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1. Introduction

0DVL The goal of this chapter is to work out examples of the general theory developed
in the chapters Formal Deformation Theory, Deformation Theory, The Cotangent
Complex.

Section 3 of the paper [Sch68] by Schlessinger discusses some examples as well.

2. Examples of deformation problems

06LA List of things that should go here:
(1) Deformations of schemes:

(a) The Rim-Schlessinger condition.
(b) Computing the tangent space.
(c) Computing the infinitesimal deformations.
(d) The deformation category of an affine hypersurface.

(2) Deformations of sheaves (for example fix X/S, a finite type point s of S,
and a quasi-coherent sheaf Fs over Xs).

This is a chapter of the Stacks Project, version 401dc384, compiled on Dec 16, 2018.
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(3) Deformations of algebraic spaces (very similar to deformations of schemes;
maybe even easier?).

(4) Deformations of maps (eg morphisms between schemes; you can fix both or
one of the target and/or source).

(5) Add more here.

3. General outline

0DVM This section lays out the procedure for discussing the next few examples.

Step I. For each section we fix a Noetherian ring Λ and we fix a finite ring map
Λ → k where k is a field. As usual we let CΛ = CΛ,k be our base category, see
Formal Deformation Theory, Definition 3.1.

Step II. In each section we define a category F cofibred in groupoids over CΛ.
Occassionally we will consider instead a functor F : CΛ → Sets.

Step III. We explain to what extend F satisfies the Rim-Schlesssinger condition (RS)
discussed in Formal Deformation Theory, Section 16. Similarly, we may discuss
to what extend our F satisfies (S1) and (S2) or to what extend F satisfies the
corresponding Schlessinger’s conditions (H1) and (H2). See Formal Deformation
Theory, Section 10.

Step IV. Let x0 be an object of F(k), in other words an object of F over k. In this
chapter we will use the notation

Def x0
= Fx0

to denote the predeformation category constructed in Formal Deformation Theory,
Remark 6.4. If F satisfies (RS), then Def x0

is a deformation category (Formal De-
formation Theory, Lemma 16.11) and satisfies (S1) and (S2) (Formal Deformation
Theory, Lemma 16.6). If (S1) and (S2) are satisfied, then an important question is
whether the tangent space

TDef x0
= Tx0

F = TFx0

(see Formal Deformation Theory, Remark 12.5 and Definition 12.1) is finite di-
mensional. Namely, this insures that Def x0

has a versal formal object (Formal
Deformation Theory, Lemma 13.4).

Step V. If F passes Step IV, then the next question is whether the k-vector space

Inf(Def x0
) = Infx0

(F)

of infinitesimal automorphisms of x0 is finite dimensional. Namely, if true, this
implies that Def x0

admits a presentation by a smooth prorepresentable groupoid
in functors on CΛ, see Formal Deformation Theory, Theorem 26.4.

4. Finite projective modules

0DVN This section is just a warmup. Of course finite projective modules should not have
any “moduli”.

Example 4.1 (Finite projective modules).0D3I Let F be the category defined as follows
(1) an object is a pair (A,M) consisting of an object A of CΛ and a finite

projective A-module M , and

https://stacks.math.columbia.edu/tag/0D3I
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(2) a morphism (f, g) : (B,N) → (A,M) consists of a morphism f : B → A
in CΛ together with a map g : N → M which is f -linear and induces an
isomorpism N ⊗B,f A ∼= M .

The functor p : F → CΛ sends (A,M) to A and (f, g) to f . It is clear that p is
cofibred in groupoids. Given a finite dimensional k-vector space V , let x0 = (k, V )
be the corresponding object of F(k). We set

Def V = Fx0

Since every finite projective module over a local ring is finite free (Algebra, Lemma
77.2) we see that

isomorphism classes
of objects of F(A)

=
∐

n≥0
{∗}

Although this means that the deformation theory of F is essentially trivial, we still
work through the steps outlined in Section 3 to provide an easy example.

Lemma 4.2.0DVP Example 4.1 satisfies the Rim-Schlessinger condition (RS). In par-
ticular, Def V is a deformation category for any finite dimensional vector space V
over k.

Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is
surjective. According to Formal Deformation Theory, Lemma 16.4 it suffices to
show that the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) is an equivalence of
categories.

Thus we have to show that the category of finite projective modules over A1×AA2 is
equivalent to the fibre product of the categories of finite projective modules over A1

and A2 over the category of finite projective modules over A. This is a special case
of More on Algebra, Lemma 6.9. We recall that the inverse functor sends the triple
(M1,M2, ϕ) where M1 is a finite projective A1-module, M2 is a finite projective
A2-module, and ϕ : M1⊗A1

A→M2⊗A2
A is an isomorphism of A-module, to the

finite projective A1 ×A A2-module M1 ×ϕM2. �

Lemma 4.3.0DVQ In Example 4.1 let V be a finite dimensional k-vector space. Then

TDef V = (0) and Inf(Def V ) = Endk(V )

are finite dimensional.

Proof. With F as in Example 4.1 set x0 = (k, V ) ∈ Ob(F(k)). Recall that
TDef V = Tx0F is the set of isomorphism classes of pairs (x, α) consisting of an
object x of F over the dual numbers k[ε] and a morphism α : x → x0 of F lying
over k[ε]→ k.

Up to isomorphism, there is a unique pair (M,α) consisting of a finite projective
module M over k[ε] and k[ε]-linear map α : M → V which induces an isomorphism
M ⊗k[ε] k → V . For example, if V = k⊕n, then we take M = k[ε]⊕n with the
obvious map α.

Similarly, Inf(Def V ) = Infx0(F) is the set of automorphisms of the trivial defor-
mation x′0 of x0 over k[ε]. See Formal Deformation Theory, Definition 19.2 for
details.

Given (M,α) as in the second paragraph, we see that an element of Infx0
(F) is an

automorphism γ : M → M with γ mod ε = id. Then we can write γ = idM + εψ

https://stacks.math.columbia.edu/tag/0DVP
https://stacks.math.columbia.edu/tag/0DVQ
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where ψ : M/εM → M/εM is k-linear. Using α we can think of ψ as an element
of Endk(V ) and this finishes the proof. �

5. Representations of a group

0DVR The deformation theory of representations can be very interesting.

Example 5.1 (Representations of a group).0D3J Let Γ be a group. Let F be the
category defined as follows

(1) an object is a triple (A,M, ρ) consisting of an object A of CΛ, a finite
projective A-module M , and a homomorphism ρ : Γ→ GLA(M), and

(2) a morphism (f, g) : (B,N, τ)→ (A,M, ρ) consists of a morphism f : B → A
in CΛ together with a map g : N →M which is f -linear and Γ-equivariant
and induces an isomorpism N ⊗B,f A ∼= M .

The functor p : F → CΛ sends (A,M, ρ) to A and (f, g) to f . It is clear that
p is cofibred in groupoids. Given a finite dimensional k-vector space V and a
representation ρ0 : Γ→ GLk(V ), let x0 = (k, V, ρ0) be the corresponding object of
F(k). We set

Def V,ρ0
= Fx0

Since every finite projective module over a local ring is finite free (Algebra, Lemma
77.2) we see that

isomorphism classes
of objects of F(A)

=
∐

n≥0

GLn(A)-conjugacy classes of
homomorphisms ρ : Γ→ GLn(A)

This is already more interesting than the discussion in Section 4.

Lemma 5.2.0DVS Example 5.1 satisfies the Rim-Schlessinger condition (RS). In par-
ticular, Def V,ρ0

is a deformation category for any finite dimensional representation
ρ0 : Γ→ GLk(V ).

Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is
surjective. According to Formal Deformation Theory, Lemma 16.4 it suffices to
show that the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) is an equivalence of
categories.

Consider an object

((A1,M1, ρ1), (A2,M2, ρ2), (idA, ϕ))

of the category F(A1)×F(A) F(A2). Then, as seen in the proof of Lemma 4.2, we
can consider the finite projective A1×AA2-moduleM1×ϕM2. Since ϕ is compatible
with the given actions we obtain

ρ1 × ρ2 : Γ −→ GLA1×AA2(M1 ×ϕM2)

Then (M1×ϕM2, ρ1×ρ2) is an object of F(A1×AA2). This construction determines
a quasi-inverse to our functor. �

Lemma 5.3.0DVT In Example 5.1 let ρ0 : Γ → GLk(V ) be a finite dimensional repre-
sentation. Then

TDef V,ρ0
= Ext1

k[Γ](V, V ) = H1(Γ,Endk(V )) and Inf(Def V,ρ0
) = H0(Γ,Endk(V ))

Thus Inf(Def V,ρ0
) is always finite dimensional and TDef V,ρ0

is finite dimensional
if Γ is finitely generated.

https://stacks.math.columbia.edu/tag/0D3J
https://stacks.math.columbia.edu/tag/0DVS
https://stacks.math.columbia.edu/tag/0DVT
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Proof. We first deal with the infinitesimal automorphisms. Let M = V ⊗k k[ε]
with induced action ρ′0 : Γ → GLn(M). Then an infinitesimal automorphism, i.e.,
an element of Inf(Def V,ρ0

), is given by an automorphism γ = id + εψ : M →M as
in the proof of Lemma 4.3, where moreover ψ has to commute with the action of Γ
(given by ρ0). Thus we see that

Inf(Def V,ρ0
) = H0(Γ,Endk(V ))

as predicted in the lemma.

Next, let (k[ε],M, ρ) be an object of F over k[ε] and let α : M → V be a Γ-
equivariant map inducing an isomorphism M/εM → V . Since M is free as a
k[ε]-module we obtain an extension of Γ-modules

0→ V →M
α−→ V → 0

We omit the detailed construction of the map on the left. Conversely, if we have
an extension of Γ-modules as above, then we can use this to make a k[ε]-module
structure on M and get an object of F(k[ε]) together with a map α as above. It
follows that

TDef V,ρ0
= Ext1

k[Γ](V, V )

as predicted in the lemma. This is equal to H1(Γ,Endk(V )) by Étale Cohomology,
Lemma 56.4.

The statement on dimensions follows from Étale Cohomology, Lemma 56.5. �

In Example 5.1 if Γ is finitely generated and (V, ρ0) is a finite dimensional represen-
tation of Γ over k, then Def V,ρ0

admits a presentation by a smooth prorepresentable
groupoid in functors over CΛ and a fortiori has a (minimal) versal formal object.
This follows from Lemmas 5.2 and 5.3 and the general discussion in Section 3.

Lemma 5.4.0ET1 In Example 5.1 assume Γ finitely generated. Let ρ0 : Γ→ GLk(V ) be
a finite dimensional representation. Assume Λ is a complete local ring with residue
field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def V,ρ0
(A))/ ∼=

of isomorphism classes of objects has a hull. If H0(Γ,Endk(V )) = k, then F is
prorepresentable.

Proof. The existence of a hull follows from Lemmas 5.2 and 5.3 and Formal De-
formation Theory, Lemma 16.6 and Remark 15.7.

Assume H0(Γ,Endk(V )) = k. To see that F is prorepresentable it suffices to
show that F is a deformation functor, see Formal Deformation Theory, Theorem
18.2. In other words, we have to show F satisfies (RS). For this we can use the
criterion of Formal Deformation Theory, Lemma 16.7. The required surjectivity of
automorphism groups will follow if we show that

A · idM = EndA[Γ](M)

for any object (A,M, ρ) of F such thatM⊗Ak is isomorphic to V as a representation
of Γ. Since the left hand side is contained in the right hand side, it suffices to show
lengthAEndA[Γ](M) ≤ lengthAA. Choose pairwise distinct ideals (0) = In ⊂ . . . ⊂
I1 ⊂ A with n = length(A). By correspondingly filtering M , we see that it suffices
to prove HomA[Γ](M, ItM/It+1M) has length 1. Since ItM/It+1M ∼= M ⊗A k and

https://stacks.math.columbia.edu/tag/0ET1
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since any A[Γ]-module map M → M ⊗A k factors uniquely through the quotient
map M →M ⊗A k to give an element of

EndA[Γ](M ⊗A k) = Endk[Γ](V ) = k

we conclude. �

6. Continuous representations

0DVU A very interesting thing one can do is to take an infinite Galois group and study
the deformation theory of its representations, see [Maz89].

