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1. Introduction

0C2Q In this chapter we prove the semistable reduction theorem for curves. We will use
the method of Artin and Winters from their paper [AW71].
It turns out that one can prove the semistable reduction theorem for curves without
any results on desingularization. Namely, there is a way to establish the existence
and projectivity of moduli of semistable curves using Geometric Invariant Theory
(GIT) as developed by Mumford, see [MFK94]. This method was championed by
Gieseker who proved the full result in his lecture notes [Gie82]1. This is quite an
amazing feat: it seems somewhat counter intuitive that one can prove such a result
without ever truly studying families of curves over a positive dimensional base.
Historically the first proof of the semistable reduction theorem for curves can be
found in the paper [DM69] by Deligne and Mumford. It proves the theorem by

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
1Gieseker’s lecture notes are written over an algebraically closed field, but the same method

works over Z.
1
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reducing the problem to the case of Abelian varieties which was already known
at the time thanks to Grothendieck and others, see [GRR72] and [DK73]). The
semistable reduction theorem for abelian varieties uses the theory of Néron models
which in turn rests on a treatment of birational group laws over a base.

The method in the paper by Artin and Winters relies on desingularization of singu-
larities of surfaces to obtain regular models. Given the existence of regular models,
the proof consists in analyzing the possibilities for the special fibre and concluding
using an inequality for torsion in the Picard group of a 1-dimensional scheme over
a field. A similar argument can be found in a paper [Sai87] of Saito who uses étale
cohomology directly and who obtains a stronger result in that he can characterize
semistable reduction in terms of the action of the inertia on ℓ-adic étale cohomology.

A different approach one can use to prove the theorem is to use rigid analytic
geometry techniques. Here we refer the reader to [vdP84] and [AW12].

The paper [Tem10] by Temkin uses valuation theoretic techniques (and proves a lot
more besides); also Appendix A of this paper gives a nice overview of the different
proofs and the relationship with desingularizations of 2 dimensional schemes.

Another overview paper that the reader may wish to consult is [Abb00] written by
Ahmed Abbes.

2. Linear algebra

0C5T A couple of lemmas we will use later on.

Lemma 2.1.0C5U [Tau49, Theorem I]Let A = (aij) be a complex n× n matrix.
(1) If |aii| >

∑
j ̸=i |aij | for each i, then det(A) is nonzero.

(2) If there exists a real vector m = (m1, . . . ,mn) with mi > 0 such that
|aiimi| >

∑
j ̸=i |aijmj | for each i, then det(A) is nonzero.

Proof. If A is as in (1) and det(A) = 0, then there is a nonzero vector z with
Az = 0. Choose r with |zr| maximal. Then

|arrzr| = |
∑

k ̸=r
arkzk| ≤

∑
k ̸=r
|ark||zk| ≤ |zr|

∑
k ̸=r
|ark| < |arr||zr|

which is a contradiction. To prove (2) apply (1) to the matrix (aijmj) whose
determinant is m1 . . .mn det(A). □

Lemma 2.2.0C5V Let A = (aij) be a real n × n matrix with aij ≥ 0 for i ̸= j. Let
m = (m1, . . . ,mn) be a real vector with mi > 0. For I ⊂ {1, . . . , n} let xI ∈ Rn be
the vector whose ith coordinate is mi if i ∈ I and 0 otherwise. If

(2.2.1)0C5W − aiimi ≥
∑

j ̸=i
aijmj

for each i, then Ker(A) is the vector space spanned by the vectors xI such that
(1) aij = 0 for i ∈ I, j ̸∈ I, and
(2) equality holds in (2.2.1) for i ∈ I.

Proof. After replacing aij by aijmj we may assume mi = 1 for all i. If I ⊂
{1, . . . , n} such that (1) and (2) are true, then a simple computation shows that xI

is in the kernel of A. Conversely, let x = (x1, . . . , xn) ∈ Rn be a nonzero vector in
the kernel of A. We will show by induction on the number of nonzero coordinates

https://stacks.math.columbia.edu/tag/0C5U
https://stacks.math.columbia.edu/tag/0C5V
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of x that x is in the span of the vectors xI satisfying (1) and (2). Let I ⊂ {1, . . . , n}
be the set of indices r with |xr| maximal. For r ∈ I we have

|arrxr| = |
∑

k ̸=r
arkxk| ≤

∑
k ̸=r

ark|xk| ≤ |xr|
∑

k ̸=r
ark ≤ |arr||xr|

Thus equality holds everywhere. In particular, we see that ark = 0 if r ∈ I, k ̸∈ I
and equality holds in (2.2.1) for r ∈ I. Then we see that we can substract a suitable
multiple of xI from x to decrease the number of nonzero coordinates. □

Lemma 2.3.0C5X Let A = (aij) be a symmetric real n × n matrix with aij ≥ 0 for
i ̸= j. Let m = (m1, . . . ,mn) be a real vector with mi > 0. Assume

(1) Am = 0,
(2) there is no proper nonempty subset I ⊂ {1, . . . , n} such that aij = 0 for

i ∈ I and j ̸∈ I.
Then xtAx ≤ 0 with equality if and only if x = qm for some q ∈ R.

First proof. After replacing aij by aijmimj we may assume mi = 1 for all i.
Condition (1) means −aii =

∑
j ̸=i aij for all i. Recall that xtAx =

∑
i,j xiaijxj .

Then ∑
i ̸=j
−aij(xj − xi)2 =

∑
i̸=j
−aijx

2
j + 2aijxixi − aijx

2
i

=
∑

j
ajjx

2
j +

∑
i ̸=j

2aijxixi +
∑

j
ajjx

2
i

= 2xtAx

This is clearly ≤ 0. If equality holds, then let I be the set of indices i with xi ̸= x1.
Then aij = 0 for i ∈ I and j ̸∈ I. Thus I = {1, . . . , n} by condition (2) and x is a
multiple of m = (1, . . . , 1). □

Second proof. The matrix A has real eigenvalues by the spectral theorem. We
claim all the eigenvalues are ≤ 0. Namely, since property (1) means −aiimi =∑

j ̸=i aijmj for all i, we find that the matrix A′ = A − λI for λ > 0 satisfies
|a′

iimi| >
∑
a′

ijmj =
∑
|a′

ijmj | for all i. Hence A′ is invertible by Lemma 2.1.
This implies that the symmetric bilinear form xtAy is semi-negative definite, i.e.,
xtAx ≤ 0 for all x. It follows that the kernel of A is equal to the set of vectors x with
xtAx = 0. The description of the kernel in Lemma 2.2 gives the final statement of
the lemma. □

Lemma 2.4.0C6V Let L be a finite free Z-module endowed with an integral symmetric
bilinear positive definite form ⟨ , ⟩ : L × L → Z. Let A ⊂ L be a submodule with
L/A torsion free. Set B = {b ∈ L | ⟨a, b⟩ = 0, ∀a ∈ A}. Then we have injective
maps

A#/A← L/(A⊕B)→ B#/B

whose cokernels are quotients of L#/L. Here A# = {a′ ∈ A⊗Q | ⟨a, a′⟩ ∈ Z, ∀a ∈
A} and similarly for B and L.

Proof. Observe that L⊗Q = A⊗Q⊕B ⊗Q because the form is nondegenerate
on A (by positivity). We denote πB : L⊗Q→ B⊗Q the projection. Observe that
πB(x) ∈ B# for x ∈ L because the form is integral. This gives an exact sequence

0→ A→ L
πB−−→ B# → Q→ 0

https://stacks.math.columbia.edu/tag/0C5X
https://stacks.math.columbia.edu/tag/0C6V
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where Q is the cokernel of L→ B#. Observe that Q is a quotient of L#/L as the
map L# → B# is surjective since it is the Z-linear dual to B → L which is split as
a map of Z-modules. Dividing by A⊕B we get a short exact sequence

0→ L/(A⊕B)→ B#/B → Q→ 0

This proves the lemma. □

Lemma 2.5.0C6W Let L0, L1 be a finite free Z-modules endowed with integral symmetric
bilinear positive definite forms ⟨ , ⟩ : Li × Li → Z. Let d : L0 → L1 and d∗ : L1 →
L0 be adjoint. If ⟨ , ⟩ on L0 is unimodular, then there is an isomorphism

Φ : Coker(d∗d)torsion −→ Im(d)#/ Im(d)

with notation as in Lemma 2.4.

Proof. Let x ∈ L0 be an element representing a torsion class in Coker(d∗d). Then
for some a > 0 we can write ax = d∗d(y). For any z ∈ Im(d), say z = d(y′), we
have

⟨(1/a)d(y), z⟩ = ⟨(1/a)d(y),d(y′)⟩ = ⟨x, y′⟩ ∈ Z
Hence (1/a)d(y) ∈ Im(d)#. We define Φ(x) = (1/a)d(y) mod Im(d). We omit the
proof that Φ is well defined, additive, and injective.

To prove Φ is surjective, let z ∈ Im(d)#. Then z defines a linear map L0 → Z by
the rule x 7→ ⟨z,d(x)⟩. Since the pairing on L0 is unimodular by assumption we
can find an x′ ∈ L0 with ⟨x′, x⟩ = ⟨z,d(x)⟩ for all x ∈ L0. In particular, we see that
x′ pairs to zero with Ker(d). Since Im(d∗d) ⊗Q is the orthogonal complement of
Ker(d)⊗Q this means that x′ defines a torsion class in Coker(d∗d). We claim that
Φ(x′) = z. Namely, write ax′ = d∗d(y) for some y ∈ L0 and a > 0. For any x ∈ L0
we get

⟨z,d(x)⟩ = ⟨x′, x⟩ = ⟨(1/a)d∗d(y), x⟩ = ⟨(1/a)d(y),d(x)⟩
Hence z = Φ(x′) and the proof is complete. □

Lemma 2.6.0C6X Let A = (aij) be a symmetric n× n integer matrix with aij ≥ 0 for
i ̸= j. Let m = (m1, . . . ,mn) be an integer vector with mi > 0. Assume

(1) Am = 0,
(2) there is no proper nonempty subset I ⊂ {1, . . . , n} such that aij = 0 for

i ∈ I and j ̸∈ I.
Let e be the number of pairs (i, j) with i < j and aij > 0. Then for ℓ a prime
number coprime with all aij and mi we have

dimFℓ
(Coker(A)[ℓ]) ≤ 1− n+ e

Proof. By Lemma 2.3 the rank of A is n− 1. The composition

Z⊕n diag(m1,...,mn)−−−−−−−−−−→ Z⊕n (aij)−−−→ Z⊕n diag(m1,...,mn)−−−−−−−−−−→ Z⊕n

has matrix aijmimj . Since the cokernel of the first and last maps are torsion of
order prime to ℓ by our restriction on ℓ we see that it suffices to prove the lemma
for the matrix with entries aijmimj . Thus we may assume m = (1, . . . , 1).

Assume m = (1, . . . , 1). Set V = {1, . . . , n} and E = {(i, j) | i < j and aij > 0}.
For e = (i, j) ∈ E set ae = aij . Define maps s, t : E → V by setting s(i, j) = i

https://stacks.math.columbia.edu/tag/0C6W
https://stacks.math.columbia.edu/tag/0C6X
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and t(i, j) = j. Set Z(V ) =
⊕

i∈V Zi and Z(E) =
⊕

e∈E Ze. We define symmetric
positive definite integer valued pairings on Z(V ) and Z(E) by setting

⟨i, i⟩ = 1 for i ∈ V, ⟨e, e⟩ = ae for e ∈ E

and all other pairings zero. Consider the maps

d : Z(V )→ Z(E), i 7−→
∑

e∈E, s(e)=i
e−

∑
e∈E, t(e)=i

e

and

d∗(e) = ae(s(e)− t(e))

A computation shows that

⟨d(x), y⟩ = ⟨x, d∗(y)⟩

in other words, d and d∗ are adjoint. Next we compute

d∗d(i) = d∗(
∑

e∈E, s(e)=i
e−

∑
e∈E, t(e)=i

e)

=
∑

e∈E, s(e)=i
ae(s(e)− t(e))−

∑
e∈E, t(e)=i

ae(s(e)− t(e))

The coefficient of i in d∗d(i) is∑
e∈E, s(e)=i

ae +
∑

e∈E, t(e)=i
ae = −aii

because
∑

j aij = 0 and the coefficient of j ̸= i in d∗d(i) is −aij . Hence Coker(A) =
Coker(d∗d).

Consider the inclusion

Im(d)⊕Ker(d∗) ⊂ Z(E)

The left hand side is an orthogonal direct sum. Clearly Z(E)/Ker(d∗) is torsion
free. We claim Z(E)/ Im(d) is torsion free as well. Namely, say x =

∑
xee ∈ Z(E)

and a > 1 are such that ax = dy for some y =
∑
yii ∈ Z(V ). Then axe =

ys(e)−yt(e). By property (2) we conclude that all yi have the same congruence class
modulo a. Hence we can write y = ay′ + (y1, y1, . . . , y1). Since d(y1, y1, . . . , y1) = 0
we conclude that x = d(y′) which is what we had to show.

Hence we may apply Lemma 2.4 to get injective maps

Im(d)#/ Im(d)← Z(E)/(Im(d)⊕Ker(d∗))→ Ker(d∗)#/Ker(d∗)

whose cokernels are annihilated by the product of the ae (which is prime to ℓ).
Since Ker(d∗) is a lattice of rank 1− n+ e we see that the proof is complete if we
prove that there exists an isomorphism

Φ : Mtorsion −→ Im(d)#/ Im(d)

This is proved in Lemma 2.5. □
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3. Numerical types

0C6Y Part of the arguments will involve the combinatorics of the following data structures.
Definition 3.1.0C6Z A numerical type T is given by

n,mi, aij , wi, gi

where n ≥ 1 is an integer and mi, aij , wi, gi are integers for 1 ≤ i, j ≤ n subject to
the following conditions

(1) mi > 0, wi > 0, gi ≥ 0,
(2) the matrix A = (aij) is symmetric and aij ≥ 0 for i ̸= j,
(3) there is no proper nonempty subset I ⊂ {1, . . . , n} such that aij = 0 for

i ∈ I, j ̸∈ I,
(4) for each i we have

∑
j aijmj = 0, and

(5) wi|aij .
This is obviously a somewhat annoying type of structure to work with, but it is
exactly what shows up in special fibres of proper regular models of smooth geomet-
rically connected curves. Of course we only care about these types up to reordering
the indices.
Definition 3.2.0C70 We say two numerical types n,mi, aij , wi, gi and n′,m′

i, a
′
ij , w

′
i, g

′
i

are equivalent types if there exists a permutation σ of {1, . . . , n} such that mi =
m′

σ(i), aij = a′
σ(i)σ(j), wi = w′

σ(i), and gi = g′
σ(i).

A numerical type has a genus.
Lemma 3.3.0C71 Let n,mi, aij , wi, gi be a numerical type. Then the expression

g = 1 +
∑

mi(wi(gi − 1)− 1
2aii)

is an integer.
Proof. To prove g is an integer we have to show that

∑
aiimi is even. This we

can see by computing modulo 2 as follows∑
i
aiimi ≡

∑
i, mi odd

aiimi

≡
∑

i, mi odd

∑
j ̸=i

aijmj

≡
∑

i, mi odd

∑
j ̸=i, mj odd

aijmj

≡
∑

i<j, mi and mj odd
aij(mi +mj)

≡ 0
where we have used that aij = aji and that

∑
j aijmj = 0 for all i. □

Definition 3.4.0C72 We say n,mi, aij , wi, gi is a numerical type of genus g if g =
1 +

∑
mi(wi(gi − 1)− 1

2aii) is the integer from Lemma 3.3.
We will prove below (Lemma 3.14) that the genus is almost always ≥ 0. But you
can have numerical types with negative genus.
Lemma 3.5.0C73 Let n,mi, aij , wi, gi be a numerical type of genus g. If n = 1, then
a11 = 0 and g = 1 + m1w1(g1 − 1). Moreover, we can classify all such numerical
types as follows

https://stacks.math.columbia.edu/tag/0C6Z
https://stacks.math.columbia.edu/tag/0C70
https://stacks.math.columbia.edu/tag/0C71
https://stacks.math.columbia.edu/tag/0C72
https://stacks.math.columbia.edu/tag/0C73
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(1) If g < 0, then g1 = 0 and there are finitely many possible numerical types
of genus g with n = 1 corresponding to factorizations m1w1 = 1− g.

(2) If g = 0, then m1 = 1, w1 = 1, g1 = 0 as in Lemma 6.1.
(3) If g = 1, then we conclude g1 = 1 but m1, w1 can be arbitrary positive

integers; this is case (1) of Lemma 6.2.
(4) If g > 1, then g1 > 1 and there are finitely many possible numerical types

of genus g with n = 1 corresponding to factorizations m1w1(g1−1) = g−1.

Proof. The lemma proves itself. □

Lemma 3.6.0C74 Let n,mi, aij , wi, gi be a numerical type of genus g. If n > 1, then
aii < 0 for all i.

Proof. Lemma 2.3 applies to the matrix A. □

Lemma 3.7.0C75 Let n,mi, aij , wi, gi be a numerical type of genus g. Assume n > 1.
If i is such that the contribution mi(wi(gi − 1)− 1

2aii) to the genus g is < 0, then
gi = 0 and aii = −wi.

Proof. Follows immediately from Lemma 3.6 and wi > 0, gi ≥ 0, and wi|aii. □

Definition 3.8.0C76 Let n,mi, aij , wi, gi be a numerical type. We say i is a (−1)-index
if gi = 0 and aii = −wi.

We can “contract” (−1)-indices.

Lemma 3.9.0C77 Let n,mi, aij , wi, gi be a numerical type T . Assume n is a (−1)-
index. Then there is a numerical type T ′ given by n′,m′

i, a
′
ij , w

′
i, g

′
i with

(1) n′ = n− 1,
(2) m′

i = mi,
(3) a′

ij = aij − ainajn/ann,
(4) w′

i = wi/2 if ain/wn even and ain/wi odd and w′
i = wi else,

(5) g′
i = wi

w′
i
(gi − 1) + 1 + a2

in−wnain

2w′
i
wn

.
Moreover, we have g = g′.

Proof. Observe that n > 1 for example by Lemma 3.5 and hence n′ ≥ 1. We check
conditions (1) – (5) of Definition 3.1 for n′,m′

i, a
′
ij , w

′
i, g

′
i.

Condition (1) is immediate.

Condition (2). Symmetry of A′ = (a′
ij) is immediate and since ann < 0 by Lemma

3.6 we see that a′
ij ≥ aij ≥ 0 if i ̸= j.

Condition (3). Suppose that I ⊂ {1, . . . , n − 1} such that a′
ii′ = 0 for i ∈ I and

i′ ∈ {1, . . . , n−1}\I. Then we see that for each i ∈ I and i′ ∈ I ′ we have ainai′n = 0.
Thus either ain = 0 for all i ∈ I and I ⊂ {1, . . . , n} is a contradiction for property
(3) for T , or ai′n = 0 for all i′ ∈ {1, . . . , n − 1} \ I and I ∪ {n} ⊂ {1, . . . , n} is a
contradiction for property (3) of T . Hence (3) holds for T ′.

Condition (4). We compute∑n−1

j=1
a′

ijmj =
∑n−1

j=1
(aijmj −

ainajnmj

ann
) = −ainmn −

ain

ann
(−annmn) = 0

as desired.

https://stacks.math.columbia.edu/tag/0C74
https://stacks.math.columbia.edu/tag/0C75
https://stacks.math.columbia.edu/tag/0C76
https://stacks.math.columbia.edu/tag/0C77
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Condition (5). We have to show that w′
i divides ainajn/ann. This is clear because

ann = −wn and wn|ajn and wi|ain.
To show that g = g′ we first write

g = 1 +
∑n

i=1
mi(wi(gi − 1)− 1

2aii)

= 1 +
∑n−1

i=1
mi(wi(gi − 1)− 1

2aii)−
1
2mnwn

= 1 +
∑n−1

i=1
mi(wi(gi − 1)− 1

2aii −
1
2ain)

Comparing with the expression for g′ we see that it suffices if

w′
i(g′

i − 1)− 1
2a

′
ii = wi(gi − 1)− 1

2ain −
1
2aii

for i ≤ n− 1. In other words, we have

g′
i = 2wi(gi − 1)− ain − aii + a′

ii + 2w′
i

2w′
i

= wi

w′
i

(gi − 1) + 1 + a2
in − wnain

2w′
iwn

It is elementary to check that this is an integer ≥ 0 if we choose w′
i as in (4). □

Lemma 3.10.0C78 Let n,mi, aij , wi, gi be a numerical type. Let e be the number of
pairs (i, j) with i < j and aij > 0. Then the expression gtop = 1− n+ e is ≥ 0.

Proof. If not, then e < n− 1 which means there exists an i such that aij = 0 for
all j ̸= i. This contradicts assumption (3) of Definition 3.1. □

Definition 3.11.0C79 Let n,mi, aij , wi, gi be a numerical type T . The topological
genus of T is the nonnegative integer gtop = 1− n+ e from Lemma 3.10.

