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1. Introduction

0GNH Let X and Y be schemes. This chapter circles around the relationship between
functors QCoh(OY ) → QCoh(OX) and morphisms of schemes X → Y . More
broadly speaking we study the relationship between QCoh(OX) and X or, if X
is Noetherian, the relationship between Coh(OX) and X. This relationship was
studied in [Gab62].

2. Functors on module categories

0GNI For a ring A let us denote ModfpA the category of finitely presented A-modules.

Lemma 2.1.0GNJ Let A be a ring. Let B be a category having filtered colimits. Let
F : ModfpA → B be a functor. Then F extends uniquely to a functor F ′ : ModA → B
which commutes with filtered colimits.

Proof. This follows from Categories, Lemma 26.2. To see that the lemma ap-
plies observe that finitely presented A-modules are categorically compact objects
of ModA by Algebra, Lemma 11.4. Also, every A-module is a filtered colimit of
finitely presented A-modules by Algebra, Lemma 11.3. □

If a category B is additive and has filtered colimits, then B has arbitrary direct
sums: any direct sum can be written as a filtered colimit of finite direct sums.

Lemma 2.2.0GNK Let A, B, F be as in Lemma 2.1. Assume B is additive and F is
additive. Then F ′ is additive and commutes with arbitrary direct sums.
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Proof. To show that F ′ is additive it suffices to show that F ′(M) ⊕ F ′(M ′) →
F ′(M ⊕M ′) is an isomorphism for any A-modules M , M ′, see Homology, Lemma
7.1. Write M = colimiMi and M ′ = colimjM

′
j as filtered colimits of finitely

presented A-modules Mi. Then F ′(M) = colimi F (Mi), F ′(M ′) = colimj F (M ′
j),

and
F ′(M ⊕M ′) = F ′(colimi,jMi ⊕M ′

j)
= colimi,j F (Mi ⊕M ′

j)
= colimi,j F (Mi) ⊕ F (M ′

j)
= F ′(M) ⊕ F ′(M ′)

as desired. To show that F ′ commutes with direct sums, assume we have M =⊕
i∈IMi. Then M = colimI′⊂I finite

⊕
i∈I′ Mi is a filtered colimit. We obtain

F ′(M) = colimI′⊂I finite F
′(

⊕
i∈I′

Mi)

= colimI′⊂I finite
⊕

i∈I′
F ′(Mi)

=
⊕

i∈I
F ′(Mi)

The second equality holds by the additivity of F ′ already shown. □

If a category B is additive, has filtered colimits, and has cokernels, then B has
arbitrary colimits, see discussion above and Categories, Lemma 14.12.

Lemma 2.3.0GNL Let A, B, F be as in Lemma 2.1. Assume B is additive, has cokernels,
and F is right exact. Then F ′ is additive, right exact, and commutes with arbitrary
direct sums.

Proof. Since F is right exact, F commutes with coproducts of pairs, which are
represented by direct sums. Hence F is additive by Homology, Lemma 7.1. Hence
F ′ is additive and commutes with direct sums by Lemma 2.2. We urge the reader
to prove that F ′ is right exact themselves instead of reading the proof below.
To show that F ′ is right exact, it suffices to show that F ′ commutes with coequal-
izers, see Categories, Lemma 23.3. Now, if a, b : K → L are maps of A-modules,
then the coequalizer of a and b is the cokernel of a − b : K → L. Thus let
K → L → M → 0 be an exact sequence of A-modules. We have to show that in

F ′(K) → F ′(L) → F ′(M) → 0
the second arrow is a cokernel for the first arrow in B (if B were abelian we would say
that the displayed sequence is exact). Write M = colimi∈IMi as a filtered colimit
of finitely presented A-modules, see Algebra, Lemma 11.3. Let Li = L ×M Mi.
We obtain a system of exact sequences K → Li → Mi → 0 over I. Since colimits
commute with colimits by Categories, Lemma 14.10 and since cokernels are a type
of coequalizer, it suffices to show that F ′(Li) → F (Mi) is a cokernel of F ′(K) →
F ′(Li) in B for all i ∈ I. In other words, we may assume M is finitely presented.
Write L = colimi∈I Li as a filtered colimit of finitely presented A-modules with the
property that each Li surjects onto M . Let Ki = K ×L Li. We obtain a system of
short exact sequences Ki → Li → M → 0 over I. Repeating the argument already
given, we reduce to showing F (Li) → F (Mi) is a cokernel of F ′(K) → F (Li) in B
for all i ∈ I. In other words, we may assume both L and M are finitely presented
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FUNCTORS AND MORPHISMS 3

A-modules. In this case the module Ker(L → M) is finite (Algebra, Lemma 5.3).
Thus we can write K = colimi∈I Ki as a filtered colimit of finitely presented A-
modules each surjecting onto Ker(L → M). We obtain a system of short exact
sequences Ki → L → M → 0 over I. Repeating the argument already given, we
reduce to showing F (L) → F (M) is a cokernel of F (Ki) → F (L) in B for all i ∈ I.
In other words, we may assume K, L, and M are finitely presented A-modules.
This final case follows from the assumption that F is right exact. □

If a category B is additive and has kernels, then B has finite limits. Namely, finite
products are direct sums which exist and the equalizer of a, b : L → M is the kernel
of a − b : K → L which exists. Thus all finite limits exist by Categories, Lemma
18.4.

Lemma 2.4.0GNM Let A, B, F be as in Lemma 2.1. Assume A is a coherent ring
(Algebra, Definition 90.1), B is additive, has kernels, filtered colimits commute with
taking kernels, and F is left exact. Then F ′ is additive, left exact, and commutes
with arbitrary direct sums.

Proof. Since A is coherent, the category ModfpA is abelian with same kernels and
cokernels as in ModA, see Algebra, Lemmas 90.4 and 90.3. Hence all finite limits
exist in ModfpA and Categories, Definition 23.1 applies. Since F is left exact, F
commutes with products of pairs, which are represented by direct sums. Hence
F is additive by Homology, Lemma 7.1. Hence F ′ is additive and commutes with
direct sums by Lemma 2.2. We urge the reader to prove that F ′ is left exact
themselves instead of reading the proof below.

To show that F ′ is left exact, it suffices to show that F ′ commutes with equalizers,
see Categories, Lemma 23.2. Now, if a, b : L → M are maps of A-modules, then
the equalizer of a and b is the kernel of a− b : L → M . Thus let 0 → K → L → M
be an exact sequence of A-modules. We have to show that in

0 → F ′(K) → F ′(L) → F ′(M)

the arrow F ′(K) → F ′(L) is a kernel for F ′(L) → F ′(M) in B (if B were abelian
we would say that the displayed sequence is exact). Write M = colimi∈IMi as
a filtered colimit of finitely presented A-modules, see Algebra, Lemma 11.3. Let
Li = L×M Mi. We obtain a system of exact sequences 0 → K → Li → Mi over I.
Since filtered colimits commute with taking kernels in B by assumption, it suffices
to show that F ′(K) → F ′(Li) is a kernel of F ′(Li) → F (Mi) in B for all i ∈ I.
In other words, we may assume M is finitely presented. Write L = colimi∈I Li
as a filtered colimit of finitely presented A-modules. Let Ki = K ×L Li. We
obtain a system of short exact sequences 0 → Ki → Li → M over I. Repeating
the argument already given, we reduce to showing F ′(Ki) → F (Li) is a kernel of
F (Li) → F (M) in B for all i ∈ I. In other words, we may assume both L and M are
finitely presented A-modules. Since A is coherent, the A-module K = Ker(L → M)
is of finite presentation as the category of finitely presented A-modules is abelian
(see references given above). In other words, all three modules K, L, and M are
finitely presented A-modules. This final case follows from the assumption that F
is left exact. □

If a category B is additive and has cokernels, then B has finite colimits. Namely,
finite coproducts are direct sums which exist and the coequalizer of a, b : K → L

https://stacks.math.columbia.edu/tag/0GNM
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is the cokernel of a − b : K → L which exists. Thus all finite colimits exist by
Categories, Lemma 18.7.

Lemma 2.5.0GNN Let A be a ring. Let B be an additive category with cokernels. There
is an equivalence of categories between

(1) the category of functors F : ModfpA → B which are right exact, and
(2) the category of pairs (K,κ) where K ∈ Ob(B) and κ : A → EndB(K) is a

ring homomorphism
given by the rule sending F to F (A) with its natural A-action.