Example 6.1 (Representations of a topological group).0D3K Let Γ be a topological
group. Let F be the category defined as follows

(1) an object is a triple (A,M, ρ) consisting of an object A of CΛ, a finite
projective A-moduleM , and a continuous homomorphism ρ : Γ→ GLA(M)
where GLA(M) is given the discrete topology1, and

(2) a morphism (f, g) : (B,N, τ)→ (A,M, ρ) consists of a morphism f : B → A
in CΛ together with a map g : N →M which is f -linear and Γ-equivariant
and induces an isomorpism N ⊗B,f A ∼= M .

The functor p : F → CΛ sends (A,M, ρ) to A and (f, g) to f . It is clear that p is
cofibred in groupoids. Given a finite dimensional k-vector space V and a continuous
representation ρ0 : Γ→ GLk(V ), let x0 = (k, V, ρ0) be the corresponding object of
F(k). We set

Def V,ρ0
= Fx0

Since every finite projective module over a local ring is finite free (Algebra, Lemma
77.2) we see that

isomorphism classes
of objects of F(A)

=
∐

n≥0

GLn(A)-conjugacy classes of
continuous homomorphisms ρ : Γ→ GLn(A)

Lemma 6.2.0DVV Example 6.1 satisfies the Rim-Schlessinger condition (RS). In par-
ticular, Def V,ρ0

is a deformation category for any finite dimensional continuous
representation ρ0 : Γ→ GLk(V ).

Proof. The proof is exactly the same as the proof of Lemma 5.2. �

Lemma 6.3.0DVW In Example 6.1 let ρ0 : Γ→ GLk(V ) be a finite dimensional contin-
uous representation. Then

TDef V,ρ0
= H1(Γ,Endk(V )) and Inf(Def V,ρ0

) = H0(Γ,Endk(V ))

Thus Inf(Def V,ρ0
) is always finite dimensional and TDef V,ρ0

is finite dimensional
if Γ is topologically finitely generated.

Proof. The proof is exactly the same as the proof of Lemma 5.3. �

In Example 6.1 if Γ is topologically finitely generated and (V, ρ0) is a finite dimen-
sional continuous representation of Γ over k, then Def V,ρ0

admits a presentation by
a smooth prorepresentable groupoid in functors over CΛ and a fortiori has a (min-
imal) versal formal object. This follows from Lemmas 6.2 and 6.3 and the general
discussion in Section 3.

1An alternative would be to require the A-module M with G-action given by ρ is an A-G-
module as defined in Étale Cohomology, Definition 56.1. However, since M is a finite A-module,
this is equivalent.

https://stacks.math.columbia.edu/tag/0D3K
https://stacks.math.columbia.edu/tag/0DVV
https://stacks.math.columbia.edu/tag/0DVW
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Lemma 6.4.0ET2 In Example 6.1 assume Γ is topologically finitely generated. Let
ρ0 : Γ → GLk(V ) be a finite dimensional representation. Assume Λ is a complete
local ring with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def V,ρ0
(A))/ ∼=

of isomorphism classes of objects has a hull. If H0(Γ,Endk(V )) = k, then F is
prorepresentable.

Proof. The proof is exactly the same as the proof of Lemma 5.4. �

7. Graded algebras

0DVX We will use the example in this section in the proof that the stack of polarized
proper schemes is an algebraic stack. For this reason we will consider commutative
graded algebras whose homogeneous parts are finite projective modules (sometimes
called “locally finite”).

Example 7.1 (Graded algebras).0D3L Let F be the category defined as follows
(1) an object is a pair (A,P ) consisting of an object A of CΛ and a graded

A-algebra P such that Pd is a finite projective A-module for all d ≥ 0, and
(2) a morphism (f, g) : (B,Q) → (A,P ) consists of a morphism f : B → A

in CΛ together with a map g : Q → P which is f -linear and induces an
isomorpism Q⊗B,f A ∼= P .

The functor p : F → CΛ sends (A,P ) to A and (f, g) to f . It is clear that p is
cofibred in groupoids. Given a graded k-algebra P with dimk(Pd) < ∞ for all
d ≥ 0, let x0 = (k, P ) be the corresponding object of F(k). We set

Def P = Fx0

Lemma 7.2.0DVY Example 7.1 satisfies the Rim-Schlessinger condition (RS). In par-
ticular, Def P is a deformation category for any graded k-algebra P .

Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is
surjective. According to Formal Deformation Theory, Lemma 16.4 it suffices to
show that the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) is an equivalence of
categories.

Consider an object
((A1, P1), (A2, P2), (idA, ϕ))

of the category F(A1)×F(A) F(A2). Then we consider P1 ×ϕ P2. Since ϕ : P1 ⊗A1

A→ P2⊗A2
A is an isomorphism of graded algebras, we see that the graded pieces

of P1 ×ϕ P2 are finite projective A1 ×A A2-modules, see proof of Lemma 4.2. Thus
P1×ϕP2 is an object of F(A1×AA2). This construction determines a quasi-inverse
to our functor and the proof is complete. �

Lemma 7.3.0DVZ In Example 7.1 let P be a graded k-algebra. Then

TDef P and Inf(Def P ) = Derk(P, P )

are finite dimensional if P is finitely generated over k.

Proof. We first deal with the infinitesimal automorphisms. Let Q = P ⊗k k[ε].
Then an element of Inf(Def P ) is given by an automorphism γ = id + εδ : Q → Q
as above where now δ : P → P . The fact that γ is graded implies that δ is
homogeneous of degree 0. The fact that γ is k-linear implies that δ is k-linear.

https://stacks.math.columbia.edu/tag/0ET2
https://stacks.math.columbia.edu/tag/0D3L
https://stacks.math.columbia.edu/tag/0DVY
https://stacks.math.columbia.edu/tag/0DVZ
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The fact that γ is multiplicative implies that δ is a k-derivation. Conversely, given
a k-derivation δ : P → P homogeneous of degree 0, we obtain an automorphism
γ = id + εδ as above. Thus we see that

Inf(Def P ) = Derk(P, P )

as predicted in the lemma. Clearly, if P is generated in degrees Pi, 0 ≤ i ≤ N , then
δ is determined by the linear maps δi : Pi → Pi for 0 ≤ i ≤ N and we see that

dimk Derk(P, P ) <∞
as desired.

To finish the proof of the lemma we show that there is a finite dimensional defor-
mation space. To do this we choose a presentation

k[X1, . . . , Xn]/(F1, . . . , Fm) −→ P

of graded k-algebras where deg(Xi) = di and Fj is homogeneous of degree ej .
Let Q be any graded k[ε]-algebra finite free in each degree which comes with an
isomorphsm α : Q/εQ→ P so that (Q,α) defines an element of TDef P . Choose a
homogeneous element qi ∈ Q of degree di mapping to the image of Xi in P . Then
we obtain

k[ε][X1, . . . , Xn] −→ Q, Xi 7−→ qi

and since P = Q/εQ this map is surjective by Nakayama’s lemma. A small diagram
chase shows we can choose homogeneous elements Fε,j ∈ k[ε][X1, . . . , Xn] of degree
ej mapping to zero in Q and mapping to Fj in k[X1, . . . , Xn]. Then

k[ε][X1, . . . , Xn]/(Fε,1, . . . , Fε,m) −→ Q

is a presentation of Q by flatness of Q over k[ε]. Write

Fε,j = Fj + εGj

There is some ambiguity in the vector (G1, . . . , Gm). First, using different choices
of Fε,j we can modify Gj by an arbitrary element of degree ej in the kernel of
k[X1, . . . , Xn]→ P . Hence, instead of (G1, . . . , Gm), we remember the element

(g1, . . . , gm) ∈ Pe1 ⊕ . . .⊕ Pem
where gj is the image of Gj in Pej . Moreover, if we change our choice of qi into
qi + εpi with pi of degree di then a computation (omitted) shows that gj changes
into

gnewj = gj −
∑n

i=1
pi∂Fj/∂Xi

We conclude that the isomorphism class of Q is determined by the image of the
vector (G1, . . . , Gm) in the k-vector space

W = Coker(Pd1 ⊕ . . .⊕ Pdn
(
∂Fj
∂Xi

)

−−−−→ Pe1 ⊕ . . .⊕ Pem)

In this way we see that we obtain an injection

TDef P −→W

Since W visibly has finite dimension, we conclude that the lemma is true. �

In Example 7.1 if P is a finitely generated graded k-algebra, then Def P admits
a presentation by a smooth prorepresentable groupoid in functors over CΛ and a
fortiori has a (minimal) versal formal object. This follows from Lemmas 7.2 and
7.3 and the general discussion in Section 3.
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Lemma 7.4.0ET3 In Example 7.1 assume P is a finitely generated graded k-algebra.
Assume Λ is a complete local ring with residue field k (the classical case). Then
the functor

F : CΛ −→ Sets, A 7−→ Ob(Def P (A))/ ∼=
of isomorphism classes of objects has a hull.

Proof. This follows immediately from Lemmas 7.2 and 7.3 and Formal Deforma-
tion Theory, Lemma 16.6 and Remark 15.7. �

8. Rings

0DY0 The deformation theory of rings is the same as the deformation theory of affine
schemes. For rings and schemes when we talk about deformations it means we are
thinking about flat deformations.

Example 8.1 (Rings).0DY1 Let F be the category defined as follows
(1) an object is a pair (A,P ) consisting of an object A of CΛ and a flat A-algebra

P , and
(2) a morphism (f, g) : (B,Q) → (A,P ) consists of a morphism f : B → A

in CΛ together with a map g : Q → P which is f -linear and induces an
isomorpism Q⊗B,f A ∼= P .

The functor p : F → CΛ sends (A,P ) to A and (f, g) to f . It is clear that p is
cofibred in groupoids. Given a k-algebra P , let x0 = (k, P ) be the corresponding
object of F(k). We set

Def P = Fx0

Lemma 8.2.0DY2 Example 8.1 satisfies the Rim-Schlessinger condition (RS). In par-
ticular, Def P is a deformation category for any k-algebra P .

Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is
surjective. According to Formal Deformation Theory, Lemma 16.4 it suffices to
show that the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) is an equivalence of
categories. This is a special case of More on Algebra, Lemma 7.7. �

Lemma 8.3.0DY3 In Example 8.1 let P be a k-algebra. Then

TDef P = Ext1P (NLP/k, P ) and Inf(Def P ) = Derk(P, P )

Proof. Recall that Inf(Def P ) is the set of automorphisms of the trivial deformation
P [ε] = P⊗kk[ε] of P to k[ε] equal to the identity modulo ε. By Deformation Theory,
Lemma 2.1 this is equal to HomP (ΩP/k, P ) which in turn is equal to Derk(P, P ) by
Algebra, Lemma 130.3.

Recall that TDef P is the set of isomorphism classes of flat deformations Q of P
to k[ε], more precisely, the set of isomorphism classes of Def P (k[ε]). Recall that a
k[ε]-algebra Q with Q/εQ = P is flat over k[ε] if and only if

0→ P
ε−→ Q→ P → 0

is exact. This is proven in More on Morphisms, Lemma 10.1 and more generally
in Deformation Theory, Lemma 5.2. Thus we may apply Deformation Theory,
Lemma 2.3 to see that the set of isomorphism classes of such deformations is equal
to Ext1P (NLP/k, P ). �

Lemma 8.4.0DZL In Example 8.1 let P be a smooth k-algebra. Then TDef P = (0).

https://stacks.math.columbia.edu/tag/0ET3
https://stacks.math.columbia.edu/tag/0DY1
https://stacks.math.columbia.edu/tag/0DY2
https://stacks.math.columbia.edu/tag/0DY3
https://stacks.math.columbia.edu/tag/0DZL
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Proof. By Lemma 8.3 we have to show Ext1P (NLP/k, P ) = (0). Since k → P is
smooth NLP/k is quasi-isomorphic to the complex consisting of a finite projective
P -module placed in degree 0. �

Lemma 8.5.0DY4 In Lemma 8.3 if P is a finite type k-algebra, then
(1) Inf(Def P ) is finite dimensional if and only if dim(P ) = 0, and
(2) TDef P is finite dimensional if Spec(P ) → Spec(k) is smooth except at a

finite number of points.

