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1. Introduction

0DWP This chapter continues the study of local cohomology. A reference is [Gro68]. The
definition of local cohomology can be found in Dualizing Complexes, Section 9. For
Noetherian rings taking local cohomology is the same as deriving a suitable torsion
functor as is shown in Dualizing Complexes, Section 10. The relationship with
depth can be found in Dualizing Complexes, Section 11.

We discuss finiteness properties of local cohomology leading to a proof of a fairly
general version of Grothendieck’s finiteness theorem, see Theorem 11.6 and Lemma
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12.1 (higher direct images of coherent modules under open immersions). Our meth-
ods incorporate a few very slick arguments the reader can find in papers of Faltings,
see [Fal78] and [Fal81].
As applications we offer a discussion of Hartshorne-Lichtenbaum vanishing. We also
discuss the action of Frobenius and of differential operators on local cohomology.

2. Generalities

0DWQ The following lemma tells us that the functor RΓZ is related to cohomology with
supports.

Lemma 2.1.0A6T Let A be a ring and let I be a finitely generated ideal. Set Z =
V (I) ⊂ X = Spec(A). For K ∈ D(A) corresponding to K̃ ∈ DQCoh(OX) via
Derived Categories of Schemes, Lemma 3.5 there is a functorial isomorphism

RΓZ(K) = RΓZ(X, K̃)
where on the left we have Dualizing Complexes, Equation (9.0.1) and on the right
we have the functor of Cohomology, Section 34.

Proof. By Cohomology, Lemma 34.5 there exists a distinguished triangle
RΓZ(X, K̃) → RΓ(X, K̃) → RΓ(U, K̃) → RΓZ(X, K̃)[1]

where U = X \Z. We know that RΓ(X, K̃) = K by Derived Categories of Schemes,
Lemma 3.5. Say I = (f1, . . . , fr). Then we obtain a finite affine open covering
U : U = D(f1) ∪ . . . ∪ D(fr). By Derived Categories of Schemes, Lemma 9.4 the
alternating Čech complex Tot(Č•

alt(U , K̃•)) computes RΓ(U, K̃) where K• is any
complex of A-modules representing K. Working through the definitions we find

RΓ(U, K̃) = Tot
(
K• ⊗A (

∏
i0
Afi0

→
∏

i0<i1
Afi0 fi1

→ . . . → Af1...fr )
)

It is clear that K• = RΓ(X, K̃•) → RΓ(U, K̃•) is induced by the diagonal map
from A into

∏
Afi

. Hence we conclude that

RΓZ(X,F•) = Tot
(
K• ⊗A (A →

∏
i0
Afi0

→
∏

i0<i1
Afi0 fi1

→ . . . → Af1...fr
)
)

By Dualizing Complexes, Lemma 9.1 this complex computes RΓZ(K) and we see
the lemma holds. □

Lemma 2.2.0DWR Let A be a ring and let I ⊂ A be a finitely generated ideal. Set
X = Spec(A), Z = V (I), U = X \ Z, and j : U → X the inclusion morphism. Let
F be a quasi-coherent OU -module. Then

(1) there exists an A-module M such that F is the restriction of M̃ to U ,
(2) given M there is an exact sequence

0 → H0
Z(M) → M → H0(U,F) → H1

Z(M) → 0
and isomorphisms Hp(U,F) = Hp+1

Z (M) for p ≥ 1,
(3) we may take M = H0(U,F) in which case we have H0

Z(M) = H1
Z(M) = 0.

Proof. The existence of M follows from Properties, Lemma 22.1 and the fact
that quasi-coherent sheaves on X correspond to A-modules (Schemes, Lemma 7.5).
Then we look at the distinguished triangle

RΓZ(X, M̃) → RΓ(X, M̃) → RΓ(U, M̃ |U ) → RΓZ(X, M̃)[1]

https://stacks.math.columbia.edu/tag/0A6T
https://stacks.math.columbia.edu/tag/0DWR
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of Cohomology, Lemma 34.5. Since X is affine we have RΓ(X, M̃) = M by Coho-
mology of Schemes, Lemma 2.2. By our choice of M we have F = M̃ |U and hence
this produces an exact sequence

0 → H0
Z(X, M̃) → M → H0(U,F) → H1

Z(X, M̃) → 0

and isomorphisms Hp(U,F) = Hp+1
Z (X, M̃) for p ≥ 1. By Lemma 2.1 we have

Hi
Z(M) = Hi

Z(X, M̃) for all i. Thus (1) and (2) do hold. Finally, setting M ′ =
H0(U,F) we see that the kernel and cokernel of M → M ′ are I-power torsion.
Therefore M̃ |U → M̃ ′|U is an isomorphism and we can indeed use M ′ as predicted in
(3). It goes without saying that we obtain zero for both H0

Z(M ′) and H0
Z(M ′). □

Lemma 2.3.0DWS Let I, J ⊂ A be finitely generated ideals of a ring A. If M is an
I-power torsion module, then the canonical map

Hi
V (I)∩V (J)(M) → Hi

V (J)(M)
is an isomorphism for all i.

Proof. Use the spectral sequence of Dualizing Complexes, Lemma 9.6 to reduce
to the statement RΓI(M) = M which is immediate from the construction of local
cohomology in Dualizing Complexes, Section 9. □

Lemma 2.4.0DWT Let S ⊂ A be a multiplicative set of a ring A. Let M be an A-module
with S−1M = 0. Then colimf∈S H

0
V (f)(M) = M and colimf∈S H

1
V (f)(M) = 0.

Proof. The statement on H0 follows directly from the definitions. To see the
statement on H1 observe that RΓV (f) and H1

V (f) commute with colimits. Hence
we may assume M is annihilated by some f ∈ S. Then H1

V (ff ′)(M) = 0 for all
f ′ ∈ S (for example by Lemma 2.3). □

Lemma 2.5.0DWU Let I ⊂ A be a finitely generated ideal of a ring A. Let p be a prime
ideal. Let M be an A-module. Let i ≥ 0 be an integer and consider the map

Ψ : colimf∈A,f ̸∈pH
i
V ((I,f))(M) −→ Hi

V (I)(M)
Then

(1) Im(Ψ) is the set of elements which map to zero in Hi
V (I)(M)p,

(2) if Hi−1
V (I)(M)p = 0, then Ψ is injective,

(3) if Hi−1
V (I)(M)p = Hi

V (I)(M)p = 0, then Ψ is an isomorphism.

Proof. For f ∈ A, f ̸∈ p the spectral sequence of Dualizing Complexes, Lemma
9.6 degenerates to give short exact sequences

0 → H1
V (f)(H

i−1
V (I)(M)) → Hi

V ((I,f))(M) → H0
V (f)(Hi

V (I)(M)) → 0

This proves (1) and part (2) follows from this and Lemma 2.4. Part (3) is a formal
consequence. □

Lemma 2.6.0DWV Let I ⊂ I ′ ⊂ A be finitely generated ideals of a Noetherian ring A.
Let M be an A-module. Let i ≥ 0 be an integer. Consider the map

Ψ : Hi
V (I′)(M) → Hi

V (I)(M)
The following are true:

(1) if Hi
pAp

(Mp) = 0 for all p ∈ V (I) \ V (I ′), then Ψ is surjective,

https://stacks.math.columbia.edu/tag/0DWS
https://stacks.math.columbia.edu/tag/0DWT
https://stacks.math.columbia.edu/tag/0DWU
https://stacks.math.columbia.edu/tag/0DWV
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(2) if Hi−1
pAp

(Mp) = 0 for all p ∈ V (I) \ V (I ′), then Ψ is injective,
(3) if Hi

pAp
(Mp) = Hi−1

pAp
(Mp) = 0 for all p ∈ V (I) \ V (I ′), then Ψ is an

isomorphism.

Proof. Proof of (1). Let ξ ∈ Hi
V (I)(M). Since A is Noetherian, there exists a

largest ideal I ⊂ I ′′ ⊂ I ′ such that ξ is the image of some ξ′′ ∈ Hi
V (I′′)(M). If

V (I ′′) = V (I ′), then we are done. If not, choose a generic point p ∈ V (I ′′) not in
V (I ′). Then we have Hi

V (I′′)(M)p = Hi
pAp

(Mp) = 0 by assumption. By Lemma
2.5 we can increase I ′′ which contradicts maximality.

Proof of (2). Let ξ′ ∈ Hi
V (I′)(M) be in the kernel of Ψ. Since A is Noetherian,

there exists a largest ideal I ⊂ I ′′ ⊂ I ′ such that ξ′ maps to zero in Hi
V (I′′)(M). If

V (I ′′) = V (I ′), then we are done. If not, then choose a generic point p ∈ V (I ′′) not
in V (I ′). Then we have Hi−1

V (I′′)(M)p = Hi−1
pAp

(Mp) = 0 by assumption. By Lemma
2.5 we can increase I ′′ which contradicts maximality.

Part (3) is formal from parts (1) and (2). □

3. Hartshorne’s connectedness lemma

0FIV The title of this section refers to the following result.

Lemma 3.1.0BLR [Har62, Proposition
2.1]

Let A be a Noetherian local ring of depth ≥ 2. Then the punctured
spectra of A, Ah, and Ash are connected.

Proof. Let U be the punctured spectrum of A. If U is disconnected then we see
that Γ(U,OU ) has a nontrivial idempotent. But A, being local, does not have a
nontrivial idempotent. Hence A → Γ(U,OU ) is not an isomorphism. By Lemma
2.2 we conclude that either H0

m(A) or H1
m(A) is nonzero. Thus depth(A) ≤ 1 by

Dualizing Complexes, Lemma 11.1. To see the result for Ah and Ash use More on
Algebra, Lemma 45.8. □

Lemma 3.2.0FIW [DG67, Corollary
5.10.9]

Let A be a Noetherian local ring which is catenary and (S2). Then
Spec(A) is equidimensional.

Proof. Set X = Spec(A). Say d = dim(A) = dim(X). Inside X consider the
union X1 of the irreducible components of dimension d and the union X2 of the
irreducible components of dimension < d. Of course X = X1 ∪ X2. If X2 = ∅,
then the lemma holds. If not, then Z = X1 ∩X2 is a nonempty closed subset of X
because it contains at least the closed point of X. Hence we can choose a generic
point z ∈ Z of an irreducible component of Z. Recall that the spectrum of OZ,z is
the set of points of X specializing to z. Since z is both contained in an irreducible
component of dimension d and in an irreducible component of dimension < d we
obtain nontrivial specializations x1 ⇝ z and x2 ⇝ z such that the closures of x1
and x2 have different dimensions. Since X is catenary, this can only happen if
at least one of the specializations x1 ⇝ z and x2 ⇝ z is not immediate! Thus
dim(OZ,z) ≥ 2. Therefore depth(OZ,z) ≥ 2 because A is (S2). However, the
punctured spectrum U of OZ,z is disconnected because the closed subsets U ∩ X1
and U ∩ X2 are disjoint (by our choice of z) and cover U . This is a contradiction
with Lemma 3.1 and the proof is complete. □

https://stacks.math.columbia.edu/tag/0BLR
https://stacks.math.columbia.edu/tag/0FIW
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4. Cohomological dimension

0DX6 A quick section about cohomological dimension.

Lemma 4.1.0DX7 Let I ⊂ A be a finitely generated ideal of a ring A. Set Y = V (I) ⊂
X = Spec(A). Let d ≥ −1 be an integer. The following are equivalent

(1) Hi
Y (A) = 0 for i > d,

(2) Hi
Y (M) = 0 for i > d for every A-module M , and

(3) if d = −1, then Y = ∅, if d = 0, then Y is open and closed in X, and if
d > 0 then Hi(X \ Y,F) = 0 for i ≥ d for every quasi-coherent OX\Y -
module F .

Proof. Observe that RΓY (−) has finite cohomological dimension by Dualizing
Complexes, Lemma 9.1 for example. Hence there exists an integer i0 such that
Hi

Y (M) = 0 for all A-modules M and i ≥ i0.

Let us prove that (1) and (2) are equivalent. It is immediate that (2) implies (1).
Assume (1). By descending induction on i > d we will show that Hi

Y (M) = 0 for
all A-modules M . For i ≥ i0 we have seen this above. To do the induction step,
let i0 > i > d. Choose any A-module M and fit it into a short exact sequence
0 → N → F → M → 0 where F is a free A-module. Since RΓY is a right adjoint,
we see that Hi

Y (−) commutes with direct sums. Hence Hi
Y (F ) = 0 as i > d by

assumption (1). Then we see that Hi
Y (M) = Hi+1

Y (N) = 0 as desired.

Assume d = −1 and (2) holds. Then 0 = H0
Y (A/I) = A/I ⇒ A = I ⇒ Y = ∅.

Thus (3) holds. We omit the proof of the converse.

Assume d = 0 and (2) holds. Set J = H0
I (A) = {x ∈ A | Inx = 0 for some n > 0}.

Then

H1
Y (A) = Coker(A → Γ(X\Y,OX\Y )) and H1

Y (I) = Coker(I → Γ(X\Y,OX\Y ))

and the kernel of the first map is equal to J . See Lemma 2.2. We conclude from
(2) that I(A/J) = A/J . Thus we may pick f ∈ I mapping to 1 in A/J . Then
1 − f ∈ J so In(1 − f) = 0 for some n > 0. Hence fn = fn+1. Then e = fn ∈ I
is an idempotent. Consider the complementary idempotent e′ = 1 − fn ∈ J . For
any element g ∈ I we have gme′ = 0 for some m > 0. Thus I is contained in the
radical of ideal (e) ⊂ I. This means Y = V (I) = V (e) is open and closed in X
as predicted in (3). Conversely, if Y = V (I) is open and closed, then the functor
H0

Y (−) is exact and has vanshing higher derived functors.

If d > 0, then we see immediately from Lemma 2.2 that (2) is equivalent to (3). □

Definition 4.2.0DX8 Let I ⊂ A be a finitely generated ideal of a ring A. The smallest
integer d ≥ −1 satisfying the equivalent conditions of Lemma 4.1 is called the
cohomological dimension of I in A and is denoted cd(A, I).

Thus we have cd(A, I) = −1 if I = A and cd(A, I) = 0 if I is locally nilpotent or
generated by an idempotent. Observe that cd(A, I) exists by the following lemma.

Lemma 4.3.0DX9 Let I ⊂ A be a finitely generated ideal of a ring A. Then
(1) cd(A, I) is at most equal to the number of generators of I,
(2) cd(A, I) ≤ r if there exist f1, . . . , fr ∈ A such that V (f1, . . . , fr) = V (I),
(3) cd(A, I) ≤ c if Spec(A) \ V (I) can be covered by c affine opens.

https://stacks.math.columbia.edu/tag/0DX7
https://stacks.math.columbia.edu/tag/0DX8
https://stacks.math.columbia.edu/tag/0DX9
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Proof. The explicit description for RΓY (−) given in Dualizing Complexes, Lemma
9.1 shows that (1) is true. We can deduce (2) from (1) using the fact that RΓZ

depends only on the closed subset Z and not on the choice of the finitely generated
ideal I ⊂ A with V (I) = Z. This follows either from the construction of local
cohomology in Dualizing Complexes, Section 9 combined with More on Algebra,
Lemma 88.6 or it follows from Lemma 2.1. To see (3) we use Lemma 4.1 and the
vanishing result of Cohomology of Schemes, Lemma 4.2. □

Lemma 4.4.0ECP Let I, J ⊂ A be finitely generated ideals of a ring A. Then cd(A, I+
J) ≤ cd(A, I) + cd(A, J).

Proof. Use the definition and Dualizing Complexes, Lemma 9.6. □

Lemma 4.5.0DXA Let A → B be a ring map. Let I ⊂ A be a finitely generated ideal.
Then cd(B, IB) ≤ cd(A, I). If A → B is faithfully flat, then equality holds.

Proof. Use the definition and Dualizing Complexes, Lemma 9.3. □

Lemma 4.6.0DXB Let I ⊂ A be a finitely generated ideal of a ring A. Then cd(A, I) =
max cd(Ap, Ip).

Proof. Let Y = V (I) and Y ′ = V (Ip) ⊂ Spec(Ap). Recall that RΓY (A) ⊗A Ap =
RΓY ′(Ap) by Dualizing Complexes, Lemma 9.3. Thus we conclude by Algebra,
Lemma 23.1. □

Lemma 4.7.0DXC Let I ⊂ A be a finitely generated ideal of a ring A. If M is a
finite A-module, then Hi

V (I)(M) = 0 for i > dim(Supp(M)). In particular, we have
cd(A, I) ≤ dim(A).

Proof. We first prove the second statement. Recall that dim(A) denotes the Krull
dimension. By Lemma 4.6 we may assume A is local. If V (I) = ∅, then the
result is true. If V (I) ̸= ∅, then dim(Spec(A) \ V (I)) < dim(A) because the closed
point is missing. Observe that U = Spec(A) \ V (I) is a quasi-compact open of the
spectral space Spec(A), hence a spectral space itself. See Algebra, Lemma 26.2 and
Topology, Lemma 23.5. Thus Cohomology, Proposition 22.4 implies Hi(U,F) = 0
for i ≥ dim(A) which implies what we want by Lemma 4.1. In the Noetherian case
the reader may use Grothendieck’s Cohomology, Proposition 20.7.

We will deduce the first statement from the second. Let a be the annihilator of the
finite A-module M . Set B = A/a. Recall that Spec(B) = Supp(M), see Algebra,
Lemma 40.5. Set J = IB. Then M is a B-module and Hi

V (I)(M) = Hi
V (J)(M),

see Dualizing Complexes, Lemma 9.2. Since cd(B, J) ≤ dim(B) = dim(Supp(M))
by the first part we conclude. □

Lemma 4.8.0DXD Let I ⊂ A be a finitely generated ideal of a ring A. If cd(A, I) = 1
then Spec(A) \ V (I) is nonempty affine.

Proof. This follows from Lemma 4.1 and Cohomology of Schemes, Lemma 3.1. □

Lemma 4.9.0DXE Let (A,m) be a Noetherian local ring of dimension d. Then Hd
m(A)

is nonzero and cd(A,m) = d.

Proof. By one of the characterizations of dimension, there exists an ideal of defini-
tion for A generated by d elements, see Algebra, Proposition 60.9. Hence cd(A,m) ≤

https://stacks.math.columbia.edu/tag/0ECP
https://stacks.math.columbia.edu/tag/0DXA
https://stacks.math.columbia.edu/tag/0DXB
https://stacks.math.columbia.edu/tag/0DXC
https://stacks.math.columbia.edu/tag/0DXD
https://stacks.math.columbia.edu/tag/0DXE


LOCAL COHOMOLOGY 7

d by Lemma 4.3. Thus Hd
m(A) is nonzero if and only if cd(A,m) = d if and only if

cd(A,m) ≥ d.

Let A → A∧ be the map from A to its completion. Observe that A∧ is a Noetherian
local ring of the same dimension as A with maximal ideal mA∧. See Algebra,
Lemmas 97.6, 97.4, and 97.3 and More on Algebra, Lemma 43.1. By Lemma 4.5 it
suffices to prove the lemma for A∧.

By the previous paragraph we may assume that A is a complete local ring. Then A
has a normalized dualizing complex ω•

A (Dualizing Complexes, Lemma 22.4). The
local duality theorem (in the form of Dualizing Complexes, Lemma 18.4) tells us
Hd

m(A) is Matlis dual to Ext−d(A,ω•
A) = H−d(ω•

A) which is nonzero for example
by Dualizing Complexes, Lemma 16.11. □

Lemma 4.10.0DXF Let (A,m) be a Noetherian local ring. Let I ⊂ A be a proper ideal.
Let p ⊂ A be a prime ideal such that V (p)∩V (I) = {m}. Then dim(A/p) ≤ cd(A, I).

Proof. By Lemma 4.5 we have cd(A, I) ≥ cd(A/p, I(A/p)). Since V (I) ∩ V (p) =
{m} we have cd(A/p, I(A/p)) = cd(A/p,m/p). By Lemma 4.9 this is equal to
dim(A/p). □

Lemma 4.11.0EHU Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let b : X ′ →
X = Spec(A) be the blowing up of I. If the fibres of b have dimension ≤ d−1, then
cd(A, I) ≤ d.

Proof. Set U = X \ V (I). Denote j : U → X ′ the canonical open immersion, see
Divisors, Section 32. Since the exceptional divisor is an effective Cartier divisor
(Divisors, Lemma 32.4) we see that j is affine, see Divisors, Lemma 13.3. Let F
be a quasi-coherent OU -module. Then Rpj∗F = 0 for p > 0, see Cohomology of
Schemes, Lemma 2.3. On the other hand, we have Rqb∗(j∗F) = 0 for q ≥ d by
Limits, Lemma 19.2. Thus by the Leray spectral sequence (Cohomology, Lemma
13.8) we conclude that Rn(b ◦ j)∗F = 0 for n ≥ d. Thus Hn(U,F) = 0 for n ≥ d
(by Cohomology, Lemma 13.6). This means that cd(A, I) ≤ d by definition. □

5. More general supports

0EEY Let A be a Noetherian ring. Let M be an A-module. Let T ⊂ Spec(A) be a subset
stable under specialization (Topology, Definition 19.1). Let us define

H0
T (M) = colimZ⊂T H

0
Z(M)

where the colimit is over the directed partially ordered set of closed subsets Z of
Spec(A) contained in T 1. In other words, an element m of M is in H0

T (M) ⊂ M if
and only if the support V (AnnR(m)) of m is contained in T .

