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1. Introduction

057N In this chapter, we discuss some advanced results on flat modules and flat mor-
phisms of schemes and applications. Most of the results on flatness can be found
in the paper [GR71] by Raynaud and Gruson.
Before reading this chapter we advise the reader to take a look at the following
results (this list also serves as a pointer to previous results):

(1) General discussion on flat modules in Algebra, Section 39.
(2) The relationship between Tor-groups and flatness, see Algebra, Section 75.
(3) Criteria for flatness, see Algebra, Section 99 (Noetherian case), Algebra,

Section 101 (Artinian case), Algebra, Section 128 (non-Noetherian case),
and finally More on Morphisms, Section 16.

(4) Generic flatness, see Algebra, Section 118 and Morphisms, Section 27.
(5) Openness of the flat locus, see Algebra, Section 129 and More on Mor-

phisms, Section 15.
(6) Flattening, see More on Algebra, Sections 16, 17, 18, 19, and 20.
(7) Additional results in More on Algebra, Sections 21, 22, 25, and 26.

As applications of the material on flatness we discuss the following topics: a non-
Noetherian version of Grothendieck’s existence theorem, blowing up and flatness,
Nagata’s theorem on compactifications, the h topology, blow up squares and de-
scent, weak normalization, descent of vector bundles in positive characteristic, and
the local structure of perfect complexes in the h topology.

2. Lemmas on étale localization

05FM In this section we list some lemmas on étale localization which will be useful later
in this chapter. Please skip this section on a first reading.

Lemma 2.1.057R Let i : Z → X be a closed immersion of affine schemes. Let Z ′ → Z
be an étale morphism with Z ′ affine. Then there exists an étale morphism X ′ → X
with X ′ affine such that Z ′ ∼= Z ×X X ′ as schemes over Z.

Proof. See Algebra, Lemma 143.10. □

Lemma 2.2.05H2 Let
X

��

X ′oo

��
S S′oo

https://stacks.math.columbia.edu/tag/057R
https://stacks.math.columbia.edu/tag/05H2


MORE ON FLATNESS 3

be a commutative diagram of schemes with X ′ → X and S′ → S étale. Let s′ ∈ S′

be a point. Then

X ′ ×S′ Spec(OS′,s′) −→ X ×S Spec(OS′,s′)

is étale.

Proof. This is true because X ′ → XS′ is étale as a morphism of schemes étale
over X, see Morphisms, Lemma 36.18 and the base change of an étale morphism is
étale, see Morphisms, Lemma 36.4. □

Lemma 2.3.05B9 Let X → T → S be morphisms of schemes with T → S étale. Let
F be a quasi-coherent OX-module. Let x ∈ X be a point. Then

F flat over S at x⇔ F flat over T at x

In particular F is flat over S if and only if F is flat over T .

Proof. As an étale morphism is a flat morphism (see Morphisms, Lemma 36.12)
the implication “⇐” follows from Algebra, Lemma 39.4. For the converse assume
that F is flat at x over S. Denote x̃ ∈ X ×S T the point lying over x in X and
over the image of x in T in T . Then (X ×S T → X)∗F is flat at x̃ over T via
pr2 : X ×S T → T , see Morphisms, Lemma 25.7. The diagonal ∆T/S : T → T ×S T
is an open immersion; combine Morphisms, Lemmas 35.13 and 36.5. So X is
identified with open subscheme of X ×S T , the restriction of pr2 to this open is the
given morphism X → T , the point x̃ corresponds to the point x in this open, and
(X ×S T → X)∗F restricted to this open is F . Whence we see that F is flat at x
over T . □

Lemma 2.4.05BA Let T → S be an étale morphism. Let t ∈ T with image s ∈ S. Let
M be a OT,t-module. Then

M flat over OS,s ⇔M flat over OT,t.

Proof. We may replace S by an affine neighbourhood of s and after that T by an
affine neighbourhood of t. Set F = (Spec(OT,t)→ T )∗M̃ . This is a quasi-coherent
sheaf (see Schemes, Lemma 24.1 or argue directly) on T whose stalk at t is M
(details omitted). Apply Lemma 2.3. □

Lemma 2.5.05VL Let S be a scheme and s ∈ S a point. Denote OhS,s (resp. OshS,s) the
henselization (resp. strict henselization), see Algebra, Definition 155.3. Let Msh be
a OshS,s-module. The following are equivalent

(1) Msh is flat over OS,s,
(2) Msh is flat over OhS,s, and
(3) Msh is flat over OshS,s.

If Msh = Mh ⊗Oh
S,s
OshS,s this is also equivalent to

(4) Mh is flat over OS,s, and
(5) Mh is flat over OhS,s.

If Mh = M ⊗OS,s
OhS,s this is also equivalent to

(6) M is flat over OS,s.

https://stacks.math.columbia.edu/tag/05B9
https://stacks.math.columbia.edu/tag/05BA
https://stacks.math.columbia.edu/tag/05VL
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Proof. By More on Algebra, Lemma 45.1 the local ring maps OS,s → OhS,s → OshS,s
are faithfully flat. Hence (3) ⇒ (2) ⇒ (1) and (5) ⇒ (4) follow from Algebra,
Lemma 39.4. By faithful flatness the equivalences (6) ⇔ (5) and (5) ⇔ (3) follow
from Algebra, Lemma 39.8. Thus it suffices to show that (1) ⇒ (2) ⇒ (3) and (4)
⇒ (5). To prove these we may assume S is an affine scheme.
Assume (1). By Lemma 2.4 we see that Msh is flat over OT,t for any étale neigh-
bourhood (T, t) → (S, s). Since OhS,s and OshS,s are directed colimits of local rings
of the form OT,t (see Algebra, Lemmas 155.7 and 155.11) we conclude that Msh is
flat over OhS,s and OshS,s by Algebra, Lemma 39.6. Thus (1) implies (2) and (3). Of
course this implies also (2) ⇒ (3) by replacing OS,s by OhS,s. The same argument
applies to prove (4) ⇒ (5). □

Lemma 2.6.0DK0 Let S be a scheme and s ∈ S a point. Denote OhS,s (resp. OshS,s) the
henselization (resp. strict henselization), see Algebra, Definition 155.3. Let Msh be
an object of D(OshS,s). Let a, b ∈ Z. The following are equivalent

(1) Msh has tor amplitude in [a, b] over OS,s,
(2) Msh has tor amplitude in [a, b] over OhS,s, and
(3) Msh has tor amplitude in [a, b] over OshS,s.

If Msh = Mh ⊗L
Oh

S,s

OshS,s for Mh ∈ D(OhS,s) this is also equivalent to

(4) Mh has tor amplitude in [a, b] over OS,s, and
(5) Mh has tor amplitude in [a, b] over OhS,s.

If Mh = M ⊗L
OS,s
OhS,s for M ∈ D(OS,s) this is also equivalent to

(6) M has tor amplitude in [a, b] over OS,s.

Proof. By More on Algebra, Lemma 45.1 the local ring maps OS,s → OhS,s → OshS,s
are faithfully flat. Hence (3) ⇒ (2) ⇒ (1) and (5) ⇒ (4) follow from More on
Algebra, Lemma 66.11. By faithful flatness the equivalences (6) ⇔ (5) and (5) ⇔
(3) follow from More on Algebra, Lemma 66.17. Thus it suffices to show that (1)
⇒ (3), (2) ⇒ (3), and (4) ⇒ (5).
Assume (1). In particular Msh has vanishing cohomology in degrees < a and > b.
Hence we can represent Msh by a complex P • of free OshX,x-modules with P i = 0 for
i > b (see for example the very general Derived Categories, Lemma 15.4). Note that
Pn is flat over OS,s for all n. Consider Coker(da−1

P ). By More on Algebra, Lemma
66.2 this is a flat OS,s-module. Hence by Lemma 2.5 this is a flat OshS,s-module.
Thus τ≥aP

• is a complex of flat OshS,s-modules representing Msh in D(OshS,s and we
find that Msh has tor amplitude in [a, b], see More on Algebra, Lemma 66.3. Thus
(1) implies (3). Of course this implies also (2) ⇒ (3) by replacing OS,s by OhS,s.
The same argument applies to prove (4) ⇒ (5). □

Lemma 2.7.05FN Let g : T → S be a finite flat morphism of schemes. Let G be a
quasi-coherent OS-module. Let t ∈ T be a point with image s ∈ S. Then

t ∈WeakAss(g∗G)⇔ s ∈WeakAss(G)

Proof. The implication “⇐” follows immediately from Divisors, Lemma 6.4. As-
sume t ∈ WeakAss(g∗G). Let Spec(A) ⊂ S be an affine open neighbourhood of s.
Let G be the quasi-coherent sheaf associated to the A-module M . Let p ⊂ A be the

https://stacks.math.columbia.edu/tag/0DK0
https://stacks.math.columbia.edu/tag/05FN
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prime ideal corresponding to s. As g is finite flat we have g−1(Spec(A)) = Spec(B)
for some finite flat A-algebra B. Note that g∗G is the quasi-coherent OSpec(B)-
module associated to the B-module M ⊗A B and g∗g

∗G is the quasi-coherent
OSpec(A)-module associated to the A-module M ⊗A B. By Algebra, Lemma 78.5
we have Bp

∼= A⊕n
p for some integer n ≥ 0. Note that n ≥ 1 as we assumed there

exists at least one point of T lying over s. Hence we see by looking at stalks that

s ∈WeakAss(G)⇔ s ∈WeakAss(g∗g
∗G)

Now the assumption that t ∈ WeakAss(g∗G) implies that s ∈ WeakAss(g∗g
∗G) by

Divisors, Lemma 6.3 and hence by the above s ∈WeakAss(G). □

Lemma 2.8.05FP Let h : U → S be an étale morphism of schemes. Let G be a
quasi-coherent OS-module. Let u ∈ U be a point with image s ∈ S. Then

u ∈WeakAss(h∗G)⇔ s ∈WeakAss(G)

Proof. After replacing S and U by affine neighbourhoods of s and u we may assume
that g is a standard étale morphism of affines, see Morphisms, Lemma 36.14. Thus
we may assume S = Spec(A) and X = Spec(A[x, 1/g]/(f)), where f is monic
and f ′ is invertible in A[x, 1/g]. Note that A[x, 1/g]/(f) = (A[x]/(f))g is also the
localization of the finite free A-algebra A[x]/(f). Hence we may think of U as an
open subscheme of the scheme T = Spec(A[x]/(f)) which is finite locally free over
S. This reduces us to Lemma 2.7 above. □

Lemma 2.9.0CTU Let S be a scheme and s ∈ S a point. Denote OhS,s (resp. OshS,s) the
henselization (resp. strict henselization), see Algebra, Definition 155.3. Let F be a
quasi-coherent OS-module. The following are equivalent

(1) s is a weakly associated point of F ,
(2) ms is a weakly associated prime of Fs,
(3) mhs is a weakly associated prime of Fs ⊗OS,s

OhS,s, and
(4) mshs is a weakly associated prime of Fs ⊗OS,s

OshS,s.

Proof. The equivalence of (1) and (2) is the definition, see Divisors, Definition 5.1.
The implications (2) ⇒ (3) ⇒ (4) follows from Divisors, Lemma 6.4 applied to the
flat (More on Algebra, Lemma 45.1) morphisms

Spec(OshS,s)→ Spec(OhS,s)→ Spec(OS,s)

and the closed points. To prove (4) ⇒ (2) we may replace S by an affine neigh-
bourhood. Suppose that x ∈ Fs ⊗OS,s

OshS,s is an element whose annihilator has
radical equal to mshs . (See Algebra, Lemma 66.2.) Since OshS,s is equal to the limit
of OU,u over étale neighbourhoods f : (U, u) → (S, s) by Algebra, Lemma 155.11
we may assume that x is the image of some x′ ∈ Fs⊗OS,s

OU,u. The local ring map
OU,u → OshS,s is faithfully flat (as it is the strict henselization), hence universally
injective (Algebra, Lemma 82.11). It follows that the annihilator of x′ is the inverse
image of the annihilator of x. Hence the radical of this annihilator is equal to mu.
Thus u is a weakly associated point of f∗F . By Lemma 2.8 we see that s is a
weakly associated point of F . □

https://stacks.math.columbia.edu/tag/05FP
https://stacks.math.columbia.edu/tag/0CTU
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3. The local structure of a finite type module

057P The key technical lemma that makes a lot of the arguments in this chapter work is
the geometric Lemma 3.2.

Lemma 3.1.057Q Let f : X → S be a finite type morphism of affine schemes. Let
F be a finite type quasi-coherent OX-module. Let x ∈ X with image s = f(x)
in S. Set Fs = F|Xs

. Then there exist a closed immersion i : Z → X of finite
presentation, and a quasi-coherent finite type OZ-module G such that i∗G = F and
Zs = Supp(Fs).

Proof. Say the morphism f : X → S is given by the ring map A → B and
that F is the quasi-coherent sheaf associated to the B-module M . By Morphisms,
Lemma 15.2 we know that A → B is a finite type ring map, and by Properties,
Lemma 16.1 we know that M is a finite B-module. In particular the support of
F is the closed subscheme of Spec(B) cut out by the annihilator I = {x ∈ B |
xm = 0 ∀m ∈ M} of M , see Algebra, Lemma 40.5. Let q ⊂ B be the prime ideal
corresponding to x and let p ⊂ A be the prime ideal corresponding to s. Note that
Xs = Spec(B ⊗A κ(p)) and that Fs is the quasi-coherent sheaf associated to the
B ⊗A κ(p) module M ⊗A κ(p). By Morphisms, Lemma 5.3 the support of Fs is
equal to V (I(B ⊗A κ(p))). Since B ⊗A κ(p) is of finite type over κ(p) there exist
finitely many elements f1, . . . , fm ∈ I such that

I(B ⊗A κ(p)) = (f1, . . . , fn)(B ⊗A κ(p)).
Denote i : Z → X the closed subscheme cut out by (f1, . . . , fm), in a formula
Z = Spec(B/(f1, . . . , fm)). Since M is annihilated by I we can think of M as
an B/(f1, . . . , fm)-module. In other words, F is the pushforward of a finite type
module on Z. As Zs = Supp(Fs) by construction, this proves the lemma. □

Lemma 3.2.057S Let f : X → S be morphism of schemes which is locally of finite
type. Let F be a finite type quasi-coherent OX-module. Let x ∈ X with image
s = f(x) in S. Set Fs = F|Xs

and n = dimx(Supp(Fs)). Then we can construct
(1) elementary étale neighbourhoods g : (X ′, x′)→ (X,x), e : (S′, s′)→ (S, s),
(2) a commutative diagram

X

f

��

X ′

��

g
oo Z ′

i
oo

π

��
Y ′

h
��

S S′eoo S′

(3) a point z′ ∈ Z ′ with i(z′) = x′, y′ = π(z′), h(y′) = s′,
(4) a finite type quasi-coherent OZ′-module G,

such that the following properties hold
(1) X ′, Z ′, Y ′, S′ are affine schemes,
(2) i is a closed immersion of finite presentation,
(3) i∗(G) ∼= g∗F ,
(4) π is finite and π−1({y′}) = {z′},
(5) the extension κ(y′)/κ(s′) is purely transcendental,

https://stacks.math.columbia.edu/tag/057Q
https://stacks.math.columbia.edu/tag/057S
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(6) h is smooth of relative dimension n with geometrically integral fibres.

Proof. Let V ⊂ S be an affine neighbourhood of s. Let U ⊂ f−1(V ) be an affine
neighbourhood of x. Then it suffices to prove the lemma for f |U : U → V and F|U .
Hence in the rest of the proof we assume that X and S are affine.
First, suppose that Xs = Supp(Fs), in particular n = dimx(Xs). Apply More on
Morphisms, Lemmas 47.2 and 47.3. This gives us a commutative diagram

X

��

X ′
g

oo

π

��
Y ′

h
��

S S′eoo

and point x′ ∈ X ′. We set Z ′ = X ′, i = id, and G = g∗F to obtain a solution in
this case.
In general choose a closed immersion Z → X and a sheaf G on Z as in Lemma
3.1. Applying the result of the previous paragraph to Z → S and G we obtain a
diagram

X

f

��

Zoo

f |Z

��

Z ′
g

oo

π

��
Y ′

h
��

S S S′eoo

and point z′ ∈ Z ′ satisfying all the required properties. We will use Lemma 2.1 to
embed Z ′ into a scheme étale over X. We cannot apply the lemma directly as we
want X ′ to be a scheme over S′. Instead we consider the morphisms

Z ′ // Z ×S S′ // X ×S S′

The first morphism is étale by Morphisms, Lemma 36.18. The second is a closed
immersion as a base change of a closed immersion. Finally, as X, S, S′, Z, Z ′

are all affine we may apply Lemma 2.1 to get an étale morphism of affine schemes
X ′ → X ×S S′ such that

Z ′ = (Z ×S S′)×(X×SS′) X
′ = Z ×X X ′.

As Z → X is a closed immersion of finite presentation, so is Z ′ → X ′. Let x′ ∈ X ′

be the point corresponding to z′ ∈ Z ′. Then the completed diagram

X

��

X ′

��

oo Z ′
i

oo

π

��
Y ′

h
��

S S′eoo S′
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is a solution of the original problem. □

Lemma 3.3.057T Assumptions and notation as in Lemma 3.2. If f is locally of finite
presentation then π is of finite presentation. In this case the following are equivalent

(1) F is an OX-module of finite presentation in a neighbourhood of x,
(2) G is an OZ′-module of finite presentation in a neighbourhood of z′, and
(3) π∗G is an OY ′-module of finite presentation in a neighbourhood of y′.

Still assuming f locally of finite presentation the following are equivalent to each
other

(a) Fx is an OX,x-module of finite presentation,
(b) Gz′ is an OZ′,z′-module of finite presentation, and
(c) (π∗G)y′ is an OY ′,y′-module of finite presentation.

Proof. Assume f locally of finite presentation. Then Z ′ → S is locally of finite
presentation as a composition of such, see Morphisms, Lemma 21.3. Note that
Y ′ → S is also locally of finite presentation as a composition of a smooth and
an étale morphism. Hence Morphisms, Lemma 21.11 implies π is locally of finite
presentation. Since π is finite we conclude that it is also separated and quasi-
compact, hence π is actually of finite presentation.
To prove the equivalence of (1), (2), and (3) we also consider: (4) g∗F is a OX′ -
module of finite presentation in a neighbourhood of x′. The pullback of a module
of finite presentation is of finite presentation, see Modules, Lemma 11.4. Hence (1)
⇒ (4). The étale morphism g is open, see Morphisms, Lemma 36.13. Hence for
any open neighbourhood U ′ ⊂ X ′ of x′, the image g(U ′) is an open neighbourhood
of x and the map {U ′ → g(U ′)} is an étale covering. Thus (4) ⇒ (1) by Descent,
Lemma 7.3. Using Descent, Lemma 7.10 and some easy topological arguments (see
More on Morphisms, Lemma 47.4) we see that (4) ⇔ (2) ⇔ (3).
To prove the equivalence of (a), (b), (c) consider the ring maps

OX,x → OX′,x′ → OZ′,z′ ← OY ′,y′

The first ring map is faithfully flat. Hence Fx is of finite presentation over OX,x
if and only if g∗Fx′ is of finite presentation over OX′,x′ , see Algebra, Lemma 83.2.
The second ring map is surjective (hence finite) and finitely presented by assump-
tion, hence g∗Fx′ is of finite presentation over OX′,x′ if and only if Gz′ is of finite
presentation over OZ′,z′ , see Algebra, Lemma 36.23. Because π is finite, of finite
presentation, and π−1({y′}) = {x′} the ring homomorphism OY ′,y′ ← OZ′,z′ is
finite and of finite presentation, see More on Morphisms, Lemma 47.4. Hence Gz′

is of finite presentation over OZ′,z′ if and only if π∗Gy′ is of finite presentation over
OY ′,y′ , see Algebra, Lemma 36.23. □

Lemma 3.4.057U Assumptions and notation as in Lemma 3.2. The following are
equivalent

(1) F is flat over S in a neighbourhood of x,
(2) G is flat over S′ in a neighbourhood of z′, and
(3) π∗G is flat over S′ in a neighbourhood of y′.

The following are equivalent also
(a) Fx is flat over OS,s,
(b) Gz′ is flat over OS′,s′ , and

https://stacks.math.columbia.edu/tag/057T
https://stacks.math.columbia.edu/tag/057U
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(c) (π∗G)y′ is flat over OS′,s′ .

Proof. To prove the equivalence of (1), (2), and (3) we also consider: (4) g∗F is
flat over S in a neighbourhood of x′. We will use Lemma 2.3 to equate flatness
over S and S′ without further mention. The étale morphism g is flat and open, see
Morphisms, Lemma 36.13. Hence for any open neighbourhood U ′ ⊂ X ′ of x′, the
image g(U ′) is an open neighbourhood of x and the map U ′ → g(U ′) is surjective
and flat. Thus (4) ⇔ (1) by Morphisms, Lemma 25.13. Note that

Γ(X ′, g∗F) = Γ(Z ′,G) = Γ(Y ′, π∗G)
Hence the flatness of g∗F , G and π∗G over S′ are all equivalent (this uses that X ′,
Z ′, Y ′, and S′ are all affine). Some omitted topological arguments (compare More
on Morphisms, Lemma 47.4) regarding affine neighbourhoods now show that (4)
⇔ (2) ⇔ (3).
To prove the equivalence of (a), (b), (c) consider the commutative diagram of local
ring maps

OX′,x′
ι
// OZ′,z′ OY ′,y′

α
oo OS′,s′

β
oo

OX,x

γ

OO

OS,s
φoo

ϵ

OO

We will use Lemma 2.4 to equate flatness over OS,s and OS′,s′ without further
mention. The map γ is faithfully flat. Hence Fx is flat over OS,s if and only if
g∗Fx′ is flat over OS′,s′ , see Algebra, Lemma 39.9. As OS′,s′ -modules the modules
g∗Fx′ , Gz′ , and π∗Gy′ are all isomorphic, see More on Morphisms, Lemma 47.4.
This finishes the proof. □

4. One step dévissage

05H3 In this section we explain what is a one step dévissage of a module. A one step
dévissage exist étale locally on base and target. We discuss base change, Zariski
shrinking and étale localization of a one step dévissage.

Definition 4.1.05H4 Let S be a scheme. Let X be locally of finite type over S. Let
F be a quasi-coherent OX -module of finite type. Let s ∈ S be a point. A one step
dévissage of F/X/S over s is given by morphisms of schemes over S

X Z
ioo π // Y

and a quasi-coherent OZ-module G of finite type such that
(1) X, S, Z and Y are affine,
(2) i is a closed immersion of finite presentation,
(3) F ∼= i∗G,
(4) π is finite, and
(5) the structure morphism Y → S is smooth with geometrically irreducible

fibres of dimension dim(Supp(Fs)).
In this case we say (Z, Y, i, π,G) is a one step dévissage of F/X/S over s.

Note that such a one step dévissage can only exist if X and S are affine. In the
definition above we only require X to be (locally) of finite type over S and we
continue working in this setting below. In [GR71] the authors use consistently the

https://stacks.math.columbia.edu/tag/05H4
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setup where X → S is locally of finite presentation and F quasi-coherent OX -
module of finite type. The advantage of this choice is that it “makes sense” to ask
for F to be of finite presentation as an OX -module, whereas in our setting it “does
not make sense”. Please see More on Morphisms, Section 58 for a discussion; the
observations made there show that in our setup we may consider the condition of F
being “locally of finite presentation relative to S”, and we could work consistently
with this notion. Instead however, we will rely on the results of Lemma 3.3 and the
observations in Remark 6.3 to deal with this issue in an ad hoc fashion whenever
it comes up.

Definition 4.2.05H5 Let S be a scheme. Let X be locally of finite type over S. Let
F be a quasi-coherent OX -module of finite type. Let x ∈ X be a point with image
s in S. A one step dévissage of F/X/S at x is a system (Z, Y, i, π,G, z, y), where
(Z, Y, i, π,G) is a one step dévissage of F/X/S over s and

(1) dimx(Supp(Fs)) = dim(Supp(Fs)),
(2) z ∈ Z is a point with i(z) = x and π(z) = y,
(3) we have π−1({y}) = {z},
(4) the extension κ(y)/κ(s) is purely transcendental.

A one step dévissage of F/X/S at x can only exist if X and S are affine. Condition
(1) assures us that Y → S has relative dimension equal to dimx(Supp(Fs)) via
condition (5) of Definition 4.1.

Lemma 4.3.05H6 Let f : X → S be morphism of schemes which is locally of finite
type. Let F be a finite type quasi-coherent OX-module. Let x ∈ X with image
s = f(x) in S. Then there exists a commutative diagram of pointed schemes

(X,x)

f

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

such that (S′, s′) → (S, s) and (X ′, x′) → (X,x) are elementary étale neighbour-
hoods, and such that g∗F/X ′/S′ has a one step dévissage at x′.

Proof. This is immediate from Definition 4.2 and Lemma 3.2. □

Lemma 4.4.05H7 Let S, X, F , s be as in Definition 4.1. Let (Z, Y, i, π,G) be a one
step dévissage of F/X/S over s. Let (S′, s′) → (S, s) be any morphism of pointed
schemes. Given this data let X ′, Z ′, Y ′, i′, π′ be the base changes of X,Z, Y, i, π via
S′ → S. Let F ′ be the pullback of F to X ′ and let G′ be the pullback of G to Z ′. If
S′ is affine, then (Z ′, Y ′, i′, π′,G′) is a one step dévissage of F ′/X ′/S′ over s′.

Proof. Fibre products of affines are affine, see Schemes, Lemma 17.2. Base change
preserves closed immersions, morphisms of finite presentation, finite morphisms,
smooth morphisms, morphisms with geometrically irreducible fibres, and mor-
phisms of relative dimension n, see Morphisms, Lemmas 2.4, 21.4, 44.6, 34.5,
29.2, and More on Morphisms, Lemma 27.2. We have i′∗G′ ∼= F ′ because push-
forward along the finite morphism i commutes with base change, see Cohomology
of Schemes, Lemma 5.1. We have dim(Supp(Fs)) = dim(Supp(F ′

s′)) by Morphisms,
Lemma 28.3 because

Supp(Fs)×s s′ = Supp(F ′
s′).

https://stacks.math.columbia.edu/tag/05H5
https://stacks.math.columbia.edu/tag/05H6
https://stacks.math.columbia.edu/tag/05H7
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This proves the lemma. □

Lemma 4.5.05H8 Let S, X, F , x, s be as in Definition 4.2. Let (Z, Y, i, π,G, z, y) be
a one step dévissage of F/X/S at x. Let (S′, s′)→ (S, s) be a morphism of pointed
schemes which induces an isomorphism κ(s) = κ(s′). Let (Z ′, Y ′, i′, π′,G′) be as
constructed in Lemma 4.4 and let x′ ∈ X ′ (resp. z′ ∈ Z ′, y′ ∈ Y ′) be the unique
point mapping to both x ∈ X (resp. z ∈ Z, y ∈ Y ) and s′ ∈ S′. If S′ is affine, then
(Z ′, Y ′, i′, π′,G′, z′, y′) is a one step dévissage of F ′/X ′/S′ at x′.

Proof. By Lemma 4.4 (Z ′, Y ′, i′, π′,G′) is a one step dévissage of F ′/X ′/S′ over
s′. Properties (1) – (4) of Definition 4.2 hold for (Z ′, Y ′, i′, π′,G′, z′, y′) as the
assumption that κ(s) = κ(s′) insures that the fibres X ′

s′ , Z ′
s′ , and Y ′

s′ are isomorphic
to Xs, Zs, and Ys. □

Definition 4.6.05H9 Let S, X, F , x, s be as in Definition 4.2. Let (Z, Y, i, π,G, z, y)
be a one step dévissage of F/X/S at x. Let us define a standard shrinking of this
situation to be given by standard opens S′ ⊂ S, X ′ ⊂ X, Z ′ ⊂ Z, and Y ′ ⊂ Y such
that s ∈ S′, x ∈ X ′, z ∈ Z ′, and y ∈ Y ′ and such that

(Z ′, Y ′, i|Z′ , π|Z′ ,G|Z′ , z, y)

is a one step dévissage of F|X′/X ′/S′ at x.

Lemma 4.7.05HA With assumption and notation as in Definition 4.6 we have:
(1)05HB If S′ ⊂ S is a standard open neighbourhood of s, then setting X ′ = XS′ ,

Z ′ = ZS′ and Y ′ = YS′ we obtain a standard shrinking.
(2)05HC Let W ⊂ Y be a standard open neighbourhood of y. Then there exists a

standard shrinking with Y ′ = W ×S S′.
(3)05HD Let U ⊂ X be an open neighbourhood of x. Then there exists a standard

shrinking with X ′ ⊂ U .

Proof. Part (1) is immediate from Lemma 4.5 and the fact that the inverse image
of a standard open under a morphism of affine schemes is a standard open, see
Algebra, Lemma 17.4.

Let W ⊂ Y as in (2). Because Y → S is smooth it is open, see Morphisms, Lemma
34.10. Hence we can find a standard open neighbourhood S′ of s contained in
the image of W . Then the fibres of WS′ → S′ are nonempty open subschemes
of the fibres of Y → S over S′ and hence geometrically irreducible too. Setting
Y ′ = WS′ and Z ′ = π−1(Y ′) we see that Z ′ ⊂ Z is a standard open neighbourhood
of z. Let h ∈ Γ(Z,OZ) be a function such that Z ′ = D(h). As i : Z → X is a
closed immersion, we can find a function h ∈ Γ(X,OX) such that i♯(h) = h. Take
X ′ = D(h) ⊂ X. In this way we obtain a standard shrinking as in (2).

Let U ⊂ X be as in (3). We may after shrinking U assume that U is a standard
open. By More on Morphisms, Lemma 47.4 there exists a standard open W ⊂ Y
neighbourhood of y such that π−1(W ) ⊂ i−1(U). Apply (2) to get a standard
shrinking X ′, S′, Z ′, Y ′ with Y ′ = WS′ . Since Z ′ ⊂ π−1(W ) ⊂ i−1(U) we may
replace X ′ by X ′ ∩ U (still a standard open as U is also standard open) without
violating any of the conditions defining a standard shrinking. Hence we win. □

https://stacks.math.columbia.edu/tag/05H8
https://stacks.math.columbia.edu/tag/05H9
https://stacks.math.columbia.edu/tag/05HA
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Lemma 4.8.05HE Let S, X, F , x, s be as in Definition 4.2. Let (Z, Y, i, π,G, z, y) be
a one step dévissage of F/X/S at x. Let

(Y, y)

��

(Y ′, y′)oo

��
(S, s) (S′, s′)oo

be a commutative diagram of pointed schemes such that the horizontal arrows are
elementary étale neighbourhoods. Then there exists a commutative diagram

(X ′′, x′′)

uu ��

(Z ′′, z′′)oo

tt ��
(X,x)

��

(Z, z)oo

��

(S′′, s′′)

uu

(Y ′′, y′′)

tt

oo

(S, s) (Y, y)oo

of pointed schemes with the following properties:
(1) (S′′, s′′)→ (S′, s′) is an elementary étale neighbourhood and the morphism

S′′ → S is the composition S′′ → S′ → S,
(2) Y ′′ is an open subscheme of Y ′ ×S′ S′′,
(3) Z ′′ = Z ×Y Y ′′,
(4) (X ′′, x′′)→ (X,x) is an elementary étale neighbourhood, and
(5) (Z ′′, Y ′′, i′′, π′′,G′′, z′′, y′′) is a one step dévissage at x′′ of the sheaf F ′′.

Here F ′′ (resp. G′′) is the pullback of F (resp. G) via the morphism X ′′ → X (resp.
Z ′′ → Z) and i′′ : Z ′′ → X ′′ and π′′ : Z ′′ → Y ′′ are as in the diagram.

Proof. Let (S′′, s′′) → (S′, s′) be any elementary étale neighbourhood with S′′

affine. Let Y ′′ ⊂ Y ′ ×S′ S′′ be any affine open neighbourhood containing the point
y′′ = (y′, s′′). Then we obtain an affine (Z ′′, z′′) by (3). Moreover ZS′′ → XS′′

is a closed immersion and Z ′′ → ZS′′ is an étale morphism. Hence Lemma 2.1
applies and we can find an étale morphism X ′′ → XS′ of affines such that Z ′′ ∼=
X ′′ ×XS′ ZS′ . Denote i′′ : Z ′′ → X ′′ the corresponding closed immersion. Setting
x′′ = i′′(z′′) we obtain a commutative diagram as in the lemma. Properties (1),
(2), (3), and (4) hold by construction. Thus it suffices to show that (5) holds for a
suitable choice of (S′′, s′′)→ (S′, s′) and Y ′′.

We first list those properties which hold for any choice of (S′′, s′′)→ (S′, s′) and Y ′′

as in the first paragraph. As we have Z ′′ = X ′′ ×X Z by construction we see that
i′′∗G′′ = F ′′ (with notation as in the statement of the lemma), see Cohomology of
Schemes, Lemma 5.1. Set n = dim(Supp(Fs)) = dimx(Supp(Fs)). The morphism
Y ′′ → S′′ is smooth of relative dimension n (because Y ′ → S′ is smooth of relative
dimension n as the composition Y ′ → YS′ → S′ of an étale and smooth morphism
of relative dimension n and because base change preserves smooth morphisms of
relative dimension n). We have κ(y′′) = κ(y) and κ(s) = κ(s′′) hence κ(y′′) is a
purely transcendental extension of κ(s′′). The morphism of fibres X ′′

s′′ → Xs is an
étale morphism of affine schemes over κ(s) = κ(s′′) mapping the point x′′ to the

https://stacks.math.columbia.edu/tag/05HE
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point x and pulling back Fs to F ′′
s′′ . Hence

dim(Supp(F ′′
s′′)) = dim(Supp(Fs)) = n = dimx(Supp(Fs)) = dimx′′(Supp(F ′′

s′′))

because dimension is invariant under étale localization, see Descent, Lemma 21.2.
As π′′ : Z ′′ → Y ′′ is the base change of π we see that π′′ is finite and as κ(y) = κ(y′′)
we see that π−1({y′′}) = {z′′}.

At this point we have verified all the conditions of Definition 4.1 except we have
not verified that Y ′′ → S′′ has geometrically irreducible fibres. Of course in general
this is not going to be true, and it is at this point that we will use that κ(s) ⊂ κ(y)
is purely transcendental. Namely, let T ⊂ Y ′

s′ be the irreducible component of Y ′
s′

containing y′ = (y, s′). Note that T is an open subscheme of Y ′
s′ as this is a smooth

scheme over κ(s′). By Varieties, Lemma 7.14 we see that T is geometrically con-
nected because κ(s′) = κ(s) is algebraically closed in κ(y′) = κ(y). As T is smooth
we see that T is geometrically irreducible. Hence More on Morphisms, Lemma 46.4
applies and we can find an elementary étale morphism (S′′, s′′) → (S′, s′) and an
affine open Y ′′ ⊂ Y ′

S′′ such that all fibres of Y ′′ → S′′ are geometrically irreducible
and such that T = Y ′′

s′′ . After shrinking (first Y ′′ and then S′′) we may assume
that both Y ′′ and S′′ are affine. This finishes the proof of the lemma. □

Lemma 4.9.05HF Let S, X, F , s be as in Definition 4.1. Let (Z, Y, i, π,G) be a one
step dévissage of F/X/S over s. Let ξ ∈ Ys be the (unique) generic point. Then
there exists an integer r > 0 and an OY -module map

α : O⊕r
Y −→ π∗G

such that
α : κ(ξ)⊕r −→ (π∗G)ξ ⊗OY,ξ

κ(ξ)
is an isomorphism. Moreover, in this case we have

dim(Supp(Coker(α)s)) < dim(Supp(Fs)).

Proof. By assumption the schemes S and Y are affine. Write S = Spec(A) and
Y = Spec(B). As π is finite the OY -module π∗G is a finite type quasi-coherent OY -
module. Hence π∗G = Ñ for some finite B-module N . Let p ⊂ B be the prime ideal
corresponding to ξ. To obtain α set r = dimκ(p) N ⊗B κ(p) and pick x1, . . . , xr ∈ N
which form a basis of N ⊗B κ(p). Take α : B⊕r → N to be the map given by
the formula α(b1, . . . , br) =

∑
bixi. It is clear that α : κ(p)⊕r → N ⊗B κ(p) is an

isomorphism as desired. Finally, suppose α is any map with this property. Then
N ′ = Coker(α) is a finite B-module such that N ′⊗κ(p) = 0. By Nakayama’s lemma
(Algebra, Lemma 20.1) we see that N ′

p = 0. Since the fibre Ys is geometrically
irreducible of dimension n with generic point ξ and since we have just seen that ξ
is not in the support of Coker(α) the last assertion of the lemma holds. □

5. Complete dévissage

05HG In this section we explain what is a complete dévissage of a module and prove that
such exist. The material in this section is mainly bookkeeping.

Definition 5.1.05HH Let S be a scheme. Let X be locally of finite type over S. Let
F be a quasi-coherent OX -module of finite type. Let s ∈ S be a point. A complete

https://stacks.math.columbia.edu/tag/05HF
https://stacks.math.columbia.edu/tag/05HH
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dévissage of F/X/S over s is given by a diagram

X Z1
i1
oo

π1

��
Y1 Z2

i2
oo

π2

��
Y2 Z3oo

��... ...oo

��
Yn

of schemes over S, finite type quasi-coherent OZk
-modules Gk, and OYk

-module
maps

αk : O⊕rk

Yk
−→ πk,∗Gk, k = 1, . . . , n

satisfying the following properties:
(1) (Z1, Y1, i1, π1,G1) is a one step dévissage of F/X/S over s,
(2) the map αk induces an isomorphism

κ(ξk)⊕rk −→ (πk,∗Gk)ξk
⊗OYk,ξk

κ(ξk)

where ξk ∈ (Yk)s is the unique generic point,
(3) for k = 2, . . . , n the system (Zk, Yk, ik, πk,Gk) is a one step dévissage of

Coker(αk−1)/Yk−1/S over s,
(4) Coker(αn) = 0.

In this case we say that (Zk, Yk, ik, πk,Gk, αk)k=1,...,n is a complete dévissage of
F/X/S over s.

Definition 5.2.05HI Let S be a scheme. Let X be locally of finite type over S. Let
F be a quasi-coherent OX -module of finite type. Let x ∈ X be a point with image
s ∈ S. A complete dévissage of F/X/S at x is given by a system

(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n

such that (Zk, Yk, ik, πk,Gk, αk) is a complete dévissage of F/X/S over s, and such
that

(1) (Z1, Y1, i1, π1,G1, z1, y1) is a one step dévissage of F/X/S at x,
(2) for k = 2, . . . , n the system (Zk, Yk, ik, πk,Gk, zk, yk) is a one step dévissage

of Coker(αk−1)/Yk−1/S at yk−1.

Again we remark that a complete dévissage can only exist if X and S are affine.

Lemma 5.3.05HJ Let S, X, F , s be as in Definition 5.1. Let (S′, s′) → (S, s) be
any morphism of pointed schemes. Let (Zk, Yk, ik, πk,Gk, αk)k=1,...,n be a complete
dévissage of F/X/S over s. Given this data let X ′, Z ′

k, Y
′
k, i

′
k, π

′
k be the base changes

of X,Zk, Yk, ik, πk via S′ → S. Let F ′ be the pullback of F to X ′ and let G′
k be

the pullback of Gk to Z ′
k. Let α′

k be the pullback of αk to Y ′
k. If S′ is affine, then

(Z ′
k, Y

′
k, i

′
k, π

′
k,G′

k, α
′
k)k=1,...,n is a complete dévissage of F ′/X ′/S′ over s′.

https://stacks.math.columbia.edu/tag/05HI
https://stacks.math.columbia.edu/tag/05HJ
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Proof. By Lemma 4.4 we know that the base change of a one step dévissage is a one
step dévissage. Hence it suffices to prove that formation of Coker(αk) commutes
with base change and that condition (2) of Definition 5.1 is preserved by base
change. The first is true as π′

k,∗G′
k is the pullback of πk,∗Gk (by Cohomology of

Schemes, Lemma 5.1) and because ⊗ is right exact. The second because by the
same token we have

(πk,∗Gk)ξk
⊗OYk,ξk

κ(ξk)⊗κ(ξk) κ(ξ′
k) ∼= (π′

k,∗G′
k)ξ′

k
⊗OY ′

k
,ξ′

k

κ(ξ′
k)

with obvious notation. □

Lemma 5.4.05HK Let S, X, F , x, s be as in Definition 5.2. Let (S′, s′) → (S, s)
be a morphism of pointed schemes which induces an isomorphism κ(s) = κ(s′).
Let (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n be a complete dévissage of F/X/S at x.
Let (Z ′

k, Y
′
k, i

′
k, π

′
k,G′

k, α
′
k)k=1,...,n be as constructed in Lemma 5.3 and let x′ ∈ X ′

(resp. z′
k ∈ Z ′, y′

k ∈ Y ′) be the unique point mapping to both x ∈ X (resp. zk ∈ Zk,
yk ∈ Yk) and s′ ∈ S′. If S′ is affine, then (Z ′

k, Y
′
k, i

′
k, π

′
k,G′

k, α
′
k, z

′
k, y

′
k)k=1,...,n is a

complete dévissage of F ′/X ′/S′ at x′.

Proof. Combine Lemma 5.3 and Lemma 4.5. □

Definition 5.5.05HL Let S, X, F , x, s be as in Definition 5.2. Consider a complete
dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n of F/X/S at x. Let us define a stan-
dard shrinking of this situation to be given by standard opens S′ ⊂ S, X ′ ⊂ X,
Z ′
k ⊂ Zk, and Y ′

k ⊂ Yk such that sk ∈ S′, xk ∈ X ′, zk ∈ Z ′, and yk ∈ Y ′ and such
that

(Z ′
k, Y

′
k, i

′
k, π

′
k,G′

k, α
′
k, zk, yk)k=1,...,n

is a one step dévissage of F ′/X ′/S′ at x where G′
k = Gk|Z′

k
and F ′ = F|X′ .

Lemma 5.6.05HM With assumption and notation as in Definition 5.5 we have:
(1)05HN If S′ ⊂ S is a standard open neighbourhood of s, then setting X ′ = XS′ ,

Z ′
k = ZS′ and Y ′

k = YS′ we obtain a standard shrinking.
(2)05HP Let W ⊂ Yn be a standard open neighbourhood of y. Then there exists a

standard shrinking with Y ′
n = W ×S S′.

(3)05HQ Let U ⊂ X be an open neighbourhood of x. Then there exists a standard
shrinking with X ′ ⊂ U .

Proof. Part (1) is immediate from Lemmas 5.4 and 4.7.
Proof of (2). For convenience denote X = Y0. We apply Lemma 4.7 (2) to find a
standard shrinking S′, Y ′

n−1, Z
′
n, Y

′
n of the one step dévissage of Coker(αn−1)/Yn−1/S

at yn−1 with Y ′
n = W ×S S′. We may repeat this procedure and find a standard

shrinking S′′, Y ′′
n−2, Z

′′
n−1, Y

′′
n−1 of the one step dévissage of Coker(αn−2)/Yn−2/S

at yn−2 with Y ′′
n−1 = Y ′

n−1×S S′′. We may continue in this manner until we obtain
S(n), Y

(n)
0 , Z

(n)
1 , Y

(n)
1 . At this point it is clear that we obtain our desired standard

shrinking by taking S(n), X(n), Z(n−k)
k ×SS(n), and Y (n−k)

k ×SS(n) with the desired
property.
Proof of (3). We use induction on the length of the complete dévissage. First
we apply Lemma 4.7 (3) to find a standard shrinking S′, X ′, Z ′

1, Y
′

1 of the one
step dévissage of F/X/S at x with X ′ ⊂ U . If n = 1, then we are done. If
n > 1, then by induction we can find a standard shrinking S′′, Y ′′

1 , Z ′′
k , and Y ′′

k of

https://stacks.math.columbia.edu/tag/05HK
https://stacks.math.columbia.edu/tag/05HL
https://stacks.math.columbia.edu/tag/05HM
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the complete dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n of Coker(α1)/Y1/S at
x such that Y ′′

1 ⊂ Y ′
1 . Using Lemma 4.7 (2) we can find S′′′ ⊂ S′, X ′′′ ⊂ X ′, Z ′′′

1
and Y ′′′

1 = Y ′′
1 ×S S′′′ which is a standard shrinking. The solution to our problem

is to take
S′′′, X ′′′, Z ′′′

1 , Y
′′′

1 , Z ′′
2 ×S S′′′, Y ′′

2 ×S S′′′, . . . , Z ′′
n ×S S′′′, Y ′′

n ×S S′′′

This ends the proof of the lemma. □

Proposition 5.7.05HR Let S be a scheme. Let X be locally of finite type over S. Let
x ∈ X be a point with image s ∈ S. There exists a commutative diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that g∗F/X ′/S′ has a complete dévissage at x.

Proof. We prove this by induction on the integer d = dimx(Supp(Fs)). By Lemma
4.3 there exists a diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neigh-
bourhoods and such that g∗F/X ′/S′ has a one step dévissage at x′. The local
nature of the problem implies that we may replace (X,x) → (S, s) by (X ′, x′) →
(S′, s′). Thus after doing so we may assume that there exists a one step dévissage
(Z1, Y1, i1, π1,G1) of F/X/S at x.
We apply Lemma 4.9 to find a map

α1 : O⊕r1
Y1
−→ π1,∗G1

which induces an isomorphism of vector spaces over κ(ξ1) where ξ1 ∈ Y1 is the
unique generic point of the fibre of Y1 over s. Moreover dimy1(Supp(Coker(α1)s)) <
d. It may happen that the stalk of Coker(α1)s at y1 is zero. In this case we may
shrink Y1 by Lemma 4.7 (2) and assume that Coker(α1) = 0 so we obtain a complete
dévissage of length zero.
Assume now that the stalk of Coker(α1)s at y1 is not zero. In this case, by induction,
there exists a commutative diagram

(5.7.1)05HS

(Y1, y1)

��

(Y ′
1 , y

′
1)

h
oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that h∗ Coker(α1)/Y ′

1/S
′ has a complete dévissage

(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n

https://stacks.math.columbia.edu/tag/05HR
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at y′
1. (In particular i2 : Z2 → Y ′

1 is a closed immersion into Y ′
2 .) At this point we

apply Lemma 4.8 to S,X,F , x, s, the system (Z1, Y1, i1, π1,G1) and diagram (5.7.1).
We obtain a diagram

(X ′′, x′′)

tt ��

(Z ′′
1 , z

′′
1 )oo

tt ��
(X,x)

��

(Z1, z1)oo

��

(S′′, s′′)

tt

(Y ′′
1 , y

′′
1 )

tt

oo

(S, s) (Y1, y1)oo

with all the properties as listed in the referenced lemma. In particular Y ′′
1 ⊂

Y ′
1 ×S′ S′′. Set X1 = Y ′

1 ×S′ S′′ and let F1 denote the pullback of Coker(α1). By
Lemma 5.4 the system
(5.7.2)05HT (Zk ×S′ S′′, Yk ×S′ S′′, i′′k , π

′′
k ,G′′

k , α
′′
k , z

′′
k , y

′′
k )k=2,...,n

is a complete dévissage of F1 to X1. Again, the nature of the problem allows us to
replace (X,x)→ (S, s) by (X ′′, x′′)→ (S′′, s′′). In this we see that we may assume:

(a) There exists a one step dévissage (Z1, Y1, i1, π1,G1) of F/X/S at x,
(b) there exists an α1 : O⊕r1

Y1
→ π1,∗G1 such that α⊗ κ(ξ1) is an isomorphism,

(c) Y1 ⊂ X1 is open, y1 = x1, and F1|Y1
∼= Coker(α1), and

(d) there exists a complete dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n of
F1/X1/S at x1.

To finish the proof all we have to do is shrink the one step dévissage and the
complete dévissage such that they fit together to a complete dévissage. (We suggest
the reader do this on their own using Lemmas 4.7 and 5.6 instead of reading the
proof that follows.) Since Y1 ⊂ X1 is an open neighbourhood of x1 we may apply
Lemma 5.6 (3) to find a standard shrinking S′, X ′

1, Z
′
2, Y

′
2 , . . . , Y

′
n of the datum (d)

so that X ′
1 ⊂ Y1. Note that X ′

1 is also a standard open of the affine scheme Y1.
Next, we shrink the datum (a) as follows: first we shrink the base S to S′, see
Lemma 4.7 (1) and then we shrink the result to S′′, X ′′, Z ′′

1 , Y ′′
1 using Lemma 4.7

(2) such that eventually Y ′′
1 = X ′

1 ×S S′′ and S′′ ⊂ S′. Then we see that
Z ′′

1 , Y
′′

1 , Z
′
2 ×S′ S′′, Y ′

2 ×S′ S′′, . . . , Y ′
n ×S′ S′′

gives the complete dévissage we were looking for. □

Some more bookkeeping gives the following consequence.

Lemma 5.8.05HU Let X → S be a finite type morphism of schemes. Let F be a finite
type quasi-coherent OX-module. Let s ∈ S be a point. There exists an elementary
étale neighbourhood (S′, s′) → (S, s) and étale morphisms hi : Yi → XS′ , i =
1, . . . , n such that for each i there exists a complete dévissage of Fi/Yi/S′ over s′,
where Fi is the pullback of F to Yi and such that Xs = (XS′)s′ ⊂

⋃
hi(Yi).

Proof. For every point x ∈ Xs we can find a diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

https://stacks.math.columbia.edu/tag/05HU
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of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that g∗F/X ′/S′ has a complete dévissage at x′. As X → S is of
finite type the fibre Xs is quasi-compact, and since each g : X ′ → X as above is
open we can cover Xs by a finite union of g(X ′

s′). Thus we can find a finite family
of such diagrams

(X,x)

��

(X ′
i, x

′
i)gi

oo

��
(S, s) (S′

i, s
′
i)oo

i = 1, . . . , n

such that Xs =
⋃
gi(X ′

i). Set S′ = S′
1 ×S . . .×S S′

n and let Yi = Xi ×S′
i
S′ be the

base change of X ′
i to S′. By Lemma 5.3 we see that the pullback of F to Yi has a

complete dévissage over s and we win. □

6. Translation into algebra

05HV It may be useful to spell out algebraically what it means to have a complete dévis-
sage. We introduce the following notion (which is not that useful so we give it an
impossibly long name).

Definition 6.1.05HW Let R → S be a ring map. Let q be a prime of S lying over the
prime p of R. A elementary étale localization of the ring map R→ S at q is given
by a commutative diagram of rings and accompanying primes

S // S′

R

OO

// R′

OO q q′

p p′

such that R → R′ and S → S′ are étale ring maps and κ(p) = κ(p′) and κ(q) =
κ(q′).

Definition 6.2.05HX Let R → S be a finite type ring map. Let r be a prime of R.
Let N be a finite S-module. A complete dévissage of N/S/R over r is given by
R-algebra maps

A1 A2 ... An

S

??

B1

`` >>

...

`` ??

...

__ >>

Bn

aa

finite Ai-modules Mi and Bi-module maps αi : B⊕ri
i →Mi such that

(1) S → A1 is surjective and of finite presentation,
(2) Bi → Ai+1 is surjective and of finite presentation,
(3) Bi → Ai is finite,
(4) R→ Bi is smooth with geometrically irreducible fibres,
(5) N ∼= M1 as S-modules,
(6) Coker(αi) ∼= Mi+1 as Bi-modules,
(7) αi : κ(pi)⊕ri →Mi ⊗Bi

κ(pi) is an isomorphism where pi = rBi, and
(8) Coker(αn) = 0.

In this situation we say that (Ai, Bi,Mi, αi)i=1,...,n is a complete dévissage of
N/S/R over r.

https://stacks.math.columbia.edu/tag/05HW
https://stacks.math.columbia.edu/tag/05HX
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Remark 6.3.05HY Note that the R-algebras Bi for all i and Ai for i ≥ 2 are of finite
presentation over R. If S is of finite presentation over R, then it is also the case that
A1 is of finite presentation over R. In this case all the ring maps in the complete
dévissage are of finite presentation. See Algebra, Lemma 6.2. Still assuming S of
finite presentation over R the following are equivalent

(1) M is of finite presentation over S,
(2) M1 is of finite presentation over A1,
(3) M1 is of finite presentation over B1,
(4) each Mi is of finite presentation both as an Ai-module and as a Bi-module.

The equivalences (1) ⇔ (2) and (2) ⇔ (3) follow from Algebra, Lemma 36.23. If
M1 is finitely presented, so is Coker(α1) (see Algebra, Lemma 5.3) and hence M2,
etc.

Definition 6.4.05HZ Let R→ S be a finite type ring map. Let q be a prime of S lying
over the prime r of R. Let N be a finite S-module. A complete dévissage of N/S/R
at q is given by a complete dévissage (Ai, Bi,Mi, αi)i=1,...,n of N/S/R over r and
prime ideals qi ⊂ Bi lying over r such that

(1) κ(r) ⊂ κ(qi) is purely transcendental,
(2) there is a unique prime q′

i ⊂ Ai lying over qi ⊂ Bi,
(3) q = q′

1 ∩ S and qi = q′
i+1 ∩Ai,

(4) R→ Bi has relative dimension dimqi
(Supp(Mi ⊗R κ(r))).

