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1. Introduction

01YU In this chapter we put material related to limits of schemes. We mostly study
limits of inverse systems over directed sets (Categories, Definition 21.1) with affine
transition maps. We discuss absolute Noetherian approximation. We characterize
schemes locally of finite presentation over a base as those whose associated functor of
points is limit preserving. As an application of absolute Noetherian approximation
we prove that the image of an affine under an integral morphism is affine. Moreover,
we prove some very general variants of Chow’s lemma. A basic reference is [DG67].

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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2. Directed limits of schemes with affine transition maps

01YV In this section we construct the limit.

Lemma 2.1.01YW Let I be a directed set. Let (Si, fii′) be an inverse system of schemes
over I. If all the schemes Si are affine, then the limit S = limi Si exists in the cat-
egory of schemes. In fact S is affine and S = Spec(colimi Ri) with Ri = Γ(Si,O).

Proof. Just define S = Spec(colimi Ri). It follows from Schemes, Lemma 6.4 that
S is the limit even in the category of locally ringed spaces. □

Lemma 2.2.01YX Let I be a directed set. Let (Si, fii′) be an inverse system of schemes
over I. If all the morphisms fii′ : Si → Si′ are affine, then the limit S = limi Si

exists in the category of schemes. Moreover,
(1) each of the morphisms fi : S → Si is affine,
(2) for an element 0 ∈ I and any open subscheme U0 ⊂ S0 we have

f−1
0 (U0) = limi≥0 f

−1
i0 (U0)

in the category of schemes.

Proof. Choose an element 0 ∈ I. Note that I is nonempty as the limit is directed.
For every i ≥ 0 consider the quasi-coherent sheaf of OS0 -algebras Ai = fi0,∗OSi .
Recall that Si = Spec

S0
(Ai), see Morphisms, Lemma 11.3. Set A = colimi≥0Ai.

This is a quasi-coherent sheaf of OS0 -algebras, see Schemes, Section 24. Set S =
Spec

S0
(A). By Morphisms, Lemma 11.5 we get for i ≥ 0 morphisms fi : S → Si

compatible with the transition morphisms. Note that the morphisms fi are affine
by Morphisms, Lemma 11.11 for example. By Lemma 2.1 above we see that for any
affine open U0 ⊂ S0 the inverse image U = f−1

0 (U0) ⊂ S is the limit of the system
of opens Ui = f−1

i0 (U0), i ≥ 0 in the category of schemes.

Let T be a scheme. Let gi : T → Si be a compatible system of morphisms. To
show that S = limi Si we have to prove there is a unique morphism g : T → S
with gi = fi ◦ g for all i ∈ I. For every t ∈ T there exists an affine open U0 ⊂ S0
containing g0(t). Let V ⊂ g−1

0 (U0) be an affine open neighbourhood containing t.
By the remarks above we obtain a unique morphism gV : V → U = f−1

0 (U0) such
that fi ◦ gV = gi|Ui

for all i. The open sets V ⊂ T so constructed form a basis for
the topology of T . The morphisms gV glue to a morphism g : T → S because of
the uniqueness property. This gives the desired morphism g : T → S.

The final statement is clear from the construction of the limit above. □

Lemma 2.3.01YZ Let I be a directed set. Let (Si, fii′) be an inverse system of schemes
over I. Assume all the morphisms fii′ : Si → Si′ are affine, Let S = limi Si. Let
0 ∈ I. Suppose that T is a scheme over S0. Then

T ×S0 S = limi≥0 T ×S0 Si

Proof. The right hand side is a scheme by Lemma 2.2. The equality is formal, see
Categories, Lemma 14.10. □

https://stacks.math.columbia.edu/tag/01YW
https://stacks.math.columbia.edu/tag/01YX
https://stacks.math.columbia.edu/tag/01YZ
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3. Infinite products

0CNH Infinite products of schemes usually do not exist. For example in Examples, Section
55 it is shown that an infinite product of copies of P1 is not even an algebraic space.
On the other hand, infinite products of affine schemes do exist and are affine. Using
Schemes, Lemma 6.4 this corresponds to the fact that in the category of rings we
have infinite coproducts: if I is a set and Ri is a ring for each i, then we can consider
the ring

R = ⊗Ri = colim{i1,...,in}⊂I Ri1 ⊗Z . . .⊗Z Rin

Given another ring A a map R→ A is the same thing as a collection of ring maps
Ri → A for all i ∈ I as follows from the corresponding property of finite tensor
products.

Lemma 3.1.0CNI Let S be a scheme. Let I be a set and for each i ∈ I let fi : Ti → S be
an affine morphism. Then the product T =

∏
Ti exists in the category of schemes

over S. In fact, we have
T = lim{i1,...,in}⊂I Ti1 ×S . . .×S Tin

and the projection morphisms T → Ti1 ×S . . .×S Tin
are affine.

Proof. Omitted. Hint: Argue as in the discussion preceding the lemma and use
Lemma 2.2 for existence of the limit. □

Lemma 3.2.0CNJ Let S be a scheme. Let I be a set and for each i ∈ I let fi : Ti → S
be a surjective affine morphism. Then the product T =

∏
Ti in the category of

schemes over S (Lemma 3.1) maps surjectively to S.

Proof. Let s ∈ S. Choose ti ∈ Ti mapping to s. Choose a huge field exten-
sion K/κ(s) such that κ(si) embeds into K for each i. Then we get morphisms
Spec(K) → Ti with image si agreeing as morphisms to S. Whence a morphism
Spec(K)→ T which proves there is a point of T mapping to s. □

Lemma 3.3.0CNK Let S be a scheme. Let I be a set and for each i ∈ I let fi : Ti → S
be an integral morphism. Then the product T =

∏
Ti in the category of schemes

over S (Lemma 3.1) is integral over S.

Proof. Omitted. Hint: On affine pieces this reduces to the following algebra fact:
if A→ Bi is integral for all i, then A→ ⊗ABi is integral. □

4. Descending properties

081A First some basic lemmas describing the topology of a limit.

Lemma 4.1.0CUE Let S = limSi be the limit of a directed inverse system of schemes
with affine transition morphisms (Lemma 2.2). Then Sset = limi Si,set where Sset

indicates the underlying set of the scheme S.

Proof. Pick i ∈ I. Take Ui ⊂ Si an affine open. Denote Ui′ = f−1
i′i (Ui) and

U = f−1
i (Ui). Here fi′i : Si′ → Si is the transition morphism and fi : S → Si is

the projection. By Lemma 2.2 we have U = limi′≥i Ui. Suppose we can show that
Uset = limi′≥i Ui′,set. Then the lemma follows by a simple argument using an affine
covering of Si. Hence we may assume all Si and S affine. This reduces us to the
algebra question considered in the next paragraph.

https://stacks.math.columbia.edu/tag/0CNI
https://stacks.math.columbia.edu/tag/0CNJ
https://stacks.math.columbia.edu/tag/0CNK
https://stacks.math.columbia.edu/tag/0CUE
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Suppose given a system of rings (Ai, φii′) over I. Set A = colimi Ai with canonical
maps φi : Ai → A. Then

Spec(A) = limi Spec(Ai)
Namely, suppose that we are given primes pi ⊂ Ai such that pi = φ−1

ii′ (pi′) for all
i′ ≥ i. Then we simply set

p = {x ∈ A | ∃i, xi ∈ pi with φi(xi) = x}

It is clear that this is an ideal and has the property that φ−1
i (p) = pi. Then it

follows easily that it is a prime ideal as well. □

Lemma 4.2.0CUF [DG67, IV,
Proposition 8.2.9]

Let S = limSi be the limit of a directed inverse system of schemes
with affine transition morphisms (Lemma 2.2). Then Stop = limi Si,top where Stop

indicates the underlying topological space of the scheme S.

Proof. We will use the criterion of Topology, Lemma 14.3. We have seen that
Sset = limi Si,set in Lemma 4.1. The maps fi : S → Si are morphisms of schemes
hence continuous. Thus f−1

i (Ui) is open for each open Ui ⊂ Si. Finally, let s ∈ S
and let s ∈ V ⊂ S be an open neighbourhood. Choose 0 ∈ I and choose an affine
open neighbourhood U0 ⊂ S0 of the image of s. Then f−1

0 (U0) = limi≥0 f
−1
i0 (U0),

see Lemma 2.2. Then f−1
0 (U0) and f−1

i0 (U0) are affine and

OS(f−1
0 (U0)) = colimi≥0OSi

(f−1
i0 (U0))

either by the proof of Lemma 2.2 or by Lemma 2.1. Choose a ∈ OS(f−1
0 (U0))

such that s ∈ D(a) ⊂ V . This is possible because the principal opens form a basis
for the topology on the affine scheme f−1

0 (U0). Then we can pick an i ≥ 0 and
ai ∈ OSi(f−1

i0 (U0)) mapping to a. It follows that D(ai) ⊂ f−1
i0 (U0) ⊂ Si is an open

subset whose inverse image in S is D(a). This finishes the proof. □

Lemma 4.3.01Z2 Let S = limSi be the limit of a directed inverse system of schemes
with affine transition morphisms (Lemma 2.2). If all the schemes Si are nonempty
and quasi-compact, then the limit S = limi Si is nonempty.

Proof. Choose 0 ∈ I. Note that I is nonempty as the limit is directed. Choose
an affine open covering S0 =

⋃
j=1,...,m Uj . Since I is directed there exists a j ∈

{1, . . . ,m} such that f−1
i0 (Uj) ̸= ∅ for all i ≥ 0. Hence limi≥0 f

−1
i0 (Uj) is not

empty since a directed colimit of nonzero rings is nonzero (because 1 ̸= 0). As
limi≥0 f

−1
i0 (Uj) is an open subscheme of the limit we win. □

Lemma 4.4.0CUG Let S = limSi be the limit of a directed inverse system of schemes
with affine transition morphisms (Lemma 2.2). Let s ∈ S with images si ∈ Si.
Then

(1) s = lim si as schemes, i.e., κ(s) = colim κ(si),
(2) {s} = lim {si} as sets, and
(3) {s} = lim {si} as schemes where {s} and {si} are endowed with the reduced

induced scheme structure.

Proof. Choose 0 ∈ I and an affine open covering S0 =
⋃

j∈J U0,j . For i ≥ 0 let
Ui,j = f−1

i,0 (U0,j) and set Uj = f−1
0 (U0,j). Here fi′i : Si′ → Si is the transition

morphism and fi : S → Si is the projection. For j ∈ J the following are equivalent:
(a) s ∈ Uj , (b) s0 ∈ U0,j , (c) si ∈ Ui,j for all i ≥ 0. Let J ′ ⊂ J be the set of indices

https://stacks.math.columbia.edu/tag/0CUF
https://stacks.math.columbia.edu/tag/01Z2
https://stacks.math.columbia.edu/tag/0CUG
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for which (a), (b), (c) are true. Then {s} =
⋃

j∈J′({s} ∩ Uj) and similarly for {si}
for i ≥ 0. Note that {s} ∩ Uj is the closure of the set {s} in the topological space
Uj . Similarly for {si} ∩ Ui,j for i ≥ 0. Hence it suffices to prove the lemma in the
case S and Si affine for all i. This reduces us to the algebra question considered in
the next paragraph.
Suppose given a system of rings (Ai, φii′) over I. Set A = colimi Ai with canonical
maps φi : Ai → A. Let p ⊂ A be a prime and set pi = φ−1

i (p). Then
V (p) = limi V (pi)

This follows from Lemma 4.1 because A/p = colimAi/pi. This equality of rings
also shows the final statement about reduced induced scheme structures holds true.
The equality κ(p) = colim κ(pi) follows from the statement as well. □

In the rest of this section we work in the following situation.
Situation 4.5.086P Let S = limi∈I Si be the limit of a directed system of schemes
with affine transition morphisms fi′i : Si′ → Si (Lemma 2.2). We assume that Si

is quasi-compact and quasi-separated for all i ∈ I. We denote fi : S → Si the
projection. We also choose an element 0 ∈ I.
In this situation the morphism S → S0 is affine. It follows that S is quasi-compact
and quasi-separated1. The type of result we are looking for is the following: If we
have an object over S, then for some i there is a similar object over Si.
Lemma 4.6.01YY In Situation 4.5.

(1) We have Sset = limi Si,set where Sset indicates the underlying set of the
scheme S.

(2) We have Stop = limi Si,top where Stop indicates the underlying topological
space of the scheme S.

(3) If s, s′ ∈ S and s′ is not a specialization of s then for some i ∈ I the image
s′

i ∈ Si of s′ is not a specialization of the image si ∈ Si of s.
(4) Add more easy facts on topology of S here. (Requirement: whatever is added

should be easy in the affine case.)
Proof. Part (1) is a special case of Lemma 4.1.
Part (2) is a special case of Lemma 4.2.
Part (3) is a special case of Lemma 4.4. □

Lemma 4.7.01Z0 In Situation 4.5. Suppose that F0 is a quasi-coherent sheaf on S0.
Set Fi = f∗

i0F0 for i ≥ 0 and set F = f∗
0F0. Then

Γ(S,F) = colimi≥0 Γ(Si,Fi)
Proof. Write Aj = fi0,∗OSi

. This is a quasi-coherent sheaf of OS0-algebras (see
Morphisms, Lemma 11.5) and Si is the relative spectrum of Ai over S0. In the
proof of Lemma 2.2 we constructed S as the relative spectrum of A = colimi≥0Ai

over S0. Set
Mi = F0 ⊗OS0

Ai

and
M = F0 ⊗OS0

A.

1Follows from Morphisms, Lemma 11.2, Topology, Definition 12.1, and Schemes, Lemma 21.12.

https://stacks.math.columbia.edu/tag/086P
https://stacks.math.columbia.edu/tag/01YY
https://stacks.math.columbia.edu/tag/01Z0
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Then we have fi0,∗Fi =Mi and f0,∗F =M. Since A is the colimit of the sheaves
Ai and since tensor product commutes with directed colimits, we conclude that
M = colimi≥0Mi. Since S0 is quasi-compact and quasi-separated we see that

Γ(S,F) = Γ(S0,M)
= Γ(S0, colimi≥0Mi)
= colimi≥0 Γ(S0,Mi)
= colimi≥0 Γ(Si,Fi)

see Sheaves, Lemma 29.1 and Topology, Lemma 27.1 for the middle equality. □

Lemma 4.8.01Z3 In Situation 4.5. Suppose for each i we are given a nonempty closed
subset Zi ⊂ Si with fi′i(Zi′) ⊂ Zi for all i′ ≥ i. Then there exists a point s ∈ S
with fi(s) ∈ Zi for all i.

Proof. Let Zi ⊂ Si also denote the reduced closed subscheme associated to Zi, see
Schemes, Definition 12.5. A closed immersion is affine, and a composition of affine
morphisms is affine (see Morphisms, Lemmas 11.9 and 11.7), and hence Zi′ → Si

is affine when i′ ≥ i. We conclude that the morphism fi′i : Zi′ → Zi is affine by
Morphisms, Lemma 11.11. Each of the schemes Zi is quasi-compact as a closed
subscheme of a quasi-compact scheme. Hence we may apply Lemma 4.3 to see that
Z = limi Zi is nonempty. Since there is a canonical morphism Z → S we win. □

Lemma 4.9.05F3 In Situation 4.5. Suppose we are given an i and a morphism T → Si

such that
(1) T ×Si

S = ∅, and
(2) T is quasi-compact.

Then T ×Si Si′ = ∅ for all sufficiently large i′.

Proof. By Lemma 2.3 we see that T ×Si S = limi′≥i T ×Si Si′ . Hence the result
follows from Lemma 4.3. □

Lemma 4.10.05F4 In Situation 4.5. Suppose we are given an i and a locally con-
structible subset E ⊂ Si such that fi(S) ⊂ E. Then fi′i(Si′) ⊂ E for all sufficiently
large i′.

Proof. Writing Si as a finite union of open affine subschemes reduces the question
to the case that Si is affine and E is constructible, see Lemma 2.2 and Properties,
Lemma 2.1. In this case the complement Si \ E is constructible too. Hence there
exists an affine scheme T and a morphism T → Si whose image is Si\E, see Algebra,
Lemma 29.4. By Lemma 4.9 we see that T ×Si

Si′ is empty for all sufficiently large
i′, and hence fi′i(Si′) ⊂ E for all sufficiently large i′. □

Lemma 4.11.01Z4 In Situation 4.5 we have the following:
(1) Given any quasi-compact open V ⊂ S = limi Si there exists an i ∈ I and a

quasi-compact open Vi ⊂ Si such that f−1
i (Vi) = V .

(2) Given Vi ⊂ Si and Vi′ ⊂ Si′ quasi-compact opens such that f−1
i (Vi) =

f−1
i′ (Vi′) there exists an index i′′ ≥ i, i′ such that f−1

i′′i (Vi) = f−1
i′′i′(Vi′).

(3) If V1,i, . . . , Vn,i ⊂ Si are quasi-compact opens and S = f−1
i (V1,i) ∪ . . . ∪

f−1
i (Vn,i) then Si′ = f−1

i′i (V1,i) ∪ . . . ∪ f−1
i′i (Vn,i) for some i′ ≥ i.

https://stacks.math.columbia.edu/tag/01Z3
https://stacks.math.columbia.edu/tag/05F3
https://stacks.math.columbia.edu/tag/05F4
https://stacks.math.columbia.edu/tag/01Z4
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Proof. Choose i0 ∈ I. Note that I is nonempty as the limit is directed. For
convenience we write S0 = Si0 and i0 = 0. Choose an affine open covering S0 =
U1,0 ∪ . . . ∪ Um,0. Denote Uj,i ⊂ Si the inverse image of Uj,0 under the transition
morphism for i ≥ 0. Denote Uj the inverse image of Uj,0 in S. Note that Uj =
limi Uj,i is a limit of affine schemes.

We first prove the uniqueness statement: Let Vi ⊂ Si and Vi′ ⊂ Si′ quasi-compact
opens such that f−1

i (Vi) = f−1
i′ (Vi′). It suffices to show that f−1

i′′i (Vi ∩ Uj,i′′) and
f−1

i′′i′(Vi′ ∩ Uj,i′′) become equal for i′′ large enough. Hence we reduce to the case
of a limit of affine schemes. In this case write S = Spec(R) and Si = Spec(Ri)
for all i ∈ I. We may write Vi = Si \ V (h1, . . . , hm) and Vi′ = Si′ \ V (g1, . . . , gn).
The assumption means that the ideals

∑
gjR and

∑
hjR have the same radical in

R. This means that gN
j =

∑
ajj′hj′ and hN

j =
∑
bjj′gj′ for some N ≫ 0 and ajj′

and bjj′ in R. Since R = colimi Ri we can chose an index i′′ ≥ i such that the
equations gN

j =
∑
ajj′hj′ and hN

j =
∑
bjj′gj′ hold in Ri′′ for some ajj′ and bjj′ in

Ri′′ . This implies that the ideals
∑
gjRi′′ and

∑
hjRi′′ have the same radical in

Ri′′ as desired.

We prove existence: If S0 is affine, then Si = Spec(Ri) for all i ≥ 0 and S = Spec(R)
with R = colimRi. Then V = S \ V (g1, . . . , gn) for some g1, . . . , gn ∈ R. Choose
any i large enough so that each of the gj comes from an element gj,i ∈ Ri and
take Vi = Si \ V (g1,i, . . . , gn,i). If S0 is general, then the opens V ∩ Uj are quasi-
compact because S is quasi-separated. Hence by the affine case we see that for each
j = 1, . . . ,m there exists an ij ∈ I and a quasi-compact open Vij

⊂ Uj,ij
whose

inverse image in Uj is V ∩ Uj . Set i = max(i1, . . . , im) and let Vi =
⋃
f−1

iij
(Vij

).

The statement on coverings follows from the uniqueness statement for the opens
V1,i ∪ . . . ∪ Vn,i and Si of Si. □

Lemma 4.12.01Z5 In Situation 4.5 if S is quasi-affine, then for some i0 ∈ I the
schemes Si for i ≥ i0 are quasi-affine.

Proof. Choose i0 ∈ I. Note that I is nonempty as the limit is directed. For
convenience we write S0 = Si0 and i0 = 0. Let s ∈ S. We may choose an affine
open U0 ⊂ S0 containing f0(s). Since S is quasi-affine we may choose an element
a ∈ Γ(S,OS) such that s ∈ D(a) ⊂ f−1

0 (U0), and such that D(a) is affine. By
Lemma 4.7 there exists an i ≥ 0 such that a comes from an element ai ∈ Γ(Si,OSi

).
For any index j ≥ i we denote aj the image of ai in the global sections of the
structure sheaf of Sj . Consider the opens D(aj) ⊂ Sj and Uj = f−1

j0 (U0). Note
that Uj is affine and D(aj) is a quasi-compact open of Sj , see Properties, Lemma
26.4 for example. Hence we may apply Lemma 4.11 to the opens Uj and Uj ∪D(aj)
to conclude that D(aj) ⊂ Uj for some j ≥ i. For such an index j we see that
D(aj) ⊂ Sj is an affine open (because D(aj) is a standard affine open of the affine
open Uj) containing the image fj(s).

We conclude that for every s ∈ S there exist an index i ∈ I, and a global section
a ∈ Γ(Si,OSi

) such that D(a) ⊂ Si is an affine open containing fi(s). Because S is
quasi-compact we may choose a single index i ∈ I and global sections a1, . . . , am ∈
Γ(Si,OSi) such that each D(aj) ⊂ Si is affine open and such that fi : S → Si has
image contained in the union Wi =

⋃
j=1,...,m D(aj). For i′ ≥ i set Wi′ = f−1

i′i (Wi).
Since f−1

i (Wi) is all of S we see (by Lemma 4.11 again) that for a suitable i′ ≥ i we

https://stacks.math.columbia.edu/tag/01Z5
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have Si′ = Wi′ . Thus we may replace i by i′ and assume that Si =
⋃

j=1,...,m D(aj).
This implies that OSi is an ample invertible sheaf on Si (see Properties, Definition
26.1) and hence that Si is quasi-affine, see Properties, Lemma 27.1. Hence we
win. □

Lemma 4.13.01Z6 In Situation 4.5 if S is affine, then for some i0 ∈ I the schemes
Si for i ≥ i0 are affine.