Lemma 5.1.0EEZ Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. For an A-module M the following are equivalent

(1) H0
T (M) = M , and

(2) Supp(M) ⊂ T .
The category of such A-modules is a Serre subcategory of the category A-modules
closed under direct sums.

1Since T is stable under specialization we have T =
⋃

Z⊂T
Z, see Topology, Lemma 19.3.

https://stacks.math.columbia.edu/tag/0DXF
https://stacks.math.columbia.edu/tag/0EHU
https://stacks.math.columbia.edu/tag/0EEZ
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Proof. The equivalence holds because the support of an element of M is contained
in the support of M and conversely the support of M is the union of the supports
of its elements. The category of these modules is a Serre subcategory (Homology,
Definition 10.1) of ModA by Algebra, Lemma 40.9. We omit the proof of the
statement on direct sums. □

Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under specializa-
tion. Let us denote ModA,T ⊂ ModA the Serre subcategory described in Lemma 5.1.
Let us denote DT (A) ⊂ D(A) the strictly full saturated triangulated subcategory
of D(A) (Derived Categories, Lemma 17.1) consisting of complexes of A-modules
whose cohomology modules are in ModA,T . We obtain functors

D(ModA,T ) → DT (A) → D(A)
See discussion in Derived Categories, Section 17. DenoteRH0

T : D(A) → D(ModA,T )
the right derived extension of H0

T . We will denote
RΓT : D+(A) → D+

T (A),
the composition of RH0

T : D+(A) → D+(ModA,T ) with D+(ModA,T ) → D+
T (A).

If the dimension of A is finite2, then we will denote
RΓT : D(A) → DT (A)

the composition of RH0
T with D(ModA,T ) → DT (A).

Lemma 5.2.0EF0 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under
specialization. The functor RH0

T is the right adjoint to the functor D(ModA,T ) →
D(A).

Proof. This follows from the fact that the functor H0
T (−) is the right adjoint to

the inclusion functor ModA,T → ModA, see Derived Categories, Lemma 30.3. □

Lemma 5.3.0EF1 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. For any object K of D(A) we have

Hi(RH0
T (K)) = colimZ⊂T closed H

i
Z(K)

Proof. Let J• be a K-injective complex representing K. By definition RH0
T is

represented by the complex
H0

T (J•) = colimH0
Z(J•)

where the equality follows from our definition ofH0
T . Since filtered colimits are exact

the cohomology of this complex in degree i is colimHi(H0
Z(J•)) = colimHi

Z(K) as
desired. □

Lemma 5.4.0EF2 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. The functor D+(ModA,T ) → D+

T (A) is an equivalence.

Proof. Let M be an object of ModA,T . Choose an embedding M → J into an
injective A-module. By Dualizing Complexes, Proposition 5.9 the module J is a
direct sum of injective hulls of residue fields. Let E be an injective hull of the
residue field of p. Since E is p-power torsion we see that H0

T (E) = 0 if p ̸∈ T and
H0

T (E) = E if p ∈ T . Thus H0
T (J) is injective as a direct sum of injective hulls (by

the proposition) and we have an embedding M → H0
T (J). Thus every object M

2If dim(A) = ∞ the construction may have unexpected properties on unbounded complexes.

https://stacks.math.columbia.edu/tag/0EF0
https://stacks.math.columbia.edu/tag/0EF1
https://stacks.math.columbia.edu/tag/0EF2
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of ModA,T has an injective resolution M → J• with Jn also in ModA,T . It follows
that RH0

T (M) = M .

Next, suppose that K ∈ D+
T (A). Then the spectral sequence

RqH0
T (Hp(K)) ⇒ Rp+qH0

T (K)

(Derived Categories, Lemma 21.3) converges and above we have seen that only the
terms with q = 0 are nonzero. Thus we see that RH0

T (K) → K is an isomorphism.
Thus the functor D+(ModA,T ) → D+

T (A) is an equivalence with quasi-inverse given
by RH0

T . □

Lemma 5.5.0EF3 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. If dim(A) < ∞, then functor D(ModA,T ) → DT (A) is an
equivalence.

Proof. Say dim(A) = d. Then we see that Hi
Z(M) = 0 for i > d for every closed

subset Z of Spec(A), see Lemma 4.7. By Lemma 5.3 we find that H0
T has bounded

cohomological dimension.

Let K ∈ DT (A). We claim that RH0
T (K) → K is an isomorphism. We know this

is true when K is bounded below, see Lemma 5.4. However, since H0
T has bounded

cohomological dimension, we see that the ith cohomology of RH0
T (K) only depends

on τ≥−d+iK and we conclude. Thus D(ModA,T ) → DT (A) is an equivalence with
quasi-inverse RH0

T . □

Remark 5.6.0EF4 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset
stable under specialization. The upshot of the discussion above is that RΓT :
D+(A) → D+

T (A) is the right adjoint to the inclusion functor D+
T (A) → D+(A).

If dim(A) < ∞, then RΓT : D(A) → DT (A) is the right adjoint to the inclusion
functor DT (A) → D(A). In both cases we have

Hi
T (K) = Hi(RΓT (K)) = RiH0

T (K) = colimZ⊂T closed H
i
Z(K)

This follows by combining Lemmas 5.2, 5.3, 5.4, and 5.5.

Lemma 5.7.0EF5 Let A → B be a flat homomorphism of Noetherian rings. Let
T ⊂ Spec(A) be a subset stable under specialization. Let T ′ ⊂ Spec(B) be the
inverse image of T . Then the canonical map

RΓT (K) ⊗L
A B −→ RΓT ′(K ⊗L

A B)

is an isomorphism for K ∈ D+(A). If A and B have finite dimension, then this is
true for K ∈ D(A).

Proof. From the map RΓT (K) → K we get a map RΓT (K) ⊗L
A B → K ⊗L

A B.
The cohomology modules of RΓT (K) ⊗L

A B are supported on T ′ and hence we get
the arrow of the lemma. This arrow is an isomorphism if T is a closed subset of
Spec(A) by Dualizing Complexes, Lemma 9.3. Recall that Hi

T (K) is the colimit of
Hi

Z(K) where Z runs over the (directed set of) closed subsets of T , see Lemma 5.3.
Correspondingly Hi

T ′(K⊗L
AB) = colimHi

Z′(K⊗L
AB) where Z ′ is the inverse image

of Z. Thus the result because ⊗AB commutes with filtered colimits and there are
no higher Tors. □

https://stacks.math.columbia.edu/tag/0EF3
https://stacks.math.columbia.edu/tag/0EF4
https://stacks.math.columbia.edu/tag/0EF5
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Lemma 5.8.0EF6 Let A be a ring and let T, T ′ ⊂ Spec(A) subsets stable under spe-
cialization. For K ∈ D+(A) there is a spectral sequence

Ep,q
2 = Hp

T (Hp
T ′(K)) ⇒ Hp+q

T ∩T ′(K)
as in Derived Categories, Lemma 22.2.

Proof. Let E be an object of DT ∩T ′(A). Then we have
Hom(E,RΓT (RΓT ′(K))) = Hom(E,RΓT ′(K)) = Hom(E,K)

The first equality by the adjointness property of RΓT and the second by the adjoint-
ness property of RΓT ′ . On the other hand, if J• is a bounded below complex of in-
jectives representingK, thenH0

T ′(J•) is a complex of injective A-modules represent-
ing RΓT ′(K) and hence H0

T (H0
T ′(J•)) is a complex representing RΓT (RΓT ′(K)).

Thus RΓT (RΓT ′(K)) is an object of D+
T ∩T ′(A). Combining these two facts we find

that RΓT ∩T ′ = RΓT ◦ RΓT ′ . This produces the spectral sequence by the lemma
referenced in the statement. □

Lemma 5.9.0EF7 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. Assume A has finite dimension. Then

RΓT (K) = RΓT (A) ⊗L
A K

for K ∈ D(A). For K,L ∈ D(A) we have
RΓT (K ⊗L

A L) = K ⊗L
A RΓT (L) = RΓT (K) ⊗L

A L = RΓT (K) ⊗L
A RΓT (L)

If K or L is in DT (A) then so is K ⊗L
A L.

Proof. By construction we may represent RΓT (A) by a complex J• in ModA,T .
Thus if we represent K by a K-flat complex K• then we see that RΓT (A) ⊗L

A K is
represented by the complex Tot(J•⊗AK

•) in ModA,T . Using the map RΓT (A) → A
we obtain a map RΓT (A) ⊗L

A K → K. Thus by the adjointness property of RΓT

we obtain a canonical map
RΓT (A) ⊗L

A K −→ RΓT (K)
factoring the just constructed map. Observe that RΓT commutes with direct sums
in D(A) for example by Lemma 5.3, the fact that directed colimits commute with
direct sums, and the fact that usual local cohomology commutes with direct sums
(for example by Dualizing Complexes, Lemma 9.1). Thus by More on Algebra,
Remark 59.11 it suffices to check the map is an isomorphism for K = A[k] where
k ∈ Z. This is clear.
The final statements follow from the result we’ve just shown by transitivity of
derived tensor products. □

6. Filtrations on local cohomology

0EHV Some tricks related to the spectral sequence of Lemma 5.8.

Lemma 6.1.0EF8 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. Let T ′ ⊂ T be the set of nonminimal primes in T . Then T ′

is a subset of Spec(A) stable under specialization and for every A-module M there
is an exact sequence

0 → colimZ,f H
1
f (Hi−1

Z (M)) → Hi
T ′(M) → Hi

T (M) →
⊕

p∈T \T ′
Hi

pAp
(Mp)

https://stacks.math.columbia.edu/tag/0EF6
https://stacks.math.columbia.edu/tag/0EF7
https://stacks.math.columbia.edu/tag/0EF8
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where the colimit is over closed subsets Z ⊂ T and f ∈ A with V (f) ∩ Z ⊂ T ′.

Proof. For every Z and f the spectral sequence of Dualizing Complexes, Lemma
9.6 degenerates to give short exact sequences

0 → H1
f (Hi−1

Z (M)) → Hi
Z∩V (f)(M) → H0

f (Hi
Z(M)) → 0

We will use this without further mention below.
Let ξ ∈ Hi

T (M) map to zero in the direct sum. Then we first write ξ as the image
of some ξ′ ∈ Hi

Z(M) for some closed subset Z ⊂ T , see Lemma 5.3. Then ξ′ maps
to zero in Hi

pAp
(Mp) for every p ∈ Z, p ̸∈ T ′. Since there are finitely many of these

primes, we may choose f ∈ A not contained in any of these such that f annihilates
ξ′. Then ξ′ is the image of some ξ′′ ∈ Hi

Z′(M) where Z ′ = Z ∩V (f). By our choice
of f we have Z ′ ⊂ T ′ and we get exactness at the penultimate spot.
Let ξ ∈ Hi

T ′(M) map to zero in Hi
T (M). Choose closed subsets Z ′ ⊂ Z with

Z ′ ⊂ T ′ and Z ⊂ T such that ξ comes from ξ′ ∈ Hi
Z′(M) and maps to zero in

Hi
Z(M). Then we can find f ∈ A with V (f) ∩ Z = Z ′ and we conclude. □

Lemma 6.2.0EF9 Let A be a Noetherian ring of finite dimension. Let T ⊂ Spec(A)
be a subset stable under specialization. Let {Mn}n≥0 be an inverse system of A-
modules. Let i ≥ 0 be an integer. Assume that for every m there exists an integer
m′(m) ≥ m such that for all p ∈ T the induced map

Hi
pAp

(Mk,p) −→ Hi
pAp

(Mm,p)

is zero for k ≥ m′(m). Let m′′ : N → N be the 2dim(T )-fold self-composition of m′.
Then the map Hi

T (Mk) → Hi
T (Mm) is zero for all k ≥ m′′(m).

Proof. We first make a general remark: suppose we have an exact sequence
(An) → (Bn) → (Cn)

of inverse systems of abelian groups. Suppose that for every m there exists an
integer m′(m) ≥ m such that

Ak → Am and Ck → Cm

are zero for k ≥ m′(m). Then for k ≥ m′(m′(m)) the map Bk → Bm is zero.
We will prove the lemma by induction on dim(T ) which is finite because dim(A) is
finite. Let T ′ ⊂ T be the set of nonminimal primes in T . Then T ′ is a subset of
Spec(A) stable under specialization and the hypotheses of the lemma apply to T ′.
Since dim(T ′) < dim(T ) we know the lemma holds for T ′. For every A-module M
there is an exact sequence

Hi
T ′(M) → Hi

T (M) →
⊕

p∈T \T ′
Hi

pAp
(Mp)

by Lemma 6.1. Thus we conclude by the initial remark of the proof. □

Lemma 6.3.0EFA Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. Let {Mn}n≥0 be an inverse system of A-modules. Let i ≥ 0 be
an integer. Assume the dimension of A is finite and that for every m there exists
an integer m′(m) ≥ m such that for all p ∈ T we have

(1) Hi−1
pAp

(Mk,p) → Hi−1
pAp

(Mm,p) is zero for k ≥ m′(m), and
(2) Hi

pAp
(Mk,p) → Hi

pAp
(Mm,p) has image G(p,m) independent of k ≥ m′(m)

and moreover G(p,m) maps injectively into Hi
pAp

(M0,p).

https://stacks.math.columbia.edu/tag/0EF9
https://stacks.math.columbia.edu/tag/0EFA
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Then there exists an integer m0 such that for every m ≥ m0 there exists an integer
m′′(m) ≥ m such that for k ≥ m′′(m) the image of Hi

T (Mk) → Hi
T (Mm) maps

injectively into Hi
T (Mm0).

Proof. We first make a general remark: suppose we have an exact sequence
(An) → (Bn) → (Cn) → (Dn)

of inverse systems of abelian groups. Suppose that there exists an integer m0 such
that for every m ≥ m0 there exists an integer m′(m) ≥ m such that the maps

Im(Bk → Bm) −→ Bm0 and Im(Dk → Dm) −→ Dm0

are injective for k ≥ m′(m) and Ak → Am is zero for k ≥ m′(m). Then for
m ≥ m′(m0) and k ≥ m′(m′(m)) the map

Im(Ck → Cm) → Cm′(m0)

is injective. Namely, let c0 ∈ Cm be the image of c3 ∈ Ck and say c0 maps to zero
in Cm′(m0). Picture

Ck → Cm′(m′(m)) → Cm′(m) → Cm → Cm′(m0), c3 7→ c2 7→ c1 7→ c0 7→ 0
We have to show c0 = 0. The image d3 of c3 maps to zero in Cm0 and hence we see
that the image d1 ∈ Dm′(m) is zero. Thus we can choose b1 ∈ Bm′(m) mapping to
the image c1. Since c3 maps to zero in Cm′(m0) we find an element a−1 ∈ Am′(m0)
which maps to the image b−1 ∈ Bm′(m0) of b1. Since a−1 maps to zero in Am0 we
conclude that b1 maps to zero in Bm0 . Thus the image b0 ∈ Bm is zero which of
course implies c0 = 0 as desired.
We will prove the lemma by induction on dim(T ) which is finite because dim(A) is
finite. Let T ′ ⊂ T be the set of nonminimal primes in T . Then T ′ is a subset of
Spec(A) stable under specialization and the hypotheses of the lemma apply to T ′.
Since dim(T ′) < dim(T ) we know the lemma holds for T ′. For every A-module M
there is an exact sequence

0 → colimZ,f H
1
f (Hi−1

Z (M)) → Hi
T ′(M) → Hi

T (M) →
⊕

p∈T \T ′
Hi

pAp
(Mp)

by Lemma 6.1. Thus we conclude by the initial remark of the proof and the fact
that we’ve seen the system of groups{

colimZ,f H
1
f (Hi−1

Z (Mn))
}

n≥0

is pro-zero in Lemma 6.2; this uses that the function m′′(m) in that lemma for
Hi−1

Z (M) is independent of Z. □

7. Finiteness of local cohomology, I

0AW7 We will follow Faltings approach to finiteness of local cohomology modules, see
[Fal78] and [Fal81]. Here is a lemma which shows that it suffices to prove local
cohomology modules have an annihilator in order to prove that they are finite
modules.

Lemma 7.1.0AW8 [Fal78, Lemma 3]Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. Let M be a finite A-module. Let n ≥ 0. The following are
equivalent

(1) Hi
T (M) is finite for i ≤ n,

https://stacks.math.columbia.edu/tag/0AW8
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(2) there exists an ideal J ⊂ A with V (J) ⊂ T such that J annihilates Hi
T (M)

for i ≤ n.
If T = V (I) = Z for an ideal I ⊂ A, then these are also equivalent to

(3) there exists an e ≥ 0 such that Ie annihilates Hi
Z(M) for i ≤ n.

Proof. We prove the equivalence of (1) and (2) by induction on n. For n = 0 we
have H0

T (M) ⊂ M is finite. Hence (1) is true. Since H0
T (M) = colimH0

V (J)(M)
with J as in (2) we see that (2) is true. Assume that n > 0.

Assume (1) is true. Recall that Hi
J(M) = Hi

V (J)(M), see Dualizing Complexes,
Lemma 10.1. Thus Hi

T (M) = colimHi
J(M) where the colimit is over ideals J ⊂ A

with V (J) ⊂ T , see Lemma 5.3. Since Hi
T (M) is finitely generated for i ≤ n we

can find a J ⊂ A as in (2) such that Hi
J(M) → Hi

T (M) is surjective for i ≤ n.
Thus the finite list of generators are J-power torsion elements and we see that (2)
holds with J replaced by some power.

Assume we have J as in (2). Let N = H0
T (M) and M ′ = M/N . By construction

of RΓT we find that Hi
T (N) = 0 for i > 0 and H0

T (N) = N , see Remark 5.6. Thus
we find that H0

T (M ′) = 0 and Hi
T (M ′) = Hi

T (M) for i > 0. We conclude that we
may replace M by M ′. Thus we may assume that H0

T (M) = 0. This means that
the finite set of associated primes of M are not in T . By prime avoidance (Algebra,
Lemma 15.2) we can find f ∈ J not contained in any of the associated primes of
M . Then the long exact local cohomology sequence associated to the short exact
sequence

0 → M → M → M/fM → 0
turns into short exact sequences

0 → Hi
T (M) → Hi

T (M/fM) → Hi+1
T (M) → 0

for i < n. We conclude that J2 annihilates Hi
T (M/fM) for i < n. By induction

hypothesis we see that Hi
T (M/fM) is finite for i < n. Using the short exact

sequence once more we see that Hi+1
T (M) is finite for i < n as desired.

We omit the proof of the equivalence of (2) and (3) in case T = V (I). □

The following result of Faltings allows us to prove finiteness of local cohomology at
the level of local rings.

Lemma 7.2.0AW9 This is a special
case of [Fal81, Satz
1].

Let A be a Noetherian ring, I ⊂ A an ideal, M a finite A-module,
and n ≥ 0 an integer. Let Z = V (I). The following are equivalent

(1) the modules Hi
Z(M) are finite for i ≤ n, and

(2) for all p ∈ Spec(A) the modules Hi
Z(M)p, i ≤ n are finite Ap-modules.

Proof. The implication (1) ⇒ (2) is immediate. We prove the converse by induc-
tion on n. The case n = 0 is clear because both (1) and (2) are always true in that
case.

Assume n > 0 and that (2) is true. Let N = H0
Z(M) and M ′ = M/N . By

Dualizing Complexes, Lemma 11.6 we may replace M by M ′. Thus we may assume
that H0

Z(M) = 0. This means that depthI(M) > 0 (Dualizing Complexes, Lemma
11.1). Pick f ∈ I a nonzerodivisor on M and consider the short exact sequence

0 → M → M → M/fM → 0

https://stacks.math.columbia.edu/tag/0AW9
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which produces a long exact sequence

0 → H0
Z(M/fM) → H1

Z(M) → H1
Z(M) → H1

Z(M/fM) → H2
Z(M) → . . .

and similarly after localization. Thus assumption (2) implies that the modules
Hi

Z(M/fM)p are finite for i < n. Hence by induction assumption Hi
Z(M/fM) are

finite for i < n.

Let p be a prime of A which is associated to Hi
Z(M) for some i ≤ n. Say p is the

annihilator of the element x ∈ Hi
Z(M). Then p ∈ Z, hence f ∈ p. Thus fx = 0 and

hence x comes from an element of Hi−1
Z (M/fM) by the boundary map δ in the long

exact sequence above. It follows that p is an associated prime of the finite module
Im(δ). We conclude that Ass(Hi

Z(M)) is finite for i ≤ n, see Algebra, Lemma 63.5.

Recall that
Hi

Z(M) ⊂
∏

p∈Ass(Hi
Z

(M))
Hi

Z(M)p

by Algebra, Lemma 63.19. Since by assumption the modules on the right hand side
are finite and I-power torsion, we can find integers ep,i ≥ 0, i ≤ n, p ∈ Ass(Hi

Z(M))
such that Iep,i annihilates Hi

Z(M)p. We conclude that Ie with e = max{ep,i}
annihilates Hi

Z(M) for i ≤ n. By Lemma 7.1 we see that Hi
Z(M) is finite for

i ≤ n. □

Lemma 7.3.0BPX Let A be a ring and let J ⊂ I ⊂ A be finitely generated ideals. Let
i ≥ 0 be an integer. Set Z = V (I). If Hi

Z(A) is annihilated by Jn for some n,
then Hi

Z(M) annihilated by Jm for some m = m(M) for every finitely presented
A-module M such that Mf is a finite locally free Af -module for all f ∈ I.