We want to bound the genus by the topological genus. However, this will not always
be the case, for example for numerical types with n = 1 as in Lemma 3.5. But it
will be true for minimal numerical types which are defined as follows.

Definition 3.12.0C7A We say the numerical type n,mi, aij , wi, gi of genus g is minimal
if there does not exist an i with gi = 0 and aii = −wi, in other words, if there does
not exist a (−1)-index.

We will prove that the genus g of a minimal type with n > 1 is greater than or
equal to max(1, gtop).

Lemma 3.13.0C7B If n,mi, aij , wi, gi is a minimal numerical type with n > 1, then
g ≥ 1.

Proof. This is true because g = 1 +
∑

Φi with Φi = mi(wi(gi − 1) − 1
2aii) non-

negative by Lemma 3.7 and the definition of minimal types. □

Lemma 3.14.0C7C If n,mi, aij , wi, gi is a minimal numerical type with n > 1, then
g ≥ gtop.

Proof. The reader who is only interested in the case of numerical types associated
to proper regular models can skip this proof as we will reprove this in the geometric
situation later. We can write

gtop = 1− n+ 1
2

∑
aij>0

1 = 1 +
∑

i
(−1 + 1

2
∑

j ̸=i, aij>0
1)

https://stacks.math.columbia.edu/tag/0C78
https://stacks.math.columbia.edu/tag/0C79
https://stacks.math.columbia.edu/tag/0C7A
https://stacks.math.columbia.edu/tag/0C7B
https://stacks.math.columbia.edu/tag/0C7C
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On the other hand, we have

g = 1 +
∑

mi(wi(gi − 1)− 1
2aii)

= 1 +
∑

miwigi −
∑

miwi + 1
2

∑
i ̸=j

aijmj

= 1 +
∑

i
miwi(−1 + gi + 1

2
∑

j ̸=i

aij

wi
)

The first equality is the definition, the second equality uses that
∑
aijmj = 0,

and the last equality uses that uses aij = aji and switching order of summation.
Comparing with the formula for gtop we conclude that the lemma holds if

Ψi = miwi(−1 + gi + 1
2

∑
j ̸=i

aij

wi
)− (−1 + 1

2
∑

j ̸=i, aij>0
1)

is ≥ 0 for each i. However, this may not be the case. Let us analyze for which
indices we can have Ψi < 0. First, observe that

(−1 + gi + 1
2

∑
j ̸=i

aij

wi
) ≥ (−1 + 1

2
∑

j ̸=i, aij>0
1)

because aij/wi is a nonnegative integer. Since miwi is a positive integer we conclude
that Ψi ≥ 0 as soon as either miwi = 1 or the left hand side of the inequality is
≥ 0 which happens if gi > 0, or aij > 0 for at least two indices j, or if there is a j
with aij > wi. Thus

P = {i : Ψi < 0}
is the set of indices i such that miwi > 1, gi = 0, aij > 0 for a unique j, and
aij = wi for this j. Moreover

i ∈ P ⇒ Ψi = 1
2(−miwi + 1)

The strategy of proof is to show that given i ∈ P we can borrow a bit from Ψj

where j is the neighbour of i, i.e., aij > 0. However, this won’t quite work because
j may be an index with Ψj = 0.
Consider the set

Z = {j : gj = 0 and j has exactly two neighbours i, k with aij = wj = ajk}

For j ∈ Z we have Ψj = 0. We will consider sequences M = (i, j1, . . . , js) where
s ≥ 0, i ∈ P , j1, . . . , js ∈ Z, and aij1 > 0, aj1j2 > 0, . . . , ajs−1js > 0. If our
numerical type consists of two indices which are in P or more generally if our
numerical type consists of two indices which are in P and all other indices in Z,
then gtop = 0 and we win by Lemma 3.13. We may and do discard these cases.
Let M = (i, j1, . . . , js) be a maximal sequence and let k be the second neighbour
of js. (If s = 0, then k is the unique neighbour of i.) By maximality k ̸∈ Z and by
what we just said k ̸∈ P . Observe that wi = aij1 = wj1 = aj1j2 = . . . = wjs

= ajsk.
Looking at the definition of a numerical type we see that

miaii +mj1wi = 0,
miwi +mj1aj1j1 +mj2wi = 0,

. . . . . .

mjs−1wi +mjsajsjs +mkwi = 0
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The first equality implies mj1 ≥ 2mi because the numerical type is minimal. Then
the second equality implies mj2 ≥ 3mi, and so on. In any case, we conclude that
mk ≥ 2mi (including when s = 0).

Let k be an index such that we have a t > 0 and pairwise distinct maximal sequences
M1, . . . ,Mt as above, with Mb = (ib, jb,1, . . . , jb,sb

) such that k is a neighbour of
jb,sb

for b = 1, . . . , t. We will show that Φj +
∑

b=1,...,t Φib
≥ 0. This will finish

the proof of the lemma by what we said above. Let M be the union of the indices
occurring in Mb, b = 1, . . . , t. We write

Ψk = −
∑

b=1,...,t
Ψib

+ Ψ′
k

where

Ψ′
k = mkwk

(
−1 + gk + 1

2
∑

b=1,...t
(
akjb,sb

wk
− mib

wib

mkwk
) + 1

2
∑

l ̸=k, l ̸∈M

akl

wk

)
−

(
−1 + 1

2
∑

l ̸=k, l ̸∈M, akl>0
1
)

Assume Ψ′
k < 0 to get a contradiction. If the set {l : l ̸= k, l ̸∈ M, akl > 0} is

empty, then {1, . . . , n} = M ∪ {k} and gtop = 0 because e = n− 1 in this case and
the result holds by Lemma 3.13. Thus we may assume there is at least one such l
which contributes (1/2)akl/wk ≥ 1/2 to the sum inside the first brackets. For each
b = 1, . . . , t we have

akjb,sb

wk
− mib

wib

mkwk
= wib

wk
(1− mib

mk
)

This expression is ≥ 1
2 because mk ≥ 2mib

by the previous paragraph and is ≥ 1
if wk < wib

. It follows that Ψ′
k < 0 implies gk = 0. If t ≥ 2 or t = 1 and

wk < wi1 , then Ψ′
k ≥ 0 (here we use the existence of an l as shown above) which is

a contradiction too. Thus t = 1 and wk = wi1 . If there at least two nonzero terms
in the sum over l or if there is one such k and akl > wk, then Ψ′

k ≥ 0 as well. The
final possibility is that t = 1 and there is one l with akl = wk. This is disallowed
as this would mean k ∈ Z contradicting the maximality of M1. □

Lemma 3.15.0C7D Let n,mi, aij , wi, gi be a numerical type of genus g. Assume n > 1.
If i is such that the contribution mi(wi(gi − 1) − 1

2aii) to the genus g is 0, then
gi = 0 and aii = −2wi.

Proof. Follows immediately from Lemma 3.6 and wi > 0, gi ≥ 0, and wi|aii. □

It turns out that the indices satisfying this relation play an important role in the
structure of minimal numerical types. Hence we give them a name.

Definition 3.16.0C7E Let n,mi, aij , wi, gi be a numerical type of genus g. We say i is
a (−2)-index if gi = 0 and aii = −2wi.

Given a minimal numerical type of genus g the (−2)-indices are exactly the indices
which do not contribute a positive number to the genus in the formula

g = 1 +
∑

mi(wi(gi − 1)− 1
2aii)

Thus it will be somewhat tricky to bound the quantities associated with (−2)-
indices as we will see later.

https://stacks.math.columbia.edu/tag/0C7D
https://stacks.math.columbia.edu/tag/0C7E
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Remark 3.17.0C7F Let n,mi, aij , wi, gi be a minimal numerical type with n > 1.
Equality g = gtop can hold in Lemma 3.14. For example, if mi = wi = 1 and gi = 0
for all i and aij ∈ {0, 1} for i < j.

4. The Picard group of a numerical type

0C7G Here is the definition.

Definition 4.1.0C7H Let n,mi, aij , wi, gi be a numerical type T . The Picard group of
T is the cokernel of the matrix (aij/wi), more precisely

Pic(T ) = Coker
(

Z⊕n → Z⊕n, ei 7→
∑ aij

wj
ej

)
where ei denotes the ith standard basis vector for Z⊕n.

Lemma 4.2.0C7I Let n,mi, aij , wi, gi be a numerical type T . The Picard group of T
is a finitely generated abelian group of rank 1.

Proof. If n = 1, then A = (aij) is the zero matrix and the result is clear. For
n > 1 the matrix A has rank n− 1 by either Lemma 2.2 or Lemma 2.3. Of course
the rank is not affected by scaling the rows by 1/wi. This proves the lemma. □

Lemma 4.3.0CE7 Let n,mi, aij , wi, gi be a numerical type T . Then Pic(T ) ⊂ Coker(A)
where A = (aij).

Proof. Since Pic(T ) is the cokernel of (aij/wi) we see that there is a commutative
diagram

0 // Z⊕n

A
// Z⊕n // Coker(A) // 0

0 // Z⊕n
(aij/wi) //

id

OO

Z⊕n //

diag(w1,...,wn)

OO

Pic(T ) //

OO

0

with exact rows. By the snake lemma we conclude that Pic(T ) ⊂ Coker(A). □

Lemma 4.4.0C7J Let n,mi, aij , wi, gi be a numerical type T . Assume n is a (−1)-
index. Let T ′ be the numerical type constructed in Lemma 3.9. There exists an
injective map

Pic(T )→ Pic(T ′)
whose cokernel is an elementary abelian 2-group.

Proof. Recall that n′ = n − 1. Let ei, resp., e′
i be the ith basis vector of Z⊕n,

resp. Z⊕n−1. First we denote
q : Z⊕n → Z⊕n−1, en 7→ 0 and ei 7→ e′

i for i ≤ n− 1
and we set

p : Z⊕n → Z⊕n−1, en 7→
∑n−1

j=1

anj

w′
j

e′
j and ei 7→

wi

w′
i

e′
i for i ≤ n− 1

A computation (which we omit) shows there is a commutative diagram

Z⊕n

(aij/wi)
//

q
��

Z⊕n

p
��

Z⊕n′ (a′
ij/w′

i)
// Z⊕n′

https://stacks.math.columbia.edu/tag/0C7F
https://stacks.math.columbia.edu/tag/0C7H
https://stacks.math.columbia.edu/tag/0C7I
https://stacks.math.columbia.edu/tag/0CE7
https://stacks.math.columbia.edu/tag/0C7J


SEMISTABLE REDUCTION 12

Since the cokernel of the top arrow is Pic(T ) and the cokernel of the bottom arrow is
Pic(T ′), we obtain the desired homomorphism of Picard groups. Since wi

w′
i
∈ {1, 2}

we see that the cokernel of Pic(T )→ Pic(T ′) is annihilated by 2 (because 2e′
i is in

the image of p for all i ≤ n − 1). Finally, we show Pic(T ) → Pic(T ′) is injective.
Let L = (l1, . . . , ln) be a representative of an element of Pic(T ) mapping to zero in
Pic(T ′). Since q is surjective, a diagram chase shows that we can assume L is in
the kernel of p. This means that lnani/w

′
i + liwi/w

′
i = 0, i.e., li = −ani/wiln. Thus

L is the image of −lnen under the map (aij/wj) and the lemma is proved. □

Lemma 4.5.0C7K Let n,mi, aij , wi, gi be a numerical type T . If the genus g of T is
≤ 0, then Pic(T ) = Z.

Proof. By induction on n. If n = 1, then the assertion is clear. If n > 1, then T
is not minimal by Lemma 3.13. After replacing T by an equivalent type we may
assume n is a (−1)-index. By Lemma 4.4 we find Pic(T ) ⊂ Pic(T ′). By Lemma
3.9 we see that the genus of T ′ is equal to the genus of T and we conclude by
induction. □

5. Classification of proper subgraphs

0C7L In this section we assume given a numerical type n,mi, aij , wi, gi of genus g. We
will find a complete list of possible “subgraphs” consisting entirely of (−2)-indices
(Definition 3.16) and at the same time we classify all possible minimal numerical
types of genus 1. In other words, in this section we prove Proposition 5.17 and
Lemma 6.2

Our strategy will be as follows. Let n,mi, aij , wi, gi be a numerical type of genus g.
Let I ⊂ {1, . . . , n} be a subset consisting of (−2)-indices such that there does not
exist a nonempty proper subset J ⊂ I with ajj′ = 0 for j ∈ J , j′ ∈ I \ J . We work
by induction on the cardinality |I| of I. If I = {i} consists of 1 index, then the
only constraints on mi, aii, and wi are wi|aii from Definition 3.1 and aii < 0 from
Lemma 3.6 and this will serve as our base case. In the induction step we first apply
the induction hypothesis to subsets I ′ ⊂ I of size |I ′| < |I|. This will put some
constraints on the possible mi, aij , wi, i, j ∈ I. In particular, since |I ′| < |I| ≤ n it
will follow from

∑
aijmj = 0 and Lemma 2.3 that the sub matrices (aij)i,j∈I′ are

negative definite and their determinant will have sign (−1)m. For each possibility
left over we compute the determinant of (aij)i,j∈I . If the determinant has sign
−(−1)|I| then this case can be discarded because Sylvester’s theorem tells us the
matrix (aij)i,j∈I is not negative semi-definite. If the determinant has sign (−1)|I|,
then |I| < n and we (tentatively) conclude this case can occur as a possible proper
subgraph and we list it in one of the lemmas in this section. If the determinant
is 0, then we must have |I| = n (by Lemma 2.3 again) and g = 0. In these cases
we actually find all possible mi, aij , wi, i, j ∈ I and list them in Lemma 6.2. After
completing the argument we obtain all possible minimal numerical types of genus 1
with n > 1 because each of these necessarily consists entirely of (−2)-indices (and
hence will show up in the induction process) by the formula for the genus and the
remarks in the previous section. At the very end of the day the reader can go
through the list of possibilities given in Lemma 6.2 to see that all configurations
of proper subgraphs listed in this section as possible do in fact occur already for
numerical types of genus 1.

https://stacks.math.columbia.edu/tag/0C7K
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Suppose that i and j are (−2)-indices with aij > 0. Since the matrix A = (aij) is
semi-negative definite by Lemma 2.3 we see that the matrix(

−2wi aij

aij −2wj

)
is negative definite unless n = 2. The case n = 2 can happen: then the determinant
4w1w2−a2

12 is zero. Using that lcm(w1, w2) divides a12 the reader easily finds that
the only possibilities are

(w1, w2, a12) = (w,w, 2w), (w, 4w, 4w), or (4w,w, 4w)

Observe that the case (4w,w, 4w) is obtained from the case (w, 4w, 4w) by switching
the indices i, j. In these cases g = 1. This leads to cases (2) and (3) of Lemma
6.2. Assuming n > 2 we see that the determinant 4wiwj − a2

ij of the displayed
matrix is > 0 and we conclude that a2

ij/wiwj < 4. On the other hand, we know
that lcm(wi, wj)|aij and hence a2

ij/wiwj is an integer. Thus a2
ij/wiwj ∈ {1, 2, 3}

and wi|wj or vice versa. This leads to the following possibilities

(w1, w2, a12) = (w,w,w), (w, 2w, 2w), (w, 3w, 3w), (2w,w, 2w), or (3w,w, 3w)

Observe that the case (2w,w, 2w) is obtained from the case (w, 2w, 2w) by switching
the indices i, j and similarly for the cases (3w,w, 3w) and (w, 3w, 3w). The first
three solutions lead to cases (1), (2), and (3) of Lemma 5.1. In this lemma we wrote
out the consequences for the integers mi and mj using that

∑
l aklml = 0 for each

k in particular implies aiimi +aijmj ≤ 0 for k = i and aijmi +ajjmj ≤ 0 for k = j.

Lemma 5.1.0C7M Classification of proper subgraphs of the form

• •

If n > 2, then given a pair i, j of (−2)-indices with aij > 0, then up to ordering we
have the m’s, a’s, w’s

(1)0C7N are given by (
m1
m2

)
,

(
−2w w
w −2w

)
,

(
w
w

)
with w arbitrary and 2m1 ≥ m2 and 2m2 ≥ m1, or

(2)0C7P are given by (
m1
m2

)
,

(
−2w 2w
2w −4w

)
,

(
w
2w

)
with w arbitrary and m1 ≥ m2 and 2m2 ≥ m1, or

(3)0C7Q are given by (
m1
m2

)
,

(
−2w 3w
3w −6w

)
,

(
w
3w

)
with w arbitrary and 2m1 ≥ 3m2 and 2m2 ≥ m1.

Proof. See discussion above. □

Suppose that i, j, and k are three (−2)-indices with aij > 0 and ajk > 0. In other
words, the index i “meets” j and j “meets” k. We will use without further mention

https://stacks.math.columbia.edu/tag/0C7M
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that each pair (i, j), (i, k), and (j, k) is as listed in Lemma 5.1. Since the matrix
A = (aij) is semi-negative definite by Lemma 2.3 we see that the matrix−2wi aij aik

aij −2wj ajk

aik ajk −2wk


is negative definite unless n = 3. The case n = 3 can happen: then the determinant2

of the matrix is zero and we obtain the equation

4 =
a2

ij

wiwj
+

a2
jk

wjwk
+ a2

ik

wiwk
+ aijaikajk

wiwjwk

of integers. The last term on the right in this equation is determined by the others
because (

aijaikajk

wiwjwk

)2
=

a2
ij

wiwj

a2
jk

wjwk

a2
ik

wiwk

Since we have seen above that a2
ij

wiwj
,

a2
jk

wjwk
are in {1, 2, 3} and a2

ik

wiwk
in {0, 1, 2, 3},

we conclude that the only possibilities are

(
a2

ij

wiwj
,
a2

jk

wjwk
,
a2

ik

wiwk
) = (1, 1, 1), (1, 3, 0), (2, 2, 0), or (3, 1, 0)

Observe that the case (3, 1, 0) is obtained from the case (1, 3, 0) by reversing the or-
der the indices i, j, k. In each of these cases g = 1; the reader can find these as cases
(4), (5), (6), (7), (8), (9) of Lemma 6.2 with one case corresponding to (1, 1, 1), two
cases corresponding to (1, 3, 0), and three cases corresponding to (2, 2, 0). Assuming
n > 3 we obtain the inequality

4 >
a2

ij

wiwj
+ a2

ik

wiwk
+

a2
jk

wjwk
+ aijaikajk

wiwjwk

of integers. Using the restrictions on the numbers given above we see that the only
possibilities are

(
a2

ij

wiwj
,
a2

jk

wjwk
,
a2

ik

wiwk
) = (1, 1, 0), (1, 2, 0), or (2, 1, 0)

in particular aik = 0 (recall we are assuming aij > 0 and ajk > 0). Observe that
the case (2, 1, 0) is obtained from the case (1, 2, 0) by reversing the ordering of the
indices i, j, k. The first two solutions lead to cases (1), (2), and (3) of Lemma 5.2
where we also wrote out the consequences for the integers mi, mj , and mk.

Lemma 5.2.0C7R Classification of proper subgraphs of the form
• • •

If n > 3, then given a triple i, j, k of (−2)-indices with at least two aij , aik, ajk

nonzero, then up to ordering we have the m’s, a’s, w’s
(1)0C7S are given bym1

m2
m3

 ,

−2w w 0
w −2w w
0 w −2w

 ,

ww
w


2It is −8wiwjwk + 2a2

ijwk + 2a2
jkwi + 2a2

ikwj + 2aijajkaik.

https://stacks.math.columbia.edu/tag/0C7R


SEMISTABLE REDUCTION 15

with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2, or
(2)0C7T are given bym1

m2
m3

 ,

−2w w 0
w −2w 2w
0 2w −4w

 ,

 w
w
2w


with 2m1 ≥ m2, 2m2 ≥ m1 + 2m3, 2m3 ≥ m2, or

(3)0C7U are given bym1
m2
m3

 ,

−4w 2w 0
2w −4w 2w
0 2w −2w

 ,

2w
2w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, m3 ≥ m2.

