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1. Introduction

0DMH In this chapter we discuss some of the familiar moduli stacks of curves. A reference
is the celebrated article of Deligne and Mumford, see [DM69].

2. Conventions and abuse of language

0DMI

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
1
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We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 2. Unless otherwise mentioned our base scheme will be
Spec(Z).

3. The stack of curves

0DMJ This section is the continuation of Quot, Section 15. Let Curves be the stack whose
category of sections over a scheme S is the category of families of curves over S.
It is somewhat important to keep in mind that a family of curves is a morphism
f : X → S where X is an algebraic space (!) and f is flat, proper, of finite
presentation and of relative dimension ≤ 1. We already know that Curves is an
algebraic stack over Z, see Quot, Theorem 15.11. If we did not allow algebraic
spaces in the definition of our stack, then this theorem would be false.
Often base change is denoted by a subscript, but we cannot use this notation for
Curves because CurvesS is our notation for the fibre category over S. This is why
in Quot, Remark 15.5 we used B-Curves for the base change

B-Curves = Curves × B

to the algebraic space B. The product on the right is over the final object, i.e.,
over Spec(Z). The object on the left is the stack classifying families of curves on
the category of schemes over B. In particular, if k is a field, then

k-Curves = Curves × Spec(k)
is the moduli stack classifying families of curves on the category of schemes over k.
Before we continue, here is a sanity check.

Lemma 3.1.0DMK Let T → B be a morphism of algebraic spaces. The category
MorB(T, B-Curves) = Mor(T, Curves)

is the category of families of curves over T .

Proof. A family of curves over T is a morphism f : X → T of algebraic spaces,
which is flat, proper, of finite presentation, and has relative dimension ≤ 1 (Mor-
phisms of Spaces, Definition 33.2). This is exactly the same as the definition in
Quot, Situation 15.1 except that T the base is allowed to be an algebraic space.
Our default base category for algebraic stacks/spaces is the category of schemes,
hence the lemma does not follow immediately from the definitions. Having said
this, we encourage the reader to skip the proof.
By the product description of B-Curves given above, it suffices to prove the lemma in
the absolute case. Choose a scheme U and a surjective étale morphism p : U → T .
Let R = U ×T U with projections s, t : R → U .
Let v : T → Curves be a morphism. Then v ◦ p corresponds to a family of curves
XU → U . The canonical 2-morphism v ◦ p ◦ t → v ◦ p ◦ s is an isomorphism
φ : XU ×U,s R → XU ×U,t R. This isomorphism satisfies the cocycle condition on
R ×s,t R. By Bootstrap, Lemma 11.3 we obtain a morphism of algebraic spaces
X → T whose pullback to U is equal to XU compatible with φ. Since {U → T}
is an étale covering, we see that X → T is flat, proper, of finite presentation by
Descent on Spaces, Lemmas 11.13, 11.19, and 11.12. Also X → T has relative
dimension ≤ 1 because this is an étale local property. Hence X → T is a family of
curves over T .

https://stacks.math.columbia.edu/tag/0DMK
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Conversely, let X → T be a family of curves. Then the base change XU determines
a morphism w : U → Curves and the canonical isomorphism XU ×U,sR → XU ×U,tR
determines a 2-arrow w◦s → w◦t satisfying the cocycle condition. Thus a morphism
v : T = [U/R] → Curves by the universal property of the quotient [U/R], see
Groupoids in Spaces, Lemma 23.2. (Actually, it is much easier in this case to go
back to before we introduced our abuse of language and direct construct the functor
Sch/T → Curves which “is” the morphism T → Curves.)
We omit the verification that the constructions given above extend to morphisms
between objects and are mutually quasi-inverse. □

4. The stack of polarized curves

0DPY In this section we work out some of the material discussed in Quot, Remark 15.13.
Consider the 2-fibre product

Curves ×Spaces′
fp,flat,proper

Polarized //

��

Polarized

��
Curves // Spaces′

fp,flat,proper

We denote this 2-fibre product by
PolarizedCurves = Curves ×Spaces′

fp,flat,proper
Polarized

This fibre product parametrizes polarized curves, i.e., families of curves endowed
with a relatively ample invertible sheaf. More precisely, an object of PolarizedCurves
is a pair (X → S, L) where

(1) X → S is a morphism of schemes which is proper, flat, of finite presentation,
and has relative dimension ≤ 1, and

(2) L is an invertible OX -module which is relatively ample on X/S.
A morphism (X ′ → S′, L′) → (X → S, L) between objects of PolarizedCurves is
given by a triple (f, g, φ) where f : X ′ → X and g : S′ → S are morphisms of
schemes which fit into a commutative diagram

X ′

��

f
// X

��
S′ g // S

inducing an isomorphism X ′ → S′ ×S X, in other words, the diagram is cartesian,
and φ : f∗L → L′ is an isomorphism. Composition is defined in the obvious manner.

Lemma 4.1.0DPZ The morphism PolarizedCurves → Polarized is an open and closed
immersion.

Proof. This is true because the 1-morphism Curves → Spaces′
fp,flat,proper is repre-

sentable by open and closed immersions, see Quot, Lemma 15.12. □

Lemma 4.2.0DQ0 The morphism PolarizedCurves → Curves is smooth and surjective.

Proof. Surjective. Given a field k and a proper algebraic space X over k of dimen-
sion ≤ 1, i.e., an object of Curves over k. By Spaces over Fields, Lemma 9.3 the
algebraic space X is a scheme. Hence X is a proper scheme of dimension ≤ 1 over

https://stacks.math.columbia.edu/tag/0DPZ
https://stacks.math.columbia.edu/tag/0DQ0
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k. By Varieties, Lemma 43.4 we see that X is H-projective over κ. In particular,
there exists an ample invertible OX -module L on X. Then (X, L) is an object of
PolarizedCurves over k which maps to X.
Smooth. Let X → S be an object of Curves, i.e., a morphism S → Curves. It is
clear that

PolarizedCurves ×Curves S ⊂ PicX/S

is the substack of objects (T/S, L/XT ) such that L is ample on XT /T . This is an
open substack by Descent on Spaces, Lemma 13.2. Since PicX/S → S is smooth by
Moduli Stacks, Lemma 8.5 we win. □

Lemma 4.3.0E6F Let X → S be a family of curves. Then there exists an étale covering
{Si → S} such that Xi = X ×S Si is a scheme. We may even assume Xi is H-
projective over Si.

Proof. This is an immediate corollary of Lemma 4.2. Namely, unwinding the
definitions, this lemma gives there is a surjective smooth morphism S′ → S such
that X ′ = X×S S′ comes endowed with an invertible OX′ -module L′ which is ample
on X ′/S′. Then we can refine the smooth covering {S′ → S} by an étale covering
{Si → S}, see More on Morphisms, Lemma 38.7. After replacing Si by a suitable
open covering we may assume Xi → Si is H-projective, see Morphisms, Lemmas
43.6 and 43.4 (this is also discussed in detail in More on Morphisms, Section 50). □

5. Properties of the stack of curves

0DSP The following lemma isn’t true for moduli of surfaces, see Remark 5.2.

Lemma 5.1.0DSQ The diagonal of Curves is separated and of finite presentation.

Proof. Recall that Curves is a limit preserving algebraic stack, see Quot, Lemma
15.6. By Limits of Stacks, Lemma 3.6 this implies that ∆ : Polarized → Polarized ×
Polarized is limit preserving. Hence ∆ is locally of finite presentation by Limits of
Stacks, Proposition 3.8.
Let us prove that ∆ is separated. To see this, it suffices to show that given a scheme
U and two objects Y → U and X → U of Curves over U , the algebraic space

IsomU (Y, X)
is separated. This we have seen in Moduli Stacks, Lemmas 10.2 and 10.3 that the
target is a separated algebraic space.
To finish the proof we show that ∆ is quasi-compact. Since ∆ is representable by
algebraic spaces, it suffices to check the base change of ∆ by a surjective smooth
morphism U → Curves × Curves is quasi-compact (see for example Properties of
Stacks, Lemma 3.3). We choose U =

∐
Ui to be a disjoint union of affine opens

with a surjective smooth morphism
U −→ PolarizedCurves × PolarizedCurves

Then U → Curves × Curves will be surjective and smooth since PolarizedCurves →
Curves is surjective and smooth by Lemma 4.2. Since PolarizedCurves is limit
preserving (by Artin’s Axioms, Lemma 11.2 and Quot, Lemmas 15.6, 14.8, and
13.6), we see that PolarizedCurves → Spec(Z) is locally of finite presentation, hence
Ui → Spec(Z) is locally of finite presentation (Limits of Stacks, Proposition 3.8 and

https://stacks.math.columbia.edu/tag/0E6F
https://stacks.math.columbia.edu/tag/0DSQ
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Morphisms of Stacks, Lemmas 27.2 and 33.5). In particular, Ui is Noetherian affine.
This reduces us to the case discussed in the next paragraph.
In this paragraph, given a Noetherian affine scheme U and two objects (Y, N ) and
(X, L) of PolarizedCurves over U , we show the algebraic space

IsomU (Y, X)
is quasi-compact. Since the connected components of U are open and closed we
may replace U by these. Thus we may and do assume U is connected. Let u ∈ U
be a point. Let Q, P be the Hilbert polynomials of these families, i.e.,

Q(n) = χ(Yu, N ⊗n
u ) and P (n) = χ(Xu, L⊗n

u )
see Varieties, Lemma 45.1. Since U is connected and since the functions u 7→
χ(Yu, N ⊗n

u ) and u 7→ χ(Xu, L⊗n
u ) are locally constant (see Derived Categories of

Schemes, Lemma 32.2) we see that we get the same Hilbert polynomial in every
point of U . Set

M = pr∗
1N ⊗OY ×U X

pr∗
2L

on Y ×U X. Given (f, φ) ∈ IsomU (Y, X)(T ) for some scheme T over U then for
every t ∈ T we have

χ(Yt, (id × f)∗M⊗n) = χ(Yt, N ⊗n
t ⊗OYt

f∗
t L⊗n

t )
= n deg(Nt) + n deg(f∗

t Lt) + χ(Yt, OYt
)

= Q(n) + n deg(Lt)
= Q(n) + P (n) − P (0)

by Riemann-Roch for proper curves, more precisely by Varieties, Definition 44.1
and Lemma 44.7 and the fact that ft is an isomorphism. Setting P ′(t) = Q(t) +
P (t) − P (0) we find

IsomU (Y, X) = IsomU (Y, X) ∩ MorP ′,M
U (Y, X)

The intersection is an intersection of open subspaces of MorU (Y, X), see Mod-
uli Stacks, Lemma 10.3 and Remark 10.4. Now MorP ′,M

U (Y, X) is a Noetherian
algebraic space as it is of finite presentation over U by Moduli Stacks, Lemma
10.5. Thus the intersection is a Noetherian algebraic space too and the proof is
finished. □

Remark 5.2.0DSR The boundedness argument in the proof of Lemma 5.1 does not
work for moduli of surfaces and in fact, the result is wrong, for example because K3
surfaces over fields can have infinite discrete automorphism groups. The “reason”
the argument does not work is that on a projective surface S over a field, given
ample invertible sheaves N and L with Hilbert polynomials Q and P , there is no a
priori bound on the Hilbert polynomial of N ⊗OS

L. In terms of intersection theory,
if H1, H2 are ample effective Cartier divisors on S, then there is no (upper) bound
on the intersection number H1 · H2 in terms of H1 · H1 and H2 · H2.