Remark 6.5.05I0 Let A→ B be a finite type ring map and let N be a finite B-module.
Let q be a prime of B lying over the prime r of A. Set X = Spec(B), S = Spec(A)
and F = Ñ on X. Let x be the point corresponding to q and let s ∈ S be the point
corresponding to p. Then

(1) if there exists a complete dévissage of F/X/S over s then there exists a
complete dévissage of N/B/A over p, and

(2) there exists a complete dévissage of F/X/S at x if and only if there exists
a complete dévissage of N/B/A at q.

There is just a small twist in that we omitted the condition on the relative dimension
in the formulation of “a complete dévissage of N/B/A over p” which is why the
implication in (1) only goes in one direction. The notion of a complete dévissage
at q does have this condition built in. In any case we will only use that existence
for F/X/S implies the existence for N/B/A.

Lemma 6.6.05I1 Let R → S be a finite type ring map. Let M be a finite S-module.
Let q be a prime ideal of S. There exists an elementary étale localization R′ →
S′, q′, p′ of the ring map R→ S at q such that there exists a complete dévissage of
(M ⊗S S′)/S′/R′ at q′.

Proof. This is a reformulation of Proposition 5.7 via Remark 6.5 □

7. Localization and universally injective maps

05DD
Lemma 7.1.05DE Let R→ S be a ring map. Let N be a S-module. Assume

(1) R is a local ring with maximal ideal m,
(2) S = S/mS is Noetherian, and
(3) N = N/mRN is a finite S-module.

https://stacks.math.columbia.edu/tag/05HY
https://stacks.math.columbia.edu/tag/05HZ
https://stacks.math.columbia.edu/tag/05I0
https://stacks.math.columbia.edu/tag/05I1
https://stacks.math.columbia.edu/tag/05DE
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Let Σ ⊂ S be the multiplicative subset of elements which are not a zerodivisor on N .
Then Σ−1S is a semi-local ring whose spectrum consists of primes q ⊂ S contained
in an element of AssS(N). Moreover, any maximal ideal of Σ−1S corresponds to
an associated prime of N over S.

Proof. Note that AssS(N) = AssS(N), see Algebra, Lemma 63.14. This is a finite
set by Algebra, Lemma 63.5. Say {q1, . . . , qr} = AssS(N). We have Σ = S \ (

⋃
qi)

by Algebra, Lemma 63.9. By the description of Spec(Σ−1S) in Algebra, Lemma
17.5 and by Algebra, Lemma 15.2 we see that the primes of Σ−1S correspond to the
primes of S contained in one of the qi. Hence the maximal ideals of Σ−1S correspond
one-to-one with the maximal (w.r.t. inclusion) elements of the set {q1, . . . , qr}. This
proves the lemma. □

Lemma 7.2.05DF Assumption and notation as in Lemma 7.1. Assume moreover that
(1) S is local and R→ S is a local homomorphism,
(2) S is essentially of finite presentation over R,
(3) N is finitely presented over S, and
(4) N is flat over R.

Then each s ∈ Σ defines a universally injective R-module map s : N → N , and the
map N → Σ−1N is R-universally injective.

Proof. By Algebra, Lemma 128.4 the sequence 0→ N → N → N/sN → 0 is exact
and N/sN is flat over R. This implies that s : N → N is universally injective, see
Algebra, Lemma 39.12. The map N → Σ−1N is universally injective as the directed
colimit of the maps s : N → N . □

Lemma 7.3.05DG Let R→ S be a ring map. Let N be an S-module. Let S → S′ be a
ring map. Assume

(1) R→ S is a local homomorphism of local rings
(2) S is essentially of finite presentation over R,
(3) N is of finite presentation over S,
(4) N is flat over R,
(5) S → S′ is flat, and
(6) the image of Spec(S′)→ Spec(S) contains all primes q of S lying over mR

such that q is an associated prime of N/mRN .
Then N → N ⊗S S′ is R-universally injective.

Proof. Set N ′ = N ⊗R S′. Consider the commutative diagram

N

��

// N ′

��
Σ−1N // Σ−1N ′

where Σ ⊂ S is the set of elements which are not a zerodivisor on N/mRN . If we
can show that the map N → Σ−1N ′ is universally injective, then N → N ′ is too
(see Algebra, Lemma 82.10).

By Lemma 7.1 the ring Σ−1S is a semi-local ring whose maximal ideals correspond
to associated primes of N/mRN . Hence the image of Spec(Σ−1S′)→ Spec(Σ−1S)
contains all these maximal ideals by assumption. By Algebra, Lemma 39.16 the

https://stacks.math.columbia.edu/tag/05DF
https://stacks.math.columbia.edu/tag/05DG
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ring map Σ−1S → Σ−1S′ is faithfully flat. Hence Σ−1N → Σ−1N ′, which is the
map

N ⊗S Σ−1S −→ N ⊗S Σ−1S′

is universally injective, see Algebra, Lemmas 82.11 and 82.8. Finally, we apply
Lemma 7.2 to see that N → Σ−1N is universally injective. As the composition
of universally injective module maps is universally injective (see Algebra, Lemma
82.9) we conclude that N → Σ−1N ′ is universally injective and we win. □

Lemma 7.4.05DH Let R→ S be a ring map. Let N be an S-module. Let S → S′ be a
ring map. Assume

(1) R→ S is of finite presentation and N is of finite presentation over S,
(2) N is flat over R,
(3) S → S′ is flat, and
(4) the image of Spec(S′) → Spec(S) contains all primes q such that q is an

associated prime of N ⊗R κ(p) where p is the inverse image of q in R.
Then N → N ⊗S S′ is R-universally injective.

Proof. By Algebra, Lemma 82.12 it suffices to show that Nq → (N ⊗R S′)q is a
Rp-universally injective for any prime q of S lying over p in R. Thus we may apply
Lemma 7.3 to the ring maps Rp → Sq → S′

q and the module Nq. □

The reader may want to compare the following lemma to Algebra, Lemmas 99.1
and 128.4 and the results of Section 25. In each case the conclusion is that the map
u : M → N is universally injective with flat cokernel.

Lemma 7.5.05FQ Let (R,m) be a local ring. Let u : M → N be an R-module map.
If M is a projective R-module, N is a flat R-module, and u : M/mM → N/mN is
injective then u is universally injective.

Proof. By Algebra, Theorem 85.4 the module M is free. If we show the result
holds for every finitely generated direct summand of M , then the lemma follows.
Hence we may assume that M is finite free. Write N = colimiNi as a directed
colimit of finite free modules, see Algebra, Theorem 81.4. Note that u : M → N
factors through Ni for some i (as M is finite free). Denote ui : M → Ni the
corresponding R-module map. As u is injective we see that ui : M/mM → Ni/mNi
is injective and remains injective on composing with the maps Ni/mNi → Ni′/mNi′

for all i′ ≥ i. As M and Ni′ are finite free over the local ring R this implies that
M → Ni′ is a split injection for all i′ ≥ i. Hence for any R-module Q we see that
M ⊗R Q→ Ni′ ⊗R Q is injective for all i′ ≥ i. As −⊗R Q commutes with colimits
we conclude that M ⊗R Q→ Ni′ ⊗R Q is injective as desired. □

Lemma 7.6.05FR Assumption and notation as in Lemma 7.1. Assume moreover that
N is projective as an R-module. Then each s ∈ Σ defines a universally injective
R-module map s : N → N , and the map N → Σ−1N is R-universally injective.

Proof. Pick s ∈ Σ. By Lemma 7.5 the map s : N → N is universally injective.
The map N → Σ−1N is universally injective as the directed colimit of the maps
s : N → N . □

https://stacks.math.columbia.edu/tag/05DH
https://stacks.math.columbia.edu/tag/05FQ
https://stacks.math.columbia.edu/tag/05FR
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8. Completion and Mittag-Leffler modules

05DI
Lemma 8.1.05DJ Let R be a ring. Let I ⊂ R be an ideal. Let A be a set. Assume R
is Noetherian and complete with respect to I. The completion (

⊕
α∈AR)∧ is flat

and Mittag-Leffler.

Proof. By More on Algebra, Lemma 27.1 the map (
⊕

α∈AR)∧ →
∏
α∈AR is

universally injective. Thus, by Algebra, Lemmas 82.7 and 89.7 it suffices to show
that

∏
α∈AR is flat and Mittag-Leffler. By Algebra, Proposition 90.6 (and Algebra,

Lemma 90.5) we see that
∏
α∈AR is flat. Thus we conclude because a product of

copies of R is Mittag-Leffler, see Algebra, Lemma 91.3. □

Lemma 8.2.05DK Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Assume

(1) R is Noetherian and I-adically complete,
(2) M is flat over R, and
(3) M/IM is a projective R/I-module.

Then the I-adic completion M∧ is a flat Mittag-Leffler R-module.

Proof. Choose a surjection F → M where F is a free R-module. By Algebra,
Lemma 97.9 the module M∧ is a direct summand of the module F∧. Hence it
suffices to prove the lemma for F . In this case the lemma follows from Lemma
8.1. □

In Lemmas 8.3 and 8.4 the assumption that S be Noetherian holds if R → S is of
finite type, see Algebra, Lemma 31.1.

Lemma 8.3.05DL Let R be a ring. Let I ⊂ R be an ideal. Let R → S be a ring map,
and N an S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) N is a finite S-module, and
(4) for any finite R-module Q, any q ∈ AssS(Q⊗R N) satisfies IS + q ̸= S.

Then the map N → N∧ of N into the I-adic completion of N is universally injective
as a map of R-modules.

Proof. We have to show that for any finite R-module Q the map Q ⊗R N →
Q ⊗R N∧ is injective, see Algebra, Theorem 82.3. As there is a canonical map
Q ⊗R N∧ → (Q ⊗R N)∧ it suffices to prove that the canonical map Q ⊗R N →
(Q⊗RN)∧ is injective. Hence we may replace N by Q⊗RN and it suffices to prove
the injectivity for the map N → N∧.
Let K = Ker(N → N∧). It suffices to show that Kq = 0 for q ∈ Ass(N) as N is
a submodule of

∏
q∈Ass(N) Nq, see Algebra, Lemma 63.19. Pick q ∈ Ass(N). By

the last assumption we see that there exists a prime q′ ⊃ IS + q. Since Kq is a
localization of Kq′ it suffices to prove the vanishing of Kq′ . Note that K =

⋂
InN ,

hence Kq′ ⊂
⋂
InNq′ . Hence Kq′ = 0 by Algebra, Lemma 51.4. □

Lemma 8.4.05DM Let R be a ring. Let I ⊂ R be an ideal. Let R → S be a ring map,
and N an S-module. Assume

(1) R is a Noetherian ring,

https://stacks.math.columbia.edu/tag/05DJ
https://stacks.math.columbia.edu/tag/05DK
https://stacks.math.columbia.edu/tag/05DL
https://stacks.math.columbia.edu/tag/05DM
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(2) S is a Noetherian ring,
(3) N is a finite S-module,
(4) N is flat over R, and
(5) for any prime q ⊂ S which is an associated prime of N ⊗R κ(p) where

p = R ∩ q we have IS + q ̸= S.
Then the map N → N∧ of N into the I-adic completion of N is universally injective
as a map of R-modules.

Proof. This follows from Lemma 8.3 because Algebra, Lemma 65.5 and Remark
65.6 guarantee that the set of associated primes of tensor products N ⊗R Q are
contained in the set of associated primes of the modules N ⊗R κ(p). □

9. Projective modules

05DN The following lemma can be used to prove projectivity by Noetherian induction on
the base, see Lemma 9.2.

Lemma 9.1.05DP Let R be a ring. Let I ⊂ R be an ideal. Let R → S be a ring map,
and N an S-module. Assume

(1) R is Noetherian and I-adically complete,
(2) R→ S is of finite type,
(3) N is a finite S-module,
(4) N is flat over R,
(5) N/IN is projective as a R/I-module, and
(6) for any prime q ⊂ S which is an associated prime of N ⊗R κ(p) where

p = R ∩ q we have IS + q ̸= S.
Then N is projective as an R-module.

Proof. By Lemma 8.4 the map N → N∧ is universally injective. By Lemma 8.2
the module N∧ is Mittag-Leffler. By Algebra, Lemma 89.7 we conclude that N
is Mittag-Leffler. Hence N is countably generated, flat and Mittag-Leffler as an
R-module, whence projective by Algebra, Lemma 93.1. □

Lemma 9.2.05FS Let R be a ring. Let R→ S be a ring map. Assume
(1) R is Noetherian,
(2) R→ S is of finite type and flat, and
(3) every fibre ring S ⊗R κ(p) is geometrically integral over κ(p).

Then S is projective as an R-module.

Proof. Consider the set
{I ⊂ R | S/IS not projective as R/I-module}

We have to show this set is empty. To get a contradiction assume it is nonempty.
Then it contains a maximal element I. Let J =

√
I be its radical. If I ̸= J ,

then S/JS is projective as a R/J-module, and S/IS is flat over R/I and J/I is
a nilpotent ideal in R/I. Applying Algebra, Lemma 77.7 we see that S/IS is a
projective R/I-module, which is a contradiction. Hence we may assume that I is
a radical ideal. In other words we are reduced to proving the lemma in case R is a
reduced ring and S/IS is a projective R/I-module for every nonzero ideal I of R.
Assume R is a reduced ring and S/IS is a projective R/I-module for every nonzero
ideal I of R. By generic flatness, Algebra, Lemma 118.1 (applied to a localization

https://stacks.math.columbia.edu/tag/05DP
https://stacks.math.columbia.edu/tag/05FS
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Rg which is a domain) or the more general Algebra, Lemma 118.7 there exists a
nonzero f ∈ R such that Sf is free as an Rf -module. Denote R∧ = limR/(fn) the
(f)-adic completion of R. Note that the ring map

R −→ Rf ×R∧

is a faithfully flat ring map, see Algebra, Lemma 97.2. Hence by faithfully flat
descent of projectivity, see Algebra, Theorem 95.6 it suffices to prove that S⊗RR∧

is a projective R∧-module. To see this we will use the criterion of Lemma 9.1.
First of all, note that S/fS = (S⊗RR∧)/f(S⊗RR∧) is a projective R/(f)-module
and that S ⊗R R∧ is flat and of finite type over R∧ as a base change of such.
Next, suppose that p∧ is a prime ideal of R∧. Let p ⊂ R be the corresponding
prime of R. As R → S has geometrically integral fibre rings, the same is true
for the fibre rings of any base change. Hence q∧ = p∧(S ⊗R R∧), is a prime
ideals lying over p∧ and it is the unique associated prime of S ⊗R κ(p∧). Thus
we win if f(S ⊗R R∧) + q∧ ̸= S ⊗R R∧. This is true because p∧ + fR∧ ̸= R∧

as f lies in the Jacobson radical of the f -adically complete ring R∧ and because
R∧ → S⊗RR∧ is surjective on spectra as its fibres are nonempty (irreducible spaces
are nonempty). □

Lemma 9.3.05FT Let R be a ring. Let R→ S be a ring map. Assume
(1) R→ S is of finite presentation and flat, and
(2) every fibre ring S ⊗R κ(p) is geometrically integral over κ(p).

Then S is projective as an R-module.

Proof. We can find a cocartesian diagram of rings

S0 // S

R0

OO

// R

OO

such that R0 is of finite type over Z, the map R0 → S0 is of finite type and flat with
geometrically integral fibres, see More on Morphisms, Lemmas 34.4, 34.6, 34.7, and
34.11. By Lemma 9.2 we see that S0 is a projective R0-module. Hence S = S0⊗R0R
is a projective R-module, see Algebra, Lemma 94.1. □

Remark 9.4.05FU Lemma 9.3 is a key step in the development of results in this chapter.
The analogue of this lemma in [GR71] is [GR71, I Proposition 3.3.1]: If R → S
is smooth with geometrically integral fibres, then S is projective as an R-module.
This is a special case of Lemma 9.3, but as we will later improve on this lemma
anyway, we do not gain much from having a stronger result at this point. We briefly
sketch the proof of this as it is given in [GR71].

(1) First reduce to the case where R is Noetherian as above.
(2) Since projectivity descends through faithfully flat ring maps, see Algebra,

Theorem 95.6 we may work locally in the fppf topology on R, hence we
may assume that R→ S has a section σ : S → R. (Just by the usual trick
of base changing to S.) Set I = Ker(S → R).

(3) Localizing a bit more on R we may assume that I/I2 is a free R-module and
that the completion S∧ of S with respect to I is isomorphic toR[[t1, . . . , tn]],
see Morphisms, Lemma 34.20. Here we are using that R→ S is smooth.

https://stacks.math.columbia.edu/tag/05FT
https://stacks.math.columbia.edu/tag/05FU
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(4) To prove that S is projective as an R-module, it suffices to prove that S is
flat, countably generated and Mittag-Leffler as an R-module, see Algebra,
Lemma 93.1. The first two properties are evident. Thus it suffices to
prove that S is Mittag-Leffler as an R-module. By Algebra, Lemma 91.4
the module R[[t1, . . . , tn]] is Mittag-Leffler over R. Hence Algebra, Lemma
89.7 shows that it suffices to show that the S → S∧ is universally injective
as a map of R-modules.

(5) Apply Lemma 7.4 to see that S → S∧ is R-universally injective. Namely,
as R → S has geometrically integral fibres, any associated point of any
fibre ring is just the generic point of the fibre ring which is in the image of
Spec(S∧)→ Spec(S).

There is an analogy between the proof as sketched just now, and the development
of the arguments leading to the proof of Lemma 9.3. In both a completion plays an
essential role, and both times the assumption of having geometrically integral fibres
assures one that the map from S to the completion of S is R-universally injective.

10. Flat finite type modules, Part I

05I2 In some cases given a ring map R→ S of finite presentation and a finite S-module
N the flatness of N over R implies that N is of finite presentation. In this section
we prove this is true “pointwise”. We remark that the first proof of Proposition
10.3 uses the geometric results of Section 3 but not the existence of a complete
dévissage.

Lemma 10.1.05I3 Let (R,m) be a local ring. Let R → S be a finitely presented flat
ring map with geometrically integral fibres. Write p = mS. Let q ⊂ S be a prime
ideal lying over m. Let N be a finite S-module. There exist r ≥ 0 and an S-module
map

α : S⊕r −→ N

such that α : κ(p)⊕r → N ⊗S κ(p) is an isomorphism. For any such α the following
are equivalent:

(1) Nq is R-flat,
(2) α is R-universally injective and Coker(α)q is R-flat,
(3) α is injective and Coker(α)q is R-flat,
(4) αp is an isomorphism and Coker(α)q is R-flat, and
(5) αq is injective and Coker(α)q is R-flat.

Proof. To obtain α set r = dimκ(p) N ⊗S κ(p) and pick x1, . . . , xr ∈ N which form
a basis of N ⊗S κ(p). Define α(s1, . . . , sr) =

∑
sixi. This proves the existence.

Fix an α. The most interesting implication is (1) ⇒ (2) which we prove first.
Assume (1). Because S/mS is a domain with fraction field κ(p) we see that
(S/mS)⊕r → Np/mNp = N⊗S κ(p) is injective. Hence by Lemmas 7.5 and 9.3. the
map S⊕r → Np is R-universally injective. It follows that S⊕r → N is R-universally
injective, see Algebra, Lemma 82.10. Then also the localization αq is R-universally
injective, see Algebra, Lemma 82.13. We conclude that Coker(α)q is R-flat by
Algebra, Lemma 82.7.
The implication (2) ⇒ (3) is immediate. If (3) holds, then αp is injective as a
localization of an injective module map. By Nakayama’s lemma (Algebra, Lemma
20.1) αp is surjective too. Hence (3)⇒ (4). If (4) holds, then αp is an isomorphism,
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so α is injective as Sq → Sp is injective. Namely, elements of S\p are nonzerodivisors
on S by a combination of Lemmas 7.6 and 9.3. Hence (4) ⇒ (5). Finally, if (5)
holds, then Nq is R-flat as an extension of flat modules, see Algebra, Lemma 39.13.
Hence (5) ⇒ (1) and the proof is finished. □

Lemma 10.2.05I4 Let (R,m) be a local ring. Let R → S be a ring map of finite
presentation. Let N be a finite S-module. Let q be a prime of S lying over m.
Assume that Nq is flat over R, and assume there exists a complete dévissage of
N/S/R at q. Then N is a finitely presented S-module, free as an R-module, and
there exists an isomorphism

N ∼= B⊕r1
1 ⊕ . . .⊕B⊕rn

n

as R-modules where each Bi is a smooth R-algebra with geometrically irreducible
fibres.

Proof. Let (Ai, Bi,Mi, αi, qi)i=1,...,n be the given complete dévissage. We prove
the lemma by induction on n. Note that N is finitely presented as an S-module if
and only if M1 is finitely presented as an B1-module, see Remark 6.3. Note that
Nq
∼= (M1)q1 asR-modules because (a)Nq

∼= (M1)q′
1

where q′
1 is the unique prime in

A1 lying over q1 and (b) (A1)q′
1

= (A1)q1 by Algebra, Lemma 41.11, so (c) (M1)q′
1
∼=

(M1)q1 . Hence (M1)q1 is a flat R-module. Thus we may replace (S,N) by (B1,M1)
in order to prove the lemma. By Lemma 10.1 the map α1 : B⊕r1

1 → M1 is R-
universally injective and Coker(α1)q is R-flat. Note that (Ai, Bi,Mi, αi, qi)i=2,...,n
is a complete dévissage of Coker(α1)/B1/R at q1. Hence the induction hypothesis
implies that Coker(α1) is finitely presented as a B1-module, free as an R-module,
and has a decomposition as in the lemma. This implies that M1 is finitely presented
as a B1-module, see Algebra, Lemma 5.3. It further implies that M1 ∼= B⊕r1

1 ⊕
Coker(α1) as R-modules, hence a decomposition as in the lemma. Finally, B1 is
projective as an R-module by Lemma 9.3 hence free as an R-module by Algebra,
Theorem 85.4. This finishes the proof. □

Proposition 10.3.05I5 Let f : X → S be a morphism of schemes. Let F be a
quasi-coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that the
pullback of F to V is an OV -module of finite presentation and flat over OS′,s′ .

First proof. This proof is longer but does not use the existence of a complete
dévissage. The problem is local around x and s, hence we may assume that X
and S are affine. During the proof we will finitely many times replace S by an
elementary étale neighbourhood of (S, s). The goal is then to find (after such a
replacement) an open V ⊂ X ×S Spec(OS,s) containing x such that F|V is flat
over S and finitely presented. Of course we may also replace S by Spec(OS,s) at
any point of the proof, i.e., we may assume S is a local scheme. We will prove the
proposition by induction on the integer n = dimx(Supp(Fs)).

https://stacks.math.columbia.edu/tag/05I4
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We can choose
(1) elementary étale neighbourhoods g : (X ′, x′)→ (X,x), e : (S′, s′)→ (S, s),
(2) a commutative diagram

X

f

��

X ′

��

g
oo Z ′

i
oo

π

��
Y ′

h
��

S S′eoo S′

(3) a point z′ ∈ Z ′ with i(z′) = x′, y′ = π(z′), h(y′) = s′,
(4) a finite type quasi-coherent OZ′ -module G,

as in Lemma 3.2. We are going to replace S by Spec(OS′,s′), see remarks in first
paragraph of the proof. Consider the diagram

XOS′,s′

f

��

X ′
OS′,s′

��

g
oo Z ′

OS′,s′i
oo

π

��
Y ′

OS′,s′

hxx
Spec(OS′,s′)

Here we have base changed the schemes X ′, Z ′, Y ′ over S′ via Spec(OS′,s′) → S′

and the scheme X over S via Spec(OS′,s′) → S. It is still the case that g is étale,
see Lemma 2.2. After replacing X by XOS′,s′ , X ′ by X ′

OS′,s′ , Z ′ by Z ′
OS′,s′ , and

Y ′ by Y ′
OS′,s′ we may assume we have a diagram as Lemma 3.2 where in addition

S = S′ is a local scheme with closed point s. By Lemmas 3.3 and 3.4 the result for
Y ′ → S, the sheaf π∗G, and the point y′ implies the result for X → S, F and x.
Hence we may assume that S is local and X → S is a smooth morphism of affines
with geometrically irreducible fibres of dimension n.
The base case of the induction: n = 0. As X → S is smooth with geometrically
irreducible fibres of dimension 0 we see that X → S is an open immersion, see
Descent, Lemma 25.2. As S is local and the closed point is in the image of X → S
we conclude that X = S. Thus we see that F corresponds to a finite flat OS,s
module. In this case the result follows from Algebra, Lemma 78.5 which tells us
that F is in fact finite free.
The induction step. Assume the result holds whenever the dimension of the support
in the closed fibre is < n. Write S = Spec(A), X = Spec(B) and F = Ñ for some
B-module N . Note that A is a local ring; denote its maximal ideal m. Then p = mB
is the unique minimal prime lying over m as X → S has geometrically irreducible
fibres. Finally, let q ⊂ B be the prime corresponding to x. By Lemma 10.1 we can
choose a map

α : B⊕r → N

such that κ(p)⊕r → N ⊗B κ(p) is an isomorphism. Moreover, as Nq is A-flat
the lemma also shows that α is injective and that Coker(α)q is A-flat. Set Q =
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Coker(α). Note that the support of Q/mQ does not contain p. Hence it is certainly
the case that dimq(Supp(Q/mQ)) < n. Combining everything we know about Q
we see that the induction hypothesis applies to Q. It follows that there exists
an elementary étale morphism (S′, s) → (S, s) such that the conclusion holds for
Q⊗AA′ over B⊗AA′ where A′ = OS′,s′ . After replacing A by A′ we have an exact
sequence

0→ B⊕r → N → Q→ 0

(here we use that α is injective as mentioned above) of finite B-modules and we
also get an element g ∈ B, g ̸∈ q such that Qg is finitely presented over Bg and flat
over A. Since localization is exact we see that

0→ B⊕r
g → Ng → Qg → 0

is still exact. As Bg and Qg are flat over A we conclude that Ng is flat over A, see
Algebra, Lemma 39.13, and as Bg and Qg are finitely presented over Bg the same
holds for Ng, see Algebra, Lemma 5.3. □

Second proof. We apply Proposition 5.7 to find a commutative diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that g∗F/X ′/S′ has a complete dévissage at x. (In particular S′

and X ′ are affine.) By Morphisms, Lemma 25.13 we see that g∗F is flat at x′ over
S and by Lemma 2.3 we see that it is flat at x′ over S′. Via Remark 6.5 we deduce
that

Γ(X ′, g∗F)/Γ(X ′,OX′)/Γ(S′,OS′)

has a complete dévissage at the prime of Γ(X ′,OX′) corresponding to x′. We may
base change this complete dévissage to the local ring OS′,s′ of Γ(S′,OS′) at the
prime corresponding to s′. Thus Lemma 10.2 implies that

Γ(X ′,F ′)⊗Γ(S′,OS′ ) OS′,s′

is flat over OS′,s′ and of finite presentation over Γ(X ′,OX′) ⊗Γ(S′,OS′ ) OS′,s′ . In
other words, the restriction of F to X ′×S′ Spec(OS′,s′) is of finite presentation and
flat over OS′,s′ . Since the morphism X ′ ×S′ Spec(OS′,s′) → X ×S Spec(OS′,s′) is
étale (Lemma 2.2) its image V ⊂ X ×S Spec(OS′,s′) is an open subscheme, and by
étale descent the restriction of F to V is of finite presentation and flat over OS′,s′ .
(Results used: Morphisms, Lemma 36.13, Descent, Lemma 7.3, and Morphisms,
Lemma 25.13.) □

Lemma 10.4.05M9 Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX-module of finite type. Let s ∈ S. Then the set

{x ∈ Xs | F flat over S at x}

is open in the fibre Xs.

https://stacks.math.columbia.edu/tag/05M9
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Proof. Suppose x ∈ U . Choose an elementary étale neighbourhood (S′, s′) →
(S, s) and open V ⊂ X×S Spec(OS′,s′) as in Proposition 10.3. Note that Xs′ = Xs

as κ(s) = κ(s′). If x′ ∈ V ∩Xs′ , then the pullback of F to X ×S S′ is flat over S′

at x′. Hence F is flat at x′ over S, see Morphisms, Lemma 25.13. In other words
Xs ∩ V ⊂ U is an open neighbourhood of x in U . □

Lemma 10.5.05KT Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite type,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that the
pullback of F to V is flat over OS′,s′ .

Proof. (The only difference between this and Proposition 10.3 is that we do not
assume f is of finite presentation.) The question is local on X and S, hence we
may assume X and S are affine. Write X = Spec(B), S = Spec(A) and write
B = A[x1, . . . , xn]/I. In other words we obtain a closed immersion i : X → An

S .
Denote t = i(x) ∈ An

S . We may apply Proposition 10.3 to An
S → S, the sheaf i∗F

and the point t. We obtain an elementary étale neighbourhood (S′, s′) → (S, s)
and an open subscheme

W ⊂ An
OS′,s′

such that the pullback of i∗F to W is flat over OS′,s′ . This means that V :=
W ∩

(
X ×S Spec(OS′,s′)

)
is the desired open subscheme. □

Lemma 10.6.05KU Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite type, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the fibre Xs = X ×S s′ such that the pullback of F to V is an
OV -module of finite presentation and flat over OS′,s′ .

Proof. For every point x ∈ Xs we can use Proposition 10.3 to find an elementary
étale neighbourhood (Sx, sx) → (S, s) and an open Vx ⊂ X ×S Spec(OSx,sx

) such
that x ∈ Xs = X ×S sx is contained in Vx and such that the pullback of F to Vx
is an OVx -module of finite presentation and flat over OSx,sx . In particular we may
view the fibre (Vx)sx

as an open neighbourhood of x in Xs. Because Xs is quasi-
compact we can find a finite number of points x1, . . . , xn ∈ Xs such that Xs is the
union of the (Vxi

)sxi
. Choose an elementary étale neighbourhood (S′, s′) → (S, s)

which dominates each of the neighbourhoods (Sxi
, sxi

), see More on Morphisms,

https://stacks.math.columbia.edu/tag/05KT
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Lemma 35.4. Set V =
⋃
Vi where Vi is the inverse images of the open Vxi

via the
morphism

X ×S Spec(OS′,s′) −→ X ×S Spec(OSxi
,sxi

)
By construction V contains Xs and by construction the pullback of F to V is an
OV -module of finite presentation and flat over OS′,s′ . □

Lemma 10.7.05KV Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the fibre Xs = X ×S s′ such that the pullback of F to V is flat over
OS′,s′ .

Proof. (The only difference between this and Lemma 10.6 is that we do not assume
f is of finite presentation.) For every point x ∈ Xs we can use Lemma 10.5 to find
an elementary étale neighbourhood (Sx, sx) → (S, s) and an open Vx ⊂ X ×S
Spec(OSx,sx

) such that x ∈ Xs = X ×S sx is contained in Vx and such that the
pullback of F to Vx is flat over OSx,sx

. In particular we may view the fibre (Vx)sx
as

an open neighbourhood of x in Xs. Because Xs is quasi-compact we can find a finite
number of points x1, . . . , xn ∈ Xs such that Xs is the union of the (Vxi)sxi

. Choose
an elementary étale neighbourhood (S′, s′) → (S, s) which dominates each of the
neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma 35.4. Set V =

⋃
Vi

where Vi is the inverse images of the open Vxi via the morphism

X ×S Spec(OS′,s′) −→ X ×S Spec(OSxi
,sxi

)

By construction V contains Xs and by construction the pullback of F to V is flat
over OS′,s′ . □

Lemma 10.8.05I6 Let S be a scheme. Let X be locally of finite type over S. Let
x ∈ X with image s ∈ S. If X is flat at x over S, then there exists an elementary
étale neighbourhood (S′, s′)→ (S, s) and an open subscheme

V ⊂ X ×S Spec(OS′,s′)

which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that V →
Spec(OS′,s′) is flat and of finite presentation.

Proof. The question is local on X and S, hence we may assume X and S are affine.
Write X = Spec(B), S = Spec(A) and write B = A[x1, . . . , xn]/I. In other words
we obtain a closed immersion i : X → An

S . Denote t = i(x) ∈ An
S . We may apply

Proposition 10.3 to An
S → S, the sheaf F = i∗OX and the point t. We obtain an

elementary étale neighbourhood (S′, s′)→ (S, s) and an open subscheme

W ⊂ An
OS′,s′

such that the pullback of i∗OX is flat and of finite presentation. This means that
V := W ∩

(
X ×S Spec(OS′,s′)

)
is the desired open subscheme. □
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Lemma 10.9.05I7 Let f : X → S be a morphism which is locally of finite presentation.
Let F be a quasi-coherent OX-module of finite type. If x ∈ X and F is flat at x
over S, then Fx is an OX,x-module of finite presentation.

Proof. Let s = f(x). By Proposition 10.3 there exists an elementary étale neigh-
bourhood (S′, s′) → (S, s) such that the pullback of F to X ×S Spec(OS′,s′) is of
finite presentation in a neighbourhood of the point x′ ∈ Xs′ = Xs corresponding
to x. The ring map

OX,x −→ OX×SSpec(OS′,s′ ),x′ = OX×SS′,x′

is flat and local as a localization of an étale ring map. Hence Fx is of finite presen-
tation over OX,x by descent, see Algebra, Lemma 83.2 (and also that a flat local
ring map is faithfully flat, see Algebra, Lemma 39.17). □

Lemma 10.10.05I8 Let f : X → S be a morphism which is locally of finite type. Let
x ∈ X with image s ∈ S. If f is flat at x over S, then OX,x is essentially of finite
presentation over OS,s.

Proof. We may assume X and S affine. Write X = Spec(B), S = Spec(A)
and write B = A[x1, . . . , xn]/I. In other words we obtain a closed immersion
i : X → An

S . Denote t = i(x) ∈ An
S . We may apply Lemma 10.9 to An

S → S, the
sheaf F = i∗OX and the point t. We conclude that OX,x is of finite presentation
over OAn

S
,t which implies what we want. □

11. Extending properties from an open

0B47 In this section we collect a number of results of the form: If f : X → S is a flat
morphism of schemes and f satisfies some property over a dense open of S, then f
satisfies the same property over all of S.

Lemma 11.1.081N Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let U ⊂ S be open. Assume

(1) f is locally of finite presentation,
(2) F is of finite type and flat over S,
(3) U ⊂ S is retrocompact and scheme theoretically dense,
(4) F|f−1U is of finite presentation.

Then F is of finite presentation.

Proof. The problem is local on X and S, hence we may assume X and S affine.
Write S = Spec(A) and X = Spec(B). Let N be a finite B-module such that F
is the quasi-coherent sheaf associated to N . We have U = D(f1) ∪ . . . ∪ D(fn)
for some fi ∈ A, see Algebra, Lemma 29.1. As U is schematically dense the
map A → Af1 × . . . × Afn

is injective. Pick a prime q ⊂ B lying over p ⊂ A
corresponding to x ∈ X mapping to s ∈ S. By Lemma 10.9 the module Nq is
of finite presentation over Bq. Choose a surjection φ : B⊕m → N of B-modules.
Choose k1, . . . , kt ∈ Ker(φ) and set N ′ = B⊕m/

∑
Bkj . There is a canonical

surjection N ′ → N and N is the filtered colimit of the B-modules N ′ constructed
in this manner. Thus we see that we can choose k1, . . . , kt such that (a) N ′

fi

∼= Nfi ,
i = 1, . . . , n and (b) N ′

q
∼= Nq. This in particular implies that N ′

q is flat over A.
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By openness of flatness, see Algebra, Theorem 129.4 we conclude that there exists
a g ∈ B, g ̸∈ q such that N ′

g is flat over A. Consider the commutative diagram

N ′
g

//

��

Ng

��∏
N ′
gfi

// ∏Ngfi

The bottom arrow is an isomorphism by choice of k1, . . . , kt. The left vertical arrow
is an injective map as A →

∏
Afi is injective and N ′

g is flat over A. Hence the
top horizontal arrow is injective, hence an isomorphism. This proves that Ng is of
finite presentation over Bg. We conclude by applying Algebra, Lemma 23.2. □

Lemma 11.2.081P Let f : X → S be a morphism of schemes. Let U ⊂ S be open.
Assume

(1) f is locally of finite type and flat,
(2) U ⊂ S is retrocompact and scheme theoretically dense,
(3) f |f−1U : f−1U → U is locally of finite presentation.

Then f is of locally of finite presentation.

Proof. The question is local on X and S, hence we may assume X and S affine.
Choose a closed immersion i : X → An

S and apply Lemma 11.1 to i∗OX . Some
details omitted. □

Lemma 11.3.081L Let f : X → S be a morphism of schemes which is flat and locally
of finite type. Let U ⊂ S be a dense open such that XU → U has relative dimension
≤ e, see Morphisms, Definition 29.1. If also either

(1) f is locally of finite presentation, or
(2) U ⊂ S is retrocompact,

then f has relative dimension ≤ e.

Proof. Proof in case (1). Let W ⊂ X be the open subscheme constructed and
studied in More on Morphisms, Lemmas 22.7 and 22.9. Note that every generic
point of every fibre is contained in W , hence it suffices to prove the result for W .
Since W =

⋃
d≥0 Ud, it suffices to prove that Ud = ∅ for d > e. Since f is flat and

locally of finite presentation it is open hence f(Ud) is open (Morphisms, Lemma
25.10). Thus if Ud is not empty, then f(Ud) ∩ U ̸= ∅ as desired.
Proof in case (2). We may replace S by its reduction. Then U is scheme theoretically
dense. Hence f is locally of finite presentation by Lemma 11.2. In this way we
reduce to case (1). □

Lemma 11.4.0B48 Let f : X → S be a morphism of schemes which is flat and proper.
Let U ⊂ S be a dense open such that XU → U is finite. If also either f is locally
of finite presentation or U ⊂ S is retrocompact, then f is finite.

Proof. By Lemma 11.3 the fibres of f have dimension zero. Hence f is quasi-finite
(Morphisms, Lemma 29.5) whence has finite fibres (Morphisms, Lemma 20.10).
Hence f is finite by More on Morphisms, Lemma 44.1. □

Lemma 11.5.081M Let f : X → S be a morphism of schemes and U ⊂ S an open. If
(1) f is separated, locally of finite type, and flat,
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(2) f−1(U)→ U is an isomorphism, and
(3) U ⊂ S is retrocompact and scheme theoretically dense,

then f is an open immersion.

Proof. By Lemma 11.2 the morphism f is locally of finite presentation. The image
f(X) ⊂ S is open (Morphisms, Lemma 25.10) hence we may replace S by f(X).
Thus we have to prove that f is an isomorphism. We may assume S is affine. We
can reduce to the case that X is quasi-compact because it suffices to show that any
quasi-compact open X ′ ⊂ X whose image is S maps isomorphically to S. Thus we
may assume f is quasi-compact. All the fibers of f have dimension 0, see Lemma
11.3. Hence f is quasi-finite, see Morphisms, Lemma 29.5. Let s ∈ S. Choose an
elementary étale neighbourhood g : (T, t) → (S, s) such that X ×S T = V ⨿W
with V → T finite and Wt = ∅, see More on Morphisms, Lemma 41.6. Denote
π : V ⨿W → T the given morphism. Since π is flat and locally of finite presentation,
we see that π(V ) is open in T (Morphisms, Lemma 25.10). After shrinking T we
may assume that T = π(V ). Since f is an isomorphism over U we see that π is an
isomorphism over g−1U . Since π(V ) = T this implies that π−1g−1U is contained
in V . By Morphisms, Lemma 25.15 we see that π−1g−1U ⊂ V ⨿ W is scheme
theoretically dense. Hence we deduce that W = ∅. Thus X ×S T = V is finite over
T . This implies that f is finite (after replacing S by an open neighbourhood of s),
for example by Descent, Lemma 23.23. Then f is finite locally free (Morphisms,
Lemma 48.2) and after shrinking S to a smaller open neighbourhood of s we see
that f is finite locally free of some degree d (Morphisms, Lemma 48.5). But d = 1
as is clear from the fact that the degree is 1 over the dense open U . Hence f is an
isomorphism. □

12. Flat finitely presented modules

05I9 In some cases given a ring map R→ S of finite presentation and a finitely presented
S-module N the flatness of N over R implies that N is projective as an R-module,
at least after replacing S by an étale extension. In this section we collect a some
results of this nature.

Lemma 12.1.05IA Let R be a ring. Let R → S be a finitely presented flat ring map
with geometrically integral fibres. Let q ⊂ S be a prime ideal lying over the prime
r ⊂ R. Set p = rS. Let N be a finitely presented S-module. There exists r ≥ 0 and
an S-module map

α : S⊕r −→ N

such that α : κ(p)⊕r → N ⊗S κ(p) is an isomorphism. For any such α the following
are equivalent:

(1) Nq is R-flat,
(2) there exists an f ∈ R, f ̸∈ r such that αf : S⊕r

f → Nf is Rf -universally
injective and a g ∈ S, g ̸∈ q such that Coker(α)g is R-flat,

(3) αr is Rr-universally injective and Coker(α)q is R-flat
(4) αr is injective and Coker(α)q is R-flat,
(5) αp is an isomorphism and Coker(α)q is R-flat, and
(6) αq is injective and Coker(α)q is R-flat.

Proof. To obtain α set r = dimκ(p) N ⊗S κ(p) and pick x1, . . . , xr ∈ N which form
a basis of N ⊗S κ(p). Define α(s1, . . . , sr) =

∑
sixi. This proves the existence.

https://stacks.math.columbia.edu/tag/05IA
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Fix a choice of α. We may apply Lemma 10.1 to the map αr : S⊕r
r → Nr. Hence

we see that (1), (3), (4), (5), and (6) are all equivalent. Since it is also clear that
(2) implies (3) we see that all we have to do is show that (1) implies (2).

Assume (1). By openness of flatness, see Algebra, Theorem 129.4, the set

U1 = {q′ ⊂ S | Nq′ is flat over R}

is open in Spec(S). It contains q by assumption and hence p. Because S⊕r and N
are finitely presented S-modules the set

U2 = {q′ ⊂ S | αq′ is an isomorphism}

is open in Spec(S), see Algebra, Lemma 79.2. It contains p by (5). As R → S is
finitely presented and flat the map Φ : Spec(S) → Spec(R) is open, see Algebra,
Proposition 41.8. For any prime r′ ∈ Φ(U1 ∩ U2) we see that there exists a prime
q′ lying over r′ such that Nq′ is flat and such that αq′ is an isomorphism, which
implies that α⊗κ(p′) is an isomorphism where p′ = r′S. Thus αr′ is Rr′ -universally
injective by the implication (1) ⇒ (3). Hence if we pick f ∈ R, f ̸∈ r such that
D(f) ⊂ Φ(U1∩U2) then we conclude that αf isRf -universally injective, see Algebra,
Lemma 82.12. The same reasoning also shows that for any q′ ∈ U1∩Φ−1(Φ(U1∩U2))
the module Coker(α)q′ is R-flat. Note that q ∈ U1 ∩ Φ−1(Φ(U1 ∩ U2)). Hence we
can find a g ∈ S, g ̸∈ q such that D(g) ⊂ U1 ∩ Φ−1(Φ(U1 ∩ U2)) and we win. □

Lemma 12.2.05IB Let R→ S be a ring map of finite presentation. Let N be a finitely
presented S-module flat over R. Let r ⊂ R be a prime ideal. Assume there exists a
complete dévissage of N/S/R over r. Then there exists an f ∈ R, f ̸∈ r such that

Nf ∼= B⊕r1
1 ⊕ . . .⊕B⊕rn

n

as R-modules where each Bi is a smooth Rf -algebra with geometrically irreducible
fibres. Moreover, Nf is projective as an Rf -module.

Proof. Let (Ai, Bi,Mi, αi)i=1,...,n be the given complete dévissage. We prove the
lemma by induction on n. Note that the assertions of the lemma are entirely about
the structure of N as an R-module. Hence we may replace N by M1, and we may
think of M1 as a B1-module. See Remark 6.3 in order to see why M1 is of finite
presentation as a B1-module. By Lemma 12.1 we may, after replacing R by Rf for
some f ∈ R, f ̸∈ r, assume the map α1 : B⊕r1

1 → M1 is R-universally injective.
Since M1 and B⊕r1

1 are R-flat and finitely presented as B1-modules we see that
Coker(α1) is R-flat (Algebra, Lemma 82.7) and finitely presented as a B1-module.
Note that (Ai, Bi,Mi, αi)i=2,...,n is a complete dévissage of Coker(α1). Hence the
induction hypothesis implies that, after replacing R by Rf for some f ∈ R, f ̸∈ r, we
may assume that Coker(α1) has a decomposition as in the lemma and is projective.
In particular M1 = B⊕r1

1 ⊕ Coker(α1). This proves the statement regarding the
decomposition. The statement on projectivity follows as B1 is projective as an
R-module by Lemma 9.3. □

Remark 12.3.05IC There is a variant of Lemma 12.2 where we weaken the flatness
condition by assuming only that N is flat at some given prime q lying over r
but where we strengthen the dévissage condition by assuming the existence of a
complete dévissage at q. Compare with Lemma 10.2.

The following is the main result of this section.
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Proposition 12.4.05ID Let f : X → S be a morphism of schemes. Let F be a
quasi-coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite presentation, and
(3) F is flat at x over S.

Then there exists a commutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

whose horizontal arrows are elementary étale neighbourhoods such that X ′, S′ are
affine and such that Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module.

Proof. By openness of flatness, see More on Morphisms, Theorem 15.1 we may
replace X by an open neighbourhood of x and assume that F is flat over S. Next,
we apply Proposition 5.7 to find a diagram as in the statement of the proposition
such that g∗F/X ′/S′ has a complete dévissage over s′. (In particular S′ and X ′

are affine.) By Morphisms, Lemma 25.13 we see that g∗F is flat over S and by
Lemma 2.3 we see that it is flat over S′. Via Remark 6.5 we deduce that

Γ(X ′, g∗F)/Γ(X ′,OX′)/Γ(S′,OS′)
has a complete dévissage over the prime of Γ(S′,OS′) corresponding to s′. Thus
Lemma 12.2 implies that the result of the proposition holds after replacing S′ by a
standard open neighbourhood of s′. □

In the rest of this section we prove a number of variants on this result. The first is
a “global” version.

Lemma 12.5.05KW Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite presentation, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of schemes

X

��

X ′
g

oo

��
S S′oo

such that g is étale, Xs ⊂ g(X ′), the schemes X ′, S′ are affine, and such that
Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module.

Proof. For every point x ∈ Xs we can use Proposition 12.4 to find a commutative
diagram

(X,x)

��

(Yx, yx)
gx

oo

��
(S, s) (Sx, sx)oo

https://stacks.math.columbia.edu/tag/05ID
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whose horizontal arrows are elementary étale neighbourhoods such that Yx, Sx are
affine and such that Γ(Yx, g∗

xF) is a projective Γ(Sx,OSx)-module. In particular
gx(Yx)∩Xs is an open neighbourhood of x in Xs. Because Xs is quasi-compact we
can find a finite number of points x1, . . . , xn ∈ Xs such that Xs is the union of the
gxi

(Yxi
) ∩ Xs. Choose an elementary étale neighbourhood (S′, s′) → (S, s) which

dominates each of the neighbourhoods (Sxi
, sxi

), see More on Morphisms, Lemma
35.4. We may also assume that S′ is affine. Set X ′ =

∐
Yxi ×Sxi

S′ and endow it
with the obvious morphism g : X ′ → X. By construction g(X ′) contains Xs and

Γ(X ′, g∗F) =
⊕

Γ(Yxi
, g∗
xi
F)⊗Γ(Sxi

,OSxi
) Γ(S′,OS′).

This is a projective Γ(S′,OS′)-module, see Algebra, Lemma 94.1. □

The following two lemmas are reformulations of the results above in case F = OX .

Lemma 12.6.05IE Let f : X → S be locally of finite presentation. Let x ∈ X with
image s ∈ S. If f is flat at x over S, then there exists a commutative diagram of
pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

whose horizontal arrows are elementary étale neighbourhoods such that X ′, S′ are
affine and such that Γ(X ′,OX′) is a projective Γ(S′,OS′)-module.

Proof. This is a special case of Proposition 12.4. □

Lemma 12.7.05KX Let f : X → S be of finite presentation. Let s ∈ S. If X is
flat over S at all points of Xs, then there exists an elementary étale neighbourhood
(S′, s′)→ (S, s) and a commutative diagram of schemes

X

��

X ′
g

oo

��
S S′oo

with g étale, Xs ⊂ g(X ′), such that X ′, S′ are affine, and such that Γ(X ′,OX′) is
a projective Γ(S′,OS′)-module.

Proof. This is a special case of Lemma 12.5. □

The following lemmas explain consequences of Proposition 12.4 in case we only
assume the morphism and the sheaf are of finite type (and not necessarily of finite
presentation).

Lemma 12.8.05KY Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite type, and
(3) F is flat at x over S.

https://stacks.math.columbia.edu/tag/05IE
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Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, κ(x) = κ(x′), the scheme X ′ is affine
of finite presentation over OS′,s′ , the sheaf g∗F is of finite presentation over OX′ ,
and such that Γ(X ′, g∗F) is a free OS′,s′-module.

Proof. To prove the lemma we may replace (S, s) by any elementary étale neigh-
bourhood, and we may also replace S by Spec(OS,s). Hence by Proposition 10.3
we may assume that F is finitely presented and flat over S in a neighbourhood of
x. In this case the result follows from Proposition 12.4 because Algebra, Theorem
85.4 assures us that projective = free over a local ring. □

Lemma 12.9.05KZ Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite type,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, κ(x) = κ(x′), the scheme X ′ is affine,
and such that Γ(X ′, g∗F) is a free OS′,s′-module.

Proof. (The only difference with Lemma 12.8 is that we do not assume f is of
finite presentation.) The problem is local on X and S. Hence we may assume X
and S are affine, say X = Spec(B) and S = Spec(A). Since B is a finite type A-
algebra we can find a surjection A[x1, . . . , xn]→ B. In other words, we can choose
a closed immersion i : X → An

S . Set t = i(x) and G = i∗F . Note that Gt ∼= Fx are
OS,s-modules. Hence G is flat over S at t. We apply Lemma 12.8 to the morphism
An
S → S, the point t, and the sheaf G. Thus we can find an elementary étale

neighbourhood (S′, s′)→ (S, s) and a commutative diagram of pointed schemes

(An
S , t)

��

(Y, y)
h

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such that Y → An
OS′,s′ is étale, κ(t) = κ(y), the scheme Y is affine, and such that

Γ(Y, h∗G) is a projective OS′,s′ -module. Then a solution to the original problem is
given by the closed subscheme X ′ = Y ×An

S
X of Y . □

https://stacks.math.columbia.edu/tag/05KZ
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Lemma 12.10.05L0 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite type, and
(3) F is flat over S at all points of Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of schemes

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is affine
of finite presentation over OS′,s′ , the sheaf g∗F is of finite presentation over OX′ ,
and such that Γ(X ′, g∗F) is a free OS′,s′-module.

Proof. For every point x ∈ Xs we can use Lemma 12.8 to find an elementary étale
neighbourhood (Sx, sx)→ (S, s) and a commutative diagram

(X,x)

��

(Yx, yx)
gx

oo

��
(S, s) (Spec(OSx,sx

), sx)oo

such that Yx → X ×S Spec(OSx,sx
) is étale, κ(x) = κ(yx), the scheme Yx is affine

of finite presentation over OSx,sx , the sheaf g∗
xF is of finite presentation over OYx ,

and such that Γ(Yx, g∗
xF) is a free OSx,sx -module. In particular gx((Yx)sx) is an

open neighbourhood of x in Xs. Because Xs is quasi-compact we can find a finite
number of points x1, . . . , xn ∈ Xs such that Xs is the union of the gxi

((Yxi
)sxi

).
Choose an elementary étale neighbourhood (S′, s′)→ (S, s) which dominates each
of the neighbourhoods (Sxi

, sxi
), see More on Morphisms, Lemma 35.4. Set

X ′ =
∐

Yxi ×Spec(OSxi
,sxi

) Spec(OS′,s′)

and endow it with the obvious morphism g : X ′ → X. By construction Xs = g(X ′
s′)

and

Γ(X ′, g∗F) =
⊕

Γ(Yxi
, g∗
xi
F)⊗OSxi

,sxi
OS′,s′ .

This is a free OS′,s′ -module as a direct sum of base changes of free modules. Some
minor details omitted. □

Lemma 12.11.05L1 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over S at all points of Xs.

https://stacks.math.columbia.edu/tag/05L0
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Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of schemes

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is affine,
and such that Γ(X ′, g∗F) is a free OS′,s′-module.

Proof. (The only difference with Lemma 12.10 is that we do not assume f is of
finite presentation.) For every point x ∈ Xs we can use Lemma 12.9 to find an
elementary étale neighbourhood (Sx, sx)→ (S, s) and a commutative diagram

(X,x)

��

(Yx, yx)
gx

oo

��
(S, s) (Spec(OSx,sx

), sx)oo

such that Yx → X ×S Spec(OSx,sx
) is étale, κ(x) = κ(yx), the scheme Yx is affine,

and such that Γ(Yx, g∗
xF) is a free OSx,sx

-module. In particular gx((Yx)sx
) is an

open neighbourhood of x in Xs. Because Xs is quasi-compact we can find a finite
number of points x1, . . . , xn ∈ Xs such that Xs is the union of the gxi((Yxi)sxi

).
Choose an elementary étale neighbourhood (S′, s′)→ (S, s) which dominates each
of the neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma 35.4. Set

X ′ =
∐

Yxi
×Spec(OSxi

,sxi
) Spec(OS′,s′)

and endow it with the obvious morphism g : X ′ → X. By construction Xs = g(X ′
s′)

and
Γ(X ′, g∗F) =

⊕
Γ(Yxi

, g∗
xi
F)⊗OSxi

,sxi
OS′,s′ .