Proof. Let (K,κ) be as in (2). We will construct a functor F : ModfpA → B such
that F (A) = K endowed with the given A-action κ. Namely, given an integer n ≥ 0
let us set

F (A⊕n) = K⊕n

Given an A-linear map φ : A⊕m → A⊕n with matrix (aij) ∈ Mat(n × m,A) we
define

F (φ) : F (A⊕m) = K⊕m −→ K⊕n = F (A⊕n)
to be the map with matrix (κ(aij)). This defines an additive functor F from the
full subcategory of ModfpA with objects 0, A, A⊕2, . . . to B; we omit the verification.

For each object M of ModfpA choose a presentation

A⊕mM
φM−−→ A⊕nM → M → 0

of M as an A-module. Let us use the trivial presentation 0 → A⊕n 1−→ A⊕n → 0 if
M = A⊕n (this isn’t necessary but simplifies the exposition). For each morphism
f : M → N of ModfpA we can choose a commutative diagram

(2.5.1)0GNP

A⊕mM
φM

//

ψf

��

A⊕nM //

χf

��

M //

f

��

0

A⊕mN
φN // A⊕nN // N // 0

Having made these choices we can define: for an object M of ModfpA we set
F (M) = Coker(F (φM ) : F (A⊕mM ) → F (A⊕nM ))

and for a morphism f : M → N of ModfpA we set
F (f) = the map F (M) → F (N) induced by F (ψf ) and F (χf ) on cokernels

Note that this rule extends the given functor F on the full subcategory consisting of
the free modules A⊕n. We still have to show that F is a functor, that F is additive,
and that F is right exact.
Let f : M → N be a morphism ModfpA . We claim that the map F (f) defined above
is independent of the choices of ψf and χf in (2.5.1). Namely, say

A⊕mM
φM

//

ψ

��

A⊕nM //

χ

��

M //

f

��

0

A⊕mN
φN // A⊕nN // N // 0

is also commutative. Denote F (f)′ : F (M) → F (N) the map induced by F (ψ) and
F (χ). Looking at the commutative diagrams, by elementary commutative algebra

https://stacks.math.columbia.edu/tag/0GNN
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there exists a map ω : A⊕nM → A⊕mN such that χ = χf + φN ◦ ω. Applying F
we find that F (χ) = F (χf ) +F (φN ) ◦F (ω). As F (N) is the cokernel of F (φN ) we
find that the map F (A⊕nM ) → F (M) equalizes F (f) and F (f)′. Since a cokernel
is an epimorphism, we conclude that F (f) = F (f)′.
Let us prove F is a functor. First, observe that F (idM ) = idF (M) because we may
pick the identities for ψf and χf in the diagram above in case f = idM . Second,
suppose we have f : M → N and g : L → M . Then we see that ψ = ψf ◦ ψg and
χ = χf ◦ χg fit into (2.5.1) for f ◦ g. Hence these induce the correct map which
exactly says that F (f) ◦ F (g) = F (f ◦ g).
Let us prove that F is additive. Namely, suppose we have f, g : M → N . Then we
see that ψ = ψf +ψg and χ = χf +χg fit into (2.5.1) for f + g. Hence these induce
the correct map which exactly says that F (f) + F (g) = F (f + g).
Finally, let us prove that F is right exact. It suffices to show that F commutes
with coequalizers, see Categories, Lemma 23.3. For this, it suffices to prove that
F commutes with cokernels. Let K → L → M → 0 be an exact sequence of
A-modules with K, L, M finitely presented. Since F is an additive functor, this
certainly gives a complex

F (K) → F (L) → F (M) → 0
and we have to show that the second arrow is the cokernel of the first in B. In any
case, we obtain a map Coker(F (K) → F (L)) → F (M). By elementary commuta-
tive algebra there exists a commutative diagram

A⊕mM
φM

//

ψ

��

A⊕nM //

χ

��

M //

1
��

0

K // L // M // 0
Applying F to this diagram and using the construction of F (M) as the cokernel
of F (φM ) we find there exists a map F (M) → Coker(F (K) → F (L)) which is a
right inverse to the map Coker(F (K) → F (L)) → F (M). This first implies that
F (L) → F (M) is an epimorphism always. Next, the above shows we have

Coker(F (K) → F (L)) = F (M) ⊕ E

where the direct sum decomposition is compatible with both F (M) → Coker(F (K) →
F (L)) and Coker(F (K) → F (L)) → F (M). However, then the epimorphism
p : F (L) → E becomes zero both after composition with F (K) → F (L) and
after composition with F (AnM ) → F (L). However, since K ⊕ AnM → L is sur-
jective (algebra argument omitted), we conclude that F (K ⊕ AnM ) → F (L) is an
epimorphism (by the above) whence E = 0. This finishes the proof. □

Lemma 2.6.0GNQ Let A be a ring. Let B be an additive category with arbitrary direct
sums and cokernels. There is an equivalence of categories between

(1) the category of functors F : ModA → B which are right exact and commute
with arbitrary direct sums, and

(2) the category of pairs (K,κ) where K ∈ Ob(B) and κ : A → EndB(K) is a
ring homomorphism

given by the rule sending F to F (A) with its natural A-action.

Proof. Combine Lemmas 2.5 and 2.3. □

https://stacks.math.columbia.edu/tag/0GNQ
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3. Functors between categories of modules

0GNR The following lemma is archetypical of the results in this chapter.

Lemma 3.1.0GNS Let A and B be rings. Let F : ModA → ModB be a functor. The
following are equivalent

(1) F is isomorphic to the functor M 7→ M ⊗AK for some A⊗ZB-module K,
(2) F is right exact and commutes with all direct sums,
(3) F commutes with all colimits,
(4) F has a right adjoint G.

Proof. If (1), then (4) as a right adjoint for M 7→ M ⊗AK is N 7→ HomB(K,N),
see Differential Graded Algebra, Lemma 30.3. If (4), then (3) by Categories, Lemma
24.5. The implication (3) ⇒ (2) is immediate from the definitions.
Assume (2). We will prove (1). By the discussion in Homology, Section 7 the functor
F is additive. Hence F induces a ring map A → EndB(F (M)), a 7→ F (a · idM ) for
every A-module M . We conclude that F (M) is an A⊗Z B-module functorially in
M . Set K = F (A). Define

M ⊗A K = M ⊗A F (A) −→ F (M), m⊗ k 7−→ F (φm)(k)
Here φm : A → M sends a → am. The rule (m, k) 7→ F (φm)(k) is A-bilinear
(and B-linear on the right) as required to obtain the displayed A⊗Z B-linear map.
This construction is functorial in M , hence defines a transformation of functors
− ⊗A K → F (−) which is an isomorphism when evaluated on A. For every A-
module M we can choose an exact sequence⊕

j∈J
A →

⊕
i∈I

A → M → 0

Using the maps constructed above we find a commutative diagram

(
⊕

j∈J A) ⊗A K //

��

(
⊕

i∈I A) ⊗A K //

��

M ⊗A K //

��

0

F (
⊕

j∈J A) // F (
⊕

i∈I A) // F (M) // 0

The lower row is exact as F is right exact. The upper row is exact as tensor
product with K is right exact. Since F commutes with direct sums the left two
vertical arrows are bijections. Hence we conclude. □

Example 3.2.0GNT Let R be a ring. Let A and B be R-algebras. Let K be a A⊗RB-
module. Then we can consider the functor
(3.2.1)0GNU F : ModA −→ ModB , M 7−→ M ⊗A K

This functor is R-linear, right exact, commutes with arbitrary direct sums, com-
mutes with all colimits, has a right adjoint (Lemma 3.1).

