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1. Introduction

00ZV Basic homological algebra will be explained in this document. We add as needed
in the other parts, since there is clearly an infinite amount of this stuff around. A
reference is [ML63].

2. Basic notions

00ZW The following notions are considered basic and will not be defined, and or proved.
This does not mean they are all necessarily easy or well known.

(1) Nothing yet.

3. Preadditive and additive categories

09SE Here is the definition of a preadditive category.

Definition 3.1.00ZY A categoryA is called preadditive if each morphism set MorA(x, y)
is endowed with the structure of an abelian group such that the compositions

Mor(x, y)×Mor(y, z) −→ Mor(x, z)

are bilinear. A functor F : A → B of preadditive categories is called additive if and
only if F : Mor(x, y)→ Mor(F (x), F (y)) is a homomorphism of abelian groups for
all x, y ∈ Ob(A).

In particular for every x, y there exists at least one morphism x → y, namely the
zero map.

Lemma 3.2.00ZZ Let A be a preadditive category. Let x be an object of A. The
following are equivalent

(1) x is an initial object,
(2) x is a final object, and
(3) idx = 0 in MorA(x, x).

Furthermore, if such an object 0 exists, then a morphism α : x→ y factors through
0 if and only if α = 0.

Proof. First assume that x is either (1) initial or (2) final. In both cases, it follows
that Mor(x, x) is a trivial abelian group containing idx, thus idx = 0 in Mor(x, x),
which shows that each of (1) and (2) implies (3).

Now assume that idx = 0 in Mor(x, x). Let y be an arbitrary object of A and let
f ∈ Mor(x, y). Denote C : Mor(x, x) × Mor(x, y) → Mor(x, y) the composition
map. Then f = C(0, f) and since C is bilinear we have C(0, f) = 0. Thus f = 0.
Hence x is initial in A. A similar argument for f ∈ Mor(y, x) can be used to show
that x is also final. Thus (3) implies both (1) and (2). □

Definition 3.3.0100 In a preadditive category A we call zero object, and we denote it
0 any final and initial object as in Lemma 3.2 above.

Lemma 3.4.0101 Let A be a preadditive category. Let x, y ∈ Ob(A). If the product
x× y exists, then so does the coproduct x⨿ y. If the coproduct x⨿ y exists, then so
does the product x× y. In this case also x⨿ y ∼= x× y.

https://stacks.math.columbia.edu/tag/00ZY
https://stacks.math.columbia.edu/tag/00ZZ
https://stacks.math.columbia.edu/tag/0100
https://stacks.math.columbia.edu/tag/0101
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Proof. Suppose that z = x× y with projections p : z → x and q : z → y. Denote
i : x → z the morphism corresponding to (1, 0). Denote j : y → z the morphism
corresponding to (0, 1). Thus we have the commutative diagram

x
1 //

i

  

x

z

p
??

q

��
y

1 //

j
??

y

where the diagonal compositions are zero. It follows that i ◦ p + j ◦ q : z → z is
the identity since it is a morphism which upon composing with p gives p and upon
composing with q gives q. Suppose given morphisms a : x → w and b : y → w.
Then we can form the map a ◦ p + b ◦ q : z → w. In this way we get a bijection
Mor(z, w) = Mor(x,w)×Mor(y, w) which show that z = x⨿ y.

We leave it to the reader to construct the morphisms p, q given a coproduct x ⨿ y
instead of a product. □

Definition 3.5.0102 Given a pair of objects x, y in a preadditive category A, the direct
sum x⊕y of x and y is the direct product x×y endowed with the morphisms i, j, p, q
as in Lemma 3.4 above.

Remark 3.6.0103 Note that the proof of Lemma 3.4 shows that given p and q the
morphisms i, j are uniquely determined by the rules p◦i = idx, q◦j = idy, p◦j = 0,
q ◦ i = 0. Moreover, we automatically have i ◦ p + j ◦ q = idx⊕y. Similarly, given
i, j the morphisms p and q are uniquely determined. Finally, given objects x, y, z
and morphisms i : x→ z, j : y → z, p : z → x and q : z → y such that p ◦ i = idx,
q ◦ j = idy, p ◦ j = 0, q ◦ i = 0 and i ◦ p+ j ◦ q = idz, then z is the direct sum of x
and y with the four morphisms equal to i, j, p, q.

Lemma 3.7.0105 Let A, B be preadditive categories. Let F : A → B be an additive
functor. Then F transforms direct sums to direct sums and zero to zero.

Proof. Suppose F is additive. A direct sum z of x and y is characterized by having
morphisms i : x → z, j : y → z, p : z → x and q : z → y such that p ◦ i = idx,
q ◦ j = idy, p ◦ j = 0, q ◦ i = 0 and i ◦ p + j ◦ q = idz, according to Remark 3.6.
Clearly F (x), F (y), F (z) and the morphisms F (i), F (j), F (p), F (q) satisfy exactly
the same relations (by additivity) and we see that F (z) is a direct sum of F (x) and
F (y). Hence, F transforms direct sums to direct sums.

To see that F transforms zero to zero, use the characterization (3) of the zero object
in Lemma 3.2. □

Definition 3.8.0104 A category A is called additive if it is preadditive and finite
products exist, in other words it has a zero object and direct sums.

Namely the empty product is a finite product and if it exists, then it is a final
object.

Definition 3.9.0106 Let A be a preadditive category. Let f : x→ y be a morphism.

https://stacks.math.columbia.edu/tag/0102
https://stacks.math.columbia.edu/tag/0103
https://stacks.math.columbia.edu/tag/0105
https://stacks.math.columbia.edu/tag/0104
https://stacks.math.columbia.edu/tag/0106
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(1) A kernel of f is a morphism i : z → x such that (a) f ◦ i = 0 and (b) for any
i′ : z′ → x such that f ◦ i′ = 0 there exists a unique morphism g : z′ → z
such that i′ = i ◦ g.

(2) If the kernel of f exists, then we denote this Ker(f)→ x.
(3) A cokernel of f is a morphism p : y → z such that (a) p ◦ f = 0 and (b)

for any p′ : y → z′ such that p′ ◦ f = 0 there exists a unique morphism
g : z → z′ such that p′ = g ◦ p.

(4) If a cokernel of f exists we denote this y → Coker(f).
(5) If a kernel of f exists, then a coimage of f is a cokernel for the morphism

Ker(f)→ x.
(6) If a kernel and coimage exist then we denote this x→ Coim(f).
(7) If a cokernel of f exists, then the image of f is a kernel of the morphism

y → Coker(f).
(8) If a cokernel and image of f exist then we denote this Im(f)→ y.

In the above definition, we have spoken of “the kernel” and “the cokernel”, tacitly
using their uniqueness up to unique isomorphism. This follows from the Yoneda
lemma (Categories, Section 3) because the kernel of f : x → y represents the
functor sending an object z to the set Ker(MorA(z, x)→ MorA(z, y)). The case of
cokernels is dual.

We first relate the direct sum to kernels as follows.

Lemma 3.10.09QG Let C be a preadditive category. Let x⊕y with morphisms i, j, p, q as
in Lemma 3.4 be a direct sum in C. Then i : x→ x⊕ y is a kernel of q : x⊕ y → y.
Dually, p is a cokernel for j.

Proof. Let f : z′ → x ⊕ y be a morphism such that q ◦ f = 0. We have to show
that there exists a unique morphism g : z′ → x such that f = i◦g. Since i◦p+ j ◦q
is the identity on x⊕ y we see that

f = (i ◦ p+ j ◦ q) ◦ f = i ◦ p ◦ f

and hence g = p ◦ f works. Uniqueness holds because p ◦ i is the identity on x. The
proof of the second statement is dual. □

Lemma 3.11.0E43 Let C be a preadditive category. Let f : x→ y be a morphism in C.
(1) If a kernel of f exists, then this kernel is a monomorphism.
(2) If a cokernel of f exists, then this cokernel is an epimorphism.
(3) If a kernel and coimage of f exist, then the coimage is an epimorphism.
(4) If a cokernel and image of f exist, then the image is a monomorphism.

Proof. Part (1) follows easily from the uniqueness required in the definition of a
kernel. The proof of (2) is dual. Part (3) follows from (2), since the coimage is a
cokernel. Similarly, (4) follows from (1). □

Lemma 3.12.0107 Let f : x → y be a morphism in a preadditive category such that
the kernel, cokernel, image and coimage all exist. Then f can be factored uniquely
as x→ Coim(f)→ Im(f)→ y.

Proof. There is a canonical morphism Coim(f) → y because Ker(f) → x → y is
zero. The composition Coim(f) → y → Coker(f) is zero, because it is the unique
morphism which gives rise to the morphism x → y → Coker(f) which is zero (the

https://stacks.math.columbia.edu/tag/09QG
https://stacks.math.columbia.edu/tag/0E43
https://stacks.math.columbia.edu/tag/0107
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uniqueness follows from Lemma 3.11 (3)). Hence Coim(f) → y factors uniquely
through Im(f)→ y, which gives us the desired map. □

Example 3.13.0108 Let k be a field. Consider the category of filtered vector spaces
over k. (See Definition 19.1.) Consider the filtered vector spaces (V, F ) and (W,F )
with V = W = k and

F iV =
{
V if i < 0
0 if i ≥ 0 and F iW =

{
W if i ≤ 0
0 if i > 0

The map f : V → W corresponding to idk on the underlying vector spaces has
trivial kernel and cokernel but is not an isomorphism. Note also that Coim(f) = V
and Im(f) = W . This means that the category of filtered vector spaces over k is
not abelian.

4. Karoubian categories

09SF Skip this section on a first reading.

Definition 4.1.09SG Let C be a preadditive category. We say C is Karoubian if every
idempotent endomorphism of an object of C has a kernel.

The dual notion would be that every idempotent endomorphism of an object has a
cokernel. However, in view of the (dual of the) following lemma that would be an
equivalent notion.

Lemma 4.2.09SH Let C be a preadditive category. The following are equivalent
(1) C is Karoubian,
(2) every idempotent endomorphism of an object of C has a cokernel, and
(3) given an idempotent endomorphism p : z → z of C there exists a direct sum

decomposition z = x⊕ y such that p corresponds to the projection onto y.

Proof. Assume (1) and let p : z → z be as in (3). Let x = Ker(p) and y =
Ker(1 − p). There are maps x → z and y → z. Since (1 − p)p = 0 we see that
p : z → z factors through y, hence we obtain a morphism z → y. Similarly we obtain
a morphism z → x. We omit the verification that these four morphisms induce an
isomorphism x = y ⊕ z as in Remark 3.6. Thus (1) ⇒ (3). The implication (2) ⇒
(3) is dual. Finally, condition (3) implies (1) and (2) by Lemma 3.10. □

Lemma 4.3.05QV Let D be a preadditive category.
(1) If D has countable products and kernels of maps which have a right inverse,

then D is Karoubian.
(2) If D has countable coproducts and cokernels of maps which have a left in-

verse, then D is Karoubian.

Proof. Let X be an object of D and let e : X → X be an idempotent. The functor
W 7−→ Ker(MorD(W,X) e−→ MorD(W,X))

if representable if and only if e has a kernel. Note that for any abelian group A
and idempotent endomorphism e : A→ A we have

Ker(e : A→ A) = Ker(Φ :
∏

n∈N
A→

∏
n∈N

A)

where
Φ(a1, a2, a3, . . .) = (ea1 + (1− e)a2, ea2 + (1− e)a3, . . .)

https://stacks.math.columbia.edu/tag/0108
https://stacks.math.columbia.edu/tag/09SG
https://stacks.math.columbia.edu/tag/09SH
https://stacks.math.columbia.edu/tag/05QV
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Moreover, Φ has the right inverse
Ψ(a1, a2, a3, . . .) = (a1, (1− e)a1 + ea2, (1− e)a2 + ea3, . . .).

Hence (1) holds. The proof of (2) is dual (using the dual definition of a Karoubian
category, namely condition (2) of Lemma 4.2). □

5. Abelian categories

00ZX An abelian category is a category satisfying just enough axioms so the snake lemma
holds. An axiom (that is sometimes forgotten) is that the canonical map Coim(f)→
Im(f) of Lemma 3.12 is always an isomorphism. Example 3.13 shows that it is
necessary.

Definition 5.1.0109 A category A is abelian if it is additive, if all kernels and cokernels
exist, and if the natural map Coim(f)→ Im(f) is an isomorphism for all morphisms
f of A.

Lemma 5.2.010A Let A be a preadditive category. The additions on sets of morphisms
make Aopp into a preadditive category. Furthermore, A is additive if and only if
Aopp is additive, and A is abelian if and only if Aopp is abelian.

Proof. The first statement is straightforward. To see that A is additive if and only
if Aopp is additive, recall that additivity can be characterized by the existence of a
zero object and direct sums, which are both preserved when passing to the opposite
category. Finally, to see thatA is abelian if and only ifAopp is abelian, observes that
kernels, cokernels, images and coimages in Aopp correspond to cokernels, kernels,
coimages and images in A, respectively. □

Definition 5.3.010B Let f : x→ y be a morphism in an abelian category.
(1) We say f is injective if Ker(f) = 0.
(2) We say f is surjective if Coker(f) = 0.

If x→ y is injective, then we say that x is a subobject of y and we use the notation
x ⊂ y. If x→ y is surjective, then we say that y is a quotient of x.

Lemma 5.4.010C Let f : x→ y be a morphism in an abelian category A. Then
(1) f is injective if and only if f is a monomorphism, and
(2) f is surjective if and only if f is an epimorphism.

Proof. Proof of (1). Recall that Ker(f) is an object representing the functor
sending z to Ker(MorA(z, x) → MorA(z, y)), see Definition 3.9. Thus Ker(f) is 0
if and only if MorA(z, x) → MorA(z, y) is injective for all z if and only if f is a
monomorphism. The proof of (2) is similar. □

In an abelian category, if x ⊂ y is a subobject, then we denote
y/x = Coker(x→ y).

Lemma 5.5.010D Let A be an abelian category. All finite limits and finite colimits
exist in A.

Proof. To show that finite limits exist it suffices to show that finite products and
equalizers exist, see Categories, Lemma 18.4. Finite products exist by definition
and the equalizer of a, b : x → y is the kernel of a − b. The argument for finite
colimits is similar but dual to this. □

https://stacks.math.columbia.edu/tag/0109
https://stacks.math.columbia.edu/tag/010A
https://stacks.math.columbia.edu/tag/010B
https://stacks.math.columbia.edu/tag/010C
https://stacks.math.columbia.edu/tag/010D
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Example 5.6.05PJ Let A be an abelian category. Pushouts and fibre products in A
have the following simple descriptions:

(1) If a : x→ y, b : z → y are morphisms in A, then we have the fibre product:
x×y z = Ker((a,−b) : x⊕ z → y).

(2) If a : y → x, b : y → z are morphisms in A, then we have the pushout:
x⨿y z = Coker((a,−b) : y → x⊕ z).

Definition 5.7.010E Let A be an additive category. Consider a sequence of morphisms
. . .→ x→ y → z → . . . or x1 → x2 → . . .→ xn

in A. We say such a sequence is a complex if the composition of any two consecutive
(drawn) arrows is zero. If A is abelian then we say a complex of the first type above
is exact at y if Im(x→ y) = Ker(y → z) and we say a complex of the second kind
is exact at xi where 1 < i < n if Im(xi−1 → xi) = Ker(xi → xi+1). We a sequence
as above is exact or is an exact sequence or is an exact complex if it is a complex
and exact at every object (in the first case) or exact at xi for all 1 < i < n (in the
second case). There are variants of these notions for sequences of the form

. . .→ x−3 → x−2 → x−1 and x1 → x2 → x3 → . . .

A short exact sequence is an exact complex of the form
0→ A→ B → C → 0.

In the following lemma we assume the reader knows what it means for a sequence
of abelian groups to be exact.

Lemma 5.8.05AA Let A be an abelian category. Let 0 → M1 → M2 → M3 → 0 be a
complex of A.

(1) M1 →M2 →M3 → 0 is exact if and only if
0→ HomA(M3, N)→ HomA(M2, N)→ HomA(M1, N)

is an exact sequence of abelian groups for all objects N of A, and
(2) 0→M1 →M2 →M3 is exact if and only if

0→ HomA(N,M1)→ HomA(N,M2)→ HomA(N,M3)
is an exact sequence of abelian groups for all objects N of A.

Proof. Omitted. Hint: See Algebra, Lemma 10.1. □

Definition 5.9.010F Let A be an abelian category. Let i : A→ B and q : B → C be
morphisms of A such that 0→ A→ B → C → 0 is a short exact sequence. We say
the short exact sequence is split if there exist morphisms j : C → B and p : B → A
such that (B, i, j, p, q) is the direct sum of A and C.

Lemma 5.10.010G Let A be an abelian category. Let 0→ A→ B → C → 0 be a short
exact sequence.

(1) Given a morphism s : C → B left inverse to B → C, there exists a unique
π : B → A such that (s, π) splits the short exact sequence as in Definition
5.9.

(2) Given a morphism π : B → A right inverse to A→ B, there exists a unique
s : C → B such that (s, π) splits the short exact sequence as in Definition
5.9.

https://stacks.math.columbia.edu/tag/05PJ
https://stacks.math.columbia.edu/tag/010E
https://stacks.math.columbia.edu/tag/05AA
https://stacks.math.columbia.edu/tag/010F
https://stacks.math.columbia.edu/tag/010G
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Proof. Omitted. □

Lemma 5.11.08N2 Let A be an abelian category. Let

w
f //

g

��

y

h

��
x

k // z

be a commutative diagram.
(1) The diagram is cartesian if and only if

0→ w
(g,f)−−−→ x⊕ y (k,−h)−−−−→ z

is exact.
(2) The diagram is cocartesian if and only if

w
(g,−f)−−−−→ x⊕ y (k,h)−−−→ z → 0

is exact.

Proof. Let u = (g, f) : w → x⊕ y and v = (k,−h) : x⊕ y → z. Let p : x⊕ y → x
and q : x ⊕ y → y be the canonical projections. Let i : Ker(v) → x ⊕ y be the
canonical injection. By Example 5.6, the diagram is cartesian if and only if there
exists an isomorphism r : Ker(v) → w with f ◦ r = q ◦ i and g ◦ r = p ◦ i. The
sequence 0 → w

u→ x ⊕ y v→ z is exact if and only if there exists an isomorphism
r : Ker(v)→ w with u ◦ r = i. But given r : Ker(v)→ w, we have f ◦ r = q ◦ i and
g ◦ r = p ◦ i if and only if q ◦ u ◦ r = f ◦ r = q ◦ i and p ◦ u ◦ r = g ◦ r = p ◦ i, hence
if and only if u ◦ r = i. This proves (1), and then (2) follows by duality. □

Lemma 5.12.08N3 Let A be an abelian category. Let

w
f //

g

��

y

h

��
x

k // z

be a commutative diagram.
(1) If the diagram is cartesian, then the morphism Ker(f) → Ker(k) induced

by g is an isomorphism.
(2) If the diagram is cocartesian, then the morphism Coker(f) → Coker(k)

induced by h is an isomorphism.

Proof. Suppose the diagram is cartesian. Let e : Ker(f)→ Ker(k) be induced by
g. Let i : Ker(f)→ w and j : Ker(k)→ x be the canonical injections. There exists
t : Ker(k)→ w with f ◦t = 0 and g◦t = j. Hence, there exists u : Ker(k)→ Ker(f)
with i◦u = t. It follows g◦i◦u◦e = g◦t◦e = j◦e = g◦i and f◦i◦u◦e = 0 = f◦i, hence
i ◦ u ◦ e = i. Since i is a monomorphism this implies u ◦ e = idKer(f). Furthermore,
we have j ◦ e ◦ u = g ◦ i ◦ u = g ◦ t = j. Since j is a monomorphism this implies
e ◦ u = idKer(k). This proves (1). Now, (2) follows by duality. □

https://stacks.math.columbia.edu/tag/08N2
https://stacks.math.columbia.edu/tag/08N3


HOMOLOGICAL ALGEBRA 9

Lemma 5.13.08N4 Let A be an abelian category. Let

w
f //

g

��

y

h

��
x

k // z

be a commutative diagram.
(1) If the diagram is cartesian and k is an epimorphism, then the diagram is

cocartesian and f is an epimorphism.
(2) If the diagram is cocartesian and g is a monomorphism, then the diagram

is cartesian and h is a monomorphism.

Proof. Suppose the diagram is cartesian and k is an epimorphism. Let u = (g, f) :
w → x ⊕ y and let v = (k,−h) : x ⊕ y → z. As k is an epimorphism, v is an
epimorphism, too. Therefore and by Lemma 5.11, the sequence 0→ w

u→ x⊕ y v→
z → 0 is exact. Thus, the diagram is cocartesian by Lemma 5.11. Finally, f is an
epimorphism by Lemma 5.12 and Lemma 5.4. This proves (1), and (2) follows by
duality. □

Lemma 5.14.05PK Let A be an abelian category.
(1) If x → y is surjective, then for every z → y the projection x ×y z → z is

surjective.
(2) If x → y is injective, then for every x → z the morphism z → z ⨿x y is

injective.

Proof. Immediately from Lemma 5.4 and Lemma 5.13. □

Lemma 5.15.08N5 Let A be an abelian category. Let f : x → y and g : y → z be
morphisms with g ◦ f = 0. Then, the following statements are equivalent:

(1) The sequence x f→ y
g→ z is exact.

(2) For every h : w → y with g ◦ h = 0 there exist an object v, an epimorphism
k : v → w and a morphism l : v → x with h ◦ k = f ◦ l.

Proof. Let i : Ker(g)→ y be the canonical injection. Let p : x→ Coim(f) be the
canonical projection. Let j : Im(f)→ Ker(g) be the canonical injection.

Suppose (1) holds. Let h : w → y with g ◦ h = 0. There exists c : w → Ker(g) with
i ◦ c = h. Let v = x×Ker(g) w with canonical projections k : v → w and l : v → x,
so that c ◦ k = j ◦ p ◦ l. Then, h ◦ k = i ◦ c ◦ k = i ◦ j ◦ p ◦ l = f ◦ l. As j ◦ p is
an epimorphism by hypothesis, k is an epimorphism by Lemma 5.13. This implies
(2).

Suppose (2) holds. Then, g ◦ i = 0. So, there are an object w, an epimorphism
k : w → Ker(g) and a morphism l : w → x with f ◦ l = i ◦ k. It follows i ◦ j ◦ p ◦ l =
f ◦ l = i ◦ k. Since i is a monomorphism we see that j ◦ p ◦ l = k is an epimorphism.
So, j is an epimorphisms and thus an isomorphism. This implies (1). □

https://stacks.math.columbia.edu/tag/08N4
https://stacks.math.columbia.edu/tag/05PK
https://stacks.math.columbia.edu/tag/08N5
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Lemma 5.16.08N6 Let A be an abelian category. Let

x
f //

α

��

y
g //

β

��

z

γ

��
u

k // v
l // w

be a commutative diagram.
(1) If the first row is exact and k is a monomorphism, then the induced sequence

Ker(α)→ Ker(β)→ Ker(γ) is exact.
(2) If the second row is exact and g is an epimorphism, then the induced se-

quence Coker(α)→ Coker(β)→ Coker(γ) is exact.

Proof. Suppose the first row is exact and k is a monomorphism. Let a : Ker(α)→
Ker(β) and b : Ker(β) → Ker(γ) be the induced morphisms. Let h : Ker(α) →
x, i : Ker(β) → y and j : Ker(γ) → z be the canonical injections. As j is a
monomorphism we have b ◦ a = 0. Let c : s → Ker(β) with b ◦ c = 0. Then,
g◦i◦c = j◦b◦c = 0. By Lemma 5.15 there are an object t, an epimorphism d : t→ s
and a morphism e : t→ x with i◦c◦d = f◦e. Then, k◦α◦e = β◦f◦e = β◦i◦c◦d = 0.
As k is a monomorphism we get α ◦ e = 0. So, there exists m : t → Ker(α) with
h◦m = e. It follows i◦a◦m = f ◦h◦m = f ◦e = i◦c◦d. As i is a monomorphism we
get a◦m = c◦d. Thus, Lemma 5.15 implies (1), and then (2) follows by duality. □

Lemma 5.17.010H Let A be an abelian category. Let

x
f //

α

��

y
g //

β

��

z //

γ

��

0

0 // u
k // v

l // w

be a commutative diagram with exact rows.
(1) There exists a unique morphism δ : Ker(γ) → Coker(α) such that the dia-

gram

y

β

��

y ×z Ker(γ)π′
oo π // Ker(γ)

δ

��
v

ι′// Coker(α)⨿u v Coker(α)ιoo

commutes, where π and π′ are the canonical projections and ι and ι′ are
the canonical coprojections.

(2) The induced sequence

Ker(α) f ′

−→ Ker(β) g′

−→ Ker(γ) δ−→ Coker(α) k′

−→ Coker(β) l′−→ Coker(γ)

is exact. If f is injective then so is f ′, and if l is surjective then so is l′.

Proof. As π is an epimorphism and ι is a monomorphism by Lemma 5.13, unique-
ness of δ is clear. Let p = y×zKer(γ) and q = Coker(α)⨿uv. Let h : Ker(β)→ y, i :
Ker(γ)→ z and j : Ker(π)→ p be the canonical injections. Let π′′ : u→ Coker(α)

https://stacks.math.columbia.edu/tag/08N6
https://stacks.math.columbia.edu/tag/010H
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be the canonical projection. Keeping in mind Lemma 5.13 we get a commutative
diagram with exact rows

0 // Ker(π) j // p
π //

π′

��

Ker(γ)

i

��

// 0

x
f //

α

��

y
g //

β

��

z

γ

��

// 0

0 // u
k //

π′′

��

v
l //

ι′

��

w

0 // Coker(α) ι // q

As l ◦ β ◦ π′ = γ ◦ i ◦ π = 0 and as the third row of the diagram above is exact,
there is an a : p → u with k ◦ a = β ◦ π′. As the upper right quadrangle of the
diagram above is cartesian, Lemma 5.12 yields an epimorphism b : x → Ker(π)
with π′ ◦ j ◦ b = f . It follows k ◦ a ◦ j ◦ b = β ◦ π′ ◦ j ◦ b = β ◦ f = k ◦ α. As k is
a monomorphism this implies a ◦ j ◦ b = α. It follows π′′ ◦ a ◦ j ◦ b = π′′ ◦ α = 0.
As b is an epimorphism this implies π′′ ◦ a ◦ j = 0. Therefore, as the top row of the
diagram above is exact, there exists δ : Ker(γ)→ Coker(α) with δ ◦ π = π′′ ◦ a. It
follows ι ◦ δ ◦ π = ι ◦ π′′ ◦ a = ι′ ◦ k ◦ a = ι′ ◦ β ◦ π′ as desired.