This is a free OS′,s′ -module as a direct sum of base changes of free modules. □

13. Flat finite type modules, Part II

05IF We will need the following lemma.

Lemma 13.1.0CU6 Let R → S be a ring map of finite presentation. Let N be a
finitely presented S-module. Let q ⊂ S be a prime ideal lying over p ⊂ R. Set
S = S ⊗R κ(p), q = qS, and N = N ⊗R κ(p). Then we can find a g ∈ S with g ̸∈ q
such that g ∈ r for all r ∈ AssS(N) such that r ̸⊂ q.

Proof. Namely, if AssS(N) = {r1, . . . , rn} (finiteness by Algebra, Lemma 63.5),
then after renumbering we may assume that

r1 ⊂ q, . . . , rr ⊂ q, rr+1 ̸⊂ q, . . . , rn ̸⊂ q

Since q is a prime ideal we see that the product rr+1 . . . rn is not contained in q and
hence we can pick an element a of S contained in rr+1, . . . , rn but not in q. If there
exists g ∈ S mapping to a, then g works. In general we can find a nonzero element
λ ∈ κ(p) such that λa is the image of a g ∈ S. □

The following lemma has a slightly stronger variant Lemma 13.4 below.

https://stacks.math.columbia.edu/tag/0CU6
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Lemma 13.2.05IG Let R→ S be a ring map of finite presentation. Let N be a finitely
presented S-module which is flat as an R-module. Let M be an R-module. Let q be
a prime of S lying over p ⊂ R. Then

q ∈WeakAssS(M ⊗R N)⇔
(
p ∈WeakAssR(M) and q ∈ AssS(N)

)
Here S = S ⊗R κ(p), q = qS, and N = N ⊗R κ(p).

Proof. Pick g ∈ S as in Lemma 13.1. Apply Proposition 12.4 to the morphism of
schemes Spec(Sg)→ Spec(R), the quasi-coherent module associated to Ng, and the
points corresponding to the primes qSg and p. Translating into algebra we obtain
a commutative diagram of rings

S // Sg // S′

R

__ OO

// R′

OO q qSg q′

p p′

endowed with primes as shown, the horizontal arrows are étale, and N ⊗S S′ is
projective as an R′-module. Set N ′ = N ⊗S S′, M ′ = M ⊗R R′, S′ = S′ ⊗R′ κ(q′),
q′ = q′S

′, and
N

′ = N ′ ⊗R′ κ(p′) = N ⊗S S
′

By Lemma 2.8 we have
WeakAssS′(M ′ ⊗R′ N ′) = (Spec(S′)→ Spec(S))−1WeakAssS(M ⊗R N)

WeakAssR′(M ′) = (Spec(R′)→ Spec(R))−1WeakAssR(M)

Ass
S

′(N ′) = (Spec(S′)→ Spec(S))−1AssS(N)

Use Algebra, Lemma 66.9 for N and N
′. In particular we have

q ∈WeakAssS(M ⊗R N)⇔ q′ ∈WeakAssS′(M ′ ⊗R′ N ′)
p ∈WeakAssR(M)⇔ p′ ∈WeakAssR′(M ′)

q ∈ AssS(N)⇔ q′ ∈WeakAss
S

′(N ′)

Our careful choice of g and the formula for Ass
S

′(N ′) above shows that

(13.2.1)0CU7 if r′ ∈ Ass
S

′(N ′) lies over r ⊂ S then r ⊂ q

This will be a key observation later in the proof. We will use the characterization of
weakly associated primes given in Algebra, Lemma 66.2 without further mention.

Suppose that q ̸∈ AssS(N). Then q′ ̸∈ Ass
S

′(N ′). By Algebra, Lemmas 63.9, 63.5,
and 15.2 there exists an element a′ ∈ q′ which is not a zerodivisor on N

′. After
replacing a′ by λa′ for some nonzero λ ∈ κ(p) we can find a′ ∈ q′ mapping to a′.
By Lemma 7.6 the map a′ : N ′

p′ → N ′
p′ is R′

p′ -universally injective. In particular
we see that a′ : M ′⊗R′ N ′ →M ′⊗R′ N ′ is injective after localizing at p′ and hence
after localizing at q′. Clearly this implies that q′ ̸∈ WeakAssS′(M ′ ⊗R′ N ′). We
conclude that q ∈WeakAssS(M ⊗R N) implies q ∈ AssS(N).
Assume q ∈ WeakAssS(M ⊗R N). We want to show p ∈ WeakAssS(M). Let
z ∈ M ⊗R N be an element such that q is minimal over J = AnnS(z). Let fi ∈ p,
i ∈ I be a set of generators of the ideal p. Since q lies over p, for every i we

https://stacks.math.columbia.edu/tag/05IG
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can choose an ni ≥ 1 and gi ∈ S, gi ̸∈ q with gif
ni
i ∈ J , i.e., gifni

i z = 0. Let
z′ ∈ (M ′ ⊗R′ N ′)p′ be the image of z. Observe that z′ is nonzero because z has
nonzero image in (M ⊗R N)q and because Sq → S′

q′ is faithfully flat. We claim
that fni

i z′ = 0.
Proof of the claim: Let g′

i ∈ S′ be the image of gi. By the key observation (13.2.1)
we find that the image g′

i ∈ S
′ is not contained in r′ for any r′ ∈ Ass

S
′(N). Hence

by Lemma 7.6 we see that g′
i : N ′

p′ → N ′
p′ is R′

p′ -universally injective. In particular
we see that g′

i : M ′ ⊗R′ N ′ → M ′ ⊗R′ N ′ is injective after localizating at p′. The
claim follows because gifni

i z′ = 0.
Our claim shows that the annihilator of z′ in R′

p′ contains the elements fni
i . As

R → R′ is étale we have p′R′
p′ = pR′

p′ by Algebra, Lemma 143.5. Hence the
annihilator of z′ in R′

p′ has radical equal to p′Rp′ (here we use z′ is not zero). On
the other hand

z′ ∈ (M ′ ⊗R′ N ′)p′ = M ′
p′ ⊗R′

p′
N ′

p′

The module N ′
p′ is projective over the local ring R′

p′ and hence free (Algebra, The-
orem 85.4). Thus we can find a finite free direct summand F ′ ⊂ N ′

p′ such that z′ ∈
M ′

p′ ⊗R′
p′
F ′. If F ′ has rank n, then we deduce that p′R′

p′ ∈WeakAssR′
p′

(M ′
p′

⊕n).
This implies p′R′

p′ ∈ WeakAss(M ′
p′) for example by Algebra, Lemma 66.4. Then

p′ ∈ WeakAssR′(M ′) which in turn gives p ∈ WeakAssR(M). This finishes the
proof of the implication “⇒” of the equivalence of the lemma.
Assume that p ∈ WeakAssR(M) and q ∈ AssS(N). We want to show that q is
weakly associated to M ⊗R N . Note that q′ is a maximal element of Ass

S
′(N ′).

This is a consequence of (13.2.1) and the fact that there are no inclusions among
the primes of S′ lying over q (as fibres of étale morphisms are discrete Morphisms,
Lemma 36.7). Thus, after replacing R,S, p, q,M,N by R′, S′, p′, q′,M ′, N ′ we may
assume, in addition to the assumptions of the lemma, that

(1) p ∈WeakAssR(M),
(2) q ∈ AssS(N),
(3) N is projective as an R-module, and
(4) q is maximal in AssS(N).

There is one more reduction, namely, we may replace R,S,M,N by their localiza-
tions at p. This leads to one more condition, namely,

(5) R is a local ring with maximal ideal p.
We will finish by showing that (1) – (5) imply q ∈WeakAss(M ⊗R N).
Since R is local and p ∈ WeakAssR(M) we can pick a y ∈ M whose annihilator
I has radical equal to p. Write q = (g1, . . . , gn) for some gi ∈ S. Choose gi ∈ S
mapping to gi. Then q = pS + g1S + . . .+ gnS. Consider the map

Ψ : N/IN −→ (N/IN)⊕n, z 7−→ (g1z, . . . , gnz).
This is a homomorphism of projective R/I-modules. The local ring R/I is auto-
associated (More on Algebra, Definition 15.1) as p/I is locally nilpotent. The map
Ψ ⊗ κ(p) is not injective, because q ∈ AssS(N). Hence More on Algebra, Lemma
15.4 implies Ψ is not injective. Pick z ∈ N/IN nonzero in the kernel of Ψ. The
annihilator J = AnnS(z) contains IS and gi by construction. Thus

√
J ⊂ S

contains q. Let s ⊂ S be a prime minimal over J . Then q ⊂ s, s lies over p, and
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s ∈ WeakAssS(N/IN). The last fact by definition of weakly associated primes.
Apply the “⇒” part of the lemma (which we’ve already proven) to the ring map
R → S and the modules R/I and N to conclude that s ∈ AssS(N). Since q ⊂ s
the maximality of q, see condition (4) above, implies that q = s. This shows that
q = s and we conlude what we want. □

Lemma 13.3.05IH Let S be a scheme. Let f : X → S be locally of finite type. Let
x ∈ X with image s ∈ S. Let F be a finite type quasi-coherent sheaf on X. Let G
be a quasi-coherent sheaf on S. If F is flat at x over S, then

x ∈WeakAssX(F ⊗OX
f∗G)⇔ s ∈WeakAssS(G) and x ∈ AssXs

(Fs).

Proof. In this paragraph we reduce to f being of finite presentation. The question
is local on X and S, hence we may assume X and S are affine. Write X = Spec(B),
S = Spec(A) and write B = A[x1, . . . , xn]/I. In other words we obtain a closed
immersion i : X → An

S over S. Denote t = i(x) ∈ An
S . Note that i∗F is a finite

type quasi-coherent sheaf on An
S which is flat at t over S and note that

i∗(F ⊗OX
f∗G) = i∗F ⊗OAn

S

p∗G

where p : An
S → S is the projection. Note that t is a weakly associated point of

i∗(F ⊗OX
f∗G) if and only if x is a weakly associated point of F ⊗OX

f∗G, see
Divisors, Lemma 6.3. Similarly x ∈ AssXs

(Fs) if and only if t ∈ AssAn
s
((i∗F)s)

(see Algebra, Lemma 63.14). Hence it suffices to prove the lemma in case X = An
S .

Thus we may assume that X → S is of finite presentation.

In this paragraph we reduce to F being of finite presentation and flat over S.
Choose an elementary étale neighbourhood e : (S′, s′) → (S, s) and an open V ⊂
X ×S Spec(OS′,s′) as in Proposition 10.3. Let x′ ∈ X ′ = X ×S S′ be the unique
point mapping to x and s′. Then it suffices to prove the statement for X ′ → S′,
x′, s′, (X ′ → X)∗F , and e∗G, see Lemma 2.8. Let v ∈ V the unique point
mapping to x′ and let s′ ∈ Spec(OS′,s′) be the closed point. Then OV,v = OX′,x′

and OSpec(OS′,s′ ),s′ = OS′,s′ and similarly for the stalks of pullbacks of F and
G. Also Vs′ ⊂ X ′

s′ is an open subscheme. Since the condition of being a weakly
associated point depend only on the stalk of the sheaf, we may replace X ′ → S′,
x′, s′, (X ′ → X)∗F , and e∗G by V → Spec(OS′,s′), v, s′, (V → X)∗F , and
(Spec(OS′,s′)→ S)∗G. Thus we may assume that f is of finite presentation and F
of finite presentation and flat over S.

Assume f is of finite presentation and F of finite presentation and flat over S.
After shrinking X and S to affine neighbourhoods of x and s, this case is handled
by Lemma 13.2. □

Lemma 13.4.05II Let R→ S be a ring map which is essentially of finite type. Let N
be a localization of a finite S-module flat over R. Let M be an R-module. Then

WeakAssS(M ⊗R N) =
⋃

p∈WeakAssR(M)
AssS⊗Rκ(p)(N ⊗R κ(p))

Proof. This lemma is a translation of Lemma 13.3 into algebra. Details of trans-
lation omitted. □

Lemma 13.5.05IJ Let f : X → S be a morphism which is locally of finite type.
Let F be a finite type quasi-coherent sheaf on X which is flat over S. Let G be a
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quasi-coherent sheaf on S. Then we have

WeakAssX(F ⊗OX
f∗G) =

⋃
s∈WeakAssS(G)

AssXs
(Fs)

Proof. Immediate consequence of Lemma 13.3. □

Theorem 13.6.05IK Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Assume

(1) X → S is locally of finite presentation,
(2) F is an OX-module of finite type, and
(3) the set of weakly associated points of S is locally finite in S.

Then U = {x ∈ X | F flat at x over S} is open in X and F|U is an OU -module of
finite presentation and flat over S.

Proof. Let x ∈ X be such that F is flat at x over S. We have to find an open
neighbourhood of x such that F restricts to a S-flat finitely presented module on
this neighbourhood. The problem is local on X and S, hence we may assume that
X and S are affine. As Fx is a finitely presented OX,x-module by Lemma 10.9 we
conclude from Algebra, Lemma 126.5 there exists a finitely presented OX -module
F ′ and a map φ : F ′ → F which induces an isomorphism φx : F ′

x → Fx. In
particular we see that F ′ is flat over S at x, hence by openness of flatness More
on Morphisms, Theorem 15.1 we see that after shrinking X we may assume that
F ′ is flat over S. As F is of finite type after shrinking X we may assume that
φ is surjective, see Modules, Lemma 9.4 or alternatively use Nakayama’s lemma
(Algebra, Lemma 20.1). By Lemma 13.5 we have

WeakAssX(F ′) ⊂
⋃

s∈WeakAss(S)
AssXs

(F ′
s)

As WeakAss(S) is finite by assumption and since AssXs(F ′
s) is finite by Divisors,

Lemma 2.5 we conclude that WeakAssX(F ′) is finite. Using Algebra, Lemma 15.2
we may, after shrinking X once more, assume that WeakAssX(F ′) is contained in
the generalization of x. Now consider K = Ker(φ). We have WeakAssX(K) ⊂
WeakAssX(F ′) (by Divisors, Lemma 5.4) but on the other hand, φx is an isomor-
phism, also φx′ is an isomorphism for all x′ ⇝ x. We conclude that WeakAssX(K) =
∅ whence K = 0 by Divisors, Lemma 5.5. □

Lemma 13.7.05IL Let R→ S be a ring map of finite presentation. Let M be a finite
S-module. Assume WeakAssS(S) is finite. Then

U = {q ⊂ S |Mq flat over R}

is open in Spec(S) and for every g ∈ S such that D(g) ⊂ U the localization Mg is
a finitely presented Sg-module flat over R.

Proof. Follows immediately from Theorem 13.6. □

Lemma 13.8.05IM Let f : X → S be a morphism of schemes which is locally of finite
type. Assume the set of weakly associated points of S is locally finite in S. Then
the set of points x ∈ X where f is flat is an open subscheme U ⊂ X and U → S is
flat and locally of finite presentation.

Proof. The problem is local on X and S, hence we may assume that X and S
are affine. Then X → S corresponds to a finite type ring map A → B. Choose
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a surjection A[x1, . . . , xn] → B and consider B as an A[x1, . . . , xn]-module. An
application of Lemma 13.7 finishes the proof. □

Lemma 13.9.05IN Let f : X → S be a morphism of schemes which is locally of finite
type and flat. If S is integral, then f is locally of finite presentation.

Proof. Special case of Lemma 13.8. □

Proposition 13.10.053G Let R be a domain. Let R→ S be a ring map of finite type.
Let M be a finite S-module.

(1) If S is flat over R, then S is a finitely presented R-algebra.
(2) If M is flat as an R-module, then M is finitely presented as an S-module.

Proof. Part (1) is a special case of Lemma 13.9. For Part (2) choose a surjection
R[x1, . . . , xn] → S. By Lemma 13.7 we find that M is finitely presented as an
R[x1, . . . , xn]-module. We conclude by Algebra, Lemma 6.4. □

Lemma 13.11 (Finite type version of Theorem 13.6).05IQ Let f : X → S be a
morphism of schemes. Let F be a quasi-coherent OX-module. Assume

(1) X → S is locally of finite type,
(2) F is an OX-module of finite type, and
(3) the set of weakly associated points of S is locally finite in S.

Then U = {x ∈ X | F flat at x over S} is open in X and F|U is flat over S and
locally finitely presented relative to S (see More on Morphisms, Definition 58.1).

Proof. The question is local on X and S. Thus we may assume X and S are affine.
Then we may choose a closed immersion i : X → An

S . We apply Theorem 13.6 to
X ′ = An

S → S and the quasi-coherent module F ′ = i∗F of finite type and we find
that

U ′ = {x′ ∈ X ′ | F ′ flat at x′ over S}

is open in X ′ and that F ′|U ′ is of finite presentation. Since F ′ restricts to zero on
X ′ \ i(X) and since F ′

i(x)
∼= Fx for all x ∈ X we see that

U ′ = i(U)⨿ (X ′ \ i(X))

Hence U = i−1(U ′) is open. Moreover, it is clear that F ′|U ′ = (i|U )∗(F|U ). Hence
we conclude that F|U is finitely presented relative to S by More on Morphisms,
Lemmas 58.3 and 58.4. □

Lemma 13.12.05IR Let R → S be a ring map of finite type. Let M be a finite
S-module. Assume WeakAssR(R) is finite. Then

U = {q ⊂ S |Mq flat over R}

is open in Spec(S) and for every g ∈ S such that D(g) ⊂ U the localization Mg is
flat over R and an Sg-module finitely presented relative to R (see More on Algebra,
Definition 80.2).

Proof. This is Lemma 13.11 translated into algebra. □
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14. Examples of relatively pure modules

05IS In the short section we discuss some examples of results that will serve as motivation
for the notion of a relatively pure module and the concept of an impurity which we
will introduce later. Each of the examples is stated as a lemma. Note the similarity
with the condition on associated primes to the conditions appearing in Lemmas
7.4, 8.3, 8.4, and 9.1. See also Algebra, Lemma 65.1 for a discussion.

Lemma 14.1.05FV Let R be a local ring with maximal ideal m. Let R → S be a ring
map. Let N be an S-module. Assume

(1) N is projective as an R-module, and
(2) S/mS is Noetherian and N/mN is a finite S/mS-module.

Then for any prime q ⊂ S which is an associated prime of N⊗Rκ(p) where p = R∩q
we have q + mS ̸= S.

Proof. Note that the hypotheses of Lemmas 7.1 and 7.6 are satisfied. We will
use the conclusions of these lemmas without further mention. Let Σ ⊂ S be the
multiplicative set of elements which are not zerodivisors on N/mN . The map
N → Σ−1N is R-universally injective. Hence we see that any q ⊂ S which is
an associated prime of N ⊗R κ(p) is also an associated prime of Σ−1N ⊗R κ(p).
Clearly this implies that q corresponds to a prime of Σ−1S. Thus q ⊂ q′ where q′

corresponds to an associated prime of N/mN and we win. □

The following lemma gives another (slightly silly) example of this phenomenon.

Lemma 14.2.05IT Let R be a ring. Let I ⊂ R be an ideal. Let R→ S be a ring map.
Let N be an S-module. If N is I-adically complete, then for any R-module M and
for any prime q ⊂ S which is an associated prime of N ⊗RM we have q+ IS ̸= S.

Proof. Let S∧ denote the I-adic completion of S. Note that N is an S∧-module,
hence also N ⊗R M is an S∧-module. Let z ∈ N ⊗R M be an element such that
q = AnnS(z). Since z ̸= 0 we see that AnnS∧(z) ̸= S∧. Hence qS∧ ̸= S∧. Hence
there exists a maximal ideal m ⊂ S∧ with qS∧ ⊂ m. Since IS∧ ⊂ m by Algebra,
Lemma 96.6 we win. □

Note that the following lemma gives an alternative proof of Lemma 14.1 as a pro-
jective module over a local ring is free, see Algebra, Theorem 85.4.

Lemma 14.3.05IU Let R be a local ring with maximal ideal m. Let R → S be a ring
map. Let N be an S-module. Assume N is isomorphic as an R-module to a direct
sum of finite R-modules. Then for any R-module M and for any prime q ⊂ S
which is an associated prime of N ⊗RM we have q + mS ̸= S.

Proof. Write N =
⊕

i∈IMi with each Mi a finite R-module. Let M be an R-
module and let q ⊂ S be an associated prime of N ⊗R M such that q + mS = S.
Let z ∈ N ⊗R M be an element with q = AnnS(z). After modifying the direct
sum decomposition a little bit we may assume that z ∈M1⊗RM for some element
1 ∈ I. Write 1 = f +

∑
xjgj for some f ∈ q, xj ∈ m, and gj ∈ S. For any g ∈ S

denote g′ the R-linear map

M1 → N
g−→ N →M1

where the first arrow is the inclusion map, the second arrow is multiplication by
g and the third arrow is the projection map. Because each xj ∈ R we obtain the
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equality
f ′ +

∑
xjg

′
j = idM1 ∈ EndR(M1)

By Nakayama’s lemma (Algebra, Lemma 20.1) we see that f ′ is surjective, hence
by Algebra, Lemma 16.4 we see that f ′ is an isomorphism. In particular the map

M1 ⊗RM → N ⊗RM
f−→ N ⊗RM →M1 ⊗RM

is an isomorphism. This contradicts the assumption that fz = 0. □

Lemma 14.4.05IV Let R be a henselian local ring with maximal ideal m. Let R→ S be
a ring map. Let N be an S-module. Assume N is countably generated and Mittag-
Leffler as an R-module. Then for any R-module M and for any prime q ⊂ S which
is an associated prime of N ⊗RM we have q + mS ̸= S.

Proof. This lemma reduces to Lemma 14.3 by Algebra, Lemma 153.13. □

Suppose f : X → S is a morphism of schemes and F is a quasi-coherent module on
X. Let ξ ∈ AssX/S(F) and let Z = {ξ}. Picture

ξ_

��

Z //

��

X

f

��
f(ξ) S

Note that f(Z) ⊂ {f(ξ)} and that f(Z) is closed if and only if equality holds, i.e.,
f(Z) = {f(ξ)}. It follows from Lemma 14.1 that if S, X are affine, the fibres Xs are
Noetherian, F is of finite type, and Γ(X,F) is a projective Γ(S,OS)-module, then
f(Z) = {f(ξ)} is a closed subset. Slightly different analogous statements holds for
the cases described in Lemmas 14.2, 14.3, and 14.4.

15. Impurities

05IW We want to formalize the phenomenon of which we gave examples in Section 14
in terms of specializations of points of AssX/S(F). We also want to work locally
around a point s ∈ S. In order to do so we make the following definitions.

Situation 15.1.05FW Here S, X are schemes and f : X → S is a finite type morphism.
Also, F is a finite type quasi-coherent OX -module. Finally s is a point of S.

In this situation consider a morphism g : T → S, a point t ∈ T with g(t) = s, a
specialization t′ ⇝ t, and a point ξ ∈ XT in the base change of X lying over t′.
Picture

(15.1.1)05IX

ξ_

��
t′ // t � // s

XT

��

// X

��
T

g // S

Moreover, denote FT the pullback of F to XT .

Definition 15.2.05IY In Situation 15.1 we say a diagram (15.1.1) defines an impurity
of F above s if ξ ∈ AssXT /T (FT ) and {ξ}∩Xt = ∅. We will indicate this by saying
“let (g : T → S, t′ ⇝ t, ξ) be an impurity of F above s”.
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Lemma 15.3.05FX In Situation 15.1. If there exists an impurity of F above s, then
there exists an impurity (g : T → S, t′ ⇝ t, ξ) of F above s such that g is locally of
finite presentation and t a closed point of the fibre of g above s.

Proof. Let (g : T → S, t′ ⇝ t, ξ) be any impurity of F above s. We apply Limits,
Lemma 14.1 to t ∈ T and Z = {ξ} to obtain an open neighbourhood V ⊂ T of t, a
commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that
(1) the morphism b : T ′ → S is locally of finite presentation,
(2) we have Z ′ ∩Xa(t) = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

As t′ specializes to t we may replace T by the open neighbourhood V of t. Thus
we have a commutative diagram

XT

��

// XT ′

��

// X

��
T

a // T ′ b // S

where b ◦ a = g. Let ξ′ ∈ XT ′ denote the image of ξ. By Divisors, Lemma 7.3
we see that ξ′ ∈ AssXT ′/T ′(FT ′). Moreover, by construction the closure of {ξ′} is
contained in the closed subset Z ′ which avoids the fibre Xa(t). In this way we see
that (T ′ → S, a(t′)⇝ a(t), ξ′) is an impurity of F above s.

Thus we may assume that g : T → S is locally of finite presentation. Let Z = {ξ}.
By assumption Zt = ∅. By More on Morphisms, Lemma 24.1 this means that
Zt′′ = ∅ for t′′ in an open subset of {t}. Since the fibre of T → S over s is a
Jacobson scheme, see Morphisms, Lemma 16.10 we find that there exist a closed
point t′′ ∈ {t} such that Zt′′ = ∅. Then (g : T → S, t′ ⇝ t′′, ξ) is the desired
impurity. □

Lemma 15.4.05IZ In Situation 15.1. Let (g : T → S, t′ ⇝ t, ξ) be an impurity of F
above s. Assume T = limi∈I Ti is a directed limit of affine schemes over S. Then
for some i the triple (Ti → S, t′i ⇝ ti, ξi) is an impurity of F above s.

Proof. The notation in the statement means this: Let pi : T → Ti be the projection
morphisms, let ti = pi(t) and t′i = pi(t′). Finally ξi ∈ XTi

is the image of ξ. By
Divisors, Lemma 7.3 it is true that ξi is a point of the relative assassin of FTi

over
Ti. Thus the only point is to show that {ξi} ∩Xti = ∅ for some i.

First proof. Let Zi = {ξi} ⊂ XTi
and Z = {ξ} ⊂ XT endowed with the reduced

induced scheme structure. Then Z = limZi by Limits, Lemma 4.4. Choose a field
k and a morphism Spec(k)→ T whose image is t. Then

∅ = Z ×T Spec(k) = (limZi)×(limTi) Spec(k) = limZi ×Ti Spec(k)
because limits commute with fibred products (limits commute with limits). Each
Zi ×Ti

Spec(k) is quasi-compact because XTi
→ Ti is of finite type and hence
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Zi → Ti is of finite type. Hence Zi ×Ti
Spec(k) is empty for some i by Limits,

Lemma 4.3. Since the image of the composition Spec(k)→ T → Ti is ti we obtain
what we want.

Second proof. Set Z = {ξ}. Apply Limits, Lemma 14.1 to this situation to obtain
an open neighbourhood V ⊂ T of t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that
(1) the morphism b : T ′ → S is locally of finite presentation,
(2) we have Z ′ ∩Xa(t) = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

We may assume V is an affine open of T , hence by Limits, Lemmas 4.11 and 4.13 we
can find an i and an affine open Vi ⊂ Ti with V = f−1

i (Vi). By Limits, Proposition
6.1 after possibly increasing i a bit we can find a morphism ai : Vi → T ′ such that
a = ai◦fi|V . The induced morphism XVi

→ XT ′ maps ξi into Z ′. As Z ′∩Xa(t) = ∅
we conclude that (Ti → S, t′i ⇝ ti, ξi) is an impurity of F above s. □

Lemma 15.5.05J0 In Situation 15.1. If there exists an impurity (g : T → S, t′ ⇝ t, ξ)
of F above s with g quasi-finite at t, then there exists an impurity (g : T → S, t′ ⇝
t, ξ) such that (T, t)→ (S, s) is an elementary étale neighbourhood.

Proof. Let (g : T → S, t′ ⇝ t, ξ) be an impurity of F above s such that g is
quasi-finite at t. After shrinking T we may assume that g is locally of finite type.
Apply More on Morphisms, Lemma 41.1 to T → S and t 7→ s. This gives us a
diagram

T

��

T ×S Uoo

��

Voo

{{
S Uoo

where (U, u) → (S, s) is an elementary étale neighbourhood and V ⊂ T ×S U is
an open neighbourhood of v = (t, u) such that V → U is finite and such that v
is the unique point of V lying over u. Since the morphism V → T is étale hence
flat we see that there exists a specialization v′ ⇝ v such that v′ 7→ t′. Note that
κ(t′) ⊂ κ(v′) is finite separable. Pick any point ζ ∈ Xv′ mapping to ξ ∈ Xt′ . By
Divisors, Lemma 7.3 we see that ζ ∈ AssXV /V (FV ). Moreover, the closure {ζ} does
not meet the fibre Xv as by assumption the closure {ξ} does not meet Xt. In other
words (V → S, v′ ⇝ v, ζ) is an impurity of F above S.

Next, let u′ ∈ U ′ be the image of v′ and let θ ∈ XU be the image of ζ. Then θ 7→ u′

and u′ ⇝ u. By Divisors, Lemma 7.3 we see that θ ∈ AssXU/U (F). Moreover, as
π : XV → XU is finite we see that π

(
{ζ}

)
= {π(ζ)}. Since v is the unique point of

V lying over u we see that Xu ∩ {π(ζ)} = ∅ because Xv ∩ {ζ} = ∅. In this way we
conclude that (U → S, u′ ⇝ u, θ) is an impurity of F above s and we win. □
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Lemma 15.6.05J1 In Situation 15.1. Assume that S is locally Noetherian. If there
exists an impurity of F above s, then there exists an impurity (g : T → S, t′ ⇝ t, ξ)
of F above s such that g is quasi-finite at t.

Proof. We may replace S by an affine neighbourhood of s. By Lemma 15.3 we
may assume that we have an impurity (g : T → S, t′ ⇝ t, ξ) of such that g is locally
of finite type and t a closed point of the fibre of g above s. We may replace T by
the reduced induced scheme structure on {t′}. Let Z = {ξ} ⊂ XT . By assumption
Zt = ∅ and the image of Z → T contains t′. By More on Morphisms, Lemma 25.1
there exists a nonempty open V ⊂ Z such that for any w ∈ f(V ) any generic point
ξ′ of Vw is in AssXT /T (FT ). By More on Morphisms, Lemma 24.2 there exists a
nonempty open W ⊂ T with W ⊂ f(V ). By More on Morphisms, Lemma 52.7
there exists a closed subscheme T ′ ⊂ T such that t ∈ T ′, T ′ → S is quasi-finite at
t, and there exists a point z ∈ T ′ ∩W , z ⇝ t which does not map to s. Choose
any generic point ξ′ of the nonempty scheme Vz. Then (T ′ → S, z ⇝ t, ξ′) is the
desired impurity. □

In the following we will use the henselization Sh = Spec(OhS,s) of S at s, see Étale
Cohomology, Definition 33.2. Since Sh → S maps to closed point of Sh to s and
induces an isomorphism of residue fields, we will indicate s ∈ Sh this closed point
also. Thus (Sh, s)→ (S, s) is a morphism of pointed schemes.

Lemma 15.7.05J2 In Situation 15.1. If there exists an impurity (Sh → S, s′ ⇝ s, ξ)
of F above s then there exists an impurity (T → S, t′ ⇝ t, ξ) of F above s where
(T, t)→ (S, s) is an elementary étale neighbourhood.

Proof. We may replace S by an affine neighbourhood of s. Say S = Spec(A)
and s corresponds to the prime p ⊂ A. Then OhS,s = colim(T,t) Γ(T,OT ) where
the limit is over the opposite of the cofiltered category of affine elementary étale
neighbourhoods (T, t) of (S, s), see More on Morphisms, Lemma 35.5 and its proof.
Hence Sh = limi Ti and we win by Lemma 15.4. □

Lemma 15.8.05J3 In Situation 15.1 the following are equivalent
(1) there exists an impurity (Sh → S, s′ ⇝ s, ξ) of F above s where Sh is the

henselization of S at s,
(2) there exists an impurity (T → S, t′ ⇝ t, ξ) of F above s such that (T, t)→

(S, s) is an elementary étale neighbourhood, and
(3) there exists an impurity (T → S, t′ ⇝ t, ξ) of F above s such that T → S

is quasi-finite at t.

Proof. As an étale morphism is locally quasi-finite it is clear that (2) implies (3).
We have seen that (3) implies (2) in Lemma 15.5. We have seen that (1) implies
(2) in Lemma 15.7. Finally, if (T → S, t′ ⇝ t, ξ) is an impurity of F above s
such that (T, t)→ (S, s) is an elementary étale neighbourhood, then we can choose
a factorization Sh → T → S of the structure morphism Sh → S. Choose any
point s′ ∈ Sh mapping to t′ and choose any ξ′ ∈ Xs′ mapping to ξ ∈ Xt′ . Then
(Sh → S, s′ ⇝ s, ξ′) is an impurity of F above s. We omit the details. □

16. Relatively pure modules

05BB The notion of a module pure relative to a base was introduced in [GR71].
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Definition 16.1.05J4 Let f : X → S be a morphism of schemes which is of finite
type. Let F be a finite type quasi-coherent OX -module.

(1) Let s ∈ S. We say F is pure along Xs if there is no impurity (g : T → S, t′ ⇝
t, ξ) of F above s with (T, t)→ (S, s) an elementary étale neighbourhood.

(2) We say F is universally pure along Xs if there does not exist any impurity
of F above s.

(3) We say that X is pure along Xs if OX is pure along Xs.
(4) We say F is universally S-pure, or universally pure relative to S if F is

universally pure along Xs for every s ∈ S.
(5) We say F is S-pure, or pure relative to S if F is pure along Xs for every

s ∈ S.
(6) We say that X is S-pure or pure relative to S if OX is pure relative to S.

We intentionally restrict ourselves here to morphisms which are of finite type and
not just morphisms which are locally of finite type, see Remark 16.2 for a discus-
sion. In the situation of the definition Lemma 15.8 tells us that the following are
equivalent

(1) F is pure along Xs,
(2) there is no impurity (g : T → S, t′ ⇝ t, ξ) with g quasi-finite at t,
(3) there does not exist any impurity of the form (Sh → S, s′ ⇝ s, ξ), where

Sh is the henselization of S at s.
If we denote Xh = X×SSh and Fh the pullback of F to Xh, then we can formulate
the last condition in the following more positive way:

(4) All points of AssXh/Sh(Fh) specialize to points of Xs.
In particular, it is clear that F is pure along Xs if and only if the pullback of F to
X ×S Spec(OS,s) is pure along Xs.

Remark 16.2.05J5 Let f : X → S be a morphism which is locally of finite type
and F a quasi-coherent finite type OX -module. In this case it is still true that (1)
and (2) above are equivalent because the proof of Lemma 15.5 does not use that
f is quasi-compact. It is also clear that (3) and (4) are equivalent. However, we
don’t know if (1) and (3) are equivalent. In this case it may sometimes be more
convenient to define purity using the equivalent conditions (3) and (4) as is done in
[GR71]. On the other hand, for many applications it seems that the correct notion
is really that of being universally pure.

A natural question to ask is if the property of being pure relative to the base is
preserved by base change, i.e., if being pure is the same thing as being universally
pure. It turns out that this is true over Noetherian base schemes (see Lemma 16.5),
or if the sheaf is flat (see Lemmas 18.3 and 18.4). It is not true in general, even if
the morphism and the sheaf are of finite presentation, see Examples, Section 40 for
a counter example. First we match our usage of “universally” to the usual notion.

Lemma 16.3.05J6 Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module. Let s ∈ S. The following are
equivalent

(1) F is universally pure along Xs, and
(2) for every morphism of pointed schemes (S′, s′)→ (S, s) the pullback FS′ is

pure along Xs′ .
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In particular, F is universally pure relative to S if and only if every base change
FS′ of F is pure relative to S′.

Proof. This is formal. □

Lemma 16.4.05J7 Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module. Let s ∈ S. Let (S′, s′) → (S, s)
be a morphism of pointed schemes. If S′ → S is quasi-finite at s′ and F is pure
along Xs, then FS′ is pure along Xs′ .

Proof. It (T → S′, t′ ⇝ t, ξ) is an impurity of FS′ above s′ with T → S′ quasi-finite
at t, then (T → S, t′ → t, ξ) is an impurity of F above s with T → S quasi-finite at
t, see Morphisms, Lemma 20.12. Hence the lemma follows immediately from the
characterization (2) of purity given following Definition 16.1. □

Lemma 16.5.05J8 Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module. Let s ∈ S. If OS,s is Noetherian
then F is pure along Xs if and only if F is universally pure along Xs.

Proof. First we may replace S by Spec(OS,s), i.e., we may assume that S is Noe-
therian. Next, use Lemma 15.6 and characterization (2) of purity given in discussion
following Definition 16.1 to conclude. □

Purity satisfies flat descent.

Lemma 16.6.05J9 Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module. Let s ∈ S. Let (S′, s′) → (S, s)
be a morphism of pointed schemes. Assume S′ → S is flat at s′.

(1) If FS′ is pure along Xs′ , then F is pure along Xs.
(2) If FS′ is universally pure along Xs′ , then F is universally pure along Xs.

Proof. Let (T → S, t′ ⇝ t, ξ) be an impurity of F above s. Set T1 = T ×S S′, and
let t1 be the unique point of T1 mapping to t and s′. Since T1 → T is flat at t1,
see Morphisms, Lemma 25.8, there exists a specialization t′1 ⇝ t1 lying over t′ ⇝ t,
see Algebra, Section 41. Choose a point ξ1 ∈ Xt′1

which corresponds to a generic
point of Spec(κ(t′1)⊗κ(t′) κ(ξ)), see Schemes, Lemma 17.5. By Divisors, Lemma 7.3
we see that ξ1 ∈ AssXT1/T1(FT1). As the Zariski closure of {ξ1} in XT1 maps into
the Zariski closure of {ξ} in XT we conclude that this closure is disjoint from Xt1 .
Hence (T1 → S′, t′1 ⇝ t1, ξ1) is an impurity of FS′ above s′. In other words we have
proved the contrapositive to part (2) of the lemma. Finally, if (T, t) → (S, s) is
an elementary étale neighbourhood, then (T1, t1) → (S′, s′) is an elementary étale
neighbourhood too, and in this way we see that (1) holds. □

Lemma 16.7.05K1 Let i : Z → X be a closed immersion of schemes of finite type over
a scheme S. Let s ∈ S. Let F be a finite type, quasi-coherent sheaf on Z. Then F
is (universally) pure along Zs if and only if i∗F is (universally) pure along Xs.

Proof. This follows from Divisors, Lemma 8.3. □

17. Examples of relatively pure sheaves

05K2 Here are some example cases where it is possible to see what purity means.

Lemma 17.1.05K3 Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module.
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(1) If the support of F is proper over S, then F is universally pure relative to
S.

(2) If f is proper, then F is universally pure relative to S.
(3) If f is proper, then X is universally pure relative to S.

Proof. First we reduce (1) to (2). Namely, let Z ⊂ X be the scheme theoretic
support of F . Let i : Z → X be the corresponding closed immersion and write
F = i∗G for some finite type quasi-coherent OZ-module G, see Morphisms, Section
5. In case (1) Z → S is proper by assumption. Thus by Lemma 16.7 case (1)
reduces to case (2).

Assume f is proper. Let (g : T → S, t′ ⇝ t, ξ) be an impurity of F above s ∈ S.
Since f is proper, it is universally closed. Hence fT : XT → T is closed. Since
fT (ξ) = t′ this implies that t ∈ f({ξ}) which is a contradiction. □

Lemma 17.2.05K4 Let f : X → S be a separated, finite type morphism of schemes.
Let F be a finite type, quasi-coherent OX-module. Assume that Supp(Fs) is finite
for every s ∈ S. Then the following are equivalent

(1) F is pure relative to S,
(2) the scheme theoretic support of F is finite over S, and
(3) F is universally pure relative to S.

In particular, given a quasi-finite separated morphism X → S we see that X is pure
relative to S if and only if X → S is finite.

Proof. Let Z ⊂ X be the scheme theoretic support of F , see Morphisms, Definition
5.5. Then Z → S is a separated, finite type morphism of schemes with finite fibres.
Hence it is separated and quasi-finite, see Morphisms, Lemma 20.10. By Lemma
16.7 it suffices to prove the lemma for Z → S and the sheaf F viewed as a finite
type quasi-coherent module on Z. Hence we may assume that X → S is separated
and quasi-finite and that Supp(F) = X.

It follows from Lemma 17.1 and Morphisms, Lemma 44.11 that (2) implies (3).
Trivially (3) implies (1). Assume (1) holds. We will prove that (2) holds. It is clear
that we may assume S is affine. By More on Morphisms, Lemma 43.3 we can find
a diagram

X

f ��

j
// T

π
��

S

with π finite and j a quasi-compact open immersion. If we show that j is closed,
then j is a closed immersion and we conclude that f = π ◦ j is finite. To show that
j is closed it suffices to show that specializations lift along j, see Schemes, Lemma
19.8. Let x ∈ X, set t′ = j(x) and let t′ ⇝ t be a specialization. We have to
show t ∈ j(X). Set s′ = f(x) and s = π(t) so s′ ⇝ s. By More on Morphisms,
Lemma 41.4 we can find an elementary étale neighbourhood (U, u)→ (S, s) and a
decomposition

TU = T ×S U = V ⨿W
into open and closed subschemes, such that V → U is finite and there exists a
unique point v of V mapping to u, and such that v maps to t in T . As V → T is
étale, we can lift generalizations, see Morphisms, Lemmas 25.9 and 36.12. Hence
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there exists a specialization v′ ⇝ v such that v′ maps to t′ ∈ T . In particular we
see that v′ ∈ XU ⊂ TU . Denote u′ ∈ U the image of t′. Note that v′ ∈ AssXU/U (F)
because Xu′ is a finite discrete set and Xu′ = Supp(Fu′). As F is pure relative to
S we see that v′ must specialize to a point in Xu. Since v is the only point of V
lying over u (and since no point of W can be a specialization of v′) we see that
v ∈ Xu. Hence t ∈ X. □

Lemma 17.3.05K5 Let f : X → S be a finite type, flat morphism of schemes with
geometrically integral fibres. Then X is universally pure over S.

Proof. Let ξ ∈ X with s′ = f(ξ) and s′ ⇝ s a specialization of S. If ξ is
an associated point of Xs′ , then ξ is the unique generic point because Xs′ is an
integral scheme. Let ξ0 be the unique generic point of Xs. As X → S is flat we
can lift s′ ⇝ s to a specialization ξ′ ⇝ ξ0 in X, see Morphisms, Lemma 25.9.
The ξ ⇝ ξ′ because ξ is the generic point of Xs′ hence ξ ⇝ ξ0. This means that
(idS , s′ → s, ξ) is not an impurity of OX above s. Since the assumption that f is
finite type, flat with geometrically integral fibres is preserved under base change,
we see that there doesn’t exist an impurity after any base change. In this way we
see that X is universally S-pure. □

Lemma 17.4.05K6 Let f : X → S be a finite type, affine morphism of schemes. Let
F be a finite type quasi-coherent OX-module such that f∗F is locally projective on
S, see Properties, Definition 21.1. Then F is universally pure over S.

Proof. After reducing to the case where S is the spectrum of a henselian local ring
this follows from Lemma 14.1. □

18. A criterion for purity

05L2 We first prove that given a flat family of finite type quasi-coherent sheaves the
points in the relative assassin specialize to points in the relative assassins of nearby
fibres (if they specialize at all).

Lemma 18.1.05L3 Let f : X → S be a morphism of schemes of finite type. Let
F be a quasi-coherent OX-module of finite type. Let s ∈ S. Assume that F is
flat over S at all points of Xs. Let x′ ∈ AssX/S(F) with f(x′) = s′ such that
s′ ⇝ s is a specialization in S. If x′ specializes to a point of Xs, then x′ ⇝ x with
x ∈ AssXs

(Fs).

Proof. Say x′ ⇝ t with t ∈ Xs. Then we can find specializations x′ ⇝ x⇝ t with
x corresponding to a generic point of an irreducible component of {x′} ∩ f−1({s}).
By assumption F is flat over S at x. By More on Morphisms, Lemma 18.3 we see
that x ∈ AssX/S(F) as desired. □

Lemma 18.2.05L4 Let f : X → S be a morphism of schemes of finite type. Let F be
a quasi-coherent OX-module of finite type. Let s ∈ S. Let (S′, s′) → (S, s) be an
elementary étale neighbourhood and let

X

��

X ′
g

oo

��
S S′oo

be a commutative diagram of morphisms of schemes. Assume
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(1) F is flat over S at all points of Xs,
(2) X ′ → S′ is of finite type,
(3) g∗F is pure along X ′

s′ ,
(4) g : X ′ → X is étale, and
(5) g(X ′) contains AssXs

(Fs).
In this situation F is pure along Xs if and only if the image of X ′ → X ×S S′

contains the points of AssX×SS′/S′(F×S S′) lying over points in S′ which specialize
to s′.

Proof. Since the morphism S′ → S is étale, we see that if F is pure along Xs,
then F ×S S′ is pure along Xs, see Lemma 16.4. Since purity satisfies flat descent,
see Lemma 16.6, we see that if F ×S S′ is pure along Xs′ , then F is pure along Xs.
Hence we may replace S by S′ and assume that S = S′ so that g : X ′ → X is an
étale morphism between schemes of finite type over S. Moreover, we may replace
S by Spec(OS,s) and assume that S is local.

First, assume that F is pure along Xs. In this case every point of AssX/S(F)
specializes to a point of Xs by purity. Hence by Lemma 18.1 we see that every point
of AssX/S(F) specializes to a point of AssXs

(Fs). Thus every point of AssX/S(F)
is in the image of g (as the image is open and contains AssXs

(Fs)).

Conversely, assume that g(X ′) contains AssX/S(F). Let Sh = Spec(OhS,s) be the
henselization of S at s. Denote gh : (X ′)h → Xh the base change of g by Sh → S,
and denote Fh the pullback of F to Xh. By Divisors, Lemma 7.3 and Remark
7.4 the relative assassin AssXh/Sh(Fh) is the inverse image of AssX/S(F) via the
projection Xh → X. As we have assumed that g(X ′) contains AssX/S(F) we
conclude that the base change gh((X ′)h) = g(X ′) ×S Sh contains AssXh/Sh(Fh).
In this way we reduce to the case where S is the spectrum of a henselian local
ring. Let x ∈ AssX/S(F). To finish the proof of the lemma we have to show that
x specializes to a point of Xs, see criterion (4) for purity in discussion following
Definition 16.1. By assumption there exists a x′ ∈ X ′ such that g(x′) = x. As
g : X ′ → X is étale, we see that x′ ∈ AssX′/S(g∗F), see Lemma 2.8 (applied to
the morphism of fibres X ′

w → Xw where w ∈ S is the image of x′). Since g∗F is
pure along X ′

s we see that x′ ⇝ y for some y ∈ X ′
s. Hence x = g(x′) ⇝ g(y) and

g(y) ∈ Xs as desired. □

Lemma 18.3.05L5 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let s ∈ S. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) F is flat over S at all points of Xs, and
(4) F is pure along Xs.

Then F is universally pure along Xs.

Proof. We first make a preliminary remark. Suppose that (S′, s′) → (S, s) is an
elementary étale neighbourhood. Denote F ′ the pullback of F to X ′ = X×SS′. By
the discussion following Definition 16.1 we see that F ′ is pure along X ′

s′ . Moreover,
F ′ is flat over S′ along X ′

s′ . Then it suffices to prove that F ′ is universally pure
along X ′

s′ . Namely, given any morphism (T, t) → (S, s) of pointed schemes the
fibre product (T ′, t′) = (T ×S S′, (t, s′)) is flat over (T, t) and hence if FT ′ is pure
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along Xt′ then FT is pure along Xt by Lemma 16.6. Thus during the proof we may
always replace (s, S) by an elementary étale neighbourhood. We may also replace
S by Spec(OS,s) due to the local nature of the problem.
Choose an elementary étale neighbourhood (S′, s′) → (S, s) and a commutative
diagram

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is
affine, and such that Γ(X ′, g∗F) is a free OS′,s′ -module, see Lemma 12.11. Note
that X ′ → Spec(OS′,s′) is of finite type (as a quasi-compact morphism which is the
composition of an étale morphism and the base change of a finite type morphism).
By our preliminary remarks in the first paragraph of the proof we may replace S
by Spec(OS′,s′). Hence we may assume there exists a commutative diagram

X

��

X ′
g

oo

~~
S

of schemes of finite type over S, where g is étale, Xs ⊂ g(X ′), with S local with
closed point s, with X ′ affine, and with Γ(X ′, g∗F) a free Γ(S,OS)-module. Note
that in this case g∗F is universally pure over S, see Lemma 17.4.
In this situation we apply Lemma 18.2 to deduce that AssX/S(F) ⊂ g(X ′) from our
assumption that F is pure along Xs and flat over S along Xs. By Divisors, Lemma
7.3 and Remark 7.4 we see that for any morphism of pointed schemes (T, t)→ (S, s)
we have

AssXT /T (FT ) ⊂ (XT → X)−1(AssX/S(F)) ⊂ g(X ′)×S T = gT (X ′
T ).

Hence by Lemma 18.2 applied to the base change of our displayed diagram to (T, t)
we conclude that FT is pure along Xt as desired. □

Lemma 18.4.05L6 Let f : X → S be a finite type morphism of schemes. Let F be a
finite type quasi-coherent OX-module. Assume F is flat over S. In this case F is
pure relative to S if and only if F is universally pure relative to S.

Proof. Immediate consequence of Lemma 18.3 and the definitions. □

Lemma 18.5.05MA Let I be a directed set. Let (Si, gii′) be an inverse system of affine
schemes over I. Set S = limi Si and s ∈ S. Denote gi : S → Si the projections
and set si = gi(s). Suppose that f : X → S is a morphism of finite presentation,
F a quasi-coherent OX-module of finite presentation which is pure along Xs and
flat over S at all points of Xs. Then there exists an i ∈ I, a morphism of finite
presentation Xi → Si, a quasi-coherent OXi-module Fi of finite presentation which
is pure along (Xi)si

and flat over Si at all points of (Xi)si
such that X ∼= Xi×Si

S
and such that the pullback of Fi to X is isomorphic to F .

Proof. Let U ⊂ X be the set of points where F is flat over S. By More on
Morphisms, Theorem 15.1 this is an open subscheme of X. By assumption Xs ⊂ U .
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As Xs is quasi-compact, we can find a quasi-compact open U ′ ⊂ U with Xs ⊂ U ′.
By Limits, Lemma 10.1 we can find an i ∈ I and a morphism of finite presentation
fi : Xi → Si whose base change to S is isomorphic to fi. Fix such a choice and set
Xi′ = Xi×Si

Si′ . Then X = limi′ Xi′ with affine transition morphisms. By Limits,
Lemma 10.2 we can, after possible increasing i assume there exists a quasi-coherent
OXi

-module Fi of finite presentation whose base change to S is isomorphic to F .
By Limits, Lemma 4.11 after possibly increasing i we may assume there exists an
open U ′

i ⊂ Xi whose inverse image in X is U ′. Note that in particular (Xi)si ⊂ U ′
i .

By Limits, Lemma 10.4 (after increasing i once more) we may assume that Fi is
flat on U ′

i . In particular we see that Fi is flat along (Xi)si
.

Next, we use Lemma 12.5 to choose an elementary étale neighbourhood (S′
i, s

′
i)→

(Si, si) and a commutative diagram of schemes

Xi

��

X ′
igi

oo

��
Si S′

i
oo

such that gi is étale, (Xi)si ⊂ gi(X ′
i), the schemes X ′

i, S′
i are affine, and such that

Γ(X ′
i, g

∗
iFi) is a projective Γ(S′

i,OS′
i
)-module. Note that g∗

iFi is universally pure
over S′

i, see Lemma 17.4. We may base change the diagram above to a diagram
with morphisms (S′

i′ , s
′
i′)→ (Si′ , si′) and gi′ : X ′

i′ → Xi′ over Si′ for any i′ ≥ i and
we may base change the diagram to a diagram with morphisms (S′, s′) → (S, s)
and g : X ′ → X over S.

At this point we can use our criterion for purity. Set W ′
i ⊂ Xi ×Si

S′
i equal to the

image of the étale morphism X ′
i → Xi ×Si

S′
i. For every i′ ≥ i we have similarly

the image W ′
i′ ⊂ Xi′ ×Si′ S

′
i′ and we have the image W ′ ⊂ X ×S S′. Taking images

commutes with base change, hence W ′
i′ = W ′

i ×S′
i
S′
i′ and W ′ = Wi×S′

i
S′. Because

F is pure along Xs the Lemma 18.2 implies that

(18.5.1)05MB f−1(Spec(OS′,s′)) ∩AssX×SS′/S′(F ×S S′) ⊂W ′

By More on Morphisms, Lemma 25.5 we see that

E = {t ∈ S′ | AssXt
(Ft) ⊂W ′} and Ei′ = {t ∈ S′

i′ | AssXt
(Fi′,t) ⊂W ′

i′}

are locally constructible subsets of S′ and S′
i′ . By More on Morphisms, Lemma

25.4 we see that Ei′ is the inverse image of Ei under the morphism S′
i′ → S′

i and
that E is the inverse image of Ei under the morphism S′ → S′

i. Thus Equation
(18.5.1) is equivalent to the assertion that Spec(OS′,s′) maps into Ei. As OS′,s′ =
colimi′≥iOS′

i′ ,s
′
i′

we see that Spec(OS′
i′ ,s

′
i′

) maps into Ei for some i′ ≥ i, see Limits,
Lemma 4.10. Then, applying Lemma 18.2 to the situation over Si′ , we conclude
that Fi′ is pure along (Xi′)si′ . □

Lemma 18.6.05MC Let f : X → S be a morphism of finite presentation. Let F be a
quasi-coherent OX-module of finite presentation flat over S. Then the set

U = {s ∈ S | F is pure along Xs}

is open in S.
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Proof. Let s ∈ U . Using Lemma 12.5 we can find an elementary étale neighbour-
hood (S′, s′)→ (S, s) and a commutative diagram

X

��

X ′
g

oo

��
S S′oo

such that g is étale, Xs ⊂ g(X ′), the schemes X ′, S′ are affine, and such that
Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module. Note that g∗F is universally pure
over S′, see Lemma 17.4. Set W ′ ⊂ X ×S S′ equal to the image of the étale
morphism X ′ → X ×S S′. Note that W is open and quasi-compact over S′. Set

E = {t ∈ S′ | AssXt
(Ft) ⊂W ′}.