Lemma 3.3.0GNV Let R be a ring. Let A and B be R-algebras. There is an equivalence
of categories between

(1) the category of R-linear functors F : ModA → ModB which are right exact
and commute with arbitrary direct sums, and

(2) the category ModA⊗RB.
given by sending K to the functor F in (3.2.1).

https://stacks.math.columbia.edu/tag/0GNS
https://stacks.math.columbia.edu/tag/0GNT
https://stacks.math.columbia.edu/tag/0GNV
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Proof. Let F be an object of the first category. By Lemma 3.1 we may assume
F (M) = M ⊗A K functorially in M for some A⊗Z B-module K. The R-linearity
of F immediately implies that the A ⊗Z B-module structure on K comes from a
(unique) A ⊗R B-module structure on K. Thus we see that sending K to F as in
(3.2.1) is essentially surjective.
To prove that our functor is fully faithful, we have to show that given A ⊗R B-
modules K and K ′ any transformation t : F → F ′ between the corresponding
functors, comes from a unique φ : K → K ′. Since K = F (A) and K ′ = F ′(A) we
can take φ to be the value tA : F (A) → F ′(A) of t at A. This maps is A⊗RB-linear
by the definition of the A ⊗ B-module structure on F (A) and F ′(A) given in the
proof of Lemma 3.1. □

Remark 3.4.0GNW Let R be a ring. Let A, B, C be R-algebras. Let F : ModA → ModB
and F ′ : ModB → ModC be R-linear, right exact functors which commute with
arbitrary direct sums. If by the equivalence of Lemma 3.3 the object K in ModA⊗RB

corresponds to F and the object K ′ in ModB⊗RC corresponds to F ′, then K⊗BK
′

viewed as an object of ModA⊗RC corresponds to F ′ ◦ F .

Remark 3.5.0GNX In the situation of Lemma 3.3 suppose that F corresponds to K.
Then F is exact ⇔ K is flat over A.

Remark 3.6.0GNY In the situation of Lemma 3.3 suppose that F corresponds to K.
Then F sends finite A-modules to finite B-modules ⇔ K is finite as a B-module.

Remark 3.7.0GNZ In the situation of Lemma 3.3 suppose that F corresponds to K.
Then F sends finitely presented A-modules to finitely presented B-modules ⇔ K
is finitely presented as a B-module.

Lemma 3.8.0GP0 Let A and B be rings. If
F : ModA −→ ModB

is an equivalence of categories, then there exists an isomorphism A → B of rings
and an invertible B-module L such that F is isomorphic to the functor M 7→
(M ⊗A B) ⊗B L.

Proof. Since an equivalence commutes with all colimits, we see that Lemmas 3.1
applies. Let K be the A ⊗Z B-module such that F is isomorphic to the functor
M 7→ M ⊗A K. Let K ′ be the B ⊗Z A-module such that a quasi-inverse of F is
isomorphic to the functor N 7→ N ⊗B K

′. By Remark 3.4 and Lemma 3.3 we have
an isomorphism

ψ : K ⊗B K
′ −→ A

of A⊗Z A-modules. Similarly, we have an isomorphism
ψ′ : K ′ ⊗A K −→ B

of B⊗Z B-modules. Choose an element ξ =
∑
i=1,...,n xi ⊗ yi ∈ K ⊗BK

′ such that
ψ(ξ) = 1. Consider the isomorphisms

K
ψ−1⊗idK−−−−−−→ K ⊗B K

′ ⊗A K
idK⊗ψ′

−−−−−→ K

The composition is an isomorphism and given by

k 7−→
∑

xiψ
′(yi ⊗ k)

https://stacks.math.columbia.edu/tag/0GNW
https://stacks.math.columbia.edu/tag/0GNX
https://stacks.math.columbia.edu/tag/0GNY
https://stacks.math.columbia.edu/tag/0GNZ
https://stacks.math.columbia.edu/tag/0GP0
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We conclude this automorphism factors as

K → B⊕n → K

as a map of B-modules. It follows that K is finite projective as a B-module.

We claim that K is invertible as a B-module. This is equivalent to asking the rank
of K as a B-module to have the constant value 1, see More on Algebra, Lemma
117.2 and Algebra, Lemma 78.2. If not, then there exists a maximal ideal m ⊂ B
such that either (a) K ⊗B B/m = 0 or (b) there is a surjection K → (B/m)⊕2 of
B-modules. Case (a) is absurd as K ′ ⊗A K ⊗B N = N for all B-modules N . Case
(b) would imply we get a surjection

A = K ⊗B K
′ −→ (B/m ⊗B K

′)⊕2

of (right) A-modules. This is impossible as the target is an A-module which needs
at least two generators: B/m⊗BK

′ is nonzero as the image of the nonzero module
B/m under the quasi-inverse of F .

Since K is invertible as a B-module we see that HomB(K,K) = B. Since K = F (A)
the action of A on K defines a ring isomorphism A → B. The lemma follows. □

Lemma 3.9.0GP1 Let R be a ring. Let A and B be R-algebras. If

F : ModA −→ ModB
is an R-linear equivalence of categories, then there exists an isomorphism A → B of
R-algebras and an invertible B-module L such that F is isomorphic to the functor
M 7→ (M ⊗A B) ⊗B L.

Proof. We get A → B and L from Lemma 3.8. To finish the proof, we need to
show that the R-linearity of F forces A → B to be an R-algebra map. We omit the
details. □

Remark 3.10.0GP2 Let A and B be rings. Let us endow ModA and ModB with the
usual monoidal structure given by tensor products of modules. Let F : ModA →
ModB be a functor of monoidal categories, see Categories, Definition 43.2. Here
are some comments:

(1) Since F (A) is a unit (by our definitions) we have F (A) = B.
(2) We obtain a multiplicative map φ : A → B by sending a ∈ A to its action

on F (A) = B.
(3) Take A = B and F (M) = M ⊗AM . In this case φ(a) = a2.
(4) If F is additive, then φ is a ring map.
(5) Take A = B = Z and F (M) = M/torsion. Then φ = idZ but F is not the

identity functor.
(6) If F is right exact and commutes with direct sums, then F (M) = M⊗A,φB

by Lemma 3.1.
In other words, ring maps A → B are in bijection with isomorphism classes of
functors of monoidal categories ModA → ModB which commute with all colimits.

4. Extending functors on categories of modules

0GP3 For a ring A let us denote ModfpA the category of finitely presented A-modules.

https://stacks.math.columbia.edu/tag/0GP1
https://stacks.math.columbia.edu/tag/0GP2


FUNCTORS AND MORPHISMS 9

Lemma 4.1.0GP4 Let A and B be rings. Let F : ModfpA → ModfpB be a functor. Then
F extends uniquely to a functor F ′ : ModA → ModB which commutes with filtered
colimits.
Proof. Special case of Lemma 2.1. □

Remark 4.2.0GP5 With A, B, F , and F ′ as in Lemma 4.1. Observe that the tensor
product of two finitely presented modules is finitely presented, see Algebra, Lemma
12.14. Thus we may endow ModfpA , ModfpB , ModA, and ModB with the usual
monoidal structure given by tensor products of modules. In this case, if F is a
functor of monoidal categories, so is F ′. This follows immediately from the fact
that tensor products of modules commutes with filtered colimits.
Lemma 4.3.0GP6 With A, B, F , and F ′ as in Lemma 4.1.

(1) If F is additive, then F ′ is additive and commutes with arbitrary direct
sums, and

(2) if F is right exact, then F ′ is right exact.
Proof. Follows from Lemmas 2.2 and 2.3. □

Remark 4.4.0GP7 Combining Remarks 3.10 and 4.2 and Lemma 4.3 we find the
following. Given rings A and B the set of ring maps A → B is in bijection with
the set of isomorphism classes of functors of monoidal categories ModfpA → ModfpB
which are right exact.
Lemma 4.5.0GP8 With A, B, F , and F ′ as in Lemma 4.1. Assume A is a coherent
ring (Algebra, Definition 90.1). If F is left exact, then F ′ is left exact.
Proof. Special case of Lemma 2.4. □

For a ring A let us denote ModfgA the category of finitely generated A-modules
(AKA finite A-modules).

