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1. Introduction

06G8 This chapter develops formal deformation theory in a form applicable later in the
Stacks project, closely following Rim [GRR72, Exposee VI] and Schlessinger [Sch68].
We strongly encourage the reader new to this topic to read the paper by Schlessinger
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first, as it is sufficiently general for most applications, and Schlessinger’s results are
indeed used in most papers that use this kind of formal deformation theory.
Let Λ be a complete Noetherian local ring with residue field k, and let CΛ denote
the category of Artinian local Λ-algebras with residue field k. Given a functor
F : CΛ → Sets such that F (k) is a one element set, Schlessinger’s paper introduced
conditions (H1)-(H4) such that:

(1) F has a “hull” if and only if (H1)-(H3) hold.
(2) F is prorepresentable if and only if (H1)-(H4) hold.

The purpose of this chapter is to generalize these results in two ways exactly as is
done in Rim’s paper:

(A) The functor F is replaced by a category F cofibered in groupoids over CΛ,
see Section 3.

(B) We let Λ be a Noetherian ring and Λ → k a finite ring map to a field. The
category CΛ is the category of Artinian local Λ-algebras A endowed with a
given identification A/mA = k.

The analogue of the condition that F (k) is a one element set is that F(k) is the
trivial groupoid. If F satisfies this condition then we say it is a predeformation
category, but in general we do not make this assumption. Rim’s paper [GRR72,
Exposee VI] is the original source for the results in this document. We also mention
the useful paper [TV13], which discusses deformation theory with groupoids but in
less generality than we do here.
An important role is played by the “completion” ĈΛ of the category CΛ. An object
of ĈΛ is a Noetherian complete local Λ-algebra R whose residue field is identified
with k, see Section 4. On the one hand CΛ ⊂ ĈΛ is a strictly full subcategory and
on the other hand ĈΛ is a full subcategory of the category of pro-objects of CΛ.
A functor CΛ → Sets is prorepresentable if it is isomorphic to the restriction of a
representable functor R = MorĈΛ

(R,−) to CΛ where R ∈ Ob(ĈΛ).

Categories cofibred in groupoids are dual to categories fibred in groupoids; we in-
troduce them in Section 5. A smooth morphism of categories cofibred in groupoids
over CΛ is one that satisfies the infinitesimal lifting criterion for objects, see Section
8. This is analogous to the definition of a formally smooth ring map, see Algebra,
Definition 138.1 and is exactly dual to the notion in Criteria for Representabil-
ity, Section 6. This is an important notion as we eventually want to prove that
certain kinds of categories cofibred in groupoids have a smooth prorepresentable
presentation, much like the characterization of algebraic stacks in Algebraic Stacks,
Sections 16 and 17. A versal formal object of a category F cofibred in groupoids
over CΛ is an object ξ ∈ F̂(R) of the completion such that the associated morphism
ξ : R|CΛ → F is smooth.
In Section 10, we define conditions (S1) and (S2) on F generalizing Schlessinger’s
(H1) and (H2). The analogue of Schlessinger’s (H3)—the condition that F has finite
dimensional tangent space—is not given a name. A key step in the development
of the theory is the existence of versal formal objects for predeformation categories
satisfying (S1), (S2) and (H3), see Lemma 13.4. Schlessinger’s notion of a hull for
a functor F : CΛ → Sets is, in our terminology, a versal formal object ξ ∈ F̂ (R)
such that the induced map of tangent spaces dξ : TR|CΛ → TF is an isomorphism.
In the literature a hull is often called a “miniversal” object. We do not do so, and
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here is why. It can happen that a functor has a versal formal object without having
a hull. Moreover, we show in Section 14 that if a predeformation category has a
versal formal object, then it always has a minimal one (as defined in Definition 14.4)
which is unique up to isomorphism, see Lemma 14.5. But it can happen that the
minimal versal formal object does not induce an isomorphism on tangent spaces!
(See Examples 15.3 and 15.8.)

Keeping in mind the differences pointed out above, Theorem 15.5 is the direct
generalization of (1) above: it recovers Schlessinger’s result in the case that F is
a functor and it characterizes minimal versal formal objects, in the presence of
conditions (S1) and (S2), in terms of the map dξ : TR|CΛ → TF on tangent spaces.

In Section 16, we define Rim’s condition (RS) on F generalizing Schlessinger’s (H4).
A deformation category is defined as a predeformation category satisfying (RS). The
analogue to prorepresentable functors are the categories cofibred in groupoids over
CΛ which have a presentation by a smooth prorepresentable groupoid in functors on
CΛ, see Definitions 21.1, 22.1, and 23.1. This notion of a presentation takes into
account the groupoid structure of the fibers of F . In Theorem 26.4 we prove that F
has a presentation by a smooth prorepresentable groupoid in functors if and only if
F has a finite dimensional tangent space and finite dimensional infinitesimal auto-
morphism space. This is the generalization of (2) above: it reduces to Schlessinger’s
result in the case that F is a functor. There is a final Section 27 where we discuss
how to use minimal versal formal objects to produce a (unique up to isomorphism)
minimal presentation by a smooth prorepresentable groupoid in functors.

We also find the following conceptual explanation for Schlessinger’s conditions. If
a predeformation category F satisfies (RS), then the associated functor of isomor-
phism classes F : CΛ → Sets satisfies (H1) and (H2) (Lemmas 16.6 and 10.5).
Conversely, if a functor F : CΛ → Sets arises naturally as the functor of isomor-
phism classes of a category F cofibered in groupoids, then it seems to happen in
practice that an argument showing F satisfies (H1) and (H2) will also show F sat-
isfies (RS). Examples are discussed in Deformation Problems, Section 1. Moreover,
if F satisfies (RS), then condition (H4) for F has a simple interpretation in terms
of extending automorphisms of objects of F (Lemma 16.7). These observations
suggest that (RS) should be regarded as the fundamental deformation theoretic
glueing condition.

2. Notation and Conventions

06G9 A ring is commutative with 1. The maximal ideal of a local ring A is denoted by
mA. The set of positive integers is denoted by N = {1, 2, 3, . . .}. If U is an object
of a category C, we denote by U the functor MorC(U,−) : C → Sets, see Remarks
5.2 (12). Warning: this may conflict with the notation in other chapters where we
sometimes use U to denote hU (−) = MorC(−, U).

Throughout this chapter Λ is a Noetherian ring and Λ → k is a finite ring map
from Λ to a field. The kernel of this map is denoted mΛ and the image k′ ⊂ k. It
turns out that mΛ is a maximal ideal, k′ = Λ/mΛ is a field, and the extension k/k′

is finite. See discussion surrounding (3.3.1).
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3. The base category

06GB Motivation. An important application of formal deformation theory is to criteria
for representability by algebraic spaces. Suppose given a locally Noetherian base
S and a functor F : (Sch/S)oppfppf → Sets. Let k be a finite type field over S, i.e.,
we are given a finite type morphism Spec(k) → S. One of Artin’s criteria is that
for any element x ∈ F (Spec(k)) the predeformation functor associated to the triple
(S, k, x) should be prorepresentable. By Morphisms, Lemma 16.1 the condition
that k is of finite type over S means that there exists an affine open Spec(Λ) ⊂ S
such that k is a finite Λ-algebra. This motivates why we work throughout this
chapter with a base category as follows.

Definition 3.1.06GC Let Λ be a Noetherian ring and let Λ → k be a finite ring map
where k is a field. We define CΛ to be the category with

(1) objects are pairs (A,φ) where A is an Artinian local Λ-algebra and where
φ : A/mA → k is a Λ-algebra isomorphism, and

(2) morphisms f : (B,ψ) → (A,φ) are local Λ-algebra homomorphisms such
that φ ◦ (f mod m) = ψ.

We say we are in the classical case if Λ is a Noetherian complete local ring and k
is its residue field.

Note that if Λ → k is surjective and if A is an Artinian local Λ-algebra, then the
identification φ, if it exists, is unique. Moreover, in this case any Λ-algebra map
A → B is going to be compatible with the identifications. Hence in this case CΛ is
just the category of local Artinian Λ-algebras whose residue field “is” k. By abuse
of notation we also denote objects of CΛ simply A in the general case. Moreover,
we will often write A/m = k, i.e., we will pretend all rings in CΛ have residue field k
(since all ring maps in CΛ are compatible with the given identifications this should
never cause any problems). Throughout the rest of this chapter the base ring Λ and
the field k are fixed. The category CΛ will be the base category for the cofibered
categories considered below.

Definition 3.2.06GD Let f : B → A be a ring map in CΛ. We say f is a small extension
if it is surjective and Ker(f) is a nonzero principal ideal which is annihilated by
mB .

By the following lemma we can often reduce arguments involving surjective ring
maps in CΛ to the case of small extensions.

Lemma 3.3.06GE Let f : B → A be a surjective ring map in CΛ. Then f can be
factored as a composition of small extensions.

Proof. Let I be the kernel of f . The maximal ideal mB is nilpotent since B is
Artinian, say mnB = 0. Hence we get a factorization

B = B/Imn−1
B → B/Imn−2

B → . . . → B/I ∼= A

of f into a composition of surjective maps whose kernels are annihilated by the
maximal ideal. Thus it suffices to prove the lemma when f itself is such a map, i.e.
when I is annihilated by mB . In this case I is a k-vector space, which has finite
dimension, see Algebra, Lemma 53.6. Take a basis x1, . . . , xn of I as a k-vector
space to get a factorization

B → B/(x1) → . . . → B/(x1, . . . , xn) ∼= A

https://stacks.math.columbia.edu/tag/06GC
https://stacks.math.columbia.edu/tag/06GD
https://stacks.math.columbia.edu/tag/06GE
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of f into a composition of small extensions. □

The next lemma says that we can compute the length of a module over a local Λ-
algebra with residue field k in terms of the length over Λ. To explain the notation
in the statement, let k′ ⊂ k be the image of our fixed finite ring map Λ → k. Note
that k′ ⊂ k is a finite extension of rings. Hence k′ is a field and k/k′ is a finite
extension of fields, see Algebra, Lemma 36.18. Moreover, as Λ → k′ is surjective
we see that its kernel is a maximal ideal mΛ. Thus
(3.3.1)06S2 [k : k′] = [k : Λ/mΛ] < ∞
and in the classical case we have k = k′. The notation k′ = Λ/mΛ will be fixed
throughout this chapter.

Lemma 3.4.06GG Let A be a local Λ-algebra with residue field k. Let M be an A-
module. Then [k : k′]lengthA(M) = lengthΛ(M). In the classical case we have
lengthA(M) = lengthΛ(M).

Proof. If M is a simple A-module then M ∼= k as an A-module, see Algebra,
Lemma 52.10. In this case lengthA(M) = 1 and lengthΛ(M) = [k′ : k], see Al-
gebra, Lemma 52.6. If lengthA(M) is finite, then the result follows on choosing
a filtration of M by A-submodules with simple quotients using additivity, see Al-
gebra, Lemma 52.3. If lengthA(M) is infinite, the result follows from the obvious
inequality lengthA(M) ≤ lengthΛ(M). □

Lemma 3.5.06S3 Let A → B be a ring map in CΛ. The following are equivalent
(1) f is surjective,
(2) mA/m

2
A → mB/m

2
B is surjective, and

(3) mA/(mΛA+ m2
A) → mB/(mΛB + m2

B) is surjective.

Proof. For any ring map f : A → B in CΛ we have f(mA) ⊂ mB for example
because mA, mB is the set of nilpotent elements of A, B. Suppose f is surjective.
Let y ∈ mB . Choose x ∈ A with f(x) = y. Since f induces an isomorphism
A/mA → B/mB we see that x ∈ mA. Hence the induced map mA/m

2
A → mB/m

2
B

is surjective. In this way we see that (1) implies (2).
It is clear that (2) implies (3). The map A → B gives rise to a canonical commu-
tative diagram

mΛ/m
2
Λ ⊗k′ k //

��

mA/m
2
A

//

��

mA/(mΛA+ m2
A) //

��

0

mΛ/m
2
Λ ⊗k′ k // mB/m2

B
// mB/(mΛB + m2

B) // 0

with exact rows. Hence if (3) holds, then so does (2).
Assume (2). To show that A → B is surjective it suffices by Nakayama’s lemma
(Algebra, Lemma 20.1) to show that A/mA → B/mAB is surjective. (Note that mA
is a nilpotent ideal.) As k = A/mA = B/mB it suffices to show that mAB → mB
is surjective. Applying Nakayama’s lemma once more we see that it suffices to see
that mAB/mAmB → mB/m

2
B is surjective which is what we assumed. □

If A → B is a ring map in CΛ, then the map mA/(mΛA+m2
A) → mB/(mΛB +m2

B)
is the map on relative cotangent spaces. Here is a formal definition.

https://stacks.math.columbia.edu/tag/06GG
https://stacks.math.columbia.edu/tag/06S3
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Definition 3.6.06GY Let R → S be a local homomorphism of local rings. The relative
cotangent space1 of R over S is the S/mS-vector space mS/(mRS + m2

S).

If f1 : A1 → A and f2 : A2 → A are two ring maps, then the fiber product A1 ×AA2
is the subring of A1 × A2 consisting of elements whose two projections to A are
equal. Throughout this chapter we will be considering conditions involving such
a fiber product when f1 and f2 are in CΛ. It isn’t always the case that the fibre
product is an object of CΛ.

Example 3.7.06S4 Let p be a prime number and let n ∈ N. Let Λ = Fp(t1, t2, . . . , tn)
and let k = Fp(x1, . . . , xn) with map Λ → k given by ti 7→ xpi . Let A = k[ϵ] =
k[x]/(x2). Then A is an object of CΛ. Suppose that D : k → k is a derivation of k
over Λ, for example D = ∂/∂xi. Then the map

fD : k −→ k[ϵ], a 7→ a+D(a)ϵ
is a morphism of CΛ. Set A1 = A2 = k and set f1 = f∂/∂x1 and f2(a) = a. Then
A1 ×A A2 = {a ∈ k | ∂/∂x1(a) = 0} which does not surject onto k. Hence the fibre
product isn’t an object of CΛ.

It turns out that this problem can only occur if the residue field extension k/k′

(3.3.1) is inseparable and neither f1 nor f2 is surjective.

Lemma 3.8.06GH Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ. Then:
(1) If f1 or f2 is surjective, then A1 ×A A2 is in CΛ.
(2) If f2 is a small extension, then so is A1 ×A A2 → A1.
(3) If the field extension k/k′ is separable, then A1 ×A A2 is in CΛ.

Proof. The ring A1 ×A A2 is a Λ-algebra via the map Λ → A1 ×A A2 induced by
the maps Λ → A1 and Λ → A2. It is a local ring with unique maximal ideal

mA1 ×mA
mA2 = Ker(A1 ×A A2 −→ k)

A ring is Artinian if and only if it has finite length as a module over itself, see Alge-
bra, Lemma 53.6. Since A1 and A2 are Artinian, Lemma 3.4 implies lengthΛ(A1)
and lengthΛ(A2), and hence lengthΛ(A1×A2), are all finite. As A1×AA2 ⊂ A1×A2
is a Λ-submodule, this implies lengthA1×AA2(A1 ×A A2) ≤ lengthΛ(A1 ×A A2) is
finite. So A1 ×A A2 is Artinian. Thus the only thing that is keeping A1 ×A A2
from being an object of CΛ is the possibility that its residue field maps to a proper
subfield of k via the map A1 ×A A2 → A → A/mA = k above.
Proof of (1). If f2 is surjective, then the projection A1 ×A A2 → A1 is surjective.
Hence the composition A1 ×A A2 → A1 → A1/mA1 = k is surjective and we
conclude that A1 ×A A2 is an object of CΛ.
Proof of (2). If f2 is a small extension then A2 → A and A1 ×A A2 → A1 are
both surjective with the same kernel. Hence the kernel of A1 ×A A2 → A1 is a
1-dimensional k-vector space and we see that A1 ×A A2 → A1 is a small extension.
Proof of (3). Choose x ∈ k such that k = k′(x) (see Fields, Lemma 19.1). Let
P ′(T ) ∈ k′[T ] be the minimal polynomial of x over k′. Since k/k′ is separable we
see that dP/dT (x) ̸= 0. Choose a monic P ∈ Λ[T ] which maps to P ′ under the

1Caution: We will see later that in our general setting the tangent space of an object A ∈ CΛ
over Λ should not be defined simply as the k-linear dual of the relative cotangent space. In fact,
the correct definition of the relative cotangent space is ΩS/R ⊗S S/mS .

https://stacks.math.columbia.edu/tag/06GY
https://stacks.math.columbia.edu/tag/06S4
https://stacks.math.columbia.edu/tag/06GH
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surjective map Λ[T ] → k′[T ]. Because A,A1, A2 are henselian, see Algebra, Lemma
153.10, we can find x, x1, x2 ∈ A,A1, A2 with P (x) = 0, P (x1) = 0, P (x2) = 0 and
such that the image of x, x1, x2 in k is x. Then (x1, x2) ∈ A1 ×A A2 because x1, x2
map to x ∈ A by uniqueness, see Algebra, Lemma 153.2. Hence the residue field of
A1 ×A A2 contains a generator of k over k′ and we win. □

Next we define essential surjections in CΛ. A necessary and sufficient condition for
a surjection in CΛ to be essential is given in Lemma 3.12.

Definition 3.9.06GF Let f : B → A be a ring map in CΛ. We say f is an essential
surjection if it has the following properties:

(1) f is surjective.
(2) If g : C → B is a ring map in CΛ such that f ◦ g is surjective, then g is

surjective.

Using Lemma 3.5, we can characterize essential surjections in CΛ as follows.

Lemma 3.10.06S5 Let f : B → A be a ring map in CΛ. The following are equivalent
(1) f is an essential surjection,
(2) the map B/m2

B → A/m2
A is an essential surjection, and

(3) the map B/(mΛB + m2
B) → A/(mΛA+ m2

A) is an essential surjection.

Proof. Assume (3). Let C → B be a ring map in CΛ such that C → A is surjective.
Then C → A/(mΛA+m2

A) is surjective too. We conclude that C → B/(mΛB+m2
B)

is surjective by our assumption. Hence C → B is surjective by applying Lemma
3.5 (2 times).

Assume (1). Let C → B/(mΛB + m2
B) be a morphism of CΛ such that C →

A/(mΛA+ m2
A) is surjective. Set C ′ = C ×B/(mΛB+m2

B
) B which is an object of CΛ

by Lemma 3.8. Note that C ′ → A/(mΛA + m2
A) is still surjective, hence C ′ → A

is surjective by Lemma 3.5. Thus C ′ → B is surjective by our assumption. This
implies that C ′ → B/(mΛB + m2

B) is surjective, which implies by the construction
of C ′ that C → B/(mΛB + m2

B) is surjective.

In the first paragraph we proved (3) ⇒ (1) and in the second paragraph we proved
(1) ⇒ (3). The equivalence of (2) and (3) is a special case of the equivalence of (1)
and (3), hence we are done. □

To analyze essential surjections in CΛ a bit more we introduce some notation. Sup-
pose that A is an object of CΛ or more generally any Λ-algebra equipped with a
Λ-algebra surjection A → k. There is a canonical exact sequence

(3.10.1)06S6 mA/m
2
A

dA−−→ ΩA/Λ ⊗A k → Ωk/Λ → 0

see Algebra, Lemma 131.9. Note that Ωk/Λ = Ωk/k′ with k′ as in (3.3.1). Let
H1(Lk/Λ) be the first homology module of the naive cotangent complex of k over
Λ, see Algebra, Definition 134.1. Then we can extend (3.10.1) to the exact sequence

(3.10.2)06S7 H1(Lk/Λ) → mA/m
2
A

dA−−→ ΩA/Λ ⊗A k → Ωk/Λ → 0,

see Algebra, Lemma 134.4. If B → A is a ring map in CΛ or more generally a
map of Λ-algebras equipped with Λ-algebra surjections onto k, then we obtain a

https://stacks.math.columbia.edu/tag/06GF
https://stacks.math.columbia.edu/tag/06S5
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commutative diagram

(3.10.3)06S8

H1(Lk/Λ) // mB/m2
B dB

//

��

ΩB/Λ ⊗B k //

��

Ωk/Λ // 0

H1(Lk/Λ) // mA/m2
A

dA // ΩA/Λ ⊗A k // Ωk/Λ // 0

with exact rows.

Lemma 3.11.06S9 There is a canonical map

mΛ/m
2
Λ −→ H1(Lk/Λ).

If k′ ⊂ k is separable (for example if the characteristic of k is zero), then this map
induces an isomorphism mΛ/m

2
Λ ⊗k′ k = H1(Lk/Λ). If k = k′ (for example in the

classical case), then mΛ/m
2
Λ = H1(Lk/Λ). The composition

mΛ/m
2
Λ −→ H1(Lk/Λ) −→ mA/m

2
A

comes from the canonical map mΛ → mA.

Proof. Note that H1(Lk′/Λ) = mΛ/m
2
Λ as Λ → k′ is surjective with kernel mΛ.

The map arises from functoriality of the naive cotangent complex. If k′ ⊂ k is
separable, then k′ → k is an étale ring map, see Algebra, Lemma 143.4. Thus
its naive cotangent complex has trivial homology groups, see Algebra, Definition
143.1. Then Algebra, Lemma 134.4 applied to the ring maps Λ → k′ → k implies
that mΛ/m

2
Λ ⊗k′ k = H1(Lk/Λ). We omit the proof of the final statement. □

Lemma 3.12.06H0 Let f : B → A be a ring map in CΛ. Notation as in (3.10.3).
(1) The equivalent conditions of Lemma 3.10 characterizing when f is surjective

are also equivalent to
(a) Im(dB) → Im(dA) is surjective, and
(b) the map ΩB/Λ ⊗B k → ΩA/Λ ⊗A k is surjective.

(2) The following are equivalent
(a) f is an essential surjection,
(b) the map Im(dB) → Im(dA) is an isomorphism, and
(c) the map ΩB/Λ ⊗B k → ΩA/Λ ⊗A k is an isomorphism.

(3) If k/k′ is separable, then f is an essential surjection if and only if the map
mB/(mΛB + m2

B) → mA/(mΛA+ m2
A) is an isomorphism.

(4) If f is a small extension, then f is not essential if and only if f has a
section s : A → B in CΛ with f ◦ s = idA.

Proof. Proof of (1). It follows from (3.10.3) that (1)(a) and (1)(b) are equivalent.
Also, if A → B is surjective, then (1)(a) and (1)(b) hold. Assume (1)(a). Since
the kernel of dA is the image of H1(Lk/Λ) which also maps to mB/m

2
B we conclude

that mB/m
2
B → mA/m

2
A is surjective. Hence B → A is surjective by Lemma 3.5.

This finishes the proof of (1).
Proof of (2). The equivalence of (2)(b) and (2)(c) is immediate from (3.10.3).
Assume (2)(b). Let g : C → B be a ring map in CΛ such that f ◦ g is surjective.
We conclude that mC/m2

C → mA/m
2
A is surjective by Lemma 3.5. Hence Im(dC) →

Im(dA) is surjective and by the assumption we see that Im(dC) → Im(dB) is sur-
jective. It follows that C → B is surjective by (1).

https://stacks.math.columbia.edu/tag/06S9
https://stacks.math.columbia.edu/tag/06H0
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Assume (2)(a). Then f is surjective and we see that ΩB/Λ ⊗B k → ΩA/Λ ⊗A k is
surjective. Let K be the kernel. Note that K = dB(Ker(mB/m2

B → mA/m
2
A)) by

(3.10.3). Choose a splitting

ΩB/Λ ⊗B k = ΩA/Λ ⊗A k ⊕K

of k-vector space. The map d : B → ΩB/Λ induces via the projection onto K a
map D : B → K. Set C = {b ∈ B | D(b) = 0}. The Leibniz rule shows that this
is a Λ-subalgebra of B. Let x ∈ k. Choose x ∈ B mapping to x. If D(x) ̸= 0,
then we can find an element y ∈ mB such that D(y) = D(x). Hence x − y ∈ C
is an element which maps to x. Thus C → k is surjective and C is an object of
CΛ. Similarly, pick ω ∈ Im(dA). We can find x ∈ mB such that dB(x) maps to ω
by (1). If D(x) ̸= 0, then we can find an element y ∈ mB which maps to zero in
mA/m

2
A such that D(y) = D(x). Hence z = x− y is an element of mC whose image

dC(z) ∈ ΩC/k⊗C k maps to ω. Hence Im(dC) → Im(dA) is surjective. We conclude
that C → A is surjective by (1). Hence C → B is surjective by assumption. Hence
D = 0, i.e., K = 0, i.e., (2)(c) holds. This finishes the proof of (2).

Proof of (3). If k′/k is separable, then H1(Lk/Λ) = mΛ/m
2
Λ ⊗k′ k, see Lemma 3.11.

Hence Im(dA) = mA/(mΛA+ m2
A) and similarly for B. Thus (3) follows from (2).

Proof of (4). A section s of f is not surjective (by definition a small extension
has nontrivial kernel), hence f is not essentially surjective. Conversely, assume f
is a small extension but not an essential surjection. Choose a ring map C → B
in CΛ which is not surjective, such that C → A is surjective. Let C ′ ⊂ B be the
image of C → B. Then C ′ ̸= B but C ′ surjects onto A. Since f : B → A is a
small extension, lengthC(B) = lengthC(A) + 1. Thus lengthC(C ′) ≤ lengthC(A)
since C ′ is a proper subring of B. But C ′ → A is surjective, so in fact we must
have lengthC(C ′) = lengthC(A) and C ′ → A is an isomorphism which gives us our
section. □

Example 3.13.06SA Let Λ = k[[x]] be the power series ring in 1 variable over k. Set
A = k and B = Λ/(x2). Then B → A is an essential surjection by Lemma 3.12
because it is a small extension and the map B → A does not have a right inverse
(in the category CΛ). But the map

k ∼= mB/m
2
B −→ mA/m

2
A = 0

is not an isomorphism. Thus in Lemma 3.12 (3) it is necessary to consider the map
of relative cotangent spaces mB/(mΛB + m2

B) → mA/(mΛA+ m2
A).

4. The completed base category

06GV The following “completion” of the category CΛ will serve as the base category of
the completion of a category cofibered in groupoids over CΛ (Section 7).

Definition 4.1.06GW Let Λ be a Noetherian ring and let Λ → k be a finite ring map
where k is a field. We define ĈΛ to be the category with

(1) objects are pairs (R,φ) where R is a Noetherian complete local Λ-algebra
and where φ : R/mR → k is a Λ-algebra isomorphism, and

(2) morphisms f : (S, ψ) → (R,φ) are local Λ-algebra homomorphisms such
that φ ◦ (f mod m) = ψ.

https://stacks.math.columbia.edu/tag/06SA
https://stacks.math.columbia.edu/tag/06GW
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As in the discussion following Definition 3.1 we will usually denote an object of ĈΛ
simply R, with the identification R/mR = k understood. In this section we discuss
some basic properties of objects and morphisms of the category ĈΛ paralleling our
discussion of the category CΛ in the previous section.
Our first observation is that any object A ∈ CΛ is an object of ĈΛ as an Artinian
local ring is always Noetherian and complete with respect to its maximal ideal
(which is after all a nilpotent ideal). Moreover, it is clear from the definitions that
CΛ ⊂ ĈΛ is the strictly full subcategory consisting of all Artinian rings. As it turns
out, conversely every object of ĈΛ is a limit of objects of CΛ.
Suppose that R is an object of ĈΛ. Consider the rings Rn = R/mnR for n ∈ N. These
are Noetherian local rings with a unique nilpotent prime ideal, hence Artinian, see
Algebra, Proposition 60.7. The ring maps

. . . → Rn+1 → Rn → . . . → R2 → R1 = k

are all surjective. Completeness of R by definition means that R = limRn. If
f : R → S is a ring map in ĈΛ then we obtain a system of ring maps fn : Rn → Sn
whose limit is the given map.

