0C2P

002Q

SEMISTABLE REDUCTION

Contents
[ Introductionl 1
2. Linear algebral 2
|3. Numerical types| 6
|4. 'The Picard group of a numerical type| 11
[6-Classification of proper subgraphs| 12
6. Classification of minimal type for genus zero and one] 25
7. Bounding invariants of numerical types| 30
8. Modeld 33
9. The geometry of a regular model| 35
[10. Uniqueness of the minimal model| 39
[IT. A formula for the genus| 40
112.  Blowing down exceptional curves| 45
|I13.  Picard groups of models| 48
14, Semistable reductionl 50
[15. Semistable reduction in genus zero| 54
16. Semistable reduction in genus on 59
|I17.  Semistable reduction in genus at least two 57
[18. Semistable reduction for curves| 58
119.  Other chapters| 59
[References 60

1. Introduction

In this chapter we prove the semistable reduction theorem for curves. We will use
the method of Artin and Winters from their paper [AWTI].

It turns out that one can prove the semistable reduction theorem for curves without
any results on desingularization. Namely, there is a way to establish the existence
and projectivity of moduli of semistable curves using Geometric Invariant Theory
(GIT) as developed by Mumford, see [MFK94]. This method was championed by
Gieseker who proved the full result in his lecture notes [Gie82[7 This is quite an
amazing feat: it seems somewhat counter intuitive that one can prove such a result
without ever truly studying families of curves over a positive dimensional base.

Historically the first proof of the semistable reduction theorem for curves can be
found in the paper by Deligne and Mumford. It proves the theorem by

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
LGiescker’s lecture notes are written over an algebraically closed field, but the same method
works over Z.
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reducing the problem to the case of Abelian varieties which was already known
at the time thanks to Grothendieck and others, see [GRR72] and [DKT73]). The
semistable reduction theorem for abelian varieties uses the theory of Néron models
which in turn rests on a treatment of birational group laws over a base.

The method in the paper by Artin and Winters relies on desingularization of singu-
larities of surfaces to obtain regular models. Given the existence of regular models,
the proof consists in analyzing the possibilities for the special fibre and concluding
using an inequality for torsion in the Picard group of a 1-dimensional scheme over
a field. A similar argument can be found in a paper [Sai87] of Saito who uses étale
cohomology directly and who obtains a stronger result in that he can characterize
semistable reduction in terms of the action of the inertia on ¢-adic étale cohomology.

A different approach one can use to prove the theorem is to use rigid analytic
geometry techniques. Here we refer the reader to [vdP84] and [AWT2].

The paper [Tem10] by Temkin uses valuation theoretic techniques (and proves a lot
more besides); also Appendix A of this paper gives a nice overview of the different
proofs and the relationship with desingularizations of 2 dimensional schemes.

Another overview paper that the reader may wish to consult is [Abb00] written by
Ahmed Abbes.

2. Linear algebra
A couple of lemmas we will use later on.

Lemma 2.1. Let A= (a;;) be a complex n x n matriz.
(1) If lais| > 3254, laij| for each i, then det(A) is nonzero.
(2) If there exists a real vector m = (mq,...,my,) with m; > 0 such that
lazimi| > 32, laiym;| for each i, then det(A) is nonzero.

Proof. If A is as in (1) and det(A) = 0, then there is a nonzero vector z with
Az = 0. Choose r with |z,.| maximal. Then

|arrzr| = |Zk7§7' a’r‘kzk| < Zk;&r |ark||zk| < |Zr| Zk#r |a'rk| < |arr|‘zr|

which is a contradiction. To prove (2) apply (1) to the matrix (a;;m;) whose
determinant is my ...m, det(A). O

Lemma 2.2. Let A = (a;5) be a real n X n matriz with a;; > 0 for i # j. Let

m = (my,...,my) be a real vector with m; > 0. For I C {1,...,n} let xzy € R™ be
the vector whose ith coordinate is m; if i € I and 0 otherwise. If
(2.2.1) — @i = Z#i @ijMm

for each i, then Ker(A) is the vector space spanned by the vectors xy such that
(1) a;j =0 foriel, j¢1, and
(2) equality holds in foriel.

Proof. After replacing a;; by a;;m; we may assume m; = 1 for all i. If I C
{1,...,n} such that (1) and (2) are true, then a simple computation shows that x;
is in the kernel of A. Conversely, let = (x1,...,x,) € R™ be a nonzero vector in
the kernel of A. We will show by induction on the number of nonzero coordinates

[Taud9, Theorem IJ
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of x that x is in the span of the vectors x satisfying (1) and (2). Let I C {1,...,n}
be the set of indices r with |z,| maximal. For r € I we have

laman| =13, aranl <D0 anklan] <ol D0 ans < lage|lo|

Thus equality holds everywhere. In particular, we see that a,, =0ifre I, k&1
and equality holds in (2.2.1) for € I. Then we see that we can substract a suitable
multiple of x; from x to decrease the number of nonzero coordinates. ([l

Lemma 2.3. Let A = (a;;) be a symmetric real n x n matriz with a;; > 0 for

i#£j. Let m=(mq,...,my) be a real vector with m; > 0. Assume
(1) Am =0,
(2) there is no proper nonempty subset I C {1,...,n} such that a;; = 0 for
ielandjgl.

Then xt Az < 0 with equality if and only if x = qgm for some q € R.

First proof. After replacing a;; by a;;m;m; we may assume m; = 1 for all 1.
Condition (1) means —a;; = ZJ—# a;j for all 7. Recall that z'Ax = Y, w,a;52;.
Then

4,9
2 2 2
E - —agg(Ty — ) ZE T+ 204530 — X
iy P\ T ing T J iTi

= Zj a”xj + Zi;ﬁj 2a1szxz =+ Zj aj;T;
= 22" Ax

This is clearly < 0. If equality holds, then let I be the set of indices ¢ with x; # ;.
Then a;; =0 for i € I and j ¢ I. Thus I = {1,...,n} by condition (2) and z is a
multiple of m = (1,...,1). |

Second proof. The matrix A has real eigenvalues by the spectral theorem. We
claim all the eigenvalues are < 0. Namely, since property (1) means —a;m; =
> jxi @ijm;y for all 4, we find that the matrix A" = A — Al for A > 0 satisfies
|ag;mi| > Y aj;m; = 7 |aj;my| for all 4. Hence A’ is invertible by Lemma
This implies that the symmetric bilinear form z'Ay is semi-negative definite, i.e.,
x!Ax < 0 for all z. It follows that the kernel of A is equal to the set of vectors x with
a2t Az = 0. The description of the kernel in Lemma gives the final statement of
the lemma. (]

Lemma 2.4. Let L be a finite free Zi-module endowed with an integral symmetric
bilinear positive definite form (, ): L x L — Z. Let A C L be a submodule with
L/A torsion free. Set B={b € L | {(a,b) =0, Ya € A}. Then we have injective
maps

A#JA« L/(A® B) — B¥/B
whose cokernels are quotients of L# /L. Here A% = {a' € A®Q | {a,a’) €Z, Ya €
A} and similarly for B and L.

Proof. Observe that L® Q = A® Q ® B ® Q because the form is nondegenerate
on A (by positivity). We denote 75 : L ® Q — B ® Q the projection. Observe that
np(x) € B¥ for € L because the form is integral. This gives an exact sequence

0A—-L™ B Q-0
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where @ is the cokernel of L — B#. Observe that @ is a quotient of L# /L as the
map L# — B¥ is surjective since it is the Z-linear dual to B — L which is split as
a map of Z-modules. Dividing by A & B we get a short exact sequence

0—L/(A®B)— B*/B—Q —0
This proves the lemma. (Il

Lemma 2.5. Let Ly, Ly be a finite free Z-modules endowed with integral symmetric
bilinear positive definite forms ( , ): L; x Ly = Z. Let d: Lo — Ly and d" : L; —
Lg be adjoint. If (, ) on Lg is unimodular, then there is an isomorphism

® : Coker(d" d)sorsion — Im(d)# /Im(d)
with notation as in Lemma [2.7).

Proof. Let x € Ly be an element representing a torsion class in Coker(d*d). Then
for some a > 0 we can write az = d*d(y). For any z € Im(d), say z = d(y'), we
have

((1/a)d(y), z) = ((1/a)d(y),d(y)) = (z,y') € Z
Hence (1/a)d(y) € Im(d)#. We define ®(x) = (1/a)d(y) mod Im(d). We omit the
proof that ® is well defined, additive, and injective.

To prove ® is surjective, let z € Im(d)#. Then z defines a linear map Lo — Z by
the rule z — (z,d(x)). Since the pairing on Lg is unimodular by assumption we
can find an 2’ € Ly with (z/,2) = (z,d(x)) for all z € Lg. In particular, we see that
x’ pairs to zero with Ker(d). Since Im(d*d) ® Q is the orthogonal complement of
Ker(d) ® Q this means that 2’ defines a torsion class in Coker(d*d). We claim that
®(2') = z. Namely, write ax’ = d*d(y) for some y € Ly and a > 0. For any = € Lg
we get

(z,d(x)) = (2, z) = ((1/a)d™d(y), z) = ((1/a)d(y), d(x))

Hence z = ®(2’) and the proof is complete. O
Lemma 2.6. Let A= (a;;) be a symmetric n x n integer matriz with a;; > 0 for
1#j. Let m = (my,...,my,) be an integer vector with m; > 0. Assume
(1) Am =0,
(2) there is no proper nonempty subset I C {1,...,n} such that a;; = 0 for
ie€landj¢l.

Let e be the number of pairs (i,j) with ¢ < j and a;; > 0. Then for { a prime
number coprime with all a;; and m; we have

dimg, (Coker(A)[{]) <1—n+e
Proof. By Lemma [2.3| the rank of A is n — 1. The composition

Zom diag(mai,...,my) Z:&n (aiz) z,6m diag(ma,...,mn) Z&n

has matrix a;;m;m;. Since the cokernel of the first and last maps are torsion of
order prime to ¢ by our restriction on ¢ we see that it suffices to prove the lemma
for the matrix with entries a;;m;m;. Thus we may assume m = (1,...,1).

Assume m = (1,...,1). Set V ={1,...,n} and E = {(4,5) | ¢ < j and a;; > 0}.
For e = (i,j) € E set a. = a;;. Define maps s,t : E — V by setting s(i,j) = ¢
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and t(i,7) = j. Set Z(V) = @,y Zi and Z(E) = @, Ze. We define symmetric
positive definite integer valued pairings on Z(V) and Z(FE) by setting

(t,i) =1fori eV, (e,e)=a,foreck

and all other pairings zero. Consider the maps

d:Z(V) = Z(E), i+ ZGEE) o€ Zee& demi ©
and
d*(e) = ac(s(e) —t(e))
A computation shows that
(d(z),y) = (x,d*(y))

in other words, d and d* are adjoint. Next we compute

d*d(i) = d*(ZEEE, i€ ZBGE’ o e)
- ZeEE, s(e)=i ae(s(e) —t(e)) - ac(s(e) —t(e))

ecE, t(e)=t

The coefficient of 7 in d*d(7) is

e + E Ae = —0y44
ZGEE, s(e)=1 € ecE, t(e)=t € i

because > _; a;; = 0 and the coefficient of j # i in d*d(¢) is —a;;. Hence Coker(A) =
Coker(d*d).

Consider the inclusion

Im(d) @ Ker(d*) C Z(E)

The left hand side is an orthogonal direct sum. Clearly Z(FE)/Ker(d") is torsion
free. We claim Z(F)/Im(d) is torsion free as well. Namely, say x = > z.e € Z(E)
and a > 1 are such that ax = dy for some y = > y;i € Z(V). Then ax. =
Ys(e) — Yi(e)- By property (2) we conclude that all y; have the same congruence class

modulo a. Hence we can write y = ay’ + (y1,y1,.-.,y1)- Since d(y1,y1,...,41) =0
we conclude that z = d(y’) which is what we had to show.

Hence we may apply Lemma [2.4] to get injective maps
Im(d)#/Tm(d) < Z(E)/(Im(d) © Ker(d*)) — Ker(d*)#/ Ker(d*)

whose cokernels are annihilated by the product of the a, (which is prime to ¢).
Since Ker(d™) is a lattice of rank 1 — n + e we see that the proof is complete if we
prove that there exists an isomorphism

D : Mtorsion — Im(d)#/Im(d)

This is proved in Lemma [2.5] O
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3. Numerical types
Part of the arguments will involve the combinatorics of the following data structures.
Definition 3.1. A numerical type T is given by
T, My, Qij, Wiy Gi

where n > 1 is an integer and m;, a;;, w;, g; are integers for 1 <4, j < n subject to
the following conditions

(1) m; >0, w; >0, g; >0,

(2) the matrix A = (a;;) is symmetric and a;; > 0 for ¢ # j,

(3) there is no proper nonempty subset I C {1,...,n} such that a;; = 0 for

iel, j&1,

(4) for each i we have }_, a;;m; =0, and

(5) wilag;.
This is obviously a somewhat annoying type of structure to work with, but it is
exactly what shows up in special fibres of proper regular models of smooth geomet-
rically connected curves. Of course we only care about these types up to reordering
the indices.
Definition 3.2. We say two numerical types n,m;, a;j, w;, g; and n’, m;, a};, w;, g;
are equivalent types if there exists a permutation o of {1,...,n} such that m; =
My @7 = To(i)a(i)y Wi = Wo(iy A0 6i = go)-
A numerical type has a genus.

Lemma 3.3. Let n,m;,a;;,w;, g; be a numerical type. Then the expression

1
is an integer.

Proof. To prove g is an integer we have to show that > a;;m; is even. This we
can see by computing modulo 2 as follows

E aim; = E iy
i i, miodd v
= a;imm;
Zi, m; odd ijéi 1
= Qi1
Zi, m; odd Zj;ﬁi, m; odd 77

= Zi<j, m; and m; odd ij (ml + mj)

=0
where we have used that a;; = a;j; and that Zj a;;m; = 0 for all 4. a
Definition 3.4. We say n,m;,a;;,w;, g; is a numerical type of genus g if g =
1+ > mi(wi(g; — 1) — %aii) is the integer from Lemma

We will prove below (Lemma [3.14) that the genus is almost always > 0. But you
can have numerical types with negative genus.

Lemma 3.5. Let n,m;,a:;,w;, g; be a numerical type of genus g. If n =1, then
a11 =0 and g = 1+ mqwi(g1 — 1). Moreover, we can classify all such numerical
types as follows
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(1) If g < 0, then g1 = 0 and there are finitely many possible numerical types
of genus g with n = 1 corresponding to factorizations mjw; =1 — g.

(2) If g=0, thenmy =1, wy =1, g1 =0 as in Lemma .

(3) If g = 1, then we conclude g1 = 1 but my,wy can be arbitrary positive

integers; this is case of Lemma .
(4) If g > 1, then g1 > 1 and there are finitely many possible numerical types
of genus g with n =1 corresponding to factorizations mywi(g1 —1) = g—1.

Proof. The lemma proves itself. (]

Lemma 3.6. Let n,m;,a;;,w;, g; be a numerical type of genus g. If n > 1, then
ai; < 0 for alli.

Proof. Lemma [2.3] applies to the matrix A. O

Lemma 3.7. Let n,m;,a;;,w;, g; be a numerical type of genus g. Assume n > 1.
If i is such that the contribution m;(w;(g; — 1) — %an‘) to the genus g is < 0, then
g; =0 and a; = —w;.

Proof. Follows immediately from Lemma and w; > 0, g; > 0, and w;|a;. O

Definition 3.8. Let n,m;,a;;,w;, g; be a numerical type. We say i is a (—1)-indez
if g; =0 and a;; = —w;.

We can “contract” (—1)-indices.

Lemma 3.9. Let n,m;,a;j,w;, g; be a numerical type T. Assume n is a (—1)-
index. Then there is a numerical type T given by n',m}, al., w}, gi with

) g0
(1) n'=n-1,
(2) m; =m;,
(3) aéj = Q5 — ainajn/anny
(4) Wi =w;/2 if ajn/wy even and a;,/w; odd and w; = w; else,

2 .
(5) gi = r(gi — 1) + 1+ Znse,

’
Qwiwn

Moreover, we have g = g'.

Proof. Observe that n > 1 for example by Lemma and hence n’ > 1. We check
conditions (1) — (5) of Definition [3.1| for n’, m}, a..,w}, gi.

19 590

Condition (1) is immediate.

Condition (2). Symmetry of A" = (a;;) is immediate and since a,, < 0 by Lemma
we see that a’ij >a;; > 0if i #j.

Condition (3). Suppose that I C {1,...,n — 1} such that a};, = 0 for i € I and
i’ € {1,...,n—1}\I. Then we see that for each i € I and i’ € I’ we have a;na;, = 0.
Thus either a;, =0 for all ¢ € I and I C {1,...,n} is a contradiction for property
(3) for T, or ayp, =0 forallé’ € {1,...,n—1}\Tand TU{n} C {1,...,n} isa
contradiction for property (3) of T'. Hence (3) holds for 7”.

Condition (4). We compute

n—1 n—1 Qi Ajn M a;
/ o inljnMly in .
g _agmy = g o (ayymj — ——) = —aipmy, — — (—appmy) =0
j=1 7j=1 Ann Ann

as desired.
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Condition (5). We have to show that w] divides aina;jn/any,. This is clear because
Unp = —Wy, and wy|aj, and w;|a,.

To show that g = ¢’ we first write

g=1+ Zi:l mi(wi(gi — 1) — Sai;)

1
2

n—1 1 1
=1+ E i mi(wi(gi — 1) — §an‘) — 5 Mntn
n—1 1 1
=1+ E i mi(wi(g; — 1) — 50— iam)

Comparing with the expression for ¢’ we see that it suffices if

1 1 1
wi(g; — 1) — 5%‘ =w;(g; — 1) — 5 %in — 5%
for : <n — 1. In other words, we have
2wi(g; — 1) — @i — @i + al;, + 2wl w; az, — wya;
I _ i\91 in i ii i i 1 1 in nlin
9i 2w} w (9: )1+ 2wlw,

It is elementary to check that this is an integer > 0 if we choose w} as in (4). O

Lemma 3.10. Let n,my, a5, w;, g; be a numerical type. Let e be the number of
pairs (i,7) with i < j and a;; > 0. Then the expression gy, =1 —n+e is > 0.

Proof. If not, then e < n — 1 which means there exists an 7 such that a;; = 0 for
all j # 4. This contradicts assumption (3) of Definition O

Definition 3.11. Let n,m;,a:;,w;, g; be a numerical type T. The topological
genus of T' is the nonnegative integer giop = 1 — n + e from Lemma

We want to bound the genus by the topological genus. However, this will not always
be the case, for example for numerical types with n = 1 as in Lemma [3.5] But it
will be true for minimal numerical types which are defined as follows.