Proof. By Lemma 4.12 we may assume that S0 is quasi-affine for some 0 ∈ I. Set
R0 = Γ(S0,OS0). Then S0 is a quasi-compact open of T0 = Spec(R0). Denote
j0 : S0 → T0 the corresponding quasi-compact open immersion. For i ≥ 0 set Ai =
fi0,∗OSi

. Since fi0 is affine we see that Si = Spec
S0

(Ai). Set Ti = Spec
T0

(j0,∗Ai).
Then Ti → T0 is affine, hence Ti is affine. Thus Ti is the spectrum of

Ri = Γ(T0, j0,∗Ai) = Γ(S0,Ai) = Γ(Si,OSi
).

Write S = Spec(R). We have R = colimi Ri by Lemma 4.7. Hence also S = limi Ti.
As formation of the relative spectrum commutes with base change, the inverse image
of the open S0 ⊂ T0 in Ti is Si. Let Z0 = T0 \ S0 and let Zi ⊂ Ti be the inverse
image of Z0. As Si = Ti\Zi, it suffices to show that Zi is empty for some i. Assume
Zi is nonempty for all i to get a contradiction. By Lemma 4.8 there exists a point
s of S = limTi which maps to a point of Zi for every i. But S = limi Si, and hence
we arrive at a contradiction by Lemma 4.6. □

Lemma 4.14.086Q In Situation 4.5 if S is separated, then for some i0 ∈ I the schemes
Si for i ≥ i0 are separated.

Proof. Choose a finite affine open covering S0 = U0,1∪. . .∪U0,m. Set Ui,j ⊂ Si and
Uj ⊂ S equal to the inverse image of U0,j . Note that Ui,j and Uj are affine. As S is
separated the intersections Uj1 ∩Uj2 are affine. Since Uj1 ∩Uj2 = limi≥0 Ui,j1 ∩Ui,j2

we see that Ui,j1 ∩ Ui,j2 is affine for large i by Lemma 4.13. To show that Si is
separated for large i it now suffices to show that

OSi
(Ui,j1)⊗OS(S) OSi

(Ui,j2) −→ OSi
(Ui,j1 ∩ Ui,j2)

is surjective for large i (Schemes, Lemma 21.7).
To get rid of the annoying indices, assume we have affine opens U, V ⊂ S0 such that
U∩V is affine too. Let Ui, Vi ⊂ Si, resp. U, V ⊂ S be the inverse images. We have to
show that O(Ui)⊗O(Vi)→ O(Ui∩Vi) is surjective for i large enough and we know
that O(U)⊗O(V )→ O(U∩V ) is surjective. Note that O(U0)⊗O(V0)→ O(U0∩V0)
is of finite type, as the diagonal morphism Si → Si×Si is an immersion (Schemes,
Lemma 21.2) hence locally of finite type (Morphisms, Lemmas 15.2 and 15.5). Thus
we can choose elements f0,1, . . . , f0,n ∈ O(U0 ∩ V0) which generate O(U0 ∩ V0) over
O(U0)⊗O(V0). Observe that for i ≥ 0 the diagram of schemes

Ui ∩ Vi
//

��

Ui

��
U0 ∩ V0 // U0

is cartesian. Thus we see that the images fi,1, . . . , fi,n ∈ O(Ui ∩ Vi) generate
O(Ui∩Vi) over O(Ui)⊗O(V0) and a fortiori over O(Ui)⊗O(Vi). By assumption the
images f1, . . . , fn ∈ O(U⊗V ) are in the image of the mapO(U)⊗O(V )→ O(U∩V ).

https://stacks.math.columbia.edu/tag/01Z6
https://stacks.math.columbia.edu/tag/086Q
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Since O(U)⊗O(V ) = colimO(Ui)⊗O(Vi) we see that they are in the image of the
map at some finite level and the lemma is proved. □

Lemma 4.15.09MT In Situation 4.5 let L0 be an invertible sheaf of modules on S0. If
the pullback L to S is ample, then for some i ∈ I the pullback Li to Si is ample.

Proof. The assumption means there are finitely many sections s1, . . . , sm ∈ Γ(S,L)
such that Ssj

is affine and such that S =
⋃
Ssj

, see Properties, Definition 26.1. By
Lemma 4.7 we can find an i ∈ I and sections si,j ∈ Γ(Si,Li) mapping to sj . By
Lemma 4.13 we may, after increasing i, assume that (Si)si,j is affine for j = 1, . . . ,m.
By Lemma 4.11 we may, after increasing i a last time, assume that Si =

⋃
(Si)si,j .

Then Li is ample by definition. □

Lemma 4.16.081B Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Let Y → X be a morphism of schemes
over S.

(1) If Y → X is a closed immersion, Xi quasi-compact, and Y locally of finite
type over S, then Y → Xi is a closed immersion for i large enough.

(2) If Y → X is an immersion, Xi quasi-separated, Y → S locally of finite type,
and Y quasi-compact, then Y → Xi is an immersion for i large enough.

(3) If Y → X is an isomorphism, Xi quasi-compact, Xi → S locally of finite
type, the transition morphisms Xi′ → Xi are closed immersions, and Y →
S is locally of finite presentation, then Y → Xi is an isomorphism for i
large enough.

Proof. Proof of (1). Choose 0 ∈ I and a finite affine open covering X0 = U0,1 ∪
. . . ∪ U0,m with the property that U0,j maps into an affine open Wj ⊂ S. Let
Vj ⊂ Y , resp. Ui,j ⊂ Xi, i ≥ 0, resp. Uj ⊂ X be the inverse image of U0,j . It
suffices to prove that Vj → Ui,j is a closed immersion for i sufficiently large and we
know that Vj → Uj is a closed immersion. Thus we reduce to the following algebra
fact: If A = colimAi is a directed colimit of R-algebras, A → B is a surjection of
R-algebras, and B is a finitely generated R-algebra, then Ai → B is surjective for
i sufficiently large.
Proof of (2). Choose 0 ∈ I. Choose a quasi-compact open X ′

0 ⊂ X0 such that
Y → X0 factors through X ′

0. After replacing Xi by the inverse image of X ′
0 for

i ≥ 0 we may assume all X ′
i are quasi-compact and quasi-separated. Let U ⊂ X be

a quasi-compact open such that Y → X factors through a closed immersion Y → U
(U exists as Y is quasi-compact). By Lemma 4.11 we may assume that U = limUi

with Ui ⊂ Xi quasi-compact open. By part (1) we see that Y → Ui is a closed
immersion for some i. Thus (2) holds.
Proof of (3). Working affine locally on X0 for some 0 ∈ I as in the proof of (1)
we reduce to the following algebra fact: If A = limAi is a directed colimit of R-
algebras with surjective transition maps and A of finite presentation over A0, then
A = Ai for some i. Namely, write A = A0/(f1, . . . , fn). Pick i such that f1, . . . , fn

map to zero under the surjective map A0 → Ai. □

Lemma 4.17.01ZH Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-separated,
(2) Xi quasi-compact and quasi-separated,

https://stacks.math.columbia.edu/tag/09MT
https://stacks.math.columbia.edu/tag/081B
https://stacks.math.columbia.edu/tag/01ZH
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(3) X → S separated.
Then Xi → S is separated for all i large enough.

Proof. Let 0 ∈ I. Note that I is nonempty as the limit is directed. As X0 is
quasi-compact we can find finitely many affine opens U1, . . . , Un ⊂ S such that
X0 → S maps into U1 ∪ . . . ∪ Un. Denote hi : Xi → S the structure morphism. It
suffices to check that for some i ≥ 0 the morphisms h−1

i (Uj)→ Uj are separated for
j = 1, . . . , n. Since S is quasi-separated the morphisms Uj → S are quasi-compact.
Hence h−1

i (Uj) is quasi-compact and quasi-separated. In this way we reduce to the
case S affine. In this case we have to show that Xi is separated and we know that
X is separated. Thus the lemma follows from Lemma 4.14. □

Lemma 4.18.09ZM Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → S affine.

Then Xi → S is affine for i large enough.

Proof. Choose a finite affine open covering S =
⋃

j=1,...,n Vj . Denote f : X → S

and fi : Xi → S the structure morphisms. For each j the scheme f−1(Vj) =
limi f

−1
i (Vj) is affine (as a finite morphism is affine by definition). Hence by Lemma

4.13 there exists an i ∈ I such that each f−1
i (Vj) is affine. In other words, fi : Xi →

S is affine for i large enough, see Morphisms, Lemma 11.3. □

Lemma 4.19.09ZN Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are finite,
(4) Xi → S locally of finite type
(5) X → S integral.

Then Xi → S is finite for i large enough.

Proof. By Lemma 4.18 we may assume Xi → S is affine for all i. Choose a finite
affine open covering S =

⋃
j=1,...,n Vj . Denote f : X → S and fi : Xi → S the

structure morphisms. It suffices to show that there exists an i such that f−1
i (Vj)

is finite over Vj for j = 1, . . . ,m (Morphisms, Lemma 44.3). Namely, for i′ ≥ i
the composition Xi′ → Xi → S will be finite as a composition of finite morphisms
(Morphisms, Lemma 44.5). This reduces us to the affine case: Let R be a ring and
A = colimAi with R → A integral and Ai → Ai′ finite for all i ≤ i′. Moreover
R → Ai is of finite type for all i. Goal: Show that Ai is finite over R for some
i. To prove this choose an i ∈ I and pick generators x1, . . . , xm ∈ Ai of Ai as an
R-algebra. Since A is integral over R we can find monic polynomials Pj ∈ R[T ]
such that Pj(xj) = 0 in A. Thus there exists an i′ ≥ i such that Pj(xj) = 0 in
Ai′ for j = 1, . . . ,m. Then the image A′

i of Ai in Ai′ is finite over R by Algebra,
Lemma 36.5. Since A′

i ⊂ Ai′ is finite too we conclude that Ai′ is finite over R by
Algebra, Lemma 7.3. □

https://stacks.math.columbia.edu/tag/09ZM
https://stacks.math.columbia.edu/tag/09ZN
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Lemma 4.20.0A0N Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → S locally of finite type
(5) X → S a closed immersion.

Then Xi → S is a closed immersion for i large enough.

Proof. By Lemma 4.18 we may assume Xi → S is affine for all i. Choose a finite
affine open covering S =

⋃
j=1,...,n Vj . Denote f : X → S and fi : Xi → S the

structure morphisms. It suffices to show that there exists an i such that f−1
i (Vj) is

a closed subscheme of Vj for j = 1, . . . ,m (Morphisms, Lemma 2.1). This reduces
us to the affine case: Let R be a ring and A = colimAi with R→ A surjective and
Ai → Ai′ surjective for all i ≤ i′. Moreover R→ Ai is of finite type for all i. Goal:
Show that R→ Ai is surjective for some i. To prove this choose an i ∈ I and pick
generators x1, . . . , xm ∈ Ai of Ai as an R-algebra. Since R → A is surjective we
can find rj ∈ R such that rj maps to xj in A. Thus there exists an i′ ≥ i such that
rj maps to the image of xj in Ai′ for j = 1, . . . ,m. Since Ai → Ai′ is surjective
this implies that R→ Ai′ is surjective. □

Lemma 4.21.0GIH Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → S locally of finite type, and
(5) X → S an immersion.

Then Xi → S is an immersion for i large enough.

Proof. Choose an open subscheme U ⊂ S such that X → S factors as a closed
immersion X → U composed with the inclusion morphism U → S. Since X is
quasi-compact, we may shrink U and assume U is quasi-compact. Denote Vi ⊂ Xi

the inverse image of U . Since Vi pulls back to X we see that Vi = Xi for all i
large enough by Lemma 4.11. Thus we may assume X = limXi in the category of
schemes over U . Then we see that Xi → U is a closed immersion for i large enough
by Lemma 4.20. This proves the lemma. □

5. Absolute Noetherian Approximation

01Z1 A nice reference for this section is Appendix C of the article by Thomason and
Trobaugh [TT90]. See Categories, Section 21 for our conventions regarding directed
systems. We will use the existence result and properties of the limit from Section
2 without further mention.

Lemma 5.1.01Z7 Let W be a quasi-affine scheme of finite type over Z. Suppose
W → Spec(R) is an open immersion into an affine scheme. There exists a finite
type Z-algebra A ⊂ R which induces an open immersion W → Spec(A). Moreover,
R is the directed colimit of such subalgebras.

https://stacks.math.columbia.edu/tag/0A0N
https://stacks.math.columbia.edu/tag/0GIH
https://stacks.math.columbia.edu/tag/01Z7
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Proof. Choose an affine open covering W =
⋃

i=1,...,n Wi such that each Wi is a
standard affine open in Spec(R). In other words, if we write Wi = Spec(Ri) then
Ri = Rfi for some fi ∈ R. Choose finitely many xij ∈ Ri which generate Ri over Z.
Pick an N ≫ 0 such that each fN

i xij comes from an element of R, say yij ∈ R. Set
A equal to the Z-algebra generated by the fi and the yij and (optionally) finitely
many additional elements of R. Then A works. Details omitted. □

Lemma 5.2.01Z9 Suppose given a cartesian diagram of rings

B
s
// R

B′

OO

// R′

t

OO

Let W ′ ⊂ Spec(R′) be an open of the form W ′ = D(f1) ∪ . . . ∪ D(fn) such that
t(fi) = s(gi) for some gi ∈ B and Bgi

∼= Rs(gi). Then B′ → R′ induces an open
immersion of W ′ into Spec(B′).

Proof. Set hi = (gi, fi) ∈ B′. More on Algebra, Lemma 5.3 shows that (B′)hi
∼=

(R′)fi
as desired. □

The following lemma is a precise statement of Noetherian approximation.

Lemma 5.3.07RN Let S be a quasi-compact and quasi-separated scheme. Let V ⊂ S be
a quasi-compact open. Let I be a directed set and let (Vi, fii′) be an inverse system
of schemes over I with affine transition maps, with each Vi of finite type over Z,
and with V = limVi. Then there exist

(1) a directed set J ,
(2) an inverse system of schemes (Sj , gjj′) over J ,
(3) an order preserving map α : J → I,
(4) open subschemes V ′

j ⊂ Sj, and
(5) isomorphisms V ′

j → Vα(j)

such that
(1) the transition morphisms gjj′ : Sj → Sj′ are affine,
(2) each Sj is of finite type over Z,
(3) g−1

jj′ (V ′
j′) = V ′

j ,
(4) S = limSj and V = limV ′

j , and
(5) the diagrams

V

�� !!
V ′

j
// Vα(j)

and

V ′
j

//

��

Vα(j)

��
V ′

j′ // Vα(j′)

are commutative.

Proof. Set Z = S \ V . Choose affine opens U1, . . . , Um ⊂ S such that Z ⊂⋃
l=1,...,m Ul. Consider the opens

V ⊂ V ∪ U1 ⊂ V ∪ U1 ∪ U2 ⊂ . . . ⊂ V ∪
⋃

l=1,...,m
Ul = S

https://stacks.math.columbia.edu/tag/01Z9
https://stacks.math.columbia.edu/tag/07RN
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If we can prove the lemma successively for each of the cases

V ∪ U1 ∪ . . . ∪ Ul ⊂ V ∪ U1 ∪ . . . ∪ Ul+1

then the lemma will follow for V ⊂ S. In each case we are adding one affine open.
Thus we may assume

(1) S = U ∪ V ,
(2) U affine open in S,
(3) V quasi-compact open in S, and
(4) V = limi Vi with (Vi, fii′) an inverse system over a directed set I, each fii′

affine and each Vi of finite type over Z.
Denote fi : V → Vi the projections. Set W = U ∩ V . As S is quasi-separated,
this is a quasi-compact open of V . By Lemma 4.11 (and after shrinking I) we may
assume that there exist opens Wi ⊂ Vi such that f−1

ii′ (Wi′) = Wi and such that
f−1

i (Wi) = W . Since W is a quasi-compact open of U it is quasi-affine. Hence we
may assume (after shrinking I again) that Wi is quasi-affine for all i, see Lemma
4.12.

Write U = Spec(B). Set R = Γ(W,OW ), and Ri = Γ(Wi,OWi
). By Lemma 4.7 we

have R = colimi Ri. Now we have the maps of rings

B
s
// R

Ri

ti

OO

We set Bi = {(b, r) ∈ B ×Ri | s(b) = ti(t)} so that we have a cartesian diagram

B
s
// R

Bi

OO

// Ri

ti

OO

for each i. The transition maps Ri → Ri′ induce maps Bi → Bi′ . It is clear that
B = colimi Bi. In the next paragraph we show that for all sufficiently large i the
composition Wi → Spec(Ri)→ Spec(Bi) is an open immersion.

As W is a quasi-compact open of U = Spec(B) we can find a finitely many elements
gl ∈ B, l = 1, . . . ,m such that D(gl) ⊂ W and such that W =

⋃
l=1,...,m D(gl).

Note that this implies D(gl) = Ws(gl) as open subsets of U , where Ws(gl) denotes
the largest open subset of W on which s(gl) is invertible. Hence

Bgl
= Γ(D(gl),OU ) = Γ(Ws(gl),OW ) = Rs(gl),

where the last equality is Properties, Lemma 17.1. Since Ws(gl) is affine this also
implies that D(s(gl)) = Ws(gl) as open subsets of Spec(R). Since R = colimi Ri we
can (after shrinking I) assume there exist gl,i ∈ Ri for all i ∈ I such that s(gl) =
ti(gl,i). Of course we choose the gl,i such that gl,i maps to gl,i′ under the transition
maps Ri → Ri′ . Then, by Lemma 4.11 we can (after shrinking I again) assume the
corresponding opens D(gl,i) ⊂ Spec(Ri) are contained in Wi for l = 1, . . . ,m and
cover Wi. We conclude that the morphism Wi → Spec(Ri)→ Spec(Bi) is an open
immersion, see Lemma 5.2.
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By Lemma 5.1 we can write Bi as a directed colimit of subalgebras Ai,p ⊂ Bi, p ∈ Pi

each of finite type over Z and such that Wi is identified with an open subscheme
of Spec(Ai,p). Let Si,p be the scheme obtained by glueing Vi and Spec(Ai,p) along
the open Wi, see Schemes, Section 14. Here is the resulting commutative diagram
of schemes:

V

tt ��

Woo

uu ��
Vi

��

Wi
oo

��

S

tt

U

vv

oo

Si,p Spec(Ai,p)oo

The morphism S → Si,p arises because the upper right square is a pushout in
the category of schemes. Note that Si,p is of finite type over Z since it has a
finite affine open covering whose members are spectra of finite type Z-algebras.
We define a preorder on J =

∐
i∈I Pi by the rule (i′, p′) ≥ (i, p) if and only if

i′ ≥ i and the map Bi → Bi′ maps Ai,p into Ai′,p′ . This is exactly the condition
needed to define a morphism Si′,p′ → Si,p: namely make a commutative diagram as
above using the transition morphisms Vi′ → Vi and Wi′ → Wi and the morphism
Spec(Ai′,p′) → Spec(Ai,p) induced by the ring map Ai,p → Ai′,p′ . The relevant
commutativities have been built into the constructions. We claim that S is the
directed limit of the schemes Si,p. Since by construction the schemes Vi have limit
V this boils down to the fact that B is the limit of the rings Ai,p which is true
by construction. The map α : J → I is given by the rule j = (i, p) 7→ i. The
open subscheme V ′

j is just the image of Vi → Si,p above. The commutativity of
the diagrams in (5) is clear from the construction. This finishes the proof of the
lemma. □

Proposition 5.4.01ZA Let S be a quasi-compact and quasi-separated scheme. There
exist a directed set I and an inverse system of schemes (Si, fii′) over I such that

(1) the transition morphisms fii′ are affine
(2) each Si is of finite type over Z, and
(3) S = limi Si.

Proof. This is a special case of Lemma 5.3 with V = ∅. □

6. Limits and morphisms of finite presentation

01ZB The following is a generalization of Algebra, Lemma 127.3.

