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1. Introduction

0F4V This chapter is the second in a series of chapter on the étale cohomology of schemes.
To read the first chapter, please visit Étale Cohomology, Section 1.
The split with the previous chapter is roughly speaking that anything concerning
“shriek functors” (cohomology with compact support and its right adjoint) and
anything using this material goes into this chapter.

2. Growing sections

0F71 In this section we discuss results of the following type.

Lemma 2.1.0F6F Let X be a scheme. Let F be an abelian sheaf on Xétale. Let
φ : U ′ → U be a morphism of Xétale. Let Z ′ ⊂ U ′ be a closed subscheme such that
Z ′ → U ′ → U is a closed immersion with image Z ⊂ U . Then there is a canonical
bijection

{s ∈ F(U) | Supp(s) ⊂ Z} = {s′ ∈ F(U ′) | Supp(s′) ⊂ Z ′}
which is given by restriction if φ−1(Z) = Z ′.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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Proof. Consider the closed subscheme Z ′′ = φ−1(Z) of U ′. Then Z ′ ⊂ Z ′′ is closed
because Z ′ is closed in U ′. On the other hand, Z ′ → Z ′′ is an étale morphism (as
a morphism between schemes étale over Z) and hence open. Thus Z ′′ = Z ′ ⨿ T for
some closed subset T . The open covering U ′ = (U ′ \ T ) ∪ (U ′ \ Z ′) shows that

{s′ ∈ F(U ′) | Supp(s′) ⊂ Z ′} = {s′ ∈ F(U ′ \ T ) | Supp(s′) ⊂ Z ′}

and the étale covering {U ′ \ T → U, U \ Z → U} shows that

{s ∈ F(U) | Supp(s) ⊂ Z} = {s′ ∈ F(U ′ \ T ) | Supp(s′) ⊂ Z ′}

This finishes the proof. □

Lemma 2.2.0F6G Let X be a scheme. Let Z ⊂ X be a locally closed subscheme. Let
F be an abelian sheaf on Xétale. Given U, U ′ ⊂ X open containing Z as a closed
subscheme, there is a canonical bijection

{s ∈ F(U) | Supp(s) ⊂ Z} = {s ∈ F(U ′) | Supp(s) ⊂ Z}

which is given by restriction if U ′ ⊂ U .

Proof. Since Z is a closed subscheme of U ∩ U ′, it suffices to prove the lemma
when U ′ ⊂ U . Then it is a special case of Lemma 2.1. □

Let us introduce a bit of nonstandard notation which will stand us in good stead
later. Namely, in the situation of Lemma 2.2 above, let us denote

HZ(F) = {s ∈ F(U) | Supp(s) ⊂ Z}

where U ⊂ X is any choice of open subscheme containing Z as a closed subscheme.
The reader who is troubled by the lack of precision this entails may choose U =
X \ ∂Z where ∂Z = Z \ Z is the “boundary” of Z in X. However, in many of the
arguments below the flexibility of choosing different opens will play a role. Here
are some properties of this construction:

(1)0F6H If Z ⊂ Z ′ are locally closed subschemes of X and Z is closed in Z ′, then
there is a natural injective map

HZ(F) → HZ′(F).

(2)0F6I If f : Y → X is a morphism of schemes and Z ⊂ X is a locally closed sub-
scheme, then there is a natural pullback map f∗ : HZ(F) → Hf−1Z(f−1F).

It will be convenient to extend our notation to the following situation: suppose that
we have W ∈ Xétale and a locally closed subscheme Z ⊂ W . Then we will denote

HZ(F) = {s ∈ F(U) | Supp(s) ⊂ Z} = HZ(F|Wétale
)

where U ⊂ W is any choice of open subscheme containing Z as a closed subscheme,
exactly as above1.

1In fact, Lemma 2.1 shows, given Z over X which is isomorphic to a locally closed subscheme
of some object W of Xétale, that the choice of W is irrelevant.

https://stacks.math.columbia.edu/tag/0F6G
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3. Sections with compact support

0F4W A reference for this section is [AGV71, Exposee XVII, Section 6]. Let f : X → Y
be a morphism of schemes which is separated and locally of finite type. In this
section we define a functor f! : Ab(Xétale) → Ab(Yétale) by taking f!F ⊂ f∗F to be
the subsheaf of sections which have proper support relative to Y (suitably defined).

Warning: The functor f! is the zeroth cohomology sheaf of a functor Rf! on the
derived category (insert future reference), but Rf! is not the derived functor of f!.

Lemma 3.1.0F4X Let f : X → Y be a morphism of schemes which is locally of finite
type. Let F be an abelian sheaf on Xétale. The rule

Yétale −→ Ab, V 7−→ {s ∈ f∗F(V ) = F(XV ) | Supp(s) ⊂ XV is proper over V }

is an abelian subsheaf of f∗F .

Warning: This sheaf isn’t the “correct one” if f is not separated.

