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1. Introduction

In this chapter we prove some results in commutative algebra which are less elemen-
tary than those in the first chapter on commutative algebra, see Algebra, Section
A reference is [Mat70].

2. Advice for the reader

More than in the chapter on commutative algebra, each of the sections in this
chapter stands on its own. Starting with Section [56| we freely use the (unbounded)
derived category of modules over rings and all the machinery that comes with it.

3. Stably free modules
Here is what seems to be the generally accepted definition.

Definition 3.1. Let R be a ring.
(1) Two modules M, N over R are said to be stably isomorphic if there exist
n,m > 0 such that M © R®™ =2 N & R®" as R-modules.
(2) A module M is stably free if it is stably isomorphic to a free module.

Observe that a stably free module is projective.

Lemma 3.2. Let R be a ring. Let 0 — P’ — P — P” — 0 be a short exact
sequence of finite projective R-modules. If 2 out of 3 of these modules are stably
free, then so is the third.

Proof. Since the modules are projective, the sequence is split. Thus we can choose
an isomorphism P = P’ @ P”. If P’ ® R®" and P" @ R®™ are free, then we see
that P @ R®"t™ is free. Suppose that P’ and P are stably free, say P ® R®" is
free and P’ @ R®™ is free. Then

P'o (P oR*) @R = (P"oP)o R @ R = (Po R®") @ R®™
is free. Thus P” is stably free. By symmetry we get the last of the three cases. [

Lemmal 3.3. Let R be a ring. Let I C R be an ideal. Assume that every element
of 1 +1I is a unit (in other words I is contained in the Jacobson radical of R). For
every finite stably free R/I-module E there exists a finite stably free R-module M
such that M/IM = E.

Proof. Choose a n and m and an isomorphism E & (R/1)®" = (R/I)®™. Choose
R-linear maps ¢ : R®™ — R®" and ¢ : R®* — R®™ lifting the projection
(R/I1)®™ — (R/I)®™ and injection (R/1)®™" — (R/I)®™. Then o) : R®" — RI"
reduces to the identity modulo I. Thus the determinant of this map is invertible
by our assumption on I. Hence P = Ker(yp) is stably free and lifts E. O

Lemmal 3.4. Let R be a ring. Let I C R be an ideal. Assume that every element
of 1 +1 is a unit (in other words I is contained in the Jacobson radical of R). Let
M be a finite flat R-module such that M/IM is a projective R/I-module. Then M
s a finite projective R-module.

Proof. By Algebra, Lemma we see that M, is finite free for all prime ideals
p C R. By Algebra, Lemma it suffices to show that the function pys : p —
dim,,(,y M ®g k(p) is locally constant on Spec(R). Because M/IM is finite projec-
tive, this is true on V(I) C Spec(R). Since every closed point of Spec(R) is in V(1)
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and since pps(p) = par(q) whenever p C q C R are prime ideals, we conclude by an
elementary argument on topological spaces which we omit. ([

The lift of Lemma [3.3] is unique up to isomorphism by the following lemma.

Lemmal 3.5. Let R be a ring. Let I C R be an ideal. Assume that every element
of 14+ I is a unit (in other words I is contained in the Jacobson radical of R). If
P and P’ are finite projective R-modules, then

(1) if ¢ : P — P’ is an R-module map inducing an isomorphism @ : P/IP —
P'/IP’, then ¢ is an isomorphism,
(2) if P/IP = P'/IP', then P P'.
Proof. Proof of (1). As P’ is projective as an R-module we may choose a lift

——1
¢ : P' = P of the map P’ — P'/IP’ LA P/IP. By Nakayama’s lemma (Algebra,
Lemma [20.1]) ¢ o ¢ and ¢ o 1) are surjective. Hence these maps are isomorphisms
(Algebra, Lemma [16.4). Thus ¢ is an isomorphism.

Proof of (2). Choose an isomorphism P/IP = P’/IP’. Since P is projective we
can choose a lift ¢ : P — P’ of the map P — P/IP — P’/IP’. Then ¢ is an
isomorphism by (1). O

4. A comment on the Artin-Rees property

Some of this material is taken from [CdJ02]. A general discussion with additional
references can be found in [EHO05, Section 1].

Let A be a Noetherian ring and let I C A be an ideal. Given a homomorphism
f: M — N of finite A-modules there exists a ¢ > 0 such that
F(M)NI'N C f(I""°M)

for all n > ¢, see Algebra, Lemma In this situation we will say ¢ works for f
in the Artin-Rees lemma.

Lemmal 4.1. Let A be a Noetherian ring. Let I C A be an ideal contained in the
Jacobson radical of A. Let

S LLMEN and 8 LML N
be two complexes of finite A-modules as shown. Assume that

(1) ¢ works in the Artin-Rees lemma for f and g,
(2) the complex S is exact, and
(3) f'= fmod I°"*M and ¢’ = g mod I°T*N.

Then ¢ works in the Artin-Rees lemma for ¢’ and the complex S’ is ezact.

Proof. We first show that ¢'(M) N I"N C ¢'(I" M) for n > ¢. Let a be an
element of M such that ¢'(a) € I"N. We want to adjust a by an element of f/(L),
i.e, without changing ¢’(a), so that a € I""°M. Assume that a € I"M, where
r <n —c. Then

gla)=g'(a)+ (9 — ¢')(a) € I"N + I"T*TIN = ["HeHIN,

By Artin-Rees for g we have g(a) € g(I"t1M). Say g(a) = g(a;) with a; € I" 1 M.
Since the sequence S is exact, a —a; € f(L). Accordingly, we write a = f(b) + a1
for some b € L. Then f(b) =a —ay; € I"M. Artin-Rees for f shows that if r > ¢,
we may replace b by an element of I" L. Then in all cases, a = f'(b) + a2, where
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as = (f — f))(b) + a; € I""*M. (Namely, either ¢ > r and (f — f/)(b) € I"™' M
by assumption, or ¢ < r and b € I"~¢, whence again (f — f')(b) € [T "M =
I"™1M.) So we can adjust a by the element f/(b) € f’(L) to increase 7 by 1.

In fact, the argument above shows that (¢')"*(I"N) C f/(L)+1""°M for alln > c.
Hence S’ is exact because

(9)7H0) = () (O I"N) C () f(L) + 1" M = f'(L)

as I is contained in the Jacobson radical of A, see Algebra, Lemma [51.5 O

Given an ideal I C A of a ring A and an A-module M we set
Gr (M) =@ 1M/ M.
We think of this as a graded Gry(A)-module.

Lemma 4.2. Assumptions as in Lemma . Let Q@ = Coker(g) and Q' =
Coker(g’). Then Gri(Q) = Gri(Q') as graded Gri(A)-modules.

Proof. In degree n we have Gry(Q), = I"N/(I"*'N 4+ g(M)NI"N) and similarly
for Q’. We claim that

g(MYNI'"N c I"M'N 4 ¢/(M)NI™N.

By symmetry (the proof of the claim will only use that ¢ works for g which also
holds for ¢’ by the lemma) this will imply that

I"MN+g(M)NI'"N = I"M'N + ¢ (M)NI"N

whence Gr;(Q), and Gr;(Q’), agree as subquotients of N, implying the lemma.
Observe that the claim is clear for n < c as f = f’ mod I°t!N. If n > ¢, then
suppose b € g(M)NI*"N. Write b = g(a) for a € I""“M. Set /' = ¢’'(a). We have
b—b =(9—¢g)(a) € "N as desired. O

Lemmal4.3. Let A — B be a flat map of Noetherian rings. Let I C A be an ideal.
Let f: M — N be a homomorphism of finite A-modules. Assume that ¢ works for
f in the Artin-Rees lemma. Then ¢ works for f@1: M ®4 B — N ®4 B in the
Artin-Rees lemma for the ideal IB.

Proof. Note that
(fRM)NI"N@aB=(f®1)((f®©1) '(I"N ®4 B))
On the other hand,

(fR1)'(I"N®a B) =Ker(M ®4 B— N ®4 B/(I"N ®4 B))
=Ker(M ®4 B — (N/I"N) ®4 B)
As A — B is flat taking kernels and cokernels commutes with tensoring with B,

whence this is equal to f~1(I" N) ® 4 B. By assumption f~1(I"N) is contained in
Ker(f) + I" M. Thus the lemma holds. O
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5. Fibre products of rings, I

Fibre products of rings have to do with pushouts of schemes. Some cases of pushouts
of schemes are discussed in More on Morphisms, Section

Lemmal5.1. Let R be a ring. Let A — B and C — B be R-algebra maps. Assume

(1) R is Noetherian,

(2) A, B, C are of finite type over R,
(3) A — B is surjective, and

(4) B is finite over C.

Then A x g C is of finite type over R.

Proof. Set D = A xp C. There is a commutative diagram

0 B A 1 0

0 C D 1 0
with exact rows. Choose y1,...,y, € B which are generators for B as a C-module.
Choose z; € A mapping to y;. Then 1,z1,...,z, are generators for A as a D-

module. The map D — A x C is injective, and the ring A x C is finite as a
D-module (because it is the direct sum of the finite D-modules A and C). Hence
the lemma follows from the Artin-Tate lemma (Algebra, Lemma [51.7)). O

Lemma 5.2. Let R be a Noetherian ring. Let I be a finite set. Suppose given a
cartesian diagram

[1Bi<<— 114
] T
Q P

with ¥; and ¢; surjective, and Q, A;, B; of finite type over R. Then P is of finite
type over R.

Proof. Follows from Lemma [5.1] and induction on the size of I. Namely, let I =
I'T1{ip}. Let P’ be the ring defined by the diagram of the lemma using I’. Then P’
is of finite type by induction hypothesis. Finally, P sits in a fibre product diagram

Bio < Aio

]

P<~———P
to which the lemma applies. O
Lemma 5.3. Suppose given a cartesian diagram of rings
R<—— R
P

B<~—DB


https://stacks.math.columbia.edu/tag/00IT
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i.e., B'= BxgR'. Ifh € B’ corresponds to g € B and f € R’ such that s(g) = t(f),
then the diagram

Ry(g) = Ry(py <— (R')s
P
By <———— (B')n
1s cartesian too.
Proof. The equality B’ = B xg R’ tells us that
0B +Ba&R " LR

is an exact sequence of B’-modules. We have By = By, R} = R}, and Ry, =
Ry(y) = Ry, as B'-modules. By exactness of localization (Algebra, Proposition [9.12])
we find that

s,—t
0— B, = By ® R}y = Ry = Ry(p)
is an exact sequence. This proves the lemma. (Il
Consider a commutative diagram of rings
R<~—R
B<~—DB

Consider the functor (where the fibre product of categories is as constructed in
Categories, Example [31.3))

0D2E (531) Modpg: — Modp Xnody Modgy, L —s (L/ ®p B, L' ®p R/,CCL’I’L)

where can is the canonical identification L'’ @ 5 B R = L' ®p' R' @ R. In the
following we will write (N, M’ ¢) for an object of the right hand side, i.e., N is a
B-module, M’ is an R’-module and ¢ : N ® g R — M’ ®r/ R is an isomorphism.

0D2F Lemmal 5.4. Given a commutative diagram of rings

R<—FR
I
the functor has a Tight adjoint, namely the functor
F:(N,M' ) — N x,M
(see proof for elucidation).
Proof. Given an object (N, M’, ¢) of the category Modp Xod, Modg we set
Nx,M ={(n,m)eNxM|pn®l)=m'®1lin M ®r R}

viewed as a B’-module. The adjointness statement is that for a B’-module L’ and
a triple (N, M’, ) we have

Homp/ (L', Nx,M') = Homp(L'®p' B, N) X Hom p(L'® 5 R, M@ 5 ) Hom g/ (L'@p R, M)
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By Algebra, Lemma the right hand side is equal to

HOIHB/ (L/, N) XHomB/(L’,M’®R/R) HOI’IlB/ (L/, M/)
Thus it is clear that for a pair (g, f') of elements of this fibre product we get an
B’-linear map L' — N x, M', I" — (g(U'), f'(I')). Conversely, given a B’ linear map
g L' = N x, M' we can set g equal to the composition L' — N x, M’ — N

and f’ equal to the composition L' — N x, M’ — M’. These constructions are
mutually inverse to each other and define the desired isomorphism. O

6. Fibre products of rings, I1
In this section we discuss fibre products in the following situation.
Situation 6.1. In the following we will consider ring maps
B——sA<—A

where we assume A’ — A is surjective with kernel I. In this situation we set
B’ = B x 4 A’ to obtain a cartesian square

A<— A

]

B<~— B
Lemma 6.2. In Situatz’on we have
Spec(B') = Spec(B) Igpec(a) Spec(A”)
as topological spaces.

Proof. Since B’ = B x4 A’ we obtain a commutative square of spectra, which
induces a continuous map

can : Spec(B) Ugpec(a) Spec(A’) — Spec(B’)

as the source is a pushout in the category of topological spaces (which exists by
Topology, Section .

To show the map can is surjective, let ¢ C B’ be a prime ideal. If I C ¢’ (here
and below we take the liberty of considering I as an ideal of B’ as well as an ideal
of A’), then q’ corresponds to a prime ideal of B and is in the image. If not, then
pick h € I, h ¢ q'. In this case B, = A, = 0 and the ring map B — Aj} is an
isomorphism, see Lemma [5.3] Thus we see that q' corresponds to a unique prime
ideal p’ C A’ which does not contain 1.

Since B’ — B is surjective, we see that can is injective on the summand Spec(B).
We have seen above that Spec(A’) — Spec(B’) is injective on the complement
of V(I) C Spec(A’). Since V(I) C Spec(A’) is exactly the image of Spec(A) —
Spec(A’) a trivial set theoretic argument shows that can is injective.

To finish the proof we have to show that can is open. To do this, observe that an
open of the pushout is of the form V II U’ where V' C Spec(B) and U’ C Spec(A’)
are opens whose inverse images in Spec(A) agree. Let v € V. We can find a g € B
such that v € D(g) C V. Let f € A be the image. Pick f' € A’ mapping to f.
Then D(fYNU'NV(I)=D(f)NV(I). Hence V(I)ND(f") and D(f")N(U’')¢ are
disjoint closed subsets of D(f') = Spec(A’f,). Write (U')¢ = V(J) for some ideal
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J C A'. Since A} — Al /TAY, x A%/ JAY, is surjective by the disjointness just
shown, we can find an a” € A%, mapping to 1 in A’ /I A%, and mapping to zero in
A/ J A%, Clearing denominators, we find an element o’ € J mapping to f in A.
Then D(a'f') C U’. Let b/ = (¢"*!,d ') € B'. Since By, = Byn+1 XA s Ay bY
a previously cited lemma, we see that D(h') pulls back to an open neighbourhood
of v in the pushout, i.e., the image of V II U’ contains an open neighbourhood of

the image of v. We omit the (easier) proof that the same thing is true for v’ € U’
with v’ & V(I). O

Lemmal 6.3. In Situation if B — A is integral, then B’ — A’ is integral.

Proof. Let o/ € A’ with image a € A. Let 2% + byz? ' + ... + by be a monical
polynomial with coefficients in B satisfied by a. Choose b, € B’ mapping to b; € B
(possible). Then (a')? + b} (a’)?! + ... + b}, is in the kernel of A" — A. Since
Ker(B' — B) = Ker(A’ — A) we can modify our choice of ¥, to get (a’)¢ +
bi(a)? 1 + ...+ b, =0 as desired. O

In Situation we’d like to understand B’-modules in terms of modules over A’,
A, and B. In order to do this we consider the functor (where the fibre product of
categories as constructed in Categories, Example [31.3))

6.3.1 Modg: — Modpg Xwmod, Mod 47, L' — (L' Rpr B,L, XRpr A/,ccm
A

where can is the canonical identification L' ® g B A= L' @5 A’ ® 4+ A. In the
following we will write (N, M’, ¢) for an object of the right hand side, i.e., N is a
B-module, M’ is an A’-module and ¢ : N @ g A — M’ ® 4+ A is an isomorphism.
However, it is often more convenient think of ¢ as a B-linear map ¢ : N — M'/IM’
which induces an isomorphism N @ g A - M' @4 A= M'/IM’.

Lemma 6.4. In Sz’tuation the functor has a right adjoint, namely the
functor

F:(N,M' p)— N xpn M
where M = M'/IM’'. Moreover, the composition of F with is the identity

functor on Modp X proq, Moda:. In other words, setting N' = N X o M M’ we have
N’ QB B =N and N’ X pr A= M.

Proof. The adjointness statement follows from the more general Lemma To
prove the final assertion, recall that B’ = Bx 4 A" and N’ = N x, p M’ and extend
these equalities to

A<— A~ 1T M<~—M~<~—K
.
B<~—B <~—J N<—N~—1L

where I, J, K, L are the kernels of the horizontal maps of the original diagrams. We
present the proof as a sequence of observations:

(1) K =IM’ (see statement lemma),

) B’ — B is surjective with kernel J and J — I is bijective,

) N’ — N is surjective with kernel L and L — K is bijective,

) JN' C L,

) Im(N — M) generates M as an A-module (because N ® g A = M),


https://stacks.math.columbia.edu/tag/0E1S
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(6) Im(N" — M’) generates M’ as an A’-module (because it holds modulo K
and L maps isomorphically to K),

(7) JN'" = L (because L =2 K = IM’ is generated by images of elements zn’
with z € I and n’ € N’ by the previous statement),

(8) N'®p'B = N (because N = N'/L, B = B’/J, and the previous statement),

(9) thereisamapvy: N' ®p A" — M’,

10) ~ is surjective (see above),

11) the kernel of the composition N’ ®p A’ — M’ — M is generated by
elements [®1 and ' @z withl € K, n’ € N’, x € I (because M = N@p A
by assumption and because N’ — N and A" — A are surjective with kernels
L and I),

(12) any element of N’ ®p: A’ in the submodule generated by the elements [ ® 1

and n’ @ x with [ € L, n’ € N’, x € I can be written as [ ® 1 for some
1 € L (because J maps isomorphically to I we see that n’ @ x =n'z® 1 in
N' ®@p: A’; similarly zn’ @ o/ = n' @ xa’ = n/(zd’) ® 1 in N’ ® g A’ when
n’ € N,z € J and a’ € A’; since we have seen that JN’ = L this proves
the assertion),

(13) the kernel of v is zero (because by (10) and (11) any element of the kernel

is of the form ! ® 1 with [ € L which is mapped to l € K C M’ by 7).

This finishes the proof. O

Lemma 6.5. In the situation of Lemma for a B'-module L' the adjunction
map

L — (L/ K pr B) X(L'@pr A) (L/ QB A/)
is surjective but in general not injective.

Proof. As in the proof of Lemmal6.4]let J C B’ be the kernel of the map B’ — B.
Then L' ®» B = L'/JL'. Hence to prove surjectivity it suffices to show that
elements of the form (0, z) of the fibre product are in the image of the map of the
lemma. The kernel of the map L'’ ®pg: A’ — L' @ A is the image of L' ®p/ I —
L' ®p/ A’. Since the map J — I induced by B’ — A’ is an isomorphism the
composition

L/ XRpr J — L/ — (LI KR pr B) X(L’®B/A) (L/ XRpr A/)

induces a surjection of L' ® g+ J onto the set of elements of the form (0,2). To
see the map is not injective in general we present a simple example. Namely, take
a field k, set B' = k[z,y]/(zy), A’ = B'/(z), B = B'/(y), A = B'/(x,y) and
L' = B'/(z — y). In that case the class of z in L’ is nonzero but is mapped to zero
under the displayed arrow. O

Lemma 6.6. In Situation let (N1, M{,p1) = (N2, M4, p2) be a morphism of
Modp X prod, Modar with Ny — No and M{ — M}, surjective. Then

N1 X¢1’M1 M{ — N2 ><L,02’]\/[2 Mé
where My = M/ /IM| and My = M} /IM} is surjective.
Proof. Pick (z2,%2) € Na Xy, M, M. Choose 1 € Ny mapping to x. Since
M] — M, is surjective we can find y; € M| mapping to ¢;1(x1). Then (z1,y;) maps

to (z2,¥5) in Na X, pm, M5, Thus it suffices to show that elements of the form
(0, y2) are in the image of the map. Here we see that yo € IMJ. Write yo = >ty
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with ¢; € I. Choose y;; € M{ mapping to y2 ;. Then y1 = > t;y1,; € IM] and the
element (0,y;) does the job. O

Lemma 6.7. Let A,A’,B,B', I, M,M' N,y be as in Lemma. If N finite over
B and M’ finite over A’, then N' = N X,y M’ is finite over B'.

Proof. We will use the results of Lemma [6.4] without further mention. Choose
generators yi, ...,y of N over B and generators x1,...,zs of M’ over A’. Using
that N = N’ ®p B and B’ — B is surjective we can find uy, ..., u, € N’ mapping
to y1,...,y,r in N. Using that M’ = N'®p: A’ we can find v1,...,v; € N’ such that
z; = ) v; ® a;; for some a;; € A’ In particular we see that the images v; € M’
of the v; generate M’ over A’. We claim that ui,...,u,,v1,...,v; generate N’ as
a B’-module. Namely, pick & € N’. We first choose b],...,bl. € B’ such that £
and > biu; map to the same element of N. This is possible because B’ — B is
surjective and y1,...,y, generate N over B. The difference & — > bju; is of the
form (0, 0) for some 6 in IM'. Say 0 is Y t;T; with ¢; € I. As J = Ker(B’ — B)
maps isomorphically to I we can choose s; € J C B’ mapping to t;. Because
N’ = N x,m M’ it follows that £ =Y bju; + > s;v; as desired. O

Lemma 6.8. With A, A’, B,B’,I as in Situation .
(1) Let (N,M’, o) be an object of Modp X prod, Moda:. If M’ is flat over A’
and N is flat over B, then N' = N x, pp M’ is flat over B'.
(2) If L' is a flat B'-module, then L' = (L ®p' B) X(1g,, 4) (L ®p A").
(3) The category of flat B'-modules is equivalent to the full subcategory of
Modp X pfod, Modar consisting of triples (N, M’ ) with N flat over B
and M’ flat over A’.

Proof. In the proof we will use Lemma [6.4] without further mention.

Proof of (1). Set J = Ker(B’ — B). This is an ideal of B’ mapping isomorphically
to I = Ker(A" — A). Let b’ C B’ be an ideal. We have to show that b’®@p N’ — N’
is injective, see Algebra, Lemma We know that

b'/(6'NJ)®@p N =b"/(b'NJ)®g N - N

is injective as N is flat over B. As b'NJ — b — b'/(b' NJ) — 0 is exact, we
conclude that it suffices to show that (b’ NJ) @ gr N’ — N’ is injective. Thus we
may assume that b’ C J. Next, since J — I is an isomorphism we have

J ®Rp N/:I®A/ A’@B/ N/:I(X)A/ M’

which maps injectively into M’ as M’ is a flat A’-module. Hence J ®gr N’ — N’
is injective and we conclude that Torf}/ (B'/J,N') = 0, see Algebra, Remark
Thus we may apply Algebra, Lemma, to N’ over B’ and the ideal J. Going
back to our ideal b’ C J, let b’ C b” C J be the smallest ideal whose image in T
is an A’-submodule of I. In other words, we have b’ = A'b’ if we view J = I as
A’-module. Then b”/b’ is killed by J and we get a short exact sequence

0—=b ®p N —=b"®5 N — b”/b/ ®@p N —0
by the vanishing of Torf/(b”/b’,N’) we get from the application of the lemma.

Thus we may replace b’ by b”. In particular we may assume b’ is an A’-module
and maps to an ideal of A’. Then

bl ®B’ NI — b/ ®A/ AI ®B/ NI — b/ ®A’ M/
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This tensor product maps injectively into M’ by our assumption that M’ is flat
over A’. We conclude that b’ @ g N’ — N’ — M’ is injective and hence the first
map is injective as desired.

Proof of (2). This follows by tensoring the short exact sequence 0 - B’ — B A’ —
A — 0 with L' over B'.

Proof of (3). Immediate consequence of (1) and (2). O

Lemma 6.9. Let A,A’,B,B’,I be as in Situation . The category of finite
projective B'-modules is equivalent to the full subcategory of Modg X prod, Modas
consisting of triples (N, M’, ) with N finite projective over B and M’ finite pro-
jective over A’.

Proof. Recall that a module is finite projective if and only if it is finitely presented
and flat, see Algebra, Lemma[78.2] Using Lemmas|[6.8]and [6.7] we reduce to showing
that N' = N x, 3 M’ is a B’-module of finite presentation if N finite projective
over B and M’ finite projective over A'.

By Lemma the module N’ is finite over B’. Choose a surjection (B')®" — N’
with kernel K’. By base change we obtain maps B®" — N, (A)®"* — M’ and
A®™ — M with kernels Kg, K4/, and K 4. There is a canonical map

K/—>KB XKAKA’

On the other hand, since N’ = N x, p M’ and B" = B x4 A’ there is also a
canonical map Kp Xg, K4 — K’ inverse to the displayed arrow. Hence the
displayed map is an isomorphism. By Algebra, Lemma the modules Kp and
K 4/ are finite. We conclude from Lemmathat K’ is a finite B’-module provided
that K — K4 and K 4 — K 4 induce isomorphisms KgRp A = Kx = Ka ®a/ A.
This is true because the flatness assumptions implies the sequences

0—+Kg—B% 5 N—=0 and 0= Kyq — (4)®" = M —0

stay exact upon tensoring, see Algebra, Lemma [39.12 O

7. Fibre products of rings, IIT
In this section we discuss fibre products in the following situation.

Situation 7.1. Let A, A’,B,B’,I be as in Situation Let B — D’ be a ring
map. Set D =D’ ®p B, C' =D ®p A’, and C = D’ ®p/ A. This leads to a big

commutative diagram
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of rings. Observe that we do not assume that the map D’ — D x¢ C' is an
isomorphisnﬂ In this situation we have the functor

(7.1.1)  Modp, — Modp Xmode Moder, L'+ (L' @pr D, L' @pr C', can)

analogous to (6.3.1). Note that L' ® p» D = L ®p (D' ®p» B) = L @ B and
similarly I’ @ pr C' = L@p, (D' @ A’) = L ® g A’ hence the diagram

MOdD/ —_— MOdD XMod¢e MOdCI

| |

MOdB/ e MOdB X Mod 4 MOdA/

is commutative. In the following we will write (N, M’, ¢) for an object of Mod p X Mod,,
Modcy, i.e., N is a D-module, M’ is an C’'-module and ¢ : N g A — M' @4/ A
is an isomorphism of C-modules. However, it is often more convenient think of ¢
as a D-linear map ¢ : N — M’/IM’ which induces an isomorphism N @ A —
M Q4 A= M//IM/.

Lemma 7.2. In Situatz’on the functor has a right adjoint, namely the
functor

F: <N7M1750) — N Xgo,M M/
where M = M'/IM’. Moreover, the composition of F with is the identity

functor on Modp X pode, Modcr. In other words, setting N' = N X, v M’ we have
N' ®@p D =N and N' @p C' = M'.

Proof. The adjointness statement follows from the more general Lemma The
final assertion follows from the corresponding assertion of Lemma [6.4] because
N @p D=N ®p D' ®p B=N ®p Band N ®@p C' =N ®@p D' ®@p A" =
N' @p A'. O

Lemmal 7.3. In Situation the map JD' — IC' is surjective where J =
Ker(B' — B).

Proof. Since C' = D'®ps A’ we have that IC’ is the image of D'®@p [ = C'@ 4/ 1 —
C’. Asthering map B’ — A’ induces an isomorphism J — I the lemma follows. O

Lemmal 7.4. Let A,A',B,B',C,C'",D,D', I, M' M, N, be as in Lemma. If
N finite over D and M’ finite over C', then N' = N X, pp M is finite over D'.

Proof. Recall that D' — D xc C’ is surjective by Lemma Observe that
N’ = N x4, M’ is a module over D x¢ C’. We can apply Lemma to the data
C,C",D,D',IC",M',M,N, ¢ to see that N' = N x, y M’ is finite over D x¢ C".
Thus it is finite over D’. O
Lemmal 7.5. With A, A", B,B’,C,C'",D, D’ I as in Situation .
(1) Let (N,M', ) be an object of Modp X prode Moder. If M’ is flat over A’
and N is flat over B, then N' = N x, pp M’ is flat over B'.
(2) If L' is a D'-module flat over B', then L' = (L®p: D) X(1g,,c¢)(L&p C').
(3) The category of D'-modules flat over B’ is equivalent to the categories of
objects (N, M’, ) of Modp X prode. Mode: with N flat over B and M’ flat
over A’.

1But D’ — D x¢ C' is surjective by Lemma
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Proof. Part (1) follows from part (1) of Lemma [6.8]

Part (2) follows from part (2) of Lemma using that L' ®pr D = L' ®p' B,
L'®p C'=L @ A", and L' p C = L' ®p/ A, see discussion in Situation [7.1

Part (3) is an immediate consequence of (1) and (2). O

The following lemma is a good deal more interesting than its counter part in the
absolute case (Lemma , although the proof is essentially the same.

Lemma 7.6. Let A, A',B,B',C,C’",D,D',1,M',M,N, ¢ be as in Lemma[7.4 If
(1) N is finitely presented over D and flat over B,
(2) M’ finitely presented over C' and flat over A’, and
(3) the ring map B' — D’ factors as B' — D" — D’ with B — D" flat and
D" — D' of finite presentation,
then N' = N x; M’ is finitely presented over D'.

Proof. Choose a surjection D" = D"[xy,...,x,] — D’ with finitely generated
kernel J. By Algebra, Lemma it suffices to show that N’ is finitely presented
as a D”’-module. Moreover, D" g B —- D' g B = D and D" ®p A’ —
D' ®p A’ = C' are surjections whose kernels are generated by the image of J,
hence N is a finitely presented D" ® g B-module and M’ is a finitely presented
D" @p: A'-module by Algebra, Lemma again. Thus we may replace D’ by
D" and D by D" ®p' B, etc. Since D" is flat over B’, it follows that we may
assume that B’ — D’ is flat.

Assume B’ — D’ is flat. By Lemma the module N’ is finite over D’. Choose a
surjection (D")®" — N’ with kernel K’. By base change we obtain maps D®" — N
(C"®" — M’ and C®" — M with kernels Kp, K¢/, and K¢. There is a canonical
map
K — Kp XKe Ko

On the other hand, since N’ = N xpy M’ and D' = D x¢ C’ (by Lemma
applied to the flat B’-module D’) there is also a canonical map Kp X g, K¢v — K’
inverse to the displayed arrow. Hence the displayed map is an isomorphism. By
Algebra, Lemmal5.3| the modules Kp and K¢ are finite. We conclude from Lemma
that K’ is a finite D’-module provided that Kp — Ko and Ko — K¢ induce
isomorphisms Kp ®p A = Ko = Ko ® 4 A. This is true because the flatness
assumptions implies the sequences

0—+Kp—=D®" 5 N-—=0 and 0— Ko — (C®" = M =0
stay exact upon tensoring, see Algebra, Lemma [39.12 (]

Lemmal 7.7. Let A, A’, B, B’,I be as in Situation . Let (D,C’, ) be a system
consisting of an B-algebra D, a A’-algebra C' and an isomorphism D ®p A —
C'/IC" =C. Set D' = D x¢ C' (as in Lemma[6.4). Then

(1) B' — D' is finite type if and only if B — D and A’ — C' are finite type,

(2) B — D' is flat if and only if B— D and A’ — C' are flat,

(3) B' — D' is flat and of finite presentation if and only if B — D and A’ — C'

are flat and of finite presentation,
(4) B' — D’ is smooth if and only if B— D and A’ — C’ are smooth,
(5) B' — D' is étale if and only if B — D and A’ — C' are étale.
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Moreover, if D' is a flat B'-algebra, then D" — (D' ®p: B) X(prg ,, 4y (D' @pr A")
is an isomorphism. In this way the category of flat B'-algebras is equivalent to the
categories of systems (D,C’, @) as above with D flat over B and C’ flat over A’.

Proof. The implication “="” follows from Algebra, Lemmas 137.4] and
143.3| because we have D' @5 B = D and D’ ®p: A’ = C’ by Lemma [6.4] Thus it
suffices to prove the implications in the other direction.

Ad (1). Assume D of finite type over B and C’ of finite type over A’. We will use

the results of Lemma without further mention. Choose generators x1, ..., %,
of D over B and generators yi,...,ys of C' over A’. Using that D = D' @ B
and B’ — B is surjective we can find g, ...,u, € D' mapping to x1,...,z, in D.

Using that " = D" ®ps A’ we can find vy, ...,v; € D’ such that y; = Y v; ®aj; for
some a;; € A’. In particular, the images of v; in C’ generate C’ as an A’-algebra.
Set N = r +t and consider the cube of rings

A[xla v 733N] %A,[xla s ,’JIN]
\ ) T P
B[:Ela"'axN] B/[xla"'axN]
\ | I
Observe that the back square is cartesian as well. Consider the ring map
B’[xl,...,xN]—>D/, r; — u; and Tyryj > V5.
Then we see that the induced maps B[z1,...,2ny] = D and A'[z1,...,2n] — C' are

surjective, in particular finite. We conclude from Lemmathat B'[z1,...,zn5] —
D' is finite, which implies that D’ is of finite type over B’ for example by Algebra,
Lemma

Ad (2). The implication “<«<” follows from Lemma Moreover, the final state-
ment follows from the final statement of Lemma [Z.5l

Ad (3). Assume B — D and A’ — C’ are flat and of finite presentation. The
flatness of B’ — D’ we’ve seen in (2). We know B’ — D’ is of finite type by
(1). Choose a surjection B'[z1,...,25y] — D’. By Algebra, Lemma the ring

D is of finite presentation as a B[xy,...,2y]-module and the ring C’ is of finite
presentation as a A’[z1,...,zy]-module. By Lemma we see that D’ is of finite
presentation as a B'[x1,...,xy]-module, i.e., B’ — D’ is of finite presentation.

Ad (4). Assume B — D and A’ — C’ smooth. By (3) we see that B’ — D’ is
flat and of finite presentation. By Algebra, Lemma it suffices to check that
D' ®ps k is smooth for any field k over B’. If the composition J — B’ — k is zero,
then B’ — k factors as B — B — k and we see that

D/®B/k:D/®B/B®Bk:D®Bk

is smooth as B — D is smooth. If the composition J — B’ — k is nonzero, then
there exists an h € J which does not map to zero in k. Then B’ — k factors as
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B’ — Bj, — k. Observe that h maps to zero in B, hence Bj, = 0. Thus by Lemma
we have B; = Aj and we get

D' ®p k=D ®p B;l ®B;l k:C,/l ®A/h k
is smooth as A’ — C’ is smooth.

Ad (5). Assume B — D and A’ — C’ are étale. By (4) we see that B’ — D’
is smooth. As we can read off whether or not a smooth map is étale from the
dimension of fibres we see that (5) holds (argue as in the proof of (4) to identify
fibres — some details omitted). O

Remark| 7.8. In Situation Assume B’ — D’ is of finite presentation and
suppose we are given a D’-module L'. We claim there is a bijective correspondence
between

(1) surjections of D’-modules L' — @' with @’ of finite presentation over D’
and flat over B’, and
(2) pairs of surjections of modules (L’ ® pr D — Q1, L' @ p: C' — Q) with
(a) Q1 of finite presentation over D and flat over B,
(b) Q2 of finite presentation over C’ and flat over A,
(¢) Q1 ®p C = Qs ®c C as quotients of L' @p, C.
The correspondence between these is given by Q — (Q1,Q2) with Q1 = Q ®p D

and Q2 = Q ®p C’. And for the converse we use Q = Q1 XQ,, @2 where Q12 the
common quotient Q1 ®p C = Q2 Q¢ C of L’ @p, C. As quotient map we use

L' — (L' ®@p D) X(rg,0) (L' @p C') — Q1 X, Q2 =Q

where the first arrow is surjective by Lemma and the second by Lemma [6.6]
The claim follows by Lemmas [7.5] and [7.6]

8. Fitting ideals

The Fitting ideals of a finite module are the ideals determined by the construction
of Lemma B2

Lemma 8.1. Let R be a ring. Let A be an n X m matriz with coefficients in R.
Let I.(A) be the ideal generated by the r x r-minors of A with the convention that
Iy(A) = R and I,(A) =0 if r > min(n,m). Then

(1) Io(A) D) Il<A) D IQ(A) Dy

(2) if B is an (n + n') x m matriz, and A is the first n rows of B, then

Iryni(B) C I(A),
(3) if C is an n X n matriz then I.(CA) C I.(A).
(4) If A is a block matriz
A0
(5 )

then I,(A) = 3 L (A, (As).

(5) Add more here.

r1+ro=r

Proof. Omitted. (Hint: Use that a determinant can be computed by expanding
along a column or a row.) ]
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0728 Lemma 8.2. Let R be a ring. Let M be a finite R-module. Choose a presentation
 R— R¥™" s M —0.
jeJ
of M. Let A = (aij)i=1,....njes be the matriz of the map @jeJR — RO, The
ideal Fity,(M) generated by the (n — k) x (n — k) minors of A is independent of the
choice of the presentation.

Proof. Let K C R®" be the kernel of the surjection R®™ — M. Pick 21,..., 2,k €
K and write z; = (215,...,%n;). Another description of the ideal Fity (M) is that
it is the ideal generated by the (n — k) x (n — k) minors of all the matrices (z;;) we
obtain in this way.

Suppose we change the surjection into the surjection R®"+"" — M with kernel K’
where we use the original map on the first n standard basis elements of R®"+m’
and 0 on the last n’ basis vectors. Then the corresponding ideals are the same.
Namely, if 21,...,2,—x € K as above, let z; = (215,...,2n;,0,...,0) € K’ for
j=1,...,n—k and Z;H_j/ =(0,...,0,1,0,...,0) € K’. Then we see that the ideal
of (n—k) x (n—k) minors of (z;;) agrees with the ideal of (n+n' —k) x (n+n’ —k)
minors of (z];). This gives one of the inclusions. Conversely, given z1,..., 2, .,
in K" we can project these to R®" to get 21,..., zn1n—k in K. By Lemma we
see that the ideal generated by the (n +n' — k) x (n +n' — k) minors of (z];) is
contained in the ideal generated by the (n — k) x (n — k) minors of (z;;). This gives
the other inclusion.

Let R®™ — M be another surjection with kernel L. By Schanuel’s lemma (Algebra,
Lemma and the results of the previous paragraph, we may assume m = n
and that there is an isomorphism R®" — R®™ commuting with the surjections
to M. Let C = (¢;;) be the (invertible) matrix of this map (it is a square matrix

as n = m). Then given #{,...,2,,_, € L as above we can find z1,...,2,— € K
with 2{ = Cz1,...,2),_ . =Cz,_;. By Lemmawe get one of the inclusions. By
symmetry we get the other. O

07Z9 Definition 8.3. Let R be a ring. Let M be a finite R-module. Let & > 0.
The kth Fitting ideal of M is the ideal Fitg(M) constructed in Lemma Set
Fit_, (M) = 0.

Since the Fitting ideals are the ideals of minors of a big matrix (numbered in reverse
ordering from the ordering in Lemma we see that

0=Fit_;(M) C Fito(M) C Fity(M) C ... C Fity(M) =R
for some t > 0. Here are some basic properties of Fitting ideals.

07ZA |Lemmal 8.4. Let R be a ring. Let M be a finite R-module.

(1) If M can be generated by n elements, then Fit,(M) = R.
(2) Given a second finite R-module M’ we have

Fity(M & M') = ka:z Fity (M) Fity (M")

(3) If R — R’ is a ring map, then Fity(M ®g R') is the ideal of R’ generated
by the image of Fity,(M).

(4) If M is of finite presentation, then Fity,(M) is a finitely generated ideal.

(5) If M — M’ is a surjection, then Fity(M) C Fit,(M').
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(6) We have Fitg(M) C Anng(M).

(7) We have V (Fity(M)) = Supp(M).

(8) Add more here.
Proof. Part (1) follows from the fact that IH(A) = R in Lemma
Part (2) follows form the corresponding statement in Lemma
Part (3) follows from the fact that @ g R’ is right exact, so the base change of a
presentation of M is a presentation of M @ R'.
Proof of (4). Let R®™ 2 R®" —» M — 0 be a presentation. Then Fity (M) is the
ideal generated by the n — k X n — k minors of the matrix A.

Part (5) is immediate from the definition.

Proof of (6). Choose a presentation of M with matrix A as in Lemma Let
J' C J be a subset of cardinality n. It suffices to show that f = det(ai;)i=1,... n jeJ
annihilates M. This is clear because the cokernel of

A/:(aij)i,:l ..... n,jeJ’

R®" R®" - M — 0
is killed by f as there is a matrix B with A’B = f1,,x,.

Proof of (7). Choose a presentation of M with matrix A as in Lemma By
Nakayama’s lemma (Algebra, Lemma [20.1)) we have

M, # 0 < M ®pg k(p) # 0 < rank(image A in k(p)) <n

Clearly Fito(M) exactly cuts out the set of primes with this property. O

Example 8.5. Let R be a ring. The Fitting ideals of the finite free module
M = R®™ are Fity(M) = 0 for k < n and Fitx(M) = R for k > n.

Lemmal 8.6. Let R be a ring. Let M be a finite R-module. Let k > 0. Letp C R
be a prime ideal. The following are equivalent

(1) Fity(M) Z p,

(2) dimﬁ(p) M QR Kl(p) < k,

(3) M, can be generated by k elements over Ry, and

(4) My can be generated by k elements over Ry for some f € R, f & p.

Proof. By Nakayama’s lemma (Algebra, Lemma we see that My can be
generated by k elements over Ry for some f € R, f & p if M ®g k(p) can be
generated by k elements. Hence (2), (3), and (4) are equivalent. Using Lemma
part (3) this reduces the problem to the case where R is a field and p = (0). In this
case the result follows from Example O

Lemma 8.7. Let R be a ring. Let M be a finite R-module. Let r > 0. The
following are equivalent

(1) M is finite locally free of rank r (Algebra, Definition[78.1),

(2) Fit—1(M) =0 and Fit. (M) = R, and

(3) Fity,(M) =0 for k <r and Fitx(M) = R for k > r.

Proof. It is immediate that (2) is equivalent to (3) because the Fitting ideals form
an increasing sequence of ideals. Since the formation of Fity (M) commutes with
base change (Lemma we see that (1) implies (2) by Example and glueing
results (Algebra, Section . Conversely, assume (2). By Lemma we may
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assume that M is generated by r elements. Thus a presentation ies B — R®" —
M — 0. But now the assumption that Fit,._1(M) = 0 implies that all entries of
the matrix of the map ;. ; R — R®" are zero. Thus M is free. O

Lemma 8.8. Let R be a local ring. Let M be a finite R-module. Let k > 0.
Assume that Fity(M) = (f) for some f € R. Let M’ be the quotient of M by
{r € M| fr =0}. Then M’ can be generated by k elements.

Proof. Choose generators z1,...,x, € M corresponding to the surjection R®" —
M. Since R is local if a set of elements E C (f) generates (f), then some e € F
generates (f), see Algebra, Lemma Hence we may pick z1,...,z,_ in the
kernel of R®" — M such that some (n — k) x (n — k) minor of the n x (n — k)
matrix A = (z;;) generates (f). After renumbering the z; we may assume the first
minor det(z;;)1<i j<n—k generates (f), i.e., det(2ij)1<i j<n—r = wf for some unit
u € R. Every other minor is a multiple of f. By Algebra, Lemma there exists
an —k xn—k matrix B such that

for some matrix C with coefficients in R. This implies that for every ¢ < n — k the
element y; = ux; + ; Cji%j 18 annihilated by f. Since M/  Ry; is generated by
the images of z,_k41,...,2, We win. O

Lemma 8.9. Let R be a ring. Let M be a finitely presented R-module. Let k > 0.
Assume that Fity,(M) = (f) for some nonzerodivisor f € R and Fit_1(M) = 0.
Then

(1) M has projective dimension < 1,

(2) M’ =Ker(f : M — M) is the f-power torsion submodule of M,
(3) M’ has projective dimension <1,

(4) M/M’ is finite locally free of rank k, and

(5) M 2 M/M' & M’

Proof. Choose a presentation
RO 4 RO M 0
for some matrix A with coefficients in R.

We first prove the lemma when R is local. Set M’ = {x € M | fr = 0} as
in the statement. By Lemma [8:8 we can choose z1,...,z; € M which generate
M/M'. Then xzi,...,x, generate My = (M/M');. Hence, if there is a relation
> a;z; = 0 in M, then we see that aq,...,a; map to zero in R since otherwise
Fity_1(M)Ry = Fity_1(My) would be nonzero. Since f is a nonzerodivisor, we
conclude a; = ... =ap = 0. Thus M = R®* @ M’. After a change of basis in our
presentation above, we may assume the first n — k basis vectors of R®™ map into
the summand M’ of M and the last k-basis vectors of R®"™ map to basis elements
of the summand R®* of M. Having done so, the last k rows of the matrix A vanish.
In this way we see that, replacing M by M’, k by 0, n by n — k, and A by the
submatrix where we delete the last k rows, we reduce to the case discussed in the
next paragraph.

Assume R is local, k = 0, and M annihilated by f. Now the Oth Fitting ideal of M
is (f) and is generated by the n x n minors of the matrix A of size n x m. (This in
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particular implies m > n.) Since R is local, some n X n minor of A is uf for a unit
u € R. After renumbering we may assume this minor is the first one. Moreover,
we know all other n x n minors of A are divisible by f. Write A = (A;A2) in block
form where A; is an n x n matrix and A, is an n X (m — n) matrix. By Algebra,
Lemma applied to the transpose of A (!) we find there exists an n X n matrix
B such that
BA:B(A:[AQ) :f(ulnxn O)

for some n x (m — n) matrix C' with coefficients in R. Then we first conclude
BA; = ful,xy. Thus

BAy = fC = uflfuC =u"'BA,C

Since the determinant of B is a nonzerodivisor we conclude that As = v~ 1A4,C.
Therefore the image of A is equal to the image of A; which is isomorphic to R®™ be-
cause the determinant of A; is a nonzerodivisor. Hence M has projective dimension
<1

We return to the case of a general ring R. By the local case we see that M/M’' is a
finite locally free module of rank k, see Algebra, Lemma [78.2] Hence the extension
0> M — M — M/M' — 0 splits. It follows that M’ is a finitely presented
module. Choose a short exact sequence 0 — K — R®* — M’ — 0. Then K is a
finite R-module, see Algebra, Lemma By the local case we see that K, = R;ea
for all primes. Hence by Algebra, Lemma [78.2] again we see that K is finite locally
free of rank a. It follows that M’ has projective dimension < 1 and the lemma is
proved. ([l

9. Lifting

In this section we collection some lemmas concerning lifting statements of the fol-
lowing kind: If A is a ring and I C A is an ideal, and ¢ is some kind of structure
over A/I, then we can lift £ to a similar kind of structure ¢ over A or over some
étale extension of A. Here are some types of structure for which we have already
proved some results:

(1) idempotents, see Algebra, Lemmas and
) projective modules, see Algebra, Lemmas and
) finite stably free modules, see Lemma
) basis elements, see Algebra, Lemmas and
) ring maps, i.e., proving certain algebras are formally smooth, see Algebra,
Lemma Proposition and Lemma
(6) syntomic ring maps, see Algebra, Lemma
(7) smooth ring maps, see Algebra, Lemma [137.20]
(8) étale ring maps, see Algebra, Lemma
(9) factoring polynomials, see Algebra, Lemma and
(10) Algebra, Section discusses henselian local rings.

The interested reader will find more results of this nature in Smoothing Ring Maps,
Section |3|in particular Smoothing Ring Maps, Proposition |3.2

Let A be a ring and let I C A be an ideal. Let & be some kind of structure
over A/I. In the following lemmas we look for étale ring maps A — A’ which
induce isomorphisms A/I — A’/IA’ and objects ¢ over A’ lifting £. A general
remark is that given étale ring maps A — A’ — A” such that A/I = A’/ITA" and
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A'JTA" = A" /T A” the composition A — A” is also étale (Algebra, Lemma
and also satisfies A/I =2 A”/IA”. We will frequently use this in the following
lemmas without further mention. Here is a trivial example of the type of result we
are looking for.

Lemma 9.1. Let A be a ring, let I C A be an ideal, let w € A/I be an invertible
element. There exists an étale ring map A — A’ which induces an isomorphism
AJI — A'/ITA" and an invertible element v’ € A’ lifting w.

Proof. Choose any lift f € A of wand set A’ = Ay and u the image of f in A’. O

Lemma 9.2. Let A be a ring, let I C A be an ideal, lete € A/I be an idempotent.
There exists an étale ring map A — A’ which induces an isomorphism A/l —
A'/TA" and an idempotent €' € A’ lifting €.

Proof. Choose any lift z € A of €. Set

A= A/ (2 — 1) [1} .

t—14+=x

The ring map A — A’ is étale because (2t —1)dt = 0 and (2¢t —1)(2¢t — 1) = 1 which
is invertible. We have A’/TA" = A/I[t]/(t* — t)[t_hg] = A/I the last map sending
t to € which works as € is a root of t> — t. This also shows that setting e’ equal to

the class of t in A’ works. ]

Lemma 9.3. Let A be a ring, let I C A be an ideal. Let Spec(A/I) = HjeJUj
be a finite disjoint open covering. Then there exists an étale Ting map A — A’
which induces an isomorphism AJ/I — A'/TA" and a finite disjoint open covering
Spec(A’) = [1,¢; Uj lifting the given covering.

Proof. This follows from Lemma and the fact that open and closed subsets of
Spectra correspond to idempotents, see Algebra, Lemma [21.3 O

Lemmal 9.4. Let A — B be a ring map and J C B an ideal. If A — B is étale at
every prime of V(J), then there exists a g € B mapping to an invertible element of
B/J such that A" = By is étale over A.

Proof. The set of points of Spec(B) where A — B is not étale is a closed subset of
Spec(B), see Algebra, Definition Write this as V(J') for some ideal J' C B.
Then V(J' )NV (J) = 0 hence J+J" = B by Algebra, Lemmal[l7.2] Write 1 = f+g¢
with f € J and g € J'. Then g works. O

Next we have three lemmas saying we can lift factorizations of polynomials.

Lemma 9.5. Let A be a ring, let I C A be an ideal. Let f € Alz] be a monic
polynomial. Let f = gh be a factorization of f in A/Ix] such that § and h are
monic and generate the unit ideal in A/I[x]. Then there exists an étale ring map
A — A" which induces an isomorphism AJ/I — A’ /TA" and a factorization f = g'h’
in A'lz] with ¢', ' monic lifting the given factorization over A/I.

Proof. We will deduce this from results on the universal factorization proved
earlier; however, we encourage the reader to find their own proof not using this

trick. Say deg(g) = n and deg(h) = m so that deg(f) = n +m. Write f =
2" 4 N T for some a, - .., Qg € A. Consider the ring map

R=7Zla1,...,an4+m| —> S =2Z[b1,...,by,c1,...,Cm)
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of Algebra, Example [143.12] Let R — A be the ring map which sends a; to «;. Set
B=A®grS

By construction the image fp of f in B[z] factors, say fp = ghp with gp =
2" 4+ Y (1 ® b;)z" " and similarly for hg. Write g = 2" + > B,2" % and h =
™ + Y 7,2™~". The A-algebra map

B— A/I, 1@b+—B;, 1®c; 7,

maps gp and hp to g and h in A/I[z]. The displayed map is surjective; denote
J C B its kernel. From the discussion in Algebra, Example it is clear that
A — B is etale at all points of V(J) C Spec(B). Choose g € B as in Lemma
and consider the A-algebra By. Since g maps to a unit in B/J = A/I we obtain
also a map B,/IB; — A/I of A/I-algebras. Since A/I — B,/IB, is étale, also
By /1By — A/I is étale (Algebra, Lemma[143.8). Hence there exists an idempotent
e € By/IB, such that A/I = (By/IBy). (Algebra, Lemma [143.9). Choose a lift
h € By of e. Then A — A’ = (By);, with factorization given by the image of the
factorization fp = gghp in A’ is a solution to the problem posed by the lemma. [

The assumption on the leading coefficient in the following lemma will be removed
in Lemma

Lemma 9.6. Let A be a ring, let I C A be an ideal. Let f € Alz] be a monic
polynomial. Let f = gh be a factorization of f in A/I[z] and assume

(1) the leading coefficient of G is an invertible element of A/I, and

(2) g, h generate the unit ideal in A/I[z].
Then there exists an étale ring map A — A’ which induces an isomorphism A/l —
A'JTA" and a factorization f = ¢g'h’ in A’[x] lifting the given factorization over
A/l

Proof. Applying Lemma we may assume that the leading coefficient of g is the
reduction of an invertible element u € A. Then we may replace g by ‘g and h
by @h. Thus we may assume that § is monic. Since f is monic we conclude that A
is monic too. In this case the result follows from Lemma [3.5 O

Lemma 9.7. Let A be a ring, let I C A be an ideal. Let f € Alz] be a monic
polynomial. Let f = gh be a factorization of f in A/I[z] and assume that g, h
generate the unit ideal in A/I[x]. Then there exists an étale ring map A — A’
which induces an isomorphism AJ/I — A'/TA" and a factorization f = g'h' in A'[x]
lifting the given factorization over A/I.

Proof. Say f = z¢ + a1297 + ... + a4 has degree d. Write g = . b;2’ and
h =Y ¢;z7. Then we see that 1 =Y b;¢q_;. It follows that Spec(A/I) is covered
by the standard opens D(b;¢4—;). However, each point p of Spec(A/I) is contained
in at most one of these as by looking at the induced factorization of f over the field
k(p) we see that deg(g mod p) 4+ deg(h mod p) = d. Hence our open covering is a
disjoint open covering. Applying Lemma (and replacing A by A’) we see that
we may assume there is a corresponding disjoint open covering of Spec(A). This

disjoint open covering corresponds to a product decomposition of A, see Algebra,
Lemma 243l It follows that

A=Ay x...xAq, I=1Iyx...x14,
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where the image of g, resp. h in A;/I; has degree j, resp. d—j with invertible leading
coefficient. Clearly, it suffices to prove the result for each factor A; separatedly.
Hence the lemma follows from Lemma O

Lemmal 9.8. Let R — S be a ring map. Let I C R be an ideal of R and let
J C S be an ideal of S. If the closure of the image of V(J) in Spec(R) is disjoint
from V(I), then there exists an element f € R which maps to 1 in R/I and to an
element of J in S.

Proof. Let I' C R be an ideal such that V(I’) is the closure of the image of V(J).
Then V(I) NV (I') = 0 by assumption and hence I + I’ = R by Algebra, Lemma
Write 1 = g+ f with g € T and f € I’. We have V(f') D V(J) where f’ is the
image of f in S. Hence (f")" € J for some n, see Algebra, Lemma Replacing
f by f™ we win. O

Lemma 9.9. Let I be an ideal of a ring A. Let A — B be an integral ring map.
Let b € B map to an idempotent in B/IB. Then there exists a monic f € Alx]
with f(b) =0 and f mod I = 2%(x — 1)? for some d > 1.

Proof. Observe that z = b?> — b is an element of IB. By Algebra, Lemma m
there exist a monic polynomial g(z) = % 4+ Y ajz’ of degree d with a; € I such
that g(z) = 0 in B. Hence f(x) = g(z* — x) € A[z] is a monic polynomial such
that f(z) = 2%(z — 1)? mod I and such that f(b) =0 in B. O

Lemma|9.10. Let A be a ring, let I C A be an ideal. Let A — B be an integral ring
map. Lete € B/IB be an idempotent. Then there exists an étale ring map A — A’
which induces an isomorphism AJ/I — A'JTA" and an idempotent ¢ € B @4 A’
lifting €.