Proposition 6.1.01ZC [DG67, IV,
Proposition 8.14.2]

Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is locally of finite presentation.
(2) For any directed set I, and any inverse system (Ti, fii′) of S-schemes over

I with each Ti affine, we have

MorS(limi Ti, X) = colimi MorS(Ti, X)

(3) For any directed set I, and any inverse system (Ti, fii′) of S-schemes over
I with each fii′ affine and every Ti quasi-compact and quasi-separated as a

https://stacks.math.columbia.edu/tag/01ZA
https://stacks.math.columbia.edu/tag/01ZC
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scheme, we have
MorS(limi Ti, X) = colimi MorS(Ti, X)

Proof. It is clear that (3) implies (2).
Let us prove that (2) implies (1). Assume (2). Choose any affine opens U ⊂ X
and V ⊂ S such that f(U) ⊂ V . We have to show that OS(V ) → OX(U) is
of finite presentation. Let (Ai, φii′) be a directed system of OS(V )-algebras. Set
A = colimi Ai. According to Algebra, Lemma 127.3 we have to show that

HomOS(V )(OX(U), A) = colimi HomOS(V )(OX(U), Ai)
Consider the schemes Ti = Spec(Ai). They form an inverse system of V -schemes
over I with transition morphisms fii′ : Ti → Ti′ induced by the OS(V )-algebra
maps φi′i. Set T := Spec(A) = limi Ti. The formula above becomes in terms of
morphism sets of schemes

MorV (limi Ti, U) = colimi MorV (Ti, U).
We first observe that MorV (Ti, U) = MorS(Ti, U) and MorV (T,U) = MorS(T,U).
Hence we have to show that

MorS(limi Ti, U) = colimi MorS(Ti, U)
and we are given that

MorS(limi Ti, X) = colimi MorS(Ti, X).
Hence it suffices to prove that given a morphism gi : Ti → X over S such that
the composition T → Ti → X ends up in U there exists some i′ ≥ i such that the
composition gi′ : Ti′ → Ti → X ends up in U . Denote Zi′ = g−1

i′ (X \ U). Assume
each Zi′ is nonempty to get a contradiction. By Lemma 4.8 there exists a point t
of T which is mapped into Zi′ for all i′ ≥ i. Such a point is not mapped into U . A
contradiction.
Finally, let us prove that (1) implies (3). Assume (1). Let an inverse directed
system (Ti, fii′) of S-schemes be given. Assume the morphisms fii′ are affine and
each Ti is quasi-compact and quasi-separated as a scheme. Let T = limi Ti. Denote
fi : T → Ti the projection morphisms. We have to show:

(a) Given morphisms gi, g
′
i : Ti → X over S such that gi ◦ fi = g′

i ◦ fi, then
there exists an i′ ≥ i such that gi ◦ fi′i = g′

i ◦ fi′i.
(b) Given any morphism g : T → X over S there exists an i ∈ I and a morphism

gi : Ti → X such that g = fi ◦ gi.
First let us prove the uniqueness part (a). Let gi, g

′
i : Ti → X be morphisms such

that gi ◦ fi = g′
i ◦ fi. For any i′ ≥ i we set gi′ = gi ◦ fi′i and g′

i′ = g′
i ◦ fi′i. We also

set g = gi ◦ fi = g′
i ◦ fi. Consider the morphism (gi, g

′
i) : Ti → X ×S X. Set

W =
⋃

U⊂X affine open,V ⊂S affine open,f(U)⊂V
U ×V U.

This is an open in X ×S X, with the property that the morphism ∆X/S factors
through a closed immersion into W , see the proof of Schemes, Lemma 21.2. Note
that the composition (gi, g

′
i) ◦ fi : T → X ×S X is a morphism into W because it

factors through the diagonal by assumption. Set Zi′ = (gi′ , g′
i′)−1(X ×S X \W ).

If each Zi′ is nonempty, then by Lemma 4.8 there exists a point t ∈ T which maps
to Zi′ for all i′ ≥ i. This is a contradiction with the fact that T maps into W .
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Hence we may increase i and assume that (gi, g
′
i) : Ti → X ×S X is a morphism

into W . By construction of W , and since Ti is quasi-compact we can find a finite
affine open covering Ti = T1,i ∪ . . . ∪ Tn,i such that (gi, g

′
i)|Tj,i is a morphism into

U ×V U for some pair (U, V ) as in the definition of W above. Since it suffices to
prove that gi′ and g′

i′ agree on each of the f−1
i′i (Tj,i) this reduces us to the affine

case. The affine case follows from Algebra, Lemma 127.3 and the fact that the ring
map OS(V )→ OX(U) is of finite presentation (see Morphisms, Lemma 21.2).
Finally, we prove the existence part (b). Let g : T → X be a morphism of schemes
over S. We can find a finite affine open covering T = W1 ∪ . . . ∪Wn such that for
each j ∈ {1, . . . , n} there exist affine opens Uj ⊂ X and Vj ⊂ S with f(Uj) ⊂ Vj

and g(Wj) ⊂ Uj . By Lemmas 4.11 and 4.13 (after possibly shrinking I) we may
assume that there exist affine open coverings Ti = W1,i ∪ . . . ∪ Wn,i compatible
with transition maps such that Wj = limi Wj,i. We apply Algebra, Lemma 127.3
to the rings corresponding to the affine schemes Uj , Vj , Wj,i and Wj using that
OS(Vj) → OX(Uj) is of finite presentation (see Morphisms, Lemma 21.2). Thus
we can find for each j an index ij ∈ I and a morphism gj,ij

: Wj,ij
→ X such that

gj,ij
◦ fi|Wj

: Wj → Wj,i → X equals g|Wj
. By part (a) proved above, using the

quasi-compactness of Wj1,i ∩Wj2,i which follows as Ti is quasi-separated, we can
find an index i′ ∈ I larger than all ij such that

gj1,ij1
◦ fi′ij1

|Wj1,i′ ∩Wj2,i′ = gj2,ij2
◦ fi′ij2

|Wj1,i′ ∩Wj2,i′

for all j1, j2 ∈ {1, . . . , n}. Hence the morphisms gj,ij ◦ fi′ij |Wj,i′ glue to given the
desired morphism Ti′ → X. □

Remark 6.2.05LX Let S be a scheme. Let us say that a functor F : (Sch/S)opp → Sets
is limit preserving if for every directed inverse system {Ti}i∈I of affine schemes
with limit T we have F (T ) = colimi F (Ti). Let X be a scheme over S, and let
hX : (Sch/S)opp → Sets be its functor of points, see Schemes, Section 15. In this
terminology Proposition 6.1 says that a scheme X is locally of finite presentation
over S if and only if hX is limit preserving.

Lemma 6.3.0CM0 Let f : X → S be a morphism of schemes. If for every directed limit
T = limi∈I Ti of affine schemes over S the map

colim MorS(Ti, X) −→ MorS(T,X)
is surjective, then f is locally of finite presentation. In other words, in Proposition
6.1 parts (2) and (3) it suffices to check surjectivity of the map.

Proof. The proof is exactly the same as the proof of the implication “(2) implies
(1)” in Proposition 6.1. Choose any affine opens U ⊂ X and V ⊂ S such that
f(U) ⊂ V . We have to show that OS(V ) → OX(U) is of finite presentation. Let
(Ai, φii′) be a directed system of OS(V )-algebras. Set A = colimi Ai. According to
Algebra, Lemma 127.3 it suffices to show that

colimi HomOS(V )(OX(U), Ai)→ HomOS(V )(OX(U), A)
is surjective. Consider the schemes Ti = Spec(Ai). They form an inverse system of
V -schemes over I with transition morphisms fii′ : Ti → Ti′ induced by the OS(V )-
algebra maps φi′i. Set T := Spec(A) = limi Ti. The formula above becomes in
terms of morphism sets of schemes

colimi MorV (Ti, U)→ MorV (limi Ti, U)

https://stacks.math.columbia.edu/tag/05LX
https://stacks.math.columbia.edu/tag/0CM0
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We first observe that MorV (Ti, U) = MorS(Ti, U) and MorV (T,U) = MorS(T,U).
Hence we have to show that

colimi MorS(Ti, U)→ MorS(limi Ti, U)

is surjective and we are given that

colimi MorS(Ti, X)→ MorS(limi Ti, X)

is surjective. Hence it suffices to prove that given a morphism gi : Ti → X over S
such that the composition T → Ti → X ends up in U there exists some i′ ≥ i such
that the composition gi′ : Ti′ → Ti → X ends up in U . Denote Zi′ = g−1

i′ (X \ U).
Assume each Zi′ is nonempty to get a contradiction. By Lemma 4.8 there exists a
point t of T which is mapped into Zi′ for all i′ ≥ i. Such a point is not mapped
into U . A contradiction. □

The following is an example application of Proposition 6.1.

Lemma 6.4.0GWT Let S be a scheme. Let X and Y be schemes over S. Assume
Y is locally of finite presentation over S. Let x ∈ X be a closed point such that
U = X \{x} → X is quasi-compact. With V = Spec(OX,x)\{x} there is a bijection

{
morphisms X → Y over S

}
−→

{
(a, b) where a : U → Y and b : Spec(OX,x)→ Y

are morphisms over S which agree over V

}
Proof. Let W ⊂ X be an open neighbourhood of x. By glueing of schemes, see
Schemes, Section 14 the result holds if we consider pairs of morphisms a : U → Y
and c : W → Y which agree over U ∩W . We have OX,x = colimOW (W ) where W
runs over the affine open neighbourhoods of x in X. Hence Spec(OX,x) = limW
where W runs over the affine open neighbourhoods of s. Thus by Proposition 6.1
any morphism b : Spec(OX,x)→ Y over S comes from a morphism c : W → Y for
some W as above (and c is unique up to further shrinking W ). For every affine open
x ∈ W we see that U ∩W is quasi-compact as U → X is quasi-compact. Hence
V = limW ∩ U = limW \ {x} is a limit of quasi-compact and quasi-separated
schemes (see Lemma 2.2). Thus if a and b agree over V , then after shrinking W
we see that a and c agree over U ∩ W (by the same proposition). The lemma
follows. □

7. Relative approximation

09MU We discuss variants of Proposition 5.4 over a base.

Lemma 7.1.0GS1 Let f : X → S be a morphism of quasi-compact and quasi-separated
schemes. Then there exists a direct set I and an inverse system (fi : Xi → Si)
of morphisms schemes over I, such that the transition morphisms Xi → Xi′ and
Si → Si′ are affine, such that Xi and Si are of finite type over Z, and such that
(X → S) = lim(Xi → Si).

Proof. Write X = lima∈A Xa and S = limb∈B Sb as in Proposition 5.4, i.e., with
Xa and Sb of finite type over Z and with affine transition morphisms.
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Fix b ∈ B. By Proposition 6.1 applied to Sb and X = limXa over Z we find there
exists an a ∈ A and a morphism fa,b : Xa → Sb making the diagram

X

��

// S

��
Xa

// Sb

commute. Let I be the set of triples (a, b, fa,b) we obtain in this manner.

Let (a, b, fa,b) and (a′, b′, fa′,b′) be in I. Let b′′ ≤ min(b, b′). By Proposition 6.1
again, there exists an a′′ ≥ max(a, a′) such that the compositions Xa′′ → Xa →
Sb → Sb′′ and Xa′′ → Xa′ → Sb′ → Sb′′ are equal. We endow I with the preorder

(a, b, fa,b) ≥ (a′, b′, fa′,b′)⇔ a ≥ a′, b ≥ b′, and gb,b′ ◦ fa,b = fa′,b′ ◦ ha,a′

where ha,a′ : Xa → Xa′ and gb,b′ : Sb → Sb′ are the transition morphisms. The
remarks above show that I is directed and that the maps I → A, (a, b, fa,b) 7→ a
and I → B, (a, b, fa,b) are cofinal. If for i = (a, b, fa,b) we set Xi = Xa, Si = Sb,
and fi = fa,b, then we get an inverse system of morphisms over I and we have

limi∈I Xi = lima∈A Xa = X and limi∈I Si = limb∈B Sb = S

by Categories, Lemma 17.4 (recall that limits over I are really limits over the
opposite category associated to I and hence cofinal turns into initial). This finishes
the proof. □

Lemma 7.2.09MV Let f : X → S be a morphism of schemes. Assume that
(1) X is quasi-compact and quasi-separated, and
(2) S is quasi-separated.

Then X = limXi is a limit of a directed system of schemes Xi of finite presentation
over S with affine transition morphisms over S.

Proof. Since f(X) is quasi-compact we may replace S by a quasi-compact open
containing f(X). Hence we may assume S is quasi-compact. By Lemma 7.1 we can
write (X → S) = lim(Xi → Si) for some directed inverse system of morphisms of
finite type schemes over Z with affine transition morphisms. Since limits commute
with limits (Categories, Lemma 14.10) we have X = limXi ×Si

S. Let i ≥ i′ in I.
The morphism Xi ×Si

S → Xi′ ×Si′ S is affine as the composition

Xi ×Si
S → Xi ×Si′ S → Xi′ ×Si′ S

where the first morphism is a closed immersion (by Schemes, Lemma 21.9) and
the second is a base change of an affine morphism (Morphisms, Lemma 11.8) and
the composition of affine morphisms is affine (Morphisms, Lemma 11.7). The mor-
phisms fi are of finite presentation (Morphisms, Lemmas 21.9 and 21.11) and hence
the base changes Xi ×fi,Si

S → S are of finite presentation (Morphisms, Lemma
21.4). □

Lemma 7.3.09YZ Let X → S be an integral morphism with S quasi-compact and
quasi-separated. Then X = limXi with Xi → S finite and of finite presentation.

Proof. Consider the sheaf A = f∗OX . This is a quasi-coherent sheaf of OS-
algebras, see Schemes, Lemma 24.1. Combining Properties, Lemma 22.13 we can
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write A = colimiAi as a filtered colimit of finite and finitely presented OS-algebras.
Then

Xi = Spec
S

(Ai) −→ S

is a finite and finitely presented morphism of schemes. By construction X = limi Xi

which proves the lemma. □

8. Descending properties of morphisms

081C This section is the analogue of Section 4 for properties of morphisms over S. We
will work in the following situation.

Situation 8.1.081D Let S = limSi be a limit of a directed system of schemes with
affine transition morphisms (Lemma 2.2). Let 0 ∈ I and let f0 : X0 → Y0 be a
morphism of schemes over S0. Assume S0, X0, Y0 are quasi-compact and quasi-
separated. Let fi : Xi → Yi be the base change of f0 to Si and let f : X → Y be
the base change of f0 to S.

Lemma 8.2.01ZN Notation and assumptions as in Situation 8.1. If f is affine, then
there exists an index i ≥ 0 such that fi is affine.

Proof. Let Y0 =
⋃

j=1,...,m Vj,0 be a finite affine open covering. Set Uj,0 =
f−1

0 (Vj,0). For i ≥ 0 we denote Vj,i the inverse image of Vj,0 in Yi and Uj,i =
f−1

i (Vj,i). Similarly we have Uj = f−1(Vj). Then Uj = limi≥0 Uj,i (see Lemma
2.2). Since Uj is affine by assumption we see that each Uj,i is affine for i large
enough, see Lemma 4.13. As there are finitely many j we can pick an i which works
for all j. Thus fi is affine for i large enough, see Morphisms, Lemma 11.3. □

Lemma 8.3.01ZO Notation and assumptions as in Situation 8.1. If
(1) f is a finite morphism, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is finite.

Proof. A finite morphism is affine, see Morphisms, Definition 44.1. Hence by
Lemma 8.2 above after increasing 0 we may assume that f0 is affine. By writing
Y0 as a finite union of affines we reduce to proving the result when X0 and Y0 are
affine and map into a common affine W ⊂ S0. The corresponding algebra statement
follows from Algebra, Lemma 168.3. □

Lemma 8.4.0C4W Notation and assumptions as in Situation 8.1. If
(1) f is unramified, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is unramified.

Proof. Choose a finite affine open covering Y0 =
⋃

j=1,...,m Yj,0 such that each Yj,0

maps into an affine open Sj,0 ⊂ S0. For each j let f−1
0 Yj,0 =

⋃
k=1,...,nj

Xk,0 be a
finite affine open covering. Since the property of being unramified is local we see
that it suffices to prove the lemma for the morphisms of affines Xk,i → Yj,i → Sj,i

which are the base changes of Xk,0 → Yj,0 → Sj,0 to Si. Thus we reduce to the
case that X0, Y0, S0 are affine
In the affine case we reduce to the following algebra result. Suppose that R =
colimi∈I Ri. For some 0 ∈ I suppose given an R0-algebra map Ai → Bi of finite
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type. If R ⊗R0 A0 → R ⊗R0 B0 is unramified, then for some i ≥ 0 the map
Ri⊗R0A0 → Ri⊗R0B0 is unramified. This follows from Algebra, Lemma 168.5. □

Lemma 8.5.01ZP Notation and assumptions as in Situation 8.1. If
(1) f is a closed immersion, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is a closed immersion.

Proof. A closed immersion is affine, see Morphisms, Lemma 11.9. Hence by
Lemma 8.2 above after increasing 0 we may assume that f0 is affine. By writ-
ing Y0 as a finite union of affines we reduce to proving the result when X0 and
Y0 are affine and map into a common affine W ⊂ S0. The corresponding algebra
statement is a consequence of Algebra, Lemma 168.4. □

Lemma 8.6.01ZQ Notation and assumptions as in Situation 8.1. If f is separated,
then fi is separated for some i ≥ 0.

Proof. Apply Lemma 8.5 to the diagonal morphism ∆X0/S0 : X0 → X0 ×S0 X0.
(This is permissible as diagonal morphisms are locally of finite type and the fibre
product X0 ×S0 X0 is quasi-compact and quasi-separated, see Schemes, Lemma
21.2, Morphisms, Lemma 15.5, and Schemes, Remark 21.18. □

Lemma 8.7.04AI Notation and assumptions as in Situation 8.1. If
(1) f is flat,
(2) f0 is locally of finite presentation,

then fi is flat for some i ≥ 0.

Proof. Choose a finite affine open covering Y0 =
⋃

j=1,...,m Yj,0 such that each Yj,0

maps into an affine open Sj,0 ⊂ S0. For each j let f−1
0 Yj,0 =

⋃
k=1,...,nj

Xk,0 be a
finite affine open covering. Since the property of being flat is local we see that it
suffices to prove the lemma for the morphisms of affines Xk,i → Yj,i → Sj,i which
are the base changes of Xk,0 → Yj,0 → Sj,0 to Si. Thus we reduce to the case that
X0, Y0, S0 are affine

In the affine case we reduce to the following algebra result. Suppose that R =
colimi∈I Ri. For some 0 ∈ I suppose given an R0-algebra map Ai → Bi of finite
presentation. If R ⊗R0 A0 → R ⊗R0 B0 is flat, then for some i ≥ 0 the map
Ri ⊗R0 A0 → Ri ⊗R0 B0 is flat. This follows from Algebra, Lemma 168.1 part
(3). □

Lemma 8.8.06AC Notation and assumptions as in Situation 8.1. If
(1) f is finite locally free (of degree d),
(2) f0 is locally of finite presentation,

then fi is finite locally free (of degree d) for some i ≥ 0.

Proof. By Lemmas 8.7 and 8.3 we find an i such that fi is flat and finite. On
the other hand, fi is locally of finite presentation. Hence fi is finite locally free by
Morphisms, Lemma 48.2. If moreover f is finite locally free of degree d, then the
image of Y → Yi is contained in the open and closed locus Wd ⊂ Yi over which fi

has degree d. By Lemma 4.10 we see that for some i′ ≥ i the image of Yi′ → Yi is
contained in Wd. Then fi′ will be finite locally free of degree d. □
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Lemma 8.9.0C0C Notation and assumptions as in Situation 8.1. If
(1) f is smooth,
(2) f0 is locally of finite presentation,

then fi is smooth for some i ≥ 0.

Proof. Being smooth is local on the source and the target (Morphisms, Lemma
34.2) hence we may assume S0, X0, Y0 affine (details omitted). The corresponding
algebra fact is Algebra, Lemma 168.8. □

Lemma 8.10.07RP Notation and assumptions as in Situation 8.1. If
(1) f is étale,
(2) f0 is locally of finite presentation,

then fi is étale for some i ≥ 0.

Proof. Being étale is local on the source and the target (Morphisms, Lemma 36.2)
hence we may assume S0, X0, Y0 affine (details omitted). The corresponding algebra
fact is Algebra, Lemma 168.7. □

Lemma 8.11.081E Notation and assumptions as in Situation 8.1. If
(1) f is an isomorphism, and
(2) f0 is locally of finite presentation,

then fi is an isomorphism for some i ≥ 0.

Proof. By Lemmas 8.10 and 8.5 we can find an i such that fi is flat and a closed
immersion. Then fi identifies Xi with an open and closed subscheme of Yi, see
Morphisms, Lemma 26.2. By assumption the image of Y → Yi maps into fi(Xi).
Thus by Lemma 4.10 we find that Yi′ maps into fi(Xi) for some i′ ≥ i. It follows
that Xi′ → Yi′ is surjective and we win. □

Lemma 8.12.0EUU Notation and assumptions as in Situation 8.1. If
(1) f is an open immersion, and
(2) f0 is locally of finite presentation,

then fi is an open immersion for some i ≥ 0.

Proof. By Lemma 8.10 we can find an i such that fi is étale. Then Vi = fi(Xi)
is a quasi-compact open subscheme of Yi (Morphisms, Lemma 36.13). let V and
Vi′ for i′ ≥ i be the inverse image of Vi in Y and Yi′ . Then f : X → V is an
isomorphism (namely it is a surjective open immersion). Hence by Lemma 8.11 we
see that Xi′ → Vi′ is an isomorphism for some i′ ≥ i as desired. □

Lemma 8.13.0GTB Notation and assumptions as in Situation 8.1. If
(1) f is an immersion, and
(2) f0 is locally of finite type,

then fi is an immersion for some i ≥ 0.

Proof. There exists an open V ⊂ Y such that the morphism f factors as X →
V → Y and such that X → V is a closed immersion, see discussion in Schemes,
Section 10. Since X is quasi-compact, we may and do assume V is a quasi-compact
open of Y . By Lemma 4.11 after increasing 0 we can find a quasi-compact open
V0 ⊂ Y0 such that V is the inverse image of V0. Then the inverse image of V0 in
X0 is a quasi-compact open whose inverse image in X is X. Hence by the same
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lemma applied to X = limXi we may assume after increasing 0 that we have
the factorization X0 → V0 → Y0. Then for large enough i ≥ 0 the morphism
Xi → Vi where Vi = Yi ×Y0 V0 is a closed immersion by Lemma 8.5 and the proof
is complete. □

Lemma 8.14.07RQ Notation and assumptions as in Situation 8.1. If
(1) f is a monomorphism, and
(2) f0 is locally of finite type,

then fi is a monomorphism for some i ≥ 0.

Proof. Recall that a morphism of schemes V → W is a monomorphism if and
only if the diagonal V → V ×W V is an isomorphism (Schemes, Lemma 23.2). The
morphism X0 → X0 ×Y0 X0 is locally of finite presentation by Morphisms, Lemma
21.12. Since X0 ×Y0 X0 is quasi-compact and quasi-separated (Schemes, Remark
21.18) we conclude from Lemma 8.11 that ∆i : Xi → Xi ×Yi

Xi is an isomorphism
for some i ≥ 0. For this i the morphism fi is a monomorphism. □

Lemma 8.15.07RR Notation and assumptions as in Situation 8.1. If
(1) f is surjective, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is surjective.

