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1. Introduction

01D5 In future chapters we will use the existence of injectives and K-injective complexes
to do cohomology of sheaves of modules on ringed sites. In this chapter we explain
how to produce injectives and K-injective complexes first for modules on sites and
later more generally for Grothendieck abelian categories.

We observe that we already know that the category of abelian groups and the cat-
egory of modules over a ring have enough injectives, see More on Algebra, Sections
54 and 55

2. Baer’s argument for modules

05NM There is another, more set-theoretic approach to showing that any R-module M can
be imbedded in an injective module. This approach constructs the injective module
by a transfinite colimit of push-outs. While this method is somewhat abstract and
more complicated than the one of More on Algebra, Section 55, it is also more
general. Apparently this method originates with Baer, and was revisited by Cartan
and Eilenberg in [CE56] and by Grothendieck in [Gro57]. There Grothendieck uses
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it to show that many other abelian categories have enough injectives. We will get
back to the general case later (Section 11).
We begin with a few set theoretic remarks. Let {Bβ}β∈α be an inductive system
of objects in some category C, indexed by an ordinal α. Assume that colimβ∈αBβ
exists in C. If A is an object of C, then there is a natural map
(2.0.1)05NN colimβ∈α MorC(A,Bβ) −→ MorC(A, colimβ∈αBβ).
because if one is given a map A→ Bβ for some β, one naturally gets a map from A
into the colimit by composing with Bβ → colimβ∈αBα. Note that the left colimit
is one of sets! In general, (2.0.1) is neither injective or surjective.

Example 2.1.05NP Consider the category of sets. Let A = N and Bn = {1, . . . , n}
be the inductive system indexed by the natural numbers where Bn → Bm for
n ≤ m is the obvious map. Then colimBn = N, so there is a map A → colimBn,
which does not factor as A → Bm for any m. Consequently, colim Mor(A,Bn) →
Mor(A, colimBn) is not surjective.

Example 2.2.05NQ Next we give an example where the map fails to be injective.
Let Bn = N/{1, 2, . . . , n}, that is, the quotient set of N with the first n elements
collapsed to one element. There are natural maps Bn → Bm for n ≤ m, so the
{Bn} form a system of sets over N. It is easy to see that colimBn = {∗}: it is the
one-point set. So it follows that Mor(A, colimBn) is a one-element set for every
set A. However, colim Mor(A,Bn) is not a one-element set. Consider the family
of maps A → Bn which are just the natural projections N → N/{1, 2, . . . , n} and
the family of maps A→ Bn which map the whole of A to the class of 1. These two
families of maps are distinct at each step and thus are distinct in colim Mor(A,Bn),
but they induce the same map A→ colimBn.

Nonetheless, if we map out of a finite set then (2.0.1) is an isomorphism always.

Lemma 2.3.05NR Suppose that, in (2.0.1), C is the category of sets and A is a finite
set, then the map is a bijection.

Proof. Let f : A → colimBβ . The range of f is finite, containing say elements
c1, . . . , cr ∈ colimBβ . These all come from some elements in Bβ for β ∈ α large
by definition of the colimit. Thus we can define f̃ : A → Bβ lifting f at a finite
stage. This proves that (2.0.1) is surjective. Next, suppose two maps f : A →
Bγ , f

′ : A → Bγ′ define the same map A → colimBβ . Then each of the finitely
many elements of A gets sent to the same point in the colimit. By definition of the
colimit for sets, there is β ≥ γ, γ′ such that the finitely many elements of A get sent
to the same points in Bβ under f and f ′. This proves that (2.0.1) is injective. □

The most interesting case of the lemma is when α = ω, i.e., when the system
{Bβ} is a system {Bn}n∈N over the natural numbers as in Examples 2.1 and 2.2.
The essential idea is that A is “small” relative to the long chain of compositions
B1 → B2 → . . ., so that it has to factor through a finite step. A more general
version of this lemma can be found in Sets, Lemma 7.1. Next, we generalize this
to the category of modules.

Definition 2.4.05NS Let C be a category, let I ⊂ Arrows(C), and let α be an ordinal.
An object A of C is said to be α-small with respect to I if whenever {Bβ} is a system
over α with transition maps in I, then the map (2.0.1) is an isomorphism.

https://stacks.math.columbia.edu/tag/05NP
https://stacks.math.columbia.edu/tag/05NQ
https://stacks.math.columbia.edu/tag/05NR
https://stacks.math.columbia.edu/tag/05NS


INJECTIVES 3

In the rest of this section we shall restrict ourselves to the category of R-modules
for a fixed commutative ring R. We shall also take I to be the collection of injective
maps, i.e., the monomorphisms in the category of modules over R. In this case, for
any system {Bβ} as in the definition each of the maps

Bβ → colimβ∈αBβ

is an injection. It follows that the map (2.0.1) is an injection. We can in fact
interpret the Bβ ’s as submodules of the module B = colimβ∈αBβ , and then we
have B =

⋃
β∈αBβ . This is not an abuse of notation if we identify Bα with the

image in the colimit. We now want to show that modules are always small for
“large” ordinals α.

Proposition 2.5.05NT Let R be a ring. Let M be an R-module. Let κ the cardinality
of the set of submodules of M . If α is an ordinal whose cofinality is bigger than κ,
then M is α-small with respect to injections.

Proof. The proof is straightforward, but let us first think about a special case. If
M is finite, then the claim is that for any inductive system {Bβ} with injections
between them, parametrized by a limit ordinal, any map M → colimBβ factors
through one of the Bβ . And this we proved in Lemma 2.3.
Now we start the proof in the general case. We need only show that the map
(2.0.1) is a surjection. Let f : M → colimBβ be a map. Consider the subobjects
{f−1(Bβ)} of M , where Bβ is considered as a subobject of the colimit B =

⋃
β Bβ .

If one of these, say f−1(Bβ), fills M , then the map factors through Bβ .
So suppose to the contrary that all of the f−1(Bβ) were proper subobjects of M .
However, we know that ⋃

f−1(Bβ) = f−1
(⋃

Bβ

)
= M.

Now there are at most κ different subobjects of M that occur among the f−1(Bα),
by hypothesis. Thus we can find a subset S ⊂ α of cardinality at most κ such that
as β′ ranges over S, the f−1(Bβ′) range over all the f−1(Bα).
However, S has an upper bound α̃ < α as α has cofinality bigger than κ. In
particular, all the f−1(Bβ′), β′ ∈ S are contained in f−1(B

α̃
). It follows that

f−1(B
α̃

) = M . In particular, the map f factors through B
α̃

. □

From this lemma we will be able to deduce the existence of lots of injectives. Let
us recall Baer’s criterion.

Lemma 2.6 (Baer’s criterion).05NU [Bae40, Theorem 1]Let R be a ring. An R-module Q is injective if
and only if in every commutative diagram

a

��

// Q

R

??

for a ⊂ R an ideal, the dotted arrow exists.

Proof. This is the equivalence of (1) and (3) in More on Algebra, Lemma 55.4;
please observe that the proof given there is elementary (and does not use Ext groups
or the existence of injectives or projectives in the category of R-modules). □

https://stacks.math.columbia.edu/tag/05NT
https://stacks.math.columbia.edu/tag/05NU
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If M is an R-module, then in general we may have a semi-complete diagram as in
Lemma 2.6. In it, we can form the push-out

a

��

// M

��
R // R⊕a M.

Here the vertical map is injective, and the diagram commutes. The point is that
we can extend a→M to R if we extend M to the larger module R⊕a M .

The key point of Baer’s argument is to repeat this procedure transfinitely many
times. To do this we first define, given anR-moduleM the following (huge) pushout

(2.6.1)05NV

⊕
a

⊕
φ∈HomR(a,M) a

//

��

M

��⊕
a

⊕
φ∈HomR(a,M) R

//M(M).

Here the top horizontal arrow maps the element a ∈ a in the summand correspond-
ing to φ to the element φ(a) ∈ M . The left vertical arrow maps a ∈ a in the
summand corresponding to φ simply to the element a ∈ R in the summand corre-
sponding to φ. The fundamental properties of this construction are formulated in
the following lemma.

Lemma 2.7.05NW Let R be a ring.
(1) The construction M 7→ (M →M(M)) is functorial in M .
(2) The map M →M(M) is injective.
(3) For any ideal a and any R-module map φ : a → M there is an R-module

map φ′ : R→M(M) such that

a

��

φ
// M

��
R

φ′
//M(M)

commutes.

Proof. Parts (2) and (3) are immediate from the construction. To see (1), let
χ : M → N be an R-module map. We claim there exists a canonical commutative
diagram⊕

a

⊕
φ∈HomR(a,M) a

//

�� ++

M

χ

++⊕
a

⊕
φ∈HomR(a,M) R

++

⊕
a

⊕
ψ∈HomR(a,N) a

//

��

N

⊕
a

⊕
ψ∈HomR(a,N) R

https://stacks.math.columbia.edu/tag/05NW
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which induces the desired map M(M)→M(N). The middle east-south-east arrow
maps the summand a corresponding to φ via ida to the summand a corresponding
to ψ = χ ◦ φ. Similarly for the lower east-south-east arrow. Details omitted. □

The idea will now be to apply the functor M a transfinite number of times. We
define for each ordinal α a functor Mα on the category of R-modules, together
with a natural injection N →Mα(N). We do this by transfinite recursion. First,
M1 = M is the functor defined above. Now, suppose given an ordinal α, and
suppose Mα′ is defined for α′ < α. If α has an immediate predecessor α̃, we let

Mα = M ◦M
α̃
.

If not, i.e., if α is a limit ordinal, we let

Mα(N) = colimα′<α Mα′(N).

It is clear (e.g., inductively) that the Mα(N) form an inductive system over ordinals,
so this is reasonable.

Theorem 2.8.05NX Let κ be the cardinality of the set of ideals in R, and let α be an
ordinal whose cofinality is greater than κ. Then Mα(N) is an injective R-module,
and N →Mα(N) is a functorial injective embedding.