Lemma 5.3.0DSS The morphism Curves → Spec(Z) is quasi-separated and locally of
finite presentation.

Proof. To check Curves → Spec(Z) is quasi-separated we have to show that its
diagonal is quasi-compact and quasi-separated. This is immediate from Lemma
5.1. To prove that Curves → Spec(Z) is locally of finite presentation, it suffices to

https://stacks.math.columbia.edu/tag/0DSR
https://stacks.math.columbia.edu/tag/0DSS
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show that Curves is limit preserving, see Limits of Stacks, Proposition 3.8. This is
Quot, Lemma 15.6. □

6. Open substacks of the stack of curves

0E0E Below we will often characterize an open substack of Curves by a propery P of
morphisms of algebraic spaces. To see that P defines an open substack it suffices
to check

(o) given a family of curves f : X → S there exists a largest open subscheme
S′ ⊂ S such that f |f−1(S′) : f−1(S′) → S′ has P and such that formation
of S′ commutes with arbitrary base change.

Namely, suppose (o) holds. Choose a scheme U and a surjective smooth morphism
m : U → Curves. Let R = U ×Curves U and denote t, s : R → U the projections.
Recall that Curves = [U/R] is a presentation, see Algebraic Stacks, Lemma 16.2
and Definition 16.5. By construction of Curves as the stack of curves, the morphism
m is the classifying morphism for a family of curves C → U . The 2-commutativity
of the diagram

R
s
//

t

��

U

��
U // Curves

implies that C ×U,s R ∼= C ×U,t R (isomorphism of families of curves over R). Let
W ⊂ U be the largest open subscheme such that f |f−1(W ) : f−1(W ) → W has P as
in (o). Since formation of W commutes with base change according to (o) and by
the isomorphism above we find that s−1(W ) = t−1(W ). Thus W ⊂ U corresponds
to an open substack

CurvesP ⊂ Curves
according to Properties of Stacks, Lemma 9.8.
Continuing with the setup of the previous paragrpah, we claim the open substack
CurvesP has the following two universal properties:

(1) given a family of curves X → S the following are equivalent
(a) the classifying morphism S → Curves factors through CurvesP ,
(b) the morphism X → S has P ,

(2) given X a proper scheme over a field k of dimension ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k) → Curves factors through CurvesP ,
(b) the morphism X → Spec(k) has P .

This follows by considering the 2-fibre product

T
p
//

q

��

U

��
S // Curves

Observe that T → S is surjective and smooth as the base change of U → Curves.
Thus the open S′ ⊂ S given by (o) is determined by its inverse image in T . However,
by the invariance under base change of these opens in (o) and because X ×S T ∼=
C ×U T by the 2-commutativity, we find q−1(S′) = p−1(W ) as opens of T . This
immediately implies (1). Part (2) is a special case of (1).
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Given two properties P and Q of morphisms of algebraic spaces, supposing we
already have established CurvesQ is an open substack of Curves, then we can use
exactly the same method to prove openness of CurvesQ,P ⊂ CurvesQ. We omit a
precise explanation.

7. Curves with finite reduced automorphism groups

0DST Let X be a proper scheme over a field k of dimension ≤ 1, i.e., an object of Curves
over k. By Lemma 5.1 the automorphism group algebraic space Aut(X) is finite
type and separated over k. In particular, Aut(X) is a group scheme, see More on
Groupoids in Spaces, Lemma 10.2. If the characteristic of k is zero, then Aut(X)
is reduced and even smooth over k (Groupoids, Lemma 8.2). However, in general
Aut(X) is not reduced, even if X is geometrically reduced.

Example 7.1 (Non-reduced automorphism group).0DSU Let k be an algebraically
closed field of characteristic 2. Set Y = Z = P1

k. Choose three pairwise distinct k-
valued points a, b, c in A1

k. Thinking of A1
k ⊂ P1

k = Y = Z as an open subschemes,
we get a closed immersion

T = Spec(k[t]/(t − a)2) ⨿ Spec(k[t]/(t − b)2) ⨿ Spec(k[t]/(t − c)2) −→ P1
k

Let X be the pushout in the diagram

T //

��

Y

��
Z // X

Let U ⊂ X be the affine open part which is the image of A1
k ⨿ A1

k. Then we have
an equalizer diagram

OX(U) // k[t] × k[t] //
// k[t]/(t − a)2 × k[t]/(t − b)2 × k[t]/(t − c)2

Over the dual numbers A = k[ϵ] we have a nontrivial automorphism of this equalizer
diagram sending t to t + ϵ. We leave it to the reader to see that this automorphism
extends to an automorphism of X over A. On the other hand, the reader easily
shows that the automorphism group of X over k is finite. Thus Aut(X) must be
non-reduced.

Let X be a proper scheme over a field k of dimension ≤ 1, i.e., an object of Curves
over k. If Aut(X) is geometrically reduced, then it need not be the case that it has
dimension 0, even if X is smooth and geometrically connected.

Example 7.2 (Smooth positive dimensional automorphism group).0DSV Let k be an
algebraically closed field. If X is a smooth genus 0, resp. 1 curve, then the auto-
morphism group has dimension 3, resp. 1. Namely, in the genus 0 case we have
X ∼= P1

k by Algebraic Curves, Proposition 10.4. Since

Aut(P1
k) = PGL2,k

as functors we see that the dimension is 3. On the other hand, if the genus of
X is 1, then we see that the map X = Hilb1

X/k → Pic1
X/k is an isomorphism, see

Picard Schemes of Curves, Lemma 6.7 and Algebraic Curves, Theorem 2.6. Thus
X has the structure of an abelian variety (since Pic1

X/k
∼= Pic0

X/k). In particular
the (co)tangent bundle of X are trivial (Groupoids, Lemma 6.3). We conclude that

https://stacks.math.columbia.edu/tag/0DSU
https://stacks.math.columbia.edu/tag/0DSV
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dimk H0(X, TX) = 1 hence dim Aut(X) ≤ 1. On the other hand, the translations
(viewing X as a group scheme) provide a 1-dimensional piece of Aut(X) and we
conlude its dimension is indeed 1.

It turns out that there is an open substack of Curves parametrizing curves whose
automorphism group is geometrically reduced and finite. Here is a precise state-
ment.

Lemma 7.3.0DSW There exist an open substack CurvesDM ⊂ Curves with the following
properties

(1) CurvesDM ⊂ Curves is the maximal open substack which is DM,
(2) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesDM ,
(b) the group algebraic space AutS(X) is unramified over S,

(3) given X a proper scheme over a field k of dimension ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k) → Curves factors through CurvesDM ,
(b) Aut(X) is geometrically reduced over k and has dimension 0,
(c) Aut(X) → Spec(k) is unramified.

Proof. The existence of an open substack with property (1) is Morphisms of Stacks,
Lemma 22.1. The points of this open substack are characterized by (3)(c) by
Morphisms of Stacks, Lemma 22.2. The equivalence of (3)(b) and (3)(c) is the
statement that an algebraic space G which is locally of finite type, geometrically
reduced, and of dimension 0 over a field k, is unramified over k. First, G is a
scheme by Spaces over Fields, Lemma 9.1. Then we can take an affine open in G
and observe that it will be proper over k and apply Varieties, Lemma 9.3. Minor
details omitted.

Part (2) is true because (3) holds. Namely, the morphism AutS(X) → S is locally
of finite type. Thus we can check whether AutS(X) → S is unramified at all points
of AutS(X) by checking on fibres at points of the scheme S, see Morphisms of
Spaces, Lemma 38.10. But after base change to a point of S we fall back into the
equivalence of (3)(a) and (3)(c). □

Lemma 7.4.0E6G Let X be a proper scheme over a field k of dimension ≤ 1. Then
properties (3)(a), (b), (c) are also equivalent to Derk(OX , OX) = 0.

Proof. In the discussion above we have seen that G = Aut(X) is a group scheme
over Spec(k) which is finite type and separated; this uses Lemma 5.1 and More
on Groupoids in Spaces, Lemma 10.2. Then G is unramified over k if and only
if ΩG/k = 0 (Morphisms, Lemma 35.2). By Groupoids, Lemma 6.3 the vanishing
holds if TG/k,e = 0, where TG/k,e is the tangent space to G at the identity element
e ∈ G(k), see Varieties, Definition 16.3 and the formula in Varieties, Lemma 16.4.
Since κ(e) = k the tangent space is defined in terms of morphisms α : Spec(k[ϵ]) →
G = Aut(X) whose restriction to Spec(k) is e. It follows that it suffices to show
any automorphism

α : X ×Spec(k) Spec(k[ϵ]) −→ X ×Spec(k) Spec(k[ϵ])

over Spec(k[ϵ]) whose restriction to Spec(k) is idX . Such automorphisms are called
infinitesimal automorphisms.

https://stacks.math.columbia.edu/tag/0DSW
https://stacks.math.columbia.edu/tag/0E6G


MODULI OF CURVES 9

The infinitesimal automorphisms of X correspond 1-to-1 with derivations of OX

over k. This follows from More on Morphisms, Lemmas 9.1 and 9.2 (we only need
the first one as we don’t care about the reverse direction; also, please look at More
on Morphisms, Remark 9.7 for an elucidation). For a different argument proving
this equality we refer the reader to Deformation Problems, Lemma 9.3. □

8. Cohen-Macaulay curves

0E0H There is an open substack of Curves parametrizing the Cohen-Macaulay “curves”.

Lemma 8.1.0E0I There exist an open substack CurvesCM ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesCM ,
(b) the morphism X → S is Cohen-Macaulay,

(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k) → Curves factors through CurvesCM ,
(b) X is Cohen-Macaulay.

Proof. Let f : X → S be a family of curves. By More on Morphisms of Spaces,
Lemma 26.7 the set

W = {x ∈ |X| : f is Cohen-Macaulay at x}
is open in |X| and formation of this open commutes with arbitrary base change.
Since f is proper the subset

S′ = S \ f(|X| \ W )
of S is open and X ×S S′ → S′ is Cohen-Macaulay. Moreover, formation of S′

commutes with arbitrary base change because this is true for W Thus we get the
open substack with the desired properties by the method discussed in Section 6. □

Lemma 8.2.0E1F There exist an open substack CurvesCM,1 ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesCM,1,
(b) the morphism X → S is Cohen-Macaulay and has relative dimension

1 (Morphisms of Spaces, Definition 33.2),
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k) → Curves factors through CurvesCM,1,
(b) X is Cohen-Macaulay and X is equidimensional of dimension 1.

