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2. An empty limit

0AKK This example is due to Waterhouse, see [Wat72]. Let S be an uncountable set.
For every finite subset T ⊂ S consider the set MT of injective maps T → N. For
T ⊂ T ′ ⊂ S finite the restriction MT ′ → MT is surjective. Thus we have an
inverse system over the directed partially ordered set of finite subsets of S with
surjective transition maps. But limMT = ∅ as an element in the limit would define
an injective map S → N.

3. A zero limit

0ANX Let (Si)i∈I be a directed inverse system of nonempty sets with surjective transition
maps and with limSi = ∅, see Section 2. Let K be a field and set

Vi =
⊕

s∈Si

K

Then the transition maps Vi → Vj are surjective for i ≥ j. However, limVi = 0.
Namely, if v = (vi) is an element of the limit, then the support of vi would be a
finite subset Ti ⊂ Si with limTi ̸= ∅, see Categories, Lemma 21.7.
For each i consider the unique K-linear map Vi → K which sends each basis vector
s ∈ Si to 1. Let Wi ⊂ Vi be the kernel. Then

0→ (Wi)→ (Vi)→ (K)→ 0
is a nonsplit short exact sequence of inverse systems of vector spaces over the
directed set I. Hence Wi is a directed system of K-vector spaces with surjective
transition maps, vanishing limit, and nonvanishing R1 lim.

4. Non-quasi-compact inverse limit of quasi-compact spaces

09ZJ Let N denote the set of natural numbers. For every integer n, let In denote the set
of all natural numbers > n. Define Tn to be the unique topology on N with basis
{1}, . . . , {n}, In. Denote by Xn the topological space (N, Tn). For each m < n, the
identity map,

fn,m : Xn −→ Xm

is continuous. Obviously for m < n < p, the composition fp,n ◦ fn,m equals fp,m.
So ((Xn), (fn,m)) is a directed inverse system of quasi-compact topological spaces.
Let T be the discrete topology on N, and let X be (N, T ). Then for every integer
n, the identity map,

fn : X −→ Xn

is continuous. We claim that this is the inverse limit of the directed system above.
Let (Y, S) be any topological space. For every integer n, let

gn : (Y, S) −→ (N, Tn)
be a continuous map. Assume that for every m < n we have fn,m ◦ gn = gm, i.e.,
the system (gn) is compatible with the directed system above. In particular, all of
the set maps gn are equal to a common set map

g : Y −→ N.

Moreover, for every integer n, since {n} is open in Xn, also g−1({n}) = g−1
n ({n}) is

open in Y . Therefore the set map g is continuous for the topology S on Y and the
topology T on N. Thus (X, (fn)) is the inverse limit of the directed system above.
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However, clearly X is not quasi-compact, since the infinite open covering by single-
ton sets has no inverse limit.

Lemma 4.1.09ZK There exists an inverse system of quasi-compact topological spaces
over N whose limit is not quasi-compact.

Proof. See discussion above. □

5. The structure sheaf on the fibre product

0FLS Let X,Y, S, a, b, p, q, f be as in the introduction to Derived Categories of Schemes,
Section 23. Picture:

X ×S Y

p
{{

q
##

f

��

X

a
$$

Y

b
zz

S

Then we have a canonical map

can : p−1OX ⊗f−1OS
q−1OY −→ OX×SY

which is not an isomorphism in general.

For example, let S = Spec(R), X = Spec(C), and Y = Spec(C). Then X ×S Y =
Spec(C) ⨿ Spec(C) is a discrete space with two points and the sheaves p−1OX ,
q−1OY and f−1OS are the constant sheaves with values C, C, and R. Hence the
source of can is the constant sheaf with value C ⊗R C on the discrete space with
two points. Thus its global sections have dimension 8 as an R-vector space whereas
taking global sections of the target of can we obtain C×C which has dimension 4
as an R-vector space.

Another example is the following. Let k be an algebraically closed field. Consider
S = Spec(k), X = A1

k, and Y = A1
k. Then for U ⊂ X ×S Y = A2

k nonempty open
the images p(U) ⊂ X = A1

k and q(U) ⊂ A1
k are open and the reader can show that(

p−1OX ⊗f−1OS
q−1OY

)
(U) = OX(p(U))⊗k OY (q(U))

This is not equal to OX×SY (U) if U is the complement of an irreducible curve C
in X ×S Y = A2

k such that both p|C and q|C are nonconstant.

Returning to the general case, let z = (x, y, s, p) be a point of X×SY as in Schemes,
Lemma 17.5. Then on stalks at z the map can gives the map

canz : OX,x ⊗OS,s
OY,y −→ OX×SY,z

This is a flat ring homomorphism as the target is a localization of the source (details
omitted; hint reduce to the case that X, Y , and S are affine). Observe that the
source is in general not a local ring, and this gives another way to see that can is
not an isomorphism in general.

https://stacks.math.columbia.edu/tag/09ZK
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More generally, suppose we have an OX -module F and an OY -module G. Then
there is a canonical map

p−1F ⊗f−1OS
q−1G

= p−1(F ⊗OX
OX)⊗f−1OS

q−1(OY ⊗OY
G)

= p−1F ⊗p−1OX
p−1OX ⊗f−1OS

q−1OY ⊗q−1OY
q−1G

can−−→ p−1F ⊗q−1OX
OX×SY ⊗q−1OY

q−1G
= p−1F ⊗q−1OX

OX×SY ⊗OX×S Y
OX×SY ⊗q−1OY

q−1G
= p∗F ⊗OX×S Y

q∗G

which is rarely an isomorphism.

6. A nonintegral connected scheme whose local rings are domains

0568 We give an example of an affine scheme X = Spec(A) which is connected, all of
whose local rings are domains, but which is not integral. Connectedness of X
means A has no nontrivial idempotents, see Algebra, Lemma 21.3. The local rings
of X are domains if, whenever fg = 0 in A, every point of X has a neighborhood
where either f or g vanishes. As long as A is not a domain, then X is not integral
(Properties, Definition 3.1).
Roughly speaking, the construction is as follows: let X0 be the cross (the union of
coordinate axes) on the affine plane. Then let X1 be the (reduced) full preimage of
X0 on the blowup of the plane (X1 has three rational components forming a chain).
Then blow up the resulting surface at the two singularities of X1, and let X2 be
the reduced preimage of X1 (which has five rational components), etc. Take X to
be the inverse limit. The only problem with this construction is that blowups glue
in a projective line, so X1 is not affine. Let us correct this by glueing in an affine
line instead (so our scheme will be an open subset in what was described above).
Here is a completely algebraic construction: For every k ≥ 0, let Ak be the following
ring: its elements are collections of polynomials pi ∈ C[x] where i = 0, . . . , 2k such
that pi(1) = pi+1(0). Set Xk = Spec(Ak). Observe that Xk is a union of 2k+1 affine
lines that meet transversally in a chain. Define a ring homomorphism Ak → Ak+1
by

(p0, . . . , p2k ) 7−→ (p0, p0(1), p1, p1(1), . . . , p2k ),
in other words, every other polynomial is constant. This identifies Ak with a subring
of Ak+1. Let A be the direct limit of Ak (basically, their union). Set X = Spec(A).
For every k, we have a natural embedding Ak → A, that is, a map X → Xk. Each
Ak is connected but not integral; this implies that A is connected but not integral.
It remains to show that the local rings of A are domains.
Take f, g ∈ A with fg = 0 and x ∈ X. Let us construct a neighborhood of x
on which one of f and g vanishes. Choose k such that f, g ∈ Ak−1 (note the
k − 1 index). Let y be the image of x in Xk. It suffices to prove that y has a
neighborhood on which either f or g viewed as sections of OXk

vanishes. If y is a
smooth point of Xk, that is, it lies on only one of the 2k + 1 lines, this is obvious.
We can therefore assume that y is one of the 2k singular points, so two components
of Xk pass through y. However, on one of these two components (the one with odd
index), both f and g are constant, since they are pullbacks of functions on Xk−1.
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Since fg = 0 everywhere, either f or g (say, f) vanishes on the other component.
This implies that f vanishes on both components, as required.

7. Noncomplete completion

05JA Let R be a ring and let m be a maximal ideal. Consider the completion

R∧ = limR/mn.

Note that R∧ is a local ring with maximal ideal m′ = Ker(R∧ → R/m). Namely, if
x = (xn) ∈ R∧ is not in m′, then y = (x−1

n ) ∈ R∧ satisfies xy = 1, whence R∧ is
local by Algebra, Lemma 18.2. Now it is always true that R∧ complete in its limit
topology (see the discussion in More on Algebra, Section 36). But beyond that, we
have the following questions:

(1) Is it true that mR∧ = m′?
(2) Is R∧ viewed as an R∧-module m′-adically complete?
(3) Is R∧ viewed as an R-module m-adically complete?

It turns out that these questions all have a negative answer. The example below
was taken from an unpublished note of Bart de Smit and Hendrik Lenstra. See also
[Bou61, Exercise III.2.12] and [Yek11, Example 1.8]

Let k be a field, R = k[x1, x2, x3, . . .], and m = (x1, x2, x3, . . .). We will think of an
element f of R∧ as a (possibly) infinite sum

f =
∑

aIx
I

(using multi-index notation) such that for each d ≥ 0 there are only finitely many
nonzero aI for |I| = d. The maximal ideal m′ ⊂ R∧ is the collection of f with zero
constant term. In particular, the element

f = x1 + x2
2 + x3

3 + . . .

is in m′ but not in mR∧ which shows that (1) is false in this example. However, if
(1) is false, then (3) is necessarily false because m′ = Ker(R∧ → R/m) and we can
apply Algebra, Lemma 96.5 with n = 1.

To finish we prove that R∧ is not m′-adically complete. For n ≥ 1 let Kn =
Ker(R∧ → R/mn). Then we have short exact sequences

0→ Kn/(m′)n → R∧/(m′)n → R/mn → 0

The projection map R∧ → R/mn+1 sends (m′)n onto mn/mn+1. It follows that
Kn+1 → Kn/(m′)n is surjective. Hence the inverse system (Kn/(m′)n) has surjec-
tive transition maps and taking inverse limits we obtain an exact sequence

0→ limKn/(m′)n → limR∧/(m′)n → limR/mn → 0

by Algebra, Lemma 87.1. Thus we see that R∧ is complete with respect to m′ if
and only if Kn = (m′)n for all n ≥ 1.

To show that R∧ is not m′-adically complete in our example we show that K2 =
Ker(R∧ → R/m2) is not equal to (m′)2. Note that an element of (m′)2 can be
written as a finite sum

(7.0.1)05JB
∑

i=1,...,t
figi
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with fi, gi ∈ R∧ having vanishing constant terms. To get an example we are going
to choose an z ∈ K2 of the form

z = z1 + z2 + z3 + . . .

with the following properties
(1) there exist sequences 1 < d1 < d2 < d3 < . . . and 0 < n1 < n2 < n3 < . . .

such that zi ∈ k[xni
, xni+1, . . . , xni+1−1] homogeneous of degree di, and

(2) in the ring k[[xni
, xni+1, . . . , xni+1−1]] the element zi cannot be written as

a sum (7.0.1) with t ≤ i.
Clearly this implies that z is not in (m′)2 because the image of the relation (7.0.1)
in the ring k[[xni

, xni+1, . . . , xni+1−1]] for i large enough would produce a contra-
diction. Hence it suffices to prove that for all t > 0 there exists a d ≫ 0 and an
integer n such that we can find an homogeneous element z ∈ k[x1, . . . , xn] of degree
d which cannot be written as a sum (7.0.1) for the given t in k[[x1, . . . , xn]]. Take
n > 2t and any d > 1 prime to the characteristic of k and set z =

∑
i=1,...,n x

d
i .

Then the vanishing locus of the ideal

( ∂z
∂x1

, . . . ,
∂z

∂xn
) = (dxd−1

1 , . . . , dxd−1
n )

consists of one point. On the other hand,
∂(

∑
i=1,...,t figi)
∂xj

∈ (f1, . . . , ft, g1, . . . , gt)

by the Leibniz rule and hence the vanishing locus of these derivatives contains at
least

V (f1, . . . , ft, g1, . . . , gt) ⊂ Spec(k[[x1, . . . , xn]]).
Hence this is a contradiction as the dimension of V (f1, . . . , ft, g1, . . . , gt) is at least
n− 2t ≥ 1.

Lemma 7.1.05JC There exists a local ring R and a maximal ideal m such that the
completion R∧ of R with respect to m has the following properties

(1) R∧ is local, but its maximal ideal is not equal to mR∧,
(2) R∧ is not a complete local ring, and
(3) R∧ is not m-adically complete as an R-module.

Proof. This follows from the discussion above as (with R = k[x1, x2, x3, . . .]) the
completion of the localization Rm is equal to the completion of R. □

8. Noncomplete quotient

05JD Let k be a field. Let

R = k[t, z1, z2, z3, . . . , w1, w2, w3, . . . , x]/(zit− xiwi, ziwj)

Note that in particular zizjt = 0 in this ring. Any element f of R can be uniquely
written as a finite sum

f =
∑

i=0,...,d
fix

i

where each fi ∈ k[t, zi, wj ] has no terms involving the products zit or ziwj . More-
over, if f is written in this way, then f ∈ (xn) if and only if fi = 0 for i < n. So x
is a nonzerodivisor and

⋂
(xn) = 0. Let R∧ be the completion of R with respect to

https://stacks.math.columbia.edu/tag/05JC
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the ideal (x). Note that R∧ is (x)-adically complete, see Algebra, Lemma 96.3. By
the above we see that an element of R∧ can be uniquely written as an infinite sum

f =
∑∞

i=0
fix

i

where each fi ∈ k[t, zi, wj ] has no terms involving the products zit or ziwj . Consider
the element

f =
∑∞

i=1
xiwi = xw1 + x2w2 + x3w3 + . . .

i.e., we have fn = wn. Note that f ∈ (t, xn) for every n because xmwm ∈ (t) for
all m. We claim that f ̸∈ (t). To prove this assume that tg = f where g =

∑
glx

l

in canonical form as above. Since tzizj = 0 we may as well assume that none of
the gl have terms involving the products zizj . Examining the process to get tg in
canonical form we see the following: Given any term cm of gl where c ∈ k and m
is a monomial in t, zi, wj and we make the following replacement

(1) if the monomial m does not involve any zi, then ctm is a term of fl, and
(2) if the monomial m does involve a zi then it is equal to m = zi and we see

that cwi is term of fl+i.
Since g0 is a polynomial only finitely many of the variables zi occur in it. Pick n
such that zn does not occur in g0. Then the rules above show that wn does not
occur in fn which is a contradiction. It follows that R∧/(t) is not complete, see
Algebra, Lemma 96.10.

Lemma 8.1.05JE There exists a ring R complete with respect to a principal ideal I
and a principal ideal J such that R/J is not I-adically complete.

Proof. See discussion above. □

9. Completion is not exact

05JF A quick example is the following. Suppose that R = k[t]. Let P = K =
⊕

n∈N R
and M =

⊕
n∈N R/(tn). Then there is a short exact sequence 0 → K → P →

M → 0 where the first map is given by multiplication by tn on the nth summand.
We claim that 0 → K∧ → P∧ → M∧ → 0 is not exact in the middle. Namely,
ξ = (t2, t3, t4, . . .) ∈ P∧ maps to zero in M∧ but is not in the image of K∧ → P∧,
because it would be the image of (t, t, t, . . .) which is not an element of K∧.

A “smaller” example is the following. In the situation of Lemma 8.1 the short exact
sequence 0→ J → R→ R/J → 0 does not remain exact after completion. Namely,
if f ∈ J is a generator, then f : R → J is surjective, hence R → J∧ is surjective,
hence the image of J∧ → R is (f) = J but the fact that R/J is noncomplete means
that the kernel of the surjection R→ (R/J)∧ is strictly bigger than J , see Algebra,
Lemmas 96.1 and 96.10. By the same token the sequence R → R → R/(f) → 0
does not remain exact on completion.

Lemma 9.1.05JG Completion is not an exact functor in general; it is not even right
exact in general. This holds even when I is finitely generated on the category of
finitely presented modules.

Proof. See discussion above. □

https://stacks.math.columbia.edu/tag/05JE
https://stacks.math.columbia.edu/tag/05JG
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10. The category of complete modules is not abelian

07JQ Let R be a ring and let I ⊂ R be a finitely generated ideal. Consider the category
A of I-adically complete R-modules, see Algebra, Definition 96.2. Let φ : M → N
be a morphism of A. The cokernel of φ in A is the completion (Coker(φ))∧ of the
usual cokernel (as I is finitely generated this completion is complete, see Algebra,
Lemma 96.3). Let K = Ker(φ). We claim that K is complete and hence is the
kernel of φ in A. Namely, let K∧ be the completion. As M is complete we obtain
a factorization

K → K∧ →M
φ−→ N

Since φ is continuous for the I-adic topology, K → K∧ has dense image, and
K = Ker(φ) we conclude that K∧ maps into K. Thus K∧ = K ⊕ C and K is a
direct summand of a complete module, hence complete.

We will give an example that shows that Im ̸= Coim in general. We take R = Zp =
limn Z/pnZ to be the ring of p-adic integers and we take I = (p). Consider the
map

diag(1, p, p2, . . .) :
(⊕

n≥1
Zp

)∧
−→

∏
n≥1

Zp

where the left hand side is the p-adic completion of the direct sum. Hence an
element of the left hand side is a vector (x1, x2, x3, . . .) with xi ∈ Zp with p-adic
valuation vp(xi) → ∞ as i → ∞. This maps to (x1, px2, p

2x3, . . .). Hence we
see that (1, p, p2, . . .) is in the closure of the image but not in the image. By our
description of kernels and cokernels above it is clear that Im ̸= Coim for this map.

Lemma 10.1.07JR Let R be a ring and let I ⊂ R be a finitely generated ideal. The cat-
egory of I-adically complete R-modules has kernels and cokernels but is not abelian
in general.

Proof. See above. □

11. The category of derived complete modules

0ARC Please read More on Algebra, Section 92 before reading this section.

Let A be a ring, let I be an ideal of A, and denote C the category of derived
complete modules as defined in More on Algebra, Definition 91.4.

Let T be a set and let Mt, t ∈ T be a family of derived complete modules. We claim
that in general

⊕
Mt is not a derived complete module. For a specific example,

let A = Zp and I = (p) and consider
⊕

n∈N Zp. The map from
⊕

n∈N Zp to its
p-adic completion isn’t surjective. This means that

⊕
n∈N Zp cannot be derived

complete as this would imply otherwise, see More on Algebra, Lemma 91.3. Hence
the inclusion functor C → ModA does not commute with either direct sums or
(filtered) colimits.

Assume I is finitely generated. By the discussion in More on Algebra, Section 92
the category C has arbitrary colimits. However, we claim that filtered colimits are
not exact in the category C. Namely, suppose that A = Zp and I = (p). One
has inclusions fn : Zp/pZp → Zp/p

nZp of p-adically complete A-modules given by

https://stacks.math.columbia.edu/tag/07JR
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multiplication by pn−1. There are commutative diagrams

Zp/pZp
fn

//

1
��

Zp/p
nZp

p

��
Zp/pZp

fn+1// Zp/p
n+1Zp

We claim: the colimit of these inclusions in the category C gives the map Zp/pZp →
0. Namely, the colimit in ModA of the system on the right is Qp/Zp. Thus the
colimit in C is

H0((Qp/Zp)∧) = H0(Zp[1]) = 0
by More on Algebra, Section 92 where ∧ is derived completion. This proves our
claim.

Lemma 11.1.0ARD Let A be a ring and let I ⊂ A be an ideal. The category C of
derived complete modules is abelian and the inclusion functor F : C → ModA is
exact and commutes with arbitrary limits. If I is finitely generated, then C has
arbitrary direct sums and colimits, but F does not commute with these in general.
Finally, filtered colimits are not exact in C in general, hence C is not a Grothendieck
abelian category.

Proof. See More on Algebra, Lemma 92.1 and discussion above. □

12. Nonflat completions

0AL8 The completion of a ring with respect to an ideal isn’t always flat, contrary to
the Noetherian case. We have seen two examples of this phenomenon in More on
Algebra, Example 90.10. In this section we give two more examples.

Lemma 12.1.0AL9 Let R be a ring. Let M be an R-module which is countable. Then
M is a finite R-module if and only if M ⊗R RN →MN is surjective.

Proof. If M is a finite module, then the map is surjective by Algebra, Proposi-
tion 89.2. Conversely, assume the map is surjective. Let m1,m2,m3, . . . be an
enumeration of the elements of M . Let

∑
j=1,...,m xj ⊗ aj be an element of the

tensor product mapping to the element (mn) ∈MN. Then we see that x1, . . . , xm

generate M over R as in the proof of Algebra, Proposition 89.2. □

Lemma 12.2.0ALA Let R be a countable ring. Let M be a countable R-module. Then
M is finitely presented if and only if the canonical map M ⊗R RN → MN is an
isomorphism.

Proof. If M is a finitely presented module, then the map is an isomorphism by
Algebra, Proposition 89.3. Conversely, assume the map is an isomorphism. By
Lemma 12.1 the module M is finite. Choose a surjection R⊕m → M with kernel
K. ThenK is countable as a submodule ofR⊕m. Arguing as in the proof of Algebra,
Proposition 89.3 we see that K ⊗R RN → KN is surjective. Hence we conclude
that K is a finite R-module by Lemma 12.1. Thus M is finitely presented. □

Lemma 12.3.0ALB Let R be a countable ring. Then R is coherent if and only if RN

is a flat R-module.

https://stacks.math.columbia.edu/tag/0ARD
https://stacks.math.columbia.edu/tag/0AL9
https://stacks.math.columbia.edu/tag/0ALA
https://stacks.math.columbia.edu/tag/0ALB
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Proof. If R is coherent, then RN is a flat module by Algebra, Proposition 90.6.
Assume RN is flat. Let I ⊂ R be a finitely generated ideal. To prove the lemma we
show that I is finitely presented as an R-module. Namely, the map I⊗RR

N → RN

is injective as RN is flat and its image is IN by Lemma 12.1. Thus we conclude by
Lemma 12.2. □

Let R be a countable ring. Observe that R[[x]] is isomorphic to RN as an R-module.
By Lemma 12.3 we see that R → R[[x]] is flat if and only if R is coherent. There
are plenty of noncoherent countable rings, for example

R = k[y, z, a1, b1, a2, b2, a3, b3, . . .]/(a1y + b1z, a2y + b2z, a3y + b3z, . . .)

where k is a countable field. This ring is not coherent because the ideal (y, z) of R
is not a finitely presented R-module. Note that R[[x]] is the completion of R[x] by
the principal ideal (x).

Lemma 12.4.0ALC There exists a ring such that the completion R[[x]] of R[x] at (x)
is not flat over R and a fortiori not flat over R[x].

Proof. See discussion above. □

It turns out there is a ring R such that R[[x]] is flat over R, but R[[x]] is not flat over
R[x]. See this post by Badam Baplan. Namely, let R be a valuation ring. Then
R is coherent (Algebra, Example 90.2) and hence R[[x]] is flat over R by Algebra,
Proposition 90.6. On the other hand, we have the following lemma.

Lemma 12.5.0F1Y Let R be a domain with fraction field K. If R[[x]] is flat over R[x],
then R is normal if and only if R is completely normal (Algebra, Definition 37.3).

Proof. Suppose we have α ∈ K and a nonzero r ∈ R such that rαn ∈ R for all
n ≥ 1. Then we consider f =

∑
rαn−1xn in R[[x]]. Write α = a/b for a, b ∈ R

with b nonzero. Then we see that (ax− b)f = −rb. It follows that rb is in the ideal
(ax − b)R[[x]]. Let S = {h ∈ R[x] : h(0) = 1}. This is a multiplicative subset and
flatness of R[x] → R[[x]] implies that S−1R[x] → R[[x]] is faithfully flat (details
omitted; hint: use Algebra, Lemma 39.16). Hence

S−1R/(ax− b)S−1R→ R[[x]]/(ax− b)R[[x]]

is injective. We conclude that hrb = (ax−b)g for some h ∈ S and g ∈ R[x]. Writing
h = 1 + h1x+ . . .+ hdx

d shows that we obtain

1 + h1x+ . . .+ hdx
d = (1/r)(αx− 1)g

This factorization inK[x] gives a corresponding factorization inK[x−1] which shows
that α is the root of a monic polynomial with coefficients in R as desired. □

Lemma 12.6.0F1Z If R is a valuation ring of dimension > 1, then R[[x]] is flat over
R but not flat over R[x].

Proof. The arguments above show that this is true if we can show that R is not
completely normal (valuation rings are normal, see Algebra, Lemma 50.3). Let
p ⊂ m ⊂ R be a chain of primes. Pick nonzero x ∈ p and y ∈ m\p. Then xy−n ∈ R
for all n ≥ 1 (if not then yn/x ∈ R which is absurd because y ̸∈ p). Hence 1/y is
almost integral over R but not in R. □

https://stacks.math.columbia.edu/tag/0ALC
https://math.stackexchange.com/users/164860/badam-baplan
https://stacks.math.columbia.edu/tag/0F1Y
https://stacks.math.columbia.edu/tag/0F1Z


EXAMPLES 12

Next, we will construct an example where the completion of a localization is nonflat.
To do this consider the ring

R = k[y, z, a1, a2, a3, . . .]/(yai, aiaj)

Denote f ∈ R the residue class of z. We claim the ring map

(12.6.1)0ALD R[[x]] −→ Rf [[x]]

isn’t flat. Let I be the kernel of y : R[[x]]→ R[[x]]. A typical element g of I looks
like g =

∑
gn,mamx

n where gn,m ∈ k[z] and for a given n only a finite number
of nonzero gn,m. Let J be the kernel of y : Rf [[x]] → Rf [[x]]. We claim that
J ̸= IRf [[x]]. Namely, if this were true then we would have∑

z−nanx
n =

∑
i=1,...,m

higi

for some m ≥ 1, gi ∈ I, and hi ∈ Rf [[x]]. Say hi = h̄i mod (y, a1, a2, a3, . . .) with
h̄i ∈ k[z, 1/z][[x]]. Looking at the coefficient of an and using the description of the
elements gi above we would get

z−nxn =
∑

h̄iḡi,n

for some ḡi,n ∈ k[z][[x]]. This would mean that all z−nxn are contained in the finite
k[z][[x]]-module generated by the elements h̄i. Since k[z][[x]] is Noetherian this
implies that the R[z][[x]]-submodule of k[z, 1/z][[x]] generated by 1, z−1x, z−2x2, . . .
is finite. By Algebra, Lemma 36.2 we would conclude that z−1x is integral over
k[z][[x]] which is absurd. On the other hand, if (12.6.1) were flat, then we would
get J = IRf [[x]] by tensoring the exact sequence 0 → I → R[[x]] y−→ R[[x]] with
Rf [[x]].