Proof. See discussion above. □

Suppose that i, j, k, and l are four (−2)-indices with aij > 0, ajk > 0, and akl > 0.
In other words, the index i “meets” j, j “meets” k, and k “meets” l. Then we see
from Lemma 5.2 that aik = ajl = 0. Since the matrix A = (aij) is semi-negative
definite we see that the matrix

−2wi aij 0 ail

aij −2wj ajk 0
0 ajk −2wk akl

ail 0 akl −2wl


is negative definite unless n = 4. The case n = 4 can happen: then the determinant3

of the matrix is zero and we obtain the equation

16+
a2

ij

wiwj

a2
kl

wkwl
+

a2
jk

wjwk

a2
il

wiwl
= 4

a2
ij

wiwj
+4

a2
jk

wjwk
+4 a2

kl

wkwl
+4 a2

il

wiwl
+2aijailajkakl

wiwjwkwl

of nonnegative integers. The last term on the right in this equation is determined
by the others because(

aijailajkakl

wiwjwkwl

)2
=

a2
ij

wiwj

a2
jk

wjwk

a2
kl

wkwl

a2
il

wiwl

Since we have seen above that a2
ij

wiwj
,

a2
jk

wjwk
,

a2
kl

wkwl
are in {1, 2} and a2

il

wiwl
in {0, 1, 2},

we conclude that the only possible solutions are

(
a2

ij

wiwj
,
a2

jk

wjwk
,
a2

kl

wkwl
,
a2

il

wiwl
) = (1, 1, 1, 1) or (2, 1, 2, 0)

and case g = 1; the reader can find these as cases (10), (11), (12), and (13) of
Lemma 6.2. Assuming n > 4 we obtain the inequality

16+
a2

ij

wiwj

a2
kl

wkwl
+

a2
jk

wjwk

a2
il

wiwl
> 4

a2
ij

wiwj
+4

a2
jk

wjwk
+4 a2

kl

wkwl
+4 a2

il

wiwl
+2aijailajkakl

wiwjwkwl

3It is 16wiwjwkwl − 4a2
ijwkwl − 4a2

jkwiwl − 4a2
klwiwj − 4a2

ilwjwk + a2
ija2

kl + a2
jka2

il −
2aijailajkakl.
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of nonnegative integers. Using the restrictions on the numbers given above we see
that the only possibilities are

(
a2

ij

wiwj
,
a2

jk

wjwk
,
a2

kl

wkwl
,
a2

il

wiwl
) = (1, 1, 1, 0), (1, 1, 2, 0), (1, 2, 1, 0), or (2, 1, 1, 0)

in particular ail = 0 (recall that we assumed the other three to be nonzero). Observe
that the case (2, 1, 1, 0) is obtained from the case (1, 1, 2, 0) by reversing the ordering
of the indices i, j, k, l. The first three solutions lead to cases (1), (2), (3), and (4)
of Lemma 5.3 where we also wrote out the consequences for the integers mi, mj ,
mk, and ml.

Lemma 5.3.0C7V Classification of proper subgraphs of the form

• • • •

If n > 4, then given four (−2)-indices i, j, k, l with aij , ajk, akl nonzero, then up to
ordering we have the m’s, a’s, w’s

(1)0C7W are given by
m1
m2
m3
m4

 ,


−2w w 0 0
w −2w w 0
0 w −2w w
0 0 w −2w

 ,


w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4, and 2m4 ≥ m3, or

(2)0C7X are given by
m1
m2
m3
m4

 ,


−2w w 0 0
w −2w w 0
0 w −2w 2w
0 0 2w −4w

 ,


w
w
w
2w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 + 2m4, and 2m4 ≥ m3, or

(3)0C7Y are given by
m1
m2
m3
m4

 ,


−4w 2w 0 0
2w −4w 2w 0
0 2w −4w 2w
0 0 2w −2w

 ,


2w
2w
2w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4, and m4 ≥ m3, or

(4)0C7Z are given by
m1
m2
m3
m4

 ,


−2w w 0 0
w −2w 2w 0
0 2w −4w 2w
0 0 2w −4w

 ,


w
w
2w
2w


with 2m1 ≥ m2, 2m2 ≥ m1 + 2m3, 2m3 ≥ m2 +m4, and 2m4 ≥ m3.

Proof. See discussion above. □

Suppose that i, j, k, and l are four (−2)-indices with aij > 0, aij > 0, and ail > 0.
In other words, the index i “meets” the indices j, k, l. Then we see from Lemma

https://stacks.math.columbia.edu/tag/0C7V
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5.2 that ajk = ajl = akl = 0. Since the matrix A = (aij) is semi-negative definite
we see that the matrix 

−2wi aij aik ail

aij −2wj 0 0
aik 0 −2wk 0
ail 0 0 −2wl


is negative definite unless n = 4. The case n = 4 can happen: then the determinant4

of the matrix is zero and we obtain the equation

4 =
a2

ij

wiwj
+ a2

ik

wiwk
+ a2

il

wjwl

of nonnegative integers. Since we have seen above that a2
ij

wiwj
,

a2
ik

wiwk
,

a2
il

wiwl
are in

{1, 2}, we conclude that the only possibilities are up to reordering: 4 = 1 + 1 + 2.
In each of these cases g = 1; the reader can find these as cases (14) and (15) of
Lemma 6.2. Assuming n > 4 we obtain the inequality

4 >
a2

ij

wiwj
+ a2

ik

wiwk
+ a2

il

wjwl

of nonnegative integers. This implies that a2
ij

wiwj
= a2

ik

wiwk
= a2

il

wjwl
= 1 and that

wi = wj = wk = wl. This leads to case (1) of Lemma 5.4 where we also wrote out
the consequences for the integers mi, mj , mk, and ml.

Lemma 5.4.0C80 Classification of proper subgraphs of the form

• • •

•

If n > 4, then given four (−2)-indices i, j, k, l with aij , aik, ail nonzero, then up to
ordering we have the m’s, a’s, w’s

(1)0C81 are given by
m1
m2
m3
m4

 ,


−2w w w w
w −2w 0 0
w 0 −2w 0
w 0 0 −2w

 ,


w
w
w
w


with 2m1 ≥ m2 + m3 + m4, 2m2 ≥ m1, 2m3 ≥ m1, 2m4 ≥ m1. Observe
that this implies m1 ≥ max(m2,m3,m4).

Proof. See discussion above. □

Suppose that h, i, j, k, and l are five (−2)-indices with ahi > 0, aij > 0, ajk > 0,
and akl > 0. In other words, the index h “meets” i, i “meets” j, j “meets” k, and
k “meets” l. Then we can apply Lemmas 5.2 and 5.3 to see that ahj = ahk = aik =
ail = ajl = 0 and that the fractions a2

hi

whwi
,

a2
ij

wiwj
,

a2
jk

wjwk
,

a2
kl

wkwl
are in {1, 2} and the

4It is 16wiwjwkwl − 4a2
ijwkwl − 4a2

ikwjwl − 4a2
ilwjwk.

https://stacks.math.columbia.edu/tag/0C80


SEMISTABLE REDUCTION 18

fraction a2
hl

whwl
∈ {0, 1, 2}. Since the matrix A = (aij) is semi-negative definite we

see that the matrix 
−2wh ahi 0 0 ahl

ahi −2wi aij 0 0
0 aij −2wj ajk 0
0 0 ajk −2wk akl

ahl 0 0 akl −2wl


is negative definite unless n = 5. The case n = 5 can happen: then the determinant5

of the matrix is zero and we obtain the equation

16 + a2
hi

whwi

a2
jk

wjwk
+ a2

hi

whwi

a2
kl

wkwl
+

a2
ij

wiwj

a2
kl

wkwl
+ a2

hl

whwl

a2
ij

wiwj
+ a2

hl

whwl

a2
jk

wjwk

= 4 a2
hi

whwi
+ 4

a2
ij

wiwj
+ 4

a2
jk

wjwk
+ 4 a2

kl

wkwl
+ 4 a2

hl

whwl
+ ahiaijajkaklahl

whwiwjwkwl

of nonnegative integers. The last term on the right in this equation is determined
by the others because(

ahiaijajkaklahl

whwiwjwkwl

)2
= a2

hi

whwi

a2
ij

wiwj

a2
jk

wjwk

a2
kl

wkwl

a2
hl

whwl

We conclude the only possible solutions are

( a2
hi

whwi
,
a2

ij

wiwj
,
a2

jk

wjwk
,
a2

kl

wkwl
,
a2

hl

whwl
) = (1, 1, 1, 1, 1), (1, 1, 2, 1, 0), (1, 2, 1, 1, 0), or (2, 1, 1, 2, 0)

Observe that the case (1, 2, 1, 1, 0) is obtained from the case (1, 1, 2, 1, 0) by revers-
ing the order of the indices h, i, j, k, l. In these cases g = 1; the reader can find
these as cases (16), (17), (18), (19), (20), and (21) of Lemma 6.2 with one case
corresponding to (1, 1, 1, 1, 1), two cases corresponding to (1, 1, 2, 1, 0), and three
cases corresponding to (2, 1, 1, 2, 0). Assuming n > 5 we obtain the inequality

16 + a2
hi

whwi

a2
jk

wjwk
+ a2

hi

whwi

a2
kl

wkwl
+

a2
ij

wiwj

a2
kl

wkwl
+ a2

hl

whwl

a2
ij

wiwj
+ a2

hl

whwl

a2
jk

wjwk

> 4 a2
hi

whwi
+ 4

a2
ij

wiwj
+ 4

a2
jk

wjwk
+ 4 a2

kl

wkwl
+ 4 a2

hl

whwl
+ ahiaijajkaklahl

whwiwjwkwl

of nonnegative integers. Using the restrictions on the numbers given above we see
that the only possibilities are

( a2
hi

whwi
,
a2

ij

wiwj
,
a2

jk

wjwk
,
a2

kl

wkwl
,
a2

hl

whwl
) = (1, 1, 1, 1, 0), (1, 1, 1, 2, 0), or (2, 1, 1, 1, 0)

in particular ahl = 0 (recall that we assumed the other four to be nonzero). Observe
that the case (1, 1, 1, 2, 0) is obtained from the case (2, 1, 1, 1, 0) by reversing the
order of the indices h, i, j, k, l. The first two solutions lead to cases (1), (2), and (3)
of Lemma 5.5 where we also wrote out the consequences for the integers mh, mi,
mj , mk, and ml.

5It is −32whwiwjwkwl + 8a2
hiwjwkwl + 8a2

ijwhwkwl + 8a2
jkwhwiwl + 8a2

klwhwiwj +
8a2

hlwiwjwk − 2a2
hia

2
jkwl − 2a2

hia
2
klwj − 2a2

ija2
klwh − 2a2

hla
2
ijwk − 2a2

hla
2
jkwi + 2ahiaijajkaklahl .
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Lemma 5.5.0C82 Classification of proper subgraphs of the form

• • • • •

If n > 5, then given five (−2)-indices h, i, j, k, l with ahi, aij , ajk, akl nonzero, then
up to ordering we have the m’s, a’s, w’s

(1)0C83 are given by
m1
m2
m3
m4
m5

 ,


−2w w 0 0 0
w −2w w 0 0
0 w −2w w 0
0 0 w −2w w
0 0 0 w −2w

 ,


w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 + m3, 2m3 ≥ m2 + m4, 2m4 ≥ m3 + m5, and
2m5 ≥ m4, or

(2)0C84 are given by
m1
m2
m3
m4
m5

 ,


−2w w 0 0 0
w −2w w 0 0
0 w −2w w 0
0 0 w −2w 2w
0 0 0 2w −4w

 ,


w
w
w
w
2w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 + 2m4, 2m4 ≥ m3 +m5, and
2m5 ≥ m4, or

(3)0C85 are given by
m1
m2
m3
m4
m5

 ,


−4w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 0
0 0 2w −4w 2w
0 0 0 2w −2w

 ,


2w
2w
2w
2w
w


with 2m1 ≥ m2, 2m2 ≥ m1 + m3, 2m3 ≥ m2 + m4, 2m4 ≥ m3 + m5, and
m4 ≥ m3.

Proof. See discussion above. □

Suppose that h, i, j, k, and l are five (−2)-indices with ahi > 0, ahj > 0, ahk > 0,
and ahl > 0. In other words, the index h “meets” the indices i, j, k, l. Then
we see from Lemma 5.2 that aij = aik = ail = ajk = ajl = akl = 0 and by
Lemma 5.4 that wh = wi = wj = wk = wl = w for some integer w > 0 and
ahi = ahj = ahk = ahl = −2w. The corresponding matrix

−2w w w w w
w −2w 0 0 0
w 0 −2w 0 0
w 0 0 −2w 0
w 0 0 0 −2w


is singular. Hence this can only happen if n = 5 and g = 1. The reader can find
this as case (22) Lemma 6.2.

https://stacks.math.columbia.edu/tag/0C82
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Lemma 5.6.0C86 Nonexistence of proper subgraphs of the form
• • •

• •
If n > 5, there do not exist five (−2)-indices h, i, j, k with ahi > 0, ahj > 0,
ahk > 0, and ahl > 0.

Proof. See discussion above. □

Suppose that h, i, j, k, and l are five (−2)-indices with ahi > 0, aij > 0, ajk > 0,
and ajl > 0. In other words, the index h “meets” i and the index j “meets”
the indices i, k, l. Then we see from Lemma 5.4 that aik = ail = akl = 0,
wi = wj = wk = wl = w, and aij = ajk = ajl = w for some integer w. Applying
Lemma 5.3 to the four tuples h, i, j, k and h, i, j, l we see that ahj = ahk = ahl = 0,
that wh = 1

2w, w, or 2w, and that correspondingly ahi = w, w, or 2w. Since A is
semi-negative definite we see that the matrix

−2wh ahi 0 0 0
ahi −2w w 0 0
0 w −2w w w
0 0 w −2w 0
0 0 w 0 −2w


is negative definite unless n = 5. The reader computes that the determinant of the
matrix is 0 when wh = 1

2w or 2w. This leads to cases (23) and (24) of Lemma 6.2.
For wh = w we obtain case (1) of Lemma 5.7.

Lemma 5.7.0C87 Classification of proper subgraphs of the form
• • • •

•
If n > 5, then given five (−2)-indices h, i, j, k, l with ahi, aij , ajk, ajl nonzero, then
up to ordering we have the m’s, a’s, w’s

(1)0C88 are given by
m1
m2
m3
m4
m5

 ,


−2w w 0 0 0
w −2w w 0 0
0 w −2w w w
0 0 w −2w 0
0 0 w 0 −2w

 ,


w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 + m3, 2m3 ≥ m2 + m4 + m5, 2m4 ≥ m3, and
2m5 ≥ m3.

Proof. See discussion above. □

Suppose that t > 5 and i1, . . . , it are t distinct (−2)-indices such that aijij+1 is
nonzero for j = 1, . . . , t − 1. We will prove by induction on t that if n = t this
leads to possibilities (25), (26), (27), (28) of Lemma 6.2 and if n > t to cases (1),
(2), and (3) of Lemma 5.8. First, if ai1it

is nonzero, then it is clear from the result

https://stacks.math.columbia.edu/tag/0C86
https://stacks.math.columbia.edu/tag/0C87


SEMISTABLE REDUCTION 21

of Lemma 5.5 that wi1 = . . . = wit
= w and that aijij+1 = w for j = 1, . . . , t − 1

and ai1it = w. Then the vector (1, . . . , 1) is in the kernel of the corresponding t× t
matrix. Thus we must have n = t and we see that the genus is 1 and that we are in
case (25) of Lemma 6.2. Thus we may assume ai1it

= 0. By induction hypothesis
(or Lemma 5.5 if t = 6) we see that aijik

= 0 if k > j + 1. Moreover, we have
wi1 = . . . = wit−1 = w for some integer w and wi1 , wit

∈ { 1
2w,w, 2w}. Moreover,

the value of wi1 , resp. wit
being 1

2w, w, or 2w implies that the value of ai1i2 , resp.
ait−1it

is w, w, or 2w. This gives 9 possibilities. In each case it is easy to decide
what happens:

(1) if (wi1 , wit
) = ( 1

2w,
1
2w), then we are in case (27) of Lemma 6.2,

(2) if (wi1 , wit
) = ( 1

2w,w) or (w, 1
2w) then we are in case (3) of Lemma 5.8,

(3) if (wi1 , wit) = ( 1
2w, 2w) or (2w, 1

2w) then we are in case (26) of Lemma 6.2,
(4) if (wi1 , wit) = (w,w) then we are in case (1) of Lemma 5.8,
(5) if (wi1 , wit

) = (w, 2w) or (2w,w) then we are in case (2) of Lemma 5.8, and
(6) if (wi1 , wit

) = (2w, 2w) then we are in case (28) of Lemma 6.2.

Lemma 5.8.0C89 Classification of proper subgraphs of the form

• • • • • •

Let t > 5 and n > t. Then given t distinct (−2)-indices i1, . . . , it such that aijij+1

is nonzero for j = 1, . . . , t − 1, then up to reversing the order of these indices we
have the a’s and w’s

(1)0C8A are given by wi1 = wi2 = . . . = wit
= w, aijij+1 = w, and aijik

= 0 if
k > j + 1, or

(2)0C8B are given by wi1 = wi2 = . . . = wit−1 = w, wjt
= 2w, aijij+1 = w for

j < t− 1, ait−1it = 2w, and aijik
= 0 if k > j + 1, or

(3)0C8C are given by wi1 = wi2 = . . . = wit−1 = 2w, wjt = w, aijij+1 = 2w, and
ait−1it = 2w, and aijik

= 0 if k > j + 1.

Proof. See discussion above. □

Suppose that t > 4 and i1, . . . , it+1 are t+1 distinct (−2)-indices such that aijij+1 >
0 for j = 1, . . . , t − 1 and such that ajt−1jt+1 > 0. See picture in Lemma 5.9. We
will prove by induction on t that if n = t+1 this leads to possibilities (29) and (30)
of Lemma 6.2 and if n > t+ 1 to case (1) of Lemma 5.9. By induction hypothesis
(or Lemma 5.7 in case t = 5) we see that aijik

is zero outside of the required
nonvanishing ones for j, k ≥ 2. Moreover, we see that w2 = . . . = wt+1 = w for
some integer w and that the nonvanishing aijik

for j, k ≥ 2 are equal to w. Applying
Lemma 5.8 (or Lemma 5.5 if t = 5) to the sequence i1, . . . , it and to the sequence
i1, . . . , it−1, it+1 we conclude that ai1ij

= 0 for j ≥ 3 and that w1 is equal to 1
2w,

w, or 2w and that correspondingly ai1i2 is w,w, 2w. This gives 3 possibilities. In
each case it is easy to decide what happens:

(1) If w1 = 1
2w, then we are in case (30) of Lemma 6.2.

(2) If w1 = w, then we are in case (1) of Lemma 5.9.
(3) If w1 = 2w, then we are in case (29) of Lemma 6.2.

https://stacks.math.columbia.edu/tag/0C89
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Lemma 5.9.0C8D Classification of proper subgraphs of the form
• • • • •

•
Let t > 4 and n > t + 1. Then given t + 1 distinct (−2)-indices i1, . . . , it+1 such
that aijij+1 is nonzero for j = 1, . . . , t − 1 and ait−1it+1 is nonzero, then we have
the a’s and w’s

(1)0C8E are given by wi1 = wi2 = . . . = wit+1 = w, aijij+1 = w for j = 1, . . . , t− 1,
ait−1it+1 = w and aijik

= 0 for other pairs (j, k) with j > k.
Proof. See discussion above. □

Suppose we are given 6 distinct (−2)-indices g, h, i, j, k, l such that agh, ahi, aij , ajk, ail

are nonzero. See picture in Lemma 5.10. Then we can apply Lemma 5.7 to see that
we must be in the situation of Lemma 5.10. Since the determinant is 3w6 > 0 we
conclude that in this case it never happens that n = 6!
Lemma 5.10.0C8F Classification of proper subgraphs of the form

• • • • •

•
Let n > 6. Then given 6 distinct (−2)-indices i1, . . . , i6 such that a12, a23, a34, a45, a36
are nonzero, then we have the m’s, a’s, and w’s

(1)0C8G are given by
m1
m2
m3
m4
m5
m6

 ,


−2w w 0 0 0 0
w −2w w 0 0 0
0 w −2w w 0 w
0 0 w −2w w 0
0 0 0 w −2w 0
0 0 w 0 0 −2w

 ,


w
w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4 +m6, 2m4 ≥ m3 +m5,
2m5 ≥ m3, and 2m6 ≥ m3.

Proof. See discussion above. □

Suppose that t ≥ 4 and i0, . . . , it+1 are t+2 distinct (−2)-indices such that aijij+1 >
0 for j = 1, . . . , t − 1 and ai0i2 > 0 and ait−1it+1 > 0. See picture in Lemma 5.11.
Then we can apply Lemmas 5.7 and 5.9 to see that all other aijik

for j < k are zero
and that wi0 = . . . = wit+1 = w for some integer w and that the required nonzero
off diagonal entries of A are equal to w. A computation shows that the determinant
of the corresponding matrix is zero. Hence n = t + 2 and we are in case (31) of
Lemma 6.2.
Lemma 5.11.0C8H Nonexistence of proper subgraphs of the form

• • • •

• •

https://stacks.math.columbia.edu/tag/0C8D
https://stacks.math.columbia.edu/tag/0C8F
https://stacks.math.columbia.edu/tag/0C8H
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Assume t ≥ 4 and n > t + 2. There do not exist t + 2 distinct (−2)-indices
i0, . . . , it+1 such that aijij+1 > 0 for j = 1, . . . , t−1 and ai0i2 > 0 and ait−1it+1 > 0.