Proof. By Lemma 8.1 it is clear that we have CurvesCM,1 ⊂ CurvesCM if it exists.
Let f : X → S be a family of curves such that f is a Cohen-Macaulay morphism.
By More on Morphisms of Spaces, Lemma 26.8 we have a decomposition

X = X0 ⨿ X1

by open and closed subspaces such that X0 → S has relative dimension 0 and
X1 → S has relative dimension 1. Since f is proper the subset

S′ = S \ f(|X0|)
of S is open and X ×S S′ → S′ is Cohen-Macaulay and has relative dimension
1. Moreover, formation of S′ commutes with arbitrary base change because this is

https://stacks.math.columbia.edu/tag/0E0I
https://stacks.math.columbia.edu/tag/0E1F
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true for the decomposition above (as relative dimension behaves well with respect
to base change, see Morphisms of Spaces, Lemma 34.3). Thus we get the open
substack with the desired properties by the method discussed in Section 6. □

9. Curves of a given genus

0E6H The convention in the Stacks project is that the genus g of a proper 1-dimensional
scheme X over a field k is defined only if H0(X, OX) = k. In this case g =
dimk H1(X, OX). See Algebraic Curves, Section 8. The conditions needed to define
the genus define an open substack which is then a disjoint union of open substacks,
one for each genus.

Lemma 9.1.0E6I There exist an open substack Curvesh0,1 ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesh0,1,
(b) f∗OX = OS, this holds after arbitrary base change, and the fibres of f

have dimension 1,
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvesh0,1,
(b) H0(X, OX) = k and dim(X) = 1.

Proof. Given a family of curves X → S the set of s ∈ S where κ(s) = H0(Xs, OXs
)

is open in S by Derived Categories of Spaces, Lemma 26.2. Also, the set of points
in S where the fibre has dimension 1 is open by More on Morphisms of Spaces,
Lemma 31.5. Moreover, if f : X → S is a family of curves all of whose fibres have
dimension 1 (and in particular f is surjective), then condition (1)(b) is equivalent
to κ(s) = H0(Xs, OXs

) for every s ∈ S, see Derived Categories of Spaces, Lemma
26.7. Thus we see that the lemma follows from the general discussion in Section
6. □

Lemma 9.2.0E6J We have Curvesh0,1 ⊂ CurvesCM,1 as open substacks of Curves.

Proof. See Algebraic Curves, Lemma 6.1 and Lemmas 9.1 and 8.2. □

Lemma 9.3.0E1J Let f : X → S be a family of curves such that κ(s) = H0(Xs, OXs
)

for all s ∈ S, i.e., the classifying morphism S → Curves factors through Curvesh0,1

(Lemma 9.1). Then
(1) f∗OX = OS and this holds universally,
(2) R1f∗OX is a finite locally free OS-module,
(3) for any morphism h : S′ → S if f ′ : X ′ → S′ is the base change, then

h∗(R1f∗OX) = R1f ′
∗OX′ .

Proof. We apply Derived Categories of Spaces, Lemma 26.7. This proves part
(1). It also implies that locally on S we can write Rf∗OX = OS ⊕ P where P is
perfect of tor amplitude in [1, ∞). Recall that formation of Rf∗OX commutes with
arbitrary base change (Derived Categories of Spaces, Lemma 25.4). Thus for s ∈ S
we have

Hi(P ⊗L
OS

κ(s)) = Hi(Xs, OXs
) for i ≥ 1

This is zero unless i = 1 since Xs is a 1-dimensional Noetherian scheme, see Co-
homology, Proposition 20.7. Then P = H1(P )[−1] and H1(P ) is finite locally free

https://stacks.math.columbia.edu/tag/0E6I
https://stacks.math.columbia.edu/tag/0E6J
https://stacks.math.columbia.edu/tag/0E1J
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for example by More on Algebra, Lemma 75.6. Since everything is compatible with
base change we also see that (3) holds. □

Lemma 9.4.0E6K There is a decomposition into open and closed substacks

Curvesh0,1 =
∐

g≥0
Curvesg

where each Curvesg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesg,
(b) f∗OX = OS, this holds after arbitrary base change, the fibres of f have

dimension 1, and R1f∗OX is a locally free OS-module of rank g,
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvesg,
(b) dim(X) = 1, k = H0(X, OX), and the genus of X is g.

Proof. We already have the existence of Curvesh0,1 as an open substack of Curves
characterized by the conditions of the lemma not involving R1f∗ or H1, see Lemma
9.1. The existence of the decomposition into open and closed substacks follows
immediately from the discussion in Section 6 and Lemma 9.3. This proves the
characterization in (1). The characterization in (2) follows from the definition of
the genus in Algebraic Curves, Definition 8.1. □

10. Geometrically reduced curves

0E0F There is an open substack of Curves parametrizing the geometrically reduced “curves”.

Lemma 10.1.0E0G There exist an open substack Curvesgeomred ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesgeomred,
(b) the fibres of the morphism X → S are geometrically reduced (More on

Morphisms of Spaces, Definition 29.2),
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvesgeomred,
(b) X is geometrically reduced over k.

Proof. Let f : X → S be a family of curves. By More on Morphisms of Spaces,
Lemma 29.6 the set

E = {s ∈ S : the fibre of X → S at s is geometrically reduced}

is open in S. Formation of this open commutes with arbitrary base change by More
on Morphisms of Spaces, Lemma 29.3. Thus we get the open substack with the
desired properties by the method discussed in Section 6. □

Lemma 10.2.0E1G We have Curvesgeomred ⊂ CurvesCM as open substacks of Curves.

Proof. This is true because a reduced Noetherian scheme of dimension ≤ 1 is
Cohen-Macaulay. See Algebra, Lemma 157.3. □

https://stacks.math.columbia.edu/tag/0E6K
https://stacks.math.columbia.edu/tag/0E0G
https://stacks.math.columbia.edu/tag/0E1G


MODULI OF CURVES 12

11. Geometrically reduced and connected curves

0E1H There is an open substack of Curves parametrizing the geometrically reduced and
connected “curves”. We will get rid of 0-dimensional objects right away.

Lemma 11.1.0E1I There exist an open substack Curvesgrc,1 ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesgrc,1,
(b) the geometric fibres of the morphism X → S are reduced, connected,

and have dimension 1,
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvesgrc,1,
(b) X is geometrically reduced, geometrically connected, and has dimen-

sion 1.

Proof. By Lemmas 10.1, 10.2, 8.1, and 8.2 it is clear that we have

Curvesgrc,1 ⊂ Curvesgeomred ∩ CurvesCM,1

if it exists. Let f : X → S be a family of curves such that f is Cohen-Macaulay, has
geometrically reduced fibres, and has relative dimension 1. By More on Morphisms
of Spaces, Lemma 36.9 in the Stein factorization

X → T → S

the morphism T → S is étale. This implies that there is an open and closed
subscheme S′ ⊂ S such that X ×S S′ → S′ has geometrically connected fibres (in
the decomposition of Morphisms, Lemma 48.5 for the finite locally free morphism
T → S this corresponds to S1). Formation of this open commutes with arbitrary
base change because the number of connected components of geometric fibres is
invariant under base change (it is also true that the Stein factorization commutes
with base change in our particular case but we don’t need this to conclude). Thus
we get the open substack with the desired properties by the method discussed in
Section 6. □

Lemma 11.2.0E6L We have Curvesgrc,1 ⊂ Curvesh0,1 as open substacks of Curves. In
particular, given a family of curves f : X → S whose geometric fibres are reduced,
connected and of dimension 1, then R1f∗OX is a finite locally free OS-module whose
formation commutes with arbitrary base change.

Proof. This follows from Varieties, Lemma 9.3 and Lemmas 9.1 and 11.1. The
final statement follows from Lemma 9.3. □

Lemma 11.3.0E1K There is a decomposition into open and closed substacks

Curvesgrc,1 =
∐

g≥0
Curvesgrc,1

g

where each Curvesgrc,1
g is characterized as follows:

(1) given a family of curves f : X → S the following are equivalent
(a) the classifying morphism S → Curves factors through Curvesgrc,1

g ,
(b) the geometric fibres of the morphism f : X → S are reduced, connected,

of dimension 1 and R1f∗OX is a locally free OS-module of rank g,

https://stacks.math.columbia.edu/tag/0E1I
https://stacks.math.columbia.edu/tag/0E6L
https://stacks.math.columbia.edu/tag/0E1K
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(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvesgrc,1

g ,
(b) X is geometrically reduced, geometrically connected, has dimension 1,

and has genus g.

Proof. First proof: set Curvesgrc,1
g = Curvesgrc,1 ∩ Curvesg and combine Lemmas

11.2 and 9.4. Second proof: The existence of the decomposition into open and
closed substacks follows immediately from the discussion in Section 6 and Lemma
11.2. This proves the characterization in (1). The characterization in (2) follows as
well since the genus of a geometrically reduced and connected proper 1-dimensional
scheme X/k is defined (Algebraic Curves, Definition 8.1 and Varieties, Lemma 9.3)
and is equal to dimk H1(X, OX). □

12. Gorenstein curves

0E1L There is an open substack of Curves parametrizing the Gorenstein “curves”.

Lemma 12.1.0E1M There exist an open substack CurvesGorenstein ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesGorenstein,
(b) the morphism X → S is Gorenstein,

(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k) → Curves factors through CurvesGorenstein,
(b) X is Gorenstein.

Proof. Let f : X → S be a family of curves. By More on Morphisms of Spaces,
Lemma 27.7 the set

W = {x ∈ |X| : f is Gorenstein at x}
is open in |X| and formation of this open commutes with arbitrary base change.
Since f is proper the subset

S′ = S \ f(|X| \ W )
of S is open and X ×S S′ → S′ is Gorenstein. Moreover, formation of S′ commutes
with arbitrary base change because this is true for W Thus we get the open substack
with the desired properties by the method discussed in Section 6. □

Lemma 12.2.0E6M There exist an open substack CurvesGorenstein,1 ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesGorenstein,1,
(b) the morphism X → S is Gorenstein and has relative dimension 1

(Morphisms of Spaces, Definition 33.2),
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k) → Curves factors through CurvesGorenstein,1,
(b) X is Gorenstein and X is equidimensional of dimension 1.

Proof. Recall that a Gorenstein scheme is Cohen-Macaulay (Duality for Schemes,
Lemma 24.2) and that a Gorenstein morphism is a Cohen-Macaulay morphism
(Duality for Schemes, Lemma 25.4. Thus we can set CurvesGorenstein,1 equal to the

https://stacks.math.columbia.edu/tag/0E1M
https://stacks.math.columbia.edu/tag/0E6M
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intersection of CurvesGorenstein and CurvesCM,1 inside of Curves and use Lemmas
12.1 and 8.2. □

13. Local complete intersection curves

0E0J There is an open substack of Curves parametrizing the local complete intersection
“curves”.

Lemma 13.1.0DZV There exist an open substack Curveslci ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curveslci,
(b) X → S is a local complete intersection morphism, and
(c) X → S is a syntomic morphism.

(2) given X a proper scheme over a field k of dimension ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curveslci,
(b) X is a local complete intersection over k.

Proof. Recall that being a syntomic morphism is the same as being flat and a
local complete intersection morphism, see More on Morphisms of Spaces, Lemma
48.6. Thus (1)(b) is equivalent to (1)(c). In Section 6 we have seen it suffices to
show that given a family of curves f : X → S, there is an open subscheme S′ ⊂ S
such that S′ ×S X → S′ is a local complete intersection morphism and such that
formation of S′ commutes with arbitrary base change. This follows from the more
general More on Morphisms of Spaces, Lemma 49.7. □

14. Curves with isolated singularities

0E0K We can look at the open substack of Curves parametrizing “curves” with only a finite
number of singular points (these may correspond to 0-dimensional components in
our setup).

