
EXAMPLES OF STACKS

04SL

Contents

1. Introduction 1
2. Notation 2
3. Examples of stacks 2
4. Quasi-coherent sheaves 2
5. The stack of finitely generated quasi-coherent sheaves 3
6. Finite étale covers 4
7. Algebraic spaces 5
8. The stack of finite type algebraic spaces 6
9. Examples of stacks in groupoids 8
10. The stack associated to a sheaf 8
11. The stack in groupoids of finitely generated quasi-coherent sheaves 8
12. The stack in groupoids of finite type algebraic spaces 8
13. Quotient stacks 9
14. Classifying torsors 9
14.1. Torsors for a sheaf of groups 9
14.3. Variant on torsors for a sheaf 10
14.5. Principal homogeneous spaces 11
14.7. Variant on principal homogeneous spaces 11
14.8. Torsors in fppf topology 12
14.11. Variant on torsors in fppf topology 13
15. Quotients by group actions 13
16. The Picard stack 17
17. Examples of inertia stacks 17
18. Finite Hilbert stacks 18
19. Other chapters 20
References 21

1. Introduction

04SM This is a discussion of examples of stacks in algebraic geometry. Some of them
are algebraic stacks, some are not. We will discuss which are algebraic stacks in a
later chapter. This means that in this chapter we mainly worry about the descent
conditions. See [Vis04] for example.
Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 2 for an explanation.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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2. Notation

04SN In this chapter we fix a suitable big fppf site Schfppf as in Topologies, Definition
7.6. So, if not explicitly stated otherwise all schemes will be objects of Schfppf . We
will always work relative to a base S contained in Schfppf . And we will then work
with the big fppf site (Sch/S)fppf , see Topologies, Definition 7.8. The absolute
case can be recovered by taking S = Spec(Z).

3. Examples of stacks

04SQ We first give some important examples of stacks over (Sch/S)fppf .

4. Quasi-coherent sheaves

03YL We define a category QCoh as follows:
(1) An object of QCoh is a pair (X,F), where X/S is an object of (Sch/S)fppf ,

and F is a quasi-coherent OX -module, and
(2) a morphism (f, φ) : (Y,G) → (X,F) is a pair consisting of a morphism

f : Y → X of schemes over S and an f -map (see Sheaves, Section 26)
φ : F → G.

(3) The composition of morphisms

(Z,H) (g,ψ)−−−→ (Y,G) (f,ϕ)−−−→ (X,F)
is (f ◦ g, ψ ◦ ϕ) where ψ ◦ ϕ is the composition of f -maps.

Thus QCoh is a category and
p : QCoh → (Sch/S)fppf , (X,F) 7→ X

is a functor. Note that the fibre category of QCoh over a scheme X is the opposite
of the category QCoh(OX) of quasi-coherent OX -modules. We remark for later use
that given (X,F), (Y,G) ∈ Ob(QCoh) we have

(4.0.1)04U2 MorQCoh((Y,G), (X,F)) =
∐

f∈MorS(Y,X)
MorQCoh(OY )(f∗F ,G)

See the discussion on f -maps of modules in Sheaves, Section 26.
The category QCoh is not a stack over (Sch/S)fppf because its collection of objects
is a proper class. On the other hand we will see that it does satisfy all the axioms
of a stack. We will get around the set theoretical issue in Section 5.

Lemma 4.1.04U3 A morphism (f, φ) : (Y,G) → (X,F) of QCoh is strongly cartesian
if and only if the map φ induces an isomorphism f∗F → G.

Proof. Let (X,F) ∈ Ob(QCoh). Let f : Y → X be a morphism of (Sch/S)fppf .
Note that there is a canonical f -map c : F → f∗F and hence we get a morphism
(f, c) : (Y, f∗F) → (X,F). We claim that (f, c) is strongly cartesian. Namely, for
any object (Z,H) of QCoh we have

MorQCoh((Z,H), (Y, f∗F)) =
∐

g∈MorS(Z,Y )
MorQCoh(OZ )(g∗f∗F ,H)

=
∐

g∈MorS(Z,Y )
MorQCoh(OZ )((f ◦ g)∗F ,H)

= MorQCoh((Z,H), (X,F)) ×MorS(Z,X) MorS(Z, Y )
where we have used Equation (4.0.1) twice. This proves that the condition of
Categories, Definition 33.1 holds for (f, c), and hence our claim is true. Now by

https://stacks.math.columbia.edu/tag/04U3
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Categories, Lemma 33.2 we see that isomorphisms are strongly cartesian and com-
positions of strongly cartesian morphisms are strongly cartesian which proves the
“if” part of the lemma. For the converse, note that given (X,F) and f : Y → X,
if there exists a strongly cartesian morphism lifting f with target (X,F) then it
has to be isomorphic to (f, c) (see discussion following Categories, Definition 33.1).
Hence the "only if" part of the lemma holds. □

Lemma 4.2.03YM The functor p : QCoh → (Sch/S)fppf satisfies conditions (1), (2)
and (3) of Stacks, Definition 4.1.
Proof. It is clear from Lemma 4.1 that QCoh is a fibred category over (Sch/S)fppf .
Given covering U = {Xi → X}i∈I of (Sch/S)fppf the functor

QCoh(OX) −→ DD(U)
is fully faithful and essentially surjective, see Descent, Proposition 5.2. Hence
Stacks, Lemma 4.2 applies to show that QCoh satisfies all the axioms of a stack. □

5. The stack of finitely generated quasi-coherent sheaves

0404 It turns out that we can get a stack of quasi-coherent sheaves if we only consider
finite type quasi-coherent modules. Let us denote

pfg : QCohfg → (Sch/S)fppf
the full subcategory of QCoh over (Sch/S)fppf consisting of pairs (T,F) such that
F is a quasi-coherent OT -module of finite type.
Lemma 5.1.04U4 The functor pfg : QCohfg → (Sch/S)fppf satisfies conditions (1),
(2) and (3) of Stacks, Definition 4.1.
Proof. We will verify assumptions (1), (2), (3) of Stacks, Lemma 4.3 to prove this.
By Lemma 4.1 a morphism (Y,G) → (X,F) is strongly cartesian if and only if
it induces an isomorphism f∗F → G. By Modules, Lemma 9.2 the pullback of a
finite type OX -module is of finite type. Hence assumption (1) of Stacks, Lemma
4.3 holds. Assumption (2) holds trivially. Finally, to prove assumption (3) we
have to show: If F is a quasi-coherent OX -module and {fi : Xi → X} is an fppf
covering such that each f∗

i F is of finite type, then F is of finite type. Considering
the restriction of F to an affine open of X this reduces to the following algebra
statement: Suppose that R → S is a finitely presented, faithfully flat ring map and
M an R-module. If M ⊗R S is a finitely generated S-module, then M is a finitely
generated R-module. A stronger form of the algebra fact can be found in Algebra,
Lemma 83.2. □

