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1. Introduction

0DLU In this chapter we verify basic properties of moduli spaces and moduli stacks
such as Hom, Isom, CohX/B , QuotF/X/B , HilbX/B , PicX/B , PicX/B , MorB(Z, X),
Spaces′

fp,flat,proper, Polarized, and ComplexesX/B . We have already shown these
algebraic spaces or algebraic stacks under suitable hypotheses, see Quot, Sections
3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, and 16. The stack of curves, denoted Curves and
introduced in Quot, Section 15, is discussed in the chapter on moduli of curves, see
Moduli of Curves, Section 3.

In some sense this chapter is following the footsteps of Grothendieck’s lectures
[Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c], and [Gro95d].

2. Conventions and abuse of language

0DLV We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 2. Unless otherwise mentioned our base scheme will be
Spec(Z).

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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3. Properties of Hom and Isom

0DLW Let f : X → B be a morphism of algebraic spaces which is of finite presentation.
Assume F and G are quasi-coherent OX -modules. If G is of finite presentation, flat
over B with support proper over B, then the functor Hom(F , G) defined by

T/B 7−→ HomOXT
(FT , GT )

is an algebraic space affine over B. If F is of finite presentation, then Hom(F , G) →
B is of finite presentation. See Quot, Proposition 3.10.
If both F and G are of finite presentation, flat over B with support proper over B,
then the subfunctor

Isom(F , G) ⊂ Hom(F , G)
is an algebraic space affine of finite presentation over B. See Quot, Proposition 4.3.

4. Properties of the stack of coherent sheaves

0DLX Let f : X → B be a morphism of algebraic spaces which is separated and of
finite presentation. Then the stack CohX/B parametrizing flat families of coherent
modules with proper support is algebraic. See Quot, Theorem 6.1.

Lemma 4.1.0DLY The diagonal of CohX/B over B is affine and of finite presentation.

Proof. The representability of the diagonal by algebraic spaces was shown in Quot,
Lemma 5.3. From the proof we find that we have to show Isom(F , G) → T is affine
and of finite presentation for a pair of finitely presented OXT

-modules F , G flat
over T with support proper over T . This was discussed in Section 3. □

Lemma 4.2.0DLZ The morphism CohX/B → B is quasi-separated and locally of finite
presentation.

Proof. To check CohX/B → B is quasi-separated we have to show that its diagonal
is quasi-compact and quasi-separated. This is immediate from Lemma 4.1. To
prove that CohX/B → B is locally of finite presentation, we have to show that
CohX/B → B is limit preserving, see Limits of Stacks, Proposition 3.8. This follows
from Quot, Lemma 5.6 (small detail omitted). □

Lemma 4.3.0DM0 Assume X → B is proper as well as of finite presentation. Then
CohX/B → B satisfies the existence part of the valuative criterion (Morphisms of
Stacks, Definition 39.10).

Proof. Taking base change, this immediately reduces to the following problem:
given a valuation ring R with fraction field K and an algebraic space X proper
over R and a coherent OXK

-module FK , show there exists a finitely presented
OX -module F flat over R whose generic fibre is FK . Observe that by Flatness on
Spaces, Theorem 4.5 any finite type quasi-coherent OX -module F flat over R is of
finite presentation. Denote j : XK → X the embedding of the generic fibre. As a
base change of the affine morphism Spec(K) → Spec(R) the morphism j is affine.
Thus j∗FK is quasi-coherent. Write

j∗FK = colim Fi

as a filtered colimit of its finite type quasi-coherent OX -submodules, see Limits of
Spaces, Lemma 9.2. Since j∗FK is a sheaf of K-vector spaces over X, it is flat
over Spec(R). Thus each Fi is flat over R as flatness over a valuation ring is the

https://stacks.math.columbia.edu/tag/0DLY
https://stacks.math.columbia.edu/tag/0DLZ
https://stacks.math.columbia.edu/tag/0DM0
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same as being torsion free (More on Algebra, Lemma 22.10) and torsion freeness
is inherited by submodules. Finally, we have to show that the map j∗Fi → FK is
an isomorphism for some i. Since j∗j∗FK = FK (small detail omitted) and since
j∗ is exact, we see that j∗Fi → FK is injective for all i. Since j∗ commutes with
colimits, we have FK = j∗j∗FK = colim j∗Fi. Since FK is coherent (i.e., finitely
presented), there is an i such that j∗Fi contains all the (finitely many) generators
over an affine étale cover of X. Thus we get surjectivity of j∗Fi → FK for i large
enough. □

Lemma 4.4.0DN9 Let B be an algebraic space. Let π : X → Y be a quasi-finite
morphism of algebraic spaces which are separated and of finite presentation over B.
Then π∗ induces a morphism CohX/B → CohY/B.

Proof. Let (T → B, F) be an object of CohX/B . We claim
(a) (T → B, πT,∗F) is an object of CohY/B and
(b) for T ′ → T we have πT ′,∗(XT ′ → XT )∗F = (YT ′ → YT )∗πT,∗F .

Part (b) guarantees that this construction defines a functor CohX/B → CohY/B as
desired.

Let i : Z → XT be the closed subspace cut out by the zeroth fitting ideal of F
(Divisors on Spaces, Section 5). Then Z → B is proper by assumption (see Derived
Categories of Spaces, Section 7). On the other hand i is of finite presentation
(Divisors on Spaces, Lemma 5.2 and Morphisms of Spaces, Lemma 28.12). There
exists a quasi-coherent OZ-module G of finite type with i∗G = F (Divisors on
Spaces, Lemma 5.3). In fact G is of finite presentation as an OZ-module by Descent
on Spaces, Lemma 6.7. Observe that G is flat over B, for example because the stalks
of G and F agree (Morphisms of Spaces, Lemma 13.6). Observe that πT ◦i : Z → YT

is quasi-finite as a composition of quasi-finite morphisms and that πT,∗F = (πT ◦
i)∗G). Since i is affine, formation of i∗ commutes with base change (Cohomology
of Spaces, Lemma 11.1). Therefore we may replace B by T , X by Z, F by G, and
Y by YT to reduce to the case discussed in the next paragraph.

Assume that X → B is proper. Then π is proper by Morphisms of Spaces, Lemma
40.6 and hence finite by More on Morphisms of Spaces, Lemma 35.1. Since a finite
morphism is affine we see that (b) holds by Cohomology of Spaces, Lemma 11.1. On
the other hand, π is of finite presentation by Morphisms of Spaces, Lemma 28.9.
Thus πT,∗F is of finite presentation by Descent on Spaces, Lemma 6.7. Finally,
πT,∗F is flat over B for example by looking at stalks using Cohomology of Spaces,
Lemma 4.2. □

Lemma 4.5.0DNA Let B be an algebraic space. Let π : X → Y be an open immersion
of algebraic spaces which are separated and of finite presentation over B. Then the
morphism CohX/B → CohY/B of Lemma 4.4 is an open immersion.