Lemma 4.6.0GP9 Let A and B be Noetherian rings. Let F : ModfgA → ModfgB be a
functor. Then F extends uniquely to a functor F ′ : ModA → ModB which commutes
with filtered colimits. If F is additive, then F ′ is additive and commutes with
arbitrary direct sums. If F is exact, left exact, or right exact, so is F ′.
Proof. See Lemmas 4.3 and 4.5. Also, use the finite A-modules are finitely pre-
sented A-modules, see Algebra, Lemma 31.4, and use that Noetherian rings are
coherent, see Algebra, Lemma 90.5. □

5. Functors between categories of quasi-coherent modules

0FZA In this section we briefly study functors between categories of quasi-coherent mod-
ules.
Example 5.1.0FZB Let R be a ring. Let X and Y be schemes over R with X quasi-
compact and quasi-separated. Let K be a quasi-coherent OX×RY -module. Then
we can consider the functor
(5.1.1)0FZC F : QCoh(OX) −→ QCoh(OY ), F 7−→ pr2,∗(pr∗

1F ⊗OX×RY
K)

The morphism pr2 is quasi-compact and quasi-separated (Schemes, Lemmas 19.3
and 21.12). Hence pushforward along this morphism preserves quasi-coherent mod-
ules, see Schemes, Lemma 24.1. Moreover, our functor is R-linear and commutes
with arbitrary direct sums, see Cohomology of Schemes, Lemma 6.1.

https://stacks.math.columbia.edu/tag/0GP4
https://stacks.math.columbia.edu/tag/0GP5
https://stacks.math.columbia.edu/tag/0GP6
https://stacks.math.columbia.edu/tag/0GP7
https://stacks.math.columbia.edu/tag/0GP8
https://stacks.math.columbia.edu/tag/0GP9
https://stacks.math.columbia.edu/tag/0FZB
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The following lemma is a natural generalization of Lemma 3.3.

Lemma 5.2.0FZD Let R be a ring. Let X and Y be schemes over R with X affine.
There is an equivalence of categories between

(1) the category of R-linear functors F : QCoh(OX) → QCoh(OY ) which are
right exact and commute with arbitrary direct sums, and

(2) the category QCoh(OX×RY )
given by sending K to the functor F in (5.1.1).

Proof. Let K be an object of QCoh(OX×RY ) and FK the functor (5.1.1). By the
discussion in Example 5.1 we already know that F is R-linear and commutes with
arbitrary direct sums. Since pr2 : X ×R Y → Y is affine (Morphisms, Lemma 11.8)
the functor pr2,∗ is exact, see Cohomology of Schemes, Lemma 2.3. Hence F is
right exact as well, in other words F is as in (1).

Let F be as in (1). Say X = Spec(A). Consider the quasi-coherent OY -module
G = F (OX). The functor F induces an R-linear map A → EndOY

(G), a 7→ F (a·id).
Thus G is a sheaf of modules over

A⊗R OY = pr2,∗OX×RY

By Morphisms, Lemma 11.6 we find that there is a unique quasi-coherent module K
onX×RY such that F (OX) = G = pr2,∗K compatible with action of A and OY . De-
note FK the functor given by (5.1.1). There is an equivalence ModA → QCoh(OX)
sending A to OX , see Schemes, Lemma 7.5. Hence we find an isomorphism F ∼= FK
by Lemma 2.6 because we have an isomorphism F (OX) ∼= FK(OX) compatible with
A-action by construction.

This shows that the functor sending K to FK is essentially surjective. We omit the
verification of fully faithfulness. □

Remark 5.3.0FZE Below we will use that for an affine morphism h : T → S we have
h∗G ⊗OS

H = h∗(G ⊗OT
h∗H) for G ∈ QCoh(OT ) and H ∈ QCoh(OS). This follows

immediately on translating into algebra.

Lemma 5.4.0FZF In Lemma 5.2 let F correspond to K in QCoh(OX×RY ). We have
(1) If f : X ′ → X is an affine morphism, then F ◦f∗ corresponds to (f×idY )∗K.
(2) If g : Y ′ → Y is a flat morphism, then g∗ ◦ F corresponds to (idX × g)∗K.
(3) If j : V → Y is an open immersion, then j∗ ◦ F corresponds to K|X×RV .

Proof. Proof of (1). Consider the commutative diagram

X ′ ×R Y
pr′

2

**
f×idY &&

pr′
1

��

X ×R Y pr2
//

pr1

��

Y

X ′ f // X

https://stacks.math.columbia.edu/tag/0FZD
https://stacks.math.columbia.edu/tag/0FZE
https://stacks.math.columbia.edu/tag/0FZF
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Let F ′ be a quasi-coherent module on X ′. We have
pr2,∗(pr∗

1f∗F ′ ⊗OX×RY
K) = pr2,∗((f × idY )∗(pr′

1)∗F ′ ⊗OX×RY
K)

= pr2,∗(f × idY )∗

(
(pr′

1)∗F ′ ⊗OX′×RY
(f × idY )∗K)

)
= pr′

2,∗((pr′
1)∗F ′ ⊗OX′×RY

(f × idY )∗K)

Here the first equality is affine base change for the left hand square in the diagram,
see Cohomology of Schemes, Lemma 5.1. The second equality hold by Remark 5.3.
The third equality is functoriality of pushforwards for modules. This proves (1).
Proof of (2). Consider the commutative diagram

X ×R Y
′

pr′
2

//

idX ×g

&&

pr′
1

��

Y ′

g

��
X ×R Y pr2

//

pr1

��

Y

X

We have
g∗pr2,∗(pr∗

1F ⊗OX×RY
K) = pr′

2,∗((idX × g)∗(pr∗
1F ⊗OX×RY

K))
= pr′

2,∗((pr′
1)∗F ⊗OX×RY ′ (idX × g)∗K)

The first equality by flat base change for the square in the diagram, see Cohomology
of Schemes, Lemma 5.2. The second equality by functoriality of pullback and the
fact that a pullback of tensor products it the tensor product of the pullbacks.
Part (3) is a special case of (2). □

Lemma 5.5.0GPA Let R be a ring. Let X and Y be schemes over R. Assume X
is quasi-compact with affine diagonal. Let F : QCoh(OX) → QCoh(OY ) be an
R-linear, right exact functor which commutes with arbitrary direct sums. Then we
can construct

(1) a quasi-coherent module K on X ×R Y , and
(2) a natural transformation t : F → FK where FK denotes the functor (5.1.1)

such that t : F ◦ f∗ → FK ◦ f∗ is an isomorphism for every morphism f : X ′ → X
whose source is an affine scheme.

Proof. Consider a morphism f ′ : X ′ → X with X ′ affine. Since the diagonal
of X is affine, we see that f ′ is an affine morphism (Morphisms, Lemma 11.11).
Thus f ′

∗ : QCoh(OX′) → QCoh(OX) is an R-linear exact functor (Cohomology of
Schemes, Lemma 2.3) which commutes with direct sums (Cohomology of Schemes,
Lemma 6.1). Thus F ◦ f ′

∗ is an R-linear, right exact functor which commutes with
arbitrary direct sums. Whence F ◦ f ′

∗ = FK′ for some K′ on X ′ ×R Y by Lemma
5.2. Moreover, given a morphism f ′′ : X ′′ → X ′ with X ′′ affine we obtain a canon-
ical identification (f ′′ × idY )∗K′ = K′′ by the references already given combined
with Lemma 5.4. These identifications satisfy a cocycle condition given another
morphism f ′′′ : X ′′′ → X ′′ which we leave it to the reader to spell out.
Choose an affine open covering X =

⋃
i=1,...,n Ui. Since the diagonal of X is affine,

we see that the intersections Ui0...ip = Ui0 ∩ . . . ∩ Uip are affine. As above the

https://stacks.math.columbia.edu/tag/0GPA
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inclusion morphisms ji0...ip : Ui0...ip → X are affine. Denote Ki0...ip the quasi-
coherent module on Ui0...ip ×R Y corresponding to F ◦ ji0...ip∗ as above. By the
above we obtain identifications

Ki0...ip = Ki0...̂ij ...ip
|Ui0...ip ×RY

which satisfy the usual compatibilites for glueing. In other words, we obtain a
unique quasi-coherent module K on X ×R Y whose restriction to Ui0...ip ×R Y is
Ki0...ip compatible with the displayed identifications.