Lemma 5.2.04U5 Let (X,OX) be a ringed space.
(1) The category of finite type OX-modules has a set of isomorphism classes.
(2) The category of finite type quasi-coherent OX-modules has a set of isomor-

phism classes.
Proof. Part (2) follows from part (1) as the category in (2) is a full subcategory
of the category in (1). Consider any open covering U : X =

⋃
i∈I Ui. Denote

ji : Ui → X the inclusion maps. Consider any map r : I → N. If F is an OX -
module whose restriction to Ui is generated by at most r(i) sections from F(Ui),
then F is a quotient of the sheaf

HU,r =
⊕

i∈I
ji,!O⊕r(i)

Ui

https://stacks.math.columbia.edu/tag/03YM
https://stacks.math.columbia.edu/tag/04U4
https://stacks.math.columbia.edu/tag/04U5


EXAMPLES OF STACKS 4

By definition, if F is of finite type, then there exists some open covering with U
whose index set is I = X such that this condition is true. Hence it suffices to show
that there is a set of possible choices for U (obvious), a set of possible choices for
r : I → N (obvious), and a set of possible quotient modules of HU,r for each U
and r. In other words, it suffices to show that given an OX -module H there is at
most a set of isomorphism classes of quotients. This last assertion becomes obvious
by thinking of the kernels of a quotient map H → F as being parametrized by a
subset of the power set of

∏
U⊂X open H(U). □

Lemma 5.3.04U6 There exists a subcategory QCohfg,small ⊂ QCohfg with the following
properties:

(1) the inclusion functor QCohfg,small → QCohfg is fully faithful and essentially
surjective, and

(2) the functor pfg,small : QCohfg,small → (Sch/S)fppf turns QCohfg,small into
a stack over (Sch/S)fppf .

Proof. We have seen in Lemmas 5.1 and 5.2 that pfg : QCohfg → (Sch/S)fppf
satisfies (1), (2) and (3) of Stacks, Definition 4.1 as well as the additional condition
(4) of Stacks, Remark 4.9. Hence we obtain QCohfg,small from the discussion in
that remark. □

We will often perform the replacement

QCohfg ⇝ QCohfg,small
without further remarking on it, and by abuse of notation we will simply denote
QCohfg this replacement.

Remark 5.4.04U7 Note that the whole discussion in this section works if we want
to consider those quasi-coherent sheaves which are locally generated by at most κ
sections, for some infinite cardinal κ, e.g., κ = ℵ0.

6. Finite étale covers

0BLY We define a category FÉt as follows:
(1) An object of FÉt is a finite étale morphism Y → X of schemes (by our

conventions this means a finite étale morphism in (Sch/S)fppf ),
(2) A morphism (b, a) : (Y → X) → (Y ′ → X ′) of FÉt is a commutative

diagram
Y

��

b
// Y ′

��
X

a
// X ′

in the category of schemes.
Thus FÉt is a category and

p : FÉt → (Sch/S)fppf , (Y → X) 7→ X

is a functor. Note that the fibre category of FÉt over a scheme X is just the category
FÉtX studied in Fundamental Groups, Section 5.

https://stacks.math.columbia.edu/tag/04U6
https://stacks.math.columbia.edu/tag/04U7
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Lemma 6.1.0BLZ The functor

p : FÉt −→ (Sch/S)fppf
defines a stack over (Sch/S)fppf .

Proof. Fppf descent for finite étale morphisms follows from Descent, Lemmas 37.1,
23.23, and 23.29. Details omitted. □

7. Algebraic spaces

04SP We define a category Spaces as follows:
(1) An object of Spaces is a morphism X → U of algebraic spaces over S, where

U is representable by an object of (Sch/S)fppf , and
(2) a morphism (f, g) : (X → U) → (Y → V ) is a commutative diagram

X

��

f
// Y

��
U

g // V

of morphisms of algebraic spaces over S.
Thus Spaces is a category and

p : Spaces → (Sch/S)fppf , (X → U) 7→ U

is a functor. Note that the fibre category of Spaces over a scheme U is just the
category Spaces/U of algebraic spaces over U (see Topologies on Spaces, Section
2). Hence we sometimes think of an object of Spaces as a pair X/U consisting of
a scheme U and an algebraic space X over U . We remark for later use that given
(X/U), (Y/V ) ∈ Ob(Spaces) we have

(7.0.1)04U8 MorSpaces(X/U, Y/V ) =
∐

g∈MorS(U,V )
MorSpaces/U (X,U ×g,V Y )

The category Spaces is almost, but not quite a stack over (Sch/S)fppf . The problem
is a set theoretical issue as we will explain below.

Lemma 7.1.04U9 A morphism (f, g) : X/U → Y/V of Spaces is strongly cartesian if
and only if the map f induces an isomorphism X → U ×g,V Y .

Proof. Let Y/V ∈ Ob(Spaces). Let g : U → V be a morphism of (Sch/S)fppf .
Note that the projection p : U ×g,V Y → Y gives rise a morphism (p, g) : U ×g,V

Y/U → Y/V of Spaces. We claim that (p, g) is strongly cartesian. Namely, for any
object Z/W of Spaces we have

MorSpaces(Z/W,U ×g,V Y/U) =
∐

h∈MorS(W,U)
MorSpaces/W (Z,W ×h,U U ×g,V Y )

=
∐

h∈MorS(W,U)
MorSpaces/W (Z,W ×g◦h,V Y )

= MorSpaces(Z/W, Y/V ) ×MorS(W,V ) MorS(W,U)

where we have used Equation (7.0.1) twice. This proves that the condition of
Categories, Definition 33.1 holds for (p, g), and hence our claim is true. Now by
Categories, Lemma 33.2 we see that isomorphisms are strongly cartesian and com-
positions of strongly cartesian morphisms are strongly cartesian which proves the
“if” part of the lemma. For the converse, note that given Y/V and g : U → V , if

https://stacks.math.columbia.edu/tag/0BLZ
https://stacks.math.columbia.edu/tag/04U9
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there exists a strongly cartesian morphism lifting g with target Y/V then it has to
be isomorphic to (p, g) (see discussion following Categories, Definition 33.1). Hence
the "only if" part of the lemma holds. □

Lemma 7.2.04UA The functor p : Spaces → (Sch/S)fppf satisfies conditions (1) and
(2) of Stacks, Definition 4.1.

