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In this chapter we work out basic notions of sheaves of modules. This in particular
includes the case of abelian sheaves, since these may be viewed as sheaves of Z-
modules. Basic references are [Ser55], [DG67] and [AGV71].
We work out what happens for sheaves of modules on ringed topoi in another chap-
ter (see Modules on Sites, Section 1), although there we will mostly just duplicate
the discussion from this chapter.

2. Pathology

01AE A ringed space is a pair consisting of a topological space X and a sheaf of rings O.
We allow O = 0 in the definition. In this case the category of modules has a single
object (namely 0). It is still an abelian category etc, but it is a little degenerate.
Similarly the sheaf O may be zero over open subsets of X, etc.
This doesn’t happen when considering locally ringed spaces (as we will do later).

3. The abelian category of sheaves of modules

01AF Let (X,OX) be a ringed space, see Sheaves, Definition 25.1. Let F , G be sheaves
of OX -modules, see Sheaves, Definition 10.1. Let φ,ψ : F → G be morphisms of
sheaves of OX -modules. We define φ + ψ : F → G to be the map which on each
open U ⊂ X is the sum of the maps induced by φ, ψ. This is clearly again a map
of sheaves of OX -modules. It is also clear that composition of maps of OX -modules
is bilinear with respect to this addition. Thus Mod(OX) is a pre-additive category,
see Homology, Definition 3.1.
We will denote 0 the sheaf of OX -modules which has constant value {0} for all
open U ⊂ X. Clearly this is both a final and an initial object of Mod(OX). Given
a morphism of OX -modules φ : F → G the following are equivalent: (a) φ is zero,
(b) φ factors through 0, (c) φ is zero on sections over each open U , and (d) φx = 0
for all x ∈ X. See Sheaves, Lemma 16.1.
Moreover, given a pair F , G of sheaves of OX -modules we may define the direct
sum as

F ⊕ G = F × G
with obvious maps (i, j, p, q) as in Homology, Definition 3.5. Thus Mod(OX) is an
additive category, see Homology, Definition 3.8.
Let φ : F → G be a morphism of OX -modules. We may define Ker(φ) to be the
subsheaf of F with sections

Ker(φ)(U) = {s ∈ F(U) | φ(s) = 0 in G(U)}
for all open U ⊂ X. It is easy to see that this is indeed a kernel in the category
of OX -modules. In other words, a morphism α : H → F factors through Ker(φ) if
and only if φ ◦α = 0. Moreover, on the level of stalks we have Ker(φ)x = Ker(φx).
On the other hand, we define Coker(φ) as the sheaf of OX -modules associated to
the presheaf of OX -modules defined by the rule

U 7−→ Coker(G(U) → F(U)) = F(U)/φ(G(U)).
Since taking stalks commutes with taking sheafification, see Sheaves, Lemma 17.2
we see that Coker(φ)x = Coker(φx). Thus the map G → Coker(φ) is surjective (as
a map of sheaves of sets), see Sheaves, Section 16. To show that this is a cokernel,
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note that if β : G → H is a morphism of OX -modules such that β ◦ φ is zero,
then you get for every open U ⊂ X a map induced by β from G(U)/φ(F(U)) into
H(U). By the universal property of sheafification (see Sheaves, Lemma 20.1) we
obtain a canonical map Coker(φ) → H such that the original β is equal to the
composition G → Coker(φ) → H. The morphism Coker(φ) → H is unique because
of the surjectivity mentioned above.

Lemma 3.1.01AG Let (X,OX) be a ringed space. The category Mod(OX) is an abelian
category. Moreover a complex

F → G → H
is exact at G if and only if for all x ∈ X the complex

Fx → Gx → Hx

is exact at Gx.

Proof. By Homology, Definition 5.1 we have to show that image and coimage
agree. By Sheaves, Lemma 16.1 it is enough to show that image and coimage have
the same stalk at every x ∈ X. By the constructions of kernels and cokernels above
these stalks are the coimage and image in the categories of OX,x-modules. Thus we
get the result from the fact that the category of modules over a ring is abelian. □

Actually the category Mod(OX) has many more properties. Here are two construc-
tions we can do.

(1) Given any set I and for each i ∈ I a OX -module we can form the product∏
i∈I

Fi

which is the sheaf that associates to each open U the product of the modules
Fi(U). This is also the categorical product, as in Categories, Definition
14.6.

(2) Given any set I and for each i ∈ I a OX -module we can form the direct
sum ⊕

i∈I
Fi

which is the sheafification of the presheaf that associates to each open U the
direct sum of the modules Fi(U). This is also the categorical coproduct, as
in Categories, Definition 14.7. To see this you use the universal property
of sheafification.

Using these we conclude that all limits and colimits exist in Mod(OX).

Lemma 3.2.01AH Let (X,OX) be a ringed space.
(1) All limits exist in Mod(OX). Limits are the same as the corresponding

limits of presheaves of OX-modules (i.e., commute with taking sections over
opens).

(2) All colimits exist in Mod(OX). Colimits are the sheafification of the corre-
sponding colimit in the category of presheaves. Taking colimits commutes
with taking stalks.

(3) Filtered colimits are exact.
(4) Finite direct sums are the same as the corresponding finite direct sums of

presheaves of OX-modules.

https://stacks.math.columbia.edu/tag/01AG
https://stacks.math.columbia.edu/tag/01AH
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Proof. As Mod(OX) is abelian (Lemma 3.1) it has all finite limits and colimits
(Homology, Lemma 5.5). Thus the existence of limits and colimits and their de-
scription follows from the existence of products and coproducts and their description
(see discussion above) and Categories, Lemmas 14.11 and 14.12. Since sheafifica-
tion commutes with taking stalks we see that colimits commute with taking stalks.
Part (3) signifies that given a system 0 → Fi → Gi → Hi → 0 of exact sequences
of OX -modules over a directed set I the sequence 0 → colim Fi → colim Gi →
colim Hi → 0 is exact as well. Since we can check exactness on stalks (Lemma 3.1)
this follows from the case of modules which is Algebra, Lemma 8.8. We omit the
proof of (4). □

The existence of limits and colimits allows us to consider exactness properties of
functors defined on the category of O-modules in terms of limits and colimits, as
in Categories, Section 23. See Homology, Lemma 7.2 for a description of exactness
properties in terms of short exact sequences.

Lemma 3.3.01AJ Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
(1) The functor f∗ : Mod(OX) → Mod(OY ) is left exact. In fact it commutes

with all limits.
(2) The functor f∗ : Mod(OY ) → Mod(OX) is right exact. In fact it commutes

with all colimits.
(3) Pullback f−1 : Ab(Y ) → Ab(X) on abelian sheaves is exact.

Proof. Parts (1) and (2) hold because (f∗, f∗) is an adjoint pair of functors, see
Sheaves, Lemma 26.2 and Categories, Section 24. Part (3) holds because exactness
can be checked on stalks (Lemma 3.1) and the description of stalks of the pullback,
see Sheaves, Lemma 22.1. □

Lemma 3.4.01AK Let j : U → X be an open immersion of topological spaces. The
functor j! : Ab(U) → Ab(X) is exact.

Proof. Follows from the description of stalks given in Sheaves, Lemma 31.6. □

Lemma 3.5.01AI Let (X,OX) be a ringed space. Let I be a set. For i ∈ I, let Fi be
a sheaf of OX-modules. For U ⊂ X quasi-compact open the map⊕

i∈I
Fi(U) −→

(⊕
i∈I

Fi

)
(U)

is bijective.

Proof. If s is an element of the right hand side, then there exists an open covering
U =

⋃
j∈J Uj such that s|Uj

is a finite sum
∑

i∈Ij
sji with sji ∈ Fi(Uj). Because

U is quasi-compact we may assume that the covering is finite, i.e., that J is finite.
Then I ′ =

⋃
j∈J Ij is a finite subset of I. Clearly, s is a section of the subsheaf⊕

i∈I′ Fi. The result follows from the fact that for a finite direct sum sheafification
is not needed, see Lemma 3.2 above. □

4. Sections of sheaves of modules

01AL Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules. Let s ∈ Γ(X,F) =
F(X) be a global section. There is a unique map of OX-modules

OX −→ F , f 7−→ fs

https://stacks.math.columbia.edu/tag/01AJ
https://stacks.math.columbia.edu/tag/01AK
https://stacks.math.columbia.edu/tag/01AI
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associated to s. The notation above signifies that a local section f of OX , i.e., a
section f over some open U , is mapped to the multiplication of f with the restriction
of s to U . Conversely, any map φ : OX → F gives rise to a section s = φ(1) such
that φ is the morphism associated to s.

Definition 4.1.01AM Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is generated by global sections if there exist a set I, and global
sections si ∈ Γ(X,F), i ∈ I such that the map⊕

i∈I
OX −→ F

which is the map associated to si on the summand corresponding to i, is surjective.
In this case we say that the sections si generate F .

We often use the abuse of notation introduced in Sheaves, Section 11 where, given a
local section s of F defined in an open neighbourhood of a point x ∈ X, we denote
sx, or even s the image of s in the stalk Fx.

Lemma 4.2.01AN Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
Let I be a set. Let si ∈ Γ(X,F), i ∈ I be global sections. The sections si generate
F if and only if for all x ∈ X the elements si,x ∈ Fx generate the OX,x-module Fx.

Proof. Omitted. □

Lemma 4.3.01AO Let (X,OX) be a ringed space. Let F , G be sheaves of OX-modules.
If F and G are generated by global sections then so is F ⊗OX

G.

Proof. Omitted. □

Lemma 4.4.01AP Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
Let I be a set. Let si, i ∈ I be a collection of local sections of F , i.e., si ∈ F(Ui)
for some opens Ui ⊂ X. There exists a unique smallest subsheaf of OX-modules G
such that each si corresponds to a local section of G.

Proof. Consider the subpresheaf of OX -modules defined by the rule

U 7−→ {sums
∑

i∈J
fi(si|U ) where J is finite, U ⊂ Ui for i ∈ J, and fi ∈ OX(U)}

Let G be the sheafification of this subpresheaf. This is a subsheaf of F by Sheaves,
Lemma 16.3. Since all the finite sums clearly have to be in G this is the smallest
subsheaf as desired. □

Definition 4.5.01AQ Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
Given a set I, and local sections si, i ∈ I of F we say that the subsheaf G of Lemma
4.4 above is the subsheaf generated by the si.

Lemma 4.6.01AR Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
Given a set I, and local sections si, i ∈ I of F . Let G be the subsheaf generated
by the si and let x ∈ X. Then Gx is the OX,x-submodule of Fx generated by the
elements si,x for those i such that si is defined at x.

Proof. This is clear from the construction of G in the proof of Lemma 4.4. □

https://stacks.math.columbia.edu/tag/01AM
https://stacks.math.columbia.edu/tag/01AN
https://stacks.math.columbia.edu/tag/01AO
https://stacks.math.columbia.edu/tag/01AP
https://stacks.math.columbia.edu/tag/01AQ
https://stacks.math.columbia.edu/tag/01AR
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5. Supports of modules and sections

01AS
Definition 5.1.01AT Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.

(1) The support of F is the set of points x ∈ X such that Fx ̸= 0.
(2) We denote Supp(F) the support of F .
(3) Let s ∈ Γ(X,F) be a global section. The support of s is the set of points

x ∈ X such that the image sx ∈ Fx of s is not zero.

Of course the support of a local section is then defined also since a local section is
a global section of the restriction of F .

Lemma 5.2.01AU Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
Let U ⊂ X open.

(1) The support of s ∈ F(U) is closed in U .
(2) The support of fs is contained in the intersections of the supports of f ∈

OX(U) and s ∈ F(U).
(3) The support of s + s′ is contained in the union of the supports of s, s′ ∈

F(U).
(4) The support of F is the union of the supports of all local sections of F .
(5) If φ : F → G is a morphism of OX-modules, then the support of φ(s) is

contained in the support of s ∈ F(U).

Proof. This is true because if sx = 0, then s is zero in an open neighbourhood of
x by definition of stalks. Similarly for f . Details omitted. □

In general the support of a sheaf of modules is not closed. Namely, the sheaf could
be an abelian sheaf on R (with the usual archimedean topology) which is the direct
sum of infinitely many nonzero skyscraper sheaves each supported at a single point
pi of R. Then the support would be the set of points pi which may not be closed.
Another example is to consider the open immersion j : U = (0,∞) → R = X, and
the abelian sheaf j!ZU . By Sheaves, Section 31 the support of this sheaf is exactly
U .

Lemma 5.3.01AV Let X be a topological space. The support of a sheaf of rings is
closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only
if 1 = 0, and hence the support of a sheaf of rings is the support of the unit
section. □

6. Closed immersions and abelian sheaves

01AW Recall that we think of an abelian sheaf on a topological space X as a sheaf of
ZX -modules. Thus we may apply any results, definitions for sheaves of modules to
abelian sheaves.

Lemma 6.1.01AX Let X be a topological space. Let Z ⊂ X be a closed subset. Denote
i : Z → X the inclusion map. The functor

i∗ : Ab(Z) −→ Ab(X)
is exact, fully faithful, with essential image exactly those abelian sheaves whose
support is contained in Z. The functor i−1 is a left inverse to i∗.

https://stacks.math.columbia.edu/tag/01AT
https://stacks.math.columbia.edu/tag/01AU
https://stacks.math.columbia.edu/tag/01AV
https://stacks.math.columbia.edu/tag/01AX
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Proof. Exactness follows from the description of stalks in Sheaves, Lemma 32.1
and Lemma 3.1. The rest was shown in Sheaves, Lemma 32.3. □

Let F be an abelian sheaf on the topological space X. Given a closed subset Z,
there is a canonical abelian subsheaf of F which consists of exactly those sections
whose support is contained in Z. Here is the exact statement.
Remark 6.2.01AY Let X be a topological space. Let Z ⊂ X be a closed subset. Let
F be an abelian sheaf on X. For U ⊂ X open set

HZ(F)(U) = {s ∈ F(U) | the support of s is contained in Z ∩ U}
Then HZ(F) is an abelian subsheaf of F . It is the largest abelian subsheaf of F
whose support is contained in Z. By Lemma 6.1 we may (and we do) view HZ(F)
as an abelian sheaf on Z. In this way we obtain a left exact functor

Ab(X) −→ Ab(Z), F 7−→ HZ(F) viewed as abelian sheaf on Z

All of the statements made above follow directly from Lemma 5.2.
This seems like a good opportunity to show that the functor i∗ has a right adjoint
on abelian sheaves.
Lemma 6.3.01AZ Let i : Z → X be the inclusion of a closed subset into the topological
space X. The functor Ab(X) → Ab(Z), F 7→ HZ(F) of Remark 6.2 is a right
adjoint to i∗ : Ab(Z) → Ab(X). In particular i∗ commutes with arbitrary colimits.
Proof. We have to show that for any abelian sheaf F on X and any abelian sheaf
G on Z we have

HomAb(X)(i∗G,F) = HomAb(Z)(G,HZ(F))
This is clear because after all any section of i∗G has support in Z. Details omitted.

□

Remark 6.4.01B0 In Sheaves, Remark 32.5 we showed that i∗ as a functor on the
categories of sheaves of sets does not have a right adjoint simply because it is not
exact. However, it is very close to being true, in fact, the functor i∗ is exact on
sheaves of pointed sets, sections with support in Z can be defined for sheaves of
pointed sets, and HZ makes sense and is a right adjoint to i∗.

7. A canonical exact sequence

02US We give this exact sequence its own section.
Lemma 7.1.02UT Let X be a topological space. Let U ⊂ X be an open subset with
complement Z ⊂ X. Denote j : U → X the open immersion and i : Z → X the
closed immersion. For any sheaf of abelian groups F on X the adjunction mappings
j!j

−1F → F and F → i∗i
−1F give a short exact sequence

0 → j!j
−1F → F → i∗i

−1F → 0
of sheaves of abelian groups. For any morphism φ : F → G of abelian sheaves on
X we obtain a morphism of short exact sequences

0 // j!j
−1F //

��

F //

��

i∗i
−1F //

��

0

0 // j!j
−1G // G // i∗i−1G // 0

https://stacks.math.columbia.edu/tag/01AY
https://stacks.math.columbia.edu/tag/01AZ
https://stacks.math.columbia.edu/tag/01B0
https://stacks.math.columbia.edu/tag/02UT
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Proof. The functoriality of the short exact sequence is immediate from the natu-
rality of the adjunction mappings. We may check exactness on stalks (Lemma 3.1).
For a description of the stalks in question see Sheaves, Lemmas 31.6 and 32.1. □

8. Modules locally generated by sections

01B1 Let (X,OX) be a ringed space. In this and the following section we will often
restrict sheaves to open subspaces U ⊂ X, see Sheaves, Section 31. In particular,
we will often denote the open subspace by (U,OU ) instead of the more correct
notation (U,OX |U ), see Sheaves, Definition 31.2.

Consider the open immersion j : U = (0,∞) → R = X, and the abelian sheaf
j!ZU . By Sheaves, Section 31 the stalk of j!ZU at x = 0 is 0. In fact the sections
of this sheaf over any open interval containing 0 are 0. Thus there is no open
neighbourhood of the point 0 over which the sheaf can be generated by sections.

Definition 8.1.01B2 Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is locally generated by sections if for every x ∈ X there exists an open
neighbourhood U of x such that F|U is globally generated as a sheaf of OU -modules.

In other words there exists a set I and for each i a section si ∈ F(U) such that the
associated map ⊕

i∈I
OU −→ F|U

is surjective.

Lemma 8.2.01B3 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G is locally generated by sections if G is locally generated by sections.

Proof. Given an open subspace V of Y we may consider the commutative diagram
of ringed spaces

(f−1V,Of−1V )
j′

//

f ′

��

(X,OX)

f

��
(V,OV ) j // (Y,OY )

We know that f∗G|f−1V
∼= (f ′)∗(G|V ), see Sheaves, Lemma 26.3. Thus we may

assume that G is globally generated.

