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1. Introduction

09FB In this chapter, we shall discuss the theory of fields. Recall that a field is a ring
in which all nonzero elements are invertible. Equivalently, the only two ideals of a
field are (0) and (1) since any nonzero element is a unit. Consequently fields will
be the simplest cases of much of the theory developed later.
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The theory of field extensions has a different feel from standard commutative al-
gebra since, for instance, any morphism of fields is injective. Nonetheless, it turns
out that questions involving rings can often be reduced to questions about fields.
For instance, any domain can be embedded in a field (its quotient field), and any
local ring (that is, a ring with a unique maximal ideal; we have not defined this
term yet) has associated to it its residue field (that is, its quotient by the maximal
ideal). A knowledge of field extensions will thus be useful.

2. Basic definitions

09FC Because we have placed this chapter before the chapter discussing commutative
algebra we need to introduce some of the basic definitions here before we discuss
these in greater detail in the algebra chapters.

Definition 2.1.09FD A field is a nonzero ring where every nonzero element is invertible.
Given a field a subfield is a subring that is itself a field.

For a field k, we write k∗ for the subset k \ {0}. This generalizes the usual notation
R∗ that refers to the group of invertible elements in a ring R.

Definition 2.2.09FE A domain or an integral domain is a nonzero ring where 0 is the
only zerodivisor.

3. Examples of fields

09FF To get started, let us begin by providing several examples of fields. The reader
should recall that if R is a ring and I ⊂ R an ideal, then R/I is a field precisely
when I is a maximal ideal.

Example 3.1 (Rational numbers).09FG The rational numbers form a field. It is called
the field of rational numbers and denoted Q.

Example 3.2 (Prime fields).09FH If p is a prime number, then Z/(p) is a field, denoted
Fp. Indeed, (p) is a maximal ideal in Z. Thus, fields may be finite: Fp contains p
elements.

Example 3.3.09FI In a principal ideal domain, an ideal generated by an irreducible
element is maximal. Now, if k is a field, then the polynomial ring k[x] is a principal
ideal domain. It follows that if P ∈ k[x] is an irreducible polynomial (that is, a
nonconstant polynomial that does not admit a factorization into terms of smaller
degrees), then k[x]/(P ) is a field. It contains a copy of k in a natural way. This
is a very general way of constructing fields. For instance, the complex numbers C
can be constructed as R[x]/(x2 + 1).

Example 3.4 (Quotient fields).09FJ Recall that, given a domain A, there is an imbed-
ding A → F into a field F constructed from A in exactly the same manner that Q
is constructed from Z. Formally the elements of F are (equivalence classes of) frac-
tions a/b, a, b ∈ A, b ̸= 0. As usual a/b = a′/b′ if and only if ab′ = ba′. The field F
is called the quotient field, or field of fractions, or fraction field of A. The quotient
field has the following universal property: given an injective ring map φ : A → K

https://stacks.math.columbia.edu/tag/09FD
https://stacks.math.columbia.edu/tag/09FE
https://stacks.math.columbia.edu/tag/09FG
https://stacks.math.columbia.edu/tag/09FH
https://stacks.math.columbia.edu/tag/09FI
https://stacks.math.columbia.edu/tag/09FJ
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to a field K, there is a unique map ψ : F → K making

F
ψ
// K

A

OO

φ

>>

commute. Indeed, it is clear how to define such a map: we set ψ(a/b) = φ(a)φ(b)−1

where injectivity of φ assures that φ(b) ̸= 0 if b ̸= 0.

Example 3.5 (Field of rational functions).09FK If k is a field, then we can consider the
field k(x) of rational functions over k. This is the quotient field of the polynomial
ring k[x]. In other words, it is the set of quotients F/G for F,G ∈ k[x], G ̸= 0 with
the obvious equivalence relation.

Example 3.6.09FL Let X be a Riemann surface. Let C(X) denote the set of mero-
morphic functions on X. Then C(X) is a ring under multiplication and addition of
functions. It turns out that in fact C(X) is a field. Namely, if a nonzero function
f(z) is meromorphic, so is 1/f(z). For example, let S2 be the Riemann sphere;
then we know from complex analysis that the ring of meromorphic functions C(S2)
is the field of rational functions C(z).

4. Vector spaces

09FM One reason fields are so nice is that the theory of modules over fields (i.e. vector
spaces), is very simple.

Lemma 4.1.09FN If k is a field, then every k-module is free.

Proof. Indeed, by linear algebra we know that a k-module (i.e. vector space) V
has a basis B ⊂ V , which defines an isomorphism from the free vector space on B
to V . □

Lemma 4.2.09FP Every exact sequence of modules over a field splits.

Proof. This follows from Lemma 4.1 as every vector space is a projective module.
□

This is another reason why much of the theory in future chapters will not say
very much about fields, since modules behave in such a simple manner. Note
that Lemma 4.2 is a statement about the category of k-modules (for k a field),
because the notion of exactness is inherently arrow-theoretic, i.e., makes use of
purely categorical notions, and can in fact be phrased within a so-called abelian
category.
Henceforth, since the study of modules over a field is linear algebra, and since the
ideal theory of fields is not very interesting, we shall study what this chapter is
really about: extensions of fields.

5. The characteristic of a field

09FQ In the category of rings, there is an initial object Z: any ring R has a map from Z
into it in precisely one way. For fields, there is no such initial object. Nonetheless,
there is a family of objects such that every field can be mapped into in exactly one
way by exactly one of them, and in no way by the others.

https://stacks.math.columbia.edu/tag/09FK
https://stacks.math.columbia.edu/tag/09FL
https://stacks.math.columbia.edu/tag/09FN
https://stacks.math.columbia.edu/tag/09FP
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Let F be a field. Think of F as a ring to get a ring map f : Z → F . The image of
this ring map is a domain (as a subring of a field) hence the kernel of f is a prime
ideal in Z. Hence the kernel of f is either (0) or (p) for some prime number p.

In the first case we see that f is injective, and in this case we think of Z as a subring
of F . Moreover, since every nonzero element of F is invertible we see that it makes
sense to talk about p/q ∈ F for p, q ∈ Z with q ̸= 0. Hence in this case we may
and we do think of Q as a subring of F . One can easily see that this is the smallest
subfield of F in this case.

In the second case, i.e., when Ker(f) = (p) we see that Z/(p) = Fp is a subring of
F . Clearly it is the smallest subfield of F .

Arguing in this way we see that every field contains a smallest subfield which is
either Q or finite equal to Fp for some prime number p.

Definition 5.1.09FR The characteristic of a field F is 0 if Z ⊂ F , or is a prime p if
p = 0 in F . The prime subfield of F is the smallest subfield of F which is either
Q ⊂ F if the characteristic is zero, or Fp ⊂ F if the characteristic is p > 0.

It is easy to see that if E ⊂ F is a subfield, then the characteristic of E is the same
as the characteristic of F .

Example 5.2.09FS The characteristic of Fp is p, and that of Q is 0.

6. Field extensions

09FT In general, though, we are interested not so much in fields by themselves but in
field extensions. This is perhaps analogous to studying not rings but algebras over
a fixed ring. The nice thing for fields is that the notion of a “field over another
field” just recovers the notion of a field extension, by the next result.

Lemma 6.1.09FU If F is a field and R is a nonzero ring, then any ring homomorphism
φ : F → R is injective.

Proof. Indeed, let a ∈ Ker(φ) be a nonzero element. Then we have φ(1) =
φ(a−1a) = φ(a−1)φ(a) = 0. Thus 1 = φ(1) = 0 and R is the zero ring. □

Definition 6.2.09FV If F is a field contained in a field E, then E is said to be a field
extension of F . We shall write E/F to indicate that E is an extension of F .

So if F, F ′ are fields, and F → F ′ is any ring-homomorphism, we see by Lemma 6.1
that it is injective, and F ′ can be regarded as an extension of F , by a slight abuse
of language. Alternatively, a field extension of F is just an F -algebra that happens
to be a field. This is completely different than the situation for general rings, since
a ring homomorphism is not necessarily injective.

Let k be a field. There is a category of field extensions of k. An object of this
category is an extension E/k, that is a (necessarily injective) morphism of fields

k → E,

https://stacks.math.columbia.edu/tag/09FR
https://stacks.math.columbia.edu/tag/09FS
https://stacks.math.columbia.edu/tag/09FU
https://stacks.math.columbia.edu/tag/09FV
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while a morphism between extensions E/k and E′/k is a k-algebra morphism E →
E′; alternatively, it is a commutative diagram

E // E′

k

??__

The set of morphisms from E → E′ in the category of extensions of k will be
denoted by Mork(E,E′).

Definition 6.3.09FW A tower of fields En/En−1/ . . . /E0 consists of a sequence of
extensions of fields En/En−1, En−1/En−2, . . ., E1/E0.

Let us give a few examples of field extensions.

Example 6.4.09FX Let k be a field, and P ∈ k[x] an irreducible polynomial. We
have seen that k[x]/(P ) is a field (Example 3.3). Since it is also a k-algebra in the
obvious way, it is an extension of k.

Example 6.5.09FY If X is a Riemann surface, then the field of meromorphic functions
C(X) (Example 3.6) is an extension field of C, because any element of C induces
a meromorphic — indeed, holomorphic — constant function on X.

Let F/k be a field extension. Let S ⊂ F be any subset. Then there is a smallest
subextension of F (that is, a subfield of F containing k) that contains S. To see this,
consider the family of subfields of F containing S and k, and take their intersection;
one checks that this is a field. By a standard argument one shows, in fact, that this
is the set of elements of F that can be obtained via a finite number of elementary
algebraic operations (addition, multiplication, subtraction, and division) involving
elements of k and S.

Definition 6.6.09FZ Let k be a field. If F/k is an extension of fields and S ⊂ F , we
write k(S) for the smallest subfield of F containing k and S. We will say that S
generates the field extension k(S)/k. If S = {α} is a singleton, then we write k(α)
instead of k({α}). We say F/k is a finitely generated field extension if there exists
a finite subset S ⊂ F with F = k(S).

For instance, C is generated by i over R.

Exercise 6.7.09G0 Show that C does not have a countable set of generators over Q.

Let us now classify extensions generated by one element.

Lemma 6.8 (Classification of simple extensions).09G1 If a field extension F/k is gen-
erated by one element, then it is k-isomorphic either to the rational function field
k(t)/k or to one of the extensions k[t]/(P ) for P ∈ k[t] irreducible.

We will see that many of the most important cases of field extensions are generated
by one element, so this is actually useful.

Proof. Let α ∈ F be such that F = k(α); by assumption, such an α exists. There
is a morphism of rings

k[t] → F

sending the indeterminate t to α. The image is a domain, so the kernel is a prime
ideal. Thus, it is either (0) or (P ) for P ∈ k[t] irreducible.

https://stacks.math.columbia.edu/tag/09FW
https://stacks.math.columbia.edu/tag/09FX
https://stacks.math.columbia.edu/tag/09FY
https://stacks.math.columbia.edu/tag/09FZ
https://stacks.math.columbia.edu/tag/09G0
https://stacks.math.columbia.edu/tag/09G1
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If the kernel is (P ) for P ∈ k[t] irreducible, then the map factors through k[t]/(P ),
and induces a morphism of fields k[t]/(P ) → F . Since the image contains α, we see
easily that the map is surjective, hence an isomorphism. In this case, k[t]/(P ) ≃ F .
If the kernel is trivial, then we have an injection k[t] → F . One may thus define
a morphism of the quotient field k(t) into F ; given a quotient R(t)/Q(t) with
R(t), Q(t) ∈ k[t], we map this to R(α)/Q(α). The hypothesis that k[t] → F is
injective implies that Q(α) ̸= 0 unless Q is the zero polynomial. The quotient field
of k[t] is the rational function field k(t), so we get a morphism k(t) → F whose
image contains α. It is thus surjective, hence an isomorphism. □

7. Finite extensions

09G2 If F/E is a field extension, then evidently F is also a vector space over E (the
scalar action is just multiplication in F ).

Definition 7.1.09G3 Let F/E be an extension of fields. The dimension of F considered
as an E-vector space is called the degree of the extension and is denoted [F : E]. If
[F : E] < ∞ then F is said to be a finite extension of E.

Example 7.2.09G4 The field C is a two dimensional vector space over R with basis
1, i. Thus C is a finite extension of R of degree 2.

Lemma 7.3.09G5 Let K/E/F be a tower of algebraic field extensions. If K is finite
over F , then K is finite over E.

Proof. Direct from the definition. □

Let us now consider the degree in the most important special example, that given
by Lemma 6.8, in the next two examples.

Example 7.4 (Degree of a rational function field).09G6 If k is any field, then the
rational function field k(t) is not a finite extension. For example the elements
{tn, n ∈ Z} are linearly independent over k.
In fact, if k is uncountable, then k(t) is uncountably dimensional as a k-vector
space. To show this, we claim that the family of elements {1/(t−α), α ∈ k} ⊂ k(t)
is linearly independent over k. A nontrivial relation between them would lead to
a contradiction: for instance, if one works over C, then this follows because 1

t−α ,
when considered as a meromorphic function on C, has a pole at α and nowhere
else. Consequently any sum

∑
ci

1
t−αi

for the ci ∈ k∗, and αi ∈ k distinct, would
have poles at each of the αi. In particular, it could not be zero.
Amusingly, this leads to a quick proof of the Hilbert Nullstellensatz over the complex
numbers. For a slightly more general result, see Algebra, Theorem 35.11.

Lemma 7.5.0BU1 A finite extension of fields is a finitely generated field extension.
The converse is not true.

Proof. Let F/E be a finite extension of fields. Let α1, . . . , αn be a basis of F as
a vector space over E. Then F = E(α1, . . . , αn) hence F/E is a finitely generated
field extension. The converse is not true as follows from Example 7.4. □

Example 7.6 (Degree of a simple algebraic extension).09G7 Consider a monogenic field
extension E/k of the form discussed in Example 6.4. In other words, E = k[t]/(P )

https://stacks.math.columbia.edu/tag/09G3
https://stacks.math.columbia.edu/tag/09G4
https://stacks.math.columbia.edu/tag/09G5
https://stacks.math.columbia.edu/tag/09G6
https://stacks.math.columbia.edu/tag/0BU1
https://stacks.math.columbia.edu/tag/09G7
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for P ∈ k[t] an irreducible polynomial. Then the degree [E : k] is just the degree
d = deg(P ) of the polynomial P . Indeed, say

(7.6.1)09G8 P = adt
d + ad−1t

d−1 + . . .+ a0.

with ad ̸= 0. Then the images of 1, t, . . . , td−1 in k[t]/(P ) are linearly independent
over k, because any relation involving them would have degree strictly smaller than
that of P , and P is the element of smallest degree in the ideal (P ).