By More on Morphisms, Lemma 25.5 E is a constructible subset of S′. By Lemma
18.2 we see that Spec(OS′,s′) ⊂ E. By Morphisms, Lemma 22.4 we see that E
contains an open neighbourhood V ′ of s′. Applying Lemma 18.2 once more we see
that for any point s1 in the image of V ′ in S the sheaf F is pure along Xs1 . Since
S′ → S is étale the image of V ′ in S is open and we win. □

19. How purity is used

05L7 Here are some examples of how purity can be used. The first lemma actually uses
a slightly weaker form of purity.

Lemma 19.1.05L8 Let f : X → S be a morphism of finite type. Let F be a quasi-
coherent sheaf of finite type on X. Assume S is local with closed point s. Assume
F is pure along Xs and that F is flat over S. Let φ : F → G of quasi-coherent
OX-modules. Then the following are equivalent

(1) the map on stalks φx is injective for all x ∈ AssXs
(Fs), and

(2) φ is injective.

Proof. Let K = Ker(φ). Our goal is to prove that K = 0. In order to do this
it suffices to prove that WeakAssX(K) = ∅, see Divisors, Lemma 5.5. We have
WeakAssX(K) ⊂ WeakAssX(F), see Divisors, Lemma 5.4. As F is flat we see
from Lemma 13.5 that WeakAssX(F) ⊂ AssX/S(F). By purity any point x′ of
AssX/S(F) is a generalization of a point of Xs, and hence is the specialization of
a point x ∈ AssXs(Fs), by Lemma 18.1. Hence the injectivity of φx implies the
injectivity of φx′ , whence Kx′ = 0. □

Proposition 19.2.05MD Let f : X → S be an affine, finitely presented morphism of
schemes. Let F be a quasi-coherent OX-module of finite presentation, flat over S.
Then the following are equivalent

(1) f∗F is locally projective on S, and
(2) F is pure relative to S.

In particular, given a ring map A→ B of finite presentation and a finitely presented
B-module N flat over A we have: N is projective as an A-module if and only if Ñ
on Spec(B) is pure relative to Spec(A).

Proof. The implication (1) ⇒ (2) is Lemma 17.4. Assume F is pure relative to
S. Note that by Lemma 18.3 this implies F remains pure after any base change.
By Descent, Lemma 7.7 it suffices to prove f∗F is fpqc locally projective on S.
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Pick s ∈ S. We will prove that the restriction of f∗F to an étale neighbourhood
of s is locally projective. Namely, by Lemma 12.5, after replacing S by an affine
elementary étale neighbourhood of s, we may assume there exists a diagram

X

��

X ′
g

oo

~~
S

of schemes affine and of finite presentation over S, where g is étale, Xs ⊂ g(X ′),
and with Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that in this case g∗F is
universally pure over S, see Lemma 17.4. Hence by Lemma 18.2 we see that the
open g(X ′) contains the points of AssX/S(F) lying over Spec(OS,s). Set

E = {t ∈ S | AssXt
(Ft) ⊂ g(X ′)}.

By More on Morphisms, Lemma 25.5 E is a constructible subset of S. We have
seen that Spec(OS,s) ⊂ E. By Morphisms, Lemma 22.4 we see that E contains an
open neighbourhood of s. Hence after replacing S by an affine neighbourhood of s
we may assume that AssX/S(F) ⊂ g(X ′). By Lemma 7.4 this means that

Γ(X,F) −→ Γ(X ′, g∗F)
is Γ(S,OS)-universally injective. By Algebra, Lemma 89.7 we conclude that Γ(X,F)
is Mittag-Leffler as an Γ(S,OS)-module. Since Γ(X,F) is countably generated and
flat as a Γ(S,OS)-module, we conclude it is projective by Algebra, Lemma 93.1. □

We can use the proposition to improve some of our earlier results. The following
lemma is an improvement of Proposition 12.4.

Lemma 19.3.05ME Let f : X → S be a morphism which is locally of finite presentation.
Let F be a quasi-coherent OX-module which is of finite presentation. Let x ∈ X
with s = f(x) ∈ S. If F is flat at x over S there exists an affine elementary étale
neighbourhood (S′, s′) → (S, s) and an affine open U ′ ⊂ X ×S S′ which contains
x′ = (x, s′) such that Γ(U ′,F|U ′) is a projective Γ(S′,OS′)-module.

Proof. During the proof we may replace X by an open neighbourhood of x and
we may replace S by an elementary étale neighbourhood of s. Hence, by openness
of flatness (see More on Morphisms, Theorem 15.1) we may assume that F is flat
over S. We may assume S and X are affine. After shrinking X some more we
may assume that any point of AssXs(Fs) is a generalization of x. This property
is preserved on replacing (S, s) by an elementary étale neighbourhood. Hence we
may apply Lemma 12.5 to arrive at the situation where there exists a diagram

X

��

X ′
g

oo

~~
S

of schemes affine and of finite presentation over S, where g is étale, Xs ⊂ g(X ′),
and with Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that in this case g∗F is
universally pure over S, see Lemma 17.4.
Let U ⊂ g(X ′) be an affine open neighbourhood of x. We claim that F|U is pure
along Us. If we prove this, then the lemma follows because F|U will be pure relative

https://stacks.math.columbia.edu/tag/05ME


MORE ON FLATNESS 59

to S after shrinking S, see Lemma 18.6, whereupon the projectivity follows from
Proposition 19.2. To prove the claim we have to show, after replacing (S, s) by an
arbitrary elementary étale neighbourhood, that any point ξ of AssU/S(F|U ) lying
over some s′ ∈ S, s′ ⇝ s specializes to a point of Us. Since U ⊂ g(X ′) we can find a
ξ′ ∈ X ′ with g(ξ′) = ξ. Because g∗F is pure over S, using Lemma 18.1, we see there
exists a specialization ξ′ ⇝ x′ with x′ ∈ AssX′

s
(g∗Fs). Then g(x′) ∈ AssXs

(Fs)
(see for example Lemma 2.8 applied to the étale morphism X ′

s → Xs of Noetherian
schemes) and hence g(x′)⇝ x by our choice of X above! Since x ∈ U we conclude
that g(x′) ∈ U . Thus ξ = g(ξ′)⇝ g(x′) ∈ Us as desired. □

The following lemma is an improvement of Lemma 12.9.

Lemma 19.4.05MF Let f : X → S be a morphism which is locally of finite type.
Let F be a quasi-coherent OX-module which is of finite type. Let x ∈ X with
s = f(x) ∈ S. If F is flat at x over S there exists an affine elementary étale
neighbourhood (S′, s′) → (S, s) and an affine open U ′ ⊂ X ×S Spec(OS′,s′) which
contains x′ = (x, s′) such that Γ(U ′,F|U ′) is a free OS′,s′-module.

Proof. The question is Zariski local on X and S. Hence we may assume that X
and S are affine. Then we can find a closed immersion i : X → An

S over S. It is
clear that it suffices to prove the lemma for the sheaf i∗F on An

S and the point
i(x). In this way we reduce to the case where X → S is of finite presentation.
After replacing S by Spec(OS′,s′) and X by an open of X ×S Spec(OS′,s′) we may
assume that F is of finite presentation, see Proposition 10.3. In this case we may
appeal to Lemma 19.3 and Algebra, Theorem 85.4 to conclude. □

Lemma 19.5.05U7 Let A → B be a local ring map of local rings which is essentially
of finite type. Let N be a finite B-module which is flat as an A-module. If A is
henselian, then N is a filtered colimit

N = colimi Fi

of free A-modules Fi such that all transition maps ui : Fi → Fi′ of the system induce
injective maps ui : Fi/mAFi → Fi′/mAFi′ . Also, N is a Mittag-Leffler A-module.

Proof. We can find a morphism of finite type X → S = Spec(A) and a point x ∈ X
lying over the closed point s of S and a finite type quasi-coherent OX -module F
such that Fx ∼= N as an A-module. After shrinking X we may assume that each
point of AssXs

(Fs) specializes to x. By Lemma 19.4 we see that there exists a
fundamental system of affine open neighbourhoods Ui ⊂ X of x such that Γ(Ui,F)
is a free A-module Fi. Note that if Ui′ ⊂ Ui, then

Fi/mAFi = Γ(Ui,s,Fs) −→ Γ(Ui′,s,Fs) = Fi′/mAFi′

is injective because a section of the kernel would be supported at a closed subset of
Xs not meeting x which is a contradiction to our choice of X above. Since the maps
Fi → Fi′ are A-universally injective (Lemma 7.5) it follows that N is Mittag-Leffler
by Algebra, Lemma 89.9. □

The following lemma should be skipped if reading through for the first time.

Lemma 19.6.0ASX Let A → B be a local ring map of local rings which is essentially
of finite type. Let N be a finite B-module which is flat as an A-module. If A is a
valuation ring, then any element of N has a content ideal I ⊂ A (More on Algebra,
Definition 24.1). Also, I is a principal ideal.
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Proof. The final statement follows from the fact that I is a finitely generated ideal
by More on Algebra, Lemma 24.2 and Algebra, Lemma 50.15.

Proof of existence of I. Let A ⊂ Ah be the henselization. Let B′ be the localization
of B ⊗A Ah at the maximal ideal mB ⊗ Ah + B ⊗ mAh . Then B → B′ is flat,
hence faithfully flat. Let N ′ = N ⊗B B′. Let x ∈ N and let x′ ∈ N ′ be the
image. We claim that for an ideal I ⊂ A we have x ∈ IN ⇔ x′ ∈ IN ′. Namely,
N/IN → N ′/IN ′ is the tensor product of B → B′ with N/IN and B → B′

is universally injective by Algebra, Lemma 82.11. By More on Algebra, Lemma
123.6 and Algebra, Lemma 50.17 the map A→ Ah defines an inclusion preserving
bijection I 7→ IAh on sets of ideals. We conclude that x has a content ideal in A
if and only if x′ has a content ideal in Ah. The assertion for x′ ∈ N ′ follows from
Lemma 19.5 and Algebra, Lemma 89.6. □

An application is the following.

Lemma 19.7.0H2T Let X → Spec(R) be a proper flat morphism where R is a valuation
ring. If the special fibre is reduced, then X and every fibre of X → Spec(R) is
reduced.

Proof. Assume the special fibre Xs is reduced. Let x ∈ X be any point, and let
us show that OX,x is reduced; this will prove that X is reduced. Let x ⇝ x′ be a
specialization with x′ in the special fibre; such a specialization exists as a proper
morphism is closed. Consider the local ring A = OX,x′ . Then OX,x is a localization
of A, so it suffices to show that A is reduced. Let a ∈ A and let I = (π) ⊂ R be its
content ideal, see Lemma 19.6. Then a = πa′ and a′ maps to a nonzero element of
A/mA where m ⊂ R is the maximal ideal. If a is nilpotent, so is a′, because π is
a nonzerodivisor by flatness of A over R. But a′ maps to a nonzero element of the
reduced ring A/mA = OXs,x′ . This is a contradiction unless A is reduced, which is
what we wanted to show.

Of course, if X is reduced, so is the generic fibre of X over R. If p ⊂ R is a prime
ideal, then R/p is a valuation ring by Algebra, Lemma 50.9. Hence redoing the
argument with the base change of X to R/p proves the fibre over p is reduced. □

20. Flattening functors

05MG Let S be a scheme. Recall that a functor F : (Sch/S)opp → Sets is called limit
preserving if for every directed inverse system {Ti}i∈I of affine schemes with limit
T we have F (T ) = colimi F (Ti).

Situation 20.1.05MH Let f : X → S be a morphism of schemes. Let u : F → G be a
homomorphism of quasi-coherent OX -modules. For any scheme T over S we will
denote uT : FT → GT the base change of u to T , in other words, uT is the pullback
of u via the projection morphism XT = X ×S T → X. In this situation we can
consider the functor

(20.1.1)05MI Fiso : (Sch/S)opp −→ Sets, T −→
{
{∗} if uT is an isomorphism,
∅ else.

There are variants Finj , Fsurj , Fzero where we ask that uT is injective, surjective,
or zero.

Lemma 20.2.05MJ In Situation 20.1.
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(1) Each of the functors Fiso, Finj, Fsurj, Fzero satisfies the sheaf property for
the fpqc topology.

(2) If f is quasi-compact and G is of finite type, then Fsurj is limit preserving.
(3) If f is quasi-compact and F of finite type, then Fzero is limit preserving.
(4) If f is quasi-compact, F is of finite type, and G is of finite presentation,

then Fiso is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi
=

X ×S Ti and ui = uTi
. Note that {Xi → XT }i∈I is an fpqc covering of XT , see

Topologies, Lemma 9.8. In particular, for every x ∈ XT there exists an i ∈ I and
an xi ∈ Xi mapping to x. Since OXT ,x → OXi,xi

is flat, hence faithfully flat (see
Algebra, Lemma 39.17) we conclude that (ui)xi is injective, surjective, bijective, or
zero if and only if (uT )x is injective, surjective, bijective, or zero. Whence part (1)
of the lemma.

Proof of (2). Assume f quasi-compact and G of finite type. Let T = limi∈I Ti be a
directed limit of affine S-schemes and assume that uT is surjective. Set Xi = XTi

=
X ×S Ti and ui = uTi

: Fi = FTi
→ Gi = GTi

. To prove part (2) we have to show
that ui is surjective for some i. Pick i0 ∈ I and replace I by {i | i ≥ i0}. Since f is
quasi-compact the scheme Xi0 is quasi-compact. Hence we may choose affine opens
W1, . . . ,Wm ⊂ X and an affine open covering Xi0 = U1,i0 ∪ . . . ∪ Um,i0 such that
Uj,i0 maps into Wj under the projection morphism Xi0 → X. For any i ∈ I let Uj,i
be the inverse image of Uj,i0 . Setting Uj = limi Uj,i we see that XT = U1∪ . . .∪Um
is an affine open covering of XT . Now it suffices to show, for a given j ∈ {1, . . . ,m}
that ui|Uj,i is surjective for some i = i(j) ∈ I. Using Properties, Lemma 16.1 this
translates into the following algebra problem: Let A be a ring and let u : M → N
be an A-module map. Suppose that R = colimi∈I Ri is a directed colimit of A-
algebras. If N is a finite A-module and if u⊗ 1 : M ⊗A R→ N ⊗A R is surjective,
then for some i the map u⊗ 1 : M ⊗ARi → N ⊗ARi is surjective. This is Algebra,
Lemma 127.5 part (2).

Proof of (3). Exactly the same arguments as given in the proof of (2) reduces this to
the following algebra problem: Let A be a ring and let u : M → N be an A-module
map. Suppose that R = colimi∈I Ri is a directed colimit of A-algebras. If M is a
finite A-module and if u⊗ 1 : M ⊗A R→ N ⊗A R is zero, then for some i the map
u⊗ 1 : M ⊗A Ri → N ⊗A Ri is zero. This is Algebra, Lemma 127.5 part (1).

Proof of (4). Assume f quasi-compact and F ,G of finite presentation. Arguing
in exactly the same manner as in the previous paragraph (using in addition also
Properties, Lemma 16.2) part (3) translates into the following algebra statement:
Let A be a ring and let u : M → N be an A-module map. Suppose that R =
colimi∈I Ri is a directed colimit of A-algebras. Assume M is a finite A-module, N
is a finitely presented A-module, and u⊗1 : M ⊗AR→ N ⊗AR is an isomorphism.
Then for some i the map u⊗ 1 : M ⊗A Ri → N ⊗A Ri is an isomorphism. This is
Algebra, Lemma 127.5 part (3). □

Situation 20.3.05MK Let (A,mA) be a local ring. Denote C the category whose objects
are A-algebras A′ which are local rings such that the algebra structure A → A′ is
a local homomorphism of local rings. A morphism between objects A′, A′′ of C is
a local homomorphism A′ → A′′ of A-algebras. Let A→ B be a local ring map of
local rings and let M be a B-module. If A′ is an object of C we set B′ = B⊗AA′ and
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we set M ′ = M ⊗A A′ as a B′-module. Given A′ ∈ Ob(C), consider the condition
(20.3.1)05ML ∀q ∈ V (mA′B′ + mBB

′) ⊂ Spec(B′) : M ′
q is flat over A′.

Note the similarity with More on Algebra, Equation (19.1.1). In particular, if
A′ → A′′ is a morphism of C and (20.3.1) holds for A′, then it holds for A′′, see
More on Algebra, Lemma 19.2. Hence we obtain a functor

(20.3.2)05MM Flf : C −→ Sets, A′ −→
{
{∗} if (20.3.1) holds,
∅ else.

Lemma 20.4.05MN In Situation 20.3.
(1) If A′ → A′′ is a flat morphism in C then Flf (A′) = Flf (A′′).
(2) If A→ B is essentially of finite presentation and M is a B-module of finite

presentation, then Flf is limit preserving: If {Ai}i∈I is a directed system
of objects of C, then Flf (colimiAi) = colimi Flf (Ai).

Proof. Part (1) is a special case of More on Algebra, Lemma 19.3. Part (2) is a
special case of More on Algebra, Lemma 19.4. □

Lemma 20.5.05P4 In Situation 20.3. Let B → C is a local map of local A-algebras and
N a C-module. Denote F ′

lf : C → Sets the functor associated to the pair (C,N). If
M ∼= N as B-modules and B → C is finite, then Flf = F ′

lf .

Proof. Let A′ be an object of C. Set C ′ = C ⊗A A′ and N ′ = N ⊗A A′ similarly
to the definitions of B′, M ′ in Situation 20.3. Note that M ′ ∼= N ′ as B′-modules.
The assumption that B → C is finite has two consequences: (a) mC =

√
mBC and

(b) B′ → C ′ is finite. Consequence (a) implies that

V (mA′C ′ + mCC
′) = (Spec(C ′)→ Spec(B′))−1

V (mA′B′ + mBB
′).

Suppose q ⊂ V (mA′B′ + mBB
′). Then M ′

q is flat over A′ if and only if the C ′
q-

module N ′
q is flat over A′ (because these are isomorphic as A′-modules) if and only

if for every maximal ideal r of C ′
q the module N ′

r is flat over A′ (see Algebra, Lemma
39.18). As B′

q → C ′
q is finite by (b), the maximal ideals of C ′

q correspond exactly to
the primes of C ′ lying over q (see Algebra, Lemma 36.22) and these primes are all
contained in V (mA′C ′ + mCC

′) by the displayed equation above. Thus the result
of the lemma holds. □

Lemma 20.6.05P5 In Situation 20.3 suppose that B → C is a flat local homomorphism
of local rings. Set N = M ⊗B C. Denote F ′

lf : C → Sets the functor associated to
the pair (C,N). Then Flf = F ′

lf .

Proof. Let A′ be an object of C. Set C ′ = C⊗AA′ and N ′ = N⊗AA′ = M ′⊗B′C ′

similarly to the definitions of B′, M ′ in Situation 20.3. Note that
V (mA′B′ + mBB

′) = Spec(κ(mB)⊗A κ(mA′))
and similarly for V (mA′C ′ + mCC

′). The ring map
κ(mB)⊗A κ(mA′) −→ κ(mC)⊗A κ(mA′)

is faithfully flat, hence V (mA′C ′+mCC
′)→ V (mA′B′+mBB

′) is surjective. Finally,
if r ∈ V (mA′C ′ + mCC

′) maps to q ∈ V (mA′B′ + mBB
′), then M ′

q is flat over A′

if and only if N ′
r is flat over A′ because B′ → C ′ is flat, see Algebra, Lemma 39.9.

The lemma follows formally from these remarks. □
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Situation 20.7.05MP Let f : X → S be a smooth morphism with geometrically
irreducible fibres. Let F be a quasi-coherent OX -module of finite type. For any
scheme T over S we will denote FT the base change of F to T , in other words, FT
is the pullback of F via the projection morphism XT = X ×S T → X. Note that
XT → T is smooth with geometrically irreducible fibres, see Morphisms, Lemma
34.5 and More on Morphisms, Lemma 27.2. Let p ≥ 0 be an integer. Given a point
t ∈ T consider the condition
(20.7.1)05MQ FT is free of rank p in a neighbourhood of ξt
where ξt is the generic point of the fibre Xt. This condition for all t ∈ T is stable
under base change, and hence we obtain a functor

(20.7.2)05MR Hp : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT satisfies (20.7.1) ∀t ∈ T,
∅ else.

Lemma 20.8.05MS In Situation 20.7.
(1) The functor Hp satisfies the sheaf property for the fpqc topology.
(2) If F is of finite presentation, then functor Hp is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc1 covering of schemes over S. Set Xi = XTi =
X ×S Ti and denote Fi the pullback of F to Xi. Assume that Fi satisfies (20.7.1)
for all i. Pick t ∈ T and let ξt ∈ XT denote the generic point of Xt. We have
to show that F is free in a neighbourhood of ξt. For some i ∈ I we can find a
ti ∈ Ti mapping to t. Let ξi ∈ Xi denote the generic point of Xti , so that ξi maps
to ξt. The fact that Fi is free of rank p in a neighbourhood of ξi implies that
(Fi)xi

∼= O⊕p
Xi,xi

which implies that FT,ξt
∼= O⊕p

XT ,ξt
as OXT ,ξt → OXi,xi is flat, see

for example Algebra, Lemma 78.6. Thus there exists an affine neighbourhood U
of ξt in XT and a surjection O⊕p

U → FU = FT |U , see Modules, Lemma 9.4. After
shrinking T we may assume that U → T is surjective. Hence U → T is a smooth
morphism of affines with geometrically irreducible fibres. Moreover, for every t′ ∈ T
we see that the induced map

α : O⊕p
U,ξt′ −→ FU,ξt′

is an isomorphism (since by the same argument as before the module on the right
is free of rank p). It follows from Lemma 10.1 that

Γ(U,O⊕p
U )⊗Γ(T,OT ) OT,t′ −→ Γ(U,FU )⊗Γ(T,OT ) OT,t′

is injective for every t′ ∈ T . Hence we see the surjection α is an isomorphism. This
finishes the proof of (1).
Assume that F is of finite presentation. Let T = limi∈I Ti be a directed limit of
affine S-schemes and assume that FT satisfies (20.7.1). Set Xi = XTi = X ×S Ti
and denote Fi the pullback of F to Xi. Let U ⊂ XT denote the open subscheme
of points where FT is flat over T , see More on Morphisms, Theorem 15.1. By
assumption every generic point of every fibre is a point of U , i.e., U → T is a
smooth surjective morphism with geometrically irreducible fibres. We may shrink
U a bit and assume that U is quasi-compact. Using Limits, Lemma 4.11 we can
find an i ∈ I and a quasi-compact open Ui ⊂ Xi whose inverse image in XT is

1It is quite easy to show that Hp is a sheaf for the fppf topology using that flat morphisms
of finite presentation are open. This is all we really need later on. But it is kind of fun to prove
directly that it also satisfies the sheaf condition for the fpqc topology.
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U . After increasing i we may assume that Fi|Ui
is flat over Ti, see Limits, Lemma

10.4. In particular, Fi|Ui is finite locally free hence defines a locally constant rank
function ρ : Ui → {0, 1, 2, . . .}. Let (Ui)p ⊂ Ui denote the open and closed subset
where ρ has value p. Let Vi ⊂ Ti be the image of (Ui)p; note that Vi is open and
quasi-compact. By assumption the image of T → Ti is contained in Vi. Hence there
exists an i′ ≥ i such that Ti′ → Ti factors through Vi by Limits, Lemma 4.11. Then
Fi′ satisfies (20.7.1) as desired. Some details omitted. □

Lemma 20.9.0CWF Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX-module of finite type. Let n ≥ 0. The following
are equivalent

(1) for s ∈ S the closed subset Z ⊂ Xs of points where F is not flat over S
(see Lemma 10.4) satisfies dim(Z) < n, and

(2) for x ∈ X such that F is not flat at x over S we have trdegκ(f(x))(κ(x)) < n.

If this is true, then it remains true after any base change.

Proof. Let x ∈ X be a point over s ∈ S. Then the dimension of the closure of {x}
in Xs is trdegκ(s)(κ(x)) by Varieties, Lemma 20.3. Conversely, if Z ⊂ Xs is a closed
subset of dimension d, then there exists a point x ∈ Z with trdegκ(s)(κ(x)) = d

(same reference). Therefore the equivalence of (1) and (2) holds (even fibre by
fibre). The statement on base change follows from Morphisms, Lemmas 25.7 and
28.3. □

Definition 20.10.0CWG Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX -module of finite type. Let n ≥ 0. We
say F is flat over S in dimensions ≥ n if the equivalent conditions of Lemma 20.9
are satisfied.

Situation 20.11.05MT Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX -module of finite type. For any scheme
T over S we will denote FT the base change of F to T , in other words, FT is the
pullback of F via the projection morphism XT = X×S T → X. Note that XT → T
is of finite type and that FT is an OXT

-module of finite type (Morphisms, Lemma
15.4 and Modules, Lemma 9.2). Let n ≥ 0. By Definition 20.10 and Lemma 20.9
we obtain a functor
(20.11.1)

05MU Fn : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT is flat over T in dim ≥ n,
∅ else.

Lemma 20.12.05MV In Situation 20.11.

(1) The functor Fn satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite

presentation, then the functor Fn is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi
=

X ×S Ti and denote Fi the pullback of F to Xi. Assume that Fi is flat over Ti in
dimensions ≥ n for all i. Let t ∈ T . Choose an index i and a point ti ∈ Ti mapping
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to t. Consider the cartesian diagram

XSpec(OT,t)

��

XSpec(OTi,ti
)

��

oo

Spec(OT,t) Spec(OTi,ti)oo

As the lower horizontal morphism is flat we see from More on Morphisms, Lemma
15.2 that the set Zi ⊂ Xti where Fi is not flat over Ti and the set Z ⊂ Xt where
FT is not flat over T are related by the rule Zi = Zκ(ti). Hence we see that FT is
flat over T in dimensions ≥ n by Morphisms, Lemma 28.3.

Assume that f is quasi-compact and locally of finite presentation and that F is of
finite presentation. In this paragraph we first reduce the proof of (2) to the case
where f is of finite presentation. Let T = limi∈I Ti be a directed limit of affine S-
schemes and assume that FT is flat in dimensions ≥ n. Set Xi = XTi = X×STi and
denote Fi the pullback of F to Xi. We have to show that Fi is flat in dimensions
≥ n for some i. Pick i0 ∈ I and replace I by {i | i ≥ i0}. Since Ti0 is affine (hence
quasi-compact) there exist finitely many affine opens Wj ⊂ S, j = 1, . . . ,m and an
affine open overing Ti0 =

⋃
j=1,...,m Vj,i0 such that Ti0 → S maps Vj,i0 into Wj . For

i ≥ i0 denote Vj,i the inverse image of Vj,i0 in Ti. If we can show, for each j, that
there exists an i such that FVj,i0

is flat in dimensions ≥ n, then we win. In this way
we reduce to the case that S is affine. In this case X is quasi-compact and we can
choose a finite affine open covering X = W1 ∪ . . . ∪Wm. In this case the result for
(X → S,F) is equivalent to the result for (

∐
Wj ,

∐
F|Wj

). Hence we may assume
that f is of finite presentation.

Assume f is of finite presentation and F is of finite presentation. Let U ⊂ XT

denote the open subscheme of points where FT is flat over T , see More on Mor-
phisms, Theorem 15.1. By assumption the dimension of every fibre of Z = XT \U
over T has dimension < n. By Limits, Lemma 18.5 we can find a closed subscheme
Z ⊂ Z ′ ⊂ XT such that dim(Z ′

t) < n for all t ∈ T and such that Z ′ → XT is of
finite presentation. By Limits, Lemmas 10.1 and 8.5 there exists an i ∈ I and a
closed subscheme Z ′

i ⊂ Xi of finite presentation whose base change to T is Z ′. By
Limits, Lemma 18.1 we may assume all fibres of Z ′

i → Ti have dimension < n. By
Limits, Lemma 10.4 we may assume that Fi|Xi\T ′

i
is flat over Ti. This implies that

Fi is flat in dimensions ≥ n; here we use that Z ′ → XT is of finite presentation,
and hence the complement XT \ Z ′ is quasi-compact! Thus part (2) is proved and
the proof of the lemma is complete. □

Situation 20.13.05MW Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. For any scheme T over S we will denote FT the base change
of F to T , in other words, FT is the pullback of F via the projection morphism
XT = X ×S T → X. Since the base change of a flat module is flat we obtain a
functor

(20.13.1)05MX Fflat : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT is flat over T,
∅ else.

Lemma 20.14.05MY In Situation 20.13.
(1) The functor Fflat satisfies the sheaf property for the fpqc topology.
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(2) If f is quasi-compact and locally of finite presentation and F is of finite
presentation, then the functor Fflat is limit preserving.

Proof. Part (1) follows from the following statement: If T ′ → T is a surjective flat
morphism of schemes over S, then FT ′ is flat over T ′ if and only if FT is flat over
T , see More on Morphisms, Lemma 15.2. Part (2) follows from Limits, Lemma
10.4 after reducing to the case where X and S are affine (compare with the proof
of Lemma 20.12). □

21. Flattening stratifications

052F Just the definitions. The reader looking for a “generic flatness stratification”, should
consult More on Morphisms, Section 54.

Definition 21.1.05P6 LetX → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. We say that the universal flattening of F exists if the functor Fflat
defined in Situation 20.13 is representable by a scheme S′ over S. We say that the
universal flattening of X exists if the universal flattening of OX exists.

Note that if the universal flattening S′2 of F exists, then the morphism S′ → S is
a surjective monomorphism of schemes such that FS′ is flat over S′ and such that
a morphism T → S factors through S′ if and only if FT is flat over T .

Example 21.2.0FJ1 Let X = S = Spec(k[x, y]) where k is a field. Let F = M̃ where
M = k[x, x−1, y]/(y). For a k[x, y]-algebra A set Fflat(A) = Fflat(Spec(A)). Then
Fflat(k[x, y]/(x, y)n) = {∗} for all n, while Fflat(k[[x, y]]) = ∅. This means that
Fflat isn’t representable (even by an algebraic space, see Formal Spaces, Lemma
33.3). Thus the universal flattening does not exist in this case.

We define (compare with Topology, Remark 28.5) a (locally finite, scheme theoretic)
stratification of a scheme S to be given by closed subschemes Zi ⊂ S indexed by a
partially ordered set I such that S =

⋃
Zi (set theoretically), such that every point

of S has a neighbourhood meeting only a finite number of Zi, and such that

Zi ∩ Zj =
⋃

k≤i,j
Zk.

Setting Si = Zi \
⋃
j<i Zj the actual stratification is the decomposition S =

∐
Si

into locally closed subschemes. We often only indicate the strata Si and leave the
construction of the closed subschemes Zi to the reader. Given a stratification we
obtain a monomorphism

S′ =
∐

i∈I
Si −→ S.

We will call this the monomorphism associated to the stratification. With this
terminology we can define what it means to have a flattening stratification.

Definition 21.3.05P7 LetX → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. We say that F has a flattening stratification if the functor Fflat defined
in Situation 20.13 is representable by a monomorphism S′ → S associated to a
stratification of S by locally closed subschemes. We say that X has a flattening
stratification if OX has a flattening stratification.

2The scheme S′ is sometimes called the universal flatificator. In [GR71] it is called the plat-
ificateur universel. Existence of the universal flattening should not be confused with the type of
results discussed in More on Algebra, Section 26.
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When a flattening stratification exists, it is often important to understand the index
set labeling the strata and its partial ordering. This often has to do with ranks of
modules. For example if X = S and F is a finitely presented OS-module, then the
flattening stratification exists and is given by the Fitting ideals of F , see Divisors,
Lemma 9.7.

22. Flattening stratification over an Artinian ring

05PA A flatting stratification exists when the base scheme is the spectrum of an Artinian
ring.

Lemma 22.1.05PB Let S be the spectrum of an Artinian ring. For any scheme X
over S, and any quasi-coherent OX-module there exists a universal flattening. In
fact the universal flattening is given by a closed immersion S′ → S, and hence is a
flattening stratification for F as well.

Proof. Choose an affine open covering X =
⋃
Ui. Then Fflat is the product of the

functors associated to each of the pairs (Ui,F|Ui
). Hence it suffices to prove the

result for each (Ui,F|Ui
). In the affine case the lemma follows immediately from

More on Algebra, Lemma 17.2. □

23. Flattening a map

05PC Theorem 23.3 is the key to further flattening statements.

Lemma 23.1.05PD Let S be a scheme. Let g : X ′ → X be a flat morphism of schemes
over S with X locally of finite type over S. Let F be a finite type quasi-coherent
OX-module which is flat over S. If AssX/S(F) ⊂ g(X ′) then the canonical map

F −→ g∗g
∗F

is injective, and remains injective after any base change.

Proof. The final assertion means that FT → (gT )∗g
∗
TFT is injective for any mor-

phism T → S. The assumption AssX/S(F) ⊂ g(X ′) is preserved by base change,
see Divisors, Lemma 7.3 and Remark 7.4. The same holds for the assumption of
flatness and finite type. Hence it suffices to prove the injectivity of the displayed
arrow. Let K = Ker(F → g∗g

∗F). Our goal is to prove that K = 0. In order to
do this it suffices to prove that WeakAssX(K) = ∅, see Divisors, Lemma 5.5. We
have WeakAssX(K) ⊂ WeakAssX(F), see Divisors, Lemma 5.4. As F is flat we
see from Lemma 13.5 that WeakAssX(F) ⊂ AssX/S(F). By assumption any point
x of AssX/S(F) is the image of some x′ ∈ X ′. Since g is flat the local ring map
OX,x → OX′,x′ is faithfully flat, hence the map

Fx −→ g∗Fx′ = Fx ⊗OX,x
OX′,x′

is injective (see Algebra, Lemma 82.11). This implies that Kx = 0 as desired. □

Lemma 23.2.05PE Let A be a ring. Let u : M → N be a surjective map of A-modules.
If M is projective as an A-module, then there exists an ideal I ⊂ A such that for
any ring map φ : A→ B the following are equivalent

(1) u⊗ 1 : M ⊗A B → N ⊗A B is an isomorphism, and
(2) φ(I) = 0.
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Proof. As M is projective we can find a projective A-module C such that F =
M ⊕ C is a free A-module. By replacing u by u ⊕ 1 : F = M ⊕ C → N ⊕ C we
see that we may assume M is free. In this case let I be the ideal of A generated
by coefficients of all the elements of Ker(u) with respect to some (fixed) basis of
M . The reason this works is that, since u is surjective and ⊗AB is right exact,
Ker(u⊗ 1) is the image of Ker(u)⊗A B in M ⊗A B. □

Theorem 23.3.05PF In Situation 20.1 assume
(1) f is of finite presentation,
(2) F is of finite presentation, flat over S, and pure relative to S, and
(3) u is surjective.

Then Fiso is representable by a closed immersion Z → S. Moreover Z → S is of
finite presentation if G is of finite presentation.

Proof. We will use without further mention that F is universally pure over S, see
Lemma 18.3. By Lemma 20.2 and Descent, Lemmas 37.2 and 39.1 the question is
local for the étale topology on S. Hence it suffices to prove, given s ∈ S, that there
exists an étale neighbourhood of (S, s) so that the theorem holds.
Using Lemma 12.5 and after replacing S by an elementary étale neighbourhood of
s we may assume there exists a commutative diagram

X

��

X ′
g

oo

~~
S

of schemes of finite presentation over S, where g is étale, Xs ⊂ g(X ′), the schemes
X ′ and S are affine, Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that g∗F is
universally pure over S, see Lemma 17.4. Hence by Lemma 18.2 we see that the
open g(X ′) contains the points of AssX/S(F) lying over Spec(OS,s). Set

E = {t ∈ S | AssXt
(Ft) ⊂ g(X ′)}.

By More on Morphisms, Lemma 25.5 E is a constructible subset of S. We have seen
that Spec(OS,s) ⊂ E. By Morphisms, Lemma 22.4 we see that E contains an open
neighbourhood of s. Hence after replacing S by a smaller affine neighbourhood of
s we may assume that AssX/S(F) ⊂ g(X ′).
Since we have assumed that u is surjective we have Fiso = Finj . From Lemma 23.1
it follows that u : F → G is injective if and only if g∗u : g∗F → g∗G is injective,
and the same remains true after any base change. Hence we have reduced to the
case where, in addition to the assumptions in the theorem, X → S is a morphism
of affine schemes and Γ(X,F) is a projective Γ(S,OS)-module. This case follows
immediately from Lemma 23.2.
To see that Z is of finite presentation if G is of finite presentation, combine Lemma
20.2 part (4) with Limits, Remark 6.2. □

Lemma 23.4.07AI Let f : X → S be a morphism of schemes which is of finite
presentation, flat, and pure. Let Y be a closed subscheme of X. Let F = f∗Y be
the Weil restriction functor of Y along f , defined by

F : (Sch/S)opp → Sets, T 7→
{
{∗} if YT → XT is an isomorphism,
∅ else.
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Then F is representable by a closed immersion Z → S. Moreover Z → S is of
finite presentation if Y → S is.

Proof. Let I be the ideal sheaf defining Y in X and let u : OX → OX/I be
the surjection. Then for an S-scheme T , the closed immersion YT → XT is an
isomorphism if and only if uT is an isomorphism. Hence the result follows from
Theorem 23.3. □

24. Flattening in the local case

05MZ In this section we start applying the earlier material to obtain a shadow of the
flattening stratification.

Theorem 24.1.05PG In Situation 20.3 assume A is henselian, B is essentially of finite
type over A, and M is a finite B-module. Then there exists an ideal I ⊂ A such that
A/I corepresents the functor Flf on the category C. In other words given a local
homomorphism of local rings φ : A → A′ with B′ = B ⊗A A′ and M ′ = M ⊗A A′

the following are equivalent:
(1) ∀q ∈ V (mA′B′ + mBB

′) ⊂ Spec(B′) : M ′
q is flat over A′, and

(2) φ(I) = 0.
If B is essentially of finite presentation over A and M of finite presentation over
B, then I is a finitely generated ideal.

Proof. Choose a finite type ring map A→ C and a finite C-module N and a prime
q of C such that B = Cq and M = Nq. In the following, when we say “the theorem
holds for (N/C/A, q) we mean that it holds for (A → B,M) where B = Cq and
M = Nq. By Lemma 20.6 the functor Flf is unchanged if we replace B by a local
ring flat over B. Hence, since A is henselian, we may apply Lemma 6.6 and assume
that there exists a complete dévissage of N/C/A at q.
Let (Ai, Bi,Mi, αi, qi)i=1,...,n be such a complete dévissage of N/C/A at q. Let
q′
i ⊂ Ai be the unique prime lying over qi ⊂ Bi as in Definition 6.4. Since C → A1

is surjective and N ∼= M1 as C-modules, we see by Lemma 20.5 it suffices to prove
the theorem holds for (M1/A1/A, q

′
1). Since B1 → A1 is finite and q1 is the only

prime of B1 over q′
1 we see that (A1)q′

1
→ (B1)q1 is finite (see Algebra, Lemma

41.11 or More on Morphisms, Lemma 47.4). Hence by Lemma 20.5 it suffices to
prove the theorem holds for (M1/B1/A, q1).
At this point we may assume, by induction on the length n of the dévissage, that
the theorem holds for (M2/B2/A, q2). (If n = 1, then M2 = 0 which is flat over
A.) Reversing the last couple of steps of the previous paragraph, using that M2 ∼=
Coker(α2) as B1-modules, we see that the theorem holds for (Coker(α1)/B1/A, q1).
Let A′ be an object of C. At this point we use Lemma 10.1 to see that if (M1⊗AA′)q′

is flat over A′ for a prime q′ of B1 ⊗A A′ lying over mA′ , then (Coker(α1)⊗A A′)q′

is flat over A′. Hence we conclude that Flf is a subfunctor of the functor F ′
lf

associated to the module Coker(α1)q1 over (B1)q1 . By the previous paragraph we
know F ′

lf is corepresented by A/J for some ideal J ⊂ A. Hence we may replace A
by A/J and assume that Coker(α1)q1 is flat over A.
Since Coker(α1) is a B1-module for which there exist a complete dévissage of
N1/B1/A at q1 and since Coker(α1)q1 is flat over A by Lemma 10.2 we see that
Coker(α1) is free as an A-module, in particular flat as an A-module. Hence
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Lemma 10.1 implies Flf (A′) is nonempty if and only if α ⊗ 1A′ is injective. Let
N1 = Im(α1) ⊂M1 so that we have exact sequences

0→ N1 →M1 → Coker(α1)→ 0 and B⊕r1
1 → N1 → 0

The flatness of Coker(α1) implies the first sequence is universally exact (see Algebra,
Lemma 82.5). Hence α⊗1A′ is injective if and only if B⊕r1

1 ⊗AA′ → N1⊗AA′ is an
isomorphism. Finally, Theorem 23.3 applies to show this functor is corepresentable
by A/I for some ideal I and we conclude Flf is corepresentable by A/I also.
To prove the final statement, suppose that A→ B is essentially of finite presentation
and M of finite presentation over B. Let I ⊂ A be the ideal such that Flf is
corepresented by A/I. Write I =

⋃
Iλ where Iλ ranges over the finitely generated

ideals contained in I. Then, since Flf (A/I) = {∗} we see that Flf (A/Iλ) = {∗} for
some λ, see Lemma 20.4 part (2). Clearly this implies that I = Iλ. □

Remark 24.2.05PH Here is a scheme theoretic reformulation of Theorem 24.1. Let
(X,x) → (S, s) be a morphism of pointed schemes which is locally of finite type.
Let F be a finite type quasi-coherent OX -module. Assume S henselian local with
closed point s. There exists a closed subscheme Z ⊂ S with the following property:
for any morphism of pointed schemes (T, t)→ (S, s) the following are equivalent

(1) FT is flat over T at all points of the fibre Xt which map to x ∈ Xs, and
(2) Spec(OT,t)→ S factors through Z.

Moreover, if X → S is of finite presentation at x and Fx of finite presentation over
OX,x, then Z → S is of finite presentation.

At this point we can obtain some very general results completely for free from the
result above. Note that perhaps the most interesting case is when E = Xs!

Lemma 24.3.05PI Let S be the spectrum of a henselian local ring with closed point
s. Let X → S be a morphism of schemes which is locally of finite type. Let F be
a finite type quasi-coherent OX-module. Let E ⊂ Xs be a subset. There exists a
closed subscheme Z ⊂ S with the following property: for any morphism of pointed
schemes (T, t)→ (S, s) the following are equivalent

(1) FT is flat over T at all points of the fibre Xt which map to a point of
E ⊂ Xs, and

(2) Spec(OT,t)→ S factors through Z.
Moreover, if X → S is locally of finite presentation, F is of finite presentation, and
E ⊂ Xs is closed and quasi-compact, then Z → S is of finite presentation.

Proof. For x ∈ Xs denote Zx ⊂ S the closed subscheme we found in Remark 24.2.
Then it is clear that Z =

⋂
x∈E Zx works!

To prove the final statement assume X locally of finite presentation, F of finite
presentation and Z closed and quasi-compact. First, choose finitely many affine
opens Wj ⊂ X such that E ⊂

⋃
Wj . It clearly suffices to prove the result for each

morphism Wj → S with sheaf F|Xj
and closed subset E ∩ Wj . Hence we may

assume X is affine. In this case, More on Algebra, Lemma 19.4 shows that the
functor defined by (1) is “limit preserving”. Hence we can show that Z → S is of
finite presentation exactly as in the last part of the proof of Theorem 24.1. □

Remark 24.4.052G Tracing the proof of Lemma 24.3 to its origins we find a long and
winding road. But if we assume that
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(1) f is of finite type,
(2) F is a finite type OX -module,
(3) E = Xs, and
(4) S is the spectrum of a Noetherian complete local ring.

then there is a proof relying completely on more elementary algebra as follows:
first we reduce to the case where X is affine by taking a finite affine open cover.
In this case Z exists by More on Algebra, Lemma 20.3. The key step in this
proof is constructing the closed subscheme Z step by step inside the truncations
Spec(OS,s/mns ). This relies on the fact that flattening stratifications always exist
when the base is Artinian, and the fact that OS,s = limOS,s/mns .

25. Variants of a lemma

0ASZ In this section we discuss variants of Algebra, Lemmas 128.4 and 99.1. The most
general version is Proposition 25.13; this was stated as [GR71, Lemma 4.2.2] but
the proof in loc.cit. only gives the weaker result as stated in Lemma 25.5. The
intricate proof of Proposition 25.13 is due to Ofer Gabber. As we currently have no
application for the proposition we encourage the reader to skip to the next section
after reading the proof of Lemma 25.5; this lemma will be used in the next section
to prove Theorem 26.1.

Situation 25.1.0AT0 Let φ : A → B be a local ring homomorphism of local rings
which is essentially of finite type. Let M be a flat A-module, N a finite B-module
and u : N →M an A-module map such that u : N/mAN →M/mAM is injective.

In this situation it is our goal to show that u is A-universally injective, N is of finite
presentation over B, and N is flat as an A-module. If this is true, we will say the
lemma holds in the given situation.

Lemma 25.2.0AT1 If in Situation 25.1 the ring A is Noetherian then the lemma holds.

Proof. Applying Algebra, Lemma 99.1 we see that u is injective and that N/u(M)
is flat over A. Then u is A-universally injective (Algebra, Lemma 39.12) and N is
A-flat (Algebra, Lemma 39.13). Since B is Noetherian in this case we see that N
is of finite presentation. □

Lemma 25.3.0AT2 Let A0 be a local ring. If the lemma holds for every Situation 25.1
with A = A0, with B a localization of a polynomial algebra over A, and N of finite
presentation over B, then the lemma holds for every Situation 25.1 with A = A0.

Proof. Let A → B, u : N → M be as in Situation 25.1. Write B = C/I where
C is the localization of a polynomial algebra over A at a prime. If we can show
that N is finitely presented as a C-module, then a fortiori this shows that N is
finitely presented as a B-module (see Algebra, Lemma 6.4). Hence we may assume
that B is the localization of a polynomial algebra. Next, write N = B⊕n/K for
some submodule K ⊂ B⊕n. Since B/mAB is Noetherian (as it is essentially of
finite type over a field), there exist finitely many elements k1, . . . , ks ∈ K such that
for K ′ =

∑
Bki and N ′ = B⊕n/K ′ the canonical surjection N ′ → N induces an

isomorphism N ′/mAN
′ ∼= N/mAN . Now, if the lemma holds for the composition

u′ : N ′ → M , then u′ is injective, hence N ′ = N and u′ = u. Thus the lemma
holds for the original situation. □

Lemma 25.4.0AT3 If in Situation 25.1 the ring A is henselian then the lemma holds.
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Proof. It suffices to prove this when B is essentially of finite presentation over
A and N is of finite presentation over B, see Lemma 25.3. Let us temporarily
make the additional assumption that N is flat over A. Then N is a filtered colimit
N = colimi Fi of free A-modules Fi such that the transition maps uii′ : Fi → Fi′

are injective modulo mA, see Lemma 19.5. Each of the compositions ui : Fi → M
is A-universally injective by Lemma 7.5 wherefore u = colim ui is A-universally
injective as desired.

Assume A is a henselian local ring, B is essentially of finite presentation over A,
N of finite presentation over B. By Theorem 24.1 there exists a finitely generated
ideal I ⊂ A such that N/IN is flat over A/I and such that N/I2N is not flat over
A/I2 unless I = 0. The result of the previous paragraph shows that the lemma
holds for u mod I : N/IN →M/IM over A/I. Consider the commutative diagram

0 // M ⊗A I/I2 // M/I2M // M/IM // 0

N ⊗A I/I2 //

u

OO

N/I2N //

u

OO

N/IN //

u

OO

0

whose rows are exact by right exactness of ⊗ and the fact that M is flat over A.
Note that the left vertical arrow is the map N/IN ⊗A/I I/I2 →M/IM ⊗A/I I/I2,
hence is injective. A diagram chase shows that the lower left arrow is injective,
i.e., Tor1

A/I2(I/I2,M/I2) = 0 see Algebra, Remark 75.9. Hence N/I2N is flat over
A/I2 by Algebra, Lemma 99.8 a contradiction unless I = 0. □

The following lemma discusses the special case of Situation 25.1 where M has a
B-module structure and u is B-linear. This is the case most often used in practice
and it is significantly easier to prove than the general case.

Lemma 25.5.0AT4 Let A → B be a local ring homomorphism of local rings which is
essentially of finite type. Let u : N → M be a B-module map. If N is a finite
B-module, M is flat over A, and u : N/mAN → M/mAM is injective, then u is
A-universally injective, N is of finite presentation over B, and N is flat over A.

Proof. Let A → Ah be the henselization of A. Let B′ be the localization of
B ⊗A Ah at the maximal ideal mB ⊗ Ah + B ⊗ mAh . Since B → B′ is flat (hence
faithfully flat, see Algebra, Lemma 39.17), we may replace A→ B with Ah → B′,
the module M by M ⊗B B′, the module N by N ⊗B B′, and u by u ⊗ idB′ , see
Algebra, Lemmas 83.2 and 39.9. Thus we may assume that A is a henselian local
ring. In this case our lemma follows from the more general Lemma 25.4. □

Lemma 25.6.0AT5 If in Situation 25.1 the ring A is a valuation ring then the lemma
holds.

Proof. Recall that an A-module is flat if and only if it is torsion free, see More
on Algebra, Lemma 22.10. Let T ⊂ N be the A-torsion. Then u(T ) = 0 and N/T
is A-flat. Hence N/T is finitely presented over B, see More on Algebra, Lemma
25.6. Thus T is a finite B-module, see Algebra, Lemma 5.3. Since N/T is A-flat
we see that T/mAT ⊂ N/mAN , see Algebra, Lemma 39.12. As u is injective but
u(T ) = 0, we conclude that T/mAT = 0. Hence T = 0 by Nakayama’s lemma, see
Algebra, Lemma 20.1. At this point we have proved two out of the three assertions
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(N is A-flat and of finite presentation over B) and what is left is to show that u is
universally injective.

By Algebra, Theorem 82.3 it suffices to show that N ⊗A Q→M ⊗A Q is injective
for every finitely presented A-module Q. By More on Algebra, Lemma 124.3 we
may assume Q = A/(a) with a ∈ mA nonzero. Thus it suffices to show that
N/aN → M/aM is injective. Let x ∈ N with u(x) ∈ aM . By Lemma 19.6 we
know that x has a content ideal I ⊂ A. Since I is finitely generated (More on
Algebra, Lemma 24.2) and A is a valuation ring, we have I = (b) for some b (by
Algebra, Lemma 50.15). By More on Algebra, Lemma 24.3 the element u(x) has
content ideal I as well. Since u(x) ∈ aM we see that (b) ⊂ (a) by More on Algebra,
Definition 24.1. Since x ∈ bN we conclude x ∈ aN as desired. □

Consider the following situation

(25.6.1)0AT6 A→ B of finite presentation, S ⊂ B a multiplicative subset, and
N a finitely presented S−1B-module

In this situation a pure spreadout is an affine open U ⊂ Spec(B) with Spec(S−1B) ⊂
U and a finitely presented O(U)-module N ′ extending N such that N ′ is A-
projective and N ′ → N = S−1N ′ is A-universally injective.

In (25.6.1) if A→ A1 is a ring map, then we can base change: take B1 = B⊗AA1,
let S1 ⊂ B1 be the image of S, and let N1 = N ⊗A A1. This works because
S−1

1 B1 = S−1B ⊗A A1. We will use this without further mention in the following.

Lemma 25.7.0AT7 In (25.6.1) if there exists a pure spreadout, then
(1) elements of N have content ideals in A, and
(2) if u : N → M is a morphism to a flat A-module M such that N/mN →

M/mM is injective for all maximal ideals m of A, then u is A-universally
injective.

Proof. Choose U , N ′ as in the definition of a pure spreadout. Any element x′ ∈ N ′

has a content ideal in A because N ′ is A-projective (this can easily be seen directly,
but it also follows from More on Algebra, Lemma 24.4 and Algebra, Example 91.1).
Since N ′ → N is A-universally injective, we see that the image x ∈ N of any x′ ∈ N ′

has a content ideal in A (it is the same as the content ideal of x′). For a general
x ∈ N we choose s ∈ S such that sx is in the image of N ′ → N and we use that x
and sx have the same content ideal.