Lemma 14.1.0DZW There exist an open substack Curves+ ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curves+,
(b) the singular locus of X → S endowed with any/some closed subspace

structure is finite over S.
(2) given X a proper scheme over a field k of dimension ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curves+,
(b) X → Spec(k) is smooth except at finitely many points.

Proof. To prove the lemma it suffices to show that given a family of curves f :
X → S, there is an open subscheme S′ ⊂ S such that the fibre of S′ ×S X → S′

have property (2). (Formation of the open will automatically commute with base
change.) By definition the locus T ⊂ |X| of points where X → S is not smooth is
closed. Let Z ⊂ X be the closed subspace given by the reduced induced algebraic
space structure on T (Properties of Spaces, Definition 12.5). Now if s ∈ S is a
point where Zs is finite, then there is an open neighbourhood Us ⊂ S of s such that
Z ∩ f−1(Us) → Us is finite, see More on Morphisms of Spaces, Lemma 35.2. This
proves the lemma. □

https://stacks.math.columbia.edu/tag/0DZV
https://stacks.math.columbia.edu/tag/0DZW
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15. The smooth locus of the stack of curves

0DZT The morphism
Curves −→ Spec(Z)

is smooth over a maximal open substack, see Morphisms of Stacks, Lemma 33.6.
We want to give a criterion for when a curve is in this locus. We will do this using
a bit of deformation theory.
Let k be a field. Let X be a proper scheme of dimension ≤ 1 over k. Choose
a Cohen ring Λ for k, see Algebra, Lemma 160.6. Then we are in the situation
described in Deformation Problems, Example 9.1 and Lemma 9.2. Thus we obtain
a deformation category Def X on the category CΛ of Artinian local Λ-algebras with
residue field k.

Lemma 15.1.0DZU In the situation above the following are equivalent
(1) the classifying morphism Spec(k) → Curves factors through the open where

Curves → Spec(Z) is smooth,
(2) the deformation category Def X is unobstructed.

Proof. Since Curves −→ Spec(Z) is locally of finite presentation (Lemma 5.3)
formation of the open substack where Curves −→ Spec(Z) is smooth commutes
with flat base change (Morphisms of Stacks, Lemma 33.6). Since the Cohen ring Λ
is flat over Z, we may work over Λ. In other words, we are trying to prove that

Λ-Curves −→ Spec(Λ)
is smooth in an open neighbourhood of the point x0 : Spec(k) → Λ-Curves defined
by X/k if and only if Def X is unobstructed.
The lemma now follows from Geometry of Stacks, Lemma 2.7 and the equality

Def X = FΛ-Curves,k,x0

This equality is not completely trivial to esthablish. Namely, on the left hand side
we have the deformation category classifying all flat deformations Y → Spec(A) of
X as a scheme over A ∈ Ob(CΛ). On the right hand side we have the deformation
category classifying all flat morphisms Y → Spec(A) with special fibre X where
Y is an algebraic space and Y → Spec(A) is proper, of finite presentation, and of
relative dimension ≤ 1. Since A is Artinian, we find that Y is a scheme for example
by Spaces over Fields, Lemma 9.3. Thus it remains to show: a flat deformation
Y → Spec(A) of X as a scheme over an Artinian local ring A with residue field k
is proper, of finite presentation, and of relative dimension ≤ 1. Relative dimension
is defined in terms of fibres and hence holds automatically for Y/A since it holds
for X/k. The morphism Y → Spec(A) is proper and locally of finite presentation
as this is true for X → Spec(k), see More on Morphisms, Lemma 10.3. □

Here is a “large” open of the stack of curves which is contained in the smooth locus.

Lemma 15.2.0DZX The open substack

Curveslci+ = Curveslci ∩ Curves+ ⊂ Curves
has the following properties

(1) Curveslci+ → Spec(Z) is smooth,
(2) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curveslci+,

https://stacks.math.columbia.edu/tag/0DZU
https://stacks.math.columbia.edu/tag/0DZX
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(b) X → S is a local complete intersection morphism and the singular
locus of X → S endowed with any/some closed subspace structure is
finite over S,

(3) given X a proper scheme over a field k of dimension ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curveslci+,
(b) X is a local complete intersection over k and X → Spec(k) is smooth

except at finitely many points.

Proof. If we can show that there is an open substack Curveslci+ whose points are
characterized by (2), then we see that (1) holds by combining Lemma 15.1 with
Deformation Problems, Lemma 16.4. Since

Curveslci+ = Curveslci ∩ Curves+

inside Curves, we conclude by Lemmas 13.1 and 14.1. □

16. Smooth curves

0DZY In this section we study open substacks of Curves parametrizing smooth “curves”.

Lemma 16.1.0DZZ There exist an open substacks

Curvessmooth,1 ⊂ Curvessmooth ⊂ Curves
such that

(1) given a family of curves f : X → S the following are equivalent
(a) the classifying morphism S → Curves factors through Curvessmooth,

resp. Curvessmooth,1,
(b) f is smooth, resp. smooth of relative dimension 1,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvessmooth,

resp. Curvessmooth,1,
(b) X is smooth over k, resp. X is smooth over k and X is equidimensional

of dimension 1.

Proof. To prove the statements regarding Curvessmooth it suffices to show that
given a family of curves f : X → S, there is an open subscheme S′ ⊂ S such
that S′ ×S X → S′ is smooth and such that the formation of this open commutes
with base change. We know that there is a maximal open U ⊂ X such that
U → S is smooth and that formation of U commutes with arbitrary base change,
see Morphisms of Spaces, Lemma 37.9. If T = |X| \ |U | then f(T ) is closed in S as
f is proper. Setting S′ = S \ f(T ) we obtain the desired open.
Let f : X → S be a family of curves with f smooth. Then the fibres Xs are smooth
over κ(s) and hence Cohen-Macaulay (for example you can see this using Algebra,
Lemmas 137.5 and 135.3). Thus we see that we may set

Curvessmooth,1 = Curvessmooth ∩ CurvesCM,1

and the desired equivalences follow from what we’ve already shown for Curvessmooth

and Lemma 8.2. □

Lemma 16.2.0E1N The morphism Curvessmooth → Spec(Z) is smooth.

https://stacks.math.columbia.edu/tag/0DZZ
https://stacks.math.columbia.edu/tag/0E1N
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Proof. Follows immediately from the observation that Curvessmooth ⊂ Curveslci+

and Lemma 15.2. □

Lemma 16.3.0E81 There exist an open substack Curvessmooth,h0 ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvessmooth,
(b) f∗OX = OS, this holds after any base change, and f is smooth of

relative dimension 1,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvessmooth,h0,
(b) X is smooth, dim(X) = 1, and k = H0(X, OX),
(c) X is smooth, dim(X) = 1, and X is geometrically connected,
(d) X is smooth, dim(X) = 1, and X is geometrically integral, and
(e) Xk is a smooth curve.

Proof. If we set
Curvessmooth,h0 = Curvessmooth ∩ Curvesh0,1

then we see that (1) holds by Lemmas 9.1 and 16.1. In fact, this also gives the
equivalence of (2)(a) and (2)(b). To finish the proof we have to show that (2)(b) is
equivalent to each of (2)(c), (2)(d), and (2)(e).
A smooth scheme over a field is geometrically normal (Varieties, Lemma 25.4),
smoothness is preserved under base change (Morphisms, Lemma 34.5), and being
smooth is fpqc local on the target (Descent, Lemma 23.27). Keeping this in mind,
the equivalence of (2)(b), (2)(c), 2(d), and (2)(e) follows from Varieties, Lemma
10.7. □

Definition 16.4.0E82 [DM69]We denote M and we name it the moduli stack of smooth
proper curves the algebraic stack Curvessmooth,h0 parametrizing families of curves
introduced in Lemma 16.3. For g ≥ 0 we denote Mg and we name it the moduli
stack of smooth proper curves of genus g the algebraic stack introduced in Lemma
16.5.

Here is the obligatory lemma.

Lemma 16.5.0E83 There is a decomposition into open and closed substacks

M =
∐

g≥0
Mg

where each Mg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Mg,
(b) X → S is smooth, f∗OX = OS, this holds after any base change, and

R1f∗OX is a locally free OS-module of rank g,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k) → Curves factors through Mg,
(b) X is smooth, dim(X) = 1, k = H0(X, OX), and X has genus g,
(c) X is smooth, dim(X) = 1, X is geometrically connected, and X has

genus g,

https://stacks.math.columbia.edu/tag/0E81
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(d) X is smooth, dim(X) = 1, X is geometrically integral, and X has
genus g, and

(e) Xk is a smooth curve of genus g.

Proof. Combine Lemmas 16.3 and 9.4. You can also use Lemma 11.3 instead. □

Lemma 16.6.0E84 The morphisms M → Spec(Z) and Mg → Spec(Z) are smooth.

Proof. Since M is an open substack of Curveslci+ this follows from Lemma 15.2.
□

17. Density of smooth curves

0E85 The title of this section is misleading as we don’t claim Curvessmooth is dense in
Curves. In fact, this is false as was shown by Mumford in [Mum75]. However, we
will see that the smooth “curves” are dense in a large open.

Lemma 17.1.0E86 The inclusion

|Curvessmooth| ⊂ |Curveslci+|

is that of an open dense subset.

Proof. By the very construction of the topology on |Curveslci+| in Properties of
Stacks, Section 4 we find that |Curvessmooth| is an open subset. Let ξ ∈ |Curveslci+|
be a point. Then there exists a field k and a scheme X over k with X proper
over k, with dim(X) ≤ 1, with X a local complete intersection over k, and with
X is smooth over k except at finitely many points, such that ξ is the equivalence
class of the classifying morphism Spec(k) → Curveslci+ determined by X. See
Lemma 15.2. By Deformation Problems, Lemma 17.6 there exists a flat projective
morphism Y → Spec(k[[t]]) whose generic fibre is smooth and whose special fibre
is isomorphic to X. Consider the classifying morphism

Spec(k[[t]]) −→ Curveslci+

determined by Y . The image of the closed point is ξ and the image of the generic
point is in |Curvessmooth|. Since the generic point specializes to the closed point in
| Spec(k[[t]])| we conclude that ξ is in the closure of |Curvessmooth| as desired. □

18. Nodal curves

0DSX In algebraic geometry a special role is played by nodal curves. We suggest the
reader take a brief look at some of the discussion in Algebraic Curves, Sections 19
and 20 and More on Morphisms of Spaces, Section 55.

Lemma 18.1.0DSY There exist an open substack Curvesnodal ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesnodal,
(b) f is at-worst-nodal of relative dimension 1,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvesnodal,
(b) the singularities of X are at-worst-nodal and X is equidimensional of

dimension 1.

https://stacks.math.columbia.edu/tag/0E84
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Proof. In fact, it suffices to show that given a family of curves f : X → S,
there is an open subscheme S′ ⊂ S such that S′ ×S X → S′ is at-worst-nodal of
relative dimension 1 and such that formation of S′ commutes with arbitrary base
change. By More on Morphisms of Spaces, Lemma 55.4 there is a maximal open
subspace X ′ ⊂ X such that f |X′ : X ′ → S is at-worst-nodal of relative dimension
1. Moreover, formation of X ′ commutes with base change. Hence we can take

S′ = S \ |f |(|X| \ |X ′|)
This is open because a proper morphism is universally closed by definition. □

Lemma 18.2.0E00 The morphism Curvesnodal → Spec(Z) is smooth.