Proof. Proof of (1). We view Derk(P, P ) as a P -module. If it has finite di-
mension over k, then it has finite length as a P -module, hence it is supported in
finitely many closed points of Spec(P ) (Algebra, Lemma 51.11). Since Derk(P, P ) =
HomP (ΩP/k, P ) we see that Derk(P, P )p = Derk(Pp, Pp) for any prime p ⊂ P (this
uses Algebra, Lemmas 130.8, 130.15, and 10.2). Let p be a minimal prime ideal
of P corresponding to an irreducible component of dimension d > 0. Then Pp is
an Artinian local ring essentially of finite type over k with residue field and ΩPp/k

is nonzero for example by Algebra, Lemma 138.3. Any nonzero finite module over
an Artinian local ring has both a sub and a quotient module isomorphic to the
residue field. Thus we find that Derk(Pp, Pp) = HomPp

(ΩPp/k, Pp) is nonzero too.
Combining all of the above we find that (1) is true.

Proof of (2). For a prime p of P we will use that NLPp/k = (NLP/k)p (Algebra,
Lemma 132.13) and we will use that Ext1P (NLP/k, P )p = Ext1Pp

(NLPp/k, Pp) (More
on Algebra, Remark 62.21). Given a prime p ⊂ P then k → P is smooth at p if and
only if (NLP/k)p is quasi-isomorphic to a finite projective module placed in degree
0 (this follows immediately from the definition of a smooth ring map but it also
follows from the stronger Algebra, Lemma 135.12).

Assume that P is smooth over k at all but finitely many primes. Then these “bad”
primes are maximal ideals m1, . . . ,mn ⊂ P by Algebra, Lemma 60.3 and the fact
that the “bad” primes form a closed subset of Spec(P ). For p 6∈ {m1, . . . ,mn} we
have Ext1P (NLP/k, P )p = 0 by the results above. Thus Ext1P (NLP/k, P ) is a finite
P -module whose support is contained in {m1, . . . ,mr}. By Algebra, Proposition
62.6 for example, we find that the dimension over k of Ext1P (NLP/k, P ) is a finite
integer combination of dimk κ(mi) and hence finite by the Hilbert Nullstellensatz
(Algebra, Theorem 33.1). �

In Example 8.1, let P be a finite type k-algebra. Then Def P admits a presentation
by a smooth prorepresentable groupoid in functors over CΛ if and only if dim(P ) = 0.
Furthermore, Def P has a versal formal object if Spec(P ) → Spec(k) has finitely
many singular points. This follows from Lemmas 8.2 and 8.5 and the general
discussion in Section 3.

Lemma 8.6.0ET4 In Example 8.1 assume P is a finite type k-algebra such that Spec(P )→
Spec(k) is smooth except at a finite number of points. Assume Λ is a complete local
ring with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def P (A))/ ∼=
of isomorphism classes of objects has a hull.

Proof. This follows immediately from Lemmas 8.2 and 8.5 and Formal Deforma-
tion Theory, Lemma 16.6 and Remark 15.7. �

https://stacks.math.columbia.edu/tag/0DY4
https://stacks.math.columbia.edu/tag/0ET4
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Lemma 8.7.0DYS In Example 8.1 let P be a k-algebra. Let S ⊂ P be a multiplicative
subset. There is a natural functor

Def P −→ Def S−1P

of deformation categories.

Proof. Given a deformation of P we can take the localization of it to get a de-
formation of the localization; this is clear and we encourage the reader to skip the
proof. More precisely, let (A,Q) → (k, P ) be a morphism in F , i.e., an object of
Def P . Let SQ ⊂ Q be the inverse image of S. Then Hence (A,S−1

Q Q)→ (k, S−1P )
is the desired object of Def S−1P . �

Lemma 8.8.0DYT In Example 8.1 let P be a k-algebra. Let J ⊂ P be an ideal. Denote
(Ph, Jh) the henselization of the pair (P, J). There is a natural functor

Def P −→ Def Ph

of deformation categories.

Proof. Given a deformation of P we can take the henselization of it to get a
deformation of the henselization; this is clear and we encourage the reader to skip
the proof. More precisely, let (A,Q) → (k, P ) be a morphism in F , i.e., an object
of Def P . Denote JQ ⊂ Q the inverse image of J in Q. Let (Qh, JhQ) be the
henselization of the pair (Q, JQ). Recall that Q → Qh is flat (More on Algebra,
Lemma 12.2) and hence Qh is flat over A. By More on Algebra, Lemma 12.7 we
see that the map Qh → Ph induces an isomorphism Qh ⊗A k = Qh ⊗Q P = Ph.
Hence (A,Qh)→ (k, Ph) is the desired object of Def Ph . �

Lemma 8.9.0DYU In Example 8.1 let P be a k-algebra. Assume P is a local ring and
let P sh be a strict henselization of P . There is a natural functor

Def P −→ Def P sh

of deformation categories.

Proof. Given a deformation of P we can take the strict henselization of it to get
a deformation of the strict henselization; this is clear and we encourage the reader
to skip the proof. More precisely, let (A,Q)→ (k, P ) be a morphism in F , i.e., an
object of Def P . Since the kernel of the surjection Q→ P is nilpotent, we find that
Q is a local ring with the same residue field as P . Let Qsh be the strict henselization
of Q. Recall that Q→ Qsh is flat (More on Algebra, Lemma 44.1) and hence Qsh
is flat over A. By Algebra, Lemma 150.16 we see that the map Qsh → P sh induces
an isomorphism Qsh ⊗A k = Qsh ⊗Q P = P sh. Hence (A,Qsh) → (k, P sh) is the
desired object of Def P sh . �

Lemma 8.10.0DYV In Example 8.1 let P be a k-algebra. Assume P Noetherian and let
J ⊂ P be an ideal. Denote P∧ the J-adic completion. There is a natural functor

Def P −→ Def P∧
of deformation categories.

Proof. Given a deformation of P we can take the completion of it to get a deforma-
tion of the completion; this is clear and we encourage the reader to skip the proof.
More precisely, let (A,Q) → (k, P ) be a morphism in F , i.e., an object of Def P .
Observe that Q is a Noetherian ring: the kernel of the surjective ring map Q→ P is

https://stacks.math.columbia.edu/tag/0DYS
https://stacks.math.columbia.edu/tag/0DYT
https://stacks.math.columbia.edu/tag/0DYU
https://stacks.math.columbia.edu/tag/0DYV
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nilpotent and finitely generated and P is Noetherian; apply Algebra, Lemma 96.5.
Denote JQ ⊂ Q the inverse image of J in Q. Let Q∧ be the JQ-adic completion of
Q. Recall that Q→ Q∧ is flat (Algebra, Lemma 96.2) and hence Q∧ is flat over A.
The induced map Q∧ → P∧ induces an isomorphism Q∧⊗A k = Q∧⊗QP = P∧ by
Algebra, Lemma 96.1 for example. Hence (A,Q∧) → (k, P∧) is the desired object
of Def P∧ . �

Lemma 8.11.0DY5 In Lemma 8.3 if P = k[[x1, . . . , xn]]/(f) for some nonzero f ∈
(x1, . . . , xn)2, then

(1) Inf(Def P ) is finite dimensional if and only if n = 1, and
(2) TDef P is finite dimensional if√

(f, ∂f/∂x1, . . . , ∂f/∂xn) = (x1, . . . , xn)

Proof. Proof of (1). Consider the derivations ∂/∂xi of k[[x1, . . . , xn]] over k. Write
fi = ∂f/∂xi. The derivation

θ =
∑

hi∂/∂xi

of k[[x1, . . . , xn]] induces a derivation of P = k[[x1, . . . , xn]]/(f) if and only if∑
hifi ∈ (f). Moreover, the induced derivation of P is zero if and only if hi ∈ (f)

for i = 1, . . . , n. Thus we find

Ker((f1, . . . , fn) : P⊕n −→ P ) ⊂ Derk(P, P )

The left hand side is a finite dimensional k-vector space only if n = 1; we omit
the proof. We also leave it to the reader to see that the right hand side has finite
dimension if n = 1. This proves (1).

Proof of (2). Let Q be a flat deformation of P over k[ε] as in the proof of Lemma
8.3. Choose lifts qi ∈ Q of the image of xi in P . Then Q is a complete local ring
with maximal ideal generated by q1, . . . , qn and ε (small argument omitted). Thus
we get a surjection

k[ε][[x1, . . . , xn]] −→ Q, xi 7−→ qi

Choose an element of the form f + εg ∈ k[ε][[x1, . . . , xn]] mapping to zero in Q.
Observe that g is well defined modulo (f). Since Q is flat over k[ε] we get

Q = k[ε][[x1, . . . , xn]]/(f + εg)

Finally, if we changing the choice of qi amounts to changing the coordinates xi into
xi + εhi for some hi ∈ k[[x1, . . . , xn]]. Then f + εg changes into f + ε(g +

∑
hifi)

where fi = ∂f/∂xi. Thus we see that the isomorphism class of the deformation Q
is determined by an element of

k[[x1, . . . , xn]]/(f, ∂f/∂x1, . . . , ∂f/∂xn)

This has finite dimension over k if and only if its support is the closed point of
k[[x1, . . . , xn]] if and only if

√
(f, ∂f/∂x1, . . . , ∂f/∂xn) = (x1, . . . , xn). �

9. Schemes

0DY6 The deformation theory of schemes.

Example 9.1 (Schemes).0DY7 Let F be the category defined as follows
(1) an object is a pair (A,X) consisting of an object A of CΛ and a scheme X

flat over A, and

https://stacks.math.columbia.edu/tag/0DY5
https://stacks.math.columbia.edu/tag/0DY7
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(2) a morphism (f, g) : (B, Y )→ (A,X) consists of a morphism f : B → A in
CΛ together with a morphism g : X → Y such that

X
g

//

��

Y

��
Spec(A)

f // Spec(B)

is a cartesian commutative diagram of schemes.
The functor p : F → CΛ sends (A,X) to A and (f, g) to f . It is clear that
p is cofibred in groupoids. Given a scheme X over k, let x0 = (k,X) be the
corresponding object of F(k). We set

Def X = Fx0

Lemma 9.2.0DY8 Example 9.1 satisfies the Rim-Schlessinger condition (RS). In par-
ticular, Def X is a deformation category for any scheme X over k.

Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is
surjective. According to Formal Deformation Theory, Lemma 16.4 it suffices to
show that the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) is an equivalence of
categories. Observe that

Spec(A) //

��

Spec(A2)

��
Spec(A1) // Spec(A1 ×A A2)

is a pushout diagram as in More on Morphisms, Lemma 14.3. Thus the lemma is
a special case of More on Morphisms, Lemma 14.6. �

Lemma 9.3.0DY9 In Example 9.1 let X be a scheme over k. Then

Inf(Def X) = Ext0OX
(NLX/k,OX) = HomOX

(ΩX/k,OX) = Derk(OX ,OX)

and
TDef X = Ext1OX

(NLX/k,OX)

Proof. Recall that Inf(Def X) is the set of automorphisms of the trivial deforma-
tion X ′ = X ×Spec(k) Spec(k[ε]) of X to k[ε] equal to the identity modulo ε. By
Deformation Theory, Lemma 8.1 this is equal to Ext0OX

(NLX/k,OX). The equal-
ity Ext0OX

(NLX/k,OX) = HomOX
(ΩX/k,OX) follows from More on Morphisms,

Lemma 13.3. The equality HomOX
(ΩX/k,OX) = Derk(OX ,OX) follows from Mor-

phisms, Lemma 31.2.

Recall that Tx0
Def X is the set of isomorphism classes of flat deformations X ′ of

X to k[ε], more precisely, the set of isomorphism classes of Def X(k[ε]). Thus the
second statement of the lemma follows from Deformation Theory, Lemma 8.1. �

Lemma 9.4.0DYA In Lemma 9.3 if X is proper over k, then Inf(Def X) and TDef X
are finite dimensional.