Conversely, the set S = {1, t, . . . , td−1} (or more properly their images) spans
k[t]/(P ) as a vector space. Indeed, we have by (7.6.1) that adtd lies in the span of
S. Since ad is invertible, we see that td is in the span of S. Similarly, the relation
tP (t) = 0 shows that the image of td+1 lies in the span of {1, t, . . . , td} — by what
was just shown, thus in the span of S. Working upward inductively, we find that
the image of tn for n ≥ d lies in the span of S.

This confirms the observation that [C : R] = 2, for instance. More generally, if k
is a field, and α ∈ k is not a square, then the irreducible polynomial x2 − α ∈ k[x]
allows one to construct an extension k[x]/(x2 − α) of degree two. We shall write
this as k(

√
α). Such extensions will be called quadratic, for obvious reasons.

The basic fact about the degree is that it is multiplicative in towers.

Lemma 7.7 (Multiplicativity).09G9 Suppose given a tower of fields F/E/k. Then

[F : k] = [F : E][E : k]

Proof. Let α1, . . . , αn ∈ F be an E-basis for F . Let β1, . . . , βm ∈ E be a k-basis
for E. Then the claim is that the set of products {αiβj , 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a
k-basis for F . Indeed, let us check first that they span F over k.

By assumption, the {αi} span F over E. So if f ∈ F , there are ai ∈ E with

f =
∑

i
aiαi,

and, for each i, we can write ai =
∑
bijβj for some bij ∈ k. Putting these together,

we find
f =

∑
i,j
bijαiβj ,

proving that the {αiβj} span F over k.

Suppose now that there existed a nontrivial relation∑
i,j
cijαiβj = 0

for the cij ∈ k. In that case, we would have∑
i
αi

(∑
j
cijβj

)
= 0,

and the inner terms lie in E as the βj do. Now E-linear independence of the {αi}
shows that the inner sums are all zero. Then k-linear independence of the {βj}
shows that the cij all vanish. □

We sidetrack to a slightly tangential definition.

Definition 7.8.09GA A field K is said to be a number field if it has characteristic 0
and the extension K/Q is finite.

https://stacks.math.columbia.edu/tag/09G9
https://stacks.math.columbia.edu/tag/09GA
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Number fields are the basic objects in algebraic number theory. We shall see later
that, for the analog of the integers Z in a number field, something kind of like
unique factorization still holds (though strict unique factorization generally does
not!).

8. Algebraic extensions

09GB An important class of extensions are those where every element generates a finite
extension.

Definition 8.1.09GC Consider a field extension F/E. An element α ∈ F is said to be
algebraic over E if α is the root of some nonzero polynomial with coefficients in E.
If all elements of F are algebraic then F is said to be an algebraic extension of E.

By Lemma 6.8, the subextension E(α) is isomorphic either to the rational function
field E(t) or to a quotient ring E[t]/(P ) for P ∈ E[t] an irreducible polynomial. In
the latter case, α is algebraic over E (in fact, the proof of Lemma 6.8 shows that
we can pick P such that α is a root of P ); in the former case, it is not.

Example 8.2.09GD The field C is algebraic over R. Namely, if α = a+ ib in C, then
α2 − 2aα+ a2 + b2 = 0 is a polynomial equation for α over R.

Example 8.3.09GE Let X be a compact Riemann surface, and let f ∈ C(X) − C any
nonconstant meromorphic function on X (see Example 3.6). Then it is known that
C(X) is algebraic over the subextension C(f) generated by f . We shall not prove
this.

Lemma 8.4.09GF Let K/E/F be a tower of field extensions.
(1) If α ∈ K is algebraic over F , then α is algebraic over E.
(2) If K is algebraic over F , then K is algebraic over E.

Proof. This is immediate from the definitions. □

We now show that there is a deep connection between finiteness and being algebraic.

Lemma 8.5.09GG A finite extension is algebraic. In fact, an extension E/k is algebraic
if and only if every subextension k(α)/k generated by some α ∈ E is finite.

In general, it is very false that an algebraic extension is finite.

Proof. Let E/k be finite, say of degree n. Choose α ∈ E. Then the elements
{1, α, . . . , αn} are linearly dependent over E, or we would necessarily have [E :
k] > n. A relation of linear dependence now gives the desired polynomial that α
must satisfy.
For the last assertion, note that a monogenic extension k(α)/k is finite if and only
if α is algebraic over k, by Examples 7.4 and 7.6. So if E/k is algebraic, then each
k(α)/k, α ∈ E, is a finite extension, and conversely. □

We can extract a lemma of the last proof (really of Examples 7.4 and 7.6): a mono-
genic extension is finite if and only if it is algebraic. We shall use this observation
in the next result.

Lemma 8.6.09GH Let k be a field, and let α1, α2, . . . , αn be elements of some extension
field such that each αi is algebraic over k. Then the extension k(α1, . . . , αn)/k is
finite. That is, a finitely generated algebraic extension is finite.

https://stacks.math.columbia.edu/tag/09GC
https://stacks.math.columbia.edu/tag/09GD
https://stacks.math.columbia.edu/tag/09GE
https://stacks.math.columbia.edu/tag/09GF
https://stacks.math.columbia.edu/tag/09GG
https://stacks.math.columbia.edu/tag/09GH
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Proof. Indeed, each extension k(α1, . . . , αi+1)/k(α1, . . . , αi) is generated by one
element and algebraic, hence finite. By multiplicativity of degree (Lemma 7.7) we
obtain the result. □

The set of complex numbers that are algebraic over Q are simply called the algebraic
numbers. For instance,

√
2 is algebraic, i is algebraic, but π is not. It is a basic fact

that the algebraic numbers form a field, although it is not obvious how to prove this
from the definition that a number is algebraic precisely when it satisfies a nonzero
polynomial equation with rational coefficients (e.g. by polynomial equations).
Lemma 8.7.09GI Let E/k be a field extension. Then the elements of E algebraic over
k form a subextension of E/k.
Proof. Let α, β ∈ E be algebraic over k. Then k(α, β)/k is a finite extension by
Lemma 8.6. It follows that k(α + β) ⊂ k(α, β) is a finite extension, which implies
that α + β is algebraic by Lemma 8.5. Similarly for the difference, product and
quotient of α and β. □

Many nice properties of field extensions, like those of rings, will have the property
that they will be preserved by towers and composita.
Lemma 8.8.09GJ Let E/k and F/E be algebraic extensions of fields. Then F/k is an
algebraic extension of fields.
Proof. Choose α ∈ F . Then α is algebraic over E. The key observation is that
α is algebraic over a finitely generated subextension of k. That is, there is a finite
set S ⊂ E such that α is algebraic over k(S): this is clear because being algebraic
means that a certain polynomial in E[x] that α satisfies exists, and as S we can
take the coefficients of this polynomial. It follows that α is algebraic over k(S). In
particular, the extension k(S, α)/k(S) is finite. Since S is a finite set, and k(S)/k
is algebraic, Lemma 8.6 shows that k(S)/k is finite. Using multiplicativity (Lemma
7.7) we find that k(S, α)/k is finite, so α is algebraic over k. □

The method of proof in the previous argument — that being algebraic over E was
a property that descended to a finitely generated subextension of E — is an idea
that recurs throughout algebra. It often allows one to reduce general commutative
algebra questions to the Noetherian case for example.
Lemma 8.9.09GK Let E/F be an algebraic extension of fields. Then the cardinality
|E| of E is at most max(ℵ0, |F |).
Proof. Let S be the set of nonconstant polynomials with coefficients in F . For ev-
ery P ∈ S the set of roots r(P,E) = {α ∈ E | P (α) = 0} is finite (details omitted).
Moreover, the fact that E is algebraic over F implies that E =

⋃
P∈S r(P,E). It

is clear that S has cardinality bounded by max(ℵ0, |F |) because the cardinality of
a countable product of copies of F has cardinality at most max(ℵ0, |F |). Thus so
does E. □

Lemma 8.10.0BID Let E/F be a finite or more generally an algebraic extension of
fields. Any subring F ⊂ R ⊂ E is a field.
Proof. Let α ∈ R be nonzero. Then 1, α, α2, . . . are contained in R. By Lemma
8.5 we find a nontrivial relation a0 + a1α+ . . .+ adα

d = 0. We may assume a0 ̸= 0
because if not we can divide the relation by α to decrease d. Then we see that

a0 = α(−a1 − . . .− adα
d−1)

https://stacks.math.columbia.edu/tag/09GI
https://stacks.math.columbia.edu/tag/09GJ
https://stacks.math.columbia.edu/tag/09GK
https://stacks.math.columbia.edu/tag/0BID
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which proves that the inverse of α is the element a−1
0 (−a1 − . . .−adα

d−1) of R. □

Lemma 8.11.0BMD Let E/F an algebraic extension of fields. Any F -algebra map
f : E → E is an automorphism.

Proof. If E/F is finite, then f : E → E is an F -linear injective map (Lemma 6.1)
of finite dimensional vector spaces, and hence bijective. In general we still see that
f is injective. Let α ∈ E and let P ∈ F [x] be a polynomial such that P (α) = 0.
Let E′ ⊂ E be the subfield of E generated by the roots α = α1, . . . , αn of P in E.
Then E′ is finite over F by Lemma 8.6. Since f preserves the set of roots, we find
that f |E′ : E′ → E′. Hence f |E′ is an isomorphism by the first part of the proof
and we conclude that α is in the image of f . □

9. Minimal polynomials

09GL Let E/k be a field extension, and let α ∈ E be algebraic over k. Then α satisfies
a (nontrivial) polynomial equation in k[x]. Consider the set of polynomials P ∈
k[x] such that P (α) = 0; by hypothesis, this set does not just contain the zero
polynomial. It is easy to see that this set is an ideal. Indeed, it is the kernel of the
map

k[x] → E, x 7→ α

Since k[x] is a PID, there is a generator P ∈ k[x] of this ideal. If we assume P
monic, without loss of generality, then P is uniquely determined.

Definition 9.1.09GM The polynomial P above is called the minimal polynomial of α
over k.

The minimal polynomial has the following characterization: it is the monic poly-
nomial, of smallest degree, that annihilates α. Any nonconstant multiple of P will
have larger degree, and only multiples of P can annihilate α. This explains the
name minimal.

Clearly the minimal polynomial is irreducible. This is equivalent to the assertion
that the ideal in k[x] consisting of polynomials annihilating α is prime. This follows
from the fact that the map k[x] → E, x 7→ α is a map into a domain (even a field),
so the kernel is a prime ideal.

Lemma 9.2.09GN The degree of the minimal polynomial is [k(α) : k].

Proof. This is just a restatement of the argument in Lemma 6.8: the observation
is that if P is the minimal polynomial of α, then the map

k[x]/(P ) → k(α), x 7→ α

is an isomorphism as in the aforementioned proof, and we have counted the degree
of such an extension (see Example 7.6). □

So the observation of the above proof is that if α ∈ E is algebraic, then k(α) ⊂ E
is isomorphic to k[x]/(P ).

https://stacks.math.columbia.edu/tag/0BMD
https://stacks.math.columbia.edu/tag/09GM
https://stacks.math.columbia.edu/tag/09GN
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10. Algebraic closure

09GP The “fundamental theorem of algebra” states that C is algebraically closed. A
beautiful proof of this result uses Liouville’s theorem in complex analysis, we shall
give another proof (see Lemma 23.1).

Definition 10.1.09GQ A field F is said to be algebraically closed if every algebraic
extension E/F is trivial, i.e., E = F .

This may not be the definition in every text. Here is the lemma comparing it with
the other one.

Lemma 10.2.09GR Let F be a field. The following are equivalent
(1) F is algebraically closed,
(2) every irreducible polynomial over F is linear,
(3) every nonconstant polynomial over F has a root,
(4) every nonconstant polynomial over F is a product of linear factors.

Proof. If F is algebraically closed, then every irreducible polynomial is linear.
Namely, if there exists an irreducible polynomial of degree > 1, then this generates a
nontrivial finite (hence algebraic) field extension, see Example 7.6. Thus (1) implies
(2). If every irreducible polynomial is linear, then every irreducible polynomial has
a root, whence every nonconstant polynomial has a root. Thus (2) implies (3).

Assume every nonconstant polynomial has a root. Let P ∈ F [x] be nonconstant.
If P (α) = 0 with α ∈ F , then we see that P = (x − α)Q for some Q ∈ F [x] (by
division with remainder). Thus we can argue by induction on the degree that any
nonconstant polynomial can be written as a product c

∏
(x− αi).

Finally, suppose that every nonconstant polynomial over F is a product of linear
factors. Let E/F be an algebraic extension. Then all the simple subextensions
F (α)/F of E are necessarily trivial (because the only irreducible polynomials are
linear by assumption). Thus E = F . We see that (4) implies (1) and we are
done. □

Now we want to define a “universal” algebraic extension of a field. Actually, we
should be careful: the algebraic closure is not a universal object. That is, the
algebraic closure is not unique up to unique isomorphism: it is only unique up to
isomorphism. But still, it will be very handy, if not functorial.

Definition 10.3.09GS Let F be a field. An algebraic closure of F is a field F containing
F such that:

(1) F is algebraic over F .
(2) F is algebraically closed.

If F is algebraically closed, then F is its own algebraic closure. We now prove the
basic existence result.

Theorem 10.4.09GT Every field has an algebraic closure.

The proof will mostly be a red herring to the rest of the chapter. However, we will
want to know that it is possible to embed a field inside an algebraically closed field,
and we will often assume it done.

https://stacks.math.columbia.edu/tag/09GQ
https://stacks.math.columbia.edu/tag/09GR
https://stacks.math.columbia.edu/tag/09GS
https://stacks.math.columbia.edu/tag/09GT
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Proof. Let F be a field. By Lemma 8.9 the cardinality of an algebraic exten-
sion of F is bounded by max(ℵ0, |F |). Choose a set S containing F with |S| >
max(ℵ0, |F |). Let’s consider triples (E, σE , µE) where

(1) E is a set with F ⊂ E ⊂ S, and
(2) σE : E×E → E and µE : E×E → E are maps of sets such that (E, σE , µE)

defines the structure of a field extension of F (in particular σE(a, b) = a+F b
for a, b ∈ F and similarly for µE), and

(3) E/F is an algebraic field extension.
The collection of all triples (E, σE , µE) forms a set I. For i ∈ I we will denote
Ei = (Ei, σi, µi) the corresponding field extension to F . We define a partial ordering
on I by declaring i ≤ i′ if and only if Ei ⊂ Ei′ (this makes sense as Ei and Ei′ are
subsets of the same set S) and we have σi = σi′ |Ei×Ei

and µi = µi′ |Ei×Ei
, in other

words, Ei′ is a field extension of Ei.