Proof. Follows immediately from the observation that Curvesnodal ⊂ Curveslci+

and Lemma 15.2. □

19. The relative dualizing sheaf

0E6N This section serves mainly to introduce notation in the case of families of curves.
Most of the work has already been done in the chapter on duality.
Let f : X → S be a family of curves. There exists an object ω•

X/S in DQCoh(OX),
called the relative dualizing complex, having the following property: for every base
change diagram

XU

f ′

��

g′
// X

f

��
U

g // S

with U = Spec(A) affine the complex ω•
XU /U = L(g′)∗ω•

X/S represents the functor

DQCoh(OXU
) −→ ModA, K 7−→ HomU (Rf∗K, OU )

More precisely, let (ω•
X/S , τ) be the relative dualizing complex of the family as

defined in Duality for Spaces, Definition 9.1. Existence is shown in Duality for
Spaces, Lemma 9.5. Moreover, formation of (ω•

X/S , τ) commutes with arbitrary
base change (essentially by definition; a precise reference is Duality for Spaces,
Lemma 9.6). From now on we will identify the base change of ω•

X/S with the
relative dualizing complex of the base changed family without further mention.
Let {Si → S} be an étale covering with Si affine such that Xi = X×S Si is a scheme,
see Lemma 4.3. By Duality for Spaces, Lemma 10.1 we find that ω•

Xi/Si
agrees with

the relative dualizing complex for the proper, flat, and finitely presented morphism
fi : Xi → Si of schemes discussed in Duality for Schemes, Remark 12.5. Thus to
prove a property of ω•

X/S which is étale local, we may assume X → S is a morphism
of schemes and use the theory developped in the chapter on duality for schemes.
More generally, for any base change of X which is a scheme, the relative dualizing
complex agrees with the relative dualizing complex of Duality for Schemes, Remark
12.5. From now on we will use this identification without further mention.
In particular, let Spec(k) → S be a morphism where k is a field. Denote Xk the
base change (this is a scheme by Spaces over Fields, Lemma 9.3). Then ω•

Xk/k is
isomorphic to the complex ω•

Xk
of Algebraic Curves, Lemma 4.1 (both represent

the same functor and so we can use the Yoneda lemma, but really this holds be-
cause of the remarks above). We conclude that the cohomology sheaves Hi(ω•

Xk/k)

https://stacks.math.columbia.edu/tag/0E00


MODULI OF CURVES 20

are nonzero only for i = 0, −1. If Xk is Cohen-Macaulay and equidimensional of
dimension 1, then we only have H−1 and if Xk is in addition Gorenstein, then
H−1(ωXk/k) is invertible, see Algebraic Curves, Lemmas 4.2 and 5.2.

Lemma 19.1.0E6P Let X → S be a family of curves with Cohen-Macaulay fibres
equidimensional of dimension 1 (Lemma 8.2). Then ω•

X/S = ωX/S [1] where ωX/S is
a pseudo-coherent OX-module flat over S whose formation commutes with arbitrary
base change.

Proof. We urge the reader to deduce this directly from the discussion above of what
happens after base change to a field. Our proof will use a somewhat cumbersome
reduction to the Noetherian schemes case.

Once we show ω•
X/S = ωX/S [1] with ωX/S flat over S, the statement on base change

will follow as we already know that formation of ω•
X/S commutes with arbitrary

base change. Moreover, the pseudo-coherence will be automatic as ω•
X/S is pseudo-

coherent by definition. Vanishing of the other cohomology sheaves and flatness may
be checked étale locally. Thus we may assume f : X → S is a morphism of schemes
with S affine (see discussion above). Write S = lim Si as a cofiltered limit of affine
schemes Si of finite type over Z. Since CurvesCM,1 is locally of finite presentation
over Z (as an open substack of Curves, see Lemmas 8.2 and 5.3), we can find an i and
a family of curves Xi → Si whose pullback is X → S (Limits of Stacks, Lemma 3.5).
After increasing i if necessary we may assume Xi is a scheme, see Limits of Spaces,
Lemma 5.11. Since formation of ω•

X/S commutes with arbitrary base change, we
may replace S by Si. Doing so we may and do assume Si is Noetherian. Then f is
clearly a Cohen-Macaulay morphism (More on Morphisms, Definition 22.1) by our
assumption on the fibres. Also then ω•

X/S = f !OS by the very construction of f ! in
Duality for Schemes, Section 16. Thus the lemma by Duality for Schemes, Lemma
23.3. □

Definition 19.2.0E6Q Let f : X → S be a family of curves with Cohen-Macaulay
fibres equidimensional of dimension 1 (Lemma 8.2). Then the OX -module

ωX/S = H−1(ω•
X/S)

studied in Lemma 19.1 is called the relative dualizing sheaf of f .

In the situation of Definition 19.2 the relative dualizing sheaf ωX/S has the following
property (which moreover characterizes it locally on S): for every base change
diagram

XU

f ′

��

g′
// X

f

��
U

g // S

with U = Spec(A) affine the module ωXU /U = (g′)∗ωX/S represents the functor

QCoh(OXU
) −→ ModA, F 7−→ HomA(H1(X, F), A)

This follows immediately from the corresponding property of the relative dualizing
complex given above. In particular, if A = k is a field, then we recover the dualizing
module of Xk as introduced and studied in Algebraic Curves, Lemmas 4.1, 4.2, and
5.2.

https://stacks.math.columbia.edu/tag/0E6P
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Lemma 19.3.0E6R Let X → S be a family of curves with Gorenstein fibres equidimen-
sional of dimension 1 (Lemma 12.2). Then the relative dualizing sheaf ωX/S is an
invertible OX-module whose formation commutes with arbitrary base change.

Proof. This is true because the pullback of the relative dualizing module to a fibre
is invertible by the discussion above. Alternatively, you can argue exactly as in
the proof of Lemma 19.1 and deduce the result from Duality for Schemes, Lemma
25.10. □

20. Prestable curves

0E6S The following definition is equivalent to what appears to be the generally accepted
notion of a prestable family of curves.

Definition 20.1.0E6T Let f : X → S be a family of curves. We say f is a prestable
family of curves if

(1) f is at-worst-nodal of relative dimension 1, and
(2) f∗OX = OS and this holds after any base change1.

Let X be a proper scheme over a field k with dim(X) ≤ 1. Then X → Spec(k) is a
family of curves and hence we can ask whether or not it is prestable2 in the sense
of the definition. Unwinding the definitions we see the following are equivalent

(1) X is prestable,
(2) the singularities of X are at-worst-nodal, dim(X) = 1, and k = H0(X, OX),
(3) Xk is connected and it is smooth over k apart from a finite number of nodes

(Algebraic Curves, Definition 16.2).
This shows that our definition agrees with most definitions one finds in the litera-
ture.

Lemma 20.2.0E6U There exist an open substack Curvesprestable ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesprestable,
(b) X → S is a prestable family of curves,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvesprestable,
(b) the singularities of X are at-worst-nodal, dim(X) = 1, and k = H0(X, OX).

Proof. Given a family of curves X → S we see that it is prestable if and only
if the classifying morphism factors both through Curvesnodal and Curvesh0,1. An
alternative is to use Curvesgrc,1 (since a nodal curve is geometrically reduced hence
has H0 equal to the ground field if and only if it is connected). In a formula

Curvesprestable = Curvesnodal ∩ Curvesh0,1 = Curvesnodal ∩ Curvesgrc,1

Thus the lemma follows from Lemmas 9.1 and 18.1. □

1In fact, it suffices to require f∗OX = OS because the Stein factorization of f is étale in this
case, see More on Morphisms of Spaces, Lemma 36.9. The condition may also be replaced by
asking the geometric fibres to be connected, see Lemma 11.2.

2We can’t use the term “prestable curve” here because curve implies irreducible. See discussion
in Algebraic Curves, Section 20.
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For each genus g ≥ 0 we have the algebraic stack classifying the prestable curves of
genus g. In fact, from now on we will say that X → S is a prestable family of curves
of genus g if and only if the classifying morphism S → Curves factors through the
open substack Curvesprestable

g of Lemma 20.3.

Lemma 20.3.0E6V There is a decomposition into open and closed substacks

Curvesprestable =
∐

g≥0
Curvesprestable

g

where each Curvesprestable
g is characterized as follows:

(1) given a family of curves f : X → S the following are equivalent
(a) the classifying morphism S → Curves factors through Curvesprestable

g ,
(b) X → S is a prestable family of curves and R1f∗OX is a locally free

OS-module of rank g,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvesprestable

g ,
(b) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X, OX),

and the genus of X is g.

Proof. Since we have seen that Curvesprestable is contained in Curvesh0,1, this fol-
lows from Lemmas 20.2 and 9.4. □

Lemma 20.4.0E6W The morphisms Curvesprestable → Spec(Z) and Curvesprestable
g →

Spec(Z) are smooth.

Proof. Since Curvesprestable is an open substack of Curvesnodal this follows from
Lemma 18.2. □

21. Semistable curves

0E6X The following lemma will help us understand families of semistable curves.

Lemma 21.1.0E6Y Let f : X → S be a prestable family of curves of genus g ≥ 1. Let
s ∈ S be a point of the base scheme. Let m ≥ 2. The following are equivalent

(1) Xs does not have a rational tail (Algebraic Curves, Example 22.1), and
(2) f∗f∗ω⊗m

X/S → ω⊗m
X/S, is surjective over f−1(U) for some s ∈ U ⊂ S open.

Proof. Assume (2). Using the material in Section 19 we conclude that ω⊗m
Xs

is
globally generated. However, if C ⊂ Xs is a rational tail, then deg(ωXs

|C) < 0 by
Algebraic Curves, Lemma 22.2 hence H0(C, ωXs

|C) = 0 by Varieties, Lemma 44.12
which contradicts the fact that it is globally generated. This proves (1).

Assume (1). First assume that g ≥ 2. Assumption (1) implies ω⊗m
Xs

is globally
generated, see Algebraic Curves, Lemma 22.6. Moreover, we have

Homκ(s)(H1(Xs, ω⊗m
Xs

), κ(s)) = H0(Xs, ω⊗1−m
Xs

)

by duality, see Algebraic Curves, Lemma 4.2. Since ω⊗m
Xs

is globally generated
we find that the restriction to each irreducible component has nonegative degree.
Hence the restriction of ω⊗1−m

Xs
to each irreducible component has nonpositive de-

gree. Since deg(ω⊗1−m
Xs

) = (1 − m)(2g − 2) < 0 by Riemann-Roch (Algebraic

https://stacks.math.columbia.edu/tag/0E6V
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Curves, Lemma 5.2) we conclude that the H0 is zero by Varieties, Lemma 44.13.
By cohomology and base change we conclude that

E = Rf∗ω⊗m
X/S

is a perfect complex whose formation commutes with arbitrary base change (Derived
Categories of Spaces, Lemma 25.4). The vanishing proved above tells us that
E ⊗L κ(s) is equal to H0(Xs, ω⊗m

Xs
) placed in degree 0. After shrinking S we

find E = f∗ω⊗m
X/S is a locally free OS-module placed in degree 0 (and its formation

commutes with arbitrary base change as we’ve already said), see Derived Categories
of Spaces, Lemma 26.5. The map f∗f∗ω⊗m

X/S → ω⊗m
X/S is surjective after restricting

to Xs. Thus it is surjective in an open neighbourhood of Xs. Since f is proper,
this open neighbourhood contains f−1(U) for some open neighbourhood U of s in
S.