Proof. Choose an element y € B lifting €. Choose f € Alz] as in Lemma
for y. By Lemma we can find an étale ring map A — A’ which induces an
isomorphism A/I — A’/I A" and such that f = gh in A[z] with g(z) = ¢ mod I A’
and h(z) = (x — 1) mod TA’. After replacing A by A’ we may assume that the
factorization is defined over A. In that case we see that by = g(y) € B is a lift of
el =2 and by = h(y) € B is a lift of (e — 1) = (=1)4(1 —&)? = (—=1)4(1 —€) and
moreover bibe = 0. Thus (b1,b2)B/IB = B/IB and V (b1, bs) C Spec(B) is disjoint
from V(IB). Since Spec(B) — Spec(A) is closed (see Algebra, Lemmas and
we can find an ¢ € A which maps to an invertible element of A/I whose
image in B lies in (b1, b2), see Lemma After replacing A by the localization A,
we get that (b1,be) = B. Then Spec(B) = D(by) I D(by); disjoint union because
b1ba = 0 and covers Spec(B) because (b1,b2) = B. Let e € B be the idempotent
corresponding to the open and closed subset D(by), see Algebra, Lemma Since
by is a lift of € and by is a lift of £(1 — €) we conclude that e is a lift of € by the
uniqueness statement in Algebra, Lemma [21.3 g

Lemmal 9.11. Let A be a ring, let I C A be an ideal. Let P be a finite projec-
tive A/I-module. Then there exists an étale ring map A — A’ which induces an
isomorphism AJI — A'/TA" and a finite projective A'-module P’ lifting P.

Proof. We can choose an integer n and a direct sum decomposition (A/1)®" =
P & K for some R/I-module K. Choose a lift ¢ : AP 5 A®™ of the projector p
associated to the direct summand P. Let f € A[x] be the characteristic polynomial
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of p. Set B = A[z]/(f). By Cayley-Hamilton (Algebra, Lemma there is a
map B — End(A®") mapping x to ¢. For every prime p D I the image of f in
k(p) is (z — 1)"z"~" where r is the dimension of P ® 4, x(p). Hence (z — 1)"z"
maps to zero in B® 4 x(p) for all p D I. Thus z(1 — z) is contained in every prime
ideal of B/IB. Hence V(1 — 2)"V is contained in IB for some N > 1. It follows
that 2V + (1 — )" is a unit in B/IB and that

N

€ = image of ~ in B/IB

x
N+ (1 —2)
is an idempotent as both assertions hold in Z[z]/(z" (z — 1)"). The image of € in
Enda, r((A/1)¥") is
=N
M+ (1=
as p is an idempotent. After replacing A by an étale extension A’ as in the lemma,

we may assume there exists an idempotent e € B which maps to € in B/IB, see
Lemma [9.10] Then the image of e under the map

B = Alz]/(f) — Enda(A®™).

=p

is an idempotent element p which lifts p. Setting P = Im(p) we win. O

Lemma 9.12. Let A be a ring. Let 0 - K — A®™ — M — 0 be a sequence
of A-modules. Consider the A-algebra C = Sym’y(M) with its presentation « :
Alyi, ... Ym] = C coming from the surjection A®™ — M. Then

NL(a) = (K @4 C — @jzl Cdyy)

)

(see Algebra, Section in particular Qcjqa = M ®4 C.

Proof. Let J = Ker(a). The lemma asserts that J/J? = K @4 C. Note that «
is a homomorphism of graded algebras. We will prove that in degree d we have
(J/JQ)d = K ®4 C4q—1. Note that

Jy = Ker(Sym% (A®™) — Sym% (M)) = Im(K ®@4 Sym% 1 (A®™) — Sym?% (A®™)),
see Algebra, Lemma It follows that (J*)q =", ,—qJa - Jo is the image of
K ®a K @4 Sym% *(A®™) — Sym} (A®™).

The cokernel of the map K ® 4 Sym% 2(A%™) — Sym®4 1 (A®™) is Sym% 1 (M) by
the lemma referenced above. Hence it is clear that (J/J?)q = J4/(J?)q is equal to
Coker(K ®4 K @4 Sym% 2(A®™) — K @4 Sym% 1 (A®™)) = K ®4 Sym% (M)

=K®aC4
as desired. (]

Lemma 9.13. Let A be a ring. Let M be an A-module. Then C = Sym’y (M) is
smooth over A if and only if M is a finite projective A-module.

Proof. Let 0 : C — A be the projection onto the degree 0 part of C. Then
J = Ker (o) is the part of degree > 0 and we see that J/J? = M as an A-module.
Hence if A — C is smooth then M is a finite projective A-module by Algebra,
Lemma [139.41
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Conversely, assume that M is finite projective and choose a surjection A®" — M
with kernel K. Of course the sequence 0 — K — A®" — M — 0 is split as M
is projective. In particular we see that K is a finite A-module and hence C' is of
finite presentation over A as C'is a quotient of A[zy,...,x,] by the ideal generated
by K C @ Axz;. The computation of Lemma shows that NL¢,4 is homotopy
equivalent to (K — M)®4 C. Hence NL¢g /4 is quasi-isomorphic to C®4 M placed
in degree 0 which means that C is smooth over A by Algebra, Definition O

Lemmal 9.14. Let A be a ring, let I C A be an ideal. Consider a commutative
diagram
B

I\

A AT

where B is a smooth A-algebra. Then there exists an étale ring map A — A’ which
induces an isomorphism AJ/I — A'/IA" and an A-algebra map B — A’ lifting the
ring map B — A/I.

Proof. Let J C B be the kernel of B — A/I so that B/J = A/I. By Algebra,
Lemma [139.3] the sequence

0—1/1*> = J/J* = Qpa®p B/J—0

is split exact. Thus P = J/(J? + IB) = Qg4 ®p B/J is a finite projective
A/I-module. Choose an integer n and a direct sum decomposition A/I®" = P &
K. By Lemma we can find an étale ring map A — A’ which induces an
isomorphism A/I — A’/I A" and a finite projective A-module K which lifts K. We
may and do replace A by A’. Set B’ = B ®4 Sym’(K). Since A — Sym’ (K)
is smooth by Lemma we see that B — B’ is smooth which in turn implies
that A — B’ is smooth (see Algebra, Lemmas [137.4] and [137.13). Moreover the
section Sym’ (K) — A determines a section B’ — B and we let B’ — A/I be the
composition B’ — B — A/I. Let J' C B’ be the kernel of B" — A/I. We have
JB' C J and B®4 K C J'. These maps combine to give an isomorphism

A/ D =g/ K — J/((J)* + 1B

Thus, after replacing B by B’ we may assume that .J/(J? + IB) = Qp 4 ®p B/J
is a free A/I-module of rank n.

In this case, choose fi,..., f, € J which map to a basis of J/(J? + IB). Consider
the finitely presented A-algebra C' = B/(f1,..., fn). Note that we have an exact
sequence

0= Hi(Lcya) = (fro-o s fa)/(froe oo fn)? = Qp/a @5 C = Qcya — 0

see Algebra, Lemma (note that Hy(Lp,a) = 0 and that Qp,/4 is finite pro-
jective, in particular flat so the Tor group vanishes). For any prime q D J of
B the module Qp,4 4 is free of rank n because Q2,4 is finite projective and be-
cause (/4 ®p B/J is free of rank n (see Algebra, Lemma . By our choice of
fi,--., fn the map

((f17"'7fn)/(f17'-'7fn)2)q - QB/A,q
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is surjective modulo J. Hence we see that this map of modules over the local ring
Cy has to be an isomorphism (this is because by Nakayama’s Algebra, Lemma
the map is surjective and then for example by Algebra, Lemma because
((fi,-- oy fn)/(f1s- -y fn)?)q is generated by n elements the map is injective). Thus
Hi(Lcja)g = 0 and Qg4 = 0. By Algebra, Lemma we see that A — C
is smooth at the prime q of C' corresponding to q. Since Q¢4 4 = 0 it is actually
étale at §. Thus A — C is étale at all primes of C containing JC. By Lemma
we can find an f € C mapping to an invertible element of C/JC such that
A — Cy is étale. By our choice of f it is still true that Cy/JC; = A/I. The
map Cy/ICy — A/I is surjective and étale by Algebra, Lemma Hence A/I
is isomorphic to the localization of C;/IC; at some element g € C, see Algebra,
Lemma Set A" = C}4 to conclude the proof. O

10. Zariski pairs

In this section and the next a pair is a pair (A,I) where A is a ring and I C A
is an ideal. A morphism of pairs (A,I) — (B,J) is a ring map ¢ : A — B with
o(I) C J.

Definition 10.1. A Zariski pair is a pair (A, I) such that I is contained in the
Jacobson radical of A.

Lemma 10.2. Let (A,1) be a Zariski pair. Then the map from idempotents of A
to idempotents of A/I is injective.

Proof. An idempotent of a local ring is either 0 or 1. Thus an idempotent is
determined by the set of maximal ideals where it vanishes, by Algebra, Lemma

2311 O

Lemma 10.3. Let (A,I) be a Zariski pair. Let A — B be a flat, integral, finitely
presented ring map such that A/I — B/IB is an isomorphism. Then A — B is an
isomorphism.

Proof. The ring map A — B is finite by Algebra, Lemma[36.5] Hence B is finitely
presented as an A-module by Algebra, Lemma[36.23] Hence B is a finite locally free
A-module by Algebra, Lemma Since the module B has rank 1 along V(I) (see
rank function described in Algebra, Lemmau7 and as (A, I) is a Zariski pair, we
conclude that the rank is 1 everywhere. It follows that A — B is an isomorphism:
it is a pleasant exercise to show that a ring map R — S such that S is a locally
free R-module of rank 1 is an isomorphism (hint: look at local rings). O

Lemma 10.4. Let (A,I) be a Zariski pair. Let A — B be a finite ring map.
Assume

(1) B/IB = By x By is a product of A/I-algebras

(2) A/I — B1/IBy is surjective,

(3) b€ B maps to (1,0) in the product.
Then there exists a monic f € Alz] with f(b) = 0 and f mod I = (x — 1)z for
some d > 1.

Proof. By Lemma we can find an étale ring map A — A’ inducing an isomor-
phism A/I — A’/IA’ such that B’ = B®4 A’ contains an idempotent ¢’ lifting the
image of b in B’/IB’. Consider the corresponding A’-algebra decomposition

B' = B, x B,
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which is compatible with the one given in the lemma upon reduction modulo I.
The map A’ — B{ is surjective modulo IA’. By Nakayama’'s lemma (Algebra,
Lemma we can find ¢ € TA’ such that after replacing A’ by A} ; the map
A’ — Bj is surjective. Observe that the image b] € By of b satisfies b — 1 € IBj.
Thus we may pick ¢’ € TA’" mapping to by — 1. On the other hand, the image
by, € Bb of bis in IB). By Algebra, Lemma there exist a monic polynomial
g(z) = x? + Y aja? of degree d with a; € ITA" such that g(by) = 0 in Bj. Thus
the image b’ = (b, 05) € B’ of b is a root of the polynomial (x — 1 — a’)g(z). We

conclude that
o /\d (T
v -1)) e Z]‘:O’_wdm (v)
We claim that this implies
J— d . j
(b—1be ijowdf v

in B. For this it is enough to see that the ring map A — A’ is faithfully flat, because
the condition is that the image of (b—1)b? is zero in B/ > i=0...d I (use Algebra,
Lemma [82.11). The map A — A’ flat because it is étale (Algebra, Lemma [143.3).
On the other hand, the induced map on spectra is open (see Algebra, Proposition
and use previous lemma referenced) and the image contains V(I). Since I is
contained in the Jacobson radical of A we conclude. (I

Lemma 10.5. Let (A, I) be a Zariski pair with A Noetherian. Let f € I. Then
Ay is a Jacobson ring.

Proof. We will use the criterion of Algebra, Lemma Let p C A be a prime
ideal such that p; = pAy is prime and not maximal. We have to show that Ay/p; =
(A/p) ¢ has infinitely many prime ideals. After replacing A by A/p we may assume
A is a domain, dim Ay > 0, and our goal is to show that Spec(Ay) is infinite. Since
dim Ay > 0 we can find a nonzero prime ideal ¢ C A not containing f. Choose a
maximal ideal m C A containing ¢. Since (A, I) is a Zariski pair, we see I C m.
Hence m # q and dim(A,) > 1. Hence Spec((Am)s) C Spec(Ay) is infinite by
Algebra, Lemma and we win. O

11. Henselian pairs

Some of the results of Section [J] may be viewed as results about henselian pairs.
In this section a pair is a pair (A, I) where A is a ring and I C A is an ideal. A
morphism of pairs (A,I) — (B,J) is a ring map ¢ : A — B with ¢(I) C J. As in
Section |§| given an object £ over A we denote £ the “base change” of £ to an object
over A/I (provided this makes sense).

Definition 11.1. A henselian pair is a pair (A, I) satisfying
(1) I is contained in the Jacobson radical of A, and
(2) for any monic polynomial f € A[T] and factorization f = goho with
go,ho € A/I[T] monic generating the unit ideal in A/I[T], there exists
a factorization f = gh in A[T] with g, h monic and gy = g and hg = h.

Observe that if A is a local ring and I = m is the maximal ideal, then (4,7) is a
henselian pair if and only if A is a henselian local ring, see Algebra, Lemma
In Lemma [I1.6] we give a number of equivalent characterizations of henselian pairs
(and we will add more as time goes on).
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Lemma 11.2. Let (A,I) be a pair with I locally nilpotent. Then the functor
B — B/IB induces an equivalence between the category of étale algebras over A
and the category of étale algebras over A/I. Moreover, the pair is henselian.

Proof. Essential surjectivity holds by Algebra, Lemma If B, B’ are étale
over A and B/IB — B'/IB’ is a morphism of A/I-algebras, then we can lift this
by Algebra, Lemma Finally, suppose that f,g: B — B’ are two A-algebra
maps with f mod I = g mod I. Choose an idempotent e € B ® 4 B generating the
kernel of the multiplication map B ® 4 B — B, see Algebra, Lemmas and
(to see that étale is unramified). Then (f ® g)(e) € IB’. Since 1B’ is locally
nilpotent (Algebra, Lemma this implies (f ® g)(e) = 0 by Algebra, Lemma
32.6l Thus f = g.

It is clear that I is contained in the Jacobson radical of A. Let f € A[T] be
a monic polynomial and let f = gohg be a factorization of f = f mod I with
go, ho € A/I[T] monic generating the unit ideal in A/I[T]. By Lemma there
exists an étale ring map A — A’ which induces an isomorphism A/I — A’/IA’
such that the factorization lifts to a factorization into monic polynomials over A’.
By the above we have A = A’ and the factorization is over A. O

Lemma 11.3. Let A = lim A,, where (A,) is an inverse system of rings whose
transition maps are surjective and have locally nilpotent kernels. Then (A, I,) is a
henselian pair, where I, = Ker(A — A,).

Proof. Fix n. Let a € A be an element which maps to 1 in A,,. By Algebra,
Lemma [32.4 we see that ¢ maps to a unit in A,, for all m > n. Hence a is a unit in
A. Thus by Algebra, Lemma the ideal I, is contained in the Jacobson radical
of A. Let f € A[T] be a monic polynomial and let f = g,h, be a factorization of
f = fmod I,, with g,,h,, € A,[T] monic generating the unit ideal in A,[T]. By
Lemma [T1.2] we can successively lift this factorization to f mod I,, = g, hy, with
Gm, b monic in A, [T] for all m > n. At each step we have to verify that our
lifts g, hum generate the unit ideal in A, [T7]; this follows from the corresponding
fact for g, h,, and the fact that Spec(A4,[T]) = Spec(A4,,[T]) because the kernel of
A, — A, is locally nilpotent. As A = lim A,,, this finishes the proof. ([l

Lemma 11.4. Let (A,I) be a pair. If A is I-adically complete, then the pair is
henselian.

Proof. By Algebra, Lemma the ideal I is contained in the Jacobson radical
of A. Let f € A[T] be a monic polynomial and let f = goho be a factorization of
f = fmod I with go,hg € A/I[T] monic generating the unit ideal in A/I[T]. By
Lemma we can successively lift this factorization to f mod I™ = g,h, with
Jns hy, monic in A/I™[T] for alln > 1. As A =lim A/I"™ this finishes the proof. O

Lemma 11.5. Let (A, 1) be a pair. Let A — B be a finite type ring map such that
B/IB = Cy x Cy with A/I — C finite. Let B’ be the integral closure of A in B.
Then we can write B'/IB' = Cy x C4 such that the map B'/IB" — B/IB preserves
product decompositions and there exists a g € B’ mapping to (1,0) in Cy x Ch with
Bj, — By an isomorphism.

Proof. Observe that A — B is quasi-finite at every prime of the closed subset
T = Spec(C71) C Spec(B) (this follows by looking at fibre rings, see Algebra,
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Definition [122.3)). Consider the diagram of topological spaces

Spec(B) 5 Spec(B’)

Spec(A)

By Algebra, Theorem for every p € T there is a hy, € B’, hy ¢ p such that
B}, — By, is an isomorphism. The union U = |J D(hy) gives an open U C Spec(B’)
such that ¢~1(U) — U is a homeomorphism and T C ¢~ 1(U). Since T is open
in ¢y~ 1(V(I)) we conclude that ¢(T) is open in U N (¢')"2(V(I)). Thus ¢(T) is
open in (¢")71(V(I)). On the other hand, since C; is finite over A/I it is finite
over B’. Hence ¢(T) is a closed subset of Spec(B’) by Algebra, Lemmas and
We conclude that Spec(B’/IB’) D ¢(T) is open and closed. By Algebra,
Lemma we get a corresponding product decomposition B'/IB' = C7 x C4.
The map B'/IB’ — B/IB maps C7 into Cy and C} into C5 as one sees by looking
at what happens on spectra (hint: the inverse image of ¢(T") is exactly T'; some
details omitted). Pick a g € B’ mapping to (1,0) in C] x C% such that D(g) C U;
this is possible because Spec(C1) and Spec(C%) are disjoint and closed in Spec(B’)
and Spec(C1) is contained in U. Then By — B, defines a homeomorphism on
spectra and an isomorphism on local rings (by our choice of U above). Hence it
is an isomorphism, as follows for example from Algebra, Lemma Finally, it
follows that C] = C; and the proof is complete. ([

Lemma 11.6. Let (A, I) be a pair. The following are equivalent

(1) (A, 1) is a henselian pair,

(2) given an étale ring map A — A’ and an A-algebra map o : A — A/I, there
exists an A-algebra map A’ — A lifting o,

(3) for any finite A-algebra B the map B — B/IB induces a bijection on
idempotents,

(4) for any integral A-algebra B the map B — B/IB induces a bijection on
idempotents, and

(5) (Gabber) I is contained in the Jacobson radical of A and every monic poly-
nomial f(T) € A[T] of the form

M) =TT -1)+a, T" + ...+ a:T + ag

with ap,...,a0 € I andn >1 has a root « € 1 + 1.

Moreover, in part (5) the root is unique.

Proof. Assume (2) holds. Then I is contained in the Jacobson radical of A, since
otherwise there would be a nonunit f € A congruent to 1 modulo I and the map
A — Ay would contradict (2). Hence IB C B is contained in the Jacobson radical of
B for B integral over A because Spec(B) — Spec(A) is closed by Algebra, Lemmas
and Thus the map from idempotents of B to idempotents of B/IB is
injective by Lemma On the other hand, since (2) holds, every idempotent
of B/IB lifts to an idempotent of B by Lemma In this way we see that (2)
implies (4).

The implication (4) = (3) is trivial.

[Ray70, Chapter XI]
and [Gab92|
Proposition 1]
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Assume (3). Let m be a maximal ideal and consider the finite map A — B =
A/(I Nm). The condition that B — B/IB induces a bijection on idempotents
implies that I C m (if not, then B = A/I x A/m and B/IB = A/I). Thus we see
that I is contained in the Jacobson radical of A. Let f € A[T] be monic and suppose
given a factorization f = goho with go, ho € A/I[T] monic. Set B = A[T]/(f). Let
€ be the idempotent of B/IB corresponding to the decomposition

B/IB = A/I[T]/(g0) x A[T]/(ho)

of A-algebras. Let e € B be an idempotent lifting € which exists as we assumed
(3). This gives a product decomposition

B=eBx(l-¢)B
Note that B is free of rank deg(f) as an A-module. Hence eB and (1 — e)B are
finite locally free A-modules. However, since eB and (1 — e¢)B have constant rank

deg(go) and deg(hg) over A/I we find that the same is true over Spec(A). We
conclude that

f = CharPoly(T : B — B)
= CharPols (T : eB — eB)CharPols(T : (1 —e)B — (1 —e)B)

is a factorization into monic polynomials reducing to the given factorization modulo
1. Here CharPol, denotes the characteristic polynomial of an endomorphism of a
finite locally free module over A. If the module is free the CharPol4 is defined as
the characteristic polynomial of the corresponding matrix and in general one uses
Algebra, Lemma [24.2] to glue. Details omitted. Thus (3) implies (1).

Assume (1). Let f be as in (5). The factorization of f mod I as T™ times T — 1
lifts to a factorization f = gh with g and h monic by Definition [[1.1] Then A has
to have degree 1 and we see that f has a root reducing to 1 modulo 1. Finally,
is contained in the Jacobson radical by the definition of a henselian pair. Thus (1)
implies (5).

Before we give the proof of the last step, let us show that the root « in (5), if it
exists, is unique. Namely, Due to the explicit shape of f(T), we have f'(a) € 1+1
where f’ is the derivative of f with respect to T. An elementary argument shows
that

J(T) = f(a+T —a) = f(a) + f'(a) - (T — a) mod (T — )2 A[T]
This shows that any other root o € 1+ I of f(T) satisfies 0 = f(a/) — f(a) =
(o/ — a)(1 +14) for some ¢ € I, so that, since 1+ is a unit in A, we have o = o’.

Assume (5). We will show that (2) holds, in other words, that for every étale map
A — A’ every section ¢ : A” — A/I modulo I lifts to a section A’ — A. Since
A — A’ is étale, the section o determines a decomposition

(11.6.1) AJIA = AJT x C

of A/I-algebras. Namely, the surjective ring map A’ /I A" — A/I is étale by Algebra,
Lemma and then we get the desired idempotent by Algebra, Lemma
We will show that this decomposition lifts to a decomposition

(11.6.2) A= Al x A

of A-algebras with A/ integral over A. Then A — A is integral and étale and
AJI — A} /IA} is an isomorphism, thus A — A is an isomorphism by Lemma
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10.3| (here we also use that an étale ring map is flat and of finite presentation, see

Algebra, Lemma [143.3)).

Let B’ be the integral closure of A in A’. By Lemma [11.5| we may decompose
(11.6.3) B'JIB' = A/I x C'

as A/I-algebras compatibly with (11.6.1) and we may find b € B’ that lifts (1,0)
such that B — Aj is an isomorphism. If the decomposition (11.6.3) lifts to a
decomposition

(11.6.4) B ~ B, x B}

of A-algebras, then the induced decomposition A" = A} x AL will give the desired
(11.6.2): indeed, since b is a unit in B} (details omitted), we will have B} = A/, so
that A} will be integral over A.

Choose a finite A-subalgebra B"” C B’ containing b (observe that any finitely gen-
erated A-subalgebra of B’ is finite over A). After enlarging B we may assume b
maps to an idempotent in B” /I B” producing

(11.6.5) B"/IB" =~ CV x CY

Since B = Aj we see that Bj is of finite type over A. Say Bj is generated by
by /b™, ..., b /b™ over A and enlarge B” so that b1,...,b, € B”. Then B} — By
is surjective as well as injective, hence an isomorphism. In particular, we see that
Cy{ = A/I! Therefore A/T — C} is an isomorphism, in particular surjective. By
Lemma we can find an f(T') € A[T] of the form

fMy=TrT-1)+a,T"+...+ 1T+ ao

with a,,...,a9 € I and n > 1 such that f(b) = 0. In particular, we find that B’ is a
A[T]/(f)-algebra. By (5) we deduce there is a root @ € 1+ I of f. This produces a
product decomposition A[T]/(f) = A[T]/(T —a) x D compatible with the splitting

(11.6.3) of B’/IB’. The induced splitting of B’ is then a desired (|11.6.4). O

Lemma 11.7. Let A be a ring. Let I,J C A be ideals with V(I) = V(J). Then
(A, I) is henselian if and only if (A, J) is henselian.

Proof. For any integral ring map A — B we see that V(IB) = V(JB). Hence
idempotents of B/IB and B/JB are in bijective correspondence (Algebra, Lemma
. It follows that B — B/IB induces a bijection on sets of idempotents if and
only if B — B/JB induces a bijection on sets of idempotents. Thus we conclude
by Lemma [11.6] ([l

Lemma 11.8. Let (A,1) be a henselian pair and let A — B be an integral ring
map. Then (B,IB) is a henselian pair.

Proof. Immediate from the fourth characterization of henselian pairs in Lemma
11.6] and the fact that the composition of integral ring maps is integral. 0

Lemmal 11.9. Let I C J C A be ideals of a ring A. The following are equivalent

(1) (A,I) and (A/I,J/I) are henselian pairs, and
(2) (A,J) is an henselian pair.
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Proof. Assume (1). Let B be an integral A-algebra. Consider the ring maps
B — B/IB — B/JB

By Lemma[T1.6] we find that both arrows induce bijections on idempotents. Hence
so does the composition. Whence (A4, J) is a henselian pair by Lemma m

Conversely, assume (2) holds. Then (A/I, J/I) is a henselian pair by Lemma [11.§]
Let B be an integral A-algebra. Consider the ring maps

B— B/IB — B/JB

By Lemma we find that the composition and the second arrow induce bijections
on idempotents. Hence so does the first arrow. It follows that (A4, I) is a henselian
pair (by the lemma again). O

Lemma 11.10. Let A be a ring and let (A, I) and (A, I") be henselian pairs. Then
(A, I+ 1) is an henselian pair.

Proof. By Lemma [11.8| the pair (A/I, (I’ + I)/I) is henselian. Thus we get the
conclusion from Lemma [[T.91 O

Lemma| 11.11. Let J be a set and let {(A;,I;)},cs be a collection of pairs. Then
(IL;es Aj:11;e, 1) is Henselian if and only if so is each (Aj;, I;).

Proof. For every j € J, the projection HjeJ Aj; — Aj is an integral ring map,
so Lemma proves that each (A;,I;) is Henselian if ([;c;A4;,1[;c, 1)) is
Henselian.

Conversely, suppose that each (A4;,I;) is a Henselian pair. Then every 1 + z with
T € Hje.] I; is a unit in HjeJ Aj because it is so componentwise by Algebra, Lemma

and Definition ll.ll Thus, by Algebra, Lemma again, [[;. ; I; is contained

in the Jacobson radical of ] jed A;. Continuing to work componentwise, it likewise

follows that for every monic f € ([[;c; A;)[T] and every factorization f = goho with
monic go,ho € ([[;e; A/ Ies I)IT] = (Il;es Aj/1;)[T] that generate the unit
ideal in ([[;c; Aj/ [1;e5 I;)[T], there exists a factorization f = gh in ([];c; 4;)[T]
with g, h monic and reducing to gg, ho. In conclusion, according to Definition [11.1
(ITjes As:11;es 1;) is a Henselian pair. O

Lemma 11.12. The property of being Henselian is preserved under limits of pairs.
More precisely, let J be a preordered set and let (A;,1;) be an inverse system of
henselian pairs over J. Then A = lim A; equipped with the ideal I = limI; is a
henselian pair (A, I).

Proof. By Categories, Lemma[14.11] we only need to consider products and equal-
izers. For products, the claim follows from Lemma Thus, consider an equal-
izer diagram

)
(Aa I) - (Al7 I/) - s (A”7 IN)
P
in which the pairs (A’,I’) and (A", I"") are henselian. To check that the pair (A, I)
is also henselian, we will use the Gabber’s criterion in Lemma [T1.6] Every element
of 1+ I is a unit in A because, due to the uniqueness of the inverses of units, this
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may be checked in (A’,I’). Thus I is contained in the Jacobson radical of A, see
Algebra, Lemma Thus, let

f(O) =TV "YT = 1) +an 1TV '+ + a1 T+ ap

be a polynomial in A[T] with ay_1,...,a0 € I and N > 1. The image of f(T) in
A’[T] has a unique root o' € 1+ I’ and likewise for the further image in A”[T].
Thus, due to the uniqueness, p(a’) = ¥(a’), to the effect that o’ defines a root of
f(T) in 1+ I, as desired. O

Lemma 11.13. The property of being Henselian is preserved under filtered colimits
of pairs. More precisely, let J be a directed set and let (A;,1;) be a system of
henselian pairs over J. Then A = colim A; equipped with the ideal I = colim I; is
a henselian pair (A, T).

Proof. If u € 1+1 then for some j € J we see that u is the image of some u; € 1+1;.
Then wu; is invertible in A; by Algebra, Lemma and the assumption that I;
is contained in the Jacobson radical of A;. Hence u is invertible in A. Thus I is
contained in the Jacobson radical of A (by the lemma).

Let f € A[T] be a monic polynomial and let f = goho be a factorization with
9o, ho € A/I[T] monic generating the unit ideal in A/I[T]. Write 1 = gog{, + hohy
for some g, hy € A/I[T]. Since A = colim A; and A/I = colim A;/I; are filterd
colimits we can find a j € J and f; € A; and a factorization fj = gj,0hj0 with
95,05 hj0 € Aj/I;[T] monic and 1 = g;09; o + hjoh} o for some g} o, h'; o € A;/I;[T]
with f;, g5.0, .0, 950, ;o mapping to f, go, ho, g, hg- Since (Aj, ;) is a henselian
pair, we can lift fj = g;,0h;,0 to a factorization over A; and taking the image in A
we obtain a corresponding factorization in A. Hence (A, I) is henselian. O

Example 11.14 (Moret-Bailly). Lemma @ is wrong if the colimit isn’t filtered.
For example, if we take the coproduct of the henselian pairs (Zy, (p)) and (Z,, (p)),
then we obtain (A, pA) with A = Z, ®z Z,. This isn’t a henselian pair: A/pA=TF,
hence if (A, pA) where henselian, then A would have to be local. However, Spec(A)
is disconnected; for example for odd primes p we have the nontrivial idempotent

(1/201)(1®1—(1+p) 'ucu)

where u € Z,, is a square root of 1 4+ p. Some details omitted.

Lemma 11.15. Let A be a ring. There exists a largest ideal I C A such that
(A, 1) is a henselian pair.

Proof. Combine Lemmas [11.9] [T1.10] and [TT.13} O

Lemma 11.16. Let (A,I) be a henselian pair. Let p C A be a prime ideal. Then
V(p+1) is connected.

Proof. By Lemma we see that (A/p,I 4+ p/p) is a henselian pair. Thus it
suffices to prove: If (A, I) is a henselian pair and A is a domain, then Spec(A4/T) =
V(I) is connected. If not, then A/I has a nontrivial idempotent by Algebra, Lemma
By Lemma [I1.6] this would imply A has a nontrivial idempotent. This is a
contradiction. ]
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12. Henselization of pairs
OEM7 We continue the discussion started in Section [I1l
0A02 Lemma 12.1. The inclusion functor

category of henselian pairs — category of pairs
has a left adjoint (A, I) — (AR IM).

Proof. Let (A, T) be a pair. Consider the category C consisting of étale ring maps
A — B such that A/I — B/IB is an isomorphism. We will show that the category
C is directed and that A" = colimpee B with ideal I" = I A" gives the desired
adjoint.

We first prove that C is directed (Categories, Definition . It is nonempty
because id : A — A is an object. If B and B’ are two objects of C, then B” =
B ®4 B’ is an object of C (use Algebra, Lemma and there are morphisms
B — B” and B’ — B”. Suppose that f,g: B — B’ are two maps between objects
of C. Then a coequalizer is

(B'®.BgB)®wme.p) B

which is étale over A by Algebra, Lemmas [143.3] and [143.8] Thus the category C is
directed.

Since B/IB = A/I for all objects B of C we see that A"/I" = Al/TA" =
colim B/IB = colim A/T = A/I.

Next, we show that A" = colimpee B with I" = T A" is a henselian pair. To do this
we will verify condition (2) of Lemma Namely, suppose given an étale ring
map A" — A’ and A"-algebra map o : A’ — A" /I". Then there exists a B € C and
an étale ring map B — B’ such that A’ = B’ ®p A". See Algebra, Lemma
Since A"/I" = A/IB, the map o induces an A-algebra map s : B’ — A/I. Then
B'/IB' = A/IxC as A/I-algebra, where C' is the kernel of the map B’ /IB’ — A/I
induced by s. Let g € B" map to (1,0) € A/I x C. Then B — By is étale and
A/I — Bj/IB; is an isomorphism, i.e., B is an object of C. Thus we obtain a
canonical map By, — A" such that

I Ah HBIHA}L

P .

A/l
commute. This induces a map A’ = B’ @ g A® — A" compatible with ¢ as desired.

Let (A,I) — (A, I') be a morphism of pairs with (A’, I’) henselian. We will show
there is a unique factorization A — A" — A’ which will finish the proof. Namely,
for each A — B in C the ring map A’ — B’ = A’ ® 4 B is étale and induces an
isomorphism A’/I’ — B’/I'B’. Hence there is a section op : B — A’ by Lemma
Given a morphism By — Bs in C we claim the diagram

B ——— = B}

A/
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commutes. This follows once we prove that for every B in C the section op is the
unique A’-algebra map B’ — A’. We have B’ ® 4+ B’ = B’ X R for some ring R, see
Algebra, Lemma([151.4] In our case R/I'R = 0 as B'/I'B’ = A’/I'. Thus given two
A’-algebra maps op,0% : B — A’ then e = (05 ® 0’5)(0,1) € A’ is an idempotent
contained in I’. We conclude that e = 0 by Lemma m Hence op = o as
desired. Using the commutativity we obtain

A" = colimpee B — colimpee A’ @4 B colimon, - 4/
as desired. The uniqueness of the maps o also guarantees that this map is unique.
Hence (A, I) ~ (A", I") is the desired adjoint. O

Lemma 12.2. Let (A,I) be a pair. Let (A", I") be as in Lemma |12.1 Then
A — AN s flat, I" = TAM and A/ — A" /1" A" is an isomorphism for all n.

Proof. In the proof of Lemma we have seen that A" is a filtered colimit of
étale A-algebras B such that A/I — B/IB is an isomorphism and we have seen
that I" = TA". As an étale ring map is flat (Algebra, Lemma we conclude
that A — A" is flat by Algebra, Lemma Since each A — B is flat we find
that the maps A/I™ — B/I" B are isomorphisms as well (for example by Algebra,
Lemma . Taking the colimit we find that A/I" = A" /1" A" as desired. O

Lemma 12.3. The functor of Lemma associates to a local ring (A, m) its
henselization.

Proof. Let (A" m") be the henselization of the pair (4, m) constructed in Lemma
12.1} Then m" = mA”" is a maximal ideal by Lemma and since it is contained
in the Jacobson radical, we conclude A" is local with maximal ideal m”". Having
said this there are two ways to finish the proof.

First proof: observe that the construction in the proof of Algebra, Lemma [155.1] as
a colimit is the same as the colimit used to construct A" in Lemma [12.1] Second
proof: Both the henselization A — S and A — A" of Lemma are local ring
homomorphisms, both S and A" are filtered colimits of étale A-algebras, both S
and A" are henselian local rings, and both S and A" have residue fields equal to
k(m) (by Lemma for the second case). Hence they are canonically isomorphic

by Algebra, Lemma [154.7] O

Lemma 12.4. Let (A,I) be a pair with A Noetherian. Let (A" I") be as in
Lemma[I2dl Then the map of I-adic completions

AN = (AN

is an isomorphism. Moreover, A" is Noetherian, the maps A — A" — A" are flat,
and AP — AN s faithfully flat.

Proof. The first statement is an immediate consequence of Lemma [12.2] and in
fact holds without assuming A is Noetherian. In the proof of Lemma [T2.1] we have
seen that A" is a filtered colimit of étale A-algebras B such that A/I — B/IB
is an isomorphism. For each such A — B the induced map A" — B” is an
isomorphism (see proof of Lemma . By Algebra, Lemma the ring map
B — AN = BN = (AM)" is flat for each B. Thus A" — A" = (A™M)" is flat by
Algebra, Lemma Since I = I'A" is contained in the Jacobson radical of A"
and since A" — A" induces an isomorphism A"/I" — A/I we see that A" — A"
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is faithfully flat by Algebra, Lemma [39.15] By Algebra, Lemma the ring
A" is Noetherian. Hence we conclude that A" is Noetherian by Algebra, Lemma

M64.11 O

Lemma 12.5. Let (A, I) = colim(A;, I;) be a filtered colimit of pairs. The functor
of Lemma gives A" = colim A? and I" = colim I

This lemma is false for non-filtered colimits, see Example [TT.14]

Proof. By Categories, Lemma we see that (A", I") is the colimit of the system

(AR, I) in the category of henselian pairs. Thus for a henselian pair (B, J) we have

Mor((A", 1), (B, J)) = lim Mor((A”, I"), (B, J)) = Mor(colim(A?, I"), (B, J))

7971 1771

Here the colimit is in the category of pairs. Since the colimit is filtered we obtain
colim( A% I") = (colim A%, colim I) in the category of pairs; details omitted. Again

using the colimit is filtered, this is a henselian pair (Lemma [11.13). Hence by the
Yoneda lemma we find (A", I") = (colim A%, colim I}}). O

Lemma 12.6. Let A be a ring with ideals I and J. If V(I) = V(J) then the
functor of Lemma produces the same ring for the pair (A,I) as for the pair
(A, J).

Proof. Let (A’,IA") be the pair produced by Lemma starting with the pair
(A, 1), see Lemma Let (A”, JA") be the pair produced by Lemmastarting
with the pair (A, J). By Lemma we see that (A’, JA’) is a henselian pair and
(A”,TA") is a henselian pair. By the universal property of the construction we
obtain unique A-algebra maps A” — A’ and A’ — A”. The uniqueness shows that
these are mutually inverse. O

Lemma 12.7. Let (A,I) — (B,J) be a map of pairs such that V(J) = V(IB).
Let (AR I") — (B", J") be the induced map on henselizations (Lemma . If
A — B is integral, then the induced map A" @ 4 B — B" is an isomorphism.

Proof. By Lemma we may assume J = IB. By Lemma the pair (A" @4
B, I"(A" ® o B)) is henselian. By the universal property of (B", IB") we obtain a
map B" — A" ® 4 B. We omit the proof that this map is the inverse of the map in
the lemma. (]

13. Lifting and henselian pairs
In this section we mostly combine results from Sections [9] and [T1]
Lemma 13.1. Let (R,I) be a henselian pair. The map
P P/IP

induces a bijection between the sets of isomorphism classes of finite projective R-
modules and finite projective R/I-modules. In particular, any finite projective R/I-
module is isomorphic to P/IP for some finite projective R-module P.

Proof. We first prove the final statement. Let P be a finite projective R/I-module.
We can find a finite projective module P’ over some R’ étale over R with R/I =
R'/IR' such that P'/IP’ is isomorphic to P, see Lemma Then, since (R, I)
is a henselian pair, the étale ring map R — R’ has a section 7 : R* — R (Lemma
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11.6). Setting P = P’ ®p/» R we conclude that P/IP is isomorphic to P. Of
course, this tells us that the map in the statement of the lemma is surjective.

Injectivity. Suppose that P; and P, are finite projective R-modules such that
P /1P, = P, /IP; as R/I-modules. Since P; is projective, we can find an R-module
map u : Py — Ps lifting the given isomorphism. Then u is surjective by Nakayama’s
lemma (Algebra, Lemma . We similarly find a surjection v : P, — P;. By
Algebra, Lemma the map v o u is an isomorphism and we conclude u is an
isomorphism. O

Lemma 13.2. Let (A, 1) be a henselian pair. The functor B — B/IB determines
an equivalence between finite étale A-algebras and finite étale A/I-algebras.

Proof. Let B, B be two A-algebras finite étale over A. Then B’ — B” = B4 B’
is finite étale as well (Algebra, Lemmas [143.3| and [36.13). Now we have 1-to-1
correspondences between

(1) A-algebra maps B — B/,

(2) sections of B — B”, and

(3) idempotents e of B” such that B — B” — eB"” is an isomorphism.
The bijection between (2) and (3) sends o : B” — B’ to e such that (1 — e) is the
idempotent that generates the kernel of o which exists by Algebra, Lemmas
and There is a similar correspondence between A/I-algebra maps B/IB —
B'/IB’ and idempotents € of B” /IB" such that B'/IB' — B" /IB" — &(B" /IB")
is an isomorphism. However every idempotent € of B”/IB" lifts uniquely to an
idempotent e of B” (Lemma [11.6). Moreover, if B'/IB’ — €(B"/IB") is an iso-
morphism, then B’ — eB” is an isomorphism too by Nakayama’s lemma (Algebra,
Lemma [20.1)). In this way we see that the functor is fully faithful.

Essential surjectivity. Let A/I — C be a finite étale map. By Algebra, Lemma
there exists an étale map A — B such that B/IB = C. Let B’ be the
integral closure of A4 in B. By Lemma [L1.5|we have B'/IB’ = C x C’ for some ring
C'" and B; = B, for some g € B’ mapping to (1,0) € C' x C’. Since idempotents
lift (Lemma [L1.6)) we get B’ = B{ x B} with C = B{/IBj and C’ = B}/IB}. The
image of g in By is invertible. Then B, = B) = Bj x (Bz), and this implies that
A — Bj is étale. We conclude that Bj is finite étale over A (integral étale implies
finite étale by Algebra, Lemma for example) and the proof is done. O

Lemma 13.3. Let A = lim A, be a limit of an inverse system (A,) of rings.
Suppose given A, -modules M,, and A, 1-module maps My 11 — M,. Assume
(1) the transition maps Ap+1 — A, are surjective with locally nilpotent kernels,
(2) M is a finite projective Ay-module,
(3) M, is a finite flat A, -module, and
(4) the maps induce isomorphisms My 11 ®a,, ., Ap — M,.
Then M = lim M, is a finite projective A-module and M @4 A, — M, is an
isomorphism for all n.
Proof. By Lemma the pair (A, Ker(A — A;)) is henselian. By Lemma
we can choose a finite projective A-module P and an isomorphism P ® 4 Ay — M.

Since P is projective, we can successively lift the A-module map P — M; to A-
module maps P — My, P — M3, and so on. Thus we obtain a map

P— M
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Since P is finite projective, we can write A®™ = P @ @Q for some m > 0 and A-
module Q. Since A = lim A,, we conclude that P = lim P ® 4 A,,. Hence, in order
to show that the displayed A-module map is an isomorphism, it suffices to show
that the maps P ® 4 A, — M, are isomorphisms. From Lemma we see that
M, is a finite projective module. By Lemma the maps P ®4 A, — M, are
isomorphisms. ([l

14. Absolute integral closure
Here is our definition.

Definition 14.1. A ring A is absolutely integrally closed if every monic f € A[T]
is a product of linear factors.

Be careful: it may be possible to write f as a product of linear factors in many
different ways.
Lemma 14.2. Let A be a ring. The following are equivalent
(1) A is absolutely integrally closed, and
(2) any monic f € A[T] has a root in A.
Proof. Omitted. U

Lemma 14.3. Let A be absolutely integrally closed.
(1) Any quotient ring A/I of A is absolutely integrally closed.
(2) Any localization S~ A is absolutely integrally closed.
Proof. Omitted. O

Lemma 14.4. Let A be a ring. Let S C A be a multiplicative subset consisting of
nonzerodivisors. If S~ A is absolutely integrally closed and A C S™'A is integrally
closed in ST'A, then A is absolutely integrally closed.

Proof. Omitted. O

Lemma 14.5. Let A be a normal domain. Then A is absolutely integrally closed
if and only if its fraction field is algebraically closed.

Proof. Observe that a field is algebraically closed if and only if it is absolutely
integrally closed as a ring. Hence the lemma follows from Lemmas and O

Lemmal 14.6. For any ring A there exists an extension A C B such that

(1) B is a filtered colimit of finite free A-algebras,
(2) B is free as an A-module, and
(3) B is absolutely integrally closed.

Proof. Let I be the set of monic polynomials over A. For i € I denote x; a variable
and P; the corresponding monic polynomial in the variable z;. Then we set

F(A) = Alzgi € 1)/(Pyi € I)
As the notation suggests F' is a functor from the category of rings to itself. Note

that A C F(A), that F(A) is free as an A-module, and that F(A) is a filtered
colimit of finite free A-algebras. Then we take

B = colim F"(A)
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where the transition maps are the inclusions F"(A) C F(F"(4)) = F"(A).
Any monic polynomial with coefficients in B actually has coeflicients in F™(A) for
some n and hence has a solution in F"*!(A) by construction. This implies that
B is absolutely integrally closed by Lemma We omit the proof of the other
properties. (I

Lemmal 14.7. Let A be absolutely integrally closed. Let p C A be a prime. Then
the local Ting A, is strictly henselian.

Proof. By Lemma we may assume A is a local ring and p is its maximal ideal.
The residue field is algebraically closed by Lemma [I4.3] Every monic polynomial
decomposes completely into linear factors hence Algebra, Definition [153.1] applies
directly. [

Lemmal 14.8. Let A be absolutely integrally closed. Let I C A be an ideal. Then
(A, I) is a henselian pair if (and only if) the following conditions hold

(1) T is contained in the Jacobson radical of A,
(2) A— A/I induces a bijection on idempotents.

Proof. Let f € A[T] be a monic polynomial and let f mod I = gohg be a factor-
ization over A/I with gg, hop monic such that gy and hg generate the unit ideal of
A/I[T]. This means that

A/T/(f) = AJI[T]/(90) x A/IT]/(ho)

Denote e € A/I[T]/(f) the element correspoing to the idempotent (1,0) in the ring
on the right. Write f = (T'—a1) ... (T — aq) with a; € A. For each ¢ € {1,...,d}
we obtain an A-algebra map ¢, : A[T]/(f) — A, T — a; which induces a similar
A/I-algebra map p,; : A/I[T]/(f) — A/I. Denote e; = p,(e) € A/I. These are
idempotents. By our assumption (2) we can lift e; to an idempotent in A. This
means we can write A = [[ A; as a finite product of rings such that in A;/IA; each
e; is either 0 or 1. Some details omitted. Observe that A; is absolutely integrally
closed as a factor ring of A. It suffices to lift the factorization of f over A;/IA; to
Aj. This reduces us to the situation discussed in the next paragraph.

Assume ¢; = 1 fori =1,...,r and ¢; = 0 for : = r+1,...,d. From (go,ho) =
A/I[T] we have that there are ko,lo € A/I[T] such that goko + holo = 1. We
see that e = holg and e; = ho(a;)lo(a;). We conclude that hg(a;) is a unit for
i =1,...,7. Since f(a;) = 0 we find 0 = ho(a;)go(a;) and we conclude that
go(a;) =0fori=1,...,r. Thus (T'—aq) divides go in A/I[T], say go = (T — a1)gy-
Set f' = (T'— az)...(T — aq) and hy = hg. By induction on d we can lift the
factorization f’ mod I = gjh{ to a factorization of f' = ¢’h’ over over A which
gives the factorization f = (T — ay)g’h’ lifting the factorization f mod I = gohg as
desired. O

15. Auto-associated rings
Some of this material is in [Laz69).

Definition 15.1. A ring R is said to be auto-associated if R is local and its
maximal ideal m is weakly associated to R.

Lemma 15.2. An auto-associated ring R has the following property: (P) Every
proper finitely generated ideal I C R has a nonzero annihilator.
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Proof. By assumption there exists a nonzero element x € R such that for every
f emwehave f"v =0. Say I = (fi1,..., fr). Then x is in the kernel of R — € Ry,.
Hence we see that there exists a nonzero y € R such that f;y = 0 for all 4, see
Algebra, Lemma As y € Anng(I) we win. 0

Lemma 15.3. Let R be a ring having property (P) of Lemma. Letu: N — M
be a homomorphism of projective R-modules. Then u is universally injective if and
only if u is injective.

Proof. Assume u is injective. Our goal is to show w is universally injective. First we
choose a module @ such that N@Q is free. On considering the map N&Q — M PQ
we see that it suffices to prove the lemma in case N is free. In this case N is a
directed colimit of finite free R-modules. Thus we reduce to the case that N is a
finite free R-module, say N = R®". We prove the lemma by induction on n. The
case n = 0 is trivial.

Let u : R®" — M be an injective module map with M projective. Choose an
R-module @ such that M @ @ is free. After replacing v by the composition
R® — M — M @ @ we see that we may assume that M is free. Then we
can find a direct summand R®™ C M such that u(R®") C R®™. Hence we
may assume that M = R®™. In this case u is given by a matrix A = (a;;)
so that u(zy,...,2,) = O i, ..., Tiim). As u is injective, in particular
uw(z,0,...,0) = (za11,xa12,...,2a1,) # 0 if © # 0, and as R has property (P) we
see that a11 R + a;aR + ... + a1, R = R. Hence see that R(aiy,...,a1,,) C R¥™
is a direct summand of R®™, in particular R®™/R(a11,...,a1m) is a projective
R-module. We get a commutative diagram

0 R R@n R@n—l 0
; |- |
0 R (a11,..ya1m) R@m *>R®m/R(a11,~~,a1m) — =0

with split exact rows. Thus the right vertical arrow is injective and we may apply
the induction hypothesis to conclude that the right vertical arrow is universally
injective. It follows that the middle vertical arrow is universally injective. O

Lemma 15.4. Let R be a ring. The following are equivalent

(1) R has property (P) of Lemma[15.2,

(2) any injective map of projective R-modules is universally injective,

(3) if u: N — M is injective and N, M are finite projective R-modules then
Coker(u) is a finite projective R-module,

(4) if N C M and N, M are finite projective as R-modules, then N is a direct
summand of M, and

(5) any injective map R — R®™ is a split injection.

Proof. The implication (1) = (2) is Lemma It is clear that (3) and (4)
are equivalent. We have (2) = (3), (4) by Algebra, Lemma Part (5) is a
special case of (4). Assume (5). Let I = (aq,...,a,) be a proper finitely generated
ideal of R. As I # R we see that R — R 2 — (zai,...,za,) is not a split
injection. Hence it has a nonzero kernel and we conclude that Anng(I) # 0. Thus
(1) holds. O
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Example| 15.5. If the equivalent conditions of Lemma hold, then it is not
always the case that every injective map of free R-modules is a split injection. For
example suppose that R = k[z1,xa,23,...]/(22). This is an auto-associated ring.
Consider the map of free R-modules

u: EB¢21 Re; — 69121 Rfi, eir— fi—xifiya.

For any integer n the restriction of u to @izl,...,n Re; is injective as the images
u(e1),...,u(e,) are R-linearly independent. Hence w is injective and hence univer-
sally injective by the lemma. Since u ® idy is bijective we see that if u were a split
injection then u would be surjective. But u is not surjective because the inverse
image of f; would be the element

E ~0 T1...Ti€i41 = €1 + X162 + T1T2€3 + ...
12

which is not an element of the direct sum. A side remark is that Coker(u) is a
flat (because u is universally injective), countably generated R-module which is not
projective (as w is not split), hence not Mittag-Leffler (see Algebra, Lemma [93.1)).

The following lemma is a special case of Algebra, Proposition [102.9]in case the local
ring is Noetherian.

Lemma 15.6. Let (R, m) be a local ring. Suppose that ¢ : R™ — R™ is a map of
finite free modules. The following are equivalent

(1) ¢ is injective,

(2) the rank of ¢ is m and the annihilator of 1(p) in R is zero.
If R is Noetherian these are also equivalent to

(3) the rank of ¢ is m and either I(¢) = R or it contains a nonzerodivisor.

Here the rank of ¢ and I(p) are defined as in Algebra, Definition|102.5

Proof. If any matrix coefficient of ¢ is not in m, then we apply Algebra, Lemma
[102.2| to write ¢ as the sum of 1: R — R and a map ¢’ : R™~' — R"~1. Tt is easy
to see that the lemma for ¢’ implies the lemma for ¢. Thus we may assume from
the outset that all the matrix coeflicients of ¢ are in m.

Suppose ¢ is injective. We may assume m > 0. Let q € WeakAss(R) so that
Rg is an auto-associated ring. Then ¢ induces a injective map Ry — Ry which is
universally injective by Lemmas[15.2land [15.3] Thus ¢ : (q)™ — r(q)™ is injective.
Hence the rank of ¢ mod q is m and I(¢ ® x(q)) is not the zero ideal. Since m is
the maximum rank ¢ can have, we conclude that ¢ has rank m as well (ranks of
matrices can only drop after base change). Hence I(p) - k(q) = I(¢ ® x(q)) is not
zero. Thus I(p) is not contained in q. Thus none of the weakly associated primes
of R are weakly associated primes of the R-module AnngI(y). Thus Anngl(p) has
no weakly associated primes, see Algebra, Lemma It follows from Algebra,
Lemma [66.5] that Anngl(¢p) is zero.

Conversely, assume (2). The rank being m implies n > m. Write I(p) = (f1,..., fr)
which is possible as I(¢p) is finitely generated. By Algebra, Lemmawe can find
maps v¥; : R™ — R™ such that ¢ o ¢ = f;idgm. Thus ¢(z) = 0 implies f;z = 0 for
i =1,...,7. This implies z = 0 and hence ¢ is injective.
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For the equivalence of (1) and (3) in the Noetherian local case we refer to Algebra,
Proposition[102.9] If the ring R is Noetherian but not local, then the reader can de-
duce it from the local case; details omitted. Another option is to redo the argument
above using associated primes, using that there are finitely many of these, using
prime avoidance, and using the characterization of nonzerodivisors as elements of
a Noetherian ring not contained in any associated prime. O

Lemma 15.7. Let R be a ring. Suppose that ¢ : R™ — R™ be an injective map of
finite free modules of the same rank. Then Hompg(Coker(p), R) = 0.

Proof. Let ¢' : R" — R™ be the transpose of ¢. The lemma claims that ! is
injective. With notation as in Lemma we see that the rank of (? is n and that
I(¢) = I(p"). Thus we conclude by the equivalence of (1) and (2) of the lemma. [J

16. Flattening stratification

Let R — S be a ring map and let M be an S-module. For any R-algebra R’ we
can consider the base changes S’ = S®gr R and M’ = M ®r R'. We say R — R’
flattens M if the module M’ is flat over R’. We would like to understand the
structure of the collection of ring maps R — R’ which flatten M. In particular we
would like to know if there exists a universal flattening R — Ruyniv of M, i.e., a
ring map R — Ry which flattens M and has the property that any ring map
R — R’ which flattens M factors through R — Ryni,. It turns out that such a
universal solution usually does not exist.

We will discuss universal flattenings and flattening stratifications in a scheme the-
oretic setting F/X/S in More on Flatness, Section If the universal flattening
R — Ryniv exists then the morphism of schemes Spec(Ryni) — Spec(R) is the

universal flattening of the quasi-coherent module M on Spec(S).

In this and the next few sections we prove some basic algebra facts related to this.
The most basic result is perhaps the following.

Lemma 16.1. Let R be a ring. Let M be an R-module. Let I, Is be ideals of R.
If M/I1 M is flat over R/Iy and M/I;M s flat over R/Ia, then M/(Iy N Io)M is
flat over R/ (I N I).

Proof. By replacing R with R/(I; NI3) and M by M/(I; N I3)M we may assume
that I; NI = 0. Let J C R be an ideal. To prove that M is flat over R we have
to show that J ® g M — M is injective, see Algebra, Lemma By flatness of
M/ILM over R/I; the map

J/(Jﬂ]l) Rr M = (J+Il)/.[1 ®R/[1 M/IlM — M/IlM
is injective. As 0 — (JNI) = J — J/(JNI;) — 0 is exact we obtain a diagram

(JNL)®r M ——J@r M ——J/(JNL)@rg M ——0

l l |

Me—— N M/ M

hence it suffices to show that (JNI;) ®g M — M is injective. Since I} NIy =
0 the ideal J N I; maps isomorphically to an ideal J' C R/I; and we see that
(JNI)®r M = J ®pj1, M/I,M. By flatness of M/IoM over R/I the map
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J' ®@pyr, M/IosM — M /I M is injective, which clearly implies that (JNI)®@r M —
M is injective. ([

17. Flattening over an Artinian ring

A universal flattening exists when the base ring is an Artinian local ring. It exists
for an arbitrary module. Hence, as we will see later, a flatting stratification exists
when the base scheme is the spectrum of an Artinian local ring.