Let u : N → M be as in (2). To show that u is A-universally injective, we may
replace A by a localization at a maximal ideal (small detail omitted). Assume A is
local with maximal ideal m. Pick s ∈ S and consider the composition

N ′ → N
1/s−−→ N

u−→M

Each of these maps is injective modulo m, hence the composition is A-universally
injective by Lemma 7.5. Since N = colims∈S(1/s)N ′ we conclude that u is A-
inversally injective as a colimit of universally injective maps. □

Lemma 25.8.0AT8 In (25.6.1) for every p ∈ Spec(A) there is a finitely generated ideal
I ⊂ pAp such that over Ap/I we have a pure spreadout.
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Proof. We may replace A by Ap. Thus we may assume A is local and p is the
maximal ideal m of A. We may write N = S−1N ′ for some finitely presented
B-module N ′ by clearing denominators in a presentation of N over S−1B. Since
B/mB is Noetherian, the kernel K of N ′/mN ′ → N/mN is finitely generated. Thus
we can pick s ∈ S such that K is annihilated by s. After replacing B by Bs which is
allowed as it just means passing to an affine open subscheme of Spec(B), we find that
the elements of S are injective on N ′/mN ′. At this point we choose a local subring
A0 ⊂ A essentially of finite type over Z, a finite type ring map A0 → B0 such that
B = A⊗A0 B0, and a finite B0-module N ′

0 such that N ′ = B ⊗B0 N
′
0 = A⊗A0 N

′
0.

We claim that I = mA0A works. Namely, we have

N ′/IN ′ = N ′
0/mA0N

′
0 ⊗κA0

A/I

which is free over A/I. Multiplication by the elements of S is injective after divid-
ing out by the maximal ideal, hence N ′/IN ′ → N/IN is universally injective for
example by Lemma 7.6. □

Lemma 25.9.0AT9 In (25.6.1) assume N is A-flat, M is a flat A-module, and u :
N → M is an A-module map such that u ⊗ idκ(p) is injective for all p ∈ Spec(A).
Then u is A-universally injective.

Proof. By Algebra, Lemma 82.14 it suffices to check that N/IN → M/IM is
injective for every ideal I ⊂ A. After replacing A by A/I we see that it suffices to
prove that u is injective.

Proof that u is injective. Let x ∈ N be a nonzero element of the kernel of u.
Then there exists a weakly associated prime p of the module Ax, see Algebra,
Lemma 66.5. Replacing A by Ap we may assume A is local and we find a nonzero
element y ∈ Ax whose annihilator has radical equal to mA, see Algebra, Lemma
66.2. Thus Supp(y) ⊂ Spec(S−1B) is nonempty and contained in the closed fibre
of Spec(S−1B) → Spec(A). Let I ⊂ mA be a finitely generated ideal so that
we have a pure spreadout over A/I, see Lemma 25.8. Then Iny = 0 for some
n. Now y ∈ AnnM (In) = AnnA(In) ⊗R N by flatness. Thus, to get the desired
contradiction, it suffices to show that

AnnA(In)⊗R N −→ AnnA(In)⊗RM

is injective. Since N and M are flat and since AnnA(In) is annihilated by In,
it suffices to show that Q ⊗A N → Q ⊗A M is injective for every A-module Q
annihilated by I. This holds by our choice of I and Lemma 25.7 part (2). □

Lemma 25.10.0ATA Let A be a local domain which is not a field. Let S be a set of
finitely generated ideals of A. Assume that S is closed under products and such that⋃
I∈S V (I) is the complement of the generic point of Spec(A). Then

⋂
I∈S I = (0).

Proof. Since mA ⊂ A is not the generic point of Spec(A) we see that I ⊂ mA for
at least one I ∈ S. Hence

⋂
I∈S I ⊂ mA. Let f ∈ mA be nonzero. Then V (f) ⊂⋃

I∈S V (I). Since the constructible topology on V (f) is quasi-compact (Topology,
Lemma 23.2 and Algebra, Lemma 26.2) we find that V (f) ⊂ V (I1) ∪ . . . ∪ V (In)
for some Ij ∈ S. Because I1 . . . In ∈ S we see that V (f) ⊂ V (I) for some I. As I
is finitely generated this implies that Im ⊂ (f) for some m and since S is closed
under products we see that I ⊂ (f2) for some I ∈ S. Then it is not possible to
have f ∈ I. □
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Lemma 25.11.0ATB Let A be a local ring. Let I, J ⊂ A be ideals. If J is finitely
generated and I ⊂ Jn for all n ≥ 1, then V (I) contains the closed points of
Spec(A) \ V (J).

Proof. Let p ⊂ A be a closed point of Spec(A) \ V (J). We want to show that
I ⊂ p. If not, then some f ∈ I maps to a nonzero element of A/p. Note that
V (J) ∩ Spec(A/p) is the set of non-generic points. Hence by Lemma 25.10 applied
to the collection of ideals JnA/p we conclude that the image of f is zero in A/p. □

Lemma 25.12.0ATC Let A be a local ring. Let I ⊂ A be an ideal. Let U ⊂ Spec(A) be
quasi-compact open. Let M be an A-module. Assume that

(1) M/IM is flat over A/I,
(2) M is flat over U ,

Then M/I2M is flat over A/I2 where I2 = Ker(I → Γ(U, I/I2)).

Proof. It suffices to show that M ⊗A I/I2 → IM/I2M is injective, see Algebra,
Lemma 99.9. This is true over U by assumption (2). Thus it suffices to show that
M ⊗A I/I2 injects into its sections over U . We have M ⊗A I/I2 = M/IM ⊗A I/I2
and M/IM is a filtered colimit of finite free A/I-modules (Algebra, Theorem 81.4).
Hence it suffices to show that I/I2 injects into its sections over U , which follows
from the construction of I2. □

Proposition 25.13.05U9 Let A → B be a local ring homomorphism of local rings
which is essentially of finite type. Let M be a flat A-module, N a finite B-module
and u : N → M an A-module map such that u : N/mAN → M/mAM is injective.
Then u is A-universally injective, N is of finite presentation over B, and N is flat
over A.

Proof. We may assume that B is the localization of a finitely presented A-algebra
B0 and that N is the localization of a finitely presented B0-module M0, see Lemma
25.3. By More on Morphisms, Lemma 54.1 there exists a “generic flatness stratifica-
tion” for M̃0 on Spec(B0) over Spec(A). Translating back to N we find a sequence
of closed subschemes

S = Spec(A) ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅

with Si ⊂ S cut out by a finitely generated ideal of A such that the pullback of Ñ
to Spec(B) ×S (Si \ Si+1) is flat over Si \ Si+1. We will prove the proposition by
induction on t (the base case t = 1 will be proved in parallel with the other steps).
Let Spec(A/Ji) be the scheme theoretic closure of Si \ Si+1.

Claim 1. N/JiN is flat over A/Ji. This is immediate for i = t − 1 and follows
from the induction hypothesis for i > 0. Thus we may assume t > 1, St−1 ̸= ∅, and
J0 = 0 and we have to prove that N is flat. Let J ⊂ A be the ideal defining S1.
By induction on t again, we also have flatness modulo powers of J . Let Ah be the
henselization of A and let B′ be the localization of B ⊗A Ah at the maximal ideal
mB ⊗ Ah + B ⊗ mAh . Then B → B′ is faithfully flat. Set N ′ = N ⊗B B′. Note
that N ′ is Ah-flat if and only if N is A-flat. By Theorem 24.1 there is a smallest
ideal I ⊂ Ah such that N ′/IN ′ is flat over Ah/I, and I is finitely generated. By
the above I ⊂ JnAh for all n ≥ 1. Let Shi ⊂ Spec(Ah) be the inverse image of
Si ⊂ Spec(A). By Lemma 25.11 we see that V (I) contains the closed points of
U = Spec(Ah)−Sh1 . By construction N ′ is Ah-flat over U . By Lemma 25.12 we see
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that N ′/I2N
′ is flat over A/I2, where I2 = Ker(I → Γ(U, I/I2)). Hence I = I2 by

minimality of I. This implies that I = I2 locally on U , i.e., we have IOU,u = (0) or
IOU,u = (1) for all u ∈ U . Since V (I) contains the closed points of U we see that
I = 0 on U . Since U ⊂ Spec(Ah) is scheme theoretically dense (because replaced A
by A/J0 in the beginning of this paragraph), we see that I = 0. Thus N ′ is Ah-flat
and hence Claim 1 holds.

We return to the situation as laid out before Claim 1. With Ah the henselization of
A, with B′ the localization of B ⊗A Ah at the maximal ideal mB ⊗Ah +B ⊗mAh ,
and with N ′ = N ⊗B B′ we now see that the flattening ideal I ⊂ Ah of Theorem
24.1 is nilpotent. If nil(Ah) denotes the ideal of nilpotent elements, then nil(Ah) =
nil(A)Ah (More on Algebra, Lemma 45.5). Hence there exists a finitely generated
nilpotent ideal I0 ⊂ A such that N/I0N is flat over A/I0.

Claim 2. For every prime ideal p ⊂ A the map κ(p) ⊗A N → κ(p) ⊗A M is
injective. We say p is bad it this is false. Suppose that C is a nonempty chain
of bad primes and set p∗ =

⋃
p∈C p. By Lemma 25.8 there is a finitely generated

ideal a ⊂ p∗Ap∗ such that there is a pure spreadout over V (a). If p∗ were good,
then it would follow from Lemma 25.7 that the points of V (a) are good. However,
since a is finitely generated and since p∗Ap∗ =

⋃
p∈C Ap∗ we see that V (a) contains

a p ∈ C, contradiction. Hence p∗ is bad. By Zorn’s lemma, if there exists a bad
prime, there exists a maximal one, say p. In other words, we may assume every
p′ ⊃ p, p′ ̸= p is good. In this case we see that for every f ∈ A, f ̸∈ p the map
u⊗ idA/(p+f) is universally injective, see Lemma 25.9. Thus it suffices to show that
N/pN is separated for the topology defined by the submodules f(N/pN). Since
B → B′ is faithfully flat, it is enough to prove the same for the module N ′/pN ′. By
Lemma 19.5 and More on Algebra, Lemma 24.4 elements of N ′/pN ′ have content
ideals in Ah/pAh. Thus it suffices to show that

⋂
f∈A,f ̸∈p f(Ah/pAh) = 0. Then it

suffices to show the same for Ah/qAh for every prime q ⊂ Ah minimal over pAh.
Because A → Ah is the henselization, every q contracts to p and every q′ ⊃ q,
q′ ̸= q contracts to a prime p′ which strictly contains p. Thus we get the vanishing
of the intersections from Lemma 25.10.

At this point we can put everything together. Namely, using Claim 1 and Claim 2
we see that N/I0N →M/I0M is A/I0-universally injective by Lemma 25.9. Then
the diagrams

N ⊗A (In0 /In+1
0 ) //

��

M ⊗A (In0 /In+1
0 )

In0 N/I
n+1
0 N // In0 M/In+1

0 M

show that the left vertical arrows are injective. Hence by Algebra, Lemma 99.9 we
see that N is flat. In a similar way the universal injectivity of u can be reduced
(even without proving flatness of N first) to the one modulo I0. This finishes the
proof. □

26. Flat finite type modules, Part III

05U8 The following result is one of the main results of this chapter.
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Theorem 26.1.05UA Let f : X → S be locally of finite type. Let F be a quasi-coherent
OX-module of finite type. Let x ∈ X with image s ∈ S. The following are equivalent

(1) F is flat at x over S, and
(2) for every x′ ∈ AssXs

(Fs) which specializes to x we have that F is flat at x′

over S.

Proof. It is clear that (1) implies (2) as Fx′ is a localization of Fx for every point
which specializes to x. Set A = OS,s, B = OX,x and N = Fx. Let Σ ⊂ B be the
multiplicative subset of B of elements which act as nonzerodivisors on N/mAN .
Assumption (2) implies that Σ−1N is A-flat by the description of Spec(Σ−1N) in
Lemma 7.1. On the other hand, the map N → Σ−1N is injective modulo mA by
construction. Hence applying Lemma 25.5 we win. □

Now we apply this directly to obtain the following useful results.

Lemma 26.2.05UB Let S be a local scheme with closed point s. Let f : X → S be
locally of finite type. Let F be a finite type quasi-coherent OX-module. Assume that

(1) every point of AssX/S(F) specializes to a point of the closed fibre Xs
3,

(2) F is flat over S at every point of Xs.
Then F is flat over S.

Proof. This is immediate from the fact that it suffices to check for flatness at
points of the relative assassin of F over S by Theorem 26.1. □

27. Universal flattening

05PS If f : X → S is a proper, finitely presented morphism of schemes then one can find
a universal flattening of f . In this section we discuss this and some of its variants.

Lemma 27.1.05UC In Situation 20.7. For each p ≥ 0 the functor Hp (20.7.2) is
representable by a locally closed immersion Sp → S. If F is of finite presentation,
then Sp → S is of finite presentation.

Proof. For each S we will prove the statement for all p ≥ 0 concurrently. The
functor Hp is a sheaf for the fppf topology by Lemma 20.8. Hence combining
Descent, Lemma 39.1, More on Morphisms, Lemma 57.1 , and Descent, Lemma
24.1 we see that the question is local for the étale topology on S. In particular, the
question is Zariski local on S.
For s ∈ S denote ξs the unique generic point of the fibre Xs. Note that for
every s ∈ S the restriction Fs of F is locally free of some rank p(s) ≥ 0 in some
neighbourhood of ξs. (As Xs is irreducible and smooth this follows from generic
flatness for Fs over Xs, see Algebra, Lemma 118.1 although this is overkill.) For
future reference we note that

p(s) = dimκ(ξs)(Fξs
⊗OX,ξs

κ(ξs)).
In particular Hp(s)(s) is nonempty and Hq(s) is empty if q ̸= p(s).
Let U ⊂ X be an open subscheme. As f : X → S is smooth, it is open. It is
immediate from (20.7.2) that the functor Hp for the pair (f |U : U → f(U),F|U )
and the functor Hp for the pair (f |f−1(f(U)),F|f−1(f(U))) are the same. Hence to
prove the existence of Sp over f(U) we may always replace X by U .

3For example this holds if f is finite type and F is pure along Xs, or if f is proper.
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Pick s ∈ S. There exists an affine open neighbourhood U of ξs such that F|U can
be generated by at most p(s) elements. By the arguments above we see that in
order to prove the statement for Hp(s) in an neighbourhood of s we may assume
that F is generated by p(s) elements, i.e., that there exists a surjection

u : O⊕p(s)
X −→ F

In this case it is clear that Hp(s) is equal to Fiso (20.1.1) for the map u (this follows
immediately from Lemma 19.1 but also from Lemma 12.1 after shrinking a bit more
so that both S and X are affine.) Thus we may apply Theorem 23.3 to see that
Hp(s) is representable by a closed immersion in a neighbourhood of s.

The result follows formally from the above. Namely, the arguments above show
that locally on S the function s 7→ p(s) is bounded. Hence we may use induction
on p = maxs∈S p(s). The functor Hp is representable by a closed immersion Sp → S
by the above. Replace S by S \ Sp which drops the maximum by at least one and
we win by induction hypothesis.

Assume F is of finite presentation. Then Sp → S is locally of finite presentation
by Lemma 20.8 part (2) combined with Limits, Remark 6.2. Then we redo the
induction argument in the paragraph to see that each Sp is quasi-compact when
S is affine: first if p = maxs∈S p(s), then Sp ⊂ S is closed (see above) hence
quasi-compact. Then U = S \ Sp is quasi-compact open in S because Sp → S is
a closed immersion of finite presentation (see discussion in Morphisms, Section 22
for example). Then Sp−1 → U is a closed immersion of finite presentation, and so
Sp−1 is quasi-compact and U ′ = S \ (Sp ∪ Sp−1) is quasi-compact. And so on. □

Lemma 27.2.05UD In Situation 20.11. Let h : X ′ → X be an étale morphism. Set
F ′ = h∗F and f ′ = f ◦ h. Let F ′

n be (20.11.1) associated to (f ′ : X ′ → S,F ′).
Then Fn is a subfunctor of F ′

n and if h(X ′) ⊃ AssX/S(F), then Fn = F ′
n.

Proof. Let T → S be any morphism. Then hT : X ′
T → XT is étale as a base

change of the étale morphism g. For t ∈ T denote Z ⊂ Xt the set of points where
FT is not flat over T , and similarly denote Z ′ ⊂ X ′

t the set of points where F ′
T is

not flat over T . As F ′
T = h∗

TFT we see that Z ′ = h−1
t (Z), see Morphisms, Lemma

25.13. Hence Z ′ → Z is an étale morphism, so dim(Z ′) ≤ dim(Z) (for example
by Descent, Lemma 21.2 or just because an étale morphism is smooth of relative
dimension 0). This implies that Fn ⊂ F ′

n.

Finally, suppose that h(X ′) ⊃ AssX/S(F) and that T → S is a morphism such
that F ′

n(T ) is nonempty, i.e., such that F ′
T is flat in dimensions ≥ n over T . Pick

a point t ∈ T and let Z ⊂ Xt and Z ′ ⊂ X ′
t be as above. To get a contradiction

assume that dim(Z) ≥ n. Pick a generic point ξ ∈ Z corresponding to a component
of dimension ≥ n. Let x ∈ AssXt

(Ft) be a generalization of ξ. Then x maps to a
point of AssX/S(F) by Divisors, Lemma 7.3 and Remark 7.4. Thus we see that x
is in the image of hT , say x = hT (x′) for some x′ ∈ X ′

T . But x′ ̸∈ Z ′ as x⇝ ξ and
dim(Z ′) < n. Hence F ′

T is flat over T at x′ which implies that FT is flat at x over
T (by Morphisms, Lemma 25.13). Since this holds for every such x we conclude
that FT is flat over T at ξ by Theorem 26.1 which is the desired contradiction. □
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Lemma 27.3.05UE Assume that X → S is a smooth morphism of affine schemes with
geometrically irreducible fibres of dimension d and that F is a quasi-coherent OX-
module of finite presentation. Then Fd =

∐
p=0,...,cHp for some c ≥ 0 with Fd as

in (20.11.1) and Hp as in (20.7.2).

Proof. As X is affine and F is quasi-coherent of finite presentation we know that
F can be generated by c ≥ 0 elements. Then dimκ(x)(Fx ⊗ κ(x)) in any point
x ∈ X never exceeds c. In particular Hp = ∅ for p > c. Moreover, note that there
certainly is an inclusion

∐
Hp → Fd. Having said this the content of the lemma is

that, if a base change FT is flat in dimensions ≥ d over T and if t ∈ T , then FT is
free of some rank r in an open neighbourhood U ⊂ XT of the unique generic point
ξ of Xt. Namely, then Hr contains the image of U which is an open neighbourhood
of t. The existence of U follows from More on Morphisms, Lemma 16.7. □

Lemma 27.4.05UF In Situation 20.11. Let s ∈ S let d ≥ 0. Assume
(1) there exists a complete dévissage of F/X/S over some point s ∈ S,
(2) X is of finite presentation over S,
(3) F is an OX-module of finite presentation, and
(4) F is flat in dimensions ≥ d+ 1 over S.

Then after possibly replacing S by an open neighbourhood of s the functor Fd
(20.11.1) is representable by a monomorphism Zd → S of finite presentation.

Proof. A preliminary remark is that X, S are affine schemes and that it suffices
to prove Fd is representable by a monomorphism of finite presentation Zd → S on
the category of affine schemes over S. (Of course we do not require Zd to be affine.)
Hence throughout the proof of the lemma we work in the category of affine schemes
over S.

Let (Zk, Yk, ik, πk,Gk, αk)k=1,...,n be a complete dévissage of F/X/S over s, see
Definition 5.1. We will use induction on the length n of the dévissage. Recall that
Yk → S is smooth with geometrically irreducible fibres, see Definition 4.1. Let dk be
the relative dimension of Yk over S. Recall that ik,∗Gk = Coker(αk) and that ik is a
closed immersion. By the definitions referenced above we have d1 = dim(Supp(Fs))
and

dk = dim(Supp(Coker(αk−1)s)) = dim(Supp(Gk,s))
for k = 2, . . . , n. It follows that d1 > d2 > . . . > dn ≥ 0 because αk is an
isomorphism in the generic point of (Yk)s.

Note that i1 is a closed immersion and F = i1,∗G1. Hence for any morphism of
schemes T → S with T affine, we have FT = i1,T,∗G1,T and i1,T is still a closed
immersion of schemes over T . Thus FT is flat in dimensions ≥ d over T if and only
if G1,T is flat in dimensions ≥ d over T . Because π1 : Z1 → Y1 is finite we see in
the same manner that G1,T is flat in dimensions ≥ d over T if and only if π1,T,∗G1,T
is flat in dimensions ≥ d over T . The same arguments work for “flat in dimensions
≥ d + 1” and we conclude in particular that π1,∗G1 is flat over S in dimensions
≥ d+ 1 by our assumption on F .

Suppose that d1 > d. It follows from the discussion above that in particular π1,∗G1
is flat over S at the generic point of (Y1)s. By Lemma 12.1 we may replace S by an
affine neighbourhood of s and assume that α1 is S-universally injective. Because
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α1 is S-universally injective, for any morphism T → S with T affine, we have a
short exact sequence

0→ O⊕r1
Y1,T
→ π1,T,∗G1,T → Coker(α1)T → 0

and still the first arrow is T -universally injective. Hence the set of points of (Y1)T
where π1,T,∗G1,T is flat over T is the same as the set of points of (Y1)T where
Coker(α1)T is flat over S. In this way the question reduces to the sheaf Coker(α1)
which has a complete dévissage of length n− 1 and we win by induction.

If d1 < d then Fd is represented by S and we win.

The last case is the case d1 = d. This case follows from a combination of Lemma
27.3 and Lemma 27.1. □

Theorem 27.5.05UG In Situation 20.11. Assume moreover that f is of finite presen-
tation, that F is an OX-module of finite presentation, and that F is pure relative
to S. Then Fn is representable by a monomorphism Zn → S of finite presentation.

Proof. The functor Fn is a sheaf for the fppf topology by Lemma 20.12. Ob-
serve that a monomorphism of finite presentation is separated and quasi-finite
(Morphisms, Lemma 20.15). Hence combining Descent, Lemma 39.1, More on
Morphisms, Lemma 57.1 , and Descent, Lemmas 23.31 and 23.13 we see that the
question is local for the étale topology on S.

In particular the situation is local for the Zariski topology on S and we may assume
that S is affine. In this case the dimension of the fibres of f is bounded above, hence
we see that Fn is representable for n large enough. Thus we may use descending
induction on n. Suppose that we know Fn+1 is representable by a monomorphism
Zn+1 → S of finite presentation. Consider the base change Xn+1 = Zn+1×SX and
the pullback Fn+1 of F to Xn+1. The morphism Zn+1 → S is quasi-finite as it is a
monomorphism of finite presentation, hence Lemma 16.4 implies that Fn+1 is pure
relative to Zn+1. Since Fn is a subfunctor of Fn+1 we conclude that in order to
prove the result for Fn it suffices to prove the result for the corresponding functor
for the situation Fn+1/Xn+1/Zn+1. In this way we reduce to proving the result for
Fn in case Sn+1 = S, i.e., we may assume that F is flat in dimensions ≥ n+ 1 over
S.

Fix n and assume F is flat in dimensions ≥ n+1 over S. To finish the proof we have
to show that Fn is representable by a monomorphism Zn → S of finite presentation.
Since the question is local in the étale topology on S it suffices to show that for
every s ∈ S there exists an elementary étale neighbourhood (S′, s′) → (S, s) such
that the result holds after base change to S′. Thus by Lemma 5.8 we may assume
there exist étale morphisms hj : Yj → X, j = 1, . . . ,m such that for each j there
exists a complete dévissage of Fj/Yj/S over s, where Fj is the pullback of F to Yj
and such that Xs ⊂

⋃
hj(Yj). Note that by Lemma 27.2 the sheaves Fj are still

flat over in dimensions ≥ n+1 over S. Set W =
⋃
hj(Yj), which is a quasi-compact

open of X. As F is pure along Xs we see that

E = {t ∈ S | AssXt
(Ft) ⊂W}.

contains all generalizations of s. By More on Morphisms, Lemma 25.5 E is a
constructible subset of S. We have seen that Spec(OS,s) ⊂ E. By Morphisms,
Lemma 22.4 we see that E contains an open neighbourhood of s. Hence after

https://stacks.math.columbia.edu/tag/05UG
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shrinking S we may assume that E = S. It follows from Lemma 27.2 that it suffices
to prove the lemma for the functor Fn associated to X =

∐
Yj and F =

∐
Fj . If

Fj,n denotes the functor for Yj → S and the sheaf Fi we see that Fn =
∏
Fj,n.

Hence it suffices to prove each Fj,n is representable by some monomorphism Zj,n →
S of finite presentation, since then

Zn = Z1,n ×S . . .×S Zm,n
Thus we have reduced the theorem to the special case handled in Lemma 27.4. □

We make explicit what the theorem means in terms of universal flattenings in the
following lemma.

Lemma 27.6.05UH Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module.

(1) If f is of finite presentation, F is an OX-module of finite presentation, and
F is pure relative to S, then there exists a universal flattening S′ → S of
F . Moreover S′ → S is a monomorphism of finite presentation.

(2) If f is of finite presentation and X is pure relative to S, then there exists
a universal flattening S′ → S of X. Moreover S′ → S is a monomorphism
of finite presentation.

(3) If f is proper and of finite presentation and F is an OX-module of finite
presentation, then there exists a universal flattening S′ → S of F . Moreover
S′ → S is a monomorphism of finite presentation.

(4) If f is proper and of finite presentation then there exists a universal flat-
tening S′ → S of X.

Proof. These statements follow immediately from Theorem 27.5 applied to F0 =
Fflat and the fact that if f is proper then F is automatically pure over the base,
see Lemma 17.1. □

28. Grothendieck’s Existence Theorem, IV

0CTB This section continues the discussion in Cohomology of Schemes, Sections 24, 25,
and 27. We will work in the following situation.

Situation 28.1.0CTC Here we have an inverse system of rings (An) with surjective
transition maps whose kernels are locally nilpotent. Set A = limAn. We have a
scheme X separated and of finite presentation over A. We set Xn = X ×Spec(A)
Spec(An) and we view it as a closed subscheme of X. We assume further given a
system (Fn, φn) where Fn is a finitely presented OXn

-module, flat over An, with
support proper over An, and

φn : Fn ⊗OXn
OXn−1 −→ Fn−1

is an isomorphism (notation using the equivalence of Morphisms, Lemma 4.1).

Our goal is to see if we can find a quasi-coherent sheaf F on X such that Fn =
F ⊗OX

OXn for all n.

Lemma 28.2.0CTD In Situation 28.1 consider
K = R limDQCoh(OX )(Fn) = DQX(R limD(OX ) Fn)

Then K is in Db
QCoh(OX) and in fact K has nonzero cohomology sheaves only in

degrees ≥ 0.

https://stacks.math.columbia.edu/tag/05UH
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Proof. Special case of Derived Categories of Schemes, Example 21.5. □

Lemma 28.3.0CTE In Situation 28.1 let K be as in Lemma 28.2. For any perfect
object E of D(OX) we have

(1) M = RΓ(X,K ⊗L E) is a perfect object of D(A) and there is a canonical
isomorphism RΓ(Xn,Fn ⊗L E|Xn) = M ⊗L

A An in D(An),
(2) N = RHomX(E,K) is a perfect object of D(A) and there is a canonical

isomorphism RHomXn
(E|Xn

,Fn) = N ⊗L
A An in D(An).

In both statements E|Xn
denotes the derived pullback of E to Xn.

Proof. Proof of (2). Write En = E|Xn
and Nn = RHomXn

(En,Fn). Recall that
RHomXn(−,−) is equal to RΓ(Xn, RHom(−,−)), see Cohomology, Section 44.
Hence by Derived Categories of Schemes, Lemma 30.7 we see that Nn is a perfect
object of D(An) whose formation commutes with base change. Thus the maps
Nn ⊗L

An
An−1 → Nn−1 coming from φn are isomorphisms. By More on Algebra,

Lemma 97.3 we find that R limNn is perfect and that its base change back to An
recovers Nn. On the other hand, the exact functor RHomX(E,−) : DQCoh(OX)→
D(A) of triangulated categories commutes with products and hence with derived
limits, whence
RHomX(E,K) = R limRHomX(E,Fn) = R limRHomX(En,Fn) = R limNn

This proves (2). To see that (1) holds, translate it into (2) using Cohomology,
Lemma 50.5. □

Lemma 28.4.0CTF In Situation 28.1 let K be as in Lemma 28.2. Then K is pseudo-
coherent relative to A.

Proof. Combinging Lemma 28.3 and Derived Categories of Schemes, Lemma 34.3
we see that RΓ(X,K ⊗L E) is pseudo-coherent in D(A) for all pseudo-coherent E
in D(OX). Thus the lemma follows from More on Morphisms, Lemma 69.4. □

Lemma 28.5.0CTG In Situation 28.1 let K be as in Lemma 28.2. For any quasi-
compact open U ⊂ X we have

RΓ(U,K)⊗L
A An = RΓ(Un,Fn)

in D(An) where Un = U ∩Xn.

Proof. Fix n. By Derived Categories of Schemes, Lemma 33.4 there exists a system
of perfect complexes Em on X such that RΓ(U,K) = hocolimRΓ(X,K⊗LEm). In
fact, this formula holds not just for K but for every object of DQCoh(OX). Applying
this to Fn we obtain

RΓ(Un,Fn) = RΓ(U,Fn)
= hocolimmRΓ(X,Fn ⊗L Em)
= hocolimmRΓ(Xn,Fn ⊗L Em|Xn

)

Using Lemma 28.3 and the fact that − ⊗L
A An commutes with homotopy colimits

we obtain the result. □

Lemma 28.6.0CTH In Situation 28.1 let K be as in Lemma 28.2. Denote X0 ⊂
X the closed subset consisting of points lying over the closed subset Spec(A1) =
Spec(A2) = . . . of Spec(A). There exists an open W ⊂ X containing X0 such that

https://stacks.math.columbia.edu/tag/0CTE
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(1) Hi(K)|W is zero unless i = 0,
(2) F = H0(K)|W is of finite presentation, and
(3) Fn = F ⊗OX

OXn .

Proof. Fix n ≥ 1. By construction there is a canonical mapK → Fn inDQCoh(OX)
and hence a canonical map H0(K)→ Fn of quasi-coherent sheaves. This explains
the meaning of part (3).
Let x ∈ X0 be a point. We will find an open neighbourhood W of x such that
(1), (2), and (3) are true. Since X0 is quasi-compact this will prove the lemma.
Let U ⊂ X be an affine open neighbourhood of x. Say U = Spec(B). Choose a
surjection P → B with P smooth over A. By Lemma 28.4 and the definition of
relative pseudo-coherence there exists a bounded above complex F • of finite free
P -modules representing Ri∗K where i : U → Spec(P ) is the closed immersion
induced by the presentation. Let Mn be the B-module corresponding to Fn|U . By
Lemma 28.5

Hi(F • ⊗A An) =
{

0 if i ̸= 0
Mn if i = 0

Let i be the maximal index such that F i is nonzero. If i ≤ 0, then (1), (2), and (3)
are true. If not, then i > 0 and we see that the rank of the map

F i−1 → F i

in the point x is maximal. Hence in an open neighbourhood of x inside Spec(P )
the rank is maximal. Thus after replacing P by a principal localization we may
assume that the displayed map is surjective. Since F i is finite free we may choose
a splitting F i−1 = F ′ ⊕ F i. Then we may replace F • by the complex

. . .→ F i−2 → F ′ → 0→ . . .

and we win by induction on i. □

Lemma 28.7.0CTI In Situation 28.1 let K be as in Lemma 28.2. Let W ⊂ X be as in
Lemma 28.6. Set F = H0(K)|W . Then, after possibly shrinking the open W , the
support of F is proper over A.

Proof. Fix n ≥ 1. Let In = Ker(A → An). By More on Algebra, Lemma 11.3
the pair (A, In) is henselian. Let Z ⊂ W be the support of F . This is a closed
subset as F is of finite presentation. By part (3) of Lemma 28.6 we see that
Z×Spec(A)Spec(An) is equal to the support of Fn and hence proper over Spec(A/I).
By More on Morphisms, Lemma 53.9 we can write Z = Z1 ⨿ Z2 with Z1, Z2 open
and closed in Z, with Z1 proper over A, and with Z1 ×Spec(A) Spec(A/In) equal to
the support of Fn. In other words, Z2 does not meet X0. Hence after replacing W
by W \ Z2 we obtain the lemma. □

Lemma 28.8.0CTJ Let A = limAn be a limit of a system of rings whose transition
maps are surjective and with locally nilpotent kernels. Let S = Spec(A). Let T → S
be a monomorphism which is locally of finite type. If Spec(An)→ S factors through
T for all n, then T = S.

Proof. Set Sn = Spec(An). Let T0 ⊂ T be the common image of the factorizations
Sn → T . Then T0 is quasi-compact. Let T ′ ⊂ T be a quasi-compact open containing
T0. Then Sn → T factors through T ′. If we can show that T ′ = S, then T ′ = T = S.
Hence we may assume T is quasi-compact.

https://stacks.math.columbia.edu/tag/0CTI
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Assume T is quasi-compact. In this case T → S is separated and quasi-finite
(Morphisms, Lemma 20.15). Using Zariski’s Main Theorem (in the form of More on
Morphisms, Lemma 43.3) we choose a factorization T →W → S with W → S finite
and T →W an open immersion. Write W = Spec(B). The (unique) factorizations
Sn → T may be viewed as morphisms into W and we obtain

A −→ B −→ limAn = A

Consider the morphism h : S = Spec(A) → Spec(B) = W coming from the arrow
on the right. Then

T ×W,h S
is an open subscheme of S containing the image of Sn → S for all n. To finish the
proof it suffices to show that any open U ⊂ S containing the image of Sn → S for
some n ≥ 1 is equal to S. This is true because (A,Ker(A → An)) is a henselian
pair (More on Algebra, Lemma 11.3) and hence every closed point of S is contained
in the image of Sn → S. □

Theorem 28.9 (Grothendieck Existence Theorem).0CTK In Situation 28.1 there exists
a finitely presented OX-module F , flat over A, with support proper over A, such
that Fn = F ⊗OX

OXn
for all n compatibly with the maps φn.

Proof. Apply Lemmas 28.2, 28.3, 28.4, 28.5, 28.6, and 28.7 to get an open sub-
scheme W ⊂ X containing all points lying over Spec(An) and a finitely presented
OW -module F whose support is proper over A with Fn = F ⊗OW

OXn
for all

n ≥ 1. (This makes sense as Xn ⊂ W .) By Lemma 17.1 we see that F is univer-
sally pure relative to Spec(A). By Theorem 27.5 (for explanation, see Lemma 27.6)
there exists a universal flattening S′ → Spec(A) of F and moreover the morphism
S′ → Spec(A) is a monomorphism of finite presentation. Since the base change of
F to Spec(An) is Fn we find that Spec(An)→ Spec(A) factors (uniquely) through
S′ for each n. By Lemma 28.8 we see that S′ = Spec(A). This means that F is flat
over A. Finally, since the scheme theoretic support Z of F is proper over Spec(A),
the morphism Z → X is closed. Hence the pushforward (W → X)∗F is supported
on W and has all the desired properties. □

29. Grothendieck’s Existence Theorem, V

0DIA In this section we prove an analogue for Grothendieck’s existence theorem in the
derived category, following the method used in Section 28 for quasi-coherent mod-
ules. The classical case is discussed in Cohomology of Schemes, Sections 24, 25,
and 27. We will work in the following situation.

Situation 29.1.0DIB Here we have an inverse system of rings (An) with surjective
transition maps whose kernels are locally nilpotent. Set A = limAn. We have a
scheme X proper, flat, and of finite presentation over A. We set Xn = X ×Spec(A)
Spec(An) and we view it as a closed subscheme of X. We assume further given a
system (Kn, φn) where Kn is a pseudo-coherent object of D(OXn) and

φn : Kn −→ Kn−1

is a map in D(OXn) which induces an isomorphism Kn ⊗L
OXn

OXn−1 → Kn−1 in
D(OXn−1).

https://stacks.math.columbia.edu/tag/0CTK
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More precisely, we should write φn : Kn → Rin−1,∗Kn−1 where in−1 : Xn−1 → Xn

is the inclusion morphism and in this notation the condition is that the adjoint
map Li∗n−1Kn → Kn−1 is an isomorphism. Our goal is to find a pseudo-coherent
K ∈ D(OX) such thatKn = K⊗L

OX
OXn

for all n (with the same abuse of notation).

Lemma 29.2.0DIC In Situation 29.1 consider

K = R limDQCoh(OX )(Kn) = DQX(R limD(OX ) Kn)

Then K is in D−
QCoh(OX).

Proof. The functor DQX exists because X is quasi-compact and quasi-separated,
see Derived Categories of Schemes, Lemma 21.1. Since DQX is a right adjoint it
commutes with products and therefore with derived limits. Hence the equality in
the statement of the lemma.
By Derived Categories of Schemes, Lemma 21.4 the functor DQX has bounded
cohomological dimension. Hence it suffices to show that R limKn ∈ D−(OX). To
see this, let U ⊂ X be an affine open. Then there is a canonical exact sequence

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0
by Cohomology, Lemma 37.1. Since U is affine and Kn is pseudo-coherent (and
hence has quasi-coherent cohomology sheaves by Derived Categories of Schemes,
Lemma 10.1) we see that Hm(U,Kn) = Hm(Kn)(U) by Derived Categories of
Schemes, Lemma 3.5. Thus we conclude that it suffices to show that Kn is bounded
above independent of n.
Since Kn is pseudo-coherent we have Kn ∈ D−(OXn). Suppose that an is maximal
such that Han(Kn) is nonzero. Of course a1 ≤ a2 ≤ a3 ≤ . . .. Note that Han(Kn)
is an OXn

-module of finite presentation (Cohomology, Lemma 47.9). We have
Han(Kn−1) = Han(Kn)⊗OXn

OXn−1 . Since Xn−1 → Xn is a thickening, it follows
from Nakayama’s lemma (Algebra, Lemma 20.1) that if Han(Kn) ⊗OXn

OXn−1 is
zero, then Han(Kn) is zero too. Thus an = an−1 for all n and we conclude. □

Lemma 29.3.0DID In Situation 29.1 let K be as in Lemma 29.2. For any perfect
object E of D(OX) the cohomology

M = RΓ(X,K ⊗L E)
is a pseudo-coherent object of D(A) and there is a canonical isomorphism

RΓ(Xn,Kn ⊗L E|Xn
) = M ⊗L

A An

in D(An). Here E|Xn
denotes the derived pullback of E to Xn.

Proof. Write En = E|Xn and Mn = RΓ(Xn,Kn⊗LE|Xn). By Derived Categories
of Schemes, Lemma 30.5 we see thatMn is a pseudo-coherent object ofD(An) whose
formation commutes with base change. Thus the maps Mn ⊗L

An
An−1 → Mn−1

coming from φn are isomorphisms. By More on Algebra, Lemma 97.1 we find that
R limMn is pseudo-coherent and that its base change back to An recovers Mn. On
the other hand, the exact functor RΓ(X,−) : DQCoh(OX)→ D(A) of triangulated
categories commutes with products and hence with derived limits, whence
RΓ(X,E ⊗L K) = R limRΓ(X,E ⊗L Kn) = R limRΓ(Xn, En ⊗L Kn) = R limMn

as desired. □
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Lemma 29.4.0DIE In Situation 29.1 let K be as in Lemma 29.2. Then K is pseudo-
coherent on X.

Proof. Combinging Lemma 29.3 and Derived Categories of Schemes, Lemma 34.3
we see that RΓ(X,K ⊗L E) is pseudo-coherent in D(A) for all pseudo-coherent
E in D(OX). Thus it follows from More on Morphisms, Lemma 69.4 that K is
pseudo-coherent relative to A. Since X is of flat and of finite presentation over A,
this is the same as being pseudo-coherent on X, see More on Morphisms, Lemma
59.18. □

Lemma 29.5.0DIF In Situation 29.1 let K be as in Lemma 29.2. For any quasi-
compact open U ⊂ X we have

RΓ(U,K)⊗L
A An = RΓ(Un,Kn)

in D(An) where Un = U ∩Xn.

Proof. Fix n. By Derived Categories of Schemes, Lemma 33.4 there exists a system
of perfect complexes Em on X such that RΓ(U,K) = hocolimRΓ(X,K⊗LEm). In
fact, this formula holds not just for K but for every object of DQCoh(OX). Applying
this to Kn we obtain

RΓ(Un,Kn) = RΓ(U,Kn)
= hocolimmRΓ(X,Kn ⊗L Em)
= hocolimmRΓ(Xn,Kn ⊗L Em|Xn

)

Using Lemma 29.3 and the fact that − ⊗L
A An commutes with homotopy colimits

we obtain the result. □

Theorem 29.6 (Derived Grothendieck Existence Theorem).0DIG In Situation 29.1
there exists a pseudo-coherent K in D(OX) such that Kn = K ⊗L

OX
OXn

for all n
compatibly with the maps φn.

Proof. Apply Lemmas 29.2, 29.3, 29.4 to get a pseudo-coherent object K of
D(OX). Choosing affine opens in Lemma 29.5 it follows immediately that K re-
stricts to Kn over Xn. □

Remark 29.7.0DIH The result in this section can be generalized. It is probably correct
if we only assume X → Spec(A) to be separated, of finite presentation, and Kn

pseudo-coherent relative to An supported on a closed subset of Xn proper over
An. The outcome will be a K which is pseudo-coherent relative to A supported
on a closed subset proper over A. If we ever need this, we will formulate a precise
statement and prove it here.

30. Blowing up and flatness

080X In this section we continue our discussion of results of the form: “After a blowup
the strict transform becomes flat”, see More on Algebra, Section 26 and Divisors,
Section 35. We will use the following (more or less standard) notation in this
section. If X → S is a morphism of schemes, F is a quasi-coherent module on X,
and T → S is a morphism of schemes, then we denote FT the pullback of F to the
base change XT = X ×S T .
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Remark 30.1.080Y Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a morphism of schemes. Let F be a quasi-coherent module on X. Let
U ⊂ S be a quasi-compact open subscheme. Given a U -admissible blowup S′ → S
we denote X ′ the strict transform of X and F ′ the strict transform of F which
we think of as a quasi-coherent module on X ′ (via Divisors, Lemma 33.2). Let P
be a property of F/X/S which is stable under strict transform (as above) for U -
admissible blowups. The general problem in this section is: Show (under auxiliary
conditions on F/X/S) there exists a U -admissible blowup S′ → S such that the
strict transform F ′/X ′/S′ has P .

The general strategy will be to use that a composition of U -admissible blowups is
a U -admissible blowup, see Divisors, Lemma 34.2. In fact, we will make use of the
more precise Divisors, Lemma 32.14 and combine it with Divisors, Lemma 33.6.
The result is that it suffices to find a sequence of U -admissible blowups

S = S0 ← S1 ← . . .← Sn

such that, setting F0 = F and X0 = X and setting Fi/Xi equal to the strict
transform of Fi−1/Xi−1, we arrive at Fn/Xn/Sn with property P .

In particular, choose a finite type quasi-coherent sheaf of ideals I ⊂ OS such that
V (I) = S \ U , see Properties, Lemma 24.1. Let S′ → S be the blowup in I
and let E ⊂ S′ be the exceptional divisor (Divisors, Lemma 32.4). Then we see
that we’ve reduced the problem to the case where there exists an effective Cartier
divisor D ⊂ S whose support is X \ U . In particular we may assume U is scheme
theoretically dense in S (Divisors, Lemma 13.4).

Suppose that P is local on S: If S =
⋃
Si is a finite open covering by quasi-compact

opens and P holds for FSi/XSi/Si then P holds for F/X/S. In this case the general
problem above is local on S as well, i.e., if given s ∈ S we can find a quasi-compact
open neighbourhood W of s such that the problem for FW /XW /W is solvable, then
the problem is solvable for F/X/S. This follows from Divisors, Lemmas 34.3 and
34.4.

Lemma 30.2.0810 Let R be a ring and let f ∈ R. Let r ≥ 0 be an integer. Let R→ S
be a ring map and let M be an S-module. Assume

(1) R→ S is of finite presentation and flat,
(2) every fibre ring S ⊗R κ(p) is geometrically integral over R,
(3) M is a finite S-module,
(4) Mf is a finitely presented Sf -module,
(5) for all p ∈ R, f ̸∈ p with q = pS the module Mq is free of rank r over Sq.

Then there exists a finitely generated ideal I ⊂ R with V (f) = V (I) such that for
all a ∈ I with R′ = R[ Ia ] the quotient

M ′ = (M ⊗R R′)/a-power torsion

over S′ = S ⊗R R′ satisfies the following: for every prime p′ ⊂ R′ there exists a
g ∈ S′, g ̸∈ p′S′ such that M ′

g is a free S′
g-module of rank r.

Proof. This lemma is a generalization of More on Algebra, Lemma 26.5; we urge
the reader to read that proof first. Choose a surjection S⊕n →M , which is possible
by (1). Choose a finite submodule K ⊂ Ker(S⊕n →M) such that S⊕n/K →M be-
comes an isomorphism after inverting f . This is possible by (4). Set M1 = S⊕n/K
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and suppose we can prove the lemma for M1. Say I ⊂ R is the corresponding ideal.
Then for a ∈ I the map

M ′
1 = (M1 ⊗R R′)/a-power torsion −→M ′ = (M ⊗R R′)/a-power torsion

is surjective. It is also an isomorphism after inverting a in R′ as R′
a = Rf , see

Algebra, Lemma 70.7. But a is a nonzerodivisor on M ′
1, whence the displayed map

is an isomorphism. Thus it suffices to prove the lemma in case M is a finitely
presented S-module.

Assume M is a finitely presented S-module satisfying (3). Then J = Fitr(M) ⊂ S
is a finitely generated ideal. By Lemma 9.3 we can write S as a direct summand of
a free R-module:

⊕
α∈AR = S ⊕ C. For any element h ∈ S writing h =

∑
aα in

the decomposition above, we say that the aα are the coefficients of h. Let I ′ ⊂ R be
the ideal of coefficients of elements of J . Multiplication by an element of S defines
an R-linear map S → S, hence I ′ is generated by the coefficients of the generators
of J , i.e., I ′ is a finitely generated ideal. We claim that I = fI ′ works.

We first check that V (f) = V (I). The inclusion V (f) ⊂ V (I) is clear. Conversely,
if f ̸∈ p, then q = pS is not an element of V (J) by property (5) and More on
Algebra, Lemma 8.7. Hence there is an element of J which does not map to zero
in S ⊗R κ(p). Thus there exists an element of I ′ which is not contained in p, so
p ̸∈ V (fI ′) = V (I).

Let a ∈ I and set R′ = R[ Ia ]. We may write a = fa′ for some a′ ∈ I ′. By Algebra,
Lemmas 70.2 and 70.8 we see that I ′R′ = a′R′ and a′ is a nonzerodivisor in R′.
Set S′ = S ⊗S R′. Every element g of JS′ = Fitr(M ⊗S S′) can be written as
g =

∑
α cα for some cα ∈ I ′R′. Since I ′R′ = a′R′ we can write cα = a′c′

α for some
c′
α ∈ R′ and g = (

∑
c′
α)a′ = g′a′ in S′. Moreover, there is an g0 ∈ J such that

a′ = cα for some α. For this element we have g0 = g′
0a

′ in S′ where g′
0 is a unit

in S′. Let p′ ⊂ R′ be a prime ideal and q′ = p′S′. By the above we see that JS′
q′

is the principal ideal generated by the nonzerodivisor a′. It follows from More on
Algebra, Lemma 8.9 that M ′

q′ can be generated by r elements. Since M ′ is finite,
there exist m1, . . . ,mr ∈ M ′ and g ∈ S′, g ̸∈ q′ such that the corresponding map
(S′)⊕r →M ′ becomes surjective after inverting g.

Finally, consider the ideal J ′ = Fitr−1(M ′). Note that J ′S′
g is generated by the

coefficients of relations between m1, . . . ,mr (compatibility of Fitting ideal with base
change). Thus it suffices to show that J ′ = 0, see More on Algebra, Lemma 8.8.
Since R′

a = Rf (Algebra, Lemma 70.7) and M ′
a = Mf we see from (5) that J ′

a maps
to zero in Sq′′ for any prime q′′ ⊂ S′ of the form q′′ = p′′S′ where p′′ ⊂ R′

a. Since
S′
a ⊂

∏
q′′ as above S

′
q′′ (as (S′

a)p′′ ⊂ S′
q′′ by Lemma 7.4) we see that J ′R′

a = 0. Since
a is a nonzerodivisor in R′ we conclude that J ′ = 0 and we win. □

Lemma 30.3.0811 Let S be a quasi-compact and quasi-separated scheme. Let X → S
be a morphism of schemes. Let F be a quasi-coherent module on X. Let U ⊂ S be
a quasi-compact open. Assume

(1) X → S is affine, of finite presentation, flat, geometrically integral fibres,
(2) F is a module of finite type,
(3) FU is of finite presentation,
(4) F is flat over S at all generic points of fibres lying over points of U .
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Then there exists a U -admissible blowup S′ → S and an open subscheme V ⊂ XS′

such that (a) the strict transform F ′ of F restricts to a finitely locally free OV -
module and (b) V → S′ is surjective.

Proof. Given F/X/S and U ⊂ S with hypotheses as in the lemma, denote P
the property “F is flat over S at all generic points of fibres”. It is clear that P is
preserved under strict transform, see Divisors, Lemma 33.3 and Morphisms, Lemma
25.7. It is also clear that P is local on S. Hence any and all observations of Remark
30.1 apply to the problem posed by the lemma.
Consider the function r : U → Z≥0 which assigns to u ∈ U the integer

r(u) = dimκ(ξu)(Fξu
⊗ κ(ξu))

where ξu is the generic point of the fibre Xu. By More on Morphisms, Lemma 16.7
and the fact that the image of an open in XS in S is open, we see that r(u) is locally
constant. Accordingly U = U0 ⨿U1 ⨿ . . .⨿Uc is a finite disjoint union of open and
closed subschemes where r is constant with value i on Ui. By Divisors, Lemma 34.5
we can find a U -admissible blowup to decompose S into the disjoint union of two
schemes, the first containing U0 and the second U1 ∪ . . .∪Uc. Repeating this c− 1
more times we may assume that S is a disjoint union S = S0 ⨿ S1 ⨿ . . . ⨿ Sc with
Ui ⊂ Si. Thus we may assume the function r defined above is constant, say with
value r.
By Remark 30.1 we see that we may assume that we have an effective Cartier divisor
D ⊂ S whose support is S \ U . Another application of Remark 30.1 combined
with Divisors, Lemma 13.2 tells us we may assume that S = Spec(R) and D =
Spec(R/(f)) for some nonzerodivisor f ∈ R. This case is handled by Lemma
30.2. □

Lemma 30.4.0812 Let A→ C be a finite locally free ring map of rank d. Let h ∈ C be
an element such that Ch is étale over A. Let J ⊂ C be an ideal. Set I = Fit0(C/J)
where we think of C/J as a finite A-module. Then ICh = JJ ′ for some ideal
J ′ ⊂ Ch. If J is finitely generated so are I and J ′.

Proof. We will use basic properties of Fitting ideals, see More on Algebra, Lemma
8.4. Then IC is the Fitting ideal of C/J ⊗A C. Note that C → C ⊗A C, c 7→ 1⊗ c
has a section (the multiplication map). By assumption C → C ⊗A C is étale at
every prime in the image of Spec(Ch) under this section. Hence the multiplication
map C ⊗A Ch → Ch is étale in particular flat, see Algebra, Lemma 143.8. Hence
there exists a Ch-algebra such that C⊗ACh ∼= Ch⊕C ′ as Ch-algebras, see Algebra,
Lemma 143.9. Thus (C/J)⊗ACh ∼= (Ch/Jh)⊕C ′/I ′ as Ch-modules for some ideal
I ′ ⊂ C ′. Hence ICh = JJ ′ with J ′ = Fit0(C ′/I ′) where we view C ′/J ′ as a
Ch-module. □

Lemma 30.5.0813 Let A → B be an étale ring map. Let a ∈ A be a nonzerodivisor.
Let J ⊂ B be a finite type ideal with V (J) ⊂ V (aB). For every q ⊂ B there exists
a finite type ideal I ⊂ A with V (I) ⊂ V (a) and g ∈ B, g ̸∈ q such that IBg = JJ ′

for some finite type ideal J ′ ⊂ Bg.

Proof. We may replace B by a principal localization at an element g ∈ B, g ̸∈ q.
Thus we may assume that B is standard étale, see Algebra, Proposition 144.4.
Thus we may assume B is a localization of C = A[x]/(f) for some monic f ∈ A[x]
of some degree d. Say B = Ch for some h ∈ C. Choose elements h1, . . . , hn ∈
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C which generate J over B. The condition V (J) ⊂ V (aB) signifies that am =∑
bihi in B for some large m. Set hn+1 = am. As in Lemma 30.4 we take

I = Fit0(C/(h1, . . . , hr+1)). Since the module C/(h1, . . . , hr+1) is annihilated by
am we see that adm ∈ I which implies that V (I) ⊂ V (a). □

Lemma 30.6.0814 Let S be a quasi-compact and quasi-separated scheme. Let X → S
be a morphism of schemes. Let F be a quasi-coherent module on X. Let U ⊂ S be
a quasi-compact open. Assume there exist finitely many commutative diagrams

Xi
ji

//

��

X

��
S∗
i

// Si
ei // S

where
(1) ei : Si → S are quasi-compact étale morphisms and S =

⋃
ei(Si),

(2) ji : Xi → X are étale morphisms and X =
⋃
ji(Xi),

(3) S∗
i → Si is an e−1

i (U)-admissible blowup such that the strict transform F∗
i

of j∗
i F is flat over S∗

i .
Then there exists a U -admissible blowup S′ → S such that the strict transform of
F is flat over S′.