Proof. Recall that the support of a section is closed (Étale Cohomology, Lemma
31.4) hence the material in Cohomology of Schemes, Section 26 applies. By the
lemma above and Cohomology of Schemes, Lemma 26.6 we find that our subset of
f∗F(V ) is a subgroup. By Cohomology of Schemes, Lemma 26.4 we see that our
rule defines a sub presheaf. Finally, suppose that we have s ∈ f∗F(V ) and an étale
covering {Vi → V } such that s|Vi

has support proper over Vi. Observe that the
support of s|Vi is the inverse image of the support of s|V (use the characterization
of the support in terms of stalks and Étale Cohomology, Lemma 36.2). Whence
the support of s is proper over V by Descent, Lemma 25.5. This proves that our
rule satisfies the sheaf condition. □

Lemma 3.2.0F4Y Let j : U → X be a separated étale morphism. Let F be an abelian
sheaf on Uétale. The image of the injective map j!F → j∗F of Étale Cohomology,
Lemma 70.6 is the subsheaf of Lemma 3.1.

An alternative would be to move this lemma later and prove this using the descrition
of the stalks of both sheaves.

Proof. The construction of j!F → j∗F in the proof of Étale Cohomology, Lemma
70.6 is via the construction of a map jp!F → j∗F of presheaves whose image is
clearly contained in the subsheaf of Lemma 3.1. Hence since j!F is the sheafifi-
cation of jp!F we conclude the image of j!F → j∗F is contained in this subsheaf.
Conversely, let s ∈ j∗F(V ) have support Z proper over V . Then Z → V is finite
with closed image Z ′ ⊂ V , see More on Morphisms, Lemma 44.1. The restriction of
s to V \ Z ′ is zero and the zero section is contained in the image of j!F → j∗F . On
the other hand, if v ∈ Z ′, then we can find an étale neighbourhood (V ′, v′) → (V, v)
such that we have a decomposition UV ′ = W ⨿ U ′

1 ⨿ . . . ⨿ U ′
n into open and closed

subschemes with U ′
i → V ′ an isomorphism and with TV ′ ⊂ U ′

1 ⨿ . . . ⨿ U ′
n, see Étale

Morphisms, Lemma 18.2. Inverting the isomorphisms U ′
i → V ′ we obtain n mor-

phisms φ′
i : V ′ → U and sections s′

i over V ′ by pulling back s. Then the section∑
(φ′

i, s′
i) of jp!F over V ′, see formula for jp!F(V ′) in proof of Étale Cohomology,

Lemma 70.6, maps to the restriction of s to V ′ by construction. We conclude that
s is étale locally in the image of j!F → j∗F and the proof is complete. □

https://stacks.math.columbia.edu/tag/0F4X
https://stacks.math.columbia.edu/tag/0F4Y
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Definition 3.3.0F4Z Let f : X → Y be a morphism of schemes which is separated
(!) and locally of finite type. Let F be an abelian sheaf on Xétale. The subsheaf
f!F ⊂ f∗F constructed in Lemma 3.1 is called the direct image with compact
support.

By Lemma 3.2 this does not conflict with Étale Cohomology, Definition 70.1 as we
have agreement when both definitions apply. Here is a sanity check.

Lemma 3.4.0F51 Let f : X → Y be a proper morphism of schemes. Then f! = f∗.

Proof. Immediate from the construction of f!. □

A very useful observation is the following.

Remark 3.5 (Covariance with respect to open embeddings).0F53 Let f : X → Y be
morphism of schemes which is separated and locally of finite type. Let F be an
abelian sheaf on Xétale. Let X ′ ⊂ X be an open subscheme. Denote f ′ : X ′ → Y
the restriction of f . There is a canonical injective map

f ′
! (F|X′) −→ f!F

Namely, let V ∈ Yétale and consider a section s′ ∈ f ′
∗(F|X′)(V ) = F(X ′ ×Y V ) with

support Z ′ proper over V . Then Z ′ is closed in X ×Y V as well, see Cohomology of
Schemes, Lemma 26.5. Thus there is a unique section s ∈ F(X ×Y V ) = f∗F(V )
whose restriction to X ′ ×Y V is s′ and whose restriction to X ×Y V \ Z ′ is zero,
see Lemma 2.2. This construction is compatible with restriction maps and hence
induces the desired map of sheaves f ′

! (F|X′) → f!F which is clearly injective. By
construction we obtain a commutative diagram

f ′
! (F|X′) //

��

f!F

��
f ′

∗(F|X′) f∗Foo

functorial in F . It is clear that for X ′′ ⊂ X ′ open with f ′′ = f |X′′ : X ′′ → Y the
composition of the canonical maps f ′′

! F|X′′ → f ′
! F|X′ → f!F just constructed is

the canonical map f ′′
! F|X′′ → f!F .

Lemma 3.6.0F52 Let Y be a scheme. Let j : X → X be an open immersion of schemes
over Y with X proper over Y . Denote f : X → Y and f : X → Y the structure
morphisms. For F ∈ Ab(Xétale) there is a canonical isomorphism (see proof)

f!F −→ f !j!F
As we have f ! = f∗ by Lemma 3.4 we obtain f∗ ◦ j! = f! as functors Ab(Xétale) →
Ab(Yétale).