Lemmal 17.1. Let R be an Artinian ring. Let M be an R-module. Then there
exists a smallest ideal I C R such that M/IM is flat over R/I.

Proof. This follows directly from Lemma and the Artinian property. ([
This ideal has the following universal property.

Lemma 17.2. Let R be an Artinian ring. Let M be an R-module. Let I C R
be the smallest ideal I C R such that M/IM is flat over R/I. Then I has the
following universal property: For every ring map ¢ : R — R’ we have

R' ®@r M is flat over R' < we have ¢(I) = 0.

Proof. Note that I exists by Lemma The implication = follows from Algebra,
Lemma[39.7] Let ¢ : R — R’ be such that M ®p R’ is flat over R'. Let J = Ker(y).
By Algebra, Lemma and as ' ®g M = R ®p,y M/JM is flat over R we
conclude that M/JM is flat over R/.J. Hence I C J as desired. O

18. Flattening over a closed subset of the base

Let R — S be a ring map. Let I C R be an ideal. Let M be an S-module. In the
following we will consider the following condition

(18.0.1) Vg € V(IS) C Spec(S) : My is flat over R.

Geometrically, this means that M is flat over R along the inverse image of V(1)
in Spec(S). If R and S are Noetherian rings and M is a finite S-module, then
is equivalent to the condition that M/I™M is flat over R/I™ for all n > 1,
see Algebra, Lemma

Lemma 18.1. Let R — S be a ring map. Let I C R be an ideal. Let M be an
S-module. Let R — R’ be a ring map and IR’ C I' C R’ an ideal. If holds
for (R— S,I,M), then holds for (R' - S®r R',I',M ®r R).

Proof. Assume holds for (R — S,I C R,M). Let I'(S®gr R') C q' be a
prime of S ®g R'. Let q C S be the corresponding prime of S. Then IS C gq. Note
that (M ®g R')q is a localization of the base change My ®g R'. Hence (M ®g R')y
is flat over R’ as a localization of a flat module, see Algebra, Lemmas and
39.18) O

Lemma 18.2. Let R — S be a ring map. Let I C R be an ideal. Let M be an
S-module. Let R — R' be a ring map and IR’ C I' C R’ an ideal such that
(1) the map V(I') — V(I) induced by Spec(R') — Spec(R) is surjective, and
(2) Ry, is flat over R for all primes p' € V(I').

If (18.0.1) holds for (R' — S®r R',I',M ®r R’'), then holds for (R —
S, I, M).
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Proof. Assume holds for (R' — S ®g R',IR',M ®r R’). Pick a prime
IS CqCS. Let I Cp C R be the corresponding prime of R. By assumption there
exists a prime p’ € V(1) of R’ lying over p and R, — R,, is flat. Choose a prime
T C £(q) Qu(p) £(p) which corresponds to a prime q' C S ®r R’ which lies over q
and over p’. Note that (S ®g R')y is a localization of Sy ®g, R;,,. By assumption
the module (M ®g R'), is flat over R;,. Hence Algebra, Lemmaimplies that
M, is flat over R, which is what we wanted to prove. O

Lemma 18.3. Let R — S be a ring map of finite presentation. Let M be an
S-module of finite presentation. Let R’ = colimyeca Ry be a directed colimit of
R-algebras. Let Iy C Ry be ideals such that IxR, C I, for all p > X\ and set
I’ = colimy I,. If holds for (R' — S®gr R/, I',M ®r R'), then there exists
a A € A such that holds for (Rx — S ®g Rx,In, M ®g R)).

Proof. We are going to write Sy = S®g Ry, 8" = S®@r R/, My = M ®r R,
and M’ = M ®g R’. The base change S’ is of finite presentation over R’ and M’
is of finite presentation over S’ and similarly for the versions with subscript A, see
Algebra, Lemma By Algebra, Theorem the set

U’ = {q' € Spec(S") | My, is flat over R'}

is open in Spec(S’). Note that V(I'S’) is a quasi-compact space which is contained
in U’ by assumption. Hence there exist finitely many g € S, j = 1,...,m such
that D(g;) C U’ and such that V/(I'S") C [J D(g}). Note that in particular (M')g;_
is a flat module over R'.

We are going to pick increasingly large elements A € A. First we pick it large enough
so that we can find g;» € S\ mapping to g}. The inclusion V(I'S") C | D(g})
means that I'S"+ (g1, ..., gy,) = S’ which can be expressed as 1 = z:hs+3 f;9;
for some z; € I', h, fj € S”. After increasing A we may assume such an equation
holds in Sy. Hence we may assume that V(1,Sx) C |JD(gj,»). By Algebra, Lemma
[168.1] we see that for some sufficiently large A the modules (M, ),, , are flat over
R). In particular the module M, is flat over Ry at all the primes lying over the
ideal 1. O

19. Flattening over a closed subsets of source and base

In this section we slightly generalize the discussion in Section [I§ We strongly
suggest the reader first read and understand that section.

Situation| 19.1. Let R — S be a ring map. Let J C S be an ideal. Let M be an
S-module.

In this situation, given an R-algebra R’ and an ideal I’ C R’ we set 8’ = S ®r R’
and M' = M ®@r R'. We will consider the condition

(19.1.1) Vo' € V(I'S" + JS') C Spec(S') : My, is flat over R'.

Geometrically, this means that M’ is flat over R’ along the intersection of the
inverse image of V(I') with the inverse image of V(J). Since (R — S,J, M) are
fixed, condition ((19.1.1)) only depends on the pair (R’,I") where R’ is viewed as an
R-algebra.
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Lemmal 19.2. In Situation let R — R" be an R-algebra map. Let I' C R’
and I'R" C I" C R" be ideals. If (19.1.1) holds for (R',I"), then (19.1.1)) holds for

(Rl/, I/l) .

Proof. Assume (19.1.1)) holds for (R’,I'). Let I"S"” + JS” C ¢” be a prime of
S"”. Let ¢ € S’ be the corresponding prime of S’. Then both I'S’ C ¢’ and
JS" C q' because the corresponding conditions hold for q”. Note that (M")q is

a localization of the base change M, ®@r R”. Hence (M")q~ is flat over R" as a
localization of a flat module, see Algebra, Lemmas and [39.18 O

Lemmal 19.3. In Situation let R — R" be an R-algebra map. Let I' C R’
and I'R" C I" C R" be ideals. Assume
(1) the map V(I"") — V(I') induced by Spec(R") — Spec(R’) is surjective, and
(2) Ry, is flat over R for all primes p"” € V(I").

If holds for (R",I"), then holds for (R, T').

Proof. Assume holds for (R”,I"). Pick a prime I'S"+ JS' C ¢’ C §'.
Let I' C p’ C R’ be the corresponding prime of R’. By assumption there exists
a prime p” € V(I") of R” lying over p’ and R;, — Ry, is flat. Choose a prime
7" C k(q") ®p(pry&(p”). This corresponds to a prime q” C S” = 5’ @p R” which lies
over q' and over p”. In particular we see that I’S” C q” and that JS” C ¢”. Note

that (8" ®@gr/ R")qr is a localization of Sy, ®g/, Ry,. By assumption the module
P

(M' ®pr R")qn is flat over Ry,. Hence Algebra, Lemma [100.1] implies that M, is
flat over R;, which is what we wanted to prove. O

Lemma 19.4. In Situation assume R — S is essentially of finite presentation
and M is an S-module of finite presentation. Let R’ = colimyep Ry be a directed
colimit of R-algebras. Let Iy C Ry be ideals such that I\R,, C I, for all u > X and
set I' = colimy I. If holds for (R',I'), then there exists a X € A such that

19.1.1) holds for (R, Iy).

Proof. We first prove the lemma in case R — S is of finite presentation and then
we explain what needs to be changed in the general case. We are going to write
Sy = S ®gr Ry, S = S®r R/, My = M ®gr Ry, and M' = M ®r R'. The base
change S’ is of finite presentation over R’ and M’ is of finite presentation over
S’ and similarly for the versions with subscript A, see Algebra, Lemma By
Algebra, Theorem the set

U'={q" € Spec(5’) | Mé/ is flat over R’}

is open in Spec(S’). Note that V(I'S’ 4+ JS’) is a quasi-compact space which is
contained in U’ by assumption. Hence there exist finitely many ¢ € §', j =
1,...,m such that D(g}) C U" and such that V(I'S" + JS") C U D(g). Note that
in particular (M’ )g; is a flat module over R'.

We are going to pick increasingly large elements A € A. First we pick it large enough
so that we can find g; x € S\ mapping to g}. The inclusion V (1'S"+JS") C U D(g})
means that I'S" + JS' + (¢1,...,9,,) =S’ which can be expressed as

I:Zytkt—FZzéhS—Fijgj

for some z, € I', y, € J, ki, he, fj € S'. After increasing A we may assume such
an equation holds in Sy. Hence we may assume that V(I\Sx + JSx) C U D(g;.»).
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By Algebra, Lemma [168.1] we see that for some sufficiently large A the modules
(M )\)gj’ , are flat over Ry. In particular the module M) is flat over Ry at all the
primes corresponding to points of V(IS + JSy).

In the case that S is essentially of finite presentation, we can write S = ¥ ~1C where
R — (' is of finite presentation and ¥ C C' is a multiplicative subset. We can also
write M = Y 7'N for some finitely presented C-module N, see Algebra, Lemma
At this point we introduce Cy, C’, Ny, N’. Then in the discussion above
we obtain an open U’ C Spec(C”’) over which N’ is flat over R’. The assumption
that is true means that V(I'S’ 4+ J.S’) maps into U’, because for a prime
q' C ', corresponding to a prime v’ C C' we have M, = N{,. Thus we can find
g; € C' such that |JD(g}) contains the image of V(I'S" + JS’). The rest of the
proof is exactly the same as before. O

Lemma 19.5. In Situation m Let I C R be an ideal. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) M is a finite S-module, and
(4) for eachn > 1 and any prime q € V(J +1.5) the module (M/I"M)q is flat
over R/I™.
Then holds for (R,I), i.e., for every prime q € V(J + IS) the localization
My is flat over R.

Proof. Let q € V(J 4 IS). Then Algebra, Lemma 99.11| applied to R — S; and
M, implies that M, is flat over R. O

20. Flattening over a Noetherian complete local ring

The following three lemmas give a completely algebraic proof of the existence of
the “local” flattening stratification when the base is a complete local Noetherian
ring R and the given module is finite over a finite type R-algebra S.

Lemmal 20.1. Let R — S be a ring map. Let M be an S-module. Assume
(1) (R, m) is a complete local Noetherian ring,
(2) S is a Noetherian ring, and
(3) M is finite over S.
Then there exists an ideal I C m such that
(1) (M/IM)q is flat over R/ for all primes q of S/1S lying over m, and
(2) if J C R is an ideal such that (M/JM), is flat over R/J for all primes q
lying over m, then I C J.
In other words, I is the smallest ideal of R such that holds for (R —
S,m, M) where R=R/I, S=S/IS, m=m/I and M = M/IM.

Proof. Let J C R beanideal. Apply Algebra, Lemmato the module M/JM
over the ring R/J. Then we see that (M/JM), is flat over R/J for all primes q of
S/JS if and only if M/(J + m™)M is flat over R/(J +m™) for all n > 1. We will
use this remark below.

For every n > 1 the local ring R/m™ is Artinian. Hence, by Lemma there
exists a smallest ideal I,, D m™ such that M /I, M is flat over R/I,. It is clear that
I,41 + m™ is contains I,, and applying Lemma [I6.1] we see that I, = Ip,4q +m™.
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Since R = lim,, R/m™ we see that I = lim,, I,,/m™ is an ideal in R such that
I, = I +m" for all n > 1. By the initial remarks of the proof we see that I verifies
(1) and (2). Some details omitted. O

Lemma 20.2. With notation R — S, M, and I and assumptions as in Lemma
20.1. Consider a local homomorphism of local rings ¢ : (R,m) — (R, m’) such that
R’ is Noetherian. Then the following are equivalent

(1) condition holds for (R' — S®r R',m’,M ®r R'), and
(2) ¢(I) =0.

Proof. The implication (2) = (1) follows from Lemma Let ¢ : R — R
be as in the lemma satisfying (1). We have to show that ¢(I) = 0. This is
equivalent to the condition that ¢(I)R’ = 0. By Artin-Rees in the Noetherian
local ring R’ (see Algebra, Lemma this is equivalent to the condition that
()R + (m/)* = (m/)" for all n > 0. Hence this is equivalent to the condition
that the composition ¢, : R — R’ — R’/(m/)" annihilates I for each n. Now
assumption (1) for ¢ implies assumption (1) for ¢,, by Lemma [I8.1] This reduces
us to the case where R’ is Artinian local.

Assume R’ Artinian. Let J = Ker(p). We have to show that I C J. By the
construction of I in Lemma it suffices to show that (M/JM), is flat over
R/J for every prime q of S/JS lying over m. As R’ is Artinian, condition (1)
signifies that M ®pr R’ is flat over R'. As R’ is Artinian and R/J — R is a
local injective ring map, it follows that R/J is Artinian too. Hence the flatness
of M ®@p R' = M/JM ®p;; R’ over R' implies that M/JM is flat over R/J by
Algebra, Lemma, This concludes the proof. O

Lemma 20.3. With notation R — S, M, and I and assumptions as in Lemma
[2077 In addition assume that R — S is of finite type. Then for any local homo-
morphism of local rings ¢ : (R,m) = (R',m’) the following are equivalent

(1) condition (18.0.1]) holds for (R' — S ®r R',m',M ®r R’'), and

(2) o(I)=0.

Proof. The implication (2) = (1) follows from Lemma Let ¢ : R — R’ be
as in the lemma satisfying (1). As R is Noetherian we see that R — S is of finite
presentation and M is an S-module of finite presentation. Write R’ = colim) Ry as
a directed colimit of local R-subalgebras Ry C R’, with maximal ideals m) = RyNm’
such that each R) is essentially of finite type over R. By Lemma [I8.3] we see that
condition holds for (Ry — S ®gr Rx,my, M ®r R)) for some A. Hence
Lemma applies to the ring map R — R, and we see that I maps to zero in
Ry, a fortiori it maps to zero in R'. |

21. Descent of flatness along integral maps
First a few simple lemmas.

Lemma 21.1. Let R be a ring. Let P(T) be a monic polynomial with coefficients
in R. Let o € R be such that P(a) = 0. Then P(T) = (T — o)Q(T) for some
monic polynomial Q(T) € R[T).

Proof. By induction on the degree of P. If deg(P) = 1, then P(T) =T — « and
the result is true. If deg(P) > 1, then we can write P(T) = (T — «)Q(T) + r for
some polynomial ) € R[T] of degree < deg(P) and some r € R by long division.
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By assumption 0 = P(a) = (o — @)Q(«) + r = r and we conclude that r = 0 as
desired. (]

Lemma 21.2. Let R be a ring. Let P(T) be a monic polynomial with coefficients
in R. There exists a finite free ring map R — R’ such that P(T) = (T — a)Q(T)
for some oo € R' and some monic polynomial Q(T) € R'[T)].

Proof. Write P(T) = T%+a;T% ' +...+ap. Set R’ = R[z]/(z%+a1x¢ 1 +. . .+ap).
Set a equal to the congruence class of x. Then it is clear that P(«) = 0. Thus we
win by Lemma [21.1 O

Lemmal 21.3. Let R — S be a finite ring map. There exists a finite free ring
extension R C R’ such that S @ g R’ is a quotient of a ring of the form

R(Ty,...,T,)/ (P (T1), ..., Py(Ty))
with Py(T) = [];21 q,(T — cj) for some a;; € R'.

Proof. Let z1,...,z, € S be generators of S over R. For each ¢ we can choose

a monic polynomial P;(T) € R[T] such that P;(z;) = 0 in S, see Algebra, Lemma

Say deg(P;) = d;. By Lemma (applied Y d; times) there exists a finite

free ring extension R C R’ such that each P; splits completely:

R(T) = Hj:l,...,di (T = asg)

for certain o, € R'. Let R'[Ty,...,T,] = S ®g R’ be the R'-algebra map which

maps T; to x; ® 1. As this maps P;(T;) to zero, this induces the desired surjection.
O

Lemma 21.4. Let R be a ring. Let S = R[Th,...,T,]/J. Assume J contains
elements of the form P;(T;) with Pi(T) = [[,=,  4,(T — cij) for some a;; € R.
For k= (ki,...,kn) with 1 < k; <d; consider the ring map

O, : R[Ty,...,T,) = R, T;— ay,
Set Ji, = ®(J). Then the image of Spec(S) — Spec(R) is equal to V() Ji).
Proof. This lemma proves itself. Hint: V() Jx) = UV (Ji). O
The following result is due to Ferrand, see [Fer69).

Lemma 21.5. Let R — S be a finite injective homomorphism of Noetherian rings.
Let M be an R-module. If M @g S is a flat S-module, then M is a flat R-module.

Proof. Let M be an R-module such that M ®p S is flat over S. By Algebra,
Lemma in order to prove that M is flat we may replace R by any faithfully
flat ring extension. By Lemma we can find a finite locally free ring extension
R C R’ such that S’ = S®@grR = R'[T1,...,Ty]/J for some ideal J C R'[Th,...,T,]
which contains the elements of the form P;(7;) with P;(T) =[], 4 (T — ;) for
some «;; € R'. Note that R is Noetherian and that R' C S’ is a finite extension
of rings. Hence we may replace R by R’ and assume that S has a presentation as
in Lemma Note that Spec(S) — Spec(R) is surjective, see Algebra, Lemma
36.17, Thus, using Lemma we conclude that I = [ Jj is an ideal such that
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V(I) = Spec(R). This means that I C /(0), and since R is Noetherian that I is
nilpotent. The maps ®; induce commutative diagrams

[p— Y

/

R

from which we conclude that M/J,M is flat over R/J,. By Lemma we see
that M/IM is flat over R/I. Finally, applying Algebra, Lemma [101.5| we conclude
that M is flat over R. O

Lemma 21.6. Let R — S be an injective integral ring map. Let M be a finitely
presented module over R[x1,...,x,]. If M ®@gr S is flat over S, then M is flat over
R.

Proof. Choose a presentation
R[z1,...,2,]%" = R[zy,...,2,]%" — M — 0.

Let’s say that the first map is given by the r x t-matrix T' = (f;;) with f;; €
Rlzy,...,z,]. Write f;; = Zfijylml with f;; 1 € R (multi-index notation). Con-
sider diagrams

R——S

]

R)\ e S)\
where R) is a finitely generated Z-subalgebra of R containing all f;; ; and S is a
finite Ry-subalgebra of S. Let M) be the finite Ry[z1,...,2,]-module defined by
a presentation as above, using the same matrix 7" but now viewed as a matrix over
Ryx[z1,...,z,]. Note that S is the directed colimit of the Sy (details omitted). By
Algebra, Lemma we see that for some A the module M) ®pg, S, is flat over
Sx. By Lemma 21.5| we conclude that My is flat over Ry. Since M = M) Qg, R
we win by Algebra, Lemma [39. g

22. Torsion free modules

In this section we discuss torsion free modules and the relationship with flatness
(especially over dimension 1 rings).

Definition 22.1. Let R be a domain. Let M be an R-module.

(1) We say an element x € M is torsion if there exists a nonzero f € R such
that fx =0.
(2) We say M is torsion free if the only torsion element of M is 0.

Let R be a domain and let S = R\ {0} be the multiplicative set of nonzero elements
of R. Then an R-module M is torsion free if and only if M — S~1M is injective.
In other words, if and only if the map M — M ®gr K is injective where K = S™'R
is the fraction field of R.

Lemmal 22.2. Let R be a domain. Let M be an R-module. The set of torsion
elements of M forms a submodule My« C M. The quotient module M /M,ors is
torsion free.
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Proof. Omitted. O

Lemma 22.3. Let R be a domain. Let M be a torsion free R-module. For any
multiplicative set S C R the module S™'M is a torsion free S~ R-module.

Proof. Omitted. (|

Lemmal 22.4. Let R — R’ be a flat homomorphism of domains. If M is a torsion
free R-module, then M @r R’ is a torsion free R'-module.

Proof. If M is torsion free, then M C M ®pg K is injective where K is the fraction
field of R. Since R’ is flat over R we see that M ® g R’ — (M ®r K) ®r R’ is
injective. Since M ®pr K is isomorphic to a direct sum of copies of K, it suffices to
see that K ®r R’ is torsion free. This is true because it is a localization of R’. [

Lemmal 22.5. Let R be a domain. Let 0 — M — M’ — M" — 0 be a short exact
sequence of R-modules. If M and M" are torsion free, then M’ is torsion free.

Proof. Omitted. O

Lemma 22.6. Let R be a domain. Let M be an R-module. Then M is torsion
free if and only if My, is a torsion free Ry-module for all maximal ideals m of R.

Proof. Omitted. Hint: Use Lemma [22.3| and Algebra, Lemma [23.1 g

Lemmal|22.7. Let R be a domain. Let M be a finite R-module. Then M is torsion
free if and only if M is a submodule of a finite free module.

Proof. If M is a submodule of R®", then M is torsion free. For the converse,
assume M is torsion free. Let K be the fraction field of R. Then M ®r K is a
finite dimensional K-vector space. Choose a basis e, ..., e, for this vector space.
Let z1,...,2, be generators of M. Write z; = Y (ai;/bij)e; for some a;j,b;; € R
with b;; 75 0. Set b = H - bi;. Since M is torsion free the map M — M ®g K is
injective and the image is contamed in R®" = Re1/b® ... ® Re,/b. g

Lemma 22.8. Let R be a Noetherian domain. Let M be a nonzero finite R-module.
The following are equivalent

(1) M is torsion free,

(2) M is a submodule of a finite free module,

(3) (0) is the only associated prime of M,

(4) (0) 4s in the support of M and M has property (S1), and

(5) (0) is in the support of M and M has no embedded associated prime.

Proof. We have seen the equivalence of (1) and (2) in Lemma [22.7] We have seen
the equivalence of (4) and (5) in Algebra, Lemma [157.2] The equivalence between
(3) and (5) is immediate from the definition. A localization of a torsion free module
is torsion free (Lemma , hence it is clear that a M has no associated primes
different from (0). Thus (1) implies (5). Conversely, assume (5). If M has torsion,
then there exists an embedding R/I C M for some nonzero ideal T of R. Hence M
has an associated prime different from (0) (see Algebra, Lemmas and [63.7] -
This is an embedded associated prime which contradicts the assumptlon

Lemmal 22.9. Let R be a domain. Any flat R-module is torsion free.
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Proof. If x € R is nonzero, then x : R — R is injective, and hence if M is flat
over R, then = : M — M is injective. Thus if M is flat over R, then M is torsion
free. O

Lemma 22.10. Let A be a valuation ring. An A-module M is flat over A if and
only if M is torsion free.

Proof. The implication “flat = torsion free” is Lemma [22.9) For the converse,
assume M is torsion free. By the equational criterion of flatness (see Algebra,
Lemma we have to show that every relation in M is trivial. To do this
assume that Zi:h_,n a;x; = 0 with z; € M and a; € A. After renumbering we
may assume that v(a;) < v(a;) for all i. Hence we can write a; = aja; for some
a; € A. Note that af = 1. As M is torsion free we see that 1 = =3 .., ajz;.
Thus, if we choose y; = x;, i = 2,...,n then a

=), 0y, wi=yn(i22) 0=a-(—d))+a;-1(>2)

shows that the relation was trivial (to be explicit the elements a;; are defined by
setting a1 = 0, ayj = —a;- for Jj>1, and A5 = 51‘]‘ for 1,7 > 2) U

Lemma 22.11. Let A be a Dedekind domain (for example a discrete valuation
ring or more generally a PID).

(1) An A-module is flat if and only if it is torsion free.

(2) A finite torsion free A-module is finite locally free.

(3) A finite torsion free A-module is finite free if A is a PID.

Proof. (For the parenthetical remark in the statement of the lemma, see Algebra,

Lemma|120.15]) Proof of (1). By Lemma and Algebra, Lemma [39.18]it suffices

to check the statement over A, for m C A maximal. Since Ay, is a discrete valuation

ring (Algebra, Lemma [120.17) we win by Lemma [22.10

Proof of (2). Follows from Algebra, Lemma and (1).

Proof of (3). Let A be a PID and let M be a finite torsion free module. By Lemma
we see that M C A®" for some n. We argue that M is free by induction on n.
The case n = 1 expresses exactly the fact that A is a PID. If n > 1let M’ ¢ R®"~!
be the image of the projection onto the last 7 — 1 summands of R®". Then we
obtain a short exact sequence 0 — I — M — M’ — 0 where I is the intersection of
M with the first summand R of R®". By induction we see that M is an extension
of finite free R-modules, whence finite free. ([

Lemmal 22.12. Let R be a domain. Let M, N be R-modules. If N is torsion
free, so is Homg(M, N).

Proof. Choose a surjection @,.; R — M. Then Homgr(M,N) C [[,c; N. U

23. Reflexive modules

Here is our definition.

Definition 23.1. Let R be a domain. We say an R-module M is reflexive if the
natural map

j: M — Homg(Hompg(M, R), R)
which sends m € M to the map sending ¢ € Homp(M, R) to p(m) € R is an
isomorphism.
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We can make this definition for more general rings, but already the definition
above has drawbacks. It would be wise to restrict to Noetherian domains and finite
torsion free modules and (perhaps) impose some regularity conditions on R (e.g.,
R is normal).

Lemma 23.2. Let R be a domain and let M be an R-module.
(1) If M is reflexive, then M is torsion free.
(2) If M is finite, then j : M — Hompg(Hompg(M, R), R) is injective if and
only if M is torsion free

Proof. Follows immediately from Lemmas [22.12] and [l

Lemma 23.3. Let R be a discrete valuation ring and let M be a finite R-module.
Then the map j : M — Hompg(Hompg(M, R), R) is surjective.

Proof. Let M;,.s C M be the torsion submodule. Then we have Homg(M, R) =
Hompg(M/M;ors, R) (holds over any domain). Hence we may assume that M is
torsion free. Then M is free by Lemma [22.11] and the lemma is clear. O

Lemma 23.4. Let R be a Noetherian domain. Let M be a finite R-module. The
following are equivalent:

(1) M is reflexive,

(2) M, is a reflexive Ry-module for all primes p C R, and

(3) My, is a reflexive Ry -module for all maximal ideals m of R.

Proof. The localization of j : M — Homp(Hompg(M, R), R) at a prime p is the
corresponding map for the module M, over the Noetherian local domain R,. See
Algebra, Lemma, Thus the lemma holds by Algebra, Lemma [23.1] O

Lemma 23.5. Let R be a Noetherian domain. Let 0 — M — M' — M" an ezact
sequence of finite R-modules. If M’ is reflexive and M" is torsion free, then M is
reflexive.

Proof. We will use without further mention that Hompg (N, N') is a finite R-module
for any finite R-modules N and N’, see Algebra, Lemma We take duals to
get a sequence

Hompg (M, R) + Hompg(M', R) + Homgr(M", R)
Dualizing again we obtain a commutative diagram

Homp(Homp(M, R), R) — Homp(Homp(M', R), R) —— Hompg(Homp(M", R), R)

! T !

M MI M//
We do not know the top row is exact. But, by assumption the middle vertical
arrow is an isomorphism and the right vertical arrow is injective (Lemma [23.2)).
We claim j is injective. Assuming the claim a diagram chase shows that the left
vertical arrow is an isomorphism, i.e., M is reflexive.

Proof of the claim. Consider the exact sequence Hompr(M', R) — Homp(M, R) —
@ — 0 defining Q). One applies Algebra, Lemma to obtain

Homg (M’ @ K,K) — Homg (M @r K, K) - Q®r K — 0
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But M ®zg K — M’ ®pg K is an injective map of vector spaces, hence split injective,
so Q@ ®pr K =0, that is, @ is torsion. Then one gets the exact sequence

0— HomR(Q, R) — HomR(HomR(M, R), R) — HOIIIR(HOIDR(M/, R),R)
and Hompg(Q, R) = 0 because @ is torsion. O

Lemmal 23.6. Let R be a Noetherian domain. Let M be a finite R-module. The
following are equivalent

(1) M is reflexive,
(2) there exists a short exact sequence 0 - M — F — N — 0 with F finite
free and N torsion free.

Proof. Observe that a finite free module is reflexive. By Lemma we see that
(2) implies (1). Assume M is reflexive. Choose a presentation R®™ — R®™ —
Hompg (M, R) — 0. Dualizing we get an exact sequence

0 — Hompg(Hompg(M, R),R) — R®" — N — 0
with N = Im(R®" — R®™) a torsion free module. As M = Hompg(Hompg (M, R), R)

we get an exact sequence as in (2). O

Lemmal 23.7. Let R — R’ be a flat homomorphism of Noetherian domains. If
M is a finite reflexive R-module, then M @r R’ is a finite reflexive R'-module.

Proof. Choose a short exact sequence 0 —- M — F — N — 0 with F finite free
and N torsion free, see Lemma Since R — R’ is flat we obtain a short exact
sequence 0 - M @r R - FQr R’ -+ N ®r R’ — 0 with F ® gz R’ finite free and
N ®pr R/ torsion free (Lemma. Thus M ®g R’ is reflexive by Lemmam a

Lemma 23.8. Let R be a Noetherian domain. Let M be a finite R-module. Let
N be a finite reflexive R-module. Then Homp(M, N) is reflexive.

Proof. Choose a presentation R®"™ — R®" — M — 0. Then we obtain
0 — Homp(M,N) = N®" - N' =0
with N/ = Im(N®" — N®™) torsion free. We conclude by Lemma O

Definition 23.9. Let R be a Noetherian domain. Let M be a finite R-module.
The module M** = Homp(Hompg(M, R), R) is called the reflexive hull of M.

This makes sense because the reflexive hull is reflexive by Lemma [23.8] The assign-
ment M — M** is a functor. If ¢ : M — N is an R-module map into a reflexive
R-module N, then ¢ factors M — M** — N through the reflexive hull of M.
Another way to say this is that taking the reflexive hull is the left adjoint to the
inclusion functor

finite reflexive modules C finite modules
over a Noetherian domain R.

Lemmal 23.10. Let R be a Noetherian local ring. Let M, N be finite R-modules.

(1) If N has depth > 1, then Homgr(M, N) has depth > 1.
(2) If N has depth > 2, then Homg (M, N) has depth > 2.
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Proof. Choose a presentation R¥™ — R®" — M — 0. Dualizing we get an exact
sequence

0 — Homp(M,N) = N®" - N’ =0

with N/ = Im(N®" — N®™). A submodule of a module with depth > 1 has
depth > 1; this follows immediately from the definition. Thus part (1) is clear. For
(2) note that here the assumption and the previous remark implies N’ has depth
> 1. The module N®" has depth > 2. From Algebra, Lemma we conclude
Hompg (M, N) has depth > 2. O

Lemma 23.11. Let R be a Noetherian ring. Let M, N be finite R-modules.

(1) If N has property (S1), then Homg(M, N) has property (S1).

(2) If N has property (S2), then Hompg(M, N) has property (Sa2).

(3) If R is a domain, N is torsion free and (S3), then Hompg (M, N) is torsion
free and has property (S2).

Proof. Since localizing at primes commutes with taking Hompg, for finite R-modules
(Algebra, Lemma [71.9) parts (1) and (2) follow immediately from Lemma [23.10
Part (3) follows from (2) and Lemma [22.12 O

Lemmal 23.12. Let R be a Noetherian ring. Let ¢ : M — N be a map of R-
modules. Assume that for every prime p of R at least one of the following happens
(1) My — N, is injective, or
(2) p & Ass(M).

Then ¢ is injective.

Proof. Let p be an associated prime of Ker(y). Then there exists an element
x € M, which is in the kernel of M, — N, and is annihilated by pR, (Algebra,
Lemma [63.15)). This is impossible in both cases. Hence Ass(Ker(y¢)) = ) and we
conclude Ker(p) = 0 by Algebra, Lemma [63.7} O

Lemmal 23.13. Let R be a Noetherian ring. Let ¢ : M — N be a map of R-
modules. Assume M is finite and that for every prime p of R one of the following
happens

(1) My — N, is an isomorphism, or

(2) depth(M,) > 2 and p & Ass(N).

Then @ is an isomorphism.

Proof. By Lemmawe see that ¢ is injective. Let N’ C N be an finitely gener-
ated R-module containing the image of M. Then Ass(N,) = () implies Ass(N,) = 0.
Hence the assumptions of the lemma hold for M — N’. In order to prove that ¢ is
an isomorphism, it suffices to prove the same thing for every such N’ € N. Thus
we may assume N is a finite R-module. In this case, p ¢ Ass(N) = depth(N,) > 1,
see Algebra, Lemma Consider the short exact sequence

0—-M-—->N-—-Q—0

defining Q. Looking at the conditions we see that either @, = 0 in case (1) or
depth(Qy) > 1 in case (2) by Algebra, Lemma This implies that @) does not
have any associated primes, hence ) = 0 by Algebra, Lemma [63. (]
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Lemma 23.14. Let R be a Noetherian domain. Let ¢ : M — N be a map of
R-modules. Assume M is finite, N is torsion free, and that for every prime p of R
one of the following happens

(1) My — N, is an isomorphism, or

(2) depth(M,) > 2.

Then @ is an isomorphism.
Proof. This is a special case of Lemma O

Lemma) 23.15. Let R be a Noetherian domain. Let M be a finite R-module. The
following are equivalent
(1) M is reflexive,
(2) for every prime p of R one of the following happens
(a) M, is a reflexive Ry-module, or
(b) depth(M,) > 2.

Proof. If (1) is true, then M, is a reflexive module for all primes of p by Lemma
Thus (1) = (2). Assume (2). Set N = Hompg(Hompg(M, R), R) so that

Ny = Hompg, (Hompg, (M, Ry), Rp)

for every prime p of R. See Algebra, Lemma We apply Lemma to the
map j : M — N. This is allowed because M is finite and N is torsion free by
Lemma [22.12 In case (2)(a) the map M, — N, is an isomorphism and in case
(2)(b) we have depth(M,) > 2. O

Lemmal 23.16. Let R be a Noetherian domain. Let M be a finite reflexive R-
module. Let p C R be a prime ideal.

(1) If depth(Ry) > 2, then depth(M,) > 2.

(2) If R is (S2), then M is (Ss).

Proof. Since formation of reflexive hull Homg(Hompg(M, R), R) commutes with
localization (Algebra, Lemma [10.2)) part (1) follows from Lemma [23.10, Part (2) is
immediate from Lemma 23.11] O

Example 23.17. The results above and below suggest reflexivity is related to the
(S2) condition; here is an example to prevent too optimistic conjectures. Let k be
a field. Let R be the k-subalgebra of k[z,y] generated by 1,y, 22 zy,23. Then R
is not (S2). So R as an R-module is an example of a reflexive R-module which is
not (S2). Let M = k[z,y] viewed as an R-module. Then M is a reflexive R-module
because

Hompg(M,R) =m = (y,2%, zy,z*) and Hompg(m,R) =M

and M is (S3) as an R-module (computations omitted). Thus R is a Noetherian
domain possessing a reflexive (S2) module but R is not (S3) itself.

Lemmal 23.18. Let R be a Noetherian normal domain with fraction field K. Let
M be a finite R-module. The following are equivalent
(1) M is reflexive,
(2) M is torsion free and has property (Sa),
(3) M is torsion free and M = ﬂheight( _1 My, where the intersection happens
m MK =M ®Rr K.

p)
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Proof. By Algebra, Lemma [157.4| we see that R satisfies (R;) and (S5).

Assume (1). Then M is torsion free by Lemma and satisfies (S2) by Lemma
23.16] Thus (2) holds.

Assume (2). By definition M’ = ("} ¢igni(p)=1 Mp is the kernel of the map

My — EBheight(p):1 Mic /M, C Hheight(p):l Mic /M,

Observe that our map indeed factors through the direct sum as indicated since
given a/b € K there are at most finitely many height 1 primes p with b € p. Let
po be a prime of height 1. Then (Mg /M)y, = 0 unless p = po in which case we
get (Mg /Myp)p, = M /M,,. Thus by exactness of localization and the fact that
localization commutes with direct sums, we see that M, = M,,. Since M has
depth > 2 at primes of height > 1, we see that M — M’ is an isomorphism by

Lemma [23.14] Hence (3) holds.

Assume (3). Let p be a prime of height 1. Then R, is a discrete valuation ring by
(R1). By Lemma [22.11] we see that M), is finite free, in particular reflexive. Hence
the map M — M™* induces an isomorphism at all the primes p of height 1. Thus
the condition M = (Y, gigne(p)=1 Mp implies that M = M** and (1) holds. O
Lemmal 23.19. Let R be a Noetherian normal domain. Let M be a finite R-
module. Then the reflexive hull of M is the intersection

M = ﬁheight(p):1 MP/(Mp)tors = ﬂheight(p):l(M/ers)p
taken in M ®r K.

Proof. Let p be a prime of height 1. The kernel of M, - M ®g K is the torsion
submodule (M} )iors of M,. Moreover, we have (M/Miors)p = My/(Mp)tors and
this is a finite free module over the discrete valuation ring R, (Lemma [22.11)).
Then M, /(Mp)tors = (Mp)** = (M**), is an isomorphism, hence the lemma is a

consequence of Lemma [23.18§] ([l

Lemma 23.20. Let A be a Noetherian normal domain with fraction field K. Let
L be a finite extension of K. If the integral closure B of A in L is finite over A,
then B is reflexive as an A-module.

Proof. It suffices to show that B = (| B, where the intersection is over height 1
primes p C A, see Lemma Let b € (By. Let ¢+ a1z? ' + ...+ ag be the
minimal polynomial of b over K. We want to show a; € A. By Algebra, Lemma
we see that a; € A, for all ¢ and all height one primes p. Hence we get what
we want from Algebra, Lemma (or the lemma already cited as A is a reflexive
module over itself). O

24. Content ideals

The definition may not be what you expect.

Definition 24.1. Let A be a ring. Let M be a flat A-module. Let x € M. If the
set of ideals I in A such that x € IM has a smallest element, we call it the content
ideal of x.
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Note that since M is flat over A, for a pair of ideals I, I’ of A we have IMNI'M =
(INI')M as can be seen by tensoring the exact sequence 0 - INI' - I oI —
I+I' - 0by M.

Lemmal 24.2. Let A be a ring. Let M be a flat A-module. Let x € M. The
content ideal of x, if it exists, is finitely generated.

Proof. Say x € IM. Then we can write z = Zi:l,..‘,n fix; with f; € I and
x; € M. Hence x € I'M with I' = (f1,..., fn)- O

Lemma 24.3. Let (A,m) be a local ring. Let uw : M — N be a map of flat A-
modules such that w: M/mM — N/mN is injective. If x € M has content ideal I,
then u(x) has content ideal I as well.

Proof. It is clear that u(z) € IN. If u(z) € I'N, then u(z) € (I' N I)N, see
discussion following Definition [24.1] Hence it suffices to show: if x € I'N and
I'c I, I"# I, then u(z) ¢ I'N. Since I/I' is a nonzero finite A-module (Lemma
there is a nonzero map x : I/I' = A/m of A-modules by Nakayama’s lemma
(Algebra, Lemma [20.1)). Since I is the content ideal of z we see that z ¢ I"M
where I"” = Ker(y). Hence z is not in the kernel of the map

IM=I@4 M2 A/me M = M/mM

Applying our hypothesis on @ we conclude that u(x) does not map to zero under

the map
IN=T@4N X% A/m® N = N/mN

and we conclude. O

Lemmal 24.4. Let A be a ring. Let M be a flat Mittag-Leffler module. Then every
element of M has a content ideal.

Proof. This is a special case of Algebra, Lemma [91.2 (]

25. Flatness and finiteness conditions

In this section we discuss some implications of the type “flat + finite type = finite
presentation”. We will revisit this result in the chapter on flatness, see More on
Flatness, Section[I} A first result of this type was proved in Algebra, Lemma [I08.6

Lemma 25.1. Let R be a ring. Let S = R[x1,...,xz,)] be a polynomial ring over
R. Let M be an S-module. Assume

(1) there exist finitely many primes p1,...,pm of R such that the map R —

[1 Ry, is injective,

(2) M is a finite S-module,

(3) M flat over R, and

(4) for every prime p of R the module M, is of finite presentation over S,.
Then M is of finite presentation over S.

Proof. Choose a presentation
0-K—=S% > M-—=0

of M as an S-module. Let q be a prime ideal of S lying over a prime p of R.
By assumption there exist finitely many elements ki, ..., k; € K such that if we
set K' = > Sk; C K then K, = K, and K]’aj = Ky, for j = 1,...,m. Setting


https://stacks.math.columbia.edu/tag/0ASB
https://stacks.math.columbia.edu/tag/0ASC
https://stacks.math.columbia.edu/tag/0ASD
https://stacks.math.columbia.edu/tag/053A

053B

053C

MORE ON ALGEBRA 59

M’ = S%" /K’ we deduce that in particular Mg = M,. By openness of flatness, see
Algebra, Theorem we conclude that there exists a g € S, g ¢ q such that M
is flat over R. Thus My — M, is a surjective map of flat R-modules. Consider the
commutative diagram

M, ——— M,

.

[T(Mg)p; ——T1(My)y,

The bottom arrow is an isomorphism by choice of k1, ..., k;. The left vertical arrow
is an injective map as R — [[ Ry, is injective and Mé is flat over R. Hence the
top horizontal arrow is injective, hence an isomorphism. This proves that M, is of
finite presentation over S;. We conclude by applying Algebra, Lemma m O

Lemmal 25.2. Let R — S be a ring homomorphism. Assume
(1) there exist finitely many primes p1,...,Ppm of R such that the map R —
[1 Ry, is injective,
(2) R— S is of finite type,
(3) S flat over R, and
(4) for every prime p of R the ring Sy is of finite presentation over R,.

Then S is of finite presentation over R.

Proof. By assumption S is a quotient of a polynomial ring over R. Thus the result
follows directly from Lemma [25.1] O

Lemma 25.3. Let R be a ring. Let S = Rlxy,...,x,] be a graded polynomial
algebra over R, i.e., deg(x;) > 0 but not necessarily equal to 1. Let M be a graded
S-module. Assume

(1) R is a local ring,
(2) M is a finite S-module, and
(3) M is flat over R.

Then M is finitely presented as an S-module.

Proof. Let M = @ M, be the grading on M. Pick homogeneous generators
mi,...,m. € M of M. Say deg(m;) = d; € Z. This gives us a presentation

0— K — @i:h“ﬂ_ S(—d;) = M —=0
which in each degree d leads to the short exact sequence
00— Kq— ®i:1,...,r Sdfdi — My — 0.

By assumption each My is a finite flat R-module. By Algebra, Lemma this
implies each My is a finite free R-module. Hence we see each K, is a finite R-
module. Also each Ky is flat over R by Algebra, Lemma Hence we conclude
that each Ky is finite free by Algebra, Lemma [78.5| again.

Let m be the maximal ideal of R. By the flatness of M over R the short exact
sequences above remain short exact after tensoring with x = x(m). As the ring
S ®p k is Noetherian we see that there exist homogeneous elements ki, ..., ks € K
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such that the images k; generate K ®@p k over S ®p k. Say deg(k;) = e;. Thus for

any d the map
®j:1,...7t Si—e; — Ka

becomes surjective after tensoring with k. By Nakayama’s lemma (Algebra, Lemma
[20.1)) this implies the map is surjective over R. Hence K is generated by ki, ..., ki
over S and we win. (]

Lemma 25.4. Let R be a ring. Let S = @,,~,Sn be a graded R-algebra. Let
M = @ ez Mg be a graded S-module. Assume S is finitely generated as an R-
algebra, assume Sy is a finite R-algebra, and assume there exist finitely many primes
pj, i =1,...,m such that R — [[ Ry, is injective.
(1) If S is flat over R, then S is a finitely presented R-algebra.
(2) If M is flat as an R-module and finite as an S-module, then M is finitely
presented as an S-module.

Proof. As S is finitely generated as an R-algebra, it is finitely generated as an
Sy algebra, say by homogeneous elements t1,...,t, € S of degrees dy,...,d, > 0.
Set P = R[z1,...,x,] with deg(z;) = d;. The ring map P — S, x; — t; is finite
as Sy is a finite R-module. To prove (1) it suffices to prove that S is a finitely
presented P-module. To prove (2) it suffices to prove that M is a finitely presented
P-module. Thus it suffices to prove that if S = P is a graded polynomial ring and
M is a finite S-module flat over R, then M is finitely presented as an S-module.
By Lemma [25.3| we see M, is a finitely presented Sy-module for every prime p of
R. Thus the result follows from Lemma O

Remark| 25.5. Let R be a ring. When does R satisfy the condition mentioned in
Lemmas [25.1] 25.2] and 5.4 This holds if

(1) R is local,

(2) R is Noetherian,

(3) R is a domain,

(4) R is a reduced ring with finitely many minimal primes, or

(5) R has finitely many weakly associated primes, see Algebra, Lemma

Thus these lemmas hold in all cases listed above.
The following lemma will be improved on in More on Flatness, Proposition [13.10)

Lemmal 25.6. Let A be a valuation ring. Let A — B be a ring map of finite type.
Let M be a finite B-module.

(1) If B is flat over A, then B is a finitely presented A-algebra.
(2) If M is flat as an A-module, then M is finitely presented as a B-module.

Proof. We are going to use that an A-module is flat if and only if it is torsion
free, see Lemma 22.10] By Algebra, Lemma we can find a graded A-algebra
S with Sy = A and generated by finitely many elements in degree 1, an element
f € 51 and a finite graded S-module N such that B = Sy and M = Ny). If M is
torsion free, then we can take N torsion free by replacing it by N/Niors, see Lemma
Similarly, if B is torsion free, then we can take S torsion free by replacing it
by S/Siors. Hence in case (1), we may apply Lemma to see that S is a finitely
presented A-algebra, which implies that B = S(y) is a finitely presented A-algebra.
To see (2) we may first replace S by a graded polynomial ring, and then we may
apply Lemma [25.3] to conclude. O

[Nag66], Theorem 3]


https://stacks.math.columbia.edu/tag/053D
https://stacks.math.columbia.edu/tag/05GS
https://stacks.math.columbia.edu/tag/053E

0GSE

0535

053H

0531

MORE ON ALGEBRA 61

Lemmal 25.7. Let A be a valuation ring. Let A — B be a local homomorphism
which is essentially of finite type. Let M be a finite B-module.

(1) If B is flat over A, then B is essentially of finite presentation over A.
(2) If M is flat as an A-module, then M is finitely presented as a B-module.

Proof. By assumption we can write B as a quotient of the localization of a polyno-
mial algebra P = A[zy,...,x,] at a prime ideal q. In case (1) we consider M = B
as a finite module over Py and in case (2) we consider M as a finite module over

Py. In both cases, we have to show that this is a finitely presented P;-module, see
Algebra, Lemma [6.4] for case (2).

Choose a presentation 0 - K — PchT — M — 0 which is possible because M is
finite over Py. Let L = P®" N K. Then K = L, see Algebra, Lemma Then
N = P®"/L is a submodule of M and hence flat by Lemma Since also N
is a finite P-module, we see that N is finitely presented as a P-module by Lemma
Since localization is exact (Algebra, Proposition (9.12) we see that Nq = M
and we conclude. (]

26. Blowing up and flatness

In this section we begin our discussion of results of the form: “After a blowup the
strict transform becomes flat”. More results of this type may be found in Divisors,
Section |35| and More on Flatness, Section

Definition 26.1. Let R be a ring. Let I C R be an ideal and a € I. Let R[Z]
be the affine blowup algebra, see Algebra, Definition Let M be an R-module.
The strict transform of M along R — R[%] is the R[Z]-module

M' = (M ®g R[1]) /a-power torsion

The following is a very weak version of flattening by blowing up, but it is already
sometimes a useful result.

Lemma 26.2. Let (R,m) be a local domain with fraction field K. Let S be a

finite type R-algebra. Let M be a finite S-module. For every valuation ring A C K

dominating R there exists an ideal I C m and a nonzero element a € I such that
(1) I is finitely generated,
(2) A has center on R[L],

(3) the fibre ring of R — R[L] at m is not zero, and

(4) the strict transform Sy, of S along R — R[é] is flat and of finite presen-
tation over R, and the strict transform My, of M along R — R[é] is flat
over R and finitely presented over St .

Proof. Write S = R[z1,...,2,]/J and denote N = S@® M viewed as a module over
P = R[xy,...,x,]. If we can prove the lemma in case S is a polynomial algebra
over R, then we can find I, a satisfying (1), (2), (3) such that the strict transform
Nrp,q of N along R — R[é] is flat over R and finitely presented as a module over
the strict transform Py 4] of P. Since Py, = R[Z][21,...,2,] (small detail omitted)
we find that the summand S;, C Ny, is flat over R and finitely presented as a
module over R[%][z1,...,z,]. Hence S, is finitely presented as an R[£]-algebra.
Moreover, the summand M, C Np, is flat over R and finitely presented as a
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module over Pr , hence also finitely presented as a module over Sy, see Algebra,
Lemma This reduces us to the case discussed in the next paragraph.

Assume S = R[z1,...,z,]. Choose a presentation
0—K—S% - M —0.

Let My be the quotient of M ®p A by its torsion submodule, see Lemma [22.2]
Then M4 is a finite module over S4 = Alz1,...,z,]. By Lemmawe see that
M, is flat over A. By Lemma [25.6| we see that M4 is finitely presented. Hence
there exist finitely many elements k1, ...,k € Sfr which generate the kernel of the
presentation S§” — My as an Ss-module. For any choice of a € I C m satisfying
(1), (2), and (3) we denote M;,, the strict transform of M along R — R[L]. Tt is
a finite module over S;, = R[%][z1,...,z,]. By Algebra, Lemma we have

A = colimy R[é] This implies that S4 = colim Sy, and
colimM @g R[] = M ®p A

Choose I,a and lifts kq,...,k; € S?g. Since M4 is the quotient of M ®gr A by
torsion, we see that the images of ky, ..., k; in M ® g A are annihilated by a nonzero
element o € A. After replacing I,a by a different pair (recall that the colimit is
filtered), we may assume o = x/a” for some = € I"™ nonzero. Then we find that
xky,...,xk; map to zero in M ®r A. Hence after replacing I, a by a different pair
we may assume xky,...,rk; map to zero in M ®p R[é] for some nonzero x € R.
Then finally replacing I, a by xI, xa we find that we may assume k1, ..., k; map to
a-power torsion elements of M ®p R[%]. For any such pair (I, a) we set

Mj, =S¢/ Zsl,akj.

Since M4 = Sfr/ >~ Sak; we see that M4 = colimy 4 Mia. At this point we finally
apply Algebra, Lemma [168.1] (3) to conclude that M , is flat for some pair (1, a)
as above. This lemma does not apply a priori to the system of strict transforms

My, = (M ®g R[1])/a-power torsion

as the transition maps may not satisfy the assumptions of the lemma. But now,
since flatness implies torsion free (Lemma [22.9) and since My, is the quotient of

M}’a (because we arranged it so the elements ky, ..., k; map to zero in M;,) by
the a-power torsion submodule we also conclude that Mj , = My, for such a pair
and we win. 0

Lemma 26.3. Let R be a ring. Let M be a finite R-module. Let k > 0 and
I = Fity(M). For every a € I with R’ = R[%] the strict transform

M' = (M ®g R')/a-power torsion
has Fity,(M') = R'.

Proof. First observe that Fity(M ®r R') = IR’ = aR’. The first equality by
Lemmapart (3) and the second equality by Algebra, Lemma From Lemma
and exactness of localization we see that M;, can be generated by < k elements
for every prime p’ of R'. Then Fity(M’) = R’ for example by Lemma O
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Lemma 26.4. Let R be a ring. Let M be a finite R-module. Let k > 0 and
I = Fitp(M). Asssume that M, is free of rank k for every p & V(I). Then for
every a € I with R' = R[1] the strict transform

M' = (M ®g R')/a-power torsion
is locally free of rank k.

Proof. By Lemma we have Fity(M') = R’. By Lemma it suffices to
show that Fit,_i(M’) = 0. Recall that R’ C R, = R,, see Algebra, Lemma [70.2]
Hence it suffices to prove that Fit;_1(M') maps to zero in R, = R,. Since clearly
(M")q = M, this reduces us to showing that Fity_1(M,) = 0 because formation of
Fitting ideals commutes with base change according to Lemma|[8.4| part (3). This is
true by our assumption that M, is finite locally free of rank k (see Algebra, Lemma

78.2) and the already cited Lemma O

Lemmal 26.5. Let R be a ring. Let M be a finite R-module. Let f € R be an
element such that My is finite locally free of rank r. Then there exists a finitely
generated ideal I C R with V(f) = V(I) such that for all a € I with R' = R[%] the
strict transform

M' = (M ®g R')/a-power torsion

is locally free of rank r.

Proof. Choose a surjection R®" — M. Choose a finite submodule K C Ker(R®" —
M) such that R®"/K — M becomes an isomorphism after inverting f. This is pos-
sible because M is of finite presentation for example by Algebra, Lemma Set
M; = R®"/K and suppose we can prove the lemma for M;. Say I C R is the
corresponding ideal. Then for a € I the map

Mj = (M, ®g R')/a-power torsion — M’ = (M ®pr R’)/a-power torsion

is surjective. It is also an isomorphism after inverting a in R’ as R], = Ry, see
Algebra, Lemma But a is a nonzerodivisor on M/, whence the displayed map
is an isomorphism. Thus it suffices to prove the lemma in case M is a finitely
presented R-module.

Assume M is a finitely presented R-module. Then J = Fit,.(M) C S is a finitely
generated ideal. We claim that I = fJ works.

We first check that V(f) = V(I). The inclusion V(f) C V(I) is clear. Conversely,
if f & p, then p is not an element of V(J) by Lemma Thus p € V(fJ) =V ().

Let a € I and set R’ = R[ﬂ We may write a = fb for some b € J. By Algebra,
Lemmas [70.2] and [70.8 we see that JR' = bR’ and b is a nonzerodivisor in R’. Let
p C R = R[é] be a prime ideal. Then JR), is generated by b. It follows from
Lemmathat M;,, can be generated by r elements. Since M’ is finite, there exist
mi,...,m € M and g € R', g & p’ such that the corresponding map (R')®" — M’
becomes surjective after inverting g.

Finally, consider the ideal J = Fity_1(M’). Note that J'R; is generated by the
coefficients of relations between my,...,m, (compatibility of Fitting ideal with
base change). Thus it suffices to show that J' = 0, see Lemma 8.7 Since R} = Ry
(Algebra, Lemma and M/ = Mj is free of rank r we see that J, = 0. Since a
is a nonzerodivisor in R’ we conclude that J' = 0 and we win. ]
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27. Completion and flatness

In this section we discuss when the completion of a “big” flat module is flat.

Lemma 27.1. Let R be a ring. Let I C R be an ideal. Let A be a set. Assume R
is Noetherian and complete with respect to I. There is a canonical map

(@OLEA R) ' — HaEA R

from the I-adic completion of the direct sum into the product which is universally
injective.

Proof. By definition an element x of the left hand side is x = (z,) where z,, =
(#n,a) € @aea R/I" such that z, o = Tpy1,o mod I". As R = R" we see that
for any o there exists a y, € R such that z, o = y, mod I". Note that for each n
there are only finitely many a such that the elements x,, o are nonzero. Conversely,
given (yo) € I[, R such that for each n there are only finitely many « such that
Yo mod I™ is nonzero, then this defines an element of the left hand side. Hence we
can think of an element of the left hand side as infinite “convergent sums” ) ya
with y, € R such that for each n there are only finitely many y, which are nonzero
modulo I"™. The displayed map maps this element to the element to (y,) in the
product. In particular the map is injective.