Lemma 12.7.0ALE There exists a ring A complete with respect to a principal ideal I
and an element f ∈ A such that the I-adic completion A∧

f of Af is not flat over A.

Proof. Set A = R[[x]] and I = (x) and observe that Rf [[x]] is the completion of
R[[x]]f . □

13. Nonabelian category of quasi-coherent modules

0ALF In Sheaves on Stacks, Section 11 we defined the category of quasi-coherent modules
on a category fibred in groupoids over Sch. Although we show in Sheaves on Stacks,
Section 15 that this category is abelian for algebraic stacks, in this section we show
that this is not the case for formal algebraic spaces.

Namely, consider Zp viewed as topological ring using the p-adic topology. Let
X = Spf(Zp), see Formal Spaces, Definition 9.9. Then X is a sheaf in sets on
(Sch/Z)fppf and gives rise to a stack in setoids X , see Stacks, Lemma 6.2. Thus
the discussion of Sheaves on Stacks, Section 15 applies.

Let F be a quasi-coherent module on X . Since X = colim Spec(Z/pnZ) it is clear
from Sheaves on Stacks, Lemma 12.2 that F is given by a sequence (Fn) where

(1) Fn is a quasi-coherent module on Spec(Z/pnZ), and
(2) the transition maps give isomorphisms Fn = Fn+1/p

nFn+1.

https://stacks.math.columbia.edu/tag/0ALE
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Converting into modules we see that F corresponds to a system (Mn) where each
Mn is an abelian group annihilated by pn and the transition maps induce isomor-
phisms Mn = Mn+1/p

nMn+1. In this situation the module M = limMn is a
p-adically complete module and Mn = M/pnM , see Algebra, Lemma 98.2. We
conclude that the category of quasi-coherent modules on X is equivalent to the
category of p-adically complete abelian groups. This category is not abelian, see
Section 10.

Lemma 13.1.0ALG The category of quasi-coherent1 modules on a formal algebraic space
X is not abelian in general, even if X is a Noetherian affine formal algebraic space.

Proof. See discussion above. □

14. Regular sequences and base change

063Z We are going to construct a ring R with a regular sequence (x, y, z) such that there
exists a nonzero element δ ∈ R/zR with xδ = yδ = 0.

To construct our example we first construct a peculiar module E over the ring
k[x, y, z] where k is any field. Namely, E will be a push-out as in the following
diagram

xk[x,y,z,y−1]
xyk[x,y,z]

//

z/x

��

k[x,y,z,x−1,y−1]
yk[x,y,z,x−1]

//

��

k[x,y,z,x−1,y−1]
yk[x,y,z,x−1]+xk[x,y,z,y−1]

��
k[x,y,z,y−1]
yzk[x,y,z]

// E // k[x,y,z,x−1,y−1]
yk[x,y,z,x−1]+xk[x,y,z,y−1]

where the rows are short exact sequences (we dropped the outer zeros due to type-
setting problems). Another way to describe E is as

E = {(f, g) | f ∈ k[x, y, z, x−1, y−1], g ∈ k[x, y, z, y−1]}/ ∼

where (f, g) ∼ (f ′, g′) if and only if there exists a h ∈ k[x, y, z, y−1] such that

f = f ′ + xh mod yk[x, y, z, x−1], g = g′ − zh mod yzk[x, y, z]

We claim: (a) x : E → E is injective, (b) y : E/xE → E/xE is injective, (c)
E/(x, y)E = 0, (d) there exists a nonzero element δ ∈ E/zE such that xδ = yδ = 0.

To prove (a) suppose that (f, g) is a pair that gives rise to an element of E and
that (xf, xg) ∼ 0. Then there exists a h ∈ k[x, y, z, y−1] such that xf + xh ∈
yk[x, y, z, x−1] and xg − zh ∈ yzk[x, y, z]. We may assume that h =

∑
ai,j,kx

iyjzk

is a sum of monomials where only j ≤ 0 occurs. Then xg − zh ∈ yzk[x, y, z]
implies that only i > 0 occurs, i.e., h = xh′ for some h′ ∈ k[x, y, z, y−1]. Then
(f, g) ∼ (f +xh′, g− zh′) and we see that we may assume that g = 0 and h = 0. In
this case xf ∈ yk[x, y, z, x−1] implies f ∈ yk[x, y, z, x−1] and we see that (f, g) ∼ 0.
Thus x : E → E is injective.

1With quasi-coherent modules as defined above. Due to how things are setup in the Stacks
project, this is really the correct definition; as seen above our definition agrees with what one
would naively have defined to be quasi-coherent modules on Spf(A), namely complete A-modules.

https://stacks.math.columbia.edu/tag/0ALG
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Since multiplication by x is an isomorphism on k[x,y,z,x−1,y−1]
yk[x,y,z,x−1] we see that E/xE is

isomorphic to
k[x, y, z, y−1]

yzk[x, y, z] + xk[x, y, z, y−1] + zk[x, y, z, y−1] = k[x, y, z, y−1]
xk[x, y, z, y−1] + zk[x, y, z, y−1]

and hence multiplication by y is an isomorphism on E/xE. This clearly implies (b)
and (c).
Let e ∈ E be the equivalence class of (1, 0). Suppose that e ∈ zE. Then there exist
f ∈ k[x, y, z, x−1, y−1], g ∈ k[x, y, z, y−1], and h ∈ k[x, y, z, y−1] such that

1 + zf + xh ∈ yk[x, y, z, x−1], 0 + zg − zh ∈ yzk[x, y, z].
This is impossible: the monomial 1 cannot occur in zf , nor in xh. On the other
hand, we have ye = 0 and xe = (x, 0) ∼ (0,−z) = z(0,−1). Hence setting δ equal
to the congruence class of e in E/zE we obtain (d).

Lemma 14.1.0640 There exists a local ring R and a regular sequence x, y, z (in the
maximal ideal) such that there exists a nonzero element δ ∈ R/zR with xδ = yδ = 0.

Proof. Let R = k[x, y, z]⊕E where E is the module above considered as a square
zero ideal. Then it is clear that x, y, z is a regular sequence in R, and that the
element δ ∈ E/zE ⊂ R/zR gives an element with the desired properties. To get a
local example we may localize R at the maximal ideal m = (x, y, z, E). The sequence
x, y, z remains a regular sequence (as localization is exact), and the element δ
remains nonzero as it is supported at m. □

Lemma 14.2.0641 There exists a local homomorphism of local rings A → B and a
regular sequence x, y in the maximal ideal of B such that B/(x, y) is flat over A,
but such that the images x, y of x, y in B/mAB do not form a regular sequence, nor
even a Koszul-regular sequence.

Proof. Set A = k[z](z) and let B = (k[x, y, z]⊕E)(x,y,z,E). Since x, y, z is a regular
sequence in B, see proof of Lemma 14.1, we see that x, y is a regular sequence in B
and that B/(x, y) is a torsion free A-module, hence flat. On the other hand, there
exists a nonzero element δ ∈ B/mAB = B/zB which is annihilated by x, y. Hence
H2(K•(B/mAB, x, y)) ̸= 0. Thus x, y is not Koszul-regular, in particular it is not
a regular sequence, see More on Algebra, Lemma 30.2. □

15. A Noetherian ring of infinite dimension

02JC A Noetherian local ring has finite dimension as we saw in Algebra, Proposition
60.9. But there exist Noetherian rings of infinite dimension. See [Nag62, Appendix,
Example 1].
Namely, let k be a field, and consider the ring

R = k[x1, x2, x3, . . .].
Let pi = (x2i−1 , x2i−1+1, . . . , x2i−1) for i = 1, 2, . . . which are prime ideals of R. Let
S be the multiplicative subset

S =
⋂

i≥1
(R \ pi).

Consider the ring A = S−1R. We claim that
(1) The maximal ideals of the ring A are the ideals mi = piA.

https://stacks.math.columbia.edu/tag/0640
https://stacks.math.columbia.edu/tag/0641
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(2) We have Ami
= Rpi

which is a Noetherian local ring of dimension 2i.
(3) The ring A is Noetherian.

Hence it is clear that this is the example we are looking for. Details omitted.

16. Local rings with nonreduced completion

02JD In Algebra, Example 119.5 we gave an example of a characteristic p Noetherian
local domain R of dimension 1 whose completion is nonreduced. In this section
we present the example of [FR70, Proposition 3.1] which gives a similar ring in
characteristic zero.
Let C{x} be the ring of convergent power series over the field C of complex numbers.
The ring of all power series C[[x]] is its completion. Let K = C{x}[1/x] be the
field of convergent Laurent series. The K-module ΩK/C of algebraic differentials
of K over C is an infinite dimensional K-vector space (proof omitted). We may
choose fn ∈ xC{x}, n ≥ 1 such that dx, df1,df2, . . . are part of a basis of ΩK/C.
Thus we can find a C-derivation

D : C{x} −→ C((x))
such that D(x) = 0 and D(fi) = x−n. Let

A = {f ∈ C{x} | D(f) ∈ C[[x]]}
We claim that

(1) C{x} is integral over A,
(2) A is a local domain,
(3) dim(A) = 1,
(4) the maximal ideal of A is generated by x and xf1,
(5) A is Noetherian, and
(6) the completion of A is equal to the ring of dual numbers over C[[x]].

Since the dual numbers are nonreduced the ring A gives the example.
Note that if 0 ̸= f ∈ xC{x} then we may write D(f) = h/fn for some n ≥ 0 and
h ∈ C[[x]]. Hence D(fn+1/(n + 1)) ∈ C[[x]] and D(fn+2/(n + 2)) ∈ C[[x]]. Thus
we see fn+1, fn+2 ∈ A! In particular we see (1) holds. We also conclude that the
fraction field of A is equal to the fraction field of C{x}. It also follows immediately
that A∩xC{x} is the set of nonunits of A, hence A is a local domain of dimension 1.
If we can show (4) then it will follow that A is Noetherian (proof omitted). Suppose
that f ∈ A ∩ xC{x}. Write D(f) = h, h ∈ C[[x]]. Write h = c + xh′ with c ∈ C,
h′ ∈ C[[x]]. Then D(f−cxf1) = c+xh′−c = xh′. On the other hand f−cxf1 = xg
with g ∈ C{x}, but by the computation above we have D(g) = h′ ∈ C[[x]] and
hence g ∈ A. Thus f = cxf1 + xg ∈ (x, xf1) as desired.
Finally, why is the completion of A nonreduced? Denote Â the completion of A.
Of course this maps surjectively to the completion C[[x]] of C{x} because x ∈ A.
Denote this map ψ : Â → C[[x]]. Above we saw that mA = (x, xf1) and hence
D(mn

A) ⊂ (xn−1) by an easy computation. Thus D : A→ C[[x]] is continuous and
gives rise to a continuous derivation D̂ : Â → C[[x]] over ψ. Hence we get a ring
map

ψ + ϵD̂ : Â −→ C[[x]][ϵ].
Since Â is a one dimensional Noetherian complete local ring, if we can show this
arrow is surjective then it will follow that Â is nonreduced. Actually the map is an
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isomorphism but we omit the verification of this. The subring C[x](x) ⊂ A gives
rise to a map i : C[[x]] → Â on completions such that i ◦ ψ = id and such that
D ◦ i = 0 (as D(x) = 0 by construction). Consider the elements xnfn ∈ A. We
have

(ψ + ϵD)(xnfn) = xnfn + ϵ

for all n ≥ 1. Surjectivity easily follows from these remarks.

17. Another local ring with nonreduced completion

0GHH In this section we make an example of a Noetherian local domain of dimension 2
complete with respect to a principal ideal such that the recompletion of a localiza-
tion is nonreduced.

Let p be a prime number. Let k be a field of characteristic p such that k has
infinite degree over its subfield kp of pth powers. For example k = Fp(t1, t2, t3, . . .).
Consider the ring

A =
{∑

ai,jx
iyj ∈ k[[x, y]] such that for all n ≥ 0 we have

[kp(an,n, an,n+1, an+1,n, an,n+2, an+2,n, . . .) : kp] <∞

}
As a set we have

kp[[x, y]] ⊂ A ⊂ k[[x, y]]
Every element f of A can be uniquely written as a series

f = f0 + f1xy + f2(xy)2 + f3(xy)3 + . . .

with
fn = an,n + an,n+1y + an+1,nx+ an,n+2y

2 + an+2,nx
2 + . . .

and the condition in the formula defining A means that the coefficients of fn gen-
erate a finite extension of kp. From this presentation it is clear that A is an
kp[[x, y]]-subalgebra of k[[x, y]] complete with respect to the ideal xy. Moreover,
we clearly have

A/xyA = C ×k D

where kp[[x]] ⊂ C ⊂ k[[x]] and kp[[y]] ⊂ D ⊂ k[[y]] are the subrings of power series
from Algebra, Example 119.5. Hence C and D are dvrs and we see that A/xyA
is Noetherian. By Algebra, Lemma 97.5 we conclude that A is Noetherian. Since
dim(k[[x, y]]) = 2 using Algebra, Lemma 112.4 we conclude that dim(A) = 2.

Let f =
∑
aix

i be a power series such that kp(a0, a1, a2, . . .) has infinite degree
over kp. Then f ̸∈ A but fp ∈ A. We set

B = A[f ] ⊂ k[[x, y]]

Since B is finite over A we see that B is Noetherian. Also, B is complete with
respect to the ideal generated by xy, see Algebra, Lemma 97.1. In fact B is free
over A with basis 1, f, f2, . . . , fp−1; we omit the proof.

We claim the ring

(By)∧ = (B[1/y])∧ = limB[1/y]/(xy)nB[1/y] = limB[1/y]/xnB[1/y]

is nonreduced. Namely, this ring is free over

(Ay)∧ = (A[1/y])∧ = limA[1/y]/(xy)nA[1/y] = limA[1/y]/xnA[1/y]
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with basis 1, f, . . . , fp−1. However, there is an element g ∈ (Ay)∧ such that fp = gp.
Namely, we can just take g =

∑
aix

i (the same expression as we used for f) which
makes sense in (Ay)∧. Hence we see that

(By)∧ = (Ay)∧[f ]/(fp − gp) ∼= (Ay)∧[τ ]/(τp)
is nonreduced. In fact, this example shows slightly more. Namely, observe that
(Ay)∧ is a dvr with uniformizer x and residue field the fraction field of the dvr D
given above. Hence we see that even

(By)∧[1/(xy)] = ((By)∧)xy

is nonreduced. This produces an example of the following kind.

Lemma 17.1.0GHI There exists a local Noetherian 2-dimensional domain (B,m) com-
plete with respect to a principal ideal I = (b) and an element f ∈ m, f ̸∈ I such
that the I-adic completion C = (Bf )∧ of the principal localization Bf is nonreduced
and even such that Cb = C[1/b] = (Bf )∧[1/b] is nonreduced.

Proof. See discussion above. □

18. A non catenary Noetherian local ring

02JE Even though there is a succesful dimension theory of Noetherian local rings there
are non-catenary Noetherian local rings. An example may be found in [Nag62,
Appendix, Example 2]. In fact, we will present this example in the simplest case.
Namely, we will construct a local Noetherian domain A of dimension 2 which is
not universally catenary. (Note that A is automatically catenary, see Exercises,
Exercise 18.3.) The existence of a Noetherian local ring which is not universally
catenary implies the existence of a Noetherian local ring which is not catenary –
and we spell this out at the end of this section in the particular example at hand.
Let k be a field, and consider the formal power series ring k[[x]] in one variable over
k. Let

z =
∑∞

i=1
aix

i

be a formal power series. We assume z as an element of the Laurent series field
k((x)) = k[[x]][1/x] is transcendental over k(x). Put

zj = x−j(z −
∑

i=1,...,j−1
aix

i) =
∑∞

i=j
aix

i−j ∈ k[[x]].

Note that z = xz1. Let R be the subring of k[[x]] generated by x, z and all of the
zj , in other words

R = k[x, z1, z2, z3, . . .] ⊂ k[[x]].
Consider the ideals m = (x) and n = (x− 1, z1, z2, . . .) of R.
We have xzj+1 + aj = zj . Hence R/m = k and m is a maximal ideal. Moreover,
any element of R not in m maps to a unit in k[[x]] and hence Rm ⊂ k[[x]]. In fact
it is easy to deduce that Rm is a discrete valuation ring and residue field k.
We claim that

R/(x− 1) = k[x, z1, z2, z3, . . .]/(x− 1) ∼= k[z].
Namely, the relation above implies that zj+1 = zj − aj − (x− 1)zj+1, and hence we
may express the class of zj+1 in terms of zj in the quotient R/(x − 1). Since the
fraction field of R has transcendence degree 2 over k by construction we see that

https://stacks.math.columbia.edu/tag/0GHI
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z is transcendental over k in R/(x − 1), whence the desired isomorphism. Hence
n = (x− 1, z) and is a maximal ideal. In fact the map

k[x, x−1, z](x−1,z) −→ Rn

is an isomorphism (since x−1 is invertible in Rn and since zj+1 = x−1zj − aj =
. . . = fj(x, x−1, z)). This shows that Rn is a regular local ring of dimension 2 and
residue field k.

Let S be the multiplicative subset

S = (R \m) ∩ (R \ n) = R \ (m ∪ n)

and set B = S−1R. We claim that
(1) The ring B is a k-algebra.
(2) The maximal ideals of the ring B are the two ideals mB and nB.
(3) The residue field at these maximal ideals is k.
(4) We have BmB = Rm and BnB = Rn which are Noetherian regular local

rings of dimensions 1 and 2.
(5) The ring B is Noetherian.

We omit the details of the verifications.

Whenever given a k-algebra B with the properties listed above we get an example
as follows. Take A = k + rad(B) ⊂ B with rad(B) = mB ∩ nB the Jacobson
radical. It is easy to see that B is finite over A and hence A is Noetherian by
Eakin’s theorem (see [Eak68], or [Nag62, Appendix A1], or insert future reference
here). Also A is a local domain with the same fraction field as B and residue field
k. Since the dimension of B is 2 we see that A has dimension 2 as well, by Algebra,
Lemma 112.4.

If A were universally catenary then the dimension formula, Algebra, Lemma 113.1
would give dim(BmB) = 2 contradiction.

Note that B is generated by one element over A. Hence B = A[x]/p for some prime
p of A[x]. Let m′ ⊂ A[x] be the maximal ideal corresponding to mB. Then on the
one hand dim(A[x]m′) = 3 and on the other hand

(0) ⊂ pA[x]m′ ⊂ m′A[x]m′

is a maximal chain of primes. Hence A[x]m′ is an example of a non catenary
Noetherian local ring.

19. Existence of bad local Noetherian rings

0AL7 Let (A,m, κ) be a Noetherian complete local ring. In [Lec86a] it was shown that
A is the completion of a Noetherian local domain if depth(A) ≥ 1 and A contains
either Q or Fp as a subring, or contains Z as a subring and A is torsion free as a Z-
module. This produces many examples of Noetherian local domains with “bizarre”
properties.

Applying this for example to A = C[[x, y]]/(y2) we find a Noetherian local domain
whose completion is nonreduced. Please compare with Section 16.

In [LLPY01] conditions were found that characterize when A is the completion of
a reduced local Noetherian ring.



EXAMPLES 19

In [Hei93] it was shown that A is the completion of a local Noetherian UFD R if
depth(A) ≥ 2 and A contains either Q or Fp as a subring, or contains Z as a subring
and A is torsion free as a Z-module. In particular R is normal (Algebra, Lemma
120.11) hence the henselization of R is a normal domain too (More on Algebra,
Lemma 45.6). Thus A as above is the completion of a henselian Noetherian local
normal domain (because the completion of R and its henselization agree, see More
on Algebra, Lemma 45.3).
Apply this to find a Noetherian local UFDR such thatR∧ ∼= C[[x, y, z, w]]/(wx,wy).
Note that Spec(R∧) is the union of a regular 2-dimensional and a regular 3-
dimensional component. The ring R cannot be universally catenary: Let

X −→ Spec(R)
be the blowing up of the maximal ideal. Then X is an integral scheme. There is a
closed point x ∈ X such that dim(OX,x) = 2, namely, on the level of the complete
local ring we pick x to lie on the strict transform of the 2-dimensional component
and not on the strict transform of the 3-dimensional component. By Morphisms,
Lemma 52.1 we see that R is not universally catenary. Please compare with Section
18.
The ring above is catenary (being a 3-dimensional local Noetherian UFD). However,
in [Ogo80] the author constructs a normal local Noetherian domain R with R∧ ∼=
C[[x, y, z, w]]/(wx,wy) such that R is not catenary. See also [Hei82] and [Lec86b].
In [Hei94] it was shown that A is the completion of a local Noetherian ring R with
an isolated singularity provided A contains either Q or Fp as a subring or A has
residue characteristic p > 0 and p cannot map to a nonzero zerodivisor in any
proper localization of A. Here we say a Noetherian local ring R has an isolated
singularity if Rp is a regular local ring for all nonmaximal primes p ⊂ R.
The papers [Nis12] and [Nis16] contain long lists of “bad” Noetherian local rings
with given completions. In particular it constructs an example of a 2-dimensional
Nagata local normal domain whose completion is C[[x, y, z]]/(yz) and one whose
completion is C[[x, y, z]]/(y2 − z3).
As an aside, in [Loe03] it was shown that A is the completion of an excellent
Noetherian local domain if A is reduced, equidimensional, and no integer in A is
a zero divisor. However, this doesn’t lead to “bad” Noetherian local rings as we
obtain excellent ones!

20. Dimension in Noetherian Jacobson rings

0EEH Let k be the algebraic closure of a finite field. Let A = k[x, y] and X = Spec(A).
Let C = V (x) be the y-axis (this could be any other 1-dimensional integral closed
subscheme of X). Let C1, C2, C3, . . . be an enumeration of the other integral closed
subschemes of X of dimension 1. Let p1, p2, p3, . . . be an enumeration of the closed
points of C.
Claim: for every n there exists an irreducible closed Zn ⊂ X of dimension 1 such
that

{pn} = Zn ∩ (C ∪ C1 ∪ . . . ∪ Cn)
set theoretically. To do this set Y = C ∪ C1 ∪ C2 ∪ . . . ∪ Cn. This is a reduced
affine algebraic scheme of dimension 1 over k. It is enough to find f ∈ k[x, y] with



EXAMPLES 20

V (f) ∩ Y = {pn} set theoretically because then we can take Zn to be a suitable
irreducible component of V (f). Since the restriction map

k[x, y] −→ Γ(Y,OY )
is surjective, it suffices to find a regular function g on Y whose zero set is {pn} set
theoretically. To see this is possible, we choose an effective Cartier divisor D ⊂ Y
whose support is pn (this is possible by Varieties, Lemma 38.3). Thus it suffices
to show that OX(ND) ∼= OX for some N > 0. But the Picard group of an affine
1-dimensional algebraic scheme over the algebraic closure of a finite field is torsion
(insert future reference here) and we conclude the claim is true.
Choose Zn as above for all n. Since k[x, y] is a UFD we may write Zn = V (fn)
for some irreducible element fn ∈ A. Let S ⊂ k[x, y] be the multiplicative subset
generated by f1, f2, f3, . . .. Consider the Noetherian ring B = S−1A.
Obviously, the ring map A → B identifies local rings and induces an injection
Spec(B)→ Spec(A). Moreover, looking at the curve C1 we see that only the points
of C∩C1 are removed when passing from Spec(A) to Spec(B). In particular, we see
that Spec(B) has an infinite number of maximal ideals corresponding to maximal
ideals of A. On the other hand, xB is a maximal ideal because the spectrum
of B/xB consists of a unique prime ideal as we removed all the closed points of
C = V (x) (but not the generic point). Finally, for i ≥ 1 consider the curve Ci.
Write Ci = V (gi) for gi ∈ A irreducible. If Ci = Zn for some n, then giB is the
unit ideal. If not, then all but finitely many of the closed points of Ci survive the
passage from A to B: namely, only the points of (Z1 ∪ . . . ∪ Zi−1 ∪ C) ∩ Ci are
removed from Ci.
The structure of the prime spectrum of B given above shows that B is Jacobson
by Algebra, Lemma 61.4. The maximal ideals are the maximal ideals of A which
are in Spec(B) (and there an inifinitude of these) together with the maximal ideal
xB. Thus we see that we have local rings of dimensions 1 and 2.

Lemma 20.1.0EEI There exists a Jacobson, universally catenary, Noetherian domain
B with maximal ideals m1,m2 such that dim(Bm1) = 1 and dim(Bm2) = 2.

Proof. The construction of B is given above. We just point out that B is univer-
sally catenary by Algebra, Lemma 105.4 and Morphisms, Lemma 17.5. □

21. Underlying space Noetherian not Noetherian

0G61 We give two examples to show that a scheme whose underlying topological space
is Noetherian may not be a Noetherian scheme.

Example 21.1.0G62 Let k be a field, and let A = k[x1, x2, x3, . . . ]/(x2
1, x

2
2, x

2
3, . . . ).

Any prime ideal of A contains the nilpotents x1, x2, x3, . . . , so p = (x1, x2, x3, . . . )
is the only prime ideal of A. Therefore the underlying topological space of SpecA
is a single point and in particular is Noetherian. However p is clearly not finitely
generated.

Example 21.2.0G63 Let k be a field, and let A ⊆ k[x, y] be the subring generated
by k and the monomials {xyi}i≥0. The prime ideals of A that do not contain x
are in one-to-one correspondence with the prime ideals of Ax

∼= k[x, x−1, y]. If p
is a prime ideal that does contain x, then it contains every xyi, i ≥ 0, because

https://stacks.math.columbia.edu/tag/0EEI
https://stacks.math.columbia.edu/tag/0G62
https://stacks.math.columbia.edu/tag/0G63
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(xyi)2 = x(xy2i) ∈ p and p is radical. Consequently p = ({xyi}i≥0). Therefore the
underlying topological space of SpecA is Noetherian, since it consists of the points
of the Noetherian scheme Spec(A[x, x−1, y]) and the prime ideal p. But the ring A
is non-Noetherian because p is not finitely generated. Note that in this example, A
also has the property of being a domain.