Proof. See discussion above. □

Suppose we are given 7 distinct (−2)-indices f, g, h, i, j, k, l such that the numbers
afg, agh, aij , ajh, akl, alh are nonzero. See picture in Lemma 5.12. Then we can
apply Lemma 5.7 to see that the corresponding matrix is

−2w w 0 0 0 0 0
w −2w w 0 0 0 0
0 w −2w 0 w 0 w
0 0 0 −2w w 0 0
0 0 w w −2w 0 0
0 0 0 0 0 −2w w
0 0 w 0 0 w −2w


Since the determinant is 0 we conclude that we must have n = 7 and g = 1 and we
get case (32) of Lemma 6.2.

Lemma 5.12.0C8I Nonexistence of proper subgraphs of the form

• • • • •

•

•

Assume n > 7. There do not exist 7 distinct (−2)-indices f, g, h, i, j, k, l such that
afg, agh, aij , ajh, akl, alh are nonzero.

Proof. See discussion above. □

Suppose we are given 7 distinct (−2)-indices f, g, h, i, j, k, l such that the numbers
afg, agh, ahi, aij , ajk, ail are nonzero. See picture in Lemma 5.13. Then we can
apply Lemmas 5.7 and 5.9 to see that we must be in the situation of Lemma 5.13.
Since the determinant is −8w7 > 0 we conclude that in this case it never happens
that n = 7!

Lemma 5.13.0C8J Classification of proper subgraphs of the form

• • • • • •

•

Let n > 7. Then given 7 distinct (−2)-indices i1, . . . , i7 such that a12, a23, a34, a45, a56, a47
are nonzero, then we have the m’s, a’s, and w’s

https://stacks.math.columbia.edu/tag/0C8I
https://stacks.math.columbia.edu/tag/0C8J
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(1)0C8K are given by

m1
m2
m3
m4
m5
m6
m7


,



−2w w 0 0 0 0 0
w −2w w 0 0 0 0
0 w −2w w 0 0 0
0 0 w −2w w 0 w
0 0 0 w −2w w 0
0 0 0 0 w −2w 0
0 0 0 w 0 0 −2w


,



w
w
w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4, 2m4 ≥ m3 +m5 +m7,
2m5 ≥ m4 +m6, 2m6 ≥ m5, and 2m7 ≥ m4.

Proof. See discussion above. □

Suppose we are given 8 distinct (−2)-indices whose pattern of nonzero entries aij

of the matrix A looks like
• • • • • • •

•
or like

• • • • • • •

•
Arguing exactly as in the proof of Lemma 5.13 we see that the first pattern leads
to case (1) in Lemma 5.14 and does not lead to a new case in Lemma 6.2. Arguing
exactly as in the proof of Lemma 5.12 we see that the second pattern does not
occur if n > 8, but leads to case (33) in Lemma 6.2 when n = 8.

Lemma 5.14.0C8L Classification of proper subgraphs of the form
• • • • • • •

•
Let n > 8. Then given 8 distinct (−2)-indices i1, . . . , i8 such that a12, a23, a34, a45, a56, a65, a57
are nonzero, then we have the m’s, a’s, and w’s

(1)0C8M are given by

m1
m2
m3
m4
m5
m6
m7
m8


,



−2w w 0 0 0 0 0 0
w −2w w 0 0 0 0 0
0 w −2w w 0 0 0 0
0 0 w −2w w 0 0 0
0 0 0 w −2w w 0 w
0 0 0 0 w −2w w 0
0 0 0 0 0 w −2w 0
0 0 0 0 w 0 0 −2w


,



w
w
w
w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 + m3, 2m3 ≥ m2 + m4, 2m4 ≥ m3 + m5,
2m5 ≥ m4 +m6 +m8, 2m6 ≥ m5 +m7, 2m7 ≥ m6, and 2m8 ≥ m5.

https://stacks.math.columbia.edu/tag/0C8L
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Proof. See discussion above. □

Lemma 5.15.0C8N Nonexistence of proper subgraphs of the form
• • • • • • •

•
Assume n > 8. There do not exist 8 distinct (−2)-indices e, f, g, h, i, j, k, l such
that aef , afg, agh, ahi, aij , ajk, alh are nonzero.

Proof. See discussion above. □

Suppose we are given 9 distinct (−2)-indices whose pattern of nonzero entries aij

of the matrix A looks like
• • • • • • • •

•
Arguing exactly as in the proof of Lemma 5.12 we see that this pattern does not
occur if n > 9, but leads to case (34) in Lemma 6.2 when n = 9.

Lemma 5.16.0C8P Nonexistence of proper subgraphs of the form
• • • • • • • •

•
Assume n > 9. There do not exist 9 distinct (−2)-indices d, e, f, g, h, i, j, k, l such
that ade, aef , afg, agh, ahi, aij , ajk, alh are nonzero.

Proof. See discussion above. □

Collecting all the information together we find the following.

Proposition 5.17.0C8Q Let n,mi, aij , wi, gi be a numerical type of genus g. Let I ⊂
{1, . . . , n} be a proper subset of cardinality ≥ 2 consisting of (−2)-indices such that
there does not exist a nonempty proper subset I ′ ⊂ I with ai′i = 0 for i′ ∈ I,
i ∈ I \ I ′. Then up to reordering the mi’s, aij’s, wi’s for i, j ∈ I are as listed in
Lemmas 5.1, 5.2, 5.3, 5.4, 5.5, 5.7, 5.8, 5.9, 5.10, 5.13, or 5.14.

Proof. This follows from the discussion above; see discussion at the start of Section
5. □

6. Classification of minimal type for genus zero and one

0C8R The title of the section explains it all.

Lemma 6.1 (Genus zero).0C8S The only minimal numerical type of genus zero is
n = 1, m1 = 1, a11 = 0, w1 = 1, g1 = 0.

Proof. Follows from Lemmas 3.13 and 3.5. □

Lemma 6.2 (Genus one).0C8T The minimal numerical types of genus one are up to
equivalence

https://stacks.math.columbia.edu/tag/0C8N
https://stacks.math.columbia.edu/tag/0C8P
https://stacks.math.columbia.edu/tag/0C8Q
https://stacks.math.columbia.edu/tag/0C8S
https://stacks.math.columbia.edu/tag/0C8T
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(1)0C8U n = 1, a11 = 0, g1 = 1, m1, w1 ≥ 1 arbitrary,
(2)0C8V n = 2, and mi, aij , wi, gi given by(

m
m

)
,

(
−2w 2w
2w −2w

)
,

(
w
w

)
,

(
0
0

)
with w and m arbitrary,

(3)0C8W n = 2, and mi, aij , wi, gi given by(
2m
m

)
,

(
−2w 4w
4w −8w

)
,

(
w
4w

)
,

(
0
0

)
with w and m arbitrary,

(4)0C8X n = 3, and mi, aij , wi, gi given bymm
m

 ,

−2w w w
w −2w w
w w −2w

 ,

ww
w

 ,

0
0
0


with w and m arbitrary,

(5)0C8Y n = 3, and mi, aij , wi, gi given by m
2m
m

 ,

−2w w 0
w −2w 3w
0 3w −6w

 ,

 w
w
3w

 ,

0
0
0


with w and m arbitrary,

(6)0C8Z n = 3, and mi, aij , wi, gi given by m
2m
3m

 ,

−6w 3w 0
3w −6w 3w
0 3w −2w

 ,

3w
3w
w

 ,

0
0
0


with w and m arbitrary,

(7)0C90 n = 3, and mi, aij , wi, gi given by2m
2m
m

 ,

−2w 2w 0
2w −4w 4w
0 4w −8w

 ,

 w
2w
4w

 ,

0
0
0


with w and m arbitrary,

(8)0C91 n = 3, and mi, aij , wi, gi given bymm
m

 ,

−2w 2w 0
2w −4w 2w
0 2w −2w

 ,

 w
2w
w

 ,

0
0
0


with w and m arbitrary,

(9)0C92 n = 3, and mi, aij , wi, gi given by m
2m
m

 ,

−4w 2w 0
2w −2w 2w
0 2w −4w

 ,

2w
w
2w

 ,

0
0
0


with w and m arbitrary,
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(10)0C93 n = 4, and mi, aij , wi, gi given by
m
m
m
m

 ,


−2w w 0 w
w −2w w 0
0 w −2w w
w 0 w −2w

 ,


w
w
w
w

 ,


0
0
0
0


with w and m arbitrary,

(11)0C94 n = 4, and mi, aij , wi, gi given by
2m
2m
2m
m

 ,


−2w 2w 0 0
2w −4w 2w 0
0 2w −4w 4w
0 0 4w −8w

 ,


w
2w
2w
4w

 ,


0
0
0
0


with w and m arbitrary,

(12)0C95 n = 4, and mi, aij , wi, gi given by
m
m
m
m

 ,


−2w 2w 0 0
2w −4w 2w 0
0 2w −4w 2w
0 0 2w −2w

 ,


w
2w
2w
w

 ,


0
0
0
0


with w and m arbitrary,

(13)0C96 n = 4, and mi, aij , wi, gi given by
m
2m
2m
m

 ,


−4w 2w 0 0
2w −2w w 0
0 w −2w 2w
0 0 2w −4w

 ,


2w
w
w
2w

 ,


0
0
0
0


with w and m arbitrary,

(14)0C97 n = 4, and mi, aij , wi, gi given by
2m
m
m
m

 ,


−2w w w 2w
w −2w 0 0
w 0 −2w 0
2w 0 0 −4w

 ,


w
w
w
2w

 ,


0
0
0
0


with w and m arbitrary,

(15)0C98 n = 4, and mi, aij , wi, gi given by
2m
m
m
2m

 ,


−4w 2w 2w 2w
2w −4w 0 0
2w 0 −4w 0
2w 0 0 −2w

 ,


2w
2w
2w
w

 ,


0
0
0
0


with w and m arbitrary,

(16)0C99 n = 5, and mi, aij , wi, gi given by
m
m
m
m
m

 ,


−2w w 0 0 w
w −2w w 0 0
0 w −2w w 0
0 0 w −2w w
w 0 0 w −2w

 ,


w
w
w
w
w

 ,


0
0
0
0
0


with w and m arbitrary,
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(17)0C9A n = 5, and mi, aij , wi, gi given by
m
2m
3m
2m
m

 ,


−2w w 0 0 0
w −2w w 0 0
0 w −2w 2w 0
0 0 2w −4w 2w
0 0 0 2w −4w

 ,


w
w
w
2w
2w

 ,


0
0
0
0
0


with w and m arbitrary,

(18)0C9B n = 5, and mi, aij , wi, gi given by
m
2m
3m
4m
2m

 ,


−4w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 0
0 0 2w −2w w
0 0 0 w −2w

 ,


2w
2w
2w
w
w

 ,


0
0
0
0
0


with w and m arbitrary,

(19)0C9C n = 5, and mi, aij , wi, gi given by
2m
2m
2m
2m
m

 ,


−2w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 0
0 0 2w −4w 4w
0 0 0 4w −8w

 ,


w
2w
2w
2w
4w

 ,


0
0
0
0
0


with w and m arbitrary,

(20)0C9D n = 5, and mi, aij , wi, gi given by
m
m
m
m
m

 ,


−2w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 0
0 0 2w −4w 2w
0 0 0 2w −2w

 ,


w
2w
2w
2w
w

 ,


0
0
0
0
0


with w and m arbitrary,

(21)0C9E n = 5, and mi, aij , wi, gi given by
m
2m
2m
2m
m

 ,


−4w 2w 0 0 0
2w −2w w 0 0
0 w −2w w 0
0 0 w −2w 2w
0 0 0 2w −4w

 ,


2w
w
w
w
2w

 ,


0
0
0
0
0


with w and m arbitrary,

(22)0C9F n = 5, and mi, aij , wi, gi given by
2m
m
m
m
m

 ,


−2w w w w w
w −2w 0 0 0
w 0 −2w 0 0
w 0 0 −2w 0
w 0 0 0 −2w

 ,


w
w
w
w
w

 ,


0
0
0
0
0


with w and m arbitrary,



SEMISTABLE REDUCTION 29

(23)0C9G n = 5, and mi, aij , wi, gi given by
m
2m
2m
m
m

 ,


−4w 2w 0 0 0
2w −2w w 0 0
0 w −2w w w
0 0 w −2w 0
0 0 w 0 −2w

 ,


2w
w
w
w
w

 ,


0
0
0
0
0


with w and m arbitrary,

(24)0C9H n = 5, and mi, aij , wi, gi given by
2m
2m
2m
m
m

 ,


−2w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 2w
0 0 2w −4w 0
0 0 2w 0 −4w

 ,


w
2w
2w
2w
2w

 ,


0
0
0
0
0


with w and m arbitrary,

(25)0C9I n ≥ 6 and we have an n-cycle generalizing (16):
(a) m1 = . . . = mn = m,
(b) a12 = . . . = a(n−1)n = w, a1n = w, and for other i < j we have

aij = 0,
(c) w1 = . . . = wn = w

with w and m arbitrary,
(26)0C9J n ≥ 6 and we have a chain generalizing (19):

(a) m1 = . . . = mn−1 = 2m, mn = m,
(b) a12 = . . . = a(n−2)(n−1) = 2w, a(n−1)n = 4w, and for other i < j we

have aij = 0,
(c) w1 = w, w2 = . . . = wn−1 = 2w, wn = 4w

with w and m arbitrary,
(27)0C9K n ≥ 6 and we have a chain generalizing (20):

(a) m1 = . . . = mn = m,
(b) a12 = . . . = a(n−1)n = w, and for other i < j we have aij = 0,
(c) w1 = w, w2 = . . . = wn−1 = 2w, wn = w

with w and m arbitrary,
(28)0C9L n ≥ 6 and we have a chain generalizing (21):

(a) m1 = w, w2 = . . . = mn−1 = 2m, mn = m,
(b) a12 = 2w, a23 = . . . = a(n−2)(n−1) = w, a(n−1)n = 2w, and for other

i < j we have aij = 0,
(c) w1 = 2w, w2 = . . . = wn−1 = w, wn = 2w

with w and m arbitrary,
(29)0C9M n ≥ 6 and we have a type generalizing (23):

(a) m1 = m, m2 = . . . = mn−3 = 2m, mn−1 = mn = m,
(b) a12 = 2w, a23 = . . . = a(n−2)(n−1) = w, a(n−2)n = w, and for other

i < j we have aij = 0,
(c) w1 = 2w, w2 = . . . = wn = w

with w and m arbitrary,
(30)0C9N n ≥ 6 and we have a type generalizing (24):

(a) m1 = . . . = mn−3 = 2m, mn−1 = mn = m,
(b) a12 = . . . = a(n−2)(n−1) = 2w, a(n−2)n = 2w, and for other i < j we

have aij = 0,
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(c) w1 = w, w2 = . . . = wn = 2w
with w and m arbitrary,

(31)0C9P n ≥ 6 and we have a type generalizing (22):
(a) m1 = m2 = m, m3 = . . . = mn−2 = 2m, mn−1 = mn = m,
(b) a13 = w, a23 = . . . = a(n−2)(n−1) = w, a(n−2)n = w, and for other

i < j we have aij = 0,
(c) w1 = . . . = wn = w,

with w and m arbitrary,
(32)0C9Q n = 7, and mi, aij , wi, gi given by

m
2m
3m
m
2m
m
2m


,



−2w w 0 0 0 0 0
w −2w w 0 0 0 0
0 w −2w 0 w 0 w
0 0 0 −2w w 0 0
0 0 w w −2w 0 0
0 0 0 0 0 −2w w
0 0 w 0 0 w −2w


,



w
w
w
w
w
w
w


,



0
0
0
0
0
0
0


with w and m arbitrary,

(33)0C9R n = 8, and mi, aij , wi, gi given by

m
2m
3m
4m
3m
2m
m
2m


,



−2w w 0 0 0 0 0 0
w −2w w 0 0 0 0 0
0 w −2w w 0 0 0 0
0 0 w −2w w 0 0 w
0 0 0 w −2w w 0 0
0 0 0 0 w −2w w 0
0 0 0 0 0 w −2w 0
0 0 0 w 0 0 0 −2w


,



w
w
w
w
w
w
w
w


,



0
0
0
0
0
0
0
0


with w and m arbitrary,

(34)0C9S n = 9, and mi, aij , wi, gi given by

m
2m
3m
4m
5m
6m
4m
2m
3m


,



−2w w 0 0 0 0 0 0 0
w −2w w 0 0 0 0 0 0
0 w −2w w 0 0 0 0 0
0 0 w −2w w 0 0 0 0
0 0 0 w −2w w 0 0 0
0 0 0 0 w −2w w 0 w
0 0 0 0 0 w −2w w 0
0 0 0 0 0 0 w −2w 0
0 0 0 0 0 w 0 0 −2w


,



w
w
w
w
w
w
w
w
w


,



0
0
0
0
0
0
0
0
0


with w and m arbitrary.

Proof. This is proved in Section 5. See discussion at the start of Section 5. □

7. Bounding invariants of numerical types

0C9T In our proof of semistable reduction for curves we’ll use a bound on Picard groups
of numerical types of genus g which we will prove in this section.

Lemma 7.1.0C9U Let n,mi, aij , wi, gi be a numerical type of genus g. Given i, j with
aij > 0 we have miaij ≤ mj |ajj | and miwi ≤ mj |ajj |.
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Proof. For every index j we have mjajj +
∑

i ̸=j miaij = 0. Thus if we have an
upper bound on |ajj | and mj , then we also get an upper bound on the nonzero (and
hence positive) aij as well as mi. Recalling that wi divides aij , the reader easily
sees the lemma is correct. □

Lemma 7.2.0C9V Fix g ≥ 2. For every minimal numerical type n,mi, aij , wi, gi of
genus g with n > 1 we have

(1) the set J ⊂ {1, . . . , n} of non-(−2)-indices has at most 2g − 2 elements,
(2) for j ∈ J we have gj < g,
(3) for j ∈ J we have mj |ajj | ≤ 6g − 6, and
(4) for j ∈ J and i ∈ {1, . . . , n} we have miaij ≤ 6g − 6.

Proof. Recall that g = 1 +
∑
mj(wj(gj − 1) − 1

2ajj). For j ∈ J the contribution
mj(wj(gj − 1) − 1

2ajj) to the genus g is > 0 and hence ≥ 1/2. This uses Lemma
3.7, Definition 3.8, Definition 3.12, Lemma 3.15, and Definition 3.16; we will use
these results without further mention in the following. Thus J has at most 2(g−1)
elements. This proves (1).
Recall that −aii > 0 for all i by Lemma 3.6. Hence for j ∈ J the contribution
mj(wj(gj − 1)− 1

2ajj) to the genus g is > mjwj(gj − 1). Thus
g − 1 > mjwj(gj − 1)⇒ gj < (g − 1)/mjwj + 1

This indeed implies gj < g which proves (2).
For j ∈ J if gj > 0, then the contribution mj(wj(gj − 1) − 1

2ajj) to the genus g
is ≥ − 1

2mjajj and we immediately conclude that mj |ajj | ≤ 2(g − 1). Otherwise
ajj = −kwj for some integer k ≥ 3 (because j ∈ J) and we get

mjwj(−1 + k

2 ) ≤ g − 1⇒ mjwj ≤
2(g − 1)
k − 2

Plugging this back into ajj = −kmjwj we obtain

mj |ajj | ≤ 2(g − 1) k

k − 2 ≤ 6(g − 1)

This proves (3).
Part (4) follows from Lemma 7.1 and (3). □

Lemma 7.3.0C9W Fix g ≥ 2. For every minimal numerical type n,mi, aij , wi, gi of
genus g we have mi|aij | ≤ 768g.

Proof. By Lemma 7.1 it suffices to show mi|aii| ≤ 768g for all i. Let J ⊂ {1, . . . , n}
be the set of non-(−2)-indices as in Lemma 7.2. Observe that J is nonempty as
g ≥ 2. Also mj |ajj | ≤ 6g for j ∈ J by the lemma.
Suppose we have j ∈ J and a sequence i1, . . . , i7 of (−2)-indices such that aji1

and ai1i2 , ai2i3 , ai3i4 , ai4i5 , ai5i6 , and ai6i7 are nonzero. Then we see from Lemma
7.1 that mi1wi1 ≤ 6g and mi1aji1 ≤ 6g. Because i1 is a (−2)-index, we have
ai1i1 = −2wi1 and we conclude that mi1 |ai1i1 | ≤ 12g. Repeating the argument we
conclude that mi2wi2 ≤ 12g and mi2ai1i2 ≤ 12g. Then mi2 |ai2i2 | ≤ 24g and so on.
Eventually we conclude that mik

|aikik
| ≤ 2k(6g) ≤ 768g for k = 1, . . . , 7.