Proof. Omitted. Hint: If F is an object of CohY/B over T and for t ∈ T we have
Supp(Ft) ⊂ |Xt|, then the same is true for t′ ∈ T in a neighbourhood of t. □

Lemma 4.6.0DNB Let B be an algebraic space. Let π : X → Y be a closed immersion
of algebraic spaces which are separated and of finite presentation over B. Then the
morphism CohX/B → CohY/B of Lemma 4.4 is a closed immersion.

https://stacks.math.columbia.edu/tag/0DN9
https://stacks.math.columbia.edu/tag/0DNA
https://stacks.math.columbia.edu/tag/0DNB


MODULI STACKS 4

Proof. Let I ⊂ OY be the sheaf of ideals cutting out X as a closed subspace of
Y . Recall that π∗ induces an equivalence between the category of quasi-coherent
OX -modules and the category of quasi-coherent OY -modules annihilated by I, see
Morphisms of Spaces, Lemma 14.1. The same, mutatis mutandis, is true after base
by T → B with I replaced by the ideal sheaf IT = Im((YT → Y )∗I → OYT

).
Analyzing the proof of Lemma 4.4 we find that the essential image of CohX/B →
CohY/B is exactly the objects ξ = (T → B, F) where F is annihilated by IT . In
other words, ξ is in the essential image if and only if the multiplication map

F ⊗OYT
(YT → Y )∗I −→ F

is zero and similarly after any further base change T ′ → T . Note that
(YT ′ → YT )∗(F ⊗OYT

(YT → Y )∗I) = (YT ′ → YT )∗F ⊗OY
T ′

(YT ′ → Y )∗I)

Hence the vanishing of the multiplication map on T ′ is representable by a closed
subspace of T by Flatness on Spaces, Lemma 8.6. □

Situation 4.7 (Numerical invariants).0DNC Let f : X → B be as in the introduction
to this section. Let I be a set and for i ∈ I let Ei ∈ D(OX) be perfect. Given an
object (T → B, F) of CohX/B denote Ei,T the derived pullback of Ei to XT . The
object

Ki = RfT,∗(Ei,T ⊗L
OXT

F)
of D(OT ) is perfect and its formation commutes with base change, see Derived
Categories of Spaces, Lemma 25.1. Thus the function

χi : |T | −→ Z, χi(t) = χ(Xt, Ei,t ⊗L
OXt

Ft) = χ(Ki ⊗L
OT

κ(t))
is locally constant by Derived Categories of Spaces, Lemma 26.3. Let P : I → Z
be a map. Consider the substack

CohP
X/B ⊂ CohX/B

consisting of flat families of coherent sheaves with proper support whose numerical
invariants agree with P . More precisely, an object (T → B, F) of CohX/B is in
CohP

X/B if and only if χi(t) = P (i) for all i ∈ I and t ∈ T .

Lemma 4.8.0DND In Situation 4.7 the stack CohP
X/B is algebraic and

CohP
X/B −→ CohX/B

is a flat closed immersion. If I is finite or B is locally Noetherian, then CohP
X/B is

an open and closed substack of CohX/B.

Proof. This is immediately clear if I is finite, because the functions t 7→ χi(t) are
locally constant. If I is infinite, then we write

I =
⋃

I′⊂I finite
I ′

and we denote P ′ = P |I′ . Then we have

CohP
X/B =

⋂
I′⊂I finite

CohP ′

X/B

Therefore, CohP
X/B is always an algebraic stack and the morphism CohP

X/B ⊂ CohX/B

is always a flat closed immersion, but it may no longer be an open substack. (We
leave it to the reader to make examples). However, if B is locally Noetherian,
then so is CohX/B by Lemma 4.2 and Morphisms of Stacks, Lemma 17.5. Hence

https://stacks.math.columbia.edu/tag/0DNC
https://stacks.math.columbia.edu/tag/0DND
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if U → CohX/B is a smooth surjective morphism where U is a locally Noetherian
scheme, then the inverse images of the open and closed substacks CohP ′

X/B have
an open intersection in U (because connected components of locally Noetherian
topological spaces are open). Thus the result in this case. □

Lemma 4.9.0DNE Let f : X → B be as in the introduction to this section. Let
E1, . . . , Er ∈ D(OX) be perfect. Let I = Z⊕r and consider the map

I −→ D(OX), (n1, . . . , nr) 7−→ E⊗n1
1 ⊗ . . . ⊗ E⊗nr

r

Let P : I → Z be a map. Then CohP
X/B ⊂ CohX/B as defined in Situation 4.7 is an

open and closed substack.

Proof. We may work étale locally on B, hence we may assume that B is affine.
In this case we may perform absolute Noetherian reduction; we suggest the reader
skip the proof. Namely, say B = Spec(Λ). Write Λ = colim Λi as a filtered colimit
with each Λi of finite type over Z. For some i we can find a morphism of algebraic
spaces Xi → Spec(Λi) which is separated and of finite presentation and whose
base change to Λ is X. See Limits of Spaces, Lemmas 7.1 and 6.9. Then after
increasing i we may assume there exist perfect objects E1,i, . . . , Er,i in D(OXi

)
whose derived pullback to X are isomorphic to E1, . . . , Er, see Derived Categories
of Spaces, Lemma 24.3. Clearly we have a cartesian square

CohP
X/B

//

��

CohX/B

��
CohP

Xi/ Spec(Λi)
// CohXi/ Spec(Λi)

and hence we may appeal to Lemma 4.8 to finish the proof. □

Example 4.10 (Coherent sheaves with fixed Hilbert polynomial).0DNF Let f : X → B
be as in the introduction to this section. Let L be an invertible OX -module. Let
P : Z → Z be a numerical polynomial. Then we can consider the open and closed
algebraic substack

CohP
X/B = CohP,L

X/B ⊂ CohX/B

consisting of flat families of coherent sheaves with proper support whose numerical
invariants agree with P : an object (T → B, F) of CohX/B lies in CohP

X/B if and only
if

P (n) = χ(Xt, Ft ⊗OXt
L⊗n

t )

for all n ∈ Z and t ∈ T . Of course this is a special case of Situation 4.7 where
I = Z → D(OX) is given by n 7→ L⊗n. It follows from Lemma 4.9 that this is an
open and closed substack. Since the functions n 7→ χ(Xt, Ft ⊗OXt

L⊗n
t ) are always

numerical polynomials (Spaces over Fields, Lemma 18.1) we conclude that

CohX/B =
∐

P numerical polynomial
CohP

X/B

is a disjoint union decomposition.

https://stacks.math.columbia.edu/tag/0DNE
https://stacks.math.columbia.edu/tag/0DNF
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5. Properties of Quot

0DM1 Let f : X → B be a morphism of algebraic spaces which is separated and of
finite presentation. Let F be a quasi-coherent OX -module. Then QuotF/X/B is an
algebraic space. If F is of finite presentation, then QuotF/X/B → B is locally of
finite presentation. See Quot, Proposition 8.4.

Lemma 5.1.0DM2 The diagonal of QuotF/X/B → B is a closed immersion. If F is of
finite type, then the diagonal is a closed immersion of finite presentation.

Proof. Suppose we have a scheme T/B and two quotients FT → Qi, i = 1, 2
corresponding to T -valued points of QuotF/X/B over B. Denote K1 the kernel of
the first one and set u : K1 → Q2 the composition. By Flatness on Spaces, Lemma
8.6 there is a closed subspace of T such that T ′ → T factors through it if and only if
the pullback uT ′ is zero. This proves the diagonal is a closed immersion. Moreover,
if F is of finite type, then K1 is of finite type (Modules on Sites, Lemma 24.1) and
we see that the diagonal is of finite presentation by the same lemma. □

Lemma 5.2.0DM3 The morphism QuotF/X/B → B is separated. If F is of finite
presentation, then it is also locally of finite presentation.

Proof. To check QuotF/X/B → B is separated we have to show that its diagonal
is a closed immersion. This is true by Lemma 5.1. The second statement is part of
Quot, Proposition 8.4. □

Lemma 5.3.0DM4 Assume X → B is proper as well as of finite presentation and F
quasi-coherent of finite type. Then QuotF/X/B → B satisfies the existence part of
the valuative criterion (Morphisms of Spaces, Definition 41.1).