Proof. Consider the annihilator a of Hi
Z(M). Let p ⊂ A with p ̸∈ Z. By assump-

tion there exists an f ∈ I, f ̸∈ p and an isomorphism φ : A⊕r
f → Mf of Af -modules.

Clearing denominators (and using that M is of finite presentation) we find maps

a : A⊕r −→ M and b : M −→ A⊕r

with af = fNφ and bf = fNφ−1 for some N . Moreover we may assume that a ◦ b
and b◦a are equal to multiplication by f2N . Thus we see that Hi

Z(M) is annihilated
by f2NJn, i.e., f2NJn ⊂ a.

As U = Spec(A) \ Z is quasi-compact we can find finitely many f1, . . . , ft and
N1, . . . , Nt such that U =

⋃
D(fj) and f

2Nj

j Jn ⊂ a. Then V (I) = V (f1, . . . , ft)
and since I is finitely generated we conclude IM ⊂ (f1, . . . , ft) for some M . All in
all we see that Jm ⊂ a for m ≫ 0, for example m = M(2N1 + . . . + 2Nt)n will
do. □

Lemma 7.4.0BPY Let A be a Noetherian ring. Let I ⊂ A be an ideal. Set Z = V (I).
Let n ≥ 0 be an integer. If Hi

Z(A) is finite for 0 ≤ i ≤ n, then the same is true for
Hi

Z(M), 0 ≤ i ≤ n for any finite A-module M such that Mf is a finite locally free
Af -module for all f ∈ I.

Proof. The assumption that Hi
Z(A) is finite for 0 ≤ i ≤ n implies there exists an

e ≥ 0 such that Ie annihilates Hi
Z(A) for 0 ≤ i ≤ n, see Lemma 7.1. Then Lemma

7.3 implies that Hi
Z(M), 0 ≤ i ≤ n is annihilated by Im for some m = m(M, i).

We may take the same m for all 0 ≤ i ≤ n. Then Lemma 7.1 implies that Hi
Z(M)

is finite for 0 ≤ i ≤ n as desired. □

https://stacks.math.columbia.edu/tag/0BPX
https://stacks.math.columbia.edu/tag/0BPY
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8. Finiteness of pushforwards, I

0BL8 In this section we discuss the easiest nontrivial case of the finiteness theorem,
namely, the finiteness of the first local cohomology or what is equivalent, finite-
ness of j∗F where j : U → X is an open immersion, X is locally Noetherian, and
F is a coherent sheaf on U . Following a method of Kollár ([Kol16] and [Kol15])
we find a necessary and sufficient condition, see Proposition 8.7. The reader who
is interested in higher direct images or higher local cohomology groups should skip
ahead to Section 12 or Section 11 (which are developed independently of the rest
of this section).

Lemma 8.1.0BJZ Let X be a locally Noetherian scheme. Let j : U → X be the
inclusion of an open subscheme with complement Z. For x ∈ U let ix : Wx → U be
the integral closed subscheme with generic point x. Let F be a coherent OU -module.
The following are equivalent

(1) for all x ∈ Ass(F) the OX-module j∗ix,∗OWx
is coherent,

(2) j∗F is coherent.

Proof. We first prove that (1) implies (2). Assume (1) holds. The statement is
local on X, hence we may assume X is affine. Then U is quasi-compact, hence
Ass(F) is finite (Divisors, Lemma 2.5). Thus we may argue by induction on the
number of associated points. Let x ∈ U be a generic point of an irreducible com-
ponent of the support of F . By Divisors, Lemma 2.5 we have x ∈ Ass(F). By our
choice of x we have dim(Fx) = 0 as OX,x-module. Hence Fx has finite length as an
OX,x-module (Algebra, Lemma 62.3). Thus we may use induction on this length.

Set G = j∗ix,∗OWx
. This is a coherent OX -module by assumption. We have

Gx = κ(x). Choose a nonzero map φx : Fx → κ(x) = Gx. By Cohomology of
Schemes, Lemma 9.6 there is an open x ∈ V ⊂ U and a map φV : F|V → G|V
whose stalk at x is φx. Choose f ∈ Γ(X,OX) which does not vanish at x such
that D(f) ⊂ V . By Cohomology of Schemes, Lemma 10.5 (for example) we see
that φV extends to fnF → G|U for some n. Precomposing with multiplication
by fn we obtain a map F → G|U whose stalk at x is nonzero. Let F ′ ⊂ F
be the kernel. Note that Ass(F ′) ⊂ Ass(F), see Divisors, Lemma 2.4. Since
lengthOX,x

(F ′
x) = lengthOX,x

(Fx) − 1 we may apply the induction hypothesis to
conclude j∗F ′ is coherent. Since G = j∗(G|U ) = j∗ix,∗OWx

is coherent, we can
consider the exact sequence

0 → j∗F ′ → j∗F → G

By Schemes, Lemma 24.1 the sheaf j∗F is quasi-coherent. Hence the image of j∗F
in j∗(G|U ) is coherent by Cohomology of Schemes, Lemma 9.3. Finally, j∗F is
coherent by Cohomology of Schemes, Lemma 9.2.

Assume (2) holds. Exactly in the same manner as above we reduce to the case X
affine. We pick x ∈ Ass(F) and we set G = j∗ix,∗OWx

. Then we choose a nonzero
map φx : Gx = κ(x) → Fx which exists exactly because x is an associated point
of F . Arguing exactly as above we may assume φx extends to an OU -module map
φ : G|U → F . Then φ is injective (for example by Divisors, Lemma 2.10) and we
find an injective map G = j∗(G|V ) → j∗F . Thus (1) holds. □

https://stacks.math.columbia.edu/tag/0BJZ
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Lemma 8.2.0BK0 Let A be a Noetherian ring and let I ⊂ A be an ideal. Set X =
Spec(A), Z = V (I), U = X \ Z, and j : U → X the inclusion morphism. Let F be
a coherent OU -module. Then

(1) there exists a finite A-module M such that F is the restriction of M̃ to U ,
(2) given M there is an exact sequence

0 → H0
Z(M) → M → H0(U,F) → H1

Z(M) → 0

and isomorphisms Hp(U,F) = Hp+1
Z (M) for p ≥ 1,

(3) given M and p ≥ 0 the following are equivalent
(a) Rpj∗F is coherent,
(b) Hp(U,F) is a finite A-module,
(c) Hp+1

Z (M) is a finite A-module,
(4) if the equivalent conditions in (3) hold for p = 0, we may take M = Γ(U,F)

in which case we have H0
Z(M) = H1

Z(M) = 0.

Proof. By Properties, Lemma 22.5 there exists a coherent OX -module F ′ whose
restriction to U is isomorphic to F . Say F ′ corresponds to the finite A-module M
as in (1). Note that Rpj∗F is quasi-coherent (Cohomology of Schemes, Lemma 4.5)
and corresponds to the A-module Hp(U,F). By Lemma 2.1 and the discussion in
Cohomology, Sections 21 and 34 we obtain an exact sequence

0 → H0
Z(M) → M → H0(U,F) → H1

Z(M) → 0

and isomorphismsHp(U,F) = Hp+1
Z (M) for p ≥ 1. Here we use thatHj(X,F ′) = 0

for j > 0 as X is affine and F ′ is quasi-coherent (Cohomology of Schemes, Lemma
2.2). This proves (2). Parts (3) and (4) are straightforward from (2); see also
Lemma 2.2. □

Lemma 8.3.0AWA Let X be a locally Noetherian scheme. Let j : U → X be the inclusion
of an open subscheme with complement Z. Let F be a coherent OU -module. Assume

(1) X is Nagata,
(2) X is universally catenary, and
(3) for x ∈ Ass(F) and z ∈ Z ∩ {x} we have dim(O{x},z

) ≥ 2.
Then j∗F is coherent.

Proof. By Lemma 8.1 it suffices to prove j∗ix,∗OWx
is coherent for x ∈ Ass(F).

Let π : Y → X be the normalization of X in Spec(κ(x)), see Morphisms, Section 54.
By Morphisms, Lemma 53.14 the morphism π is finite. Since π is finite G = π∗OY

is a coherent OX -module by Cohomology of Schemes, Lemma 9.9. Observe that
Wx = U ∩ π(Y ). Thus π|π−1(U) : π−1(U) → U factors through ix : Wx → U and
we obtain a canonical map

ix,∗OWx
−→ (π|π−1(U))∗(Oπ−1(U)) = (π∗OY )|U = G|U

This map is injective (for example by Divisors, Lemma 2.10). Hence j∗ix,∗OWx
⊂

j∗G|U and it suffices to show that j∗G|U is coherent.
It remains to prove that j∗(G|U ) is coherent. We claim Divisors, Lemma 5.11 applies
to

G −→ j∗(G|U )
which finishes the proof. It suffices to show that depth(Gz) ≥ 2 for z ∈ Z. Let
y1, . . . , yn ∈ Y be the points mapping to z. By Algebra, Lemma 72.11 it suffices

https://stacks.math.columbia.edu/tag/0BK0
https://stacks.math.columbia.edu/tag/0AWA
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to show that depth(OY,yi
) ≥ 2 for i = 1, . . . , n. If not, then by Properties, Lemma

12.5 we see that dim(OY,yi) = 1 for some i. This is impossible by the dimension
formula (Morphisms, Lemma 52.1) for π : Y → {x} and assumption (3). □

Lemma 8.4.0BK1 Let X be an integral locally Noetherian scheme. Let j : U → X be the
inclusion of a nonempty open subscheme with complement Z. Assume that for all
z ∈ Z and any associated prime p of the completion O∧

X,z we have dim(O∧
X,z/p) ≥ 2.

Then j∗OU is coherent.

Proof. We may assume X is affine. Using Lemmas 7.2 and 8.2 we reduce to
X = Spec(A) where (A,m) is a Noetherian local domain and m ∈ Z. Then we
can use induction on d = dim(A). (The base case is d = 0, 1 which do not happen
by our assumption on the local rings.) Set V = Spec(A) \ {m}. Observe that the
local rings of V have dimension strictly smaller than d. Repeating the arguments
for j′ : U → V we and using induction we conclude that j′

∗OU is a coherent OV -
module. Pick a nonzero f ∈ A which vanishes on Z. Since D(f) ∩ V ⊂ U we find
an n such that multiplication by fn on U extends to a map fn : j′

∗OU → OV over
V (for example by Cohomology of Schemes, Lemma 10.5). This map is injective
hence there is an injective map

j∗OU = j′′
∗ j

′
∗OU → j′′

∗ OV

on X where j′′ : V → X is the inclusion morphism. Hence it suffices to show that
j′′

∗ OV is coherent. In other words, we may assume that X is the spectrum of a local
Noetherian domain and that Z consists of the closed point.
Assume X = Spec(A) with (A,m) local and Z = {m}. Let A∧ be the completion
of A. Set X∧ = Spec(A∧), Z∧ = {m∧}, U∧ = X∧ \ Z∧, and F∧ = OU∧ . The ring
A∧ is universally catenary and Nagata (Algebra, Remark 160.9 and Lemma 162.8).
Moreover, condition (3) of Lemma 8.3 for X∧, Z∧, U∧,F∧ holds by assumption!
Thus we see that (U∧ → X∧)∗OU∧ is coherent. Since the morphism c : X∧ → X
is flat we conclude that the pullback of j∗OU is (U∧ → X∧)∗OU∧ (Cohomology of
Schemes, Lemma 5.2). Finally, since c is faithfully flat we conclude that j∗OU is
coherent by Descent, Lemma 7.1. □

Remark 8.5.0BK2 Let j : U → X be an open immersion of locally Noetherian schemes.
Let x ∈ U . Let ix : Wx → U be the integral closed subscheme with generic point x
and let {x} be the closure in X. Then we have a commutative diagram

Wx

ix

��

j′
// {x}

i

��
U

j // X

We have j∗ix,∗OWx
= i∗j

′
∗OWx

. As the left vertical arrow is a closed immersion we
see that j∗ix,∗OWx

is coherent if and only if j′
∗OWx

is coherent.

Remark 8.6.0AWC Let X be a locally Noetherian scheme. Let j : U → X be the
inclusion of an open subscheme with complement Z. Let F be a coherent OU -
module. If there exists an x ∈ Ass(F) and z ∈ Z ∩ {x} such that dim(O{x},z

) ≤ 1,
then j∗F is not coherent. To prove this we can do a flat base change to the spectrum
of OX,z. Let X ′ = {x}. The assumption implies OX′∩U ⊂ F . Thus it suffices to see
that j∗OX′∩U is not coherent. This is clear because X ′ = {x, z}, hence j∗OX′∩U

https://stacks.math.columbia.edu/tag/0BK1
https://stacks.math.columbia.edu/tag/0BK2
https://stacks.math.columbia.edu/tag/0AWC
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corresponds to κ(x) as an OX,z-module which cannot be finite as x is not a closed
point.
In fact, the converse of Lemma 8.4 holds true: given an open immersion j : U → X
of integral Noetherian schemes and there exists a z ∈ X \ U and an associated
prime p of the completion O∧

X,z with dim(O∧
X,z/p) = 1, then j∗OU is not coher-

ent. Namely, you can pass to the local ring, you can enlarge U to the punctured
spectrum, you can pass to the completion, and then the argument above gives the
nonfiniteness.
Proposition 8.7 (Kollár).0BK3 See [Kol17] and see

[DG67, IV,
Proposition 7.2.2]
for a special case.

Let j : U → X be an open immersion of locally
Noetherian schemes with complement Z. Let F be a coherent OU -module. The
following are equivalent

(1) j∗F is coherent,
(2) for x ∈ Ass(F) and z ∈ Z ∩ {x} and any associated prime p of the comple-

tion O∧
{x},z

we have dim(O∧
{x},z

/p) ≥ 2.

Proof. If (2) holds we get (1) by a combination of Lemmas 8.1, Remark 8.5, and
Lemma 8.4. If (2) does not hold, then j∗ix,∗OWx

is not finite for some x ∈ Ass(F)
by the discussion in Remark 8.6 (and Remark 8.5). Thus j∗F is not coherent by
Lemma 8.1. □

Lemma 8.8.0BL9 Let A be a Noetherian ring and let I ⊂ A be an ideal. Set Z = V (I).
Let M be a finite A-module. The following are equivalent

(1) H1
Z(M) is a finite A-module, and

(2) for all p ∈ Ass(M), p ̸∈ Z and all q ∈ V (p + I) the completion of (A/p)q
does not have associated primes of dimension 1.

Proof. Follows immediately from Proposition 8.7 via Lemma 8.2. □

The formulation in the following lemma has the advantage that conditions (1) and
(2) are inherited by schemes of finite type over X. Moreover, this is the form of
finiteness which we will generalize to higher direct images in Section 12.
Lemma 8.9.0AWB Let X be a locally Noetherian scheme. Let j : U → X be the inclusion
of an open subscheme with complement Z. Let F be a coherent OU -module. Assume

(1) X is universally catenary,
(2) for every z ∈ Z the formal fibres of OX,z are (S1).

In this situation the following are equivalent
(a) for x ∈ Ass(F) and z ∈ Z ∩ {x} we have dim(O{x},z

) ≥ 2, and
(b) j∗F is coherent.

Proof. Let x ∈ Ass(F). By Proposition 8.7 it suffices to check that A = O{x},z

satisfies the condition of the proposition on associated primes of its completion if
and only if dim(A) ≥ 2. Observe that A is universally catenary (this is clear) and
that its formal fibres are (S1) as follows from More on Algebra, Lemma 51.10 and
Proposition 51.5. Let p′ ⊂ A∧ be an associated prime. As A → A∧ is flat, by
Algebra, Lemma 65.3, we find that p′ lies over (0) ⊂ A. The formal fibre A∧ ⊗A F
is (S1) where F is the fraction field of A. We conclude that p′ is a minimal prime,
see Algebra, Lemma 157.2. Since A is universally catenary it is formally catenary
by More on Algebra, Proposition 109.5. Hence dim(A∧/p′) = dim(A) which proves
the equivalence. □

https://stacks.math.columbia.edu/tag/0BK3
https://stacks.math.columbia.edu/tag/0BL9
https://stacks.math.columbia.edu/tag/0AWB
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9. Depth and dimension

0DWW Some helper lemmas.
Lemma 9.1.0DWX Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M be a
finite A-module. Let p ∈ V (I) be a prime ideal. Assume e = depthIAp

(Mp) < ∞.
Then there exists a nonempty open U ⊂ V (p) such that depthIAq

(Mq) ≥ e for all
q ∈ U .
Proof. By definition of depth we have IMp ̸= Mp and there exists an Mp-regular
sequence f1, . . . , fe ∈ IAp. After replacing A by a principal localization we may
assume f1, . . . , fe ∈ I form an M -regular sequence, see Algebra, Lemma 68.6.
Consider the module M ′ = M/IM . Since p ∈ Supp(M ′) and since the support
of a finite module is closed, we find V (p) ⊂ Supp(M ′). Thus for q ∈ V (p) we get
IMq ̸= Mq. Hence, using that localization is exact, we see that depthIAq

(Mq) ≥ e

for any q ∈ V (I) by definition of depth. □

Lemma 9.2.0DWY Let A be a Noetherian ring. Let M be a finite A-module. Let p be
a prime ideal. Assume e = depthAp

(Mp) < ∞. Then there exists a nonempty open
U ⊂ V (p) such that depthAq

(Mq) ≥ e for all q ∈ U and for all but finitely many
q ∈ U we have depthAq

(Mq) > e.
Proof. By definition of depth we have pMp ̸= Mp and there exists an Mp-regular
sequence f1, . . . , fe ∈ pAp. After replacing A by a principal localization we may
assume f1, . . . , fe ∈ p form an M -regular sequence, see Algebra, Lemma 68.6. Con-
sider the module M ′ = M/(f1, . . . , fe)M . Since p ∈ Supp(M ′) and since the sup-
port of a finite module is closed, we find V (p) ⊂ Supp(M ′). Thus for q ∈ V (p) we get
qMq ̸= Mq. Hence, using that localization is exact, we see that depthAq

(Mq) ≥ e

for any q ∈ V (I) by definition of depth. Moreover, as soon as q is not an associ-
ated prime of the module M ′, then the depth goes up. Thus we see that the final
statement holds by Algebra, Lemma 63.5. □

Lemma 9.3.0ECN Let X be a Noetherian scheme with dualizing complex ω•
X . Let F

be a coherent OX-module. Let k ≥ 0 be an integer. Assume F is (Sk). Then there
is a finite number of points x ∈ X such that

depth(Fx) = k and dim(Supp(Fx)) > k

Proof. We will prove this lemma by induction on k. The base case k = 0 says that
F has a finite number of embedded associated points, which follows from Divisors,
Lemma 2.5.
Assume k > 0 and the result holds for all smaller k. We can cover X by finitely
many affine opens, hence we may assume X = Spec(A) is affine. Then F is the
coherent OX -module associated to a finite A-module M which satisfies (Sk). We
will use Algebra, Lemmas 63.10 and 72.7 without further mention.
Let f ∈ A be a nonzerodivisor on M . Then M/fM has (Sk−1). By induction we
see that there are finitely many primes p ∈ V (f) with depth((M/fM)p) = k − 1
and dim(Supp((M/fM)p)) > k − 1. These are exactly the primes p ∈ V (f) with
depth(Mp) = k and dim(Supp(Mp)) > k. Thus we may replace A by Af and M
by Mf in trying to prove the finiteness statement.
Since M satisfies (Sk) and k > 0 we see that M has no embedded associated
primes (Algebra, Lemma 157.2). Thus Ass(M) is the set of generic points of the

https://stacks.math.columbia.edu/tag/0DWX
https://stacks.math.columbia.edu/tag/0DWY
https://stacks.math.columbia.edu/tag/0ECN
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support of M . Thus Dualizing Complexes, Lemma 20.4 shows the set U = {q |
Mq is Cohen-Macaulay} is an open containing Ass(M). By prime avoidance (Al-
gebra, Lemma 15.2) we can pick f ∈ A with f ̸∈ p for p ∈ Ass(M) such that
D(f) ⊂ U . Then f is a nonzerodivisor on M (Algebra, Lemma 63.9). After replac-
ing A by Af and M by Mf (see above) we find that M is Cohen-Macaulay. Thus
for all q ⊂ A we have dim(Mq) = depth(Mq) and hence the set described in the
lemma is empty and a fortiori finite. □

Lemma 9.4.0DWZ Let (A,m) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let M be a finite A-module. Set Ei = Ext−i
A (M,ω•

A). Then
(1) Ei is a finite A-module nonzero only for 0 ≤ i ≤ dim(Supp(M)),
(2) dim(Supp(Ei)) ≤ i,
(3) depth(M) is the smallest integer δ ≥ 0 such that Eδ ̸= 0,
(4) p ∈ Supp(E0 ⊕ . . .⊕ Ei) ⇔ depthAp

(Mp) + dim(A/p) ≤ i,
(5) the annihilator of Ei is equal to the annihilator of Hi

m(M).

Proof. Parts (1), (2), and (3) are copies of the statements in Dualizing Complexes,
Lemma 16.5. For a prime p of A we have that (ω•

A)p[− dim(A/p)] is a normalized
dualzing complex for Ap. See Dualizing Complexes, Lemma 17.3. Thus

Ei
p = Ext−i

A (M,ω•
A)p = Ext−i+dim(A/p)

Ap
(Mp, (ω•

A)p[− dim(A/p)])

is zero for i−dim(A/p) < depthAp
(Mp) and nonzero for i = dim(A/p)+depthAp

(Mp)
by part (3) over Ap. This proves part (4). If E is an injective hull of the residue
field of A, then we have

HomA(Hi
m(M), E) = Ext−i

A (M,ω•
A)∧ = (Ei)∧ = Ei ⊗A A∧

by the local duality theorem (in the form of Dualizing Complexes, Lemma 18.4).
Since A → A∧ is faithfully flat, we find (5) is true by Matlis duality (Dualizing
Complexes, Proposition 7.8). □

10. Annihilators of local cohomology, I

0EFB This section discusses a result due to Faltings, see [Fal78].