Proof. We have (j!F)|X = F , see Étale Cohomology, Lemma 70.4. Thus the
displayed arrow is the injective map f!(G|X) → f !G of Remark 3.5 for G = j!F .
The explicit nature of this map implies that it now suffices to show: if V ∈ Yétale

and s ∈ f !G(V ) = f∗G(V ) = G(XV ) is a section, then the support of s is contained
in the open XV ⊂ XV . This is immediate from the fact that the stalks of G are
zero at geometric points of X \ X. □

We want to relate the stalks of f!F to sections with compact support on fibres. In
order to state this, we need a definition.

https://stacks.math.columbia.edu/tag/0F4Z
https://stacks.math.columbia.edu/tag/0F51
https://stacks.math.columbia.edu/tag/0F53
https://stacks.math.columbia.edu/tag/0F52


MORE ÉTALE COHOMOLOGY 5

Definition 3.7.0F72 Let X be a separated scheme locally of finite type over a field k.
Let F be an abelian sheaf on Xétale. We let H0

c (X, F) ⊂ H0(X, F) be the set of
sections whose support is proper over k. Elements of H0

c (X, F) are called sections
with compact support.

Warning: This definition isn’t the “correct one” if X isn’t separated over k.

Lemma 3.8.0F73 Let X be a proper scheme over a field k. Then H0
c (X, F) =

H0(X, F).

Proof. Immediate from the construction of H0
c . □

Remark 3.9 (Open embeddings and compactly supported sections).0F74 Let X be a
separated scheme locally of finite type over a field k. Let F be an abelian sheaf on
Xétale. Exactly as in Remark 3.5 for X ′ ⊂ X open there is an injective map

H0
c (X ′, F|X′) −→ H0

c (X, F)
and these maps turn H0

c into a “cosheaf” on the Zariski site of X.

Lemma 3.10.0F75 Let k be a field. Let j : X → X be an open immersion of schemes
over k with X proper over k. For F ∈ Ab(Xétale) there is a canonical isomorphism
(see proof)

H0
c (X, F) −→ H0

c (X, j!F) = H0(X, j!F)
where we have the equality on the right by Lemma 3.8.

Proof. We have (j!F)|X = F , see Étale Cohomology, Lemma 70.4. Thus the
displayed arrow is the injective map H0

c (X, G|X) → H0
c (X, G) of Remark 3.9 for

G = j!F . The explicit nature of this map implies that it now suffices to show:
if s ∈ H0(X, G) is a section, then the support of s is contained in the open X.
This is immediate from the fact that the stalks of G are zero at geometric points of
X \ X. □

Lemma 3.11.0F76 Let f : X → Y be a morphism of schemes which is separated and
locally of finite type. Let F be an abelian sheaf on Xétale. Then there is a canonical
isomorphism

(f!F)y −→ H0
c (Xy, F|Xy

)
for any geometric point y : Spec(k) → Y .

Proof. Recall that (f∗F)y = colim f∗F(V ) where the colimit is over the étale
neighbourhoods (V, v) of y. If s ∈ f∗F(V ) = F(XV ), then we can pullback s to a
section of F over (XV )v = Xy. Thus we obtain a canonical map

cy : (f∗F)y −→ H0(Xy, F|Xy
)

We claim that this map induces a bijection between the subgroups (f!F)y and
H0

c (Xy, F|Xy
). The claim implies the lemma, but is a little bit more precise in that

it describes the identification of the lemma as given by pullbacks of sections of F
to the geometric fibre of f .
Observe that any element s ∈ (f!F)y ⊂ (f∗F)y is mapped by cy to an element of
H0

c (Xy, F|Xy
) ⊂ H0(Xy, F|Xy

). This is true because taking the support of a section
commutes with pullback and because properness is preserved by base change. This
at least produces the map in the statement of the lemma. To prove that it is an

https://stacks.math.columbia.edu/tag/0F72
https://stacks.math.columbia.edu/tag/0F73
https://stacks.math.columbia.edu/tag/0F74
https://stacks.math.columbia.edu/tag/0F75
https://stacks.math.columbia.edu/tag/0F76
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isomorphism we may work Zariski locally on Y and hence we may and do assume
Y is affine.

An observation that we will use below is that given an open subscheme X ′ ⊂ X
and if f ′ = f |X′ , then we obtain a commutative diagram

(f ′
! (F|X′))y

//

��

H0
c (X ′

y, F|X′
y
)

��
(f!F)y

// H0
c (Xy, F|Xy

)

where the horizontal arrows are the maps constructed above and the vertical arrows
are given in Remarks 3.5 and 3.9. The reason is that given an étale neighbourhood
(V, v) of y and a section s ∈ f∗F(V ) = F(XV ) whose support Z happens to be
contained in X ′

V and is proper over V , so that s gives rise to an element of both
(f ′

! (F|X′))y and (f!F)y which correspond via the vertical arrow of the diagram,
then these elements are mapped via the horizontal arrows to the pullback s|Xy

of
s to Xy whose support Zy is contained in X ′

y and hence this restriction gives rise
to a compatible pair of elements of H0

c (X ′
y, F|X′

y
) and H0

c (Xy, F|Xy
).

Suppose s ∈ (f!F)y maps to zero in H0
c (Xy, F|Xy

). Say s corresponds to s ∈
f∗F(V ) = F(XV ) with support Z proper over V . We may assume that V is affine
and hence Z is quasi-compact. Then we may choose a quasi-compact open X ′ ⊂ X
containing the image of Z. Then Z is contained in X ′

V and hence s is the image of
an element s′ ∈ f ′

! (F|X′)(V ) where f ′ = f |X′ as in the previous paragraph. Then s′

maps to zero in H0
c (X ′

y, F|X′
y
). Hence in order to prove injectivity, we may replace

X by X ′, i.e., we may assume X is quasi-compact. We will prove this case below.