Let T ⊂ I be a totally ordered subset. Then it is clear that ET =
⋃
i∈T Ei with

induced maps σT =
⋃
σi and µT =

⋃
µi is another element of I. In other words

every totally order subset of I has a upper bound in I. By Zorn’s lemma there
exists a maximal element (E, σE , µE) in I. We claim that E is an algebraic closure.
Since by definition of I the extension E/F is algebraic, it suffices to show that E
is algebraically closed.

To see this we argue by contradiction. Namely, suppose that E is not algebraically
closed. Then there exists an irreducible polynomial P over E of degree > 1, see
Lemma 10.2. By Lemma 8.5 we obtain a nontrivial finite extension E′ = E[x]/(P ).
Observe that E′/F is algebraic by Lemma 8.8. Thus the cardinality of E′ is ≤
max(ℵ0, |F |). By elementary set theory we can extend the given injection E ⊂ S to
an injection E′ → S. In other words, we may think of E′ as an element of our set
I contradicting the maximality of E. This contradiction completes the proof. □

Lemma 10.5.09GU Let F be a field. Let F be an algebraic closure of F . Let M/F be
an algebraic extension. Then there is a morphism of F -extensions M → F .

Proof. Consider the set I of pairs (E,φ) where F ⊂ E ⊂ M is a subextension and
φ : E → F is a morphism of F -extensions. We partially order the set I by declaring
(E,φ) ≤ (E′, φ′) if and only if E ⊂ E′ and φ′|E = φ. If T = {(Et, φt)} ⊂ I is a
totally ordered subset, then

⋃
φt :

⋃
Et → F is an element of I. Thus every totally

ordered subset of I has an upper bound. By Zorn’s lemma there exists a maximal
element (E,φ) in I. We claim that E = M , which will finish the proof. If not,
then pick α ∈ M , α ̸∈ E. The α is algebraic over E, see Lemma 8.4. Let P be the
minimal polynomial of α over E. Let Pφ be the image of P by φ in F [x]. Since
F is algebraically closed there is a root β of Pφ in F . Then we can extend φ to
φ′ : E(α) = E[x]/(P ) → F by mapping x to β. This contradicts the maximality of
(E,φ) as desired. □

Lemma 10.6.09GV Any two algebraic closures of a field are isomorphic.

Proof. Let F be a field. If M and F are algebraic closures of F , then there exists
a morphism of F -extensions φ : M → F by Lemma 10.5. Now the image φ(M) is
algebraically closed. On the other hand, the extension φ(M) ⊂ F is algebraic by
Lemma 8.4. Thus φ(M) = F . □

https://stacks.math.columbia.edu/tag/09GU
https://stacks.math.columbia.edu/tag/09GV
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11. Relatively prime polynomials

09GW Let K be an algebraically closed field. Then the ring K[x] has a very simple ideal
structure as we saw in Lemma 10.2. In particular, every polynomial P ∈ K[x] can
be written as

P = c(x− α1) . . . (x− αn),
where c is the constant term and the α1, . . . , αn ∈ k are the roots of P (counted
with multiplicity). Clearly, the only irreducible polynomials in K[x] are the linear
polynomials c(x− α), c, α ∈ K (and c ̸= 0).

Definition 11.1.09GX If k is any field, we say that two polynomials in k[x] are relatively
prime if they generate the unit ideal in k[x].

Continuing the discussion above, if K is an algebraically closed field, two polyno-
mials in K[x] are relatively prime if and only if they have no common roots. This
follows because the maximal ideals of K[x] are of the form (x − α), α ∈ K. So if
F,G ∈ K[x] have no common root, then (F,G) cannot be contained in any (x−α)
(as then they would have a common root at α).
If k is not algebraically closed, then this still gives information about when two
polynomials in k[x] generate the unit ideal.

Lemma 11.2.09GY Two polynomials in k[x] are relatively prime precisely when they
have no common roots in an algebraic closure k of k.

Proof. The claim is that any two polynomials P,Q generate (1) in k[x] if and only
if they generate (1) in k[x]. This is a piece of linear algebra: a system of linear
equations with coefficients in k has a solution if and only if it has a solution in any
extension of k. Consequently, we can reduce to the case of an algebraically closed
field, in which case the result is clear from what we have already proved. □

12. Separable extensions

09GZ In characteristic p something funny happens with irreducible polynomials over
fields. We explain this in the following lemma.

Lemma 12.1.09H0 Let F be a field. Let P ∈ F [x] be an irreducible polynomial over F .
Let P ′ = dP/dx be the derivative of P with respect to x. Then one of the following
two cases happens

(1) P and P ′ are relatively prime, or
(2) P ′ is the zero polynomial.

The second case can only happen if F has characteristic p > 0. In this case P (x) =
Q(xq) where q = pf is a power of p and Q ∈ F [x] is an irreducible polynomial such
that Q and Q′ are relatively prime.

Proof. Note that P ′ has degree < deg(P ). Hence if P and P ′ are not relatively
prime, then (P, P ′) = (R) where R is a polynomial of degree < deg(P ) contradicting
the irreducibility of P . This proves we have the dichotomy between (1) and (2).
Assume we are in case (2) and P = adx

d + . . .+ a0. Then P ′ = dadx
d−1 + . . .+ a1.

In characteristic 0 we see that this forces ad, . . . , a1 = 0 which would mean P is
constant a contradiction. Thus we conclude that the characteristic p is positive.
In this case the condition P ′ = 0 forces ai = 0 whenever p does not divide i. In
other words, P (x) = P1(xp) for some nonconstant polynomial P1. Clearly, P1 is

https://stacks.math.columbia.edu/tag/09GX
https://stacks.math.columbia.edu/tag/09GY
https://stacks.math.columbia.edu/tag/09H0
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irreducible as well. By induction on the degree we see that P1(x) = Q(xq) as in the
statement of the lemma, hence P (x) = Q(xpq) and the lemma is proved. □

Definition 12.2.09H1 Let F be a field. Let K/F be an extension of fields.
(1) We say an irreducible polynomial P over F is separable if it is relatively

prime to its derivative.
(2) Given α ∈ K algebraic over F we say α is separable over F if its minimal

polynomial is separable over F .
(3) If K is an algebraic extension of F , we say K is separable1 over F if every

element of K is separable over F .

By Lemma 12.1 in characteristic 0 every irreducible polynomial is separable, every
algebraic element in an extension is separable, and every algebraic extension is
separable.

Lemma 12.3.09H2 Let K/E/F be a tower of algebraic field extensions.
(1) If α ∈ K is separable over F , then α is separable over E.
(2) if K is separable over F , then K is separable over E.

Proof. We will use Lemma 12.1 without further mention. Let P be the minimal
polynomial of α over F . Let Q be the minimal polynomial of α over E. Then Q
divides P in the polynomial ring E[x], say P = QR. Then P ′ = Q′R+QR′. Thus
if Q′ = 0, then Q divides P and P ′ hence P ′ = 0 by the lemma. This proves (1).
Part (2) follows immediately from (1) and the definitions. □

Lemma 12.4.09H3 Let F be a field. An irreducible polynomial P over F is separable
if and only if P has pairwise distinct roots in an algebraic closure of F .

Proof. Suppose that α ∈ F is a root of both P and P ′. Then P = (x − α)Q for
some polynomial Q. Taking derivatives we obtain P ′ = Q + (x − α)Q′. Thus α
is a root of Q. Hence we see that if P and P ′ have a common root, then P does
not have pairwise distinct roots. Conversely, if P has a repeated root, i.e., (x−α)2

divides P , then α is a root of both P and P ′. Combined with Lemma 11.2 this
proves the lemma. □

Lemma 12.5.09H4 Let F be a field and let F be an algebraic closure of F . Let p > 0
be the characteristic of F . Let P be a polynomial over F . Then the set of roots of
P and P (xp) in F have the same cardinality (not counting multiplicity).

Proof. Clearly, α is a root of P (xp) if and only if αp is a root of P . In other
words, the roots of P (xp) are the roots of xp − β, where β is a root of P . Thus it
suffices to show that the map F → F , α 7→ αp is bijective. It is surjective, as F is
algebraically closed which means that every element has a pth root. It is injective
because αp = βp implies (α−β)p = 0 because the characteristic is p. And of course
in a field xp = 0 implies x = 0. □

Let F be a field and let P be an irreducible polynomial over F . Then we know that
P = Q(xq) for some separable irreducible polynomial Q (Lemma 12.1) where q is
a power of the characteristic p (and if the characteristic is zero, then q = 12 and

1For nonalgebraic extensions this definition does not make sense and is not the correct one.
We refer the reader to Algebra, Sections 42 and 44.

2A good convention for this chapter is to set 00 = 1.

https://stacks.math.columbia.edu/tag/09H1
https://stacks.math.columbia.edu/tag/09H2
https://stacks.math.columbia.edu/tag/09H3
https://stacks.math.columbia.edu/tag/09H4
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Q = P ). By Lemma 12.5 the number of roots of P and Q in any algebraic closure
of F is the same. By Lemma 12.4 this number is equal to the degree of Q.

Definition 12.6.09H5 Let F be a field. Let P be an irreducible polynomial over F .
The separable degree of P is the cardinality of the set of roots of P in any algebraic
closure of F (see discussion above). Notation degs(P ).

The separable degree of P always divides the degree and the quotient is a power of
the characteristic. If the characteristic is zero, then degs(P ) = deg(P ).

Situation 12.7.09H6 Here F be a field and K/F is a finite extension generated by
elements α1, . . . , αn ∈ K. We set K0 = F and

Ki = F (α1, . . . , αi)
to obtain a tower of finite extensions K = Kn/Kn−1/ . . . /K0 = F . Denote Pi the
minimal polynomial of αi over Ki−1. Finally, we fix an algebraic closure F of F .

Let F , K, αi, and F be as in Situation 12.7. Suppose that φ : K → F is a morphism
of extensions of F . Then we obtain maps φi : Ki → F . In particular, we can take
the image of Pi ∈ Ki−1[x] by φi−1 to get a polynomial Pφi ∈ F [x].

Lemma 12.8.09H7 In Situation 12.7 the correspondence

MorF (K,F ) −→ {(β1, . . . , βn) as below}, φ 7−→ (φ(α1), . . . , φ(αn))
is a bijection. Here the right hand side is the set of n-tuples (β1, . . . , βn) of elements
of F such that βi is a root of Pφi .

Proof. Let (β1, . . . , βn) be an element of the right hand side. We construct a map
of fields corresponding to it by induction. Namely, we set φ0 : K0 → F equal to
the given map K0 = F ⊂ F . Having constructed φi−1 : Ki−1 → F we observe
that Ki = Ki−1[x]/(Pi). Hence we can set φi equal to the unique map Ki → F
inducing φi−1 on Ki−1 and mapping x to βi. This works precisely as βi is a root
of Pφi . Uniqueness implies that the two constructions are mutually inverse. □

Lemma 12.9.09H8 In Situation 12.7 we have | MorF (K,F )| =
∏n
i=1 degs(Pi).

Proof. This follows immediately from Lemma 12.8. Observe that a key ingredi-
ent we are tacitly using here is the well-definedness of the separable degree of an
irreducible polynomial which was observed just prior to Definition 12.6. □

We now use the result above to characterize separable field extensions.

Lemma 12.10.09H9 Assumptions and notation as in Situation 12.7. If each Pi is
separable, i.e., each αi is separable over Ki−1, then

| MorF (K,F )| = [K : F ]
and the field extension K/F is separable. If one of the αi is not separable over
Ki−1, then | MorF (K,F )| < [K : F ].

Proof. If αi is separable over Ki−1 then degs(Pi) = deg(Pi) = [Ki : Ki−1] (last
equality by Lemma 9.2). By multiplicativity (Lemma 7.7) we have

[K : F ] =
∏

[Ki : Ki−1] =
∏

deg(Pi) =
∏

degs(Pi) = | MorF (K,F )|

where the last equality is Lemma 12.9. By the exact same argument we get the
strict inequality | MorF (K,F )| < [K : F ] if one of the αi is not separable over Ki−1.

https://stacks.math.columbia.edu/tag/09H5
https://stacks.math.columbia.edu/tag/09H6
https://stacks.math.columbia.edu/tag/09H7
https://stacks.math.columbia.edu/tag/09H8
https://stacks.math.columbia.edu/tag/09H9
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Finally, assume again that each αi is separable over Ki−1. We will show K/F
is separable. Let γ = γ1 ∈ K be arbitrary. Then we can find additional ele-
ments γ2, . . . , γm such that K = F (γ1, . . . , γm) (for example we could take γ2 =
α1, . . . , γn+1 = αn). Then we see by the last part of the lemma (already proven
above) that if γ is not separable over F we would have the strict inequality | MorF (K,F )| <
[K : F ] contradicting the very first part of the lemma (already prove above as
well). □

Lemma 12.11.09HA Let K/F be a finite extension of fields. Let F be an algebraic
closure of F . Then we have

| MorF (K,F )| ≤ [K : F ]

with equality if and only if K is separable over F .

Proof. This is a corollary of Lemma 12.10. Namely, since K/F is finite we can
find finitely many elements α1, . . . , αn ∈ K generating K over F (for example we
can choose the αi to be a basis of K over F ). If K/F is separable, then each αi
is separable over F (α1, . . . , αi−1) by Lemma 12.3 and we get equality by Lemma
12.10. On the other hand, if we have equality, then no matter how we choose
α1, . . . , αn we get that α1 is separable over F by Lemma 12.10. Since we can start
the sequence with an arbitrary element of K it follows that K is separable over
F . □

Lemma 12.12.09HB Let E/k and F/E be separable algebraic extensions of fields. Then
F/k is a separable extension of fields.