We have seen that f∗ commutes with all colimits, and is right exact, see Lemma
3.3. Thus if we have a surjection⊕

i∈I
OY → G → 0

then upon applying f∗ we obtain the surjection⊕
i∈I

OX → f∗G → 0.

This implies the lemma. □

https://stacks.math.columbia.edu/tag/01B2
https://stacks.math.columbia.edu/tag/01B3
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9. Modules of finite type

01B4
Definition 9.1.01B5 Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is of finite type if for every x ∈ X there exists an open neighbourhood
U such that F|U is generated by finitely many sections.

Lemma 9.2.01B6 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G of a finite type OY -module is a finite type OX-module.

Proof. Arguing as in the proof of Lemma 8.2 we may assume G is globally gener-
ated by finitely many sections. We have seen that f∗ commutes with all colimits,
and is right exact, see Lemma 3.3. Thus if we have a surjection⊕

i=1,...,n
OY → G → 0

then upon applying f∗ we obtain the surjection⊕
i=1,...,n

OX → f∗G → 0.

This implies the lemma. □

Lemma 9.3.01B7 Let X be a ringed space. The image of a morphism of OX-modules
of finite type is of finite type. Let 0 → F1 → F2 → F3 → 0 be a short exact
sequence of OX-modules. If F1 and F3 are of finite type, so is F2.

Proof. The statement on images is trivial. The statement on short exact sequences
comes from the fact that sections of F3 locally lift to sections of F2 and the cor-
responding result in the category of modules over a ring (applied to the stalks for
example). □

Lemma 9.4.01B8 Let X be a ringed space. Let φ : G → F be a homomorphism of OX-
modules. Let x ∈ X. Assume F of finite type and the map on stalks φx : Gx → Fx

surjective. Then there exists an open neighbourhood x ∈ U ⊂ X such that φ|U is
surjective.

Proof. Choose an open neighbourhood U ⊂ X of x such that F is generated by
s1, . . . , sn ∈ F(U) over U . By assumption of surjectivity of φx, after shrinking U
we may assume that si = φ(ti) for some ti ∈ G(U). Then U works. □

Lemma 9.5.01B9 Let X be a ringed space. Let F be an OX-module. Let x ∈ X.
Assume F of finite type and Fx = 0. Then there exists an open neighbourhood
x ∈ U ⊂ X such that F|U is zero.

Proof. This is a special case of Lemma 9.4 applied to the morphism 0 → F . □

Lemma 9.6.01BA Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules. If
F is of finite type then support of F is closed.

Proof. This is a reformulation of Lemma 9.5. □

Lemma 9.7.01BB Let X be a ringed space. Let I be a preordered set and let (Fi, fii′) be
a system over I consisting of sheaves of OX-modules (see Categories, Section 21).
Let F = colim Fi be the colimit. Assume (a) I is directed, (b) F is a finite type
OX-module, and (c) X is quasi-compact. Then there exists an i such that Fi → F
is surjective. If the transition maps fii′ are injective then we conclude that F = Fi

for some i ∈ I.

https://stacks.math.columbia.edu/tag/01B5
https://stacks.math.columbia.edu/tag/01B6
https://stacks.math.columbia.edu/tag/01B7
https://stacks.math.columbia.edu/tag/01B8
https://stacks.math.columbia.edu/tag/01B9
https://stacks.math.columbia.edu/tag/01BA
https://stacks.math.columbia.edu/tag/01BB
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Proof. Let x ∈ X. There exists an open neighbourhood U ⊂ X of x and finitely
many sections sj ∈ F(U), j = 1, . . . ,m such that s1, . . . , sm generate F as OU -
module. After possibly shrinking U to a smaller open neighbourhood of x we may
assume that each sj comes from a section of Fi for some i ∈ I. Hence, since X is
quasi-compact we can find a finite open covering X =

⋃
j=1,...,m Uj , and for each

j an index ij and finitely many sections sjl ∈ Fij
(Uj) whose images generate the

restriction of F to Uj . Clearly, the lemma holds for any index i ∈ I which is ≥ all
ij . □

Lemma 9.8.01BC Let X be a ringed space. There exists a set of OX-modules {Fi}i∈I

of finite type such that each finite type OX-module on X is isomorphic to exactly
one of the Fi.

Proof. For each open covering U : X =
⋃
Uj consider the sheaves of OX -modules

F such that each restriction F|Uj
is a quotient of O⊕rj

Uj
for some rj ≥ 0. These are

parametrized by subsheaves Kj ⊂ O⊕rj

Uj
and glueing data

φjj′ : O⊕rj

Uj∩Uj′/(Kj |Uj∩Uj′ ) −→ O⊕rj′

Uj∩Uj′/(Kj′ |Uj∩Uj′ )

see Sheaves, Section 33. Note that the collection of all glueing data forms a set. The
collection of all coverings U : X =

⋃
j∈J Ui where J → P(X), j 7→ Uj is injective

forms a set as well. Hence the collection of all sheaves of OX -modules gotten from
glueing quotients as above forms a set I. By definition every finite type OX -module
is isomorphic to an element of I. Choosing an element out of each isomorphism
class inside I gives the desired set of sheaves (uses axiom of choice). □

10. Quasi-coherent modules

01BD In this section we introduce an abstract notion of quasi-coherent OX -module. This
notion is very useful in algebraic geometry, since quasi-coherent modules on a
scheme have a good description on any affine open. However, we warn the reader
that in the general setting of (locally) ringed spaces this notion is not well behaved
at all. The category of quasi-coherent sheaves is not abelian in general, infinite
direct sums of quasi-coherent sheaves aren’t quasi-coherent, etc, etc.

Definition 10.1.01BE Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is a quasi-coherent sheaf of OX-modules if for every point x ∈ X
there exists an open neighbourhood x ∈ U ⊂ X such that F|U is isomorphic to the
cokernel of a map ⊕

j∈J
OU −→

⊕
i∈I

OU

The category of quasi-coherent OX -modules is denoted QCoh(OX).

The definition means that X is covered by open sets U such that F|U has a pre-
sentation of the form⊕

j∈J
OU −→

⊕
i∈I

OU −→ F|U −→ 0.

Here presentation signifies that the displayed sequence is exact. In other words
(1) for every point x of X there exists an open neighbourhood such that F|U

is generated by global sections, and
(2) for a suitable choice of these sections the kernel of the associated surjection

is also generated by global sections.

https://stacks.math.columbia.edu/tag/01BC
https://stacks.math.columbia.edu/tag/01BE
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Lemma 10.2.01BF Let (X,OX) be a ringed space. The direct sum of two quasi-coherent
OX-modules is a quasi-coherent OX-module.

Proof. Omitted. □

Remark 10.3.02CF Warning: It is not true in general that an infinite direct sum
of quasi-coherent OX -modules is quasi-coherent. For more esoteric behaviour of
quasi-coherent modules see Example 10.9.

Lemma 10.4.01BG Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G of a quasi-coherent OY -module is quasi-coherent.

Proof. Arguing as in the proof of Lemma 8.2 we may assume G has a global
presentation by direct sums of copies of OY . We have seen that f∗ commutes with
all colimits, and is right exact, see Lemma 3.3. Thus if we have an exact sequence⊕

j∈J
OY −→

⊕
i∈I

OY −→ G −→ 0

then upon applying f∗ we obtain the exact sequence⊕
j∈J

OX −→
⊕

i∈I
OX −→ f∗G −→ 0.

This implies the lemma. □

This gives plenty of examples of quasi-coherent sheaves.

Lemma 10.5.01BH Let (X,OX) be ringed space. Let α : R → Γ(X,OX) be a ring
homomorphism from a ring R into the ring of global sections on X. Let M be an
R-module. The following three constructions give canonically isomorphic sheaves
of OX-modules:

(1) Let π : (X,OX) −→ ({∗}, R) be the morphism of ringed spaces with π : X →
{∗} the unique map and with π-map π♯ the given map α : R → Γ(X,OX).
Set F1 = π∗M .

(2) Choose a presentation
⊕

j∈J R →
⊕

i∈I R → M → 0. Set

F2 = Coker
(⊕

j∈J
OX →

⊕
i∈I

OX

)
.

Here the map on the component OX corresponding to j ∈ J given by the
section

∑
i α(rij) where the rij are the matrix coefficients of the map in the

presentation of M .
(3) Set F3 equal to the sheaf associated to the presheaf U 7→ OX(U) ⊗R M ,

where the map R → OX(U) is the composition of α and the restriction
map OX(X) → OX(U).

This construction has the following properties:
(1) The resulting sheaf of OX-modules FM = F1 = F2 = F3 is quasi-coherent.
(2) The construction gives a functor from the category of R-modules to the

category of quasi-coherent sheaves on X which commutes with arbitrary
colimits.

(3) For any x ∈ X we have FM,x = OX,x ⊗R M functorial in M .
(4) Given any OX-module G we have

MorOX
(FM ,G) = HomR(M,Γ(X,G))

where the R-module structure on Γ(X,G) comes from the Γ(X,OX)-module
structure via α.

https://stacks.math.columbia.edu/tag/01BF
https://stacks.math.columbia.edu/tag/02CF
https://stacks.math.columbia.edu/tag/01BG
https://stacks.math.columbia.edu/tag/01BH
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Proof. The isomorphism between F1 and F3 comes from the fact that π∗ is defined
as the sheafification of the presheaf in (3), see Sheaves, Section 26. The isomorphism
between the constructions in (2) and (1) comes from the fact that the functor π∗

is right exact, so π∗(
⊕

j∈J R) → π∗(
⊕

i∈I R) → π∗M → 0 is exact, π∗ commutes
with arbitrary direct sums, see Lemma 3.3, and finally the fact that π∗(R) = OX .
Assertion (1) is clear from construction (2). Assertion (2) is clear since π∗ has these
properties. Assertion (3) follows from the description of stalks of pullback sheaves,
see Sheaves, Lemma 26.4. Assertion (4) follows from adjointness of π∗ and π∗. □

Definition 10.6.01BI In the situation of Lemma 10.5 we say FM is the sheaf associated
to the module M and the ring map α. If R = Γ(X,OX) and α = idR we simply say
FM is the sheaf associated to the module M .

Lemma 10.7.01BJ Let (X,OX) be a ringed space. Set R = Γ(X,OX). Let M be an
R-module. Let FM be the quasi-coherent sheaf of OX-modules associated to M . If
g : (Y,OY ) → (X,OX) is a morphism of ringed spaces, then g∗FM is the sheaf
associated to the Γ(Y,OY )-module Γ(Y,OY ) ⊗R M .

Proof. The assertion follows from the first description of FM in Lemma 10.5 as
π∗M , and the following commutative diagram of ringed spaces

(Y,OY )
π
//

g

��

({∗},Γ(Y,OY ))

induced by g♯

��
(X,OX) π // ({∗},Γ(X,OX))

(Also use Sheaves, Lemma 26.3.) □

Lemma 10.8.01BK Let (X,OX) be a ringed space. Let x ∈ X be a point. Assume
that x has a fundamental system of quasi-compact neighbourhoods. Consider any
quasi-coherent OX-module F . Then there exists an open neighbourhood U of x such
that F|U is isomorphic to the sheaf of modules FM on (U,OU ) associated to some
Γ(U,OU )-module M .

Proof. First we may replace X by an open neighbourhood of x and assume that
F is isomorphic to the cokernel of a map

Ψ :
⊕

j∈J
OX −→

⊕
i∈I

OX .

The problem is that this map may not be given by a “matrix”, because the module
of global sections of a direct sum is in general different from the direct sum of the
modules of global sections.
Let x ∈ E ⊂ X be a quasi-compact neighbourhood of x (note: E may not be open).
Let x ∈ U ⊂ E be an open neighbourhood of x contained in E. Next, we proceed as
in the proof of Lemma 3.5. For each j ∈ J denote sj ∈ Γ(X,

⊕
i∈I OX) the image of

the section 1 in the summand OX corresponding to j. There exists a finite collection
of opens Ujk, k ∈ Kj such that E ⊂

⋃
k∈Kj

Ujk and such that each restriction sj |Ujk

is a finite sum
∑

i∈Ijk
fjki with Ijk ⊂ I, and fjki in the summand OX corresponding

to i ∈ I. Set Ij =
⋃

k∈Kj
Ijk. This is a finite set. Since U ⊂ E ⊂

⋃
k∈Kj

Ujk the
section sj |U is a section of the finite direct sum

⊕
i∈Ij

OX . By Lemma 3.2 we see
that actually sj |U is a sum

∑
i∈Ij

fij and fij ∈ OX(U) = Γ(U,OU ).

https://stacks.math.columbia.edu/tag/01BI
https://stacks.math.columbia.edu/tag/01BJ
https://stacks.math.columbia.edu/tag/01BK
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At this point we can define a module M as the cokernel of the map⊕
j∈J

Γ(U,OU ) −→
⊕

i∈I
Γ(U,OU )

with matrix given by the (fij). By construction (2) of Lemma 10.5 we see that FM

has the same presentation as F|U and therefore FM
∼= F|U . □

Example 10.9.01BL Let X be countably many copies L1, L2, L3, . . . of the real line
all glued together at 0; a fundamental system of neighbourhoods of 0 being the
collection {Un}n∈N, with Un∩Li = (−1/n, 1/n). Let OX be the sheaf of continuous
real valued functions. Let f : R → R be a continuous function which is identically
zero on (−1, 1) and identically 1 on (−∞,−2) ∪ (2,∞). Denote fn the continuous
function on X which is equal to x 7→ f(nx) on each Lj = R. Let 1Lj

be the
characteristic function of Lj . We consider the map⊕

j∈N
OX −→

⊕
j,i∈N

OX , ej 7−→
∑

i∈N
fj1Li

eij

with obvious notation. This makes sense because this sum is locally finite as fj is
zero in a neighbourhood of 0. Over Un the image of ej , for j > 2n is not a finite
linear combination

∑
gijeij with gij continuous. Thus there is no neighbourhood

of 0 ∈ X such that the displayed map is given by a “matrix” as in the proof of
Lemma 10.8 above.
Note that

⊕
j∈N OX is the sheaf associated to the free module with basis ej and

similarly for the other direct sum. Thus we see that a morphism of sheaves asso-
ciated to modules in general even locally on X does not come from a morphism of
modules. Similarly there should be an example of a ringed space X and a quasi-
coherent OX -module F such that F is not locally of the form FM . (Please email
if you find one.) Moreover, there should be examples of locally compact spaces X
and maps FM → FN which also do not locally come from maps of modules (the
proof of Lemma 10.8 shows this cannot happen if N is free).

11. Modules of finite presentation

01BM Here is the definition.

Definition 11.1.01BN Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is of finite presentation if for every point x ∈ X there exists an open
neighbourhood x ∈ U ⊂ X, and n,m ∈ N such that F|U is isomorphic to the
cokernel of a map ⊕

j=1,...,m
OU −→

⊕
i=1,...,n

OU

This means that X is covered by open sets U such that F|U has a presentation of
the form ⊕

j=1,...,m
OU −→

⊕
i=1,...,n

OU → F|U → 0.

Here presentation signifies that the displayed sequence is exact. In other words
(1) for every point x of X there exists an open neighbourhood such that F|U

is generated by finitely many global sections, and
(2) for a suitable choice of these sections the kernel of the associated surjection

is also generated by finitely many global sections.

Lemma 11.2.01BO Let (X,OX) be a ringed space. Any OX-module of finite presenta-
tion is quasi-coherent.

https://stacks.math.columbia.edu/tag/01BL
https://stacks.math.columbia.edu/tag/01BN
https://stacks.math.columbia.edu/tag/01BO
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Proof. Immediate from definitions. □

Lemma 11.3.01BP Let (X,OX) be a ringed space. Let F be an OX-module of finite
presentation.

(1) If ψ : O⊕r
X → F is a surjection, then Ker(ψ) is of finite type.

(2) If θ : G → F is surjective with G of finite type, then Ker(θ) is of finite type.

Proof. Proof of (1). Let x ∈ X. Choose an open neighbourhood U ⊂ X of x such
that there exists a presentation

O⊕m
U

χ−→ O⊕n
U

φ−→ F|U → 0.
Let ek be the section generating the kth factor of O⊕r

X . For every k = 1, . . . , r we
can, after shrinking U to a small neighbourhood of x, lift ψ(ek) to a section ẽk of
O⊕n

U over U . This gives a morphism of sheaves α : O⊕r
U → O⊕n

U such that φ◦α = ψ.
Similarly, after shrinking U , we can find a morphism β : O⊕n

U → O⊕r
U such that

ψ ◦ β = φ. Then the map

O⊕m
U ⊕ O⊕r

U

β◦χ,1−β◦α−−−−−−−→ O⊕r
U

is a surjection onto the kernel of ψ.
To prove (2) we may locally choose a surjection η : O⊕r

X → G. By part (1) we see
Ker(θ ◦ η) is of finite type. Since Ker(θ) = η(Ker(θ ◦ η)) we win. □

Lemma 11.4.01BQ Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G of a module of finite presentation is of finite presentation.

Proof. Exactly the same as the proof of Lemma 10.4 but with finite index sets. □

Lemma 11.5.01BR Let (X,OX) be a ringed space. Set R = Γ(X,OX). Let M be
an R-module. The OX-module FM associated to M is a directed colimit of finitely
presented OX-modules.

Proof. This follows immediately from Lemma 10.5 and the fact that any module
is a directed colimit of finitely presented modules, see Algebra, Lemma 11.3. □

Lemma 11.6.0B8J Let (X,OX) be a ringed space. Let F be a finitely presented OX-
module. Let x ∈ X such that Fx

∼= O⊕r
X,x. Then there exists an open neighbourhood

U of x such that F|U ∼= O⊕r
U .