Proof. By Baer’s criterion Lemma 2.6, it suffices to show that if a ⊂ R is an ideal,
then any map f : a → Mα(N) extends to R → Mα(N). However, we know since
α is a limit ordinal that

Mα(N) = colimβ<α Mβ(N),

so by Proposition 2.5, we find that

HomR(a,Mα(N)) = colimβ<α HomR(a,Mβ(N)).

This means in particular that there is some β′ < α such that f factors through the
submodule Mβ′(N), as

f : a→Mβ′(N)→Mα(N).

However, by the fundamental property of the functor M, see Lemma 2.7 part (3),
we know that the map a→Mβ′(N) can be extended to

R→M(Mβ′(N)) = Mβ′+1(N),

and the last object imbeds in Mα(N) (as β′ + 1 < α since α is a limit ordinal). In
particular, f can be extended to Mα(N). □

3. G-modules

04JE We will see later (Differential Graded Algebra, Section 17) that the category of
modules over an algebra has functorial injective embeddings. The construction is
exactly the same as the construction in More on Algebra, Section 55.

Lemma 3.1.04JF Let G be a topological group. Let R be a ring. The category ModR,G
of R-G-modules, see Étale Cohomology, Definition 57.1, has functorial injective
hulls. In particular this holds for the category of discrete G-modules.

https://stacks.math.columbia.edu/tag/05NX
https://stacks.math.columbia.edu/tag/04JF
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Proof. By the remark above the lemma the category ModR[G] has functorial in-
jective embeddings. Consider the forgetful functor v : ModR,G → ModR[G]. This
functor is fully faithful, transforms injective maps into injective maps and has a
right adjoint, namely

u : M 7→ u(M) = {x ∈M | stabilizer of x is open}

Since v(M) = 0⇒M = 0 we conclude by Homology, Lemma 29.5. □

4. Abelian sheaves on a space

01DF
Lemma 4.1.01DG Let X be a topological space. The category of abelian sheaves on X
has enough injectives. In fact it has functorial injective embeddings.

Proof. For an abelian group A we denote j : A → J(A) the functorial injective
embedding constructed in More on Algebra, Section 55. Let F be an abelian sheaf
on X. By Sheaves, Example 7.5 the assignment

I : U 7→ I(U) =
∏

x∈U
J(Fx)

is an abelian sheaf. There is a canonical map F → I given by mapping s ∈ F(U)
to
∏
x∈U j(sx) where sx ∈ Fx denotes the germ of s at x. This map is injective, see

Sheaves, Lemma 11.1 for example.

It remains to prove the following: Given a rule x 7→ Ix which assigns to each point
x ∈ X an injective abelian group the sheaf I : U 7→

∏
x∈U Ix is injective. Note that

I =
∏

x∈X
ix,∗Ix

is the product of the skyscraper sheaves ix,∗Ix (see Sheaves, Section 27 for notation.)
We have

MorAb(Fx, Ix) = MorAb(X)(F , ix,∗Ix).
see Sheaves, Lemma 27.3. Hence it is clear that each ix,∗Ix is injective. Hence the
injectivity of I follows from Homology, Lemma 27.3. □

5. Sheaves of modules on a ringed space

01DH
Lemma 5.1.01DI Let (X,OX) be a ringed space, see Sheaves, Section 25. The category
of sheaves of OX-modules on X has enough injectives. In fact it has functorial
injective embeddings.

Proof. For any ring R and any R-module M we denote j : M → JR(M) the
functorial injective embedding constructed in More on Algebra, Section 55. Let F
be a sheaf of OX -modules on X. By Sheaves, Examples 7.5 and 15.6 the assignment

I : U 7→ I(U) =
∏

x∈U
JOX,x

(Fx)

is an abelian sheaf. There is a canonical map F → I given by mapping s ∈ F(U)
to
∏
x∈U j(sx) where sx ∈ Fx denotes the germ of s at x. This map is injective, see

Sheaves, Lemma 11.1 for example.

https://stacks.math.columbia.edu/tag/01DG
https://stacks.math.columbia.edu/tag/01DI
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It remains to prove the following: Given a rule x 7→ Ix which assigns to each point
x ∈ X an injective OX,x-module the sheaf I : U 7→

∏
x∈U Ix is injective. Note that

I =
∏

x∈X
ix,∗Ix

is the product of the skyscraper sheaves ix,∗Ix (see Sheaves, Section 27 for notation.)
We have

HomOX,x
(Fx, Ix) = HomOX

(F , ix,∗Ix).
see Sheaves, Lemma 27.3. Hence it is clear that each ix,∗Ix is an injective OX -
module (see Homology, Lemma 29.1 or argue directly). Hence the injectivity of I
follows from Homology, Lemma 27.3. □

6. Abelian presheaves on a category

01DJ Let C be a category. Recall that this means that Ob(C) is a set. On the one hand,
consider abelian presheaves on C, see Sites, Section 2. On the other hand, consider
families of abelian groups indexed by elements of Ob(C); in other words presheaves
on the discrete category with underlying set of objects Ob(C). Let us denote this
discrete category simply Ob(C). There is a natural functor

i : Ob(C) −→ C
and hence there is a natural restriction or forgetful functor

v = ip : PAb(C) −→ PAb(Ob(C))
compare Sites, Section 5. We will denote presheaves on C by B and presheaves on
Ob(C) by A.
There are also two functors, namely ip and pi which assign an abelian presheaf on
C to an abelian presheaf on Ob(C), see Sites, Sections 5 and 19. Here we will use
u = pi which is defined (in the case at hand) as follows:

uA(U) =
∏

U ′→U
A(U ′).

So an element is a family (aϕ)ϕ with ϕ ranging through all morphisms in C with
target U . The restriction map on uA corresponding to g : V → U maps our element
(aϕ)ϕ to the element (ag◦ψ)ψ.
There is a canonical surjective map vuA → A and a canonical injective map B →
uvB. We leave it to the reader to show that

MorPAb(C)(B, uA) = MorPAb(Ob(C))(vB,A).
in this simple case; the general case is in Sites, Section 5. Thus the pair (u, v) is an
example of a pair of adjoint functors, see Categories, Section 24.
At this point we can list the following facts about the situation above.

(1) The functors u and v are exact. This follows from the explicit description
of these functors given above.

(2) In particular the functor v transforms injective maps into injective maps.
(3) The category PAb(Ob(C)) has enough injectives.
(4) In fact there is a functorial injective embedding A 7→

(
A → J(A)

)
as in

Homology, Definition 27.5. Namely, we can take J(A) to be the presheaf
U 7→ J(A(U)), where J(−) is the functor constructed in More on Algebra,
Section 55 for the ring Z.
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Putting all of this together gives us the following procedure for embedding objects
B of PAb(C)) into an injective object: B → uJ(vB). See Homology, Lemma 29.5.

Proposition 6.1.01DK For abelian presheaves on a category there is a functorial in-
jective embedding.

Proof. See discussion above. □

7. Abelian Sheaves on a site

01DL Let C be a site. In this section we prove that there are enough injectives for abelian
sheaves on C.

Denote i : Ab(C) −→ PAb(C) the forgetful functor from abelian sheaves to abelian
presheaves. Let # : PAb(C) −→ Ab(C) denote the sheafification functor. Recall
that # is a left adjoint to i, that # is exact, and that iF# = F for any abelian
sheaf F . Finally, let G → J(G) denote the canonical embedding into an injective
presheaf we found in Section 6.

For any sheaf F in Ab(C) and any ordinal β we define a sheaf Jβ(F) by transfinite
recursion. We set J0(F) = F . We define J1(F) = J(iF)#. Sheafification of the
canonical map iF → J(iF) gives a functorial map

F −→ J1(F)

which is injective as # is exact. We set Jα+1(F) = J1(Jα(F)). So that there are
canonical injective maps Jα(F)→ Jα+1(F). For a limit ordinal β, we define

Jβ(F) = colimα<β Jα(F).

Note that this is a directed colimit. Hence for any ordinals α < β we have an
injective map Jα(F)→ Jβ(F).

Lemma 7.1.01DM With notation as above. Suppose that G1 → G2 is an injective map
of abelian sheaves on C. Let α be an ordinal and let G1 → Jα(F) be a morphism of
sheaves. There exists a morphism G2 → Jα+1(F) such that the following diagram
commutes

G1

��

// G2

��
Jα(F) // Jα+1(F)

Proof. This is because the map iG1 → iG2 is injective and hence iG1 → iJα(F)
extends to iG2 → J(iJα(F)) which gives the desired map after applying the sheafi-
fication functor. □

This lemma says that somehow the system {Jα(F)} is an injective embedding of
F . Of course we cannot take the limit over all α because they form a class and
not a set. However, the idea is now that you don’t have to check injectivity on all
injections G1 → G2, plus the following lemma.

Lemma 7.2.01DN Suppose that Gi, i ∈ I is set of abelian sheaves on C. There exists
an ordinal β such that for any sheaf F , any i ∈ I, and any map φ : Gi → Jβ(F)
there exists an α < β such that φ factors through Jα(F).

https://stacks.math.columbia.edu/tag/01DK
https://stacks.math.columbia.edu/tag/01DM
https://stacks.math.columbia.edu/tag/01DN


INJECTIVES 9

Proof. This reduces to the case of a single sheaf G by taking the direct sum of all
the Gi.

Consider the sets
S =

∐
U∈Ob(C)

G(U).

and
Tβ =

∐
U∈Ob(C)

Jβ(F)(U)

The transition maps between the sets Tβ are injective. If the cofinality of β is large
enough, then Tβ = colimα<β Tα, see Sites, Lemma 17.10. A morphism G → Jβ(F)
factors through Jα(F) if and only if the associated map S → Tβ factors through
Tα. By Sets, Lemma 7.1 if the cofinality of β is bigger than the cardinality of S,
then the result of the lemma is true. Hence the lemma follows from the fact that
there are ordinals with arbitrarily large cofinality, see Sets, Proposition 7.2. □

Recall that for an object X of C we denote ZX the presheaf of abelian groups
Γ(U,ZX) = ⊕U→XZ, see Modules on Sites, Section 4. The sheaf associated to this
presheaf is denoted Z#

X , see Modules on Sites, Section 5. It can be characterized
by the property

(7.2.1)05NY MorAb(C)(Z#
X ,G) = G(X)

where the element φ of the left hand side is mapped to φ(1 · idX) in the right hand
side. We can use these sheaves to characterize injective abelian sheaves.