Proof. It is follows from Lemma 7.1 that Spaces is a fibred category over (Sch/S)fppf
which proves (1). Suppose that {Ui → U}i∈I is a covering of (Sch/S)fppf . Sup-
pose that X,Y are algebraic spaces over U . Finally, suppose that φi : XUi

→ YUi

are morphisms of Spaces/Ui such that φi and φj restrict to the same morphisms
XUi×UUj → YUi×UUj of algebraic spaces over Ui ×U Uj . To prove (2) we have to
show that there exists a unique morphism φ : X → Y over U whose base change
to Ui is equal to φi. As a morphism from X to Y is the same thing as a map of
sheaves this follows directly from Sites, Lemma 26.1. □

Remark 7.3.04UB Ignoring set theoretical difficulties1 Spaces also satisfies descent for
objects and hence is a stack. Namely, we have to show that given

(1) an fppf covering {Ui → U}i∈I ,
(2) for each i ∈ I an algebraic space Xi/Ui, and
(3) for each i, j ∈ I an isomorphism φij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui ×U Uj satisfying the cocycle condition over Ui ×U Uj ×U Uk,
there exists an algebraic space X/U and isomorphisms XUi

∼= Xi over Ui recovering
the isomorphisms φij . First, note that by Sites, Lemma 26.4 there exists a sheaf
X on (Sch/U)fppf recovering the Xi and the φij . Then by Bootstrap, Lemma 11.1
we see that X is an algebraic space (if we ignore the set theoretic condition of that
lemma). We will use this argument in the next section to show that if we consider
only algebraic spaces of finite type, then we obtain a stack.

8. The stack of finite type algebraic spaces

04UC It turns out that we can get a stack of spaces if we only consider spaces of finite
type. Let us denote

pft : Spacesft → (Sch/S)fppf
the full subcategory of Spaces over (Sch/S)fppf consisting of pairs X/U such that
X → U is a morphism of finite type.

Lemma 8.1.04UD The functor pft : Spacesft → (Sch/S)fppf satisfies the conditions
(1), (2) and (3) of Stacks, Definition 4.1.

Proof. We are going to write this out in ridiculous detail (which may make it hard
to see what is going on).
We have seen in Lemma 7.1 that a morphism (f, g) : X/U → Y/V of Spaces is
strongly cartesian if the induced morphism f : X → U ×V Y is an isomorphism.
Note that if Y → V is of finite type then also U ×V Y → U is of finite type, see
Morphisms of Spaces, Lemma 23.3. So if (f, g) : X/U → Y/V of Spaces is strongly
cartesian in Spaces and Y/V is an object of Spacesft then automatically also X/U

1The difficulty is not that Spaces is a proper class, since by our definition of an algebraic space
over S there is only a set worth of isomorphism classes of algebraic spaces over S. It is rather
that arbitrary disjoint unions of algebraic spaces may end up being too large, hence lie outside of
our chosen “partial universe” of sets.

https://stacks.math.columbia.edu/tag/04UA
https://stacks.math.columbia.edu/tag/04UB
https://stacks.math.columbia.edu/tag/04UD
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is an object of Spacesft, and of course (f, g) is also strongly cartesian in Spacesft.
In this way we conclude that Spacesft is a fibred category over (Sch/S)fppf . This
proves (1).
The argument above also shows that the inclusion functor Spacesft → Spaces trans-
forms strongly cartesian morphisms into strongly cartesian morphisms. In other
words Spacesft → Spaces is a 1-morphism of fibred categories over (Sch/S)fppf .
Let U ∈ Ob((Sch/S)fppf ). Let X,Y be algebraic spaces of finite type over U . By
Stacks, Lemma 2.3 we obtain a map of presheaves

MorSpacesft
(X,Y ) −→ MorSpaces(X,Y )

which is an isomorphism as Spacesft is a full subcategory of Spaces. Hence the left
hand side is a sheaf, because in Lemma 7.2 we showed the right hand side is a sheaf.
This proves (2).
To prove condition (3) of Stacks, Definition 4.1 we have to show the following:
Given

(1) a covering {Ui → U}i∈I of (Sch/S)fppf ,
(2) for each i ∈ I an algebraic space Xi of finite type over Ui, and
(3) for each i, j ∈ I an isomorphism φij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui ×U Uj satisfying the cocycle condition over Ui ×U Uj ×U Uk,
there exists an algebraic space X of finite type over U and isomorphisms XUi

∼= Xi

over Ui recovering the isomorphisms φij . This follows from Bootstrap, Lemma 11.3
part (2). By Descent on Spaces, Lemma 11.10 we see that X → U is of finite type
which concludes the proof. □

Lemma 8.2.04UE There exists a subcategory Spacesft,small ⊂ Spacesft with the follow-
ing properties:

(1) the inclusion functor Spacesft,small → Spacesft is fully faithful and essen-
tially surjective, and

(2) the functor pft,small : Spacesft,small → (Sch/S)fppf turns Spacesft,small
into a stack over (Sch/S)fppf .

Proof. We have seen in Lemmas 8.1 that pft : Spacesft → (Sch/S)fppf satisfies
(1), (2) and (3) of Stacks, Definition 4.1. The additional condition (4) of Stacks,
Remark 4.9 holds because every algebraic space X over S is of the form U/R for
U,R ∈ Ob((Sch/S)fppf ), see Spaces, Lemma 9.1. Thus there is only a set worth of
isomorphism classes of objects. Hence we obtain Spacesft,small from the discussion
in that remark. □

We will often perform the replacement
Spacesft ⇝ Spacesft,small

without further remarking on it, and by abuse of notation we will simply denote
Spacesft this replacement.

Remark 8.3.04UF Note that the whole discussion in this section works if we want to
consider those algebraic spaces X/U which are locally of finite type such that the
inverse image in X of an affine open of U can be covered by countably many affines.
If needed we can also introduce the notion of a morphism of κ-type (meaning some
bound on the number of generators of ring extensions and some bound on the

https://stacks.math.columbia.edu/tag/04UE
https://stacks.math.columbia.edu/tag/04UF
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cardinality of the affines over a given affine in the base) where κ is a cardinal, and
then we can produce a stack

Spacesκ −→ (Sch/S)fppf

in exactly the same manner as above (provided we make sure that Sch is large
enough depending on κ).

9. Examples of stacks in groupoids

04UG The examples above are examples of stacks which are not stacks in groupoids. In
the rest of this chapter we give algebraic geometric examples of stacks in groupoids.

10. The stack associated to a sheaf

0305 Let F : (Sch/S)oppfppf → Sets be a presheaf. We obtain a category fibred in sets

pF : SF → (Sch/S)fppf ,

see Categories, Example 38.5. This is a stack in sets if and only if F is a sheaf, see
Stacks, Lemma 6.3.