Suppose that t ∈ H0
c (Xy, F|Xy

). Then the support of t is contained in a quasi-
compact open subscheme W ⊂ Xy. Hence we can find a quasi-compact open
subscheme X ′ ⊂ X such that X ′

y contains W . Then it is clear that t is contained in
the image of the injective map H0

c (X ′
y, F|X′

y
) → H0

c (Xy, F|Xy
). Hence in order to

show surjectivity, we may replace X by X ′, i.e., we may assume X is quasi-compact.
We will prove this case below.

In this last paragraph of the proof we prove the lemma in case X is quasi-compact
and Y is affine. By More on Flatness, Theorem 33.8 there exists a compactification
j : X → X over Y . Set G = j!F so that F = G|X by Étale Cohomology, Lemma
70.4. By the disussion above we get a commutative diagram

(f!F)y
//

��

H0
c (Xy, F|Xy

)

��
(f !G)y

// H0
c (Xy, G|Xy

)

By Lemmas 3.6 and 3.10 the vertical maps are isomorphisms. This reduces us to
the case of the proper morphism X → Y . For a proper morphism our map is an
isomorphism by Lemmas 3.4 and 3.8 and proper base change for pushforwards, see
Étale Cohomology, Lemma 91.4. □
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Lemma 3.12.0F55 Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f separated and locally of finite type. For any abelian sheaf F on
Xétale we have f ′

! (g′)−1F = g−1f!F .

Proof. In great generality there is a pullback map g−1f∗F → f ′
∗(g′)−1F , see Sites,

Section 45. We claim that this map sends g−1f!F into the subsheaf f ′
! (g′)−1F and

induces the isomorphism in the lemma.

Choose a geometric point y′ : Spec(k) → Y ′ and denote y = g ◦ y′ the image in Y .
There is a commutative diagram

(f∗F)y
//

��

H0(Xy, F|Xy
)

��
(f ′

∗(g′)−1F)y′ // H0(X ′
y′ , (g′)−1F|X′

y′
)

where the horizontal maps were used in the proof of Lemma 3.11 and the vertical
maps are the pullback maps above. The diagram commutes because each of the
four maps in question is given by pulling back local sections along a morphism of
schemes and the underlying diagram of morphisms of schemes commutes. Since the
diagram in the statement of the lemma is cartesian we have X ′

y′ = Xy. Hence by
Lemma 3.11 and its proof we obtain a commutative diagram

(f∗F)y
//

��

H0(Xy, F|Xy
)

��

(f!F)y
//

��

gg

H0
c (Xy, F|Xy

)

��

55

(f ′
! (g′)−1F)y′ //

ww

H0
c (X ′

y′ , (g′)−1F|X′
y′

)

))
(f ′

∗(g′)−1F)y′ // H0(X ′
y′ , (g′)−1F|X′

y′
)

where the horizontal arrows of the inner square are isomorphisms and the two right
vertical arrows are equalities. Also, the se, sw, ne, nw arrows are injective. It follows
that there is a unique bijective dotted arrow fitting into the diagram. We conclude
that g−1f!F ⊂ g−1f∗F → f ′

∗(g′)−1F is mapped into the subsheaf f ′
! (g′)−1F ⊂

f ′
∗(g′)−1F because this is true on stalks, see Étale Cohomology, Theorem 29.10.

The same theorem then implies that the induced map is an isomorphism and the
proof is complete. □

https://stacks.math.columbia.edu/tag/0F55
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Lemma 3.13.0F50 Let f : X → Y and g : Y → Z be composable morphisms of
schemes which are separated and locally of finite type. Let F be an abelian sheaf on
Xétale. Then g!f!F = (g ◦ f)!F as subsheaves of (g ◦ f)∗F .

Proof. We strongly urge the reader to prove this for themselves. Let W ∈ Zétale

and s ∈ (g ◦f)∗F(W ) = F(XW ). Denote T ⊂ XW the support of s; this is a closed
subset. Observe that s is a section of (g ◦ f)!F if and only if T is proper over W .
We have f!F ⊂ f∗F and hence g!f!F ⊂ g!f∗F ⊂ g∗f∗F . On the other hand, s is a
section of g!f!F if and only if (a) T is proper over YW and (b) the support T ′ of
s viewed as section of f!F is proper over W . If (a) holds, then the image of T in
YW is closed and since f!F ⊂ f∗F we see that T ′ ⊂ YW is the image of T (details
omitted; look at stalks).

The conclusion is that we have to show a closed subset T ⊂ XW is proper over W
if and only if T is proper over YW and the image of T in YW is proper over W . Let
us endow T with the reduced induced closed subscheme structure. If T is proper
over W , then T → YW is proper by Morphisms, Lemma 41.7 and the image of T
in YW is proper over W by Cohomology of Schemes, Lemma 26.5. Conversely, if T
is proper over YW and the image of T in YW is proper over W , then the morphism
T → W is proper as a composition of proper morphisms (here we endow the closed
image of T in YW with its reduced induced scheme structure to turn the question
into one about morphisms of schemes), see Morphisms, Lemma 41.4. □

Remark 3.14.0F77 The isomorphisms between functors constructed above satisfy the
following two properties:

(1) Let f : X → Y , g : Y → Z, and h : Z → T be composable morphisms of
schemes which are separated and locally of finite type. Then the diagram

(h ◦ g ◦ f)! //

��

(h ◦ g)! ◦ f!