As the upper right quadrangle in the diagram above is cartesian there is a c :
Ker(β) → p with π′ ◦ c = h and π ◦ c = g′. It follows ι ◦ δ ◦ g′ = ι ◦ δ ◦ π ◦ c =
ι′ ◦ β ◦ π′ ◦ c = ι′ ◦ β ◦ h = 0. As ι is a monomorphism this implies δ ◦ g′ = 0.

Next, let d : r → Ker(γ) with δ ◦ d = 0. Applying Lemma 5.15 to the exact
sequence p π−→ Ker(γ)→ 0 and d yields an object s, an epimorphism m : s→ r and
a morphism n : s → p with π ◦ n = d ◦m. As π′′ ◦ a ◦ n = δ ◦ d ◦m = 0, applying
Lemma 5.15 to the exact sequence x α−→ u

p−→ Coker(α) and a ◦ n yields an object
t, an epimorphism ε : t → s and a morphism ζ : t → x with a ◦ n ◦ ε = α ◦ ζ. It
holds β ◦ π′ ◦ n ◦ ε = k ◦ α ◦ ζ = β ◦ f ◦ ζ. Let η = π′ ◦ n ◦ ε − f ◦ ζ : t → y.
Then, β ◦ η = 0. It follows that there is a ϑ : t → Ker(β) with η = h ◦ ϑ. It holds
i ◦ g′ ◦ ϑ = g ◦ h ◦ ϑ = g ◦ π′ ◦ n ◦ ε − g ◦ f ◦ ζ = i ◦ π ◦ n ◦ ε = i ◦ d ◦m ◦ ε. As i
is a monomorphism we get g′ ◦ ϑ = d ◦m ◦ ε. Thus, as m ◦ ε is an epimorphism,
Lemma 5.15 implies that Ker(β) g′

−→ Ker(γ) δ−→ Coker(α) is exact. Then, the claim
follows by Lemma 5.16 and duality. □
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Lemma 5.18.08N7 Let A be an abelian category. Let

x

��

//

α

��

y

��

//

β

��

z

��

//

γ

��

0

x′ //

α′

��

y′ //

β′

��

z′ //

γ′

��

0

0 // u

��

// v

��

// w

~~
0 // u′ // v′ // w′

be a commutative diagram with exact rows. Then, the induced diagram

Ker(α) //

��

Ker(β) //

��

Ker(γ) δ //

��

Coker(α) //

��

Coker(β) //

��

Coker(γ)

��
Ker(α′) // Ker(β′) // Ker(γ′) δ′

// Coker(α′) // Coker(β′) // Coker(γ′)

commutes.

Proof. Omitted. □

Lemma 5.19.05QA Let A be an abelian category. Let

w //

α

��

x //

β

��

y //

γ

��

z

δ
��

w′ // x′ // y′ // z′

be a commutative diagram with exact rows.
(1) If α, γ are surjective and δ is injective, then β is surjective.
(2) If β, δ are injective and α is surjective, then γ is injective.

Proof. Assume α, γ are surjective and δ is injective. We may replace w′ by
Im(w′ → x′), i.e., we may assume that w′ → x′ is injective. We may replace z
by Im(y → z), i.e., we may assume that y → z is surjective. Then we may apply
Lemma 5.17 to

Ker(y → z) //

��

y //

��

z //

��

0

0 // Ker(y′ → z′) // y′ // z′

to conclude that Ker(y → z) → Ker(y′ → z′) is surjective. Finally, we apply
Lemma 5.17 to

w //

��

x //

��

Ker(y → z) //

��

0

0 // w′ // x′ // Ker(y′ → z′)

https://stacks.math.columbia.edu/tag/08N7
https://stacks.math.columbia.edu/tag/05QA
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to conclude that x → x′ is surjective. This proves (1). The proof of (2) is dual to
this. □

Lemma 5.20.05QB [ES52, Lemma 4.5
page 16]

Let A be an abelian category. Let

v //

α

��

w //

β

��

x //

γ

��

y //

δ
��

z

ϵ

��
v′ // w′ // x′ // y′ // z′

be a commutative diagram with exact rows. If β, δ are isomorphisms, ϵ is injective,
and α is surjective then γ is an isomorphism.

Proof. Immediate consequence of Lemma 5.19. □

6. Extensions

010I
Definition 6.1.010J Let A be an abelian category. Let A,B ∈ Ob(A). An extension
E of B by A is a short exact sequence

0→ A→ E → B → 0.

A morphism of extensions between two extensions 0 → A → E → B → 0 and
0→ A→ F → B → 0 means a morphism f : E → F in A making the diagram

0 // A //

id
��

E //

f

��

B //

id
��

0

0 // A // F // B // 0

commutative. Thus, the extensions of B by A form a category.

By abuse of language we often omit mention of the morphisms A→ E and E → B,
although they are definitively part of the structure of an extension.

Definition 6.2.010K Let A be an abelian category. Let A,B ∈ Ob(A). The set of
isomorphism classes of extensions of B by A is denoted

ExtA(B,A).

This is called the Ext-group.

This definition works, because by our conventions Ob(A) is a set, and hence
ExtA(B,A) is a set. In any of the cases of “big” abelian categories listed in Cate-
gories, Remark 2.2 one can check by hand that ExtA(B,A) is a set as well. Also,
we will see later that this is always the case when A has either enough projectives
or enough injectives. Insert future reference here.

Actually we can turn ExtA(−,−) into a functor

A×Aopp −→ Sets, (A,B) 7−→ ExtA(B,A)

as follows:

https://stacks.math.columbia.edu/tag/05QB
https://stacks.math.columbia.edu/tag/010J
https://stacks.math.columbia.edu/tag/010K
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(1) Given a morphism B′ → B and an extension E of B by A we define
E′ = E×B B′ so that we have the following commutative diagram of short
exact sequences

0 // A //

��

E′ //

��

B′ //

��

0

0 // A // E // B // 0

The extension E′ is called the pullback of E via B′ → B.
(2) Given a morphism A → A′ and an extension E of B by A we define E′ =

A′⨿AE so that we have the following commutative diagram of short exact
sequences

0 // A //

��

E //

��

B //

��

0

0 // A′ // E′ // B // 0

The extension E′ is called the pushout of E via A→ A′.
To see that this defines a functor as indicated above there are several things to verify.
First of all functoriality in the variable B requires that (E×BB′)×B′B′′ = E×BB′′

which is a general property of fibre products. Dually one deals with functoriality
in the variable A. Finally, given A→ A′ and B′ → B we have to show that

A′ ⨿A (E ×B B′) ∼= (A′ ⨿A E)×B B′

as extensions of B′ by A′. Recall that A′ ⨿A E is a quotient of A′ ⊕ E. Thus the
right hand side is a quotient of A′ ⊕E ×B B′, and it is straightforward to see that
the kernel is exactly what you need in order to get the left hand side.

Note that if E1 and E2 are extensions of B by A, then E1 ⊕ E2 is an extension of
B ⊕ B by A ⊕ A. We push out by the sum map A ⊕ A → A and we pull back by
the diagonal map B → B ⊕B to get an extension E1 + E2 of B by A.

0 // A⊕A //

Σ
��

E1 ⊕ E2 //

��

B ⊕B //

��

0

0 // A // E′ // B ⊕B // 0

0 // A //

OO

E1 + E2 //

OO

B //

∆

OO

0

The extension E1 + E2 is called the Baer sum of the given extensions.

Lemma 6.3.010L The construction (E1, E2) 7→ E1 + E2 above defines a commutative
group law on ExtA(B,A) which is functorial in both variables.

Proof. Omitted. □

Lemma 6.4.05E2 Let A be an abelian category. Let 0 → M1 → M2 → M3 → 0 be a
short exact sequence in A.

https://stacks.math.columbia.edu/tag/010L
https://stacks.math.columbia.edu/tag/05E2
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(1) There is a canonical six term exact sequence of abelian groups

0 // HomA(M3, N) // HomA(M2, N) // HomA(M1, N)

rr
ExtA(M3, N) // ExtA(M2, N) // ExtA(M1, N)

for all objects N of A, and
(2) there is a canonical six term exact sequence of abelian groups

0 // HomA(N,M1) // HomA(N,M2) // HomA(N,M3)

rr
ExtA(N,M1) // ExtA(N,M2) // ExtA(N,M3)

for all objects N of A.

Proof. Omitted. Hint: The boundary maps are defined using either the pushout
or pullback of the given short exact sequence. □

7. Additive functors

010M First a completely silly lemma characterizing additive functors between additive
categories.

Lemma 7.1.0DLP Let A and B be additive categories. Let F : A → B be a functor.
The following are equivalent

(1) F is additive,
(2) F (A)⊕ F (B)→ F (A⊕B) is an isomorphism for all A,B ∈ A, and
(3) F (A⊕B)→ F (A)⊕ F (B) is an isomorphism for all A,B ∈ A.

Proof. Additive functors commute with direct sums by Lemma 3.7 hence (1) im-
plies (2) and (3). On the other hand (2) and (3) are equivalent because the compo-
sition F (A)⊕F (B)→ F (A⊕B)→ F (A)⊕F (B) is the identity map. Assume (2)
and (3) hold. Let f, g : A→ B be maps. Then f + g is equal to the composition

A→ A⊕A diag(f,g)−−−−−−→ B ⊕B → B

Apply the functor F and consider the following diagram

F (A) //

&&

F (A⊕A)
F (diag(f,g))

// F (B ⊕B) //

��

F (B)

F (A)⊕ F (A)

OO

diag(F (f),F (g))// F (B)⊕ F (B)

88

We claim this is commutative. For the middle square we can verify it separately
for each of the four induced maps F (A) → F (B) where it follows from the fact
that F is a functor (in other words this square commutes even if F does not satisfy
any properties beyond being a functor). For the triangle on the left, we use that
F (A ⊕ A) → F (A) ⊕ F (A) is an isomorphism to see that it suffice to check after
composition with this map and this check is trivial. Dually for the other triangle.
Thus going around the bottom is equal to F (f + g) and we conclude. □

https://stacks.math.columbia.edu/tag/0DLP
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Recall that we defined, in Categories, Definition 23.1 the notion of a “right exact”,
“left exact” and “exact” functor in the setting of a functor between categories that
have finite (co)limits. Thus this applies in particular to functors between abelian
categories.

Lemma 7.2.010N Let A and B be abelian categories. Let F : A → B be a functor.
(1) If F is either left or right exact, then it is additive.
(2) F is left exact if and only if for every short exact sequence 0→ A→ B →

C → 0 the sequence 0→ F (A)→ F (B)→ F (C) is exact.
(3) F is right exact if and only if for every short exact sequence 0→ A→ B →

C → 0 the sequence F (A)→ F (B)→ F (C)→ 0 is exact.
(4) F is exact if and only if for every short exact sequence 0→ A→ B → C →

0 the sequence 0→ F (A)→ F (B)→ F (C)→ 0 is exact.

Proof. If F is left exact, i.e., F commutes with finite limits, then F sends products
to products, hence F preserved direct sums, hence F is additive by Lemma 7.1. On
the other hand, suppose that for every short exact sequence 0→ A→ B → C → 0
the sequence 0→ F (A)→ F (B)→ F (C) is exact. Let A,B be two objects. Then
we have a short exact sequence

0→ A→ A⊕B → B → 0

see for example Lemma 3.10. By assumption, the lower row in the commutative
diagram

0 // F (A)

��

// F (A)⊕ F (B) //

��

F (B)

��

// 0

0 // F (A) // F (A⊕B) // F (B)

is exact. Hence by the snake lemma (Lemma 5.17) we conclude that F (A)⊕F (B)→
F (A⊕B) is an isomorphism. Hence F is additive in this case as well. Thus for the
rest of the proof we may assume F is additive.

Denote f : B → C a map from B to C. Exactness of 0→ A→ B → C just means
that A = Ker(f). Clearly the kernel of f is the equalizer of the two maps f and
0 from B to C. Hence if F commutes with limits, then F (Ker(f)) = Ker(F (f))
which exactly means that 0→ F (A)→ F (B)→ F (C) is exact.

Conversely, suppose that F is additive and transforms any short exact sequence
0 → A → B → C → 0 into an exact sequence 0 → F (A) → F (B) → F (C).
Because it is additive it commutes with direct sums and hence finite products in A.
To show it commutes with finite limits it therefore suffices to show that it commutes
with equalizers. But equalizers in an abelian category are the same as the kernel of
the difference map, hence it suffices to show that F commutes with taking kernels.
Let f : A→ B be a morphism. Factor f as A→ I → B with f ′ : A→ I surjective
and i : I → B injective. (This is possible by the definition of an abelian category.)
Then it is clear that Ker(f) = Ker(f ′). Also 0 → Ker(f ′) → A → I → 0 and
0 → I → B → B/I → 0 are short exact. By the condition imposed on F we see
that 0→ F (Ker(f ′))→ F (A)→ F (I) and 0→ F (I)→ F (B)→ F (B/I) are exact.
Hence it is also the case that F (Ker(f ′)) is the kernel of the map F (A) → F (B),
and we win.

https://stacks.math.columbia.edu/tag/010N
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The proof of (3) is similar to the proof of (2). Statement (4) is a combination of
(2) and (3). □

Lemma 7.3.010O Let A and B be abelian categories. Let F : A → B be an exact
functor. For every pair of objects A,B of A the functor F induces an abelian group
homomorphism

ExtA(B,A) −→ ExtB(F (B), F (A))
which maps the extension E to F (E).
Proof. Omitted. □

The following lemma is used in the proof that the category of abelian sheaves on a
site is abelian, where the functor b is sheafification.
Lemma 7.4.03A3 Let a : A → B and b : B → A be functors. Assume that

(1) A, B are additive categories, a, b are additive functors, and a is right adjoint
to b,

(2) B is abelian and b is left exact, and
(3) ba ∼= idA.

Then A is abelian.
Proof. As B is abelian we see that all finite limits and colimits exist in B by Lemma
5.5. Since b is a left adjoint we see that b is also right exact and hence exact, see
Categories, Lemma 24.6. Let φ : B1 → B2 be a morphism of B. In particular, if
K = Ker(B1 → B2), thenK is the equalizer of 0 and φ and hence bK is the equalizer
of 0 and bφ, hence bK is the kernel of bφ. Similarly, if Q = Coker(B1 → B2), then
Q is the coequalizer of 0 and φ and hence bQ is the coequalizer of 0 and bφ, hence
bQ is the cokernel of bφ. Thus we see that every morphism of the form bφ in A has
a kernel and a cokernel. However, since ba ∼= id we see that every morphism of A
is of this form, and we conclude that kernels and cokernels exist in A. In fact, the
argument shows that if ψ : A1 → A2 is a morphism then

Ker(ψ) = bKer(aψ), and Coker(ψ) = bCoker(aψ).
Now we still have to show that Coim(ψ) = Im(ψ). We do this as follows. First
note that since A has kernels and cokernels it has all finite limits and colimits (see
proof of Lemma 5.5). Hence we see by Categories, Lemma 24.6 that a is left exact
and hence transforms kernels (=equalizers) into kernels.

Coim(ψ) = Coker(Ker(ψ)→ A1) by definition
= bCoker(a(Ker(ψ)→ A1)) by formula above
= bCoker(Ker(aψ)→ aA1)) a preserves kernels
= bCoim(aψ) by definition
= b Im(aψ) B is abelian
= bKer(aA2 → Coker(aψ)) by definition
= Ker(baA2 → bCoker(aψ)) b preserves kernels
= Ker(A2 → bCoker(aψ)) ba = idA

= Ker(A2 → Coker(ψ)) by formula above
= Im(ψ) by definition

Thus the lemma holds. □

https://stacks.math.columbia.edu/tag/010O
https://stacks.math.columbia.edu/tag/03A3
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8. Localization

05QC In this section we note how Gabriel-Zisman localization interacts with the additive
structure on a category.

Lemma 8.1.05QD Let C be a preadditive category. Let S be a left or right multiplica-
tive system. There exists a canonical preadditive structure on S−1C such that the
localization functor Q : C → S−1C is additive.

Proof. We will prove this in the case S is a left multiplicative system. The case
where S is a right multiplicative system is dual. Suppose that X,Y are objects of C
and that α, β : X → Y are morphisms in S−1C. According to Categories, Lemma
27.5 we may represent these by pairs s−1f, s−1g with common denominator s. In
this case we define α + β to be the equivalence class of s−1(f + g). In the rest of
the proof we show that this is well defined and that composition is bilinear. Once
this is done it is clear that Q is an additive functor.

Let us show construction above is well defined. An abstract way of saying this is
that filtered colimits of abelian groups agree with filtered colimits of sets and to use
Categories, Equation (27.7.1). We can work this out in a bit more detail as follows.
Say s : Y → Y1 and f, g : X → Y1. Suppose we have a second representation of
α, β as (s′)−1f ′, (s′)−1g′ with s′ : Y → Y2 and f ′, g′ : X → Y2. By Categories,
Remark 27.7 we can find a morphism s3 : Y → Y3 and morphisms a1 : Y1 → Y3,
a2 : Y2 → Y3 such that a1◦s = s3 = a2◦s′ and also a1◦f = a2◦f ′ and a1◦g = a2◦g′.
Hence we see that s−1(f + g) is equivalent to

s−1
3 (a1 ◦ (f + g)) = s−1

3 (a1 ◦ f + a1 ◦ g)
= s−1

3 (a2 ◦ f ′ + a2 ◦ g′)
= s−1

3 (a2 ◦ (f ′ + g′))

which is equivalent to (s′)−1(f ′ + g′).

Fix s : Y → Y ′ and f, g : X → Y ′ with α = s−1f and β = s−1g as morphisms
X → Y in S−1C. To show that composition is bilinear first consider the case of a
morphism γ : Y → Z in S−1C. Say γ = t−1h for some h : Y → Z ′ and t : Z → Z ′

in S. Using LMS2 we choose morphisms a : Y ′ → Z ′′ and t′ : Z ′ → Z ′′ in S such
that a ◦ s = t′ ◦ h. Picture

Z

t
��

Y
h //

s

��

Z ′

t′

��
X

f,g // Y ′ a // Z ′′

Then γ ◦ α = (t′ ◦ t)−1(a ◦ f) and γ ◦ β = (t′ ◦ t)−1(a ◦ g). Hence we see that
γ ◦ (α+ β) is represented by (t′ ◦ t)−1(a ◦ (f + g)) = (t′ ◦ t)−1(a ◦ f + a ◦ g) which
represents γ ◦ α+ γ ◦ β.

Finally, assume that δ : W → X is another morphism of S−1C. Say δ = r−1i for
some i : W → X ′ and r : X → X ′ in S. We claim that we can find a morphism

https://stacks.math.columbia.edu/tag/05QD
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s′ : Y ′ → Y ′′ in S and morphisms a′′, b′′ : X ′ → Y ′′ such that the following diagram
commutes

Y

s

��
X

f,g,f+g //

r

��

Y ′

s′

��
W

i // X ′ a′′,b′′,a′′+b′′
// Y ′′

Namely, using LMS2 we can first choose s1 : Y ′ → Y1, s2 : Y ′ → Y2 in S and
a : X ′ → Y1, b : X ′ → Y2 such that a ◦ r = s1 ◦ f and b ◦ r = s2 ◦ f . Then using
that the category Y ′/S is filtered (see Categories, Remark 27.7), we can find a
s′ : Y ′ → Y ′′ and morphisms a′ : Y1 → Y ′′, b′ : Y2 → Y ′′ such that s′ = a′ ◦ s1 and
s′ = b′ ◦ s2. Setting a′′ = a′ ◦ a and b′′ = b′ ◦ b works. At this point we see that the
compositions α◦δ and β ◦δ are represented by (s′ ◦s)−1(a′′ ◦ i) and (s′ ◦s)−1(b′′ ◦ i).
Hence α◦δ+β ◦δ is represented by (s′ ◦s)−1(a′′ ◦ i+b′′ ◦ i) = (s′ ◦s)−1((a′′ +b′′)◦ i)
which by the diagram again is a representative of (α+ β) ◦ δ. □

Lemma 8.2.05QE Let C be an additive category. Let S be a left or right multiplicative
system. Then S−1C is an additive category and the localization functor Q : C →
S−1C is additive.

Proof. By Lemma 8.1 we see that S−1C is preadditive and that Q is additive.
Recall that the functor Q commutes with finite colimits (resp. finite limits), see
Categories, Lemmas 27.9 and 27.17. We conclude that S−1C has a zero object and
direct sums, see Lemmas 3.2 and 3.4. □

The following lemma describes the “kernel” of the localization functor in case we
invert a multiplicative system.

Lemma 8.3.05QF Let C be an additive category. Let S be a multiplicative system. Let
X be an object of C. The following are equivalent

(1) Q(X) = 0 in S−1C,
(2) there exists Y ∈ Ob(C) such that 0 : X → Y is an element of S, and
(3) there exists Z ∈ Ob(C) such that 0 : Z → X is an element of S.

Proof. If (2) holds we see that 0 = Q(0) : Q(X) → Q(Y ) is an isomorphism. In
the additive category S−1C this implies that Q(X) = 0. Hence (2)⇒ (1). Similarly,
(3) ⇒ (1). Suppose that Q(X) = 0. This implies that the morphism f : 0 → X
is transformed into an isomorphism in S−1C. Hence by Categories, Lemma 27.21
there exists a morphism g : Z → 0 such that fg ∈ S. This proves (1) ⇒ (3).
Similarly, (1) ⇒ (2). □

Lemma 8.4.05QG Let A be an abelian category.
(1) If S is a left multiplicative system, then the category S−1A has cokernels

and the functor Q : A → S−1A commutes with them.
(2) If S is a right multiplicative system, then the category S−1A has kernels

and the functor Q : A → S−1A commutes with them.
(3) If S is a multiplicative system, then the category S−1A is abelian and the

functor Q : A → S−1A is exact.

https://stacks.math.columbia.edu/tag/05QE
https://stacks.math.columbia.edu/tag/05QF
https://stacks.math.columbia.edu/tag/05QG
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Proof. Assume S is a left multiplicative system. Let a : X → Y be a morphism
of S−1A. Then a = s−1f for some s : Y → Y ′ in S and f : X → Y ′. Since Q(s)
is an isomorphism we see that the existence of Coker(a : X → Y ) is equivalent to
the existence of Coker(Q(f) : X → Y ′). Since Coker(Q(f)) is the coequalizer of 0
and Q(f) we see that Coker(Q(f)) is represented by Q(Coker(f)) by Categories,
Lemma 27.9. This proves (1).
Part (2) is dual to part (1).
If S is a multiplicative system, then S is both a left and a right multiplicative
system. Thus we see that S−1A has kernels and cokernels and Q commutes with
kernels and cokernels. To finish the proof of (3) we have to show that Coim = Im
in S−1A. Again using that any arrow in S−1A is isomorphic to an arrow Q(f) we
see that the result follows from the result for A. □

9. Jordan-Hölder

0FCD The Jordan-Hölder lemma is Lemma 9.7. First we state some definitions.

Definition 9.1.0FCE Let A be an abelian category. An object A of A is said to be
simple if it is nonzero and the only subobjects of A are 0 and A.

Definition 9.2.0FCF Let A be an abelian category.
(1) We say an object A of A is Artinian if and only if it satisfies the descending

chain condition for subobjects.
(2) We say A is Artinian if every object of A is Artinian.

Definition 9.3.0FCG Let A be an abelian category.
(1) We say an object A of A is Noetherian if and only if it satisfies the ascending

chain condition for subobjects.
(2) We say A is Noetherian if every object of A is Noetherian.

Lemma 9.4.0FCH Let A be an abelian category. Let 0 → A1 → A2 → A3 → 0 be
a short exact sequence of A. Then A2 is Artinian if and only if A1 and A3 are
Artinian.

Proof. Omitted. □

Lemma 9.5.0FCI Let A be an abelian category. Let 0 → A1 → A2 → A3 → 0 be a
short exact sequence of A. Then A2 is Noetherian if and only if A1 and A3 are
Noetherian.

Proof. Omitted. □

Lemma 9.6.0FCJ Let A be an abelian category. Let A be an object of A. The following
are equivalent

(1) A is Artinian and Noetherian, and
(2) there exists a filtration 0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An = A by subobjects such

that Ai/Ai−1 is simple for i = 1, . . . , n.

Proof. Assume (1). If A is zero, then (2) holds. If A is not zero, then there exists
a smallest nonzero object A1 ⊂ A by the Artinian property. Of course A1 is simple.
If A1 = A, then we are done. If not, then we can find A1 ⊂ A2 ⊂ A minimal with
A2 ̸= A1. Then A2/A1 is simple. Continuing in this way, we can find a sequence

https://stacks.math.columbia.edu/tag/0FCE
https://stacks.math.columbia.edu/tag/0FCF
https://stacks.math.columbia.edu/tag/0FCG
https://stacks.math.columbia.edu/tag/0FCH
https://stacks.math.columbia.edu/tag/0FCI
https://stacks.math.columbia.edu/tag/0FCJ
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0 ⊂ A1 ⊂ A2 ⊂ . . . of subobjects of A such that Ai/Ai−1 is simple. Since A is
Noetherian, we conclude that the process stops. Hence (2) follows.

Assume (2). We will prove (1) by induction on n. If n = 1, then A is simple and
clearly Noetherian and Artinian. If the result holds for n−1, then we use the short
exact sequence 0 → An−1 → An → An/An−1 → 0 and Lemmas 9.4 and 9.5 to
conclude for n. □

Lemma 9.7 (Jordan-Hölder).0FCK Let A be an abelian category. Let A be an object
of A satisfying the equivalent conditions of Lemma 9.6. Given two filtrations

0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An = A and 0 ⊂ B1 ⊂ B2 ⊂ . . . ⊂ Bm = A

with Si = Ai/Ai−1 and Tj = Bj/Bj−1 simple objects we have n = m and there
exists a permutation σ of {1, . . . , n} such that Si ∼= Tσ(i) for all i ∈ {1, . . . , n}.

Proof. Let j be the smallest index such that A1 ⊂ Bj . Then the map S1 = A1 →
Bj/Bj−1 = Tj is an isomorphism. Moreover, the object A/A1 = An/A1 = Bm/A1
has the two filtrations

0 ⊂ A2/A1 ⊂ A3/A1 ⊂ . . . ⊂ An/A1

and

0 ⊂ (B1 +A1)/A1 ⊂ . . . ⊂ (Bj−1 +A1)/A1 = Bj/A1 ⊂ Bj+1/A1 ⊂ . . . ⊂ Bm/A1

We conclude by induction. □

10. Serre subcategories

02MN In [Ser53, Chapter I, Section 1] a notion of a “class” of abelian groups is defined.
This notion has been extended to abelian categories by many authors (in slightly
different ways). We will use the following variant which is virtually identical to
Serre’s original definition.

