LOCAL COHOMOLOGY

Contents

1. **Introduction**
2. **Generalities**
3. Hartshorne's connectedness lemma
4. Cohomological dimension
5. More general supports
6. Filtrations on local cohomology
7. Finiteness of local cohomology, I
8. Finiteness of pushforwards, I
9. Depth and dimension
10. Annihilators of local cohomology, I
11. Finiteness of local cohomology, II
12. Finiteness of pushforwards, II
13. Annihilators of local cohomology, II
14. Finiteness of local cohomology, III
15. Improving coherent modules
16. Hartshorne-Lichtenbaum vanishing
17. Frobenius action
18. Structure of certain modules
19. Additional structure on local cohomology
20. Other chapters
21. References

1. Introduction

This chapter continues the study of local cohomology. A reference is [Gro68]. The definition of local cohomology can be found in Dualizing Complexes, Section 9. For Noetherian rings taking local cohomology is the same as deriving a suitable torsion functor as is shown in Dualizing Complexes, Section 10. The relationship with depth can be found in Dualizing Complexes, Section 11.

We discuss finiteness properties of local cohomology leading to a proof of a fairly general version of Grothendieck’s finiteness theorem, see Theorem 11.9 and Lemma 12.1 (higher direct images of coherent modules under open immersions). Our methods incorporate a few very slick arguments the reader can find in papers of Faltings, see [Fal78] and [Fal81].

As applications we offer a discussion of Hartshorne-Lichtenbaum vanishing. We also discuss the action of Frobenius and of differential operators on local cohomology.
2. Generalities

Lemma 2.1. Let A be a ring and let I be a finitely generated ideal. Set $Z = V(I) \subset X = \text{Spec}(A)$. For $K \in D(A)$ corresponding to $\widetilde{K} \in D_{\text{QCoh}}(\mathcal{O}_X)$ via Derived Categories of Schemes, Lemma 3.3 there is a functorial isomorphism

$$R\Gamma_Z(K) = R\Gamma_Z(X, \widetilde{K})$$

where on the left we have Dualizing Complexes, Equation (9.0.1) and on the right we have the functor of Cohomology, Section 21.

Proof. By Cohomology, Section 21 there exists a distinguished triangle

$$R\Gamma_Z(X, \widetilde{K}) \to R\Gamma(X, \widetilde{K}) \to R\Gamma(U, \widetilde{K}) \to R\Gamma_Z(X, \widetilde{K})[1]$$

where $U = X \setminus Z$. We know that $R\Gamma(X, \widetilde{K}) = K$ by Derived Categories of Schemes, Lemma 3.3. Say $I = (f_1, \ldots, f_r)$. Then we obtain a finite affine open covering $U : U = D(f_1) \cup \ldots \cup D(f_r)$. By Derived Categories of Schemes, Lemma 8.4 the existence of

$$M \to \mathcal{H}om_{U, \mathcal{O}_U}(\mathcal{F}_\alpha, \mathcal{G}_\beta)$$

is induced by the diagonal map from A into $\prod A_{f_i}$. Hence we conclude that

$$R\Gamma_Z(X, \mathcal{F}^*) = \text{Tot} \left(K^* \otimes_A \left(\prod_{i_0} A_{f_{i_0}} \to \prod_{i_0 < i_1} A_{f_{i_0}} f_{i_1} \to \ldots \to A_{f_1 \ldots f_r} \right) \right)$$

It is clear that $K^* = R\Gamma(X, \widetilde{K}^*) \to R\Gamma(U, \widetilde{K}^*)$ is induced by the diagonal map from A into $\prod A_{f_i}$. Hence we conclude that

$$R\Gamma_Z(X, \mathcal{F}^*) = \text{Tot} \left(K^* \otimes_A \left(A \to \prod_{i_0} A_{f_{i_0}} \to \prod_{i_0 < i_1} A_{f_{i_0}} f_{i_1} \to \ldots \to A_{f_1 \ldots f_r} \right) \right)$$

By Dualizing Complexes, Lemma 9.1 this complex computes $R\Gamma_Z(K)$ and we see the lemma holds.

Lemma 2.2. Let A be a ring and let $I \subset A$ be a finitely generated ideal. Set $X = \text{Spec}(A)$, $Z = V(I)$, $U = X \setminus Z$, and $j : U \to X$ the inclusion morphism. Let \mathcal{F} be a quasi-coherent \mathcal{O}_U-module. Then

1. there exists an A-module M such that \mathcal{F} is the restriction of \widetilde{M} to U, and
2. given M there is an exact sequence

$$0 \to H^0_Z(M) \to M \to H^0(U, \mathcal{F}) \to H^1_Z(M) \to 0$$

and isomorphisms $H^p(U, \mathcal{F}) = H^{p+1}_Z(M)$ for $p \geq 1$, and
3. we may take $M = H^0(U, \mathcal{F})$ in which case we have $H^0_Z(M) = H^0(M) = 0$.

Proof. The existence of M follows from Properties, Lemma 22.1 and the fact that quasi-coherent sheaves on X correspond to A-modules (Schemes, Lemma 7.5). Then we look at the distinguished triangle

$$R\Gamma(Z, \widetilde{M}) \to R\Gamma(X, \widetilde{M}) \to R\Gamma(U, \widetilde{M}|_U) \to R\Gamma(Z, \widetilde{M})[1]$$

of Cohomology, Section 21. Since X is affine we have $R\Gamma(X, \widetilde{M}) = M$ by Cohomology of Schemes, Lemma 2.2. By our choice of M we have $\mathcal{F} = \widetilde{M}|_U$ and hence this produces an exact sequence

$$0 \to H^0_Z(X, \widetilde{M}) \to M \to H^0(U, \mathcal{F}) \to H^1_Z(X, \widetilde{M}) \to 0$$
Let $I, J \subset A$ be finitely generated ideals of a ring A. If M is an I-power torsion module, then the canonical map
\[H^i_{V(I) \cap V(J)}(M) \to H^i_{V(J)}(M) \]
is an isomorphism for all i.

Proof. Use the spectral sequence of Dualizing Complexes, Lemma 9.6 to reduce to the statement $R\Gamma_f(M) = M$ which is immediate from the construction of local cohomology in Dualizing Complexes, Section 9.

Let $S \subset A$ be a multiplicative set of a ring A. Let M be an A-module with $S^{-1}M = 0$. Then $\colim_{f \in S} H^0_{V(f)}(M) = M$ and $\colim_{f \in S} H^1_{V(f)}(M) = 0$.

Proof. The statement on H^0 follows directly from the definitions. To see the statement on H^1 observe that $R\Gamma_f(M)$ and $H^1_{V(f)}$ commute with colimits. Hence we may assume M is annihilated by some $f \in S$. Then $H^1_{V(f)}(M) = 0$ for all $f' \in S$ (for example by Lemma 2.4).

Let $I \subset A$ be a finitely generated ideal of a ring A. Let \mathfrak{p} be a prime ideal. Let M be an A-module. Let $i \geq 0$ be an integer and consider the map
\[\Psi : \colim_{f \in A, f \notin \mathfrak{p}} H^i_{V(I,f)}(M) \to H^i_{V(I)}(M) \]

Then
1. $\text{im}(\Psi)$ is the set of elements which map to zero in $H^i_{V(I)}(M)_\mathfrak{p}$,
2. if $H^{-1}_{V(I)}(M)_\mathfrak{p} = 0$, then Ψ is injective,
3. if $H^{-1}_{V(I)}(M)_\mathfrak{p} = H^i_{V(I)}(M)_\mathfrak{p} = 0$, then Ψ is an isomorphism.

Proof. For $f \in A, f \notin \mathfrak{p}$ the spectral sequence of Dualizing Complexes, Lemma 9.6 degenerates to give short exact sequences
\[0 \to H^1_{V(f)}(H^{-1}_{V(f)}(M)) \to H^i_{V(I,f)}(M) \to H^0_{V(f)}(H^i_{V(f)}(M)) \to 0 \]

This proves (1) and part (2) follows from this and Lemma 2.4 Part (3) is a formal consequence.

Let $I \subset I' \subset A$ be finitely generated ideals of a Noetherian ring A. Let M be an A-module. Let $i \geq 0$ be an integer. Consider the map
\[\Psi : H^i_{V(I')}(M) \to H^i_{V(I)}(M) \]
The following are true:
1. if $H^i_{V(A)}(M_\mathfrak{p}) = 0$ for all $\mathfrak{p} \in V(I) \setminus V(I')$, then Ψ is surjective,
2. if $H^{-1}_{V(A)}(M_\mathfrak{p}) = 0$ for all $\mathfrak{p} \in V(I) \setminus V(I')$, then Ψ is injective,
3. if $H^i_{V(A)}(M_\mathfrak{p}) = H^{-1}_{V(A)}(M_\mathfrak{p}) = 0$ for all $\mathfrak{p} \in V(I) \setminus V(I')$, then Ψ is an isomorphism.
Proof. Proof of (1). Let $\xi \in H^i_{V(I)}(M)$. Since A is Noetherian, there exists a largest ideal $I \subset I'' \subset I'$ such that ξ is the image of some $\xi'' \in H^i_{V(I''')}\(M)$. If $V(I'') = V(I')$, then we are done. If not, choose a generic point $p \in V(I')$ not in $V(I)'$. Then we have $H^i_{V(I''')}\(M)_p = H^i_{pA_p}(M_p) = 0$ by assumption. By Lemma 2.5 we can increase I' which contradicts maximality.

Proof of (2). Let $\xi' \in H^i_{V(I')}\(M)$ be in the kernel of Ψ. Since A is Noetherian, there exists a largest ideal $I \subset I'' \subset I'$ such that ξ' maps to zero in $H^i_{V(I''')}\(M)$. If $V(I'') = V(I')$, then we are done. If not, then choose a generic point $p \in V(I'')$ not in $V(I')$. Then we have $H^{i-1}_{V(I''')}\(M)_p = H^{i-1}_{pA_p}(M_p) = 0$ by assumption. By Lemma 2.5 we can increase I'' which contradicts maximality.

Part (3) is formal from parts (1) and (2). □

3. Hartshorne’s connectedness lemma

Proof. Let U be the punctured spectrum of A. If U is disconnected then we see that $\Gamma(U, O_U)$ has a nontrivial idempotent. But A, being local, does not have a nontrivial idempotent. Hence $A \to \Gamma(U, O_U)$ is not an isomorphism. By Lemma 2.2 we conclude that either $H^0_m(A)$ or $H^1_m(A)$ is nonzero. Thus depth$(A) \leq 1$ by Dualizing Complexes, Lemma 1111. To see the result for A^h and A^{sh} use More on Algebra, Lemma 44.8 □

Proof. Set $X = \text{Spec}(A)$. Say $d = \text{dim}(A) = \text{dim}(X)$. Inside X consider the union X_1 of the irreducible components of dimension d and the union X_2 of the irreducible components of dimension $< d$. Of course $X = X_1 \cup X_2$. If $X_2 = \emptyset$, then the lemma holds. If not, then $Z = X_1 \cap X_2$ is a nonempty closed subset of X because it contains at least the closed point of X. Hence we can choose a generic point $z \in Z$ of an irreducible component of Z. Recall that the spectrum of $O_{Z,z}$ is the set of points of X specializing to z. Since z is both contained in an irreducible component of dimension d and in an irreducible component of dimension $< d$ we obtain nontrivial specializations $x_1 \rightsquigarrow z$ and $x_2 \rightsquigarrow z$ such that the closures of x_1 and x_2 have different dimensions. Since X is catenary, this can only happen if at least one of the specializations $x_1 \rightsquigarrow z$ and $x_2 \rightsquigarrow z$ is not immediate! Thus $\text{dim}(O_{Z,z}) \geq 2$. Therefore depth$(O_{Z,z}) \geq 2$ because A is (S2). However, the punctured spectrum U of $O_{Z,z}$ is disconnected because the closed subsets $U \cap X_1$ and $U \cap X_2$ are disjoint (by our choice of z) and cover U. This is a contradiction with Lemma 3.1 and the proof is complete. □

4. Cohomological dimension

A quick section about cohomological dimension.

Proof. Let $I \subseteq A$ be a finitely generated ideal of a ring A. Set $Y = V(I) \subseteq X = \text{Spec}(A)$. Let $d \geq -1$ be an integer. The following are equivalent

0DX6
0DX7
Let radical of ideal any element is an idempotent. Consider the complementary idempotent The explicit description for $I(2)$ that $H^{-1}(X \setminus Y, \mathcal{F}) = 0$ for $i \geq d$ for every quasi-coherent $\mathcal{O}_{X \setminus Y}$-module \mathcal{F}.

Proof. Observe that $R\Gamma_Y(-)$ has finite cohomological dimension by Dualizing Complexes, Lemma 9.1 for example. Hence we can choose a large integer N such that $H^r_Y(M) = 0$ for all A-modules M.

Let us prove that (1) and (2) are equivalent. It is immediate that (2) implies (1). Assume (1). Choose any A-module M and fit it into a short exact sequence $0 \to N \to F \to M \to 0$ where F is a free A-module. Since $R\Gamma_Y$ is a right adjoint, we see that $H^r_Y(-)$ commutes with direct sums. Hence $H^r_Y(F) = 0$ for $i > d$ by assumption (1). Then we see that $H^r_Y(M) = H^{r+1}_Y(N)$ for all $i > d$. Thus if we've shown the vanishing of $H^r_Y(N)$ for some $j > d + 1$ and all A-modules N, then we obtain the vanishing of $H^{r-1}_Y(M)$ for all A-modules M. By induction we find that (2) is true.

Assume $d = -1$ and (2) holds. Then $0 = H^n_Y(A/I) = A/I \Rightarrow A = I \Rightarrow Y = \emptyset$. Thus (3) holds. We omit the proof of the converse.

Assume $d = 0$ and (2) holds. Set $J = H^n_Y(A) = \{x \in A \mid I^n x = 0 \text{ for some } n > 0\}$. Then

$H^n_Y(A) = \text{Coker}(A \to \Gamma(X \setminus Y, \mathcal{O}_{X \setminus Y}))$ and $H^n_Y(I) = \text{Coker}(I \to \Gamma(X \setminus Y, \mathcal{O}_{X \setminus Y}))$

and the kernel of the first map is equal to J. See Lemma 2.2. We conclude from (2) that $I(A/J) = A/J$. Thus we may pick $f \in I$ mapping to 1 in A/J. Then $1 - f \in J$ so $I^n(1 - f) = 0$ for some $n > 0$. Hence $f^n = f^{n+1}$. Then $e = f^n \in I$ is an idempotent. Consider the complementary idempotent $e' = 1 - f^n \in J$. For any element $g \in I$ we have $g^m e' = 0$ for some $m > 0$. Thus I is contained in the radical of ideal $(e) \subset I$. This means $Y = V(I) = V(e)$ is open and closed in X as predicted in (3). Conversely, if $Y = V(I)$ is open and closed, then the functor $H^r_Y(-)$ is exact and has vanishing higher derived functors.

If $d > 0$, then we see immediately from Lemma 2.2 that (2) is equivalent to (3). \hfill \Box

Definition 4.2. Let $I \subset A$ be a finitely generated ideal of a ring A. The smallest integer $d \geq -1$ satisfying the equivalent conditions of Lemma 4.1 is called the cohomological dimension of I in A and is denoted $\text{cd}(A, I)$.

Thus we have $\text{cd}(A, I) = -1$ if $I = A$ and $\text{cd}(A, I) = 0$ if I is locally nilpotent or generated by an idempotent. Observe that $\text{cd}(A, I)$ exists by the following lemma.

Lemma 4.3. Let $I \subset A$ be a finitely generated ideal of a ring A. Then

1. $\text{cd}(A, I)$ is at most equal to the number of generators of I,
2. $\text{cd}(A, I) \leq r$ if there exist $f_1, \ldots, f_r \in A$ such that $V(f_1, \ldots, f_r) = V(I)$,
3. $\text{cd}(A, I) \leq c$ if $\text{Spec}(A) \setminus V(I)$ can be covered by c affine opens.

Proof. The explicit description for $R\Gamma_Y(-)$ given in Dualizing Complexes, Lemma 9.1 shows that (1) is true. We can deduce (2) from (1) using the fact that $R\Gamma_Z$ depends only on the closed subset Z and not on the choice of the finitely generated ideal $I \subset A$ with $V(I) = Z$. This follows either from the construction of local...
cohomology in Dualizing Complexes, Section 9 combined with More on Algebra, Lemma 80.6 or it follows from Lemma 2.1. To see (3) we use Lemma 4.11 and the vanishing result of Cohomology of Schemes, Lemma 4.2. □

Lemma 4.4. Let $I, J \subset A$ be finitely generated ideals of a ring A. Then $cd(A, I + J) \leq cd(A, I) + cd(A, J)$.

Proof. Use the definition and Dualizing Complexes, Lemma 9.6. □

Lemma 4.5. Let $A \to B$ be a ring map. Let $I \subset A$ be a finitely generated ideal. Then $cd(B, IB) \leq cd(A, I)$. If $A \to B$ is faithfully flat, then equality holds.

Proof. Use the definition and Dualizing Complexes, Lemma 9.3. □

Lemma 4.6. Let $I \subset A$ be a finitely generated ideal of a ring A. Then $cd(A, I) = \max cd(A, p, I_p)$.

Proof. Let $Y = V(I)$ and $Y' = V(I_p) \subset \text{Spec}(A_p)$. Recall that $R\Gamma_Y(A) \otimes_A A_p = R\Gamma_{Y'}(A_p)$ by Dualizing Complexes, Lemma 9.3. Thus we conclude by Algebra, Lemma 22.1. □

Lemma 4.7. Let $I \subset A$ be a finitely generated ideal of a ring A. If M is a finite A-module, then $H^i_{V(I)}(M) = 0$ for $i > \text{dim}(\text{Supp}(M))$. In particular, we have $cd(A, I) \leq \text{dim}(A)$.

Proof. We first prove the second statement. Recall that $\text{dim}(A)$ denotes the Krull dimension. By Lemma 4.6 we may assume A is local. If $V(I) = \emptyset$, then the result is true. If $V(I) \neq \emptyset$, then $\text{dim}(\text{Spec}(A) \setminus V(I)) < \text{dim}(A)$ because the closed point is missing. Observe that $U = \text{Spec}(A) \setminus V(I)$ is a quasi-compact open of the spectral space $\text{Spec}(A)$, hence a spectral space itself. See Algebra, Lemma 25.2 and Topology, Lemma 23.4. Thus Cohomology, Proposition 22.4 implies $H^i(U, F) = 0$ for $i \geq \text{dim}(A)$ which implies what we want by Lemma 4.1. In the Noetherian case the reader may use Grothendieck’s Cohomology, Proposition 20.7.