Proof. The morphism f0 is of finite presentation. Hence E = f0(X0) is a con-
structible subset of Y0, see Morphisms, Lemma 22.2. Since fi is the base change of
f0 by Yi → Y0 we see that the image of fi is the inverse image of E in Yi. Moreover,
we know that Y → Y0 maps into E. Hence we win by Lemma 4.10. □

Lemma 8.16.0C3L Notation and assumptions as in Situation 8.1. If
(1) f is syntomic, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is syntomic.

Proof. Choose a finite affine open covering Y0 =
⋃

j=1,...,m Yj,0 such that each Yj,0

maps into an affine open Sj,0 ⊂ S0. For each j let f−1
0 Yj,0 =

⋃
k=1,...,nj

Xk,0 be
a finite affine open covering. Since the property of being syntomic is local we see
that it suffices to prove the lemma for the morphisms of affines Xk,i → Yj,i → Sj,i

which are the base changes of Xk,0 → Yj,0 → Sj,0 to Si. Thus we reduce to the
case that X0, Y0, S0 are affine

In the affine case we reduce to the following algebra result. Suppose that R =
colimi∈I Ri. For some 0 ∈ I suppose given an R0-algebra map Ai → Bi of finite
presentation. If R ⊗R0 A0 → R ⊗R0 B0 is syntomic, then for some i ≥ 0 the map
Ri⊗R0 A0 → Ri⊗R0 B0 is syntomic. This follows from Algebra, Lemma 168.9. □

9. Finite type closed in finite presentation

01ZD A result of this type is [Kie72, Satz 2.10]. Another reference is [Con07].

Lemma 9.1.01ZE Let f : X → S be a morphism of schemes. Assume:
(1) The morphism f is locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated.
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Then there exists a morphism of finite presentation f ′ : X ′ → S and an immersion
X → X ′ of schemes over S.

Proof. By Proposition 5.4 we can write X = limi Xi with each Xi of finite type
over Z and with transition morphisms fii′ : Xi → Xi′ affine. Consider the commu-
tative diagram

X //

!!

Xi,S
//

��

Xi

��
S // Spec(Z)

Note that Xi is of finite presentation over Spec(Z), see Morphisms, Lemma 21.9.
Hence the base change Xi,S → S is of finite presentation by Morphisms, Lemma
21.4. Thus it suffices to show that the arrow X → Xi,S is an immersion for i
sufficiently large.
To do this we choose a finite affine open covering X = V1∪. . .∪Vn such that f maps
each Vj into an affine open Uj ⊂ S. Let hj,a ∈ OX(Vj) be a finite set of elements
which generate OX(Vj) as an OS(Uj)-algebra, see Morphisms, Lemma 15.2. By
Lemmas 4.11 and 4.13 (after possibly shrinking I) we may assume that there exist
affine open coverings Xi = V1,i ∪ . . . ∪ Vn,i compatible with transition maps such
that Vj = limi Vj,i. By Lemma 4.7 we can choose i so large that each hj,a comes
from an element hj,a,i ∈ OXi

(Vj,i). Thus the arrow in
Vj −→ Uj ×Spec(Z) Vj,i = (Vj,i)Uj

⊂ (Vj,i)S ⊂ Xi,S

is a closed immersion. Since
⋃

(Vj,i)Uj
forms an open of Xi,S and since the inverse

image of (Vj,i)Uj in X is Vj it follows that X → Xi,S is an immersion. □

Remark 9.2.01ZF We cannot do better than this if we do not assume more on S and
the morphism f : X → S. For example, in general it will not be possible to find a
closed immersion X → X ′ as in the lemma. The reason is that this would imply
that f is quasi-compact which may not be the case. An example is to take S to be
infinite dimensional affine space with 0 doubled and X to be one of the two infinite
dimensional affine spaces.

Lemma 9.3.01ZG Let f : X → S be a morphism of schemes. Assume:
(1) The morphism f is of locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated, and
(3) The scheme S is quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → S and a closed
immersion X → X ′ of schemes over S.

Proof. By Lemma 9.1 above there exists a morphism Y → S of finite presentation
and an immersion i : X → Y of schemes over S. For every point x ∈ X, there
exists an affine open Vx ⊂ Y such that i−1(Vx)→ Vx is a closed immersion. Since
X is quasi-compact we can find finitely may affine opens V1, . . . , Vn ⊂ Y such
that i(X) ⊂ V1 ∪ . . . ∪ Vn and i−1(Vj) → Vj is a closed immersion. In other
words such that i : X → X ′ = V1 ∪ . . . ∪ Vn is a closed immersion of schemes
over S. Since S is quasi-separated and Y is quasi-separated over S we deduce
that Y is quasi-separated, see Schemes, Lemma 21.12. Hence the open immersion
X ′ = V1 ∪ . . . ∪ Vn → Y is quasi-compact. This implies that X ′ → Y is of finite
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presentation, see Morphisms, Lemma 21.6. We conclude since then X ′ → Y → S is
a composition of morphisms of finite presentation, and hence of finite presentation
(see Morphisms, Lemma 21.3). □

Lemma 9.4.09ZP Let X → Y be a closed immersion of schemes. Assume Y quasi-
compact and quasi-separated. Then X can be written as a directed limit X = limXi

of schemes over Y where Xi → Y is a closed immersion of finite presentation.

Proof. Let I ⊂ OY be the quasi-coherent sheaf of ideals defining X as a closed
subscheme of Y . By Properties, Lemma 22.3 we can write I as a directed colimit
I = colimi∈I Ii of its quasi-coherent sheaves of ideals of finite type. Let Xi ⊂ Y
be the closed subscheme defined by Ii. These form an inverse system of schemes
indexed by I. The transition morphisms Xi → Xi′ are affine because they are
closed immersions. Each Xi is quasi-compact and quasi-separated since it is a closed
subscheme of Y and Y is quasi-compact and quasi-separated by our assumptions.
We have X = limi Xi as follows directly from the fact that I = colimi∈I Ia. Each of
the morphisms Xi → Y is of finite presentation, see Morphisms, Lemma 21.7. □

Lemma 9.5.09ZQ Let f : X → S be a morphism of schemes. Assume
(1) The morphism f is of locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated, and
(3) The scheme S is quasi-separated.

Then X = limXi where the Xi → S are of finite presentation, the Xi are quasi-
compact and quasi-separated, and the transition morphisms Xi′ → Xi are closed
immersions (which implies that X → Xi are closed immersions for all i).

Proof. By Lemma 9.3 there is a closed immersion X → Y with Y → S of finite
presentation. Then Y is quasi-separated by Schemes, Lemma 21.12. Since X is
quasi-compact, we may assume Y is quasi-compact by replacing Y with a quasi-
compact open containing X. We see that X = limXi with Xi → Y a closed
immersion of finite presentation by Lemma 9.4. The morphisms Xi → S are of
finite presentation by Morphisms, Lemma 21.3. □

Proposition 9.6.01ZJ Let f : X → S be a morphism of schemes. Assume
(1) f is of finite type and separated, and
(2) S is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation f ′ : X ′ → S and a
closed immersion X → X ′ of schemes over S.

Proof. Apply Lemma 9.5 and note that Xi → S is separated for large i by Lemma
4.17 as we have assumed that X → S is separated. □

Lemma 9.7.01ZK Let f : X → S be a morphism of schemes. Assume
(1) f is finite, and
(2) S is quasi-compact and quasi-separated.

Then there exists a morphism which is finite and of finite presentation f ′ : X ′ → S
and a closed immersion X → X ′ of schemes over S.

Proof. We may write X = limXi as in Lemma 9.5. Applying Lemma 4.19 we see
that Xi → S is finite for large enough i. □

Lemma 9.8.09YY Let f : X → S be a morphism of schemes. Assume
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(1) f is finite, and
(2) S quasi-compact and quasi-separated.

Then X is a directed limit X = limXi where the transition maps are closed im-
mersions and the objects Xi are finite and of finite presentation over S.

Proof. We may write X = limXi as in Lemma 9.5. Applying Lemma 4.19 we see
that Xi → S is finite for large enough i. □

10. Descending relative objects

01ZL The following lemma is typical of the type of results in this section. We write out
the “standard” proof completely. It may be faster to convince yourself that the
result is true than to read this proof.

Lemma 10.1.01ZM Let I be a directed set. Let (Si, fii′) be an inverse system of schemes
over I. Assume

(1) the morphisms fii′ : Si → Si′ are affine,
(2) the schemes Si are quasi-compact and quasi-separated.

Let S = limi Si. Then we have the following:
(1) For any morphism of finite presentation X → S there exists an index i ∈ I

and a morphism of finite presentation Xi → Si such that X ∼= Xi,S as
schemes over S.

(2) Given an index i ∈ I, schemes Xi, Yi of finite presentation over Si, and
a morphism φ : Xi,S → Yi,S over S, there exists an index i′ ≥ i and a
morphism φi′ : Xi,Si′ → Yi,Si′ whose base change to S is φ.

(3) Given an index i ∈ I, schemes Xi, Yi of finite presentation over Si and
a pair of morphisms φi, ψi : Xi → Yi whose base changes φi,S = ψi,S are
equal, there exists an index i′ ≥ i such that φi,Si′ = ψi,Si′ .

In other words, the category of schemes of finite presentation over S is the colimit
over I of the categories of schemes of finite presentation over Si.

Proof. In case each of the schemes Si is affine, and we consider only affine schemes
of finite presentation over Si, resp. S this lemma is equivalent to Algebra, Lemma
127.8. We claim that the affine case implies the lemma in general.

Let us prove (3). Suppose given an index i ∈ I, schemes Xi, Yi of finite presentation
over Si and a pair of morphisms φi, ψi : Xi → Yi. Assume that the base changes
are equal: φi,S = ψi,S . We will use the notation Xi′ = Xi,Si′ and Yi′ = Yi,Si′ for
i′ ≥ i. We also set X = Xi,S and Y = Yi,S . Note that according to Lemma 2.3
we have X = limi′≥i Xi′ and similarly for Y . Additionally we denote φi′ and ψi′

(resp. φ and ψ) the base change of φi and ψi to Si′ (resp. S). So our assumption
means that φ = ψ. Since Yi and Xi are of finite presentation over Si, and since Si

is quasi-compact and quasi-separated, also Xi and Yi are quasi-compact and quasi-
separated (see Morphisms, Lemma 21.10). Hence we may choose a finite affine open
covering Yi =

⋃
Vj,i such that each Vj,i maps into an affine open of S. As above,

denote Vj,i′ the inverse image of Vj,i in Yi′ and Vj the inverse image in Y . The
immersions Vj,i′ → Yi′ are quasi-compact, and the inverse images Uj,i′ = φ−1

i (Vj,i′)
and U ′

j,i′ = ψ−1
i (Vj,i′) are quasi-compact opens of Xi′ . By assumption the inverse

images of Vj under φ and ψ in X are equal. Hence by Lemma 4.11 there exists an
index i′ ≥ i such that of Uj,i′ = U ′

j,i′ in Xi′ . Choose an finite affine open covering

https://stacks.math.columbia.edu/tag/01ZM
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Uj,i′ = U ′
j,i′ =

⋃
Wj,k,i′ which induce coverings Uj,i′′ = U ′

j,i′′ =
⋃
Wj,k,i′′ for all

i′′ ≥ i′. By the affine case there exists an index i′′ such that φi′′ |Wj,k,i′′ = ψi′′ |Wj,k,i′′

for all j, k. Then i′′ is an index such that φi′′ = ψi′′ and (3) is proved.

Let us prove (2). Suppose given an index i ∈ I, schemes Xi, Yi of finite presentation
over Si and a morphism φ : Xi,S → Yi,S . We will use the notation Xi′ = Xi,Si′ and
Yi′ = Yi,Si′ for i′ ≥ i. We also set X = Xi,S and Y = Yi,S . Note that according
to Lemma 2.3 we have X = limi′≥i Xi′ and similarly for Y . Since Yi and Xi are of
finite presentation over Si, and since Si is quasi-compact and quasi-separated, also
Xi and Yi are quasi-compact and quasi-separated (see Morphisms, Lemma 21.10).
Hence we may choose a finite affine open covering Yi =

⋃
Vj,i such that each Vj,i

maps into an affine open of S. As above, denote Vj,i′ the inverse image of Vj,i in
Yi′ and Vj the inverse image in Y . The immersions Vj → Y are quasi-compact, and
the inverse images Uj = φ−1(Vj) are quasi-compact opens of X. Hence by Lemma
4.11 there exists an index i′ ≥ i and quasi-compact opens Uj,i′ of Xi′ whose inverse
image in X is Uj . Choose an finite affine open covering Uj,i′ =

⋃
Wj,k,i′ which

induce affine open coverings Uj,i′′ =
⋃
Wj,k,i′′ for all i′′ ≥ i′ and an affine open

covering Uj =
⋃
Wj,k. By the affine case there exists an index i′′ and morphisms

φj,k,i′′ : Wj,k,i′′ → Vj,i′′ such that φ|Wj,k
= φj,k,i′′,S for all j, k. By part (3) proved

above, there is a further index i′′′ ≥ i′′ such that

φj1,k1,i′′,Si′′′ |Wj1,k1,i′′′ ∩Wj2,k2,i′′′ = φj2,k2,i′′,Si′′′ |Wj1,k1,i′′′ ∩Wj2,k2,i′′′

for all j1, j2, k1, k2. Then i′′′ is an index such that there exists a morphism φi′′′ :
Xi′′′ → Yi′′′ whose base change to S gives φ. Hence (2) holds.

Let us prove (1). Suppose given a scheme X of finite presentation over S. Since X is
of finite presentation over S, and since S is quasi-compact and quasi-separated, also
X is quasi-compact and quasi-separated (see Morphisms, Lemma 21.10). Choose a
finite affine open coveringX =

⋃
Uj such that each Uj maps into an affine open Vj ⊂

S. Denote Uj1j2 = Uj1∩Uj2 and Uj1j2j3 = Uj1∩Uj2∩Uj3 . By Lemmas 4.11 and 4.13
we can find an index i1 and affine opens Vj,i1 ⊂ Si1 such that each Vj is the inverse of
this in S. Let Vj,i be the inverse image of Vj,i1 in Si for i ≥ i1. By the affine case we
may find an index i2 ≥ i1 and affine schemes Uj,i2 → Vj,i2 such that Uj = S×Si2

Uj,i2

is the base change. Denote Uj,i = Si ×Si2
Uj,i2 for i ≥ i2. By Lemma 4.11 there

exists an index i3 ≥ i2 and open subschemes Wj1,j2,i3 ⊂ Uj1,i3 whose base change to
S is equal to Uj1j2 . Denote Wj1,j2,i = Si×Si3

Wj1,j2,i3 for i ≥ i3. By part (2) shown
above there exists an index i4 ≥ i3 and morphisms φj1,j2,i4 : Wj1,j2,i4 → Wj2,j1,i4

whose base change to S gives the identity morphism Uj1j2 = Uj2j1 for all j1, j2. For
all i ≥ i4 denote φj1,j2,i = idS × φj1,j2,i4 the base change. We claim that for some
i5 ≥ i4 the system ((Uj,i5)j , (Wj1,j2,i5)j1,j2 , (φj1,j2,i5)j1,j2) forms a glueing datum
as in Schemes, Section 14. In order to see this we have to verify that for i large
enough we have

φ−1
j1,j2,i(Wj1,j2,i ∩Wj1,j3,i) = Wj1,j2,i ∩Wj1,j3,i

and that for large enough i the cocycle condition holds. The first condition follows
from Lemma 4.11 and the fact that Uj2j1j3 = Uj1j2j3 . The second from part (1)
of the lemma proved above and the fact that the cocycle condition holds for the
maps id : Uj1j2 → Uj2j1 . Ok, so now we can use Schemes, Lemma 14.2 to glue
the system ((Uj,i5)j , (Wj1,j2,i5)j1,j2 , (φj1,j2,i5)j1,j2) to get a scheme Xi5 → Si5 . By
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construction the base change of Xi5 to S is formed by glueing the open affines Uj

along the opens Uj1 ← Uj1j2 → Uj2 . Hence S ×Si5
Xi5
∼= X as desired. □

Lemma 10.2.01ZR Let I be a directed set. Let (Si, fii′) be an inverse system of schemes
over I. Assume

(1) all the morphisms fii′ : Si → Si′ are affine,
(2) all the schemes Si are quasi-compact and quasi-separated.

Let S = limi Si. Then we have the following:
(1) For any sheaf of OS-modules F of finite presentation there exists an index

i ∈ I and a sheaf of OSi
-modules of finite presentation Fi such that F ∼=

f∗
i Fi.

(2) Suppose given an index i ∈ I, sheaves of OSi-modules Fi, Gi of finite pre-
sentation and a morphism φ : f∗

i Fi → f∗
i Gi over S. Then there exists an

index i′ ≥ i and a morphism φi′ : f∗
i′iFi → f∗

i′iGi whose base change to S
is φ.

(3) Suppose given an index i ∈ I, sheaves of OSi
-modules Fi, Gi of finite pre-

sentation and a pair of morphisms φi, ψi : Fi → Gi. Assume that the base
changes are equal: f∗

i φi = f∗
i ψi. Then there exists an index i′ ≥ i such

that f∗
i′iφi = f∗

i′iψi.
In other words, the category of modules of finite presentation over S is the colimit
over I of the categories modules of finite presentation over Si.
Proof. We sketch two proofs, but we omit the details.
First proof. If S and Si are affine schemes, then this lemma is equivalent to Algebra,
Lemma 127.6. In the general case, use Zariski glueing to deduce it from the affine
case.
Second proof. We use

(1) there is an equivalence of categories between quasi-coherent OS-modules
and vector bundles over S, see Constructions, Section 6, and

(2) a vector bundle V(F)→ S is of finite presentation over S if and only if F
is an OS-module of finite presentation.

Having said this, we can use Lemma 10.1 to show that the category of vector
bundles of finite presentation over S is the colimit over I of the categories of vector
bundles over Si. □

Lemma 10.3.0B8W Let S = limSi be the limit of a directed system of quasi-compact
and quasi-separated schemes Si with affine transition morphisms. Then

(1) any finite locally free OS-module is the pullback of a finite locally free OSi-
module for some i,

(2) any invertible OS-module is the pullback of an invertible OSi
-module for

some i, and
(3) any finite type quasi-coherent ideal I ⊂ OS is of the form Ii · OS for some

i and some finite type quasi-coherent ideal Ii ⊂ OSi
.

Proof. Let E be a finite locally free OS-module. Since finite locally free modules
are of finite presentation we can find an i and anOSi-module Ei of finite presentation
such that f∗

i Ei
∼= E , see Lemma 10.2. After increasing i we may assume Ei is a flat

OSi
-module, see Algebra, Lemma 168.1. (Using this lemma is not necessary, but it

is convenient.) Then Ei is finite locally free by Algebra, Lemma 78.2.

https://stacks.math.columbia.edu/tag/01ZR
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If L is an invertible OS-module, then by the above we can find an i and finite locally
free OSi-modules Li and Ni pulling back to L and L⊗−1. After possible increasing
i we see that the map L ⊗OX

L⊗−1 → OX descends to a map Li ⊗OSi
Ni → OSi .

And after increasing i further, we may assume it is an isomorphism. It follows that
Li is an invertible module (Modules, Lemma 25.2) and the proof of (2) is complete.
Given I as in (3) we see that OS → OS/I is a map of finitely presented OS-
modules. Hence by Lemma 10.2 this is the pullback of some map OSi

→ Fi of
finitely presented OSi

-modules. After increasing i we may assume this map is
surjective (details omitted; hint: use Algebra, Lemma 127.5 on affine open cover).
Then the kernel of OSi

→ Fi is a finite type quasi-coherent ideal in OSi
whose

pullback gives I. □

Lemma 10.4.05LY With notation and assumptions as in Lemma 10.1. Let i ∈ I.
Suppose that φi : Xi → Yi is a morphism of schemes of finite presentation over Si

and that Fi is a quasi-coherent OXi
-module of finite presentation. If the pullback

of Fi to Xi ×Si S is flat over Yi ×Si S, then there exists an index i′ ≥ i such that
the pullback of Fi to Xi ×Si Si′ is flat over Yi ×Si Si′ .

Proof. (This lemma is the analogue of Lemma 8.7 for modules.) For i′ ≥ i denote
Xi′ = Si′ ×Si Xi, Fi′ = (Xi′ → Xi)∗Fi and similarly for Yi′ . Denote φi′ the base
change of φi to Si′ . Also set X = S ×Si Xi, Y = S ×Si Xi, F = (X → Xi)∗Fi

and φ the base change of φi to S. Let Yi =
⋃

j=1,...,m Vj,i be a finite affine open
covering such that each Vj,i maps into some affine open of Si. For each j = 1, . . .m
let φ−1

i (Vj,i) =
⋃

k=1,...,m(j) Uk,j,i be a finite affine open covering. For i′ ≥ i we
denote Vj,i′ the inverse image of Vj,i in Yi′ and Uk,j,i′ the inverse image of Uk,j,i

in Xi′ . Similarly we have Uk,j ⊂ X and Vj ⊂ Y . Then Uk,j = limi′≥i Uk,j,i′ and
Vj = limi′≥i Vj (see Lemma 2.2). Since Xi′ =

⋃
k,j Uk,j,i′ is a finite open covering

it suffices to prove the lemma for each of the morphisms Uk,j,i → Vj,i and the sheaf
Fi|Uk,j,i

. Hence we see that the lemma reduces to the case that Xi and Yi are affine
and map into an affine open of Si, i.e., we may also assume that S is affine.
In the affine case we reduce to the following algebra result. Suppose that R =
colimi∈I Ri. For some i ∈ I suppose given a map Ai → Bi of finitely presented
Ri-algebras. Let Ni be a finitely presented Bi-module. Then, if R ⊗Ri

Ni is flat
over R ⊗Ri

Ai, then for some i′ ≥ i the module Ri′ ⊗Ri
Ni is flat over Ri′ ⊗Ri

A.
This is exactly the result proved in Algebra, Lemma 168.1 part (3). □

Lemma 10.5.0EY1 For a scheme T denote CT the full subcategory of schemes W over
T such that W is quasi-compact and quasi-separated and such that the structure
morphism W → T is locally of finite presentation. Let S = limSi be a directed
limit of schemes with affine transition morphisms. Then there is an equivalence of
categories

colim CSi
−→ CS

given by the base change functors.