Let @ be a finite R-module. We have to show that the map

Qon (@, 1) —@on (L., )

is injective, see Algebra, Theorem Choose a presentation R®* — RO™
@ — 0 and denote q1,...,qmn € @ the corresponding generators for (). By Artin-
Rees (Algebra, Lemma[51.2)) there exists a constant ¢ such that Im(R®* — R®™)N
(IN)®™ C Im((IN=¢)®* — R®™). Let us contemplate the diagram

@f:l (@aeA R)/\ - @;n:l (®a€A R)/\ —Q®r (®a€A R)A —0

| | |

@f:l (HaeA R) - ®T=1 (HaEA R) —>Q®r (HaeA R) —0

with exact rows. Pick an element >, 5" vja of @D,_; . (Boca R)A. If this
element maps to zero in the module Q ®pr (HQGA R), then we see in particular that

Zj ¢ ® Yj,a = 0 in @Q for each a. Thus we can find an element (21,4,...,2k,a) €
@l:l,...,k R which maps to (y1,a,---,Ym.a) € @j:l,...,m R. Moreover, if y; o, € INe
for j = 1,...,m, then we may assume that z;, € INa=¢for | = 1,...,k. Hence

the sum Y7, 37 21 o is “convergent” and defines an element of @,_; ;. (B,ca R)"
which maps to the element > j > o Yj,a We started out with. Thus the right vertical
arrow is injective and we win. (I

The following lemma can also be deduced from Lemma [27.4] below.

Lemmal 27.2. Let R be a ring. Let I C R be an ideal. Let A be a set. Assume R
is Noetherian. The completion (@, 4 R)" is a flat R-module.
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Proof. Denote R" the completion of R with respect to I. As R — R”" is flat by
Algebra, Lemma [97.2it suffices to prove that (,c 4 R)" is a flat R"-module (use
Algebra, Lemma |39.4)). Since

(@QGA R)" = (@aeA R

we may replace R by R" and assume that R is complete with respect to I (see
Algebra, Lemma [97.4). In this case Lemma tells us the map (P, R)" —
[I,c4 R is universally injective. Thus, by Algebra, Lemma it suffices to show

that ], R is flat. By Algebra, Proposition (and Algebra, Lemma [90.5)) we
see that [[ .4 R is flat. O

Lemma 27.3. Let A be a Noetherian ring. Let I be an ideal of A. Let M be a
finite A-module. For every p > 0 there exists a ¢ > 0 such that Torﬁ(M, A/I™) —
Torﬁ(M, A/I™¢) 4s zero for all n > c.

Proof. Proof for p = 1. Choose a short exact sequence 0 — K — A%t — M — 0.
Then Tord (M, A/I") = K N (I")®!/I"K. By Artin-Rees (Algebra, Lemma
there is a constant ¢ > 0 such that K N (I™)®" C I" K for n > ¢. Thus the result
for p =1. For p > 1 we have Tor;l(M7 A/IM) = T01r1‘?71(K7 A/I™). Thus the lemma
follows by induction. O

Lemma 27.4. Let A be a Noetherian ring. Let I be an ideal of A. Let (M,) be
an inverse system of A-modules such that

(1) M, is a flat A/I™-module,

(2) Myi1 — M, is surjective.
Then M = lim M, is a flat A-module and Q @ 4 M = 1im Q @4 M, for every finite
A-module Q.

Proof. We first show that Q ® 4 M = lim Q ® 4 M,, for every finite A-module Q.
Choose a resolution Fy — F; — Fy — @ — 0 by finite free A-modules F;. Then

FQ@AMn*)Fl(@AMn—)Fo@AMn

is a chain complex whose homology in degree 0 is @ ®4 M,, and whose homology
in degree 1 is

Tor(Q, M,,) = Tor{ (Q, A/I™) @4/ M,
as M, is flat over A/I". By Lemma we see that this system is essentially
constant (with value 0). It follows from Homology, Lemma that lim Q ®4
A/I" = Coker(lim F} ® 4 M,, — lim Fy ® 4 M,,). Since F; is finite free this equals
Coker(F1 Ra M — Fy®a M) =Q X4 M.

Next, let Q — Q' be an injective map of finite A-modules. We have to show that
Qa4 M — Q ®a M is injective (Algebra, Lemma [39.5)). By the above we see

Ker(Q@a M — Q' ®4 M) =Ker(limQ ®4 M, — lim Q" ®4 M,).
For each n we have an exact sequence
Tori (Q', M,,) — Tor{ (Q", M,,) = Q ®a M,, — Q' ®4 M,

where Q" = Coker(Q — Q’). Above we have seen that the inverse systems of Tor’s
are essentially constant with value 0. It follows from Homology, Lemma that
the inverse limit of the right most maps is injective. (I

This is [Qui, Lemma
9.9]; note that the
author forgot the
word “strict” in the
statement although
it was clearly
intended.


https://stacks.math.columbia.edu/tag/0911
https://stacks.math.columbia.edu/tag/0912

0AGW

0621
0622

0623

0624

0625

MORE ON ALGEBRA 66

Lemma 27.5. Let R be a ring. Let I C R be an ideal. Let M be an R-module.
Assume

(1) I is finitely generated,

(2) R/I is Noetherian,

(3) M/IM is flat over R/I,

(4) Torf'(M,R/I) = 0.
Then the I-adic completion R™ is a Noetherian ring and M” is flat over R".

Proof. By Algebra, Lemma the modules M/I™M are flat over R/I™ for all
n. By Algebra, Lemma we have (a) R and M” are [-adically complete
and (b) R/I" = R"/I"R" for all n. By Algebra, Lemma the ring R" is
Noetherian. Applying Lemma we conclude that M = lim M/I"M is flat as
an R"-module. O

28. The Koszul complex
We define the Koszul complex as follows.

Definition 28.1. Let R be a ring. Let ¢ : E — R be an R-module map. The
Koszul complex Ko(p) associated to ¢ is the commutative differential graded algebra
defined as follows:

(1) the underlying graded algebra is the exterior algebra Ko(p) = A(E),
(2) the differential d : Ko(p) — Ko(p) is the unique derivation such that
d(e) = p(e) for all e € E = K1(yp).

Explicitly, if e; A ... A e, is one of the generators of degree n in K,(p), then
dler A...Ney) :Zi

It is straightforward to see that this gives a well defined derivation on the tensor
algebra, which annihilates e ® e and hence factors through the exterior algebra.

. n(—l)”lcp(ei)el Ao NEGN ... Nen.

We often assume that E is a finite free module, say F = R®™. In this case the map
© is given by a sequence of elements fi,..., f, € R.

Definition 28.2. Let R be a ring and let fi1,..., f, € R. The Koszul complex
on f1,..., fr is the Koszul complex associated to the map (fi,..., fr) : R®" — R.
Notation Ke(fe), Ke(f1;---sfr), Ke(R, f1,..., fr), or K¢(R, fo).

Of course, if F is finite locally free, then K,(¢) is locally on Spec(R) isomorphic
to a Koszul complex Ko(f1,...,fr). This complex has many interesting formal
properties.

Lemma 28.3. Lety: E — Randy' : E' = R be R-module maps. Let : E — E'
be an R-module map such that ¢ o1 = . Then 1) induces a homomorphism of
differential graded algebras Ko(¢) — Ko(¢').

Proof. This is immediate from the definitions. O

Lemma 28.4. Let fi,..., fr € R be a sequence. Let (x;;) be an invertible r X r-
matriz with coefficients in R. Then the complexzes Ko(fo) and

Ko(D miifin Y waife ooy D wrify)

are isomorphic.
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Proof. Set g; = Y x;;f;. The matrix (2;;) gives an isomorphism z : R®" — R®"
such that (g1,...,9-) = (f1,-.., fr) o x. Hence this follows from the functoriality
of the Koszul complex described in Lemma [28.3] O

Lemma 28.5. Let R be a ring. Let ¢ : E — R be an R-module map. Let e € E
with image f = ¢(e) in R. Then

f=de+ed
as endomorphisms of Ke¢().
Proof. This is true because d(ea) = d(e)a — ed(a) = fa — ed(a). O

Lemmal 28.6. Let R be a ring. Let f1,..., fr € R be a sequence. Multiplication
by fi on Ke(fe) is homotopic to zero, and in particular the cohomology modules
H;(Ko(fe)) are annihilated by the ideal (f1,..., fr).

Proof. Special case of Lemma [28.5) (]

In Derived Categories, Section [9] we defined the cone of a morphism of cochain
complexes. The cone C(f)e of a morphism of chain complexes f : A, — B, is the
complex C(f)e given by C(f), = B, ® A,,—1 and differential

dB n fn—l
28.6.1 do(fyn = ’
(28.6.1) o), ( 0 _dA,n—1>
It comes equipped with canonical morphisms of complexes i : Be — C(f)e and

p: C(f)e = Ae[—1] induced by the obvious maps B, — C(f)n — Apn_1.

Lemma 28.7. Let R be a ring. Let ¢ : E — R be an R-module map. Let f € R.
Set B' = E® R and define ¢’ : E' — R by ¢ on E and multiplication by f on R.
The complex Ko(¢') is isomorphic to the cone of the map of complexes

[ Ko(p) — Keo(p).

Proof. Denote ¢y € E’ the element 1 € R C R® E. By our definition of the cone
above we see that

C(fln = Kn(p) & Kn-1(p) = N"(E) ® A"~H(E) = \"(E')

where in the last = we map (0,e1 A...Aep_1) toegAer A... Aey—1 in A"(E'). A
computation shows that this isomorphism is compatible with differentials. Namely,
this is clear for elements of the first summand as ¢'|p = ¢ and d¢ () restricted to
the first summand is just dg,( On the other hand, if ey A... Ae,_1 is in the
second summand, then

dc(f)(0,61 VANIAN en—l) =ferN...Nep_1 — dK.(g;)(el AL A en—l)
and on the other hand

®)-

di.o)(0,e0 Aex A ... Aep_1)
- Zi:o nfl(*l)ﬂp/(ei)eo AN o NEGN N en—q
=Jen o Nenit Zi:17.“,n_1(_1)i@(ei)eo AN dNEGN.Nepq

=ferAN...Ney,_1— € (Zi:1 n_l(—l)iH(p(ei)q AoAEGNA LA en,l)

which is the image of the result of the previous computation. ([
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Lemma 28.8. Let R be a ring. Let f1,..., fr be a sequence of elements of R. The

complex Ko(f1,..., fr) is isomorphic to the cone of the map of complexes
fri Ke(fuy s frm1) — Kol f1, o os fro1).
Proof. Special case of Lemma [28. O

Lemmal 28.9. Let R be a ring. Let Ay be a complex of R-modules. Let f, g € R.
Let C(f)e be the cone of f : Ae — Ae. Define similarly C(g)e and C(fg)e. Then
C(fg)e is homotopy equivalent to the cone of a map

C(f)e[t] — C(g)e

Proof. We first prove this if A, is the complex consisting of R placed in degree 0.
In this case the complex C(f), is the complex

...—>0—>Ri>R—>O—>...

with R placed in (homological) degrees 1 and 0. The map of complexes we use is

NN

The cone of this is the chain complex consisting of R®? placed in degrees 1 and 0

and differential ([28.6.1))

g 1 . P®2 ®2
(O f>.R — R

To see this chain complex is homotopic to C(fg)., i-e., to R EEN R, consider the
maps of complexes

R R R®2 . Ro2
fg
<1,—g>l l(o,n (170)l l(f,n
R®2 5 Re2 R—T" R

with obvious notation. The composition of these two maps in one direction is the
identity on C(fg)s, but in the other direction it isn’t the identity. We omit writing
out the required homotopy.

To see the result holds in general, we use that we have a functor K — Tot(Aes @
K,) on the category of complexes which is compatible with homotopies and cones.
Then we write C(f)e and C(g)e as the total complex of the double complexes

(RL R)y®r Ay and (RS R) @R A

and in this way we deduce the result from the special case discussed above. Some
details omitted. (]

Lemma 28.10. Let R be a ring. Let p : E — R be an R-module map. Let f,g € R.
Set E' = E® R and define s, 0y, ¢, + E' — R by ¢ on E and multiplication by
f:9,fg on R. The complex Ko¢(¢,) is homotopy equivalent to the cone of a map
of complezes

Ko(#7)[1] — Ka(y).
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Proof. By Lemma [28.7) the complex Ko(¢)) is isomorphic to the cone of multi-

plication by f on K(p) and similarly for the other two cases. Hence the lemma
follows from Lemma 28.9] O

Lemma 28.11. Let R be a ring. Let f1,..., fr—1 be a sequence of elements of R.
Let f,g € R. The complex Ko(f1,..., fr—1, fg) is homotopy equivalent to the cone
of a map of complexes

Ko(fla e 7f'r717f)[1] — K.(fl, e f’l‘*l?g)
Proof. Special case of Lemma [28.10) (]

Lemma 28.12. Let R be a ring. Let f1,..., fr, g1,-..,9s be elements of R. Then
there is an isomorphism of Koszul complexes

K'(R7f1a"'7f’ragl7"'7gs> = TOt(K‘(R7fl?"'af7‘) ®R K'<R’gl7"'7gs>)'

Proof. Omitted. Hint: If Kq(R, f1,..., f.) is generated as a differential graded
algebra by x1,...,x, with d(z;) = f; and K¢(R,g1,...,9s) is generated as a
differential graded algebra by yi,...,ys with d(y;) = g;, then we can think of
Ko(R, f1,--y fryg1,---,9s) as the differential graded algebra generated by the se-
quence of elements z1,..., %, y1,...,ys with d(z;) = f; and d(y;) = g;. O

29. The extended alternating Cech complex

Let R be a ring. Let fi,..., fr € R. The extended alternating Cech complex of R
is the cochain complex

R — @io Rfio — ®io<i1 Rf,iofil — ... = Ry g
where R is in degree 0, the term @io Ry, is in degre 1, and so on. The maps are
defined as follows
(1) The map R — &P, Ry,, is given by the canonical maps R — Ry, .
(2) Given 1 < iy < ... < ipy1 <rand 0 < j < p+ 1 we have the canonical

localization map

sz‘o~~fij~~~fip+1 - Rf'io"'f'ipﬂ

(3) The differentials use the canonical maps of (2) with sign (—1).

If M is any R-module, the extended alternating Cech complex of M is the similarly
constructed cochain complex

M — @io Mfig — ®io<i1 ]\4]%0)01,1 — .. Mfl-ufr
where M is in degree 0 as before.

Lemma 29.1. The extended alternating Cech complexes defined above are com-
plexes of R-modules.

Proof. Omitted. O

Lemma) 29.2. Let R be a ring. Let fy,...,f. € R. Let M be an R-module. The
extended alternating Cech complex of M is the tensor product over R of M with
the extended alternating Cech complex of R.

Proof. Omitted. O
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Lemma 29.3. Let R be a ring. Let fi,....f. € R. Let M be an R-module.
Let R — S be a ring map, denote g1,...,g9, € S the images of fi,..., fr, and
set N = M ®p S. The extended alternating Cech complex constructed using S,
gi,--.,9r, and N is the tensor product of the extended alternating Cech complex of
M with S over R.

Proof. Omitted. (]
Lemmal 29.4. Let R be a ring. Let fi,...,f. € R. Let M be an R-module. If
there exists an i € {1,...,r} such that f; is a unit, then the extended alternating

Cech complex of M is homotopy equivalent to 0.

Proof. We will use the following notation: a cochain z of degree p + 1 in the ex-
tended alternating Cech complex of M is x = (z4,...;,) Where x;,._;, is in My, .t -
With this notation we have

d(x)io...ipﬂ = Zj(_l)jmio...%j...ipﬂ
As homotopy we use the maps
h : cochains of degree p 4+ 2 — cochains of degree p + 1
given by the rule
h(x)i,..5, = 0 if i € {ig,...,ip} and h(x)s...;, = (— l)jxl0 dijiijan...ip if DO
Here j is the unique index such that 7; <4 < 4,41 in the second case; also, since f;
is a unit we have the equality
My, ..s., = Mf,io.“fij Fifiyir i

which we can use to make sense of thinking of (=1)7x;,..i,,,...i, as an element of

My, ...f,,- We will show by a computation that dh + hd equals the negative of the
identity map which finishes the proof. To do this fix z a cochain of degree p + 1
andlet 1 <ip < ... <, <7

Case I: i € {ig,...,ip}. Say i =4;. Then we have h(d(x)),...;, = 0. On the other
hand we have

d(h( Z z]zp = (_1)th(x)io...2...ip = (_1)t(_1)t_137io...i,,
Thus (dh + hd)( )io.
Case II: i ¢ {ig, ... ,zp}. Let j be such that i; <4 < ;1. Then we see that

h(d(ﬂﬁ))z‘o...i = (—1)jd($)io RRTTR
+
= Z ,<j DRSS 0wty ondgiigg1eniy  Tio.ip

J+J +1 .
+ E :J s Ligosigtijat iy ip

On the other hand we have

d(h(z))iy...i, = Z.,(—l)j h(x)i g
_ "4j—1 .
Z ,<J j - Loty oty ip

_ 1)+ .
+§ (=1 T igigiiggtenijrip

3'>i
Adding these up we obtain (dh + hd)(x);, as desired. O

Tiy...q, as desired.

= —x;

clp 0---1p
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Lemma 29.5. Let R be a ring. Let f1,...,fr € R. Let M be an R-module. Let
HY be the qth cohomology module of the extended alternation Cech complex of M.
Then

(1) HO =0 if g ¢ [0,7],

(2) for x € H' there exists an n > 1 such that flx =0 fori=1,...,r,

(3) the support of H? is contained in V(f1,..., fr),
(4) if there is an f € (f1,..., fr) which acts invertibly on M, then H? = 0.

Proof. Part (1) follows from the fact that the extended alternating Cech complex
is zero in degrees < 0 and > r. To prove (2) it suffices to show that for each
i there exists an n > 1 such that fj'xr = 0. To see this it suffices to show that
(H?)s, = 0. Since localization is exact, (H?)y, is the gth cohomology module of the
localization of the extended alternating complex of M at f;. By Lemma this
localization is the extended alternating Cech complex of M t, over IRy, with respect
to the images of fi,..., fr in Ry,. Thus we reduce to showing that H is zero if f;
is invertible, which follows from Lemma[29.4] Part (3) follows from the observation
that (H?)y, = 0 for all 4 that we just proved. To see part (4) note that in this case
f acts invertibly on H? and HY is supported on V(f) by (3). This forces HY to be
zero (small detail omitted). O

Lemma| 29.6. Let R be a ring. Let f1,..., f. € R. The extended alternating Cech
complex

R — @io Rfio — @io<i1 Rfiofil — .. Rfl--~f7‘

is a colimit of the Koszul complexes K(R, [T, ..., f*); see proof for a precise state-
ment.

Proof. We urge the reader to prove this for themselves. Denote K (R, f7*,..., f™)
the Koszul complex of Definition 28.2] viewed as a cochain complex sitting in degrees
0,...,r. Thus we have

KR, ..., f™):0—= A(R¥") = A" HRP) - ... 5 R 5 R—0
with the term A"(R®") sitting in degree 0. Let €?,...,e" be the standard basis of

RO, Then the elements ejy Ao Nep  for 1 <y <...<jr—p <rform a basis
for the term in degree p of the Koszul complex. Further, observe that

d(e} Ao Nef )= (1) el AN AL e
by our construction of the Koszul complex in Section 28] The transition maps of
our system

KR, ff' .. f7) = K(R )
are given by the rule

n

+1 +1
e N Nef o fig o fi €l A NeEST
where the indices 1 < 4y < ... <id,_1 < raresuch that {1,...7} = {ip,... i1}

{j1,-- -, jr—p}. We omit the short computation that shows this is compatible with
differentials. Observe that the transition maps are always 1 in degree 0 and equal
to fi...fr in degree 7.

Denote KP(R, f*,..., f) the term of degree p in the Koszul complex. Observe
that for any f € R we have

Ry=colim(RLRL R— )
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Hence we see that in degree p we obtain
1 D n ny _—
colim KP(R, fI',... f/') = @1§i0<‘..<ip,1§’r Rpygotiy,

Here the element € A ... A ey of the Koszul complex above maps in the colimit
to the element (fi, ... f;,_,)”" in the summand Rfio.“fi%1 where the indices are

chosen such that {1,...7} = {ip,...,4p—1} I {j1,...,jr—p}. Thus the differential
on this complex is given by

d(l in Rfio...fip_l) = Zi&{io ..,,ip_l}(_

Thus if we consider the map of complexes given in degree p by the map

Ry g — Ry, .1,
@1§i0<.4.<ip,1§r Figre-fip @1gz’0<...<z‘p,1§r fiofipa
determined by the rule

.
1)Z m Rf’io--<fitfifit+1~--fip_1

Lin Ry, g, = (Z1)0FF0tin Ry g

then we get an isomorphism of complexes from colim K (R, f{*,..., f7) to the ex-
tended alternating Cech complex defined in this section. We omit the verification
that the signs work out. (I

30. Koszul regular sequences
Please take a look at Algebra, Sections and [72] before looking at this one.

Definition 30.1. Let R be aring. Let » > 0 and let f1,..., fr € R be a sequence
of elements. Let M be an R-module. The sequence f1,..., f, is called

(1) M-Koszul-regular if H;(K¢(f1,...,fr) ®r M) =0 for all i # 0,

(2) M-Hi-regularif Hy(Ke(f1,--.,fr) @r M) =0,

(3) Koszul-regular if H;(Keo(f1,...,fr)) =0 for all i # 0, and

(4) Hi-regular if Hi(Ko(f1,...,fr)) =0.

We will see in Lemmas [30.2] [30.3} and [30.6] that for elements fi,..., f, of a ring R
we have the following implications

fi,-.., fr is a regular sequence = fi, ..., f is a Koszul-regular sequence
= f1,..., fr is an Hj-regular sequence
= f1,..., fr is a quasi-regular sequence.

In general none of these implications can be reversed, but if R is a Noetherian local
ring and fi, ..., f € mg, then the four conditions are all equivalent (Lemma.
If f=f1 € Risalength 1 sequence and f is not a unit of R then it is clear that
the following are all equivalent

(1) f is a regular sequence of length one,

(2) f is a Koszul-regular sequence of length one, and

(3) f is a Hj-regular sequence of length one.
It is also clear that these imply that f is a quasi-regular sequence of length one. But
there do exist quasi-regular sequences of length 1 which are not regular sequences.
Namely, let

R= k[.’ﬂ, Yo, Y1, - - '}/(xyOaxyl —Yo0,TY2 — Y1, - )

and let f be the image of z in R. Then f is a zerodivisor, but @, (f")/(f") =
k[z] is a polynomial ring. N
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062F Lemma 30.2. An M -reqular sequence is M -Koszul-regular. A regular sequence is
Koszul-regular.

Proof. Let R be a ring and let M be an R-module. It is immediate that an M-
regular sequence of length 1 is M-Koszul-regular. Let f1,..., f. be an M-regular
sequence. Then f; is a nonzerodivisor on M. Hence

0= Ko(fore o ) OM L5 Ka(fare ) @M = Ko(Far-. . Fo) @ M/fLM — 0

is a short exact sequence of complexes where f, is the image of f; in R/(f1). By
Lemma the complex Ko(R, f1,..., fr) is isomorphic to the cone of multipli-
cation by f1 on Ke(fa,...,fr). Thus Ke(R, f1,..., fr) ® M is isomorphic to the
cone on the first map. Hence Ko (fs,...,f,) ® M/fiM is quasi-isomorphic to
Ko(fiyo oy fr) @ M. As fo,..., f, is an M/ f; M-regular sequence in R/(f;) the
result follows from the case r = 1 and induction. O

0CEM |Lemma 30.3. A M -Koszul-regular sequence is M-H-reqular. A Koszul-reqular
sequence is Hi-regular.

Proof. This is immediate from the definition. O

062G Lemma 30.4. Let fi,...,fr—1 € R be a sequence and f,g € R. Let M be an
R-module.

(1) If fi,--, fr—1, f and fu,..., fr—1,9 are M-Hy-regular then fi1,..., fr—1, fg
is M -H1-reqular too.

(2) If fi,..., fr—1, f and f1,..., fr—1,9 are M -Koszul-regular then f1,..., fr—1, fg
is M -Koszul-regular too.

Proof. By Lemma [28.11] we have exact sequences

Hi(K'(fla'~'7fT—17f)®M) — Hi(K.(flv"'7fr—1afg)®M) — Hi(K'(fl7' -'7f’r—17g)®M)
for all 3. O

062H Lemma 30.5. Let ¢ : R — S be a flat ring map. Let f1,...,fr € R. Let M be
an R-module and set N = M Qg S.

(1) If f1,..., fr in R is an M-Hy-regular sequence, then o(f1),...,¢(fr) is an
N-H; -reqular sequence in S.

(2) If f1,..., fr is an M-Koszul-reqular sequence in R, then o(f1),...,o(fr) is
an N-Koszul-reqular sequence in S.

Proof. This is true because Ko(f1,..., fr)®rS = Ke(©(f1),-..,0(fr)) and there-
fore (Keo(f1,---,fr) ®r M) ®@g S = Ko(p(f1),--.,0(fr)) ®s N. 0

0621 Lemmal 30.6. An M -H;-regular sequence is M -quasi-reqular.

Proof. Let R be a ring and let M be an R-module. Let f1,..., f. be an M-H;-
regular sequence. Denote J = (f1,..., fr). The assumption means that we have an
exact sequence

AN(RYOM — R @M — JM — 0

where the first arrow is given by e; A e; ® m — (fie; — fjei) ® m. Tensoring the
sequence with R/J we see that

JM/J*M = (R/J)®" @p M = (M/JM)®"
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is a finite free module. To finish the proof we have to prove for every n > 2 the
following: if

- 2 i n+1
= ZUlZn,I:(il,.,,,ir) mpfit.. fired M

then m; € JM for all I. In the next paragraph, we prove m; € JM for I =
(0,...,0,n) and in the last paragraph we deduce the general case from this special
case.

Let I = (0,...,0,n). Let & be as above. We can write £ = myf; + ... +
My_1fr_1 + mrf?. As we have assumed ¢ € J"MM, we can also write & =

Prcicjer1 Mijfifi + 2 cico M fif + m/ fntl. Then we see that

(m1 —mafi —mif*) i+
(mo — maafi — maafo — m5f¥) fot
.
(Mp—1 —mar—1fr — oo = Mp—tpo1 fror —mi_ 1) froa+
(mr —m"f)f' =0

Since f1,..., fr—1, fI' is M-H;-regular by Lemma we see that my —m/ f, is in
the submodule fiM + ...+ f,_1M + f*M. Thus my € fiM + ...+ [, M.

Let S = R[zy,x2,...,%,1/x,]. The ring map R — S is faithfully flat, hence
fi,..., fr is an M-H;-regular sequence in S, see Lemma [30.5| By Lemma we

see that .
Tr—1
- f7"7 gr = 7fr

Xy Xy
is an M-H;-regular sequence in S. Finally, note that our element £ can be rewritten

_ . i1 . ir—1 ir
= Z\H:n,I:(ihu.,ir) mr(g1 + ngr) oo (gro1 +2i9r) (7rgr)

X1
g=fr——fry ooy Gro1= fro1—
.,

and the coefficient of g in this expression is

g mrxi . ..ar

By the case discussed in the previous paragraph this sum is in J (M ®g S). Since
the monomials z{'...z% form part of an R-basis of S over R we conclude that
my € J for all I as desired. O

For nonzero finite modules over Noetherian local rings all of the types of regular
sequences introduced so far are equivalent.

Lemma 30.7. Let (R,m) be a Noetherian local ring. Let M be a nonzero finite
R-module. Let fi,...,fr € m. The following are equivalent

(1) fi,..., fr is an M-regular sequence,

(2) f1,..., fr is a M-Koszul-regular sequence,

(3) fi,.-., fr is an M-H;-regular sequence,

(4) fi,-.., fr is an M-quasi-regular sequence.
In particular the sequence f1, ..., fr is a reqular sequence in R if and only if it is a
Koszul reqular sequence, if and only if it is a Hy-reqular sequence, if and only if it
is a quasi-regqular sequence.

Proof. The implication (1) = (2) is Lemma The implication (2) = (3) is
Lemma [30.3] The implication (3) = (4) is Lemma The implication (4) = (1)
is Algebra, Lemma [69.6]
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Lemmal 30.8. Let A be a ring. Let I C A be an ideal. Let g1, ..., gm be a sequence
in A whose image in A/I is Hy-regular. Then IN0 (g1, 9m) =I(g1,-- 1 Gm)-

Proof. Consider the exact sequence of complexes
02104 Ke(A,g1,---59m) > Ke(A, 01, -+, 9m) = Ke(A/I, g1,...,9m) = 0
Since the complex on the right has H; = 0 by assumption we see that
Coker(I®™ — I) — Coker(A®™ — A)

is injective. This is equivalent to the assertion of the lemma. O

Lemma 30.9. Let A be a ring. Let I C J C A be ideals. Assume that J/I C A/I
is generated by an Hy-reqular sequence. Then I N J* = 1.J.

Proof. To prove this choose g1, ..., gm € J whose images in A/I form a H;-regular
sequence which generates J/I. In particular J = T + (g1,...,gm). Suppose that
x € INJ2 Because x € J? can write

T = Zaijgigj + Zajgj +a
with a;; € A, a; € I and a € I?. Then > a;j9.9; € I N (g1,...,9m) hence by
Lemma we see that Y a;;9:9; € I(g1,...,9m). Thus € I.J as desired. O

Lemmal 30.10. Let A be a ring. Let I be an ideal generated by a quasi-regular
sequence f1,..., fn in A. Let g1,...,9m € A be elements whose images Gy, ..., G,
form an Hy-regular sequence in A/I. Then f1,..., fn,g1,--.,gm 1S a quasi-reqular
sequence in A.

Proof. We claim that gy, ..., g,, forms an H;-regular sequence in A/I? for every
d. By induction assume that this holds in A/I9~1. We have a short exact sequence
of complexes

0= Ko(A, go) @4 19711 = K (A/T%, g4) — Ko(A/T47Y g4) — 0

Since f1, ..., fn is quasi-regular we see that the first complex is a direct sum of copies
of Ke(A/I,g1,...,gm) hence acyclic in degree 1. By induction hypothesis the last
complex is acyclic in degree 1. Hence also the middle complex is. In particular,
the sequence gi,..., g, forms a quasi-regular sequence in A/I?¢ for every d > 1,
see Lemma [30.6] Now we are ready to prove that fi,..., fn,g1,-..,gm is a quasi-
regular sequence in A. Namely, set J = (f1,..., fn,91,--.,9m) and suppose that
(with multinomial notation)

N M d+1
g a eJ
IN|+|M|=d Nmfrg

for some anar € A. We have to show that aya € J for all N,M. Let e €
{0,1,...,d}. Then

E N _M el pd—etl
|N|=d—e, IM\:gaN’Mf 9" € (g1, 9m) +
Because g1, ..., gm is a quasi-regular sequence in A/I9~¢*! we deduce
N deet1
iy
Z|N\:d_e aN’Mf € (91’ 7g'm)

for each M with |M| = e. By Lemma applied to 197¢/I%=¢*1 in the ring
A/I%¢*1 this implies DN |=d—e anfN € I7%(g1,...,gm). Since fi,..., fn is
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quasi-regular in A this implies that an s € J for each N, M with |[N| =d — e and

|M| = e. This proves the lemma. O
Lemma 30.11. Let A be a ring. Let I be an ideal generated by an Hy-regular
sequence fi,..., fn in A. Let g1,...,9m € A be elements whose images Gy, ..., G,
form an Hy-reqular sequence in AJ/I. Then f1,..., fn, g1, 9m is an Hy-reqular

sequence in A.

Proof. We have to show that Hi(A, f1,..., fn,91,---,9m) = 0. To do this consider
the commutative diagram

N2(ABnEM) o pSnEm A ()

L]

AZ(A)IE™) — = A/T®M AT 0
Consider an element (ay,...,anim) € AP"T™ which maps to zero in A. Because
G1y---5G,, form an Hj-regular sequence in A/I we see that (Gni1,...,0n4m) 1S
the image of some element @ of A2(A/I®™). We can lift @ to an element o €
A2 (A®n+m) and substract the image of it in A®"*™ from our element (a1, ..., anim)-
Thus we may assume that ap41,...,0n4m € I. Since I = (f1,..., fn) we can mod-
ify our element (aq,...,an4+m) by linear combinations of the elements
(Oa---agja07-~-a07fi70a---70)

in the image of the top left horizontal arrow to reduce to the case that a, 11, ..., ap1m
are zero. In this case (ai,...,a,,0,...,0) defines an element of Hy(A, f1,..., fn)
which we assumed to be zero. (I

Lemmal 30.12. Let A be a ring. Let f1,..., fu,91,---,9m € A be an Hy-regular
sequence. Then the images Gq,..., Gy i A/(f1,..., fn) form an H;-regqular se-
quence.

Proof. Set I = (fi,..., fn). We have to show that any relation > ,_,  @;g; in

A/I is a linear combination of trivial relations. Because I = (f1,..., fn) we can
lift this relation to a relation

Zj:lw.,m @39j + Zi:1,... n beZ =0

in A. By assumption this relation in A is a linear combination of trivial relations.
Taking the image in A/I we obtain what we want. (]

Lemmal 30.13. Let A be a ring. Let I be an ideal generated by a Koszul-regular
sequence f1,..., fn in A. Let g1,...,9m € A be elements whose images Gy, ..., G,
form a Koszul-reqular sequence in A/I. Then f1,..., fn,g1,---,9m is a Koszul-
reqular sequence in A.

Proof. Our assumptions say that Ke(A, f1,..., f») is a finite free resolution of A/I
and K4(A/I,9,,-..,G,,) is a finite free resolution of A/(f;, g;) over A/I. Then

Ko(A, fr,ooos fur g1y 9m) = Tot (Ko (A, f1,. -, fn) ®a Ke(A, g1, -, gm))
S AT R4 Ke(Ay 91, 59m)
= Ke(A/L,G1s-- - Gm)
= A/(fi 95)
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The first equality by Lemma [28.12} The first quasi-isomorphism 2 by (the dual of)
Homology, Lemma as the gth row of the double complex Ko(A, f1,..., fn) ®a4
Ko(A,91,...,9m) is a resolution of A/T®4 K4(A,g1,...,9m). The second equality

is clear. The last quasi-isomorphism by assumption. Hence we win. [
To conclude in the following lemma it is necessary to assume that both fi,..., f,
and f1,..., fn,91,--.,9m are Koszul-regular. A counter example to dropping the
assumption that f1,..., f, is Koszul-regular is Examples, Lemma [14.1

Lemma 30.14. Let A be a ring. Let f1,..., fn,91,---,9m € A. If both f1,..., fn
and fi,...,fn,91,-..,9m are Koszul-regular sequences in A, then Gi,...,q,, in
A/(f1,..., fn) form a Koszul-regular sequence.

Proof. Set I = (f1,..., fn). Our assumptions say that K¢(A, f1,..., f,) is a finite
free resolution of A/I and K¢(A, f1,..., fn,91,---,9m) is a finite free resolution of
A/(fi,g;) over A. Then

A/(fis95) 2 Ke(A, f1s-- s fny 9155 Gm)
= Tot(Ke(A, f1,.-s fn) @4 Ke(A, 91, -, 9m))
XA/ T Qs Ke(A g1y 39m)
=Ko(A/LGy, - Gm)
The first quasi-isomorphism 2 by assumption. The first equality by Lemma 28:12]
The second quasi-isomorphism by (the dual of) Homology, Lemma as the gth

row of the double complex Ko(A, fi1,..., fn)®4 Ke(A,g1,...,9m) is a resolution of
AT @4 Ky (A, g1,-..,9m). The second equality is clear. Hence we win. O

Lemma) 30.15. Let R be a ring. Let I be an ideal generated by f1,..., fr € R.

(1) If I can be generated by a quasi-regular sequence of length r, then f1,..., fr
is a quasi-reqular sequence.

(2) If I can be generated by an Hy-regular sequence of length r, then fi,..., f»
is an Hi-regular sequence.

(3) IfI can be generated by a Koszul-regular sequence of length r, then f1,..., fr
is a Koszul-reqular sequence.

Proof. If I can be generated by a quasi-regular sequence of length r, then I/I?
is free of rank r over R/I. Since fi,..., fr generate by assumption we see that
the images f; form a basis of I/I? over R/I. It follows that fi,..., f. is a quasi-
regular sequence as all this means, besides the freeness of I/I?, is that the maps
Symy,((I/1%) = I"/I"*! are isomorphisms.

We continue to assume that I can be generated by a quasi-regular sequence, say
G1s---,gr. Write g; = > a;ifi. As f1,..., fr is quasi-regular according to the pre-
vious paragraph, we see that det(a;;) is invertible mod I. The matrix a,; gives a
map R®" — R®" which induces a map of Koszul complexes o : K¢(R, f1,- .., fr) —
Ko(R,g1,...,9r), see Lemma This map becomes an isomorphism on in-
verting det(a;;). Since the cohomology modules of both Ko(R, fi,..., fr) and
Ko.(R,g1,...,g,) are annihilated by I, see Lemma we see that a is a quasi-
isomorphism.

Now assume that g1, ..., g, is a Hi-regular sequence generating I. Then ¢4, ..., g,
is a quasi-regular sequence by Lemma[30.6] By the previous paragraph we conclude
that f1,..., fr is a Hi-regular sequence. Similarly for Koszul-regular sequences. [
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Lemma 30.16. Let R be a ring. Let aq1,...,a, € R be elements such that R —
R%" x — (zas,...,zay) is injective. Then the element Y a;t; of the polynomial
ring R[ty,...,t,] is a nonzerodivisor.

Proof. If one of the a; is a unit this is just the statement that any element of the
form ¢ 4+ asto + ... + ant, is a nonzerodivisor in the polynomial ring over R.

Case I: R is Noetherian. Let q;, j = 1,...,m be the associated primes of k. We
have to show that each of the maps

Zaiti : Sym?(R®") — Sym® ! (R®™)

is injective. As Sym?(R®") is a free R-module its associated primes are q;, j =
1,...,m. For each j there exists an ¢ = i(j) such that a; € q; because there exists
an ¢ € R with q;z = 0 but a;x # 0 for some ¢ by assumption. Hence a; is a unit in
Ry, and the map is injective after localizing at q;. Thus the map is injective, see

Algebra, Lemma [63.19

Case II: R general. We can write R as the union of Noetherian rings R, with
ai,...,a, € Ry. For each Ry the result holds, hence the result holds for R. O

Lemmal 30.17. Let R be a ring. Let f1,..., fn be a Koszul-regular sequence in R
such that (f1,..., fn) # R. Consider the faithfully flat, smooth ring map

R— S =R[{tijlicistit s tan s tmn]
Forl<i<n set
gi = Zigj tijfj cs.
Then g1, ..., gn is a reqular sequence in S and (f1,..., fn)S = (g1,---,9n)-
Proof. The equality of ideals is obvious as the matrix

ti1 ti2 13

0 oo tog

0 0 33
is invertible in S. Because f1,..., f, is a Koszul-regular sequence we see that the
kernel of R — R®" x> (xf1,...,2f,) is zero (as it computes the nthe Koszul ho-
mology of R w.r.t. fi1,..., fn). Hence by Lemmawe see that g1 = fit11+...+
fntin is a nonzerodivisor in S’ = R[t11, t12,.. ., tln,tl_ll]. We see that g1, fo,..., fn

is a Koszul-sequence in S’ by Lemmalﬂand 30.151 We conclude that fo, ..., f, is
a Koszul-regular sequence in S”/(g1) by Lemma [30.14} Hence by induction on n we
see that the images Gy, ..., 7, of g2,...,0n in S"/(g1)[{tij}a<i<jrtas - - - > pe] form
a regular sequence. This in turn means that gq, ..., g, forms a regular sequence in
S. O

31. More on Koszul regular sequences
We continue the discussion from Section B0l

Lemma 31.1. Let R be a ring. Let f1,..., f, € R be an Koszul-reqular sequence.
Then the extended alternating Cech compler R — D, Br, = Diyei, Brinti, —
... = Ry g, from Sect@'on@ only has cohomology in degree r.

This is a particular
case of [McC57,
Corollary]
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Proof. By Lemma and induction the sequence fi,..., fr—1, f’ is Koszul reg-
ular for all n > 1. By Lemma [28.4] any permutation of a Koszul regular sequence
is a Koszul regular sequence. Hence we see that we may replace any (or all) f; by
its nth power and still have a Koszul regular sequence. Thus Ko(R, f7', ..., f) has
nonzero cohomology only in homological degree 0. This implies what we want by

Lemma [29.6] U
Lemma 31.2. Let a,as,...,a, be an Hy-regular sequence in a ring R (for exam-

ple a Koszul regular sequence or a regular sequence, see Lemmas and .
With I = (a,as,...,a,) the blowup algebra R' = R[ﬂ is isomorphic to R’ =
R[y27 cee 7yT]/(ay’i - ai)‘

Proof. By Algebra, Lemma it suffices to show that R” is a-torsion free.

We claim a, ays —as, . . ., ay, —a, is a Hi-regular sequence in R[ys, ..., y,]. Namely,
the map

(a,ays — as,...,ay, —ay) : Rlya, ...,y )% — Rlya, ...,y
used to define the Koszul complex on a, ays — as, . .., ay, — a, is isomorphic to the
map

(a,a2,...,a,;) : Rlya, .-,y ]®" — Rlya, ..., yr]
used to the define the Koszul complex on a,as, ..., a, via the isomorphism

R[y27 sty yr]@'f‘ — R[y27 s 7y7"]®r

sending (b1,...,b;) to (b1 — baya ... — bpyp, —ba,...,—b.). By Lemma m these
Koszul complexes are isomorphic. By Lemma applied to the flat ring map
R — Rlys,...,y,] we conclude our claim is true. By Lemma we see that
the Koszul complex K on a,ays — as,...,ay, — a, is the cone on a : L — L
where L is the Koszul complex on ays — ag,...,ay, — a,. Since H1(K) = 0 by
the claim, we conclude that a : Ho(L) — Hy(L) is injective, in other words that
R” = Rlya,...,yr]/(ay; — a;) has no nonzero a-torsion elements as desired. O

Lemmal 31.3. Let A — B be a ring map. Let f1,..., fr be a sequence in B such
that B/(f1,..., fr) is A-flat. Let A — A’ be a ring map. Then the canonical map

H(Ko(B, f1,..-, fr)) ®a A — Hi(Ko(B', f1,..., f}))
is surjective. Here B' = B®y A’ and f! € B’ is the image of f;.
Proof. The sequence
N (B®") - B® - B—=B/J—0

is a complex of A-modules with B/J flat over A and cohomology group H; =
Hi(Ke(B, f1,..., fr)) in the spot B®". If we tensor this with A’ we obtain a
complex
A((BN®") = (BY®" - B - B'/J —0

which is exact at B’ and B’/J’. In order to compute its cohomology group H| =
Hi(Ko(B', f{,..., ) at (B")®" we split the first sequence above into the exact
sequences 0 -+ J - B — B/J —- 0,0 - K — B®" — J — 0, and A?>(B%") —
K — H; — 0. Tensoring over A with A’ we obtain the exact sequences

0> JRs A —>BRaA — (B/J)®s A —0
K A - B @, A - JR4 A =0
N(BP) @4 A' v K@a A — H @4 A —0
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where the first one is exact as B/J is flat over A, see Algebra, Lemma [39.12, We
conclude that J' = J ®4 A" C B’ and that K @4 A" — Ker((B)®" — B’) is
surjective. Thus

Hy®a A’ = Coker (AN*(B¥") @4 A" = K ®4 A')
— Coker (A?((B")®") — Ker((B")®" — B')) = H]
is surjective too. O

Lemmal 31.4. Let A — B and A — A’ be ring maps. Set B’ = B®4 A’. Let
fis..o, fr € B. Assume B/(f1,..., fr)B is flat over A
(1) If f1,..., fr s a quasi-regular sequence, then the image in B’ is a quasi-
reqular sequence.
(2) If f1,..., fr is a Hy-reqular sequence, then the image in B’ is a Hy-reqular
sequence.

Proof. Assume f1,..., f, is quasi-regular. Set J = (f1,..., fr). By assumption
Jn/J"H s isomorphic to a direct sum of copies of B/J hence flat over A. By
induction and Algebra, Lemma we conclude that B/J™ is flat over A. The
ideal (J')" is equal to J"® 4 A’, see Algebra, Lemmal[39.12] Hence (J')"/(J/)"+! =
Jn /I @4 A’ which clearly implies that fi, ..., f,. is a quasi-regular sequence in
B

Assume fi,..., f, is Hi-regular. By Lemma the vanishing of the Koszul ho-
mology group Hy(K(B, f1,..., fr)) implies the vanishing of Hy(K¢(B’, f1,..., f}))
and we win. O

Lemma 31.5. Let A" — B’ be a ring map. Let I C A’ be an ideal. Set A= A'/I
and B=B'/IB'. Let f1,...,f. € B'. Assume

) A" — B’ is flat and of finite presentation,

) I is locally nilpotent,

) the images f1,..., fr € B form a quasi-reqular sequence,

) B/(f1,---, fr) is flat over A.

Then B'/(f{,..., f}) is flat over A’.

Proof. Set C' = B'/(f{,...,f}). We have to show A’ — C’ is flat. Let v' C C’
be a prime ideal lying over p’ C A’. We let q’ C B’ be the inverse image of t/. By
Algebra, Lemma it suffices to show that Ay, — Cy, is flat. Algebra, Lemma
tells us it suffices to show that f{,..., f/ map to a regular sequence in

By [p'By = Bq/pBq = (B @4 £(p))q
with obvious notation. What we know is that f1,..., f, is a quasi-regular sequence
in B and that B/(fi,..., f) is flat over A. By Lemma the images f1,..., [,

of f{,..., fl in B®4a k(p) form a quasi-regular sequence. Since (B ®4 k(p))q is a
Noetherian local ring, we conclude by Lemma [30. (]

(1
(2
(3
(4

Lemma 31.6. Let A’ — B’ be a ring map. Let I C A’ be an ideal. Set A= A’/I
and B=B'/IB'. Let f1,...,f. € B'. Assume

) A" — B’ is flat and of finite presentation (for example smooth),
) I is locally nilpotent,

) the images f1,..., fr € B form a quasi-reqular sequence,

)

(1
(2
(3
(4) B/(f1,---, fr) is smooth over A.
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Then B'/(f1,..., f]) is smooth over A’.

Proof. Set C' = B'/(f1,...,f.) and C = B/(f1,...,fr). Then A" — C’ is of
finite presentation. By Lemma we see that A’ — C’ is flat. The fibre rings of
A’ — (O’ are equal to the fibre rings of A — C and hence smooth by assumption
(4). It follows that A’ — C’ is smooth by Algebra, Lemma [137.17] O

32. Regular ideals

We will discuss the notion of a regular ideal sheaf in great generality in Divisors,
Section Here we define the corresponding notion in the affine case, i.e., in the
case of an ideal in a ring.

Definition 32.1. Let R be a ring and let I C R be an ideal.

(1) We say I is a regular ideal if for every p € V(I) there exists a g € R,
g € p and a regular sequence f1,..., f, € Ry such that I, is generated by
ST

(2) We say I is a Koszul-reqular ideal if for every p € V(I) there exists a
g € R, g ¢ p and a Koszul-regular sequence fi,..., fr € Ry such that I, is
generated by fi,..., fr.

(3) We say I is a Hj-regular ideal if for every p € V(I) there exists a g € R,
g € p and an H;-regular sequence fi, ..., f, € R, such that I, is generated

by fi,...s fr

(4) We say I is a quasi-regqular ideal if for every p € V(I) there exists a g € R,
g € p and a quasi-regular sequence f1, ..., f, € R, such that I, is generated
by f17"'7f’r‘~

It is clear that given I C R we have the implications
I is a regular ideal = I is a Koszul-regular ideal
= I is a H;-regular ideal

= I is a quasi-regular ideal
see Lemmas [30.2] [30.3] and [30.6] Such an ideal is always finitely generated.

Lemma 32.2. A quasi-reqular ideal is finitely generated.

Proof. Let I C R be a quasi-regular ideal. Since V(I) is quasi-compact, there
exist g1,...,9m € R such that V(I) C D(g1) U...U D(gm) and such that I, is
generated by a quasi-regular sequence gj1,...,g;r, € Ry, Write gj; = gj;/ g;f“
for some ggj € I. Write 1 +2 = ) g;h; for some z € I which is possible as
V(I) € D(g1) U...U D(gm). Note that Spec(R) = D(g1) U ... U D(gm) U D(z)
Then I is generated by the elements gi; and x as these generate on each of the
pieces of the cover, see Algebra, Lemma [23.2 O

Lemma 32.3. Let I C R be a quasi-reqular ideal of a ring. Then I/I?* is a finite
projective R/I-module.

Proof. This follows from Algebra, Lemma and the definitions. (]
We prove flat descent for Koszul-regular, H;-regular, quasi-regular ideals.

Lemmal 32.4. Let A — B be a faithfully flat ring map. Let I C A be an ideal. If
1B is a Koszul-reqular (resp. Hy-reqular, resp. quasi-reqular) ideal in B, then I is
a Koszul-reqular (resp. Hi-regular, resp. quasi-reqular) ideal in A.
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Proof. We fix the prime p D I throughout the proof. Assume IB is quasi-regular.
By Lemma [32.2] IB is a finite module, hence I is a finite A-module by Algebra,
Lemma [83.21 As A — B is flat we see that

I/I?®4,1 B/IB=1/I’®4 B=1B/(IB)".

As IB is quasi-regular, the B/IB-module IB/(IB)? is finite locally free. Hence
I/I? is finite projective, see Algebra, Proposition In particular, after replac-
ing A by Ay for some f € A, f ¢ p we may assume that I/I? is free of rank r.
Pick fi,..., f. € I which give a basis of I/I?. By Nakayama’s lemma (see Alge-
bra, Lemma we see that, after another replacement A ~» Ay as above, I is
generated by fi1,..., fr.

Proof of the “quasi-regular” case. Above we have seen that I/I? is free on the
r-generators fi,..., fr. To finish the proof in this case we have to show that the
maps Sym?(I/I?) — I /1% are isomorphisms for each d > 2. This is clear as the
faithfully flat base changes Sym?(IB/(IB)?) — (IB)%/(IB)**! are isomorphisms
locally on B by assumption. Details omitted.

Proof of the “Hj-regular” and “Koszul-regular” case. Consider the sequence of
elements fi,..., f; generating I we constructed above. By Lemma [30.15| we see
that fi,..., fr map to a H;-regular or Koszul-regular sequence in B, for any g € B
such that IB is generated by an H;-regular or Koszul-regular sequence. Hence
Ko(A, f1,..., fr) ®a By has vanishing Hy or H;, ¢ > 0. Since the homology of
Ko(B, f1,..., fr) = Ko(A, f1,..., fr) ®4 B is annihilated by IB (see Lemma
and since V(IB) C U, us above P(9) we conclude that Ko(A4, f1,..., fr) ®a B has
vanishing homology in degree 1 or all positive degrees. Using that A — B is
faithfully flat we conclude that the same is true for Ko(A, f1,..., fr). O

Lemma 32.5. Let A be a ring. Let I C J C A be ideals. Assume that J/I C AJI
is a Hi-reqular ideal. Then INJ% =1J.

Proof. Follows immediately from Lemma by localizing. (Il

33. Local complete intersection maps

We can use the material above to define a local complete intersection map between
rings using presentations by (finite) polynomial algebras.

Lemma 33.1. Let A — B be a finite type ring map. If for some presentation « :
Alzq,...,z,] — B the kernel I is a Koszul-reqular ideal then for any presentation
B: Ay, ..., ym] = B the kernel J is a Koszul-regular ideal.

Proof. Choose f; € A[z1,...,z,] with a(f;) = B(y;) and g; € Aly1,. .., ym] with
B(gi) = a(z;). Then we get a commutative diagram

A[‘Tlv"'vl’naylv"wym}%A[‘rlv"wxn]

Y= fj
\Lfﬂngi \L

Alyr, -, Ym] B

Note that the kernel K of Alz;,y,;] — B is equal to K = (I,y; — f;) = (J,z; — fi).
In particular, as [ is finitely generated by Lemma we see that J = K/(z; — fi)
is finitely generated too.
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Pick a prime q C B. Since I/I? & B®™ = J/J? @& B®" (Algebra, Lemma
we see that
dim J/J? @p k(q) +n = dim I/I* @p k(q) + m.

Pick p1,...,pr € I which map to a basis of I/I? ® k(q) = I ®af,) r(q). Pick
q1,---,qs € J which map to a basis of J/J?@k(q) = J®apy, £(q). So s+n = t+m.
By Nakayama’s lemma there exist h € Afx;] and b’ € Aly;] both mapping to
a nonzero element of k(q) such that I, = (p1,...,p:) in Alz;,1/h] and Jp =
(¢1,--..¢s) in Aly;,1/h']. As I is Koszul-regular we may also assume that Ij, is
generated by a Koszul regular sequence. This sequence must necessarily have length

t =dim I/I?> ®p k(q), hence we see that pi, ..., p; is a Koszul-regular sequence by
Lemma [30.15} As also y1 — f1,...,¥m — fm is a regular sequence we conclude

yl_fla"'uym_fmaplu"'7pt

is a Koszul-regular sequence in A[z;,y;,1/h] (see Lemma [30.13). This sequence
generates the ideal K. Hence the ideal Kp;  is generated by a Koszul-regular
sequence of length m + ¢t = n + s. But it is also generated by the sequence

1 —915--5Tn —Yn,q1,---,04s

of the same length which is thus a Koszul-regular sequence by Lemma|30.15] Finally,
by Lemma we conclude that the images of ¢1,..., ¢, in

A[Q?i,l/ﬁ 1/hh/]/($1 —91y---yTn — gn) = A[yja l/h”}

form a Koszul-regular sequence generating Jp~. Since h” is the image of hh' it
doesn’t map to zero in k(q) and we win. O

This lemma allows us to make the following definition.

Definition 33.2. A ring map A — B is called a local complete intersection if it
is of finite type and for some (equivalently any) presentation B = Alzy,...,z,]/]
the ideal I is Koszul-regular.

This notion is local.

Lemmal 33.3. Let R — S be a ring map. Let g1,...,9m € S generate the unit
ideal. If each R — S, is a local complete intersection so is R — S.

Proof. Let S = R[z1,...,z,]/I be a presentation. Pick h; € R[z1,...,z,] map-
ping to g; in S. Then R[z1,...,2n, Tni1]/(I, 2ni1hy — 1) is a presentation of Sy, .
Hence I; = (I,zn41h; — 1) is a Koszul-regular ideal in R[z1,...,Zpn, Tni1]. Pick
a prime I C q C R[z1,...,2,]. Then h; & q for some j and q; = (q, p41h; — 1)
is a prime ideal of V' (I;) lying over q. Pick fi,..., fr € I which map to a basis of
I/1?®£(q). Then xp1h;—1, f1,.. ., f- is a sequence of elements of I; which map to
a basis of I; ® k(q;). By Nakayama’s lemma there exists an h € R[x1,...,Zn, Tny1)
such that (I;)p, is generated by xn41h; — 1, f1,..., fr. We may also assume that
(I;)n is generated by a Koszul regular sequence of some length e. Looking at the
dimension of I; ® x(q;) we see that e = r + 1. Hence by Lemma we see

that z,+1h; — 1, f1,..., fr is a Koszul-regular sequence generating (I;); for some
h € Rlz1,...,Tn,Tnt1], b & q;. By Lemma [30.14] we see that I, is generated by a
Koszul-regular sequence for some h' € R[x1,...,x,], i & q as desired. ]

Lemma 33.4. Let R be a ring. If Rlxy,..., 2]/ (f1,..., fc) is a relative global
complete intersection, then f1,..., fe is a Koszul reqular sequence.
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Proof. Recall that the homology groups H;(Ke(fe)) are annihilated by the ideal
(f1,..., fc). Hence it suffices to show that H;(K.(fs))q is zero for all primes q C
R[zy,...,z,] containing (f1,...,f.). This follows from Algebra, Lemma
and the fact that a regular sequence is Koszul regular (Lemma . [

07D3 |Lemmal 33.5. Let R — S be a ring map. The following are equivalent
(1) R— S is syntomic (Algebra, Definition|136.1), and
(2) R— S is flat and a local complete intersection.