Proof. By the lemma we have to show Ext1
OX

(NLX/k,OX) and Ext0
OX

(NLX/k,OX)
are finite dimensional. By More on Morphisms, Lemma 13.4 and the fact that X
is Noetherian, we see that NLX/k has coherent cohomology sheaves zero except in

https://stacks.math.columbia.edu/tag/0DY8
https://stacks.math.columbia.edu/tag/0DY9
https://stacks.math.columbia.edu/tag/0DYA
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degrees 0 and −1. By Derived Categories of Schemes, Lemma 10.4 the displayed
Ext-groups are finite k-vector spaces and the proof is complete. �

In Example 9.1 if X is a proper scheme over k, then Def X admits a presentation
by a smooth prorepresentable groupoid in functors over CΛ and a fortiori has a
(minimal) versal formal object. This follows from Lemmas 9.2 and 9.4 and the
general discussion in Section 3.

Lemma 9.5.0ET5 In Example 9.1 assume X is a proper k-scheme. Assume Λ is a
complete local ring with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def X(A))/ ∼=
of isomorphism classes of objects has a hull. If Derk(OX ,OX) = 0, then F is
prorepresentable.

Proof. The existence of a hull follows immediately from Lemmas 9.2 and 9.4 and
Formal Deformation Theory, Lemma 16.6 and Remark 15.7.

Assume Derk(OX ,OX) = 0. Then Def X and F are equivalent by Formal Defor-
mation Theory, Lemma 19.13. Hence F is a deformation functor (because Def X is
a deformation category) with finite tangent space and we can apply Formal Defor-
mation Theory, Theorem 18.2. �

Lemma 9.6.0DYW In Example 9.1 let X be a scheme over k. Let U ⊂ X be an open
subscheme. There is a natural functor

Def X −→ Def U
of deformation categories.

Proof. Given a deformation of X we can take the corresponding open of it to get
a deformation of U . We omit the details. �

Lemma 9.7.0DYX In Example 9.1 let X = Spec(P ) be an affine scheme over k. With
Def P as in Example 8.1 there is a natural equivalence

Def X −→ Def P
of deformation categories.

Proof. The functor sends (A, Y ) to Γ(Y,OY ). This works because any deformation
of X is affine by More on Morphisms, Lemma 2.3. �

Lemma 9.8.0DZM In Example 9.1 let X be a scheme over k Let p ∈ X be a point.
With Def OX,p

as in Example 8.1 there is a natural functor

Def X −→ Def OX,p

of deformation categories.

Proof. Choose an affine open U = Spec(P ) ⊂ X containing p. Then OX,p is a
localization of P . We combine the functors from Lemmas 9.6, 9.7, and 8.7. �

Situation 9.9.0DYY Let Λ → k be as in Section 3. Let X be a scheme over k which
has an affine open covering X = U1 ∪ U2 with U12 = U1 ∩ U2 affine too. Write
U1 = Spec(P1), U2 = Spec(P2) and U12 = Spec(P12). Let Def X , Def U1

, Def U2
, and

Def U12
be as in Example 9.1 and let Def P1

, Def P2
, and Def P12

be as in Example
8.1.

https://stacks.math.columbia.edu/tag/0ET5
https://stacks.math.columbia.edu/tag/0DYW
https://stacks.math.columbia.edu/tag/0DYX
https://stacks.math.columbia.edu/tag/0DZM
https://stacks.math.columbia.edu/tag/0DYY
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Lemma 9.10.0DYZ In Situation 9.9 there is an equivalence

Def X = Def P1
×Def P12

Def P2

of deformation categories, see Examples 9.1 and 8.1.

Proof. It suffices to show that the functors of Lemma 9.6 define an equivalence

Def X −→ Def U1
×Def U12

Def U2

because then we can apply Lemma 9.7 to translate into rings. To do this we
construct a quasi-inverse. Denote Fi : Def Ui

→ Def U12
the functor of Lemma

9.6. An object of the RHS is given by an A in CΛ, objects (A, V1) → (k, U1) and
(A, V2)→ (k, U2), and a morphism

g : F1(A, V1)→ F2(A, V2)

Now Fi(A, Vi) = (A, Vi,3−i) where Vi,3−i ⊂ Vi is the open subscheme whose base
change to k is U12 ⊂ Ui. The morphism g defines an isomorphism V1,2 → V2,1 of
schemes overA compatible with id : U12 → U12 over k. Thus ({1, 2}, Vi, Vi,3−i, g, g−1)
is a glueing data as in Schemes, Section 14. Let Y be the glueing, see Schemes,
Lemma 14.1. Then Y is a scheme over A and the compatibilities mentioned
above show that there is a canonical isomorphism Y ×Spec(A) Spec(k) = X. Thus
(A, Y )→ (k,X) is an object of Def X . We omit the verification that this construc-
tion is a functor and is quasi-inverse to the given one. �

10. Morphisms of Schemes

0E3S The deformation theory of morphisms of schemes. Of course this is just an example
of deformations of diagrams of schemes.

Example 10.1 (Morphisms of schemes).0E3T Let F be the category defined as follows
(1) an object is a pair (A,X → Y ) consisting of an object A of CΛ and a

morphism X → Y of schemes over A with both X and Y flat over A, and
(2) a morphism (f, g, h) : (A′, X ′ → Y ′)→ (A,X → Y ) consists of a morphism

f : A′ → A in CΛ together with morphisms of schemes g : X → X ′ and
h : Y → Y ′ such that

X
g

//

��

X ′

��
Y

h
//

��

Y ′

��
Spec(A)

f // Spec(A′)

is a commutative diagram of schemes where both squares are cartesian.
The functor p : F → CΛ sends (A,X → Y ) to A and (f, g, h) to f . It is clear
that p is cofibred in groupoids. Given a morphism of schemes X → Y over k, let
x0 = (k,X → Y ) be the corresponding object of F(k). We set

Def X→Y = Fx0

Lemma 10.2.0E3U Example 10.1 satisfies the Rim-Schlessinger condition (RS). In
particular, Def X→Y is a deformation category for any morphism of schemes X → Y
over k.

https://stacks.math.columbia.edu/tag/0DYZ
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Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is
surjective. According to Formal Deformation Theory, Lemma 16.4 it suffices to
show that the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) is an equivalence of
categories. Observe that

Spec(A) //

��

Spec(A2)

��
Spec(A1) // Spec(A1 ×A A2)

is a pushout diagram as in More on Morphisms, Lemma 14.3. Thus the lemma
follows immediately from More on Morphisms, Lemma 14.6 as this describes the
category of schemes flat over A1 ×A A2 as the fibre product of the category of
schemes flat over A1 with the category of schemes flat over A2 over the category of
schemes flat over A. �

Lemma 10.3.0E3V In Example 9.1 let f : X → Y be a morphism of schemes over k.
There is a canonical exact sequence of k-vector spaces

0 // Inf(Def X→Y ) // Inf(Def X ×Def Y ) // Derk(OY , f∗OX)

rr
TDef X→Y // T (Def X ×Def Y ) // Ext1OX

(Lf∗NLY/k,OX)

Proof. The obvious map of deformation categories Def X→Y → Def X×Def Y gives
two of the arrows in the exact sequence of the lemma. Recall that Inf(Def X→Y ) is
the set of automorphisms of the trivial deformation

f ′ : X ′ = X ×Spec(k) Spec(k[ε])
f×id−−−→ Y ′ = Y ×Spec(k) Spec(k[ε])

of X → Y to k[ε] equal to the identity modulo ε. This is clearly the same thing
as pairs (α, β) ∈ Inf(Def X × Def Y ) of infinitesimal automorphisms of X and Y
compatible with f ′, i.e., such that f ′ ◦α = β ◦ f ′. By Deformation Theory, Lemma
7.1 for an arbitrary pair (α, β) the difference between the morphism f ′ : X ′ → Y ′

and the morphism β−1 ◦ f ′ ◦ α : X ′ → Y ′ defines an elment in

Derk(OY , f∗OX) = HomOY
(ΩY/k, f∗OX)

Equality by More on Morphisms, Lemma 13.3. This defines the last top horizontal
arrow and shows exactness in the first two places. For the map

Derk(OY , f∗OX)→ TDef X→Y
we interpret elements of the source as morphisms fε : X ′ → Y ′ over Spec(k[ε])
equal to f modulo ε using Deformation Theory, Lemma 7.1. We send fε to the
isomorphism class of (fε : X ′ → Y ′) in TDef X→Y . Note that (fε : X ′ → Y ′) is
isomorphic to the trivial deformation (f ′ : X ′ → Y ′) exactly when fε = β−1 ◦ f ◦α
for some pair (α, β) which implies exactness in the third spot. Clearly, if some first
order deformation (fε : Xε → Yε) maps to zero in T (Def X × Def Y ), then we can
choose isomorphisms X ′ → Xε and Y ′ → Yε and we conclude we are in the image
of the south-west arrow. Therefore we have exactness at the fourth spot. Finally,
given two first order deformations Xε, Yε of X, Y there is an obstruction in

ob(Xε, Yε) ∈ Ext1OX
(Lf∗NLY/k,OX)

https://stacks.math.columbia.edu/tag/0E3V
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which vanishes if and only if f : X → Y lifts to Xε → Yε, see Deformation Theory,
Lemma 7.1. This finishes the proof. �

Lemma 10.4.0E3W In Lemma 10.3 if X and Y are both proper over k, then Inf(Def X→Y )
and TDef X→Y are finite dimensional.

Proof. Omitted. Hint: argue as in Lemma 9.4 and use the exact sequence of the
lemma. �

In Example 10.1 if X → Y is a morphism of proper schemes over k, then Def X→Y
admits a presentation by a smooth prorepresentable groupoid in functors over CΛ
and a fortiori has a (minimal) versal formal object. This follows from Lemmas 10.2
and 10.4 and the general discussion in Section 3.

Lemma 10.5.0ET6 In Example 10.1 assume X → Y is a morphism of proper k-
schemes. Assume Λ is a complete local ring with residue field k (the classical case).
Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def X→Y (A))/ ∼=
of isomorphism classes of objects has a hull. If Derk(OX ,OX) = Derk(OY ,OY ) =
0, then F is prorepresentable.

Proof. The existence of a hull follows immediately from Lemmas 10.2 and 10.4
and Formal Deformation Theory, Lemma 16.6 and Remark 15.7.

Assume Derk(OX ,OX) = Derk(OY ,OY ) = 0. Then the exact sequence of Lemma
10.3 combined with Lemma 9.3 shows that Inf(Def X→Y ) = 0. Then Def X→Y
and F are equivalent by Formal Deformation Theory, Lemma 19.13. Hence F
is a deformation functor (because Def X→Y is a deformation category) with finite
tangent space and we can apply Formal Deformation Theory, Theorem 18.2. �

Lemma 10.6.0E3X This is discussed in
[Vak06, Section 5.3]
and [Ran89,
Theorem 3.3].

In Example 9.1 let f : X → Y be a morphism of schemes over k.
If f∗OX = OY and R1f∗OX = 0, then the morphism of deformation categories

Def X→Y → Def X
is an equivalence.

Proof. We construct a quasi-inverse to the forgetful functor of the lemma. Namely,
suppose that (A,U) is an object of Def X . The given map X → U is a finite order
thickening and we can use it to identify the underlying topological spaces of U and
X, see More on Morphisms, Section 2. Thus we may and do think of OU as a sheaf
of A-algebras on X; moreover the fact that U → Spec(A) is flat, means that OU is
flat as a sheaf of A-modules. In particular, we have a filtration

0 = mnAOU ⊂ mn−1
A OU ⊂ . . . ⊂ m2

AOU ⊂ mAOU ⊂ OU
with subquotients equal to OX ⊗k miA/m

i+1
A by flatness, see More on Morphisms,

Lemma 10.1 or the more general Deformation Theory, Lemma 5.2. Set

OV = f∗OU
viewed as sheaf of A-algebras on Y . Since R1f∗OX = 0 we find by the description
above that R1f∗(m

i
AOU/m

i+1
A OU ) = 0 for all i. This implies that the sequences

0→ (f∗OX)⊗k miA/mi+1
A → f∗(OU/mi+1

A OU )→ f∗(OU/miAOU )→ 0

https://stacks.math.columbia.edu/tag/0E3W
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are exact for all i. Reading the references given above backwards (and using induc-
tion) we find that OV is a flat sheaf of A-algebras with OV /mAOV = OY . Using
More on Morphisms, Lemma 2.2 we find that (Y,OV ) is a scheme, call it V . The
equality OV = f∗OU defines a morphism of ringed spaces U → V which is easily
seen to be a morphism of schemes. This finishes the proof by the flatness already
esthablished. �

11. Algebraic spaces

0E3Y The deformation theory of algebraic spaces.