11. The stack in groupoids of finitely generated quasi-coherent sheaves

03YN Let p : QCohfg → (Sch/S)fppf be the stack introduced in Section 5 (using the
abuse of notation introduced there). We can turn this into a stack in groupoids
p′ : QCoh′

fg → (Sch/S)fppf by the procedure of Categories, Lemma 35.3, see Stacks,
Lemma 5.3. In this particular case this simply means QCoh′

fg has the same objects
as QCohfg but the morphisms are pairs (f, g) : (U,F) → (U ′,F ′) where g is an
isomorphism g : f∗F ′ → F .

12. The stack in groupoids of finite type algebraic spaces

04UH Let p : Spacesft → (Sch/S)fppf be the stack introduced in Section 8 (using the
abuse of notation introduced there). We can turn this into a stack in groupoids
p′ : Spaces′

ft → (Sch/S)fppf by the procedure of Categories, Lemma 35.3, see
Stacks, Lemma 5.3. In this particular case this simply means Spaces′

ft has the
same objects as Spacesft, i.e., finite type morphisms X → U where X is an algebraic
space over S and U is a scheme over S. But the morphisms (f, g) : X/U → Y/V
are now commutative diagrams

X

��

f
// Y

��
U

g // V

which are cartesian.
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13. Quotient stacks

04UI Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. In this case the quotient
stack

[U/R] −→ (Sch/S)fppf
is a stack in groupoids by construction, see Groupoids in Spaces, Definition 20.1.
It is even the case that the Isom-sheaves are representable by algebraic spaces, see
Bootstrap, Lemma 11.5. These quotient stacks are of fundamental importance to
the theory of algebraic stacks.
A special case of the construction above is the quotient stack

[X/G] −→ (Sch/S)fppf
associated to a datum (B,G/B,m,X/B, a). Here

(1) B is an algebraic space over S,
(2) (G,m) is a group algebraic space over B,
(3) X is an algebraic space over B, and
(4) a : G×B X → X is an action of G on X over B.

Namely, by Groupoids in Spaces, Definition 20.1 the stack in groupoids [X/G] is
the quotient stack [X/G ×B X] given above. It behooves us to spell out what the
category [X/G] really looks like. We will do this in Section 15.

14. Classifying torsors

036Z We want to carefuly explain a number of variants of what it could mean to study
the stack of torsors for a group algebraic space G or a sheaf of groups G.

14.1. Torsors for a sheaf of groups.04UJ Let G be a sheaf of groups on (Sch/S)fppf .
For U ∈ Ob((Sch/S)fppf ) we denote G|U the restriction of G to (Sch/U)fppf . We
define a category G-Torsors as follows:

(1) An object of G-Torsors is a pair (U,F) where U is an object of (Sch/S)fppf
and F is a G|U -torsor, see Cohomology on Sites, Definition 4.1.

(2) A morphism (U,F) → (V,H) is given by a pair (f, α), where f : U → V is
a morphism of schemes over S, and α : f−1H → F is an isomorphism of
G|U -torsors.

Thus G-Torsors is a category and
p : G-Torsors −→ (Sch/S)fppf , (U,F) 7−→ U

is a functor. Note that the fibre category of G-Torsors over U is the category of
G|U -torsors which is a groupoid.

Lemma 14.2.04UK Up to a replacement as in Stacks, Remark 4.9 the functor
p : G-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for
objects. Let {Ui → U}i∈I be a covering of (Sch/S)fppf . Suppose that for each i we
are given a G|Ui-torsor Fi, and for each i, j ∈ I an isomorphism φij : Fi|Ui×UUj →
Fj |Ui×UUj

of G|Ui×UUj
-torsors satisfying a suitable cocycle condition on Ui×UUj×U

Uk. Then by Sites, Section 26 we obtain a sheaf F on (Sch/U)fppf whose restriction
to each Ui recovers Fi as well as recovering the descent data. By the equivalence of

https://stacks.math.columbia.edu/tag/04UK
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categories in Sites, Lemma 26.5 the action maps G|Ui
× Fi → Fi glue to give a map

a : G|U × F → F . Now we have to show that a is an action and that F becomes
a G|U -torsor. Both properties may be checked locally, and hence follow from the
corresponding properties of the actions G|Ui

× Fi → Fi. This proves that descent
for objects holds in G-Torsors. Some details omitted. □

14.3. Variant on torsors for a sheaf.04UL The construction of Subsection 14.1 can
be generalized slightly. Namely, let G → B be a map of sheaves on (Sch/S)fppf
and let

m : G ×B G −→ G
be a group law on G/B. In other words, the pair (G,m) is a group object of the topos
Sh((Sch/S)fppf )/B. See Sites, Section 30 for information regarding localizations of
topoi. In this setting we can define a category G/B-Torsors as follows (where we
use the Yoneda embedding to think of schemes as sheaves):

(1) An object of G/B-Torsors is a triple (U, b,F) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a section of B over U , and
(c) F is a U ×b,B G-torsor over U .

(2) A morphism (U, b,F) → (U ′, b′,F ′) is given by a pair (f, g), where f : U →
U ′ is a morphism of schemes over S such that b = b′ ◦f , and g : f−1F ′ → F
is an isomorphism of U ×b,B G-torsors.

Thus G/B-Torsors is a category and
p : G/B-Torsors −→ (Sch/S)fppf , (U, b,F) 7−→ U

is a functor. Note that the fibre category of G/B-Torsors over U is the disjoint
union over b : U → B of the categories of U ×b,B G-torsors, hence is a groupoid.
In the special case B = S we recover the category G-Torsors introduced in Subsec-
tion 14.1.