We will deduce the first statement from the second. Let a be the annihilator of the finite A-module M. Set $B = A/a$. Recall that $\text{Spec}(B) = \text{Supp}(M)$, see Algebra, Lemma 39.5. Set $J = IB$. Then M is a B-module and $H^i_{V(I)}(M) = H^i_{V(J)}(M)$, see Dualizing Complexes, Lemma 9.2. Since $cd(B, J) \leq \text{dim}(B) = \text{dim}(\text{Supp}(M))$ by the first part we conclude. □

Lemma 4.8. Let $I \subset A$ be a finitely generated ideal of a ring A. If $cd(A, I) = 1$ then $\text{Spec}(A) \setminus V(I)$ is nonempty affine.

Proof. This follows from Lemma 4.1 and Cohomology of Schemes, Lemma 3.1. □

Lemma 4.9. Let (A, m) be a Noetherian local ring of dimension d. Then $H^d_m(A)$ is nonzero and $cd(A, m) = d$.

Proof. By one of the characterizations of dimension, there exists an ideal of definition for A generated by d elements, see Algebra, Proposition 59.8. Hence $cd(A, m) \leq d$ by Lemma 4.3. Thus $H^d_m(A)$ is nonzero if and only if $cd(A, m) = d$ if and only if $cd(A, m) \geq d$.

Let $A \to A^\wedge$ be the map from A to its completion. Observe that A^\wedge is a Noetherian local ring of the same dimension as A with maximal ideal mA^\wedge. See Algebra,
Lemmas 96.6, 96.4, and 96.3 and More on Algebra, Lemma 42.1. By Lemma 4.5 it suffices to prove the lemma for A^n.

By the previous paragraph we may assume that A is a complete local ring. Then A has a normalized dualizing complex ω_A^* (Dualizing Complexes, Lemma 22.4). The local duality theorem (in the form of Dualizing Complexes, Lemma 18.4) tells us $H^d_m(A) = \text{Matlis dual to } \text{Ext}^{-d}(A, \omega_A^*)$ which is nonzero for example by Dualizing Complexes, Lemma 16.11. □

Lemma 4.10. Let (A, m) be a Noetherian local ring. Let $I \subset A$ be a proper ideal. Let $p \subset A$ be a prime ideal such that $V(p) \cap V(I) = \{m\}$. Then $\dim(A/p) \leq \text{cd}(A, I)$.

Proof. By Lemma 4.5 we have $\text{cd}(A, I) \geq \text{cd}(A/p, I(A/p))$. Since $V(I) \cap V(p) = \{m\}$ we have $\text{cd}(A/p, I(A/p)) = \text{cd}(A/p, m/p)$. By Lemma 4.9 this is equal to $\dim(A/p)$.

Lemma 4.11. Let I be an ideal of a Noetherian ring A. Set $d = \text{cd}(A, I)$. For $n \geq 1$ choose a finite free resolution

$$\ldots \rightarrow P_{n-2} \rightarrow P_{n-1} \rightarrow P_n^0 \rightarrow A/I^n \rightarrow 0$$

For every $n \geq 1$ there exists an $m > n$ such that $A/I^m \rightarrow A/I^n$ can be represented by a map of complexes $\alpha^* : P_m^* \rightarrow P_n^*$ with $\alpha^i = 0$ for $i < -d$.

Proof. We assume $d \geq 1$; the proof in the cases $d = -1, 0$ is omitted. Denote $d_n^i : P_n^i \rightarrow P_n^{i+1}$ the differentials. Set $M = \text{Im}(d_n^{d-1} : P_n^{d-1} \rightarrow P_n^{-d})$. Denote $\xi = d_n^{d-1} \in \text{Hom}_A(P_n^{-d-1}, M)$. Since $\xi \circ d_n^{d-2} = 0$ we see that ξ defines an element ξ of $\text{Ext}^{d+1}_A(A/I^n, M)$. Since $\text{cd}(A, I) = d$ we have $0 = H^{d+1}(M) = \text{colim} \text{Ext}^{d+1}_A(A/I^m, M)$. Here we have used Dualizing Complexes, Lemmas 10.1 and 8.2. Thus we may pick m such that ξ maps to zero in $\text{Ext}^{d+1}_A(A/I^m, M)$. Choose any map of complexes $\alpha^* : P_m^* \rightarrow P_n^*$ representing $A/I^m \rightarrow A/I^n$. The choice of m implies we can find $\varphi : P_n^{-d} \rightarrow M$ such that

$$\xi \circ \alpha^{-d-1} = \varphi \circ d_n^{d-1}$$

If we think of φ as a map $P_n^{-d} \rightarrow P_n^{-d}$, then we see that $d_n^{-d} \circ \varphi = 0$ and $\alpha^{-d} \circ d_m^{d-1} = d_n^{-d} \circ \alpha^{-d-1} = \varphi \circ d_m^{d-1}$. Thus we obtain a map of complexes

$$\ldots \rightarrow P_n^{-d-1} \rightarrow P_n^{-d} \rightarrow P_n^{-d+1} \rightarrow \ldots$$

and α^{-d-1} is a map of complexes $\alpha^{-d} \circ \varphi = 0$ and $\alpha^{-d} \circ d_m^{d-1} = d_n^{-d} \circ \alpha^{-d-1} = \varphi \circ d_m^{d-1}$. Thus we obtain a map of complexes

$$\ldots \rightarrow P_m^{-d-1} \rightarrow P_m^{-d} \rightarrow P_m^{-d+1} \rightarrow \ldots$$

and everything is clear. □

Lemma 4.12. Let A be a Noetherian ring. Let $I \subset A$ be an ideal. Let $b : X' \rightarrow X = \text{Spec}(A)$ be the blowing up of I. If the fibres of b have dimension $\leq d-1$, then $\text{cd}(A, I) \leq d$.

Proof. Set $U = X \setminus V(I)$. Denote $j : U \rightarrow X'$ the canonical open immersion, see Divisors, Section 32. Since the exceptional divisor is an effective Cartier divisor (Divisors, Lemma 32.4) we see that j is affine, see Divisors, Lemma 13.3. Let \mathcal{F} be a quasi-coherent \mathcal{O}_U-module. Then $R^p j_* \mathcal{F} = 0$ for $p > 0$, see Cohomology on Schemes, Lemma 2.3. On the other hand, we have $R^q b_*(j_* \mathcal{F}) = 0$ for $q \geq d$ by Limits, Lemma 17.2. Thus by the Leray spectral sequence (Cohomology, Lemma
Let A be a Noetherian ring. Let M be an A-module. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization (Topology, Definition \[19.1\]). Let us define
\[
H^0_T(M) = \text{colim}_{Z \subset T} H^0_Z(M)
\]
where the colimit is over the directed partially ordered set of closed subsets Z of $\text{Spec}(A)$ contained in T. In other words, an element m of M is in $H^0_T(M) \subset M$ if and only if the support $V(\text{Ann}_R(m))$ of m is contained in T. \[\square\]

5. More general supports

Let A be a Noetherian ring. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization (Topology, Definition \[19.1\]). Let us define
\[
H^0_T(M) = \text{colim}_{Z \subset T} H^0_Z(M)
\]
where the colimit is over the directed partially ordered set of closed subsets Z of $\text{Spec}(A)$ contained in T. In other words, an element m of M is in $H^0_T(M) \subset M$ if and only if the support $V(\text{Ann}_R(m))$ of m is contained in T. \[\square\]

Lemma 5.1. Let A be a Noetherian ring. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization. For an A-module M the following are equivalent

1. $H^0_T(M) = M$, and
2. $\text{Supp}(M) \subset T$.

The category of such A-modules is a Serre subcategory of the category A-modules closed under direct sums.

Proof. The equivalence holds because the support of an element of M is contained in the support of M and conversely the support of M is the union of the supports of its elements. The category of these modules is a Serre subcategory (Homology, Definition \[10.1\]) of Mod_A by Algebra, Lemma \[39.9\]. We omit the proof of the statement on direct sums. \[\square\]

Let A be a Noetherian ring. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization. Let us denote $\text{Mod}_{A,T} \subset \text{Mod}_A$ the Serre subcategory described in Lemma \[5.1\].

Let us denote $D_T(A) \subset D(A)$ the strictly full saturated triangulated subcategory of $D(A)$ (Derived Categories, Lemma \[17.1\]) consisting of complexes of A-modules whose cohomology modules are in $\text{Mod}_{A,T}$. We obtain functors
\[
D(\text{Mod}_{A,T}) \to D_T(A) \to D(A)
\]
See discussion in Derived Categories, Section \[17\]. Denote $RH_T^0 : D(A) \to D(\text{Mod}_{A,T})$ the right derived extension of H_T^0. We will denote
\[
RG_T : D^+(A) \to D_T^+(A),
\]
the composition of $RH_T^0 : D^+(A) \to D^+(\text{Mod}_{A,T})$ with $D^+(\text{Mod}_{A,T}) \to D_T^+(A)$. If the dimension of A is finite\[3\] then we will denote
\[
RG_T : D(A) \to D_T(A)
\]
the composition of RH_T^0 with $D(\text{Mod}_{A,T}) \to D_T(A)$.

Lemma 5.2. Let A be a Noetherian ring. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization. The functor RH_T^0 is the right adjoint to the functor $D(\text{Mod}_{A,T}) \to D(A)$.

Proof. This follows from the fact that the functor $H_T^0(-)$ is the right adjoint to the inclusion functor $\text{Mod}_{A,T} \to \text{Mod}_A$, see Derived Categories, Lemma \[39.3\]. \[\square\]

1. Since T is stable under specialization we have $T = \bigcup_{Z \subset T} Z$, see Topology, Lemma \[19.3\].

2. If $\text{dim}(A) = \infty$ the construction may have unexpected properties on unbounded complexes.
Lemma 5.3. Let A be a Noetherian ring. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization. For any object K of $D(A)$ we have

$$H^i(\text{RH}^0_T(K)) = \colim_{Z \subset T \text{ closed}} H^i_Z(K)$$

Proof. Let J^\bullet be a K-injective complex representing K. By definition RH^0_T is represented by the complex

$$H^0_T(J^\bullet) = \text{colim} H^0_Z(J^\bullet)$$

where the equality follows from our definition of H^0_T. Since filtered colimits are exact the cohomology of this complex in degree i is $\text{colim} H^i(\text{RH}^0_Z(J^\bullet)) = \colim_{Z \subset T} H^i_Z(K)$ as desired. \hfill \Box

Lemma 5.4. Let A be a Noetherian ring. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization. The functor $D^+(\text{Mod}_{A,T}) \to D^+_T(A)$ is an equivalence.

Proof. Let M be an object of $\text{Mod}_{A,T}$. Choose an embedding $M \to J$ into an injective A-module. By Dualizing Complexes, Proposition 5.9 the module J is a direct sum of injective hulls of residue fields. Let E be an injective hull of the residue field of p. Since E is p-power torsion we see that $H^0_T(E) = 0$ if $p \not\in T$ and $H^0_T(E) = E$ if $p \in T$. Thus $H^0_T(J)$ is injective as a direct sum of injective hulls (by the proposition) and we have an embedding $M \to H^0_T(J)$. Thus every object M of $\text{Mod}_{A,T}$ has an injective resolution $M \to J^\bullet$ with J^n also in $\text{Mod}_{A,T}$. It follows that $\text{RH}^0_T(M) = M$.

Next, suppose that $K \in D^+_T(A)$. Then the spectral sequence

$$R^qH^p_T(H^q(K)) \Rightarrow R^{q+p}H^0_T(K)$$

(Derived Categories, Lemma 21.3) converges and above we have seen that only the terms with $q = 0$ are nonzero. Thus we see that $\text{RH}^0_T(K) \to K$ is an isomorphism. Thus the functor $D^+(\text{Mod}_{A,T}) \to D^+_T(A)$ is an equivalence with quasi-inverse given by RH^0_T. \hfill \Box

Lemma 5.5. Let A be a Noetherian ring. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization. If $\dim(A) < \infty$, then functor $D(\text{Mod}_{A,T}) \to D_T(A)$ is an equivalence.

Proof. Say $\dim(A) = d$. Then we see that $H^i_Z(M) = 0$ for $i > d$ for every closed subset Z of $\text{Spec}(A)$, see Lemma 4.7. By Lemma 5.3 we find that H^p_T has bounded cohomological dimension.

Let $K \in D_T(A)$. We claim that $\text{RH}^0_T(K) \to K$ is an isomorphism. We know this is true when K is bounded below, see Lemma 5.4. However, since H^p_T has bounded cohomological dimension, we see that the ith cohomology of $\text{RH}^0_T(K)$ only depends on $\tau_{\geq -d+i}K$ and we conclude. Thus $D(\text{Mod}_{A,T}) \to D_T(A)$ is an equivalence with quasi-inverse RH^0_T. \hfill \Box

Remark 5.6. Let A be a Noetherian ring. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization. The upshot of the discussion above is that $R\Gamma_T : D^+(A) \to D^+_T(A)$ is the right adjoint to the inclusion functor $D^+_T(A) \to D^+(A)$. If $\dim(A) < \infty$, then $R\Gamma_T : D(A) \to D_T(A)$ is the right adjoint to the inclusion functor $D_T(A) \to D(A)$. In both cases we have

$$H^i_T(K) = H^i(R\Gamma_T(K)) = R^iH^0_T(K) = \colim_{Z \subset T \text{ closed}} H^i_Z(K)$$
Let $A 	o B$ be a flat homomorphism of Noetherian rings. Let $T \subset \Spec(A)$ be a subset stable under specialization. Let $T' \subset \Spec(B)$ be the inverse image of T. Then the canonical map

$$R\Gamma_T(K) \otimes_A^L B \to R\Gamma_{T'}(K \otimes_A^L B)$$

is an isomorphism for $K \in D^+(A)$. If A and B have finite dimension, then this is true for $K \in D(A)$.

Proof. From the map $R\Gamma_T(K) \to K$ we get a map $R\Gamma_T(K) \otimes_A^L B \to K \otimes_A^L B$. The cohomology modules of $R\Gamma_T(K) \otimes_A^L B$ are supported on T' and hence we get the arrow of the lemma. This arrow is an isomorphism if T is a closed subset of $\Spec(A)$ by Dualizing Complexes, Lemma 0.3. Recall that $H^*_T(K)$ is the colimit of $H^*_Z(K)$ where Z runs over the (directed set of) closed subsets of T, see Lemma 0.3. Correspondingly $H^*_T(K \otimes_A^L B) = \colim H^*_Z(K \otimes_A^L B)$ where Z' is the inverse image of Z. Thus the result because $\otimes_A B$ commutes with filtered colimits and there are no higher Tors.

Lemma 5.8. Let A be a ring and let $T, T' \subset \Spec(A)$ subsets stable under specialization. For $K \in D^+(A)$ there is a spectral sequence

$$E_2^{p,q} = H_T^p(H_{T'}^q(K)) \Rightarrow H_{T \cap T'}^{p+q}(K)$$

as in Derived Categories, Lemma 22.2.

Proof. Let E be an object of $D_{T \cap T'}(A)$. Then we have

$$\Hom(E, R\Gamma_T(R\Gamma_{T'}(K))) = \Hom(E, R\Gamma_T(K)) = \Hom(E, K)$$

The first equality by the adjointness property of $R\Gamma_T$ and the second by the adjointness property of $R\Gamma_{T'}$. On the other hand, if J^\bullet is a bounded below complex of injectives representing K, then $H_T^p(J^\bullet)$ is a complex of injective A-modules representing $R\Gamma_T(K)$ and hence $H_T^p(H_{T'}^q(J^\bullet))$ is a complex representing $R\Gamma_T(R\Gamma_{T'}(K))$. Thus $R\Gamma_T(R\Gamma_{T'}(K))$ is an object of $D_{T \cap T'}(A)$. Combining these two facts we find that $R\Gamma_{T \cap T'} = R\Gamma_T \circ R\Gamma_{T'}$. This produces the spectral sequence by the lemma referenced in the statement.

Lemma 5.9. Let A be a Noetherian ring. Let $T \subset \Spec(A)$ be a subset stable under specialization. Assume A has finite dimension. Then

$$R\Gamma_T(K) = R\Gamma_T(A) \otimes_A^L K$$

for $K \in D(A)$. For $K, L \in D(A)$ we have

$$R\Gamma_T(K \otimes_A^L L) = R\Gamma_T(R\Gamma_T(K) \otimes_A^L L) = R\Gamma_T(K) \otimes_A^L R\Gamma_T(L)$$

If K or L is in $D_T(A)$ then so is $K \otimes_A^L L$.

Proof. By construction we may represent $R\Gamma_T(A)$ by a complex J^\bullet in Mod_A. Thus if we represent K by a K-flat complex K^\bullet then we see that $R\Gamma_T(A) \otimes_A^L K$ is represented by the complex $\text{Tot}(J^\bullet \otimes_A^L K^\bullet)$ in Mod_A. Using the map $R\Gamma_T(A) \to A$ we obtain a map $R\Gamma_T(A) \otimes_A^L K \to K$. Thus by the adjointness property of $R\Gamma_T$ we obtain a canonical map

$$R\Gamma_T(A) \otimes_A^L K \to R\Gamma_T(K)$$
factoring the just constructed map. Observe that $R\Gamma_T$ commutes with direct sums in $D(A)$ for example by Lemma 5.3 the fact that directed colimits commute with direct sums, and the fact that usual local cohomology commutes with direct sums (for example by Dualizing Complexes, Lemma 9.1). Thus by More on Algebra, Remark 5.7.13 it suffices to check the map is an isomorphism for $K = A[k]$ where $k \in \mathbb{Z}$. This is clear.

The final statements follow from the result we’ve just shown by transitivity of derived tensor products. \hfill \Box

6. Filtrations on local cohomology

Some tricks related to the spectral sequence of Lemma 5.8.

Lemma 6.1. Let A be a Noetherian ring. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization. Let $T' \subset T$ be the set of nonminimal primes in T. Then T' is a subset of $\text{Spec}(A)$ stable under specialization and for every A-module M there is an exact sequence

$$0 \to \text{colim}_{Z,f} H^1_f(H^{-1}_Z(M)) \to H^1_{T'}(M) \to H^1_T(M) \to \bigoplus_{p \in T \setminus T'} H^1_{p A_p}(M_p)$$

where the colimit is over closed subsets $Z \subset T$ and $f \in A$ with $V(f) \cap Z \subset T'$.

Proof. For every Z and f the spectral sequence of Dualizing Complexes, Lemma 9.6 degenerates to give short exact sequences

$$0 \to H^1_f(H^{-1}_Z(M)) \to H^1_{Z \cap V(f)}(M) \to H^0_f(H^1_Z(M)) \to 0$$

We will use this without further mention below.