Definition 3.12. We say the numerical type n,m;, a;;, w;, g; of genus g is minimal
if there does not exist an ¢ with g; = 0 and a;; = —w;, in other words, if there does
not exist a (—1)-index.

We will prove that the genus g of a minimal type with n > 1 is greater than or
equal to max(1, giop)-

Lemma 3.13. If n,m;,a;j, w;, g; is a minimal numerical type with n > 1, then
g=1

Proof. This is true because g = 1 + Y ®; with ®; = m;(w;(g; — 1) — %au‘) non-

negative by Lemma and the definition of minimal types. (I
Lemma 3.14. If n,my, a5, ws, g; 5 a minimal numerical type with n > 1, then
g 2 gtop'

Proof. The reader who is only interested in the case of numerical types associated
to proper regular models can skip this proof as we will reprove this in the geometric
situation later. We can write

1 1
Grop =1 —n+ 2 Za1j>0 =1+ Zi(_l + 2 Zﬁéia aij>0 1)
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On the other hand, we have

1
9:14‘277% (w; gi_l)_§aii)

=14 Zmlwlgz Zmzwl +3 Z aZJmJ

a”
_1+Zmzwl 149+ = Z];ﬁzwl

The first equality is the definition, the second equality uses that > a;jm; = 0,
and the last equality uses that uses a;; = a;; and switching order of summation.
Comparing with the formula for gtop we conclude that the lemma holds if

a” 1
Wi =mawi(=1+gi+ 5 Zy;ﬁ w; ~ 1+22j¢i7a1j>01)

is > 0 for each i. However, this may not be the case. Let us analyze for which
indices we can have ¥; < 0. First, observe that

a” 1
“ltgity Z]?él U)Z ( 1+ 2 Zj7éiv a;; >0 1)

because a;; /w; is a nonnegative integer. Since m,;w; is a positive integer we conclude
that U; > 0 as soon as either m;w; = 1 or the left hand side of the inequality is
> 0 which happens if g; > 0, or a;; > 0 for at least two indices j, or if there is a j
with a;; > w;. Thus

P={i:¥; <0}
is the set of indices ¢ such that m;w; > 1, g; = 0, a;; > 0 for a unique j, and
ai; = w; for this j. Moreover

1

The strategy of proof is to show that given ¢ € P we can borrow a bit from ¥;
where j is the neighbour of 4, i.e., a;; > 0. However, this won’t quite work because
J may be an index with ¥; = 0.

Consider the set
Z ={j:g; =0 and j has exactly two neighbours ¢, k with a,; = w; = a;i}

For j € Z we have ¥; = 0. We will consider sequences M = (4, ji,...,Js) where
s >20,t€ P, ji1,...,Js € Z, and ay;, > 0,a5,5, > 0,...,a;,_,;, > 0. If our
numerical type consists of two indices which are in P or more generally if our
numerical type consists of two indices which are in P and all other indices in Z,
then giop = 0 and we win by Lemma @ We may and do discard these cases.

Let M = (4,7j1,...,7s) be a maximal sequence and let k& be the second neighbour
of js. (If s =0, then k is the unique neighbour of i.) By maximality k& ¢ Z and by
what we just said k € P. Observe that w; = a;5, = wj, = aj,j, = ... = W;, = @ k-
Looking at the definition of a numerical type we see that
m;Q;; + mjlw,- = 07
miw; + My, ajy g, + mywi =0,

mj,_wi +mj.a; g, +mpw; =0



0C7D

0C7E

SEMISTABLE REDUCTION 10

The first equality implies m;, > 2m; because the numerical type is minimal. Then
the second equality implies m;, > 3m;, and so on. In any case, we conclude that
my, > 2m; (including when s = 0).

Let k be an index such that we have a t > 0 and pairwise distinct maximal sequences
My, ..., M; as above, with My = (ip,jb.1,- .., Jb.s,) such that k is a neighbour of
Jb,s, for b =1,...,¢t. We will show that ®; + >, ®;, > 0. This will finish
the proof of the lemma by what we said above. Let M be the union of the indices
occurring in My, b=1,...,t. We write

Up=— R

where

1 Akjy o m;, W; 1 gl
U = ~1 5 — - )+ o Wk
L = MEWk < + gk + 5 Zb:l,...t( wr MR )+ 9 Zl;ﬁk, IgM wy,

1
B (_1 *3 Zl;&k, I¢M, ax>0 1)

Assume U} < 0 to get a contradiction. If the set {l : 1 # k, | ¢ M, ap > 0} is
empty, then {1,...,n} = M U{k} and g4, = 0 because e =n — 1 in this case and
the result holds by Lemma [3.13] Thus we may assume there is at least one such [
which contributes (1/2)ag;/wi > 1/2 to the sum inside the first brackets. For each

b=1,...,t we have
kg, s, MG, Wy, Wy, (1
W mrWy W mg

M
s
This expression is > % because my > 2m;, by the previous paragraph and is > 1
if wy < w;,. It follows that ¥} < 0 implies g = 0. If ¢t > 2 or t = 1 and
wy, < w;,, then ¥, > 0 (here we use the existence of an [ as shown above) which is
a contradiction too. Thus ¢t =1 and wy = w;,. If there at least two nonzero terms
in the sum over [ or if there is one such k and ag; > wy, then ¥} > 0 as well. The
final possibility is that ¢ = 1 and there is one [ with ay; = wy. This is disallowed
as this would mean k € Z contradicting the maximality of Mj. (I

Lemma 3.15. Let n,m;,ai;, ws, g; be a numerical type of genus g. Assumen > 1.
If i is such that the contribution m;(w;(g; — 1) — %aii) to the genus g is 0, then
gi =0 and a;; = —2w;.

Proof. Follows immediately from Lemma and w; > 0, g; > 0, and w;|a;. O

It turns out that the indices satisfying this relation play an important role in the
structure of minimal numerical types. Hence we give them a name.

Definition 3.16. Let n,m;, a;;, w;, g; be a numerical type of genus g. We say i is
a (—2)-indez if g; = 0 and a;; = —2w;.

Given a minimal numerical type of genus g the (—2)-indices are exactly the indices
which do not contribute a positive number to the genus in the formula

1
g=1+ Zmi(wi(gi -1)- §au‘)

Thus it will be somewhat tricky to bound the quantities associated with (—2)-
indices as we will see later.
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Remark 3.17. Let n,m;,a;;,w;, g; be a minimal numerical type with n > 1.
Equality g = giop can hold in Lemma[3.14] For example, if m; = w; = 1 and g; = 0
for all ¢ and a,;; € {0,1} for i < j.

4. The Picard group of a numerical type
Here is the definition.

Definition 4.1. Let n,m;, a;j, w;, g; be a numerical type T. The Picard group of
T is the cokernel of the matrix (a;;/w;), more precisely

Pic(T) = Coker <Z@" = Z, ey a”ej>

where e; denotes the ith standard basis vector for Z®™.

Lemma 4.2. Let n,m;,ai;,w;, g; be a numerical type T. The Picard group of T'
is a finitely generated abelian group of rank 1.

Proof. If n = 1, then A = (a;;) is the zero matrix and the result is clear. For
n > 1 the matrix A has rank n — 1 by either Lemma [2.2] or Lemma [2.3] Of course
the rank is not affected by scaling the rows by 1/w;. This proves the lemma. (I

Lemma 4.3. Let n,m;,a;;,w;, g; be a numerical type T. Then Pic(T') C Coker(A)
where A = (a;;).

Proof. Since Pic(T) is the cokernel of (a;;/w;) we see that there is a commutative
diagram

0 VAL - YA Coker(4) ——0
Tid Tdiag(wl,...,wn) T
on  (@ig/wi) on )

0 Z Z Pic(T) ——0

with exact rows. By the snake lemma we conclude that Pic(T") C Coker(A). O

Lemma 4.4. Let n,m;,a;j,w;, g; be a numerical type T. Assume n is a (—1)-
index. Let T’ be the numerical type constructed in Lemma , There exists an
injective map
Pic(T) — Pic(T")
whose cokernel is an elementary abelian 2-group.
Proof. Recall that n’ = n — 1. Let e;, resp., €, be the ith basis vector of Z%",
resp. Z¥" 1. First we denote
q:Z%" - Z%"71 e, 0ande; ¢ fori <n—1
and we set
. 7dn dn—1 nj e w; , . _
p:Z¥" =7 , e»—)Zjlw and e; — wgeiforzgn 1
A computation (which we omit) shows there is a commutative diagram

Zon > 7%

(aij/wi)

Z@n' (aij /w;) Z@n'
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Since the cokernel of the top arrow is Pic(T') and the cokernel of the bottom arrow is
Pic(T"), we obtain the desired homomorphism of Picard groups. Since =7 € {1,2}
we see that the cokernel of Pic(T') — Pic(T”) is annihilated by 2 (becausé 2¢} is in
the image of p for all i < n —1). Finally, we show Pic(T) — Pic(T”) is injective.
Let L = (l4,...,l,) be a representative of an element of Pic(T") mapping to zero in
Pic(T”). Since ¢ is surjective, a diagram chase shows that we can assume L is in
the kernel of p. This means that l,an,; /w} 4+ Lw; /w] = 0, i.e., l; = —an; /w;l,. Thus
L is the image of —I, e, under the map (a;;/w;) and the lemma is proved. O

Lemma 4.5. Let n,m;,a:;,w;, g; be a numerical type T'. If the genus g of T is
<0, then Pic(T) = Z.

Proof. By induction on n. If n = 1, then the assertion is clear. If n > 1, then T'
is not minimal by Lemma [3.13] After replacing T' by an equivalent type we may
assume n is a (—1)-index. By Lemma we find Pic(T) C Pic(T"). By Lemma
we see that the genus of 7" is equal to the genus of T' and we conclude by
induction. |

5. Classification of proper subgraphs

In this section we assume given a numerical type n,m;,a;;, w;, g; of genus g. We
will find a complete list of possible “subgraphs” consisting entirely of (—2)-indices
(Definition and at the same time we classify all possible minimal numerical
types of genus 1. In other words, in this section we prove Proposition [5.17] and
Lemma

Our strategy will be as follows. Let n, m;, a;;, w;, g; be a numerical type of genus g.
Let I C {1,...,n} be a subset consisting of (—2)-indices such that there does not
exist a nonempty proper subset J C I with a;;; =0 for j € J, j/ € I'\ J. We work
by induction on the cardinality |I]| of I. If I = {i} consists of 1 index, then the
only constraints on m;, a;;, and w; are w;|a;; from Definition and a;; < 0 from
Lemma [3.6]and this will serve as our base case. In the induction step we first apply
the induction hypothesis to subsets I’ C I of size |I’| < |I|. This will put some
constraints on the possible m;, a;;, w;, 4, j € I. In particular, since |[I'| < |I| < n it
will follow from ) a;;m; = 0 and Lemma that the sub matrices (a;;)i jer are
negative definite and their determinant will have sign (—1)™. For each possibility
left over we compute the determinant of (a;j)ijer. If the determinant has sign
—(=1)/I then this case can be discarded because Sylvester’s theorem tells us the
matrix (a;;)i jes is not negative semi-definite. If the determinant has sign (—1)/1,
then |/] < n and we (tentatively) conclude this case can occur as a possible proper
subgraph and we list it in one of the lemmas in this section. If the determinant
is 0, then we must have |I| = n (by Lemma again) and g = 0. In these cases
we actually find all possible m;, a;;,w;, 4,j € I and list them in Lemma @ After
completing the argument we obtain all possible minimal numerical types of genus 1
with n > 1 because each of these necessarily consists entirely of (—2)-indices (and
hence will show up in the induction process) by the formula for the genus and the
remarks in the previous section. At the very end of the day the reader can go
through the list of possibilities given in Lemma [6.2] to see that all configurations
of proper subgraphs listed in this section as possible do in fact occur already for
numerical types of genus 1.
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Suppose that ¢ and j are (—2)-indices with a;; > 0. Since the matrix A = (a;;) is
semi-negative definite by Lemma [2.3] we see that the matrix

—2wi A5
aij 72’([)]'

is negative definite unless n = 2. The case n = 2 can happen: then the determinant
4w wy — a%Q is zero. Using that lem(ws, w9) divides a2 the reader easily finds that
the only possibilities are

(w1, w2, a12) = (w,w, 2w), (w, 4w, 4w), or (4w, w,4w)

Observe that the case (4w, w, 4w) is obtained from the case (w, 4w, 4w) by switching
the indices i,j. In these cases g = 1. This leads to cases and of Lemma
Assuming n > 2 we see that the determinant 4w;w; — a?j of the displayed
matrix is > 0 and we conclude that a?j Jw;w; < 4. On the other hand, we know
that lem(w;, w;)|a;; and hence af;/w;w; is an integer. Thus af; /wiw; € {1,2,3}
and w;|w; or vice versa. This leads to the following possibilities

(w1, we, a12) = (w, w,w), (v, 2w, 2w), (w, 3w, 3w), (2w, w, 2w), or (3w, w, 3w)

Observe that the case (2w, w, 2w) is obtained from the case (w, 2w, 2w) by switching
the indices %, j and similarly for the cases (3w, w,3w) and (w, 3w, 3w). The first
three solutions lead to cases , , and of Lemma In this lemma we wrote
out the consequences for the integers m; and m; using that Zl axym; = 0 for each
k in particular implies a;;m; +a;;m; < 0 for k = ¢ and a;;m; +ajym; < 0for k = j.

Lemma 5.1. Classification of proper subgraphs of the form

If n > 2, then given a pairi,j of (—2)-indices with a;; > 0, then up to ordering we

have the m’s, a’s, w’s
mq —2w w w
mo )’ w —2w )’ w

with w arbitrary and 2my > my and 2ms > my, or

(2) are given by
my —2w 2w w
mg )’ 2w —4dw)’ 2w

with w arbitrary and my > mo and 2me > mq, or

(3) are given by
mq —2w 3w w
mo )’ 3w —6w)/’ 3w

with w arbitrary and 2my > 3ms and 2mg > my.

(1) are given by

Proof. See discussion above. O

Suppose that ¢, j, and k are three (—2)-indices with a;; > 0 and a;z > 0. In other
words, the index i “meets” j and j “meets” k. We will use without further mention
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that each pair (4,5), (i,k), and (4, k) is as listed in Lemma Since the matrix
A = (ai;) is semi-negative definite by Lemma [2.3| we see that the matrix

—2w;  ag; ik
aij —2wj ajk
Ak ajk —ka

is negative definite unless n = 3. The case n = 3 can happen: then the determinamﬂ
of the matrix is zero and we obtain the equation

2 2 2 P
a2] + agk: + ;L +a1Jazkajk

wW; Wy W Wk W;WE W; W5 W

4 =

of integers. The last term on the right in this equation is determined by the others
because

2 2 2 2
(aijaik%‘k) _ G %k ag

W; W Wk W;Wj WiWE Wi W

are in {1,2,3} and 2% in {0,1,2,3},

wi

2 2

. a2 a2
Since we have seen above that —d- —ik
Wi W; " WijWg
we conclude that the only possibilities are

2 2 2

Gij Yk G
wiw; wijwy wiwg

)=1(1,1,1),(1,3,0),(2,2,0), or (3,1,0)

Observe that the case (3,1, 0) is obtained from the case (1, 3,0) by reversing the or-

der the indices 7, j, k. In each of these cases g = 1; the reader can find these as cases

, , @, @, , @[) of Lemmawith one case corresponding to (1,1,1), two

cases corresponding to (1,3, 0), and three cases corresponding to (2,2,0). Assuming
n > 3 we obtain the inequality

4> aj) n a3, i a3y 4 %igQikk

wW; Wy W;WE W; Wk W;W; W

of integers. Using the restrictions on the numbers given above we see that the only
possibilities are

2 2 2
G5 Yk gy

wiw; wijwy wiwg

)=1(1,1,0),(1,2,0), or (2,1,0)

in particular a;; = 0 (recall we are assuming a;; > 0 and a;; > 0). Observe that
the case (2, 1,0) is obtained from the case (1,2,0) by reversing the ordering of the
indices 1, j, k. The first two solutions lead to cases , , and of Lemma
where we also wrote out the consequences for the integers m;, m;, and my.
Lemma 5.2. Classification of proper subgraphs of the form

L]
If n > 3, then given a triple i,j,k of (—2)-indices with at least two a;j, aik, ;i
nonzero, then up to ordering we have the m’s, a’s, w’s

(1) are given by

mi —2w w 0 w
ma |, w 2w w , w
ms 0 w —2w w

21t is —8w;wjwg + Qafjwk + Qa?kwi + QaEkwj + 2a;jaa;k-
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with 2my > mo, 2msy > my + mg, 2ms3 > ms, or
(2) are given by

mq —2w w 0 w
mso |, w —2w 2w |, w
ms 0 20 —4w 2w

with 2my > mo, 2msy > my + 2mg, 2mg > mo, or
(3) are given by

mq —4w 2w 0 2w
mso |, 20 —4dw 2w |, 2w
ms 0 20 2w w

with 2m1 Z ma, 2m2 Z mq +m3, ms Z mo.
Proof. See discussion above. O

Suppose that 4, j, k, and [ are four (—2)-indices with a;; > 0, ajr > 0, and aj; > 0.
In other words, the index 7 “meets” j, j “meets” k, and k “meets” [. Then we see
from Lemma that a;; = a;; = 0. Since the matrix A = (a;;) is semi-negative
definite we see that the matrix

—2’LUZ‘ Aij 0 a;l

a;;  —2w;  ajg 0

0 ajr  —2wg  ap
a;l 0 Akl —2wl

is negative definite unless n = 4. The case n = 4 can happen: then the determinamﬂ
of the matrix is zero and we obtain the equation

2 2 2 2 2 2 2
ai; a aj  a; as; sy a a; Qi QiG]
16 4 () kl J il 4 ] _|_4 J +4 kl +4 il ) (o ek ]
W;Wj; WEw W Wi W W w;W; W Wk WrwW; w; Wy W; W WE W

of nonnegative integers. The last term on the right in this equation is determined
by the others because

2 2 2 2 2
Q;j0105k0k \ %5 G ap  agp
W; Wi WEwW W; W5 WjWE WEW) Ww;
. a2, a2-k a2 . a2
Since we have seen above that —<- —2E =kl gare in {1,2} and —i-
WiWj 7 WjWg » WEwWy w; Wy
we conclude that the only possible solutions are

ln {07 1’ 2}7

2 2 2 2
a5 ap  ag

wiw; wijwy wrw; ww

and case g = 1; the reader can find these as cases (10), (L1), (12), and of
Lemma [6.2] Assuming n > 4 we obtain the inequality

)=(1,1,1,1) or (2,1,2,0)

2 2 2 2 2 2 2 2
a®.  q as, ol az. asy a a? Qi Qi Qi Okl
1, 1, 1, K3
16+ J kl + J il >4 J 44 J 44 kl 44 il ) J J
WiW; WEW;  W;Wg Wiw; WiwW; W W WEW] w; Wy WW; W W)
3Tt is 16w;wjwrw; — 4a?jwkwl — 4a§kwiwl - 4ailwiw]~ — 4a?lewk + a?jail + a?ka?l -

2050410550k -
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of nonnegative integers. Using the restrictions on the numbers given above we see
that the only possibilities are

2 2
Qjj Ak

wiw; wijwy wrw; wiw

2 2
i i

)=1(1,1,1,0),(1,1,2,0),(1,2,1,0), or (2,1,1,0)

in particular a;; = 0 (recall that we assumed the other three to be nonzero). Observe
that the case (2,1, 1,0) is obtained from the case (1,1, 2,0) by reversing the ordering
of the indices 17, j, k,l. The first three solutions lead to cases , , , and
of Lemma where we also wrote out the consequences for the integers m;, my,
myg, and m;.