Lemma 7.3.01DO Suppose J is a sheaf of abelian groups with the following property:
For all X ∈ Ob(C), for any abelian subsheaf S ⊂ Z#

X and any morphism φ : S → J ,
there exists a morphism Z#

X → J extending φ. Then J is an injective sheaf of
abelian groups.

Proof. Let F → G be an injective map of abelian sheaves. Suppose φ : F → J is
a morphism. Arguing as in the proof of More on Algebra, Lemma 54.1 we see that
it suffices to prove that if F ̸= G, then we can find an abelian sheaf F ′, F ⊂ F ′ ⊂ G
such that (a) the inclusion F ⊂ F ′ is strict, and (b) φ can be extended to F ′. To
find F ′, let X be an object of C such that the inclusion F(X) ⊂ G(X) is strict.
Pick s ∈ G(X), s ̸∈ F(X). Let ψ : Z#

X → G be the morphism corresponding to the
section s via (7.2.1). Set S = ψ−1(F). By assumption the morphism

S ψ−→ F φ−→ J

can be extended to a morphism φ′ : Z#
X → J . Note that φ′ annihilates the kernel

of ψ (as this is true for φ). Thus φ′ gives rise to a morphism φ′′ : Im(ψ) → J
which agrees with φ on the intersection F ∩ Im(ψ) by construction. Thus φ and φ′′

glue to give an extension of φ to the strictly bigger subsheaf F ′ = F + Im(ψ). □

Theorem 7.4.01DP The category of sheaves of abelian groups on a site has enough
injectives. In fact there exists a functorial injective embedding, see Homology, Def-
inition 27.5.

Proof. Let Gi, i ∈ I be a set of abelian sheaves such that every subsheaf of every
Z#
X occurs as one of the Gi. Apply Lemma 7.2 to this collection to get an ordinal β.

We claim that for any sheaf of abelian groups F the map F → Jβ(F) is an injection

https://stacks.math.columbia.edu/tag/01DO
https://stacks.math.columbia.edu/tag/01DP
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of F into an injective. Note that by construction the assignment F 7→
(
F → Jβ(F)

)
is indeed functorial.

The proof of the claim comes from the fact that by Lemma 7.3 it suffices to extend
any morphism γ : G → Jβ(F) from a subsheaf G of some Z#

X to all of Z#
X . Then by

Lemma 7.2 the map γ lifts into Jα(F) for some α < β. Finally, we apply Lemma
7.1 to get the desired extension of γ to a morphism into Jα+1(F)→ Jβ(F). □

8. Modules on a ringed site

01DQ Let C be a site. Let O be a sheaf of rings on C. By analogy with More on Algebra,
Section 55 let us try to prove that there are enough injective O-modules. First of
all, we pick an injective embedding⊕

U,I
jU !OU/I −→ J

where J is an injective abelian sheaf (which exists by the previous section). Here
the direct sum is over all objects U of C and over all O-submodules I ⊂ jU !OU .
Please see Modules on Sites, Section 19 to read about the functors restriction and
extension by 0 for the localization functor jU : C/U → C.

For any sheaf of O-modules F denote

F∨ = Hom(F ,J )

with its natural O-module structure. Insert here future reference to internal hom.
We will also need a canonical flat resolution of a sheaf of O-modules. This we can
do as follows: For any O-module F we denote

F (F) =
⊕

U∈Ob(C),s∈F(U)
jU !OU .

This is a flat sheaf of O-modules which comes equipped with a canonical surjection
F (F) → F , see Modules on Sites, Lemma 28.8. Moreover the construction F 7→
F (F) is functorial in F .

Lemma 8.1.01DR The functor F 7→ F∨ is exact.

Proof. This because J is an injective abelian sheaf. □

There is a canonical map ev : F → (F∨)∨ given by evaluation: given x ∈ F(U) we
let ev(x) ∈ (F∨)∨ = Hom(F∨,J ) be the map φ 7→ φ(x).

Lemma 8.2.01DS For any O-module F the evaluation map ev : F → (F∨)∨ is injective.

Proof. You can check this using the definition of J . Namely, if s ∈ F(U) is not
zero, then let jU !OU → F be the map ofO-modules it corresponds to via adjunction.
Let I be the kernel of this map. There exists a nonzero map F ⊃ jU !OU/I → J
which does not annihilate s. As J is an injective O-module, this extends to a map
φ : F → J . Then ev(s)(φ) = φ(s) ̸= 0 which is what we had to prove. □

The canonical surjection F (F)→ F of O-modules turns into a canonical injection,
see above, of O-modules

(F∨)∨ −→ (F (F∨))∨.

Set J(F) = (F (F∨))∨. The composition of ev with this the displayed map gives
F → J(F) functorially in F .

https://stacks.math.columbia.edu/tag/01DR
https://stacks.math.columbia.edu/tag/01DS
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Lemma 8.3.01DT Let O be a sheaf of rings. For every O-module F the O-module
J(F) is injective.

Proof. We have to show that the functor HomO(G, J(F)) is exact. Note that

HomO(G, J(F)) = HomO(G, (F (F∨))∨)
= HomO(G,Hom(F (F∨),J ))
= Hom(G ⊗O F (F∨),J )

Thus what we want follows from the fact that F (F∨) is flat and J is injective. □

Theorem 8.4.01DU Let C be a site. Let O be a sheaf of rings on C. The category
of sheaves of O-modules on a site has enough injectives. In fact there exists a
functorial injective embedding, see Homology, Definition 27.5.

Proof. From the discussion in this section. □

Proposition 8.5.01DV Let C be a category. Let O be a presheaf of rings on C. The
category PMod(O) of presheaves of O-modules has functorial injective embeddings.

Proof. We could prove this along the lines of the discussion in Section 6. But
instead we argue using the theorem above. Endow C with the structure of a site
by letting the set of coverings of an object U consist of all singletons {f : V → U}
where f is an isomorphism. We omit the verification that this defines a site. A
sheaf for this topology is the same as a presheaf (proof omitted). Hence the theorem
applies. □

9. Embedding abelian categories

05PL In this section we show that an abelian category embeds in the category of abelian
sheaves on a site having enough points. The site will be the one described in the
following lemma.

Lemma 9.1.05PM Let A be an abelian category. Let

Cov = {{f : V → U} | f is surjective}.

Then (A,Cov) is a site, see Sites, Definition 6.2.

Proof. Note that Ob(A) is a set by our conventions about categories. An iso-
morphism is a surjective morphism. The composition of surjective morphisms is
surjective. And the base change of a surjective morphism in A is surjective, see
Homology, Lemma 5.14. □

Let A be a pre-additive category. In this case the Yoneda embedding A → PSh(A),
X 7→ hX factors through a functor A → PAb(A).

Lemma 9.2.05PN Let A be an abelian category. Let C = (A,Cov) be the site defined
in Lemma 9.1. Then X 7→ hX defines a fully faithful, exact functor

A −→ Ab(C).

Moreover, the site C has enough points.

https://stacks.math.columbia.edu/tag/01DT
https://stacks.math.columbia.edu/tag/01DU
https://stacks.math.columbia.edu/tag/01DV
https://stacks.math.columbia.edu/tag/05PM
https://stacks.math.columbia.edu/tag/05PN
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Proof. Suppose that f : V → U is a surjective morphism of A. Let K = Ker(f).
Recall that V ×U V = Ker((f,−f) : V ⊕ V → U), see Homology, Example 5.6. In
particular there exists an injection K ⊕ K → V ×U V . Let p, q : V ×U V → V
be the two projection morphisms. Note that p − q : V ×U V → V is a morphism
such that f ◦ (p− q) = 0. Hence p− q factors through K → V . Let us denote this
morphism by c : V ×U V → K. And since the composition K⊕K → V ×U V → K
is surjective, we conclude that c is surjective. It follows that

V ×U V
p−q−−→ V → U → 0

is an exact sequence of A. Hence for an object X of A the sequence
0→ HomA(U,X)→ HomA(V,X)→ HomA(V ×U V,X)

is an exact sequence of abelian groups, see Homology, Lemma 5.8. This means that
hX satisfies the sheaf condition on C.
The functor is fully faithful by Categories, Lemma 3.5. The functor is a left exact
functor between abelian categories by Homology, Lemma 5.8. To show that it is
right exact, let X → Y be a surjective morphism of A. Let U be an object of A,
and let s ∈ hY (U) = MorA(U, Y ) be a section of hY over U . By Homology, Lemma
5.14 the projection U ×Y X → U is surjective. Hence {V = U ×Y X → U} is a
covering of U such that s|V lifts to a section of hX . This proves that hX → hY is
a surjection of abelian sheaves, see Sites, Lemma 11.2.
The site C has enough points by Sites, Proposition 39.3. □

Remark 9.3.05PP The Freyd-Mitchell embedding theorem says there exists a fully
faithful exact functor from any abelian category A to the category of modules
over a ring. Lemma 9.2 is not quite as strong. But the result is suitable for the
Stacks project as we have to understand sheaves of abelian groups on sites in detail
anyway. Moreover, “diagram chasing” works in the category of abelian sheaves on
C, for example by working with sections over objects, or by working on the level
of stalks using that C has enough points. To see how to deduce the Freyd-Mitchell
embedding theorem from Lemma 9.2 see Remark 9.5.

Remark 9.4.05PQ If A is a “big” abelian category, i.e., if A has a class of objects,
then Lemma 9.2 does not work. In this case, given any set of objects E ⊂ Ob(A)
there exists an abelian full subcategory A′ ⊂ A such that Ob(A′) is a set and
E ⊂ Ob(A′). Then one can apply Lemma 9.2 to A′. One can use this to prove that
results depending on a diagram chase hold in A.