Proof. Assume (1). Then R — S is flat by definition. By Algebra, Lemma
136.15] and Lemma [33.3] we see that it suffices to show a relative global complete
intersection is a local complete intersection homomorphism which is Lemma

Assume (2). A local complete intersection is of finite presentation because a Koszul-
regular ideal is finitely generated. Let R — k be a map to a field. It suffices
to show that S’ = S ®g k is a local complete intersection over k, see Algebra,
Definition [135.1} Choose a prime g’ C S'. Write S = R[z1,...,2y]/I. Then S’ =

klz1,...,z,]/I" where I' C k[z1,...,2y] is the image of I. Let p’ C k[z1,...,24],
qC S, and p C R[zy,...,2,] be the corresponding primes. By Definition
exists an g € R[z1,...,2%,], ¢ & p and f1,...,fr € R[z1,...,2,], which form a
Koszul-regular sequence generating I,. Since S and hence S is flat over R we see
that the images f1,..., f, in klz1,...,z,], form a H;-regular sequence generating
I, see Lemma Thus f1,..., f, map to a regular sequence in k[z1,..., 2]y

generating I}, by Lemma Applying Algebra, Lemma [135.4 we conclude S,
for some ¢’ € S, ¢’ & q’ is a global complete intersection over k as desired. O

For a local complete intersection R — S we have H,(Lg/r) = 0 for n > 2. Since
we haven’t (yet) defined the full cotangent complex we can’t state and prove this,
but we can deduce one of the consequences.

07D4 Lemma 33.6. Let A — B — C be ring maps. Assume B — C is a local
complete intersection homomorphism. Choose a presentation o : Alxs,s € S] — B
with kernel I. Choose a presentation 8 : Blyi,...,ym] — C with kernel J. Let
v : Alxs,y:] = C be the induced presentation of C' with kernel K. Then we get a
canonical commutative diagram

00— Qup,)a @ C —— Q4,14 @ C ——Qpp, 1y p®C —0

| | |

0——=I/I’®C

K/K:— > J/J2— 50

with exact rows. In particular, the six term exact sequence of Algebra, Lemma[15].4
can be completed with a zero on the left, i.e., the sequence

0— Hl(NLB/A ®pC) — Hl(LC/A) — Hl(LC/B) — QB/A®BC — QC/A — QC/B — 0
s exact.

Proof. The only thing to prove is the injectivity of the map I/I? ® C — K/K?2.

By assumption the ideal J is Koszul-regular. Hence we have I A[z,,y;] N K?=1IK

by Lemma This means that the kernel of K/K? — J/J? is isomorphic to

TAlxs,y;]/IK. Since I/I*> ®4 C = IA[zg,y;]/IK by right exactness of tensor
product, this provides us with the desired injectivity of I/I? @4 C — K/K?. 0O
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07D5 Lemma 33.7. Let A — B — C be ring maps. If B — C is a filtered colimit
of local complete intersection homomorphisms then the conclusion of Lemma [35.6]
remains valid.

Proof. Follows from Lemma [33.6] and Algebra, Lemma [134.9 O
0D08 |Lemma 33.8. Let A — B be a local homomorphism of local rings. Let A" — B",

resp. A" — BS" be the induced map on henselizations, resp. strict henselizations

Algebra, Lemma |155.6, resp. Lemma |155.1()). Then NLp, 4 @gB" — NLgn /an
/ /

and NLp/a ®@pBsh — NLpgsnjgsn induce isomorphisms on cohomology groups.

Proof. Since A" is a filtered colimit of étale algebras over A we see that NL 4» /A
is an acyclic complex by Algebra, Lemma and Algebra, Definition The
same is true for B"/B. Using the Jacobi-Zariski sequence (Algebra, Le
for A — A" — B" we find that NLpr;4 — NLpn an induces isomorphisms on
cohomology groups. Moreover, an étale ring map is a local complete intersection
as it is even a global complete intersection, see Algebra, Lemma By Lemma
we get a six term exact Jacobi-Zariski sequence associated to A — B — B"
which proves that NLp,4 ® gB" — NLgn /A induces isomorphisms on cohomology
groups. This finishes the proof in the case of the map on henselizations. The case
of strict henselization is proved in exactly the same manner. (I

34. Cartier’s equality and geometric regularity

07E0 A reference for this section and the next is [Mat70, Section 39]. In order to com-
fortably read this section the reader should be familiar with the naive cotangent
complex and its properties, see Algebra, Section [134]

07E1 |Lemma 34.1 (Cartier equality). Let K/k be a finitely generated field extension.
Then Q) and Hy(Lgyy) are finite dimensional and trdeg, (K) = dimg Qg —
dimK Hl(LK/k)-

Proof. We can find a global complete intersection A = k[z1,...,x,])/(f1,.-., fc)
over k such that K is isomorphic to the fraction field of A, see Algebra, Lemma
158.11] and its proof. In this case we see that NL ;. is homotopy equivalent to the

complex
@jzl,“.,c K— ®i:1,...,n del

by Algebra, Lemmas [134.2] and [T134.13] The transcendence degree of K over k is
the dimension of A (by Algebra, Lemma [116.1]) which is n — ¢ and we win. ]

07E2 |Lemma 34.2. Let M/L/K be field extensions. Then the Jacobi-Zariski sequence
0— Hl(LL/K)®LM — Hl(L]\/I/K) — HI(LM/L) — QL/K®LM — QM/K — QM/L —0

s exact.
Proof. Combine Lemma with Algebra, Lemma O
07E3 Lemma 34.3. Given a commutative diagram of fields
K——K'

]

k——F
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with k'/k and K'/K finitely generated field extensions the kernel and cokernel of
the maps

a: Qe @ K' = Qgrjp and B Hi(Lgyy) @x K' = Hi (L))
are finite dimensional and
dim Ker(a) — dim Coker(«) — dim Ker(3) + dim Coker(3) = trdeg,, (k') — trdegy (K")
Proof. The Jacobi-Zariski sequences for k C k' € K’ and k C K C K’ are
0 — Hy(Ly /x)®K' — Hi(Lg 1) = Hi(Lgor jr) = Qo n @K — Qe = Qo jgy — 0
and
0 — Hy(Lg)®K' — Hi(Lgr /i) = Hi(Lir k) = Q@K = Qe — Qg g = 0

By Lemma the vector spaces Qs /i, Qi x, Hi(Lg /), and Hi(Ly /i) are
finite dimensional and the alternating sum of their dimensions is trdeg, (k') —
trdeg (K'). The lemma follows. O

35. Geometric regularity

07E4 Let k be a field. Let (A, m, K) be a Noetherian local k-algebra. The Jacobi-Zariski
sequence (Algebra, Lemma [134.4) is a canonical exact sequence

Hl(LK/k) — m/m2 — QA/k ®4 K — QK/k —0

because Hi(Lg/4) =m/ m? by Algebra, Lemma We will show that exactness
on the left of this sequence characterizes whether or not a regular local ring A is
geometrically regular over k. We will link this to the notion of formal smoothness
in Section

07E5 |Proposition 35.1. Let k be a field of characteristic p > 0. Let (A,m, K) be a
Noetherian local k-algebra. The following are equivalent
(1) A is geometrically regular over k,
(2) for all k C k' C kEYP finite over k the ring A @y, k' is regular,
(3) A is regular and the canonical map Hy(Ly k) — m/m? is injective, and
(4) A is reqular and the map Qi /p, @1 K — Qa/p, ®a K is injective.

Proof. Proof of (3) = (1). Assume (3). Let k'/Ek be a finite purely inseparable
extension. Set A’ = A ®; k’. This is a local ring with maximal ideal m’. Set
K' = A’/m/. We get a commutative diagram

0—— Hi(Lg) K —=m/m* @ K' —— Qu/;, ®4 K' —— Qg ® K' ——0
| l | |
Hy(Lgrjxr) m' /(') ——= Q) Qa0 KN ——— Qg jpp ——>0

with exact rows. The third vertical arrow is an isomorphism by base change for
modules of differentials (Algebra, Lemma|l131.12)). Thus « is surjective. By Lemma
[B4.3] we have

dim Ker(a) — dim Ker(8) 4+ dim Coker(8) =0

(and these dimensions are all finite). A diagram chase shows that dimm’/(m’)? <
dimm/m?. However, since A — A’ is finite flat we see that dim(A4) = dim(A’), see
Algebra, Lemma [112.6] Hence A’ is regular by definition.
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Equivalence of (3) and (4). Consider the Jacobi-Zariski sequences for rows of the
commutative diagram

A K

k K

0 —>m/m2 ——> Qup, @4 K —> Qe g, ——>0

IR A

0 ——= Hi(Lg/k) — Qp, Ok K —— Q¥ Qi 0

Fp > .

]

P

R

to get a commutative diagram

with exact rows. We have used that Hy(Lg,4) = m/m? and that Hy(Lg/r,) = 0 as
K/F, is separable, see Algebra, Proposition [158.9 Thus it is clear that the kernels
of Hi(Lgyx) — m/m? and Qyp, Ok K — Qu/p, ®4 K have the same dimension.

Proof of (2) = (4) following Faltings, see [Fal78]. Let ai,...,a, € k be ele-

ments such that das,...,da, are linearly independent in € g . Consider the
field extension k' = k:(a}/p, e ,a,la/p). By Algebra, Lemma [158.3| we see that
K =kl[z1,...,2,]/(2] —a1,...,22 —a,). In particular we see that the naive cotan-

gent complex of k’/k is homotopic to the complex B,_, k" — D, _, K with
the zero differential as d(z} — a;) = 0 in Uy, . 2,)/6 Set A" = A @y k' and
K' = A’/m’ as above. By Algebra, Lemma we see that NL 4/, is homotopy
equivalent to the complex EB]':L.,.,n A — Diz1...m A’ with the zero differential,

ie, Hi(Laya) and Qyu/ 4 are free of rank n. The Jacobi-Zariski sequence for
F,>A—Ais

Hi(Laja) = Qajr, @a A" = Qayp, = Qarja =0

Using the presentation A[zy,...,x,] — A’ with kernel (Jsf —a;) we see, unwinding
the maps in Algebra, Lemma that the jth basis vector of Hi(L//4) maps
toda; ®11in Qu/p, ® A'. As Q4 is free (hence flat) we get on tensoring with K’
an exact sequence

K" = Qup @4 K' S Qe @4 K — K'®" -0

We conclude that the elements da; ® 1 generate Ker(5) and we have to show that
are linearly independent, i.e., we have to show dim(Ker(8)) = n. Consider the
following big diagram

OHT'HI/(WL/)2 4>QA’/FP ®K/4>QK’/FP ——0

| | |
O—>m/m2®K'*>QA/FP ®K/HQK/FP ®K/*>O

By Lemma and the Jacobi-Zariski sequence for F, - K — K’ we see that
the kernel and cokernel of « have the same finite dimension. By assumption A’ is
regular (and of the same dimension as A, see above) hence the kernel and cokernel
of a have the same dimension. It follows that the kernel and cokernel of 5 have the
same dimension which is what we wanted to show.
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The implication (1) = (2) is trivial. This finishes the proof of the proposition. O

Lemma 35.2. Let k be a field of characteristic p > 0. Let (A,m,K) be a Noe-
therian local k-algebra. Assume A is geometrically reqular over k. Let K/F/k be a
finitely generated subextension. Let ¢ : kly1,...,ym] = A be a k-algebra map such
that y; maps to an element of F' in K and such that dy, ..., dy,, map to a basis
of Qpyi,. Setp =t (m). Then

k[yh' .. 7ym]]3 — A
is flat and A/pA is regular.

Proof. Set Ay = k[y1,...,Ym]p with maximal ideal mg and residue field Ky. Note
that © 4,/ is free of rank m and Qg4 ® Ko — g, /x is an isomorphism. It is
clear that Ay is geometrically regular over k. Hence Hy(Lg, ;) — mo/mj is an
isomorphism, see Proposition [35.1] Now consider

Hl(LKO/k) ®K*>m0/m% QK

| |

Hy(Lg/g) —— m/m?

Since the left vertical arrow is injective by Lemma [34.2 and the lower horizontal
by Proposition [35.1] we conclude that the right vertical one is too. Hence a regular
system of parameters in Ay maps to part of a regular system of parameters in A.

We win by Algebra, Lemmas [128.2] and [106.3 (]

36. Topological rings and modules

Let’s quickly discuss some properties of topological abelian groups. An abelian
group M is a topological abelian group if M is endowed with a topology such that
addition M x M — M, (z,y) — xz+y and inverse M — M, x — —z are continuous.
A homomorphism of topological abelian groups is just a homomorphism of abelian
groups which is continuous. The category of commutative topological groups is
additive and has kernels and cokernels, but is not abelian (as the axiom Im = Coim
doesn’t hold). If N C M is a subgroup, then we think of N and M /N as topological
groups also, namely using the induced topology on N and the quotient topology on
M/N (i.e., such that M — M/N is submersive). Note that if N C M is an open
subgroup, then the topology on M/N is discrete.

We say the topology on M is linear if there exists a fundamental system of neigh-
bourhoods of 0 consisting of subgroups. If so then these subgroups are also open.
An example is the following. Let I be a directed set and let G; be an inverse system
of (discrete) abelian groups over I. Then

G = limiel Gz

with the inverse limit topology is linearly topologized with a fundamental system
of neighbourhoods of 0 given by Ker(G — G;). Conversely, let M be a linearly
topologized abelian group. Choose any fundamental system of open subgroups
U, C M, i€l (ie., the U; form a fundamental system of open neighbourhoods and
each Uj; is a subgroup of M). Setting ¢ > i’ < U; C Uy we see that [ is a directed
set. We obtain a homomorphism of linearly topologized abelian groups

c: M — hmie[M/UZ
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It is clear that M is separated (as a topological space) if and only if ¢ is injective.
We say that M is complete if ¢ is an isomorphisnﬂ We leave it to the reader to
check that this condition is independent of the choice of fundamental system of
open subgroups {U; };cs chosen above. In fact the topological abelian group M”" =
lim;c;y M/U; is independent of this choice and is sometimes called the completion
of M. Any G = lim G; as above is complete, in particular, the completion M" is
always complete.

Definition 36.1 (Topological rings). Let R be a ring and let M be an R-module.

(1) We say R is a topological ring if R is endowed with a topology such that
both addition and multiplication are continuous as maps R x R — R where
R x R has the product topology. In this case we say M is a topological
module if M is endowed with a topology such that addition M x M — M
and scalar multiplication R x M — M are continuous.

(2) A homomorphism of topological modules is just a continuous R-module map.
A homomorphism of topological rings is a ring homomorphism which is
continuous for the given topologies.

(3) We say M is linearly topologized if 0 has a fundamental system of neigh-
bourhoods consisting of submodules. We say R is linearly topologized if O
has a fundamental system of neighbourhoods consisting of ideals.

(4) If R is linearly topologized, we say that I C R is an ideal of definition if T
is open and if every neighbourhood of 0 contains I™ for some n.

(5) If R is linearly topologized, we say that R is pre-admissible if R has an ideal
of definition.

(6) If R is linearly topologized, we say that R is admissible if it is pre-admissible
and completd’

(7) If R is linearly topologized, we say that R is pre-adic if there exists an
ideal of definition I such that {I"},>¢ forms a fundamental system of
neighbourhoods of 0.

(8) If R is linearly topologized, we say that R is adic if R is pre-adic and
complete.

Note that a (pre)adic topological ring is the same thing as a (pre)admissible topo-
logical ring which has an ideal of definition I such that I™ is open for all n > 1.

Let R be a ring and let M be an R-module. Let I C R be an ideal. Then we can
consider the linear topology on R which has {I"},>¢ as a fundamental system of
neighbourhoods of 0. This topology is called the I-adic topology; R is a pre-adic
topological ring in the I-adic topologyﬁ Moreover, the linear topology on M which
has {I" M}, >0 as a fundamental system of open neighbourhoods of 0 turns M into
a topological R-module. This is called the I-adic topology on M. We see that M
is I-adically complete (as defined in Algebra, Definition if and only if M is

2We include being separated as part of being complete as we’d like to have a unique limits
in complete groups. There is a definition of completeness for any topological group, agreeing,
modulo the separation issue, with this one in our special case.

3By our conventions this includes separated.

4Thus the I-adic topology is sometimes called the I-pre-adic topology.

[GD60l, Chapter 0,
Sections 7.1 and 7.2]
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complete in the I-adic topologyﬂ In particular, we see that R is I-adically complete
if and only if R is an adic topological ring in the I-adic topology.

As a special case, note that the discrete topology is the 0-adic topology and that
any ring in the discrete topology is adic.

Lemmal 36.2. Let ¢ : R — S be a ring map. Let I C R and J C S be ideals
and endow R with the I-adic topology and S with the J-adic topology. Then ¢ is a
homomorphism of topological rings if and only if p(I"™) C J for some n > 1.

Proof. Omitted. |

Lemma 36.3 (Baire category theorem). Let M be a topological abelian group. As-
sume M is linearly topologized, complete, and has a countable fundamental system
of neighbourhoods of 0. If U,, C M, n > 1 are open dense subsets, then (,~, Uy, is
dense. -

Proof. Let U, be as in the statement of the lemma. After replacing U, by U; N
...NU,, we may assume that Uy D Uy D .... Let M,, n € N be a fundamental
system of neighbourhoods of 0. We may assume that M, ; C M,. Pick z € M.
We will show that for every k > 1 there exists a y € (,,; Up With  —y € Mj,.

To construct y we argue as follows. First, we pick a y; € Uy with y; € x + M.
This is possible because U; is dense and = + M}, is open. Then we pick a k; > k
such that y; + My, C U;. This is possible because U; is open. Next, we pick a
y2 € Uy with ya € y1 + My, . This is possible because Us is dense and y2 + My, is
open. Then we pick a ky > ki such that yo + My, C U,. This is possible because
U, is open.

Continuing in this fashion we get a converging sequence y; of elements of M with
limit y. By construction x — y € M. Since

Y=Y = Yir1 — ¥i) + Wite — Yiy1) + .-
is in My, we see that y € y; + My, C U; for all ¢ as desired. ([l

Lemma 36.4. With same assumptions as Lemma if M = U,,>, Nn for some
closed subgroups N,,, then N, is open for some n.

Proof. If not, then U,, = M \ N,, is dense for all n and we get a contradiction with
Lemma [36.3] ([l

Lemma 36.5 (Open mapping lemma). Let uw: N — M be a continuous map of
linearly topologized abelian groups. Assume that N is complete, M separated, and
N has a countable fundamental system of neighbourhoods of 0. Then exactly one
of the following holds

(1) u is open, or

(2) for some open subgroup N' C N the image u(N') is nowhere dense in M.

Proof. Let N,, n € N be a fundamental system of neighbourhoods of 0. We may
assume that N, 11 C N,,. If (2) does not hold, then the closure M,, of u(N,,) is an

open subgroup for n = 1,2,3,.... Since u is continuous, we see that M,, n € N

51t may happen that the I-adic completion M” is not I-adically complete, even though M”"
is always complete with respect to the limit topology. If I is finitely generated then the I-adic
topology and the limit topology on M” agree, see Algebra, Lemma and its proof.


https://stacks.math.columbia.edu/tag/07E9
https://stacks.math.columbia.edu/tag/0CQU
https://stacks.math.columbia.edu/tag/0CQV
https://stacks.math.columbia.edu/tag/0CQW

07TEA

07EB

07EC

MORE ON ALGEBRA 91

must be a fundamental system of open neighbourhoods of 0 in M. Also, since M,
is the closure of u(N,,) we see that

u(Nn) + M7L+1 - Mn

for all n > 1. Pick 7 € M;. Then we can inductively choose y; € N; and
ZTi+1 € M;41 such that

u(yl) + Ti4+1 = T4
The element y = y1 +y2 +y3 + ... of N exists because N is complete. Whereupon
we see that © = u(y) because M is separated. Thus M; = u(N7). In exactly the
same way the reader shows that M; = w(V;) for all ¢ > 2 and we see that u is
open. O

37. Formally smooth maps of topological rings

There is a version of formal smoothness which applies to homomorphisms of topo-
logical rings.

Definition 37.1. Let R — S be a homomorphism of topological rings with R and
S linearly topologized. We say S is formally smooth over R if for every commutative
solid diagram

SHA/J

N

R——A

of homomorphisms of topological rings where A is a discrete ring and J C A is an
ideal of square zero, a dotted arrow exists which makes the diagram commute.

We will mostly use this notion when given ideals m C R and n C S and we endow R
with the m-adic topology and .S with the n-adic topology. Continuity of ¢ : R — S
holds if and only if ¢(m™) C n for some m > 1, see Lemma[36.2] It turns out that
in this case only the topology on S is relevant.

Lemma 37.2. Let p: R — S be a ring map.

(1) If R — S is formally smooth in the sense of Algebra, Deﬁm’tion then
R — S is formally smooth for any linear topology on R and any pre-adic
topology on S such that R — S is continuous.

(2) Letn C S and m C R ideals such that ¢ is continuous for the m-adic topol-
ogy on R and the n-adic topology on S. Then the following are equivalent

(a) ¢ is formally smooth for the m-adic topology on R and the n-adic
topology on S, and

(b) @ is formally smooth for the discrete topology on R and the n-adic
topology on S.

Proof. Assume R — S is formally smooth in the sense of Algebra, Definition[I38.1]
If S has a pre-adic topology, then there exists an ideal n C S such that S has the
n-adic topology. Suppose given a solid commutative diagram as in Definition [37.1
Continuity of S — A/J means that n* maps to zero in A/J for some k > 1, see
Lemmal[36.2l We obtain a ring map ¢ : S — A from the assumed formal smoothness
of S over R. Then (n*) C J hence ¥(n?*) = 0 as J2 = 0. Hence v is continuous
by Lemma [36.2] This proves (1).
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The proof of (2)(b) = (2)(a) is the same as the proof of (1). Assume (2)(a). Suppose
given a solid commutative diagram as in Definition [37.1] where we use the discrete
topology on R. Since ¢ is continuous we see that ¢(m™) C n for some n > 1. As
S — A/J is continuous we see that n* maps to zero in A/.J for some k > 1. Hence
m"™ maps into J under the map R — A. Thus m?™* maps to zero in A and we see
that R — A is continuous in the m-adic topology. Thus (2)(a) gives a dotted arrow
as desired. O

Definition 37.3. Let R — S be a ring map. Let n C S be an ideal. If the
equivalent conditions (2)(a) and (2)(b) of Lemma hold, then we say R — S is
formally smooth for the n-adic topology.

This property is inherited by the completions.

Lemma 37.4. Let (R,m) and (S, n) be rings endowed with finitely generated ideals.
Endow R and S with the m-adic and n-adic topologies. Let R — S be a homomor-
phism of topological Tings. The following are equivalent

(1) R — S is formally smooth for the n-adic topology,
(2) R — S™ is formally smooth for the n-adic topology,

(3) R® — S™ is formally smooth for the n”-adic topology.
Here R™ and S" are the m-adic and n-adic completions of R and S.

Proof. The assumption that m is finitely generated implies that R” is mR"-adically
complete, that mR”" = m”" and that R"/m"R" = R/m™, see Algebra, Lemma
and its proof. Similarly for (S,n). Thus it is clear that diagrams as in Definition
for the cases (1), (2), and (3) are in 1-to-1 correspondence. O

The advantage of working with adic rings is that one gets a stronger lifting property.

Lemmal 37.5. Let R — S be a ring map. Let n be an ideal of S. Assume that
R — S is formally smooth in the n-adic topology. Consider a solid commutative
diagram
S——=A/J
N Y

N

R——A
of homomorphisms of topological rings where A is adic and A/J is the quotient (as
topological ring) of A by a closed ideal J C A such that Jt is contained in an ideal
of definition of A for some t > 1. Then there exists a dotted arrow in the category
of topological rings which makes the diagram commute.

Proof. Let I C A be an ideal of definition so that I D J! for some n. Then
A=1limA/I" and A/J =1lim A/J 4 I"™ because J is assumed closed. Consider the
following diagram of discrete R algebras A,, ,, = A/J™ + I™:

AJ B4+ —— AP+ I3 ——= A)J+ T

| | |

AP —= A+ 12— A+ I?

| | |

A) PP+ —— AP+ ——>A)J+1
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Note that each of the commutative squares defines a surjection

An+1ym+1 — An“‘l)m XAn,nL An7m+l

of R-algebras whose kernel has square zero. We will inductively construct R-algebra
maps @nm : S — Ann,n. Namely, we have the maps ¢i,, = ¥ mod J + I™.
Note that each of these maps is continuous as ¥ is. We can inductively choose
the maps ¢, 1 by starting with our choice of ¢, ; and lifting up, using the formal
smoothness of S over R, along the right column of the diagram above. We construct
the remaining maps ¢, by induction on n + m. Namely, we choose ¢y t1 m+1
by lifting the pair (@n+1.m,@n.m+1) along the displayed surjection above (again
using the formal smoothness of S over R). In this way all of the maps ¢,
are compatible with the transition maps of the system. As J¢ C I we see that for
example @, = @ntn mod I induces a map S — A/I™. Taking the limit ¢ = lim ¢,
we obtain a map S — A = lim A/I™. The composition into A/J agrees with 1
as we have seen that A/J =lim A/J + I". Finally we show that ¢ is continuous.
Namely, we know that ¢(n") C J + I/J for some r > 1 by our assumption that
is a morphism of topological rings, see Lemma [36.2] Hence ¢(n") C J + I hence
e(n™) C I as desired. O

Lemma 37.6. Let R — S be a ring map. Letn C v’ C S be ideals. If R — S
is formally smooth for the n-adic topology, then R — S is formally smooth for the
n’-adic topology.

Proof. Omitted. U

Lemma 37.7. A composition of formally smooth continuous homomorphisms of
linearly topologized rings is formally smooth.

Proof. Omitted. (Hint: This is completely formal, and follows from considering a
suitable diagram.) O

Lemma 37.8. Let R, S be rings. Let n C S be an ideal. Let R — S be formally
smooth for the n-adic topology. Let R — R’ be any ring map. Then R’ — S’ =
S ®gr R' is formally smooth in the W = nS’-adic topology.

Proof. Let a solid diagram

S——=85——=A/J

~ N

~ N
~ N\
~3

R—>R—>A
as in Definition be given. Then the composition S — S’ — A/J is continuous.

By assumption the longer dotted arrow exists. By the universal property of tensor
product we obtain the shorter dotted arrow. ([

We have seen descent for formal smoothness along faithfully flat ring maps in Al-
gebra, Lemma Something similar holds in the current setting of topological
rings. However, here we just prove the following very simple and easy to prove
version which is already quite useful.

Lemma 37.9. Let R, S be rings. Let n C S be an ideal. Let R — R’ be a ring
map. Set '’ =S ®r R andn' =nS. If
(1) the map R — R’ embeds R as a direct summand of R’ as an R-module, and
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(2) R — S’ is formally smooth for the n'-adic topology,
then R — S is formally smooth in the n-adic topology.

Proof. Let a solid diagram

S—=A)J
]
R A

as in Definition be given. Set A’ = A®gr R’ and J' =Im(J®r R’ — A’). The
base change of the diagram above is the diagram

S/ - o A//J/

N
RS
N
N
N
R/ Al
with continuous arrows. By condition (2) we obtain the dotted arrow ¢’ : 8" — A’.

Using condition (1) choose a direct summand decomposition R = R & C as R-
modules. (Warning: C isn’t an ideal in R’.) Then A’ = A® A®r C. Set

J'=Im(J@rC —» A C)C J C A.

Then J' = J & J"” as A-modules. The image of the composition ) : S — A" of ¥’
with § — S’ is contained in A+J' = A® J”. However, in the ring A+J' = A® J”
the A-submodule J” is an ideal! (Use that J? = 0.) Hence the composition
S—=A+J — (A+J)/J" = Ais the arrow we were looking for. O

38. Formally smooth maps of local rings

ODYF In the case of a local homomorphism of local rings one can limit the diagrams for
which the lifting property has to be checked. Please compare with Algebra, Lemma
141.2

0DYG |Lemmal 38.1. Let (R,m) — (S,n) be a local homomorphism of local rings. The
following are equivalent

(1) R— S is formally smooth in the n-adic topology,
(2) for every solid commutative diagram

S—=A)J

N
N
[
N
{
R——A
of local homomorphisms of local rings where J C A is an ideal of square

zero, m = 0 for some n > 0, and S — A/J induces an isomorphism on
residue fields, a dotted arrow exists which makes the diagram commute.

If S is Noetherian these conditions are also equivalent to

(3) same as in (2) but only for diagrams where in addition A — A/J is a small

extension (Algebra, Definition|141.1)).
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Proof. The implication (1) = (2) follows from the definitions. Consider a diagram

S—=A/J
\~\
R A

as in Definition for the m-adic topology on R and the n-adic topology on
S. Pick m > 0 with n™(A/J) = 0 (possible by continuity of maps in diagram).
Consider the subring A’ of A which is the inverse image of the image of S in A/J.
Set J' = J viewed as an ideal in A’. Then J’ is an ideal of square zero in A’ and
A'/J" is a quotient of S/n™. Hence A’ is local and m%7* = 0. Thus we get a diagram

S—= A

N
N
N
N\

R——A

as in (2). If we can construct the dotted arrow in this diagram, then we obtain the
dotted arrow in the original one by composing with A’ — A. In this way we see
that (2) implies (1).

Assume S Noetherian. The implication (1) = (3) is immediate. Assume (3) and
suppose a diagram as in (2) is given. Then m’J = 0 for some n > 0. Considering
the maps
A= A/wT W = o= A/md — A)J

we see that it suffices to produce the lifting if msJ = 0. Assume myJ = 0 and
let A" C A be the ring constructed above. Then A’/J’ is Artinian as a quotient of
the Artinian local ring S/n™. Thus it suffices to show that given property (3) we
can find the dotted arrow in diagrams as in (2) with A/J Artinian and maJ = 0.
Let x be the common residue field of A, A/J, and S. By (3), if Jo C J is an ideal
with dim, (J/Jp) = 1, then we can produce a dotted arrow S — A/Jy. Taking the

product we obtain
§— HJO as above A/JO

Clearly the image of this arrow is contained in the sub R-algebra A’ of elements
which map into the small diagonal A/J C [[; A/J. Let J' C A" be the elements
mapping to zero in A/J. Then J' is an ideal of square zero and as k-vector space

equal to
’_
J = HJO as above J/JO

Thus the map J — J' is injective. By the theory of vector spaces we can choose a
splitting J' = J @ M. It follows that

A=A M

as an R-algebra. Hence the map S — A’ can be composed with the projection A" —
A to give the desired dotted arrow thereby finishing the proof of the lemma. O

The following lemma will be improved on in Section 0]

Lemma 38.2. Let k be a field and let (A, m, K) be a Noetherian local k-algebra.
If k — A is formally smooth for the m-adic topology, then A is a regular local ring.
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Proof. Let ky C k be the prime field. Then kg is perfect, hence k/kq is separable,
hence formally smooth by Algebra, Lemma By Lemmas [37.2] and [37.7] we
see that kg — A is formally smooth for the m-adic topology on A. Hence we may
assume k = Qor k=F,,.

By Algebra, Lemmas and it suffices to prove the completion A" is reg-
ular. By Lemma we may replace A by A”. Thus we may assume that A is a
Noetherian complete local ring. By the Cohen structure theorem (Algebra, Theo-
rem there exist a map K — A. As k is the prime field we see that K — A
is a k-algebra map.

Let z1,...,7, € m be elements whose images form a basis of m/m2?. Set T =
K[[X1,...,X,]]. Note that

Ajw® = Klay, ..., @]/ (wiz;)

and
T/m% = K[Xy,...,X,]/(X:X;).

Let A/m? — T'/m2 be the local K-algebra isomorphism given by mapping the class
of z; to the class of X;. Denote f; : A — T/m2. the composition of this isomorphism
with the quotient map A — A/m?. The assumption that k — A is formally smooth
in the m-adic topology means we can lift f; to a map fo : A — T/m3., then to
amap f3 : A — T/mj, and so on, for all n > 1. Warning: the maps f, are
continuous k-algebra maps and may not be K-algebra maps. We get an induced
map f: A — T = limT/m}. of local k-algebras. By our choice of f;, the map
f induces an isomorphism m/m? — ms/m2. hence each f, is surjective and we
conclude f is surjective as A is complete. This implies dim(A) > dim(T) = n.
Hence A is regular by definition. (It also follows that f is an isomorphism.) O

Lemma 38.3. Let k be a field. Let (A,m, k) be a complete local k-algebra. If k/k
is separable, then there exists a k-algebra map k — A such that kK — A — K is id,.

Proof. By Algebra, Proposition [158.9| the extension x/k is formally smooth. By
Lemma [37.2|k —  is formally smooth in the sense of Definition [37.1] Then we get

k — A from Lemma [B7.5] O
Lemma 38.4. Let k be a field. Let (A, m,k) be a complete local k-algebra. If k/k
is separable and A regular, then there exists an isomorphism of A = k[[t1, ..., t4]]

as k-algebras.
Proof. Choose k — A as in Lemma [38.3] and apply Algebra, Lemma [160.10, O
The following result will be improved on in Section [0]

Lemma 38.5. Let k be a field. Let (A, m, K) be a regular local k-algebra such that
K/k is separable. Then k — A is formally smooth in the m-adic topology.

Proof. It suffices to prove that the completion of A is formally smooth over k,
see Lemma [37.40 Hence we may assume that A is a complete local regular k-
algebra with residue field K separable over k. By Lemma [38.4] we see that A =
K[[z1,...,25)]-

The power series ring K|[[z1,...,z,]] is formally smooth over k. Namely, K is for-
mally smooth over k and K[x1,...,x,] is formally smooth over K as a polynomial
algebra. Hence K[x1,...,x,] is formally smooth over k by Algebra, Lemma [138.3
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It follows that k — K|[x1,...,x,] is formally smooth for the (z1,. .., z,)-adic topol-
ogy by Lemma, m Finally, it follows that & — K{[z1,...,2,]] is formally smooth
for the (z1,...,x,)-adic topology by Lemma m O

Lemmal 38.6. Let A — B be a finite type ring map with A Noetherian. Let q C B
be a prime ideal lying over p C A. The following are equivalent

(1) A — B is smooth at q, and
(2) Ap — By is formally smooth in the q-adic topology.

Proof. The implication (2) = (1) follows from Algebra, Lemma[141.2] Conversely,
if A — B is smooth at g, then A — B, is smooth for some g € B, g ¢ q. Then A —
By is formally smooth by Algebra, Proposition Hence A, — By is formally
smooth as localization preserves formal smoothness (for example by the criterion
of Algebra, Proposition and the fact that the cotangent complex behaves
well with respect to localization, see Algebra, Lemmas|[134.11}and [134.13). Finally,
Lemma [37.2] implies that A, — Bg is formally smooth in the g-adic topology. [

39. Some results on power series rings

Questions on formally smooth maps between Noetherian local rings can often be
reduced to questions on maps between power series rings. In this section we prove
some helper lemmas to facilitate this kind of argument.

Lemma 39.1. Let K be a field of characteristic 0 and A = K[[z1,...,xy]]. Let L
be a field of characteristic p > 0 and B = L[[x1,...,x,]]. Let A be a Cohen ring.
Let C = Al[z1, ..., z]]-

(1) Q — A is formally smooth in the m-adic topology.

(2) F, — B is formally smooth in the m-adic topology.

(3) Z — C is formally smooth in the m-adic topology.

Proof. By the universal property of power series rings it suffices to prove:

(1) Q — K is formally smooth.
(2) F, — L is formally smooth.
(3) Z — A is formally smooth in the m-adic topology.

The first two are Algebra, Proposition [I58.9] The third follows from Algebra,
Lemma [160.7] since for any test diagram as in Definition some power of p will
be zero in A/J and hence some power of p will be zero in A. O

Lemma 39.2. Let K be a field and A = K|[z1,...,2,]]. Let A be a Cohen ring
and let B = A[[z1,...,x,]].

(1) Ifyi,...,yn € A is a regular system of parameters then K[[y1,...,yn]] = A
is an isomorphism.

(2) If z21,...,2- € A form part of a reqular system of parameters for A, then
r<mnand A/(z1,...,2) Z K[[y1,-- - Yn—r]]-

3) If p,y1,-..,Yn € B is a reqular system of parameters then A[[y1,...,yn]] =
B is an isomorphism.

(4) Ifp,z1,...,2- € B form part of a reqular system of parameters for B, then
r<nand B/(z1,...,2) Z A[[y1,. -, Yn—r]]-

Proof. Proof of (1). Set A’ = K[[y1,...,yn]]- It is clear that the map A" — A
induces an isomorphism A’/m%, — A/m’ for all n > 1. Since A and A’ are both
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complete we deduce that A" — A is an isomorphism. Proof of (2). Extend z1,..., 2,
to a regular system of parameters z1,..., 2, Y1, ., Yn—r of A. Consider the map
A" = K|[[z1,-- 120, Y1y sYn—r]] = A. This is an isomorphism by (1). Hence (2)
follows as it is clear that A'/(z1,...,2,) = K[[y1,- .., Yn—r]]. The proofs of (3) and
(4) are exactly the same as the proofs of (1) and (2). O

Lemma 39.3. Let A — B be a local homomorphism of Noetherian complete local
rings. Then there exists a commutative diagram

S——B

|

R——=A
with the following properties:

(1) the horizontal arrows are surjective,

(2) if the characteristic of A/mu is zero, then S and R are power series rings
over fields,

(3) if the characteristic of A/my isp > 0, then S and R are power series rings
over Cohen rings, and

(4) R — S maps a regular system of parameters of R to part of a reqular system
of parameters of S.

In particular R — S is flat (see Algebra, Lemma with regular fibre S/mpS
(see Algebra, Lemma .

Proof. Use the Cohen structure theorem (Algebra, Theorem to choose a
surjection S — B as in the statement of the lemma where we choose S to be a
power series over a Cohen ring if the residue characteristic is p > 0 and a power
series over a field else. Let J C S be the kernel of S — B. Next, choose a
surjection R = A[[z1,...,2,]] = A where we choose A to be a Cohen ring if the
residue characteristic of A is p > 0 and A equal to the residue field of A otherwise.
We lift the composition Af[x1,...,25]] = A — B to a map ¢ : R — S. This is
possible because A[[z1,...,2,]] is formally smooth over Z in the m-adic topology
(see Lemma by an application of Lemma m Finally, we replace ¢ by
the map ¢’ : R = Al[z1,...,z,]] = 5 = S[[y1,-..,yn]] with ¢’|x = ¢|s and
o' (x;) = o(x;) + y;. We also replace S — B by the map S’ — B which maps y;
to zero. After this replacement it is clear that a regular system of parameters of R
maps to part of a regular sequence in S’ and we win. (]

There should be an elementary proof of the following lemma.

Lemmal 39.4. Let S — R and S — R be surjective maps of complete Noetherian
local rings. Then S x S’ is a complete Noetherian local ring.

Proof. Let k be the residue field of R. If the characteristic of k is p > 0, then we
denote A a Cohen ring (Algebra, Definition with residue field & (Algebra,
Lemma . If the characteristic of k is 0 we set A = k. Choose a surjection
Al[z1,...,2,])] = R (as in the Cohen structure theorem, see Algebra, Theorem
and lift this to maps A[[z1,...,2,]] = S and ¢ : Al[z1,...,2,]] = S and

¢ A[[z1,...,z,]] = S using Lemmas and Next, choose f1,...,fm €S
generating the kernel of S — R and f{,...,f], € S’ generating the kernel of
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S’ — R. Then the map
A[z1, o @y Y1y e s Ums 215 - -+ Zmr]] — S XR S,

which sends z; to (p(zi),¢'(z:)) and y; to (f;,0) and z;: to (0, f}) is surjective.
Thus S xr S’ is a quotient of a complete local ring, whence complete. ([

40. Geometric regularity and formal smoothness

In this section we combine the results of the previous sections to prove the following
characterization of geometrically regular local rings over fields. We then recycle
some of our arguments to prove a characterization of formally smooth maps in the
m-adic topology between Noetherian local rings.

Theorem 40.1. Let k be a field. Let (A,m, K) be a Noetherian local k-algebra.
If the characteristic of k is zero then the following are equivalent

(1) A is a regular local ring, and
(2) k — A is formally smooth in the m-adic topology.

If the characteristic of k is p > 0 then the following are equivalent

(1) A is geometrically regular over k,

(2) k — A is formally smooth in the m-adic topology.

(3) for all k C k' C kY finite over k the ring A @y, k' is regular,

(4) A is regular and the canonical map Hy(Lg k) — m/m? is injective, and
(5) A is regular and the map Q. p, @ K — Qu/p, ®a K is injective.

Proof. If the characteristic of k is zero, then the equivalence of (1) and (2) follows
from Lemmas [38.2] and [38.5]

If the characteristic of k is p > 0, then it follows from Proposition that (1),
(3), (4), and (5) are equivalent. Assume (2) holds. By Lemma we see that

k' — A" = A®y k' is formally smooth for the m’ = mA’-adic topology. Hence if
k C k' is finite purely inseparable, then A’ is a regular local ring by Lemma [38.2}
Thus we see that (1) holds.

Finally, we will prove that (5) implies (2). Choose a solid diagram
N

P
AN
i N T
N
Q

F—*-B

as in Deﬁnition As J? = 0 we see that J has a canonical B/J module structure
and via 1 an A-module structure. As ¢ is continuous for the m-adic topology
we see that m™J = 0 for some n. Hence we can filter J by B/J-submodules
0CcJ, CJyC...CJ,=Jsuch that each quotient J;;/J; is annihilated by m.
Considering the sequence of ring maps B — B/J; — B/Js — ... — B/J we see
that it suffices to prove the existence of the dotted arrow when J is annihilated by
m, i.e., when J is a K-vector space.

Assume given a diagram as above such that J is annihilated by m. By Lemma
[38.5] we see that F;, — A is formally smooth in the m-adic topology. Hence we can
find a ring map v : A — B such that m 09 = . Then ¢ oi,p : k — B are two
maps whose compositions with 7 are equal. Hence D = ¢oi—¢p : k — Jis a
derivation. By Algebra, Lemma[I31.3|we can write D = £ od for some k-linear map
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§: Qyp, — J. Using the K-vector space structure on J we extend & to a K-linear
map {1 Qp/p, @ K — J. Using (5) we can find a K-linear map " : Q4/p, ®4 K
whose restriction to Q/p, @ K is {'. Write

DAL Qup, = Qup, @4 K 5

Finally, set ¢’ =4 — D" : A — B. The reader verifies that ¢’ is a ring map such
that 7 o 1)’ = ¢ and such that ¢’ o i = ¢ as desired. O

Example 40.2. Let k be a field of characteristic p > 0. Suppose that a € k is an
element which is not a pth power. A standard example of a geometrically regular
local k-algebra whose residue field is purely inseparable over k is the ring

A= k[l‘, y](w,y”fa)/(yp —a— .L“)

Namely, A is a localization of a smooth algebra over k hence kK — A is formally
smooth, hence k — A is formally smooth for the m-adic topology. A closely related
example is the following. Let k = F,(s) and K = F,(t)?*"f. We claim the ring
map

k— A=K]lz]], s+—t+x

is formally smooth for the (z)-adic topology on A. Namely, Q; /g, is 1-dimensional
with basis ds. It maps to the element dv + dt = dz in Q4/r,. We leave it to
the reader to show that Q4 r, is free on do as an A-module. Hence we see that
condition (5) of Theoremholds and we conclude that k — A is formally smooth
in the (z)-adic topology.

Lemmal 40.3. Let A — B be a local homomorphism of Noetherian local rings.
Assume A — B is formally smooth in the mpg-adic topology. Then A — B is flat.

Proof. We may assume that A and B a Noetherian complete local rings by Lemma
and Algebra, Lemma m (this also uses Algebra, Lemma and to
see that flatness of the map on completions implies flatness of A — B). Choose a
commutative diagram

S——B

R——sA
as in Lemma [39.3] with R — S flat. Let I C R be the kernel of R — A. Because B
is formally smooth over A we see that the A-algebra map

S/IS — B

has a section, see Lemma [37.5] Hence B is a direct summand of the flat A-module
S/IS (by base change of flatness, see Algebra, Lemma [39.7), whence flat. O

Lemma 40.4. Let A — B be a local homomorphism of Noetherian local rings.
Assume A — B is formally smooth in the mg-adic topology. Let K be the residue
field of B. Then the Jacobi-Zariski sequence for A — B — K gives an exact
sequence

0— Hl(NLK/A) — mB/m2B — QB/A R K — QK/A —0
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Proof. Observe that mp/m% = Hy(NLk,p) by Algebra, Lemma By Al-
gebra, Lemma it remains to show injectivity of Hy(NLg/a) — mp/m%.
With & the residue field of A, the Jacobi-Zariski sequence for A — k — K gives
Qg a = Qg ), and an exact sequence

ma/m% @ K — Hi(NLgya) = Hi(NLgp) = 0

Set B = B®ak. Since B is regular the ideal my is generated by a regular sequence.

Applying Lemmas and to myB C mp we find myB/(myB N m%) =
m4B/m mp which is equal to ma/m?% ®; K as A — B is flat by Lemma
Thus we obtain a short exact sequence

0— my/m} @ K — mp/m% — mg/m%% 0

Functoriality of the Jacobi-Zariski sequences shows that we obtain a commutative
diagram

mA/m2A R K —— Hl(NLK/A) e Hl(NLK/k) —0

| | |

0——=my/m% @ K ———mp/m% 4>m§/m2§4>0

The left vertical arrow is injective by Theorem as k — B is formally smooth
in the mz-adic topology by Lemma This finishes the proof by the snake
lemma. ]

Proposition|40.5. Let A — B be a local homomorphism of Noetherian local rings.
Let k be the residue field of A and B = B ®4 k the special fibre. The following are
equivalent

(1) A — B is flat and B is geometrically reqular over k,

(2) A— B is flat and k — B is formally smooth in the mz-adic topology, and

(3) A — B is formally smooth in the mp-adic topology.

Proof. The equivalence of (1) and (2) follows from Theorem [40.1]

Assume (3). By Lemma we see that A — B is flat. By Lemma we see
that & — B is formally smooth in the mz-adic topology. Thus (2) holds.

Assume (2). Lemma [37.4]tells us formal smoothness is preserved under completion.
The same is true for flatness by Algebra, Lemma [97.3] Hence we may replace A
and B by their respective completions and assume that A and B are Noetherian
complete local rings. In this case choose a diagram

S——B

|

R——=A

as in Lemma [39.3] We will use all of the properties of this diagram without further
mention. Fix a regular system of parameters ¢1,...,tq of R with {; = p in case the
characteristic of k is p > 0. Set S = S ®g k. Consider the short exact sequence

0—-J—=S5—=B—0
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As B and S are regular, the kernel of S — B is generated by elements T, ..., 7,
which form part of a regular system of parameters of S, see Algebra, Lemma
Lift these elements to z1,...,x, € J. Then t1,...,tq,21,...,2, is part of a regular
system of parameters for S. Hence S/(z1,...,,) is a power series ring over a field
(if the characteristic of k is zero) or a power series ring over a Cohen ring (if the
characteristic of k is p > 0), see Lemma Moreover, it is still the case that
R — S/(z1,...,z,) maps t1,...,tq to a part of a regular system of parameters of
S/(x1,...,x,). In other words, we may replace S by S/(z1,...,z,) and assume we
have a diagram
il

.

R——=A
as in Lemma with moreover S = B. In this case the map
S®rA— B

is an isomorphism as it is surjective, an isomorphism on special fibres, and source
and target are flat over A (for example use Algebra, Lemma or use that
tensoring the short exact sequence 0 - I - S®r A — B — 0 over A with k
we find T ®4 k = 0 hence I = 0 by Nakayama). Thus by Lemma it suffices
to show that R — S is formally smooth in the mg-adic topology. Of course, since
S = B, we have that S is formally smooth over k = R/mp.

Choose elements y1, ..., Yym € S such that ¢1,...,t4,y1,...,Ym is a regular system
of parameters for S. If the characteristic of k is zero, choose a coefficient field K C S
and if the characteristic of &k is p > 0 choose a Cohen ring A C S with residue field
K. At this point the map K|[[t1,...,tq,Y1,-..,Ym]] = S (characteristic zero case)
or Al[ta,...,ta,y1,---,Ym]] = S (characteristic p > 0 case) is an isomorphism, see
Lemma [39.2] From now on we think of S as the above power series ring.

The rest of the proof is analogous to the argument in the proof of Theorem [£0.1]
Choose a solid diagram

S——=N/J

T\w

O T
AN
PEEN

as in Deﬁnition As J? = 0 we see that J has a canonical N/.J module structure
and via 1 a S-module structure. As v is continuous for the mg-adic topology
we see that m3J = 0 for some n. Hence we can filter J by N/J-submodules
0cJyCJyC...CJ,=Jsuch that each quotient J;11/J; is annihilated by mg.
Considering the sequence of ring maps N — N/J; — N/Jo — ... = N/J we see
that it suffices to prove the existence of the dotted arrow when J is annihilated by
mg, i.e., when J is a K-vector space.

Assume given a diagram as above such that J is annihilated by mg. As Q — S
(characteristic zero case) or Z — S (characteristic p > 0 case) is formally smooth
in the mg-adic topology (see Lemma 7 we can find a ring map ¥ : S — N
such that 7 o1 = 1. Since S is a power series ring in t1,...,ts (characteristic
zero) or ta, ..., tq (characteristic p > 0) over a subring, it follows from the universal
property of power series rings that we can change our choice of ¢ so that ¥(¢;)
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equals ¢(t;) (automatic for t; = p in the characteristic p case). Then 1 o i and
¢ : R — N are two maps whose compositions with 7 are equal and which agree
on ty,...,tq. Hence D = Y oi— ¢ : R — J is a derivation which annihilates
t1,...,tq. By Algebra, Lemma [I31.3| we can write D = £ od for some R-linear map
£ : Qpyz — J which annihilates dty,...,dtq (by construction) and mgrQp,z (as J
is annihilated by mpg). Hence £ factors as a composition

QR/Z — Qk/Z 5—) J

where & is k-linear. Using the K-vector space structure on J we extend &' to a
K-linear map

5// : Qk:/Z Rk K — J.
Using that S/k is formally smooth we see that
Qyjz Ok K — Q5,5 @5 K

is injective by Theorem (this is true also in the characteristic zero case as
it is even true that 2,7z — g,z is injective in characteristic zero, see Algebra,
Proposition . Hence we can find a K-linear map £ : Qg/z ®g K — J whose
restriction to Q7 @ K is £. Write

d 111
D' 8% Qgyp — Qg = Qg5 05 K S .

Finally, set ¢’ =4 — D" : S — N. The reader verifies that ¢’ is a ring map such
that 7 o1’ = ¢ and such that )’ o i = ¢ as desired. O

As an application of the result above we prove that deformations of formally smooth
algebras are unobstructed.

Lemma 40.6. Let A be a Noetherian complete local ring with residue field k. Let
B be a Noetherian complete local k-algebra. Assume k — B is formally smooth in
the mp-adic topology. Then there exists a Noetherian complete local ring C and a
local homomorphism A — C which is formally smooth in the mc-adic topology such
that C ®4 k = B.

Proof. Choose a diagram
S——=B

R——=A
as in Lemma [39.3] Let t1,...,ts be a regular system of parameters for R with
t1 = p in case the characteristic of k is p > 0. As B and S = S ®p k are regular
we see that Ker(S — B) is generated by elements Ty, ..., T, which form part of a
regular system of parameters of S, see Algebra, Lemma|106.4] Lift these elements to
T1,...,2. € S. Then tq1,...,tq,21,...,2, is part of a regular system of parameters
for S. Hence S/(x1,...,x,) is a power series ring over a field (if the characteristic
of k is zero) or a power series ring over a Cohen ring (if the characteristic of k is

p > 0), see Lemma Moreover, it is still the case that R — S/(z1,...,z,)
maps t1,...,tq to a part of a regular system of parameters of S/(x1,...,2,). In
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other words, we may replace S by S/(z1,...,z,) and assume we have a diagram

S——B

|

R——=A

as in Lemma with moreover S = B. In this case R — S is formally smooth in
the mg-adic topology by Proposition [40.5] Hence the base change C' = S ®r A is
formally smooth over A in the me-adic topology by Lemma [37.8 O

Remark| 40.7. The assertion of Lemma is quite strong. Namely, suppose
that we have a diagram

B

|

A——> A

of local homomorphisms of Noetherian complete local rings where A — A’ induces
an isomorphism of residue fields k = A/my = A’/my and with B ® 4/ k formally
smooth over k. Then we can extend this to a commutative diagram

C——B

]

A——s A

of local homomorphisms of Noetherian complete local rings where A — C' is for-
mally smooth in the mg-adic topology and where C' ® 4 k = B ® 4/ k. Namely, pick
A — C as in Lemma[40.6| lifting B ® 4/ k over k. By formal smoothness we can find
the arrow C' — B, see Lemma B7.5] Denote C' ®) A’ the completion of C' ©4 A’
with respect to the ideal C @4 my4s. Note that C @/ A’ is a Noetherian complete
local ring (see Algebra, Lemma which is flat over A’ (see Algebra, Lemma
[99.11)). We have moreover

(1) C ®% A" — B is surjective,

(2) if A — A’ is surjective, then C' — B is surjective,

(3) if A— A’ is finite, then C' — B is finite, and

(4) if A" — B is flat, then C @} A’ = B.
Namely, by Nakayama’s lemma for nilpotent ideals (see Algebra, Lemma we
see that C' ®4 k = B ®4/ k implies that C ® 4 A’/m", — B/m’;, B is surjective for
all n. This proves (1). Parts (2) and (3) follow from part (1). Part (4) follows from
Algebra, Lemma [99.1

41. Regular ring maps

Let k be a field. Recall that a Noetherian k-algebra A is said to be geometrically
reqular over k if and only if A ®; k' is regular for all finite purely inseparable
extensions k' of k, see Algebra, Definition Moreover, if this is the case then
A ®y k' is regular for every finitely generated field extension k'/k, see Algebra,
Lemma We use this notion in the following definition.
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Definition 41.1. A ring map R — A is regular if it is flat and for every prime
p C R the fibre ring

A®r k(p) = Ap/pA,
is Noetherian and geometrically regular over x(p).

If R — A is a ring map with A Noetherian, then the fibre rings are always Noe-
therian.

Lemma 41.2 (Regular is a local property). Let R — A be a ring map with A
Noetherian. The following are equivalent

(1) R— A is regular,

(2) Ry, — Aq is regular for all ¢ C A lying over p C R, and

(3) Rm — Aws is regular for all mazimal ideals m" C A lying over m in R.

Proof. This is true because a Noetherian ring is regular if and only if all the local
rings are regular local rings, see Algebra, Definition and a ring map is flat
if and only if all the induced maps of local rings are flat, see Algebra, Lemma
39.18 |

Lemma 41.3 (Regular maps and base change). Let R — A be a regular ring map.
For any finite type Ting map R — R’ the base change R’ — A ®gr R’ is regular too.

Proof. Flatness is preserved under any base change, see Algebra, Lemma [39.7]
Consider a prime p’ C R’ lying over p C R. The residue field extension x(p’)/k(p)
is finitely generated as R’ is of finite type over R. Hence the fibre ring

(A®r R') @ k(p") = A QR K(p) Dp(p) £(p")

is Noetherian by Algebra, Lemma and the assumption on the fibre rings of R —
A. Geometric regularity of the fibres is preserved by Algebra, Lemma [166.1 d

Lemma 41.4 (Composition of regular maps). Let A — B and B — C be regular
ring maps. If the fibre rings of A — C' are Noetherian, then A — C' is regular.