Lemmal 5.3. Classification of proper subgraphs of the form

[ ] L] [ ] [ ]
If n > 4, then given four (—2)-indices i, j, k,1 with a;;, ajx, ax nonzero, then up to
ordering we have the m’s, a’s, w’s

(1) are given by

mq —2w w 0 0 w
mo w —2w w 0 w
mg |’ 0 w —2w  w ’ w
my 0 0 w —2w w

with 2my > ma, 2me > mq + mg, 2ms > mo + my, and 2myg > mgz, or
(2) are given by

mq —2w w 0 0 w
mo w —2w w 0 w
ms |’ 0 w 2w 2w |’ w
my 0 0 2w —4dw 2w

with 2my > Mo, 2mg > my + mgz, 2ms > Mo + 2my, and 2my > mg, or
(3) are given by

mq —4w 2w 0 0 2w
mo 2w —4dw 2w 0 2w
mg |’ 0 2w —4w 2w |’ 2w
my 0 0 2w 2w w

with 2my > ma, 2me > mq + mg, 2ms > mo + my, and my > mg, or
(4) are given by

mq —2w w 0 0 w
mo w —2w 2w 0 w
ms |’ 0 2w —4w 2w |’ 2w
my 0 0 2w —4dw 2w

with 2my > Mo, 2mg > my + 2mg, 2mg > meo + My, and 2my > mg.

Proof. See discussion above. O

Suppose that i, j, k, and [ are four (—2)-indices with a;; > 0, a;; > 0, and a;; > 0.
In other words, the index i “meets” the indices j, k, . Then we see from Lemma
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that ajp = aj = ag, = 0. Since the matrix A = (a;;) is semi-negative definite
we see that the matrix

—2w;  ayj ik aj
Aij —211}]‘ 0 0
Q5L 0 —2wk 0
a;l 0 0 72’(1)[

is negative definite unless n = 4. The case n = 4 can happen: then the determinamﬂ
of the matrix is zero and we obtain the equation
2 2 2
4= Y, %k, %
W; W, W; WE w5 wp

2. 2 2
of nonnegative integers. Since we have seen above that ujl—qjj? Uf;; , —il

Wy JWE T WywWy
{1,2}, we conclude that the only possibilities are up to reordering: 4 =1+ 1+ 2.
In each of these cases g = 1; the reader can find these as cases (14]) and (15) of

Lemma[6.2] Assuming n > 4 we obtain the inequality

are in

2 2 2
4~ i Bk, %
w;W; W; W w;wp
.. . . a?; a? a?
of nonnegative integers. This implies that —2- = —i = —il = ] and that

wiwy Wi Wi w 4wy
w; = w; = wy = w. This leads to case of Lemma where we also wrote out
the consequences for the integers m;, m;, my, and my.

Lemmal 5.4. Classification of proper subgraphs of the form

If n > 4, then given four (—2)-indices i, j, k,l with a;;, aix, a; nonzero, then up to
ordering we have the m’s, a’s, w’s

(1) are given by

mq —2w w w w w
mo w —2w 0 0 w
ms |’ w 0 —2w 0 ’ w
My w 0 0 —2w w

with 2mq > ma + m3 + Mg, 2ms > mq, 2ms > mq, 2myg > mq. Observe
that this implies my > max(ma, mg, my).

Proof. See discussion above. [l

Suppose that h, 4, j, k, and [ are five (—2)-indices with azn; > 0, a;; > 0, ajr > 0,
and ag; > 0. In other words, the index h “meets” ¢, ¢ “meets” j, 7 “meets” k, and
k “meets” . Then we can apply Lemmasandto see that ap; = ap, = a; =

2 2 2 2
aiy = aj; = 0 and that the fractions —2i Y Lk _%i are in {1,2} and the

hRW; ’ wiwj ? ijk ? WE Wy

At is 16w; wjwiw; — 4a?jwkwl - 4a§kijl — 4a?lw]~wk.
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2
fraction -2 € {0,1,2}. Since the matrix A = (a;;) is semi-negative definite we

Wp Wy

see that the matrix

—Qwh QApjg 0 0 apl

QApg —2’LU¢ A5 0 0

0 Aij 72’LUj Ajk 0

0 0 ajk 7211)]6 QA
apl 0 0 gl —2wl

is negative definite unless n = 5. The case n = 5 can happen: then the determinamﬁ
of the matrix is zero and we obtain the equation

2 2 2 2 2 2 2 2 2 2
ay. Qi a;. a ai; a a azs a asp
16 + —hi gk Thi kL J ki 4 _Chi i T J
WhW; W5 W WHW; WEW] W;Wj WrW; WHW W; W5 WhW] W W

a2, a2 a?, a? a; ApiQijajKAkLaR]
L
WhW; WiW; Wj W WrW WhWy Wh Wi W; Wk Wy

of nonnegative integers. The last term on the right in this equation is determined
by the others because

2 2 2 2 2 2
AhiQij0k0KIART \ Qp; %5 GG Qi Gy
WhHW; W5 W W) WhW; WiW; WiWE WEW] WhrW]
We conclude the only possible solutions are
2 2 2
a aj

< 2 2
T M kL ShLy —(1,1,1,1,1),(1,1,2,1,0), (1,2,1,1,0), or (2,1,1,2,0)
WhW; W;W; WjWE WEpW; WhpW|

Observe that the case (1,2,1,1,0) is obtained from the case (1,1,2,1,0) by revers-
ing the order of the indices h,i,j,k,l. In these cases g = 1; the reader can find
these as cases , , , , , and of Lemma with one case
corresponding to (1,1,1,1,1), two cases corresponding to (1,1,2,1,0), and three
cases corresponding to (2,1,1,2,0). Assuming n > 5 we obtain the inequality

2 2 2 2 2 2 2 2 2 2
ai. QL as. a a;; @ a az, a Q.
16 + hi J 4 hi kl + J kl 4 hl J 4 hl J
WhW; WjWk WhHLW; WEW| W; W5 WEwW WhW W; Wy WhW WjW
2 2 2 2 2
ay,; g5 @ik a a QhiQij Q5 AkIQR]
hi 44 J 44 J 44 kl 44 hl 4 7]
WhHW; W; W W Wi W Wy WhW WhHW; W WEW)|

>4

of nonnegative integers. Using the restrictions on the numbers given above we see
that the only possibilities are
2 a aly

i i agy  ag
L ) . ) ? Y ) = (17 1’ 17170)7(1’ 1717270)7 or (27 1717170)
WhW; W;Wj; WjWE WEW; WhW|

in particular ap; = 0 (recall that we assumed the other four to be nonzero). Observe
that the case (1,1,1,2,0) is obtained from the case (2,1,1,1,0) by reversing the
order of the indices h, i, j, k, . The first two solutions lead to cases , , and
of Lemma [5.5] where we also wrote out the consequences for the integers my, m;,
mg;, my, and my.

2

ij
2 2 2 2 2 2 2 2 2 2 2

8ay, wiwjwy — 2ahiajkwl —2aj,ap,w; — Qaijaklwh — Qahlaijwk — 2ahlajkwi +2ap;aijajkak1an -

5Tt s —32wpw;wjwiw; + 8a%”-ijkwl + 8as. wpwrw; + 8a?kwhwiwl + Szzilwhwiwj +
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0C82 Lemma 5.5. Classification of proper subgraphs of the form

0C83

0C84

0C85

If n > 5, then given five (—2)-indices h, 1,7, k,l with an;, aij, a;k, ax nonzero, then
up to ordering we have the m’s, a’s, w’s

(1) are given by

mq —2w w 0 0 0 w
mo w —2w w 0 0 w
ms |, 0 w 2w  w 0 , w
my 0 0 w —2w w w
ms 0 0 0 w —2w w
with 2mq > ma, 2mg > my + mg, 2ms > My + ma, 2my > ms + ms, and

2ms > my, or
(2) are given by

mi —2w w 0 0 0 w
mo w —2w w 0 0 w
ms |, 0 w 2w w 0 , w
my 0 0 w —2w 2w w
ms 0 0 0 2w —4w 2w

with 2my > my, 2me > mq + mg, 2ms > mo + 2my, 2my > ms + ms, and
2ms > my, or
(3) are given by

mq —4w 2w 0 0 0 2w
meo 2w —4dw 2w 0 0 2w
ms |, 0 2w —4dw 2w 0 , 2w
my 0 0 2w —4dw 2w 2w
ms 0 0 0 20 —2w w

with 2my > meo, 2mo > mq + ms, 2msz > mo + my, 2my > msz + ms, and
may 2 ms.

Proof. See discussion above. O

Suppose that h, ¢, j, k, and [ are five (—2)-indices with ap; > 0, an; > 0, ani > 0,
and ap; > 0. In other words, the index h “meets” the indices ¢, j, k, . Then
we see from Lemma that a;; = a;x = ay = ajr, = a;; = ap = 0 and by
Lemma that wy, = w; = w; = wy, = w; = w for some integer w > 0 and

api = apj = apk = ap, = —2w. The corresponding matrix
—2w w w w w
w —2w 0 0 0
w 0 —2w 0 0
w 0 0 —2w 0
w 0 0 0 —2w

is singular. Hence this can only happen if n = 5 and g = 1. The reader can find

this as case Lemma
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Lemma 5.6. Nonexistence of proper subgraphs of the form

/

If n > 5, there do not exist five (—2)-indices h, i, j, k with ap; > 0, ap; > 0,
apk > 0, and ap; > 0.

Proof. See discussion above. O

Suppose that h, 4, j, k, and [ are five (—2)-indices with azn; > 0, a;; > 0, ajr > 0,
and a; > 0. In other words, the index h “meets” ¢ and the index j “meets”
the indices 4, k, [. Then we see from Lemma that a;x = ay = ap = 0,
w; = w; = w, = w; = w, and a;; = a;x = aj = w for some integer w. Applying
Lemmato the four tuples h, 1, j,k and h, 1, j,l we see that ap; = apr = an; =0,
that wy, = %w, w, or 2w, and that correspondingly a; = w, w, or 2w. Since A is
semi-negative definite we see that the matrix

—Qwh Qp; 0 0 0
Api —2w w 0 0
0 w —2w w w
0 0 w —2w 0

0 0 w 0 —2w

is negative definite unless n = 5. The reader computes that the determinant of the
matrix is 0 when w, = %w or 2w. This leads to cases ll and 1' of Lemma
For wj;, = w we obtain case of Lemma

Lemma 5.7. Classification of proper subgraphs of the form

[ ]
If n > 5, then given five (—2)-indices h, 1, j, k,l with an;,a;j,a;i, aj; nonzero, then
up to ordering we have the m’s, a’s, w’s

(1) are given by

mq —2w w 0 0 0 w
mo w —2w w 0 0 w
ms |, 0 w 2w w w , w
my 0 0 w —2w 0 w
ms 0 0 w 0 —2w w

with 2my > ma, 2mo > my + ms, 2ms > mg + my + ms, 2my > ms, and

2m5 > ms.
Proof. See discussion above. [l
Suppose that ¢ > 5 and iy,...,%; are t distinct (—2)-indices such that a;,,, is

nonzero for j = 1,...,t — 1. We will prove by induction on ¢ that if n = ¢ this

leads to possibilities (25), , , of Lemma and if n > ¢ to cases ,
, and of Lemma First, if a;,4, is nonzero, then it is clear from the result
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of Lemma [5.5 that w;, = ... = w;, = w and that a;;;,,, = w for j =1,...,t — 1
and a;,;, = w. Then the vector (1,...,1) is in the kernel of the corresponding ¢ x ¢
matrix. Thus we must have n =t and we see that the genus is 1 and that we are in
case (25) of Lemma Thus we may assume a;,;, = 0. By induction hypothesis
(or Lemma if £ = 6) we see that a;;;,, = 0 if & > j + 1. Moreover, we have
w;, = ... = w;,_, = w for some integer w and w;, ,w;, € {%w,w,?w}. Moreover,
the value of w;,, resp. w;, being %w, w, or 2w implies that the value of a;,;,, resp.
@i, i, 18 w, w, or 2w. This gives 9 possibilities. In each case it is easy to decide
what happens:

(1) if (wy,, w;,) = (3w, 3w), then we are in case (27) of Lemma

(2) if (wi,, w;,) = (3w, w) or (w, sw) then we are in case (3) of Lemma
(3) if (wi,, w;,) = (3w, 2w) or (2w, 3w) then we are in case (26) of Lemma/6.2]
(4) if (wy,,w;,) = (w,w) then we are in case of Lemma

(5) if (wi,, wi,) = (w,2w) or (2w, w) then we are in case ([2) of Lemma[5.8 and
(6) if (wiy,ws,) = (2w, 2w) then we are in case of Lemma [6.2]

Lemma 5.8. Classification of proper subgraphs of the form

Lett > 5 and n > t. Then given t distinct (—2)-indices iy,. .., it such that a;;,,,
is nonzero for j = 1,...,t — 1, then up to reversing the order of these indices we
have the a’s and w’s

(1) are given by w;;, = wy, = ... = wi, = W, a4, = W, and a;;, = 0 if
k>j7+1, or
(2) are given by wi, = wy, = ... = wy,_, = w, wj, = 2w, G54, = w for
J<t—1,ai_,i, =2w, and a;;;, =0 if k> j+1, or
(3) are given by w;, = w, = ... = w;,_, = 2w, wj, =W, G, = 2w, and
@iy_yi, = 2w, and a;;, =0 if k> 5+ 1.
Proof. See discussion above. g
Suppose that ¢ > 4 and iy, .. .,i;11 are t+1 distinct (—2)-indices such that a;,;,,, >

0 for j = 1,...,t — 1 and such that aj, ,j,., > 0. See picture in Lemma [5.9 We
will prove by induction on ¢ that if n = ¢+ 1 this leads to possibilities and
of Lemma and if n >t 41 to case of Lemma By induction hypothesis
(or Lemm in case t = 5) we see that a;;, is zero outside of the required
nonvanishing ones for j, k > 2. Moreover, we see that wy = ... = w1 = w for
some integer w and that the nonvanishing a; 4, for j,k > 2 are equal to w. Applying
Lemma (or Lemma if t = 5) to the sequence iy, ...,4; and to the sequence
i1, .-+, 0¢—1,%¢+1 We conclude that a;,;; = 0 for j > 3 and that w, is equal to %w,
w, or 2w and that correspondingly a;,;, is w,w,2w. This gives 3 possibilities. In
each case it is easy to decide what happens:

(1) If wy = Jw, then we are in case (30)) of Lemma
(2) If wy = w, then we are in case (1)) of Lemma
(3) If wy = 2w, then we are in case (29)) of Lemma
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Lemma 5.9. Classification of proper subgraphs of the form

Lett > 4 and n > t+ 1. Then given t + 1 distinct (—2)-indices i1,...,5t+1 such
that a;,i,., is nonzero for j = 1,...,t =1 and a;,_,i,,, is nonzero, then we have
the a’s and w’s

(1) are given by w;, = wi, = ... = Wi, =W, Gi,4,,, =w for j=1,...,t -1,

Qiy_yipyy = w and a;q, = 0 for other pairs (j,k) with j > k.

Proof. See discussion above. O
Suppose we are given 6 distinct (—2)-indices g, h, 4, j, k, I such that agn, api, a:j, ajk, aq
are nonzero. See picture in Lemmal[5.10] Then we can apply Lemmal[5.7] to see that

we must be in the situation of Lemma 511)1 Since the determinant is 3wS > 0 we
conclude that in this case it never happens that n = 6!

Lemma 5.10. Classification of proper subgraphs of the form

[ )
Letn > 6. Then given 6 distinct (—2)-indices i1, ..., i such that a12, ass, a34, 45, A36
are monzero, then we have the m’s, a’s, and w’s
(1) are given by

my —2w w 0 0 0 0 w
mo w —2w w 0 0 0 w
ms 0 w —2w w 0 w w
my |’ 0 0 w —2w  w 0 ’ w
ms 0 0 0 w —2w 0 w
me 0 0 w 0 0 —2w w

with 2my > ma, 2my > my +mgz, 2m3 > my +my + meg, 2my > m3z +ms,
2ms > ms, and 2mg > ms.

Proof. See discussion above. O

Suppose that ¢t > 4 and ig, . . ., i;41 are t+2 distinct (—2)-indices such that a;;;,,, >
0 for j=1,...,t — 1 and ajy;, > 0 and a;, ,4,,, > 0. See picture in Lemma [5.11}
Then we can apply Lemmas and to see that all other a;;, for j < k are zero
and that w;, = ... = w;,,, = w for some integer w and that the required nonzero
off diagonal entries of A are equal to w. A computation shows that the determinant
of the corresponding matrix is zero. Hence n = t 4+ 2 and we are in case of
Lemma

Lemma 5.11. Nonexistence of proper subgraphs of the form



https://stacks.math.columbia.edu/tag/0C8D
https://stacks.math.columbia.edu/tag/0C8F
https://stacks.math.columbia.edu/tag/0C8H

SEMISTABLE REDUCTION 23

Assume t > 4 and n > t + 2. There do not exist t + 2 distinct (—2)-indices
00y -y Gg+1 such that a; ;. >0 for j=1,...,t—1 and a;yi, > 0 and a;,_,4,,, > 0.

Proof. See discussion above. O

Suppose we are given 7 distinct (—2)-indices f, g, h, 1, j, k, ! such that the numbers
Gfg,Ggh, Gij, jh, Gkl, G, are nonzero. See picture in Lemma Then we can
apply Lemma [5.7] to see that the corresponding matrix is

—2w

ISle)
c oo

S

S
g g oo
NO OO OO
f oot oo

w
—2w
w
0
0
0
0

oo oo o8
f o o
o o 8
o O N
\
g
|
[\™}
g

Since the determinant is 0 we conclude that we must have n =7 and g = 1 and we

get case of Lemma

0C81 Lemma 5.12. Nonezistence of proper subgraphs of the form

Assume n > 7. There do not exist 7 distinct (—2)-indices f, g, h,1,j, k,1 such that
Qfg,Qghy Qijy Ajhy AL, Alp ATE TLONZETO.

