1. Introduction

In this chapter we work out basic notions of sheaves of modules. This in particular includes the case of abelian sheaves, since these may be viewed as sheaves of \(\mathbb{Z} \)-modules. Basic references are [Ser55], [DG67] and [AGV71].

This is a chapter of the Stacks Project, version d271fed1, compiled on Dec 10, 2019.
We work out what happens for sheaves of modules on ringed topoi in another chapter (see Modules on Sites, Section 1), although there we will mostly just duplicate the discussion from this chapter.

2. Pathology

A ringed space is a pair consisting of a topological space X and a sheaf of rings O. We allow $O = 0$ in the definition. In this case the category of modules has a single object (namely 0). It is still an abelian category etc, but it is a little degenerate. Similarly the sheaf O may be zero over open subsets of X, etc. This doesn’t happen when considering locally ringed spaces (as we will do later).

3. The abelian category of sheaves of modules

Let (X, O_X) be a ringed space, see Sheaves, Definition 25.1. Let F, G be sheaves of O_X-modules, see Sheaves, Definition 10.1. Let $\varphi, \psi : F \to G$ be morphisms of sheaves of O_X-modules. We define $\varphi + \psi : F \to G$ to be the map which on each open $U \subset X$ is the sum of the maps induced by φ, ψ. This is clearly again a map of sheaves of O_X-modules. It is also clear that composition of maps of O_X-modules is bilinear with respect to this addition. Thus $\text{Mod}(O_X)$ is a pre-additive category, see Homology, Definition 3.1.

We will denote 0 the sheaf of O_X-modules which has constant value $\{0\}$ for all open $U \subset X$. Clearly this is both a final and an initial object of $\text{Mod}(O_X)$. Given a morphism of O_X-modules $\varphi : F \to G$ the following are equivalent: (a) φ is zero, (b) φ factors through 0, (c) φ is zero on sections over each open U, and (d) $\varphi_x = 0$ for all $x \in X$. See Sheaves, Lemma 16.1.

Moreover, given a pair F, G of sheaves of O_X-modules we may define the direct sum as

$$F \oplus G = F \times G$$

with obvious maps (i, j, p, q) as in Homology, Definition 3.5. Thus $\text{Mod}(O_X)$ is an additive category, see Homology, Definition 3.8.

Let $\varphi : F \to G$ be a morphism of O_X-modules. We may define $\text{Ker}(\varphi)$ to be the subsheaf of F with sections

$$\text{Ker}(\varphi)(U) = \{ s \in F(U) \mid \varphi(s) = 0 \text{ in } G(U) \}$$

for all open $U \subset X$. It is easy to see that this is indeed a kernel in the category of O_X-modules. In other words, a morphism $\alpha : \mathcal{H} \to F$ factors through $\text{Ker}(\varphi)$ if and only if $\varphi \circ \alpha = 0$. Moreover, on the level of stalks we have $\text{Ker}(\varphi)_x = \text{Ker}(\varphi_x)$.

On the other hand, we define $\text{Coker}(\varphi)$ as the sheaf of O_X-modules associated to the presheaf of O_X-modules defined by the rule

$$U \mapsto \text{Coker}(\mathcal{G}(U) \to F(U)) = F(U)/\varphi(\mathcal{G}(U)).$$

Since taking stalks commutes with taking sheafification, see Sheaves, Lemma 17.2 we see that $\text{Coker}(\varphi)_x = \text{Coker}(\varphi_x)$. Thus the map $\mathcal{G} \to \text{Coker}(\varphi)$ is surjective (as a map of sheaves of sets), see Sheaves, Section 16. To show that this is a cokernel, note that if $\beta : \mathcal{G} \to \mathcal{H}$ is a morphism of O_X-modules such that $\beta \circ \varphi$ is zero, then you get for every open $U \subset X$ a map induced by β from $\mathcal{G}(U)/\varphi(F(U))$ into $\mathcal{H}(U)$. By the universal property of sheafification (see Sheaves, Lemma 20.1) we obtain a canonical map $\text{Coker}(\varphi) \to \mathcal{H}$ such that the original β is equal to the
composition \(G \to \text{Coker}(\varphi) \to \mathcal{H} \). The morphism \(\text{Coker}(\varphi) \to \mathcal{H} \) is unique because of the surjectivity mentioned above.

Lemma 3.1. Let \((X, \mathcal{O}_X)\) be a ringed space. The category \(\text{Mod}(\mathcal{O}_X) \) is an abelian category. Moreover a complex

\[
\mathcal{F} \to \mathcal{G} \to \mathcal{H}
\]

is exact at \(\mathcal{G} \) if and only if for all \(x \in X \) the complex

\[
\mathcal{F}_x \to \mathcal{G}_x \to \mathcal{H}_x
\]

is exact at \(\mathcal{G}_x \).

Proof. By Homology, Definition \[\text{[5.1]} \] we have to show that image and cokernel agree. By Sheaves, Lemma \[\text{[16.1]} \] it is enough to show that image and cokernel have the same stalk at every \(x \in X \). By the constructions of kernels and cokernels above these stalks are the cokernel and image in the categories of \(\mathcal{O}_{X,x} \)-modules. Thus we get the result from the fact that the category of modules over a ring is abelian. \(\square \)

Actually the category \(\text{Mod}(\mathcal{O}_X) \) has many more properties. Here are two constructions we can do.

1. Given any set \(I \) and for each \(i \in I \) a \(\mathcal{O}_X \)-module we can form the product

\[
\prod_{i \in I} \mathcal{F}_i
\]

which is the sheaf that associates to each open \(U \) the product of the modules \(\mathcal{F}_i(U) \). This is also the categorical product, as in Categories, Definition \[\text{[14.5]} \] (2) Given any set \(I \) and for each \(i \in I \) a \(\mathcal{O}_X \)-module we can form the direct sum

\[
\bigoplus_{i \in I} \mathcal{F}_i
\]

which is the sheafification of the presheaf that associates to each open \(U \) the direct sum of the modules \(\mathcal{F}_i(U) \). This is also the categorical coproduct, as in Categories, Definition \[\text{[14.6]} \] To see this you use the universal property of sheafification.

Using these we conclude that all limits and colimits exist in \(\text{Mod}(\mathcal{O}_X) \).

Lemma 3.2. Let \((X, \mathcal{O}_X)\) be a ringed space.

1. All limits exist in \(\text{Mod}(\mathcal{O}_X) \). Limits are the same as the corresponding limits of presheaves of \(\mathcal{O}_X \)-modules (i.e., commute with taking sections over opens).
2. All colimits exist in \(\text{Mod}(\mathcal{O}_X) \). Colimits are the sheafification of the corresponding colimit in the category of presheaves. Taking colimits commutes with taking stalks.
3. Filtered colimits are exact.
4. Finite direct sums are the same as the corresponding finite direct sums of presheaves of \(\mathcal{O}_X \)-modules.

Proof. As \(\text{Mod}(\mathcal{O}_X) \) is abelian (Lemma 3.1) it has all finite limits and colimits (Homology, Lemma \[\text{[5.5]} \]). Thus the existence of limits and colimits and their description follows from the existence of products and coproducts and their description (see discussion above) and Categories, Lemmas \[\text{[14.10]} \] and \[\text{[14.11]} \]. Since sheafification commutes with taking stalks we see that colimits commute with taking stalks.
Part (3) signifies that given a system $0 \to F_i \to G_i \to H_i \to 0$ of exact sequences of \mathcal{O}_X-modules over a directed set I the sequence $0 \to \text{colim } F_i \to \text{colim } G_i \to \text{colim } H_i \to 0$ is exact as well. Since we can check exactness on stalks (Lemma 3.1) this follows from the case of modules which is Algebra, Lemma 8.8. We omit the proof of (4).

The existence of limits and colimits allows us to consider exactness properties of functors defined on the category of \mathcal{O}-modules in terms of limits and colimits, as in Categories, Section 23. See Homology, Lemma 7.2 for a description of exactness properties in terms of short exact sequences.

Lemma 3.3. Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of ringed spaces.

1. The functor $f_* : \text{Mod}(\mathcal{O}_X) \to \text{Mod}(\mathcal{O}_Y)$ is left exact. In fact it commutes with all limits.
2. The functor $f^* : \text{Mod}(\mathcal{O}_Y) \to \text{Mod}(\mathcal{O}_X)$ is right exact. In fact it commutes with all colimits.
3. Pullback $f^{-1} : \text{Ab}(Y) \to \text{Ab}(X)$ on abelian sheaves is exact.

Proof. Parts (1) and (2) hold because (f_*, f^*) is an adjoint pair of functors, see Sheaves, Lemma 26.2 and Categories, Section 24. Part (3) holds because exactness can be checked on stalks (Lemma 3.1) and the description of stalks of the pullback, see Sheaves, Lemma 22.1.

Lemma 3.4. Let $j : U \to X$ be an open immersion of topological spaces. The functor $j_! : \text{Ab}(U) \to \text{Ab}(X)$ is exact.

Proof. Follows from the description of stalks given in Sheaves, Lemma 31.6.

Lemma 3.5. Let (X, \mathcal{O}_X) be a ringed space. Let $i \in I$, let \mathcal{F}_i be a sheaf of \mathcal{O}_X-modules. For $U \subset X$ quasi-compact open the map

$$\bigoplus_{i \in I} \mathcal{F}_i(U) \to \left(\bigoplus_{i \in I} \mathcal{F}_i\right)(U)$$

is bijective.

Proof. If s is an element of the right hand side, then there exists an open covering $U = \bigcup_{j \in J} U_j$ such that $s|_{U_j}$ is a finite sum $\sum_{i \in I_j} s_{ji}$ with $s_{ji} \in \mathcal{F}_i(U_j)$. Because U is quasi-compact we may assume that the covering is finite, i.e., that J is finite. Then $J' = \bigcup_{j \in J} I_j$ is a finite subset of I. Clearly, s is a section of the subsheaf $\bigoplus_{i \in I'} \mathcal{F}_i$. The result follows from the fact that for a finite direct sum sheafification is not needed, see Lemma 3.2 above.

4. Sections of sheaves of modules

Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F} be a sheaf of \mathcal{O}_X-modules. Let $s \in \Gamma(X, \mathcal{F}) = \mathcal{F}(X)$ be a global section. There is a unique map of \mathcal{O}_X-modules

$$\mathcal{O}_X \to \mathcal{F}, \ f \mapsto fs$$

associated to s. The notation above signifies that a local section f of \mathcal{O}_X, i.e., a section f over some open U, is mapped to the multiplication of f with the restriction of s to U. Conversely, any map $\varphi : \mathcal{O}_X \to \mathcal{F}$ gives rise to a section $s = \varphi(1)$ such that φ is the morphism associated to s.

Definition 4.1. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}\) be a sheaf of \(\mathcal{O}_X\)-modules. We say that \(\mathcal{F}\) is \textit{generated by global sections} if there exist a set \(I\), and global sections \(s_i \in \Gamma(X, \mathcal{F})\), \(i \in I\) such that the map
\[
\bigoplus_{i \in I} \mathcal{O}_X \rightarrow \mathcal{F}
\]
which is the map associated to \(s_i\) on the summand corresponding to \(i\), is surjective. In this case we say that the sections \(s_i\) \textit{generate} \(\mathcal{F}\).

We often use the abuse of notation introduced in Sheaves, Section 11 where, given a local section \(s\) of \(\mathcal{F}\) defined in an open neighbourhood of a point \(x \in X\), we denote \(s_x\), or even \(s\) the image of \(s\) in the stalk \(\mathcal{F}_x\).

Lemma 4.2. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}\) be a sheaf of \(\mathcal{O}_X\)-modules. Let \(I\) be a set. Let \(s_i \in \Gamma(X, \mathcal{F})\), \(i \in I\) be global sections. The sections \(s_i\) generate \(\mathcal{F}\) if and only if for all \(x \in X\) the elements \(s_{i,x} \in \mathcal{F}_x\) generate the \(\mathcal{O}_{X,x}\)-module \(\mathcal{F}_x\).

Proof. Omitted. \(\square\)

Lemma 4.3. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}, \mathcal{G}\) be sheaves of \(\mathcal{O}_X\)-modules. If \(\mathcal{F}\) and \(\mathcal{G}\) are generated by global sections then so is \(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}\).

Proof. Omitted. \(\square\)

Lemma 4.4. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}\) be a sheaf of \(\mathcal{O}_X\)-modules. Let \(I\) be a set. Let \(s_i, i \in I\) be a collection of local sections of \(\mathcal{F}\), i.e., \(s_i \in \mathcal{F}(U_i)\) for some opens \(U_i \subset X\). There exists a unique smallest subsheaf of \(\mathcal{O}_X\)-modules \(\mathcal{G}\) such that each \(s_i\) \textit{corresponds to a local section of} \(\mathcal{G}\).

Proof. Consider the subpresheaf of \(\mathcal{O}_X\)-modules defined by the rule
\[U \mapsto \{\text{sums } \sum_{i \in J} f_i(s_i|_U) \mid J \text{ finite, } U \subset U_i \text{ for } i \in J, \text{ and } f_i \in \mathcal{O}_X(U)\}\]
Let \(\mathcal{G}\) be the sheafification of this subsheaf. This is a subsheaf of \(\mathcal{F}\) by Sheaves, Lemma 16.3. Since all the finite sums clearly have to be in \(\mathcal{G}\) this is the smallest subsheaf as desired. \(\square\)

Definition 4.5. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}\) be a sheaf of \(\mathcal{O}_X\)-modules. Given a set \(I\), and local sections \(s_i, i \in I\) of \(\mathcal{F}\) we say that the subsheaf \(\mathcal{G}\) of Lemma 4.4 above is the \textit{subsheaf generated by the} \(s_i\).

Lemma 4.6. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}\) be a sheaf of \(\mathcal{O}_X\)-modules. Given a set \(I\), and local sections \(s_i, i \in I\) of \(\mathcal{F}\). Let \(\mathcal{G}\) be the subsheaf generated by the \(s_i\) and let \(x \in X\). Then \(\mathcal{G}_x\) is the \(\mathcal{O}_{X,x}\)-submodule of \(\mathcal{F}_x\) generated by the elements \(s_{i,x}\) for those \(i\) such that \(s_i\) is defined at \(x\).

Proof. This is clear from the construction of \(\mathcal{G}\) in the proof of Lemma 4.4. \(\square\)

5. Supports of modules and sections

Definition 5.1. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}\) be a sheaf of \(\mathcal{O}_X\)-modules.

1. The \textit{support of} \(\mathcal{F}\) is the set of points \(x \in X\) such that \(\mathcal{F}_x \neq 0\).
2. We denote \(\text{Supp}(\mathcal{F})\) the support of \(\mathcal{F}\).
3. Let \(s \in \Gamma(X, \mathcal{F})\) be a global section. The \textit{support of} \(s\) is the set of points \(x \in X\) such that the image \(s_x \in \mathcal{F}_x\) of \(s\) is not zero.
Of course the support of a local section is then defined also since a local section is a global section of the restriction of \(\mathcal{F} \).

Lemma 5.2. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F} \) be a sheaf of \(\mathcal{O}_X \)-modules. Let \(U \subseteq X \) open.

1. The support of \(s \in \mathcal{F}(U) \) is closed in \(U \).
2. The support of \(fs \) is contained in the intersections of the supports of \(f \in \mathcal{O}_X(U) \) and \(s \in \mathcal{F}(U) \).
3. The support of \(s + s' \) is contained in the union of the supports of \(s, s' \in \mathcal{F}(U) \).
4. The support of \(\mathcal{F} \) is the union of the supports of all local sections of \(\mathcal{F} \).
5. If \(\varphi : \mathcal{F} \to \mathcal{G} \) is a morphism of \(\mathcal{O}_X \)-modules, then the support of \(\varphi(s) \) is contained in the support of \(s \in \mathcal{F}(U) \).

Proof. This is true because if \(s_x = 0 \), then \(s \) is zero in an open neighbourhood of \(x \) by definition of stalks. Similarly for \(f \). Details omitted.

In general the support of a sheaf of modules is not closed. Namely, the sheaf could be an abelian sheaf on \(\mathbb{R} \) (with the usual archimedean topology) which is the direct sum of infinitely many nonzero skyscraper sheaves each supported at a single point \(p_i \) of \(\mathbb{R} \). Then the support would be the set of points \(p_i \) which may not be closed.

Another example is to consider the open immersion \(j : U = (0, \infty) \to \mathbb{R} = X \), and the abelian sheaf \(j^! \mathbb{Z}_U \). By Sheaves, Section 31 the support of this sheaf is exactly \(U \).

Lemma 5.3. Let \(X \) be a topological space. The support of a sheaf of rings is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only if 1 = 0, and hence the support of a sheaf of rings is the support of the unit section.

6. Closed immersions and abelian sheaves

Recall that we think of an abelian sheaf on a topological space \(X \) as a sheaf of \(\mathbb{Z}_X \)-modules. Thus we may apply any results, definitions for sheaves of modules to abelian sheaves.

Lemma 6.1. Let \(X \) be a topological space. Let \(Z \subseteq X \) be a closed subset. Denote \(i : Z \to X \) the inclusion map. The functor

\[
i_* : \text{Ab}(Z) \to \text{Ab}(X)
\]

is exact, fully faithful, with essential image exactly those abelian sheaves whose support is contained in \(Z \). The functor \(i^{-1} \) is a left inverse to \(i_* \).

Proof. Exactness follows from the description of stalks in Sheaves, Lemma 32.1 and Lemma 3.1. The rest was shown in Sheaves, Lemma 32.3.

Let \(\mathcal{F} \) be a sheaf on \(X \). There is a canonical subsheaf of \(\mathcal{F} \) which consists of exactly those sections whose support is contained in \(Z \). Here is the exact statement.
Lemma 6.2. Let X be a topological space. Let $Z \subset X$ be a closed subset. Let \mathcal{F} be a sheaf on X. For $U \subset X$ open set

$$\Gamma(U, \mathcal{H}_Z(\mathcal{F})) = \{s \in \mathcal{F}(U) \mid \text{the support of } s \text{ is contained in } Z \cap U\}$$

Then $\mathcal{H}_Z(\mathcal{F})$ is an abelian subsheaf of \mathcal{F}. It is the largest abelian subsheaf of \mathcal{F} whose support is contained in Z. The construction $\mathcal{F} \mapsto \mathcal{H}_Z(\mathcal{F})$ is functorial in the abelian sheaf \mathcal{F}.

Proof. This follows from Lemma 5.2. □

This seems like a good opportunity to show that the functor i^* has a right adjoint on abelian sheaves.

Lemma 6.3. Let $i : Z \to X$ be the inclusion of a closed subset into the topological space X. Denote $j : Ab(X) \to Ab(Z)$ the functor $\mathcal{F} \mapsto i^{-1}\mathcal{H}_Z(\mathcal{F})$. Then $j^!$ is a right adjoint to i_*, in a formula

$$\text{Mor}_{Ab(X)}(i_*\mathcal{G}, \mathcal{F}) = \text{Mor}_{Ab(Z)}(j^!\mathcal{G}, j^!\mathcal{F}).$$

In particular i_* commutes with arbitrary colimits.

Proof. Note that $i_*j^!\mathcal{F} = \mathcal{H}_Z(\mathcal{F})$. Since i_* is fully faithful we are reduced to showing that

$$\text{Mor}_{Ab(X)}(i_*\mathcal{G}, \mathcal{F}) = \text{Mor}_{Ab(X)}(i_*\mathcal{G}, i_*\mathcal{H}_Z(\mathcal{F})).$$

This follows since the support of the image via any homomorphism of a section of $i_*\mathcal{G}$ is contained in Z, see Lemma 5.2. □

Remark 6.4. In Sheaves, Remark 32.5 we showed that i_* as a functor on the categories of sheaves of sets does not have a right adjoint simply because it is not exact. However, it is very close to being true, in fact, the functor i_* is exact on sheaves of pointed sets, sections with support in Z can be defined for sheaves of pointed sets, and $i^!$ makes sense and is a right adjoint to i_*.

7. A canonical exact sequence

Lemma 7.1. Let X be a topological space. Let $U \subset X$ be an open subset with complement $Z \subset X$. Denote $j : U \to X$ the open immersion and $i : Z \to X$ the closed immersion. For any sheaf of abelian groups \mathcal{F} on X the adjunction mappings $j_!j^*\mathcal{F} \to \mathcal{F}$ and $\mathcal{F} \to i_*i^*\mathcal{F}$ give a short exact sequence

$$0 \to j_!j^*\mathcal{F} \to \mathcal{F} \to i_*i^*\mathcal{F} \to 0$$

of sheaves of abelian groups. For any morphism $\varphi : \mathcal{F} \to \mathcal{G}$ of abelian sheaves on X we obtain a morphism of short exact sequences

$$0 \to j_!j^*\mathcal{F} \to \mathcal{F} \to i_*i^*\mathcal{F} \to 0$$

$$0 \to j_!j^*\mathcal{G} \to \mathcal{G} \to i_*i^*\mathcal{G} \to 0$$

Proof. The functoriality of the short exact sequence is immediate from the naturality of the adjunction mappings. We may check exactness on stalks (Lemma 3.1). For a description of the stalks in question see Sheaves, Lemmas 31.6 and 32.1. □
8. Modules locally generated by sections

Let \((X, \mathcal{O}_X)\) be a ringed space. In this and the following section we will often restrict sheaves to open subspaces \(U \subset X\), see Sheaves, Section 31. In particular, we will often denote the open subspace by \((U, \mathcal{O}_U)\) instead of the more correct notation \((U, \mathcal{O}_X|_U)\), see Sheaves, Definition 31.2.

Consider the open immersion \(j : U = (0, \infty) \to \mathbb{R} = X\), and the abelian sheaf \(j_! \mathbb{Z}_U\). By Sheaves, Section 31 the stalk of \(j_! \mathbb{Z}_U\) at \(x = 0\) is 0. In fact the sections of this sheaf over any open interval containing 0 are 0. Thus there is no open neighbourhood of the point 0 over which the sheaf can be generated by sections.

Definition 8.1. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(F\) be a sheaf of \(\mathcal{O}_X\)-modules. We say that \(F\) is locally generated by sections if for every \(x \in X\) there exists an open neighbourhood \(U\) such that \(F|_U\) is globally generated as a sheaf of \(\mathcal{O}_U\)-modules.

In other words there exists a set \(I\) and for each \(i\) a section \(s_i \in F(U)\) such that the associated map

\[
\bigoplus_{i \in I} \mathcal{O}_U \longrightarrow F|_U
\]

is surjective.

Lemma 8.2. Let \(f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)\) be a morphism of ringed spaces. The pullback \(f^* \mathcal{G}\) is locally generated by sections if \(\mathcal{G}\) is locally generated by sections.