Definition 10.1.02MO [Ser53, Condition
(I) on page 259]

Let A be an abelian category.
(1) A Serre subcategory of A is a nonempty full subcategory C of A such that

given an exact sequence1

A→ B → C

with A,C ∈ Ob(C), then also B ∈ Ob(C).
(2) A weak Serre subcategory of A is a nonempty full subcategory C of A such

that given an exact sequence

A0 → A1 → A2 → A3 → A4

with A0, A1, A3, A4 in C, then also A2 in C.

In some references the second notion is called a “thick” subcategory and in other
references the first notion is called a “thick” subcategory. However, it seems that
the notion of a Serre subcategory is universally accepted to be the one defined
above. Note that in both cases the category C is abelian and that the inclusion
functor C → A is a fully faithful exact functor. Let’s characterize these types of
subcategories in more detail.

1By Definition 5.7 this means Im(A → B) = Ker(B → C).

https://stacks.math.columbia.edu/tag/0FCK
https://stacks.math.columbia.edu/tag/02MO
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Lemma 10.2.02MP Let A be an abelian category. Let C be a subcategory of A. Then
C is a Serre subcategory if and only if the following conditions are satisfied:

(1) 0 ∈ Ob(C),
(2) C is a strictly full subcategory of A,
(3) any subobject or quotient of an object of C is an object of C,
(4) if A ∈ Ob(A) is an extension of objects of C then also A ∈ Ob(C).

Moreover, a Serre subcategory is an abelian category and the inclusion functor is
exact.
Proof. Omitted. □

Lemma 10.3.0754 Let A be an abelian category. Let C be a subcategory of A. Then
C is a weak Serre subcategory if and only if the following conditions are satisfied:

(1) 0 ∈ Ob(C),
(2) C is a strictly full subcategory of A,
(3) kernels and cokernels in A of morphisms between objects of C are in C,
(4) if A ∈ Ob(A) is an extension of objects of C then also A ∈ Ob(C).

Moreover, a weak Serre subcategory is an abelian category and the inclusion functor
is exact.
Proof. Omitted. □

Lemma 10.4.02MQ Let A, B be abelian categories. Let F : A → B be an exact functor.
Then the full subcategory of objects C of A such that F (C) = 0 forms a Serre
subcategory of A.
Proof. Omitted. □

Definition 10.5.02MR Let A, B be abelian categories. Let F : A → B be an exact
functor. Then the full subcategory of objects C of A such that F (C) = 0 is called
the kernel of the functor F , and is sometimes denoted Ker(F ).
Any Serre subcategory of an abelian category is the kernel of an exact functor. In
Examples, Section 76 we discuss this for Serre’s original example of torsion groups.
Lemma 10.6.02MS Let A be an abelian category. Let C ⊂ A be a Serre subcategory.
There exists an abelian category A/C and an exact functor

F : A −→ A/C
which is essentially surjective and whose kernel is C. The category A/C and the
functor F are characterized by the following universal property: For any exact
functor G : A → B such that C ⊂ Ker(G) there exists a factorization G = H ◦ F
for a unique exact functor H : A/C → B.
Proof. Consider the set of arrows of A defined by the following formula

S = {f ∈ Arrows(A) | Ker(f),Coker(f) ∈ Ob(C)}.
We claim that S is a multiplicative system. To prove this we have to check MS1,
MS2, MS3, see Categories, Definition 27.1.
It is clear that identities are elements of S. Suppose that f : A→ B and g : B → C
are elements of S. There are exact sequences

0→ Ker(f)→ Ker(gf)→ Ker(g)
Coker(f)→ Coker(gf)→ Coker(g)→ 0

https://stacks.math.columbia.edu/tag/02MP
https://stacks.math.columbia.edu/tag/0754
https://stacks.math.columbia.edu/tag/02MQ
https://stacks.math.columbia.edu/tag/02MR
https://stacks.math.columbia.edu/tag/02MS
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Hence it follows that gf ∈ S. This proves MS1. (In fact, a similar argument will
show that S is a saturated multiplicative system, see Categories, Definition 27.20.)

Consider a solid diagram
A

t

��

g
// B

s

��
C

f // C ⨿A B
with t ∈ S. Set W = C⨿AB = Coker((t,−g) : A→ C⊕B). Then Ker(t)→ Ker(s)
is surjective and Coker(t)→ Coker(s) is an isomorphism. Hence s is an element of
S. This proves LMS2 and the proof of RMS2 is dual.

Finally, consider morphisms f, g : B → C and a morphism s : A → B in S
such that f ◦ s = g ◦ s. This means that (f − g) ◦ s = 0. In turn this means
that I = Im(f − g) ⊂ C is a quotient of Coker(s) hence an object of C. Thus
t : C → C ′ = C/I is an element of S such that t ◦ (f − g) = 0, i.e., such that
t ◦ f = t ◦ g. This proves LMS3 and the proof of RMS3 is dual.

Having proved that S is a multiplicative system we set A/C = S−1A, and we set F
equal to the localization functor Q. By Lemma 8.4 the category A/C is abelian and
F is exact. If X is in the kernel of F = Q, then by Lemma 8.3 we see that 0 : X → Z
is an element of S and hence X is an object of C, i.e., the kernel of F is C. Finally,
if G is as in the statement of the lemma, then G turns every element of S into
an isomorphism. Hence we obtain the functor H : A/C → B from the universal
property of localization, see Categories, Lemma 27.8. We still have to show the
functor H is exact. To do this it suffices to show that H commutes with taking
kernels and cokernels, see Lemma 7.2. Let A→ B be a morphism in A/C. We may
represent A → B as fs−1 where s : A′ → A is in S and f : A′ → B an arbitrary
morphism of A. Since F = Q maps s to an isomorphism in the quotient category
A/C, it suffices to show that H commutes with taking kernels and cokernels of
morphisms f : A→ B of A. But here we have H(f) = G(f) and the result follows
from the fact that G is exact. □

Lemma 10.7.06XK Let A, B be abelian categories. Let F : A → B be an exact functor.
Let C ⊂ A be a Serre subcategory contained in the kernel of F . Then C = Ker(F )
if and only if the induced functor F : A/C → B (Lemma 10.6) is faithful.

Proof. We will use the results of Lemma 10.6 without further mention. The “only
if” direction is true because the kernel of F is zero by construction. Namely, if f :
X → Y is a morphism in A/C such that F (f) = 0, then F (Im(f)) = Im(F (f)) = 0,
hence Im(f) = 0 by the assumption on the kernel of F . Thus f = 0.

For the “if” direction, let X be an object of A such that F (X) = 0. Then F (idX) =
idF (X) = 0, thus idX = 0 in A/C by faithfulness of F . Hence X = 0 in A/C, that
is X ∈ Ob(C). □

11. K-groups

02MT A tiny bit about K0 of an abelian category.

Definition 11.1.02MU Let A be an abelian category. We denote K0(A) the zeroth
K-group of A. It is the abelian group constructed as follows. Take the free abelian

https://stacks.math.columbia.edu/tag/06XK
https://stacks.math.columbia.edu/tag/02MU
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group on the objects on A and for every short exact sequence 0→ A→ B → C → 0
impose the relation [B]− [A]− [C] = 0.

Another way to say this is that there is a presentation⊕
A→B→C ses

Z[A→ B → C] −→
⊕

A∈Ob(A)

Z[A] −→ K0(A) −→ 0

with [A → B → C] 7→ [B] − [A] − [C] of K0(A). The short exact sequence
0 → 0 → 0 → 0 → 0 leads to the relation [0] = 0 in K0(A). There are no set-
theoretical issues as all of our categories are “small” if not mentioned otherwise.
Some examples of K-groups for categories of modules over rings where computed
in Algebra, Section 55.

Lemma 11.2.02MV Let F : A → B be an exact functor between abelian categories.
Then F induces a homomorphism of K-groups K0(F ) : K0(A)→ K0(B) by simply
setting K0(F )([A]) = [F (A)].

Proof. Proves itself. □

Suppose we are given an object M of an abelian category A and a complex of the
form

(11.2.1)02MW . . . // M
φ // M

ψ // M
φ // M // . . .

In this situation we define

H0(M,φ, ψ) = Ker(ψ)/ Im(φ), and H1(M,φ, ψ) = Ker(φ)/ Im(ψ).

Lemma 11.3.02MX Let A be an abelian category. Let C ⊂ A be a Serre subcategory
and set B = A/C.

(1) The exact functors C → A and A → B induce an exact sequence

K0(C)→ K0(A)→ K0(B)→ 0

of K-groups, and
(2) the kernel of K0(C) → K0(A) is equal to the collection of elements of the

form
[H0(M,φ, ψ)]− [H1(M,φ, ψ)]

where (M,φ, ψ) is a complex as in (11.2.1) with the property that it becomes
exact in B; in other words that H0(M,φ, ψ) and H1(M,φ, ψ) are objects
of C.

Proof. Proof of (1). It is clear that K0(A) → K0(B) is surjective and that the
composition K0(C) → K0(A) → K0(B) is zero. Let x ∈ K0(A) be an element
mapping to zero in K0(B). We can write x = [A] − [A′] with A,A′ in A (fun
exercise). Denote B,B′ the corresponding objects of B. The fact that x maps to
zero in K0(B) means that there exists a finite set I = I+ ⨿ I−, for each i ∈ I a
short exact sequence

0→ Bi → B′
i → B′′

i → 0
in B such that we have

[B]− [B′] =
∑

i∈I+
([B′

i]− [Bi]− [B′′
i ])−

∑
i∈I−

([B′
i]− [Bi]− [B′′

i ])

https://stacks.math.columbia.edu/tag/02MV
https://stacks.math.columbia.edu/tag/02MX
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in the free abelian group on isomorphism classes of objects of B. We can rewrite
this as
[B]+

∑
i∈I+

([Bi]+ [B′′
i ])+

∑
i∈I−

[B′
i] = [B′]+

∑
i∈I−

([Bi]+ [B′′
i ])+

∑
i∈I+

[B′
i].

Since the right and left hand side should contain the same isomorphism classes of
objects of B counted with multiplicity, this means there should be a bijection
τ : {B}⨿{Bi, B′′

i ; i ∈ I+}⨿{B′
i; i ∈ I−} −→ {B′}⨿{Bi, B′′

i ; i ∈ I−}⨿{B′
i; i ∈ I+}

such that N and τ(N) are isomorphic in B. The proof of Lemmas 10.6 and 8.4
show that we choose for i ∈ I a short exact sequence

0→ Ai → A′
i → A′′

i → 0
in A such that Bi, B′

i, B
′′
i are isomorphic to the images of Ai, A′

i, A
′′
i in B. This

implies that the corresponding bijection
τ : {A}⨿{Ai, A′′

i ; i ∈ I+}⨿{A′
i; i ∈ I−} −→ {A′}⨿{Ai, A′′

i ; i ∈ I−}⨿{A′
i; i ∈ I+}

satisfies the property that M and τ(M) are objects of A which become isomorphic
in B. This means [M ] − [τ(M)] is in the image of K0(C) → K0(A). Namely,
the isomorphism in B is given by a diagram M ← M ′ → τ(M) in A where both
M ′ → M and M ′ → τ(M) have kernel and cokernel in C. Working backwards we
conclude that x = [A] − [A′] is in the image of K0(C) → K0(A) and the proof of
part (1) is complete.
Proof of (2). The proof is similar to the proof of (1) but slightly more bookkeeping
is involved. First we remark that any class of the type [H0(M,φ, ψ)]−[H1(M,φ, ψ)]
is zero in K0(A) by the following calculation

0 = [M ]− [M ]
= [Ker(φ)] + [Im(φ)]− [Ker(ψ)]− [Im(ψ)]
= [Ker(φ)/ Im(ψ)]− [Ker(ψ)/ Im(φ)]
= [H1(M,φ, ψ)]− [H0(M,φ, ψ)]

as desired. Hence it suffices to show that any element in the kernel of K0(C) →
K0(A) is of this form.
Any element x in K0(C) can be represented as the difference x = [P ] − [Q] of two
objects of C (fun exercise). Suppose that this element maps to zero in K0(A). This
means that there exist

(1) a finite set I = I+ ⨿ I−,
(2) for i ∈ I a short exact sequence 0→ Ai → Bi → Ci → 0 in A

such that
[P ]− [Q] =

∑
i∈I+

([Bi]− [Ai]− [Ci])−
∑

i∈I−
([Bi]− [Ai]− [Ci])

in the free abelian group on the objects of A. We can rewrite this as

[P ] +
∑

i∈I+
([Ai] + [Ci]) +

∑
i∈I−

[Bi] = [Q] +
∑

i∈I−
([Ai] + [Ci]) +

∑
i∈I+

[Bi].

Since the right and left hand side should contain the same objects of A counted
with multiplicity, this means there should be a bijection τ between the terms which
occur above. Set

T+ = {p} ⨿ {a, c} × I+ ⨿ {b} × I−
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and
T− = {q} ⨿ {a, c} × I− ⨿ {b} × I+.

Set T = T+ ⨿ T− = {p, q} ⨿ {a, b, c} × I. For t ∈ T define

O(t) =


P if t = p
Q if t = q
Ai if t = (a, i)
Bi if t = (b, i)
Ci if t = (c, i)

Hence we can view τ : T+ → T− as a bijection such that O(t) = O(τ(t)) for all
t ∈ T+. Let t−0 = τ(p) and let t+0 ∈ T+ be the unique element such that τ(t+0 ) = q.
Consider the object

M+ =
⊕

t∈T+
O(t)

By using τ we see that it is equal to the object

M− =
⊕

t∈T−
O(t)

Consider the map
φ : M+ −→M−

which on the summand O(t) = Ai corresponding to t = (a, i), i ∈ I+ uses the
map Ai → Bi into the summand O((b, i)) = Bi of M− and on the summand
O(t) = Bi corresponding to (b, i), i ∈ I− uses the map Bi → Ci into the summand
O((c, i)) = Ci of M−. The map is zero on the summands corresponding to p and
(c, i), i ∈ I+. Similarly, consider the map

ψ : M− −→M+

which on the summand O(t) = Ai corresponding to t = (a, i), i ∈ I− uses the
map Ai → Bi into the summand O((b, i)) = Bi of M+ and on the summand
O(t) = Bi corresponding to (b, i), i ∈ I+ uses the map Bi → Ci into the summand
O((c, i)) = Ci of M+. The map is zero on the summands corresponding to q and
(c, i), i ∈ I−.

Note that the kernel of φ is equal to the direct sum of the summand P and the
summands O((c, i)) = Ci, i ∈ I+ and the subobjects Ai inside the summands
O((b, i)) = Bi, i ∈ I−. The image of ψ is equal to the direct sum of the summands
O((c, i)) = Ci, i ∈ I+ and the subobjects Ai inside the summands O((b, i)) = Bi,
i ∈ I−. In other words we see that

P ∼= Ker(φ)/ Im(ψ).

In exactly the same way we see that

Q ∼= Ker(ψ)/ Im(φ).

Since as we remarked above the existence of the bijection τ shows that M+ = M−

we see that the lemma follows. □
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12. Cohomological delta-functors

010P
Definition 12.1.010Q Let A,B be abelian categories. A cohomological δ-functor or
simply a δ-functor from A to B is given by the following data:

(1) a collection Fn : A → B, n ≥ 0 of additive functors, and
(2) for every short exact sequence 0 → A → B → C → 0 of A a collection

δA→B→C : Fn(C)→ Fn+1(A), n ≥ 0 of morphisms of B.
These data are assumed to satisfy the following axioms

(1) for every short exact sequence as above the sequence

0 // F 0(A) // F 0(B) // F 0(C)

δA→B→C
uu

F 1(A) // F 1(B) // F 1(C)

δA→B→C
uu

F 2(A) // F 2(B) // . . .

is exact, and
(2) for every morphism (A → B → C) → (A′ → B′ → C ′) of short exact

sequences of A the diagrams

Fn(C)

��

δA→B→C

// Fn+1(A)

��
Fn(C ′)

δA′→B′→C′ // Fn+1(A′)

are commutative.

Note that this in particular implies that F 0 is left exact.

Definition 12.2.010R Let A,B be abelian categories. Let (Fn, δF ) and (Gn, δG) be
δ-functors from A to B. A morphism of δ-functors from F to G is a collection of
transformation of functors tn : Fn → Gn, n ≥ 0 such that for every short exact
sequence 0→ A→ B → C → 0 of A the diagrams

Fn(C)

tn

��

δF,A→B→C

// Fn+1(A)

tn+1

��
Gn(C)

δG,A→B→C // Gn+1(A)

are commutative.

Definition 12.3.010S Let A,B be abelian categories. Let F = (Fn, δF ) be a δ-functor
from A to B. We say F is a universal δ-functor if and only if for every δ-functor
G = (Gn, δG) and any morphism of functors t : F 0 → G0 there exists a unique
morphism of δ-functors {tn}n≥0 : F → G such that t = t0.

Lemma 12.4.010T Let A,B be abelian categories. Let F = (Fn, δF ) be a δ-functor from
A to B. Suppose that for every n > 0 and any A ∈ Ob(A) there exists an injective

https://stacks.math.columbia.edu/tag/010Q
https://stacks.math.columbia.edu/tag/010R
https://stacks.math.columbia.edu/tag/010S
https://stacks.math.columbia.edu/tag/010T
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morphism u : A → B (depending on A and n) such that Fn(u) : Fn(A) → Fn(B)
is zero. Then F is a universal δ-functor.

Proof. Let G = (Gn, δG) be a δ-functor from A to B and let t : F 0 → G0 be
a morphism of functors. We have to show there exists a unique morphism of δ-
functors {tn}n≥0 : F → G such that t = t0. We construct tn by induction on n.
For n = 0 we set t0 = t. Suppose we have already constructed a unique sequence of
transformation of functors ti for i ≤ n compatible with the maps δ in degrees ≤ n.
Let A ∈ Ob(A). By assumption we may choose a embedding u : A → B such
that Fn+1(u) = 0. Let C = B/u(A). The long exact cohomology sequence for
the short exact sequence 0 → A → B → C → 0 and the δ-functor F gives that
Fn+1(A) = Coker(Fn(B) → Fn(C)) by our choice of u. Since we have already
defined tn we can set

tn+1
A : Fn+1(A)→ Gn+1(A)

equal to the unique map such that

Coker(Fn(B)→ Fn(C))
tn
//

δF,A→B→C

��

Coker(Gn(B)→ Gn(C))

δG,A→B→C

��
Fn+1(A)

tn+1
A // Gn+1(A)

commutes. This is clearly uniquely determined by the requirements imposed. We
omit the verification that this defines a transformation of functors. □

Lemma 12.5.010U Let A,B be abelian categories. Let F : A → B be a functor. If
there exists a universal δ-functor (Fn, δF ) from A to B with F 0 = F , then it is
determined up to unique isomorphism of δ-functors.

Proof. Immediate from the definitions. □

13. Complexes

010V Of course the notions of a chain complex and a cochain complex are dual and you
only have to read one of the two parts of this section. So pick the one you like.
(Actually, this doesn’t quite work right since the conventions on numbering things
are not adapted to an easy transition between chain and cochain complexes.)
A chain complex A• in an additive category A is a complex

. . .→ An+1
dn+1−−−→ An

dn−→ An−1 → . . .

of A. In other words, we are given an object Ai of A for all i ∈ Z and for all i ∈ Z
a morphism di : Ai → Ai−1 such that di−1 ◦ di = 0 for all i. A morphism of chain
complexes f : A• → B• is given by a family of morphisms fi : Ai → Bi such that
all the diagrams

Ai
di

//

fi

��

Ai−1

fi−1

��
Bi

di // Bi−1

commute. The category of chain complexes of A is denoted Ch(A). The full sub-
category consisting of objects of the form

. . .→ A2 → A1 → A0 → 0→ 0→ . . .

https://stacks.math.columbia.edu/tag/010U
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is denoted Ch≥0(A). In other words, a chain complex A• belongs to Ch≥0(A) if
and only if Ai = 0 for all i < 0.
Given an additive category A we identify A with the full subcategory of Ch(A)
consisting of chain complexes zero except in degree 0 by the functor

A −→ Ch(A), A 7−→ (. . .→ 0→ A→ 0→ . . .)
By abuse of notation we often denote the object on the right hand side simply A.
If we want to stress that we are viewing A as a chain complex we may sometimes
use the notation A[0], see Section 14.
A homotopy h between a pair of morphisms of chain complexes f, g : A• → B• is a
collection of morphisms hi : Ai → Bi+1 such that we have

fi − gi = di+1 ◦ hi + hi−1 ◦ di
for all i. Two morphisms f, g : A• → B• are said to be homotopic if a homotopy
between f and g exists. Clearly, the notions of chain complex, morphism of chain
complexes, and homotopies between morphisms of chain complexes make sense even
in a preadditive category.

Lemma 13.1.010W Let A be an additive category. Let f, g : B• → C• be morphisms
of chain complexes. Suppose given morphisms of chain complexes a : A• → B•,
and c : C• → D•. If {hi : Bi → Ci+1} defines a homotopy between f and g, then
{ci+1 ◦ hi ◦ ai} defines a homotopy between c ◦ f ◦ a and c ◦ g ◦ a.

Proof. Omitted. □

In particular this means that it makes sense to define the category of chain com-
plexes with maps up to homotopy. We’ll return to this later.

Definition 13.2.010X Let A be an additive category. We say a morphism a : A• → B•
is a homotopy equivalence if there exists a morphism b : B• → A• such that there
exists a homotopy between a ◦ b and idA and there exists a homotopy between b ◦ a
and idB . If there exists such a morphism between A• and B•, then we say that A•
and B• are homotopy equivalent.

In other words, two complexes are homotopy equivalent if they become isomorphic
in the category of complexes up to homotopy.

Lemma 13.3.010Y Let A be an abelian category.
(1) The category of chain complexes in A is abelian.
(2) A morphism of complexes f : A• → B• is injective if and only if each

fn : An → Bn is injective.
(3) A morphism of complexes f : A• → B• is surjective if and only if each

fn : An → Bn is surjective.
(4) A sequence of chain complexes

A•
f−→ B•

g−→ C•

is exact at B• if and only if each sequence

Ai
fi−→ Bi

gi−→ Ci

is exact at Bi.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/010W
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For any i ∈ Z the ith homology group of a chain complex A• in an abelian category
is defined by the following formula

Hi(A•) = Ker(di)/ Im(di+1).

If f : A• → B• is a morphism of chain complexes of A then we get an induced
morphism Hi(f) : Hi(A•) → Hi(B•) because clearly fi(Ker(di : Ai → Ai−1)) ⊂
Ker(di : Bi → Bi−1), and similarly for Im(di+1). Thus we obtain a functor

Hi : Ch(A) −→ A.

Definition 13.4.010Z Let A be an abelian category.
(1) A morphism of chain complexes f : A• → B• is called a quasi-isomorphism

if the induced map Hi(f) : Hi(A•) → Hi(B•) is an isomorphism for all
i ∈ Z.

(2) A chain complex A• is called acyclic if all of its homology objects Hi(A•)
are zero.

Lemma 13.5.0110 Let A be an abelian category.
(1) If the maps f, g : A• → B• are homotopic, then the induced maps Hi(f)

and Hi(g) are equal.
(2) If the map f : A• → B• is a homotopy equivalence, then f is a quasi-

isomorphism.

Proof. Omitted. □

Lemma 13.6.0111 Let A be an abelian category. Suppose that

0→ A• → B• → C• → 0

is a short exact sequence of chain complexes of A. Then there is a canonical long
exact homology sequence

. . . . . . . . .

ss
Hi(A•) // Hi(B•) // Hi(C•)

ss
Hi−1(A•) // Hi−1(B•) // Hi−1(C•)

ss. . . . . . . . .

Proof. Omitted. The maps come from the Snake Lemma 5.17 applied to the
diagrams

Ai/ Im(dA,i+1) //

dA,i

��

Bi/ Im(dB,i+1) //

dB,i

��

Ci/ Im(dC,i+1) //

dC,i

��

0

0 // Ker(dA,i−1) // Ker(dB,i−1) // Ker(dC,i−1)

□

https://stacks.math.columbia.edu/tag/010Z
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A cochain complex A• in an additive category A is a complex

. . .→ An−1 dn−1

−−−→ An
dn

−→ An+1 → . . .

of A. In other words, we are given an object Ai of A for all i ∈ Z and for all i ∈ Z
a morphism di : Ai → Ai+1 such that di+1 ◦di = 0 for all i. A morphism of cochain
complexes f : A• → B• is given by a family of morphisms f i : Ai → Bi such that
all the diagrams

Ai
di

//

fi

��

Ai+1

fi+1

��
Bi

di
// Bi+1

commute. The category of cochain complexes of A is denoted CoCh(A). The full
subcategory consisting of objects of the form

. . .→ 0→ 0→ A0 → A1 → A2 → . . .

is denoted CoCh≥0(A). In other words, a cochain complex A• belongs to the
subcategory CoCh≥0(A) if and only if Ai = 0 for all i < 0.
Given an additive category A we identify A with the full subcategory of CoCh(A)
consisting of cochain complexes zero except in degree 0 by the functor

A −→ CoCh(A), A 7−→ (. . .→ 0→ A→ 0→ . . .)
By abuse of notation we often denote the object on the right hand side simply A.
If we want to stress that we are viewing A as a cochain complex we may sometimes
use the notation A[0], see Section 14.
A homotopy h between a pair of morphisms of cochain complexes f, g : A• → B•

is a collection of morphisms hi : Ai → Bi−1 such that we have
f i − gi = di−1 ◦ hi + hi+1 ◦ di

for all i. Two morphisms f, g : A• → B• are said to be homotopic if a homotopy
between f and g exists. Clearly, the notions of cochain complex, morphism of
cochain complexes, and homotopies between morphisms of cochain complexes make
sense even in a preadditive category.

Lemma 13.7.0112 Let A be an additive category. Let f, g : B• → C• be morphisms of
cochain complexes. Suppose given morphisms of cochain complexes a : A• → B•,
and c : C• → D•. If {hi : Bi → Ci−1} defines a homotopy between f and g, then
{ci−1 ◦ hi ◦ ai} defines a homotopy between c ◦ f ◦ a and c ◦ g ◦ a.

Proof. Omitted. □

In particular this means that it makes sense to define the category of cochain
complexes with maps up to homotopy. We’ll return to this later.

Definition 13.8.0113 Let A be an additive category. We say a morphism a : A• → B•

is a homotopy equivalence if there exists a morphism b : B• → A• such that there
exists a homotopy between a ◦ b and idA and there exists a homotopy between b ◦ a
and idB . If there exists such a morphism between A• and B•, then we say that A•

and B• are homotopy equivalent.

In other words, two complexes are homotopy equivalent if they become isomorphic
in the category of complexes up to homotopy.

https://stacks.math.columbia.edu/tag/0112
https://stacks.math.columbia.edu/tag/0113
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Lemma 13.9.0114 Let A be an abelian category.