Example 11.1 (Algebraic spaces).0E3Z Let F be the category defined as follows
(1) an object is a pair (A,X) consisting of an object A of CΛ and an algebraic

space X flat over A, and
(2) a morphism (f, g) : (B, Y )→ (A,X) consists of a morphism f : B → A in
CΛ together with a morphism g : X → Y of algebraic spaces over Λ such
that

X
g

//

��

Y

��
Spec(A)

f // Spec(B)

is a cartesian commutative diagram of algebraic spaces.
The functor p : F → CΛ sends (A,X) to A and (f, g) to f . It is clear that p is
cofibred in groupoids. Given an algebraic space X over k, let x0 = (k,X) be the
corresponding object of F(k). We set

Def X = Fx0

Lemma 11.2.0E40 Example 11.1 satisfies the Rim-Schlessinger condition (RS). In
particular, Def X is a deformation category for any algebraic space X over k.

Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is
surjective. According to Formal Deformation Theory, Lemma 16.4 it suffices to
show that the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) is an equivalence of
categories. Observe that

Spec(A) //

��

Spec(A2)

��
Spec(A1) // Spec(A1 ×A A2)

is a pushout diagram as in Pushouts of Spaces, Lemma 2.4. Thus the lemma is a
special case of Pushouts of Spaces, Lemma 2.9. �

Lemma 11.3.0E41 In Example 11.1 let X be an algebraic space over k. Then

Inf(Def X) = Ext0OX
(NLX/k,OX) = HomOX

(ΩX/k,OX) = Derk(OX ,OX)

and
TDef X = Ext1OX

(NLX/k,OX)

https://stacks.math.columbia.edu/tag/0E3Z
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Proof. Recall that Inf(Def X) is the set of automorphisms of the trivial deforma-
tion X ′ = X ×Spec(k) Spec(k[ε]) of X to k[ε] equal to the identity modulo ε. By
Deformation Theory, Lemma 14.2 this is equal to Ext0OX

(NLX/k,OX). The equal-
ity Ext0OX

(NLX/k,OX) = HomOX
(ΩX/k,OX) follows from More on Morphisms

of Spaces, Lemma 21.4. The equality HomOX
(ΩX/k,OX) = Derk(OX ,OX) follows

from More on Morphisms of Spaces, Definition 7.2 and Modules on Sites, Definition
32.3.

Recall that Tx0Def X is the set of isomorphism classes of flat deformations X ′ of
X to k[ε], more precisely, the set of isomorphism classes of Def X(k[ε]). Thus the
second statement of the lemma follows from Deformation Theory, Lemma 14.2. �

Lemma 11.4.0E42 In Lemma 11.3 if X is proper over k, then Inf(Def X) and TDef X
are finite dimensional.

Proof. By the lemma we have to show Ext1
OX

(NLX/k,OX) and Ext0
OX

(NLX/k,OX)
are finite dimensional. By More on Morphisms of Spaces, Lemma 21.5 and the fact
that X is Noetherian, we see that NLX/k has coherent cohomology sheaves zero
except in degrees 0 and −1. By Derived Categories of Spaces, Lemma 8.4 the
displayed Ext-groups are finite k-vector spaces and the proof is complete. �

In Example 11.1 if X is a proper algebraic space over k, then Def X admits a
presentation by a smooth prorepresentable groupoid in functors over CΛ and a
fortiori has a (minimal) versal formal object. This follows from Lemmas 11.2 and
11.4 and the general discussion in Section 3.

Lemma 11.5.0ET7 In Example 11.1 assume X is a proper algebraic space over k.
Assume Λ is a complete local ring with residue field k (the classical case). Then
the functor

F : CΛ −→ Sets, A 7−→ Ob(Def X(A))/ ∼=
of isomorphism classes of objects has a hull. If Derk(OX ,OX) = 0, then F is
prorepresentable.

Proof. The existence of a hull follows immediately from Lemmas 11.2 and 11.4
and Formal Deformation Theory, Lemma 16.6 and Remark 15.7.

Assume Derk(OX ,OX) = 0. Then Def X and F are equivalent by Formal Defor-
mation Theory, Lemma 19.13. Hence F is a deformation functor (because Def X is
a deformation category) with finite tangent space and we can apply Formal Defor-
mation Theory, Theorem 18.2. �

12. Deformations of completions

0DZ0 In this section we compare the deformation problem posed by an algebra and its
completion. We first discuss “liftability”.

Lemma 12.1.0DZ1 Let A′ → A be a surjection of rings with nilpotent kernel. Let
A′ → P ′ be a flat ring map. Set P = P ′ ⊗A′ A. Let M be an A-flat P -module.
Then the following are equivalent

(1) there is an A′-flat P ′-module M ′ with M ′ ⊗P ′ P = M , and
(2) there is an object K ′ ∈ D−(P ′) with K ′ ⊗L

P ′ P = M .

https://stacks.math.columbia.edu/tag/0E42
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Proof. Suppose that M ′ is as in (1). Then

M = M ′ ⊗P P ′ = M ′ ⊗A′ A = M ′ ⊗L
A A

′ = M ′ ⊗L
P ′ P

The first two equalities are clear, the third holds because M ′ is flat over A′, and
the fourth holds by More on Algebra, Lemma 59.2. Thus (2) holds. Conversely,
suppose K ′ is as in (2). We may and do assume M is nonzero. Let t be the
largest integer such that Ht(K ′) is nonzero (exists because M is nonzero). Then
Ht(K ′) ⊗P ′ P = Ht(K ′ ⊗L

P ′ P ) is zero if t > 0. Since the kernel of P ′ → P is
nilpotent this implies Ht(K ′) = 0 by Nakayama’s lemma a contradiction. Hence
t = 0 (the case t < 0 is absurd as well). Then M ′ = H0(K ′) is a P ′-module such
that M = M ′ ⊗P ′ P and the spectral sequence for Tor gives an injective map

TorP
′

1 (M ′, P )→ H−1(M ′ ⊗L
P ′ P ) = 0

By the reference on derived base change above 0 = TorP
′

1 (M ′, P ) = TorA
′

1 (M ′, A).
We conclude that M ′ is A′-flat by Algebra, Lemma 98.8. �

Lemma 12.2.0DZ2 Consider a commutative diagram of Noetherian rings

A′

��

// P ′

��

// Q′

��
A // P // Q

with cartesian squares, with flat horizontal arrows, and with surjective vertial arrows
whose kernels are nilpotent. Let J ′ ⊂ P ′ be an ideal such that P ′/J ′ = Q′/J ′Q′.
Let M be an A-flat P -module. Assume for all g ∈ J ′ there exists an A′-flat (P ′)g-
module lifting Mg. Then the following are equivalent

(1) M has an A′-flat lift to a P ′-module, and
(2) M ⊗P Q has an A′-flat lift to a Q′-module.

Proof. Let I = Ker(A′ → A). By induction on the integer n > 1 such that In = 0
we reduce to the case where I is an ideal of square zero; details omitted. We
translate the condition of liftability of M into the problem of finding an object of
D−(P ′) as in Lemma 12.1. The obstruction to doing this is the element

ω(M) ∈ Ext2P (M,M ⊗L
P IP ) = Ext2P (M,M ⊗P IP )

constructed in Deformation Theory, Lemma 15.1. The equality in the displayed
formula holds asM⊗L

P IP = M⊗P IP sinceM and P are A-flat2. The obstruction
for lifting M ⊗P Q is similarly the element

ω(M ⊗P Q) ∈ Ext2Q(M ⊗P Q, (M ⊗P Q)⊗Q IQ)

which is the image of ω(M) by the functoriality of the construction ω(−) of Defor-
mation Theory, Lemma 15.1. By More on Algebra, Lemma 87.2 we have

Ext2Q(M ⊗P Q, (M ⊗P Q)⊗Q IQ) = Ext2P (M,M ⊗P IP )⊗P Q
here we use that P is Noetherian and M finite. Our assumption on P ′ → Q′

guarantees that for an P -module E the map E → E ⊗P Q is bijective on J ′-power
torsion, see More on Algebra, Lemma 80.3. Thus we conclude that it suffices to

2Choose a resolution F• → I by free A-modules. Since A → P is flat, P ⊗A F• is a free
resolution of IP . Hence M ⊗L

P IP is represented by M ⊗P P ⊗A F• = M ⊗A F•. This only has
cohomology in degree 0 as M is A-flat.

https://stacks.math.columbia.edu/tag/0DZ2
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show ω(M) is J ′-power torsion. In other words, it suffices to show that ω(M) dies
in

Ext2P (M,M ⊗P IP )g = Ext2Pg
(Mg,Mg ⊗Pg IPg)

for all g ∈ J ′. Howeover, by the compatibility of formation of ω(M) with base
change again, we conclude that this is true as Mg is assumed to have a lift (of
course you have to use the whole string of equivalences again). �

Lemma 12.3.0DZ3 Let A′ → A be a surjective map of Noetherian rings with nilpotent
kernel. Let A → B be a finite type flat ring map. Let b ⊂ B be an ideal such that
Spec(B)→ Spec(A) is syntomic on the complement of V (b). Then B has a flat lift
to A′ if and only if the b-adic completion B∧ has a flat lift to A′.

Proof. Choose an A-algebra surjection P = A[x1, . . . , xn]→ B. Let p ⊂ P be the
inverse image of b. Set P ′ = A′[x1, . . . , xn] and denote p′ ⊂ P ′ the inverse image
of p. (Of course p and p′ do not designate prime ideals here.) We will denote P∧
and (P ′)∧ the respective completions.

Suppose A′ → B′ is a flat lift of A→ B, in other words, A′ → B′ is flat and there
is an A-algebra isomorphism B = B′ ⊗A′ A. Then we can choose an A′-algebra
map P ′ → B′ lifting the given surjection P → B. By Nakayama’s lemma (Algebra,
Lemma 19.1) we find that B′ is a quotient of P ′. In particular, we find that we
can endow B′ with an A′-flat P ′-module structure lifting B as an A-flat P -module.
Conversely, if we can lift B to a P ′-module M ′ flat over A′, then M ′ is a cyclic
module M ′ ∼= P ′/J ′ (using Nakayama again) and setting B′ = P ′/J ′ we find a flat
lift of B as an algebra.

Set C = B∧ and c = bC. Suppose that A′ → C ′ is a flat lift of A → C. Then
C ′ is complete with respect to the inverse image c′ of c (Algebra, Lemma 96.10).
We choose an A′-algebra map P ′ → C ′ lifting the A-algebra map P → C. These
maps pass through completions to give surjections P∧ → C and (P ′)∧ → C ′ (for
the second again using Nakayama’s lemma). In particular, we find that we can
endow C ′ with an A′-flat (P ′)∧-module structure lifting C as an A-flat P∧-module.
Conversely, if we can lift C to a (P ′)∧-module N ′ flat over A′, then N ′ is a cyclic
module N ′ ∼= (P ′)∧/J̃ (using Nakayama again) and setting C ′ = (P ′)∧/J̃ we find
a flat lift of C as an algebra.