Proof. Given an open subspace \(V\) of \(Y\) we may consider the commutative diagram of ringed spaces

\[
\begin{array}{ccc}
(f^{-1}V, \mathcal{O}_{f^{-1}V}) & \xrightarrow{j} & (X, \mathcal{O}_X) \\
\downarrow f^{-1} & & \downarrow f \\
(V, \mathcal{O}_V) & \xrightarrow{j} & (Y, \mathcal{O}_Y)
\end{array}
\]

We know that \(f^* \mathcal{G}|_{f^{-1}V} \cong (f^*)^* (\mathcal{G}|_V)\), see Sheaves, Lemma 26.3. Thus we may assume that \(\mathcal{G}\) is globally generated.

We have seen that \(f^*\) commutes with all colimits, and is right exact, see Lemma 3.3. Thus if we have a surjection

\[
\bigoplus_{i \in I} \mathcal{O}_Y \to \mathcal{G} \to 0
\]

then upon applying \(f^*\) we obtain the surjection

\[
\bigoplus_{i \in I} \mathcal{O}_X \to f^* \mathcal{G} \to 0.
\]

This implies the lemma. \(\square\)

9. Modules of finite type

Definition 9.1. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(F\) be a sheaf of \(\mathcal{O}_X\)-modules. We say that \(F\) is of finite type if for every \(x \in X\) there exists an open neighbourhood \(U\) such that \(F|_U\) is generated by finitely many sections.

Lemma 9.2. Let \(f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)\) be a morphism of ringed spaces. The pullback \(f^* \mathcal{G}\) of a finite type \(\mathcal{O}_Y\)-module is a finite type \(\mathcal{O}_X\)-module.
Proof. Arguing as in the proof of Lemma 9.2 we may assume \(\mathcal{G} \) is globally generated by finitely many sections. We have seen that \(f^* \) commutes with all colimits, and is right exact, see Lemma 9.3. Thus if we have a surjection
\[
\bigoplus_{i=1,\ldots,n} \mathcal{O}_Y \to \mathcal{G} \to 0
\]
then upon applying \(f^* \) we obtain the surjection
\[
\bigoplus_{i=1,\ldots,n} \mathcal{O}_X \to f^* \mathcal{G} \to 0.
\]
This implies the lemma.

01B7 Lemma 9.3. Let \(X \) be a ringed space. The image of a morphism of \(\mathcal{O}_X \)-modules of finite type is of finite type. Let \(0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 \) be a short exact sequence of \(\mathcal{O}_X \)-modules. If \(\mathcal{F}_1 \) and \(\mathcal{F}_3 \) are of finite type, so is \(\mathcal{F}_2 \).

Proof. The statement on images is trivial. The statement on short exact sequences comes from the fact that sections of \(\mathcal{F}_3 \) locally lift to sections of \(\mathcal{F}_2 \) and the corresponding result in the category of modules over a ring (applied to the stalks for example).

01B8 Lemma 9.4. Let \(X \) be a ringed space. Let \(\varphi : \mathcal{G} \to \mathcal{F} \) be a homomorphism of \(\mathcal{O}_X \)-modules. Let \(x \in X \). Assume \(\mathcal{F} \) of finite type and the map on stalks \(\varphi_x : \mathcal{G}_x \to \mathcal{F}_x \) surjective. Then there exists an open neighbourhood \(x \in U \subset X \) such that \(\varphi|_U \) is surjective.

Proof. Choose an open neighbourhood \(U \subset X \) of \(x \) such that \(\mathcal{F} \) is generated by \(s_1, \ldots, s_n \in \mathcal{F}(U) \) over \(U \). By assumption of surjectivity of \(\varphi_x \), after shrinking \(U \) we may assume that \(s_i = \varphi(t_i) \) for some \(t_i \in \mathcal{G}(U) \). Then \(U \) works.

01B9 Lemma 9.5. Let \(X \) be a ringed space. Let \(\mathcal{F} \) be an \(\mathcal{O}_X \)-module. Let \(x \in X \). Assume \(\mathcal{F} \) of finite type and \(\mathcal{F}_x = 0 \). Then there exists an open neighbourhood \(x \in U \subset X \) such that \(\mathcal{F}|_U \) is zero.

Proof. This is a special case of Lemma 9.4 applied to the morphism \(0 \to \mathcal{F} \).

01BA Lemma 9.6. Let \((X, \mathcal{O}_X) \) be a ringed space. Let \(\mathcal{F} \) be a sheaf of \(\mathcal{O}_X \)-modules. If \(\mathcal{F} \) is of finite type then support of \(\mathcal{F} \) is closed.

Proof. This is a reformulation of Lemma 9.5.

01BB Lemma 9.7. Let \(X \) be a ringed space. Let \(I \) be a preordered set and let \((\mathcal{F}_i, f_{ii'})\) be a system over \(I \) consisting of sheaves of \(\mathcal{O}_X \)-modules (see Categories, Section 21). Let \(\mathcal{F} = \text{colim} \mathcal{F}_i \) be the colimit. Assume (a) \(I \) is directed, (b) \(\mathcal{F} \) is a finite type \(\mathcal{O}_X \)-module, and (c) \(X \) is quasi-compact. Then there exists an \(i \) such that \(\mathcal{F}_i \to \mathcal{F} \) is surjective. If the transition maps \(f_{ii'} \) are injective then we conclude that \(\mathcal{F} = \mathcal{F}_i \) for some \(i \in I \).

Proof. Let \(x \in X \). There exists an open neighbourhood \(U \subset X \) of \(x \) and finitely many sections \(s_j \in \mathcal{F}(U) \), \(j = 1, \ldots, m \) such that \(s_1, \ldots, s_m \) generate \(\mathcal{F} \) as \(\mathcal{O}_U \)-module. After possibly shrinking \(U \) to a smaller open neighbourhood of \(x \) we may assume that each \(s_j \) comes from a section of \(\mathcal{F}_i \) for some \(i \in I \). Hence, since \(X \) is quasi-compact we can find a finite open covering \(X = \bigcup_{j=1,\ldots,m} U_j \), and for each \(j \) an index \(i_j \) and finitely many sections \(s_{ij} \in \mathcal{F}_{i_j}(U_j) \) whose images generate the restriction of \(\mathcal{F} \) to \(U_j \). Clearly, the lemma holds for any index \(i \in I \) which is \(\geq \) all \(i_j \).
Lemma 9.8. Let X be a ringed space. There exists a set of \mathcal{O}_X-modules $\{\mathcal{F}_i\}_{i \in I}$ of finite type such that each finite type \mathcal{O}_X-module on X is isomorphic to exactly one of the \mathcal{F}_i.

Proof. For each open covering $\mathcal{U} : X = \bigcup U_i$ consider the sheaves of \mathcal{O}_X-modules \mathcal{F} such that each restriction $\mathcal{F}|_{U_i}$ is a quotient of $\mathcal{O}_{U_i}^{\oplus r_i}$ for some $r_i \geq 0$. These are parametrized by subsheaves $K_i \subset \mathcal{O}_{U_i}^{\oplus r_i}$ and glueing data

$$\varphi_{ij} : \mathcal{O}_{U_i \cap U_j}/(K_i|_{U_i \cap U_j}) \to \mathcal{O}_{U_j \cap U_i}/(K_j|_{U_j \cap U_i})$$

see Sheaves, Section 33. Note that the collection of all glueing data forms a set. The collection of all coverings $\mathcal{U} : X = \bigcup_{j \in J} U_j$ where $J \to \mathcal{P}(X), j \mapsto U_j$ is injective forms a set as well. Hence the collection of all sheaves of \mathcal{O}_X-modules gotten from glueing quotients as above forms a set I. By definition every finite type \mathcal{O}_X-module is isomorphic to an element of I. Choosing an element out of each isomorphism class inside I gives the desired set of sheaves (uses axiom of choice). \hfill \Box

10. Quasi-coherent modules

In this section we introduce an abstract notion of quasi-coherent \mathcal{O}_X-module. This notion is very useful in algebraic geometry, since quasi-coherent modules on a scheme have a good description on any affine open. However, we warn the reader that in the general setting of (locally) ringed spaces this notion is not well behaved at all. The category of quasi-coherent sheaves is not abelian in general, infinite direct sums of quasi-coherent sheaves aren’t quasi-coherent, etc, etc.

Definition 10.1. Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F} be a sheaf of \mathcal{O}_X-modules. We say that \mathcal{F} is a quasi-coherent sheaf of \mathcal{O}_X-modules if for every point $x \in X$ there exists an open neighbourhood $x \in U \subset X$ such that $\mathcal{F}|_U$ is isomorphic to the cokernel of a map

$$\bigoplus_{j \in J} \mathcal{O}_U \longrightarrow \bigoplus_{i \in I} \mathcal{O}_U$$

The category of quasi-coherent \mathcal{O}_X-modules is denoted $\text{QCoh}(\mathcal{O}_X)$.

The definition means that X is covered by open sets U such that $\mathcal{F}|_U$ has a presentation of the form

$$\bigoplus_{j \in J} \mathcal{O}_U \longrightarrow \bigoplus_{i \in I} \mathcal{O}_U \longrightarrow \mathcal{F}|_U \longrightarrow 0.$$

Here presentation signifies that the displayed sequence is exact. In other words

(1) for every point x of X there exists an open neighbourhood such that $\mathcal{F}|_U$ is generated by global sections, and

(2) for a suitable choice of these sections the kernel of the associated surjection is also generated by global sections.

Lemma 10.2. Let (X, \mathcal{O}_X) be a ringed space. The direct sum of two quasi-coherent \mathcal{O}_X-modules is a quasi-coherent \mathcal{O}_X-module.

Proof. Omitted. \hfill \Box

Remark 10.3. Warning: It is not true in general that an infinite direct sum of quasi-coherent \mathcal{O}_X-modules is quasi-coherent. For more esoteric behaviour of quasi-coherent modules see Example 10.9.
Lemma 10.4. Let \(f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y) \) be a morphism of ringed spaces. The pullback \(f^* \mathcal{G} \) of a quasi-coherent \(\mathcal{O}_Y \)-module is quasi-coherent.

Proof. Arguing as in the proof of Lemma 8.2 we may assume \(\mathcal{G} \) has a global presentation by direct sums of copies of \(\mathcal{O}_Y \). We have seen that \(f^* \) commutes with all colimits, and is right exact, see Lemma 3.3. Thus if we have an exact sequence
\[
\bigoplus_{j \in J} \mathcal{O}_Y \to \bigoplus_{i \in I} \mathcal{O}_Y \to \mathcal{G} \to 0
\]
then upon applying \(f^* \) we obtain the exact sequence
\[
\bigoplus_{j \in J} \mathcal{O}_X \to \bigoplus_{i \in I} \mathcal{O}_X \to f^* \mathcal{G} \to 0.
\]
This implies the lemma. \(\square \)

This gives plenty of examples of quasi-coherent sheaves.

Lemma 10.5. Let \((X, \mathcal{O}_X) \) be ringed space. Let \(\alpha : R \to \Gamma(X, \mathcal{O}_X) \) be a ring homomorphism from a ring \(R \) into the ring of global sections on \(X \). Let \(M \) be an \(R \)-module. The following three constructions give canonically isomorphic sheaves of \(\mathcal{O}_X \)-modules:

1. Let \(\pi : (X, \mathcal{O}_X) \to (\{\ast\}, R) \) be the morphism of ringed spaces with \(\pi : X \to \{\ast\} \) the unique map and with \(\pi \)-map \(\pi^* \) the given map \(\alpha : R \to \Gamma(X, \mathcal{O}_X) \).

 Set \(\mathcal{F}_1 = \pi^* M \).

2. Choose a presentation \(\bigoplus_{j \in J} R \to \bigoplus_{i \in I} R \to M \to 0 \). Set

 \(\mathcal{F}_2 = \text{Coker} \left(\bigoplus_{j \in J} \mathcal{O}_X \to \bigoplus_{i \in I} \mathcal{O}_X \right) \).

 Here the map on the component \(\mathcal{O}_X \) corresponding to \(j \in J \) given by the section \(\sum_i \alpha(r_{ij}) \) where the \(r_{ij} \) are the matrix coefficients of the map in the presentation of \(M \).

3. Set \(\mathcal{F}_3 \) equal to the sheaf associated to the presheaf \(U \mapsto \mathcal{O}_X(U) \otimes_R M \), where the map \(R \to \mathcal{O}_X(U) \) is the composition of \(\alpha \) and the restriction map \(\mathcal{O}_X(X) \to \mathcal{O}_X(U) \).

This construction has the following properties:

1. The resulting sheaf of \(\mathcal{O}_X \)-modules \(\mathcal{F}_M = \mathcal{F}_1 = \mathcal{F}_2 = \mathcal{F}_3 \) is quasi-coherent.

2. The construction gives a functor from the category of \(R \)-modules to the category of quasi-coherent sheaves on \(X \) which commutes with arbitrary colimits.

3. For any \(x \in X \) we have \(\mathcal{F}_{M,x} = \mathcal{O}_{X,x} \otimes_R M \) functorial in \(M \).

4. Given any \(\mathcal{O}_X \)-module \(\mathcal{G} \) we have

 \[\text{Mor}_{\mathcal{O}_X}(\mathcal{F}_M, \mathcal{G}) = \text{Hom}_R(M, \Gamma(X, \mathcal{G})) \]

 where the \(R \)-module structure on \(\Gamma(X, \mathcal{G}) \) comes from the \(\Gamma(X, \mathcal{O}_X) \)-module structure via \(\alpha \).

Proof. The isomorphism between \(\mathcal{F}_1 \) and \(\mathcal{F}_3 \) comes from the fact that \(\pi^* \) is defined as the sheafification of the presheaf in (3), see Sheaves, Section 26. The isomorphism between the constructions in (2) and (1) comes from the fact that the functor \(\pi^* \) is right exact, so \(\pi^* \left(\bigoplus_{j \in J} R \right) \to \pi^* \left(\bigoplus_{i \in I} R \right) \to \pi^* M \to 0 \) is exact, \(\pi^* \) commutes with arbitrary direct sums, see Lemma 3.3 and finally the fact that \(\pi^*(R) = \mathcal{O}_X \).
Assertion (1) is clear from construction (2). Assertion (2) is clear since \(\pi^* \) has these properties. Assertion (3) follows from the description of stalks of pullback sheaves, see Sheaves, Lemma [26.4]. Assertion (4) follows from adjointness of \(\pi_* \) and \(\pi^* \).

Definition 10.6. In the situation of Lemma 10.5 we say \(\mathcal{F}_M \) is the sheaf associated to the module \(M \) and the ring map \(\alpha \). If \(R = \Gamma(X, \mathcal{O}_X) \) and \(\alpha = \text{id}_R \) we simply say \(\mathcal{F}_M \) is the sheaf associated to the module \(M \).

Lemma 10.7. Let \((X, \mathcal{O}_X) \) be a ringed space. Set \(R = \Gamma(X, \mathcal{O}_X) \). Let \(M \) be an \(R \)-module. Let \(\mathcal{F}_M \) be the quasi-coherent sheaf of \(\mathcal{O}_X \)-modules associated to \(M \). If \(g : (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X) \) is a morphism of ringed spaces, then \(g^* \mathcal{F}_M \) is the sheaf associated to the \(\Gamma(Y, \mathcal{O}_Y) \)-module \(\Gamma(Y, \mathcal{O}_Y) \otimes_R M \).

Proof. The assertion follows from the first description of \(\mathcal{F}_M \) in Lemma 10.5 as \(\pi^* M \), and the following commutative diagram of ringed spaces

\[
\begin{array}{ccc}
(Y, \mathcal{O}_Y) & \xrightarrow{\pi} & (\{\ast\}, \Gamma(Y, \mathcal{O}_Y)) \\
g \downarrow & & \downarrow \text{induced by } g^t \\
(X, \mathcal{O}_X) & \xrightarrow{\pi} & (\{\ast\}, \Gamma(X, \mathcal{O}_X))
\end{array}
\]

(Also use Sheaves, Lemma [26.3]).

Lemma 10.8. Let \((X, \mathcal{O}_X) \) be a ringed space. Let \(x \in X \) be a point. Assume that \(x \) has a fundamental system of quasi-compact neighbourhoods. Consider any quasi-coherent \(\mathcal{O}_X \)-module \(\mathcal{F} \). Then there exists an open neighbourhood \(U \) of \(x \) such that \(\mathcal{F}|_U \) is isomorphic to the sheaf of modules \(\mathcal{F}_M \) on \((U, \mathcal{O}_U) \) associated to some \(\Gamma(U, \mathcal{O}_U) \)-module \(M \).

Proof. First we may replace \(X \) by an open neighbourhood of \(x \) and assume that \(\mathcal{F} \) is isomorphic to the cokernel of a map

\[
\Psi : \bigoplus_{j \in J} \mathcal{O}_X \to \bigoplus_{i \in I} \mathcal{O}_X.
\]

The problem is that this map may not be given by a “matrix”, because the module of global sections of a direct sum is in general different from the direct sum of the modules of global sections.

Let \(x \in E \subset X \) be a quasi-compact neighbourhood of \(x \) (note: \(E \) may not be open). Let \(x \in U \subset E \) be an open neighbourhood of \(x \) contained in \(E \). Next, we proceed as in the proof of Lemma 3.5. For each \(j \in J \) denote \(s_j \in \Gamma(X, \bigoplus_{i \in I} \mathcal{O}_X) \) the image of the section 1 in the summand \(\mathcal{O}_X \) corresponding to \(j \). There exists a finite collection of opens \(U_{jk}, k \in K_j \) such that \(E \subset \bigcup_{k \in K_j} U_{jk} \) and such that each restriction \(s_j|_{U_{jk}} \) is a finite sum \(\sum_{i \in I_{jk}} f_{jki} \) with \(I_{jk} \subset I \), and \(f_{jki} \) in the summand \(\mathcal{O}_X \) corresponding to \(i \in I \). Set \(I_j = \bigcup_{k \in K_j} I_{jk} \). This is a finite set. Since \(U \subset E \subset \bigcup_{k \in K_j} U_{jk} \) the section \(s_j|_U \) is a section of the finite direct sum \(\bigoplus_{i \in I} \mathcal{O}_X \). By Lemma 3.2 we see that actually \(s_j|_U \) is a sum \(\sum_{i \in I_{jk}} f_{ij} \) and \(f_{ij} \in \mathcal{O}_X(U) = \Gamma(U, \mathcal{O}_U) \).

At this point we can define a module \(M \) as the cokernel of the map

\[
\bigoplus_{j \in J} \Gamma(U, \mathcal{O}_U) \to \bigoplus_{i \in I} \Gamma(U, \mathcal{O}_U)
\]

with matrix given by the \((f_{ij})\). By construction (2) of Lemma 10.5 we see that \(\mathcal{F}_M \) has the same presentation as \(\mathcal{F}|_U \) and therefore \(\mathcal{F}_M \cong \mathcal{F}|_U \). □
Example 10.9. Let X be countably many copies L_1, L_2, L_3, \ldots of the real line all glued together at 0: a fundamental system of neighbourhoods of 0 being the collection $\{U_n\}_{n \in \mathbb{N}}$, with $U_n \cap L_i = (-1/n, 1/n)$. Let \mathcal{O}_X be the sheaf of continuous real valued functions. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function which is identically zero on $(-1, 1)$ and identically 1 on $(-\infty, -2) \cup (2, \infty)$. Denote f_n the continuous function on X which is equal to $x \mapsto f(nx)$ on each $L_j = \mathbb{R}$. Let 1_{L_j} be the characteristic function of L_j. We consider the map

$$
\bigoplus_{j \in \mathbb{N}} \mathcal{O}_X \longrightarrow \bigoplus_{j, i \in \mathbb{N}} \mathcal{O}_X,
$$

$e_j \longmapsto \sum_{i \in \mathbb{N}} f_j 1_{L_i} e_{ij}$

with obvious notation. This makes sense because this sum is locally finite as f_j is zero in a neighbourhood of 0. Over U_n the image of e_j, for $j > 2n$ is not a finite linear combination $\sum g_{ij} e_{ij}$ with g_{ij} continuous. Thus there is no neighbourhood of $0 \in X$ such that the displayed map is given by a “matrix” as in the proof of Lemma 10.8 above.

Note that $\bigoplus_{j \in \mathbb{N}} \mathcal{O}_X$ is the sheaf associated to the free module with basis e_j and similarly for the other direct sum. Thus we see that a morphism of sheaves associated to modules in general even locally on X does not come from a morphism of modules. Similarly there should be examples of locally compact spaces X and maps $F_M \to F_N$ which also do not locally come from maps of modules (the proof of Lemma 10.8 shows this cannot happen if N is free).

11. Modules of finite presentation

Definition 11.1. Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F} be a sheaf of \mathcal{O}_X-modules. We say that \mathcal{F} is of finite presentation if for every point $x \in X$ there exists an open neighbourhood $x \in U \subset X$, and $n, m \in \mathbb{N}$ such that $\mathcal{F}|_U$ is isomorphic to the cokernel of a map

$$
\bigoplus_{j=1, \ldots, m} \mathcal{O}_U \longrightarrow \bigoplus_{i=1, \ldots, n} \mathcal{O}_U
$$

This means that X is covered by open sets U such that $\mathcal{F}|_U$ has a presentation of the form

$$
\bigoplus_{j=1, \ldots, m} \mathcal{O}_U \longrightarrow \bigoplus_{i=1, \ldots, n} \mathcal{O}_U \rightarrow \mathcal{F}|_U \rightarrow 0.
$$

Here presentation signifies that the displayed sequence is exact. In other words

1. for every point x of X there exists an open neighbourhood such that $\mathcal{F}|_U$ is generated by finitely many global sections, and
2. for a suitable choice of these sections the kernel of the associated surjection is also generated by finitely many global sections.

Lemma 11.2. Let (X, \mathcal{O}_X) be a ringed space. Any \mathcal{O}_X-module of finite presentation is quasi-coherent.

Proof. Immediate from definitions. \qed

Lemma 11.3. Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F} be a \mathcal{O}_X-module of finite presentation.

1. If $\psi : \mathcal{O}_X^{\oplus r} \to \mathcal{F}$ is a surjection, then $\text{Ker}(\psi)$ is of finite type.
2. If $\theta : \mathcal{G} \to \mathcal{F}$ is surjective with \mathcal{G} of finite type, then $\text{Ker}(\theta)$ is of finite type.
Proof. Proof of (1). Let $x \in X$. Choose an open neighbourhood $U \subset X$ of x such that there exists a presentation

$$O_U^{\oplus m} \xrightarrow{\psi} O_U^{\oplus n} \twoheadrightarrow F|_{U} \to 0.$$

Let e_k be the section generating the kth factor of $O_X^{\oplus r}$. For every $k = 1, \ldots, r$ we can, after shrinking U to a small neighbourhood of x, lift $\psi(e_k)$ to a section \bar{e}_k of $O_U^{\oplus n}$ over U. This gives a morphism of sheaves $\alpha : O_U^{\oplus r} \to O_U^{\oplus n}$ such that $\varphi \circ \alpha = \psi$. Similarly, after shrinking U, we can find a morphism $\beta : O_U^{\oplus n} \to O_U^{\oplus r}$ such that $\psi \circ \beta = \varphi$. Then the map

$$O_U^{\oplus m} \oplus O_U^{\oplus r} \xrightarrow{\beta \circ \chi - \beta \circ \alpha} O_U^{\oplus r}$$

is a surjection onto the kernel of ψ.