Proof. Taking base change, this immediately reduces to the following problem:
given a valuation ring R with fraction field K, an algebraic space X proper over
R, a finite type quasi-coherent OX -module F , and a coherent quotient FK → QK ,
show there exists a quotient F → Q where Q is a finitely presented OX -module flat
over R whose generic fibre is QK . Observe that by Flatness on Spaces, Theorem
4.5 any finite type quasi-coherent OX -module F flat over R is of finite presentation.
We first solve the existence of Q affine locally.
Affine locally we arrive at the following problem: let R → A be a finitely presented
ring map, let M be a finite A-module, let φ : MK → NK be an AK-quotient
module. Then we may consider

L = {x ∈ M | φ(x ⊗ 1) = 0}
The M → M/L is an A-module quotient which is torsion free as an R-module.
Hence it is flat as an R-module (More on Algebra, Lemma 22.10). Since M is
finite as an A-module so is L and we conclude that L is of finite presentation as an
A-module (by the reference above). Clearly M/L is the unqiue such quotient with
(M/L)K = NK .
The uniqueness in the construction of the previous paragraph guarantees these
quotients glue and give the desired Q. Here is a bit more detail. Choose a surjective
étale morphism U → X where U is an affine scheme. Use the above construction to
construct a quotient F|U → QU which is quasi-coherent, is flat over R, and recovers
QK |U on the generic fibre. Since X is separated, we see that U ×X U is an affine
scheme étale over X as well. Then F|U×X U → pr∗

1QU and F|U×X U → pr∗
2QU agree

https://stacks.math.columbia.edu/tag/0DM2
https://stacks.math.columbia.edu/tag/0DM3
https://stacks.math.columbia.edu/tag/0DM4
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as quotients by the uniquess in the construction. Hence we may descend F|U → QU

to a surjection F → Q as desired (Properties of Spaces, Proposition 32.1). □

Lemma 5.4.0DP1 Let B be an algebraic space. Let π : X → Y be an affine quasi-
finite morphism of algebraic spaces which are separated and of finite presentation
over B. Let F be a quasi-coherent OX-module. Then π∗ induces a morphism
QuotF/X/B → Quotπ∗F/Y/B.

Proof. Set G = π∗F . Since π is affine we see that for any scheme T over B we
have GT = πT,∗FT by Cohomology of Spaces, Lemma 11.1. Moreover πT is affine,
hence πT,∗ is exact and transforms quotients into quotients. Observe that a quasi-
coherent quotient FT → Q defines a point of QuotX/B if and only if Q defines
an object of CohX/B over T (similarly for G and Y ). Since we’ve seen in Lemma
4.4 that π∗ induces a morphism CohX/B → CohY/B we see that if FT → Q is in
QuotF/X/B(T ), then GT → πT,∗Q is in QuotG/Y/B(T ). □

Lemma 5.5.0DP2 Let B be an algebraic space. Let π : X → Y be an affine open
immersion of algebraic spaces which are separated and of finite presentation over
B. Let F be a quasi-coherent OX-module. Then the morphism QuotF/X/B →
Quotπ∗F/Y/B of Lemma 5.4 is an open immersion.

Proof. Omitted. Hint: If (π∗F)T → Q is an element of Quotπ∗F/Y/B(T ) and for
t ∈ T we have Supp(Qt) ⊂ |Xt|, then the same is true for t′ ∈ T in a neighbourhood
of t. □

Lemma 5.6.0DP3 Let B be an algebraic space. Let j : X → Y be an open immersion
of algebraic spaces which are separated and of finite presentation over B. Let G be
a quasi-coherent OY -module and set F = j∗G. Then there is an open immersion

QuotF/X/B −→ QuotG/Y/B

of algebraic spaces over B.

Proof. If FT → Q is an element of QuotF/X/B(T ) then we can consider GT →
jT,∗FT → jT,∗Q. Looking at stalks one finds that this is surjective. By Lemma
4.4 we see that jT,∗Q is finitely presented, flat over B with support proper over B.
Thus we obtain a T -valued point of QuotG/Y/B . This defines the morphism of the
lemma. We omit the proof that this is an open immersion. Hint: If GT → Q is an
element of QuotG/Y/B(T ) and for t ∈ T we have Supp(Qt) ⊂ |Xt|, then the same
is true for t′ ∈ T in a neighbourhood of t. □

Lemma 5.7.0DP4 Let B be an algebraic space. Let π : X → Y be a closed immersion
of algebraic spaces which are separated and of finite presentation over B. Let F be
a quasi-coherent OX-module. Then the morphism QuotF/X/B → Quotπ∗F/Y/B of
Lemma 5.4 is an isomorphism.

Proof. For every scheme T over B the morphism πT : XT → YT is a closed
immersion. Then πT,∗ is an equivalence of categories between QCoh(OXT

) and
the full subcategory of QCoh(OYT

) whose objects are those quasi-coherent modules
annihilated by the ideal sheaf of XT , see Morphisms of Spaces, Lemma 14.1. Since
a qotient of (π∗F)T is annihilated by this ideal we obtain the bijectivity of the map
QuotF/X/B(T ) → Quotπ∗F/Y/B(T ) for all T as desired. □

https://stacks.math.columbia.edu/tag/0DP1
https://stacks.math.columbia.edu/tag/0DP2
https://stacks.math.columbia.edu/tag/0DP3
https://stacks.math.columbia.edu/tag/0DP4
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Lemma 5.8.0DP5 Let X → B be as in the introduction to this section. Let F → G
be a surjection of quasi-coherent OX-modules. Then there is a canonical closed
immersion QuotG/X/B → QuotF/X/B.

Proof. Let K = Ker(F → G). By right exactness of pullbacks we find that
KT → FT → GT → 0 is an exact sequecnce for all schemes T over B. In par-
ticular, a quotient of GT determines a quotient of FT and we obtain our trans-
formation of functors QuotG/X/B → QuotF/X/B . This transformation is a closed
immersion by Flatness on Spaces, Lemma 8.6. Namely, given an element FT → Q
of QuotF/X/B(T ), then we see that the pull back to T ′/T is in the image of the
transformation if and only if KT ′ → QT ′ is zero. □

Remark 5.9 (Numerical invariants).0DP6 Let f : X → B and F be as in the intro-
duction to this section. Let I be a set and for i ∈ I let Ei ∈ D(OX) be perfect.
Let P : I → Z be a function. Recall that we have a morphism

QuotF/X/B −→ CohX/B

which sends the element FT → Q of QuotF/X/B(T ) to the object Q of CohX/B

over T , see proof of Quot, Proposition 8.4. Hence we can form the fibre product
diagram

QuotP
F/X/B

//

��

CohP
X/B

��
QuotF/X/B

// CohX/B

This is the defining diagram for the algebraic space in the upper left corner. The
left vertical arrow is a flat closed immersion which is an open and closed immersion
for example if I is finite, or B is locally Noetherian, or I = Z and Ei = L⊗i

for some invertible OX -module L (in the last case we sometimes use the notation
QuotP,L

F/X/B). See Situation 4.7 and Lemmas 4.8 and 4.9 and Example 4.10.

Lemma 5.10.0DP7 Let f : X → B and F be as in the introduction to this section. Let
L be an invertible OX-module. Then tensoring with L defines an isomorphism

QuotF/X/B −→ QuotF⊗OX
L/X/B

Given a numerical polynomial P (t), then setting P ′(t) = P (t + 1) this map induces
an isomorphism QuotP

F/X/B −→ QuotP ′

F⊗OX
L/X/B of open and closed substacks.