Proof. We claim that the hypotheses of the lemma are preserved under U -admissible
blowups. Namely, suppose b : S′ → S is a U -admissible blowup in the quasi-
coherent sheaf of ideals I. Moreover, let S∗

i → Si be the blowup in the quasi-
coherent sheaf of ideals Ji. Then the collection of morphisms e′

i : S′
i = Si×SS′ → S′

and j′
i : X ′

i = Xi ×S S′ → X ×S S′ satisfy conditions (1), (2), (3) for the strict
transform F ′ of F relative to the blowup S′ → S. First, observe that S′

i is the
blowup of Si in the pullback of I, see Divisors, Lemma 32.3. Second, consider the
blowup S′∗

i → S′
i of S′

i in the pullback of the ideal Ji. By Divisors, Lemma 32.12
we get a commutative diagram

S′∗
i

//

  ��

S′
i

��
S∗
i

// Si

and all the morphisms in the diagram above are blowups. Hence by Divisors,
Lemmas 33.3 and 33.6 we see

the strict transform of (j′
i)∗F ′ under S′∗

i → S′
i

= the strict transform of j∗
i F under S′∗

i → Si

= the strict transform of F ′
i under S′∗

i → S′
i

= the pullback of F∗
i via Xi ×Si S

′∗
i → Xi

which is therefore flat over S′∗
i (Morphisms, Lemma 25.7). Having said this, we

see that all observations of Remark 30.1 apply to the problem of finding a U -
admissible blowup such that the strict transform of F becomes flat over the base
under assumptions as in the lemma. In particular, we may assume that S \ U is
the support of an effective Cartier divisor D ⊂ S. Another application of Remark
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30.1 combined with Divisors, Lemma 13.2 shows we may assume that S = Spec(A)
and D = Spec(A/(a)) for some nonzerodivisor a ∈ A.

Pick an i and s ∈ Si. Lemma 30.5 implies we can find an open neighbourhood s ∈
Wi ⊂ Si and a finite type quasi-coherent ideal I ⊂ OS such that I ·OWi

= JiJ ′
i for

some finite type quasi-coherent ideal J ′
i ⊂ OWi

and such that V (I) ⊂ V (a) = S\U .
Since Si is quasi-compact we can replace Si by a finite collection W1, . . . ,Wn of
these opens and assume that for each i there exists a quasi-coherent sheaf of ideals
Ii ⊂ OS such that Ii · OSi

= JiJ ′
i for some finite type quasi-coherent ideal J ′

i ⊂
OSi

. As in the discussion of the first paragraph of the proof, consider the blowup
S′ of S in the product I1 . . . In (this blowup is U -admissible by construction). The
base change of S′ → S to Si is the blowup in

Ji · J ′
i I1 . . . Îi . . . In

which factors through the given blowup S∗
i → Si (Divisors, Lemma 32.12). In the

notation of the diagram above this means that S′∗
i = S′

i. Hence after replacing S
by S′ we arrive in the situation that j∗

i F is flat over Si. Hence j∗
i F is flat over S,

see Lemma 2.3. By Morphisms, Lemma 25.13 we see that F is flat over S. □

Theorem 30.7.0815 Let S be a quasi-compact and quasi-separated scheme. Let X
be a scheme over S. Let F be a quasi-coherent module on X. Let U ⊂ S be a
quasi-compact open. Assume

(1) X is quasi-compact,
(2) X is locally of finite presentation over S,
(3) F is a module of finite type,
(4) FU is of finite presentation, and
(5) FU is flat over U .

Then there exists a U -admissible blowup S′ → S such that the strict transform F ′

of F is an OX×SS′-module of finite presentation and flat over S′.

Proof. We first prove that we can find a U -admissible blowup such that the strict
transform is flat. The question is étale local on the source and the target, see Lemma
30.6 for a precise statement. In particular, we may assume that S = Spec(R) and
X = Spec(A) are affine. For s ∈ S write Fs = F|Xs

(pullback of F to the fibre).
As X → S is of finite type d = maxs∈S dim(Supp(Fs)) is an integer. We will do
induction on d.

Let x ∈ X be a point of X lying over s ∈ S with dimx(Supp(Fs)) = d. Apply
Lemma 3.2 to get g : X ′ → X, e : S′ → S, i : Z ′ → X ′, and π : Z ′ → Y ′. Observe
that Y ′ → S′ is a smooth morphism of affines with geometrically irreducible fibres
of dimension d. Because the problem is étale local it suffices to prove the theorem
for g∗F/X ′/S′. Because i : Z ′ → X ′ is a closed immersion of finite presentation
(and since strict transform commutes with affine pushforward, see Divisors, Lemma
33.4) it suffices to prove the flattening result for G. Since π is finite (hence also
affine) it suffices to prove the flattening result for π∗G/Y ′/S′. Thus we may assume
that X → S is a smooth morphism of affines with geometrically irreducible fibres
of dimension d.

Next, we apply a blowup as in Lemma 30.3. Doing so we reach the situation where
there exists an open V ⊂ X surjecting onto S such that F|V is finite locally free.
Let ξ ∈ X be the generic point of Xs. Let r = dimκ(ξ) Fξ ⊗ κ(ξ). Choose a

https://stacks.math.columbia.edu/tag/0815


MORE ON FLATNESS 92

map α : O⊕r
X → F which induces an isomorphism κ(ξ)⊕r → Fξ ⊗ κ(ξ). Because

F is locally free over V we find an open neighbourhood W of ξ where α is an
isomorphism. Shrink S to an affine open neighbourhood of s such that W → S
is surjective. Say F is the quasi-coherent module associated to the A-module N .
Since F is flat over S at all generic points of fibres (in fact at all points of W ), we
see that

αp : A⊕r
p → Np

is universally injective for all primes p of R, see Lemma 10.1. Hence α is universally
injective, see Algebra, Lemma 82.12. Set H = Coker(α). By Divisors, Lemma 33.7
we see that, given a U -admissible blowup S′ → S the strict transforms of F ′ and
H′ fit into an exact sequence

0→ O⊕r
X×SS′ → F ′ → H′ → 0

Hence Lemma 10.1 also shows that F ′ is flat at a point x′ if and only if H′ is
flat at that point. In particular HU is flat over U and HU is a module of finite
presentation. We may apply the induction hypothesis to H to see that there exists
a U -admissible blowup such that the strict transform H′ is flat as desired.
To finish the proof of the theorem we still have to show that F ′ is a module of
finite presentation (after possibly another U -admissible blowup). This follows from
Lemma 11.1 as we can assume U ⊂ S is scheme theoretically dense (see third
paragraph of Remark 30.1). This finishes the proof of the theorem. □

31. Applications

081Q In this section we apply some of the results above.

Lemma 31.1.081R Let S be a quasi-compact and quasi-separated scheme. Let X be a
scheme over S. Let U ⊂ S be a quasi-compact open. Assume

(1) X → S is of finite type and quasi-separated, and
(2) XU → U is flat and locally of finite presentation.

Then there exists a U -admissible blowup S′ → S such that the strict transform of
X is flat and of finite presentation over S′.

Proof. Since X → S is quasi-compact and quasi-separated by assumption, the
strict transform of X with respect to a blowing up S′ → S is also quasi-compact
and quasi-separated. Hence to prove the lemma it suffices to find a U -admissible
blowup such that the strict transform is flat and locally of finite presentation. Let
X = W1 ∪ . . . ∪Wn be a finite affine open covering. If we can find a U -admissible
blowup Si → S such that the strict transform of Wi is flat and locally of finite
presentation, then there exists a U -admissible blowing up S′ → S dominating all
Si → S which does the job (see Divisors, Lemma 34.4; see also Remark 30.1).
Hence we may assume X is affine.
Assume X is affine. By Morphisms, Lemma 39.2 we can choose an immersion
j : X → An

S over S. Let V ⊂ An
S be a quasi-compact open subscheme such that j

induces a closed immersion i : X → V over S. Apply Theorem 30.7 to V → S and
the quasi-coherent module i∗OX to obtain a U -admissible blowup S′ → S such that
the strict transform of i∗OX is flat over S′ and of finite presentation over OV×SS′ .
Let X ′ be the strict transform of X with respect to S′ → S. Let i′ : X ′ → V ×SS′ be
the induced morphism. Since taking strict transform commutes with pushforward
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along affine morphisms (Divisors, Lemma 33.4), we see that i′∗OX′ is flat over S
and of finite presentation as a OV×SS′ -module. This implies the lemma. □

Lemma 31.2.0B49 Let S be a quasi-compact and quasi-separated scheme. Let X be a
scheme over S. Let U ⊂ S be a quasi-compact open. Assume

(1) X → S is proper, and
(2) XU → U is finite locally free.

Then there exists a U -admissible blowup S′ → S such that the strict transform of
X is finite locally free over S′.

Proof. By Lemma 31.1 we may assume that X → S is flat and of finite presenta-
tion. After replacing S by a U -admissible blowup if necessary, we may assume that
U ⊂ S is scheme theoretically dense. Then f is finite by Lemma 11.4. Hence f is
finite locally free by Morphisms, Lemma 48.2. □

Lemma 31.3.081S Let φ : X → S be a separated morphism of finite type with S
quasi-compact and quasi-separated. Let U ⊂ S be a quasi-compact open such that
φ−1U → U is an isomorphism. Then there exists a U -admissible blowup S′ → S
such that the strict transform X ′ of X is isomorphic to an open subscheme of S′.

Proof. The discussion in Remark 30.1 applies. Thus we may do a first U -admissible
blowup and assume the complement S \ U is the support of an effective Cartier
divisor D. In particular U is scheme theoretically dense in S. Next, we do another
U -admissible blowup to get to the situation where X → S is flat and of finite
presentation, see Lemma 31.1. In this case the result follows from Lemma 11.5. □

The following lemma says that a proper modification can be dominated by a blowup.

Lemma 31.4.081T Let φ : X → S be a proper morphism with S quasi-compact and
quasi-separated. Let U ⊂ S be a quasi-compact open such that φ−1U → U is an
isomorphism. Then there exists a U -admissible blowup S′ → S which dominates
X, i.e., such that there exists a factorization S′ → X → S of the blowup morphism.

Proof. The discussion in Remark 30.1 applies. Thus we may do a first U -admissible
blowup and assume the complement S \ U is the support of an effective Cartier
divisor D. In particular U is scheme theoretically dense in S. Choose another
U -admissible blowup S′ → S such that the strict transform X ′ of X is an open
subscheme of S′, see Lemma 31.3. Since X ′ → S′ is proper, and U ⊂ S′ is dense,
we see that X ′ = S′. Some details omitted. □

Lemma 31.5.0CP1 Let S be a scheme. Let U ⊂ W ⊂ S be open subschemes. Let
f : X →W be a morphism and let s : U → X be a morphism such that f ◦ s = idU .
Assume

(1) f is proper,
(2) S is quasi-compact and quasi-separated, and
(3) U and W are quasi-compact.

Then there exists a U -admissible blowup b : S′ → S and a morphism s′ : b−1(W )→
X extending s with f ◦ s′ = b|b−1(W ).

Proof. We may and do replace X by the scheme theoretic image of s. Then
X → W is an isomorphism over U , see Morphisms, Lemma 6.8. By Lemma 31.4
there exists a U -admissible blowup W ′ → W and an extension W ′ → X of s.
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We finish the proof by applying Divisors, Lemma 34.3 to extend W ′ → W to a
U -admissible blowup of S. □

32. Compactifications

0ATT Let S be a quasi-compact and quasi-separated scheme. We will say a scheme X
over S has a compactification over S or is compactifyable over S if there exists a
quasi-compact open immersion X → X into a scheme X proper over S. If X has
a compactification over S, then X → S is separated and of finite type. It is a
theorem of Nagata, see [Lüt93], [Con07], [Nag56], [Nag57], [Nag62], and [Nag63],
that the converse is true as well. We will prove this theorem in the next section,
see Theorem 33.8.
Let S be a quasi-compact and quasi-separated scheme. Let X → S be a separated
finite type morphism of schemes. The category of compactifications of X over S is
the category defined as follows:

(1) Objects are open immersions j : X → X over S with X → S proper.
(2) Morphisms (j′ : X → X

′) → (j : X → X) are morphisms f : X ′ → X of
schemes over S such that f ◦ j′ = j.

If j : X → X is a compactification, then j is a quasi-compact open immersion, see
Schemes, Remark 21.18.
Warning. We do not assume compactifications j : X → X to have dense image.
Consequently, if f : X ′ → X is a morphism of compactifications, it may not be the
case that f−1(j(X)) = j′(X).
Lemma 32.1.0ATU Let S be a quasi-compact and quasi-separated scheme. Let X be a
compactifyable scheme over S.

(a) The category of compactifications of X over S is cofiltered.
(b) The full subcategory consisting of compactifications j : X → X such that

j(X) is dense and scheme theoretically dense in X is initial (Categories,
Definition 17.3).

(c) If f : X ′ → X is a morphism of compactifications of X such that j′(X) is
dense in X

′, then f−1(j(X)) = j′(X).
Proof. To prove part (a) we have to check conditions (1), (2), (3) of Categories,
Definition 20.1. Condition (1) holds exactly because we assumed that X is compact-
ifyable. Let ji : X → Xi, i = 1, 2 be two compactifications. Then we can consider
the scheme theoretic image X of (j1, j2) : X → X1×S X2. This determines a third
compactification j : X → X which dominates both ji:

(X,X1) (X,X)oo // (X,X2)

Thus (2) holds. Let f1, f2 : X1 → X2 be two morphisms between compactifications
ji : X → Xi, i = 1, 2. Let X ⊂ X1 be the equalizer of f1 and f2. As X2 → S
is separated, we see that X is a closed subscheme of X1 and hence proper over S.
Moreover, we obtain an open immersion X → X because f1|X = f2|X = idX . The
morphism (X → X) → (j1 : X → X1) given by the closed immersion X → X1
equalizes f1 and f2 which proves condition (3).

Proof of (b). Let j : X → X be a compactification. If X ′ denotes the scheme
theoretic closure of X in X, then X is dense and scheme theoretically dense in X

′
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by Morphisms, Lemma 7.7. This proves the first condition of Categories, Defini-
tion 17.3. Since we have already shown the category of compactifications of X is
cofiltered, the second condition of Categories, Definition 17.3 follows from the first
(we omit the solution to this categorical exercise).

Proof of (c). After replacing X ′ with the scheme theoretic closure of j′(X) (which
doesn’t change the underlying topological space) this follows from Morphisms,
Lemma 6.8. □

We can also consider the category of all compactifications (for varying X). It
turns out that this category, localized at the set of morphisms which induce an
isomorphism on the interior is equivalent to the category of compactifyable schemes
over S.

Lemma 32.2.0A9Z Let S be a quasi-compact and quasi-separated scheme. Let f : X →
Y be a morphism of schemes over S with Y separated and of finite type over S and
X compactifyable over S. Then X has a compactification over Y .

Proof. Let j : X → X be a compactification of X over S. Then we let X ′ be
the scheme theoretic image of (j, f) : X → X ×S Y . The morphism X

′ → Y is
proper because X ×S Y → Y is proper as a base change of X → S. On the other
hand, since Y is separated over S, the morphism (1, f) : X → X ×S Y is a closed
immersion (Schemes, Lemma 21.10) and hence X → X

′ is an open immersion by
Morphisms, Lemma 6.8 applied to the “partial section” s = (j, f) to the projection
X ×S Y → X. □

Let S be a quasi-compact and quasi-separated scheme. We define the category of
compactifications to be the category whose objects are pairs (X,X) where X is a
scheme proper over S and X ⊂ X is a quasi-compact open and whose morphisms
are commutative diagrams

X

��

f
// Y

��
X

f // Y

of morphisms of schemes over S.

Lemma 32.3.0ATV Let S be a quasi-compact and quasi-separated scheme. The collec-
tion of morphisms (u, u) : (X ′, X

′)→ (X,X) such that u is an isomorphism forms
a right multiplicative system (Categories, Definition 27.1) of arrows in the category
of compactifications.

Proof. Axiom RMS1 is trivial to verify. Let us check RMS2 holds. Suppose given
a diagram

(X ′, X
′)

(u,u)
��

(Y, Y )
(f,f) // (X,X)

with u : X ′ → X an isomorphism. Then we let Y ′ = Y ×X X ′ with the projection
map v : Y ′ → Y (an isomorphism). We also set Y ′ = Y ×X X

′ with the projection
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map v : Y ′ → Y It is clear that Y ′ → Y
′ is an open immersion. The diagram

(Y ′, Y
′)

(g,g)
//

(v,v)
��

(X ′, X
′)

(u,u)
��

(Y, Y )
(f,f) // (X,X)

shows that axiom RMS2 holds.
Let us check RMS3 holds. Suppose given a pair of morphisms (f, f), (g, g) :
(X,X) → (Y, Y ) of compactifications and a morphism (v, v) : (Y, Y ) → (Y ′, Y

′)
such that v is an isomorphism and such that (v, v) ◦ (f, f) = (v, v) ◦ (g, g). Then
f = g. Hence if we let X

′ ⊂ X be the equalizer of f and g, then (u, u) :
(X,X ′) → (X,X) will be a morphism of the category of compactifications such
that (f, f) ◦ (u, u) = (g, g) ◦ (u, u) as desired. □

Lemma 32.4.0ATW Let S be a quasi-compact and quasi-separated scheme. The functor
(X,X) 7→ X defines an equivalence from the category of compactifications localized
(Categories, Lemma 27.11) at the right multiplicative system of Lemma 32.3 to the
category of compactifyable schemes over S.

Proof. Denote C the category of compactifications and denote Q : C → C′ the
localization functor of Categories, Lemma 27.16. Denote D the category of com-
pactifyable schemes over S. It is clear from the lemma just cited and our choice
of multiplicative system that we obtain a functor C′ → D. This functor is clearly
essentially surjective. If f : X → Y is a morphism of compactifyable schemes, then
we choose an open immersion Y → Y into a scheme proper over S, and then we
choose an embedding X → X into a scheme X proper over Y (possible by Lemma
32.2 applied to X → Y ). This gives a morphism (X,X)→ (Y, Y ) of compactifica-
tions which produces our given morphism X → Y . Finally, suppose given a pair of
morphisms in the localized category with the same source and target: say

a = ((f, f) : (X ′, X
′)→ (Y, Y ), (u, u) : (X ′, X

′)→ (X,X))
and

b = ((g, g) : (X ′′, X
′′)→ (Y, Y ), (v, v) : (X ′′, X

′′)→ (X,X))
which produce the same morphism X → Y over S, in other words f ◦ u−1 =
g ◦ v−1. By Categories, Lemma 27.13 we may assume that (X ′, X

′) = (X ′′, X
′′)

and (u, u) = (v, v). In this case we can consider the equalizer X ′′′ ⊂ X
′ of f and

g. The morphism (w,w) : (X ′, X
′′′)→ (X ′, X

′) is in the multiplicative subset and
we see that a = b in the localized category by precomposing with (w,w). □

33. Nagata compactification

0F3T In this section we prove the theorem announced in Section 32.

Lemma 33.1.0F3U Let X → S be a morphism of schemes. If X = U ∪ V is an open
cover such that U → S and V → S are separated and U ∩ V → U ×S V is closed,
then X → S is separated.

Proof. Omitted. Hint: check that ∆ : X → X ×S X is closed by using the open
covering of X ×S X given by U ×S U , U ×S V , V ×S U , and V ×S V . □

https://stacks.math.columbia.edu/tag/0ATW
https://stacks.math.columbia.edu/tag/0F3U
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Lemma 33.2.0F3V Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open.

(1) If Z1, Z2 ⊂ X are closed subschemes of finite presentation such that Z1 ∩
Z2 ∩U = ∅, then there exists a U -admissible blowing up X ′ → X such that
the strict transforms of Z1 and Z2 are disjoint.

(2) If T1, T2 ⊂ U are disjoint constructible closed subsets, then there is a U -
admissible blowing up X ′ → X such that the closures of T1 and T2 are
disjoint.

Proof. Proof of (1). The assumption that Zi → X is of finite presentation signifies
that the quasi-coherent ideal sheaf Ii of Zi is of finite type, see Morphisms, Lemma
21.7. Denote Z ⊂ X the closed subscheme cut out by the product I1I2. Observe
that Z ∩ U is the disjoint union of Z1 ∩ U and Z2 ∩ U . By Divisors, Lemma 34.5
there is a U ∩ Z-admissible blowup Z ′ → Z such that the strict transforms of Z1
and Z2 are disjoint. Denote Y ⊂ Z the center of this blowing up. Then Y → X
is a closed immersion of finite presentation as the composition of Y → Z and
Z → X (Divisors, Definition 34.1 and Morphisms, Lemma 21.3). Thus the blowing
up X ′ → X of Y is a U -admissible blowing up. By general properties of strict
transforms, the strict transform of Z1, Z2 with respect to X ′ → X is the same as
the strict transform of Z1, Z2 with respect to Z ′ → Z, see Divisors, Lemma 33.2.
Thus (1) is proved.
Proof of (2). By Properties, Lemma 24.1 there exists a finite type quasi-coherent
sheaf of ideals Ji ⊂ OU such that Ti = V (Ji) (set theoretically). By Properties,
Lemma 22.2 there exists a finite type quasi-coherent sheaf of ideals Ii ⊂ OX whose
restriction to U is Ji. Apply the result of part (1) to the closed subschemes Zi =
V (Ii) to conclude. □

Lemma 33.3.0F3W Let f : X → Y be a proper morphism of quasi-compact and quasi-
separated schemes. Let V ⊂ Y be a quasi-compact open and U = f−1(V ). Let
T ⊂ V be a closed subset such that f |U : U → V is an isomorphism over an open
neighbourhood of T in V . Then there exists a V -admissible blowing up Y ′ → Y
such that the strict transform f ′ : X ′ → Y ′ of f is an isomorphism over an open
neighbourhood of the closure of T in Y ′.

Proof. Let T ′ ⊂ V be the complement of the maximal open over which f |U is an
isomorphism. Then T ′, T are closed in V and T ∩ T ′ = ∅. Since V is a spectral
topological space, we can find constructible closed subsets Tc, T ′

c with T ⊂ Tc,
T ′ ⊂ T ′

c such that Tc ∩ T ′
c = ∅ (choose a quasi-compact open W of V containing

T ′ not meeting T and set Tc = V \W , then choose a quasi-compact open W ′ of V
containing Tc not meeting T ′ and set T ′

c = V \W ′). By Lemma 33.2 we may, after
replacing Y by a V -admissible blowing up, assume that Tc and T ′

c have disjoint
closures in Y . Set Y0 = Y \ T ′

c, V0 = V \ T ′
c, U0 = U ×V V0, and X0 = X ×Y Y0.

Since U0 → V0 is an isomorphism, we can find a V0-admissible blowing up Y ′
0 → Y0

such that the strict transform X ′
0 of X0 maps isomorphically to Y ′

0 , see Lemma
31.3. By Divisors, Lemma 34.3 there exists a V -admissible blow up Y ′ → Y whose
restriction to Y0 is Y ′

0 → Y0. If f ′ : X ′ → Y ′ denotes the strict transform of f , then
we see what we want is true because f ′ restricts to an isomorphism over Y ′

0 . □

Lemma 33.4.0F3X Let S be a quasi-compact and quasi-separated scheme. Let U → X1
and U → X2 be open immersions of schemes over S and assume U , X1, X2 of finite

https://stacks.math.columbia.edu/tag/0F3V
https://stacks.math.columbia.edu/tag/0F3W
https://stacks.math.columbia.edu/tag/0F3X
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type and separated over S. Then there exists a commutative diagram

X ′
1

��

// X X ′
2

oo

��
X1 Uoo

`` OO >>

// X2

of schemes over S where X ′
i → Xi is a U -admissible blowup, X ′

i → X is an open
immersion, and X is separated and finite type over S.

Proof. Throughout the proof all schemes will be separated of finite type over S.
This in particular implies these schemes are quasi-compact and quasi-separated
and the morphisms between them are quasi-compact and separated. See Schemes,
Sections 19 and 21. We will use that if U → W is an immersion of such schemes
over S, then the scheme theoretic image Z of U in W is a closed subscheme of W
and U → Z is an open immersion, U ⊂ Z is scheme theoretically dense, and U ⊂ Z
is dense topologically. See Morphisms, Lemma 7.7.
Let X12 ⊂ X1×SX2 be the scheme theoretic image of U → X1×SX2. The projec-
tions pi : X12 → Xi induce isomorphisms p−1

i (U)→ U by Morphisms, Lemma 6.8.
Choose a U -admissible blowup Xi

i → Xi such that the strict transform Xi
12 of X12

is isomorphic to an open subscheme of Xi
i , see Lemma 31.3. Let Ii ⊂ OXi

be the
corresponding finite type quasi-coherent sheaf of ideals. Recall that Xi

12 → X12 is
the blowup in p−1

i IiOX12 , see Divisors, Lemma 33.2. Let X ′
12 be the blowup of X12

in p−1
1 I1p

−1
2 I2OX12 , see Divisors, Lemma 32.12 for what this entails. We obtain in

particular a commutative diagram

X ′
12

��

// X2
12

��
X1

12
// X12

where all the morphisms are U -admissible blowing ups. Since Xi
12 ⊂ Xi

i is an open
we may choose a U -admissible blowup X ′

i → Xi
i restricting to X ′

12 → Xi
12, see

Divisors, Lemma 34.3. Then X ′
12 ⊂ X ′

i is an open subscheme and the diagram

X ′
12

��

// X ′
i

��
Xi

12
// Xi

i

is commutative with vertical arrows blowing ups and horizontal arrows open immer-
sions. Note that X ′

12 → X ′
1×SX ′

2 is an immersion and proper (use that X ′
12 → X12

is proper and X12 → X1 ×S X2 is closed and X ′
1 ×S X ′

2 → X1 ×S X2 is separated
and apply Morphisms, Lemma 41.7). Thus X ′

12 → X ′
1 ×S X ′

2 is a closed immer-
sion. It follows that if we define X by glueing X ′

1 and X ′
2 along the common open

subscheme X ′
12, then X → S is of finite type and separated (Lemma 33.1). As

compositions of U -admissible blowups are U -admissible blowups (Divisors, Lemma
34.2) the lemma is proved. □

Lemma 33.5.0F3Y Let X → S and Y → S be morphisms of schemes. Let U ⊂ X
be an open subscheme. Let V → X ×S Y be a quasi-compact morphism whose

https://stacks.math.columbia.edu/tag/0F3Y
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composition with the first projection maps into U . Let Z ⊂ X ×S Y be the scheme
theoretic image of V → X ×S Y . Let X ′ → X be a U -admissible blowup. Then the
scheme theoretic image of V → X ′ ×S Y is the strict transform of Z with respect
to the blowing up.
Proof. Denote Z ′ → Z the strict transform. The morphism Z ′ → X ′ induces a
morphism Z ′ → X ′×SY which is a closed immersion (as Z ′ is a closed subscheme of
X ′×X Z by definition). Thus to finish the proof it suffices to show that the scheme
theoretic image Z ′′ of V → Z ′ is Z ′. Observe that Z ′′ ⊂ Z ′ is a closed subscheme
such that V → Z ′ factors through Z ′′. Since both V → X ×S Y and V → X ′×S Y
are quasi-compact (for the latter this follows from Schemes, Lemma 21.14 and the
fact that X ′×S Y → X ×S Y is separated as a base change of a proper morphism),
by Morphisms, Lemma 6.3 we see that Z ∩ (U ×S Y ) = Z ′′ ∩ (U ×S Y ). Thus
the inclusion morphism Z ′′ → Z ′ is an isomorphism away from the exceptional
divisor E of Z ′ → Z. However, the structure sheaf of Z ′ does not have any nonzero
sections supported on E (by definition of strict transforms) and we conclude that
the surjection OZ′ → OZ′′ must be an isomorphism. □

Lemma 33.6.0F3Z Let S be a quasi-compact and quasi-separated scheme. Let U be a
scheme of finite type and separated over S. Let V ⊂ U be a quasi-compact open. If
V has a compactification V ⊂ Y over S, then there exists a V -admissible blowing
up Y ′ → Y and an open V ⊂ V ′ ⊂ Y ′ such that V → U extends to a proper
morphism V ′ → U .
Proof. Consider the scheme theoretic image Z ⊂ Y ×S U of the “diagonal” mor-
phism V → Y ×S U . If we replace Y by a V -admissible blowing up, then Z is
replaced by the strict transform with respect to this blowing up, see Lemma 33.5.
Hence by Lemma 31.3 we may assume Z → Y is an open immersion. If V ′ ⊂ Y
denotes the image, then we see that the induced morphism V ′ → U is proper be-
cause the projection Y ×S U → U is proper and V ′ ∼= Z is a closed subscheme of
Y ×S U . □

The following lemma is formulated in the Noetherian case only. The version for
quasi-compact and quasi-separated schemes is true as well, but will be trivially
implied by the main theorem in this section.
Lemma 33.7.0F40 Let S be a Noetherian scheme. Let U be a scheme of finite type and
separated over S. Let U = U1 ∪ U2 be opens such that U1 and U2 have compactifi-
cations over S and such that U1∩U2 is dense in U . Then U has a compactification
over S.
Proof. Choose a compactification Ui ⊂ Xi for i = 1, 2. We may assume Ui is
scheme theoretically dense in Xi. We may assume there is an open Vi ⊂ Xi and a
proper morphism ψi : Vi → U extending id : Ui → Ui, see Lemma 33.6. Picture

Ui //

��

Vi //

ψi~~

Xi

U

If {i, j} = {1, 2} denote Zi = U \Uj = Ui\(U1∩U2) and Zj = U \Ui = Uj\(U1∩U2).
Thus we have

U = U1 ⨿ Z2 = Z1 ⨿ U2 = Z1 ⨿ (U1 ∩ U2)⨿ Z2

https://stacks.math.columbia.edu/tag/0F3Z
https://stacks.math.columbia.edu/tag/0F40


MORE ON FLATNESS 100

Denote Zi,i ⊂ Vi the inverse image of Zi under ψi. Observe that ψi is an isomor-
phism over an open neighbourhood of Zi. Denote Zi,j ⊂ Vi the inverse image of Zj
under ψi. Observe that ψi : Zi,j → Zj is a proper morphism. Since Zi and Zj are
disjoint closed subsets of U , we see that Zi,i and Zi,j are disjoint closed subsets of
Vi.
Denote Zi,i and Zi,j the closures of Zi,i and Zi,j in Xi. After replacing Xi by a
Vi-admissible blowup we may assume that Zi,i and Zi,j are disjoint, see Lemma
33.2. We assume this holds for both X1 and X2. Observe that this property is
preserved if we replace Xi by a further Vi-admissible blowup.
Set V12 = V1 ×U V2. We have an immersion V12 → X1 ×S X2 which is the com-
position of the closed immersion V12 = V1 ×U V2 → V1 ×S V2 (Schemes, Lemma
21.9) and the open immersion V1 ×S V2 → X1 ×S X2. Let X12 ⊂ X1 ×S X2 be the
scheme theoretic image of V12 → X1 ×S X2. The projection morphisms

p1 : X12 → X1 and p2 : X12 → X2

are proper as X1 and X2 are proper over S. If we replace X1 by a V1-admissible
blowing up, then X12 is replaced by the strict transform with respect to this blowing
up, see Lemma 33.5.
Denote ψ : V12 → U the compositions ψ = ψ1 ◦ p1|V12 = ψ2 ◦ p2|V12 . Consider the
closed subscheme

Z12,2 = (p1|V12)−1(Z1,2) = (p2|V12)−1(Z2,2) = ψ−1(Z2) ⊂ V12

The morphism p1|V12 : V12 → V1 is an isomorphism over an open neighbourhood of
Z1,2 because ψ2 : V2 → U is an isomorphism over an open neighbourhood of Z2 and
V12 = V1×U V2. By Lemma 33.3 there exists a V1-admissible blowing up X ′

1 → X1
such that the strict transform p′

1 : X ′
12 → X ′

1 of p1 is an isomorphism over an open
neighbourhood of the closure of Z1,2 in X ′

1. After replacing X1 by X ′
1 and X12 by

X ′
12 we may assume that p1 is an isomorphism over an open neighbourhood of Z1,2.

The reduction of the previous paragraph tells us that
X12 ∩ (Z1,2 ×S Z2,1) = ∅

where the intersection taken in X1 ×S X2. Namely, the inverse image p−1
1 (Z1,2)

in X12 maps isomorphically to Z1,2. In particular, we see that Z12,2 is dense in
p−1

1 (Z1,2). Thus p2 maps p−1
1 (Z1,2) into Z2,2. Since Z2,2 ∩ Z2,1 = ∅ we conclude.

Consider the schemes
Wi = U

∐
Ui

(Xi \ Zi,j), i = 1, 2

obtained by glueing. Let us apply Lemma 33.1 to see that Wi → S is separated.
First, U → S and Xi → S are separated. The immersion Ui → U ×S (Xi \ Zi,j) is
closed because any specialization ui ⇝ u with ui ∈ Ui and u ∈ U \ Ui can be lifted
uniquely to a specialization ui ⇝ vi in Vi along the proper morphism ψi : Vi → U
and then vi must be in Zi,j . Thus the image of the immersion is closed, whence
the immersion is a closed immersion.
On the other hand, for any valuation ring A over S with fraction field K and any
morphism γ : Spec(K) → (U1 ∩ U2) over S, there is an i and an extension of γ to
a morphism hi : Spec(A) → Wi. Namely, for both i = 1, 2 there is a morphism
gi : Spec(A) → Xi extending γ by the valuative criterion of properness for Xi
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over S, see Morphisms, Lemma 42.1. Thus we only are in trouble if gi(mA) ∈ Zi,j
for i = 1, 2. This is impossible by the emptyness of the intersection of X12 and
Z1,2 ×S Z2,1 we proved above.

Consider a diagram
W ′

1

��

// W W ′
2

oo

��
W1 Uoo

`` OO >>

// W2

as in Lemma 33.4. By the previous paragraph for every solid diagram

Spec(K)
γ

//

��

W

��
Spec(A)

;;

// S

where Im(γ) ⊂ U1 ∩ U2 there is an i and an extension hi : Spec(A) → Wi of γ.
Using the valuative criterion of properness for W ′

i → Wi, we can then lift hi to
h′
i : Spec(A) → W ′

i . Hence the dotted arrow in the diagram exists. Since W is
separated over S, we see that the arrow is unique as well. This implies that W → S
is universally closed by Morphisms, Lemma 42.2. As W → S is already of finite
type and separated, we win. □

Theorem 33.8.0F41 See [Lüt93],
[Con07], [Nag56],
[Nag57], [Nag62],
and [Nag63]

Let S be a quasi-compact and quasi-separated scheme. Let X → S
be a separated, finite type morphism. Then X has a compactification over S.

Proof. We first reduce to the Noetherian case. We strongly urge the reader to
skip this paragraph. There exists a closed immersion X → X ′ with X ′ → S
of finite presentation and separated. See Limits, Proposition 9.6. If we find a
compactification of X ′ over S, then taking the scheme theoretic image of X in this
will give a compactification of X over S. Thus we may assume X → S is separated
and of finite presentation. We may write S = limSi as a directed limit of a system
of Noetherian schemes with affine transition morphisms. See Limits, Proposition
5.4. We can choose an i and a morphism Xi → Si of finite presentation whose base
change to S is X → S, see Limits, Lemma 10.1. After increasing i we may assume
Xi → Si is separated, see Limits, Lemma 8.6. If we can find a compactification of
Xi over Si, then the base change of this to S will be a compactification of X over
S. This reduces us to the case discussed in the next paragraph.

Assume S is Noetherian. We can choose a finite affine open coveringX =
⋃
i=1,...,n Ui

such that U1 ∩ . . . ∩ Un is dense in X. This follows from Properties, Lemma 29.4
and the fact that X is quasi-compact with finitely many irreducible components.
For each i we can choose an ni ≥ 0 and an immersion Ui → Ani

S by Morphisms,
Lemma 39.2. Hence Ui has a compactification over S for i = 1, . . . , n by taking the
scheme theoretic image in Pni

S . Applying Lemma 33.7 (n − 1) times we conclude
that the theorem is true. □

34. The h topology

0ETQ For us, loosely speaking, an h sheaf is a sheaf for the Zariski topology which satisfies
the sheaf property for surjective proper morphisms of finite presentation, see Lemma

https://stacks.math.columbia.edu/tag/0F41
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34.17. However, it may be worth pointing out that the definition of the h topology
on the category of schemes depends on the reference.

Voevodsky initially defined an h covering to be a finite collection of finite type
morphisms which are jointly universally submersive (Morphisms, Definition 24.1).
See [Voe96, Definition 3.1.2]. This definition works best if the underlying category
of schemes is restricted to all schemes of finite type over a fixed Noetherian base
scheme. In this setting, Voevodsky relates h coverings to ph coverings. The ph
topology is generated by Zariski coverings and proper surjective morphisms. See
Topologies, Section 8 for more information.

In Topologies, Section 10 we study the V topology. A quasi-compact morphism
X → Y defines a V covering, if any specialization of points of Y is the image of a
specialization of points in X and the same is true after any base change (Topologies,
Lemma 10.13). In this case X → Y is universally submersive (Topologies, Lemma
10.14). It turns out the notion of a V covering is a good replacement for “families
of morphisms with fixed target which are jointly universally submersive” when
working with non-Noetherian schemes.

Our approach will be to first prove the equivalence between ph covers and V cover-
ings for (possibly infinite) families of morphisms which are locally of finite presen-
tation. We will then use these families as our notion of h coverings in the Stacks
project. For Noetherian schemes and finite families these coverings match those in
Voevodsky’s definition, see Lemma 34.3. On the category of schemes of finite pre-
sentation over a fixed quasi-compact and quasi-separated scheme S these coverings
determine the same topology as the one in [BS17, Definition 2.7].

Lemma 34.1.0ETR Let {fi : Xi → X}i∈I be a family of morphisms of schemes with
fixed target with fi locally of finite presentation for all i. The following are equiva-
lent

(1) {Xi → X} is a ph covering, and
(2) {Xi → X} is a V covering.

Proof. Let U ⊂ X be affine open. Looking at Topologies, Definitions 8.4 and
10.7 it suffices to show that the base change {Xi ×X U → U} can be refined by
a standard ph covering if and only if it can be refined by a standard V covering.
Thus we may assume X is affine and we have to show {Xi → X} can be refined by
a standard ph covering if and only if it can be refined by a standard V covering.
Since a standard ph covering is a standard V covering, see Topologies, Lemma 10.3
it suffices to prove the other implication.

Assume X is affine and assume {fi : Xi → X}i∈I can be refined by a standard
V covering {gj : Yj → X}j=1,...,m. For each j choose an ij and a morphism
hj : Yj → Xij such that gj = fij ◦ hj . Since Yj is affine hence quasi-compact, for
each j we can find finitely many affine opens Uj,k ⊂ Xij such that Im(hj) ⊂

⋃
Uj,k.

Then {Uj,k → X}j,k refines {Xi → X} and is a standard V covering (as it is a
finite family of morphisms of affines and it inherits the lifting property for valuation
rings from the corresponding property of {Yj → X}). Thus we reduce to the case
discussed in the next paragraph.

Assume {fi : Xi → X}i=1,...,n is a standard V covering with fi of finite presentation.
We have to show that {Xi → X} can be refined by a standard ph covering. Choose

https://stacks.math.columbia.edu/tag/0ETR
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a generic flatness stratification

X = S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅

as in More on Morphisms, Lemma 54.2 for the finitely presented morphism∐
i=1,...,n

fi :
∐

i=1,...,n
Xi −→ X

of affines. We are going to use all the properties of the stratification without
further mention. By construction the base change of each fi to Uk = Sk \ Sk+1
is flat. Denote Yk the scheme theoretic closure of Uk in Sk. Since Uk → Sk is a
quasi-compact open immersion (see Properties, Lemma 24.1), we see that Uk ⊂ Yk
is a quasi-compact dense (and scheme theoretically dense) open immersion, see
Morphisms, Lemma 6.3. The morphism

∐
k=0,...,t−1 Yk → X is finite surjective,

hence {Yk → X} is a standard ph covering and hence a standard V covering (see
above). By the transitivity property of standard V coverings (Topologies, Lemma
10.5) it suffices to show that the pullback of the covering {Xi → X} to each Yk can
be refined by a standard V covering. This reduces us to the case described in the
next paragraph.

Assume {fi : Xi → X}i=1,...,n is a standard V covering with fi of finite presentation
and there is a dense quasi-compact open U ⊂ X such that Xi ×X U → U is flat.
By Theorem 30.7 there is a U -admissible blowup X ′ → X such that the strict
transform f ′

i : X ′
i → X ′ of fi is flat. Observe that the projective (hence closed)

morphism X ′ → X is surjective as U ⊂ X is dense and as U is identified with an
open of X ′. After replacing X ′ by a further U -admissible blowup if necessary, we
may also assume U ⊂ X ′ is scheme theoretically dense (see Remark 30.1). Hence for
every point x ∈ X ′ there is a valuation ring V and a morphism g : Spec(V ) → X ′

such that the generic point of Spec(V ) maps into U and the closed point of Spec(V )
maps to x, see Morphisms, Lemma 6.5. Since {Xi → X} is a standard V covering,
we can choose an extension of valuation rings V ⊂W , an index i, and a morphism
Spec(W )→ Xi such that the diagram

Spec(W )

��

// Xi

��
Spec(V ) // X ′ // X

is commutative. Since X ′
i ⊂ X ′ ×X Xi is a closed subscheme containing the open

U ×X Xi, since Spec(W ) is an integral scheme, and since the induced morphism
h : Spec(W ) → X ′ ×X Xi maps the generic point of Spec(W ) into U ×X Xi, we
conclude that h factors through the closed subscheme X ′

i ⊂ X ′×XXi. We conclude
that {f ′

i : X ′
i → X ′} is a V covering. In particular,

∐
f ′
i is surjective. In particular

{X ′
i → X ′} is an fppf covering. Since an fppf covering is a ph covering (More on

Morphisms, Lemma 48.7), we can find a standard ph covering {Yj → X ′} refining
{X ′

i → X}. Say this covering is given by a proper surjective morphism Y → X ′

and a finite affine open covering Y =
⋃
Yj . Then the composition Y → X is proper

surjective and we conclude that {Yj → X} is a standard ph covering. This finishes
the proof. □

Here is our definition.
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Definition 34.2.0ETS Let T be a scheme. A h covering of T is a family of morphisms
{fi : Ti → T}i∈I such that each fi is locally of finite presentation and one of the
equivalent conditions of Lemma 34.1 is satisfied.

For Noetherian schemes this is the same thing as a ph covering (we record this in
Lemma 34.4 below) and we recover Voevodsky’s notion.

Lemma 34.3.0ETT Let X be a Noetherian scheme. Let {Xi → X}i∈I be a finite family
of finite type morphisms. The following are equivalent

(1)
∐
i∈I Xi → X is universally submersive (Morphisms, Definition 24.1), and

(2) {Xi → X}i∈I is an h covering.

Proof. The implication (2)⇒ (1) follows from the more general Topologies, Lemma
10.14 and our definition of h covers. Assume

∐
Xi → X is universally submersive.

We will show that {Xi → X} can be refined by a ph covering; this will suffice by
Topologies, Lemma 8.7 and our definition of h coverings. The argument will be the
same as the one used in the proof of Lemma 34.1.
Choose a generic flatness stratification

X = S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
as in More on Morphisms, Lemma 54.2 for the finitely presented morphism∐

i=1,...,n
fi :

∐
i=1,...,n

Xi −→ X

We are going to use all the properties of the stratification without further mention.
By construction the base change of each fi to Uk = Sk \ Sk+1 is flat. Denote Yk
the scheme theoretic closure of Uk in Sk. Since Uk → Sk is a quasi-compact open
immersion (all schemes in this paragraph are Noetherian), we see that Uk ⊂ Yk
is a quasi-compact dense (and scheme theoretically dense) open immersion, see
Morphisms, Lemma 6.3. The morphism

∐
k=0,...,t−1 Yk → X is finite surjective,

hence {Yk → X} is a ph covering. By the transitivity property of ph coverings
(Topologies, Lemma 8.8) it suffices to show that the pullback of the covering {Xi →
X} to each Yk can be refined by a ph covering. This reduces us to the case described
in the next paragraph.
Assume

∐
Xi → X is universally submersive and there is a dense open U ⊂ X

such that Xi ×X U → U is flat for all i. By Theorem 30.7 there is a U -admissible
blowup X ′ → X such that the strict transform f ′

i : X ′
i → X ′ of fi is flat for all

i. Observe that the projective (hence closed) morphism X ′ → X is surjective as
U ⊂ X is dense and as U is identified with an open of X ′. After replacing X ′ by
a further U -admissible blowup if necessary, we may also assume U ⊂ X ′ is dense
(see Remark 30.1). Hence for every point x ∈ X ′ there is a discrete valuation ring
A and a morphism g : Spec(A)→ X ′ such that the generic point of Spec(A) maps
into U and the closed point of Spec(A) maps to x, see Limits, Lemma 15.1. Set

W = Spec(A)×X
∐

Xi =
∐

Spec(A)×X Xi

Since
∐
Xi → X is universally submersive, there is a specialization w′ ⇝ w in W

such that w′ maps to the generic point of Spec(A) and w maps to the closed point
of Spec(A). (If not, then the closed fibre of W → Spec(A) is stable under general-
izations, hence open, which contradicts the fact that W → Spec(A) is submersive.)
Say w′ ∈ Spec(A) ×X Xi so of course w ∈ Spec(A) ×X Xi as well. Let x′

i ⇝ xi

https://stacks.math.columbia.edu/tag/0ETS
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be the image of w′ ⇝ w in X ′ ×X Xi. Since x′
i ∈ X ′

i and since X ′
i ⊂ X ′ ×X Xi

is a closed subscheme we see that xi ∈ X ′
i. Since xi maps to x ∈ X ′ we conclude

that
∐
X ′
i → X ′ is surjective! In particular {X ′

i → X ′} is an fppf covering. But an
fppf covering is a ph covering (More on Morphisms, Lemma 48.7). Since X ′ → X
is proper surjective, we conclude that {X ′

i → X} is a ph covering and the proof is
complete. □

Lemma 34.4.0H45 Let X be a locally Noetherian scheme. A family of morphisms
{fi : Xi → X}i∈I with target X is an h covering if and only if it is a ph covering.

Proof. By Definition 34.2 a h covering is a ph covering. Conversely, if {fi : Xi →
X} is a ph covering, then the morphisms fi are locally of finite type (Topologies,
Definition 8.4). Since X is locally Noetherian, each fi is locally of finite presentation
and we see that we have a h covering by definition. □

The following lemma and [Ryd07, Theorem 8.4] shows our definition agrees with
(or at least is closely related to) the definition in the paper [Ryd07] by David Rydh.
We restrict to affine base for simplicity.

Lemma 34.5.0ETU Let X be an affine scheme. Let {Xi → X}i∈I be an h covering.
Then there exists a surjective proper morphism

Y −→ X

of finite presentation (!) and a finite affine open covering Y =
⋃
j=1,...,m Yj such

that {Yj → X}j=1,...,m refines {Xi → X}i∈I .

Proof. By assumption there exists a proper surjective morphism Y → X and a
finite affine open covering Y =

⋃
j=1,...,m Yj such that {Yj → X}j=1,...,m refines

{Xi → X}i∈I . This means that for each j there is an index ij ∈ I and a morphism
hj : Yj → Xij over X. See Definition 34.2 and Topologies, Definition 8.4. The
problem is that we don’t know that Y → X is of finite presentation. By Limits,
Lemma 13.2 we can write

Y = limYλ

as a directed limit of schemes Yλ proper and of finite presentation over X such that
the morphisms Y → Yλ and the the transition morphisms are closed immersions.
Observe that each Yλ → X is surjective. By Limits, Lemma 4.11 we can find a λ
and quasi-compact opens Yλ,j ⊂ Yλ, j = 1, . . . ,m covering Yλ and restricting to Yj
in Y . Then Yj = limYλ,j . After increasing λ we may assume Yλ,j is affine for all
j, see Limits, Lemma 4.13. Finally, since Xi → X is locally of finite presentation
we can use the functorial characterization of morphisms which are locally of finite
presentation (Limits, Proposition 6.1) to find a λ such that for each j there is a
morphism hλ,j : Yλ,j → Xij whose restriction to Yj is the morphism hj chosen
above. Thus {Yλ,j → X} refines {Xi → X} and the proof is complete. □

We return to the development of the general theory of h coverings.

Lemma 34.6.0ETV An fppf covering is a h covering. Hence syntomic, smooth, étale,
and Zariski coverings are h coverings as well.

Proof. This is true because in an fppf covering the morphisms are required to
be locally of finite presentation and because fppf coverings are ph covering, see
More on Morphisms, Lemma 48.7. The second statement follows from the first and
Topologies, Lemma 7.2. □
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Lemma 34.7.0ETW Let f : Y → X be a surjective proper morphism of schemes which
is of finite presentation. Then {Y → X} is an h covering.

Proof. Combine Topologies, Lemmas 10.10 and 8.6. □

Lemma 34.8.0ETX Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
such that fi is locally of finite presentation for all i. The following are equivalent

(1) {Ti → T}i∈I is an h covering,
(2) there is an h covering which refines {Ti → T}i∈I , and
(3) {

∐
i∈I Ti → T} is an h covering.

Proof. This follows from the analogous statement for ph coverings (Topologies,
Lemma 8.7) or from the analogous statement for V coverings (Topologies, Lemma
10.8). □

Next, we show that our notion of an h covering satisfies the conditions of Sites,
Definition 6.2.

Lemma 34.9.0ETY Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is an h covering of T .
(2) If {Ti → T}i∈I is an h covering and for each i we have an h covering
{Tij → Ti}j∈Ji

, then {Tij → T}i∈I,j∈Ji
is an h covering.

(3) If {Ti → T}i∈I is an h covering and T ′ → T is a morphism of schemes
then {T ′ ×T Ti → T ′}i∈I is an h covering.

Proof. Follows immediately from the corresponding statement for either ph or V
coverings (Topologies, Lemma 8.8 or 10.9) and the fact that the class of morphisms
which are locally of finite presentation is preserved under base change and compo-
sition. □

Next, we define the big h sites we will work with in the Stacks project. It makes
sense to read the general discussion in Topologies, Section 2 before proceeding.

Definition 34.10.0ETZ A big h site is any site Schh as in Sites, Definition 6.2 con-
structed as follows:

(1) Choose any set of schemes S0, and any set of h coverings Cov0 among these
schemes.

(2) As underlying category take any category Schα constructed as in Sets,
Lemma 9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the cate-
gory Schα and the class of h coverings, and the set Cov0 chosen above.

See the remarks following Topologies, Definition 3.5 for motivation and explanation
regarding the definition of big sites.

Definition 34.11.0EUY Let T be an affine scheme. A standard h covering of T is
a family {fi : Ti → T}i=1,...,n with each Ti affine, with fi of finite presentation
satisfying either of the following equivalent conditions: (1) {Ti → T} can be refined
by a standard ph covering or (2) {Ti → T} is a V covering.

The equivalence of the conditions follows from Lemma 34.1, Topologies, Definition
8.4, and Lemma 8.7.
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Before we continue with the introduction of the big h site of a scheme S, let us
point out that the topology on a big h site Schh is in some sense induced from the
h topology on the category of all schemes.

Lemma 34.12.0EU0 Let Schh be a big h site as in Definition 34.10. Let T ∈ Ob(Schh).
Let {Ti → T}i∈I be an arbitrary h covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schh which refines
{Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard h covering, then it is tautologically equivalent
to a covering of Schh.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering of Schh.

Proof. Omitted. Hint: this is exactly the same as the proof of Topologies, Lemma
8.10. □

Definition 34.13.0EU1 Let S be a scheme. Let Schh be a big h site containing S.
(1) The big h site of S, denoted (Sch/S)h, is the site Schh/S introduced in

Sites, Section 25.
(2) The big affine h site of S, denoted (Aff/S)h, is the full subcategory of

(Sch/S)h whose objects are affine U/S. A covering of (Aff/S)h is any
covering {Ui → U} of (Sch/S)h which is a standard h covering.

We explicitly state that the big affine h site is a site.

Lemma 34.14.0EU2 Let S be a scheme. Let Schh be a big h site containing S. Then
(Aff/S)h is a site.

Proof. Reasoning as in the proof of Topologies, Lemma 4.9 it suffices to show
that the collection of standard h coverings satisfies properties (1), (2) and (3) of
Sites, Definition 6.2. This is clear since for example, given a standard h covering
{Ti → T}i∈I and for each i a standard h covering {Tij → Ti}j∈Ji

, then {Tij →
T}i∈I,j∈Ji is a h covering (Lemma 34.9),

⋃
i∈I Ji is finite and each Tij is affine.