Proof. Let p C Abea prime. Let k(p) C k be a finite purely inseparable extension.
We have to show that C'® 4 k is regular. By Lemma 1.3 we may assume that A = k
and we reduce to proving that C is regular. The assumption is that B is regular
and that B — C is flat with regular fibres. Then C' is regular by Algebra, Lemma
[[12.8 Some details omitted. O

Lemma 41.5. Let R be a ring. Let (A;, i) be a directed system of smooth
R-algebras. Set A = colim A;. If the fibre rings A ®g k(p) are Noetherian for all
p C R, then R — A is reqular.

Proof. Note that A is flat over R by Algebra, Lemmas [39.3] and [137.10] Let
k(p) C k be a finite purely inseparable extension. Note that
A®g lﬁ:(p) Qx(p) k=A®grk=colimA; Qr k

is a colimit of smooth k-algebras, see Algebra, Lemma Since each local ring
of a smooth k-algebra is regular by Algebra, Lemma[140.3| we conclude that all local
rings of A @ k are regular by Algebra, Lemma [106.8] This proves the lemma. [

Let’s see when a field extension defines a regular ring map.

Lemma 41.6. Let K/k be a field extension. Then k — K is a regular ring map
if and only if K is a separable field extension of k.
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Proof. If ¥ — K is regular, then K is geometrically reduced over k, hence K is
separable over k by Algebra, Proposition [158.9 Conversely, if K/k is separable,
then K is a colimit of smooth k-algebras, see Algebra, Lemma [158.11] hence is

regular by Lemma O

Lemma 41.7. Let A — B — C be ring maps. If A — C is regular and B — C is
flat and surjective on spectra, then A — B is reqular.

Proof. By Algebra, Lemma [39.10| we see that A — B is flat. Let p C A be a
prime. The ring map B ®4 k(p) — C ®4 x(p) is flat and surjective on spectra.
Hence B ®4 k(p) is geometrically regular by Algebra, Lemma [166.3 O

42. Ascending properties along regular ring maps

This section is the analogue of Algebra, Section but where the ring map R — S
is regular.

Lemmal 42.1. Let ¢ : R — S be a ring map. Assume
(1) ¢ is regular,
(2) S is Noetherian, and
(3) R is Noetherian and reduced.

Then S is reduced.

Proof. For Noetherian rings being reduced is the same as having properties (S7)

and (Rp), see Algebra, Lemma [157.3] Hence we may apply Algebra, Lemmas|163.4
and [[63.5 O

Lemmal 42.2. Let ¢ : R — S be a ring map. Assume
(1) ¢ is regular,
(2) S is Noetherian, and
(3) R is Noetherian and normal.

Then S is normal.

Proof. For Noetherian rings being normal is the same as having properties (S2)
and (R;), see Algebra, Lemma [157.4] Hence we may apply Algebra, Lemmas|163.4
and [163.5] O

43. Permanence of properties under completion

Given a Noetherian local ring (4, m) we denote A" the completion of A with respect
to m. We will use without further mention that A” is a Noetherian complete local
ring with maximal ideal m" = mA” and that A — A" is faithfully flat. See Algebra,

Lemmas [97.6] [97.4] and [97.3]
Lemma 43.1. Let A be a Noetherian local ring. Then dim(A) = dim(A").

Proof. By Algebra, Lemma the map A — A” induces isomorphisms A/m"™ =
A" /(m™M)™ for n > 1. By Algebra, Lemma [52.12] this implies that

length 4 (A/m™) = length 4 (A" /(m")™)

for all n > 1. Thus d(A) = d(A”") and we conclude by Algebra, Proposition -
An alternative proof is to use Algebra, Lemma

Lemma 43.2. Let A be a Noetherian local ring. Then depth(A) = depth(A™).
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Proof. See Algebra, Lemma [163.2 (]

Lemmal 43.3. Let A be a Noetherian local ring. Then A is Cohen-Macaulay if
and only if A" is so.
Proof. A local ring A is Cohen-Macaulay if and only if dim(A4) = depth(A4). As

both of these invariants are preserved under completion (Lemmas and [43.2)
the claim follows. O

Lemma 43.4. Let A be a Noetherian local ring. Then A is reqular if and only if
A" is so.

Proof. If A" is regular, then A is regular by Algebra, Lemma [110.9] Assume A
is regular. Let m be the maximal ideal of A. Then dim,(my) m/m? = dim(4) =
dim(A”) (Lemma [43.1). On the other hand, mA” is the maximal ideal of A" and

hence man is generated by at most dim(A”") elements. Thus A” is regular. (You
can also use Algebra, Lemma [112.8]) O

Lemma 43.5. Let A be a Noetherian local ring. Then A is a discrete valuation
ring if and only if A" is so.

Proof. This follows from Lemmas and and Algebra, Lemma [119.7, O

Lemmal 43.6. Let A be a Noetherian local ring.

(1) If A" is reduced, then so is A.
(2) In general A reduced does not imply A" is reduced.
(3) If A is Nagata, then A is reduced if and only if A" is reduced.

Proof. As A — A" is faithfully flat we have (1) by Algebra, Lemma [164.2] For
(2) see Algebra, Example [119.5| (there are also examples in characteristic zero, see
Algebra, Remark [119.6]). For (3) see Algebra, Lemmas [162.13| and [162.10 O

Lemma 43.7. Let A be a Noetherian local ring. If A" is normal, then so is A.
Proof. As A — A" is faithfully flat this follows from Algebra, Lemma [164.3] O

Lemma 43.8. Let A — B be a local homomorphism of Noetherian local rings.
Then the induced map of completions A — B” is flat if and only if A — B is flat.

Proof. Consider the commutative diagram

AN —— BN

]

A B

The vertical arrows are faithfully flat. Assume that A® — B” is flat. Then A — B"
is flat. Hence B is flat over A by Algebra, Lemma [39.9

Assume that A — B is flat. Then A — B”" is flat. Hence B"/m"B" is flat over
A/m’ for all n > 1. Note that m’} A" is the nth power of the maximal ideal m’y
of A" and A/m’ = A"/(m’})". Thus we see that B" is flat over A" by applying
Algebra, Lemma [99.11] (with R = A", I =w/}, S = B", M = S). O

Lemma 43.9. Let A — B be a flat local homomorphism of Noetherian local rings
such that mpyB = mp and k(ma) = k(mp). Then A — B induces an isomorphism
AN — BN of completions.
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Proof. By Algebra, Lemma we see that B” is the my-adic completion of B
and that A" — B’ is finite. Since A — B is flat we have Tor{ (B, x(my)) =
0. Hence we see that B” is flat over A" by Lemma [27.5] Thus B”" is a free
A”-module by Algebra, Lemma Since A" — B” induces an isomorphism
k(my) = AN/my AN — B"/maB" = B"/mpB”" = k(mp) by our assumptions
(and Algebra, Lemma [96.3), we see that B” is free of rank 1. Thus A" — B”" is
an isomorphism. (I

44. Permanence of properties under étale maps

In this section we consider an étale ring map ¢ : A — B and we study which
properties of A are inherited by B and which properties of the local ring of B at q
are inherited by the local ring of A at p = ¢~'(q). Basically, this section reviews
and collects earlier results and does not add any new material.

We will use without further mention that an étale ring map is flat (Algebra, Lemma
143.3) and that a flat local homomorphism of local rings is faithfully flat (Algebra,

Lemma |[39.17)).

Lemmal 44.1. If A — B is an étale ring map and q is a prime of B lying over
p C A, then A, is Noetherian if and only if By is Noetherian.

Proof. Since A, — By is faithfully flat we see that Bq Noetherian implies that A,
is Noetherian, see Algebra, Lemma[164.1] Conversely, if A, is Noetherian, then By
is Noetherian as it is a localization of a finite type A,-algebra. O

Lemmal 44.2. If A — B is an étale ring map and q is a prime of B lying over
p C A, then dim(Ap) = dim(By).

Proof. Namely, because A, — B, is flat we have going down, and hence the
inequality dim(A,) < dim(By), see Algebra, Lemma On the other hand,
suppose that qo C g1 C ... C gy, is a chain of primes in B;. Then the corresponding
sequence of primes pg C p; C ... C p, (with p; = q; N Ap) is chain also (i.e., no
equalities in the sequence) as an étale ring map is quasi-finite (see Algebra, Lemma
and a quasi-finite ring map induces a map of spectra with discrete fibres (by
definition). This means that dim(A,) > dim(Bg) as desired. O

Lemmal 44.3. If A — B is an étale ring map and q is a prime of B lying over
p C A, then Ay is regular if and only if By is regular.

Proof. By Lemma we may assume both A, and B, are Noetherian in order
to prove the equivalence. Let z1,...,2¢ € pA, be a minimal set of generators. As
Ap — By is faithfully flat we see that the images y1, ...,y in By form a minimal
system of generators for pB, = qB, (Algebra, Lemma . Regularity of A, by
definition means ¢ = dim(A,) and similarly for B;. Hence the lemma follows from
the equality dim(A4,) = dim(B,) of Lemma O

Lemma 44.4. If A — B is an étale ring map and A is a Dedekind domain, then
B is a finite product of Dedekind domains. In particular, the localizations By for
q C B maximal are discrete valuation rings.

Proof. The statement on the local rings follows from Lemmas and and
Algebra, Lemma[119.7] It follows that B is a Noetherian normal ring of dimension 1.
By Algebra, Lemma [37.16] we conclude that B is a finite product of normal domains
of dimension 1. These are Dedekind domains by Algebra, Lemma O
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45. Permanence of properties under henselization

Given a local ring R we denote R", resp. R*" the henselization, resp. strict henseliza-
tion of R, see Algebra, Definition [155.3] Many of the properties of R are reflected
in R" and R*" as we will show in this section.

Lemma 45.1. Let (R,m, k) be a local ring. Then we have the following

(1) R — R" — R*" are faithfully flat ring maps,

(2) mR" =m" and mR*" = mh"RS" = msh,

(3) R/m™ = R"/m"R" for all n,

(4) there exist elements x; € R*" such that R*"/m"R" is a free R/m™-module
on x; mod m"R*".

Proof. By construction R" is a colimit of étale R-algebras, see Algebra, Lemma
Since étale ring maps are flat (Algebra, Lemma we see that R" is flat
over R by Algebra, Lemma As a flat local ring homomorphism is faithfully
flat (Algebra, Lemma we see that R — R" is faithfully flat. The ring map
R" — R*" is a colimit of finite étale ring maps, see proof of Algebra, Lemma
Hence the same arguments as above show that R" — R*" is faithfully flat.

Part (2) follows from Algebra, Lemmas [155.1] and [155.2] Part (3) follows from
Algebra, Lemma because R/m — R"/mR" is an isomorphism and R/m" —
RM/m"RP is flat as a base change of the flat ring map R — R" (Algebra, Lemma
. Let kP be the residue field of R*" (it is a separable algebraic closure of k).
Choose z; € R*" mapping to a basis of k*°°P as a s-vector space. Then (4) follows
from Algebra, Lemma, in exactly the same way as above. O

Lemma 45.2. Let (R,m, k) be a local ring. Then

(1) R— R", R" — R*" and R — R*" are formally étale,
(2) R— RM, R" — R*", resp. R — R*" are formally smooth in the m", m*",
resp. m*"-topology.

Proof. Part (1) follows from the fact that R" and R*" are directed colimits of étale
algebras (by construction), that étale algebras are formally étale (Algebra, Lemma
, and that colimits of formally étale algebras are formally étale (Algebra,
Lemma . Part (2) follows from the fact that a formally étale ring map is
formally smooth and Lemma [37.2 O

Lemma 45.3. Let R be a local ring. The following are equivalent

(1) R is Noetherian,
(2) R" is Noetherian, and
(3) R*" is Noetherian.

In this case we have

(a) (RM)" and (R*")" are Noetherian complete local rings,

) RN = (R™)" is an isomorphism,

) R" — (RN and R*" — (R*M)" are flat,

) RN — (R*M)" is formally smooth in the m(ganyn-adic topology,
) (RM)*" = RN ®@pn R*M, and

) (RY™M) = (R

IDG67, TV,
Theorem 18.6.6 and
Proposition 18.8.8]
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Proof. Since R — R" — R*" are faithfully flat (Lemma [45.1), we see that R" or
R*" being Noetherian implies that R is Noetherian, see Algebra, Lemma [164.1l In
the rest of the proof we assume R is Noetherian.

As m C R is finitely generated it follows that m” = mR" and m*" = mR*" are
finitely generated, see Lemma [45.1] Hence (R")" and (R*")" are Noetherian by

Algebra, Lemma [160.3] This proves (a).

Note that (b) is immediate from Lemma In particular we see that (R")" is
flat over R, see Algebra, Lemma [97.3

Next, we show that R" — (R")" is flat. Write R" = colim; R; as a directed colimit
of localizations of étale R-algebras. By Algebra, Lemma if (RM)" is flat over
each R;, then R" — (R™)" is flat. Note that R" = R! (by construction). Hence
R = (R™M” by part (b) is flat over R; as desired. To finish the proof of (c) we show
that R*" — (R*")" is flat. To do this, by a limit argument as above, it suffices to
show that (R*")" is flat over R. Note that it follows from Lemma that (Rsh)"
is the completion of a free R-module. By Lemma [27.2] we see this is flat over R as
desired. This finishes the proof of (c).

At this point we know (c) is true and that (R")" and (R*")" are Noetherian. It
follows from Algebra, Lemma [164.1| that R" and R*" are Noetherian.

Part (d) follows from Lemma and Lemma

Part (e) follows from Algebra, Lemma and the fact that R” is henselian by
Algebra, Lemma

Proof of (f). Using (e) there is a map R*" — (R")*" which induces a map (R*")" —
((R™)*™M™ upon completion. Using (e) there is a map R" — (R*")". Since (R*")" is
strictly henselian (see above) this map induces a map (R")*" — (R*")" by Algebra,
Lemma Completing we obtain a map ((R")*")" — (R*")". We omit the
verification that these two maps are mutually inverse. (Il

Lemma 45.4. Let R be a local ring. The following are equivalent: R is reduced, the
henselization R" of R is reduced, and the strict henselization R*" of R is reduced.

Proof. The ring maps R — R" — R*" are faithfully flat. Hence one direction
of the implications follows from Algebra, Lemma Conversely, assume R is
reduced. Since R" and R*" are filtered colimits of étale, hence smooth R-algebras,
the result follows from Algebra, Lemma O

Lemma 45.5. Let R be a local ring. Let nil(R) denote the ideal of nilpotent
elements of R. Then nil(R)R" = nil(R") and nil(R)R*" = nil(R*").

Proof. Note that nil(R) is the biggest ideal consisting of nilpotent elements such
that the quotient R/nil(R) is reduced. Note that nil(R)R" consists of nilpotent
elements by Algebra, Lemmal[32.3] Also, note that R" /nil(R)R" is the henselization
of R/nil(R) by Algebra, Lemma [156.2, Hence R"/nil(R)R" is reduced by Lemma

We conclude that nil(R)R" = nil(R") as desired. Similarly for the strict

henselization but using Algebra, Lemma [156.4] (I

Lemmal 45.6. Let R be a local ring. The following are equivalent: R is a normal
domain, the henselization R" of R is a normal domain, and the strict henselization
R*" of R is a normal domain.
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Proof. A preliminary remark is that a local ring is normal if and only if it is a
normal domain (see Algebra, Definition . The ring maps R — R" — R*" are
faithfully flat. Hence one direction of the implications follows from Algebra, Lemma
Conversely, assume R is normal. Since R" and R*" are filtered colimits of
étale hence smooth R-algebras, the result follows from Algebra, Lemmas and
BTIT O

Lemmal 45.7. Given any local ring R we have dim(R) = dim(R") = dim(R*").

Proof. Since R — R*" is faithfully flat (Lemma [45.1) we see that dim(R*") >
112.1

dim(R) by going down, see Algebra, Lemma For the converse, we write
R3" = colim R; as a directed colimit of local rings R; each of which is a localization
of an étale R-algebra. Now if qo C q; C ... C q, is a chain of prime ideals in R",
then for some sufficiently large 7 the sequence

RiﬂqOCRiﬂqlc...CRiﬁqn

is a chain of primes in R;. Thus we see that dim(R*") < sup; dim(R;). But by the
result of Lemma we have dim(R;) = dim(R) for each i and we win. O

Lemma 45.8. Given a Noetherian local ring R we have depth(R) = depth(R") =
depth(R*").

Proof. By Lemma we know that R" and R*" are Noetherian. Hence the
lemma follows from Algebra, Lemma [163.2 O

Lemmal 45.9. Let R be a Noetherian local ring. The following are equivalent: R
is Cohen-Macaulay, the henselization R" of R is Cohen-Macaulay, and the strict
henselization R*" of R is Cohen-Macaulay.

Proof. By Lemma we know that R"™ and R*" are Noetherian, hence the
lemma makes sense. Since we have depth(R) = depth(R") = depth(R*") and
dim(R) = dim(R") = dim(R*") by Lemmas and we conclude. O

Lemma 45.10. Let R be a Noetherian local ring. The following are equivalent:
R is a reqular local ring, the henselization R" of R is a reqular local ring, and the
strict henselization R*" of R is a regular local ring.

Proof. By Lemmawe know that R" and R*" are Noetherian, hence the lemma
makes sense. Let m be the maximal ideal of R. Let z1,...,z; € m be a minimal
system of generators of m, i.e., such that the images in m/m? form a basis over
k = R/m. Because R — R" and R — R*®" are faithfully flat, it follows that
the images x{h...,m? in R", resp. xfh, . ,xfh in R*" are a minimal system of
generators for m” = mR", resp. m*" = mR*". Regularity of R by definition means
t = dim(R) and similarly for R" and R*". Hence the lemma follows from the

equality of dimensions dim(R) = dim(R") = dim(R*") of Lemma m O

Lemma 45.11. Let R be a Noetherian local ring. Then R is a discrete valuation
ring if and only if R" is a discrete valuation ring if and only if R*" is a discrete
valuation ring.

Proof. This follows from Lemmas and 45.10| and Algebra, Lemma (]
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Lemmal 45.12. Let A be a ring. Let B be a filtered colimit of étale A-algebras.
Let p be a prime of A. If B is Noetherian, then there are finitely many primes
q1,- -+, qr lying over p, we have BR ok(p) = [ (q:), and each of the field extensions
k(9:)/k(p) is separable algebraic.

Proof. Write B as a filtered colimit B = colim B; with A — B; étale. Then on the
one hand B ® 4 k(p) = colim B; ® 4 k(p) is a filtered colimit of étale x(p)-algebras,
and on the other hand it is Noetherian. An étale k(p)-algebra is a finite product
of finite separable field extensions (Algebra, Lemma [143.4). Hence there are no
nontrivial specializations between the primes (which are all maximal and minimal
primes) of the algebras B; ® 4 £(p) and hence there are no nontrivial specializations
between the primes of B ®4 k(p). Thus B ®4 k(p) is reduced and has finitely
many primes which all minimal. Thus it is a finite product of fields (use Algebra,
Lemma or Algebra, Proposition. Each of these fields is a colimit of finite
separable extensions and hence the final statement of the lemma follows. O

Lemma 45.13. Let R be a Noetherian local ring. Let p C R be a prime. Then
Rropn) =] . w@) resp. R opne)=]] = sl

i=1,...,s
where q1,...,q:, T€Sp. t1,...,ts are the prime of R", resp. R*" lying over p. More-
over, the field extensions k(q;)/k(p) resp. k(v;)/Kk(p) are separable algebraic.

Proof. This can be deduced from the more general Lemma using that the
henselization and strict henselization are Noetherian (as we’ve seen above). But we
also give a direct proof as follows.

We will use without further mention the results of Lemmas [45.1] and Note
that R"/pR", resp. R*" /pR*" is the henselization, resp. strict henselization of R/p,
see Algebra, Lemma resp. Algebra, Lemma Hence we may replace R
by R/p and assume that R is a Noetherian local domain and that p = (0). Since
R", resp. R*" is Noetherian, it has finitely many minimal primes q,. .., q¢, resp.
t1,...,ts. Since R — R", resp. R — R*" is flat these are exactly the primes lying
over p = (0) (by going down). Finally, as R is a domain, we see that R", resp.
R*" is reduced, see Lemma Thus we see that R" ®r r(p) resp. R*" @ k(p)
is a reduced Noetherian ring with finitely many primes, all of which are minimal
(and hence maximal). Thus these rings are Artinian and are products of their
localizations at maximal ideals, each necessarily a field (see Algebra, Proposition
60.7| and Algebra, Lemma .

i=1,...,t

The final statement follows from the fact that R — R", resp. R — R*" is a colimit
of étale ring maps and hence the induced residue field extensions are colimits of
finite separable extensions, see Algebra, Lemma [143.5 (I

46. Field extensions, revisited

In this section we study some peculiarities of field extensions in characteristic p > 0.

Definition 46.1. Let p be a prime number. Let £ — K be an extension of fields
of characteristic p. Denote kKP the compositum of k¥ and K? in K.

(1) A subset {z;} C K is called p-independent over k if the elements x¥ =
[[z;" where 0 <e; < p are linearly independent over kK?.
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(2) A subset {z;} of K is called a p-basis of K over k if the elements ¥ form
a basis of K over KKP.

This is related to the notion of a p-basis of a F)-algebra which we will discuss later
(insert future reference here).

Lemma 46.2. Let K/k be a field extension. Assume k has characteristic p > 0.
Let {x;} be a subset of K. The following are equivalent

(1) the elements {x;} are p-independent over k, and
(2) the elements dx; are K-linearly independent in Qg y,.

Any p-independent collection can be extended to a p-basis of K over k. In particular,
the field K has a p-basis over k. Moreover, the following are equivalent:

(a) {x;} is a p-basis of K over k, and

(b) dxv; is a basis of the K-vector space Qg y.

Proof. Assume (2) and suppose that > apz® = 0 is a linear relation with ap €
EK?. Let 0, : K — K be a k-derivation such that 6,(x;) = d;; (Kronecker delta).
Note that any k-derivation of K annihilates KKP. Applying 6; to the given relation
we obtain new relations
i—1 n o—
ZE,ei>0 eapxy ... xi T g =0

Hence if we pick > apa? as the relation with minimal total degree |E| = 3" e; for

some ap # 0, then we get a contradiction. Hence (1) holds.

If {x;} is a p-basis for K over k, then K = kKP?[X;]/(X? — 2¥). Hence we see that
dx; forms a basis for Q1 /;, over K. Thus (a) implies (b).

Let {x;} be a p-independent subset of K over k. An application of Zorn’s lemma
shows that we can enlarge this to a maximal p-independent subset of K over k. We
claim that any maximal p-independent subset {x;} of K is a p-basis of K over k.
The claim will imply that (1) implies (2) and establish the existence of p-bases. To
prove the claim let L be the subfield of K generated by kKP and the x;. We have
to show that L = K. If x € K but « ¢ L, then a? € L and L(z) = L[z]/(P — z).
Hence {z;} U {z} is p-independent over k, a contradiction.

Finally, we have to show that (b) implies (a). By the equivalence of (1) and (2) we
see that {x;} is a maximal p-independent subset of K over k. Hence by the claim
above it is a p-basis. [

Lemma 46.3. Let K/k be a field extension. Let {Ky}aca be a collection of
subfields of K with the following properties

(1) kC Kq forallae A,

(2> k = ﬂaGA Kou

(3) for a,a’ € A there exists an o € A such that Ko C Ko N Ky
Then forn > 1 and V C K®" a K-vector space we have V N k®™ #£ 0 if and only
if VNKS™ £0 for all € A.

Proof. By induction on n. The case n = 1 follows from the assumptions. Assume
the result proven for subspaces of K®?~!. Assume that V C K®" has nonzero
intersection with K& for all « € A. If VN0 & kP! is nonzero then we win.
Hence we may assume this is not the case. By induction hypothesis we can find an
a such that VN0 @ K& 1 is zero. Let v = (z1,...,2,) € VN K®" be a nonzero
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element. By our choice of a we see that x; is not zero. Replace v by xl_lv so that
v=(1,29,...,2y,). Note that if v’ = (21,...,2],) € VN K,, then v' —zjv = 0 by

) n

our choice of a. Hence we see that V N KP" = K,v. If we choose some o’ such
that K, C K, then we see that necessarily v € V N Kf?," (by the same arguments
applied to o). Hence

Lo, ..., Ty € ma’eA,Ka/CKa K,
which equals & by (2) and (3). O

Lemma 46.4. Let K be a field of characteristic p. Let {K,}aca be a collection
of subfields of K with the following properties

(1) KP C K,, for all a € A,

(2) K7 =aea Ka,

(3) for a,a’ € A there exists an o € A such that K,» C Ko, N Ky
Then

(1) the intersection of the kernels of the maps Qr/r, = QKK i zero,
(2) for any finite extension L/K we have LP = (), . 4, LPK,.

Proof. Proof of (1). Choose a p-basis {z;} for K over F,. Suppose that n =
Ziel, yidx; maps to zero in Qg for every a € A. Here the index set I’ is finite.
By Lemma [46.2] this means that for every « there exists a relation

§ : E
EaE,ax ) OF o S Ka

where F runs over multi-indices E = (e;);er with 0 < e; < p. On the other hand,
Lemma guarantees there is no such relation Y agr? = 0 with ap € K?. This
is a contradiction by Lemma [46.3

Proof of (2). Suppose that we have a tower L/M/K of finite extensions of fields.
Set M, = MPK, and L, = LPK, = LPM,. Then we can first prove that M? =
Naca Mo, and after that prove that LP = () .4 La. Hence it suffices to prove
(2) for primitive field extensions having no nontrivial subfields. First, assume that
L = K(0) is separable over K. Then L is generated by 6P over K, hence we may
assume that 6 € LP. In this case we see that

IP=KPp KPO®...KP0% ' and IPK,=K,DK.0®D...K,0%"

where d = [L : K]. Thus the conclusion is clear in this case. The other case is
where L = K(0) with 0”? =t € K, t ¢ K?. In this case we have

IP=KPpKPt®d...KPtP"' and IPK,=K,®K,t®... K P!

Again the result is clear. O

Lemmal 46.5. Let k be a field of characteristic p > 0. Let n,m > 0. Let K be
the fraction field of k[[z1,...,xu)][Y1,- .- ym]. As k' ranges through all subfields
k/K JkP with [k : k'] < oo the subfields

fraction field of K'[[zY, ..., 22]]|[v},...,y5] C K
form a family of subfields as in Lemma[]6.J] Moreover, each of the ring extensions
Kb, 2Byl yb] Cklle, .o xn]l[yn, - - - ym] is finite.
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Proof. Write A = k[[z1,...,2,]][y1,...,ym] and A" = K'[[z}, ..., 22]][4}, ... y2,].
We also denote K’ the fraction field of A’. The ring extension k'[[z7,...,2h]] C
k[[z1,...,24]] is finite by Algebra, Lemma [97.7 which implies that A’ — A is finite.
For f € A we see that fP € A’. Hence K C K’. Any element of K’ can be written
as a/bP with a € A’ and b € A nonzero. Suppose that f/gP? € K, f,g€ A, g #0
is contained in K’ for every choice of k’. Fix a choice of k¥’ for the moment. By
the above we see f/g? = a/bP for some a € A’ and some nonzero b € A. Hence
b f € A'. For any A'-derivation D : A — A we see that 0 = D(bPf) = bPD(f)
hence D(f) = 0 as A is a domain. Taking D = 0,, and D = J,, we conclude
that f € k[[z],...,22]][y7,...,vy5]. Applying a k’-derivation 6 : k — k we similarly
conclude that all coefficients of f are in &/, i.e., f € A’. Since it is clear that
AP =,, A" where k' ranges over all subfields as in the lemma we win. O

47. The singular locus

Let R be a Noetherian ring. The regular locus Reg(X) of X = Spec(R) is the set
of primes p such that R, is a regular local ring. The singular locus Sing(X) of
X = Spec(R) is the complement X \ Reg(X), i.e., the set of primes p such that R,
is not a regular local ring. By the discussion preceding Algebra, Definition [I10.7] we
see that Reg(X) is stable under generalization. In this section we study conditions
that guarantee that Reg(X) is open.

Definition 47.1. Let R be a Noetherian ring. Let X = Spec(R).
(1) We say R is J-0if Reg(X) contains a nonempty open.
(2) We say R is J-1 if Reg(X) is open.
(3) We say R is J-2if any finite type R-algebra is J-1.

The ring Q[z]/(z?) does not satisfy J-0, but it does satisfy J-1. On the other
hand, J-1 implies J-0 for Noetherian domains and more generally nonzero reduced
Noetherian rings as such a ring is regular at the minimal primes. Here is a charac-
terization of the J-1 property.

Lemma 47.2. Let R be a Noetherian ring. Let X = Spec(R). The ring R is
J-1if and only if V(p) N Reg(X) contains a nonempty open subset of V(p) for all
p € Reg(X).

Proof. This follows from Topology, Lemma and the fact that Reg(X) is stable
under generalization by Algebra, Lemma [110.6 (]

Lemma 47.3. Let R be a Noetherian ring. Let X = Spec(R). Assume that for
all primes p C R the ring R/p is J-0. Then R is J-1.

Proof. We will show that the criterion of Lemma applies. Let p € Reg(X)
be a prime of height r. Pick fi,..., f, € p which map to generators of pR,. Since
p € Reg(X) we see that fi,..., f, maps to a regular sequence in R, see Algebra,
Lemma, Thus by Algebra, Lemma we see that after replacing R by R,
for some g € R, g &€ p the sequence fi,..., f. is a regular sequence in R. After
another replacement we may also assume f1,..., f. generate p. Next, let p C g
be a prime ideal such that (R/p)q is a regular local ring. By the assumption of
the lemma there exists a non-empty open subset of V(p) consisting of such primes,
hence it suffices to prove R, is regular. Note that fi,..., f, is a regular sequence in

O

[Mat70, (32.B)]
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Lemmal 47.4. Let R — S be a ring map. Assume that

(1) R is a Noetherian domain,
(2) R— S is injective and of finite type, and
(3) S is a domain and J-0.

Then R is J-0.

Proof. After replacing S by S, for some nonzero g € S we may assume that S is a
regular ring. By generic flatness we may assume that also R — S is faithfully flat,
see Algebra, Lemma [I18.1] Then R is regular by Algebra, Lemma [164.4 [l

Lemmal 47.5. Let R — S be a ring map. Assume that

(1) R is a Noetherian domain and J-0,

(2) R — S is injective and of finite type, and

(3) S is a domain, and

(4) the induced extension of fraction fields is separable.
Then S is J-0.

Proof. We may replace R by a principal localization and assume R is a regular
ring. By Algebra, Lemma [140.9] the ring map R — S is smooth at (0). Hence after
replacing S by a principal localization we may assume that S is smooth over R.
Then S is regular too, see Algebra, Lemma O

Lemmal 47.6. Let R be a Noetherian ring. The following are equivalent
(1) R is J-2,
(2) every finite type R-algebra which is a domain is J-0,
(3) every finite R-algebra is J-1,
(4) for every prime p and every finite purely inseparable extension L/k(p) there
exists a finite R-algebra R’ which is a domain, which is J-0, and whose field
of fractions is L.

Proof. It is clear that we have the implications (1) = (2) and (2) = (4). Recall
that a domain which is J-1 is J-0. Hence we also have the implications (1) = (3)
and (3) = (4).

Let R — S be a finite type ring map and let’s try to show S is J-1. By Lemma
it suffices to prove that S/q is J-0 for every prime q of S. In this way we see
(2) = ().

Assume (4). We will show that (2) holds which will finish the proof. Let R — S

be a finite type ring map with S a domain. Let p = Ker(R — S). Let K be the
fraction field of S. There exists a diagram of fields

K——K'

]

K(p) ——L

where the horizontal arrows are finite purely inseparable field extensions and where
K'/L is separable, see Algebra, Lemma Choose R’ C L as in (4) and let S’
be the image of the map S ® g R’ — K’. Then S’ is a domain whose fraction field
is K', hence S’ is J-0 by Lemma and our choice of R’. Then we apply Lemma
E74 to see that S is J-0 as desired. O
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48. Regularity and derivations

Let R — S be a ring map. Let D : R — R be a derivation. We say that D extends
to S if there exists a derivation D’ : § — S such that

]

is commutative.

Lemma 48.1. Let R be a ring. Let D : R — R be a derivation.
(1) For any ideal I C R the derivation D extends canonically to a derivation
D™ : RN — RN on the I-adic completion.
(2) For any multiplicative subset S C R the derivation D extends uniquely to
the localization S 'R of R.
If R C R is a finite type extension of rings such that Ry, = R; for some g € R
which is a nonzerodivisor in R', then gN D extends to R’ for some N > 0.

Proof. Proof of (1). For n > 2 we have D(I™) C I"~! by the Leibniz rule. Hence
D induces maps D,, : R/I" — R/I"~!. Taking the limit we obtain D". We omit
the verification that D" is a derivation.

Proof of (2). To extend D to S~ R just set D(r/s) = D(r)/s—rD(s)/s?* and check
the axioms.

Proof of the final statement. Let x1,...,z, € R’ be generators of R’ over R. Choose
an N such that gVa; € R. Consider gV *1D. By (2) this extends to R,. Moreover,
by the Leibniz rule and our construction of the extension above we have

gV D(xi) = gV D(g™ N gV i) = —NgNw:D(g) + gD (g™ i)
and both terms are in R. This implies that
gD alr) = Z et as T 2l gN T D ()

n 7

is an element of R’. Hence every element of R’ (which can be written as a sum
of monomials in the z; with coefficients in R) is mapped to an element of R’ by
¢V 1t1D and we win. O

Lemmal|48.2. Let R be a reqular ring. Let f € R. Assume there exists a derivation
D : R — R such that D(f) is a unit of R/(f). Then R/(f) is regular.

Proof. It suffices to prove this when R is a local ring with maximal ideal m and
residue field . In this case it suffices to prove that f ¢ m?, see Algebra, Lemma
106.3l However, if f € m? then D(f) € m by the Leibniz rule, a contradiction. [J

Lemma 48.3. Let (R, m, k) be a reqular local ring. Letm > 1. Let f1,..., f, € m.
Assume there exist derivations D1, ..., Dy, : R — R such that deti<; j<m (D;(f;))
is a unit of R. Then R/(f1,..., fm) is reqular and f1,..., fm is a reqular sequence.

Proof. It suffices to prove that fi,..., f;, are x-linearly independent in m/m?, see
Algebra, Lemma [106.3] However, if there is a nontrivial linear relation the we get
S a;f; € m? for some a; € R but not all a; € m. Observe that D;(m?) C m and


https://stacks.math.columbia.edu/tag/07PE
https://stacks.math.columbia.edu/tag/07PF
https://stacks.math.columbia.edu/tag/0GEE

07PG

07PH

07PI

MORE ON ALGEBRA 118

D;(a;f;) = a;D;(f;) mod m by the Leibniz rule for derivations. Hence this would
imply
Z a; D, (f]) em

which would contradict the assumption on the determinant. ([

Lemma|48.4. Let R be a reqular ring. Let f € R. Assume there exists a derivation
D : R — R such that D(f) is a unit of R. Then R[z]/(z"™ — f) is regular for any
integer n > 1. More generally, R[z]/(p(z) — f) is regqular for any p € Z[z].

Proof. By Algebra, Lemma|163.10|we see that R[z] is a regular ring. Apply Lemma
to the extension of D to R[z] which maps z to zero. This works because D
annihilates any polynomial with integer coefficients and sends f to a unit. O

Lemma 48.5. Let p be a prime number. Let B be a domain with p =0 in B. Let
f € B be an element which is not a pth power in the fraction field of B. If B is
of finite type over a Noetherian complete local ring, then there exists a derivation
D : B — B such that D(f) is not zero.

Proof. Let R be a Noetherian complete local ring such that there exists a finite
type ring map R — B. Of course we may replace R by its image in B, hence we may
assume R is a domain of characteristic p > 0 (as well as Noetherian complete local).
By Algebra, Lemma we can write R as a finite extension of k[[x1,...,zy]]
for some field k and integer n. Hence we may replace R by k[[z1,...,x,]]. Next,
we use Algebra, Lemma to factor R — B as

R C Rly1,...,ya) CB' CB

with B’ finite over R[yi,...,y4] and B = B, for some nonzero g € R. Note that
f' = g?Nf € B’ for some large integer N. It is clear that f’ is not a pth power in
the fraction field of B’. If we can find a derivation D' : B’ — B’ with D’(f’) # 0,
then Lemma guarantees that D = ¢™ D’ extends to B for some M > 0. Then
D(f) =gND'(f) = g™D'(g PN f') = gM=PND’'(f") is nonzero. Thus it suffices to
prove the lemma in case B is a finite extension of A = k[[z1,...,2u]][Y1,-- -, Yml]-

Assume B is a finite extension of A = k[[x1,...,2]][y1,-..,¥Ym]. Denote L the
fraction field of B. Note that df is not zero in Qr /r,, see Algebra, Lemma
We apply Lemma to find a subfield k¥’ C k of finite index such that with
A" = K[],...,2P])[yf, ... ,yh] the element df does not map to zero in Qg
where K is the fraction field of A’. Thus we can choose a K’-derivation D' : L — L
with D'(f) # 0. Since A’ C A and A C B are finite by construction we see that
A’ C B is finite. Choose by,...,b; € B which generate B as an A’-module. Then
D'(b;) = fi/g: for some f;, g; € B with g; # 0. Setting D = g; ...¢g: D’ we win. O

Lemmal 48.6. Let A be a Noetherian complete local domain. Then A is J-0.

Proof. By Algebra, Lemma we can find a regular subring 4y C A with A
finite over Ag. The induced extension K /K of fraction fields is finite. If K/Ky
is separable, then we are done by Lemma [{7.5] If not, then Ay and A have char-
acteristic p > 0. For any subextension K/M /K, there exists a finite subextension
Ao C B C A whose fraction field is M. Hence, arguing by induction on [K : K]
we may assume there exists A9 C B C A such that B is J-0 and K/M has no
nontrivial subextensions. In this case, if K/M is separable, then we see that A is
J-0 by Lemma [7.5] If not, then K = M[z]/(2? — b1 /bs) for some by, by € B with
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by # 0 and by /bs not a pth power in M. Choose a € A nonzero such that az € A.
After replacing z by boaPz we obtain K = M|[z]/(2P — b) with 2 € A and b € B
not a pth power in M. By Lemma [48.5] we can find a derivation D : B — B with
D(b) # 0. Applying Lemma we see that A, is regular for any prime p of A
lying over a regular prime of B and not containing D(b). As B is J-0 we conclude
A is too. O

Proposition 48.7. The following types of rings are J-2:
(1) fields,

Noetherian complete local rings,

Nagata rings of dimension 1,
Dedekind domains with fmctwn field of characteristic zero,
(7) finite type ring extensions of any of the above.

(2)
(3) Z
(4) Noetheman local rings of dimension 1,
(5)
(6)

Proof. For cases (1), (3), (5), and (6) this is proved by checking condition (4) of
Lemma 7.6l We will only do this in case R is a Nagata ring of dimension 1. Let
p C R be a prime ideal and let L/k(p) be a finite purely inseparable extension. If
p C R is a maximal ideal, then R — L is finite and L is a regular ring and we’ve
checked the condition. If p C R is a minimal prime, then the Nagata condition
insures that the integral closure R’ C L of R in L is finite over R. Then R’ is
a normal domain of dimension 1 (Algebra, Lemma hence regular (Algebra,
Lemma and we’ve checked the condition in this case as well.

For case (2), we will use condition (3) of Lemma Let R be a Noetherian
complete local ring. Note that if R — R’ is finite, then R’ is a product of Noetherian
complete local rings, see Algebra, Lemma Hence it suffices to prove that a
Noetherian complete local ring which is a domain is J-0, which is Lemma

For case (4), we also use condition (3) of Lemma Namely, if R is a local
Noetherian ring of dimension 1 and R — R’ is finite, then Spec(R’) is finite. Since
the regular locus is stable under generalization, we see that R’ is J-1. g

49. Formal smoothness and regularity

The title of this section refers to Proposition 9.2

Lemma 49.1. Let A — B be a local homomorphism of Noetherian local rings.
Let D : A — A be a derivation. Assume that B is complete and A — B is formally
smooth in the mp-adic topology. Then there exists an extension D' : B — B of D.

Proof. Denote Ble] = B[z]/(z?) the ring of dual numbers over B. Consider the
ring map ¢ : A — Ble], a — a + eD(a). Consider the commutative diagram

F
A—"> B

By Lemma and the assumption of formal smoothness of B/A we find a map
¢ : B — Ble] fitting into the diagram. Write ¢(b) = b+ eD’(b). Then D’ : B — B
is the desired extension. g
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07PM Proposition 49.2. Let A — B be a local homomorphism of Noetherian complete

local rings. Let k be the residue field of A and B = B ®4 k the special fibre. The
following are equivalent

(1) A — B is regular,

(2) A— B is flat and B is ‘geometrically regular over k,

(3) A— B is flat and k — B is formally smooth in the mg-adic topology, and
(4) A — B is formally smooth in the mp-adic topology.

Proof. We have seen the equivalence of (2), (3), and (4) in Proposition It is
clear that (1) implies (2). Thus we assume the equivalent conditions (2), (3), and
(4) hold and we prove (1).

Let p be a prime of A. We will show that B ® 4 k(p) is geometrically regular over
k(p). By Lemma we may replace A by A/p and B by B/pB. Thus we may
assume that A is a domain and that p = (0).

Choose Ay C A as in Algebra, Lemma[160.11] We will use all the properties stated
in that lemma without further mention. As Ay — A induces an isomorphism on
residue fields, and as B/m4B is geometrically regular over A/m,4 we can find a
diagram

C——B

]

A04>A

with Ag — C formally smooth in the mc-adic topology such that B = C ®4, A,
see Remark (Completion in the tensor product is not needed as Ay — A is
finite, see Algebra, Lemma m) Hence it suffices to show that C' ®4, Ko is a
geometrically regular algebra over the fraction field Ky of Ay.

The upshot of the preceding paragraph is that we may assume that A = k[[z1,. .., 2,]]
where k is a field or A = A[[z1,...,x,]] where A is a Cohen ring. In this case B
is a regular ring, see Algebra, Lemma Hence B ® 4 K is a regular ring too
(where K is the fraction field of A) and we win if the characteristic of K is zero.

Thus we are left with the case where A = k[[z1,...,x,]] and k is a field of charac-
teristic p > 0. Let L/K be a finite purely inseparable field extension. We will show
by induction on [L : K] that B ® 4 L is regular. The base case is L = K which
we’ve seen above. Let K C M C L be a subfield such that L is a degree p extension
of M obtained by adjoining a pth root of an element f € M. Let A’ be a finite
A-subalgebra of M with fraction field M. Clearing denominators, we may and do
assume f € A’. Set A” = A’[z]/(2P — f) and note that A’ C A” is finite and that
the fraction field of A” is L. By induction we know that B ® 4 M ring is regular.
We have

B®AL:B®AM[Z]/(Zp—f)

By Lemma [48.5| we know there exists a derivation D : A’ — A’ such that D(f) # 0.
As A/ - B®4 A’ is formally smooth in the m-adic topology by Lemma [37.9] we
can use Lemma to extend D to a derivation D' : B®4 A’ — B®4 A’. Note
that D'(f) = D(f) is a unit in B ®4 M as D(f) is not zero in A’ C M. Hence
B ®4 L is regular by Lemma [48.4 and we win. O
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50. G-rings

Let A be a Noetherian local ring A. In Section 3] we have seen that some but not
all properties of A are reflected in the completion A" of A. To study this further
we introduce some terminology. For a prime g of A the fibre ring

A" @4 5(q) = (A")q/a(A")q = (A/0)" @a/q £(q)
is called a formal fibre of A. We think of the formal fibre as an algebra over k(q).
Thus A — A” is a regular ring homomorphism if and only if all the formal fibres
are geometrically regular algebras.

Definition 50.1. A ring R is called a G-ring if R is Noetherian and for every
prime p of R the ring map R, — (R,)" is regular.

By the discussion above we see that R is a G-ring if and only if every local ring
R, has geometrically regular formal fibres. Note that if Q C R, then it suffices to
check the formal fibres are regular. Another way to express the G-ring condition is
described in the following lemma.

Lemma 50.2. Let R be a Noetherian ring. Then R is a G-ring if and only if for
every pair of primes q C p C R the algebra

(R/q)y ®r/q (9)
is geometrically regular over k(q).

Proof. This follows from the fact that
R} ®@p k(q) = (R/a), @r/q (a)

as algebras over x(q). O
Lemmal 50.3. Let R — R’ be a finite type map of Noetherian rings and let

q/ p/ R/

|

g——p——R
be primes. Assume R — R’ is quasi-finite at p’.

(1) If the formal fibre R} ®rg k(q) is geometrically regular over k(q), then the
formal fibre R, @ps k(q') is geometrically reqular over k(q').

(2) If the formal fibres of R, are geometrically reqular, then the formal fibres
of R;, are geometrically reqular.

(3) If R — R’ is quasi-finite and R is a G-ring, then R' is a G-ring.

Proof. It is clear that (1) = (2) = (3). Assume Rj ®g x(q) is geometrically
regular over x(q). By Algebra, Lemma [124.3| we see that

Rl @ R = (R,)" x B
for some Rj-algebra B. Hence R, — (R,,)" is a factor of a base change of the
map Ry, — Ry Tt follows that (R;,)" ®pr k(q') is a factor of

R,/g\ @R R QR H(CI/) = R;/g\ Or ’f(q) ®f-c(q) H(q,)'

Thus the result follows as extension of base field preserves geometric regularity, see

Algebra, Lemma [166.1 (]
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Lemma 50.4. Let R be a Noetherian ring. Then R is a G-ring if and only if for
every finite free ring map R — S the formal fibres of S are regular rings.

Proof. Assume that for any finite free ring map R — S the ring S has regular
formal fibres. Let ¢ C p C R be primes and let x(q) C L be a finite purely
inseparable extension. To show that R is a G-ring it suffices to show that

RQ QRr n(q) ®k(q) L

is a regular ring. Choose a finite free extension R — R’ such that ¢’ = qR is a
prime and such that x(q") is isomorphic to L over k(q), see Algebra, Lemma [159.3
By Algebra, Lemma we have

R} @r R = 1‘[(1%;,2_)A

where p} are the primes of R’ lying over p. Thus we have

i

R} @R k(q) ®u(q) L = R, @r R @r k(q') = H(R;{)A R, r(q")

Our assumption is that the rings on the right are regular, hence the ring on the left
is regular too. Thus R is a G-ring. The converse follows from Lemma [50.3} O

Lemma 50.5. Let k be a field of characteristicp. Let A = k[[x1,...,xu]][y1,- -, Yn]
and denote K the fraction field of A. Let p C A be a prime. Then AQ ®a K is
geometrically regular over K.

Proof. Let L/K be a finite purely inseparable field extension. We will show by
induction on [L : K] that AQ ® L is regular. The base case is L = K: as A is
regular, AQ is regular (Lemma , hence the localization AQ ® K is regular. Let
K C M C L be a subfield such that L is a degree p extension of M obtained by
adjoining a pth root of an element f € M. Let B be a finite A-subalgebra of M
with fraction field M. Clearing denominators, we may and do assume f € B. Set
C = B[z]/(#? — f) and note that B C C is finite and that the fraction field of C' is
L. Since A C B C C are finite and L/M/K are purely inseparable we see that for
every element of B or C some power of it lies in A. Hence there is a unique prime
t C B, resp. q C C lying over p. Note that

AQ@AM:B?@)BM

see Algebra, Lemma [97.8] By induction we know that this ring is regular. In the
same manner we have

Ay ®aL=Cl®c L =B ®p M[]/(z" - f)

the last equality because the completion of C' = Blz]/(2P — f) equals B[z]/ (2P — f).
By Lemma we know there exists a derivation D : B — B such that D(f) #
0. In other words, ¢ = D(f) is a unit in M! By Lemma D extends to a
derivation of By, B{* and B{ ®p M (successively extending through a localization, a
completion, and a localization). Since it is an extension we end up with a derivation
of B{* ® p M which maps f to g and g is a unit of the ring B{®p M. Hence A} ®4 L
is regular by Lemma [8.4] and we win. O

Proposition 50.6. A Noetherian complete local ring is a G-ring.
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Proof. Let A be a Noetherian complete local ring. By Lemma it suffices to
check that B = A/q has geometrically regular formal fibres over the minimal prime
(0) of B. Thus we may assume that A is a domain and it suffices to check the

condition for the formal fibres over the minimal prime (0) of A. Let K be the
fraction field of A.

We can choose a subring Ay C A which is a regular complete local ring such that
A is finite over Ay, see Algebra, Lemma Moreover, we may assume that Ag
is a power series ring over a field or a Cohen ring. By Lemma we see that it
suffices to prove the result for Ag.

Assume that A is a power series ring over a field or a Cohen ring. Since A is regular
the localizations A, are regular (see Algebra, Definition and the discussion
preceding it). Hence the completions A'/J\ are regular, see Lemma Hence
the fibre AQ ®a K is, as a localization of AQ, also regular. Thus we are done
if the characteristic of K is 0. The positive characteristic case is the case A =
k[[x1,...,xq]] which is a special case of Lemma [50.5] O

Lemma 50.7. Let R be a Noetherian ring. Then R is a G-ring if and only if Ry
has geometrically regular formal fibres for every maximal ideal m of R.

Proof. Assume R, — R}, is regular for every maximal ideal m of R. Let p be a
prime of R and choose a maximal ideal p C m. Since Ry, — R is faithfully flat we
can choose a prime p’ if R} lying over pRy,. Consider the commutative diagram

Ry —— (Ry)y — (Ra)y

T
R R, R)

By assumption the ring map Ry — R}, is regular. By Proposition [50.6] (Rpy ), —
(Ry)p is regular. The localization Ry — (Ry)p is regular. Hence Ry — (Ry)p
is regular by Lemma @ Since it factors through the localization R,, also the
ring map R, — (RQ)Q, is regular. Thus we may apply Lemma to see that
Ry, — Ry is regular.

Lemmal 50.8. Let R be a Noetherian local ring which is a G-ring. Then the
henselization R" and the strict henselization R*" are G-rings.

Proof. We will use the criterion of Lemma Let ¢ C R" be a prime and set
p=RNq. Set q = q and let qo,...,q; be the other primes of R" lying over p,

so that R" @g w(p) = T[],y _, #(qi), see Lemma {45.13, Using that (R")" = R"
(Lemma we see

I, (B o sa) = (R @ (B ©n 5le)) = R @ sp)

Hence (R™)" @pn k(qi) is geometrically regular over x(p) by assumption. Since
k(qg;) is separable algebraic over k(p) it follows from Algebra, Lemma [166.6| that
(RM" @ pn k(q;) is geometrically regular over (q;).

Let v C R*" be a prime and set p = RNt. Set t; = v and let v, ..., ts be the other
primes of R*" lying over p, so that R*" @ r(p) = [lizi.. s #(ri), see Lemma|d5.13
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Then we see that
I, (®B" &g s(r) = (R @por (R ©r () = (R")" @r #(p)

Note that R" — (R*")" is formally smooth in the mgsna-adic topology, see
Lemma Hence R" — (R*")" is regular by Proposition We conclude
that (R5")" @ gen (r;) is regular over k(p) by Lemma as R™ ®@pr k(p) is regular
over k(p) by assumption. Since k(t;) is separable algebraic over x(p) it follows
from Algebra, Lemma that (R*")" ®pgen k(t;) is geometrically regular over
I{(ti). O

Lemma 50.9. Let p be a prime number. Let A be a Noetherian complete local
domain with fraction field K of characteristic p. Let q C Alx| be a mazimal ideal
lying over the mazimal ideal of A and let (0) # v C q be a prime lying over (0) C A.
Then Alz]y ®afy) k(t) is geometrically regular over k(t).

Proof. Note that K C «(t) is finite. Hence, given a finite purely inseparable ex-
tension L/k(t) there exists a finite extension of Noetherian complete local domains
A C B such that x(t) ®4 B surjects onto L. Namely, you take B C L a finite
A-subalgebra whose field of fractions is L. Denote v/ C B[] the kernel of the map
Blz] = Alz] ®4 B — k(t) ®4 B — L so that k(t') = L. Then

Ala]y ©ap) L = Ala]y ©ap) Bla] ©pp) 5(¢) = [] Blal), @ppa w(¥)

where ¢y, ..., q¢ are the primes of B[z] lying over g, see Algebra, Lemma Thus
we see that it suffices to prove the rings B[z]}, ® [, £(t') are regular. This reduces
us to showing that A[z]) @4 £(v) is regular in the special case that K = £(t).

Assume K = k(). In this case we see that tK|[z] is generated by = — f for some
f € K and

Alz]y @ ap) k() = (Alz]] ©a K)/(z - f)

The derivation D = d/dz of A[z] extends to K[z] and maps z — f to a unit of K|[z].
Moreover D extends to Afz]} ®a K by Lemma As A — Alz]y is formally
smooth (see Lemmas and the ring A[x]q ®4 K is regular by Proposition
49.2| (the arguments of the proof of that proposition simplify significantly in this

particular case). We conclude by Lemma O

Proposition|50.10. Let R be a G-ring. If R — S is essentially of finite type then
S is a G-ring.

Proof. Since being a G-ring is a property of the local rings it is clear that a
localization of a G-ring is a G-ring. Conversely, if every localization at a prime is
a G-ring, then the ring is a G-ring. Thus it suffices to show that S is a G-ring for
every finite type R-algebra S and every prime q of S. Writing S as a quotient of
R[xzq,...,z,] we see from Lemma that it suffices to prove that R[z1,...,x,] is
a G-ring. By induction on n it suffices to prove that R[x] is a G-ring. Let q C R]x]
be a maximal ideal. By Lemma it suffices to show that

Rlz]g — Rlz]g

is regular. If q lies over p C R, then we may replace R by R,,. Hence we may assume
that R is a Noetherian local G-ring with maximal ideal m and that q C R[z] lies
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over m. Note that there is a unique prime q' C R"[z] lying over q. Consider the
diagram

Rlz]g —— (R"[z]q)"

]

Rlalq RMalq

Since R is a G-ring the lower horizontal arrow is regular (as a localization of a
base change of the regular ring map R — R”). Suppose we can prove the right
vertical arrow is regular. Then it follows that the composition R[z]q — (R"[x]q)"
is regular, and hence the left vertical arrow is regular by Lemma [{1.7] Hence we
see that we may assume R is a Noetherian complete local ring and q a prime lying
over the maximal ideal of R.

Let R be a Noetherian complete local ring and let ¢ C R[x] be a maximal ideal
lying over the maximal ideal of R. Let v C q be a prime ideal. We want to show
that R[z]q ®p[) k(v) is a geometrically regular algebra over #(r). Set p = RN .
Then we can replace R by R/p and q and t by their images in R/p[z], see Lemma
50.2] Hence we may assume that R is a domain and that tN R = (0).

By Algebra, Lemma [160.11 we can find Ry C R which is regular and such that R is
finite over Ry. Applying Lemma@ we see that it suffices to prove R[x]él\ @Rz K (T)
is geometrically regular over x(r) when, in addition to the above, R is a regular
complete local ring.

Now R is a regular complete local ring, we have q C v C R[z], we have (0) = RNt
and g is a maximal ideal lying over the maximal ideal of R. Since R is regular
the ring R[z] is regular (Algebra, Lemma [163.10). Hence the localization Rl[z], is
regular. Hence the completions R[z]} are regular, see Lemma Hence the fibre
R[z]} ® Ry £(v) is, as a localization of R[z]y, also regular. Thus we are done if the

characteristic of the fraction field of R is 0.