Proof. See discussion above. [l

Suppose we are given 7 distinct (—2)-indices f, g, h, 1, j, k, ! such that the numbers
Gfg,Qgh, Qhi, Qij, Gk, G are nonzero. See picture in Lemma @ Then we can
apply Lemmas [5.7 and [5.9] to see that we must be in the situation of Lemma [5.13]
Since the determinant is —8w” > 0 we conclude that in this case it never happens
that n = 7!

0C8J Lemma 5.13. Classification of proper subgraphs of the form

Letn > 7. Then given 7 distinct (—2)-indices i1, . . ., i7 such that a2, ass, as4, ass, ase, a7
are monzero, then we have the m’s, a’s, and w’s
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0C8K (1) are given by

mq —2w w 0
mo w
m3
my )
ms
me
my

oo g oo o
SRS S ST S SO

oo oo o &

0 —2w

with 2my > ma, 2ma > my +ms, 2mg > ma +my, 2my > m3 + ms + my,
2ms > myg + mg, 2mg > ms, and 2my > my.

Proof. See discussion above. O

Suppose we are given 8 distinct (—2)-indices whose pattern of nonzero entries a;;
of the matrix A looks like

or like

[ ]
Arguing exactly as in the proof of Lemma [5.13] we see that the first pattern leads
to case in Lemma and does not lead to a new case in Lemma Arguing
exactly as in the proof of Lemma [5.12] we see that the second pattern does not
occur if n > 8, but leads to case (]3__2'[) in Lemma when n = 8.

0C8L |Lemma 5.14. Classification of proper subgraphs of the form

[ ) [ ] [ ] [ ) [ ] [ ] [ )
[ ]
Letn > 8. Then given 8 distinct (—2)-indices iy, ..., ig such that ai2, ass, asq, G5, as6, G5, A57
are nonzero, then we have the m’s, a’s, and w’s
0C8M (1) are given by

mq —2w w 0 0 0 0 0 0 w
mo w —2w w 0 0 0 0 0 w
ms3 0 w —2w w 0 0 0 0 w
My 0 0 w —2w w 0 0 0 w
ms |’ 0 0 0 w  —2w w 0 w ’ w
me 0 0 0 0 w —2w w 0 w
mry 0 0 0 0 0 w —2w 0 w
mg 0 0 0 0 w 0 0 —2w w

with 2my > ma, 2mao > my + mg3, 2m3 > ma + my, 2my > mz + ms,
2ms > myg + mg + msg, 2mg > ms + my, 2myr > mg, and 2mg > ms.
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Proof. See discussion above. O

Lemmal 5.15. Nonexistence of proper subgraphs of the form

Assume n > 8. There do not exist 8 distinct (—2)-indices e, f,g,h,i,5,k,l such
that Qefy,Afgs Qghs Ghis Gij, Qjk, Alp ATE MONZETO.

Proof. See discussion above. [l

Suppose we are given 9 distinct (—2)-indices whose pattern of nonzero entries a;;
of the matrix A looks like

Arguing exactly as in the proof of Lemma [5.12] we see that this pattern does not
occur if n > 9, but leads to case in Lemma when n = 9.

Lemma 5.16. Nonexistence of proper subgraphs of the form

Assume n > 9. There do not exist 9 distinct (—2)-indices d, e, f,qg,h,i,j,k,1 such
that Qdes Gefs Afg, Aghy Qhiy Qij, Gjk, Aip GTE NONZETO.

Proof. See discussion above. O
Collecting all the information together we find the following.

Proposition| 5.17. Let n,m;,a;5,w;, g; be a numerical type of genus g. Let I C
{1,...,n} be a proper subset of cardinality > 2 consisting of (—2)-indices such that
there does not exist a nonempty proper subset I' C I with ay; = 0 for i € I,
it € I\I'. Then up to reordering the m;’s, a;;’s, w;’s for i,j € I are as listed in

Lemmas[51), [5.3, [5-3, [54) [5-3, [5-7, 3-8, [5-9, [5-10, [5-13, or[5.14

Proof. This follows from the discussion above; see discussion at the start of Section

B O

6. Classification of minimal type for genus zero and one
The title of the section explains it all.

Lemma 6.1 (Genus zero). The only minimal numerical type of genus zero is
nzl, m1:1, au:O, w1:1, 91:0.

Proof. Follows from Lemmas [3.13] and [3.5] O

Lemma 6.2 (Genus one). The minimal numerical types of genus one are up to
equivalence
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(1) n=1,a11 =0, g1 =1, my,w; > 1 arbitrary,
(2) n=2, and my, a;j, w;, g; given by

() G ) () @)

with w and m arbitrary,
3) n=2, and m;,a;;,w;, g; given b
J 9 9 Y

) G ) () ()

with w and m arbitrary,

(4) n =3, and my, a;j, w;, g; given by
m 2w w w w 0
m|, w 2w w , w |, 0
m w w —2w w 0
with w and m arbitrary,
(5) n =3, and my, a;;j, w;, g; given by
m 2w  w 0 w 0
2m |, w 2w 3w |, w |, 0
m 0 Jw —6w 3w 0
with w and m arbitrary,
(6) n =3, and m;,a;;j, w;, g; given by
m —6w 3w 0 3w 0
2m |, Jw —6w 3w |, 3w |, 0
3m 0 3w —2w w 0
with w and m arbitrary,
(7) n =3, and my, a;j, w;, g; given by
2m —2w 2w 0 w 0
2m |, 2w —4dw 4w |, 2w |, 0
m 0 dw  —8w 4w 0
with w and m arbitrary,
(8) n =3, and my, a;j, w;, g; given by
m —2w 2w 0 w 0
m|, 2w —4dw 2w |, 2w |, 0
m 0 20 2w w 0
with w and m arbitrary,
(9) n =3, and my, a;j, w;, g; given by
m —4dw 2w 0 2w 0
2m |, 2w 2w 2w |, w |, 0
m 0 20 —4dw 2w 0

with w and m arbitrary,
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(10) n =4, and m;,a;;, w;, g; given by

m —2w w 0
m w —2w w
m|’ 0 w —2w
m w 0 w

with w and m arbitrary,
11) n =4, and m;,a;;,w;, g; given by
J

2m —2w 2w 0
2m 2w —4w 2w
2m |’ 0 2w —4dw
m 0 0 4w

with w and m arbitrary,
(12) n =4, and m;, a;;, w;, g; given by

m —2w 2w 0
m 2w —4dw 2w
m |’ 0 2w —4w
m 0 0 2w

with w and m arbitrary,
13) n =4, and m;,a;;,w;, g; given by
J

m —4w 2w 0 0
2m 20 2w w 0
2m |’ 0 w 2w 2w |’
m 0 0 2w —4w
with w and m arbitrary,
(14) n =4, and m;, a;;, w;, g; given by
2m —2w  w w 2w
m w —2w 0 0
m |’ w 0 —2w 0 ’
m 2w 0 0 —4w
with w and m arbitrary,
(15) n =4, and m;,a;;, wi, g; given by
2m —4w 2w 2w 2w
m 2w —4w 0 0
m |’ 2w 0 —4w 0 ’
2m 2w 0 0 —2w
with w and m arbitrary,
(16) n =15, and m;, a;;,w;, g; given by
m 2w  w 0 w
m w —2w  w 0
m|, 0 w 2w w 0
m 0 0 w —2w w
m w 0 0 —2w

with w and m arbitrary,

g g8 &

g g

2w

2w
2w

g g&geg«&

O O OO

(== ) (=R =) (== )

o O o oo
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(17) n =15, and m;,a;;, wi, g;
m —2w w
2m w —2w
3m |, 0 w
2m 0 0
m 0 0

with w and m arbitrary,

(18) n =5, and m;, a;;, wi, g;
m —4w 2w
2m 2w —4dw
3m |, 0 2w
4m 0 0
2m 0 0

with w and m arbitrary,

(19) n =5, and m;, ai;, w;, g;
2m —2w 2w
2m 2w —4w
2m |, 0 2w
2m 0 0
m 0 0

with w and m arbitrary,

(20) n =15, and m;,a;j,w;, g
m —2w 2w
m 2w —4w
m |, 0 2w
m 0 0
m 0 0

with w and m arbitrary,

(21) n =5, and m;, a;;, wi, g;
m —4w 2w
2m 2w 2w
2m |, 0 w
2m 0 0
m 0 0

with w and m arbitrary,

(22) n =5, and m;, ai;, w;, g;
2m —2w w

m w —2w
m |, w 0
m w 0
m w 0

with w and m arbitrary,

given by
0 0 0 w
w 0 0 w
—2w 2w 0 , w
2w —4dw 2w 2w
0 2w —4dw 2w
given by
0 0 0 2w
2w 0 0 2w
—4w 2w 0 , 2w
2w 2w w w
0 w —2w w
given by
0 0 0 w
2w 0 0 2w
—4dw 2w 0 , 2w
2w —4w 4w 2w
0 dw  —8w 4w
given by
0 0 0 w
2w 0 0 2w
—4dw 2w 0 , 2w
2w —4dw 2w 2w
0 2w —2w w
given by
0 0 0 2w
w 0 0 w
2w w 0 , w
w —2w 2w w
0 2w —4dw 2w
given by
w w w w
0 0 0 w
—2w 0 0 , w
0 —2w 0 w
0 0 —2w w

o O o oo

(=) N el el )
;/
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n =5, and m;, a;j, w;, g; given by

m —4w 2w 0 0 0 2w 0
2m 2w 2w w 0 0 w 0
2m |, 0 w 2w w w , w |, 0
m 0 0 w —2w 0 w 0
m 0 0 w 0 —2w w 0
with w and m arbitrary,
n =5, and m;, a;j, w;, g; given by
2m —2w 2w 0 0 0 w 0
2m 2w —4dw 2w 0 0 2w 0
2m |, 0 2w 4w 2w 2w |, 2w |, 0
m 0 0 2w —4w 0 2w 0
m 0 0 2w 0 —4w 2w 0

with w and m arbitrary,
n > 6 and we have an n-cycle generalizing (@)

(a) my=...=my, =m,

(b) a12 = ... = a(m—1)n = W, a1, = w, and for other i < j we have
a;; =0,

(c)wur=...=w, =w

with w and m arbitrary,
n > 6 and we have a chain generalizing @)
(a) mi=...=mpu_1=2m, m, =m,

(b) a12 = ... = am-2)(n-1) = 2W, A(n—1)n = 4w, and for other i < j we
have a;; =0,
(¢) wi=w, wy=...=wWp_1 = 2w, w, = 4w

with w and m arbitrary,
n > 6 and we have a chain generalizing @)

(a) my=...=m, =m,
(b) a1z = ... = am—1y, = w, and for other i < j we have a;; = 0,
(¢) i =w, wa=...=wWp_1 = 2w, Wy, =W

with w and m arbitrary,
n > 6 and we have a chain generalizing .'

(a) mi=w, wy=...=my_1 =2m, m, =m,

(b) a12 = 2w, a3 = ... = G(n_2)(n—1) = W, A(n—1)n = 2w, and for other
i < j we have a;; =0,

(¢) wy =2w, wy=...=wWp_1 = W, W, = 2w

with w and m arbitrary,

n > 6 and we have a type generalizing :

(a) mi=m, mg=...=My_3=2m, My_1 =My, =m,

(b) a1z = 2w, a3 = ... = A(m_2)(n-1) = W, A(n—2)y, = W, and for other
1 < j we have a;; =0,

(¢) wy =2w, we =...=wy, =w

with w and m arbitrary,

n > 6 and we have a type generalizing .'

(a) mi=...=Mp_3=2m, My_1 =My =m,

(b) a12 = ... = am-2)(n-1) = 2W, A(n—2)n = 2w, and for other i < j we
have a;; =0,
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(¢) wi=w, wy=...=w, =2w
with w and m arbitrary,
0C9P (31) n > 6 and we have a type generalizing :

(a) mi=ma=m, mg=...=My_o9=2M, My_1 =My, =m,

(b) a13 = w, a3 = ... = An—2)(n—1) = W, Gn_2)n = w, and for other
1 < j we have a;; =0,

(¢) wy=...=w, =w,

with w and m arbitrary,
0C9Q (32) n =17, and m;,a;;, w;, g; given by

m —2w w 0 0 0 0 0 w 0
2m w —2w  w 0 0 0 0 w 0
3m 0 w —2w 0 w 0 w w 0
m |, 0 0 0 2w w 0 0 , w |, 0
2m 0 0 w w —2w 0 0 w 0
m 0 0 0 0 0 —2w w w 0
2m 0 0 w 0 0 w —2w w 0
with w and m arbitrary,
0CI9R (33) n =38, and m;,a;;, w;, g; given by
m —2w w 0 0 0 0 0 0 w
2m w —2w w 0 0 0 0 0 w
3m 0 w —2w w 0 0 0 0 w
4m 0 0 w —2w w 0 0 w w
3m |’ 0 0 0 w 2w w 0 0 ’ w |’
2m 0 0 0 0 w —2w w 0 w
m 0 0 0 0 0 w —2w 0 w
2m 0 0 0 w 0 0 0 —2w w
with w and m arbitrary,
0C9Ss (34) n =9, and m;,a;;, w;, g; given by
m —2w w 0 0 0 0 0 0 0 w
2m w —2w w 0 0 0 0 0 0 w
3m 0 w —2w w 0 0 0 0 0 w
4m 0 0 w —2w w 0 0 0 0 w
om |, 0 0 0 w —2w  w 0 0 0 , w
6m 0 0 0 0 w —2w w 0 w w
4m 0 0 0 0 0 w 2w w 0 w
2m 0 0 0 0 0 0 w —2w 0 w
3m 0 0 0 0 0 w 0 0 —2w w

with w and m arbitrary.

Proof. This is proved in Section [5] See discussion at the start of Section O

7. Bounding invariants of numerical types

0C9T In our proof of semistable reduction for curves we’ll use a bound on Picard groups
of numerical types of genus g which we will prove in this section.

0C9U |Lemma| 7.1. Let n,m;,ai;,w;, g; be a numerical type of genus g. Given i,j with
a;; > 0 we have m;a;; < mjla;;| and myw; < mjlaj;l|.

OO OO OO OO

OO OO OO O oo
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Proof. For every index j we have mja;; + Z#]‘ m;a;; = 0. Thus if we have an
upper bound on |a;;| and m;, then we also get an upper bound on the nonzero (and
hence positive) a;; as well as m;. Recalling that w; divides a;;, the reader easily
sees the lemma is correct. O

Lemma 7.2. Fiz g > 2. For every minimal numerical type n,m;, a;;, w;, g; of
genus g with n > 1 we have
(1) the set J C {1,...,n} of non-(—2)-indices has at most 29 — 2 elements,
(2) forj € J we have gj < g,
(3) for j € J we have mjl|a;;| < 6g — 6, and
(4) forje Jandie{1,...,n} we have m;a;; < 6g — 6.

Proof. Recall that g = 1+ Y m;(w;(g; — 1) — 3a;;). For j € J the contribution
m;(w;(g; — 1) — 3a;;) to the genus g is > 0 and hence > 1/2. This uses Lemma

[37] Definition [3-8] Definition Lemma and Definition [3.16} we will use

these results without further mention in the following. Thus J has at most 2(g — 1)
elements. This proves (1).

Recall that —a;; > 0 for all i by Lemma [3.6] Hence for j € J the contribution
m;(w;(g; — 1) — 3a;;) to the genus g is > m w;(g; — 1). Thus
g —1>mjw;(g; — 1) = g; < (9 —1)/mjw; +1

This indeed implies g; < g which proves (2).

For j € J if g; > 0, then the contribution m;(w;(g; — 1) — 2a;;) to the genus g
is > —1mja;; and we immediately conclude that mj|a;;| < 2(g — 1). Otherwise
a;; = —kw; for some integer k > 3 (because j € J) and we get

2(g—1)

k
mijw;(—14+ <) < g—1= mjw; < P

2
Plugging this back into a;; = —kmjw; we obtain

k
mjlaj;| < 2(g — 1)m <6(g—1)
This proves (3).
Part (4) follows from Lemma and (3). O

Lemma 7.3. Fix g > 2. For every minimal numerical type n,m;, a;j,w;, g; of
genus g we have m;la;;| < 768g.

Proof. By Lemmal7.1]it suffices to show m;|a;;| < 768g for alli. Let J C {1,...,n}
be the set of non-(—2)-indices as in Lemma Observe that J is nonempty as
g > 2. Also mj|a;;| < 6g for j € J by the lemma.

Suppose we have j € J and a sequence i1,...,i7 of (—2)-indices such that aj;,
and i iy, Qigis, Qigiys Qigigs Gisig, AN g, are nonzero. Then we see from Lemma
that m;,w;, < 69 and m; aj;, < 6g. Because i; is a (—2)-index, we have
ai,4, = —2w;, and we conclude that m;, |a;, i, | < 12g. Repeating the argument we
conclude that m;,w;, < 12g and m;,a;,;, < 12g. Then m;,|a;,:,| < 24g and so on.
Eventually we conclude that m;, |a;,, | < 2¥(6g) < 768g for k =1,...,7.

Let I C {1,...,n}\ J be a maximal connected subset. In other words, there does
not exist a nonempty proper subset I’ C I such that a;; = 0 for i/ € I’ and
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i € I\ I' and T is maximal with this property. In particular, since a numerical
type is connected by definition, we see that there exists a j € J and ¢ € I with
ai; > 0. Looking at the classification of such I in Proposition @ and using the
result of the previous paragraph, we see that w;|a;;| < 768¢ for all ¢ € T unless I is
as described in Lemma [5.8 or Lemma [5.9] Thus we may assume the nonvanishing
of a;, 1,7 € I has either the shape

[ ] o L] [ ] ° [
(which has 3 subcases as detailed in Lemma or the shape
[ ] [ ] [ ] [ ] [ ] [ ]

We will prove the bound holds for the first subcase of Lemma [5.§ and leave the
other cases to reader (the argument is almost exactly the same in those cases).

After renumbering we may assume I = {1,...,¢t} C {1,...,n} and there is an
integer w such that
1 1
W=W =...=W=0Q12 =...—= a(t,l)t = —5011'17;2 =...= —ia(t,l)t

The equalities a;;m; + Zj# a;;m; = 0 imply that we have
2mg > my +mg, ..., 2Me—1 = My_2 + My

Equality holds in 2m; > m;—1 + m;41 if and only if ¢ does not “meet” any indices
besides i — 1 and 4+ 1. And if 4 does meet another index, then this index is in J
(by maximality of I). In particular, the map {1,...,t} — Z, i — m; is concave.