��
h! ◦ (g ◦ f)! // h! ◦ g! ◦ f!

commutes where the arrows are those of Lemma 3.13.
(2) Suppose that we have a diagram of schemes

X ′

f ′

��

c
// X

f

��
Y ′

g′

��

b
// Y

g

��
Z ′ a // Z

with both squares cartesian and f and g separated and locally of finite
type. Then the diagram

a−1 ◦ (g ◦ f)!

��

// (g′ ◦ f ′)! ◦ c−1

��
a−1 ◦ g! ◦ f! // g′

! ◦ b−1 ◦ f! // g′
! ◦ f ′

! ◦ c−1

https://stacks.math.columbia.edu/tag/0F50
https://stacks.math.columbia.edu/tag/0F77
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commutes where the horizontal arrows are those of Lemma 3.12 the arrows
are those of Lemma 3.13.

Part (1) holds true because we have a similar commutative diagram for pushfor-
wards. Part (2) holds by the very general compatibility of base change maps for
pushforwards (Sites, Remark 45.3) and the fact that the isomorphisms in Lemmas
3.12 and 3.13 are constructed using the corresponding maps fo pushforwards.

Lemma 3.15.0F54 Let f : X → Y be morphism of schemes which is separated and
locally of finite type. Let X =

⋃
i∈I Xi be an open covering such that for all i, j ∈ I

there exists a k with Xi ∪ Xj ⊂ Xk. Denote fi : Xi → Y the restriction of f . Then

f!F = colimi∈I fi,!(F|Xi
)

functorially in F ∈ Ab(Xétale) where the transition maps are the ones constructed
in Remark 3.5.

Proof. It suffices to show that the canonical map from right to left is a bijection
when evaluated on a quasi-compact object V of Yétale. Observe that the colimit on
the right hand side is directed and has injective transition maps. Thus we can use
Sites, Lemma 17.7 to evaluate the colimit. Hence, the statement comes down to
the observation that a closed subset Z ⊂ XV proper over V is quasi-compact and
hence is contained in Xi,V for some i. □

Lemma 3.16.0F56 Let f : X → Y be a morphism of schemes which is separated and
locally of finite type. Then functor f! commutes with direct sums.

Proof. Let F =
⊕

Fi. To show that the map
⊕

f!Fi → f!F is an isomorphism,
it suffices to show that these sheaves have the same sections over a quasi-compact
object V of Yétale. Replacing Y by V it suffices to show H0(Y, f!F) ⊂ H0(X, F)
is equal to

⊕
H0(Y, f!Fi) ⊂

⊕
H0(X, Fi) ⊂ H0(X,

⊕
Fi). In this case, by writing

X as the union of its quasi-compact opens and using Lemma 3.15 we reduce to
the case where X is quasi-compact as well. Then H0(X, F) =

⊕
H0(X, Fi) by

Étale Cohomology, Theorem 51.3. Looking at supports of sections the reader easily
concludes. □

Lemma 3.17.0F57 Let f : X → Y be a morphism of schemes which is separated and
locally quasi-finite. Then

(1) for F in Ab(Xétale) and a geometric point y : Spec(k) → Y we have

(f!F)y =
⊕

f(x)=y
Fx

functorially in F , and
(2) the functor f! is exact.

Proof. The functor f! is left exact by construction. Right exactness may be checked
on stalks (Étale Cohomology, Theorem 29.10). Thus it suffices to prove part (1).

Let y : Spec(k) → Y be a geometric point. The scheme Xy has a discrete underlying
topological space (Morphisms, Lemma 20.8) and all the residue fields at the points
are equal to k (as finite extensions of k). Hence {x : Spec(k) → X : f(x) = y} is
equal to the set of points of Xy. Thus the computation of the stalk follows from
the more general Lemma 3.11. □

https://stacks.math.columbia.edu/tag/0F54
https://stacks.math.columbia.edu/tag/0F56
https://stacks.math.columbia.edu/tag/0F57
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4. Sections with finite support

0F6E In this section we extend the construction of Section 3 to not necessarily separated
locally quasi-finite morphisms.
Let f : X → Y be a locally quasi-finite morphism of schemes. Let F be an abelian
sheaf on Xétale. Given V in Yétale denote XV = X ×Y V the base change. We are
going to consider the group of finite formal sums

(4.0.1)0F6J s =
∑

i=1,...,n
(Zi, si)

where Zi ⊂ XV is a locally closed subscheme such that the morphism Zi → V is
finite2 and where si ∈ HZi

(F). Here, as in Section 2, we set
HZi(F) = {si ∈ F(Ui) | Supp(si) ⊂ Zi}

where Ui ⊂ XV is an open subscheme containing Zi as a closed subscheme. We are
going to consider these formal sums modulo the following relations

(1)0F6K (Z, s) + (Z, s′) = (Z, s + s′),
(2)0F6L (Z, s) = (Z ′, s) if Z ⊂ Z ′.