Let I ⊂ {1, . . . , n} \ J be a maximal connected subset. In other words, there does
not exist a nonempty proper subset I ′ ⊂ I such that ai′i = 0 for i′ ∈ I ′ and
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i ∈ I \ I ′ and I is maximal with this property. In particular, since a numerical
type is connected by definition, we see that there exists a j ∈ J and i ∈ I with
aij > 0. Looking at the classification of such I in Proposition 5.17 and using the
result of the previous paragraph, we see that wi|aii| ≤ 768g for all i ∈ I unless I is
as described in Lemma 5.8 or Lemma 5.9. Thus we may assume the nonvanishing
of aii′ , i, i′ ∈ I has either the shape

• • • • • •
(which has 3 subcases as detailed in Lemma 5.8) or the shape

• • • • • •

•
We will prove the bound holds for the first subcase of Lemma 5.8 and leave the
other cases to reader (the argument is almost exactly the same in those cases).
After renumbering we may assume I = {1, . . . , t} ⊂ {1, . . . , n} and there is an
integer w such that

w = w1 = . . . = wt = a12 = . . . = a(t−1)t = −1
2ai1i2 = . . . = −1

2a(t−1)t

The equalities aiimi +
∑

j ̸=i aijmj = 0 imply that we have
2m2 ≥ m1 +m3, . . . , 2mt−1 ≥ mt−2 +mt

Equality holds in 2mi ≥ mi−1 +mi+1 if and only if i does not “meet” any indices
besides i − 1 and i + 1. And if i does meet another index, then this index is in J
(by maximality of I). In particular, the map {1, . . . , t} → Z, i 7→ mi is concave.
Let m = max(mi, i ∈ {1, . . . , t}). Then mi|aii| ≤ 2mw for i ≤ t and our goal is to
show that 2mw ≤ 768g. Let s, resp. s′ in {1, . . . , t} be the smallest, resp. biggest
index with ms = m = ms′ . By concavity we see that mi = m for s ≤ i ≤ s′.
If s > 1, then we do not have equality in 2ms ≥ ms−1 + ms+1 and we see that
s meets an index from J . In this case 2mw ≤ 12g by the result of the second
paragraph of the proof. Similarly, if s′ < t, then s′ meets an index from J and we
get 2mw ≤ 12g as well. But if s = 1 and s′ = t, then we conclude that aij = 0
for all j ∈ J and i ∈ {2, . . . , t − 1}. But as we’ve seen that there must be a pair
(i, j) ∈ I × J with aij > 0, we conclude that this happens either with i = 1 or with
i = t and we conclude 2mw ≤ 12g in the same manner as before (as m1 = m = mt

in this case). □

Proposition 7.4.0C9X Let g ≥ 2. For every numerical type T of genus g and prime
number ℓ > 768g we have

dimFℓ
Pic(T )[ℓ] ≤ g

where Pic(T ) is as in Definition 4.1. If T is minimal, then we even have
dimFℓ

Pic(T )[ℓ] ≤ gtop ≤ g
where gtop as in Definition 3.11.

Proof. Say T is given by n,mi, aij , wi, gi. If T is not minimal, then there exists a
(−1)-index. After replacing T by an equivalent type we may assume n is a (−1)-
index. Applying Lemma 4.4 we find Pic(T ) ⊂ Pic(T ′) where T ′ is a numerical type
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of genus g (Lemma 3.9) with n − 1 indices. Thus we conclude by induction on n
provided we prove the lemma for minimal numerical types.

Assume that T is a minimal numerical type of genus ≥ 2. Observe that gtop ≤ g by
Lemma 3.14. If A = (aij) then since Pic(T ) ⊂ Coker(A) by Lemma 4.3. Thus it
suffices to prove the lemma for Coker(A). By Lemma 7.3 we see that mi|aij | ≤ 768g
for all i, j. Hence the result by Lemma 2.6. □

8. Models

0C2R In this chapter R will be a discrete valuation ring and K will be its fraction field.
If needed we will denote π ∈ R a uniformizer and k = R/(π) its residue field.

Let V be an algebraic K-scheme (Varieties, Definition 20.1). A model for V will
mean a flat finite type6 morphism X → Spec(R) endowed with an isomorphism
V → XK = X ×Spec(R) Spec(K). We often will identify V and the generic fibre
XK of X and just write V = XK . The special fibre is Xk = X ×Spec(R) Spec(k).
A morphism of models X → X ′ for V is a morphism X → X ′ of schemes over R
which induces the identity on V .

We will say X is a proper model of V if X is a model of V and the structure
morphism X → Spec(R) is proper. Similarly for separated models, smooth models,
and add more here. We will say X is a regular model of V if X is a model of V
and X is a regular scheme. Similarly for normal models, reduced models, and add
more here.

Let R ⊂ R′ be an extension of discrete valuation rings (More on Algebra, Definition
111.1). This induces an extension K ′/K of fraction fields. Given an algebraic
scheme V over K, denote V ′ the base change V ×Spec(K) Spec(K ′). Then there is
a functor

models for V over R −→ models for V ′ over R′

sending X to X ×Spec(R) Spec(R′).

Lemma 8.1.0C2S Let V1 → V2 be a closed immersion of algebraic schemes over K. If
X2 is a model for V2, then the scheme theoretic image of V1 → X2 is a model for
V1.

Proof. Using Morphisms, Lemma 6.3 and Example 6.4 this boils down to the
following algebra statement. Let A1 be a finite type R-algebra flat over R. Let
A1 ⊗R K → B2 be a surjection. Then A2 = A1/Ker(A1 → B2) is a finite type
R-algebra flat over R such that B2 = A2 ⊗R K. We omit the detailed proof; use
More on Algebra, Lemma 22.11 to prove that A2 is flat. □

Lemma 8.2.0C2T Let X be a model of a geometrically normal variety V over K. Then
the normalization ν : Xν → X is finite and the base change of Xν to the completion
R∧ is the normalization of the base change of X. Moreover, for each x ∈ Xν the
completion of OXν ,x is normal.

6Occasionally it is useful to allow models to be locally of finite type over R, but we’ll cross
that bridge when we come to it.
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Proof. Observe that R∧ is a discrete valuation ring (More on Algebra, Lemma
43.5). Set Y = X ×Spec(R) Spec(R∧). Since R∧ is a discrete valuation ring, we see
that

Y \ Yk = Y ×Spec(R∧) Spec(K∧) = V ×Spec(K) Spec(K∧)
where K∧ is the fraction field of R∧. Since V is geometrically normal, we find that
this is a normal scheme. Hence the first part of the lemma follows from Resolution
of Surfaces, Lemma 11.6.
To prove the second part we may assume X and Y are normal (by the first part). If
x is in the generic fibre, then OX,x = OV,x is a normal local ring essentially of finite
type over a field. Such a ring is excellent (More on Algebra, Proposition 52.3). If x
is a point of the special fibre with image y ∈ Y , then O∧

X,x = O∧
Y,y by Resolution of

Surfaces, Lemma 11.1. In this case OY,y is a excellent normal local domain by the
same reference as before as R∧ is excellent. If B is a excellent local normal domain,
then the completion B∧ is normal (as B → B∧ is regular and More on Algebra,
Lemma 42.2 applies). This finishes the proof. □

Lemma 8.3.0C2U Let X be a model of a smooth curve C over K. Then there exists a
resolution of singularities of X and any resolution is a model of C.

Proof. We check condition (4) of Lipman’s theorem (Resolution of Surfaces, The-
orem 14.5) hold. This is clear from Lemma 8.2 except for the statement that Xν

has finitely many singular points. To see this we can use that R is J-2 by More
on Algebra, Proposition 48.7 and hence the nonsingular locus is open in Xν . Since
Xν is normal of dimension ≤ 2, the singular points are closed, hence closedness of
the singular locus means there are finitely many of them (as X is quasi-compact).
Observe that any resolution of X is a modification of X (Resolution of Surfaces,
Definition 14.1). This will be an isomorphism over the normal locus of X by Va-
rieties, Lemma 17.3. Since the set of normal points includes C = XK we conclude
any resolution is a model of C. □

Definition 8.4.0C2V Let C be a smooth projective curve over K with H0(C,OC) = K.
A minimal model will be a regular, proper model X for C such that X does not
contain an exceptional curve of the first kind (Resolution of Surfaces, Section 16).

Really such a thing should be called a minimal regular proper model or even a
relatively minimal regular projective model. But as long as we stick to models over
discrete valuation rings (as we will in this chapter), no confusion should arise.
Minimal models always exist (Proposition 8.6) and are unique when the genus is
> 0 (Lemma 10.1).

Lemma 8.5.0CD9 Let C be a smooth projective curve over K with H0(C,OC) = K.
If X is a regular proper model for C, then there exists a sequence of morphisms

X = Xm → Xm−1 → . . .→ X1 → X0

of proper regular models of C, such that each morphism is a contraction of an
exceptional curve of the first kind, and such that X0 is a minimal model.

Proof. By Resolution of Surfaces, Lemma 16.11 we see that X is projective over
R. Hence X has an ample invertible sheaf by More on Morphisms, Lemma 50.1
(we will use this below). Let E ⊂ X be an exceptional curve of the first kind. See
Resolution of Surfaces, Section 16. By Resolution of Surfaces, Lemma 16.8 we can
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contract E by a morphism X → X ′ such that X ′ is regular and is projective over
R. Clearly, the number of irreducible components of X ′

k is exactly one less than
the number of irreducible components of Xk. Thus we can only perform a finite
number of these contractions until we obtain a minimal model. □

Proposition 8.6.0C2W Let C be a smooth projective curve over K with H0(C,OC) =
K. A minimal model exists.

Proof. Choose a closed immersion C → Pn
K . Let X be the scheme theoretic image

of C → Pn
R. Then X → Spec(R) is a projective model of C by Lemma 8.1. By

Lemma 8.3 there exists a resolution of singularities X ′ → X and X ′ is a model for
C. Then X ′ → Spec(R) is proper as a composition of proper morphisms. Then we
may apply Lemma 8.5 to obtain a minimal model. □

9. The geometry of a regular model

0C5Y In this section we describe the geometry of a proper regular model X of a smooth
projective curve C over K with H0(C,OC) = K.

Lemma 9.1.0C5Z Let X be a regular model of a smooth curve C over K.
(1) the special fibre Xk is an effective Cartier divisor on X,
(2) each irreducible component Ci of Xk is an effective Cartier divisor on X,
(3) Xk =

∑
miCi (sum of effective Cartier divisors) where mi is the multiplic-

ity of Ci in Xk,
(4) OX(Xk) ∼= OX .

Proof. Recall that R is a discrete valuation ring with uniformizer π and residue
field k = R/(π). Because X → Spec(R) is flat, the element π is a nonzerodivisor
affine locally on X (see More on Algebra, Lemma 22.11). Thus if U = Spec(A) ⊂ X
is an affine open, then

XK ∩ U = Uk = Spec(A⊗R k) = Spec(A/πA)
and π is a nonzerodivisor in A. Hence Xk = V (π) is an effective Cartier divisor by
Divisors, Lemma 13.2. Hence (1) is true.
The discussion above shows that the pair (OX(Xk), 1) is isomorphic to the pair
(OX , π) which proves (4).
By Divisors, Lemma 15.11 there exist pairwise distinct integral effective Cartier
divisors Di ⊂ X and integers ai ≥ 0 such that Xk =

∑
aiDi. We can throw out

those divisors Di such that ai = 0. Then it is clear (from the definition of addition
of effective Cartier divisors) that Xk =

⋃
Di set theoretically. Thus Ci = Di are the

irreducible components of Xk which proves (2). Let ξi be the generic point of Ci.
Then OX,ξi

is a discrete valuation ring (Divisors, Lemma 15.4). The uniformizer
πi ∈ OX,ξi is a local equation for Ci and the image of π is a local equation for Xk.
Since Xk =

∑
aiCi we see that π and πai

i generate the same ideal in OX,ξi
. On

the other hand, the multiplicity of Ci in Xk is
mi = lengthOCi,ξi

OXk,ξi
= lengthOCi,ξi

OX,ξi
/(π) = lengthOCi,ξi

OX,ξi
/(πai

i ) = ai

See Chow Homology, Definition 9.2. Thus ai = mi and (3) is proved. □

Lemma 9.2.0C60 Let X be a regular model of a smooth curve C over K. Then
(1) X → Spec(R) is a Gorenstein morphism of relative dimension 1,
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(2) each of the irreducible components Ci of Xk is Gorenstein.

Proof. Since X → Spec(R) is flat, to prove (1) it suffices to show that the fibres are
Gorenstein (Duality for Schemes, Lemma 25.3). The generic fibre is a smooth curve,
which is regular and hence Gorenstein (Duality for Schemes, Lemma 24.3). For the
special fibre Xk we use that it is an effective Cartier divisor on a regular (hence
Gorenstein) scheme and hence Gorenstein for example by Dualizing Complexes,
Lemma 21.6. The curves Ci are Gorenstein by the same argument. □

Situation 9.3.0C61 Let R be a discrete valuation ring with fraction field K, residue
field k, and uniformizer π. Let C be a smooth projective curve over K with
H0(C,OC) = K. Let X be a regular proper model of C. Let C1, . . . , Cn be the
irreducible components of the special fibre Xk. Write Xk =

∑
miCi as in Lemma

9.1.

Lemma 9.4.0C62 In Situation 9.3 the special fibre Xk is connected.

Proof. Consequence of More on Morphisms, Lemma 53.6. □

Lemma 9.5.0C63 In Situation 9.3 there is an exact sequence

0→ Z→ Z⊕n → Pic(X)→ Pic(C)→ 0

where the first map sends 1 to (m1, . . . ,mn) and the second maps sends the ith basis
vector to OX(Ci).

Proof. Observe that C ⊂ X is an open subscheme. The restriction map Pic(X)→
Pic(C) is surjective by Divisors, Lemma 28.3. Let L be an invertible OX -module
such that there is an isomorphism s : OC → L|C . Then s is a regular meromorphic
section of L and we see that divL(s) =

∑
aiCi for some ai ∈ Z (Divisors, Definition

27.4). By Divisors, Lemma 27.6 (and the fact that X is normal) we conclude that
L = OX(

∑
aiCi). Finally, suppose that OX(

∑
aiCi) ∼= OX . Then there exists

an element g of the function field of X with divX(g) =
∑
aiCi. In particular the

rational function g has no zeros or poles on the generic fibre C of X. Since C is
a normal scheme this implies g ∈ H0(C,OC) = K. Thus g = πau for some a ∈ Z
and u ∈ R∗. We conclude that divX(g) = a

∑
miCi and the proof is complete. □

In Situation 9.3 for every invertible OX -module L and every i we get an integer

deg(L|Ci
) = χ(Ci,L|Ci

)− χ(Ci,OCi
)

by taking the degree of the restriction of L to Ci relative to the ground field k7 as
in Varieties, Section 44.

Lemma 9.6.0C64 In Situation 9.3 given L an invertible OX-module and a = (a1, . . . , an) ∈
Z⊕n we define

⟨a,L⟩ =
∑

ai deg(L|Ci
)

Then ⟨, ⟩ is bilinear and for b = (b1, . . . , bn) ∈ Z⊕n we have〈
a,OX(

∑
biCi)

〉
=

〈
b,OX(

∑
aiCi)

〉
7Observe that it may happen that the field κi = H0(Ci, OCi

) is strictly bigger than k. In this
case every invertible module on Ci has degree (as defined above) divisible by [κi : k].
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Proof. Bilinearity is immediate from the definition and Varieties, Lemma 44.7. To
prove symmetry it suffices to assume a and b are standard basis vectors in Z⊕n.
Hence it suffices to prove that

deg(OX(Cj)|Ci
) = deg(OX(Ci)|Cj

)

for all 1 ≤ i, j ≤ n. If i = j there is nothing to prove. If i ̸= j, then the canonical
section 1 of OX(Cj) restricts to a nonzero (hence regular) section of OX(Cj)|Ci

whose zero scheme is exactly Ci ∩ Cj (scheme theoretic intersection). In other
words, Ci ∩ Cj is an effective Cartier divisor on Ci and

deg(OX(Cj)|Ci
) = deg(Ci ∩ Cj)

by Varieties, Lemma 44.9. By symmetry we obtain the same (!) formula for the
other side and the proof is complete. □

In Situation 9.3 it is often convenient to think of Z⊕n as the free abelian group on
the set {C1, . . . , Cn}. We will indicate an element of this group as

∑
aiCi; here we

think of this as a formal sum although equivalently we may (and we sometimes do)
think of such a sum as a Weil divisor on X supported on the special fibre Xk. Now
Lemma 9.6 allows us to define a symmetric bilinear form ( · ) on this free abelian
group by the rule

(9.6.1)0C65
(∑

aiCi ·
∑

bjCj

)
=

〈
a,OX(

∑
bjCj)

〉
=

〈
b,OX(

∑
aiCi)

〉
We will prove some properties of this bilinear form.

Lemma 9.7.0C66 In Situation 9.3 the symmetric bilinear form (9.6.1) has the following
properties

(1) (Ci · Cj) ≥ 0 if i ̸= j with equality if and only if Ci ∩ Cj = ∅,
(2) (

∑
miCi · Cj) = 0,

(3) there is no nonempty proper subset I ⊂ {1, . . . , n} such that (Ci · Cj) = 0
for i ∈ I, j ̸∈ I.

(4) (
∑
aiCi ·

∑
aiCi) ≤ 0 with equality if and only if there exists a q ∈ Q such

that ai = qmi for i = 1, . . . , n,

Proof. In the proof of Lemma 9.6 we saw that (Ci · Cj) = deg(Ci ∩ Cj) if i ̸= j.
This is ≥ 0 and > 0 if and only if Ci ∩ Cj ̸= ∅. This proves (1).

Proof of (2). This is true because by Lemma 9.1 the invertible sheaf associated to∑
miCi is trivial and the trivial sheaf has degree zero.

Proof of (3). This is expressing the fact that Xk is connected (Lemma 9.4) via the
description of the intersection products given in the proof of (1).

Part (4) follows from (1), (2), and (3) by Lemma 2.3. □

Lemma 9.8.0C67 In Situation 9.3 set d = gcd(m1, . . . ,mn) and let D =
∑

(mi/d)Ci

as an effective Cartier divisor. Then OX(D) has order dividing d in Pic(X) and
CD/X an invertible OD-module of order dividing d in Pic(D).

Proof. We have
OX(D)⊗d = OX(dD) = OX(Xk) = OX

by Lemma 9.1. We conclude as CD/X is the pullback of OX(−D). □
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Lemma 9.9.0C68 [AW71, Lemma 2.6]In Situation 9.3 let d = gcd(m1, . . . ,mn). Let D =
∑

(mi/d)Ci

as an effective Cartier divisor. Then there exists a sequence of effective Cartier
divisors

(Xk)red = Z0 ⊂ Z1 ⊂ . . . ⊂ Zm = D

such that Zj = Zj−1 + Cij for some ij ∈ {1, . . . , n} for j = 1, . . . ,m and such that
H0(Zj ,OZj ) is a field finite over k for j = 0, . . .m.

Proof. The reduction Dred = (Xk)red =
∑
Ci is connected (Lemma 9.4) and

proper over k. Hence H0(Dred,O) is a field and a finite extension of k by Varieties,
Lemma 9.3. Thus the result for Z0 = Dred = (Xk)red is true. Suppose that we
have already constructed

(Xk)red = Z0 ⊂ Z1 ⊂ . . . ⊂ Zt ⊂ D
with Zj = Zj−1 + Cij

for some ij ∈ {1, . . . , n} for j = 1, . . . , t and such that
H0(Zj ,OZj

) is a field finite over k for j = 0, . . . , t. Write Zt =
∑
aiCi with

1 ≤ ai ≤ mi/d. If ai = mi/d for all i, then Zt = D and the lemma is proved. If
not, then ai < mi/d for some i and it follows that (Zt · Zt) < 0 by Lemma 9.7.
This means that (D−Zt ·Zt) > 0 because (D ·Zt) = 0 by the lemma. Thus we can
find an i with ai < mi/d such that (Ci · Zt) > 0. Set Zt+1 = Zt + Ci and it+1 = i.
Consider the short exact sequence

0→ OX(−Zt)|Ci
→ OZt+1 → OZt

→ 0
of Divisors, Lemma 14.3. By our choice of i we see that OX(−Zt)|Ci

is an invertible
sheaf of negative degree on the proper curve Ci, hence it has no nonzero global
sections (Varieties, Lemma 44.12). We conclude that H0(OZt+1) ⊂ H0(OZt) is
a field (this is clear but also follows from Algebra, Lemma 36.18) and a finite
extension of k. Thus we have extended the sequence. Since the process must stop,
for example because t ≤

∑
(mi/d− 1), this finishes the proof. □

Lemma 9.10.0C69 [AW71, Lemma 2.6]In Situation 9.3 let d = gcd(m1, . . . ,mn). Let D =
∑

(mi/d)Ci as
an effective Cartier divisor on X. Then

1− gC = d[κ : k](1− gD)
where gC is the genus of C, gD is the genus of D, and κ = H0(D,OD).