Proof. Set G = F ⊗OX
L. Observe that GT = FT ⊗OXT

LT . If FT → Q is an
element of QuotF/X/B(T ), then we send it to the element GT → Q ⊗OXT

LT of
QuotF⊗OX

L/X/B(T ). This is compatible with pullbacks and hence defines a trans-
formation of functors as desired. Since there is an obvious inverse transformation,
it is an isomorphism. We omit the proof of the final statement. □

Lemma 5.11.0DP8 Let f : X → B and F be as in the introduction to this section. Let
L be an invertible OX-module. Then

QuotP,L
F/X/B = QuotP ′,L⊗n

F/X/B

where P ′(t) = P (nt).

Proof. Follows immediately after unwinding all the definitions. □

https://stacks.math.columbia.edu/tag/0DP5
https://stacks.math.columbia.edu/tag/0DP6
https://stacks.math.columbia.edu/tag/0DP7
https://stacks.math.columbia.edu/tag/0DP8


MODULI STACKS 9

6. Boundedness for Quot

0DP9 Contrary to what happens classically, we already know the Quot functor is an
algebraic space, but we don’t know that it is ever represented by a finite type
algebraic space.

Lemma 6.1.0DPA Let n ≥ 0, r ≥ 1, P ∈ Q[t]. The algebraic space

X = QuotP
O⊕r

Pn
Z

/Pn
Z/Z

parametrizing quotients of O⊕r
Pn

Z
with Hilbert polynomial P is proper over Spec(Z).

Proof. We already know that X → Spec(Z) is separated and locally of finite pre-
sentation (Lemma 5.2). We also know that X → Spec(Z) satisfies the existence
part of the valuative criterion, see Lemma 5.3. By the valuative criterion for proper-
ness, it suffices to prove our Quot space is quasi-compact, see Morphisms of Spaces,
Lemma 44.1. Thus it suffices to find a quasi-compact scheme T and a surjective
morphism T → X. Let m be the integer found in Varieties, Lemma 35.18. Let

N = r

(
m + n

n

)
− P (m)

We will write Pn for Pn
Z = Proj(Z[T0, . . . , Tn]) and unadorned products will mean

products over Spec(Z). The idea of the proof is to construct a “universal” map

Ψ : OT ×Pn(−m)⊕N −→ O⊕r
T ×Pn

over an affine scheme T and show that every point of X corresponds to a cokernel
of this in some point of T .
Definition of T and Ψ. We take T = Spec(A) where

A = Z[ai,j,E ]
where i ∈ {1, . . . , r}, j ∈ {1, . . . , N} and E = (e0, . . . , en) runs through the multi-
indices of total degree |E| =

∑
k=0,...n ek = m. Then we define Ψ to be the map

whose (i, j) matrix entry is the map∑
E=(e0,...,en)

ai,j,ET e0
0 . . . T en

n : OT ×Pn(−m) −→ OT ×Pn

where the sum is over E as above (but i and j are fixed of course).
Consider the quotient Q = Coker(Ψ) on T × Pn. By More on Morphisms, Lemma
54.1 there exists a t ≥ 0 and closed subschemes

T = T0 ⊃ T1 ⊃ . . . ⊃ Tt = ∅
such that the pullback Qp of Q to (Tp \ Tp+1) × Pn is flat over Tp \ Tp+1. Observe
that we have an exact sequence

O(Tp\Tp+1)×Pn(−m)⊕N → O⊕r
(Tp\Tp+1)×Pn → Qp → 0

by pulling back the exact sequence defining Q = Coker(Ψ). Therefore we obtain a
morphism ∐

(Tp \ Tp+1) −→ QuotO⊕r/P/Z ⊃ QuotP
O⊕r/P/Z = X

Since the left hand side is a Noetherian scheme and the inclusion on the right hand
side is open, it suffices to show that any point of X is in the image of this morphism.

https://stacks.math.columbia.edu/tag/0DPA


MODULI STACKS 10

Let k be a field and let x ∈ X(k). Then x corresponds to a surjection O⊕r
Pn

k
→ F of

coherent OPn
k
-modules such that the Hilbert polynomial of F is P . Consider the

short exact sequence
0 → K → O⊕r

Pn
k

→ F → 0

By Varieties, Lemma 35.18 and our choice of m we see that K is m-regular. By
Varieties, Lemma 35.12 we see that K(m) is globally generated. By Varieties,
Lemma 35.10 and the definition of m-regularity we see that Hi(Pn

k , K(m)) = 0 for
i > 0. Hence we see that

dimk H0(Pn
k , K(m)) = χ(K(m)) = χ(OPn

k
(m)⊕r) − χ(F(m)) = N

by our choice of N . This gives a surjection

O⊕N
Pn

k
−→ K(m)

Twisting back down and using the short exact sequence above we see that F is the
cokernel of a map

Ψx : OPn
k
(−m)⊕N → O⊕r

Pn
k

There is a unique ring map τ : A → k such that the base change of Ψ by the
corresponding morphism t = Spec(τ) : Spec(k) → T is Ψx. This is true be-
cause the entries of the N × r matrix defining Ψx are homogeneous polynomials∑

λi,j,ET e0
0 . . . T en

n of degree m in T0, . . . , Tn with coefficients λi,j,E ∈ k and we can
set τ(ai,j,E) = λi,j,E . Then t ∈ Tp \ Tp+1 for some p and the image of t under the
morphism above is x as desired. □

Lemma 6.2.0DPB Let B be an algebraic space. Let X = B ×Pn
Z. Let L be the pullback

of OPn(1) to X. Let F be an OX-module of finite presentation. The algebraic space
QuotP

F/X/B parametrizing quotients of F having Hilbert polynomial P with respect
to L is proper over B.

Proof. The question is étale local over B, see Morphisms of Spaces, Lemma 40.2.
Thus we may assume B is an affine scheme. In this case L is an ample invertible
module on X (by Constructions, Lemma 10.6 and the definition of ample invertible
modules in Properties, Definition 26.1). Thus we can find r′ ≥ 0 and r ≥ 0 and a
surjection

O⊕r
X −→ F ⊗OX

L⊗r′

by Properties, Proposition 26.13. By Lemma 5.10 we may replace F by F ⊗OX
L⊗r′

and P (t) by P (t + r′). By Lemma 5.8 we obtain a closed immersion

QuotP
F/X/B −→ QuotP

O⊕r
X

/X/B

Since we’ve shown that QuotP
O⊕r

X
/X/B

→ B is proper in Lemma 6.1 we conclude. □

Lemma 6.3.0DPC Let f : X → B be a proper morphism of finite presentation of
algebraic spaces. Let F be a finitely presented OX-module. Let L be an invertible
OX-module ample on X/B, see Divisors on Spaces, Definition 14.1. The algebraic
space QuotP

F/X/B parametrizing quotients of F having Hilbert polynomial P with
respect to L is proper over B.

https://stacks.math.columbia.edu/tag/0DPB
https://stacks.math.columbia.edu/tag/0DPC
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Proof. The question is étale local over B, see Morphisms of Spaces, Lemma 40.2.
Thus we may assume B is an affine scheme. Then we can find a closed immersion
i : X → Pn

B such that i∗OPn
B

(1) ∼= L⊗d for some d ≥ 1. See Morphisms, Lemma
39.3. Changing L into L⊗d and the numerical polynomial P (t) into P (dt) leaves
QuotP

F/X/B unaffected; some details omitted. Hence we may assume L = i∗OPn
B

(1).
Then the isomorphism QuotF/X/B → Quoti∗F/Pn

B
/B of Lemma 5.7 induces an

isomorphism QuotP
F/X/B

∼= QuotP
i∗F/Pn

B
/B . Since QuotP

i∗F/Pn
B

/B is proper over B

by Lemma 6.2 we conclude. □

Lemma 6.4.0DPD Let f : X → B be a separated morphism of finite presentation of
algebraic spaces. Let F be a finitely presented OX-module. Let L be an invertible
OX-module ample on X/B, see Divisors on Spaces, Definition 14.1. The algebraic
space QuotP

F/X/B parametrizing quotients of F having Hilbert polynomial P with
respect to L is separated of finite presentation over B.