Lemma 4.2.06GZ Let f : R → S be a ring map in ĈΛ. The following are equivalent
(1) f is surjective,
(2) the map mR/m

2
R → mS/m

2
S is surjective, and

(3) the map mR/(mΛR+ m2
R) → mS/(mΛS + m2

S) is surjective.

Proof. Note that for n ≥ 2 we have the equality of relative cotangent spaces
mR/(mΛR+ m2

R) = mRn
/(mΛRn + m2

Rn
)

and similarly for S. Hence by Lemma 3.5 we see that Rn → Sn is surjective for all
n. Now let Kn be the kernel of Rn → Sn. Then the sequences

0 → Kn → Rn → Sn → 0
form an exact sequence of directed inverse systems. The system (Kn) is Mittag-
Leffler since each Kn is Artinian. Hence by Algebra, Lemma 86.4 taking limits
preserves exactness. So limRn → limSn is surjective, i.e., f is surjective. □

Lemma 4.3.06SB The category ĈΛ admits pushouts.

Proof. Let R → S1 and R → S2 be morphisms of ĈΛ. Consider the ring C =
S1 ⊗RS2. This ring has a finitely generated maximal ideal m = mS1 ⊗S2 +S1 ⊗mS2

with residue field k. Set C∧ equal to the completion of C with respect to m. Then
C∧ is a Noetherian ring complete with respect to the maximal ideal m∧ = mC∧

whose residue field is identified with k, see Algebra, Lemma 97.5. Hence C∧ is an
object of ĈΛ. Then S1 → C∧ and S2 → C∧ turn C∧ into a pushout over R in ĈΛ
(details omitted). □

We will not need the following lemma.

Lemma 4.4.06H1 The category ĈΛ admits coproducts of pairs of objects.

Proof. Let R and S be objects of ĈΛ. Consider the ring C = R ⊗Λ S. There is
a canonical surjective map C → R ⊗Λ S → k ⊗Λ k → k where the last map is the
multiplication map. The kernel of C → k is a maximal ideal m. Note that m is

https://stacks.math.columbia.edu/tag/06GZ
https://stacks.math.columbia.edu/tag/06SB
https://stacks.math.columbia.edu/tag/06H1
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generated by mRC, mSC and finitely many elements of C which map to generators
of the kernel of k ⊗Λ k → k. Hence m is a finitely generated ideal. Set C∧ equal
to the completion of C with respect to m. Then C∧ is a Noetherian ring complete
with respect to the maximal ideal m∧ = mC∧ with residue field k, see Algebra,
Lemma 97.5. Hence C∧ is an object of ĈΛ. Then R → C∧ and S → C∧ turn C∧

into a coproduct in ĈΛ (details omitted). □

An empty coproduct in a category is an initial object of the category. In the classical
case ĈΛ has an initial object, namely Λ itself. More generally, if k′ = k, then the
completion Λ∧ of Λ with respect to mΛ is an initial object. More generally still,
if k′ ⊂ k is separable, then ĈΛ has an initial object too. Namely, choose a monic
polynomial P ∈ Λ[T ] such that k ∼= k′[T ]/(P ′) where p′ ∈ k′[T ] is the image of P .
Then R = Λ∧[T ]/(P ) is an initial object, see proof of Lemma 3.8.

If R is an initial object as above, then we have CΛ = CR and ĈΛ = ĈR which
effectively brings the whole discussion in this chapter back to the classical case.
But, if k′ ⊂ k is inseparable, then an initial object does not exist.

Lemma 4.5.06SC Let S be an object of ĈΛ. Then dimk DerΛ(S, k) < ∞.

Proof. Let x1, . . . , xn ∈ mS map to a k-basis for the relative cotangent space
mS/(mΛS+m2

S). Choose y1, . . . , ym ∈ S whose images in k generate k over k′. We
claim that dimk DerΛ(S, k) ≤ n+m. To see this it suffices to prove that if D(xi) = 0
and D(yj) = 0, then D = 0. Let a ∈ S. We can find a polynomial P =

∑
λJy

J

with λJ ∈ Λ whose image in k is the same as the image of a in k. Then we see
that D(a−P ) = D(a) −D(P ) = D(a) by our assumption that D(yj) = 0 for all j.
Thus we may assume a ∈ mS . Write a =

∑
aixi with ai ∈ S. By the Leibniz rule

D(a) =
∑

xiD(ai) +
∑

aiD(xi) =
∑

xiD(ai)

as we assumed D(xi) = 0. We have
∑
xiD(ai) = 0 as multiplication by xi is zero

on k. □

Lemma 4.6.06SD Let f : R → S be a morphism of ĈΛ. If DerΛ(S, k) → DerΛ(R, k) is
injective, then f is surjective.

Proof. If f is not surjective, then mS/(mRS+m2
S) is nonzero by Lemma 4.2. Then

also Q = S/(f(R) + mRS + m2
S) is nonzero. Note that Q is a k = R/mR-vector

space via f . We turn Q into an S-module via S → k. The quotient map D : S → Q
is an R-derivation: if a1, a2 ∈ S, we can write a1 = f(b1) + a′

1 and a2 = f(b2) + a′
2

for some b1, b2 ∈ R and a′
1, a

′
2 ∈ mS . Then bi and ai have the same image in k for

i = 1, 2 and

a1a2 = (f(b1) + a′
1)(f(b2) + a′

2)
= f(b1)a′

2 + f(b2)a′
1

= f(b1)(f(b2) + a′
2) + f(b2)(f(b1) + a′

1)
= f(b1)a2 + f(b2)a1

in Q which proves the Leibniz rule. Hence D : S → Q is a Λ-derivation which is
zero on composing with R → S. Since Q ̸= 0 there also exist derivations D : S → k
which are zero on composing with R → S, i.e., DerΛ(S, k) → DerΛ(R, k) is not
injective. □

https://stacks.math.columbia.edu/tag/06SC
https://stacks.math.columbia.edu/tag/06SD
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Lemma 4.7.06SE Let R be an object of ĈΛ. Let (Jn) be a decreasing sequence of ideals
such that mnR ⊂ Jn. Set J =

⋂
Jn. Then the sequence (Jn/J) defines the mR/J -adic

topology on R/J .

Proof. It is clear that mnR/J ⊂ Jn/J . Thus it suffices to show that for every n

there exists an N such that JN/J ⊂ mnR/J . This is equivalent to JN ⊂ mnR + J .
For each n the ring R/mnR is Artinian, hence there exists a Nn such that

JNn + mnR = JNn+1 + mnR = . . .

Set En = (JNn
+ mnR)/mnR. Set E = limEn ⊂ limR/mnR = R. Note that E ⊂ J

as for any f ∈ E and any m we have f ∈ Jm + mnR for all n ≫ 0, so f ∈ Jm by
Artin-Rees, see Algebra, Lemma 51.4. Since the transition maps En → En−1 are
all surjective, we see that J surjects onto En. Hence for N = Nn works. □

Lemma 4.8.06SF Let . . . → A3 → A2 → A1 be a sequence of surjective ring maps
in CΛ. If dimk(mAn

/m2
An

) is bounded, then S = limAn is an object in ĈΛ and the
ideals In = Ker(S → An) define the mS-adic topology on S.

Proof. We will use freely that the maps S → An are surjective for all n. Note
that the maps mAn+1/m

2
An+1

→ mAn
/m2

An
are surjective, see Lemma 4.2. Hence

for n sufficiently large the dimension dimk(mAn
/m2

An
) stabilizes to an integer, say

r. Thus we can find x1, . . . , xr ∈ mS whose images in An generate mAn
. Moreover,

pick y1, . . . , yt ∈ S whose images in k generate k over Λ. Then we get a ring
map P = Λ[z1, . . . , zr+t] → S, zi 7→ xi and zr+j 7→ yj such that the composition
P → S → An is surjective for all n. Let m ⊂ P be the kernel of P → k. Let
R = P∧ be the m-adic completion of P ; this is an object of ĈΛ. Since we still have
the compatible system of (surjective) maps R → An we get a map R → S. Set
Jn = Ker(R → An). Set J =

⋂
Jn. By Lemma 4.7 we see that R/J = limR/Jn =

limAn = S and that the ideals Jn/J = In define the m-adic topology. (Note that
for each n we have mNn

R ⊂ Jn for some Nn and not necessarily Nn = n, so a
renumbering of the ideals Jn may be necessary before applying the lemma.) □

Lemma 4.9.06SG Let R′, R ∈ Ob(ĈΛ). Suppose that R = R′ ⊕ I for some ideal I of R.
Let x1, . . . , xr ∈ I map to a basis of I/mRI. Set S = R′[[X1, . . . , Xr]] and consider
the R′-algebra map S → R mapping Xi to xi. Assume that for every n ≫ 0 the
map S/mnS → R/mnR has a left inverse in CΛ. Then S → R is an isomorphism.

Proof. As R = R′ ⊕ I we have

mR/m
2
R = mR′/m2

R′ ⊕ I/mRI

and similarly

mS/m
2
S = mR′/m2

R′ ⊕
⊕

kXi

Hence for n > 1 the map S/mnS → R/mnR induces an isomorphism on cotangent
spaces. Thus a left inverse hn : R/mnR → S/mnS is surjective by Lemma 4.2. Since
hn is injective as a left inverse it is an isomorphism. Thus the canonical surjections
S/mnS → R/mnR are all isomorphisms and we win. □

https://stacks.math.columbia.edu/tag/06SE
https://stacks.math.columbia.edu/tag/06SF
https://stacks.math.columbia.edu/tag/06SG


FORMAL DEFORMATION THEORY 13

5. Categories cofibered in groupoids

06GA In developing the theory we work with categories cofibered in groupoids. We assume
as known the definition and basic properties of categories fibered in groupoids, see
Categories, Section 35.

Definition 5.1.06GJ Let C be a category. A category cofibered in groupoids over C is a
category F equipped with a functor p : F → C such that Fopp is a category fibered
in groupoids over Copp via popp : Fopp → Copp.

Explicitly, p : F → C is cofibered in groupoids if the following two conditions hold:
(1) For every morphism f : U → V in C and every object x lying over U , there

is a morphism x → y of F lying over f .
(2) For every pair of morphisms a : x → y and b : x → z of F and any

morphism f : p(y) → p(z) such that p(b) = f ◦ p(a), there exists a unique
morphism c : y → z of F lying over f such that b = c ◦ a.

Remarks 5.2.06GK Everything about categories fibered in groupoids translates directly
to the cofibered setting. The following remarks are meant to fix notation. Let C be
a category.

(1) We often omit the functor p : F → C from the notation.
(2) The fiber category over an object U in C is denoted by F(U). Its objects are

those of F lying over U and its morphisms are those of F lying over idU . If
x, y are objects of F(U), we sometimes write MorU (x, y) for MorF(U)(x, y).

(3) The fibre categories F(U) are groupoids, see Categories, Lemma 35.2.
Hence the morphisms in F(U) are all isomorphisms. We sometimes write
AutU (x) for MorF(U)(x, x).

(4)06SH Let F be a category cofibered in groupoids over C, let f : U → V be a
morphism in C, and let x ∈ Ob(F(U)). A pushforward of x along f is a
morphism x → y of F lying over f . A pushforward is unique up to unique
isomorphism (see the discussion following Categories, Definition 33.1). We
sometimes write x → f∗x for “the” pushforward of x along f .

(5) A choice of pushforwards for F is the choice of a pushforward of x along f
for every pair (x, f) as above. We can make such a choice of pushforwards
for F by the axiom of choice.

(6) Let F be a category cofibered in groupoids over C. Given a choice of
pushforwards for F , there is an associated pseudo-functor C → Groupoids.
We will never use this construction so we give no details.

(7)06GL A morphism of categories cofibered in groupoids over C is a functor com-
muting with the projections to C. If F and F ′ are categories cofibered in
groupoids over C, we denote the morphisms from F to F ′ by MorC(F ,F ′).

(8)06GM Categories cofibered in groupoids form a (2, 1)-category Cof(C). Its 1-
morphisms are the morphisms described in (7). If p : F → C and p′ :
F ′ → C are categories cofibered in groupoids and φ,ψ : F → F ′ are 1-
morphisms, then a 2-morphism t : φ → ψ is a morphism of functors such
that p′(tx) = idp(x) for all x ∈ Ob(F).

(9)06GN Let F : C → Groupoids be a functor. There is a category cofibered in
groupoids F → C associated to F as follows. An object of F is a pair (U, x)
where U ∈ Ob(C) and x ∈ Ob(F (U)). A morphism (U, x) → (V, y) is a pair

https://stacks.math.columbia.edu/tag/06GJ
https://stacks.math.columbia.edu/tag/06GK
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(f, a) where f ∈ MorC(U, V ) and a ∈ MorF (V )(F (f)(x), y). The functor
F → C sends (U, x) to U . See Categories, Section 37.

(10)07W5 Let F be cofibered in groupoids over C. For U ∈ Ob(C) set F(U) equal to
the set of isomorphisms classes of the category F(U). If f : U → V is a
morphism of C, then we obtain a map of sets F(U) → F(V ) by mapping
the isomorphism class of x to the isomorphism class of a pushforward f∗x
of x see (4). Then F : C → Sets is a functor. Similarly, if φ : F → G is a
morphism of cofibered categories, we denote by φ : F → G the associated
morphism of functors.

(11)06GP Let F : C → Sets be a functor. We can think of a set as a discrete category,
i.e., as a groupoid with only identity morphisms. Then the construction
(9) associates to F a category cofibered in sets. This defines a fully faithful
embedding of the category of functors C → Sets to the category of categories
cofibered in groupoids over C. We identify the category of functors with its
image under this embedding. Hence if F : C → Sets is a functor, we denote
the associated category cofibered in sets also by F ; and if φ : F → G is a
morphism of functors, we denote still by φ the corresponding morphism of
categories cofibered in sets, and vice-versa. See Categories, Section 38.

(12)06GQ Let U be an object of C. We write U for the functor MorC(U,−) : C → Sets.
This defines a fully faithful embedding of Copp into the category of functors
C → Sets. Hence, if f : U → V is a morphism, we are justified in denoting
still by f the induced morphism V → U , and vice-versa.

(13)06SI Fiber products of categories cofibered in groupoids: If F → H and G → H
are morphisms of categories cofibered in groupoids over CΛ, then a construc-
tion of their 2-fiber product is given by the construction for their 2-fiber
product as categories over CΛ, as described in Categories, Lemma 32.3.

(14)0DZJ Products of categories cofibered in groupoids: If F and G are categories
cofibered in groupoids over CΛ then their product is defined to be the 2-
fiber product F ×CΛ G as described in Categories, Lemma 32.3.

(15)06GR Restricting the base category: Let p : F → C be a category cofibered in
groupoids, and let C′ be a full subcategory of C. The restriction F|C′ is the
full subcategory of F whose objects lie over objects of C′. It is a category
cofibered in groupoids via the functor p|C′ : F|C′ → C′.

6. Prorepresentable functors and predeformation categories

06GI Our basic goal is to understand categories cofibered in groupoids over CΛ and ĈΛ.
Since CΛ is a full subcategory of ĈΛ we can restrict categories cofibred in groupoids
over ĈΛ to CΛ, see Remarks 5.2 (15). In particular we can do this with functors, in
particular with representable functors. The functors on CΛ one obtains in this way
are called prorepresentable functors.

Definition 6.1.06GX Let F : CΛ → Sets be a functor. We say F is prorepresentable if
there exists an isomorphism F ∼= R|CΛ of functors for some R ∈ Ob(ĈΛ).

Note that if F : CΛ → Sets is prorepresentable by R ∈ Ob(ĈΛ), then
F (k) = MorĈΛ

(R, k) = {∗}

is a singleton. The categories cofibered in groupoids over CΛ that are arise in
deformation theory will often satisfy an analogous condition.

https://stacks.math.columbia.edu/tag/06GX
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Definition 6.2.06GS A predeformation category F is a category cofibered in groupoids
over CΛ such that F(k) is equivalent to a category with a single object and a single
morphism, i.e., F(k) contains at least one object and there is a unique morphism
between any two objects. A morphism of predeformation categories is a morphism
of categories cofibered in groupoids over CΛ.

A feature of a predeformation category is the following. Let x0 ∈ Ob(F(k)). Then
every object of F comes equipped with a unique morphism to x0. Namely, if x is
an object of F over A, then we can choose a pushforward x → q∗x where q : A → k
is the quotient map. There is a unique isomorphism q∗x → x0 and the composition
x → q∗x → x0 is the desired morphism.

Remark 6.3.06GT We say that a functor F : CΛ → Sets is a predeformation functor
if the associated cofibered set is a predeformation category, i.e. if F (k) is a one
element set. Thus if F is a predeformation category, then F is a predeformation
functor.

Remark 6.4.06GU Let p : F → CΛ be a category cofibered in groupoids, and let
x ∈ Ob(F(k)). We denote by Fx the category of objects over x. An object of Fx is
an arrow y → x. A morphism (y → x) → (z → x) in Fx is a commutative diagram

y //

��

z

��
x

There is a forgetful functor Fx → F . We define the functor px : Fx → CΛ as the
composition Fx → F p−→ CΛ. Then px : Fx → CΛ is a predeformation category
(proof omitted). In this way we can pass from an arbitrary category cofibered in
groupoids over CΛ to a predeformation category at any x ∈ Ob(F(k)).

7. Formal objects and completion categories

06H2 In this section we discuss how to go between categories cofibred in groupoids over
CΛ to categories cofibred in groupoids over ĈΛ and vice versa.

Definition 7.1.06H3 Let F be a category cofibered in groupoids over CΛ. The category
F̂ of formal objects of F is the category with the following objects and morphisms.

(1) A formal object ξ = (R, ξn, fn) of F consists of an object R of ĈΛ, and
a collection indexed by n ∈ N of objects ξn of F(R/mnR) and morphisms
fn : ξn+1 → ξn lying over the projection R/mn+1

R → R/mnR.
(2) Let ξ = (R, ξn, fn) and η = (S, ηn, gn) be formal objects of F . A morphism

a : ξ → η of formal objects consists of a map a0 : R → S in ĈΛ and a
collection an : ξn → ηn of morphisms of F lying over R/mnR → S/mnS , such
that for every n the diagram

ξn+1
fn

//

an+1

��

ξn

an

��
ηn+1

gn // ηn

commutes.

https://stacks.math.columbia.edu/tag/06GS
https://stacks.math.columbia.edu/tag/06GT
https://stacks.math.columbia.edu/tag/06GU
https://stacks.math.columbia.edu/tag/06H3
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The category of formal objects comes with a functor p̂ : F̂ → ĈΛ which sends an
object (R, ξn, fn) to R and a morphism (R, ξn, fn) → (S, ηn, gn) to the map R → S.

Lemma 7.2.06H4 Let p : F → CΛ be a category cofibered in groupoids. Then p̂ : F̂ → ĈΛ
is a category cofibered in groupoids.

Proof. Let R → S be a ring map in ĈΛ. Let (R, ξn, fn) be an object of F̂ . For
each n choose a pushforward ξn → ηn of ξn along R/mnR → S/mnS . For each n there
exists a unique morphism gn : ηn+1 → ηn in F lying over S/mn+1

S → S/mnS such
that

ξn+1

��

fn

// ξn

��
ηn+1

gn // ηn

commutes (by the first axiom of a category cofibred in groupoids). Hence we obtain
a morphism (R, ξn, fn) → (S, ηn, gn) lying over R → S, i.e., the first axiom of a
category cofibred in groupoids holds for F̂ . To see the second axiom suppose that
we have morphisms a : (R, ξn, fn) → (S, ηn, gn) and b : (R, ξn, fn) → (T, θn, hn) in
F̂ and a morphism c0 : S → T in ĈΛ such that c0 ◦ a0 = b0. By the second axiom
of a category cofibred in groupoids for F we obtain unique maps cn : ηn → θn
lying over S/mnS → T/mnT such that cn ◦ an = bn. Setting c = (cn)n≥0 gives the
desired morphism c : (S, ηn, gn) → (T, θn, hn) in F̂ (we omit the verification that
hn ◦ cn+1 = cn ◦ gn). □

Definition 7.3.06H5 Let p : F → CΛ be a category cofibered in groupoids. The
category cofibered in groupoids p̂ : F̂ → ĈΛ is called the completion of F .

If F is a category cofibered in groupoids over CΛ, we have defined F̂(R) for R ∈
Ob(ĈΛ) in terms of the filtration of R by powers of its maximal ideal. But suppose
I = (In) is a filtration of R by ideals inducing the mR-adic topology. We define
F̂I(R) to be the category with the following objects and morphisms:

(1) An object is a collection (ξn, fn)n∈N of objects ξn of F(R/In) and mor-
phisms fn : ξn+1 → ξn lying over the projections R/In+1 → R/In.

(2) A morphism a : (ξn, fn) → (ηn, gn) consists of a collection an : ξn → ηn of
morphisms in F(R/In), such that for every n the diagram

ξn+1
fn //

an+1

��

ξn

an

��
ηn+1

gn // ηn

commutes.

Lemma 7.4.06H6 In the situation above, F̂I(R) is equivalent to the category F̂(R).

Proof. An equivalence F̂I(R) → F̂(R) can be defined as follows. For each n, let
m(n) be the least m that Im ⊂ mnR. Given an object (ξn, fn) of F̂I(R), let ηn be
the pushforward of ξm(n) along R/Im(n) → R/mnR. Let gn : ηn+1 → ηn be the

https://stacks.math.columbia.edu/tag/06H4
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unique morphism of F lying over R/mn+1
R → R/mnR such that

ξm(n+1)
fm(n)◦...◦fm(n+1)−1

//

��

ξm(n)

��
ηn+1

gn // ηn

commutes (existence and uniqueness is guaranteed by the axioms of a cofibred
category). The functor F̂I(R) → F̂(R) sends (ξn, fn) to (R, ηn, gn). We omit the
verification that this is indeed an equivalence of categories. □

Remark 7.5.06H7 Let p : F → CΛ be a category cofibered in groupoids. Suppose that
for each R ∈ Ob(ĈΛ) we are given a filtration IR of R by ideals. If IR induces the
mR-adic topology on R for all R, then one can define a category F̂I by mimicking
the definition of F̂ . This category comes equipped with a morphism p̂I : F̂I → ĈΛ
making it into a category cofibered in groupoids such that F̂I(R) is isomorphic
to F̂IR

(R) as defined above. The categories cofibered in groupoids F̂I and F̂ are
equivalent, by using over an object R ∈ Ob(ĈΛ) the equivalence of Lemma 7.4.

Remark 7.6.06H8 Let F : CΛ → Sets be a functor. Identifying functors with cofibered
sets, the completion of F is the functor F̂ : ĈΛ → Sets given by F̂ (S) = limF (S/mnS).
This agrees with the definition in Schlessinger’s paper [Sch68].

Remark 7.7.06SJ Let F be a category cofibred in groupoids over CΛ. We claim that
there is a canonical equivalence

can : F̂ |CΛ −→ F .

Namely, let A ∈ Ob(CΛ) and let (A, ξn, fn) be an object of F̂ |CΛ(A). Since A is
Artinian there is a minimal m ∈ N such that mmA = 0. Then can sends (A, ξn, fn)
to ξm. This functor is an equivalence of categories cofibered in groupoids by Cat-
egories, Lemma 35.8 because it is an equivalence on all fibre categories by Lemma
7.4 and the fact that the mA-adic topology on a local Artinian ring A comes from
the zero ideal. We will frequently identify F with a full subcategory of F̂ via a
quasi-inverse to the functor can.

Remark 7.8.06H9 Let φ : F → G be a morphism of categories cofibered in groupoids
over CΛ. Then there is an induced morphism φ̂ : F̂ → Ĝ of categories cofibered
in groupoids over ĈΛ. It sends an object ξ = (R, ξn, fn) of F̂ to (R,φ(ξn), φ(fn)),
and it sends a morphism (a0 : R → S, an : ξn → ηn) between objects ξ and η of
F̂ to (a0 : R → S, φ(an) : φ(ξn) → φ(ηn)). Finally, if t : φ → φ′ is a 2-morphism
between 1-morphisms φ,φ′ : F → G of categories cofibred in groupoids, then we
obtain a 2-morphism t̂ : φ̂ → φ̂′. Namely, for ξ = (R, ξn, fn) as above we set
t̂ξ = (tφ(ξn)). Hence completion defines a functor between 2-categories

̂ : Cof(CΛ) −→ Cof(ĈΛ)
from the 2-category of categories cofibred in groupoids over CΛ to the 2-category of
categories cofibred in groupoids over ĈΛ.

Remark 7.9.06HA We claim the completion functor of Remark 7.8 and the restriction
functor |CΛ : Cof(ĈΛ) → Cof(CΛ) of Remarks 5.2 (15) are “2-adjoint” in the following

https://stacks.math.columbia.edu/tag/06H7
https://stacks.math.columbia.edu/tag/06H8
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https://stacks.math.columbia.edu/tag/06HA
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precise sense. Let F ∈ Ob(Cof(CΛ)) and let G ∈ Ob(Cof(ĈΛ)). Then there is an
equivalence of categories

Φ : MorCΛ(G|CΛ ,F) −→ MorĈΛ
(G, F̂)

To describe this equivalence, we define canonical morphisms G → Ĝ|CΛ and F̂ |CΛ →
F as follows

(1) Let R ∈ Ob(ĈΛ)) and let ξ be an object of the fiber category G(R). Choose
a pushforward ξ → ξn of ξ to R/mnR for each n ∈ N, and let fn : ξn+1 → ξn

be the induced morphism. Then G → Ĝ|CΛ sends ξ to (R, ξn, fn).
(2) This is the equivalence can : F̂ |CΛ → F of Remark 7.7.

Having said this, the equivalence Φ : MorCΛ(G|CΛ ,F) → MorĈΛ
(G, F̂) sends a mor-

phism φ : G|CΛ → F to

G → Ĝ|CΛ

φ̂−→ F̂
There is a quasi-inverse Ψ : MorĈΛ

(G, F̂) → MorCΛ(G|CΛ ,F) to Φ which sends
ψ : G → F̂ to

G|CΛ

ψ|CΛ−−−→ F̂|CΛ → F .
We omit the verification that Φ and Ψ are quasi-inverse. We also do not address
functoriality of Φ (because it would lead into 3-category territory which we want
to avoid at all cost).