Proof. By Lemma 9.9 we see that κ is a field and a finite extension of k. Since also
H0(C,OC) = K we see that the genus of C and D are defined (see Algebraic Curves,
Definition 8.1) and we have gC = dimK H1(C,OC) and gD = dimκ H

1(D,OD). By
Derived Categories of Schemes, Lemma 32.2 we have

1− gC = χ(C,OC) = χ(Xk,OXk
) = dimk H

0(Xk,OXk
)− dimk H

1(Xk,OXk
)

We claim that
χ(Xk,OXk

) = dχ(D,OD)
This will prove the lemma because

χ(D,OD) = dimk H
0(D,OD)− dimk H

1(D,OD) = [κ : k](1− gD)
Observe that Xk = dD as an effective Cartier divisor. To prove the claim we prove
by induction on 1 ≤ r ≤ d that χ(rD,OrD) = rχ(D,OD). The base case r = 1 is
trivial. If 1 ≤ r < d, then we consider the short exact sequence

0→ OX(rD)|D → O(r+1)D → OrD → 0
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of Divisors, Lemma 14.3. By additivity of Euler characteristics (Varieties, Lemma
33.2) it suffices to prove that χ(D,OX(rD)|D) = χ(D,OD). This is true because
OX(rD)|D is a torsion element of Pic(D) (Lemma 9.8) and because the degree of
a line bundle is additive (Varieties, Lemma 44.7) hence zero for torsion invertible
sheaves. □

Lemma 9.11.0C6A In Situation 9.3 given a pair of indices i, j such that Ci and Cj

are exceptional curves of the first kind and Ci ∩Cj ̸= ∅, then n = 2, m1 = m2 = 1,
C1 ∼= P1

k, C2 ∼= P1
k, C1 and C2 meet in a k-rational point, and C has genus 0.

Proof. Choose isomorphisms Ci = P1
κi

and Cj = P1
κj

. The scheme Ci ∩ Cj is a
nonempty effective Cartier divisor in both Ci and Cj . Hence

(Ci · Cj) = deg(Ci ∩ Cj) ≥ max([κi : k], [κj : k])
The first equality was shown in the proof of Lemma 9.6. On the other hand, the
self intersection (Ci · Ci) is equal to the degree of OX(Ci) on Ci which is −[κi : k]
as Ci is an exceptional curve of the first kind. Similarly for Cj . By Lemma 9.7

0 ≥ (Ci + Cj)2 = −[κi : k] + 2(Ci · Cj)− [κj : k]
This implies that [κi : k] = deg(Ci∩Cj) = [κj : k] and that we have (Ci +Cj)2 = 0.
Looking at the lemma again we conclude that n = 2, {1, 2} = {i, j}, and m1 = m2.
Moreover, the scheme theoretic intersection Ci∩Cj consists of a single point p with
residue field κ and κi → κ ← κj are isomorphisms. Let D = C1 + C2 as effective
Cartier divisor on X. Observe that D is the scheme theoretic union of C1 and C2
(Divisors, Lemma 13.10) hence we have a short exact sequence

0→ OD → OC1 ⊕OC2 → Op → 0
by Morphisms, Lemma 4.6. Since we know the cohomology of Ci

∼= P1
κ (Cohomol-

ogy of Schemes, Lemma 8.1) we conclude from the long exact cohomology sequence
that H0(D,OD) = κ and H1(D,OD) = 0. By Lemma 9.10 we conclude

1− gC = d[κ : k](1− 0)
where d = m1 = m2. It follows that gC = 0 and d = m1 = m2 = 1 and κ = k. □

10. Uniqueness of the minimal model

0C9Y If the genus of the generic fibre is positive, then minimal models are unique (Lemma
10.1) and consequently have a suitable mapping property (Lemma 10.2).

Lemma 10.1.0C6B Let C be a smooth projective curve over K with H0(C,OC) = K
and genus > 0. There is a unique minimal model for C.

Proof. We have already proven the hard part of the lemma which is the existence
of a minimal model (whose proof relies on resolution of surface singularities), see
Proposition 8.6. To prove uniqueness, suppose that X and Y are two minimal mod-
els. By Resolution of Surfaces, Lemma 17.2 there exists a diagram of S-morphisms

X = X0 ← X1 ← . . .← Xn = Ym → . . .→ Y1 → Y0 = Y

where each morphism is a blowup in a closed point. The exceptional fibre of the
morphism Xn → Xn−1 is an exceptional curve of the first kind E. We claim
that E is contracted to a point under the morphism Xn = Ym → Y . If this
is true, then Xn → Y factors through Xn−1 by Resolution of Surfaces, Lemma
16.1. In this case the morphism Xn−1 → Y is still a sequence of contractions of
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exceptional curves by Resolution of Surfaces, Lemma 17.1. Hence by induction on
n we conclude. (The base case n = 0 means that there is a sequence of contractions
X = Ym → . . .→ Y1 → Y0 = Y ending with Y . However as X is a minimal model
it contains no exceptional curves of the first kind, hence m = 0 and X = Y .)

Proof of the claim. We will show by induction on m that any exceptional curve of
the first kind E ⊂ Ym is mapped to a point by the morphism Ym → Y . If m = 0
this is clear because Y is a minimal model. If m > 0, then either Ym → Ym−1
contracts E (and we’re done) or the exceptional fibre E′ ⊂ Ym of Ym → Ym−1 is
a second exceptional curve of the first kind. Since both E and E′ are irreducible
components of the special fibre and since gC > 0 by assumption, we conclude that
E∩E′ = ∅ by Lemma 9.11. Then the image of E in Ym−1 is an exceptional curve of
the first kind (this is clear because the morphism Ym → Ym−1 is an isomorphism in
a neighbourhood of E). By induction we see that Ym−1 → Y contracts this curve
and the proof is complete. □

Lemma 10.2.0C9Z Let C be a smooth projective curve over K with H0(C,OC) = K
and genus > 0. Let X be the minimal model for C (Lemma 10.1). Let Y be a
regular proper model for C. Then there is a unique morphism of models Y → X
which is a sequence of contractions of exceptional curves of the first kind.

Proof. The existence and properties of the morphism X → Y follows immediately
from Lemma 8.5 and the uniqueness of the minimal model. The morphism Y → X
is unique because C ⊂ Y is scheme theoretically dense and X is separated (see
Morphisms, Lemma 7.10). □

Example 10.3.0CA0 If the genus of C is 0, then minimal models are indeed nonunique.
Namely, consider the closed subscheme

X ⊂ P2
R

defined by T1T2−πT 2
0 = 0. More preciselyX is defined as Proj(R[T0, T1, T2]/(T1T2−

πT 2
0 )). Then the special fibre Xk is a union of two exceptional curves C1, C2 both

isomorphic to P1
k (exactly as in Lemma 9.11). Projection from (0 : 1 : 0) defines

a morphism X → P1
R contracting C2 and inducing an isomorphism of C1 with

the special fiber of P1
R. Projection from (0 : 0 : 1) defines a morphism X → P1

R

contracting C1 and inducing an isomorphism of C2 with the special fiber of P1
R.

More precisely, these morphisms correspond to the graded R-algebra maps

R[T0, T1] −→ R[T0, T1, T2]/(T1T2 − πT 2
0 )←− R[T0, T2]

In Lemma 12.4 we will study this phenomenon.

11. A formula for the genus

0CA1 There is one more restriction on the combinatorial structure coming from a proper
regular model.

Lemma 11.1.0CA2 In Situation 9.3 suppose we have an effective Cartier divisors
D,D′ ⊂ X such that D′ = D + Ci for some i ∈ {1, . . . , n} and D′ ⊂ Xk. Then

χ(Xk,OD′)− χ(Xk,OD) = χ(Xk,OX(−D)|Ci
) = −(D · Ci) + χ(Ci,OCi

)
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Proof. The second equality follows from the definition of the bilinear form ( · ) in
(9.6.1) and Lemma 9.6. To see the first equality we distinguish two cases. Namely,
if Ci ̸⊂ D, then D′ is the scheme theoretic union of D and Ci (by Divisors, Lemma
13.10) and we get a short exact sequence

0→ OD′ → OD ×OCi
→ OD∩Ci

→ 0
by Morphisms, Lemma 4.6. Since we also have an exact sequence

0→ OX(−D)|Ci
→ OCi

→ OD∩Ci
→ 0

(Divisors, Remark 14.11) we conclude that the claim holds by additivity of euler
characteristics (Varieties, Lemma 33.2). On the other hand, if Ci ⊂ D then we get
an exact sequence

0→ OX(−D)|Ci → OD′ → OD → 0
by Divisors, Lemma 14.3 and we immediately see the lemma holds. □

Lemma 11.2.0CA3 In Situation 9.3 we have

gC = 1 +
∑

i=1,...,n
mi

(
[κi : k](gi − 1)− 1

2(Ci · Ci)
)

where κi = H0(Ci,OCi), gi is the genus of Ci, and gC is the genus of C.

Proof. Our basic tool will be Derived Categories of Schemes, Lemma 32.2 which
shows that

1− gC = χ(C,OC) = χ(Xk,OXk
)

Choose a sequence of effective Cartier divisors
Xk = Dm ⊃ Dm−1 ⊃ . . . ⊃ D1 ⊃ D0 = ∅

such that Dj+1 = Dj +Cij
for each j. (It is clear that we can choose such a sequence

by decreasing one nonzero multiplicity of Dj+1 one step at a time.) Applying
Lemma 11.1 starting with χ(OD0) = 0 we get

1− gC = χ(Xk,OXk
)

=
∑

j

(
−(Dj · Cij ) + χ(Cij ,OCij

)
)

= −
∑

j
(Ci1 + Ci2 + . . .+ Cij−1 · Cij

) +
∑

j
χ(Cij

,OCij
)

= −1
2

∑
j ̸=j′

(Cij′ · Cij
) +

∑
miχ(Ci,OCi

)

= 1
2

∑
mi(Ci · Ci) +

∑
miχ(Ci,OCi

)

Perhaps the last equality deserves some explanation. Namely, since
∑

j Cij
=∑

miCi we have (
∑

j Cij
·
∑

j Cij
) = 0 by Lemma 9.7. Thus we see that

0 =
∑

j ̸=j′
(Cij′ · Cij

) +
∑

mi(Ci · Ci)

by splitting this product into “nondiagonal” and “diagonal” terms. Note that κi is
a field finite over k by Varieties, Lemma 26.2. Hence the genus of Ci is defined and
we have χ(Ci,OCi

) = [κi : k](1− gi). Putting everything together and rearranging
terms we get

gC = −1
2

∑
mi(Ci · Ci) +

∑
mi[κi : k](gi − 1) + 1

https://stacks.math.columbia.edu/tag/0CA3
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which is what the lemma says too. □

Lemma 11.3.0CA4 In Situation 9.3 with κi = H0(Ci,OCi
) and gi the genus of Ci the

data
n,mi, (Ci · Cj), [κi : k], gi

is a numerical type of genus equal to the genus of C.

Proof. (In the proof of Lemma 11.2 we have seen that the quantities used in the
statement of the lemma are well defined.) We have to verify the conditions (1) –
(5) of Definition 3.1.
Condition (1) is immediate.
Condition (2). Symmetry of the matrix (Ci ·Cj) follows from Equation (9.6.1) and
Lemma 9.6. Nonnegativity of (Ci · Cj) for i ̸= j is part (1) of Lemma 9.7.
Condition (3) is part (3) of Lemma 9.7.
Condition (4) is part (2) of Lemma 9.7.
Condition (5) follows from the fact that (Ci · Cj) is the degree of an invertible
module on Ci which is divisible by [κi : k], see Varieties, Lemma 44.10.
The genus formula proved in Lemma 11.2 tells us that the numerical type has the
genus as stated, see Definition 3.4. □

Definition 11.4.0CA5 In Situation 9.3 the numerical type associated to X is the nu-
merical type described in Lemma 11.3.

Now we match minimality of the model with minimality of the type.

Lemma 11.5.0CA6 In Situation 9.3. The following are equivalent
(1) X is a minimal model, and
(2) the numerical type associated to X is minimal.

Proof. If the numerical type is minimal, then there is no i with gi = 0 and (Ci ·
Ci) = −[κi : k], see Definition 3.12. Certainly, this implies that none of the curves
Ci are exceptional curves of the first kind.
Conversely, suppose that the numerical type is not minimal. Then there exists an
i such that gi = 0 and (Ci · Ci) = −[κi : k]. We claim this implies that Ci is an
exceptional curve of the first kind. Namely, the invertible sheaf OX(−Ci)|Ci

has
degree −(Ci · Ci) = [κi : k] when Ci is viewed as a proper curve over k, hence has
degree 1 when Ci is viewed as a proper curve over κi. Applying Algebraic Curves,
Proposition 10.4 we conclude that Ci

∼= P1
κi

as schemes over κi. Since the Picard
group of P1 over a field is Z, we see that the normal sheaf of Ci in X is isomorphic
to OPκi

(−1) and the proof is complete. □

Remark 11.6.0CA7 Not every numerical type comes from a model for the silly reason
that there exist numerical types whose genus is negative. There exist a minimal
numerical types of positive genus which are not the numerical type associated to a
model (over some dvr) of a smooth projective geometrically irreducible curve (over
the fraction field of the dvr). A simple example is n = 1, m1 = 1, a11 = 0, w1 = 6,
g1 = 1. Namely, in this case the special fibre Xk would not be geometrically
connected because it would live over an extension κ of k of degree 6. This is a
contradiction with the fact that the generic fibre is geometrically connected (see
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More on Morphisms, Lemma 53.6). Similarly, n = 2, m1 = m2 = 1, −a11 = −a22 =
a12 = a21 = 6, w1 = w2 = 6, g1 = g2 = 1 would be an example for the same reason
(details omitted). But if the gcd of the wi is 1 we do not have an example.

Lemma 11.7.0CE8 In Situation 9.3 assume C has a K-rational point. Then
(1) Xk has a k-rational point x which is a smooth point of Xk over k,
(2) if x ∈ Ci, then H0(Ci,OCi

) = k and mi = 1, and
(3) H0(Xk,OXk

) = k and Xk has genus equal to the genus of C.

Proof. Since X → Spec(R) is proper, the K-rational point extends to a morphism
a : Spec(R) → X by the valuative criterion of properness (Morphisms, Lemma
42.1). Let x ∈ X be the image under a of the closed point of Spec(R). Then a
corresponds to an R-algebra homomorphism ψ : OX,x → R (see Schemes, Section
13). It follows that π ̸∈ m2

x (since the image of π in R is not in m2
R). Hence

OXk,x = OX,x/πOX,x is regular (Algebra, Lemma 106.3). Then Xk → Spec(k) is
smooth at x by Algebra, Lemma 140.5. It follows that x is contained in a unique
irreducible component Ci of Xk, that OCi,x = OXk,x, and that mi = 1. The fact
that Ci has a k-rational point implies that the field κi = H0(Ci,OCi) (Varieties,
Lemma 26.2) is equal to k. This proves (1). We have H0(Xk,OXk

) = k because
H0(Xk,OXk

) is a field extension of k (Lemma 9.9) which maps to H0(Ci,OCi
) = k.

The genus equality follows from Lemma 9.10. □

Lemma 11.8.0CE9 In Situation 9.3 assume X is a minimal model, gcd(m1, . . . ,mn) =
1, and H0((Xk)red,O) = k. Then the map

H1(Xk,OXk
)→ H1((Xk)red,O(Xk)red

)

is surjective and has a nontrivial kernel as soon as (Xk)red ̸= Xk.

Proof. By vanishing of cohomology in degrees ≥ 2 over Xk (Cohomology, Propo-
sition 20.7) any surjection of abelian sheaves on Xk induces a surjection on H1.
Consider the sequence

(Xk)red = Z0 ⊂ Z1 ⊂ . . . ⊂ Zm = Xk

of Lemma 9.9. Since the field maps H0(Zj ,OZj
) → H0((Xk)red,O(Xk)red

) = k

are injective we conclude that H0(Zj ,OZj
) = k for j = 0, . . . ,m. It follows that

H0(Xk,OXk
)→ H0(Zm−1,OZm−1) is surjective. Let C = Cim

. Then Xk = Zm−1+
C. Let L = OX(−Zm−1)|C . Then L is an invertible OC-module. As in the proof
of Lemma 9.9 there is an exact sequence

0→ L → OXk
→ OZm−1 → 0

of coherent sheaves on Xk. We conclude that we get a short exact sequence

0→ H1(C,L)→ H1(Xk,OXk
)→ H1(Zm−1,OZm−1)→ 0

The degree of L on C over k is

(C · −Zm−1) = (C · C −Xk) = (C · C)

Set κ = H0(C,OC) and w = [κ : k]. By definition of the degree of an invertible
sheaf we see that

χ(C,L) = χ(C,OC) + (C · C) = w(1− gC) + (C · C)
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where gC is the genus of C. This expression is < 0 as X is minimal and hence
C is not an exceptional curve of the first kind (see proof of Lemma 11.5). Thus
dimk H

1(C,L) > 0 which finishes the proof. □

Lemma 11.9.0CEA In Situation 9.3 assume Xk has a k-rational point x which is a
smooth point of Xk → Spec(k). Then

dimk H
1((Xk)red,O(Xk)red

) ≥ gtop + ggeom(Xk/k)

where ggeom is as in Algebraic Curves, Section 18 and gtop is the topological genus
(Definition 3.11) of the numerical type associated to Xk (Definition 11.4).

Proof. We are going to prove the inequality

dimk H
1(D,OD) ≥ gtop(D) + ggeom(D/k)

for all connected reduced effective Cartier divisors D ⊂ (Xk)red containing x by
induction on the number of irreducible components of D. Here gtop(D) = 1−m+e
where m is the number of irreducible components of D and e is the number of
unordered pairs of components of D which meet.

Base case: D has one irreducible component. Then D = Ci is the unique irreducible
component containing x. In this case dimk H

1(D,OD) = gi and gtop(D) = 0. Since
Ci has a k-rational smooth point it is geometrically integral (Varieties, Lemma
25.10). It follows that gi is the genus of Ci,k (Algebraic Curves, Lemma 8.2). It
also follows that ggeom(D/k) is the genus of the normalization Cν

i,k
of Ci,k. Applying

Algebraic Curves, Lemma 18.4 to the normalization morphism Cν
i,k
→ Ci,k we get

(11.9.1)0CEB genus of Ci,k ≥ genus of Cν
i,k

Combining the above we conclude that dimk H
1(D,OD) ≥ gtop(D) + ggeom(D/k)

in this case.

Induction step. Suppose we have D with more than 1 irreducible component. Then
we can write D = Ci+D′ where x ∈ D′ and D′ is still connected. This is an exercise
in graph theory we leave to the reader (hint: let Ci be the component of D which
is farthest from x). We compute how the invariants change. As x ∈ D′ we have
H0(D,OD) = H0(D′,OD′) = k. Looking at the short exact sequence of sheaves

0→ OD → OCi
⊕OD′ → OCi∩D′ → 0

(Morphisms, Lemma 4.6) and using additivity of euler characteristics we find

dimk H
1(D,OD)− dimk H

1(D′,OD′) = −χ(OCi
) + χ(OCi∩D′)

= wi(gi − 1) +
∑

Cj⊂D′
aij

Here as in Lemma 11.3 we set wi = [κi : k], κi = H0(Ci,OCi
), gi is the genus of

Ci, and aij = (Ci · Cj). We have

gtop(D)− gtop(D′) = −1 +
∑

Cj⊂D′ meeting Ci

1

We have
ggeom(D/k)− ggeom(D′/k) = ggeom(Ci/k)
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by Algebraic Curves, Lemma 18.1. Combining these with our induction hypothesis,
we conclude that it suffices to show that

wigi − ggeom(Ci/k) +
∑

Cj⊂D′ meets Ci

(aij − 1)− (wi − 1)

is nonnegative. In fact, we have
(11.9.2)0CEC wigi ≥ [κi : k]sgi ≥ ggeom(Ci/k)
The second inequality by Algebraic Curves, Lemma 18.5. On the other hand, since
wi divides aij (Varieties, Lemma 44.10) it is clear that

(11.9.3)0CED
∑

Cj⊂D′ meets Ci

(aij − 1)− (wi − 1) ≥ 0

because there is at least one Cj ⊂ D′ which meets Ci. □

Lemma 11.10.0CEE If equality holds in Lemma 11.9 then
(1) the unique irreducible component of Xk containing x is a smooth projective

geometrically irreducible curve over k,
(2) if C ⊂ Xk is another irreducible component, then κ = H0(C,OC) is a finite

separable extension of k, C has a κ-rational point, and C is smooth over κ

Proof. Looking over the proof of Lemma 11.9 we see that in order to get equality,
the inequalities (11.9.1), (11.9.2), and (11.9.3) have to be equalities.
Let Ci be the irreducible component containing x. Equality in (11.9.1) shows via
Algebraic Curves, Lemma 18.4 that Cν

i,k
→ Ci,k is an isomorphism. Hence Ci,k is

smooth and part (1) holds.
Next, let Ci ⊂ Xk be another irreducible component. Then we may assume we
have D = D′ + Ci as in the induction step in the proof of Lemma 11.9. Equality
in (11.9.2) immediately implies that κi/k is finite separable. Equality in (11.9.3)
implies either aij = 1 for some j or that there is a unique Cj ⊂ D′ meeting Ci and
aij = wi. In both cases we find that Ci has a κi-rational point c and c = Ci ∩ Cj

scheme theoretically. Since OX,c is a regular local ring, this implies that the local
equations of Ci and Cj form a regular system of parameters in the local ring OX,c.
Then OCi,c is regular by (Algebra, Lemma 106.3). We conclude that Ci → Spec(κi)
is smooth at c (Algebra, Lemma 140.5). It follows that Ci is geometrically integral
over κi (Varieties, Lemma 25.10). To finish we have to show that Ci is smooth over
κi. Observe that

Ci,k = Ci ×Spec(k) Spec(k) =
∐

κi→k
Ci ×Spec(κi) Spec(k)

where there are [κi : k]-summands. Thus if Ci is not smooth over κi, then
each of these curves is not smooth, then these curves are not normal and the
normalization morphism drops the genus (Algebraic Curves, Lemma 18.4) which
is disallowed because it would drop the geometric genus of Ci/k contradicting
[κi : k]gi = ggeom(Ci/k). □

12. Blowing down exceptional curves

0CEF The following lemma tells us what happens with the intersection numbers when we
contract an exceptional curve of the first kind in a regular proper model. We put
this here mostly to compare with the numerical contractions introduced in Lemma
3.9. We will compare the geometric and numerical contractions in Remark 12.3.
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Lemma 12.1.0C6C In Situation 9.3 assume that Cn is an exceptional curve of the
first kind. Let f : X → X ′ be the contraction of Cn. Let C ′

i = f(Ci). Write
X ′

k =
∑
m′

iC
′
i. Then X ′, C ′

i, i = 1, . . . , n′ = n− 1, and m′
i = mi is as in Situation

9.3 and we have
(1) for i, j < n we have (C ′

i · C ′
j) = (Ci · Cj)− (Ci · Cn)(Cj · Cn)/(Cn · Cn),

(2) for i < n if Ci ∩ Cn ̸= ∅, then there are maps κi ← κ′
i → κn.

