof. A local ring A is Cohen-Macaulay if and only if dim(A) = depth(A). As
both of these invariants is preserved under an étale extension, the claim follows. □

Proposition 19.4.025N Let A, B be Noetherian local rings. Let f : A → B be an étale
homomorphism of local rings. Then A is regular if and only if B is so.

Proof. If B is regular, then A is regular by Algebra, Lemma 110.9. Assume A is
regular. Let m be the maximal ideal of A. Then dimκ(m) m/m

2 = dim(A) = dim(B)
(see Lemma 19.1). On the other hand, mB is the maximal ideal of B and hence
mB/mB = mB/m2B is generated by at most dim(B) elements. Thus B is regular.
(You can also use the slightly more general Algebra, Lemma 112.8.) □

Proposition 19.5.025O Let A, B be Noetherian local rings. Let f : A → B be an étale
homomorphism of local rings. Then A is reduced if and only if B is so.

Proof. It is clear from the faithful flatness of A → B that if B is reduced, so is A.
See also Algebra, Lemma 164.2. Conversely, assume A is reduced. By assumption
B is a localization of a finite type A-algebra B′ at some prime q. After replacing
B′ by a localization we may assume that B′ is étale over A, see Lemma 11.2. Then
we see that Algebra, Lemma 163.7 applies to A → B′ and B′ is reduced. Hence B
is reduced. □

Remark 19.6.039U The result on “reducedness” does not hold with a weaker definition
of étale local ring maps A → B where one drops the assumption that B is essentially
of finite type over A. Namely, it can happen that a Noetherian local domain A has
nonreduced completion A∧, see Examples, Section 16. But the ring map A → A∧

is flat, and mAA
∧ is the maximal ideal of A∧ and of course A and A∧ have the

same residue fields. This is why it is important to consider this notion only for ring
extensions which are essentially of finite type (or essentially of finite presentation
if A is not Noetherian).

Proposition 19.7.025P [Gro71, Expose I,
Theorem 9.5 part
(i)]

Let A, B be Noetherian local rings. Let f : A → B be an étale
homomorphism of local rings. Then A is a normal domain if and only if B is so.

https://stacks.math.columbia.edu/tag/039S
https://stacks.math.columbia.edu/tag/039T
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Proof. See Algebra, Lemma 164.3 for descending normality. Conversely, assume A
is normal. By assumption B is a localization of a finite type A-algebra B′ at some
prime q. After replacing B′ by a localization we may assume that B′ is étale over
A, see Lemma 11.2. Then we see that Algebra, Lemma 163.9 applies to A → B′

and we conclude that B′ is normal. Hence B is a normal domain. □

The preceeding propositions give some indication as to why we’d like to think
of étale maps as “local isomorphisms”. Another property that gives an excellent
indication that we have the “right” definition is the fact that for C-schemes of
finite type, a morphism is étale if and only if the associated morphism on analytic
spaces (the C-valued points given the complex topology) is a local isomorphism
in the analytic sense (open embedding locally on the source). This fact can be
proven with the aid of the structure theorem and the fact that the analytification
commutes with the formation of the completed local rings – the details are left to
the reader.

20. Descending étale morphisms

0BTH In order to understand the language used in this section we encourage the reader
to take a look at Descent, Section 34. Let f : X → S be a morphism of schemes.
Consider the pullback functor

(20.0.1)0BTI schemes U étale over S −→ descent data (V, φ) relative to X/S
with V étale over X

sending U to the canonical descent datum (X ×S U, can).
Lemma 20.1.0BTJ If f : X → S is surjective, then the functor (20.0.1) is faithful.
Proof. Let a, b : U1 → U2 be two morphisms between schemes étale over S. As-
sume the base changes of a and b to X agree. We have to show that a = b. By
Proposition 6.3 it suffices to show that a and b agree on points and residue fields.
This is clear because for every u ∈ U1 we can find a point v ∈ X ×S U1 mapping to
u. □

Lemma 20.2.0BTK Assume f : X → S is submersive and any étale base change of f
is submersive. Then the functor (20.0.1) is fully faithful.
Proof. By Lemma 20.1 the functor is faithful. Let U1 → S and U2 → S be étale
morphisms and let a : X×SU1 → X×SU2 be a morphism compatible with canonical
descent data. We will prove that a is the base change of a morphism U1 → U2.
Let U ′