Remark 7.10.06HB For a category C we denote by CofSet(C) the category of cofibered
sets over C. It is a 1-category isomorphic the category of functors C → Sets. See
Remarks 5.2 (11). The completion and restriction functors restrict to functorŝ : CofSet(CΛ) → CofSet(ĈΛ) and |CΛ : CofSet(ĈΛ) → CofSet(CΛ) which we denote
by the same symbols. As functors on the categories of cofibered sets, completion
and restriction are adjoints in the usual 1-categorical sense: the same construction
as in Remark 7.9 defines a functorial bijection

MorCΛ(G|CΛ , F ) −→ MorĈΛ
(G, F̂ )

for F ∈ Ob(CofSet(CΛ)) and G ∈ Ob(CofSet(ĈΛ)). Again the map F̂ |CΛ → F is an
isomorphism.

Remark 7.11.06HE Let G : ĈΛ → Sets be a functor that commutes with limits. Then
the map G → Ĝ|CΛ described in Remark 7.9 is an isomorphism. Indeed, if S is an
object of ĈΛ, then we have canonical bijections

Ĝ|CΛ(S) = limnG(S/mnS) = G(limn S/m
n
S) = G(S).

In particular, if R is an object of ĈΛ then R = R̂|CΛ because the representable
functor R commutes with limits by definition of limits.

Remark 7.12.06HC Let R be an object of ĈΛ. It defines a functor R : ĈΛ → Sets as
described in Remarks 5.2 (12). As usual we identify this functor with the associated
cofibered set. If F is a cofibered category over CΛ, then there is an equivalence of
categories

(7.12.1)06SK MorCΛ(R|CΛ ,F) −→ F̂(R).

https://stacks.math.columbia.edu/tag/06HB
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It is given by the composition

MorCΛ(R|CΛ ,F) Φ−→ MorĈΛ
(R, F̂) ∼−→ F̂(R)

where Φ is as in Remark 7.9 and the second equivalence comes from the 2-Yoneda
lemma (the cofibered analogue of Categories, Lemma 41.2). Explicitly, the equiva-
lence sends a morphism φ : R|CΛ → F to the formal object (R,φ(R → R/mnR), φ(fn))
in F̂(R), where fn : R/mn+1

R → R/mnR is the projection.

Assume a choice of pushforwards for F has been made. Given any ξ ∈ Ob(F̂(R))
we construct an explicit ξ : R|CΛ → F which maps to ξ under (7.12.1). Namely, say
ξ = (R, ξn, fn). An object α in R|CΛ is the same thing as a morphism α : R → A

of ĈΛ with A Artinian. Let m ∈ N be minimal such that mmA = 0. Then α factors
through a unique αm : R/mmR → A and we can set ξ(α) = αm,∗ξm. We omit the
description of ξ on morphisms and we omit the proof that ξ maps to ξ via (7.12.1).

Assume a choice of pushforwards for F̂ has been made. In this case the proof of
Categories, Lemma 41.2 gives an explicit quasi-inverse

ι : F̂(R) −→ MorĈΛ
(R, F̂)

to the 2-Yoneda equivalence which takes ξ to the morphism ι(ξ) : R → F̂ sending
f ∈ R(S) = MorCΛ(R,S) to f∗ξ. A quasi-inverse to (7.12.1) is then

F̂(R) ι−→ MorĈΛ
(R, F̂) Ψ−→ MorCΛ(R|CΛ ,F)

where Ψ is as in Remark 7.9. Given ξ ∈ Ob(F̂(R)) we have Ψ(ι(ξ)) ∼= ξ where ξ is
as in the previous paragraph, because both are mapped to ξ under the equivalence
of categories (7.12.1). Using R = R̂|CΛ (see Remark 7.11) and unwinding the
definitions of Φ and Ψ we conclude that ι(ξ) is isomorphic to the completion of ξ.

Remark 7.13.06SL Let F be a category cofibred in groupoids over CΛ. Let ξ =
(R, ξn, fn) and η = (S, ηn, gn) be formal objects of F . Let a = (an) : ξ → η be a
morphism of formal objects, i.e., a morphism of F̂ . Let f = p̂(a) = a0 : R → S be
the projection of a in ĈΛ. Then we obtain a 2-commutative diagram

R|CΛ

ξ !!

S|CΛf
oo

η
}}

F
where ξ and η are the morphisms constructed in Remark 7.12. To see this let
α : S → A be an object of S|CΛ (see loc. cit.). Let m ∈ N be minimal such that
mmA = 0. We get a commutative diagram

R

f

��

// R/mmR

fm

��

βm

""
S // S/mmS

αm // A

such that the bottom arrows compose to give α. Then η(α) = αm,∗ηm and ξ(α◦f) =
βm,∗ξm. The morphism am : ξm → ηm lies over fm hence we obtain a canonical

https://stacks.math.columbia.edu/tag/06SL
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morphism
ξ(α ◦ f) = βm,∗ξm −→ η(α) = αm,∗ηm

lying over idA such that
ξm //

am

��

βm,∗ξm

��
ηm // αm,∗ηm

commutes by the axioms of a category cofibred in groupoids. This defines a trans-
formation of functors ξ ◦ f → η which witnesses the 2-commutativity of the first
diagram of this remark.

Remark 7.14.06HD According to Remark 7.12, giving a formal object ξ of F is equiv-
alent to giving a prorepresentable functor U : CΛ → Sets and a morphism U → F .

8. Smooth morphisms

06HF In this section we discuss smooth morphisms of categories cofibered in groupoids
over CΛ.

Definition 8.1.06HG Let φ : F → G be a morphism of categories cofibered in groupoids
over CΛ. We say φ is smooth if it satisfies the following condition: Let B → A be
a surjective ring map in CΛ. Let y ∈ Ob(G(B)), x ∈ Ob(F(A)), and y → φ(x) be
a morphism lying over B → A. Then there exists x′ ∈ Ob(F(B)), a morphism
x′ → x lying over B → A, and a morphism φ(x′) → y lying over id : B → B, such
that the diagram

φ(x′) //

##

y

��
φ(x)

commutes.

Lemma 8.2.06HH Let φ : F → G be a morphism of categories cofibered in groupoids
over CΛ. Then φ is smooth if the condition in Definition 8.1 is assumed to hold
only for small extensions B → A.

Proof. Let B → A be a surjective ring map in CΛ. Let y ∈ Ob(G(B)), x ∈
Ob(F(A)), and y → φ(x) be a morphism lying over B → A. By Lemma 3.3 we can
factor B → A into small extensions B = Bn → Bn−1 → . . . → B0 = A. We argue
by induction on n. If n = 1 the result is true by assumption. If n > 1, then denote
f : B = Bn → Bn−1 and denote g : Bn−1 → B0 = A. Choose a pushforward
y → f∗y of y along f , so that the morphism y → φ(x) factors as y → f∗y → φ(x).
By the induction hypothesis we can find xn−1 → x lying over g : Bn−1 → A and
a : φ(xn−1) → f∗y lying over id : Bn−1 → Bn−1 such that

φ(xn−1)
a
//

$$

f∗y

��
φ(x)

https://stacks.math.columbia.edu/tag/06HD
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commutes. We can apply the assumption to the composition y → φ(xn−1) of
y → f∗y with a−1 : f∗y → φ(xn−1). We obtain xn → xn−1 lying over Bn → Bn−1
and φ(xn) → y lying over id : Bn → Bn so that the diagram

φ(xn) //

��

y

��
φ(xn−1) a //

$$

f∗y

��
φ(x)

commutes. Then the composition xn → xn−1 → x and φ(xn) → y are the mor-
phisms required by the definition of smoothness. □

Remark 8.3.06HI Let φ : F → G be a morphism of categories cofibered in groupoids
over CΛ. Let B → A be a ring map in CΛ. Choices of pushforwards along B → A for
objects in the fiber categories F(B) and G(B) determine functors F(B) → F(A)
and G(B) → G(A) fitting into a 2-commutative diagram

F(B) φ //

��

G(B)

��
F(A) φ // G(A).

Hence there is an induced functor F(B) → F(A) ×G(A) G(B). Unwinding the
definitions shows that φ : F → G is smooth if and only if this induced functor is
essentially surjective whenever B → A is surjective (or equivalently, by Lemma 8.2,
whenever B → A is a small extension).

Remark 8.4.06HJ The characterization of smooth morphisms in Remark 8.3 is analo-
gous to Schlessinger’s notion of a smooth morphism of functors, cf. [Sch68, Defini-
tion 2.2.]. In fact, when F and G are cofibered in sets then our notion is equivalent
to Schlessinger’s. Namely, in this case let F,G : CΛ → Sets be the corresponding
functors, see Remarks 5.2 (11). Then F → G is smooth if and only if for every
surjection of rings B → A in CΛ the map F (B) → F (A) ×G(A) G(B) is surjective.

Remark 8.5.06HK Let F be a category cofibered in groupoids over CΛ. Then the
morphism F → F is smooth. Namely, suppose that f : B → A is a ring map in CΛ.
Let x ∈ Ob(F(A)) and let y ∈ F(B) be the isomorphism class of y ∈ Ob(F(B))
such that f∗y = x. Then we simply take x′ = y, the implied morphism x′ = y → x
over B → A, and the equality x′ = y as the solution to the problem posed in
Definition 8.1.

If R → S is a ring map ĈΛ, then there is an induced morphism S → R between
the functors S,R : ĈΛ → Sets. In this situation, smoothness of the restriction
S|CΛ → R|CΛ is a familiar notion:

Lemma 8.6.06HL Let R → S be a ring map in ĈΛ. Then the induced morphism
S|CΛ → R|CΛ is smooth if and only if S is a power series ring over R.

https://stacks.math.columbia.edu/tag/06HI
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Proof. Assume S is a power series ring over R. Say S = R[[x1, . . . , xn]]. Smooth-
ness of S|CΛ → R|CΛ means the following (see Remark 8.4): Given a surjective ring
map B → A in CΛ, a ring map R → B, a ring map S → A such that the solid
diagram

S //

��

A

R

OO

// B

OO

is commutative then a dotted arrow exists making the diagram commute. (Note the
similarity with Algebra, Definition 138.1.) To construct the dotted arrow choose
elements bi ∈ B whose images in A are equal to the images of xi in A. Note that
bi ∈ mB as xi maps to an element of mA. Hence there is a unique R-algebra map
R[[x1, . . . , xn]] → B which maps xi to bi and which can serve as our dotted arrow.
Conversely, assume S|CΛ → R|CΛ is smooth. Let x1, . . . , xn ∈ S be elements whose
images form a basis in the relative cotangent space mS/(mRS + m2

S) of S over R.
Set T = R[[X1, . . . , Xn]]. Note that both

S/(mRS + m2
S) ∼= R/mR[x1, . . . , xn]/(xixj)

and
T/(mRT + m2

T ) ∼= R/mR[X1, . . . , Xn]/(XiXj).
Let S/(mRS + m2

S) → T/(mRT + m2
T ) be the local R-algebra isomorphism given

by mapping the class of xi to the class of Xi. Let f1 : S → T/(mRT + m2
T ) be

the composition S → S/(mRS + m2
S) → T/(mRT + m2

T ). The assumption that
S|CΛ → R|CΛ is smooth means we can lift f1 to a map f2 : S → T/m2

T , then to
a map f3 : S → T/m3

T , and so on, for all n ≥ 1. Thus we get an induced map
f : S → T = limT/mnT of local R-algebras. By our choice of f1, the map f induces
an isomorphism mS/(mRS + m2

S) → mT /(mRT + m2
T ) of relative cotangent spaces.

Hence f is surjective by Lemma 4.2 (where we think of f as a map in ĈR). Choose
preimages yi ∈ S of Xi ∈ T under f . As T is a power series ring over R there exists
a local R-algebra homomorphism s : T → S mapping Xi to yi. By construction
f ◦ s = id. Then s is injective. But s induces an isomorphism on relative cotangent
spaces since f does, so it is also surjective by Lemma 4.2 again. Hence s and f are
isomorphisms. □

Smooth morphisms satisfy the following functorial properties.

Lemma 8.7.06HM Let φ : F → G and ψ : G → H be morphisms of categories cofibered
in groupoids over CΛ.

(1) If φ and ψ are smooth, then ψ ◦ φ is smooth.
(2) If φ is essentially surjective and ψ ◦ φ is smooth, then ψ is smooth.
(3) If G′ → G is a morphism of categories cofibered in groupoids and φ is

smooth, then F ×G G′ → G′ is smooth.

Proof. Statements (1) and (2) follow immediately from the definitions. Proof of
(3) omitted. Hints: use the formulation of smoothness given in Remark 8.3 and use
that F ×G G′ is the 2-fibre product, see Remarks 5.2 (13). □

Lemma 8.8.06HN Let φ : F → G be a smooth morphism of categories cofibered in
groupoids over CΛ. Assume φ : F(k) → G(k) is essentially surjective. Then φ :
F → G and φ̂ : F̂ → Ĝ are essentially surjective.

https://stacks.math.columbia.edu/tag/06HM
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Proof. Let y be an object of G lying over A ∈ Ob(CΛ). Let y → y0 be a pushforward
of y along A → k. By the assumption on essential surjectivity of φ : F(k) →
G(k) there exist an object x0 of F lying over k and an isomorphism y0 → φ(x0).
Smoothness of φ implies there exists an object x of F over A whose image φ(x) is
isomorphic to y. Thus φ : F → G is essentially surjective.
Let η = (R, ηn, gn) be an object of Ĝ. We construct an object ξ of F̂ with an
isomorphism η → φ(ξ). By the assumption on essential surjectivity of φ : F(k) →
G(k), there exists a morphism η1 → φ(ξ1) in G(k) for some ξ1 ∈ Ob(F(k)). The
morphism η2

g1−→ η1 → φ(ξ1) lies over the surjective ring map R/m2
R → k, hence by

smoothness of φ there exists ξ2 ∈ Ob(F(R/m2
R)), a morphism f1 : ξ2 → ξ1 lying

over R/m2
R → k, and a morphism η2 → φ(ξ2) such that

φ(ξ2)
φ(f1) // φ(ξ1)

η2

OO

g1 // η1

OO

commutes. Continuing in this way we construct an object ξ = (R, ξn, fn) of F̂ and
a morphism η → φ(ξ) = (R,φ(ξn), φ(fn)) in Ĝ(R). □

Later we are interested in producing smooth morphisms from prorepresentable func-
tors to predeformation categories F . By the discussion in Remark 7.12 these mor-
phisms correspond to certain formal objects of F . More precisely, these are the
so-called versal formal objects of F .

Definition 8.9.06HR Let F be a category cofibered in groupoids. Let ξ be a formal
object of F lying over R ∈ Ob(ĈΛ). We say ξ is versal if the corresponding morphism
ξ : R|CΛ → F of Remark 7.12 is smooth.

Remark 8.10.06HS Let F be a category cofibered in groupoids over CΛ, and let ξ be
a formal object of F . It follows from the definition of smoothness that versality of
ξ is equivalent to the following condition: If

y

��
ξ // x

is a diagram in F̂ such that y → x lies over a surjective map B → A of Artinian
rings (we may assume it is a small extension), then there exists a morphism ξ → y
such that

y

��
ξ //

@@

x

commutes. In particular, the condition that ξ be versal does not depend on the
choices of pushforwards made in the construction of ξ : R|CΛ → F in Remark 7.12.

Lemma 8.11.06HT Let F be a predeformation category. Let ξ be a versal formal object
of F . For any formal object η of F̂ , there exists a morphism ξ → η.
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Proof. By assumption the morphism ξ : R|CΛ → F is smooth. Then ι(ξ) : R → F̂
is the completion of ξ, see Remark 7.12. By Lemma 8.8 there exists an object f of
R such that ι(ξ)(f) = η. Then f is a ring map f : R → S in ĈΛ. And ι(ξ)(f) = η
means that f∗ξ ∼= η which means exactly that there is a morphism ξ → η lying over
f . □

9. Smooth or unobstructed categories

0DYK Let p : F → CΛ be a category cofibered in groupoids. We can consider CΛ as a
category cofibered in groupoids over CΛ using the identity functor. In this way
p : F −→ CΛ becomes a morphism of categories cofibered in groupoids over CΛ.

Definition 9.1.06HP Let p : F → CΛ be a category cofibered in groupoids. We say
F is smooth or unobstructed if its structure morphism p is smooth in the sense of
Definition 8.1.

This is the “absolute” notion of smoothness for a category cofibered in groupoids
over CΛ, although it would be more correct to say that F is smooth over Λ. One has
to be careful with the phrase “F is unobstructed”: it may happen that F has an
obstruction theory with nonvanishing obstruction spaces even though F is smooth.

Remark 9.2.06HQ Suppose F is a predeformation category admitting a smooth mor-
phism φ : U → F from a predeformation category U . Then by Lemma 8.8 φ is
essentially surjective, so by Lemma 8.7 p : F → CΛ is smooth if and only if the
composition U φ−→ F p−→ CΛ is smooth, i.e. F is smooth if and only if U is smooth.

Lemma 9.3.0DYL Let R ∈ Ob(ĈΛ). The following are equivalent
(1) R|CΛ is smooth,
(2) Λ → R is formally smooth in the mR-adic topology,
(3) Λ → R is flat and R⊗Λ k

′ is geometrically regular over k′, and
(4) Λ → R is flat and k′ → R⊗Λk

′ is formally smooth in the mR-adic topology.
In the classical case, these are also equivalent to

(5) R is isomorphic to Λ[[x1, . . . , xn]] for some n.

Proof. Smoothness of p : R|CΛ → CΛ means that given B → A surjective in CΛ
and given R → A we can find the dotted arrow in the diagram

R //

��

A

Λ //

OO

B

OO

This is certainly true if Λ → R is formally smooth in the mR-adic topology, see More
on Algebra, Definitions 37.3 and 37.1. Conversely, if this holds, then we see that
Λ → R is formally smooth in the mR-adic topology by More on Algebra, Lemma
38.1. Thus (1) and (2) are equivalent.
The equivalence of (2), (3), and (4) is More on Algebra, Proposition 40.5. The
equivalence with (5) follows for example from Lemma 8.6 and the fact that CΛ is
the same as Λ|CΛ in the classical case. □

Lemma 9.4.0DZK Let F be a predeformation category. Let ξ be a versal formal object
of F lying over R ∈ Ob(ĈΛ). The following are equivalent
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(1) F is unobstructed, and
(2) Λ → R is formally smooth in the mR-adic topology.

In the classical case these are also equivalent to
(3) R ∼= Λ[[x1, . . . , xn]] for some n.

Proof. If (1) holds, i.e., if F is unobstructed, then the composition

R|CΛ

ξ
−→ F → CΛ

is smooth, see Lemma 8.7. Hence we see that (2) holds by Lemma 9.3. Conversely, if
(2) holds, then the composition is smooth and moreover the first arrow is essentially
surjective by Lemma 8.11. Hence we find that the second arrow is smooth by Lemma
8.7 which means that F is unobstructed by definition. The equivalence with (3) in
the classical case follows from Lemma 9.3. □

Lemma 9.5.06SM There exists an R ∈ Ob(ĈΛ) such that the equivalent conditions of
Lemma 9.3 hold and moreover H1(Lk/Λ) = mR/m

2
R and ΩR/Λ ⊗R k = Ωk/Λ.

Proof. In the classical case we choose R = Λ. More generally, if the residue
field extension k/k′ is separable, then there exists a unique finite étale extension
Λ∧ → R (Algebra, Lemmas 153.9 and 153.7) of the completion Λ∧ of Λ inducing
the extension k/k′ on residue fields.
In the general case we proceed as follows. Choose a smooth Λ-algebra P and a
Λ-algebra surjection P → k. (For example, let P be a polynomial algebra.) Denote
mP the kernel of P → k. The Jacobi-Zariski sequence, see (3.10.2) and Algebra,
Lemma 134.4, is an exact sequence

0 → H1(NLk/Λ) → mP /m
2
P → ΩP/Λ ⊗P k → Ωk/Λ → 0

We have the 0 on the left because P/k is smooth, hence NLP/Λ is quasi-isomorphic
to a finite projective module placed in degree 0, hence H1(NLP/Λ ⊗P k) = 0. Sup-
pose f ∈ mP maps to a nonzero element of ΩP/Λ ⊗P k. Setting P ′ = P/(f) we
have a Λ-algebra surjection P ′ → k. Observe that P ′ is smooth at mP ′ : this fol-
lows from More on Morphisms, Lemma 38.1. Thus after replacing P by a principal
localization of P ′, we see that dim(mP /m2

P ) decreases. Repeating finitely many
times, we may assume the map mP /m

2
P → ΩP/Λ ⊗P k is zero so that the exact

sequence breaks into isomorphisms H1(Lk/Λ) = mP /m
2
P and ΩP/Λ ⊗P k = Ωk/Λ.

Let R be the mP -adic completion of P . Then R is an object of ĈΛ. Namely, it is a
complete local Noetherian ring (see Algebra, Lemma 97.6) and its residue field is
identified with k. We claim that R works.
First observe that the map P → R induces isomorphisms mP /m

2
P = mR/m

2
R and

ΩP/Λ ⊗P k = ΩR/Λ ⊗R k. This is true because both mP /m
2
P and ΩP/Λ ⊗P k only

depend on the Λ-algebra P/m2
P , see Algebra, Lemma 131.11, the same holds for R

and we have P/m2
P = R/m2

R. Using the functoriality of the Jacobi-Zariski sequence
(3.10.3) we deduce that H1(Lk/Λ) = mR/m

2
R and ΩR/Λ ⊗R k = Ωk/Λ as the same

is true for P .
Finally, since Λ → P is smooth we see that Λ → P is formally smooth by Algebra,
Proposition 138.13. Then Λ → P is formally smooth for the mP -adic topology by
More on Algebra, Lemma 37.2. This property is inherited by the completion R
by More on Algebra, Lemma 37.4 and the proof is complete. In fact, it turns out

https://stacks.math.columbia.edu/tag/06SM
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that whenever R|CΛ is smooth, then R is isomorphic to a completion of a smooth
algebra over Λ, but we won’t use this. □

Example 9.6.06SN Here is a more explicit example of an R as in Lemma 9.5. Let p be a
prime number and let n ∈ N. Let Λ = Fp(t1, t2, . . . , tn) and let k = Fp(x1, . . . , xn)
with map Λ → k given by ti 7→ xpi . Then we can take

R = Λ[x1, . . . , xn]∧(xp
1−t1,...,xp

n−tn)

We cannot do “better” in this example, i.e., we cannot approximate CΛ by a smaller
smooth object of ĈΛ (one can argue that the dimension of R has to be at least n
since the map ΩR/Λ ⊗R k → Ωk/Λ is surjective). We will discuss this phenomenon
later in more detail.

10. Schlessinger’s conditions

06HV In the following we often consider fibre products A1 ×A A2 of rings in the category
CΛ. We have seen in Example 3.7 that such a fibre product may not always be an
object of CΛ. However, in virtually all cases below one of the two maps Ai → A is
surjective and A1 ×A A2 will be an object of CΛ by Lemma 3.8. We will use this
result without further mention.

We denote by k[ϵ] the ring of dual numbers over k. More generally, for a k-vector
space V , we denote by k[V ] the k-algebra whose underlying vector space is k ⊕ V
and whose multiplication is given by (a, v) · (a′, v′) = (aa′, av′ +a′v). When V = k,
k[V ] is the ring of dual numbers over k. For any finite dimensional k-vector space
V the ring k[V ] is in CΛ.

Definition 10.1.06HW Let F be a category cofibered in groupoids over CΛ. We define
conditions (S1) and (S2) on F as follows:

(S1) Every diagram in F

x2

��
x1 // x

lying over

A2

��
A1 // A

in CΛ with A2 → A surjective can be completed to a commutative diagram

y //

��

x2

��
x1 // x

lying over

A1 ×A A2 //

��

A2

��
A1 // A.

(S2) The condition of (S1) holds for diagrams in F lying over a diagram in CΛ
of the form

k[ϵ]

��
A // k.

https://stacks.math.columbia.edu/tag/06SN
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Moreover, if we have two commutative diagrams in F

y
c
//

a

��

xϵ

e

��
x

d // x0

and

y′
c′
//

a′

��

xϵ

e

��
x

d // x0

lying over

A×k k[ϵ] //

��

k[ϵ]

��
A // k

then there exists a morphism b : y → y′ in F(A×k k[ϵ]) such that a = a′ ◦b.

We can partly explain the meaning of conditions (S1) and (S2) in terms of fibre
categories. Suppose that f1 : A1 → A and f2 : A2 → A are ring maps in CΛ with
f2 surjective. Denote pi : A1 ×A A2 → Ai the projection maps. Assume a choice
of pushforwards for F has been made. Then the commutative diagram of rings
translates into a 2-commutative diagram

F(A1 ×A A2)
p2,∗
//

p1,∗

��

F(A2)

f2,∗

��
F(A1)

f1,∗ // F(A)

of fibre categories whence a functor

(10.1.1)06SP F(A1 ×A A2) → F(A1) ×F(A) F(A2)

into the 2-fibre product of categories. Condition (S1) requires that this functor be
essentially surjective. The first part of condition (S2) requires that this functor
be a essentially surjective if f2 equals the map k[ϵ] → k. Moreover in this case,
the second part of (S2) implies that two objects which become isomorphic in the
target are isomorphic in the source (but it is not equivalent to this statement). The
advantage of stating the conditions as in the definition is that no choices have to
be made.

Lemma 10.2.06HX Let F be a category cofibered in groupoids over CΛ. Then F satisfies
(S1) if the condition of (S1) is assumed to hold only when A2 → A is a small
extension.

Proof. Proof omitted. Hints: apply Lemma 3.3 and use induction similar to the
proof of Lemma 8.2. □

Remark 10.3.06HY When F is cofibered in sets, conditions (S1) and (S2) are exactly
conditions (H1) and (H2) from Schlessinger’s paper [Sch68]. Namely, for a functor
F : CΛ → Sets, conditions (S1) and (S2) state:

(S1) If A1 → A and A2 → A are maps in CΛ with A2 → A surjective, then the
induced map F (A1 ×A A2) → F (A1) ×F (A) F (A2) is surjective.

(S2) If A → k is a map in CΛ, then the induced map F (A×k k[ϵ]) → F (A)×F (k)
F (k[ϵ]) is bijective.

The injectivity of the map F (A ×k k[ϵ]) → F (A) ×F (k) F (k[ϵ]) comes from the
second part of condition (S2) and the fact that morphisms are identities.

Lemma 10.4.06HZ Let F be a category cofibred in groupoids over CΛ. If F satisfies
(S2), then the condition of (S2) also holds when k[ϵ] is replaced by k[V ] for any
finite dimensional k-vector space V .

https://stacks.math.columbia.edu/tag/06HX
https://stacks.math.columbia.edu/tag/06HY
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Proof. In the case that F is cofibred in sets, i.e., corresponds to a functor F :
CΛ → Sets this follows from the description of (S2) for F in Remark 10.3 and the
fact that k[V ] ∼= k[ϵ] ×k . . . ×k k[ϵ] with dimk V factors. The case of functors is
what we will use in the rest of this chapter.