Let $\xi \in H^1_T(M)$ map to zero in the direct sum. Then we first write ξ as the image of some $\xi' \in H^1_Z(M)$ for some closed subset $Z \subset T$, see Lemma 5.3. Then ξ' maps to zero in $H^1_{p A_p}(M_p)$ for every $p \in Z$, $p \not\in T'$. Since there are finitely many of these primes, we may choose $f \in A$ not contained in any of these such that f annihilates ξ'. Then ξ'' is the image of some $\xi'' \in H^1_{Z'}(M)$ where $Z' = Z \cap V(f)$. By our choice of f we have $Z' \subset T'$ and we get exactness at the penultimate spot.

Let $\xi \in H^1_{T'}(M)$ map to zero in $H^1_T(M)$. Choose closed subsets $Z' \subset Z$ with $Z' \subset T'$ and $Z \subset T$ such that ξ comes from $\xi' \in H^1_{Z'}(M)$ and maps to zero in $H^1_T(M)$. Then we can find $f \in A$ with $V(f) \cap Z = Z'$ and we conclude. \hfill \Box

Lemma 6.2. Let A be a Noetherian ring of finite dimension. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization. Let $\{M_n\}_{n \geq 0}$ be an inverse system of A-modules. Let $i \geq 0$ be an integer. Assume that for every m there exists an integer $m'(m) \geq m$ such that for all $p \in T$ the induced map

$$H^i_{p A_p}(M_{k,p}) \to H^i_{p A_p}(M_{m,p})$$

is zero for $k \geq m'(m)$. Let $m'' : \mathbb{N} \to \mathbb{N}$ be the $2^{\dim(T)}$-fold self-composition of m'. Then the map $H^i_T(M_k) \to H^i_T(M_m)$ is zero for all $k \geq m''(m)$.

Proof. We first make a general remark: suppose we have an exact sequence

$$(A_n) \to (B_n) \to (C_n)$$

Then, for example by Dualizing Complexes, Lemma 5.3, the fact that directed colimits commute with direct sums. Thus by More on Algebra, Remark 5.7.13 it suffices to check the map is an isomorphism for $K = A[k]$ where $k \in \mathbb{Z}$. This is clear.

The final statements follow from the result we’ve just shown by transitivity of derived tensor products. \hfill \Box
Let T_m are zero for m. Then for $k \geq m'k(m)$ the map $B_k \to B_m$ is zero.
We will prove the lemma by induction on $\dim(T)$ which is finite because $\dim(A)$ is finite. Let $T' \subset T$ be the set of nonminimal primes in T. Then T' is a subset of $\Spec(A)$ stable under specialization and the hypotheses of the lemma apply to T'. Since $\dim(T') < \dim(T)$ we know the lemma holds for T'. For every A-module M there is an exact sequence
\[H^i_T(M) \to H^i_{T'}(M) \to \bigoplus_{p \in T \setminus T'} H^i_p A_p(M_p) \]
by Lemma 6.1. Thus we conclude by the initial remark of the proof.

0EFA Lemma 6.3. Let A be a Noetherian ring. Let $T \subset \Spec(A)$ be a subset stable under specialization. Let $\{M_n\}_{n \geq 0}$ be an inverse system of A-modules. Let $i \geq 0$ be an integer. Assume the dimension of A is finite and that for every $m \geq m_0$ there exists an integer $m'(m) \geq m$ such that for all $p \in T$ we have
\begin{enumerate}
\item $H^{i-1}_p A_p(M_{m_0}) \to H^{i-1}_p A_p(M_{m_0})$ is zero for $k \geq m'(m)$, and
\item $H^i_p A_p(M_{m_0}) \to H^i_p A_p(M_{m_0})$ has image $G(p, m)$ independent of $k \geq m'(m)$ and moreover $G(p, m)$ maps injectively into $H^i_p A_p(M_{m_0})$.
\end{enumerate}
Then there exists an integer m_0 such that for every $m \geq m_0$ there exists an integer $m'(m) \geq m$ such that for $k \geq m'(m)$ the image of $H^i_T(M_k) \to H^i_T(M_m)$ maps injectively into $H^i_T(M_{m_0})$.

Proof. We first make a general remark: suppose we have an exact sequence
\[(A_n) \to (B_n) \to (C_n) \to (D_n) \]
of inverse systems of abelian groups. Suppose that there exists an integer m_0 such that for every $m \geq m_0$ there exists an integer $m'(m) \geq m$ such that the maps
\[\text{Im}(B_k \to B_m) \to B_{m_0} \quad \text{and} \quad \text{Im}(D_k \to D_m) \to D_{m_0} \]
are injective for $k \geq m'(m)$ and $A_k \to A_m$ is zero for $k \geq m'(m)$. Then for $m \geq m'(m_0)$ and $m \geq m'(m)$ the map
\[\text{Im}(C_k \to C_m) \to C_{m'(m_0)} \]
is injective. Namely, let $c_0 \in C_m$ be the image of $c_3 \in C_k$ and say c_0 maps to zero in $C_{m'(m_0)}$. Picture
\[C_k \to C_{m'(m_0)} \to C_{m'(m)} \to C_m \to C_{m'(m_0)} \]
We have to show $c_0 = 0$. The image d_3 of c_3 maps to zero in C_{m_0} and hence we see that the image $d_1 \in D_{m'(m)}$ is zero. Thus we can choose $b_1 \in B_{m'(m)}$ mapping to the image c_1. Since c_3 maps to zero in $C_{m'(m_0)}$ we find an element $a_m \in A_{m'(m_0)}$ which maps to the image $b_1 \in B_{m'(m_0)}$ of b_1. Since a_1 maps to zero in A_{m_0} we conclude that b_1 maps to zero in B_{m_0}. Thus the image $b_0 \in B_m$ is zero which of course implies $c_0 = 0$ as desired.

We will prove the lemma by induction on $\dim(T)$ which is finite because $\dim(A)$ is finite. Let $T' \subset T$ be the set of nonminimal primes in T. Then T' is a subset of $\Spec(A)$ stable under specialization and the hypotheses of the lemma apply to T'. Therefore, for every $m \geq m_0$ and $i \geq 0$ there exists an integer $m'(m) \geq m$ such that for all $p \in T' \setminus T'$ we have
\[H^i_p A_p(M_{m_0}) \to H^i_p A_p(M_{m_0}) \]
has image $G(p, m)$ independent of $k \geq m'(m)$ and moreover $G(p, m)$ maps injectively into $H^i_p A_p(M_{m_0})$.
Since \(\dim(T') < \dim(T) \) we know the lemma holds for \(T' \). For every \(A \)-module \(M \) there is an exact sequence

\[
0 \to \text{colim}_{Z,f} H^i_f(H^{-1}_{Z}(M)) \to H^i_{T'}(M) \to H^i_T(M) \to \bigoplus_{p \in T \setminus T'} H^i_{pA_p}(M_p)
\]

by Lemma 6.1. Thus we conclude by the initial remark of the proof and the fact that we've seen the system of groups

\[
\{\text{colim}_{Z,f} H^i_f(H^{-1}_{Z}(M))\}_{n \geq 0}
\]

is pro-zero in Lemma 6.2; this uses that the function \(m''(m) \) in that lemma for \(H^{-1}_{Z}(M) \) is independent of \(Z \).

\[\square\]

7. Finiteness of local cohomology, I

0AW7 We will follow Faltings approach to finiteness of local cohomology modules, see [Fal78] and [Fal81]. Here is a lemma which shows that it suffices to prove local cohomology modules have an annihilator in order to prove that they are finite modules.

0AW8 Lemma 7.1. Let \(A \) be a Noetherian ring. Let \(T \subset \text{Spec}(A) \) be a subset stable under specialization. Let \(M \) be a finite \(A \)-module. Let \(n \geq 0 \). The following are equivalent:

1. \(H^i_T(M) \) is finite for \(i \leq n \).
2. there exists an ideal \(J \subset A \) with \(V(J) \subset T \) such that \(J \) annihilates \(H^i_T(M) \) for \(i \leq n \).

If \(T = V(I) = Z \) for an ideal \(I \subset A \), then these are also equivalent to

3. there exists an \(e \geq 0 \) such that \(I^e \) annihilates \(H^i_Z(M) \) for \(i \leq n \).

Proof. We prove the equivalence of (1) and (2) by induction on \(n \). For \(n = 0 \) we have \(H^0_T(M) \subset M \) is finite. Hence (1) is true. Since \(H^0_T(M) = \text{colim} H^0_{V(J)}(M) \) with \(J \) as in (2) we see that (2) is true. Assume that \(n > 0 \).

Assume (1) is true. Recall that \(H^i_T(M) = H^i_{V(J)}(M) \), see Dualizing Complexes, Lemma 10.1. Thus \(H^i_T(M) = \text{colim} H^i_J(M) \) where the colimit is over ideals \(J \subset A \) with \(V(J) \subset T \), see Lemma 5.3. Since \(H^i_T(M) \) is finitely generated for \(i \leq n \) we can find a \(J \subset A \) as in (2) such that \(H^i_J(M) \to H^i_T(M) \) is surjective for \(i \leq n \). Thus the finite list of generators are \(J \)-power torsion elements and we see that (2) holds with \(J \) replaced by some power.

Assume we have \(J \) as in (2). Let \(N = H^0_T(M) \) and \(M' = M/N \). By construction of \(R\Gamma_T \) we find that \(H^i_T(N) = 0 \) for \(i > 0 \) and \(H^0_T(N) = N \), see Remark 5.6. Thus we find that \(H^0_T(M') = 0 \) and \(H^i_T(M') = H^i_T(M) \) for \(i > 0 \). We conclude that we may replace \(M \) by \(M' \). Thus we may assume that \(H^0_T(M) = 0 \). This means that the finite set of associated primes of \(M \) are not in \(T \). By prime avoidance (Algebra, Lemma 14.2) we can find \(f \in J \) not contained in any of the associated primes of \(M \). Then the long exact local cohomology sequence associated to the short exact sequence

\[
0 \to M \to M \to M/fM \to 0
\]

turns into short exact sequences

\[
0 \to H^i_T(M) \to H^i_T(M/fM) \to H^{i+1}_T(M) \to 0
\]
Lemma 7.2. Let \(A \) be a Noetherian ring, \(I \subset A \) an ideal, \(M \) a finite \(A \)-module, and \(n \geq 0 \) an integer. Let \(Z = V(I) \). The following are equivalent

1. the modules \(H^i_Z(M) \) are finite for \(i \leq n \), and
2. for all \(p \in \text{Spec}(A) \) the modules \(H^i_Z(M)_p \), \(i \leq n \) are finite \(A_p \)-modules.

Proof. The implication (1) \(\Rightarrow \) (2) is immediate. We prove the converse by induction on \(n \). The case \(n = 0 \) is clear because both (1) and (2) are always true in that case.

Assume \(n > 0 \) and that (2) is true. Let \(N = H^0_Z(M) \) and \(M' = M/N \). By Dualizing Complexes, Lemma 11.6 we may replace \(M \) by \(M' \). Thus we may assume that \(H^0_Z(M) = 0 \). This means that \(\text{depth}_Z(M) > 0 \) (Dualizing Complexes, Lemma 11.1). Pick \(f \in I \) a nonzerodivisor on \(M \) and consider the short exact sequence

\[
0 \to M \to M \to M/fM \to 0
\]

which produces a long exact sequence

\[
0 \to H^0_Z(M/fM) \to H^0_Z(M) \to H^0_Z(M) \to H^1_Z(M/fM) \to H^1_Z(M) \to \ldots
\]

and similarly after localization. Thus assumption (2) implies that the modules \(H^i_Z(M/fM)_p \) are finite for \(i < n \). Hence by induction assumption \(H^i_Z(M/fM) \) are finite for \(i < n \).

Let \(p \) be a prime of \(A \) which is associated to \(H^i_Z(M) \) for some \(i \leq n \). Say \(p \) is the annihilator of the element \(x \in H^i_Z(M) \). Then \(p \in Z \), hence \(f \in p \). Thus \(fx = 0 \) and hence \(x \) comes from an element of \(H^{i-1}_Z(M/fM) \) by the boundary map \(\delta \) in the long exact sequence above. It follows that \(p \) is an associated prime of the finite module \(\text{Im}(\delta) \). We conclude that \(\text{Ass}(H^i_Z(M)) \) is finite for \(i \leq n \), see Algebra, Lemma 62.5.

Recall that

\[
H^i_Z(M) \subset \prod_{p \in \text{Ass}(H^i_Z(M))} H^i_Z(M)_p
\]

by Algebra, Lemma 62.19. Since by assumption the modules on the right hand side are finite and \(I \)-power torsion, we can find integers \(e_{p,i} \geq 0, i \leq n, p \in \text{Ass}(H^i_Z(M)) \) such that \(I^{e_{p,i}} \) annihilates \(H^i_Z(M)_p \). We conclude that \(I^e \) with \(e = \max\{e_{p,i}\} \) annihilates \(H^i_Z(M) \) for \(i \leq n \). By Lemma 7.1 we see that \(H^i_Z(M) \) is finite for \(i \leq n \). \(\square \)
Proof. Consider the annihilator a of $H^2_I(M)$. Let $p \subset A$ with $p \not\in Z$. By assumption there exists an $f \in I$, $f \not\in p$ and an isomorphism $\varphi : A^{br}_f \to M_f$ of A_f-modules. Clearing denominators (and using that M is of finite presentation) we find maps

$$a : A^{br} \to M \quad \text{and} \quad b : M \to A^{br}$$

with $a_f = f^N \varphi$ and $b_f = f^N \varphi^{-1}$ for some N. Moreover we may assume that $a \circ b$ and $b \circ a$ are equal to multiplication by f^{2N}. Thus we see that $H^2_I(M)$ is annihilated by $f^{2N}J^n$, i.e., $f^{2N}J^n \subseteq a$.

As $U = \text{Spec}(A) \setminus Z$ is quasi-compact we can find finitely many f_1, \ldots, f_i and N_1, \ldots, N_i such that $U = \bigcup D(f_j)$ and $f_j^{2N_j}J^n \subseteq a$. Then $V(I) = V(f_1, \ldots, f_i)$ and since I is finitely generated we conclude $I^M \subseteq (f_1, \ldots, f_i)$ for some M. All in all we see that $J^m \subseteq a$ for $m \gg 0$, for example $m = M(2N_1 + \ldots + 2N_i)n$ will do. □

Lemma 7.4. Let A be a Noetherian ring. Let $I \subseteq A$ be an ideal. Set $Z = V(I)$.

Let $n \geq 0$ be an integer. If $H^2_I(A)$ is finite for $0 \leq i \leq n$, then the same is true for $H^2_I(M)$, $0 \leq i \leq n$ for any finite A-module M such that M_f is a finite locally free A_f-module for all $f \in I$.

Proof. The assumption that $H^2_I(A)$ is finite for $0 \leq i \leq n$ implies there exists an $e \geq 0$ such that I^e annihilates $H^2_I(A)$ for $0 \leq i \leq n$, see Lemma 7.1. Then Lemma 7.3 implies that $H^2_I(M)$, $0 \leq i \leq n$ is annihilated by I^m for some $m = m(M,i)$. We may take the same m for all $0 \leq i \leq n$. Then Lemma 7.1 implies that $H^2_I(M)$ is finite for $0 \leq i \leq n$ as desired. □

8. Finiteness of pushforwards, 1

Lemma 8.1. Let X be a locally Noetherian scheme. Let $j : U \to X$ be the inclusion of an open subscheme with complement Z. For $x \in U$ let $i_x : W_x \to U$ be the integral closed subscheme with generic point x. Let \mathcal{F} be a coherent \mathcal{O}_U-module. The following are equivalent

(1) for all $x \in \text{Ass}(\mathcal{F})$ the \mathcal{O}_X-module $j_*i_x^*\mathcal{O}_{W_x}$ is coherent,

(2) $j_*\mathcal{F}$ is coherent.

Proof. We first prove that (1) implies (2). Assume (1) holds. The statement is local on X, hence we may assume X is affine. Then U is quasi-compact, hence $\text{Ass}(\mathcal{F})$ is finite (Divisors, Lemma 2.5). Thus we may argue by induction on the number of associated points. Let $x \in U$ be a generic point of an irreducible component of the support of \mathcal{F}. By Divisors, Lemma 2.5 we have $x \in \text{Ass}(\mathcal{F})$. By our choice of x we have $\dim(F_x) = 0$ as $\mathcal{O}_{X,x}$-module. Hence F_x has finite length as an $\mathcal{O}_{X,x}$-module (Algebra, Lemma 61.3). Thus we may use induction on this length.
Set $G = j_*i_{x*}O_{W_x}$. This is a coherent O_X-module by assumption. We have $G_x = \kappa(x)$. Choose a nonzero map $\varphi_x : F_x \to \kappa(x) = G_x$. By Cohomology of Schemes, Lemma 9.6 there is an open $x \in V \subset U$ and a map $\varphi_V : F|_V \to G|_V$ whose stalk at x is φ_x. Choose $f \in \Gamma(X, O_X)$ which does not vanish at x such that $D(f) \subset V$. By Cohomology of Schemes, Lemma 10.4 (for example) we see that φ_V extends to $f^nF \to G|_U$ for some n. Precomposing with multiplication by f^n we obtain a map $F \to G|_U$ whose stalk at x is nonzero. Let $F' \subset F$ be the kernel. Note that $\text{Ass}(F') \subset \text{Ass}(F)$, see Divisors, Lemma 2.4. Since $\text{length}_{O_x,W_x}(F'_x) = \text{length}_{O_x,W_x}(F_x) - 1$ we may apply the induction hypothesis to conclude j_*F' is coherent. Since $G = j_*(G|_U) = j_*i_{x*}O_{W_x}$ is coherent, we can consider the exact sequence

$$0 \to j_*F' \to j_*F \to G$$

By Schemes, Lemma 24.1 the sheaf j_*F is quasi-coherent. Hence the image of j_*F in $j_*(G|_U)$ is coherent by Cohomology of Schemes, Lemma 9.3. Finally, j_*F is coherent by Cohomology of Schemes, Lemma 9.2.

Assume (2) holds. Exactly in the same manner as above we reduce to the case X affine. We pick $x \in \text{Ass}(F)$ and we set $G = j_*i_{x*}O_{W_x}$. Then we choose a nonzero map $\varphi_x : G_x = \kappa(x) \to F_x$ which exists exactly because x is an associated point of F. Arguing exactly as above we may assume φ_x extends to an O_U-module map $\varphi : G|_U \to F$. Then φ is injective (for example by Divisors, Lemma 2.10) and we find an injective map $\mathcal{G} = j_*(G|_U) \to j_*F$. Thus (1) holds.

Lemma 8.2. Let A be a Noetherian ring and let $I \subset A$ be an ideal. Set $X = \text{Spec}(A)$, $Z = V(I)$, $U = X \setminus Z$, and $j : U \to X$ the inclusion morphism. Let F be a coherent O_U-module. Then

1. There exists a finite A-module M such that F is the restriction of \tilde{M} to U,
2. Given M there is an exact sequence

$$0 \to H^0_Z(M) \to M \to H^0(U,F) \to H^1_Z(M) \to 0$$

and isomorphisms $H^p(U,F) = H^{p+1}_Z(M)$ for $p \geq 1$,
3. Given M and $p \geq 0$ the following are equivalent
 a. R^pj_*F is coherent,
 b. $H^p(U,F)$ is a finite A-module,
 c. $H^{p+1}_Z(M)$ is a finite A-module,
4. If the equivalent conditions in (3) hold for $p = 0$, we may take $M = \Gamma(U,F)$ in which case we have $H^0_Z(M) = H^1_Z(M) = 0$.