Remark 9.5.05PR Let C be a site. Note that Ab(C) has enough injectives, see Theorem
7.4. (In the case that C has enough points this is straightforward because p∗I is an
injective sheaf if I is an injective Z-module and p is a point.) Also, Ab(C) has a
cogenerator (details omitted). Hence Lemma 9.2 proves that we have a fully faithful,
exact embedding A → B where B has a cogenerator and enough injectives. We can
apply this to Aopp and we get a fully faithful exact functor i : A → D = Bopp where
D has enough projectives and a generator. Hence D has a projective generator P .
Set R = MorD(P, P ). Then

A −→ ModR, X 7−→ HomD(P,X).
One can check this is a fully faithful, exact functor. In other words, one retrieves
the Freyd-Mitchell theorem mentioned in Remark 9.3 above.

https://stacks.math.columbia.edu/tag/05PP
https://stacks.math.columbia.edu/tag/05PQ
https://stacks.math.columbia.edu/tag/05PR
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Remark 9.6.05SF The arguments proving Lemmas 9.1 and 9.2 work also for exact
categories, see [Büh10, Appendix A] and [BBD82, 1.1.4]. We quickly review this
here and we add more details if we ever need it in the Stacks project.

Let A be an additive category. A kernel-cokernel pair is a pair (i, p) of morphisms
of A with i : A→ B, p : B → C such that i is the kernel of p and p is the cokernel
of i. Given a set E of kernel-cokernel pairs we say i : A → B is an admissible
monomorphism if (i, p) ∈ E for some morphism p. Similarly we say a morphism
p : B → C is an admissible epimorphism if (i, p) ∈ E for some morphism i. The
pair (A, E) is said to be an exact category if the following axioms hold

(1) E is closed under isomorphisms of kernel-cokernel pairs,
(2) for any object A the morphism 1A is both an admissible epimorphism and

an admissible monomorphism,
(3) admissible monomorphisms are stable under composition,
(4) admissible epimorphisms are stable under composition,
(5) the push-out of an admissible monomorphism i : A→ B via any morphism

A → A′ exist and the induced morphism i′ : A′ → B′ is an admissible
monomorphism, and

(6) the base change of an admissible epimorphism p : B → C via any morphism
C ′ → C exist and the induced morphism p′ : B′ → C ′ is an admissible
epimorphism.

Given such a structure let C = (A,Cov) where coverings (i.e., elements of Cov)
are given by admissible epimorphisms. The axioms listed above immediately imply
that this is a site. Consider the functor

F : A −→ Ab(C), X 7−→ hX

exactly as in Lemma 9.2. It turns out that this functor is fully faithful, exact, and
reflects exactness. Moreover, any extension of objects in the essential image of F
is in the essential image of F .

10. Grothendieck’s AB conditions

079A This and the next few sections are mostly interesting for “big” abelian categories,
i.e., those categories listed in Categories, Remark 2.2. A good case to keep in mind
is the category of sheaves of modules on a ringed site.

Grothendieck proved the existence of injectives in great generality in the paper
[Gro57]. He used the following conditions to single out abelian categories with
special properties.

Definition 10.1.079B Let A be an abelian category. We name some conditions
AB3 A has direct sums,
AB4 A has AB3 and direct sums are exact,
AB5 A has AB3 and filtered colimits are exact.

Here are the dual notions
AB3* A has products,
AB4* A has AB3* and products are exact,
AB5* A has AB3* and cofiltered limits are exact.

https://stacks.math.columbia.edu/tag/05SF
https://stacks.math.columbia.edu/tag/079B
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We say an object U of A is a generator if for every N ⊂M , N ̸= M in A there exists
a morphism U →M which does not factor through N . We say A is a Grothendieck
abelian category if it has AB5 and a generator.

Discussion: A direct sum in an abelian category is a coproduct. If an abelian
category has direct sums (i.e., AB3), then it has colimits, see Categories, Lemma
14.12. Similarly if A has AB3* then it has limits, see Categories, Lemma 14.11.
Exactness of direct sums means the following: given an index set I and short exact
sequences

0→ Ai → Bi → Ci → 0, i ∈ I
in A then the sequence

0→
⊕

i∈I
Ai →

⊕
i∈I

Bi →
⊕

i∈I
Ci → 0

is exact as well. Without assuming AB4 it is only true in general that the sequence
is exact on the right (i.e., taking direct sums is a right exact functor if direct sums
exist). Similarly, exactness of filtered colimits means the following: given a directed
set I and a system of short exact sequences

0→ Ai → Bi → Ci → 0
over I in A then the sequence

0→ colimi∈I Ai → colimi∈I Bi → colimi∈I Ci → 0
is exact as well. Without assuming AB5 it is only true in general that the sequence
is exact on the right (i.e., taking colimits is a right exact functor if colimits exist).
A similar explanation holds for AB4* and AB5*.

11. Injectives in Grothendieck categories

05AB The existence of a generator implies that given an object M of a Grothendieck
abelian category A there is a set of subobjects. (This may not be true for a general
“big” abelian category.)

Lemma 11.1.0E8N Let A be an abelian category with a generator U and X and object
of A. If κ is the cardinality of Mor(U,X) then

(1) There does not exist a strictly increasing (or strictly decreasing) chain of
subobjects of X indexed by a cardinal bigger than κ.

(2) If α is an ordinal of cofinality > κ then any increasing (or decreasing)
sequence of subobjects of X indexed by α is eventually constant.

(3) The cardinality of the set of subobjects of X is ≤ 2κ.

Proof. For (1) assume κ′ > κ is a cardinal and assume Xi, i ∈ κ′ is strictly
increasing. Then take for each i a ϕi ∈ Mor(U,X) such that ϕi factors through
Xi+1 but not through Xi. Then the morphisms ϕi are distinct, which contradicts
the definition of κ.
Part (2) follows from the definition of cofinality and (1).
Proof of (3). For any subobject Y ⊂ X define SY ∈ P(Mor(U,X)) (power set)
as SY = {ϕ ∈ Mor(U,X) : ϕ) factors through Y }. Then Y = Y ′ if and only if
SY = SY ′ . Hence the cardinality of the set of subobjects is at most the cardinality
of this power set. □

By Lemma 11.1 the following definition makes sense.

https://stacks.math.columbia.edu/tag/0E8N
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Definition 11.2.079C Let A be a Grothendieck abelian category. Let M be an object
of A. The size |M | of M is the cardinality of the set of subobjects of M .

Lemma 11.3.079D Let A be a Grothendieck abelian category. If 0 → M ′ → M →
M ′′ → 0 is a short exact sequence of A, then |M ′|, |M ′′| ≤ |M |.

Proof. Immediate from the definitions. □

Lemma 11.4.079E Let A be a Grothendieck abelian category with generator U .
(1) If |M | ≤ κ, then M is the quotient of a direct sum of at most κ copies of

U .
(2) For every cardinal κ there exists a set of isomorphism classes of objects M

with |M | ≤ κ.

Proof. For (1) choose for every proper subobject M ′ ⊂M a morphism φM ′ : U →
M whose image is not contained in M ′. Then

⊕
M ′⊂M φM ′ :

⊕
M ′⊂M U → M is

surjective. It is clear that (1) implies (2). □

Proposition 11.5.079F Let A be a Grothendieck abelian category. Let M be an object
of A. Let κ = |M |. If α is an ordinal whose cofinality is bigger than κ, then M is
α-small with respect to injections.

Proof. Please compare with Proposition 2.5. We need only show that the map
(2.0.1) is a surjection. Let f : M → colimBβ be a map. Consider the subobjects
{f−1(Bβ)} of M , where Bβ is considered as a subobject of the colimit B =

⋃
β Bβ .

If one of these, say f−1(Bβ), fills M , then the map factors through Bβ .
So suppose to the contrary that all of the f−1(Bβ) were proper subobjects of M .
However, because A has AB5 we have

colim f−1(Bβ) = f−1 (colimBβ) = M.

Now there are at most κ different subobjects of M that occur among the f−1(Bα),
by hypothesis. Thus we can find a subset S ⊂ α of cardinality at most κ such that
as β′ ranges over S, the f−1(Bβ′) range over all the f−1(Bα).
However, S has an upper bound α̃ < α as α has cofinality bigger than κ. In
particular, all the f−1(Bβ′), β′ ∈ S are contained in f−1(B

α̃
). It follows that

f−1(B
α̃

) = M . In particular, the map f factors through B
α̃

. □

Lemma 11.6.079G Let A be a Grothendieck abelian category with generator U . An
object I of A is injective if and only if in every commutative diagram

M

��

// I

U

??

for M ⊂ U a subobject, the dotted arrow exists.

Proof. Please see Lemma 2.6 for the case of modules. Choose an injection A ⊂ B
and a morphism φ : A → I. Consider the set S of pairs (A′, φ′) consisting of
subobjects A ⊂ A′ ⊂ B and a morphism φ′ : A′ → I extending φ. Define a partial
ordering on this set in the obvious manner. Choose a totally ordered subset T ⊂ S.
Then

A′ = colimt∈T At
colimt∈T φt−−−−−−−→ I

https://stacks.math.columbia.edu/tag/079C
https://stacks.math.columbia.edu/tag/079D
https://stacks.math.columbia.edu/tag/079E
https://stacks.math.columbia.edu/tag/079F
https://stacks.math.columbia.edu/tag/079G
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is an upper bound. Hence by Zorn’s lemma the set S has a maximal element
(A′, φ′). We claim that A′ = B. If not, then choose a morphism ψ : U → B which
does not factor through A′. Set N = A′ ∩ ψ(U). Set M = ψ−1(N). Then the map

M → N → A′ φ′

−→ I

can be extended to a morphism χ : U → I. Since χ|Ker(ψ) = 0 we see that χ factors
as

U → Im(ψ) φ′′

−−→ I

Since φ′ and φ′′ agree on N = A′ ∩ Im(ψ) we see that combined the define a
morphism A′ + Im(ψ)→ I contradicting the assumed maximality of A′. □

Theorem 11.7.079H Let A be a Grothendieck abelian category. Then A has functorial
injective embeddings.