22. Non-quasi-affine variety with quasi-affine normalization

0271 The existence of an example of this kind is mentioned in [DG67, II Remark 6.6.13].
They refer to the fifth volume of EGA for such an example, but the fifth volume
did not appear.
Let k be a field. Let Y = A2

k \{(0, 0)}. We are going to construct a finite surjective
birational morphism π : Y −→ X with X a variety over k such that X is not
quasi-affine. Namely, consider the following curves in Y :

C1 : x = 0
C2 : y = 0

Note that C1∩C2 = ∅. We choose the isomorphism φ : C1 → C2, (0, y) 7→ (y−1, 0).
We claim there is a unique morphism π : Y → X as above such that

C1
id //

φ
// Y

π // X

is a coequalizer diagram in the category of varieties (and even in the category of
schemes). Accepting this for the moment let us show that such an X cannot be
quasi-affine. Namely, it is clear that we would get

Γ(X,OX) = {f ∈ k[x, y] | f(0, y) = f(y−1, 0)} = k ⊕ (xy) ⊂ k[x, y].
In particular these functions do not separate the points (1, 0) and (−1, 0) whose
images in X (we will see below) are distinct (if the characteristic of k is not 2).
To show that X exists consider the Zariski open D(x + y) ⊂ Y of Y . This is
the spectrum of the ring k[x, y, 1/(x + y)] and the curves C1, C2 are completely
contained in D(x+ y). Moreover the morphism

C1 ⨿ C2 −→ D(x+ y) ∩ Y = Spec(k[x, y, 1/(x+ y)])
is a closed immersion. It follows from More on Algebra, Lemma 5.1 that the ring

A = {f ∈ k[x, y, 1/(x+ y)] | f(0, y) = f(y−1, 0)}
is of finite type over k. On the other hand we have the open D(xy) ⊂ Y of Y which
is disjoint from the curves C1 and C2. It is the spectrum of the ring

B = k[x, y, 1/xy].
Note that we have Axy

∼= Bx+y (since A clearly contains the elements xyP (x, y) any
polynomial P and the element xy/(x+ y)). The scheme X is obtained by glueing
the affine schemes Spec(A) and Spec(B) using the isomorphism Axy

∼= Bx+y and
hence is clearly of finite type over k. To see that it is separated one has to show
that the ring map A ⊗k B → Bx+y is surjective. To see this use that A ⊗k B
contains the element xy/(x + y) ⊗ 1/xy which maps to 1/(x + y). The morphism
Y → X is given by the natural maps D(x+ y)→ Spec(A) and D(xy)→ Spec(B).
Since these are both finite we deduce that Y → X is finite as desired. We omit
the verification that X is indeed the coequalizer of the displayed diagram above,
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however, see (insert future reference for pushouts in the category of schemes here).
Note that the morphism π : Y → X does map the points (1, 0) and (−1, 0) to
distinct points in X because the function (x+y3)/(x+y)2 ∈ A has value 1/1, resp.
−1/(−1)2 = −1 which are always distinct (unless the characteristic is 2 – please
find your own points for characteristic 2). We summarize this discussion in the
form of a lemma.

Lemma 22.1.0272 Let k be a field. There exists a variety X whose normalization is
quasi-affine but which is itself not quasi-affine.

Proof. See discussion above and (insert future reference on normalization here).
□

23. Taking scheme theoretic images

0GIK Let k be a field. Let t be a variable. Let Y = Spec(k[t]) andX =
∐

n≥1 Spec(k[t]/(tn)).
Denote f : X → Y the morphism using the closed immersion Spec(k[t]/(tn)) →
Spec(k[t]) for each n ≥ 1. In this case we have

(1) The scheme theoretic image (Morphisms, Definition 6.2) of f is Y . On
the other hand, the image of f is the closed point t = 0 in Y . Thus the
underlying closed subset of the scheme theoretic image of f is not equal to
the closure of the image of f .

(2) The formation of the scheme theoretic image does not commute with re-
striction to the open subscheme V = Spec(k[t, 1/t]) ⊂ Y . Namely, the
preimage of V in X is empty and hence the scheme theoretic image of
f |f−1(V ) : f−1(V )→ V is the empty scheme. This is not equal to Y ∩ V .

24. Images of locally closed subsets

0GZL Chevalley’s theorem says that the image of a constructible set by a finitely pre-
sented morphism of affine schemes is constructible, see Algebra, Theorem 29.10
and Morphisms, Section 22. We will see the same thing does not hold for images
of locally closed subsets.
Let k be a field of characteristic 0. Consider the projection morphism
f : X = Spec(k[t, x1, x2, . . . , y1, y2, . . .]) −→ Spec(k[x1, x2, . . . , y1, y2, . . .]) = Y

This is a morphism of finite presentation. Let Z be the closed subset of X defined
by

x1(t− 1) = 0, x2(t− 1)(t− 2) = 0, x3(t− 1)(t− 2)(t− 3) = 0, . . .

Let U =
⋃

j≥1 Uj be the open of X defined by

Uj = points where yj(t− 1)(t− 2)...(t− j) is nonzero
Then we have

f(Z ∩ Uj) = points where x1, . . . , xj are zero and yj is nonzero
We claim that B = f(Z∩U) =

⋃
j≥1 f(Z∩Uj) is not a finite union of locally closed

subsets of Y .
Proof of the claim. Suppose that B = A1∪ · · ·∪Am is a finite cover of B by locally
closed subsets of Y . We will show by induction on n that m ≥ n. The base case
n = 1 is OK as B is nonempty. Assume n > 1 and that the induction hypothesis

https://stacks.math.columbia.edu/tag/0272
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holds for n − 1. Since the closure of B is (x1 = 0), one of the Ai must contain
some nonempty open subset of (x1 = 0). Then Ai must be open in (x1 = 0).
But any such open subset cannot contain a point with y1 = 0; indeed, for points
of B, y1 = 0 forces x2 = 0, and this shows B contains no neighborhood of (x, y)
inside (x1 = 0). Therefore, the remaining m−1 elements restrict to a constructible
cover of B ∩ (y1 = 0). However, observe that the right shift map xi 7→ xi+1,
yi 7→ yi+1 identifies B with B ∩ (y1 = 0)! Thus by induction hypothesis, we see
that m− 1 ≥ n− 1 and we conclde m ≥ n. This finishes the proof of the induction
step and thereby establishes the claim.

Lemma 24.1.0GZM There exists a morphism f : X → Y of finite presentation between
affine schemes and a locally closed subset T of X such that f(T ) is not a finite
union of locally closed subsets of Y .

Proof. See discussion above. □

25. A locally closed subscheme which is not open in closed

078B This is a copy of Morphisms, Example 3.4. Here is an example of an immersion
which is not a composition of an open immersion followed by a closed immersion.
Let k be a field. Let X = Spec(k[x1, x2, x3, . . .]). Let U =

⋃∞
n=1 D(xn). Then

U → X is an open immersion. Consider the ideals

In = (xn
1 , x

n
2 , . . . , x

n
n−1, xn − 1, xn+1, xn+2, . . .) ⊂ k[x1, x2, x3, . . .][1/xn].

Note that Ink[x1, x2, x3, . . .][1/xnxm] = (1) for any m ̸= n. Hence the quasi-
coherent ideals Ĩn on D(xn) agree on D(xnxm), namely Ĩn|D(xnxm) = OD(xnxm) if
n ̸= m. Hence these ideals glue to a quasi-coherent sheaf of ideals I ⊂ OU . Let
Z ⊂ U be the closed subscheme corresponding to I. Thus Z → X is an immersion.

We claim that we cannot factor Z → X as Z → Z → X, where Z → X is closed and
Z → Z is open. Namely, Z would have to be defined by an ideal I ⊂ k[x1, x2, x3, . . .]
such that In = Ik[x1, x2, x3, . . .][1/xn]. But the only element f ∈ k[x1, x2, x3, . . .]
which ends up in all In is 0! Hence I does not exist.

The morphism Z → X also gives an example of bad behaviour of scheme theoretic
images of immersions. Namely, the arguments above show that the scheme theoretic
image of the immersion Z → X is X. On the other hand, we see

(1) Z is not topologically dense in X, and
(2) the scheme theoretic image of Z = Z ∩ U → U is just Z. This is not equal

to U ∩X = U and hence formation of the scheme theoretic image in this
case does not commute with restrictions to opens.

26. Nonexistence of suitable opens

086G This section complements the results of Properties, Section 29.

Let k be a field and let A = k[z1, z2, z3, . . .]/I where I is the ideal generated by
all pairwise products zizj , i ̸= j, i, j ∈ N. Set S = Spec(A). Let s ∈ S be the
closed point corresponding to the maximal ideal (zi). We claim there is no quasi-
compact open V ⊂ S \ {s} which is dense in S \ {s}. Note that S \ {s} =

⋃
D(zi).

Each D(zi) is open and irreducible with generic point ηi. We conclude that ηi ∈ V
for all i. However, a principal affine open of S \ {s} is of the form D(f) where

https://stacks.math.columbia.edu/tag/0GZM
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f ∈ (z1, z2, . . .). Then f ∈ (z1, . . . , zn) for some n and we see that D(f) contains
only finitely many of the points ηi. Thus V cannot be quasi-compact.
Let k be a field and let B = k[x, z1, z2, z3, . . .]/J where J is the ideal generated
by the products xzi, i ∈ N and by all pairwise products zizj , i ̸= j, i, j ∈ N.
Set T = Spec(B). Consider the principal open U = D(x). We claim there is no
quasi-compact open V ⊂ S such that V ∩U = ∅ and V ∪U is dense in S. Let t ∈ T
be the closed point corresponding to the maximal ideal (x, zi). The closure of U in
T is U = U ∪{t}. Hence V ⊂

⋃
i D(zi) is a quasi-compact open. By the arguments

of the previous paragraph we see that V cannot be dense in
⋃
D(zi).

Lemma 26.1.086H Nonexistence quasi-compact opens of affines:
(1) There exist an affine scheme S and affine open U ⊂ S such that there is

no quasi-compact open V ⊂ S with U ∩ V = ∅ and U ∪ V dense in S.
(2) There exists an affine scheme S and a closed point s ∈ S such that S \ {s}

does not contain a quasi-compact dense open.

Proof. See discussion above. □

Let X be the glueing of two copies of the affine scheme T (see above) along the
affine open U . Thus there is a morphism π : X → T and X = U1 ∪ U2 such that π
maps Ui isomorphically to T and U1∩U2 isomorphically to U . Note that X is quasi-
separated (by Schemes, Lemma 21.6) and quasi-compact. We claim there does not
exist a separated, dense, quasi-compact open W ⊂ X. Namely, consider the two
closed points x1 ∈ U1, x2 ∈ U2 mapping to the closed point t ∈ T introduced
above. Let η̃ ∈ U1 ∩U2 be the generic point mapping to the (unique) generic point
η of U . Note that η̃ ⇝ x1 and η̃ ⇝ x2 lying over the specialization η ⇝ s. Since
π|W : W → T is separated we conclude that we cannot have both x1 and x2 ∈ W
(by the valuative criterion of separatedness Schemes, Lemma 22.2). Say x1 ̸∈ W .
Then W ∩U1 is a quasi-compact (as X is quasi-separated) dense open of U1 which
does not contain x1. Now observe that there exists an isomorphism (T, t) ∼= (S, s)
of schemes (by sending x to z1 and zi to zi+1). Hence by the first paragraph of this
section we arrive at a contradiction.

Lemma 26.2.086I There exists a quasi-compact and quasi-separated scheme X which
does not contain a separated quasi-compact dense open.

Proof. See discussion above. □

27. Nonexistence of quasi-compact dense open subscheme

087H Let X be a quasi-compact and quasi-separated algebraic space over a field k. We
know that the schematic locus X ′ ⊂ X is a dense open subspace, see Properties
of Spaces, Proposition 13.3. In fact, this result holds when X is reasonable, see
Decent Spaces, Proposition 10.1. A natural question is whether one can find a
quasi-compact dense open subscheme of X. It turns out this is not possible in
general.
Assume the characteristic of k is not 2. Let B = k[x, z1, z2, z3, . . .]/J where J is
the ideal generated by the products xzi, i ∈ N and by all pairwise products zizj ,
i ̸= j, i, j ∈ N. Set U = Spec(B). Denote 0 ∈ U the closed point all of whose
coordinates are zero. Set

j : R = ∆⨿ Γ −→ U ×k U

https://stacks.math.columbia.edu/tag/086H
https://stacks.math.columbia.edu/tag/086I
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where ∆ is the image of the diagonal morphism of U over k and

Γ = {((x, 0, 0, 0, . . .), (−x, 0, 0, 0, . . .)) | x ∈ A1
k, x ̸= 0}.

It is clear that s, t : R → U are étale, and hence j is an étale equivalence relation.
The quotient X = U/R is an algebraic space (Spaces, Theorem 10.5). Note that
j is not an immersion because (0, 0) ∈ ∆ is in the closure of Γ. Hence X is not a
scheme. On the other hand, X is quasi-separated as R is quasi-compact. Denote
0X the image of the point 0 ∈ U . We claim that X \ {0X} is a scheme, namely

X \ {0X} = Spec
(
k[x2, x−2]

)
⨿ Spec (k[z1, z2, z3, . . .]/(zizj)) \ {0}

(details omitted). On the other hand, we have seen in Section 26 that the scheme
on the right hand side does not contain a quasi-compact dense open.

Lemma 27.1.087I There exists a quasi-compact and quasi-separated algebraic space
which does not contain a quasi-compact dense open subscheme.

Proof. See discussion above. □

Using the construction of Spaces, Example 14.2 in the same manner as we used the
construction of Spaces, Example 14.1 above, one obtains an example of a quasi-
compact, quasi-separated, and locally separated algebraic space which does not
contain a quasi-compact dense open subscheme.

28. Affines over algebraic spaces

088V Suppose that f : Y → X is a morphism of schemes with f locally of finite type and
Y affine. Then there exists an immersion Y → An

X of Y into affine n-space over
X. See the slightly more general Morphisms, Lemma 39.2.

Now suppose that f : Y → X is a morphism of algebraic spaces with f locally of
finite type and Y an affine scheme. Then it is not true in general that we can find
an immersion of Y into affine n-space over X.

A first (nasty) counter example is Y = Spec(k) and X = [A1
k/Z] where k is a field

of characteristic zero and Z acts on A1
k by translation (n, t) 7→ t + n. Namely, for

any morphism Y → An
X over X we can pullback to the covering A1

k of X and we
get an infinite disjoint union of A1

k’s mapping into An+1
k which is not an immersion.

A second counter example is Y = A1
k → X = A1

k/R with R = {(t, t)}⨿{(t,−t), t ̸=
0}. Namely, in this case the morphism Y → An

X would be given by some regu-
lar functions f1, . . . , fn on Y and hence the fibre product of Y with the covering
An+1

k → An
X would be the scheme

{(f1(t), . . . , fn(t), t)} ⨿ {(f1(t), . . . , fn(t),−t), t ̸= 0}

with obvious morphism to An+1
k which is not an immersion. Note that this gives a

counter example with X quasi-separated.

Lemma 28.1.088W There exists a finite type morphism of algebraic spaces Y → X
with Y affine and X quasi-separated, such that there does not exist an immersion
Y → An

X over X.

Proof. See discussion above. □

https://stacks.math.columbia.edu/tag/087I
https://stacks.math.columbia.edu/tag/088W
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29. Pushforward of quasi-coherent modules

078C In Schemes, Lemma 24.1 we proved that f∗ transforms quasi-coherent modules into
quasi-coherent modules when f is quasi-compact and quasi-separated. Here are
some examples to show that these conditions are both necessary.

Suppose that Y = Spec(A) is an affine scheme and that X =
∐

n∈N Y . We claim
that f∗OX is not quasi-coherent where f : X → Y is the obvious morphism.
Namely, for a ∈ A we have

f∗OX(D(a)) =
∏

n∈N
Aa

Hence, in order for f∗OX to be quasi-coherent we would need∏
n∈N

Aa =
(∏

n∈N
A

)
a

for all a ∈ A. This isn’t true in general, for example if A = Z and a = 2, then
(1, 1/2, 1/4, 1/8, . . .) is an element of the left hand side which is not in the right
hand side. Note that f is a non-quasi-compact separated morphism.

Let k be a field. Set

A = k[t, z, x1, x2, x3, . . .]/(tx1z, t
2x2

2z, t
3x3

3z, . . .)

Let Y = Spec(A). Let V ⊂ Y be the open subscheme V = D(x1) ∪ D(x2) ∪ . . ..
Let X be two copies of Y glued along V . Let f : X → Y be the obvious morphism.
Then we have an exact sequence

0→ f∗OX → OY ⊕OY
(1,−1)−−−−→ j∗OV

where j : V → Y is the inclusion morphism. Since

A −→
∏

Axn

is injective (details omitted) we see that Γ(Y, f∗OX) = A. On the other hand, the
kernel of the map

At −→
∏

Atxn

is nonzero because it contains the element z. Hence Γ(D(t), f∗OX) is strictly bigger
than At because it contains (z, 0). Thus we see that f∗OX is not quasi-coherent.
Note that f is quasi-compact but non-quasi-separated.

Lemma 29.1.078D Schemes, Lemma 24.1 is sharp in the sense that one can neither
drop the assumption of quasi-compactness nor the assumption of quasi-separatedness.

Proof. See discussion above. □

30. A nonfinite module with finite free rank 1 stalks

065J Let R = Q[x]. Set M =
∑

n∈N
1

x−nR as a submodule of the fraction field of R.
Then M is not finitely generated, but for every prime p of R we have Mp

∼= Rp as
an Rp-module.

An example of a similar flavor is R = Z and M =
∑

p prime
1
p Z ⊂ Q, which equals

the set of fractions a
b with b nonzero and squarefree.

https://stacks.math.columbia.edu/tag/078D
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31. A noninvertible ideal invertible in stalks

0CBZ Let A be a domain and let I ⊂ A be a nonzero ideal. Recall that when we say I is
invertible, we mean that I is invertible as an A-module. We are going to make an
example of this situation where I is not invertible, yet Iq = (f) ⊂ Aq is a (nonzero)
principal ideal for every prime ideal q ⊂ A. In the literature the property that Iq is
principal for all primes q is sometimes expressed by saying “I is a locally principal
ideal”. We can’t use this terminology as our “local” always means “local in the
Zariski topology” (or whatever topology we are currently working with).

Let R = Q[x] and let M =
∑ 1

x−nR be the module constructed in Section 30.
Consider the ring2

A = Sym∗
R(M)

and the ideal I = MA =
⊕

d≥1 Symd
R(M). Since M is not finitely generated as

an R-module we see that I cannot be generated by finitely many elements as an
ideal in A. Since an invertible module is finitely generated, this means that I is
not invertible. On the other hand, let p ⊂ R be a prime ideal. By construction
Mp
∼= Rp. Hence

Ap = Sym∗
Rp

(Mp) ∼= Sym∗
Rp

(Rp) = Rp[T ]

as a graded Rp-algebra. It follows that Ip ⊂ Ap is generated by the nonzerodivisor
T . Thus certainly for any prime ideal q ⊂ A we see that Iq is generated by a single
element.

Lemma 31.1.0CC0 There exists a domain A and a nonzero ideal I ⊂ A such that
Iq ⊂ Aq is a principal ideal for all primes q ⊂ A but I is not an invertible A-
module.

Proof. See discussion above. □

32. A finite flat module which is not projective

052H This is a copy of Algebra, Remark 78.4. It is not true that a finite R-module which
is R-flat is automatically projective. A counter example is where R = C∞(R) is
the ring of infinitely differentiable functions on R, and M = Rm = R/I where
m = {f ∈ R | f(0) = 0} and I = {f ∈ R | ∃ϵ, ϵ > 0 : f(x) = 0 ∀x, |x| < ϵ}.

The morphism Spec(R/I)→ Spec(R) is also an example of a flat closed immersion
which is not open.

Lemma 32.1.05FY Strange flat modules.
(1) There exists a ring R and a finite flat R-module M which is not projective.
(2) There exists a closed immersion which is flat but not open.

Proof. See discussion above. □

2The ring A is an example of a non-Noetherian domain whose local rings are Noetherian.
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33. A projective module which is not locally free

05WG We give two examples. One where the rank is between 0 and 1 and one where the
rank is ℵ0.

Lemma 33.1.05WH Let R be a ring. Let I ⊂ R be an ideal generated by a countable
collection of idempotents. Then I is projective as an R-module.

Proof. Say I = (e1, e2, e3, . . .) with en an idempotent of R. After inductively
replacing en+1 by en + (1 − en)en+1 we may assume that (e1) ⊂ (e2) ⊂ (e3) ⊂ . . .
and hence I =

⋃
n≥1(en) = colimn enR. In this case

HomR(I,M) = HomR(colimn enR,M) = limn HomR(enR,M) = limn enM

Note that the transition maps en+1M → enM are given by multiplication by en and
are surjective. Hence by Algebra, Lemma 86.4 the functor HomR(I,M) is exact,
i.e., I is a projective R-module. □

Suppose that P ⊂ Q is an inclusion of R-modules with Q a finite R-module and
P locally free, see Algebra, Definition 78.1. Suppose that Q can be generated by
N elements as an R-module. Then it follows from Algebra, Lemma 15.7 that P is
finite locally free (with the free parts having rank at most N). And in this case P
is a finite R-module, see Algebra, Lemma 78.2.
Combining this with the above we see that a non-finitely-generated ideal which is
generated by a countable collection of idempotents is projective but not locally free.
An explicit example is R =

∏
n∈N F2 and I the ideal generated by the idempotents
en = (1, 1, . . . , 1, 0, . . .)

where the sequence of 1’s has length n.

Lemma 33.2.05WJ There exists a ring R and an ideal I such that I is projective as
an R-module but not locally free as an R-module.

Proof. See above. □

Lemma 33.3.05WK Let K be a field. Let Ci, i = 1, . . . , n be smooth, projective,
geometrically irreducible curves over K. Let Pi ∈ Ci(K) be a rational point and let
Qi ∈ Ci be a point such that [κ(Qi) : K] = 2. Then [P1 × . . . × Pn] is nonzero in
CH0(U1 ×K . . .×K Un) where Ui = Ci \ {Qi}.

Proof. There is a degree map deg : CH0(C1 ×K . . .×K Cn)→ Z Because each Qi

has degree 2 over K we see that any zero cycle supported on the “boundary”
C1 ×K . . .×K Cn \ U1 ×K . . .×K Un

has degree divisible by 2. □

We can construct another example of a projective but not locally free module
using the lemma above as follows. Let Cn, n = 1, 2, 3, . . . be smooth, projective,
geometrically irreducible curves over Q each with a pair of points Pn, Qn ∈ Cn such
that κ(Pn) = Q and κ(Qn) is a quadratic extension of Q. Set Un = Cn \ {Qn};
this is an affine curve. Let Ln be the inverse of the ideal sheaf of Pn on Un. Note
that c1(Ln) = [Pn] in the group of zero cycles CH0(Un). Set An = Γ(Un,OUn

). Let
Ln = Γ(Un,Ln) which is a locally free module of rank 1 over An. Set

Bn = A1 ⊗Q A2 ⊗Q . . .⊗Q An

https://stacks.math.columbia.edu/tag/05WH
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so that Spec(Bn) = U1 × . . .× Un all products over Spec(Q). For i ≤ n we set

Ln,i = A1 ⊗Q . . .⊗Q Mi ⊗Q . . .⊗Q An

which is a locally free Bn-module of rank 1. Note that this is also the global sections
of pr∗

iLn. Set
B∞ = colimn Bn and L∞,i = colimn Ln,i

Finally, set
M =

⊕
i≥1

L∞,i.

This is a direct sum of finite locally free modules, hence projective. We claim that
M is not locally free. Namely, suppose that f ∈ B∞ is a nonzero function such that
Mf is free over (B∞)f . Let e1, e2, . . . be a basis. Choose n ≥ 1 such that f ∈ Bn.
Choose m ≥ n+ 1 such that e1, . . . , en+1 are in⊕

1≤i≤m
Lm,i.

Because the elements e1, . . . , en+1 are part of a basis after a faithfully flat base
change we conclude that the Chern classes

ci(pr∗
1L1 ⊕ . . .⊕ pr∗

mLm), i = m,m− 1, . . . ,m− n

are zero in the chow group of

D(f) ⊂ U1 × . . .× Um

Since f is the pullback of a function on U1× . . .×Un this implies in particular that

cm−n(O⊕n
W ⊕ pr∗

1Ln+1 ⊕ . . .⊕ pr∗
m−nLm) = 0.

on the variety
W = (Cn+1 × . . .× Cm)K

over the field K = Q(C1 × . . .× Cn). In other words the cycle

[(Pn+1 × . . .× Pm)K ]

is zero in the chow group of zero cycles on W . This contradicts Lemma 33.3 above
because the points Qi, n + 1 ≤ i ≤ m induce corresponding points Q′

i on (Cn)K

and as K/Q is geometrically irreducible we have [κ(Q′
i) : K] = 2.

Lemma 33.4.05WL There exists a countable ring R and a projective module M which
is a direct sum of countably many locally free rank 1 modules such that M is not
locally free.

Proof. See above. □

34. Zero dimensional local ring with nonzero flat ideal

05FZ In [Laz67] and [Laz69] there is an example of a zero dimensional local ring with a
nonzero flat ideal. Here is the construction. Let k be a field. Let Xi, Yi, i ≥ 1 be
variables. Take R = k[Xi, Yi]/(Xi − YiXi+1, Y

2
i ). Denote xi, resp. yi the image of

Xi, resp. Yi in this ring. Note that

xi = yixi+1 = yiyi+1xi+2 = yiyi+1yi+2xi+3 = . . .

in this ring. The ring R has only one prime ideal, namely m = (xi, yi). We claim
that the ideal I = (xi) is flat as an R-module.

https://stacks.math.columbia.edu/tag/05WL
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Note that the annihilator of xi in R is the ideal (x1, x2, x3, . . . , yi, yi+1, yi+2, . . .).
Consider the R-module M generated by elements ei, i ≥ 1 and relations ei = yiei+1.
Then M is flat as it is the colimit colimi R of copies of R with transition maps

R
y1−→ R

y2−→ R
y3−→ . . .