Proof. Choose s1, . . . , sr ∈ Fx mapping to a basis of O⊕r
X,x by the isomorphism.

Choose an open neighbourhood U of x such that si lifts to si ∈ F(U). After
shrinking U we see that the induced map ψ : O⊕r

U → F|U is surjective (Lemma
9.4). By Lemma 11.3 we see that Ker(ψ) is of finite type. Then Ker(ψ)x = 0
implies that Ker(ψ) becomes zero after shrinking U once more (Lemma 9.5). □

12. Coherent modules

01BU A reference for this section is [Ser55].
The category of coherent sheaves on a ringed space X is a more reasonable object
than the category of quasi-coherent sheaves, in the sense that it is at least an abelian
subcategory of Mod(OX) no matter what X is. On the other hand, the pullback
of a coherent module is “almost never” coherent in the general setting of ringed
spaces.

https://stacks.math.columbia.edu/tag/01BP
https://stacks.math.columbia.edu/tag/01BQ
https://stacks.math.columbia.edu/tag/01BR
https://stacks.math.columbia.edu/tag/0B8J
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Definition 12.1.01BV Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is a coherent OX-module if the following two conditions hold:

(1) F is of finite type, and
(2) for every open U ⊂ X and every finite collection si ∈ F(U), i = 1, . . . , n

the kernel of the associated map
⊕

i=1,...,n OU → F|U is of finite type.
The category of coherent OX -modules is denoted Coh(OX).

Lemma 12.2.01BW Let (X,OX) be a ringed space. Any coherent OX-module is of
finite presentation and hence quasi-coherent.

Proof. Let F be a coherent sheaf on X. Pick a point x ∈ X. By (1) of the
definition of coherent, we may find an open neighbourhood U and sections si,
i = 1, . . . , n of F over U such that Ψ :

⊕
i=1,...,n OU → F is surjective. By (2) of

the definition of coherent, we may find an open neighbourhood V , x ∈ V ⊂ U and
sections t1, . . . , tm of

⊕
i=1,...,n OV which generate the kernel of Ψ|V . Then over V

we get the presentation⊕
j=1,...,m

OV −→
⊕

i=1,...,n
OV → F|V → 0

as desired. □

Example 12.3.01BX Suppose that X is a point. In this case the definition above gives
a notion for modules over rings. What does the definition of coherent mean? It
is closely related to the notion of Noetherian, but it is not the same: Namely, the
ring R = C[x1, x2, x3, . . .] is coherent as a module over itself but not Noetherian as
a module over itself. See Algebra, Section 90 for more discussion.

Lemma 12.4.01BY Let (X,OX) be a ringed space.
(1) Any finite type subsheaf of a coherent sheaf is coherent.
(2) Let φ : F → G be a morphism from a finite type sheaf F to a coherent sheaf

G. Then Ker(φ) is of finite type.
(3) Let φ : F → G be a morphism of coherent OX-modules. Then Ker(φ) and

Coker(φ) are coherent.
(4) Given a short exact sequence of OX-modules 0 → F1 → F2 → F3 → 0 if

two out of three are coherent so is the third.
(5) The category Coh(OX) is a weak Serre subcategory of Mod(OX). In partic-

ular, the category of coherent modules is abelian and the inclusion functor
Coh(OX) → Mod(OX) is exact.

Proof. Condition (2) of Definition 12.1 holds for any subsheaf of a coherent sheaf.
Thus we get (1).
Assume the hypotheses of (2). Let us show that Ker(φ) is of finite type. Pick
x ∈ X. Choose an open neighbourhood U of x in X such that F|U is generated
by s1, . . . , sn. By Definition 12.1 the kernel K of the induced map

⊕n
i=1 OU → G,

ei 7→ φ(si) is of finite type. Hence Ker(φ) which is the image of the composition
K →

⊕n
i=1 OU → F is of finite type.

Assume the hypotheses of (3). By (2) the kernel of φ is of finite type and hence by
(1) it is coherent.
With the same hypotheses let us show that Coker(φ) is coherent. Since G is of finite
type so is Coker(φ). Let U ⊂ X be open and let si ∈ Coker(φ)(U), i = 1, . . . , n

https://stacks.math.columbia.edu/tag/01BV
https://stacks.math.columbia.edu/tag/01BW
https://stacks.math.columbia.edu/tag/01BX
https://stacks.math.columbia.edu/tag/01BY
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be sections. We have to show that the kernel of the associated morphism Ψ :⊕n
i=1 OU → Coker(φ) is of finite type. There exists an open covering of U such that

on each open all the sections si lift to sections si of G. Hence we may assume this is
the case over U . We may in addition assume there are sections tj , j = 1, . . . ,m of
Im(φ) over U which generate Im(φ) over U . Let Φ :

⊕m
j=1 OU → Im(φ) be defined

using tj and Ψ :
⊕m

j=1 OU ⊕
⊕n

i=1 OU → G using tj and si. Consider the following
commutative diagram

0 //⊕m
j=1 OU

Φ
��

//⊕m
j=1 OU ⊕

⊕n
i=1 OU

Ψ
��

//⊕n
i=1 OU

Ψ
��

// 0

0 // Im(φ) // G // Coker(φ) // 0

By the snake lemma we get an exact sequence Ker(Ψ) → Ker(Ψ) → 0. Since
Ker(Ψ) is a finite type module, we see that Ker(Ψ) has finite type.

Proof of part (4). Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of
OX -modules. By part (3) it suffices to prove that if F1 and F3 are coherent so is
F2. By Lemma 9.3 we see that F2 has finite type. Let s1, . . . , sn be finitely many
local sections of F2 defined over a common open U of X. We have to show that
the module of relations K between them is of finite type. Consider the following
commutative diagram

0 // 0 //

��

⊕n
i=1 OU

//

��

⊕n
i=1 OU

//

��

0

0 // F1 // F2 // F3 // 0

with obvious notation. By the snake lemma we get a short exact sequence 0 → K →
K3 → F1 where K3 is the module of relations among the images of the sections si

in F3. Since F1 is coherent we see that K is the kernel of a map from a finite type
module to a coherent module and hence finite type by (2).

Proof of (5). This follows because (3) and (4) show that Homology, Lemma 10.3
applies. □

Lemma 12.5.01BZ Let (X,OX) be a ringed space. Let F be an OX-module. Assume
OX is a coherent OX-module. Then F is coherent if and only if it is of finite
presentation.

Proof. Omitted. □

Lemma 12.6.01C0 Let X be a ringed space. Let φ : G → F be a homomorphism of
OX-modules. Let x ∈ X. Assume G of finite type, F coherent and the map on
stalks φx : Gx → Fx injective. Then there exists an open neighbourhood x ∈ U ⊂ X
such that φ|U is injective.

Proof. Denote K ⊂ G the kernel of φ. By Lemma 12.4 we see that K is a finite
type OX -module. Our assumption is that Kx = 0. By Lemma 9.5 there exists an
open neighbourhood U of x such that K|U = 0. Then U works. □

https://stacks.math.columbia.edu/tag/01BZ
https://stacks.math.columbia.edu/tag/01C0
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13. Closed immersions of ringed spaces

01C1 When do we declare a morphism of ringed spaces i : (Z,OZ) → (X,OX) to be a
closed immersion?

Motivated by the example of a closed immersion of normal topological spaces
(ringed with the sheaf of continuous functors), or differential manifolds (ringed
with the sheaf of differentiable functions), it seems natural to assume at least:

(1) The map i is a closed immersion of topological spaces.
(2) The associated map OX → i∗OZ is surjective. Denote the kernel by I.

Already these conditions imply a number of pleasing results: For example we prove
that the category of OZ-modules is equivalent to the category of OX -modules an-
nihilated by I generalizing the result on abelian sheaves of Section 6

However, in the Stacks project we choose the definition that guarantees that if i
is a closed immersion and (X,OX) is a scheme, then also (Z,OZ) is a scheme.
Moreover, in this situation we want i∗ and i∗ to provide an equivalence between
the category of quasi-coherent OZ-modules and the category of quasi-coherent OX -
modules annihilated by I. A minimal condition is that i∗OZ is a quasi-coherent
sheaf of OX -modules. A good way to guarantee that i∗OZ is a quasi-coherent OX -
module is to assume that I is locally generated by sections. We can interpret this
condition as saying “(Z,OZ) is locally on (X,OX) defined by setting some regular
functions fi, i.e., local sections of OX , equal to zero”. This leads to the following
definition.

Definition 13.1.01C2 A closed immersion of ringed spaces1 is a morphism i : (Z,OZ) →
(X,OX) with the following properties:

(1) The map i is a closed immersion of topological spaces.
(2) The associated map OX → i∗OZ is surjective. Denote the kernel by I.
(3) The OX -module I is locally generated by sections.

Actually, this definition still does not guarantee that i∗ of a quasi-coherent OZ-
module is a quasi-coherent OX -module. The problem is that it is not clear how to
convert a local presentation of a quasi-coherent OZ-module into a local presentation
for the pushforward. However, the following is trivial.

Lemma 13.2.01C3 Let i : (Z,OZ) → (X,OX) be a closed immersion of ringed spaces.
Let F be a quasi-coherent OZ-module. Then i∗F is locally on X the cokernel of a
map of quasi-coherent OX-modules.

Proof. This is true because i∗OZ is quasi-coherent by definition. And locally on Z
the sheaf F is a cokernel of a map between direct sums of copies of OZ . Moreover,
any direct sum of copies of the the same quasi-coherent sheaf is quasi-coherent.
And finally, i∗ commutes with arbitrary colimits, see Lemma 6.3. Some details
omitted. □

Lemma 13.3.01C4 Let i : (Z,OZ) → (X,OX) be a morphism of ringed spaces. Assume
i is a homeomorphism onto a closed subset of X and that OX → i∗OZ is surjective.
Let F be an OZ-module. Then i∗F is of finite type if and only if F is of finite type.

1This is nonstandard notation; see discussion above.

https://stacks.math.columbia.edu/tag/01C2
https://stacks.math.columbia.edu/tag/01C3
https://stacks.math.columbia.edu/tag/01C4
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Proof. Suppose that F is of finite type. Pick x ∈ X. If x ̸∈ Z, then i∗F is
zero in a neighbourhood of x and hence finitely generated in a neighbourhood of
x. If x = i(z), then choose an open neighbourhood z ∈ V ⊂ Z and sections
s1, . . . , sn ∈ F(V ) which generate F over V . Write V = Z ∩ U for some open
U ⊂ X. Note that U is a neighbourhood of x. Clearly the sections si give sections
si of i∗F over U . The resulting map⊕

i=1,...,n
OU −→ i∗F|U

is surjective by inspection of what it does on stalks (here we use that OX → i∗OZ

is surjective). Hence i∗F is of finite type.
Conversely, suppose that i∗F is of finite type. Choose z ∈ Z. Set x = i(z).
By assumption there exists an open neighbourhood U ⊂ X of x, and sections
s1, . . . , sn ∈ (i∗F)(U) which generate i∗F over U . Set V = Z ∩U . By definition of
i∗ the sections si correspond to sections si of F over V . The resulting map⊕

i=1,...,n
OV −→ F|V

is surjective by inspection of what it does on stalks. Hence F is of finite type. □

Lemma 13.4.08KS Let i : (Z,OZ) → (X,OX) be a morphism of ringed spaces. Assume
i is a homeomorphism onto a closed subset of X and i♯ : OX → i∗OZ is surjective.
Denote I ⊂ OX the kernel of i♯. The functor

i∗ : Mod(OZ) −→ Mod(OX)
is exact, fully faithful, with essential image those OX-modules G such that IG = 0.

Proof. We claim that for an OZ-module F the canonical map
i∗i∗F −→ F

is an isomorphism. We check this on stalks. Say z ∈ Z and x = i(z). We have
(i∗i∗F)z = (i∗F)x ⊗OX,x

OZ,z = Fz ⊗OX,x
OZ,z = Fz

by Sheaves, Lemma 26.4, the fact that OZ,z is a quotient of OX,x, and Sheaves,
Lemma 32.1. It follows that i∗ is fully faithful.
Let G be a OX -module with IG = 0. We will prove the canonical map

G −→ i∗i
∗G

is an isomorphism. This proves that G = i∗F with F = i∗G which finishes the
proof. We check the displayed map induces an isomorphism on stalks. If x ∈ X,
x ̸∈ i(Z), then Gx = 0 because Ix = OX,x in this case. As above (i∗i∗G)x = 0 by
Sheaves, Lemma 32.1. On the other hand, if x ∈ Z, then we obtain the map

Gx −→ Gx ⊗OX,x
OZ,x

by Sheaves, Lemmas 26.4 and 32.1. This map is an isomorphism because OZ,x =
OX,x/Ix and because Gx is annihilated by Ix by assumption. □

Remark 13.5.0G6N Let (X,OX) be a ringed space. Let Z ⊂ X be a closed subset.
For an OX -module F we can consider the submodule of sections with support in Z,
denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ∩ Z}

https://stacks.math.columbia.edu/tag/08KS
https://stacks.math.columbia.edu/tag/0G6N
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Observe that HZ(F)(U) is a module over OX(U), i.e., HZ(F) is an OX -module. By
construction HZ(F) is the largest OX -submodule of F whose support is contained
in Z. Applying Lemma 13.4 to the morphism of ringed spaces (Z,OX |Z) → (X,OX)
we may (and we do) view HZ(F) as an OX |Z-module on Z. Thus we obtain a
functor

Mod(OX) −→ Mod(OX |Z), F 7−→ HZ(F) viewed as an OX |Z-module on Z

This functor is left exact, but in general not exact. All of the statements made
above follow directly from Lemma 5.2. Clearly the construction is compatible with
the construction in Remark 6.2.

Lemma 13.6.0G6P Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of a
closed subset. The functor HZ : Mod(OX) → Mod(OX |Z) of Remark 13.5 is right
adjoint to i∗ : Mod(OX |Z) → Mod(OX).

Proof. We have to show that for any OX -module F and any OX |Z-module G we
have

HomOX |Z
(G,HZ(F)) = HomOX

(i∗G,F)
This is clear because after all any section of i∗G has support in Z. Details omitted.

□

14. Locally free sheaves

01C5 Let (X,OX) be a ringed space. Our conventions allow (some of) the stalks OX,x to
be the zero ring. This means we have to be a little careful when defining the rank
of a locally free sheaf.

Definition 14.1.01C6 Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
(1) We say F is locally free if for every point x ∈ X there exist a set I and an

open neighbourhood x ∈ U ⊂ X such that F|U is isomorphic to
⊕

i∈I OX |U
as an OX |U -module.

(2) We say F is finite locally free if we may choose the index sets I to be finite.
(3) We say F is finite locally free of rank r if we may choose the index sets I

to have cardinality r.

A finite direct sum of (finite) locally free sheaves is (finite) locally free. However,
it may not be the case that an infinite direct sum of locally free sheaves is locally
free.

Lemma 14.2.01C7 Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
If F is locally free then it is quasi-coherent.

Proof. Omitted. □

Lemma 14.3.01C8 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. If G
is a locally free OY -module, then f∗G is a locally free OX-module.

Proof. Omitted. □

Lemma 14.4.01C9 Let (X,OX) be a ringed space. Suppose that the support of OX

is X, i.e., all stalks of OX are nonzero rings. Let F be a locally free sheaf of
OX-modules. There exists a locally constant function

rankF : X −→ {0, 1, 2, . . .} ∪ {∞}

https://stacks.math.columbia.edu/tag/0G6P
https://stacks.math.columbia.edu/tag/01C6
https://stacks.math.columbia.edu/tag/01C7
https://stacks.math.columbia.edu/tag/01C8
https://stacks.math.columbia.edu/tag/01C9


SHEAVES OF MODULES 20

such that for any point x ∈ X the cardinality of any set I such that F is isomorphic
to

⊕
i∈I OX in a neighbourhood of x is rankF (x).

Proof. Under the assumption of the lemma the cardinality of I can be read off
from the rank of the free module Fx over the nonzero ring OX,x, and it is constant
in a neighbourhood of x. □

Lemma 14.5.089Q Let (X,OX) be a ringed space. Let r ≥ 0. Let φ : F → G be a map
of finite locally free OX-modules of rank r. Then φ is an isomorphism if and only
if φ is surjective.
Proof. Assume φ is surjective. Pick x ∈ X. There exists an open neighbourhood
U of x such that both F|U and G|U are isomorphic to O⊕r

U . Pick lifts of the free
generators of G|U to obtain a map ψ : G|U → F|U such that φ|U ◦ ψ = id. Hence
we conclude that the map Γ(U,F) → Γ(U,G) induced by φ is surjective. Since
both Γ(U,F) and Γ(U,G) are isomorphic to Γ(U,OU )⊕r as an Γ(U,OU )-module we
may apply Algebra, Lemma 16.4 to see that Γ(U,F) → Γ(U,G) is injective. This
finishes the proof. □

Lemma 14.6.0BCI Let (X,OX) be a ringed space. If all stalks OX,x are local rings,
then any direct summand of a finite locally free OX-module is finite locally free.
Proof. Assume F is a direct summand of the finite locally free OX -module H. Let
x ∈ X be a point. Then Hx is a finite free OX,x-module. Because OX,x is local, we
see that Fx

∼= O⊕r
X,x for some r, see Algebra, Lemma 78.2. By Lemma 11.6 we see

that F is free of rank r in an open neighbourhood of x. (Note that F is of finite
presentation as a summand of H.) □

15. Bilinear maps

0GIG Let (X,OX) be a ringed space. Let F , G, and H be OX -modules. A bilinear map
f : F × G → H of sheaves of OX -modules is a map of sheaves of sets as indicated
such that for every open U ⊂ X the induced map

F(U) × G(U) → H(U)
is an OX(U)-bilinear map of modules. Equivalently you can ask certain diagrams
of maps of sheaves of sets commute, immitating the usual axioms for bilinear maps
of modules. For example, the axiom f(x + y, z) = f(x, z) + f(y, z) is represented
by the commutativity of the diagram

F × F × G
(f◦pr13,f◦pr23)

//

(+◦pr12,pr3)
��

H × H

+
��

F × G
f // H

Another characterization is this: if f : F ×G → H is a map of sheaves of sets and it
induces a bilinar map of modules on stalks for all points of X, then f is a bilinear
map of sheaves of modules. This is true as you can test whether local sections are
equal by checking on stalks.
Let Mor(−,−) denote morphisms in the category of sheaves of sets on X. Another
characterization of a bilinear map is this: a map of sheaves of sets f : F × G → H
is bilinear if given any sheaf of sets S the rule

Mor(S,F) × Mor(S,G) → Mor(S,H), (a, b) 7→ f ◦ (a× b)

https://stacks.math.columbia.edu/tag/089Q
https://stacks.math.columbia.edu/tag/0BCI
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is a bilinear map of modules over the ring Mor(S,OX). We don’t usually take this
point of view as it is easier to think about sets of local sections and it is clearly
equivalent.
Finally, here is yet another way to say the definition: OX is a ring object in the
category of sheaves of sets and F , G, H are module objects over this ring. Then a
bilinear map can be defined for module objects over a ring object in any category.
To formulate what is a ring object and what is a module object over a ring object,
and what is a bilinear map of such in a category it is pleasant (but not strictly
necessary) to assume the category has finite products; and this is true for the
category of sheaves of sets.