We prove the general case by induction on dim(V ). If dim(V ) = 1, then k[V ] ∼= k[ϵ]
and the result holds by assumption. If dim(V ) > 1 we write V = V ′ ⊕ kϵ. Pick a
diagram

xV

��
x // x0

lying over

k[V ]

��
A // k

Choose a morphism xV → xV ′ lying over k[V ] → k[V ′] and a morphism xV → xϵ
lying over k[V ] → k[ϵ]. Note that the morphism xV → x0 factors as xV → xV ′ → x0
and as xV → xϵ → x0. By induction hypothesis we can find a diagram

y′

��

// xV ′

��
x // x0

lying over

A×k k[V ′]

��

// k[V ′]

��
A // k

This gives us a commutative diagram

xϵ

��
y′ // x0

lying over

k[ϵ]

��
A×k k[V ′] // k

Hence by (S2) we get a commutative diagram

y

��

// xϵ

��
y′ // x0

lying over

(A×k k[V ′]) ×k k[ϵ]

��

// k[ϵ]

��
A×k k[V ′] // k

Note that (A×k k[V ′]) ×k k[ϵ] = A×k k[V ′ ⊕ kϵ] = A×k k[V ]. We claim that y fits
into the correct commutative diagram. To see this we let y → yV be a morphism
lying over A ×k k[V ] → k[V ]. We can factor the morphisms y → y′ → xV ′ and
y → xϵ through the morphism y → yV (by the axioms of categories cofibred in
groupoids). Hence we see that both yV and xV fit into commutative diagrams

yV //

��

xϵ

��
xV ′ // x0

and

xV //

��

xϵ

��
xV ′ // x0

and hence by the second part of (S2) there exists an isomorphism yV → xV com-
patible with yV → xV ′ and xV → xV ′ and in particular compatible with the maps
to x0. The composition y → yV → xV then fits into the required commutative
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diagram
y //

��

xV

��
x // x0

lying over

A×k k[V ]

��

// k[V ]

��
A // k

In this way we see that the first part of (S2) holds with k[ϵ] replaced by k[V ].
To prove the second part suppose given two commutative diagrams

y //

��

xV

��
x // x0

and

y′ //

��

xV

��
x // x0

lying over

A×k k[V ]

��

// k[V ]

��
A // k

We will use the morphisms xV → xV ′ → x0 and xV → xϵ → x0 introduced in the
first paragraph of the proof. Choose morphisms y → yV ′ and y′ → y′

V ′ lying over
A ×k k[V ] → A ×k k[V ′]. The axioms of a cofibred category imply we can find
commutative diagrams

yV ′ //

��

xV ′

��
x // x0

and

y′
V ′ //

��

xV ′

��
x // x0

lying over

A×k k[V ′]

��

// k[V ′]

��
A // k

By induction hypothesis we obtain an isomorphism b : yV ′ → y′
V ′ compatible with

the morphisms yV ′ → x and y′
V ′ → x, in particular compatible with the morphisms

to x0. Then we have commutative diagrams
y //

��

xϵ

��
y′
V ′ // x0

and

y′ //

��

xϵ

��
y′
V ′ // x0

lying over

A×k k[ϵ]

��

// k[ϵ]

��
A // k

where the morphism y → y′
V ′ is the composition y → yV ′

b−→ y′
V ′ and where the

morphisms y → xϵ and y′ → xϵ are the compositions of the maps y → xV and
y′ → xV with the morphism xV → xϵ. Then the second part of (S2) guarantees the
existence of an isomorphism y → y′ compatible with the maps to y′

V ′ , in particular
compatible with the maps to x (because b was compatible with the maps to x). □

Lemma 10.5.06I0 Let F be a category cofibered in groupoids over CΛ.
(1) If F satisfies (S1), then so does F .
(2) If F satisfies (S2), then so does F provided at least one of the following

conditions is satisfied
(a) F is a predeformation category,
(b) the category F(k) is a set or a setoid, or
(c) for any morphism xϵ → x0 of F lying over k[ϵ] → k the pushforward

map Autk[ϵ](xϵ) → Autk(x0) is surjective.

Proof. Assume F has (S1). Suppose we have ring maps fi : Ai → A in CΛ with
f2 surjective. Let xi ∈ F(Ai) such that the pushforwards f1,∗(x1) and f2,∗(x2) are
isomorphic. Then we can denote x an object of F over A isomorphic to both of
these and we obtain a diagram as in (S1). Hence we find an object y of F over

https://stacks.math.columbia.edu/tag/06I0
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A1 ×A A2 whose pushforward to A1, resp. A2 is isomorphic to x1, resp. x2. In this
way we see that (S1) holds for F .

Assume F has (S2). The first part of (S2) for F follows as in the argument above.
The second part of (S2) for F signifies that the map

F(A×k k[ϵ]) → F(A) ×F(k) F(k[ϵ])

is injective for any ring A in CΛ. Suppose that y, y′ ∈ F(A ×k k[ϵ]). Using the
axioms of cofibred categories we can choose commutative diagrams

y
c
//

a

��

xϵ

e

��
x

d // x0

and

y′
c′
//

a′

��

x′
ϵ

e′

��
x′ d′

// x′
0

lying over

A×k k[ϵ]

��

// k[ϵ]

��
A // k

Assume that there exist isomorphisms α : x → x′ in F(A) and β : xϵ → x′
ϵ in

F(k[ϵ]). This also means there exists an isomorphism γ : x0 → x′
0 compatible with

α. To prove (S2) for F we have to show that there exists an isomorphism y → y′

in F(A ×k k[ϵ]). By (S2) for F such a morphism will exist if we can choose the
isomorphisms α and β and γ such that

x

α

��

// x0

γ

��

xϵ

β

��

e
oo

x′ // x′
0 x′

ϵ
e′
oo

is commutative (because then we can replace x by x′ and xϵ by x′
ϵ in the previous

displayed diagram). The left hand square commutes by our choice of γ. We can
factor e′ ◦ β as γ′ ◦ e for some second map γ′ : x0 → x′

0. Now the question is
whether we can arrange it so that γ = γ′? This is clear if F(k) is a set, or a setoid.
Moreover, if Autk[ϵ](xϵ) → Autk(x0) is surjective, then we can adjust the choice of
β by precomposing with an automorphism of xϵ whose image is γ−1 ◦ γ′ to make
things work. □

Lemma 10.6.06SQ Let F be a category cofibered in groupoids over CΛ. Let x0 ∈
Ob(F(k)). Let Fx0 be the category cofibred in groupoids over CΛ constructed in
Remark 6.4.

(1) If F satisfies (S1), then so does Fx0 .
(2) If F satisfies (S2), then so does Fx0 .

Proof. Any diagram as in Definition 10.1 in Fx0 gives rise to a diagram in F and
the output of condition (S1) or (S2) for this diagram in F can be viewed as an
output for Fx0 as well. □

Lemma 10.7.06IS Let p : F → CΛ be a category cofibered in groupoids. Consider a
diagram of F

y //

a

��

xϵ

e

��
x

d // x0

lying over

A×k k[ϵ] //

��

k[ϵ]

��
A // k.

https://stacks.math.columbia.edu/tag/06SQ
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in CΛ. Assume F satisfies (S2). Then there exists a morphism s : x → y with
a ◦ s = idx if and only if there exists a morphism sϵ : x → xϵ with e ◦ sϵ = d.

Proof. The “only if” direction is clear. Conversely, assume there exists a morphism
sϵ : x → xϵ with e ◦ sϵ = d. Note that p(sϵ) : A → k[ϵ] is a ring map compatible
with the map A → k. Hence we obtain

σ = (idA, p(sϵ)) : A → A×k k[ϵ].

Choose a pushforward x → σ∗x. By construction we can factor sϵ as x → σ∗x → xϵ.
Moreover, as σ is a section of A ×k k[ϵ] → A, we get a morphism σ∗x → x such
that x → σ∗x → x is idx. Because e ◦ sϵ = d we find that the diagram

σ∗x //

��

xϵ

e

��
x

d // x0

is commutative. Hence by (S2) we obtain a morphism σ∗x → y such that σ∗x →
y → x is the given map σ∗x → x. The solution to the problem is now to take
a : x → y equal to the composition x → σ∗x → y. □

Lemma 10.8.06IT Consider a commutative diagram in a predeformation category F

y //

��

x2

a2

��
x1

a1 // x

lying over

A1 ×A A2 //

��

A2

f2

��
A1

f1 // A

in CΛ where f2 : A2 → A is a small extension. Assume there is a map h : A1 → A2
such that f2 = f1 ◦ h. Let I = Ker(f2). Consider the ring map

g : A1 ×A A2 −→ k[I] = k ⊕ I, (u, v) 7−→ u⊕ (v − h(u))

Choose a pushforward y → g∗y. Assume F satisfies (S2). If there exists a morphism
x1 → g∗y, then there exists a morphism b : x1 → x2 such that a1 = a2 ◦ b.

Proof. Note that idA1 × g : A1 ×A A2 → A1 ×k k[I] is an isomorphism and that
k[I] ∼= k[ϵ]. Hence we have a diagram

y //

��

g∗y

��
x1 // x0

lying over

A1 ×k k[ϵ] //

��

k[ϵ]

��
A1 // k.

where x0 is an object of F lying over k (every object of F has a unique morphism
to x0, see discussion following Definition 6.2). If we have a morphism x1 → g∗y
then Lemma 10.7 provides us with a section s : x1 → y of the map y → x1.
Composing this with the map y → x2 we obtain b : x1 → x2 which has the
property that a1 = a2 ◦ b because the diagram of the lemma commutes and because
s is a section. □

https://stacks.math.columbia.edu/tag/06IT


FORMAL DEFORMATION THEORY 32

11. Tangent spaces of functors

06I2 Let R be a ring. We write ModR for the category of R-modules and ModfgR for the
category of finitely generated R-modules.

Definition 11.1.06I3 Let L : ModfgR → ModR, resp. L : ModR → ModR be a functor.
We say that L is R-linear if for every pair of objects M,N of ModfgR , resp. ModR
the map

L : HomR(M,N) −→ HomR(L(M), L(N))
is a map of R-modules.

Remark 11.2.06I4 One can define the notion of an R-linearity for any functor between
categories enriched over ModR. We made the definition specifically for functors
L : ModfgR → ModR and L : ModR → ModR because these are the cases that we
have needed so far.

Remark 11.3.06I5 If L : ModfgR → ModR is an R-linear functor, then L preserves
finite products and sends the zero module to the zero module, see Homology, Lemma
3.7. On the other hand, if a functor ModfgR → Sets preserves finite products and
sends the zero module to a one element set, then it has a unique lift to a R-linear
functor, see Lemma 11.4.

Lemma 11.4.06I6 Let L : ModfgR → Sets, resp. L : ModR → Sets be a functor.
Suppose L(0) is a one element set and L preserves finite products. Then there
exists a unique R-linear functor L̃ : ModfgR → ModR, resp. L̃ : ModfgR → ModR,
such that

ModR
forget

""
ModfgR

L̃

::

L // Sets

resp.

ModR
forget

##
ModR

L̃

::

L // Sets

commutes.

Proof. We only prove this in case L : ModfgR → Sets. Let M be a finitely generated
R-module. We define L̃(M) to be the set L(M) with the following R-module
structure.
Multiplication: If r ∈ R, multiplication by r on L(M) is defined to be the map
L(M) → L(M) induced by the multiplication map r· : M → M .
Addition: The sum map M×M → M : (m1,m2) 7→ m1 +m2 induces a map L(M×
M) → L(M). By assumption L(M×M) is canonically isomorphic to L(M)×L(M).
Addition on L(M) is defined by the map L(M) × L(M) ∼= L(M ×M) → L(M).
Zero: There is a unique map 0 → M . The zero element of L(M) is the image of
L(0) → L(M).

We omit the verification that this defines an R-module L̃(M), the unique such that
is R-linearly functorial in M . □

Lemma 11.5.06I7 Let L1, L2 : ModfgR → Sets be functors that take 0 to a one element
set and preserve finite products. Let t : L1 → L2 be a morphism of functors. Then
t induces a morphism t̃ : L̃1 → L̃2 between the functors guaranteed by Lemma 11.4,

https://stacks.math.columbia.edu/tag/06I3
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which is given simply by t̃M = tM : L̃1(M) → L̃2(M) for each M ∈ Ob(ModfgR ). In
other words, tM : L̃1(M) → L̃2(M) is a map of R-modules.

Proof. Omitted. □

In the case R = K is a field, a K-linear functor L : ModfgK → ModK is determined
by its value L(K).

Lemma 11.6.06I8 Let K be a field. Let L : ModfgK → ModK be a K-linear functor.
Then L is isomorphic to the functor L(K) ⊗K − : ModfgK → ModK .

Proof. For V ∈ Ob(ModfgK ), the isomorphism L(K) ⊗K V → L(V ) is given on
pure tensors by x⊗ v 7→ L(fv)(x), where fv : K → V is the K-linear map sending
1 7→ v. When V = K, this is the isomorphism L(K) ⊗K K → L(K) given by
multiplication by K. For general V , it is an isomorphism by the case V = K and
the fact that L commutes with finite products (Remark 11.3). □

For a ring R and an R-module M , let R[M ] be the R-algebra whose underlying R-
module is R⊕M and whose multiplication is given by (r,m) · (r′,m′) = (rr′, rm′ +
r′m). When M = R this is the ring of dual numbers over R, which we denote by
R[ϵ].
Now let S be a ring and assume R is an S-algebra. Then the assignment M 7→ R[M ]
determines a functor ModR → S-Alg/R, where S-Alg/R denotes the category of
S-algebras over R. Note that S-Alg/R admits finite products: if A1 → R and
A2 → R are two objects, then A1 ×R A2 is a product.

Lemma 11.7.06I9 Let R be an S-algebra. Then the functor ModR → S-Alg/R de-
scribed above preserves finite products.

Proof. This is merely the statement that if M and N are R-modules, then the
map R[M ×N ] → R[M ] ×R R[N ] is an isomorphism in S-Alg/R. □

Lemma 11.8.06IA Let R be an S-algebra, and let C be a strictly full subcategory of
S-Alg/R containing R[M ] for all M ∈ Ob(ModfgR ). Let F : C → Sets be a functor.
Suppose that F (R) is a one element set and that for any M,N ∈ Ob(ModfgR ), the
induced map

F (R[M ] ×R R[N ]) → F (R[M ]) × F (R[N ])
is a bijection. Then F (R[M ]) has a natural R-module structure for any M ∈
Ob(ModfgR ).

Proof. Note that R ∼= R[0] and R[M ] ×R R[N ] ∼= R[M × N ] hence R and
R[M ] ×R R[N ] are objects of C by our assumptions on C. Thus the conditions on
F make sense. The functor ModR → S-Alg/R of Lemma 11.7 restricts to a functor
ModfgR → C by the assumption on C. Let L be the composition ModfgR → C → Sets,
i.e., L(M) = F (R[M ]). Then L preserves finite products by Lemma 11.7 and the
assumption on F . Hence Lemma 11.4 shows that L(M) = F (R[M ]) has a natural
R-module structure for any M ∈ Ob(ModfgR ). □

Definition 11.9.06IB Let C be a category as in Lemma 11.8. Let F : C → Sets be a
functor such that F (R) is a one element set. The tangent space TF of F is F (R[ϵ]).

When F : C → Sets satisfies the hypotheses of Lemma 11.8, the tangent space TF
has a natural R-module structure.

https://stacks.math.columbia.edu/tag/06I8
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Example 11.10.06SR Since CΛ contains all k[V ] for finite dimensional vector spaces V
we see that Definition 11.9 applies with S = Λ, R = k, C = CΛ, and F : CΛ → Sets
a predeformation functor. The tangent space is TF = F (k[ϵ]).

Example 11.11.06IC Let us work out the tangent space of Example 11.10 when
F : CΛ → Sets is a prorepresentable functor, say F = S|CΛ for S ∈ Ob(ĈΛ). Then
F commutes with arbitrary limits and thus satisfies the hypotheses of Lemma 11.8.
We compute

TF = F (k[ϵ]) = MorCΛ(S, k[ϵ]) = DerΛ(S, k)
and more generally for a finite dimensional k-vector space V we have

F (k[V ]) = MorCΛ(S, k[V ]) = DerΛ(S, V ).
Explicitly, a Λ-algebra map f : S → k[V ] compatible with the augmentations
q : S → k and k[V ] → k corresponds to the derivation D defined by s 7→ f(s)−q(s).
Conversely, a Λ-derivation D : S → V corresponds to f : S → k[V ] in CΛ defined
by the rule f(s) = q(s) + D(s). Since these identifications are functorial we see
that the k-vector spaces structures on TF and DerΛ(S, k) correspond (see Lemma
11.5). It follows that dimk TF is finite by Lemma 4.5.

Example 11.12.06SS The computation of Example 11.11 simplifies in the classical
case. Namely, in this case the tangent space of the functor F = S|CΛ is simply the
relative cotangent space of S over Λ, in a formula TF = TS/Λ. In fact, this works
more generally when the field extension k/k′ is separable. See Exercises, Exercise
35.2.

Lemma 11.13.06ID Let F,G : C → Sets be functors satisfying the hypotheses of
Lemma 11.8. Let t : F → G be a morphism of functors. For any M ∈ Ob(ModfgR ),
the map tR[M ] : F (R[M ]) → G(R[M ]) is a map of R-modules, where F (R[M ])
and G(R[M ]) are given the R-module structure from Lemma 11.8. In particular,
tR[ϵ] : TF → TG is a map of R-modules.

Proof. Follows from Lemma 11.5. □

Example 11.14.06ST Suppose that f : R → S is a ring map in ĈΛ. Set F = R|CΛ

and G = S|CΛ . The ring map f induces a transformation of functors G → F . By
Lemma 11.13 we get a k-linear map TG → TF . This is the map

TG = DerΛ(S, k) −→ DerΛ(R, k) = TF

as follows from the canonical identifications F (k[V ]) = DerΛ(R, V ) and G(k[V ]) =
DerΛ(S, V ) of Example 11.11 and the rule for computing the map on tangent spaces.

Lemma 11.15.06IE Let F : C → Sets be a functor satisfying the hypotheses of Lemma
11.8. Assume R = K is a field. Then F (K[V ]) ∼= TF ⊗K V for any finite dimen-
sional K-vector space V .

Proof. Follows from Lemma 11.6. □

12. Tangent spaces of predeformation categories

06I1 We will define tangent spaces of predeformation functors using the general Defini-
tion 11.9. We have spelled this out in Example 11.10. It applies to predeformation
categories by looking at the associated functor of isomorphism classes.

https://stacks.math.columbia.edu/tag/06SR
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Definition 12.1.06IG Let F be a predeformation category. The tangent space TF of
F is the set F(k[ϵ]) of isomorphism classes of objects in the fiber category F(k[ϵ]).

Thus TF is nothing but the tangent space of the associated functor F : CΛ → Sets.
It has a natural vector space structure when F satisfies (S2), or, in fact, as long as
F does.

Lemma 12.2.06IH Let F be a predeformation category such that F satisfies (S2)2.
Then TF has a natural k-vector space structure. For any finite dimensional vector
space V we have F(k[V ]) = TF ⊗k V functorially in V .

Proof. Let us write F = F : CΛ → Sets. This is a predeformation functor and F
satisfies (S2). By Lemma 10.4 (and the translation of Remark 10.3) we see that

F (A×k k[V ]) −→ F (A) × F (k[V ])

is a bijection for every finite dimensional vector space V and every A ∈ Ob(CΛ). In
particular, if A = k[W ] then we see that F (k[W ] ×k k[V ]) = F (k[W ]) × F (k[V ]).
In other words, the hypotheses of Lemma 11.8 hold and we see that TF = TF
has a natural k-vector space structure. The final assertion follows from Lemma
11.15. □

A morphism of predeformation categories induces a map on tangent spaces.

Definition 12.3.06II Let φ : F → G be a morphism predeformation categories. The
differential dφ : TF → TG of φ is the map obtained by evaluating the morphism
of functors φ : F → G at A = k[ϵ].

Lemma 12.4.06IJ Let φ : F → G be a morphism of predeformation categories. Assume
F and G both satisfy (S2). Then dφ : TF → TG is k-linear.

Proof. In the proof of Lemma 12.2 we have seen that F and G satisfy the hypothe-
ses of Lemma 11.8. Hence the lemma follows from Lemma 11.13. □

Remark 12.5.06IK We can globalize the notions of tangent space and differential
to arbitrary categories cofibered in groupoids as follows. Let F be a category
cofibered in groupoids over CΛ, and let x ∈ Ob(F(k)). As in Remark 6.4, we get a
predeformation category Fx. We define

TxF = TFx
to be the tangent space of F at x. If φ : F → G is a morphism of categories cofibered
in groupoids over CΛ and x ∈ Ob(F(k)), then there is an induced morphism φx :
Fx → Gφ(x). We define the differential dxφ : TxF → Tφ(x)G of φ at x to be the map
dφx : TFx → TGφ(x). If both F and G satisfy (S2) then all of these tangent spaces
have a natural k-vector space structure and all the differentials dxφ : TxF → Tφ(x)G
are k-linear (use Lemmas 10.6 and 12.4).

The following observations are uninteresting in the classical case or when k/k′ is a
separable field extension, because then DerΛ(k, k) and DerΛ(k, V ) are zero. There
is a canonical identification

MorCΛ(k, k[ϵ]) = DerΛ(k, k).

2For example if F satisfies (S2), see Lemma 10.5.
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Namely, for D ∈ DerΛ(k, k) let fD : k → k[ϵ] be the map a 7→ a + D(a)ϵ. More
generally, given a finite dimensional vector space V over k we have

MorCΛ(k, k[V ]) = DerΛ(k, V )

and we will use the same notation fD for the map associated to the derivation D.
We also have

MorCΛ(k[W ], k[V ]) = Homk(V,W ) ⊕ DerΛ(k, V )

where (φ,D) corresponds to the map fφ,D : a + w 7→ a + φ(w) + D(a). We will
sometimes write f1,D : a+v → a+v+D(a) for the automorphism of k[V ] determined
by the derivation D : k → V . Note that f1,D ◦ f1,D′ = f1,D+D′ .

Let F be a predeformation category over CΛ. Let x0 ∈ Ob(F(k)). By the above
there is a canonical map

γV : DerΛ(k, V ) −→ F(k[V ])

defined by D 7→ fD,∗(x0). Moreover, there is an action

aV : DerΛ(k, V ) × F(k[V ]) −→ F(k[V ])

defined by (D,x) 7→ f1,D,∗(x). These two maps are compatible, i.e., f1,D,∗fD′,∗x0 =
fD+D′,∗x0 as follows from a computation of the compositions of these maps. Note
that the maps γV and aV are independent of the choice of x0 as there is a unique
x0 up to isomorphism.

Lemma 12.6.06SU Let F be a predeformation category over CΛ. If F has (S2) then
the maps γV are k-linear and we have aV (D,x) = x+ γV (D).

Proof. In the proof of Lemma 12.2 we have seen that the functor V 7→ F(k[V ])
transforms 0 to a singleton and products to products. The same is true of the
functor V 7→ DerΛ(k, V ). Hence γV is linear by Lemma 11.5. Let D : k → V be a
Λ-derivation. Set D1 : k → V ⊕2 equal to a 7→ (D(a), 0). Then

k[V × V ]
+

//

f1,D1
��

k[V ]

f1,D

��
k[V × V ] + // k[V ]

commutes. Unwinding the definitions and using that F (V × V ) = F (V ) × F (V )
this means that aD(x1)+x2 = aD(x1 +x2) for all x1, x2 ∈ F (V ). Thus it suffices to
show that aV (D, 0) = 0 + γV (D) where 0 ∈ F (V ) is the zero vector. By definition
this is the element f0,∗(x0). Since fD = f1,D ◦ f0 the desired result follows. □

A special case of the constructions above are the map

(12.6.1)06SV γ : DerΛ(k, k) −→ TF

and the action

(12.6.2)06SW a : DerΛ(k, k) × TF −→ TF

https://stacks.math.columbia.edu/tag/06SU
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defined for any predeformation category F . Note that if φ : F → G is a morphism
of predeformation categories, then we get commutative diagrams

DerΛ(k, k)
γ
//

γ
%%

TF

dφ

��
TG

and

DerΛ(k, k) × TF
a
//

1×dφ
��

TF

dφ

��
DerΛ(k, k) × TG a // TG

13. Versal formal objects

06SX The existence of a versal formal object forces F to have property (S1).

Lemma 13.1.06SY Let F be a predeformation category. Assume F has a versal formal
object. Then F satisfies (S1).

Proof. Let ξ be a versal formal object of F . Let

x2

��
x1 // x

be a diagram in F such that x2 → x lies over a surjective ring map. Since the
natural morphism F̂ |CΛ

∼−→ F is an equivalence (see Remark 7.7), we can consider
this diagram also as a diagram in F̂ . By Lemma 8.11 there exists a morphism
ξ → x1, so by Remark 8.10 we also get a morphism ξ → x2 making the diagram

ξ //

��

x2

��
x1 // x

commute. If x1 → x and x2 → x lie above ring maps A1 → A and A2 → A then
taking the pushforward of ξ to A1 ×AA2 gives an object y as required by (S1). □

In the case that our cofibred category satisfies (S1) and (S2) we can characterize
the versal formal objects as follows.

Lemma 13.2.06IU Let F be a predeformation category satisfying (S1) and (S2). Let
ξ be a formal object of F corresponding to ξ : R|CΛ → F , see Remark 7.12. Then ξ
is versal if and only if the following two conditions hold:

(1) the map dξ : TR|CΛ → TF on tangent spaces is surjective, and
(2) given a diagram in F̂

y

��
ξ // x

lying over

B

f

��
R // A

https://stacks.math.columbia.edu/tag/06SY
https://stacks.math.columbia.edu/tag/06IU
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in ĈΛ with B → A a small extension of Artinian rings, then there exists a
ring map R → B such that

B

f

��
R

??

// A

commutes.

Proof. If ξ is versal then (1) holds by Lemma 8.8 and (2) holds by Remark 8.10.
Assume (1) and (2) hold. By Remark 8.10 we must show that given a diagram in
F̂ as in (2), there exists ξ → y such that

y

��
ξ

@@

// x

commutes. Let b : R → B be the map guaranteed by (2). Denote y′ = b∗ξ and
choose a factorization ξ → y′ → x lying over R → B → A of the given morphism
ξ → x. By (S1) we obtain a commutative diagram

z //

��

y

��
y′ // x

lying over

B ×A B

��

// B

f

��
B

f // A.

Set I = Ker(f). Let g : B ×A B → k[I] be the ring map (u, v) 7→ u ⊕ (v − u),
cf. Lemma 10.8. By (1) there exists a morphism ξ → g∗z which lies over a ring
map i : R → k[ϵ]. Choose an Artinian quotient b1 : R → B1 such that both
b : R → B and i : R → k[ϵ] factor through R → B1, i.e., giving h : B1 → B and
i′ : B1 → k[ϵ]. Choose a pushforward y1 = b1,∗ξ, a factorization ξ → y1 → y′

lying over R → B1 → B of ξ → y′, and a factorization ξ → y1 → g∗z lying over
R → B1 → k[ϵ] of ξ → g∗z. Applying (S1) once more we obtain

z1 //

��

z //

��

y

��
y1 // y′ // x

lying over

B1 ×A B

��

// B ×A B //

��

B

f

��
B1 // B // A.