Note that the annihilator of ei in M is the ideal (x1, x2, x3, . . . , yi, yi+1, yi+2, . . .).
Since every element of M , resp. I can be written as fei, resp. hxi for some f, h ∈ R
we see that the map M → I, ei → xi is an isomorphism and I is flat.

Lemma 34.1.05G0 There exists a local ring R with a unique prime ideal and a nonzero
ideal I ⊂ R which is a flat R-module

Proof. See discussion above. □

35. An epimorphism of zero-dimensional rings which is not surjective

06RH In [Laz68] and [Laz69] one can find the following example. Let k be a field. Consider
the ring homomorphism

k[x1, x2, . . . , z1, z2, . . .]/(x4i

i , z
4i

i ) −→ k[x1, x2, . . . , y1, y2, . . .]/(x4i

i , yi − xi+1y
2
i+1)

which maps xi to xi and zi to xiyi. Note that y4i+1

i is zero in the right hand side
but that y1 is not zero (details omitted). This map is not surjective: we can think
of the above as a map of Z-graded algebras by setting deg(xi) = −1, deg(zi) = 0,
and deg(yi) = 1 and then it is clear that y1 is not in the image. Finally, the map
is an epimorphism because

yi−1 ⊗ 1 = xiy
2
i ⊗ 1 = yi ⊗ xiyi = xiyi ⊗ yi = 1⊗ xiy

2
i .

hence the tensor product of the target over the source is isomorphic to the target.

Lemma 35.1.06RI There exists an epimorphism of local rings of dimension 0 which
is not a surjection.

Proof. See discussion above. □

36. Finite type, not finitely presented, flat at prime

05G1 Let k be a field. Consider the local ring A0 = k[x, y](x,y). Denote p0,n = (y + xn +
x2n+1). This is a prime ideal. Set

A = A0[z1, z2, z3, . . .]/(znzm, zn(y + xn + x2n+1))

Note that A → A0 is a surjection whose kernel is an ideal of square zero. Hence
A is also a local ring and the prime ideals of A are in one-to-one correspondence
with the prime ideals of A0. Denote pn the prime ideal of A corresponding to p0,n.
Observe that pn is the annihilator of zn in A. Let

C = A[z]/(xz2 + z + y)[ 1
2zx+ 1]

Note that A→ C is an étale ring map, see Algebra, Example 137.8. Let q ⊂ C be
the maximal ideal generated by x, y, z and all zn. As A → C is flat we see that

https://stacks.math.columbia.edu/tag/05G0
https://stacks.math.columbia.edu/tag/06RI


EXAMPLES 31

the annihilator of zn in C is pnC. We compute

C/pnC = A0[z]/(xz2 + z + y, y + xn + x2n+1)[1/(2zx+ 1)]
= k[x](x)[z]/(xz2 + z − xn − x2n+1)[1/(2zx+ 1)]
= k[x](x)[z]/(z − xn)× k[x](x)[z]/(xz + xn+1 + 1)[1/(2zx+ 1)]
= k[x](x) × k(x)

because (z − xn)(xz + xn+1 + 1) = xz2 + z − xn − x2n+1. Hence we see that
pnC = rn ∩ qn with rn = pnC + (z − xn)C and qn = pnC + (xz + xn+1 + 1)C.
Since qn + rn = C we also get pnC = rnqn. It follows that qn is the annihilator
of ξn = (z − xn)zn. Observe that on the one hand rn ⊂ q, and on the other hand
qn + q = C. This follows for example because qn is a maximal ideal of C distinct
from q. Similarly we have qn + qm = C for n ̸= m. At this point we let

B = Im(C −→ Cq)

We observe that the elements ξn map to zero in B as xz + xn+1 + 1 is not in q.
Denote q′ ⊂ B the image of q. By construction B is a finite type A-algebra, with
Bq′ ∼= Cq. In particular we see that Bq′ is flat over A.

We claim there does not exist an element g′ ∈ B, g′ ̸∈ q′ such that Bg′ is of finite
presentation over A. We sketch a proof of this claim. Choose an element g ∈ C
which maps to g′ ∈ B. Consider the map Cg → Bg′ . By Algebra, Lemma 6.3 we
see that Bg is finitely presented over A if and only if the kernel of Cg → Bg′ is
finitely generated. But the element g ∈ C is not contained in q, hence maps to a
nonzero element of A0[z]/(xz2 + z + y). Hence g can only be contained in finitely
many of the prime ideals qn, because the primes (y + xn + x2n+1, xz + xn+1 + 1)
are an infinite collection of codimension 1 points of the 2-dimensional irreducible
Noetherian space Spec(k[x, y, z]/(xz2 + z + y)). The map⊕

g ̸∈qn

C/qn −→ Cg, (cn) −→
∑

cnξn

is injective and its image is the kernel of Cg → Bg′ . We omit the proof of this
statement. (Hint: Write A = A0 ⊕ I as an A0-module where I is the kernel of
A → A0. Similarly, write C = C0 ⊕ IC. Write IC =

⊕
Czn

∼=
⊕

(C/rn ⊕ C/qn)
and study the effect of multiplication by g on the summands.) This concludes the
sketch of the proof of the claim. This also proves that Bg′ is not flat over A for any
g′ as above. Namely, if it were flat, then the annihilator of the image of zn in Bg′

would be pnBg′ , and would not contain z − xn.

As a consequence we can answer (negatively) a question posed in [GR71, Part I,
Remarques (3.4.7) (v)]. Here is a precise statement.

Lemma 36.1.05G2 There exists a local ring A, a finite type ring map A → B and a
prime q lying over mA such that Bq is flat over A, and for any element g ∈ B,
g ̸∈ q the ring Bg is neither finitely presented over A nor flat over A.

Proof. See discussion above. □

37. Finite type, flat and not of finite presentation

05LB In this section we give some examples of ring maps and morphisms which are of
finite type and flat but not of finite presentation.
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Let R be a ring which has an ideal I such that R/I is a finite flat module but not
projective, see Section 32 for an explicit example. Note that this means that I is
not finitely generated, see Algebra, Lemma 108.5. Note that I = I2, see Algebra,
Lemma 108.2. The base ring in our examples will be R and correspondingly the
base scheme S = Spec(R).

Consider the ring map R→ R⊕R/Iϵ where ϵ2 = 0 by convention. This is a finite,
flat ring map which is not of finite presentation. All the fibre rings are complete
intersections and geometrically irreducible.

Let A = R[x, y]/(xy, ay; a ∈ I). Note that as an R-module we have A =
⊕

i≥0 Ry
i⊕⊕

j>0 R/Ix
j . Hence R → A is a flat finite type ring map which is not of finite

presentation. Each fibre ring is isomorphic to either κ(p)[x, y]/(xy) or κ(p)[x].

We can turn the previous example into a projective morphism by taking B =
R[X0, X1, X2]/(X1X2, aX2; a ∈ I). In this case X = Proj(B) → S is a proper flat
morphism which is not of finite presentation such that for each s ∈ S the fibre Xs is
isomorphic either to P1

s or to the closed subscheme of P2
s defined by the vanishing

of X1X2 (this is a projective nodal curve of arithmetic genus 0).

Let M = R ⊕ R ⊕ R/I. Set B = SymR(M) the symmetric algebra on M . Set
X = Proj(B). Then X → S is a proper flat morphism, not of finite presentation
such that for s ∈ S the geometric fibre is isomorphic to either P1

s or P2
s. In

particular these fibres are smooth and geometrically irreducible.

Lemma 37.1.05LC There exist examples of
(1) a flat finite type ring map with geometrically irreducible complete intersec-

tion fibre rings which is not of finite presentation,
(2) a flat finite type ring map with geometrically connected, geometrically re-

duced, dimension 1, complete intersection fibre rings which is not of finite
presentation,

(3) a proper flat morphism of schemes X → S each of whose fibres is isomor-
phic to either P1

s or to the vanishing locus of X1X2 in P2
s which is not of

finite presentation, and
(4) a proper flat morphism of schemes X → S each of whose fibres is isomor-

phic to either P1
s or P2

s which is not of finite presentation.

Proof. See discussion above. □

38. Topology of a finite type ring map

05JH Let A→ B be a local map of local domains. If A is Noetherian, A→ B is essentially
of finite type, and A/mA ⊂ B/mB is finite then there exists a prime q ⊂ B, q ̸= mB

such that A → B/q is the localization of a quasi-finite ring map. See More on
Morphisms, Lemma 52.6.

In this section we give an example that shows this result is false A is no longer
Noetherian. Namely, let k be a field and set

A = {a0 + a1x+ a2x
2 + . . . | a0 ∈ k, ai ∈ k((y)) for i ≥ 1}

and
C = {a0 + a1x+ a2x

2 + . . . | a0 ∈ k[y], ai ∈ k((y)) for i ≥ 1}.
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The inclusion A→ C is of finite type as C is generated by y over A. We claim that
A is a local ring with maximal ideal m = {a1x+a2x

2 + . . . ∈ A} and no prime ideals
besides (0) and m. Namely, an element f = a0 + a1x+ a2x

2 + . . . of A is invertible
as soon as a0 ̸= 0. If q ⊂ A is a nonzero prime ideal, and f = aix

i + . . . ∈ q,
then using properties of power series one sees that for any g ∈ k((y)) the element
gi+1xi+1 ∈ q, i.e., gx ∈ q. This proves that q = m.

As to the spectrum of the ring C, arguing in the same way as above we see that
any nonzero prime ideal contains the prime p = {a1x+ a2x

2 + . . . ∈ C} which lies
over m. Thus the only prime of C which lies over (0) is (0). Set mC = yC + p and
B = CmC

. Then A→ B is the desired example.

Lemma 38.1.05JI There exists a local homomorphism A→ B of local domains which
is essentially of finite type and such that A/mA → B/mB is finite such that for
every prime q ̸= mB of B the ring map A → B/q is not the localization of a
quasi-finite ring map.

Proof. See the discussion above. □

39. Pure not universally pure

05JJ Let k be a field. Let

R = k[[x, xy, xy2, . . .]] ⊂ k[[x, y]].

In other words, a power series f ∈ k[[x, y]] is in R if and only if f(0, y) is a constant.
In particular R[1/x] = k[[x, y]][1/x] and R/xR is a local ring with a maximal ideal
whose square is zero. Denote R[y] ⊂ k[[x, y]] the set of power series f ∈ k[[x, y]]
such that f(0, y) is a polynomial in y. Then R → R[y] is a finite type but not
finitely presented ring map which induces an isomorphism after inverting x. Also
there is a surjection R[y]/xR[y]→ k[y] whose kernel has square zero. Consider the
finitely presented ring map R→ S = R[t]/(xt− xy). Again R[1/x]→ S[1/x] is an
isomorphism and in this case S/xS ∼= (R/xR)[t]/(xy) maps onto k[t] with nilpotent
kernel. There is a surjection S → R[y], t 7−→ y which induces an isomorphism on
inverting x and a surjection with nilpotent kernel modulo x. Hence the kernel
of S → R[y] is locally nilpotent. In particular S → R[y] induces a universal
homeomorphism on spectra.

First we claim that S is an S-module which is relatively pure over R. Since on
inverting x we obtain an isomorphism we only need to check this at the maximal
ideal m ⊂ R. Since R is complete with respect to its maximal ideal it is henselian
hence we need only check that every prime p ⊂ R, p ̸= m, the unique prime q of
S lying over p satisfies mS + q ̸= S. Since p ̸= m it corresponds to a unique prime
ideal of k[[x, y]][1/x]. Hence either p = (0) or p = (f) for some irreducible element
f ∈ k[[x, y]] which is not associated to x (here we use that k[[x, y]] is a UFD – insert
future reference here). In the first case q = (0) and the result is clear. In the second
case we may multiply f by a unit so that f ∈ R[y] (Weierstrass preparation; details
omitted). Then it is easy to see that R[y]/fR[y] ∼= k[[x, y]]/(f) hence f defines a
prime ideal of R[y] and mR[y] + fR[y] ̸= R[y]. Since S → R[y] induces a universal
homeomorphism on spectra we deduce the desired result for S also.

Second we claim that S is not universally relatively pure over R. Namely, to see
this it suffices to find a valuation ring O and a local ring map R → O such that
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Spec(R[y]⊗RO)→ Spec(O) does not hit the closed point of Spec(O). Equivalently,
we have to find φ : R → O such that φ(x) ̸= 0 and v(φ(x)) > v(φ(xy)) where v is
the valuation of O. (Because this means that the valuation of y is negative.) To do
this consider the ring map

R −→ {a0 + a1x+ a2x
2 + . . . | a0 ∈ k[y−1], ai ∈ k((y))}

defined in the obvious way. We can find a valuation ring O dominating the local-
ization of the right hand side at the maximal ideal (y−1, x) and we win.

Lemma 39.1.05JK There exists a morphism of affine schemes of finite presentation
X → S and an OX-module F of finite presentation such that F is pure relative to
S, but not universally pure relative to S.

Proof. See discussion above. □

40. A formally smooth non-flat ring map

057V Let k be a field. Consider the k-algebra k[Q]. This is the k-algebra with basis
xα, α ∈ Q and multiplication determined by xαxβ = xα+β . (In particular x0 = 1.)
Consider the k-algebra homomorphism

k[Q] −→ k, xα 7−→ 1.
It is surjective with kernel J generated by the elements xα − 1. Let us compute
J/J2. Note that multiplication by xα on J/J2 is the identity map. Denote zα the
class of xα − 1 modulo J2. These classes generate J/J2. Since

(xα − 1)(xβ − 1) = xα+β − xα − xβ + 1 = (xα+β − 1)− (xα − 1)− (xβ − 1)
we see that zα+β = zα + zβ in J/J2. A general element of J/J2 is of the form∑
λαzα with λα ∈ k (only finitely many nonzero). Note that if the characteristic

of k is p > 0 then
0 = pzα/p = zα/p + . . .+ zα/p = zα

and we see that J/J2 = 0. If the characteristic of k is zero, then
J/J2 = Q⊗Z k ∼= k

(details omitted) is not zero.
We claim that k[Q]→ k is a formally smooth ring map if the characteristic of k is
positive. Namely, suppose given a solid commutative diagram

k //

!!

A

k[Q]

OO

φ // A′

OO

with A′ → A a surjection whose kernel I has square zero. To show that k[Q]→ k
is formally smooth we have to prove that φ factors through k. Since φ(xα − 1)
maps to zero in A we see that φ induces a map φ : J/J2 → I whose vanishing is
the obstruction to the desired factorization. Since J/J2 = 0 if the characteristic
is p > 0 we get the result we want, i.e., k[Q] → k is formally smooth in this case.
Finally, this ring map is not flat, for example as the nonzerodivisor x2−1 is mapped
to zero.

Lemma 40.1.057W There exists a formally smooth ring map which is not flat.
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Proof. See discussion above. □

41. A formally étale non-flat ring map

060H In this section we give a counterexample to the final sentence in [DG67, 0, Example
19.10.3(i)] (this was not one of the items caught in their later errata lists). Consider
A→ A/J for a local ring A and a nonzero proper ideal J such that J2 = J (so J isn’t
finitely generated); the valuation ring of an algebraically closed non-archimedean
field with J its maximal ideal is a source of such (A, J). These non-flat quotient
maps are formally étale. Namely, suppose given a commutative diagram

A/J // R/I

A

OO

φ // R

OO

where I is an ideal of the ring R with I2 = 0. Then A → R factors uniquely
through A/J because

φ(J) = φ(J2) ⊂ (φ(J)A)2 ⊂ I2 = 0.
Hence this also provides a counterexample to the formally étale case of the “struc-
ture theorem” for locally finite type and formally étale morphisms in [DG67, IV,
Theorem 18.4.6(i)] (but not a counterexample to part (ii), which is what people
actually use in practice). The error in the proof of the latter is that the very last
step of the proof is to invoke the incorrect [DG67, 0, Example 19.3.10(i)], which is
how the counterexample just mentioned creeps in.

Lemma 41.1.060I There exist formally étale nonflat ring maps.

Proof. See discussion above. □

42. A formally étale ring map with nontrivial cotangent complex

06E5 Let k be a field. Consider the ring
R = k[{xn}n≥1, {yn}n≥1]/(x1y1, x

m
nm − xn, y

m
nm − yn)

Let A be the localization at the maximal ideal generated by all xn, yn and denote
J ⊂ A the maximal ideal. Set B = A/J . By construction J2 = J and hence A→ B
is formally étale (see Section 41). We claim that the element x1 ⊗ y1 is a nonzero
element in the kernel of

J ⊗A J −→ J.

Namely, (A, J) is the colimit of the localizations (An, Jn) of the rings
Rn = k[xn, yn]/(xn

ny
n
n)

at their corresponding maximal ideals. Then x1 ⊗ y1 corresponds to the element
xn

n ⊗ yn
n ∈ Jn ⊗An

Jn and is nonzero (by an explicit computation which we omit).
Since ⊗ commutes with colimits we conclude. By [Ill72, III Section 3.3] we see
that J is not weakly regular. Hence by [Ill72, III Proposition 3.3.3] we see that the
cotangent complex LB/A is not zero. In fact, we can be more precise. We have
H0(LB/A) = ΩB/A and H1(LB/A) = 0 because J/J2 = 0. But from the five-term
exact sequence of Quillen’s fundamental spectral sequence (see Cotangent, Remark
12.5 or [Rei, Corollary 8.2.6]) and the nonvanishing of TorA

2 (B,B) = Ker(J⊗AJ →
J) we conclude that H2(LB/A) is nonzero.
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Lemma 42.1.06E6 There exists a formally étale surjective ring map A→ B with LB/A

not equal to zero.

Proof. See discussion above. □

43. Flat and formally unramified is not formally étale

0G64 In More on Morphisms, Lemma 8.7 it is shown that an unramified flat morphism of
schemes X → S is formally étale. The goal of this section is to give two examples
that illustrate that we cannot replace ‘unramified’ by ‘formally unramified’. The
first example exploits special properties of perfect rings, while the second example
shows the result fails even for maps of Noetherian regular rings.

Lemma 43.1.0G65 Let A = Fp[T ] be the polynomial ring in one variable over Fp.
Let Aperf denote the perfect closure of A. Then A → Aperf is flat and formally
unramified, but not formally étale.

Proof. Note that under the Frobenius map FA : A→ A, the target copy of A is a
free-module over the domain with basis {1, T, . . . , T p−1}. Thus, FA is faithfully flat,
and consequently, so is A→ Aperf since it is a colimit of faithfully flat maps. Since
Aperf is a perfect ring, the relative Frobenius FAperf /A is a surjection. In other
words, Aperf = A[Ap

perf ], which readily implies ΩAperf /A = 0. Then A → Aperf is
formally unramified by More on Morphisms, Lemma 6.7
It suffices to show that A → Aperf is not formally smooth. Note that since A
is a smooth Fp-algebra, the cotangent complex LA/FP

≃ ΩA/Fp
[0] is concentrated

in degree 0, see Cotangent, Lemma 9.1. Moreover, LAperf /Fp
= 0 in D(Aperf ) by

Cotangent, Lemma 10.3. Consider the distinguished triangle of cotangent com-
plexes

LA/Fp
⊗A Aperf → LAperf /Fp

→ LAperf /A → (LA/Fp
⊗A Aperf )[1]

in D(Aperf ), see Cotangent, Section 7. We find LAperf /A = ΩA/Fp
⊗A Aperf [1],

that is, LAperf /A is equal to a free rank 1 Aperf module placed in degree −1.
Thus A→ Aperf is not formally smooth by More on Morphisms, Lemma 13.5 and
Cotangent, Lemma 11.3. □

The next example also involves rings of prime characteristic, but is perhaps a little
more surprising. The drawback is that it requires more knowledge of characteristic
p phenomena than the previous example. Recall that we say a ring A of prime
characteristic is F -finite if the Frobenius map on A is finite.

Lemma 43.2.0G66 Let (A,m, κ) be a Noetherian local ring of prime characteristic
p > 0 such that [κ : κp] < ∞. Then the canonical map A → A∧ to the completion
of A is flat and formally unramified. However, if A is regular but not excellent,
then this map is not formally étale.

Proof. Flatness of the completion is Algebra, Lemma 97.2. To show that the map
is formally unramified, it suffices to show that ΩA∧/A = 0, see Algebra, Lemma
148.2.
We sketch a proof. Choose x1, . . . , xr ∈ A which map to a p-basis x1, . . . , xr

of κ, i.e., such that κ is minimally generated by xi over κp. Choose a minimal
set of generators y1, . . . , ys of m. For each n the elements x1, . . . , xr, y1, . . . , ys

generate A/mn over (A/mn)p by Frobenius. Some details omitted. We conclude
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that F : A∧ → A∧ is finite. Hence ΩA∧/A is a finite A∧-module. On the other hand,
for any a ∈ A∧ and n we can find a0 ∈ A such that a − a0 ∈ mnA∧. We conclude
that d(a) ∈

⋂
mnΩA∧/A which implies that d(a) is zero by Algebra, Lemma 51.4.

Thus ΩA∧/A = 0.

SupposeA is regular. Then, using the Cohen structure theorem x1, . . . , xr, y1, . . . , ys

is a p-basis for the ring A∧, i.e., we have

A∧ =
⊕

I,J
(A∧)pxi1

1 . . . xir
r y

j1
1 . . . yjs

s

with I = (i1, . . . , ir), J = (j1, . . . , js) and 0 ≤ ia, jb ≤ p−1. Details omitted. In par-
ticular, we see that ΩA∧ is a freeA∧-module with basis d(x1), . . . ,d(xr),d(y1), . . . ,d(ys).

Now if A → A∧ is formally étale or even just formally smooth, then we see that
NLA∧/A has vanishing cohomology in degrees −1, 0 by Algebra, Proposition 138.8.
It follows from the Jacobi-Zariski sequence (Algebra, Lemma 134.4) for the ring
maps Fp → A → A∧ that we get an isomorphism ΩA ⊗A A∧ ∼= ΩA∧ . Hence we
find that ΩA is free on d(x1), . . . ,d(xr),d(y1), . . . ,d(ys). Looking at fraction fields
and using that A is normal we conclude that a ∈ A is a pth power if and only if its
image in A∧ is a pth power (details omitted; use Algebra, Lemma 158.2). A second
consequence is that the operators ∂/∂xa and ∂/∂yb are defined on A.

We will show that the above lead to the conclusion that A is finite over Ap with p-
basis x1, . . . , xr, y1, . . . , ys. This will contradict the non-excellency of A by a result
of Kunz, see [Kun76, Corollary 2.6]. Namely, say a ∈ A and write

a =
∑

I,J
(aI,J)pxi1

1 . . . xir
r y

j1
1 . . . yjs

s

with aI,J ∈ A∧. To finish the proof it suffices to show that aI,J ∈ A. Applying the
operator

(∂/∂x1)p−1 . . . (∂/∂xr)p−1(∂/∂y1)p−1 . . . (∂/∂ys)p−1

to both sides we conclude that ap
I,J ∈ A where I = (p − 1, . . . , p − 1) and J =

(p− 1, . . . , p− 1). By our remark above, this also implies aI,J ∈ A. After replacing
a by a′ = a − ap

I,Jx
IyJ we can use a 1-order lower differential operators to get

another coefficient aI,J to be in A. Etc. □

Remark 43.3.0G67 Non-excellent regular rings whose residue fields have a finite p-
basis can be constructed even in the function field of P2

k, over a characteristic p
field k = k. See [DS18, §4.1].

The proof of Lemma 43.2 actually shows a little more.

Lemma 43.4.0G68 Let (A,m, κ) be a regular local ring of characteristic p > 0. Suppose
[κ : κp] <∞. Then A is excellent if and only if A→ A∧ is formally étale.

Proof. The backward implication follows from Lemma 43.2. For the forward im-
plication, note that we already know from Lemma 43.2 that A → A∧ is formally
unramified or equivalently that ΩA∧/A is zero. Thus, it suffices to show that the
completion map is formally smooth when A is excellent. By Néron-Popescu desin-
gularization A → A∧ can be written as a filtered colimit of smooth A-algebras
(Smoothing Ring Maps, Theorem 12.1). Hence NLA∧/A has vanishing cohomology
in degree −1. Thus A→ A∧ is formally smooth by Algebra, Proposition 138.8. □
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44. Ideals generated by sets of idempotents and localization

04QK Let R be a ring. Consider the ring
B(R) = R[xn;n ∈ Z]/(xn(xn − 1), xnxm;n ̸= m)

It is easy to show that every prime q ⊂ B(R) is either of the form
q = pB(R) + (xn;n ∈ Z)

or of the form
q = pB(R) + (xn − 1) + (xm;n ̸= m,m ∈ Z).

Hence we see that
Spec(B(R)) = Spec(R)⨿

∐
n∈Z

Spec(R)

where the topology is not just the disjoint union topology. It has the following
properties: Each of the copies indexed by n ∈ Z is an open subscheme, namely
it is the standard open D(xn). The "central" copy of Spec(R) is in the closure of
the union of any infinitely many of the other copies of Spec(R). Note that this
last copy of Spec(R) is cut out by the ideal (xn, n ∈ Z) which is generated by the
idempotents xn. Hence we see that if Spec(R) is connected, then the decomposition
above is exactly the decomposition of Spec(B(R)) into connected components.
Next, let A = C[x, y]/((y−x2 + 1)(y+x2− 1)). The spectrum of A consists of two
irreducible components C1 = Spec(A1), C2 = Spec(A2) with A1 = C[x, y]/(y −
x2 + 1) and A2 = C[x, y]/(y + x2 − 1). Note that these are parametrized by
(x, y) = (t, t2−1) and (x, y) = (t,−t2+1) which meet in P = (−1, 0) and Q = (1, 0).
We can make a twisted version of B(A) where we glue B(A1) to B(A2) in the
following way: Above P we let xn ∈ B(A1)⊗κ(P ) correspond to xn ∈ B(A2)⊗κ(P ),
but above Q we let xn ∈ B(A1) ⊗ κ(Q) correspond to xn+1 ∈ B(A2) ⊗ κ(Q).
Let Btwist(A) denote the resulting A-algebra. Details omitted. By construction
Btwist(A) is Zariski locally over A isomorphic to the untwisted version. Namely,
this happens over both the principal open Spec(A) \ {P} and the principal open
Spec(A)\{Q}. However, our choice of glueing produces enough "monodromy" such
that Spec(Btwist(A)) is connected (details omitted). Finally, there is a central
copy of Spec(A)→ Spec(Btwist(A)) which gives a closed subscheme whose ideal is
Zariski locally on Btwist(A) cut out by ideals generated by idempotents, but not
globally (as Btwist(A) has no nontrivial idempotents).