Proof. We have already seen that QuotF/X/B → B is separated and locally of
finite presentation, see Lemma 5.2. Thus it suffices to show that the open subspace
QuotP

F/X/B of Remark 5.9 is quasi-compact over B.

The question is étale local on B (Morphisms of Spaces, Lemma 8.8). Thus we may
assume B is affine.

Assume B = Spec(Λ). Write Λ = colim Λi as the colimit of its finite type Z-
subalgebras. Then we can find an i and a system Xi, Fi, Li as in the lemma over
Bi = Spec(Λi) whose base change to B gives X, F , L. This follows from Limits of
Spaces, Lemmas 7.1 (to find Xi), 7.2 (to find Fi), 7.3 (to find Li), and 5.9 (to make
Xi separated). Because

QuotF/X/B = B ×Bi
QuotFi/Xi/Bi

and similarly for QuotP
F/X/B we reduce to the case discussed in the next paragraph.

Assume B is affine and Noetherian. We may replace L by a positive power, see
Lemma 5.11. Thus we may assume there exists an immersion i : X → Pn

B such that
i∗OPn(1) = L. By Morphisms, Lemma 7.7 there exists a closed subscheme X ′ ⊂ Pn

B

such that i factors through an open immersion j : X → X ′. By Properties, Lemma
22.5 there exists a finitely presented OX′ -module G such that j∗G = F . Thus we
obtain an open immersion

QuotF/X/B −→ QuotG/X′/B

by Lemma 5.6. Clearly this open immersion sends QuotP
F/X/B into QuotP

G/X′/B .
Now QuotP

G/X′/B is proper over B by Lemma 6.3. Therefore it is Noetherian and
since any open of a Noetherian algebraic space is quasi-compact we win. □

7. Properties of the Hilbert functor

0DM5 Let f : X → B be a morphism of algebraic spaces which is separated and of finite
presentation. Then HilbX/B is an algebraic space locally of finite presentation over
B. See Quot, Proposition 9.4.

Lemma 7.1.0DM6 The diagonal of HilbX/B → B is a closed immersion of finite pre-
sentation.

https://stacks.math.columbia.edu/tag/0DPD
https://stacks.math.columbia.edu/tag/0DM6
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Proof. In Quot, Lemma 9.2 we have seen that HilbX/B = QuotOX /X/B . Hence
this follows from Lemma 5.1. □

Lemma 7.2.0DM7 The morphism HilbX/B → B is separated and locally of finite pre-
sentation.

Proof. To check HilbX/B → B is separated we have to show that its diagonal is
a closed immersion. This is true by Lemma 7.1. The second statement is part of
Quot, Proposition 9.4. □

Lemma 7.3.0DM8 Assume X → B is proper as well as of finite presentation. Then
HilbX/B → B satisfies the existence part of the valuative criterion (Morphisms of
Spaces, Definition 41.1).

Proof. In Quot, Lemma 9.2 we have seen that HilbX/B = QuotOX /X/B . Hence
this follows from Lemma 5.3. □

Lemma 7.4.0DPE Let B be an algebraic space. Let π : X → Y be an open immersion
of algebraic spaces which are separated and of finite presentation over B. Then π
induces an open immersion HilbX/B → HilbY/B.

Proof. Omitted. Hint: If Z ⊂ XT is a closed subscheme which is proper over T ,
then Z is also closed in YT . Thus we obtain the transformation HilbX/B → HilbY/B .
If Z ⊂ YT is an element of HilbY/B(T ) and for t ∈ T we have |Zt| ⊂ |Xt|, then the
same is true for t′ ∈ T in a neighbourhood of t. □

Lemma 7.5.0DPF Let B be an algebraic space. Let π : X → Y be a closed immersion
of algebraic spaces which are separated and of finite presentation over B. Then π
induces a closed immersion HilbX/B → HilbY/B.

Proof. Since π is a closed immersion, it is immediate that given a closed sub-
scheme Z ⊂ XT , we can view Z as a closed subscheme of XT . Thus we ob-
tain the transformation HilbX/B → HilbY/B . This transformation is immediately
seen to be a monomorphism. To prove that it is a closed immersion, you can use
Lemma 5.8 for the map OY → OX and the identifications HilbX/B = QuotOX /X/B ,
HilbY/B = QuotOY /Y/B of Quot, Lemma 9.2. □

Remark 7.6 (Numerical invariants).0DPG Let f : X → B be as in the introduction to
this section. Let I be a set and for i ∈ I let Ei ∈ D(OX) be perfect. Let P : I → Z
be a function. Recall that HilbX/B = QuotOX /X/B , see Quot, Lemma 9.2. Thus
we can define

HilbP
X/B = QuotP

OX /X/B

where QuotP
OX /X/B is as in Remark 5.9. The morphism

HilbP
X/B −→ HilbX/B

is a flat closed immersion which is an open and closed immersion for example if I
is finite, or B is locally Noetherian, or I = Z and Ei = L⊗i for some invertible
OX -module L. In the last case we sometimes use the notation HilbP,L

X/B .

Lemma 7.7.0DPH Let f : X → B be a proper morphism of finite presentation of
algebraic spaces. Let L be an invertible OX-module ample on X/B, see Divisors
on Spaces, Definition 14.1. The algebraic space HilbP

X/B parametrizing closed sub-
schemes having Hilbert polynomial P with respect to L is proper over B.

https://stacks.math.columbia.edu/tag/0DM7
https://stacks.math.columbia.edu/tag/0DM8
https://stacks.math.columbia.edu/tag/0DPE
https://stacks.math.columbia.edu/tag/0DPF
https://stacks.math.columbia.edu/tag/0DPG
https://stacks.math.columbia.edu/tag/0DPH
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Proof. Recall that HilbX/B = QuotOX /X/B , see Quot, Lemma 9.2. Thus this
lemma is an immediate consequence of Lemma 6.3. □

Lemma 7.8.0DPI Let f : X → B be a separated morphism of finite presentation
of algebraic spaces. Let L be an invertible OX-module ample on X/B, see Divi-
sors on Spaces, Definition 14.1. The algebraic space HilbP

X/B parametrizing closed
subschemes having Hilbert polynomial P with respect to L is separated of finite
presentation over B.

Proof. Recall that HilbX/B = QuotOX /X/B , see Quot, Lemma 9.2. Thus this
lemma is an immediate consequence of Lemma 6.4. □

8. Properties of the Picard stack

0DM9 Let f : X → B be a morphism of algebraic spaces which is flat, proper, and of finite
presentation. Then the stack PicX/B parametrizing invertible sheaves on X/B is
algebraic, see Quot, Proposition 10.2.

Lemma 8.1.0DMA The diagonal of PicX/B over B is affine and of finite presentation.

Proof. In Quot, Lemma 10.1 we have seen that PicX/B is an open substack of
CohX/B . Hence this follows from Lemma 4.1. □

Lemma 8.2.0DMB The morphism PicX/B → B is quasi-separated and locally of finite
presentation.