Proposition 10.1.0EFC [Fal78].Let A be a Noetherian ring which has a dualizing complex.
Let T ⊂ T ′ ⊂ Spec(A) be subsets stable under specialization. Let s ≥ 0 an integer.
Let M be a finite A-module. The following are equivalent

(1) there exists an ideal J ⊂ A with V (J) ⊂ T ′ such that J annihilates Hi
T (M)

for i ≤ s, and
(2) for all p ̸∈ T ′, q ∈ T with p ⊂ q we have

depthAp
(Mp) + dim((A/p)q) > s

Proof. Let ω•
A be a dualizing complex. Let δ be its dimension function, see Du-

alizing Complexes, Section 17. An important role will be played by the finite
A-modules

Ei = Exti
A(M,ω•

A)
For p ⊂ A we will write Hi

p to denote the local cohomology of an Ap-module with
respect to pAp. Then we see that the pAp-adic completion of

(Ei)p = Extδ(p)+i
Ap

(Mp, (ω•
A)p[−δ(p)])

https://stacks.math.columbia.edu/tag/0DWZ
https://stacks.math.columbia.edu/tag/0EFC
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is Matlis dual to
H

−δ(p)−i
p (Mp)

by Dualizing Complexes, Lemma 18.4. In particular we deduce from this the follow-
ing fact: an ideal J ⊂ A annihilates (Ei)p if and only if J annihilates H−δ(p)−i

p (Mp).

Set Tn = {p ∈ T | δ(p) ≤ n}. As δ is a bounded function, we see that Ta = ∅ for
a ≪ 0 and Tb = T for b ≫ 0.

Assume (2). Let us prove the existence of J as in (1). We will use a double induction
to do this. For i ≤ s consider the induction hypothesis IHi: Ha

T (M) is annihilated
by some J ⊂ A with V (J) ⊂ T ′ for 0 ≤ a ≤ i. The case IH0 is trivial because
H0

T (M) is a submodule of M and hence finite and hence is annihilated by some
ideal J with V (J) ⊂ T .

Induction step. Assume IHi−1 holds for some 0 < i ≤ s. Pick J ′ with V (J ′) ⊂ T ′

annihilating Ha
T (M) for 0 ≤ a ≤ i− 1 (the induction hypothesis guarantees we can

do this). We will show by descending induction on n that there exists an ideal J
with V (J) ⊂ T ′ such that the associated primes of JHi

T (M) are in Tn. For n ≪ 0
this implies JHi

T (M) = 0 (Algebra, Lemma 63.7) and hence IHi will hold. The
base case n ≫ 0 is trivial because T = Tn in this case and all associated primes of
Hi

T (M) are in T .

Thus we assume given J with the property for n. Let q ∈ Tn. Let Tq ⊂ Spec(Aq)
be the inverse image of T . We have Hj

T (M)q = Hj
Tq

(Mq) by Lemma 5.7. Consider
the spectral sequence

Hp
q (Hq

Tq
(Mq)) ⇒ Hp+q

q (Mq)
of Lemma 5.8. Below we will find an ideal J ′′ ⊂ A with V (J ′′) ⊂ T ′ such that
Hi

q(Mq) is annihilated by J ′′ for all q ∈ Tn \ Tn−1. Claim: J(J ′)iJ ′′ will work for
n− 1. Namely, let q ∈ Tn \ Tn−1. The spectral sequence above defines a filtration

E0,i
∞ = E0,i

i+2 ⊂ . . . ⊂ E0,i
3 ⊂ E0,i

2 = H0
q (Hi

Tq
(Mq))

The module E0,i
∞ is annihilated by J ′′. The subquotients E0,i

j /E0,i
j+1 for i+1 ≥ j ≥ 2

are annihilated by J ′ because the target of d0,i
j is a subquotient of

Hj
q(Hi−j+1

Tq
(Mq)) = Hj

q(Hi−j+1
T (M)q)

and Hi−j+1
T (M)q is annihilated by J ′ by choice of J ′. Finally, by our choice of J we

have JHi
T (M)q ⊂ H0

q (Hi
T (M)q) since the non-closed points of Spec(Aq) have higher

δ values. Thus q cannot be an associated prime of J(J ′)iJ ′′Hi
T (M) as desired.

By our initial remarks we see that J ′′ should annihilate

(E−δ(q)−i)q = (E−n−i)q
for all q ∈ Tn \ Tn−1. But if J ′′ works for one q, then it works for all q in an open
neighbourhood of q as the modules E−n−i are finite. Since every subset of Spec(A)
is Noetherian with the induced topology (Topology, Lemma 9.2), we conclude that
it suffices to prove the existence of J ′′ for one q.

Since the ext modules are finite the existence of J ′′ is equivalent to

Supp(E−n−i) ∩ Spec(Aq) ⊂ T ′.
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This is equivalent to showing the localization of E−n−i at every p ⊂ q, p ̸∈ T ′ is
zero. Using local duality over Ap we find that we need to prove that

H
i+n−δ(p)
p (Mp) = H

i−dim((A/p)q)
p (Mp)

is zero (this uses that δ is a dimension function). This vanishes by the assumption
in the lemma and i ≤ s and Dualizing Complexes, Lemma 11.1.
To prove the converse implication we assume (2) does not hold and we work back-
wards through the arguments above. First, we pick a q ∈ T , p ⊂ q with p ̸∈ T ′ such
that

i = depthAp
(Mp) + dim((A/p)q) ≤ s

is minimal. Then H
i−dim((A/p)q)
p (Mp) is nonzero by the nonvanishing in Dualizing

Complexes, Lemma 11.1. Set n = δ(q). Then there does not exist an ideal J ⊂ A
with V (J) ⊂ T ′ such that J(E−n−i)q = 0. Thus Hi

q(Mq) is not annihilated by
an ideal J ⊂ A with V (J) ⊂ T ′. By minimality of i it follows from the spectral
sequence displayed above that the module Hi

T (M)q is not annihilated by an ideal
J ⊂ A with V (J) ⊂ T ′. Thus Hi

T (M) is not annihilated by an ideal J ⊂ A with
V (J) ⊂ T ′. This finishes the proof of the proposition. □

Lemma 10.2.0EFE Let I be an ideal of a Noetherian ring A. Let M be a finite A-
module, let p ⊂ A be a prime ideal, and let s ≥ 0 be an integer. Assume

(1) A has a dualizing complex,
(2) p ̸∈ V (I), and
(3) for all primes p′ ⊂ p and q ∈ V (I) with p′ ⊂ q we have

depthAp′ (Mp′) + dim((A/p′)q) > s

Then there exists an f ∈ A, f ̸∈ p which annihilates Hi
V (I)(M) for i ≤ s.

Proof. Consider the sets
T = V (I) and T ′ =

⋃
f∈A,f ̸∈p

V (f)

These are subsets of Spec(A) stable under specialization. Observe that T ⊂ T ′ and
p ̸∈ T ′. Assumption (3) says that hypothesis (2) of Proposition 10.1 holds. Hence
we can find J ⊂ A with V (J) ⊂ T ′ such that JHi

V (I)(M) = 0 for i ≤ s. Choose
f ∈ A, f ̸∈ p with V (J) ⊂ V (f). A power of f annihilates Hi

V (I)(M) for i ≤ s. □

11. Finiteness of local cohomology, II

0BJQ We continue the discussion of finiteness of local cohomology started in Section
7. Using Faltings Annihilator Theorem we easily prove the following fundamental
result.

Proposition 11.1.0EFD [Fal78].Let A be a Noetherian ring which has a dualizing complex.
Let T ⊂ Spec(A) be a subset stable under specialization. Let s ≥ 0 an integer. Let
M be a finite A-module. The following are equivalent

(1) Hi
T (M) is a finite A-module for i ≤ s, and

(2) for all p ̸∈ T , q ∈ T with p ⊂ q we have
depthAp

(Mp) + dim((A/p)q) > s

Proof. Formal consequence of Proposition 10.1 and Lemma 7.1. □

https://stacks.math.columbia.edu/tag/0EFE
https://stacks.math.columbia.edu/tag/0EFD
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Besides some lemmas for later use, the rest of this section is concerned with the
question to what extend the condition in Proposition 11.1 that A has a dualizing
complex can be weakened. The answer is roughly that one has to assume the formal
fibres of A are (Sn) for sufficiently large n.

Let A be a Noetherian ring and let I ⊂ A be an ideal. Set X = Spec(A) and
Z = V (I) ⊂ X. Let M be a finite A-module. We define

(11.1.1)0BJR sA,I(M) = min{depthAp
(Mp) + dim((A/p)q) | p ∈ X \ Z, q ∈ Z, p ⊂ q}

Our conventions on depth are that the depth of 0 is ∞ thus we only need to consider
primes p in the support ofM . It will turn out that sA,I(M) is an important invariant
of the situation.

Lemma 11.2.0BJS Let A → B be a finite homomorphism of Noetherian rings. Let
I ⊂ A be an ideal and set J = IB. Let M be a finite B-module. If A is universally
catenary, then sB,J(M) = sA,I(M).

Proof. Let p ⊂ q ⊂ A be primes with I ⊂ q and I ̸⊂ p. Since A → B is finite
there are finitely many primes pi lying over p. By Algebra, Lemma 72.11 we have

depth(Mp) = min depth(Mpi
)

Let pi ⊂ qij be primes lying over q. By going up for A → B (Algebra, Lemma
36.22) there is at least one qij for each i. Then we see that

dim((B/pi)qij
) = dim((A/p)q)

by the dimension formula, see Algebra, Lemma 113.1. This implies that the mini-
mum of the quantities used to define sB,J(M) for the pairs (pi, qij) is equal to the
quantity for the pair (p, q). This proves the lemma. □

Lemma 11.3.0EHW Let A be a Noetherian ring which has a dualizing complex. Let
I ⊂ A be an ideal. Let M be a finite A-module. Let A′,M ′ be the I-adic completions
of A,M . Let p′ ⊂ q′ be prime ideals of A′ with q′ ∈ V (IA′) lying over p ⊂ q in A.
Then

depthAp′ (M
′
p′) ≥ depthAp

(Mp)
and

depthAp′ (M
′
p′) + dim((A′/p′)q′) = depthAp

(Mp) + dim((A/p)q)

Proof. We have

depth(M ′
p′) = depth(Mp) + depth(A′

p′/pA′
p′) ≥ depth(Mp)

by flatness of A → A′, see Algebra, Lemma 163.1. Since the fibres of A → A′ are
Cohen-Macaulay (Dualizing Complexes, Lemma 23.2 and More on Algebra, Section
51) we see that depth(A′

p′/pA′
p′) = dim(A′

p′/pA′
p′). Thus we obtain

depth(M ′
p′) + dim((A′/p′)q′) = depth(Mp) + dim(A′

p′/pA′
p′) + dim((A′/p′)q′)

= depth(Mp) + dim((A′/pA′)q′)
= depth(Mp) + dim((A/p)q)

Second equality because A′ is catenary and third equality by More on Algebra,
Lemma 43.1 as (A/p)q and (A′/pA′)q′ have the same I-adic completions. □

https://stacks.math.columbia.edu/tag/0BJS
https://stacks.math.columbia.edu/tag/0EHW
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Lemma 11.4.0BJT Let A be a universally catenary Noetherian local ring. Let I ⊂ A
be an ideal. Let M be a finite A-module. Then

sA,I(M) ≥ sA∧,I∧(M∧)

If the formal fibres of A are (Sn), then min(n+ 1, sA,I(M)) ≤ sA∧,I∧(M∧).

Proof. Write X = Spec(A), X∧ = Spec(A∧), Z = V (I) ⊂ X, and Z∧ = V (I∧).
Let p′ ⊂ q′ ⊂ A∧ be primes with p′ ̸∈ Z∧ and q′ ∈ Z∧. Let p ⊂ q be the
corresponding primes of A. Then p ̸∈ Z and q ∈ Z. Picture

p′ // q′ // A∧

p // q // A

OO

Let us write

a = dim(A/p) = dim(A∧/pA∧),
b = dim(A/q) = dim(A∧/qA∧),
a′ = dim(A∧/p′),
b′ = dim(A∧/q′)

Equalities by More on Algebra, Lemma 43.1. We also write

p = dim(A∧
p′/pA∧

p′) = dim((A∧/pA∧)p′)
q = dim(A∧

q′/pA∧
q′) = dim((A∧/qA∧)q′)

Since A is universally catenary we see that A∧/pA∧ = (A/p)∧ is equidimensional
of dimension a (More on Algebra, Proposition 109.5). Hence a = a′ + p. Similarly
b = b′ + q. By Algebra, Lemma 163.1 applied to the flat local ring map Ap → A∧

p′

we have
depth(M∧

p′) = depth(Mp) + depth(A∧
p′/pA∧

p′)
The quantity we are minimizing for sA,I(M) is

s(p, q) = depth(Mp) + dim((A/p)q) = depth(Mp) + a− b

(last equality as A is catenary). The quantity we are minimizing for sA∧,I∧(M∧) is

s(p′, q′) = depth(M∧
p′) + dim((A∧/p′)q′) = depth(M∧

p′) + a′ − b′

(last equality as A∧ is catenary). Now we have enough notation in place to start
the proof.

Let p ⊂ q ⊂ A be primes with p ̸∈ Z and q ∈ Z such that sA,I(M) = s(p, q).
Then we can pick q′ minimal over qA∧ and p′ ⊂ q′ minimal over pA∧ (using going
down for A → A∧). Then we have four primes as above with p = 0 and q = 0.
Moreover, we have depth(A∧

p′/pA∧
p′) = 0 also because p = 0. This means that

s(p′, q′) = s(p, q). Thus we get the first inequality.

Assume that the formal fibres of A are (Sn). Then depth(A∧
p′/pA∧

p′) ≥ min(n, p).
Hence

s(p′, q′) ≥ s(p, q) + q + min(n, p) − p ≥ sA,I(M) + q + min(n, p) − p

https://stacks.math.columbia.edu/tag/0BJT
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Thus the only way we can get in trouble is if p > n. If this happens then
s(p′, q′) = depth(M∧

p′) + dim((A∧/p′)q′)
= depth(Mp) + depth(A∧

p′/pA∧
p′) + dim((A∧/p′)q′)

≥ 0 + n+ 1
because (A∧/p′)q′ has at least two primes. This proves the second inequality. □

The method of proof of the following lemma works more generally, but the stronger
results one gets will be subsumed in Theorem 11.6 below.

Lemma 11.5.0BJU This is a special
case of [Fal78, Satz
1].

Let A be a Gorenstein Noetherian local ring. Let I ⊂ A be an ideal
and set Z = V (I) ⊂ Spec(A). Let M be a finite A-module. Let s = sA,I(M) as in
(11.1.1). Then Hi

Z(M) is finite for i < s, but Hs
Z(M) is not finite.

Proof. Since a Gorenstein local ring has a dualizing complex, this is a special case
of Proposition 11.1. It would be helpful to have a short proof of this special case,
which will be used in the proof of a general finiteness theorem below. □

Observe that the hypotheses of the following theorem are satisfied by excellent Noe-
therian rings (by definition), by Noetherian rings which have a dualizing complex
(Dualizing Complexes, Lemma 17.4 and Dualizing Complexes, Lemma 23.2), and
by quotients of regular Noetherian rings.

Theorem 11.6.0BJV This is a special
case of [Fal81, Satz
2].

Let A be a Noetherian ring and let I ⊂ A be an ideal. Set
Z = V (I) ⊂ Spec(A). Let M be a finite A-module. Set s = sA,I(M) as in (11.1.1).
Assume that

(1) A is universally catenary,
(2) the formal fibres of the local rings of A are Cohen-Macaulay.

Then Hi
Z(M) is finite for 0 ≤ i < s and Hs

Z(M) is not finite.

Proof. By Lemma 7.2 we may assume that A is a local ring.
If A is a Noetherian complete local ring, then we can write A as the quotient of
a regular complete local ring B by Cohen’s structure theorem (Algebra, Theorem
160.8). Using Lemma 11.2 and Dualizing Complexes, Lemma 9.2 we reduce to the
case of a regular local ring which is a consequence of Lemma 11.5 because a regular
local ring is Gorenstein (Dualizing Complexes, Lemma 21.3).
Let A be a Noetherian local ring. Let m be the maximal ideal. We may assume
I ⊂ m, otherwise the lemma is trivial. Let A∧ be the completion of A, let Z∧ =
V (IA∧), and let M∧ = M ⊗A A

∧ be the completion of M (Algebra, Lemma 97.1).
Then Hi

Z(M)⊗AA
∧ = Hi

Z∧(M∧) by Dualizing Complexes, Lemma 9.3 and flatness
of A → A∧ (Algebra, Lemma 97.2). Hence it suffices to show that Hi

Z∧(M∧) is
finite for i < s and not finite for i = s, see Algebra, Lemma 83.2. Since we know the
result is true for A∧ it suffices to show that sA,I(M) = sA∧,I∧(M∧). This follows
from Lemma 11.4. □

Remark 11.7.0BJW The astute reader will have realized that we can get away with
a slightly weaker condition on the formal fibres of the local rings of A. Namely,
in the situation of Theorem 11.6 assume A is universally catenary but make no
assumptions on the formal fibres. Suppose we have an n and we want to prove that
Hi

Z(M) are finite for i ≤ n. Then the exact same proof shows that it suffices that
sA,I(M) > n and that the formal fibres of local rings of A are (Sn). On the other

https://stacks.math.columbia.edu/tag/0BJU
https://stacks.math.columbia.edu/tag/0BJV
https://stacks.math.columbia.edu/tag/0BJW
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hand, if we want to show that Hs
Z(M) is not finite where s = sA,I(M), then our

arguments prove this if the formal fibres are (Ss−1).

12. Finiteness of pushforwards, II

0BJX This section is the continuation of Section 8. In this section we reap the fruits of
the labor done in Section 11.
Lemma 12.1.0BJY Let X be a locally Noetherian scheme. Let j : U → X be the
inclusion of an open subscheme with complement Z. Let F be a coherent OU -
module. Let n ≥ 0 be an integer. Assume

(1) X is universally catenary,
(2) for every z ∈ Z the formal fibres of OX,z are (Sn).

In this situation the following are equivalent
(a) for x ∈ Supp(F) and z ∈ Z∩{x} we have depthOX,x

(Fx)+dim(O{x},z
) > n,

(b) Rpj∗F is coherent for 0 ≤ p < n.
Proof. The statement is local on X, hence we may assume X is affine. Say X =
Spec(A) and Z = V (I). Let M be a finite A-module whose associated coherent
OX -module restricts to F over U , see Lemma 8.2. This lemma also tells us that
Rpj∗F is coherent if and only if Hp+1

Z (M) is a finite A-module. Observe that the
minimum of the expressions depthOX,x

(Fx) + dim(O{x},z
) is the number sA,I(M)

of (11.1.1). Having said this the lemma follows from Theorem 11.6 as elucidated
by Remark 11.7. □

Lemma 12.2.0BLT Let X be a locally Noetherian scheme. Let j : U → X be the
inclusion of an open subscheme with complement Z. Let n ≥ 0 be an integer. If
Rpj∗OU is coherent for 0 ≤ p < n, then the same is true for Rpj∗F , 0 ≤ p < n for
any finite locally free OU -module F .
Proof. The question is local on X, hence we may assume X is affine. Say X =
Spec(A) and Z = V (I). Via Lemma 8.2 our lemma follows from Lemma 7.4. □

Lemma 12.3.0BM5 [BdJ14, Lemma 1.9]Let A be a ring and let J ⊂ I ⊂ A be finitely generated ideals. Let
p ≥ 0 be an integer. Set U = Spec(A) \ V (I). If Hp(U,OU ) is annihilated by Jn

for some n, then Hp(U,F) annihilated by Jm for some m = m(F) for every finite
locally free OU -module F .
Proof. Consider the annihilator a of Hp(U,F). Let u ∈ U . There exists an open
neighbourhood u ∈ U ′ ⊂ U and an isomorphism φ : O⊕r

U ′ → F|U ′ . Pick f ∈ A such
that u ∈ D(f) ⊂ U ′. There exist maps

a : O⊕r
U −→ F and b : F −→ O⊕r

U

whose restriction to D(f) are equal to fNφ and fNφ−1 for some N . Moreover we
may assume that a ◦ b and b ◦ a are equal to multiplication by f2N . This follows
from Properties, Lemma 17.3 since U is quasi-compact (I is finitely generated),
separated, and F and O⊕r

U are finitely presented. Thus we see that Hp(U,F) is
annihilated by f2NJn, i.e., f2NJn ⊂ a.
As U is quasi-compact we can find finitely many f1, . . . , ft and N1, . . . , Nt such that
U =

⋃
D(fi) and f2Ni

i Jn ⊂ a. Then V (I) = V (f1, . . . , ft) and since I is finitely
generated we conclude IM ⊂ (f1, . . . , ft) for some M . All in all we see that Jm ⊂ a
for m ≫ 0, for example m = M(2N1 + . . .+ 2Nt)n will do. □

https://stacks.math.columbia.edu/tag/0BJY
https://stacks.math.columbia.edu/tag/0BLT
https://stacks.math.columbia.edu/tag/0BM5
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13. Annihilators of local cohomology, II

0EHX We extend the discussion of annihilators of local cohomology in Section 10 to
bounded below complexes with finite cohomology modules.