Lemma 44.1.04QL There exists an affine scheme X = Spec(A) and a closed sub-
scheme T ⊂ X such that T is Zariski locally on X cut out by ideals generated by
idempotents, but T is not cut out by an ideal generated by idempotents.

Proof. See above. □

45. A ring map which identifies local rings which is not ind-étale

09AN Note that the ring map R → B(R) constructed in Section 44 is a colimit of finite
products of copies of R. Hence R → B(R) is ind-Zariski, see Pro-étale Coho-
mology, Definition 4.1. Next, consider the ring map A → Btwist(A) constructed
in Section 44. Since this ring map is Zariski locally on Spec(A) isomorphic to
an ind-Zariski ring map R → B(R) we conclude that it identifies local rings (see
Pro-étale Cohomology, Lemma 4.6). The discussion in Section 44 shows there is
a section Btwist(A) → A whose kernel is not generated by idempotents. Now, if

https://stacks.math.columbia.edu/tag/04QL
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A → Btwist(A) were ind-étale, i.e., Btwist(A) = colimAi with A → Ai étale, then
the kernel of Ai → A would be generated by an idempotent (Algebra, Lemmas
143.8 and 143.9). This would contradict the result mentioned above.

Lemma 45.1.09AP There is a ring map A→ B which identifies local rings but which
is not ind-étale. A fortiori it is not ind-Zariski.

Proof. See discussion above. □

46. Non flasque quasi-coherent sheaf associated to injective module

0273 For more examples of this type see [BGI71, Exposé II, Appendix I] where Illusie
explains some examples due to Verdier.

Consider the affine scheme X = Spec(A) where

A = k[x, y, z1, z2, . . .]/(xnzn)

is the ring from Properties, Example 25.2. Set I = (x) ⊂ A. Consider the quasi-
compact open U = D(x) of X. We have seen in loc. cit. that there is a section
s ∈ OX(U) which does not come from an A-module map In → A for any n ≥ 0.

Let α : A→ J be the embedding of A into an injective A-module. Let Q = J/α(A)
and denote β : J → Q the quotient map. We claim that the map

Γ(X, J̃) −→ Γ(U, J̃)

is not surjective. Namely, we claim that α(s) is not in the image. To see this, we
argue by contradiction. So assume that x ∈ J is an element which restricts to α(s)
over U . Then β(x) ∈ Q is an element which restricts to 0 over U . Hence we know
that Inβ(x) = 0 for some n, see Properties, Lemma 25.1. This implies that we
get a morphism φ : In → A, h 7→ α−1(hx). It is easy to see that this morphism
φ gives rise to the section s via the map of Properties, Lemma 25.1 which is a
contradiction.

Lemma 46.1.0274 There exists an affine scheme X = Spec(A) and an injective A-
module J such that J̃ is not a flasque sheaf on X. Even the restriction Γ(X, J̃)→
Γ(U, J̃) with U a standard open need not be surjective.

Proof. See above. □

In fact, we can use a similar construction to get an example of an injective mod-
ule whose associated quasi-coherent sheaf has nonzero cohomology over a quasi-
compact open. Namely, we start with the ring

A = k[x, y, w1, u1, w2, u2, . . .]/(xnwn, y
nun, u

2
n, w

2
n)

where k is a field. Choose an injective map A→ I where I is an injective A-module.
We claim that the element 1/xy in Axy ⊂ Ixy is not in the image of Ix ⊕ Iy → Ixy.
Arguing by contradiction, suppose that

1
xy

= i

xn
+ j

yn

for some n ≥ 1 and i, j ∈ I. Clearing denominators we obtain

(xy)n+m−1 = xmyn+mi+ xn+mymj

https://stacks.math.columbia.edu/tag/09AP
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for some m ≥ 0. Multiplying with un+mwn+m we see that un+mwn+m(xy)n+m−1 =
0 in A which is the desired contradiction. Let U = D(x) ∪D(y) ⊂ X = Spec(A).
For any A-module M we have an exact sequence

0→ H0(U, M̃)→Mx ⊕My →Mxy → H1(U, M̃)→ 0

by Mayer-Vietoris. We conclude that H1(U, Ĩ) is nonzero.

Lemma 46.2.0CRZ There exists an affine scheme X = Spec(A) whose underlying topo-
logical space is Noetherian and an injective A-module I such that Ĩ has nonvanishing
H1 on some quasi-compact open U of X.

Proof. See above. Note that Spec(A) = Spec(k[x, y]) as topological spaces. □

47. A non-separated flat group scheme

06E7 Every group scheme over a field is separated, see Groupoids, Lemma 7.3. This is
not true for group schemes over a base.
Let k be a field. Let S = Spec(k[x]) = A1

k. Let G be the affine line with 0 doubled
(see Schemes, Example 14.3) seen as a scheme over S. Thus a fibre of G → S is
either a singleton or a set with two elements (one in U and one in V ). Thus we can
endow these fibres with the structure of a group (by letting the element in U be
the zero of the group structure). More precisely, G has two opens U, V which map
isomorphically to S such that U ∩ V is mapped isomorphically to S \ {0}. Then

G×S G = U ×S U ∪ V ×S U ∪ U ×S V ∪ V ×S V

where each piece is isomorphic to S. Hence we can define a multiplication m :
G ×S G → G as the unique S-morphism which maps the first and the last piece
into U and the two middle pieces into V . This matches the pointwise description
given above. We omit the verification that this defines a group scheme structure.

Lemma 47.1.06E8 There exists a flat group scheme of finite type over the affine line
which is not separated.

Proof. See the discussion above. □

Lemma 47.2.08IX There exists a flat group scheme of finite type over the infinite
dimensional affine space which is not quasi-separated.

Proof. The same construction as above can be carried out with the infinite dimen-
sional affine space S = A∞

k = Spec k[x1, x2, . . .] as the base and the origin 0 ∈ S
corresponding to the maximal ideal (x1, x2, . . .) as the closed point which is doubled
in G. The resulting group scheme G → S is not quasi-separated as explained in
Schemes, Example 21.4. □

48. A non-flat group scheme with flat identity component

06RJ Let X → S be a monomorphism of schemes. Let G = S⨿X. Let m : G×S G→ G
be the S-morphism

G×S G = X ×S X ⨿X ⨿X ⨿ S −→ G = X ⨿ S
which maps the summands X ×S X and S into S and maps the summands X into
X by the identity morphism. This defines a group law. To see this we have to show
that m ◦ (m × idG) = m ◦ (idG ×m) as maps G ×S G ×S G → G. Decomposing
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G ×S G ×S G into components as above, we see that we need to verify this for
the restriction to each of the 8-pieces. Each piece is isomorphic to either S, X,
X ×S X, or X ×S X ×S X. Moreover, both maps map these pieces to S, X, S,
X respectively. Having said this, the fact that X → S is a monomorphism implies
that X×SX ∼= X and X×SX×SX ∼= X and that there is in each case exactly one
S-morphism S → S or X → X. Thus we see that m ◦ (m× idG) = m ◦ (idG ×m).
Thus taking X → S to be any nonflat monomorphism of schemes (e.g., a closed
immersion) we get an example of a group scheme over a base S whose identity
component is S (hence flat) but which is not flat.

Lemma 48.1.06RK There exists a group scheme G over a base S whose identity com-
ponent is flat over S but which is not flat over S.

Proof. See discussion above. □

49. A non-separated group algebraic space over a field

06E9 Every group scheme over a field is separated, see Groupoids, Lemma 7.3. This
is not true for group algebraic spaces over a field (but see end of this section for
positive results).
Let k be a field of characteristic zero. Consider the algebraic space G = A1

k/Z
from Spaces, Example 14.8. By construction G is the fppf sheaf associated to the
presheaf

T 7−→ Γ(T,OT )/Z
on the category of schemes over k. The obvious addition rule on the presheaf
induces an addition m : G × G → G which turns G into a group algebraic space
over Spec(k). Note that G is not separated (and not even quasi-separated or locally
separated). On the other hand G→ Spec(k) is of finite type!

Lemma 49.1.06EA There exists a group algebraic space of finite type over a field which
is not separated (and not even quasi-separated or locally separated).

Proof. See discussion above. □

Positive results: If the group algebraic space G is either quasi-separated, or locally
separated, or more generally a decent algebraic space, then G is in fact separated,
see More on Groupoids in Spaces, Lemma 9.4. Moreover, a finite type, separated
group algebraic space over a field is in fact a scheme by More on Groupoids in
Spaces, Lemma 10.2. The idea of the proof is that the schematic locus is open
dense, see Properties of Spaces, Proposition 13.3 or Decent Spaces, Theorem 10.2.
By translating this open we see that every point of G has an open neighbourhood
which is a scheme.

50. Specializations between points in fibre étale morphism

06UJ If f : X → Y is an étale, or more generally a locally quasi-finite morphism of
schemes, then there are no specializations between points of fibres, see Morphisms,
Lemma 20.8. However, for morphisms of algebraic spaces this doesn’t hold in
general.
To give an example, let k be a field. Set

P = k[u, u−1, y, {xn}n∈Z].
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Consider the action of Z on P by k-algebra maps generated by the automorphism
τ given by the rules τ(u) = u, τ(y) = uy, and τ(xn) = xn+1. For d ≥ 1 set
Id = ((1− ud)y, xn − xn+d, n ∈ Z). Then V (Id) ⊂ Spec(P ) is the fix point locus of
τd. Let S ⊂ P be the multiplicative subset generated by y and all 1 − ud, d ∈ N.
Then we see that Z acts freely on U = Spec(S−1P ). Let X = U/Z be the quotient
algebraic space, see Spaces, Definition 14.4.

Consider the prime ideals pn = (xn, xn+1, . . .) in S−1P . Note that τ(pn) = pn+1.
Hence each of these define point ξn ∈ U whose image in X is the same point x of
X. Moreover we have the specializations

. . .⇝ ξn ⇝ ξn−1 ⇝ . . .

We conclude that U → X is an example of the promised type.

Lemma 50.1.06UK There exists an étale morphism of algebraic spaces f : X → Y and
a nontrivial specialization of points x⇝ x′ in |X| with f(x) = f(x′) in |Y |.

Proof. See discussion above. □

51. A torsor which is not an fppf torsor

04AF In Groupoids, Remark 11.5 we raise the question whether any G-torsor is a G-torsor
for the fppf topology. In this section we show that this is not always the case.

Let k be a field. All schemes and stacks are over k in what follows. Let G→ Spec(k)
be the group scheme

G = (µ2,k)∞ = µ2,k ×k µ2,k ×k µ2,k ×k . . . = limn(µ2,k)n

where µ2,k is the group scheme of second roots of unity over Spec(k), see Groupoids,
Example 5.2. As an inverse limit of affine schemes we see that G is an affine
group scheme. In fact it is the spectrum of the ring k[t1, t2, t3, . . .]/(t2i − 1). The
multiplication map m : G×k G→ G is on the algebra level given by ti 7→ ti ⊗ ti.

We claim that any G-torsor over k is of the form

P = Spec(k[x1, x2, x3, . . .]/(x2
i − ai))

for certain ai ∈ k∗ and with G-action G ×k P → P given by xi → ti ⊗ xi on the
algebra level. We omit the proof. Actually for the example we only need that P
is a G-torsor which is clear since over k′ = k(√a1,

√
a2, . . .) the scheme P becomes

isomorphic to G in a G-equivariant manner. Note that P is trivial if and only if
k′ = k since if P has a k-rational point then all of the ai are squares.

We claim that P is an fppf torsor if and only if the field extension k′ = k(√a1,
√
a2, . . .)/k

is finite. If k′ is finite over k, then {Spec(k′)→ Spec(k)} is an fppf covering which
trivializes P and we see that P is indeed an fppf torsor. Conversely, suppose that P
is an fppf G-torsor. This means that there exists an fppf covering {Si → Spec(k)}
such that each PSi

is trivial. Pick an i such that Si is not empty. Let s ∈ Si be a
closed point. By Varieties, Lemma 14.1 the field extension κ(s)/k is finite, and by
construction Pκ(s) has a κ(s)-rational point. Thus we see that k ⊂ k′ ⊂ κ(s) and
k′ is finite over k.

To get an explicit example take k = Q and ai = i for example (or ai is the ith
prime if you like).
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Lemma 51.1.077B Let S be a scheme. Let G be a group scheme over S. The stack
G-Principal classifying principal homogeneous G-spaces (see Examples of Stacks,
Subsection 14.5) and the stack G-Torsors classifying fppf G-torsors (see Examples
of Stacks, Subsection 14.8) are not equivalent in general.

Proof. The discussion above shows that the functor G-Torsors → G-Principal
isn’t essentially surjective in general. □

52. Stack with quasi-compact flat covering which is not algebraic

04AG In this section we briefly describe an example due to Brian Conrad. You can find
the example online at this location. Our example is slightly different.
Let k be an algebraically closed field. All schemes and stacks are over k in what
follows. LetG→ Spec(k) be an affine group scheme. In Examples of Stacks, Lemma
15.4 we have given several different equivalent ways to view X = [Spec(k)/G] as a
stack in groupoids over (Sch/ Spec(k))fppf . In particular X classifies fppf G-torsors.
More precisely, a 1-morphism T → X corresponds to an fppf GT -torsor P over T
and 2-arrows correspond to isomorphisms of torsors. It follows that the diagonal
1-morphism

∆ : X −→ X ×Spec(k) X
is representable and affine. Namely, given any pair of fppf GT -torsors P1, P2 over
a scheme T/k the scheme Isom(P1, P2) is affine over T . The trivial G-torsor over
Spec(k) defines a 1-morphism

f : Spec(k) −→ X .
We claim that this is a surjective 1-morphism. The reason is simply that by defi-
nition for any 1-morphism T → X there exists a fppf covering {Ti → T} such that
PTi

is isomorphic to the trivial GTi
-torsor. Hence the compositions Ti → T → X

factor through f . Thus it is clear that the projection T ×X Spec(k)→ T is surjec-
tive (which is how we define the property that f is surjective, see Algebraic Stacks,
Definition 10.1). In a similar way you show that f is quasi-compact and flat (details
omitted). We also record here the observation that

Spec(k)×X Spec(k) ∼= G

as schemes over k.
Suppose there exists a surjective smooth morphism p : U → X where U is a scheme.
Consider the fibre product

W

��

// U

��
Spec(k) // X

Then we see that W is a nonempty smooth scheme over k which hence has a k-point.
This means that we can factor f through U . Hence we obtain

G ∼= Spec(k)×X Spec(k) ∼= (Spec(k)×k Spec(k))×(U×kU) (U ×X U)
and since the projections U ×X U → U were assumed smooth we conclude that
U ×X U → U ×k U is locally of finite type, see Morphisms, Lemma 15.8. It follows
that in this case G is locally of finite type over k. Altogether we have proved the
following lemma (which can be significantly generalized).
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Lemma 52.1.04AH Let k be a field. Let G be an affine group scheme over k. If the
stack [Spec(k)/G] has a smooth covering by a scheme, then G is of finite type over
k.

Proof. See discussion above. □

To get an explicit example as in the title of this section, take for example G =
(µ2,k)∞ the group scheme of Section 51, which is not locally of finite type over
k. By the discussion above we see that X = [Spec(k)/G] has properties (1) and
(2) of Algebraic Stacks, Definition 12.1, but not property (3). Hence X is not an
algebraic stack. On the other hand, there does exist a scheme U and a surjective,
flat, quasi-compact morphism U → X , namely the morphism f : Spec(k) → X we
studied above.

53. Limit preserving on objects, not limit preserving

07Z0 Let S be a nonempty scheme. Let G be an injective abelian sheaf on (Sch/S)fppf .
We obtain a stack in groupoids

G-Torsors −→ (Sch/S)fppf

over S, see Examples of Stacks, Lemma 14.2. This stack is limit preserving on
objects over (Sch/S)fppf (see Criteria for Representability, Section 5) because every
G-torsor is trivial. On the other hand, G-Torsors is in general not limit preserving
(see Artin’s Axioms, Definition 11.1) as G need not be limit preserving as a sheaf.
For example, take any nonzero injective sheaf I and set G =

∏
n∈Z I to get an

example.

Lemma 53.1.07Z1 Let S be a nonempty scheme. There exists a stack in groupoids
p : X → (Sch/S)fppf such that p is limit preserving on objects, but X is not limit
preserving.

Proof. See discussion above. □

54. A non-algebraic classifying stack

077C Let S = Spec(Fp) and let µp denote the group scheme of pth roots of unity over S.
In Groupoids in Spaces, Section 20 we have introduced the quotient stack [S/µp]
and in Examples of Stacks, Section 15 we have shown [S/µp] is the classifying
stack for fppf µp-torsors: Given a scheme T over S the category MorS(T, [S/µp]) is
canonically equivalent to the category of fppf µp-torsors over T . Finally, in Criteria
for Representability, Theorem 17.2 we have seen that [S/µp] is an algebraic stack.
Now we can ask the question: “How about the category fibred in groupoids S
classifying étale µp-torsors?” (In other words S is a category over Sch/S whose
fibre category over a scheme T is the category of étale µp-torsors over T .)
The first objection is that this isn’t a stack for the fppf topology, because descent
for objects isn’t going to hold. For example the µp-torsor Spec(Fp(t)[x]/(xp − t))
over T = Spec(Fp(T )) is fppf locally trivial, but not étale locally trivial.
A fix for this first problem is to work with the étale topology and in this case
descent for objects does work. Indeed it is true that S is a stack in groupoids over
(Sch/S)étale. Moreover, it is also the case that the diagonal ∆ : S → S × S is
representable (by schemes). This is true because given two µp-torsors (whether

https://stacks.math.columbia.edu/tag/04AH
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they be étale locally trivial or not) the sheaf of isomorphisms between them is
representable by a scheme.

Thus we can finally ask if there exists a scheme U and a smooth and surjective
1-morphism U → S. We will show in two ways that this is impossible: by a direct
argument (which we advise the reader to skip) and by an argument using a general
result.

Direct argument (sketch): Note that the 1-morphism S → Spec(Fp) satisfies the
infinitesimal lifting criterion for formal smoothness. This is true because given a
first order infinitesimal thickening of schemes T → T ′ the kernel of µp(T ′)→ µp(T )
is isomorphic to the sections of the ideal sheaf of T in T ′, and hence H1

étale(T, µp) =
H1

étale(T ′, µp). Moreover, S is a limit preserving stack. Hence if U → S is smooth,
then U → Spec(Fp) is limit preserving and satisfies the infinitesimal lifting criterion
for formal smoothness. This implies that U is smooth over Fp. In particular U
is reduced, hence H1

étale(U, µp) = 0. Thus U → S factors as U → Spec(Fp) → S
and the first arrow is smooth. By descent of smoothness, we see that U → S being
smooth would imply Spec(Fp) → S is smooth. However, this is not the case as
Spec(Fp)×S Spec(Fp) is µp which is not smooth over Spec(Fp).

Structural argument: In Criteria for Representability, Section 19 we have seen that
we can think of algebraic stacks as those stacks in groupoids for the étale topology
with diagonal representable by algebraic spaces having a smooth covering. Hence
if a smooth surjective U → S exists then S is an algebraic stack, and in particular
satisfies descent in the fppf topology. But we’ve seen above that S does not satisfies
descent in the fppf topology.

Loosely speaking the arguments above show that the classifying stack in the étale
topology for étale locally trivial torsors for a group scheme G over a base B is
algebraic if and only if G is smooth over B. One of the advantages of working
with the fppf topology is that it suffices to assume that G → B is flat and locally
of finite presentation. In fact the quotient stack (for the fppf topology) [B/G] is
algebraic if and only if G→ B is flat and locally of finite presentation, see Criteria
for Representability, Lemma 18.3.

55. Sheaf with quasi-compact flat covering which is not algebraic

078E Consider the functor F = (P1)∞, i.e., for a scheme T the value F (T ) is the set of
f = (f1, f2, f3, . . .) where each fi : T → P1 is a morphism of schemes. Note that P1

satisfies the sheaf property for fpqc coverings, see Descent, Lemma 13.7. A product
of sheaves is a sheaf, so F also satisfies the sheaf property for the fpqc topology. The
diagonal of F is representable: if f : T → F and g : S → F are morphisms, then
T ×F S is the scheme theoretic intersection of the closed subschemes T ×fi,P1,gi

S
inside the scheme T × S. Consider the group scheme SL2 which comes with a
surjective smooth affine morphism SL2 → P1. Next, consider U = (SL2)∞ with its
canonical (product) morphism U → F . Note that U is an affine scheme. We claim
the morphism U → F is flat, surjective, and universally open. Namely, suppose
f : T → F is a morphism. Then Z = T ×F U is the infinite fibre product of the
schemes Zi = T ×fi,P1 SL2 over T . Each of the morphisms Zi → T is surjective
smooth and affine which implies that

Z = Z1 ×T Z2 ×T Z3 ×T . . .
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is a scheme flat and affine over Z. A simple limit argument shows that Z → T is
open as well.
On the other hand, we claim that F isn’t an algebraic space. Namely, if F where an
algebraic space it would be a quasi-compact and separated (by our description of
fibre products over F ) algebraic space. Hence cohomology of quasi-coherent sheaves
would vanish above a certain cutoff (see Cohomology of Spaces, Proposition 7.2 and
remarks preceding it). But clearly by taking the pullback of O(−2,−2, . . . ,−2)
under the projection

(P1)∞ −→ (P1)n

(which has a section) we can obtain a quasi-coherent sheaf whose cohomology is
nonzero in degree n. Altogether we obtain an answer to a question asked by Anton
Geraschenko on mathoverflow.

Lemma 55.1.078F There exists a functor F : Schopp → Sets which satisfies the sheaf
condition for the fpqc topology, has representable diagonal ∆ : F → F × F , and
such that there exists a surjective, flat, universally open, quasi-compact morphism
U → F where U is a scheme, but such that F is not an algebraic space.

Proof. See discussion above. □

56. Sheaves and specializations

05LD In the following we fix a big étale site Schétale as constructed in Topologies, Def-
inition 4.6. Moreover, a scheme will be an object of this site. Recall that if x, x′

are points of a scheme X we say x is a specialization of x′ or we write x′ ⇝ x if
x ∈ {x′}. This is true in particular if x = x′.
Consider the functor F : Schétale → Ab defined by the following rules:

F (X) =
∏

x∈X

∏
x′∈X,x′⇝x,x′ ̸=x

Z/2Z

Given a scheme X we denote |X| the underlying set of points. An element a ∈ F (X)
will be viewed as a map of sets |X|×|X| → Z/2Z, (x, x′) 7→ a(x, x′) which is zero if
x = x′ or if x is not a specialization of x′. Given a morphism of schemes f : X → Y
we define

F (f) : F (Y ) −→ F (X)
by the rule that for b ∈ F (Y ) we set

F (f)(b)(x, x′) =
{

0 if x is not a specialization of x′

b(f(x), f(x′)) else.
Note that this really does define an element of F (X). We claim that if f : X → Y
and g : Y → Z are composable morphisms then F (f) ◦ F (g) = F (g ◦ f). Namely,
let c ∈ F (Z) and let x′ ⇝ x be a specialization of points in X, then

F (g ◦ f)(x, x′) = c(g(f(x)), g(f(x′))) = F (g)(F (f)(c))(x, x′)
because f(x′)⇝ f(x). (This also works if f(x) = f(x′).)
Let G be the sheafification of F in the étale topology.
I claim that if X is a scheme and x′ ⇝ x is a specialization and x′ ̸= x, then
G(X) ̸= 0. Namely, let a ∈ F (X) be an element such that when we think of a as a
function |X| × |X| → Z/2Z it is nonzero at (x, x′). Let {fi : Ui → X} be an étale
covering of X. Then we can pick an i and a point ui ∈ Ui with fi(ui) = x. Since

https://stacks.math.columbia.edu/tag/078F
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generalizations lift along flat morphisms (see Morphisms, Lemma 25.9) we can find
a specialization u′

i ⇝ ui with fi(u′
i) = x′. By our construction above we see that

F (fi)(a) ̸= 0. Hence a determines a nonzero element of G(X).
Note that if X = Spec(k) where k is a field (or more generally a ring all of whose
prime ideals are maximal), then F (X) = 0 and for every étale morphism U → X
we have F (U) = 0 because there are no specializations between distinct points in
fibres of an étale morphism. Hence G(X) = 0.
Suppose that X ⊂ X ′ is a thickening, see More on Morphisms, Definition 2.1. Then
the category of schemes étale over X ′ is equivalent to the category of schemes étale
over X by the base change functor U ′ 7→ U = U ′ ×X′ X, see Étale Cohomology,
Theorem 45.2. Since it is always the case that F (U) = F (U ′) in this situation we
see that also G(X) = G(X ′).
As a variant we can consider the presheaf Fn which associates to a scheme X
the collection of maps a : |X|n+1 → Z/2Z where a(x0, . . . , xn) is nonzero only if
xn ⇝ . . .⇝ x0 is a sequence of specializations and xn ̸= xn−1 ̸= . . . ̸= x0. Let Gn

be the sheaf associated to Fn. In exactly the same way as above one shows that
Gn is nonzero if dim(X) ≥ n and is zero if dim(X) < n.

Lemma 56.1.05LE There exists a sheaf of abelian groups G on Schétale with the fol-
lowing properties

(1) G(X) = 0 whenever dim(X) < n,
(2) G(X) is not zero if dim(X) ≥ n, and
(3) if X ⊂ X ′ is a thickening, then G(X) = G(X ′).

Proof. See the discussion above. □

Remark 56.2.05LF Here are some remarks:
(1) The presheaves F and Fn are separated presheaves.
(2) It turns out that F , Fn are not sheaves.
(3) One can show that G, Gn is actually a sheaf for the fppf topology.

We will prove these results if we need them.

57. Sheaves and constructible functions

05LG In the following we fix a big étale site Schétale as constructed in Topologies, Defi-
nition 4.6. Moreover, a scheme will be an object of this site. In this section we say
that a constructible partition of a scheme X is a locally finite disjoint union decom-
position X =

∐
i∈I Xi such that each Xi ⊂ X is a locally constructible subset of X.