Lemma 14.4.04UM Up to a replacement as in Stacks, Remark 4.9 the functor
p : G/B-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. This proof is a repeat of the proof of Lemma 14.2. The reader is encouraged
to read that proof first since the notation is less cumbersome. The most difficult
part of the proof is to show that we have descent for objects. Let {Ui → U}i∈I
be a covering of (Sch/S)fppf . Suppose that for each i we are given a pair (bi,Fi)
consisting of a morphism bi : Ui → B and a Ui ×bi,B G-torsor Fi, and for each
i, j ∈ I we have bi|Ui×UUj

= bj |Ui×UUj
and we are given an isomorphism φij :

Fi|Ui×UUj → Fj |Ui×UUj of (Ui ×U Uj) ×B G-torsors satisfying a suitable cocycle
condition on Ui ×U Uj ×U Uk. Then by Sites, Section 26 we obtain a sheaf F
on (Sch/U)fppf whose restriction to each Ui recovers Fi as well as recovering the
descent data. By the sheaf axiom for B the morphisms bi come from a unique
morphism b : U → B. By the equivalence of categories in Sites, Lemma 26.5 the
action maps (Ui ×bi,B G) ×Ui

Fi → Fi glue to give a map (U ×b,B G) × F → F .
Now we have to show that this is an action and that F becomes a U ×b,B G-torsor.
Both properties may be checked locally, and hence follow from the corresponding
properties of the actions on the Fi. This proves that descent for objects holds in
G/B-Torsors. Some details omitted. □

https://stacks.math.columbia.edu/tag/04UM
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14.5. Principal homogeneous spaces.04UN Let B be an algebraic space over S. Let
G be a group algebraic space over B. We define a category G-Principal as follows:

(1) An object of G-Principal is a triple (U, b,X) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S, and
(c) X is a principal homogeneous GU -space over U where GU = U×b,BG.

See Groupoids in Spaces, Definition 9.3.
(2) A morphism (U, b,X) → (U ′, b′, X ′) is given by a pair (f, g), where f :

U → U ′ is a morphism of schemes over B, and g : X → U ×f,U ′ X ′ is an
isomorphism of principal homogeneous GU -spaces.

Thus G-Principal is a category and

p : G-Principal −→ (Sch/S)fppf , (U, b,X) 7−→ U

is a functor. Note that the fibre category of G-Principal over U is the disjoint union
over b : U → B of the categories of principal homogeneous U ×b,B G-spaces, hence
is a groupoid.

In the special case S = B the objects are simply pairs (U,X) where U is a scheme
over S, and X is a principal homogeneous GU -space over U . Moreover, morphisms
are simply cartesian diagrams

X

��

g
// X ′

��
U

f // U ′

where g is G-equivariant.

Remark 14.6.04UP We conjecture that up to a replacement as in Stacks, Remark 4.9
the functor

p : G-Principal −→ (Sch/S)fppf
defines a stack in groupoids over (Sch/S)fppf . This would follow if one could show
that given

(1) a covering {Ui → U}i∈I of (Sch/S)fppf ,
(2) an group algebraic space H over U ,
(3) for every i a principal homogeneous HUi

-space Xi over Ui, and
(4) H-equivariant isomorphisms φij : Xi,Ui×UUj

→ Xj,Ui×UUj
satisfying the

cocycle condition,
there exists a principal homogeneous H-space X over U which recovers (Xi, φij).
The technique of the proof of Bootstrap, Lemma 11.8 reduces this to a set theoret-
ical question, so the reader who ignores set theoretical questions will “know” that
the result is true. In https://math.columbia.edu/~dejong/wordpress/?p=591
there is a suggestion as to how to approach this problem.

14.7. Variant on principal homogeneous spaces.04UQ Let S be a scheme. Let
B = S. Let G be a group scheme over B = S. In this setting we can define a full
subcategory G-Principal-Schemes ⊂ G-Principal whose objects are pairs (U,X)
where U is an object of (Sch/S)fppf and X → U is a principal homogeneous G-
space over U which is representable, i.e., a scheme.

https://stacks.math.columbia.edu/tag/04UP
https://math.columbia.edu/~dejong/wordpress/?p=591
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It is in general not the case that G-Principal-Schemes is a stack in groupoids over
(Sch/S)fppf . The reason is that in general there really do exist principal homoge-
neous spaces which are not schemes, hence descent for objects will not be satisfied
in general.

14.8. Torsors in fppf topology.04UR Let B be an algebraic space over S. Let G be
a group algebraic space over B. We define a category G-Torsors as follows:

(1) An object of G-Torsors is a triple (U, b,X) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism, and
(c) X is an fppf GU -torsor over U where GU = U ×b,B G.

See Groupoids in Spaces, Definition 9.3.
(2) A morphism (U, b,X) → (U ′, b′, X ′) is given by a pair (f, g), where f :

U → U ′ is a morphism of schemes over B, and g : X → U ×f,U ′ X ′ is an
isomorphism of GU -torsors.

Thus G-Torsors is a category and
p : G-Torsors −→ (Sch/S)fppf , (U, a,X) 7−→ U

is a functor. Note that the fibre category of G-Torsors over U is the disjoint union
over b : U → B of the categories of fppf U ×b,B G-torsors, hence is a groupoid.
In the special case S = B the objects are simply pairs (U,X) where U is a scheme
over S, and X is an fppf GU -torsor over U . Moreover, morphisms are simply
cartesian diagrams

X

��

g
// X ′

��
U

f // U ′

where g is G-equivariant.

Lemma 14.9.04US Up to a replacement as in Stacks, Remark 4.9 the functor
p : G-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for
objects, which is Bootstrap, Lemma 11.8. We omit the proof of axioms (1) and (2)
of Stacks, Definition 5.1. □

Lemma 14.10.04UT Let B be an algebraic space over S. Let G be a group algebraic
space over B. Denote G, resp. B the algebraic space G, resp. B seen as a sheaf on
(Sch/S)fppf . The functor

G-Torsors −→ G/B-Torsors
which associates to a triple (U, b,X) the triple (U, b,X ) where X is X viewed as a
sheaf is an equivalence of stacks in groupoids over (Sch/S)fppf .

Proof. We will use the result of Stacks, Lemma 4.8 to prove this. The functor is
fully faithful since the category of algebraic spaces over S is a full subcategory of
the category of sheaves on (Sch/S)fppf . Moreover, all objects (on both sides) are
locally trivial torsors so condition (2) of the lemma referenced above holds. Hence
the functor is an equivalence. □

https://stacks.math.columbia.edu/tag/04US
https://stacks.math.columbia.edu/tag/04UT
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14.11. Variant on torsors in fppf topology.04UU Let S be a scheme. Let B = S.
Let G be a group scheme over B = S. In this setting we can define a full subcategory
G-Torsors-Schemes ⊂ G-Torsors whose objects are pairs (U,X) where U is an
object of (Sch/S)fppf and X → U is an fppf G-torsor over U which is representable,
i.e., a scheme.

It is in general not the case that G-Torsors-Schemes is a stack in groupoids over
(Sch/S)fppf . The reason is that in general there really do exist fppf G-torsors
which are not schemes, hence descent for objects will not be satisfied in general.

15. Quotients by group actions

04UV At this point we have introduced enough notation that we can work out in more
detail what the stacks [X/G] of Section 13 look like.

Situation 15.1.04WL Here
(1) S is a scheme contained in Schfppf ,
(2) B is an algebraic space over S,
(3) (G,m) is a group algebraic space over B,
(4) π : X → B is an algebraic space over B, and
(5) a : G×B X → X is an action of G on X over B.