Proof. By Properties, Lemma 22.4 there exists a coherent O_X-module F' whose restriction to U is isomorphic to F. Say F' corresponds to the finite A-module M as in (1). Note that R^pj_*F is quasi-coherent (Cohomology of Schemes, Lemma 14.5) and corresponds to the A-module $H^p(U,F)$. By Lemma 21.2 and the general facts in Cohomology, Section 21 we obtain an exact sequence

$$0 \to H^0_Z(M) \to M \to H^0(U,F) \to H^1_Z(M) \to 0$$

and isomorphisms $H^p(U,F) = H^{p+1}_Z(M)$ for $p \geq 1$. Here we use that $H^j(X,F') = 0$ for $j > 0$ as X is affine and F' is quasi-coherent (Cohomology of Schemes, Lemma 20.2). This proves (2). Parts (3) and (4) are straightforward from (2); see also Lemma 2.2. ☐
Lemma 8.3. Let X be a locally Noetherian scheme. Let $j : U \to X$ be the inclusion of an open subscheme with complement Z. Let F be a coherent \mathcal{O}_U-module. Assume

1. X is Nagata,
2. X is universally catenary, and
3. for $x \in \text{Ass}(F)$ and $z \in Z \cap \{x\}$ we have $\dim(\mathcal{O}_{x, \mathcal{O}}) \geq 2$.

Then $j_* F$ is coherent.

Proof. By Lemma 8.1 it suffices to prove $j_* i_{x,*} \mathcal{O}_{W_x}$ is coherent for $x \in \text{Ass}(F)$. Let $\pi : Y \to X$ be the normalization of X in $\text{Spec}(\kappa(x))$, see Morphisms, Section 52. By Morphisms, Lemma 51.14 the morphism π is finite. Since π is finite $G = \pi_* \mathcal{O}_Y$ is a coherent \mathcal{O}_X-module by Cohomology of Schemes, Lemma 9.9. Observe that $W_x = U \cap \pi(Y)$. Thus $\pi|_{\pi^{-1}(U)} : \pi^{-1}(U) \to U$ factors through $i_x : W_x \to U$ and we obtain a canonical map

$$i_{x,*} \mathcal{O}_{W_x} \to (\pi|_{\pi^{-1}(U)})_* (\mathcal{O}_{\pi^{-1}(U)}) = (\pi_* \mathcal{O}_Y)|_U = G|_U$$

This map is injective (for example by Divisors, Lemma 2.10). Hence $j_* i_{x,*} \mathcal{O}_{W_x} \subseteq j_* G|_U$ and it suffices to show that $j_* G|_U$ is coherent.

It remains to prove that $j_* (G|_U)$ is coherent. We claim Divisors, Lemma 5.11 applies to

$$G \to j_*(G|_U)$$

which finishes the proof. It suffices to show that $\text{depth}(G_z) \geq 2$ for $z \in Z$. Let $y_1, \ldots, y_n \in Y$ be the points mapping to z. By Algebra, Lemma 71.11 it suffices to show that $\text{depth}(\mathcal{O}_{Y, y_i}) \geq 2$ for $i = 1, \ldots, n$. If not, then by Properties, Lemma 12.5 we see that $\dim(\mathcal{O}_{Y, y_i}) = 1$ for some i. This is impossible by the dimension formula (Morphisms, Lemma 50.1) for $\pi : Y \to \{x\}$ and assumption (3).

Lemma 8.4. Let X be an integral locally Noetherian scheme. Let $j : U \to X$ be the inclusion of a nonempty open subscheme with complement Z. Assume that for all $z \in Z$ and any associated prime \mathfrak{p} of the completion $\mathcal{O}_{X,z}$ we have $\dim(\mathcal{O}_{X,z}/\mathfrak{p}) \geq 2$. Then $j_* \mathcal{O}_U$ is coherent.

Proof. We may assume X is affine. Using Lemmas 7.2 and 8.2 we reduce to $X = \text{Spec}(A)$ where (A, \mathfrak{m}) is a Noetherian local domain and $\mathfrak{m} \in T$. Then we can use induction on $d = \dim(A)$. (The base case is $d = 0, 1$ which do not happen by our assumption on the local rings.) Set $V = \text{Spec}(A) \setminus \{\mathfrak{m}\}$. Observe that the local rings of V have dimension strictly smaller than d. Repeating the arguments for $j' : U \to V$ we and using induction we conclude that $j'_* \mathcal{O}_V$ is a coherent \mathcal{O}_V-module. Pick a nonzero $f \in A$ which vanishes on Z. Since $D(f) \cap V \subset U$ we find an n such that multiplication by f^n on V extends to a map $f^n : j'_* \mathcal{O}_U \to \mathcal{O}_V$ over V (for example by Cohomology of Schemes, Lemma 10.4). This map is injective hence there is an injective map

$$j_* \mathcal{O}_U = j''_* j'_* \mathcal{O}_U \to j''_* \mathcal{O}_V$$

on X where $j'' : V \to X$ is the inclusion morphism. Hence it suffices to show that $j''_* \mathcal{O}_V$ is coherent. In other words, we may assume that X is the spectrum of a local Noetherian domain and that Z consists of the closed point.

Assume $X = \text{Spec}(A)$ with (A, \mathfrak{m}) local and $Z = \{\mathfrak{m}\}$. Let A^\wedge be the completion of A. Set $X^\wedge = \text{Spec}(A^\wedge)$, $Z^\wedge = \{\mathfrak{m}\}$, $U^\wedge = X^\wedge \setminus Z^\wedge$, and $\mathcal{F}^\wedge = \mathcal{O}_{U^\wedge}$. The ring A^\wedge is universally catenary and Nagata (Algebra, Remark 155.9 and Lemma 157.8).
Moreover, condition (3) of Lemma 8.3 for $X^\wedge, Z^\wedge, U^\wedge, F^\wedge$ holds by assumption! Thus we see that $(U^\wedge \to X^\wedge)_* \mathcal{O}_{U^\wedge}^\wedge$ is coherent. Since the morphism $c : X^\wedge \to X$ is flat we conclude that the pullback of $j_* \mathcal{O}_U$ is $(U^\wedge \to X^\wedge)_* \mathcal{O}_{U^\wedge}^\wedge$ (Cohomology of Schemes, Lemma 5.2). Finally, since c is faithfully flat we conclude that $j_* \mathcal{O}_U$ is coherent by Descent, Lemma 7.1. □

Remark 8.5. Let $j : U \to X$ be an open immersion of locally Noetherian schemes. Let $x \in U$. Let $i_x : W_x \to U$ be the integral closed subscheme with generic point x and let $\{x\}$ be the closure in X. Then we have a commutative diagram

\[
\begin{array}{ccc}
W_x & \xrightarrow{j} & \{x\} \\
i_x \downarrow & & \downarrow i \\
U & \xrightarrow{j} & X
\end{array}
\]

We have $j_* i_{x,*} \mathcal{O}_{W_x} = i_* j'_* \mathcal{O}_{W_x}$. As the left vertical arrow is a closed immersion we see that $j_* i_{x,*} \mathcal{O}_{W_x}$ is coherent if and only if $j'_* \mathcal{O}_{W_x}$ is coherent.

Remark 8.6. Let X be a locally Noetherian scheme. Let $j : U \to X$ be the inclusion of an open subscheme with complement Z. Let \mathcal{F} be a coherent \mathcal{O}_U-module. If there exists an $x \in \text{Ass}(\mathcal{F})$ and $z \in Z \cap \{x\}$ such that $\dim(\mathcal{O}_{Z,z}^\wedge) \leq 1$, then $j_* \mathcal{F}$ is not coherent. To prove this we can do a flat base change to the spectrum of $\mathcal{O}_{X,z}$. Let $X' = \{x\}$. The assumption implies $\mathcal{O}_{X' \cap U} \subset \mathcal{F}$. Thus it suffices to see that $j_* \mathcal{O}_{X' \cap U}$ is not coherent. This is clear because $X' = \{x, z\}$, hence $j_* \mathcal{O}_{X' \cap U}$ corresponds to $\kappa(x)$ as an $\mathcal{O}_{X,z}$-module which cannot be finite as x is not a closed point.

In fact, the converse of Lemma 8.4 holds true: given an open immersion $j : U \to X$ of integral Noetherian schemes and there exists a $z \in X \setminus U$ and an associated prime p of the completion $\mathcal{O}_{X,z}^\wedge$ with $\dim(\mathcal{O}_{X,z}^\wedge/p) = 1$, then $j_* \mathcal{O}_U$ is not coherent. Namely, you can pass to the local ring, you can enlarge U to the punctured spectrum, you can pass to the completion, and then the argument above gives the nonfiniteness.

Proposition 8.7 (Kollár). Let $j : U \to X$ be an open immersion of locally Noetherian schemes with complement Z. Let \mathcal{F} be a coherent \mathcal{O}_U-module. The following are equivalent

1. $j_* \mathcal{F}$ is coherent,
2. for $x \in \text{Ass}(\mathcal{F})$ and $z \in Z \cap \{x\}$ and any associated prime p of the completion $\mathcal{O}_{Z,z}^\wedge$ we have $\dim(\mathcal{O}_{Z,z}^\wedge/p) \geq 2$.

Proof. If (2) holds we get (1) by a combination of Lemmas 8.1, Remark 8.5 and Lemma 8.4. If (2) does not hold, then $j_* i_{x,*} \mathcal{O}_{W_x}$ is not finite for some $x \in \text{Ass}(\mathcal{F})$ by the discussion in Remark 8.6 (and Remark 8.5). Thus $j_* \mathcal{F}$ is not coherent by Lemma 8.1. □

Lemma 8.8. Let A be a Noetherian ring and let $I \subset A$ be an ideal. Set $Z = V(I)$. Let M be a finite A-module. The following are equivalent

1. $H^2_I(M)$ is a finite A-module, and
2. for all $p \in \text{Ass}(M)$, $p \notin Z$ and all $q \in V(p + I)$ the completion of $(A/p)_q$ does not have associated primes of dimension 1.

Theorem of Kollár stated in an email dated Wed, 1 Jul 2015. See [DG67 IV, Proposition 7.2.2](#) for a special case.
Proof. Follows immediately from Proposition \[8.7\] via Lemma \[8.2\]. □

The formulation in the following lemma has the advantage that conditions (1) and (2) are inherited by schemes of finite type over X. Moreover, this is the form of finiteness which we will generalize to higher direct images in Section 12.

Lemma 8.9. Let X be a locally Noetherian scheme. Let $j : U \to X$ be the inclusion of an open subscheme with complement Z. Let \mathcal{F} be a coherent \mathcal{O}_U-module. Assume

1. X is universally catenary,
2. For every $z \in Z$ the formal fibres of $\mathcal{O}_{X,z}$ are (S_1).

In this situation the following are equivalent

1. For $x \in \text{Ass}(\mathcal{F})$ and $z \in Z \cap \{x\}$ we have $\dim(\mathcal{O}_{\{x\},z}) \geq 2$, and
2. $j_*\mathcal{F}$ is coherent.

Proof. Let $x \in \text{Ass}(\mathcal{F})$. By Proposition \[8.7\] it suffices to check that $A = \mathcal{O}_{\{x\},z}$ satisfies the condition of the proposition on associated primes of its completion if and only if $\dim(A) \geq 2$. Observe that A is universally catenary (this is clear) and that its formal fibres are (S_1) as follows from More on Algebra, Lemma \[50.10\] and Proposition \[50.5\]. Let $p' \subset A'$ be an associated prime. As $A \to A'$ is flat, by Algebra, Lemma \[64.3\], we find that p' lies over $(0) \subset A$. The formal fibre $A' \otimes_A F$ is (S_1) where F is the fraction field of A. We conclude that p' is a minimal prime, see Algebra, Lemma \[152.2\]. Since A is universally catenary it is formally catenary by More on Algebra, Proposition \[98.5\]. Hence $\dim(A'/p') = \dim(A)$ which proves the equivalence. □

9. Depth and dimension

Lemma 9.1. Let A be a Noetherian ring. Let $I \subset A$ be an ideal. Let M be a finite A-module. Let $p \in V(I)$ be a prime ideal. Assume $e = \text{depth}_{IA_p}(M_p) < \infty$. Then there exists a nonempty open $U \subset V(p)$ such that $\text{depth}_{IA_q}(M_q) \geq e$ for all $q \in U$.

Proof. By definition of depth we have $IM_p \neq M_p$ and there exists an M_p-regular sequence $f_1, \ldots, f_e \in IA_p$. After replacing A by a principal localization we may assume $f_1, \ldots, f_e \in I$ form an M-regular sequence, see Algebra, Lemma \[67.6\]. Consider the module $M' = M/IM$. Since $p \in \text{Supp}(M')$ and since the support of a finite module is closed, we find $V(p) \subset \text{Supp}(M')$. Thus for $q \in V(p)$ we get $IM_q \neq M_q$. Hence, using that localization is exact, we see that $\text{depth}_{IA_q}(M_q) \geq e$ for any $q \in V(I)$ by definition of depth. □

Lemma 9.2. Let A be a Noetherian ring. Let M be a finite A-module. Let p be a prime ideal. Assume $e = \text{depth}_{IA_p}(M_p) < \infty$. Then there exists a nonempty open $U \subset V(p)$ such that $\text{depth}_{IA_q}(M_q) \geq e$ for all $q \in U$ and for all but finitely many $q \in U$ we have $\text{depth}_{IA_q}(M_q) > e$.

Proof. By definition of depth we have $pM_p \neq M_p$ and there exists an M_p-regular sequence $f_1, \ldots, f_e \in pA_p$. After replacing A by a principal localization we may assume $f_1, \ldots, f_e \in p$ form an M-regular sequence, see Algebra, Lemma \[67.6\]. Consider the module $M' = M/(f_1, \ldots, f_e)M$. Since $p \in \text{Supp}(M')$ and since the support of a finite module is closed, we find $V(p) \subset \text{Supp}(M')$. Thus for $q \in V(p)$ we get
Lemma 9.3. Let X be a Noetherian scheme with dualizing complex ω_X^\bullet. Let \mathcal{F} be a coherent \mathcal{O}_X-module. Let $k \geq 0$ be an integer. Assume \mathcal{F} is (S_k). Then there is a finite number of points $x \in X$ such that

$$\text{depth}(\mathcal{F}_x) = k \quad \text{and} \quad \dim(\text{Supp}(\mathcal{F}_x)) > k$$

Proof. We will prove this lemma by induction on k. The base case $k = 0$ says that \mathcal{F} has a finite number of embedded associated points, which follows from Divisors, Lemma 2.5.

Assume $k > 0$ and the result holds for all smaller k. We can cover X by finitely many affine opens, hence we may assume $X = \text{Spec}(A)$ is affine. Then \mathcal{F} is the coherent \mathcal{O}_X-module associated to a finite A-module M which satisfies (S_k). We will use Algebra, Lemmas 62.10 and 71.7 without further mention.

Let $f \in A$ be a nonzerodivisor on M. Then M/fM has (S_{k-1}). By induction we see that there are finitely many primes $p \in V(f)$ with depth$((M/fM)_p) = k - 1$ and $\dim(\text{Supp}((M/fM)_p)) > k - 1$. These are exactly the primes $p \in V(f)$ with depth$(M_p) = k$ and $\dim(\text{Supp}(M_p)) > k$. Thus we may replace A by A_f and M by M_f in trying to prove the finiteness statement.

Since M satisfies (S_k) and $k > 0$ we see that M has no embedded associated primes (Algebra, Lemma 152.2). Thus $\text{Ass}(M)$ is the set of generic points of the support of M. Thus Dualizing Complexes, Lemma 20.4 shows the set $U = \{q \mid M_q \text{ is Cohen-Macaulay}\}$ is an open containing $\text{Ass}(M)$. By prime avoidance (Algebra, Lemma 14.2) we can pick $f \in A$ with $f \notin p$ for $p \in \text{Ass}(M)$ such that $D(f) \subset U$. Then f is a nonzerodivisor on M (Algebra, Lemma 62.9). After replacing A by A_f and M by M_f (see above) we find that M is Cohen-Macaulay. Thus for all $q \subset A$ we have $\dim(M_q) = \text{depth}(M_q)$ and hence the set described in the lemma is empty and a fortiori finite. □

Lemma 9.4. Let (A, \mathfrak{m}) be a Noetherian local ring with normalized dualizing complex ω_A^\bullet. Let M be a finite A-module. Set $E^i = \text{Ext}_A^{-i}(M, \omega_A^\bullet)$. Then

1. E^i is a finite A-module nonzero only for $0 \leq i \leq \dim(\text{Supp}(M))$,
2. $\dim(\text{Supp}(E^i)) \leq i$,
3. depth(M) is the smallest integer $\delta \geq 0$ such that $E^\delta \neq 0$,
4. $p \in \text{Supp}(E^0 \oplus \ldots \oplus E^i) \iff \text{depth}_{A_p}(M_p) + \dim(A/p) \leq i$,
5. the annihilator of E^i is equal to the annihilator of $H^\delta_M(M)$.

Proof. Parts (1), (2), and (3) are copies of the statements in Dualizing Complexes, Lemma 16.5. For a prime p of A we have that $(\omega_A^\bullet)_p[-\dim(A/p)]$ is a normalized dualizing complex for A_p. See Dualizing Complexes, Lemma 17.3. Thus

$$E^i_p = \text{Ext}_A^{-i}(M, \omega_A^\bullet)_p = \text{Ext}_{A_p}^{-i+\dim(A/p)}(M_p, (\omega_A^\bullet)_p[-\dim(A/p)])$$

is zero for $i-\dim(A/p) < \text{depth}_{A_p}(M_p)$ and nonzero for $i = \dim(A/p) + \text{depth}_{A_p}(M_p)$ by part (3) over A_p. This proves part (4). If E is an injective hull of the residue
field of \(A \), then we have

\[\text{Hom}_A(H^i_m(M), E) = \text{Ext}^{-i}_A(M, \omega^\bullet_A) = (E^i)^\wedge = E^i \otimes_A A^\wedge \]

by the local duality theorem (in the form of Dualizing Complexes, Lemma \[18.4\]). Since \(A \to A^\wedge \) is faithfully flat, we find \((5) \) is true by Matlis duality (Dualizing Complexes, Proposition \[7.8\]). \(\square \)

10. Annihilators of local chomology, I

0EFB This section discusses a result due to Faltings, see [Fal78].