Proof. Choose α ∈ F . Then α is separable algebraic over E. Let P = xd +∑
i<d aix

i be the minimal polynomial of α over E. Each ai is separable algebraic
over k. Consider the tower of fields

k ⊂ k(a0) ⊂ k(a0, a1) ⊂ . . . ⊂ k(a0, . . . , ad−1) ⊂ k(a0, . . . , ad−1, α)

Because ai is separable algebraic over k it is separable algebraic over k(a0, . . . , ai−1)
by Lemma 12.3. Finally, α is separable algebraic over k(a0, . . . , ad−1) because it is
a root of P which is irreducible (as it is irreducible over the possibly bigger field
E) and separable (as it is separable over E). Thus k(a0, . . . , ad−1, α) is separable
over k by Lemma 12.10 and we conclude that α is separable over k as desired. □

Lemma 12.13.09HC Let E/k be a field extension. Then the elements of E separable
over k form a subextension of E/k.

Proof. Let α, β ∈ E be separable over k. Then β is separable over k(α) by Lemma
12.3. Thus we can apply Lemma 12.12 to k(α, β) to see that k(α, β) is separable
over k. □

13. Linear independence of characters

0CKK Here is the statement.

Lemma 13.1.0CKL Let L be a field. Let G be a monoid, for example a group. Let
χ1, . . . , χn : G → L be pairwise distinct homomorphisms of monoids where L is
regarded as a monoid by multiplication. Then χ1, . . . , χn are L-linearly independent:
if λ1, . . . , λn ∈ L not all zero, then

∑
λiχi(g) ̸= 0 for some g ∈ G.

https://stacks.math.columbia.edu/tag/09HA
https://stacks.math.columbia.edu/tag/09HB
https://stacks.math.columbia.edu/tag/09HC
https://stacks.math.columbia.edu/tag/0CKL
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Proof. If n = 1 this is true because χ1(e) = 1 if e ∈ G is the neutral (identity)
element. We prove the result by induction for n > 1. Suppose that λ1, . . . , λn ∈ L
not all zero. If λi = 0 for some, then we win by induction on n. Since we want
to show that

∑
λiχi(g) ̸= 0 for some g ∈ G we may after dividing by −λn assume

that λn = −1. Then the only way we get in trouble is if

χn(g) =
∑

i=1,...,n−1
λiχi(g)

for all g ∈ G. Fix h ∈ G. Then we would also get
χn(h)χn(g) = χn(hg)

=
∑

i=1,...,n−1
λiχi(hg)

=
∑

i=1,...,n−1
λiχi(h)χi(g)

Multiplying the previous relation by χn(h) and substracting we obtain

0 =
∑

i=1,...,n−1
λi(χn(h) − χi(h))χi(g)

for all g ∈ G. Since λi ̸= 0 we conclude that χn(h) = χi(h) for all i by induction.
The choice of h above was arbitrary, so we conclude that χi = χn for i ≤ n − 1
which contradicts the assumption that our characters χi are pairwise distinct. □

Lemma 13.2.0EM9 Let L be a field. Let n ≥ 1 and α1, . . . , αn ∈ L pairwise distinct
elements of L. Then there exists an e ≥ 0 such that

∑
i=1,...,n α

e
i ̸= 0.

Proof. Apply linear independence of characters (Lemma 13.1) to the monoid ho-
momorphisms Z≥0 → L, e 7→ αei . □

Lemma 13.3.0CKM Let K/F and L/F be field extensions. Let σ1, . . . , σn : K → L
be pairwise distinct morphisms of F -extensions. Then σ1, . . . , σn are L-linearly
independent: if λ1, . . . , λn ∈ L not all zero, then

∑
λiσi(α) ̸= 0 for some α ∈ K.

Proof. Apply Lemma 13.1 to the restrictions of σi to the groups of units. □

Lemma 13.4.0CKN Let K/F and L/F be field extensions with K/F finite separable
and L algebraically closed. Then the map

K ⊗F L −→
∏

σ∈HomF (K,L)
L, α⊗ β 7→ (σ(α)β)σ

is an isomorphism of L-algebras.

Proof. Choose a basis α1, . . . , αn of K as a vector space over F . By Lemma 12.11
(and a tiny omitted argument) the set HomF (K,L) has n elements, say σ1, . . . , σn.
In particular, the two sides have the same dimension n as vector spaces over L.
Thus if the map is not an isomorphism, then it has a kernel. In other words, there
would exist µj ∈ L, j = 1, . . . , n not all zero, with

∑
αj ⊗µj in the kernel. In other

words,
∑
σi(αj)µj = 0 for all i. This would mean the n × n matrix with entries

σi(αj) is not invertible. Thus we can find λ1, . . . , λn ∈ L not all zero, such that∑
λiσi(αj) = 0 for all j. Now any element α ∈ K can be written as α =

∑
βjαj

with βj ∈ F and we would get∑
λiσi(α) =

∑
λiσi(

∑
βjαj) =

∑
βj

∑
λiσi(αj) = 0

which contradicts Lemma 13.3. □

https://stacks.math.columbia.edu/tag/0EM9
https://stacks.math.columbia.edu/tag/0CKM
https://stacks.math.columbia.edu/tag/0CKN
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14. Purely inseparable extensions

09HD Purely inseparable extensions are the opposite of the separable extensions defined
in the previous section. These extensions only show up in positive characteristic.

Definition 14.1.09HE Let F be a field of characteristic p > 0. LetK/F be an extension.
(1) An element α ∈ K is purely inseparable over F if there exists a power q of

p such that αq ∈ F .
(2) The extension K/F is said to be purely inseparable if and only if every

element of K is purely inseparable over F .

Observe that a purely inseparable extension is necessarily algebraic. Let F be a
field of characteristic p > 0. An example of a purely inseparable extension is gotten
by adjoining the pth root of an element t ∈ F which does not yet have one. Namely,
the lemma below shows that P = xp − t is irreducible, and hence

K = F [x]/(P ) = F [t1/p]

is a field. And K is purely inseparable over F because every element

a0 + a1t
1/p + . . .+ ap−1t

(p−1)/p, ai ∈ F

of K has pth power equal to

(a0 + a1t
1/p + . . .+ ap−1t

(p−1)/p)p = ap0 + ap1t+ . . .+ app−1t
p−1 ∈ F

This situation occurs for the field Fp(t) of rational functions over Fp.

Lemma 14.2.09HF Let p be a prime number. Let F be a field of characteristic p. Let
t ∈ F be an element which does not have a pth root in F . Then the polynomial
xp − t is irreducible over F .

Proof. To see this, suppose that we have a factorization xp − t = fg. Taking
derivatives we get f ′g+ fg′ = 0. Note that neither f ′ = 0 nor g′ = 0 as the degrees
of f and g are smaller than p. Moreover, deg(f ′) < deg(f) and deg(g′) < deg(g).
We conclude that f and g have a factor in common. Thus if xp − t is reducible,
then it is of the form xp − t = cfn for some irreducible f , c ∈ F ∗, and n > 1. Since
p is a prime number this implies n = p and f linear, which would imply xp − t has
a root in F . Contradiction. □

We will see that taking pth roots is a very important operation in characteristic p.

Lemma 14.3.09HG Let E/k and F/E be purely inseparable extensions of fields. Then
F/k is a purely inseparable extension of fields.

Proof. Say the characteristic of k is p. Choose α ∈ F . Then αq ∈ E for some
p-power q. Whereupon (αq)q′ ∈ k for some p-power q′. Hence αqq′ ∈ k. □

Lemma 14.4.09HH Let E/k be a field extension. Then the elements of E purely-
inseparable over k form a subextension of E/k.

Proof. Let p be the characteristic of k. Let α, β ∈ E be purely inseparable over
k. Say αq ∈ k and βq

′ ∈ k for some p-powers q, q′. If q′′ is a p-power, then
(α + β)q′′ = αq

′′ + βq
′′ . Hence if q′′ ≥ q, q′, then we conclude that α + β is purely

inseparable over k. Similarly for the difference, product and quotient of α and
β. □
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Lemma 14.5.09HI Let E/F be a finite purely inseparable field extension of character-
istic p > 0. Then there exists a sequence of elements α1, . . . , αn ∈ E such that we
obtain a tower of fields

E = F (α1, . . . , αn) ⊃ F (α1, . . . , αn−1) ⊃ . . . ⊃ F (α1) ⊃ F

such that each intermediate extension is of degree p and comes from adjoining a
pth root. Namely, αpi ∈ F (α1, . . . , αi−1) is an element which does not have a pth
root in F (α1, . . . , αi−1) for i = 1, . . . , n.

Proof. By induction on the degree of E/F . If the degree of the extension is 1 then
the result is clear (with n = 0). If not, then choose α ∈ E, α ̸∈ F . Say αp

r ∈ F

for some r > 0. Pick r minimal and replace α by αpr−1 . Then α ̸∈ F , but αp ∈ F .
Then t = αp is not a pth power in F (because that would imply α ∈ F , see Lemma
12.5 or its proof). Thus F ⊂ F (α) is a subextension of degree p (Lemma 14.2). By
induction we find α1, . . . , αn ∈ E generating E/F (α) satisfying the conclusions of
the lemma. The sequence α, α1, . . . , αn does the job for the extension E/F . □

Lemma 14.6.030K Let E/F be an algebraic field extension. There exists a unique
subextension E/Esep/F such that Esep/F is separable and E/Esep is purely insep-
arable.

Proof. If the characteristic is zero we set Esep = E. Assume the characteristic
is p > 0. Let Esep be the set of elements of E which are separable over F . This
is a subextension by Lemma 12.13 and of course Esep is separable over F . Given
an α in E there exists a p-power q such that αq is separable over F . Namely, q
is that power of p such that the minimal polynomial of α is of the form P (xq)
with P separable algebraic, see Lemma 12.1. Hence E/Esep is purely inseparable.
Uniqueness is clear. □

Definition 14.7.030L Let E/F be an algebraic field extension. Let Esep be the
subextension found in Lemma 14.6.

(1) The integer [Esep : F ] is called the separable degree of the extension. Nota-
tion [E : F ]s.

(2) The integer [E : Esep] is called the inseparable degree, or the degree of
inseparability of the extension. Notation [E : F ]i.

Of course in characteristic 0 we have [E : F ] = [E : F ]s and [E : F ]i = 1. By
multiplicativity (Lemma 7.7) we have

[E : F ] = [E : F ]s[E : F ]i
even in case some of these degrees are infinite. In fact, the separable degree and
the inseparable degree are multiplicative too (see Lemma 14.9).

Lemma 14.8.09HJ Let K/F be a finite extension. Let F be an algebraic closure of F .
Then [K : F ]s = | MorF (K,F )|.

Proof. We first prove this when K/F is purely inseparable. Namely, we claim that
in this case there is a unique map K → F . This can be seen by choosing a sequence
of elements α1, . . . , αn ∈ K as in Lemma 14.5. The irreducible polynomial of αi over
F (α1, . . . , αi−1) is xp − αpi . Applying Lemma 12.9 we see that | MorF (K,F )| = 1.
On the other hand, [K : F ]s = 1 in this case hence the equality holds.
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Let’s return to a general finite extension K/F . In this case choose F ⊂ Ks ⊂ K as
in Lemma 14.6. By Lemma 12.11 we have | MorF (Ks, F )| = [Ks : F ] = [K : F ]s.
On the other hand, every field map σ′ : Ks → F extends to a unique field map
σ : K → F by the result of the previous paragraph. In other words | MorF (K,F )| =
| MorF (Ks, F )| and the proof is done. □

Lemma 14.9 (Multiplicativity).09HK Suppose given a tower of algebraic field exten-
sions K/E/F . Then

[K : F ]s = [K : E]s[E : F ]s and [K : F ]i = [K : E]i[E : F ]i
Proof. We first prove this in case K is finite over F . Since we have multiplicativity
for the usual degree (by Lemma 7.7) it suffices to prove one of the two formulas.
By Lemma 14.8 we have [K : F ]s = | MorF (K,F )|. By the same lemma, given any
σ ∈ MorF (E,F ) the number of extensions of σ to a map τ : K → F is [K : E]s.
Namely, via E ∼= σ(E) ⊂ F we can view F as an algebraic closure of E. Combined
with the fact that there are [E : F ]s = | MorF (E,F )| choices for σ we obtain the
result.
We omit the proof if the extensions are infinite. □

15. Normal extensions

09HL Let P ∈ F [x] be a nonconstant polynomial over a field F . We say P splits completely
into linear factors over F or splits completely over F if there exist c ∈ F ∗, n ≥ 1,
α1, . . . , αn ∈ F such that

P = c(x− α1) . . . (x− αn)
in F [x]. Normal extensions are defined as follows.
Definition 15.1.09HM Let E/F be an algebraic field extension. We say E is normal
over F if for all α ∈ E the minimal polynomial P of α over F splits completely into
linear factors over E.
As in the case of separable extensions, it takes a bit of work to establish the basic
properties of this notion.
Lemma 15.2.09HN Let K/E/F be a tower of algebraic field extensions. If K is normal
over F , then K is normal over E.
Proof. Let α ∈ K. Let P be the minimal polynomial of α over F . Let Q be the
minimal polynomial of α over E. Then Q divides P in the polynomial ring E[x],
say P = QR. Hence, if P splits completely over K, then so does Q. □

Lemma 15.3.09HP Let F be a field. Let M/F be an algebraic extension. Let M/Ei/F ,
i ∈ I be subextensions with Ei/F normal. Then

⋂
Ei is normal over F .

Proof. Direct from the definitions. □

Lemma 15.4.0EXK Let E/F be a normal algebraic field extension. Then the subexten-
sion E/Esep/F of Lemma 14.6 is normal.
Proof. If the characteristic is zero, then Esep = E, and the result is clear. If the
characteristic is p > 0, then Esep is the set of elements of E which are separable
over F . Then if α ∈ Esep has minimal polynomial P write P = c(x − α)(x −
α2) . . . (x − αd) with α2, . . . , αd ∈ E. Since P is a separable polynomial and since
αi is a root of P , we conclude αi ∈ Esep as desired. □
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Lemma 15.5.09HQ Let E/F be an algebraic extension of fields. Let F be an algebraic
closure of F . The following are equivalent

(1) E is normal over F , and
(2) for every pair σ, σ′ ∈ MorF (E,F ) we have σ(E) = σ′(E).