To prove (2) we may locally choose a surjection $\eta : O_X^{\oplus r} \to G$. By part (1) we see $\ker(\theta \circ \eta)$ is of finite type. Since $\ker(\theta) = \eta(\ker(\theta \circ \eta))$ we win. \qed

01BQ Lemma 11.4. Let $f : (X,O_X) \to (Y,O_Y)$ be a morphism of ringed spaces. The pullback f^*G of a module of finite presentation is of finite presentation.

Proof. Exactly the same as the proof of Lemma 10.4 but with finite index sets. \qed

01BR Lemma 11.5. Let (X,O_X) be a ringed space. Set $R = \Gamma(X,O_X)$. Let M be an R-module. The O_X-module F_M associated to M is a directed colimit of finitely presented O_X-modules.

Proof. This follows immediately from Lemma 10.5 and the fact that any module is a directed colimit of finitely presented modules, see Algebra, Lemma 8.12. \qed

01BS Lemma 11.6. Let X be a ringed space. Let I be a preordered set and let $(\mathcal{F}_i, \varphi_{ii'})$ be a system over I consisting of sheaves of O_X-modules (see Categories, Section 27). Assume

1. I is directed,
2. \mathcal{G} is an O_X-module of finite presentation, and
3. X has a cofinal system of open coverings $U : X = \bigcup_{j \in J} U_j$ with J finite and $U_j \cap U_{j'}$ quasi-compact for all $j, j' \in J$.

Then we have

$$\text{colim}_i \text{Hom}_X(\mathcal{G}, \mathcal{F}_i) = \text{Hom}_X(\mathcal{G}, \text{colim}_i \mathcal{F}_i).$$

Proof. An element of the left hand side is given by the equivalence classe of a pair (i, α_i) where $i \in I$ and $\alpha_i : \mathcal{G} \to \mathcal{F}_i$ is a morphism of O_X-modules, see Categories, Section 29. Postcomposing with the coprojection $p_i : \mathcal{F}_i \to \text{colim}_{i' \in I} \mathcal{F}_{i'}$ we get $\alpha = p_i \circ \alpha_i$ in the right hand side. We obtain a map

$$\text{colim}_i \text{Hom}_X(\mathcal{G}, \mathcal{F}_i) \to \text{Hom}_X(\mathcal{G}, \text{colim}_i \mathcal{F}_i).$$

Let us show this map is injective. Let α_i be as above such that $\alpha = p_i \circ \alpha_i$ is zero. By the assumption that G is of finite presentation, for every $x \in X$ we can choose an open neighbourhood $U_x \subset X$ of x and a finite set $s_{x,1}, \ldots, s_{x,n_x} \in \mathcal{G}(U_x)$ generating $\mathcal{G}(U_x)$. These sections map to zero in the stalk $(\text{colim}_{i'} \mathcal{F}_{i'})_x = \text{colim}_{i'} \mathcal{F}_{i',x}$. Hence for each x we can pick $i(x) \geq i$ such that after replacing U_x by a smaller open we have that $s_{x,1}, \ldots, s_{x,n_x}$ map to zero in $\mathcal{F}_{i(x)}(U_x)$. Then $X = \bigcup_{x \in X} U_x$. By condition (3) we can refine this open covering by a finite open covering $X = \bigcup_{j \in J} U_j$. For $j \in J$ pick $x_j \in X$ with $U_j \subset U_{x_j}$. Set $i' = \max(i(x_j); j \in J)$. Then $\mathcal{G}|_{U_j}$ is
generated by the sections $s_{x,j,k}$ which are mapped to zero in $\mathcal{F}_i(x)$ and hence in \mathcal{F}_i'. Hence the composition $\mathcal{G} \to \mathcal{F}_i \to \mathcal{F}_i'$ is zero as desired.

Proof of surjectivity. Let α be an element of the right hand side. For every point $x \in X$ we may choose an open neighbourhood $U \subset X$ and finitely many relations $f_{k_1} = 0$, $k = 1, \ldots, n$ with $f_{k_1} \in \mathcal{O}_X(U)$ which generate the kernel of $\bigoplus_{j=1}^m \mathcal{O}_U \to \mathcal{G}$. After possibly shrinking U to a smaller open neighbourhood of x we may assume there exists an index $i \in I$ such that the sections $\alpha(s_j)$ all come from sections $s_j' \in \mathcal{F}_i(U)$. After possibly shrinking U to a smaller open neighbourhood of x and increasing i we may assume the relations $\sum f_{k_1} s_j' = 0$ hold in $\mathcal{F}_i(U)$. Hence we see that $\alpha|_U$ lifts to a morphism $\mathcal{G}|_U \to \mathcal{F}_i|_U$ for some index $i \in I$.

By condition (3) and the preceding arguments, we may choose a finite open covering $X = \bigcup_{j=1}^m U_j$ such that (a) $\mathcal{G}|_{U_j}$ is generated by finitely many sections $s_{j,k} \in \mathcal{G}(U_j)$, (b) the restriction $\alpha|_{U_j}$ comes from a morphism $\alpha_j : \mathcal{G} \to \mathcal{F}_i$ for some $i_j \in I$, and (c) the intersections $U_j \cap U_{j'}$ are all quasi-compact. For every pair $(j, j') \in \{1, \ldots, m\}$ and any k we can find an index $j \geq \max(i_j, i_{j'})$ such that

$$\varphi_{i,j}(\alpha_j(s_{j,k}|_{U_j \cap U_{j'}})) = \varphi_{i,j'}(\alpha_j(s_{j,k}|_{U_j \cap U_{j'}}))$$

see Sheaves, Lemma \ref{sheaveslemma}(2). Since there are finitely many of these pairs (j, j') and finitely many $s_{j,k}$ we see that we can find a single i which works for all of them. For this index i all of the maps $\varphi_{i,j} \circ \alpha_j$ agree on the overlaps $U_j \cap U_{j'}$ as the sections $s_{j,k}$ generate \mathcal{G} over this overlap. Hence we get a morphism $\mathcal{G} \to \mathcal{F}_i$ as desired. □

0BT *Remark 11.7.* In the lemma above some condition beyond the condition that X is quasi-compact is necessary. See Sheaves, Example \ref{sheavesexample}.

0BJ *Lemma 11.8.* Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F} be a finitely presented \mathcal{O}_X-module. Let $x \in X$ such that $\mathcal{F}_x \cong \mathcal{O}^\oplus_{X,x}$. Then there exists an open neighbourhood U of x such that $\mathcal{F}|_U \cong \mathcal{O}^\oplus_U$.

Proof. Choose $s_1, \ldots, s_r \in \mathcal{F}_x$ mapping to a basis of $\mathcal{O}^\oplus_{X,x}$ by the isomorphism. Choose an open neighbourhood U of x such that s_i lifts to $s_i \in \mathcal{F}(U)$. After shrinking U we see that the induced map $\psi : \mathcal{O}^\oplus_U \to \mathcal{F}|_U$ is surjective (Lemma \ref{sheaveslemma}). By Lemma \ref{sheaveslemma} we see that Ker(ψ) is of finite type. Then Ker(ψ)$_x = 0$ implies that Ker(ψ) becomes zero after shrinking U once more (Lemma \ref{sheaveslemma}). □

12. Coherent modules

0BU The category of coherent sheaves on a ringed space X is a more reasonable object than the category of quasi-coherent sheaves, in the sense that it is at least an abelian subcategory of $\text{Mod}(\mathcal{O}_X)$ no matter what X is. On the other hand, the pullback of a coherent module is “almost never” coherent in the general setting of ringed spaces.

0BV *Definition 12.1.* Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F} be a sheaf of \mathcal{O}_X-modules. We say that \mathcal{F} is a *coherent \mathcal{O}_X-module* if the following two conditions hold:

1. \mathcal{F} is of finite type, and
2. for every open $U \subset X$ and every finite collection $s_i \in \mathcal{F}(U)$, $i = 1, \ldots, n$ the kernel of the associated map $\bigoplus_{i=1}^n \mathcal{O}_U \to \mathcal{F}|_U$ is of finite type.
The category of coherent \(\mathcal{O}_X \)-modules is denoted \(\text{Coh}(\mathcal{O}_X) \).

Lemma 12.2. Let \((X, \mathcal{O}_X)\) be a ringed space. Any coherent \(\mathcal{O}_X \)-module is of finite presentation and hence quasi-coherent.

Proof. Let \(\mathcal{F} \) be a coherent sheaf on \(X \). Pick a point \(x \in X \). By (1) of the definition of coherent, we may find an open neighbourhood \(U \) and sections \(s_i, i = 1, \ldots, n \) of \(\mathcal{F} \) over \(U \) such that \(\Psi : \bigoplus_{i=1}^{n} \mathcal{O}_U \to \mathcal{F} \) is surjective. By (2) of the definition of coherent, we may find an open neighbourhood \(V, x \in V \subset U \) and sections \(t_1, \ldots, t_m \) of \(\bigoplus_{i=1}^{n} \mathcal{O}_V \) which generate the kernel of \(\Psi|_V \). Then over \(V \) we get the presentation
\[
\bigoplus_{j=1}^{m} \mathcal{O}_V \to \bigoplus_{i=1}^{n} \mathcal{O}_V \to \mathcal{F}|_V \to 0
\]
as desired. \(\square \)

Example 12.3. Suppose that \(X \) is a point. In this case the definition above gives a notion for modules over rings. What does the definition of coherent mean? It is closely related to the notion of Noetherian, but it is not the same: Namely, the ring \(R = \mathbb{C}[x_1, x_2, x_3, \ldots] \) is coherent as a module over itself but not Noetherian as a module over itself. See Algebra, Section 89 for more discussion.

Lemma 12.4. Let \((X, \mathcal{O}_X)\) be a ringed space.

1. Any finite type subsheaf of a coherent sheaf is coherent.
2. Let \(\varphi : \mathcal{F} \to \mathcal{G} \) be a morphism from a finite type sheaf \(\mathcal{F} \) to a coherent sheaf \(\mathcal{G} \). Then \(\text{Ker}(\varphi) \) is finite type.
3. Let \(\varphi : \mathcal{F} \to \mathcal{G} \) be a morphism of coherent \(\mathcal{O}_X \)-modules. Then \(\text{Ker}(\varphi) \) and \(\text{Coker}(\varphi) \) are coherent.
4. Given a short exact sequence of \(\mathcal{O}_X \)-modules \(0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 \) if two out of three are coherent so is the third.
5. The category \(\text{Coh}(\mathcal{O}_X) \) is a weak Serre subcategory of \(\text{Mod}(\mathcal{O}_X) \). In particular, the category of coherent modules is abelian and the inclusion functor \(\text{Coh}(\mathcal{O}_X) \to \text{Mod}(\mathcal{O}_X) \) is exact.

Proof. Condition (2) of Definition [12.1] holds for any subsheaf of a coherent sheaf. Thus we get (1).

Assume the hypotheses of (2). Let us show that \(\text{Ker}(\varphi) \) is of finite type. Pick \(x \in X \). Choose an open neighbourhood \(U \) of \(x \) in \(X \) such that \(\mathcal{F}|_U \) is generated by \(s_1, \ldots, s_n \). By Definition [12.1] the kernel \(\mathcal{K} \) of the induced map \(\bigoplus_{i=1}^{n} \mathcal{O}_U \to \mathcal{G}, \ e_i \mapsto \varphi(s_i) \) is of finite type. Hence \(\text{Ker}(\varphi) \) which is the image of the composition \(\mathcal{K} \to \bigoplus_{i=1}^{n} \mathcal{O}_U \to \mathcal{F} \) is of finite type.

Assume the hypotheses of (3). By (2) the kernel of \(\varphi \) is of finite type and hence by (1) it is coherent.

With the same hypotheses let us show that \(\text{Coker}(\varphi) \) is coherent. Since \(\mathcal{G} \) is of finite type so is \(\text{Coker}(\varphi) \). Let \(U \subset X \) be open and let \(s_i \in \text{Coker}(\varphi)(U), i = 1, \ldots, n \) be sections. We have to show that the kernel of the associated morphism \(\overline{\varphi} : \bigoplus_{i=1}^{n} \mathcal{O}_U \to \text{Coker}(\varphi) \) has finite type. There exists an open covering of \(U \) such that on each open all the sections \(s_i \) lift to sections \(t_i \) of \(\mathcal{G} \). Hence we may assume this is the case over \(U \). We may in addition assume there are sections \(t_j, j = 1, \ldots, m \) of \(\text{Im}(\varphi) \) over \(U \) which generate \(\text{Im}(\varphi) \) over \(U \). Let \(\Phi : \bigoplus_{j=1}^{m} \mathcal{O}_U \to \text{Im}(\varphi) \) be defined
using \(t_j \) and \(\Psi : \bigoplus_{j=1}^{m} \mathcal{O}_U \oplus \bigoplus_{i=1}^{n} \mathcal{O}_U \to \mathcal{G} \) using \(t_j \) and \(s_i \). Consider the following commutative diagram

\[
\begin{array}{ccccccccc}
0 & \rightarrow & \bigoplus_{j=1}^{m} \mathcal{O}_U & \rightarrow & \bigoplus_{j=1}^{m} \mathcal{O}_U & \oplus & \bigoplus_{i=1}^{n} \mathcal{O}_U & \rightarrow & \bigoplus_{i=1}^{n} \mathcal{O}_U & \rightarrow & 0 \\
\Phi & \downarrow & \psi & \downarrow & \Psi & & \downarrow & \downarrow & \downarrow & \downarrow & 0 \\
0 & \rightarrow & \text{Im}(\varphi) & \rightarrow & \mathcal{G} & \rightarrow & \text{Coker}(\varphi) & \rightarrow & 0
\end{array}
\]

By the snake lemma we get an exact sequence \(\text{Ker}(\Psi) \rightarrow \text{Ker}(\Psi) \rightarrow 0 \). Since \(\text{Ker}(\Psi) \) is a finite type module, we see that \(\text{Ker}(\Psi) \) has finite type.

Proof of part (4). Let \(0 \rightarrow \mathcal{F}_1 \rightarrow \mathcal{F}_2 \rightarrow \mathcal{F}_3 \rightarrow 0 \) be a short exact sequence of \(\mathcal{O}_X \)-modules. By part (3) it suffices to prove that if \(\mathcal{F}_1 \) and \(\mathcal{F}_3 \) are coherent so is \(\mathcal{F}_2 \). By Lemma 9.3 we see that \(\mathcal{F}_2 \) has finite type. Let \(s_1, \ldots, s_n \) be finitely many local sections of \(\mathcal{F}_2 \) defined over a common open \(U \) of \(X \). We have to show that the module of relations \(\mathcal{K} \) between them is of finite type. Consider the following commutative diagram

\[
\begin{array}{ccccccccc}
0 & \rightarrow & 0 & \rightarrow & \bigoplus_{i=1}^{n} \mathcal{O}_U & \rightarrow & \bigoplus_{i=1}^{n} \mathcal{O}_U & \rightarrow & 0 \\
0 & \rightarrow & \mathcal{F}_1 & \rightarrow & \mathcal{F}_2 & \rightarrow & \mathcal{F}_3 & \rightarrow & 0
\end{array}
\]

with obvious notation. By the snake lemma we get a short exact sequence \(0 \rightarrow \mathcal{K} \rightarrow \mathcal{K}_3 \rightarrow \mathcal{F}_1 \) where \(\mathcal{K}_3 \) is the module of relations among the images of the sections \(s_i \) in \(\mathcal{F}_3 \). Since \(\mathcal{F}_1 \) is coherent we see that \(\mathcal{K} \) is the kernel of a map from a finite type module to a coherent module and hence finite type by (2).

Proof of (5). This follows because (3) and (4) show that Homology, Lemma 10.3 applies.

Lemma 12.5. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F} \) be an \(\mathcal{O}_X \)-module. Assume \(\mathcal{O}_X \) is a coherent \(\mathcal{O}_X \)-module. Then \(\mathcal{F} \) is coherent if and only if it is of finite presentation.

Proof. Omitted.

Lemma 12.6. Let \(X \) be a ringed space. Let \(\varphi : \mathcal{G} \rightarrow \mathcal{F} \) be a homomorphism of \(\mathcal{O}_X \)-modules. Let \(x \in X \). Assume \(\mathcal{G} \) of finite type, \(\mathcal{F} \) coherent and the map on stalks \(\varphi_x : \mathcal{G}_x \rightarrow \mathcal{F}_x \) injective. Then there exists an open neighbourhood \(x \in U \subset X \) such that \(\varphi|_U \) is injective.

Proof. Denote \(\mathcal{K} \subset \mathcal{G} \) the kernel of \(\varphi \). By Lemma 12.4 we see that \(\mathcal{K} \) is a finite type \(\mathcal{O}_X \)-module. Our assumption is that \(\mathcal{K}|_x = 0 \). By Lemma 9.3 there exists an open neighbourhood \(U \) of \(x \) such that \(\mathcal{K}|_U = 0 \). Then \(U \) works.

13. Closed immersions of ringed spaces

When do we declare a morphism of ringed spaces \(i : (Z, \mathcal{O}_Z) \rightarrow (X, \mathcal{O}_X) \) to be a closed immersion?

Motivated by the example of a closed immersion of normal topological spaces (ringed with the sheaf of continuous functors), or differential manifolds (ringed with the sheaf of differentiable functions), it seems natural to assume at least:
(1) The map \(i \) is a closed immersion of topological spaces.

(2) The associated map \(\mathcal{O}_X \to i_*\mathcal{O}_Z \) is surjective. Denote the kernel by \(\mathcal{I} \).

Already these conditions imply a number of pleasing results: For example we prove that the category of \(\mathcal{O}_Z \)-modules is equivalent to the category of \(\mathcal{O}_X \)-modules annihilated by \(\mathcal{I} \) generalizing the result on abelian sheaves of Section 6.

However, in the Stacks project we choose the definition that guarantees that if \(i \) is a closed immersion and \((X, \mathcal{O}_X) \) is a scheme, then also \((Z, \mathcal{O}_Z) \) is a scheme. Moreover, in this situation we want \(i_* \) to provide an equivalence between the category of quasi-coherent \(\mathcal{O}_Z \)-modules and the category of quasi-coherent \(\mathcal{O}_X \)-modules annihilated by \(\mathcal{I} \). A minimal condition is that \(i_*\mathcal{O}_Z \) is a quasi-coherent sheaf of \(\mathcal{O}_X \)-modules. A good way to guarantee that \(i_*\mathcal{O}_Z \) is a quasi-coherent \(\mathcal{O}_X \)-module is to assume that \(\mathcal{I} \) is locally generated by sections. We can interpret this condition as saying “\((Z, \mathcal{O}_Z) \) is locally on \((X, \mathcal{O}_X) \) defined by setting some regular functions \(f_i \), i.e., local sections of \(\mathcal{O}_X \), equal to zero”. This leads to the following definition.

Definition 13.1. A closed immersion of ringed spaces\(^2\) is a morphism \(i : (Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X) \) with the following properties:

1. The map \(i \) is a closed immersion of topological spaces.
2. The associated map \(\mathcal{O}_X \to i_*\mathcal{O}_Z \) is surjective. Denote the kernel by \(\mathcal{I} \).
3. The \(\mathcal{O}_X \)-module \(\mathcal{I} \) is locally generated by sections.

Actually, this definition still does not guarantee that \(i_* \) of a quasi-coherent \(\mathcal{O}_Z \)-module is a quasi-coherent \(\mathcal{O}_X \)-module. The problem is that it is not clear how to convert a local presentation of a quasi-coherent \(\mathcal{O}_Z \)-module into a local presentation for the pushforward. However, the following is trivial.

Lemma 13.2. Let \(i : (Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X) \) be a closed immersion of ringed spaces. Let \(\mathcal{F} \) be a quasi-coherent \(\mathcal{O}_Z \)-module. Then \(i_*\mathcal{F} \) is locally on \(X \) the cokernel of a map of quasi-coherent \(\mathcal{O}_X \)-modules.

Proof. This is true because \(i_*\mathcal{O}_Z \) is quasi-coherent by definition. And locally on \(Z \) the sheaf \(\mathcal{F} \) is a cokernel of a map between direct sums of copies of \(\mathcal{O}_Z \). Moreover, any direct sum of copies of the *same* quasi-coherent sheaf is quasi-coherent. And finally, \(i_* \) commutes with arbitrary colimits, see Lemma 6.3. Some details omitted. \(\square \)

Lemma 13.3. Let \(i : (Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X) \) be a morphism of ringed spaces. Assume \(i \) is a homeomorphism onto a closed subset of \(X \) and that \(\mathcal{O}_X \to i_*\mathcal{O}_Z \) is surjective. Let \(\mathcal{F} \) be an \(\mathcal{O}_Z \)-module. Then \(i_*\mathcal{F} \) is of finite type if and only if \(\mathcal{F} \) is of finite type.

Proof. Suppose that \(\mathcal{F} \) is of finite type. Pick \(x \in X \). If \(x \notin Z \), then \(i_*\mathcal{F} \) is zero in a neighbourhood of \(x \) and hence finitely generated in a neighbourhood of \(x \). If \(x = i(z) \), then choose an open neighbourhood \(z \in V \subset Z \) and sections \(s_1, \ldots, s_n \in \mathcal{F}(V) \) which generate \(\mathcal{F} \) over \(V \). Write \(V = Z \cap U \) for some open \(U \subset X \). Note that \(U \) is a neighbourhood of \(x \). Clearly the sections \(s_i \) give sections \(s_i \) of \(i_*\mathcal{F} \) over \(U \). The resulting map

\[
\bigoplus_{i=1,\ldots,n} \mathcal{O}_U \longrightarrow i_*\mathcal{F}|_U
\]

\(^2\)This is nonstandard notation; see discussion above.
is surjective by inspection of what it does on stalks (here we use that $\mathcal{O}_X \to i_* \mathcal{O}_Z$ is surjective). Hence $i_* \mathcal{F}$ is of finite type.

Conversely, suppose that $i_* \mathcal{F}$ is of finite type. Choose $z \in Z$. Set $x = i(z)$. By assumption there exists an open neighbourhood $U \subset X$ of x, and sections $s_1, \ldots, s_n \in (i_* \mathcal{F})(U)$ which generate $i_* \mathcal{F}$ over U. Set $V = Z \cap U$. By definition of i_* the sections s_i correspond to sections s_i of \mathcal{F} over V. The resulting map

$$\bigoplus_{i=1, \ldots, n} \mathcal{O}_V \to \mathcal{F}|_V$$

is surjective by inspection of what it does on stalks. Hence \mathcal{F} is of finite type. □

Lemma 13.4. Let $i : (Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$ be a morphism of ringed spaces. Assume i is a homeomorphism onto a closed subset of X and $i^! : \mathcal{O}_X \to i_* \mathcal{O}_Z$ is surjective. Denote $I \subset \mathcal{O}_X$ the kernel of $i^!$. The functor

$$i_* : \text{Mod}(\mathcal{O}_Z) \to \text{Mod}(\mathcal{O}_X)$$

is exact, fully faithful, with essential image those \mathcal{O}_X-modules \mathcal{G} such that $I \mathcal{G} = 0$.