Let m = max(m;,i € {1,...,t}). Then m;|a;;| < 2mw for i < ¢ and our goal is to
show that 2mw < 768¢g. Let s, resp. s’ in {1,...,t} be the smallest, resp. biggest
index with my; = m = my. By concavity we see that m; = m for s < i < s’
If s > 1, then we do not have equality in 2ms; > ms_1 + ms41 and we see that
s meets an index from J. In this case 2mw < 12g by the result of the second
paragraph of the proof. Similarly, if s’ < ¢, then s’ meets an index from J and we
get 2mw < 12g as well. But if s = 1 and s’ = ¢, then we conclude that a;; = 0
for all j € J and i € {2,...,t — 1}. But as we've seen that there must be a pair
(4,7) € I x J with a;; > 0, we conclude that this happens either with ¢ = 1 or with
i =t and we conclude 2mw < 12g in the same manner as before (as m; = m = my
in this case). O

Proposition| 7.4. Let g > 2. For every numerical type T of genus g and prime
number £ > 768g we have
dimg, Pic(T)[{] < g
where Pic(T) is as in Definition . If T is minimal, then we even have
dimth PIC(T)[K] < Gtop <g
where giop as in Definition [3.11]
Proof. Say T is given by n,m;, a;;, w;, g;. If T' is not minimal, then there exists a

(—1)-index. After replacing T by an equivalent type we may assume n is a (—1)-
index. Applying Lemma 4.4 we find Pic(T") C Pic(T”) where T" is a numerical type
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of genus g (Lemma with n — 1 indices. Thus we conclude by induction on n
provided we prove the lemma for minimal numerical types.

Assume that T is a minimal numerical type of genus > 2. Observe that g, < g by
Lemma If A = (a;;) then since Pic(T") C Coker(A) by Lemma Thus it
suffices to prove the lemma for Coker(A). By Lemmal7.3|we see that m;|a;| < 768¢g
for all 7, j. Hence the result by Lemma [2.6] O

8. Models

In this chapter R will be a discrete valuation ring and K will be its fraction field.
If needed we will denote 7 € R a uniformizer and k = R/(7) its residue field.

Let V be an algebraic K-scheme (Varieties, Definition 20.1)). A model for V will
mean a flat finite typ(ﬂ morphism X — Spec(R) endowed with an isomorphism
V = Xk = X Xgpec(r) Spec(K). We often will identify V' and the generic fibre
Xg of X and just write V = Xp. The special fibre is X3, = X Xgpec(r) Spec(k).
A morphism of models X — X' for V is a morphism X — X’ of schemes over R
which induces the identity on V.

We will say X is a proper model of V if X is a model of V and the structure
morphism X — Spec(R) is proper. Similarly for separated models, smooth models,
and add more here. We will say X is a reqular model of V if X is a model of V'
and X is a regular scheme. Similarly for normal models, reduced models, and add
more here.

Let R C R’ be an extension of discrete valuation rings (More on Algebra, Definition
[111.1). This induces an extension K'/K of fraction fields. Given an algebraic
scheme V over K, denote V' the base change V' Xgpec(x) Spec(K’). Then there is
a functor

models for V over R — models for V' over R’

sending X to X Xgpec(r) Spec(R').

Lemma 8.1. Let Vi, — V5 be a closed immersion of algebraic schemes over K. If
Xo is a model for Va, then the scheme theoretic image of Vi — X5 is a model for
V.

Proof. Using Morphisms, Lemma and Example this boils down to the
following algebra statement. Let A; be a finite type R-algebra flat over R. Let
A; ®r K — Bs be a surjection. Then As = A;/Ker(4; — Bs) is a finite type
R-algebra flat over R such that By = Ay ®p K. We omit the detailed proof; use
More on Algebra, Lemma to prove that A, is flat. O

Lemma 8.2. Let X be a model of a geometrically normal variety V over K. Then
the normalization v : X¥ — X is finite and the base change of X" to the completion
R" is the normalization of the base change of X. Moreover, for each x € XV the
completion of Oxv , is normal.

6Occasionally it is useful to allow models to be locally of finite type over R, but we’ll cross
that bridge when we come to it.
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Proof. Observe that R” is a discrete valuation ring (More on Algebra, Lemma
. Set Y = X Xgpeo(r) Spec(R"). Since R" is a discrete valuation ring, we see
that

Y \ Y=Y X Spec(RM) SpeC(K/\) =V X Spec(K) Spec(K/\)
where K" is the fraction field of R". Since V is geometrically normal, we find that
this is a normal scheme. Hence the first part of the lemma follows from Resolution
of Surfaces, Lemma [11.6

To prove the second part we may assume X and Y are normal (by the first part). If
x is in the generic fibre, then Ox ; = Oy, is a normal local ring essentially of finite
type over a field. Such a ring is excellent (More on Algebra, Proposition [52.3). If z
is a point of the special fibre with image y € Y, then O% , = Oy, by Resolution of
Surfaces, Lemma In this case Oy, is a excellent normal local domain by the
same reference as before as R is excellent. If B is a excellent local normal domain,
then the completion B” is normal (as B — B” is regular and More on Algebra,
Lemma applies). This finishes the proof. (I

Lemmal 8.3. Let X be a model of a smooth curve C over K. Then there exists a
resolution of singularities of X and any resolution is a model of C.

Proof. We check condition (4) of Lipman’s theorem (Resolution of Surfaces, The-
orem hold. This is clear from Lemma except for the statement that X
has finitely many singular points. To see this we can use that R is J-2 by More
on Algebra, Proposition [48.7 and hence the nonsingular locus is open in X”. Since
X" is normal of dimension < 2, the singular points are closed, hence closedness of
the singular locus means there are finitely many of them (as X is quasi-compact).
Observe that any resolution of X is a modification of X (Resolution of Surfaces,
Definition . This will be an isomorphism over the normal locus of X by Va-
rieties, Lemma Since the set of normal points includes C' = X we conclude
any resolution is a model of C. O

Definition 8.4. Let C be a smooth projective curve over K with H°(C,O¢) = K.
A minimal model will be a regular, proper model X for C' such that X does not
contain an exceptional curve of the first kind (Resolution of Surfaces, Section .

Really such a thing should be called a minimal regular proper model or even a
relatively minimal regular projective model. But as long as we stick to models over
discrete valuation rings (as we will in this chapter), no confusion should arise.

Minimal models always exist (Proposition and are unique when the genus is
> 0 (Lemma [10.1]).

Lemma 8.5. Let C be a smooth projective curve over K with H°(C,O¢) = K.
If X is a regular proper model for C, then there exists a sequence of morphisms

X=X, > Xn1—...>0 X1 > Xp

of proper reqular models of C, such that each morphism is a contraction of an
exceptional curve of the first kind, and such that Xg is a minimal model.

Proof. By Resolution of Surfaces, Lemma we see that X is projective over
R. Hence X has an ample invertible sheaf by More on Morphisms, Lemma [50.1
(we will use this below). Let E C X be an exceptional curve of the first kind. See
Resolution of Surfaces, Section By Resolution of Surfaces, Lemma we can
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contract E' by a morphism X — X’ such that X’ is regular and is projective over
R. Clearly, the number of irreducible components of X is exactly one less than
the number of irreducible components of X;. Thus we can only perform a finite
number of these contractions until we obtain a minimal model. (]

Proposition 8.6. Let C' be a smooth projective curve over K with H*(C,0¢) =
K. A minimal model exists.

Proof. Choose a closed immersion C' = P%. Let X be the scheme theoretic image
of C — P%. Then X — Spec(R) is a projective model of C' by Lemma By
Lemma [8.3[ there exists a resolution of singularities X’ — X and X’ is a model for
C. Then X’ — Spec(R) is proper as a composition of proper morphisms. Then we
may apply Lemma [8.5] to obtain a minimal model. O

9. The geometry of a regular model

In this section we describe the geometry of a proper regular model X of a smooth
projective curve C over K with H°(C,0¢) = K.

Lemma 9.1. Let X be a regular model of a smooth curve C' over K.

(1) the special fibre X}, is an effective Cartier divisor on X,

(2) each irreducible component C; of Xy, is an effective Cartier divisor on X,

(3) X =>.m;C; (sum of effective Cartier divisors) where m; is the multiplic-
ity of C; in Xy,

(4) Ox(Xk) ~ Ox.

Proof. Recall that R is a discrete valuation ring with uniformizer m and residue
field k = R/(w). Because X — Spec(R) is flat, the element 7 is a nonzerodivisor
affine locally on X (see More on Algebra, Lemma[22.11]). Thus if U = Spec(A4) C X
is an affine open, then

Xk NU =Uy, = Spec(A ®p k) = Spec(A/mA)

and 7 is a nonzerodivisor in A. Hence Xj, = V(7) is an effective Cartier divisor by
Divisors, Lemma [13.2] Hence (1) is true.

The discussion above shows that the pair (Ox(X}),1) is isomorphic to the pair
(Ox,m) which proves (4).

By Divisors, Lemma there exist pairwise distinct integral effective Cartier
divisors D; C X and integers a; > 0 such that X = > a;D;. We can throw out
those divisors D; such that a; = 0. Then it is clear (from the definition of addition
of effective Cartier divisors) that Xy = |J D; set theoretically. Thus C; = D; are the
irreducible components of X which proves (2). Let & be the generic point of C;.
Then Ox, is a discrete valuation ring (Divisors, Lemma [15.4). The uniformizer
m; € Ox ¢, is a local equation for C; and the image of 7 is a local equation for Xj.
Since Xy = )" a;C; we see that m and 7}’ generate the same ideal in Ox¢,. On
the other hand, the multiplicity of C; in X, is

m; = lengthy , Ox, ¢, =lengthy,  Oxe, /(7)== lengthocl)g_OX@/(w?) =a;
See Chow Homology, Definition Thus a; = m; and (3) is proved. a

Lemma 9.2. Let X be a reqular model of a smooth curve C' over K. Then

(1) X — Spec(R) is a Gorenstein morphism of relative dimension 1,
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(2) each of the irreducible components C; of Xy, is Gorenstein.

Proof. Since X — Spec(R) is flat, to prove (1) it suffices to show that the fibres are
Gorenstein (Duality for Schemes, Lemma. The generic fibre is a smooth curve,
which is regular and hence Gorenstein (Duality for Schemes, Lemma . For the
special fibre X we use that it is an effective Cartier divisor on a regular (hence
Gorenstein) scheme and hence Gorenstein for example by Dualizing Complexes,
Lemma The curves C; are Gorenstein by the same argument. O

0C61 |[Situation 9.3. Let R be a discrete valuation ring with fraction field K, residue
field k£, and uniformizer w. Let C' be a smooth projective curve over K with
H°(C,0¢) = K. Let X be a regular proper model of C. Let Ci,...,C, be the
irreducible components of the special fibre X;. Write X, = > m;C; as in Lemma
9. 1]

0C62 Lemma 9.4. In Situatz'on the special fibre Xy, is connected.
Proof. Consequence of More on Morphisms, Lemma [53.6] O

0C63 Lemma 9.5. In Situatz’on there is an exact sequence
0 — Z — Z®" — Pic(X) — Pic(C) — 0

where the first map sends 1 to (my, ..., m,) and the second maps sends the ith basis
vector to Ox (C;).

Proof. Observe that C' C X is an open subscheme. The restriction map Pic(X) —
Pic(C) is surjective by Divisors, Lemma Let £ be an invertible Ox-module
such that there is an isomorphism s : O¢ — L|¢. Then s is a regular meromorphic
section of £ and we see that divz(s) = ) a,C; for some a; € Z (Divisors, Definition
27.4). By Divisors, Lemma (and the fact that X is normal) we conclude that
L = O0x(>_a;C;). Finally, suppose that Ox (> a;C;) = Ox. Then there exists
an element g of the function field of X with divx(g) = Y a;C;. In particular the
rational function g has no zeros or poles on the generic fibre C of X. Since C' is
a normal scheme this implies g € H°(C,0¢) = K. Thus g = n%u for some a € Z
and u € R*. We conclude that divx (g) = a > m;C; and the proof is complete. O

In Situation [9:3] for every invertible O x-module £ and every i we get an integer
deg(ﬁ Ci) = X(Civ‘c Ci) - X(Ci> 007)

by taking the degree of the restriction of £ to C; relative to the ground field kEI as
in Varieties, Section

0C64 Lemma 9.6. In Situation given L an invertible O x -module and a = (aq,...,a,) €
Zo" we define

(a,£) = a;deg(£|c,)

Then {,) is bilinear and for b= (b1,...,b,) € Z®™ we have
<a, OX(Z szl)> = <b, OX(Z (IZ‘CZ‘)>

"Observe that it may happen that the field x; = HO(C;, Oc;) is strictly bigger than k. In this
case every invertible module on C; has degree (as defined above) divisible by [k; : k.
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Proof. Bilinearity is immediate from the definition and Varieties, Lemma To
prove symmetry it suffices to assume a and b are standard basis vectors in Z®".
Hence it suffices to prove that

deg(Ox (C5)

Ci) = deg(OX(Ci)‘Cj)

for all 1 <i4,j < n. If i = j there is nothing to prove. If ¢ # j, then the canonical
section 1 of Ox(C};) restricts to a nonzero (hence regular) section of Ox(Cj)|c,
whose zero scheme is exactly C; N C; (scheme theoretic intersection). In other
words, C; N Cj is an effective Cartier divisor on C; and

deg(Ox (Cj)lc,) = deg(C; N Cj)

by Varieties, Lemma m By symmetry we obtain the same (!) formula for the
other side and the proof is complete. ([l

In Situation it is often convenient to think of Z®" as the free abelian group on
the set {C1,...,Cp}. We will indicate an element of this group as >_ a;C;; here we
think of this as a formal sum although equivalently we may (and we sometimes do)
think of such a sum as a Weil divisor on X supported on the special fibre X;. Now
Lemma allows us to define a symmetric bilinear form ( - ) on this free abelian
group by the rule

(9.6.1) (Z a;C; - ijcj) - <a,OX(Z bjcj)> - <b, x> aiCi)>

We will prove some properties of this bilinear form.

Lemma|9.7. In Situation the symmetric bilinear form has the following
properties

(1) (Ci-Cy) >0 ifi # j with equality if and only if C; N C;j = 0,

(2) ZmiCi-Cj) =0,

(3) there is no nonempty proper subset I C {1,...,n} such that (C; - C;) =0

foriel, j&1.
(4) - aiCi- Y a;Cy) <0 with equality if and only if there exists a ¢ € Q such
that a; = qm; fori=1,... n,

Proof. In the proof of Lemma we saw that (C; - C;) = deg(C; N Cy) if i # j.
This is > 0 and > 0 if and only if C; N C; # (). This proves (1).

Proof of (2). This is true because by Lemma the invertible sheaf associated to
> m;C; is trivial and the trivial sheaf has degree zero.

Proof of (3). This is expressing the fact that X}, is connected (Lemma [9.4]) via the
description of the intersection products given in the proof of (1).

Part (4) follows from (1), (2), and (3) by Lemma [2.3] O

Lemma 9.8. In Situation set d = ged(myq,...,my) and let D =5 (m;/d)C;
as an effective Cartier divisor. Then Ox (D) has order dividing d in Pic(X) and
Cp,x an invertible Op-module of order dividing d in Pic(D).
Proof. We have

Ox(D)® = Ox(dD) = Ox(Xy) = Ox
by Lemma We conclude as Cp,x is the pullback of Ox(—D). O
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Lemma 9.9. [In Situation let d = ged(ma,...,my). Let D = (m;/d)C;
as an effective Cartier divisor. Then there exists a sequence of effective Cartier
divisors
(Xk)red:Zoch - ...CZm:D

such that Z; = Zj 1 + C;; for somei; € {1,...,n} for j=1,...,m and such that
H%(Z;,03,) is a field finite over k for j =0,...m.

Proof. The reduction Dyeq = (Xg)rea = Y. C; is connected (Lemma and
proper over k. Hence H(D,..4,0) is a field and a finite extension of k by Varieties,

Lemma Thus the result for Zg = Dyeq = (Xi)req is true. Suppose that we
have already constructed

(Xk)red:ZO czZiCc...czZyCD

with Z; = Z; 1 + Cy; for some i; € {1,...,n} for j = 1,...,t and such that
HO(Z]-,OZJ.) is a field finite over k for j = 0,...,¢t. Write Z; = Y a,C; with
1<ag; < mz/d If a; = my;/d for all i, then Z; = D and the lemma is proved. If
not, then a; < m;/d for some ¢ and it follows that (Z; - Z;) < 0 by Lemma
This means that (D — Z; - Z;) > 0 because (D - Z;) = 0 by the lemma. Thus we can
find an ¢ with a; < m;/d such that (C; - Z;) > 0. Set Zy11 = Z; + C; and i1 = .
Consider the short exact sequence

0— OX(—Zt)|C,~ — OZt,+1 — OZt —0

of Divisors, Lemma[14.3] By our choice of i we see that Ox (—Z;)|c, is an invertible
sheaf of negative degree on the proper curve C;, hence it has no nonzero global
sections (Varieties, Lemma . We conclude that H(Oz,,,) C H(Og,) is
a field (this is clear but also follows from Algebra, Lemma and a finite
extension of k. Thus we have extended the sequence. Since the process must stop,
for example because t < > (m;/d — 1), this finishes the proof. O

Lemma 9.10. In Situatz'on let d = ged(mq,...,my). Let D =3 " (m;/d)C; as
an effective Cartier divisor on X. Then

1—gc=dx:k(1—-gp)
where gc is the genus of C, gp is the genus of D, and kK = H°(D,Op).
Proof. By Lemma[9.9we see that  is a field and a finite extension of k. Since also
H°(C,0¢) = K we see that the genus of C' and D are defined (see Algebraic Curves,
Deﬁnition and we have gc = dimx H*(C,O¢) and gp = dim, H'(D,Op). By
Derived Categories of Schemes, Lemma we have

1-— go = X(C, Oc) = X(Xlw OXk) = diHl]~C HO(Xk, OXk) — diI?(l},C 1{1()(%7 OXk)

We claim that

X(Xk’ OXk) = dX(D7 OD)
This will prove the lemma because

x(D,0p) = dimy H°(D,Op) — dimy H'(D,Op) = [k : k|(1 — gp)

Observe that X = dD as an effective Cartier divisor. To prove the claim we prove
by induction on 1 < r < d that x(rD,O,p) = rx(D,Op). The base case r = 1 is
trivial. If 1 <r < d, then we consider the short exact sequence

0— Ox(TD)|D — O(r+1)D — OT‘D —0

[AW71, Lemma 2.6]

[AWT1], Lemma 2.6]
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of Divisors, Lemma [I4.3] By additivity of Euler characteristics (Varieties, Lemma
it suffices to prove that x(D,Ox(rD)|p) = x(D,Op). This is true because
Ox(rD)|p is a torsion element of Pic(D) (Lemma and because the degree of
a line bundle is additive (Varieties, Lemma hence zero for torsion invertible
sheaves. d

Lemma 9.11. In Situation given a pair of indices i,j such that C; and C;
are exceptional curves of the first kind and C; N C; # 0, thenn =2, my =my =1,
Cy 2P, Cy 2P, Cy and Cy meet in a k-rational point, and C has genus 0.