Proof. Let P be the set of all minimal polynomials over F of all elements of E.
Set

T = {β ∈ F | P (β) = 0 for some P ∈ P}
It is clear that if E is normal over F , then σ(E) = T for all σ ∈ MorF (E,F ). Thus
we see that (1) implies (2).
Conversely, assume (2). Pick β ∈ T . We can find a corresponding α ∈ E whose
minimal polynomial P ∈ P annihilates β. Because F (α) = F [x]/(P ) we can find
an element σ0 ∈ MorF (F (α), F ) mapping α to β. By Lemma 10.5 we can extend
σ0 to a σ ∈ MorF (E,F ). Whence we see that β is in the common image of all
embeddings σ : E → F . It follows that σ(E) = T for any σ. Fix a σ. Now let
P ∈ P. Then we can write

P = (x− β1) . . . (x− βn)
for some n and βi ∈ F by Lemma 10.2. Observe that βi ∈ T . Thus βi = σ(αi)
for some αi ∈ E. Thus P = (x − α1) . . . (x − αn) splits completely over E. This
finishes the proof. □

Lemma 15.6.0BR3 Let E/F be an algebraic extension of fields. If E is generated by
αi ∈ E, i ∈ I over F and if for each i the minimal polynomial of αi over F splits
completely in E, then E/F is normal.

Proof. Let Pi be the minimal polynomial of αi over F . Let αi = αi,1, αi,2, . . . , αi,di

be the roots of Pi over E. Given two embeddings σ, σ′ : E → F over F we see that
{σ(αi,1), . . . , σ(αi,di)} = {σ′(αi,1), . . . , σ′(αi,di)}

because both sides are equal to the set of roots of Pi in F . The elements αi,j
generate E over F and we find that σ(E) = σ′(E). Hence E/F is normal by
Lemma 15.5. □

Lemma 15.7.0BME Let L/M/K be a tower of algebraic extensions.
(1) If M/K is normal, then any automorphism τ of L/K induces an automor-

phism τ |M : M → M .
(2) If L/K is normal, then any K-algebra map σ : M → L extends to an

automorphism of L.

Proof. Choose an algebraic closure L of L (Theorem 10.4).
Let τ be as in (1). Then τ(M) = M as subfields of L by Lemma 15.5 and hence
τ |M : M → M is an automorphism.
Let σ : M → L be as in (2). By Lemma 10.5 we can extend σ to a map τ : L → L,
i.e., such that

L
τ
// L

M

OO

σ

>>

Koo

OO
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is commutative. By Lemma 15.5 we see that τ(L) = L. Hence τ : L → L is an
automorphism which extends σ. □

Definition 15.8.09HR Let E/F be an extension of fields. Then Aut(E/F ) or AutF (E)
denotes the automorphism group of E as an object of the category of F -extensions.
Elements of Aut(E/F ) are called automorphisms of E over F or automorphisms of
E/F .

Here is a characterization of normal extensions in terms of automorphisms.

Lemma 15.9.09HS Let E/F be a finite extension. We have
|Aut(E/F )| ≤ [E : F ]s

with equality if and only if E is normal over F .

Proof. Choose an algebraic closure F of F . Recall that [E : F ]s = | MorF (E,F )|.
Pick an element σ0 ∈ MorF (E,F ). Then the map

Aut(E/F ) −→ MorF (E,F ), τ 7−→ σ0 ◦ τ
is injective. Thus the inequality. If equality holds, then every σ ∈ MorF (E,F ) is
gotten by precomposing σ0 by an automorphism. Hence σ(E) = σ0(E). Thus E is
normal over F by Lemma 15.5.
Conversely, assume that E/F is normal. Then by Lemma 15.5 we have σ(E) =
σ0(E) for all σ ∈ MorF (E,F ). Thus we get an automorphism of E over F by
setting τ = σ−1

0 ◦ σ. Whence the map displayed above is surjective. □

Lemma 15.10.0BR4 Let L/K be an algebraic normal extension of fields. Let E/K be
an extension of fields. Then either there is no K-embedding from L to E or there
is one τ : L → E and every other one is of the form τ ◦ σ where σ ∈ Aut(L/K).

Proof. Given τ replace L by τ(L) ⊂ E and apply Lemma 15.7. □

16. Splitting fields

09HT The following lemma is a useful tool for constructing normal field extensions.

Lemma 16.1.09HU Let F be a field. Let P ∈ F [x] be a nonconstant polynomial. There
exists a smallest field extension E/F such that P splits completely over E. More-
over, the field extension E/F is normal and unique up to (nonunique) isomorphism.

Proof. Choose an algebraic closure F . Then we can write P = c(x−β1) . . . (x−βn)
in F [x], see Lemma 10.2. Note that c ∈ F ∗. Set E = F (β1, . . . , βn). Then it is
clear that E is minimal with the requirement that P splits completely over E.
Next, let E′ be another minimal field extension of F such that P splits completely
over E′. Write P = c(x−α1) . . . (x−αn) with c ∈ F and αi ∈ E′. Again it follows
from minimality that E′ = F (α1, . . . , αn). Moreover, if we pick any σ : E′ → F
(Lemma 10.5) then we immediately see that σ(αi) = βτ(i) for some permutation
τ : {1, . . . , n} → {1, . . . , n}. Thus σ(E′) = E. This implies that E′ is a normal
extension of F by Lemma 15.5 and that E ∼= E′ as extensions of F thereby finishing
the proof. □

Definition 16.2.09HV Let F be a field. Let P ∈ F [x] be a nonconstant polynomial.
The field extension E/F constructed in Lemma 16.1 is called the splitting field of
P over F .
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Lemma 16.3.09DT Let E/F be a finite extension of fields. There exists a unique
smallest finite extension K/E such that K is normal over F .
Proof. Choose generators α1, . . . , αn of E over F . Let P1, . . . , Pn be the minimal
polynomials of α1, . . . , αn over F . Set P = P1 . . . Pn. Observe that (x−α1) . . . (x−
αn) divides P , since each (x− αi) divides Pi. Say P = (x− α1) . . . (x− αn)Q. Let
K/E be the splitting field of P over E. We claim that K is the splitting field of
P over F as well (which implies that K is normal over F ). This is clear because
K/E is generated by the roots of Q over E and E is generated by the roots of
(x− α1) . . . (x− αn) over F , hence K is generated by the roots of P over F .
Uniqueness. Suppose that K ′/E is a second smallest extension such that K ′/F is
normal. Choose an algebraic closure F and an embedding σ0 : E → F . By Lemma
10.5 we can extend σ0 to σ : K → F and σ′ : K ′ → F . By Lemma 15.3 we see that
σ(K) ∩ σ′(K ′) is normal over F . By minimality we conclude that σ(K) = σ(K ′).
Thus σ ◦ (σ′)−1 : K ′ → K gives an isomorphism of extensions of E. □

Definition 16.4.0BMF Let E/F be a finite extension of fields. The field extension K/E
constructed in Lemma 16.3 is called the normal closure E over F .
One can construct the normal closure inside any given normal extension.
Lemma 16.5.0BMG Let L/K be an algebraic normal extension.

(1) If L/M/K is a subextension with M/K finite, then there exists a tower
L/M ′/M/K with M ′/K finite and normal.

(2) If L/M ′/M/K is a tower with M/K normal and M ′/M finite, then there
exists a tower L/M ′′/M ′/M/K with M ′′/M finite and M ′′/K normal.

Proof. Proof of (1). Let M ′ be the smallest subextension of L/K containing M
which is normal over K. By Lemma 16.3 this is the normal closure of M/K and is
finite over K.
Proof of (2). Let α1, . . . , αn ∈ M ′ generate M ′ over M . Let P1, . . . , Pn be the
minimal polynomials of α1, . . . , αn over K. Let αi,j be the roots of Pi in L. Let
M ′′ = M(αi,j). It follows from Lemma 15.6 (applied with the set of generators
M ∪ {αi,j}) that M ′′ is normal over K. □

The following lemma can sometimes be used to prove properties of the normal
closure.
Lemma 16.6.0EXL Let L/K be a finite extension. Let M/L be the normal closure of
L over K. Then there is a surjective map

L⊗K L⊗K . . .⊗K L −→ M

of K-algebras where the number of tensors can be taken [L : K]s ≤ [L : K].
Proof. Choose an algebraic closure K of K. Set n = [L : K]s = | MorK(L,K)|
with equality by Lemma 14.8. Say MorK(L,K) = {σ1, . . . , σn}. Let M ′ ⊂ K be
the K-subalgebra generated by σi(L), i = 1, . . . , n. It follows from Lemma 15.5
that M ′ is normal over K and that it is the smallest normal subextension of K
containing σ1(L). By uniqueness of normal closure we have M ∼= M ′. Finally,
there is a surjective map

L⊗K L⊗K . . .⊗K L −→ M ′, λ1 ⊗ . . .⊗ λn 7−→ σ1(λ1) . . . σn(λn)
and note that n ≤ [L : K] by definition. □
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17. Roots of unity

09HW Let F be a field. For an integer n ≥ 1 we set
µn(F ) = {ζ ∈ F | ζn = 1}

This is called the group of nth roots of unity or nth roots of 1. It is an abelian group
under multiplication with neutral element given by 1. Observe that in a field the
number of roots of a polynomial of degree d is always at most d. Hence we see that
|µn(F )| ≤ n as it is defined by a polynomial equation of degree n. Of course every
element of µn(F ) has order dividing n. Moreover, the subgroups

µd(F ) ⊂ µn(F ), d|n
each have at most d elements. This implies that µn(F ) is cyclic.

Lemma 17.1.09HX Let A be an abelian group of exponent dividing n such that {x ∈
A | dx = 0} has cardinality at most d for all d|n. Then A is cyclic of order dividing
n.

Proof. The conditions imply that |A| ≤ n, in particular A is finite. The structure
of finite abelian groups shows that A = Z/e1Z ⊕ . . . ⊕ Z/erZ for some integers
1 < e1|e2| . . . |er. This would imply that {x ∈ A | e1x = 0} has cardinality er1.
Hence r = 1. □

Applying this to the field Fp we obtain the celebrated result that the group (Z/pZ)∗

is a cyclic group. More about this in the section on finite fields.
One more observation is often useful: If F has characteristic p > 0, then µpn(F ) =
{1}. This is true because raising to the pth power is an injective map on fields of
characteristic p as we have seen in the proof of Lemma 12.5. (Of course, it also
follows from the statement of that lemma itself.)

18. Finite fields

09HY Let F be a finite field. It is clear that F has positive characteristic as we cannot
have an injection Q → F . Say the characteristic of F is p. The extension Fp ⊂ F
is finite. Hence we see that F has q = pf elements for some f ≥ 1.
Let us think about the group of units F ∗. This is a finite abelian group, so it has
some exponent e. Then F ∗ = µe(F ) and we see from the discussion in Section 17
that F ∗ is a cyclic group of order q − 1. (A posteriori it follows that e = q − 1 as
well.) In particular, if α ∈ F ∗ is a generator then it clearly is true that

F = Fp(α)
In other words, the extension F/Fp is generated by a single element. Of course,
the same thing is true for any extension of finite fields E/F (because E is already
generated by a single element over the prime field).

19. Primitive elements

09HZ Let E/F be a finite extension of fields. An element α ∈ E is called a primitive
element of E over F if E = F (α).

Lemma 19.1 (Primitive element).030N Let E/F be a finite extension of fields. The
following are equivalent

(1) there exists a primitive element for E over F , and
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(2) there are finitely many subextensions E/K/F .
Moreover, (1) and (2) hold if E/F is separable.

Proof. Let α ∈ E be a primitive element. Let P be the minimal polynomial
of α over F . Let E ⊂ M be a splitting field for P over E, so that P (x) =
(x − α)(x − α2) . . . (x − αn) over M . For ease of notation we set α1 = α. Next,
let E/K/F be a subextension. Let Q be the minimal polynomial of α over K.
Observe that deg(Q) = [E : K]. Writing Q = xd +

∑
i<d aix

i we claim that K is
equal to L = F (a0, . . . , ad−1). Indeed α has degree d over L and L ⊂ K. Hence
[E : L] = [E : K] and it follows that [K : L] = 1, i.e., K = L. Thus it suffices
to show there are at most finitely many possibilities for the polynomial Q. This is
clear because we have a factorization P = QR in K[x] in particular in E[x]. Since
we have unique factorization in E[x] there are at most finitely many monic factors
of P in E[x].
If F is a finite field (equivalently E is a finite field), then E/F has a primitive
element by the discussion in Section 18. Next, assume F is infinite and there are
at most finitely many proper subfields E/K/F . List them, say K1, . . . ,KN . Then
each Ki ⊂ E is a proper sub F -vector space. As F is infinite we can find a vector
α ∈ E with α ̸∈ Ki for all i (a vector space can never be equal to a finite union
of proper subvector spaces; details omitted). Then α is a primitive element for E
over F .
Having established the equivalence of (1) and (2) we now turn to the final state-
ment of the lemma. Choose an algebraic closure F of F . Enumerate the elements
σ1, . . . , σn ∈ MorF (E,F ). Since E/F is separable we have n = [E : F ] by Lemma
12.11. Note that if i ̸= j, then

Vij = Ker(σi − σj : E −→ F )
is not equal to E. Hence arguing as in the preceding paragraph we can find α ∈ E
with α ̸∈ Vij for all i ̸= j. It follows that | MorF (F (α), F )| ≥ n. On the other
hand [F (α) : F ] ≤ [E : F ]. Hence equality by Lemma 12.11 and we conclude that
E = F (α). □

20. Trace and norm

0BIE Let L/K be a finite extension of fields. By Lemma 4.1 we can choose an isomor-
phism L ∼= K⊕n of K-modules. Of course n = [L : K] is the degree of the field
extension. Using this isomorphism we get for a K-algebra map

L −→ Mat(n× n,K), α 7−→ matrix of multiplication by α
Thus given α ∈ L we can take the trace and the determinant of the corresponding
matrix. Of course these quantities are independent of the choice of the basis chosen
above. More canonically, simply thinking of L as a finite dimensional K-vector
space we have TraceK(α : L → L) and the determinant detK(α : L → L).

Definition 20.1.0BIF Let L/K be a finite extension of fields. For α ∈ L we define the
trace TraceL/K(α) = TraceK(α : L → L) and the norm NormL/K(α) = detK(α :
L → L).

It is clear from the definition that TraceL/K is K-linear and satisfies TraceL/K(α) =
[L : K]α for α ∈ K. Similarly NormL/K is multiplicative and NormL/K(α) = α[L:K]
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for α ∈ K. This is a special case of the more general construction discussed in
Exercises, Exercises 22.6 and 22.7.