(1) The category of cochain complexes in A is abelian.
(2) A morphism of cochain complexes f : A• → B• is injective if and only if

each fn : An → Bn is injective.
(3) A morphism of cochain complexes f : A• → B• is surjective if and only if

each fn : An → Bn is surjective.
(4) A sequence of cochain complexes

A• f−→ B• g−→ C•

is exact at B• if and only if each sequence

Ai
fi

−→ Bi
gi

−→ Ci

is exact at Bi.

Proof. Omitted. □

For any i ∈ Z the ith cohomology group of a cochain complex A• is defined by the
following formula

Hi(A•) = Ker(di)/ Im(di−1).

If f : A• → B• is a morphism of cochain complexes of A then we get an induced
morphism Hi(f) : Hi(A•) → Hi(B•) because clearly f i(Ker(di : Ai → Ai+1)) ⊂
Ker(di : Bi → Bi+1), and similarly for Im(di−1). Thus we obtain a functor

Hi : CoCh(A) −→ A.

Definition 13.10.0115 Let A be an abelian category.

(1) A morphism of cochain complexes f : A• → B• of A is called a quasi-
isomorphism if the induced maps Hi(f) : Hi(A•)→ Hi(B•) is an isomor-
phism for all i ∈ Z.

(2) A cochain complex A• is called acyclic if all of its cohomology objects
Hi(A•) are zero.

Lemma 13.11.0116 Let A be an abelian category.

(1) If the maps f, g : A• → B• are homotopic, then the induced maps Hi(f)
and Hi(g) are equal.

(2) If f : A• → B• is a homotopy equivalence, then f is a quasi-isomorphism.

Proof. Omitted. □

Lemma 13.12.0117 Let A be an abelian category. Suppose that

0→ A• → B• → C• → 0

https://stacks.math.columbia.edu/tag/0114
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is a short exact sequence of cochain complexes of A. Then there is a long exact
cohomology sequence

. . . . . . . . .

ss
Hi(A•) // Hi(B•) // Hi(C•)

ss
Hi+1(A•) // Hi+1(B•) // Hi+1(C•)

ss. . . . . . . . .

The construction produces long exact cohomology sequences which are functorial in
the short exact sequence and compatible with shifts.

Proof. For the horizontal maps Hi(A•) → Hi(B•) and Hi(B•) → Hi(C•) we
use the fact that Hi is a functor, see above. For the “boundary map” Hi(C•) →
Hi+1(A•) we use the map δ of the Snake Lemma 5.17 applied to the diagram

Ai/ Im(di−1
A ) //

di
A

��

Bi/ Im(di−1
B ) //

di
B

��

Ci/ Im(di−1
C ) //

di
C

��

0

0 // Ker(di+1
A ) // Ker(di+1

B ) // Ker(di+1
C )

This works as the kernel of the right vertical map is equal toHi(C•) and the cokernel
of the left vertical map is Hi+1(A•). We omit the verification that we obtain a long
exact sequence and we omit the verification of the properties mentioned at the end
of the statement of the lemma. □

14. Homotopy and the shift functor

0119 It is an annoying feature that signs and indices have to be part of any discussion
of homological algebra2.

Definition 14.1.011A Let A be an additive category. Let A• be a chain complex with
boundary maps dA,n : An → An−1. For any k ∈ Z we define the k-shifted chain
complex A[k]• as follows:

(1) we set A[k]n = An+k, and
(2) we set dA[k],n : A[k]n → A[k]n−1 equal to dA[k],n = (−1)kdA,n+k.

If f : A• → B• is a morphism of chain complexes, then we let f [k] : A[k]• → B[k]•
be the morphism of chain complexes with f [k]n = fk+n.

Of course this means we have functors [k] : Ch(A) → Ch(A) which mutually
commute (on the nose, without any intervening isomorphisms of functors), such
that A[k][l]• = A[k + l]• and with [0] = idCh(A).
Recall that we view A as a full subcategory of Ch(A), see Section 13. Thus for
any object A of A the notation A[k] refers to the unique chain complex zero in all
degrees except having A in degree −k.

2Please let us know if you notice sign errors or if you have improvements to our conventions.

https://stacks.math.columbia.edu/tag/011A
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Definition 14.2.011B Let A be an abelian category. Let A• be a chain complex
with boundary maps dA,n : An → An−1. For any k ∈ Z we identify Hi+k(A•) →
Hi(A[k]•) via the identification Ai+k = A[k]i.

This identification is functorial in A•. Note that since no signs are involved in
this definition we actually get a compatible system of identifications of all the
homology objectsHi−k(A[k]•), which are further compatible with the identifications
A[k][l]• = A[k + l]• and with [0] = idCh(A).

Let A be an additive category. Suppose that A• and B• are chain complexes,
a, b : A• → B• are morphisms of chain complexes, and {hi : Ai → Bi+1} is a
homotopy between a and b. Recall that this means that ai−bi = di+1◦hi+hi−1◦di.
What if a = b? Then we obtain the formula 0 = di+1 ◦hi+hi−1 ◦di, in other words,
−di+1 ◦ hi = hi−1 ◦ di. By definition above this means the collection {hi} above
defines a morphism of chain complexes

A• −→ B[1]•.

Such a thing is the same as a morphism A[−1]• → B• by our remarks above. This
proves the following lemma.

Lemma 14.3.011C Let A be an additive category. Suppose that A• and B• are chain
complexes. Given any morphism of chain complexes a : A• → B• there is a bijection
between the set of homotopies from a to a and MorCh(A)(A•, B[1]•). More generally,
the set of homotopies between a and b is either empty or a principal homogeneous
space under the group MorCh(A)(A•, B[1]•).

Proof. See above. □

Lemma 14.4.011D Let A be an abelian category. Let

0→ A• → B• → C• → 0

be a short exact sequence of complexes. Suppose that {sn : Cn → Bn} is a family
of morphisms which split the short exact sequences 0→ An → Bn → Cn → 0. Let
πn : Bn → An be the associated projections, see Lemma 5.10. Then the family of
morphisms

πn−1 ◦ dB,n ◦ sn : Cn → An−1

define a morphism of complexes δ(s) : C• → A[−1]•.

Proof. Denote i : A• → B• and q : B• → C• the maps of complexes in the
short exact sequence. Then in−1 ◦ πn−1 ◦ dB,n ◦ sn = dB,n ◦ sn − sn−1 ◦ dC,n.
Hence in−2 ◦ dA,n−1 ◦ πn−1 ◦ dB,n ◦ sn = dB,n−1 ◦ (dB,n ◦ sn − sn−1 ◦ dC,n) =
−dB,n−1 ◦ sn−1 ◦ dC,n as desired. □

Lemma 14.5.011E Notation and assumptions as in Lemma 14.4 above. The morphism
of complexes δ(s) : C• → A[−1]• induces the maps

Hi(δ(s)) : Hi(C•) −→ Hi(A[−1]•) = Hi−1(A•)

which occur in the long exact homology sequence associated to the short exact se-
quence of chain complexes by Lemma 13.6.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/011B
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Lemma 14.6.011F Notation and assumptions as in Lemma 14.4 above. Suppose {s′
n :

Cn → Bn} is a second choice of splittings. Write s′
n = sn + in ◦ hn for some

unique morphisms hn : Cn → An. The family of maps {hn : Cn → A[−1]n+1} is a
homotopy between the associated morphisms δ(s), δ(s′) : C• → A[−1]•.

Proof. Omitted. □

Definition 14.7.011G Let A be an additive category. Let A• be a cochain complex
with boundary maps dnA : An → An+1. For any k ∈ Z we define the k-shifted
cochain complex A[k]• as follows:

(1) we set A[k]n = An+k, and
(2) we set dnA[k] : A[k]n → A[k]n+1 equal to dnA[k] = (−1)kdn+k

A .
If f : A• → B• is a morphism of cochain complexes, then we let f [k] : A[k]• → B[k]•
be the morphism of cochain complexes with f [k]n = fk+n.

Of course this means we have functors [k] : CoCh(A)→ CoCh(A) which mutually
commute (on the nose, without any intervening isomorphisms of functors) and such
that A[k][l]• = A[k + l]• and with [0] = idCoCh(A).
Recall that we view A as a full subcategory of CoCh(A), see Section 13. Thus for
any object A of A the notation A[k] refers to the unique cochain complex zero in
all degrees except having A in degree −k.

Definition 14.8.011H Let A be an abelian category. Let A• be a cochain complex
with boundary maps dnA : An → An+1. For any k ∈ Z we identify Hi+k(A•) −→
Hi(A[k]•) via the identification Ai+k = A[k]i.

This identification is functorial in A•. Note that since no signs are involved in
this definition we actually get a compatible system of identifications of all the ho-
mology objects Hi−k(A[k]•), which are further compatible with the identifications
A[k][l]• = A[k + l]• and with [0] = idCoCh(A).
Let A be an additive category. Suppose that A• and B• are cochain complexes,
a, b : A• → B• are morphisms of cochain complexes, and {hi : Ai → Bi−1} is a
homotopy between a and b. Recall that this means that ai−bi = di−1◦hi+hi+1◦di.
What if a = b? Then we obtain the formula 0 = di−1 ◦hi+hi+1 ◦di, in other words,
−di−1 ◦ hi = hi+1 ◦ di. By definition above this means the collection {hi} above
defines a morphism of cochain complexes

A• −→ B[−1]•.
Such a thing is the same as a morphism A[1]• → B• by our remarks above. This
proves the following lemma.

Lemma 14.9.011I Let A be an additive category. Suppose that A• and B• are cochain
complexes. Given any morphism of cochain complexes a : A• → B• there is a
bijection between the set of homotopies from a to a and MorCoCh(A)(A•, B[−1]•).
More generally, the set of homotopies between a and b is either empty or a principal
homogeneous space under the group MorCoCh(A)(A•, B[−1]•).

Proof. See above. □

Lemma 14.10.011J Let A be an additive category. Let
0→ A• → B• → C• → 0
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be a complex (!) of complexes. Suppose that we are given splittings Bn = An ⊕Cn
compatible with the maps in the displayed sequence. Let sn : Cn → Bn and πn :
Bn → An be the corresponding maps. Then the family of morphisms

πn+1 ◦ dnB ◦ sn : Cn → An+1

define a morphism of complexes δ : C• → A[1]•.

Proof. Denote i : A• → B• and q : B• → C• the maps of complexes in the
short exact sequence. Then in+1 ◦ πn+1 ◦ dnB ◦ sn = dnB ◦ sn − sn+1 ◦ dnC . Hence
in+2 ◦ dn+1

A ◦ πn+1 ◦ dnB ◦ sn = dn+1
B ◦ (dnB ◦ sn − sn+1 ◦ dnC) = −dn+1

B ◦ sn+1 ◦ dnC as
desired. □

Lemma 14.11.011K Notation and assumptions as in Lemma 14.10 above. Assume in
addition that A is abelian. The morphism of complexes δ : C• → A[1]• induces the
maps

Hi(δ) : Hi(C•) −→ Hi(A[1]•) = Hi+1(A•)
which occur in the long exact homology sequence associated to the short exact se-
quence of cochain complexes by Lemma 13.12.

Proof. Omitted. □

Lemma 14.12.011L Notation and assumptions as in Lemma 14.10. Let α : A• → B•,
β : B• → C• be the given morphisms of complexes. Suppose (s′)n : Cn → Bn and
(π′)n : Bn → An is a second choice of splittings. Write (s′)n = sn + αn ◦ hn and
(π′)n = πn+gn ◦βn for some unique morphisms hn : Cn → An and gn : Cn → An.
Then

(1) gn = −hn, and
(2) the family of maps {gn : Cn → A[1]n−1} is a homotopy between δ, δ′ : C• →

A[1]•, more precisely (δ′)n = δn + gn+1 ◦ dnC + dn−1
A[1] ◦ g

n.

Proof. As (s′)n and (π′)n are splittings we have (π′)n ◦ (s′)n = 0. Hence

0 = (πn + gn ◦ βn) ◦ (sn + αn ◦ hn) = gn ◦ βn ◦ sn + πn ◦ αn ◦ hn = gn + hn

which proves (1). We compute (δ′)n as follows

(πn+1 + gn+1 ◦ βn+1) ◦ dnB ◦ (sn + αn ◦ hn) = δn + gn+1 ◦ dnC + dnA ◦ hn

Since hn = −gn and since dn−1
A[1] = −dnA we conclude that (2) holds. □

15. Truncation of complexes

0118 Let A be an abelian category. Let A• be a chain complex. There are several ways
to truncate the complex A•.

(1) The “stupid” truncation σ≤n is the subcomplex σ≤nA• defined by the rule
(σ≤nA•)i = 0 if i > n and (σ≤nA•)i = Ai if i ≤ n. In a picture

σ≤nA•

��

. . . // 0 //

��

An //

��

An−1 //

��

. . .

A• . . . // An+1 // An // An−1 // . . .

Note the property σ≤nA•/σ≤n−1A• = An[−n].

https://stacks.math.columbia.edu/tag/011K
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(2) The “stupid” truncation σ≥n is the quotient complex σ≥nA• defined by the
rule (σ≥nA•)i = Ai if i ≥ n and (σ≥nA•)i = 0 if i < n. In a picture

A•

��

. . . // An+1 //

��

An //

��

An−1 //

��

. . .

σ≥nA• . . . // An+1 // An // 0 // . . .

The map of complexes σ≥nA• → σ≥n+1A• is surjective with kernel An[−n].
(3) The canonical truncation τ≥nA• is defined by the picture

τ≥nA•

��

. . . // An+1 //

��

Ker(dn) //

��

0 //

��

. . .

A• . . . // An+1 // An // An−1 // . . .

Note that these complexes have the property that

Hi(τ≥nA•) =
{
Hi(A•) if i ≥ n

0 if i < n

(4) The canonical truncation τ≤nA• is defined by the picture

A•

��

. . . // An+1 //

��

An //

��

An−1 //

��

. . .

τ≤nA• . . . // 0 // Coker(dn+1) // An−1 // . . .

Note that these complexes have the property that

Hi(τ≤nA•) =
{
Hi(A•) if i ≤ n

0 if i > n

Let A be an abelian category. Let A• be a cochain complex. There are four ways
to truncate the complex A•.

(1) The “stupid” truncation σ≥n is the subcomplex σ≥nA
• defined by the rule

(σ≥nA
•)i = 0 if i < n and (σ≥nA

•)i = Ai if i ≥ n. In a picture

σ≥nA
•

��

. . . // 0 //

��

An //

��

An+1 //

��

. . .

A• . . . // An−1 // An // An+1 // . . .

Note the property σ≥nA
•/σ≥n+1A

• = An[−n].
(2) The “stupid” truncation σ≤n is the quotient complex σ≤nA

• defined by the
rule (σ≤nA

•)i = 0 if i > n and (σ≤nA
•)i = Ai if i ≤ n. In a picture

A•

��

. . . // An−1 //

��

An //

��

An+1 //

��

. . .

σ≤nA
• . . . // An−1 // An // 0 // . . .

The map of complexes σ≤nA
• → σ≤n−1A

• is surjective with kernel An[−n].
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(3) The canonical truncation τ≤nA
• is defined by the picture

τ≤nA
•

��

. . . // An−1 //

��

Ker(dn) //

��

0 //

��

. . .

A• . . . // An−1 // An // An+1 // . . .

Note that these complexes have the property that

Hi(τ≤nA
•) =

{
Hi(A•) if i ≤ n

0 if i > n

(4) The canonical truncation τ≥nA
• is defined by the picture

A•

��

. . . // An−1 //

��

An //

��

An+1 //

��

. . .

τ≥nA
• . . . // 0 // Coker(dn−1) // An+1 // . . .

Note that these complexes have the property that

Hi(τ≥nA
•) =

{
0 if i < n

Hi(A•) if i ≥ n

16. Graded objects

09MF We make the following definition.

Definition 16.1.0125 Let A be an additive category. The category of graded objects
of A, denoted Gr(A), is the category with

(1) objects A = (Ai) are families of objects Ai, i ∈ Z of objects of A, and
(2) morphisms f : A = (Ai) → B = (Bi) are families of morphisms f i : Ai →

Bi of A.

If A has countable direct sums, then we can associate to an object A = (Ai) of
Gr(A) the object

A =
⊕

i∈Z
Ai

and set kiA = Ai. In this case Gr(A) is equivalent to the category of pairs (A, k)
consisting of an object A of A and a direct sum decomposition

A =
⊕

i∈Z
kiA

by direct summands indexed by Z and a morphism (A, k)→ (B, k) of such objects
is given by a morphism φ : A → B of A such that φ(kiA) ⊂ kiB for all i ∈
Z. Whenever our additive category A has countable direct sums we will use this
equivalence without further mention.

However, with our definitions an additive or abelian category does not necessarily
have all (countable) direct sums. In this case our definition still makes sense. For
example, if A = Vectk is the category of finite dimensional vector spaces over a
field k, then Gr(Vectk) is the category of vector spaces with a given gradation
all of whose graded pieces are finite dimensional, and not the category of finite
dimensional vector spaces with a given graduation.

https://stacks.math.columbia.edu/tag/0125
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Lemma 16.2.0126 Let A be an abelian category. The category of graded objects Gr(A)
is abelian.

Proof. Let f : A = (Ai) → B = (Bi) be a morphism of graded objects of A
given by morphisms f i : Ai → Bi of A. Then we have Ker(f) = (Ker(f i)) and
Coker(f) = (Coker(f i)) in the category Gr(A). Since we have Im = Coim in A we
see the same thing holds in Gr(A). □

Remark 16.3 (Warning).0AMH There are abelian categories A having countable direct
sums but where countable direct sums are not exact. An example is the opposite
of the category of abelian sheaves on R. Namely, the category of abelian sheaves
on R has countable products, but countable products are not exact. For such a
category the functor Gr(A) → A, (Ai) 7→

⊕
Ai described above is not exact. It

is still true that Gr(A) is equivalent to the category of graded objects (A, k) of A,
but the kernel in the category of graded objects of a map φ : (A, k) → (B, k) is
not equal to Ker(φ) endowed with a direct sum decomposition, but rather it is the
direct sum of the kernels of the maps kiA→ kiB.

Definition 16.4.09MG Let A be an additive category. If A = (Ai) is a graded object,
then the kth shift A[k] is the graded object with A[k]i = Ak+i.

If A and B are graded objects of A, then we have
(16.4.1)09MH HomGr(A)(A,B[k]) = HomGr(A)(A[−k], B)
and an element of this group is sometimes called a map of graded objects homoge-
neous of degree k.
Given any set G we can define G-graded objects of A as the category whose objects
are A = (Ag)g∈G families of objects parametrized by elements of G. Morphisms
f : A → B are defined as families of maps fg : Ag → Bg where g runs over the
elements of G. If G is an abelian group, then we can (unambiguously) define shift
functors [g] on the category of G-graded objects by the rule (A[g])g0 = Ag+g0 . A
particular case of this type of construction is when G = Z × Z. In this case the
objects of the category are called bigraded objects of A. The (p, q) component of a
bigraded object A is usually denoted Ap,q. For (a, b) ∈ Z × Z we write A[a, b] in
stead of A[(a, b)]. A morphism A → A[a, b] is sometimes called a map of bidegree
(a, b).

17. Additive monoidal categories

0FN9 Some material about the interaction between a monoidal structure and an additive
structure on a category.

Definition 17.1.0FNA An additive monoidal category is an additive categoryA endowed
with a monoidal structure ⊗, ϕ (Categories, Definition 43.1) such that ⊗ is an
additive functor in each variable.

Lemma 17.2.0FFT Let A be an additive monoidal category. If Yi, i = 1, 2 are left
duals of Xi, i = 1, 2, then Y1 ⊕ Y2 is a left dual of X1 ⊕X2.

Proof. Follows from uniqueness of adjoints and Categories, Remark 43.7. □

Lemma 17.3.0FFU In a Karoubian additive monoidal category every summand of an
object which has a left dual has a left dual.

https://stacks.math.columbia.edu/tag/0126
https://stacks.math.columbia.edu/tag/0AMH
https://stacks.math.columbia.edu/tag/09MG
https://stacks.math.columbia.edu/tag/0FNA
https://stacks.math.columbia.edu/tag/0FFT
https://stacks.math.columbia.edu/tag/0FFU
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Proof. We will use Categories, Lemma 43.6 without further mention. Let X be
an object which has a left dual Y . We have

Hom(X,X) = Hom(1, X ⊗ Y ) = Hom(Y, Y )
If a : X → X corresponds to b : Y → Y then b is the unique endomorphism of Y
such that precomposing by a on

Hom(Z ′ ⊗X,Z) = Hom(Z ′, Z ⊗ Y )
is the same as postcomposing by 1⊗b. Hence the bijection Hom(X,X)→ Hom(Y, Y ),
a 7→ b is an isomorphism of the opposite of the algebra Hom(X,X) with the algebra
Hom(Y, Y ). In particular, if X = X1⊕X2, then the corresponding projectors e1, e2
are mapped to idempotents in Hom(Y, Y ). If Y = Y1 ⊕ Y2 is the corresponding
direct sum decomposition of Y (Section 4) then we see that under the bijection
Hom(Z ′ ⊗X,Z) = Hom(Z ′, Z ⊗ Y ) we have Hom(Z ′ ⊗Xi, Z) = Hom(Z ′, Z ⊗ Yi)
functorially as subgroups for i = 1, 2. It follows that Yi is the left dual of Xi by the
discussion in Categories, Remark 43.7. □

Example 17.4.0FFX Let F be a field. Let C be the category of graded F -vector spaces.
Given graded vector spaces V and W we let V ⊗W denote the graded F -vector
space whose degree n part is

(V ⊗W )n =
⊕

n=p+q
V p ⊗F W q

Given a third graded vector space U as associativity constraint ϕ : U ⊗ (V ⊗W )→
(U ⊗ V )⊗W we use the “usual” isomorphisms

Up ⊗F (V q ⊗F W r)→ (Up ⊗F V q)⊗F W r

of vectors spaces. As unit we use the graded F -vector space 1 which has F in degree
0 and is zero in other degrees. There are two commutativity constraints on C which
turn C into a symmetric monoidal category: one involves the intervention of signs
and the other does not. We will usually use the one that does. To be explicit, if V
and W are graded F -vector spaces we will use the isomorphism ψ : V ⊗W →W⊗V
which in degree n uses

V p ⊗F W q →W q ⊗F V p, v ⊗ w 7→ (−1)pqw ⊗ v
We omit the verification that this works.

Lemma 17.5.0FFV Let F be a field. Let C be the category of graded F -vector spaces
viewed as a monoidal category as in Example 17.4. If V in C has a left dual W , then∑
n dimF V

n <∞ and the map ϵ defines nondegenerate pairings W−n × V n → F .

Proof. As unit we take By Categories, Definition 43.5 we have maps
η : 1→ V ⊗W ϵ : W ⊗ V → 1

Since 1 = F placed in degree 0, we may think of ϵ as a sequence of pairings
W−n × V n → F as in the statement of the lemma. Choose bases {en,i}i∈In for V n
for all n. Write

η(1) =
∑

en,i ⊗ w−n,i

for some elements w−n,i ∈ W−n almost all of which are zero! The condition that
(ϵ⊗ 1) ◦ (1⊗ η) is the identity on W means that∑

n,i
ϵ(w, en,i)w−n,i = w

https://stacks.math.columbia.edu/tag/0FFX
https://stacks.math.columbia.edu/tag/0FFV
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Thus we see that W is generated as a graded vector space by the finitely many
nonzero vectors w−n,i. The condition that (1 ⊗ ϵ) ◦ (η ⊗ 1) is the identity of V
means that ∑

n,i
en,i ϵ(w−n,i, v) = v

In particular, setting v = en,i we conclude that ϵ(w−n,i, en,i′) = δii′ . Thus we find
that the statement of the lemma holds and that {w−n,i}i∈In

is the dual basis for
W−n to the chosen basis for V n. □

18. Double complexes and associated total complexes

0FNB We discuss double complexes and associated total complexes.

Definition 18.1.012Y Let A be an additive category. A double complex in A is given
by a system ({Ap,q, dp,q1 , dp,q2 }p,q∈Z), where each Ap,q is an object of A and dp,q1 :
Ap,q → Ap+1,q and dp,q2 : Ap,q → Ap,q+1 are morphisms of A such that the following
rules hold:

(1) dp+1,q
1 ◦ dp,q1 = 0

(2) dp,q+1
2 ◦ dp,q2 = 0

(3) dp,q+1
1 ◦ dp,q2 = dp+1,q

2 ◦ dp,q1
for all p, q ∈ Z.

This is just the cochain version of the definition. It says that each Ap,• is a cochain
complex and that each dp,•1 is a morphism of complexes Ap,• → Ap+1,• such that
dp+1,•

1 ◦ dp,•1 = 0 as morphisms of complexes. In other words a double complex can
be seen as a complex of complexes. So in the diagram

. . . . . . . . . . . .

. . . // Ap,q+1 dp,q+1
1 //

OO

Ap+1,q+1 //

OO

. . .

. . . // Ap,q
dp,q

1 //

dp,q
2

OO

Ap+1,q //

dp+1,q
2

OO

. . .

. . . . . .

OO

. . .

OO

. . .

any square commutes. Warning: In the literature one encounters a different defini-
tion where a “bicomplex” or a “double complex” has the property that the squares
in the diagram anti-commute.

Example 18.2.0A5J Let A, B, C be additive categories. Suppose that
⊗ : A× B −→ C, (X,Y ) 7−→ X ⊗ Y

is a functor which is bilinear on morphisms, see Categories, Definition 2.20 for the
definition of A × B. Given complexes X• of A and Y • of B we obtain a double
complex

K•,• = X• ⊗ Y •

in C. Here the first differential Kp,q → Kp+1,q is the morphism Xp ⊗ Y q →
Xp+1⊗Y q induced by the morphism Xp → Xp+1 and the identity on Y q. Similarly
for the second differential.

https://stacks.math.columbia.edu/tag/012Y
https://stacks.math.columbia.edu/tag/0A5J
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Definition 18.3.012Z Let A be an additive category. Let A•,• be a double complex.
The associated simple complex, denoted sA•, also often called the associated total
complex, denoted Tot(A•,•), is given by

sAn = Totn(A•,•) =
⊕

n=p+q
Ap,q

(if it exists) with differential

dnsA• = dnTot(A•,•) =
∑

n=p+q
(dp,q1 + (−1)pdp,q2 )

If countable direct sums exist in A or if for each n at most finitely many Ap,n−p

are nonzero, then Tot(A•,•) exists. Note that the definition is not symmetric in the
indices (p, q).