2 ⊂ U2 be an open subscheme. Consider W = a−1(X×S U
′
2). This is an open

subscheme of X ×S U1 which is compatible with the canonical descent datum on
V1 = X ×S U1. This means that the two inverse images of W by the projections
V1 ×U1 V1 → V1 agree. Since V1 → U1 is surjective (as the base change of X → S)
we conclude that W is the inverse image of some subset U ′

1 ⊂ U1. Since W is open,
our assumption on f implies that U ′

1 ⊂ U1 is open.
Let U2 =

⋃
U2,i be an affine open covering. By the result of the preceding paragraph

we obtain an open covering U1 =
⋃
U1,i such that X×SU1,i = a−1(X×SU2,i). If we

can prove there exists a morphism U1,i → U2,i whose base change is the morphism
ai : X ×S U1,i → X ×S U2,i then we can glue these morphisms to a morphism
U1 → U2 (using faithfulness). In this way we reduce to the case that U2 is affine.
In particular U2 → S is separated (Schemes, Lemma 21.13).

https://stacks.math.columbia.edu/tag/0BTJ
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Assume U2 → S is separated. Then the graph Γa of a is a closed subscheme of

V = (X ×S U1) ×X (X ×S U2) = X ×S U1 ×S U2

by Schemes, Lemma 21.10. On the other hand the graph is open for example
because it is a section of an étale morphism (Proposition 6.1). Since a is a morphism
of descent data, the two inverse images of Γa ⊂ V under the projections V ×U1×SU2

V → V are the same. Hence arguing as in the second paragraph of the proof we
find an open and closed subscheme Γ ⊂ U1 ×S U2 whose base change to X gives
Γa. Then Γ → U1 is an étale morphism whose base change to X is an isomorphism.
This means that Γ → U1 is universally bijective, hence an isomorphism by Theorem
14.1. Thus Γ is the graph of a morphism U1 → U2 and the base change of this
morphism is a as desired. □

Lemma 20.3.0BTL Let f : X → S be a morphism of schemes. In the following cases
the functor (20.0.1) is fully faithful:

(1) f is surjective and universally closed (e.g., finite, integral, or proper),
(2) f is surjective and universally open (e.g., locally of finite presentation and

flat, smooth, or etale),
(3) f is surjective, quasi-compact, and flat.

Proof. This follows from Lemma 20.2. For example a closed surjective map of topo-
logical spaces is submersive (Topology, Lemma 6.5). Finite, integral, and proper
morphisms are universally closed, see Morphisms, Lemmas 44.7 and 44.11 and Def-
inition 41.1. On the other hand an open surjective map of topological spaces is
submersive (Topology, Lemma 6.4). Flat locally finitely presented, smooth, and
étale morphisms are universally open, see Morphisms, Lemmas 25.10, 34.10, and
36.13. The case of surjective, quasi-compact, flat morphisms follows from Mor-
phisms, Lemma 25.12. □

Lemma 20.4.0BTM Let f : X → S be a morphism of schemes. Let (V, φ) be a descent
datum relative to X/S with V → X étale. Let S =

⋃
Si be an open covering.

Assume that
(1) the pullback of the descent datum (V, φ) to X ×S Si/Si is effective,
(2) the functor (20.0.1) for X ×S (Si ∩ Sj) → (Si ∩ Sj) is fully faithful, and
(3) the functor (20.0.1) for X ×S (Si ∩ Sj ∩ Sk) → (Si ∩ Sj ∩ Sk) is faithful.

Then (V, φ) is effective.