Assume (1) and g = 1. By Algebraic Curves, Lemma 22.6 the assumption (1)
means that ωXs is isomorphic to OXs . If we can show that after shrinking S the
invertible sheaf ωX/S because trivial, then we are done. We may assume S is affine.
After shrinking S further, we can write

Rf∗OX = (OS
0−→ OS)

sitting in degrees 0 and 1 compatibly with further base change, see Lemma 9.3. By
duality this means that

Rf∗ωX/S = (OS
0−→ OS)

sitting in degrees 0 and 13. In particular we obtain an isomorphism OS → f∗ωX/S

which is compatible with base change since formation of Rf∗ωX/S is compatible
with base change (see reference given above). By adjointness, we get a global
section σ ∈ Γ(X, ωX/S). The restriction of this section to the fibre Xs is nonzero
(a basis element in fact) and as ωXs

is trivial on the fibres, this section is nonwhere
zero on Xs. Thus it nowhere zero in an open neighbourhood of Xs. Since f is
proper, this open neighbourhood contains f−1(U) for some open neighbourhood U
of s in S. □

Motivated by Lemma 21.1 we make the following definition.

Definition 21.2.0E6Z Let f : X → S be a family of curves. We say f is a semistable
family of curves if

(1) X → S is a prestable family of curves, and
(2) Xs has genus ≥ 1 and does not have a rational tail for all s ∈ S.

In particular, a prestable family of curves of genus 0 is never semistable. Let X be
a proper scheme over a field k with dim(X) ≤ 1. Then X → Spec(k) is a family
of curves and hence we can ask whether or not it is semistable. Unwinding the
definitions we see the following are equivalent

(1) X is semistable,
(2) X is prestable, has genus ≥ 1, and does not have a rational tail,

3Use that Rf∗ω•
X/S

= Rf∗R HomOX
(OX .ω•

X/S
) = R HomOS

(Rf∗OX , OS) by Duality for
Spaces, Lemma 3.3 and Remark 3.5 and then that ω•

X/S
= ωX/S [1] by our definitions in Section

19.
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MODULI OF CURVES 24

(3) Xk is connected, is smooth over k apart from a finite number of nodes,
has genus ≥ 1, and has no irreducible component isomorphic to P1

k
which

meets the rest of Xk in only one point.
To see the equivalence of (2) and (3) use that X has no rational tails if and only
if Xk has no rational tails by Algebraic Curves, Lemma 22.6. This shows that our
definition agrees with most definitions one finds in the literature.

Lemma 21.3.0E70 There exist an open substack Curvessemistable ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvessemistable,
(b) X → S is a semistable family of curves,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvessemistable,
(b) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X, OX),

the genus of X is ≥ 1, and X has no rational tails,
(c) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X, OX),

and ω⊗m
Xs

is globally generated for m ≥ 2.

Proof. The equivalence of (2)(b) and (2)(c) is Algebraic Curves, Lemma 22.6. In
the rest of the proof we will work with (2)(b) in accordance with Definition 21.2.
By the discussion in Section 6 it suffices to look at families f : X → S of prestable
curves. By Lemma 21.1 we obtain the desired openness of the locus in ques-
tion. Formation of this open commutes with arbitrary base change, because the
(non)existence of rational tails is insensitive to ground field extensions by Algebraic
Curves, Lemma 22.6. □

Lemma 21.4.0E71 There is a decomposition into open and closed substacks

Curvessemistable =
∐

g≥1
Curvessemistable

g

where each Curvessemistable
g is characterized as follows:

(1) given a family of curves f : X → S the following are equivalent
(a) the classifying morphism S → Curves factors through Curvessemistable

g ,
(b) X → S is a semistable family of curves and R1f∗OX is a locally free

OS-module of rank g,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvessemistable

g ,
(b) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X, OX),

the genus of X is g, and X has no rational tail,
(c) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X, OX),

the genus of X is g, and ω⊗m
Xs

is globally generated for m ≥ 2.

Proof. Combine Lemmas 21.3 and 20.3. □

Lemma 21.5.0E72 The morphisms Curvessemistable → Spec(Z) and Curvessemistable
g →

Spec(Z) are smooth.

Proof. Since Curvessemistable is an open substack of Curvesnodal this follows from
Lemma 18.2. □
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22. Stable curves

0E73 The following lemma will help us understand families of stable curves.

Lemma 22.1.0E74 Let f : X → S be a prestable family of curves of genus g ≥ 2. Let
s ∈ S be a point of the base scheme. The following are equivalent

(1) Xs does not have a rational tail and does not have a rational bridge (Alge-
braic Curves, Examples 22.1 and 23.1), and

(2) ωX/S is ample on f−1(U) for some s ∈ U ⊂ S open.

Proof. Assume (2). Then ωXs
is ample on Xs. By Algebraic Curves, Lemmas

22.2 and 23.2 we conclude that (1) holds (we also use the characterization of ample
invertible sheaves in Varieties, Lemma 44.15).
Assume (1). Then ωXs is ample on Xs by Algebraic Curves, Lemmas 23.6. We
conclude by Descent on Spaces, Lemma 13.2. □

Motivated by Lemma 22.1 we make the following definition.

Definition 22.2.0E75 Let f : X → S be a family of curves. We say f is a stable family
of curves if

(1) X → S is a prestable family of curves, and
(2) Xs has genus ≥ 2 and does not have a rational tails or bridges for all s ∈ S.

In particular, a prestable family of curves of genus 0 or 1 is never stable. Let X be
a proper scheme over a field k with dim(X) ≤ 1. Then X → Spec(k) is a family of
curves and hence we can ask whether or not it is stable. Unwinding the definitions
we see the following are equivalent

(1) X is stable,
(2) X is prestable, has genus ≥ 2, does not have a rational tail, and does not

have a rational bridge,
(3) X is geometrically connected, is smooth over k apart from a finite number

of nodes, and ωX is ample.
To see the equivalence of (2) and (3) use Lemma 22.1 above. This shows that our
definition agrees with most definitions one finds in the literature.

Lemma 22.3.0E76 There exist an open substack Curvesstable ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesstable,
(b) X → S is a stable family of curves,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k) → Curves factors through Curvesstable,
(b) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X, OX),

the genus of X is ≥ 2, and X has no rational tails or bridges,
(c) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X, OX),

and ωXs
is ample.

Proof. By the discussion in Section 6 it suffices to look at families f : X → S
of prestable curves. By Lemma 22.1 we obtain the desired openness of the locus
in question. Formation of this open commutes with arbitrary base change, either
because the (non)existence of rational tails or bridges is insensitive to ground field
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extensions by Algebraic Curves, Lemmas 22.6 and 23.6 or because ampleness is
insenstive to base field extensions by Descent, Lemma 25.6. □

Definition 22.4.0E77 [DM69]We denote M and we name the moduli stack of stable curves
the algebraic stack Curvesstable parametrizing stable families of curves introduced
in Lemma 22.3. For g ≥ 2 we denote Mg and we name the moduli stack of stable
curves of genus g the algebraic stack introduced in Lemma 22.5.
Here is the obligatory lemma.
Lemma 22.5.0E78 There is a decomposition into open and closed substacks

M =
∐

g≥2
Mg

where each Mg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Mg,
(b) X → S is a stable family of curves and R1f∗OX is a locally free OS-

module of rank g,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k) → Curves factors through Mg,
(b) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X, OX),

the genus of X is g, and X has no rational tails or bridges.
(c) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X, OX),

the genus of X is g, and ωXs is ample.
Proof. Combine Lemmas 22.3 and 20.3. □

Lemma 22.6.0E79 The morphisms M → Spec(Z) and Mg → Spec(Z) are smooth.

Proof. Since M is an open substack of Curvesnodal this follows from Lemma 18.2.
□

Lemma 22.7.0E7A The stacks M and Mg are open substacks of CurvesDM . In par-
ticular, M and Mg are DM (Morphisms of Stacks, Definition 4.2) as well as
Deligne-Mumford stacks (Algebraic Stacks, Definition 12.2).
Proof. Proof of the first assertion. Let X be a scheme proper over a field k
whose singularities are at-worst-nodal, dim(X) = 1, k = H0(X, OX), the genus
of X is ≥ 2, and X has no rational tails or bridges. We have to show that the
classifying morphism Spec(k) → M → Curves factors through CurvesDM . We may
first replace k by the algebraic closure (since we already know the relevant stacks
are open substacks of the algebraic stack Curves). By Lemmas 22.3, 7.3, and 7.4
it suffices to show that Derk(OX , OX) = 0. This is proven in Algebraic Curves,
Lemma 25.3.
Since CurvesDM is the maximal open substack of Curves which is DM, we see this
is true also for the open substack M of CurvesDM . Finally, a DM algebraic stack
is Deligne-Mumford by Morphisms of Stacks, Theorem 21.6. □

Lemma 22.8.0E87 Let g ≥ 2. The inclusion

|Mg| ⊂ |Mg|
is that of an open dense subset.
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Proof. Since Mg ⊂ Curveslci+ is open and since Curvessmooth ∩ Mg = Mg this
follows immediately from Lemma 17.1. □

23. Contraction morphisms

0E7B We urge the reader to familiarize themselves with Algebraic Curves, Sections 22,
23, and 24 before continuing here. The main result of this section is the existence
of a “stabilization” morphism

Curvesprestable
g −→ Mg

See Lemma 23.5. Loosely speaking, this morphism sends the moduli point of a
nodal genus g curve to the moduli point of the associated stable curve constructed
in Algebraic Curves, Lemma 24.2.

Lemma 23.1.0E88 Let S be a scheme and s ∈ S a point. Let f : X → S and g : Y → S
be families of curves. Let c : X → Y be a morphism over S. If cs,∗OXs

= OYs

and R1cs,∗OXs = 0, then after replacing S by an open neighbourhood of s we have
OY = c∗OX and R1c∗OX = 0 and this remains true after base change by any
morphism S′ → S.

Proof. Let (U, u) → (S, s) be an étale neighbourhood such that OYU
= (XU →

YU )∗OXU
and R1(XU → YU )∗OXU

= 0 and the same is true after base change by
U ′ → U . Then we replace S by the open image of U → S. Given S′ → S we set
U ′ = U ×S S′ and we obtain étale coverings {U ′ → S′} and {YU ′ → YS′}. Thus the
truth of the statement for the base change of c by S′ → S follows from the truth
of the statement for the base change of XU → YU by U ′ → U . In other words, the
question is local in the étale topology on S. Thus by Lemma 4.3 we may assume
X and Y are schemes. By More on Morphisms, Lemma 72.7 there exists an open
subscheme V ⊂ Y containing Ys such that c∗OX |V = OV and R1c∗OX |V = 0 and
such that this remains true after any base change by S′ → S. Since g : Y → S
is proper, we can find an open neighbourhood U ⊂ S of s such that g−1(U) ⊂ V .
Then U works. □

Lemma 23.2.0E89 Let S be a scheme and s ∈ S a point. Let f : X → S and
gi : Yi → S, i = 1, 2 be families of curves. Let ci : X → Yi be morphisms over S.
Assume there is an isomorphism Y1,s

∼= Y2,s of fibres compatible with c1,s and c2,s.
If c1,s,∗OXs

= OY1,s
and R1c1,s,∗OXs

= 0, then there exist an open neighbourhood
U of s and an isomorphism Y1,U

∼= Y2,U of families of curves over U compatible
with the given isomorphism of fibres and with c1 and c2.