Warning: do not use this lemma if you do not understand the difference between
this lemma and Lemma 10.1.

Proof. Fully faithfulness. Suppose we have i ∈ I and objects Xi, Yi of CSi
. Denote

X = Xi ×Si S and Y = Yi ×Si S. Suppose given a morphism f : X → Y over
S. We can choose a finite affine open covering Yi = Vi,1 ∪ . . . ∪ Vi,m such that

https://stacks.math.columbia.edu/tag/05LY
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Vi,j → Yi → Si maps into an affine open Wi,j of Si. Denote Y = V1 ∪ . . . ∪ Vm the
induced affine open covering of Y . Since f : X → Y is quasi-compact (Schemes,
Lemma 21.14) after increasing i we may assume that there is a finite open covering
Xi = Ui,1 ∪ . . . ∪ Ui,m by quasi-compact opens such that the inverse image of Ui,j

in Y is f−1(Vj), see Lemma 4.11. By Lemma 10.1 applied to f |f−1(Vj) over Wj we
may assume, after increasing i, that there is a morphism fi,j : Vi,j → Ui,j over S
whose base change to S is f |f−1(Vj). Increasing i more we may assume fi,j and fi,j′

agree on the quasi-compact open Ui,j ∩Ui,j′ . Then we can glue these morphisms to
get the desired morphism fi : Xi → Yi. This morphism is unique (up to increasing
i) because this is true for the morphisms fi,j .
To show that the functor is essentially surjective we argue in exactly the same way.
Namely, suppose that X is an object of CS . Pick i ∈ I. We can choose a finite affine
open covering X = U1 ∪ . . . ∪ Um such that Uj → X → S → Si factors through
an affine open Wi,j ⊂ Si. Set Wj = Wi,j ×Si

S. This is an affine open of S. By
Lemma 10.1, after increasing i, we may assume there exist Ui,j → Wi,j of finite
presentation whose base change to Wj is Uj . After increasing i we may assume
there exist quasi-compact opens Ui,j,j′ ⊂ Ui,j whose base changes to S are equal
to Uj ∩ Uj′ . Claim: after increasing i we may assume the image of the morphism
Ui,j,j′ → Ui,j → Wi,j ends up in Wi,j ∩Wi,j′ . Namely, because the complement of
Wi,j∩Wi,j′ is closed in the affine scheme Wi,j it is affine. Since Uj∩Uj′ = limUi,j,j′

does map into Wi,j ∩Wi,j′ we can apply Lemma 4.9 to get the claim. Thus we can
view both

Ui,j,j′ and Ui,j′,j

as schemes over Wi,j′ whose base changes to Wj′ recover Uj ∩ Uj′ . Hence after
increasing i, using Lemma 10.1, we may assume there are isomorphisms Ui,j,j′ →
Ui,j′,j over Wi,j′ and hence over Si. Increasing i further (details omitted) we may
assume these isomorphisms satisfy the cocycle condition mentioned in Schemes,
Section 14. Applying Schemes, Lemma 14.1 we obtain an object Xi of CSi whose
base change to S is isomorphic to X; we omit some of the verifications. □

11. Characterizing affine schemes

01ZS If f : X → S is a surjective integral morphism of schemes such that X is an affine
scheme then S is affine too. See [Con07, A.2]. Our proof relies on the Noetherian
case which we stated and proved in Cohomology of Schemes, Lemma 13.3. See also
[DG67, II 6.7.1].

Lemma 11.1.01ZT Let f : X → S be a morphism of schemes. Assume that f is
surjective and finite, and assume that X is affine. Then S is affine.

Proof. Since f is surjective and X is quasi-compact we see that S is quasi-compact.
Since X is separated and f is surjective and universally closed (Morphisms, Lemma
44.7), we see that S is separated (Morphisms, Lemma 41.11).
By Lemma 9.8 we can write X = lima Xa with Xa → S finite and of finite presen-
tation. By Lemma 4.13 we see that Xa is affine for some a ∈ A. Replacing X by
Xa we may assume that X → S is surjective, finite, of finite presentation and that
X is affine.
By Proposition 5.4 we may write S = limi∈I Si as a directed limits of schemes of
finite type over Z. By Lemma 10.1 we can after shrinking I assume there exist

https://stacks.math.columbia.edu/tag/01ZT
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schemes Xi → Si of finite presentation such that Xi′ = Xi ×S Si′ for i′ ≥ i and
such that X = limi Xi. By Lemma 8.3 we may assume that Xi → Si is finite for
all i ∈ I as well. By Lemma 4.13 once again we may assume that Xi is affine for
all i ∈ I. Hence the result follows from the Noetherian case, see Cohomology of
Schemes, Lemma 13.3. □

Proposition 11.2.05YU Let f : X → S be a morphism of schemes. Assume X is affine
and that f is surjective and universally closed2. Then S is affine.
Proof. By Morphisms, Lemma 41.11 the scheme S is separated. Then by Mor-
phisms, Lemma 11.11 we find that f is affine. Whereupon by Morphisms, Lemma
44.7 we see that f is integral.
By the preceding paragraph, we may assume f : X → S is surjective and integral,
X is affine, and S is separated. Since f is surjective and X is quasi-compact we
also deduce that S is quasi-compact.
By Lemma 7.3 we can write X = limi Xi with Xi → S finite. By Lemma 4.13 we
see that for i sufficiently large the scheme Xi is affine. Moreover, since X → S
factors through each Xi we see that Xi → S is surjective. Hence we conclude that
S is affine by Lemma 11.1. □

Lemma 11.3.09NL Let X be a scheme which is set theoretically the union of finitely
many affine closed subschemes. Then X is affine.
Proof. Let Zi ⊂ X, i = 1, . . . , n be affine closed subschemes such that X =

⋃
Zi

set theoretically. Then
∐
Zi → X is surjective and integral with affine source.

Hence X is affine by Proposition 11.2. □

Lemma 11.4.09MW Let i : Z → X be a closed immersion of schemes inducing a
homeomorphism of underlying topological spaces. Let L be an invertible sheaf on
X. Then i∗L is ample on Z, if and only if L is ample on X.
Proof. If L is ample, then i∗L is ample for example by Morphisms, Lemma 37.7.
Assume i∗L is ample. Then Z is quasi-compact (Properties, Definition 26.1) and
separated (Properties, Lemma 26.8). Since i is surjective, we see that X is quasi-
compact. Since i is universally closed and surjective, we see that X is separated
(Morphisms, Lemma 41.11).
By Proposition 5.4 we can writeX = limXi as a directed limit of finite type schemes
over Z with affine transition morphisms. We can find an i and an invertible sheaf
Li on Xi whose pullback to X is isomorphic to L, see Lemma 10.2.
For each i let Zi ⊂ Xi be the scheme theoretic image of the morphism Z → Xi. If
Spec(Ai) ⊂ Xi is an affine open subscheme with inverse image of Spec(A) in X and
if Z ∩ Spec(A) is defined by the ideal I ⊂ A, then Zi ∩ Spec(Ai) is defined by the
ideal Ii ⊂ Ai which is the inverse image of I in Ai under the ring map Ai → A, see
Morphisms, Example 6.4. Since colimAi/Ii = A/I it follows that limZi = Z. By
Lemma 4.15 we see that Li|Zi

is ample for some i. Since Z and hence X maps into
Zi set theoretically, we see that Xi′ → Xi maps into Zi set theoretically for some
i′ ≥ i, see Lemma 4.10. (Observe that since Xi is Noetherian, every closed subset
of Xi is constructible.) Let T ⊂ Xi′ be the scheme theoretic inverse image of Zi in
Xi′ . Observe that Li′ |T is the pullback of Li|Zi

and hence ample by Morphisms,

2An integral morphism is universally closed, see Morphisms, Lemma 44.7.
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Lemma 37.7 and the fact that T → Zi is an affine morphism. Thus we see that
Li′ is ample on Xi′ by Cohomology of Schemes, Lemma 17.5. Pulling back to X
(using the same lemma as above) we find that L is ample. □

Lemma 11.5.0B7L Let i : Z → X be a closed immersion of schemes inducing a
homeomorphism of underlying topological spaces. Then X is quasi-affine if and
only if Z is quasi-affine.

Proof. Recall that a scheme is quasi-affine if and only if the structure sheaf is
ample, see Properties, Lemma 27.1. Hence if Z is quasi-affine, then OZ is ample,
hence OX is ample by Lemma 11.4, hence X is quasi-affine. A proof of the converse,
which can also be seen in an elementary way, is gotten by reading the argument
just given backwards. □

The following lemma does not really belong in this section.

Lemma 11.6.0E21 Let X be a scheme. Let L be an ample invertible sheaf on X.
Assume we have morphisms of schemes

Spec(k)← Spec(A)→W ⊂ X

where k is a field, A is an integral k-algebra, W is open in X. Then there exists
an n > 0 and a section s ∈ Γ(X,L⊗n) such that Xs is affine, Xs ⊂ W , and
Spec(A)→W factors through Xs

Proof. Since Spec(A) is quasi-compact, we may replace W by a quasi-compact
open still containing the image of Spec(A)→ X. Recall that X is quasi-separated
and quasi-compact by dint of having an ample invertible sheaf, see Properties,
Definition 26.1 and Lemma 26.7. By Proposition 5.4 we can write X = limXi as
a limit of a directed system of schemes of finite type over Z with affine transition
morphisms. For some i the ample invertible sheaf L on X descends to an ample
invertible sheaf Li on Xi and the open W is the inverse image of a quasi-compact
open Wi ⊂ Xi, see Lemmas 4.15, 10.3, and 4.11. We may replace X,W,L by
Xi,Wi,Li and assume X is of finite presentation over Z. Write A = colimAj as
the colimit of its finite k-subalgebras. Then for some j the morphism Spec(A)→ X
factors through a morphism Spec(Aj)→ X, see Proposition 6.1. Since Spec(Aj) is
finite this reduces the lemma to Properties, Lemma 29.6. □

12. Variants of Chow’s Lemma

01ZZ In this section we prove a number of variants of Chow’s lemma. The most inter-
esting version is probably just the Noetherian case, which we stated and proved in
Cohomology of Schemes, Section 18.

Lemma 12.1.0202 Let S be a quasi-compact and quasi-separated scheme. Let f : X →
S be a separated morphism of finite type. Then there exists an n ≥ 0 and a diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.
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Proof. By Proposition 9.6 we can find a closed immersion X → Y where Y is
separated and of finite presentation over S. Clearly, if we prove the assertion for Y ,
then the result follows for X. Hence we may assume that X is of finite presentation
over S.

Write S = limi Si as a directed limit of Noetherian schemes, see Proposition 5.4. By
Lemma 10.1 we can find an index i ∈ I and a scheme Xi → Si of finite presentation
so that X = S ×Si

Xi. By Lemma 8.6 we may assume that Xi → Si is separated.
Clearly, if we prove the assertion for Xi over Si, then the assertion holds for X.
The case Xi → Si is treated by Cohomology of Schemes, Lemma 18.1. □

Remark 12.2.0GII In the situation of Chow’s Lemma 12.1:
(1) The morphism π is actually H-projective (hence projective, see Morphisms,

Lemma 43.3) since the morphism X ′ → Pn
S ×S X = Pn

X is a closed immer-
sion (use the fact that π is proper, see Morphisms, Lemma 41.7).

(2) We may assume that X ′ is reduced as we can replace X ′ by its reduction
without changing the other assertions of the lemma.

(3) We may assume that X ′ → X is of finite presentation without changing
the other assertions of the lemma. This can be deduced from the proof of
Lemma 12.1 but we can also prove this directly as follows. By (1) we have
a closed immersion X ′ → Pn

X . By Lemma 9.4 we can write X ′ = limX ′
i

where X ′
i → Pn

X is a closed immersion of finite presentation. In particular
X ′

i → X is of finite presentation, proper, and surjective. For large enough
i the morphism X ′

i → Pn
S is an immersion by Lemma 4.16. Replacing X ′

by X ′
i we get what we want.

Of course in general we can’t simultaneously achieve both (2) and (3).

Here is a variant of Chow’s lemma where we assume the scheme on top has finitely
many irreducible components.

Lemma 12.3.0203 Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a separated morphism of finite type. Assume that X has finitely many
irreducible components. Then there exists an n ≥ 0 and a diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.

Moreover, there exists an open dense subscheme U ⊂ X such that π−1(U) → U is
an isomorphism of schemes.

Proof. Let X = Z1 ∪ . . . ∪ Zn be the decomposition of X into irreducible compo-
nents. Let ηj ∈ Zj be the generic point.

There are (at least) two ways to proceed with the proof. The first is to redo the
proof of Cohomology of Schemes, Lemma 18.1 using the general Properties, Lemma
29.4 to find suitable affine opens in X. (This is the “standard” proof.) The second
is to use absolute Noetherian approximation as in the proof of Lemma 12.1 above.
This is what we will do here.
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By Proposition 9.6 we can find a closed immersion X → Y where Y is separated
and of finite presentation over S. Write S = limi Si as a directed limit of Noetherian
schemes, see Proposition 5.4. By Lemma 10.1 we can find an index i ∈ I and a
scheme Yi → Si of finite presentation so that Y = S×Si

Yi. By Lemma 8.6 we may
assume that Yi → Si is separated. We have the following diagram

ηj ∈ Zj
// X //

��

Y //

��

Yi

��
S // Si

Denote h : X → Yi the composition.
For i′ ≥ i write Yi′ = Si′ ×Si

Yi. Then Y = limi′≥i Yi′ , see Lemma 2.3. Choose
j, j′ ∈ {1, . . . , n}, j ̸= j′. Note that ηj is not a specialization of ηj′ . By Lemma 4.6
we can replace i by a bigger index and assume that h(ηj) is not a specialization of
h(ηj′) for all pairs (j, j′) as above. For such an index, let Y ′ ⊂ Yi be the scheme
theoretic image of h : X → Yi, see Morphisms, Definition 6.2. The morphism
h is quasi-compact as the composition of the quasi-compact morphisms X → Y
and Y → Yi (which is affine). Hence by Morphisms, Lemma 6.3 the morphism
X → Y ′ is dominant. Thus the generic points of Y ′ are all contained in the
set {h(η1), . . . , h(ηn)}, see Morphisms, Lemma 8.3. Since none of the h(ηj) is the
specialization of another we see that the points h(η1), . . . , h(ηn) are pairwise distinct
and are each a generic point of Y ′.
We apply Cohomology of Schemes, Lemma 18.1 above to the morphism Y ′ → Si.
This gives a diagram

Y ′

  

Y ∗

��

π
oo // Pn

Si

}}
Si

such that π is proper and surjective and an isomorphism over a dense open sub-
scheme V ⊂ Y ′. By our choice of i above we know that h(η1), . . . , h(ηn) ∈ V .
Consider the commutative diagram

X ′ X ×Y ′ Y ∗ //

��

Y ∗ //

��

Pn
Si

��

X //

��

Y ′

��
S // Si

Note that X ′ → X is an isomorphism over the open subscheme U = h−1(V ) which
contains each of the ηj and hence is dense in X. We conclude X ← X ′ → Pn

S is a
solution to the problem posed in the lemma. □

13. Applications of Chow’s lemma

0204 Here is a first application of Chow’s lemma.

Lemma 13.1.081F Assumptions and notation as in Situation 8.1. If
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(1) f is proper, and
(2) f0 is locally of finite type,

then there exists an i such that fi is proper.

Proof. By Lemma 8.6 we see that fi is separated for some i ≥ 0. Replacing 0
by i we may assume that f0 is separated. Observe that f0 is quasi-compact, see
Schemes, Lemma 21.14. By Lemma 12.1 we can choose a diagram

X0

  

X ′
0

��

π
oo // Pn

Y0

}}
Y0

where X ′
0 → Pn

Y0
is an immersion, and π : X ′

0 → X0 is proper and surjective.
Introduce X ′ = X ′

0 ×Y0 Y and X ′
i = X ′

0 ×Y0 Yi. By Morphisms, Lemmas 41.4
and 41.5 we see that X ′ → Y is proper. Hence X ′ → Pn

Y is a closed immersion
(Morphisms, Lemma 41.7). By Morphisms, Lemma 41.9 it suffices to prove that
X ′

i → Yi is proper for some i. By Lemma 8.5 we find that X ′
i → Pn

Yi
is a closed

immersion for i large enough. Then X ′
i → Yi is proper and we win. □

Lemma 13.2.09ZR Let f : X → S be a proper morphism with S quasi-compact and
quasi-separated. Then X = limXi is a directed limit of schemes Xi proper and of
finite presentation over S such that all transition morphisms and the morphisms
X → Xi are closed immersions.

Proof. By Proposition 9.6 we can find a closed immersionX → Y with Y separated
and of finite presentation over S. By Lemma 12.1 we can find a diagram

Y

��

Y ′

��

π
oo // Pn

S

~~
S

where Y ′ → Pn
S is an immersion, and π : Y ′ → Y is proper and surjective. By

Lemma 9.4 we can write X = limXi with Xi → Y a closed immersion of finite
presentation. Denote X ′

i ⊂ Y ′, resp. X ′ ⊂ Y ′ the scheme theoretic inverse image
of Xi ⊂ Y , resp. X ⊂ Y . Then limX ′

i = X ′. Since X ′ → S is proper (Morphisms,
Lemmas 41.4), we see that X ′ → Pn

S is a closed immersion (Morphisms, Lemma
41.7). Hence for i large enough we find that X ′

i → Pn
S is a closed immersion by

Lemma 4.20. Thus X ′
i is proper over S. For such i the morphism Xi → S is proper

by Morphisms, Lemma 41.9. □

Lemma 13.3.0A0P Let f : X → S be a proper morphism with S quasi-compact and
quasi-separated. Then there exists a directed set I, an inverse system (fi : Xi → Si)
of morphisms of schemes over I, such that the transition morphisms Xi → Xi′ and
Si → Si′ are affine, such that fi is proper, such that Si is of finite type over Z, and
such that (X → S) = lim(Xi → Si).

Proof. By Lemma 13.2 we can write X = limk∈K Xk with Xk → S proper and
of finite presentation. Next, by absolute Noetherian approximation (Proposition
5.4) we can write S = limj∈J Sj with Sj of finite type over Z. For each k there
exists a j and a morphism Xk,j → Sj of finite presentation with Xk

∼= S ×Sj
Xk,j

as schemes over S, see Lemma 10.1. After increasing j we may assume Xk,j → Sj
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is proper, see Lemma 13.1. The set I will be consist of these pairs (k, j) and the
corresponding morphism is Xk,j → Sj . For every k′ ≥ k we can find a j′ ≥ j and a
morphism Xj′,k′ → Xj,k over Sj′ → Sj whose base change to S gives the morphism
Xk′ → Xk (follows again from Lemma 10.1). These morphisms form the transition
morphisms of the system. Some details omitted. □

Lemma 13.4.0EX1 Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Let Y → X be a morphism of schemes
over S. If Y → X is proper, Xi quasi-compact and quasi-separated, and Y locally
of finite type over S, then Y → Xi is proper for i large enough.

Proof. Choose a closed immersion Y → Y ′ with Y ′ proper and of finite presenta-
tion over X, see Lemma 13.2. Then choose an i and a proper morphism Y ′

i → Xi

such that Y ′ = X ×Xi
Y ′

i . This is possible by Lemmas 10.1 and 13.1. Then after
replacing i by a larger index we have that Y → Y ′

i is a closed immersion, see Lemma
4.16. □

Recall the scheme theoretic support of a finite type quasi-coherent module, see
Morphisms, Definition 5.5.

Lemma 13.5.081G Assumptions and notation as in Situation 8.1. Let F0 be a quasi-
coherent OX0-module. Denote F and Fi the pullbacks of F0 to X and Xi. Assume

(1) f0 is locally of finite type,
(2) F0 is of finite type,
(3) the scheme theoretic support of F is proper over Y .

Then the scheme theoretic support of Fi is proper over Yi for some i.

Proof. We may replace X0 by the scheme theoretic support of F0. By Morphisms,
Lemma 5.3 this guarantees that Xi is the support of Fi and X is the support of F .
Then, if Z ⊂ X denotes the scheme theoretic support of F , we see that Z → X is
a universal homeomorphism. We conclude that X → Y is proper as this is true for
Z → Y by assumption, see Morphisms, Lemma 41.9. By Lemma 13.1 we see that
Xi → Y is proper for some i. Then it follows that the scheme theoretic support Zi

of Fi is proper over Y by Morphisms, Lemmas 41.6 and 41.4. □

14. Universally closed morphisms

05JW In this section we discuss when a quasi-compact (but not necessarily separated)
morphism is universally closed. We first prove a lemma which will allow us to check
universal closedness after a base change which is locally of finite presentation.

Lemma 14.1.05BD Let f : X → S be a quasi-compact morphism of schemes. Let
g : T → S be a morphism of schemes. Let t ∈ T be a point and Z ⊂ XT be a closed
subscheme such that Z ∩Xt = ∅. Then there exists an open neighbourhood V ⊂ T
of t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that
(1) the morphism b : T ′ → S is locally of finite presentation,
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(2) with t′ = a(t) we have Z ′ ∩Xt′ = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

Moreover, we may assume V and T ′ are affine.