Proof. (Recall that pullbacks of descent data are defined in Descent, Definition
34.7.) Set Xi = X ×S Si. Denote (Vi, φi) the pullback of (V, φ) to Xi/Si. By
assumption (1) we can find an étale morphism Ui → Si which comes with an
isomorphism Xi ×Si Ui → Vi compatible with can and φi. By assumption (2) we
obtain isomorphisms ψij : Ui ×Si

(Si ∩ Sj) → Uj ×Sj
(Si ∩ Sj). By assumption (3)

these isomorphisms satisfy the cocycle condition so that (Ui, ψij) is a descend datum
for the Zariski covering {Si → S}. Then Descent, Lemma 35.10 (which is essentially
just a reformulation of Schemes, Section 14) tells us that there exists a morphism
of schemes U → S and isomorphisms U ×S Si → Ui compatible with ψij . The
isomorphisms U ×S Si → Ui determine corresponding isomorphisms Xi ×S U → Vi

which glue to a morphism X ×S U → V compatible with the canonical descent
datum and φ. □

https://stacks.math.columbia.edu/tag/0BTL
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Lemma 20.5.0BTN Let (A, I) be a henselian pair. Let U → Spec(A) be a quasi-
compact, separated, étale morphism such that U ×Spec(A) Spec(A/I) → Spec(A/I)
is finite. Then

U = Ufin ⨿ Uaway

where Ufin → Spec(A) is finite and Uaway has no points lying over Z.

Proof. By Zariski’s main theorem, the scheme U is quasi-affine. In fact, we can
find an open immersion U → T with T affine and T → Spec(A) finite, see More
on Morphisms, Lemma 43.3. Write Z = Spec(A/I) and denote UZ → TZ the
base change. Since UZ → Z is finite, we see that UZ → TZ is closed as well as
open. Hence by More on Algebra, Lemma 11.6 we obtain a unique decomposition
T = T ′ ⨿T ′′ with T ′

Z = UZ . Set Ufin = U∩T ′ and Uaway = U∩T ′′. Since T ′
Z ⊂ UZ

we see that all closed points of T ′ are in U hence T ′ ⊂ U , hence Ufin = T ′, hence
Ufin → Spec(A) is finite. We omit the proof of uniqueness of the decomposition. □

Proposition 20.6.0BTP Let f : X → S be a surjective integral morphism. The functor
(20.0.1) induces an equivalence

schemes quasi-compact,
separated, étale over S −→ descent data (V, φ) relative to X/S with

V quasi-compact, separated, étale over X

Proof. By Lemma 20.3 the functor (20.0.1) is fully faithful and the same remains
the case after any base change S → S′. Let (V, φ) be a descent data relative to
X/S with V → X quasi-compact, separated, and étale. We can use Lemma 20.4
to see that it suffices to prove the effectivity Zariski locally on S. In particular we
may and do assume that S is affine.
If S is affine we can find a directed set Λ and an inverse system Xλ → Sλ of finite
morphisms of affine schemes of finite type over Spec(Z) such that (X → S) =
lim(Xλ → Sλ). See Algebra, Lemma 127.15. Since limits commute with limits we
deduce that X×S X = limXλ ×Sλ

Xλ and X×S X×S X = limXλ ×Sλ
Xλ ×Sλ

Xλ.
Observe that V → X is a morphism of finite presentation. Using Limits, Lemmas
10.1 we can find an λ and a descent datum (Vλ, φλ) relative to Xλ/Sλ whose
pullback to X/S is (V, φ). Of course it is enough to show that (Vλ, φλ) is effective.
Note that Vλ is quasi-compact by construction. After possibly increasing λ we may
assume that Vλ → Xλ is separated and étale, see Limits, Lemma 8.6 and 8.10.
Thus we may assume that f is finite surjective and S affine of finite type over Z.
Consider an open S′ ⊂ S such that the pullback (V ′, φ′) of (V, φ) to X ′ = X ×S S

′

is effective. Below we will prove, that S′ ̸= S implies there is a strictly larger open
over which the descent datum is effective. Since S is Noetherian (and hence has a
Noetherian underlying topological space) this will finish the proof. Let ξ ∈ S be
a generic point of an irreducible component of the closed subset Z = S \ S′. If
ξ ∈ S′′ ⊂ S is an open over which the descent datum is effective, then the descent
datum is effective over S′ ∪S′′ by the glueing argument of the first paragraph. Thus
in the rest of the proof we may replace S by an affine open neighbourhood of ξ.
After a first such replacement we may assume that Z is irreducible with generic
point Z. Let us endow Z with the reduced induced closed subscheme structure.
After another shrinking we may assume XZ = X ×S Z = f−1(Z) → Z is flat, see
Morphisms, Proposition 27.1. Let (VZ , φZ) be the pullback of the descent datum
to XZ/Z. By More on Morphisms, Lemma 57.1 this descent datum is effective and