Proof. Recall that OS,s = colim OS(U) where the colimit is over the system of
affine neighbourhoods U of s. Thus the category of algebraic spaces of finite pre-
sentation over the local ring is the colimit of the categories of algebraic spaces
of finite presentation over the affine neighbourhoods of s. See Limits of Spaces,
Lemma 7.1. In this way we reduce to the case where S is the spectrum of a local
ring and s is the closed point.
Assume S = Spec(A) where A is a local ring and s is the closed point. Write
A = colim Aj with Aj local Noetherian (say essentially of finite type over Z) and
local transition homomorphisms. Set Sj = Spec(Aj) with closed point sj . We
can find a j and families of curves Xj → Sj , Yj,i → Sj , see Lemma 5.3 and
Limits of Stacks, Lemma 3.5. After possibly increasing j we can find morphisms
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cj,i : Xj → Yj,i whose base change to s is ci, see Limits of Spaces, Lemma 7.1. Since
κ(s) = colim κ(sj) we can similarly assume there is an isomorphism Yj,1,sj

∼= Yj,2,sj

compatible with cj,1,sj and cj,2,sj . Finally, the assumptions c1,s,∗OXs = OY1,s and
R1c1,s,∗OXs = 0 are inherited by cj,1,sj because {sj → s} is an fpqc covering and
c1,s is the base of cj,1,sj

by this covering (details omitted). In this way we reduce
the lemma to the case discussed in the next paragraph.
Assume S is the spectrum of a Noetherian local ring Λ and s is the closed point.
Consider the scheme theoretic image Z of

(c1, c2) : X −→ Y1 ×S Y2

The statement of the lemma is equivalent to the assertion that Z maps isomorphi-
cally to Y1 and Y2 via the projection morphisms. Since taking the scheme theoretic
image of this morphism commutes with flat base change (Morphisms of Spaces,
Lemma 30.12, we may replace Λ by its completion (More on Algebra, Section 43).
Assume S is the spectrum of a complete Noetherian local ring Λ. Observe that
X, Y1, Y2 are schemes in this case (More on Morphisms of Spaces, Lemma 43.6).
Denote Xn, Y1,n, Y2,n the base changes of X, Y1, Y2 to Spec(Λ/mn+1). Recall that
the arrow

Def Xs→Y2,s

∼= Def Xs→Y1,s
−→ Def Xs

is an equivalence, see Deformation Problems, Lemma 10.6. Thus there is an iso-
morphism of formal objects (Xn → Y1,n) ∼= (Xn → Y2,n) of Def Xs→Y1,s

. Finally,
by Grothendieck’s algebraization theorem (Cohomology of Schemes, Lemma 28.3)
this produces an isomorphism Y1 → Y2 compatible with c1 and c2. □

Lemma 23.3.0E7C Let f : X → S be a family of curves. Let s ∈ S be a point. Let
h0 : Xs → Y0 be a morphism to a proper scheme Y0 over κ(s) such that h0,∗OXs

=
OY0 and R1h0,∗OXs

= 0. Then there exist an elementary étale neighbourhood
(U, u) → (S, s), a family of curves Y → U , and a morphism h : XU → Y over U
whose fibre in u is isomorphic to h0.

Proof. We first do some reductions; we urge the reader to skip ahead. The question
is local on S, hence we may assume S is affine. Write S = lim Si as a cofiltered
limit of affine schemes Si of finite type over Z. For some i we can find a family
of curves Xi → Si whose base change is X → S. This follows from Lemma 5.3
and Limits of Stacks, Lemma 3.5. Let si ∈ Si be the image of s. Observe that
κ(s) = colim κ(si) and that Xs is a scheme (Spaces over Fields, Lemma 9.3). After
increasing i we may assume there exists a morphism hi,0 : Xi,si

→ Yi of finite type
schemes over κ(si) whose base change to κ(s) is h0, see Limits, Lemma 10.1. After
increasing i we may assume Yi is proper over κ(si), see Limits, Lemma 13.1. Let
gi,0 : Y0 → Yi,0 be the projection. Observe that this is a faithfully flat morphism
as the base change of Spec(κ(s)) → Spec(κ(si)). By flat base change we have

h0,∗OXs
= g∗

i,0hi,0,∗OXi,si
and R1h0,∗OXs

= g∗
i,0Rhi,0,∗OXi,si

see Cohomology of Schemes, Lemma 5.2. By faithful flatness we see that Xi → Si,
si ∈ Si, and Xi,si

→ Yi satisfies all the assumptions of the lemma. This reduces us
to the case discussed in the next paragraph.
Assume S is affine of finite type over Z. Let Oh

S,s be the henselization of the local
ring of S at s. Observe that Oh

S,s is a G-ring by More on Algebra, Lemma 50.8 and
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Proposition 50.12. Suppose we can construct a family of curves Y ′ → Spec(Oh
S,s)

and a morphism
h′ : X ×S Spec(Oh

S,s) −→ Y ′

over Spec(Oh
S,s) whose base change to the closed point is h0. This will be enough.

Namely, first we use that

Oh
S,s = colim(U,u) OU (U)

where the colimit is over the filtered category of elementary étale neighbourhoods
(More on Morphisms, Lemma 35.5). Next, we use again that given Y ′ we can
descend it to Y → U for some U (see references given above). Then we use Limits,
Lemma 10.1 to descend h′ to some h. This reduces us to the case discussed in the
next paragraph.

Assume S = Spec(Λ) where (Λ,m, κ) is a henselian Noetherian local G-ring and s
is the closed point of S. Recall that the map

Def Xs→Y0 → Def Xs

is an equivalence, see Deformation Problems, Lemma 10.6. (This is the only im-
portant step in the proof; everything else is technique.) Denote Λ∧ the m-adic
completion. The pullbacks Xn of X to Λ/mn+1 define a formal object ξ of Def Xs

over Λ∧. From the equivalence we obtain a formal object ξ′ of Def Xs→Y0 over Λ∧.
Thus we obtain a huge commutative diagram

. . . // Xn
//

��

Xn−1 //

��

. . . // Xs

��
. . . // Yn

//

��

Yn−1 //

��

. . . // Y0

��
. . . // Spec(Λ/mn+1) // Spec(Λ/mn) // . . . // Spec(κ)

The formal object (Yn) comes from a family of curves Y ′ → Spec(Λ∧) by Quot,
Lemma 15.9. By More on Morphisms of Spaces, Lemma 43.3 we get a morphism
h′ : XΛ∧ → Y ′ inducing the given morphisms Xn → Yn for all n and in particular
the given morphism Xs → Y0.

To finish we do a standard algebraization/approximation argument. First, we ob-
serve that we can find a finitely generated Λ-subalgebra Λ ⊂ A ⊂ Λ∧, a family of
curves Y ′′ → Spec(A) and a morphism h′′ : XA → Y ′′ over A whose base change to
Λ∧ is h′. This is true because Λ∧ is the filtered colimit of these rings A and we can
argue as before using that Curves is locally of finite presentation (which gives us Y ′′

over A by Limits of Stacks, Lemma 3.5) and using Limits of Spaces, Lemma 7.1 to
descend h′ to some h′′. Then we can apply the approximation property for G-rings
(in the form of Smoothing Ring Maps, Theorem 13.1) to find a map A → Λ which
induces the same map A → κ as we obtain from A → Λ∧. Base changing h′′ to Λ
the proof is complete. □

Lemma 23.4.0E8A Let f : X → S be a prestable family of curves of genus g ≥ 2.
There is a factorization X → Y → S of f where g : Y → S is a stable family of
curves and c : X → Y has the following properties
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(1) OY = c∗OX and R1c∗OX = 0 and this remains true after base change by
any morphism S′ → S, and

(2) for any s ∈ S the morphism cs : Xs → Ys is the contraction of rational
tails and bridges discussed in Algebraic Curves, Section 24.

Moreover c : X → Y is unique up to unique isomorphism.

Proof. Let s ∈ S. Let c0 : Xs → Y0 be the contraction of Algebraic Curves,
Section 24 (more precisely Algebraic Curves, Lemma 24.2). By Lemma 23.3 there
exists an elementary étale neighbourhood (U, u) and a morphism c : XU → Y of
families of curves over U which recovers c0 as the fibre at u. Since ωY0 is ample,
after possibly shrinking U , we see that Y → U is a stable family of genus g by the
openness inherent in Lemmas 22.3 and 22.5. After possibly shrinking U once more,
assertion (1) of the lemma for c : XU → Y follows from Lemma 23.1. Moreover,
part (2) holds by the uniqueness in Algebraic Curves, Lemma 24.2. We conclude
that a morphism c as in the lemma exists étale locally on S. More precisely, there
exists an étale covering {Ui → S} and morphisms ci : XUi

→ Yi over Ui where
Yi → Ui is a stable family of curves having properties (1) and (2) stated in the
lemma.

To finish the proof it suffices to prove uniqueness of c : X → Y (up to unique
isomorphism). Namely, once this is done, then we obtain isomorphisms

φij : Yi ×Ui
(Ui ×S Uj) −→ Yi ×Uj

(Ui ×S Uj)

satisfying the cocycle condition (by uniqueness) over Ui × Uj × Uk. Since Mg is an
algebraic stack, we have effectiveness of descent data and we obtain Y → S. The
morphisms ci descend to a morphism c : X → Y over S. Finally, properties (1)
and (2) for c are immediate from properties (1) and (2) for ci.

Finally, if c1 : X → Yi, i = 1, 2 are two morphisms towards stably families of curves
over S satisfying (1) and (2), then we obtain a morphism Y1 → Y2 compatible with
c1 and c2 at least locally on S by Lemma 23.3. We omit the verification that these
morphisms are unique (hint: this follows from the fact that the scheme theoretic
image of c1 is Y1). Hence these locally given morphisms glue and the proof is
complete. □

Lemma 23.5.0E8B Let g ≥ 2. There is a morphism of algebraic stacks over Z

stabilization : Curvesprestable
g −→ Mg

which sends a prestable family of curves X → S of genus g to the stable family
Y → S asssociated to it in Lemma 23.4.

Proof. To see this is true, it suffices to check that the construction of Lemma 23.4
is compatible with base change (and isomorphisms but that’s immediate), see the
(abuse of) language for algebraic stacks introduced in Properties of Stacks, Section
2. To see this it suffices to check properties (1) and (2) of Lemma 23.4 are stable
under base change. This is immediately clear for (1). For (2) this follows either
from the fact that the contractions of Algebraic Curves, Lemmas 22.6 and 23.6 are
stable under ground field extensions, or because the conditions characterizing the
morphisms on fibres in Algebraic Curves, Lemma 24.2 are preserved under ground
field extensions. □
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24. Stable reduction theorem

0E8C In the chapter on semistable reduction we have proved the celebrated theorem on
semistable reduction of curves. Let K be the fraction field of a discrete valuation
ring R. Let C be a projective smooth curve over K with K = H0(C, OC). Accord-
ing to Semistable Reduction, Definition 14.6 we say C has semistable reduction if
either there is a prestable family of curves over R with generic fibre C, or some
(equivalently any) minimal regular model of C over R is prestable. In this section
we show that for curves of genus g ≥ 2 this is also equivalent to stable reduction.