Here κi = H0(Ci,OCi) and κ′
i = H0(C ′

i,OC′
i
).

Proof. By Resolution of Surfaces, Lemma 16.8 we can contract Cn by a morphism
f : X → X ′ such that X ′ is regular and is projective over R. Thus we see that X ′ is
as in Situation 9.3. Let x ∈ X ′ be the image of Cn. Since f defines an isomorphism
X \ Cn → X ′ \ {x} it is clear that m′

i = mi for i < n.
Part (2) of the lemma is immediately clear from the existence of the morphisms
Ci → C ′

i and Cn → x→ C ′
i.

By Divisors, Lemma 32.11 the pullback f−1C ′
i is defined. By Divisors, Lemma

15.11 we see that f−1C ′
i = Ci + eiCn for some ei ≥ 0. Since OX(Ci + eiCn) =

OX(f−1C ′
i) = f∗OX′(C ′

i) (Divisors, Lemma 14.5) and since the pullback of an
invertible sheaf restricts to the trivial invertible sheaf on Cn we see that

0 = degCn
(OX(Ci + eiCn)) = (Ci + eiCn · Cn) = (Ci · Cn) + ei(Cn · Cn)

As fj = f |Cj
: Cj → Cj is a proper birational morphism of proper curves over

k, we see that degC′
j
(OX′(C ′

i)|C′
j
) is the same as degCj

(f∗
jOX′(C ′

i)|C′
j
) (Varieties,

Lemma 44.4). Looking at the commutative diagram

Cj
//

fj

��

X

f

��
C ′

j
// X ′

and using Divisors, Lemma 14.5 we see that
(C ′

i · C ′
j) = degC′

j
(OX′(C ′

i)|C′
j
) = degCj

(OX(Ci + eiCn)) = (Ci + eiCn · Cj)

Plugging in the formula for ei found above we see that (1) holds. □

Remark 12.2.0CA8 In the situation of Lemma 12.1 we can also say exactly how the
genus gi of Ci and the genus g′

i of C ′
i are related. The formula is

g′
i = wi

w′
i

(gi − 1) + 1 + (Ci · Cn)2 − wn(Ci · Cn)
2w′

iwn

where wi = [κi : k], wn = [κn : k], and w′
i = [κ′

i : k]. To prove this we consider the
short exact sequence

0→ OX′(−C ′
i)→ OX′ → OC′

i
→ 0

and its pullback to X which reads
0→ OX(−C ′

i − eiCn)→ OX → OCi+eiCn → 0
with ei as in the proof of Lemma 12.1. Since Rf∗f

∗L = L for any invertible module
L on X ′ (details omitted), we conclude that

Rf∗OCi+eiCn = OC′
i
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as complexes of coherent sheaves on X ′
k. Hence both sides have the same Euler

characteristic and this agrees with the Euler characteristic of OCi+eiCn on Xk.
Using the exact sequence

0→ OCi+eiCn
→ OCi

⊕OeiCn
→ OCi∩eiCn

→ 0
and further filtering OeiCn

(details omitted) we find

χ(OC′
i
) = χ(OCi)−

(
ei + 1

2

)
(Cn · Cn)− ei(Ci · Cn)

Since ei = −(Ci · Cn)/(Cn · Cn) and (Cn · Cn) = −wn this leads to the formula
stated at the start of this remark. If we ever need this we will formulate this as a
lemma and provide a detailed proof.

Remark 12.3.0CA9 Let f : X → X ′ be as in Lemma 12.1. Let n,mi, aij , wi, gi be
the numerical type associated to X and let n′,m′

i, a
′
ij , w

′
i, g

′
i be the numerical type

associated to X ′. It is clear from Lemma 12.1 and Remark 12.2 that this agrees
with the contraction of numerical types in Lemma 3.9 except for the value of w′

i. In
the geometric situation w′

i is some positive integer dividing both wi and wn. In the
numerical case we chose w′

i to be the largest possible integer dividing wi such that
g′

i (as given by the formula) is an integer. This works well in the numerical setting
in that it helps compare the Picard groups of the numerical types, see Lemma 4.4
(although only injectivity is every used in the following and this injectivity works
as well for smaller w′

i).

Lemma 12.4.0CDA Let C be a smooth projective curve over K with H0(C,OC) = K
and genus 0. If there is more than one minimal model for C, then the special fibre
of every minimal model is isomorphic to P1

k.

This lemma can be improved to say that the birational transformation between
two nonisomorphic minimal models can be factored as a sequence of elementary
transformations as in Example 10.3. If we ever need this, we will precisely formulate
and prove this here.

Proof. Let X be some minimal model of C. The numerical type associated to X
has genus 0 and is minimal (Definition 11.4 and Lemma 11.5). Hence by Lemma
6.1 we see that Xk is reduced, irreducible, has H0(Xk,OXk

) = k, and has genus
0. Let Y be a second minimal model for C which is not isomorphic to X. By
Resolution of Surfaces, Lemma 17.2 there exists a diagram of S-morphisms

X = X0 ← X1 ← . . .← Xn = Ym → . . .→ Y1 → Y0 = Y

where each morphism is a blowup in a closed point. We will prove the lemma by
induction on m. The base case is m = 0; it is true in this case because we assumed
that Y is minimal hence this would mean n = 0, but X is not isomorphic to Y , so
this does not happen, i.e., there is nothing to check.
Before we continue, note that n+ 1 = m+ 1 is equal to the number of irreducible
components of the special fibre of Xn = Ym because both Xk and Yk are irreducible.
Another observation we will use below is that if X ′ → X ′′ is a morphism of regular
proper models for C, then X ′ → X ′′ is an isomorphism over an open set of X ′′

whose complement is a finite set of closed points of the special fibre of X ′′, see
Varieties, Lemma 17.3. In fact, any such X ′ → X ′′ is a sequence of blowing ups in
closed points (Resolution of Surfaces, Lemma 17.1) and the number of blowups is
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the difference in the number of irreducible components of the special fibres of X ′

and X ′′.

Let Ei ⊂ Yi, m ≥ i ≥ 1 be the curve which is contracted by the morphism Yi →
Yi−1. Let i be the biggest index such that Ei has multiplicity > 1 in the special
fibre of Yi. Then the further blowups Ym → . . . → Yi+1 → Yi are isomorphisms
over Ei since otherwise Ej for some j > i would have multiplicity > 1. Let E ⊂ Ym

be the inverse image of Ei. By what we just said E ⊂ Ym is an exceptional curve
of the first kind. Let Ym → Y ′ be the contraction of E (which exists by Resolution
of Surfaces, Lemma 16.9). The morphism Ym → X has to contract E, because Xk

is reduced. Hence there are morphisms Y ′ → Y and Y ′ → X (by Resolution of
Surfaces, Lemma 16.1) which are compositions of at most n−1 = m−1 contractions
of exceptional curves (see discussion above). We win by induction on m. Upshot:
we may assume that the special fibres of all of the curves Xi and Yi are reduced.

Since the fibres of Xi and Yi are reduced, it has to be the case that the blowups
Xi → Xi−1 and Yi → Yi−1 happen in closed points which are regular points of
the special fibres. Namely, if X ′′ is a regular model for C and if x ∈ X ′′ is a
closed point of the special fibre, and π ∈ m2

x, then the exceptional fibre E of the
blowup X ′ → X ′′ at x has multiplicity at least 2 in the special fibre of X ′ (local
computation omitted). Hence OX′′

k
,x = OX′′,x/π is regular (Algebra, Lemma 106.3)

as claimed. In particular x is a Cartier divisor on the unique irreducible component
Z ′ of X ′′

k it lies on (Varieties, Lemma 43.8). It follows that the strict transform
Z ⊂ X ′ of Z ′ maps isomorphically to Z ′ (use Divisors, Lemmas 33.2 and 32.7). In
other words, if an irreducible component Z of Xi is not contracted under the map
Xi → Xj (i > j) then it maps isomorphically to its image.

Now we are ready to prove the lemma. Let E ⊂ Ym be the exceptional curve of the
first kind which is contracted by the morphism Ym → Ym−1. If E is contracted by
the morphism Ym = Xn → X, then there is a factorization Ym−1 → X (Resolution
of Surfaces, Lemma 16.1) and moreover Ym−1 → X is a sequence of blowups in
closed points (Resolution of Surfaces, Lemma 17.1). In this case we lower m and
we win by induction. Finally, assume that E is not contracted by the morphism
Ym → X. Then E → Xk is surjective as Xk is irreducible and by the above
this means it is an isomorphism. Hence Xk is isomorphic to a projective line as
desired. □

13. Picard groups of models

0CAA AssumeR,K, k, π, C,X, n,C1, . . . , Cn,m1, . . . ,mn are as in Situation 9.3. In Lemma
9.5 we found an exact sequence

0→ Z→ Z⊕n → Pic(X)→ Pic(C)→ 0

We want to use this sequence to study the ℓ-torsion in the Picard groups for suitable
primes ℓ.

Lemma 13.1.0CAB In Situation 9.3 let d = gcd(m1, . . . ,mn). If L is an invertible
OX-module which

(1) restricts to the trivial invertible module on C, and
(2) has degree 0 on each Ci,

then L⊗d ∼= OX .
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Proof. By Lemma 9.5 we have L ∼= OX(
∑
aiCi) for some ai ∈ Z. The degree of

L|Cj is
∑

j aj(Ci · Cj). In particular (
∑
aiCi ·

∑
aiCi) = 0. Hence we see from

Lemma 9.7 that (a1, . . . , an) = q(m1, . . . ,mn) for some q ∈ Q. Thus L = OX(lD)
for some l ∈ Z where D =

∑
(mi/d)Ci is as in Lemma 9.8 and we conclude. □

Lemma 13.2.0CAC In Situation 9.3 let T be the numerical type associated to X. There
exists a canonical map

Pic(C)→ Pic(T )
whose kernel is exactly those invertible modules on C which are the restriction of
invertible modules L on X with degCi

(L|Ci
) = 0 for i = 1, . . . , n.

Proof. Recall that wi = [κi : k] where κi = H0(Ci,OCi)) and recall that the
degree of any invertible module on Ci is divisible by wi (Varieties, Lemma 44.10).
Thus we can consider the map

deg
w

: Pic(X)→ Z⊕n, L 7→ (deg(L|C1)
w1

, . . . ,
deg(L|Cn

)
wn

)

The image of OX(Cj) under this map is

((Cj · C1)/w1, . . . , (Cj · Cn)/wn) = (a1j/w1, . . . , anj/wn)

which is exactly the image of the jth basis vector under the map (aij/wi) : Z⊕n →
Z⊕n defining the Picard group of T , see Definition 4.1. Thus the canonical map of
the lemma comes from the commutative diagram

Z⊕n //

id
��

Pic(X) //

deg
w

��

Pic(C) //

��

0

Z⊕n
(aij/wi) // Z⊕n // Pic(T ) // 0

with exact rows (top row by Lemma 9.5). The description of the kernel is clear. □

Lemma 13.3.0CAD In Situation 9.3 let d = gcd(m1, . . . ,mn) and let T be the numerical
type associated to X. Let h ≥ 1 be an integer prime to d. There exists an exact
sequence

0→ Pic(X)[h]→ Pic(C)[h]→ Pic(T )[h]

Proof. Taking h-torsion in the exact sequence of Lemma 9.5 we obtain the ex-
actness of 0 → Pic(X)[h] → Pic(C)[h] because h is prime to d. Using the map
of Lemma 13.2 we get a map Pic(C)[h] → Pic(T )[h] which annihilates elements
of Pic(X)[h]. Conversely, if ξ ∈ Pic(C)[h] maps to zero in Pic(T )[h], then we can
find an invertible OX -module L with deg(L|Ci

) = 0 for all i whose restriction to
C is ξ. Then L⊗h is d-torsion by Lemma 13.1. Let d′ be an integer such that
dd′ ≡ 1 mod h. Such an integer exists because h and d are coprime. Then L⊗dd′ is
an h-torsion invertible sheaf on X whose restriction to C is ξ. □

Lemma 13.4.0CAE In Situation 9.3 let h be an integer prime to the characteristic of
k. Then the map

Pic(X)[h] −→ Pic((Xk)red)[h]
is injective.
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Proof. Observe that X×Spec(R) Spec(R/πn) is a finite order thickening of (Xk)red

(this follows for example from Cohomology of Schemes, Lemma 10.2). Thus the
canonical map Pic(X ×Spec(R) Spec(R/πn))→ Pic((Xk)red) identifies h torsion by
More on Morphisms, Lemma 4.2 and our assumption on h. Thus if L is an h-torsion
invertible sheaf on X which restricts to the trivial sheaf on (Xk)red then L restricts
to the trivial sheaf on X ×Spec(R) Spec(R/πn) for all n. We find

H0(X,L)∧ = limH0(X ×Spec(R) Spec(R/πn),L|X×Spec(R)Spec(R/πn))
∼= limH0(X ×Spec(R) Spec(R/πn),OX×Spec(R)Spec(R/πn))
= R∧

using the theorem on formal functions (Cohomology of Schemes, Theorem 20.5)
for the first and last equality and for example More on Algebra, Lemma 100.5 for
the middle isomorphism. Since H0(X,L) is a finite R-module and R is a discrete
valuation ring, this means that H0(X,L) is free of rank 1 as an R-module. Let s ∈
H0(X,L) be a basis element. Then tracing back through the isomorphisms above
we see that s|X×Spec(R)Spec(R/πn) is a trivialization for all n. Since the vanishing
locus of s is closed in X and X → Spec(R) is proper we conclude that the vanishing
locus of s is empty as desired. □

14. Semistable reduction

0CDB In this section we carefully define what we mean by semistable reduction.

Example 14.1.0CDC Let R be a discrete valuation ring with uniformizer π. Given
n ≥ 0, consider the ring map

R −→ A = R[x, y]/(xy − πn)

Set X = Spec(A) and S = Spec(R). If n = 0, then X → S is smooth. For all n the
morphism X → S is at-worst-nodal of relative dimension 1 as defined in Algebraic
Curves, Section 20. If n = 1, then X is regular, but if n > 1, then X is not regular
as (x, y) no longer generate the maximal ideal m = (π, x, y). To ameliorate the
situation in case n > 1 we consider the blowup b : X ′ → X of X in m. See Divisors,
Section 32. By construction X ′ is covered by three affine pieces corresponding to
the blowup algebras A[mπ ], A[mx ], and A[my ].

The algebra A[mπ ] has generators x′ = x/π and y′ = y/π and x′y′ = πn−2. Thus
this part of X ′ is the spectrum of R[x′, y′](x′y′ − πn−2).

The algebra A[mx ] has generators x, u = π/x subject to the relation xu − π. Note
that this ring contains y/x = πn/x2 = u2πn−2. Thus this part of X ′ is regular.

By symmetry the case of the algebra A[my ] is the same as the case of A[mx ].

Thus we see that X ′ → S is at-worst-nodal of relative dimension 1 and that X ′ is
regular, except for one point which has an affine open neighbourhood exactly as
above but with n replaced by n− 2. Using induction on n we conclude that there
is a sequence of blowing ups in closed points

X⌊n/2⌋ → . . .→ X1 → X0 = X

such that X⌊n/2⌋ → S is at-worst-nodal of relative dimension 1 and X⌊n/2⌋ is
regular.
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SEMISTABLE REDUCTION 51

Lemma 14.2.0CDD Let R be a discrete valuation ring. Let X be a scheme which is
at-worst-nodal of relative dimension 1 over R. Let x ∈ X be a point of the special
fibre of X over R. Then there exists a commutative diagram

X

��

U //

��

oo Spec(A)

yy
Spec(R) Spec(R′)oo

where R ⊂ R′ is an étale extension of discrete valuation rings, the morphism U →
X is étale, the morphism U → Spec(A) is étale, there is a point x′ ∈ U mapping
to x, and

A = R′[u, v]/(uv) or A = R′[u, v]/(uv − πn)
where n ≥ 0 and π ∈ R′ is a uniformizer.

Proof. We have already proved this lemma in much greater generality, see Alge-
braic Curves, Lemma 20.12. All we have to do here is to translate the statement
given there into the statement given above.

First, if the morphism X → Spec(R) is smooth at x, then we can find an étale
morphism U → A1

R = Spec(R[u]) for some affine open neighbourhood U ⊂ X of
x. This is Morphisms, Lemma 36.20. After replacing the coordinate u by u + 1 if
necessary, we may assume that x maps to a point in the standard open D(u) ⊂ A1

R.
Then D(u) = Spec(A) with A = R[u, v]/(uv− 1) and we see that the result is true
in this case.

Next, assume that x is a singular point of the fibre. Then we may apply Algebraic
Curves, Lemma 20.12 to get a diagram

X

��

U //oo

��

W //

��

Spec(Z[u, v, a]/(uv − a))

��
Spec(R) Voo // Spec(Z[a])

with all the properties mentioned in the statement of the cited lemma. Let x′ ∈ U
be the point mapping to x promised by the lemma. First we shrink V to an affine
neighbourhood of the image of x′. Say V = Spec(R′). Then R → R′ is étale.
Since R is a discrete valuation ring, we see that R′ is a finite product of quasi-
local Dedekind domains (use More on Algebra, Lemma 44.4). Hence (for example
using prime avoidance) we find a standard open D(f) ⊂ V = Spec(R′) containing
the image of x′ such that R′

f is a discrete valuation ring. Replacing R′ by R′
f

we reach the situation where V = Spec(R′) with R ⊂ R′ an étale extension of
discrete valuation rings (extensions of discrete valuation rings are defined in More
on Algebra, Definition 111.1).

The morphism V → Spec(Z[a]) is determined by the image h of a in R′. Then
W = Spec(R′[u, v]/(uv−h)). Thus the lemma holds with A = R′[u, v]/(uv−h). If
h = 0 then we clearly obtain the first case mentioned in the lemma. If h ̸= 0 then
we may write h = ϵπn for some n ≥ 0 where ϵ is a unit of R′. Changing coordinates
unew = ϵu and vnew = v we obtain the second isomorphism type of A listed in the
lemma. □
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Lemma 14.3.0CDE Let R be a discrete valuation ring. Let X be a quasi-compact
scheme which is at-worst-nodal of relative dimension 1 with smooth generic fibre
over R. Then there exists m ≥ 0 and a sequence

Xm → . . .→ X1 → X0 = X

such that
(1) Xi+1 → Xi is the blowing up of a closed point xi where Xi is singular,
(2) Xi → Spec(R) is at-worst-nodal of relative dimension 1,
(3) Xm is regular.

A slightly stronger statement (also true) would be that no matter how you blow up
in singular points you eventually end up with a resolution and all the intermediate
blowups are at-worst-nodal of relative dimension 1 over R.

Proof. Since X is quasi-compact we see that the special fibre Xk is quasi-compact.
Since the singularities of Xk are at-worst-nodal, we see that Xk has a finite number
of nodes and is otherwise smooth over k. As X → Spec(R) is flat with smooth
generic fibre it follows that X is smooth over R except at the finite number of
nodes of Xk (use Morphisms, Lemma 34.14). It follows that X is regular at every
point except for possibly the nodes of its special fibre (see Algebra, Lemma 163.10).
Let x ∈ X be such a node. Choose a diagram

X

��

U //

��

oo Spec(A)

yy
Spec(R) Spec(R′)oo

as in Lemma 14.2. Observe that the case A = R′[u, v]/(uv) cannot occur, as this
would mean that the generic fibre of X/R is singular (tiny detail omitted). Thus
A = R′[u, v]/(uv − πn) for some n ≥ 0. Since x is a singular point, we have n ≥ 2,
see discussion in Example 14.1.