https://stacks.math.columbia.edu/tag/0BTN
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we obtain an étale morphism UZ → Z whose base change is isomorphic to VZ in
a manner compatible with descent data. Of course UZ → Z is quasi-compact and
separated (Descent, Lemmas 23.1 and 23.6). Thus after shrinking once more we
may assume that UZ → Z is finite, see Morphisms, Lemma 51.1.

Let S = Spec(A) and let I ⊂ A be the prime ideal corresponding to Z ⊂ S.
Let (Ah, IAh) be the henselization of the pair (A, I). Denote Sh = Spec(Ah) and
Zh = V (IAh) ∼= Z. We claim that it suffices to show effectivity after base change
to Sh. Namely, {Sh → S, S′ → S} is an fpqc covering (A → Ah is flat by More
on Algebra, Lemma 12.2) and by More on Morphisms, Lemma 57.1 we have fpqc
descent for separated étale morphisms. Namely, if Uh → Sh and U ′ → S′ are
the objects corresponding to the pullbacks (V h, φh) and (V ′, φ′), then the required
isomorphisms

Uh ×S S
h → Sh ×S V

h and Uh ×S S
′ → Sh ×S U

′

are obtained by the fully faithfulness pointed out in the first paragraph. In this
way we reduce to the situation described in the next paragraph.

Here S = Spec(A), Z = V (I), S′ = S \ Z where (A, I) is a henselian pair, we have
U ′ → S′ corresponding to the descent datum (V ′, φ′) and we have a finite étale
morphism UZ → Z corresponding to the descent datum (VZ , φZ). We no longer
have that A is of finite type over Z; but the rest of the argument will not even
use that A is Noetherian. By More on Algebra, Lemma 13.2 we can find a finite
étale morphism Ufin → S whose restriction to Z is isomorphic to UZ → Z. Write
X = Spec(B) and Y = V (IB). Since (B, IB) is a henselian pair (More on Algebra,
Lemma 11.8) and since the restriction V → X to Y is finite (as base change of
UZ → Z) we see that there is a canonical disjoint union decomposition

V = Vfin ⨿ Vaway

were Vfin → X is finite and where Vaway has no points lying over Y . See Lemma
20.5. Using the uniqueness of this decomposition over X ×S X we see that φ
preserves it and we obtain

(V, φ) = (Vfin, φfin) ⨿ (Vaway, φaway)

in the category of descent data. By More on Algebra, Lemma 13.2 there is a unique
isomorphism

X ×S Ufin −→ Vfin

compatible with the given isomorphism Y ×Z UZ → V ×X Y over Y . By the
uniqueness we see that this isomorphism is compatible with descent data, i.e.,
(X ×S Ufin, can) ∼= (Vfin, φfin). Denote U ′

fin = Ufin ×S S
′. By fully faithfulness

we obtain a morphism U ′
fin → U ′ which is the inclusion of an open (and closed)

subscheme. Then we set U = Ufin ⨿U ′
fin

U ′ (glueing of schemes as in Schemes,
Section 14). The morphisms X×SUfin → V and X×SU

′ → V glue to a morphism
X ×S U → V which is the desired isomorphism. □

21. Normal crossings divisors

0CBN Here is the definition.
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Definition 21.1.0BI9 Let X be a locally Noetherian scheme. A strict normal crossings
divisor onX is an effective Cartier divisorD ⊂ X such that for every p ∈ D the local
ring OX,p is regular and there exists a regular system of parameters x1, . . . , xd ∈ mp

and 1 ≤ r ≤ d such that D is cut out by x1 . . . xr in OX,p.
We often encounter effective Cartier divisors E on locally Noetherian schemes X
such that there exists a strict normal crossings divisor D with E ⊂ D set theoret-
ically. In this case we have E =