Proof. Let s = g(t). During the proof we may always replace T by an open
neighbourhood of t. Hence we may also replace S by an open neighbourhood of
s. Thus we may and do assume that T and S are affine. Say S = Spec(A),
T = Spec(B), g is given by the ring map A → B, and t correspond to the prime
ideal q ⊂ B.
As X → S is quasi-compact and S is affine we may write X =

⋃
i=1,...,n Ui

as a finite union of affine opens. Write Ui = Spec(Ci). In particular we have
XT =

⋃
i=1,...,n Ui,T =

⋃
i=1,...n Spec(Ci ⊗A B). Let Ii ⊂ Ci ⊗A B be the ideal

corresponding to the closed subscheme Z ∩ Ui,T . The condition that Z ∩ Xt = ∅
signifies that Ii generates the unit ideal in the ring

Ci ⊗A κ(q) = (B \ q)−1 (Ci ⊗A B/qCi ⊗A B)
Since Ii(B \q)−1(Ci⊗AB) = (B \q)−1Ii this means that 1 = xi/gi for some xi ∈ Ii

and gi ∈ B, gi ̸∈ q. Thus, clearing denominators we can find a relation of the form

xi +
∑

j
fi,jci,j = gi

with xi ∈ Ii, fi,j ∈ q, ci,j ∈ Ci ⊗A B, and gi ∈ B, gi ̸∈ q. After replacing B
by Bg1...gn

, i.e., after replacing T by a smaller affine neighbourhood of t, we may
assume the equations read

xi +
∑

j
fi,jci,j = 1

with xi ∈ Ii, fi,j ∈ q, ci,j ∈ Ci ⊗A B.
To finish the argument write B as a colimit of finitely presented A-algebras Bλ over
a directed set Λ. For each λ set qλ = (Bλ → B)−1(q). For sufficiently large λ ∈ Λ
we can find

(1) an element xi,λ ∈ Ci ⊗A Bλ which maps to xi,
(2) elements fi,j,λ ∈ qi,λ mapping to fi,j , and
(3) elements ci,j,λ ∈ Ci ⊗A Bλ mapping to ci,j .

After increasing λ a bit more the equation

xi,λ +
∑

j
fi,j,λci,j,λ = 1

will hold. Fix such a λ and set T ′ = Spec(Bλ). Then t′ ∈ T ′ is the point corre-
sponding to the prime qλ. Finally, let Z ′ ⊂ XT ′ be the scheme theoretic image of
Z → XT → XT ′ . As XT → XT ′ is affine, we can compute Z ′ on the affine open
pieces Ui,T ′ as the closed subscheme associated to Ker(Ci ⊗A Bλ → Ci ⊗A B/Ii),
see Morphisms, Example 6.4. Hence xi,λ is in the ideal defining Z ′. Thus the last
displayed equation shows that Z ′ ∩Xt′ is empty. □

Lemma 14.2.05JX Let f : X → S be a quasi-compact morphism of schemes. The
following are equivalent

(1) f is universally closed,
(2) for every morphism S′ → S which is locally of finite presentation the base

change XS′ → S′ is closed, and
(3) for every n the morphism An ×X → An × S is closed.
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Proof. It is clear that (1) implies (2). Let us prove that (2) implies (1). Suppose
that the base change XT → T is not closed for some scheme T over S. By Schemes,
Lemma 19.8 this means that there exists some specialization t1 ⇝ t in T and a
point ξ ∈ XT mapping to t1 such that ξ does not specialize to a point in the fibre
over t. Set Z = {ξ} ⊂ XT . Then Z ∩Xt = ∅. Apply Lemma 14.1. We find an open
neighbourhood V ⊂ T of t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that
(1) the morphism b : T ′ → S is locally of finite presentation,
(2) with t′ = a(t) we have Z ′ ∩Xt′ = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

Clearly this means that XT ′ → T ′ maps the closed subset Z ′ to a subset of T ′

which contains a(t1) but not t′ = a(t). Since a(t1) ⇝ a(t) = t′ we conclude that
XT ′ → T ′ is not closed. Hence we have shown that X → S not universally closed
implies that XT ′ → T ′ is not closed for some T ′ → S which is locally of finite
presentation. In order words (2) implies (1).
Assume that An × X → An × S is closed for every integer n. We want to prove
that XT → T is closed for every scheme T which is locally of finite presentation
over S. We may of course assume that T is affine and maps into an affine open V
of S (since XT → T being a closed is local on T ). In this case there exists a closed
immersion T → An × V because OT (T ) is a finitely presented OS(V )-algebra, see
Morphisms, Lemma 21.2. Then T → An × S is a locally closed immersion. Hence
we get a cartesian diagram

XT

fT

��

// An ×X

fn

��
T // An × S

of schemes where the horizontal arrows are locally closed immersions. Hence any
closed subset Z ⊂ XT can be written as XT∩Z ′ for some closed subset Z ′ ⊂ An×X.
Then fT (Z) = T ∩fn(Z ′) and we see that if fn is closed, then also fT is closed. □

Lemma 14.3.0205 Let S be a scheme. Let f : X → S be a separated morphism of
finite type. The following are equivalent:

(1) The morphism f is proper.
(2) For any morphism S′ → S which is locally of finite type the base change

XS′ → S′ is closed.
(3) For every n ≥ 0 the morphism An ×X → An × S is closed.

First proof. In view of the fact that a proper morphism is the same thing as a
separated, finite type, and universally closed morphism, this lemma is a special case
of Lemma 14.2. □

Second proof. Clearly (1) implies (2), and (2) implies (3), so we just need to
show (3) implies (1). First we reduce to the case when S is affine. Assume that (3)
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implies (1) when the base is affine. Now let f : X → S be a separated morphism
of finite type. Being proper is local on the base (see Morphisms, Lemma 41.3), so
if S =

⋃
α Sα is an open affine cover, and if we denote Xα := f−1(Sα), then it is

enough to show that f |Xα
: Xα → Sα is proper for all α. Since Sα is affine, if the

map f |Xα
satisfies (3), then it will satisfy (1) by assumption, and will be proper.

To finish the reduction to the case S is affine, we must show that if f : X → S is
separated of finite type satisfying (3), then f |Xα : Xα → Sα is separated of finite
type satisfying (3). Separatedness and finite type are clear. To see (3), notice that
An ×Xα is the open preimage of An × Sα under the map 1× f . Fix a closed set
Z ⊂ An × Xα. Let Z̄ denote the closure of Z in An × X. Then for topological
reasons,

1× f(Z̄) ∩An × Sα = 1× f(Z).

Hence 1× f(Z) is closed, and we have reduced the proof of (3) ⇒ (1) to the affine
case.

Assume S affine, and f : X → S separated of finite type. We can apply Chow’s
Lemma 12.1 to get π : X ′ → X proper surjective and X ′ → Pn

S an immersion. If X
is proper over S, then X ′ → S is proper (Morphisms, Lemma 41.4). Since Pn

S → S
is separated, we conclude that X ′ → Pn

S is proper (Morphisms, Lemma 41.7) and
hence a closed immersion (Schemes, Lemma 10.4). Conversely, assume X ′ → Pn

S

is a closed immersion. Consider the diagram:

(14.3.1)05LZ X ′ //

π
����

Pn
S

��
X

f // S

All maps are a priori proper except for X → S. Hence we conclude that X → S
is proper by Morphisms, Lemma 41.9. Therefore, we have shown that X → S is
proper if and only if X ′ → Pn

S is a closed immersion.

Assume S is affine and (3) holds, and let n,X ′, π be as above. Since being a closed
morphism is local on the base, the map X × Pn → S × Pn is closed since by (3)
X × An → S × An is closed and since projective space is covered by copies of
affine n-space, see Constructions, Lemma 13.3. By Morphisms, Lemma 41.5 the
morphism

X ′ ×S Pn
S → X ×S Pn

S = X ×Pn

is proper. Since Pn is separated, the projection

X ′ ×S Pn
S = Pn

X′ → X ′

will be separated as it is just a base change of a separated morphism. Therefore,
the map X ′ → X ′ ×S Pn

S is proper, since it is a section to a separated map (see
Schemes, Lemma 21.11). Composing these morphisms

X ′ → X ′ ×S Pn
S → X ×S Pn

S = X ×Pn → S ×Pn = Pn
S

we find that the immersion X ′ → Pn
S is closed, and hence a closed immersion. □
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15. Noetherian valuative criterion

0CM1 If the base is Noetherian we can show that the valuative criterion holds using only
discrete valuation rings.

Many of the results in this section can (and perhaps should) be proved by appealing
to the following lemma, although we have not always done so.

Lemma 15.1.0CM2 Let f : X → Y be a morphism of schemes. Assume f finite type
and Y locally Noetherian. Let y ∈ Y be a point in the closure of the image of f .
Then there exists a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y

where A is a discrete valuation ring and K is its field of fractions mapping the
closed point of Spec(A) to y. Moreover, we can assume that the image point of
Spec(K) → X is a generic point η of an irreducible component of X and that
K = κ(η).

Proof. By the non-Noetherian version of this lemma (Morphisms, Lemma 6.5)
there exists a point x ∈ X such that f(x) specializes to y. We may replace x by
any point specializing to x, hence we may assume that x is a generic point of an
irreducible component of X. This produces a ring map OY,y → κ(x) (see Schemes,
Section 13). Let R ⊂ κ(x) be the image. Then R is Noetherian as a quotient of
the Noetherian local ring OY,y. On the other hand, the extension κ(x) is a finitely
generated extension of the fraction field of R as f is of finite type. Thus there
exists a discrete valuation ring A ⊂ κ(x) with fraction field κ(x) dominating R by
Algebra, Lemma 119.13. Then

Spec(κ(x))

��

// X

��
Spec(A) // Spec(R) // Spec(OY,y) // Y

gives the desired diagram. □

First we state the result concerning separation. We will often use solid commutative
diagrams of morphisms of schemes having the following shape

(15.1.1)0206

Spec(K) //

��

X

��
Spec(A) //

;;

S

with A a valuation ring and K its field of fractions.

Lemma 15.2.0207 Let S be a locally Noetherian scheme. Let f : X → S be a morphism
of schemes. Assume f is locally of finite type. The following are equivalent:

(1) The morphism f is separated.
(2) For any diagram (15.1.1) there is at most one dotted arrow.
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(3) For all diagrams (15.1.1) with A a discrete valuation ring there is at most
one dotted arrow.

(4) For any irreducible component X0 of X with generic point η ∈ X0, for
any discrete valuation ring A ⊂ K = κ(η) with fraction field K and any
diagram (15.1.1) such that the morphism Spec(K) → X is the canonical
one (see Schemes, Section 13) there is at most one dotted arrow.

Proof. Clearly (1) implies (2), (2) implies (3), and (3) implies (4). It remains
to show (4) implies (1). Assume (4). We begin by reducing to S affine. Being
separated is a local on the base (see Schemes, Lemma 21.7). Hence, if we can show
that whenever X → S has (4) that the restriction Xα → Sα has (4) where Sα ⊂ S
is an (affine) open subset and Xα := f−1(Sα), then we will be done. The generic
points of the irreducible components of Xα will be the generic points of irreducible
components of X, since Xα is open in X. Therefore, any two distinct dotted arrows
in the diagram

(15.2.1)05M0 Spec(K) //

��

Xα

��
Spec(A) //

;;

Sα

would then give two distinct arrows in diagram (15.1.1) via the maps Xα → X and
Sα → S, which is a contradiction. Thus we have reduced to the case S is affine.
We remark that in the course of this reduction, we prove that if X → S has (4)
then the restriction U → V has (4) for opens U ⊂ X and V ⊂ S with f(U) ⊂ V .
We next wish to reduce to the case X → S is finite type. Assume that we know
(4) implies (1) when X is finite type. Since S is Noetherian and X is locally of
finite type over S we see X is locally Noetherian as well (see Morphisms, Lemma
15.6). Thus, X → S is quasi-separated (see Properties, Lemma 5.4), and therefore
we may apply the valuative criterion to check whether X is separated (see Schemes,
Lemma 22.2). Let X =

⋃
α Xα be an affine open cover of X. Given any two dotted

arrows, in a diagram (15.1.1), the image of the closed points of SpecA will fall in
two sets Xα and Xβ . Since Xα∪Xβ is open, for topological reasons it must contain
the image of Spec(A) under both maps. Therefore, the two dotted arrows factor
through Xα∪Xβ → X, which is a scheme of finite type over S. Since Xα∪Xβ is an
open subset of X, by our previous remark, Xα∪Xβ satisfies (4), so by assumption,
is separated. This implies the two given dotted arrows are the same. Therefore, we
have reduced to X → S is finite type.
Assume X → S of finite type and assume (4). Since X → S is finite type, and
S is an affine Noetherian scheme, X is also Noetherian (see Morphisms, Lemma
15.6). Therefore, X → X ×S X will be a quasi-compact immersion of Noetherian
schemes. We proceed by contradiction. Assume that X → X ×S X is not closed.
Then, there is some y ∈ X ×S X in the closure of the image that is not in the
image. As X is Noetherian it has finitely many irreducible components. Therefore,
y is in the closure of the image of one of the irreducible components X0 ⊂ X. Give
X0 the reduced induced structure. The composition X0 → X → X ×S X factors
through the closed subscheme X0 ×S X0 ⊂ X ×S X. Denote the closure of ∆(X0)
in X0 ×S X0 by X̄0 (again as a reduced closed subscheme). Thus y ∈ X̄0. Since
X0 → X0 ×S X0 is an immersion, the image of X0 will be open in X̄0. Hence X0
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and X̄0 are birational. Since X̄0 is a closed subscheme of a Noetherian scheme,
it is Noetherian. Thus, the local ring OX̄0,y is a local Noetherian domain with
fraction field K equal to the function field of X0. By the Krull-Akizuki theorem
(see Algebra, Lemma 119.13), there exists a discrete valuation ring A dominating
OX̄0,y with fraction field K. This allows to construct a diagram:

(15.2.2)05M1 Spec(K) //

��

X0

∆
��

Spec(A) //

88

X0 ×S X0

which sends SpecK to the generic point of ∆(X0) and the closed point of A to
y ∈ X0 ×S X0 (use the material in Schemes, Section 13 to construct the arrows).
There cannot even exist a set theoretic dotted arrow, since y is not in the image
of ∆ by our choice of y. By categorical means, the existence of the dotted arrow
in the above diagram is equivalent to the uniqueness of the dotted arrow in the
following diagram:

(15.2.3)05M2 Spec(K) //

��

X0

��
Spec(A) //

;;

S

Therefore, we have non-uniqueness in this latter diagram by the nonexistence in
the first. Therefore, X0 does not satisfy uniqueness for discrete valuation rings, and
since X0 is an irreducible component of X, we have that X → S does not satisfy
(4). Therefore, we have shown (4) implies (1). □

Lemma 15.3.0208 Let S be a locally Noetherian scheme. Let f : X → S be a morphism
of finite type. The following are equivalent:

(1) The morphism f is proper.
(2) For any diagram (15.1.1) there exists exactly one dotted arrow.
(3) For all diagrams (15.1.1) with A a discrete valuation ring there exists ex-

actly one dotted arrow.
(4) For any irreducible component X0 of X with generic point η ∈ X0, for

any discrete valuation ring A ⊂ K = κ(η) with fraction field K and any
diagram (15.1.1) such that the morphism Spec(K) → X is the canonical
one (see Schemes, Section 13) there exists exactly one dotted arrow.

Proof. (1) implies (2) implies (3) implies (4). We will now show (4) implies (1). As
in the proof of Lemma 15.2, we can reduce to the case S is affine, since properness
is local on the base, and if X → S satisfies (4), then Xα → Sα does as well for open
Sα ⊂ S and Xα = f−1(Sα).
Now S is a Noetherian scheme, and so X is as well, since X → S is of finite type.
Now we may use Chow’s lemma (Cohomology of Schemes, Lemma 18.1) to get a
surjective, proper, birational X ′ → X and an immersion X ′ → Pn

S . We wish to
show X → S is universally closed. As in the proof of Lemma 14.3, it is enough to
check that X ′ → Pn

S is a closed immersion. For the sake of contradiction, assume
that X ′ → Pn

S is not a closed immersion. Then there is some y ∈ Pn
S that is in the

closure of the image of X ′, but is not in the image. So y is in the closure of the
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image of an irreducible component X ′
0 of X ′, but not in the image. Let X̄ ′

0 ⊂ Pn
S

be the closure of the image of X ′
0. As X ′ → Pn

S is an immersion of Noetherian
schemes, the morphism X ′

0 → X̄ ′
0 is open and dense. By Algebra, Lemma 119.13 or

Properties, Lemma 5.10 we can find a discrete valuation ring A dominating OX̄′
0,y

and with identical field of fractions K. It is clear that K is the residue field at the
generic point of X ′

0. Thus the solid commutative diagram

(15.3.1)05M3 SpecK //

��

X ′ //

��

Pn
S

��
SpecA //

;; 66

X // S

Note that the closed point of A maps to y ∈ Pn
S . By construction, there does not

exist a set theoretic lift to X ′. As X ′ → X is birational, the image of X ′
0 in X is

an irreducible component X0 of X and K is also identified with the function field
of X0. Hence, as X → S is assumed to satisfy (4), the dotted arrow Spec(A) →
X exists. Since X ′ → X is proper, the dotted arrow lifts to the dotted arrow
Spec(A) → X ′ (use Schemes, Proposition 20.6). We can compose this with the
immersion X ′ → Pn

S to obtain another morphism (not depicted in the diagram)
from Spec(A) → Pn

S . Since Pn
S is proper over S, it satisfies (2), and so these two

morphisms agree. This is a contradiction, for we have constructed the forbidden
lift of our original map Spec(A)→ Pn

S to X ′. □

Lemma 15.4.05JY Let f : X → S be a finite type morphism of schemes. Assume S is
locally Noetherian. Then the following are equivalent

(1) f is universally closed,
(2) for every n the morphism An ×X → An × S is closed,
(3) for any diagram (15.1.1) there exists some dotted arrow,
(4) for all diagrams (15.1.1) with A a discrete valuation ring there exists some

dotted arrow.

Proof. The equivalence of (1) and (2) is a special case of Lemma 14.2. The equiv-
alence of (1) and (3) is a special case of Schemes, Proposition 20.6. Trivially (3)
implies (4). Thus all we have to do is prove that (4) implies (2). We will prove that
An ×X → An × S is closed by the criterion of Schemes, Lemma 19.8. Pick n and
a specialization z ⇝ z′ of points in An × S and a point y ∈ An ×X lying over z.
Note that κ(y) is a finitely generated field extension of κ(z) as An ×X → An × S
is of finite type. Hence by Properties, Lemma 5.10 or Algebra, Lemma 119.13 im-
plies that there exists a discrete valuation ring A ⊂ κ(y) with fraction field κ(z)
dominating the image of OAn×S,z′ in κ(z). This gives a commutative diagram

Spec(κ(y)) //

��

An ×X

��

// X

��
Spec(A) // An × S // S

Now property (4) implies that there exists a morphism Spec(A) → X which fits
into this diagram. Since we already have the morphism Spec(A) → An from the
left lower horizontal arrow we also get a morphism Spec(A)→ An ×X fitting into
the left square. Thus the image y′ ∈ An ×X of the closed point is a specialization

https://stacks.math.columbia.edu/tag/05JY
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of y lying over z′. This proves that specializations lift along An × X → An × S
and we win. □

16. Refined Noetherian valuative criteria

0H1P One usually does not have to consider all possible diagrams with valuation rings
when checking valuative criteria. An example is given by Morphisms, Lemma 42.2.
In the Noetherian setting, we have also seen this in Lemmas 15.2 and 15.3. Here is
another variant.

Lemma 16.1.0CM3 Let f : X → S and h : U → X be morphisms of schemes. Assume
that S is locally Noetherian, that f and h are of finite type, that f is separated, and
that h(U) is dense in X. If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

S

where A is a discrete valuation ring with field of fractions K, there exists a dotted
arrow making the diagram commute, then f is proper.

Proof. There is an immediate reduction to the case where S is affine. Then U is
quasi-compact. Let U = U1 ∪ . . . ∪ Un be an affine open covering. We may replace
U by U1 ⨿ . . .⨿ Un without changing the assumptions, hence we may assume U is
affine. Thus we can find an open immersion U → Y over X with Y proper over X.
(First put U inside An

X using Morphisms, Lemma 39.2 and then take the closure
inside Pn

X , or you can directly use Morphisms, Lemma 43.12.) We can assume
U is dense in Y (replace Y by the scheme theoretic closure of U if necessary, see
Morphisms, Section 7). Note that g : Y → X is surjective as the image is closed
and contains the dense subset h(U). We will show that Y → S is proper. This
will imply that X → S is proper by Morphisms, Lemma 41.9 thereby finishing the
proof. To show that Y → S is proper we will use part (4) of Lemma 15.3. To do
this consider a diagram

Spec(K)
y

//

��

Y

f◦g

��
Spec(A) //

;;

S

where A is a discrete valuation ring with fraction field K and where y : Spec(K)→
Y is the inclusion of a generic point. We have to show there exists a unique dotted
arrow. Uniqueness holds by the converse to the valuative criterion for separated-
ness (Schemes, Lemma 22.1) since Y → S is separated as the composition of the
separated morphisms Y → X and X → S (Schemes, Lemma 21.12). Existence can
be seen as follows. As y is a generic point of Y , it is contained in U . By assumption
of the lemma there exists a morphism a : Spec(A)→ X such that

Spec(K)
y

//

��

U // X

f

��
Spec(A) //

a

66

S
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is commutative. Then since Y → X is proper, we can apply the valuative criterion
for properness (Morphisms, Lemma 42.1) to find a morphism b : Spec(A)→ Y such
that

Spec(K)
y

//

��

Y

g

��
Spec(A) a //

b

;;

X

is commutative. This finishes the proof since b can serve as the dotted arrow
above. □

Lemma 16.2.0CM4 Let f : X → S and h : U → X be morphisms of schemes. Assume
that S is locally Noetherian, that f is locally of finite type, that h is of finite type,
and that h(U) is dense in X. If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

S

where A is a discrete valuation ring with field of fractions K, there exists at most
one dotted arrow making the diagram commute, then f is separated.