Note that the map g : B1 ×A B → k[I] of Lemma 10.8 (defined using h) is the
composition of B1 ×A B → B ×A B and the map g above. By construction there
exists a morphism y1 → g∗z1 ∼= g∗z! Hence Lemma 10.8 applies (to the outer
rectangles in the diagrams above) to give a morphism y1 → y and precomposing
with ξ → y1 gives the desired morphism ξ → y. □

If F has property (S1) then the “largest quotient where a lift exists” exists. Here
is a precise statement.

Lemma 13.3.06SZ Let F be a category cofibred in groupoids over CΛ which has (S1).
Let B → A be a surjection in CΛ with kernel I annihilated by mB. Let x ∈ F(A).
The set of ideals

J = {J ⊂ I | there exists an y → x lying over B/J → A}

https://stacks.math.columbia.edu/tag/06SZ
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has a smallest element.

Proof. Note that J is nonempty as I ∈ J . Also, if J ∈ J and J ⊂ J ′ ⊂ I then
J ′ ∈ J because we can pushforward the object y to an object y′ over B/J ′. Let J
and K be elements of the displayed set. We claim that J ∩K ∈ J which will prove
the lemma. Since I is a k-vector space we can find an ideal J ⊂ J ′ ⊂ I such that
J ∩K = J ′ ∩K and such that J ′ +K = I. By the above we may replace J by J ′

and assume that J +K = I. In this case
A/(J ∩K) = A/J ×A/I A/K.

Hence the existence of an element z ∈ F(A/(J∩K)) mapping to x follows, via (S1),
from the existence of the elements we have assumed exist over A/J and A/K. □

We will improve on the following result later.

Lemma 13.4.06IW Let F be a category cofibred in groupoids over CΛ. Assume the
following conditions hold:

(1) F is a predeformation category.
(2) F satisfies (S1).
(3) F satisfies (S2).
(4) dimk TF is finite.

Then F has a versal formal object.

Proof. Assume (1), (2), (3), and (4) hold. Choose an object R ∈ Ob(ĈΛ) such that
R|CΛ is smooth. See Lemma 9.5. Let r = dimk TF and put S = R[[X1, . . . , Xr]].
We are going to inductively construct for n ≥ 2 pairs (Jn, fn−1 : ξn → ξn−1) where
Jn ⊂ S is an decreasing sequence of ideals and fn−1 : ξn → ξn−1 is a morphism of
F lying over the projection S/Jn → S/Jn−1.
Step 1. Let J1 = mS . Let ξ1 be the unique (up to unique isomorphism) object of
F over k = S/J1 = S/mS

Step 2. Let J2 = m2
S + mRS. Then S/J2 = k[V ] with V = kX1 ⊕ . . . ⊕ kXr By

(S2) for F we get a bijection

F(S/J2) −→ TF ⊗k V,

see Lemmas 10.5 and 12.2. Choose a basis θ1, . . . , θr for TF and set ξ2 =
∑
θi⊗Xi ∈

Ob(F(S/J2)). The point of this choice is that
dξ2 : MorCΛ(S/J2, k[ϵ]) −→ TF

is surjective. Let f1 : ξ2 → ξ1 be the unique morphism.
Induction step. Assume (Jn, fn−1 : ξn → ξn−1) has been constructed for some
n ≥ 2. There is a minimal element Jn+1 of the set of ideals J ⊂ S satisfying: (a)
mSJn ⊂ J ⊂ Jn and (b) there exists a morphism ξn+1 → ξn lying over S/J →
S/Jn, see Lemma 13.3. Let fn : ξn+1 → ξn be any morphism of F lying over
S/Jn+1 → S/Jn.

Set J =
⋂
Jn. Set S = S/J . Set Jn = Jn/J . By Lemma 4.7 the sequence of ideals

(Jn) induces the mS-adic topology on S. Since (ξn, fn) is an object of F̂I(S), where
I is the filtration (Jn) of S, we see that (ξn, fn) induces an object ξ of F̂(S). see
Lemma 7.4.

https://stacks.math.columbia.edu/tag/06IW
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We prove ξ is versal. For versality it suffices to check conditions (1) and (2) of
Lemma 13.2. Condition (1) follows from our choice of ξ2 in Step 2 above. Suppose
given a diagram in F̂

y

��
η // x

lying over

B

f

��
S // A

in ĈΛ with f : B → A a small extension of Artinian rings. We have to show there
is a map S → B fitting into the diagram on the right. Choose n such that S → A
factors through S → S/Jn. This is possible as the sequence (Jn) induces the mS-
adic topology as we saw above. The pushforward of ξ along S → S/Jn is ξn. We
may factor ξ → x as ξ → ξn → x hence we get a diagram in F

y

��
ξn // x

lying over

B

f

��
S/Jn // A.

To check condition (2) of Lemma 13.2 it suffices to complete the diagram

S/Jn+1

��

// B

f

��
S/Jn // A

or equivalently, to complete the diagram

S/Jn ×A B

p1

��
S/Jn+1

88

// S/Jn.

If p1 has a section we are done. If not, by Lemma 3.8 (2) p1 is a small extension,
so by Lemma 3.12 (4) p1 is an essential surjection. Recall that S = R[[X1, . . . , Xr]]
and that we chose R such that R|CΛ is smooth. Hence there exists a map h : R → B
lifting the map R → S → S/Jn → A. By the universal property of a power series
ring there is an R-algebra map h : S = R[[X1, . . . , X2]] → B lifting the given map
S → S/Jn → A. This induces a map g : S → S/Jn ×A B making the solid square
in the diagram

S

��

g
// S/Jn ×A B

p1

��
S/Jn+1

88

// S/Jn

commute. Then g is a surjection since p1 is an essential surjection. We claim the
ideal K = Ker(g) of S satisfies conditions (a) and (b) of the construction of Jn+1
in the induction step above. Namely, K ⊂ Jn is clear and mSJn ⊂ K as p1 is a
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small extension; this proves (a). By (S1) applied to

y

��
ξn // x,

there exists a lifting of ξn to S/K ∼= S/Jn ×A B, so (b) holds. Since Jn+1 was the
minimal ideal with properties (a) and (b) this implies Jn+1 ⊂ K. Thus the desired
map S/Jn+1 → S/K ∼= S/Jn ×A B exists. □

Remark 13.5.0D3G Let F : CΛ → Sets be a predeformation functor satisfying (S1) and
(S2). The condition dimk TF < ∞ is precisely condition (H3) from Schlessinger’s
paper. Recall that (S1) and (S2) correspond to conditions (H1) and (H2), see
Remark 10.3. Thus Lemma 13.4 tells us

(H1) + (H2) + (H3) ⇒ there exists a versal formal object

for predeformation functors. We will make the link with hulls in Remark 15.6.

14. Minimal versal formal objects

06T0 We do a little bit of work to try and understand (non)uniqueness of versal formal
objects. It turns out that if a predeformation category has a versal formal object,
then it has a minimal versal formal object and any two such are isomorphic. More-
over, all versal formal objects are “more or less” the same up to replacing the base
ring by a power series extension.

Let F be a category cofibred in groupoids over CΛ. For every object x of F lying
over A ∈ Ob(CΛ) consider the category Sx with objects

Ob(Sx) = {x′ → x | x′ → x lies over A′ ⊂ A}

and morphisms are morphisms over x. For every y → x in F lying over f : B → A
in CΛ there is a functor f∗ : Sy → Sx defined as follows: Given y′ → y lying over
B′ ⊂ B set A′ = f(B′) and let y′ → x′ be over B′ → f(B′) be the pushforward of
y′. By the axioms of a category cofibred in groupoids we obtain a unique morphism
x′ → x lying over f(B′) → A such that

y′

��

// x′

��
y // x

commutes. Then x′ → x is an object of Sx. We say an object x′ → x of Sx is
minimal if any morphism (x′

1 → x) → (x′ → x) in Sx is an isomorphism, i.e.,
x′ and x′

1 are defined over the same subring of A. Since A has finite length as a
Λ-module we see that minimal objects always exist.

Lemma 14.1.06T1 Let F be a category cofibred in groupoids over CΛ which has (S1).
(1) For y → x in F a minimal object in Sy maps to a minimal object of Sx.
(2) For y → x in F lying over a surjection f : B → A in CΛ every minimal

object of Sx is the image of a minimal object of Sy.

https://stacks.math.columbia.edu/tag/0D3G
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Proof. Proof of (1). Say y → x lies over f : B → A. Let y′ → y lying over B′ ⊂ B
be a minimal object of Sy. Let

y′

��

// x′

��
y // x

lying over

B′

��

// f(B′)

��
B // A

be as in the construction of f∗ above. Suppose that (x′′ → x) → (x′ → x) is
a morphism of Sx with x′′ → x′ lying over A′′ ⊂ f(B′). By (S1) there exists
y′′ → y′ lying over B′ ×f(B′) A

′′ → B′. Since y′ → y is minimal we conclude that
B′ ×f(B′) A

′′ → B′ is an isomorphism, which implies that A′′ = f(B′), i.e., x′ → x
is minimal.
Proof of (2). Suppose f : B → A is surjective and y → x lies over f . Let
x′ → x be a minimal object of Sx lying over A′ ⊂ A. By (S1) there exists y′ → y
lying over B′ = f−1(A′) = B ×A A′ → B whose image in Sx is x′ → x. So
f∗(y′ → y) = x′ → x. Choose a morphism (y′′ → y) → (y′ → y) in Sy with y′′ → y
a minimal object (this is possible by the remark on lengths above the lemma). Then
f∗(y′′ → y) is an object of Sx which maps to x′ → x (by functoriality of f∗) hence
is isomorphic to x′ → x by minimality of x′ → x. □

Lemma 14.2.06T2 Let F be a category cofibred in groupoids over CΛ which has (S1).
Let ξ be a versal formal object of F lying over R. There exists a morphism ξ′ → ξ
lying over R′ ⊂ R with the following minimality properties

(1) for every f : R → A with A ∈ Ob(CΛ) the pushforwards

ξ′

��

// x′

��
ξ // x

lying over

R′

��

// f(R′)

��
R // A

produce a minimal object x′ → x of Sx, and
(2) for any morphism of formal objects ξ′′ → ξ′ the corresponding morphism

R′′ → R′ is surjective.

Proof. Write ξ = (R, ξn, fn). Set R′
1 = k and ξ′

1 = ξ1. Suppose that we have
constructed minimal objects ξ′

m → ξm of Sξm
lying over R′

m ⊂ R/mmR for m ≤ n
and morphisms f ′

m : ξ′
m+1 → ξ′

m compatible with fm for m ≤ n−1. By Lemma 14.1
(2) there exists a minimal object ξ′

n+1 → ξn+1 lying over R′
n+1 ⊂ R/mn+1

R whose
image is ξ′

n → ξn over R′
n ⊂ R/mnR. This produces the commutative diagram

ξ′
n+1

f ′
n

//

��

ξ′
n

��
ξn+1

fn // ξn

by construction. Moreover the ring map R′
n+1 → R′

n is surjective. Set R′ =
limnR

′
n. Then R′ → R is injective.

However, it isn’t a priori clear that R′ is Noetherian. To prove this we use that ξ
is versal. Namely, versality implies that there exists a morphism ξ → ξ′

n in F̂ , see
Lemma 8.11. The corresponding map R → R′

n has to be surjective (as ξ′
n → ξn
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is minimal in Sξn
). Thus the dimensions of the cotangent spaces are bounded and

Lemma 4.8 implies R′ is Noetherian, i.e., an object of ĈΛ. By Lemma 7.4 (plus
the result on filtrations of Lemma 4.8) the sequence of elements ξ′

n defines a formal
object ξ′ over R′ and we have a map ξ′ → ξ.

By construction (1) holds for R → R/mnR for each n. Since each R → A as in (1)
factors through R → R/mnR → A we see that (1) for x′ → x over f(R) ⊂ A follows
from the minimality of ξ′

n → ξn over R′
n → R/mnR by Lemma 14.1 (1).

If R′′ → R′ as in (2) is not surjective, then R′′ → R′ → R′
n would not be surjective

for some n and ξ′
n → ξn wouldn’t be minimal, a contradiction. This contradiction

proves (2). □

Lemma 14.3.06T3 Let F be a category cofibred in groupoids over CΛ which has (S1).
Let ξ be a versal formal object of F lying over R. Let ξ′ → ξ be a morphism of
formal objects lying over R′ ⊂ R as constructed in Lemma 14.2. Then

R ∼= R′[[x1, . . . , xr]]

is a power series ring over R′. Moreover, ξ′ is a versal formal object too.

Proof. By Lemma 8.11 there exists a morphism ξ → ξ′. By Lemma 14.2 the
corresponding map f : R → R′ induces a surjection f |R′ : R′ → R′. This is an
isomorphism by Algebra, Lemma 31.10. Hence I = Ker(f) is an ideal of R such
that R = R′ ⊕ I. Let x1, . . . , xn ∈ I be elements which form a basis for I/mRI.
Consider the map S = R′[[X1, . . . , Xr]] → R mapping Xi to xi. For every n ≥ 1
we get a surjection of Artinian R′-algebras B = S/mnS → R/mnR = A. Denote
y ∈ Ob(F(B), resp. x ∈ Ob(F(A)) the pushforward of ξ′ along R′ → S → B, resp.
R′ → S → A. Note that x is also the pushforward of ξ along R → A as ξ is the
pushforward of ξ′ along R′ → R. Thus we have a solid diagram

y

��
ξ //

@@

x

lying over

S/mnS

��
R //

==

R/mnR

Because ξ is versal, using Remark 8.10 we obtain the dotted arrows fitting into these
diagrams. In particular, the maps S/mnS → R/mnR have sections hn : R/mnR →
S/mnS . It follows from Lemma 4.9 that S → R is an isomorphism.

As ξ is a pushforward of ξ′ along R′ → R we obtain from Remark 7.13 a commu-
tative diagram

R|CΛ
//

ξ !!

R′|CΛ

ξ′
}}

F
Since R′ → R has a left inverse (namely R → R/I = R′) we see that R|CΛ → R′|CΛ

is essentially surjective. Hence by Lemma 8.7 we see that ξ′ is smooth, i.e., ξ′ is a
versal formal object. □

Motivated by the preceding lemmas we make the following definition.

https://stacks.math.columbia.edu/tag/06T3
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Definition 14.4.06T4 Let F be a predeformation category. We say a versal formal
object ξ of F is minimal3 if for any morphism of formal objects ξ′ → ξ the underlying
map on rings is surjective. Sometimes a minimal versal formal object is called
miniversal.

The work in this section shows this definition is reasonable. First of all, the existence
of a versal formal object implies that F has (S1). Then the preceding lemmas show
there exists a minimal versal formal object. Finally, any two minimal versal formal
objects are isomorphic. Here is a summary of our results (with detailed proofs).

Lemma 14.5.06T5 Let F be a predeformation category which has a versal formal
object. Then

(1) F has a minimal versal formal object,
(2) minimal versal objects are unique up to isomorphism, and
(3) any versal object is the pushforward of a minimal versal object along a power

series ring extension.

Proof. Suppose F has a versal formal object ξ over R. Then it satisfies (S1), see
Lemma 13.1. Let ξ′ → ξ over R′ ⊂ R be any of the morphisms constructed in
Lemma 14.2. By Lemma 14.3 we see that ξ′ is versal, hence it is a minimal versal
formal object (by construction). This proves (1). Also, R ∼= R′[[x1, . . . , xn]] which
proves (3).

Suppose that ξi/Ri are two minimal versal formal objects. By Lemma 8.11 there
exist morphisms ξ1 → ξ2 and ξ2 → ξ1. The corresponding ring maps f : R1 → R2
and g : R2 → R1 are surjective by minimality. Hence the compositions g ◦f : R1 →
R1 and f ◦ g : R2 → R2 are isomorphisms by Algebra, Lemma 31.10. Thus f and g
are isomorphisms whence the maps ξ1 → ξ2 and ξ2 → ξ1 are isomorphisms (because
F̂ is cofibred in groupoids by Lemma 7.2). This proves (2) and finishes the proof
of the lemma. □

15. Miniversal formal objects and tangent spaces

06IL The general notion of minimality introduced in Definition 14.4 can sometimes be
deduced from the behaviour on tangent spaces. Let ξ be a formal object of the
predeformation category F and let ξ : R|CΛ → F be the corresponding morphism.
Then we can consider the following the condition

(15.0.1)06IM dξ : DerΛ(R, k) → TF is bijective

and the condition

(15.0.2)06T6 dξ : DerΛ(R, k) → TF is bijective on DerΛ(k, k)-orbits.

Here we are using the identification TR|CΛ = DerΛ(R, k) of Example 11.11 and the
action (12.6.2) of derivations on the tangent spaces. If k′ ⊂ k is separable, then
DerΛ(k, k) = 0 and the two conditions are equivalent. It turns out that, in the
presence of condition (S2) a versal formal object is minimal if and only if ξ satisfies
(15.0.2). Moreover, if ξ satisfies (15.0.1), then F satisfies (S2).

3This may be nonstandard terminology. Many authors tie this notion in with properties of
tangent spaces. We will make the link in Section 15.
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Lemma 15.1.06IR Let F be a predeformation category. Let ξ be a versal formal
object of F such that (15.0.2) holds. Then ξ is a minimal versal formal object. In
particular, such ξ are unique up to isomorphism.

Proof. If ξ is not minimal, then there exists a morphism ξ′ → ξ lying over R′ → R
such that R = R′[[x1, . . . , xn]] with n > 0, see Lemma 14.5. Thus dξ factors as

DerΛ(R, k) → DerΛ(R′, k) → TF

and we see that (15.0.2) cannot hold because D : f 7→ ∂/∂x1(f) mod mR is an
element of the kernel of the first arrow which is not in the image of DerΛ(k, k) →
DerΛ(R, k). □

Lemma 15.2.06IV Let F be a predeformation category. Let ξ be a versal formal object
of F such that (15.0.1) holds. Then

(1) F satisfies (S1).
(2) F satisfies (S2).
(3) dimk TF is finite.

Proof. Condition (S1) holds by Lemma 13.1. The first part of (S2) holds since
(S1) holds. Let

y
c
//

a

��

xϵ

e

��
x

d // x0

and

y′
c′
//

a′

��

xϵ

e

��
x

d // x0

lying over

A×k k[ϵ] //

��

k[ϵ]

��
A // k

be diagrams as in the second part of (S2). As above we can find morphisms b : ξ → y
and b′ : ξ → y′ such that

ξ
b′
//

b

��

y′

a′

��
y

a // x

commutes. Let p : F → CΛ denote the structure morphism. Say p̂(ξ) = R, i.e., ξ
lies over R ∈ Ob(ĈΛ). We see that the pushforward of ξ via p(c) ◦ p(b) is xϵ and
that the pushforward of ξ via p(c′) ◦ p(b′) is xϵ. Since ξ satisfies (15.0.1), we see
that p(c) ◦ p(b) = p(c′) ◦ p(b′) as maps R → k[ϵ]. Hence p(b) = p(b′) as maps from
R → A×k k[ϵ]. Thus we see that y and y′ are isomorphic to the pushforward of ξ
along this map and we get a unique morphism y → y′ over A ×k k[ϵ] compatible
with b and b′ as desired.

Finally, by Example 11.11 we see dimk TF = dimk TR|CΛ is finite. □

Example 15.3.06T7 There exist predeformation categories which have a versal formal
object satisfying (15.0.2) but which do not satisfy (S2). A quick example is to take
F = k[ϵ]/G where G ⊂ AutCΛ(k[ϵ]) is a finite nontrivial subgroup. Namely, the map
k[ϵ] → F is smooth, but the tangent space of F does not have a natural k-vector
space structure (as it is a quotient of a k-vector space by a finite group).

Lemma 15.4.06T8 Let F be a predeformation category satisfying (S2) which has a
versal formal object. Then its minimal versal formal object satisfies (15.0.2).
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Proof. Let ξ be a minimal versal formal object for F , see Lemma 14.5. Say ξ lies
over R ∈ Ob(ĈΛ). In order to parse (15.0.2) we point out that TF has a natural k-
vector space structure (see Lemma 12.2), that dξ : DerΛ(R, k) → TF is linear (see
Lemma 12.4), and that the action of DerΛ(k, k) is given by addition (see Lemma
12.6). Consider the diagram

Homk(mR/m2
R, k)

K // DerΛ(R, k)
dξ

//

OO

TF

DerΛ(k, k)

OO 77

The vector space K is the kernel of dξ. Note that the middle column is exact in
the middle as it is dual to the sequence (3.10.1). If (15.0.2) fails, then we can find
a nonzero element D ∈ K which does not map to zero in Homk(mR/m2

R, k). This
means there exists an t ∈ mR such that D(t) = 1. Set R′ = {a ∈ R | D(a) = 0}.
As D is a derivation this is a subring of R. Since D(t) = 1 we see that R′ → k
is surjective (compare with the proof of Lemma 3.12). Note that mR′ = Ker(D :
mR → k) is an ideal of R and m2

R ⊂ mR′ . Hence
mR/m

2
R = mR′/m2

R + kt

which implies that the map
R′/m2

R ×k k[ϵ] → R/m2
R

sending ϵ to t is an isomorphism. In particular there is a map R/m2
R → R′/m2

R.
Let ξ → y be a morphism lying over R → R/m2

R. Let y → x be a morphism lying
over R/m2

R → R′/m2
R. Let y → xϵ be a morphism lying over R/m2

R → k[ϵ]. Let x0
be the unique (up to unique isomorphism) object of F over k. By the axioms of a
category cofibred in groupoids we obtain a commutative diagram

y //

��

xϵ

��
x // x0

lying over

R′/m2
R ×k k[ϵ] //

��

k[ϵ]

��
R′/m2

R
// k.

Because D ∈ K we see that xϵ is isomorphic to 0 ∈ F(k[ϵ]), i.e., xϵ is the pushfor-
ward of x0 via k → k[ϵ], a 7→ a. Hence by Lemma 10.7 we see that there exists a
morphism x → y. Since lengthΛ(R′/m2

R) < lengthΛ(R/m2
R) the corresponding ring

map R′/m2
R → R/m2

R is not surjective. This contradicts the minimality of ξ/R,
see part (1) of Lemma 14.2. This contradiction shows that such a D cannot exist,
hence we win. □

Theorem 15.5.06IX Let F be a predeformation category. Consider the following
conditions

(1) F has a minimal versal formal object satisfying (15.0.1),
(2) F has a minimal versal formal object satisfying (15.0.2),
(3) the following conditions hold:

(a) F satisfies (S1).

https://stacks.math.columbia.edu/tag/06IX
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(b) F satisfies (S2).
(c) dimk TF is finite.

We always have
(1) ⇒ (3) ⇒ (2).

If k′ ⊂ k is separable, then all three are equivalent.

Proof. Lemma 15.2 shows that (1) ⇒ (3). Lemmas 13.4 and 15.4 show that (3) ⇒
(2). If k′ ⊂ k is separable then DerΛ(k, k) = 0 and we see that (15.0.1) = (15.0.2),
i.e., (1) is the same as (2).

An alternative proof of (3) ⇒ (1) in the classical case is to add a few words to the
proof of Lemma 13.4 to see that one can right away construct a versal object which
satisfies (15.0.1) in this case. This avoids the use of Lemma 13.4 in the classical
case. Details omitted. □

Remark 15.6.06IY Let F : CΛ → Sets be a predeformation functor satisfying (S1) and
(S2) and dimk TF < ∞. Recall that these conditions correspond to the conditions
(H1), (H2), and (H3) from Schlessinger’s paper, see Remark 13.5. Now, in the
classical case (or if k′ ⊂ k is separable) following Schlessinger we introduce the
notion of a hull: a hull is a versal formal object ξ ∈ F̂ (R) such that dξ : TR|CΛ →
TF is an isomorphism, i.e., (15.0.1) holds. Thus Theorem 15.5 tells us

(H1) + (H2) + (H3) ⇒ there exists a hull

in the classical case. In other words, our theorem recovers Schlessinger’s theorem
on the existence of hulls.

Remark 15.7.06IZ Let F be a predeformation category. Recall that F → F is smooth,
see Remark 8.5. Hence if ξ ∈ F̂(R) is a versal formal object, then the composition

R|CΛ −→ F −→ F

is smooth (Lemma 8.7) and we conclude that the image ξ of ξ in F is a versal
formal object. If (15.0.1) holds, then ξ induces an isomorphism TR|CΛ → TF
because F → F identifies tangent spaces. Hence in this case ξ is a hull for F , see
Remark 15.6. By Theorem 15.5 we can always find such a ξ if k′ ⊂ k is separable
and F is a predeformation category satisfying (S1), (S2), and dimk TF < ∞.

Example 15.8.06T9 In Lemma 9.5 we constructed objects R ∈ ĈΛ such that R|CΛ is
smooth and such that

H1(Lk/Λ) = mR/m
2
R and ΩR/Λ ⊗R k = Ωk/Λ

Let us reinterpret this using the theorem above. Namely, consider F = CΛ as a
category cofibred in groupoids over itself (using the identity functor). Then F is
a predeformation category, satisfies (S1) and (S2), and we have TF = 0. Thus
F satisfies condition (3) of Theorem 15.5. The theorem implies that (2) holds,
i.e., we can find a minimal versal formal object ξ ∈ F̂(S) over some S ∈ ĈΛ
satisfying (15.0.2). Lemma 9.3 shows that Λ → S is formally smooth in the mS-
adic topology (because ξ : R|CΛ → F = CΛ is smooth). Now condition (15.0.2) tells
us that DerΛ(S, k) → 0 is bijective on DerΛ(k, k)-orbits. This means the injection
DerΛ(k, k) → DerΛ(S, k) is also surjective. In other words, we have ΩS/Λ ⊗S k =
Ωk/Λ. Since Λ → S is formally smooth in the mS-adic topology, we can apply More
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on Algebra, Lemma 40.4 to conclude the exact sequence (3.10.2) turns into a pair
of identifications

H1(Lk/Λ) = mS/m
2
S and ΩS/Λ ⊗S k = Ωk/Λ

Reading the argument backwards, we find that the R constructed in Lemma 9.5 car-
ries a minimal versal object. By the uniqueness of minimal versal objects (Lemma
14.5) we also conclude R ∼= S, i.e., the two constructions give the same answer.

16. Rim-Schlessinger conditions and deformation categories

06J1 There is a very natural property of categories fibred in groupoids over CΛ which is
easy to check in practice and which implies Schlessinger’s properties (S1) and (S2)
we have introduced earlier.

Definition 16.1.06J2 Let F be a category cofibered in groupoids over CΛ. We say
that F satisfies condition (RS) if for every diagram in F

x2

��
x1 // x

lying over

A2

��
A1 // A

in CΛ with A2 → A surjective, there exists a fiber product x1 ×x x2 in F such that
the diagram

x1 ×x x2 //

��

x2

��
x1 // x

lies over

A1 ×A A2 //

��

A2

��
A1 // A.

Lemma 16.2.06J3 Let F be a category cofibered in groupoids over CΛ satisfying (RS).
Given a commutative diagram in F

y //

��

x2

��
x1 // x

lying over

A1 ×A A2 //

��

A2

��
A1 // A.

with A2 → A surjective, then it is a fiber square.