In this situation we construct a category [[X/G]]2 as follows:
(1) An object of [[X/G]] consists of a quadruple (U, b, P, φ : P → X) where

(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S,
(c) P is an fppf GU -torsor over U where GU = U ×b,B G, and
(d) φ : P → X is a G-equivariant morphism fitting into the commutative

diagram
P

��

φ
// X

��
U

b // B

(2) A morphism of [[X/G]] is a pair (f, g) : (U, b, P, φ) → (U ′, b′, P ′, φ′) where
f : U → U ′ is a morphism of schemes over B and g : P → P ′ is a G-
equivariant morphism over f which induces an isomorphism P ∼= U×f,U ′P ′,
and has the property that φ = φ′ ◦ g. In other words (f, g) fits into the
following commutative diagram

P

�� φ

**

g // P ′

��

φ′

&&
U

b
**

f // U ′

b′

&&

X

��
B

2The notation [[X/G]] with double brackets serves to distinguish this category from the stack
[X/G] introduced earlier. In Proposition 15.3 we show that the two are canonically equivalent.
Afterwards we will use the notation [X/G] to indicate either.

https://stacks.math.columbia.edu/tag/04WL
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Thus [[X/G]] is a category and
p : [[X/G]] −→ (Sch/S)fppf , (U, b, P, φ) 7−→ U

is a functor. Note that the fibre category of [[X/G]] over U is the disjoint union
over b ∈ MorS(U,B) of fppf U ×b,B G-torsors P endowed with a G-equivariant
morphism to X. Hence the fibre categories of [[X/G]] are groupoids.
Note that the functor

[[X/G]] −→ G-Torsors, (U, b, P, φ) 7−→ (U, b, P )
is a 1-morphism of categories over (Sch/S)fppf .

Lemma 15.2.0370 Up to a replacement as in Stacks, Remark 4.9 the functor
p : [[X/G]] −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for
objects. Suppose that {Ui → U}i∈I is a covering in (Sch/S)fppf . Let ξi =
(Ui, bi, Pi, φi) be objects of [[X/G]] over Ui, and let φij : pr∗

0ξi → pr∗
1ξj be a

descent datum. This in particular implies that we get a descent datum on the
triples (Ui, bi, Pi) for the stack in groupoids G-Torsors by applying the functor
[[X/G]] → G-Torsors above. We have seen that G-Torsors is a stack in groupoids
(Lemma 14.9). Hence we may assume that bi = b|Ui for some morphism b : U → B,
and that Pi = Ui ×U P for some fppf GU = U ×b,B G-torsor P over U . The
morphisms φi are compatible with the canonical descent datum on the restrictions
Ui ×U P and hence define a morphism φ : P → X. (For example you can use Sites,
Lemma 26.5 or you can use Descent on Spaces, Lemma 7.2 to get φ.) This proves
descent for objects. We omit the proof of axioms (1) and (2) of Stacks, Definition
5.1. □

Proposition 15.3.04WM In Situation 15.1 there exists a canonical equivalence
[X/G] −→ [[X/G]]

of stacks in groupoids over (Sch/S)fppf .

Proof. We write this out in detail, to make sure that all the definitions work out
in exactly the correct manner. Recall that [X/G] is the quotient stack associated
to the groupoid in algebraic spaces (X,G ×B X, s, t, c), see Groupoids in Spaces,
Definition 20.1. This means that [X/G] is the stackification of the category fibred
in groupoids [X/pG] associated to the functor

(Sch/S)fppf −→ Groupoids, U 7−→ (X(U), G(U) ×B(U) X(U), s, t, c)
where s(g, x) = x, t(g, x) = a(g, x), and c((g, x), (g′, x′)) = (m(g, g′), x′). By
the construction of Categories, Example 37.1 an object of [X/pG] is a pair (U, x)
with x ∈ X(U) and a morphism (f, g) : (U, x) → (U ′, x′) of [X/pG] is given by a
morphism of schemes f : U → U ′ and an element g ∈ G(U) such that a(g, x) = x′◦f .
Hence we can define a 1-morphism of stacks in groupoids

Fp : [X/pG] −→ [[X/G]]
by the following rules: On objects we set

Fp(U, x) = (U, π ◦ x,G×B,π◦x U, a ◦ (idG × x))

https://stacks.math.columbia.edu/tag/0370
https://stacks.math.columbia.edu/tag/04WM
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This makes sense because the diagram

G×B,π◦x U

��

idG×x
// G×B,π X a

// X

π

��
U

π◦x // B

commutes, and the two horizontal arrows are G-equivariant if we think of the fibre
products as trivial G-torsors over U , resp. X. On morphisms (f, g) : (U, x) →
(U ′, x′) we set Fp(f, g) = (f,Rg−1) where Rg−1 denotes right translation by the
inverse of g. More precisely, the morphism Fp(f, g) : Fp(U, x) → Fp(U ′, x′) is given
by the cartesian diagram

G×B,π◦x U

��

Rg−1

// G×B,π◦x′ U ′

��
U

f // U ′

where Rg−1 on T -valued points is given by

Rg−1(g′, u) = (m(g′, i(g(u))), f(u))

To see that this works we have to verify that

a ◦ (idG × x) = a ◦ (idG × x′) ◦Rg−1

which is true because the right hand side applied to the T -valued point (g′, u) gives
the desired equality

a((idG × x′)(m(g′, i(g(u))), f(u))) = a(m(g′, i(g(u))), x′(f(u)))
= a(g′, a(i(g(u)), x′(f(u))))
= a(g′, x(u))

because a(g, x) = x′ ◦ f and hence a(i(g), x′ ◦ f) = x.