Remark 18.4.08BI Let A be an additive category. Let A•,•,• be a triple complex.
The associated total complex is the complex with terms

Totn(A•,•,•) =
⊕

p+q+r=n
Ap,q,r

and differential

dnTot(A•,•,•) =
∑

p+q+r=n
dp,q,r1 + (−1)pdp,q,r2 + (−1)p+qdp,q,r3

With this definition a simple calculation shows that the associated total complex
is equal to

Tot(A•,•,•) = Tot(Tot12(A•,•,•)) = Tot(Tot23(A•,•,•))

In other words, we can either first combine the first two of the variables and then
combine sum of those with the last, or we can first combine the last two variables
and then combine the first with the sum of the last two.

Remark 18.5.0FLG Let A be an additive category. Let A•,• be a double complex with
differentials dp,q1 and dp,q2 . Denote A•,•[a, b] the double complex with

(A•,•[a, b])p,q = Ap+a,q+b

and differentials

dp,qA•,•[a,b],1 = (−1)adp+a,q+b
1 and dp,qA•,•[a,b],2 = (−1)bdp+a,q+b

2

In this situation there is a well defined isomorphism

γ : Tot(A•,•)[a+ b] −→ Tot(A•,•[a, b])

which in degree n is given by the map

(Tot(A•,•)[a+ b])n =
⊕

p+q=n+a+bA
p,q

ϵ(p,q,a,b)idAp,q

��
Tot(A•,•[a, b])n =

⊕
p′+q′=nA

p′+a,q′+b

for some sign ϵ(p, q, a, b). Of course the summand Ap,q maps to the summand
Ap

′+a,q′+b when p = p′ + a and q = q′ + b. To figure out the conditions on these
signs observe that on the source we have

d|Ap,q = (−1)a+b (dp,q1 + (−1)pdp,q2 )

https://stacks.math.columbia.edu/tag/012Z
https://stacks.math.columbia.edu/tag/08BI
https://stacks.math.columbia.edu/tag/0FLG
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whereas on the target we have

d|Ap′+a,q′+b = (−1)adp
′+a,q′+b

1 + (−1)p
′
(−1)bdp

′+a,q′+b
2

Thus our constraints are that

(−1)aϵ(p, q, a, b) = ϵ(p+ 1, q, a, b)(−1)a+b ⇔ ϵ(p+ 1, q, a, b) = (−1)bϵ(p, q, a, b)

and

(−1)p
′+bϵ(p, q, a, b) = ϵ(p, q + 1, a, b)(−1)a+b+p ⇔ ϵ(p, q, a, b) = ϵ(p, q + 1, a, b)

Thus we choose ϵ(p, q, a, b) = (−1)pb.

Remark 18.6.0G6A Let A be an additive category with countable direct sums. Let
DoubleComp(A) denote the category of double complexes. We can consider an
object A•,• of DoubleComp(A) as a complex of complexes as follows

. . .→ A•,−1 → A•,0 → A•,1 → . . .

For the variant where we switch the role of the indices, see Remark 18.7. In this
remark we show that taking the associated total complex is compatible with all the
structures on complexes we have studied in the chapter so far.

First, observe that the shift functor on double complexes viewed as complexes of
complexes in the manner given above is the functor [0, 1] defined in Remark 18.5.
By Remark 18.5 the functor

Tot : DoubleComp(A)→ Comp(A)

is compatible with shift functors, in the sense that we have a functorial isomorphism
γ : Tot(A•,•)[1]→ Tot(A•,•[0, 1]).

Second, if
f, g : A•,• → B•,•

are homotopic when f and g are viewed as morphisms of complexes of complexes
in the manner given above, then

Tot(f),Tot(g) : Tot(A•,•)→ Tot(B•,•)

are homotopic maps of complexes. Indeed, let h = (hq) be a homotopy between f
and g. If we denote hp,q : Ap,q → Bp,q−1 the component in degree p of hq, then
this means that

fp,q − gp,q = dp,q−1
2 ◦ hp,q + hp,q+1 ◦ dp,q2

The fact that hq : A•,q → B•,q−1 is a map of complexes means that

dp,q−1
1 ◦ hp,q = hp+1,q ◦ dp,q1

Let us define h′ = ((h′)n) the homotopy given by the maps (h′)n : Totn(A•,•) →
Totn−1(B•,•) using (−1)php,q on the summand Ap,q for p + q = n. Then we see
that

dTot(B•,•) ◦ h′ + h′ ◦ dTot(A•,•)

restricted to the summand Ap,q is equal to

dp,q−1
1 ◦(−1)php,q+(−1)pdp,q−1

2 ◦(−1)php,q+(−1)p+1hp+1,q◦dp,q1 +(−1)php,q+1◦(−1)pdp,q2

which evaluates to fp,q−gp,q by the equations given above. This proves the second
compatibility.

https://stacks.math.columbia.edu/tag/0G6A
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Third, suppose that in the paragraph above we have f = g. Then the assignment
h⇝ h′ above is compatible with the identification of Lemma 14.9. More precisely,
if we view h as a morphism of complexes of complexes A•,• → B•,•[0,−1] via this
lemma then

Tot(A•,•) Tot(h)−−−−→ Tot(B•,•[0,−1]) γ−1

−−→ Tot(B•,•)[−1]

is equal to h′ viewed as a morphism of complexes via the lemma. Here γ is the
identification of Remark 18.5. The verification of this third point is immediate.

Fourth, let
0→ A•,• → B•,• → C•,• → 0

be a complex of double complexes and suppose we are given splittings sq : C•,q →
B•,q and πq : B•,q → A•,q of this as in Lemma 14.10 when we view double complexes
as complexes of complexes in the manner given above. This on the one hand
produces a map

δ : C•,• −→ A•,•[0, 1]
by the procedure in Lemma 14.10. On the other hand taking Tot we obtain a
complex

0→ Tot(A•,•)→ Tot(B•,•)→ Tot(C•,•)→ 0
which is termwise split (see below) and hence comes with a morphism

δ′ : Tot(C•,•) −→ Tot(A•,•)[1]

well defined up to homotopy by Lemmas 14.10 and 14.12. Claim: these maps agree
in the sense that

Tot(C•,•) Tot(δ)−−−−→ Tot(A•,•[0, 1]) γ−1

−−→ Tot(A•,•)[1]

is equal to δ′ where γ is as in Remark 18.5. To see this denote sp,q : Cp,q →
B•,q and πp,q : Bp,q → Ap,q the components of sq and πq. As splittings (s′)n :
Totn(C•,•) → Totn(B•,•) and (π′)n : Totn(B•,•) → Totn(A•,•) we use the maps
whose components are sp,q and πp,q for p+ q = n. We recall that

(δ′)n = (π′)n+1 ◦ dnTot(B•,•) ◦ (s′)n : Totn(C•,•)→ Totn+1(A•,•)

The restriction of this to the summand Cp,q is equal to

πp+1,q ◦ dp,q1 ◦ sp,q + πp,q+1 ◦ (−1)pdp,q2 ◦ sp,q = πp,q+1 ◦ (−1)pdp,q2 ◦ sp,q

The equality holds because sq is a morphism of complexes (with d1 as differential)
and because πp+1,q◦sp+1,q = 0 as s and π correspond to a direct sum decomposition
of B in every bidegree. On the other hand, for δ we have

δq = πq ◦ d2 ◦ sq : C•,q → A•,q+1

whose restriction to the summand Cp,q is equal to πp,q+1 ◦dp,q2 ◦sp,q. The difference
in signs is exactly canceled out by the sign of (−1)p in the isomorphism γ and the
fourth claim is proven.

Remark 18.7.0G6B Let A be an additive category with countable direct sums. Let
DoubleComp(A) denote the category of double complexes. We can consider an
object A•,• of DoubleComp(A) as a complex of complexes as follows

. . .→ A−1,• → A0,• → A1,• → . . .

https://stacks.math.columbia.edu/tag/0G6B


HOMOLOGICAL ALGEBRA 45

For the variant where we switch the role of the indices, see Remark 18.6. In this
remark we show that taking the associated total complex is compatible with all the
structures on complexes we have studied in the chapter so far.
First, observe that the shift functor on double complexes viewed as complexes of
complexes in the manner given above is the functor [1, 0] defined in Remark 18.5.
By Remark 18.5 the functor

Tot : DoubleComp(A)→ Comp(A)
is compatible with shift functors, in the sense that we have a functorial isomorphism
γ : Tot(A•,•)[1]→ Tot(A•,•[1, 0]).
Second, if

f, g : A•,• → B•,•

are homotopic when f and g are viewed as morphisms of complexes of complexes
in the manner given above, then

Tot(f),Tot(g) : Tot(A•,•)→ Tot(B•,•)
are homotopic maps of complexes. Indeed, let h = (hp) be a homotopy between f
and g. If we denote hp,q : Ap,q → Bp−1,q the component in degree p of hq, then
this means that

fp,q − gp,q = dp−1,q
1 ◦ hp,q + hp+1,q ◦ dp,q1

The fact that hp : Ap,• → Bp−1,• is a map of complexes means that
dp−1,q

2 ◦ hp,q = hp,q+1 ◦ dp,q2

Let us define h′ = ((h′)n) the homotopy given by the maps (h′)n : Totn(A•,•) →
Totn−1(B•,•) using hp,q on the summand Ap,q for p+ q = n. Then we see that

dTot(B•,•) ◦ h′ + h′ ◦ dTot(A•,•)

restricted to the summand Ap,q is equal to
dp−1,q

1 ◦ hp,q + (−1)p−1dp−1,q
2 ◦ hp,q + hp+1,q ◦ dp,q1 + hp,q+1 ◦ (−1)pdp,q2

which evaluates to fp,q−gp,q by the equations given above. This proves the second
compatibility.
Third, suppose that in the paragraph above we have f = g. Then the assignment
h⇝ h′ above is compatible with the identification of Lemma 14.9. More precisely,
if we view h as a morphism of complexes of complexes A•,• → B•,•[−1, 0] via this
lemma then

Tot(A•,•) Tot(h)−−−−→ Tot(B•,•[−1, 0]) γ−1

−−→ Tot(B•,•)[−1]
is equal to h′ viewed as a morphism of complexes via the lemma. Here γ is the
identification of Remark 18.5. The verification of this third point is immediate.
Fourth, let

0→ A•,• → B•,• → C•,• → 0
be a complex of double complexes and suppose we are given splittings sp : Cp,• →
Bp,• and πp : Bp,• → Ap,• of this as in Lemma 14.10 when we view double com-
plexes as complexes of complexes in the manner given above. This on the one hand
produces a map

δ : C•,• −→ A•,•[0, 1]
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by the procedure in Lemma 14.10. On the other hand taking Tot we obtain a
complex

0→ Tot(A•,•)→ Tot(B•,•)→ Tot(C•,•)→ 0
which is termwise split (see below) and hence comes with a morphism

δ′ : Tot(C•,•) −→ Tot(A•,•)[1]

well defined up to homotopy by Lemmas 14.10 and 14.12. Claim: these maps agree
in the sense that

Tot(C•,•) Tot(δ)−−−−→ Tot(A•,•[1, 0]) γ−1

−−→ Tot(A•,•)[1]

is equal to δ′ where γ is as in Remark 18.5. To see this denote sp,q : Cp,q →
B•,q and πp,q : Bp,q → Ap,q the components of sq and πq. As splittings (s′)n :
Totn(C•,•) → Totn(B•,•) and (π′)n : Totn(B•,•) → Totn(A•,•) we use the maps
whose components are sp,q and πp,q for p+ q = n. We recall that

(δ′)n = (π′)n+1 ◦ dnTot(B•,•) ◦ (s′)n : Totn(C•,•)→ Totn+1(A•,•)

The restriction of this to the summand Cp,q is equal to

πp+1,q ◦ dp,q1 ◦ sp,q + πp,q+1 ◦ (−1)pdp,q2 ◦ sp,q = πp+1,q ◦ dp,q1 ◦ sp,q

The equality holds because sp is a morphism of complexes (with d2 as differential)
and because πp,q+1◦sp,q+1 = 0 as s and π correspond to a direct sum decomposition
of B in every bidegree. On the other hand, for δ we have

δp = πp ◦ d1 ◦ sp : Cp,• → Ap+1,•

whose restriction to the summand Cp,q is equal to πp+1,q ◦ dp,q1 ◦ sp,q. Thus we
get the same as before which matches with the fact that the isomorphism γ :
Tot(A•,•)[1]→ Tot(A•,•[1, 0]) is defined without the intervention of signs.

19. Filtrations

0120 A nice reference for this material is [Del71, Section 1]. (Note that our conventions
regarding abelian categories are different.)

Definition 19.1.0121 Let A be an abelian category.
(1) A decreasing filtration F on an object A is a family (FnA)n∈Z of subobjects

of A such that

A ⊃ . . . ⊃ FnA ⊃ Fn+1A ⊃ . . . ⊃ 0

(2) A filtered object of A is pair (A,F ) consisting of an object A of A and a
decreasing filtration F on A.

(3) A morphism (A,F ) → (B,F ) of filtered objects is given by a morphism
φ : A→ B of A such that φ(F iA) ⊂ F iB for all i ∈ Z.

(4) The category of filtered objects is denoted Fil(A).
(5) Given a filtered object (A,F ) and a subobject X ⊂ A the induced filtration

on X is the filtration with FnX = X ∩ FnA.
(6) Given a filtered object (A,F ) and a surjection π : A → Y the quotient

filtration is the filtration with FnY = π(FnA).
(7) A filtration F on an object A is said to be finite if there exist n,m such

that FnA = A and FmA = 0.

https://stacks.math.columbia.edu/tag/0121
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(8) Given a filtered object (A,F ) we say
⋂
F iA exists if there exists a biggest

subobject of A contained in all F iA. We say
⋃
F iA exists if there exists a

smallest subobject of A containing all F iA.
(9) The filtration on a filtered object (A,F ) is said to be separated if

⋂
F iA = 0

and exhaustive if
⋃
F iA = A.

By abuse of notation we say that a morphism f : (A,F )→ (B,F ) of filtered objects
is injective if f : A → B is injective in the abelian category A. Similarly we say
f is surjective if f : A → B is surjective in the category A. Being injective (resp.
surjective) is equivalent to being a monomorphism (resp. epimorphism) in Fil(A).
By Lemma 19.2 this is also equivalent to having zero kernel (resp. cokernel).

Lemma 19.2.0122 Let A be an abelian category. The category of filtered objects Fil(A)
has the following properties:

(1) It is an additive category.
(2) It has a zero object.
(3) It has kernels and cokernels, images and coimages.
(4) In general it is not an abelian category.

Proof. It is clear that Fil(A) is additive with direct sum given by (A,F )⊕(B,F ) =
(A⊕B,F ) where F p(A⊕B) = F pA⊕F pB. The kernel of a morphism f : (A,F )→
(B,F ) of filtered objects is the injection Ker(f) ⊂ A where Ker(f) is endowed with
the induced filtration. The cokernel of a morphism f : A → B of filtered objects
is the surjection B → Coker(f) where Coker(f) is endowed with the quotient
filtration. Since all kernels and cokernels exist, so do all coimages and images. See
Example 3.13 for the last statement. □

Definition 19.3.0123 Let A be an abelian category. A morphism f : A→ B of filtered
objects of A is said to be strict if f(F iA) = f(A) ∩ F iB for all i ∈ Z.

This also equivalent to requiring that f−1(F iB) = F iA+ Ker(f) for all i ∈ Z. We
characterize strict morphisms as follows.

Lemma 19.4.05SI Let A be an abelian category. Let f : A → B be a morphism of
filtered objects of A. The following are equivalent

(1) f is strict,
(2) the morphism Coim(f)→ Im(f) of Lemma 3.12 is an isomorphism.

Proof. Note that Coim(f) → Im(f) is an isomorphism of objects of A, and that
part (2) signifies that it is an isomorphism of filtered objects. By the description
of kernels and cokernels in the proof of Lemma 19.2 we see that the filtration
on Coim(f) is the quotient filtration coming from A → Coim(f). Similarly, the
filtration on Im(f) is the induced filtration coming from the injection Im(f) →
B. The definition of strict is exactly that the quotient filtration is the induced
filtration. □

Lemma 19.5.05SK Let A be an abelian category. Let f : A→ B be a strict monomor-
phism of filtered objects. Let g : A → C be a morphism of filtered objects. Then
f ⊕ g : A→ B ⊕ C is a strict monomorphism.

Proof. Clear from the definitions. □

https://stacks.math.columbia.edu/tag/0122
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Lemma 19.6.05SL Let A be an abelian category. Let f : B → A be a strict epimor-
phism of filtered objects. Let g : C → A be a morphism of filtered objects. Then
f ⊕ g : B ⊕ C → A is a strict epimorphism.

Proof. Clear from the definitions. □

Lemma 19.7.0124 Let A be an abelian category. Let (A,F ), (B,F ) be filtered objects.
Let u : A→ B be a morphism of filtered objects. If u is injective then u is strict if
and only if the filtration on A is the induced filtration. If u is surjective then u is
strict if and only if the filtration on B is the quotient filtration.

Proof. This is immediate from the definition. □

Lemma 19.8.05SJ Let A be an abelian category. Let f : A→ B, g : B → C be strict
morphisms of filtered objects.

(1) In general the composition g ◦ f is not strict.
(2) If g is injective, then g ◦ f is strict.
(3) If f is surjective, then g ◦ f is strict.

Proof. Let B a vector space over a field k with basis e1, e2, with the filtration
FnB = B for n < 0, with F 0B = ke1, and FnB = 0 for n > 0. Now take
A = k(e1 +e2) and C = B/ke2 with filtrations induced by B, i.e., such that A→ B
and B → C are strict (Lemma 19.7). Then Fn(A) = A for n < 0 and Fn(A) = 0
for n ≥ 0. Also Fn(C) = C for n ≤ 0 and Fn(C) = 0 for n > 0. So the (nonzero)
composition A→ C is not strict.

Assume g is injective. Then

g(f(F pA)) = g(f(A) ∩ F pB)
= g(f(A)) ∩ g(F p(B))
= (g ◦ f)(A) ∩ (g(B) ∩ F pC)
= (g ◦ f)(A) ∩ F pC.

The first equality as f is strict, the second because g is injective, the third because
g is strict, and the fourth because (g ◦ f)(A) ⊂ g(B).

Assume f is surjective. Then

(g ◦ f)−1(F iC) = f−1(F iB + Ker(g))
= f−1(F iB) + f−1(Ker(g))
= F iA+ Ker(f) + Ker(g ◦ f)
= F iA+ Ker(g ◦ f)

The first equality because g is strict, the second because f is surjective, the third
because f is strict, and the last because Ker(f) ⊂ Ker(g ◦ f). □

The following lemma says that subobjects of a filtered object have a well defined
filtration independent of a choice of writing the object as a cokernel.

Lemma 19.9.0129 Let A be an abelian category. Let (A,F ) be a filtered object of A.
Let X ⊂ Y ⊂ A be subobjects of A. On the object

Y/X = Ker(A/X → A/Y )

https://stacks.math.columbia.edu/tag/05SL
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the quotient filtration coming from the induced filtration on Y and the induced
filtration coming from the quotient filtration on A/X agree. Any of the morphisms
X → Y , X → A, Y → A, Y → A/X, Y → Y/X, Y/X → A/X are strict (with
induced/quotient filtrations).

Proof. The quotient filtration Y/X is given by F p(Y/X) = F pY/(X ∩ F pY ) =
F pY/F pX because F pY = Y ∩ F pA and F pX = X ∩ F pA. The induced filtration
from the injection Y/X → A/X is given by

F p(Y/X) = Y/X ∩ F p(A/X)
= Y/X ∩ (F pA+X)/X
= (Y ∩ F pA)/(X ∩ F pA)
= F pY/F pX.

Hence the first statement of the lemma. The proof of the other cases is similar. □

Lemma 19.10.05SM Let A be an abelian category. Let A,B,C ∈ Fil(A). Let f : A→ B
and g : A→ C be morphisms. Then there exists a pushout

A
f

//

g

��

B

g′

��
C

f ′
// C ⨿A B

in Fil(A). If f is strict, so is f ′.

Proof. Set C ⨿A B equal to Coker((1,−1) : A→ C ⊕B) in Fil(A). This cokernel
exists, by Lemma 19.2. It is a pushout, see Example 5.6. Note that F p(C ⨿A B) is
the image of F pC ⊕ F pB. Hence

(f ′)−1(F p(C ⨿A B)) = g(f−1(F pB))) + F pC

Whence the last statement. □

Lemma 19.11.05SN Let A be an abelian category. Let A,B,C ∈ Fil(A). Let f : B → A
and g : C → A be morphisms. Then there exists a fibre product

B ×A C
g′

//

f ′

��

B

f

��
C

g // A

in Fil(A). If f is strict, so is f ′.

Proof. This lemma is dual to Lemma 19.10. □

Let A be an abelian category. Let (A,F ) be a filtered object of A. We denote
grpF (A) = grp(A) the object F pA/F p+1A of A. This defines an additive functor

grp : Fil(A) −→ A, (A,F ) 7−→ grp(A).

Recall that we have defined the category Gr(A) of graded objects of A in Section
16. For (A,F ) in Fil(A) we may set

gr(A) = the graded object of A whose pth graded piece is grp(A)

https://stacks.math.columbia.edu/tag/05SM
https://stacks.math.columbia.edu/tag/05SN


HOMOLOGICAL ALGEBRA 50

and if A has countable direct sums, then we simply have

gr(A) =
⊕

grp(A)

This defines an additive functor
gr : Fil(A) −→ Gr(A), (A,F ) 7−→ gr(A).

Lemma 19.12.05SP Let A be an abelian category.
(1) Let A be a filtered object and X ⊂ A. Then for each p the sequence

0→ grp(X)→ grp(A)→ grp(A/X)→ 0
is exact (with induced filtration on X and quotient filtration on A/X).

(2) Let f : A→ B be a morphism of filtered objects of A. Then for each p the
sequences

0→ grp(Ker(f))→ grp(A)→ grp(Coim(f))→ 0
and

0→ grp(Im(f))→ grp(B)→ grp(Coker(f))→ 0
are exact.

Proof. We have F p+1X = X ∩ F p+1A, hence map grp(X) → grp(A) is injective.
Dually the map grp(A) → grp(A/X) is surjective. The kernel of F pA/F p+1A →
A/X+F p+1A is clearly F p+1A+X∩F pA/F p+1A = F pX/F p+1X hence exactness
in the middle. The two short exact sequence of (2) are special cases of the short
exact sequence of (1). □

Lemma 19.13.0127 Let A be an abelian category. Let f : A → B be a morphism of
finite filtered objects of A. The following are equivalent

(1) f is strict,
(2) the morphism Coim(f)→ Im(f) is an isomorphism,
(3) gr(Coim(f))→ gr(Im(f)) is an isomorphism,
(4) the sequence gr(Ker(f))→ gr(A)→ gr(B) is exact,
(5) the sequence gr(A)→ gr(B)→ gr(Coker(f)) is exact, and
(6) the sequence

0→ gr(Ker(f))→ gr(A)→ gr(B)→ gr(Coker(f))→ 0
is exact.

Proof. The equivalence of (1) and (2) is Lemma 19.4. By Lemma 19.12 we see that
(4), (5), (6) imply (3) and that (3) implies (4), (5), (6). Hence it suffices to show that
(3) implies (2). Thus we have to show that if f : A→ B is an injective and surjective
map of finite filtered objects which induces and isomorphism gr(A)→ gr(B), then
f induces an isomorphism of filtered objects. In other words, we have to show
that f(F pA) = F pB for all p. As the filtrations are finite we may prove this by
descending induction on p. Suppose that f(F p+1A) = F p+1B. Then commutative
diagram

0 // F p+1A //

f

��

F pA //

f

��

grp(A) //

grp(f)
��

0

0 // F p+1B // F pB // grp(B) // 0
and the five lemma imply that f(F pA) = F pB. □

https://stacks.math.columbia.edu/tag/05SP
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Lemma 19.14.0128 Let A be an abelian category. Let A → B → C be a complex of
filtered objects of A. Assume α : A → B and β : B → C are strict morphisms of
filtered objects. Then gr(Ker(β)/ Im(α)) = Ker(gr(β))/ Im(gr(α))).

Proof. This follows formally from Lemma 19.12 and the fact that Coim(α) ∼=
Im(α) and Coim(β) ∼= Im(β) by Lemma 19.4. □

Lemma 19.15.05QH Let A be an abelian category. Let A → B → C be a complex
of filtered objects of A. Assume A,B,C have finite filtrations and that gr(A) →
gr(B)→ gr(C) is exact. Then

(1) for each p ∈ Z the sequence grp(A)→ grp(B)→ grp(C) is exact,
(2) for each p ∈ Z the sequence F p(A)→ F p(B)→ F p(C) is exact,
(3) for each p ∈ Z the sequence A/F p(A)→ B/F p(B)→ C/F p(C) is exact,
(4) the maps A→ B and B → C are strict, and
(5) A→ B → C is exact (as a sequence in A).

Proof. Part (1) is immediate from the definitions. We will prove (3) by induction
on the length of the filtrations. If each of A, B, C has only one nonzero graded part,
then (3) holds as gr(A) = A, etc. Let n be the largest integer such that at least
one of FnA,FnB,FnC is nonzero. Set A′ = A/FnA, B′ = B/FnB, C ′ = C/FnC
with induced filtrations. Note that gr(A) = FnA ⊕ gr(A′) and similarly for B
and C. The induction hypothesis applies to A′ → B′ → C ′, which implies that
A/F p(A) → B/F p(B) → C/F p(C) is exact for p ≥ n. To conclude the same for
p = n+ 1, i.e., to prove that A→ B → C is exact we use the commutative diagram

0 // FnA //

��

A //

��

A′ //

��

0

0 // FnB //

��

B //

��

B′ //

��

0

0 // FnC // C // C ′ // 0
whose rows are short exact sequences of objects of A. The proof of (2) is dual. Of
course (5) follows from (2).

To prove (4) denote f : A → B and g : B → C the given morphisms. We know
that f(F p(A)) = Ker(F p(B) → F p(C)) by (2) and f(A) = Ker(g) by (5). Hence
f(F p(A)) = Ker(F p(B)→ F p(C)) = Ker(g)∩F p(B) = f(A)∩F p(B) which proves
that f is strict. The proof that g is strict is dual to this. □

20. Spectral sequences

011M A nice discussion of spectral sequences may be found in [Eis95]. See also [McC01],
[Lan02], etc.

Definition 20.1.011N Let A be an abelian category.
(1) A spectral sequence in A is given by a system (Er, dr)r≥1 where each Er is

an object of A, each dr : Er → Er is a morphism such that dr ◦ dr = 0 and
Er+1 = Ker(dr)/ Im(dr) for r ≥ 1.