Proof. Since F satisfies (RS), there exists a fiber product diagram

x1 ×x x2 //

��

x2

��
x1 // x

lying over

A1 ×A A2 //

��

A2

��
A1 // A.

The induced map y → x1 ×x x2 lies over id : A1 ×A A1 → A1 ×A A1, hence it is an
isomorphism. □

Lemma 16.3.06J4 Let F be a category cofibered in groupoids over CΛ. Then F satisfies
(RS) if the condition in Definition 16.1 is assumed to hold only when A2 → A is a
small extension.

Proof. Apply Lemma 3.3. The proof is similar to that of Lemma 8.2. □

https://stacks.math.columbia.edu/tag/06J2
https://stacks.math.columbia.edu/tag/06J3
https://stacks.math.columbia.edu/tag/06J4


FORMAL DEFORMATION THEORY 49

Lemma 16.4.06J5 Let F be a category cofibered in groupoids over CΛ. The following
are equivalent

(1) F satisfies (RS),
(2) the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) see (10.1.1) is an equiva-

lence of categories whenever A2 → A is surjective, and
(3) same as in (2) whenever A2 → A is a small extension.

Proof. Assume (1). By Lemma 16.2 we see that every object of F(A1 ×A A2) is
of the form x1 ×x x2. Moreover

MorA1×AA2(x1 ×x x2, y1 ×y y2) = MorA1(x1, y1) ×MorA(x,y) MorA2(x2, y2).
Hence we see that F(A1 ×A A2) is a 2-fibre product of F(A1) with F(A2) over
F(A) by Categories, Remark 31.5. In other words, we see that (2) holds.
The implication (2) ⇒ (3) is immediate.
Assume (3). Let q1 : A1 → A and q2 : A2 → A be given with q2 a small exten-
sion. We will use the description of the 2-fibre product F(A1) ×F(A) F(A2) from
Categories, Remark 31.5. Hence let y ∈ F(A1 ×A A2) correspond to (x1, x2, x, a1 :
x1 → x, a2 : x2 → x). Let z be an object of F lying over C. Then

MorF (z, y) = {(f, α) | f : C → A1 ×A A2, α : f∗z → y}
= {(f1, f2, α1, α2) | fi : C → Ai, αi : fi,∗z → xi,

q1 ◦ f1 = q2 ◦ f2, q1,∗α1 = q2,∗α2}
= MorF (z, x1) ×MorF (z,x) MorF (z, x2)

whence y is a fibre product of x1 and x2 over x. Thus we see that F satisfies (RS)
in case A2 → A is a small extension. Hence (RS) holds by Lemma 16.3. □

Remark 16.5.06J6 When F is cofibered in sets, condition (RS) is exactly condition
(H4) from Schlessinger’s paper [Sch68, Theorem 2.11]. Namely, for a functor F :
CΛ → Sets, condition (RS) states: If A1 → A and A2 → A are maps in CΛ with
A2 → A surjective, then the induced map F (A1 ×A A2) → F (A1) ×F (A) F (A2) is
bijective.

Lemma 16.6.06J7 Let F be a category cofibered in groupoids over CΛ. The condition
(RS) for F implies both (S1) and (S2) for F .

Proof. Using the reformulation of Lemma 16.4 and the explanation of (S1) fol-
lowing Definition 10.1 it is immediate that (RS) implies (S1). This proves the first
part of (S2). The second part of (S2) follows because Lemma 16.2 tells us that
y = x1 ×d,x0,e x2 = y′ if y, y′ are as in the second part of the definition of (S2) in
Definition 10.1. (In fact the morphism y → y′ is compatible with both a, a′ and
c, c′!) □

The following lemma is the analogue of Lemma 10.5. Recall that if F is a category
cofibred in groupoids over CΛ and x is an object of F lying over A, then we denote
AutA(x) = MorA(x, x) = MorF(A)(x, x). If x′ → x is a morphism of F lying over
A′ → A then there is a well defined map of groups AutA′(x′) → AutA(x).

Lemma 16.7.06J8 Let F be a category cofibered in groupoids over CΛ satisfying (RS).
The following conditions are equivalent:

(1) F satisfies (RS).
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(2) Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ with f2 surjective.
The induced map of sets of isomorphism classes

F(A1) ×F(A) F(A2) → F(A1) ×F(A) F(A2)

is injective.
(3) For every morphism x′ → x in F lying over a surjective ring map A′ → A,

the map AutA′(x′) → AutA(x) is surjective.
(4) For every morphism x′ → x in F lying over a small extension A′ → A, the

map AutA′(x′) → AutA(x) is surjective.

Proof. We prove that (1) is equivalent to (2) and (2) is equivalent to (3). The
equivalence of (3) and (4) follows from Lemma 3.3.

Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ with f2 surjective. By
Remark 16.5 we see F satisfies (RS) if and only if the map

F(A1 ×A A2) → F(A1) ×F(A) F(A2)

is bijective for any such f1, f2. This map is at least surjective since that is the
condition of (S1) and F satisfies (S1) by Lemmas 16.6 and 10.5. Moreover, this
map factors as

F(A1 ×A A2) −→ F(A1) ×F(A) F(A2) −→ F(A1) ×F(A) F(A2),

where the first map is a bijection since

F(A1 ×A A2) −→ F(A1) ×F(A) F(A2)

is an equivalence by (RS) for F . Hence (1) is equivalent to (2).

Assume (2) holds. Let x′ → x be a morphism in F lying over a surjective ring map
f : A′ → A. Let a ∈ AutA(x). The objects

(x′, x′, a : x → x), (x′, x′, id : x → x)

of F(A′) ×F(A) F(A′) have the same image in F(A′) ×F(A) F(A′). By (2) there
exists maps b1, b2 : x′ → x′ such that

x
a
//

f∗b1

��

x

f∗b2

��
x

id // x

commutes. Hence b−1
2 ◦ b1 ∈ AutA′(x′) has image a ∈ AutA(x). Hence (3) holds.

Assume (3) holds. Suppose

(x1, x2, a : (f1)∗x1 → (f2)∗x2), (x′
1, x

′
2, a

′ : (f1)∗x
′
1 → (f2)∗x

′
2)

are objects of F(A1) ×F(A) F(A2) with the same image in F(A1) ×F(A) F(A2).
Then there are morphisms b1 : x1 → x′

1 in F(A1) and b2 : x2 → x′
2 in F(A2). By

(3) we can modify b2 by an automorphism of x2 over A2 so that the diagram

(f1)∗x1 a
//

(f1)∗b1

��

(f2)∗x2

(f2)∗b2

��
(f1)∗x

′
1

a′
// (f2)∗x

′
2.
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commutes. This proves (x1, x2, a) ∼= (x′
1, x

′
2, a

′) in F(A1) ×F(A) F(A2). Hence (2)
holds. □

Finally we define the notion of a deformation category.

Definition 16.8.06J9 A deformation category is a predeformation category F satisfy-
ing (RS). A morphism of deformation categories is a morphism of categories over
CΛ.

Remark 16.9.06JA We say that a functor F : CΛ → Sets is a deformation functor if
the associated cofibered set is a deformation category, i.e. if F (k) is a one element
set and F satisfies (RS). If F is a deformation category, then F is a predeformation
functor but not necessarily a deformation functor, as Lemma 16.7 shows.

Example 16.10.06JB A prorepresentable functor F is a deformation functor. Namely,
suppose R ∈ Ob(ĈΛ) and F (A) = MorĈΛ

(R,A). There is a unique morphism
R → k, so F (k) is a one element set. Since

HomΛ(R,A1 ×A A2) = HomΛ(R,A1) ×HomΛ(R,A) HomΛ(R,A2)

the same is true for maps in ĈΛ and we see that F has (RS).

The following is one of our typical remarks on passing from a category cofibered
in groupoids to the predeformation category at a point over k: it says that this
process preserves (RS).

Lemma 16.11.06JC Let F be a category cofibered in groupoids over CΛ. Let x0 ∈
Ob(F(k)). Let Fx0 be the category cofibred in groupoids over CΛ constructed in Re-
mark 6.4. If F satisfies (RS), then so does Fx0 . In particular, Fx0 is a deformation
category.

Proof. Any diagram as in Definition 16.1 in Fx0 gives rise to a diagram in F and
the output of (RS) for this diagram in F can be viewed as an output for Fx0 as
well. □

The following lemma is the analogue of the fact that 2-fibre products of algebraic
stacks are algebraic stacks.

Lemma 16.12.06L4 Let
H ×F G //

��

G

g

��
H

f // F
be 2-fibre product of categories cofibered in groupoids over CΛ. If F ,G,H all satisfy
(RS), then H ×F G satisfies (RS).

Proof. If A is an object of CΛ, then an object of the fiber category of H ×F G over
A is a triple (u, v, a) where u ∈ H(A), v ∈ G(A), and a : f(u) → g(v) is a morphism
in F(A). Consider a diagram in H ×F G

(u2, v2, a2)

��
(u1, v1, a1) // (u, v, a)

lying over

A2

��
A1 // A

https://stacks.math.columbia.edu/tag/06J9
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in CΛ with A2 → A surjective. Since H and G satisfy (RS), there are fiber products
u1 ×u u2 and v1 ×v v2 lying over A1 ×A A2. Since F satisfies (RS), Lemma 16.2
shows

f(u1 ×u u2) //

��

f(u2)

��
f(u1) // f(u)

and

g(v1 ×v v2) //

��

g(v2)

��
g(v1) // g(v)

are both fiber squares in F . Thus we can view a1 ×a a2 as a morphism from
f(u1 ×u u2) to g(v1 ×v v2) over A1 ×A A2. It follows that

(u1 ×u u2, v1 ×v v2, a1 ×a a2)

��

// (u2, v2, a2)

��
(u1, v1, a1) // (u, v, a)

is a fiber square in H ×F G as desired. □

17. Lifts of objects

06JD The content of this section is that the tangent space has a principal homogeneous
action on the set of lifts along a small extension in the case of a deformation
category.

Definition 17.1.06JE Let F be a category cofibered in groupoids over CΛ. Let f :
A′ → A be a map in CΛ. Let x ∈ F(A). The category Lift(x, f) of lifts of x along
f is the category with the following objects and morphisms.

(1) Objects: A lift of x along f is a morphism x′ → x lying over f .
(2) Morphisms: A morphism of lifts from a1 : x′

1 → x to a2 : x′
2 → x is a

morphism b : x′
1 → x′

2 in F(A′) such that a2 = a1 ◦ b.
The set Lift(x, f) of lifts of x along f is the set of isomorphism classes of Lift(x, f).

Remark 17.2.06JF When the map f : A′ → A is clear from the context, we may write
Lift(x,A′) and Lift(x,A′) in place of Lift(x, f) and Lift(x, f).

Remark 17.3.06JG Let F be a category cofibred in groupoids over CΛ. Let x0 ∈
Ob(F(k)). Let V be a finite dimensional vector space. Then Lift(x0, k[V ]) is the
set of isomorphism classes of Fx0(k[V ]) where Fx0 is the predeformation category
of objects in F lying over x0, see Remark 6.4. Hence if F satisfies (S2), then so
does Fx0 (see Lemma 10.6) and by Lemma 12.2 we see that

Lift(x0, k[V ]) = TFx0 ⊗k V

as k-vector spaces.

Remark 17.4.06JH Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let

A1 ×A A2 //

��

A2

��
A1 // A

be a fibre square in CΛ such that either A1 → A or A2 → A is surjective. Let
x ∈ Ob(F(A)). Given lifts x1 → x and x2 → x of x to A1 and A2, we get by (RS)

https://stacks.math.columbia.edu/tag/06JE
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a lift x1 ×x x2 → x of x to A1 ×A A2. Conversely, by Lemma 16.2 any lift of x to
A1 ×A A2 is of this form. Hence a bijection

Lift(x,A1) × Lift(x,A2) −→ Lift(x,A1 ×A A2).

Similarly, if x1 → x is a fixed lifting of x to A1, then there is a bijection

Lift(x1, A1 ×A A2) −→ Lift(x,A2).

Now let
A′

1 ×A A2 //

��

A1 ×A A2 //

��

A2

��
A′

1
// A1 // A

be a composition of fibre squares in CΛ with both A′
1 → A1 and A1 → A surjective.

Let x1 → x be a morphism lying over A1 → A. Then by the above we have
bijections

Lift(x1, A
′
1 ×A A2) = Lift(x1, A

′
1) × Lift(x1, A1 ×A A2)

= Lift(x1, A
′
1) × Lift(x,A2).

Lemma 17.5.06JI Let F be a deformation category. Let A′ → A be a surjective ring
map in CΛ whose kernel I is annihilated by mA′ . Let x ∈ Ob(F(A)). If Lift(x,A′)
is nonempty, then there is a free and transitive action of TF ⊗k I on Lift(x,A′).

Proof. Consider the ring map g : A′ ×A A
′ → k[I] defined by the rule g(a1, a2) =

a1 ⊕ a2 − a1 (compare with Lemma 10.8). There is an isomorphism

A′ ×A A
′ ∼−→ A′ ×k k[I]

given by (a1, a2) 7→ (a1, g(a1, a2)). This isomorphism commutes with the projec-
tions to A′ on the first factor, and hence with the projections of A′ ×A A′ and
A′ ×k k[I] to A. Thus there is a bijection

(17.5.1)06TA Lift(x,A′ ×A A
′) −→ Lift(x,A′ ×k k[I])

By Remark 17.4 there is a bijection

(17.5.2)06TB Lift(x,A′) × Lift(x,A′) −→ Lift(x,A′ ×A A
′)

There is a commutative diagram

A′ ×k k[I] //

��

A×k k[I] //

��

k[I]

��
A′ // A // k.

Thus if we choose a pushforward x → x0 of x along A → k, we obtain by the end
of Remark 17.4 a bijection

(17.5.3)06TC Lift(x,A′ ×k k[I]) −→ Lift(x,A′) × Lift(x0, k[I])

Composing (17.5.2), (17.5.1), and (17.5.3) we get a bijection

Φ : Lift(x,A′) × Lift(x,A′) −→ Lift(x,A′) × Lift(x0, k[I]).

https://stacks.math.columbia.edu/tag/06JI
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This bijection commutes with the projections on the first factors. By Remark 17.3
we see that Lift(x0, k[I]) = TF ⊗k I. If pr2 is the second projection of Lift(x,A′) ×
Lift(x,A′), then we get a map

a = pr2 ◦ Φ−1 : Lift(x,A′) × (TF ⊗k I) −→ Lift(x,A′).
Unwinding all the above we see that a(x′ → x, θ) is the unique lift x′′ → x such that
g∗(x′, x′′) = θ in Lift(x0, k[I]) = TF ⊗k I. To see this is an action of TF ⊗k I on
Lift(x,A′) we have to show the following: if x′, x′′, x′′′ are lifts of x and g∗(x′, x′′) =
θ, g∗(x′′, x′′′) = θ′, then g∗(x′, x′′′) = θ + θ′. This follows from the commutative
diagram

A′ ×A A
′ ×A A

′
(a1,a2,a3)7→(g(a1,a2),g(a2,a3))

//

(a1,a2,a3) 7→g(a1,a3)
,,

k[I] ×k k[I] = k[I × I]

+
��

k[I]

The action is free and transitive because Φ is bijective. □

Remark 17.6.06JJ The action of Lemma 17.5 is functorial. Let φ : F → G be a
morphism of deformation categories. Let A′ → A be a surjective ring map whose
kernel I is annihilated by mA′ . Let x ∈ Ob(F(A)). In this situation φ induces the
vertical arrows in the following commutative diagram

Lift(x,A′) × (TF ⊗k I)

(φ,dφ⊗idI )
��

// Lift(x,A′)

φ

��
Lift(φ(x), A′) × (TG ⊗k I) // Lift(φ(x), A′)

The commutativity follows as each of the maps (17.5.2), (17.5.1), and (17.5.3) of
the proof of Lemma 17.5 gives rise to a similar commutative diagram.

18. Schlessinger’s theorem on prorepresentable functors

06JK We deduce Schlessinger’s theorem characterizing prorepresentable functors on CΛ.

Lemma 18.1.06JL Let F,G : CΛ → Sets be deformation functors. Let φ : F → G be a
smooth morphism which induces an isomorphism dφ : TF → TG of tangent spaces.
Then φ is an isomorphism.

Proof. We prove F (A) → G(A) is a bijection for all A ∈ Ob(CΛ) by induction on
lengthA(A). For A = k the statement follows from the assumption that F and G
are deformation functors. Suppose that the statement holds for rings of length less
than n and let A′ be a ring of length n. Choose a small extension f : A′ → A. We
have a commutative diagram

F (A′) //

F (f)
��

G(A′)

G(f)
��

F (A) ∼ // G(A)

where the map F (A) → G(A) is a bijection. By smoothness of F → G, F (A′) →
G(A′) is surjective (Lemma 8.8). Thus we can check bijectivity by checking it on
fibers F (f)−1(x) → G(f)−1(φ(x)) for x ∈ F (A) such that F (f)−1(x) is nonempty.

https://stacks.math.columbia.edu/tag/06JJ
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These fibers are precisely Lift(x,A′) and Lift(φ(x), A′) and by assumption we have
an isomorphism dφ ⊗ id : TF ⊗k Ker(f) → TG ⊗k Ker(f). Thus, by Lemma
17.5 and Remark 17.6, for x ∈ F (A) such that F (f)−1(x) is nonempty the map
F (f)−1(x) → G(f)−1(φ(x)) is a map of sets commuting with free transitive actions
by TF ⊗k Ker(f). Hence it is bijective. □

Note that in case k′ ⊂ k is separable condition (c) in the theorem below is empty.
Theorem 18.2.06JM Let F : CΛ → Sets be a functor. Then F is prorepresentable
if and only if (a) F is a deformation functor, (b) dimk TF is finite, and (c) γ :
DerΛ(k, k) → TF is injective.

Proof. Assume F is prorepresentable by R ∈ ĈΛ. We see F is a deformation
functor by Example 16.10. We see dimk TF is finite by Example 11.11. Finally,
DerΛ(k, k) → TF is identified with DerΛ(k, k) → DerΛ(R, k) by Example 11.14
which is injective because R → k is surjective.
Conversely, assume (a), (b), and (c) hold. By Lemma 16.6 we see that (S1) and
(S2) hold. Hence by Theorem 15.5 there exists a minimal versal formal object ξ of
F such that (15.0.2) holds. Say ξ lies over R. The map

dξ : DerΛ(R, k) → TF
is bijective on DerΛ(k, k)-orbits. Since the action of DerΛ(k, k) on the left hand
side is free by (c) and Lemma 12.6 we see that the map is bijective. Thus we see
that ξ is an isomorphism by Lemma 18.1. □

19. Infinitesimal automorphisms

06JN Let F be a category cofibered in groupoids over CΛ. Given a morphism x′ → x in
F lying over A′ → A, there is an induced homomorphism

AutA′(x′) → AutA(x).
Lemma 16.7 says that the cokernel of this homomorphism determines whether con-
dition (RS) on F passes to F . In this section we study the kernel of this homomor-
phism. We will see that it also gives a measure of how far F is from F .
Definition 19.1.06JP Let F be a category cofibered in groupoids over CΛ. Let x′ → x
be a morphism in F lying over A′ → A. The kernel

Inf(x′/x) = Ker(AutA′(x′) → AutA(x))
is the group of infinitesimal automorphisms of x′ over x.
Definition 19.2.06JQ Let F be a category cofibered in groupoids over CΛ. Let x0 ∈
Ob(F(k)). Assume a choice of pushforward x0 → x′

0 of x0 along the map k →
k[ϵ], a 7→ a has been made. Then there is a unique map x′

0 → x0 such that
x0 → x′

0 → x0 is the identity on x0. Then
Infx0(F) = Inf(x′

0/x0)
is the group of infinitesimal automorphisms of x0

Remark 19.3.06JR Up to canonical isomorphism Infx0(F) does not depend on the
choice of pushforward x0 → x′

0 because any two pushforwards are canonically iso-
morphic. Moreover, if y0 ∈ F(k) and x0 ∼= y0 in F(k), then Infx0(F) ∼= Infy0(F)
where the isomorphism depends (only) on the choice of an isomorphism x0 → y0.
In particular, Autk(x0) acts on Infx0(F).
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Remark 19.4.06JS Assume F is a predeformation category. Then
(1) for x0 ∈ Ob(F(k)) the automorphism group Autk(x0) is trivial and hence

Infx0(F) = Autk[ϵ](x′
0), and

(2) for x0, y0 ∈ Ob(F(k)) there is a unique isomorphism x0 → y0 and hence a
canonical identification Infx0(F) = Infy0(F).

Since F(k) is nonempty, choosing x0 ∈ Ob(F(k)) and setting
Inf(F) = Infx0(F)

we get a well defined group of infinitesimal automorphisms of F . With this notation
we have Inf(Fx0) = Infx0(F). Please compare with the equality TFx0 = Tx0F in
Remark 12.5.

We will see that Infx0(F) has a natural k-vector space structure when F satisfies
(RS). At the same time, we will see that if F satisfies (RS), then the infinitesimal
automorphisms Inf(x′/x) of a morphism x′ → x lying over a small extension are
governed by Infx0(F), where x0 is a pushforward of x to F(k). In order to do this,
we introduce the automorphism functor for any object x ∈ Ob(F) as follows.

Definition 19.5.06JT Let p : F → C be a category cofibered in groupoids over an
arbitrary base category C. Assume a choice of pushforwards has been made. Let
x ∈ Ob(F) and let U = p(x). Let U/C denote the category of objects under U . The
automorphism functor of x is the functor Aut(x) : U/C → Sets sending an object
f : U → V to AutV (f∗x) and sending a morphism

V ′ // V

U
f ′

``

f

??

to the homomorphism AutV ′(f ′
∗x) → AutV (f∗x) coming from the unique morphism

f ′
∗x → f∗x lying over V ′ → V and compatible with x → f ′

∗x and x → f∗x.

We will be concerned with the automorphism functors of objects in a category
cofibered in groupoids F over CΛ. If A ∈ Ob(CΛ), then the category A/CΛ is
nothing but the category CA, i.e. the category defined in Section 3 where we take
Λ = A and k = A/mA. Hence the automorphism functor of an object x ∈ Ob(F(A))
is a functor Aut(x) : CA → Sets.
The following lemma could be deduced from Lemma 16.12 by thinking about the
“inertia” of a category cofibred in groupoids, see for example Stacks, Section 7 and
Categories, Section 34. However, it is easier to see it directly.

Lemma 19.6.06JU Let F be a category cofibered in groupoids over CΛ satisfying (RS).
Let x ∈ Ob(F(A)). Then Aut(x) : CA → Sets satisfies (RS).

Proof. It follows that Aut(x) satisfies (RS) from the fully faithfulness of the functor
F(A1 ×A A2) → F(A1) ×F(A) F(A2) in Lemma 16.4. □

Lemma 19.7.06JV Let F be a category cofibered in groupoids over CΛ satisfying (RS).
Let x ∈ Ob(F(A)). Let x0 be a pushforward of x to F(k).

(1) Tidx0
Aut(x) has a natural k-vector space structure such that addition agrees

with composition in Tidx0
Aut(x). In particular, composition in Tidx0

Aut(x)
is commutative.
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(2) There is a canonical isomorphism Tidx0
Aut(x) → Tidx0

Aut(x0) of k-vector
spaces.

Proof. We apply Remark 6.4 to the functor Aut(x) : CA → Sets and the element
idx0 ∈ Aut(x)(k) to get a predeformation functor F = Aut(x)idx0

. By Lemmas 19.6
and 16.11 F is a deformation functor. By definition Tidx0

Aut(x) = TF = F (k[ϵ])
which has a natural k-vector space structure specified by Lemma 11.8.

Addition is defined as the composition

F (k[ϵ]) × F (k[ϵ]) −→ F (k[ϵ] ×k k[ϵ]) −→ F (k[ϵ])

where the first map is the inverse of the bijection guaranteed by (RS) and the second
is induced by the k-algebra map k[ϵ] ×k k[ϵ] → k[ϵ] which maps (ϵ, 0) and (0, ϵ) to
ϵ. If A → B is a ring map in CΛ, then F (A) → F (B) is a homomorphism where
F (A) = Aut(x)idx0

(A) and F (B) = Aut(x)idx0
(B) are groups under composition.

We conclude that + : F (k[ϵ])×F (k[ϵ]) → F (k[ϵ]) is a homomorphism where F (k[ϵ])
is regarded as a group under composition. With id ∈ F (k[ϵ]) the unit element we see
that +(v, id) = +(id, v) = v for any v ∈ F (k[ϵ]) because (id, v) is the pushforward
of v along the ring map k[ϵ] → k[ϵ] ×k k[ϵ] with ϵ 7→ (ϵ, 0). In general, given a
group G with multiplication ◦ and + : G × G → G is a homomorphism such that
+(g, 1) = +(1, g) = g, where 1 is the identity of G, then + = ◦. This shows addition
in the k-vector space structure on F (k[ϵ]) agrees with composition.

Finally, (2) is a matter of unwinding the definitions. Namely Tidx0
Aut(x) is the

set of automorphisms α of the pushforward of x along A → k → k[ϵ] which are
trivial modulo ϵ. On the other hand Tidx0

Aut(x0) is the set of automorphisms of
the pushforward of x0 along k → k[ϵ] which are trivial modulo ϵ. Since x0 is the
pushforward of x along A → k the result is clear. □

Remark 19.8.06JW We point out some basic relationships between infinitesimal au-
tomorphism groups, liftings, and tangent spaces to automorphism functors. Let F
be a category cofibered in groupoids over CΛ. Let x′ → x be a morphism lying over
a ring map A′ → A. Then from the definitions we have an equality

Inf(x′/x) = Lift(idx, A′)

where the liftings are of idx as an object of Aut(x′). If x0 ∈ Ob(F(k)) and x′
0 is

the pushforward to F(k[ϵ]), then applying this to x′
0 → x0 we get

Infx0(F) = Lift(idx0 , k[ϵ]) = Tidx0
Aut(x0),

the last equality following directly from the definitions.

Lemma 19.9.06JX Let F be a category cofibered in groupoids over CΛ satisfying (RS).
Let x0 ∈ Ob(F(k)). Then Infx0(F) is equal as a set to Tidx0

Aut(x0), and so has
a natural k-vector space structure such that addition agrees with composition of
automorphisms.

Proof. The equality of sets is as in the end of Remark 19.8 and the statement
about the vector space structure follows from Lemma 19.7. □

Lemma 19.10.07W6 Let φ : F → G be a morphism of categories cofibred in groupoids
over CΛ satisfying (RS). Let x0 ∈ Ob(F(k)). Then φ induces a k-linear map
Infx0(F) → Infφ(x0)(G).
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Proof. It is clear that φ induces a morphism from Aut(x0) → Aut(φ(x0)) which
maps the identity to the identity. Hence this follows from the result for tangent
spaces, see Lemma 12.4. □

Lemma 19.11.06JY Let F be a category cofibered in groupoids over CΛ satisfying (RS).
Let x′ → x be a morphism lying over a surjective ring map A′ → A with kernel I
annihilated by mA′ . Let x0 be a pushforward of x to F(k). Then Inf(x′/x) has a
free and transitive action by Tidx0

Aut(x′) ⊗k I = Infx0(F) ⊗k I.