Observe that the second relation makes sense: since Z → V is finite and Z ′ → V is
separated, the inclusion Z → Z ′ is closed and we can use the map discussed in (1).
Let us denote fp!F(V ) the quotient of the abelian group of formal sums (4.0.1) by
these relations. The first relation tells us that fp!F(V ) is a quotient of the direct
sum of the abelian groups HZ(F) over all locally closed subschemes Z ⊂ XV finite
over V . The second relation tells us that we are really taking the colimit
(4.0.2)0F6M fp!F(V ) = colimZ HZ(F)
This formula will be a convenient abstract way to think about our construction.
Next, we observe that there is a natural way to turn this construction into a presheaf
fp!F of abelian groups on Yétale. Namely, given V ′ → V in Yétale we obtain the base
change morphism XV ′ → XV . If Z ⊂ XV is a locally closed subscheme finite over
V , then the scheme theoretic inverse image Z ′ ⊂ XV ′ is finite over V ′. Moreover, if
U ⊂ XV is an open such that Z is closed in U , then the inverse image U ′ ⊂ XV ′ is
an open such that Z ′ is closed in U ′. Hence the restriction mapping F(U) → F(U ′)
of F sends HZ(F) into HZ′(F); this is a special case of the functoriality discussed
in (2) above. Clearly, these maps are compatible with inclusions Z1 ⊂ Z2 of such
locally closed subschemes of XV and we obtain a map

fp!F(V ) = colimZ HZ(F) −→ colimZ′ HZ′(F) = fp!F(V ′)
These maps indeed turn fp!F into a presheaf of abelian groups on Yétale. We omit
the details.
A final observation is that the construction of fp!F is functorial in F in Ab(Xétale).
We conclude that given a locally quasi-finite morphism f : X → Y we have con-
structed a functor

fp! : Ab(Xétale) −→ PAb(Yétale)
from the category of abelian sheaves on Xétale to the category of abelian presheaves
on Yétale. Before we define f! as the sheafification of this functor, let us check that

2Since f is locally quasi-finite, the morphism Zi → V is finite if and only if it is proper.
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it agrees with the construction in Section 3 and with the construction in Étale
Cohomology, Section 70 when both apply.

Lemma 4.1.0F6N Let f : X → Y be a separated and locally quasi-finite morphism of
schemes. Functorially in F ∈ Ab(Xétale) there is a canonical isomorphism(!)

fp!F −→ f!F
of abelian presheaves which identifies the sheaf f!F of Definition 3.3 with the presheaf
fp!F constructed above.

Proof. Let V be an object of Yétale. If Z ⊂ XV is locally closed and finite over
V , then, since f is separated, we see that the morphism Z → XV is a closed
immersion. Moreover, if Zi, i = 1, . . . , n are closed subschemes of XV finite over
V , then Z1 ∪ . . . ∪ Zn (scheme theoretic union) is a closed subscheme finite over V .
Hence in this case the colimit (4.0.2) defining fp!F(V ) is directed and we find that
f!pF(V ) is simply equal to the set of sections of F(XV ) whose support is finite over
V . Since any closed subset of XV which is proper over V is actually finite over V
(as f is locally quasi-finite) we conclude that this is equal to f!F(V ) by its very
definition. □

Lemma 4.2.0F6P Let f : X → Y be a morphism of schemes which is locally quasi-
finite. Let y : Spec(k) → Y be a geometric point. Functorially in F in Ab(Xétale)
we have

(fp!F)y =
⊕

f(x)=y
Fx

Proof. Recall that the stalk at y of a presheaf is defined by the usual colimit over
étale neighbourhoods (V, v) of y, see Étale Cohomology, Definition 29.6. Accord-
ingly suppose s =

∑
i=1,...,n(Zi, si) as in (4.0.1) is an element of fp!F(V ) where

(V, v) is an étale neighbourhood of y. Then since
Xy = (XV )v ⊃ Zi,v

and since si is a section of F on an open neighbourhood of Zi in XV we can send
s to ∑

i=1,...,n

∑
x∈Zi,v

(class of si in Fx) ∈
⊕

f(x)=y
Fx

We omit the verification that this is compatible with restriction maps and that the
relations (1) (Z, s) + (Z, s′) − (Z, s + s′) and (2) (Z, s) − (Z ′, s) if Z ⊂ Z ′ are sent
to zero. Thus we obtain a map

(fp!F)y −→
⊕

f(x)=y
Fx

Let us prove this arrow is surjective. For this it suffices to pick an x with f(x) = y
and prove that an element s in the summand Fx is in the image. Let s correspond
to the element s ∈ F(U) where (U, u) is an étale neighbourhood of x. Since f is
locally quasi-finite, the morphism U → Y is locally quasi-finite too. By More on
Morphisms, Lemma 41.3 we can find an étale neighbourhood (V, v) of y, an open
subscheme

W ⊂ U ×Y V,

and a geometric point w mapping to u and v such that W → V is finite and w is
the only geometric point of W mapping to v. (We omit the translation between
the language of geometric points we are currently using and the language of points

https://stacks.math.columbia.edu/tag/0F6N
https://stacks.math.columbia.edu/tag/0F6P
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and residue field extensions used in the statement of the lemma.) Observe that
W → XV = X ×Y V is étale. Choose an affine open neighbourhood W ′ ⊂ XV of
the image w′ of w. Since w is the only point of W over v and since W → V is
closed, after replacing V by an open neighbourhood of v, we may assume W → XV

maps into W ′. Then W → W ′ is finite and étale and there is a unique geometric
point w of W lying over w′. It follows that W → W ′ is an open immersion over an
open neighbourhood of w′ in W ′, see Étale Morphisms, Lemma 14.2. Shrinking V
and W ′ we may assume W → W ′ is an isomorphism. Thus s may be viewed as a
section s′ of F over the open subscheme W ′ ⊂ XV which is finite over V . Hence
by definition (W ′, s′) defines an element of jp!F(V ) which maps to s as desired.