If the characteristic of R is positive, then R = k[[z1,...,2,]]. In this case we split
the argument in two subcases:

(1) The case v = (0). The result is a direct consequence of Lemma [50.5]
(2) The case v # (0). This is Lemma [50.9]

(]

Remark| 50.11. Let R be a G-ring and let I C R be an ideal. In general it is
not the case that the I-adic completion R” is a G-ring. An example was given
by Nishimura in [Nis81]. A generalization and, in some sense, clarification of this
example can be found in the last section of [Dum00Q].

Proposition| 50.12. The following types of rings are G-rings:

(1) fields,

(2) Noetherian complete local rings,

(3> Z7

(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. For fields, Z and Dedekind domains of characteristic zero this follows imme-
diately from the definition and the fact that the completion of a discrete valuation
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ring is a discrete valuation ring. A Noetherian complete local ring is a G-ring by
Proposition [50.6] The statement on finite type overrings is Proposition [(0.10] O

Lemma 50.13. Let (A, m) be a henselian local ring. Then A is a filtered colimit
of a system of henselian local G-rings with local transition maps.

Proof. Write A = colim A; as a filtered colimit of finite type Z-algebras. Let p; be
the prime ideal of A; lying under m. We may replace A; by the localization of A;
at p;. Then A; is a Noetherian local G-ring (Proposition . By Lemma m
we see that A = colim A?. By Lemma the rings A are G-rings. O

Lemma 50.14. Let A be a G-ring. Let I C A be an ideal and let A" be the
completion of A with respect to I. Then A — A" is regular.

Proof. The ring map A — A" is flat by Algebra, Lemma [97.2] The ring A" is
Noetherian by Algebra, Lemma Thus it suffices to check the third condition
of Lemma Let m’ C A" be a maximal ideal lying over m C A. By Algebra,
Lemma [96.6] we have A" C m’. Since A"/IA" = A/I we see that I C m, m/I =
m'/TA", and A/m = A"/w’. Since A"/m’ is a field, we conclude that m is a
maximal ideal as well. Then A, — A7, is a flat local ring homomorphism of
Noetherian local rings which identifies residue fields and such that mAp,, = m'A7,.
Thus it induces an isomorphism on complete local rings, see Lemma Let
(Am)”" be the completion of A, with respect to its maximal ideal. The ring map

(AN = (AM)w)" = (An)"
is faithfully flat (Algebra, Lemma [97.3). Thus we can apply Lemma to the
ring maps
Ap = (AN — (A"

to conclude because Ay — (An)” is regular as A is a G-ring. O

Lemma 50.15. Let A be a G-ring. Let I C A be an ideal. Let (A" I") be the
henselization of the pair (A, I), see Lemma|12.1, Then A" is a G-ring.

Proof. Let m" C A" be a maximal ideal. We have to show that the map from
A‘}; » to its completion has geometrically regular fibres, see Lemma Let m be
the inverse image of m” in A. Note that I* C m" and hence I C m as (A" I")
is a henselian pair. Recall that A" is Noetherian, I" = TA", and that A — A"
induces an isomorphism on I-adic completions, see Lemma [12:4] Then the local
homomorphism of Noetherian local rings

Ap — AL,

induces an isomorphism on completions at maximal ideals by Lemma (details
omitted). Let q" be a prime of Af;h lying over q C Ay. Set q; = q" and let qa, ..., q¢
be the other primes of A" lying over q, so that A" @4 s(q) = [[;—,, #(d:), see
Lemma [45.12| Using that (A")", = (An)" as discussed above we see

1, (Ah) ®, w(a) = (Ah) ©an (A @4, 5(0)) = (An)" @1, w(a)
Hence, as one of the components, the ring

()" @, 5(0")

[Mat70, Theorem
79]

[Gre76, Theorem 5.3
]
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is geometrically regular over x(q) by assumption on A. Since x(q") is separable
algebraic over k(q) it follows from Algebra, Lemma [166.6| that

() ©.0n, (a")
is geometrically regular over x(q") as desired. O

51. Properties of formal fibres

In this section we redo some of the arguments of Section [50| for to be able to talk
intelligently about properties of the formal fibres of Noetherian rings.

Let P be a property of ring maps k& — R where k is a field and R is Noetherian.
We say P holds for the fibres of a ring homomorphism A — B with B Noetherian
if P holds for k(q) — B ®4 k(q) for all primes q of A. In the following we will use
the following assertions
(A) P(k— R) = P(k' — R®y k') for finitely generated field extensions k'/k,
(B) P(k— Ry), Vp € Spec(R) & P(k — R),
(C) given flat maps A — B — C of Noetherian rings, if the fibres of A — B
have P and B — C is regular, then the fibres of A — C have P,
(D) given flat maps A — B — C of Noetherian rings if the fibres of A — C
have P and B — C is faithfully flat, then the fibres of A — B have P,
(E) given k — k' — R with R Noetherian if k'/k is separable algebraic and
P(k — R), then P(k' — R), and
(F) add more here.
Given a Noetherian local ring A we say “the formal fibres of A have P” if P holds
for the fibres of A — A”. We say that R is a P-ring if R is Noetherian and for all
primes p of R the formal fibres of R, have P.

Lemma 51.1. Let R be a Noetherian ring. Let P be a property as above. Then

R is a P-ring if and only if for every pair of primes ¢ C p C R the k(q)-algebra
(R/a)y ®ryq £(a)

has property P.

Proof. This follows from the fact that
Ry @r k(q) = (R/q)p @r/q £(0)

as algebras over k(q). O

Lemma 51.2. Let R — A be a homomorphism of Noetherian rings. Assume P
has property (B). The following are equivalent

(1) the fibres of R — A have P,

(2) the fibres of Ry — Aq have P for all ¢ C A lying over p C R, and

(3) the fibres of Ry — Aw have P for all maximal ideals m" C A lying over m

in R.

Proof. Let p C R be a prime. Then the fibre over p is the ring A ® g k(p) whose
spectrum maps bijectively onto the subset of Spec(A) consisting of primes q lying
over p, see Algebra, Remark[17.8] For such a prime q choose a maximal ideal ¢ C m’
and set m = RNm’. Then p C m and we have

(A®RK[P))q = (Aw @R, £(P))q
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as k(q)-algebras. Thus (1), (2), and (3) are equivalent because by (B) we can check
property P on local rings. ([

Lemma 51.3. Let R — R’ be a finite type map of Noetherian rings and let

T

q—=p—>R

ql p/ /

be primes. Assume R — R’ is quasi-finite at p’. Assume P satisfies (A) and (B).
(1) If s(a) — R} ®r k(q) has P, then r(q') — R, ®@r £(q") has P.
(2) If the formal fibres of Ry have P, then the formal fibres of Ry, have P.

(3) If R — R’ is quasi-finite and R is a P-ring, then R’ is a P-ring.
Proof. Tt is clear that (1) = (2) = (3). Assume P holds for x(q) — R} ®r k(q).
By Algebra, Lemma [124.3] we see that
R} @r R = (R),)" x B
for some Rj-algebra B. Hence R, — (R,/)" is a factor of a base change of the
map Ry, — Ry. Tt follows that (R,)" ®p k(q') is a factor of

Ry ®r R @p #(q') = Ry ®r £(q) @n(q) 6(a").
Thus the result follows from the assumptions on P. (I

Lemma 51.4. Let R be a Noetherian ring. Assume P satisfies (C) and (D). Then
R is a P-ring if and only if the formal fibres of Ry have P for every maximal ideal
m of R.

Proof. Assume the formal fibres of R, have P for all maximal ideals m of R. Let
p be a prime of R and choose a maximal ideal p C m. Since Ry, — R} is faithfully
flat we can choose a prime p’ if R} lying over pRy. Consider the commutative
diagram

Ry —— (Bp)y — (BR)p

m p’
R R, R

By assumption the fibres of the ring map Ry, — Rj have P. By Proposition m
(Ra)p — (RG), is regular. The localization R, — (Ry)p is regular. Hence
R{, — (Ry), is regular by Lemma Hence the fibres of Ry — (Ry,); have P
by (C). Since Ry — (Ry), factors through the localization Ry, also the fibres of
Ry, — (R});» have P. Thus we may apply (D) to see that the fibres of R, — R}

have P. O

Proposition| 51.5. Let R be a P-ring where P satisfies (A), (B), (C), and (D).
If R — S 1is essentially of finite type then S is a P-ring.

Proof. Since being a P-ring is a property of the local rings it is clear that a
localization of a P-ring is a P-ring. Conversely, if every localization at a prime is
a P-ring, then the ring is a P-ring. Thus it suffices to show that S is a P-ring for
every finite type R-algebra S and every prime q of S. Writing S as a quotient of
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R[z1,...,x,] we see from Lemma that it suffices to prove that R[x1,...,x,] is
a P-ring. By induction on n it suffices to prove that R[x] is a P-ring. Let q C R]x]
be a maximal ideal. By Lemma [51.4] it suffices to show that the fibres of

Rlz]g — Rlz]g

have P. If q lies over p C R, then we may replace R by R,. Hence we may assume
that R is a Noetherian local P-ring with maximal ideal m and that q C R[z] lies
over m. Note that there is a unique prime ' C R"[z] lying over gq. Consider the
diagram

Rlz]g —— (R"[z]q)"

]

Rlz]q RMalq

Since R is a P-ring the fibres of R[z] — R”[z] have P because they are base changes
of the fibres of R — R”" by a finitely generated field extension so (A) applies.
Hence the fibres of the lower horizontal arrow have P for example by Lemma [51.2
The right vertical arrow is regular because R” is a G-ring (Propositions and
50.10). It follows that the fibres of the composition R[z]; — (R"[z]q)" have P
by (C). Hence the fibres of the left vertical arrow have P by (D) and the proof is
complete. O

Lemma 51.6. Let A be a P-ring where P satisfies (B) and (D). Let I C A be
an ideal and let A" be the completion of A with respect to I. Then the fibres of
A — A" have P.

Proof. The ring map A — A" is flat by Algebra, Lemma [97.2] The ring A" is
Noetherian by Algebra, Lemma Thus it suffices to check the third condition
of Lemma Let m’ C A" be a maximal ideal lying over m C A. By Algebra,
Lemma [96.6] we have A" C m’. Since A"/IA" = A/I we see that I C m, m/I =
m'/TAN, and A/m = A"/m’/. Since A"/m’ is a field, we conclude that m is a
maximal ideal as well. Then A, — A}, is a flat local ring homomorphism of
Noetherian local rings which identifies residue fields and such that mA},, = m'AJ,.
Thus it induces an isomorphism on complete local rings, see Lemma [A3.9] Let
(Am)” be the completion of Ay, with respect to its maximal ideal. The ring map

(A% = (A)m)" = (Awm)"
is faithfully flat (Algebra, Lemma . Thus we can apply (D) to the ring maps
Am = (AN — (A"
to conclude because the fibres of Ay — (An)”" have P as A is a P-ring. O

Lemma 51.7. Let A be a P-ring where P satisfies (B), (C), (D), and (E). Let
I C A be an ideal. Let (A" I") be the henselization of the pair (A,I), see Lemma
12.1. Then A" is a P-ring.

Proof. Let m" ¢ A" be a maximal ideal. We have to show that the fibres of
Al — (Al ,)" have P, see Lemma Let m be the inverse image of m” in A.
Note that I" C m" and hence I C m as (A", I") is a henselian pair. Recall that
A" is Noetherian, I = T A", and that A — A" induces an isomorphism on I-adic
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completions, see Lemma [12.4] Then the local homomorphism of Noetherian local
rings

Ap — AR,
induces an 1som0rph15m on completions at maximal ideals by Lemma 9| (details
omitted). Let g be a prime of A, lying over ¢ C An. Set g1 = ¢" and 1et q2,- -+, ¢
be the other primes of A" lying over q, so that A" ® 4 x(q) = [Tizi. i 5(a:), see
Lemma Using that (4")), = (Am)" as discussed above we see

L., (A5 @ar, w@) = (Ah) ©n, (Al @, 5(8) = (Aw)” D1, 5(0)
Hence, looking at local rings and using (B), we see that
k(@) — (Ag)" @ar, #(0")

has P as k(q) = (Am)" ®a,, x(q) does by assumption on A. Since /@(qh)/n( ) is
separable algebraic, by (E) we find that x(q") — (A2,)" ®an, k(q") has P as

desired. 0

Lemma 51.8. Let R be a Noetherian local ring which is a P-ring where P satisfies

(B), (C), (D), and (E). Then the henselization R" and the strict henselization R*"
are P-rings.

Proof. We have seen this for the henselization in Lemma To prove it for the
strict henselization, it suffices to show that the formal ﬁbreb of R*" have P, see
Lemma Let t C R*" be a prime and set p = RNt. Set v; = vand let vg,..., 1,
be the other primes of R*" lying over p, so that R*" @ r(p) = [[,_, , x(r:), see
Lemma [45.73] Then we see that o

1'[1_:1“%(1138'1)A @pen £(t) = (R*™MN @pen (R @ k(p)) = (R @5 k(D)

Note that R" — (R*")" is formally smooth in the M(Ren)n —adlc topology, see
Lemma m Hence R" — (R*")" is regular by Proposition We conclude
that property P holds for x(p) — (R*")" @ x(p) by (C) and our assumption on R.
Using property (B), using the decomposition above, and looking at local rings we
conclude that property P holds for k(p) — (R*")" ®@pen r(t). Since k(t)/k(p) is sep-
arable algebraic, it follows from (E) that P holds for x(t) = (R*")" @pen s(r). O

Lemma 51.9. Properties (A), (B), (C), (D), and (E) hold for P(k — R) =“R is
geometrically reduced over k”.

Proof. Part (A) follows from the definition of geometrically reduced algebras (Al-
gebra, Definition . Part (B) follows too: a ring is reduced if and only if all
local rings are reduced. Part (C). This follows from Lemma [42.1] Part (D). This
follows from Algebra, Lemma Part (E). This follows from Algebra, Lemma
43.9 O

Lemma 51.10. Properties (A), (B), (C), (D), and (E) hold for P(k — R) =“R
is geometrically normal over k’.

Proof. Part (A) follows from the definition of geometrically normal algebras (Al-
gebra, Definition . Part (B) follows too: a ring is normal if and only if all of
its local rings are normal. Part (C). This follows from Lemma[42.2] Part (D). This
follows from Algebra, Lemma Part (E). This follows from Algebra, Lemma
[165.61 O
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P(k — R) =“R has (S,)”.

Proof. Let & — R be a ring map where k is a field and R a Noetherian ring.
Let k'/k be a finitely generated field extension. Then the fibres of the ring map
R — R®y k' are Cohen-Macaulay by Algebra, Lemma Hence we may apply
Algebra, Lemma to the ring map R — R ®j k' to see that if R has (S,,) so
does R ®, k'. This proves (A). Part (B) follows too: a Noetherian rings has (.5,,)
if and only if all of its local rings have (S,,). Part (C). This follows from Algebra,
Lemma as the fibres of a regular homomorphism are regular and in particular
Cohen-Macaulay. Part (D). This follows from Algebra, Lemma Part (E).
This is immediate as the condition does not refer to the ground field. O

Lemma 51.12. Properties (A), (B), (C), (D), and (E) hold for P(k — R) =“R
is Cohen-Macaulay”

Proof. Follows immediately from Lemma [51.11] and the fact that a Noetherian
ring is Cohen-Macaulay if and only if it satisfies conditions (.S,,) for all n. O

Lemma 51.13. Fiz n > 0. Properties (A), (B), (C), (D), and (E) hold for
P(k — R) =“R®y k' has (Ry,) for all finite extensions k' /k”.

Proof. Let & — R be a ring map where k is a field and R a Noetherian ring.
Assume P(k — R) is true. Let K/k be a finitely generated field extension. By
Algebra, Lemma we can find a diagram

K ——K'

]

k——F

where k' /k, K'/K are finite purely inseparable field extensions such that K'/k’ is
separable. By Algebra, Lemma[158.10] there exists a smooth k’-algebra B such that
K is the fraction field of B. Now we can argue as follows: Step 1: R ®;, k’ satisfies
(Sn) because we assumed P for k — R. Step 2: R®r k' - RQ k' Qp B is a
smooth ring map (Algebra, Lemma and we conclude R ®j, k' ®/ B satisfies
(S,) by Algebra, Lemma (and using Algebra, Lemma to see that the
hypotheses are satisfied). Step 3. R® k' ®p K' = R®y K’ satisfies (R,,) as it is a
localization of a ring having (R,,). Step 4. Finally R®, K satisfies (R,,) by descent
of (R,) along the faithfully flat ring map K ®; A — K’ ®; A (Algebra, Lemma
[164.6). This proves (A). Part (B) follows too: a Noetherian ring has (R,) if and
only if all of its local rings have (R,,). Part (C). This follows from Algebra, Lemma
as the fibres of a regular homomorphism are regular (small detail omitted).
Part (D). This follows from Algebra, Lemma (small detail omitted).

Part (E). Let I/k be a separable algebraic extension of fields and let I — R be a
ring map with R Noetherian. Assume that & — R has P. We have to show that
I — R has P. Let I’/l be a finite extension. First observe that there exists a finite
subextension [/m/k and a finite extension m’/m such that I’ = | ®,, m’. Then
R®; ' = R®,, m’'. Hence it suffices to prove that m — R has property P, i.e., we
may assume that [/k is finite. If [/k is finite, then I’/k is finite and we see that

'@ R= (l/ ®k R) ®@el
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is a localization (by Algebra, Lemma [43.8)) of the Noetherian ring I’ ®j R which has
property (R,) by assumption P for k¥ — R. This proves that I’ ®; R has property
(Ry) as desired. O

52. Excellent rings

In this section we discuss Grothendieck’s notion of excellent rings. For the defi-
nitions of G-rings, J-2 rings, and universally catenary rings we refer to Definition

[0.1] Definition 7.1} and Algebra, Definition [105.3

Definition 52.1. Let R be a ring.

(1) We say R is quasi-excellent if R is Noetherian, a G-ring, and J-2.
(2) We say R is excellent if R is quasi-excellent and universally catenary.

Thus a Noetherian ring is quasi-excellent if it has geometrically regular formal fibres
and if any finite type algebra over it has closed singular set. For such a ring to
be excellent we require in addition that there exists (locally) a good dimension
function. We will see later (Section that to be universally catenary can be
formulated as a condition on the maps Ry, — R}, for maximal ideals m of R.

Lemma 52.2. Any localization of a finite type ring over a (quasi-)excellent ring
is (quasi-)excellent.

Proof. For finite type algebras this follows from the definitions for the properties
J-2 and universally catenary. For G-rings, see Proposition[50.10] We omit the proof
that localization preserves (quasi-)excellency. O

Proposition| 52.3. The following types of rings are excellent:
(1) fields,

(2) Noetherian complete local rings,

(3) Z7

(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. See Propositions and to see that these rings are G-rings and
have J-2. Any Cohen-Macaulay ring is universally catenary, see Algebra, Lemma
In particular fields, Dedekind rings, and more generally regular rings are
universally catenary. Via the Cohen structure theorem we see that complete local
rings are universally catenary, see Algebra, Remark O

The material developed above has some consequences for Nagata rings.

Lemma 52.4. Let (A,m) be a Noetherian local ring. The following are equivalent
(1) A is Nagata, and
(2) the formal fibres of A are geometrically reduced.

Proof. Assume (2). By Algebra, Lemma we have to show that if A — B
is finite, B is a domain, and m’ C B is a maximal ideal, then By is analytically
unramified. Combining Lemmas and and Proposition [F1.5] we see that the
formal fibres of By are geometrically reduced. In particular B, ®p L is reduced
where L is the fraction field of B. It follows that B}, is reduced, i.e., By is
analytically unramified.
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Assume (1). Let g C A be a prime ideal and let K/k(q) be a finite extension. We
have to show that A" ®4 K is reduced. Let A/q C B C K be a local subring
finite over A whose fraction field is K. To construct B choose z1,...,z, € K
which generate K over x(q) and which satisfy monic polynomials P;(T) = T% +
ai)lei_l + ...+ a;q4, = 0 with a; ; € m. Then let B be the A-subalgebra of K
generated by @1, ..., 2. (For more details see the proof of Algebra, Lemmal[162.14] )
Then

A" @4 K = (A" ®4 B)y = Bc/|\
Since B is reduced by Algebra, Lemma [162.14] the proof is complete. O

Lemma 52.5. A quasi-excellent ring is Nagata.

Proof. Let R be quasi-excellent. Using that a finite type algebra over R is quasi-
excellent (Lemma we see that it suffices to show that any quasi-excellent
domain is N-1, see Algebra, Lemma Applying Algebra, Lemma (and
using that a quasi-excellent ring is J-2) we reduce to showing that a quasi-excellent
local domain R is N-1. As R — R” is regular we see that R” is reduced by Lemma
[42] In other words, R is analytically unramified. Hence R is N-1 by Algebra,
Lemma [162.101 O

Lemma 52.6. Let (A, m) be a Noetherian local ring. If A is normal and the formal
fibres of A are normal (for example if A is excellent or quasi-excellent), then A" is
normal.

Proof. Follows immediately from Algebra, Lemma [163.8 O

53. Abelian categories of modules

Let R be a ring. The category Modg of R-modules is an abelian category. Here are
some examples of subcategories of Mod g which are abelian (we use the terminology
introduced in Homology, Definition [I0.1] as well as Homology, Lemmas and
10.3)):

(1) The category of coherent R-modules is a weak Serre subcategory of Modg.
This follows from Algebra, Lemma [90.3

(2) Let S C R be a multiplicative subset. The full subcategory consisting of
R-modules M such that multiplication by s € S is an isomorphism on M
is a Serre subcategory of Modg. This follows from Algebra, Lemma [9.5

(3) Let I C R be a finitely generated ideal. The full subcategory of I-power
torsion modules is a Serre subcategory of Modg. See Lemma [88.5

(4) In some texts a torsion module is defined as a module M such that for all
x € M there exists a nonzerodivisor f € R such that fx = 0. The full
subcategory of torsion modules is a Serre subcategory of Modg.

(5) If R is not Noetherian, then the category Modeg of finitely generated R-
modules is not abelian. Namely, if I C R is a non-finitely generated ideal,
then the map R — R/I does not have a kernel in Mod{%g.

(6) If R is Noetherian, then coherent R-modules agree with finitely generated
(i.e., finite) R-modules, see Algebra, Lemmas [90.5] (90.4} and [31.4] Hence
Modég is abelian by (1) above, but in fact,in this case the category Mod{%g
is a (strong) Serre subcategory of Modg.
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54. Injective abelian groups

In this section we show the category of abelian groups has enough injectives. Recall
that an abelian group M is divisible if and only if for every x € M and every n € N
there exists a y € M such that ny = =.

Lemma 54.1. An abelian group J is an injective object in the category of abelian
groups if and only if J is divisible.

Proof. Suppose that J is not divisible. Then there exists an x € J and n € N
such that there is no y € J with ny = . Then the morphism Z — J, m — mx
does not extend to %Z D Z. Hence J is not injective.

Let A C B be abelian groups. Assume that J is a divisible abelian group. Let
¢ : A — J be a morphism. Consider the set of homomorphisms ¢’ : A" — J with
A C A C Band ¢'|a = p. Define (4’,¢") > (A”,¢") if and only if A" > A”
and ¢'|4» = . If (A;, vi)icr is a totally ordered collection of such pairs, then we
obtain a map (J;.; A;i — J defined by a € A; maps to ¢;(a). Thus Zorn’s lemma
applies. To conclude we have to show that if the pair (A’,¢’) is maximal then
A’ = B. In other words, it suffices to show, given any subgroup A C B, A # B and
any ¢ : A — J, then we can find ¢’ : A’ — J with A C A’ C B such that (a) the
inclusion A C A’ is strict, and (b) the morphism ¢’ extends .

To prove this, pick z € B, x € A. If there exists no n € N such that nz € A, then
A®Z = A+ Zzx. Hence we can extend ¢ to A’ = A 4+ Zx by using ¢ on A and
mapping x to zero for example. If there does exist an n € N such that nz € A, then
let n be the minimal such integer. Let z € J be an element such that nz = p(nz).
Define a morphism @ : A® Z — J by (a,m) — ¢(a) + mz. By our choice of z the
kernel of ¢ contains the kernel of the map A®Z — B, (a,m) — a + mx. Hence ¢
factors through the image A’ = A + Zz, and this extends the morphism ¢. O

We can use this lemma to show that every abelian group can be embedded in a
injective abelian group. But this is a special case of the result of the following
section.

55. Injective modules

Some lemmas on injective modules.

Definition 55.1. Let R be a ring. An R-module J is injective if and only if the
functor Hompg(—, J) : Modg — Modpg is an exact functor.

The functor Homp(—, M) is left exact for any R-module M, see Algebra, Lemma
Hence the condition for J to be injective really signifies that given an injection
of R-modules M — M’ the map Hompg(M’, J) — Hompg(M, J) is surjective.

Before we reformulate this in terms of Ext-modules we discuss the relationship
between Exty (M, N) and extensions as in Homology, Section @

Lemmal 55.2. Let R be a ring. Let A be the abelian category of R-modules. There

is a canonical isomorphism Ext4(M, N) = Extg(M, N) compatible with the long
exact sequences of Algebra, Lemmas and[71.77 and the 6-term exact sequences
of Homology, Lemma[6.4).

Proof. Omitted. O
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Lemma 55.3. Let R be a ring. Let J be an R-module. The following are equivalent
(1) J s injective,
(2) Exty(M,J) =0 for every R-module M.

Proof. Let 0 - M" — M’ — M — 0 be a short exact sequence of R-modules.
Consider the long exact sequence

0 — Homp(M,J) —» Homp(M', J) — Homp(M", J)
— Exth(M,J) — Exth(M',J) — Extp(M",J) — ...

of Algebra, Lemma Thus we see that (2) implies (1). Conversely, if J is
injective then the Ext-group is zero by Homology, Lemma and Lemma ([

Lemma 55.4. Let R be a ring. Let J be an R-module. The following are equivalent
(1) J is injective,
(2) Ext}%(R/I, J) =0 for every ideal I C R, and
(3) for anideal I C R and module map I — J there exists an extension R — J.

Proof. If I C R is an ideal, then the short exact sequence 0 - I - R — R/I — 0
gives an exact sequence

Hompg(R,J) — Hompg(I,J) = Extgr(R/I,J) = 0

by Algebra, Lemma and the fact that Exty(R,J) = 0 as R is projective
(Algebra, Lemma [77.2). Thus (2) and (3) are equivalent. In this proof we will
show that (1) < (3) which is known as Baer’s criterion.

Assume (1). Given a module map I — J as in (3) we find the extension R — J
because the map Hompg(R, J) — Hompg(I, J) is surjective by definition.

Assume (3). Let M C N be an inclusion of R-modules. Let ¢ : M — J be a
homomorphism. We will show that ¢ extends to N which finishes the proof of the
lemma. Consider the set of homomorphisms ¢’ : M’ — J with M € M’ € N and
O'|m = . Define (M',¢") > (M",¢") if and only if M’ > M" and ¢'|pv = ¢”.
If (M;,vi)icr is a totally ordered collection of such pairs, then we obtain a map
Uier M; — J defined by a € M; maps to ¢;(a). Thus Zorn’s lemma applies. To
conclude we have to show that if the pair (M’,¢’) is maximal then M’ = N. In
other words, it suffices to show, given any subgroup M C N, M # N and any
¢ : M — J, then we can find ¢’ : M’ — J with M C M’ C N such that (a) the
inclusion M C M’ is strict, and (b) the morphism ¢’ extends ¢.

To prove this, pick v € N, x & M. Let I = {f € R| fx € M}. This is an ideal of
R. Define a homomorphism ) : I — J by f — o(fz). Extend to a map ¢ : R — J
which is possible by assumption (3). By our choice of I the kernel of M & R — J,
(y, f) — y—(f) contains the kernel of the map M@&R — N, (y, f) — y-+fz. Hence
this homomorphism factors through the image M’ = M + Rz and this extends the
given homomorphism as desired. (]

In the rest of this section we prove that there are enough injective modules over a
ring R. We start with the fact that Q/Z is an injective abelian group. This follows
from Lemma B4l

Definition 55.5. Let R be a ring.
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(1) For any R-module M over R we denote MV = Hom(M,Q/Z) with its
natural R-module structure. We think of M — MY as a contravariant
functor from the category of R-modules to itself.

(2) For any R-module M we denote

P =@ _ Rim
the free module with basis given by the elements [m] with m € M. We let
F(M) — M, > filmi] = > fim; be the natural surjection of R-modules.
We think of M — (F(M) — M) as a functor from the category of R-
modules to the category of arrows in R-modules.

Lemma 55.6. Let R be a ring. The functor M — M is exact.
Proof. This because Q/Z is an injective abelian group by Lemma m [l

There is a canonical map ev : M — (M) given by evaluation: given x € M we
let ev(z) € (MY)Y = Hom(MY,Q/Z) be the map ¢ — p(x).

Lemmal 55.7. For any R-module M the evaluation map ev : M — (MY)V is
injective.

Proof. You can check this using that Q/Z is an injective abelian group. Namely,
if z € M is not zero, then let M’ C M be the cyclic group it generates. There
exists a nonzero map M’ — Q/Z which necessarily does not annihilate z. This
extends to a map ¢ : M — Q/Z and then ev(z)(¢) = ¢(z) # 0. O

The canonical surjection F (M) — M of R-modules turns into a canonical injection,
see above, of R-modules
(M) — (F(MY))".

Set J(M) = (F(MY))Y. The composition of ev with this the displayed map gives
M — J(M) functorially in M.
Lemma 55.8. Let R be a ring. For every R-module M the R-module J(M) is
injective.
Proof. Note that J(M) =[], RY as an R-module. As the product of injective
modules is injective, it suffices to show that RV is injective. For this we use that

Hompg (N, RY) = Homg(N, Homz (R, Q/Z)) = NV
and the fact that (—) is an exact functor by Lemma [55.6] O
Lemma 55.9. Let R be a ring. The construction above defines a covariant functor
M — (M — J(M)) from the category of R-modules to the category of arrows of

R-modules such that for every module M the output M — J(M) is an injective
map of M into an injective R-module J(M).

Proof. Follows from the above. O

In particular, for any map of R-modules M — N there is an associated morphism
J(M) — J(N) making the following diagram commute:

M ——-N

.

J(M) — J(N)
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This is the kind of construction we would like to have in general. In Homology,
Section [27] we introduced terminology to express this. Namely, we say this means
that the category of R-modules has functorial injective embeddings.

56. Derived categories of modules

In this section we put some generalities concerning the derived category of modules
over a ring.

Let A be a ring. The category of A-modules is denoted Mods. We will use the
symbol K(A) to denote the homotopy category of complexes of A-modules, i.e.,
we set K(A) = K(Mody4) as a category, see Derived Categories, Section 8 The
bounded versions are K+(A), K~ (A), and K’(A). We view K (A) as a triangulated
category as in Derived Categories, Section The derived category of A, denoted
D(A), is the category obtained from K (A) by inverting quasi-isomorphisms, i.e., we
set D(A) = D(Mod), see Derived Categories, Section The bounded versions
are DT (A), D™(A), and D’(A).

Let A be a ring. The category of A-modules has products and products are ex-
act. The category of A-modules has enough injectives by Lemma Hence
every complex of A-modules is quasi-isomorphic to a K-injective complex (Derived
Categories, Lemma [34.5). It follows that D(A) has countable products (Derived
Categories, Lemma and in fact arbitrary products (Injectives, Lemma .
This implies that every inverse system of objects of D(A) has a derived limit (well
defined up to isomorphism), see Derived Categories, Section

Lemmal 56.1. Let R — S be a flat ring map. If I® is a K-injective complex of
S-modules, then I® is K-injective as a complex of R-modules.

Proof. This is true because Hom gy (M®,I*) = Homg (g)(M®* ®g S, I1*) by Alge-
bra, Lemma [14.3] and the fact that tensoring with S is exact. (]

Lemma 56.2. Let R — S be an epimorphism of rings. Let I® be a complex of
S-modules. If I*® is K-injective as a complex of R-modules, then I°® is a K-injective
complex of S-modules.

Proof. This is true because Homg gy (N®,I*) = Homg (g)(N*®, I*) for any complex
of S-modules N*, see Algebra, Lemma [107.14 O

Lemmal 56.3. Let A — B be a ring map. If I* is a K-injective complex of
A-modules, then Hom 4 (B, I*) is a K-injective complex of B-modules.

Proof. This is true because Homg () (N®,Hom(B,1*)) = Homg4)(N®,I°®) by
Algebra, Lemma [14.4] O

57. Computing Tor

Let R be a ring. We denote D(R) the derived category of the abelian category
Modpg of R-modules. Note that Modg has enough projectives as every free R-
module is projective. Thus we can define the left derived functors of any additive
functor from Modpg to any abelian category.

63ee also Injectives, Remark m
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This applies in particular to the functor — ® g M : Modr — Modg whose left
derived functors are the Tor functors Tor*(—, M), see Algebra, Section There
is also a total left derived functor

(57.0.1) —~®%M : D™ (R) — D™ (R)

which is denoted — ®% M. Tts satellites are the Tor modules, i.e., we have
H™?(N @ M) = Tory (N, M).

A special situation occurs when we consider the tensor product with an R-algebra

A. In this case we think of — ® g A as a functor from Modgr to Mod4. Hence the
total right derived functor

(57.0.2) —®%A: D (R) — D™ (A)
which is denoted — ®% A. Tts satellites are the tor groups, i.e., we have
H™P(N ®F A) = Tory (N, A).
In particular these Tor groups naturally have the structure of A-modules.
We will generalize the material in this section to unbounded complexes in the next

few sections.

58. Tensor products of complexes

Let R be aring. The category Comp(R) of complexes of R-modules has a symmetric
monoidal structure. Namely, suppose that we have two complexes of R-modules L*®
and M*®. Using Homology, Example and Homology, Definition we obtain
a third complex of R-modules, namely

TOt(L. ®R M')
Clearly this construction is functorial in both L®* and M*®. The associativity con-
straint will be the canonical isomorphism of complexes
Tot(Tot(K® ®@p L*) @ g M*) — Tot(K*® ®@p Tot(L® @p M*))

constructed in Homology, Remark from the triple complex K°® ®p L®* @ M*®.
The commutativity constraint is the canonical isomorphism

Tot(L* @ M*®) — Tot(M*® ®@p L*)
which uses the sign (—1)P? on the summand LP ® g M?. To see that it is a map of
complexes we compute for z € LP and y € M? that
dz®@y) =dr(r) @y + (=1)"z @ du(y)
Our rule says the right hand side is mapped to
(—)PHIy @ dp(z) + (-1)PP Ny (y) @ @
On the other hand, we see that
d((-DMy @ x) = (~1)P%du(y) @ « + ()P y @ dp(x)
These two expressions agree by inspection as desired.

Lemma 58.1. Let R be a ring. The category Comp(R) of complezxes of R-modules
endowed with the functor (L*, M*) — Tot(L* @gr M*®) and associativity and com-
mutativity constraints as above is a symmetric monoidal category.
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Proof. Omitted. Hints: as unit 1 we take the complex having R in degree 0
and zero in other degrees with obvious isomorphisms Tot(1 ® g M*®) = M*® and
Tot(K*® ®r 1) = K°. to prove the lemma you have to check the commutativity of
various diagrams, see Categories, Definitions and The verifications are
straightforward in each case. O

Lemma 58.2. Let R be a ring. Let P® be a complexr of R-modules. Let o, :
L* — M?* be homotopic maps of complexes. Then o and 8 induce homotopic maps

Tot(a ® idp), Tot(8 ® idp) : Tot(L® @r P*) — Tot(M*® ®@gr P°®).

In particular the construction L* — Tot(L®* @ P®) defines an endo-functor of the
homotopy category of complexes.

Proof. Say a = 3+ dh + hd for some homotopy h defined by h™ : L™ — M"~ 1.
Set

A" = @a+b=n Wt @idpe : 69a+b=n L*&p P' — 69a+b=n M @p P’
Then a straightforward computation shows that
Tot(a ® idp) = Tot(S ® idp) + dH + Hd
as maps Tot(L®* ®g P*) — Tot(M*® ®p P*). ]
Lemma 58.3. Let R be a ring. The homotopy category K(R) of complexes of

R-modules endowed with the functor (L*, M®) — Tot(L®* @ M*®) and associativity
and commutativity constraints as above is a symmetric monoidal category.

Proof. This follows from Lemmas (8.1 and B8.2 Details omitted. O

Lemmal 58.4. Let R be a ring. Let P* be a complex of R-modules. The functors
K(R) — K(R), L®*+— Tol(P*®grlL®)

and
K(R) — K(R), L®*+— Tol(L*®g P*®)

are exact functors of triangulated categories.

Proof. This follows from Derived Categories, Remark O

59. Derived tensor product

We can construct the derived tensor product in greater generality. In fact, it turns
out that the boundedness assumptions are not necessary, provided we choose K-flat
resolutions.

Definition 59.1. Let R be a ring. A complex K*® is called K-flat if for every
acyclic complex M* the total complex Tot(M*® ®pr K*) is acyclic.

Lemma 59.2. Let R be a ring. Let K* be a K-flat complex. Then the functor
K(R) — K(R), L®+—— Tot(L*®prK?®)
transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma and the fact that quasi-isomorphisms in K(R)
are characterized by having acyclic cones. (I

Lemmal 59.3. Let R — R’ be a ring map. If K® is a K-flat complex of R-modules,
then K® @gr R’ is a K-flat complex of R'-modules.
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Proof. Follows from the definitions and the fact that (K*®@r R )®r L* = K*®@rL*
for any complex L® of R’-modules. (]

Lemmal 59.4. Let R be a ring. If K®, L* are K-flat complexes of R-modules,
then Tot(K® ®p L*®) is a K-flat complex of R-modules.

Proof. Follows from the isomorphism
Tot(M*® @ Tot(K®* ®r L*)) = Tot(Tot(M*® @r K*) ®g L*)
and the definition. O

Lemma 59.5. Let R be a ring. Let (K, K3, K3) be a distinguished triangle in
K(R). If two out of three of K? are K-flat, so is the third.

Proof. Follows from Lemma and the fact that in a distinguished triangle in
K(R) if two out of three are acyclic, so is the third. O

Lemmal 59.6. Let R be a ring. Let 0 — K7 — K5 — K3 — 0 be a short exact
sequence of complexes. If K is flat for all n € Z and two out of three of K? are
K-flat, so is the third.

Proof. Let L® be a complex of R-modules. Then

0 — Tot(L* ®r K1) — Tot(L* @ K35) — Tot(L* ®p K3) — 0
is a short exact sequence of complexes. Namely, for each n,m the sequence of
modules 0 — L" ®r K" = L" @r K3* — L™ ®r K5* — 0 is exact by Algebra,
Lemma [39.12] and the sequence of complexes is a direct sum of these. Thus the

lemma follows from this and the fact that in a short exact sequence of complexes
if two out of three are acyclic, so is the third. O

Lemmal 59.7. Let R be a ring. Let P* be a bounded above complex of flat R-
modules. Then P*® is K-flat.

Proof. Let L® be an acyclic complex of R-modules. Let £ € H™(Tot(L®* ®g P*)).
We have to show that £ = 0. Since Tot"(L*® ®p P*) is a direct sum with terms
L*®p P’ we see that & comes from an element in H"(Tot(7<,,L® ®x P*)) for some
m € Z. Since 7<,,L* is also acyclic we may replace L® by 7<,,L®. Hence we may
assume that L*® is bounded above. In this case the spectral sequence of Homology,
Lemma [25.3 has
'EV? = HP(L®* ®p P9)

which is zero as P? is flat and L® acyclic. Hence H*(Tot(L®* @ g P*)) = 0. O

In the following lemma by a colimit of a system of complexes we mean the termwise
colimit.

Lemmal 59.8. Let R be a ring. Let K — K3 — ... be a system of K-flat
complexes. Then colim; K? is K-flat. More generally any filtered colimit of K-flat
complezes is K-flat.

Proof. Because we are taking termwise colimits we have
colim; Tot(M*® ®p K;) = Tot(M*® ®g colim; K')

by Algebra, Lemma [12.90 Hence the lemma follows from the fact that filtered
colimits are exact, see Algebra, Lemma [8.8 g
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Lemma 59.9. Let R be a ring. Let K* be a complex of R-modules. If K® @p M
is acyclic for all finitely presented R-modules M, then K*® is K-flat.

Proof. We will use repeatedly that tensor product commute with colimits (Alge-
bra, Lemma . Thus we see that K®* @z M is acyclic for any R-module M,
because any R-module is a filtered colimit of finitely presented R-modules M, see
Algebra, Lemma Let M*® be an acyclic complex of R-modules. We have to
show that Tot(M*® ®p K*) is acyclic. Since M*® = colim 7<, M* (termwise colimit)
we have
Tot(M® ®@pr K*) = colim Tot(7<, M* @r K*)

with truncations as in Homology, Section As filtered colimits are exact (Algebra,
Lemma we may replace M*® by 7<, M*® and assume that M*® is bounded above.
In the bounded above case, we can write M*® = colim o> _,, M'* where the complexes
o0>_nM* are bounded but possibly no longer acyclic. Arguing as above we reduce
to the case where M*® is a bounded complex. Finally, for a bounded complex
M® — ... — M?" we can argue by induction on the length b — a of the complex.
The case b — a = 1 we have seen above. For b — a > 1 we consider the split short
exact sequence of complexes

0= 05011 M* - M* — M?%—a] -0
and we apply Lemma [58.4] to do the induction step. Some details omitted. O

Lemma 59.10. Let R be a ring. For any complex M*® there exists a K-flat complex
K* whose terms are flat R-modules and a quasi-isomorphism K* — M® which is
termuwise surjective.

Proof. Let P C Ob(Modpg) be the class of flat R-modules. By Derived Categories,
Lemma there exists a system K} — K3 — ... and a diagram

K1 K3

L

T<AM® ——T<oM®* —— ...

with the properties (1), (2), (3) listed in that lemma. These properties imply each
complex K is a bounded above complex of flat modules. Hence K is K-flat
by Lemma The induced map colim; K — M*® is a quasi-isomorphism and
termwise surjective by construction. The complex colim; K? is K-flat by Lemma

The terms colim K* are flat because filtered colimits of flat modules are flat,
see Algebra, Lemma [39.3 (]

Remark| 59.11. In fact, we can do better than Lemma [59.10, Namely, we can
find a quasi-isomorphism P® — M*® where P*® is a complex of R-modules endowed
with a filtration

0=F_ P*C FbPPCcIhP*C...CcP*
by subcomplexes such that
(1) P*=UFP,
(2) the inclusions F; P* — F;,1P*® are termwise split injections,
(3) the quotients F;1 P*®/F;P* are isomorphic to direct sums of shifts R[k] (as
complexes, so differentials are zero).
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This will be shown in Differential Graded Algebra, Lemma Moreover, given
such a complex we obtain a distinguished triangle

@FZP' - @FZP' — M*® — @FiP'[l}
in D(R). Using this we can sometimes reduce statements about general complexes
to statements about R[k] (this of course only works if the statement is preserved

under taking direct sums). More precisely, let T be a property of objects of D(R).
Suppose that

(1) it K; € D(R), i € I is a family of objects with T(K;) for all ¢ € I, then

(2) if K - L - M — KJ[1] is a distinguished triangle and T holds for two,
then T holds for the third object,

(3) T(R[K]) holds for all k.

Then T holds for all objects of D(R).
Lemma 59.12. Let R be a ring. Let o : P®* — Q° be a quasi-isomorphism of
K-flat complexes of R-modules. For every complex L*® of R-modules the induced
map

Tot(idr, ® «) : Tot(L® @p P*) — Tol(L* ®r Q°)
is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism K°® — L°® with K*® a K-flat complex, see
Lemma [59.10] Consider the commutative diagram

Tot(K® ®p P*) — Tot(K* ®r Q°)

| |

Tot(L* ®p P*) — Tot(L* @ Q°)
The result follows as by Lemma the vertical arrows and the top horizontal

arrow are quasi-isomorphisms. (I

Let R be a ring. Let M*® be an object of D(R). Choose a K-flat resolution K*® —
M?®, see Lemma [59.10] By Lemmas [58.2] and [58:4] we obtain an exact functor of
triangulated categories

K(R) — K(R), L*+—> Tot(L* ®x K*)

By Lemma this functor induces a functor D(R) — D(R) simply because D(R)
is the localization of K(R) at quasi-isomorphism. By Lemma [59.12| the resulting
functor (up to isomorphism) does not depend on the choice of the K-flat resolution.

Definition 59.13. Let R be a ring. Let M*® be an object of D(R). The derived
tensor product

— @% M*: D(R) — D(R)
is the exact functor of triangulated categories described above.

This functor extends the functor (57.0.1f). It is clear from our explicit constructions
that there is an isomorphism (involving a choice of signs, see below)

M*QF L* = L* ®F M*
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whenever both L* and M® are in D(R). Hence when we write M*® ®@% L* we will
usually be agnostic about which variable we are using to define the derived tensor
product with.

Lemma 59.14. Let R be a ring. Let K*®, L® be complezes of R-modules. There is
a canonical isomorphism

K*@hL* — L* o% K*
functorial in both complexes which uses a sign of (—1)P? for the map K? ®p L1 —
L1 ®p K? (see proof for explanation).

Proof. We may and do replace the complexes by K-flat complexes K*® and L*® and
then we use the commutativity constraint discussed in Section (I

Lemma 59.15. Let R be a ring. Let K®,L*, M® be complexes of R-modules.
There is a canonical isomorphism

(K* @p L°) @p M* = K* @ (L ©F M°)
functorial in all three complexes.

Proof. Replace the complexes by K-flat complexes and use the associativity con-
straint in Section [B8] O

Lemma 59.16. Let R be a ring. Let a : K®* — L® be a map of complexes of
R-modules. If K*® is K-flat, then there exist a compler N® and maps of complezes
b: K®*— N® and c: N®* — L® such that

(1) N* is K-flat,

(2) ¢ is a quasi-isomorphism,

(3) a is homotopic to cob.

If the terms of K® are flat, then we may choose N°®, b, and ¢ such that the same is
true for N°®.

Proof. We will use that the homotopy category K(R) is a triangulated category,
see Derived Categories, Proposition Choose a distinguished triangle K* —
L* — C* — K*[1]. Choose a quasi-isomorphism M®* — C*® with M* K-flat with
flat terms, see Lemma [59.10[ By the axioms of triangulated categories, we may
fit the composition M* — C* — K*[1] into a distinguished triangle K* — N°® —
M* — K*[1]. By Lemma we see that N* is K-flat. Again using the axioms
of triangulated categories, we can choose a map N® — L*® fitting into the following
morphism of distinghuised triangles

II. ]I. ]\I. K. [1]
K* L c* K*[1]

Since two out of three of the arrows are quasi-isomorphisms, so is the third arrow
N*® — L°® by the long exact sequences of cohomology associated to these distin-
guished triangles (or you can look at the image of this diagram in D(R) and use
Derived Categories, Lemma [4.3]if you like). This finishes the proof of (1), (2), and
(3). To prove the final assertion, we may choose N*® such that N =2 M"™ @ K", see
Derived Categories, Lemma [10.7] Hence we get the desired flatness if the terms of
K* are flat. O
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60. Derived change of rings

Let R — A be a ring map. Let N°® be a complex of A-modules. We can also use
K-flat resolutions to define a functor
— @% N*: D(R) - D(A)

as the left derived functor of the functor K(R) — K(A), M* — Tot(M*® ®r N°®).
In particular, taking N* = A[0] we obtain a derived base change functor

—®% A: D(R) - D(A)

extending the functor (57.0.2). Namely, for every complex of R-modules M*® we
can choose a K-flat resolution K* — M*® and set

M*® % N* = Tot(K* @ N*®).

You can use Lemmas and to see that this is well defined. However, to
cross all the t’s and dot all the i’s it is perhaps more convenient to use some general
theory.

Lemma 60.1. The construction above is independent of choices and defines an
ezact functor of triangulated categories — @% N® : D(R) — D(A). There is a
functorial isomorphism

E*®% N* = (B* ®F A) @5 N°

for E* in D(R).

Proof. To prove the existence of the derived functor — @% N*® we use the general
theory developed in Derived Categories, Section[14] Set D = K(R) and D' = D(A).
Let us write F' : D — D’ the exact functor of triangulated categories defined by the
rule F(M*®) = Tot(M*® ®r N°*). To prove the stated properties of F' use Lemmas
and We let S be the set of quasi-isomorphisms in D = K(R). This gives
a situation as in Derived Categories, Situation [I4.1] so that Derived Categories,
Definition applies. We claim that LF is everywhere defined. This follows
from Derived Categories, Lemma With P C Ob(D) the collection of K-flat

p9. 10

complexes: (1) follows from Lemma[59.10|and (2) follows from Lemma[59.12] Thus
we obtain a derived functor

LF:D(R)=S"'D — D' = D(A)

see Derived Categories, Equation . Finally, Derived Categories, Lemma
[14.15| guarantees that LF(K®) = F(K*®) = Tot(K*® ®r N*) when K* is K-flat, i.c.,
LF is indeed computed in the way described above. Moreover, by Lemma the
complex K*® @i A is a K-flat complex of A-modules. Hence

(K*®% A) @5 N* = Tot((K* ®pr A) ®4 N®) = Tot(K* ®4 N®) = K* @4 N*
which proves the final statement of the lemma. O

Lemma 60.2. Let R — A be a ring map. Let f : L®* — N* be a map of complezes
of A-modules. Then f induces a transformation of functors

19f:—@%L* — — oLk N®

If f is a quasi-isomorphism, then 1 ® f is an isomorphism of functors.
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Proof. Since the functors are computing by evaluating on K-flat complexes K*® we
can simply use the functoriality
Tot(K*® ®gr L*) — Tot(K* ®r N*®)

to define the transformation. The last statement follows from Lemma [59.2] O

Lemma/60.3. Let R — A be a ring map. The functor D(R) — D(A), E — E@%A
of Lemma is left adjoint to the restriction functor D(A) — D(R).

Proof. This follows from Derived Categories, Lemma|30.1|and the fact that —®@z A
and restriction are adjoint by Algebra, Lemma [14.3 (]

Remark 60.4 (Warning). Let R — A be a ring map, and let N and N’ be
A-modules. Denote Ng and Nj, the restriction of N and N’ to R-modules, see
Algebra, Section In this situation, the objects Np % N” and N @% N}, of D(A)
are in general not isomorphic! In other words, one has to pay careful attention as
to which of the two sides is being used to provide the A-module structure.

For a specific example, set R = k[z,y], A = R/(zy), N = R/(x) and N’ = A =
R/(zy). The resolution 0 — R %+ R — N}, — 0 shows that N@%k N}, = N[1]@N in
D(A). The resolution 0 — R = R — Ng — 0 shows that Ng ®% N is represented

by the complex A = A. To see these two complexes are not isomorphic, one can
show that the second complex is not isomorphic in D(A) to the direct sum of its
cohomology groups, or one can show that the first complex is not a perfect object
of D(A) whereas the second one is. Some details omitted.

Lemma 60.5. Let A — B — C be ring maps. Let N® be a complex of B-modules
and K*® a complex of C'-modules. The compositions of the functors

D) =25 p(py 2255, p(oy

is the functor — ®@% (N®* ®% K*®) : D(A) — D(C). If M, N, K are modules over
A, B, C, then we have

(M &% N)oh K =M% (N K)=(Me% C)t (N ek K)
in D(C). We also have a canonical isomorphism
(M @% N)ok K — (M o% K) oL (N ok 0)
using signs. Similar results holds for complexes.

Proof. Choose a K-flat complex P*® of B-modules and a quasi-isomorphism P® —
N* (Lemma [59.10). Let M* be a K-flat complex of A-modules representing an
arbitrary object of D(A). Then we see that
(M* &% P*) ok K* — (M* @5 N*) ok K°
is an isomorphism by Lemma applied to the material inside the brackets. By
Lemmas and the complex
Tot(M®* ®4 P*) = Tot(M®* ®@r A) @4 P*
is K-flat as a complex of B-modules and it represents the derived tensor product

in D(B) by construction. Hence we see that (M*® ®Y4 P*) @& K* is represented by
the complex

Tot(Tot(M* @4 P*) ®p K*) = Tot(M*® ©4 Tot(P* @5 K*))


https://stacks.math.columbia.edu/tag/0GMT
https://stacks.math.columbia.edu/tag/08YT
https://stacks.math.columbia.edu/tag/08YU

065Y

0657

0660

MORE ON ALGEBRA 146

of C-modules. Equality by Homology, Remark Going back the way we came
we see that this is equal to

M* @} (P* @y K®) «— M* &} (N* @) K°)
The arrow is an isomorphism by definition of the functor —®% K*. All of these con-

structions are functorial in the complex M*® and hence we obtain our isomorphism
of functors.

By the above we have the first equality in
(M @5 N) ek K =M% (Nek K) = (M5 C) et (N e K)
The second equality follows from the final statement of Lemma [60.1} The same
thing allows us to write N @% K = (N ®} C) ®% K and substituting we get
(M &% N)ek K = (M &% C) et (N ek C) ot K)
= (M &% C) ®¢ (K @¢ (N @ C))
= ((M &% C) 9¢ K) &g (N @ C))
= (M @& K) @& (N &% C)
by Lemmas and as well as the previously mentioned lemma. O

61. Tor independence

Consider a commutative diagram

A——> A

]

R——=FR

of rings. Given an object K of D(A) we can counsider its derived base change
K @% A’ to an object of D(A’). Or we can take the restriction of K to an object of
D(R) and consider the derived base change of this to an object of D(R'), denoted
K ®£§ R’ We claim there is a functorial comparison map

(61.0.1) Keb R — Kol A

in D(R'). To construct this comparison map choose a K-flat complex K*® of A-
modules representing K. Next, choose a quasi-isomorphism E® — K*® where E* is
a K-flat complex of R-modules. The map above is the map

K@ER =E*@p R — K* @4 A =Ko A

In general there is no chance that this map is an isomorphism.

However, we often encounter the situation where the diagram above is a “base
change” diagram of rings, i.e., A’ = A®g R’. In this situation, for any A-module
M we have M ®4 A’ = M ®r R'. Thus — ®pr R is equal to — ®4 A’ as a functor
Modys — Mody/. In general this equality does not extend to derived tensor
products. In other words, the comparison map is not an isomorphism. A simple
example is to take R = k[z], A= R' = A’ = k[z]/(z) = k and K* = A[0]. Clearly,
a necessary condition is that Torf(A7 R') =0 for all p > 0.

Definition 61.1. Let R be a ring. Let A, B be R-algebras. We say A and B are
Tor independent over R if Torf‘(A, B) =0 for all p > 0.
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Lemmal 61.2. The comparison map (61.0.1]) is an isomorphism if A’ = AQgr R’
and A and R’ are Tor independent over R.

Proof. To prove this we choose a free resolution F'* — R’ of R’ as an R-module.
Because A and R’ are Tor independent over R we see that F'®* @ A is a free A-
module resolution of A’ over A. By our general construction of the derived tensor
product above we see that

K@ A" 2 Tot(K*®a(F*@rA)) = Tot(K*®@r F*) 2 Tot(E*®@r F*) X E*®@r R’
as desired. ([l

Lemma 61.3. Consider a commutative diagram of rings
Al<~—R —— DB
A<—R——1B

Assume that R’ is flat over R and A’ is flat over A ® g R’ and B’ is flat over
R' ®r B. Then

Torf'(A, B) ®asnp) (4' @ B) = Torf® (A", B)
Proof. By Algebra, Section [76| there are canonical maps
Torf(A, B) — Torf (A®r R, B@g R') — Tork (A', B')
These induce a map from left to right in the formula of the lemma.

Take a free resolution F, — A of A as an R-module. Then we see that Fo @ R’ is a
resolution of AQr R'. Hence TorZR (A®RrR',B&rR’) is computed by Fe®@rBRgrR'.
By our assumption that R’ is flat over R, this computes Torf‘ (A,B) ®pg R’. Thus
Tor! (A®r R',B®gr R') = Tor(A, B) @z R’ (uses only flatness of R’ over R).