(2) A morphism of spectral sequences f : (Er, dr)r≥1 → (E′
r, d

′
r)r≥1 is given by

a family of morphisms fr : Er → E′
r such that fr ◦ dr = d′

r ◦ fr and such

https://stacks.math.columbia.edu/tag/0128
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that fr+1 is the morphism induced by fr via the identifications Er+1 =
Ker(dr)/ Im(dr) and E′

r+1 = Ker(d′
r)/ Im(d′

r).

We will sometimes loosen this definition somewhat and allow Er+1 to be an object
with a given isomorphism Er+1 → Ker(dr)/ Im(dr). In addition we sometimes have
a system (Er, dr)r≥r0 for some r0 ∈ Z satisfying the properties of the definition
above for indices ≥ r0. We will also call this a spectral sequence since by a simple
renumbering it falls under the definition anyway. In fact, the cases r0 = 0 and
r0 = −1 can be found in the literature.

Given a spectral sequence (Er, dr)r≥1 we define

0 = B1 ⊂ B2 ⊂ . . . ⊂ Br ⊂ . . . ⊂ Zr ⊂ . . . ⊂ Z2 ⊂ Z1 = E1

by the following simple procedure. Set B2 = Im(d1) and Z2 = Ker(d1). Then it is
clear that d2 : Z2/B2 → Z2/B2. Hence we can define B3 as the unique subobject
of E1 containing B2 such that B3/B2 is the image of d2. Similarly we can define
Z3 as the unique subobject of E1 containing B2 such that Z3/B2 is the kernel of
d2. And so on and so forth. In particular we have

Er = Zr/Br

for all r ≥ 1. In case the spectral sequence starts at r = r0 then we can similarly
construct Bi, Zi as subobjects in Er0 . In fact, in the literature one sometimes finds
the notation

0 = Br(Er) ⊂ Br+1(Er) ⊂ Br+2(Er) ⊂ . . . ⊂ Zr+2(Er) ⊂ Zr+1(Er) ⊂ Zr(Er) = Er

to denote the filtration described above but starting with Er.

Definition 20.2.011O Let A be an abelian category. Let (Er, dr)r≥1 be a spectral
sequence.

(1) If the subobjects Z∞ =
⋂
Zr and B∞ =

⋃
Br of E1 exist then we define

the limit3 of the spectral sequence to be the object E∞ = Z∞/B∞.
(2) We say that the spectral sequence degenerates at Er if the differentials

dr, dr+1, . . . are all zero.

Note that if the spectral sequence degenerates at Er, then we have Er = Er+1 =
. . . = E∞ (and the limit exists of course). Also, almost any abelian category we
will encounter has countable sums and intersections.

Remark 20.3 (Variant).0AMI It is often the case that the terms of a spectral sequence
have additional structure, for example a grading or a bigrading. To accomodate
this (and to get around certain technical issues) we introduce the following notion.
Let A be an abelian category. Let (Tr)r≥1 be a sequence of translation or shift
functors, i.e., Tr : A → A is an isomorphism of categories. In this setting a spectral
sequence is given by a system (Er, dr)r≥1 where each Er is an object of A, each
dr : Er → TrEr is a morphism such that Trdr ◦ dr = 0 so that

. . . // T−1
r Er

T−1
r dr // Er

dr // TrEr
Trdr // T 2

rEr // . . .

3This notation is not universally accepted. In some references an additional pair of subobjects
Z∞ and B∞ of E1 such that 0 = B1 ⊂ B2 ⊂ . . . ⊂ B∞ ⊂ Z∞ ⊂ . . . ⊂ Z2 ⊂ Z1 = E1 is part of
the data comprising a spectral sequence!

https://stacks.math.columbia.edu/tag/011O
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is a complex and Er+1 = Ker(dr)/ Im(T−1
r dr) for r ≥ 1. It is clear what a morphism

of spectral sequences means in this setting. In this setting we can still define

0 = B1 ⊂ B2 ⊂ . . . ⊂ Br ⊂ . . . ⊂ Zr ⊂ . . . ⊂ Z2 ⊂ Z1 = E1

and Z∞ and B∞ (if they exist) as above.

21. Spectral sequences: exact couples

011P
Definition 21.1.011Q Let A be an abelian category.

(1) An exact couple is a datum (A,E, α, f, g) where A, E are objects of A and
α, f , g are morphisms as in the following diagram

A
α

// A

g
��

E

f

__

with the property that the kernel of each arrow is the image of its prede-
cessor. So Ker(α) = Im(f), Ker(f) = Im(g), and Ker(g) = Im(α).

(2) A morphism of exact couples t : (A,E, α, f, g)→ (A′, E′, α′, f ′, g′) is given
by morphisms tA : A → A′ and tE : E → E′ such that α′ ◦ tA = tA ◦ α,
f ′ ◦ tE = tA ◦ f , and g′ ◦ tA = tE ◦ g.

Lemma 21.2.011R Let (A,E, α, f, g) be an exact couple in an abelian category A. Set
(1) d = g ◦ f : E → E so that d ◦ d = 0,
(2) E′ = Ker(d)/ Im(d),
(3) A′ = Im(α),
(4) α′ : A′ → A′ induced by α,
(5) f ′ : E′ → A′ induced by f ,
(6) g′ : A′ → E′ induced by “g ◦ α−1”.

Then we have
(1) Ker(d) = f−1(Ker(g)) = f−1(Im(α)),
(2) Im(d) = g(Im(f)) = g(Ker(α)),
(3) (A′, E′, α′, f ′, g′) is an exact couple.

Proof. Omitted. □

Hence it is clear that given an exact couple (A,E, α, f, g) we get a spectral sequence
by setting E1 = E, d1 = d, E2 = E′, d2 = d′ = g′ ◦ f ′, E3 = E′′, d3 = d′′ = g′′ ◦ f ′′,
and so on.

Definition 21.3.011S Let A be an abelian category. Let (A,E, α, f, g) be an exact
couple. The spectral sequence associated to the exact couple is the spectral sequence
(Er, dr)r≥1 with E1 = E, d1 = d, E2 = E′, d2 = d′ = g′ ◦ f ′, E3 = E′′, d3 = d′′ =
g′′ ◦ f ′′, and so on.

Lemma 21.4.011T Let A be an abelian category. Let (A,E, α, f, g) be an exact couple.
Let (Er, dr)r≥1 be the spectral sequence associated to the exact couple. In this case
we have

0 = B1 ⊂ . . . ⊂ Br+1 = g(Ker(αr)) ⊂ . . . ⊂ Zr+1 = f−1(Im(αr)) ⊂ . . . ⊂ Z1 = E

https://stacks.math.columbia.edu/tag/011Q
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and the map dr+1 : Er+1 → Er+1 is described by the following rule: For any (test)
object T of A and any elements x : T → Zr+1 and y : T → A such that f ◦x = αr◦y
we have

dr+1 ◦ x = g ◦ y
where x : T → Er+1 is the induced morphism.

Proof. Omitted. □

Note that in the situation of the lemma we obviously have

B∞ = g
(⋃

r
Ker(αr)

)
⊂ Z∞ = f−1

(⋂
r

Im(αr)
)

provided
⋃

Ker(αr) and
⋂

Im(αr) exist. This produces as limit E∞ = Z∞/B∞,
see Definition 20.2.

Remark 21.5 (Variant).0AMJ Let A be an abelian category. Let S, T : A → A be shift
functors, i.e., isomorphisms of categories. We will indicate the n-fold compositions
by SnA and TnA for A ∈ Ob(A) and n ∈ Z. In this situation an exact couple is a
datum (A,E, α, f, g) where A, E are objects of A and α : A→ T−1A, f : E → A,
g : A→ SE are morphisms such that

TE
Tf // TA

Tα // A
g // SE

Sf // SA

is an exact complex. Let’s visualize this as follows

TA
Tα

// A

g
~~

α
// T−1A

T−1gyy
TE

Tf

aa

SE E

f

__

T−1SE

We set d = g ◦ f : E → SE. Then d ◦ S−1d = g ◦ f ◦ S−1g ◦ S−1f = 0 because
f ◦ S−1g = 0. Set E′ = Ker(d)/ Im(S−1d). Set A′ = Im(Tα). Let α′ : A′ → T−1A′

induced by α. Let f ′ : E′ → A′ be induced by f which works because f(Ker(d)) ⊂
Ker(g) = Im(Tα). Finally, let g′ : A′ → TSE′ induced by “Tg ◦ (Tα)−1”4.

In exactly the same way as above we find
(1) Ker(d) = f−1(Ker(g)) = f−1(Im(Tα)),
(2) Im(d) = g(Im(f)) = g(Ker(α)),
(3) (A′, E′, α′, f ′, g′) is an exact couple for the shift functors TS and T .

We obtain a spectral sequence (as in Remark 20.3) with E1 = E, E2 = E′, etc,
with dr : Er → T r−1SEr for all r ≥ 1. Lemma 21.4 tells us that

SBr+1 = g(Ker(T−r+1α ◦ . . . ◦ T−1α ◦ α))

and
Zr+1 = f−1(Im(Tα ◦ T 2α ◦ . . . ◦ T rα))

in this situation. The description of the map dr+1 is similar to that given in the
lemma. (It may be easier to use these explicit descriptions to prove one gets a
spectral sequence from such an exact couple.)

4This works because T SE′ = Ker(T Sd)/ Im(T d) and T g(Ker(T α)) = T g(Im(T f)) = Im(T (d))
and T S(d)(Im(T g)) = Im(T Sg ◦ T Sf ◦ T g) = 0.

https://stacks.math.columbia.edu/tag/0AMJ
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22. Spectral sequences: differential objects

011U
Definition 22.1.011V Let A be an abelian category. A differential object of A is a pair
(A, d) consisting of an object A of A endowed with a selfmap d such that d◦d = 0. A
morphism of differential objects (A, d)→ (B, d) is given by a morphism α : A→ B
such that d ◦ α = α ◦ d.

Lemma 22.2.011W Let A be an abelian category. The category of differential objects
of A is abelian.

Proof. Omitted. □

Definition 22.3.011X For a differential object (A, d) we denote
H(A, d) = Ker(d)/ Im(d)

its homology.

Lemma 22.4.011Y Let A be an abelian category. Let 0→ (A, d)→ (B, d)→ (C, d)→
0 be a short exact sequence of differential objects. Then we get an exact homology
sequence

. . .→ H(C, d)→ H(A, d)→ H(B, d)→ H(C, d)→ . . .

Proof. Apply Lemma 13.12 to the short exact sequence of complexes
0 → A → B → C → 0

↓ ↓ ↓
0 → A → B → C → 0

↓ ↓ ↓
0 → A → B → C → 0

where the vertical arrows are d. □

We come to an important example of a spectral sequence. Let A be an abelian
category. Let (A, d) be a differential object of A. Let α : (A, d) → (A, d) be an
endomorphism of this differential object. If we assume α injective, then we get a
short exact sequence

0→ (A, d)→ (A, d)→ (A/αA, d)→ 0
of differential objects. By the Lemma 22.4 we get an exact couple

H(A, d)
α

// H(A, d)

g
xx

H(A/αA, d)
f

ff

where g is the canonical map and f is the map defined in the snake lemma. Thus we
get an associated spectral sequence! Since in this case we have E1 = H(A/αA, d)
we see that it makes sense to define E0 = A/αA and d0 = d. In other words, we
start the spectral sequence with r = 0. According to our conventions in Section 20
we define a sequence of subobjects

0 = B0 ⊂ . . . ⊂ Br ⊂ . . . ⊂ Zr ⊂ . . . ⊂ Z0 = E0

with the property that Er = Zr/Br. Namely we have for r ≥ 1 that
(1) Br is the image of (αr−1)−1(dA) under the natural map A→ A/αA,

https://stacks.math.columbia.edu/tag/011V
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(2) Zr is the image of d−1(αrA) under the natural map A→ A/αA, and
(3) dr : Er → Er is given as follows: given an element z ∈ Zr choose an element

y ∈ A such that d(z) = αr(y). Then dr(z +Br + αA) = y +Br + αA.
Warning: It is not necessarily the case that αA ⊂ (αr−1)−1(dA), nor αA ⊂
d−1(αrA). It is true that (αr−1)−1(dA) ⊂ d−1(αrA). We have

Er = d−1(αrA) + αA

(αr−1)−1(dA) + αA
.

It is not hard to verify directly that (1) – (3) give a spectral sequence.

Definition 22.5.011Z Let A be an abelian category. Let (A, d) be a differential object
of A. Let α : A → A be an injective selfmap of A which commutes with d.
The spectral sequence associated to (A, d, α) is the spectral sequence (Er, dr)r≥0
described above.

Remark 22.6 (Variant).0AMK Let A be an abelian category and let S, T : A →
A be shift functors, i.e., isomorphisms of categories. Assume that TS = ST as
functors. Consider pairs (A, d) consisting of an object A of A and a morphism
d : A → SA such that d ◦ S−1d = 0. The category of these objects is abelian. We
define H(A, d) = Ker(d)/ Im(S−1d) and we observe that H(SA, Sd) = SH(A, d)
(canonical isomorphism). Given a short exact sequence

0→ (A, d)→ (B, d)→ (C, d)→ 0
we obtain a long exact homology sequence

. . .→ S−1H(C, d)→ H(A, d)→ H(B, d)→ H(C, d)→ SH(A, d)→ . . .

(note the shifts in the boundary maps). Since ST = TS the functor T defines a shift
functor on pairs by setting T (A, d) = (TA, Td). Next, let α : (A, d) → T−1(A, d)
be injective with cokernel (Q, d). Then we get an exact couple as in Remark 21.5
with shift functors TS and T given by

(H(A, d), S−1H(Q, d), α, f, g)
where α : H(A, d) → T−1H(A, d) is induced by α, the map f : S−1H(Q, d) →
H(A, d) is the boundary map and g : H(A, d) → TH(Q, d) = TS(S−1H(Q, d))
is induced by the quotient map A → TQ. Thus we get a spectral sequence as
above with E1 = S−1H(Q, d) and differentials dr : Er → T rSEr. As above we set
E0 = S−1Q and d0 : E0 → SE0 given by S−1d : S−1Q → Q. If according to our
conventions we define Br ⊂ Zr ⊂ E0, then we have for r ≥ 1 that

(1) SBr is the image of
(T−r+1α ◦ . . . ◦ T−1α)−1 Im(T−rS−1d)

under the natural map T−1A→ Q,
(2) Zr is the image of

(S−1T−1d)−1 Im(α ◦ . . . ◦ T r−1α)
under the natural map S−1T−1A→ S−1Q.

The differentials can be described as follows: if x ∈ Zr, then pick x′ ∈ S−1T−1A
mapping to x. Then S−1T−1d(x′) is (α ◦ . . . ◦ T r−1α)(y) for some y ∈ T r−1A.
Then dr(x) ∈ T rSEr is represented by the class of the image of y in T rSE0 = T rQ
modulo T rSBr.

https://stacks.math.columbia.edu/tag/011Z
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23. Spectral sequences: filtered differential objects

012A We can build a spectral sequence starting with a filtered differential object.

Definition 23.1.012B Let A be an abelian category. A filtered differential object
(K,F, d) is a filtered object (K,F ) of A endowed with an endomorphism d :
(K,F )→ (K,F ) whose square is zero: d ◦ d = 0.

To describe the spectral sequence associated to such an object we assume, for
the moment, that A is an abelian category which has countable direct sums and
countable direct sums are exact (this is not automatic, see Remark 16.3). Let
(K,F, d) be a filtered differential object of A. Note that each FnK is a differential
object by itself. Consider the object A =

⊕
FnK and endow it with a differential d

by using d on each summand. Then (A, d) is a differential object of A which comes
equipped with a grading. Consider the map

α : A→ A

which is given by the inclusions FnK → Fn−1K. This is clearly an injective
morphism of differential objects α : (A, d) → (A, d). Hence, by Definition 22.5 we
get a spectral sequence. We will call this the spectral sequence associated to the
filtered differential object (K,F, d).

Let us figure out the terms of this spectral sequence. First, note that A/αA = gr(K)
endowed with its differential d = gr(d). Hence we see that

E0 = gr(K), d0 = gr(d).

Hence the homology of the graded differential object gr(K) is the next term:

E1 = H(gr(K), gr(d)).

In addition we see that E0 is a graded object of A and that d0 is compatible with
the grading. Hence clearly E1 is a graded object as well. But it turns out that the
differential d1 does not preserve this grading; instead it shifts the degree by 1.

To work this out precisely, we define

Zpr = F pK ∩ d−1(F p+rK) + F p+1K

F p+1K

and

Bpr = F pK ∩ d(F p−r+1K) + F p+1K

F p+1K
.

This notation, although quite natural, seems to be different from the notation in
most places in the literature. Perhaps it does not matter, since the literature does
not seem to have a consistent choice of notation either. With these choices we see
that Br ⊂ E0, resp. Zr ⊂ E0 (as defined in Section 22) is equal to

⊕
pB

p
r , resp.⊕

p Z
p
r . Hence if we define

Epr = Zpr /B
p
r

for r ≥ 0 and p ∈ Z, then we have Er =
⊕

pE
p
r . We can define a differential

dpr : Epr → Ep+r
r by the rule

z + F p+1K 7−→ dz + F p+r+1K

where z ∈ F pK ∩ d−1(F p+rK).

https://stacks.math.columbia.edu/tag/012B
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Lemma 23.2.012C Let A be an abelian category. Let (K,F, d) be a filtered differential
object of A. There is a spectral sequence (Er, dr)r≥0 in Gr(A) associated to (K,F, d)
such that dr : Er → Er[r] for all r and such that the graded pieces Epr and maps
dpr : Epr → Ep+r

r are as given above. Furthermore, Ep0 = grpK, dp0 = grp(d), and
Ep1 = H(grpK, d).

Proof. If A has countable direct sums and if countable direct sums are exact, then
this follows from the discussion above. In general, we proceed as follows; we strongly
suggest the reader skip this proof. Consider the object A = (F p+1K) of Gr(A), i.e.,
we put F p+1K in degree p (the funny shift in numbering to get numbering correct
later on). We endow it with a differential d by using d on each component. Then
(A, d) is a differential object of Gr(A). Consider the map

α : A→ A[−1]
which is given in degree p by the inclusions F p+1A → F pA. This is clearly an
injective morphism of differential objects α : (A, d) → (A, d)[−1]. Hence, we can
apply Remark 22.6 with S = id and T = [1]. The corresponding spectral sequence
(Er, dr)r≥0 in Gr(A) is the spectral sequence we are looking for. Let us unwind the
definitions a bit. First of all we have Er = (Epr ) is an object of Gr(A). Then, since
T rS = [r] we have dr : Er → Er[r] which means that dpr : Epr → Ep+r

r .
To see that the description of the graded pieces hold, we argue as above. Namely,
first we have E0 = Coker(α : A → A[−1]) and by our choice of numbering above
this gives Ep0 = grpK. The first differential is given by dp0 = grpd : Ep0 → Ep0 . Next,
the description of the boundaries Br and the cocycles Zr in Remark 22.6 translates
into a straightforward manner into the formulae for Zpr and Bpr given above. □

Lemma 23.3.012D Let A be an abelian category. Let (K,F, d) be a filtered differential
object of A. The spectral sequence (Er, dr)r≥0 associated to (K,F, d) has

dp1 : Ep1 = H(grpK) −→ H(grp+1K) = Ep+1
1

equal to the boundary map in homology associated to the short exact sequence of
differential objects

0→ grp+1K → F pK/F p+2K → grpK → 0.

Proof. This is clear from the formula for the differential dp1 given just above Lemma
23.2. □

Definition 23.4.012E Let A be an abelian category. Let (K,F, d) be a filtered dif-
ferential object of A. The induced filtration on H(K, d) is the filtration defined by
F pH(K, d) = Im(H(F pK, d)→ H(K, d)).

Writing out what this means we see that

F pH(K, d) = Ker(d) ∩ F pK + Im(d)
Im(d)

and hence we see that

grpH(K) = Ker(d) ∩ F pK + Im(d)
Ker(d) ∩ F p+1K + Im(d) = Ker(d) ∩ F pK

Ker(d) ∩ F p+1K + Im(d) ∩ F pK

Lemma 23.5.012F Let A be an abelian category. Let (K,F, d) be a filtered differential
object of A. If Zp∞ and Bp∞ exist (see proof), then

https://stacks.math.columbia.edu/tag/012C
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(1) the limit E∞ exists and is graded having Ep∞ = Zp∞/B
p
∞ in degree p, and

(2) the associated graded gr(H(K)) of the cohomology of K is a graded subquo-
tient of the graded limit object E∞.

Proof. The objects Z∞, B∞, and the limit E∞ = Z∞/B∞ of Definition 20.2 are
objects of Gr(A) by our construction of the spectral sequence in the proof of Lemma
23.2. Since Zr =

⊕
Zpr and Br =

⊕
Bpr , if we assume that

Zp∞ =
⋂

r
Zpr =

⋂
r(F pK ∩ d−1(F p+rK) + F p+1K)

F p+1K

and

Bp∞ =
⋃

r
Bpr =

⋃
r(F pK ∩ d(F p−r+1K) + F p+1K)

F p+1K
.

exist, then Z∞ and B∞ exist with degree p parts Zp∞ and Bp∞ (follows from an
elementary argument about unions and intersections of graded subobjects). Thus

Ep∞ =
⋂
r(F pK ∩ d−1(F p+rK) + F p+1K)⋃
r(F pK ∩ d(F p−r+1K) + F p+1K) .

where the top and bottom exist. We have

(23.5.1)012G Ker(d) ∩ F pK + F p+1K ⊂
⋂

r

(
F pK ∩ d−1(F p+rK) + F p+1K

)
and

(23.5.2)012H
⋃

r

(
F pK ∩ d(F p−r+1K) + F p+1K

)
⊂ Im(d) ∩ F pK + F p+1K.

Thus a subquotient of Ep∞ is

Ker(d) ∩ F pK + F p+1K

Im(d) ∩ F pK + F p+1K
= Ker(d) ∩ F pK

Im(d) ∩ F pK + Ker(d) ∩ F p+1K

Comparing with the formula given for grpH(K) in the discussion following Defini-
tion 23.4 we conclude. □

Definition 23.6.012I Let A be an abelian category. Let (K,F, d) be a filtered differ-
ential object of A. We say the spectral sequence associated to (K,F, d)

(1) weakly converges to H(K) if grH(K) = E∞ via Lemma 23.5,
(2) abuts to H(K) if it weakly converges to H(K) and we have

⋂
F pH(K) = 0

and
⋃
F pH(K) = H(K),

Unfortunately, it seems hard to find a consistent terminology for these notions in
the literature.

Lemma 23.7.012J Let A be an abelian category. Let (K,F, d) be a filtered differential
object of A. The associated spectral sequence

(1) weakly converges to H(K) if and only if for every p ∈ Z we have equality
in equations (23.5.2) and (23.5.1),

(2) abuts to H(K) if and only if it weakly converges to H(K) and
⋂
p(Ker(d)∩

F pK + Im(d)) = Im(d) and
⋃
p(Ker(d) ∩ F pK + Im(d)) = Ker(d).

Proof. Immediate from the discussions above. □

https://stacks.math.columbia.edu/tag/012I
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24. Spectral sequences: filtered complexes

012K
Definition 24.1.012L Let A be an abelian category. A filtered complex K• of A is a
complex of Fil(A) (see Definition 19.1).

We will denote the filtration on the objects by F . Thus F pKn denotes the pth step
in the filtration of the nth term of the complex. Note that each F pK• is a complex
of A. Hence we could also have defined a filtered complex as a filtered object in
the (abelian) category of complexes of A. In particular grK• is a graded object of
the category of complexes of A.

To describe the spectral sequence associated to such an object we assume, for
the moment, that A is an abelian category which has countable direct sums and
countable direct sums are exact (this is not automatic, see Remark 16.3). Let
us denote d the differential of K. Forgetting the grading we can think of

⊕
Kn

as a filtered differential object of A. Hence according to Section 23 we obtain
a spectral sequence (Er, dr)r≥0. In this section we work out the terms of this
spectral sequence, and we endow the terms of this spectral sequence with additional
structure coming from the grading of K.

First we point out that Ep0 = grpK• is a complex and hence is graded. Thus E0 is
bigraded in a natural way. It is customary to use the bigrading

E0 =
⊕

p,q
Ep,q0 , Ep,q0 = grpKp+q

The idea is that p+ q should be thought of as the total degree of the (co)homology
classes. Also, p is called the filtration degree, and q is called the complementary
degree. The differential d0 is compatible with this bigrading in the following way

d0 =
⊕

dp,q0 , dp,q0 : Ep,q0 → Ep,q+1
0 .

Namely, dp0 is just the differential on the complex grpK• (which occurs as grpE0
just shifted a bit).

To go further we identify the objects Bpr and Zpr introduced in Section 23 as graded
objects and we work out the corresponding decompositions of the differentials. We
do this in a completely straightforward manner, but again we warn the reader that
our notation is not the same as notation found elsewhere. We define

Zp,qr = F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q

F p+1Kp+q

and

Bp,qr = F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q

F p+1Kp+q

and of course Ep,qr = Zp,qr /Bp,qr . With these definitions it is completely clear that
Zpr =

⊕
q Z

p,q
r , Bpr =

⊕
q B

p,q
r , and Epr =

⊕
q E

p,q
r . Moreover, we have

0 ⊂ . . . ⊂ Bp,qr ⊂ . . . ⊂ Zp,qr ⊂ . . . ⊂ Ep,q0

Also, the map dpr decomposes as the direct sum of the maps

dp,qr : Ep,qr −→ Ep+r,q−r+1
r , z + F p+1Kp+q 7→ dz + F p+r+1Kp+q+1

where z ∈ F pKp+q ∩ d−1(F p+rKp+q+1).

https://stacks.math.columbia.edu/tag/012L
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Lemma 24.2.012M Let A be an abelian category. Let (K•, F ) be a filtered complex of
A. There is a spectral sequence (Er, dr)r≥0 in the category of bigraded objects of A
associated to (K•, F ) such that dr has bidegree (r,−r+ 1) and such that Er has bi-
graded pieces Ep,qr and maps dp,qr : Ep,qr → Ep+r,q−r+1

r as given above. Furthermore,
we have Ep,q0 = grp(Kp+q), dp,q0 = grp(dp+q), and Ep,q1 = Hp+q(grp(K•)).