Thus {Tij → T}i∈I,j∈Ji
is a standard h covering. □

Lemma 34.15.0EU3 Let S be a scheme. Let Schh be a big h site containing S. The
underlying categories of the sites Schh, (Sch/S)h, and (Aff/S)h have fibre products.
In each case the obvious functor into the category Sch of all schemes commutes with
taking fibre products. The category (Sch/S)h has a final object, namely S/S.

Proof. For Schh it is true by construction, see Sets, Lemma 9.9. Suppose we have
U → S, V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schh). The
fibre product V ×U W in Schh is a fibre product in Sch and is the fibre product
of V/S with W/S over U/S in the category of all schemes over S, and hence also
a fibre product in (Sch/S)h. This proves the result for (Sch/S)h. If U, V,W are
affine, so is V ×U W and hence the result for (Aff/S)h. □

Next, we check that the big affine site defines the same topos as the big site.

Lemma 34.16.0EU4 Let S be a scheme. Let Schh be a big h site containing S. The
functor (Aff/S)h → (Sch/S)h is cocontinuous and induces an equivalence of topoi
from Sh((Aff/S)h) to Sh((Sch/S)h).
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Proof. The notion of a special cocontinuous functor is introduced in Sites, Defi-
nition 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1.
Denote the inclusion functor u : (Aff/S)h → (Sch/S)h. Being cocontinuous follows
because any h covering of T/S, T affine, can be refined by a standard h covering
for example by Lemma 34.5. Hence (1) holds. We see u is continuous simply be-
cause a standard h covering is a h covering. Hence (2) holds. Parts (3) and (4)
follow immediately from the fact that u is fully faithful. And finally condition (5)
follows from the fact that every scheme has an affine open covering (which is a h
covering). □

Lemma 34.17.0EU5 Let F be a presheaf on (Sch/S)h. Then F is a sheaf if and only
if

(1) F satisfies the sheaf condition for Zariski coverings, and
(2) if f : V → U is proper, surjective, and of finite presentation, then F(U)

maps bijectively to the equalizer of the two maps F(V )→ F(V ×U V ).
Moreover, in the presence of (1) property (2) is equivalent to property

(2’) the sheaf property for {V → U} as in (2) with U affine.

Proof. We will show that if (1) and (2) hold, then F is sheaf. Let {Ti → T}
be a covering in (Sch/S)h. We will verify the sheaf condition for this covering.
Let si ∈ F(Ti) be sections which restrict to the same section over Ti ×T Ti′ . We
will show that there exists a unique section s ∈ F(T ) restricting to si over Ti.
Let T =

⋃
Uj be an affine open covering. By property (1) it suffices to produce

sections sj ∈ F(Uj) which agree on Uj ∩ Uj′ in order to produce s. Consider
the coverings {Ti ×T Uj → Uj}. Then sji = si|Ti×TUj are sections agreeing over
(Ti×T Uj)×Uj (Ti′ ×T Uj). Choose a proper surjective morphism Vj → Uj of finite
presentation and a finite affine open covering Vj =

⋃
Vjk such that {Vjk → Uj}

refines {Ti ×T Uj → Uj}. See Lemma 34.5. If sjk ∈ F(Vjk) denotes the pullback
of sji to Vjk by the implied morphisms, then we find that sjk glue to a section
s′
j ∈ F(Vj). Using the agreement on overlaps once more, we find that s′

j is in
the equalizer of the two maps F(Vj) → F(Vj ×Uj

Vj). Hence by (2) we find that
s′
j comes from a unique section sj ∈ F(Uj). We omit the verification that these

sections sj have all the desired properties.
Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose V → U
is a morphism of (Sch/S)h which is proper, surjective, and of finite presentation.
Choose an affine open covering U =

⋃
Ui and set Vi = V ×U Ui. Then we see that

F(U)→ F(V ) is injective because we know F(Ui)→ F(Vi) is injective by (2’) and
we know F(U) →

∏
F(Ui) is injective by (1). Finally, suppose that we are given

an t ∈ F(V ) in the equalizer of the two maps F(V )→ F(V ×U V ). Then t|Vi is in
the equalizer of the two maps F(Vi) → F(Vi ×Ui Vi) for all i. Hence we obtain a
unique section si ∈ F(Ui) mapping to t|Vi

for all i by (2’). We omit the verification
that si|Ui∩Uj

= sj |Ui∩Uj
for all i, j; this uses the uniqueness property just shown.

By the sheaf property for the covering U =
⋃
Ui we obtain a section s ∈ F(U). We

omit the proof that s maps to t in F(V ). □

Next, we establish some relationships between the topoi associated to these sites.

Lemma 34.18.0EU6 Let Schh be a big h site. Let f : T → S be a morphism in Schh.
The functor

u : (Sch/T )h −→ (Sch/S)h, V/T 7−→ V/S

https://stacks.math.columbia.edu/tag/0EU5
https://stacks.math.columbia.edu/tag/0EU6


MORE ON FLATNESS 109

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)h −→ (Sch/T )h, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )h) −→ Sh((Sch/S)h)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 21.5 and 21.6 apply and we deduce the
formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right adjoint
because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×ST ) as desired.
Thus we may apply Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. □

Lemma 34.19.0EU7 Given schemes X, Y , Y in (Sch/S)h and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 34.18. □

35. More on the h topology

0EUZ In this section we prove a few more results on the h topology. First, some non-
examples.

Example 35.1.0EV0 The “structure sheaf” O is not a sheaf in the h topology. For
example, consider a surjective closed immersion of finite presentation X → Y .
Then {X → Y } is an h covering for example by Lemma 34.7. Moreover, note that
X ×Y X = X. Thus if O where a sheaf in the h topology, then OY (Y )→ OX(X)
would be bijective. This is not the case as soon as X, Y are affine and the morphism
X → Y is not an isomorphism.

Example 35.2.0EV1 On any of the sites (Sch/S)h the topology is not subcanonical, in
other words, representable sheaves are not sheaves. Namely, the “structure sheaf”O
is representable because O(X) = MorS(X,A1

S) in (Sch/S)h and we saw in Example
35.1 that O is not a sheaf.

Lemma 35.3.0EV2 Let T be an affine scheme which is written as a limit T = limi∈I Ti
of a directed inverse system of affine schemes.

(1) Let V = {Vj → T}j=1,...,m be a standard h covering of T , see Definition
34.11. Then there exists an index i and a standard h covering Vi = {Vi,j →
Ti}j=1,...,m whose base change T ×Ti

Vi to T is isomorphic to V.
(2) Let Vi, V ′

i be a pair of standard h coverings of Ti. If f : T ×Ti
Vi → T ×Ti

V ′
i

is a morphism of coverings of T , then there exists an index i′ ≥ i and a
morphism fi′ : Ti′ ×Ti

V → Ti′ ×Ti
V ′
i whose base change to T is f .

(3) If f, g : V → V ′
i are morphisms of standard h coverings of Ti whose base

changes fT , gT to T are equal then there exists an index i′ ≥ i such that
fTi′ = gTi′ .

In other words, the category of standard h coverings of T is the colimit over I of
the categories of standard h coverings of Ti.
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Proof. By Limits, Lemma 10.1 the category of schemes of finite presentation over
T is the colimit over I of the categories of finite presentation over Ti. By Limits,
Lemma 8.2 the same is true for category of schemes which are affine and of finite
presentation over T . To finish the proof of the lemma it suffices to show that
if {Vj,i → Ti}j=1,...,m is a finite family of finitely presented morphisms with Vj,i
affine, and the base change family {T ×Ti

Vj,i → T} is an h covering, then for
some i′ ≥ i the family {Ti′ ×Ti Vj,i → Ti′} is an h covering. To see this we use
Lemma 34.5 to choose a finitely presented, proper, surjective morphism Y → T and
a finite affine open covering Y =

⋃
k=1,...,n Yk such that {Yk → T}k=1,...,n refines

{T ×Ti
Vj,i → T}. Using the arguments above and Limits, Lemmas 13.1, 8.15, and

4.11 we can find an i′ ≥ i and a finitely presented, surjective, proper morphism
Yi′ → Ti′ and an affine open covering Yi′ =

⋃
k=1,...,n Yi′,k such that moreover

{Yi′,k → Yi′} refines {Ti′ ×Ti
Vj,i → Ti′}. It follows that this last mentioned family

is a h covering and the proof is complete. □

Lemma 35.4.0EV3 Let S be a scheme contained in a big site Schh. Let F : (Sch/S)opph →
Sets be an h sheaf satisfying property (b) of Topologies, Lemma 13.1 with C =
(Sch/S)h. Then the extension F ′ of F to the category of all schemes over S satis-
fies the sheaf condition for all h coverings and is limit preserving (Limits, Remark
6.2).

Proof. This is proven by the arguments given in the proofs of Topologies, Lemmas
13.3 and 13.4 using Lemmas 35.3 and 34.12. Details omitted. □

36. Blow up squares and the ph topology

0EW0 Let X be a scheme. Let Z ⊂ X be a closed subscheme such that the inclusion mor-
phism is of finite presentation, i.e., the quasi-coherent sheaf of ideals corresponding
to Z is of finite type. Let b : X ′ → X be the blowup of X in Z and let E = b−1(Z)
be the exceptional divisor. See Divisors, Section 32. In this situation and in this
section, let us say

(36.0.1)0EV5

E

��

// X ′

b

��
Z // X

is a blow up square.

Lemma 36.1.0EW1 Let F be a sheaf on a site (Sch/S)ph, see Topologies, Definition
8.11. Then for any blow up square (36.0.1) in the category (Sch/S)ph the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets.

Proof. Since Z ⨿X ′ → X is a surjective proper morphism we see that {Z ⨿X ′ →
X} is a ph covering (Topologies, Lemma 8.6). We have

(Z ⨿X ′)×X (Z ⨿X ′) = Z ⨿ E ⨿ E ⨿X ′ ×X X ′
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Since F is a Zariski sheaf we see that F sends disjoint unions to products. Thus the
sheaf condition for the covering {Z ⨿X ′ → X} says that F(X) → F(Z)× F(X ′)
is injective with image the set of pairs (t, s′) such that (a) t|E = s′|E and (b) s′ is
in the equalizer of the two maps F(X ′) → F(X ′ ×X X ′). Next, observe that the
obvious morphism

E ×Z E ⨿X ′ −→ X ′ ×X X ′

is a surjective proper morphism as b induces an isomorphism X ′ \E → X \Z. We
conclude that F(X ′ ×X X ′)→ F(E ×Z E)×F(X ′) is injective. It follows that (a)
⇒ (b) which means that the lemma is true. □

Lemma 36.2.0EW2 Let F be a sheaf on a site (Sch/S)ph as in Topologies, Definition
8.11. Let X → X ′ be a morphism of (Sch/S)ph which is a thickening. Then
F(X ′)→ F(X) is bijective.

Proof. Observe thatX → X ′ is a proper surjective morphism of andX×X′X = X.
By the sheaf property for the ph covering {X → X ′} (Topologies, Lemma 8.6) we
conclude. □

37. Almost blow up squares and the h topology

0EV4 Consider a blow up square (36.0.1). Although the morphism b : X ′ → X is projec-
tive (Divisors, Lemma 32.13) in general there is no simple way to guarantee that
b is of finite presentation. Since h coverings are constructed using morphisms of
finite presentation, we need a variant. Namely, we will say a commutative diagram

(37.0.1)0EV6

E

��

// X ′

b

��
Z // X

of schemes is an almost blow up square if the following conditions are satisfied
(1) Z → X is a closed immersion of finite presentation,
(2) E = b−1(Z) is a locally principal closed subscheme of X ′,
(3) b is proper and of finite presentation,
(4) the closed subscheme X ′′ ⊂ X ′ cut out by the quasi-coherent ideal of

sections of OX′ supported on E (Properties, Lemma 24.5) is the blow up
of X in Z.

It follows that the morphism b induces an isomorphism X ′ \E → X \Z. For some
very simple examples of almost blow up squares, see Examples 37.10 and 37.11.

The base change of a blow up usually isn’t a blow up, but almost blow ups are
compatible with base change.

Lemma 37.1.0EV7 Consider an almost blow up square (37.0.1). Let Y → X be any
morphism. Then the base change

Y ×X E

��

// Y ×X X ′

��
Y ×X Z // Y

is an almost blow up square too.
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Proof. The morphism Y ×X X ′ → Y is proper and of finite presentation by Mor-
phisms, Lemmas 41.5 and 21.4. The morphism Y ×X Z → Y is a closed immersion
(Morphisms, Lemma 2.4) of finite presentation. The inverse image of Y ×X Z in
Y ×XX ′ is equal to the inverse image of E in Y ×XX ′ and hence is locally principal
(Divisors, Lemma 13.11). Let X ′′ ⊂ X ′, resp. Y ′′ ⊂ Y ×X X ′ be the closed sub-
scheme corresponding to the quasi-coherent ideal of sections of OX′ , resp. OY×Y X′

supported on E, resp. Y ×X E. Clearly, Y ′′ ⊂ Y ×X X ′′ is the closed subscheme
corresponding to the quasi-coherent ideal of sections of OY×Y X′′ supported on
Y ×X (E ∩X ′′). Thus Y ′′ is the strict transform of Y relative to the blowing up
X ′′ → X, see Divisors, Definition 33.1. Thus by Divisors, Lemma 33.2 we see that
Y ′′ is the blow up of Y ×X Z on Y . □

One can shrink almost blow up squares.

Lemma 37.2.0EV8 Consider an almost blow up square (37.0.1). Let W → X ′ be a
closed immersion of finite presentation. The following are equivalent

(1) X ′ \ E is scheme theoretically contained in W ,
(2) the blowup X ′′ of X in Z is scheme theoretically contained in W ,
(3) the diagram

E ∩W

��

// W

��
Z // X

is an almost blow up square. Here E ∩W is the scheme theoretic intersec-
tion.

Proof. Assume (1). Then the surjection OX′ → OW is an isomorphism over the
open X ′ ⊂ E. Since the ideal sheaf of X ′′ ⊂ X ′ is the sections of OX′ supported
on E (by our definition of almost blow up squares) we conclude (2) is true. If (2) is
true, then (3) holds. If (3) holds, then (1) holds because X ′′∩(X ′\E) is isomorphic
to X \ Z which in turn is isomorphic to X ′ \ E. □

The actual blowup is the limit of shrinkings of any given almost blowup.

Lemma 37.3.0EV9 Consider an almost blow up square (37.0.1) with X quasi-compact
and quasi-separated. Then the blowup X ′′ of X in Z can be written as

X ′′ = limX ′
i

where the limit is over the directed system of closed subschemes X ′
i ⊂ X ′ of finite

presentation satisfying the equivalent conditions of Lemma 37.2.

Proof. Let I ⊂ OX′ be the quasi-coherent sheaf of ideals corresponding to X ′′.
By Properties, Lemma 22.3 we can write I as the filtered colimit I = colim Ii of its
quasi-coherent submodules of finite type. Since these modules correspond 1-to-1 to
the closed subschemes X ′

i the proof is complete. □

Almost blow up squares exist.

Lemma 37.4.0EVA Let X be a quasi-compact and quasi-separated scheme. Let Z ⊂ X
be a closed subscheme cut out by a finite type quasi-coherent sheaf of ideals. Then
there exists an almost blow up square as in (37.0.1).

https://stacks.math.columbia.edu/tag/0EV8
https://stacks.math.columbia.edu/tag/0EV9
https://stacks.math.columbia.edu/tag/0EVA
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Proof. We may write X = limXi as a directed limit of an inverse system of
Noetherian schemes with affine transition morphisms, see Limits, Proposition 5.4.
We can find an index i and a closed immersion Zi → Xi whose base change to X is
the closed immersion Z → X. See Limits, Lemmas 10.1 and 8.5. Let bi : X ′

i → Xi

be the blowing up with center Zi. This produces a blow up square

Ei //

��

X ′
i

bi

��
Zi // Xi

where all the morphisms are finite type morphisms of Noetherian schemes and hence
of finite presentation. Thus this is an almost blow up square. By Lemma 37.1 the
base change of this diagram to X produces the desired almost blow up square. □

Almost blow up squares are unique up to shrinking as in Lemma 37.2.

Lemma 37.5.0EVB Let X be a quasi-compact and quasi-separated scheme and let Z ⊂
X be a closed subscheme cut out by a finite type quasi-coherent sheaf of ideals.
Suppose given almost blow up squares (37.0.1)

Ek //

��

X ′
k

��
Z // X

for k = 1, 2, then there exists an almost blow up square

E //

��

X ′

��
Z // X

and closed immersions ik : X ′ → X ′
k over X with E = i−1

k (Ek).

Proof. Denote X ′′ → X the blowing up of Z in X. We view X ′′ as a closed
subscheme of both X ′

1 and X ′
2. Write X ′′ = limX ′

1,i as in Lemma 37.3. By Limits,
Proposition 6.1 there exists an i and a morphism h : X ′

1,i → X ′
2 agreeing with the

inclusions X ′′ ⊂ X ′
1,i and X ′′ ⊂ X ′

2. By Limits, Lemma 4.20 the restriction of h to
X ′

1,i′ is a closed immersion for some i′ ≥ i. This finishes the proof. □

Our flattening techniques for blowing up are inherited by almost blowups in favor-
able situations.

Lemma 37.6.0EVC Let Y be a quasi-compact and quasi-separated scheme. Let X be
a scheme of finite presentation over Y . Let V ⊂ Y be a quasi-compact open such

https://stacks.math.columbia.edu/tag/0EVB
https://stacks.math.columbia.edu/tag/0EVC
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that XV → V is flat. Then there exist a commutative diagram

E

��

  

Doo

��

~~
Y ′

��

X ′oo

��
Y Xoo

Z

>>

Too

``

whose right and left hand squares are almost blow up squares, whose lower and top
squares are cartesian, such that Z ∩ V = ∅, and such that X ′ → Y ′ is flat (and of
finite presentation).

Proof. If Y is a Noetherian scheme, then this lemma follows immediately from
Lemma 31.1 because in this case blow up squares are almost blow up squares (we
also use that strict transforms are blow ups). The general case is reduced to the
Noetherian case by absolute Noetherian approximation.

We may write Y = limYi as a directed limit of an inverse system of Noetherian
schemes with affine transition morphisms, see Limits, Proposition 5.4. We can find
an index i and a morphism Xi → Yi of finite presentation whose base change to Y
is X → Y . See Limits, Lemmas 10.1. After increasing i we may assume V is the
inverse image of an open subscheme Vi ⊂ Yi, see Limits, Lemma 4.11. Finally, after
increasing i we may assume that Xi,Vi → Vi is flat, see Limits, Lemma 8.7. By the
Noetherian case, we may construct a diagram as in the lemma for Xi → Yi ⊃ Vi.
The base change of this diagram by Y → Yi provides the solution. Use that base
change preserves properties of morphisms, see Morphisms, Lemmas 41.5, 21.4, 2.4,
and 25.8 and that base change of an almost blow up square is an almost blow up
square, see Lemma 37.1. □

Lemma 37.7.0EVD Let F be a sheaf on one of the sites (Sch/S)h constructed in
Definition 34.13. Then for any almost blow up square (37.0.1) in the category
(Sch/S)h the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets.

Proof. Since Z ⨿ X ′ → X is a surjective proper morphism of finite presentation
we see that {Z ⨿X ′ → X} is an h covering (Lemma 34.7). We have

(Z ⨿X ′)×X (Z ⨿X ′) = Z ⨿ E ⨿ E ⨿X ′ ×X X ′

Since F is a Zariski sheaf we see that F sends disjoint unions to products. Thus the
sheaf condition for the covering {Z ⨿X ′ → X} says that F(X) → F(Z)× F(X ′)
is injective with image the set of pairs (t, s′) such that (a) t|E = s′|E and (b) s′ is

https://stacks.math.columbia.edu/tag/0EVD
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in the equalizer of the two maps F(X ′) → F(X ′ ×X X ′). Next, observe that the
obvious morphism

E ×Z E ⨿X ′ −→ X ′ ×X X ′

is a surjective proper morphism of finite presentation as b induces an isomorphism
X ′\E → X \Z. We conclude that F(X ′×XX ′)→ F(E×ZE)×F(X ′) is injective.
It follows that (a) ⇒ (b) which means that the lemma is true. □

Lemma 37.8.0EVE Let F be a sheaf on one of the sites (Sch/S)h constructed in
Definition 34.13. Let X → X ′ be a morphism of (Sch/S)h which is a thickening
and of finite presentation. Then F(X ′)→ F(X) is bijective.

Proof. First proof. Observe that X → X ′ is a proper surjective morphism of
finite presentation and X ×X′ X = X. By the sheaf property for the h covering
{X → X ′} (Lemma 34.7) we conclude.
Second proof (silly). The blow up of X ′ in X is the empty scheme. The reason is
that the affine blowup algebra A[ Ia ] (Algebra, Section 70) is zero if a is a nilpotent
element of A. Details omitted. Hence we get an almost blow up square of the form

∅ //

��

∅

��
X // X ′

Since F is a sheaf we have that F(∅) is a singleton. Applying Lemma 37.7 we get
the conclusion. □

Proposition 37.9.0EVF Let F be a presheaf on one of the sites (Sch/S)h constructed
in Definition 34.13. Then F is a sheaf if and only if the following conditions are
satisfied

(1) F is a sheaf for the Zariski topology,
(2) given a morphism f : X → Y of (Sch/S)h with Y affine and f surjective,

flat, proper, and of finite presentation, then F(Y ) is the equalizer of the
two maps F(X)→ F(X ×Y X),

(3) given an almost blow up square (37.0.1) with X affine in the category
(Sch/S)h the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets.

Proof. Assume F is a sheaf. Condition (1) holds because a Zariski covering is a h
covering, see Lemma 34.6. Condition (2) holds because for f as in (2) we have that
{X → Y } is an fppf covering (this is clear) and hence an h covering, see Lemma
34.6. Condition (3) holds by Lemma 37.7.
Conversely, assume F satisfies (1), (2), and (3). We will prove F is a sheaf by
applying Lemma 34.17. Consider a surjective, finitely presented, proper morphism
f : X → Y in (Sch/S)h with Y affine. It suffices to show that F(Y ) is the equalizer
of the two maps F(X)→ F(X ×Y X).

https://stacks.math.columbia.edu/tag/0EVE
https://stacks.math.columbia.edu/tag/0EVF
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First, assume that f : X → Y is in addition a closed immersion (in other words, f
is a thickening). Then the blow up of Y in X is the empty scheme and this produces
an almost blow up square consisting with ∅, ∅, X, Y at the vertices (compare with
the second proof of Lemma 37.8). Hence we see that condition (3) tells us that

F(∅) F(∅)oo

F(X)

OO

F(Y )

OO

oo

is cartesian in the category of sets. Since F is a sheaf for the Zariski topology, we
see that F(∅) is a singleton. Hence we see that F(X) = F(Y ).

Interlude A: let T → T ′ be a morphism of (Sch/S)h which is a thickening and
of finite presentation. Then F(T ′) → F(T ) is bijective. Namely, choose an affine
open covering T ′ =

⋃
T ′
i and let Ti = T ×T ′ T ′

i be the corresponding affine opens of
T . Then we have F(T ′

i )→ F(Ti) is bijective for all i by the result of the previous
paragraph. Using the Zariski sheaf property we see that F(T ′)→ F(T ) is injective.
Repeating the argument we find that it is bijective. Minor details omitted.

Interlude B: consider an almost blow up square (37.0.1) in the category (Sch/S)h.
Then we claim the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets. This is a consequence of condition (3) as follows
by choosing an affine open covering of X and arguing as in Interlude A. We omit
the details.

Next, let f : X → Y be a surjective, finitely presented, proper morphism in
(Sch/S)h with Y affine. Choose a generic flatness stratification

Y ⊃ Y0 ⊃ Y1 ⊃ . . . ⊃ Yt = ∅

as in More on Morphisms, Lemma 54.2 for f : X → Y . We are going to use all
the properties of the stratification without further mention. Set X0 = X ×Y Y0.
By the Interlude B we have F(Y0) = F(Y ), F(X0) = F(X), and F(X0 ×Y0 X0) =
F(X ×Y X).

We are going to prove the result by induction on t. If t = 1 then X0 → Y0 is
surjective, proper, flat, and of finite presentation and we see that the result holds
by property (2). For t > 1 we may replace Y by Y0 and X by X0 (see above) and
assume Y = Y0.
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Consider the quasi-compact open subscheme V = Y \ Y1 = Y0 \ Y1. Choose a
diagram

E

��

  

Doo

��

~~
Y ′

��

X ′oo

��
Y Xoo

Z

>>

Too

``

as in Lemma 37.6 for f : X → Y ⊃ V . Then f ′ : X ′ → Y ′ is flat and of finite
presentation. Also f ′ is proper (use Morphisms, Lemmas 41.4 and 41.7 to see this).
Thus the image W = f ′(X ′) ⊂ Y ′ is an open (Morphisms, Lemma 25.10) and
closed subscheme of Y ′. Observe that Y ′ \ E is contained in W . By Lemma 37.2
this means we may replace Y ′ by W in the above diagram. In other words, we may
and do assume f ′ is surjective. At this point we know that

F(E) F(Y ′)oo

F(Z)

OO

F(Y )

OO

oo

and

F(D) F(X ′)oo

F(T )

OO

F(X)

OO

oo

are cartesian by Interlude B. Note that Z ∩Y1 → Z is a thickening of finite presen-
tation (as Z is set theoretically contained in Y1 as a closed subscheme of Y disjoint
from V ). Thus we obtain a filtration

Z ⊃ Z ∩ Y1 ⊃ Z ∩ Y2 ⊂ . . . ⊂ Z ∩ Yt = ∅

as above for the restriction T = Z ×Y X → Z of f to T . Thus by induction
hypothesis we find that F(Z) → F(T ) is an injective map of sets whose image is
the equalizer of the two maps F(T )→ F(T ×Z T ).

Let s ∈ F(X) be in the equalizer of the two maps F(X) → F(X ×Y X). By the
above we see that the restriction s|T comes from a unique element t ∈ F(Z) and
similarly that the restriction s|X′ comes from a unique element t′ ∈ F(Y ′). Chasing
sections using the restriction maps for F corresponding to the arrows in the huge
commutative diagram above the reader finds that t and t′ restrict to the same
element of F(E) because they restrict to the same element of F(D) and we have
(2); here we use that D → E is surjective, flat, proper, and of finite presentation as
the restriction of X ′ → Y ′. Thus by the first of the two cartesian squares displayed
above we get a unique section u ∈ F(Y ) restricting to t and t′ on Z and Y ′. To see
that u restrict to s on X use the second diagram. □
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Example 37.10.0EVG Let A be a ring. Let f ∈ A be an element. Let J ⊂ A be a
finitely generated ideal annihilated by a power of f . Then

E = Spec(A/fA+ J) //

��

Spec(A/J) = X ′

��
Z = Spec(A/fA) // Spec(A) = X

is an almost blowup square.

Example 37.11.0EVH Let A be a ring. Let f1, f2 ∈ A be elements.

E = Proj(A/(f1, f2)[T0, T1]) //

��

Proj(A[T0, T1]/(f2T0 − f1T1) = X ′

��
Z = Spec(A/(f1, f2)) // Spec(A) = X

is an almost blowup square.

Lemma 37.12.0EVI Let F be a presheaf on one of the sites (Sch/S)h constructed
in Definition 34.13. Then F is a sheaf if and only if the following conditions are
satisfied

(1) F is a sheaf for the Zariski topology,
(2) given a morphism f : X → Y of (Sch/S)h with Y affine and f surjective,

flat, proper, and of finite presentation, then F(Y ) is the equalizer of the
two maps F(X)→ F(X ×Y X),

(3) F turns an almost blow up square as in Example 37.10 in the category
(Sch/S)h into a cartesian diagram of sets, and

(4) F turns an almost blow up square as in Example 37.11 in the category
(Sch/S)h into a cartesian diagram of sets.

Proof. By Proposition 37.9 it suffices to show that given an almost blow up square
(37.0.1) with X affine in the category (Sch/S)h the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets. The rough idea of the proof is to dominate the
morphism by other almost blowup squares to which we can apply assumptions (3)
and (4) locally.

Suppose we have an almost blow up square (37.0.1) in the category (Sch/S)h, an
open covering X =

⋃
Ui, and open coverings Ui ∩ Uj =

⋃
Uijk such that the

diagrams

F(E ∩ b−1(Ui)) F(b−1(Ui))oo

F(Z ∩ Ui)

OO

F(Ui)

OO

oo

and

F(E ∩ b−1(Uijk)) F(b−1(Uijk))oo

F(Z ∩ Uijk)

OO

F(Uijk)

OO

oo

https://stacks.math.columbia.edu/tag/0EVG
https://stacks.math.columbia.edu/tag/0EVH
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MORE ON FLATNESS 119

are cartesian, then the same is true for

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

This follows as F is a sheaf in the Zariski topology.
In particular, if we have a blow up square (37.0.1) such that b : X ′ → X is a
closed immersion and Z is a locally principal closed subscheme, then we see that
F(X) = F(X ′)×F(E)F(Z). Namely, affine locally on X we obtain an almost blow
up square as in (3).
Let Z ⊂ X, Ek ⊂ X ′

k → X, E ⊂ X ′ → X, and ik : X ′ → X ′
k be as in the statement

of Lemma 37.5. Then
E

��

// X ′

��
Ek // X ′

k

is an almost blow up square of the kind discussed in the previous paragraph. Thus
F(X ′

k) = F(X ′)×F(E) F(Ek)
for k = 1, 2 by the result of the previous paragraph. It follows that

F(X) −→ F(X ′
k)×F(Ek) F(Z)

is bijective for k = 1 if and only if it is bijective for k = 2. Thus given a closed
immersion Z → X of finite presentation with X quasi-compact and quasi-separated,
whether or not F(X) = F(X ′)×F(E)F(Z) is independent of the choice of the almost
blow up square (37.0.1) one chooses. (Moreover, by Lemma 37.4 there does indeed
exist an almost blow up square for Z ⊂ X.)
Finally, consider an affine object X of (Sch/S)h and a closed immersion Z → X
of finite presentation. We will prove the desired property for the pair (X,Z) by
induction on the number of generators r for the ideal defining Z in X. If the number
of generators is ≤ 2, then we can choose our almost blow up square as in Example
37.11 and we conclude by assumption (4).
Induction step. Suppose X = Spec(A) and Z = Spec(A/(f1, . . . , fr)) with r > 2.
Choose a blow up square (37.0.1) for the pair (X,Z). Set Z1 = Spec(A/(f1, f2))
and let

E1

��

// Y

��
Z1 // X

be the almost blow up square constructed in Example 37.11. By Lemma 37.1 the
base changes

(I)

Y ×X E //

��

Y ×X X ′

��
Y ×X Z // Y

and (II)

E //

��

Z1 ×X X ′

��
Z // Z1
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are almost blow up squares. The ideal of Z in Z1 is generated by r − 2 elements.
The ideal of Y ×X Z is generated by the pullbacks of f1, . . . , fr to Y . Locally on
Y the ideal generated by f1, f2 can be generated by one element, thus Y ×X Z is
affine locally on Y cut out by at most r−1 elements. By induction hypotheses and
the discussion above

F(Y ) = F(Y ×X X ′)×F(Y×XE) F(Y ×X Z)
and

F(Z1) = F(Z1 ×X X ′)×F(E) F(Z)
By assumption (4) we have

F(X) = F(Y )×F(E1) F(Z1)
Now suppose we have a pair (s′, t) with s′ ∈ F(X ′) and t ∈ F(Z) with same
restriction in F(E). Then (s′|Z1 ×X X ′, t) are the image of a unique element t1 ∈
F(Z1). Similarly, (s′|Y×XX′ , t|Y×XZ) are the image of a unique element sY ∈ F(Y ).
We claim that sY and t1 restrict to the same element of F(E1). This is true because
the almost blow up square

E1 ×X E //

��

E1 ×X X ′

��
E1 ×X Z // E1

is the base change of almost blow up square (I) via E1 → Y and the base change of
almost blow up square (II) via E1 → Z1 and because the pairs of sections used to
construct sY and t1 match. Thus by the third fibre product equality we see that
there is a unique s ∈ F(X) mapping to sY in F(Y ) and to t1 in F(Z). We omit
the verification that s maps to s′ in F(X ′) and to t in F(Z); hint: use uniqueness
of s just constructed and work affine locally. □

Lemma 37.13.0EX9 Let p : S → (Sch/S)h be a category fibred in groupoids. Then S
is a stack in groupoids if and only if the following conditions are satisfied

(1) S is a stack in groupoids for the Zariski topology,
(2) given a morphism f : X → Y of (Sch/S)h with Y affine and f surjective,

flat, proper, and of finite presentation, then
SY −→ SX ×SX×Y X

SX
is an equivalence of categories,

(3) for an almost blow up square as in Example 37.10 or 37.11 in the category
(Sch/S)h the functor

SX −→ SZ ×SE
SX′

is an equivalence of categories.

Proof. This lemma is a formal consequence of Lemma 37.12 and our definition of
stacks in groupoids. For example, assume (1), (2), (3). To show that S is a stack,
we have to prove descent for morphisms and objects, see Stacks, Definition 5.1.
If x, y are objects of S over an object U of (Sch/S)h, then our assumptions imply
Isom(x, y) is a presheaf on (Sch/U)h which satisfies (1), (2), (3), and (4) of Lemma
37.12 and therefore is a sheaf. Some details omitted.

https://stacks.math.columbia.edu/tag/0EX9
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Let {Ui → U}i∈I be a covering of (Sch/S)h. Let (xi, φij) be a descent datum in S
relative to the family {Ui → U}i∈I , see Stacks, Definition 3.1. Consider the rule F
which to V/U in (Sch/U)h associates the set of pairs (y, ψi) where y is an object
of SV and ψi : y|Ui×UV → xi|Ui×UV is a morphism of S over Ui ×U V such that

φij |Ui×UUj×UV ◦ ψi|Ui×UUj×UV = ψj |Ui×UUj×UV

up to isomorphism. Since we already have descent for morphisms, it is clear that
F (V/U) is either empty or a singleton set. On the other hand, we have F (Ui0/U)
is nonempty because it contains (xi0 , φi0i). Since our goal is to prove that F (U/U)
is nonempty, it suffices to show that F is a sheaf on (Sch/U)h. To do this we may
use the criterion of Lemma 37.12. However, our assumptions (1), (2), (3) imply (by
drawing some commutative diagrams which we omit), that properties (1), (2), (3),
and (4) of Lemma 37.12 hold for F .

We omit the verification that if S is a stack in groupoids, then (1), (2), and (3) are
satisfied. □

38. Absolute weak normalization and h coverings

0EVS In this section we use the criteria found in Section 37 to exhibit some h sheaves and
we relate h sheafification of the structure sheaf to absolute weak normalization. We
will need the following elementary lemma to do this.

Lemma 38.1.0EVJ Let Z,X,X ′, E be an almost blow up square as in Example 37.11.
Then Hp(X ′,OX′) = 0 for p > 0 and Γ(X,OX)→ Γ(X ′,OX′) is a surjective map
of rings whose kernel is an ideal of square zero.

Proof. First assume that A = Z[f1, f2] is the polynomial ring. In this case our
almost blow up square is the blowing up of X = Spec(A) in the closed subscheme
Z and in fact X ′ ⊂ P1

X is an effective Cartier divisor cut out by the global section
f2T0 − f1T1 of OP1

X
(1). Thus we have a resolution

0→ OP1
X

(−1)→ OP1
X
→ OX′ → 0

Using the description of the cohomology given in Cohomology of Schemes, Sec-
tion 8 it follows that in this case Γ(X,OX) → Γ(X ′,OX′) is an isomorphism and
H1(X ′,OX′) = 0.

Next, we observe that any diagram as in Example 37.11 is the base change of the
diagram in the previous paragraph by the ring map Z[f1, f2]→ A. Hence by More
on Morphisms, Lemmas 72.1, 72.2, and 72.4 we conclude that H1(X ′,OX′) is zero
in general and the surjectivity of the map H0(X,OX)→ H0(X ′,OX′) in general.

Next, in the general case, let us study the kernel. If a ∈ A maps to zero, then
looking on affine charts we see that

a = (f1x− f2)(a0 + a1x+ . . .+ arx
r) in A[x]

for some r ≥ 0 and a0, . . . , ar ∈ A and similarly

a = (f1 − f2y)(b0 + b1y + . . .+ bsy
s) in A[y]

for some s ≥ 0 and b0, . . . , bs ∈ A. This means we have

a = f2a0, f1a0 = f2a1, . . . , f1ar = 0, a = f1b0, f2b0 = f1b1, . . . , f2bs = 0

https://stacks.math.columbia.edu/tag/0EVJ
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If (a′, r′, a′
i, s

′, b′
j) is a second such system, then we have

aa′ = f1f2a0b
′
0 = f1f2a1b

′
1 = f1f2a2b

′
2 = . . . = 0

as desired. □

For an Fp-algebra A we set colimF A equal to the colimit of the system

A
F−→ A

F−→ A
F−→ . . .

where F : A→ A, a 7→ ap is the Frobenius endomorphism.

Lemma 38.2.0EVK Let p be a prime number. Let S be a scheme over Fp. Let (Sch/S)h
be a site as in Definition 34.13. There is a unique sheaf F on (Sch/S)h such that

F(X) = colimF Γ(X,OX)
for any quasi-compact and quasi-separated object X of (Sch/S)h.

Proof. Denote F the Zariski sheafification of the functor
X −→ colimF Γ(X,OX)

For quasi-compact and quasi-separated schemesX we have F(X) = colimF Γ(X,OX).
by Sheaves, Lemma 29.1 and the fact that O is a sheaf for the Zariski topology.
Thus it suffices to show that F is a h sheaf. To prove this we check conditions (1),
(2), (3), and (4) of Lemma 37.12. Condition (1) holds because we performed an
(almost unnecessary) Zariski sheafification. Condition (2) holds because O is an
fppf sheaf (Descent, Lemma 8.1) and if A is the equalizer of two maps B → C of
Fp-algebras, then colimF A is the equalizer of the two maps colimF B → colimF C.
We check condition (3). Let A, f, J be as in Example 37.10. We have to show that

colimF A = colimF A/J ×colimF A/fA+J colimF A/fA

This reduces to the following algebra question: suppose a′, a′′ ∈ A are such that
Fn(a′ − a′′) ∈ fA + J . Find a ∈ A and m ≥ 0 such that a − Fm(a′) ∈ J and
a − Fm(a′′) ∈ fA and show that the pair (a,m) is uniquely determined up to a
replacement of the form (a,m) 7→ (F (a),m+1). To do this just write Fn(a′−a′′) =
fh+g with h ∈ A and g ∈ J and set a = Fn(a′)−g = Fn(a′′) +fh and set m = n.
To see uniqueness, suppose (a1,m1) is a second solution. By a replacement of the
form given above we may assume m = m1. Then we see that a − a1 ∈ J and
a − a1 ∈ fA. Since J is annihilated by a power of f we see that a − a1 is a
nilpotent element. Hence F k(a − a1) is zero for some large k. Thus after doing
more replacements we get a = a1.
We check condition (4). Let X,X ′, Z,E be as in Example 37.11. By Lemma 38.1
we see that

F(X) = colimF Γ(X,OX) −→ colimF Γ(X ′,OX′) = F(X ′)
is bijective. Since E = P1

Z in this case we also see that F(Z)→ F(E) is bijective.
Thus the conclusion holds in this case as well. □

Let p be a prime number. For an Fp-algebra A we set limF A equal to the limit of
the inverse system

. . .
F−→ A

F−→ A
F−→ A

where F : A→ A, a 7→ ap is the Frobenius endomorphism.

https://stacks.math.columbia.edu/tag/0EVK
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Lemma 38.3.0EVL Let p be a prime number. Let S be a scheme over Fp. Let (Sch/S)h
be a site as in Definition 34.13. The rule

F(X) = limF Γ(X,OX)
defines a sheaf on (Sch/S)h.

Proof. To prove F is a sheaf, let’s check conditions (1), (2), (3), and (4) of Lemma
37.12. Condition (1) holds because limits of sheaves are sheaves and O is a Zariski
sheaf. Condition (2) holds because O is an fppf sheaf (Descent, Lemma 8.1) and if
A is the equalizer of two maps B → C of Fp-algebras, then limF A is the equalizer
of the two maps limF B → limF C.
We check condition (3). Let A, f, J be as in Example 37.10. We have to show that

limF A→ limF A/J ×limF A/fA+J limF A/fA

= limF (A/J ×A/fA+J A/fA)
= limF A/(fA ∩ J)

is bijective. Since J is annihilated by a power of f we see that a = fA ∩ J is a
nilpotent ideal, i.e., there exists an n such that an = 0. It is straightforward to
verify that in this case limF A→ limF A/a is bijective.
We check condition (4). Let X,X ′, Z,E be as in Example 37.11. By Lemma 38.1
and the same argument as above we see that

F(X) = limF Γ(X,OX) −→ limF Γ(X ′,OX′) = F(X ′)
is bijective. Since E = P1

Z in this case we also see that F(Z)→ F(E) is bijective.
Thus the conclusion holds in this case as well. □

In the following lemma we use the absolute weak normalization Xawn of a scheme
X, see Morphisms, Section 47.

Lemma 38.4.0EVT Let (Sch/S)ph be a site as in Topologies, Definition 8.11. The rule
X 7−→ Γ(Xawn,OXawn)

is a sheaf on (Sch/S)ph.

Proof. To prove F is a sheaf, let’s check conditions (1) and (2) of Topologies,
Lemma 8.15. Condition (1) holds because formation of Xawn commutes with open
coverings, see Morphisms, Lemma 47.7 and its proof.
Let π : Y → X be a surjective proper morphism. We have to show that the
equalizer of the two maps

Γ(Y awn,OY awn)→ Γ((Y ×X Y )awn,O(Y×XY )awn)
is equal to Γ(Xawn,OXawn). Let f be an element of this equalizer. Then we
consider the morphism

f : Y awn −→ A1
X

Since Y awn → X is universally closed, the scheme theoretic image Z of f is a closed
subscheme of A1

X proper over X and f : Y awn → Z is surjective. See Morphisms,
Lemma 41.10. Thus Z → X is finite (Morphisms, Lemma 44.11) and surjective.
Let k be a field and let z1, z2 : Spec(k)→ Z be two morphisms equalized by Z → X.
We claim that z1 = z2. It suffices to show the images λi = z∗

i f ∈ k agree (as the
structure sheaf of Z is generated by f over the structure sheaf of X). To see this

https://stacks.math.columbia.edu/tag/0EVL
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we choose a field extension K/k and morphisms y1, y2 : Spec(K)→ Y awn such that
zi ◦ (Spec(K) → Spec(k)) = f ◦ yi. This is possible by the surjectivity of the map
Y awn → Z. Choose an algebraically closed extension Ω/k of very large cardinality.
For any k-algebra maps σi : K → Ω we obtain

Spec(Ω) σ1,σ2−−−→ Spec(K ⊗k K) y1,y2−−−→ Y awn ×X Y awn

Since the canonical morphism (Y ×X Y )awn → Y awn×X Y awn is a universal home-
omorphism and since Ω is algebraically closed, we can lift the composition above
uniquely to a morphism Spec(Ω)→ (Y ×X Y )awn. Since f is in the equalizer above,
this proves that σ1(λ1) = σ2(λ2). An easy lemma about field extensions shows that
this implies λ1 = λ2; details omitted.
We conclude that Z → X is universally injective, i.e., Z → X is injective on points
and induces purely inseparated residue field extensions (Morphisms, Lemma 10.2).
All in all we conclude that Z → X is a universal homeomorphism, see Morphisms,
Lemma 45.5.
Let g : Xawn → Z be the map obtained from the universal property of Xawn.
Then Y awn → Xawn → Z and f : Y awn → Z are two morphisms over X. By the
universal property of Y awn → Y the two corresponding morphisms Y awn → Y ×XZ
over Y have to be equal. This implies that g ◦ πwan = f as morphisms into A1

X

and we conclude that g ∈ Γ(Xawn,OXawn) is the element we were looking for. □

Lemma 38.5.0EVU Let S be a scheme. Choose a site (Sch/S)h as in Definition 34.13.
The rule

X 7−→ Γ(Xawn,OXawn)
is the sheafification of the “structure sheaf” O on (Sch/S)h. Similarly for the ph
topology.

Proof. In Lemma 38.4 we have seen that the rule F of the lemma defines a sheaf
in the ph topology and hence a fortiori a sheaf for the h topology. Clearly, there is
a canonical map of presheaves of rings O → F . To finish the proof, it suffices to
show

(1) if f ∈ O(X) maps to zero in F(X), then there is a h covering {Xi → X}
such that f |Xi = 0, and

(2) given f ∈ F(X) there is a h covering {Xi → X} such that f |Xi is the image
of fi ∈ O(Xi).

Let f be as in (1). Then f |Xawn = 0. This means that f is locally nilpotent. Thus
if X ′ ⊂ X is the closed subscheme cut out by f , then X ′ → X is a surjective closed
immersion of finite presentation. Hence {X ′ → X} is the desired h covering. Let
f be as in (2). After replacing X by the members of an affine open covering we
may assume X = Spec(A) is affine. Then f ∈ Aawn, see Morphisms, Lemma 47.6.
By Morphisms, Lemma 46.11 we can find a ring map A→ B of finite presentation
such that Spec(B) → Spec(A) is a universal homeomorphism and such that f
is the image of an element b ∈ B under the canonical map B → Aawn. Then
{Spec(B)→ Spec(A)} is an h covering and we conclude. The statement about the
ph topology follows in the same manner (or it can be deduced from the statement
for the h topology). □

Let p be a prime number. An Fp-algebra A is called perfect if the map F : A→ A,
x 7→ xp is an automorphism of A.

https://stacks.math.columbia.edu/tag/0EVU
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Lemma 38.6.0EVV Let p be a prime number. An Fp-algebra A is absolutely weakly
normal if and only if it is perfect.

Proof. It is immediate from condition (2)(b) in Morphisms, Definition 47.1 that
if A is absolutely weakly normal, then it is perfect.
Assume A is perfect. Suppose x, y ∈ A with x3 = y2. If p > 3 then we can write
p = 2n+ 3m for some n,m > 0. Choose a, b ∈ A with ap = x and bp = y. Setting
c = anbm we have

c2p = x2ny2m = x2n+3m = xp

and hence c2 = x. Similarly c3 = y. If p = 2, then write x = a2 to get a6 = y2

which implies a3 = y. If p = 3, then write y = a3 to get x3 = a6 which implies
x = a2.
Suppose x, y ∈ A with ℓℓx = yℓ for some prime number ℓ. If ℓ ̸= p, then a = y/ℓ
satisfies aℓ = x and ℓa = y. If ℓ = p, then y = 0 and x = ap for some a. □

Lemma 38.7.0EVW Let p be a prime number.
(1) If A is an Fp-algebra, then colimF A = Aawn.
(2) If S is a scheme over Fp, then the h sheafification of O sends a quasi-

compact and quasi-separated X to colimF Γ(X,OX).

Proof. Proof of (1). Observe that A → colimF A induces a universal homeo-
morphism on spectra by Algebra, Lemma 46.7. Thus it suffices to show that
B = colimF A is absolutely weakly normal, see Morphisms, Lemma 47.6. Note
that the ring map F : B → B is an automorphism, in other words, B is a perfect
ring. Hence Lemma 38.6 applies.
Proof of (2). This follows from (1) and Lemmas 38.2 and 38.5 by looking affine
locally. □

39. Descent vector bundles in positive characteristic

0EXA A reference for this section is [BS17].
For a scheme S let us denote Vect(S) the category of finite locally free OS-modules.
Let p be a prime number. Let S be a quasi-compact and quasi-separated scheme
over Fp. In this section we will work with the category

colimF Vect(S) = colim
(

Vect(S) F∗

−−→ Vect(S) F∗

−−→ Vect(S) F∗

−−→ . . .
)

where F : S → S is the absolute Frobenius morphism. In down to earth terms an
object of this category is a pair (E , n) where E is a finite locally free OS-module
and n ≥ 0 is an integer. For morphisms we take

HomcolimF Vect(S)((E , n), (G,m)) = colimN HomS(FN−n,∗E , FN−m,∗G)

where F : S → S is the absolute Frobenius morphism of S. Thus the object (E , n)
is isomorphic to the object (F ∗E , n+ 1).

Lemma 39.1.0EXB Let p be a prime number. Let S be a quasi-compact and quasi-
separated scheme over Fp. The category colimF Vect(S) is equivalent to the category
of finite locally free modules over the sheaf of rings colimF OS on S.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/0EVV
https://stacks.math.columbia.edu/tag/0EVW
https://stacks.math.columbia.edu/tag/0EXB


MORE ON FLATNESS 126

Lemma 39.2.0EXC Let p be a prime number. Consider an almost blowup square
X,X ′, Z,E in characteristic p as in Example 37.10. Then the functor

colimF Vect(X) −→ colimF Vect(Z)×colimF Vect(E) colimF Vect(X ′)

is an equivalence.

Proof. Let A, f, J be as in Example 37.10. Since all our schemes are affine and
since we have internal Hom in the category of vector bundles, the fully faithfulness
of the functor follows if we can show that

colimP ⊗A,FN A = colimP ⊗A,FN A/J ×colimP⊗A,F NA/fA+J colimP ⊗A,FN A/fA

for a finite projective A-module P . After writing P as a summand of a finite free
module, this follows from the case where P is finite free. This case immediately
reduces to the case P = A. The case P = A follows from Lemma 38.2 (in fact we
proved this case directly in the proof of this lemma).

Essential surjectivity. Here we obtain the following algebra problem. Suppose P1
is a finite projective A/J-module, P2 is a finite projective A/fA-module, and

φ : P1 ⊗A/J A/fA+ J −→ P2 ⊗A/fA A/fA+ J

is an isomorphism. Goal: show that there exists an N , a finite projective A-
module P , an isomorphism φ1 : P ⊗AA/J → P1⊗A/J,FN A/J , and an isomorphism
φ2 : P ⊗A A/fA → P2 ⊗A/fA,FN A/fA compatible with φ in an obvious manner.
This can be seen as follows. First, observe that

A/(J ∩ fA) = A/J ×A/fA+J A/fA

Hence by More on Algebra, Lemma 6.9 there is a finite projective module P ′ over
A/(J ∩ fA) which comes with isomorphisms φ′

1 : P ′ ⊗A A/J → P1 and φ2 :
P ′ ⊗A A/fA → P2 compatible with φ. Since J is a finitely generated ideal and
f -power torsion we see that J ∩ fA is a nilpotent ideal. Hence for some N there is
a factorization

A
α−→ A/(J ∩ fA) β−→ A

of FN . Setting P = P ′ ⊗A/(J∩fA),β A we conclude. □

Lemma 39.3.0EXD Let p be a prime number. Consider an almost blowup square
X,X ′, Z,E in characteristic p as in Example 37.11. Then the functor

G : colimF Vect(X) −→ colimF Vect(Z)×colimF Vect(E) colimF Vect(X ′)

is an equivalence.

Proof. Fully faithfulness. Suppose that (E , n) and (F ,m) are objects of colimF Vect(X).
Let (a, b) : G(E , n) → G(F ,m) be a morphism in the RHS. We may choose
N ≫ 0 and think of a as a map a : FN−n,∗E|Z → FN−m,∗F|Z and b as a map
b : FN−n,∗E|X′ → FN−m,∗F|X′ agreeing over E. Choose a finite affine open cov-
ering X = X1 ∪ . . .∪Xn such that E|Xi and F|Xi are finite free OXi-modules. For
each i the base change

Ei //

��

X ′
i

��
Zi // Xi

https://stacks.math.columbia.edu/tag/0EXC
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is another almost blow up square as in Example 37.11. For these squares we know
that

colimF H
0(Xi,OXi

) = colimF H
0(Zi,OZi

)×colimF H0(Ei,OEi
) colimF H

0(X ′
i,OX′

i
)

by Lemma 38.2 (see proof of the lemma). Hence after increasing N we may assume
the maps a|Zi

and b|X′
i

come from maps ci : FN−n,∗E|Xi
→ FN−m,∗F|Xi

. After
possibly increasing N we may assume ci and cj agree on Xi∩Xj . Thus these maps
glue to give the desired morphism (E , n)→ (F ,m) in the LHS.

Essential surjectivity. Let (F ,G, φ) be a triple consisting of a finite locally free OZ-
module F , a finite locally free OX′ -module G, and an isomorphism φ : F|E → G|E .
We have to show that after replacing this triple by a Frobenius power pullback, it
comes from a finite locally free OX -module.

Noetherian reduction; we urge the reader to skip this paragraph. Recall that X =
Spec(A) and Z = Spec(A/(f1, f2)), X ′ = Proj(A[T0, T1]/(f2T0 − f1T1)), and E =
P1
Z . By Limits, Lemma 10.3 we can find a finitely generated Fp-subalgebra A0 ⊂ A

containing f1 and f2 such that the triple (F ,G, φ) descends to X0 = Spec(A0) and
Z0 = Spec(A0/(f1, f2)), X ′

0 = Proj(A0[T0, T1]/(f2T0−f1T1)), and E0 = P1
Z0

. Thus
we may assume our schemes are Noetherian.