Let us prove the arrow is injective. To do this, let s =
∑

i=1,...,n(Zi, si) as in (4.0.1)
be an element of fp!F(V ) where (V, v) is an étale neighbourhood of y. Assume
s maps to zero under the map constructed above. First, after replacing (V, v)
by an étale neighbourhood of itself, we may assume there exist decompositions
Zi = Zi,1 ⨿ . . . ⨿ Zi,mi

into open and closed subschemes such that each Zi,j has
exactly one geometric point over v. Say under the obvious direct sum decomposition

HZi(F) =
⊕

HZi,j (F)

the element si corresponds to
∑

si,j . We may use relations (1) and (2) to replace
s by

∑
i=1,...,n

∑
j=1,...,mi

(Zi,j , si,j). In other words, we may assume Zi has a
unique geometric point lying over v. Let x1, . . . , xm be the geometric points of
X over y corresponding to the geometric points of our Zi over v; note that for
one j ∈ {1, . . . , m} there may be multiple indices i for which xj corresponds to a
point of Zi. By More on Morphisms, Lemma 41.3 applied to both XV → V after
replacing (V, v) by an étale neighbourhood of itself we may assume there exist open
subschemes

Wj ⊂ X ×Y V, j = 1, . . . , m

and a geometric point wj of Wj mapping to xj and v such that Wj → V is finite
and wj is the only geometric point of Wj mapping to v. After shrinking V we may
assume Zi ⊂ Wj for some j and we have the map HZi(F) → HWj (F). Thus by
the relation (2) we see that our element is equivalent to an element of the form∑

j=1,...,m
(Wj , tj)

for some tj ∈ HWj
(F). Clearly, this element is mapped simply to the class of tj

in the summand Fxj
. Since s maps to zero, we find that tj maps to zero in Fxj

.
This implies that tj restricts to zero on an open neighbourhood of wj in Wj , see
Étale Cohomology, Lemma 31.2. Shrinking V once more we obtain tj = 0 for all j
as desired. □

Lemma 4.3.0F6Q Let f = j : U → X be an étale of schemes. Denote jp! the con-
struction of Étale Cohomology, Equation (70.1.1) and denote fp! the construction
above. Functorially in F ∈ Ab(Xétale) there is a canonical map

jp!F −→ fp!F

of abelian presheaves which identifies the sheaf j!F = (jp!F)# of Étale Cohomology,
Definition 70.1 with (fp!F)#.

https://stacks.math.columbia.edu/tag/0F6Q
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Proof. Please read the proof of Étale Cohomology, Lemma 70.6 before reading the
proof of this lemma. Let V be an object of Xétale. Recall that

jp!F(V ) =
⊕

φ:V →U
F(V φ−→ U)

Given φ we obtain an open subscheme Zφ ⊂ UV = U ×X V , namely, the image of
the graph of φ. Via φ we obtain an isomorphism V → Zφ over U and we can think
of an element

sφ ∈ F(V φ−→ U) = F(Zφ) = HZφ
(F)

as a section of F over Zφ. Since Zφ ⊂ UV is open, we actually have HZφ(F) =
F(Zφ) and we can think of sφ as an element of HZφ

(F). Having said this, our map
jp!F → fp!F is defined by the rule∑

i=1,...,n
sφi

7−→
∑

i=1,...,n
(Zφi

, sφi
)

with right hand side a sum as in (4.0.1). We omit the verification that this is
compatible with restriction mappings and functorial in F .

To finish the proof, we claim that given a geometric point y : Spec(k) → Y there is
a commutative diagram

(jp!F)y
//

��

⊕
j(x)=y Fx

(fp!F)y
//⊕

f(x)=y Fx

where the top horizontal arrow is constructed in the proof of Étale Cohomology,
Proposition 70.3, the bottom horizontal arrow is constructed in the proof of Lemma
4.2, the right vertical arrow is the obvious equality, and the left veritical arrow
is the map defined in the previous paragraph on stalks. The claim follows in a
straightforward manner from the explicit description of all of the arrows involved
here and in the references given. Since the horizontal arrows are isomorphisms
we conclude so is the left vertical arrow. Hence we find that our map induces an
isomorphism on sheafifications by Étale Cohomology, Theorem 29.10. □

Definition 4.4.0F6R Let f : X → Y be a locally quasi-finite morphism of schemes.
We define the direct image with compact support to be the functor

f! : Ab(Xétale) −→ Ab(Yétale)

defined by the formula f!F = (fp!F)#, i.e., f!F is the sheafification of the presheaf
fp!F constructed above.

By Lemma 4.1 this does not conflict with Definition 3.3 (when both definitions
apply) and by Lemma 4.3 this does not conflict with Étale Cohomology, Definition
70.1 (when both definitions apply).

Lemma 4.5.0F5F Let f : X → Y be a locally quasi-finite morphism of schemes. Then
(1) for F in Ab(Xétale) and a geometric point y : Spec(k) → Y we have

(f!F)y =
⊕

f(x)=y
Fx

functorially in F , and

https://stacks.math.columbia.edu/tag/0F6R
https://stacks.math.columbia.edu/tag/0F5F


MORE ÉTALE COHOMOLOGY 14

(2) the functor f! : Ab(Xétale) → Ab(Yétale) is exact and commutes with direct
sums.