∑
aiDi with ai ≥ 0 where D =

⋃
i∈I Di is the

decomposition of D into its irreducible components. Observe that D′ =
⋃

ai>0 Di

is a strict normal crossings divisor with E = D′ set theoretically. When the above
happens we will say that E is supported on a strict normal crossings divisor.
Lemma 21.2.0BIA Let X be a locally Noetherian scheme. Let D ⊂ X be an effective
Cartier divisor. Let Di ⊂ D, i ∈ I be its irreducible components viewed as reduced
closed subschemes of X. The following are equivalent

(1) D is a strict normal crossings divisor, and
(2) D is reduced, each Di is an effective Cartier divisor, and for J ⊂ I finite

the scheme theoretic intersection DJ =
⋂

j∈J Dj is a regular scheme each
of whose irreducible components has codimension |J | in X.

Proof. Assume D is a strict normal crossings divisor. Pick p ∈ D and choose a
regular system of parameters x1, . . . , xd ∈ mp and 1 ≤ r ≤ d as in Definition 21.1.
Since OX,p/(xi) is a regular local ring (and in particular a domain) we see that the
irreducible components D1, . . . , Dr of D passing through p correspond 1-to-1 to the
height one primes (x1), . . . , (xr) of OX,p. By Algebra, Lemma 106.3 we find that
the intersections Di1 ∩ . . . ∩ Dis have codimension s in an open neighbourhood of
p and that this intersection has a regular local ring at p. Since this holds for all
p ∈ D we conclude that (2) holds.
Assume (2). Let p ∈ D. Since OX,p is finite dimensional we see that p can be
contained in at most dim(OX,p) of the components Di. Say p ∈ D1, . . . , Dr for
some r ≥ 1. Let x1, . . . , xr ∈ mp be local equations for D1, . . . , Dr. Then x1
is a nonzerodivisor in OX,p and OX,p/(x1) = OD1,p is regular. Hence OX,p is
regular, see Algebra, Lemma 106.7. Since D1 ∩ . . .∩Dr is a regular (hence normal)
scheme it is a disjoint union of its irreducible components (Properties, Lemma
7.6). Let Z ⊂ D1 ∩ . . . ∩ Dr be the irreducible component containing p. Then
OZ,p = OX,p/(x1, . . . , xr) is regular of codimension r (note that since we already
know that OX,p is regular and hence Cohen-Macaulay, there is no ambiguity about
codimension as the ring is catenary, see Algebra, Lemmas 106.3 and 104.4). Hence
dim(OZ,p) = dim(OX,p) − r. Choose additional xr+1, . . . , xn ∈ mp which map to
a minimal system of generators of mZ,p. Then mp = (x1, . . . , xn) by Nakayama’s
lemma and we see that D is a normal crossings divisor. □

Lemma 21.3.0CBP Let X be a locally Noetherian scheme. Let D ⊂ X be a strict
normal crossings divisor. If f : Y → X is a smooth morphism of schemes, then the
pullback f∗D is a strict normal crossings divisor on Y .
Proof. As f is flat the pullback is defined by Divisors, Lemma 13.13 hence the
statement makes sense. Let q ∈ f∗D map to p ∈ D. Choose a regular system of
parameters x1, . . . , xd ∈ mp and 1 ≤ r ≤ d as in Definition 21.1. Since f is smooth
the local ring homomorphism OX,p → OY,q is flat and the fibre ring

OY,q/mpOY,q = OYp,q

https://stacks.math.columbia.edu/tag/0BI9
https://stacks.math.columbia.edu/tag/0BIA
https://stacks.math.columbia.edu/tag/0CBP


ÉTALE MORPHISMS OF SCHEMES 27

is a regular local ring (see for example Algebra, Lemma 140.3). Pick y1, . . . , yn ∈ mq

which map to a regular system of parameters in OYp,q. Then x1, . . . , xd, y1, . . . , yn

generate the maximal ideal mq. Hence OY,q is a regular local ring of dimension
d + n by Algebra, Lemma 112.7 and x1, . . . , xd, y1, . . . , yn is a regular system of
parameters. Since f∗D is cut out by x1 . . . xr in OY,q we conclude that the lemma
is true. □

Here is the definition of a normal crossings divisor.