Lemma 20.2.0BIG Let L/K be a finite extension of fields. Let α ∈ L and let P be
the minimal polynomial of α over K. Then the characteristic polynomial of the
K-linear map α : L → L is equal to P e with e deg(P ) = [L : K].

Proof. Choose a basis β1, . . . , βe of L over K(α). Then e satisfies edeg(P ) =
[L : K] by Lemmas 9.2 and 7.7. Then we see that L =

⊕
K(α)βi is a direct

sum decomposition into α-invariant subspaces hence the characteristic polynomial
of α : L → L is equal to the characteristic polynomial of α : K(α) → K(α) to the
power e.
To finish the proof we may assume that L = K(α). In this case by Cayley-Hamilton
we see that α is a root of the characteristic polynomial. And since the characteristic
polynomial has the same degree as the minimal polynomial, we find that equality
holds. □

Lemma 20.3.0BIH Let L/K be a finite extension of fields. Let α ∈ L and let P =
xd + a1x

d−1 + . . .+ ad be the minimal polynomial of α over K. Then
NormL/K(α) = (−1)[L:K]aed and TraceL/K(α) = −ea1

where ed = [L : K].

Proof. Follows immediately from Lemma 20.2 and the definitions. □

Lemma 20.4.0BII Let L/K be a finite extension of fields. Let V be a finite dimensional
vector space over L. Let φ : V → V be an L-linear map. Then

TraceK(φ : V → V ) = TraceL/K(TraceL(φ : V → V ))
and

detK(φ : V → V ) = NormL/K(detL(φ : V → V ))

Proof. Choose an isomorphism V = L⊕n so that φ corresponds to an n×n matrix.
In the case of traces, both sides of the formula are additive in φ. Hence we can
assume that φ corresponds to the matrix with exactly one nonzero entry in the
(i, j) spot. In this case a direct computation shows both sides are equal.
In the case of norms both sides are zero if φ has a nonzero kernel. Hence we may
assume φ corresponds to an element of GLn(L). Both sides of the formula are
multiplicative in φ. Since every element of GLn(L) is a product of elementary
matrices we may assume that φ either looks like

E12(λ) =

 1 λ . . .
0 1 . . .
. . . . . . . . .

 or E1(a) =

 a 0 . . .
0 1 . . .
. . . . . . . . .


(because we may also permute the basis elements if we like). In both cases the
formula is easy to verify by direct computation. □

Lemma 20.5.0BIJ Let M/L/K be a tower of finite extensions of fields. Then
TraceM/K = TraceL/K ◦ TraceM/L and NormM/K = NormL/K ◦ NormM/L

Proof. Think of M as a vector space over L and apply Lemma 20.4. □

The trace pairing is defined using the trace.
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Definition 20.6.0BIK Let L/K be a finite extension of fields. The trace pairing for
L/K is the symmetric K-bilinear form

QL/K : L× L −→ K, (α, β) 7−→ TraceL/K(αβ)

It turns out that a finite extension of fields is separable if and only if the trace
pairing is nondegenerate.

Lemma 20.7.0BIL Let L/K be a finite extension of fields. The following are equivalent:
(1) L/K is separable,
(2) TraceL/K is not identically zero, and
(3) the trace pairing QL/K is nondegenerate.

Proof. It is clear that (3) implies (2). If (2) holds, then pick γ ∈ L with TraceL/K(γ) ̸=
0. Then if α ∈ L is nonzero, we see that QL/K(α, γ/α) ̸= 0. Hence QL/K is non-
degenerate. This proves the equivalence of (2) and (3).
Suppose that K has characteristic p and L = K(α) with α ̸∈ K and αp ∈ K.
Then TraceL/K(1) = p = 0. For i = 1, . . . , p − 1 we see that xp − αpi is the
minimal polynomial for αi over K and we find TraceL/K(αi) = 0 by Lemma 20.3.
Hence for this kind of purely inseparable degree p extension we see that TraceL/K
is identically zero.
Assume that L/K is not separable. Then there exists a subfield L/K ′/K such that
L/K ′ is a purely inseparable degree p extension as in the previous paragraph, see
Lemmas 14.6 and 14.5. Hence by Lemma 20.5 we see that TraceL/K is identically
zero.
Assume on the other hand that L/K is separable. By induction on the degree
we will show that TraceL/K is not identically zero. Thus by Lemma 20.5 we may
assume that L/K is generated by a single element α (use that if the trace is nonzero
then it is surjective). We have to show that TraceL/K(αe) is nonzero for some e ≥ 0.
Let P = xd + a1x

d−1 + . . . + ad be the minimal polynomial of α over K. Then
P is also the characteristic polynomial of the linear maps α : L → L, see Lemma
20.2. Since L/k is separable we see from Lemma 12.4 that P has d pairwise distinct
roots α1, . . . , αd in an algebraic closure K of K. Thus these are the eigenvalues of
α : L → L. By linear algebra, the trace of αe is equal to αe1 + . . . + αed. Thus we
conclude by Lemma 13.2. □

Let K be a field and let Q : V × V → K be a bilinear form on a finite dimensional
vector space over K. Say dimK(V ) = n. Then Q defines a linear map Q : V → V ∗,
v 7→ Q(v,−) where V ∗ = HomK(V,K) is the dual vector space. Hence a linear
map

det(Q) : ∧n(V ) −→ ∧n(V )∗

If we pick a basis element ω ∈ ∧n(V ), then we can write det(Q)(ω) = λω∗, where ω∗

is the dual basis element in ∧n(V )∗. If we change our choice of ω into cω for some
c ∈ K∗, then ω∗ changes into c−1ω∗ and therefore λ changes into c2λ. Thus the
class of λ in K/(K∗)2 is well defined and is called the discriminant of Q. Unwinding
the definitions we see that

λ = det(Q(vi, vj)1≤i,j≤n)
if {v1, . . . , vn} is a basis for V over K. Observe that the discriminant is nonzero if
and only if Q is nondegenerate.
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Definition 20.8.0BIM Let L/K be a finite extension of fields. The discriminant of
L/K is the discriminant of the trace pairing QL/K .

By the discussion above and Lemma 20.7 we see that the discriminant is nonzero if
and only if L/K is separable. For a ∈ K we often say “the discriminant is a” when
it would be more correct to say the discriminant is the class of a in K/(K∗)2.

Exercise 20.9.0BIN Let L/K be an extension of degree 2. Show that exactly one of
the following happens

(1) the discriminant is 0, the characteristic of K is 2, and L/K is purely insep-
arable obtained by taking a square root of an element of K,

(2) the discriminant is 1, the characteristic of K is 2, and L/K is separable of
degree 2,

(3) the discriminant is not a square, the characteristic of K is not 2, and L is
obtained from K by taking the square root of the discriminant.

21. Galois theory

09DU Here is the definition.

Definition 21.1.09I0 A field extension E/F is called Galois if it is algebraic, separable,
and normal.

It turns out that a finite extension is Galois if and only if it has the “correct”
number of automorphisms.

Lemma 21.2.09I1 Let E/F be a finite extension of fields. Then E is Galois over F
if and only if |Aut(E/F )| = [E : F ].

Proof. Assume |Aut(E/F )| = [E : F ]. By Lemma 15.9 this implies that E/F
is separable and normal, hence Galois. Conversely, if E/F is separable then [E :
F ] = [E : F ]s and if E/F is in addition normal, then Lemma 15.9 implies that
|Aut(E/F )| = [E : F ]. □

Motivated by the lemma above we introduce the Galois group as follows.

Definition 21.3.09DV If E/F is a Galois extension, then the group Aut(E/F ) is called
the Galois group and it is denoted Gal(E/F ).

If L/K is an infinite Galois extension, then one should think of the Galois group
as a topological group. We will return to this in Section 22.

Lemma 21.4.09I2 Let K/E/F be a tower of algebraic field extensions. If K is Galois
over F , then K is Galois over E.

Proof. Combine Lemmas 15.2 and 12.3. □

Lemma 21.5.0EXM Let L/K be a finite separable extension of fields. Let M be the
normal closure of L over K (Definition 16.4). Then M/K is Galois.

Proof. The subextension M/Msep/K of Lemma 14.6 is normal by Lemma 15.4.
Since L/K is separable we have L ⊂ Msep. By minimality M = Msep and the proof
is done. □
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Let G be a group acting on a field K (by field automorphisms). We will often use
the notation

KG = {x ∈ K | σ(x) = x ∀σ ∈ G}
and we will call this the fixed field for the action of G on K.

Lemma 21.6.09I3 Let K be a field. Let G be a finite group acting faithfully on K.
Then the extension K/KG is Galois, we have [K : KG] = |G|, and the Galois group
of the extension is G.

Proof. Given α ∈ K consider the orbit G · α ⊂ K of α under the group action.
Consider the polynomial

P =
∏

β∈G·α
(x− β) ∈ K[x]

The key to the whole lemma is that this polynomial is invariant under the action
of G and hence has coefficients in KG. Namely, for τ ∈ G we have

P τ =
∏

β∈G·α
(x− τ(β)) =

∏
β∈G·α

(x− β) = P

because the map β 7→ τ(β) is a permutation of the orbit G · α. Thus P ∈ KG[x].
Since also P (α) = 0 as α is an element of its orbit we conclude that the extension
K/KG is algebraic. Moreover, the minimal polynomial Q of α over KG divides the
polynomial P just constructed. Hence Q is separable (by Lemma 12.4 for example)
and we conclude that K/KG is separable. Thus K/KG is Galois. To finish the
proof it suffices to show that [K : KG] = |G| since then G will be the Galois group
by Lemma 21.2.
Pick finitely many elements αi ∈ K, i = 1, . . . , n such that σ(αi) = αi for i =
1, . . . , n implies σ is the neutral element of G. Set

L = KG({σ(αi); 1 ≤ i ≤ n, σ ∈ G}) ⊂ K

and observe that the action of G on K induces an action of G on L. We will show
that L has degree |G| over KG. This will finish the proof, since if L ⊂ K is proper,
then we can add an element α ∈ K, α ̸∈ L to our list of elements α1, . . . , αn without
increasing L which is absurd. This reduces us to the case that K/KG is finite which
is treated in the next paragraph.
Assume K/KG is finite. By Lemma 19.1 we can find α ∈ K such that K = KG(α).
By the construction in the first paragraph of this proof we see that α has degree at
most |G| over K. However, the degree cannot be less than |G| as G acts faithfully
on KG(α) = L by construction and the inequality of Lemma 15.9. □

Theorem 21.7 (Fundamental theorem of Galois theory).09DW Let L/K be a finite
Galois extension with Galois group G. Then we have K = LG and the map

{subgroups of G} −→ {subextensions L/M/K}, H 7−→ LH

is a bijection whose inverse maps M to Gal(L/M). The normal subgroups H of G
correspond exactly to those subextensions M with M/K Galois.

Proof. By Lemma 21.4 given a subextension L/M/K the extension L/M is Galois.
Of course L/M is also finite (Lemma 7.3). Thus |Gal(L/M)| = [L : M ] by Lemma
21.2. Conversely, if H ⊂ G is a finite subgroup, then [L : LH ] = |H| by Lemma
21.6. It follows formally from these two observations that we obtain a bijective
correspondence as in the theorem.
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If H ⊂ G is normal, then LH is fixed by the action of G and we obtain a canonical
map G/H → Aut(LH/K). This map has to be injective as Gal(L/LH) = H. Hence
|G/H| = [LH : K] and LH is Galois by Lemma 21.2.
Conversely, assume that K ⊂ M ⊂ L with M/K Galois. By Lemma 15.7 we see
that every element τ ∈ Gal(L/K) induces an element τ |M ∈ Gal(M/K). This
induces a homomorphism of Galois groups Gal(L/K) → Gal(M/K) whose kernel
is H. Thus H is a normal subgroup. □

Lemma 21.8.0BMH Let L/M/K be a tower of fields. Assume L/K and M/K are finite
Galois. Then we obtain a short exact sequence

1 → Gal(L/M) → Gal(L/K) → Gal(M/K) → 1
of finite groups.

Proof. Namely, by Lemma 15.7 we see that every element τ ∈ Gal(L/K) induces
an element τ |M ∈ Gal(M/K) which gives us the homomorphism on the right. The
map on the left identifies the left group with the kernel of the right arrow. The
sequence is exact because the sizes of the groups work out correctly by multiplicativ-
ity of degrees in towers of finite extensions (Lemma 7.7). One can also use Lemma
15.7 directly to see that the map on the right is surjective. □

22. Infinite Galois theory

0BMI The Galois group comes with a canonical topology.

Lemma 22.1.0BMJ Let E/F be a Galois extension. Endow Gal(E/F ) with the coarsest
topology such that

Gal(E/F ) × E −→ E

is continuous when E is given the discrete topology. Then
(1) for any topological space X and map X → Aut(E/F ) such that the action

X × E → E is continuous the induced map X → Gal(E/F ) is continuous,
(2) this topology turns Gal(E/F ) into a profinite topological group.

Proof. Throughout this proof we think of E as a discrete topological space. Recall
that the compact open topology on the set of self maps Map(E,E) is the universal
topology such that the action Map(E,E) × E → E is continuous. See Topology,
Example 30.2 for a precise statement. The topology of the lemma on Gal(E/F )
is the induced topology coming from the injective map Gal(E/F ) → Map(E,E).
Hence the universal property (1) follows from the corresponding universal property
of the compact open topology. Since the set of invertible self maps Aut(E) endowed
with the compact open topology forms a topological group, see Topology, Example
30.2, and since Gal(E/F ) = Aut(E/F ) → Map(E,E) factors through Aut(E) we
obtain a topological group. In other words, we are using the injection

Gal(E/F ) ⊂ Aut(E)
to endow Gal(E/F ) with the induced structure of a topological group (see Topology,
Section 30) and by construction this is the coarsest structure of a topological group
such that the action Gal(E/F ) × E → E is continuous.
To show that Gal(E/F ) is profinite we argue as follows (our argument is necessarily
nonstandard because we have defined the topology before showing that the Galois
group is an inverse limit of finite groups). By Topology, Lemma 30.4 it suffices
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to show that the underlying topological space of Gal(E/F ) is profinite. For any
subset S ⊂ E consider the set

G(S) = {f : S → E | f(α) is a root of the minimal polynomial
of α over F for all α ∈ S

}

Since a polynomial has only a finite number of roots we see that G(S) is finite for all
S ⊂ E finite. If S ⊂ S′ then restriction gives a map G(S′) → G(S). Also, observe
that if α ∈ S ∩ F and f ∈ G(S), then f(α) = α because the minimal polynomial is
linear in this case. Consider the profinite topological space

G = limS⊂E finite G(S)

Consider the canonical map

c : Gal(E/F ) −→ G, σ 7−→ (σ|S : S → E)S
This is injective and unwinding the definitions the reader sees the topology on
Gal(E/F ) as defined above is the induced topology from G. An element (fS) ∈ G
is in the image of c exactly if (A) fS(α)+fS(β) = fS(α+β) and (M) fS(α)fS(β) =
fS(αβ) whenever this makes sense (i.e., α, β, α + β, αβ ∈ S). Namely, this means
lim fS : E → E will be an F -algebra map and hence an automorphism by Lemma
8.11. The conditions (A) and (M) for a given triple (S, α, β) define a closed subset
of G and hence Gal(E/F ) is homeomorphic to a closed subset of a profinite space
and therefore profinite itself. □

Lemma 22.2.0BMK Let L/M/K be a tower of fields. Assume both L/K and M/K
are Galois. Then there is a canonical surjective continuous homomorphism c :
Gal(L/K) → Gal(M/K).