Locally finite means that for any quasi-compact open U ⊂ X there are only finitely
many i ∈ I such that Xi ∩ U is not empty. Note that if f : X → Y is a morphism
of schemes and Y =

∐
Yj is a constructible partition, then X =

∐
f−1(Yj) is a

constructible partition of X. Given a set S and a scheme X a constructible function
f : |X| → S is a map such that X =

∐
s∈S f

−1(s) is a constructible partition of
X. If G is an (abstract group) and a, b : |X| → G are constructible functions, then
ab : |X| → G, x 7→ a(x)b(x) is a constructible function too. The reason is that
given any two constructible partitions there is a third one refining both.
Let A be any abelian group. For any scheme X we define

F (X) = {a : |X| → A | a is a constructible function}
{locally constant functions |X| → A}

https://stacks.math.columbia.edu/tag/05LE
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We think of an element a of F (X) simply as a function well defined up to adding
a locally constant one. Given a morphism of schemes f : X → Y and an element
b ∈ F (Y ), then we define F (f)(b) = b ◦ f . Thus F is a presheaf on Schétale.

Note that if {fi : Ui → X} is an fppf covering, and a ∈ F (X) is such that F (fi)(a) =
0 in F (Ui), then a ◦ fi is a locally constant function for each i. This means in turn
that a is a locally constant function as the morphisms fi are open. Hence a = 0 in
F (X). Thus we see that F is a separated presheaf (in the fppf topology hence a
fortiori in the étale topology).

Let G be the sheafification of F in the étale topology. Since F is separated, and
since F (X) ̸= 0 for example when X is the spectrum of a discrete valuation ring,
we see that G is not zero.

Let X = Spec(k) where k is a field. Then any étale covering of X can be dominated
by a covering {Spec(k′)→ Spec(k)} with k′/k a finite separable extension of fields.
Since F (Spec(k′)) = 0 we see that G(X) = 0.

Suppose that X ⊂ X ′ is a thickening, see More on Morphisms, Definition 2.1. Then
the category of schemes étale over X ′ is equivalent to the category of schemes étale
over X by the base change functor U ′ 7→ U = U ′ ×X′ X, see Étale Cohomology,
Theorem 45.2. Since F (U) = F (U ′) in this situation we see that also G(X) =
G(X ′).

The sheaf G is limit preserving, see Limits of Spaces, Definition 3.1. Namely, let
R be a ring which is written as a directed colimit R = colimi Ri of rings. Set X =
Spec(R) and Xi = Spec(Ri), so that X = limi Xi. Then G(X) = colimi G(Xi). To
prove this one first proves that a constructible partition of Spec(R) comes from a
constructible partitions of some Spec(Ri). Hence the result for F . To get the result
for the sheafification, use that any étale ring map R→ R′ comes from an étale ring
map Ri → R′

i for some i. Details omitted.

Lemma 57.1.05LH There exists a sheaf of abelian groups G on Schétale with the fol-
lowing properties

(1) G(Spec(k)) = 0 whenever k is a field,
(2) G is limit preserving,
(3) if X ⊂ X ′ is a thickening, then G(X) = G(X ′), and
(4) G is not zero.

Proof. See discussion above. □

58. The lisse-étale site is not functorial

07BF The lisse-étale site Xlisse,étale of X is the category of schemes smooth over X
endowed with (usual) étale coverings, see Cohomology of Stacks, Section 14. Let
f : X → Y be a morphism of schemes. There is a functor

u : Ylisse,étale −→ Xlisse,étale, V/Y 7−→ V ×Y X

which is continuous. Hence we obtain an adjoint pair of functors

us : Sh(Xlisse,étale) −→ Sh(Ylisse,étale), us : Sh(Ylisse,étale) −→ Sh(Xlisse,étale),

see Sites, Section 13. We claim that, in general, u does not define a morphism of
sites, see Sites, Definition 14.1. In other words, we claim that us is not left exact in

https://stacks.math.columbia.edu/tag/05LH
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general. Note that representable presheaves are sheaves on lisse-étale sites. Hence,
by Sites, Lemma 13.5 we see that ushV = hV ×Y X . Now consider two morphisms

V1

  

a //

b
// V2

~~
Y

of schemes V1, V2 smooth over Y . Now if us is left exact, then we would have
usEqualizer(ha, hb : hV1 → hV2) = Equalizer(ha×1, hb×1 : hV1×Y X → hV2×Y X)

We will take the morphisms a, b : V1 → V2 such that there exists no morphism from
a scheme smooth over Y into (a = b) ⊂ V1, i.e., such that the left hand side is
the empty sheaf, but such that after base change to X the equalizer is nonempty
and smooth over X. A silly example is to take X = Spec(Fp), Y = Spec(Z) and
V1 = V2 = A1

Z with morphisms a(x) = x and b(x) = x+ p. Note that the equalizer
of a and b is the fibre of A1

Z over (p).

Lemma 58.1.07BG The lisse-étale site is not functorial, even for morphisms of schemes.

Proof. See discussion above. □

59. Sheaves on the category of Noetherian schemes

0GE8 Let S be a locally Noetherian scheme. As in Artin’s Axioms, Section 25 consider
the inclusion functor

u : (Noetherian/S)fppf −→ (Sch/S)fppf

of the fppf site of locally Noetherian schemes over S into a big fppf site of S. As
explained in the section referenced, this functor is continuous. Hence we obtain an
adjoint pair of functors

us : Sh((Sch/S)fppf ) −→ Sh((Noetherian/S)fppf )
and

us : Sh((Noetherian/S)fppf ) −→ Sh((Sch/S)fppf )
see Sites, Section 13. However, we claim that u in general does not define a mor-
phism of sites, see Sites, Definition 14.1. In other words, we claim that the functor
us is not left exact in general.
Let p be a prime number and set S = Spec(Fp). Consider the injective map of
sheaves

a : F −→ G
on (Noetherian/S)fppf defined as follows: for U a locally Noetherian scheme over
S we define

G(U) = Γ(U,OU )∗ = MorS(U,Gm,S)
and we take

F(U) = {f ∈ G(U) | fppf locally f has arbitrary p-power roots}
A Noetherian Fp-algebra A has a nilpotent nilradical I ⊂ A, the p-power roots of 1
in A are of the elements of the form 1 + a, a ∈ I, and hence no-nontrivial p-power
root of 1 has arbitrary p-power roots. We conclude that F(U) is a p-torsion free

https://stacks.math.columbia.edu/tag/07BG
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abelian group for any locally Noetherian scheme U ; some details omitted. It follows
that p : F → F is an injective map of abelian sheaves on (Noetherian/S)fppf .
To get a contradiction, assume us is exact. Then p : usF → usF is injective too
and we find that (usF)(V ) is a p-torsion free abelian group for any V over S. Since
representable presheaves are sheaves on fppf sites, by Sites, Lemma 13.5, we see
that usG is represented by Gm,S . Using that usF → usG is injective, we find a
p-torsion free subgroup

(usF)(V ) ⊂ Γ(V,OV )∗

for every scheme V over S with the following property: for every morphism V → U
of schemes over S with U locally Noetherian the subgroup

F(U) ⊂ Γ(U,OU )∗

maps into the subgroup (usF)(V ) by the restriction mapping Γ(U,OU )∗ → Γ(V,OV )∗.
The actual contradiction now is obtained as follows: let k =

⋃
n≥0 Fp(t1/pn) and

set
B = k ⊗Fp(t) k

and V = Spec(B). Since we have the two projection morphisms V → Spec(k)
corresponding to the two coprojections k → B and since Spec(k) is Noetherian, we
conclude the subgroup

(usF)(V ) ⊂ B∗

contains k∗ ⊗ 1 and 1⊗ k∗. This is a contradiction because
(t1/p ⊗ 1) · (1⊗ t−1/p) = t1/p ⊗ t−1/p

is a nontrivial p-torsion unit of B.

Lemma 59.1.0GE9 With S = Spec(Fp) the inclusion functor (Noetherian/S)fppf →
(Sch/S)fppf does not define a morphism of sites.

Proof. See discussion above. □

60. Derived pushforward of quasi-coherent modules

07DC Let k be a field of characteristic p > 0. Let S = Spec(k[x]). Let G = Z/pZ
viewed either as an abstract group or as a constant group scheme over S. Consider
the algebraic stack X = [S/G] where G acts trivially on S, see Examples of Stacks,
Remark 15.5 and Criteria for Representability, Lemma 18.3. Consider the structure
morphism

f : X −→ S

This morphism is quasi-compact and quasi-separated. Hence we get a functor
RfQCoh,∗ : D+

QCoh(OX ) −→ D+
QCoh(OS),

see Derived Categories of Stacks, Proposition 6.1. Let’s compute RfQCoh,∗OX .
Since DQCoh(OS) is equivalent to the derived category of k[x]-modules (see Derived
Categories of Schemes, Lemma 3.5) this is equivalent to computing RΓ(X ,OX ). For
this we can use the covering S → X and the spectral sequence

Hq(S ×X . . .×X S,O)⇒ Hp+q(X ,OX )
see Cohomology of Stacks, Proposition 11.6. Note that

S ×X . . .×X S = S ×Gp

https://stacks.math.columbia.edu/tag/0GE9
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which is affine. Thus the complex
k[x]→ Map(G, k[x])→ Map(G2, k[x])→ . . .

computes RΓ(X ,OX ). Here for φ ∈ Map(Gp−1, k[x]) its differential is the map
which sends (g1, . . . , gp) to

φ(g2, . . . , gp) +
∑p−1

i=1
(−1)iφ(g1, . . . , gi + gi+1, . . . , gp) + (−1)pφ(g1, . . . , gp−1).

This is just the complex computing the group cohomology of G acting trivially on
k[x] (insert future reference here). The cohomology of the cyclic group G on k[x] is
exactly one copy of k[x] in each cohomological degree ≥ 0 (insert future reference
here). We conclude that

Rf∗OX =
⊕

n≥0
OS [−n]

Now, consider the complex

E =
⊕

m≥0
OX [m]

This is an object of DQCoh(OX ). We interrupt the discussion for a general result.
Lemma 60.1.08IY Let X be an algebraic stack. Let K be an object of D(OX ) whose
cohomology sheaves are locally quasi-coherent (Sheaves on Stacks, Definition 12.1)
and satisfy the flat base change property (Cohomology of Stacks, Definition 7.1).
Then there exists a distinguished triangle

K →
∏

n≥0
τ≥−nK →

∏
n≥0

τ≥−nK → K[1]

in D(OX ). In other words, K is the derived limit of its canonical truncations.
Proof. Recall that we work on the “big fppf site” Xfppf of X (by our conventions
for sheaves of OX -modules in the chapters Sheaves on Stacks and Cohomology on
Stacks). Let B be the set of objects x of Xfppf which lie over an affine scheme
U . Combining Sheaves on Stacks, Lemmas 23.2, 16.1, Descent, Lemma 12.4, and
Cohomology of Schemes, Lemma 2.2 we see that Hp(x,F) = 0 if F is locally quasi-
coherent and x ∈ B. Now the claim follows from Cohomology on Sites, Lemma
23.10 with d = 0. □

Lemma 60.2.08IZ Let X be an algebraic stack. If Fn is a collection of locally quasi-
coherent sheaves with the flat base change property on X , then ⊕nFn[n]→

∏
n Fn[n]

is an isomorphism in D(OX ).
Proof. This is true because by Lemma 60.1 we see that the direct sum is isomorphic
to the product. □

We continue our discussion. Since a quasi-coherent module is locally quasi-coherent
and satisfies the flat base change property (Sheaves on Stacks, Lemma 12.2) we get

E =
∏

m≥0
OX [m]

Since cohomology commutes with limits we see that

Rf∗E =
∏

m≥0

(⊕
n≥0
OS [m− n]

)
Note that this complex is not an object of DQCoh(OS) because the cohomology
sheaf in degree 0 is an infinite product of copies of OS which is not even a locally
quasi-coherent OS-module.
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Lemma 60.3.07DD A quasi-compact and quasi-separated morphism f : X → Y of
algebraic stacks need not induce a functor Rf∗ : DQCoh(OX )→ DQCoh(OY).

Proof. See discussion above. □

61. A big abelian category

07JS The purpose of this section is to give an example of a “big” abelian category A
and objects M,N such that the collection of isomorphism classes of extensions
ExtA(M,N) is not a set. The example is due to Freyd, see [Fre64, page 131,
Exercise A].
We define A as follows. An object of A consists of a triple (M,α, f) where M is
an abelian group and α is an ordinal and f : α→ End(M) is a map. A morphism
(M,α, f)→ (M ′, α′, f ′) is given by a homomorphism of abelian groups φ : M →M ′

such that for any ordinal β we have
φ ◦ f(β) = f ′(β) ◦ φ

Here the rule is that we set f(β) = 0 if β is not in α and similarly we set f ′(β) equal
to zero if β is not an element of α′. We omit the verification that the category so
defined is abelian.
Consider the object Z = (Z, ∅, f), i.e., all the operators are zero. The observation is
that computed in A the group Ext1

A(Z,Z) is a proper class and not a set. Namely,
for each ordinal α we can find an extension (M,α+1, f) of Z by Z whose underlying
group is M = Z⊕ Z and where the value of f is always zero except for

f(α) =
(

0 1
0 0

)
.

This clearly produces a proper class of isomorphism classes of extensions. In par-
ticular, the derived category of A has proper classes for its collections of morphism,
see Derived Categories, Lemma 27.6. This means that some care has to be exercised
when defining Verdier quotients of triangulated categories.

Lemma 61.1.07JT There exists a “big” abelian category A whose Ext-groups are proper
classes.

Proof. See discussion above. □

62. Weakly associated points and scheme theoretic density

084J Let k be a field. Let R = k[z, xi, yi]/(z2, zxiyi) where i runs over the elements of
N. Note that R = R0 ⊕M0 where R0 = k[xi, yi] is a subring and M0 is an ideal of
square zero with M0 ∼= R0/(xiyi) as R0-module. The prime p = (z, xi) is weakly
associated to R as an R-module (Algebra, Definition 66.1). Indeed, the element z
in Rp is nonzero but annihilated by pRp. On the other hand, consider the open
subscheme

U =
⋃
D(xi) ⊂ Spec(R) = S

We claim that U ⊂ S is scheme theoretically dense (Morphisms, Definition 7.1).
To prove this it suffices to show that OS → j∗OU is injective where j : U → S is
the inclusion morphism, see Morphisms, Lemma 7.5. Translated back into algebra,
we have to show that for all g ∈ R the map

Rg −→
∏

Rxig

https://stacks.math.columbia.edu/tag/07DD
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is injective. Write g = g0 +m0 with g0 ∈ R0 and m0 ∈M0. Then Rg = Rg0 (details
omitted). Hence we may assume g ∈ R0. We may also assume g is not zero. Now
Rg = (R0)g⊕(M0)g. Since R0 is a domain, the map (R0)g →

∏
(R0)xig is injective.

If g ∈ (xiyi) then (M0)g = 0 and there is nothing to prove. If g ̸∈ (xiyi) then, since
(xiyi) is a radical ideal of R0, we have to show that M0 →

∏
(M0)xig is injective.

The kernel of R0 →M0 → (M0)xn
is (xiyi, yn). Since (xiyi, yn) is a radical ideal, if

g ̸∈ (xiyi, yn) then the kernel of R0 →M0 → (M0)xng is (xiyi, yn). As g ̸∈ (xiyi, yn)
for all n ≫ 0 we conclude that the kernel is contained in

⋂
n≫0(xiyi, yn) = (xiyi)

as desired.

Second example due to Ofer Gabber. Let k be a field and let R, resp. R′ be the
ring of functions N → k, resp. the ring of eventually constant functions N → k.
Then Spec(R), resp. Spec(R′) is the Stone-Čech compactification3 βN, resp. the
one point compactification4 N∗ = N∪ {∞}. All points are weakly associated since
all primes are minimal in the rings R and R′.

Lemma 62.1.084K There exists a reduced scheme X and a schematically dense open
U ⊂ X such that some weakly associated point x ∈ X is not in U .

Proof. In the first example we have p ̸∈ U by construction. In Gabber’s examples
the schemes Spec(R) or Spec(R′) are reduced. □

63. Example of non-additivity of traces

087J Let k be a field and let R = k[ϵ] be the ring of dual numbers over k. In other words,
R = k[x]/(x2) and ϵ is the congruence class of x in R. Consider the short exact
sequence of complexes

0

��

// R

ϵ

��

1
// R

��
R

1 // R // 0
Here the columns are the complexes, the first row is placed in degree 0, and the
second row in degree 1. Denote the first complex (i.e., the left column) by A•, the
second by B• and the third C•. We claim that the diagram

(63.0.1)087K

A•

1+ϵ

��

// B• //

1
��

C•

1
��

A• // B• // C•

commutes in K(R), i.e., is a diagram of complexes commuting up to homotopy.
Namely, the square on the right commutes and the one on the left is off by the
homotopy 1 : A1 → B0. On the other hand,

TrA•(1 + ϵ) + TrC•(1) ̸= TrB•(1).

3Every element f ∈ R is of the form ue where u is a unit and e is an idempotent. Then Algebra,
Lemma 26.5 shows Spec(R) is Hausdorff. On the other hand, N with the discrete topology can be
viewed as a dense open subset. Given a set map N → X to a Hausdorff, quasi-compact topological
space X, we obtain a ring map C0(X; k) → R where C0(X; k) is the k-algebra of locally constant
maps X → k. This gives Spec(R) → Spec(C0(X; k)) = X proving the universal property.

4Here one argues that there is really only one extra maximal ideal in R′.

https://stacks.math.columbia.edu/tag/084K
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Lemma 63.1.087L There exists a ring R, a distinguished triangle (K,L,M,α, β, γ) in
the homotopy category K(R), and an endomorphism (a, b, c) of this distinguished
triangle, such that K, L, M are perfect complexes and TrK(a) + TrM (c) ̸= TrL(b).

Proof. Consider the example above. The map γ : C• → A•[1] is given by multi-
plication by ϵ in degree 0, see Derived Categories, Definition 10.1. Hence it is also
true that

C•

��

γ
// A•[1]

��
C• γ // A•[1]

commutes in K(R) as ϵ(1+ϵ) = ϵ. Thus we indeed have a morphism of distinguished
triangles. □

64. Being projective is not local on the base

08J0 In the chapter on descent we have seen that many properties of morphisms are local
on the base, even in the fpqc topology. See Descent, Sections 22, 23, and 24. This
is not true for projectivity of morphisms.

Lemma 64.1.08J1 The properties
P(f) =“f is projective”, and
P(f) =“f is quasi-projective”

are not Zariski local on the base. A fortiori, they are not fpqc local on the base.

Proof. Following Hironaka [Har77, Example B.3.4.1], we define a proper morphism
of smooth complex 3-folds f : VY → Y which is Zariski-locally projective, but not
projective. Since f is proper and not projective, it is also not quasi-projective.
Let Y be projective 3-space over the complex numbers C. Let C and D be smooth
conics in Y such that the closed subscheme C ∩D is reduced and consists of two
complex points P and Q. (For example, let C = {[x, y, z, w] : xy = z2, w = 0},
D = {[x, y, z, w] : xy = w2, z = 0}, P = [1, 0, 0, 0], and Q = [0, 1, 0, 0].) On Y −Q,
first blow up the curve C, and then blow up the strict transform of the curve D
(Divisors, Definition 33.1). On Y − P , first blow up the curve D, and then blow
up the strict transform of the curve C. Over Y − P −Q, the two varieties we have
constructed are canonically isomorphic, and so we can glue them over Y − P −Q.
The result is a smooth proper 3-fold VY over C. The morphism f : VY → Y is
proper and Zariski-locally projective (since it is a blowup over Y − P and over
Y −Q), by Divisors, Lemma 32.13. We will show that VY is not projective over C.
That will imply that f is not projective.
To do this, let L be the inverse image in VY of a complex point of C − P − Q,
and M the inverse image of a complex point of D − P − Q. Then L and M are
isomorphic to the projective line P1

C. Next, let E be the inverse image in VY of
C ∪D ⊂ Y in VY ; thus E → C ∪D is a proper morphism, with fibers isomorphic to
P1 over (C ∪D)− {P,Q}. The inverse image of P in E is a union of two lines L0
and M0, and we have rational equivalences of cycles L ∼ L0 +M0 and M ∼M0 on
E (using that C and D are isomorphic to P1). Note the asymmetry resulting from
the order in which we blew up the two curves. Near Q, the opposite happens. So
the inverse image of Q is the union of two lines L′

0 and M ′
0, and we have rational

https://stacks.math.columbia.edu/tag/087L
https://stacks.math.columbia.edu/tag/08J1
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equivalences L ∼ L′
0 and M ∼ L′

0 + M ′
0 on E. Combining these equivalences, we

find that L0 + M ′
0 ∼ 0 on E and hence on VY . If VY were projective over C, it

would have an ample line bundle H, which would have degree > 0 on all curves in
VY . In particular H would have positive degree on L0 +M ′

0, contradicting that the
degree of a line bundle is well-defined on 1-cycles modulo rational equivalence on
a proper scheme over a field (Chow Homology, Lemma 20.3 and Lemma 28.2). So
VY is not projective over C. □

In different terminology, Hironaka’s 3-fold VY is a small resolution of the blowup
Y ′ of Y along the reduced subscheme C ∪ D; here Y ′ has two node singularities.
If we define Z by blowing up Y along C and then along the strict transform of D,
then Z is a smooth projective 3-fold, and the non-projective 3-fold VY differs from
Z by a “flop” over Y − P .

65. Non-effective descent data for projective schemes

08KE In the chapter on descent we have seen that descent data for schemes relative
to an fpqc morphism are effective for several classes of morphisms. In particular,
affine morphisms and more generally quasi-affine morphisms satisfy descent for fpqc
coverings (Descent, Lemma 38.1). This is not true for projective morphisms.

Lemma 65.1.08KF There is an etale covering X → S of schemes and a descent datum
(V/X,φ) relative to X → S such that V → X is projective, but the descent datum
is not effective in the category of schemes.

Proof. We imitate Hironaka’s example of a smooth separated complex algebraic
space of dimension 3 which is not a scheme [Har77, Example B.3.4.2].
Consider the action of the group G = Z/2 = {1, g} on projective 3-space P3 over
the complex numbers by

g[x, y, z, w] = [y, x, w, z].
The action is free outside the two disjoint lines L1 = {[x, x, z, z]} and L2 =
{[x,−x, z,−z]} in P3. Let Y = P3− (L1 ∪L2). There is a smooth quasi-projective
scheme S = Y/G over C such that Y → S is a G-torsor (Groupoids, Definition
11.3). Explicitly, we can define S as the image of the open subset Y in P3 under
the morphism

P3 → Proj C[x, y, z, w]G

= Proj C[u0, u1, v0, v1, v2]/(v0v1 = v2
2),

where u0 = x+y, u1 = z+w, v0 = (x−y)2, v1 = (z−w)2, and v2 = (x−y)(z−w),
and the ring is graded with u0, u1 in degree 1 and v0, v1, v2 in degree 2.
Let C = {[x, y, z, w] : xy = z2, w = 0} and D = {[x, y, z, w] : xy = w2, z = 0}.
These are smooth conic curves in P3, contained in the G-invariant open subset
Y , with g(C) = D. Also, C ∩ D consists of the two points P := [1, 0, 0, 0] and
Q := [0, 1, 0, 0], and these two points are switched by the action of G.
Let VY → Y be the scheme which over Y −P is defined by blowing up D and then
the strict transform of C, and over Y −Q is defined by blowing up C and then the
strict transform of D. (This is the same construction as in the proof of Lemma 64.1,
except that Y here denotes an open subset of P3 rather than all of P3.) Then the
action of G on Y lifts to an action of G on VY , which switches the inverse images

https://stacks.math.columbia.edu/tag/08KF
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of Y − P and Y − Q. This action of G on VY gives a descent datum (VY /Y, φY )
on VY relative to the G-torsor Y → S. The morphism VY → Y is proper but not
projective, as shown in the proof of Lemma 64.1.
Let X be the disjoint union of the open subsets Y − P and Y − Q; then we have
surjective etale morphisms X → Y → S. Let V be the pullback of VY → Y to X;
then the morphism V → X is projective, since VY → Y is a blowup over each of
the open subsets Y −P and Y −Q. Moreover, the descent datum (VY /Y, φY ) pulls
back to a descent datum (V/X,φ) relative to the etale covering X → S.
Suppose that this descent datum is effective in the category of schemes. That is,
there is a scheme U → S which pulls back to the morphism V → X together with
its descent datum. Then U would be the quotient of VY by its G-action.

V //

��

X

��
VY

//

��

Y

��
U // S

Let E be the inverse image of C ∪ D ⊂ Y in VY ; thus E → C ∪ D is a proper
morphism, with fibers isomorphic to P1 over (C ∪D)− {P,Q}. The inverse image
of P in E is a union of two lines L0 and M0. It follows that the inverse image of
Q = g(P ) in E is the union of two lines L′

0 = g(M0) and M ′
0 = g(L0). As shown in

the proof of Lemma 64.1, we have a rational equivalence L0 +M ′
0 = L0 +g(L0) ∼ 0

on E.
By descent of closed subschemes, there is a curve L1 ⊂ U (isomorphic to P1) whose
inverse image in VY is L0 ∪ g(L0). (Use Descent, Lemma 37.1, noting that a closed
immersion is an affine morphism.) Let R be a complex point of L1. Since we
assumed that U is a scheme, we can choose a function f in the local ring OU,R

that vanishes at R but not on the whole curve L1. Let Dloc be an irreducible
component of the closed subset {f = 0} in SpecOU,R; then Dloc has codimension
1. The closure of Dloc in U is an irreducible divisor DU in U which contains the
point R but not the whole curve L1. The inverse image of DU in VY is an effective
divisor D which intersects L0∪g(L0) but does not contain either curve L0 or g(L0).
Since the complex 3-fold VY is smooth, O(D) is a line bundle on VY . We use
here that a regular local ring is factorial, or in other words is a UFD, see More on
Algebra, Lemma 121.2. The restriction of O(D) to the proper surface E ⊂ VY is a
line bundle which has positive degree on the 1-cycle L0 +g(L0), by our information
on D. Since L0 + g(L0) ∼ 0 on E, this contradicts that the degree of a line bundle
is well-defined on 1-cycles modulo rational equivalence on a proper scheme over
a field (Chow Homology, Lemma 20.3 and Lemma 28.2). Therefore the descent
datum (V/X,φ) is in fact not effective; that is, U does not exist as a scheme. □

In this example, the descent datum is effective in the category of algebraic spaces.
More precisely, U exists as a smooth separated algebraic space of dimension 3
over C, for example by Algebraic Spaces, Lemma 14.3. Hironaka’s 3-fold U is a
small resolution of the blowup S′ of the smooth quasi-projective 3-fold S along the
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irreducible nodal curve (C ∪D)/G; the 3-fold S′ has a node singularity. The other
small resolution of S′ (differing from U by a “flop”) is again an algebraic space
which is not a scheme.