0EFC **Proposition 10.1.** Let \(A \) be a Noetherian ring which has a dualizing complex. Let \(T, T' \subseteq \text{Spec}(A) \) be subsets stable under specialization. Let \(s \geq 0 \) an integer. Let \(M \) be a finite \(A \)-module. The following are equivalent

1. there exists an ideal \(J \subseteq A \) with \(V(J) \subseteq T' \) such that \(J \) annihilates \(H^i_T(M) \) for \(i \leq s \), and
2. for all \(p \notin T' \), \(q \in T \) with \(p \subseteq q \) we have

\[\text{depth}_{A_p}(M_p) + \dim((A/p)_q) > s \]

Proof. Let \(\omega^\bullet_A \) be a dualizing complex. Let \(\delta \) be its dimension function, see Dualizing Complexes, Section \[17\]. An important role will be played by the finite \(A \)-modules

\[E^i = \text{Ext}^i_A(M, \omega^\bullet_A) \]

For \(p \subseteq A \) we will write \(H^i_p \) to denote the local cohomology of an \(A_p \)-module with respect to \(pA_p \). Then we see that the \(pA_p \)-adic completion of

\[(E^i)_p = \text{Ext}^{(\delta(p)+i)}_{A_p}(M_p, (\omega^\bullet_A)_p[-\delta(p)]) \]

is Matlis dual to

\[H^{-\delta(p)-i}_p(M_p) \]

by Dualizing Complexes, Lemma \[18.4\]. In particular we deduce from this the following fact: an ideal \(J \subseteq A \) annihilates \((E^i)_p \) if and only if \(J \) annihilates \(H^{-\delta(p)-i}_p(M_p) \).

Set \(T_a = \{ p \in T \mid \delta(p) \leq n \} \). As \(\delta \) is a bounded function, we see that \(T_a = \emptyset \) for \(a \ll 0 \) and \(T_b = T \) for \(b \gg 0 \).

Assume \((2)\). Let us prove the existence of \(J \) as in \((1)\). We will use a double induction to do this. For \(i \leq s \) consider the induction hypothesis \(IH_i: H^i_p(M) \) is annihilated by some \(J \subseteq A \) with \(V(J) \subseteq T' \) for \(0 \leq a \leq i \). The case \(IH_0 \) is trivial because \(H^1_p(M) \) is a submodule of \(M \) and hence finite and hence is annihilated by some ideal \(J \) with \(V(J) \subseteq T \).

Induction step. Assume \(IH_{i-1} \) holds for some \(0 < i \leq s \). Pick \(J' \) with \(V(J') \subseteq T' \) annihilating \(H^i_p(M) \) for \(0 \leq a \leq i - 1 \) (the induction hypothesis guarantees we can do this). We will show by descending induction on \(n \) that there exists an ideal \(J \) with \(V(J) \subseteq T' \) such that the associated primes of \(JH^i_p(M) \) are in \(T_n \). For \(n < 0 \) this implies \(JH^i_p(M) = 0 \) (Algebra, Lemma \[62.7\]) and hence \(IH_i \) will hold. The base case \(n \gg 0 \) is trivial because \(T = T_n \) in this case and all associated primes of \(H^i_T(M) \) are in \(T \).
Thus we assume given \(J \) with the property for \(n \). Let \(q \in T_n \). Let \(T_q \subset \text{Spec}(A_q) \) be the inverse image of \(T \). We have \(H_{q}^{1}(M)_{q} = H_{T_q}^{1}(M) \) by Lemma 5.7. Consider the spectral sequence

\[
H_{q}^{p}(H_{q}^{q}(M)) \Rightarrow H_{q}^{p+q}(M)
\]

of Lemma 5.8. Below we will find an ideal \(J^{''} \subset A \) with \(V(J^{''}) \subset T' \) such that \(H_{q}^{1}(M)_{q} \) is annihilated by \(J^{''} \) for all \(q \in T_n \setminus T_{n-1} \). Claim: \(J(J')^{i}J^{''} \) will work for \(n - 1 \). Namely, let \(q \in T_n \setminus T_{n-1} \). The spectral sequence above defines a filtration

\[
E_{0}^{0,1} = E_{1}^{0,1} \subset \ldots \subset E_{2}^{0,1} \subset E_{3}^{0,1} = H_{q}^{0}(H_{T_q}^{1}(M))
\]

The module \(E_{0}^{0,1} \) is annihilated by \(J^{''} \). The subquotients \(E_{j}^{0,i}/E_{j+1}^{0,i} \) for \(i+1 \geq j \geq 2 \) are annihilated by \(J' \) because the target of \(d_{j}^{0,i} \) is a subquotient of

\[
H_{q}^{j}(H_{q}^{i-j+1}(M)) = H_{q}^{j}(H_{T_q}^{i-j+1}(M))
\]

and \(H_{T_q}^{i-j+1}(M)_{q} \) is annihilated by \(J' \) by choice of \(J' \). Finally, by our choice of \(J \) we have \(JH_{T_q}^{i+1}(M)_{q} \subset H_{q}^{i}(H_{T_q}^{1}(M)) \) since the non-closed points of \(\text{Spec}(A_q) \) have higher \(\delta \) values. Thus \(q \) cannot be an associated prime of \(J(J')^{i}J^{''}H_{T_q}^{1}(M) \) as desired.

By our initial remarks we see that \(J^{''} \) should annihilate

\[
(E^{-\delta(q)-i})_{q} = (E^{-n-i})_{q}
\]

for all \(q \in T_n \setminus T_{n-1} \). But if \(J^{''} \) works for one \(q \), then it works for all \(q \) in an open neighbourhood of \(q \) as the modules \(E^{-n-i} \) are finite. Since every subset of \(\text{Spec}(A) \) is Noetherian with the induced topology (Topology, Lemma 9.2), we conclude that it suffices to prove the existence of \(J^{''} \) for one \(q \).

Since the ext modules are finite the existence of \(J^{''} \) is equivalent to

\[
\text{Supp}(E^{-n-i}) \cap \text{Spec}(A_q) \subset T'.
\]

This is equivalent to showing the localization of \(E^{-n-i} \) at every \(p \subset q, p \not\subset T' \) is zero. Using local duality over \(A_p \) we find that we need to prove that

\[
H_{p}^{i+n-\delta(p)}(M_p) = H_{p}^{-n-\dim((A/p)_q)}(M_p)
\]

is zero (this uses that \(\delta \) is a dimension function). This vanishes by the assumption in the lemma and \(i \leq s \) and Dualizing Complexes, Lemma 11.1.

To prove the converse implication we assume (2) does not hold and we work backwards through the arguments above. First, we pick a \(q \in T, p \subset q \) with \(p \not\subset T' \) such that

\[
i = \text{depth}_{A_q}(M_q) + \dim((A/p)_q) \leq s
\]

is minimal. Then \(H_{p}^{-n-\dim((A/p)_q)}(M_q) \) is nonzero by the nonvanishing in Dualizing Complexes, Lemma 11.1. Set \(n = \delta(q) \). Then there does not exist an ideal \(J \subset A \) with \(V(J) \subset T' \) such that \(J(E^{-n-1})_{q} = 0 \). Thus \(H_{q}^{1}(M)_{q} \) is not annihilated by an ideal \(J \subset A \) with \(V(J) \subset T' \). By minimality of \(i \) it follows from the spectral sequence displayed above that the module \(H_{T_q}^{1}(M)_{q} \) is not annihilated by an ideal \(J \subset A \) with \(V(J) \subset T' \). This finishes the proof of the proposition.

\[\text{Lemma 10.2.} \] Let \(I \) be an ideal of a Noetherian ring \(A \). Let \(M \) be a finite \(A \)-module, let \(p \subset A \) be a prime ideal, and let \(s \geq 0 \) be an integer. Assume

(1) \(A \) has a dualizing complex,
(2) \(p \not\in V(I) \), and
(3) for all primes \(p' \subset p \) and \(q \in V(I) \) with \(p' \subset q \) we have
\[
\text{depth}_{A_{p'}}(M_{p'}) + \dim((A/p')_q) > s
\]
Then there exists an \(f \in A, f \not\in p \) which annihilates \(H^i_{V(I)}(M) \) for \(i \leq s \).

Proof. Consider the sets
\[
T = V(I) \quad \text{and} \quad T' = \bigcup_{f \in A, f \not\in p} V(f)
\]
These are subsets of \(\text{Spec}(A) \) stable under specialization. Observe that \(T \subset T' \) and \(p \not\in T' \). Assumption (3) says that hypothesis (2) of Proposition 10.1 holds. Hence we can find \(J \subset A \) with \(V(J) \subset T' \) such that \(JH^s_{V(I)}(M) = 0 \) for \(i \leq s \). Choose \(f \in A, f \not\in p \) with \(V(J) \subset V(f) \). A power of \(f \) annihilates \(H^i_{V(I)}(M) \) for \(i \leq s \). \(\Box \)

11. Finiteness of local cohomology, II

We continue the discussion of finiteness of local cohomology started in Section 7. Using Faltings Annihilator Theorem we easily prove the following fundamental result.

Proposition 11.1. Let \(A \) be a Noetherian ring which has a dualizing complex. \textit{[Fal78].}

Let \(T \subset \text{Spec}(A) \) be a subset stable under specialization. Let \(s \geq 0 \) an integer. Let \(M \) be a finite \(A \)-module. The following are equivalent

1. \(H^i_T(M) \) is a finite \(A \)-module for \(i \leq s \), and
2. for all \(p \notin T, q \in T \) with \(p \subset q \) we have
\[
\text{depth}_{A_p}(M_p) + \dim((A/p)_q) > s
\]

Proof. Formal consequence of Proposition 10.1 and Lemma 7.1 \(\Box \)

Besides some lemmas for later use, the rest of this section is concerned with the question to what extend the condition in Proposition 11.1 that \(A \) has a dualizing complex can be weakened. The answer is roughly that one has to assume the formal fibres of \(A \) are \((S_n)\) for sufficiently large \(n \).

Let \(A \) be a Noetherian ring and let \(I \subset A \) be an ideal. Set \(X = \text{Spec}(A) \) and \(Z = V(I) \subset X \). Let \(M \) be a finite \(A \)-module. We define

\[
(11.1.1) \quad s_{A,I}(M) = \min\{\text{depth}_{A_p}(M_p) + \dim((A/p)_q) \mid p \in X \setminus Z, q \in Z, p \subset q\}
\]

Our conventions on depth are that the depth of 0 is \(\infty \) thus we only need to consider primes \(p \) in the support of \(M \). It will turn out that \(s_{A,I}(M) \) is an important invariant of the situation.

Lemma 11.2. Let \(A \to B \) be a finite homomorphism of Noetherian rings. Let \(I \subset A \) be an ideal and set \(J = IB \). Let \(M \) be a finite \(B \)-module. If \(A \) is universally catenary, then \(s_{B,J}(M) = s_{A,I}(M) \).

Proof. Let \(p \subset q \subset A \) be primes with \(I \subset q \) and \(I \not\subset p \). Since \(A \to B \) is finite there are finitely many primes \(p_i \) lying over \(p \). By Algebra, Lemma 7.11 we have
\[
\text{depth}(M_p) = \min\text{depth}(M_{p_i})
\]
Let \(p_i \subset q_{ij} \) be primes lying over \(q \). By going up for \(A \to B \) (Algebra, Lemma 35.22) there is at least one \(q_{ij} \) for each \(i \). Then we see that
\[
\dim((B/p_i)_{q_{ij}}) = \dim((A/p)_{q})
\]
Let \(A \) be a Noetherian ring which has a dualizing complex. Let \(I \subset A \) be an ideal. Let \(M \) be a finite \(A \)-module. Let \(A' \), \(M' \) be the \(I \)-adic completions of \(A, M \). Let \(p' \subset q' \) be prime ideals of \(A' \) with \(q' \in V(IA') \) lying over \(p \subset q \) in \(A \). Then

\[
\text{depth}_{A_{p'}}(M_{p'}) \geq \text{depth}_{A_p}(M_p)
\]

and

\[
\text{depth}_{A_{p'}}(M_{p'}) + \dim((A'/p')_{q'}) = \text{depth}_{A_p}(M_p) + \dim((A/p)_q)
\]

Proof. We have

\[
\text{depth}(M_{p'}) = \text{depth}(M_p) + \text{depth}(A'_{p'}/pA'_{p'}) \geq \text{depth}(M_p)
\]

by flatness of \(A \to A' \), see Algebra, Lemma \([158.1]\). Since the fibres of \(A \to A' \) are Cohen-Macaulay (Dualizing Complexes, Lemma \([23.2]\) and More on Algebra, Section \([50]\) we see that \(\text{depth}(A'_{p'}/pA'_{p'}) = \text{dim}(A'_{p'}/pA'_{p'}) \). Thus we obtain

\[
\text{depth}(M_{p'}) + \dim((A'/p')_{q'}) = \text{depth}(M_p) + \text{dim}(A'_{p'}/pA'_{p'}) + \dim((A'/p')_{q'})
\]

\[
= \text{depth}(M_p) + \text{dim}((A'/pA')_{q'})
\]

\[
= \text{depth}(M_p) + \dim((A/p)_q)
\]

Second equality because \(A' \) is catenary and third equality by More on Algebra, Lemma \([42.1]\) as \((A/p)_q\) and \((A'/pA')_{q'}\) have the same \(I \)-adic completions. \(\square \)

Lemma 11.4. Let \(A \) be a universally catenary Noetherian local ring. Let \(I \subset A \) be an ideal. Let \(M \) be a finite \(A \)-module. Then

\[
s_{A, I}(M) \geq s_{A^\wedge, I^\wedge}(M^\wedge)
\]

If the formal fibres of \(A \) are \((S_n)\), then \(\min(n + 1, s_{A, I}(M)) \leq s_{A^\wedge, I^\wedge}(M^\wedge) \).

Proof. Write \(X = \text{Spec}(A), X^\wedge = \text{Spec}(A^\wedge), Z = V(I) \subset X \), and \(Z^\wedge = V(I^\wedge) \). Let \(p' \subset q' \subset A^\wedge \) be primes with \(p' \notin Z^\wedge \) and \(q' \in Z^\wedge \). Let \(p \subset q \) be the corresponding primes of \(A \). Then \(p \notin Z \) and \(q \in Z \). Picture

```
    p'  q'  A^w
    |   |   |   |   |   |
    v   v   v   v   v   v
    p   q   A
```

Let us write

\[
a = \dim(A/p) = \dim(A^\wedge/pA^\wedge),
\]

\[
b = \dim(A/q) = \dim(A^\wedge/qA^\wedge),
\]

\[
a' = \dim(A^\wedge/p'),
\]

\[
b' = \dim(A^\wedge/q')
\]

Equalities by More on Algebra, Lemma \([42.1]\). We also write

\[
p = \dim(A^\wedge/pA^\wedge) = \dim((A^\wedge/pA^\wedge)_{p'})
\]

\[
q = \dim(A^\wedge/qA^\wedge) = \dim((A^\wedge/qA^\wedge)_{q'})
\]
Since A is universally catenary we see that $A^\wedge/pA^\wedge = (A/p)^\wedge$ is equidimensional of dimension a (More on Algebra, Proposition 158.5). Hence $a = a' + p$. Similarly $b = b' + q$. By Algebra, Lemma 158.1 applied to the flat local ring map $A_p \to A_p^\wedge$ we have

$$\text{depth}(M_p^\wedge) = \text{depth}(M_p) + \text{depth}(A_p^\wedge/pA_p^\wedge)$$

The quantity we are minimizing for $s_{A,I}(M)$ is

$$s(p,q) = \text{depth}(M_p) + \dim((A/p)_q) = \text{depth}(M_p) + a - b$$

(last equality as A is catenary). The quantity we are minimizing for $s_{A^\wedge,I^\wedge}(M^\wedge)$ is

$$s(p',q') = \text{depth}(M_p^\wedge) + \dim((A^\wedge/p')_q) = \text{depth}(M_p^\wedge) + a' - b'$$

(last equality as A^\wedge is catenary). Now we have enough notation in place to start the proof.

Let $p \subset q \subset A$ be primes with $p \not\in Z$ and $q \in Z$ such that $s_{A,I}(M) = s(p,q)$. Then we can pick q' minimal over qA^\wedge and $p' \subset q'$ minimal over pA^\wedge (using going down for $A \to A^\wedge$). Then we have four primes as above with $p = 0$ and $q = 0$. Moreover, we have depth$(A_p^\wedge/pA_p^\wedge) = 0$ also because $p = 0$. This means that $s(p',q') = s(p,q)$. Thus we get the first inequality.

Assume that the formal fibres of A are (S_n). Then depth$(A_p^\wedge/pA_p^\wedge) \geq \min(n,p)$. Hence

$$s(p',q') \geq s(p,q) + q + \min(n,p) - p \geq s_{A,I}(M) + q + \min(n,p) - p$$

Thus the only way we can get in trouble is if $p > n$. If this happens then

$$s(p',q') = \text{depth}(M_p^\wedge) + \dim((A^\wedge/p')_q) = \text{depth}(M_p) + \text{depth}(A_p^\wedge/pA_p^\wedge) + \dim((A^\wedge/p')_q) \geq 0 + n + 1$$

because $(A^\wedge/p')_q$ has at least two primes. This proves the second inequality. □

The method of proof of the following lemma works more generally, but the stronger results one gets will be subsumed in Theorem 11.6 below.

Lemma 11.5. Let A be a Gorenstein Noetherian local ring. Let $I \subset A$ be an ideal and set $Z = V(I) \subset \text{Spec}(A)$. Let M be a finite A-module. Let $s = s_{A,I}(M)$ as in (11.1.1). Then $H^i_f(M)$ is finite for $i < s$, but $H^s_f(M)$ is not finite.

Proof: Since a Gorenstein local ring has a dualizing complex, this is a special case of Proposition 11.1. It would be helpful to have a short proof of this special case, which will be used in the proof of a general finiteness theorem below. □

Observe that the hypotheses of the following theorem are satisfied by excellent Noetherian rings (by definition), by Noetherian rings which have a dualizing complex (Dualizing Complexes, Lemma 17.4 and Dualizing Complexes, Lemma 23.2), and by quotients of regular Noetherian rings.

Theorem 11.6. Let A be a Noetherian ring and let $I \subset A$ be an ideal. Set $Z = V(I) \subset \text{Spec}(A)$. Let M be a finite A-module. Set $s = s_{A,I}(M)$ as in (11.1.1). Assume that

1. A is universally catenary,
2. the formal fibres of the local rings of A are Cohen-Macaulay.

This is a special case of [Fal78, Satz 1].

This is a special case of [Fal81, Satz 2].

Lemma 15.5. Let A be a Gorenstein Noetherian local ring. Let $I \subset A$ be an ideal and set $Z = V(I) \subset \text{Spec}(A)$. Let M be a finite A-module. Let $s = s_{A,I}(M)$ as in (11.1.1). Then $H^i_f(M)$ is finite for $i < s$, but $H^s_f(M)$ is not finite.
Let $H^i_Z(M)$ be finite for $0 \leq i < s$ and $H^s_Z(M)$ is not finite.