Proof. Choose isomorphisms C; = P}, and C; = P,lgj. The scheme C; N Cj is a
nonempty effective Cartier divisor in both C; and C;. Hence
(C; - Cj) = deg(C; N Cy) > max([k; : k], [k; : k])
The first equality was shown in the proof of Lemma [0.6] On the other hand, the
self intersection (C; - C;) is equal to the degree of Ox(C;) on C; which is —[k; : k]
as C; is an exceptional curve of the first kind. Similarly for C;. By Lemma @
0> (Cz + Cj)2 = —[Ki : ki] —1-2(01' . CJ) — [Iij : k]

This implies that [r; : k] = deg(C; NC;) = [k; : k] and that we have (C; +C;)? = 0.
Looking at the lemma again we conclude that n = 2, {1,2} = {i,j}, and m; = ma.
Moreover, the scheme theoretic intersection C; NC); consists of a single point p with
residue field x and k; — K < k; are isomorphisms. Let D = C; + C5 as effective
Cartier divisor on X. Observe that D is the scheme theoretic union of C and Cy
(Divisors, Lemma hence we have a short exact sequence

0—+0p—=0c, @0c, =0, =0

by Morphisms, Lemma Since we know the cohomology of C; = PL (Cohomol-
ogy of Schemes, Lemma we conclude from the long exact cohomology sequence
that HY(D,0p) = k and H*(D,0Op) = 0. By Lemma we conclude

1—gc=dx:k](1-0)

where d = my = my. It follows that gc =0and d=m; =mgs=1land Kk =k. O

10. Uniqueness of the minimal model

If the genus of the generic fibre is positive, then minimal models are unique (Lemma
10.1)) and consequently have a suitable mapping property (Lemma [10.2]).

Lemma 10.1. Let C be a smooth projective curve over K with H°(C,0¢) = K
and genus > 0. There is a unique minimal model for C'.

Proof. We have already proven the hard part of the lemma which is the existence
of a minimal model (whose proof relies on resolution of surface singularities), see
Proposition[8:6] To prove uniqueness, suppose that X and Y are two minimal mod-
els. By Resolution of Surfaces, Lemma [I7.2] there exists a diagram of S-morphisms

X=Xp+Xj+..«X, =Y, —... oY1 2y =Y

where each morphism is a blowup in a closed point. The exceptional fibre of the
morphism X,, — X,,_1 is an exceptional curve of the first kind E£. We claim
that F is contracted to a point under the morphism X, = Y,, — Y. If this
is true, then X,, — Y factors through X, _1 by Resolution of Surfaces, Lemma
In this case the morphism X, _; — Y is still a sequence of contractions of
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exceptional curves by Resolution of Surfaces, Lemma Hence by induction on
n we conclude. (The base case n = 0 means that there is a sequence of contractions
X=Y,—...2 Y, - Y, =Y ending with Y. However as X is a minimal model
it contains no exceptional curves of the first kind, hence m =0 and X =Y.)

Proof of the claim. We will show by induction on m that any exceptional curve of
the first kind £ C Y, is mapped to a point by the morphism Y,, - Y. If m =0
this is clear because Y is a minimal model. If m > 0, then either Y,, — Y,,_1
contracts F (and we're done) or the exceptional fibre E' C Y,, of Y;, = Y,,,_1 is
a second exceptional curve of the first kind. Since both E and E’ are irreducible
components of the special fibre and since go > 0 by assumption, we conclude that
ENE’' = by Lemma Then the image of F in Y,,,_1 is an exceptional curve of
the first kind (this is clear because the morphism Y,,, — Y;,,_1 is an isomorphism in
a neighbourhood of F). By induction we see that Y,,,_1 — Y contracts this curve
and the proof is complete. O

Lemma 10.2. Let C be a smooth projective curve over K with H°(C,0¢) = K
and genus > 0. Let X be the minimal model for C (Lemma . Let' Y be a
reqular proper model for C. Then there is a unique morphism of models Y — X
which is a sequence of contractions of exceptional curves of the first kind.

Proof. The existence and properties of the morphism X — Y follows immediately
from Lemma [8.5 and the uniqueness of the minimal model. The morphism ¥ — X
is unique because C' C Y is scheme theoretically dense and X is separated (see

Morphisms, Lemma [7.10)). O

Example/ 10.3. If the genus of C' is 0, then minimal models are indeed nonunique.
Namely, consider the closed subscheme
X cP%

defined by Ty To—7T¢ = 0. More precisely X is defined as Proj(R[To, Ty, To]/(T1 To—
7T#)). Then the special fibre X}, is a union of two exceptional curves Cy, Cy both
isomorphic to P}, (exactly as in Lemma . Projection from (0 : 1 : 0) defines
a morphism X — P}% contracting C; and inducing an isomorphism of C; with
the special fiber of P},. Projection from (0 : 0 : 1) defines a morphism X — P}
contracting C; and inducing an isomorphism of Cy with the special fiber of PL.
More precisely, these morphisms correspond to the graded R-algebra maps

R[To,Tl] — R[TO7T1’T2]/(T1T2 — 7TT02) — R[T(),TQ]

In Lemma [12.4) we will study this phenomenon.

11. A formula for the genus

There is one more restriction on the combinatorial structure coming from a proper
regular model.

Lemmal 11.1. In Situation suppose we have an effective Cartier divisors
D,D’ C X such that D' = D + C; for somei € {1,...,n} and D' C Xj. Then

X(Xk, Opr) = x(Xk, Op) = X(Xk, Ox (=D)|¢c,) = —(D - Ci) + x(Ci, Oc,)
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Proof. The second equality follows from the definition of the bilinear form ( - ) in
(9.6.1) and Lemma To see the first equality we distinguish two cases. Namely,
if C; ¢ D, then D' is the scheme theoretic union of D and C; (by Divisors, Lemma

and we get a short exact sequence
0— Op = Op xO¢, = Opnc;, — 0

by Morphisms, Lemma Since we also have an exact sequence
0— Ox(=D)|c; = Oc, = Opnc; — 0

(Divisors, Remark we conclude that the claim holds by additivity of euler
characteristics (Varieties, Lemma[33.2)). On the other hand, if C; C D then we get
an exact sequence

0— OX(_D)‘CI' — Op - 0Op —0

by Divisors, Lemma and we immediately see the lemma holds. O
Lemma 11.2. In Situation we have

=1+, i (b K- 1 - 500

where r; = H°(C;, Oc,), gi is the genus of C;, and gc is the genus of C.

Proof. Our basic tool will be Derived Categories of Schemes, Lemma which
shows that

1 —gc =x(C,0¢) = x(Xk, Ox,)
Choose a sequence of effective Cartier divisors

Xk:DmDDm_lD...DDlDDQZQ)

such that D;, 1 = D;+C;, for each j. (It is clear that we can choose such a sequence
by decreasing one nonzero multiplicity of D;4; one step at a time.) Applying
Lemma starting with x(Op,) = 0 we get

1— go = x(X, Ox,)
Zj(—(Dj-ci)wa],Oc )
_Zj(cil+ci2+ A+ Gy, Cy) Z (Ci;,Oc,)

1
== Zm,(c@ )+ Y mix(Ci, Oc,)

= %Zmz(cl -Cy) + ZmiX(Ci’ Oc,)

Perhaps the last equality deserves some explanation. Namely, since > j Ci;, =
> m;C; we have (ZJ Ci, - Zj Ci;) = 0 by Lemma Thus we see that

0= Zj#j/(cij/ ! Clj) + Zmz(cz . Cz)
by splitting this product into “nondiagonal” and “diagonal” terms. Note that k; is

a field finite over k£ by Varieties, Lemma Hence the genus of C; is defined and
we have x(C;, O¢,) = [k : k](1 — g;). Putting everything together and rearranging

terms we get
1
c=-3 E m;(C; - C;) + E mlki c k)(gs — 1) +1
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which is what the lemma says too. O

Lemma 11.3. In Situation with k; = H°(C;, O¢,) and g; the genus of C; the
data

n,mi, (Ci - Cj), [ki + kl, g;
is a numerical type of genus equal to the genus of C.

Proof. (In the proof of Lemma we have seen that the quantities used in the
statement of the lemma are well defined.) We have to verify the conditions (1) —

(5) of Definition

Condition (1) is immediate.

Condition (2). Symmetry of the matrix (C; - C;) follows from Equation (9.6.1)) and
Lemma [9.6] Nonnegativity of (C; - C;) for i # j is part (1) of Lemma

Condition (3) is part (3) of Lemma [0.7]
Condition (4) is part (2) of Lemma [0.7]

Condition (5) follows from the fact that (C; - C;) is the degree of an invertible
module on C; which is divisible by [k; : k], see Varieties, Lemma |44.10

The genus formula proved in Lemma tells us that the numerical type has the
genus as stated, see Definition [3.4] O

Definition 11.4. In Situation [9.3| the numerical type associated to X is the nu-
merical type described in Lemma

Now we match minimality of the model with minimality of the type.

Lemmal 11.5. In Situation , The following are equivalent

(1) X is a minimal model, and
(2) the numerical type associated to X is minimal.

Proof. If the numerical type is minimal, then there is no ¢ with g; = 0 and (C; -
C;) = —[ki : k], see Definition Certainly, this implies that none of the curves
C; are exceptional curves of the first kind.

Conversely, suppose that the numerical type is not minimal. Then there exists an
i such that g; = 0 and (C; - C;) = —[k; : k]. We claim this implies that C; is an
exceptional curve of the first kind. Namely, the invertible sheaf Ox(—C;)|¢, has
degree —(C; - C;) = [k; : k] when C; is viewed as a proper curve over k, hence has
degree 1 when C} is viewed as a proper curve over x;. Applying Algebraic Curves,
Proposition we conclude that C; = P,lﬂ_ as schemes over k;. Since the Picard
group of P! over a field is Z, we see that the normal sheaf of C; in X is isomorphic
to Op,. (—1) and the proof is complete. O

Remark|11.6. Not every numerical type comes from a model for the silly reason
that there exist numerical types whose genus is negative. There exist a minimal
numerical types of positive genus which are not the numerical type associated to a
model (over some dvr) of a smooth projective geometrically irreducible curve (over
the fraction field of the dvr). A simple example is n =1, m; =1, ay; =0, wy = 6,
g1 = 1. Namely, in this case the special fibre X; would not be geometrically
connected because it would live over an extension x of k of degree 6. This is a
contradiction with the fact that the generic fibre is geometrically connected (see
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More on Morphisms, Lemma [53.6)). Similarly, n =2, m; =ma =1, —a1; = —ags =
a12 = ag1 = 6, wy = wg =6, g1 = go = 1 would be an example for the same reason
(details omitted). But if the ged of the w; is 1 we do not have an example.

Lemma 11.7. In Situation assume C' has a K-rational point. Then

(1) X% has a k-rational point x which is a smooth point of Xy, over k,
(2) if z € C;, then HY(C;,O¢,) =k and m; = 1, and
(3) H°(Xy,Ox,) =k and Xy, has genus equal to the genus of C.

Proof. Since X — Spec(R) is proper, the K-rational point extends to a morphism
a : Spec(R) — X by the valuative criterion of properness (Morphisms, Lemma
[42.1)). Let z € X be the image under a of the closed point of Spec(R). Then a
corresponds to an R-algebra homomorphism ¢ : Ox ; — R (see Schemes, Section
13). It follows that 7 ¢ m?2 (since the image of m in R is not in m%). Hence
Ox,.» = Ox,/7Ox , is regular (Algebra, Lemma . Then Xj, — Spec(k) is
smooth at x by Algebra, Lemma It follows that x is contained in a unique
irreducible component C; of X, that O¢, » = Ox, o, and that m; = 1. The fact
that C; has a k-rational point implies that the field x; = H°(C;, O¢,) (Varieties,
Lemma [26.2)) is equal to k. This proves (1). We have H°(X}, Ox,) = k because
H°(X},Ox, ) is a field extension of k (Lemma which maps to H°(C;, O¢,) = k.
The genus equality follows from Lemma [9.10 O

Lemmal11.8. In Situation assume X is a minimal model, gcd(mq, ..., my) =
1, and H°((Xk)rea, O) = k. Then the map

H' (X, Ox,) = H' (Xp)reds O(x,),ea)
is surjective and has a nontrivial kernel as soon as (Xi)red # Xk-

Proof. By vanishing of cohomology in degrees > 2 over X}, (Cohomology, Propo-
sition [20.7)) any surjection of abelian sheaves on X induces a surjection on H'.
Consider the sequence

(Xi)red = Z0 C Z1 C ... C Zpy = X,

of Lemma Since the field maps HO(Zj,(’)Zj) — HO((Xk)Ted,O(Xk)Md) =k
are injective we conclude that H°(Z;,Oz,) = k for j = 0,...,m. It follows that
HY%(Xy,0x,) = H*(Zn-1,0z, ,)issurjective. Let C = C;, . Then Xy = Zp—1+
C. Let £L = Ox(—=Zm-1)|c. Then L is an invertible Og-module. As in the proof
of Lemma [0.9] there is an exact sequence

0-L—-0x, -0z, ,—0

m—1
of coherent sheaves on X;. We conclude that we get a short exact sequence
0— H'(C,L) —» H'(Xy,Ox,) = H (Zn-1,0z,_,) >0
The degree of £ on C' over k is
(C-=Zm) =(C-C=X;)=(C-C)

Set k = HY(C,0O¢) and w = [k : k]. By definition of the degree of an invertible
sheaf we see that

X(C, L) = x(C,0c) +(C-C) =w(l —go) + (C-C)


https://stacks.math.columbia.edu/tag/0CE8
https://stacks.math.columbia.edu/tag/0CE9

0CEA

0CEB

SEMISTABLE REDUCTION 44

where g¢ is the genus of C'. This expression is < 0 as X is minimal and hence
C' is not an exceptional curve of the first kind (see proof of Lemma [11.5). Thus
dimy H*(C, L) > 0 which finishes the proof. O

Lemma 11.9. In Situation assume Xy has a k-rational point x which is a
smooth point of Xi — Spec(k). Then

dimy, Hl((Xk)reda O(Xk)red) > Gtop + ggeom(Xk/k)

where ggeom @5 as in Algebraic Curves, Section and giop ts the topological genus
(Definition of the numerical type associated to Xy, (Definition m

Proof. We are going to prove the inequality
dimy, Hl(Da OD) > gtop(D) + ggeom(D/k)

for all connected reduced effective Cartier divisors D C (Xg)req containing z by
induction on the number of irreducible components of D. Here giop(D) =1—m+e
where m is the number of irreducible components of D and e is the number of
unordered pairs of components of D which meet.

Base case: D has one irreducible component. Then D = C; is the unique irreducible
component containing . In this case dimy H'(D,Op) = g; and Grop(D) = 0. Since
C; has a k-rational smooth point it is geometrically integral (Varieties, Lemma
. It follows that g; is the genus of Cz‘,% (Algebraic Curves, Lemma . It
also follows that ggeom (D/k) is the genus of the normalization CZE of Ci,E' Applying

Algebraic Curves, Lemma to the normalization morphism CZVE — Ci,% we get
(11.9.1) genus of C; 7 > genus of C7'-

Combining the above we conclude that dimy H'(D,Op) > giop(D) + ggeom (D/k)
in this case.

Induction step. Suppose we have D with more than 1 irreducible component. Then
we can write D = C;+ D’ where x € D’ and D’ is still connected. This is an exercise
in graph theory we leave to the reader (hint: let C; be the component of D which
is farthest from z). We compute how the invariants change. As x € D’ we have
H°(D,0p) = H°(D',0Op/) = k. Looking at the short exact sequence of sheaves

0—0Op— Ocm ®Opr — OC’iﬂD’ —0
(Morphisms, Lemma and using additivity of euler characteristics we find
dimy Hl(D, Op) — dimy, Hl(D/, Op) = —x(Oc¢;) + x(Oc;np’)
= wi(g; — 1) + chcD/ ij

Here as in Lemma, we set w; = [k; @ k], k; = H°(C;,Og,), gi is the genus of
Ci, and Q5 = (Cz . OJ) ‘We have

gtop(D) - gtop(D,) =-1+ ZC,-CD’ mesting C; 1

We have
ggeom(D/k) — Jgeom (D//k) = ggeom(ci/k)
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by Algebraic Curves, Lemma Combining these with our induction hypothesis,
we conclude that it suffices to show that

Wigi — ggeom(ci/k) + Z
is nonnegative. In fact, we have
(1192) w;g; > [ﬁi : k]591 > ggeom(oi/k)

The second inequality by Algebraic Curves, Lemma On the other hand, since
w; divides a;; (Varieties, Lemma [44.10)) it is clear that

(11.9.3) chcn meate 0, (@07 = 1) = (w; =1) > 0

because there is at least one C; C D’ which meets C;. O

Lemma 11.10. If equality holds in Lemma 9 then
(1) the unique irreducible component of Xy, containing x is a smooth projective
geometrically irreducible curve over k,
(2) if C C Xy, is another irreducible component, then k = H°(C,O¢) is a finite
separable extension of k, C' has a k-rational point, and C is smooth over k

(aij = 1) = (w; — 1)

C;CD’ meets C;

Proof. Looking over the proof of Lemma [T1.9 we see that in order to get equality,

the inequalities (11.9.1] , m, and ( m ) have to be equalities.

Let C; be the irreducible component containing z. Equality in (11.9.1)) shows via
Algebraic Curves, Lemma [18.4] that C;/E — C, 7 is an isomorphism. Hence C, + is

smooth and part (1) holds.