Lemma 24.1.0E8D Let R be a discrete valuation ring with fraction field K. Let C be
a smooth projective curve over K with K = H0(C, OC) having genus g ≥ 2. The
following are equivalent

(1) C has semistable reduction (Semistable Reduction, Definition 14.6), or
(2) there is a stable family of curves over R with generic fibre C.

Proof. Since a stable family of curves is also prestable, it is immediate that (2)
implies (1). Conversely, given a prestable family of curves over R with generic fibre
C, we can contract it to a stable family of curves by Lemma 23.4. Since the generic
fibre already is stable, it does not get changed by this procedure and the proof is
complete. □

The following lemma tells us the stable family of curves over R promised in Lemma
24.1 is unique up to unique isomorphism.

Lemma 24.2.0E97 Let R be a discrete valuation ring with fraction field K. Let C be
a smooth proper curve over K with K = H0(C, OC) and genus g. If X and X ′ are
models of C (Semistable Reduction, Section 8) and X and X ′ are stable families of
genus g curves over R, then there exists an unique isomorphism X → X ′ of models.

Proof. Let Y be the minimal model for C. Recall that Y exists, is unique, and is at-
worst-nodal of relative dimension 1 over R, see Semistable Reduction, Proposition
8.6 and Lemmas 10.1 and 14.5 (applies because we have X). There is a contraction
morphism

Y −→ Z

such that Z is a stable family of curves of genus g over R (Lemma 23.4). We claim
there is a unique isomorphism of models X → Z. By symmetry the same is true
for X ′ and this will finish the proof.
By Semistable Reduction, Lemma 14.3 there exists a sequence

Xm → . . . → X1 → X0 = X

such that Xi+1 → Xi is the blowing up of a closed point xi where Xi is singular,
Xi → Spec(R) is at-worst-nodal of relative dimension 1, and Xm is regular. By
Semistable Reduction, Lemma 8.5 there is a sequence

Xm = Yn → Yn−1 → . . . → Y1 → Y0 = Y

of proper regular models of C, such that each morphism is a contraction of an
exceptional curve of the first kind4. By Semistable Reduction, Lemma 14.4 each
Yi is at-worst-nodal of relative dimension 1 over R. To prove the claim it suffices

4In fact we have Xm = Y , i.e., Xm does not contain any exceptional curves of the first kind.
We encourage the reader to think this through as it simplifies the proof somewhat.
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to show that there is an isomorphism X → Z compatible with the morphisms
Xm → X and Xm = Yn → Y → Z. Let s ∈ Spec(R) be the closed point. By either
Lemma 23.2 or Lemma 23.4 we reduce to proving that the morphisms Xm,s → Xs

and Xm,s → Zs are both equal to the canonical morphism of Algebraic Curves,
Lemma 24.2.
For a morphism c : U → V of schemes over κ(s) we say c has property (*) if
dim(Uv) ≤ 1 for v ∈ V , OV = c∗OU , and R1c∗OU = 0. This property is stable
under composition. Since both Xs and Zs are stable genus g curves over κ(s),
it suffices to show that each of the morphisms Ys → Zs, Xi+1,s → Xi,s, and
Yi+1,s → Yi,s, satisfy property (*), see Algebraic Curves, Lemma 24.2.
Property (*) holds for Ys → Zs by construction.
The morphisms c : Xi+1,s → Xi,s are constructed and studied in the proof of
Semistable Reduction, Lemma 14.3. It suffices to check (*) étale locally on Xi,s.
Hence it suffices to check (*) for the base change of the morphism “X1 → X0” in
Semistable Reduction, Example 14.1 to R/πR. We leave the explicit calculation to
the reader.
The morphism c : Yi+1,s → Yi,s is the restriction of the blow down of an exceptional
curve E ⊂ Yi+1 of the first kind, i.e., b : Yi+1 → Yi is a contraction of E, i.e., b is
a blowing up of a regular point on the surface Yi (Resolution of Surfaces, Section
16). Then OYi

= b∗OYi+1 and R1b∗OYi+1 = 0, see for example Resolution of
Surfaces, Lemma 3.4. We conclude that OYi,s = c∗OYi+1,s and R1c∗OYi+1,s = 0
by More on Morphisms, Lemmas 72.1, 72.2, and 72.4 (only gives surjectivity of
OYi,s

→ c∗OYi+1,s
but injectivity follows easily from the fact that Yi,s is reduced

and c changes things only over one closed point). This finishes the proof. □

From Lemma 24.1 and Semistable Reduction, Theorem 18.1 we immediately deduce
the stable reduction theorem.

Theorem 24.3.0E98 [DM69, Corollary
2.7]

Let R be a discrete valuation ring with fraction field K. Let C

be a smooth projective curve over K with H0(C, OC) = K and genus g ≥ 2. Then
(1) there exists an extension of discrete valuation rings R ⊂ R′ inducing a

finite separable extension of fraction fields K ′/K and a stable family of
curves Y → Spec(R′) of genus g with YK′ ∼= CK′ over K ′, and

(2) there exists a finite separable extension L/K and a stable family of curves
Y → Spec(A) of genus g where A ⊂ L is the integral closure of R in L such
that YL

∼= CL over L.

Proof. Part (1) is an immediate consequence of Lemma 24.1 and Semistable Re-
duction, Theorem 18.1.
Proof of (2). Let L/K be the finite separable extension found in part (3) of
Semistable Reduction, Theorem 18.1. Let A ⊂ L be the integral closure of R. Re-
call that A is a Dedekind domain finite over R with finitely many maximal ideals
m1, . . . ,mn, see More on Algebra, Remark 111.6. Set S = Spec(A), Si = Spec(Ami

),
U = Spec(L), and Ui = Si \ {mi}. Observe that U ∼= Ui for i = 1, . . . , n. Set
X = CL viewed as a scheme over the open subscheme U of S. By our choice
of L and A and Lemma 24.1 we have stable families of curves Xi → Si and iso-
morphisms X ×U Ui

∼= Xi ×Si
Ui. By Limits of Spaces, Lemma 18.4 we can find

a finitely presented morphism Y → S whose base change to Si is isomorphic to
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Xi for i = 1, . . . , n. Alternatively, you can use that S =
⋃

i=1,...,n Si is an open
covering of S and Si ∩ Sj = U for i ̸= j and use n − 1 applications of Limits of
Spaces, Lemma 18.1 to get Y → S whose base change to Si is isomorphic to Xi for
i = 1, . . . , n. Clearly Y → S is the stable family of curves we were looking for. □

25. Properties of the stack of stable curves

0E99 In this section we prove the basic structure result for Mg for g ≥ 2.

Lemma 25.1.0E9A Let g ≥ 2. The stack Mg is separated.

Proof. The statement means that the morphism Mg → Spec(Z) is separated. We
will prove this using the refined Noetherian valuative criterion as stated in More
on Morphisms of Stacks, Lemma 11.4
Since Mg is an open substack of Curves, we see Mg → Spec(Z) is quasi-separated
and locally of finite presentation by Lemma 5.3. In particular the stack Mg is locally
Noetherian (Morphisms of Stacks, Lemma 17.5). By Lemma 22.8 the open immer-
sion Mg → Mg has dense image. Also, Mg → Mg is quasi-compact (Morphisms
of Stacks, Lemma 8.2), hence of finite type. Thus all the preliminary assumptions
of More on Morphisms of Stacks, Lemma 11.4 are satisfied for the morphisms

Mg → Mg and Mg → Spec(Z)
and it suffices to check the following: given any 2-commutative diagram

Spec(K) //

��

Mg
//Mg

��
Spec(R) //

55

Spec(Z)

where R is a discrete valuation ring with field of fractions K the category of dotted
arrows is either empty or a setoid with exactly one isomorphism class. (Observe that
we don’t need to worry about 2-arrows too much, see Morphisms of Stacks, Lemma
39.3). Unwinding what this means using that Mg, resp. Mg are the algebraic
stacks parametrizing smooth, resp. stable families of genus g curves, we find that
what we have to prove is exactly the uniqueness result stated and proved in Lemma
24.2. □

Lemma 25.2.0E9B Let g ≥ 2. The stack Mg is quasi-compact.

Proof. We will use the notation from Section 4. Consider the subset
T ⊂ |PolarizedCurves|

of points ξ such that there exists a field k and a pair (X, L) over k representing ξ
with the following two properties

(1) X is a stable genus g curve, and
(2) L = ω⊗3

X .
Clearly, under the continuous map

|PolarizedCurves| −→ |Curves|
the image of the set T is exactly the open subset

|Mg| ⊂ |Curves|
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Thus it suffices to show that T is quasi-compact. By Lemma 4.1 we see that
|PolarizedCurves| ⊂ |Polarized|

is an open and closed immersion. Thus it suffices to prove quasi-compactness of T
as a subset of |Polarized|. For this we use the criterion of Moduli Stacks, Lemma
11.3. First, we observe that for (X, L) as above the Hilbert polynomial P is the
function P (t) = (6g −6)t+(1−g) by Riemann-Roch, see Algebraic Curves, Lemma
5.2. Next, we observe that H1(X, L) = 0 and L is very ample by Algebraic Curves,
Lemma 24.3. This means exactly that with n = P (3)−1 there is a closed immersion

i : X −→ Pn
k

such that L = i∗OP1
k
(1) as desired. □

Here is the main theorem of this section.

Theorem 25.3.0E9C Let g ≥ 2. The algebraic stack Mg is a Deligne-Mumford stack,
proper and smooth over Spec(Z). Moreover, the locus Mg parametrizing smooth
curves is a dense open substack.

Proof. Most of the properties mentioned in the statement have already been
shown. Smoothness is Lemma 22.6. Deligne-Mumford is Lemma 22.7. Open-
ness of Mg is Lemma 22.8. We know that Mg → Spec(Z) is separated by Lemma
25.1 and we know that Mg is quasi-compact by Lemma 25.2. Thus, to show that
Mg → Spec(Z) is proper and finish the proof, we may apply More on Morphisms
of Stacks, Lemma 11.3 to the morphisms Mg → Mg and Mg → Spec(Z). Thus it
suffices to check the following: given any 2-commutative diagram

Spec(K) //

j

��

Mg
//Mg

��
Spec(A) // Spec(Z)

where A is a discrete valuation ring with field of fractions K, there exist an extension
K ′/K of fields, a valuation ring A′ ⊂ K ′ dominating A such that the category of
dotted arrows for the induced diagram

Spec(K ′) //

j′

��

Mg

��
Spec(A′) //

99

Spec(Z)

is nonempty (Morphisms of Stacks, Definition 39.1). (Observe that we don’t need to
worry about 2-arrows too much, see Morphisms of Stacks, Lemma 39.3). Unwinding
what this means using that Mg, resp. Mg are the algebraic stacks parametrizing
smooth, resp. stable families of genus g curves, we find that what we have to prove is
exactly the result contained in the stable reduction theorem, i.e., Theorem 24.3. □
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