Proof. We will apply Lemma 16.1 to the morphisms U → X and ∆ : X → X×SX.
We check the conditions. Observe that ∆ is quasi-compact by Properties, Lemma
5.4 (and Schemes, Lemma 21.13). Of course ∆ is locally of finite type and separated
(true for any diagonal morphism). Finally, suppose given a commutative solid
diagram

Spec(K) //

��

U
h // X

∆
��

Spec(A)
(a,b) //

55

X ×S X

where A is a discrete valuation ring with field of fractions K. Then a and b give
two dotted arrows in the diagram of the lemma and have to be equal. Hence as
dotted arrow we can use a = b which gives existence. This finishes the proof. □

Lemma 16.3.0CM5 Let f : X → S and h : U → X be morphisms of schemes. Assume
that S is locally Noetherian, that f and h are of finite type, and that h(U) is dense
in X. If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

S

where A is a discrete valuation ring with field of fractions K, there exists a unique
dotted arrow making the diagram commute, then f is proper.

Proof. Combine Lemmas 16.2 and 16.1. □

https://stacks.math.columbia.edu/tag/0CM4
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17. Valuative criteria over a Nagata base

0GWU When working with schemes locally of finite type over a Nagata base we can reduce
to discrete valuation rings which are essentially of finite type over the base. The
following are just some example results one can get.

Lemma 17.1.0GWV Let S be a Nagata scheme (and in particular locally Noetherian).
Let f : X → Y be a quasi-compact morphism of schemes locally of finite type over
S. The following are equivalent

(1) f is universally closed,
(2) for every n the morphism An ×X → An × Y is closed,
(3) for any commutative diagram

U //

��

X

f

��
C //

>>

Y

of schemes over S such that
(a) C is a normal integral scheme of finite type over S,
(b) U = C \ {c} for some closed point c ∈ C,
(c) A = OC,c has dimension 13

then in the commutative diagram

Spec(K) //

��

X

f

��
Spec(A) //

;;

Y

where K = Frac(A) some dotted arrow exists4 making the diagram com-
mute.

Proof. We have seen the equivalence of (1) and (2) and the fact that these imply
(3) in Lemma 15.4. Thus it suffices to prove that (3) implies (2). Observe that if
condition (3) holds for f : X → Y , then condition (3) holds for 1× f : An ×X →
An × Y (see argument in the proof of Lemma 15.4). Hence it suffices to show that
(3) implies that f is closed.
Reduction to the case where Y and S are affine; we suggest skipping this paragraph.
Let S′ ⊂ S be an affine open and let Y ′ ⊂ Y be an affine open mapping into S′.
Set X ′ = f−1(Y ′). Then we claim that the restriction f ′ : X ′ → Y ′ of f viewed as
a morphism of schemes over S′ has property (3) also. We omit the details. Now if
we can prove that f ′ is closed for all choices of S′ and Y ′, then it follows that f is
closed. This reduces us to the case discussed in the next paragraph.
Assume S and Y affine. Let Z ⊂ X be a closed subset. We may and do view Z as
a reduced closed subscheme of X. We have to show that E = f(Z) is closed. Pick
y ∈ Y a closed point contained in the closure of f(Z). It suffices to show y ∈ E. We
assume y ̸∈ E to get a contradiction. The image s ∈ S of y is a finite type point of

3It follows that A is a discrete valuation ring, see Algebra, Lemma 119.7. Moreover, c maps
to a finite type point s ∈ S and A is essentially of finite type over OS,s.

4By Lemma 6.4 this is equivalent to asking for the existence of dotted arrow making the first
commutative diagram commute.
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S, see Morphisms, Lemma 16.5. Recall that E is constructible (Morphisms, Lemma
22.2). Consider the intersection Spec(OY,y) ∩ E. This is a constructible subset of
the spectrum (Morphisms, Lemma 22.1) which doesn’t contain the closed point.
Since the punctured spectrum Spec(OY,y) \ {y} is Jacobson (Morphisms, Lemma
16.10), we find a closed point t ∈ Spec(OY,y)\{y} with t ∈ E (see Topology, Lemma
18.5). In other words, t ∈ E is a point of Y which has an immediate specialization
t⇝ y. As t ∈ E the scheme theoretic fibre Zt is nonempty. Choose a closed point
x ∈ Zt. In particular we have [κ(x) : κ(t)] < ∞ by the Hilbert Nullstellensatz
(Morphisms, Lemma 20.3).

Denote T = {t} ⊂ Y the integral closed subscheme whose underlying topological
space is as indicated (Schemes, Definition 12.5). Then t ∈ T is the generic point.
Denote C → T the normalization of T in κ(x), see Morphisms, Section 53 (more
precisely, C → T is the normalization of T in x where we view x = Spec(κ(x))→ T
as a scheme over T ). Since S is a Nagata scheme, so is T (Morphisms, Lemma
18.1). Hence we see that C → T is finite (Morphisms, Lemma 53.14). As t is in
the image we see that C → T is surjective (because the image is closed and T is
the closure of t in Y ). Choose a point c ∈ C mapping to y ∈ T . Since y is a closed
point of T we see that c is a closed point of C. Since dim(OT,y) = 1 we see that
dim(OC,c) = 1 (the dimension is at least 1 as c is not the generic point of C and
at most 1 as C → T is finite). As the function field of C is κ(x) and as x is a point
of X, we have a Y -rational map from C to X (see for example Morphisms, Lemma
49.2). Let C ⊃ U → X be a representative (in particular U is nonempty). We may
assume c ̸∈ U (replace U by U \ {c}). Since c is a closed point of codimension 1
in the integral scheme C we have C = U ⨿ {c} ⨿ Σ for some proper closed subset
Σ ⊂ C. After replacing C by C \ Σ we have constructed a commutative diagram
as in part (3). By the 2nd footnote in the statement of the lemma, the existence of
the dotted arrow produces an extension of the rational map to all of C and we get
the contradiction because the image of c will be a point of Z mapping to y. □

Lemma 17.2.0GWW Let S be a Nagata scheme (and in particular locally Noetherian).
Let f : X → Y be a morphism of schemes locally of finite type over S. The following
are equivalent

(1) f separated,
(2) for any commutative diagram

U //

��

X

f

��
C //

>>

Y

of schemes over S such that
(a) C is a normal integral scheme of finite type over S,
(b) U = C \ {c} for some closed point c ∈ C,
(c) A = OC,c has dimension 15

5It follows that A is a discrete valuation ring, see Algebra, Lemma 119.7. Moreover, c maps
to a finite type point s ∈ S and A is essentially of finite type over OS,s.
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then in the commutative diagram

Spec(K) //

��

X

f

��
Spec(A) //

;;

Y

where K = Frac(A) there exists at most one dotted arrow6 making the
diagram commute.

Proof. By Lemma 15.2 we see that (1) implies (2). Assume (2). In order to
show that f is separated, we have to show that ∆ : X → X ×Y X is closed. By
Morphisms, Lemma 15.7 the morphism ∆ is quasi-compact. By Lemma 17.1 it
suffices to show: for any commutative diagram

U //

��

X

∆
��

C
(a1,a2) //

66

X ×Y X

of schemes over S such that
(1) C is a normal integral scheme of finite type over S,
(2) U = C \ {c} for some closed point c ∈ C,
(3) A = OC,c has dimension 1.

then in the commutative diagram

Spec(K) //

��

X

∆
��

Spec(A) //

99

X ×Y X

where K = Frac(A) there exists some dotted arrow making the diagram commute.
By Lemma 6.4 the existence of the dotted arrow in the second diagram is equivalent
to the existence of the dotted arrow in the first diagram. Moreover, the existence
there is the same as asking a1 = a2. However a1|U = a2|U , so by the uniqueness
assumption (2) we see that this is true and the proof is complete. □

Lemma 17.3.0GWX Let S be a Nagata scheme (and in particular locally Noetherian).
Let f : X → Y be a quasi-compact morphism of schemes locally of finite type over
S. The following are equivalent

(1) f proper,
(2) for any commutative diagram

U //

��

X

f

��
C //

>>

Y

of schemes over S such that
(a) C is a normal integral scheme of finite type over S,

6By Lemma 6.4 this is equivalent to asking there to be at most one dotted arrow making the
first commutative diagram commute.
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(b) U = C \ {c} for some closed point c ∈ C,
(c) A = OC,c has dimension 17

then in the commutative diagram

Spec(K) //

��

X

f

��
Spec(A) //

;;

Y

where K = Frac(A) there exists exactly one dotted arrow8 making the dia-
gram commute.

Proof. This is formal from Lemmas 17.1 and 17.2 and the definition of proper
morphisms as being finite type, separated, and universally closed. □

18. Limits and dimensions of fibres

05M4 The following lemma is most often used in the situation of Lemma 10.1 to assure
that if the fibres of the limit have dimension ≤ d, then the fibres at some finite
stage have dimension ≤ d.
Lemma 18.1.05M5 Let I be a directed set. Let (fi : Xi → Si) be an inverse system of
morphisms of schemes over I. Assume

(1) all the morphisms Si′ → Si are affine,
(2) all the schemes Si are quasi-compact and quasi-separated,
(3) the morphisms fi are of finite type, and
(4) the morphisms Xi′ → Xi ×Si

Si′ are closed immersions.
Let f : X = limi Xi → S = limi Si be the limit. Let d ≥ 0. If every fibre of f has
dimension ≤ d, then for some i every fibre of fi has dimension ≤ d.
Proof. For each i let Ui = {x ∈ Xi | dimx((Xi)fi(x)) ≤ d}. This is an open subset
of Xi, see Morphisms, Lemma 28.4. Set Zi = Xi \Ui (with reduced induced scheme
structure). We have to show that Zi = ∅ for some i. If not, then Z = limZi ̸= ∅,
see Lemma 4.3. Say z ∈ Z is a point. Note that Z ⊂ X is a closed subscheme. Set
s = f(z). For each i let si ∈ Si be the image of s. We remark that Zs is the limit
of the schemes (Zi)si and Zs is also the limit of the schemes (Zi)si base changed
to κ(s). Moreover, all the morphisms
Zs −→ (Zi′)si′ ×Spec(κ(si′ )) Spec(κ(s)) −→ (Zi)si

×Spec(κ(si)) Spec(κ(s)) −→ Xs

are closed immersions by assumption (4). Hence Zs is the scheme theoretic inter-
section of the closed subschemes (Zi)si

×Spec(κ(si)) Spec(κ(s)) in Xs. Since all the
irreducible components of the schemes (Zi)si

×Spec(κ(si)) Spec(κ(s)) have dimen-
sion > d and contain z we conclude that Zs contains an irreducible component of
dimension > d passing through z which contradicts the fact that Zs ⊂ Xs and
dim(Xs) ≤ d. □

Lemma 18.2.094M Notation and assumptions as in Situation 8.1. If
(1) f is a quasi-finite morphism, and

7It follows that A is a discrete valuation ring, see Algebra, Lemma 119.7. Moreover, c maps
to a finite type point s ∈ S and A is essentially of finite type over OS,s.

8By Lemma 6.4 this is equivalent to asking for the existence and uniqueness of the dotted
arrow making the first commutative diagram commute.
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(2) f0 is locally of finite type,
then there exists an i ≥ 0 such that fi is quasi-finite.

Proof. Follows immediately from Lemma 18.1. □

Lemma 18.3.0H3V Assumptions and notation as in Situation 8.1. Let d ≥ 0. If
(1) f has relative dimension ≤ d (Morphisms, Definition 29.1), and
(2) f0 is locally of finite type,

then there exists an i such that fi has relative dimension ≤ d.

Proof. Follows immediately from Lemma 18.1. □

Lemma 18.4.0EY2 Notation and assumptions as in Situation 8.1. If
(1) f has relative dimension d, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi has relative dimension d.

Proof. By Lemma 18.1 we may assume all fibres of f0 have dimension ≤ d. By
Morphisms, Lemma 28.6 the set U0 ⊂ X0 of points x ∈ X0 such that the dimension
of the fibre of X0 → Y0 at x is ≤ d − 1 is open and retrocompact in X0. Hence
the complement E = X0 \ U0 is constructible. Moreover the image of X → X0
is contained in E by Morphisms, Lemma 28.3. Thus for i ≫ 0 we have that the
image of Xi → X0 is contained in E (Lemma 4.10). Then all fibres of Xi → Yi

have dimension d by the aforementioned Morphisms, Lemma 28.3. □

Lemma 18.5.05M6 Let S be a quasi-compact and quasi-separated scheme. Let f : X →
S be a morphism of finite presentation. Let d ≥ 0 be an integer. If Z ⊂ X be a
closed subscheme such that dim(Zs) ≤ d for all s ∈ S, then there exists a closed
subscheme Z ′ ⊂ X such that

(1) Z ⊂ Z ′,
(2) Z ′ → X is of finite presentation, and
(3) dim(Z ′

s) ≤ d for all s ∈ S.

Proof. By Proposition 5.4 we can write S = limSi as the limit of a directed inverse
system of Noetherian schemes with affine transition maps. By Lemma 10.1 we may
assume that there exist a system of morphisms fi : Xi → Si of finite presentation
such that Xi′ = Xi ×Si Si′ for all i′ ≥ i and such that X = Xi ×Si S. Let Zi ⊂ Xi

be the scheme theoretic image of Z → X → Xi. Then for i′ ≥ i the morphism
Xi′ → Xi maps Zi′ into Zi and the induced morphism Zi′ → Zi ×Si

Si′ is a closed
immersion. By Lemma 18.1 we see that the dimension of the fibres of Zi → Si all
have dimension ≤ d for a suitable i ∈ I. Fix such an i and set Z ′ = Zi ×Si

S ⊂ X.
Since Si is Noetherian, we see that Xi is Noetherian, and hence the morphism
Zi → Xi is of finite presentation. Therefore also the base change Z ′ → X is of
finite presentation. Moreover, the fibres of Z ′ → S are base changes of the fibres of
Zi → Si and hence have dimension ≤ d. □

19. Base change in top degree

0EX2 For a proper morphism and a finite type quasi-coherent module the base change
map is an isomorphism in top degree.

Lemma 19.1.0EX3 Let f : X → Y be a morphism of schemes. Let d ≥ 0. Assume
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(1) X and Y are quasi-compact and quasi-separated, and
(2) Rif∗F = 0 for i > d and every quasi-coherent OX-module F .

Then we have
(a) for any base change diagram

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

we have Rif ′
∗F ′ = 0 for i > d and any quasi-coherent OX′-module F ′,

(b) Rdf ′
∗(F ′ ⊗OX′ (f ′)∗G′) = Rdf ′

∗F ′ ⊗OY ′ G′ for any quasi-coherent OY ′-
module G′,

(c) formation of Rdf ′
∗F ′ commutes with arbitrary further base change (see proof

for explanation).

Proof. Before giving the proofs, we explain the meaning of (c). Suppose we have
an additional cartesian square

X ′′

f ′′

��

h′
// X ′

f ′

��

g′
// X

f

��
Y ′′ h // Y ′ g // Y

tacked onto our given diagram. If (a) holds, then there is a canonical map γ :
h∗Rdf ′

∗F ′ → Rdf ′′
∗ (h′)∗F ′. Namely, γ is the map on degree d cohomology sheaves

induced by the composition
Lh∗Rf ′

∗F ′ −→ Rf ′′
∗ L(h′)∗F ′ −→ Rf ′′

∗ (h′)∗F ′

Here the first arrow is the base change map (Cohomology, Remark 28.3) and the
second arrow complex from the canonical map L(g′)∗F → (g′)∗F . Similarly,
since Rf ′

∗F has no nonzero cohomology sheaves in degrees > d by (a) we have
Hd(Lh∗Rf∗F ′) = h∗Rdf∗F . The content of (c) is that γ is an isomorphism.
Having said this, we can check (a), (b), and (c) locally on Y ′ and Y ′′. Suppose
that V ⊂ Y is a quasi-compact open subscheme. Then we claim (1) and (2) hold
for f |f−1(V ) : f−1(V )→ V . Namely, (1) is immediate and (2) follows because any
quasi-coherent module on f−1(V ) is the restriction of a quasi-coherent module on
X (Properties, Lemma 22.1) and formation of higher direct images commutes with
restriction to opens. Thus we may also work locally on Y . In other words, we may
assume Y ′′, Y ′, and Y are affine schemes.
Proof of (a) when Y ′ and Y are affine. In this case the morphisms g and g′ are
affine. Thus g∗ = Rg∗ and g′

∗ = Rg′
∗ (Cohomology of Schemes, Lemma 2.3) and g∗

is identified with the restriction functor on modules (Schemes, Lemma 7.3). Then
g∗(Rif ′

∗F ′) = Hi(Rg∗Rf
′
∗F ′) = Hi(Rf∗Rg

′
∗F ′) = Hi(Rf∗g

′
∗F ′) = Rf i

∗g
′
∗F ′

which is zero by assumption (2). Hence (a) by our description of g∗.
Proof of (b) when Y ′ is affine, say Y ′ = Spec(R′). By part (a) we haveHd+1(X ′,F ′) =
0 for any quasi-coherent OX′-module F ′, see Cohomology of Schemes, Lemma 4.6.
Consider the functor F on R′-modules defined by the rule

F (M) = Hd(X ′,F ′ ⊗OX′ (f ′)∗M̃)
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By Cohomology, Lemma 19.1 this functor commutes with direct sums (this is where
we use that X and hence X ′ is quasi-compact and quasi-separated). On the other
hand, if M1 →M2 →M3 → 0 is an exact sequence, then

F ′ ⊗OX′ (f ′)∗M̃1 → F ′ ⊗OX′ (f ′)∗M̃2 → F ′ ⊗OX′ (f ′)∗M̃3 → 0
is an exact sequence of quasi-coherent modules on X ′ and by the vanishing of higher
cohomology given above we get an exact sequence

F (M1)→ F (M2)→ F (M3)→ 0
In other words, F is right exact. Any right exact R′-linear functor F : ModR′ →
ModR′ which commutes with direct sums is given by tensoring with an R′-module
(omitted; left as exercise for the reader). Thus we obtain F (M) = Hd(X ′,F ′)⊗R′

M . Since Rd(f ′)∗F ′ and Rd(f ′)∗(F ′⊗OX′ (f ′)∗M̃) are quasi-coherent (Cohomology
of Schemes, Lemma 4.5), the fact that F (M) = Hd(X ′,F ′)⊗R′ M translates into
the statement given in (b).
Proof of (c) when Y ′′ → Y ′ → Y are morphisms of affine schemes. Say Y ′′ =
Spec(R′′) and Y ′ = Spec(R′). Then we see that Rdf ′′

∗ (h′)∗F ′ is the quasi-coherent
module on Y ′ associated to the R′′-module Hd(X ′′, (h′)∗F ′). Now h′ : X ′′ → X ′ is
affine hence Hd(X ′′, (h′)∗F ′) = Hd(X,h′

∗(h′)∗F ′) by the already used Cohomology
of Schemes, Lemma 2.4. We have

h′
∗(h′)∗F ′ = F ′ ⊗OX′ (f ′)∗R̃′′

as the reader sees by checking on an affine open covering. Thus Hd(X ′′, (h′)∗F ′) =
Hd(X ′,F ′)⊗R′ R′′ by part (b) applied to f ′ and the proof is complete. □

Lemma 19.2.0E7D Let f : X → Y be a morphism of schemes. Let y ∈ Y . Assume f
is proper and dim(Xy) = d. Then

(1) for F ∈ QCoh(OX) we have (Rif∗F)y = 0 for all i > d,
(2) there is an affine open neighbourhood V ⊂ Y of y such that f−1(V ) → V

and d satisfy the assumptions and conclusions of Lemma 19.1.

Proof. By Morphisms, Lemma 28.4 and the fact that f is closed, we can find an
affine open neighbourhood V of y such that the fibres over points of V all have
dimension ≤ d. Thus we may assume X → Y is a proper morphism all of whose
fibres have dimension ≤ d with Y affine. We will show that (2) holds, which will
immediately imply (1) for all y ∈ Y .
By Lemma 13.2 we can write X = limXi as a cofiltered limit with Xi → Y proper
and of finite presentation and such that both X → Xi and transition morphisms are
closed immersions. For some i we have that Xi → Y has fibres of dimension ≤ d, see
Lemma 18.1. For a quasi-coherent OX -module F we have Rpf∗F = Rpfi,∗(X →
Xi)∗F by Cohomology of Schemes, Lemma 2.3 and Leray (Cohomology, Lemma
13.8). Thus we may replace X by Xi and reduce to the case discussed in the next
paragraph.
Assume Y is affine and f : X → Y is proper and of finite presentation and all fibres
have dimension ≤ d. It suffices to show that Hp(X,F) = 0 for p > d. Namely,
by Cohomology of Schemes, Lemma 4.6 we have Hp(X,F) = H0(Y,Rpf∗F). On
the other hand, Rpf∗F is quasi-coherent on Y by Cohomology of Schemes, Lemma
4.5, hence vanishing of global sections implies vanishing. Write Y = limi∈I Yi

as a cofiltered limit of affine schemes with Yi the spectrum of a Noetherian ring
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(for example a finite type Z-algebra). We can choose an element 0 ∈ I and a
finite type morphism X0 → Y0 such that X ∼= Y ×Y0 X0, see Lemma 10.1. After
increasing 0 we may assume X0 → Y0 is proper (Lemma 13.1) and that the fibres
of X0 → Y0 have dimension ≤ d (Lemma 18.1). Since X → X0 is affine, we find
that Hp(X,F) = Hp(X0, (X → X0)∗F) by Cohomology of Schemes, Lemma 2.4.
This reduces us to the case discussed in the next paragraph.