16. Tensor product

01CA We have already briefly discussed the tensor product in the setting of change of
rings in Sheaves, Sections 6 and 20. Let us generalize this to tensor products of
modules.
Let (X,OX) be a ringed space and let F and G be OX -modules. We define first
the tensor product presheaf

F ⊗p,OX
G

as the rule which assigns to U ⊂ X open the OX(U)-module F(U) ⊗OX (U) G(U).
Having defined this we define the tensor product sheaf as the sheafification of the
above:

F ⊗OX
G = (F ⊗p,OX

G)#

This can be characterized as the sheaf of OX -modules such that for any third sheaf
of OX -modules H we have

HomOX
(F ⊗OX

G,H) = BilinOX
(F × G,H).

Here the right hand side indicates the set of bilinear maps of sheaves of OX -modules
as defined in Section 15.
The tensor product of modules M,N over a ring R satisfies symmetry, namely
M ⊗R N = N ⊗R M , hence the same holds for tensor products of sheaves of
modules, i.e., we have

F ⊗OX
G = G ⊗OX

F
functorial in F , G. And since tensor product of modules satisfies associativity we
also get canonical functorial isomorphisms

(F ⊗OX
G) ⊗OX

H = F ⊗OX
(G ⊗OX

H)
functorial in F , G, and H.

Lemma 16.1.01CB Let (X,OX) be a ringed space. Let F , G be OX-modules. Let
x ∈ X. There is a canonical isomorphism of OX,x-modules

(F ⊗OX
G)x = Fx ⊗OX,x

Gx

functorial in F and G.

Proof. Omitted. □

Lemma 16.2.05NA Let (X,OX) be a ringed space. Let F ′, G′ be presheaves of OX-
modules with sheafifications F , G. Then F ⊗OX

G = (F ′ ⊗p,OX
G′)#.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/01CB
https://stacks.math.columbia.edu/tag/05NA
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Lemma 16.3.01CC Let (X,OX) be a ringed space. Let G be an OX-module. If F1 →
F2 → F3 → 0 is an exact sequence of OX-modules then the induced sequence

F1 ⊗OX
G → F2 ⊗OX

G → F3 ⊗OX
G → 0

is exact.

Proof. This follows from the fact that exactness may be checked at stalks (Lemma
3.1), the description of stalks (Lemma 16.1) and the corresponding result for tensor
products of modules (Algebra, Lemma 12.10). □

Lemma 16.4.01CD Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let
F , G be OY -modules. Then f∗(F ⊗OY

G) = f∗F ⊗OX
f∗G functorially in F , G.

Proof. Omitted. □

Lemma 16.5.05NB Let (X,OX) be a ringed space. For any OX-module F the functor
Mod(OX) −→ Mod(OX), G 7−→ F ⊗OX

G
commutes with arbitrary colimits.

Proof. Let I be a preordered set and let {Gi} be a system over I. Set G = colimi Gi.
Recall that G is the sheaf associated to the presheaf G′ : U 7→ colimi Gi(U), see
Sheaves, Section 29. By Lemma 16.2 the tensor product F ⊗OX

G is the sheafifica-
tion of the presheaf

U 7−→ F(U) ⊗OX (U) colimi Gi(U) = colimi F(U) ⊗OX (U) Gi(U)
where the equality sign is Algebra, Lemma 12.9. Hence the lemma follows from the
description of colimits in Mod(OX), see Lemma 3.2. □

Lemma 16.6.01CE Let (X,OX) be a ringed space. Let F , G be OX-modules.
(1) If F , G are locally generated by sections, so is F ⊗OX

G.
(2) If F , G are of finite type, so is F ⊗OX

G.
(3) If F , G are quasi-coherent, so is F ⊗OX

G.
(4) If F , G are of finite presentation, so is F ⊗OX

G.
(5) If F is of finite presentation and G is coherent, then F ⊗OX

G is coherent.
(6) If F , G are coherent, so is F ⊗OX

G.
(7) If F , G are locally free, so is F ⊗OX

G.

Proof. We first prove that the tensor product of locally free OX -modules is locally
free. This follows if we show that (

⊕
i∈I OX) ⊗OX

(
⊕

j∈J OX) ∼=
⊕

(i,j)∈I×J OX .
The sheaf

⊕
i∈I OX is the sheaf associated to the presheaf U 7→

⊕
i∈I OX(U).

Hence the tensor product is the sheaf associated to the presheaf

U 7−→ (
⊕

i∈I
OX(U)) ⊗OX (U) (

⊕
j∈J

OX(U)).

We deduce what we want since for any ring R we have (
⊕

i∈I R) ⊗R (
⊕

j∈J R) =⊕
(i,j)∈I×J R.

If F2 → F1 → F → 0 is exact, then by Lemma 16.3 the complex F2 ⊗OX
G →

F1 ⊗OX
G → F ⊗OX

G → 0 is exact. Using this we can prove (5). Namely, in this
case there exists locally such an exact sequence with Fi, i = 1, 2 finite free. Hence
the two terms F2 ⊗OX

G and F1 ⊗OX
G are isomorphic to finite direct sums of G

(for example by Lemma 16.5). Since finite direct sums are coherent sheaves, these
are coherent and so is the cokernel of the map, see Lemma 12.4.

https://stacks.math.columbia.edu/tag/01CC
https://stacks.math.columbia.edu/tag/01CD
https://stacks.math.columbia.edu/tag/05NB
https://stacks.math.columbia.edu/tag/01CE
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And if also G2 → G1 → G → 0 is exact, then we see that
F2 ⊗OX

G1 ⊕ F1 ⊗OX
G2 → F1 ⊗OX

G1 → F ⊗OX
G → 0

is exact. Using this we can for example prove (3). Namely, the assumption means
that we can locally find presentations as above with Fi and Gi free OX -modules.
Hence the displayed presentation is a presentation of the tensor product by free
sheaves as well.
The proof of the other statements is omitted. □

17. Flat modules

05NC We can define flat modules exactly as in the case of modules over rings.

Definition 17.1.05ND Let (X,OX) be a ringed space. An OX -module F is flat if the
functor

Mod(OX) −→ Mod(OX), G 7→ G ⊗O F
is exact.

We can characterize flatness by looking at the stalks.

Lemma 17.2.05NE Let (X,OX) be a ringed space. An OX-module F is flat if and
only if the stalk Fx is a flat OX,x-module for all x ∈ X.

Proof. Assume Fx is a flat OX,x-module for all x ∈ X. In this case, if G → H → K
is exact, then also G ⊗OX

F → H ⊗OX
F → K ⊗OX

F is exact because we can
check exactness at stalks and because tensor product commutes with taking stalks,
see Lemma 16.1. Conversely, suppose that F is flat, and let x ∈ X. Consider the
skyscraper sheaves ix,∗M where M is a OX,x-module. Note that

M ⊗OX,x
Fx = (ix,∗M ⊗OX

F)x

again by Lemma 16.1. Since ix,∗ is exact, we see that the fact that F is flat implies
that M 7→ M ⊗OX,x

Fx is exact. Hence Fx is a flat OX,x-module. □

Thus the following definition makes sense.

Definition 17.3.05NF Let (X,OX) be a ringed space. Let x ∈ X. An OX -module F
is flat at x if Fx is a flat OX,x-module.

Hence we see that F is a flat OX -module if and only if it is flat at every point.

Lemma 17.4.05NG Let (X,OX) be a ringed space. A filtered colimit of flat OX-modules
is flat. A direct sum of flat OX-modules is flat.

Proof. This follows from Lemma 16.5, Lemma 16.1, Algebra, Lemma 8.8, and the
fact that we can check exactness at stalks. □

Lemma 17.5.05NH Let (X,OX) be a ringed space. Let U ⊂ X be open. The sheaf
jU !OU is a flat sheaf of OX-modules.

Proof. The stalks of jU !OU are either zero or equal to OX,x. Apply Lemma 17.2.
□

Lemma 17.6.05NI Let (X,OX) be a ringed space.
(1) Any sheaf of OX-modules is a quotient of a direct sum

⊕
jUi!OUi

.
(2) Any OX-module is a quotient of a flat OX-module.

https://stacks.math.columbia.edu/tag/05ND
https://stacks.math.columbia.edu/tag/05NE
https://stacks.math.columbia.edu/tag/05NF
https://stacks.math.columbia.edu/tag/05NG
https://stacks.math.columbia.edu/tag/05NH
https://stacks.math.columbia.edu/tag/05NI
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Proof. Let F be an OX -module. For every open U ⊂ X and every s ∈ F(U)
we get a morphism jU !OU → F , namely the adjoint to the morphism OU → F|U ,
1 7→ s. Clearly the map ⊕

(U,s)
jU !OU −→ F

is surjective, and the source is flat by combining Lemmas 17.4 and 17.5. □

Lemma 17.7.05NJ Let (X,OX) be a ringed space. Let

0 → F ′′ → F ′ → F → 0
be a short exact sequence of OX-modules. Assume F is flat. Then for any OX-
module G the sequence

0 → F ′′ ⊗O G → F ′ ⊗O G → F ⊗O G → 0
is exact.

Proof. Using that Fx is a flat OX,x-module for every x ∈ X and that exactness
can be checked on stalks, this follows from Algebra, Lemma 39.12. □

Lemma 17.8.05NK Let (X,OX) be a ringed space. Let
0 → F2 → F1 → F0 → 0

be a short exact sequence of OX-modules.
(1) If F2 and F0 are flat so is F1.
(2) If F1 and F0 are flat so is F2.

Proof. Since exactness and flatness may be checked at the level of stalks this
follows from Algebra, Lemma 39.13. □

Lemma 17.9.05NL Let (X,OX) be a ringed space. Let
. . . → F2 → F1 → F0 → Q → 0

be an exact complex of OX-modules. If Q and all Fi are flat OX-modules, then for
any OX-module G the complex

. . . → F2 ⊗OX
G → F1 ⊗OX

G → F0 ⊗OX
G → Q ⊗OX

G → 0
is exact also.

Proof. Follows from Lemma 17.7 by splitting the complex into short exact se-
quences and using Lemma 17.8 to prove inductively that Im(Fi+1 → Fi) is flat. □

The following lemma gives one direction of the equational criterion of flatness (Al-
gebra, Lemma 39.11).

Lemma 17.10.08BK Let (X,OX) be a ringed space. Let F be a flat OX-module. Let
U ⊂ X be open and let

OU
(f1,...,fn)−−−−−−→ O⊕n

U

(s1,...,sn)−−−−−−→ F|U
be a complex of OU -modules. For every x ∈ U there exists an open neighbourhood
V ⊂ U of x and a factorization

O⊕n
V

A−→ O⊕m
V

(t1,...,tm)−−−−−−→ F|V
of (s1, . . . , sn)|V such that A ◦ (f1, . . . , fn)|V = 0.

https://stacks.math.columbia.edu/tag/05NJ
https://stacks.math.columbia.edu/tag/05NK
https://stacks.math.columbia.edu/tag/05NL
https://stacks.math.columbia.edu/tag/08BK


SHEAVES OF MODULES 25

Proof. Let I ⊂ OU be the sheaf of ideals generated by f1, . . . , fn. Then
∑
fi ⊗ si

is a section of I ⊗OU
F|U which maps to zero in F|U . As F|U is flat the map

I ⊗OU
F|U → F|U is injective. Since I ⊗OU

F|U is the sheaf associated to the
presheaf tensor product, we see there exists an open neighbourhood V ⊂ U of x
such that

∑
fi|V ⊗ si|V is zero in I(V ) ⊗O(V ) F(V ). Unwinding the definitions

using Algebra, Lemma 107.10 we find t1, . . . , tm ∈ F(V ) and aij ∈ O(V ) such that∑
aijfi|V = 0 and si|V =

∑
aijtj . □

18. Duals

0FNU Let (X,OX) be a ringed space. The category of OX -modules endowed with the
tensor product constructed in Section 16 is a symmetric monoidal category. For an
OX -module F the following are equivalent

(1) F has a left dual in the monoidal category of OX -modules,
(2) F is locally a direct summand of a finite free OX -module, and
(3) F is of finite presentation and flat as an OX -module.

This is proved in Example 18.1 and Lemmas 18.2 and 18.3 of this section.

Example 18.1.0FNV Let (X,OX) be a ringed space. Let F be an OX -module which
is locally a direct summand of a finite free OX -module. Then the map

F ⊗OX
HomOX

(F ,OX) −→ HomOX
(F ,F)

is an isomorphism. Namely, this is a local question, it is true if F is finite free, and
it holds for any summand of a module for which it is true. Denote

η : OX −→ F ⊗OX
HomOX

(F ,OX)

the map sending 1 to the section corresponding to idF under the isomorphism
above. Denote

ϵ : HomOX
(F ,OX) ⊗OX

F −→ OX

the evaluation map. Then HomOX
(F ,OX), η, ϵ is a left dual for F as in Categories,

Definition 43.5. We omit the verification that (1 ⊗ ϵ) ◦ (η ⊗ 1) = idF and (ϵ⊗ 1) ◦
(1 ⊗ η) = idHomOX

(F,OX ).

Lemma 18.2.0FNW Let (X,OX) be a ringed space. Let F be an OX-module. Let
G, η, ϵ be a left dual of F in the monoidal category of OX-modules, see Categories,
Definition 43.5. Then

(1) F is locally a direct summand of a finite free OX-module,
(2) the map e : HomOX

(F ,OX) → G sending a local section λ to (λ⊗ 1)(η) is
an isomorphism,

(3) we have ϵ(f, g) = e−1(g)(f) for local sections f and g of F and G.

Proof. The assumptions mean that

F η⊗1−−→ F ⊗OX
G ⊗OX

F 1⊗ϵ−−→ F and G 1⊗η−−→ G ⊗OX
F ⊗OX

G ϵ⊗1−−→ G

are the identity map. Let x ∈ X. We can find an open neighbourhood U of x,
a finite number of sections f1, . . . , fn and g1, . . . , gn of F and G over U such that
η(1) =

∑
figi. Denote

O⊕n
U → F|U

https://stacks.math.columbia.edu/tag/0FNV
https://stacks.math.columbia.edu/tag/0FNW
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the map sending the ith basis vector to fi. Then we can factor the map η|U over a
map η̃ : OU → O⊕n

U ⊗OU
G|U . We obtain a commutative diagram

F|U
η⊗1

//

η̃⊗1
))

F|U ⊗ G|U ⊗ F|U 1⊗ϵ
// F|U

O⊕n
U ⊗ G|U ⊗ F|U

OO

1⊗ϵ // O⊕n
U

OO

This shows that the identity on F locally on X factors through a finite free module.
This proves (1). Part (2) follows from Categories, Lemma 43.6 and its proof. Part
(3) follows from the first equality of the proof. You can also deduce (2) and (3)
from the uniqueness of left duals (Categories, Remark 43.7) and the construction
of the left dual in Example 18.1. □

Lemma 18.3.08BL Let (X,OX) be a ringed space. Let F be a flat OX-module of finite
presentation. Then F is locally a direct summand of a finite free OX-module.

Proof. After replacing X by the members of an open covering, we may assume
there exists a presentation

O⊕r
X → O⊕n

X → F → 0

Let x ∈ X. By Lemma 17.10 we can, after shrinking X to an open neighbourhood
of x, assume there exists a factorization

O⊕n
X → O⊕n1

X → F

such that the composition O⊕r
X → O⊕n

X → O⊕n1
X annihilates the first summand of

O⊕r
X . Repeating this argument r − 1 more times we obtain a factorization

O⊕n
X → O⊕nr

X → F

such that the composition O⊕r
X → O⊕n

X → O⊕nr

X is zero. This means that the
surjection O⊕nr

X → F has a section and we win. □

19. Constructible sheaves of sets

0CAG Let X be a topological space. Given a set S recall that S or SX denotes the
constant sheaf with value S, see Sheaves, Definition 7.4. Let U ⊂ X be an open
of a topological space X. We will denote jU the inclusion morphism and we will
denote jU ! : Sh(U) → Sh(X) the extension by the empty set described in Sheaves,
Section 31.

Lemma 19.1.0CAH Let X be a topological space. Let B be a basis for the topology on X.
Let F be a sheaf of sets on X. There exists a set I and for each i ∈ I an element
Ui ∈ B and a finite set Si such that there exists a surjection

∐
i∈I jUi!Si → F .