Definition 13.1.0EHY Let I be an ideal of a Noetherian ring A. Let K ∈ D+
Coh(A).

We define the I-depth of K, denoted depthI(K), to be the maximal m ∈ Z ∪ {∞}
such that Hi

I(K) = 0 for all i < m. If A is local with maximal ideal m then we call
depthm(K) simply the depth of K.

This definition does not conflict with Algebra, Definition 72.1 by Dualizing Com-
plexes, Lemma 11.1.

Proposition 13.2.0EHZ Let A be a Noetherian ring which has a dualizing complex.
Let T ⊂ T ′ ⊂ Spec(A) be subsets stable under specialization. Let s ∈ Z. Let K be
an object of D+

Coh(A). The following are equivalent
(1) there exists an ideal J ⊂ A with V (J) ⊂ T ′ such that J annihilates Hi

T (K)
for i ≤ s, and

(2) for all p ̸∈ T ′, q ∈ T with p ⊂ q we have

depthAp
(Kp) + dim((A/p)q) > s

Proof. This lemma is the natural generalization of Proposition 10.1 whose proof
the reader should read first. Let ω•

A be a dualizing complex. Let δ be its dimension
function, see Dualizing Complexes, Section 17. An important role will be played
by the finite A-modules

Ei = Exti
A(K,ω•

A)
For p ⊂ A we will write Hi

p to denote the local cohomology of an object of D(Ap)
with respect to pAp. Then we see that the pAp-adic completion of

(Ei)p = Extδ(p)+i
Ap

(Kp, (ω•
A)p[−δ(p)])

is Matlis dual to
H

−δ(p)−i
p (Kp)

by Dualizing Complexes, Lemma 18.4. In particular we deduce from this the follow-
ing fact: an ideal J ⊂ A annihilates (Ei)p if and only if J annihilates H−δ(p)−i

p (Kp).

Set Tn = {p ∈ T | δ(p) ≤ n}. As δ is a bounded function, we see that Ta = ∅ for
a ≪ 0 and Tb = T for b ≫ 0.

Assume (2). Let us prove the existence of J as in (1). We will use a double induction
to do this. For i ≤ s consider the induction hypothesis IHi: Ha

T (K) is annihilated
by some J ⊂ A with V (J) ⊂ T ′ for a ≤ i. The case IHi is trivial for i small enough
because K is bounded below.

Induction step. Assume IHi−1 holds for some i ≤ s. Pick J ′ with V (J ′) ⊂ T ′

annihilating Ha
T (K) for a ≤ i − 1 (the induction hypothesis guarantees we can do

this). We will show by descending induction on n that there exists an ideal J with
V (J) ⊂ T ′ such that the associated primes of JHi

T (K) are in Tn. For n ≪ 0 this
implies JHi

T (K) = 0 (Algebra, Lemma 63.7) and hence IHi will hold. The base
case n ≫ 0 is trivial because T = Tn in this case and all associated primes of
Hi

T (K) are in T .

https://stacks.math.columbia.edu/tag/0EHY
https://stacks.math.columbia.edu/tag/0EHZ
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Thus we assume given J with the property for n. Let q ∈ Tn. Let Tq ⊂ Spec(Aq)
be the inverse image of T . We have Hj

T (K)q = Hj
Tq

(Kq) by Lemma 5.7. Consider
the spectral sequence

Hp
q (Hq

Tq
(Kq)) ⇒ Hp+q

q (Kq)

of Lemma 5.8. Below we will find an ideal J ′′ ⊂ A with V (J ′′) ⊂ T ′ such that
Hi

q(Kq) is annihilated by J ′′ for all q ∈ Tn \ Tn−1. Claim: J(J ′)iJ ′′ will work for
n− 1. Namely, let q ∈ Tn \ Tn−1. The spectral sequence above defines a filtration

E0,i
∞ = E0,i

i+2 ⊂ . . . ⊂ E0,i
3 ⊂ E0,i

2 = H0
q (Hi

Tq
(Kq))

The module E0,i
∞ is annihilated by J ′′. The subquotients E0,i

j /E0,i
j+1 for i+1 ≥ j ≥ 2

are annihilated by J ′ because the target of d0,i
j is a subquotient of

Hj
q(Hi−j+1

Tq
(Kq)) = Hj

q(Hi−j+1
T (K)q)

and Hi−j+1
T (K)q is annihilated by J ′ by choice of J ′. Finally, by our choice of J we

have JHi
T (K)q ⊂ H0

q (Hi
T (K)q) since the non-closed points of Spec(Aq) have higher

δ values. Thus q cannot be an associated prime of J(J ′)iJ ′′Hi
T (K) as desired.

By our initial remarks we see that J ′′ should annihilate

(E−δ(q)−i)q = (E−n−i)q

for all q ∈ Tn \ Tn−1. But if J ′′ works for one q, then it works for all q in an open
neighbourhood of q as the modules E−n−i are finite. Since every subset of Spec(A)
is Noetherian with the induced topology (Topology, Lemma 9.2), we conclude that
it suffices to prove the existence of J ′′ for one q.

Since the ext modules are finite the existence of J ′′ is equivalent to

Supp(E−n−i) ∩ Spec(Aq) ⊂ T ′.

This is equivalent to showing the localization of E−n−i at every p ⊂ q, p ̸∈ T ′ is
zero. Using local duality over Ap we find that we need to prove that

H
i+n−δ(p)
p (Kp) = H

i−dim((A/p)q)
p (Kp)

is zero (this uses that δ is a dimension function). This vanishes by the assumption
in the lemma and i ≤ s and our definition of depth in Definition 13.1.

To prove the converse implication we assume (2) does not hold and we work back-
wards through the arguments above. First, we pick a q ∈ T , p ⊂ q with p ̸∈ T ′ such
that

i = depthAp
(Kp) + dim((A/p)q) ≤ s

is minimal. Then H
i−dim((A/p)q)
p (Kp) is nonzero by the our definition of depth in

Definition 13.1. Set n = δ(q). Then there does not exist an ideal J ⊂ A with
V (J) ⊂ T ′ such that J(E−n−i)q = 0. Thus Hi

q(Kq) is not annihilated by an ideal
J ⊂ A with V (J) ⊂ T ′. By minimality of i it follows from the spectral sequence
displayed above that the module Hi

T (K)q is not annihilated by an ideal J ⊂ A with
V (J) ⊂ T ′. Thus Hi

T (K) is not annihilated by an ideal J ⊂ A with V (J) ⊂ T ′.
This finishes the proof of the proposition. □
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14. Finiteness of local cohomology, III

0EI0 We extend the discussion of finiteness of local cohomology in Sections 7 and 11 to
bounded below complexes with finite cohomology modules.

Lemma 14.1.0EI1 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. Let K be an object of D+

Coh(A). Let n ∈ Z. The following are
equivalent

(1) Hi
T (K) is finite for i ≤ n,

(2) there exists an ideal J ⊂ A with V (J) ⊂ T such that J annihilates Hi
T (K)

for i ≤ n.
If T = V (I) = Z for an ideal I ⊂ A, then these are also equivalent to

(3) there exists an e ≥ 0 such that Ie annihilates Hi
Z(K) for i ≤ n.

Proof. This lemma is the natural generalization of Lemma 7.1 whose proof the
reader should read first. Assume (1) is true. Recall that Hi

J(K) = Hi
V (J)(K), see

Dualizing Complexes, Lemma 10.1. Thus Hi
T (K) = colimHi

J(K) where the colimit
is over ideals J ⊂ A with V (J) ⊂ T , see Lemma 5.3. Since Hi

T (K) is finitely
generated for i ≤ n we can find a J ⊂ A as in (2) such that Hi

J(K) → Hi
T (K) is

surjective for i ≤ n. Thus the finite list of generators are J-power torsion elements
and we see that (2) holds with J replaced by some power.
Let a ∈ Z be an integer such that Hi(K) = 0 for i < a. We prove (2) ⇒ (1) by
descending induction on a. If a > n, then we have Hi

T (K) = 0 for i ≤ n hence both
(1) and (2) are true and there is nothing to prove.
Assume we have J as in (2). Observe that N = Ha

T (K) = H0
T (Ha(K)) is finite

as a submodule of the finite A-module Ha(K). If n = a we are done; so assume
a < n from now on. By construction of RΓT we find that Hi

T (N) = 0 for i > 0 and
H0

T (N) = N , see Remark 5.6. Choose a distinguished triangle
N [−a] → K → K ′ → N [−a+ 1]

Then we see that Ha
T (K ′) = 0 and Hi

T (K) = Hi
T (K ′) for i > a. We conclude that

we may replace K by K ′. Thus we may assume that Ha
T (K) = 0. This means

that the finite set of associated primes of Ha(K) are not in T . By prime avoidance
(Algebra, Lemma 15.2) we can find f ∈ J not contained in any of the associated
primes of Ha(K). Choose a distinguished triangle

L → K
f−→ K → L[1]

By construction we see that Hi(L) = 0 for i ≤ a. On the other hand we have a
long exact cohomology sequence

0 → Ha+1
T (L) → Ha+1

T (K) f−→ Ha+1
T (K) → Ha+2

T (L) → Ha+2
T (K) f−→ . . .

which breaks into the identification Ha+1
T (L) = Ha+1

T (K) and short exact sequences

0 → Hi−1
T (K) → Hi

T (L) → Hi
T (K) → 0

for i ≤ n since f ∈ J . We conclude that J2 annihilates Hi
T (L) for i ≤ n. By

induction hypothesis applied to L we see that Hi
T (L) is finite for i ≤ n. Using the

short exact sequence once more we see that Hi
T (K) is finite for i ≤ n as desired.

We omit the proof of the equivalence of (2) and (3) in case T = V (I). □

https://stacks.math.columbia.edu/tag/0EI1
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Proposition 14.2.0EI2 Let A be a Noetherian ring which has a dualizing complex. Let
T ⊂ Spec(A) be a subset stable under specialization. Let s ∈ Z. Let K ∈ D+

Coh(A).
The following are equivalent

(1) Hi
T (K) is a finite A-module for i ≤ s, and

(2) for all p ̸∈ T , q ∈ T with p ⊂ q we have

depthAp
(Kp) + dim((A/p)q) > s

Proof. Formal consequence of Proposition 13.2 and Lemma 14.1. □

15. Improving coherent modules

0DX2 Similar constructions can be found in [DG67] and more recently in [Kol15] and
[Kol16].

Lemma 15.1.0DX3 Let X be a Noetherian scheme. Let T ⊂ X be a subset stable
under specialization. Let F be a coherent OX-module. Then there is a unique map
F → F ′ of coherent OX-modules such that

(1) F → F ′ is surjective,
(2) Fx → F ′

x is an isomorphism for x ̸∈ T ,
(3) depthOX,x

(F ′
x) ≥ 1 for x ∈ T .

If f : Y → X is a flat morphism with Y Noetherian, then f∗F → f∗F ′ is the
corresponding quotient for f−1(T ) ⊂ Y and f∗F .

Proof. Condition (3) just means that Ass(F ′) ∩ T = ∅. Thus F → F ′ is the
quotient of F by the subsheaf of sections whose support is contained in T . This
proves uniqueness. The statement on pullbacks follows from Divisors, Lemma 3.1
and the uniqueness.

Existence of F → F ′. By the uniqueness it suffices to prove the existence and
uniqueness locally on X; small detail omitted. Thus we may assume X = Spec(A)
is affine and F is the coherent module associated to the finite A-module M . Set
M ′ = M/H0

T (M) with H0
T (M) as in Section 5. Then Mp = M ′

p for p ̸∈ T which
proves (1). On the other hand, we have H0

T (M) = colimH0
Z(M) where Z runs over

the closed subsets of X contained in T . Thus by Dualizing Complexes, Lemmas
11.6 we have H0

T (M ′) = 0, i.e., no associated prime of M ′ is in T . Therefore
depth(M ′

p) ≥ 1 for p ∈ T . □

Lemma 15.2.0DX4 Let j : U → X be an open immersion of Noetherian schemes. Let
F be a coherent OX-module. Assume F ′ = j∗(F|U ) is coherent. Then F → F ′ is
the unique map of coherent OX-modules such that

(1) F|U → F ′|U is an isomorphism,
(2) depthOX,x

(F ′
x) ≥ 2 for x ∈ X, x ̸∈ U .

If f : Y → X is a flat morphism with Y Noetherian, then f∗F → f∗F ′ is the
corresponding map for f−1(U) ⊂ Y .

Proof. We have depthOX,x
(F ′

x) ≥ 2 by Divisors, Lemma 6.6 part (3). The unique-
ness of F → F ′ follows from Divisors, Lemma 5.11. The compatibility with flat pull-
backs follows from flat base change, see Cohomology of Schemes, Lemma 5.2. □

https://stacks.math.columbia.edu/tag/0EI2
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Lemma 15.3.0DX5 Let X be a Noetherian scheme. Let Z ⊂ X be a closed subscheme.
Let F be a coherent OX-module. Assume X is universally catenary and the formal
fibres of local rings have (S1). Then there exists a unique map F → F ′′ of coherent
OX-modules such that

(1) Fx → F ′′
x is an isomorphism for x ∈ X \ Z,

(2) Fx → F ′′
x is surjective and depthOX,x

(F ′′
x ) = 1 for x ∈ Z such that there

exists an immediate specialization x′ ⇝ x with x′ ̸∈ Z and x′ ∈ Ass(F),
(3) depthOX,x

(F ′′
x ) ≥ 2 for the remaining x ∈ Z.

If f : Y → X is a Cohen-Macaulay morphism with Y Noetherian, then f∗F →
f∗F ′′ satisfies the same properties with respect to f−1(Z) ⊂ Y .

Proof. Let F → F ′ be the map constructed in Lemma 15.1 for the subset Z of X.
Recall that F ′ is the quotient of F by the subsheaf of sections supported on Z.

We first prove uniqueness. Let F → F ′′ be as in the lemma. We get a factorization
F → F ′ → F ′′ since Ass(F ′′) ∩ Z = ∅ by conditions (2) and (3). Let U ⊂ X be a
maximal open subscheme such that F ′|U → F ′′|U is an isomorphism. We see that
U contains all the points as in (2). Then by Divisors, Lemma 5.11 we conclude
that F ′′ = j∗(F ′|U ). In this way we get uniqueness (small detail: if we have two of
these F ′′ then we take the intersection of the opens U we get from either).

Proof of existence. Recall that Ass(F ′) = {x1, . . . , xn} is finite and xi ̸∈ Z. Let Yi

be the closure of {xi}. Let Zi,j be the irreducible components of Z ∩ Yi. Observe
that Supp(F ′) ∩ Z =

⋃
Zi,j . Let zi,j ∈ Zi,j be the generic point. Let

di,j = dim(O{xi},zi,j
)

If di,j = 1, then zi,j is one of the points as in (2). Thus we do not need to modify
F ′ at these points. Furthermore, still assuming di,j = 1, using Lemma 9.2 we
can find an open neighbourhood zi,j ∈ Vi,j ⊂ X such that depthOX,z

(F ′
z) ≥ 2 for

z ∈ Zi,j ∩ Vi,j , z ̸= zi,j . Set

Z ′ = X \
(
X \ Z ∪

⋃
di,j=1

Vi,j)
)

Denote j′ : X \ Z ′ → X. By our choice of Z ′ the assumptions of Lemma 8.9 are
satisfied. We conclude by setting F ′′ = j′

∗(F ′|X\Z′) and applying Lemma 15.2.

The final statement follows from the formula for the change in depth along a flat
local homomorphism, see Algebra, Lemma 163.1 and the assumption on the fibres
of f inherent in f being Cohen-Macaulay. Details omitted. □

Lemma 15.4.0EI3 Let X be a Noetherian scheme which locally has a dualizing com-
plex. Let T ′ ⊂ X be a subset stable under specialization. Let F be a coherent
OX-module. Assume that if x ⇝ x′ is an immediate specialization of points in X
with x′ ∈ T ′ and x ̸∈ T ′, then depth(Fx) ≥ 1. Then there exists a unique map
F → F ′′ of coherent OX-modules such that

(1) Fx → F ′′
x is an isomorphism for x ̸∈ T ′,

(2) depthOX,x
(F ′′

x ) ≥ 2 for x ∈ T ′.
If f : Y → X is a Cohen-Macaulay morphism with Y Noetherian, then f∗F →
f∗F ′′ satisfies the same properties with respect to f−1(T ′) ⊂ Y .
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Proof. Let F → F ′ be the quotient of F constructed in Lemma 15.1 using T ′.
Recall that F ′ is the quotient of F by the subsheaf of sections supported on T ′.

Proof of uniqueness. Let F → F ′′ be as in the lemma. We get a factorization
F → F ′ → F ′′ since Ass(F ′′) ∩ T ′ = ∅ by condition (2). Let U ⊂ X be a maximal
open subscheme such that F ′|U → F ′′|U is an isomorphism. We see that U contains
all the points of T ′. Then by Divisors, Lemma 5.11 we conclude that F ′′ = j∗(F ′|U ).
In this way we get uniqueness (small detail: if we have two of these F ′′ then we
take the intersection of the opens U we get from either).

Proof of existence. We will define

F ′′ = colim j∗(F ′|V )

where j : V → X runs over the open subschemes such that X \ V ⊂ T ′. Observe
that the colimit is filtered as T ′ is stable under specialization. Each of the maps
F ′ → j∗(F ′|V ) is injective as Ass(F ′) is disjoint from T ′. Thus F ′ → F ′′ is injective.

Suppose X = Spec(A) is affine and F corresponds to the finite A-module M . Then
F ′ corresponds to M ′ = M/H0

T ′(M), see proof of Lemma 15.1. Applying Lemmas
2.2 and 5.3 we see that F ′′ corresponds to an A-module M ′′ which fits into the
short exact sequence

0 → M ′ → M ′′ → H1
T ′(M ′) → 0

By Proposition 11.1 and our condition on immediate specializations in the state-
ment of the lemma we see that M ′′ is a finite A-module. In this way we see that
F ′′ is coherent.

The final statement follows from the formula for the change in depth along a flat
local homomorphism, see Algebra, Lemma 163.1 and the assumption on the fibres
of f inherent in f being Cohen-Macaulay. Details omitted. □

Lemma 15.5.0EI4 Let X be a Noetherian scheme which locally has a dualizing com-
plex. Let T ′ ⊂ T ⊂ X be subsets stable under specialization such that if x ⇝ x′

is an immediate specialization of points in X and x′ ∈ T ′, then x ∈ T . Let F
be a coherent OX-module. Then there exists a unique map F → F ′′ of coherent
OX-modules such that

(1) Fx → F ′′
x is an isomorphism for x ̸∈ T ,

(2) Fx → F ′′
x is surjective and depthOX,x

(F ′′
x ) ≥ 1 for x ∈ T , x ̸∈ T ′, and

(3) depthOX,x
(F ′′

x ) ≥ 2 for x ∈ T ′.
If f : Y → X is a Cohen-Macaulay morphism with Y Noetherian, then f∗F →
f∗F ′′ satisfies the same properties with respect to f−1(T ′) ⊂ f−1(T ) ⊂ Y .

Proof. First, let F → F ′ be the quotient of F constructed in Lemma 15.1 using
T . Second, let F ′ → F ′′ be the unique map of coherent modules construction in
Lemma 15.4 using T ′. Then F → F ′′ is as desired. □

16. Hartshorne-Lichtenbaum vanishing

0EB0 This vanishing result is the local analogue of Lichtenbaum’s theorem that the reader
can find in Duality for Schemes, Section 34. This and much else besides can be
found in [Har68].
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Lemma 16.1.0EB1 Let A be a Noetherian ring of dimension d. Let I ⊂ I ′ ⊂ A
be ideals. If I ′ is contained in the Jacobson radical of A and cd(A, I ′) < d, then
cd(A, I) < d.

Proof. By Lemma 4.7 we know cd(A, I) ≤ d. We will use Lemma 2.6 to show

Hd
V (I′)(A) → Hd

V (I)(A)

is surjective which will finish the proof. Pick p ∈ V (I) \ V (I ′). By our assumption
on I ′ we see that p is not a maximal ideal of A. Hence dim(Ap) < d. Then
Hd

pAp
(Ap) = 0 by Lemma 4.7. □

Lemma 16.2.0EB2 Let A be a Noetherian ring of dimension d. Let I ⊂ A be an
ideal. If Hd

V (I)(M) = 0 for some finite A-module whose support contains all the
irreducible components of dimension d, then cd(A, I) < d.

Proof. By Lemma 4.7 we know cd(A, I) ≤ d. Thus for any finite A-module N
we have Hi

V (I)(N) = 0 for i > d. Let us say property P holds for the finite A-
module N if Hd

V (I)(N) = 0. One of our assumptions is that P(M) holds. Observe
that P(N1 ⊕N2) ⇔ (P(N1) ∧ P(N2)). Observe that if N → N ′ is surjective, then
P(N) ⇒ P(N ′) as we have the vanishing of Hd+1

V (I) (see above). Let p1, . . . , pn be the
minimal primes of A with dim(A/pi) = d. Observe that P(N) holds if the support
of N is disjoint from {p1, . . . , pn} for dimension reasons, see Lemma 4.7. For each
i set Mi = M/piM . This is a finite A-module annihilated by pi whose support is
equal to V (pi) (here we use the assumption on the support of M). Finally, if J ⊂ A
is an ideal, then we have P(JMi) as JMi is a quotient of a direct sum of copies
of M . Thus it follows from Cohomology of Schemes, Lemma 12.8 that P holds for
every finite A-module. □

Lemma 16.3.0EB3 Let A be a Noetherian local ring of dimension d. Let f ∈ A be
an element which is not contained in any minimal prime of dimension d. Then
f : Hd

V (I)(M) → Hd
V (I)(M) is surjective for any finite A-module M and any ideal

I ⊂ A.