Proof. We claim that for a \mathcal{O}_Z-module \mathcal{F} the canonical map

$$i^* i_* \mathcal{F} \to \mathcal{F}$$

is an isomorphism. We check this on stalks. Say $z \in Z$ and $x = i(z)$. We have

$$(i^* i_* \mathcal{F})_z = (i_* \mathcal{F})_x \otimes_{\mathcal{O}_{X,x}} \mathcal{O}_{Z,z} = \mathcal{F}_z \otimes_{\mathcal{O}_{X,x}} \mathcal{O}_{Z,z} = \mathcal{F}_z$$

by Sheaves, Lemma 26.4, the fact that $\mathcal{O}_{Z,z}$ is a quotient of $\mathcal{O}_{X,x}$, and Sheaves, Lemma 32.1. It follows that i_* is fully faithful.

Let \mathcal{G} be a \mathcal{O}_X-module with $I \mathcal{G} = 0$. We will prove the canonical map

$$\mathcal{G} \to i_* i^* \mathcal{G}$$

is an isomorphism. This proves that $\mathcal{G} = i_* \mathcal{F}$ with $\mathcal{F} = i^* \mathcal{G}$ which finishes the proof. We check the displayed map induces an isomorphism on stalks. If $x \in X$, $x \not\in i(Z)$, then $\mathcal{G}_x = 0$ because $I_x = \mathcal{O}_{X,x}$ in this case. As above $(i_* i^* \mathcal{G})_x = 0$ by Sheaves, Lemma 32.1. On the other hand, if $x \in Z$, then we obtain the map

$$\mathcal{G}_x \to \mathcal{G}_x \otimes_{\mathcal{O}_{X,x}} \mathcal{O}_{Z,x}$$

by Sheaves, Lemmas 26.4 and 32.1. This map is an isomorphism because $\mathcal{O}_{Z,x} = \mathcal{O}_{X,x}/I_x$ and because \mathcal{G}_x is annihilated by I_x by assumption. □

14. Locally free sheaves

Let (X, \mathcal{O}_X) be a ringed space. Our conventions allow (some of) the stalks $\mathcal{O}_{X,x}$ to be the zero ring. This means we have to be a little careful when defining the rank of a locally free sheaf.

Definition 14.1. Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F} be a sheaf of \mathcal{O}_X-modules.

1. We say \mathcal{F} is locally free if for every point $x \in X$ there exists a set I and an open neighbourhood $x \in U \subset X$ such that $\mathcal{F}|_U$ is isomorphic to $\bigoplus_{i \in I} \mathcal{O}_X|_U$ as an $\mathcal{O}_X|_U$-module.

2. We say \mathcal{F} is finite locally free if we may choose the index sets I to be finite.

3. We say \mathcal{F} is finite locally free of rank r if we may choose the index sets I to have cardinality r.
A finite direct sum of (finite) locally free sheaves is (finite) locally free. However, it may not be the case that an infinite direct sum of locally free sheaves is locally free.

Lemma 14.2. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}\) be a sheaf of \(\mathcal{O}_X\)-modules. If \(\mathcal{F}\) is locally free then it is quasi-coherent.

Proof. Omitted.

Lemma 14.3. Let \(f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)\) be a morphism of ringed spaces. If \(\mathcal{G}\) is a locally free \(\mathcal{O}_Y\)-module, then \(f^* \mathcal{G}\) is a locally free \(\mathcal{O}_X\)-module.

Proof. Omitted.

Lemma 14.4. Let \((X, \mathcal{O}_X)\) be a ringed space. Suppose that the support of \(\mathcal{O}_X\) is \(X\), i.e., all stalks of \(\mathcal{O}_X\) are nonzero rings. Let \(\mathcal{F}\) be a locally free \(\mathcal{O}_X\)-module. There exists a locally constant function

\[\text{rank}_\mathcal{F} : X \to \{0, 1, 2, \ldots\} \cup \{\infty\}\]

such that for any point \(x \in X\) the cardinality of any set \(I\) such that \(\mathcal{F}\) is isomorphic to \(\bigoplus_{i \in I} \mathcal{O}_{X,x}\) in a neighbourhood of \(x\) is \(\text{rank}_\mathcal{F}(x)\).

Proof. Under the assumption of the lemma the cardinality of \(I\) can be read off from the rank of the free module \(\mathcal{F}_x\) over the nonzero ring \(\mathcal{O}_{X,x}\), and it is constant in a neighbourhood of \(x\).

Lemma 14.5. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(r \geq 0\). Let \(\varphi : \mathcal{F} \to \mathcal{G}\) be a map of finite locally free \(\mathcal{O}_X\)-modules of rank \(r\). Then \(\varphi\) is an isomorphism if and only if \(\varphi\) is surjective.

Proof. Assume \(\varphi\) is surjective. Pick \(x \in X\). There exists an open neighbourhood \(U\) of \(x\) such that both \(\mathcal{F}|_U\) and \(\mathcal{G}|_U\) are isomorphic to \(\mathcal{O}_U^r\). Pick lifts of the free generators of \(\mathcal{G}|_U\) to obtain a map \(\psi : \mathcal{G}|_U \to \mathcal{F}|_U\) such that \(\varphi|_U \circ \psi = \text{id}\). Hence we conclude that the map \(\Gamma(U, \mathcal{F}) \to \Gamma(U, \mathcal{G})\) induced by \(\varphi\) is surjective. Since both \(\Gamma(U, \mathcal{F})\) and \(\Gamma(U, \mathcal{G})\) are isomorphic to \(\Gamma(U, \mathcal{O}_U)^{\oplus r}\) as an \(\Gamma(U, \mathcal{O}_U)\)-module we may apply Algebra, Lemma [15.4] to see that \(\Gamma(U, \mathcal{F}) \to \Gamma(U, \mathcal{G})\) is injective. This finishes the proof.

Lemma 14.6. Let \((X, \mathcal{O}_X)\) be a ringed space. If all stalks \(\mathcal{O}_{X,x}\) are local rings, then any direct summand of a finite locally free \(\mathcal{O}_X\)-module is finite locally free.

Proof. Assume \(\mathcal{F}\) is a direct summand of the finite locally free \(\mathcal{O}_X\)-module \(\mathcal{H}\). Let \(x \in X\) be a point. Then \(\mathcal{H}_x\) is a finite free \(\mathcal{O}_{X,x}\)-module. Because \(\mathcal{O}_{X,x}\) is local, we see that \(\mathcal{F}_x \cong \mathcal{O}_{X,x}^{\oplus r}\) for some \(r\), see Algebra, Lemma [77.2]. By Lemma [11.8] we see that \(\mathcal{F}\) is free of rank \(r\) in an open neighbourhood of \(x\). (Note that \(\mathcal{F}\) is of finite presentation as a summand of \(\mathcal{H}\).)

15. Tensor product

Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}, \mathcal{G}\) be \(\mathcal{O}_X\)-modules. We have briefly discussed the tensor product in the setting of change of rings in Sheaves, Sections [6] and [20]. In exactly the same way we define first the tensor product presheaf

\[\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}\]
as the rule which assigns to \(U \subset X \) open the \(\mathcal{O}_X(U) \)-module \(\mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U) \). Having defined this we define the tensor product sheaf as the sheafification of the above:

\[
\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} = (\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})^#
\]

This can be characterized as the sheaf of \(\mathcal{O}_X \)-modules such that for any third sheaf of \(\mathcal{O}_X \)-modules \(\mathcal{H} \) we have

\[
\text{Hom}_{\mathcal{O}_X}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}, \mathcal{H}) = \text{Bilin}_{\mathcal{O}_X}(\mathcal{F} \times \mathcal{G}, \mathcal{H}).
\]

Here the right hand side indicates the set of bilinear maps of sheaves of \(\mathcal{O}_X \)-modules (definition omitted).

The tensor product of modules \(M, N \) over a ring \(R \) satisfies symmetry, namely \(M \otimes_R N = N \otimes_R M \), hence the same holds for tensor products of sheaves of modules, i.e., we have

\[
\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} = \mathcal{G} \otimes_{\mathcal{O}_X} \mathcal{F}
\]

functorial in \(\mathcal{F}, \mathcal{G} \). And since tensor product of modules satisfies associativity we also get canonical functorial isomorphisms

\[
(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}) \otimes_{\mathcal{O}_X} \mathcal{H} = \mathcal{F} \otimes_{\mathcal{O}_X} (\mathcal{G} \otimes_{\mathcal{O}_X} \mathcal{H})
\]

functorial in \(\mathcal{F}, \mathcal{G}, \) and \(\mathcal{H} \).

Lemma 15.1. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}, \mathcal{G} \) be \(\mathcal{O}_X \)-modules. Let \(x \in X \). There is a canonical isomorphism of \(\mathcal{O}_{X,x} \)-modules

\[
(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})_x = \mathcal{F}_x \otimes_{\mathcal{O}_{X,x}} \mathcal{G}_x
\]

functorial in \(\mathcal{F} \) and \(\mathcal{G} \).

Proof. Omitted. □

Lemma 15.2. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}', \mathcal{G}' \) be presheaves of \(\mathcal{O}_X \)-modules with sheafifications \(\mathcal{F}, \mathcal{G} \). Then

\[
\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} = (\mathcal{F}' \otimes_{\mathcal{O}_X} \mathcal{G}')^#
\]

Proof. Omitted. □

Lemma 15.3. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{G} \) be an \(\mathcal{O}_X \)-module. If \(\mathcal{F}_1 \rightarrow \mathcal{F}_2 \rightarrow \mathcal{F}_3 \rightarrow 0 \) is an exact sequence of \(\mathcal{O}_X \)-modules then the induced sequence

\[
\mathcal{F}_1 \otimes_{\mathcal{O}_X} \mathcal{G} \rightarrow \mathcal{F}_2 \otimes_{\mathcal{O}_X} \mathcal{G} \rightarrow \mathcal{F}_3 \otimes_{\mathcal{O}_X} \mathcal{G} \rightarrow 0
\]

is exact.

Proof. This follows from the fact that exactness may be checked at stalks (Lemma 3.1), the description of stalks (Lemma 15.1) and the corresponding result for tensor products of modules (Algebra, Lemma 11.10). □

Lemma 15.4. Let \(f : (X, \mathcal{O}_X) \rightarrow (Y, \mathcal{O}_Y) \) be a morphism of ringed spaces. Let \(\mathcal{F}, \mathcal{G} \) be \(\mathcal{O}_Y \)-modules. Then \(f^*(\mathcal{F} \otimes_{\mathcal{O}_Y} \mathcal{G}) = f^* \mathcal{F} \otimes_{\mathcal{O}_X} f^* \mathcal{G} \) functorially in \(\mathcal{F}, \mathcal{G} \).

Proof. Omitted. □

Lemma 15.5. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}, \mathcal{G} \) be \(\mathcal{O}_X \)-modules.

1. If \(\mathcal{F}, \mathcal{G} \) are locally generated by sections, so is \(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} \).
2. If \(\mathcal{F}, \mathcal{G} \) are of finite type, so is \(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} \).
3. If \(\mathcal{F}, \mathcal{G} \) are quasi-coherent, so is \(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} \).
4. If \(\mathcal{F}, \mathcal{G} \) are of finite presentation, so is \(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} \).
If F is of finite presentation and G is coherent, then $F \otimes_{O_X} G$ is coherent.

If F, G are coherent, so is $F \otimes_{O_X} G$.

If F, G are locally free, so is $F \otimes_{O_X} G$.

Proof. We first prove that the tensor product of locally free O_X-modules is locally free. This follows if we show that $(\bigoplus_{i \in I} O_X) \otimes_{O_X} (\bigoplus_{j \in J} O_X) \cong \bigoplus_{(i,j) \in I \times J} O_X$. The sheaf $\bigoplus_{i \in I} O_X$ is the sheaf associated to the presheaf $U \mapsto \bigoplus_{i \in I} O_X(U)$. Hence the tensor product is the sheaf associated to the presheaf

$$U \mapsto \left(\bigoplus_{i \in I} O_X(U) \right) \otimes_{O_X} \left(\bigoplus_{j \in J} O_X(U) \right).$$

We deduce what we want since for any ring R we have $(\bigoplus_{i \in I} R) \otimes_R (\bigoplus_{j \in J} R) = \bigoplus_{(i,j) \in I \times J} R$.

If $F_2 \rightarrow F_1 \rightarrow F \rightarrow 0$ is exact, then by Lemma 15.3 the complex $F_2 \otimes G \rightarrow F_1 \otimes G \rightarrow F \otimes G \rightarrow 0$ is exact. Using this we can prove (5). Namely, in this case there exists locally such an exact sequence with F_i, $i = 1, 2$ finite free. Hence the two terms $F_2 \otimes G$ are isomorphic to finite direct sums of G. Since finite direct sums are coherent sheaves, these are coherent and so is the cokernel of the map, see Lemma 12.4.

And if also $G_2 \rightarrow G_1 \rightarrow G \rightarrow 0$ is exact, then we see that

$$F_2 \otimes_{O_X} G_1 \oplus F_1 \otimes_{O_X} G_2 \rightarrow F_1 \otimes_{O_X} G_1 \rightarrow F \otimes_{O_X} G \rightarrow 0$$

is exact. Using this we can for example prove (3). Namely, the assumption means that we can locally find presentations as above with F_i and G_i free O_X-modules. Hence the displayed presentation is a presentation of the tensor product by free sheaves as well.

The proof of the other statements is omitted.

Lemma 15.6. Let (X, O_X) be a ringed space. For any O_X-module F the functor

$$Mod(O_X) \rightarrow Mod(O_X), \quad G \mapsto F \otimes_{O_X} G$$

commutes with arbitrary colimits.

Proof. Let I be a preordered set and let $\{G_i\}$ be a system over I. Set $G = \operatorname{colim} G_i$. Recall that G is the sheaf associated to the presheaf $G' : U \mapsto \operatorname{colim} G_i(U)$, see Sheaves, Section 29. By Lemma 15.2 the tensor product $F \otimes_{O_X} G$ is the sheafification of the presheaf

$$U \mapsto F(U) \otimes_{O_X(U)} \operatorname{colim} G_i(U) = \operatorname{colim} F(U) \otimes_{O_X(U)} G_i(U)$$

where the equality sign is Algebra, Lemma 11.19. Hence the lemma follows from the description of colimits in $Mod(O_X)$.

16. Flat modules

Definition 16.1. Let (X, O_X) be a ringed space. An O_X-module F is flat if the functor

$$Mod(O_X) \rightarrow Mod(O_X), \quad G \mapsto G \otimes_{O_X} F$$

is exact.

We can characterize flatness by looking at the stalks.
Lemma 16.2. Let \((X, \mathcal{O}_X)\) be a ringed space. An \(\mathcal{O}_X\)-module \(\mathcal{F}\) is flat if and only if the stalk \(\mathcal{F}_x\) is a flat \(\mathcal{O}_{X,x}\)-module for all \(x \in X\).

Proof. Assume \(\mathcal{F}_x\) is a flat \(\mathcal{O}_{X,x}\)-module for all \(x \in X\). In this case, if \(\mathcal{G} \to \mathcal{H} \to \mathcal{K}\) is exact, then also \(\mathcal{G} \otimes \mathcal{O}_X \mathcal{F} \to \mathcal{H} \otimes \mathcal{O}_X \mathcal{F} \to \mathcal{K} \otimes \mathcal{O}_X \mathcal{F}\) is exact because we can check exactness at stalks and because tensor product commutes with taking stalks, see Lemma [15.1]. Conversely, suppose that \(\mathcal{F}\) is flat, and let \(x \in X\). Consider the skyscraper sheaves \(i_{x,*}M\) where \(M\) is a \(\mathcal{O}_{X,x}\)-module. Note that \(M \otimes \mathcal{O}_{X,x} \mathcal{F}_x = (i_{x,*}M \otimes \mathcal{O}_X \mathcal{F})_x\) again by Lemma [15.1]. Since \(i_{x,*}\) is exact, we see that the fact that \(\mathcal{F}\) is flat implies that \(M \mapsto M \otimes \mathcal{O}_{X,x} \mathcal{F}_x\) is exact. Hence \(\mathcal{F}_x\) is a flat \(\mathcal{O}_{X,x}\)-module. □

Thus the following definition makes sense.

Definition 16.3. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(x \in X\). An \(\mathcal{O}_X\)-module \(\mathcal{F}\) is flat at \(x\) if \(\mathcal{F}_x\) is a flat \(\mathcal{O}_{X,x}\)-module.

Hence we see that \(\mathcal{F}\) is a flat \(\mathcal{O}_X\)-module if and only if it is flat at every point.

Lemma 16.4. Let \((X, \mathcal{O}_X)\) be a ringed space. A filtered colimit of flat \(\mathcal{O}_X\)-modules is flat. A direct sum of flat \(\mathcal{O}_X\)-modules is flat.

Proof. This follows from Lemma [15.6], Lemma [15.1], Algebra, Lemma [8.8] and the fact that we can check exactness at stalks. □

Lemma 16.5. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(U \subset X\) be open. The sheaf \(j_U! \mathcal{O}_U\) is a flat sheaf of \(\mathcal{O}_X\)-modules.

Proof. The stalks of \(j_U! \mathcal{O}_U\) are either zero or equal to \(\mathcal{O}_{X,x}\). Apply Lemma [16.2]. □

Lemma 16.6. Let \((X, \mathcal{O}_X)\) be a ringed space.

1. Any sheaf of \(\mathcal{O}_X\)-modules is a quotient of a direct sum \(\bigoplus (U_s) j_U! \mathcal{O}_U\).
2. Any \(\mathcal{O}_X\)-module is a quotient of a flat \(\mathcal{O}_X\)-module.

Proof. Let \(\mathcal{F}\) be an \(\mathcal{O}_X\)-module. For every open \(U \subset X\) and every \(s \in \mathcal{F}(U)\) we get a morphism \(j_U! \mathcal{O}_U \to \mathcal{F}\), namely the adjoint to the morphism \(\mathcal{O}_U \to \mathcal{F}|_U\), \(1 \mapsto s\). Clearly the map

\[
\bigoplus (U_s) j_U! \mathcal{O}_U \to \mathcal{F}
\]

is surjective, and the source is flat by combining Lemmas [16.4] and [16.5]. □

Lemma 16.7. Let \((X, \mathcal{O}_X)\) be a ringed space. Let

\[
0 \to \mathcal{F}'' \to \mathcal{F}' \to \mathcal{F} \to 0
\]

be a short exact sequence of \(\mathcal{O}_X\)-modules. Assume \(\mathcal{F}\) is flat. Then for any \(\mathcal{O}_X\)-module \(\mathcal{G}\) the sequence

\[
0 \to \mathcal{F}'' \otimes \mathcal{O} \mathcal{G} \to \mathcal{F}' \otimes \mathcal{O} \mathcal{G} \to \mathcal{F} \otimes \mathcal{O} \mathcal{G} \to 0
\]

is exact.

Proof. Using that \(\mathcal{F}_x\) is a flat \(\mathcal{O}_{X,x}\)-module for every \(x \in X\) and that exactness can be checked on stalks, this follows from Algebra, Lemma [38.12]. □
Lemma 16.8. Let \((X, \mathcal{O}_X)\) be a ringed space. Let
\[
0 \to \mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F}_0 \to 0
\]
be a short exact sequence of \(\mathcal{O}_X\)-modules.

(1) If \(\mathcal{F}_2\) and \(\mathcal{F}_0\) are flat so is \(\mathcal{F}_1\).

(2) If \(\mathcal{F}_1\) and \(\mathcal{F}_0\) are flat so is \(\mathcal{F}_2\).

Proof. Since exactness and flatness may be checked at the level of stalks this follows from Algebra, Lemma 38.13. \(\square\)

Lemma 16.9. Let \((X, \mathcal{O}_X)\) be a ringed space. Let
\[
\ldots \to \mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F}_0 \to \mathcal{Q} \to 0
\]
be an exact complex of \(\mathcal{O}_X\)-modules. If \(\mathcal{Q}\) and all \(\mathcal{F}_i\) are flat \(\mathcal{O}_X\)-modules, then for any \(\mathcal{O}_X\)-module \(\mathcal{G}\) the complex
\[
\ldots \to \mathcal{F}_2 \otimes \mathcal{O}_X \mathcal{G} \to \mathcal{F}_1 \otimes \mathcal{O}_X \mathcal{G} \to \mathcal{F}_0 \otimes \mathcal{O}_X \mathcal{G} \to \mathcal{Q} \otimes \mathcal{O}_X \mathcal{G} \to 0
\]
is exact also.

Proof. Follows from Lemma 16.7 by splitting the complex into short exact sequences and using Lemma 16.8 to prove inductively that \(\text{Im}(\mathcal{F}_{i+1} \to \mathcal{F}_i)\) is flat. \(\square\)

The following lemma gives one direction of the equational criterion of flatness (Algebra, Lemma 38.11).

Lemma 16.10. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}\) be a flat \(\mathcal{O}_X\)-module. Let \(U \subset X\) be open and let
\[
\mathcal{O}_U \xrightarrow{(f_1, \ldots, f_n)} \mathcal{O}_U^{\oplus n} \xrightarrow{(s_1, \ldots, s_n)} \mathcal{F}|_U
\]
be a complex of \(\mathcal{O}_U\)-modules. For every \(x \in U\) there exists an open neighbourhood \(V \subset U\) of \(x\) and a factorization
\[
\mathcal{O}_V^{\oplus n} \xrightarrow{A} \mathcal{O}_V^{\oplus m} \xrightarrow{(t_1, \ldots, t_m)} \mathcal{F}|_V
\]
of \((s_1, \ldots, s_n)|_V\) such that \(A \circ (f_1, \ldots, f_n)|_V = 0\).

Proof. Let \(I \subset \mathcal{O}_U\) be the sheaf of ideals generated by \(f_1, \ldots, f_n\). Then \(\sum f_i \otimes s_i\) is a section of \(I \otimes \mathcal{O}_U, \mathcal{F}|_U\) which maps to zero in \(\mathcal{F}|_U\). As \(\mathcal{F}|_U\) is flat the map \(I \otimes \mathcal{O}_U, \mathcal{F}|_U \to \mathcal{F}|_U\) is injective. Since \(I \otimes \mathcal{O}_U, \mathcal{F}|_U\) is the sheaf associated to the presheaf tensor product, we see there exists an open neighbourhood \(V \subset U\) of \(x\) such that \(\sum f_i|_V \otimes s_i|_V\) is zero in \(I(V) \otimes \mathcal{O}(V), \mathcal{F}(V)\). Unwinding the definitions using Algebra, Lemma 106.10 we find \(t_1, \ldots, t_m \in \mathcal{F}(V)\) and \(a_{ij} \in \mathcal{O}(V)\) such that \(\sum a_{ij}f_i|_V = 0\) and \(s_i|_V = \sum a_{ij}t_j\). \(\square\)

17. Duals

Let \((X, \mathcal{O}_X)\) be a ringed space. The category of \(\mathcal{O}_X\)-modules endowed with the tensor product constructed in Section 15 is a symmetric monoidal category. For an \(\mathcal{O}_X\)-module \(\mathcal{F}\) the following are equivalent

(1) \(\mathcal{F}\) has a left dual in the monoidal category of \(\mathcal{O}_X\)-modules,

(2) \(\mathcal{F}\) is locally a direct summand of a finite free \(\mathcal{O}_X\)-module, and

(3) \(\mathcal{F}\) is of finite presentation and flat as an \(\mathcal{O}_X\)-module.