By the universal property of stackification from Stacks, Lemma 9.2 we obtain a
canonical extension F : [X/G] → [[X/G]] of the 1-morphism Fp above. We first
prove that F is fully faithful. To do this, since both source and target are stacks in
groupoids, it suffices to prove that the Isom-sheaves are identified under F . Pick a
scheme U and objects ξ, ξ′ of [X/G] over U . We want to show that

F : Isom[X/G](ξ, ξ′) −→ Isom[[X/G]](F (ξ), F (ξ′))

is an isomorphism of sheaves. To do this it suffices to work locally on U , and hence
we may assume that ξ, ξ′ come from objects (U, x), (U, x′) of [X/pG] over U ; this
follows directly from the construction of the stackification, and it is also worked out
in detail in Groupoids in Spaces, Section 24. Either by directly using the description
of morphisms in [X/pG] above, or using Groupoids in Spaces, Lemma 22.1 we see
that in this case

Isom[X/G](ξ, ξ′) = U ×(x,x′),X×SX,(s,t) (G×B X)

A T -valued point of this fibre product corresponds to a pair (u, g) with u ∈ U(T ),
and g ∈ G(T ) such that a(g, x◦u) = x′ ◦u. (Note that this implies π◦x◦u = π◦x′ ◦
u.) On the other hand, a T -valued point of Isom[[X/G]](F (ξ), F (ξ′)) by definition
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corresponds to a morphism u : T → U such that π ◦ x ◦ u = π ◦ x′ ◦ u : T → B and
an isomorphism

R : G×B,π◦x◦u T −→ G×B,π◦x′◦u T

of trivial GT -torsors compatible with the given maps to X. Since the torsors are
trivial we see that R = Rg−1 (right multiplication) by some g ∈ G(T ). Compat-
ibility with the maps a ◦ (1G, x ◦ u), a ◦ (1G, x′ ◦ u) : G ×B T → X is equivalent
to the condition that a(g, x ◦ u) = x′ ◦ u. Hence we obtain the desired equality of
Isom-sheaves.

Now that we know that F is fully faithful we see that Stacks, Lemma 4.8 applies.
Thus to show that F is an equivalence it suffices to show that objects of [[X/G]]
are fppf locally in the essential image of F . This is clear as fppf torsors are fppf
locally trivial, and hence we win. □

Lemma 15.4.0CQJ Let S be a scheme. Let B be an algebraic space over S. Let G be
a group algebraic space over B. Then the stacks in groupoids

[B/G], [[B/G]], G-Torsors, G/B-Torsors

are all canonically equivalent. If G → B is flat and locally of finite presentation,
then these are also equivalent to G-Principal.

Proof. The equivalence G-Torsors → G/B-Torsors is given in Lemma 14.10. The
equivalence [B/G] → [[B/G]] is given in Proposition 15.3. Unwinding the definition
of [[B/G]] given in Section 15 we see that [[B//G]] = G-Torsors.

Finally, assume G → B is flat and locally of finite presentation. To show that the
natural functor G-Torsors → G-Principal is an equivalence it suffices to show that
for a scheme U over B a principal homogeneous GU -space X → U is fppf locally
trivial. By our definition of principal homogeneous spaces (Groupoids in Spaces,
Definition 9.3) there exists an fpqc covering {Ui → U} such that Ui×UX ∼= G×BUi
as algebraic spaces over Ui. This implies that X → U is surjective, flat, and
locally of finite presentation, see Descent on Spaces, Lemmas 11.6, 11.13, and 11.10.
Choose a scheme W and a surjective étale morphism W → X. Then it follows from
what we just said that {W → U} is an fppf covering such that XW → W has a
section. Hence X is an fppf GU -torsor. □

Remark 15.5.0371 Let S be a scheme. Let G be an abstract group. Let X be an
algebraic space over S. Let G → AutS(X) be a group homomorphism. In this
setting we can define [[X/G]] similarly to the above as follows:

(1) An object of [[X/G]] consists of a triple (U,P, φ : P → X) where
(a) U is an object of (Sch/S)fppf ,
(b) P is a sheaf on (Sch/U)fppf which comes with an action of G that

turns it into a torsor under the constant sheaf with value G, and
(c) φ : P → X is a G-equivariant map of sheaves.

(2) A morphism (f, g) : (U,P, φ) → (U ′, P ′, φ′) is given by a morphism of
schemes f : T → T ′ and a G-equivariant isomorphism g : P → f−1P ′ such
that φ = φ′ ◦ g.

In exactly the same manner as above we obtain a functor

[[X/G]] −→ (Sch/S)fppf

https://stacks.math.columbia.edu/tag/0CQJ
https://stacks.math.columbia.edu/tag/0371
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which turns [[X/G]] into a stack in groupoids over (Sch/S)fppf . The constant
sheaf G is (provided the cardinality of G is not too large) representable by GS
on (Sch/S)fppf and this version of [[X/G]] is equivalent to the stack [[X/GS ]]
introduced above.

16. The Picard stack

0372 In this section we introduce the Picard stack in complete generality. In the chap-
ter on Quot and Hilb we will show that it is an algebraic stack under suitable
hypotheses, see Quot, Section 10.

Let S be a scheme. Let π : X → B be a morphism of algebraic spaces over S. We
define a category PicX/B as follows:

(1) An object is a triple (U, b,L), where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S, and
(c) L is in invertible sheaf on the base change XU = U ×b,B X.

(2) A morphism (f, g) : (U, b,L) → (U ′, b′,L′) is given by a morphism of
schemes f : U → U ′ over B and an isomorphism g : f∗L′ → L.

The composition of (f, g) : (U, b,L) → (U ′, b′,L′) with (f ′, g′) : (U ′, b′,L′) →
(U ′′, b′′,L′′) is given by (f ◦ f ′, g ◦ f∗(g′)). Thus we get a category PicX/B and

p : PicX/B −→ (Sch/S)fppf , (U, b,L) 7−→ U

is a functor. Note that the fibre category of PicX/B over U is the disjoint union
over b ∈ MorS(U,B) of the categories of invertible sheaves on XU = U ×b,B X.
Hence the fibre categories are groupoids.

Lemma 16.1.04WN Up to a replacement as in Stacks, Remark 4.9 the functor

PicX/B −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. As usual, the hardest part is to show descent for objects. To see this let
{Ui → U} be a covering of (Sch/S)fppf . Let ξi = (Ui, bi,Li) be an object of
PicX/B lying over Ui, and let φij : pr∗

0ξi → pr∗
1ξj be a descent datum. This implies

in particular that the morphisms bi are the restrictions of a morphism b : U → B.
Write XU = U ×b,B X and Xi = Ui ×bi,B X = Ui ×U U ×b,B X = Ui ×U XU .
Observe that Li is an invertible OXi

-module. Note that {Xi → XU} forms an fppf
covering as well. Moreover, the descent datum φij translates into a descent datum
on the invertible sheaves Li relative to the fppf covering {Xi → XU}. Hence by
Descent on Spaces, Proposition 4.1 we obtain a unique invertible sheaf L on XU

which recovers Li and the descent data over Xi. The triple (U, b,L) is therefore
the object of PicX/B over U we were looking for. Details omitted. □

17. Examples of inertia stacks

0373 Here are some examples of inertia stacks.

Example 17.1.0374 Let S be a scheme. Let G be a commutative group. Let X → S
be a scheme over S. Let a : G × X → X be an action of G on X. For g ∈ G we

https://stacks.math.columbia.edu/tag/04WN
https://stacks.math.columbia.edu/tag/0374
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denote g : X → X the corresponding automorphism. In this case the inertia stack
of [X/G] (see Remark 15.5) is given by

I[X/G] =
∐

g∈G
[Xg/G],

where, given an element g of G, the symbol Xg denotes the scheme Xg = {x ∈ X |
g(x) = x}. In a formula Xg is really the fibre product

Xg = X ×(1,1),X×SX,(g,1) X.