Next, we construct the transformation t. Given a quasi-coherent OX -module F de-
note Fi0...ip the restriction of F to Ui0...ip and denote (pr∗

1F ⊗K)i0...ip the restriction
of pr∗

1F ⊗ K to Ui0...ip ×R Y . Observe that

F (ji0...ip∗Fi0...ip) = pri0...ip,2,∗(pr∗
i0...ip,1Fi0...ip ⊗ Ki0...ip)

= pri0...ip,2,∗(pr∗
1F ⊗ K)i0...ip

where pri0...ip,2 : Ui0...ip ×R Y → Y is the projection and similarly for the other
projection. Moreover, these identifications are compatible with the displayed iden-
tifications in the previous paragraph. Recall, from Cohomology of Schemes, Lemma
7.1 that the relative Čech complex⊕

pri0,2,∗(pr∗
1F⊗K)i0 →

⊕
pri0i1,2,∗(pr∗

1F⊗K)i0i1 →
⊕

pri0i1i2,2,∗(pr∗
1F⊗K)i0i1i2 → . . .

computes Rpr2,∗(pr∗
1F ⊗ K). Hence the cohomology sheaf in degree 0 is FK(F).

Thus we obtain the desired map t : F (F) → FK(F) by contemplating the following
commutative diagram

F (F) //

��

⊕
F (ji0∗Fi0) //

��

⊕
F (ji0i1∗Fi0i1)

��
0 // FK(F) //⊕ pri0,2,∗(pr∗

1F ⊗ K)i0 //⊕ pri0i1,2,∗(pr∗
1F ⊗ K)i0i1

We obtain the top row by applying F to the (exact) complex 0 → F →
⊕
ji0∗Fi0 →⊕

ji0i1∗Fi0i1 (but since F is not exact, the top row is just a complex and not
necessarily exact). The solid vertical arrows are the identifications above. This
does indeed define the dotted arrow as desired. The arrow is functorial in F ; we
omit the details.

We still have to prove the final assertion. Let f : X ′ → X be as in the statement
of the lemma and let K′ be the quasi-coherent module on X ′ ×R Y constructed in
the first paragraph of the proof. If the morphism f : X ′ → X maps into one of
the opens Ui, then the result follows from Lemma 5.4 because in this case we know
that Ki = K|Ui×RY pulls back to K. In general, we obtain an affine open covering
X ′ =

⋃
U ′
i with U ′

i = f−1(Ui) and we obtain isomorphisms K′|U ′
i

= f∗
i Ki where

fi : U ′
i → Ui is the induced morphism. These morphisms satisfy the compatibility

conditions needed to glue to an isomorphism K′ = f∗K and we conclude. Some
details omitted. □

Lemma 5.6.0FZG In Lemma 5.2 or in Lemma 5.5 if F is an exact functor, then the
corresponding object K of QCoh(OX×RY ) is flat over X.

https://stacks.math.columbia.edu/tag/0FZG
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Proof. We may assume X is affine, so we are in the case of Lemma 5.2. By
Lemma 5.4 we may assume Y is affine. In the affine case the statement translates
into Remark 3.5. □

Lemma 5.7.0FZH Let R be a ring. Let X and Y be schemes over R. Assume X is
quasi-compact with affine diagonal. There is an equivalence of categories between

(1) the category of R-linear exact functors F : QCoh(OX) → QCoh(OY ) which
commute with arbitrary direct sums, and

(2) the full subcategory of QCoh(OX×RY ) consisting of K such that
(a) K is flat over X,
(b) for F ∈ QCoh(OX) we have Rqpr2,∗(pr∗

1F ⊗OX×RY
K) = 0 for q > 0.

given by sending K to the functor F in (5.1.1).

Proof. Let K be as in (2). The functor F in (5.1.1) commutes with direct sums.
Since by (1) (a) the modules K is X-flat, we see that given a short exact sequence
0 → F1 → F2 → F3 → 0 we obtain a short exact sequence

0 → pr∗
1F1 ⊗OX×RY

K → pr∗
1F2 ⊗OX×RY

K → pr∗
1F3 ⊗OX×RY

K → 0

Since by (2)(b) the higher direct image R1pr2,∗ on the first term is zero, we conclude
that 0 → F (F1) → F (F2) → F (F3) → 0 is exact and we see that F is as in (1).
Let F be as in (1). Let K and t : F → FK be as in Lemma 5.5. By Lemma 5.6
we see that K is flat over X. To finish the proof we have to show that t is an
isomorphism and the statement on higher direct images. Both of these follow from
the fact that the relative Čech complex⊕

pri0,2,∗(pr∗
1F⊗K)i0 →

⊕
pri0i1,2,∗(pr∗

1F⊗K)i0i1 →
⊕

pri0i1i2,2,∗(pr∗
1F⊗K)i0i1i2 → . . .

computes Rpr2,∗(pr∗
1F ⊗K). Please see proof of Lemma 5.5 for notation and for the

reason why this is so. In the proof of Lemma 5.5 we also found that this complex
is equal to F applied to the complex⊕

ji0∗Fi0 →
⊕

ji0i1∗Fi0i1 →
⊕

ji0i1i2∗Fi0i1i2 → . . .

This complex is exact except in degree zero with cohomology sheaf equal to F .
Hence since F is an exact functor we conclude F = FK and that (2)(b) holds.
We omit the proof that the construction that sends F to K is functorial and a
quasi-inverse to the functor sending K to the functor FK determined by (5.1.1). □

Remark 5.8.0GPB Let R be a ring. Let X and Y be schemes over R. Assume X is
quasi-compact with affine diagonal. Lemma 5.7 may be generalized as follows: the
functors (5.1.1) associated to quasi-coherent modules on X ×R Y are exactly those
F : QCoh(OX) → QCoh(OY ) which have the following properties

(1) F is R-linear and commutes with arbitrary direct sums,
(2) F ◦ j∗ is right exact when j : U → X is the inclusion of an affine open, and
(3) 0 → F (F) → F (G) → F (H) is exact whenever 0 → F → G → H → 0 is an

exact sequence such that for all x ∈ X the sequence on stalks 0 → Fx →
Gx → Hx → 0 is a split short exact sequence.

Namely, these assumptions are enough to get construct a transformation t : F → FK
as in Lemma 5.5 and to show that it is an isomorphism. Moreover, properties (1),
(2), and (3) do hold for functors (5.1.1). If we ever need this we will carefully state
and prove this here.

https://stacks.math.columbia.edu/tag/0FZH
https://stacks.math.columbia.edu/tag/0GPB
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Lemma 5.9.0GPC Let R be a ring. Let X, Y , Z be schemes over R. Assume X and
Y are quasi-compact and have affine diagonal. Let

F : QCoh(OX) → QCoh(OY ) and G : QCoh(OY ) → QCoh(OZ)

be R-linear exact functors which commute with arbitrary direct sums. Let K in
QCoh(OX×RY ) and L in QCoh(OY×RZ) be the corresponding “kernels”, see Lemma
5.7. Then G◦F corresponds to pr13,∗(pr∗

12K⊗OX×RY ×RZ
pr∗

23L) in QCoh(OX×RZ).

Proof. Since G ◦ F : QCoh(OX) → QCoh(OZ) is R-linear, exact, and com-
mutes with arbitrary direct sums, we find by Lemma 5.7 that there exists an
M in QCoh(OX×RZ) corresponding to G ◦ F . On the other hand, denote E =
pr13,∗(pr∗

12K ⊗pr∗
23L). Here and in the rest of the proof we omit the subscript from

the tensor products. Let U ⊂ X and W ⊂ Z be affine open subschemes. To prove
the lemma, we will construct an isomorphism

Γ(U ×RW, E) ∼= Γ(U ×RW,M)

compatible with restriction mappings for varying U and W .

First, we observe that

Γ(U ×RW, E) = Γ(U ×R Y ×RW, pr∗
12K ⊗ pr∗

23L)

by construction. Thus we have to show that the same thing is true for M.