After shrinking U we may assume there is a unique point u ∈ U mapping to x. Let
w ∈ Spec(A) be the image of u. We may also assume that u is the unique point of
U mapping to w. Since the two horizontal arrows are étale we see that u, viewed
as a closed subscheme of U , is the scheme theoretic inverse image of x ∈ X and the
scheme theoretic inverse image of w ∈ Spec(A). Since blowing up commutes with
flat base change (Divisors, Lemma 32.3) we find a commutative diagram

X ′

��

U ′oo

��

// W ′

��
X Uoo // Spec(A)

with cartesian squares where the vertical arrows are the blowing up of x, u, w in
X,U, Spec(A). The scheme W ′ was described in Example 14.1. We saw there that
W ′ at-worst-nodal of relative dimension 1 over R′. Thus W ′ is at-worst-nodal of
relative dimension 1 over R (Algebraic Curves, Lemma 20.7). Hence U ′ is at-worst-
nodal of relative dimension 1 over R (see Algebraic Curves, Lemma 20.8). Since
X ′ → X is an isomorphism over the complement of x, we conclude the same thing
is true of X ′/R (by Algebraic Curves, Lemma 20.8 again).
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Finally, we need to argue that after doing a finite number of these blowups we arrive
at a regular model Xm. This is rather clear because the “invariant” n decreases by
2 under the blowup described above, see computation in Example 14.1. However,
as we want to avoid precisely defining this invariant and establishing its properties,
we in stead argue as follows. If n = 2, then W ′ is regular and hence X ′ is regular at
all points lying over x and we have decreased the number of singular points of X by
1. If n > 2, then the unique singular point w′ of W ′ lying over w has κ(w) = κ(w′).
Hence U ′ has a unique singular point u′ lying over u with κ(u) = κ(u′). Clearly,
this implies that X ′ has a unique singular point x′ lying over x, namely the image
of u′. Thus we can argue exactly as above that we get a commutative diagram

X ′′

��

U ′′oo

��

// W ′′

��
X ′ U ′oo // W ′

with cartesian squares where the vertical arrows are the blowing up of x′, u′, w′ in
X ′, U ′,W ′. Continuing like this we get a compatible sequence of blowups which
stops after ⌊n/2⌋ steps. At the completion of this process the scheme X(⌊n/2⌋) will
have one fewer singular point than X. Induction on the number of singular points
completes the proof. □

Lemma 14.4.0CDF Let R be a discrete valuation ring with fraction field K and residue
field k. Assume X → Spec(R) is at-worst-nodal of relative dimension 1 over R.
Let X → X ′ be the contraction of an exceptional curve E ⊂ X of the first kind.
Then X ′ is at-worst-nodal of relative dimension 1 over R.

Proof. Namely, let x′ ∈ X ′ be the image of E. Then the only issue is to see that
X ′ → Spec(R) is at-worst-nodal of relative dimension 1 in a neighbourhood of x′.
The closed fibre of X → Spec(R) is reduced, hence π ∈ R vanishes to order 1 on
E. This immediately implies that π viewed as an element of mx′ ⊂ OX′,x′ but is
not in m2

x′ . Since OX′,x′ is regular of dimension 2 (by definition of contractions in
Resolution of Surfaces, Section 16), this implies that OX′

k
,x′ is regular of dimension

1 (Algebra, Lemma 106.3). On the other hand, the curve E has to meet at least
one other component, say C of the closed fibre Xk. Say x ∈ E ∩ C. Then x is
a node of the special fibre Xk and hence κ(x)/k is finite separable, see Algebraic
Curves, Lemma 19.7. Since x 7→ x′ we conclude that κ(x′)/k is finite separable.
By Algebra, Lemma 140.5 we conclude that X ′

k → Spec(k) is smooth in an open
neighbourhood of x′. Combined with flatness, this proves that X ′ → Spec(R) is
smooth in a neighbourhood of x′ (Morphisms, Lemma 34.14). This finishes the
proof as a smooth morphism of relative dimension 1 is at-worst-nodal of relative
dimension 1 (Algebraic Curves, Lemma 20.3). □

Lemma 14.5.0CDG Let R be a discrete valuation ring with fraction field K. Let C be a
smooth projective curve over K with H0(C,OC) = K. The following are equivalent

(1) there exists a proper model of C which is at-worst-nodal of relative dimen-
sion 1 over R,

(2) there exists a minimal model of C which is at-worst-nodal of relative di-
mension 1 over R, and

(3) any minimal model of C is at-worst-nodal of relative dimension 1 over R.
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Proof. To make sense out of this statement, recall that a minimal model is defined
as a regular proper model without exceptional curves of the first kind (Definition
8.4), that minimal models exist (Proposition 8.6), and that minimal models are
unique if the genus of C is > 0 (Lemma 10.1). Keeping this in mind the implications
(2) ⇒ (1) and (3) ⇒ (2) are clear.
Assume (1). Let X be a proper model of C which is at-worst-nodal of relative
dimension 1 over R. Applying Lemma 14.3 we see that we may assume X is
regular as well. Let

X = Xm → Xm−1 → . . .→ X1 → X0

be as in Lemma 8.5. By Lemma 14.4 and induction this implies X0 is at-worst-nodal
of relative dimension 1 over R.
To finish the proof we have to show that (2) implies (3). This is clear if the genus
of C is > 0, since then the minimal model is unique (see discussion above). On the
other hand, if the minimal model is not unique, then the morphism X → Spec(R)
is smooth for any minimal model as its special fibre will be isomorphic to P1

k by
Lemma 12.4. □

Definition 14.6.0CDH Let R be a discrete valuation ring with fraction field K. Let
C be a smooth projective curve over K with H0(C,OC) = K. We say that C has
semistable reduction if the equivalent conditions of Lemma 14.5 are satisfied.

Lemma 14.7.0CDI Let R be a discrete valuation ring with fraction field K. Let C be a
smooth projective curve over K with H0(C,OC) = K. The following are equivalent

(1) there exists a proper smooth model for C,
(2) there exists a minimal model for C which is smooth over R,
(3) any minimal model is smooth over R.

Proof. If X is a smooth proper model, then the special fibre is connected (Lemma
9.4) and smooth, hence irreducible. This immediately implies that it is minimal.
Thus (1) implies (2). To finish the proof we have to show that (2) implies (3).
This is clear if the genus of C is > 0, since then the minimal model is unique
(Lemma 10.1). On the other hand, if the minimal model is not unique, then the
morphism X → Spec(R) is smooth for any minimal model as its special fibre will
be isomorphic to P1

k by Lemma 12.4. □

Definition 14.8.0CDJ Let R be a discrete valuation ring with fraction field K. Let
C be a smooth projective curve over K with H0(C,OC) = K. We say that C has
good reduction if the equivalent conditions of Lemma 14.7 are satisfied.

15. Semistable reduction in genus zero

0CDK In this section we prove the semistable reduction theorem (Theorem 18.1) for genus
zero curves.
Let R be a discrete valuation ring with fraction field K. Let C be a smooth
projective curve over K with H0(C,OC) = K. If the genus of C is 0, then C is
isomorphic to a conic, see Algebraic Curves, Lemma 10.3. Thus there exists a finite
separable extension K ′/K of degree at most 2 such that C(K ′) ̸= ∅, see Algebraic
Curves, Lemma 9.4. Let R′ ⊂ K ′ be the integral closure of R, see discussion in
More on Algebra, Remark 111.6. We will show that CK′ has semistable reduction

https://stacks.math.columbia.edu/tag/0CDH
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over R′
m for each maximal ideal m of R′ (of course in the current case there are at

most two such ideals). After replacing R by R′
m and C by CK′ we reduce to the

case discussed in the next paragraph.

In this paragraph R is a discrete valuation ring with fraction field K, C is a smooth
projective curve over K with H0(C,OC) = K, of genus 0, and C has a K-rational
point. In this case C ∼= P1

K by Algebraic Curves, Proposition 10.4. Thus we can
use P1

R as a model and we see that C has both good and semistable reduction.

Example 15.1.0CDL Let R = R[[π]] and consider the scheme

X = V (T 2
1 + T 2

2 − πT 2
0 ) ⊂ P2

R

The base change of X to C[[π]] is isomorphic to the scheme defined in Example
10.3 because we have the factorization T 2

1 +T 2
2 = (T1 + iT2)(T1− iT2) over C. Thus

X is regular and its special fibre is irreducible yet singular, hence X is the unique
minimal model of its generic fibre (use Lemma 12.4). It follows that an extension
is needed even in genus 0.

16. Semistable reduction in genus one

0CEG In this section we prove the semistable reduction theorem (Theorem 18.1) for curves
of genus one. We suggest the reader first read the proof in the case of genus ≥ 2
(Section 17). We are going to use as much as possible the classification of minimal
numerical types of genus 1 given in Lemma 6.2.

Let R be a discrete valuation ring with fraction field K. Let C be a smooth
projective curve over K with H0(C,OC) = K. Assume the genus of C is 1. Choose
a prime ℓ ≥ 7 different from the characteristic of k. Choose a finite separable
extension K ′/K of such that C(K ′) ̸= ∅ and such that Pic(CK′)[ℓ] ∼= (Z/ℓZ)⊕2.
See Algebraic Curves, Lemma 17.2. Let R′ ⊂ K ′ be the integral closure of R, see
discussion in More on Algebra, Remark 111.6. We may replace R by R′

m for some
maximal ideal m in R′ and C by CK′ . This reduces us to the case discussed in the
next paragraph.

In the rest of this section R is a discrete valuation ring with fraction field K, C
is a smooth projective curve over K with H0(C,OC) = K, with genus 1, having
a K-rational point, and with Pic(C)[ℓ] ∼= (Z/ℓZ)⊕2 for some prime ℓ ≥ 7 different
from the characteristic of k. We will prove that C has semistable reduction.

Let X be a minimal model for C, see Proposition 8.6. Let T = (n,mi, (aij), wi, gi)
be the numerical type associated to X (Definition 11.4). Then T is a minimal
numerical type (Lemma 11.5). As C has a rational point, there exists an i such that
mi = wi = 1 by Lemma 11.7. Looking at the classification of minimal numerical
types of genus 1 in Lemma 6.2 we see that m = w = 1 and that cases (3), (6), (7),
(9), (11), (13), (15), (18), (19), (21), (24), (26), (28), (30) are disallowed (because
there is no index where both wi and mi is equal to 1). Let e be the number of pairs
(i, j) with i < j and aij > 0. For the remaining cases we have

(A) e = n− 1 for cases (1), (2), (5), (8), (12), (14), (17), (20), (22), (23), (27),
(29), (31), (32), (33), and (34), and

(B) e = n for cases (4), (10), (16), and (25).

https://stacks.math.columbia.edu/tag/0CDL
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We will argue these cases separately.

Case (A). In this case Pic(T )[ℓ] is trivial (the Picard group of a numerical type is
defined in Section 4). The vanishing follows as Pic(T ) ⊂ Coker(A) (Lemma 4.3)
and Coker(A)[ℓ] = 0 by Lemma 2.6 and the fact that ℓ was chosen relatively prime
to aij and mi. By Lemmas 13.3 and 13.4 we conclude that there is an embedding

(Z/ℓZ)⊕2 ⊂ Pic((Xk)red)[ℓ].

By Algebraic Curves, Lemma 18.6 we obtain

2 ≤ dimk H
1((Xk)red,O(Xk)red

) + ggeom((Xk)red/k)

By Algebraic Curves, Lemmas 18.1 and 18.5 we see that ggeom((Xk)red/k) ≤∑
wigi. The assumptions of Lemma 11.8 hold by Lemma 11.7 and we conclude

that we have dimk H
1((Xk)red,O(Xk)red

) ≤ g = 1. Combining these we see

2 ≤ 1 +
∑

wigi

Looking at the list we conclude that the numerical type is given by n = 1, w1 =
m1 = g1 = 1. Because we have equality everywhere we see that ggeom(C1/k) = 1.
On the other hand, we know that C1 has a k-rational point x such that C1 →
Spec(k) is smooth at x. It follows that C1 is geometrically integral (Varieties,
Lemma 25.10). Thus ggeom(C1/k) = 1 is both equal to the genus of the normal-
ization of C1,k and the genus of C1,k. It follows that the normalization morphism
Cν

1,k
→ C1,k is an isomorphism (Algebraic Curves, Lemma 18.4). We conclude that

C1 is smooth over k as desired.

Case (B). Here we only conclude that there is an embedding

Z/ℓZ ⊂ Pic(Xk)[ℓ]

From the classification of types we see that mi = wi = 1 and gi = 0 for each i. Thus
each Ci is a genus zero curve over k. Moreover, for each i there is a j such that
Ci ∩ Cj is a k-rational point. Then it follows that Ci

∼= P1
k by Algebraic Curves,

Proposition 10.4. In particular, since Xk is the scheme theoretic union of the Ci

we see that Xk is the scheme theoretic union of the Ci,k. Hence Xk is a reduced
connected proper scheme of dimension 1 over k with dimk H

1(Xk,OX
k
) = 1. Also,

by Varieties, Lemma 30.3 and the above we still have

dimFℓ
(Pic(Xk) ≥ 1

By Algebraic Curves, Proposition 17.3 we see that Xk has at only multicross sin-
gularities. But since Xk is Gorenstein (Lemma 9.2), so is Xk (Duality for Schemes,
Lemma 25.1). We conclude Xk is at-worst-nodal by Algebraic Curves, Lemma 16.4.
This finishes the proof in case (B).

Example 16.1.0CEH Let k be an algebraically closed field. Let Z be a smooth projective
curve over k of positive genus g. Let n ≥ 1 be an integer prime to the characteristic
of k. Let L be an invertible OZ-module of order n, see Algebraic Curves, Lemma
17.1. Pick an isomorphism φ : L⊗n → OZ . Set R = k[[π]] with fraction field
K = k((π)). Denote ZR the base change of Z to R. Let LR be the pullback of L
to ZR. Consider the finite flat morphism

p : X −→ ZR

https://stacks.math.columbia.edu/tag/0CEH
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such that
p∗OX = Sym∗

OZR
(LR)/(φ− π) = OZR

⊕ LR ⊕ L⊗2
R ⊕ . . .⊕ L

⊗n−1
R

More precisely, if U = Spec(A) ⊂ Z is an affine open such that L|U is trivialized
by a section s with φ(s⊗n) = f (with f a unit), then

p−1(UR) = Spec ((A⊗R R[[π]])[x]/(xn − πf))
The reader verifies that the morphism XK → ZK of generic fibres is finite étale.
Looking at the description of the structure sheaf we see that H0(X,OX) = R and
H0(XK ,OXK

) = K. By Riemann-Hurwitz (Algebraic Curves, Lemma 12.4) the
genus of XK is n(g−1)+1. In particular XK has genus 1, if Z has genus 1. On the
other hand, the scheme X is regular by the local equation above and the special
fibre Xk is n times the reduced special fibre as an effective Cartier divisor. It follows
that any finite extension K ′/K over which XK attains semistable reduction has to
ramify with ramification index at least n (some details omitted). Thus there does
not exist a universal bound for the degree of an extension over which a genus 1
curve attains semistable reduction.

17. Semistable reduction in genus at least two

0CEI In this section we prove the semistable reduction theorem (Theorem 18.1) for curves
of genus ≥ 2. Fix g ≥ 2.
Let R be a discrete valuation ring with fraction field K. Let C be a smooth
projective curve over K with H0(C,OC) = K. Assume the genus of C is g. Choose
a prime ℓ > 768g different from the characteristic of k. Choose a finite separable
extension K ′/K of such that C(K ′) ̸= ∅ and such that Pic(CK′)[ℓ] ∼= (Z/ℓZ)⊕2g.
See Algebraic Curves, Lemma 17.2. Let R′ ⊂ K ′ be the integral closure of R, see
discussion in More on Algebra, Remark 111.6. We may replace R by R′

m for some
maximal ideal m in R′ and C by CK′ . This reduces us to the case discussed in the
next paragraph.
In the rest of this section R is a discrete valuation ring with fraction field K, C is
a smooth projective curve over K with H0(C,OC) = K, with genus g, having a K-
rational point, and with Pic(C)[ℓ] ∼= (Z/ℓZ)⊕2g for some prime ℓ ≥ 768g different
from the characteristic of k. We will prove that C has semistable reduction.
In the rest of this section we will use without further mention that the conclusions
of Lemma 11.7 are true.
Let X be a minimal model for C, see Proposition 8.6. Let T = (n,mi, (aij), wi, gi)
be the numerical type associated to X (Definition 11.4). Then T is a minimal
numerical type of genus g (Lemma 11.5). By Proposition 7.4 we have

dimFℓ
Pic(T )[ℓ] ≤ gtop

By Lemmas 13.3 and 13.4 we conclude that there is an embedding
(Z/ℓZ)⊕2g−gtop ⊂ Pic((Xk)red)[ℓ].

By Algebraic Curves, Lemma 18.6 we obtain
2g − gtop ≤ dimk H

1((Xk)red,O(Xk)red
) + ggeom(Xk/k)

By Lemmas 11.8 and 11.9 we have
g ≥ dimk H

1((Xk)red,O(Xk)red
) ≥ gtop + ggeom(Xk/k)
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Elementary number theory tells us that the only way these 3 inequalities can hold
is if they are all equalities. Looking at Lemma 11.8 we conclude that mi = 1 for all
i. Looking at Lemma 11.10 we conclude that every irreducible component of Xk is
smooth over k.

In particular, since Xk is the scheme theoretic union of its irreducible components
Ci we see that Xk is the scheme theoretic union of the Ci,k. Hence Xk is a reduced
connected proper scheme of dimension 1 over k with dimk H

1(Xk,OX
k
) = g. Also,

by Varieties, Lemma 30.3 and the above we still have

dimFℓ
(Pic(Xk)[ℓ]) ≥ 2g − gtop = dimk H

1(Xk,OX
k
) + ggeom(Xk)

By Algebraic Curves, Proposition 17.3 we see that Xk has at only multicross sin-
gularities. But since Xk is Gorenstein (Lemma 9.2), so is Xk (Duality for Schemes,
Lemma 25.1). We conclude Xk is at-worst-nodal by Algebraic Curves, Lemma 16.4.
This finishes the proof.

18. Semistable reduction for curves

0CDM In this section we finish the proof of the theorem. For g ≥ 2 let 768g < ℓ′ < ℓ be
the first two primes > 768g and set

(18.0.1)0CEJ Bg = (2g − 2)(ℓ2g)!

The precise form of Bg is unimportant; the point we are trying to make is that it
depends only on g.

Theorem 18.1.0CDN [DM69, Corollary
2.7]

Let R be a discrete valuation ring with fraction field K. Let
C be a smooth projective curve over K with H0(C,OC) = K. Then there exists
an extension of discrete valuation rings R ⊂ R′ which induces a finite separable
extension of fraction fields K ′/K such that CK′ has semistable reduction. More
precisely, we have the following

(1) If the genus of C is zero, then there exists a degree 2 separable extension
K ′/K such that CK′ ∼= P1

K′ and hence CK′ is isomorphic to the generic
fibre of the smooth projective scheme P1

R′ over the integral closure R′ of R
in K ′.

(2) If the genus of C is one, then there exists a finite separable extension K ′/K
such that CK′ has semistable reduction over R′

m for every maximal ideal
m of the integral closure R′ of R in K ′. Moreover, the special fibre of the
(unique) minimal model of CK′ over R′

m is either a smooth genus one curve
or a cycle of rational curves.

(3) If the genus g of C is greater than one, then there exists a finite separable
extension K ′/K of degree at most Bg (18.0.1) such that CK′ has semistable
reduction over R′

m for every maximal ideal m of the integral closure R′ of
R in K ′.

Proof. For the case of genus zero, see Section 15. For the case of genus one, see
Section 16. For the case of genus greater than one, see Section 17. To see that
we have a bound on the degree [K ′ : K] you can use the bound on the degree
of the extension needed to make all ℓ or ℓ′ torsion visible proved in Algebraic
Curves, Lemma 17.2. (The reason for using ℓ and ℓ′ is that we need to avoid the
characteristic of the residue field k.) □

https://stacks.math.columbia.edu/tag/0CDN
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Remark 18.2 (Improving the bound).0CEK Results in the literature suggest that one
can improve the bound given in the statement of Theorem 18.1. For example, in
[DM69] it is shown that semistable reduction of C and its Jacobian are the same
thing if the residue field is perfect and presumably this is true for general residue
fields as well. For an abelian variety we have semistable reduction if the action of
Galois on the ℓ-torsion is trivial for any ℓ ≥ 3 not equal to the residue characteristic.
Thus we can presumably choose ℓ = 5 in the formula (18.0.1) for Bg (but the proof
would take a lot more work; if we ever need this we will make a precise statement
and provide a proof here).
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