Proof. Please compare with the proof of Theorem 2.8. Choose a generator U of
A. For an object M we define M(M) by the following pushout diagram⊕

N⊂U
⊕

φ∈Hom(N,M) N
//

��

M

��⊕
N⊂U

⊕
φ∈Hom(N,M) U

//M(M).

Note that M → M(N) is a functor and that there exist functorial injective maps
M →M(M). By transfinite induction we define functors Mα(M) for every ordinal
α. Namely, set M0(M) = M . Given Mα(M) set Mα+1(M) = M(Mα(M)). For a
limit ordinal β set

Mβ(M) = colimα<β Mα(M).
Finally, pick any ordinal α whose cofinality is greater than |U |. Such an ordinal
exists by Sets, Proposition 7.2. We claim that M →Mα(M) is the desired functo-
rial injective embedding. Namely, if N ⊂ U is a subobject and φ : N → Mα(M)
is a morphism, then we see that φ factors through Mα′(M) for some α′ < α by
Proposition 11.5. By construction of M(−) we see that φ extends to a morphism
from U into Mα′+1(M) and hence into Mα(M). By Lemma 11.6 we conclude that
Mα(M) is injective. □

12. K-injectives in Grothendieck categories

079I The material in this section is taken from the paper [Ser03] authored by Serpé.
This paper generalizes some of the results of [Spa88] by Spaltenstein to general
Grothendieck abelian categories. Our Lemma 12.3 is only implicit in the paper by
Serpé. Our approach is to mimic Grothendieck’s proof of Theorem 11.7.

Lemma 12.1.079J Let A be a Grothendieck abelian category with generator U . Let c be
the function on cardinals defined by c(κ) = |

⊕
α∈κ U |. If π : M → N is a surjection

then there exists a subobject M ′ ⊂M which surjects onto N with |M ′| ≤ c(|N |).

Proof. For every proper subobject N ′ ⊂ N choose a morphism φN ′ : U →M such
that U →M → N does not factor through N ′. Set

M ′ = Im
(⊕

N ′⊂N
φN ′ :

⊕
N ′⊂N

U −→M
)

Then M ′ works. □

https://stacks.math.columbia.edu/tag/079H
https://stacks.math.columbia.edu/tag/079J
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Lemma 12.2.079K Let A be a Grothendieck abelian category. There exists a cardinal
κ such that given any acyclic complex M• we have

(1) if M• is nonzero, there is a nonzero subcomplex N• which is bounded above,
acyclic, and |Nn| ≤ κ,

(2) there exists a surjection of complexes⊕
i∈I

M•
i −→M•

where M•
i is bounded above, acyclic, and |Mn

i | ≤ κ.

Proof. Choose a generator U of A. Denote c the function of Lemma 12.1. Set
κ = sup{cn(|U |), n = 1, 2, 3, . . .}. Let n ∈ Z and let ψ : U → Mn be a morphism.
In order to prove (1) and (2) it suffices to prove there exists a subcomplex N• ⊂M•

which is bounded above, acyclic, and |Nm| ≤ κ, such that ψ factors through Nn.
To do this set Nn = Im(ψ), Nn+1 = Im(U → Mn → Mn+1), and Nm = 0 for
m ≥ n+ 2. Suppose we have constructed Nm ⊂Mm for all m ≥ k such that

(1) d(Nm) ⊂ Nm+1, m ≥ k,
(2) Im(Nm−1 → Nm) = Ker(Nm → Nm+1) for all m ≥ k + 1, and
(3) |Nm| ≤ cmax{n−m,0}(|U |).

for some k ≤ n. Because M• is acyclic, we see that the subobject d−1(Ker(Nk →
Nk+1)) ⊂ Mk−1 surjects onto Ker(Nk → Nk+1). Thus we can choose Nk−1 ⊂
Mk−1 surjecting onto Ker(Nk → Nk+1) with |Nk−1| ≤ cn−k+1(|U |) by Lemma
12.1. The proof is finished by induction on k. □

Lemma 12.3.079L Let A be a Grothendieck abelian category. Let κ be a cardinal as
in Lemma 12.2. Suppose that I• is a complex such that

(1) each Ij is injective, and
(2) for every bounded above acyclic complex M• such that |Mn| ≤ κ we have

HomK(A)(M•, I•) = 0.
Then I• is an K-injective complex.

Proof. Let M• be an acyclic complex. We are going to construct by induction
on the ordinal α an acyclic subcomplex K•

α ⊂ M• as follows. For α = 0 we set
K•

0 = 0. For α > 0 we proceed as follows:
(1) If α = β + 1 and K•

β = M• then we choose K•
α = K•

β .
(2) If α = β + 1 and K•

β ̸= M• then M•/K•
β is a nonzero acyclic complex.

We choose a subcomplex N•
α ⊂ M•/K•

β as in Lemma 12.2. Finally, we let
K•
α ⊂M• be the inverse image of N•

α.
(3) If α is a limit ordinal we set K•

β = colimK•
α.

It is clear that M• = K•
α for a suitably large ordinal α. We will prove that

HomK(A)(K•
α, I

•)
is zero by transfinite induction on α. It holds for α = 0 since K•

0 is zero. Suppose
it holds for β and α = β+ 1. In case (1) of the list above the result is clear. In case
(2) there is a short exact sequence of complexes

0→ K•
β → K•

α → N•
α → 0

Since each component of I• is injective we see that we obtain an exact sequence
HomK(A)(K•

β , I
•)→ HomK(A)(K•

α, I
•)→ HomK(A)(N•

α, I
•)

https://stacks.math.columbia.edu/tag/079K
https://stacks.math.columbia.edu/tag/079L
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By induction the term on the left is zero and by assumption on I• the term on the
right is zero. Thus the middle group is zero too. Finally, suppose that α is a limit
ordinal. Then we see that

Hom•(K•
α, I

•) = limβ<α Hom•(K•
β , I

•)
with notation as in More on Algebra, Section 71. These complexes compute mor-
phisms in K(A) by More on Algebra, Equation (71.0.1). Note that the transition
maps in the system are surjective because Ij is surjective for each j. Moreover, for
a limit ordinal α we have equality of limit and value (see displayed formula above).
Thus we may apply Homology, Lemma 31.8 to conclude. □

Lemma 12.4.079M Let A be a Grothendieck abelian category. Let (K•
i )i∈I be a set of

acyclic complexes. There exists a functor M• 7→M•(M•) and a natural transfor-
mation jM• : M• →M•(M•) such

(1) jM• is a (termwise) injective quasi-isomorphism, and
(2) for every i ∈ I and w : K•

i → M• the morphism jM• ◦ w is homotopic to
zero.

Proof. For every i ∈ I choose a (termwise) injective map of complexes K•
i → L•

i

which is homotopic to zero with L•
i quasi-isomorphic to zero. For example, take L•

i

to be the cone on the identity of K•
i . We define M•(M•) by the following pushout

diagram ⊕
i∈I
⊕

w:K•
i

→M• K•
i

//

��

M•

��⊕
i∈I
⊕

w:K•
i

→M• L•
i

//M•(M•).

Then M• →M•(M•) is a functor. The right vertical arrow defines the functorial
injective map jM• . The cokernel of jM• is isomorphic to the direct sum of the
cokernels of the maps K•

i → L•
i hence acyclic. Thus jM• is a quasi-isomorphism.

Part (2) holds by construction. □

Lemma 12.5.079N Let A be a Grothendieck abelian category. There exists a functor
M• 7→ N•(M•) and a natural transformation jM• : M• → N•(M•) such

(1) jM• is a (termwise) injective quasi-isomorphism, and
(2) for every n ∈ Z the map Mn → Nn(M•) factors through a subobject In ⊂

Nn(M•) where In is an injective object of A.

Proof. Choose a functorial injective embeddings iM : M → I(M), see Theorem
11.7. For every complex M• denote J•(M•) the complex with terms Jn(M•) =
I(Mn)⊕ I(Mn+1) and differential

dJ•(M•) =
(

0 1
0 0

)
There exists a canonical injective map of complexes uM• : M• → J•(M•) by
mapping Mn to I(Mn)⊕I(Mn+1) via the maps iMn : Mn → I(Mn) and iMn+1 ◦d :
Mn →Mn+1 → I(Mn+1). Hence a short exact sequence of complexes

0→M• uM•−−−→ J•(M•) vM•−−−→ Q•(M•)→ 0
functorial in M•. Set

N•(M•) = C(vM•)•[−1].

https://stacks.math.columbia.edu/tag/079M
https://stacks.math.columbia.edu/tag/079N
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Note that
Nn(M•) = Qn−1(M•)⊕ Jn(M•)

with differential (
−dn−1

Q•(M•) −vnM•

0 dnJ•(M)

)
Hence we see that there is a map of complexes jM• : M• → N•(M•) induced by u.
It is injective and factors through an injective subobject by construction. The map
jM• is a quasi-isomorphism as one can prove by looking at the long exact sequence
of cohomology associated to the short exact sequences of complexes above. □

Theorem 12.6.079P Let A be a Grothendieck abelian category. For every complex M•

there exists a quasi-isomorphism M• → I• such that Mn → In is injective and In
is an injective object of A for all n and I• is a K-injective complex. Moreover, the
construction is functorial in M•.

Proof. Please compare with the proof of Theorem 2.8 and Theorem 11.7. Choose
a cardinal κ as in Lemmas 12.2 and 12.3. Choose a set (K•

i )i∈I of bounded above,
acyclic complexes such that every bounded above acyclic complex K• such that
|Kn| ≤ κ is isomorphic to K•

i for some i ∈ I. This is possible by Lemma 11.4.
Denote M•(−) the functor constructed in Lemma 12.4. Denote N•(−) the functor
constructed in Lemma 12.5. Both of these functors come with injective transfor-
mations id→M and id→ N.