Proof. This is just the analogue of Lemma 17.5 in the setting of automorphism
sheaves. To be precise, we apply Remark 6.4 to the functor Aut(x′) : CA′ → Sets
and the element idx0 ∈ Aut(x)(k) to get a predeformation functor F = Aut(x′)idx0

.
By Lemmas 19.6 and 16.11 F is a deformation functor. Hence Lemma 17.5 gives a
free and transitive action of TF ⊗k I on Lift(idx, A′), because as Lift(idx, A′) is a
group it is always nonempty. Note that we have equalities of vector spaces

TF = Tidx0
Aut(x′) ⊗k I = Infx0(F) ⊗k I

by Lemma 19.7. The equality Inf(x′/x) = Lift(idx, A′) of Remark 19.8 finishes the
proof. □

Lemma 19.12.06JZ Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x′ → x be a morphism in F lying over a surjective ring map. Let x0 be
a pushforward of x to F(k). If Infx0(F) = 0 then Inf(x′/x) = 0.

Proof. Follows from Lemmas 3.3 and 19.11. □

Lemma 19.13.06K0 Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x0 ∈ Ob(F(k)). Then Infx0(F) = 0 if and only if the natural morphism
Fx0 → Fx0 of categories cofibered in groupoids is an equivalence.

Proof. The morphism Fx0 → Fx0 is an equivalence if and only if Fx0 is fibered
in setoids, cf. Categories, Section 39 (a setoid is by definition a groupoid in which
the only automorphism of any object is the identity). We prove that Infx0(F) = 0
if and only if this condition holds for Fx0 . Obviously if Fx0 is fibered in setoids
then Infx0(F) = 0. Conversely assume Infx0(F) = 0. Let A be an object of CΛ.
Then by Lemma 19.12, Inf(x/x0) = 0 for any object x → x0 of Fx0(A). Since by
definition Inf(x/x0) equals the group of automorphisms of x → x0 in Fx0(A), this
proves Fx0(A) is a setoid. □

20. Applications

0DYM We collect some results on deformation categories we will use later.

Lemma 20.1.06L5 Let f : H → F and g : G → F be 1-morphisms of deformation
categories. Then

(1) W = H ×F G is a deformation category, and
(2) we have a 6-term exact sequence of vector spaces

0 → Inf(W) → Inf(H) ⊕ Inf(G) → Inf(F) → TW → TH ⊕ TG → TF

Proof. Part (1) follows from Lemma 16.12 and the fact that W(k) is the fibre
product of two setoids with a unique isomorphism class over a setoid with a unique
isomorphism class.
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Part (2). Let w0 ∈ Ob(W(k)) and let x0, y0, z0 be the image of w0 in F ,H,G.
Then Inf(W) = Infw0(W) and simlarly for H, G, and F , see Remark 19.4. We
apply Lemmas 12.4 and 19.10 to get all the linear maps except for the “boundary
map” δ : Infx0(F) → TW. We will insert suitable signs later.
Construction of δ. Choose a pushforward w0 → w′

0 along k → k[ϵ]. Denote x′
0, y

′
0, z

′
0

the images of w′
0 in F ,H,G. In particular we obtain isomorphisms b′ : f(y′

0) → x′
0

and c′ : x′
0 → g(z′

0). Denote b : f(y0) → x0 and c : x0 → g(z0) the pushforwards
along k[ϵ] → k. Observe that this means w′

0 = (k[ϵ], y′
0, z

′
0, c

′ ◦ b′) and w0 =
(k, y0, z0, c ◦ b) in terms of the explicit form of the fibre product of categories, see
Remarks 5.2 (13). Given α : x′

0 → x′
0 we set δ(α) = (k[ϵ], y′

0, z
′
0, c

′ ◦ α ◦ b′) which is
indeed an object of W over k[ϵ] and comes with a morphism (k[ϵ], y′

0, z
′
0, c

′ ◦α◦b′) →
w0 over k[ϵ] → k as α pushes forward to the identity over k. More generally, for
any k-vector space V we can define a map

Lift(idx0 , k[V ]) −→ Lift(w0, k[V ])
using exactly the same formulae. This construction is functorial in the vector space
V (details omitted). Hence δ is k-linear by an application of Lemma 11.5.
Having constructed these maps it is straightforward to show the sequence is exact.
Injectivity of the first map comes from the fact that f×g : W → H×G is faithful. If
(β, γ) ∈ Infy0(H)⊕Infz0(G) map to the same element of Infx0(F) then (β, γ) defines
an automorphism of w′

0 = (k[ϵ], y′
0, z

′
0, c

′ ◦ b′) whence exactness at the second spot.
If α as above gives the trivial deformation (k[ϵ], y′

0, z
′
0, c

′ ◦ α ◦ b′) of w0, then the
isomorphism w′

0 = (k[ϵ], y′
0, z

′
0, c

′ ◦ b′) → (k[ϵ], y′
0, z

′
0, c

′ ◦ α ◦ b′) produces a pair
(β, γ) which is a preimage of α. If w = (k[ϵ], y, z, ϕ) is a deformation of w0 such
that y′

0
∼= y and z ∼= z′

0 then the map

f(y′
0) → f(y) ϕ−→ g(z) → g(z′

0)
is an α which maps to w under δ. Finally, if y and z are deformations of y0 and z0
and there exists an isomorphism ϕ : f(y) → g(z) of deformations of f(y0) = x0 =
g(z0) then we get a preimage w = (k[ϵ], y, z, ϕ) of (x, y) in TW. This finishes the
proof. □

Lemma 20.2.0DYN Let H1 → G, H2 → G, and G → F be maps of categories cofibred
in groupoids over CΛ. Assume

(1) F and G are deformation categories,
(2) TG → TF is injective, and
(3) Inf(G) → Inf(F) is surjective.

Then H1 ×G H2 → H1 ×F H2 is smooth.

Proof. Denote pi : Hi → G and q : G → F be the given maps. Let A′ → A be a
small extension in CΛ. An object of H1 ×F H2 over A′ is a triple (x′

1, x
′
2, a

′) where x′
i

is an object of Hi over A′ and a′ : q(p1(x′
1)) → q(p2(x′

2)) is a morphism of the fibre
category of F over A′. By pushforward along A′ → A we get (x1, x2, a). Lifting
this to an object of H1 ×G H2 over A means finding a morphism b : p1(x1) → p2(x2)
over A with q(b) = a. Thus we have to show that we can lift b to a morphism
b′ : p1(x′

1) → p2(x′
2) whose image under q is a′.

Observe that we can think of
p1(x′

1) → p1(x1) b−→ p2(x2) and p2(x′
2) → p2(x2)

https://stacks.math.columbia.edu/tag/0DYN
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as two objects of Lift(p2(x2), A′ → A). The functor q sends these objects to the
two objects

q(p1(x′
1)) → q(p1(x1)) b−→ q(p2(x2)) and q(p2(x′

2)) → q(p2(x2))
of Lift(q(p2(x2)), A′ → A) which are isomorphic using the map a′ : q(p1(x′

1)) →
q(p2(x′

2)). On the other hand, the functor
q : Lift(p2(x2), A′ → A) → Lift(q(p2(x2)), A′ → A)

defines a injection on isomorphism classes by Lemma 17.5 and our assumption
on tangent spaces. Thus we see that there is a morphism b′ : p1(x′

1) → p2(x′
2)

whose pushforward to A is b. However, we may need to adjust our choice of b′

to achieve q(b′) = a′. For this it suffices to see that q : Inf(p2(x′
2)/p2(x2)) →

Inf(q(p2(x′
2))/q(p2(x2))) is surjective. This follows from our assumption on infini-

tesimal automorphisms and Lemma 19.11. □

Lemma 20.3.0DYP Let f : F → G be a map of deformation categories. Let x0 ∈
Ob(F(k)) with image y0 ∈ Ob(G(k)). If

(1) the map TF → TG is surjective, and
(2) for every small extension A′ → A in CΛ and x ∈ F(A) with image y ∈ G(A)

if there is a lift of y to A′, then there is a lift of x to A′,
then F → G is smooth (and vice versa).

Proof. Let A′ → A be a small extension. Let x ∈ F(A). Let y′ → f(x) be a
morphism in G over A′ → A. Consider the functor Lift(A′, x) → Lift(A′, f(x))
induced by f . We have to show that there exists an object x′ → x of Lift(A′, x)
mapping to y′ → f(x), see Lemma 8.2. By condition (2) we know that Lift(A′, x)
is not the empty category. By condition (2) and Lemma 17.5 we conlude that the
map on isomorphism classes is surjective as desired. □

Lemma 20.4.0E3R Let F → G → H be maps of categories cofibred in groupoids over
CΛ. If

(1) F , G are deformation categories
(2) the map TF → TG is surjective, and
(3) F → H is smooth.

Then F → G is smooth.

Proof. Let A′ → A be a small extension in CΛ and let x ∈ F(A) with image
y ∈ G(A). Assume there is a lift y′ ∈ G(A′). According to Lemma 20.3 all we have
to do is check that x has a lift too. Take the image z′ ∈ H(A′) of y′. Since F → H
is smooth, there is an x′ ∈ F(A′) mapping to both x ∈ F(A) and z′ ∈ H(A′), see
Definition 8.1. This finishes the proof. □

21. Groupoids in functors on an arbitrary category

06K2 We begin with generalities on groupoids in functors on an arbitrary category. In the
next section we will pass to the category CΛ. For clarity we shall sometimes refer
to an ordinary groupoid, i.e., a category whose morphisms are all isomorphisms, as
a groupoid category.

Definition 21.1.06K3 Let C be a category. The category of groupoids in functors on
C is the category with the following objects and morphisms.

https://stacks.math.columbia.edu/tag/0DYP
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(1) Objects: A groupoid in functors on C is a quintuple (U,R, s, t, c) where
U,R : C → Sets are functors and s, t : R → U and c : R ×s,U,t R → R
are morphisms with the following property: For any object T of C, the
quintuple

(U(T ), R(T ), s, t, c)
is a groupoid category.

(2) Morphisms: A morphism (U,R, s, t, c) → (U ′, R′, s′, t′, c′) of groupoids in
functors on C consists of morphisms U → U ′ and R → R′ with the following
property: For any object T of C, the induced maps U(T ) → U ′(T ) and
R(T ) → R′(T ) define a functor between groupoid categories

(U(T ), R(T ), s, t, c) → (U ′(T ), R′(T ), s′, t′, c′).

Remark 21.2.06K4 A groupoid in functors on C amounts to the data of a functor
C → Groupoids, and a morphism of groupoids in functors on C amounts to a mor-
phism of the corresponding functors C → Groupoids (where Groupoids is regarded
as a 1-category). However, for our purposes it is more convenient to use the termi-
nology of groupoids in functors. In fact, thinking of a groupoid in functors as the
corresponding functor C → Groupoids, or equivalently as the category cofibered in
groupoids associated to that functor, can lead to confusion (Remark 23.2).

Remark 21.3.06K5 Let (U,R, s, t, c) be a groupoid in functors on a category C. There
are unique morphisms e : U → R and i : R → R such that for every object
T of C, e : U(T ) → R(T ) sends x ∈ U(T ) to the identity morphism on x and
i : R(T ) → R(T ) sends a ∈ U(T ) to the inverse of a in the groupoid category
(U(T ), R(T ), s, t, c). We will sometimes refer to s, t, c, e, and i as “source”, “target”,
“composition”, “identity”, and “inverse”.

Definition 21.4.06K6 Let C be a category. A groupoid in functors on C is representable
if it is isomorphic to one of the form (U,R, s, t, c) where U and R are objects of C
and the pushout R ⨿s,U,t R exists.

Remark 21.5.06K7 Hence a representable groupoid in functors on C is given by objects
U and R of C and morphisms s, t : U → R and c : R → R ⨿s,U,t R such that
(U,R, s, t, c) satisfies the condition of Definition 21.1. The reason for requiring
the existence of the pushout R ⨿s,U,t R is so that the composition morphism c is
defined at the level of morphisms in C. This requirement will always be satisfied
below when we consider representable groupoids in functors on ĈΛ, since by Lemma
4.3 the category ĈΛ admits pushouts.

Remark 21.6.06K8 We will say “let (U,R, s, t, c) be a groupoid in functors on C” to
mean that we have a representable groupoid in functors. Thus this means that U
and R are objects of C, there are morphisms s, t : U → R, the pushout R ⨿s,U,t R
exists, there is a morphism c : R → R ⨿s,U,t R, and (U,R, s, t, c) is a groupoid in
functors on C.

We introduce notation for restriction of groupoids in functors. This will be relevant
below in situations where we restrict from ĈΛ to CΛ.

Definition 21.7.06K9 Let (U,R, s, t, c) be a groupoid in functors on a category C. Let
C′ be a subcategory of C. The restriction (U,R, s, t, c)|C′ of (U,R, s, t, c) to C′ is the
groupoid in functors on C′ given by (U |C′ , R|C′ , s|C′ , t|C′ , c|C′).
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Remark 21.8.06KA In the situation of Definition 21.7, we often denote s|C′ , t|C′ , c|C′

simply by s, t, c.

Definition 21.9.06KB Let (U,R, s, t, c) be a groupoid in functors on a category C.
(1) The assignment T 7→ (U(T ), R(T ), s, t, c) determines a functor C → Groupoids.

The quotient category cofibered in groupoids [U/R] → C is the category
cofibered in groupoids over C associated to this functor (as in Remarks 5.2
(9)).

(2) The quotient morphism U → [U/R] is the morphism of categories cofibered
in groupoids over C defined by the rules
(a) x ∈ U(T ) maps to the object (T, x) ∈ Ob([U/R](T )), and
(b) x ∈ U(T ) and f : T → T ′ give rise to the morphism (f, idU(f)(x)) :

(T, x) → (T,U(f)(x)) lying over f : T → T ′.

22. Groupoids in functors on the base category

06KC In this section we discuss groupoids in functors on CΛ. Our eventual goal is to
show that prorepresentable groupoids in functors on CΛ serve as “presentations”
for well-behaved deformation categories in the same way that smooth groupoids
in algebraic spaces serve as presentations for algebraic stacks, cf. Algebraic Stacks,
Section 16.

Definition 22.1.06KD A groupoid in functors on CΛ is prorepresentable if it is isomor-
phic to (R0, R1, s, t, c)|CΛ for some representable groupoid in functors (R0, R1, s, t, c)
on the category ĈΛ.

Let (U,R, s, t, c) be a groupoid in functors on CΛ. Taking completions, we get a
quintuple (Û , R̂, ŝ, t̂, ĉ). By Remark 7.10 completion as a functor on CofSet(CΛ)
is a right adjoint, so it commutes with limits. In particular, there is a canonical
isomorphism

̂R×s,U,t R −→ R̂×
ŝ,Û ,̂t

R̂,

so ĉ can be regarded as a functor R̂×
ŝ,Û ,̂t

R̂ → R̂. Then (Û , R̂, ŝ, t̂, ĉ) is a groupoid
in functors on ĈΛ, with identity and inverse morphisms being the completions of
those of (U,R, s, t, c).

Definition 22.2.06KE Let (U,R, s, t, c) be a groupoid in functors on CΛ. The comple-
tion (U,R, s, t, c)∧ of (U,R, s, t, c) is the groupoid in functors (Û , R̂, ŝ, t̂, ĉ) on ĈΛ
described above.

Remark 22.3.06KF Let (U,R, s, t, c) be a groupoid in functors on CΛ. Then there
is a canonical isomorphism (U,R, s, t, c)∧|CΛ

∼= (U,R, s, t, c), see Remark 7.7. On
the other hand, let (U,R, s, t, c) be a groupoid in functors on ĈΛ such that U,R :
ĈΛ → Sets both commute with limits, e.g. if U,R are representable. Then there
is a canonical isomorphism ((U,R, s, t, c)|CΛ)∧ ∼= (U,R, s, t, c). This follows from
Remark 7.11.

Lemma 22.4.06KG Let (U,R, s, t, c) be a groupoid in functors on CΛ.
(1) (U,R, s, t, c) is prorepresentable if and only if its completion is representable

as a groupoid in functors on ĈΛ.
(2) (U,R, s, t, c) is prorepresentable if and only if U and R are prorepresentable.
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Proof. Part (1) follows from Remark 22.3. For (2), the “only if” direction is clear
from the definition of a prorepresentable groupoid in functors. Conversely, assume
U and R are prorepresentable, say U ∼= R0|CΛ and R ∼= R1|CΛ for objects R0 and R1

of ĈΛ. Since R0 ∼= R̂0|CΛ and R1 ∼= R̂1|CΛ by Remark 7.11 we see that the completion
(U,R, s, t, c)∧ is a groupoid in functors of the form (R0, R1, ŝ, t̂, ĉ). By Lemma 4.3
the pushout R1 ×

ŝ,R1 ,̂t
R1 exists. Hence (R0, R1, ŝ, t̂, ĉ) is a representable groupoid

in functors on ĈΛ. Finally, the restriction (R0, R1, s, t, c)|CΛ gives back (U,R, s, t, c)
by Remark 22.3 hence (U,R, s, t, c) is prorepresentable by definition. □

23. Smooth groupoids in functors on the base category

06KH The notion of smoothness for groupoids in functors on CΛ is defined as follows.
Definition 23.1.06KI Let (U,R, s, t, c) be a groupoid in functors on CΛ. We say
(U,R, s, t, c) is smooth if s, t : R → U are smooth.
Remark 23.2.06KJ We note that this terminology is potentially confusing: if (U,R, s, t, c)
is a smooth groupoid in functors, then the quotient [U/R] need not be a smooth
category cofibred in groupoids as defined in Definition 9.1. However smoothness
of (U,R, s, t, c) does imply (in fact is equivalent to) smoothness of the quotient
morphism U → [U/R] as we shall see in Lemma 23.4.
Remark 23.3.06KK Let (R0, R1, s, t, c)|CΛ be a prorepresentable groupoid in functors
on CΛ. Then (R0, R1, s, t, c)|CΛ is smooth if and only if R1 is a power series over R0
via both s and t. This follows from Lemma 8.6.
Lemma 23.4.06KL Let (U,R, s, t, c) be a groupoid in functors on CΛ. The following
are equivalent:

(1) The groupoid in functors (U,R, s, t, c) is smooth.
(2) The morphism s : R → U is smooth.
(3) The morphism t : R → U is smooth.
(4) The quotient morphism U → [U/R] is smooth.

Proof. Statement (2) is equivalent to (3) since the inverse i : R → R of (U,R, s, t, c)
is an isomorphism and t = s ◦ i. By definition (1) is equivalent to (2) and (3)
together, hence it is equivalent to either of them individually.
Finally we prove (2) is equivalent to (4). Unwinding the definitions:

(2) Smoothness of s : R → U amounts to the following condition: If f : B → A
is a surjective ring map in CΛ, a ∈ R(A), and y ∈ U(B) such that s(a) =
U(f)(y), then there exists a′ ∈ R(B) such that R(f)(a′) = a and s(a′) = y.

(4) Smoothness of U → [U/R] amounts to the following condition: If f : B → A
is a surjective ring map in CΛ and (f, a) : (B, y) → (A, x) is a morphism of
[U/R], then there exists x′ ∈ U(B) and b ∈ R(B) with s(b) = x′, t(b) = y
such that c(a,R(f)(b)) = e(x). Here e : U → R denotes the identity and
the notation (f, a) is as in Remarks 5.2 (9); in particular a ∈ R(A) with
s(a) = U(f)(y) and t(a) = x.

If (4) holds and f, a, y as in (2) are given, let x = t(a) so that we have a morphism
(f, a) : (B, y) → (A, x). Then (4) produces x′ and b, and a′ = i(b) satisfies the
requirements of (2). Conversely, assume (2) holds and let (f, a) : (B, y) → (A, x) as
in (4) be given. Then (2) produces a′ ∈ R(B), and x′ = t(a′) and b = i(a′) satisfy
the requirements of (4). □
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24. Deformation categories as quotients of groupoids in functors

06KS We discuss conditions on a groupoid in functors on CΛ which guarantee that the
quotient is a deformation category, and we calculate the tangent and infinitesimal
automorphism spaces of such a quotient.

Lemma 24.1.06KT Let (U,R, s, t, c) be a smooth groupoid in functors on CΛ. Assume
U and R satisfy (RS). Then [U/R] satisfies (RS).

Proof. Let
(A2, x2)

(f2,a2)
��

(A1, x1)
(f1,a1) // (A, x)

be a diagram in [U/R] such that f2 : A2 → A is surjective. The notation is as in
Remarks 5.2 (9). Hence f1 : A1 → A, f2 : A2 → A are maps in CΛ, x ∈ U(A),
x1 ∈ U(A1), x2 ∈ U(A2), and a1, a2 ∈ R(A) with s(a1) = U(f1)(x1), t(a1) = x and
s(a2) = U(f2)(x2), t(a2) = x. We construct a fiber product lying over A1 ×A A2
for this diagram in [U/R] as follows.
Let a = c(i(a1), a2), where i : R → R is the inverse morphism. Then a ∈ R(A), x2 ∈
U(A2) and s(a) = U(f2)(x2). Hence an element (a, x2) ∈ R(A)×s,U(A),U(f2)U(A2).
By smoothness of s : R → U there is an element ã ∈ R(A2) with R(f2)(ã) = a and
s(ã) = x2. In particular U(f2)(t(ã)) = t(a) = U(f1)(x1). Thus x1 and t(ã) define
an element

(x1, t(ã)) ∈ U(A1) ×U(A) U(A2).
By the assumption that U satisfies (RS), we have an identification U(A1) ×U(A)
U(A2) = U(A1 ×A A2). Let us denote x1 × t(ã) ∈ U(A1 ×A A2) the element
corresponding to (x1, t(ã)) ∈ U(A1) ×U(A) U(A2). Let p1, p2 be the projections of
A1 ×A A2. We claim

(A1 ×A A2, x1 × t(ã))

(p1,e(x1))
��

(p2,i(̃a))
// (A2, x2)

(f2,a2)
��

(A1, x1)
(f1,a1) // (A, x)

is a fiber square in [U/R]. (Note e : U → R denotes the identity.)
The diagram is commutative because c(a2, R(f2)(i(ã))) = c(a2, i(a)) = a1. To
check it is a fiber square, let

(B, z)

(g1,b1)
��

(g2,b2)
// (A2, x2)

(f2,a2)
��

(A1, x1)
(f1,a1) // (A, x)

be a commutative diagram in [U/R]. We will show there is a unique morphism
(g, b) : (B, z) → (A1 ×A A2, x1 × t(ã)) compatible with the morphisms to (A1, x1)
and (A2, x2). We must take g = (g1, g2) : B → A1 ×A A2. Since by assumption
R satisfies (RS), we have an identification R(A1 ×A A2) = R(A1) ×R(A) R(A2).
Hence we can write b = (b′

1, b
′
2) for some b′

1 ∈ R(A1), b′
2 ∈ R(A2) which agree

in R(A). Then ((g1, g2), (b′
1, b

′
2)) : (B, z) → (A1 ×A A2, x1 × t(ã)) will commute
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with the projections if and only if b′
1 = b1 and b′

2 = c(ã, b2) proving unicity and
existence. □

Lemma 24.2.06KU Let (U,R, s, t, c) be a smooth groupoid in functors on CΛ. Assume
U and R are deformation functors. Then:

(1) The quotient [U/R] is a deformation category.
(2) The tangent space of [U/R] is

T [U/R] = Coker(ds− dt : TR → TU).

(3) The space of infinitesimal automorphisms of [U/R] is

Inf([U/R]) = Ker(ds⊕ dt : TR → TU ⊕ TU).

Proof. Since U and R are deformation functors [U/R] is a predeformation category.
Since (RS) holds for deformation functors by definition we see that (RS) holds for
[U/R] by Lemma 24.1. Hence [U/R] is a deformation category. Statements (2) and
(3) follow directly from the definitions. □

25. Presentations of categories cofibered in groupoids

06KW A presentation is defined as follows.

Definition 25.1.06KX Let F be a category cofibered in groupoids over a category C.
Let (U,R, s, t, c) be a groupoid in functors on C. A presentation of F by (U,R, s, t, c)
is an equivalence φ : [U/R] → F of categories cofibered in groupoids over C.

The following two general lemmas will be used to get presentations.

Lemma 25.2.06KY Let F be category cofibered in groupoids over a category C. Let
U : C → Sets be a functor. Let f : U → F be a morphism of categories cofibered in
groupoids over C. Define R, s, t, c as follows:

(1) R : C → Sets is the functor U ×f,F,f U .
(2) t, s : R → U are the first and second projections, respectively.
(3) c : R ×s,U,t R → R is the morphism given by projection onto the first

and last factors of U ×f,F,f U ×f,F,f U under the canonical isomorphism
R×s,U,t R → U ×f,F,f U ×f,F,f U .

Then (U,R, s, t, c) is a groupoid in functors on C.

Proof. Omitted. □

Lemma 25.3.06KZ Let F be category cofibered in groupoids over a category C. Let
U : C → Sets be a functor. Let f : U → F be a morphism of categories cofibered
in groupoids over C. Let (U,R, s, t, c) be the groupoid in functors on C constructed
from f : U → F in Lemma 25.2. Then there is a natural morphism [f ] : [U/R] → F
such that:

(1) [f ] : [U/R] → F is fully faithful.
(2) [f ] : [U/R] → F is an equivalence if and only if f : U → F is essentially

surjective.

Proof. Omitted. □
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26. Presentations of deformation categories

06L0 According to the next lemma, a smooth morphism from a predeformation functor to
a predeformation category F gives rise to a presentation of F by a smooth groupoid
in functors.

Lemma 26.1.06L1 Let F be a category cofibered in groupoids over CΛ. Let U : CΛ →
Sets be a functor. Let f : U → F be a smooth morphism of categories cofibered in
groupoids. Then:

(1) If (U,R, s, t, c) is the groupoid in functors on CΛ constructed from f : U →
F in Lemma 25.2, then (U,R, s, t, c) is smooth.

(2) If f : U(k) → F(k) is essentially surjective, then the morphism [f ] :
[U/R] → F of Lemma 25.3 is an equivalence.

Proof. From the construction of Lemma 25.2 we have a commutative diagram
R = U ×f,F,f U s

//

t

��

U

f

��
U

f // F
where t, s are the first and second projections. So t, s are smooth by Lemma 8.7.
Hence (1) holds.
If the assumption of (2) holds, then by Lemma 8.8 the morphism f : U → F is
essentially surjective. Hence by Lemma 25.3 the morphism [f ] : [U/R] → F is an
equivalence. □

Lemma 26.2.06L6 Let F be a deformation category. Let U : CΛ → Sets be a defor-
mation functor. Let f : U → F be a morphism of categories cofibered in groupoids.
Then U ×f,F,f U is a deformation functor with tangent space fitting into an exact
sequence of k-vector spaces

0 → Inf(F) → T (U ×f,F,f U) → TU ⊕ TU

Proof. Follows from Lemma 20.1 and the fact that Inf(U) = (0). □

Lemma 26.3.06L7 Let F be a deformation category. Let U : CΛ → Sets be a prorepre-
sentable functor. Let f : U → F be a morphism of categories cofibered in groupoids.
Let (U,R, s, t, c) be the groupoid in functors on CΛ constructed from f : U → F in
Lemma 25.2. If dimk Inf(F) < ∞, then (U,R, s, t, c) is prorepresentable.