This is proved in Example 17.1 and Lemmas 17.2 and 17.3 of this section.
Let \mathcal{O}_X be a ringed space. Let \mathcal{F} be an \mathcal{O}_X-module which is locally a direct summand of a finite free \mathcal{O}_X-module. Then the map

$$\mathcal{F} \otimes_{\mathcal{O}_X} \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X) \rightarrow \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F})$$

is an isomorphism. Namely, this is a local question, it is true if \mathcal{F} is finite free, and it holds for any summand of a module for which it is true. Denote

$$\eta: \mathcal{O}_X \rightarrow \mathcal{F} \otimes_{\mathcal{O}_X} \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$$

the map sending 1 to the section corresponding to $\text{id}_\mathcal{F}$ under the isomorphism above. Denote

$$\epsilon: \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X) \otimes_{\mathcal{O}_X} \mathcal{F} \rightarrow \mathcal{O}_X$$

the evaluation map. Then $\text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X), \eta, \epsilon$ is a left dual for \mathcal{F} as in Categories, Definition 41.5. We omit the verification that $(1 \otimes \epsilon) \circ (\eta \otimes 1) = \text{id}_\mathcal{F}$ and $(\epsilon \otimes 1) \circ (1 \otimes \eta) = \text{id}_{\text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)}$.

Lemma 17.2. Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F} be an \mathcal{O}_X-module. Let $\mathcal{G}, \eta, \epsilon$ be a left dual for \mathcal{F} in the monoidal category of \mathcal{O}_X-modules, see Categories, Definition 41.5. Then

1. \mathcal{F} is locally a direct summand of a finite free \mathcal{O}_X-module,
2. the map $\epsilon: \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X) \rightarrow \mathcal{G}$ sending a local section λ to $(\lambda \otimes 1)(\eta)$ is an isomorphism,
3. we have $\epsilon(f, g) = \epsilon^{-1}(g)(f)$ for local sections f and g of \mathcal{F} and \mathcal{G}.

Proof. The assumptions mean that

$$\mathcal{F} \overset{\eta \otimes 1}{\rightarrow} \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} \otimes_{\mathcal{O}_X} \mathcal{F} \overset{1 \otimes \epsilon}{\rightarrow} \mathcal{F}$$

and

$$\mathcal{G} \overset{1 \otimes \eta}{\rightarrow} \mathcal{G} \otimes_{\mathcal{O}_X} \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} \overset{\epsilon \otimes 1}{\rightarrow} \mathcal{G}$$

are the identity map. Let $x \in X$. We can find an open neighbourhood U of x, a finite number of sections f_1, \ldots, f_n and g_1, \ldots, g_n of \mathcal{F} and \mathcal{G} over U such that $\eta(1) = \sum f_i g_i$. Denote

$$\mathcal{O}_{U}^{\oplus n} \rightarrow \mathcal{F}|_U$$

the map sending the ith basis vector to f_i. Then we can factor the map $\eta|_U$ over a map $\tilde{\eta}: \mathcal{O}_U \rightarrow \mathcal{O}_{U}^{\oplus n} \otimes_{\mathcal{O}_U} \mathcal{G}|_U$. We obtain a commutative diagram

$$\begin{array}{ccc}
\mathcal{F}|_U & \xrightarrow{\eta \otimes 1} & \mathcal{F}|_U \otimes \mathcal{G}|_U \otimes \mathcal{F}|_U \xrightarrow{1 \otimes \epsilon} \mathcal{F}|_U \\
\tilde{\eta} \otimes 1 & & \downarrow \epsilon \\
\mathcal{O}_{U}^{\oplus n} \otimes \mathcal{G}|_U \otimes \mathcal{F}|_U & \xrightarrow{1 \otimes \epsilon} & \mathcal{O}_{U}^{\oplus n}
\end{array}$$

This shows that the identity on \mathcal{F} locally on X factors through a finite free module. This proves (1). Part (2) follows from Categories, Lemma 17.1 and its proof. Part (3) follows from the first equality of the proof. You can also deduce (2) and (3) from the uniqueness of left duals (Categories, Remark 41.7) and the construction of the left dual in Example 17.1. □

Lemma 17.3. Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F} be a flat \mathcal{O}_X-module of finite presentation. Then \mathcal{F} is locally a direct summand of a finite free \mathcal{O}_X-module.

Proof. After replacing X by the members of an open covering, we may assume there exists a presentation

$$\mathcal{O}_X^{\oplus r} \rightarrow \mathcal{O}_X^{\oplus n} \rightarrow \mathcal{F} \rightarrow 0$$
Let \(x \in X \). By Lemma [16.10] we can, after shrinking \(X \) to an open neighbourhood of \(x \), assume there exists a factorization

\[
\mathcal{O}^{\oplus n}_X \to \mathcal{O}^{\oplus n_1}_X \to \mathcal{F}
\]

such that the composition \(\mathcal{O}^{\oplus r}_X \to \mathcal{O}^{\oplus n}_X \to \mathcal{O}^{\oplus n_1}_X \) annihilates the first summand of \(\mathcal{O}^{\oplus r}_X \). Repeating this argument \(r - 1 \) more times we obtain a factorization

\[
\mathcal{O}^{\oplus n}_X \to \mathcal{O}^{\oplus n_r}_X \to \mathcal{F}
\]

such that the composition \(\mathcal{O}^{\oplus r}_X \to \mathcal{O}^{\oplus n}_X \to \mathcal{O}^{\oplus n_r}_X \) is zero. This means that the surjection \(\mathcal{O}^{\oplus n_r}_X \to \mathcal{F} \) has a section and we win. \(\square \)

18. Constructible sheaves of sets

0CAG Let \(X \) be a topological space. Given a set \(S \) recall that \(S \) or \(S_X \) denotes the constant sheaf with value \(S \), see Sheaves, Definition [7.4]. Let \(U \subset X \) be an open of a topological space \(X \). We will denote \(j_U \) the inclusion morphism and we will denote \(j_U^! : Sh(U) \to Sh(X) \) the extension by the empty set described in Sheaves, Section [31]

0CAH **Lemma 18.1.** Let \(X \) be a topological space. Let \(\mathcal{B} \) be a basis for the topology on \(X \). Let \(\mathcal{F} \) be a sheaf of sets on \(X \). There exists a set \(I \) and for each \(i \in I \) an element \(U_i \in \mathcal{B} \) and a finite set \(S_i \) such that there exists a surjection \(\coprod_{i \in I} j_{U_i}^! S_i \to \mathcal{F} \).

Proof. Let \(S \) be a singleton set. We will prove the result with \(S_i = S \). For every \(x \in X \) and element \(s \in \mathcal{F}_x \) we can choose an \(U(x, s) \in \mathcal{B} \) and \(s(x, s) \in \mathcal{F}(U(x, s)) \) which maps to \(s \) in \(\mathcal{F}_x \). By Sheaves, Lemma [31.4] the section \(s(x, s) \) corresponds to a map of sheaves \(j_{U(x, s)}^! S \to \mathcal{F} \). Then

\[
\coprod_{(x, s)} j_{U(x, s)}^! S \to \mathcal{F}
\]

is surjective on stalks and hence surjective. \(\square \)

0CAI **Lemma 18.2.** Let \(X \) be a topological space. Let \(\mathcal{B} \) be a basis for the topology of \(X \) and assume that each \(U \in \mathcal{B} \) is quasi-compact. Then every sheaf of sets on \(X \) is a filtered colimit of sheaves of the form

0CAJ (18.2.1) \(\text{Coequalizer} \left(\coprod_{b=1, \ldots, m} j_{V_b}^! S_b \longrightarrow \coprod_{a=1, \ldots, n} j_{U_a}^! S_a \right) \)

with \(U_a \) and \(V_b \) in \(\mathcal{B} \) and \(S_a \) and \(S_b \) finite sets.

Proof. By Lemma [18.1] every sheaf of sets \(\mathcal{F} \) is the target of a surjection whose source \(\mathcal{F}_0 \) is a coproduct of sheaves the form \(j_{U}^! S \) with \(U \in \mathcal{B} \) and \(S \) finite. Applying this to \(\mathcal{F}_0 \times \mathcal{F}_0 \) we find that \(\mathcal{F} \) is a coequalizer of a pair of maps

\[
\coprod_{b \in B} j_{V_b}^! S_b \longrightarrow \coprod_{a \in A} j_{U_a}^! S_a
\]

for some index sets \(A \), \(B \) and \(V_b \) and \(U_a \) in \(\mathcal{B} \) and \(S_a \) and \(S_b \) finite. For every finite subset \(B' \subset B \) there is a finite subset \(A' \subset A \) such that the coproduct over \(b \in B' \) maps into the coproduct over \(a \in A' \) via both maps. Namely, we can view the right hand side as a filtered colimit with injective transition maps. Hence taking sections over the quasi-compact opens \(V_b \), \(b \in B' \) commutes with this coproduct, see Sheaves, Lemma [29.1]. Thus our sheaf is the colimit of the cokernels of these maps between finite coproducts. \(\square \)
Let X be a spectral topological space. Let \mathcal{B} be the set of quasi-compact open subsets of X. Let \mathcal{F} be a sheaf of sets as in Equation (18.2.1). Then there exists a continuous spectral map $f : X \to Y$ to a finite sober topological space Y and a sheaf of sets \mathcal{G} on Y with finite stalks such that $f^{-1}\mathcal{G} \cong \mathcal{F}$.

Proof. We can write $X = \lim X_i$ as a directed limit of finite sober spaces, see Topology, Lemma 23.13. Of course the transition maps $X_i \to X$ are spectral and hence by Topology, Lemma 24.5] the maps $p_i : X \to X_i$ are spectral. For some i we can find opens $U_{a,i}$ and $V_{b,i}$ of X_i whose inverse images are U_a and V_b, see Topology, Lemma 24.6. The two maps

$$\beta, \gamma : \prod_{b \in B} j_{V_b!} S_b \to \prod_{a \in A} j_{U_a!} S_a$$

whose coequalizer is \mathcal{F} correspond by adjunction to two families

$$\beta_b, \gamma_b : S_b \to \Gamma(V_b, \prod_{a \in A} j_{U_a!} S_a), \quad b \in B$$

of maps of sets. Observe that $p_i^{-1}(s_{a,i}) = j_{U_a!} S_a$ and $(X_i \to X_i)^{-1}(s_{a,i}) = j_{U_a!} S_a$. It follows from Sheaves, Lemma 29.3 (and using that S_b and B are finite sets) that after increasing i we find maps

$$\beta_{b,i}, \gamma_{b,i} : S_b \to \Gamma(V_{b,i}, \prod_{a \in A} j_{U_{a,i}!} S_a), \quad b \in B$$

which give rise to the maps β_b and γ_b after pulling back by p_i. These maps correspond in turn to maps of sheaves

$$\beta_i, \gamma_i : \prod_{b \in B} j_{V_{b,i}!} S_b \to \prod_{a \in A} j_{U_{a,i}!} S_a$$

on X_i. Then we can take $Y = X_i$ and

$$\mathcal{G} = \text{Coequalizer} \left(\prod_{b=1,\ldots,m} j_{V_{b,i}!} S_b \overset{\beta_i}{\longrightarrow} \prod_{a=1,\ldots,n} j_{U_{a,i}!} S_a \right)$$

We omit some details.

Let X be a spectral topological space. Let \mathcal{B} be the set of quasi-compact open subsets of X. Let \mathcal{F} be a sheaf of sets as in Equation (18.2.1). Then there exist finitely many constructible closed subsets $Z_1, \ldots, Z_n \subset X$ and finite sets S_i such that \mathcal{F} is isomorphic to a subsheaf of $\prod(Z_i \to X)_* S_i$.

Proof. By Lemma 18.3 we reduce to the case of a finite sober topological space and a sheaf with finite stalks. In this case $\mathcal{F} \subset \prod_{x \in X} i_x,*, \mathcal{F}_x$ where $i_x : \{x\} \to X$ is the embedding. We omit the proof that $i_x,*, \mathcal{F}_x$ is a constant sheaf on $\{x\}$.

19. Flat morphisms of ringed spaces

The pointwise definition is motivated by Lemma 16.2 and Definition 16.3 above.

Definition 19.1. Let $f : X \to Y$ be a morphism of ringed spaces. Let $x \in X$. We say f is said to be flat at x if the map of rings $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is flat. We say f is flat if f is flat at every $x \in X$.

Consider the map of sheaves of rings $f^2 : f^{-1} \mathcal{O}_Y \to \mathcal{O}_X$. We see that the stalk at x is the ring map $f^2 : \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$. Hence f is flat at x if and only if \mathcal{O}_X is flat at x as an $f^{-1} \mathcal{O}_Y$-module. And f is flat if and only if \mathcal{O}_X is flat as an $f^{-1} \mathcal{O}_Y$-module. A very special case of a flat morphism is an open immersion.
In the situation described above. Let \(f : X \to Y \) be a flat morphism of ringed spaces. Then the pullback functor \(f^* : \text{Mod}(\mathcal{O}_Y) \to \text{Mod}(\mathcal{O}_X) \) is exact.

Proof. The functor \(f^* \) is the composition of the exact functor \(f^{-1} : \text{Mod}(\mathcal{O}_Y) \to \text{Mod}(f^{-1}\mathcal{O}_Y) \) and the change of rings functor \(\text{Mod}(f^{-1}\mathcal{O}_Y) \to \text{Mod}(\mathcal{O}_X), \ F \mapsto \mathcal{F} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X. \) Thus the result follows from the discussion following Definition 19.1.

Definition 19.3. Let \(f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y) \) be a morphism of ringed spaces. Let \(\mathcal{F} \) be a sheaf of \(\mathcal{O}_X \)-modules.

1. We say that \(\mathcal{F} \) is flat over \(Y \) at a point \(x \in X \) if the stalk \(\mathcal{F}_x \) is a flat \(\mathcal{O}_{Y, f(x)} \)-module.
2. We say that \(\mathcal{F} \) is flat over \(Y \) if \(\mathcal{F} \) is flat over \(Y \) at every point \(x \) of \(X \).

With this definition we see that \(\mathcal{F} \) is flat over \(Y \) at \(x \) if and only if \(\mathcal{F} \) is flat at \(x \) as an \(f^{-1}\mathcal{O}_Y \)-module because \((f^{-1}\mathcal{O}_Y)_x = \mathcal{O}_{Y, f(x)} \) by Sheaves, Lemma 21.5.

20. Symmetric and exterior powers

Let \((X, \mathcal{O}_X) \) be a ringed space. Let \(\mathcal{F} \) be an \(\mathcal{O}_X \)-module. We define the **tensor algebra** of \(\mathcal{F} \) to be the sheaf of noncommutative \(\mathcal{O}_X \)-algebras

\[
\mathbb{T}(\mathcal{F}) = \mathbb{T}_{\mathcal{O}_X}(\mathcal{F}) = \bigoplus_{n \geq 0} \mathbb{T}^n(\mathcal{F}).
\]

Here \(\mathbb{T}^0(\mathcal{F}) = \mathcal{O}_X, \mathbb{T}^1(\mathcal{F}) = \mathcal{F} \) and for \(n \geq 2 \) we have

\[
\mathbb{T}^n(\mathcal{F}) = \mathcal{F} \otimes_{\mathcal{O}_X} \cdots \otimes_{\mathcal{O}_X} \mathcal{F} \quad (n \text{ factors})
\]

We define \(\wedge(\mathcal{F}) \) to be the quotient of \(\mathbb{T}(\mathcal{F}) \) by the two sided ideal generated by local sections \(s \otimes s \) of \(\mathbb{T}^2(\mathcal{F}) \) where \(s \) is a local section of \(\mathcal{F} \). This is called the **exterior algebra** of \(\mathcal{F} \). Similarly, we define \(\text{Sym}(\mathcal{F}) \) to be the quotient of \(\mathbb{T}(\mathcal{F}) \) by the two sided ideal generated by local sections of the form \(s \otimes t - t \otimes s \) of \(\mathbb{T}^2(\mathcal{F}) \).

Both \(\wedge(\mathcal{F}) \) and \(\text{Sym}(\mathcal{F}) \) are graded \(\mathcal{O}_X \)-algebras, with grading inherited from \(\mathbb{T}(\mathcal{F}) \).

Moreover \(\text{Sym}(\mathcal{F}) \) is commutative, and \(\wedge(\mathcal{F}) \) is graded commutative.

Lemma 20.1. In the situation described above. The sheaf \(\wedge^n\mathcal{F} \) is the sheafification of the presheaf

\[
U \mapsto \wedge^n_{\mathcal{O}_X(U)}(\mathcal{F}(U)).
\]

See Algebra, Section 12. Similarly, the sheaf \(\text{Sym}^n\mathcal{F} \) is the sheafification of the presheaf

\[
U \mapsto \text{Sym}^n_{\mathcal{O}_X(U)}(\mathcal{F}(U)).
\]

Proof. Omitted. It may be more efficient to define \(\text{Sym}(\mathcal{F}) \) and \(\wedge(\mathcal{F}) \) in this way instead of the method given above.

Lemma 20.2. In the situation described above. Let \(x \in X \). There are canonical isomorphisms of \(\mathcal{O}_{X, x} \)-modules \(T(\mathcal{F})_x = T(\mathcal{F}_x), \text{Sym}(\mathcal{F})_x = \text{Sym}(\mathcal{F}_x), \) and \(\wedge(\mathcal{F})_x = \wedge(\mathcal{F}_x) \).

Proof. Clear from Lemma 20.1 above, and Algebra, Lemma 12.4.

Lemma 20.3. Let \(f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y) \) be a morphism of ringed spaces. Let \(\mathcal{F} \) be a sheaf of \(\mathcal{O}_Y \)-modules. Then \(f^* T(\mathcal{F}) = T(f^* \mathcal{F}) \), and similarly for the exterior and symmetric algebras associated to \(\mathcal{F} \).
Lemma 20.4. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F} \to 0\) be an exact sequence of sheaves of \(\mathcal{O}_X\)-modules. For each \(n \geq 1\) there is an exact sequence
\[
\mathcal{F}_2 \otimes \mathcal{O}_X \text{Sym}^{n-1}(\mathcal{F}_1) \to \text{Sym}^n(\mathcal{F}_1) \to \text{Sym}^n(\mathcal{F}) \to 0
\]
and similarly an exact sequence
\[
\mathcal{F}_2 \otimes \mathcal{O}_X \wedge^{n-1}(\mathcal{F}_1) \to \wedge^n(\mathcal{F}_1) \to \wedge^n(\mathcal{F}) \to 0
\]

Proof. See Algebra, Lemma 12.2. \(\square\)

Lemma 20.5. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}\) be a sheaf of \(\mathcal{O}_X\)-modules.

1. If \(\mathcal{F}\) is locally generated by sections, then so is each \(T^n(\mathcal{F}), \wedge^n(\mathcal{F}),\) and \(\text{Sym}^n(\mathcal{F})\).
2. If \(\mathcal{F}\) is of finite type, then so is each \(T^n(\mathcal{F}), \wedge^n(\mathcal{F}),\) and \(\text{Sym}^n(\mathcal{F})\).
3. If \(\mathcal{F}\) is of finite presentation, then so is each \(T^n(\mathcal{F}), \wedge^n(\mathcal{F}),\) and \(\text{Sym}^n(\mathcal{F})\).
4. If \(\mathcal{F}\) is coherent, then for \(n > 0\) each \(T^n(\mathcal{F}), \wedge^n(\mathcal{F}),\) and \(\text{Sym}^n(\mathcal{F})\) is coherent.
5. If \(\mathcal{F}\) is quasi-coherent, then so is each \(T^n(\mathcal{F}), \wedge^n(\mathcal{F}),\) and \(\text{Sym}^n(\mathcal{F})\).
6. If \(\mathcal{F}\) is locally free, then so is each \(T^n(\mathcal{F}), \wedge^n(\mathcal{F}),\) and \(\text{Sym}^n(\mathcal{F})\).

Proof. These statements for \(T^n(\mathcal{F})\) follow from Lemma 15.5. Statements (1) and (2) follow from the fact that \(\wedge^n(\mathcal{F})\) and \(\text{Sym}^n(\mathcal{F})\) are quotients of \(T^n(\mathcal{F})\).

Statement (6) follows from Algebra, Lemma 12.1.

For (3) and (5) we will use Lemma 20.4 above. By locally choosing a presentation \(\mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F} \to 0\) with \(\mathcal{F}_i\) free, or finite free and applying the lemma we see that \(\text{Sym}^n(\mathcal{F}), \wedge^n(\mathcal{F})\) has a similar presentation; here we use (6) and Lemma 15.5.

To prove (4) we will use Algebra, Lemma 12.3. We may localize on \(X\) and assume that \(\mathcal{F}\) is generated by a finite set \((s_i)_{i \in I}\) of global sections. The lemma mentioned above combined with Lemma 20.1 above implies that for \(n \geq 2\) there exists an exact sequence
\[
\bigoplus_{i \in I} T^{n-2}(\mathcal{F}) \to T^n(\mathcal{F}) \to \text{Sym}^n(\mathcal{F}) \to 0
\]
where the index set \(I\) is finite. Now we know that \(T^{n-2}(\mathcal{F})\) is finitely generated and hence the image of the first arrow is a coherent subsheaf of \(T^n(\mathcal{F})\), see Lemma 12.4. By that same lemma we conclude that \(\text{Sym}^n(\mathcal{F})\) is coherent. \(\square\)

Lemma 20.6. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{F}\) be a sheaf of \(\mathcal{O}_X\)-modules.

1. If \(\mathcal{F}\) is quasi-coherent, then so is each \(T(\mathcal{F}), \wedge(\mathcal{F}),\) and \(\text{Sym}(\mathcal{F})\).
2. If \(\mathcal{F}\) is locally free, then so is each \(T(\mathcal{F}), \wedge(\mathcal{F}),\) and \(\text{Sym}(\mathcal{F})\).