Observe that P ′ → (P ′)∧ is a flat ring map which induces an isomorphism P ′/p′ =
(P ′)∧/p′(P ′)∧. We conclude that our lemma is a consequence of Lemma 12.2 pro-
vided we can show that Bg lifts to an A′-flat P ′g-module for g ∈ p′. However, the
ring map A→ Bg is syntomic and hence lifts to an A′-flat algebra B′ by Smoothing
Ring Maps, Proposition 3.2. Since A′ → P ′g is smooth, we can lift Pg → Bg to a
surjective map P ′g → B′ as before and we get what we want. �

Notation. Let A → B be a ring map. Let N be a B-module. We denote
ExalA(B,N) the set of isomorphism classes of extensions

0→ N → C → B → 0

of A-algebras such that N is an ideal of square zero in C. Given a second such
0 → N → C ′ → B → 0 an isomorphism is a A-algebra isomorpism C → C ′ such

https://stacks.math.columbia.edu/tag/0DZ3
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that the diagram
0 // N //

id
��

C //

��

B //

id
��

0

0 // N // C ′ // B // 0

commutes. The assignment N 7→ ExalA(B,N) is a functor which transforms prod-
ucts into products. Hence this is an additive functor and ExalA(B,N) has a nat-
ural B-module structure. In fact, by Deformation Theory, Lemma 2.3 we have
ExalA(B,N) = Ext1B(NLB/A, N).

Lemma 12.4.0DZ4 Let k be a field. Let B be a finite type k-algebra. Let J ⊂ B be an
ideal such that Spec(B) → Spec(k) is smooth on the complement of V (J). Let N
be a finite B-module. Then there is a canonical bijection

Exalk(B,N)→ Exalk(B∧, N∧)

Here B∧ and N∧ are the J-adic completions.

Proof. The map is given by completion: given 0 → N → C → B → 0 in
Exalk(B,N) we send it to the completion C∧ of C with respect to the inverse
image of J . Compare with the proof of Lemma 8.10.

Since k → B is of finite presentation the complex NLB/k can be represented by a
complex N−1 → N0 where N i is a finite B-module, see Algebra, Section 132 and
in particular Algebra, Lemma 132.2. As B is Noetherian, this means that NLB/k
is pseudo-coherent. For g ∈ J the k-algebra Bg is smooth and hence (NLB/k)g =
NLBg/k is quasi-isomorphic to a finite projective B-module sitting in degree 0.
Thus ExtiB(NLB/k, N)g = 0 for i ≥ 1 and any B-module N . By More on Algebra,
Lemma 89.3 we conclude that

Ext1B(NLB/k, N) −→ limn Ext1B(NLB/k, N/J
nN)

is an isomorphism for any finite B-module N .

Injectivity of the map. Suppose that 0 → N → C → B → 0 is in Exalk(B,N)
and maps to zero in Exalk(B∧, N∧). Choose a splitting C∧ = B∧ ⊕N∧. Then the
induced map C → C∧ → N∧ gives maps C → N/JnN for all n. Hence we see that
our element is in the kernel of the maps

Ext1B(NLB/k, N)→ Ext1B(NLB/k, N/J
nN)

for all n. By the previous paragraph we conclude that our element is zero.

Surjectivity of the map. Let 0 → N∧ → C ′ → B∧ → 0 be an element of
Exalk(B∧, N∧). Pulling back by B → B∧ we get an element 0 → N∧ → C ′′ →
B → 0 in Exalk(B,N∧). we have

Ext1B(NLB/k, N
∧) = Ext1B(NLB/k, N)⊗B B∧ = Ext1B(NLB/k, N)

The first equality as N∧ = N ⊗BB∧ (Algebra, Lemma 96.1) and More on Algebra,
Remark 62.20. The second equality because Ext1B(NLB/k, N) is J-power torsion
(see above), B → B∧ is flat and induces an isomorphism B/J → B∧/JB∧, and
More on Algebra, Lemma 80.3. Thus we can find a C ∈ Exalk(B,N) mapping to
C ′′ in Exalk(B,N∧). Thus

0→ N∧ → C ′ → B∧ → 0 and 0→ N∧ → C∧ → B∧ → 0

https://stacks.math.columbia.edu/tag/0DZ4
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are two elements of Exalk(B∧, N∧) mapping to the same element of Exalk(B,N∧).
Taking the difference we get an element 0→ N∧ → C ′ → B∧ → 0 of Exalk(B∧, N∧)
whose image in Exalk(B,N∧) is zero. This means there exists

0 // N∧ // C ′ // B∧ // 0

B

σ

OO ==

Let J ′ ⊂ C ′ be the inverse image of JB∧ ⊂ B∧. To finish the proof it suffices to
note that σ is continuous for the J-adic topology on B and the J ′-adic topology
on C ′ and that C ′ is J ′-adically complete by Algebra, Lemma 96.10 (here we also
use that C ′ is Noetherian; small detail omitted). Namely, this means that σ factors
through the completion B∧ and C ′ = 0 in Exalk(B∧, N∧). �

Lemma 12.5.0DZ5 In Example 8.1 let P be a k-algebra. Let J ⊂ P be an ideal. Denote
P∧ the J-adic completion. If

(1) k → P is of finite type, and
(2) Spec(P )→ Spec(k) is smooth on the complement of V (J).

then the functor between deformation categories of Lemma 8.10

Def P −→ Def P∧
is smooth and induces an isomorphism on tangent spaces.

Proof. We know that Def P and Def P∧ are deformation categories by Lemma 8.2.
Thus it suffices to check our functor identifies tangent spaces and a correspondence
between liftability, see Formal Deformation Theory, Lemma 20.3. The property on
liftability is proven in Lemma 12.3 and the isomorphism on tangent spaces is the
special case of Lemma 12.4 where N = B. �

13. Deformations of localizations

0DZ6 In this section we compare the deformation problem posed by an algebra and its
localization at a multiplicative subset. We first discuss “liftability”.

Lemma 13.1.0DZ7 Let A′ → A be a surjective map of Noetherian rings with nilpotent
kernel. Let A → B be a finite type flat ring map. Let S ⊂ B be a multiplicative
subset such that if Spec(B)→ Spec(A) is not syntomic at q, then S ∩ q = ∅. Then
B has a flat lift to A′ if and only if S−1B has a flat lift to A′.

Proof. This proof is the same as the proof of Lemma 12.3 but easier. We suggest
the reader to skip the proof. Choose an A-algebra surjection P = A[x1, . . . , xn]→
B. Let SP ⊂ P be the inverse image of S. Set P ′ = A′[x1, . . . , xn] and denote
SP ′ ⊂ P ′ the inverse image of SP .

Suppose A′ → B′ is a flat lift of A→ B, in other words, A′ → B′ is flat and there
is an A-algebra isomorphism B = B′ ⊗A′ A. Then we can choose an A′-algebra
map P ′ → B′ lifting the given surjection P → B. By Nakayama’s lemma (Algebra,
Lemma 19.1) we find that B′ is a quotient of P ′. In particular, we find that we
can endow B′ with an A′-flat P ′-module structure lifting B as an A-flat P -module.
Conversely, if we can lift B to a P ′-module M ′ flat over A′, then M ′ is a cyclic
module M ′ ∼= P ′/J ′ (using Nakayama again) and setting B′ = P ′/J ′ we find a flat
lift of B as an algebra.

https://stacks.math.columbia.edu/tag/0DZ5
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Set C = S−1B. Suppose that A′ → C ′ is a flat lift of A → C. Elements of C ′
which map to invertible elements of C are invertible. We choose an A′-algebra
map P ′ → C ′ lifting the A-algebra map P → C. By the remark above these
maps pass through localizations to give surjections S−1

P P → C and S−1
P ′ P

′ → C ′

(for the second use Nakayama’s lemma). In particular, we find that we can endow
C ′ with an A′-flat S−1

P ′ P
′-module structure lifting C as an A-flat S−1

P P -module.
Conversely, if we can lift C to a S−1

P ′ P
′-module N ′ flat over A′, then N ′ is a cyclic

module N ′ ∼= S−1
P ′ P

′/J̃ (using Nakayama again) and setting C ′ = S−1
P ′ P

′/J̃ we find
a flat lift of C as an algebra.

The syntomic locus of a morphism of schemes is open by definition. Let JB ⊂ B
be an ideal cutting out the set of points in Spec(B) where Spec(B) → Spec(A) is
not syntomic. Denote JP ⊂ P and JP ′ ⊂ P ′ the corresponding ideals. Observe
that P ′ → S−1

P ′ P
′ is a flat ring map which induces an isomorphism P ′/JP ′ =

S−1
P ′ P

′/JP ′S
−1
P ′ P

′ by our assumption on S in the lemma, namely, the assumption
in the lemma is exactly that B/JB = S−1(B/JB). We conclude that our lemma
is a consequence of Lemma 12.2 provided we can show that Bg lifts to an A′-flat
P ′g-module for g ∈ JB . However, the ring map A→ Bg is syntomic and hence lifts
to an A′-flat algebra B′ by Smoothing Ring Maps, Proposition 3.2. Since A′ → P ′g
is smooth, we can lift Pg → Bg to a surjective map P ′g → B′ as before and we get
what we want. �

Lemma 13.2.0DZ8 Let k be a field. Let B be a finite type k-algebra. Let S ⊂ B be a
multiplicative subset ideal such that if Spec(B) → Spec(k) is not smooth at q then
S ∩ q = ∅. Let N be a finite B-module. Then there is a canonical bijection

Exalk(B,N)→ Exalk(S−1B,S−1N)

Proof. This proof is the same as the proof of Lemma 12.4 but easier. We suggest
the reader to skip the proof. The map is given by localization: given 0 → N →
C → B → 0 in Exalk(B,N) we send it to the localization S−1

C C of C with respect
to the inverse image SC ⊂ C of S. Compare with the proof of Lemma 8.7.

The smooth locus of a morphism of schemes is open by definition. Let J ⊂ B
be an ideal cutting out the set of points in Spec(B) where Spec(B) → Spec(A)
is not smooth. Since k → B is of finite presentation the complex NLB/k can be
represented by a complex N−1 → N0 where N i is a finite B-module, see Algebra,
Section 132 and in particular Algebra, Lemma 132.2. As B is Noetherian, this
means that NLB/k is pseudo-coherent. For g ∈ J the k-algebra Bg is smooth
and hence (NLB/k)g = NLBg/k is quasi-isomorphic to a finite projective B-module
sitting in degree 0. Thus ExtiB(NLB/k, N)g = 0 for i ≥ 1 and any B-module N .
Finally, we have

Ext1S−1B(NLS−1B/k, S
−1N) = Ext1B(NLB/k, N)⊗B S−1B = Ext1B(NLB/k, N)

The first equality by More on Algebra, Lemma 87.2 and Algebra, Lemma 132.13.
The second because Ext1B(NLB/k, N) is J-power torsion and elements of S act
invertibly on J-power torsion modules. This concludes the proof by the description
of ExalA(B,N) as Ext1B(NLB/A, N) given just above Lemma 12.4. �

Lemma 13.3.0DZ9 In Example 8.1 let P be a k-algebra. Let S ⊂ P be a multiplicative
subset. If
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(1) k → P is of finite type, and
(2) Spec(P )→ Spec(k) is smooth at all points of V (g) for all g ∈ S.

then the functor between deformation categories of Lemma 8.7

Def P −→ Def S−1P

is smooth and induces an isomorphism on tangent spaces.

Proof. We know that Def P andDef S−1P are deformation categories by Lemma 8.2.
Thus it suffices to check our functor identifies tangent spaces and a correspondence
between liftability, see Formal Deformation Theory, Lemma 20.3. The property on
liftability is proven in Lemma 13.1 and the isomorphism on tangent spaces is the
special case of Lemma 13.2 where N = B. �

14. Deformations of henselizations

0DZA In this section we compare the deformation problem posed by an algebra and its
completion. We first discuss “liftability”.

Lemma 14.1.0DZB Let A′ → A be a surjective map of Noetherian rings with nilpotent
kernel. Let A → B be a finite type flat ring map. Let b ⊂ B be an ideal such that
Spec(B) → Spec(A) is syntomic on the complement of V (b). Let (Bh, bh) be the
henselization of the pair (B, b). Then B has a flat lift to A′ if and only if Bh has
a flat lift to A′.