Proof. By Lemma 11.2 we may assume that A is a local ring.

If A is a Noetherian complete local ring, then we can write A as the quotient of a regular complete local ring B by Cohen's structure theorem (Algebra, Theorem 155.8). Using Lemma 11.2 and Dualizing Complexes, Lemma 9.2 we reduce to the case of a regular local ring which is a consequence of Lemma 11.3 because a regular local ring is Gorenstein (Dualizing Complexes, Lemma 21.3).

Let A be a Noetherian local ring. Let m be the maximal ideal. We may assume $I \subset m$, otherwise the lemma is trivial. Let A^\wedge be the completion of A, let $Z^\wedge = V(IA^\wedge)$, and let $M^\wedge = M \otimes_A A^\wedge$ be the completion of M (Algebra, Lemma 96.1). Then $H^i_Z(M) \otimes_A A^\wedge = H^i_Z(M^\wedge)$ by Dualizing Complexes, Lemma 9.3 and flatness of $A \to A^\wedge$ (Algebra, Lemma 96.2). Hence it suffices to show that $H^i_Z(M^\wedge)$ is finite for $i < s$ and not finite for $i = s$, see Algebra, Lemma 82.2. Since we know the result is true for A^\wedge it suffices to show that $s_{A,I}(M) = s_{A^\wedge,I^\wedge}(M^\wedge)$. This follows from Lemma 11.3.

Remark 11.7. The astute reader will have realized that we can get away with a slightly weaker condition on the formal fibres of the local rings of A. Namely, in the situation of Theorem 11.6 assume A is universally catenary but make no assumptions on the formal fibres. Suppose we have an n and we want to prove that $H^i_Z(M)$ are finite for $i \leq n$. Then the exact same proof shows that it suffices that $s_{A,I}(M) > n$ and that the formal fibres of local rings of A are (S_n). On the other hand, if we want to show that $H^s_Z(M)$ is not finite where $s = s_{A,I}(M)$, then our arguments prove this if the formal fibres are (S_{s-1}).

12. Finiteness of pushforwards, II

0BJX This section is the continuation of Section 8. In this section we reap the fruits of the labor done in Section 11.

0BJY Lemma 12.1. Let X be a locally Noetherian scheme. Let $j : U \to X$ be the inclusion of an open subscheme with complement Z. Let F be a coherent \mathcal{O}_U-module. Let $n \geq 0$ be an integer. Assume

(1) X is universally catenary,
(2) for every $z \in Z$ the formal fibres of $\mathcal{O}_{X,z}$ are (S_n).

In this situation the following are equivalent

(a) for $x \in \text{Supp}(F)$ and $z \in Z \cap \overline{(x)}$ we have $\text{depth}_{\mathcal{O}_{X,x}}(F_x) + \dim(\mathcal{O}_{\overline{(x)},z}) > n$,
(b) R^pj_*F is coherent for $0 \leq p < n$.

Proof. The statement is local on X, hence we may assume X is affine. Say $X = \text{Spec}(A)$ and $Z = V(I)$. Let M be a finite A-module whose associated coherent \mathcal{O}_X-module restricts to F over U, see Lemma 8.2. This lemma also tells us that R^pj_*F is coherent if and only if $H^{s+1}_Z(M)$ is a finite A-module. Observe that the minimum of the expressions $\text{depth}_{\mathcal{O}_{X,x}}(F_x) + \dim(\mathcal{O}_{\overline{(x)},z})$ is the number $s_{A,I}(M)$ of (11.1.1). Having said this the lemma follows from Theorem 11.6 as elucidated by Remark 11.7.

0BLT Lemma 12.2. Let X be a locally Noetherian scheme. Let $j : U \to X$ be the inclusion of an open subscheme with complement Z. Let $n \geq 0$ be an integer. If
$R^p j_* \mathcal{O}_U$ is coherent for $0 \leq p < n$, then the same is true for $R^p j_* \mathcal{F}$, $0 \leq p < n$ for any finite locally free \mathcal{O}_U-module \mathcal{F}.

Proof. The question is local on X, hence we may assume X is affine. Say $X = \text{Spec}(A)$ and $Z = V(I)$. Via Lemma 8.2 our lemma follows from Lemma 7.4. □

Lemma 12.3. Let A be a ring and let $J \subset I \subset A$ be finitely generated ideals. Let $p \geq 0$ be an integer. Set $U = \text{Spec}(A) \setminus V(I)$. If $H^p(U, \mathcal{O}_U)$ is annihilated by J^n for some n, then $H^p(U, \mathcal{F})$ annihilated by J^m for some $m = m(\mathcal{F})$ for every finite locally free \mathcal{O}_U-module \mathcal{F}.

Proof. Consider the annihilator a of $H^p(U, \mathcal{F})$. Let $u \in U$. There exists an open neighbourhood $u \in U' \subset U$ and an isomorphism $\varphi : \mathcal{O}^\text{pr}_{U'} \cong \mathcal{F}|_{U'}$. Pick $f \in A$ such that $u \in D(f) \subset U'$. There exist maps

$$ a : \mathcal{O}^\text{pr}_U \longrightarrow \mathcal{F} \quad \text{and} \quad b : \mathcal{F} \longrightarrow \mathcal{O}^\text{pr}_U $$

whose restriction to $D(f)$ are equal to $f^n \varphi$ and $f^n \varphi^{-1}$ for some N. Moreover we may assume that $a \circ b$ and $b \circ a$ are equal to multiplication by f^{2N}. This follows from Properties, Lemma 17.3 since U is quasi-compact (I is finitely generated), separated, and \mathcal{F} and \mathcal{O}^pr_U are finitely presented. Thus we see that $H^p(U, \mathcal{F})$ is annihilated by $f^{2N}J^n$, i.e., $f^{2N}J^n \subset a$.

As U is quasi-compact we can find finitely many f_1, \ldots, f_t and N_1, \ldots, N_t such that $U = \bigcup D(f_t)$ and $f_i^n J^n \subset a$. Then $V(I) = V(f_1, \ldots, f_t)$ and since J is finitely generated we conclude $J^m \subset (f_1, \ldots, f_t)$ for some M. All in all we see that $J^m \subset a$ for $m \gg 0$, for example $m = M(2N_1 + \ldots + 2N_t)n$ will do. □

13. Annihilators of local cohomology, II

Definition 13.1. Let I be an ideal of a Noetherian ring A. Let $K \in D^+_\text{Coh}(A)$. We define the I-depth of K, denoted $\text{depth}_I(K)$, to be the maximal $m \in \mathbb{Z} \cup \{\infty\}$ such that $H^j_I(K) = 0$ for all $i < m$. If A is local with maximal ideal m then we call $\text{depth}_m(K)$ simply the depth of K.

This definition does not conflict with Algebra, Definition 17.1 by Dualizing Complexes, Lemma 11.1.

Proposition 13.2. Let A be a Noetherian ring which has a dualizing complex. Let $T \subset T' \subset \text{Spec}(A)$ be subsets stable under specialization. Let $s \in \mathbb{Z}$. Let K be an object of $D^+_\text{Coh}(A)$. The following are equivalent

1. there exists an ideal $J \subset A$ with $V(J) \subset T'$ such that J annihilates $H^i_T(K)$ for $i \leq s$, and
2. for all $p \not\in T'$, $q \in T$ with $p \subset q$ we have
 $$ \text{depth}_A(p) + \dim((A/p)_q) > s $$

Proof. This lemma is the natural generalization of Proposition 10.1 whose proof the reader should read first. Let ω^*_A be a dualizing complex. Let d be its dimension function, see Dualizing Complexes, Section 17. An important role will be played by the finite A-modules

$$ E^i = \text{Ext}^i_A(K, \omega^*_A) $$
For \(p \subset A \) we will write \(H^i_p \) to denote the local cohomology of an object of \(D(A_p) \) with respect to \(pA_p \). Then we see that the \(pA_p \)-adic completion of

\[
(E^i_p) = \text{Ext}^{\delta(p) + i}_{A_p}(K_p, (\omega^*_A)_p[-\delta(p)])
\]

is Matlis dual to

\[
H_p^{-\delta(p)-i}(K_p)
\]

by Dualizing Complexes, Lemma 18.4. In particular we deduce from this the following fact: an ideal \(J \subset A \) annihilates \((E^i)_p \) if and only if \(J \) annihilates \(H_p^{-\delta(p)-i}(K_p) \).

Set \(T_n = \{ p \in T \mid \delta(p) \leq n \} \). As \(\delta \) is a bounded function, we see that \(T_n = \emptyset \) for \(a \ll 0 \) and \(T_b = T \) for \(b \gg 0 \).

Assume (2). Let us prove the existence of \(J_H \) implies \(J_H \) annihilates \(H_q(K) \) for all \(q \in T_n \). We will show by descending induction on \(n \) that there exists an ideal \(J \) with \(V(J) \subset T' \) such that the associated primes of \(JH_T(K) \) are in \(T_n \). For \(n \ll 0 \) this implies \(JH_T(K) = 0 \) (Algebra, Lemma 62.7) and hence \(IH_i \) will hold. The base case \(n \gg 0 \) is trivial because \(T = T_n \) in this case and all associated primes of \(H_T(K) \) are in \(T \).

Thus we assume given \(J \) with the property for \(n \). Let \(q \in T_n \). Let \(T'_q \subset \text{Spec}(A_q) \) be the inverse image of \(T \). We have \(H_T^j(K)_q = H^j_{T_q}(K_q) \) by Lemma 5.7. Consider the spectral sequence

\[
H_q^p(H^q_{T_q}(K_q)) \Rightarrow H_q^{p+q}(K_q)
\]

of Lemma 5.8. Below we will find an ideal \(J'' \subset A \) with \(V(J'') \subset T' \) such that \(H_q^j(K_q) \) is annihilated by \(J'' \) for all \(q \in T_n \setminus T_{n-1} \). Claim: \(J'(J'') \) \(J'' \) will work for \(n - 1 \). Namely, let \(q \in T_n \setminus T_{n-1} \). The spectral sequence above defines a filtration

\[
E^0_{i+1} = E^0_i \subset \cdots \subset E^0_3 \subset E^0_2 = H_q^0(K_{T_q})
\]

The module \(E^0_{i+1} \) is annihilated by \(J' \). The subquotients \(E^0_i / E^0_{i+1} \) for \(i + 1 \geq j \geq 2 \) are annihilated by \(J' \) because the target of \(d^0_{i+1} \) is a subquotient of

\[
H^0_{T_q}(H_{T_q}^{i-j+1}(K_q)) = H^0_q(H_T^{i-j+1}(K_q))
\]

and \(H_T^{i-j+1}(K)_q \) is annihilated by \(J' \) by choice of \(J' \). Finally, by our choice of \(J \) we have \(JH_T(K)_q \subset H_q^0(JH_T(K)_q) \) since the non-closed points of \(\text{Spec}(A_q) \) have higher \(\delta \) values. Thus \(q \) cannot be an associated prime of \(J(J') \) \(J''H_T(K) \) as desired.

By our initial remarks we see that \(J'' \) should annihilate

\[
(E^{-(\delta(q)-i)})_q = (E^{-n-i})_q
\]

for all \(q \in T_n \setminus T_{n-1} \). But if \(J'' \) works for one \(q \), then it works for all \(q \) in an open neighbourhood of \(q \) as the modules \(E^{-n-i} \) are finite. Since every subset of \(\text{Spec}(A) \) is Noetherian with the induced topology (Topology, Lemma 29.2), we conclude that it suffices to prove the existence of \(J'' \) for one \(q \).
Since the ext modules are finite the existence of J'' is equivalent to
\[
\text{Supp}(E^{-n-i}) \cap \text{Spec}(A_q) \subset T'.
\]
This is equivalent to showing the localization of E^{-n-i} at every $p \subset q$, $p \not\subset T'$ is zero. Using local duality over A_p we find that we need to prove that
\[
H_{p}^{i+n-\delta(p)}(K_p) = H_{p}^{-\dim((A/p)_q)}(K_p)
\]
is zero (this uses that δ is a dimension function). This vanishes by the assumption in the lemma and $i \leq s$ and our definition of depth in Definition 13.1.

To prove the converse implication we assume (2) does not hold and we work backwards through the arguments above. First, we pick a $q \in T$, $p \subset q$ with $p \not\subset T'$ such that
\[
i = \text{depth}_{A_p}(K_p) + \dim((A/p)_q) \leq s
\]
is minimal. Then $H_{p}^{-\dim((A/p)_q)}(K_p)$ is nonzero by the our definition of depth in Definition 13.1. Set $n = \delta(q)$. Then there does not exist an ideal $J \subset A$ with $V(J) \subset T'$ such that $J(E^{-n-i})_q = 0$. Thus $H_{q}^i(K_q)$ is not annihilated by an ideal $J \subset A$ with $V(J) \subset T'$. By minimality of i it follows from the spectral sequence displayed above that the module $H_{T}(K)_q$ is not annihilated by an ideal $J \subset A$ with $V(J) \subset T'$. Thus $H_{T}^i(K)$ is not annihilated by an ideal $J \subset A$ with $V(J) \subset T'$. This finishes the proof of the proposition.

\[\square\]

14. Finiteness of local cohomology, III

Lemma 14.1. Let A be a Noetherian ring. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization. Let K be an object of $D^b_{\text{Coh}}(A)$. Let $n \in \mathbb{Z}$. The following are equivalent

1. $H_T^n(K)$ is finite for $i \leq n$.
2. there exists an ideal $J \subset A$ with $V(J) \subset T$ such that J annihilates $H_T^i(K)$ for $i \leq n$.

If $T = V(I) = Z$ for an ideal $I \subset A$, then these are also equivalent to

3. there exists an $e \geq 0$ such that I^e annihilates $H_T^i(K)$ for $i \leq n$.

Proof. This lemma is the natural generalization of Lemma 7.4 whose proof the reader should read first. Assume (1) is true. Recall that $H_T^j(K) = H_{V(J)}^j(K)$, see Dualizing Complexes, Lemma 10.1. Thus $H_T^j(K) = \text{colim} H_{J}^j(K)$ where the colimit is over ideals $J \subset A$ with $V(J) \subset T$, see Lemma 5.3. Since $H_T^j(K)$ is finitely generated for $i \leq n$ we can find a $J \subset A$ as in (2) such that $H_T^j(K) \twoheadrightarrow H_{J}^j(K)$ is surjective for $i \leq n$. Thus the finite list of generators are I-power torsion elements and we see that (2) holds with J replaced by some power.

Let $a \in \mathbb{Z}$ be an integer such that $H^i(K) = 0$ for $i < a$. We prove (2) \Rightarrow (1) by descending induction on a. If $a > n$, then we have $H_T^i(K) = 0$ for $i \leq n$ hence both (1) and (2) are true and there is nothing to prove.

Assume we have J as in (2). Observe that $N = H_T^n(K) = H^n_T(H^n_a(K))$ is finite as a submodule of the finite A-module $H^n_a(K)$. If $n = a$ we are done; so assume
$a < n$ from now on. By construction of $R\Gamma_T$ we find that $H^i_T(N) = 0$ for $i > 0$ and $H^0_T(N) = N$, see Remark [5.6]. Choose a distinguished triangle

$$N[-a] \to K \to K' \to N[-a + 1]$$

Then we see that $H^i_T(K') = 0$ and $H^i_T(K) = H^i_T(K')$ for $i > a$. We conclude that we may replace K by K'. Thus we may assume that $H^a_T(K) = 0$. This means that the finite set of associated primes of $H^a(K)$ are not in T. By prime avoidance (Algebra, Lemma [14.2]) we can find $f \in J$ not contained in any of the associated primes of $H^a(K)$. Choose a distinguished triangle

$$L \to K \xrightarrow{f} K \to L[1]$$

By construction we see that $H^i(L) = 0$ for $i \leq a$. On the other hand we have a long exact cohomology sequence

$$0 \to H^{a+1}_T(L) \to H^{a+1}_T(K) \xrightarrow{f} H^{a+1}_T(K) \to H^{a+2}_T(L) \to H^{a+2}_T(K) \xrightarrow{f} \cdots$$

which breaks into the identification $H^{a+1}_T(L) = H^{a+1}_T(K)$ and short exact sequences

$$0 \to H^{i-1}_T(K) \to H^i_T(L) \to H^i_T(K) \to 0$$

for $i \leq n$ since $f \in J$. We conclude that J^2 annihilates $H^i_T(L)$ for $i \leq n$. By induction hypothesis applied to L we see that $H^i_T(L)$ is finite for $i \leq n$. Using the short exact sequence once more we see that $H^i_T(K)$ is finite for $i \leq n$ as desired.

We omit the proof of the equivalence of (2) and (3) in case $T = V(I)$. □

Proposition 14.2. Let A be a Noetherian ring which has a dualizing complex. Let $T \subset \text{Spec}(A)$ be a subset stable under specialization. Let $s \in \mathbb{Z}$. Let $K \in D^+_\text{Coh}(A)$. The following are equivalent

1. $H^i_T(K)$ is a finite A-module for $i \leq s$, and
2. for all $p \not\in T$, $q \in T$ with $p \subset q$ we have

$$\text{depth}_{A_p}(K_q) + \dim((A/p)_q) > s$$

Proof. Formal consequence of Proposition [13.2] and Lemma [14.1] □

15. Improving coherent modules

Lemma 15.1. Let X be a Noetherian scheme. Let $T \subset X$ be a subset stable under specialization. Let \mathcal{F} be a coherent \mathcal{O}_X-module. Then there is a unique map $\mathcal{F} \to \mathcal{F}'$ of coherent \mathcal{O}_X-modules such that

1. $\mathcal{F} \to \mathcal{F}'$ is surjective,
2. $\mathcal{F}_x \to \mathcal{F}'_x$ is an isomorphism for $x \not\in T$,
3. $\text{depth}_{\mathcal{O}_{X,x}}(\mathcal{F}'_x) \geq 1$ for $x \in T$.

If $f : Y \to X$ is a flat morphism with Y Noetherian, then $f^*\mathcal{F} \to f^*\mathcal{F}'$ is the corresponding quotient for $f^{-1}(T) \subset Y$ and $f^*\mathcal{F}$.