Proof. The support of M/fM has dimension < d by our assumption on f . Thus
Hd

V (I)(M/fM) = 0 by Lemma 4.7. Thus Hd
V (I)(fM) → Hd

V (I)(M) is surjective.
Since by Lemma 4.7 we know cd(A, I) ≤ d we also see that the surjection M → fM ,
x 7→ fx induces a surjection Hd

V (I)(M) → Hd
V (I)(fM). □

Lemma 16.4.0EB4 Let A be a Noetherian local ring with normalized dualizing complex
ω•

A. Let I ⊂ A be an ideal. If H0
V (I)(ω•

A) = 0, then cd(A, I) < dim(A).

Proof. Set d = dim(A). Let p1, . . . , pn ⊂ A be the minimal primes of dimension d.
Recall that the finite A-module H−i(ω•

A) is nonzero only for i ∈ {0, . . . , d} and that
the support of H−i(ω•

A) has dimension ≤ i, see Lemma 9.4. Set ωA = H−d(ω•
A).

By prime avoidence (Algebra, Lemma 15.2) we can find f ∈ A, f ̸∈ pi which
annihilates H−i(ω•

A) for i < d. Consider the distinguished triangle

ωA[d] → ω•
A → τ≥−d+1ω

•
A → ωA[d+ 1]

See Derived Categories, Remark 12.4. By Derived Categories, Lemma 12.5 we
see that fd induces the zero endomorphism of τ≥−d+1ω

•
A. Using the axioms of a
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triangulated category, we find a map
ω•

A → ωA[d]
whose composition with ωA[d] → ω•

A is multiplication by fd on ωA[d]. Thus we
conclude that fd annihilates Hd

V (I)(ωA). By Lemma 16.3 we conlude Hd
V (I)(ωA) =

0. Then we conclude by Lemma 16.2 and the fact that (ωA)pi is nonzero (see for
example Dualizing Complexes, Lemma 16.11). □

Lemma 16.5.0EB5 Let (A,m) be a complete Noetherian local domain. Let p ⊂ A be a
prime ideal of dimension 1. For every n ≥ 1 there is an m ≥ n such that p(m) ⊂ pn.
Proof. Recall that the symbolic power p(m) is defined as the kernel of A →
Ap/p

mAp. Since localization is exact we conclude that in the short exact sequence

0 → an → A/pn → A/p(n) → 0
the support of an is contained in {m}. In particular, the inverse system (an) is
Mittag-Leffler as each an is an Artinian A-module. We conclude that the lemma
is equivalent to the requirement that lim an = 0. Let f ∈ lim an. Then f is an
element of A = limA/pn (here we use that A is complete) which maps to zero in
the completion A∧

p of Ap. Since Ap → A∧
p is faithfully flat, we see that f maps to

zero in Ap. Since A is a domain we see that f is zero as desired. □

Proposition 16.6.0EB6 [Har68, Theorem
3.1]

Let A be a Noetherian local ring with completion A∧. Let
I ⊂ A be an ideal such that

dimV (IA∧ + p) ≥ 1
for every minimal prime p ⊂ A∧ of dimension dim(A). Then cd(A, I) < dim(A).
Proof. Since A → A∧ is faithfully flat we have Hd

V (I)(A) ⊗A A∧ = Hd
V (IA∧)(A∧)

by Dualizing Complexes, Lemma 9.3. Thus we may assume A is complete.
Assume A is complete. Let p1, . . . , pn ⊂ A be the minimal primes of dimension d.
Consider the complete local ring Ai = A/pi. We have Hd

V (I)(Ai) = Hd
V (IAi)(Ai) by

Dualizing Complexes, Lemma 9.2. By Lemma 16.2 it suffices to prove the lemma
for (Ai, IAi). Thus we may assume A is a complete local domain.
Assume A is a complete local domain. We can choose a prime ideal p ⊃ I with
dim(A/p) = 1. By Lemma 16.1 it suffices to prove the lemma for p.
By Lemma 16.4 it suffices to show that H0

V (p)(ω•
A) = 0. Recall that

H0
V (p)(ω•

A) = colim Ext0
A(A/pn, ω•

A)
By Lemma 16.5 we see that the colimit is the same as

colim Ext0
A(A/p(n), ω•

A)
Since depth(A/p(n)) = 1 we see that these ext groups are zero by Lemma 9.4 as
desired. □

Lemma 16.7.0EB7 Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal.
Assume A is excellent, normal, and dimV (I) ≥ 1. Then cd(A, I) < dim(A). In
particular, if dim(A) = 2, then Spec(A) \ V (I) is affine.
Proof. By More on Algebra, Lemma 52.6 the completion A∧ is normal and hence
a domain. Thus the assumption of Proposition 16.6 holds and we conclude. The
statement on affineness follows from Lemma 4.8. □
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17. Frobenius action

0EBU Let p be a prime number. Let A be a ring with p = 0 in A. The Frobenius
endomorphism of A is the map

F : A −→ A, a 7−→ ap

In this section we prove lemmas on modules which have Frobenius actions.

Lemma 17.1.0EBV Let p be a prime number. Let (A,m, κ) be a Noetherian local ring
with p = 0 in A. Let M be a finite A-module such that M ⊗A,F A ∼= M . Then M
is finite free.

Proof. Choose a presentation A⊕m → A⊕n → M which induces an isomorphism
κ⊕n → M/mM . Let T = (aij) be the matrix of the map A⊕m → A⊕n. Observe
that aij ∈ m. Applying base change by F , using right exactness of base change, we
get a presentation A⊕m → A⊕n → M where the matrix is T = (ap

ij). Thus we have
a presentation with aij ∈ mp. Repeating this construction we find that for each
e ≥ 1 there exists a presentation with aij ∈ me. This implies the fitting ideals (More
on Algebra, Definition 8.3) Fitk(M) for k < n are contained in

⋂
e≥1 m

e. Since this
is zero by Krull’s intersection theorem (Algebra, Lemma 51.4) we conclude that M
is free of rank n by More on Algebra, Lemma 8.7. □

In this section, we say elements f1, . . . , fr of a ring A are independent if
∑
aifi = 0

implies ai ∈ (f1, . . . , fr). In other words, with I = (f1, . . . , fr) we have I/I2 is free
over A/I with basis f1, . . . , fr.

Lemma 17.2.0EBW See [Lec64] and
[Mat70, Lemma 1
page 299].

Let A be a ring. If f1, . . . , fr−1, frgr are independent, then f1, . . . , fr

are independent.

Proof. Say
∑
aifi = 0. Then

∑
aigrfi = 0. Hence ar ∈ (f1, . . . , fr−1, frgr).

Write ar =
∑

i<r bifi +bfrgr. Then 0 =
∑

i<r(ai +bifr)fi +bf2
r gr. Thus ai +bifr ∈

(f1, . . . , fr−1, frgr) which implies ai ∈ (f1, . . . , fr) as desired. □

Lemma 17.3.0EBX See [Lec64] and
[Mat70, Lemma 2
page 300].

Let A be a ring. If f1, . . . , fr−1, frgr are independent and if the
A-module A/(f1, . . . , fr−1, frgr) has finite length, then

lengthA(A/(f1, . . . , fr−1, frgr))
= lengthA(A/(f1, . . . , fr−1, fr)) + lengthA(A/(f1, . . . , fr−1, gr))

Proof. We claim there is an exact sequence

0 → A/(f1, . . . , fr−1, gr) fr−→ A/(f1, . . . , fr−1, frgr) → A/(f1, . . . , fr−1, fr) → 0
Namely, if afr ∈ (f1, . . . , fr−1, frgr), then

∑
i<r aifi + (a + bgr)fr = 0 for some

b, ai ∈ A. Hence
∑

i<r aigrfi + (a + bgr)grfr = 0 which implies a + bgr ∈
(f1, . . . , fr−1, frgr) which means that a maps to zero in A/(f1, . . . , fr−1, gr). This
proves the claim. To finish use additivity of lengths (Algebra, Lemma 52.3). □

Lemma 17.4.0EBY See [Lec64] and
[Mat70, Lemma 3
page 300].

Let (A,m) be a local ring. If m = (x1, . . . , xr) and xe1
1 , . . . , x

er
r are

independent for some ei > 0, then lengthA(A/(xe1
1 , . . . , x

er
r )) = e1 . . . er.

Proof. Use Lemmas 17.2 and 17.3 and induction. □

Lemma 17.5.0EBZ Let φ : A → B be a flat ring map. If f1, . . . , fr ∈ A are independent,
then φ(f1), . . . , φ(fr) ∈ B are independent.
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Proof. Let I = (f1, . . . , fr) and J = φ(I)B. By flatness we have I/I2⊗AB = J/J2.
Hence freeness of I/I2 over A/I implies freeness of J/J2 over B/J . □

Lemma 17.6 (Kunz).0EC0 [Kun69]Let p be a prime number. Let A be a Noetherian ring with
p = 0. The following are equivalent

(1) A is regular, and
(2) F : A → A, a 7→ ap is flat.

Proof. Observe that Spec(F ) : Spec(A) → Spec(A) is the identity map. Being
regular is defined in terms of the local rings and being flat is something about local
rings, see Algebra, Lemma 39.18. Thus we may and do assume A is a Noetherian
local ring with maximal ideal m.
Assume A is regular. Let x1, . . . , xd be a system of parameters for A. Applying
F we find F (x1), . . . , F (xd) = xp

1, . . . , x
p
d, which is a system of parameters for A.

Hence F is flat, see Algebra, Lemmas 128.1 and 106.3.
Conversely, assume F is flat. Write m = (x1, . . . , xr) with r minimal. Then
x1, . . . , xr are independent in the sense defined above. Since F is flat, we see that
xp

1, . . . , x
p
r are independent, see Lemma 17.5. Hence lengthA(A/(xp

1, . . . , x
p
r)) = pr

by Lemma 17.4. Let χ(n) = lengthA(A/mn) and recall that this is a numerical poly-
nomial of degree dim(A), see Algebra, Proposition 60.9. Choose n ≫ 0. Observe
that

mpn+pr ⊂ F (mn)A ⊂ mpn

as can be seen by looking at monomials in x1, . . . , xr. We have
A/F (mn)A = A/mn ⊗A,F A

By flatness of F this has length χ(n)lengthA(A/F (m)A) (Algebra, Lemma 52.13)
which is equal to prχ(n) by the above. We conclude

χ(pn+ pr) ≥ prχ(n) ≥ χ(pn)
Looking at the leading terms this implies r = dim(A), i.e., A is regular. □

18. Structure of certain modules

0EC1 Some results on the structure of certain types of modules over regular local rings.
These types of results and much more can be found in [HS93], [Lyu93], [Lyu97].

Lemma 18.1.0EC2 Special case of
[Lyu93, Theorem
2.4]

Let k be a field of characteristic 0. Let d ≥ 1. Let A = k[[x1, . . . , xd]]
with maximal ideal m. Let M be an m-power torsion A-module endowed with addi-
tive operators D1, . . . , Dd satisfying the leibniz rule

Di(fz) = ∂i(f)z + fDi(z)
for f ∈ A and z ∈ M . Here ∂i is differentiation with respect to xi. Then M is
isomorphic to a direct sum of copies of the injective hull E of k.

Proof. Choose a set J and an isomorphism M [m] →
⊕

j∈J k. Since
⊕

j∈J E is
injective (Dualizing Complexes, Lemma 3.7) we can extend this isomorphism to an
A-module homomorphism φ : M →

⊕
j∈J E. We claim that φ is an isomorphism,

i.e., bijective.
Injective. Let z ∈ M be nonzero. Since M is m-power torsion we can choose an
element f ∈ A such that fz ∈ M [m] and fz ̸= 0. Then φ(fz) = fφ(z) is nonzero,
hence φ(z) is nonzero.
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Surjective. Let z ∈ M . Then xn
1 z = 0 for some n ≥ 0. We will prove that z ∈ x1M

by induction on n. If n = 0, then z = 0 and the result is true. If n > 0, then
applying D1 we find 0 = nxn−1

1 z + xn
1D1(z). Hence xn−1

1 (nz + x1D1(z)) = 0. By
induction we get nz+x1D1(z) ∈ x1M . Since n is invertible, we conclude z ∈ x1M .
Thus we see that M is x1-divisible. If φ is not surjective, then we can choose
e ∈

⊕
j∈J E not in M . Arguing as above we may assume me ⊂ M , in particular

x1e ∈ M . There exists an element z1 ∈ M with x1z1 = x1e. Hence x1(z1 − e) = 0.
Replacing e by e − z1 we may assume e is annihilated by x1. Thus it suffices to
prove that

φ[x1] : M [x1] −→
(⊕

j∈J
E

)
[x1] =

⊕
j∈J

E[x1]

is surjective. If d = 1, this is true by construction of φ. If d > 1, then we observe
that E[x1] is the injective hull of the residue field of k[[x2, . . . , xd]], see Dualizing
Complexes, Lemma 7.1. Observe that M [x1] as a module over k[[x2, . . . , xd]] is
m/(x1)-power torsion and comes equipped with operators D2, . . . , Dd satisfying the
displayed Leibniz rule. Thus by induction on d we conclude that φ[x1] is surjective
as desired. □

Lemma 18.2.0EC3 Follows from [HS93,
Corollary 3.6] with
a little bit of work.
Also follows directly
from [Lyu97,
Theorem 1.4].

Let p be a prime number. Let (A,m, k) be a regular local ring with
p = 0. Denote F : A → A, a 7→ ap be the Frobenius endomorphism. Let M be a
m-power torsion module such that M ⊗A,F A ∼= M . Then M is isomorphic to a
direct sum of copies of the injective hull E of k.

Proof. Choose a set J and an A-module homorphism φ : M →
⊕

j∈J E which
maps M [m] isomorphically onto (

⊕
j∈J E)[m] =

⊕
j∈J k. We claim that φ is an

isomorphism, i.e., bijective.

Injective. Let z ∈ M be nonzero. Since M is m-power torsion we can choose an
element f ∈ A such that fz ∈ M [m] and fz ̸= 0. Then φ(fz) = fφ(z) is nonzero,
hence φ(z) is nonzero.

Surjective. Recall that F is flat, see Lemma 17.6. Let x1, . . . , xd be a minimal
system of generators of m. Denote

Mn = M [xpn

1 , . . . , xpn

d ]

the submodule of M consisting of elements killed by xpn

1 , . . . , xpn

d . So M0 = M [m]
is a vector space over k. Also M =

⋃
Mn by our assumption that M is m-power

torsion. Since Fn is flat and Fn(xi) = xpn

i we have

Mn
∼= (M⊗A,F nA)[xpn

1 , . . . , xpn

d ] = M [x1, . . . , xd]⊗A,F nA = M0⊗kA/(xpn

1 , . . . , xpn

d )

Thus Mn is free over A/(xpn

1 , . . . , xpn

d ). A computation shows that every element of
A/(xpn

1 , . . . , xpn

d ) annihilated by xpn−1
1 is divisible by x1; for example you can use

that A/(xpn

1 , . . . , xpn

d ) ∼= k[x1, . . . , xd]/(xpn

1 , . . . , xpn

d ) by Algebra, Lemma 160.10.
Thus the same is true for every element of Mn. Since every element of M is in
Mn for all n ≫ 0 and since every element of M is killed by some power of x1, we
conclude that M is x1-divisible.

Let x = x1. Above we have seen that M is x-divisible. If φ is not surjective, then
we can choose e ∈

⊕
j∈J E not in M . Arguing as above we may assume me ⊂ M ,

in particular xe ∈ M . There exists an element z1 ∈ M with xz1 = xe. Hence

https://stacks.math.columbia.edu/tag/0EC3


LOCAL COHOMOLOGY 38

x(z1 − e) = 0. Replacing e by e− z1 we may assume e is annihilated by x. Thus it
suffices to prove that

φ[x] : M [x] −→
(⊕

j∈J
E

)
[x] =

⊕
j∈J

E[x]

is surjective. If d = 1, this is true by construction of φ. If d > 1, then we observe
that E[x] is the injective hull of the residue field of the regular ring A/xA, see
Dualizing Complexes, Lemma 7.1. Observe that M [x] as a module over A/xA is
m/(x)-power torsion and we have

M [x] ⊗A/xA,F A/xA = M [x] ⊗A,F A⊗A A/xA

= (M ⊗A,F A)[xp] ⊗A A/xA

∼= M [xp] ⊗A A/xA

Argue using flatness of F as before. We claim that M [xp] ⊗A A/xA → M [x],
z ⊗ 1 7→ xp−1z is an isomorphism. This can be seen by proving it for each of
the modules Mn, n > 0 defined above where it follows by the same result for
A/(xpn

1 , . . . , xpn

d ) and x = x1. Thus by induction on dim(A) we conclude that φ[x]
is surjective as desired. □

19. Additional structure on local cohomology

0EC4 Here is a sample result.

Lemma 19.1.0EC5 Let A be a ring. Let I ⊂ A be a finitely generated ideal. Set
Z = V (I). For each derivation θ : A → A there exists a canonical additive operator
D on the local cohomology modules Hi

Z(A) satisfying the Leibniz rule with respect
to θ.

Proof. Let f1, . . . , fr be elements generating I. Recall that RΓZ(A) is computed
by the complex

A →
∏

i0
Afi0

→
∏

i0<i1
Afi0 fi1

→ . . . → Af1...fr

See Dualizing Complexes, Lemma 9.1. Since θ extends uniquely to an additive
operator on any localization of A satisfying the Leibniz rule with respect to θ, the
lemma is clear. □

Lemma 19.2.0EC6 Let p be a prime number. Let A be a ring with p = 0. Denote
F : A → A, a 7→ ap the Frobenius endomorphism. Let I ⊂ A be a finitely generated
ideal. Set Z = V (I). There exists an isomorphism RΓZ(A) ⊗L

A,F A ∼= RΓZ(A).

Proof. Follows from Dualizing Complexes, Lemma 9.3 and the fact that Z =
V (fp

1 , . . . , f
p
r ) if I = (f1, . . . , fr). □

Lemma 19.3.0EC7 Let A be a ring. Let V → Spec(A) be quasi-compact, quasi-
separated, and étale. For each derivation θ : A → A there exists a canonical
additive operator D on Hi(V,OV ) satisfying the Leibniz rule with respect to θ.

Proof. If V is separated, then we can argue using an affine open covering V =⋃
j=1,...m Vj . Namely, because V is separated we may write Vj0...jp

= Spec(Bj0...jp
).

See Schemes, Lemma 21.7. Then we find that the A-module Hi(V,OV ) is the ith
cohomology group of the Čech complex∏

Bj0 →
∏

Bj0j1 →
∏

Bj0j1j2 → . . .

https://stacks.math.columbia.edu/tag/0EC5
https://stacks.math.columbia.edu/tag/0EC6
https://stacks.math.columbia.edu/tag/0EC7
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See Cohomology of Schemes, Lemma 2.6. Each B = Bj0...jp
is an étale A-algebra.

Hence ΩB = ΩA ⊗A B and we conclude θ extends uniquely to a derivation θB :
B → B. These maps define an endomorphism of the Čech complex and define the
desired operators on the cohomology groups.
In the general case we use a hypercovering of V by affine opens, exactly as in
the first part of the proof of Cohomology of Schemes, Lemma 7.3. We omit the
details. □

Remark 19.4.0EC8 We can upgrade Lemmas 19.1 and 19.3 to include higher order
differential operators. If we ever need this we will state and prove a precise lemma
here.

Lemma 19.5.0EC9 Let p be a prime number. Let A be a ring with p = 0. Denote F :
A → A, a 7→ ap the Frobenius endomorphism. If V → Spec(A) is quasi-compact,
quasi-separated, and étale, then there exists an isomorphism RΓ(V,OV ) ⊗L

A,F A ∼=
RΓ(V,OV ).

Proof. Observe that the relative Frobenius morphism
V −→ V ×Spec(A),Spec(F ) Spec(A)

of V over A is an isomorphism, see Étale Morphisms, Lemma 14.3. Thus the lemma
follows from cohomology and base change, see Derived Categories of Schemes,
Lemma 22.5. Observe that since V is étale over A, it is flat over A. □

20. A bit of uniformity, I

0G9S The main task of this section is to formulate and prove Lemma 20.2.

Lemma 20.1.0G9T Let R be a ring. Let M → M ′ be a map of R-modules with M of
finite presentation such that TorR

1 (M,N) → TorR
1 (M ′, N) is zero for all R-modules

N . Then M → M ′ factors through a free R-module.