66. A family of curves whose total space is not a scheme

0D5D In Quot, Section 15 we define a family of curves over a scheme S to be a proper,
flat, finitely presented morphism of relative dimension ≤ 1 from an algebraic space
X to S. If S is the spectrum of a complete Noetherian local ring, then X is a
scheme, see More on Morphisms of Spaces, Lemma 43.6. In this section we show
this is not true in general.
Let k be a field. We start with a proper flat morphism

Y −→ A1
k

and a point y ∈ Y (k) lying over 0 ∈ A1
k(k) with the following properties

(1) the fibre Y0 is a smooth geometrically irreducible curve over k,
(2) for any proper closed subscheme T ⊂ Y dominating A1

k the intersection
T ∩ Y0 contains at least one point distinct from y.

Given such a surface we construct our example as follows.

Y

  

Z

��

oo // X

~~
A1

k

Here Z → Y is the blowup of Y in y. Let E ⊂ Z be the exceptional divisor and
let C ⊂ Z be the strict transform of Y0. We have Z0 = E ∪C scheme theoretically
(to see this use that Y is smooth at y and moreover Y → A1

k is smooth at y).
By Artin’s results ([Art70]; use Semistable Reduction, Lemma 9.7 to see that the
normal bundle of C is negative) we can blow down the curve C in Z to obtain an
algebraic space X as in the diagram. Let x ∈ X(k) be the image of C.
We claim that X is not a scheme. Namely, if it were a scheme, then there would be
an affine open neighbourhood U ⊂ X of x. Set T = X \ U . Then T dominates A1

k

(as the fibres of X → A1
k are proper of dimension 1 and the fibres of U → A1

k are
affine hence different). Let T ′ ⊂ Z be the closed subscheme mapping isomorphically
to T (as x ̸∈ T ). Then the image of T ′ in X contradicts condition (2) above (as
T ′ ∩ Z0 is contained in the exceptional divisor E of the blowing up Z → Y ).
To finish the discussion we need to construct our Y . We will assume the character-
istic of k is not 3. Write A1

k = Spec(k[t]) and take

Y : T 3
0 + T 3

1 + T 3
2 − tT0T1T2 = 0

in P2
k[t]. The fibre of this for t = 0 is a smooth projective genus 1 curve. On the

affine piece V+(T0) we get the affine equation
1 + x3 + y3 − txy = 0

which defines a smooth surface over k. Since the same is true on the other affine
pieces by symmetry we see that Y is a smooth surface. Finally, we see from the affine
equation also that the fraction field is k(x, y) hence Y is a rational surface. Now
the Picard group of a rational surface is finitely generated (insert future reference
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here). Hence in order to choose y ∈ Y0(k) with property (2) it suffices to choose y
such that

(66.0.1)0DYB OY0(ny) ̸∈ Im(Pic(Y )→ Pic(Y0)) for all n > 0

Namely, the sum of the 1-dimensional irreducible components of a T contradicting
(2) would give an effective Cartier divisor intersection Y0 in the divisor ny for some
n ≥ 1 and we would conclude that OY0(ny) is in the image of the restriction map.
Observe that since Y0 has genus ≥ 1 the map

Y0(k)→ Pic(Y0), y 7→ OY0(y)

is injective. Now if k is an uncountable algebraically closed field, then using the
countability of Pic(Y ) and the remark just made, we can find a y ∈ Y0(k) satisfying
(66.0.1) and hence (2).

Lemma 66.1.0D5E There exists a field k and a family of curves X → A1
k such that X

is not a scheme.

Proof. See discussion above. □

67. Derived base change

08J2 Let R→ R′ be a ring map. In More on Algebra, Section 60 we construct a derived
base change functor −⊗L

R R′ : D(R) → D(R′). Next, let R → A be a second ring
map. Picture

A // A⊗R R′ A′

R

OO

// R′

OO ::

Given an A-module M the tensor product M ⊗R R′ is a A ⊗R R′-module, i.e., an
A′-module. For the ring map A→ A′ there is a derived functor

−⊗L
A A′ : D(A) −→ D(A′)

but this functor does not agree with − ⊗L
R R′ in general. More precisely, for K ∈

D(A) the canonical map
K ⊗L

R R′ −→ K ⊗L
A A′

in D(R′) constructed in More on Algebra, Equation (61.0.1) isn’t an isomorphism
in general. Thus one may wonder if there exists a “derived base change functor”
T : D(A) → D(A′), i.e., a functor such that T (K) maps to K ⊗L

R R′ in D(R′). In
this section we show it does not exist in general.

Let k be a field. Set R = k[x, y]. Set R′ = R/(xy) and A = R/(x2). The object
A⊗L

R R′ in D(R′) is represented by

x2 : R′ −→ R′

and we have H0(A⊗L
RR

′) = A⊗RR
′. We claim that there does not exist an object

E of D(A⊗RR
′) mapping to A⊗L

RR
′ in D(R′). Namely, for such an E the module

H0(E) would be free, hence E would decompose as H0(E)[0]⊕H−1(E)[1]. But it
is easy to see that A⊗L

R R′ is not isomorphic to the sum of its cohomology groups
in D(R′).

https://stacks.math.columbia.edu/tag/0D5E
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Lemma 67.1.08J3 Let R → R′ and R → A be ring maps. In general there does not
exist a functor T : D(A) → D(A ⊗R R′) of triangulated categories such that an
A-module M gives an object T (M) of D(A⊗R R′) which maps to M ⊗L

R R′ under
the map D(A⊗R R′)→ D(R′).

Proof. See discussion above. □

68. An interesting compact object

09R4 Let R be a ring. Let (A,d) be a differential graded R-algebra. If A = R, then
we know that every compact object of D(A,d) = D(R) is represented by a finite
complex of finite projective modules. In other words, compact objects are perfect,
see More on Algebra, Proposition 78.3. The analogue in the language of differential
graded modules would be the question: “Is every compact object of D(A,d) repre-
sented by a differential graded A-module P which is finite and graded projective?”

For general differential graded algebras, this is not true. Namely, let k be a field of
characteristic 2 (so we don’t have to worry about signs). Let A = k[x, y]/(y2) with

(1) x of degree 0
(2) y of degree −1,
(3) d(x) = 0, and
(4) d(y) = x2 + x.

Then x : A→ A is a projector in K(A,d). Hence we see that

A = Ker(x)⊕ Im(1− x)

in K(A,d), see Differential Graded Algebra, Lemma 5.4 and Derived Categories,
Lemma 4.14. It is clear that A is a compact object of D(A,d). Then Ker(x) is a
compact object of D(A,d) as follows from Derived Categories, Lemma 37.2.

Next, suppose that M is a differential graded (right) A-module representing Ker(x)
and suppose that M is finite and projective as a graded A-module. Because every
finite graded projective module over k[x, y]/(y2) is graded free, we see that M is
finite free as a graded k[x, y]/(y2)-module (i.e., when we forget the differential). We
set N = M/M(x2 + x). Consider the exact sequence

0→M
x2+x−−−→M → N → 0

Since x2 +x is of degree 0, in the center of A, and d(x2 +x) = 0 we see that this is a
short exact sequence of differential graded A-modules. Moreover, as d(y) = x2 + x
we see that the differential on N is linear. The maps

H−1(N)→ H0(M) and H0(M)→ H0(N)

are isomorphisms as H∗(M) = H0(M) = k since M ∼= Ker(x) in D(A,d). A
computation of the boundary map shows that H∗(N) = k[x, y]/(x, y2) as a graded
module; we omit the details. Since N is a free k[x, y]/(y2, x2 + x)-module we have
a resolution

. . .→ N [2] y−→ N [1] y−→ N → N/Ny → 0
compatible with differentials. Since N is bounded and since H0(N) = k[x, y]/(x, y2)
it follows from Homology, Lemma 25.3 that H0(N/Ny) = k[x]/(x). But as N/Ny
is a finite complex of free k[x]/(x2 +x) = k×k-modules, we see that its cohomology
has to have even dimension, a contradiction.

https://stacks.math.columbia.edu/tag/08J3
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Lemma 68.1.09R5 There exists a differential graded algebra (A, d) and a compact object
E of D(A, d) such that E cannot be represented by a finite and graded projective
differential graded A-module.

Proof. See discussion above. □

69. Two differential graded categories

09R6 In this section we construct two differential graded categories satisfying axioms (A),
(B), and (C) as in Differential Graded Algebra, Situation 27.2 whose objects do not
come with a Z-grading.
Example I. Let X be a topological space. Denote Z the constant sheaf with value
Z. Let A be an Z-torsor. In this setting we say a sheaf of abelian groups F is
A-graded if given a local section a ∈ A(U) there is a projector pa : F|U → F|U such
that whenever we have a local isomorphism Z|U → A|U then F|U =

⊕
n∈Z pn(F).

Another way to say this is that locally on X the abelian sheaf F has a Z-grading,
but on overlaps the different choices of gradings differ by a shift in degree given by
the transition functions for the torsor A. We say that a pair (F ,d) is an A-graded
complex of abelian sheaves, if F is an A-graded abelian sheaf and d : F → F is a
differential, i.e., d2 = 0 such that pa+1 ◦ d = d ◦ pa for every local section a of A.
In other words, d(pa(F)) is contained in pa+1(F).
Next, consider the category A with

(1) objects are A-graded complexes of abelian sheaves, and
(2) for objects (F ,d), (G,d) we set

HomA((F ,d), (G,d)) =
⊕

Homn(F ,G)

where Homn(F ,G) is the group of maps of abelian sheaves f such that
f(pa(F)) ⊂ pa+n(G) for all local sections a of A. As differential we take
d(f) = d ◦ f − (−1)nf ◦ d, see Differential Graded Algebra, Example 26.6.

We omit the verification that this is indeed a differential graded category satisfying
(A), (B), and (C). All the properties may be verified locally on X where one just
recovers the differential graded category of complexes of abelian sheaves. Thus we
obtain a triangulated category K(A).
Twisted derived category of X. Observe that given an object (F ,d) of A, there is
a well defined A-graded cohomology sheaf H(F ,d). Hence it is clear what is meant
by a quasi-isomorphism in K(A). We can invert quasi-isomorphisms to obtain the
derived category D(A) of complexes of A-graded sheaves. If A is the trivial torsor,
then D(A) is equal to D(X), but for nonzero torsors, one obtains a kind of twisted
derived category of X.
Example II. Let C be a smooth curve over a perfect field k of characteristic 2.
Then ΩC/k comes endowed with a canonical square root. Namely, we can write
ΩC/k = L⊗2 such that for every local function f on C the section d(f) is equal to
s⊗2 for some local section s of L. The “reason” is that

d(a0 + a1t+ . . .+ adt
d) = (

∑
i odd

a
1/2
i t(i−1)/2)2dt

(insert future reference here). This in particular determines a canonical connection
∇can : ΩC/k −→ ΩC/k ⊗OC

ΩC/k

https://stacks.math.columbia.edu/tag/09R5
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whose 2-curvature is zero (namely, the unique connection such that the squares
have derivative equal to zero). Observe that the category of vector bundles with
connections is a tensor category, hence we also obtain canonical connections ∇can

on the invertible sheaves Ω⊗n
C/k for all n ∈ Z.

Let A be the category with
(1) objects are pairs (F ,∇) consisting of a finite locally free sheaf F endowed

with a connection

∇ : F −→ F ⊗OC
ΩC/k

whose 2-curvature is zero, and
(2) morphisms between (F ,∇F ) and (G,∇G) are given by

HomA((F ,∇F ), (G,∇G)) =
⊕

HomOC
(F ,G ⊗OC

Ω⊗n
C/k)

For an element f : F → G ⊗ Ω⊗n
C/k of degree n we set

d(f) = ∇G⊗Ω⊗n
C/k
◦ f + f ◦ ∇F

with suitable identifications.
We omit the verification that this forms a differential graded category with prop-
erties (A), (B), (C). Thus we obtain a triangulated homotopy category K(A).

If C = P1
k, then K(A) is the zero category. However, if C is a smooth proper curve

of genus > 1, then K(A) is not zero. Namely, suppose that N is an invertible sheaf
of degree 0 ≤ d < g− 1 with a nonzero section σ. Then set (F ,∇F ) = (OC ,d) and
(G,∇G) = (N⊗2,∇can). We see that

Homn
A((F ,∇F ), (G,∇G)) =

 0 if n < 0
Γ(C,N⊗2) if n = 0

Γ(C,N⊗2 ⊗ ΩC/k) if n = 1

The first 0 because the degree of N⊗2⊗Ω⊗−1
C/k is negative by the condition d < g−1.

Now, the section σ⊗2 has derivative equal zero, hence the homomorphism group

HomK(A)((F ,∇F ), (G,∇G))

is nonzero.

70. The stack of proper algebraic spaces is not algebraic

0D1Q In Quot, Section 13 we introduced and studied the stack in groupoids

p′
fp,flat,proper : Spaces′

fp,flat,proper −→ Schfppf

the stack whose category of sections over a scheme S is the category of flat, proper,
finitely presented algebraic spaces over S. We proved that this satisfies many of
Artin’s axioms. In this section we why this stack is not algebraic by showing that
formal effectiveness fails in general.

The canonical example uses that the universal deformation space of an abelian
variety of dimension g has g2 formal parameters whereas any effective formal de-
formation can be defined over a complete local ring of dimension ≤ g(g+1)/2. Our
example will be constructed by writing down a suitable non-effective deformation
of a K3 surface. We will only sketch the argument and not give all the details.
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Let k = C be the field of complex numbers. Let X ⊂ P3
k be a smooth degree 4

surface over k. We have ωX
∼= Ω2

X/k
∼= OX . Finally, we have dimk H

0(X,TX/k) = 0,
dimk H

1(X,TX/k) = 20, and dimk H
2(X,TX/k) = 0. Since LX/k = ΩX/k because

X is smooth over k, and since Exti
OX

(ΩX/k,OX) = Hi(X,TX/k), and because we
have Cotangent, Lemma 23.1 we find that there is a universal deformation of X
over

k[[x1, . . . , x20]]
Suppose that this universal deformation is effective (as in Artin’s Axioms, Section
9). Then we would get a flat, proper morphism

f : Y −→ Spec(k[[x1, . . . , x20]])
where Y is an algebraic space recovering the universal deformation. This is im-
possible for the following reason. Since Y is separated we can find an affine open
subscheme V ⊂ Y . Since the special fibre X of Y is smooth, we see that f is smooth.
Hence Y is regular being smooth over regular and it follows that the complement
D of V in Y is an effective Cartier divisor. Then OY (D) is a nontrivial element
of Pic(Y ) (to prove this you show that the complement of a nonempty affine open
in a proper smooth algebraic space over a field is always a nontrivial in the Picard
group and you apply this to the generic fibre of f). Finally, to get a contradiction,
we show that Pic(Y ) = 0. Namely, the map Pic(Y )→ Pic(X) is injective, because
H1(X,OX) = 0 (hence all deformations of OX to Y × Spec(k[[xi]]/mn) are trivial)
and Grothendieck’s existence theorem (which says that coherent modules giving
rise to the same sheaves on thickenings are isomorphic). If X is general enough,
then Pic(X) = Z generated by OX(1). Hence it suffices to show that OX(n), n > 0
does not deform to the first order neighbourhood5. Consider the cup-product

H1(X,ΩX/k)×H1(X,TX/k) −→ H2(X,OX)
This is a nondegenerate pairing by coherent duality. A computation shows that
the Chern class c1(OX(n)) ∈ H1(X,ΩX/k) in Hodge cohomology is nonzero. Hence
there is a first order deformation whose cup product with c1(OX(n)) is nonzero.
Then finally, one shows this cup product is the obstruction class to lifting.

Lemma 70.1.0D1R The stack in groupoids
p′

fp,flat,proper : Spaces′
fp,flat,proper −→ Schfppf

whose category of sections over a scheme S is the category of flat, proper, finitely
presented algebraic spaces over S (see Quot, Section 13) is not an algebraic stack.

Proof. If it was an algebraic stack, then every formal object would be effective, see
Artin’s Axioms, Lemma 9.5. The discussion above show this is not the case after
base change to Spec(C). Hence the conclusion. □

71. An example of a non-algebraic Hom-stack

0AF8 Let Y,Z be algebraic stacks over a scheme S. The Hom-stack MorS(Y,Z) is the
stack in groupoids over S whose category of sections over a scheme T is given by
the category

MorT (Y ×S T,Z ×S T )

5This argument works as long as the map c1 : Pic(X) → H1(X, ΩX/k) is injective, which is
true for k any field of characteristic zero and any smooth hypersurface X of degree 4 in P3

k.

https://stacks.math.columbia.edu/tag/0D1R
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whose objects are 1-morphisms and whose morphisms are 2-morphisms. We omit
the proof this is indeed a stack in groupoids over (Sch/S)fppf (insert future ref-
erence here). Of course, in general the Hom-stack will not be algebraic. In this
section we give an example where it is not true and where Y is representable by a
proper flat scheme over S and Z is smooth and proper over S.

Let k be an algebraically closed field which is not the algebraic closure of a finite
field. Let S = Spec(k[[t]]) and Sn = Spec(k[t]/(tn)) ⊂ S. Let f : X → S be a map
satisfying the following

(1) f is projective and flat, and its fibres are geometrically connected curves,
(2) the fibre X0 = X×SS0 is a nodal curve with smooth irreducible components

whose dual graph has a loop consisting of rational curves,
(3) X is a regular scheme.

To make such a surface X we can take for example

X : T0T1T2 − t(T 3
0 + T 3

1 + T 3
2 ) = 0

in P2
k[[t]]. Let A0 be a non-zero abelian variety over k for example an elliptic curve.

Let A = A0×Spec(k) S be the constant abelian scheme over S associated to A0. We
will show that the stack X = MorS(X, [S/A])) is not algebraic.

Recall that [S/A] is on the one hand the quotient stack of A acting trivially on S
and on the other hand equal to the stack classifying fppf A-torsors, see Examples
of Stacks, Proposition 15.3. Observe that [S/A] = [Spec(k)/A0] ×Spec(k) S. This
allows us to describe the fibre category over a scheme T as follows

XT = MorS(X, [S/A])T

= MorT (X ×S T, [S/A]×S T )
= MorS(X ×S T, [S/A])
= MorSpec(k)(X ×S T, [Spec(k)/A0])

for any S-scheme T . In other words, the groupoid XT is the groupoid of fppf A0-
torsors on X ×S T . Before we discuss why X is not an algebraic stack, we need a
few lemmas.

Lemma 71.1.0AF9 Let W be a two dimensional regular integral Noetherian scheme with
function field K. Let G→W be an abelian scheme. Then the map H1

fppf (W,G)→
H1

fppf (Spec(K), G) is injective.

Sketch of proof. Let P → W be an fppf G-torsor which is trivial in the generic
point. Then we have a morphism Spec(K)→ P over W and we can take its scheme
theoretic image Z ⊂ P . Since P → W is proper (as a torsor for a proper group
algebraic space over W ) we see that Z → W is a proper birational morphism. By
Spaces over Fields, Lemma 3.2 the morphism Z → W is finite away from finitely
many closed points of W . By (insert future reference on resolving indeterminacies
of morphisms by blowing quadratic transformations for surfaces) the irreducible
components of the geometric fibres of Z → W are rational curves. By More on
Groupoids in Spaces, Lemma 11.3 there are no nonconstant morphisms from ratio-
nal curves to group schemes or torsors over such. Hence Z → W is finite, whence
Z is a scheme and Z →W is an isomorphism by Morphisms, Lemma 54.8. In other
words, the torsor P is trivial. □

https://stacks.math.columbia.edu/tag/0AF9
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Lemma 71.2.0AFA Let G be a smooth commutative group algebraic space over a field
K. Then H1

fppf (Spec(K), G) is torsion.

Proof. Every G-torsor P over Spec(K) is smooth over K as a form of G. Hence
P has a point over a finite separable extension L/K. Say [L : K] = n. Let [n](P )
denote the G-torsor whose class is n times the class of P in H1

fppf (Spec(K), G).
There is a canonical morphism

P ×Spec(K) . . .×Spec(K) P → [n](P )
of algebraic spaces over K. This morphism is symmetric as G is abelian. Hence it
factors through the quotient

(P ×Spec(K) . . .×Spec(K) P )/Sn

On the other hand, the morphism Spec(L)→ P defines a morphism
(Spec(L)×Spec(K) . . .×Spec(K) Spec(L))/Sn −→ (P ×Spec(K) . . .×Spec(K) P )/Sn

and the reader can verify that the scheme on the left has a K-rational point. Thus
we see that [n](P ) is the trivial torsor. □

To prove X = MorS(X, [S/A]) is not an algebraic stack, by Artin’s Axioms, Lemma
9.5, it is enough to show the following.

Lemma 71.3.0AFB The canonical map X (S)→ limX (Sn) is not essentially surjective.

Sketch of proof. Unwinding definitions, it is enough to check that H1(X,A0)→
limH1(Xn, A0) is not surjective. As X is regular and projective, by Lemmas 71.2
and 71.1 each A0-torsor over X is torsion. In particular, the group H1(X,A0) is
torsion. It is thus enough to show: (a) the group H1(X0, A0) is non-torsion, and
(b) the maps H1(Xn+1, A0)→ H1(Xn, A0) are surjective for all n.
Ad (a). One constructs a nontorsion A0-torsor P0 on the nodal curve X0 by glueing
trivial A0-torsors on each component of X0 using non-torsion points on A0 as the
isomorphisms over the nodes. More precisely, let x ∈ X0 be a node which occurs
in a loop consisting of rational curves. Let X ′

0 → X0 be the normalization of
X0 in X0 \ {x}. Let x′, x′′ ∈ X ′

0 be the two points mapping to x0. Then we take
A0×Spec(k)X

′
0 and we identify A0×x′ with A0×{x′′} using translation A0 → A0 by

a nontorsion point a0 ∈ A0(k) (there is such a nontorsion point as k is algebraically
closed and not the algebraic closure of a finite field – this is actually not trivial to
prove). One can show that the glueing is an algebraic space (in fact one can show
it is a scheme) and that it is an nontorsion A0-torsor over X0. The reason that it is
nontorsion is that if [n](P0) has a section, then that section produces a morphism
s : X ′

0 → A0 such that [n](a0) = s(x′)− s(x′′) in the group law on A0(k). However,
since the irreducible components of the loop are rational to section s is constant on
them ( More on Groupoids in Spaces, Lemma 11.3). Hence s(x′) = s(x′′) and we
obtain a contradiction.
Ad (b). Deformation theory shows that the obstruction to deforming an A0-torsor
Pn → Xn to an A0-torsor Pn+1 → Xn+1 lies in H2(X0, ω) for a suitable vector
bundle ω on X0. The latter vanishes as X0 is a curve, proving the claim. □

Proposition 71.4.0AFC The stack X = MorS(X, [S/A]) is not algebraic.

Proof. See discussion above. □

https://stacks.math.columbia.edu/tag/0AFA
https://stacks.math.columbia.edu/tag/0AFB
https://stacks.math.columbia.edu/tag/0AFC
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Remark 71.5.0AFD Proposition 71.4 contradicts [Aok06b, Theorem 1.1]. The problem
is the non-effectivity of formal objects for MorS(X, [S/A]). The same problem is
mentioned in the Erratum [Aok06a] to [Aok06b]. Unfortunately, the Erratum goes
on to assert that MorS(Y,Z) is algebraic if Z is separated, which also contradicts
Proposition 71.4 as [S/A] is separated.

72. An algebraic stack not satisfying strong formal effectiveness

0CXW This is [Bha16, Example 4.12]. Let k be an algebraically closed field. Let A be an
abelian variety over k. Assume that A(k) is not torsion (this always holds if k is
not the algebraic closure of a finite field). Let X = [Spec(k)/A]. We claim there
exists an ideal I ⊂ k[x, y] such that

XSpec(k[x,y]∧) −→ limXSpec(k[x,y]/In)

is not essentially surjective. Namely, let I be the ideal generated by xy(x+ y − 1).
Then X0 = V (I) consists of three copies of A1

k glued into a triangle at three
points. Hence we can make an infinite order torsor P0 for A over X0 by taking the
trivial torsor over the irreducible components of X0 and glueing using translation
by nontorsion points. Exactly as in the proof of Lemma 71.3 we can lift P0 to a
torsor Pn over Xn = Spec(k[x, y]/In). Since k[x, y]∧ is a two dimensional regular
domain we see that any torsor P for A over Spec(k[x, y]∧) is torsion (Lemmas 71.1
and 71.2). Hence the system of torsors is not in the image of the displayed functor.

Lemma 72.1.0CXX Let k be an algebraically closed field which is not the closure of a
finite field. Let A be an abelian variety over k. Let X = [Spec(k)/A]. There exists
an inverse system of k-algebras Rn with surjective transition maps whose kernels
are locally nilpotent and a system (ξn) of X lying over the system (Spec(Rn)) such
that this system is not effective in the sense of Artin’s Axioms, Remark 20.2.

Proof. See discussion above. □

73. A counter example to Grothendieck’s existence theorem

0ARE Let k be a field and let A = k[[t]]. Let X be the glueing of U = Spec(A[x]) and
V = Spec(A[y]) by the identification

U \ {0U} −→ V \ {0V }

sending x to y where 0U ∈ U and OV ∈ V are the points corresponding to the
maximal ideals (x, t) and (y, t). SetAn = A/(tn) and setXn = X×Spec(A)Spec(An).
Let Fn be the coherent sheaf on Xn corresponding to the An[x]-module An[x]/(x) ∼=
An and the An[y] module 0 with obvious glueing. Let I ⊂ OX be the sheaf of ideals
generate by t. Then (Fn) is an object of the category Cohsupport proper over A(X, I)
defined in Cohomology of Schemes, Section 27. On the other hand, this object is
not in the image of the functor Cohomology of Schemes, Equation (27.0.1). Namely,
if it where there would be a finite A[x]-module M , a finite A[y]-module N and an
isomorphism M [1/t] ∼= N [1/t] such that M/tnM ∼= An[x]/(x) and N/tnN = 0 for
all n. It is easy to see that this is impossible.