Assume Y is affine Noetherian and f : X → Y is proper and all fibres have dimen-
sion ≤ d. In this case we can write F = colimFi as a filtered colimit of coherent
OX -modules, see Properties, Lemma 22.7. Then Hp(X,F) = colimHp(X,Fi) by
Cohomology, Lemma 19.1. Thus we may assume F is coherent. In this case we see
that (Rpf∗F)y = 0 for all y ∈ Y by Cohomology of Schemes, Lemma 20.9. Thus
Rpf∗F = 0 and therefore Hp(X,F) = 0 (see above) and we win. □

Lemma 19.3.0EX4 Let f : X → Y be a morphism of schemes. Let d ≥ 0. Let F be
an OX-module. Assume

(1) f is a proper morphism all of whose fibres have dimension ≤ d,
(2) F is a quasi-coherent OX-module of finite type.

Then Rdf∗F is a quasi-coherent OX-module of finite type.

Proof. The module Rdf∗F is quasi-coherent by Cohomology of Schemes, Lemma
4.5. The question is local on Y hence we may assume Y is affine. Say Y = Spec(R).
Then it suffices to prove that Hd(X,F) is a finite R-module.

By Lemma 13.2 we can write X = limXi as a cofiltered limit with Xi → Y proper
and of finite presentation and such that both X → Xi and transition morphisms
are closed immersions. For some i we have that Xi → Y has fibres of dimension
≤ d, see Lemma 18.1. We have Rpf∗F = Rpfi,∗(X → Xi)∗F by Cohomology of
Schemes, Lemma 2.3 and Leray (Cohomology, Lemma 13.8). Thus we may replace
X by Xi and reduce to the case discussed in the next paragraph.

Assume Y is affine and f : X → Y is proper and of finite presentation and all
fibres have dimension ≤ d. We can write F as a quotient of a finitely presented
OX -module F ′, see Properties, Lemma 22.8. The map Hd(X,F ′) → Hd(X,F)
is surjective, as we have Hd+1(X,Ker(F ′ → F)) = 0 by the vanishing of higher
cohomology seen in Lemma 19.2 (or its proof). Thus we reduce to the case discussed
in the next paragraph.

Assume Y = Spec(R) is affine and f : X → Y is proper and of finite presentation
and all fibres have dimension ≤ d and F is an OX -module of finite presentation.
Write Y = limi∈I Yi as a cofiltered limit of affine schemes with Yi = Spec(Ri) the
spectrum of a Noetherian ring (for example a finite type Z-algebra). We can choose
an element 0 ∈ I and a finite type morphism X0 → Y0 such that X ∼= Y ×Y0 X0,
see Lemma 10.1. After increasing 0 we may assume X0 → Y0 is proper (Lemma
13.1) and that the fibres of X0 → Y0 have dimension ≤ d (Lemma 18.1). After
increasing 0 we can assume there is a coherent OX0-module F0 which pulls back to
F , see Lemma 10.2. By Lemma 19.1 we have

Hd(X,F) = Hd(X0,F0)⊗R0 R

This finishes the proof because the cohomology module Hd(X0,F0) is finite by
Cohomology of Schemes, Lemma 19.2. □
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Lemma 19.4.0EX5 Let f : X → Y be a morphism of schemes. Let d ≥ 0. Let F be
an OX-module. Assume

(1) f is a proper morphism of finite presentation all of whose fibres have di-
mension ≤ d,

(2) F is an OX-module of finite presentation.
Then Rdf∗F is an OX-module of finite presentation.

Proof. The proof is exactly the same as the proof of Lemma 19.3 except that the
third paragraph can be skipped. We omit the details. □

20. Glueing in closed fibres

0E8P Applying our theory above to the spectrum of a local ring we obtain the following
pleasing glueing result for relative schemes.

Lemma 20.1.0BPA Let S be a scheme. Let s ∈ S be a closed point such that U =
S \ {s} → S is quasi-compact. With V = Spec(OS,s) \ {s} there is an equivalence
of categories

{
X → S of finite presentation

}
−→


X ′

��

Y ′

��

oo // Y

��
U Voo // Spec(OS,s)


where on the right hand side we consider commutative diagrams whose squares are
cartesian and whose vertical arrows are of finite presentation.

Proof. Let W ⊂ S be an open neighbourhood of s. By glueing of relative schemes,
see Constructions, Section 2, the functor

{
X → S of finite presentation

}
−→


X ′

��

Y ′

��

oo // Y

��
U W \ {s}oo // W


is an equivalence of categories. We have OS,s = colimOW (W ) where W runs
over the affine open neighbourhoods of s. Hence Spec(OS,s) = limW where W
runs over the affine open neighbourhoods of s. Thus the category of schemes of
finite presentation over Spec(OS,s) is the limit of the category of schemes of finite
presentation over W where W runs over the affine open neighbourhoods of s, see
Lemma 10.1. For every affine open s ∈ W we see that U ∩W is quasi-compact as
U → S is quasi-compact. Hence V = limW ∩ U = limW \ {s} is a limit of quasi-
compact and quasi-separated schemes (see Lemma 2.2). Thus also the category of
schemes of finite presentation over V is the limit of the categories of schemes of
finite presentation over W ∩ U where W runs over the affine open neighbourhoods
of s. The lemma follows formally from a combination of these results. □

Lemma 20.2.0F21 Let S be a scheme. Let s ∈ S be a closed point such that U =
S \ {s} → S is quasi-compact. With V = Spec(OS,s) \ {s} there is an equivalence
of categories

{OS-modules F of finite presentation} −→ {(G,H, α)}
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where on the right hand side we consider triples consisting of a OU -module G of
finite presentation, a OSpec(OS,s)-module H of finite presentation, and an isomor-
phism α : G|V → H|V of OV -modules.

Proof. You can either prove this by redoing the proof of Lemma 20.1 using Lemma
10.2 or you can deduce it from Lemma 20.1 using the equivalence between quasi-
coherent modules and “vector bundles” from Constructions, Section 6. We omit
the details. □

Lemma 20.3.0BQ5 Let S be a scheme. Let U ⊂ S be a retrocompact open. Let s ∈ S be
a point in the complement of U . With V = Spec(OS,s) ∩ U there is an equivalence
of categories

colims∈U ′⊃U open


X

��
U ′

 −→

X ′

��

Y ′

��

oo // Y

��
U Voo // Spec(OS,s)


where on the left hand side the vertical arrow is of finite presentation and on the
right hand side we consider commutative diagrams whose squares are cartesian and
whose vertical arrows are of finite presentation.

Proof. Let W ⊂ S be an open neighbourhood of s. By glueing of relative schemes,
see Constructions, Section 2, the functor

{
X → U ′ = U ∪W of finite presentation

}
−→


X ′

��

Y ′

��

oo // Y

��
U W ∩ Uoo // W


is an equivalence of categories. We have OS,s = colimOW (W ) where W runs over
the affine open neighbourhoods of s. Hence Spec(OS,s) = limW where W runs
over the affine open neighbourhoods of s. Thus the category of schemes of finite
presentation over Spec(OS,s) is the limit of the category of schemes of finite presen-
tation over W where W runs over the affine open neighbourhoods of s, see Lemma
10.1. For every affine open s ∈ W we see that U ∩W is quasi-compact as U → S
is quasi-compact. Hence V = limW ∩ U is a limit of quasi-compact and quasi-
separated schemes (see Lemma 2.2). Thus also the category of schemes of finite
presentation over V is the limit of the categories of schemes of finite presentation
over W ∩ U where W runs over the affine open neighbourhoods of s. The lemma
follows formally from a combination of these results. □

Lemma 20.4.0EY3 Notation and assumptions as in Lemma 20.3. Let U ⊂ U ′ ⊂ X be
an open containing s.

(1) Let f ′ : X → U ′ correspond to f : X ′ → U and g : Y → Spec(OS,s) via
the equivalence. If f and g are separated, proper, finite, étale, then after
possibly shrinking U ′ the morphism f ′ has the same property.

(2) Let a : X1 → X2 be a morphism of schemes of finite presentation over U ′

with base change a′ : X ′
1 → X ′

2 over U and b : Y1 → Y2 over Spec(OS,s).
If a′ and b are separated, proper, finite, étale, then after possibly shrinking
U ′ the morphism a has the same property.
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Proof. Proof of (1). Recall that Spec(OS,s) is the limit of the affine open neigh-
bourhoods of s in S. Since g has the property in question, then the restriction of
f ′ to one of these affine open neighbourhoods does too, see Lemmas 8.6, 13.1, 8.3,
and 8.10. Since f ′ has the given property over U as f does, we conclude as one can
check the property locally on the base.
Proof of (2). If we write Spec(OS,s) = limW where W runs over the affine open
neighbourhoods of s in S, then we have Yi = limW ×SXi. Thus we can use exactly
the same arguments as in the proof of (1). □

Lemma 20.5.0E8Q Let S be a scheme. Let s1, . . . , sn ∈ S be pairwise distinct closed
points such that U = S \{s1, . . . , sn} → S is quasi-compact. With Si = Spec(OS,si)
and Ui = Si \ {si} there is an equivalence of categories

FPS −→ FPU ×(F PU1 ×...×F PUn ) (FPS1 × . . .× FPSn
)

where FPT is the category of schemes of finite presentation over the scheme T .

Proof. For n = 1 this is Lemma 20.1. For n > 1 the lemma can be proved in
exactly the same way or it can be deduced from it. For example, suppose that
fi : Xi → Si are objects of FPSi and f : X → U is an object of FPU and
we’re given isomorphisms Xi ×Si

Ui = X ×U Ui. By Lemma 20.1 we can find a
morphism f ′ : X ′ → U ′ = S \{s1, . . . , sn−1} which is of finite presentation, which is
isomorphic to Xi over Si, which is isomorphic to X over U , and these isomorphisms
are compatible with the given isomorphism Xi ×Sn

Un = X ×U Un. Then we can
apply induction to fi : Xi → Si, i ≤ n − 1, f ′ : X ′ → U ′, and the induced
isomorphisms Xi ×Si Ui = X ′ ×U ′ Ui, i ≤ n− 1. This shows essential surjectivity.
We omit the proof of fully faithfulness. □

21. Application to modifications

0B3W Using the results from Section 20 we can describe the category of modifications of
a scheme over a closed point in terms of the local ring.

Lemma 21.1.0B3X Let S be a scheme. Let s ∈ S be a closed point such that U =
S \ {s} → S is quasi-compact. With V = Spec(OS,s) \ {s} the base change functor{
f : X → S of finite presentation
f−1(U)→ U is an isomorphism

}
−→

{
g : Y → Spec(OS,s) of finite presentation

g−1(V )→ V is an isomorphism

}
is an equivalence of categories.

Proof. This is a special case of Lemma 20.1. □

Lemma 21.2.0BFN Notation and assumptions as in Lemma 21.1. Let f : X → S
correspond to g : Y → Spec(OS,s) via the equivalence. Then f is separated, proper,
finite, étale and add more here if and only if g is so.

Proof. The property of being separated, proper, integral, finite, etc is stable under
base change. See Schemes, Lemma 21.12 and Morphisms, Lemmas 41.5 and 44.6.
Hence if f has the property, then so does g. The converse follows from Lemma 20.4
but we also give a direct proof here. Namely, if g has to property, then f does in
a neighbourhood of s by Lemmas 8.6, 13.1, 8.3, and 8.10. Since f clearly has the
given property over S \ {s} we conclude as one can check the property locally on
the base. □
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Remark 21.3.0B3Y The lemma above can be generalized as follows. Let S be a scheme
and let T ⊂ S be a closed subset. Assume there exists a cofinal system of open
neighbourhoods T ⊂ Wi such that (1) Wi \ T is quasi-compact and (2) Wi ⊂ Wj

is an affine morphism. Then W = limWi is a scheme which contains T as a closed
subscheme. Set U = X \ T and V = W \ T . Then the base change functor{

f : X → S of finite presentation
f−1(U)→ U is an isomorphism

}
−→

{
g : Y →W of finite presentation
g−1(V )→ V is an isomorphism

}
is an equivalence of categories. If we ever need this we will change this remark into
a lemma and provide a detailed proof.

22. Descending finite type schemes

0CNL This section continues the theme of Section 9 in the spirit of the results discussed
in Section 10.

Situation 22.1.0CNM Let S = limi∈I Si be the limit of a directed system of Noetherian
schemes with affine transition morphisms Si′ → Si for i′ ≥ i.

Lemma 22.2.0CNN In Situation 22.1. Let X → S be quasi-separated and of finite type.
Then there exists an i ∈ I and a diagram

(22.2.1)0CNP

X //

��

W

��
S // Si

such that W → Si is of finite type and such that the induced morphism X → S×SiW
is a closed immersion.

Proof. By Lemma 9.3 we can find a closed immersion X → X ′ over S where X ′

is a scheme of finite presentation over S. By Lemma 10.1 we can find an i and a
morphism of finite presentation X ′

i → Si whose pull back is X ′. Set W = X ′
i. □

Lemma 22.3.0CNQ In Situation 22.1. Let X → S be quasi-separated and of finite type.
Given i ∈ I and a diagram

X //

��

W

��
S // Si

as in (22.2.1) for i′ ≥ i let Xi′ be the scheme theoretic image of X → Si′ ×Si
W .

Then X = limi′≥i Xi′ .

Proof. Since X is quasi-compact and quasi-separated formation of the scheme
theoretic image of X → Si′ ×Si

W commutes with restriction to open subschemes
(Morphisms, Lemma 6.3). Hence we may and do assume W is affine and maps into
an affine open Ui of Si. Let U ⊂ S, Ui′ ⊂ Si′ be the inverse image of Ui. Then U ,
Ui′ , Si′ ×Si W = Ui′ ×Ui W , and S ×Si W = U ×Ui W are all affine. This implies
X is affine because X → S ×Si

W is a closed immersion. This also shows the ring
map

O(U)⊗O(Ui) O(W )→ O(X)
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is surjective. Let I be the kernel. Then we see that Xi′ is the spectrum of the ring
O(Xi′) = O(Ui′)⊗O(Ui) O(W )/Ii′

where Ii′ is the inverse image of the ideal I (see Morphisms, Example 6.4). Since
O(U) = colimO(Ui′) we see that I = colim Ii′ and we conclude that colimO(Xi′) =
O(X). □

Lemma 22.4.0CNR In Situation 22.1. Let f : X → Y be a morphism of schemes
quasi-separated and of finite type over S. Let

X //

��

W

��
S // Si1

and

Y //

��

V

��
S // Si2

be diagrams as in (22.2.1). Let X = limi≥i1 Xi and Y = limi≥i2 Yi be the corre-
sponding limit descriptions as in Lemma 22.3. Then there exists an i0 ≥ max(i1, i2)
and a morphism

(fi)i≥i0 : (Xi)i≥i0 → (Yi)i≥i0

of inverse systems over (Si)i≥i0 such that such that f = limi≥i0 fi. If (gi)i≥i0 :
(Xi)i≥i0 → (Yi)i≥i0 is a second morphism of inverse systems over (Si)i≥i0 such
that such that f = limi≥i0 gi then fi = gi for all i≫ i0.

Proof. Since V → Si2 is of finite presentation and X = limi≥i1 Xi we can appeal
to Proposition 6.1 to find an i0 ≥ max(i1, i2) and a morphism h : Xi0 → V over Si2

such that X → Xi0 → V is equal to X → Y → V . For i ≥ i0 we get a commutative
solid diagram

X

��

// Xi
//

��

��

Xi0

h

��
Y //

��

Yi
//

��

V

��
S // Si

// Si0

Since X → Xi has scheme theoretically dense image and since Yi is the scheme
theoretic image of Y → Si ×Si2

V we find that the morphism Xi → Si ×Si2
V

induced by the diagram factors through Yi (Morphisms, Lemma 6.6). This proves
existence.
Uniqueness. Let Ei ⊂ Xi be the equalizer of fi and gi for i ≥ i0. By Schemes,
Lemma 21.5 Ei is a locally closed subscheme of Xi. Since Xi is a closed subscheme
of Si ×Si0

Xi0 and similarly for Yi we see that

Ei = Xi ×(Si×Si0
Xi0 ) (Si ×Si0

Ei0)

Thus to finish the proof it suffices to show that Xi → Xi0 factors through Ei0 for
some i ≥ i0. To do this we will use that X → Xi0 factors through Ei0 as both fi0

and gi0 are compatible with f . Since Xi is Noetherian, we see that the underlying
topological space |Ei0 | is a constructible subset of |Xi0 | (Topology, Lemma 16.1).
Hence Xi → Xi0 factors through Ei0 set theoretically for large enough i by Lemma
4.10. For such an i the scheme theoretic inverse image (Xi → Xi0)−1(Ei0) is
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a closed subscheme of Xi through which X factors and hence equal to Xi since
X → Xi has scheme theoretically dense image by construction. This concludes the
proof. □

Remark 22.5.0CNS In Situation 22.1 Lemmas 22.2, 22.3, and 22.4 tell us that the
category of schemes quasi-separated and of finite type over S is equivalent to certain
types of inverse systems of schemes over (Si)i∈I , namely the ones produced by
applying Lemma 22.3 to a diagram of the form (22.2.1). For example, given X → S
finite type and quasi-separated if we choose two different diagrams X → V1 → Si1

and X → V2 → Si2 as in (22.2.1), then applying Lemma 22.4 to idX (in two
directions) we see that the corresponding limit descriptions of X are canonically
isomorphic (up to shrinking the directed set I). And so on and so forth.

Lemma 22.6.0CNT Notation and assumptions as in Lemma 22.4. If f is flat and of
finite presentation, then there exists an i3 ≥ i0 such that for i ≥ i3 we have fi is
flat, Xi = Yi ×Yi3

Xi3 , and X = Y ×Yi3
Xi3 .

Proof. By Lemma 10.1 we can choose an i ≥ i2 and a morphism U → Yi of
finite presentation such that X = Y ×Yi

U (this is where we use that f is of finite
presentation). After increasing i we may assume that U → Yi is flat, see Lemma
8.7. As discussed in Remark 22.5 we may and do replace the initial diagram used
to define the system (Xi)i≥i1 by the system corresponding to X → U → Si. Thus
Xi′ for i′ ≥ i is defined as the scheme theoretic image of X → Si′ ×Si

U .

Because U → Yi is flat (this is where we use that f is flat), becauseX = Y×Yi
U , and

because the scheme theoretic image of Y → Yi is Yi, we see that the scheme theoretic
image of X → U is U (Morphisms, Lemma 25.16). Observe that Yi′ → Si′ ×Si Yi

is a closed immersion for i′ ≥ i by construction of the system of Yj . Then the same
argument as above shows that the scheme theoretic image of X → Si′ ×Si

U is
equal to the closed subscheme Yi′ ×Yi

U . Thus we see that Xi′ = Yi′ ×Yi
U for all

i′ ≥ i and hence the lemma holds with i3 = i. □

Lemma 22.7.0CNU Notation and assumptions as in Lemma 22.4. If f is smooth, then
there exists an i3 ≥ i0 such that for i ≥ i3 we have fi is smooth.

Proof. Combine Lemmas 22.6 and 8.9. □

Lemma 22.8.0CNV Notation and assumptions as in Lemma 22.4. If f is proper, then
there exists an i3 ≥ i0 such that for i ≥ i3 we have fi is proper.

Proof. By the discussion in Remark 22.5 the choice of i1 and W fitting into a
diagram as in (22.2.1) is immaterial for the truth of the lemma. Thus we choose
W as follows. First we choose a closed immersion X → X ′ with X ′ → S proper
and of finite presentation, see Lemma 13.2. Then we choose an i3 ≥ i2 and a
proper morphism W → Yi3 such that X ′ = Y ×Yi3

W . This is possible because
Y = limi≥i2 Yi and Lemmas 10.1 and 13.1. With this choice of W it is immediate
from the construction that for i ≥ i3 the scheme Xi is a closed subscheme of
Yi ×Yi3

W ⊂ Si ×Si3
W and hence proper over Yi. □
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Lemma 22.9.0CNW In Situation 22.1 suppose that we have a cartesian diagram

X1
p
//

q

��

X3

a

��
X2 b // X4

of schemes quasi-separated and of finite type over S. For each j = 1, 2, 3, 4 choose
ij ∈ I and a diagram

Xj //

��

W j

��
S // Sij

as in (22.2.1). Let Xj = limi≥ij
Xj

i be the corresponding limit descriptions as
in Lemma 22.4. Let (ai)i≥i5 , (bi)i≥i6 , (pi)i≥i7 , and (qi)i≥i8 be the correspond-
ing morphisms of systems contructed in Lemma 22.4. Then there exists an i9 ≥
max(i5, i6, i7, i8) such that for i ≥ i9 we have ai ◦ pi = bi ◦ qi and such that

(qi, pi) : X1
i −→ X2

i ×bi,X4
i

,ai
X3

i

is a closed immersion. If a and b are flat and of finite presentation, then there exists
an i10 ≥ max(i5, i6, i7, i8, i9) such that for i ≥ i10 the last displayed morphism is
an isomorphism.

Proof. According to the discussion in Remark 22.5 the choice of W 1 fitting into
a diagram as in (22.2.1) is immaterial for the truth of the lemma. Thus we may
choose W 1 = W 2×W 4 W 3. Then it is immediate from the construction of X1

i that
ai ◦ pi = bi ◦ qi and that

(qi, pi) : X1
i −→ X2

i ×bi,X4
i

,ai
X3

i

is a closed immersion.
If a and b are flat and of finite presentation, then so are p and q as base changes of
a and b. Thus we can apply Lemma 22.6 to each of a, b, p, q, and a ◦ p = b ◦ q. It
follows that there exists an i9 ∈ I such that

(qi, pi) : X1
i → X2

i ×X4
i
X3

i

is the base change of (qi9 , pi9) by the morphism by the morphism X4
i → X4

i9
for

all i ≥ i9. We conclude that (qi, pi) is an isomorphism for all sufficiently large i by
Lemma 8.11. □
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