Proof. Let S be a singleton set. We will prove the result with Si = S. For every
x ∈ X and element s ∈ Fx we can choose a U(x, s) ∈ B and s(x, s) ∈ F(U(x, s))
which maps to s in Fx. By Sheaves, Lemma 31.4 the section s(x, s) corresponds to
a map of sheaves jU(x,s)!S → F . Then∐

(x,s)
jU(x,s)!S → F

is surjective on stalks and hence surjective. □

https://stacks.math.columbia.edu/tag/08BL
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Lemma 19.2.0CAI Let X be a topological space. Let B be a basis for the topology of
X and assume that each U ∈ B is quasi-compact. Then every sheaf of sets on X is
a filtered colimit of sheaves of the form

(19.2.1)0CAJ Coequalizer
( ∐

b=1,...,m jVb!Sb
//
//
∐

a=1,...,n jUa!Sa

)
with Ua and Vb in B and Sa and Sb finite sets.

Proof. By Lemma 19.1 every sheaf of sets F is the target of a surjection whose
source F0 is a coproduct of sheaves the form jU !S with U ∈ B and S finite. Applying
this to F0 ×F F0 we find that F is a coequalizer of a pair of maps∐

b∈B jVb!Sb
//
//
∐

a∈A jUa!Sa

for some index sets A, B and Vb and Ua in B and Sa and Sb finite. For every finite
subset B′ ⊂ B there is a finite subset A′ ⊂ A such that the coproduct over b ∈ B′

maps into the coproduct over a ∈ A′ via both maps. Namely, we can view the
right hand side as a filtered colimit with injective transition maps. Hence taking
sections over the quasi-compact opens Vb, b ∈ B′ commutes with this coproduct,
see Sheaves, Lemma 29.1. Thus our sheaf is the colimit of the cokernels of these
maps between finite coproducts. □

Lemma 19.3.0CAK Let X be a spectral topological space. Let B be the set of quasi-
compact open subsets of X. Let F be a sheaf of sets as in Equation (19.2.1). Then
there exists a continuous spectral map f : X → Y to a finite sober topological space
Y and a sheaf of sets G on Y with finite stalks such that f−1G ∼= F .

Proof. We can write X = limXi as a directed limit of finite sober spaces, see
Topology, Lemma 23.14. Of course the transition maps Xi′ → Xi are spectral and
hence by Topology, Lemma 24.5 the maps pi : X → Xi are spectral. For some
i we can find opens Ua,i and Vb,i of Xi whose inverse images are Ua and Vb, see
Topology, Lemma 24.6. The two maps

β, γ :
∐

b∈B
jVb!Sb −→

∐
a∈A

jUa!Sa

whose coequalizer is F correspond by adjunction to two families

βb, γb : Sb −→ Γ(Vb,
∐

a∈A
jUa!Sa), b ∈ B

of maps of sets. Observe that p−1
i (jUa,i!Sa) = jUa!Sa and (Xi′ → Xi)−1(jUa,i!Sa) =

jUa,i′ !Sa. It follows from Sheaves, Lemma 29.3 (and using that Sb and B are finite
sets) that after increasing i we find maps

βb,i, γb,i : Sb −→ Γ(Vb,i,
∐

a∈A
jUa,i!Sa), b ∈ B

which give rise to the maps βb and γb after pulling back by pi. These maps corre-
spond in turn to maps of sheaves

βi, γi :
∐

b∈B
jVb,i!Sb −→

∐
a∈A

jUa,i!Sa

on Xi. Then we can take Y = Xi and

G = Coequalizer
( ∐

b=1,...,m jVb,i!Sb
//
//
∐

a=1,...,n jUa,i!Sa

)
We omit some details. □
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Lemma 19.4.0CAL Let X be a spectral topological space. Let B be the set of quasi-
compact open subsets of X. Let F be a sheaf of sets as in Equation (19.2.1). Then
there exist finitely many constructible closed subsets Z1, . . . , Zn ⊂ X and finite sets
Si such that F is isomorphic to a subsheaf of

∏
(Zi → X)∗Si.

Proof. By Lemma 19.3 we reduce to the case of a finite sober topological space
and a sheaf with finite stalks. In this case F ⊂

∏
x∈X ix,∗Fx where ix : {x} → X

is the embedding. We omit the proof that ix,∗Fx is a constant sheaf on {x}. □

20. Flat morphisms of ringed spaces

02N2 The pointwise definition is motivated by Lemma 17.2 and Definition 17.3 above.

Definition 20.1.02N3 Let f : X → Y be a morphism of ringed spaces. Let x ∈ X.
We say f is flat at x if the map of rings OY,f(x) → OX,x is flat. We say f is flat if
f is flat at every x ∈ X.

Consider the map of sheaves of rings f ♯ : f−1OY → OX . We see that the stalk at x
is the ring map f ♯

x : OY,f(x) → OX,x. Hence f is flat at x if and only if OX is flat at
x as an f−1OY -module. And f is flat if and only if OX is flat as an f−1OY -module.
A very special case of a flat morphism is an open immersion.

Lemma 20.2.02N4 Let f : X → Y be a flat morphism of ringed spaces. Then the
pullback functor f∗ : Mod(OY ) → Mod(OX) is exact.

Proof. The functor f∗ is the composition of the exact functor f−1 : Mod(OY ) →
Mod(f−1OY ) and the change of rings functor

Mod(f−1OY ) → Mod(OX), F 7−→ F ⊗f−1OY
OX .

Thus the result follows from the discussion following Definition 20.1. □

Definition 20.3.08KT Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX -modules.

(1) We say that F is flat over Y at a point x ∈ X if the stalk Fx is a flat
OY,f(x)-module.

(2) We say that F is flat over Y if F is flat over Y at every point x of X.

With this definition we see that F is flat over Y at x if and only if F is flat at x as
an f−1OY -module because (f−1OY )x = OY,f(x) by Sheaves, Lemma 21.5.

Lemma 20.4.0GMU Let f : X → Y be a morphism of ringed spaces. Let F be an
OX-module flat over Y . Then the functor

Mod(OY ) → Mod(OX), G 7−→ f∗G ⊗OX
F

is exact.

Proof. This is true because f∗G ⊗OX
F = f−1G ⊗f−1OY

F , the functor f−1 is
exact, and F is a flat f−1OY -module. □
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21. Symmetric and exterior powers

01CF Let (X,OX) be a ringed space. Let F be an OX -module. We define the tensor
algebra of F to be the sheaf of noncommutative OX -algebras

T(F) = TOX
(F) =

⊕
n≥0

Tn(F).

Here T0(F) = OX , T1(F) = F and for n ≥ 2 we have
Tn(F) = F ⊗OX

. . .⊗OX
F (n factors)

We define ∧(F) to be the quotient of T(F) by the two sided ideal generated by
local sections s ⊗ s of T2(F) where s is a local section of F . This is called the
exterior algebra of F . Similarly, we define Sym(F) to be the quotient of T(F) by
the two sided ideal generated by local sections of the form s⊗ t− t⊗ s of T2(F).
Both ∧(F) and Sym(F) are graded OX -algebras, with grading inherited from T(F).
Moreover Sym(F) is commutative, and ∧(F) is graded commutative.

Lemma 21.1.01CG In the situation described above. The sheaf ∧nF is the sheafification
of the presheaf

U 7−→ ∧n
OX (U)(F(U)).

See Algebra, Section 13. Similarly, the sheaf SymnF is the sheafification of the
presheaf

U 7−→ Symn
OX (U)(F(U)).

Proof. Omitted. It may be more efficient to define Sym(F) and ∧(F) in this way
instead of the method given above. □

Lemma 21.2.01CH In the situation described above. Let x ∈ X. There are canon-
ical isomorphisms of OX,x-modules T(F)x = T(Fx), Sym(F)x = Sym(Fx), and
∧(F)x = ∧(Fx).

Proof. Clear from Lemma 21.1 above, and Algebra, Lemma 13.5. □

Lemma 21.3.01CI Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let F
be a sheaf of OY -modules. Then f∗T(F) = T(f∗F), and similarly for the exterior
and symmetric algebras associated to F .

Proof. Omitted. □

Lemma 21.4.01CJ Let (X,OX) be a ringed space. Let F2 → F1 → F → 0 be an exact
sequence of sheaves of OX-modules. For each n ≥ 1 there is an exact sequence

F2 ⊗OX
Symn−1(F1) → Symn(F1) → Symn(F) → 0

and similarly an exact sequence
F2 ⊗OX

∧n−1(F1) → ∧n(F1) → ∧n(F) → 0

Proof. See Algebra, Lemma 13.2. □

Lemma 21.5.01CK Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
(1) If F is locally generated by sections, then so is each Tn(F), ∧n(F), and

Symn(F).
(2) If F is of finite type, then so is each Tn(F), ∧n(F), and Symn(F).
(3) If F is of finite presentation, then so is each Tn(F), ∧n(F), and Symn(F).
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(4) If F is coherent, then for n > 0 each Tn(F), ∧n(F), and Symn(F) is
coherent.

(5) If F is quasi-coherent, then so is each Tn(F), ∧n(F), and Symn(F).
(6) If F is locally free, then so is each Tn(F), ∧n(F), and Symn(F).

Proof. These statements for Tn(F) follow from Lemma 16.6.

Statements (1) and (2) follow from the fact that ∧n(F) and Symn(F) are quotients
of Tn(F).

Statement (6) follows from Algebra, Lemma 13.1.

For (3) and (5) we will use Lemma 21.4 above. By locally choosing a presentation
F2 → F1 → F → 0 with Fi free, or finite free and applying the lemma we see that
Symn(F), ∧n(F) has a similar presentation; here we use (6) and Lemma 16.6.

To prove (4) we will use Algebra, Lemma 13.3. We may localize on X and assume
that F is generated by a finite set (si)i∈I of global sections. The lemma mentioned
above combined with Lemma 21.1 above implies that for n ≥ 2 there exists an
exact sequence ⊕

j∈J
Tn−2(F) → Tn(F) → Symn(F) → 0

where the index set J is finite. Now we know that Tn−2(F) is finitely generated
and hence the image of the first arrow is a coherent subsheaf of Tn(F), see Lemma
12.4. By that same lemma we conclude that Symn(F) is coherent. □

Lemma 21.6.01CL Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
(1) If F is quasi-coherent, then so is each T(F), ∧(F), and Sym(F).
(2) If F is locally free, then so is each T(F), ∧(F), and Sym(F).

Proof. It is not true that an infinite direct sum
⊕

Gi of locally free modules
is locally free, or that an infinite direct sum of quasi-coherent modules is quasi-
coherent. The problem is that given a point x ∈ X the open neighbourhoods
Ui of x on which Gi becomes free (resp. has a suitable presentation) may have
an intersection which is not an open neighbourhood of x. However, in the proof
of Lemma 21.5 we saw that once a suitable open neighbourhood for F has been
chosen, then this open neighbourhood works for each of the sheaves Tn(F), ∧n(F)
and Symn(F). The lemma follows. □

22. Internal Hom

01CM Let (X,OX) be a ringed space. Let F , G be OX -modules. Consider the rule

U 7−→ HomOX |U
(F|U ,G|U ).

It follows from the discussion in Sheaves, Section 33 that this is a sheaf of abelian
groups. In addition, given an element φ ∈ HomOX |U

(F|U ,G|U ) and a section
f ∈ OX(U) then we can define fφ ∈ HomOX |U

(F|U ,G|U ) by either precomposing
with multiplication by f on F|U or postcomposing with multiplication by f on G|U
(it gives the same result). Hence we in fact get a sheaf of OX -modules. We will
denote this sheaf HomOX

(F ,G). There is a canonical “evaluation” morphism

F ⊗OX
HomOX

(F ,G) −→ G.

https://stacks.math.columbia.edu/tag/01CL
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For every x ∈ X there is also a canonical morphism
HomOX

(F ,G)x → HomOX,x
(Fx,Gx)

which is rarely an isomorphism.

Lemma 22.1.01CN Let (X,OX) be a ringed space. Let F , G, H be OX-modules. There
is a canonical isomorphism

HomOX
(F ⊗OX

G,H) −→ HomOX
(F ,HomOX

(G,H))
which is functorial in all three entries (sheaf Hom in all three spots). In par-
ticular, to give a morphism F ⊗OX

G → H is the same as giving a morphism
F → HomOX

(G,H).

Proof. This is the analogue of Algebra, Lemma 12.8. The proof is the same, and
is omitted. □

Lemma 22.2.01CO Let (X,OX) be a ringed space. Let F , G be OX-modules.
(1) If F2 → F1 → F → 0 is an exact sequence of OX-modules, then

0 → HomOX
(F ,G) → HomOX

(F1,G) → HomOX
(F2,G)

is exact.
(2) If 0 → G → G1 → G2 is an exact sequence of OX-modules, then

0 → HomOX
(F ,G) → HomOX

(F ,G1) → HomOX
(F ,G2)

is exact.

Proof. Let F2 → F1 → F → 0 be as in (1). For every U ⊂ X open the sequence
0 → HomOU

(F|U ,G|U ) → HomOU
(F1|U ,G|U ) → HomOU

(F2|U ,G|U )
is exact by Homology, Lemma 5.8. This means that taking sections over U of the
sequence of sheaves in (1) produces an exact sequence of abelian groups. Hence the
sequence in (1) is exact by definition. The proof of (2) is exactly the same. □

Lemma 22.3.0A6F Let X be a topological space. Let O1 → O2 be a homomorphism of
sheaves of rings. Then we have

HomO1(FO1 ,G) = HomO2(F ,HomO1(O2,G))
bifunctorially in F ∈ Mod(O2) and G ∈ Mod(O1).

Proof. Omitted. This is the analogue of Algebra, Lemma 14.4 and is proved in
exactly the same way. □

Lemma 22.4.01CP Let (X,OX) be a ringed space. Let F , G be OX-modules. If F is
of finite type then the canonical map

HomOX
(F ,G)x → HomOX,x

(Fx,Gx)
is injective. If F is finitely presented, this canonical morphism is an isomorphism.

Proof. The map sends the equivalence class of (U,φ) in HomOX
(F ,G)x, where

x ∈ U ⊂ X is open and φ ∈ HomOU
(F|U ,G|U ), to the the induced map on stalks

at x, namely φx : Fx → Gx.
Suppose F is of finite type. Pick a representative (U,φ) of an element σ in the kernel
of the map, i.e., φx = 0. Shrinking U if necessary, choose sections s1, . . . , sn ∈ F(U)
generating F|U . Since φx(si

x) = 0 and we are dealing with a finite number of
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sections, we can find an open neighborhood V ⊂ U of x such that φV (si|V ) = 0
for all i = 1, . . . , n. Since si|V , i = 1, . . . , n generate F|V this means that φ|V = 0.
Since (U,φ) is equivalent to (V, φ|V ) we conclude σ = 0 and injectivity of the map
follows.

Next, assume F is finitely presented. By localizing on X we may assume that F
has a presentation ⊕

j=1,...,m
OX −→

⊕
i=1,...,n

OX → F → 0.

By Lemma 22.2 this gives an exact sequence 0 → HomOX
(F ,G) →

⊕
i=1,...,n G −→⊕

j=1,...,m G. Taking stalks we get an exact sequence 0 → HomOX
(F ,G)x →

⊕
i=1,...,n Gx −→⊕

j=1,...,m Gx and the result follows since Fx sits in an exact sequence
⊕

j=1,...,m OX,x −→⊕
i=1,...,n OX,x → Fx → 0 which induces the exact sequence 0 → HomOX,x

(Fx,Gx) →⊕
i=1,...,n Gx −→

⊕
j=1,...,m Gx which is the same as the one above. □

Lemma 22.5.0C6I Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let F ,
G be OY -modules. If F is finitely presented and f is flat, then the canonical map

f∗ HomOY
(F ,G) −→ HomOX

(f∗F , f∗G)

is an isomorphism.

Proof. Note that f∗F is also finitely presented (Lemma 11.4). Let x ∈ X map to
y ∈ Y . Looking at the stalks at x we get an isomorphism by Lemma 22.4 and More
on Algebra, Lemma 65.4 to see that in this case Hom commutes with base change
by OY,y → OX,x. Second proof: use the exact same argument as given in the proof
of Lemma 22.4. □

Lemma 22.6.01CQ Let (X,OX) be a ringed space. Let F , G be OX-modules. If F is
finitely presented then the sheaf HomOX

(F ,G) is locally a kernel of a map between
finite direct sums of copies of G. In particular, if G is coherent then HomOX

(F ,G)
is coherent too.

Proof. The first assertion we saw in the proof of Lemma 22.4. And the result for
coherent sheaves then follows from Lemma 12.4. □

Lemma 22.7.0GMV Let X be a ringed space. Let F be an OX-module of finite presenta-
tion. Let G = colimλ∈Λ Gλ be a filtered colimit of OX-modules. Then the canonical
map

colimλ HomOX
(F ,Gλ) −→ HomOX

(F ,G)
is an isomorphism.

Proof. Taking colimits of sheaves of modules commutes with restriction to opens,
see Sheaves, Section 29. Hence we may assume F has a global presentation⊕

j=1,...,m
OX −→

⊕
i=1,...,n

OX → F → 0

The functor HomOX
(−,−) commutes with finite direct sums in either variable and

HomOX
(OX ,−) is the identity functor. By this and by Lemma 22.2 we obtain an

exact sequence

0 → HomOX
(F ,G) →

⊕
i=1,...,n

G →
⊕

j=1,...,m
G
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Since filtered colimits are exact in Mod(OX) also the top row in the following
commutative diagram is exact

0 // colimλ HomOX
(F ,Gλ) //

��

colimλ

⊕
i=1,...,n Gλ

//

��

colimλ

⊕
j=1,...,m Gλ

��
0 // HomOX

(F ,G) //⊕
i=1,...,n G //⊕

j=1,...,m G

Since the right two vertical arrows are isomorphisms we conclude. □

Lemma 22.8.01BS Let X be a ringed space. Let I be a preordered set and let (Fi, φii′)
be a system over I consisting of sheaves of OX-modules (see Categories, Section
21). Assume

(1) I is directed,
(2) G is an OX-module of finite presentation, and
(3) X has a cofinal system of open coverings U : X =

⋃
j∈J Uj with J finite

and Uj ∩ Uj′ quasi-compact for all j, j′ ∈ J .
Then we have

colimi HomX(G,Fi) = HomX(G, colimi Fi).