Proof. By Lemma 15.7 given τ : L → L in Gal(L/K) the restriction τ |M : M → M
is an element of Gal(M/K). This defines the homomorphism c. Continuity follows
from the universal property of the topology: the action

Gal(L/K) ×M −→ M, (τ, x) 7−→ τ(x) = c(τ)(x)

is continuous as M ⊂ L and the action Gal(L/K) × L → L is continuous. Hence
continuity of c by part (1) of Lemma 22.1. Lemma 15.7 also shows that the map is
surjective. □

Here is a more standard way to think about the Galois group of an infinite Galois
extension.

Lemma 22.3.0BU2 Let L/K be a Galois extension with Galois group G. Let Λ be the
set of finite Galois subextensions, i.e., λ ∈ Λ corresponds to L/Lλ/K with Lλ/K
finite Galois with Galois group Gλ. Define a partial ordering on Λ by the rule
λ ≥ λ′ if and only if Lλ ⊃ Lλ′ . Then

(1) Λ is a directed partially ordered set,
(2) Lλ is a system of K-extensions over Λ and L = colimLλ,
(3) Gλ is an inverse system of finite groups over Λ, the transition maps are

surjective, and
G = limλ∈Λ Gλ

as a profinite group, and
(4) each of the projections G → Gλ is continuous and surjective.
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Proof. Every subfield of L containing K is separable over K (follows immediately
from the definition). Let S ⊂ L be a finite subset. Then K(S)/K is finite and
there exists a tower L/E/K(S)/K such that E/K is finite Galois, see Lemma 16.5.
Hence E = Lλ for some λ ∈ Λ. This certainly implies the set Λ is not empty.
Also, given λ1, λ2 ∈ Λ we can write Lλi

= K(Si) for finite sets S1, S2 ⊂ L (Lemma
7.5). Then there exists a λ ∈ Λ such that K(S1 ∪ S2) ⊂ Lλ. Hence λ ≥ λ1, λ2
and Λ is directed (Categories, Definition 21.4). Finally, since every element in L is
contained in Lλ for some λ ∈ Λ, it follows from the description of filtered colimits
in Categories, Section 19 that colimLλ = L.

If λ ≥ λ′ in Λ, then we obtain a canonical surjective map Gλ → Gλ′ , σ 7→ σ|Lλ′

by Lemma 21.8. Thus we get an inverse system of finite groups with surjective
transition maps.

Recall that G = Aut(L/K). By Lemma 22.2 the restriction σ|Lλ
of a σ ∈ G to

Lλ is an element of Gλ. Moreover, this procedure gives a continuous surjection
G → Gλ. Since the transition mappings in the inverse system of Gλ are given by
restriction also, it is clear that we obtain a canonical continuous map

G −→ limλ∈Λ Gλ

Continuity by definition of limits in the category of topological groups; recall that
these limits commute with the forgetful functor to the categories of sets and topo-
logical spaces by Topology, Lemma 30.3. On the other hand, since L = colimLλ
it is clear that any element of the inverse limit (viewed as a set) defines an auto-
morphism of L. Thus the map is bijective. Since the topology on both sides is
profinite, and since a bijective continuous map of profinite spaces is a homeomor-
phism (Topology, Lemma 17.8), the proof is complete. □

Theorem 22.4 (Fundamental theorem of infinite Galois theory).0BML Let L/K be a
Galois extension. Let G = Gal(L/K) be the Galois group viewed as a profinite
topological group (Lemma 22.1). Then we have K = LG and the map

{closed subgroups of G} −→ {subextensions L/M/K}, H 7−→ LH

is a bijection whose inverse maps M to Gal(L/M). The finite subextensions M
correspond exactly to the open subgroups H ⊂ G. The normal closed subgroups H
of G correspond exactly to subextensions M Galois over K.

Proof. We will use the result of finite Galois theory (Theorem 21.7) without further
mention. Let S ⊂ L be a finite subset. There exists a tower L/E/K such that
K(S) ⊂ E and such that E/K is finite Galois, see Lemma 16.5. In other words,
we see that L/K is the union of its finite Galois subextensions. For such an E,
by Lemma 22.2 the map Gal(L/K) → Gal(E/K) is surjective and continuous, i.e.,
the kernel is open because the topology on Gal(E/K) is discrete. In particular we
see that no element of L \K is fixed by Gal(L/K) as EGal(E/K) = K. This proves
that LG = K.

By Lemma 21.4 given a subextension L/M/K the extension L/M is Galois. It is
immediate from the definition of the topology on G that the subgroup Gal(L/M)
is closed. By the above applied to L/M we see that LGal(L/M) = M .

Conversely, let H ⊂ G be a closed subgroup. We claim that H = Gal(L/LH).
The inclusion H ⊂ Gal(L/LH) is clear. Suppose that g ∈ Gal(L/LH). Let S ⊂ L
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be a finite subset. We will show that the open neighbourhood US(g) = {g′ ∈ G |
g′(s) = g(s)} of g meets H. This implies that g ∈ H because H is closed. Let
L/E/K be a finite Galois subextension containing K(S) as in the first paragraph
of the proof and consider the homomorphism c : Gal(L/K) → Gal(E/K). Then
LH ∩ E = Ec(H). Since g fixes LH it fixes Ec(H) and hence c(g) ∈ c(H) by finite
Galois theory. Pick h ∈ H with c(h) = c(g). Then h ∈ US(g) as desired.
At this point we have established the correspondence between closed subgroups and
subextensions.
Assume H ⊂ G is open. Arguing as above we find that H containes Gal(L/E) for
some large enough finite Galois subextension E and we find that LH is contained
in E whence finite over K. Conversely, if M is a finite subextension, then M is
generated by a finite subset S and the corresponding subgroup is the open subset
US(e) where e ∈ G is the neutral element.
Assume that K ⊂ M ⊂ L with M/K Galois. By Lemma 22.2 there is a surjective
continuous homomorphism of Galois groups Gal(L/K) → Gal(M/K) whose kernel
is Gal(L/M). Thus Gal(L/M) is a normal closed subgroup.
Finally, assume N ⊂ G is normal and closed. For any L/E/K as in the first
paragraph of the proof, the image c(N) ⊂ Gal(E/K) is a normal subgroup. Hence
LN =

⋃
Ec(N) is a union of Galois extensions of K (by finite Galois theory) whence

Galois over K. □

Lemma 22.5.0BMM Let L/M/K be a tower of fields. Assume L/K and M/K are
Galois. Then we obtain a short exact sequence

1 → Gal(L/M) → Gal(L/K) → Gal(M/K) → 1
of profinite topological groups.

Proof. This is a reformulation of Lemma 22.2. □

23. The complex numbers

09I4 The fundamental theorem of algebra states that the field of complex numbers is an
algebraically closed field. In this section we discuss this briefly.
The first remark we’d like to make is that you need to use a little bit of input
from calculus in order to prove this. We will use the intuitively clear fact that
every odd degree polynomial over the reals has a real root. Namely, let P (x) =
a2k+1x

2k+1 + . . .+a0 ∈ R[x] for some k ≥ 0 and a2k+1 ̸= 0. We may and do assume
a2k+1 > 0. Then for x ∈ R very large (positive) we see that P (x) > 0 as the term
a2k+1x

2k+1 dominates all the other terms. Similarly, if x ≪ 0, then P (x) < 0 by
the same reason (and this is where we use that the degree is odd). Hence by the
intermediate value theorem there is an x ∈ R with P (x) = 0.
A conclusion we can draw from the above is that R has no nontrivial odd degree
field extensions, as elements of such extensions would have odd degree minimal
polynomials.
Next, let K/R be a finite Galois extension with Galois group G. Let P ⊂ G be
a 2-sylow subgroup. Then KP /R is an odd degree extension, hence by the above
KP = R, which in turn implies G = P . (All of these arguments rely on Galois
theory of course.) Thus G is a 2-group. If G is nontrivial, then we see that C ⊂ K
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as C is (up to isomorphism) the only degree 2 extension of R. If G has more than
2 elements we would obtain a quadratic extension of C. This is absurd as every
complex number has a square root.
The conclusion: C is algebraically closed. Namely, if not then we’d get a nontrivial
finite extension K/C which we could assume normal (hence Galois) over R by
Lemma 16.3. But we’ve seen above that then K = C.

Lemma 23.1 (Fundamental theorem of algebra).09I5 The field C is algebraically
closed.

Proof. See discussion above. □

24. Kummer extensions

09I6 Let K be a field. Let n ≥ 2 be an integer such that K contains a primitive nth
root of 1. Let a ∈ K. Let L be an extension of K obtained by adjoining a root b of
the equation xn = a. Then L/K is Galois. If G = Gal(L/K) is the Galois group,
then the map

G −→ µn(K), σ 7−→ σ(b)/b
is an injective homomorphism of groups. In particular, G is cyclic of order dividing
n as a subgroup of the cyclic group µn(K). Kummer theory gives a converse.

Lemma 24.1 (Kummer extensions).09DX Let L/K be a Galois extension of fields whose
Galois group is Z/nZ. Assume moreover that the characteristic of K is prime to n
and that K contains a primitive nth root of 1. Then L = K[z] with zn ∈ K.

Proof. Let ζ ∈ K be a primitive nth root of 1. Let σ be a generator of Gal(L/K).
Consider σ : L → L as a K-linear operator. Note that σn − 1 = 0 as a linear
operator. Applying linear independence of characters (Lemma 13.1), we see that
there cannot be a polynomial over K of degree < n annihilating σ. Hence the
minimal polynomial of σ as a linear operator is xn − 1. Since ζ is a root of xn − 1
by linear algebra there is a 0 ̸= z ∈ L such that σ(z) = ζz. This z satisfies
zn ∈ K because σ(zn) = (ζz)n = zn. Moreover, we see that z, σ(z), . . . , σn−1(z) =
z, ζz, . . . ζn−1z are pairwise distinct which guarantees that z generates L over K.
Hence L = K[z] as required. □

Lemma 24.2.0EXN Let K be a field with algebraic closure K. Let p be a prime different
from the characteristic of K. Let ζ ∈ K be a primitive pth root of 1. Then K(ζ)/K
is a Galois extension of degree dividing p− 1.

Proof. The polynomial xp−1 splits completely overK(ζ) as its roots are 1, ζ, ζ2, . . . , ζp−1.
Hence K(ζ)/K is a splitting field and hence normal. The extension is separable as
xp − 1 is a separable polynomial. Thus the extension is Galois. Any automorphism
of K(ζ) over K sends ζ to ζi for some 1 ≤ i ≤ p − 1. Thus the Galois group is a
subgroup of (Z/pZ)∗. □

Lemma 24.3.0EXP Let K be a field. Let L/K be a finite extension of degree e which
is generated by an element α with a = αe ∈ K. Then any sub extension L/L′/K is
generated by αd for some d|e.

Proof. Observe that for d|e the subfield K(αd) has [K(αd) : K] = e/d and [L :
K(αd)] = d and that both extensions K(αd)/K and L/K(αd) are extensions as in
the lemma.
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We will use induction on the pair of integers ([L : L′], [L′ : K]) ordered lexicograph-
ically. Let p be a prime number dividing e and set d = e/p. If K(αd) is contained
in L′, then we win by induction, because then it suffices to prove the lemma for
L/L′/K(αd). If not, then [L′(αd) : L′] = p and by induction hypothesis we have
L′(αd) = K(αi) for some i|d. If i ̸= 1 we are done by induction. Thus we may
assume that [L : L′] = p.

If e is not a power of p, then we can do this trick again with a second prime number
and we win. Thus we may assume e is a power of p.

If the characteristic of K is p and e is a pth power, then L/K is purely inseparable.
Hence L/L′ is purely inseparable of degree p and hence αp ∈ L′. Thus L′ = K(αp)
and this case is done.

The final case is where e is a power of p, the characteristic of K is not p, L/L′ is
a degree p extension, and L = L′(αe/p). Claim: this can only happen if e = p and
L′ = K. The claim finishes the proof.

First, we prove the claim when K contains a primitive pth root of unity ζ. In this
case the degree p extension K(αe/p)/K is Galois with Galois group generated by
the automorphism αe/p 7→ ζαe/p. On the other hand, since L is generated by αe/p
and L′ we see that the map

K(αe/p) ⊗K L′ −→ L

is an isomorphism ofK-algebras (look at dimensions). Thus L has an automorphism
σ of order p over K sending αe/p to ζαe/p. Then σ(α) = ζ ′α for some eth root of
unity ζ ′ (as αe is in K). Then on the one hand (ζ ′)e/p = ζ and on the other hand
ζ ′ has to be a pth root of 1 as σ has order p. Thus e/p = 1 and the claim has been
shown.

Finally, suppose that K does not contain a primitive pth root of 1. Choose a
primitive pth root ζ in some algebraic closure L of L. Consider the diagram

K(ζ) // L(ζ)

K

OO

// L

OO

By Lemma 24.2 the vertical extensions have degree prime to p. Hence [L(ζ) : K(ζ)]
is divisible by e. On the other hand, L(ζ) is generated by α over K(ζ) and hence
[L(ζ) : K(ζ)] ≤ e. Thus [L(ζ) : K(ζ)] = e. Similarly we have [K(αe/p, ζ) : K(ζ)] =
p and [L(ζ) : L′(ζ)] = p. Thus the fields K(ζ), L′(ζ), L(ζ) and the element α fall
into the case discussed in the previous paragraph we conclude e = p as desired. □

25. Artin-Schreier extensions

09I7 Let K be a field of characteristic p > 0. Let a ∈ K. Let L be an extension of K
obtained by adjoining a root b of the equation xp − x = a. Then L/K is Galois. If
G = Gal(L/K) is the Galois group, then the map

G −→ Z/pZ, σ 7−→ σ(b) − b

is an injective homomorphism of groups. In particular, G is cyclic of order dividing
p as a subgroup of Z/pZ. The theory of Artin-Schreier extensions gives a converse.
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Lemma 25.1 (Artin-Schreier extensions).09DY Let L/K be a Galois extension of fields
of characteristic p > 0 with Galois group Z/pZ. Then L = K[z] with zp − z ∈ K.