Definition 21.4.0BSF Let X be a locally Noetherian scheme. A normal crossings
divisor on X is an effective Cartier divisor D ⊂ X such that for every p ∈ D there
exists an étale morphism U → X with p in the image and D ×X U a strict normal
crossings divisor on U .

For example D = V (x2 + y2) is a normal crossings divisor (but not a strict one) on
Spec(R[x, y]) because after pulling back to the étale cover Spec(C[x, y]) we obtain
(x− iy)(x+ iy) = 0.

Lemma 21.5.0CBQ Let X be a locally Noetherian scheme. Let D ⊂ X be a normal
crossings divisor. If f : Y → X is a smooth morphism of schemes, then the pullback
f∗D is a normal crossings divisor on Y .

Proof. As f is flat the pullback is defined by Divisors, Lemma 13.13 hence the
statement makes sense. Let q ∈ f∗D map to p ∈ D. Choose an étale morphism
U → X whose image contains p such that D×X U ⊂ U is a strict normal crossings
divisor as in Definition 21.4. Set V = Y ×X U . Then V → Y is étale as a base
change of U → X (Morphisms, Lemma 36.4) and the pullback D ×X V is a strict
normal crossings divisor on V by Lemma 21.3. Thus we have checked the condition
of Definition 21.4 for q ∈ f∗D and we conclude. □

Lemma 21.6.0CBR Let X be a locally Noetherian scheme. Let D ⊂ X be a closed
subscheme. The following are equivalent

(1) D is a normal crossings divisor in X,
(2) D is reduced, the normalization ν : Dν → D is unramified, and for any

n ≥ 1 the scheme
Zn = Dν ×D . . .×D Dν \ {(p1, . . . , pn) | pi = pj for some i ̸= j}

is regular, the morphism Zn → X is a local complete intersection morphism
whose conormal sheaf is locally free of rank n.

Proof. First we explain how to think about condition (2). The diagonal of an
unramified morphism is open (Morphisms, Lemma 35.13). On the other hand
Dν → D is separated, hence the diagonal Dν → Dν ×D Dν is closed. Thus Zn is
an open and closed subscheme of Dν ×D . . .×D Dν . On the other hand, Zn → X
is unramified as it is the composition

Zn → Dν ×D . . .×D Dν → . . . → Dν ×D Dν → Dν → D → X

and each of the arrows is unramified. Since an unramified morphism is formally
unramified (More on Morphisms, Lemma 6.8) we have a conormal sheaf Cn = CZn/X

of Zn → X, see More on Morphisms, Definition 7.2.
Formation of normalization commutes with étale localization by More on Mor-
phisms, Lemma 19.3. Checking that local rings are regular, or that a morphism is

https://stacks.math.columbia.edu/tag/0BSF
https://stacks.math.columbia.edu/tag/0CBQ
https://stacks.math.columbia.edu/tag/0CBR
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unramified, or that a morphism is a local complete intersection or that a morphism
is unramified and has a conormal sheaf which is locally free of a given rank, may
be done étale locally (see More on Algebra, Lemma 44.3, Descent, Lemma 23.28,
More on Morphisms, Lemma 62.19 and Descent, Lemma 7.6).

By the remark of the preceding paragraph and the definition of normal crossings
divisor it suffices to prove that a strict normal crossings divisor D =

⋃
i∈I Di

satisfies (2). In this case Dν =
∐
Di and Dν → D is unramified (being unramified

is local on the source and Di → D is a closed immersion which is unramified).
Similarly, Z1 = Dν → X is a local complete intersection morphism because we may
check this locally on the source and each morphism Di → X is a regular immersion
as it is the inclusion of a Cartier divisor (see Lemma 21.2 and More on Morphisms,
Lemma 62.9). Since an effective Cartier divisor has an invertible conormal sheaf,
we conclude that the requirement on the conormal sheaf is satisfied. Similarly, the
scheme Zn for n ≥ 2 is the disjoint union of the schemes DJ =

⋂
j∈J Dj where

J ⊂ I runs over the subsets of order n. Since DJ → X is a regular immersion of
codimension n (by the definition of strict normal crossings and the fact that we
may check this on stalks by Divisors, Lemma 20.8) it follows in the same manner
that Zn → X has the required properties. Some details omitted.