Using transfinite recursion we define a sequence of functors Tα(−) and correspond-
ing transformations id → Tα. Namely we set T0(M•) = M•. If Tα is given then
we set

Tα+1(M•) = N•(M•(Tα(M•)))

If β is a limit ordinal we set

Tβ(M•) = colimα<β Tα(M•)

The transition maps of the system are injective quasi-isomorphisms. By AB5 we
see that the colimit is still quasi-isomorphic to M•. We claim that M• → Tα(M•)
does the job if the cofinality of α is larger than max(κ, |U |) where U is a generator
of A. Namely, it suffices to check conditions (1) and (2) of Lemma 12.3.

For (1) we use the criterion of Lemma 11.6. Suppose that M ⊂ U and φ : M →
Tn
α(M•) is a morphism for some n ∈ Z. By Proposition 11.5 we see that φ factor

through Tn
α′(M•) for some α′ < α. In particular, by the construction of the functor

N•(−) we see that φ factors through an injective object of A which shows that φ
lifts to a morphism on U .

For (2) let w : K• → Tα(M•) be a morphism of complexes where K• is a bounded
above acyclic complex such that |Kn| ≤ κ. Then K• ∼= K•

i for some i ∈ I.
Moreover, by Proposition 11.5 once again we see that w factor through Tn

α′(M•)
for some α′ < α. In particular, by the construction of the functor M•(−) we see
that w is homotopic to zero. This finishes the proof. □

https://stacks.math.columbia.edu/tag/079P
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13. Additional remarks on Grothendieck abelian categories

07D6 In this section we put some results on Grothendieck abelian categories which are
folklore.

Lemma 13.1.07D7 Let A be a Grothendieck abelian category. Let F : Aopp → Sets be
a functor. Then F is representable if and only if F commutes with colimits, i.e.,

F (colimiNi) = limF (Ni)

for any diagram I → A, i ∈ I.

Proof. If F is representable, then it commutes with colimits by definition of col-
imits.

Assume that F commutes with colimits. Then F (M ⊕ N) = F (M) × F (N) and
we can use this to define a group structure on F (M). Hence we get F : A → Ab
which is additive and right exact, i.e., transforms a short exact sequence 0→ K →
L → M → 0 into an exact sequence F (K) ← F (L) ← F (M) ← 0 (compare with
Homology, Section 7).

Let U be a generator for A. Set A =
⊕

s∈F (U) U . Let suniv = (s)s∈F (U) ∈ F (A) =∏
s∈F (U) F (U). Let A′ ⊂ A be the largest subobject such that suniv restricts to zero

on A′. This exists because A is a Grothendieck category and because F commutes
with colimits. Because F commutes with colimits there exists a unique element
suniv ∈ F (A/A′) which maps to suniv in F (A). We claim that A/A′ represents F ,
in other words, the Yoneda map

suniv : hA/A′ −→ F

is an isomorphism. Let M ∈ Ob(A) and s ∈ F (M). Consider the surjection

cM : AM =
⊕

φ∈HomA(U,M)
U −→M.

This gives F (cM )(s) = (sφ) ∈
∏
φ F (U). Consider the map

ψ : AM =
⊕

φ∈HomA(U,M)
U −→

⊕
s∈F (U)

U = A

which maps the summand corresponding to φ to the summand corresponding to
sφ by the identity map on U . Then suniv maps to (sφ)φ by construction. in other
words the right square in the diagram

A′ // A
suniv

// F

K //

?

OO

AM

ψ

OO

// M

s

OO

commutes. Let K = Ker(AM → M). Since s restricts to zero on K we see
that ψ(K) ⊂ A′ by definition of A′. Hence there is an induced morphism M →
A/A′. This construction gives an inverse to the map hA/A′(M) → F (M) (details
omitted). □

Lemma 13.2.07D8 A Grothendieck abelian category has Ab3*.

Proof. Let Mi, i ∈ I be a family of objects of A indexed by a set I. The functor
F =

∏
i∈I hMi

commutes with colimits. Hence Lemma 13.1 applies. □

https://stacks.math.columbia.edu/tag/07D7
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Remark 13.3.079Q In the chapter on derived categories we consistently work with
“small” abelian categories (as is the convention in the Stacks project). For a “big”
abelian category A it isn’t clear that the derived category D(A) exists because it
isn’t clear that morphisms in the derived category are sets. In general this isn’t
true, see Examples, Lemma 61.1. However, if A is a Grothendieck abelian category,
and given K•, L• in K(A), then by Theorem 12.6 there exists a quasi-isomorphism
L• → I• to a K-injective complex I• and Derived Categories, Lemma 31.2 shows
that

HomD(A)(K•, L•) = HomK(A)(K•, I•)
which is a set. Some examples of Grothendieck abelian categories are the category
of modules over a ring, or more generally the category of sheaves of modules on a
ringed site.

Lemma 13.4.07D9 Let A be a Grothendieck abelian category. Then
(1) D(A) has both direct sums and products,
(2) direct sums are obtained by taking termwise direct sums of any complexes,
(3) products are obtained by taking termwise products of K-injective complexes.

Proof. Let K•
i , i ∈ I be a family of objects of D(A) indexed by a set I. We claim

that the termwise direct sum
⊕

i∈I K
•
i is a direct sum in D(A). Namely, let I• be

a K-injective complex. Then we have

HomD(A)(
⊕

i∈I
K•
i , I

•) = HomK(A)(
⊕

i∈I
K•
i , I

•)

=
∏

i∈I
HomK(A)(K•

i , I
•)

=
∏

i∈I
HomD(A)(K•

i , I
•)

as desired. This is sufficient since any complex can be represented by a K-injective
complex by Theorem 12.6. To construct the product, choose a K-injective resolution
K•
i → I•

i for each i. Then we claim that
∏
i∈I I

•
i is a product in D(A). This follows

from Derived Categories, Lemma 31.5. □

Remark 13.5.07DA Let R be a ring. Suppose that Mn, n ∈ Z are R-modules. Denote
En = Mn[−n] ∈ D(R). We claim that E =

⊕
Mn[−n] is both the direct sum and

the product of the objects En in D(R). To see that it is the direct sum, take a
look at the proof of Lemma 13.4. To see that it is the direct product, take injective
resolutions Mn → I•

n. By the proof of Lemma 13.4 we have∏
En =

∏
I•
n[−n]

in D(R). Since products in ModR are exact, we see that
∏
I•
n[−n] is quasi-

isomorphic to E. This works more generally in D(A) where A is a Grothendieck
abelian category with Ab4*.

Lemma 13.6.08U1 Let F : A → B be an additive functor of abelian categories. Assume
(1) A is a Grothendieck abelian category,
(2) B has exact countable products, and
(3) F commutes with countable products.

Then RF : D(A)→ D(B) commutes with derived limits.

https://stacks.math.columbia.edu/tag/079Q
https://stacks.math.columbia.edu/tag/07D9
https://stacks.math.columbia.edu/tag/07DA
https://stacks.math.columbia.edu/tag/08U1
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Proof. Observe that RF exists as A has enough K-injectives (Theorem 12.6 and
Derived Categories, Lemma 31.6). The statement means that if K = R limKn,
then RF (K) = R limRF (Kn). See Derived Categories, Definition 34.1 for notation.
Since RF is an exact functor of triangulated categories it suffices to see that RF
commutes with countable products of objects of D(A). In the proof of Lemma 13.4
we have seen that products in D(A) are computed by taking products of K-injective
complexes and moreover that a product of K-injective complexes is K-injective.
Moreover, in Derived Categories, Lemma 34.2 we have seen that products in D(B)
are computed by taking termwise products. Since RF is computed by applying F
to a K-injective representative and since we’ve assumed F commutes with countable
products, the lemma follows. □

The following lemma is some kind of generalization of the existence of Cartan-
Eilenberg resolutions (Derived Categories, Section 21).

Lemma 13.7.0BKI Let A be a Grothendieck abelian category. Let K• be a filtered
complex of A, see Homology, Definition 24.1. Then there exists a morphism j :
K• → J• of filtered complexes of A such that

(1) Jn, F pJn, Jn/F pJn and F pJn/F p′
Jn are injective objects of A,

(2) J•, F pJ•, J•/F pJ•, and F pJ•/F p
′
J• are K-injective complexes,

(3) j induces quasi-isomorphisms K• → J•, F pK• → F pJ•, K•/F pK• →
J•/F pJ•, and F pK•/F p

′
K• → F pJ•/F p

′
J•.

Proof. By Theorem 12.6 we obtain quasi-isomorphisms i : K• → I• and ip :
F pK• → Ip,• as well as commutative diagrams

K•

i
��

F pK•oo

ip

��
I• Ip,•

αp
oo

and

F p
′
K•

ip
′

��

F pK•oo

ip

��
Ip

′,• Ip,•
αpp′
oo

for p′ ≤ p

such that αp ◦ αp′p = αp
′ and αp

′p′′ ◦ αpp′ = αpp
′′ . The problem is that the maps

αp : Ip,• → I• need not be injective. For each p we choose an injection tp : Ip,• →
Jp,• into an acyclic K-injective complex Jp,• whose terms are injective objects of
A (first map to the cone on the identity and then use the theorem). Choose a map
of complexes sp : I• → Jp,• such that the following diagram commutes

K•

i
��

F pK•oo

ip

��
I•

sp
##

Ip,•

tp

��
Jp,•

This is possible: the composition F pK• → Jp,• is homotopic to zero because Jp,• is
acyclic and K-injective (Derived Categories, Lemma 31.2). Since the objects Jp,n−1

are injective and since F pKn → Kn → In are injective morphisms, we can lift the
maps F pKn → Jp,n−1 giving the homotopy to a map hn : In → Jp,n−1. Then we
set sp equal to h ◦ d + d ◦ h. (Warning: It will not be the case that tp = sp ◦ αp, so
we have to be careful not to use this below.)

https://stacks.math.columbia.edu/tag/0BKI
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Consider
J• = I• ×