Proof. Condition (3) just means that $\text{Ass}(\mathcal{F}') \cap T = \emptyset$. Thus $\mathcal{F} \to \mathcal{F}'$ is the quotient of \mathcal{F} by the subsheaf of sections whose support is contained in T. This proves uniqueness. The statement on pullbacks follows from Divisors, Lemma [3.1] and the uniqueness.
Existence of $F \to F'$. By the uniqueness it suffices to prove the existence and uniqueness locally on X; small detail omitted. Thus we may assume $X = \text{Spec}(A)$ is affine and F is the coherent module associated to the finite A-module M. Set $M' = M/H^0_T(M)$ with $H^0_T(M)$ as in Section 5. Then $M_p = M'_p$ for $p \notin T$ which proves (1). On the other hand, we have $H^0_T(M) = \text{colim} H^0_Z(M)$ where Z runs over the closed subsets of X contained in T. Thus by Dualizing Complexes, Lemmas 11.6 we have $H^0_T(M') = 0$, i.e., no associated prime of M' is in T. Therefore depth(M'_p) \geq 1 for $p \in T$. □

Lemma 15.2. Let $j : U \to X$ be an open immersion of Noetherian schemes. Let F be a coherent O_X-module. Assume $F' = j_*(F|_U)$ is coherent. Then $F \to F'$ is the unique map of coherent O_X-modules such that

1. $F|_U \to F'|_U$ is an isomorphism,
2. $\text{depth}_{O_x}(F'_x) \geq 2$ for $x \in X$, $x \notin U$.

If $f : Y \to X$ is a flat morphism with Y Noetherian, then $f^*F \to f^*F'$ is the corresponding map for $f^{-1}(U) \subset Y$.

Proof. We have $\text{depth}_{O_x}(F'_x) \geq 2$ by Divisors, Lemma 6.6 part (3). The uniqueness of $F \to F'$ follows from Divisors, Lemma 5.11. The compatibility with flat pull-backs follows from flat base change, see Cohomology of Schemes, Lemma 5.2. □

Lemma 15.3. Let X be a Noetherian scheme. Let $Z \subset X$ be a closed subscheme. Let F be a coherent O_X-module. Assume X is universally catenary and the formal fibres of local rings have (S_1). Then there exists a unique map $F \to F''$ of coherent O_X-modules such that

1. $F_x \to F''_x$ is an isomorphism for $x \in X \setminus Z$,
2. $F_x \to F''_x$ is surjective and $\text{depth}_{O_x}(F''_x) = 1$ for $x \in Z$ such that there exists an immediate specialization $x' \leadsto x$ with $x' \notin Z$ and $x' \in \text{Ass}(F)$,
3. $\text{depth}_{O_x}(F''_x) \geq 2$ for the remaining $x \in Z$.

If $f : Y \to X$ is a Cohen-Macaulay morphism with Y Noetherian, then $f^*F \to f^*F''$ satisfies the same properties with respect to $f^{-1}(Z) \subset Y$.

Proof. Let $F \to F'$ be the map constructed in Lemma 15.2 for the subset Z of X. Recall that F' is the quotient of F by the subsheaf of sections supported on Z.

We first prove uniqueness. Let $F \to F''$ be as in the lemma. We get a factorization $F \to F' \to F''$ since $\text{Ass}(F'') \cap Z = \emptyset$ by conditions (2) and (3). Let $U \subset X$ be a maximal open subscheme such that $F|_U \to F''|_U$ is an isomorphism. We see that U contains all the points as in (2). Then by Divisors, Lemma 5.11 we conclude that $F'' = j_*(F|_U)$. In this way we get uniqueness (small detail: if we have two of these F'' then we take the intersection of the opens U we get from either).

Proof of existence. Recall that $\text{Ass}(F') = \{x_1, \ldots, x_n\}$ is finite and $x_i \notin Z$. Let Y_i be the closure of $\{x_i\}$. Let $Z_{i,j}$ be the irreducible components of $Z \cap Y_i$. Observe that $\text{Supp}(F') \cap Z = \bigcup Z_{i,j}$. Let $z_{i,j} \in Z_{i,j}$ be the generic point. Let

$$d_{i,j} = \dim(O_{(x_i, z_{i,j})})$$

If $d_{i,j} = 1$, then $z_{i,j}$ is one of the points as in (2). Thus we do not need to modify F' at these points. Furthermore, still assuming $d_{i,j} = 1$, using Lemma 9.2 we
can find an open neighbourhood $z_{i,j} \in V_{i,j} \subset X$ such that $\text{depth}_{\mathcal{O}_{X,z}}(F^i_z) \geq 2$ for $z \in Z_{i,j} \cap V_{i,j}$, $z \neq z_{i,j}$. Set

$$Z' = X \setminus \left(X \setminus Z \cup \bigcup_{d_{i,j} = 1} V_{i,j} \right)$$

Denote $j' : X \setminus Z' \to X$. By our choice of Z' the assumptions of Lemma 15.9 are satisfied. We conclude by setting $F'' = j'_*(F'|_{X \setminus Z'})$ and applying Lemma 15.2.

The final statement follows from the formula for the change in depth along a flat local homomorphism, see Algebra, Lemma 158.1 and the assumption on the fibres of f inherent in f being Cohen-Macaulay. Details omitted. □

Lemma 15.4. Let X be a Noetherian scheme which locally has a dualizing complex. Let $T' \subset X$ be a subset stable under specialization. Let F be a coherent \mathcal{O}_X-module. Assume that if $x \leadsto x'$ is an immediate specialization of points in X with $x' \in T'$ and $x \not\in T'$, then $\text{depth}(F_x) \geq 1$. Then there exists a unique map $F \to F''$ of coherent \mathcal{O}_X-modules such that

1. $F_x \to F''_x$ is an isomorphism for $x \notin T'$,
2. $\text{depth}_{\mathcal{O}_{X,x}}(F''_x) \geq 2$ for $x \in T'$.

If $f : Y \to X$ is a Cohen-Macaulay morphism with Y Noetherian, then $f^*F \to f^*F''$ satisfies the same properties with respect to $f^{-1}(T') \subset Y$.

Proof. Let $F \to F'$ be the quotient of F constructed in Lemma 15.1 using T'. Recall that F' is the quotient of F by the subsheaf of sections supported on T'.

Proof of uniqueness. Let $F \to F' \to F''$ be as in the lemma. We get a factorization $F \to F' \to F''$ since $\text{Ass}(F'') \cap T' = \emptyset$ by condition (2). Let $U \subset X$ be a maximal open subscheme such that $F'|_U \to F''|_U$ is an isomorphism. We see that U contains all the points of T'. Then by Divisors, Lemma 5.11 we conclude that $F'' = j_*(F'|_U)$. In this way we get uniqueness (small detail: if we have two of these F'' then we take the intersection of the opens U we get from either).

Proof of existence. We will define

$$F'' = \text{colim } j_*(F'|_V)$$

where $j : V \to X$ runs over the open subschemes such that $X \setminus V \subset T'$. Observe that the colimit is filtered as T' is stable under specialization. Each of the maps $F' \to j_*(F'|_V)$ is injective as $\text{Ass}(F')$ is disjoint from T'. Thus $F' \to F''$ is injective.

Suppose $X = \text{Spec}(A)$ is affine and F corresponds to the finite A-module M. Then F' corresponds to $M' = M/H^1_{f*}(M)$, see proof of Lemma 15.1. Applying Lemmas 2.2 and 5.3 we see that F'' corresponds to an A-module M'' which fits into the short exact sequence

$$0 \to M' \to M'' \to H^1_{f*}(M') \to 0$$

By Proposition 11.1 and our condition on immediate specializations in the statement of the lemma we see that M'' is a finite A-module. In this way we see that F'' is coherent.

The final statement follows from the formula for the change in depth along a flat local homomorphism, see Algebra, Lemma 158.1 and the assumption on the fibres of f inherent in f being Cohen-Macaulay. Details omitted. □
0E14 Lemma 15.5. Let X be a Noetherian scheme which locally has a dualizing complex. Let $T' \subset T \subset X$ be subsets stable under specialization such that if $x \sim x'$ is an immediate specialization of points in X and $x' \in T'$, then $x \in T$. Let \mathcal{F} be a coherent \mathcal{O}_X-module. Then there exists a unique map $\mathcal{F} \to \mathcal{F}''$ of coherent \mathcal{O}_X-modules such that

1. $\mathcal{F}_x \to \mathcal{F}_x''$ is an isomorphism for $x \notin T$,
2. $\mathcal{F}_x \to \mathcal{F}_x''$ is surjective and $\text{depth}_{\mathcal{O}_{X,x}}(\mathcal{F}_x'') \geq 1$ for $x \in T$, $x \notin T'$, and
3. $\text{depth}_{\mathcal{O}_{X,x}}(\mathcal{F}_x'') \geq 2$ for $x \in T'$.

If $f : Y \to X$ is a Cohen-Macaulay morphism with Y Noetherian, then $f^* \mathcal{F} \to f^* \mathcal{F}''$ satisfies the same properties with respect to $f^{-1}(T') \subset f^{-1}(T) \subset Y$.

Proof. First, let $\mathcal{F} \to \mathcal{F}'$ be the quotient of \mathcal{F} constructed in Lemma 15.1 using T. Second, let $\mathcal{F}' \to \mathcal{F}''$ be the unique map of coherent modules construction in Lemma 15.2 using T'. Then $\mathcal{F} \to \mathcal{F}''$ is as desired.

16. Hartshorne-Lichtenbaum vanishing

0E0 This and much else besides can be found in [Har68].

0E1 Lemma 16.1. Let A be a Noetherian ring of dimension d. Let $I \subset I' \subset A$ be ideals. If I' is contained in the Jacobson radical of A and $cd(A,I') < d$, then $cd(A,I) < d$.

Proof. By Lemma 4.7, we know $cd(A,I) \leq d$. We will use Lemma 2.6 to show

$$H^d_{V(I')}(A) \to H^d_{V(I)}(A)$$

is surjective which will finish the proof. Pick $p \in V(I) \setminus V(I')$. By our assumption on I' we see that p is not a maximal ideal of A. Hence $\dim(A_p) < d$. Then $H^d_{pA_p}(A_p) = 0$ by Lemma 4.7.

0E2 Lemma 16.2. Let A be a Noetherian ring of dimension d. Let $I \subset A$ be an ideal. If $H^d_{V(I)}(M) = 0$ for some finite A-module whose support contains all the irreducible components of dimension d, then $cd(A,I) < d$.

Proof. By Lemma 4.7, we know $cd(A,I) \leq d$. Thus for any finite A-module N we have $H^d_{V(I)}(N) = 0$ for $i > d$. Let us say property P holds for the finite A-module N if $H^d_{V(I)}(N) = 0$. One of our assumptions is that $P(N)$ holds. Observe that $P(N_1 \oplus N_2) \Leftrightarrow (P(N_1) \land P(N_2))$. Observe that if $N \to N'$ is surjective, then $P(N) \Rightarrow P(N')$ as we have the vanishing of $H^{d+1}_{V(I)}$ (see above). Let p_1, \ldots, p_n be the minimal primes of A with $\dim(A/p_i) = d$. Observe that $P(N)$ holds if the support of N is disjoint from $\{p_1, \ldots, p_n\}$ for dimension reasons, see Lemma 4.7. For each i set $M_i = M/p_iM$. This is a finite A-module annihilated by p_i whose support is equal to $V(p_i)$ (here we use the assumption on the support of M). Finally, if $J \subset A$ is an ideal, then we have $P(JM_i)$ as JM_i is a quotient of a direct sum of copies of M. Thus it follows from Cohomology of Schemes, Lemma 12.8 that P holds for every finite A-module.

0E3 Lemma 16.3. Let A be a Noetherian local ring of dimension d. Let $f \in A$ be an element which is not contained in any minimal prime of dimension d. Then $f : H^d_{V(I)}(M) \to H^d_{V(I)}(M)$ is surjective for any finite A-module M and any ideal $I \subset A$.
Proof. The support of M/fM has dimension $< d$ by our assumption on f. Thus $H^d_{\mathcal{I}}(M/fM) = 0$ by Lemma 4.7. Thus $H^d_{\mathcal{I}}(fM) \to H^d_{\mathcal{I}}(M)$ is surjective. Since by Lemma 4.7 we know $cd(A, \mathcal{I}) \leq d$ we also see that the surjection $M \to fM$, $x \mapsto fx$ induces a surjection $H^d_{\mathcal{I}}(M) \to H^d_{\mathcal{I}}(fM)$. □

Lemma 16.4. Let A be a Noetherian local ring with normalized dualizing complex ω^*_A. Let $\mathcal{I} \subset A$ be an ideal. If $H^d_{\mathcal{I}}(\omega^*_A) = 0$, then $cd(A, \mathcal{I}) < \dim(A)$.

Proof. Set $d = \dim(A)$. Let $p_1, \ldots, p_n \subset A$ be the minimal primes of dimension d. Recall that the finite A-module $H^{-i}(\omega^*_A)$ is nonzero only for $i \in \{0, \ldots, d\}$ and that the support of $H^{-i}(\omega^*_A)$ has dimension $\leq i$, see Lemma 9.7. Set $\omega_A = H^{-d}(\omega^*_A)$. By prime avoidance (Algebra, Lemma 14.2) we can find $f \in A$, $f \notin p_i$, which annihilates $H^{-i}(\omega^*_A)$ for $i < d$. Consider the distinguished triangle

$$\omega_A[d] \to \omega_A^* \to \tau_{\geq -d+1}\omega_A^* \to \omega_A[d+1]$$

See Derived Categories, Remark 12.4. By Derived Categories, Lemma 12.5 we see that f^d induces the zero endomorphism of $\tau_{\geq -d+1}\omega_A^*$. Using the axioms of a triangulated category, we find a map

$$\omega_A^* \to \omega_A[d]$$

whose composition with $\omega_A[d] \to \omega_A^*$ is multiplication by f^d on $\omega_A[d]$. Thus we conclude that f^d annihilates $H^d_{\mathcal{I}}(\omega_A)$. By Lemma 16.3 we conclude $H^d_{\mathcal{I}}(\omega_A) = 0$. Then we conclude by Lemma 16.2 and the fact that $(\omega_A)_{p_i}$ is nonzero (see for example Dualizing Complexes, Lemma 16.11). □

Lemma 16.5. Let (A, \mathfrak{m}) be a complete Noetherian local domain. Let $\mathfrak{p} \subset A$ be a prime ideal of dimension 1. For every $n \geq 1$ there is an $m \geq n$ such that $\mathfrak{p}^m \subset \mathfrak{p}^n$.

Proof. Recall that the symbolic power \mathfrak{p}^m is defined as the kernel of $A \to A/{\mathfrak{p}^n}A$. Since localization is exact we conclude that in the short exact sequence

$$0 \to \mathfrak{a}_n \to A/{\mathfrak{p}^n} \to A/{\mathfrak{p}^m} \to 0$$

the support of \mathfrak{a}_n is contained in $\{\mathfrak{m}\}$. In particular, the inverse system (\mathfrak{a}_n) is Mittag-Leffler as each \mathfrak{a}_n is an Artinian A-module. We conclude that the lemma is equivalent to the requirement that $\lim \mathfrak{a}_n = 0$. Let $f \in \lim \mathfrak{a}_n$. Then f is an element of $A = \lim A/{\mathfrak{p}^n}$ (here we use that A is complete) which maps to zero in the completion \mathfrak{p}_A^\wedge of A. Since $A_\mathfrak{p} \to A_\mathfrak{p}^\wedge$ is faithfully flat, we see that f maps to zero in $A_\mathfrak{p}$. Since A is a domain we see that f is zero as desired. □

Proposition 16.6. Let A be a Noetherian local ring with completion A^\wedge. Let $I \subset A$ be an ideal such that

$$\dim V(I A^\wedge + \mathfrak{p}) \geq 1$$

for every minimal prime $\mathfrak{p} \subset A^\wedge$ of dimension $\dim(A)$. Then $cd(A, I) < \dim(A)$.

Proof. Since $A \to A^\wedge$ is faithfully flat we have $H^d_{\mathcal{I}}(A) \otimes_A A^\wedge = H^d_{\mathcal{I}}(A^\wedge)$ by Dualizing Complexes, Lemma 9.3. Thus we may assume A is complete.

Assume A is complete. Let $p_1, \ldots, p_n \subset A$ be the minimal primes of dimension d. Consider the complete local ring $A_i = A/p_i$. We have $H^d_{\mathcal{I}}(A_i) = H^d_{\mathcal{I}}(A_i^\wedge)$ by Dualizing Complexes, Lemma 9.2. By Lemma 16.2 it suffices to prove the lemma for $(A_i, I A_i)$. Thus we may assume A is a complete local domain.
Assume A is a complete local domain. We can choose a prime ideal $p \supset I$ with $\dim(A/p) = 1$. By Lemma 16.1 it suffices to prove the lemma for p.

By Lemma 16.4 it suffices to show that $H^0_{V(p)}(\omega^*_A) = 0$. Recall that

$$H^0_{V(p)}(\omega^*_A) = \colim \Ext_A^0(A/p^n, \omega^*_A)$$

By Lemma 16.5 we see that the colimit is the same as

$$\colim \Ext_A^0(A/p^{(n)}, \omega^*_A)$$

Since $\depth(A/p^{(n)}) = 1$ we see that these ext groups are zero by Lemma 9.4 as desired.

Lemma 16.7. Let (A, m) be a Noetherian local ring. Let $I \subset A$ be an ideal. Assume A is excellent, normal, and $\dim V(I) \geq 1$. Then $\cd(A, I) < \dim(A)$. In particular, if $\dim(A) = 2$, then $\Spec(A) \setminus V(I)$ is affine.

Proof. By More on Algebra, Lemma 51.6 the completion A^\wedge is normal and hence a domain. Thus the assumption of Proposition 16.6 holds and we conclude. The statement on affineness follows from Lemma 4.8.

17. Frobenius action

Lemma 17.1. Let p be a prime number. Let (A, m, κ) be a Noetherian local ring with $p = 0$ in A. The Frobenius endomorphism of A is the map

$$F : A \to A, \quad a \mapsto a^p$$

In this section we prove lemmas on modules which have Frobenius actions.

Lemma 17.2. Let A be a ring. If $f_1, \ldots, f_r g_r$ are independent, then f_1, \ldots, f_r are independent.

Proof. Say $\sum a_i f_i = 0$. Then $\sum a_i g_r f_i = 0$. Hence $a_r \in (f_1, \ldots, f_{r-1}, f_r g_r)$. Write $a_r = \sum_{i < r} b_i f_i + b_r g_r$. Then $0 = \sum_{i < r} (a_i + b_i) f_i + b_r^2 g_r$. Thus $a_i + b_i f_i \in (f_1, \ldots, f_{r-1}, f_r g_r)$ which implies $a_i \in (f_1, \ldots, f_r)$ as desired.
Lemma 17.3. Let A be a ring. If $f_1, \ldots, f_{r-1}, g_r$ are independent and if the A-module $A/(f_1, \ldots, f_{r-1}, f_r g_r)$ has finite length, then

$$
\text{length}_A(A/(f_1, \ldots, f_{r-1}, f_r g_r)) = \text{length}_A(A/(f_1, \ldots, f_{r-1}, f_r)) + \text{length}_A(A/(f_1, \ldots, f_{r-1}, g_r))
$$

Proof. We claim there is an exact sequence

$$0 \to A/(f_1, \ldots, f_{r-1}, g_r) \xrightarrow{f_r} A/(f_1, \ldots, f_{r-1}, f_r g_r) \to A/(f_1, \ldots, f_{r-1}, f_r) \to 0$$

Namely, if $a f_r \in (f_1, \ldots, f_{r-1}, f_r g_r)$, then $\sum a_i f_i + (a + b g_r) f_r = 0$ for some $b, a_i \in A$. Hence $\sum a_i f_i f_r$ is independent. If $a + b g_r \in (f_1, \ldots, f_{r-1}, f_r g_r)$ which means that a maps to zero in $A/(f_1, \ldots, f_{r-1}, g_r)$. This proves the claim. To finish use additivity of lengths (Algebra, Lemma 51.3).