Proof. Set H = HomOX
(G, colim Fi) and Hi = HomOX

(G,Fi). Recall that

HomX(G,F) = Γ(X,H) and HomX(G,Fi) = Γ(X,Hi)

by construction. By Lemma 22.7 we have H = colim Hi. Thus the lemma follows
from Sheaves, Lemma 29.1. □

Remark 22.9.01BT In the lemma above some condition beyond the condition that X
is quasi-compact is necessary. See Sheaves, Example 29.2.

23. The annihilator of a sheaf of modules

0H2G Let (X,OX) be a ringed space. Let F be an OX -module. There is a canonical map
of sheaves of OX -modules

OX −→ HomOX
(F ,F)

which sends a local section f ∈ OX(U) to the map f : F|U → F|U given by
multiplication by f .

Definition 23.1.0H2H Let (X,OX) be a ringed space and let F be an OX -module. The
annihilator of F , denoted AnnOX

(F) is the kernel of the map OX → HomOX
(F ,F)

discussed above.

For each x ∈ X, there is an inclusion of ideals of OX,x:

(23.1.1)0H2I (AnnOX
(F))x ⊂ AnnOX,x

(Fx)

since after all any section of AnnOX
(F) will annihilate the stalks of F at all points

at which it is defined. Here is a simple situation in which (23.1.1) becomes an
equality.

Lemma 23.2.0H2J Let (X,OX) be a ringed space and let F be a sheaf of OX-modules.
If F is of finite type, then (AnnOX

(F))x = AnnOX,x
(Fx).

https://stacks.math.columbia.edu/tag/01BS
https://stacks.math.columbia.edu/tag/01BT
https://stacks.math.columbia.edu/tag/0H2H
https://stacks.math.columbia.edu/tag/0H2J


SHEAVES OF MODULES 34

Proof. By Lemma 22.4 the map
HomOX

(F ,F)x −→ HomOX,x
(Fx,Fx)

is injective. Thus any section f of OX over an open neighbourhood U of x which
acts as zero on Fx will act as zero on F|V for some U ⊃ V ∋ x open. Hence the
inclusion (23.1.1) is an equality. □

Lemma 23.3.0H2K Let (X,OX) be a ringed space, let F be an OX-module and let
I ⊂ OX be an ideal sheaf. If I ⊂ AnnOX

(F), then F has a natural OX/I-module
structure which agrees with the usual commutative algebra construction on stalks.

Proof. Applying the universal property of the cokernel of the inclusion I → OX ,
we obtain a commutative diagram

OX
//

��

HomOX
(F ,F)

OX/I

88

of OX -modules. By Lemma 22.1 the resulting map OX/I → HomOX
(F ,F) corre-

sponds to a map of OX -modules
OX/I ⊗OX

F −→ F
which means we have an OX/I-module structure on F compatible with the given
OX -module structure. We omit the verification of the statement on stalks. □

Lemma 23.4.0H2L Let (X,OX) be a ringed space. If OX and F are coherent, then so
is AnnOX

(F).

Proof. Since AnnOX
(F) is the kernel of OX → HomOX

(F ,F) by Lemma 12.4 it
suffices to show that HomOX

(F ,F) is coherent. This follows from Lemma 22.6 and
the fact that F is coherent and a fortiori finitely presented (Lemma 12.2). □

24. Koszul complexes

062J We suggest first reading the section on Koszul complexes in More on Algebra,
Section 28. We define the Koszul complex in the category of OX -modules as follows.

Definition 24.1.062K Let X be a ringed space. Let φ : E → OX be an OX -module
map. The Koszul complex K•(φ) associated to φ is the sheaf of commutative
differential graded algebras defined as follows:

(1) the underlying graded algebra is the exterior algebra K•(φ) = ∧(E),
(2) the differential d : K•(φ) → K•(φ) is the unique derivation such that

d(e) = φ(e) for all local sections e of E = K1(φ).

Explicitly, if e1 ∧ . . . ∧ en is a wedge product of local sections of E , then

d(e1 ∧ . . . ∧ en) =
∑

i=1,...,n
(−1)i+1φ(ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en.

It is straightforward to see that this gives a well defined derivation on the tensor
algebra, which annihilates e ∧ e and hence factors through the exterior algebra.

Definition 24.2.062L Let X be a ringed space and let f1, . . . , fn ∈ Γ(X,OX). The
Koszul complex on f1, . . . , fr is the Koszul complex associated to the map (f1, . . . , fn) :
O⊕n

X → OX . Notation K•(OX , f1, . . . , fn), or K•(OX , f•).
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Of course, given an OX -module map φ : E → OX , if E is finite locally free, then
K•(φ) is locally on X isomorphic to a Koszul complex K•(OX , f1, . . . , fn).

25. Invertible modules

01CR Similarly to the case of modules over rings (More on Algebra, Section 117) we have
the following definition.

Definition 25.1.01CS Let (X,OX) be a ringed space. An invertible OX-module is a
sheaf of OX -modules L such that the functor

Mod(OX) −→ Mod(OX), F 7−→ L ⊗OX
F

is an equivalence of categories. We say that L is trivial if it is isomorphic as an
OX -module to OX .

Lemma 25.4 below explains the relationship with locally free modules of rank 1.

Lemma 25.2.0B8K Let (X,OX) be a ringed space. Let L be an OX-module. Equivalent
are

(1) L is invertible, and
(2) there exists an OX-module N such that L ⊗OX

N ∼= OX .
In this case L is locally a direct summand of a finite free OX-module and the module
N in (2) is isomorphic to HomOX

(L,OX).

Proof. Assume (1). Then the functor − ⊗OX
L is essentially surjective, hence

there exists an OX -module N as in (2). If (2) holds, then the functor − ⊗OX
N is

a quasi-inverse to the functor − ⊗OX
L and we see that (1) holds.

Assume (1) and (2) hold. Denote ψ : L ⊗OX
N → OX the given isomorphism. Let

x ∈ X. Choose an open neighbourhood U an integer n ≥ 1 and sections si ∈ L(U),
ti ∈ N (U) such that ψ(

∑
si ⊗ ti) = 1. Consider the isomorphisms

L|U → L|U ⊗OU
L|U ⊗OU

N |U → L|U
where the first arrow sends s to

∑
si ⊗ s⊗ ti and the second arrow sends s⊗ s′ ⊗ t

to ψ(s′ ⊗ t)s. We conclude that s 7→
∑
ψ(s⊗ ti)si is an automorphism of L|U . This

automorphism factors as
L|U → O⊕n

U → L|U
where the first arrow is given by s 7→ (ψ(s⊗t1), . . . , ψ(s⊗tn)) and the second arrow
by (a1, . . . , an) 7→

∑
aisi. In this way we conclude that L|U is a direct summand

of a finite free OU -module.

Assume (1) and (2) hold. Consider the evaluation map

L ⊗OX
HomOX

(L,OX) −→ OX

To finish the proof of the lemma we will show this is an isomorphism by checking
it induces isomorphisms on stalks. Let x ∈ X. Since we know (by the previous
paragraph) that L is a finitely presented OX -module we can use Lemma 22.4 to see
that it suffices to show that

Lx ⊗OX,x
HomOX,x

(Lx,OX,x) −→ OX,x

is an isomorphism. Since Lx ⊗OX,x
Nx = (L ⊗OX

N )x = OX,x (Lemma 16.1) the
desired result follows from More on Algebra, Lemma 117.2. □

https://stacks.math.columbia.edu/tag/01CS
https://stacks.math.columbia.edu/tag/0B8K
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Lemma 25.3.0B8L Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback f∗L of an invertible OY -module is invertible.

Proof. By Lemma 25.2 there exists an OY -module N such that L ⊗OY
N ∼= OY .

Pulling back we get f∗L ⊗OX
f∗N ∼= OX by Lemma 16.4. Thus f∗L is invertible

by Lemma 25.2. □

Lemma 25.4.0B8M Let (X,OX) be a ringed space. Any locally free OX-module of rank
1 is invertible. If all stalks OX,x are local rings, then the converse holds as well
(but in general this is not the case).

Proof. The parenthetical statement follows by considering a one point space X
with sheaf of rings OX given by a ring R. Then invertible OX -modules correspond
to invertible R-modules, hence as soon as Pic(R) is not the trivial group, then we
get an example.
Assume L is locally free of rank 1 and consider the evaluation map

L ⊗OX
HomOX

(L,OX) −→ OX

Looking over an open covering trivialization L, we see that this map is an isomor-
phism. Hence L is invertible by Lemma 25.2.
Assume all stalks OX,x are local rings and L invertible. In the proof of Lemma
25.2 we have seen that Lx is an invertible OX,x-module for all x ∈ X. Since OX,x

is local, we see that Lx
∼= OX,x (More on Algebra, Section 117). Since L is of finite

presentation by Lemma 25.2 we conclude that L is locally free of rank 1 by Lemma
11.6. □

Lemma 25.5.01CT Let (X,OX) be a ringed space.
(1) If L, N are invertible OX-modules, then so is L ⊗OX

N .
(2) If L is an invertible OX-module, then so is HomOX

(L,OX) and the evalu-
ation map L ⊗OX

HomOX
(L,OX) → OX is an isomorphism.

Proof. Part (1) is clear from the definition and part (2) follows from Lemma 25.2
and its proof. □

Definition 25.6.01CU Let (X,OX) be a ringed space. Given an invertible sheaf L on
X and n ∈ Z we define the nth tensor power L⊗n of L as the image of OX under
applying the equivalence F 7→ F ⊗OX

L exactly n times.

This makes sense also for negative n as we’ve defined an invertible OX -module as
one for which tensoring is an equivalence. More explicitly, we have

L⊗n =


OX if n = 0

HomOX
(L,OX) if n = −1

L ⊗OX
. . .⊗OX

L if n > 0
L⊗−1 ⊗OX

. . .⊗OX
L⊗−1 if n < −1

see Lemma 25.5. With this definition we have canonical isomorphisms L⊗n ⊗OX

L⊗m → L⊗n+m, and these isomorphisms satisfy a commutativity and an associa-
tivity constraint (formulation omitted).
Let (X,OX) be a ringed space. We can define a Z-graded ring structure on⊕

Γ(X,L⊗n) by mapping s ∈ Γ(X,L⊗n) and t ∈ Γ(X,L⊗m) to the section cor-
responding to s ⊗ t in Γ(X,L⊗n+m). We omit the verification that this defines a

https://stacks.math.columbia.edu/tag/0B8L
https://stacks.math.columbia.edu/tag/0B8M
https://stacks.math.columbia.edu/tag/01CT
https://stacks.math.columbia.edu/tag/01CU


SHEAVES OF MODULES 37

commutative and associative ring with 1. However, by our conventions in Algebra,
Section 56 a graded ring has no nonzero elements in negative degrees. This leads
to the following definition.

Definition 25.7.01CV Let (X,OX) be a ringed space. Given an invertible sheaf L on
X we define the associated graded ring to be

Γ∗(X,L) =
⊕

n≥0
Γ(X,L⊗n)

Given a sheaf of OX -modules F we set

Γ∗(X,L,F) =
⊕

n∈Z
Γ(X,F ⊗OX

L⊗n)

which we think of as a graded Γ∗(X,L)-module.

We often write simply Γ∗(L) and Γ∗(F) (although this is ambiguous if F is in-
vertible). The multiplication of Γ∗(L) on Γ∗(F) is defined using the isomorphisms
above. If γ : F → G is a OX -module map, then we get an Γ∗(L)-module homomor-
phism γ : Γ∗(F) → Γ∗(G). If α : L → N is an OX -module map between invertible
OX -modules, then we obtain a graded ring homomorphism Γ∗(L) → Γ∗(N ). If
f : (Y,OY ) → (X,OX) is a morphism of ringed spaces and if L is invertible on X,
then we get an invertible sheaf f∗L on Y (Lemma 25.3) and an induced homomor-
phism of graded rings

f∗ : Γ∗(X,L) −→ Γ∗(Y, f∗L)
Furthermore, there are some compatibilities between the constructions above whose
statements we omit.

Lemma 25.8.01CW Let (X,OX) be a ringed space. There exists a set of invertible
modules {Li}i∈I such that each invertible module on X is isomorphic to exactly
one of the Li.

Proof. Recall that any invertible OX -module is locally a direct summand of a
finite free OX -module, see Lemma 25.2. For each open covering U : X =

⋃
j∈J Uj

and map r : J → N consider the sheaves of OX -modules F such that Fj = F|Uj

is a direct summand of O⊕r(j)
Uj

. The collection of isomorphism classes of Fj is a
set, because HomOU

(O⊕r
U ,O⊕r

U ) is a set. The sheaf F is gotten by glueing Fj , see
Sheaves, Section 33. Note that the collection of all glueing data forms a set. The
collection of all coverings U : X =

⋃
j∈J Ui where J → P(X), j 7→ Uj is injective

forms a set as well. For each covering there is a set of maps r : J → N. Hence the
collection of all F forms a set. □

This lemma says roughly speaking that the collection of isomorphism classes of
invertible sheaves forms a set. Lemma 25.5 says that tensor product defines the
structure of an abelian group on this set.

Definition 25.9.01CX Let (X,OX) be a ringed space. The Picard group Pic(X) of
X is the abelian group whose elements are isomorphism classes of invertible OX -
modules, with addition corresponding to tensor product.

Lemma 25.10.01CY Let X be a ringed space. Assume that each stalk OX,x is a local
ring with maximal ideal mx. Let L be an invertible OX-module. For any section
s ∈ Γ(X,L) the set

Xs = {x ∈ X | image s ̸∈ mxLx}

https://stacks.math.columbia.edu/tag/01CV
https://stacks.math.columbia.edu/tag/01CW
https://stacks.math.columbia.edu/tag/01CX
https://stacks.math.columbia.edu/tag/01CY
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is open in X. The map s : OXs
→ L|Xs

is an isomorphism, and there exists a
section s′ of L⊗−1 over Xs such that s′(s|Xs) = 1.

Proof. Suppose x ∈ Xs. We have an isomorphism
Lx ⊗OX,x

(L⊗−1)x −→ OX,x

by Lemma 25.5. Both Lx and (L⊗−1)x are free OX,x-modules of rank 1. We
conclude from Algebra, Nakayama’s Lemma 20.1 that sx is a basis for Lx. Hence
there exists a basis element tx ∈ (L⊗−1)x such that sx ⊗ tx maps to 1. Choose an
open neighbourhood U of x such that tx comes from a section t of L⊗−1 over U
and such that s ⊗ t maps to 1 ∈ OX(U). Clearly, for every x′ ∈ U we see that s
generates the module Lx′ . Hence U ⊂ Xs. This proves that Xs is open. Moreover,
the section t constructed over U above is unique, and hence these glue to give the
section s′ of the lemma. □

It is also true that, given a morphism of locally ringed spaces f : Y → X (see
Schemes, Definition 2.1) that the inverse image f−1(Xs) is equal to Yf∗s, where
f∗s ∈ Γ(Y, f∗L) is the pullback of s.

26. Rank and determinant

0B37 Let (X,OX) be a ringed space. Consider the category Vect(X) of finite locally
free OX -modules. This is an exact category (see Injectives, Remark 9.6) whose
admissible epimorphisms are surjections and whose admissible monomorphisms are
kernels of surjections. Moreover, there is a set of isomorphism classes of objects
of Vect(X) (proof omitted). Thus we can form the zeroth Grothendieck K-group
K0(Vect(X)). Explicitly, in this case K0(Vect(X)) is the abelian group generated
by [E ] for E a finite locally free OX -module, subject to the relations

[E ′] = [E ] + [E ′′]
whenever there is a short exact sequence 0 → E ′ → E → E ′′ → 0 of finite locally
free OX -modules.
Ranks. Assume all stalks OX,x are nonzero rings. Given a finite locally free
OX -module E , the rank is a locally constant function

rankE : X −→ Z≥0, x 7−→ rankOX,x
Ex

See Lemma 14.4. By definition of locally free modules the function rankE is locally
constant. If 0 → E ′ → E → E ′′ → 0 is a short exact sequence of finite locally free
OX -modules, then rankE = rankE′ +rankE′′ , Thus the rank defines a homomorphism

K0(Vect(X)) −→ Mapcont(X,Z), [E ] 7−→ rankE

Determinants. Given a finite locally free OX -module E we obtain a disjoint union
decomposition

X = X0 ⨿X1 ⨿X2 ⨿ . . .

with Xi open and closed, such that E is finite locally free of rank i on Xi (this is
exactly the same as saying the rankE is locally constant). In this case we define
det(E) as the invertible sheaf on X which is equal to ∧i(E|Xi

) on Xi for all i ≥ 0.
Since the decomposition above is disjoint, there are no glueing conditions to check.
By Lemma 26.1 below this defines a homomorphism

det : K0(Vect(X)) −→ Pic(X), [E ] 7−→ det(E)
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of abelian groups. The elements of Pic(X) we get in this manner are locally free of
rank 1 (see below the lemma for a generalization).
Lemma 26.1.0B38 Let X be a ringed space. Let 0 → E ′ → E → E ′′ → 0 be a
short exact sequence of finite locally free OX-modules. Then there is a canonical
isomorphism

det(E ′) ⊗OX
det(E ′′) −→ det(E)

of OX-modules.
Proof. We can decompose X into disjoint open and closed subsets such that both
E ′ and E ′′ have constant rank on them. Thus we reduce to the case where E ′ and
E ′′ have constant rank, say r′ and r′′. In this situation we define

∧r′
(E ′) ⊗OX

∧r′′
(E ′′) −→ ∧r′+r′′

(E)
as follows. Given local sections s′

1, . . . , s
′
r′ of E ′ and local sections s′′

1 , . . . , s
′′
r′′ of E ′′

we map
s′

1 ∧ . . . ∧ s′
r′ ⊗ s′′

1 ∧ . . . ∧ s′′
r′′ to s′

1 ∧ . . . ∧ s′
r′ ∧ s̃′′

1 ∧ . . . ∧ s̃′′
r′′

where s̃′′
i is a local lift of the section s′′

i to a section of E . We omit the details. □

Let (X,OX) be a ringed space. Instead of looking at finite locally free OX -modules
we can look at those OX -modules F which are locally on X a direct summand of a
finite free OX -module. This is the same thing as asking F to be a flat OX -module
of finite presentation, see Lemma 18.3. If all the stalks OX,x are local, then such a
module F is finite locally free, see Lemma 14.6. In general however this will not be
the case; for example X could be a point and Γ(X,OX) could be the product A×B
of two nonzero rings and F could correspond to A× 0. Thus for such a module the
rank function is undefined. However, it turns out we can still define det(F) and
this will be an invertible OX -module in the sense of Definition 25.1 (not necessarily
locally free of rank 1). Our construction will agree with the one above in the case
that F is finite locally free. We urge the reader to skip the rest of this section.
Lemma 26.2.0FJN Let (X,OX) be a ringed space. Let F be a flat and finitely presented
OX-module. Denote

det(F) ⊂ ∧∗
OX

(F)
the annihilator of F ⊂ ∧∗

OX
(F). Then det(F) is an invertible OX-module.