Proof. In Quot, Lemma 10.1 we have seen that PicX/B is an open substack of
CohX/B . Hence this follows from Lemma 4.2. □

Lemma 8.3.0DNG Assume X → B is smooth in addition to being proper. Then
PicX/B → B satisfies the existence part of the valuative criterion (Morphisms of
Stacks, Definition 39.10).

Proof. Taking base change, this immediately reduces to the following problem:
given a valuation ring R with fraction field K and an algebraic space X proper and
smooth over R and an invertible OXK

-module LK , show there exists an invertible
OX -module L whose generic fibre is LK . Observe that XK is Noetherian, separated,
and regular (use Morphisms of Spaces, Lemma 28.6 and Spaces over Fields, Lemma
16.1). Thus we can write LK as the difference in the Picard group of OXK

(DK)
and OXK

(D′
K) for two effective Cartier divisors DK , D′

K in XK , see Divisors on
Spaces, Lemma 8.4. Finally, we know that DK and D′

K are restrictions of effective
Cartier divisors D, D′ ⊂ X, see Divisors on Spaces, Lemma 8.5. □

Lemma 8.4.0DNH Assume fT,∗OXT
∼= OT for all schemes T over B. Then the inertia

stack of PicX/B is equal to Gm × PicX/B.

Proof. This is explained in Examples of Stacks, Example 17.2. □

Lemma 8.5.0DPJ Assume f : X → B has relative dimension ≤ 1 in addition to the
other assumptions in this section. Then PicX/B → B is smooth.

Proof. We already know that PicX/B → B is locally of finite presentation, see
Lemma 8.2. Thus it suffices to show that PicX/B → B is formally smooth, see
More on Morphisms of Stacks, Lemma 8.7. Taking base change, this immediately
reduces to the following problem: given a first order thickening T ⊂ T ′ of affine

https://stacks.math.columbia.edu/tag/0DPI
https://stacks.math.columbia.edu/tag/0DMA
https://stacks.math.columbia.edu/tag/0DMB
https://stacks.math.columbia.edu/tag/0DNG
https://stacks.math.columbia.edu/tag/0DNH
https://stacks.math.columbia.edu/tag/0DPJ
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schemes, given X ′ → T ′ proper, flat, of finite presentation and of relative dimension
≤ 1, and for X = T ×T ′ X ′ given an invertible OX -module L, prove that there exists
an invertible OX′ -module L′ whose restriction to X is L. Since T ⊂ T ′ is a first
order thickening, the same is true for X ⊂ X ′, see More on Morphisms of Spaces,
Lemma 9.8. By More on Morphisms of Spaces, Lemma 11.1 we see that it suffices
to show H2(X, I) = 0 where I is the quasi-coherent ideal cutting out X in X ′.
Denote f : X → T the structure morphism. By Cohomology of Spaces, Lemma
22.9 we see that Rpf∗I = 0 for p > 1. Hence we get the desired vanishing by
Cohomology of Spaces, Lemma 3.2 (here we finally use that T is affine). □

9. Properties of the Picard functor

0DMD Let f : X → B be a morphism of algebraic spaces which is flat, proper, and of
finite presentation such that moreover for every T/B the canonical map

OT −→ fT,∗OXT

is an isomorphism. Then the Picard functor PicX/B is an algebraic space, see Quot,
Proposition 11.8. There is a closed relationship with the Picard stack.

Lemma 9.1.0DME The morphism PicX/B → PicX/B turns the Picard stack into a gerbe
over the Picard functor.

Proof. The definition of PicX/B → PicX/B being a gerbe is given in Morphisms
of Stacks, Definition 28.1, which in turn refers to Stacks, Definition 11.4. To prove
it, we will check conditions (2)(a) and (2)(b) of Stacks, Lemma 11.3. This follows
immediately from Quot, Lemma 11.2; here is a detailed explanation.
Condition (2)(a). Suppose that ξ ∈ PicX/B(U) for some scheme U over B. Since
PicX/B is the fppf sheafification of the rule T 7→ Pic(XT ) on schemes over B (Quot,
Situation 11.1), we see that there exists an fppf covering {Ui → U} such that ξ|Ui

corresponds to some invertible module Li on XUi . Then (Ui → B, Li) is an object
of PicX/B over Ui mapping to ξ|Ui .
Condition (2)(b). Suppose that U is a scheme over B and L, N are invertible
modules on XU which map to the same element of PicX/B(U). Then there exists
an fppf covering {Ui → U} such that L|XUi

is isomorphic to N |XUi
. Thus we find

isomorphisms between (U → B, L)|Ui
→ (U → B, N )|Ui

as desired. □

Lemma 9.2.0DMF The diagonal of PicX/B over B is a quasi-compact immersion.

Proof. The diagonal is an immersion by Quot, Lemma 11.9. To finish we show
that the diagonal is quasi-compact. The diagonal of PicX/B is quasi-compact by
Lemma 8.1 and PicX/B is a gerbe over PicX/B by Lemma 9.1. We conclude by
Morphisms of Stacks, Lemma 28.14. □

Lemma 9.3.0DNI The morphism PicX/B → B is quasi-separated and locally of finite
presentation.

Proof. To check PicX/B → B is quasi-separated we have to show that its diag-
onal is quasi-compact. This is immediate from Lemma 9.2. Since the morphism
PicX/B → PicX/B is surjective, flat, and locally of finite presentation (by Lemma
9.1 and Morphisms of Stacks, Lemma 28.8) it suffices to prove that PicX/B → B is
locally of finite presentation, see Morphisms of Stacks, Lemma 27.12. This follows
from Lemma 8.2. □

https://stacks.math.columbia.edu/tag/0DME
https://stacks.math.columbia.edu/tag/0DMF
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Lemma 9.4.0DNJ Assume the geometric fibres of X → B are integral in addition to
the other assumptions in this section. Then PicX/B → B is separated.

Proof. Since PicX/B → B is quasi-separated, it suffices to check the uniqueness
part of the valuative criterion, see Morphisms of Spaces, Lemma 43.2. This imme-
diately reduces to the following problem: given

(1) a valuation ring R with fraction field K,
(2) an algebraic space X proper and flat over R with integral geometric fibre,
(3) an element a ∈ PicX/R(R) with a|Spec(K) = 0,

then we have to prove a = 0. Applying Morphisms of Stacks, Lemma 25.6 to
the surjective flat morphism PicX/R → PicX/R (surjective and flat by Lemma 9.1
and Morphisms of Stacks, Lemma 28.8) after replacing R by an extension we may
assume a is given by an invertible OX -module L. Since a|Spec(K) = 0 we find
LK

∼= OXK
by Quot, Lemma 11.3.

Denote f : X → Spec(R) the structure morphism. Let η, 0 ∈ Spec(R) be the generic
and closed point. Consider the perfect complexes K = Rf∗L and M = Rf∗(L⊗−1)
on Spec(R), see Derived Categories of Spaces, Lemma 25.4. Consider the functions
βK,i, βM,i : Spec(R) → Z of Derived Categories of Spaces, Lemma 26.1 associated to
K and M . Since the formation of K amd M commutes with base change (see lemma
cited above) we find βK,0(η) = βM,0(β) = 1 by Spaces over Fields, Lemma 14.3 and
our assumption on the fibres of f . By upper semi-continuity we find βK,0(0) ≥ 1
and βM,0 ≥ 1. By Spaces over Fields, Lemma 14.4 we conclude that the restriction
of L to the special fibre X0 is trivial. In turn this gives βK,0(0) = βM,0 = 1 as
above. Then by More on Algebra, Lemma 75.5 we can represent K by a complex
of the form

. . . → 0 → R → R⊕βK,1(0) → R⊕βK,2(0) → . . .