By Lazard’s theorem (Algebra, Theorem [81.4)) we can write A, resp. B’ as a filtered

colimit of finite free A ® g R’, resp. B ® g R/-modules. Say A’ = colim M; and
B’ = colim N;. The result above gives

TOI‘ZI%,(M,“NJ) = TOI'?(A,B) ®A®RB (M’L ®RI N])

as one can see by writing everything out in terms of bases. Taking the colimit we
get the result of the lemma. |

Lemmal 61.4. Let R — A and R — B be ring maps. Let R — R’ be a ring map
and set A’ = A®r R and B' = B®g R'. If A and B are tor independent over R
and R — R’ is flat, then A’ and B’ are tor independent over R'.

Proof. Follows immediately from Lemma and Definition [61.1 (I

Lemma 61.5. Assumptions as in Lemma , For M € D(A) there are canonical
isomorphisms

H'(M ®§ A") @ B') = H'(M @}, B) ©(agnp) (A’ ©r B)
of A’ @ pr B’-modules.
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Proof. Let us elucidate the two sides of the equation. On the left hand side we
have the composition of the functors D(A) — D(A") — D(R') — D(B’) with the
functor H' : D(B’) — Modp:. Since there is a map from A’ to the endomorphisms
of the object (M ®% A’) ®%, B’ in D(B’), we see that the left hand side is indeed
an A’ @ B'-module. By the same arguments we see that H'(M ®% B) has an
A ® p B-module structure.

We first prove the result in case B’ = R’ ® g B. In this case we choose a resolution
F* — B by free R-modules. We also choose a K-flat complex M*® of A-modules
representing M. Then the left hand side is represented by

H (Tot((M®* @4 A') @p (R @ F*))) = H (Tot(M® @4 A’ @ F*))
= H'(Tot(M® @r F*) @4 A")
= H (M ®% B)@, A’

The final equality because A — A’ is flat. The final module is the desired module
because A’ @ g B’ = A’ ® g B since we’ve assumed B’ = R’ ® g B in this paragraph.

General case. Suppose that B’ — B” is a flat ring map. Then it is easy to see that
H'(M &% A') @ B") = H'(M 3 A') ¢} B') @p B”

and

H' (M ®% B) ®agpp) (A @r B") = (H'(M ®F B) ®aepp) (A ®r B')) ®p B”

Thus the result for B’ implies the result for B”. Since we’ve proven the result for
R’ ®g B in the previous paragraph, this implies the result in general. O

Lemma 61.6. Let R be a ring. Let A, B be R-algebras. The following are
equivalent

(1) A and B are Tor independent over R,

(2) for every pair of primesp C A and q C B lying over the same prime vt C R
the rings Ap and By are Tor independent over R, and

(3) For every prime s of A®g B the module

TorR(A, B)s = Torf (Ay, By)s

(where p = ANs, q=BNs andt=RNs) is zero.

Proof. Let s be a prime of A ®p B as in (3). The equality
Torf(4, B), = Tor® (Ay, By)

where p = ANs, g =BNs and t = RN s follows from Lemma Hence (2)
implies (3). Since we can test the vanishing of modules by localizing at primes
(Algebra, Lemma [23.1)) we conclude that (3) implies (1). For (1) = (2) we use that

TOI“?" (AP7 BC{) = TOI‘ZR(A, B) ®(A®RB) (AIJ ®R, Bq)

again by Lemma [61.3] O
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62. Spectral sequences for Tor

In this section we collect various spectral sequences that come up when considering
the Tor functors.

Example 62.1. Let R be a ring. Let K, be a chain complex of R-modules with
K, =0 for n < 0. Let M be an R-module. Choose a resolution P, — M of M
by free R-modules. We obtain a double chain complex K, ®p P,. Applying the
material in Homology, Section (especially Homology, Lemma translated
into the language of chain complexes we find two spectral sequences converging to
H. (Ko ®% M). Namely, on the one hand a spectral sequence with Fa-page

(E2)i; = Torf (Hi(K.), M) = Hiy (K, ®% M)

and differential dy given by maps Tor} (H;(K,), M) — Tor} ,(H;11(K,), M). An-
other spectral sequence with E1-page

(Er)i; = Torj (Ki, M) = Hiy (K, @5 M)

with differential d; given by maps Torf(Ki,M) — Torf(Ki,l,M) induced by
K, — K;_4.

Example| 62.2. Let R — S be a ring map. Let M be an R-module and let N be
an S-module. Then there is a spectral sequence

Tor? (Tor (M, S), N) = Tor®

m n+m

(M,N).

To construct it choose a R-free resolution P, of M. Then we have
M@%N=P* ®@rN = (P*®rS)®s N

and then apply the first spectral sequence of Example [62.1]

Example 62.3. Consider a commutative diagram

B——=B =B®yA

]

A—> A

and B-modules M, N. Set M/ = M@ A’ = M@gB' and N' = N A’ = NgB'.
Assume that A — B is flat and that M and N are A-flat. Then there is a spectral
sequence

Tor{(Tor? (M, N), A') = Tor? ,(M', N')
The reason is as follows. Choose free resolution Fy — M as a B-module. As B and
M are A-flat we see that Fy ® 4 A’ is a free B’-resolution of M’. Hence we see that
the groups Torf ' (M',N") are computed by the complex

(Fo®a A)®p N'=(Fo@p N) @4 A' = (Fe®p N) @5 A’

the last equality because Fy ® g N is a complex of flat A-modules as N is flat over
A. Hence we obtain the spectral sequence by applying the spectral sequence of
Example

Example 62.4. Let K* L* be objects of D™ (R). Then there are spectral se-
quences
EP? = HP(K* ®% HY(L*)) = H"T9(K* @5 L*)
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with db? : ED? — E§+2’q_1 and
HI(HP(K®) ®% L*) = H'T(K* @F L°)
After replacing K*® and L*® by bounded above complexes of projectives, these spec-

tral sequences are simply the two spectral sequences for computing the cohomology
of Tot(K*® ® L*) discussed in Homology, Section

63. Products and Tor

The simplest example of the product maps comes from the following situation.
Suppose that K, L* € D(R). Then there are maps
(63.0.1) HY(K®)®r H (L*) — H™H(K®* % L*)
Namely, to define these maps we may assume that one of K*, L*® is a K-flat com-
plex of R-modules (for example a bounded above complex of free or projective
R-modules). In that case K*® @k L*® is represented by the complex Tot(K® ®r L*),
see Section [59] (or Section [57). Next, suppose that £ € H'(K*) and ¢ € HY(L®).
Choose k € Ker(K* — K1) and | € Ker(L/ — L7T1) representing ¢ and ¢. Then
we set

€U =class of k@1 in H™ (Tot(K® @r L*)).
This make sense because the formula (see Homology, Deﬁnition for the differ-
ential d on the total complex shows that k®1 is a cocycle. Moreover, if k' = d (k")
for some k" € K1, then k' ®1 = d(k” ®1) because [ is a cocycle. Similarly, altering
the choice of [ representing ¢ does not change the class of k ® [. It is equally clear
that U is bilinear, and hence to a general element of H'(K®) @z H7(L®) we assign

Y LG Y LU
in HH (Tot(K*® ®@p L*)).
Let R — A be a ring map. Let K* L* € D(R). Then we have a canonical
identification
(63.0.2) (K* ek A) b (L* ek A)= (K ek L) ok A

in D(A). It is constructed as follows. First, choose K-flat resolutions P* — K* and
Q* — L*® over R. Then the left hand side is represented by the complex Tot((P* Qg
A) @4 (Q® ®r A)) and the right hand side by the complex Tot(P®* ®r Q°) ®r A.
These complexes are canonically isomorphic. Thus the construction above induces
products

"[‘orf(K'7 A)®a Torﬁ (L*A) — Tor?

n+m

(K* &R L%, A)
which are occasionally useful.

Let M, N be R-modules. Using the general construction above, the canonical map
M ®E N — M ®gr N and functoriality of Tor we obtain canonical maps

(63.0.3) Tor (M, A) ® 4 Tor® (N, A) — TorZ, (M @r N, A)

n+m
Here is a direct construction using projective resolutions. First, choose projective
resolutions
P, M, Q¢— N, Ty— M®rN
over R. We have Hy(Tot(Ps ®r Qs)) = M ®p N by right exactness of ® zp. Hence
Derived Categories, Lemmas [19.6] and guarantee the existence and uniqueness
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of a map of complexes p : Tot(Pe @r Qo) — Tu such that Hy(u) = idpg,n. This
induces a canonical map

(M &% A) @% (N ®% A) = Tot((Ps @ A) ®4 (Qe ®r A))
= Tot(Py ®r Qo) ®r A
— T. ®RA

= (M ®rN) kA
in D(A). Hence the products (63.0.3) above are constructed using (63.0.1]) over A

to construct
Tor®(M, A) @ 4 Torf (N, A) — H """ (M @% A) @4 (N @k A))
and then composing by the displayed map above to end up in Tor? (M®gN,A).

n+m

An interesting special case of the above occurs when M = N = B where B is an
R-algebra. In this case we obtain maps

Tor® (B, A) ® 4 Tor® (B, A) — Tor?

n+m

(B®g B, A) — Tork

n+m (Ba A)

the second arrow being induced by the multiplication map B ® g B — B via func-
toriality for Tor. In other words we obtain an A-algebra structure on Tor?(B, A).
This algebra structure has many intriguing properties (associativity, graded com-
mutative, B-algebra structure, divided powers in some case, etc) which we will

discuss elsewhere (insert future reference here).

Lemma 63.1. Let R be a ring. Let A, B,C be R-algebras and let B — C be an
R-algebra map. Then the induced map

Tor(B, A) — Torf(C, A)
is an A-algebra homomorphism.

Proof. Omitted. Hint: You can prove this by working through the definitions,
writing all the complexes explicitly. (Il

64. Pseudo-coherent modules, I

Suppose that R is a ring. Recall that an R-module M is of finite type if there
exists a surjection R®* — M and of finite presentation if there exists a presentation
R®%1 5 R®a 5 M — (. Similarly, we can consider those R-modules for which
there exists a length n resolution

(6401) R@a" — R@anfl N R@ao S M =0

by finite free R-modules. A module is called pseudo-coherent if we can find such a
resolution for every n. Here is the formal definition.

Definition 64.1. Let R be a ring. Denote D(R) its derived category. Let m € Z.

(1) An object K* of D(R) is m-pseudo-coherent if there exists a bounded com-
plex E* of finite free R-modules and a morphism « : E* — K* such that
H'(«) is an isomorphism for i > m and H™(«) is surjective.

(2) An object K*® of D(R) is pseudo-coherent if it is quasi-isomorphic to a
bounded above complex of finite free R-modules.

(3) An R-module M is called m-pseudo-coherent if M0] is an m-pseudo-coherent
object of D(R).
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(4) An R-module M is called pseudo—coherenﬂ if M[0] is a pseudo-coherent
object of D(R).

As usual we apply this terminology also to complexes of R-modules. Since any
morphism E* — K*® in D(R) is represented by an actual map of complexes, see
Derived Categories, Lemma there is no ambiguity. It turns out that K*® is
pseudo-coherent if and only if K*® is m-pseudo-coherent for all m € Z, see Lemma
[645] Also, if the ring is Noetherian the condition can be understood as a finite
generation condition on the cohomology, see Lemma [64.17] Let us first relate this
to the informal discussion above.

Lemma 64.2. Let R be a ring and m € Z. Let (K*,L*, M*, f,g,h) be a distin-
guished triangle in D(R).
(1) If K* is (m+ 1)-pseudo-coherent and L® is m-pseudo-coherent then M® is
m-pseudo-coherent.
(2) If K*,M* are m-pseudo-coherent, then L® is m-pseudo-coherent.
(3) If L* is (m+1)-pseudo-coherent and M® is m-pseudo-coherent, then K* is
(m 4+ 1)-pseudo-coherent.

Proof. Proof of (1). Choose o : P* — K* with P* a bounded complex of finite
free modules such that H*(«) is an isomorphism for i > m + 1 and surjective for
i = m+1. We may replace P*® by 0>p,4+1P® and hence we may assume that P =0
for i < m+ 1. Choose g : E* — L*® with E* a bounded complex of finite free
modules such that H¢(j3) is an isomorphism for i > m and surjective for i = m. By
Derived Categories, Lemma we can find a map v : P* — E* such that the
diagram

K®*——1L°*

b

P.$E.

is commutative in D(R). The cone C(v)® is a bounded complex of finite free
R-modules, and the commutativity of the diagram implies that there exists a mor-
phism of distinguished triangles

(P*,E*,C(7)*) — (K*, L%, M*).
It follows from the induced map on long exact cohomology sequences and Homology,

Lemmas and that C(y)®* — M* induces an isomorphism on cohomology
in degrees > m and a surjection in degree m. Hence M*® is m-pseudo-coherent.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. O

Lemmal 64.3. Let R be a ring. Let K* be a complex of R-modules. Let m € Z.
(1) If K* is m-pseudo-coherent and H'(K®) = 0 for i > m, then H™(K*®) is a
finite type R-module.
(2) If K*® is m-pseudo-coherent and H'(K*®) = 0 fori > m+1, then H™1(K*)
s a finitely presented R-module.
Proof. Proof of (1). Choose a bounded complex E*® of finite projective R-modules

and a map « : £* — K*® which induces an isomorphism on cohomology in degrees
> m and a surjection in degree m. It is clear that it suffices to prove the result

"This clashes with what is meant by a pseudo-coherent module in [Bou61].
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for E°. Let n be the largest integer such that E™ # 0. If n = m, then the result
is clear. If n > m, then E"~! — E" is surjective as H"(E®) = 0. As E™ is finite
projective we see that E"~! = E’ @ E™. Hence it suffices to prove the result for
the complex (E’)® which is the same as E® except has E’ in degree n — 1 and 0 in
degree n. We win by induction on n.

Proof of (2). Choose a bounded complex E*® of finite projective R-modules and a
map « : E* — K*® which induces an isomorphism on cohomology in degrees > m
and a surjection in degree m. As in the proof of (1) we can reduce to the case that
E? =0 for i > m + 1. Then we see that H™T!(K*) = H™+1(E*) = Coker(E™ —
E™*1) which is of finite presentation. (|

Lemma 64.4. Let R be a ring. Let M be an R-module. Then

(1) M is 0-pseudo-coherent if and only if M is a finite R-module,

(2) M is (—1)-pseudo-coherent if and only if M is a finitely presented R-
module,

(3) M is (—d)-pseudo-coherent if and only if there exists a resolution

R®% — R®0a-1 5 5 RPY 5 M —0

of length d, and
(4) M is pseudo-coherent if and only if there exists an infinite resolution

coo— RP 5 R M0
by finite free R-modules.

Proof. If M is of finite type (resp. of finite presentation), then M is 0-pseudo-
coherent (resp. (—1)-pseudo-coherent) as follows from the discussion preceding
Definition Conversely, if M is 0-pseudo-coherent, then M = H°(M]|0])
is of finite type by Lemma If M is (—1)-pseudo-coherent, then it is O-
pseudo-coherent hence of finite type. Choose a surjection R®* — M and denote
K = Ker(R®* — M). By Lemma We see that K is O-pseudo-coherent, hence
of finite type, whence M is of finite presentation.

To prove the third and fourth statement use induction and an argument similar to
the above (details omitted). O

Lemma 64.5. Let R be a ring. Let K® be a complex of R-modules. The following
are equivalent

(1) K* is pseudo-coherent,

(2) K* is m-pseudo-coherent for every m € Z, and

(3) K* is quasi-isomorphic to a bounded above complex of finite projective R-

modules.

If (1), (2), and (3) hold and H'(K®) = 0 for i > b, then we can find a quasi-
isomorphism F* — K*® with F? finite free R-modules and F* =0 for i > b.
Proof. We see that (1) = (3) as a finite free module is a finite projective R-module.
Conversely, suppose P*® is a bounded above complex of finite projective R-modules.

Say P = 0 for i > ng. We choose a direct sum decompositions F™° = P"o g C™o
with F"° a finite free R-module, and inductively

anl —_ Pnfl o cn o Cnfl
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for n < ng with F™ a finite free R-module. As a complex F'® has maps F"~1 — F"
which agree with P"~! — P induce the identity C™ — C™, and are zero on C"~1.
The map F'* — P* is a quasi-isomorphism (even a homotopy equivalence) and hence
(3) implies (1).

Assume (1). Let E* be a bounded above complex of finite free R-modules and let
E®* — K* be a quasi-isomorphism. Then the induced maps o>, E® — K*® from
the stupid truncation of E® to K* show that K*® is m-pseudo-coherent. Hence (1)
implies (2).

Assume (2). Since K* is 0-pseudo-coherent we see in particular that K*® is bounded
above. Let b be an integer such that H*(K*®) = 0 for i > b. By descending induction
on n € Z we are going to construct finite free R-modules F* for i > n, differentials
d': F' — F"*! for i > n, maps o : F* — K’ compatible with differentials, such
that (1) H'(«) is an isomorphism for i > n and surjective for i = n, and (2) F* =0
for ¢ > b. Picture

n Fn+1
anl Kn Kn+1

The base case is n = b+ 1 where we can take F = 0 for all i. Induction step. Let
C* be the cone on « (Derived Categories, Definition . The long exact sequence
of cohomology shows that H{(C®) = 0 for i > n. By Lemma we see that
C* is (n — 1)-pseudo-coherent. By Lemma we see that H"~1(C*®) is a finite
R-module. Choose a finite free R-module F™*~! and a map 5 : F*~! — C"~! such
that the composition F*~! — C"~1 — (O™ is zero and such that F™~! surjects
onto H"~1(C*®). Since C"1 = K"~1 @ F" we can write 8 = (a"~!,—d""!). The
vanishing of the composition F"~! — C"~! — O™ implies these maps fit into a
morphism of complexes

Fn— 1 Fn Fn+ 1

dnfl
\Lanl ia \La

K" s K s K

Moreover, these maps define a morphism of distinguished triangles

(F"' = ..) —=(F" 1 = ..) Frt (F™ — .. )[1]
| L i
(F* = ..) K ce (F = .. )]

Hence our choice of 3 implies that the map of complexes (F"~! — ...) — K*®
induces an isomorphism on cohomology in degrees > n and a surjection in degree
n — 1. This finishes the proof of the lemma. O

Lemma 64.6. Let R be a ring. Let (K*,L*, M*, f,g,h) be a distinguished triangle
in D(R). If two out of three of K*®,L*, M*® are pseudo-coherent then the third is
also pseudo-coherent.

Proof. Combine Lemmas [64.2] and [64.5 O
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Lemma 64.7. Let R be a ring. Let K* be a complex of R-modules. Let m € Z.

(1) If H(K®) =0 for all i > m, then K*® is m-pseudo-coherent.

(2) If H(K®) = 0 for i > m and H™(K®) is a finite R-module, then K*® is
m-pseudo-coherent.

(3) IfHY(K®) =0 fori > m+1, the module H™1(K*®) is of finite presentation,
and H™(K*®) is of finite type, then K* is m-pseudo-coherent.

Proof. It suffices to prove (3). Set M = H™T1(K*®). Note that 75,11 K*® is
quasi-isomorphic to M[—m — 1]. By Lemma we see that M[—m — 1] is m-
pseudo-coherent. Since we have the distinguished triangle

(Tng.a K.v TZ7IL+1K.)

(Derived Categories, Remark by Lemma it suffices to prove that 7<,, K*
is pseudo-coherent. By assumption H™ (1<, K*®) is a finite type R-module. Hence
we can find a finite free R-module E and a map E — Ker(d%) such that the
composition £ — Ker(dt) - H™ (1<, K*®) is surjective. Then E[—m] — 7<,,, K*
witnesses the fact that 7<,, K* is m-pseudo-coherent. O

Lemmal 64.8. Let R be a ring. Let m € Z. If K* & L*® is m-pseudo-coherent
(resp. pseudo-coherent) so are K*® and L°®.

Proof. In this proof we drop the superscript ®. Assume that K & L is m-pseudo-
coherent. It is clear that K, L € D~ (R). Note that there is a distinguished triangle

(KoL, KoL LeLl]) = (K K,0)® (L, L Lo L)

see Derived Categories, Lemma [4.10, By Lemma we see that L @ L[1] is
m-pseudo-coherent. Hence also L[1] @ L[2] is m-pseudo-coherent. By induction
L[n] & L[n + 1] is m-pseudo-coherent. By Lemma we see that L[n] is m-
pseudo-coherent for large n. Hence working backwards, using the distinguished
triangles

(L[n], L[n] ® L[n — 1], L[n — 1))

we conclude that L[n],L[n — 1],...,L are m-pseudo-coherent as desired. The
pseudo-coherent case follows from this and Lemma [64.5 (]

Lemma 64.9. Let R be a ring. Let m € Z. Let K* be a bounded above complex
of R-modules such that K* is (m — i)-pseudo-coherent for all i. Then K® is m-
pseudo-coherent. In particular, if K® is a bounded above complex of pseudo-coherent
R-modules, then K*® is pseudo-coherent.

Proof. We may replace K*® by 0>,,—1K* (for example) and hence assume that
K* is bounded. Then the complex K*® is m-pseudo-coherent as each K*[—i] is
m-pseudo-coherent by induction on the length of the complex: use Lemma [64.2]
and the stupid truncations. For the final statement, it suffices to prove that K*
is m-pseudo-coherent for all m € Z, see Lemma [64.5] This follows from the first
part. ([l

Lemma 64.10. Let R be a ring. Let m € Z. Let K®* € D™ (R) such that H'(K*)
is (m —1)-pseudo-coherent (resp. pseudo-coherent) for alli. Then K*® is m-pseudo-
coherent (resp. pseudo-coherent).
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Proof. Assume K* is an object of D~ (R) such that each H!(K*®) is (m—1)-pseudo-
coherent. Let n be the largest integer such that H™(K*®) is nonzero. We will prove
the lemma by induction on n. If n < m, then K*® is m-pseudo-coherent by Lemma
If n > m, then we have the distinguished triangle

(T<n1 K®, K, H"(K*)[—n])

(Derived Categories, Remark Since H™(K*®)[—n] is m-pseudo-coherent by
assumption, we can use Lemma to see that it suffices to prove that 7<,,_1 K*® is
m-pseudo-coherent. By induction on n we win. (The pseudo-coherent case follows
from this and Lemma [64.5] ) O

Lemma 64.11. Let A — B be a ring map. Assume that B is pseudo-coherent as
an A-module. Let K® be a complex of B-modules. The following are equivalent

(1) K* is m-pseudo-coherent as a complex of B-modules, and
(2) K* is m-pseudo-coherent as a complex of A-modules.

The same equivalence holds for pseudo-coherence.

Proof. Assume (1). Choose a bounded complex of finite free B-modules E*® and
a map o : E* — K*® which is an isomorphism on cohomology in degrees > m
and a surjection in degree m. Consider the distinguished triangle (E*, K*,C(«)®).
By Lemma C(«)® is m-pseudo-coherent as a complex of A-modules. Hence
it suffices to prove that E*® is pseudo-coherent as a complex of A-modules, which
follows from Lemma The pseudo-coherent case of (1) = (2) follows from this
and Lemma [64.51

Assume (2). Let n be the largest integer such that H™(K*®) # 0. We will prove
that K*® is m-pseudo-coherent as a complex of B-modules by induction on n — m.
The case n < m follows from Lemma[64.7 Choose a bounded complex of finite free
A-modules F*® and a map « : E®* — K*® which is an isomorphism on cohomology in
degrees > m and a surjection in degree m. Consider the induced map of complexes

a®l1l:E*®sB— K°.

Note that C(a®1)*® is acyclic in degrees > nas H"(E) - H"(E*®4B) — H"(K*)
is surjective by construction and since H*(E® ® 4 B) = 0 for i > n by the spectral
sequence of Example On the other hand, C(a ® 1)® is m-pseudo-coherent as
a complex of A-modules because both K*® and E®* ® 4 B (see Lemma are so,
see Lemma Hence by induction we see that C'(aw ® 1)® is m-pseudo-coherent
as a complex of B-modules. Finally another application of Lemma shows
that K*® is m-pseudo-coherent as a complex of B-modules (as clearly E®* ®4 B is
pseudo-coherent as a complex of B-modules). The pseudo-coherent case of (2) =
(1) follows from this and Lemma O

Lemma 64.12. Let A — B be a ring map. Let K* be an m-pseudo-coherent (resp.
pseudo-coherent) complex of A-modules. Then K*® ®ﬁ B is an m-pseudo-coherent
(resp. pseudo-coherent) complex of B-modules.

Proof. First we note that the statement of the lemma makes sense as K*® is
bounded above and hence K*® @& B is defined by Equation . Having said
this, choose a bounded complex E* of finite free A-modules and « : E®* — K*® with
H'(a) an isomorphism for i > m and surjective for i = m. Then the cone C(a)®


https://stacks.math.columbia.edu/tag/064Z
https://stacks.math.columbia.edu/tag/0650

066C

066D

068R

MORE ON ALGEBRA 157

is acyclic in degrees > m. Since — ®% B is an exact functor we get a distinguished
triangle

(B* &} B,K* &% B,C(a)* &% B)
of complexes of B-modules. By the dual to Derived Categories, Lemma we see
that H(C(a)*®% B) = 0 for i > m. Since E® is a complex of projective R-modules
we see that E®* ®% B = E* @4 B and hence

E*®,B— K*@4Y B
is a morphism of complexes of B-modules that witnesses the fact that K® ®% B is

m-pseudo-coherent. The case of pseudo-coherent complexes follows from the case
of m-pseudo-coherent complexes via Lemma [64.5 (I

Lemmal 64.13. Let A — B be a flat ring map. Let M be an m-pseudo-coherent
(resp. pseudo-coherent) A-module. Then M ®4 B is an m-pseudo-coherent (resp.
pseudo-coherent) B-module.

Proof. Immediate consequence of Lemma [64.12] and the fact that M ®ﬁ B =
M ® 4 B because B is flat over A. a

The following lemma also follows from the stronger Lemma [64.15

Lemmal 64.14. Let R be a ring. Let f1,..., f. € R be elements which generate
the unit ideal. Let m € Z. Let K® be a complex of R-modules. If for each i
the complex K*® Qg Ry, is m-pseudo-coherent (resp. pseudo-coherent), then K*® is
m-pseudo-coherent (resp. pseudo-coherent).

Proof. We will use without further mention that —®g Ry, is an exact functor and
that therefore

H'(K®);, = H'(K*) @ Ry, = H'(K* @R Ry,).

Assume K*® @p Ry, is m-pseudo-coherent for i = 1,...,r. Let n € Z be the largest
integer such that H"(K*® ®gr Ry,) is nonzero for some 4. This implies in particular
that H*(K*) = 0 for i > n (and that H"(K®) # 0) see Algebra, Lemma We
will prove the lemma by induction on n — m. If n < m, then the lemma is true by
Lemma If n > m, then H"(K*)y, is a finite Ry,-module for each %, see Lemma
Hence H™(K*) is a finite R-module, see Algebra, Lemmal[23.2] Choose a finite
free R-module E and a surjection E — H"(K*®). As E is projective we can lift
this to a map of complexes o : E[—n] — K*. Then the cone C'(«)® has vanishing
cohomology in degrees > n. On the other hand, the complexes C(a)® ®g Ry, are
m-pseudo-coherent for each 4, see Lemma [64.2] Hence by induction we see that
C(a)® is m-pseudo-coherent as a complex of R-modules. Applying Lemma
once more we conclude. (]

Lemma 64.15. Let R be a ring. Let m € Z. Let K® be a complex of R-
modules. Let R — R’ be a faithfully flat ring map. If the complexr K®* Qr R’
is m-pseudo-coherent (resp. pseudo-coherent), then K*® is m-pseudo-coherent (resp.
pseudo-coherent).

Proof. We will use without further mention that — ® g R’ is an exact functor and
that therefore

HY(K*)®gr R = H(K®* ®r R).
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Assume K® ®p R’ is m-pseudo-coherent. Let n € Z be the largest integer such
that H™(K*) is nonzero; then n is also the largest integer such that H"(K*®* ®@gr R')
is nonzero. We will prove the lemma by induction on n — m. If n < m, then the
lemma is true by Lemma[64.7} If n > m, then H"(K*®) ®g R’ is a finite R’-module,
see Lemma m Hence H"(K*) is a finite R-module, see Algebra, Lemma [83.2]
Choose a finite free R-module E and a surjection £ — H"(K*®). As E is projective
we can lift this to a map of complexes a : E[—n] — K*®. Then the cone C(a)® has
vanishing cohomology in degrees > n. On the other hand, the complex C'(«)®* ®r R’
is m-pseudo-coherent, see Lemma Hence by induction we see that C'(«)® is
m-pseudo-coherent as a complex of R-modules. Applying Lemma [64.2| once more
we conclude. d

Lemma 64.16. Let R be a ring. Let K, L be objects of D(R).

(1) If K is n-pseudo-coherent and H'(K) = 0 for i > a and L is m-pseudo-
coherent and HI(L) = 0 for j > b, then K ®% L is t-pseudo-coherent with
t = max(m + a,n + b).

(2) If K and L are pseudo-coherent, then K ®% L is pseudo-coherent.

Proof. Proof of (1). We may assume there exist bounded complexes K*® and L*®
of finite free R-modules and maps o : K* — K and 3 : L* — L with H'(a) and
isomorphism for i > n and surjective for i = n and with H*(3) and isomorphism
for i > m and surjective for i = m. Then the map

a®Y B :Tot(K*@r L*) - K@% L

induces isomorphisms on cohomology in degree i for ¢ > ¢ and a surjection for i = ¢.
This follows from the spectral sequence of tors (details omitted). Part (2) follows
from part (1) and Lemma O

Lemma 64.17. Let R be a Noetherian ring. Then

(1) A complex of R-modules K* is m-pseudo-coherent if and only if K® €
D= (R) and H'(K®) is a finite R-module for i > m.

(2) A complex of R-modules K* is pseudo-coherent if and only if K* € D~ (R)
and H'(K*®) is a finite R-module for all i.

(3) An R-module is pseudo-coherent if and only if it is finite.

Proof. In Algebra, Lemma we have seen that any finite R-module is pseudo-
coherent. On the other hand, a pseudo-coherent module is finite, see Lemma [64.4]
Hence (3) holds. Suppose that K*® is an m-pseudo-coherent complex. Then there
exists a bounded complex of finite free R-modules E*® such that H*(K*®) is isomor-
phic to H*(E*®) for i > m and such that H™(K?®) is a quotient of H™(E*®). Thus
it is clear that each H*(K*®), i > m is a finite module. The converse implication in
(1) follows from Lemma and part (3). Part (2) follows from (1) and Lemma
64,5 (Il

Lemma 64.18. Let R be a coherent ring (Algebra, Definition . Let K €
D~ (R). The following are equivalent

(1) K is m-pseudo-coherent,
(2) H™(K) is a finite R-module and H'(K) is coherent for i > m, and
(3) H™(K) is a finite R-module and H*(K) is finitely presented for i > m.

Thus K is pseudo-coherent if and only if H'(K) is a coherent module for all i.
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Proof. Recall that an R-module M is coherent if and only if it is of finite presen-
tation (Algebra, Lemma [90.4). This explains the equivalence of (2) and (3). If so
and if we choose an exact sequence 0 — N — R®"™ — M — 0, then N is coherent
by Algebra, Lemma Thus in this case, repeating this procedure with N we
find a resolution

o= REY 5 RO M — 0

by finite free R-modules. In other words, M is pseudo-coherent. The equivalence
of (1) and (2) follows from this and Lemmas [64.10] and [64.4l The final assertion
follows from the equivalence of (1) and (2) combined with Lemma [64.5] O

65. Pseudo-coherent modules, II
We continue the discussion started in Section

Lemma 65.1. Let R be a ring. Let M = colim M; be a filtered colimit of
R-modules. Let K € D(R) be m-pseudo-coherent. Then colim Exts (K, M;) =
Ext’r (K, M) for n < —m and colim Ext™ (K, M;) — Ext;™ (K, M) is injective.

Proof. By definition we can find a distinguished triangle
E— K — L — E[l]

in D(R) such that E is represented by a bounded complex of finite free R-modules
and such that H(L) = 0 for i > m. Then Ext}(L, N) = 0 for any R-module N
and n < —m, see Derived Categories, Lemma By the long exact sequence of
Ext associated to the distinguished triangle we see that Exts (K, N) — Extz(E, N)
is an isomorphism for n < —m and injective for n = —m. Thus it suffices to prove
that M — Exti(F, M) commutes with filtered colimits when E can be represented
by a bounded complex of finite free R-modules E*. The modules Ext’,(E, M) are
computed by the complex Hompg (E*®, M), see Derived Categories, Lemma The
functor M — Hompg(EP, M) commutes with filtered colimits as EP is finite free.
Thus Hompg(E®, M) = colim Hompg(E*®, M;) as complexes. Since filtered colimits
are exact (Algebra, Lemma we conclude. (I

Lemma 65.2. Let R be a ring. Let K € D™ (R). Let m € Z. Then K is m-
pseudo-coherent if and only if for any filtered colimit M = colim M; of R-modules we
have colim Ext’s (K, M;) = Exth (K, M) for n < —m and colim Ext;™ (K, M;) —
Extyp™ (K, M) is injective.

Proof. One implication was shown in Lemma[65.1] Assume for any filtered colimit
M = colim M; of R-modules we have colim Exts (K, M;) = Exty (K, M) for n <
—m and colimExt;," (K, M;) — Extyp™ (K, M) is injective. We will show K is
m-pseudo-coherent.

Let t be the maximal integer such that H'(K) is nonzero. We will use induction
on t. If t < m, then K is m-pseudo-coherent by Lemma If t > m, then since
Homp(H!(K), M) = Extz'(K, M) we conclude that colim Homg(H!(K), M;) —
Hompg(H'(K), M) is injective for any filtered colimit M = colim M;. This implies
that H'(K) is a finite R-module by Algebra, Lemma Choose a finite free R-
module F and a surjection F' — H'(K). We can lift this to a morphism F[—t] — K
in D(R) and choose a distinguished triangle

F[-t] - K - L — F[-t+1]
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in D(R). Then H'(L) = 0 for i > t. Moreover, the long exact sequence of Ext
associated to this distinguished triangle shows that L inherts the assumption we
made on K by a small argument we omit. By induction on ¢ we conclude that L is
m-pseudo-coherent. Hence K is m-pseudo-coherent by Lemma [64.2 (]

087Q Lemma 65.3. Let R be a ring. Let L, M, N be R-modules.
(1) If M is finitely presented and L is flat, then the canonical map Hompg (M, N)®@g
L — Homgr(M, N ®g L) is an isomorphism.
(2) If M is (—m)-pseudo-coherent and L is flat, then the canonical map Ext's(M, N)®g
L — Exty(M,N ®g L) is an isomorphism for i < m.

Proof. Choose a resolution Fy — M whose terms are free R-modules, see Algebra,
Lemma The complex Hompg(F,, N) computes Ext% (M, N) and the complex
Hompg(F., N @ L) computes Ext’ (M, N @ L). There always is a map of cochain
complexes

Homp(Fe, N) ®g L — Homp(F,,N ®r L)

which induces canonical maps Exts (M, N) ®@g L — Exth(M, N @ L) for all i > 0
(canonical for example in the sense that these maps do not depend on the choice
of the resolution F,). If L is flat, then the complex Hompg(F,, N) ® g L computes
EthR(M ,N) ®g L since taking cohomology commutes with tensoring by L.

Having said all of the above, if M is (—m)-pseudo-coherent, then we may choose
F, such that F; is finite free for ¢ = 0,...,m. Then the map of cochain complexes
displayed above is an isomorphism in degrees < m and hence an isomorphism on
cohomology groups in degrees < m. This proves (2). If M is finitely presented,
then M is (—1)-pseudo-coherent by Lemma and we get the result because
Hom = Ext’. d

087R Lemmal 65.4. Let R — R’ be a flat ring map. Let M, N be R-modules.

(1) If M is a finitely presented R-module, then Homp(M, N)@grR' = Homp (M®g
R'N®rR'). 4 ‘

(2) If M is (—m)-pseudo-coherent, then Exthz(M,N) ®@r R’ = Extp (M Qg
R',N®gR') fori<m.

In particular if R is Noetherian and M is a finite module this holds for all i.

Proof. By Algebra, Lemma|73.1|we have Exth, (M®rR', N@gR') = Exth(M, N®g
R’). Combined with Lemma we conclude (1) and (2) holds. The final state-
ment follows from this and Lemma O

0CYB |Lemma 65.5. Let R be a ring. Let K € D™ (R). The following are equivalent:

(1) K is pseudo-coherent,
(2) for every family (Qa)aca of R-modules, the canonical map

oK ek (I], Q) — I (K @k Qu)

is an isomorphism in D(R),
(3) for every R-module @ and every set A, the canonical map

B:Ka%Q" — (Kok Q)

is an isomorphism in D(R), and
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(4) for every set A, the canonical map
v: K ®% RA — K4
is an isomorphism in D(R).
Given m € Z the following are equivalent

(a) K is m-pseudo-coherent,

(b) for every family (Qu)aca of R-modules, with o as above H'(a) is an iso-
morphism for i > m and surjective for i =m,

(c) for every R-module Q and every set A, with 3 as above H'(B) is an iso-
morphism for i > m and surjective for i =m,

(d) for every set A, with v as above H'(v) is an isomorphism for i > m and
surjective for i = m.

Proof. If K is pseudo-coherent, then K can be represented by a bounded above
complex of finite free R-modules. Then the derived tensor products are computed
by tensoring with this complex. Also, products in D(R) are given by taking prod-
ucts of any choices of representative complexes. Hence (1) implies (2), (3), (4) by
the corresponding fact for modules, see Algebra, Proposition [39.3]

In the same way (using the tensor product is right exact) the reader shows that (a)
implies (b), (¢), and (d).

Assume (4) holds. To show that K is pseudo-coherent it suffices to show that K is
m-pseudo-coherent for all m (Lemma [64.5). Hence to finish then proof it suffices
to prove that (d) implies (a).

Assume (d). Let i be the largest integer such that H*(K) is nonzero. If i < m,
then we are done. If not, then from (d) and the description of products in D(R)
given above we find that H'(K) @p R* — H*(K)* is surjective. Hence H!(K) is a
finitely generated R-module by Algebra, Proposition Thus we may choose a
complex L consisting of a single finite free module sitting in degree ¢ and a map of
complexes L — K such that H'(L) — H'(K) is surjective. In particular L satisfies
(1), (2), (3), and (4). Choose a distinguished triangle

L— K— M- L[1]

Then we see that H/(M) = 0 for j > i. On the other hand, M still has property
(d) by a small argument which we omit. By induction on ¢ we find that M is
m-pseudo-coherent. Hence K is m-pseudo-coherent by Lemma [64.2] a

Lemma 65.6. Let R be a ring. Let K € D(R) be pseudo-coherent. Let i € Z.
There exists a finitely presented R-module M and a map K — M[—i] in D(R)
which induces an injection H'(K) — M.

Proof. By Definition we may represent K by a complex P*® of finite free
R-modules. Set M = Coker(P'~! — P?). O

Lemma 65.7. Let A be a Noetherian ring. Let K € D(A) be pseudo-coherent,
i.e., K € D™ (A) with finite cohomology modules. Let m be a mazimal ideal of A. If
HY(K)/mH(K) # 0, then there exists a finite A-module E annihilated by a power
of m and a map K — E[—i] which is nonzero on H'(K).
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Proof. (The equivalent formulation of pseudo-coherence in the statement of the

lemma is Lemma [64.17]) Choose K — M[—i] as in Lemma By Artin-Rees
(Algebra, Lemma [51.2)) we can find an n such that H*(K)Nm"M C mH*(K). Take

E = M/m"M. O

66. Tor dimension

Instead of resolving by projective modules we can look at resolutions by flat mod-
ules. This leads to the following concept.

Definition 66.1. Let R be a ring. Denote D(R) its derived category. Let a,b € Z.

(1) An object K*® of D(R) has tor-amplitude in [a,b] if H (K* ®% M) = 0 for
all R-modules M and all i & [a, b].

(2) An object K* of D(R) has finite tor dimension if it has tor-amplitude in
[a, b] for some a, b.

(3) An R-module M has tor dimension < d if M]0] as an object of D(R) has
tor-amplitude in [—d, 0].

(4) An R-module M has finite tor dimension if M[0] as an object of D(R) has
finite tor dimension.

We observe that if K*® has finite tor dimension, then K* € D°(R).

Lemma 66.2. Let R be a ring. Let K* be a bounded above complex of flat R-
modules with tor-amplitude in [a,b]. Then Coker(d ') is a flat R-module.

Proof. As K* is a bounded above complex of flat modules we see that K®* @z M =
K* ®% M. Hence for every R-module M the sequence

K ?2@prM > K '@ M - K*@r M

is exact in the middle. Since K%~2 — K ! — K — Coker(d ') — 0 is a flat
resolution this implies that Torf(Coker(d% '), M) = 0 for all R-modules M. This
means that Coker(d; ') is flat, see Algebra, Lemma O

Lemma 66.3. Let R be a ring. Let K* be an object of D(R). Let a,b € Z. The
following are equivalent
(1) K* has tor-amplitude in [a, b].
(2) K* is quasi-isomorphic to a complex E® of flat R-modules with E* =0 for
i & [a,bl.

Proof. If (2) holds, then we may compute K*®% M = E*®@p M and it is clear that
(1) holds. Assume that (1) holds. We may replace K*® by a projective resolution
with K% = 0 for i > b. See Derived Categories, Lemma Set B* = m5,K°.
Everything is clear except that E* is flat which follows immediately from Lemma
[66.2] and the definitions. O

Lemma 66.4. Let R be a ring. Let a € Z and let K be an object of D(R). The
following are equivalent
(1) K has tor-amplitude in [a, 0], and
(2) K is quasi-isomorphic to a K-flat complex E® whose terms are flat R-
modules with E* = 0 for i ¢ [a, o0].
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Proof. The implication (2) = (1) is immediate. Assume (1) holds. First we choose
a K-flat complex K* with flat terms representing K, see Lemma [59.10] For any
R-module M the cohomology of

K'lopM 5> K'@pM = K" '@r M

computes H"(K ®% M). This is always zero for n < a. Hence if we apply
Lemma, to the complex ... - K% ! — K* — K% we conclude that
N = Coker(K*™! — K?) is a flat R-module. We set

E*=15,K*=(...5 0> N = K™ - )
The kernel L® of K* — E*® is the complex
L*=(.. K" '5T-50-..)

where I C K@ is the image of K¢~! — K“. Since we have the short exact sequence
0—1— K*— N — 0 we see that I is a flat R-module. Thus L® is a bounded
above complex of flat modules, hence K-flat by Lemma [59.7] It follows that E*® is
K-flat by Lemma [59.6 (]

Lemma 66.5. Let R be a ring. Let (K®,L*, M*, f,g,h) be a distinguished triangle
in D(R). Let a,b € Z.
(1) If K* has tor-amplitude in [a + 1,b+ 1] and L® has tor-amplitude in [a, b]
then M*® has tor-amplitude in [a, b].
(2) If K*, M*® have tor-amplitude in [a,b], then L® has tor-amplitude in [a, b].
(3) If L® has tor-amplitude in [a+1,b+ 1] and M*® has tor-amplitude in [a,b],
then K* has tor-amplitude in [a + 1,b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that — ®% M preserves distin-
guished triangles. The easiest one to prove is (2) and the others follow from it by
translation. O

Lemma 66.6. Let R be a ring. Let M be an R-module. Let d > 0. The following
are equivalent

(1) M has tor dimension < d, and
(2) there exists a resolution

O0=>F3—... > FF —>Fyp—M—0
with F; a flat R-module.

In particular an R-module has tor dimension 0 if and only if it is a flat R-module.

Proof. Assume (2). Then the complex E® with E~% = F; is quasi-isomorphic to
M. Hence the Tor dimension of M is at most d by Lemmal[66.3} Conversely, assume
(1). Let P* — M be a projective resolution of M. By Lemma we see that
T>_qP* is a flat resolution of M of length d, i.e., (2) holds. O

Lemmal 66.7. Let R be a ring. Let a,b € Z. If K* ® L® has tor amplitude in
[a,b] so do K*® and L®.

Proof. Clear from the fact that the Tor functors are additive. O
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Lemma 66.8. Let R be a ring. Let K® be a bounded complex of R-modules such
that K' has tor amplitude in [a — i,b — i) for all i. Then K*® has tor amplitude in
[a,b]. In particular if K* is a finite complex of R-modules of finite tor dimension,
then K*® has finite tor dimension.

Proof. Follows by induction on the length of the finite complex: use Lemma [66.5)
and the stupid truncations. ([

Lemma 66.9. Let R be a ring. Let a,b € Z. Let K* € D°(R) such that H'(K*)
has tor amplitude in [a —i,b —i] for alli. Then K*® has tor amplitude in [a,b]. In
particular if K* € D*(R) and all its cohomology groups have finite tor dimension
then K*® has finite tor dimension.

Proof. Follows by induction on the length of the finite complex: use Lemma [66.5
and the canonical truncations. (I

Lemma 66.10. Let A — B be a ring map. Let K* and L® be complexes of
B-modules. Let a,b,c,d € Z. If

(1) K* as a complezx of B-modules has tor amplitude in [a,b],
(2) L* as a complex of A-modules has tor amplitude in [c, d],
[

then K* ®@% L* as a complex of A-modules has tor amplitude in [a + c,b+ d).

Proof. We may assume that K*® is a complex of flat B-modules with K = 0
for i & [a,b], see Lemma Let M be an A-module. Choose a free resolution
F* — M. Then

(K* @% L*) @% M = Tot(Tot(K® @p L*) @4 F*) = Tot(K*® ®p Tot(L®* @4 F*))

see Homology, Remarkfor the second equality. By assumption (2) the complex
Tot(L® ® 4 F**) has nonzero cohomology only in degrees [c,d]. Hence the spectral
sequence of Homology, Lemma for the double complex K*® @ Tot(L®* @4 F'*)
proves that (K* ®% L*) @% M has nonzero cohomology only in degrees [a + ¢, b+
d). O

Lemma 66.11. Let A — B be a ring map. Assume that B is flat as an A-module.
Let K® be a complex of B-modules. Let a,b € Z. If K® as a complex of B-modules
has tor amplitude in [a,b], then K® as a complex of A-modules has tor amplitude
in [a,b].

Proof. This is a special case of Lemma but can also be seen directly as
follows. We have K* @4 M = K* @% (M ®4 B) since any projective resolution of
K* as a complex of B-modules is a flat resolution of K*® as a complex of A-modules
and can be used to compute K*® ®ﬁ M. O

Lemmal 66.12. Let A — B be a ring map. Assume that B has tor dimension
< d as an A-module. Let K*® be a complex of B-modules. Let a,b € Z. If K*®
as a complex of B-modules has tor amplitude in [a,b], then K* as a complex of
A-modules has tor amplitude in [a — d,b].

Proof. This is a special case of Lemma [66.10] but can also be seen directly as
follows. Let M be an A-module. Choose a free resolution F'* — M. Then

K*@% M = Tot(K®* @4 F*) = Tot(K* @p (F* ®4 B)) = K* @% (M &4 B).


https://stacks.math.columbia.edu/tag/066H
https://stacks.math.columbia.edu/tag/066I
https://stacks.math.columbia.edu/tag/0B66
https://stacks.math.columbia.edu/tag/066J
https://stacks.math.columbia.edu/tag/066K

066L

066M

0B67

066N

0685

MORE ON ALGEBRA 165

By our assumption on B as an A-module we see that M ®% B has cohomology only

in degrees —d,—d + 1,...,0. Because K*® has tor amplitude in [a,b] we see from
the spectral sequence in Example that K* ®% (M ®% B) has cohomology only
in degrees [—d + a,b] as desired. O

Lemma 66.13. Let A — B be a ring map. Let a,b € Z. Let K*® be a complex of
A-modules with tor amplitude in [a,b]. Then K*® ®ﬁ B as a complex of B-modules
has tor amplitude in [a,b].

Proof. By Lemma we can find a quasi-isomorphism E® — K°® where E*® is
a complex of flat A-modules with E? = 0 for i ¢ [a,b]. Then E®* ® 4 B computes
K* ®% B by construction and each E*® 4 B is a flat B-module by Algebra, Lemma
39.71 Hence we conclude by Lemma [66.3] O

Lemmal 66.14. Let A — B be a flat ring map. Let d > 0. Let M be an A-module
of tor dimension < d. Then M ® o B is a B-module of tor dimension < d.

Proof. Immediate consequence of Lemma [66.13] and the fact that M ®@% B =
M ®4 B because B is flat over A. O

Lemma 66.15. Let A — B be a ring map. Let K*® be a complex of B-modules.
Let a,b € Z. The following are equivalent

(1) K* has tor amplitude in [a,b] as a complex of A-modules,

(2) K3 has tor amplitude in [a,b] as a complex of Ay-modules for every prime
qC B withp=AnNgq,

(3) K3 has tor amplitude in [a,b] as a complex of Ay,-modules for every mai-
mal ideal m C B with p = ANm.

Proof. Assume (3) and let M be an A-module. Then H' = H(K®* ®% M) is a
B-module and (H%),, = H{(K2 ®ﬁp M,). Hence H* = 0 for i ¢ [a,b] by Algebra,
Lemma Thus (3) = (1). We omit the proofs of (1) = (2) and (2) = (3). O
Lemma 66.16. Let R be a ring. Let f1,..., fr € R be elements which generate

the unit ideal. Let a,b € Z. Let K*® be a complex of R-modules. If for each i the
complex K®* @r Ry, has tor amplitude in [a,b], then K* has tor amplitude in [a, b].

Proof. This follows immediately from Lemma [66.15| but can also be seen directly
as follows. Note that — @r Ry, is an exact functor and that therefore

Hi(K.)fi = HZ(K.) ®R sz‘ = Hi(K. ®Rr sz)
and similarly for every R-module M we have
H'(K® @k M)y, = H'(K®* ©f M) ©g Ry, = H'(K* @g Ry, ©F, My,).

Hence the result follows from the fact that an R-module N is zero if and only if
Ny, is zero for each i, see Algebra, Lemma [23.2} O

Lemma 66.17. Let R be a ring. Let a,b € Z. Let K*® be a complezx of R-modules.
Let R — R’ be a faithfully flat ring map. If the complex K®*®r R’ has tor amplitude
in [a,b], then K*® has tor amplitude in [a,b).

Proof. Let M be an R-module. Since R — R’ is flat we see that
(MY K*)or R = (M ®r R)®% (K*@r R)
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and taking cohomology commutes with tensoring with R’. Hence Tor{"‘ (M,K*)®gr
R = Tor! (M ®r R',K* @ R'). Since R — R’ is faithfully flat, the vanishing of
Tor® (M@RR', K*®gR') for i & [a, b] implies the same thing for Tor®(M, K*). O

Lemmal 66.18. Given ring maps R - A — B with A — B faithfully flat and
K € D(A) the tor amplitude of K over R is the same as the tor amplitude of
K ®% B over R.

Proof. This is true because for an R-module M we have H' (K @% M) ®4 B =
H((K ®% B) ®% M) for all i. Namely, represent K by a complex K*® of A-modules
and choose a free resolution F'* — M. Then we have the equality

Tot(K®* ®4 B®r F*) = Tot(K* ®r F*)®4 B

The cohomology groups of the left hand side are H'((K ®% B) ®% M) and on the
right hand side we obtain H'(K ®% M) ®4 B. O

Lemma 66.19. Let R be a ring of finite global dimension d. Then

(1) every module has tor dimension < d,

(2) a complex of R-modules K*® with H(K®) # 0 only if i € [a,b] has tor
amplitude in [a — d,b], and

(3) a complex of R-modules K*® has finite tor dimension if and only if K® €
DY(R).

Proof. The assumption on R means that every module has a finite projective
resolution of length at most d, in particular every module has tor dimension < d.
The second statement follows from Lemma and the definitions. The third
statement is a rephrasing of the second. O

67. Spectral sequences for Ext

In this section we collect various spectral sequences that come up when considering
the Ext functors. For any pair of objects L, K of the derived category D(R) of a
ring R we denote

Exty(L, K) = HomD(R)(L, K[n])
according to our general conventions in Derived Categories, Section
For M an R-module and K € D' (R) there is a spectral sequence
(67.0.1) Ey’ = Exty(M, H (K)) = Ext'y? (M, K)

and if K is represented by the bounded below complex K*® of R-modules there is a
spectral sequence

(67.0.2) E}7 = Extly (M, K*) = Ext// (M, K)

These spectral sequences come from applying Derived Categories, Lemma to
the functor Hompg (M, —).
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68. Projective dimension
We defined the projective dimension of a module in Algebra, Definition [109.2

Definition 68.1. Let R be aring. Let K be an object of D(R). We say K has finite
projective dimension if K can be represented by a bounded complex of projective
modules. We say K has projective-amplitude in [a,b] if K is quasi-isomorphic to a
complex

om0 PPt PPt 0

where P? is a projective R-module for all i € Z.
Clearly, K has finite projective dimension if and only if K has projective-amplitude

in [a,b] for some a,b € Z. Furthermore, if K has finite projective dimension, then
K is bounded. Here is a lemma to detect such objects of D(R).
Lemma 68.2. Let R be a ring. Let K be an object of D(R). Let a,b € Z. The
following are equivalent

(1) K has projective-amplitude in [a,b],

(2) Extp(K,N) =0 for all R-modules N and all i ¢ [~b, —al,

(3) H*(K) =0 for n > b and ExtR(K,N) = 0 for all R-modules N and all

i > —a, and
(4) H"(K) =0 forn ¢ [a—1,b] and Extp* ™ (K, N) = 0 for all R-modules N.

Proof. Assume (1). We may assume K is the complex
= 0P P S PP P50

where P! is a projective R-module for all i € Z. In this case we can compute the
ext groups by the complex

... =0 = Homp(P*,N) — ... = Homp(P*,N) = 0 — ...
and we obtain (2).

Assume (2) holds. Choose an injection H"(K) — I where I is an injective
R-module. Since Homp(—,I) is an exact functor, we see that Ext™"(K,I) =
Homp(H™(K),I). We conclude in particular that H"(K) is zero for n > b. Thus
(2) implies (3).

By the same argument as in (2) implies (3) gives that (3) implies (4).

Assume (4). The same argument as in (2) implies (3) shows that H*~1(K) = 0,
i.e., we have H'(K) = 0 unless i € [a,b]. In particular, K is bounded above and we
can choose a a complex P*® representing K with P? projective (for example free)

for all i € Z and P* = 0 for i > b. See Derived Categories, Lemma Let
Q = Coker(P*~! — P%). Then K is quasi-isomorphic to the complex

=05 Q— P s PP 0— .

as H'(K) = 0 for i < a. Denote K’ = (P®t! — ... — P?) the corresponding object
of D(R). We obtain a distinguished triangle

K' = K — Q|—a] = K'[1]
in D(R). Thus for every R-module N an exact sequence

Ext™ (K’ ,N) — Ext'(Q, N) — Ext'"*(K, N)
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By assumption the term on the right vanishes. By the implication (1) = (2) the
term on the left vanishes. Thus @ is a projective R-module by Algebra, Lemma
Hence (1) holds and the proof is complete. O

Example| 68.3. Let k be a field and let R be the ring of dual numbers over k,
ie., R = k[z]/(z?). Denote € € R the class of z. Let M = R/(¢). Then M is
quasi-isomorphic to the complex

RSRSR— ...

but M does not have finite projective dimension as defined in Algebra, Definition
109.2] This explains why we consider bounded (in both directions) complexes of
projective modules in our definition of finite projective dimension of objects of
D(R).

69. Injective dimension

This section is the dual of the section on projective dimension.

Definition 69.1. Let R be a ring. Let K be an object of D(R). We say K has
finite injective dimension if K 