Proof. We may choose a map of short exact sequences

0 // K //

��

R⊕r //

��

M //

��

0

0 // K ′ //⊕
i∈I R

// M ′ // 0

whose right vertical arrow is the given map. We can factor this map through the
short exact sequence
(20.1.1)0G9U 0 → K ′ → E → M → 0
which is the pushout of the first short exact sequence by K → K ′. By a diagram
chase we see that the assumption in the lemma implies that the boundary map
TorR

1 (M,N) → K ′ ⊗R N induced by (20.1.1) is zero, i.e., the sequence (20.1.1) is
universally exact. This implies by Algebra, Lemma 82.4 that (20.1.1) is split (this
is where we use that M is of finite presentation). Hence the map M → M ′ factors
through

⊕
i∈I R and we win. □

Lemma 20.2.0G9V Let R be a ring. Let α : M → M ′ be a map of R-modules. Let
P• → M and P ′

• → M ′ be resolutions by projective R-modules. Let e ≥ 0 be an
integer. Consider the following conditions

https://stacks.math.columbia.edu/tag/0EC8
https://stacks.math.columbia.edu/tag/0EC9
https://stacks.math.columbia.edu/tag/0G9T
https://stacks.math.columbia.edu/tag/0G9V
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(1) We can find a map of complexes a• : P• → P ′
• inducing α on cohomology

with ai = 0 for i > e.
(2) We can find a map of complexes a• : P• → P ′

• inducing α on cohomology
with ae+1 = 0.

(3) The map Exti
R(M ′, N) → Exti

R(M,N) is zero for all R-modules N and
i > e.

(4) The map Exte+1
R (M ′, N) → Exte+1

R (M,N) is zero for all R-modules N .
(5) Let N = Im(P ′

e+1 → P ′
e) and denote ξ ∈ Exte+1

R (M ′, N) the canonical
element (see proof). Then ξ maps to zero in Exte+1

R (M,N).
(6) The map TorR

i (M,N) → TorR
i (M ′, N) is zero for all R-modules N and

i > e.
(7) The map TorR

e+1(M,N) → TorR
e+1(M ′, N) is zero for all R-modules N .

Then we always have the implications

(1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5) ⇒ (6) ⇔ (7)

If M is (−e− 1)-pseudo-coherent (for example if R is Noetherian and M is a finite
R-module), then all conditions are equivalent.

Proof. It is clear that (2) implies (1). If a• is as in (1), then we can consider the
map of complexes a′

• : P• → P ′
• with a′

i = ai for i ≤ e+ 1 and a′
i = 0 for i ≥ e+ 1

to get a map of complexes as in (2). Thus (1) is equivalent to (2).

By the construction of the Ext and Tor functors using resolutions (Algebra, Sections
71 and 75) we see that (1) and (2) imply all of the other conditions.

It is clear that (3) implies (4) implies (5). Let N be as in (5). The canonical map
ξ̃ : P ′

e+1 → N precomposed with P ′
e+2 → P ′

e+1 is zero. Hence we may consider the
class ξ of ξ̃ in

Exte+1
R (M ′, N) =

Ker(Hom(P ′
e+1, N → Hom(P ′

e+2, N)
Im(Hom(P ′

e, N → Hom(P ′
e+1, N)

Choose a map of complexes a• : P• → P ′
• lifting α, see Derived Categories, Lemma

19.6. If ξ maps to zero in Exte+1
R (M ′, N), then we find a map φ : Pe → N such

that ξ̃ ◦ ae+1 = φ ◦ d. Thus we obtain a map of complexes

. . . // Pe+1 //

0
��

Pe
//

ae−φ

��

Pe−1 //

ae−1

��

. . .

. . . // P ′
e+1

// P ′
e

// P ′
e−1

// . . .

as in (2). Hence (1) – (5) are equivalent.

The equivalence of (6) and (7) follows from dimension shifting; we omit the details.

Assume M is (−e−1)-pseudo-coherent. (The parenthetical statement in the lemma
follows from More on Algebra, Lemma 64.17.) We will show that (7) implies (4)
which finishes the proof. We will use induction on e. The base case is e = 0. Then
M is of finite presentation by More on Algebra, Lemma 64.4 and we conclude from
Lemma 20.1 that M → M ′ factors through a free module. Of course if M → M ′
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factors through a free module, then Exti
R(M ′, N) → Exti

R(M,N) is zero for all
i > 0 as desired. Assume e > 0. We may choose a map of short exact sequences

0 // K //

��

R⊕r //

��

M //

��

0

0 // K ′ //⊕
i∈I R

// M ′ // 0

whose right vertical arrow is the given map. We obtain TorR
i+1(M,N) = TorR

i (K,N)
and Exti+1

R (M,N) = Exti
R(K,N) for i ≥ 1 and all R-modules N and similarly for

M ′,K ′. Hence we see that TorR
e (K,N) → TorR

e (K ′, N) is zero for all R-modules
N . By More on Algebra, Lemma 64.2 we see that K is (−e)-pseudo-coherent. By
induction we conclude that Exte(K ′, N) → Exte(K,N) is zero for all R-modules
N , which gives what we want. □

Lemma 20.3.0EH1 Let I be an ideal of a Noetherian ring A. For all n ≥ 1 there exists
an m > n such that the map A/Im → A/In satisfies the equivalent conditions of
Lemma 20.2 with e = cd(A, I).

Proof. Let ξ ∈ Exte+1
A (A/In, N) be the element constructed in Lemma 20.2 part

(5). Since e = cd(A, I) we have 0 = He+1
Z (N) = He+1

I (N) = colim Exte+1(A/Im, N)
by Dualizing Complexes, Lemmas 10.1 and 8.2. Thus we may pick m ≥ n such
that ξ maps to zero in Exte+1

A (A/Im, N) as desired. □

21. A bit of uniformity, II

0G9W Let I be an ideal of a Noetherian ring A. Let M be a finite A-module. Let
i > 0. By More on Algebra, Lemma 27.3 there exists a c = c(A, I,M, i) such that
TorA

i (M,A/In) → TorA
i (M,A/In−c) is zero for all n ≥ c. In this section, we discuss

some results which show that one sometimes can choose a constant c which works
for all A-modules M simultaneously (and for a range of indices i). This material is
related to uniform Artin-Rees as discussed in [Hun92] and [AHS15].

In Remark 21.9 we will apply this to show that various pro-systems related to
derived completion are (or are not) strictly pro-isomorphic.

The following lemma can be significantly strengthened.

Lemma 21.1.0G9X Let I be an ideal of a Noetherian ring A. For every m ≥ 0 and
i > 0 there exist a c = c(A, I,m, i) ≥ 0 such that for every A-module M annihilated
by Im the map

TorA
i (M,A/In) → TorA

i (M,A/In−c)
is zero for all n ≥ c.

Proof. By induction on i. Base case i = 1. The short exact sequence 0 →
In → A → A/In → 0 determines an injection TorA

1 (M,A/In) ⊂ In ⊗A M , see
Algebra, Remark 75.9. As M is annihilated by Im we see that the map In ⊗AM →
In−m ⊗A M is zero for n ≥ m. Hence the result holds with c = m.

Induction step. Let i > 1 and assume c works for i−1. By More on Algebra, Lemma
27.3 applied to M = A/Im we can choose c′ ≥ 0 such that Tori(A/Im, A/In) →

https://stacks.math.columbia.edu/tag/0EH1
https://stacks.math.columbia.edu/tag/0G9X
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Tori(A/Im, A/In−c′) is zero for n ≥ c′. Let M be annihilated by Im. Choose a
short exact sequence

0 → S →
⊕

i∈I
A/Im → M → 0

The corresponding long exact sequence of tors gives an exact sequence

TorA
i (

⊕
i∈I

A/Im, A/In) → TorA
i (M,A/In) → TorA

i−1(S,A/In)

for all integers n ≥ 0. If n ≥ c+c′, then the map TorA
i−1(S,A/In) → TorA

i−1(S,A/In−c)
is zero and the map TorA

i (A/Im, A/In−c) → TorA
i (A/Im, A/In−c−c′) is zero. Com-

bined with the short exact sequences this implies the result holds for i with constant
c+ c′. □

Lemma 21.2.0G9Y Let I = (a1, . . . , at) be an ideal of a Noetherian ring A. Set a = a1
and denote B = A[ I

a ] the affine blowup algebra. There exists a c > 0 such that
TorA

i (B,M) is annihilated by Ic for all A-modules M and i ≥ t.

Proof. Recall that B is the quotient of A[x2, . . . , xt]/(a1x2 − a2, . . . , a1xt − at) by
its a1-torsion, see Algebra, Lemma 70.6. Let

B• = Koszul complex on a1x2 − a2, . . . , a1xt − at over A[x2, . . . , xt]

viewed as a chain complex sitting in degrees (t−1), . . . , 0. The complex B•[1/a1] is
isomorphic to the Koszul complex on x2 − a2/a1, . . . , xt − at/a1 which is a regular
sequence in A[1/a1][x2, . . . , xt]. Since regular sequences are Koszul regular, we
conclude that the augmentation

ϵ : B• −→ B

is a quasi-isomorphism after inverting a1. Since the homology modules of the cone
C• on ϵ are finite A[x2, . . . , xn]-modules and since C• is bounded, we conclude that
there exists a c ≥ 0 such that ac

1 annihilates all of these. By Derived Categories,
Lemma 12.5 this implies that, after possibly replacing c by a larger integer, that
ac

1 is zero on C• in D(A). The proof is finished once the reader contemplates the
distinguished triangle

B• ⊗L
A M → B ⊗L

A M → C• ⊗L
A M

Namely, the first term is represented by B• ⊗A M which is sitting in homological
degrees (t − 1), . . . , 0 in view of the fact that the terms in the Koszul complex B•
are free (and hence flat) A-modules. Whence TorA

i (B,M) = Hi(C• ⊗L
A M) for

i > t− 1 and this is annihilated by ac
1. Since ac

1B = IcB and since the tor module
is a module over B we conclude. □

For the rest of the discussion in this section we fix a Noetherian ring A and an ideal
I ⊂ A. We denote

p : X → Spec(A)
the blowing up of Spec(A) in the ideal I. In other words, X is the Proj of the Rees
algebra

⊕
n≥0 I

n. By Cohomology of Schemes, Lemmas 14.2 and 14.3 we can choose
an integer q(A, I) ≥ 0 such that for all q ≥ q(A, I) we have Hi(X,OX(q)) = 0 for
i > 0 and H0(X,OX(q)) = Iq.

https://stacks.math.columbia.edu/tag/0G9Y
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Lemma 21.3.0G9Z In the situation above, for q ≥ q(A, I) and any A-module M we
have

RΓ(X,Lp∗M̃(q)) ∼= M ⊗L
A Iq

in D(A).

Proof. Choose a free resolution F• → M . Then F̃• is a flat resolution of M̃ .
Hence Lp∗M̃ is given by the complex p∗F̃•. Thus Lp∗M̃(q) is given by the complex
p∗F̃•(q). Since p∗F̃i(q) are right acyclic for Γ(X,−) by our choice of q ≥ q(A, I)
and since we have Γ(X, p∗F̃i(q)) = IqFi by our choice of q ≥ q(A, I), we get that
RΓ(X,Lp∗M̃(q)) is given by the complex with terms IqFi by Derived Categories of
Schemes, Lemma 4.3. The result follows as the complex IqF• computes M ⊗L

A Iq

by definition. □

Lemma 21.4.0GA0 In the situation above, let t be an upper bound on the number of
generators for I. There exists an integer c = c(A, I) ≥ 0 such that for any A-module
M the cohomology sheaves Hj(Lp∗M̃) are annihilated by Ic for j ≤ −t.

Proof. Say I = (a1, . . . , at). The question is affine local on X. For 1 ≤ i ≤ t let
Bi = A[ I

ai
] be the affine blowup algebra. Then X has an affine open covering by

the spectra of the rings Bi, see Divisors, Lemma 32.2. By the description of derived
pullback given in Derived Categories of Schemes, Lemma 3.8 we conclude it suffices
to prove that for each i there exists a c ≥ 0 such that

TorA
j (Bi,M)

is annihilated by Ic for j ≥ t. This is Lemma 21.2. □

Lemma 21.5.0GA1 In the situation above, let t be an upper bound on the number of
generators for I. There exists an integer c = c(A, I) ≥ 0 such that for any A-
module M the tor modules TorA

i (M,A/Iq) are annihilated by Ic for i > t and all
q ≥ 0.

Proof. Let q(A, I) be as above. For q ≥ q(A, I) we have

RΓ(X,Lp∗M̃(q)) = M ⊗L
A Iq

by Lemma 21.3. We have a bounded and convergent spectral sequence

Ha(X,Hb(Lp∗M̃(q))) ⇒ TorA
−a−b(M, Iq)

by Derived Categories of Schemes, Lemma 4.4. Let d be an integer as in Coho-
mology of Schemes, Lemma 4.4 (actually we can take d = t, see Cohomology of
Schemes, Lemma 4.2). Then we see that H−i(X,Lp∗M̃(q)) = TorA

i (M, Iq) has a
finite filtration with at most d steps whose graded are subquotients of the modules

Ha(X,H−i−a(Lp∗M̃)(q)), a = 0, 1, . . . , d− 1
If i ≥ t then all of these modules are annihilated by Ic where c = c(A, I) is as
in Lemma 21.4 because the cohomology sheaves H−i−a(Lp∗M̃) are all annihilated
by Ic by the lemma. Hence we see that TorA

i (M, Iq) is annihilated by Idc for
q ≥ q(A, I) and i ≥ t. Using the short exact sequence 0 → Iq → A → A/Iq → 0
we find that Tori(M,A/Iq) is annihilated by Idc for q ≥ q(A, I) and i > t. We
conclude that Im with m = max(dc, q(A, I) − 1) annihilates TorA

i (M,A/Iq) for all
q ≥ 0 and i > t as desired. □

https://stacks.math.columbia.edu/tag/0G9Z
https://stacks.math.columbia.edu/tag/0GA0
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Lemma 21.6.0GA2 Let I be an ideal of a Noetherian ring A. Let t ≥ 0 be an upper
bound on the number of generators of I. There exist N, c ≥ 0 such that the maps

TorA
t+1(M,A/In) → TorA

t+1(M,A/In−c)
are zero for any A-module M and all n ≥ N .

Proof. Let c1 be the constant found in Lemma 21.5. Please keep in mind that this
constant c1 works for Tori for all i > t simultaneously.
Say I = (a1, . . . , at). For an A-module M we set

ℓ(M) = #{i | 1 ≤ i ≤ t, ac1
i is zero on M}

This is an element of {0, 1, . . . , t}. We will prove by descending induction on 0 ≤
s ≤ t the following statement Hs: there exist N, c ≥ 0 such that for every module
M with ℓ(M) ≥ s the maps

TorA
t+1+i(M,A/In) → TorA

t+1+i(M,A/In−c)
are zero for i = 0, . . . , s for all n ≥ N .
Base case: s = t. If ℓ(M) = t, then M is annihilated by (ac1

1 , . . . , a
c1
t } and hence by

It(c1−1)+1. We conclude from Lemma 21.1 that Ht holds by taking c = N to be the
maximum of the integers c(A, I, t(c1 − 1) + 1, t+ 1), . . . , c(A, I, t(c1 − 1) + 1, 2t+ 1)
found in the lemma.
Induction step. Say 0 ≤ s < t we have N, c as in Hs+1. Consider a module M with
ℓ(M) = s. Then we can choose an i such that ac1

i is nonzero on M . It follows that
ℓ(M [ac

i ]) ≥ s+ 1 and ℓ(M/ac1
i M) ≥ s+ 1 and the induction hypothesis applies to

them. Consider the exact sequence

0 → M [ac1
i ] → M

a
c1
i−−→ M → M/ac1

i M → 0
Denote E ⊂ M the image of the middle arrow. Consider the corresponding diagram
of Tor modules

Tori+1(M/ac1
i M,A/Iq)

��
Tori(M [ac1

i ], A/Iq) // Tori(M,A/Iq) //

0

))

Tori(E,A/Iq)

��
Tori(M,A/Iq)

with exact rows and columns (for every q). The south-east arrow is zero by our
choice of c1. We conclude that the module Tori(M,A/Iq) is sandwiched between a
quotient module of Tori(M [ac1

i ], A/Iq) and a submodule of Tori+1(M/ac1
i M,A/Iq).

Hence we conclude Hs holds with N replaced by N + c and c replaced by 2c. Some
details omitted. □

Proposition 21.7.0GA3 Let I be an ideal of a Noetherian ring A. Let t ≥ 0 be an
upper bound on the number of generators of I. There exist N, c ≥ 0 such that for
n ≥ N the maps

A/In → A/In−c

satisfy the equivalent conditions of Lemma 20.2 with e = t.

https://stacks.math.columbia.edu/tag/0GA2
https://stacks.math.columbia.edu/tag/0GA3
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Proof. Immediate consequence of Lemmas 21.6 and 20.2. □

Remark 21.8.0GA4 The paper [AHS15] shows, besides many other things, that if A is
local, then Proposition 21.7 also holds with e = t replaced by e = dim(A). Looking
at Lemma 20.3 it is natural to ask whether Proposition 21.7 holds with e = t
replaced with e = cd(A, I). We don’t know.

Remark 21.9.0GA5 Let I be an ideal of a Noetherian ring A. Say I = (f1, . . . , fr).
DenoteK•

n the Koszul complex on fn
1 , . . . , f

n
r as in More on Algebra, Situation 91.15

and denote Kn ∈ D(A) the corresponding object. Let M• be a bounded complex
of finite A-modules and denote M ∈ D(A) the corresponding object. Consider the
following inverse systems in D(A):

(1) M•/InM•, i.e., the complex whose terms are M i/InM i,
(2) M ⊗L

A A/In,
(3) M ⊗L

A Kn, and
(4) M ⊗L

P P/Jn (see below).
All of these inverse systems are isomorphic as pro-objects: the isomorphism between
(2) and (3) follows from More on Algebra, Lemma 94.1. The isomorphism between
(1) and (2) is given in More on Algebra, Lemma 100.3. For the last one, see below.
However, we can ask if these isomorphisms of pro-systems are “strict”; this termi-
nology and question is related to the discussion in [Qui, pages 61, 62]. Namely,
given a category C we can define a “strict pro-category” whose objects are inverse
systems (Xn) and whose morphisms (Xn) → (Yn) are given by tuples (c, φn) con-
sisting of a c ≥ 0 and morphisms φn : Xn → Yn−c for all n ≥ c satisfying an
obvious compatibility condition and up to a certain equivalence (given essentially
by increasing c). Then we ask whether the above inverse systems are isomorphic in
this strict pro-category.
This clearly cannot be the case for (1) and (3) even when M = A[0]. Namely, the
system H0(Kn) = A/(fn

1 , . . . , f
n
r ) is not strictly pro-isomorphic in the category of

modules to the system A/In in general. For example, if we take A = Z[x1, . . . , xr]
and fi = xi, then H0(Kn) is not annihilated by Ir(n−1).3

It turns out that the results above show that the natural map from (2) to (1)
discussed in More on Algebra, Lemma 100.3 is a strict pro-isomorphism. We will
sketch the proof. Using standard arguments involving stupid truncations, we first
reduce to the case where M• is given by a single finite A-module M placed in degree
0. Pick N, c ≥ 0 as in Proposition 21.7. The proposition implies that for n ≥ N we
get factorizations

M ⊗L
A A/In → τ≥−t(M ⊗L

A A/In) → M ⊗L
A A/In−c

of the transition maps in the system (2). On the other hand, by More on Algebra,
Lemma 27.3, we can find another constant c′ = c′(M) ≥ 0 such that the maps
TorA

i (M,A/In′) → Tori(M,A/In′−c′) are zero for i = 1, 2, . . . , t and n′ ≥ c′. Then
it follows from Derived Categories, Lemma 12.5 that the map

τ≥−t(M ⊗L
A A/In+tc′

) → τ≥−t(M ⊗L
A A/In)

3Of course, we can ask whether these pro-systems are isomorphic in a category whose objects
are inverse systems and where maps are given by tuples (r, c, φn) consisting of r ≥ 1, c ≥ 0 and
maps φn : Xrn → Yn−c for n ≥ c.

https://stacks.math.columbia.edu/tag/0GA4
https://stacks.math.columbia.edu/tag/0GA5
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factors through M⊗L
AA/I

n+tc′ → M/In+tc′
M . Combined with the previous result

we obtain a factorization

M ⊗L
A A/In+tc′

→ M/In+tc′
M → M ⊗L

A A/In−c

which gives us what we want. If we ever need this result, we will carefully state it
and provide a detailed proof.

For number (4) suppose we have a Noetherian ring P , a ring homomorphism P → A,
and an ideal J ⊂ P such that I = JA. By More on Algebra, Section 60 we get
a functor M ⊗L

P − : D(P ) → D(A) and we get an inverse system M ⊗L
P P/Jn in

D(A) as in (4). If P is Noetherian, then the system in (4) is pro-isomorphic to the
system in (1) because we can compare with Koszul complexes. If P → A is finite,
then the system (4) is strictly pro-isomorphic to the system (2) because the inverse
system A ⊗L

P P/Jn is strictly pro-isomorphic to the inverse system A/In (by the
discussion above) and because we have

M ⊗L
P P/Jn = M ⊗L

A (A⊗L
P P/Jn)

by More on Algebra, Lemma 60.1.

A standard example in (4) is to take P = Z[x1, . . . , xr], the map P → A sending
xi to fi, and J = (x1, . . . , xr). In this case one shows that

M ⊗L
P P/Jn = M ⊗L

A[x1,...,xr] A[x1, . . . , xr]/(x1, . . . , xr)n

and we reduce to one of the cases discussed above (although this case is strictly
easier as A[x1, . . . , xr]/(x1, . . . , xr)n has tor dimension at most r for all n and hence
the step using Proposition 21.7 can be avoided). This case is discussed in the proof
of [BS13, Proposition 3.5.1].