Proof. It is not true that an infinite direct sum \(\bigoplus \mathcal{G}_i\) of locally free modules is locally free, or that an infinite direct sum of quasi-coherent modules is quasi-coherent. The problem is that given a point \(x \in X\) the open neighbourhoods \(U_i\) of \(x\) on which \(\mathcal{G}_i\) becomes free (resp. has a suitable presentation) may have an intersection which is not an open neighbourhood of \(x\). However, in the proof of Lemma 20.5 we saw that once a suitable open neighbourhood for \(\mathcal{F}\) has been chosen, then this open neighbourhood works for each of the sheaves \(T^n(\mathcal{F}), \wedge^n(\mathcal{F})\) and \(\text{Sym}^n(\mathcal{F})\). The lemma follows. \(\square\)
21. Internal Hom

Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F}, \mathcal{G} be \mathcal{O}_X-modules. Consider the rule

$$U \mapsto \text{Hom}_{\mathcal{O}_X|_U} (\mathcal{F}|_U, \mathcal{G}|_U).$$

It follows from the discussion in Sheaves, Section 33 that this is a sheaf of abelian groups. In addition, given an element $\varphi \in \text{Hom}_{\mathcal{O}_X|_U} (\mathcal{F}|_U, \mathcal{G}|_U)$ and a section $f \in \mathcal{O}_X(U)$ then we can define $f \varphi \in \text{Hom}_{\mathcal{O}_X|_U} (\mathcal{F}|_U, \mathcal{G}|_U)$ by either precomposing with multiplication by f on $\mathcal{F}|_U$ or postcomposing with multiplication by f on $\mathcal{G}|_U$ (it gives the same result). Hence we in fact get a sheaf of \mathcal{O}_X-modules. We will denote this sheaf $\text{Hom}_{\mathcal{O}_X} (\mathcal{F}, \mathcal{G})$. There is a canonical “evaluation” morphism

$$\mathcal{F} \otimes_{\mathcal{O}_X} \text{Hom}_{\mathcal{O}_X} (\mathcal{F}, \mathcal{G}) \to \mathcal{G}.$$

For every $x \in X$ there is also a canonical morphism

$$\text{Hom}_{\mathcal{O}_X} (\mathcal{F}, \mathcal{G})_x \to \text{Hom}_{\mathcal{O}_X,x} (\mathcal{F}_x, \mathcal{G}_x)$$

which is rarely an isomorphism.

Lemma 21.1. Let (X, \mathcal{O}_X) be a ringed space. Let $\mathcal{F}, \mathcal{G}, \mathcal{H}$ be \mathcal{O}_X-modules. There is a canonical isomorphism

$$\text{Hom}_{\mathcal{O}_X} (\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}, \mathcal{H}) \to \text{Hom}_{\mathcal{O}_X} (\mathcal{F}, \text{Hom}_{\mathcal{O}_X} (\mathcal{G}, \mathcal{H}))$$

which is functorial in all three entries (sheaf Hom in all three spots). In particular, to give a morphism $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} \to \mathcal{H}$ is the same as giving a morphism $\mathcal{F} \to \text{Hom}_{\mathcal{O}_X} (\mathcal{G}, \mathcal{H})$.

Proof. This is the analogue of Algebra, Lemma 11.8. The proof is the same, and is omitted. □

Lemma 21.2. Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F}, \mathcal{G} be \mathcal{O}_X-modules.

1. If $\mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F} \to 0$ is an exact sequence of \mathcal{O}_X-modules, then

$$0 \to \text{Hom}_{\mathcal{O}_X} (\mathcal{F}, \mathcal{G}) \to \text{Hom}_{\mathcal{O}_X} (\mathcal{F}_1, \mathcal{G}) \to \text{Hom}_{\mathcal{O}_X} (\mathcal{F}_2, \mathcal{G})$$

is exact.

2. If $0 \to \mathcal{G} \to \mathcal{G}_1 \to \mathcal{G}_2$ is an exact sequence of \mathcal{O}_X-modules, then

$$0 \to \text{Hom}_{\mathcal{O}_X} (\mathcal{F}, \mathcal{G}) \to \text{Hom}_{\mathcal{O}_X} (\mathcal{F}, \mathcal{G}_1) \to \text{Hom}_{\mathcal{O}_X} (\mathcal{F}, \mathcal{G}_2)$$

is exact.

Proof. Omitted. □

Lemma 21.3. Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F}, \mathcal{G} be \mathcal{O}_X-modules. If \mathcal{F} is finitely presented then the canonical map

$$\text{Hom}_{\mathcal{O}_X} (\mathcal{F}, \mathcal{G})_x \to \text{Hom}_{\mathcal{O}_X,x} (\mathcal{F}_x, \mathcal{G}_x)$$

is an isomorphism.

Proof. By localizing on X we may assume that \mathcal{F} has a presentation

$$\bigoplus_{j=1,\ldots,m} \mathcal{O}_X \to \bigoplus_{i=1,\ldots,n} \mathcal{O}_X \to \mathcal{F} \to 0.$$

By Lemma 21.2 this gives an exact sequence $0 \to \text{Hom}_{\mathcal{O}_X} (\mathcal{F}, \mathcal{G}) \to \bigoplus_{j=1,\ldots,m} \mathcal{G} \to \bigoplus_{j=1,\ldots,m} \mathcal{G}_x$ and the result follows since \mathcal{F}_x sits in an exact sequence $\bigoplus_{j=1,\ldots,m} \mathcal{O}_X,x \to \bigoplus_{j=1,\ldots,m} \mathcal{O}_X \to \mathcal{F}_x \to 0$. □
Let \(X \) and \(Y \) be \(\mathcal{O}_X \)-modules. We suggest first reading the section on Koszul complexes in More on Algebra, sheaves of rings. Then we have

\[\text{Lemma 21.6.} \quad \text{If } F \text{ is finitely presented and } f \text{ is flat, then the canonical map } \]

\[f^* \text{Hom}_{\mathcal{O}_X}(F,G) \longrightarrow \text{Hom}_{\mathcal{O}_X}(f^*F, f^*G) \]

is an isomorphism.

Proof. Note that \(f^*F \) is also finitely presented (Lemma 11.4). Let \(x \in X \) map to \(y \in Y \). Looking at the stalks at \(x \) we get an isomorphism by Lemma 21.3 and More on Algebra, Remark 62.21 to see that in this case Hom commutes with base change by \(\mathcal{O}_{Y,y} \to \mathcal{O}_{X,x} \). Second proof: use the exact same argument as given in the proof of Lemma 21.3.

22. Koszul complexes

We suggest first reading the section on Koszul complexes in More on Algebra, Section 28. We define the Koszul complex in the category of \(\mathcal{O}_X \)-modules as follows.

Definition 22.1. Let \(X \) be a ringed space. Let \(\varphi : \mathcal{E} \to \mathcal{O}_X \) be an \(\mathcal{O}_X \)-module map. The Koszul complex \(K_\bullet(\varphi) \) associated to \(\varphi \) is the sheaf of commutative differential graded algebras defined as follows:

1. the underlying graded algebra is the exterior algebra \(K_\bullet(\varphi) = \wedge(\mathcal{E}) \),
2. the differential \(d : K_\bullet(\varphi) \to K_\bullet(\varphi) \) is the unique derivation such that \(d(e) = \varphi(e) \) for all local sections \(e \) of \(\mathcal{E} = K_1(\varphi) \).

Explicitly, if \(e_1 \wedge \ldots \wedge e_n \) is a wedge product of local sections of \(\mathcal{E} \), then

\[d(e_1 \wedge \ldots \wedge e_n) = \sum_{i=1}^n (-1)^{i+1} \varphi(e_i) e_1 \wedge \ldots \wedge \widehat{e_i} \wedge \ldots \wedge e_n. \]

It is straightforward to see that this gives a well defined derivation on the tensor algebra, which annihilates \(e \wedge e \) and hence factors through the exterior algebra.

Definition 22.2. Let \(X \) be a ringed space and let \(f_1, \ldots, f_n \in \Gamma(X, \mathcal{O}_X) \). The Koszul complex on \(f_1, \ldots, f_n \) is the Koszul complex associated to the map \(f_1, \ldots, f_n : \mathcal{O}_X^n \to \mathcal{O}_X \). Notation \(K_\bullet(\mathcal{O}_X, f_1, \ldots, f_n) \), or \(K_\bullet(\mathcal{O}_X, f_\bullet) \).

Of course, given an \(\mathcal{O}_X \)-module map \(\varphi : \mathcal{E} \to \mathcal{O}_X \), if \(\mathcal{E} \) is finite locally free, then \(K_\bullet(\varphi) \) is locally on \(X \) isomorphic to a Koszul complex \(K_\bullet(\mathcal{O}_X, f_1, \ldots, f_n) \).
23. Invertible modules

Similarly to the case of modules over rings (More on Algebra, Section 106) we have the following definition.

Definition 23.1. Let \((X, \mathcal{O}_X)\) be a ringed space. An **invertible \(\mathcal{O}_X\)-module** is a sheaf of \(\mathcal{O}_X\)-modules \(\mathcal{L}\) such that the functor

\[\text{Mod}(\mathcal{O}_X) \to \text{Mod}(\mathcal{O}_X), \quad \mathcal{F} \mapsto \mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{F} \]

is an equivalence of categories. We say that \(\mathcal{L}\) is **trivial** if it is isomorphic as an \(\mathcal{O}_X\)-module to \(\mathcal{O}_X\).

Lemma 23.3 below explains the relationship with locally free modules of rank 1.

Lemma 23.2. Let \((X, \mathcal{O}_X)\) be a ringed space. Let \(\mathcal{L}\) be an \(\mathcal{O}_X\)-module. Equivalent are

1. \(\mathcal{L}\) is invertible, and
2. there exists an \(\mathcal{O}_X\)-module \(\mathcal{N}\) such that \(\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{N} \cong \mathcal{O}_X\).

In this case \(\mathcal{L}\) is locally a direct summand of a finite free \(\mathcal{O}_X\)-module and the module \(\mathcal{N}\) in (2) is isomorphic to \(\text{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X)\).

Proof. Assume (1). Then the functor \(- \otimes_{\mathcal{O}_X} \mathcal{L}\) is essentially surjective, hence there exists an \(\mathcal{O}_X\)-module \(\mathcal{N}\) as in (2). If (2) holds, then the functor \(- \otimes_{\mathcal{O}_X} \mathcal{N}\) is a quasi-inverse to the functor \(- \otimes_{\mathcal{O}_X} \mathcal{L}\) and we see that (1) holds.

Assume (1) and (2) hold. Denote \(\psi : \mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{N} \to \mathcal{O}_X\) the given isomorphism. Let \(x \in X\). Choose an open neighbourhood \(U\) an integer \(n \geq 1\) and sections \(s_i \in \mathcal{L}(U)\), \(t_i \in \mathcal{N}(U)\) such that \(\psi(\sum s_i \otimes t_i) = 1\). Consider the isomorphisms

\[\mathcal{L}|_U \to \mathcal{L}|_U \otimes_{\mathcal{O}_U} \mathcal{N}|_U \to \mathcal{O}_X \]

where the first arrow sends \(s\) to \(\sum s_i \otimes s \otimes t_i\) and the second arrow sends \(s \otimes s' \otimes t\) to \(\psi(s' \otimes t)s\). We conclude that \(s \mapsto \sum \psi(s \otimes t_i)s_i\) is an automorphism of \(\mathcal{L}|_U\). This automorphism factors as

\[\mathcal{L}|_U \to \mathcal{O}_{U}^\oplus n \to \mathcal{L}|_U \]

where the first arrow is given by \(s \mapsto (\psi(s \otimes t_1), \ldots, \psi(s \otimes t_n))\) and the second arrow by \((a_1, \ldots, a_n) \mapsto \sum a_i s_i\). In this way we conclude that \(\mathcal{L}|_U\) is a direct summand of a finite free \(\mathcal{O}_U\)-module.

Assume (1) and (2) hold. Consider the evaluation map

\[\mathcal{L} \otimes_{\mathcal{O}_X} \text{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X) \to \mathcal{O}_X \]

To finish the proof of the lemma we will show this is an isomorphism by checking it induces isomorphisms on stalks. Let \(x \in X\). Since we know (by the previous paragraph) that \(\mathcal{L}\) is a finitely presented \(\mathcal{O}_X\)-module we can use Lemma 21.3 to see that it suffices to show that

\[\mathcal{L}_x \otimes_{\mathcal{O}_{X,x}} \text{Hom}_{\mathcal{O}_{X,x}}(\mathcal{L}_x, \mathcal{O}_{X,x}) \to \mathcal{O}_{X,x} \]

is an isomorphism. Since \(\mathcal{L}_x \otimes_{\mathcal{O}_{X,x}} \mathcal{N}_x = (\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{N})_x = \mathcal{O}_{X,x}\) (Lemma 15.1) the desired result follows from More on Algebra, Lemma 106.2. □

Lemma 23.3. Let \(f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)\) be a morphism of ringed spaces. The pullback \(f^* \mathcal{L}\) of an invertible \(\mathcal{O}_Y\)-module is invertible.
Proof. By Lemma 23.2 there exists an \(\mathcal{O}_Y \)-module \(\mathcal{N} \) such that \(\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{N} \cong \mathcal{O}_Y \). Pulling back we get \(f^* \mathcal{L} \otimes_{\mathcal{O}_X} f^* \mathcal{N} \cong \mathcal{O}_Y \) by Lemma 15.4. Thus \(f^* \mathcal{L} \) is invertible by Lemma 23.2. \(\square \)

Lemma 23.4. Let \((X, \mathcal{O}_X) \) be a ringed space. Any locally free \(\mathcal{O}_X \)-module of rank 1 is invertible. If all stalks \(\mathcal{O}_{X,x} \) are local rings, then the converse holds as well (but in general this is not the case).

Proof. The parenthetical statement follows by considering a one point space \(X \) with sheaf of rings \(\mathcal{O}_X \) given by a ring \(R \). Then invertible \(\mathcal{O}_X \)-modules correspond to invertible \(R \)-modules, hence as soon as \(\text{Pic}(R) \) is not the trivial group, then we get an example.

Assume \(\mathcal{L} \) is locally free of rank 1 and consider the evaluation map

\[
\mathcal{L} \otimes_{\mathcal{O}_X} \text{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X) \rightarrow \mathcal{O}_X
\]

Looking over an open covering trivialization \(\mathcal{L} \), we see that this map is an isomorphism. Hence \(\mathcal{L} \) is invertible by Lemma 23.2.

Assume all stalks \(\mathcal{O}_{X,x} \) are local rings and \(\mathcal{L} \) invertible. In the proof of Lemma 23.2 we have seen that \(\mathcal{L}_x \) is an invertible \(\mathcal{O}_{X,x} \)-module for all \(x \in X \). Since \(\mathcal{O}_{X,x} \) is local, we see that \(\mathcal{L}_x \cong \mathcal{O}_{X,x} \) (More on Algebra, Section 106). Since \(\mathcal{L} \) is of finite presentation by Lemma 23.2 we conclude that \(\mathcal{L} \) is locally free of rank 1 by Lemma 11.8. \(\square \)

Lemma 23.5. Let \((X, \mathcal{O}_X) \) be a ringed space.

1. If \(\mathcal{L}, \mathcal{N} \) are invertible \(\mathcal{O}_X \)-modules, then so is \(\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{N} \).
2. If \(\mathcal{L} \) is an invertible \(\mathcal{O}_X \)-module, then so is \(\text{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X) \) and the evaluation map \(\mathcal{L} \otimes_{\mathcal{O}_X} \text{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X) \rightarrow \mathcal{O}_X \) is an isomorphism.

Proof. Part (1) is clear from the definition and part (2) follows from Lemma 23.2 and its proof.

Definition 23.6. Let \((X, \mathcal{O}_X) \) be a ringed space. Given an invertible sheaf \(\mathcal{L} \) on \(X \) and \(n \in \mathbb{Z} \) we define the \(n \)th tensor power \(\mathcal{L}^\otimes n \) of \(\mathcal{L} \) as the image of \(\mathcal{O}_X \) under applying the equivalence \(\mathcal{F} \rightarrow \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L} \) exactly \(n \) times.

This makes sense also for negative \(n \) as we’ve defined an invertible \(\mathcal{O}_X \)-module as one for which tensoring is an equivalence. More explicitly, we have

\[
\mathcal{L}^\otimes n = \begin{cases}
\mathcal{O}_X & \text{if } n = 0 \\
\text{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X) & \text{if } n = -1 \\
\mathcal{L} \otimes_{\mathcal{O}_X} \ldots \otimes_{\mathcal{O}_X} \mathcal{L} & \text{if } n > 0 \\
\mathcal{L}^{-1} \otimes_{\mathcal{O}_X} \ldots \otimes_{\mathcal{O}_X} \mathcal{L}^{-1} & \text{if } n < -1
\end{cases}
\]

see Lemma 23.5. With this definition we have canonical isomorphisms \(\mathcal{L}^\otimes n \otimes_{\mathcal{O}_X} \mathcal{L}^\otimes m \rightarrow \mathcal{L}^\otimes (n+m) \), and these isomorphisms satisfy a commutativity and an associativity constraint (formulation omitted).

Let \((X, \mathcal{O}_X) \) be a ringed space. We can define a \(\mathbb{Z} \)-graded ring structure on \(\bigoplus \Gamma(X, \mathcal{L}^\otimes n) \) by mapping \(s \in \Gamma(X, \mathcal{L}^\otimes n) \) and \(t \in \Gamma(X, \mathcal{L}^\otimes m) \) to the section corresponding to \(s \otimes t \) in \(\Gamma(X, \mathcal{L}^\otimes (n+m)) \). We omit the verification that this defines a commutative and associative ring with 1. However, by our conventions in Algebra, Section 65 a graded ring has no nonzero elements in negative degrees. This leads to the following definition.
Given a sheaf of \(\mathcal{O}_X \)-modules \(F \) we set
\[
\Gamma_*(X, F) = \bigoplus_{n \in \mathbb{Z}} \Gamma(X, F \otimes \mathcal{O}_X L^n)
\]
which we think of as a graded \(\Gamma_*(X, \mathcal{L}) \)-module.

We often write simply \(\Gamma_*(\mathcal{L}) \) and \(\Gamma_*(\mathcal{F}) \) (although this is ambiguous if \(\mathcal{F} \) is invertible). The multiplication of \(\Gamma_*(\mathcal{L}) \) on \(\Gamma_*(\mathcal{F}) \) is defined using the isomorphisms above. If \(\gamma : \mathcal{F} \to \mathcal{G} \) is a \(\mathcal{O}_X \)-module map, then we get an \(\Gamma_*(\mathcal{L}) \)-module homomorphism \(\gamma : \Gamma_*(\mathcal{F}) \to \Gamma_*(\mathcal{G}) \). If \(\alpha : \mathcal{L} \to \mathcal{N} \) is an \(\mathcal{O}_X \)-module map between invertible \(\mathcal{O}_X \)-modules, then we obtain a graded ring homomorphism \(\Gamma_*(\mathcal{L}) \to \Gamma_*(\mathcal{N}) \). If \(f : (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X) \) is a morphism of ringed spaces and if \(\mathcal{L} \) is invertible on \(X \), then we get an invertible sheaf \(f^* \mathcal{L} \) on \(Y \) (Lemma 23.3) and an induced homomorphism of graded rings
\[
f^* : \Gamma_*(X, \mathcal{L}) \to \Gamma_*(Y, f^* \mathcal{L})
\]
Furthermore, there are some compatibilities between the constructions above whose statements we omit.

Lemma 23.8. Let \((X, \mathcal{O}_X)\) be a ringed space. There exists a set of invertible modules \(\{ \mathcal{L}_i \}_{i \in I} \) such that each invertible module on \(X \) is isomorphic to exactly one of the \(\mathcal{L}_i \).

Proof. Recall that any invertible \(\mathcal{O}_X \)-module is locally a direct summand of a finite free \(\mathcal{O}_X \)-module, see Lemma 23.2. For each open covering \(U : X = \bigcup_{j \in J} U_j \) and map \(r : J \to \mathbb{N} \) consider the sheaves of \(\mathcal{O}_X \)-modules \(F_j = \mathcal{F}|_{U_j} \) and \(\mathcal{O}_{U_j}^{\oplus r(j)} \). The collection of isomorphism classes of \(F_j \) is a set, because \(\text{Hom}_{\mathcal{O}_U}(\mathcal{O}_{U_j}^{\oplus r}, \mathcal{O}_{U_j}^{\oplus r}) \) is a set. The sheaf \(\mathcal{F} \) is gotten by gluing \(F_j \), see Sheaves, Section 33. Note that the collection of all glueing data forms a set. The collection of all coverings \(U : X = \bigcup_{j \in J} U_i \) where \(J \to \mathcal{P}(X) \), \(j \mapsto U_j \) is injective forms a set as well. For each covering there is a set of maps \(r : J \to \mathbb{N} \). Hence the collection of all \(\mathcal{F} \) forms a set. \(\square \)

This lemma says roughly speaking that the collection of isomorphism classes of invertible sheaves forms a set. Lemma 23.5 says that tensor product defines the structure of an abelian group on this set.

Definition 23.9. Let \((X, \mathcal{O}_X)\) be a ringed space. The *Picard group* \(\text{Pic}(X) \) of \(X \) is the abelian group whose elements are isomorphism classes of invertible \(\mathcal{O}_X \)-modules, with addition corresponding to tensor product.

Lemma 23.10. Let \(X \) be a ringed space. Assume that each stalk \(\mathcal{O}_{X,x} \) is a local ring with maximal ideal \(\mathfrak{m}_x \). Let \(\mathcal{L} \) be an invertible \(\mathcal{O}_X \)-module. For any section \(s \in \Gamma(X, \mathcal{L}) \) the set
\[
X_s = \{ x \in X \mid \text{image } s \not\in \mathfrak{m}_x \mathcal{L}_x \}
\]
is open in \(X \). The map \(s : \mathcal{O}_{X,x} \to \mathcal{L}|_{X_s} \) is an isomorphism, and there exists a section \(s' \) of \(\mathcal{L}|_{X_s} \) over \(X_s \) such that \(s'(s|_{X_s}) = 1 \).
Proof. Suppose \(x \in X_s \). We have an isomorphism
\[
\mathcal{L}_x \otimes_{\mathcal{O}_{X,x}} (\mathcal{L}^{\otimes -1})_x \to \mathcal{O}_{X,x}
\]
by Lemma 23.5. Both \(\mathcal{L}_x \) and \((\mathcal{L}^{\otimes -1})_x \) are free \(\mathcal{O}_{X,x} \)-modules of rank 1. We conclude from Algebra, Nakayama’s Lemma 19.1 that \(s_x \) is a basis for \(\mathcal{L}_x \). Hence there exists a basis element \(t_x \in (\mathcal{L}^{\otimes -1})_x \) such that \(s_x \otimes t_x \) maps to 1. Choose an open neighborhood \(U \) of \(x \) such that \(t_x \) comes from a section \(t \) of \(\mathcal{L}^{\otimes -1} \) over \(U \) and such that \(s \otimes t \) maps to 1 in \(\mathcal{O}_X(U) \). Clearly, for every \(x' \in U \) we see that \(s \) generates the module \(\mathcal{L}_{x'} \). Hence \(U \subset X_s \). This proves that \(X_s \) is open. Moreover, the section \(t \) constructed over \(U \) above is unique, and hence these glue to give the section \(s' \) of the lemma.