Next, let C; C Xj be another irreducible component. Then we may assume we
have D = D’ + C; as in the induction step in the proof of Lemma Equality
in immediately implies that x;/k is finite separable. Equality in
implies either a;; = 1 for some j or that there is a unique C; C D’ meeting C; and
ai; = w;. In both cases we find that C; has a x;-rational point ¢ and ¢ = C; N C}
scheme theoretically. Since Ox . is a regular local ring, this implies that the local
equations of C; and C} form a regular system of parameters in the local ring Ox .
Then Og, . is regular by (Algebra, Lemmal[106.3). We conclude that C; — Spec(r;)
is smooth at ¢ (Algebra, Lemma [140.5)). It follows that C; is geometrically integral
over k; (Varieties, Lemma. To finish we have to show that C; is smooth over
ki. Observe that

CLE = Ci XSPCC(k) SpeC(E) = H&—)E CZ XSpcc(m) SpeC(E)

where there are [k; : k]-summands. Thus if C; is not smooth over k;, then
each of these curves is not smooth, then these curves are not normal and the
normalization morphism drops the genus (Algebraic Curves, Lemma which
is disallowed because it would drop the geometric genus of C;/k contradlctlng
[’ii : k}gz = ggeom(ci/k)- O

12. Blowing down exceptional curves

The following lemma tells us what happens with the intersection numbers when we
contract an exceptional curve of the first kind in a regular proper model. We put
this here mostly to compare with the numerical contractions introduced in Lemma
[3:9 We will compare the geometric and numerical contractions in Remark [12.3]
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Lemma 12.1. In Situation assume that C, is an exceptional curve of the
first kind. Let f : X — X' be the contraction of C,. Let C! = f(C;). Write
X, =>miCl. Then X', Cl,i=1,...,n  =n—1, and m; =m, is as in Situation
and we have
(1) fori,j <n we have (C]-C}) = (Ci-Cj) — (Ci - Cn)(Cj - Cn)/(Cy - Cp),
(2) fori<mnif C;NC, #0, then there are maps k; < K; — Ky
Here r; = H°(C;, Oc,) and rj = H(C}, Ocr).
Proof. By Resolution of Surfaces, Lemma we can contract C,, by a morphism
f X — X’ such that X’ is regular and is projective over R. Thus we see that X’ is
as in Situation[9.3] Let € X’ be the image of C,,. Since f defines an isomorphism
X\ C, — X'\ {z} it is clear that m} = m,; for i < n.

Part (2) of the lemma is immediately clear from the existence of the morphisms
C; = Cland C,, -z — CJ.

By Divisors, Lemma the pullback f~1C! is defined. By Divisors, Lemma
we see that f~1C! = C; + ¢;C,, for some e; > 0. Since Ox(C; + ¢;,Cp,) =
Ox(f~1Cl) = f*Ox/(C!) (Divisors, Lemma and since the pullback of an
invertible sheaf restricts to the trivial invertible sheaf on C,, we see that

0 =degq, (Ox(Ci+eiCp)) = (Ci +€;Cp - Cp) = (Ci - Cp) + €i(C, - Cp)

As fj = fle, :+ C; — Cj is a proper birational morphism of proper curves over
k, we see that degC;(OX/(CZ{HCJ/_) is the same as deg, (fj*OX/(CZ{)|C;) (Varieties,
Lemma [44.4). Looking at the commutative diagram

Cj*>X

J )

C';- — X’
and using Divisors, Lemma we see that
(CZI . CJ/) = degC;(OX/(CZ/)lc;) = degcj (Ox(cz + elC’n)) = (Cz + eiCn . CJ)
Plugging in the formula for e; found above we see that (1) holds. O

Remark| 12.2. In the situation of Lemma we can also say exactly how the
genus g; of C; and the genus g, of C/ are related. The formula is

(Cy - Cp)? —w,(Ci - Cy)

/
2w;wn,

w;
gi=gi—1+1+

%

where w; = [k; : k], wy, = [ky, : k], and w] = [k} : k]. To prove this we consider the
short exact sequence

0= Ox/(=Cj) = Oxs = O¢r — 0
and its pullback to X which reads
0— Ox(—C!—¢,Cp) = Ox = Oc,1e;0, — 0

with e; as in the proof of Lemma[I2.1] Since Rf. f*L = L for any invertible module
L on X' (details omitted), we conclude that
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as complexes of coherent sheaves on X;. Hence both sides have the same Euler
characteristic and this agrees with the Euler characteristic of O¢,ye,c, on Xj.
Using the exact sequence

0— Oci+€icn — Oci D Oeicn - OCiﬂeicn =0
and further filtering O, ¢, (details omitted) we find

e; +1
X(Oc) =x(0e) = (“5 1) € €~ (ci- )
Since ¢; = —(C; - C,)/(C,, - Cy) and (C,, - C,) = —w,, this leads to the formula
stated at the start of this remark. If we ever need this we will formulate this as a
lemma and provide a detailed proof.

Remark| 12.3. Let f : X — X’ be as in Lemma Let n,m;, a;;,w;, g; be
the numerical type associated to X and let n’,m}, a;;, w;, g; be the numerical type
associated to X’. It is clear from Lemma and Remark that this agrees
with the contraction of numerical types in Lemma except for the value of w}. In
the geometric situation w} is some positive integer dividing both w; and w,,. In the
numerical case we chose w, to be the largest possible integer dividing w; such that
g, (as given by the formula) is an integer. This works well in the numerical setting
in that it helps compare the Picard groups of the numerical types, see Lemma [{.4]
(although only injectivity is every used in the following and this injectivity works
as well for smaller w}).

Lemma 12.4. Let C be a smooth projective curve over K with H°(C,0¢) = K
and genus 0. If there is more than one minimal model for C, then the special fibre
of every minimal model is isomorphic to P}.

This lemma can be improved to say that the birational transformation between
two nonisomorphic minimal models can be factored as a sequence of elementary
transformations as in Example[10.3] If we ever need this, we will precisely formulate
and prove this here.

Proof. Let X be some minimal model of C. The numerical type associated to X
has genus 0 and is minimal (Definition and Lemma . Hence by Lemma
m we see that Xy is reduced, irreducible, has H°(Xj,Ox,) = k, and has genus
0. Let Y be a second minimal model for C which is not isomorphic to X. By
Resolution of Surfaces, Lemma there exists a diagram of S-morphisms

X=Xo+Xj«..«X,=Y,—..oYV1>Yy=Y

where each morphism is a blowup in a closed point. We will prove the lemma by
induction on m. The base case is m = 0; it is true in this case because we assumed
that Y is minimal hence this would mean n = 0, but X is not isomorphic to Y, so
this does not happen, i.e., there is nothing to check.

Before we continue, note that n +1 = m + 1 is equal to the number of irreducible
components of the special fibre of X,, =Y, because both X} and Y}, are irreducible.
Another observation we will use below is that if X’ — X" is a morphism of regular
proper models for C, then X’ — X’ is an isomorphism over an open set of X"
whose complement is a finite set of closed points of the special fibre of X", see
Varieties, Lemma In fact, any such X’ — X" is a sequence of blowing ups in
closed points (Resolution of Surfaces, Lemma and the number of blowups is
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the difference in the number of irreducible components of the special fibres of X’
and X",

Let E; C Y;, m > i > 1 be the curve which is contracted by the morphism Y; —
Y;_1. Let i be the biggest index such that F; has multiplicity > 1 in the special
fibre of Y;. Then the further blowups Y, — ... = Y;41 — Y; are isomorphisms
over I; since otherwise F/; for some j > i would have multiplicity > 1. Let E C Y},
be the inverse image of F;. By what we just said E C Y,, is an exceptional curve
of the first kind. Let Y;, — Y” be the contraction of F (which exists by Resolution
of Surfaces, Lemma . The morphism Y,, — X has to contract E, because X}
is reduced. Hence there are morphisms Y’ — Y and Y’ — X (by Resolution of
Surfaces, Lemma which are compositions of at most n—1 = m—1 contractions
of exceptional curves (see discussion above). We win by induction on m. Upshot:
we may assume that the special fibres of all of the curves X; and Y; are reduced.

Since the fibres of X; and Y; are reduced, it has to be the case that the blowups
X; — X;—1 and Y; — Y;_1 happen in closed points which are regular points of
the special fibres. Namely, if X" is a regular model for C and if z € X" is a
closed point of the special fibre, and 7 € m2, then the exceptional fibre E of the
blowup X’ — X’ at x has multiplicity at least 2 in the special fibre of X’ (local
computation omitted). Hence Oxy , = Oxn /7 is regular (Algebra, Lemma
as claimed. In particular x is a Cartier divisor on the unique irreducible component
Z'" of X}/ it lies on (Varieties, Lemma [43.8). It follows that the strict transform
Z C X' of Z' maps isomorphically to Z’ (use Divisors, Lemmas and . In
other words, if an irreducible component Z of X; is not contracted under the map
X; — X; (i > j) then it maps isomorphically to its image.

Now we are ready to prove the lemma. Let E C Y, be the exceptional curve of the
first kind which is contracted by the morphism Y,, — Y,,_1. If F is contracted by
the morphism Y,,, = X,, — X, then there is a factorization Y,,,—1 — X (Resolution
of Surfaces, Lemma and moreover Y,, 1 — X is a sequence of blowups in
closed points (Resolution of Surfaces, Lemma . In this case we lower m and
we win by induction. Finally, assume that E is not contracted by the morphism
Y., — X. Then EF — X} is surjective as X} is irreducible and by the above
this means it is an isomorphism. Hence X} is isomorphic to a projective line as
desired. (]

13. Picard groups of models

Assume R, K, k,7,C,X,n,C1,...,Cp,m1,...,m, are as in Situation[9.3] In Lemma
[0.5 we found an exact sequence

0 — Z — Z®" — Pic(X) — Pic(C) — 0
We want to use this sequence to study the ¢-torsion in the Picard groups for suitable
primes £.
Lemmal 13.1. In Situation let d = ged(ma,...,my). If L is an invertible
Ox-module which

(1) restricts to the trivial invertible module on C, and
(2) has degree 0 on each C;,

then L% >~ Ox.
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Proof. By Lemma [9.5| we have £ = Ox (> a;C;) for some a; € Z. The degree of
Llc; is Y25 a;(Ci - Cy). In particular (- a;C; - > a;C;) = 0. Hence we see from
Lemmathat (a1,...,an) = q(mq,...,my) for some ¢ € Q. Thus £ = Ox(ID)
for some | € Z where D = 3" (m;/d)C; is as in Lemma and we conclude. O

Lemma 13.2. In Situation let T' be the numerical type associated to X. There
exists a canonical map

Pic(C) — Pic(T)

whose kernel is exactly those invertible modules on C which are the restriction of
invertible modules £ on X with degg, (L|c,) =0 fori=1,...,n.

Proof. Recall that w; = [k; : k] where x; = H%(C;, Oc,)) and recall that the
degree of any invertible module on C; is divisible by w; (Varieties, Lemma [44.10]).
Thus we can consider the map

deg(£|c,) deg(£

d
C8 L Pic(X) = Z8", L (
w wq W,

Cn))

The image of Ox(C;) under this map is
((CJ . Ol)/w1, ey (OJ . C’n)/wn) = (alj/wl, NN ,anj/wn)

which is exactly the image of the jth basis vector under the map (a;;/w;) : Z%" —
Z%" defining the Picard group of T, see Definition Thus the canonical map of
the lemma comes from the commutative diagram

Z%" — Pic(X) —— Pic(C) ——=0

N

zon 2500 gan Pic(T) —=0

with exact rows (top row by Lemma. The description of the kernel is clear. O

Lemma 13.3. In Situation letd = ged(my,...,my,) and let T be the numerical
type associated to X. Let h > 1 be an integer prime to d. There exists an exvact
sequence

0 — Pic(X)[h] = Pic(C)[h] — Pic(T)[A]

Proof. Taking h-torsion in the exact sequence of Lemma [9.5] we obtain the ex-
actness of 0 — Pic(X)[h] — Pic(C)[h] because h is prime to d. Using the map
of Lemma we get a map Pic(C)[h] — Pic(T)[h] which annihilates elements
of Pic(X)[h]. Conversely, if & € Pic(C)[h] maps to zero in Pic(T)[h], then we can
find an invertible Ox-module £ with deg(L|c,) = 0 for all i whose restriction to
C is €. Then L®" is d-torsion by Lemma Let d’ be an integer such that
dd’ = 1 mod h. Such an integer exists because h and d are coprime. Then L& g
an h-torsion invertible sheaf on X whose restriction to C' is €. (]

Lemma 13.4. In Situatz’on let h be an integer prime to the characteristic of
k. Then the map

Pic(X)[h] — Pic((Xk)rea) [h]

s injective.
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Proof. Observe that X Xgyec(r) Spec(R/n™) is a finite order thickening of (Xy)rca
(this follows for example from Cohomology of Schemes, Lemma [10.2). Thus the
canonical map Pic(X Xgpec(r) Spec(R/m™)) — Pic((Xk)rea) identifies h torsion by
More on Morphisms, Lemma[4.2|and our assumption on h. Thus if £ is an h-torsion
invertible sheaf on X which restricts to the trivial sheaf on (X )eq then £ restricts
to the trivial sheaf on X Xgpec(r) Spec(R/n™) for all n. We find

HO(X7 [’)A = lim HO(X X Spec(R) SpeC(R/?Tn), [’|X><Spec(R)Spec(R/7r"))

= lim H° (X XSpec(R) SpeC(R/W”), OXXSPCC<R)SpeC(R/7r"))

=R"
using the theorem on formal functions (Cohomology of Schemes, Theorem
for the first and last equality and for example More on Algebra, Lemma for
the middle isomorphism. Since H°(X, L) is a finite R-module and R is a discrete
valuation ring, this means that H°(X, £) is free of rank 1 as an R-module. Let s €
H°(X, L) be a basis element. Then tracing back through the isomorphisms above
we see that 5|Xxspec<R>Spcc(R/7r") is a trivialization for all n. Since the vanishing
locus of s is closed in X and X — Spec(R) is proper we conclude that the vanishing
locus of s is empty as desired. ([

14. Semistable reduction
In this section we carefully define what we mean by semistable reduction.

Example| 14.1. Let R be a discrete valuation ring with uniformizer 7. Given
n > 0, consider the ring map

R — A= Rz,y]/(xy — 7")

Set X = Spec(A) and S = Spec(R). If n =0, then X — S is smooth. For all n the
morphism X — S is at-worst-nodal of relative dimension 1 as defined in Algebraic
Curves, Section If n =1, then X is regular, but if n > 1, then X is not regular
as (z,y) no longer generate the maximal ideal m = (w,z,y). To ameliorate the
situation in case n > 1 we consider the blowup b : X’ — X of X in m. See Divisors,
Section By construction X’ is covered by three affine pieces corresponding to
the blowup algebras A[Z], A[T], and A[T].

The algebra A[2] has generators #’ = z/7 and ' = y/7 and z'y’ = 7”2, Thus
this part of X’ is the spectrum of R[2’,y/](2'y’ — 7" ~2).
The algebra A[T}] has generators x, u = 7/x subject to the relation zu — 7. Note
that this ring contains y/z = 7" /x? = u?7"~2. Thus this part of X’ is regular.
By symmetry the case of the algebra A[®] is the same as the case of A[%].

Yy x
Thus we see that X’ — S is at-worst-nodal of relative dimension 1 and that X' is
regular, except for one point which has an affine open neighbourhood exactly as
above but with n replaced by n — 2. Using induction on n we conclude that there
is a sequence of blowing ups in closed points

XLTL/QJ—>...—>X1—>X0:X

such that X, o) — S is at-worst-nodal of relative dimension 1 and X\, /3 is
regular.
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0CDD |Lemma 14.2. Let R be a discrete valuation ring. Let X be a scheme which is
at-worst-nodal of relative dimension 1 over R. Let x € X be a point of the special
fibre of X over R. Then there exists a commutative diagram

X U Spec(A)

L

Spec(R) =<—— Spec(R/)

where R C R’ is an étale extension of discrete valuation rings, the morphism U —
X s étale, the morphism U — Spec(A) is étale, there is a point ' € U mapping
to x, and

A = R'[u,v]/(wv) or A= R'[u,v]/(uv—7")

where n > 0 and © € R’ is a uniformizer.

Proof. We have already proved this lemma in much greater generality, see Alge-
braic Curves, Lemma [20.12] All we have to do here is to translate the statement
given there into the statement given above.

First, if the morphism X — Spec(R) is smooth at x, then we can find an étale
morphism U — A} = Spec(R[u]) for some affine open neighbourhood U C X of
2. This is Morphisms, Lemma After replacing the coordinate u by v + 1 if
necessary, we may assume that x maps to a point in the standard open D(u) C AL.
Then D(u) = Spec(A) with A = R[u,v]/(uv — 1) and we see that the result is true
in this case.

Next, assume that x is a singular point of the fibre. Then we may apply Algebraic
Curves, Lemma [20.12] to get a diagram

1( U\ /W Spec(Z[u, U,J/a]/(uv —a))
Vv

Spec(R) Spec(Z[a])

with all the properties mentioned in the statement of the cited lemma. Let 2’ € U
be the point mapping to x promised by the lemma. First we shrink V' to an affine
neighbourhood of the image of 2/. Say V = Spec(R’). Then R — R’ is étale.
Since R is a discrete valuation ring, we see that R’ is a finite product of quasi-
local Dedekind domains (use More on Algebra, Lemma [44.4). Hence (for example
using prime avoidance) we find a standard open D(f) C V = Spec(R’) containing
the image of o’ such that R’ is a discrete valuation ring. Replacing R’ by R
we reach the situation where V' = Spec(R’) with R C R’ an étale extension of
discrete valuation rings (extensions of discrete valuation rings are defined in More

on Algebra, Definition [111.1)).

The morphism V — Spec(Z[a]) is determined by the image h of a in R’. Then
W = Spec(R'[u, v]/(uv — h)). Thus the lemma holds with A = R'[u, v]/(uv —h). If
h = 0 then we clearly obtain the first case mentioned in the lemma. If A # 0 then
we may write h = enr™ for some n > 0 where € is a unit of R’. Changing coordinates
Upew = €U and Uy, = v We obtain the second isomorphism type of A listed in the
lemma. O
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Lemma 14.3. Let R be a discrete valuation ring. Let X be a quasi-compact
scheme which is at-worst-nodal of relative dimension 1 with smooth generic fibre
over R. Then there exists m > 0 and a sequence

Xm—...o0 X1 > X=X
such that
(1) X401 — X, is the blowing up of a closed point x; where X; is singular,

(2) X; — Spec(R) is at-worst-nodal of relative dimension 1,
(3) X is regular.

A slightly stronger statement (also true) would be that no matter how you blow up
in singular points you eventually end up with a resolution and all the intermediate
blowups are at-worst-nodal of relative dimension 1 over R.

Proof. Since X is quasi-compact we see that the special fibre X}, is quasi-compact.
Since the singularities of X}, are at-worst-nodal, we see that X has a finite number
of nodes and is otherwise smooth over k. As X — Spec(R) is flat with smooth
generic fibre it follows that X is smooth over R except at the finite number of
nodes of X}, (use Morphisms, Lemma . It follows that X is regular at every
point except for possibly the nodes of its special fibre (see Algebra, Lemma.
Let x € X be such a node. Choose a diagram

X U Spec(A)

T

Spec(R) <—— Spec(R/)

as in Lemma Observe that the case A = R'[u,v]/(uv) cannot occur, as this
would mean that the generic fibre of X/R is singular (tiny detail omitted). Thus
A = R'[u,v]/(uv — n™) for some n > 0. Since z is a singular point, we have n > 2,
see discussion in Example

After shrinking U we may assume there is a unique point u € U mapping to z. Let
w € Spec(A) be the image of u. We may also assume that u is the unique point of
U mapping to w. Since the two horizontal arrows are étale we see that u, viewed
as a closed subscheme of U, is the scheme theoretic inverse image of x € X and the
scheme theoretic inverse image of w € Spec(A). Since blowing up commutes with
flat base change (Divisors, Lemma we find a commutative diagram

X' U’ w’

.