∏
p
Jp,•

Because products in D(A) are given by taking products of K-injective complexes
(Lemma 13.4) and since Jp,• is isomorphic to 0 in D(A) we see that J• → I• is an
isomorphism in D(A). Consider the map

j = i× (sp ◦ i)p∈Z : K• −→ I• ×
∏

p
Jp,• = J•

By our remarks above this is a quasi-isomorphism. It is also injective. For p ∈ Z
we let F pJ• ⊂ J• be

Im
(
αp × (tp

′
◦ αpp

′
)p′≤p : Ip,• → I• ×

∏
p′≤p

Jp
′,•
)
×
∏

p′>p
Jp

′,•

This complex is isomorphic to the complex Ip,• ×
∏
p′>p J

p,• as αpp = id and
tp is injective. Hence F pJ• is quasi-isomorphic to Ip,• (argue as above). We
have j(F pK•) ⊂ F pJ• because of the commutativity of the diagram above. The
corresponding map of complexes F pK• → F pJ• is a quasi-isomorphism by what
we just said. Finally, to see that F p+1J• ⊂ F pJ• use that αp+1p ◦ αpp′ = αp+1p′

and the commutativity of the first displayed diagram in the first paragraph of the
proof.
We claim that j : K• → J• is a solution to the problem posed by the lemma.
Namely, F pJn is an injective object ofA because it is isomorphic to Ip,n×

∏
p′>p J

p′,n

and products of injectives are injective. Then the injective map F pJn → Jn splits
and hence the quotient Jn/F pJn is injective as well as a direct summand of the
injective object Jn. Similarly for F pJn/F p′

Jn. This in particular means that
0→ F pJ• → J• → J•/F pJ• → 0 is a termwise split short exact sequence of com-
plexes, hence defines a distinguished triangle in K(A) by fiat. Since J• and F pJ•

are K-injective complexes we see that the same is true for J•/F pJ• by Derived Cat-
egories, Lemma 31.3. A similar argument shows that F pJ•/F p

′
J• is K-injective.

By construction j : K• → J• and the induced maps F pK• → F pJ• are quasi-
isomorphisms. Using the long exact cohomology sequences of the complexes in
play we find that the same holds for K•/F pK• → J•/F pJ• and F pK•/F p

′
K• →

F pJ•/F p
′
J•. □

Remark 13.8.0G1X Let A be a Grothendieck abelian category. Let K• be a filtered
complex of A, see Homology, Definition 24.1. For ease of notation denote K, F pK,
grpK the object of D(A) represented by K•, F pK•, grpK•. Let M ∈ D(A). Using
Lemma 13.7 we can construct a spectral sequence (Er, dr)r≥1 of bigraded objects
of A with dr of bidgree (r,−r + 1) and with

Ep,q1 = Extp+q(M, grpK)
If for every n we have

Extn(M,F pK) = 0 for p≫ 0 and Extn(M,F pK) = Extn(M,K) for p≪ 0
then the spectral sequence is bounded and converges to Extp+q(M,K). Namely,
choose any complex M• representing M , choose j : K• → J• as in the lemma, and
consider the complex

Hom•(M•, I•)
defined exactly as in More on Algebra, Section 71. Setting F p Hom•(M•, I•) =
Hom•(M•, F pI•) we obtain a filtered complex. The spectral sequence of Homology,

https://stacks.math.columbia.edu/tag/0G1X
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Section 24 has differentials and terms as described above; details omitted. The
boundedness and convergence follows from Homology, Lemma 24.13.

Remark 13.9.0G1Y Let A be a Grothendieck abelian category. Let M,K be objects
of D(A). For any choice of complex K• representing K we can use the filtration
F pK• = τ≤−pK

• and the discussion in Remark 13.8 to get a spectral sequence with

Ep,q1 = Ext2p+q(M,H−p(K))
This spectral sequence is independent of the choice of complex K• representing K.
After renumbering p = −j and q = i + 2j we find a spectral sequence (E′

r, d
′
r)r≥2

with d′
r of bidegree (r,−r + 1), with

(E′
2)i,j = Exti(M,Hj(K))

If M ∈ D−(A) and K ∈ D+(A) then both Er and E′
r are bounded and converge

to Extp+q(M,K). If we use the filtration F pK• = σ≥pK
• then we get

Ep,q1 = Extq(M,Kp)
If M ∈ D−(A) and K• is bounded below, then this spectral sequence is bounded
and converges to Extp+q(M,K).

Remark 13.10.0G1Z Let A be a Grothendieck abelian category. Let K ∈ D(A). Let
M• be a filtered complex of A, see Homology, Definition 24.1. For ease of notation
denote M , M/F pM , grpM the object of D(A) represented by M•, M•/F pM•,
grpM•. Dually to Remark 13.8 we can construct a spectral sequence (Er, dr)r≥1 of
bigraded objects of A with dr of bidgree (r,−r + 1) and with

Ep,q1 = Extp+q(gr−pM,K)
If for every n we have
Extn(M/F pM,K) = 0 for p≪ 0 and Extn(M/F pM,K) = Extn(M,K) for p≫ 0
then the spectral sequence is bounded and converges to Extp+q(M,K). Namely,
choose a K-injective complex I• with injective terms representing K, see Theorem
12.6. Consider the complex

Hom•(M•, I•)
defined exactly as in More on Algebra, Section 71. Setting

F p Hom•(M•, I•) = Hom•(M•/F−p+1M•, I•)
we obtain a filtered complex (note sign and shift in filtration). The spectral sequence
of Homology, Section 24 has differentials and terms as described above; details
omitted. The boundedness and convergence follows from Homology, Lemma 24.13.

Remark 13.11.0G20 Let A be a Grothendieck abelian category. Let M,K be objects
of D(A). For any choice of complex M• representing M we can use the filtration
F pM• = τ≤−pM

• and the discussion in Remark 13.8 to get a spectral sequence
with

Ep,q1 = Ext2p+q(Hp(M),K)
This spectral sequence is independent of the choice of complex M• representing M .
After renumbering p = −j and q = i + 2j we find a spectral sequence (E′

r, d
′
r)r≥2

with d′
r of bidegree (r,−r + 1), with

(E′
2)i,j = Exti(H−j(M),K)

https://stacks.math.columbia.edu/tag/0G1Y
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If M ∈ D−(A) and K ∈ D+(A) then Er and E′
r are bounded and converge to

Extp+q(M,K). If we use the filtration F pM• = σ≥pM
• then we get

Ep,q1 = Extq(M−p,K)
If K ∈ D+(A) and M• is bounded above, then this spectral sequence is bounded
and converges to Extp+q(M,K).

Lemma 13.12.0ESJ Let A be a Grothendieck abelian category. Suppose given an object
E ∈ D(A) and an inverse system {Ei}i∈Z of objects of D(A) over Z together with
a compatible system of maps Ei → E. Picture:

. . .→ Ei+1 → Ei → Ei−1 → . . .→ E

Then there exists a filtered complex K• of A (Homology, Definition 24.1) such that
K• represents E and F iK• represents Ei compatibly with the given maps.

Proof. By Theorem 12.6 we can choose a K-injective complex I• representing E all
of whose terms In are injective objects of A. Choose a complex G0,• representing
E0. Choose a map of complexes φ0 : G0,• → I• representing E0 → E. For i > 0
we inductively represent Ei → Ei−1 by a map of complexes δ : Gi,• → Gi−1,• and
we set φi = δ ◦ φi−1. For i < 0 we inductively represent Ei+1 → Ei by a termwise
injective map of complexes δ : Gi+1,• → Gi,• (for example you can use Derived
Categories, Lemma 9.6). Claim: we can find a map of complexes φi : Gi,• → I•

representing the map Ei → E and fitting into the commutative diagram

Gi+1,•
δ
//

φi+1

��

Gi,•

φi

zz
I•

Namely, we first choose any map of complexes φ : Gi,• → I• representing the map
Ei → E. Then we see that φ ◦ δ and φi+1 are homotopic by some homotopy
hp : Gi+1,p → Ip−1. Since the terms of I• are injective and since δ is termwise
injective, we can lift hp to (h′)p : Gi,p → Ip−1. Then we set φi = φ+ h′ ◦ d+ d ◦ h′

and we get what we claimed.
Next, we choose for every i a termwise injective map of complexes ai : Gi,• → J i,•

with J i,• acyclic, K-injective, with J i,p injective objects of A. To do this first map
Gi,• to the cone on the identity and then apply the theorem cited above. Arguing
as above we can find maps of complexes δ′ : J i,• → J i−1,• such that the diagrams

Gi,•
δ
//

ai

��

Gi−1,•

ai−1

��
J i,•

δ′
// J i−1,•

commute. (You could also use the functoriality of cones plus the functoriality in
the theorem to get this.) Then we consider the maps

Gi+1,• ×
∏
p>i+1 J

p,• //

))

Gi,• ×
∏
p>i J

p,• //

��

Gi−1,• ×
∏
p>i−1 J

p,•

uu
I• ×

∏
p J

p,•

https://stacks.math.columbia.edu/tag/0ESJ
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Here the arrows on Jp,• are the obvious ones (identity or zero). On the factor Gi,•
we use δ : Gi,• → Gi−1,•, the map φi : Gi,• → I•, the zero map 0 : Gi,• → Jp,• for
p > i, the map ai : Gi,• → Jp,• for p = i, and (δ′)i−p ◦ ai = ap ◦ δi−p : Gi,• → Jp,•

for p < i. We omit the verification that all the arrows in the diagram are termwise
injective. Thus we obtain a filtered complex. Because products in D(A) are given
by taking products of K-injective complexes (Lemma 13.4) and because Jp,• is zero
in D(A) we conclude this diagram represents the given diagram in the derived
category. This finishes the proof. □

Lemma 13.13.0ESK In the situation of Lemma 13.12 assume we have a second inverse
system {(E′)i}i∈Z and a compatible system of maps (E′)i → E. Then there exists
a bi-filtered complex K• of A such that K• represents E, F iK• represents Ei, and
(F ′)iK• represents (E′)i compatibly with the given maps.