It is also true that, given a morphism of locally ringed spaces \(f : Y \to X \) (see Schemes, Definition 2.1) that the inverse image \(f^{-1}(X_s) \) is equal to \(Y_{f^*s} \), where \(f^*s \in \Gamma(Y, f^*\mathcal{L}) \) is the pullback of \(s \).

24. Rank and determinant

Let \((X, \mathcal{O}_X) \) be a ringed space. Consider the category \(\text{Vect}(X) \) of finite locally free \(\mathcal{O}_X \)-modules. This is an exact category (see Injectives, Remark 9.6) whose admissible epimorphisms are surjections and whose admissible monomorphisms are kernels of surjections. Moreover, there is a set of isomorphism classes of objects of \(\text{Vect}(X) \) (proof omitted). Thus we can form the zeroth Grothendieck \(K \)-group \(K_0(\text{Vect}(X)) \). Explicitly, in this case \(K_0(\text{Vect}(X)) \) is the abelian group generated by \([\mathcal{E}] \) for \(\mathcal{E} \) a finite locally free \(\mathcal{O}_X \)-module, subject to the relations
\[
[\mathcal{E}'] = [\mathcal{E}] + [\mathcal{E}'']
\]
whenever there is a short exact sequence \(0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0 \) of finite locally free \(\mathcal{O}_X \)-modules.

Ranks. Assume all stalks \(\mathcal{O}_{X,x} \) are nonzero rings. Given a finite locally free \(\mathcal{O}_X \)-module \(\mathcal{E} \), the rank is a locally constant function
\[
\text{rank}_\mathcal{E} : X \to \mathbb{Z}_{\geq 0}, \quad x \mapsto \text{rank}_{\mathcal{O}_{X,x}} \mathcal{E}_x
\]
See Lemma 14.4. By definition of locally free modules the function \(\text{rank}_\mathcal{E} \) is locally constant. If \(0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0 \) is a short exact sequence of finite locally free \(\mathcal{O}_X \)-modules, then \(\text{rank}_\mathcal{E} = \text{rank}_{\mathcal{E}'} + \text{rank}_{\mathcal{E}''} \). Thus the rank defines a homomorphism
\[
K_0(\text{Vect}(X)) \to \text{Map}_{\text{cont}}(X, \mathbb{Z}), \quad [\mathcal{E}] \mapsto \text{rank}_\mathcal{E}
\]

Determinants. Given a finite locally free \(\mathcal{O}_X \)-module \(\mathcal{E} \) we obtain a disjoint union decomposition
\[
X = X_0 \amalg X_1 \amalg X_2 \amalg \ldots
\]
with \(X_i \) open and closed, such that \(\mathcal{E} \) is finite locally free of rank \(i \) on \(X_i \) (this is exactly the same as saying the rank \(\mathcal{E} \) is locally constant). In this case we define \(\det(\mathcal{E}) \) as the invertible sheaf on \(X \) which is equal to \(\wedge^i(\mathcal{E}|_{X_i}) \) on \(X_i \) for all \(i \geq 0 \). Since the decomposition above is disjoint, there are no glueing conditions to check. By Lemma 24.1 below this defines a homomorphism
\[
\det : K_0(\text{Vect}(X)) \to \text{Pic}(X), \quad [\mathcal{E}] \mapsto \det(\mathcal{E})
\]
of abelian groups. The elements of \(\text{Pic}(X) \) we get in this manner are locally free of rank 1 (see below the lemma for a generalization).
Lemma 24.1. Let X be a ringed space. Let $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ be a short exact sequence of finite locally free \mathcal{O}_X-modules, then there is a canonical isomorphism

$$\det(\mathcal{E}') \otimes_{\mathcal{O}_X} \det(\mathcal{E}'') \to \det(\mathcal{E})$$

of \mathcal{O}_X-modules.

Proof. We can decompose X into disjoint open and closed subsets such that both \mathcal{E}' and \mathcal{E}'' have constant rank on them. Thus we reduce to the case where \mathcal{E}' and \mathcal{E}'' have constant rank, say r' and r''. In this situation we define

$$\wedge'^r(\mathcal{E}') \otimes_{\mathcal{O}_X} \wedge'^r(\mathcal{E}'') \to \wedge'^{r'+r''}(\mathcal{E})$$

as follows. Given local sections $s'_1, \ldots, s'_{r'}$ of \mathcal{E}' and local sections $s''_1, \ldots, s''_{r''}$ of \mathcal{E}'', we map

$$s'_1 \wedge \ldots \wedge s'_{r'} \otimes s''_1 \wedge \ldots \wedge s''_{r''} \to s'_1 \wedge \ldots \wedge s'_{r'} \wedge s''_1 \wedge \ldots \wedge s''_{r''}$$

where \tilde{s}'_i is a local lift of the section s''_i to a section of \mathcal{E}. We omit the details. □

Let (X, \mathcal{O}_X) be a ringed space. Instead of looking at finite locally free \mathcal{O}_X-modules we can look at those \mathcal{O}_X-modules \mathcal{F} which are locally on X a direct summand of a finite free \mathcal{O}_X-module. This is the same thing as asking \mathcal{F} to be a flat \mathcal{O}_X-module of finite presentation, see Lemma 17.3 If all the stalks $\mathcal{O}_{X,x}$ are local, then such a module \mathcal{F} is finite locally free, see Lemma 14.6 In general however this will not be the case; for example X could be a point and $\Gamma(X, \mathcal{O}_X)$ could be the product $A \times B$ of two nonzero rings and \mathcal{F} could correspond to $A \times 0$. Thus for such a module the rank function is undefined. However, it turns out we can still define $\det(\mathcal{F})$ and this will be an invertible \mathcal{O}_X-module in the sense of Definition 23.1 (not necessarily locally of rank 1). Our construction will agree with the one above in the case that \mathcal{F} is finite locally free. We urge the reader to skip the rest of this section.

Lemma 24.2. Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F} be a flat and finitely presented \mathcal{O}_X-module. Denote

$$\det(\mathcal{F}) \subseteq \wedge^*_\mathcal{O}_X(\mathcal{F})$$

the annihilator of $\mathcal{F} \subseteq \wedge^*_\mathcal{O}_X(\mathcal{F})$. Then $\det(\mathcal{F})$ is an invertible \mathcal{O}_X-module.

Proof. To prove this we may work locally on X. Hence we may assume \mathcal{F} is a direct summand of a finite free module, see Lemma 17.3 Say $\mathcal{F} \oplus \mathcal{G} = \mathcal{O}_X^{\oplus_n}$. Set $R = \mathcal{O}_X(X)$. Then we see $\mathcal{F}(X) \oplus \mathcal{G}(X) = R^{\oplus_n}$ and correspondingly $\mathcal{F}(U) \oplus \mathcal{G}(U) = \mathcal{O}_X(U)^{\oplus_n}$ for all opens $U \subseteq X$. We conclude that $\mathcal{F} = \mathcal{F}_M$ as in Lemma 10.5 with $M = \mathcal{F}(X)$ a finite projective R-module. In other words, we have $\mathcal{F}(U) = M \otimes_R \mathcal{O}_X(U)$. This implies that $\det(M) \otimes_R \mathcal{O}_X(U) = \det(\mathcal{F}(U))$ for all open $U \subseteq X$ with \det as in More on Algebra, Section 107. By More on Algebra, Remark 107.1 we see that

$$\det(M) \otimes_R \mathcal{O}_X(U) = \det(\mathcal{F}(U)) \subseteq \wedge^*_\mathcal{O}_X(\mathcal{F}(U))$$

is the annihilator of $\mathcal{F}(U)$. We conclude that $\det(\mathcal{F})$ as defined in the statement of the lemma is equal to $\mathcal{F}_{\det(\mathcal{M})}$. Some details omitted; one has to be careful as annihilators cannot be defined as the sheafification of taking annihilators on sections over opens. Thus $\det(\mathcal{F})$ is the pullback of an invertible module and we conclude. □
25. Localizing sheaves of rings

Let X be a topological space and let \mathcal{O}_X be a presheaf of rings. Let $\mathcal{S} \subset \mathcal{O}_X$ be a presheaf of sets contained in \mathcal{O}_X. Suppose that for every open $U \subset X$ the set $\mathcal{S}(U) \subset \mathcal{O}_X(U)$ is a multiplicative subset, see Algebra, Definition 9.1. In this case we can consider the presheaf of rings

$$S^{-1}\mathcal{O}_X : U \mapsto S(U)^{-1}\mathcal{O}_X(U).$$

The restriction mapping sends the section $f/s, f \in \mathcal{O}_X(U), s \in \mathcal{S}(U)$ to $(f|_V)/(s|_V)$ if $V \subset U$ are opens of X.

Lemma 25.1. Let X be a topological space and let \mathcal{O}_X be a presheaf of rings. Let $\mathcal{S} \subset \mathcal{O}_X$ be a pre-sheaf of sets contained in \mathcal{O}_X. Suppose that for every open $U \subset X$ the set $\mathcal{S}(U) \subset \mathcal{O}_X(U)$ is a multiplicative subset.

1. There is a map of presheaves of rings $\mathcal{O}_X \rightarrow S^{-1}\mathcal{O}_X$ such that every local section of \mathcal{S} maps to an invertible section of \mathcal{O}_X.

2. For any homomorphism of presheaves of rings $\mathcal{O}_X \rightarrow A$ such that each local section of \mathcal{S} maps to an invertible section of A there exists a unique factorization $S^{-1}\mathcal{O}_X \rightarrow A$.

3. For any $x \in X$ we have

$$S^{-1}\mathcal{O}_X)_x = S^{-1}_{x, \mathcal{O}_X}.$$

4. The sheafification $(S^{-1}\mathcal{O}_X)^\#$ is a sheaf of rings with a map of sheaves of rings $\mathcal{O}_X \rightarrow (S^{-1}\mathcal{O}_X)^\#$ which is universal for maps of $(\mathcal{O}_X)^\#$ into sheaves of rings such that each local section of \mathcal{S} maps to an invertible section.

5. For any $x \in X$ we have

$$(S^{-1}\mathcal{O}_X)^\#_x = S^{-1}_{x, \mathcal{O}_X}.$$

Proof. Omitted.

Let X be a topological space and let \mathcal{O}_X be a presheaf of rings. Let $\mathcal{S} \subset \mathcal{O}_X$ be a presheaf of sets contained in \mathcal{O}_X. Suppose that for every open $U \subset X$ the set $\mathcal{S}(U) \subset \mathcal{O}_X(U)$ is a multiplicative subset. Let \mathcal{F} be a presheaf of \mathcal{O}_X-modules. In this case we can consider the presheaf of $S^{-1}\mathcal{O}_X$-modules

$$S^{-1}\mathcal{F} : U \mapsto S(U)^{-1}\mathcal{F}(U).$$

The restriction mapping sends the section $t/s, t \in \mathcal{F}(U), s \in \mathcal{S}(U)$ to $(t|_V)/(s|_V)$ if $V \subset U$ are opens of X.

Lemma 25.2. Let X be a topological space. Let \mathcal{O}_X be a presheaf of rings. Let $\mathcal{S} \subset \mathcal{O}_X$ be a pre-sheaf of sets contained in \mathcal{O}_X. Suppose that for every open $U \subset X$ the set $\mathcal{S}(U) \subset \mathcal{O}_X(U)$ is a multiplicative subset. For any presheaf of \mathcal{O}_X-modules \mathcal{F} we have

$$S^{-1}\mathcal{F} = S^{-1}\mathcal{O}_X \otimes_{\mathcal{O}_X} \mathcal{F}$$

(see Sheaves, Section 8 for notation) and if \mathcal{F} and \mathcal{O}_X are sheaves then

$$(S^{-1}\mathcal{F})^\# = (S^{-1}\mathcal{O}_X)^\# \otimes_{\mathcal{O}_X} \mathcal{F}$$

(see Sheaves, Section 20 for notation).

Proof. Omitted.
26. Modules of differentials

Let X be a topological space. Let $\varphi : \mathcal{O}_1 \to \mathcal{O}_2$ be a homomorphism of sheaves of rings. Let \mathcal{F} be an \mathcal{O}_2-module. A \mathcal{O}_1-derivation or more precisely a φ-derivation into \mathcal{F} is a map $D : \mathcal{O}_2 \to \mathcal{F}$ which is additive, annihilates the image of $\mathcal{O}_1 \to \mathcal{O}_2$, and satisfies the Leibniz rule

$$D(ab) = aD(b) + D(a)b$$

for all a, b local sections of \mathcal{O}_2 (wherever they are both defined). We denote $\text{Der}_{\mathcal{O}_1}(\mathcal{O}_2, \mathcal{F})$ the set of φ-derivations into \mathcal{F}.

This is the sheaf theoretic analogue of Algebra, Definition 130.1. Given a derivation $D : \mathcal{O}_2 \to \mathcal{F}$ as in the definition the map on global sections

$$D : \Gamma(X, \mathcal{O}_2) \to \Gamma(X, \mathcal{F})$$

is a \mathcal{O}_1-derivation as in the algebra definition. Note that if $\alpha : \mathcal{F} \to \mathcal{G}$ is a map of \mathcal{O}_2-modules, then there is an induced map

$$\text{Der}_{\mathcal{O}_1}(\mathcal{O}_2, \mathcal{F}) \to \text{Der}_{\mathcal{O}_1}(\mathcal{O}_2, \mathcal{G})$$

given by the rule $D \mapsto \alpha \circ D$. In other words we obtain a functor.

Let X be a topological space. Let $\varphi : \mathcal{O}_1 \to \mathcal{O}_2$ be a homomorphism of sheaves of rings. The functor

$$\text{Mod}(\mathcal{O}_2) \to Ab, \quad \mathcal{F} \mapsto \text{Der}_{\mathcal{O}_1}(\mathcal{O}_2, \mathcal{F})$$

is representable.

Proof. This is proved in exactly the same way as the analogous statement in algebra. During this proof, for any sheaf of sets \mathcal{F} on X, let us denote $\mathcal{O}_2[\mathcal{F}]$ the sheafification of the presheaf $U \mapsto \mathcal{O}_2(U)[\mathcal{F}(U)]$ where this denotes the free $\mathcal{O}_2(U)$-module on the set $\mathcal{F}(U)$. For $s \in \mathcal{F}(U)$ we denote $[s]$ the corresponding section of $\mathcal{O}_2[\mathcal{F}]$ over U. If \mathcal{F} is a sheaf of \mathcal{O}_2-modules, then there is a canonical map

$$c : \mathcal{O}_2[\mathcal{F}] \to \mathcal{F}$$

which on the presheaf level is given by the rule $\sum f_s [s] \mapsto \sum f_s s$. We will employ the short hand $[s] \mapsto s$ to describe this map and similarly for other maps below. Consider the map of \mathcal{O}_2-modules

$$\mathcal{O}_2[\mathcal{O}_2 \times \mathcal{O}_2] \oplus \mathcal{O}_2[\mathcal{O}_2 \times \mathcal{O}_2] \oplus \mathcal{O}_2[\mathcal{O}_1] \to \mathcal{O}_2[\mathcal{O}_2]$$

with short hand notation as above. Set $\Omega_{\mathcal{O}_2/\mathcal{O}_1}$ equal to the cokernel of this map. Then it is clear that there exists a map of sheaves of sets

$$d : \mathcal{O}_2 \to \Omega_{\mathcal{O}_2/\mathcal{O}_1}$$

mapping a local section f to the image of $[f]$ in $\Omega_{\mathcal{O}_2/\mathcal{O}_1}$. By construction d is an \mathcal{O}_1-derivation. Next, let \mathcal{F} be a sheaf of \mathcal{O}_2-modules and let $D : \mathcal{O}_2 \to \mathcal{F}$ be an \mathcal{O}_1-derivation. Then we can consider the \mathcal{O}_2-linear map $\mathcal{O}_2[\mathcal{O}_2] \to \mathcal{F}$ which sends...
Let \(\varphi : \mathcal{O}_1 \to \mathcal{O}_2 \) be a homomorphism of sheaves of rings on \(X \). The module of differentials of \(\varphi \) is the object representing the functor \(\mathcal{F} \mapsto \text{Der}_{\mathcal{O}_1}(\mathcal{O}_2, \mathcal{F}) \) which exists by Lemma \(\text{26.6} \). It is denoted \(\Omega_{\mathcal{O}_2/\mathcal{O}_1} \), and the universal \(\varphi \)-derivation is denoted \(d : \mathcal{O}_2 \to \Omega_{\mathcal{O}_2/\mathcal{O}_1} \).

Note that \(\Omega_{\mathcal{O}_2/\mathcal{O}_1} \) is the cokernel of the map \(\text{26.2.1} \) of \(\mathcal{O}_2 \)-modules. Moreover the map \(d \) is described by the rule that \(df \) is the image of the local section \([f] \).

Lemma \(\text{26.4} \). Let \(X \) be a topological space. Let \(\varphi : \mathcal{O}_1 \to \mathcal{O}_2 \) be a homomorphism of sheaves of rings on \(X \). Then \(\Omega_{\mathcal{O}_2/\mathcal{O}_1} \) is the sheaf associated to the presheaf \(U \mapsto \Omega_{\mathcal{O}_2(U)/\mathcal{O}_1(U)} \).

Proof. Consider the map \(\text{26.2.1} \). There is a similar map of presheaves whose value on the open \(U \) is

\[
\mathcal{O}_2(U)[\mathcal{O}_2(U) \times \mathcal{O}_2(U)] \oplus \mathcal{O}_2(U)[\mathcal{O}_2(U) \times \mathcal{O}_2(\mathcal{U})] \oplus \mathcal{O}_2(U)[\mathcal{O}_1(\mathcal{U})] \to \mathcal{O}_2(U)[\mathcal{O}_2(\mathcal{U})]
\]

The cokernel of this map has value \(\Omega_{\mathcal{O}_2(U)/\mathcal{O}_1(U)} \) over \(U \) by the construction of the module of differentials in Algebra, Definition \(\text{130.2} \). On the other hand, the sheaves in \(\text{26.2.1} \) are the sheafifications of the presheaves above. Thus the result follows as sheafification is exact.

Lemma \(\text{26.5} \). Let \(X \) be a topological space. Let \(\varphi : \mathcal{O}_1 \to \mathcal{O}_2 \) be a homomorphism of sheaves of rings. For \(U \subset X \) open there is a canonical isomorphism

\[
\Omega_{\mathcal{O}_2/\mathcal{O}_1}|_U = \Omega_{(\mathcal{O}_2|_U)/(\mathcal{O}_1|_U)}
\]

compatible with universal derivations.

Proof. Holds because \(\Omega_{\mathcal{O}_2/\mathcal{O}_1} \) is the cokernel of the map \(\text{26.2.1} \).

Lemma \(\text{26.6} \). Let \(f : Y \to X \) be a continuous map of topological spaces. Let \(\varphi : \mathcal{O}_1 \to \mathcal{O}_2 \) be a homomorphism of sheaves of rings on \(X \). Then there is a canonical identification \(f^{-1}\Omega_{\mathcal{O}_2/\mathcal{O}_1} = \Omega_{f^{-1}\mathcal{O}_2/f^{-1}\mathcal{O}_1} \) compatible with universal derivations.

Proof. This holds because the sheaf \(\Omega_{\mathcal{O}_2/\mathcal{O}_1} \) is the cokernel of the map \(\text{26.2.1} \) and a similar statement holds for \(f^{-1}\mathcal{O}_2/f^{-1}\mathcal{O}_1 \), because the functor \(f^{-1} \) is exact, and because \(f^{-1}(\mathcal{O}_2[\mathcal{O}_2]) = f^{-1}\mathcal{O}_2[f^{-1}\mathcal{O}_2], f^{-1}(\mathcal{O}_2[\mathcal{O}_2 \times \mathcal{O}_2]) = f^{-1}\mathcal{O}_2[f^{-1}\mathcal{O}_2 \times f^{-1}\mathcal{O}_2], \) and \(f^{-1}(\mathcal{O}_2[\mathcal{O}_1]) = f^{-1}\mathcal{O}_2[f^{-1}\mathcal{O}_1] \).

Lemma \(\text{26.7} \). Let \(X \) be a topological space. Let \(\mathcal{O}_1 \to \mathcal{O}_2 \) be a homomorphism of sheaves of rings on \(X \). Let \(x \in X \). Then we have \(\Omega_{\mathcal{O}_2/\mathcal{O}_1,x} = \Omega_{\mathcal{O}_2,x/\mathcal{O}_1,x} \).

Proof. This is a special case of Lemma \(\text{26.6} \) for the inclusion map \(\{x\} \to X \). An alternative proof is to use Lemma \(\text{26.4} \), Sheaves, Lemma [17.2] and Algebra, Lemma [130.4].
Lemma 26.8. Let X be a topological space. Let

$$
\begin{array}{ccc}
\mathcal{O}_2 & \rightarrow & \mathcal{O}_2' \\
\downarrow & & \downarrow \\
\mathcal{O}_1 & \rightarrow & \mathcal{O}_1'
\end{array}
$$

be a commutative diagram of sheaves of rings on X. The map $\mathcal{O}_2 \rightarrow \mathcal{O}_2'$ composed with the map $d : \mathcal{O}_2' \rightarrow \Omega_{\mathcal{O}_2'/\mathcal{O}_1'}$ is a \mathcal{O}_1-derivation. Hence we obtain a canonical map of \mathcal{O}_2-modules $\Omega_{\mathcal{O}_2'/\mathcal{O}_1} \rightarrow \Omega_{\mathcal{O}_2'/\mathcal{O}_1'}$. It is uniquely characterized by the property that $d(f) \mapsto d(\varphi(f))$ for any local section f of \mathcal{O}_2. In this way $\Omega_{\mathcal{O}/\mathcal{O}_1'}$ becomes a functor on the category of arrows of sheaves of rings.

Proof. This lemma proves itself. \hfill \square

Lemma 26.9. In Lemma 26.8 suppose that $\mathcal{O}_2 \rightarrow \mathcal{O}_2'$ is surjective with kernel $I \subset \mathcal{O}_2$ and assume that $\mathcal{O}_1 = \mathcal{O}_1'$. Then there is a canonical exact sequence of \mathcal{O}_2'-modules

$$I/I^2 \rightarrow \Omega_{\mathcal{O}_2'/\mathcal{O}_1} \otimes_\mathcal{O}_2 \mathcal{O}_2' \rightarrow \Omega_{\mathcal{O}_2'/\mathcal{O}_1} \rightarrow 0$$

The leftmost map is characterized by the rule that a local section f of I maps to $df \otimes 1$.