Assume X is Noetherian. We may choose a finite affine open covering X = X1 ∪
. . .∪Xn such that F|Z∩Xi

is free. Since we can glue objects of colimF Vect(X) in the
Zariski topology (Lemma 39.1), and since we already know fully faithfulness over
Xi and Xi ∩Xj (see first paragraph of the proof), it suffices to prove the existence
over each Xi. This reduces us to the case discussed in the next paragraph.

Assume X is Noetherian and F = O⊕r
Z . Using φ we get an isomorphism O⊕r

E →
G|E . Let I = (f1, f2) ⊂ A. Let I ⊂ OX′ be the ideal sheaf of E; it is globally
generated by f1 and f2. For any n there is a surjection

(In/In+1)⊕r = In/In+1 ⊗OE
G|E −→ InG/In+1G

Hence the first cohomology group of this module is zero. Here we use that E = P1
Z

and hence its structure sheaf and in fact any globally generated quasi-coherent
module has vanishing H1. Compare with More on Morphisms, Lemma 72.3. Then
using the short exact sequences

0→ InG/In+1G → G/In+1G → G/InG → 0

and induction, we see that

limH0(X ′,G/InG)→ H0(E,G|E) = H0(E,O⊕r
E ) = A/I⊕r

is surjective. By the theorem on formal functions (Cohomology of Schemes, Theo-
rem 20.5) this implies that

H0(X ′,G)→ H0(E,G|E) = H0(E,O⊕r
E ) = A/I⊕r

is surjective. Thus we can choose a map α : O⊕r
X′ → G which is compatible with the

given trivialization of G|E . Thus α is an isomorphism over an open neighbourhood
of E in X ′. Thus every point of Z has an affine open neighbourhood where we can
solve the problem. Since X ′ \ E → X \ Z is an isomorphism, the same holds for
points of X not in Z. Thus another Zariski glueing argument finishes the proof. □
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Proposition 39.4.0EXE Let p be a prime number. Let S be a scheme in characteristic
p. Then the category fibred in groupoids

p : S −→ (Sch/S)h

whose fibre category over U is the category of finite locally free colimF OU -modules
over U is a stack in groupoids. Moreover, if U is quasi-compact and quasi-separated,
then SU is colimF Vect(U).

Proof. The final assertion is the content of Lemma 39.1. To prove the proposition
we will check conditions (1), (2), and (3) of Lemma 37.13.

Condition (1) holds because by definition we have glueing for the Zariski topology.

To see condition (2), suppose that f : X → Y is a surjective, flat, proper morphism
of finite presentation over S with Y affine. Since Y,X,X ×Y X are quasi-compact
and quasi-separated, we can use the description of fibre categories given in the
statement of the proposition. Then it is clearly enough to show that

Vect(Y ) −→ Vect(X)×Vect(X×Y X) Vect(X)

is an equivalence (as this will imply the same for the colimits). This follows im-
mediately from fppf descent of finite locally free modules, see Descent, Proposition
5.2 and Lemma 7.6.

Condition (3) is the content of Lemmas 39.2 and 39.3. □

Lemma 39.5.0EXF Let f : X → S be a proper morphism with geometrically connected
fibres where S is the spectrum of a discrete valuation ring. Denote η ∈ S the
generic point and denote Xn ⊂ X the closed subscheme cutout by the nth power of
a uniformizer on S. Then there exists an integer n such that the following is true:
any finite locally free OX-module E such that E|Xη

and E|Xn
are free, is free.

Proof. We first reduce to the case where X → S has a section. Say S = Spec(A).
Choose a closed point ξ of Xη. Choose an extension of discrete valuation rings
A ⊂ B such that the fraction field of B is κ(ξ). This is possible by Krull-Akizuki
(Algebra, Lemma 120.18) and the fact that κ(ξ) is a finite extension of the fraction
field of A. By the valuative criterion of properness (Morphisms, Lemma 42.1) we
get a B-valued point τ : Spec(B) → X which induces a section σ : Spec(B) →
XB . For a finite locally free OX -module E let EB be the pullback to the base
change XB . By flat base change (Cohomology of Schemes, Lemma 5.2) we see that
H0(XB , EB) = H0(X, E) ⊗A B. Thus if EB is free of rank r, then the sections in
H0(X, E) generate the free B-module τ∗E = σ∗EB . In particular, we can find r
global sections s1, . . . , sr of E which generate τ∗E . Then

s1, . . . , sr : O⊕r
X −→ E

is a map of finite locally free OX -modules of rank r and the pullback to XB is a map
of free OXB

-modules which restricts to an isomorphism in one point of each fibre.
Taking the determinant we get a function g ∈ Γ(Xη,OXB

) which is invertible in
one point of each fibre. As the fibres are proper and connected, we see that g must
be invertible (details omitted; hint: use Varieties, Lemma 9.3). Thus it suffices to
prove the lemma for the base change XB → Spec(B).

https://stacks.math.columbia.edu/tag/0EXE
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Assume we have a section σ : S → X. Let E be a finite locally free OX -module
which is assumed free on the generic fibre and on Xn (we will choose n later).
Choose an isomorphism σ∗E = O⊕r

S . Consider the map

K = RΓ(X, E) −→ RΓ(S, σ∗E) = A⊕r

in D(A). Arguing as above, we see E is free if (and only if) the induced map
H0(K) = H0(X, E)→ A⊕r is surjective.

Set L = RΓ(X,O⊕r
X ) and observe that the corresponding map L → A⊕r has the

desired property. Observe that K ⊗A Q(A) ∼= L⊗A Q(A) by flat base change and
the assumption that E is free on the generic fibre. Let π ∈ A be a uniformizer.
Observe that

K ⊗L
A A/π

mA = RΓ(X, E πm

−−→ E)
and similarly for L. Denote Etors ⊂ E the coherent subsheaf of sections supported
on the special fibre and similarly for other OX -modules. Choose k > 0 such that
(OX)tors → OX/πkOX is injective (Cohomology of Schemes, Lemma 10.3). Since E
is locally free, we see that Etors ⊂ E/πkE . Then for n ≥ m+k we have isomorphisms

(E πm

−−→ E) ∼= (E/πkE πm

−−→ E/πk+mE)
∼= (O⊕r

X /πkO⊕r
X

πm

−−→ O⊕r
X /πk+mO⊕r

X )
∼= (O⊕r

X
πm

−−→ O⊕r
X )

in D(OX). This determines an isomorphism

K ⊗L
A A/π

mA ∼= L⊗L
A A/π

mA

in D(A) (holds when n ≥ m+k). Observe that these isomorphisms are compatible
with pulling back by σ hence in particular we conclude that K ⊗L

A A/πmA →
(A/πmA)⊕r defines an surjection on degree 0 cohomology modules (as this is true
for L). Since A is a discrete valuation ring, we have

K ∼=
⊕

Hi(K)[−i] and L ∼=
⊕

Hi(L)[−i]

in D(A). See More on Algebra, Example 69.3. The cohomology groups Hi(K) =
Hi(X, E) and Hi(L) = Hi(X,OX)⊕r are finite A-modules by Cohomology of
Schemes, Lemma 19.2. By More on Algebra, Lemma 124.3 these modules are
direct sums of cyclic modules. We have seen above that the rank βi of the free part
of Hi(K) and Hi(L) are the same. Next, observe that

Hi(L⊗L
A A/π

mA) = Hi(L)/πmHi(L)⊕Hi+1(L)[πm]

and similarly for K. Let e be the largest integer such that A/πeA occurs as a
summand of Hi(X,OX), or equivalently Hi(L), for some i. Then taking m = e+ 1
we see that Hi(L ⊗L

A A/π
mA) is a direct sum of βi copies of A/πmA and some

other cyclic modules each annihilated by πe. By the same reasoning for K and
the isomorphism K ⊗L

A A/π
mA ∼= L⊗L

A A/π
mA it follows that Hi(K) cannot have

any cyclic summands of the form A/πlA with l > e. (It also follows that K is
isomorphic to L as an object of D(A), but we won’t need this.) Then the only way
the map

H0(K ⊗L
A A/π

e+1A) = H0(K)/πe+1H0(K)⊕H1(K)[πe+1] −→ (A/πe+1A)⊕r
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is surjective, is if it is surjective on the first summand. This is what we wanted
to show. (To be precise, the integer n in the statement of the lemma, if there is a
section σ, should be equal to k+ e+ 1 where k and e are as above and depend only
on X.) □

Lemma 39.6.0EXG Let f : X → S be a morphism of schemes. Let E be a finite locally
free OX-module. Assume

(1) f is flat and proper and OS = f∗OX ,
(2) S is a normal Noetherian scheme,
(3) the pullback of E to X ×S Spec(OS,s) is free for every codimension 1 point

s ∈ S.
Then E is isomorphic to the pullback of a finite locally free OS-module.

Proof. We will prove the canonical map
Φ : f∗f∗E −→ E

is an isomorphism. By flat base change (Cohomology of Schemes, Lemma 5.2) and
assumptions (1) and (3) we see that the pullback of this to X ×S Spec(OS,s) is
an isomorphism for every codimension 1 point s ∈ S. By Divisors, Lemma 2.11
it suffices to prove that depth((f∗f∗E)x) ≥ 2 for any point x ∈ X mapping to a
point s ∈ S of codimension ≥ 2. Since f is flat and (f∗f∗E)x = (f∗E)s ⊗OS,s

OX,x,
it suffices to prove that depth((f∗E)s) ≥ 2, see Algebra, Lemma 163.2. Since S
is a normal Noetherian scheme and dim(OS,s) ≥ 2 we have depth(OS,s) ≥ 2, see
Properties, Lemma 12.5. Thus we get what we want from Divisors, Lemma 6.6. □

We can use the results above to prove the following miraculous statement.

Theorem 39.7.0EXH Let p be a prime number. Let Y be a quasi-compact and quasi-
separated scheme over Fp. Let f : X → Y be a proper, surjective morphism of
finite presentation with geometrically connected fibres. Then the functor

colimF Vect(Y ) −→ colimF Vect(X)
is fully faithful with essential image described as follows. Let E be a finite locally
free OX-module. Assume for all y ∈ Y there exists integers ny, ry ≥ 0 such that

Fny,∗E|Xy,red
∼= O⊕ry

Xy,red

Then for some n ≥ 0 the nth Frobenius power pullback Fn,∗E is the pullback of a
finite locally free OY -module.

Proof. Proof of fully faithfulness. Since vectorbundles on Y are locally trivial, this
reduces to the statement that

colimF Γ(Y,OY ) −→ colimF Γ(X,OX)
is bijective. Since {X → Y } is an h covering, this will follow from Lemma 38.2 if
we can show that the two maps

colimF Γ(X,OX) −→ colimF Γ(X ×Y X,OX×Y X)
are equal. Let g ∈ Γ(X,OX) and denote g1 and g2 the two pullbacks of g to
X ×Y X. Since Xy,red is geometrically connected, we see that H0(Xy,red,OXy,red

)
is a purely inseparable extension of κ(y), see Varieties, Lemma 9.3. Thus gq|Xy,red

comes from an element of κ(y) for some p-power q (which may depend on y). It
follows that gq1 and gq2 map to the same element of the residue field at any point of
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(X ×Y X)y = Xy ×y Xy. Hence g1 − g2 restricts to zero on (X ×Y X)red. Hence
(g1 − g2)n = 0 for some n which we may take to be a p-power as desired.

Description of essential image. Let E be as in the statement of the proposition. We
first reduce to the Noetherian case.

Let y ∈ Y be a point and view it as a morphism y → Y from the spectrum of the
residue field into Y . We can write y → Y as a filtered limit of morphisms Yi → Y
of finite presentation with Yi affine. (It is best to prove this yourself, but it also
follows formally from Limits, Lemma 7.2 and 4.13.) For each i set Zi = Yi ×Y X.
Then Xy = limZi and Xy,red = limZi,red. By Limits, Lemma 10.2 we can find
an i such that Fny,∗E|Zi,red

∼= O⊕ry

Zi,red
. Fix i. We have Zi,red = limZi,j where

Zi,j → Zi is a thickening of finite presentation (Limits, Lemma 9.4). Using the
same lemma as before we can find a j such that Fny,∗E|Zi,j

∼= O⊕ry

Zi,j
. We conclude

that for each y ∈ Y there exists a morphism Yy → Y of finite presentation whose
image contains y and a thickening Zy → Yy ×Y X such that Fny,∗E|Zy

∼= O⊕ry

Zy
.

Observe that the image of Yy → Y is constructible (Morphisms, Lemma 22.2).
Since Y is quasi-compact in the constructible topology (Topology, Lemma 23.2 and
Properties, Lemma 2.4) we conclude that there are a finite number of morphisms

Y1 → Y, Y2 → Y, . . . , YN → Y

of finite presentation such that Y =
⋃

Im(Ya → Y ) set theoretically and such that
for each a ∈ {1, . . . , N} there exist integers na, ra ≥ 0 and there is a thickening
Za ⊂ Ya ×Y X of finite presentation such that Fna,∗E|Za

∼= O⊕ra

Za
.

Formulated in this way, the condition descends to an absolute Noetherian ap-
proximation. We strongly urge the reader to skip this paragraph. First write
Y = limi∈I Yi as a cofiltered limit of schemes of finite type over Fp with affine
transition morphisms (Limits, Lemma 7.2). Next, we can assume we have proper
morphisms fi : Xi → Yi whose base change to Y recovers f : X → Y , see Limits,
Lemma 10.1. After increasing i we may assume there exists a finite locally free
OXi-module Ei whose pullback to X is isomorphic to E , see Limits, Lemma 10.3.
Pick 0 ∈ I and denote E ⊂ Y0 the constructible subset where the geometric fibres
of f0 are connected, see More on Morphisms, Lemma 28.6. Then Y → Y0 maps into
E, see More on Morphisms, Lemma 28.2. Thus Yi → Y0 maps into E for i ≫ 0,
see Limits, Lemma 4.10. Hence we see that the fibres of fi are geometrically con-
nected for i≫ 0. By Limits, Lemma 10.1 for large enough i we can find morphisms
Yi,a → Yi of finite type whose base change to Y recovers Ya → Y , a ∈ {1, . . . , N}.
After possibly increasing i we can find thickenings Zi,a ⊂ Yi,a ×Yi Xi whose base
change to Ya ×Y X recovers Za (same reference as before combined with Limits,
Lemmas 8.5 and 8.15). Since Za = limZi,a we find that after increasing i we may
assume Fna,∗Ei|Zi,a

∼= O⊕ra

Zi,a
, see Limits, Lemma 10.2. Finally, after increasing i

one more time we may assume
∐
Yi,a → Yi is surjective by Limits, Lemma 8.15. At

this point all the assumptions hold for Xi → Yi and Ei and we see that it suffices
to prove result for Xi → Yi and Ei.

Assume Y is of finite type over Fp. To prove the result we will use induction on
dim(Y ). We are trying to find an object of colimF Vect(Y ) which pulls back to the
object of colimF Vect(X) determined by E . By the fully faithfulness already proven
and because of Proposition 39.4 it suffices to construct a descent of E after replacing
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Y by the members of a h covering and X by the corresponding base change. This
means that we may replace Y by a scheme proper and surjective over Y provided
this does not increase the dimension of Y . If T ⊂ T ′ is a thickening of schemes
of finite type over Fp then colimF Vect(T ) = colimF Vect(T ′) as {T → T ′} is a
h covering such that T ×T ′ T = T . If T ′ → T is a universal homeomorphism of
schemes of finite type over Fp, then colimF Vect(T ) = colimF Vect(T ′) as {T → T ′}
is a h covering such that the diagonal T ⊂ T ×T ′ T is a thickening.

Using the general remarks made above, we may and do replace X by its reduction
and we may assume X is reduced. Consider the Stein factorization X → Y ′ → Y ,
see More on Morphisms, Theorem 53.4. Then Y ′ → Y is a universal homeomor-
phism of schemes of finite type over Fp. By the above we may replace Y by Y ′.
Thus we may assume f∗OX = OY and that Y is reduced. This reduces us to the
case discussed in the next paragraph.

Assume Y is reduced and f∗OX = OY over a dense open subscheme of Y . Then
X → Y is flat over a dense open subscheme V ⊂ Y , see Morphisms, Proposition
27.2. By Lemma 31.1 there is a V -admissible blowing up Y ′ → Y such that the
strict transform X ′ of X is flat over Y ′. Observe that dim(Y ′) = dim(Y ) as Y
and Y ′ have a common dense open subscheme. By More on Morphisms, Lemma
53.7 and the fact that V ⊂ Y ′ is dense all fibres of f ′ : X ′ → Y ′ are geometrically
connected. We still have (f ′

∗OX′)|V = OV . Write

Y ′ ×Y X = X ′ ∪ E ×Y X

where E ⊂ Y ′ is the exceptional divisor of the blowing up. By the general remarks
above, it suffices to prove existence for Y ′ ×Y X → Y ′ and the restriction of E to
Y ′×Y X. Suppose that we find some object ξ′ in colimF Vect(Y ′) pulling back to the
restriction of E to X ′ (viewed as an object of the colimit category). By induction on
dim(Y ) we can find an object ξ′′ in colimF Vect(E) pulling back to the restriction
of E to E ×Y X. Then the fully faithfullness determines a unique isomorphism
ξ′|E → ξ′′ compatible with the given identifications with the restriction of E to
E ×Y ′ X ′. Since

{E ×Y X → Y ′ ×Y X,X ′ → Y ′ ×Y X}
is a h covering given by a pair of closed immersions with

(E ×Y X)×(Y ′×Y X) X
′ = E ×Y ′ X ′

we conclude that ξ′ pulls back to the restriction of E to Y ′ ×Y X. Thus it suffices
to find ξ′ and we reduce to the case discussed in the next paragraph.

Assume Y is reduced, f is flat, and f∗OX = OY over a dense open subscheme of
Y . In this case we consider the normalization Y ν → Y (Morphisms, Section 54).
This is a finite surjective morphism (Morphisms, Lemma 54.11 and 18.2) which is
an isomorphism over a dense open. Hence by our general remarks we may replace
Y by Y ν and X by Y ν ×Y X. After this replacement we see that OY = f∗OX
(because the Stein factorization has to be an isomorphism in this case; small detail
omitted).

Assume Y is a normal Noetherian scheme, that f is flat, and that f∗OX = OY .
After replacing E by a suitable Frobenius power pullback, we may assume E is
trivial on the scheme theoretic fibres of f at the generic points of the irreducible
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components of Y (because colimF Vect(−) is an equivalence on universal homeo-
morphisms, see above). Similarly to the arguments above (in the reduction to the
Noetherian case) we conclude there is a dense open subscheme V ⊂ Y such that
E|f−1(V ) is free. Let Z ⊂ Y be a closed subscheme such that Y = V ⨿Z set theoret-
ically. Let z1, . . . , zt ∈ Z be the generic points of the irreducible components of Z of
codimension 1. Then Ai = OY,zi

is a discrete valuation ring. Let ni be the integer
found in Lemma 39.5 for the scheme XAi over Ai. After replacing E by a suitable
Frobenius power pullback, we may assume E is free over XAi/m

ni
i

(again because the
colimit category is invariant under universal homeomorphisms, see above). Then
Lemma 39.5 tells us that E is free on XAi

. Thus finally we conclude by applying
Lemma 39.6. □

40. Blowing up complexes

0ESM This section finds normal forms for perfect objects of the derived category after
blowups.

Lemma 40.1.0ESP Let X be a scheme. Let E ∈ D(OX) be pseudo-coherent. For every
p, k ∈ Z there is an finite type quasi-coherent sheaf of ideals Fitp,k(E) ⊂ OX with
the following property: for U ⊂ X open such that E|U is isomorphic to

. . .→ O⊕nb−2
U

db−2−−−→ O⊕nb−1
U

db−1−−−→ O⊕nb

U → 0→ . . .

the restriction Fitp,k(E)|U is generated by the minors of the matrix of dp of size

−k + np+1 − np+2 + . . .+ (−1)b−p+1nb

Convention: the ideal generated by r × r-minors is OU if r ≤ 0 and the ideal
generated by r × r-minors where r > min(np, np+1) is zero.

Proof. Observe that E locally on X has the shape as stated in the lemma, see
More on Algebra, Section 64, Cohomology, Section 47, and Derived Categories of
Schemes, Section 10. Thus it suffices to prove that the ideal of minors is independent
of the chosen representative. To do this, it suffices to check in local rings. Over a
local ring (R,m, κ) consider a bounded above complex

F • : . . .→ R⊕nb−2
db−2−−−→ R⊕nb−1

db−1−−−→ R⊕nb → 0→ . . .

Denote Fitk,p(F •) ⊂ R the ideal generated by the minors of size k−np+1 +np+2−
. . . + (−1)b−pnb in the matrix of dp. Suppose some matrix coefficient of some dif-
ferential of F • is invertible. Then we pick a largest integer i such that di has
an invertible matrix coefficient. By Algebra, Lemma 102.2 the complex F • is iso-
morphic to a direct sum of a trivial complex . . . → 0 → R → R → 0 → . . .
with nonzero terms in degrees i and i + 1 and a complex (F ′)•. We leave it to
the reader to see that Fitp,k(F •) = Fitp,k((F ′)•); this is where the formula for
the size of the minors is used. If (F ′)• has another differential with an invertible
matrix coefficient, we do it again, etc. Continuing in this manner, we eventually
reach a complex (F∞)• all of whose differentials have matrices with coefficients in
m. Here you may have to do an infinite number of steps, but for any cutoff only
a finite number of these steps affect the complex in degrees ≥ the cutoff. Thus
the “limit” (F∞)• is a well defined bounded above complex of finite free modules,
comes equipped with a quasi-isomorphism (F∞)• → F • into the complex we started

https://stacks.math.columbia.edu/tag/0ESP
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with, and Fitp,k(F •) = Fitp,k((F∞)•). Since the complex (F∞)• is unique up to
isomorphism by More on Algebra, Lemma 75.6 the proof is complete. □

Lemma 40.2.0ESQ Let X be a scheme. Let E ∈ D(OX) be perfect. Let U ⊂ X be a
scheme theoretically dense open subscheme such that Hi(E|U ) is finite locally free of
constant rank ri for all i ∈ Z. Then there exists a U -admissible blowup b : X ′ → X
such that Hi(Lb∗E) is a perfect OX′-module of tor dimension ≤ 1 for all i ∈ Z.

Proof. We will construct and study the blowup affine locally. Namely, suppose
that V ⊂ X is an affine open subscheme such that E|V can be represented by the
complex

O⊕na

V
da−→ . . .

db−1−−−→ O⊕nb

V

Set ki = ri+1 − ri+2 + . . .+ (−1)b−i+1rb. A computation which we omit show that
over U ∩ V the rank of di is

ρi = −ki + ni+1 − ni+2 + . . .+ (−1)b−i+1nb

in the sense that the cokernel of di is finite locally free of rank ni+1 − ρi. Let
Ii ⊂ OV be the ideal generated by the minors of size ρi × ρi in the matrix of di.
On the one hand, comparing with Lemma 40.1 we see the ideal Ii corresponds to
the global ideal Fiti,ki

(E) which was shown to be independent of the choice of the
complex representing E|V . On the other hand, Ii is the (ni+1 − ρi)th Fitting ideal
of Coker(di). Please keep this in mind.
We let b : X ′ → X be the blowing up in the product of the ideals Fiti,ki

(E); this
makes sense as locally on X almost all of these ideals are equal to the unit ideal (see
above). This blowup dominates the blowups bi : X ′

i → X in the ideals Fiti,ki
(E),

see Divisors, Lemma 32.12. By Divisors, Lemma 35.3 each bi is a U -admissible
blowup. It follows that b is a U -admissible blowup (tiny detail omitted; compare
with the proof of Divisors, Lemma 34.4). Finally, U is still a scheme theoretically
dense open subscheme of X ′. Thus after replacing X by X ′ we end up in the
situation discussed in the next paragraph.
Assume Fiti,ki

(E) is an invertible ideal for all i. Choose an affine open V and a
complex of finite free modules representing E|V as above. It follows from Divisors,
Lemma 35.3 that Coker(di) has tor dimension ≤ 1. Thus Im(di) is finite locally
free as the kernel of a map from a finite locally free module to a finitely presented
module of tor dimension ≤ 1. Hence Ker(di) is finite locally free as well (same
argument). Thus the short exact sequence

0→ Im(di−1)→ Ker(di)→ Hi(E)|V → 0
shows what we want and the proof is complete. □

Lemma 40.3.0ESR Let X be an integral scheme. Let E ∈ D(OX) be perfect. Then
there exists a nonempty open U ⊂ X such that Hi(E|U ) is finite locally free of
constant rank ri for all i ∈ Z and there exists a U -admissible blowup b : X ′ → X
such that Hi(Lb∗E) is a perfect OX′-module of tor dimension ≤ 1 for all i ∈ Z.

Proof. We strongly urge the reader to find their own proof of the existence of U .
Let η ∈ X be the generic point. The restriction of E to η is isomorphic in D(κ(η))
to a finite complex V • of finite dimensional vector spaces with zero differentials.
Set ri = dimκ(η) V

i. Then the perfect object E′ in D(OX) represented by the
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complex with terms O⊕ri

X and zero differentials becomes isomorphic to E after
pulling back to η. Hence by Derived Categories of Schemes, Lemma 35.9 there
is an open neighbourhood U of η such that E|U and E′|U are isomorphic. This
proves the first assertion. The second follows from the first and Lemma 40.2 as any
nonempty open is scheme theoretically dense in the integral scheme X. □

Remark 40.4.0F8J Let X be a scheme. Let E ∈ D(OX) be a perfect object such that
Hi(E) is a perfect OX -module of tor dimension ≤ 1 for all i ∈ Z. This property
sometimes allows one to reduce questions about E to questions about Hi(E). For
example, suppose

Ea da

−→ . . .
db−2

−−−→ Eb−1 db−1

−−−→ Eb

is a bounded complex of finite locally free OX -modules representing E. Then
Im(di) and Ker(di) are finite locally free OX -modules for all i. Namely, suppose
by induction we know this for all indices bigger than i. Then we can first use the
short exact sequence

0→ Im(di)→ Ker(di+1)→ Hi+1(E)→ 0

and the assumption that Hi+1(E) is perfect of tor dimension ≤ 1 to conclude that
Im(di) is finite locally free. The same argument used again for the short exact
sequence

0→ Ker(di)→ E i → Im(di)→ 0
then gives that Ker(di) is finite locally free. It follows that the distinguished trian-
gles

τ≤k−1E → τ≤kE → Hk(E)[−k]→ (τ≤k−1E)[1]
are represented by the following short exact sequences of bounded complexes of
finite locally free modules

0
↓

Ea → . . . → Ek−2 → Ker(dk−1)
↓ ↓ ↓
Ea → . . . → Ek−2 → Ek−1 → Ker(dk)

↓ ↓
Im(dk−1) → Ker(dk)
↓
0

Here the complexes are the rows and the “obvious” zeros are omitted from the
display.

41. Blowing up perfect modules

0F8K This section tries to find normal forms for perfect modules of tor dimension ≤ 1
after blowups. We are only partially successful.

Lemma 41.1.0ESS Let X be a scheme. Let F be a perfect OX-module of tor dimension
≤ 1. For any blowup b : X ′ → X we have Lb∗F = b∗F and b∗F is a perfect OX-
module of tor dimension ≤ 1.

https://stacks.math.columbia.edu/tag/0F8J
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Proof. We may assume X = Spec(A) is affine and we may assume the A-module
M corresponding to F has a presentation

0→ A⊕m → A⊕n →M → 0
Suppose I ⊂ A is an ideal and a ∈ I. Recall that the affine blowup algebra A[ Ia ]
is a subring of Aa. Since localization is exact we see that A⊕m

a → A⊕n
a is injective.

Hence A[ Ia ]⊕m → A[ Ia ]⊕n is injective too. This proves the lemma. □

Lemma 41.2.0EST Let X be a scheme. Let F be a perfect OX-module of tor dimension
≤ 1. Let U ⊂ X be a scheme theoretically dense open such that F|U is finite locally
free of constant rank r. Then there exists a U -admissible blowup b : X ′ → X such
that there is a canonical short exact sequence

0→ K → b∗F → Q → 0
where Q is finite locally free of rank r and K is a perfect OX-module of tor dimension
≤ 1 whose restriction to U is zero.

Proof. Combine Divisors, Lemma 35.3 and Lemma 41.1. □

Lemma 41.3.0ESU Let X be a scheme. Let F be a perfect OX-module of tor dimension
≤ 1. Let U ⊂ X be an open such that F|U = 0. Then there is a U -admissible blowup

b : X ′ → X

such that F ′ = b∗F is equipped with two canonical locally finite filtrations
0 = F 0 ⊂ F 1 ⊂ F 2 ⊂ . . . ⊂ F ′ and F ′ = F1 ⊃ F2 ⊃ F3 ⊃ . . . ⊃ 0

such that for each n ≥ 1 there is an effective Cartier divisor Dn ⊂ X ′ with the
property that

F i/F i−1 and Fi/Fi+1

are finite locally free of rank i on Di.

Proof. Choose an affine open V ⊂ X such that there exists a presentation

0→ O⊕n
V

A−→ O⊕n
V → F → 0

for some n and some matrix A. The ideal we are going to blowup in is the product
of the Fitting ideals Fitk(F) for k ≥ 0. This makes sense because in the affine
situation above we see that Fitk(F)|V = OV for k > n. It is clear that this is a
U -admissible blowing up. By Divisors, Lemma 32.12 we see that on X ′ the ideals
Fitk(F) are invertible. Thus we reduce to the case discussed in the next paragraph.
Assume Fitk(F) is an invertible ideal for k ≥ 0. If Ek ⊂ X is the effective Cartier
divisor defined by Fitk(F) for k ≥ 0, then the effective Cartier divisors Dk in the
statement of the lemma will satisfy

Ek = Dk+1 + 2Dk+2 + 3Dk+3 + . . .

This makes sense as the collection Dk will be locally finite. Moreover, it uniquely
determines the effective Cartier divisors Dk hence it suffices to construct Dk locally.
Choose an affine open V ⊂ X and presentation of F|V as above. We will construct
the divisors and filtrations by induction on the integer n in the presentation. We
set Dk|V = ∅ for k > n and we set Dn|V = En−1|V . After shrinking V we may
assume that Fitn−1(F)|V is generated by a single nonzerodivisor f ∈ Γ(V,OV ).
Since Fitn−1(F)|V is the ideal generated by the entries of A, we see that there is
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a matrix A′ in Γ(V,OV ) such that A = fA′. Define F ′ on V by the short exact
sequence

0→ O⊕n
V

A′

−→ O⊕n
V → F ′ → 0

Since the entries of A′ generate the unit ideal in Γ(V,OV ) we see that F ′ locally on V
has a presentation with n decreased by 1, see Algebra, Lemma 102.2. Further note
that fn−kFitk(F ′) = Fitk(F)|V for k = 0, . . . , n. Hence Fitk(F ′) is an invertible
ideal for all k. We conclude by induction that there exist effective Cartier divisors
D′
k ⊂ V such that F ′ has two canonical filtrations as in the statement of the lemma.

Then we set Dk|V = D′
k for k = 1, . . . , n− 1. Observe that the equalities between

effective Cartier divisors displayed above hold with these choices. Finally, we come
to the construction of the filtrations. Namely, we have short exact sequences

0→ O⊕n
Dn∩V → F → F

′ → 0 and 0→ F ′ → F → O⊕n
Dn∩V → 0

coming from the two factorizations A = A′f = fA′ of A. These sequences are
canonical because in the first one the submodule is Ker(f : F → F) and in the
second one the quotient module is Coker(f : F → F). □

Lemma 41.4.0ESV Let X be a scheme. Let φ : F → G be a homorphism of perfect
OX-modules of tor dimension ≤ 1. Let U ⊂ X be a scheme theoretically dense open
such that F|U = 0 and G|U = 0. Then there is a U -admissible blowup b : X ′ → X
such that the kernel, image, and cokernel of b∗φ are perfect OX′-modules of tor
dimension ≤ 1.

Proof. The assumptions tell us that the object (F → G) of D(OX) is perfect. Thus
we get a U -admissible blowup that works for the cokernel and kernel by Lemmas
40.2 and 41.1 (to see what the complex looks like after pullback). The image is
the kernel of the cokernel and hence is going to be perfect of tor dimension ≤ 1 as
well. □

42. An operator introduced by Berthelot and Ogus

0F8L Please read Cohomology, Section 55 first.
Let X be a scheme. Let D ⊂ X be an effective Cartier divisor. Let I = ID ⊂ OX
be the ideal sheaf of D, see Divisors, Section 14. Clearly we can apply the discussion
in Cohomology, Section 55 to X and I.

Lemma 42.1.0F8M Let X be a scheme. Let D ⊂ X be an effective Cartier divisor
with ideal sheaf I ⊂ OX . Let F• be a complex of quasi-coherent OX-modules such
that F i is I-torsion free for all i. Then ηIF• is a complex of quasi-coherent OX-
modules. Moreover, if U = Spec(A) ⊂ X is affine open and D ∩ U = V (f), then
ηf (F•(U)) is canonically isomorphic to (ηIF•)(U).

Proof. Omitted. □

Lemma 42.2.0GTV Let X be a scheme. Let D ⊂ X be an effective Cartier divisor
with ideal sheaf I ⊂ OX . The functor LηI : D(OX) → D(OX) of Cohomology,
Lemma 55.7 sends DQCoh(OX) into itself. Moreover, if X = Spec(A) is affine and
D = V (f), then the functor Lηf on D(A) defined in More on Algebra, Lemma
95.4 and the functor LηI on DQCoh(OX) correspond via the equivalence of Derived
Categories of Schemes, Lemma 3.5.

Proof. Omitted. □
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43. Blowing up complexes, II

0F8R The material in this section will be used to construct a version of Macpherson’s
graph construction in Section 44.

Situation 43.1.0F8S Here X is a scheme, D ⊂ X is an effective Cartier divisor with
ideal sheaf I ⊂ OX , and M is a perfect object of D(OX).

Let (X,D,M) be a triple as in Situation 43.1. Consider an affine open U =
Spec(A) ⊂ X such that

(1) D ∩ U = V (f) for some nonzerodivisor f ∈ A, and
(2) there exists a bounded complex M• of finite free A-modules representing

M |U (via the equivalence of Derived Categories of Schemes, Lemma 3.5).
We will say that (U,A, f,M•) is an affine chart for (X,D,M). Consider the ideals
Ii(M•, f) ⊂ A defined in More on Algebra, Section 96. Let us say (X,S,M) is a
good triple if for every x ∈ D there exists an affine chart (U,A, f,M•) with x ∈ U
and Ii(M•, f) principal ideals for all i ∈ Z.

Lemma 43.2.0F8T In Situation 43.1 let h : Y → X be a morphism of schemes such
that the pullback E = h−1D of D is defined (Divisors, Definition 13.12). Let
(U,A, f,M•) is an affine chart for (X,D,M). Let V = Spec(B) ⊂ Y is an affine
open with h(V ) ⊂ U . Denote g ∈ B the image of f ∈ A. Then

(1) (V,B, g,M• ⊗A B) is an affine chart for (Y,E,Lh∗M),
(2) Ii(M•, f)B = Ii(M• ⊗A B, g) in B, and
(3) if (X,D,M) is a good triple, then (Y,E,Lh∗M) is a good triple.

Proof. The first statement follows from the following observations: g is a nonze-
rodivisor in B which defines E ∩ V ⊂ V and M• ⊗A B represents M• ⊗L

A B and
hence represents the pullback of M to V by Derived Categories of Schemes, Lemma
3.8. Part (2) follows from part (1) and More on Algebra, Lemma 96.3. Combined
with More on Algebra, Lemma 96.3 we conclude that the second statement of the
lemma holds. □

Lemma 43.3.0GTW Let X,D, I,M be as in Situation 43.1. If (X,D,M) is a good
triple, then LηIM is a perfect object of D(OX).

Proof. Translation of More on Algebra, Lemma 96.5. To do the translation use
Lemma 42.2. □

Lemma 43.4.0GTX Let X,D, I,M be as in Situation 43.1. Assume (X,D,M) is a
good triple. If there exists a locally bounded complex M• of finite locally free OX-
modules representing M , then there exists a locally bounded complex Q• of finite
locally free OX′-modules representing LηIM .

Proof. By Cohomology, Lemma 55.7 the complex Q• = ηIM• represents LηIM .
To check that this complex is locally bounded and consists of finite locally free,
we may work affine locally. Then the boundedness is clear. Choose an affine chart
(U,A, f,M•) for (X,D,M) such that the ideals Ii(M•, f) are principal and such
that Mi|U is finite free for each i. By our assumption that (X,D,M) is a good
triple we can do this. Writing N i = Γ(U,Mi|U ) we get a bounded complex N•

of finite free A-modules representing the same object in D(A) as the complex M•

(by Derived Categories of Schemes, Lemma 3.5). Then Ii(N•, f) is a principal
ideal for all i by More on Algebra, Lemma 96.1. Hence the complex ηfN

• is a
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bounded complex of finite locally free A-modules. Since Qi|U is the quasi-coherent
OU -module corresponding to ηfN i by Lemma 42.1 we conclude. □

Lemma 43.5.0F9X In Situation 43.1 let h : Y → X be a morphism of schemes such
that the pullback E = h−1D is defined. If (X,D,M) is a good triple, then

Lh∗(LηIM) = LηJ (Lh∗M)

in D(OY ) where J is the ideal sheaf of E.

Proof. Translation of More on Algebra, Lemma 96.6. Use Lemmas 42.1 and 42.2
to do the translation. □

Lemma 43.6.0GTY In Situation 43.1 there is a unique morphism b : X ′ → X such that
(1) the pullback D′ = b−1D is defined and (X ′, D′,M ′) is a good triple where

M ′ = Lb∗M , and
(2) for any morphism of schemes h : Y → X such that the pullback E = h−1D

is defined and (Y,E,Lh∗M) is a good triple, there is a unique factorization
of h through b.

Moreover, for any affine chart (U,A, f,M•) the restriction b−1(U) → U is the
blowing up in the product of the ideals Ii(M•, f) and for any quasi-compact open
W ⊂ X the restriction b|b−1(W ) : b−1(W )→W is a W \D-admissible blowing up.

Proof. The proof is just that we will locally blow up X in the product ideals
Ii(M•, f) for any affine chart (U,A, f,M•). The first few lemmas in More on
Algebra, Section 96 show that this is well defined. The universal property (2) then
follows from the universal property of blowing up. The details can be found below.

Let U,A, f,M• be an affine chart for (X,D,M). All but a finite number of the
ideals Ii(M•, f) are equal to A hence it makes sense to look at

I =
∏

i
Ii(M•, f)

and this is a finitely generated ideal of A. Denote

bU : U ′ → U

the blowing up of U in I. Then b−1
U (U ∩D) is defined by Divisors, Lemma 32.11.

Recall that fri ∈ Ii(M•, f) and hence bU is a (U \ D)-admissible blowing up.
By Divisors, Lemma 32.12 for each i the morphism bU factors as U ′ → U ′

i → U
where U ′

i → U is the blowing up in Ii(M•, f) and U ′ → U ′
i is another blowing up.

It follows that the pullback Ii(M•, f)OU ′ of Ii(M•, f) to U ′ is an invertible ideal
sheaf, see Divisors, Lemmas 32.11 and 32.4. It follows that (U ′, b−1D,Lb∗M |U ) is a
good triple, see Lemma 43.2 for the behaviour of the ideals Ii(−,−) under pullback.
Finally, we claim that bU : U ′ → U has the universal property mentioned in part
(2) of the statement of the lemma. Namely, suppose h : Y → U is a morphism of
schemes such that the pullback E = h−1(D ∩ U) is defined and (Y,E,Lh∗M) is a
good triple. Then Y is covered by affine charts (V,B, g,N•) such that Ii(N•, g)
is an invertible ideal for each i. Then g and the image of f in B differ by a
unit as they both cut out the effective Cartier divisor E ∩ V . Hence we may
assume g is the image of f by More on Algebra, Lemma 96.2. Then Ii(N•, g) is
isomorphic to Ii(M• ⊗A B, g) as a B-module by More on Algebra, Lemma 96.1.
Thus Ii(M•⊗AB, g) = Ii(M•, f)B (Lemma 43.2) is an invertible B-module. Hence
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the ideal IB is invertible. It follows that IOY is invertible. Hence we obtain a
unique factorization of h through bU by Divisors, Lemma 32.5.
Let B be the set of affine opens U ⊂ X such that there exists an affine chart
(U,A, f,M•) for (X,D,M). Then B is a basis for the topology on X; details
omitted. For U ∈ B we have the morphism bU : U ′ → U constructed above which
satisfies the universal property over U . If U1 ⊂ U2 ⊂ X are both in B, then
bU1 : U ′

1 → U1 is canonically isomorphic to
bU2 |b−1

U2
(U1) : b−1

U2
(U1) −→ U1

by the universal property. In other words, we get an isomorphism U ′
1 → b−1

U2
(U1)

over U1. These isomorphisms satisfy the cocycle condition (again by the universal
property) and hence by Constructions, Lemma 2.1 we get a morphism b : X ′ → X
whose restriction to each U in B is isomorphic to U ′ → U . Then the morphism
b : X ′ → X satisfies properties (1) and (2) of the statement of the lemma as these
properties may be checked locally (details omitted).
We still have to prove the final assertion of the lemma. Let W ⊂ X be a quasi-
compact open. Choose a finite covering W = U1 ∪ . . . ∪ UT such that for each
1 ≤ t ≤ T there exists an affine chart (Ut, At, ft,M•

t ). We will use below that for
any affine open V = Spec(B) ⊂ Ut ∩ Ut′ we have (a) the images of ft and ft′ in B
differ by a unit, and (b) the complexes M•

t ⊗A B and Mt′ ⊗A B define isomorphic
objects of D(B). For i ∈ Z, set

Ni = maxt=1,...,T

(∑
j≥i

(−1)j−irk(M j
t )

)
Then Nt −

∑
j≥i(−1)j−irk(M j

t ) ≥ 0 and we can consider the ideals

It,i = f
Ni−

∑
j≥i

(−1)j−irk(Mj
t )

t Ii(M•
t , ft) ⊂ At

It follows from More on Algebra, Lemmas 96.2 and 96.1 that the ideals It,i glue to
a quasi-coherent, finite type ideal Ii ⊂ OW . Moreover, all but a finite number of
these ideals are equal to OW . Clearly, the morphism X ′ → X constructed above
restricts to the blowing up of W in the product of the ideals Ii. This finishes the
proof. □

Lemma 43.7.0F8U In Situation 43.1 let b : X ′ → X be the morphism of Lemma 43.6.
Consider the effective Cartier divisor D′ = b−1D with ideal sheaf I ′ ⊂ OX′ . Then
Q = LηI′Lb∗M is a perfect object of D(OX′).

Proof. Follows from Lemmas 43.6 and 43.3. □

Lemma 43.8.0F8V In Situation 43.1 let h : Y → X be a morphism of schemes such
that the pullback E = h−1D is defined. Let b : X ′ → X, resp. c : Y ′ → Y be as
constructed in Lemma 43.6 for D ⊂ X and M , resp. E ⊂ Y and Lh∗M . Then
Y ′ is the strict transform of Y with respect to b : X ′ → X (see proof for a precise
formulation of this) and

LηJ ′L(h ◦ c)∗M = L(Y ′ → X ′)∗Q

where Q = LηI′Lb∗M as in Lemma 43.7. In particular, if (Y,E,Lh∗M) is a
good triple and k : Y → X ′ is the unique morphism such that h = b ◦ k, then
LηJLh

∗M = Lk∗Q.

https://stacks.math.columbia.edu/tag/0F8U
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Proof. Denote E′ = c−1E. Then (Y ′, E′, L(h ◦ c)∗M) is a good triple. Hence by
the universal property of Lemma 43.6 there is a unique morphism

h′ : Y ′ −→ X ′

such that b ◦ h′ = h ◦ c. In particular, there is a morphism (h′, c) : Y ′ → X ′ ×X Y .
We claim that given W ⊂ X quasi-compact open, such that b−1(W ) → W is a
blowing up, this morphism identifies Y ′|W with the strict transform of YW with
respect to b−1(W )→ W . In turn, to see this is true is a local question on W , and
we may therefore prove the statement over an affine chart. We do this in the next
paragraph.
Let (U,A, f,M•) be an affine chart for (X,D,M). Recall from the proof of Lemma
43.7 that the restriction of b : X ′ → X to U is the blowing up of U = Spec(A) in the
product of the ideals Ii(M•, f). Now if V = Spec(B) ⊂ Y is any affine open with
h(V ) ⊂ U , then (V,B, g,M•⊗AB) is an affine chart for (Y,E,Lh∗M) where g ∈ B
is the image of f , see Lemma 43.2. Hence the restriction of c : Y ′ → Y to V is the
blowing up in the product of the ideals Ii(M•, f)B, i.e., the morphism c : Y ′ → Y
over h−1(U) is the blowing up of h−1(U) in the ideal

∏
Ii(M•, f)Oh−1(U). Since

this is also true for the strict transform, we see that our claim on strict transforms
is true.
Having said this the equality LηJ ′L(h◦c)∗M = L(Y ′ → X ′)∗Q follows from Lemma
43.5. The final statement is a special case of this (namely, the case where c = idY
and k = h′). □

Lemma 43.9.0F8W In Situation 43.1 let W ⊂ X be the maximal open subscheme over
which the cohomology sheaves of M are locally free. Then the morphism b : X ′ → X
of Lemma 43.6 is an isomorphism over W .

Proof. This is true because for any affine chart (U,A, f,M•) with U ⊂ W we
have that Ii(M•, f) are locally generated by a power of f by More on Algebra,
Lemma 96.4. Since f is a nonzerodivisor, the blowing up b−1(U) → U is an
isomorphism. □

Lemma 43.10.0GTZ Let X,D, I,M be as in Situation 43.1. If (X,D,M) is a good
triple, then there exists a closed immersion

i : T −→ D

of finite presentation with the following properties
(1) T scheme theoretically contains D ∩W where W ⊂ X is the maximal open

over which the cohomology sheaves of M are locally free,
(2) the cohomology sheaves of Li∗LηIM are locally free, and
(3) for any point t ∈ T with image x = i(t) ∈ W the rank of Hi(M)x over
OX,x and the rank of Hi(Li∗LηIM)t over OT,t agree.

Proof. Let (U,A, f,M•) be an affine chart for (X,D,M) such that Ii(M•, f) is a
principal ideal for all i ∈ Z. Then we define T ∩U ⊂ D∩U as the closed subscheme
defined by the ideal

J(M•, f) =
∑

Ji(M•, f) ⊂ A/fA

studied in More on Algebra, Lemmas 96.8 and 96.9; in terms of the second lemma
we see that T ∩U → D∩U is given by the ring map A/fA→ C studied there. Since
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(X,D,M) is a good triple we can cover X by affine charts of this form and by the
first of the two lemmas, this construction glues. Hence we obtain a closed subscheme
T ⊂ D which on good affine charts as above is given by the ideal J(M•, f). Then
properties (1) and (2) follow from the second lemma. Details omitted. Small
observation to help the reader: since ηfM• is a complex of locally free modules
by More on Algebra, Lemma 96.5 we see that Li∗LηIM |T∩U is represented by
the complex ηfM

• ⊗A C of C-modules. The statement (3) on ranks follows from
Cohomology, Lemma 55.10. □

Lemma 43.11.0F8X In Situation 43.1. Let b : X ′ → X and D′ be as in Lemma
43.6. Let Q = LηI′Lb∗M be as in Lemma 43.7. Let W ⊂ X be the maximal open
where M has locally free cohomology modules. Then there exists a closed immersion
i : T → D′ of finite presentation such that

(1) D′ ∩ b−1(W ) ⊂ T scheme theoretically,
(2) Li∗Q has locally free cohomology sheaves, and
(3) for t ∈ T mapping to w ∈ W the rank of Hi(Li∗Q)t over OT,t is equal to

the rank of Hi(M)x over OX,x.

Proof. Lemma 43.9 tells us that b is an isomorphism over W . Hence b−1(W ) ⊂ X ′

is contained in the maximal open W ′ ⊂ X ′ where Lb∗M has locally free cohomology
sheaves. Then the actual statements in the lemma are an immediate consequence
of Lemma 43.10 applied to (X ′, D′, Lb∗M) and the other lemmas mentioned in the
statement. □

Lemma 43.12.0F8Y In Situation 43.1. Let b : X ′ → X, D′ ⊂ X ′, and Q be as in
Lemma 43.7. Let ρ = (ρi)i∈Z be integers. Let W (ρ) ⊂ X be the maximal open
subscheme where Hi(M) is locally free of rank ρi for all i. Let i : T → D′ be
as in Lemma 43.11. Then there exists an open and closed subscheme T (ρ) ⊂ T
containing D′ ∩ b−1(W (ρ)) scheme theoretically such that Hi(Li∗Q|T (ρ)) is locally
free of rank ρi for all i.

Proof. Let T (ρ) ⊂ T be the open and closed subscheme where Hi(Li∗Q) has rank
ρi for all i. Then the statement is immediate from the assertion in Lemma 43.11
on ranks of the cohomology modules. □

Lemma 43.13.0GU0 In Situation 43.1. Let b : X ′ → X, D′ ⊂ X ′, and Q be as in
Lemma 43.7. If there exists a locally bounded complexM• of finite locally free OX-
modules representing M , then there exists a locally bounded complex Q• of finite
locally free OX′-modules representing Q.

Proof. Recall that Q = LηI′Lb∗M where I ′ is the ideal sheaf of the effective
Cartier divisor D′. The locally bounded complex (M′)• = b∗M• of finite locally
free OX′-modules represents Lb∗M . Thus the lemma follows from Lemma 43.4. □

Lemma 43.14.0F9Y Let X be a scheme and let D ⊂ X be an effective Cartier divisor.
Let M ∈ D(OX) be a perfect object. Let W ⊂ X be the maximal open over which
the cohomology sheaves Hi(M) are locally free. There exists a proper morphism
b : X ′ −→ X and an object Q in D(OX′) with the following properties

(1) b : X ′ → X is an isomorphism over X \D,
(2) b : X ′ → X is an isomorphism over W ,
(3) D′ = b−1D is an effective Cartier divisor,
(4) Q = LηI′Lb∗M where I ′ is the ideal sheaf of D′,
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(5) Q is a perfect object of D(OX′),
(6) there exists a closed immersion i : T → D′ of finite presentation such that

(a) D′ ∩ b−1(W ) ⊂ T scheme theoretically,
(b) Li∗Q has finite locally free cohomology sheaves,
(c) for t ∈ T with image w ∈W the rank of Hi(Li∗Q)t over OT,t is equal

to the rank of Hi(M)x over OX,x,
(7) for any affine chart (U,A, f,M•) for (X,D,M) the restriction of b to U is

the blowing up of U = Spec(A) in the ideal I =
∏
Ii(M•, f), and

(8) for any affine chart (V,B, g,N•) for (X ′, D′, Lb∗N) such that Ii(N•, g) is
principal, we have
(a) Q|V corresponds to ηgN•,
(b) T ⊂ V ∩D′ corresponds to the ideal J(N•, g) =

∑
Ji(N•, g) ⊂ B/gB

studied in More on Algebra, Lemma 96.9.
(9) If M can be represented by a locally bounded complex of finite locally free
OX-modules, then Q can be represented by a bounded complex of finite
locally free OX′-modules.

Proof. This statement collects the information obtained in Lemmas 43.2, 43.3,
43.5, 43.6, 43.7, 43.8, 43.9, 43.10, 43.11, and 43.13. □

44. Blowing up complexes, III

0F8Z In this section we give an “algebra version” of the version of Macpherson’s graph
construction given in [Ful98, Section 18.1].
Let X be a scheme. Let E be a perfect object of D(OX). Let U ⊂ X be the
maximal open subscheme such that E|U has locally free cohomology sheaves.
Consider the commutative diagram

A1
X

//

!!

P1
X

p

��

(P1
X)∞oo

{{
X

∞

FF

Here we recall that A1 = D+(T0) is the first standard affine open of P1 and that
∞ = V+(T0) is the complementary effective Cartier divisor and the diagram above
is the pullback of these schemes to X. Observe that ∞ : X → (P1

X)∞ is an
isomorphism. Then

(P1
X , (P1

X)∞, Lp
∗E)

is a triple as in Situation 43.1 in Section 43. Let
b : W −→ P1

X and W∞ = b−1((P1
X)∞)

be the blowing up and effective Cartier divisor constructed starting with this triple
in Lemma 43.6. We also denote

Q = LηILb
∗M = LηIL(p ◦ b)∗E

the perfect object of D(OW ) considered in Lemma 43.7. Here I ⊂ OW is the ideal
sheaf of W∞.

Lemma 44.1.0F90 The construction above has the following properties:
(1) b is an isomorphism over P1

U ∪A1
X ,

(2) the restriction of Q to A1
X is equal to the pullback of E,
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(3) there exists a closed immersion i : T →W∞ of finite presentation such that
(W∞ → X)−1U ⊂ T scheme theoretically and such that Li∗Q has locally
free cohomology sheaves,

(4) for t ∈ T with image u ∈ U we have that the rank Hi(Li∗Q)t over OT,t is
equal to the rank of Hi(M)u over OU,u,

(5) if E can be represented by a locally bounded complex of finite locally free
OX-modules, then Q can be represented by a locally bounded complex of
finite locally free OW -modules.

Proof. This follows immediately from the results in Section 43; for a statement
collecting everything needed, see Lemma 43.14. □
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