Now R → R⊕βK,1(0) is zero because βK,0(η) = 1. In other words K = R ⊕ τ≥1(K)
in D(R) where τ≥1(K) has tor amplitude in [1, b] for some b ∈ Z. Hence there is
a global section s ∈ H0(X, L) whose restriction s0 to X0 is nonvanishing (again
because formation of K commutes with base change). Then s : OX → L is a map
of invertible sheaves whose restriction to X0 is an isomorphism and hence is an
isomorphism as desired. □

Lemma 9.5.0DPK Assume f : X → B has relative dimension ≤ 1 in addition to the
other assumptions in this section. Then PicX/B → B is smooth.

Proof. By Lemma 8.5 we know that PicX/B → B is smooth. The morphism
PicX/B → PicX/B is surjective and smooth by combining Lemma 9.1 with Mor-
phisms of Stacks, Lemma 33.8. Thus if U is a scheme and U → PicX/B is surjective
and smooth, then U → PicX/B is surjective and smooth and U → B is surjec-
tive and smooth (because these properties are preserved by composition). Thus
PicX/B → B is smooth for example by Descent on Spaces, Lemma 8.3. □

10. Properties of relative morphisms

0DPL Let B be an algebraic space. Let X and Y be algebraic spaces over B such that
Y → B is flat, proper, and of finite presentation and X → B is separated and
of finite presentation. Then the functor MorB(Y, X) of relative morphisms is an
algebraic space locally of finite presentation over B. See Quot, Proposition 12.3.

https://stacks.math.columbia.edu/tag/0DNJ
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Lemma 10.1.0DPM The diagonal of MorB(Y, X) → B is a closed immersion of finite
presentation.

Proof. There is an open immersion MorB(Y, X) → HilbY ×BX/B , see Quot, Lemma
12.2. Thus the lemma follows from Lemma 7.1. □

Lemma 10.2.0DPN The morphism MorB(Y, X) → B is separated and locally of finite
presentation.

Proof. To check MorB(Y, X) → B is separated we have to show that its diagonal
is a closed immersion. This is true by Lemma 10.1. The second statement is part
of Quot, Proposition 12.3. □

Lemma 10.3.0DPP With B, X, Y as in the introduction of this section, in addition
assume X → B is proper. Then the subfunctor IsomB(Y, X) ⊂ MorB(Y, X) of
isomorphisms is an open subspace.

Proof. Follows immediately from More on Morphisms of Spaces, Lemma 49.6. □

Remark 10.4 (Numerical invariants).0DPQ Let B, X, Y be as in the introduction to
this section. Let I be a set and for i ∈ I let Ei ∈ D(OY ×BX) be perfect. Let
P : I → Z be a function. Recall that

MorB(Y, X) ⊂ HilbY ×BX/B

is an open subspace, see Quot, Lemma 12.2. Thus we can define

MorP
B(Y, X) = MorB(Y, X) ∩ HilbP

Y ×BX/B

where HilbP
Y ×BX/B is as in Remark 7.6. The morphism

MorP
B(Y, X) −→ MorB(Y, X)

is a flat closed immersion which is an open and closed immersion for example if
I is finite, or B is locally Noetherian, or I = Z, Ei = L⊗i for some invertible
OY ×BX -module L. In the last case we sometimes use the notation MorP,L

B (Y, X).

Lemma 10.5.0DPR With B, X, Y as in the introduction of this section, let L be ample
on X/B and let N be ample on Y/B. See Divisors on Spaces, Definition 14.1. Let
P be a numerical polynomial. Then

MorP,M
B (Y, X) −→ B

is separated and of finite presentation where M = pr∗
1N ⊗OY ×B X

pr∗
2L.

Proof. By Lemma 10.2 the morphism MorB(Y, X) → B is separated and locally
of finite presentation. Thus it suffices to show that the open and closed subspace
MorP,M

B (Y, X) of Remark 10.4 is quasi-compact over B.

The question is étale local on B (Morphisms of Spaces, Lemma 8.8). Thus we may
assume B is affine.

Assume B = Spec(Λ). Note that X and Y are schemes and that L and N are ample
invertible sheaves on X and Y (this follows immediately from the definitions). Write
Λ = colim Λi as the colimit of its finite type Z-subalgebras. Then we can find an i
and a system Xi, Yi, Li, Ni as in the lemma over Bi = Spec(Λi) whose base change
to B gives X, Y, L, N . This follows from Limits, Lemmas 10.1 (to find Xi, Yi), 10.3

https://stacks.math.columbia.edu/tag/0DPM
https://stacks.math.columbia.edu/tag/0DPN
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(to find Li, Ni), 8.6 (to make Xi → Bi separated), 13.1 (to make Yi → Bi proper),
and 4.15 (to make Li, Ni ample). Because

MorB(Y, X) = B ×Bi
MorBi

(Yi, Xi)
and similarly for MorP

B(Y, X) we reduce to the case discussed in the next paragraph.
Assume B is a Noetherian affine scheme. By Properties, Lemma 26.15 we see that
M is ample. By Lemma 7.8 we see that HilbP,M

Y ×BX/B is of finite presentation over
B and hence Noetherian. By construction

MorP,M
B (Y, X) = MorB(Y, X) ∩ HilbP,M

Y ×BX/B

is an open subspace of HilbP,M
Y ×BX/B and hence quasi-compact (as an open of a

Noetherian algebraic space is quasi-compact). □

11. Properties of the stack of polarized proper schemes

0DPS In this section we discuss properties of the moduli stack
Polarized −→ Spec(Z)

whose category of sections over a scheme S is the category of proper, flat, finitely
presented scheme over S endowed with a relatively ample invertible sheaf. This is
an algebraic stack by Quot, Theorem 14.15.

Lemma 11.1.0DPT The diagonal of Polarized is separated and of finite presentation.

Proof. Recall that Polarized is a limit preserving algebraic stack, see Quot, Lemma
14.8. By Limits of Stacks, Lemma 3.6 this implies that ∆ : Polarized → Polarized ×
Polarized is limit preserving. Hence ∆ is locally of finite presentation by Limits of
Stacks, Proposition 3.8.
Let us prove that ∆ is separated. To see this, it suffices to show that given an
affine scheme U and two objects υ = (Y, N ) and χ = (X, L) of Polarized over U ,
the algebraic space

IsomPolarized(υ, χ)
is separated. The rule which to an isomorphism υT → χT assigns the underlying
isomorphism YT → XT defines a morphism

IsomPolarized(υ, χ) −→ IsomU (Y, X)
Since we have seen in Lemmas 10.2 and 10.3 that the target is a separated algebraic
space, it suffices to prove that this morphism is separated. Given an isomorphism
f : YT → XT over some scheme T/U , then clearly

IsomPolarized(υ, χ) ×IsomU (Y,X),[f ] T = Isom(NT , f∗LT )
Here [f ] : T → IsomU (Y, X) indicates the T -valued point corresponding to f and
Isom(NT , f∗LT ) is the algebraic space discussed in Section 3. Since this algebraic
space is affine over U , the claim implies ∆ is separated.
To finish the proof we show that ∆ is quasi-compact. Since ∆ is representable by
algebraic spaces, it suffice to check the base change of ∆ by a surjective smooth
morphism U → Polarized × Polarized is quasi-compact (see for example Properties
of Stacks, Lemma 3.3). We can assume U =

∐
Ui is a disjoint union of affine opens.