Proof. Using the lemma we can first choose K• and F . Then we can choose (K ′)•

and F ′ which work for {(E′)i}i∈Z and the maps (E′)i → E. Using Lemma 13.7 we
can assume K• is a K-injective complex. Then we can choose a map of complexes
(K ′)• → K• corresponding to the given identifications (K ′)• ∼= E ∼= K•. We can
additionally choose a termwise injective map (K ′)• → J• with J• acyclic and K-
injective. (To do this first map (K ′)• to the cone on the identity and then apply
Theorem 12.6.) Then (K ′)• → K• × J• and K• → K• × J• are both termwise
injective and quasi-isomorphisms (as the product represents E by Lemma 13.4).
Then we can simply take the images of the filtrations on K• and (K ′)• under these
maps to conclude. □

14. The Gabriel-Popescu theorem

0F5R In this section we discuss the main theorem of [PG64]. The method of proof follows
a write-up by Jacob Lurie and another by Akhil Mathew who in turn follow the
presentation by Kuhn in [Kuh94]. See also [Tak71].
Let A be a Grothendieck abelian category and let U be a generator for A, see
Definition 10.1. Let R = HomA(U,U). Consider the functor G : A → ModR given
by

G(A) = HomA(U,A)
endowed with its canonical right R-module structure.

Lemma 14.1.0F5S The functor G above has a left adjoint F : ModR → A.

Proof. We will give two proofs of this lemma.
The first proof will use the adjoint functor theorem, see Categories, Theorem 25.3.
Observe that that G : A → ModR is left exact and sends products to products.
Hence G commutes with limits. To check the set theoretical condition in the theo-
rem, suppose that M is an object of ModR. Choose a suitably large cardinal κ and
denote E a set of objects of A such that every object A with |A| ≤ κ is isomorphic to
an element of E. This is possible by Lemma 11.4. Set I =

∐
A∈E HomR(M,G(A)).

We think of an element i ∈ I as a pair (Ai, fi). Finally, let A be an arbitrary
object of A and f : M → G(A) arbitrary. We are going to think of elements of
Im(f) ⊂ G(A) = HomA(U,A) as maps u : U → A. Set

A′ = Im(
⊕

u∈Im(f)
U

u−→ A)

https://stacks.math.columbia.edu/tag/0ESK
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Since G is left exact, we see that G(A′) ⊂ G(A) contains Im(f) and we get f ′ :
M → G(A′) factoring f . On the other hand, the object A′ is the quotient of a
direct sum of at most |M | copies of U . Hence if κ = |

⊕
|M | U |, then we see that

(A′, f ′) is isomorphic to an element (Ai, fi) of E and we conclude that f factors as
M

fi−→ G(Ai)→ G(A) as desired.

The second proof will give a construction of F which will show that “F (M) =
M ⊗R U” in some sense. Namely, for any R-module M we can choose a resolution⊕

j∈J
R→

⊕
i∈I

R→M → 0

Then we define F (M) by the corresponding exact sequence⊕
j∈J

U →
⊕

i∈I
U → F (M)→ 0

This construction is independent of the choice of the resolution and is functorial;
we omit the details. For any A in A we obtain an exact sequence

0→ HomA(F (M), A)→
∏

i∈I
G(A)→

∏
j∈J

G(A)

which is isomorphic to the sequence

0→ HomR(M,G(A))→ HomR(
⊕

i∈I
R,G(A))→ HomR(

⊕
j∈J

R,G(A))

which shows that F is the left adjoint to G. □

Lemma 14.2.0F5T Let f : M → G(A) be an injective map in ModR. Then the adjoint
map f ′ : F (M)→ A is injective too.

Proof. Choose a map R⊕n → M and consider the corresponding map U⊕n →
F (M). Consider a map v : U → U⊕n such that the composition U → U⊕n →
F (M) → A is 0. Then this arrow v : U → U⊕n is an element v of R⊕n mapping
to zero in G(A). Since f is injective, we conclude that v maps to zero in M which
means that U → U⊕n → F (M) is zero by construction of F (M) in the proof of
Lemma 14.1. Since U is a generator we conclude that

Ker(U⊕n → F (M)→ A) = Ker(U⊕n → F (M))

To finish the proof we choose a surjection
⊕

i∈I R → M and we consider the
corresponding surjection

π :
⊕

i∈I
U −→ F (M)

To prove f ′ is injective it suffices to show that Ker(π) = Ker(f ′◦π) as subobjects of⊕
i∈I U . However, now we can write

⊕
i∈I U as the filtered colimit of its subobjects⊕

i∈I′ U where I ′ ⊂ I ranges over the finite subsets. Since filtered colimits are exact
by AB5 for A, we see that

Ker(π) = colimI′⊂I finite

(⊕
i∈I′

U
)⋂

Ker(π)

and
Ker(f ′ ◦ π) = colimI′⊂I finite

(⊕
i∈I′

U
)⋂

Ker(f ′ ◦ π)

and we get equality because the same is true for each I ′ by the first displayed
equality above. □

https://stacks.math.columbia.edu/tag/0F5T
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Theorem 14.3.0F5U Let A be a Grothendieck abelian category. Then there exists a
(noncommutative) ring R and functors G : A → ModR and F : ModR → A such
that

(1) F is the left adjoint to G,
(2) G is fully faithful, and
(3) F is exact.

Moreover, the functors are the ones constructed above.

Proof. We first prove G is fully faithful, or equivalently that F ◦ G → id is an
isomorphism, see Categories, Lemma 24.4. First, given an object A the map
F (G(A))→ A is surjective, because every map of U → A factors through F (G(A))
by construction. On the other hand, the map F (G(A)) → A is the adjoint of the
map id : G(A)→ G(A) and hence injective by Lemma 14.2.

The functor F is right exact as it is a left adjoint. Since ModR has enough pro-
jectives, to show that F is exact, it is enough to show that the first left derived
functor L1F is zero. To prove L1F (M) = 0 for some R-module M choose an exact
sequence 0 → K → P → M → 0 of R-modules with P free. It suffices to show
F (K) → F (P ) is injective. Now we can write this sequence as a filtered colimit
of sequences 0 → Ki → Pi → Mi → 0 with Pi a finite free R-module: just write
P in this manner and set Ki = K ∩ Pi and Mi = Im(Pi → M). Because F is
a left adjoint it commutes with colimits and because A is a Grothendieck abelian
category, we find that F (K)→ F (P ) is injective if each F (Ki)→ F (Pi) is injective.
Thus it suffices to check F (K) → F (P ) is injective when K ⊂ P = R⊕n. Thus
F (K)→ U⊕n is injective by an application of Lemma 14.2. □

Lemma 14.4.0F5V [Ser03, Corollary
4.1]

Let A be a Grothendieck abelian category. Let R, F , G be as in
the Gabriel-Popescu theorem (Theorem 14.3). Then we obtain derived functors

RG : D(A)→ D(ModR) and F : D(ModR)→ D(A)

such that F is left adjoint to RG, RG is fully faithful, and F ◦RG = id.

Proof. The existence and adjointness of the functors follows from Theorems 14.3
and 12.6 and Derived Categories, Lemmas 31.6, 16.9, and 30.3. The statement
F ◦RG = id follows because we can compute RG on an object of D(A) by applying
G to a suitable representative complex I• (for example a K-injective one) and then
F (G(I•)) = I• because F ◦ G = id. Fully faithfulness of RG follows from this by
Categories, Lemma 24.4. □

15. Brown representability and Grothendieck abelian categories

0F5W In this section we quickly prove a representability theorem for derived categories of
Grothendieck abelian categories. The reader should first read the case of compactly
generated triangulated categories in Derived Categories, Section 38. After that,
instead of reading this section, it makes sense to consult the literature for more
general results of this nature, for example see [Fra01], [Nee01], [Kra02], or take a
look at Derived Categories, Section 39.

Lemma 15.1.0F5X Let A be a Grothendieck abelian category. Let H : D(A)→ Ab be
a contravariant cohomological functor which transforms direct sums into products.
Then H is representable.

https://stacks.math.columbia.edu/tag/0F5U
https://stacks.math.columbia.edu/tag/0F5V
https://stacks.math.columbia.edu/tag/0F5X
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Proof. Let R,F,G,RG be as in Lemma 14.4 and consider the functor H ◦ F :
D(ModR) → Ab. Observe that since F is a left adjoint it sends direct sums to
direct sums and hence H ◦ F transforms direct sums into products. On the other
hand, the derived category D(ModR) is generated by a single compact object,
namely R. By Derived Categories, Lemma 38.1 we see that H ◦F is representable,
say by L ∈ D(ModR). Choose a distinguished triangle

M → L→ RG(F (L))→M [1]
in D(ModR). Then F (M) = 0 because F ◦ RG = id. Hence H(F (M)) = 0
hence Hom(M,L) = 0. It follows that L → RG(F (L)) is the inclusion of a direct
summand, see Derived Categories, Lemma 4.11. For A in D(A) we obtain

H(A) = H(F (RG(A))
= Hom(RG(A), L)
→ Hom(RG(A), RG(F (L)))
= Hom(F (RG(A)), F (L))
= Hom(A,F (L))

where the arrow has a left inverse functorial in A. In other words, we find that H is
the direct summand of a representable functor. Since D(A) is Karoubian (Derived
Categories, Lemma 4.14) we conclude. □

Proposition 15.2.0F5Y Let A be a Grothendieck abelian category. Let D be a trian-
gulated category. Let F : D(A)→ D be an exact functor of triangulated categories
which transforms direct sums into direct sums. Then F has an exact right adjoint.

Proof. For an object Y of D consider the contravariant functor
D(A)→ Ab, W 7→ HomD(F (W ), Y )

This is a cohomological functor as F is exact and transforms direct sums into
products as F transforms direct sums into direct sums. Thus by Lemma 15.1 we
find an object X of D(A) such that HomD(A)(W,X) = HomD(F (W ), Y ). The
existence of the adjoint follows from Categories, Lemma 24.2. Exactness follows
from Derived Categories, Lemma 7.1. □
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