Proof. To prove this we may work locally on X. Hence we may assume F is a
direct summand of a finite free module, see Lemma 18.3. Say F ⊕ G = O⊕n

X . Set
R = OX(X). Then we see F(X)⊕G(X) = R⊕n and correspondingly F(U)⊕G(U) =
OX(U)⊕n for all opens U ⊂ X. We conclude that F = FM as in Lemma 10.5
with M = F(X) a finite projective R-module. In other words, we have F(U) =
M ⊗R OX(U). This implies that det(M) ⊗R OX(U) = det(F(U)) for all open
U ⊂ X with det as in More on Algebra, Section 118. By More on Algebra, Remark
118.1 we see that

det(M) ⊗R OX(U) = det(F(U)) ⊂ ∧∗
OX (U)(F(U))

is the annihilator of F(U). We conclude that det(F) as defined in the statement
of the lemma is equal to Fdet(M). Some details omitted; one has to be careful
as annihilators cannot be defined as the sheafification of taking annihilators on
sections over opens. Thus det(F) is the pullback of an invertible module and we
conclude. □

https://stacks.math.columbia.edu/tag/0B38
https://stacks.math.columbia.edu/tag/0FJN
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27. Localizing sheaves of rings

01CZ Let X be a topological space and let OX be a presheaf of rings. Let S ⊂ OX be
a presheaf of sets contained in OX . Suppose that for every open U ⊂ X the set
S(U) ⊂ OX(U) is a multiplicative subset, see Algebra, Definition 9.1. In this case
we can consider the presheaf of rings

S−1OX : U 7−→ S(U)−1OX(U).
The restriction mapping sends the section f/s, f ∈ OX(U), s ∈ S(U) to (f |V )/(s|V )
if V ⊂ U are opens of X.

Lemma 27.1.01D0 Let X be a topological space and let OX be a presheaf of rings.
Let S ⊂ OX be a pre-sheaf of sets contained in OX . Suppose that for every open
U ⊂ X the set S(U) ⊂ OX(U) is a multiplicative subset.

(1) There is a map of presheaves of rings OX → S−1OX such that every local
section of S maps to an invertible section of OX .

(2) For any homomorphism of presheaves of rings OX → A such that each
local section of S maps to an invertible section of A there exists a unique
factorization S−1OX → A.

(3) For any x ∈ X we have

(S−1OX)x = S−1
x OX,x.

(4) The sheafification (S−1OX)# is a sheaf of rings with a map of sheaves of
rings (OX)# → (S−1OX)# which is universal for maps of (OX)# into
sheaves of rings such that each local section of S maps to an invertible
section.

(5) For any x ∈ X we have

(S−1OX)#
x = S−1

x OX,x.

Proof. Omitted. □

Let X be a topological space and let OX be a presheaf of rings. Let S ⊂ OX be
a presheaf of sets contained in OX . Suppose that for every open U ⊂ X the set
S(U) ⊂ OX(U) is a multiplicative subset. Let F be a presheaf of OX -modules In
this case we can consider the presheaf of S−1OX -modules

S−1F : U 7−→ S(U)−1F(U).
The restriction mapping sends the section t/s, t ∈ F(U), s ∈ S(U) to (t|V )/(s|V )
if V ⊂ U are opens of X.

Lemma 27.2.01D1 Let X be a topological space. Let OX be a presheaf of rings. Let
S ⊂ OX be a pre-sheaf of sets contained in OX . Suppose that for every open U ⊂ X
the set S(U) ⊂ OX(U) is a multiplicative subset. For any presheaf of OX-modules
F we have

S−1F = S−1OX ⊗p,OX
F

(see Sheaves, Section 6 for notation) and if F and OX are sheaves then

(S−1F)# = (S−1OX)# ⊗OX
F

(see Sheaves, Section 20 for notation).

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/01D0
https://stacks.math.columbia.edu/tag/01D1
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28. Modules of differentials

08RL In this section we briefly explain how to define the module of relative differentials for
a morphism of ringed spaces. We suggest the reader take a look at the corresponding
section in the chapter on commutative algebra (Algebra, Section 131).

Definition 28.1.01UN Let X be a topological space. Let φ : O1 → O2 be a homo-
morphism of sheaves of rings. Let F be an O2-module. An O1-derivation or more
precisely a φ-derivation into F is a map D : O2 → F which is additive, annihilates
the image of O1 → O2, and satisfies the Leibniz rule

D(ab) = aD(b) +D(a)b
for all a, b local sections of O2 (wherever they are both defined). We denote
DerO1(O2,F) the set of φ-derivations into F .

This is the sheaf theoretic analogue of Algebra, Definition 131.1. Given a derivation
D : O2 → F as in the definition the map on global sections

D : Γ(X,O2) −→ Γ(X,F)
is a Γ(X,O1)-derivation as in the algebra definition. Note that if α : F → G is a
map of O2-modules, then there is an induced map

DerO1(O2,F) −→ DerO1(O2,G)
given by the rule D 7→ α ◦D. In other words we obtain a functor.

Lemma 28.2.08RM Let X be a topological space. Let φ : O1 → O2 be a homomorphism
of sheaves of rings. The functor

Mod(O2) −→ Ab, F 7−→ DerO1(O2,F)
is representable.

Proof. This is proved in exactly the same way as the analogous statement in
algebra. During this proof, for any sheaf of sets F on X, let us denote O2[F ] the
sheafification of the presheaf U 7→ O2(U)[F(U)] where this denotes the free O2(U)-
module on the set F(U). For s ∈ F(U) we denote [s] the corresponding section of
O2[F ] over U . If F is a sheaf of O2-modules, then there is a canonical map

c : O2[F ] −→ F
which on the presheaf level is given by the rule

∑
fs[s] 7→

∑
fss. We will employ

the short hand [s] 7→ s to describe this map and similarly for other maps below.
Consider the map of O2-modules

(28.2.1)08RN

O2[O2 × O2] ⊕ O2[O2 × O2] ⊕ O2[O1] −→ O2[O2]
[(a, b)] ⊕ [(f, g)] ⊕ [h] 7−→ [a+ b] − [a] − [b]+

[fg] − g[f ] − f [g]+
[φ(h)]

with short hand notation as above. Set ΩO2/O1 equal to the cokernel of this map.
Then it is clear that there exists a map of sheaves of sets

d : O2 −→ ΩO2/O1

mapping a local section f to the image of [f ] in ΩO2/O1 . By construction d is a
O1-derivation. Next, let F be a sheaf of O2-modules and let D : O2 → F be a
O1-derivation. Then we can consider the O2-linear map O2[O2] → F which sends

https://stacks.math.columbia.edu/tag/01UN
https://stacks.math.columbia.edu/tag/08RM
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[g] to D(g). It follows from the definition of a derivation that this map annihilates
sections in the image of the map (28.2.1) and hence defines a map

αD : ΩO2/O1 −→ F

Since it is clear that D = αD ◦ d the lemma is proved. □

Definition 28.3.08RP Let X be a topological space. Let φ : O1 → O2 be a homo-
morphism of sheaves of rings on X. The module of differentials of φ is the object
representing the functor F 7→ DerO1(O2,F) which exists by Lemma 28.2. It is
denoted ΩO2/O1 , and the universal φ-derivation is denoted d : O2 → ΩO2/O1 .

Note that ΩO2/O1 is the cokernel of the map (28.2.1) of O2-modules. Moreover the
map d is described by the rule that df is the image of the local section [f ].

Lemma 28.4.08TD Let X be a topological space. Let φ : O1 → O2 be a homomorphism
of sheaves of rings on X. Then ΩO2/O1 is the sheaf associated to the presheaf
U 7→ ΩO2(U)/O1(U).

Proof. Consider the map (28.2.1). There is a similar map of presheaves whose
value on the open U is

O2(U)[O2(U)×O2(U)]⊕O2(U)[O2(U)×O2(U)]⊕O2(U)[O1(U)] −→ O2(U)[O2(U)]

The cokernel of this map has value ΩO2(U)/O1(U) over U by the construction of the
module of differentials in Algebra, Definition 131.2. On the other hand, the sheaves
in (28.2.1) are the sheafifications of the presheaves above. Thus the result follows
as sheafification is exact. □

Lemma 28.5.08RQ Let X be a topological space. Let φ : O1 → O2 be a homomorphism
of sheaves of rings. For U ⊂ X open there is a canonical isomorphism

ΩO2/O1 |U = Ω(O2|U )/(O1|U )

compatible with universal derivations.

Proof. Holds because ΩO2/O1 is the cokernel of the map (28.2.1). □

Lemma 28.6.08RR Let f : Y → X be a continuous map of topological spaces. Let φ :
O1 → O2 be a homomorphism of sheaves of rings on X. Then there is a canonical
identification f−1ΩO2/O1 = Ωf−1O2/f−1O1 compatible with universal derivations.

Proof. This holds because the sheaf ΩO2/O1 is the cokernel of the map (28.2.1)
and a similar statement holds for Ωf−1O2/f−1O1 , because the functor f−1 is exact,
and because f−1(O2[O2]) = f−1O2[f−1O2], f−1(O2[O2 × O2]) = f−1O2[f−1O2 ×
f−1O2], and f−1(O2[O1]) = f−1O2[f−1O1]. □

Lemma 28.7.08TE Let X be a topological space. Let O1 → O2 be a homomorphism of
sheaves of rings on X. Let x ∈ X. Then we have ΩO2/O1,x = ΩO2,x/O1,x

.

Proof. This is a special case of Lemma 28.6 for the inclusion map {x} → X. An
alternative proof is to use Lemma 28.4, Sheaves, Lemma 17.2, and Algebra, Lemma
131.5 □

https://stacks.math.columbia.edu/tag/08RP
https://stacks.math.columbia.edu/tag/08TD
https://stacks.math.columbia.edu/tag/08RQ
https://stacks.math.columbia.edu/tag/08RR
https://stacks.math.columbia.edu/tag/08TE
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Lemma 28.8.08RS Let X be a topological space. Let

O2 φ
// O′

2

O1 //

OO

O′
1

OO

be a commutative diagram of sheaves of rings on X. The map O2 → O′
2 composed

with the map d : O′
2 → ΩO′

2/O′
1

is a O1-derivation. Hence we obtain a canonical
map of O2-modules ΩO2/O1 → ΩO′

2/O′
1
. It is uniquely characterized by the property

that d(f) 7→ d(φ(f)) for any local section f of O2. In this way Ω−/− becomes a
functor on the category of arrows of sheaves of rings.
Proof. This lemma proves itself. □

Lemma 28.9.08TF In Lemma 28.8 suppose that O2 → O′
2 is surjective with kernel

I ⊂ O2 and assume that O1 = O′
1. Then there is a canonical exact sequence of

O′
2-modules

I/I2 −→ ΩO2/O1 ⊗O2 O′
2 −→ ΩO′

2/O1 −→ 0
The leftmost map is characterized by the rule that a local section f of I maps to
df ⊗ 1.
Proof. For a local section f of I denote f the image of f in I/I2. To show that
the map f 7→ df ⊗ 1 is well defined we just have to check that df1f2 ⊗ 1 = 0 if
f1, f2 are local sections of I. And this is clear from the Leibniz rule df1f2 ⊗ 1 =
(f1df2 + f2df1) ⊗ 1 = df2 ⊗ f1 + df1 ⊗ f2 = 0. A similar computation show this
map is O′

2 = O2/I-linear. The map on the right is the one from Lemma 28.8. To
see that the sequence is exact, we can check on stalks (Lemma 3.1). By Lemma
28.7 this follows from Algebra, Lemma 131.9. □

Definition 28.10.08RT Let (f, f ♯) : (X,OX) → (S,OS) be a morphism of ringed
spaces.

(1) Let F be an OX -module. An S-derivation into F is a f−1OS-derivation,
or more precisely a f ♯-derivation in the sense of Definition 28.1. We denote
DerS(OX ,F) the set of S-derivations into F .

(2) The sheaf of differentials ΩX/S of X over S is the module of differentials
ΩOX /f−1OS

endowed with its universal S-derivation dX/S : OX → ΩX/S .
Here is a particular situation where derivations come up naturally.
Lemma 28.11.01UP Let (f, f ♯) : (X,OX) → (S,OS) be a morphism of ringed spaces.
Consider a short exact sequence

0 → I → A → OX → 0
Here A is a sheaf of f−1OS-algebras, π : A → OX is a surjection of sheaves of
f−1OS-algebras, and I = Ker(π) is its kernel. Assume I an ideal sheaf with square
zero in A. So I has a natural structure of an OX-module. A section s : OX → A
of π is a f−1OS-algebra map such that π ◦ s = id. Given any section s : OX → A
of π and any S-derivation D : OX → I the map

s+D : OX → A
is a section of π and every section s′ is of the form s+D for a unique S-derivation
D.

https://stacks.math.columbia.edu/tag/08RS
https://stacks.math.columbia.edu/tag/08TF
https://stacks.math.columbia.edu/tag/08RT
https://stacks.math.columbia.edu/tag/01UP
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Proof. Recall that the OX -module structure on I is given by hτ = h̃τ (multiplica-
tion in A) where h is a local section of OX , and h̃ is a local lift of h to a local section
of A, and τ is a local section of I. In particular, given s, we may use h̃ = s(h). To
verify that s+D is a homomorphism of sheaves of rings we compute

(s+D)(ab) = s(ab) +D(ab)
= s(a)s(b) + aD(b) +D(a)b
= s(a)s(b) + s(a)D(b) +D(a)s(b)
= (s(a) +D(a))(s(b) +D(b))

by the Leibniz rule. In the same manner one shows s+D is a f−1OS-algebra map
because D is an S-derivation. Conversely, given s′ we set D = s′ − s. Details
omitted. □

Lemma 28.12.08RU Let
X ′

h′

��

f
// X

h

��
S′ g // S

be a commutative diagram of ringed spaces.
(1) The canonical map OX → f∗OX′ composed with f∗dX′/S′ : f∗OX′ →

f∗ΩX′/S′ is a S-derivation and we obtain a canonical map of OX-modules
ΩX/S → f∗ΩX′/S′ .

(2) The commutative diagram

f−1OX
// OX′

f−1h−1OS

OO

// (h′)−1OS′

OO

induces by Lemmas 28.6 and 28.8 a canonical map f−1ΩX/S → ΩX′/S′ .
These two maps correspond (via adjointness of f∗ and f∗ and via f∗ΩX/S =
f−1ΩX/S ⊗f−1OX

OX′ and Sheaves, Lemma 20.2) to the same OX′-module ho-
momorphism

cf : f∗ΩX/S −→ ΩX′/S′

which is uniquely characterized by the property that f∗dX/S(a) maps to dX′/S′(f∗a)
for any local section a of OX .

Proof. Omitted. □

Lemma 28.13.01UW Let
X ′′

��

g
// X ′

��

f
// X

��
S′′ // S′ // S

be a commutative diagram of ringed spaces. With notation as in Lemma 28.12 we
have

cf◦g = cg ◦ g∗cf

as maps (f ◦ g)∗ΩX/S → ΩX′′/S′′ .

https://stacks.math.columbia.edu/tag/08RU
https://stacks.math.columbia.edu/tag/01UW
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Proof. Omitted. □

29. Finite order differential operators

0G3P In this section we introduce differential operators of finite order. We suggest the
reader take a look at the corresponding section in the chapter on commutative
algebra (Algebra, Section 133).

Definition 29.1.0G3Q Let X be a topological space. Let φ : O1 → O2 be a homomor-
phism of sheaves of rings on X. Let k ≥ 0 be an integer. Let F , G be sheaves of
O2-modules. A differential operator D : F → G of order k is an is an O1-linear map
such that for all local sections g of O2 the map s 7→ D(gs) − gD(s) is a differential
operator of order k− 1. For the base case k = 0 we define a differential operator of
order 0 to be an O2-linear map.