Indeed, for any S-scheme T , a T -point on the inertia stack of [X/G] consists of
a triple (P/T, ϕ, α) consisting of an fppf G-torsor P → T together with a G-
equivariant morphism ϕ : P → X, together with an automorphism α of P → T over
T such that ϕ◦α = ϕ. Since G is a sheaf of commutative groups, α is, locally in the
fppf topology over T , given by multiplication by some element g of G. The condi-
tion that ϕ◦α = ϕ means that ϕ factors through the inclusion of Xg in X, i.e., ϕ is
obtained by composing that inclusion with a morphism P → Xγ . The above dis-
cussion allows us to define a morphism of fibred categories I[X/G] →

∐
g∈G[Xg/G]

given on T -points by the discussion above. We omit showing that this is an equiv-
alence.

Example 17.2.0375 Let f : X → S be a morphism of schemes. Assume that for any
T → S the base change fT : XT → T has the property that the map OT → fT,∗OXT

is an isomorphism. (This implies that f is cohomologically flat in dimension 0
(insert future reference here) but is stronger.) Consider the Picard stack PicX/S ,
see Section 16. The points of its inertia stack over an S-scheme T consist of pairs
(L, α) where L is a line bundle on XT and α is an automorphism of that line
bundle. I.e., we can think of α as an element of H0(XT ,OXT

)× = H0(T,O∗
T )

by our condition. Note that H0(T,O∗
T ) = Gm,S(T ), see Groupoids, Example 5.1.

Hence the inertia stack of PicX/S is

IPicX/S
= Gm,S ×S PicX/S .

as a stack over (Sch/S)fppf .

18. Finite Hilbert stacks

05WA We formulate this in somewhat greater generality than is perhaps strictly needed.
Fix a 1-morphism

F : X −→ Y
of stacks in groupoids over (Sch/S)fppf . For each integer d ≥ 1 consider a category
Hd(X/Y) defined as follows:

(1) An object (U,Z, y, x, α) where U,Z are objects of in (Sch/S)fppf and Z is
a finite locally free of degree d over U , where y ∈ Ob(YU ), x ∈ Ob(XZ) and
α : y|Z → F (x) is an isomorphism3.

3This means the data gives rise, via the 2-Yoneda lemma (Categories, Lemma 41.2), to a
2-commutative diagram

(Sch/Z)fppf x
//

��

X

F

��
(Sch/U)fppf

y // Y

https://stacks.math.columbia.edu/tag/0375
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(2) A morphism (U,Z, y, x, α) → (U ′, Z ′, y′, x′, α′) is given by a morphism of
schemes f : U → U ′, a morphism of schemes g : Z → Z ′ which induces an
isomorphism Z → Z ′ ×U U

′, and isomorphisms b : y → f∗y′, a : x → g∗x′

inducing a commutative diagram

y|Z α
//

b|Z

��

F (x)

F (a)
��

f∗y′|Z
α′

// F (g∗x′)

It is clear from the definitions that there is a canonical forgetful functor
p : Hd(X/Y) −→ (Sch/S)fppf

which assigns to the quintuple (U,Z, y, x, α) the scheme U and to the morphism
(f, g, b, a) : (U,Z, y, x, α) → (U ′, Z ′, y′, x′, α′) the morphism f : U → U ′.

Lemma 18.1.05WB The category Hd(X/Y) endowed with the functor p above defines
a stack in groupoids over (Sch/S)fppf .

Proof. As usual, the hardest part is to show descent for objects. To see this let
{Ui → U} be a covering of (Sch/S)fppf . Let ξi = (Ui, Zi, yi, xi, αi) be an object
of Hd(X/Y) lying over Ui, and let φij : pr∗

0ξi → pr∗
1ξj be a descent datum. First,

observe that φij induces a descent datum (Zi/Ui, φij) which is effective by Descent,
Lemma 37.1 This produces a scheme Z/U which is finite locally free of degree d
by Descent, Lemma 23.30. From now on we identify Zi with Z ×U Ui. Next, the
objects yi in the fibre categories YUi descend to an object y in YU because Y is a
stack in groupoids. Similarly the objects xi in the fibre categories XZi descend to an
object x in XZ because X is a stack in groupoids. Finally, the given isomorphisms

αi : (y|Z)Zi
= yi|Zi

−→ F (xi) = F (x|Zi
)

glue to a morphism α : y|Z → F (x) as the Y is a stack and hence IsomY(y|Z , F (x))
is a sheaf. Details omitted. □

Definition 18.2.05WC We will denote Hd(X/Y) the degree d finite Hilbert stack of X
over Y constructed above. If Y = S we write Hd(X ) = Hd(X/Y). If X = Y = S
we denote it Hd.

Note that given F : X → Y as above we have the following natural 1-morphisms of
stacks in groupoids over (Sch/S)fppf :

(18.2.1)05WD

Hd(X )

%%

Hd(X/Y)

��

oo // Y

Hd

Each of the arrows is given by a "forgetful functor".

of stacks in groupoids over (Sch/S)fppf . Alternatively, we may picture α as a 2-morphism

(Sch/Z)fppf

y◦(Z→U)
**

F ◦x

44�� α Y.

https://stacks.math.columbia.edu/tag/05WB
https://stacks.math.columbia.edu/tag/05WC
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Lemma 18.3.05XV The 1-morphism Hd(X/Y) → Hd(X ) is faithful.

Proof. To check that Hd(X/Y) → Hd(X ) is faithful it suffices to prove that it is
faithful on fibre categories. Suppose that ξ = (U,Z, y, x, α) and ξ′ = (U,Z ′, y′, x′, α′)
are two objects of Hd(X/Y) over the scheme U . Let (g, b, a), (g′, b′, a′) : ξ → ξ′ be
two morphisms in the fibre category of Hd(X/Y) over U . The image of these mor-
phisms in Hd(X ) agree if and only if g = g′ and a = a′. Then the commutative
diagram

y|Z α
//

b|Z , b
′|Z

��

F (x)

F (a)=F (a′)
��

y′|Z
α′

// F (g∗x′) = F ((g′)∗x′)
implies that b|Z = b′|Z . Since Z → U is finite locally free of degree d we see
{Z → U} is an fppf covering, hence b = b′. □
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