Lemma 17.4. Let (A, m) be a local ring. If $m = (x_1, \ldots, x_r)$ and $x_1^{e_1}, \ldots, x_r^{e_r}$ are independent for some $e_i > 0$, then $\text{length}_A(A/(x_1^{e_1}, \ldots, x_r^{e_r})) = e_1 \cdots e_r$.

Proof. Use Lemmas 17.2 and 17.3 and induction.

Lemma 17.5. Let $\varphi : A \to B$ be a flat ring map. If $f_1, \ldots, f_r \in A$ are independent, then $\varphi(f_1), \ldots, \varphi(f_r) \in B$ are independent.

Proof. Let $I = (f_1, \ldots, f_r)$ and $J = F(I)B$. By flatness we have $I/I^2 \otimes_A B = J/J^2$. Hence freeness of I/I^2 over A/I implies freeness of J/J^2 over B/J.

Lemma 17.6 (Kunz). Let p be a prime number. Let A be a Noetherian ring with $p = 0$. The following are equivalent

1. A is regular, and
2. $F : A \to A$, $a \mapsto a^p$ is flat.

Proof. Observe that $\text{Spec}(F) : \text{Spec}(A) \to \text{Spec}(A)$ is the identity map. Being regular is defined in terms of the local rings and being flat is something about local rings, see Algebra, Lemma 38.18. Thus we may and do assume A is a Noetherian local ring with maximal ideal m.

Assume A is regular. Let x_1, \ldots, x_d be a system of parameters for A. Applying F we find $F(x_1), \ldots, F(x_d) = x_1^p, \ldots, x_d^p$, which is a system of parameters for A. Hence F is flat, see Algebra, Lemmas 127.1 and 105.3.

Conversely, assume F is flat. Write $m = (x_1, \ldots, x_r)$ with r minimal. Then x_1, \ldots, x_r are independent in the sense defined above. Since F is flat, we see that x_1^p, \ldots, x_r^p are independent, see Lemma 17.5. Hence $\text{length}_A(A/(x_1^p, \ldots, x_r^p)) = p^r$ by Lemma 17.4. Let $\chi(n) = \text{length}_A(A/m^n)$ and recall that this is a numerical polynomial of degree $\dim(A)$, see Algebra, Proposition 59.8. Choose $n \geq 0$. Observe that

$$m^{pn+p^r} \subseteq F(m^n)A \subseteq m^{pn}$$

as can be seen by looking at monomials in x_1, \ldots, x_r. We have

$$A/F(m^n) = A/m^n \otimes_{A,F} A$$

By flatness of F this has length $\chi(n)\text{length}_A(A/F(m)A)$ (Algebra, Lemma 51.13) which is equal to $p^r \chi(n)$ by the above. We conclude

$$\chi(pn+p^r) \geq p^r \chi(n) \geq \chi(pn)$$

Looking at the leading terms this implies $r = \dim(A)$, i.e., A is regular.
18. Structure of certain modules

Some results on the structure of certain types of modules over regular local rings. These types of results and much more can be found in [HS93, Lyu93, Lyu97].

Lemma 18.1. Let \(k \) be a field of characteristic 0. Let \(d \geq 1 \). Let \(A = k[[x_1, \ldots, x_d]] \) with maximal ideal \(\mathfrak{m} \). Let \(M \) be an \(\mathfrak{m} \)-power torsion \(A \)-module endowed with additive operators \(D_1, \ldots, D_d \) satisfying the leibniz rule

\[
D_i(fz) = \partial_i(f)z + fD_i(z)
\]

for \(f \in A \) and \(z \in M \). Here \(\partial_i \) is differentiation with respect to \(x_i \). Then \(M \) is isomorphic to a direct sum of copies of the injective hull \(E \) of \(k \).

Proof. Choose a set \(J \) and an isomorphism \(M[\mathfrak{m}] \to \bigoplus_{j \in J} k \). Since \(\bigoplus_{j \in J} E \) is injective (Dualizing Complexes, Lemma [3.7]) we can extend this isomorphism to an \(A \)-module homomorphism \(\varphi : M \to \bigoplus_{j \in J} E \). We claim that \(\varphi \) is an isomorphism, i.e., bijective.

Injective. Let \(z \in M \) be nonzero. Since \(M \) is \(\mathfrak{m} \)-power torsion we can choose an element \(f \in A \) such that \(fz \in M[\mathfrak{m}] \) and \(fz \neq 0 \). Then \(\varphi(fz) = f\varphi(z) \) is nonzero, hence \(\varphi(z) \) is nonzero.

Surjective. Let \(z \in M \). Then \(x^n_1 z = 0 \) for some \(n \geq 0 \). We will prove that \(z \in x_1 M \) by induction on \(n \). If \(n = 0 \), then \(z = 0 \) and the result is true. If \(n > 0 \), then applying \(D_1 \) we find \(0 = x^n_1 z + x^n_1 D_1(z) \). Hence \(x^n_1 (nz + x_1 D_1(z)) = 0 \). By induction we get \(nz + x_1 D_1(z) \in x_1 M \). Since \(n \) is invertible, we conclude \(z \in x_1 M \). Thus we see that \(M \) is \(x_1 \)-divisible. If \(\varphi \) is not surjective, then we can choose \(e \in \bigoplus_{j \in J} E \) not in \(M \). Arguing as above we may assume \(me \subset M \), in particular \(x_1 e \in M \). There exists an element \(z_1 \in M \) with \(x_1 z_1 = x_1 e \). Hence \(x_1 (z_1 - e) = 0 \). Replacing \(e \) by \(e - z_1 \) we may assume \(e \) is annihilated by \(x_1 \). Thus it suffices to prove that

\[
\varphi[x_1] : M[x_1] \to \left(\bigoplus_{j \in J} E \right)[x_1] = \bigoplus_{j \in J} E[x_1]
\]

is surjective. If \(d = 1 \), this is true by construction of \(\varphi \). If \(d > 1 \), then we observe that \(E[x_1] \) is the injective hull of the residue field of \(k[[x_2, \ldots, x_d]] \), see Dualizing Complexes, Lemma [7.1]. Observe that \(M[x_1] \) as a module over \(k[[x_2, \ldots, x_d]] \) is \(\mathfrak{m}/(x_1) \)-power torsion and comes equipped with operators \(D_2, \ldots, D_d \) satisfying the displayed Leibniz rule. Thus by induction on \(d \) we conclude that \(\varphi[x_1] \) is injective as desired. \(\square \)

Lemma 18.2. Let \(p \) be a prime number. Let \((A, \mathfrak{m}, k) \) be a regular local ring with \(p = 0 \). Denote \(F : A \to A, a \mapsto a^p \) be the Frobenius endomorphism. Let \(M \) be a \(\mathfrak{m} \)-power torsion module such that \(M \otimes_{A,F} A \cong M \). Then \(M \) is isomorphic to a direct sum of copies of the injective hull \(E \) of \(k \).

Proof. Choose a set \(J \) and an \(A \)-module homomorphism \(\varphi : M \to \bigoplus_{j \in J} E \) which maps \(M[\mathfrak{m}] \) isomorphically onto \(\bigoplus_{j \in J} E[\mathfrak{m}] = \bigoplus_{j \in J} k \). We claim that \(\varphi \) is an isomorphism, i.e., bijective.

Injective. Let \(z \in M \) be nonzero. Since \(M \) is \(\mathfrak{m} \)-power torsion we can choose an element \(f \in A \) such that \(fz \in M[\mathfrak{m}] \) and \(fz \neq 0 \). Then \(\varphi(fz) = f\varphi(z) \) is nonzero, hence \(\varphi(z) \) is nonzero.

Follows from [HS93 Corollary 3.6] with a little bit of work. Also follows directly from [Lyu97 Theorem 1.4].
Surjective. Recall that F is flat, see Lemma \ref{lemma-loc-coh-flat}. Let x_1, \ldots, x_d be a minimal system of generators of \mathfrak{m}. Denote

$$M_n = M[x_1^{p^n}, \ldots, x_d^{p^n}]$$

the submodule of M consisting of elements killed by $x_1^{p^n}, \ldots, x_d^{p^n}$. So $M_0 = M[\mathfrak{m}]$ is a vector space over k. Also $M = \bigcup M_n$ by our assumption that M is \mathfrak{m}-power torsion. Since F^n is flat and $F^n(x_i) = x_i^{p^n}$ we have

$$M_n \cong (M \otimes_{A,F^n} A)[x_1^{p^n}, \ldots, x_d^{p^n}] = M[x_1, \ldots, x_d] \otimes_{A,F} A = M_0 \otimes_k A/(x_1^{p^n}, \ldots, x_d^{p^n})$$

Thus M_n is free over $A/(x_1^{p^n}, \ldots, x_d^{p^n})$. A computation shows that every element of $A/(x_1^{p^n}, \ldots, x_d^{p^n})$ annihilated by $x_1^{p^n-1}$ is divisible by x_1; for example you can use that $A/(x_1^{p^n}, \ldots, x_d^{p^n}) \cong k[x_1, \ldots, x_d]/(x_1^{p^n}, \ldots, x_d^{p^n})$ by Algebra, Lemma \ref{lemma-power-torsion-module}

Thus the same is true for every element of M_n. Since every element of M is in M_n for all $n \gg 0$ and since every element of M is killed by some power of x_1, we conclude that M is x_1-divisible.

Let $x = x_1$. Above we have seen that M is x-divisible. If φ is not surjective, then we can choose $e \in \bigoplus_{j \in J} E$ not in M. Arguing as above we may assume $me \subset M$, in particular $xe \in M$. There exists an element $z_1 \in M$ with $xz_1 = xe$. Hence $x(z_1 - e) = 0$. Replacing e by $e - z_1$ we may assume e is annihilated by x. Thus it suffices to prove that

$$\varphi[x] : M[x] \to \left(\bigoplus_{j \in J} E \right)[x] = \bigoplus_{j \in J} E[x]$$

is surjective. If $d = 1$, this is true by construction of φ. If $d > 1$, then we observe that $E[x]$ is the injective hull of the residue field of the regular ring A/xA, see Dualizing Complexes, Lemma \ref{lemma-dualizing-complexes}. Observe that $M[x]$ as a module over A/xA is $\mathfrak{m}/(x)$-power torsion and we have

$$M[x] \otimes_{A/xA,F} A/xA = M[x] \otimes_{A,F} A \otimes_A A/xA$$

$$= (M \otimes_{A,F} A)[x^p] \otimes_A A/xA$$

$$\cong M[x^p] \otimes_A A/xA$$

Argue using flatness of F as before. We claim that $M[x^p] \otimes_A A/xA \to M[x]$, $z \otimes 1 \mapsto x^{p-1}z$ is an isomorphism. This can be seen by proving it for each of the modules M_n, $n > 0$ defined above where it follows by the same result for $A/(x_1^{p^n}, \ldots, x_d^{p^n})$ and $x = x_1$. Thus by induction on $\dim(A)$ we conclude that $\varphi[x]$ is surjective as desired. \hfill \Box

19. Additional structure on local cohomology

0EC4 Here is a sample result.

0EC5 **Lemma 19.1.** Let A be a ring. Let $I \subset A$ be a finitely generated ideal. Set $Z = V(I)$. For each derivation $\theta : A \to A$ there exists a canonical additive operator D on the local cohomology modules $H^*_Z(A)$ satisfying the Leibniz rule with respect to θ.

Proof. Let f_1, \ldots, f_r be elements generating I. Recall that $R_I^*_Z(A)$ is computed by the complex

$$A \to \prod_{i_0} A_{f_{i_0}} \to \prod_{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to \cdots \to A_{f_{1\cdots r}}$$
See Dualizing Complexes, Lemma 9.1. Since θ extends uniquely to an additive operator on any localization of A satisfying the Leibniz rule with respect to θ, the lemma is clear.

Lemma 19.2. Let p be a prime number. Let A be a ring with $p = 0$. Denote $F : A \to A$, $a \mapsto a^p$ the Frobenius endomorphism. Let $I \subset A$ be a finitely generated ideal. Set $Z = V(I)$. There exists an isomorphism $R\Gamma_Z(A) \otimes_{I, F}^L A \cong R\Gamma_Z(A)$.

Proof. Follows from Dualizing Complexes, Lemma 9.3 and the fact that $Z = V(f_1^p, \ldots, f_r^p)$ if $I = (f_1, \ldots, f_r)$.

Lemma 19.3. Let A be a ring. Let $V \to \text{Spec}(A)$ be quasi-compact, quasi-separated, and étale. For each derivation $\theta : A \to A$ there exists a canonical additive operator D on $H^i(V, \mathcal{O}_V)$ satisfying the Leibniz rule with respect to θ.

Proof. If V is separated, then we can argue using an affine open covering $V = \bigcup_{j=1}^m V_j$. Namely, because V is separated we may write $V_{j_0 \ldots j_p} = \text{Spec}(B_{j_0 \ldots j_p})$. See Schemes, Lemma 21.7. Then we find that the A-module $H^i(V, \mathcal{O}_V)$ is the ith cohomology group of the Čech complex

$$\prod B_{j_0} \to \prod B_{j_0 j_1} \to \prod B_{j_0 j_1 j_2} \to \cdots$$

See Cohomology of Schemes, Lemma 2.6. Each $B = B_{j_0 \ldots j_p}$ is an étale A-algebra. Hence $\Omega_B = \Omega_A \otimes_A B$ and we conclude θ extends uniquely to a derivation $\theta_B : B \to B$. These maps define an endomorphism of the Čech complex and define the desired operators on the cohomology groups.

In the general case we use a hypercovering of V by affine opens, exactly as in the first part of the proof of Cohomology of Schemes, Lemma 7.3. We omit the details.

Remark 19.4. We can upgrade Lemmas 19.1 and 19.3 to include higher order differential operators. If we ever need this we will state and prove a precise lemma here.

Lemma 19.5. Let p be a prime number. Let A be a ring with $p = 0$. Denote $F : A \to A$, $a \mapsto a^p$ the Frobenius endomorphism. If $V \to \text{Spec}(A)$ is quasi-compact, quasi-separated, and étale, then there exists an isomorphism $R\Gamma(V, \mathcal{O}_V) \otimes_{I, F}^L A \cong R\Gamma(V, \mathcal{O}_V)$.

Proof. Observe that the relative Frobenius morphism

$$V \longrightarrow V \times_{\text{Spec}(A), \text{Spec}(F)} \text{Spec}(A)$$

of V over A is an isomorphism, see Étale Morphisms, Lemma 14.3. Thus the lemma follows from cohomology and base change, see Derived Categories of Schemes, Lemma 21.3. Observe that since V is étale over A, it is flat over A.

20. Other chapters

Preliminaries

(1) Introduction

(2) Conventions

(3) Set Theory

(4) Categories

(5) Topology

(6) Sheaves on Spaces

(7) Sites and Sheaves

(8) Stacks

(9) Fields
(10)	Commutative Algebra
(11)	Brauer Groups
(12)	Homological Algebra
(13)	Derived Categories
(14)	Simplicial Methods
(15)	More on Algebra
(16)	Smoothing Ring Maps
(17)	Sheaves of Modules
(18)	Modules on Sites
(19)	Injectives
(20)	Cohomology of Sheaves
(21)	Cohomology on Sites
(22)	Differential Graded Algebra
(23)	Divided Power Algebra
(24)	Differential Graded Sheaves
(25)	Hypercoverings

Schemes

(25)	Schemes
(26)	Constructions of Schemes
(27)	Properties of Schemes
(28)	Morphisms of Schemes
(29)	Cohomology of Schemes
(30)	Divisors
(31)	Limits of Schemes
(32)	Varieties
(33)	Topologies on Schemes
(34)	Descent
(35)	Derived Categories of Schemes
(36)	More on Morphisms
(37)	More on Flatness
(38)	Groupoid Schemes
(39)	More on Groupoid Schemes
(40)	Étale Morphisms of Schemes

Topics in Scheme Theory

(41)	Chow Homology
(42)	Intersection Theory
(43)	Picard Schemes of Curves
(44)	Weil Cohomology Theories
(45)	Adequate Modules
(46)	Dualizing Complexes
(47)	Duality for Schemes
(48)	Discriminants and Differentials
(49)	de Rham Cohomology
(50)	Local Cohomology
(51)	Algebraic and Formal Geometry
(52)	Algebraic Curves
(53)	Resolution of Surfaces
(54)	Semistable Reduction

Local Cohomology

(55)	Fundamental Groups of Schemes
(56)	Étale Cohomology
(57)	Crystalline Cohomology
(58)	Pro-étale Cohomology
(59)	More Étale Cohomology
(60)	The Trace Formula

Algebraic Spaces

(61)	Algebraic Spaces
(62)	Properties of Algebraic Spaces
(63)	Morphisms of Algebraic Spaces
(64)	Decent Algebraic Spaces
(65)	Cohomology of Algebraic Spaces
(66)	Limits of Algebraic Spaces
(67)	Divisors on Algebraic Spaces
(68)	Algebraic Spaces over Fields
(69)	Topologies on Algebraic Spaces
(70)	Descent and Algebraic Spaces
(71)	Derived Categories of Spaces
(72)	More on Morphisms of Spaces
(73)	Flatness on Algebraic Spaces
(74)	Groupoids in Algebraic Spaces
(75)	More on Groupoids in Spaces
(76)	Bootstrap
(77)	Pushouts of Algebraic Spaces

Topics in Geometry

(78)	Chow Groups of Spaces
(79)	Quotients of Groupoids
(80)	More on Cohomology of Spaces
(81)	Simplicial Spaces
(82)	Duality for Spaces
(83)	Formal Algebraic Spaces
(84)	Restricted Power Series
(85)	Resolution of Surfaces Revisited

Deformation Theory

(86)	Formal Deformation Theory
(87)	Deformation Theory
(88)	The Cotangent Complex
(89)	Deformation Problems

Algebraic Stacks

(90)	Algebraic Stacks
(91)	Examples of Stacks
(92)	Sheaves on Algebraic Stacks
(93)	Criteria for Representability
(94)	Artin’s Axioms
(95)	Quot and Hilbert Spaces
(96)	Properties of Algebraic Stacks
(97)	Morphisms of Algebraic Stacks
References