Assume (2). Let p ∈ D. Since Dν → D is unramified, it is finite (by Morphisms,
Lemma 44.4). Hence Dν → X is finite unramified. By Lemma 17.3 and étale local-
ization (permissible by the discussion in the second paragraph and the definition
of normal crossings divisors) we reduce to the case where Dν =

∐
i∈I Di with I

finite and Di → U a closed immersion. After shrinking X if necessary, we may
assume p ∈ Di for all i ∈ I. The condition that Z1 = Dν → X is an unramified
local complete intersection morphism with conormal sheaf locally free of rank 1 im-
plies that Di ⊂ X is an effective Cartier divisor, see More on Morphisms, Lemma
62.3 and Divisors, Lemma 21.3. To finish the proof we may assume X = Spec(A)
is affine and Di = V (fi) with fi ∈ A a nonzerodivisor. If I = {1, . . . , r}, then
p ∈ Zr = V (f1, . . . , fr). The same reference as above implies that (f1, . . . , fr) is a
Koszul regular ideal in A. Since the conormal sheaf has rank r, we see that f1, . . . , fr

is a minimal set of generators of the ideal defining Zr in OX,p. This implies that
f1, . . . , fr is a regular sequence in OX,p such that OX,p/(f1, . . . , fr) is regular. Thus
we conclude by Algebra, Lemma 106.7 that f1, . . . , fr can be extended to a regular
system of parameters in OX,p and this finishes the proof. □

Lemma 21.7.0CBS Let X be a locally Noetherian scheme. Let D ⊂ X be a closed
subscheme. If X is J-2 or Nagata, then following are equivalent

(1) D is a normal crossings divisor in X,
(2) for every p ∈ D the pullback of D to the spectrum of the strict henselization

Osh
X,p is a strict normal crossings divisor.

Proof. The implication (1) ⇒ (2) is straightforward and does not need the assump-
tion that X is J-2 or Nagata. Namely, let p ∈ D and choose an étale neighbourhood
(U, u) → (X, p) such that the pullback of D is a strict normal crossings divisor on
U . Then Osh

X,p = Osh
U,u and we see that the trace of D on Spec(Osh

U,u) is cut out by
part of a regular system of parameters as this is already the case in OU,u.

To prove the implication in the other direction we will use the criterion of Lemma
21.6. Observe that formation of the normalization Dν → D commutes with strict

https://stacks.math.columbia.edu/tag/0CBS
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henselization, see More on Morphisms, Lemma 19.4. If we can show that Dν → D
is finite, then we see that Dν → D and the schemes Zn satisfy all desired properties
because these can all be checked on the level of local rings (but the finiteness of
the morphism Dν → D is not something we can check on local rings). We omit the
detailed verifications.
If X is Nagata, then Dν → D is finite by Morphisms, Lemma 54.10.
Assume X is J-2. Choose a point p ∈ D. We will show that Dν → D is finite over
a neighbourhood of p. By assumption there exists a regular system of parameters
f1, . . . , fd of Osh

X,p and 1 ≤ r ≤ d such that the trace of D on Spec(Osh
X,p) is cut out

by f1 . . . fr. Then
Dν ×X Spec(Osh

X,p) =
∐

i=1,...,r
V (fi)

Choose an affine étale neighbourhood (U, u) → (X, p) such that fi comes from
fi ∈ OU (U). Set Di = V (fi) ⊂ U . The strict henselization of ODi,u is Osh

X,p/(fi)
which is regular. Hence ODi,u is regular (for example by More on Algebra, Lemma
45.10). Because X is J-2 the regular locus is open in Di. Thus after replacing U
by a Zariski open we may assume that Di is regular for each i. It follows that∐

i=1,...,r
Di = Dν ×X U −→ D ×X U

is the normalization morphism and it is clearly finite. In other words, we have found
an étale neighbourhood (U, u) of (X, p) such that the base change of Dν → D to
this neighbourhood is finite. This implies Dν → D is finite by descent (Descent,
Lemma 23.23) and the proof is complete. □
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