Write U = Spec(A) and denote j : U → X the inclusion morphism. Recall from
the construction of M in the proof of Lemma 5.2 that

Γ(U ×RW,M) = Γ(W,G(F (j∗OU )))

where the A-module action on the right hand side is given by the action of A on
OU . The correspondence between F and K tells us that F (j∗OU ) = b∗(a∗j∗OU⊗K)
where a : X ×R Y → X and b : X ×R Y → Y are the projection morphisms. Since
j is an affine morphism, we have a∗j∗OU = (j × idY )∗OU×RY by Cohomology of
Schemes, Lemma 5.1. Next, we have (j × idY )∗OU×RY ⊗ K = (j × idY )∗K|U×RY

by Remark 5.3 for example. Putting what we have found together we find

F (j∗OU ) = (U ×R Y → Y )∗K|U×RY

with obvious A-action. (This formula is implicit in the proof of Lemma 5.2.) Ap-
plying the functor G we obtain

G(F (j∗OU )) = t∗(s∗((U ×R Y → Y )∗K|U×RY ) ⊗ L)

where s : Y ×R Z → Y and t : Y ×R Z → Z are the projection morphisms. Again
using affine base change (Cohomology of Schemes, Lemma 5.1) but this time for
the square

U ×R Y ×R Z //

��

U ×R Y

��
Y ×R Z // Y

we obtain

s∗((U ×R Y → Y )∗K|U×RY ) = (U ×R Y ×R Z → Y ×R Z)∗pr∗
12K|U×RY×RZ

https://stacks.math.columbia.edu/tag/0GPC
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Using Remark 5.3 again we find
(U ×R Y ×R Z → Y ×R Z)∗pr∗

12K|U×RY×RZ ⊗ L
= (U ×R Y ×R Z → Y ×R Z)∗ (pr∗

12K ⊗ pr∗
23L) |U×RY×RZ

Applying the functor Γ(W, t∗(−)) = Γ(Y ×RW,−) to this we obtain
Γ(U ×RW,M) = Γ(W,G(F (j∗OU )))

= Γ(Y ×RW, (U ×R Y ×R Z → Y ×R Z)∗(pr∗
12K ⊗ pr∗

23L)|U×RY×RZ)
= Γ(U ×R Y ×RW, pr∗

12K ⊗ pr∗
23L)

as desired. We omit the verication that these isomorphisms are compatible with
restriction mappings. □

Lemma 5.10.0FZI Let R, X, Y , and K be as in Lemma 5.7 part (2). Then for any
scheme T over R we have

Rqpr13,∗(pr∗
12F ⊗OT ×RX×RY

pr∗
23K) = 0

for F quasi-coherent on T ×R X and q > 0.

Proof. The question is local on T hence we may assume T is affine. In this case
we can consider the diagram

T ×R X

��

T ×R X ×R Y

��

oo // T ×R Y

��
X X ×R Yoo // Y

whose vertical arrows are affine. In particular the pushforward along T ×R Y → Y
is faithful and exact (Cohomology of Schemes, Lemma 2.3 and Morphisms, Lemma
11.6). Chasing around in the diagram using that higher direct images along affine
morphisms vanish (see reference above) we see that it suffices to prove
Rqpr2,∗(pr23,∗(pr∗

12F ⊗OT ×RX×RY
pr∗

23K)) = Rqpr2,∗(pr23,∗(pr∗
12F) ⊗OX×RY

K))
is zero which is true by assumption on K. The equality holds by Remark 5.3. □

Lemma 5.11.0FZJ In Lemma 5.7 let F and K correspond. If X is separated and flat
over R, then there is a surjection OX ⊠ F (OX) → K.

Proof. Let ∆ : X → X ×R X be the diagonal morphism and set O∆ = ∆∗OX .
Since ∆ is a closed immersion have a short exact sequence

0 → I → OX×RX → O∆ → 0
Since K is flat over X, the pullback pr∗

23K to X ×R X ×R Y is flat over X ×R X.
We obtain a short exact sequence

0 → pr∗
12I ⊗ pr∗

23K → pr∗
23K → pr∗

12O∆ ⊗ pr∗
23K → 0

on X ×R X ×R Y , see Modules, Lemma 20.4. Thus, by Lemma 5.10 we obtain a
surjection

pr13,∗(pr∗
23K) → pr13,∗(pr∗

12O∆ ⊗ pr∗
23K)

By flat base change (Cohomology of Schemes, Lemma 5.2) the source of this arrow
is equal to pr∗

2pr2,∗K = OX ⊠ F (OX). On the other hand the target is equal to
pr13,∗(pr∗

12O∆ ⊗ pr∗
23K) = pr13,∗(∆ × idY )∗K = K

https://stacks.math.columbia.edu/tag/0FZI
https://stacks.math.columbia.edu/tag/0FZJ
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which finishes the proof. The first equality holds for example by Cohomology,
Lemma 54.4 and the fact that pr∗

12O∆ = (∆ × idY )∗OX×RY . □

6. Gabriel-Rosenberg reconstruction

0GPD The title of this section refers to results like Proposition 6.6. Besides Gabriel’s orig-
inal paper [Gab62], please consult [Bra18] which has a proof of the result for quasi-
separated schemes and discusses the literature. In this section we will only prove
Gabriel-Rosenberg reconstruction for quasi-compact and quasi-separated schemes.

Lemma 6.1.0GPE Let X be a quasi-compact and quasi-separated scheme. Let F be a
quasi-coherent OX-module. Then F is a categorically compact object of QCoh(OX)
if and only if F is of finite presentation.

Proof. See Categories, Definition 26.1 for our notion of categorically compact ob-
jects in a category. If F is of finite presentation then it is categorically compact by
Modules, Lemma 22.8. Conversely, any quasi-coherent module F can be written
as a filtered colimit F = colim Fi of finitely presented (hence quasi-coherent) OX -
modules, see Properties, Lemma 22.7. If F is categorically compact, then we find
some i and a morphism F → Fi which is a right inverse to the given map Fi → F .
We conclude that F is a direct summand of a finitely presented module, and hence
finitely presented itself. □

Lemma 6.2.0GPF Let X be an affine scheme. Let F be a finitely presented OX-module.
Let E be a nonzero quasi-coherent OX-module. If Supp(E) ⊂ Supp(F), then there
exists a nonzero map F → E.

Proof. Let us translate the statement into algebra. Let A be a ring. Let M be a
finitely presented A-module. Let N be a nonzero A-module. Assume Supp(N) ⊂
Supp(M). To show: HomA(M,N) is nonzero. We may assume N = A/I is cyclic
(replace N by any nonzero cyclic submodule). Choose a presentation

A⊕m T−→ A⊕n → M → 0
Recall that Supp(M) is cut out by Fit0(M) which is the ideal generated by the
n× n minors of the matrix T . See More on Algebra, Lemma 8.4. The assumption
Supp(N) ⊂ Supp(M) now means that the elements of Fit0(M) are nilpotent in
A/I. Consider the exact sequence

0 → HomA(M,A/I) → (A/I)⊕n T t

−→ (A/I)⊕m

We have to show that T t cannot be injective; we urge the reader to find their
own proof of this using the nilpotency of elements of Fit0(M) in A/I. Here is our
proof. Since Fit0(M) is finitely generated, the nilpotency means that the annihilator
J ⊂ A/I of Fit0(M) in A/I is nonzero. To show the non-injectivity of T t we may
localize at a prime. Choosing a suitable prime we may assume A is local and J is
still nonzero. Then T t has a nonzero kernel by More on Algebra, Lemma 15.6. □

Lemma 6.3.0GPG Let X be a quasi-compact and quasi-separated scheme. Let F be a
finitely presented OX-module. The following two subcategories of QCoh(OX) are
equal

(1) the full subcategory A ⊂ QCoh(OX) whose objects are the quasi-coherent
modules whose support is (set theoretically) contained in Supp(F),

https://stacks.math.columbia.edu/tag/0GPE
https://stacks.math.columbia.edu/tag/0GPF
https://stacks.math.columbia.edu/tag/0GPG
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(2) the smallest Serre subcategory B ⊂ QCoh(OX) containing F closed under
extensions and arbitrary direct sums.

Proof. Observe that the statement makes sense as finitely presented OX -modules
are quasi-coherent. Since A is a Serre subcategory closed under extensions and
direct sums and since F is an object of A we see that B ⊂ A. Thus it remains to
show that A is contained in B.

Let E be an object of A. There exists a maximal submodule E ′ ⊂ E which is in B.
Namely, suppose Ei ⊂ E , i ∈ I is the set of subobjects which are objects of B. Then⊕

Ei is in B and so is
E ′ = Im(

⊕
Ei −→ E)

This is clearly the maximal submodule we were looking for.

Now suppose that we have a nonzero map G → E/E ′ with G in B. Then G′ =
E ×E/E′ G is in B as an extension of E ′ and G. Then the image G′ → E would be
strictly bigger than E ′, contradicting the maximality of E ′. Thus it suffices to show
the claim in the following paragraph.