First proof. This proof is a cheat. Namely, if B has a flat lift B′, then taking the
henselization (B′)h we obtain a flat lift of Bh (compare with the proof of Lemma
8.8). Conversely, suppose that C ′ is an A′-flat lift of (B′)h. Then let c′ ⊂ C ′ be
the inverse image of the ideal bh. Then the completion (C ′)∧ of C ′ with respect to
c′ is a lift of B∧ (details omitted). Hence we see that B has a flat lift by Lemma
12.3. �

Second proof. Choose an A-algebra surjection P = A[x1, . . . , xn] → B. Let p ⊂
P be the inverse image of b. Set P ′ = A′[x1, . . . , xn] and denote p′ ⊂ P ′ the inverse
image of p. (Of course p and p′ do not designate prime ideals here.) We will denote
Ph and (P ′)h the respective henselizations. We will use that taking henselizations
is functorial and that the henselization of a quotient is the corresponding quotient
of the henselization, see More on Algebra, Lemmas 11.12 and 12.7.

Suppose A′ → B′ is a flat lift of A→ B, in other words, A′ → B′ is flat and there
is an A-algebra isomorphism B = B′ ⊗A′ A. Then we can choose an A′-algebra
map P ′ → B′ lifting the given surjection P → B. By Nakayama’s lemma (Algebra,
Lemma 19.1) we find that B′ is a quotient of P ′. In particular, we find that we
can endow B′ with an A′-flat P ′-module structure lifting B as an A-flat P -module.
Conversely, if we can lift B to a P ′-module M ′ flat over A′, then M ′ is a cyclic
module M ′ ∼= P ′/J ′ (using Nakayama again) and setting B′ = P ′/J ′ we find a flat
lift of B as an algebra.

Set C = Bh and c = bC. Suppose that A′ → C ′ is a flat lift of A→ C. Then C ′ is
henselian with respect to the inverse image c′ of c (by More on Algebra, Lemma 11.9
and the fact that the kernel of C ′ → C is nilpotent). We choose an A′-algebra map
P ′ → C ′ lifting the A-algebra map P → C. These maps pass through henselizations
to give surjections Ph → C and (P ′)h → C ′ (for the second again using Nakayama’s
lemma). In particular, we find that we can endow C ′ with an A′-flat (P ′)h-module
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structure lifting C as an A-flat Ph-module. Conversely, if we can lift C to a (P ′)h-
module N ′ flat over A′, then N ′ is a cyclic module N ′ ∼= (P ′)h/J̃ (using Nakayama
again) and setting C ′ = (P ′)h/J̃ we find a flat lift of C as an algebra.

Observe that P ′ → (P ′)h is a flat ring map which induces an isomorphism P ′/p′ =
(P ′)h/p′(P ′)h (More on Algebra, Lemma 12.2). We conclude that our lemma is
a consequence of Lemma 12.2 provided we can show that Bg lifts to an A′-flat
P ′g-module for g ∈ p′. However, the ring map A → Bg is syntomic and hence lifts
to an A′-flat algebra B′ by Smoothing Ring Maps, Proposition 3.2. Since A′ → P ′g
is smooth, we can lift Pg → Bg to a surjective map P ′g → B′ as before and we get
what we want. �

Lemma 14.2.0DZC Let k be a field. Let B be a finite type k-algebra. Let J ⊂ B be an
ideal such that Spec(B) → Spec(k) is smooth on the complement of V (J). Let N
be a finite B-module. Then there is a canonical bijection

Exalk(B,N)→ Exalk(Bh, Nh)

Here (Bh, Jh) is the henselization of (B, J) and Nh = N ⊗B Bh.

Proof. This proof is the same as the proof of Lemma 12.4 but easier. We suggest
the reader to skip the proof. The map is given by henselization: given 0 → N →
C → B → 0 in Exalk(B,N) we send it to the henselization Ch of C with respect
to the inverse image JC ⊂ C of J . Compare with the proof of Lemma 8.8.

Since k → B is of finite presentation the complex NLB/k can be represented by a
complex N−1 → N0 where N i is a finite B-module, see Algebra, Section 132 and
in particular Algebra, Lemma 132.2. As B is Noetherian, this means that NLB/k
is pseudo-coherent. For g ∈ J the k-algebra Bg is smooth and hence (NLB/k)g =
NLBg/k is quasi-isomorphic to a finite projective B-module sitting in degree 0. Thus
ExtiB(NLB/k, N)g = 0 for i ≥ 1 and any B-module N . Finally, we have

Ext1Bh(NLBh/k, N
h) = Ext1Bh(NLB/k ⊗BBh, N ⊗B Bh)

= Ext1B(NLB/k, N)⊗B Bh

= Ext1B(NLB/k, N)

The first equality by More on Algebra, Lemma 32.8 (or rather its analogue for
henselizations of pairs). The second by More on Algebra, Lemma 87.2. The third
because Ext1B(NLB/k, N) is J-power torsion, the map B → Bh is flat and induces
an isomorphism B/J → Bh/JBh (More on Algebra, Lemma 12.2), and More on
Algebra, Lemma 80.3. This concludes the proof by the description of ExalA(B,N)
as Ext1B(NLB/A, N) given just above Lemma 12.4. �

Lemma 14.3.0DZD In Example 8.1 let P be a k-algebra. Let J ⊂ P be an ideal. Denote
(Ph, Jh) the henselization of the pair (P, J). If

(1) k → P is of finite type, and
(2) Spec(P )→ Spec(k) is smooth on the complement of V (J),

then the functor between deformation categories of Lemma 8.8

Def P −→ Def Ph

is smooth and induces an isomorphism on tangent spaces.
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Proof. We know that Def P and Def Ph are deformation categories by Lemma 8.2.
Thus it suffices to check our functor identifies tangent spaces and a correspondence
between liftability, see Formal Deformation Theory, Lemma 20.3. The property on
liftability is proven in Lemma 14.1 and the isomorphism on tangent spaces is the
special case of Lemma 14.2 where N = B. �

15. Application to isolated singularities

0DZE We apply the discussion above to study the deformation theory of a finite type
algebra with finitely many singular points.

Lemma 15.1.0DZF In Example 8.1 let P be a k-algebra. Assume that k → P is of
finite type and that Spec(P ) → Spec(k) is smooth except at the maximal ideals
m1, . . . ,mn of P . Let Pmi

, Phmi
, P∧mi

be the local ring, henselization, completion.
Then the maps of deformation categories

Def P →
∏
Def Pmi

→
∏
Def Ph

mi
→

∏
Def P∧mi

are smooth and induce isomorphisms on their finite dimensional tangent spaces.

Proof. The tangent space is finite dimensional by Lemma 8.5. The functors be-
tween the categories are constructed in Lemmas 8.7, 8.8, and 8.10 (we omit some
verifications of the form: the completion of the henselization is the completion).

Set J = m1 ∩ . . .∩mn and apply Lemma 12.5 to get that Def P → Def P∧ is smooth
and induces an isomorphism on tangent spaces where P∧ is the J-adic completion
of P . However, since P∧ =

∏
P∧mi

we see that the map Def P →
∏
Def P∧mi

is smooth
and induces an isomorphism on tangent spaces.

Let (Ph, Jh) be the henselization of the pair (P, J). Then Ph =
∏
Phmi

(look at
idempotents and use More on Algebra, Lemma 11.6). Hence we can apply Lemma
14.3 to conclude as in the case of completion.

To get the final case it suffices to show that Def Pmi
→ Def P∧mi

is smooth and
induce isomorphisms on tangent spaces for each i separately. To do this, we may
replace P by a principal localization whose only singular point is a maximal ideal
m (corresponding to mi in the original P ). Then we can apply Lemma 13.3 with
multiplicative subset S = P \m to conclude. Minor details omitted. �

16. Unobstructed deformation problems

0DZG Let p : F → CΛ be a category cofibred in groupoids. Recall that we say F is smooth
or unobstructed if p is smooth. This means that given a surjection ϕ : A′ → A in
CΛ and x ∈ Ob(F(A)) there exists a morphism f : x′ → x in F with p(f) = ϕ. See
Formal Deformation Theory, Section 9. In this section we give some geometrically
meaningful examples.

Lemma 16.1.0DZH In Example 8.1 let P be a local complete intersection over k (Al-
gebra, Definition 133.1). Then Def P is unobstructed.

Proof. Let (A,Q) → (k, P ) be an object of Def P . Then we see that A → Q is a
syntomic ring map by Algebra, Definition 134.1. Hence for any surjection A′ → A in
CΛ we see that there is a morphism (A′, Q′)→ (A,Q) lifting A′ → A by Smoothing
Ring Maps, Proposition 3.2. This proves the lemma. �
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Lemma 16.2.0DZN In Situation 9.9 if U12 → Spec(k) is smooth, then the morphism

Def X −→ Def U1
×Def U2

= Def P1
×Def P2

is smooth. If in addition U1 is a local complete intersection over k, then

Def X −→ Def U2
= Def P2

is smooth.

Proof. The equality signs hold by Lemma 9.7. Let us think of CΛ as a deformation
category over CΛ as in Formal Deformation Theory, Section 9. Then

Def P1
×Def P2

= Def P1
×CΛ Def P2

,

see Formal Deformation Theory, Remarks 5.2 (14). Using Lemma 9.10 the first
statement is that the functor

Def P1
×Def P12

Def P2
−→ Def P1

×CΛ Def P2

is smooth. This follows from Formal Deformation Theory, Lemma 20.2 as long as
we can show that TDef P12

= (0). This vanishing follows from Lemma 8.4 as P12

is smooth over k. For the second statement it suffices to show that Def P1
→ CΛ is

smooth, see Formal Deformation Theory, Lemma 8.7. In other words, we have to
show Def P1

is unobstructed, which is Lemma 16.1. �

Lemma 16.3.0DZP In Example 9.1 let X be a scheme over k. Assume
(1) X is separated, finite type over k and dim(X) ≤ 1,
(2) X → Spec(k) is smooth except at the closed points p1, . . . , pn ∈ X.

Let OX,p1 , OhX,p1
, O∧X,p1

be the local ring, henselization, completion. Consider the
maps of deformation categories

Def X −→
∏
Def OX,pi

−→
∏
Def Oh

X,pi

−→
∏
Def O∧X,pi

The first arrow is smooth and the second and third arrows are smooth and induce
isomorphisms on tangent spaces.

Proof. Choose an affine open U2 ⊂ X containing p1, . . . , pn and the generic point
of every irreducible component of X. This is possible by Varieties, Lemma 42.3 and
Properties, Lemma 29.5. Then X \ U2 is finite and we can choose an affine open
U1 ⊂ X \ {p1, . . . , pn} such that X = U1 ∪ U2. Set U12 = U1 ∩ U2. Then U1 and
U12 are smooth affine schemes over k. We conclude that

Def X −→ Def U2

is smooth by Lemma 16.2. Applying Lemmas 9.7 and 15.1 we win. �

Lemma 16.4.0DZQ In Example 9.1 let X be a scheme over k. Assume
(1) X is separated, finite type over k and dim(X) ≤ 1,
(2) X is a local complete intersection over k, and
(3) X → Spec(k) is smooth except at finitely many points.

Then Def X is unobstructed.

Proof. Let p1, . . . , pn ∈ X be the points where X → Spec(k) isn’t smooth. Choose
an affine open U2 ⊂ X containing p1, . . . , pn and the generic point of every irre-
ducible component of X. This is possible by Varieties, Lemma 42.3 and Prop-
erties, Lemma 29.5. Then X \ U2 is finite and we can choose an affine open
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U1 ⊂ X \ {p1, . . . , pn} such that X = U1 ∪ U2. Set U12 = U1 ∩ U2. Then U1

and U12 are smooth affine schemes over k. We conclude that

Def X −→ Def U2

is smooth by Lemma 16.2. Applying Lemmas 9.7 and 16.1 we win. �

17. Smoothings

0E7S Suppose given a finite type scheme or algebraic space X over a field k. It is often
useful to find a flat morphism of finite type Y → Spec(k[[t]]) whose generic fibre
is smooth and whose special fibre is isomorphic to X. Such a thing is called a
smoothing ofX. In this section we will find a smoothing for 1-dimensional separated
X which have isolated local complete intersection singularities.