Proof. If A has countable direct sums and if countable direct sums are exact, then
this follows from the discussion above. In general, we proceed as follows; we strongly
suggest the reader skip this proof. Consider the bigraded object A = (F p+1Kp+1+q)
of A, i.e., we put F p+1Kp+1+q in degree (p, q) (the funny shift in numbering to get
numbering correct later on). We endow it with a differential d : A → A[0, 1] by
using d on each component. Then (A, d) is a differential bigraded object. Consider
the map

α : A→ A[−1, 1]
which is given in degree (p, q) by the inclusion F p+1Kp+1+q → F pKp+1+q. This
is an injective morphism of differential objects α : (A, d) → (A, d)[−1, 1]. Hence,
we can apply Remark 22.6 with S = [0, 1] and T = [1,−1]. The corresponding
spectral sequence (Er, dr)r≥0 of bigraded objects is the spectral sequence we are
looking for. Let us unwind the definitions a bit. First of all we have Er = (Ep,qr ).
Then, since T rS = [r,−r + 1] we have dr : Er → Er[r,−r + 1] which means that
dp,qr : Ep,qr → Ep+r,q−r+1

r .
To see that the description of the graded pieces hold, we argue as above. Namely,
first we have
E0 = Coker(α : A→ A[−1, 1])[0,−1] = Coker(α[0,−1] : A[0,−1]→ A[−1, 0])

and by our choice of numbering above this gives
Ep,q0 = Coker(F p+1Kp+q → F pKp+q) = grpKp+q

The first differential is given by dp,q0 = grpdp+q : Ep,q0 → Ep,q+1
0 . Next, the de-

scription of the boundaries Br and the cocycles Zr in Remark 22.6 translates into
a straightforward manner into the formulae for Zp,qr and Bp,qr given above. □

Lemma 24.3.012N Let A be an abelian category. Let (K•, F ) be a filtered complex of
A. Assume A has countable direct sums. Let (Er, dr)r≥0 be the spectral sequence
associated to (K•, F ).

(1) The map
dp,q1 : Ep,q1 = Hp+q(grp(K•)) −→ Ep+1,q

1 = Hp+q+1(grp+1(K•))
is equal to the boundary map in cohomology associated to the short exact
sequence of complexes

0→ grp+1(K•)→ F pK•/F p+2K• → grp(K•)→ 0.
(2) Assume that d(F pK) ⊂ F p+1K for all p ∈ Z. Then d induces the zero

differential on grp(K•) and hence Ep,q1 = grp(K•)p+q. Furthermore, in this
case

dp,q1 : Ep,q1 = grp(K•)p+q −→ Ep+1,q
1 = grp+1(K•)p+q+1

is the morphism induced by d.

Proof. This is clear from the formula given for the differential dp,q1 just above
Lemma 24.2. □

https://stacks.math.columbia.edu/tag/012M
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Lemma 24.4.012O Let A be an abelian category. Let α : (K•, F ) → (L•, F ) be a
morphism of filtered complexes of A. Let (Er(K), dr)r≥0, resp. (Er(L), dr)r≥0 be
the spectral sequence associated to (K•, F ), resp. (L•, F ). The morphism α induces
a canonical morphism of spectral sequences {αr : Er(K) → Er(L)}r≥0 compatible
with the bigradings.

Proof. Obvious from the explicit representation of the terms of the spectral se-
quences. □

Definition 24.5.012P Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. The induced filtration on Hn(K•) is the filtration defined by F pHn(K•) =
Im(Hn(F pK•)→ Hn(K•)).

Writing out what this means we see that

(24.5.1)012R F pHn(K•, d) = Ker(d) ∩ F pKn + Im(d) ∩Kn

Im(d) ∩Kn

and hence we see that

(24.5.2)0BDT grpHn(K•) = Ker(d) ∩ F pKn

Ker(d) ∩ F p+1Kn + Im(d) ∩ F pKn

(one intermediate step omitted).

Lemma 24.6.012Q Let A be an abelian category. Let (K•, F ) be a filtered complex of
A. If Zp,q∞ and Bp,q∞ exist (see proof), then

(1) the limit E∞ exists and is a bigraded object having Ep,q∞ = Zp,q∞ /Bp,q∞ in
bidegree (p, q),

(2) the pth graded part grpHn(K•) of the nth cohomology object of K• is a
subquotient of Ep,n−p

∞ .

Proof. The objects Z∞, B∞, and the limit E∞ = Z∞/B∞ of Definition 20.2 are
bigraded objects of A by our construction of the spectral sequence in Lemma 24.2.
Since Zr =

⊕
Zp,qr and Br =

⊕
Bp,qr , if we assume that

Zp,q∞ =
⋂

r
Zp,qr =

⋂
r

F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q

F p+1Kp+q

and
Bp,q∞ =

⋃
r
Bp,qr =

⋃
r

F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q

F p+1Kp+q

exist, then Z∞ and B∞ exist with bidegree (p, q) parts Zp,q∞ and Bp,q∞ (follows from
an elementary argument about unions and intersections of bigraded objects). Thus

Ep,q∞ =
⋂
r(F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q)⋃
r(F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q) .

where the top and the bottom exist. With n = p+ q we have

(24.6.1)012S Ker(d) ∩ F pKn + F p+1Kn ⊂
⋂

r

(
F pKn ∩ d−1(F p+rKn+1) + F p+1Kn

)
and
(24.6.2)012T

⋃
r

(
F pKn ∩ d(F p−r+1Kn−1) + F p+1Kn

)
⊂ Im(d) ∩ F pKn + F p+1Kn.

Thus a subquotient of Ep,q∞ is
Ker(d) ∩ F pKn + F p+1Kn

Im(d) ∩ F pKn + F p+1Kn
= Ker(d) ∩ F pKn

Im(d) ∩ F pKn + Ker(d) ∩ F p+1Kn

https://stacks.math.columbia.edu/tag/012O
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Comparing with (24.5.2) we conclude. □

Definition 24.7.0BDU Let A be an abelian category. Let (Er, dr)r≥r0 be a spectral
sequence of bigraded objects of A with dr of bidegree (r,−r + 1). We say such a
spectral sequence is

(1) regular if for all p, q ∈ Z there is a b = b(p, q) such that the maps dp,qr :
Ep,qr → Ep+r,q−r+1

r are zero for r ≥ b,
(2) coregular if for all p, q ∈ Z there is a b = b(p, q) such that the maps

dp−r,q+r−1
r : Ep−r,q+r−1

r → Ep,qr are zero for r ≥ b,
(3) bounded if for all n there are only a finite number of nonzero Ep,n−p

r0
,

(4) bounded below if for all n there is a b = b(n) such that Ep,n−p
r0

= 0 for p ≥ b.
(5) bounded above if for all n there is a b = b(n) such that Ep,n−p

r0
= 0 for p ≤ b.

Bounded below means that if we look at Ep,qr on the line p + q = n (whose slope
is −1) we obtain zeros as (p, q) moves down and to the right. As mentioned above
there is no consistent terminology regarding these notions in the literature.

Lemma 24.8.0BDV In the situation of Definition 24.7. Let Zp,qr , Bp,qr ⊂ Ep,qr0
be the

(p, q)-graded parts of Zr, Br defined as in Section 20.
(1) The spectral sequence is regular if and only if for all p, q there exists an

r = r(p, q) such that Zp,qr = Zp,qr+1 = . . .
(2) The spectral sequence is coregular if and only if for all p, q there exists an

r = r(p, q) such that Bp,qr = Bp,qr+1 = . . .
(3) The spectral sequence is bounded if and only if it is both bounded below and

bounded above.
(4) If the spectral sequence is bounded below, then it is regular.
(5) If the spectral sequence is bounded above, then it is coregular.

Proof. Omitted. Hint: If Ep,qr = 0, then we have Ep,qr′ = 0 for all r′ ≥ r. □

Definition 24.9.012U Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. We say the spectral sequence associated to (K•, F )

(1) weakly converges to H∗(K•) if grpHn(K•) = Ep,n−p
∞ via Lemma 24.6 for

all p, n ∈ Z,
(2) abuts to H∗(K•) if it weakly converges to H∗(K•) and

⋂
p F

pHn(K•) = 0
and

⋃
p F

pHn(K•) = Hn(K•) for all n,
(3) converges to H∗(K•) if it is regular, abuts to H∗(K•), and Hn(K•) =

limpH
n(K•)/F pHn(K•).

Weak convergence, abutment, or convergence is symbolized by the notation Ep,qr ⇒
Hp+q(K•). As mentioned above there is no consistent terminology regarding these
notions in the literature.

Lemma 24.10.012V Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. The associated spectral sequence

(1) weakly converges to H∗(K•) if and only if for every p, q ∈ Z we have equality
in equations (24.6.2) and (24.6.1),

(2) abuts to H∗(K) if and only if it weakly converges to H∗(K•) and we have⋂
p(Ker(d)∩F pKn + Im(d)∩Kn) = Im(d)∩Kn and

⋃
p(Ker(d)∩F pKn +

Im(d) ∩Kn) = Ker(d) ∩Kn.

Proof. Immediate from the discussions above. □

https://stacks.math.columbia.edu/tag/0BDU
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Lemma 24.11.012W Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. Assume that the filtration on each Kn is finite (see Definition 19.1). Then

(1) the spectral sequence associated to (K•, F ) is bounded,
(2) the filtration on each Hn(K•) is finite,
(3) the spectral sequence associated to (K•, F ) converges to H∗(K•),
(4) if C ⊂ A is a weak Serre subcategory and for some r we have Ep,qr ∈ C for

all p, q ∈ Z, then Hn(K•) is in C.

Proof. Part (1) follows as Ep,n−p
0 = grpKn. Part (2) is clear from Equation

(24.5.1). We will use Lemma 24.10 to prove that the spectral sequence weakly
converges. Fix p, n ∈ Z. The right hand side of (24.6.1) is equal to F pKn∩Ker(d)+
F p+1Kn because F p+rKn = 0 for r ≫ 0. Thus (24.6.1) is an equality. The left hand
side of (24.6.2) is equal to F pKn ∩ Im(d) +F p+1Kn because F p−r+1Kn−1 = Kn−1

for r ≫ 0. Thus (24.6.2) is an equality. Since the filtration on Hn(K•) is finite by
(2) we see that we have abutment. To prove we have convergence we have to show
the spectral sequence is regular which follows as it is bounded (Lemma 24.8) and
we have to show that Hn(K•) = limpH

n(K•)/F pHn(K•) which follows from the
fact that the filtration on H∗(K•) is finite proved in part (2).

Proof of (4). Assume that for some r ≥ 0 we have Ep,qr ∈ C for some weak Serre
subcategory C of A. Then Ep,qr+1 is in C as well, see Lemma 10.3. By boundedness
proved above (which implies that the spectral sequence is both regular and coreg-
ular, see Lemma 24.8) we can find an r′ ≥ r such that Ep,q∞ = Ep,qr′ for all p, q with
p+q = n. Thus Hn(K•) is an object of A which has a finite filtration whose graded
pieces are in C. This implies that Hn(K•) is in C by Lemma 10.3. □

Lemma 24.12.0BDW Let A be an abelian category. Let (K•, F ) be a filtered complex of
A. Assume that the filtration on each Kn is finite (see Definition 19.1) and that for
some r we have only a finite number of nonzero Ep,qr . Then only a finite number
of Hn(K•) are nonzero and we have∑

(−1)n[Hn(K•)] =
∑

(−1)p+q[Ep,qr ]

in K0(A′) where A′ is the smallest weak Serre subcategory of A containing the
objects Ep,qr .

Proof. Denote Eevenr and Eoddr the even and odd part of Er defined as the direct
sum of the (p, q) components with p + q even and odd. The differential dr defines
maps φ : Eevenr → Eoddr and ψ : Eoddr → Eevenr whose compositions either way give
zero. Then we see that

[Eevenr ]− [Eoddr ] = [Ker(φ)] + [Im(φ)]− [Ker(ψ)]− [Im(ψ)]
= [Ker(φ)/ Im(ψ)]− [Ker(ψ)/ Im(φ)]
= [Eevenr+1 ]− [Eoddr+1]

Note that all the intervening objects are in the smallest Serre subcategory contain-
ing the objects Ep,qr . Continuing in this manner we see that we can increase r at
will. Since there are only a finite number of pairs (p, q) for which Ep,qr is nonzero,
a property which is inherited by Er+1, Er+2, . . ., we see that we may assume that
dr = 0. At this stage we see that Hn(K•) has a finite filtration (Lemma 24.11)
whose graded pieces are exactly the Ep,n−p

r and the result is clear. □

https://stacks.math.columbia.edu/tag/012W
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The following lemma is more a kind of sanity check for our definitions. Surely, if
we have a filtered complex such that for every n we have

Hn(F pK•) = 0 for p≫ 0 and Hn(F pK•) = Hn(K•) for p≪ 0,
then the corresponding spectral sequence should converge?

Lemma 24.13.0BK5 Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. Assume

(1) for every n there exist p0(n) such that Hn(F pK•) = 0 for p ≥ p0(n),
(2) for every n there exist p1(n) such that Hn(F pK•) → Hn(K•) is an iso-

morphism for p ≤ p1(n).
Then

(1) the spectral sequence associated to (K•, F ) is bounded,
(2) the filtration on each Hn(K•) is finite,
(3) the spectral sequence associated to (K•, F ) converges to H∗(K•).

Proof. Fix n. Using the long exact cohomology sequence associated to the short
exact sequence of complexes

0→ F p+1K• → F pK• → grpK• → 0

we find that Ep,n−p
1 = 0 for p ≥ max(p0(n), p0(n+1)) and p < min(p1(n), p1(n+1)).

Hence the spectral sequence is bounded (Definition 24.7). This proves (1).
It is clear from the assumptions and Definition 24.5 that the filtration on Hn(K•)
is finite. This proves (2).
Next we prove that the spectral sequence weakly converges to H∗(K•) using Lemma
24.10. Let us show that we have equality in (24.6.1). Namely, for p+ r > p0(n+ 1)
the map

d : F pKn ∩ d−1(F p+rKn+1)→ F p+rKn+1

ends up in the image of d : F p+rKn → F p+rKn+1 because the complex F p+rK• is
exact in degree n+ 1. We conclude that F pKn ∩ d−1(F p+rKn+1) = d(F p+rKn) +
Ker(d) ∩ F pKn. Hence for such r we have

Ker(d) ∩ F pKn + F p+1Kn = F pKn ∩ d−1(F p+rKn+1) + F p+1Kn

which proves the desired equality. To show that we have equality in (24.6.2) we use
that for p− r + 1 < p1(n− 1) we have

d(F p−r+1Kn−1) = Im(d) ∩ F p−r+1Kn

because the map F p−r+1K• → K• induces an isomorphism on cohomology in
degree n− 1. This shows that we have

F pKn ∩ d(F p−r+1Kn−1) + F p+1Kn = Im(d) ∩ F pKn + F p+1Kn

for such r which proves the desired equality.
To see that the spectral sequence abuts to H∗(K•) using Lemma 24.10 we have to
show that

⋂
p(Ker(d)∩F pKn+Im(d)∩Kn) = Im(d)∩Kn and

⋃
p(Ker(d)∩F pKn+

Im(d)∩Kn) = Ker(d)∩Kn. For p ≥ p0(n) we have Ker(d)∩F pKn+Im(d)∩Kn =
Im(d)∩Kn and for p ≤ p1(n) we have Ker(d)∩F pKn+Im(d)∩Kn = Ker(d)∩Kn.
Combining weak convergence, abutment, and boundedness we see that (2) and (3)
are true. □

https://stacks.math.columbia.edu/tag/0BK5
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25. Spectral sequences: double complexes

012X Let K•,• be a double complex, see Section 18. It is customary to denote Hp
I (K•,•)

the complex with terms Ker(dp,q1 )/ Im(dp−1,q
1 ) (varying q) and differential induced

by d2. ThenHq
II(H

p
I (K•,•)) denotes its cohomology in degree q. It is also customary

to denote Hq
II(K•,•) the complex with terms Ker(dp,q2 )/ Im(dp,q−1

2 ) (varying p) and
differential induced by d1. Then Hp

I (Hq
II(K•,•)) denotes its cohomology in degree p.

It will turn out that these cohomology groups show up as the terms in the spectral
sequence for a filtration on the associated total complex or simple complex, see
Definition 18.3.

There are two natural filtrations on the total complex Tot(K•,•) associated to the
double complex K•,•. Namely, we define

F pI (Totn(K•,•)) =
⊕

i+j=n, i≥p
Ki,j and F pII(Totn(K•,•)) =

⊕
i+j=n, j≥p

Ki,j .

It is immediately verified that (Tot(K•,•), FI) and (Tot(K•,•), FII) are filtered
complexes. By Section 24 we obtain two spectral sequences. It is customary to
denote (′Er,

′dr)r≥0 the spectral sequence associated to the filtration FI and to
denote (′′Er,

′′dr)r≥0 the spectral sequence associated to the filtration FII . Here is
a description of these spectral sequences.

Lemma 25.1.0130 Let A be an abelian category. Let K•,• be a double complex. The
spectral sequences associated to K•,• have the following terms:

(1) ′Ep,q0 = Kp,q with ′dp,q0 = (−1)pdp,q2 : Kp,q → Kp,q+1,
(2) ′′Ep,q0 = Kq,p with ′′dp,q0 = dq,p1 : Kq,p → Kq+1,p,
(3) ′Ep,q1 = Hq(Kp,•) with ′dp,q1 = Hq(dp,•1 ),
(4) ′′Ep,q1 = Hq(K•,p) with ′′dp,q1 = (−1)qHq(d•,p

2 ),
(5) ′Ep,q2 = Hp

I (Hq
II(K•,•)),

(6) ′′Ep,q2 = Hp
II(H

q
I (K•,•)).

Proof. Omitted. □

These spectral sequences define two filtrations on Hn(Tot(K•,•)). We will denote
these FI and FII .

Definition 25.2.0131 LetA be an abelian category. Let K•,• be a double complex. We
say the spectral sequence (′Er,

′dr)r≥0 weakly converges to Hn(Tot(K•,•)), abuts to
Hn(Tot(K•,•)), or converges to Hn(Tot(K•,•)) if Definition 24.9 applies. Similarly
we say the spectral sequence (′′Er,

′′dr)r≥0 weakly converges to Hn(Tot(K•,•)),
abuts to Hn(Tot(K•,•)), or converges to Hn(Tot(K•,•)) if Definition 24.9 applies.

As mentioned above there is no consistent terminology regarding these notions in
the literature. In the situation of the definition, we have weak convergence of the
first spectral sequence if for all n

grFI
(Hn(Tot(K•,•))) = ⊕p+q=n

′Ep,q∞

via the canonical comparison of Lemma 24.6. Similarly the second spectral sequence
(′′Er,

′′dr)r≥0 weakly converges if for all n

grFII
(Hn(Tot(K•,•))) = ⊕p+q=n

′′Ep,q∞

via the canonical comparison of Lemma 24.6.

https://stacks.math.columbia.edu/tag/0130
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Lemma 25.3.0132 Let A be an abelian category. Let K•,• be a double complex. Assume
that for every n ∈ Z there are only finitely many nonzero Kp,q with p+q = n. Then

(1) the two spectral sequences associated to K•,• are bounded,
(2) the filtrations FI , FII on each Hn(Tot(K•,•)) are finite,
(3) the spectral sequences (′Er,

′dr)r≥0 and (′′Er,
′′dr)r≥0 converge to H∗(Tot(K•,•)),

(4) if C ⊂ A is a weak Serre subcategory and for some r we have ′Ep,qr ∈ C for
all p, q ∈ Z, then Hn(Tot(K•,•)) is in C. Similarly for (′′Er,

′′dr)r≥0.

Proof. Follows immediately from Lemma 24.11. □

Here is our first application of spectral sequences.

Lemma 25.4.0133 Let A be an abelian category. Let K• be a complex. Let A•,• be a
double complex. Let αp : Kp → Ap,0 be morphisms. Assume that

(1) For every n ∈ Z there are only finitely many nonzero Ap,q with p+ q = n.
(2) We have Ap,q = 0 if q < 0.
(3) The morphisms αp give rise to a morphism of complexes α : K• → A•,0.
(4) The complex Ap,• is exact in all degrees q ̸= 0 and the morphism Kp → Ap,0

induces an isomorphism Kp → Ker(dp,02 ).
Then α induces a quasi-isomorphism

K• −→ Tot(A•,•)
of complexes. Moreover, there is a variant of this lemma involving the second
variable q instead of p.

Proof. The map is simply the map given by the morphisms Kn → An,0 →
Totn(A•,•), which are easily seen to define a morphism of complexes. Consider the
spectral sequence (′Er,

′dr)r≥0 associated to the double complex A•,•. By Lemma
25.3 this spectral sequence converges and the induced filtration on Hn(Tot(A•,•)) is
finite for each n. By Lemma 25.1 and assumption (4) we have ′Ep,q1 = 0 unless q = 0
and ′Ep,01 = Kp with differential ′dp,01 identified with dpK . Hence ′Ep,02 = Hp(K•)
and zero otherwise. This clearly implies dp,q2 = dp,q3 = . . . = 0 for degree rea-
sons. Hence we conclude that Hn(Tot(A•,•)) = Hn(K•). We omit the verification
that this identification is given by the morphism of complexes K• → Tot(A•,•)
introduced above. □

Lemma 25.5.0FKH Let A be an abelian category. Let M• be a complex of A. Let

a : M•[0] −→
(
A0,• → A1,• → A2,• → . . .

)
be a homotopy equivalence in the category of complexes of complexes of A. Then
the map α : M• → Tot(A•,•) induced by M• → A0,• is a homotopy equivalence.

Proof. The statement makes sense as a complex of complexes is the same thing as
a double complex. The assumption means there is a map

b :
(
A0,• → A1,• → A2,• → . . .

)
−→M•[0]

such that a ◦ b and b ◦ a are homotopic to the identity in the category of complexes
of complexes. This means that b ◦ a is the identity of M•[0] (because there is only
one term in degree 0). Also, observe that b is given by a map b0 : A0,• → M• and
zero in all other degrees. Thus b induces a map β : Tot(A•,•) → M• and β ◦ α is
the identity on M•. Finally, we have to show that the map α ◦ β is homotopic to
the identity. For this we choose maps of complexes hn : An,• → An−1,• such that

https://stacks.math.columbia.edu/tag/0132
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a◦b−id = d1◦h+h◦d1 which exist by assumption. Here d1 : An,• → An+1,• are the
differentials of the complex of complexes. We will also denote d2 the differentials
of the complexes An,• for all n. Let hn,m : An,m → An−1,m be the components of
hn. Then we can consider

h′ : Tot(A•,•)k =
⊕

n+m=k
An,m →

⊕
n+m=k−1

An,m = Tot(A•,•)k−1

given by hn,m on the summand An,m. Then we compute that the map
dTot(A•,•) ◦ h′ + h′ ◦ dTot(A•,•)

restricted to the summand An,m is equal to
dn−1,m

1 ◦ hn,m + (−1)n−1dn−1,m
2 ◦ hn,m + hn+1,m ◦ dn,m1 + hn,m+1 ◦ (−1)ndn,m2

Since hn is a map of complexes, the terms (−1)n−1dn−1,m
2 ◦ hn,m and hn,m+1 ◦

(−1)ndn,m2 cancel. The other two terms give (α◦β)|An,m−idAn,m because a◦b−id =
d1 ◦ h+ h ◦ d1. This finishes the proof. □

26. Double complexes of abelian groups

0E1P In this section we put some results on double complexes of abelian groups for which
do not (yet) have the analogues results for general abelian categories. Please be
careful not to use these lemmas except when the underlying abelian category is the
category of abelian groups or some such (e.g., the category of modules over a ring).
Some of the arguments will be difficult to follow without drawing “zig-zags” on a
napkin – compare with the proof of Algebra, Lemma 75.3.
Lemma 26.1.0E1Q Let M• be a complex of abelian groups. Let

0→M• → A•
0 → A•

1 → A•
2 → . . .

be an exact complex of complexes of abelian groups. Set Ap,q = Aqp to obtain a
double complex. Then the map M• → Tot(A•,•) induced by M• → A•

0 is a quasi-
isomorphism.
Proof. If there exists a t ∈ Z such that Aq0 = 0 for q < t, then this follows
immediately from Lemma 25.4 (with p and q swapped as in the final statement of
that lemma). OK, but for every t ∈ Z we have a complex

0→ σ≥tM
• → σ≥tA

•
0 → σ≥tA

•
1 → σ≥tA

•
2 → . . .

of stupid truncations. Denote A(t)•,• the corresponding double complex. Every
element ξ of Hn(Tot(A•,•)) is the image of an element of Hn(Tot(A(t)•,•)) for
some t (look at explicit representatives of cohomology classes). Hence ξ is in the
image of Hn(σ≥tM

•). Thus the map Hn(M•) → Hn(Tot(A•,•)) is surjective. It
is injective because for all t the map Hn(σ≥tM

•) → Hn(Tot(A(t)•,•)) is injective
and similar arguments. □

Lemma 26.2.09IZ Let M• be a complex of abelian groups. Let
. . .→ A•

2 → A•
1 → A•

0 →M• → 0
be an exact complex of complexes of abelian groups such that for all p ∈ Z the
complexes

. . .→ Ker(dpA•
2
)→ Ker(dpA•

1
)→ Ker(dpA•

0
)→ Ker(dpM•)→ 0

are exact as well. Set Ap,q = Aq−p to obtain a double complex. Then Tot(A•,•) →
M• induced by A•

0 →M• is a quasi-isomorphism.

https://stacks.math.columbia.edu/tag/0E1Q
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Proof. Using the short exact sequences 0→ Ker(dpA•
n
)→ Apn → Im(dpA•

n
)→ 0 and

the assumptions we see that
. . .→ Im(dpA•

2
)→ Im(dpA•

1
)→ Im(dpA•

0
)→ Im(dpM•)→ 0

is exact for all p ∈ Z. Repeating with the exact sequences 0 → Im(dp−1
A•

n
) →

Ker(dpA•
n
)→ Hp(A•

n)→ 0 we find that

. . .→ Hp(A•
2)→ Hp(A•

1)→ Hp(A•
0)→ Hp(M•)→ 0

is exact for all p ∈ Z.
Write T • = Tot(A•,•). We will show that H0(T •) → H0(M•) is an isomorphism.
The same argument works for other degrees. Let x ∈ Ker(d0

T•) represent an element
ξ ∈ H0(T •). Write x =

∑
i=n,...,0 xi with xi ∈ Aii. Assume n > 0. Then xn is in

the kernel of dnA•
n

and maps to zero in Hn(A•
n−1) because it maps to an element

which is the boundary of xn−1 up to sign. By the first paragraph of the proof, we
find that xn mod Im(dn−1

A•
n

) is in the image of Hn(A•
n+1)→ Hn(A•

n). Thus we can
modify x by a boundary and reach the situation where xn is a boundary. Modifying
x once more we see that we may assume xn = 0. By induction we see that every
cohomology class ξ is represented by a cocycle x = x0. Finally, the condition on
exactness of kernels tells us two such cocycles x0 and x′

0 are cohomologous if and
only if their image in H0(M•) are the same. □

Lemma 26.3.09J0 Let M• be a complex of abelian groups. Let
0→M• → A•

0 → A•
1 → A•

2 → . . .

be an exact complex of complexes of abelian groups such that for all p ∈ Z the
complexes

0→ Coker(dpM•)→ Coker(dpA•
0
)→ Coker(dpA•

1
)→ Coker(dpA•

2
)→ . . .

are exact as well. Set Ap,q = Aqp to obtain a double complex. Let Totπ(A•,•) be the
product total complex associated to the double complex (see proof). Then the map
M• → Totπ(A•,•) induced by M• → A•

0 is a quasi-isomorphism.