If D : F → G is a differential operator of order k, then for all local sections g of
O2 the map gD is a differential operator of order k. The sum of two differential
operators of order k is another. Hence the set of all these

Diffk(F ,G) = Diffk
O2/O1

(F ,G)
is a Γ(X,O2)-module. We have

Diff0(F ,G) ⊂ Diff1(F ,G) ⊂ Diff2(F ,G) ⊂ . . .

The rule which maps U ⊂ X open to the module of differential operators D :
F|U → G|U of order k is a sheaf of O2-modules on X. Thus we obtain a sheaf of
differential operators (if we ever need this we will add a definition here).

Lemma 29.2.0G3R Let X be a topological space. Let O1 → O2 be a map of sheaves of
rings on X. Let E ,F ,G be sheaves of O2-modules. If D : E → F and D′ : F → G
are differential operators of order k and k′, then D′ ◦D is a differential operator of
order k + k′.

Proof. Let g be a local section of O2. Then the map which sends a local section
x of E to
D′(D(gx)) − gD′(D(x)) = D′(D(gx)) −D′(gD(x)) +D′(gD(x)) − gD′(D(x))

is a sum of two compositions of differential operators of lower order. Hence the
lemma follows by induction on k + k′. □

Lemma 29.3.0G3S Let X be a topological space. Let O1 → O2 be a map of sheaves of
rings on X. Let F be a sheaf of O2-modules. Let k ≥ 0. There exists a sheaf of
O2-modules Pk

O2/O1
(F) and a canonical isomorphism

Diffk
O2/O1

(F ,G) = HomO2(Pk
O2/O1

(F),G)
functorial in the O2-module G.

Proof. The existence follows from general category theoretic arguments (insert
future reference here), but we will also give a direct construction as this construction
will be useful in the future proofs. We will freely use the notation introduced in
the proof of Lemma 28.2. Given any differential operator D : F → G we obtain an
O2-linear map LD : O2[F ] → G sending [m] to D(m). If D has order 0 then LD

annihilates the local sections
[m+m′] − [m] − [m′], g0[m] − [g0m]

https://stacks.math.columbia.edu/tag/0G3Q
https://stacks.math.columbia.edu/tag/0G3R
https://stacks.math.columbia.edu/tag/0G3S
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where g0 is a local section of O2 and m,m′ are local sections of F . If D has order
1, then LD annihilates the local sections

[m+m′ − [m] − [m′], f [m] − [fm], g0g1[m] − g0[g1m] − g1[g0m] + [g1g0m]

where f is a local section of O1, g0, g1 are local sections of O2, and m,m′ are local
sections of F . If D has order k, then LD annihilates the local sections [m+m′] −
[m] − [m′], f [m] − [fm], and the local sections

g0g1 . . . gk[m] −
∑

g0 . . . ĝi . . . gk[gim] + . . .+ (−1)k+1[g0 . . . gkm]

Conversely, if L : O2[F ] → G is an O2-linear map annihilating all the local sections
listed in the previous sentence, then m 7→ L([m]) is a differential operator of order
k. Thus we see that Pk

O2/O1
(F) is the quotient of O2[F ] by the O2-submodule

generated by these local sections. □

Definition 29.4.0G3T Let X be a topoological space. Let O1 → O2 be a map of
sheaves of rings on X. Let F be a sheaf of O2-modules. The module Pk

O2/O1
(F)

constructed in Lemma 29.3 is called the module of principal parts of order k of F .

Note that the inclusions

Diff0(F ,G) ⊂ Diff1(F ,G) ⊂ Diff2(F ,G) ⊂ . . .

correspond via Yoneda’s lemma (Categories, Lemma 3.5) to surjections

. . . → P2
O2/O1

(F) → P1
O2/O1

(F) → P0
O2/O1

(F) = F

Lemma 29.5.0G3U Let X be a topological space. Let O1 → O2 be a homomorphism of
presheaves of rings on X. Let F be a presheaf of O2-modules. Then Pk

O#
2 /O#

1
(F#)

is the sheaf associated to the presheaf U 7→ P k
O2(U)/O1(U)(F(U)).

Proof. This can be proved in exactly the same way as is done for the sheaf of dif-
ferentials in Lemma 28.4. Perhaps a more pleasing approach is to use the universal
property of Lemma 29.3 directly to see the equality. We omit the details. □

Lemma 29.6.0G3V Let X be a topological space. Let O1 → O2 be a homomorphism of
sheaves of rings on X. Let F be a sheaf of O2-modules. There is a canonical short
exact sequence

0 → ΩO2/O1 ⊗O2 F → P1
O2/O1

(F) → F → 0

functorial in F called the sequence of principal parts.

Proof. Follows from the commutative algebra version (Algebra, Lemma 133.6) and
Lemmas 28.4 and 29.5. □

Remark 29.7.0G3W Let X be a topological space. Suppose given a commutative
diagram of sheaves of rings

B // B′

A

OO

// A′

OO

https://stacks.math.columbia.edu/tag/0G3T
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on X, a B-module F , a B′-module F ′, and a B-linear map F → F ′. Then we get
a compatible system of module maps

. . . // P2
B′/A′(F ′) // P1

B′/A′(F ′) // P0
B′/A′(F ′)

. . . // P2
B/A(F) //

OO

P1
B/A(F) //

OO

P0
B/A(F)

OO

These maps are compatible with further composition of maps of this type. The
easiest way to see this is to use the description of the modules Pk

B/A(M) in terms
of (local) generators and relations in the proof of Lemma 29.3 but it can also be
seen directly from the universal property of these modules. Moreover, these maps
are compatible with the short exact sequences of Lemma 29.6.

Next, we extend our definition to morphisms of ringed spaces.

Definition 29.8.0G3X Let (f, f ♯) : (X,OX) → (S,OS) be a morphism of ringed spaces.
Let F and G be OX -modules. Let k ≥ 0 be an integer. A differential operator of
order k on X/S is a differential operator D : F → G with respect to f ♯ : f−1OS →
OX We denote Diffk

X/S(F ,G) the set of these differential operators.

30. The de Rham complex

0FKL The section is the analogue of Algebra, Section 132 for morphisms of ringed spaces.
We urge the reader to read that section first.
Let X be a topological space. Let A → B be a homomorphism of sheaves of rings.
Denote d : B → ΩB/A the module of differentials with its universal A-derivation
constructed in Section 28. Let

Ωi
B/A = ∧i

B(ΩB/A)
for i ≥ 0 be the ith exterior power as in Section 21.

Definition 30.1.0FKM In the situation above, the de Rham complex of B over A is the
unique complex

Ω0
B/A → Ω1

B/A → Ω2
B/A → . . .

of sheaves of A-modules whose differential in degree 0 is given by d : B → ΩB/A
and whose differentials in higher degrees have the following property
(30.1.1)0FKN d (b0db1 ∧ . . . ∧ dbp) = db0 ∧ db1 ∧ . . . ∧ dbp

where b0, . . . , bp ∈ B(U) are sections over a common open U ⊂ X.

We could construct this complex by repeating the cumbersome arguments given
in Algebra, Section 132. Instead we recall that ΩB/A is the sheafification of the
presheaf U 7→ ΩB(U)/A(U), see Lemma 28.4. Thus Ωi

B/A is the sheafification of the
presheaf U 7→ Ωi

B(U)/A(U), see Lemma 21.1. Therefore we can define the de Rham
complex as the sheafification of the rule

U 7−→ Ω•
B(U)/A(U)

Lemma 30.2.0FKP Let f : Y → X be a continuous map of topological spaces. Let
A → B be a homomorphism of sheaves of rings on X. Then there is a canonical
identification f−1Ω•

B/A = Ω•
f−1B/f−1A of de Rham complexes.

https://stacks.math.columbia.edu/tag/0G3X
https://stacks.math.columbia.edu/tag/0FKM
https://stacks.math.columbia.edu/tag/0FKP
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Proof. Omitted. Hint: compare with Lemma 28.6. □

Lemma 30.3.0G3Y Let X be a topological space. Let A → B be a homomorphism of
sheaves of rings on X. The differentials d : Ωi

B/A → Ωi+1
B/A are differential operators

of order 1.

Proof. Via our construction of the de Rham complex above as the sheafification
of the rule U 7→ Ω•

B(U)/A(U) this follows from Algebra, Lemma 133.8. □

Let X be a topological space. Let

B // B′

A //

OO

A′

OO

be a commutative diagram of sheaves of rings on X. There is a natural map of de
Rham complexes

Ω•
B/A −→ Ω•

B′/A′

Namely, in degree 0 this is the map B → B′, in degree 1 this is the map ΩB/A →
ΩB′/A′ constructed in Section 28, and for p ≥ 2 it is the induced map Ωp

B/A =
∧p

B(ΩB/A) → ∧p
B′(ΩB′/A′) = Ωp

B′/A′ . The compatibility with differentials follows
from the characterization of the differentials by the formula (30.1.1).

Definition 30.4.0FKQ Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
The de Rham complex of f or of X over Y is the complex

Ω•
X/Y = Ω•

OX /f−1OY

Consider a commutative diagram of ringed spaces

X ′

h′

��

f
// X

h

��
S′ g // S

Then we obtain a canonical map
Ω•

X/S → f∗Ω•
X′/S′

of de Rham complexes. Namely, the commutative diagram of sheaves of rings

f−1OX
// OX′

f−1h−1OS

OO

// (h′)−1OS′

OO

on X ′ produces a map of complexes (see above)
f−1Ω•

X/S = Ω•
f−1OX /f−1h−1OS

−→ Ω•
OX′ /(h′)−1OS′ = Ω•

X′/S′

(using Lemma 30.2 for the first equality) and then we can use adjunction.

Lemma 30.5.0G3Z Let f : X → Y be a morphism of ringed spaces. The differentials
d : Ωi

X/Y → Ωi+1
X/Y are differential operators of order 1 on X/Y .

Proof. Immediate from Lemma 30.3 and the definition. □

https://stacks.math.columbia.edu/tag/0G3Y
https://stacks.math.columbia.edu/tag/0FKQ
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31. The naive cotangent complex

08TG This section is the analogue of Algebra, Section 134 for morphisms of ringed spaces.
We urge the reader to read that section first.
Let X be a topological space. Let A → B be a homomorphism of sheaves of rings.
In this section, for any sheaf of sets E on X we denote A[E ] the sheafification of
the presheaf U 7→ A(U)[E(U)]. Here A(U)[E(U)] denotes the polynomial algebra
over A(U) whose variables correspond to the elements of E(U). We denote [e] ∈
A(U)[E(U)] the variable corresponding to e ∈ E(U). There is a canonical surjection
of A-algebras
(31.0.1)08TH A[B] −→ B, [b] 7−→ b

whose kernel we denote I ⊂ A[B]. It is a simple observation that I is generated
by the local sections [b][b′] − [bb′] and [a] − a. According to Lemma 28.9 there is a
canonical map
(31.0.2)08TI I/I2 −→ ΩA[B]/A ⊗A[B] B
whose cokernel is canonically isomorphic to ΩB/A.

Definition 31.1.08TJ Let X be a topological space. Let A → B be a homomorphism of
sheaves of rings. The naive cotangent complex NLB/A is the chain complex (31.0.2)

NLB/A =
(
I/I2 −→ ΩA[B]/A ⊗A[B] B

)
with I/I2 placed in degree −1 and ΩA[B]/A ⊗A[B] B placed in degree 0.

This construction satisfies a functoriality similar to that discussed in Lemma 28.8
for modules of differentials. Namely, given a commutative diagram

(31.1.1)08TK

B // B′

A

OO

// A′

OO

of sheaves of rings on X there is a canonical B-linear map of complexes
NLB/A −→ NLB′/A′

Namely, the maps in the commutative diagram give rise to a canonical map A[B] →
A′[B′] which maps I into I ′ = Ker(A′[B′] → B′). Thus a map I/I2 → I ′/(I ′)2

and a map between modules of differentials, which together give the desired map
between the naive cotangent complexes. The map is compatible with compositions
in the following sense: given a commutative diagram

B // B′ // B′′

A

OO

// A′

OO

// A′′

OO

of sheaves of rings then the composition
NLB/A −→ NLB′/A′ −→ NLB′′/A′′

is the map for the outer rectangle.
We can choose a different presentation of B as a quotient of a polynomial algebra
over A and still obtain the same object of D(B). To explain this, suppose that

https://stacks.math.columbia.edu/tag/08TJ
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E is a sheaves of sets on X and α : E → B a map of sheaves of sets. Then we
obtain an A-algebra homomorphism A[E ] → B. If this map is surjective, i.e., if
α(E) generates B as an A-algebra, then we set

NL(α) =
(
J /J 2 −→ ΩA[E]/A ⊗A[E] B

)
where J ⊂ A[E ] is the kernel of the surjection A[E ] → B. Here is the result.

Lemma 31.2.08TL In the situation above there is a canonical isomorphism NL(α) =
NLB/A in D(B).

Proof. Observe that NLB/A = NL(idB). Thus it suffices to show that given two
maps αi : Ei → B as above, there is a canonical quasi-isomorphism NL(α1) =
NL(α2) in D(B). To see this set E = E1 ⨿ E2 and α = α1 ⨿ α2 : E → B. Set
Ji = Ker(A[Ei] → B) and J = Ker(A[E ] → B). We obtain maps A[Ei] → A[E ]
which send Ji into J . Thus we obtain canonical maps of complexes

NL(αi) −→ NL(α)

and it suffices to show these maps are quasi-isomorphism. To see this it suffices
to check on stalks (Lemma 3.1). If x ∈ X then the stalk of NL(α) is the complex
NL(αx) of Algebra, Section 134 associated to the presentation Ax[Ex] → Bx coming
from the map αx : Ex → Bx. (Some details omitted; use Lemma 28.7 to see
compatibility of forming differentials and taking stalks.) We conclude the result
holds by Algebra, Lemma 134.2. □

Lemma 31.3.08TM Let f : X → Y be a continuous map of topological spaces. Let A →
B be a homomorphism of sheaves of rings on Y . Then f−1 NLB/A = NLf−1B/f−1A.

Proof. Omitted. Hint: Use Lemma 28.6. □

Lemma 31.4.0D09 Let X be a topological space. Let A → B be a homomorphism of
sheaves of rings on X. Let x ∈ X. Then we have NLB/A,x = NLBx/Ax

.

Proof. This is a special case of Lemma 31.3 for the inclusion map {x} → X. □

Lemma 31.5.0E1Y Let X be a topological space. Let A → B → C be maps of sheaves
of rings. Let C be the cone (Derived Categories, Definition 9.1) of the map of
complexes NLC/A → NLC/B. There is a canonical map

c : NLB/A ⊗BC −→ C[−1]

of complexes of C-modules which produces a canonical six term exact sequence

H0(NLB/A ⊗BC) // H0(NLC/A) // H0(NLC/B) // 0

H−1(NLB/A ⊗BC) // H−1(NLC/A) // H−1(NLC/B)

kk

of cohomology sheaves.

Proof. To give the map c we have to give a map c1 : NLB/A ⊗BC → NLC/A and
an explicit homotopy between the composition

NLB/A ⊗BC → NLC/A → NLC/B

https://stacks.math.columbia.edu/tag/08TL
https://stacks.math.columbia.edu/tag/08TM
https://stacks.math.columbia.edu/tag/0D09
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and the zero map, see Derived Categories, Lemma 9.3. For c1 we use the func-
toriality described above for the obvious diagram. For the homotopy we use the
map

NL0
B/A ⊗BC −→ NL−1

C/B, d[b] ⊗ 1 7−→ [φ(b)] − b[1]

where φ : B → C is the given map. Please compare with Algebra, Remark 134.5.
To see the consequence for cohomology sheaves, it suffices to show that H0(c) is an
isomorphism and H−1(c) surjective. To see this we can look at stalks, see Lemma
31.4, and then we can use the corresponding result in commutative algebra, see
Algebra, Lemma 134.4. Some details omitted. □

The cotangent complex of a morphism of ringed spaces is defined in terms of the
cotangent complex we defined above.

Definition 31.6.08TN The naive cotangent complex NLf = NLX/Y of a morphism of
ringed spaces f : (X,OX) → (Y,OY ) is NLOX /f−1OY

.

Given a commutative diagram

X ′
g
//

f ′

��

X

f

��
Y ′ h // Y

of ringed spaces, there is a canonical map c : g∗ NLX/Y → NLX′/Y ′ . Namely, it is
the map

g∗ NLX/Y = OX′ ⊗g−1OX
NLg−1OX /g−1f−1OY

−→ NLOX′ /(f ′)−1OY ′ = NLX′/Y ′

where the arrow comes from the commutative diagram of sheaves of rings

g−1OX
g♯

// OX′

g−1f−1OY
g−1h♯

//

g−1f♯

OO

(f ′)−1OY ′

(f ′)♯

OO

as in (31.1.1) above. Given a second such diagram

X ′′
g′
//

��

X ′

��
Y ′′ // Y ′

the composition of (g′)∗c and the map c′ : (g′)∗ NLX′/Y ′ → NLX′′/Y ′′ is the map
(g ◦ g′)∗ NLX′′/Y ′′ → NLX/Y .

Lemma 31.7.0E1Z Let f : X → Y and g : Y → Z be morphisms of ringed spaces. Let
C be the cone of the map NLX/Z → NLX/Y of complexes of OX-modules. There is
a canonical map

f∗ NLY/Z → C[−1]

https://stacks.math.columbia.edu/tag/08TN
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which produces a canonical six term exact sequence

H0(f∗ NLY/Z) // H0(NLX/Z) // H0(NLX/Y ) // 0

H−1(f∗ NLY/Z) // H−1(NLX/Z) // H−1(NLX/Y )

kk

of cohomology sheaves.

Proof. Consider the maps of sheaves rings
(g ◦ f)−1OZ → f−1OY → OX

and apply Lemma 31.5. □
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