Lemma 17.1.0E7T Let k be a field. Set S = Spec(k[[t]]) and Sn = Spec(k[t]/(tn)).
Let Y → S be a proper, flat morphism of schemes whose special fibre X is Cohen-
Macaulay and equidimensional of dimension d. Denote Xn = Y ×S Sn. If for some
n ≥ 1 the dthe Fitting ideal of ΩXn/Sn

contains tn−1, then the generic fibre of
Y → S is smooth.

Proof. By More on Morphisms, Lemma 20.7 we see that Y → S is a Cohen-
Macaulay morphism. By Morphisms, Lemma 28.4 we see that Y → S has relative
dimension d. By Divisors, Lemma 10.3 the dth Fitting ideal I ⊂ OY of ΩY/S cuts
out the singular locus of the morphism Y → S. In other words, V (I) ⊂ Y is the
closed subset of points where Y → S is not smooth. By Divisors, Lemma 10.1
formation of this Fitting ideal commutes with base change. By assumption we see
that tn−1 is a section of I + tnOY . Thus for every x ∈ X = V (t) ⊂ Y we conclude
that tn−1 ∈ Ix where Ix is the stalk at x. This implies that V (I) ⊂ V (t) in an
open neighbourhood of X in Y . Since Y → S is proper, this implies V (I) ⊂ V (t)
as desired. �

Lemma 17.2.0E7U Let k be a field. Let 1 ≤ c ≤ n be integers. Let f1, . . . , fc ∈
k[x1, . . . xn] be elements. Let aij, 0 ≤ i ≤ n, 1 ≤ j ≤ c be variables. Consider

gj = fj + a0j + a1jx1 + . . .+ anjxn ∈ k[aij ][x1, . . . , xn]

Denote Y ⊂ A
n+c(n+1)
k the closed subscheme cut out by g1, . . . , gc. Denote π : Y →

A
c(n+1)
k the projection onto the affine space with variables aij. Then there is a

nonempty Zariski open of Ac(n+1)
k over which π is smooth.

Proof. Recall that the set of points where π is smooth is open. Thus the com-
plement, i.e., the singular locus, is closed. By Chevalley’s theorem (in the form of
Morphisms, Lemma 21.2) the image of the singular locus is constructible. Hence
if the generic point of Ac(n+1)

k is not in the image of the singular locus, then the
lemma follows (by Topology, Lemma 15.14 for example). Thus we have to show
there is no point y ∈ Y where π is not smooth mapping to the generic point of
A
c(n+1)
k . Consider the matrix of partial derivatives

(
∂gj
∂xi

) = (
∂fj
∂xi

+ aij)

The image of this matrix in κ(y) must have rank < c since otherwise π would be
smooth at y, see discussion in Smoothing Ring Maps, Section 2. Thus we can find
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λ1, . . . , λc ∈ κ(y) not all zero such that the vector (λ1, . . . , λc) is in the kernel of
this matrix. After renumbering we may assume λ1 6= 0. Dividing by λ1 we may
assume our vector has the form (1, λ2, . . . , λc). Then we obtain

ai1 = − ∂fj
∂x1
−
∑

j=2,...,c
λj(

∂fj
∂xi

+ aij)

in κ(y) for i = 1, . . . , n. Moreover, since y ∈ Y we also have

a0j = −fj − a1jx1 − . . .− anjxn
in κ(y). This means that the subfield of κ(y) generated by aij is contained in the
subfield of κ(y) generated by the images of x1, . . . , xn, λ2, . . . , λc, and aij except for
ai1 and a0j . We count and we see that the transcendence degree of this is at most
c(n+ 1)− 1. Hence y cannot map to the generic point as desired. �

Lemma 17.3.0E7V Let k be a field. Let A be a global complete interesection over k.
There exists a flat finite type ring map k[[t]]→ B with B/tB ∼= A such that B[1/t]
is smooth over k((t)).

Proof. Write A = k[x1, . . . , xn]/(f1, . . . , fc) as in Algebra, Definition 133.1. We
are going to choose aij ∈ (t) ⊂ k[[t]] and set

gj = fj + a0j + a1jx1 + . . .+ anjxn ∈ k[[t]][x1, . . . , xn]

After doing this we take B = k[[t]][x1, . . . , xn]/(g1, . . . , gc). We claim that k[[t]]→
B is flat at every prime ideal lying over (t). Namely, the elements f1, . . . , fc form
a regular sequence in the local ring at any prime ideal p of k[x1, . . . , xn] containing
f1, . . . , fc (Algebra, Lemma 133.4). Thus g1, . . . , gc is locally a lift of a regular
sequence and we can apply Algebra, Lemma 98.3. Flatness at primes lying over
(0) ⊂ k[[t]] is automatic because k((t)) = k[[t]](0) is a field. Thus B is flat over
k[[t]].

All that remains is to show that for suitable choices of aij the generic fibre B(0) is
smooth over k((t)). For this we have to show that we can choose our aij so that
the induced morphism

(aij) : Spec(k[[t]]) −→ A
c(n+1)
k

maps into the nonempty Zariski open of Lemma 17.2. This is clear because there
is no nonzero polynomial in the aij which vanishes on (t)⊕c(n+1). (We leave this as
an exercise to the reader.) �

Lemma 17.4.0E7W Let k be a field. Let A be a finite dimensional k-algebra which is a
local complete intersection over k. Then there is a finite flat k[[t]]-algebra B with
B/tB ∼= A and B[1/t] étale over k((t)).

Proof. Since A is Artinian (Algebra, Lemma 52.2), we can write A as a product
of local Artinian rings (Algebra, Lemma 52.6). Thus it suffices to prove the lemma
if A is local (this uses that being a local complete intersection is preserved under
taking principal localizations, see Algebra, Lemma 133.2). In this case A is a global
complete intersection. Consider the algebra B constructed in Lemma 17.3. Then
k[[t]]→ B is quasi-finite at the unique prime of B lying over (t) (Algebra, Definition
121.3). Observe that k[[t]] is a henselian local ring (Algebra, Lemma 148.9). Thus
B = B′ × C where B′ is finite over k[[t]] and C has no prime lying over (t), see
Algebra, Lemma 148.3. Then B′ is the ring we are looking for (recall that étale is
the same thing as smooth of relative dimension 0). �
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Lemma 17.5.0E7X Let k be a field. Let A be a k-algebra. Assume
(1) A is a local ring essentially of finite type over k,
(2) A is a complete intersection over k (Algebra, Definition 133.5).

Set d = dim(A) + trdegk(κ) where κ is the residue field of A. Then there exists an
integer n and a flat, essentially of finite type ring map k[[t]] → B with B/tB ∼= A
such that tn is in the dth Fitting ideal of ΩB/k[[t]].

Proof. By Algebra, Lemma 133.7 we can write A as the localization at a prime p
of a global complete intersection P over k. Observe that dim(P ) = d by Algebra,
Lemma 115.3. By Lemma 17.3 we can find a flat, finite type ring map k[[t]] → Q
such that P ∼= Q/tQ and such that k((t)) → Q[1/t] is smooth. It follows from
the construction of Q in the lemma that k[[t]] → Q is a relative global complete
intersection of relative dimension d; alternatively, Algebra, Lemma 134.15 tells us
thatQ or a suitable principal localization ofQ is such a global complete intersection.
Hence by Divisors, Lemma 10.3 the dth Fitting ideal I ⊂ Q of ΩQ/k[[t]] cuts out
the singular locus of Spec(Q) → Spec(k[[t]]). Thus tn ∈ I for some n. Let q ⊂ Q
be the inverse image of p. Set B = Qq. The lemma is proved. �

Lemma 17.6.0E7Y Let X be a scheme over a field k. Assume
(1) X is proper over k,
(2) X is a local complete intersection over k,
(3) X has dimension ≤ 1, and
(4) X → Spec(k) is smooth except at finitely many points.

Then there exists a flat projective morphism Y → Spec(k[[t]]) whose generic fibre
is smooth and whose special fibre is isomorphic to X.

Proof. Observe that X is Cohen-Macaulay, see Algebra, Lemma 133.3. Thus
X = X ′ q X ′′ with dim(X ′) = 0 and X ′′ equidimensional of dimension 1, see
Morphisms, Lemma 28.4. Since X ′ is finite over k (Varieties, Lemma 20.2) we can
find Y ′ → Spec(k[[t]]) with special fibre X ′ and generic fibre smooth by Lemma
17.4. Thus it suffices to prove the lemma for X ′′. After replacing X by X ′′ we have
X is Cohen-Macaulay and equidimensional of dimension 1.

We are going to use deformation theory for the situation Λ = k → k. Let
p1, . . . , pr ∈ X be the closed singular points of X, i.e., the points where X →
Spec(k) isn’t smooth. For each i we pick an integer ni and a flat, essentially of
finite type ring map

k[[t]] −→ Bi

with Bi/tBi ∼= OX,pi such that tni is in the 1st Fitting ideal of ΩBi/k[[t]]. This
is possible by Lemma 17.5. Observe that the system (Bi/t

nBi) defines a formal
object of Def OX,pi

over k[[t]]. By Lemma 16.3 the map

Def X −→
∏

i=1,...,r
Def OX,pi

is a smooth map between deformation categories. Hence by Formal Deformation
Theory, Lemma 8.8 there exists a formal object (Xn) in Def X mapping to the formal
object

∏
i(Bi/t

n) by the arrow above. By More on Morphisms of Spaces, Lemma
42.4 there exists a projective scheme Y over k[[t]] and compatible isomorphisms
Y ×Spec(k[[t]]) Spec(k[t]/(tn)) ∼= Xn. By More on Morphisms, Lemma 12.4 we see
that Y → Spec(k[[t]]) is flat. Since X is Cohen-Macaulay and equidimensional
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of dimension 1 we may apply Lemma 17.1 to check Y has smooth generic fibre3.
Choose n strictly larger than the maximum of the integers ni found above. It we
can show tn−1 is in the first Fitting ideal of ΩXn/Sn

with Sn = Spec(k[t]/(tn)),
then the proof is done. To do this it suffices to prove this is true in each of the
local rings of Xn at closed points p. However, if p corresponds to a smooth point
for X → Spec(k), then ΩXn/Sn,p is free of rank 1 and the first Fitting ideal is equal
to the local ring. If p = pi for some i, then

ΩXn/Sn,pi = Ω(Bi/tnBi)/(k[t]/(tn)) = ΩBi/k[[t]]/t
nΩBi/k[[t]]

Since taking Fitting ideals commutes with base change (with already used this but
in this algebraic setting it follows from More on Algebra, Lemma 8.4), and since
n − 1 ≥ ni we see that tn−1 is in the Fitting ideal of this module over Bi/tnBi as
desired. �

Lemma 17.7.0E7Z Let k be a field and let X be a scheme over k. Assume
(1) X is separated, finite type over k and dim(X) ≤ 1,
(2) X is a local complete intersection over k, and
(3) X → Spec(k) is smooth except at finitely many points.

Then there exists a flat, separated, finite type morphism Y → Spec(k[[t]]) whose
generic fibre is smooth and whose special fibre is isomorphic to X.

Proof. If X is reduced, then we can choose an embedding X ⊂ X as in Varieties,
Lemma 42.6. Writing X = X \ {x1, . . . , xn} we see that OX,xi

is a discrete valua-
tion ring and hence in particular a local complete intersection (Algebra, Definition
133.5). Thus X is a local complete intersection over k because this holds over
the open X and at the points xi by Algebra, Lemma 133.7. Thus we may apply
Lemma 17.6 to find a projective flat morphism Y → Spec(k[[t]]) whose generic fi-
bre is smooth and whose special fibre is X. Then we remove x1, . . . , xn from Y to
obtain Y .

In the general case, write X = X ′ qX ′′ where with dim(X ′) = 0 and X ′′ equidi-
mensional of dimension 1. Then X ′′ is reduced and the first paragraph applies to
it. On the other hand, X ′ can be dealt with as in the proof of Lemma 17.6. Some
details omitted. �
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