Proof. Let σ be a generator of Gal(L/K). Consider σ : L → L as a K-linear oper-
ator. Observe that σp−1 = 0 as a linear operator. Applying linear independence of
characters (Lemma 13.1), there cannot be a polynomial of degree < p annihilating
σ. We conclude that the minimal polynomial of σ is xp−1 = (x−1)p. This implies
that there exists w ∈ L such that (σ − 1)p−1(w) = y is nonzero. Then σ(y) = y,
i.e., y ∈ K. Thus z = y−1(σ − 1)p−2(w) satisfies σ(z) = z + 1. Since z ̸∈ K we
have L = K[z]. Moreover since σ(zp − z) = (z + 1)p − (z + 1) = zp − z we see that
zp − z ∈ K and the proof is complete. □

26. Transcendence

030D We recall the standard definitions.

Definition 26.1.030E Let K/k be a field extension.
(1) A collection of elements {xi}i∈I of K is called algebraically independent

over k if the map
k[Xi; i ∈ I] −→ K

which maps Xi to xi is injective.
(2) The field of fractions of a polynomial ring k[xi; i ∈ I] is denoted k(xi; i ∈ I).
(3) A purely transcendental extension of k is any field extension K/k isomorphic

to the field of fractions of a polynomial ring over k.
(4) A transcendence basis of K/k is a collection of elements {xi}i∈I which are

algebraically independent over k and such that the extension K/k(xi; i ∈ I)
is algebraic.

Example 26.2.09I8 The field Q(π) is purely transcendental because π isn’t the root
of a nonzero polynomial with rational coefficients. In particular, Q(π) ∼= Q(x).

Lemma 26.3.030F Let E/F be a field extension. A transcendence basis of E over F
exists. Any two transcendence bases have the same cardinality.

Proof. Let A be an algebraically independent subset of E. Let G be a subset of
E containing A that generates E/F . We claim we can find a transcendence basis
B such that A ⊂ B ⊂ G. To prove this, consider the collection B of algebraically
independent subsets whose members are subsets of G that contain A. Define a
partial ordering on B using inclusion. Then B contains at least one element A.
The union of the elements of a totally ordered subset T of B is an algebraically
independent subset of E over F since any algebraic dependence relation would
have occurred in one of the elements of T (since polynomials only involve finitely
many variables). The union also contains A and is contained in G. By Zorn’s
lemma, there is a maximal element B ∈ B. Now we claim E is algebraic over F (B).
This is because if it wasn’t then there would be an element f ∈ G transcendental
over F (B) since F (G) = E. Then B ∪ {f} would be algebraically independent
contradicting the maximality of B. Thus B is our transcendence basis.
Let B and B′ be two transcendence bases. Without loss of generality, we can
assume that |B′| ≤ |B|. Now we divide the proof into two cases: the first case is
that B is an infinite set. Then for each α ∈ B′, there is a finite set Bα ⊂ B such
that α is algebraic over F (Bα) since any algebraic dependence relation only uses
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finitely many indeterminates. Then we define B∗ =
⋃
α∈B′ Bα. By construction,

B∗ ⊂ B, but we claim that in fact the two sets are equal. To see this, suppose that
they are not equal, say there is an element β ∈ B \ B∗. We know β is algebraic
over F (B′) which is algebraic over F (B∗). Therefore β is algebraic over F (B∗), a
contradiction. So |B| ≤ |

⋃
α∈B′ Bα|. Now if B′ is finite, then so is B so we can

assume B′ is infinite; this means

|B| ≤ |
⋃

α∈B′
Bα| = |B′|

because each Bα is finite and B′ is infinite. Therefore in the infinite case, |B| = |B′|.

Now we need to look at the case where B is finite. In this case, B′ is also finite,
so suppose B = {α1, . . . , αn} and B′ = {β1, . . . , βm} with m ≤ n. We perform
induction on m: if m = 0 then E/F is algebraic so B = ∅ so n = 0. If m > 0, there
is an irreducible polynomial f ∈ F [x, y1, . . . , yn] such that f(β1, α1, . . . , αn) = 0
and such that x occurs in f . Since β1 is not algebraic over F , f must involve some
yi so without loss of generality, assume f uses y1. Let B∗ = {β1, α2, . . . , αn}. We
claim that B∗ is a basis for E/F . To prove this claim, we see that we have a tower
of algebraic extensions

E/F (B∗, α1)/F (B∗)
since α1 is algebraic over F (B∗). Now we claim that B∗ (counting multiplicity
of elements) is algebraically independent over F because if it weren’t, then there
would be an irreducible g ∈ F [x, y2, . . . , yn] such that g(β1, α2, . . . , αn) = 0 which
must involve x making β1 algebraic over F (α2, . . . , αn) which would make α1 alge-
braic over F (α2, . . . , αn) which is impossible. So this means that {α2, . . . , αn} and
{β2, . . . , βm} are bases for E over F (β1) which means by induction, m = n. □

Definition 26.4.030G Let K/k be a field extension. The transcendence degree of
K over k is the cardinality of a transcendence basis of K over k. It is denoted
trdegk(K).

Lemma 26.5.030H Let L/K/k be field extensions. Then

trdegk(L) = trdegK(L) + trdegk(K).

Proof. Choose a transcendence basis A ⊂ K of K over k. Choose a transcendence
basis B ⊂ L of L over K. Then it is straightforward to see that A ∪ B is a
transcendence basis of L over k. □

Example 26.6.09I9 Consider the field extension Q(e, π) formed by adjoining the
numbers e and π. This field extension has transcendence degree at least 1 since both
e and π are transcendental over the rationals. However, this field extension might
have transcendence degree 2 if e and π are algebraically independent. Whether or
not this is true is unknown and whence the problem of determining trdeg(Q(e, π))
is open.

Example 26.7.09IA Let F be a field and E = F (t). Then {t} is a transcendence basis
since E = F (t). However, {t2} is also a transcendence basis since F (t)/F (t2) is
algebraic. This illustrates that while we can always decompose an extension E/F
into an algebraic extension E/F ′ and a purely transcendental extension F ′/F , this
decomposition is not unique and depends on choice of transcendence basis.
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Example 26.8.09IB Let X be a compact Riemann surface. Then the function field
C(X) (see Example 3.6) has transcendence degree one over C. In fact, any finitely
generated extension of C of transcendence degree one arises from a Riemann surface.
There is even an equivalence of categories between the category of compact Riemann
surfaces and (non-constant) holomorphic maps and the opposite of the category of
finitely generated extensions of C of transcendence degree 1 and morphisms of
C-algebras. See [For91].

There is an algebraic version of the above statement as well. Given an (irreducible)
algebraic curve in projective space over an algebraically closed field k (e.g. the com-
plex numbers), one can consider its “field of rational functions”: basically, functions
that look like quotients of polynomials, where the denominator does not identically
vanish on the curve. There is a similar anti-equivalence of categories (Algebraic
Curves, Theorem 2.6) between smooth projective curves and non-constant mor-
phisms of curves and finitely generated extensions of k of transcendence degree
one. See [Har77].

Definition 26.9.037I Let K/k be a field extension.
(1) The algebraic closure of k in K is the subfield k′ of K consisting of elements

of K which are algebraic over k.
(2) We say k is algebraically closed in K if every element of K which is algebraic

over k is contained in k.

Lemma 26.10.0G1M Let k′/k be a finite extension of fields. Let k′(x1, . . . , xr)/k(x1, . . . , xr)
be the induced extension of purely transcendental extensions. Then [k′(x1, . . . , xr) :
k(x1, . . . , xr)] = [k′ : k] < ∞.

Proof. By multiplicativity of degrees of extensions (Lemma 7.7) it suffices to prove
this when k′ is generated by a single element α ∈ k′ over k. Let f ∈ k[T ] be the
minimal polynomial of α over k. Then k′(x1, . . . , xr) is generated by α, x1, . . . , xr
over k and hence k′(x1, . . . , xr) is generated by α over k(x1, . . . , xr). Thus it suffices
to show that f is still irreducible as an element of k(x1, . . . , xr)[T ]. We only sketch
the proof. It is clear that f is irreducible as an element of k[x1, . . . , xr, T ] for
example because f is monic as a polynomial in T and any putative factorization in
k[x1, . . . , xr, T ] would lead to a factorization in k[T ] by setting xi equal to 0. By
Gauss’ lemma we conclude. □

Lemma 26.11.037J Let K/k be a finitely generated field extension. The algebraic
closure of k in K is finite over k.

Proof. Let x1, . . . , xr ∈ K be a transcendence basis for K over k. Then n =
[K : k(x1, . . . , xr)] < ∞. Suppose that k ⊂ k′ ⊂ K with k′/k finite. In this case
[k′(x1, . . . , xr) : k(x1, . . . , xr)] = [k′ : k] < ∞, see Lemma 26.10. Hence

[k′ : k] = [k′(x1, . . . , xr) : k(x1, . . . , xr)] ≤ [K : k(x1, . . . , xr)] = n.

In other words, the degrees of finite subextensions are bounded and the lemma
follows. □

27. Linearly disjoint extensions

09IC Let k be a field, K and L field extensions of k. Suppose also that K and L are
embedded in some larger field Ω.

https://stacks.math.columbia.edu/tag/09IB
https://stacks.math.columbia.edu/tag/037I
https://stacks.math.columbia.edu/tag/0G1M
https://stacks.math.columbia.edu/tag/037J


FIELDS 39

Definition 27.1.09ID Consider a diagram

(27.1.1)09IE

L // Ω

k //

OO

K

OO

of field extensions. The compositum of K and L in Ω written KL is the smallest
subfield of Ω containing both L and K.

It is clear that KL is generated by the set K ∪ L over k, generated by the set K
over L, and generated by the set L over K.

Warning: The (isomorphism class of the) composition depends on the choice of
the embeddings of K and L into Ω. For example consider the number fields K =
Q(21/8) ⊂ R and L = Q(21/12) ⊂ R. The compositum inside R is the field
Q(21/24) of degree 24 over Q. However, if we embed K = Q[x]/(x8 − 2) into
C by mapping x to 21/8e2πi/8, then the compositum Q(21/12, 21/8e2πi/8) contains
i = e2πi/4 and has degree 48 over Q (we omit showing the degree is 48, but the
existence of i certainly proves the two composita are not isomorphic).

Definition 27.2.09IF Consider a diagram of fields as in (27.1.1). We say that K and
L are linearly disjoint over k in Ω if the map

K ⊗k L −→ KL,
∑

xi ⊗ yi 7−→
∑

xiyi

is injective.

The following lemma does not seem to fit anywhere else.

Lemma 27.3.030M Let E/F be a normal algebraic field extension. There exist subex-
tensions E/Esep/F and E/Einsep/F such that

(1) F ⊂ Esep is Galois and Esep ⊂ E is purely inseparable,
(2) F ⊂ Einsep is purely inseparable and Einsep ⊂ E is Galois,
(3) E = Esep ⊗F Einsep.

Proof. We found the subfield Esep in Lemma 14.6. We set Einsep = EAut(E/F ).
Details omitted. □

28. Review

037H In this section we give a quick review of what has transpired above.

Let K/k be a field extension. Let α ∈ K. Then we have the following possibilities:
(1) The element α is transcendental over k.
(2) The element α is algebraic over k. Denote P (T ) ∈ k[T ] its minimal poly-

nomial. This is a monic polynomial P (T ) = T d + a1T
d−1 + . . . + ad with

coefficients in k. It is irreducible and P (α) = 0. These properties uniquely
determine P , and the integer d is called the degree of α over k. There are
two subcases:
(a) The polynomial dP/dT is not identically zero. This is equivalent to the

condition that P (T ) =
∏
i=1,...,d(T −αi) for pairwise distinct elements

α1, . . . , αd in the algebraic closure of k. In this case we say that α is
separable over k.
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(b) The dP/dT is identically zero. In this case the characteristic p of k
is > 0, and P is actually a polynomial in T p. Clearly there exists a
largest power q = pe such that P is a polynomial in T q. Then the
element αq is separable over k.

Definition 28.1.030J Algebraic field extensions.
(1) A field extension K/k is called algebraic if every element of K is algebraic

over k.
(2) An algebraic extension k′/k is called separable if every α ∈ k′ is separable

over k.
(3) An algebraic extension k′/k is called purely inseparable if the characteristic

of k is p > 0 and for every element α ∈ k′ there exists a power q of p such
that αq ∈ k.

(4) An algebraic extension k′/k is called normal if for every α ∈ k′ the minimal
polynomial P (T ) ∈ k[T ] of α over k splits completely into linear factors
over k′.

(5) An algebraic extension k′/k is called Galois if it is separable and normal.

The following lemma does not seem to fit anywhere else.

Lemma 28.2.031V Let K be a field of characteristic p > 0. Let L/K be a separable
algebraic extension. Let α ∈ L.

(1) If the coefficients of the minimal polynomial of α over K are pth powers in
K then α is a pth power in L.

(2) More generally, if P ∈ K[T ] is a polynomial such that (a) α is a root of
P , (b) P has pairwise distinct roots in an algebraic closure, and (c) all
coefficients of P are pth powers, then α is a pth power in L.

Proof. It follows from the definitions that (2) implies (1). Assume P is as in (2).
Write P (T ) =

∑d
i=0 aiT

d−i and ai = bpi . The polynomial Q(T ) =
∑d
i=0 biT

d−i

has distinct roots in an algebraic closure as well, because the roots of Q are the
pth roots of the roots of P . If α is not a pth power, then T p − α is an irreducible
polynomial over L (Lemma 14.2). Moreover Q and T p − α have a root in common
in an algebraic closure L. Thus Q and T p − α are not relatively prime, which
implies T p−α|Q in L[T ]. This contradicts the fact that the roots of Q are pairwise
distinct. □
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