Proof. For a local section f of I denote \overline{f} the image of f in I/I^2. To show that the map $\overline{f} \mapsto df \otimes 1$ is well defined we just have to check that $df_1 f_2 \otimes 1 = 0$ if f_1, f_2 are local sections of I. And this is clear from the Leibniz rule $df_1 f_2 \otimes 1 = (f_1 df_2 + f_2 df_1) \otimes 1 = df_2 \otimes f_1 + df_1 \otimes f_2 = 0$. A similar computation shows this map is $\mathcal{O}_2' = \mathcal{O}_2/I$-linear. The map on the right is the one from Lemma 26.8. To see that the sequence is exact, we can check on stalks (Lemma 3.1). By Lemma 26.7 this follows from Algebra, Lemma 130.9. \hfill \square

Definition 26.10. Let $(f, f^\sharp) : (X, \mathcal{O}_X) \rightarrow (S, \mathcal{O}_S)$ be a morphism of ringed spaces.

1. Let F be an \mathcal{O}_X-module. An S-derivation into F is a $f^{-1}\mathcal{O}_S$-derivation, or more precisely a f^\sharp-derivation in the sense of Definition 26.1. We denote $Der_S(\mathcal{O}_X, F)$ the set of S-derivations into F.

2. The sheaf of differentials $\Omega_{X/S}$ of X over S is the module of differentials $\Omega_{\mathcal{O}_X/f^{-1}\mathcal{O}_S}$ endowed with its universal S-derivation $d_{X/S} : \mathcal{O}_X \rightarrow \Omega_{X/S}$.

Here is a particular situation where derivations come up naturally.

Lemma 26.11. Let $(f, f^\sharp) : (X, \mathcal{O}_X) \rightarrow (S, \mathcal{O}_S)$ be a morphism of ringed spaces. Consider a short exact sequence

$$0 \rightarrow I \rightarrow A \rightarrow \mathcal{O}_X \rightarrow 0$$

Here A is a sheaf of $f^{-1}\mathcal{O}_S$-algebras, $\pi : A \rightarrow \mathcal{O}_X$ is a surjection of sheaves of $f^{-1}\mathcal{O}_S$-algebras, and $I = \ker(\pi)$ is its kernel. Assume I an ideal sheaf with square zero in A. So I has a natural structure of an \mathcal{O}_X-module. A section $s : \mathcal{O}_X \rightarrow A$ of π is a $f^{-1}\mathcal{O}_S$-algebra map such that $\pi \circ s = id$. Given any section $s : \mathcal{O}_X \rightarrow A$ of π and any S-derivation $D : \mathcal{O}_X \rightarrow I$ the map

$$s + D : \mathcal{O}_X \rightarrow A$$

is a section of π and every section s' is of the form $s + D$ for a unique S-derivation D.
Proof. Recall that the \mathcal{O}_X-module structure on \mathcal{I} is given by $h\tau = \tilde{h}\tau$ (multiplication in \mathcal{A}) where h is a local section of \mathcal{O}_X, and \tilde{h} is a local lift of h to a local section of \mathcal{A}, and τ is a local section of \mathcal{I}. In particular, given s, we may use $\tilde{h} = s(h)$. To verify that $s + D$ is a homomorphism of sheaves of rings we compute

$$(s + D)(ab) = s(ab) + D(ab) = s(a)s(b) + aD(b) + D(a)b = s(a)s(b) + s(a)D(b) + D(a)s(b) = (s(a) + D(a))(s(b) + D(b))$$

by the Leibniz rule. In the same manner one shows $s + D$ is a \mathcal{S}-derivation. Conversely, given s' we set $D = s' - s$. Details omitted. □

Lemma 26.12. Let

$$
\begin{array}{ccc}
X' & \xrightarrow{f} & X \\
\downarrow{k'} & & \downarrow{h} \\
S' & \xrightarrow{g} & S
\end{array}
$$

be a commutative diagram of ringed spaces.

(1) The canonical map $\mathcal{O}_X \to f_*\mathcal{O}_{X'}$ composed with $f_*d_{X'/S'} : f_*\mathcal{O}_{X'} \to f_*\Omega_{X'/S'}$ is a \mathcal{S}-derivation and we obtain a canonical map of \mathcal{O}_X-modules $\Omega_{X/S} \to f_*\Omega_{X'/S'}$.

(2) The commutative diagram

$$
\begin{array}{ccc}
f^{-1}\mathcal{O}_X & \xrightarrow{i} & \mathcal{O}_{X'} \\
\downarrow{} & & \downarrow{} \\
(f^{-1}h)^{-1}\mathcal{O}_{S'} & \xrightarrow{(h')}^{-1}\mathcal{O}_{S'}
\end{array}
$$

induces by Lemmas 26.6 and 26.8 a canonical map $f^{-1}\Omega_{X/S} \to \Omega_{X'/S'}$. These two maps correspond (via adjointness of f_* and f^* and via $f^*\mathcal{O}_{X'} = f^{-1}\Omega_{X/S} \otimes_{f^{-1}\mathcal{O}_X} \mathcal{O}_{X'}$ and Sheaves, Lemma 20.3) to the same $\mathcal{O}_{X'}$-module homomorphism $c_f : f^*\Omega_{X/S} \to \Omega_{X'/S'}$ which is uniquely characterized by the property that $f^*d_{X/S}(a)$ maps to $d_{X'/S'}(f^*a)$ for any local section a of \mathcal{O}_X.

Proof. Omitted. □

Lemma 26.13. Let

$$
\begin{array}{ccc}
X'' & \xrightarrow{g} & X' \\
\downarrow{} & & \downarrow{} \\
S'' & \xrightarrow{f} & S
\end{array}
$$

be a commutative diagram of ringed spaces. With notation as in Lemma 26.12 we have

$$c_{f \circ g} = c_g \circ g^*c_f$$

as maps $(f \circ g)^*\Omega_{X/S} \to \Omega_{X''/S''}$.

08RU |
| 01UW
Proof. Omitted. □

27. The de Rham complex

The section is the analogue of Algebra, Section 131 for morphisms of ringed spaces. We urge the reader to read that section first.

Let \(X \) be a topological space. Let \(A \to B \) be a homomorphism of sheaves of rings. Denote \(d : B \to \Omega_{B/A} \) the module of differentials with its universal \(A \)-derivation constructed in Section 26. Let

\[
\Omega^i_{B/A} = \wedge^i_B(\Omega_{B/A})
\]

for \(i \geq 0 \) be the \(i \)th exterior power as in Section 20.

Definition 27.1. In the situation above, the de Rham complex of \(B \) over \(A \) is the unique complex

\[
\Omega^0_{B/A} \to \Omega^1_{B/A} \to \Omega^2_{B/A} \to \ldots
\]

of sheaves of \(A \)-modules whose differential in degree 0 is given by \(d : B \to \Omega_{B/A} \) and whose differentials in higher degrees have the following property

\[
d(b_0 db_1 \wedge \ldots \wedge db_p) = db_0 \wedge db_1 \wedge \ldots \wedge db_p
\]

where \(b_0, \ldots, b_p \in B(U) \) are sections over a common open \(U \subset X \).

We could construct this complex by repeating the cumbersome arguments given in Algebra, Section 131. Instead we recall that \(\Omega_{B/A} \) is the sheafification of the presheaf \(U \mapsto \Omega(B(U)/A(U)) \), see Lemma 26.4. Thus \(\Omega^i_{B/A} \) is the sheafification of the presheaf \(U \mapsto \Omega^i_B(U)/A(U) \), see Lemma 20.1. Therefore we can define the de Rham complex as the sheafification of the rule

\[
U \mapsto \Omega^*_{B(U)/A(U)}
\]

Lemma 27.2. Let \(f : Y \to X \) be a continuous map of topological spaces. Let \(A \to B \) be a homomorphism of sheaves of rings on \(X \). Then there is a canonical identification \(f^{-1}\Omega^*_B/A = \Omega^*_{f^{-1}B/f^{-1}A} \) of de Rham complexes.

Proof. Omitted. Hint: compare with Lemma 26.6 □

Let \(X \) be a topological space. Let

\[
\begin{array}{ccc}
B & \to & B' \\
\downarrow & & \downarrow \\
A & \to & A'
\end{array}
\]

be a commutative diagram of sheaves of rings on \(X \). There is a natural map of de Rham complexes

\[
\Omega^*_B/A \to \Omega^*_{B'/A'}
\]

Namely, in degree 0 this is the map \(B \to B' \), in degree 1 this is the map \(\Omega_{B/A} \to \Omega_{B'/A'} \) constructed in Section 26, and for \(p \geq 2 \) it is the induced map \(\wedge^p_B(\Omega_{B/A}) \to \wedge^p_{B'}(\Omega_{B'/A'}) = \Omega^p_{B'/A'} \). The compatibility with differentials follows from the characterization of the differentials by the formula (27.1.1).
Definition 27.3. Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of ringed spaces. The de Rham complex of f or of X over Y is the complex

$$\Omega^\bullet_{X/Y} = \Omega^\bullet_{\mathcal{O}_X/f^{-1}\mathcal{O}_Y}$$

Consider a commutative diagram of ringed spaces

\[
\begin{array}{ccc}
X' & \xrightarrow{f} & X \\
\downarrow{h'} & & \downarrow{h} \\
S' & \xrightarrow{g} & S
\end{array}
\]

Then we obtain a canonical map

$$\Omega^\bullet_{X/S} \to f_*\Omega^\bullet_{X'/S'}$$

of de Rham complexes. Namely, the commutative diagram of sheaves of rings

\[
\begin{array}{ccc}
f^{-1}\mathcal{O}_X & \xrightarrow{j} & \mathcal{O}_{X'} \\
\downarrow{h} & & \downarrow{h} \\
(f^{-1}h)^{-1}\mathcal{O}_S & \xrightarrow{j} & (h')^{-1}\mathcal{O}_{S'}
\end{array}
\]

on X' produces a map of complexes (see above)

$$f^{-1}\Omega^\bullet_{X/S} = \Omega^\bullet_{f^{-1}\mathcal{O}_X/f^{-1}h^{-1}\mathcal{O}_S} \to \Omega^\bullet_{(h')^{-1}\mathcal{O}_{S'}} = \Omega^\bullet_{X'/S'}$$

(using Lemma 27.2 for the first equality) and then we can use adjunction.

28. The naive cotangent complex

This section is the analogue of Algebra, Section 133 for morphisms of ringed spaces. We urge the reader to read that section first.

Let X be a topological space. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings. In this section, for any sheaf of sets \mathcal{E} on X we denote $\mathcal{A}[\mathcal{E}]$ the sheafification of the presheaf $U \mapsto \mathcal{A}(U)[\mathcal{E}(U)]$. Here $\mathcal{A}(U)[\mathcal{E}(U)]$ denotes the polynomial algebra over $\mathcal{A}(U)$ whose variables correspond to the elements of $\mathcal{E}(U)$. We denote $[e] \in \mathcal{A}(U)[\mathcal{E}(U)]$ the variable corresponding to $e \in \mathcal{E}(U)$. There is a canonical surjection of \mathcal{A}-algebras

$$\mathcal{A}[\mathcal{B}] \to \mathcal{B}, \quad [b] \mapsto b$$

whose kernel we denote $\mathcal{I} \subset \mathcal{A}[\mathcal{B}]$. It is a simple observation that \mathcal{I} is generated by the local sections $[b][b'] - [bb']$ and $[a] - a$. According to Lemma 26.9 there is a canonical map

$$\mathcal{I}/\mathcal{I}^2 \to \Omega_{\mathcal{A}[\mathcal{B}]/\mathcal{A} \otimes \mathcal{A}[\mathcal{B}]} \mathcal{B}$$

whose cokernel is canonically isomorphic to $\Omega_{\mathcal{B}/\mathcal{A}}$.

Definition 28.1. Let X be a topological space. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings. The naive cotangent complex $NL_{\mathcal{B}/\mathcal{A}}$ is the chain complex (28.0.2)

$$NL_{\mathcal{B}/\mathcal{A}} = (\mathcal{I}/\mathcal{I}^2 \to \Omega_{\mathcal{A}[\mathcal{B}]/\mathcal{A} \otimes \mathcal{A}[\mathcal{B}]} \mathcal{B})$$

with $\mathcal{I}/\mathcal{I}^2$ placed in degree -1 and $\Omega_{\mathcal{A}[\mathcal{B}]/\mathcal{A} \otimes \mathcal{A}[\mathcal{B}]} \mathcal{B}$ placed in degree 0.
This construction satisfies a functoriality similar to that discussed in Lemma 26.8 for modules of differentials. Namely, given a commutative diagram

\[
\begin{array}{ccc}
B & \to & B' \\
\uparrow & & \uparrow \\
A & \to & A'
\end{array}
\]

of sheaves of rings on \(X\) there is a canonical \(B\)-linear map of complexes

\[NL_{B/A} \to NL_{B'/A'}\]

Namely, the maps in the commutative diagram give rise to a canonical map \(A[B] \to A'[B']\) which maps \(I\) into \(I' = \text{Ker}(A'[B'] \to B')\). Thus a map \(I/I^2 \to I'/((I')^2\) and a map between modules of differentials, which together give the desired map between the naive cotangent complexes. The map is compatible with compositions in the following sense: given a commutative diagram

\[
\begin{array}{ccc}
B & \to & B' & \to & B'' \\
\uparrow & & \uparrow & & \uparrow \\
A & \to & A' & \to & A''
\end{array}
\]

of sheaves of rings then the composition

\[NL_{B/A} \to NL_{B'/A'} \to NL_{B''/A''}\]

is the map for the outer rectangle.

We can choose a different presentation of \(B\) as a quotient of a polynomial algebra over \(A\) and still obtain the same object of \(D(B)\). To explain this, suppose that \(E\) is a sheaves of sets on \(X\) and \(\alpha : E \to B\) a map of sheaves of sets. Then we obtain an \(A\)-algebra homomorphism \(A[E] \to B\). If this map is surjective, i.e., if \(\alpha(E)\) generates \(B\) as an \(A\)-algebra, then we set

\[NL(\alpha) = (J/J^2 \to \Omega_{A[E]/A} \otimes A[E] B)\]

where \(J \subset A[E]\) is the kernel of the surjection \(A[E] \to B\). Here is the result.

Lemma 28.2. In the situation above there is a canonical isomorphism \(NL(\alpha) = NL_{B/A} \) in \(D(B)\).

Proof. Observe that \(NL_{B/A} = NL(\text{id}_B)\). Thus it suffices to show that given two maps \(\alpha_i : E_i \to B\) as above, there is a canonical quasi-isomorphism \(NL(\alpha_1) = NL(\alpha_2)\) in \(D(B)\). To see this set \(E = E_1 \amalg E_2\) and \(\alpha = \alpha_1 \amalg \alpha_2 : E \to B\). Set \(J_i = \text{Ker}(A[E_i] \to B)\) and \(J = \text{Ker}(A[E] \to B)\). We obtain maps \(A[E_i] \to A[E]\) which send \(J_i\) into \(J\). Thus we obtain canonical maps of complexes

\[NL(\alpha_1) \to NL(\alpha)\]

and it suffices to show these maps are quasi-isomorphism. To see this it suffices to check on stalks (Lemma 3.1). If \(x \in X\) then the stalk of \(NL(\alpha)\) is the complex \(NL(\alpha_x)\) of Algebra, Section 133 associated to the presentation \(A_x[E_x] \to B_x\) coming from the map \(\alpha_x : E_x \to B_x\). (Some details omitted; use Lemma 26.7 to see compatibility of forming differentials and taking stalks.) We conclude the result holds by Algebra, Lemma 133.2. \(\square\)
Lemma 28.3. Let $f : X \to Y$ be a continuous map of topological spaces. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings on Y. Then $f^{-1} \mathcal{N}\mathcal{L}_{\mathcal{B}/\mathcal{A}} = \mathcal{N}\mathcal{L}_{f^{-1}\mathcal{B}/f^{-1}\mathcal{A}}$.

Lemma 28.4. Let X be a topological space. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings on X. Let $x \in X$. Then we have $\mathcal{N}\mathcal{L}_{\mathcal{B}/\mathcal{A},x} = \mathcal{N}\mathcal{L}_{\mathcal{B}_x/\mathcal{A}_x}$.

Proof. This is a special case of Lemma 28.3 for the inclusion map $\{x\} \to X$. □

Lemma 28.5. Let X be a topological space. Let $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ be maps of sheaves of rings. Let \mathcal{C} be the cone (Derived Categories, Definition 9.1) of the map of complexes $\mathcal{N}\mathcal{L}_{\mathcal{C}/\mathcal{A}} \to \mathcal{N}\mathcal{L}_{\mathcal{C}/\mathcal{B}}$. There is a canonical map $c : \mathcal{N}\mathcal{L}_{\mathcal{B}/\mathcal{A}} \otimes \mathcal{B}\mathcal{C} \to \mathcal{C}[1]$ of complexes of \mathcal{C}-modules which produces a canonical six term exact sequence

$$
\begin{aligned}
H^0(\mathcal{N}\mathcal{L}_{\mathcal{B}/\mathcal{A}} \otimes \mathcal{B}\mathcal{C}) & \to H^0(\mathcal{N}\mathcal{L}_{\mathcal{C}/\mathcal{A}}) \to H^0(\mathcal{N}\mathcal{L}_{\mathcal{C}/\mathcal{B}}) \to 0 \\
H^{-1}(\mathcal{N}\mathcal{L}_{\mathcal{B}/\mathcal{A}} \otimes \mathcal{B}\mathcal{C}) & \to H^{-1}(\mathcal{N}\mathcal{L}_{\mathcal{C}/\mathcal{A}}) \to H^{-1}(\mathcal{N}\mathcal{L}_{\mathcal{C}/\mathcal{B}})
\end{aligned}
$$

of cohomology sheaves.

Proof. To give the map c we have to give a map $c_1 : \mathcal{N}\mathcal{L}_{\mathcal{B}/\mathcal{A}} \otimes \mathcal{B}\mathcal{C} \to \mathcal{N}\mathcal{L}_{\mathcal{C}/\mathcal{A}}$ and an explicit homotopy between the composition $\mathcal{N}\mathcal{L}_{\mathcal{B}/\mathcal{A}} \otimes \mathcal{B}\mathcal{C} \to \mathcal{N}\mathcal{L}_{\mathcal{C}/\mathcal{A}} \to \mathcal{N}\mathcal{L}_{\mathcal{C}/\mathcal{B}}$ and the zero map, see Derived Categories, Lemma 9.3. For c_1 we use the functoriality described above for the obvious diagram. For the homotopy we use the map $\mathcal{N}\mathcal{L}^0_{\mathcal{B}/\mathcal{A}} \otimes \mathcal{B}\mathcal{C} \to \mathcal{N}\mathcal{L}^{-1}_{\mathcal{C}/\mathcal{B}}$, $d[b] \otimes 1 \mapsto [\varphi(b)] - b[1]$ where $\varphi : \mathcal{B} \to \mathcal{C}$ is the given map. Please compare with Algebra, Remark 133.5. To see the consequence for cohomology sheaves, it suffices to show that $H^0(c)$ is an isomorphism and $H^{-1}(c)$ surjective. To see this we can look at stalks, see Lemma 28.4 and then we can use the corresponding result in commutative algebra, see Algebra, Lemma 133.4. Some details omitted. □

The cotangent complex of a morphism of ringed spaces is defined in terms of the cotangent complex we defined above.

Definition 28.6. The naive cotangent complex $\mathcal{N}\mathcal{L}_f = \mathcal{N}\mathcal{L}_{X/Y}$ of a morphism of ringed spaces $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is $\mathcal{N}\mathcal{L}_{\mathcal{O}_X/f^{-1}\mathcal{O}_Y}$.

Given a commutative diagram

$$
\begin{array}{c}
X' \\
\downarrow{g} \\
X
\end{array}
\quad
\begin{array}{c}
Y' \\
\downarrow{h} \\
Y
\end{array}
\quad
\begin{array}{c}
f' \\
\downarrow{f} \\
f
\end{array}
$$

of ringed spaces, there is a canonical map $c : g^* \mathcal{N}\mathcal{L}_{X/Y} \to \mathcal{N}\mathcal{L}_{X'/Y'}$. Namely, it is the map

$$
g^* \mathcal{N}\mathcal{L}_{X/Y} = \mathcal{O}_{X'} \otimes_{g^{-1}\mathcal{O}_X} \mathcal{N}\mathcal{L}_{g^{-1}\mathcal{O}_X/g^{-1}f^{-1}\mathcal{O}_Y} \to \mathcal{N}\mathcal{L}_{\mathcal{O}_{X'/f'}^{-1}\mathcal{O}_{Y'}} = \mathcal{N}\mathcal{L}_{X'/Y'}
$$
where the arrow comes from the commutative diagram of sheaves of rings

\[
\begin{array}{ccc}
g^{-1}O_X & \xrightarrow{g^\sharp} & O_{X'} \\
g^{-1}f^\sharp \downarrow & & \uparrow (f')^\sharp \\
g^{-1}f^{-1}O_Y & \xrightarrow{g^{-1}h^\sharp} & (f')^{-1}O_{Y'}
\end{array}
\]

as in (28.1.1) above. Given a second such diagram

\[
\begin{array}{ccc}
X'' & \xrightarrow{g'} & X' \\
\downarrow & & \downarrow \\
Y'' & \xrightarrow{g} & Y'
\end{array}
\]

the composition of \((g')^\ast c\) and the map \(c' : (g')^\ast NL_{X'/Y'} \to NL_{X''/Y''}\) is the map \((g \circ g')^\ast NL_{X''/Y''} \to NL_{X/Y}\).

Lemma 28.7. Let \(f : X \to Y\) and \(g : Y \to Z\) be morphisms of ringed spaces. Let \(C\) be the cone of the map \(NL_{X/Z} \to NL_{X/Y}\) of complexes of \(O_X\)-modules. There is a canonical map

\[f^* NL_{Y/Z} \to C[-1]\]

which produces a canonical six term exact sequence

\[
\begin{array}{c}
H^0(f^* NL_{Y/Z}) \xrightarrow{} H^0(NL_{X/Z}) \xrightarrow{} H^0(NL_{X/Y}) \xrightarrow{} 0 \\
H^{-1}(f^* NL_{Y/Z}) \xrightarrow{} H^{-1}(NL_{X/Z}) \xrightarrow{} H^{-1}(NL_{X/Y})
\end{array}
\]

of cohomology sheaves.

Proof. Consider the maps of sheaves rings

\[(g \circ f)^{-1}O_Z \to f^{-1}O_Y \to O_X\]

and apply Lemma 28.5. \(\square\)

29. Other chapters

Preliminaries

1. Introduction
2. Conventions
3. Set Theory
4. Categories
5. Topology
6. Sheaves on Spaces
7. Sites and Sheaves
8. Stacks
9. Fields
10. Commutative Algebra
11. Brauer Groups
12. Homological Algebra
13. Derived Categories
14. Simplicial Methods
15. More on Algebra
16. Smoothing Ring Maps
17. Sheaves of Modules
18. Modules on Sites
19. Injectives
20. Cohomology of Sheaves
21. Cohomology on Sites
22. Differential Graded Algebra
23. Divided Power Algebra
24. Differential Graded Sheaves
25. Hypercoverings
26. Schemes
27. Constructions of Schemes
References