Let E be an nonzero object of A. We claim that there is a nonzero map G → E with
G in B. We will prove this by induction on the minimal number n of affine opens
Ui of X such that Supp(E) ⊂ U1 ∪ . . . ∪ Un. Set U = Un and denote j : U → X
the inclusion morphism. Denote E ′ = Im(E → j∗E|U ). Then the kernel E ′′ of the
surjection E → E ′ has support contained in U1 ∪ . . .∪Un−1. Thus if E ′′ is nonzero,
then we win. In other words, we may assume that E ⊂ j∗E|U . In particular, we see
that E|U is nonzero. By Lemma 6.2 there exists a nonzero map F|U → E|U . This
corresponds to a map

φ : F −→ j∗(E|U )
whose restriction to U is nonzero. Setting G = φ−1(E) we conclude. □

Lemma 6.4.0GPH Let X be a quasi-compact and quasi-separated scheme. Let Z ⊂ X
be a closed subset such that U = X \ Z is quasi-compact. Let A ⊂ QCoh(OX)
be the full subcategory whose objects are the quasi-coherent modules supported on
Z. Then the restriction functor QCoh(OX) → QCoh(OU ) induces an equivalence
QCoh(OX)/A ∼= QCoh(OU ).

Proof. By the universal property of the quotient construction (Homology, Lemma
10.6) we certainly obtain an induced functor QCoh(OX)/A ∼= QCoh(OU ). Denote
j : U → X the inclusion morphism. Since j is quasi-compact and quasi-separated
we obtain a functor j∗ : QCoh(OU ) → QCoh(OX). The reader shows that this
defines a quasi-inverse; details omitted. □

Lemma 6.5.0GPI Let X be a quasi-compact and quasi-separated scheme. If QCoh(OX)
is equivalent to the category of modules over a ring, then X is affine.

Proof. Say F : ModR → QCoh(OX) is an equivalence. Then F = F (R) has the
following properties:

(1) it is a finitely presented OX -module (Lemma 6.1),
(2) HomX(F ,−) is exact,
(3) HomX(F ,F) is a commutative ring,
(4) every object of QCoh(OX) is a quotient of a direct sum of copies of F .

https://stacks.math.columbia.edu/tag/0GPH
https://stacks.math.columbia.edu/tag/0GPI
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Let x ∈ X be a closed point. Consider the surjection

OX → i∗κ(x)

where the target is the pushforward of κ(x) by the inclusion morphism i : x → X.
We have

HomX(F , i∗κ(x)) = HomOX,x
(Fx, κ(x))

This first by (4) implies that Fx is nonzero. From (2) we deduce that every map
Fx → κ(x) lifts to a map Fx → OX,x (as it even lifts to a global map F → OX).
Since Fx is a finite OX,x-module, this implies that Fx is a (nonzero) finite free OX,x-
module. Then since F is of finite presentation, this implies that F is finite free of
positive rank in an open neighbourhood of x (Modules, Lemma 11.6). Since every
closed subset of X contains a closed point (Topology, Lemma 12.8) this implies
that F is finite locally free of positive rank. Similarly, the map

HomX(F ,F) → HomX(F , i∗i∗F) = Homκ(x)(Fx/mxFx,Fx/mxFx)

is surjective. By property (3) we conclude that the rank Fx must be 1. Hence F is
an invertible OX -module. But then we conclude that the functor

H 7−→ Γ(X,H) = HomX(OX ,H) = HomX(F ,H ⊗OX
F)

on QCoh(OX) is exact too. This implies that the first Ext group

Ext1
QCoh(OX )(OX ,H) = 0

computed in the abelian category QCoh(OX) vanishes for all H in QCoh(OX).
However, since QCoh(OX) ⊂ Mod(OX) is closed under extensions (Schemes, Sec-
tion 24) we see that Ext1 between quasi-coherent modules computed in QCoh(OX)
is the same as computed in Mod(OX). Hence we conclude that

H1(X,H) = Ext1
Mod(OX )(OX ,H) = 0

for all H in QCoh(OX). This implies that X is affine for example by Cohomology
of Schemes, Lemma 3.1. □

Proposition 6.6.0GPJ Special case of
[Bra18, Theorem
1.2]

Let X and Y be quasi-compact and quasi-separated schemes. If
F : QCoh(OX) → QCoh(OY ) is an equivalence, then there exists an isomorphism
f : Y → X of schemes and an invertible OY -module L such that F (F) = f∗F ⊗ L.

Proof. Of course F is additive, exact, commutes with all limits, commutes with all
colimits, commutes with direct sums, etc. Let U ⊂ X be an affine open subscheme.
Let I ⊂ OX be a finite type quasi-coherent sheaf of ideals such that Z = V (I) is
the complement of U in X, see Properties, Lemma 24.1. Then OX/I is a finitely
presented OX -module. Hence G = F (OX/I) is a finitely presented OY -module by
Lemma 6.1. Denote T ⊂ Y the support of G and set V = Y \T . Since G is of finite
presentation, the scheme V is a quasi-compact open of Y . By Lemma 6.3 we see
that F induces an equivalence between

(1) the full subcategory of QCoh(OX) consisting of modules supported on Z,
and

(2) the full subcategory of QCoh(OY ) consisting of modules supported on T .

https://stacks.math.columbia.edu/tag/0GPJ
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By Lemma 6.4 we obtain a commutative diagram

QCoh(OX)
F
//

��

QCoh(OY )

��
QCoh(OU ) FU // QCoh(OV )

where the vertical arrows are the restruction functors and the horizontal arrows are
equivalences. By Lemma 6.5 we conclude that V is affine. For the affine case we
have Lemma 3.8. Thus we find that there is an isomorphism fU : V → U and an
invertible OV -module LU such that FU is the functor F 7→ f∗

UF ⊗ LU .

The proof can be finished by noticing that the diagrams above satisfy an obvious
compatibility with regards to inclusions of affine open subschemes of X. Thus the
morphisms fU and the invertible modules LU glue. We omit the details. □

7. Functors between categories of coherent modules

0FZK The following lemma guarantees that we can use the material on functors between
categories of quasi-coherent modules when we are given a functor between categories
of coherent modules.

Lemma 7.1.0FZL Let X and Y be Noetherian schemes. Let F : Coh(OX) → Coh(OY )
be a functor. Then F extends uniquely to a functor QCoh(OX) → QCoh(OY ) which
commutes with filtered colimits. If F is additive, then its extension commutes with
arbitrary direct sums. If F is exact, left exact, or right exact, so is its extension.

Proof. The existence and uniqueness of the extension is a general fact, see Cate-
gories, Lemma 26.2. To see that the lemma applies observe that coherent modules
are of finite presentation (Modules, Lemma 12.2) and hence categorically compact
objects of Mod(OX) by Modules, Lemma 22.8. Finally, every quasi-coherent module
is a filtered colimit of coherent ones for example by Properties, Lemma 22.3.

Assume F is additive. If F =
⊕

j∈J Hj with Hj quasi-coherent, then F =
colimJ′⊂J finite

⊕
j∈J′ Hj . Denoting the extension of F also by F we obtain

F (F) = colimJ′⊂J finite F (
⊕

j∈J′
Hj)

= colimJ′⊂J finite
⊕

j∈J′
F (Hj)

=
⊕

j∈J
F (Hj)

Thus F commutes with arbitrary direct sums.

Suppose 0 → F → F ′ → F ′′ → 0 is a short exact sequence of quasi-coherent
OX -modules. Then we write F ′ =

⋃
F ′
i as the union of its coherent submodules,

see Properties, Lemma 22.3. Denote F ′′
i ⊂ F ′′ the image of F ′

i and denote Fi =
F ∩ F ′

i = Ker(F ′
i → F ′′

i ). Then it is clear that F =
⋃

Fi and F ′′ =
⋃

F ′′
i and that

we have short exact sequences

0 → Fi → F ′
i → F ′′

i → 0

Since the extension commutes with filtered colimits we have F (F) = colimi∈I F (Fi),
F (F ′) = colimi∈I F (F ′

i), and F (F ′′) = colimi∈I F (F ′′
i ). Since filtered colimits are

https://stacks.math.columbia.edu/tag/0FZL
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exact (Modules, Lemma 3.2) we conclude that exactness properties of F are inher-
ited by its extension. □

Lemma 7.2.0GPK Let X and Y be Noetherian schemes. Let F : Coh(OX) → Coh(OY )
be an equivalence of categories. Then there is an isomorphism f : Y → X and an
invertible OY -module L such that F (F) = f∗F ⊗ L.