22. A bit of uniformity, III

0GA6 In this section we fix a Noetherian ring A and an ideal I ⊂ A. Our goal is to prove
Lemma 22.7 which we will use in a later chapter to solve a lifting problem, see
Algebraization of Formal Spaces, Lemma 5.3.

Throughout this section we denote

p : X → Spec(A)

the blowing up of Spec(A) in the ideal I. In other words, X is the Proj of the Rees
algebra

⊕
n≥0 I

n. We also consider the fibre product

Y //

��

X

p

��
Spec(A/I) // Spec(A)

Then Y is the exceptional divisor of the blowup and hence an effective Cartier
divisor on X such that OX(−1) = OX(Y ). Since taking Proj commutes with base
change we have

Y = Proj(
⊕

n≥0
In/In+1) = Proj(S)

where S = GrI(A) =
⊕

n≥0 I
n/In+1.
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We denote d = d(S) = d(GrI(A)) = d(
⊕

n≥0 I
n/In+1) the maximum of the dimen-

sions of the fibres of p (and we set it equal to 0 if X = ∅). This is well defined. In
fact, we have

(1) d ≤ t− 1 if I = (a1, . . . , at) since then X ⊂ Pt−1
A , and

(2) d is also the maximal dimension of the fibres of Proj(S) → Spec(S0) pro-
vided that Y is nonempty and d = 0 if Y = ∅ (equivalently S = 0, equiva-
lently I = A).

Hence d only depends on the isomorphism class of S = GrI(A). Observe that
Hi(X,F) = 0 for every coherent OX -module F and i > d by Cohomology of
Schemes, Lemmas 20.9 and 4.6. Of course the same is true for coherent modules
on Y .

We denote d = d(S) = d(GrI(A)) = d(
⊕

n≥0 I
n/In+1) the integer defined as

follows. Note that the algebra S =
⊕

n≥0 I
n/In+1 is a Noetherian graded ring

generated in degree 1 over degree 0. Hence by Cohomology of Schemes, Lemmas
14.2 and 14.3 we can define q(S) as the smallest integer q(S) ≥ 0 such that for all
q ≥ q(S) we have Hi(Y,OY (q)) = 0 for 1 ≤ i ≤ d and H0(Y,OY (q)) = Iq/Iq+1. (If
S = 0, then q(S) = 0.)

For n ≥ 1 we may consider the effective Cartier divisor nY which we will denote
Yn.

Lemma 22.1.0GA7 With q0 = q(S) and d = d(S) as above, we have
(1) for n ≥ 1, q ≥ q0, and i > 0 we have Hi(X,OYn

(q)) = 0,
(2) for n ≥ 1 and q ≥ q0 we have H0(X,OYn(q)) = Iq/Iq+n,
(3) for q ≥ q0 and i > 0 we have Hi(X,OX(q)) = 0,
(4) for q ≥ q0 we have H0(X,OX(q)) = Iq.

Proof. If I = A, then X is affine and the statements are trivial. Hence we may
and do assume I ̸= A. Thus Y and X are nonempty schemes.

Let us prove (1) and (2) by induction on n. The base case n = 1 is our definition
of q0 as Y1 = Y . Recall that OX(1) = OX(−Y ). Hence we have a short exact
sequence

0 → OYn(1) → OYn+1 → OY → 0
Hence for i > 0 we find

Hi(X,OYn
(q + 1)) → Hi(X,OYn+1(q)) → Hi(X,OY (q))

and we obtain the desired vanishing of the middle term from the given vanishing
of the outer terms. For i = 0 we obtain a commutative diagram

0 // Iq+1/Iq+1+n

��

// Iq/Iq+1+n

��

// Iq/Iq+1

��

// 0

0 // H0(X,OYn
(q + 1)) // H0(X,OYn+1(q)) // H0(Y,OY (q)) // 0

with exact rows for q ≥ q0 (for the bottom row observe that the next term in the
long exact cohomology sequence vanishes for q ≥ q0). Since q ≥ q0 the left and
right vertical arrows are isomorphisms and we conclude the middle one is too.

https://stacks.math.columbia.edu/tag/0GA7


LOCAL COHOMOLOGY 48

We omit the proofs of (3) and (4) which are similar. In fact, one can deduce (3)
and (4) from (1) and (2) using the theorem on formal functors (but this would be
overkill). □

Let us introduce a notation: given n ≥ c ≥ 0 an (A,n, c)-module is a finite A-module
M which is annihilated by In and which as an A/In-module is Ic/In-projective,
see More on Algebra, Section 70.

We will use the following abuse of notation: given an A-module M we denote p∗M
the quasi-coherent module gotten by pulling back by p the quasi-coherent module
M̃ on Spec(A) associated to M . For example we have OYn = p∗(A/In). For a short
exact sequence 0 → K → L → M → 0 of A-modules we obtain an exact sequence

p∗K → p∗L → p∗M → 0

as ˜ is an exact functor and p∗ is a right exact functor.

Lemma 22.2.0GA8 Let 0 → K → L → M → 0 be a short exact sequence of A-modules
such that K and L are annihilated by In and M is an (A,n, c)-module. Then the
kernel of p∗K → p∗L is scheme theoretically supported on Yc.

Proof. Let Spec(B) ⊂ X be an affine open. The restriction of the exact sequence
over Spec(B) corresponds to the sequence of B-modules

K ⊗A B → L⊗A B → M ⊗A B → 0

which is isomorphismic to the sequence

K ⊗A/In B/InB → L⊗A/In B/InB → M ⊗A/In B/InB → 0

Hence the kernel of the first map is the image of the module TorA/In

1 (M,B/InB).
Recall that the exceptional divisor Y is cut out by IOX . Hence it suffices to show
that TorA/In

1 (M,B/InB) is annihilated by Ic. Since multiplication by a ∈ Ic on
M factors through a finite free A/In-module, this is clear. □

We have the canonical map OX → OX(1) which vanishes exactly along Y . Hence
for every coherent OX -module F we always have canonical maps F(q) → F(q+ n)
for any q ∈ Z and n ≥ 0.

Lemma 22.3.0GA9 Let F be a coherent OX-module. Then F is scheme theoretically
supported on Yc if and only if the canonical map F → F(c) is zero.

Proof. This is true because OX → OX(1) vanishes exactly along Y . □

Lemma 22.4.0GAA With q0 = q(S) and d = d(S) as above, suppose we have integers
n ≥ c ≥ 0, an (A,n, c)-module M , an index i ∈ {0, 1, . . . , d}, and an integer q.
Then we distinguish the following cases

(1) In the case i = d ≥ 1 and q ≥ q0 we have Hd(X, p∗M(q)) = 0.
(2) In the case i = d− 1 ≥ 1 and q ≥ q0 we have Hd−1(X, p∗M(q)) = 0.
(3) In the case d−1 > i > 0 and q ≥ q0 +(d−1−i)c the map Hi(X, p∗M(q)) →

Hi(X, p∗M(q − (d− 1 − i)c)) is zero.
(4) In the case i = 0, d ∈ {0, 1}, and q ≥ q0, there is a surjection

IqM −→ H0(X, p∗M(q))

https://stacks.math.columbia.edu/tag/0GA8
https://stacks.math.columbia.edu/tag/0GA9
https://stacks.math.columbia.edu/tag/0GAA
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(5) In the case i = 0, d > 1, and q ≥ q0 + (d− 1)c the map
H0(X, p∗M(q)) → H0(X, p∗M(q − (d− 1)c))

has image contained in the image of the canonical map Iq−(d−1)cM →
H0(X, p∗M(q − (d− 1)c)).

Proof. Let M be an (A,n, c)-module. Choose a short exact sequence
0 → K → (A/In)⊕r → M → 0

We will use below that K is an (A,n, c)-module, see More on Algebra, Lemma 70.6.
Consider the corresponding exact sequence

p∗K → (OYn
)⊕r → p∗M → 0

We split this into short exact sequences
0 → F → p∗K → G → 0 and 0 → G → (OYn

)⊕r → p∗M → 0
By Lemma 22.2 the coherent module F is scheme theoretically supported on Yc.
Proof of (1). Assume d > 0. We have to prove Hd(X, p∗M(q)) = 0 for q ≥ q0.
By the vanishing of the cohomology of twists of G in degrees > d and the long
exact cohomology sequence associated to the second short exact sequence above, it
suffices to prove that Hd(X,OYn

(q)) = 0. This is true by Lemma 22.1.
Proof of (2). Assume d > 1. We have to prove Hd−1(X, p∗M(q)) = 0 for
q ≥ q0. Arguing as in the previous paragraph, we see that it suffices to show that
Hd(X,G(q)) = 0. Using the first short exact sequence and the vanishing of the co-
homology of twists of F in degrees > d we see that it suffices to show Hd(X, p∗K(q))
is zero which is true by (1) and the fact that K is an (A,n, c)-module (see above).
Proof of (3). Let 0 < i < d−1 and assume the statement holds for i+1 except in the
case i = d− 2 we have statement (2). Using the long exact sequence of cohomology
associated to the second short exact sequence above we find an injection

Hi(X, p∗M(q − (d− 1 − i)c)) ⊂ Hi+1(X,G(q − (d− 1 − i)c))
as q−(d−1−i)c ≥ q0 gives the vanishing of Hi(X,OYn

(q−(d−1−i)c)) (see above).
Thus it suffices to show that the map Hi+1(X,G(q)) → Hi+1(X,G(q− (d−1− i)c))
is zero. To study this, we consider the maps of exact sequences

Hi+1(X, p∗K(q)) //

��

Hi+1(X,G(q)) //

��ss

Hi+2(X,F(q))

��
Hi+1(X, p∗K(q − c)) //

��

Hi+1(X,G(q − c)) //

��

Hi+2(X,F(q − c))

Hi+1(X, p∗K(q − (d− 1 − i)c)) // Hi+1(X,G(q − (d− 1 − i)c))

Since F is scheme theoretically supported on Yc we see that the canonical map
G(q) → G(q− c) factors through p∗K(q− c) by Lemma 22.3. This gives the dotted
arrow in the diagram. (In fact, for the proof it suffices to observe that the vertical
arrow on the extreme right is zero in order to get the dotted arrow as a map of sets.)
Thus it suffices to show that Hi+1(X, p∗K(q−c)) → Hi+1(X, p∗K(q−(d−1− i)c))
is zero. If i = d− 2, then the source of this arrow is zero by (2) as q− c ≥ q0 and K
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is an (A,n, c)-module. If i < d − 2, then as K is an (A,n, c)-module, we get from
the induction hypothesis that the map is indeed zero since q−c−(q−(d−1−i)c) =
(d − 2 − i)c = (d − 1 − (i + 1))c and since q − c ≥ q0 + (d − 1 − (i + 1))c. In this
way we conclude the proof of (3).
Proof of (4). Assume d ∈ {0, 1} and q ≥ q0. Then the first short exact sequence
gives a surjection H1(X, p∗K(q)) → H1(X,G(q)) and the source of this arrow is
zero by case (1). Hence for all q ∈ Z we see that the map

H0(X, (OYn
)⊕r(q)) −→ H0(X, p∗M(q))

is surjective. For q ≥ q0 the source is equal to (Iq/Iq+n)⊕r by Lemma 22.1 and
this easily proves the statement.
Proof of (5). Assume d > 1. Arguing as in the proof of (4) we see that it suffices
to show that the image of

H0(X, p∗M(q)) −→ H0(X, p∗M(q − (d− 1)c))
is contained in the image of

H0(X, (OYn)⊕r(q − (d− 1)c)) −→ H0(X, p∗M(q − (d− 1)c))
To show the inclusion above, it suffices to show that for σ ∈ H0(X, p∗M(q)) with
boundary ξ ∈ H1(X,G(q)) the image of ξ in H1(X,G(q − (d − 1)c)) is zero. This
follows by the exact same arguments as in the proof of (3). □

Remark 22.5.0GAB Given a pair (M,n) consisting of an integer n ≥ 0 and a finite
A/In-module M we set M∨ = HomA/In(M,A/In). Given a pair (F , n) consisting
of an integer n and a coherent OYn -module F we set

F∨ = HomOYn
(F ,OYn)

Given (M,n) as above, there is a canonical map
can : p∗(M∨) −→ (p∗M)∨

Namely, if we choose a presentation (A/In)⊕s → (A/In)⊕r → M → 0 then we
obtain a presentation O⊕s

Yn
→ O⊕r

Yn
→ p∗M → 0. Taking duals we obtain exact

sequences
0 → M∨ → (A/In)⊕r → (A/In)⊕s

and
0 → (p∗M)∨ → O⊕r

Yn
→ O⊕s

Yn

Pulling back the first sequence by p we find the desired map can. The construction
of this map is functorial in the finite A/In-module M . The kernel and cokernel of
can are scheme theoretically supported on Yc ifM is an (A,n, c)-module. Namely, in
that case for a ∈ Ic the map a : M → M factors through a finite free A/In-module
for which can is an isomorphism. Hence a annihilates the kernel and cokernel of
can.

Lemma 22.6.0GAC With q0 = q(S) and d = d(S) as above, let M be an (A,n, c)-module
and let φ : M → In/I2n be an A-linear map. Assume n ≥ max(q0+(1+d)c, (2+d)c)
and if d = 0 assume n ≥ q0 + 2c. Then the composition

M
φ−→ In/I2n → In−(1+d)c/I2n−(1+d)c

is of the form
∑
aiψi with ai ∈ Ic and ψi : M → In−(2+d)c/I2n−(2+d)c.

https://stacks.math.columbia.edu/tag/0GAB
https://stacks.math.columbia.edu/tag/0GAC
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Proof. The case d > 1. Since we have a compatible system of maps p∗(Iq) →
OX(q) for q ≥ 0 there are canonical maps p∗(Iq/Iq+ν) → OYν (q) for ν ≥ 0. Using
this and pulling back φ we obtain a map

χ : p∗M −→ OYn
(n)

such that the composition M → H0(X, p∗M) → H0(X,OYn(n)) is the given ho-
momorphism φ combined with the map In/I2n → H0(X,OYn(n)). Since OYn(n)
is invertible on Yn the linear map χ determines a section

σ ∈ Γ(X, (p∗M)∨(n))
with notation as in Remark 22.5. The discussion in Remark 22.5 shows the cokernel
and kernel of can : p∗(M∨) → (p∗M)∨ are scheme theoretically supported on Yc. By
Lemma 22.3 the map (p∗M)∨(n) → (p∗M)∨(n−2c) factors through p∗(M∨)(n−2c);
small detail omitted. Hence the image of σ in Γ(X, (p∗M)∨(n − 2c)) comes from
an element

σ′ ∈ Γ(X, p∗(M∨)(n− 2c))
By Lemma 22.4 part (5), the fact that M∨ is an (A,n, c)-module by More on
Algebra, Lemma 70.7, and the fact that n ≥ q0 + (1 + d)c so n− 2c ≥ q0 + (d− 1)c
we see that the image of σ′ in H0(X, p∗M∨(n−(1+d)c)) is the image of an element
τ in In−(1+d)cM∨. Write τ =

∑
aiτi with τi ∈ In−(2+d)cM∨; this makes sense as

n − (2 + d)c ≥ 0. Then τi determines a homomorphism of modules ψi : M →
In−(2+d)c/I2n−(2+d)c using the evaluation map M ⊗M∨ → A/In.
Let us prove that this works4. Pick z ∈ M and let us show that φ(z) and

∑
aiψi(z)

have the same image in In−(1+d)c/I2n−(1+d)c. First, the element z determines a map
p∗z : OYn

→ p∗M whose composition with χ is equal to the map OYn
→ OYn

(n)
corresponding to φ(z) via the map In/I2n → Γ(OYn

(n)). Next z and p∗z determine
evaluation maps ez : M∨ → A/In and ep∗z : (p∗M)∨ → OYn

. Since χ(p∗z) is the
section corresponding to φ(z) we see that ep∗z(σ) is the section corresponding to
φ(z). Here and below we abuse notation: for a map a : F → G of modules on X
we also denote a : F(t) → F(t) the corresponding map of twisted modules. The
diagram

p∗(M∨)

can

��

p∗ez

// OYn

(p∗M)∨ ep∗z // OYn

commutes by functoriality of the construction can. Hence (p∗ez)(σ′) in Γ(Yn,OYn
(n−

2c)) is the section corresponding to the image of φ(z) in In−2c/I2n−2c. The next
step is that σ′ maps to the image of

∑
aiτi in H0(X, p∗M∨(n − (1 + d)c)). This

implies that (p∗ez)(
∑
aiτi) =

∑
aip

∗ez(τi) in Γ(Yn,OYn
(n − (1 + d)c)) is the sec-

tion corresponding to the image of φ(z) in In−(1+d)c/I2n−(1+d)c. Recall that ψi is
defined from τi using an evaluation map. Hence if we denote

χi : p∗M −→ OYn
(n− (2 + d)c)

the map we get from ψi, then we see by the same reasoning as above that the section
corresponding to ψi(z) is χi(p∗z) = ep∗z(χi) = p∗ez(τi). Hence we conclude that
the image of φ(z) in Γ(Yn,OYn

(n − (1 + d)c)) is equal to the image of
∑
aiψi(z).

4We hope some reader will suggest a less dirty proof of this fact.
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Since n − (1 + d)c ≥ q0 we have Γ(Yn,OYn
(n − (1 + d)c)) = In−(1+d)c/I2n−(1+d)c

by Lemma 22.1 and we conclude the desired compatibility is true.

The case d = 1. Here we argue as above that we get

χ : p∗M −→ OYn(n), σ ∈ Γ(X, (p∗M)∨(n)), σ′ ∈ Γ(X, p∗(M∨)(n− 2c)),

and then we use Lemma 22.4 part (4) to see that σ′ is the image of some element
τ ∈ In−2cM∨. The rest of the argument is the same.

The case d = 0. Argument is exactly the same as in the case d = 1. □

Lemma 22.7.0GAD With d = d(S) and q0 = q(S) as above. Then
(1) for integers n ≥ c ≥ 0 with n ≥ max(q0 + (1 + d)c, (2 + d)c),
(2) for K of D(A/In) with Hi(K) = 0 for i ̸= −1, 0 and Hi(K) finite for

i = −1, 0 such that Ext1
A/Ic(K,N) is annihilated by Ic for all finite A/In-

modules N
the map

Ext1
A/In(K, In/I2n) −→ Ext1

A/In(K, In−(1+d)c/I2n−2(1+d)c)

is zero.

Proof. The case d > 0. Let K−1 → K0 be a complex representing K as in More
on Algebra, Lemma 84.5 part (5) with respect to the ideal Ic/In in the ring A/In.
In particular K−1 is Ic/In-projective as multiplication by elements of Ic/In even
factor through K0. By More on Algebra, Lemma 84.4 part (1) we have

Ext1
A/In(K, In/I2n) = Coker(HomA/In(K0, In/I2n) → HomA/In(K−1, In/I2n))

and similarly for other Ext groups. Hence any class ξ in Ext1
A/In(K, In/I2n)

comes from an element φ ∈ HomA/In(K−1, In/I2n). Denote φ′ the image of φ in
HomA/In(K−1, In−(1+d)c/I2n−(1+d)c). By Lemma 22.6 we can write φ′ =

∑
aiψi

with ai ∈ Ic and ψi ∈ HomA/In(M, In−(2+d)c/I2n−(2+d)c). Choose hi : K0 → K−1

such that aiidK−1 = hi◦d−1
K . Set ψ =

∑
ψi◦hi : K0 → In−(2+d)c/I2n−(2+d)c. Then

φ′ = ψ◦d−1
K and we conclude that ξ already maps to zero in Ext1

A/In(K, In−(1+d)c/I2n−(1+d)c)
and a fortiori in Ext1

A/In(K, In−(1+d)c/I2n−2(1+d)c).

The case d = 05. Let ξ and φ be as above. We consider the diagram

K0

K−1

OO

φ // In/I2n // In−c/I2n−c

Pulling back to X and using the map p∗(In/I2n) → OYn(n) we find a solid diagram

p∗K0

**
p∗K−1

OO

// OYn
(n) // OYn

(n− c)

5The argument given for d > 0 works but gives a slightly weaker result.

https://stacks.math.columbia.edu/tag/0GAD
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We can cover X by affine opens U = Spec(B) such that there exists an a ∈ I with
the following property: IB = aB and a is a nonzerodivisor on B. Namely, we
can cover X by spectra of affine blowup algebras, see Divisors, Lemma 32.2. The
restriction of OYn

(n) → OYn
(n−c) to U is isomorphic to the map of quasi-coherent

OU -modules corresponding to the B-module map ac : B/anB → B/anB. Since
ac : K−1 → K−1 factors through K0 we see that the dotted arrow exists over U .
In other words, locally on X we can find the dotted arrow! Now the sheaf of dotted
arrows fitting into the diagram is principal homogeneous under

F = HomOX
(Coker(p∗K−1 → p∗K0),OYn

(n− c))
which is a coherent OX -module. Hence the obstruction for finding the dotted
arrow is an element of H1(X,F). This cohomology group is zero as 1 > d = 0,
see discussion following the definition of d = d(S). This proves that we can find a
dotted arrow ψ : p∗K0 → OYn

(n− c) fitting into the diagram. Since n− c ≥ q0 we
find that ψ induces a map K0 → In−c/I2n−c. Chasing the diagram we conclude
that φ′ = ψ ◦ d−1

K and the proof is finished as before. □
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