X <—— U —— Spec(A)

with cartesian squares where the vertical arrows are the blowing up of x,u,w in
X,U,Spec(A). The scheme W' was described in Example We saw there that
W' at-worst-nodal of relative dimension 1 over R’. Thus W' is at-worst-nodal of
relative dimension 1 over R (Algebraic Curves, Lemma[20.7). Hence U’ is at-worst-
nodal of relative dimension 1 over R (see Algebraic Curves, Lemma . Since
X’ — X is an isomorphism over the complement of z, we conclude the same thing
is true of X’/R (by Algebraic Curves, Lemma again).
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Finally, we need to argue that after doing a finite number of these blowups we arrive
at a regular model X,,,. This is rather clear because the “invariant” n decreases by
2 under the blowup described above, see computation in Example [[£.1] However,
as we want to avoid precisely defining this invariant and establishing its properties,
we in stead argue as follows. If n = 2, then W' is regular and hence X’ is regular at
all points lying over z and we have decreased the number of singular points of X by
1. If n > 2, then the unique singular point w’ of W’ lying over w has k(w) = s(w’).
Hence U’ has a unique singular point v’ lying over u with x(u) = s(u’). Clearly,
this implies that X’ has a unique singular point z’ lying over z, namely the image
of v/. Thus we can argue exactly as above that we get a commutative diagram

X// U// Wl/

Lo

X -—U——W

with cartesian squares where the vertical arrows are the blowing up of z’, v/, w’ in
X', U, W'. Continuing like this we get a compatible sequence of blowups which
stops after [n/2] steps. At the completion of this process the scheme X (1"/2)) will
have one fewer singular point than X. Induction on the number of singular points
completes the proof. O

Lemma 14.4. Let R be a discrete valuation ring with fraction field K and residue
field k. Assume X — Spec(R) is at-worst-nodal of relative dimension 1 over R.
Let X — X' be the contraction of an exceptional curve E C X of the first kind.
Then X' is at-worst-nodal of relative dimension 1 over R.

Proof. Namely, let ' € X’ be the image of E. Then the only issue is to see that
X" — Spec(R) is at-worst-nodal of relative dimension 1 in a neighbourhood of z’.
The closed fibre of X — Spec(R) is reduced, hence m € R vanishes to order 1 on
E. This immediately implies that 7w viewed as an element of m, C Ox . but is
not in m?,. Since O, is regular of dimension 2 (by definition of contractions in
Resolution of Surfaces, Section , this implies that O X!,z 1s regular of dimension
1 (Algebra, Lemma . On the other hand, the curve E has to meet at least
one other component, say C' of the closed fibre Xy. Say x € ENC. Then zx is
a node of the special fibre X}, and hence k(z)/k is finite separable, see Algebraic
Curves, Lemma Since z — 2’ we conclude that k(z')/k is finite separable.
By Algebra, Lemma we conclude that X; — Spec(k) is smooth in an open
neighbourhood of z’. Combined with flatness, this proves that X’ — Spec(R) is
smooth in a neighbourhood of z/ (Morphisms, Lemma . This finishes the
proof as a smooth morphism of relative dimension 1 is at-worst-nodal of relative
dimension 1 (Algebraic Curves, Lemma [20.3). O

Lemma 14.5. Let R be a discrete valuation ring with fraction field K. Let C be a
smooth projective curve over K with H°(C,O¢) = K. The following are equivalent

(1) there exists a proper model of C which is at-worst-nodal of relative dimen-
ston 1 over R,

(2) there exists a minimal model of C which is at-worst-nodal of relative di-
mension 1 over R, and

(3) any minimal model of C is at-worst-nodal of relative dimension 1 over R.
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Proof. To make sense out of this statement, recall that a minimal model is defined
as a regular proper model without exceptional curves of the first kind (Definition
, that minimal models exist (Proposition , and that minimal models are
unique if the genus of C'is > 0 (Lemma. Keeping this in mind the implications
(2) = (1) and (3) = (2) are clear.

Assume (1). Let X be a proper model of C' which is at-worst-nodal of relative
dimension 1 over R. Applying Lemma [14.3| we see that we may assume X is
regular as well. Let

X=X, > Xpm-1— ...~ X1 > Xp

be as in Lemma[8:5] By Lemmal[I4.4)and induction this implies X is at-worst-nodal
of relative dimension 1 over R.

To finish the proof we have to show that (2) implies (3). This is clear if the genus
of C is > 0, since then the minimal model is unique (see discussion above). On the
other hand, if the minimal model is not unique, then the morphism X — Spec(R)
is smooth for any minimal model as its special fibre will be isomorphic to P}, by
Lemma [[2.4] O

Definition 14.6. Let R be a discrete valuation ring with fraction field K. Let
C be a smooth projective curve over K with H°(C,O¢) = K. We say that C has
semistable reduction if the equivalent conditions of Lemma [14.5] are satisfied.

Lemma 14.7. Let R be a discrete valuation ring with fraction field K. Let C be a
smooth projective curve over K with H°(C,O¢) = K. The following are equivalent

(1) there exists a proper smooth model for C,
(2) there exists a minimal model for C which is smooth over R,
(3) any minimal model is smooth over R.

Proof. If X is a smooth proper model, then the special fibre is connected (Lemma
and smooth, hence irreducible. This immediately implies that it is minimal.
Thus (1) implies (2). To finish the proof we have to show that (2) implies (3).
This is clear if the genus of C' is > 0, since then the minimal model is unique
(Lemma . On the other hand, if the minimal model is not unique, then the
morphism X — Spec(R) is smooth for any minimal model as its special fibre will
be isomorphic to P} by Lemma [12.4] O

Definition 14.8. Let R be a discrete valuation ring with fraction field K. Let
C be a smooth projective curve over K with H°(C,O¢) = K. We say that C has
good reduction if the equivalent conditions of Lemma [14.7] are satisfied.

15. Semistable reduction in genus zero

In this section we prove the semistable reduction theorem (Theorem [18.1]) for genus
ZEro curves.

Let R be a discrete valuation ring with fraction field K. Let C' be a smooth
projective curve over K with H°(C,O¢) = K. If the genus of C is 0, then C is
isomorphic to a conic, see Algebraic Curves, Lemma Thus there exists a finite
separable extension K'/K of degree at most 2 such that C(K’) # 0, see Algebraic
Curves, Lemma Let R C K’ be the integral closure of R, see discussion in
More on Algebra, Remark We will show that C'x+ has semistable reduction
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over Rl for each maximal ideal m of R’ (of course in the current case there are at
most two such ideals). After replacing R by Rj, and C' by Ck we reduce to the
case discussed in the next paragraph.

In this paragraph R is a discrete valuation ring with fraction field K, C' is a smooth
projective curve over K with H°(C,O¢) = K, of genus 0, and C has a K-rational
point. In this case C = P}, by Algebraic Curves, Proposition Thus we can
use P}, as a model and we see that C has both good and semistable reduction.

Example 15.1. Let R = R[[r]] and consider the scheme
X =V(T}+TF — 7T§) Cc P%

The base change of X to C[[n]] is isomorphic to the scheme defined in Example
because we have the factorization T7 +T§ = (T} +iT3)(T1 —iTy) over C. Thus
X is regular and its special fibre is irreducible yet singular, hence X is the unique
minimal model of its generic fibre (use Lemma . It follows that an extension
is needed even in genus 0.

16. Semistable reduction in genus one

In this section we prove the semistable reduction theorem (Theorem for curves
of genus one. We suggest the reader first read the proof in the case of genus > 2
(Section . We are going to use as much as possible the classification of minimal
numerical types of genus 1 given in Lemma [6.2]

Let R be a discrete valuation ring with fraction field K. Let C' be a smooth
projective curve over K with H°(C,O¢) = K. Assume the genus of C'is 1. Choose
a prime ¢ > 7 different from the characteristic of k. Choose a finite separable
extension K'/K of such that C(K’) # 0 and such that Pic(Ck/)[(] = (Z/¢Z)%2.
See Algebraic Curves, Lemma Let R" C K’ be the integral closure of R, see
discussion in More on Algebra, Remark We may replace R by Ry, for some
maximal ideal m in R’ and C by Cg/. This reduces us to the case discussed in the
next paragraph.

In the rest of this section R is a discrete valuation ring with fraction field K, C
is a smooth projective curve over K with H°(C,O¢) = K, with genus 1, having
a K-rational point, and with Pic(C)[¢] = (Z/¢Z)®? for some prime ¢ > 7 different
from the characteristic of k. We will prove that C has semistable reduction.

Let X be a minimal model for C, see Proposition [8.6| Let T' = (n, my, (ai;), wi, g;)
be the numerical type associated to X (Deﬁniti. Then T is a minimal
numerical type (Lemma. As C has a rational point, there exists an ¢ such that
m; = w; = 1 by Lemma Looking at the classification of minimal numerical
types of genus 1 in Lemma we see that m = w = 1 and that cases , @, ,
©, @1, [@3), [@5), @8, (19), 1), @4), (6), [83), are disallowed (because

there is no index where both w; and m; is equal to 1). Let e be the number of pairs
(¢,7) with ¢ < j and a,;; > 0. For the remaining cases we have

(A) e=n—1for cases (1), @), ), @), (2, (4, @@, @), @2, @3), D.
9, B1). B2), (33), and (B4), and
(B) e =n for cases ({), (10), (16), and (25).



https://stacks.math.columbia.edu/tag/0CDL

0CEH

SEMISTABLE REDUCTION 56

We will argue these cases separately.

Case (A). In this case Pic(T)[¢] is trivial (the Picard group of a numerical type is
defined in Section [4). The vanishing follows as Pic(T") C Coker(A4) (Lemma
and Coker(A)[¢] = 0 by Lemma [2.6/and the fact that ¢ was chosen relatively prime
to a;; and m;. By Lemmas [I3.3and we conclude that there is an embedding

(Z/0Z)®? C Pic((Xk)req)[€].

By Algebraic Curves, Lemma [18.6] we obtain
2 < dimy, Hl((Xk)red7 O(Xk)rgd) + ggeom((Xk)Ted/k)

By Algebraic Curves, Lemmas and we see that ggeom ((Xi)rea/k) <
> w;g;. The assumptions of Lemma hold by Lemma and we conclude
that we have dimy, H'((Xg)red: O(xy),..) < g = 1. Combining these we see

2 < 1+Zwigi

Looking at the list we conclude that the numerical type is given by n = 1, w; =
my1 = g1 = 1. Because we have equality everywhere we see that ggeom (Ci/k) = 1.
On the other hand, we know that C; has a k-rational point x such that C; —
Spec(k) is smooth at x. It follows that C; is geometrically integral (Varieties,
Lemma . Thus ggeom(C1/k) = 1 is both equal to the genus of the normal-
ization of Cl,% and the genus of Cl,%' It follows that the normalization morphism
Oi% — Cl,E is an isomorphism (Algebraic Curves, Lemma. We conclude that

C1 is smooth over k as desired.
Case (B). Here we only conclude that there is an embedding
Z/VZ C Pic(Xg)[4]

From the classification of types we see that m; = w; = 1 and g; = 0 for each ¢. Thus
each Cj; is a genus zero curve over k. Moreover, for each i there is a j such that
C; N Cj is a k-rational point. Then it follows that C; = P} by Algebraic Curves,
Proposition In particular, since X} is the scheme theoretic union of the C;
we see that X7 is the scheme theoretic union of the Ci,E' Hence X7 is a reduced

connected proper scheme of dimension 1 over k with dimgz H 1(XE7 @ XE) = 1. Also,
by Varieties, Lemma [30.3| and the above we still have

dimp, (Pic(Xg) > 1

By Algebraic Curves, Proposition we see that X7 has at only multicross sin-
gularities. But since X, is Gorenstein (Lemma, so is X (Duality for Schemes,
Lemma. We conclude X7 is at-worst-nodal by Algebraic Curves, Lemma
This finishes the proof in case (B).

Example/16.1. Let k be an algebraically closed field. Let Z be a smooth projective
curve over k of positive genus g. Let n > 1 be an integer prime to the characteristic
of k. Let £ be an invertible Oz-module of order n, see Algebraic Curves, Lemma
17.1} Pick an isomorphism ¢ : L®" — Oz. Set R = k[[r]] with fraction field
K = k((m)). Denote Zp the base change of Z to R. Let L be the pullback of £
to Zg. Consider the finite flat morphism

p:X—)ZR
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such that
p«Ox = Sym’(‘ng (Lr)/(p—m) =0z, ®LrO L ... LG !

More precisely, if U = Spec(A4) C Z is an affine open such that L]y is trivialized
by a section s with ¢(s®™) = f (with f a unit), then

p~'(Ur) = Spec (A ®r R[[n]])[z]/(z" — 7))

The reader verifies that the morphism Xy — Zx of generic fibres is finite étale.
Looking at the description of the structure sheaf we see that H°(X,Ox) = R and
H%Xk,0Ox,) = K. By Riemann-Hurwitz (Algebraic Curves, Lemma [12.4)) the
genus of Xk is n(g—1)+1. In particular X has genus 1, if Z has genus 1. On the
other hand, the scheme X is regular by the local equation above and the special
fibre X}, is n times the reduced special fibre as an effective Cartier divisor. It follows
that any finite extension K'/K over which Xk attains semistable reduction has to
ramify with ramification index at least n (some details omitted). Thus there does
not exist a universal bound for the degree of an extension over which a genus 1
curve attains semistable reduction.

17. Semistable reduction in genus at least two

In this section we prove the semistable reduction theorem (Theorem [18.1)) for curves
of genus > 2. Fix g > 2.

Let R be a discrete valuation ring with fraction field K. Let C' be a smooth
projective curve over K with H(C,O¢) = K. Assume the genus of C is g. Choose
a prime ¢ > 768¢g different from the characteristic of k. Choose a finite separable
extension K’/K of such that C(K’) # () and such that Pic(Ck/)[{] = (Z/(Z)®?9.
See Algebraic Curves, Lemma Let R’ C K’ be the integral closure of R, see
discussion in More on Algebra, Remark We may replace R by R;, for some
maximal ideal m in R’ and C' by Ck-. This reduces us to the case discussed in the
next paragraph.

In the rest of this section R is a discrete valuation ring with fraction field K, C' is
a smooth projective curve over K with H°(C,O¢) = K, with genus g, having a K-
rational point, and with Pic(C)[f] & (Z/¢Z)®?9 for some prime ¢ > 768¢ different
from the characteristic of k. We will prove that C has semistable reduction.

In the rest of this section we will use without further mention that the conclusions
of Lemma [11.7] are true.

Let X be a minimal model for C, see Proposition [8.6| Let T' = (n, my, (ai;), wi, g;)
be the numerical type associated to X (Definition [11.4). Then T is a minimal
numerical type of genus g (Lemma [11.5). By Proposition we have

dimg, Pic(T)[¢] < giop
By Lemmas and we conclude that there is an embedding
(Z/02)%299wer C Pic((Xp)rea)[(].
By Algebraic Curves, Lemma [18.6] we obtain
29 — Gtop < dimy Hl((Xk)redv O(Xk)red) + ggeom(Xk/k)
By Lemmas [I1.8] and [I1.9) we have
g > dimg H' ((Xi)red; O(x1),0a) = Gtop + Ggeom (Xi/k)
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Elementary number theory tells us that the only way these 3 inequalities can hold
is if they are all equalities. Looking at Lemma [T1.8 we conclude that m; = 1 for all
i. Looking at Lemma [T1.10] we conclude that every irreducible component of X, is
smooth over k.

In particular, since X}, is the scheme theoretic union of its irreducible components
C; we see that X7 is the scheme theoretic union of the CZ. 7+ Hence X7 is a reduced

connected proper scheme of dimension 1 over k with dimy H I(XE, @) XE) =g. Also,
by Varieties, Lemma and the above we still have

dimp, (Pic(X3)[0]) > 29 — giop = dimg H' (Xz, Ox.) + ggeom (X7)

By Algebraic Curves, Proposition we see that X7 has at only multicross sin-
gularities. But since X, is Gorenstein (Lemma, so is X (Duality for Schemes,
Lemma. We conclude X7 is at-worst-nodal by Algebraic Curves, Lemma
This finishes the proof.

18. Semistable reduction for curves

In this section we finish the proof of the theorem. For g > 2 let 768g < ¢’ < £ be
the first two primes > 768¢ and set

(18.0.1) B, = (29 — 2)(£*)!

The precise form of B, is unimportant; the point we are trying to make is that it
depends only on g.

Theorem 18.1. Let R be a discrete valuation ring with fraction field K. Let
C be a smooth projective curve over K with H°(C,Oc) = K. Then there exists
an extension of discrete valuation rings R C R’ which induces a finite separable
extension of fraction fields K'/K such that Cg: has semistable reduction. More
precisely, we have the following

(1) If the genus of C is zero, then there exists a degree 2 separable extension
K'/K such that Cgr = P}<, and hence Cg is isomorphic to the generic
fibre of the smooth projective scheme P}, over the integral closure R' of R
in K'.

(2) If the genus of C is one, then there exists a finite separable extension K'/K
such that Cy: has semistable reduction over R, for every maximal ideal
m of the integral closure R’ of R in K'. Moreover, the special fibre of the
(unique) minimal model of Cx+ over Ry, is either a smooth genus one curve
or a cycle of rational curves.

(3) If the genus g of C is greater than one, then there exists a finite separable
extension K' /K of degree at most By such that Cks has semistable
reduction over Ry, for every mazimal ideal m of the integral closure R’ of
R in K'.

Proof. For the case of genus zero, see Section For the case of genus one, see
Section For the case of genus greater than one, see Section To see that
we have a bound on the degree [K’ : K] you can use the bound on the degree
of the extension needed to make all £ or ¢ torsion visible proved in Algebraic
Curves, Lemma [17.2] (The reason for using ¢ and ¢’ is that we need to avoid the
characteristic of the residue field k.) ]

[IDM69, Corollary
2.7]
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0CEK |Remark 18.2 (Improving the bound). Results in the literature suggest that one
can improve the bound given in the statement of Theorem [I8.1] For example, in
[DMG9] it is shown that semistable reduction of C' and its Jacobian are the same
thing if the residue field is perfect and presumably this is true for general residue
fields as well. For an abelian variety we have semistable reduction if the action of
Galois on the ¢-torsion is trivial for any ¢ > 3 not equal to the residue characteristic.
Thus we can presumably choose ¢ = 5 in the formula for B, (but the proof
would take a lot more work; if we ever need this we will make a precise statement

and provide a proof here).
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