Proof. By Lemma 7.1 we obtain a unique functor F ′ : QCoh(OX) → QCoh(OY )
extending F . The same is true for the quasi-inverse of F and by the uniqueness
we conclude that F ′ is an equivalence. By Proposition 6.6 we find an isomorphism
f : Y → X and an invertible OY -module L such that F ′(F) = f∗F ⊗ L. Then f
and L work for F as well. □

Remark 7.3.0GPL In Lemma 7.2 if X and Y are defined over a common base ring R
and F is R-linear, then the isomorphism f will be a morphism of schemes over R.

Lemma 7.4.0FZM Let f : V → X be a quasi-finite separated morphism of Noetherian
schemes. If there exists a coherent OV -module K whose support is V such that f∗K
is coherent and Rqf∗K = 0, then f is finite.

Proof. By Zariski’s main theorem we can find an open immersion j : V → Y over
X with π : Y → X finite, see More on Morphisms, Lemma 43.3. Since π is affine
the functor π∗ is exact and faithful on the category of coherent OX -modules. Hence
we see that j∗K is coherent and that Rqj∗K is zero for q > 0. In other words, we
reduce to the case discussed in the next paragraph.
Assume f is an open immersion. We may replace X by the scheme theoretic closure
of V . Assume X \ V is nonempty to get a contradiction. Choose a generic point
ξ ∈ X \V of an irreducible component of X \V . Looking at the situation after base
change by Spec(OX,ξ) → X using flat base change and using Local Cohomology,
Lemma 8.2 we reduce to the algebra problem discussed in the next paragraph.
Let (A,m) be a Noetherian local ring. Let M be a finite A-module whose support
is Spec(A). Then Hi

m(M) ̸= 0 for some i. This is true by Dualizing Complexes,
Lemma 11.1 and the fact that M is not zero hence has finite depth. □

The next lemma can be generalized to the case where k is a Noetherian ring and
X flat over k (all other assumptions stay the same).

Lemma 7.5.0FZN Let k be a field. Let X, Y be finite type schemes over k with X
separated. There is an equivalence of categories between

(1) the category of k-linear exact functors F : Coh(OX) → Coh(OY ), and
(2) the category of coherent OX×Y -modules K which are flat over X and have

support finite over Y
given by sending K to the restriction of the functor (5.1.1) to Coh(OX).

Proof. Let K be as in (2). By Lemma 5.7 the functor F given by (5.1.1) is exact and
k-linear. Moreover, F sends Coh(OX) into Coh(OY ) for example by Cohomology
of Schemes, Lemma 26.10.
Let us construct the quasi-inverse to the construction. Let F be as in (1). By
Lemma 7.1 we can extend F to a k-linear exact functor on the categories of quasi-
coherent modules which commutes with arbitrary direct sums. By Lemma 5.7 the
extension corresponds to a unique quasi-coherent module K, flat over X, such that

https://stacks.math.columbia.edu/tag/0GPK
https://stacks.math.columbia.edu/tag/0GPL
https://stacks.math.columbia.edu/tag/0FZM
https://stacks.math.columbia.edu/tag/0FZN
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Rqpr2,∗(pr∗
1F ⊗OX×Y

K) = 0 for q > 0 for all quasi-coherent OX -modules F . Since
F (OX) is a coherent OY -module, we conclude from Lemma 5.11 that K is coherent.

For a closed point x ∈ X denote Ox the skyscraper sheaf at x with value the residue
field of x. We have

F (Ox) = pr2,∗(pr∗
1Ox ⊗ K) = (x× Y → Y )∗(K|x×Y )

Since x × Y → Y is finite, we see that the pushforward along this morphism is
faithful. Hence if y ∈ Y is in the image of the support of K|x×Y , then y is in the
support of F (Ox).

Let Z ⊂ X ×Y be the scheme theoretic support Z of K, see Morphisms, Definition
5.5. We first prove that Z → Y is quasi-finite, by proving that its fibres over closed
points are finite. Namely, if the fibre of Z → Y over a closed point y ∈ Y has
dimension > 0, then we can find infinitely many pairwise distinct closed points
x1, x2, . . . in the image of Zy → X. Since we have a surjection OX →

⊕
i=1,...,n Oxi

we obtain a surjection
F (OX) →

⊕
i=1,...,n

F (Oxi
)

By what we said above, the point y is in the support of each of the coherent modules
F (Oxi

). Since F (OX) is a coherent module, this will lead to a contradiction because
the stalk of F (OX) at y will be generated by < n elements if n is large enough.
Hence Z → Y is quasi-finite. Since pr2,∗K is coherent and Rqpr2,∗K = 0 for q > 0
we conclude that Z → Y is finite by Lemma 7.4. □

Lemma 7.6.0FZP Let f : X → Y be a finite type separated morphism of schemes. Let
F be a finite type quasi-coherent module on X with support finite over Y and with
L = f∗F an invertible OX-module. Then there exists a section s : Y → X such
that F ∼= s∗L.

Proof. Looking affine locally this translates into the following algebra problem.
Let A → B be a ring map and let N be a B-module which is invertible as an
A-module. Then the annihilator J of N in B has the property that A → B/J is
an isomorphism. We omit the details. □

Lemma 7.7.0FZQ Let f : X → Y be a finite type separated morphism of schemes
with a section s : Y → X. Let F be a finite type quasi-coherent module on X, set
theoretically supported on s(Y ) with L = f∗F an invertible OX-module. If Y is
reduced, then F ∼= s∗L.

Proof. By Lemma 7.6 there exists a section s′ : Y → X such that F = s′
∗L. Since

s′(Y ) and s(Y ) have the same underlying closed subset and since both are reduced
closed subschemes of X, they have to be equal. Hence s = s′ and the lemma
holds. □

Lemma 7.8.0FZR Weak version of the
result in [Gab62]
stating that the
category of
quasi-coherent
modules determines
the isomorphism
class of a scheme.

Let k be a field. Let X, Y be finite type schemes over k with
X separated and Y reduced. If there is a k-linear equivalence F : Coh(OX) →
Coh(OY ) of categories, then there is an isomorphism f : Y → X over k and an
invertible OY -module L such that F (F) = f∗F ⊗ L.

Proof using Gabriel-Rosenberg reconstruction. This lemma is a weak form
of the results discussed in Lemma 7.2 and Remark 7.3. □

https://stacks.math.columbia.edu/tag/0FZP
https://stacks.math.columbia.edu/tag/0FZQ
https://stacks.math.columbia.edu/tag/0FZR
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Proof not relying on Gabriel-Rosenberg reconstruction. By Lemma 7.5 we
obtain a coherent OX×Y -module K which is flat over X with support finite over
Y such that F is given by the restriction of the functor (5.1.1) to Coh(OX). If we
can show that F (OX) is an invertible OY -module, then by Lemma 7.6 we see that
K = s∗L for some section s : Y → X × Y of pr2 and some invertible OY -module
L. This will show that F has the form indicated with f = pr1 ◦ s. Some details
omitted.
It remains to show that F (OX) is invertible. We only sketch the proof and we
omit some of the details. For a closed point x ∈ X we denote Ox in Coh(OX) the
skyscraper sheaf at x with value κ(x). First we observe that the only simple objects
of the category Coh(OX) are these skyscraper sheaves Ox. The same is true for
Y . Hence for every closed point y ∈ Y there exists a closed point x ∈ X such that
Oy

∼= F (Ox). Moreover, looking at endomorphisms we find that κ(x) ∼= κ(y) as
finite extensions of k. Then

HomY (F (OX),Oy) ∼= HomY (F (OX), F (Ox)) ∼= HomX(OX ,Ox) ∼= κ(x) ∼= κ(y)
This implies that the stalk of the coherent OY -module F (OX) at y ∈ Y can be
generated by 1 generator (and no less) for each closed point y ∈ Y . It follows
immediately that F (OX) is locally generated by 1 element (and no less) and since
Y is reduced this indeed tells us it is an invertible module. □
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