Proof. Abbreviating T • = Totπ(A•,•) we define

Tn =
∏

p+q=n
Ap,q =

∏
p+q=n

Aqp with dnT• =
∏

n=p+q
(fqp + (−1)pdqA•

p
)

where f•
p : A•

p → A•
p+1 are the maps of complexes in the lemma.

We will show that H0(M•) → H0(T •) is an isomorphism. The same argument
works for other degrees. Let x ∈ Ker(d0

T•) represent ξ ∈ H0(T •). Write x = (xi)
with xi ∈ A−i

i . Note that x0 maps to zero in Coker(A−1
1 → A0

1). Hence we see
that x0 = m0 + d−1

A•
0
(y) for some m0 ∈ M0 and y ∈ A−1

0 . Then dM•(m0) = 0
because dA•

0
(x0) = 0 as dT•(x) = 0. Thus, replacing ξ by something in the image

of H0(M•)→ H0(T •) we may assume that x0 is in Im(d−1
A•

0
).

Assume x0 ∈ Im(d−1
A•

0
). We claim that in this case ξ = 0. To prove this we find, by

induction on n elements y0, y1, . . . , yn with yi ∈ A−i−1
i such that x0 = d−1

A0
(y0) and

xj = f−j
j−1(yj−1)+(−1)jd−j−1

A•
−j

(yj) for j = 1, . . . , n. This is clear for n = 0. Proof of
induction step: suppose we have found y0, . . . , yn−1. Then wn = xn−f−n

n−1(yn−1) is
in the kernel of d−n

A•
n

and maps to zero in Hn(A•
n+1) (because it maps to an element

https://stacks.math.columbia.edu/tag/09J0
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which is a boundary the boundary of xn+1 up to sign). Exactly as in the proof of
Lemma 26.2 the assumptions of the lemma imply that

0→ Hp(M•)→ Hp(A•
0)→ Hp(A•

1)→ Hp(A•
2)→ . . .

is exact for all p ∈ Z. Thus after changing yn−1 by an element in Ker(dn−1
A•

n−1
) we may

assume that wn maps to zero in H−n(A•
n). This means we can find yn as desired.

Observe that this procedure does not change y0, . . . , yn−2. Hence continuing ad
infinitum we find an element y = (yi) in Tn−1 with dT•(y) = ξ. This shows that
H0(M•)→ H0(T •) is surjective.

Suppose that m0 ∈ Ker(d0
M•) maps to zero in H0(T •). Say it maps to the differ-

ential applied to y = (yi) ∈ T−1 . Then y0 ∈ A−1
0 maps to zero in Coker(d−2

A•
1
).

By assumption this means that y0 mod Im(d−2
A•

0
) is the image of some z ∈M−1. It

follows that m0 = d−1
M•(z). This proves injectivity and the proof is complete. □

Lemma 26.4.0E1R Let M• be a complex of abelian groups. Let

. . .→ A•
2 → A•

1 → A•
0 →M• → 0

be an exact complex of complexes of abelian groups. Set Ap,q = Aq−p to obtain a
double complex. Let Totπ(A•,•) be the product total complex associated to the double
complex (see proof). Then the map Totπ(A•,•) → M• induced by A•

0 → M• is a
quasi-isomorphism.

Proof. Abbreviating T • = Totπ(A•,•) we define

Tn =
∏

p+q=n
Ap,q =

∏
p+q=n

Aq−p with dnT• =
∏

n=p+q
(fq−p + (−1)pdqA•

−p
)

where f•
p : A•

p → A•
p−1 are the maps of complexes in the lemma. We will show that

T • is acyclic when M• is the zero complex. This will suffice by the following trick.
Set B•

n = A•
n+1 and B•

0 = M•. Then we have an exact sequence

. . .→ B•
2 → B•

1 → B•
0 → 0→ 0

as in the lemma. Let S• = Totπ(B•,•). Then there is an obvious short exact
sequence of complexes

0→M• → S• → T •[1]→ 0

and we conclude by the long exact cohomology sequence. Some details omitted.

Assume M• = 0. We will show H0(T •) = 0. The same argument works for other
degrees. Let x = (xn) ∈ Ker(dT•) map to ξ ∈ H0(T •) with xn ∈ A−n,n = Ann. Since
M0 = 0 we find that x0 = f0

1 (y0) for some y0 ∈ A0
1. Then x1 − d0

A•
1
(y0) = f1

2 (y1)
because it is mapped to zero by f1

1 as x is a cocycle. for some y1 ∈ A1
2. Continuing,

using induction, we find y = (yi) ∈ T−1 with dT•(y) = x as desired. □

27. Injectives

0134
Definition 27.1.0135 Let A be an abelian category. An object J ∈ Ob(A) is called
injective if for every injection A ↪→ B and every morphism A → J there exists a

https://stacks.math.columbia.edu/tag/0E1R
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morphism B → J making the following diagram commute

A //

��

B

��
J

Here is the obligatory characterization of injective objects.

Lemma 27.2.0136 Let A be an abelian category. Let I be an object of A. The following
are equivalent:

(1) The object I is injective.
(2) The functor B 7→ HomA(B, I) is exact.
(3) Any short exact sequence

0→ I → A→ B → 0
in A is split.

(4) We have ExtA(B, I) = 0 for all B ∈ Ob(A).

Proof. Omitted. □

Lemma 27.3.0137 Let A be an abelian category. Suppose Iω, ω ∈ Ω is a set of injective
objects of A. If

∏
ω∈Ω Iω exists then it is injective.

Proof. Omitted. □

Definition 27.4.0138 Let A be an abelian category. We say A has enough injectives
if every object A has an injective morphism A→ J into an injective object J .

Definition 27.5.0139 Let A be an abelian category. We say that A has functorial
injective embeddings if there exists a functor

J : A −→ Arrows(A)
such that

(1) s ◦ J = idA,
(2) for any object A ∈ Ob(A) the morphism J(A) is injective, and
(3) for any object A ∈ Ob(A) the object t(J(A)) is an injective object of A.

We will denote such a functor by A 7→ (A→ J(A)).

28. Projectives

013A
Definition 28.1.013B Let A be an abelian category. An object P ∈ Ob(A) is called
projective if for every surjection A→ B and every morphism P → B there exists a
morphism P → A making the following diagram commute

A // B

P

OO ??

Here is the obligatory characterization of projective objects.

Lemma 28.2.013C Let A be an abelian category. Let P be an object of A. The
following are equivalent:

https://stacks.math.columbia.edu/tag/0136
https://stacks.math.columbia.edu/tag/0137
https://stacks.math.columbia.edu/tag/0138
https://stacks.math.columbia.edu/tag/0139
https://stacks.math.columbia.edu/tag/013B
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(1) The object P is projective.
(2) The functor B 7→ HomA(P,B) is exact.
(3) Any short exact sequence

0→ A→ B → P → 0
in A is split.

(4) We have ExtA(P,A) = 0 for all A ∈ Ob(A).

Proof. Omitted. □

Lemma 28.3.013D Let A be an abelian category. Suppose Pω, ω ∈ Ω is a set of
projective objects of A. If

∐
ω∈Ω Pω exists then it is projective.

Proof. Omitted. □

Definition 28.4.013E Let A be an abelian category. We say A has enough projectives
if every object A has an surjective morphism P → A from an projective object P
onto it.

Definition 28.5.013F Let A be an abelian category. We say that A has functorial
projective surjections if there exists a functor

P : A −→ Arrows(A)
such that

(1) t ◦ J = idA,
(2) for any object A ∈ Ob(A) the morphism P (A) is surjective, and
(3) for any object A ∈ Ob(A) the object s(P (A)) is an projective object of A.

We will denote such a functor by A 7→ (P (A)→ A).

29. Injectives and adjoint functors

015Y Here are some lemmas on adjoint functors and their relationship with injectives.
See also Lemma 7.4.

Lemma 29.1.015Z Let A and B be abelian categories. Let u : A → B and v : B → A
be additive functors. Assume

(1) u is right adjoint to v, and
(2) v transforms injective maps into injective maps.

Then u transforms injectives into injectives.

Proof. Let I be an injective object of A. Let φ : N →M be an injective map in B
and let α : N → uI be a morphism. By adjointness we get a morphism α : vN → I
and by assumption vφ : vN → vM is injective. Hence as I is an injective object we
get a morphism β : vM → I extending α. By adjointness again this corresponds to
a morphism β : M → uI as desired. □

Remark 29.2.03B8 Let A, B, u : A → B and v : B → A be as in Lemma 29.1. In
the presence of assumption (1) assumption (2) is equivalent to requiring that v is
exact. Moreover, condition (2) is necessary. Here is an example. Let A → B be a
ring map. Let u : ModB → ModA be u(N) = NA and let v : ModA → ModB be
v(M) = M ⊗A B. Then u is right adjoint to v, and u is exact and v is right exact,
but v does not transform injective maps into injective maps in general (i.e., v is
not left exact). Moreover, it is not the case that u transforms injective B-modules

https://stacks.math.columbia.edu/tag/013D
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into injective A-modules. For example, if A = Z and B = Z/pZ, then the injective
B-module Z/pZ is not an injective Z-module. In fact, the lemma applies to this
example if and only if the ring map A→ B is flat.

Lemma 29.3.0160 Let A and B be abelian categories. Let u : A → B and v : B → A
be additive functors. Assume

(1) u is right adjoint to v,
(2) v transforms injective maps into injective maps,
(3) A has enough injectives, and
(4) vB = 0 implies B = 0 for any B ∈ Ob(B).

Then B has enough injectives.

Proof. Pick B ∈ Ob(B). Pick an injection vB → I for I an injective object of A.
According to Lemma 29.1 and the assumptions the corresponding map B → uI is
the injection of B into an injective object. □

Remark 29.4.03B9 Let A, B, u : A → B and v : B → A be as In Lemma 29.3. In the
presence of conditions (1) and (2) condition (4) is equivalent to v being faithful.
Moreover, condition (4) is needed. An example is to consider the case where the
functors u and v are both the zero functor.

Lemma 29.5.0161 Let A and B be abelian categories. Let u : A → B and v : B → A
be additive functors. Assume

(1) u is right adjoint to v,
(2) v transforms injective maps into injective maps,
(3) A has enough injectives,
(4) vB = 0 implies B = 0 for any B ∈ Ob(B), and
(5) A has functorial injective hulls.

Then B has functorial injective hulls.

Proof. Let A 7→ (A→ J(A)) be a functorial injective hull on A. Then B 7→ (B →
uJ(vB)) is a functorial injective hull on B. Compare with the proof of Lemma
29.3. □

Lemma 29.6.0793 Let A and B be abelian categories. Let u : A → B be a functor. If
there exists a subset P ⊂ Ob(B) such that

(1) every object of B is a quotient of an element of P, and
(2) for every P ∈ P there exists an object Q of A such that HomA(Q,A) =

HomB(P, u(A)) functorially in A,
then there exists a left adjoint v of u.

Proof. By the Yoneda lemma (Categories, Lemma 3.5) the object Q of A corre-
sponding to P is defined up to unique isomorphism by the formula HomA(Q,A) =
HomB(P, u(A)). Let us write Q = v(P ). Denote iP : P → u(v(P )) the map cor-
responding to idv(P ) in HomA(v(P ), v(P )). Functoriality in (2) implies that the
bijection is given by

HomA(v(P ), A)→ HomB(P, u(A)), φ 7→ u(φ) ◦ iP
For any pair of elements P1, P2 ∈ P there is a canonical map

HomB(P2, P1)→ HomA(v(P2), v(P1)), φ 7→ v(φ)

https://stacks.math.columbia.edu/tag/0160
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which is characterized by the rule u(v(φ)) ◦ iP2 = iP1 ◦ φ in HomB(P2, u(v(P1))).
Note that φ 7→ v(φ) is compatible with composition; this can be seen directly from
the characterization. Hence P 7→ v(P ) is a functor from the full subcategory of B
whose objects are the elements of P.
Given an arbitrary object B of B choose an exact sequence

P2 → P1 → B → 0
which is possible by assumption (1). Define v(B) to be the object of A fitting into
the exact sequence

v(P2)→ v(P1)→ v(B)→ 0
Then

HomA(v(B), A) = Ker(HomA(v(P1), A)→ HomA(v(P2), A))
= Ker(HomB(P1, u(A))→ HomB(P2, u(A)))
= HomB(B, u(A))

Hence we see that we may take P = Ob(B), i.e., we see that v is everywhere
defined. □

30. Essentially constant systems

0A2D In this section we discuss essentially constant systems with values in additive cat-
egories.

Lemma 30.1.0A2E Let I be a category, let A be a pre-additive Karoubian category,
and let M : I → A be a diagram.

(1) Assume I is filtered. The following are equivalent
(a) M is essentially constant,
(b) X = colimM exists and there exists a cofinal filtered subcategory I ′ ⊂
I and for i′ ∈ Ob(I ′) a direct sum decomposition Mi′ = Xi′⊕Zi′ such
that Xi′ maps isomorphically to X and Zi′ to zero in Mi′′ for some
i′ → i′′ in I ′.

(2) Assume I is cofiltered. The following are equivalent
(a) M is essentially constant,
(b) X = limM exists and there exists an initial cofiltered subcategory I ′ ⊂
I and for i′ ∈ Ob(I ′) a direct sum decomposition Mi′ = Xi′⊕Zi′ such
that X maps isomorphically to Xi′ and Mi′′ → Zi′ is zero for some
i′′ → i′ in I ′.

Proof. Assume (1)(a), i.e., I is filtered and M is essentially constant. Let X =
colimMi. Choose i and X →Mi as in Categories, Definition 22.1. Let I ′ be the full
subcategory consisting of objects which are the target of a morphism with source
i. Suppose i′ ∈ Ob(I ′) and choose a morphism i → i′. Then X → Mi → Mi′

composed with Mi′ → X is the identity on X. As A is Karoubian, we find a direct
summand decomposition Mi′ = Xi′ ⊕ Zi′ , where Zi′ = Ker(Mi′ → X) and Xi′

maps isomorphically to X. Pick i→ k and i′ → k such that Mi′ → X →Mi →Mk

equals Mi′ → Mk as in Categories, Definition 22.1. Then we see that Mi′ → Mk

annihilates Zi′ . Thus (1)(b) holds.
Assume (1)(b), i.e., I is filtered and we have I ′ ⊂ I and for i′ ∈ Ob(I ′) a direct
sum decomposition Mi′ = Xi′ ⊕ Zi′ as stated in the lemma. To see that M is

https://stacks.math.columbia.edu/tag/0A2E
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essentially constant we can replace I by I ′, see Categories, Lemma 22.11. Pick any
i ∈ Ob(I) and denote X → Mi the inverse of the isomorphism Xi → X followed
by the inclusion map Xi → Mi. If j is a second object, then choose j → k such
that Zj →Mk is zero. Since I is filtered we may also assume there is a morphism
i → k (after possibly increasing k). Then Mj → X → Mi → Mk and Mj → Mk

both annihilate Zj . Thus after postcomposing by a morphism Mk → Ml which
annihilates the summand Zk, we find that Mj → X → Mi → Ml and Mj → Ml

are equal, i.e., M is essentially constant.

The proof of (2) is dual. □

Lemma 30.2.0A2F Let I be a category. Let A be an additive, Karoubian category. Let
F : I → A and G : I → A be functors. The following are equivalent

(1) colimI F ⊕G exists, and
(2) colimI F and colimI G exist.

In this case colimI F ⊕G = colimI F ⊕ colimI G.

Proof. Assume (1) holds. Set W = colimI F ⊕ G. Note that the projection onto
F defines natural transformation F ⊕G→ F ⊕G which is idempotent. Hence we
obtain an idempotent endomorphism W → W by Categories, Lemma 14.8. Since
A is Karoubian we get a corresponding direct sum decomposition W = X ⊕ Y , see
Lemma 4.2. A straightforward argument (omitted) shows that X = colimI F and
Y = colimI G. Thus (2) holds. We omit the proof that (2) implies (1). □

Lemma 30.3.0A2G Let I be a filtered category. Let A be an additive, Karoubian
category. Let F : I → A and G : I → A be functors. The following are equivalent

(1) F ⊕G : I → A is essentially constant, and
(2) F and G are essentially constant.

Proof. Assume (1) holds. In particular W = colimI F ⊕ G exists and hence by
Lemma 30.2 we have W = X ⊕ Y with X = colimI F and Y = colimI G. A
straightforward argument (omitted) using for example the characterization of Cat-
egories, Lemma 22.9 shows that F is essentially constant with value X and G is
essentially constant with value Y . Thus (2) holds. The proof that (2) implies (1)
is omitted. □

31. Inverse systems

02MY Let C be a category. In Categories, Section 21 we defined the notion of an inverse
system over a preordered set (with values in the category C). If the preordered
set is N = {1, 2, 3, . . .} with the usual ordering such an inverse system over N is
often simply called an inverse system. It consists quite simply of a pair (Mi, fii′)
where each Mi, i ∈ N is an object of C, and for each i > i′, i, i′ ∈ N a morphism
fii′ : Mi →Mi′ such that moreover fi′i′′ ◦ fii′ = fii′′ whenever this makes sense. It
is clear that in fact it suffices to give the morphisms M2 →M1, M3 →M2, and so
on. Hence an inverse system is frequently pictured as follows

M1
φ2←−M2

φ3←−M3 ← . . .

Moreover, we often omit the transition maps φi from the notation and we simply
say “let (Mi) be an inverse system”.

https://stacks.math.columbia.edu/tag/0A2F
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The collection of all inverse systems with values in C forms a category with the
obvious notion of morphism.

Lemma 31.1.02MZ Let C be a category.
(1) If C is an additive category, then the category of inverse systems with values

in C is an additive category.
(2) If C is an abelian category, then the category of inverse systems with values

in C is an abelian category. A sequence (Ki) → (Li) → (Mi) of inverse
systems is exact if and only if each Ki → Li → Ni is exact.

Proof. Omitted. □

The limit (see Categories, Section 21) of such an inverse system is denoted limMi,
or limiMi. If C is the category of abelian groups (or sets), then the limit always
exists and in fact can be described as follows

limiMi = {(xi) ∈
∏

Mi | φi(xi) = xi−1, i = 2, 3, . . .}

see Categories, Section 15. However, given a short exact sequence

0→ (Ai)→ (Bi)→ (Ci)→ 0

of inverse systems of abelian groups it is not always the case that the associated
system of limits is exact. In order to discuss this further we introduce the following
notion.

Definition 31.2.02N0 Let C be an abelian category. We say the inverse system (Ai)
satisfies the Mittag-Leffler condition, or for short is ML, if for every i there exists
a c = c(i) ≥ i such that

Im(Ak → Ai) = Im(Ac → Ai)

for all k ≥ c.

It turns out that the Mittag-Leffler condition is good enough to ensure that the lim-
functor is exact, provided one works within the abelian category of abelian groups,
modules over a ring, etc. It is shown in a paper by A. Neeman (see [Nee02]) that
this condition is not strong enough in an abelian category having AB4* (having
exact products).

Lemma 31.3.02N1 Let
0→ (Ai)→ (Bi)→ (Ci)→ 0

be a short exact sequence of inverse systems of abelian groups.
(1) In any case the sequence

0→ limiAi → limiBi → limi Ci

is exact.
(2) If (Bi) is ML, then also (Ci) is ML.
(3) If (Ai) is ML, then

0→ limiAi → limiBi → limi Ci → 0

is exact.

Proof. Nice exercise. See Algebra, Lemma 87.1 for part (3). □
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Lemma 31.4.070B Let
(Ai)→ (Bi)→ (Ci)→ (Di)

be an exact sequence of inverse systems of abelian groups. If the system (Ai) is ML,
then the sequence

limiBi → limi Ci → limiDi

is exact.

Proof. Let Zi = Ker(Ci → Di) and Ii = Im(Ai → Bi). Then limZi = Ker(limCi →
limDi) and we get a short exact sequence of systems

0→ (Ii)→ (Bi)→ (Zi)→ 0
Moreover, by Lemma 31.3 we see that (Ii) has (ML), thus another application of
Lemma 31.3 shows that limBi → limZi is surjective which proves the lemma. □

The following characterization of essentially constant inverse systems shows in par-
ticular that they have ML.

Lemma 31.5.070C Let A be an abelian category. Let (Ai) be an inverse system in A
with limit A = limAi. Then (Ai) is essentially constant (see Categories, Definition
22.1) if and only if there exists an i and for all j ≥ i a direct sum decomposition
Aj = A ⊕ Zj such that (a) the maps Aj′ → Aj are compatible with the direct sum
decompositions, (b) for all j there exists some j′ ≥ j such that Zj′ → Zj is zero.

Proof. Assume (Ai) is essentially constant. Then there exists an i and a morphism
Ai → A such that A→ Ai → A is the identity and for all j ≥ i there exists a j′ ≥ j
such that Aj′ → Aj factors as Aj′ → Ai → A → Aj (the last map comes from
A = limAi). Hence setting Zj = Ker(Aj → A) for all j ≥ i works. Proof of the
converse is omitted. □

We will improve on the following lemma in More on Algebra, Lemma 86.13.

Lemma 31.6.070D Let
0→ (Ai)→ (Bi)→ (Ci)→ 0

be an exact sequence of inverse systems of abelian groups. If (Ci) is essentially
constant, then (Ai) has ML if and only if (Bi) has ML.

Proof. After renumbering we may assume that Ci = C ⊕ Zi compatible with
transition maps and that for all i there exists an i′ ≥ i such that Zi′ → Zi is zero,
see Lemma 31.5.
First, assume C = 0, i.e., we have Ci = Zi. In this case choose 1 = n1 < n2 < n3 <
. . . such that Zni+1 → Zni

is zero. Then Bni+1 → Bni
factors through Ani

⊂ Bni
.

It follows that for j ≥ i+ 1 we have
Im(Anj

→ Ani
) ⊂ Im(Bnj

→ Bni
) ⊂ Im(Anj−1 → Ani

)
as subsets of Ani . Thus the images Im(Anj → Ani) stabilize for j ≥ i + 1 if and
only if the same is true for the images Im(Bnj → Bni). The equivalence follows
from this (small detail omitted).
If C ̸= 0, denote B′

i ⊂ Bi the inverse image of C by the map Bi → C ⊕ Zi. Then
by the previous paragraph we see that (B′

i) has ML if and only if (Bi) has ML.
Thus we may replace (Bi) by (B′

i). In this case we have exact sequences 0→ Ai →
Bi → C → 0 for all i. It follows that 0→ Im(Aj → Ai)→ Im(Bj → Bi)→ C → 0

https://stacks.math.columbia.edu/tag/070B
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is short exact for all j ≥ i. Hence the images Im(Aj → Ai) stabilize for j ≥ i if
and only if the same is true for Im(Bj → Bi) as desired. □

The “correct” version of the following lemma is More on Algebra, Lemma 86.3.

Lemma 31.7.070E Let
(A−2

i → A−1
i → A0

i → A1
i )

be an inverse system of complexes of abelian groups and denote A−2 → A−1 →
A0 → A1 its limit. Denote (H−1

i ), (H0
i ) the inverse systems of cohomologies, and

denote H−1, H0 the cohomologies of A−2 → A−1 → A0 → A1. If (A−2
i ) and (A−1

i )
are ML and (H−1

i ) is essentially constant, then H0 = limH0
i .

Proof. Let Zji = Ker(Aji → Aj+1
i ) and Iji = Im(Aj−1

i → Aji ). Note that limZ0
i =

Ker(limA0
i → limA1

i ) as taking kernels commutes with limits. The systems (I−1
i )

and (I0
i ) have ML as quotients of the systems (A−2

i ) and (A−1
i ), see Lemma 31.3.

Thus an exact sequence
0→ (I−1

i )→ (Z−1
i )→ (H−1

i )→ 0

of inverse systems where (I−1
i ) has ML and where (H−1

i ) is essentially constant by
assumption. Hence (Z−1

i ) has ML by Lemma 31.6. The exact sequence

0→ (Z−1
i )→ (A−1

i )→ (I0
i )→ 0

and an application of Lemma 31.3 shows that limA−1
i → lim I0

i is surjective. Fi-
nally, the exact sequence

0→ (I0
i )→ (Z0

i )→ (H0
i )→ 0

and Lemma 31.3 show that lim I0
i → limZ0

i → limH0
i → 0 is exact. Putting

everything together we win. □

Sometimes we need a version of the lemma above where we take limits over big
ordinals.

Lemma 31.8.0AAT Let α be an ordinal. Let K•
β, β < α be an inverse system of

complexes of abelian groups over α. If for all β < α the complex K•
β is acyclic and

the map
Kn
β −→ limγ<βK

n
γ

is surjective, then the complex limβ<αK
•
β is acyclic.

Proof. By transfinite induction we prove this holds for every ordinal α and every
system as in the lemma. In particular, whilst proving the result for α we may
assume the complexes limγ<βK

n
γ are acyclic.

Let x ∈ limβ<αK
0
α with d(x) = 0. We will find a y ∈ K−1

α with d(y) = x. Write
x = (xβ) where xβ ∈ K0

β is the image of x for β < α. We will construct y = (yβ)
by transfinite recursion.
For β = 0 let y0 ∈ K−1

0 be any element with d(y0) = x0.
For β = γ + 1 a successor, we have to find an element yβ which maps both to
yγ by the transition map f : K•

β → K•
γ and to xβ under the differential. As a

first approximation we choose y′
β with d(y′

β) = xβ . Then the difference yγ − f(y′
β)

is in the kernel of the differential, hence equal to d(zγ) for some zγ ∈ K−2
γ . By
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assumption, the map f−2 : K−2
β → K−2

γ is surjective. Hence we write zγ = f(zβ)
and change y′

β into yβ = y′
β + d(zβ) which works.

If β is a limit ordinal, then we have the element (yγ)γ<β in limγ<βK
−1
γ whose

differential is the image of xβ . Thus we can argue in exactly the same manner as
above using the termwise surjective map of complexes f : K•

β → limγ<βK
•
γ and

the fact (see first paragraph of proof) that we may assume limγ<βK
•
γ is acyclic by

induction. □

32. Exactness of products

060J
Lemma 32.1.060K Let I be a set. For i ∈ I let Li →Mi → Ni be a complex of abelian
groups. Let Hi = Ker(Mi → Ni)/ Im(Li →Mi) be the cohomology. Then∏

Li →
∏

Mi →
∏

Ni

is a complex of abelian groups with homology
∏
Hi.

Proof. Omitted. □
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