Since Polarized is limit preserving (see above), we see that Polarized → Spec(Z) is
locally of finite presentation, hence Ui → Spec(Z) is locally of finite presentation

https://stacks.math.columbia.edu/tag/0DPT
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(Limits of Stacks, Proposition 3.8 and Morphisms of Stacks, Lemmas 27.2 and
33.5). In particular, Ui is Noetherian affine. This reduces us to the case discussed
in the next paragraph.

In this paragraph, given a Noetherian affine scheme U and two objects υ = (Y, N )
and χ = (X, L) of Polarized over U , we show the algebraic space

IsomPolarized(υ, χ)

is quasi-compact. Since the connected components of U are open and closed we
may replace U by these. Thus we may and do assume U is connected. Let u ∈ U be
a point. Let P be the Hilbert polynomial n 7→ χ(Yu, N ⊗n

u ), see Varieties, Lemma
45.1. Since U is connected and since the functions u 7→ χ(Yu, N ⊗n

u ) are locally
constant (see Derived Categories of Schemes, Lemma 32.2) we see that we get the
same Hilbert polynomial in every point of U . Set M = pr∗

1N ⊗OY ×U X
pr∗

2L on
Y ×U X. Given (f, φ) ∈ IsomPolarized(υ, χ)(T ) for some scheme T over U then for
every t ∈ T we have

χ(Yt, (id × f)∗M⊗n) = χ(Yt, N ⊗n
t ⊗OYt

f∗
t L⊗n

t ) = χ(Yt, N ⊗2n
t ) = P (2n)

where in the middle equality we use the isomorphism φ : f∗LT → NT . Setting
P ′(t) = P (2t) we find that the morphism

IsomPolarized(υ, χ) −→ IsomU (Y, X)

(see earlier) has image contained in the intersection

IsomU (Y, X) ∩ MorP ′,M
U (Y, X)

The intersection is an intersection of open subspaces of MorU (Y, X) (see Lemma
10.3 and Remark 10.4). Now MorP ′,M

U (Y, X) is a Noetherian algebraic space as it is
of finite presentation over U by Lemma 10.5. Thus the intersection is a Noetherian
algebraic space too. Since the morphism

IsomPolarized(υ, χ) −→ IsomU (Y, X) ∩ MorP ′,M
U (Y, X)

is affine (see above) we conclude. □

Lemma 11.2.0DPU The morphism Polarized → Spec(Z) is quasi-separated and locally
of finite presentation.

Proof. To check Polarized → Spec(Z) is quasi-separated we have to show that its
diagonal is quasi-compact and quasi-separated. This is immediate from Lemma
11.1. To prove that Polarized → Spec(Z) is locally of finite presentation, it suffices
to show that Polarized is limit preserving, see Limits of Stacks, Proposition 3.8.
This is Quot, Lemma 14.8. □

Lemma 11.3.0E96 Let n ≥ 1 be an integer and let P be a numerical polynomial. Let

T ⊂ |Polarized|

be a subset with the following property: for every ξ ∈ T there exists a field k and
an object (X, L) of Polarized over k representing ξ such that

(1) the Hilbert polynomial of L on X is P , and
(2) there exists a closed immersion i : X → Pn

k such that i∗OPn(1) ∼= L.
Then T is a Noetherian topological space, in particular quasi-compact.

https://stacks.math.columbia.edu/tag/0DPU
https://stacks.math.columbia.edu/tag/0E96
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Proof. Observe that |Polarized| is a locally Noetherian topological space, see Mor-
phisms of Stacks, Lemma 8.3 (this also uses that Spec(Z) is Noetherian and hence
Polarized is a locally Noetherian algebraic stack by Lemma 11.2 and Morphisms of
Stacks, Lemma 17.5). Thus any quasi-compact subset of |Polarized| is a Noetherian
topological space and any subset of such is also Noetherian, see Topology, Lemmas
9.4 and 9.2. Thus all we have to do is a find a quasi-compact subset containing T .
By Lemma 7.7 the algebraic space

H = HilbP,O(1)
Pn

Z/ Spec(Z)

is proper over Spec(Z). By Quot, Lemma 9.31 the identity morphism of H corre-
sponds to a closed subspace

Z ⊂ Pn
H

which is proper, flat, and of finite presentation over H and such that the restriction
N = O(1)|Z is relatively ample on Z/H and has Hilbert polynomial P on the fibres
of Z → H. In particular, the pair (Z → H, N ) defines a morphism

H −→ Polarized
which sends a morphism of schemes U → H to the classifying morphism of the
family (ZU → U, NU ), see Quot, Lemma 14.4. Since H is a Noetherian algebraic
space (as it is proper over Z)) we see that |H| is Noetherian and hence quasi-
compact. The map

|H| −→ |Polarized|
is continuous, hence the image is quasi-compact. Thus it suffices to prove T is
contained in the image of |H| → |Polarized|. However, assumptions (1) and (2)
exactly express the fact that this is the case: any choice of a closed immersion
i : X → Pn

k with i∗OPn(1) ∼= L we get a k-valued point of H by the moduli
interpretation of H. This finishes the proof of the lemma. □

12. Properties of moduli of complexes on a proper morphism

0DPV Let f : X → B be a morphism of algebraic spaces which is proper, flat, and of
finite presentation. Then the stack ComplexesX/B parametrizing relatively perfect
complexes with vanishing negative self-exts is algebraic. See Quot, Theorem 16.12.

Lemma 12.1.0DPW The diagonal of ComplexesX/B over B is affine and of finite pre-
sentation.

Proof. The representability of the diagonal by algebraic spaces was shown in Quot,
Lemma 16.5. From the proof we find that we have to show: given a scheme T over
B and objects E, E′ ∈ D(OXT

) such that (T, E) and (T, E′) are objects of the
fibre category of ComplexesX/B over T , then Isom(E, E′) → T is affine and of finite
presentation. Here Isom(E, E′) is the functor

(Sch/T )opp → Sets, T ′ 7→ {φ : ET ′ → E′
T ′ isomorphism in D(OXT ′ )}

where ET ′ and E′
T ′ are the derived pullbacks of E and E′ to XT ′ . Consider the

functor H = Hom(E, E′) defined by the rule
(Sch/T )opp → Sets, T ′ 7→ HomOX

T ′
(ET , E′

T )

1We will see later (insert future reference here) that H is a scheme and hence the use of this
lemma and Quot, Lemma 14.4 isn’t necessary.

https://stacks.math.columbia.edu/tag/0DPW
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By Quot, Lemma 16.1 this is an algebraic space affine and of finite presentation over
T . The same is true for H ′ = Hom(E′, E), I = Hom(E, E), and I ′ = Hom(E′, E′).
Therefore we see that

Isom(E, E′) = (H ′ ×T H) ×c,I×T I′,σ T

where c(φ′, φ) = (φ ◦ φ′, φ′ ◦ φ) and σ = (id, id) (compare with the proof of Quot,
Proposition 4.3). Thus Isom(E, E′) is affine over T as a fibre product of schemes
affine over T . Similarly, Isom(E, E′) is of finite presentation over T . □

Lemma 12.2.0DPX The morphism ComplexesX/B → B is quasi-separated and locally
of finite presentation.

Proof. To check ComplexesX/B → B is quasi-separated we have to show that its
diagonal is quasi-compact and quasi-separated. This is immediate from Lemma
12.1. To prove that ComplexesX/B → B is locally of finite presentation, we have to
show that ComplexesX/B → B is limit preserving, see Limits of Stacks, Proposition
3.8. This follows from Quot, Lemma 16.8 (small detail omitted). □
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