Proof. Note that U is a deformation functor by Example 16.10. By Lemma 26.2
we see that R = U ×f,F,f U is a deformation functor whose tangent space TR =
T (U ×f,F,f U) sits in an exact sequence 0 → Inf(F) → TR → TU ⊕ TU . Since we
have assumed the first space has finite dimension and since TU has finite dimension
by Example 11.11 we see that dimTR < ∞. The map γ : DerΛ(k, k) → TR see
(12.6.1) is injective because its composition with TR → TU is injective by Theorem
18.2 for the prorepresentable functor U . Thus R is prorepresentable by Theorem
18.2. It follows from Lemma 22.4 that (U,R, s, t, c) is prorepresentable. □

Theorem 26.4.06L8 Let F be a category cofibered in groupoids over CΛ. Then F
admits a presentation by a smooth prorepresentable groupoid in functors on CΛ if
and only if the following conditions hold:

(1) F is a deformation category.
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(2) dimk TF is finite.
(3) dimk Inf(F) is finite.

Proof. Recall that a prorepresentable functor is a deformation functor, see Ex-
ample 16.10. Thus if F is equivalent to a smooth prorepresentable groupoid in
functors, then conditions (1), (2), and (3) follow from Lemma 24.2 (1), (2), and
(3).

Conversely, assume conditions (1), (2), and (3) hold. Condition (1) implies that
(S1) and (S2) are satisfied, see Lemma 16.6. By Lemma 13.4 there exists a versal
formal object ξ. Setting U = R|CΛ the associated map ξ : U → F is smooth (this
is the definition of a versal formal object). Let (U,R, s, t, c) be the groupoid in
functors constructed in Lemma 25.2 from the map ξ. By Lemma 26.1 we see that
(U,R, s, t, c) is a smooth groupoid in functors and that [U/R] → F is an equivalence.
By Lemma 26.3 we see that (U,R, s, t, c) is prorepresentable. Hence [U/R] → F is
the desired presentation of F . □

27. Remarks regarding minimality

06TD The main theorem of this chapter is Theorem 26.4 above. It describes completely
those categories cofibred in groupoids over CΛ which have a presentation by a
smooth prorepresentable groupoid in functors. In this section we briefly discuss
how the minimality discussed in Sections 14 and 15 can be used to obtain a “mini-
mal” smooth prorepresentable presentation.

Definition 27.1.06KM Let (U,R, s, t, c) be a smooth prorepresentable groupoid in func-
tors on CΛ.

(1) We say (U,R, s, t, c) is normalized if the groupoid (U(k[ϵ]), R(k[ϵ]), s, t, c) is
totally disconnected, i.e., there are no morphisms between distinct objects.

(2) We say (U,R, s, t, c) is minimal if the U → [U/R] is given by a minimal
versal formal object of [U/R].

The difference between the two notions is related to the difference between condi-
tions (15.0.1) and (15.0.2) and disappears when k′ ⊂ k is separable. Also a nor-
malized smooth prorepresentable groupoid in functors is minimal as the following
lemma shows. Here is a precise statement.

Lemma 27.2.06KN Let (U,R, s, t, c) be a smooth prorepresentable groupoid in functors
on CΛ.

(1) (U,R, s, t, c) is normalized if and only if the morphism U → [U/R] induces
an isomorphism on tangent spaces, and

(2) (U,R, s, t, c) is minimal if and only if the kernel of TU → T [U/R] is con-
tained in the image of DerΛ(k, k) → TU .

Proof. Part (1) follows immediately from the definitions. To see part (2) set
F = [U/R]. Since F has a presentation it is a deformation category, see Theorem
26.4. In particular it satisfies (RS), (S1), and (S2), see Lemma 16.6. Recall that
minimal versal formal objects are unique up to isomorphism, see Lemma 14.5. By
Theorem 15.5 a minimal versal object induces a map ξ : R|CΛ → F satisfying
(15.0.2). Since U ∼= R|CΛ over F we see that TU → TF = T [U/R] satisfies the
property as stated in the lemma. □
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The quotient of a minimal prorepresentable groupoid in functors on CΛ does not
admit autoequivalences which are not automorphisms. To prove this, we first note
the following lemma.

Lemma 27.3.06KP Let U : CΛ → Sets be a prorepresentable functor. Let φ : U →
U be a morphism such that dφ : TU → TU is an isomorphism. Then φ is an
isomorphism.

Proof. If U ∼= R|CΛ for some R ∈ Ob(ĈΛ), then completing φ gives a morphism
R → R. If f : R → R is the corresponding morphism in ĈΛ, then f induces an
isomorphism DerΛ(R, k) → DerΛ(R, k), see Example 11.14. In particular f is a
surjection by Lemma 4.6. As a surjective endomorphism of a Noetherian ring is
an isomorphism (see Algebra, Lemma 31.10) we conclude f , hence R → R, hence
φ : U → U is an isomorphism. □

Lemma 27.4.06KQ Let (U,R, s, t, c) be a minimal smooth prorepresentable groupoid in
functors on CΛ. If φ : [U/R] → [U/R] is an equivalence of categories cofibered in
groupoids, then φ is an isomorphism.

Proof. A morphism φ : [U/R] → [U/R] is the same thing as a morphism φ :
(U,R, s, t, c) → (U,R, s, t, c) of groupoids in functors over CΛ as defined in Definition
21.1. Denote ϕ : U → U and ψ : R → R the corresponding morphisms. Because
the diagram

DerΛ(k, k)

γ
&&

γ
xx

TU
dϕ

//

��

TU

��
T [U/R] dφ // T [U/R]

is commutative, since dφ is bijective, and since we have the characterization of
minimality in Lemma 27.2 we conclude that dϕ is injective (hence bijective by
dimension reasons). Thus ϕ : U → U is an isomorphism by Lemma 27.3. We can
use a similar argument, using the exact sequence

0 → Inf([U/R]) → TR → TU ⊕ TU

of Lemma 26.2 to prove that ψ : R → R is an isomorphism. But is also a conse-
quence of the fact that R = U ×[U/R] U and that φ and ϕ are isomorphisms. □

Lemma 27.5.06KR Let (U,R, s, t, c) and (U ′, R′, s′, t′, c′) be minimal smooth prorepre-
sentable groupoids in functors on CΛ. If φ : [U/R] → [U ′/R′] is an equivalence of
categories cofibered in groupoids, then φ is an isomorphism.

Proof. Let ψ : [U ′/R′] → [U/R] be a quasi-inverse to φ. Then ψ ◦φ and φ ◦ψ are
isomorphisms by Lemma 27.4, hence φ and ψ are isomorphisms. □

The following lemma summarizes some of the things we have seen earlier in this
chapter.

Lemma 27.6.06L2 Let F be a deformation category such that dimk TF < ∞ and
dimk Inf(F) < ∞. Then there exists a minimal versal formal object ξ of F . Say
ξ lies over R ∈ Ob(ĈΛ). Let U = R|CΛ . Let f = ξ : U → F be the associated
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https://stacks.math.columbia.edu/tag/06KQ
https://stacks.math.columbia.edu/tag/06KR
https://stacks.math.columbia.edu/tag/06L2


FORMAL DEFORMATION THEORY 69

morphism. Let (U,R, s, t, c) be the groupoid in functors on CΛ constructed from
f : U → F in Lemma 25.2. Then (U,R, s, t, c) is a minimal smooth prorepresentable
groupoid in functors on CΛ and there is an equivalence [U/R] → F .

Proof. As F is a deformation category it satisfies (S1) and (S2), see Lemma 16.6.
By Lemma 13.4 there exists a versal formal object. By Lemma 14.5 there exists
a minimal versal formal object ξ/R as in the statement of the lemma. Setting
U = R|CΛ the associated map ξ : U → F is smooth (this is the definition of a
versal formal object). Let (U,R, s, t, c) be the groupoid in functors constructed in
Lemma 25.2 from the map ξ. By Lemma 26.1 we see that (U,R, s, t, c) is a smooth
groupoid in functors and that [U/R] → F is an equivalence. By Lemma 26.3 we
see that (U,R, s, t, c) is prorepresentable. Finally, (U,R, s, t, c) is minimal because
U → [U/R] = F corresponds to the minimal versal formal object ξ. □

Presentations by minimal prorepresentable groupoids in functors satisfy the follow-
ing uniqueness property.

Lemma 27.7.06L3 Let F be category cofibered in groupoids over CΛ. Assume there
exist presentations of F by minimal smooth prorepresentable groupoids in functors
(U,R, s, t, c) and (U ′, R′, s′, t′, c′). Then (U,R, s, t, c) and (U ′, R′, s′, t′, c′) are iso-
morphic.

Proof. Follows from Lemma 27.5 and the observation that a morphism [U/R] →
[U ′/R′] is the same thing as a morphism of groupoids in functors (by our explicit
construction of [U/R] in Definition 21.9). □

In summary we have proved the following theorem.

Theorem 27.8.06TE Let F be a category cofibered in groupoids over CΛ. Consider the
following conditions

(1) F admits a presentation by a normalized smooth prorepresentable groupoid
in functors on CΛ,

(2) F admits a presentation by a smooth prorepresentable groupoid in functors
on CΛ,

(3) F admits a presentation by a minimal smooth prorepresentable groupoid in
functors on CΛ, and

(4) F satisfies the following conditions
(a) F is a deformation category.
(b) dimk TF is finite.
(c) dimk Inf(F) is finite.

Then (2), (3), (4) are equivalent and are implied by (1). If k′ ⊂ k is separable,
then (1), (2), (3), (4) are all equivalent. Furthermore, the minimal smooth prorep-
resentable groupoids in functors which provide a presentation of F are unique up
to isomorphism.

Proof. We see that (1) implies (3) and is equivalent to (3) if k′ ⊂ k is separable
from Lemma 27.2. It is clear that (3) implies (2). We see that (2) implies (4) by
Theorem 26.4. We see that (4) implies (3) by Lemma 27.6. This proves all the
implications. The final uniqueness statement follows from Lemma 27.7. □

https://stacks.math.columbia.edu/tag/06L3
https://stacks.math.columbia.edu/tag/06TE


FORMAL DEFORMATION THEORY 70

28. Uniqueness of versal rings

0DQA Given R,S in ĈΛ we say maps f, g : R → S are formally homotopic if there exists
an r ≥ 0 and maps h : R → R[[t1, . . . , tr]] and k : R[[t1, . . . , tr]] → S in ĈΛ such
that for all a ∈ R we have

(1) h(a) mod (t1, . . . , tr) = a,
(2) f(a) = k(a),
(3) g(a) = k(h(a)).

We will say (r, h, k) is a formal homotopy between f and g.

Lemma 28.1.0DQB Being formally homotopic is an equivalence relation on sets of
morphisms in ĈΛ.

Proof. Suppose we have any r ≥ 1 and two maps h1, h2 : R → R[[t1, . . . , tr]] such
that h1(a) mod (t1, . . . , tr) = h2(a) mod (t1, . . . , tr) = a for all a ∈ R and a map
k : R[[t1, . . . , tr]] → S. Then we claim k ◦ h1 is formally homotopic to k ◦ h2. The
symmetric inherent in this claim will show that our notion of formally homotopic
is symmetric. Namely, the map

Ψ : R[[t1, . . . , tr]] −→ R[[t1, . . . , tr]],
∑

aIt
I 7−→

∑
h1(aI)tI

is an isomorphism. Set h(a) = Ψ−1(h2(a)) for a ∈ R and k′ = k ◦ Ψ, then we see
that (r, h, k′) is a formal homotopy between k ◦ h1 and k ◦ h2, proving the claim
Say we have three maps f1, f2, f3 : R → S as above and a formal homotopy
(r1, h1, k1) between f1 and f2 and a formal homotopy (r2, h2, k2) between f3 and f2
(!). After relabeling the coordinates we may assume h2 : R → R[[tr1+1, . . . , tr1+r2 ]]
and k2 : R[[tr1+1, . . . , tr1+r2 ]] → S. By choosing a suitable isomorphism

R[[t1, . . . , tr1+r2 ]] −→ R[[tr1+1, . . . , tr1+r2 ]]⊗̂h2,R,h1R[[t1, . . . , tr1 ]]
we may fit these maps into a commutative diagram

R
h1

//

h2

��

R[[t1, . . . , tr1 ]]

h′
2
��

R[[tr1+1, . . . , tr1+r2 ]]
h′

1 // R[[t1, . . . , tr1+r2 ]]

with h′
2(ti) = ti for 1 ≤ i ≤ r1 and h′

1(ti) = ti for r1 + 1 ≤ i ≤ r2. Some details
omitted. Since this diagram is a pushout in the category ĈΛ (see proof of Lemma
4.3) and since k1 ◦ h1 = f2 = k2 ◦ h2 we conclude there exists a map

k : R[[t1, . . . , tr1+r2 ]] → S

with k1 = k ◦ h′
2 and k2 = k ◦ h′

1. Denote h = h′
1 ◦ h2 = h′

2 ◦ h1. Then we have
(1) k(h′

1(a)) = k2(a) = f3(a), and
(2) k(h′

2(a)) = k1(a) = f1(a).
By the claim in the first paragraph of the proof this shows that f1 and f3 are
formally homotopic. □

Lemma 28.2.0DQC In the category ĈΛ, if f1, f2 : R → S are formally homotopic and
g : S → S′ is a morphism, then g ◦ f1 and g ◦ f2 are formally homotopic.

Proof. Namely, if (r, h, k) is a formal homotopy between f1 and f2, then (r, h, g◦k)
is a formal homotopy between g ◦ f1 and g ◦ f2. □
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Lemma 28.3.0DQD Let F be a deformation category over CΛ with dimk TF < ∞ and
dimk Inf(F) < ∞. Let ξ be a versal formal object lying over R. Let η be a formal
object lying over S. Then any two maps

f, g : R → S

such that f∗ξ ∼= η ∼= g∗ξ are formally homotopic.

Proof. By Theorem 26.4 and its proof, F has a presentation by a smooth prorep-
resentable groupoid

(R,R1, s, t, c, e, i)|CΛ

in functors on Cλ such that F . Then the maps s : R → R1 and t : R → R1
are formally smooth ring maps and e : R1 → R is a section. In particular, we
can choose an isomorphism R1 = R[[t1, . . . , tr]] for some r ≥ 0 such that s is the
embedding R ⊂ R[[t1, . . . , tr]] and t corresponds to a map h : R → R[[t1, . . . , tr]]
with h(a) mod (t1, . . . , tr) = a for all a ∈ R. The existence of the isomorphism
α : f∗ξ → g∗ξ means exactly that there is a map k : R1 → S such that f = k ◦ s
and g = k ◦ t. This exactly means that (r, h, k) is a formal homotopy between f
and g. □

Lemma 28.4.0DQE In the category ĈΛ, if f1, f2 : R → S are formally homotopic and
p ⊂ R is a minimal prime ideal, then f1(p)S = f2(p)S as ideals.

Proof. Suppose (r, h, k) is a formal homotopy between f1 and f2. We claim that
pR[[t1, . . . , tr]] = h(p)R[[t1, . . . , tr]]. The claim implies the lemma by further com-
posing with k. To prove the claim, observe that the map p 7→ pR[[t1, . . . , tr]] is a
bijection between the minimal prime ideals of R and the minimal prime ideals of
R[[t1, . . . , tr]]. Finally, h(p)R[[t1, . . . , tr]] is a minimal prime as h is flat, and hence
of the form qR[[t1, . . . , tr]] for some minimal prime q ⊂ R by what we just said.
But since h mod (t1, . . . , tr) = idR by definition of a formal homotopy, we conclude
that q = p as desired. □

29. Change of residue field

07W7 In this section we quickly discuss what happens if we replace the residue field k by
a finite extension. Let Λ be a Noetherian ring and let Λ → k be a finite ring map
where k is a field. Throughout this whole chapter we have used CΛ to denote the
category of Artinian local Λ-algebras whose residue field is identified with k, see
Definition 3.1. However, since in this section we will discuss what happen when we
change k we will instead use the notation CΛ,k to indicate the dependence on k.

Situation 29.1.07W8 Let Λ be a Noetherian ring and let Λ → k → l be a finite ring
maps where k and l are fields. Thus l/k is a finite extensions of fields. A typical
object of CΛ,l will be denoted B and a typical object of CΛ,k will be denoted A. We
define

(29.1.1)07W9 CΛ,l −→ CΛ,k, B 7−→ B ×l k

Given a category cofibred in groupoids p : F → CΛ,k we obtain an associated
category cofibred in groupoids

pl/k : Fl/k −→ CΛ,l

by setting Fl/k(B) = F(B ×l k).
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The functor (29.1.1) makes sense: because B ×l k ⊂ B we have

[k : k′] lengthB×lk
(B ×l k) = lengthΛ(B ×l k)

≤ lengthΛ(B)
= [l : k′] lengthB(B) < ∞

(see Lemma 3.4) hence B×l k is Artinian (see Algebra, Lemma 53.6). Thus B×l k
is an Artinian local ring with residue field k. Note that (29.1.1) commutes with
fibre products

(B1 ×B B2) ×l k = (B1 ×l k) ×(B×lk) (B2 ×l k)

and transforms surjective ring maps into surjective ring maps. We use the “expen-
sive” notation Fl/k to prevent confusion with the construction of Remark 6.4. Here
are some elementary observations.

Lemma 29.2.07WA With notation and assumptions as in Situation 29.1.
(1) We have Fl/k = (F)l/k.
(2) If F is a predeformation category, then Fl/k is a predeformation category.
(3) If F satisfies (S1), then Fl/k satisfies (S1).
(4) If F satisfies (S2), then Fl/k satisfies (S2).
(5) If F satisfies (RS), then Fl/k satisfies (RS).

Proof. Part (1) is immediate from the definitions.

Since Fl/k(l) = F(k) part (2) follows from the definition, see Definition 6.2.

Part (3) follows as the functor (29.1.1) commutes with fibre products and transforms
surjective maps into surjective maps, see Definition 10.1.

Part (4). To see this consider a diagram

l[ϵ]

��
B // l

in CΛ,l as in Definition 10.1. Applying the functor (29.1.1) we obtain

k[lϵ]

��
B ×l k // k

where lϵ denotes the finite dimensional k-vector space lϵ ⊂ l[ϵ]. According to
Lemma 10.4 the condition of (S2) for F also holds for this diagram. Hence (S2)
holds for Fl/k.

Part (5) follows from the characterization of (RS) in Lemma 16.4 part (2) and the
fact that (29.1.1) commutes with fibre products. □

The following lemma applies in particular when F satisfies (S2) and is a predefor-
mation category, see Lemma 10.5.
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Lemma 29.3.07WB With notation and assumptions as in Situation 29.1. Assume F is
a predeformation category and F satisfies (S2). Then there is a canonical l-vector
space isomorphism

TF ⊗k l −→ TFl/k
of tangent spaces.

Proof. By Lemma 29.2 we may replace F by F . Moreover we see that TF , resp.
TFl/k has a canonical k-vector space structure, resp. l-vector space structure, see
Lemma 12.2. Then

TFl/k = Fl/k(l[ϵ]) = F(k[lϵ]) = TF ⊗k l

the last equality by Lemma 12.2. More generally, given a finite dimensional l-vector
space V we have

Fl/k(l[V ]) = F(k[Vk]) = TF ⊗k Vk

where Vk denotes V seen as a k-vector space. We conclude that the functors
V 7→ Fl/k(l[V ]) and V 7→ TF ⊗k Vk are canonically identified as functors to the
category of sets. By Lemma 11.4 we see there is at most one way to turn either
functor into an l-linear functor. Hence the isomorphisms are compatible with the
l-vector space structures and we win. □

Lemma 29.4.07WC With notation and assumptions as in Situation 29.1. Assume F is
a deformation category. Then there is a canonical l-vector space isomorphism

Inf(F) ⊗k l −→ Inf(Fl/k)

of infinitesimal automorphism spaces.

Proof. Let x0 ∈ Ob(F(k)) and denote xl,0 the corresponding object of Fl/k over
l. Recall that Inf(F) = Infx0(F) and Inf(Fl/k) = Infxl,0(Fl/k), see Remark 19.4.
Recall that the vector space structure on Infx0(F) comes from identifying it with
the tangent space of the functor Aut(x0) which is defined on the category Ck,k of
Artinian local k-algebras with residue field k. Similarly, Infxl,0(Fl/k) is the tangent
space of Aut(xl,0) which is defined on the category Cl,l of Artinian local l-algebras
with residue field l. Unwinding the definitions we see that Aut(xl,0) is the restriction
of Aut(x0)l/k (which lives on Ck,l) to Cl,l. Since there is no difference between the
tangent space of Aut(x0)l/k seen as a functor on Ck,l or Cl,l, the lemma follows from
Lemma 29.3 and the fact that Aut(x0) satisfies (RS) by Lemma 19.6 (whence we
have (S2) by Lemma 16.6). □

Lemma 29.5.07WD With notation and assumptions as in Situation 29.1. If F → G is
a smooth morphism of categories cofibred in groupoids over CΛ,k, then Fl/k → Gl/k
is a smooth morphism of categories cofibred in groupoids over CΛ,l.

Proof. This follows immediately from the definitions and the fact that (29.1.1)
preserves surjections. □

There are many more things you can say about the relationship between F and
Fl/k (in particular about the relationship between versal deformations) and we will
add these here as needed.

Lemma 29.6.0DQF With notation and assumptions as in Situation 29.1. Let ξ be a
versal formal object for F lying over R ∈ Ob(ĈΛ,k). Then there exist
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(1) an S ∈ Ob(ĈΛ,l) and a local Λ-algebra homomorphism R → S which is for-
mally smooth in the mS-adic topology and induces the given field extension
l/k on residue fieds, and

(2) a versal formal object of Fl/k lying over S.

Proof. Construction of S. Choose a surjection R[x1, . . . , xn] → l of R-algebras.
The kernel is a maximal ideal m. Set S equal to the m-adic completion of the
Noetherian ring R[x1, . . . , xn]. Then S is in ĈΛ,l by Algebra, Lemma 97.6. The
map R → S is formally smooth in the mS-adic topology by More on Algebra,
Lemmas 37.2 and 37.4 and the fact that R → R[x1, . . . , xn] is formally smooth.
(Compare with the proof Lemma 9.5.)
Since ξ is versal, the transformation ξ : R|CΛ,k

→ F is smooth. By Lemma 29.5 the
induced map

(R|CΛ,k
)l/k −→ Fl/k

is smooth. Thus it suffices to construct a smooth morphism S|CΛ,l
→ (R|CΛ,k

)l/k.
To give such a map means for every object B of CΛ,l a map of sets

MorĈΛ,l
(S,B) −→ MorĈΛ,k

(R,B ×l k)

functorial in B. Given an element φ : S → B on the left hand side we send it to
the composition R → S → B whose image is contained in the sub Λ-algebra B×l k.
Smoothness of the map means that given a surjection B′ → B and a commutative
diagram

S // B B

R

OO

// B′ ×l k

OO

// B′

OO

we have to find a ring map S → B′ fitting into the outer rectangle. The existence
of this map is guaranteed as we chose R → S to be formally smooth in the mS-adic
topology, see More on Algebra, Lemma 37.5. □

30. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra

(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes



FORMAL DEFORMATION THEORY 75

(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) More Étale Cohomology
(63) The Trace Formula

Algebraic Spaces
(64) Algebraic Spaces
(65) Properties of Algebraic Spaces
(66) Morphisms of Algebraic Spaces
(67) Decent Algebraic Spaces
(68) Cohomology of Algebraic Spaces
(69) Limits of Algebraic Spaces
(70) Divisors on Algebraic Spaces
(71) Algebraic Spaces over Fields
(72) Topologies on Algebraic Spaces
(73) Descent and Algebraic Spaces
(74) Derived Categories of Spaces
(75) More on Morphisms of Spaces

(76) Flatness on Algebraic Spaces
(77) Groupoids in Algebraic Spaces
(78) More on Groupoids in Spaces
(79) Bootstrap
(80) Pushouts of Algebraic Spaces

Topics in Geometry
(81) Chow Groups of Spaces
(82) Quotients of Groupoids
(83) More on Cohomology of Spaces
(84) Simplicial Spaces
(85) Duality for Spaces
(86) Formal Algebraic Spaces
(87) Algebraization of Formal Spaces
(88) Resolution of Surfaces Revisited

Deformation Theory
(89) Formal Deformation Theory
(90) Deformation Theory
(91) The Cotangent Complex
(92) Deformation Problems

Algebraic Stacks
(93) Algebraic Stacks
(94) Examples of Stacks
(95) Sheaves on Algebraic Stacks
(96) Criteria for Representability
(97) Artin’s Axioms
(98) Quot and Hilbert Spaces
(99) Properties of Algebraic Stacks

(100) Morphisms of Algebraic Stacks
(101) Limits of Algebraic Stacks
(102) Cohomology of Algebraic Stacks
(103) Derived Categories of Stacks
(104) Introducing Algebraic Stacks
(105) More on Morphisms of Stacks
(106) The Geometry of Stacks

Topics in Moduli Theory
(107) Moduli Stacks
(108) Moduli of Curves

Miscellany
(109) Examples
(110) Exercises
(111) Guide to Literature
(112) Desirables
(113) Coding Style
(114) Obsolete
(115) GNU Free Documentation Li-

cense
(116) Auto Generated Index



FORMAL DEFORMATION THEORY 76

References
[GRR72] Alexander Grothendieck, Michel Raynaud, and Dock Sang Rim, Groupes de monodromie

en géométrie algébrique. I, Lecture Notes in Mathematics, Vol. 288, Springer-Verlag,
1972, Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I).

[Sch68] Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968),
208–222.

[TV13] Mattia Talpo and Angelo Vistoli, Deformation theory from the point of view of fibered
categories, Handbook of moduli. Vol. III, Adv. Lect. Math. (ALM), vol. 26, Int. Press,
Somerville, MA, 2013, pp. 281–397.


	1. Introduction
	2. Notation and Conventions
	3. The base category
	4. The completed base category
	5. Categories cofibered in groupoids
	6. Prorepresentable functors and predeformation categories
	7. Formal objects and completion categories
	8. Smooth morphisms
	9. Smooth or unobstructed categories
	10. Schlessinger's conditions
	11. Tangent spaces of functors
	12. Tangent spaces of predeformation categories
	13. Versal formal objects
	14. Minimal versal formal objects
	15. Miniversal formal objects and tangent spaces
	16. Rim-Schlessinger conditions and deformation categories
	17. Lifts of objects
	18. Schlessinger's theorem on prorepresentable functors
	19. Infinitesimal automorphisms
	20. Applications
	21. Groupoids in functors on an arbitrary category
	22. Groupoids in functors on the base category
	23. Smooth groupoids in functors on the base category
	24. Deformation categories as quotients of groupoids in functors
	25. Presentations of categories cofibered in groupoids
	26. Presentations of deformation categories
	27. Remarks regarding minimality
	28. Uniqueness of versal rings
	29. Change of residue field
	30. Other chapters
	References