Lemma 73.1.0ARF Counter examples to algebraization of coherent sheaves.
(1) Grothendieck’s existence theorem as stated in Cohomology of Schemes, The-

orem 27.1 is false if we drop the assumption that X → Spec(A) is separated.

https://stacks.math.columbia.edu/tag/0AFD
https://stacks.math.columbia.edu/tag/0CXX
https://stacks.math.columbia.edu/tag/0ARF
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(2) The stack of coherent sheaves CohX/B of Quot, Theorems 6.1 and 5.12 is
in general not algebraic if we drop the assumption that X → S is separated

(3) The functor QuotF/X/B of Quot, Proposition 8.4 is not an algebraic space
in general if we drop the assumption that X → B is separated.

Proof. Part (1) we saw above. This shows that CohX/A fails axiom [4] of Artin’s
Axioms, Section 14. Hence it cannot be an algebraic stack by Artin’s Axioms,
Lemma 9.5. In this way we see that (2) is true. To see (3), note that there are
compatible surjections OXn → Fn for all n. Thus we see that QuotOX /X/A fails
axiom [4] and we see that (3) is true as before. □

74. Affine formal algebraic spaces

0ANY Let K be a field and let (Vi)i∈I be a directed inverse system of nonzero vector
spaces over K with surjective transition maps and with limVi = 0, see Section 3.
Let Ri = K ⊕ Vi as K-algebra where Vi is an ideal of square zero. Then Ri is an
inverse system of K-algebras with surjective transition maps with nilpotent kernels
and with limRi = K. The affine formal algebraic space X = colim Spec(Ri) is an
example of an affine formal algebraic space which is not McQuillan.
Lemma 74.1.0CBC There exists an affine formal algebraic space which is not McQuil-
lan.
Proof. See discussion above. □

Let 0 → Wi → Vi → K → 0 be a system of exact sequences as in Section 3. Let
Ai = K[Vi]/(ww′;w,w′ ∈ Wi). Then there is a compatible system of surjections
Ai → K[t] with nilpotent kernels and the transition maps Ai → Aj are surjective
with nilpotent kernels as well. Recall that Vi is free over K with basis given by
s ∈ Si. Then, if the characteristic of K is zero, the degree d part of Ai is free over K
with basis given by sd, s ∈ Si each of which map to td. Hence the inverse system of
the degree d parts of the Ai is isomorphic to the inverse system of the vector spaces
Vi. As limVi = 0 we conclude that limAi = K, at least when the characteristic of
K is zero. This gives an example of an affine formal algebraic space whose “regular
functions” do not separate points.
Lemma 74.2.0CBD There exists an affine formal algebraic space X whose regular
functions do not separate points, in the following sense: If we write X = colimXλ

as in Formal Spaces, Definition 9.1 then lim Γ(Xλ,OXλ
) is a field, but Xred has

infinitely many points.
Proof. See discussion above. □

Let K, I, and (Vi) be as above. Consider systems
Φ = (Λ, Ji ⊂ Λ, (Mi)→ (Vi))

where Λ is an augmented K-algebra, Ji ⊂ Λ for i ∈ I is an ideal of square zero,
(Mi) → (Vi) is a map of inverse systems of K-vector spaces such that Mi → Vi is
surjective for each i, such thatMi has a Λ-module structure, such that the transition
maps Mi →Mj , i > j are Λ-linear, and such that JjMi ⊂ Ker(Mi →Mj) for i > j.
Claim: There exists a system as above such that Mj = Mi/JjMi for all i > j.
If the claim is true, then we obtain a representable morphism

colimi∈I Spec(Λ/Ji ⊕Mi) −→ Spf(lim Λ/Ji)

https://stacks.math.columbia.edu/tag/0CBC
https://stacks.math.columbia.edu/tag/0CBD
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of affine formal algebraic spaces whose source is not McQuillan but the target
is. Here Λ/Ji ⊕Mi has the usual Λ/Ji-algebra structure where Mi is an ideal of
square zero. Representability translates exactly into the condition that Mi/JjMi =
Mj for i > j. The source of the morphism is not McQuillan as the projections
limi∈I Mi → Mi are not be surjective. This is true because the maps limVi → Vi

are not surjective and we have the surjection Mi → Vi. Some details omitted.
Proof of the claim. First, note that there exists at least one system, namely

Φ0 = (K,Ji = (0), (Vi)
id−→ (Vi))

Given a system Φ we will prove there exists a morphism of systems Φ→ Φ′ (mor-
phisms of systems defined in the obvious manner) such that Ker(Mi/JjMi →Mj)
maps to zero in M ′

i/J
′
jM

′
i . Once this is done we can do the usual trick of setting

Φn = (Φn−1)′ inductively for n ≥ 1 and taking Φ = colim Φn to get a system with
the desired properties. Details omitted.
Construction of Φ′ given Φ. Consider the set U of triples u = (i, j, ξ) where i > j
and ξ ∈ Ker(Mi →Mj). We will let s, t : U → I denote the maps s(i, j, ξ) = i and
t(i, j, ξ) = j. Then we set ξu ∈Ms(u) the third component of u. We take

Λ′ = Λ[xu;u ∈ U ]/(xuxu′ ;u, u′ ∈ U)
with augmentation Λ′ → K given by the augmentation of Λ and sending xu to zero.
We take J ′

k = JkΛ′ + (xu, t(u)≥k). We set

M ′
i = Mi ⊕

⊕
s(u)≥i

Kϵi,u

As transition maps M ′
i → M ′

j for i > j we use the given map Mi → Mj and we
send ϵi,u to ϵj,u. The map M ′

i → Vi induces the given map Mi → Vi and sends ϵi,u
to zero. Finally, we let Λ′ act on M ′

i as follows: for λ ∈ Λ we act by the Λ-module
structure on Mi and via the augmentation Λ→ K on ϵi,u. The element xu acts as
0 on Mi for all i. Finally, we define

xuϵi,u = image of ξu in Mi

and we set all other products xu′ϵi,u equal to zero. The displayed formula makes
sense because s(u) ≥ i and ξu ∈Ms(u). The main things the check are J ′

jM
′
i ⊂M ′

i

maps to zero in M ′
j for i > j and that Ker(Mi → Mj) maps to zero in M ′

i/JjM
′
i .

The reason for the last fact is that ξ = x(i,j,ξ)ϵi,(i,j,ξ) ∈ J ′
jM

′
i for any ξ ∈ Ker(Mi →

Mj). We omit the details.

Lemma 74.3.0CBE There exists a representable morphism f : X → Y of affine formal
algebraic spaces with Y McQuillan, but X not McQuillan.

Proof. See discussion above. □

75. Flat maps are not directed limits of finitely presented flat maps

0ATE The goal of this section is to give an example of a flat ring map which is not a
filtered colimit of flat and finitely presented ring maps. In [Gab96] it is shown that
if A is a nonexcellent local ring of dimension 1 and residue characteristic zero, then
the (flat) ring map A → A∧ to its completion is not a filtered colimit of finite
type flat ring maps. The example in this section will have a source which is an
excellent ring. We encourage the reader to submit other examples; please email
stacks.project@gmail.com if you have one.

https://stacks.math.columbia.edu/tag/0CBE
mailto:stacks.project@gmail.com
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For the construction, fix a prime p, and let A = Fp[x1, . . . , xn]. Choose an absolute
integral closure A+ of A, i.e., A+ is the integral closure of A in an algebraic closure
of its fraction field. In [HH92, §6.7] it is shown that A→ A+ is flat.
We claim that the A-algebra A+ is not a filtered colimit of finitely presented flat
A-algebras if n ≥ 3.
We sketch the argument in the case n = 3, and we leave the generalization to higher
n to the reader. It is enough to prove the analogous statement for the map R→ R+,
where R is the strict henselization of A at the origin and R+ is its absolute integral
closure. Observe that R is a henselian regular local ring whose residue field k is an
algebraic closure of Fp.
Choose an ordinary abelian surface X over k and a very ample line bundle L on
X. The section ring Γ∗(X,L) =

⊕
n H

0(X,Ln) is the coordinate ring of the affine
cone over X with respect to L. It is a normal ring for L sufficiently positive.
Let S denote the henselization of Γ∗(X,L) at vertex of the cone. Then S is a
henselian Noetherian normal domain of dimension 3. We obtain a finite injective
map R → S as the henselization of a Noether normalization for the finite type
k-algebra Γ∗(X,L). As R+ is an absolute integral closure of R, we can also fix an
embedding S → R+. Thus R+ is also the absolute integral closure of S. To show
R+ is not a filtered colimit of flat R-algebras, it suffices to show:

(1) If there exists a factorization S → P → R+ with P flat and finite type over
R, then there exists a factorization S → T → R+ with T finite flat over R.

(2) For any factorization S → T → R+ with S → T finite, the ring T is not
R-flat.

Indeed, since S is finitely presented over R, if one could write R+ = colimi Pi as a
filtered colimit of finitely presented flat R-algebras Pi, then S → R+ would factor as
S → Pi → R+ for i≫ 0, which contradicts the above pair of assertions. Assertion
(1) follows from the fact that R is henselian and a slicing argument, see More on
Morphisms, Lemma 23.5. Part (2) was proven in [Bha12]; for the convenience of
the reader, we recall the argument.
Let U ⊂ Spec(S) be the punctured spectrum, so there are natural maps X ←
U ⊂ Spec(S). The first map gives an identification H1(U,OU ) ≃ H1(X,OX). By
passing to the Witt vectors of the perfection and using the Artin-Schreier sequence6,
this gives an identification H1

étale(U,Zp) ≃ H1
étale(X,Zp). In particular, this group

is a finite free Zp-module of rank 2 (since X is ordinary). To get a contradiction
assume there exists an R-flat T as in (2) above. Let V ⊂ Spec(T ) denote the
preimage of U , and write f : V → U for the induced finite surjective map. Since U
is normal, there is a trace map f∗Zp → Zp on Uétale whose composition with the
pullback Zp → f∗Zp is multiplication by d = deg(f). Passing to cohomology, and
using that H1

étale(U,Zp) is nontorsion, then shows that H1
étale(V,Zp) is nonzero.

Since H1
étale(V,Zp) ≃ limH1

étale(V,Z/pn) as there is no R1 lim interference, the
group H1(Vétale,Z/p) must be non-zero. Since T is R-flat we have Γ(V,OV ) = T
which is strictly henselian and the Artin-Schreier sequence shows H1(V,OV ) ̸= 0.
This is equivalent to H2

m(T ) ̸= 0, where m ⊂ R is the maximal ideal. Thus, we

6Here we use that S is a strictly henselian local ring of characteristic p and hence S → S,
f 7→ fp−f is surjective. Also S is a normal domain and hence Γ(U, OU ) = S. Thus H1

étale(U, Z/p)
is the kernel of the map H1(U, OU ) → H1(U, OU ) induced by f 7→ fp − f .
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obtain a contradiction since T is finite flat (i.e., finite free) as an R-module and
H2

m(R) = 0. This contradiction proves (2).

Lemma 75.1.0ATF There exists a commutative ring A and a flat A-algebra B which
cannot be written as a filtered colimit of finitely presented flat A-algebras. In fact,
we may either choose A to be a finite type Fp-algebra or a 1-dimensional Noetherian
local ring with residue field of characteristic 0.

Proof. See discussion above. □

76. The category of modules modulo torsion modules

0B0J The category of torsion groups is a Serre subcategory (Homology, Definition 10.1)
of the category of all abelian groups. More generally, for any ring A, the category of
torsion A-modules is a Serre subcategory of the category of all A-modules, see More
on Algebra, Section 53. If A is a domain, then the quotient category (Homology,
Lemma 10.6) is equivalent to the category of vector spaces over the fraction field.
This follows from the following more general proposition.

Proposition 76.1.0EA5 Let A be a ring. Let S be a multiplicative subset of A. Let
ModA denote the category of A-modules and T its Serre subcategory of modules for
which any element is annihilated by some element of S. Then there is a canonical
equivalence ModA/T → ModS−1A.

Proof. The functor ModA → ModS−1A given by M 7→ M ⊗A S−1A is exact (by
Algebra, Proposition 9.12) and maps modules in T to zero. Thus, by the univer-
sal property given in Homology, Lemma 10.6, the functor descends to a functor
ModA/T → ModS−1A.
Conversely, any A-module M with M ⊗A S

−1A = 0 is an object of T , since M ⊗A

S−1A ∼= S−1M (Algebra, Lemma 12.15). Thus Homology, Lemma 10.7 shows that
the functor ModA/T → ModS−1A is faithful.
Furthermore, this embedding is essentially surjective: a preimage to an S−1A-
module N is NA, that is N regarded as an A-module, since the canonical map
NA ⊗A S−1A → N which maps x ⊗ a/s to (a/s) · x is an isomorphism of S−1A-
modules. □

Proposition 76.2.0B0K Let A be a ring. Let Q(A) denote its total quotient ring (as in
Algebra, Example 9.8). Let ModA denote the category of A-modules and T its Serre
subcategory of torsion modules. Let ModQ(A) denote the category of Q(A)-modules.
Then there is a canonical equivalence ModA/T → ModQ(A).

Proof. Follows immediately from applying Proposition 76.1 to the multiplicative
subset S = {f ∈ A | f is not a zerodivisor in A}, since a module is a torsion module
if and only if all of its elements are each annihilated by some element of S. □

Proposition 76.3.0B0L Let A be a Noetherian integral domain. Let K denote its field
of fractions. Let Modfg

A denote the category of finitely generated A-modules and
T fg its Serre subcategory of finitely generated torsion modules. Then Modfg

A /T fg

is canonically equivalent to the category of finite dimensional K-vector spaces.

Proof. The equivalence given in Proposition 76.2 restricts along the embedding
Modfg

A /T fg → ModA/T to an equivalence Modfg
A /T fg → Vectfd

K . The Noetherian

https://stacks.math.columbia.edu/tag/0ATF
https://stacks.math.columbia.edu/tag/0EA5
https://stacks.math.columbia.edu/tag/0B0K
https://stacks.math.columbia.edu/tag/0B0L
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assumption guarantees that Modfg
A is an abelian category (see More on Algebra,

Section 53) and that the canonical functor Modfg
A /T fg → ModA/T is full (else

torsion submodules of finitely generated modules might not be objects of T fg). □

Proposition 76.4.0B0M The quotient of the category of abelian groups modulo its Serre
subcategory of torsion groups is the category of Q-vector spaces.

Proof. The claim follows directly from Proposition 76.2. □

77. Different colimit topologies

0B2Y This example is [TSH98, Example 1.2, page 553]. Let Gn = Q×Rn, n ≥ 1 seen as a
topological group for addition endowed with the usual (Euclidean) topology. Con-
sider the closed embeddings Gn → Gn+1 mapping (x0, . . . , xn) to (x0, . . . , xn, 0).
We claim that G = colimGn endowed with the topology

U ⊂ G open⇔ Gn ∩ U open ∀n
is not a topological group.
To see this we consider the set

U = {(x0, x1, x2, . . .) such that |xj | < | cos(jx0)| for j > 0}
Using that jx0 is never an integral multiple of π/2 as π is not rational it is easy
to show that U ∩ Gn is open. Since 0 ∈ U , if the topology above made G into a
topological group, then there would be an open neighbourhood V ⊂ G of 0 such
that V + V ⊂ U . Then, for every j ≥ 0 there would exist ϵj > 0 such that
(0, . . . , 0, xj , 0, . . .) ∈ V for |xj | < ϵj . Since V + V ⊂ U we would have

(x0, 0, . . . , 0, xj , 0, . . .) ∈ U
for |x0| < ϵ0 and |xj | < ϵj . However, if we take j large enough such that jϵ0 > π/2,
then we can choose x0 ∈ Q such that | cos(jx0)| is smaller than ϵj , hence there
exists an xj with | cos(jx0)| < |xj | < ϵj . This contradiction proves the claim.

Lemma 77.1.0B2Z There exists a system G1 → G2 → G3 → . . . of (abelian) topological
groups such that colimGn taken in the category of topological spaces is different from
colimGn taken in the category of topological groups.

Proof. See discussion above. □

78. Universally submersive but not V covering

0EU8 Let A be a valuation ring. Let p ⊂ A be a prime ideal which is neither the minimal
prime nor the maximal ideal. (A good case to keep in mind is when A has three
prime ideals and p is the one in the “middle”.) Consider the morphism of affine
schemes

Spec(Ap)⨿ Spec(A/p) −→ Spec(A)
We claim this is universally submersive. In order to prove this, let Spec(B) →
Spec(A) be a morphism of affine schemes given by the ring map A→ B. Then we
have to show that

Spec(Bp)⨿ Spec(B/pB)→ Spec(B)
is submersive. First of all it is surjective. Next, suppose that T ⊂ Spec(B) is a
subset such that T1 = Spec(Bp)∩T and T2 = Spec(B/pB)∩T are closed. Then we
see that T is the image of the spectrum of a B-algebra because both T1 and T2 are

https://stacks.math.columbia.edu/tag/0B0M
https://stacks.math.columbia.edu/tag/0B2Z
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spectra of B-algebras. Hence to show that T is closed it suffices to show that T is
stable under specialization, see Algebra, Lemma 41.5. To see this, suppose that p⇝
q is a specialization of points in Spec(B) with p ∈ T . Let A′ be a valuation ring and
let Spec(A′) → Spec(B) be a morphism such that the generic point η of Spec(A′)
maps to p and the closed point s of Spec(A′) maps to q, see Schemes, Lemma 20.4.
Observe that the image of the composition γ : Spec(A′) → Spec(A) is exactly the
set of points ξ ∈ Spec(A) with γ(η) ⇝ ξ ⇝ γ(s) (details omitted). If p ̸∈ Im(γ),
then we see that either both p, q ∈ Spec(Bp) or both p, q ∈ Spec(B/pB). In this
case the fact that T1, resp. T2 is closed implies that q ∈ T1, resp. q ∈ T2 and hence
q ∈ T . Finally, suppose p ∈ Im(γ), say p = γ(r). Then we have specializations
p⇝ r and r ⇝ q. In this case p, r ∈ Spec(Bp) and r, q ∈ Spec(B/pB). Then we fist
conclude r ∈ T1 ⊂ T , then r ∈ T2 as r maps to p, and then q ∈ T2 ⊂ T as desired.
On the other hand, we claim that the singleton family

{Spec(Ap)⨿ Spec(A/p) −→ Spec(A)}
is not a V covering. See Topologies, Definition 10.7. Namely, if it where a V
covering, there would be an extension of valuation ring A ⊂ B such that Spec(B)→
Spec(A) factors through Spec(Ap) ⨿ Spec(A/p). This would imply Spec(A′) is
disconnected which is absurd.

Lemma 78.1.0EU9 There exists a morphism X → Y of affine schemes which is uni-
versally submersive such that {X → Y } is not a V covering.

Proof. See discussion above. □

79. The spectrum of the integers is not quasi-compact

0EUE Of course the title of this section doesn’t refer to the spectrum of the integers
as a topological space, because any spectrum is quasi-compact as a topological
space (Algebra, Lemma 17.10). No, it refers to the spectrum of the integers in the
canonical topology on the category of schemes, and the definition of a quasi-compact
object in a site (Sites, Definition 17.1).
Let U be a nonprincipal ultrafilter on the set P of prime numbers. For a subset
T ⊂ P we denote T c = P \ T the complement. For A ∈ U let SA ⊂ Z be the
multiplicative subset generated by p ∈ A. Set

ZA = S−1
A Z

Observe that Spec(ZA) = {(0)}∪Ac ⊂ Spec(Z) if we think of P as the set of closed
points of Spec(Z). If A,B ∈ U , then A ∩B ∈ U and A ∪B ∈ U and we have

ZA∩B = ZA ×ZA∪B
ZB

(fibre product of rings). In particular, for any integer n and elements A1, . . . , An ∈
U the morphisms

Spec(ZA1)⨿ . . .⨿ Spec(ZAn) −→ Spec(Z)
factors through Spec(Z[1/p]) for some p (namely for any p ∈ A1 ∩ . . . ∩ An). We
conclude that the family of flat morphisms {Spec(ZA) → Spec(Z)}A∈U is jointly
surjective, but no finite subset is.
For a Z-module M we set

MA = S−1
A M = M ⊗Z ZA

https://stacks.math.columbia.edu/tag/0EU9
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Claim I: for every Z-module M we have

M = Equalizer
( ∏

A∈U MA
//
//
∏

A,B∈U MA∪B

)
First, assume M is torsion free. Then MA ⊂MP for all A ∈ U . Hence we see that
we have to prove

M =
⋂

A∈U
MA inside MP = M ⊗Q

Namely, since U is nonprincipal, for any prime p we have {p}c ∈ U . Also, M{p}c =
M(p) is equal to the localization at the prime (p). Thus the above is clear because
already M(2) ∩M(3) = M . Next, assume M is torsion. Then we have

M =
⊕

p∈P
M [p∞]

and correspondingly we have

MA =
⊕

p ̸∈A
M [p∞]

because we are localizing at the primes in A. Suppose that (xA) ∈
∏
MA is in the

equalizer. Denote xp = x{p}c ∈M [p∞]. Then the equalizer property says
xA = (xp)p ̸∈A

and in particular it says that xp is zero for all but a finite number of p ̸∈ A. To
finish the proof in the torsion case it suffices to show that xp is zero for all but a
finite number of primes p. If not write {p ∈ P | xp ̸= 0} = T ⨿ T ′ as the disjoint
union of two infinite sets. Then either T ̸∈ U or T ′ ̸∈ U because U is an ultrafilter
(namely if both T, T ′ are in U then U contains T ∩T ′ = ∅ which is not allowed). Say
T ̸∈ U . Then T = Ac and this contradicts the finiteness mentioned above. Finally,
suppose that M is a general module. Then we look at the short exact sequence

0→Mtors →M →M/Mtors → 0
and we look at the following large diagram

Mtors
//

��

∏
A∈U Mtors,A

//
//

��

∏
A,B∈U Mtors,A∪B

��
M //

��

∏
A∈U MA

//
//

��

∏
A,B∈U MA∪B

��
M/Mtors

// ∏
A∈U (M/Mtors)A

//
//
∏

A,B∈U (M/Mtors)A∪B

Doing a diagram chase using exactness of the columns and the result for the torsion
module Mtors and the torsion free module M/Mtors proving Claim I for M . This
gives an example of the phenomenon in the following lemma.

Lemma 79.1.0EUF There exists a ring A and an infinite family of flat ring maps
{A→ Ai}i∈I such that for every A-module M

M = Equalizer
( ∏

i∈I M ⊗A Ai
//
//
∏

i,j∈I M ⊗A Ai ⊗A Aj

)
but there is no finite subfamily where the same thing is true.

Proof. See discussion above. □

https://stacks.math.columbia.edu/tag/0EUF
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We continue working with our nonprincipal ultrafilter U on the set P of prime
numbers. Let R be a ring. Denote RA = S−1

A R = R ⊗ ZA for A ∈ U . Claim II:
given closed subsets TA ⊂ Spec(RA), A ∈ U such that

(Spec(RA∪B)→ Spec(RA))−1TA = (Spec(RA∪B)→ Spec(RB))−1TB

for all A,B ∈ U , there is a closed subset T ⊂ Spec(R) with TA = (Spec(RA) →
Spec(R))−1(T ) for all A ∈ U . Let IA ⊂ RA for A ∈ U be the radical ideal cutting
out TA. Then the glueing condition implies S−1

A∪BIA = S−1
A∪BIB in RA∪B for all

A,B ∈ U (because localization preserves being a radical ideal). Let I ′ ⊂ R be the
set of elements mapping into IP ⊂ RP = R⊗Q. Then we see for A ∈ U that

(1) IA ⊂ I ′
A = S−1

A I ′, and
(2) MA = I ′

A/IA is a torsion module.
Of course we obtain canonical identifications S−1

A∪BMA = S−1
A∪BMB for A,B ∈ U .

Decomposing the torsion modules MA into their p-primary components, the reader
easily shows that there exist p-power torsion R-modules Mp such that

MA =
⊕

p ̸∈A
Mp

compatible with the canonical identifications given above. Setting M =
⊕

p∈P Mp

we find canonical isomorphisms MA = S−1
A M compatible with the above canonical

identifications. Then we get a canonical map
I ′ −→M

of R-modules wich recovers the map IA → MA for all A ∈ U . This is true by all
the compatibilities mentioned above and the claim proved previously that M is the
equalizer of the two maps from

∏
A∈U MA to

∏
A,B∈U MA∪B . Let I = Ker(I ′ →

M). Then I is an ideal and T = V (I) is a closed subset which recovers the closed
subsets TA for all A ∈ U . This proves Claim II.

Lemma 79.2.0EUG The scheme Spec(Z) is not quasi-compact in the canonical topology
on the category of schemes.

Proof. With notation as above consider the family of morphisms
W = {Spec(ZA)→ Spec(Z)}A∈U

By Descent, Lemma 13.5 and the two claims proved above this is a universal ef-
fective epimorphism. In any category with fibre products, the universal effective
epimorphisms give C the structure of a site (modulo some set theoretical issues
which are easy to fix) defining the canonical topology. Thus W is a covering for
the canonical topology. On the other hand, we have seen above that any finite
subfamily

{Spec(ZAi
)→ Spec(Z)}i=1,...,n, n ∈ N, A1, . . . , An ∈ U

factors through Spec(Z[1/p]) for some p. Hence this finite family cannot be a uni-
versal effective epimorphism and more generally no universal effective epimorphism
{gj : Tj → Spec(Z)} can refine {Spec(ZAi

) → Spec(Z)}i=1,...,n. By Sites, Defini-
tion 17.1 this means that Spec(Z) is not quasi-compact in the canonical topology.
To see that our notion of quasi-compactness agrees with the usual topos theoretic
definition, see Sites, Lemma 17.3. □

https://stacks.math.columbia.edu/tag/0EUG
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