Proof. The formula for the stalks is immediate (and in fact equivalent) to Lemma
4.2. The exactness of the functor follows immediately from this and the fact that
exactness may be checked on stalks, see Étale Cohomology, Theorem 29.10. □

Remark 4.6 (Covariance with respect to open embeddings).0F6S Let f : X → Y be
locally quasi-finite morphism of schemes. Let F be an abelian sheaf on Xétale. Let
X ′ ⊂ X be an open subscheme and denote f ′ : X ′ → Y the restriction of f . We
claim there is a canonical map

f ′
! (F|X′) −→ f!F

Namely, this map will be the sheafification of a canonical map

f ′
p!(F|X′) → fp!F

constructed as follows. Let V ∈ Yétale and consider a section s′ =
∑

i=1,...,n(Z ′
i, s′

i)
as in (4.0.1) defining an element of f ′

p!(F|X′)(V ). Then Z ′
i ⊂ X ′

V may also be
viewed as a locally closed subscheme of XV and we have HZ′

i
(F|X′) = HZ′

i
(F).

We will map s′ to the exact same sum s =
∑

i=1,...,n(Z ′
i, s′

i) but now viewed as an
element of fp!F(V ). We omit the verification that this construction is compatible
with restriction mappings and functorial in F . This construction has the following
properties:

(1) The maps f ′
p!F ′ → fp!F and f ′

! F ′ → f!F are compatible with the descrip-
tion of stalks given in Lemmas 4.2 and 4.5.

(2) If f is separated, then the map f ′
p!F ′ → fp!F is the same as the map

constructed in Remark 3.5 via the isomorphism in Lemma 4.1.
(3) If X ′′ ⊂ X ′ is another open, then the composition of f ′′

p!(F|X′′) → f ′
p!(F|X′) →

fp!F is the map f ′′
p!(F|X′′) → fp!F for the inclusion X ′′ ⊂ X. Sheafifying

we conclude the same holds true for f ′′
! (F|X′′) → f ′

! (F|X′) → f!F .
(4) The map f ′

! F ′ → f!F is injective because we can check this on stalks.
All of these statements are easily proven by representing elements as finite sums as
above and considering what happens to these elements.

Lemma 4.7.0F5H Let f : X → Y be a locally quasi-finite morphism of schemes. Let
X =

⋃
i∈I Xi be an open covering. Then there exists an exact complex

. . . →
⊕

i0,i1,i2
fi0i1i2,!F|Xi0i1i2

→
⊕

i0,i1
fi0i1,!F|Xi0i1

→
⊕

i0
fi0,!F|Xi0

→ f!F → 0

functorial in F ∈ Ab(Xétale), see proof for details.

Proof. Here as usual we set Xi0...ip
= Xi0 ∩ . . . ∩ Xip

and we denote fi0...ip
the

restriction of f to Xi0...ip . The maps in the complex are the maps constructed in
Remark 4.6 with sign rules as in the Čech complex. Exactness follows easily from
the description of stalks in Lemma 4.5. Details omitted. □

Remark 4.8 (Alternative construction).0F5I Lemma 4.7 gives an alternative con-
struction of the functor f! for locally quasi-finite morphisms f . Namely, given a
locally quasi-finite morphism f : X → Y of schemes we can choose an open covering
X =

⋃
i∈I Xi such that each fi : Xi → Y is separated. For example choose an affine

https://stacks.math.columbia.edu/tag/0F6S
https://stacks.math.columbia.edu/tag/0F5H
https://stacks.math.columbia.edu/tag/0F5I
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open covering of X. Then we can define f!F as the cokernel of the penultimate
map of the complex of the lemma, i.e.,

f!F = Coker
(⊕

i0,i1
fi0i1,!F|Xi0i1

→
⊕

i0
fi0,!F|Xi0

)
where we can use the construction of fi0,! and fi0i1,! in Section 3 because the
morphisms fi0 and fi0i1 are separated. One can then compute the stalks of f!
(using the separated case, namely Lemma 3.17) and obtain the result of Lemma
4.5. Having done so all the other results of this section can be deduced from this
as well.

Remark 4.9.0F78 Let g : Y ′ → Y be a morphism of schemes. For an abelian presheaf
G′ on Y ′

étale let us denote g∗G′ the presheaf V 7→ G′(Y ′ ×Y V ). If α : G → g∗G′

is a map of abelian presheaves on Yétale, then there is a unique map α# : G# →
g∗((G′)#) of abelian sheaves on Yétale such that the diagram

G

��

α
// g∗G′

��
G# α#

// g∗((G′)#)

is commutative where the vertical maps come from the canonical maps G → G#

and G′ → (G′)#. If α′ : g−1G# → (G′)# is the map adjoint to α#, then for a
geometric point y′ : Spec(k) → Y ′ with image y = g ◦ y′ in Y , the map

α′
y′ : Gy = (G#)y = (g−1G#)y′ −→ (G′)#

y′ = G′
y′

is given by mapping the class in the stalk of a section s of G over an étale neigh-
bourhood (V, v) to the class of the section α(s) in g∗G′(V ) = G′(Y ′ ×Y V ) over the
étale neighbourhood (Y ′ ×Y V, (y′, v)) in the stalk of G′ at y′.

Lemma 4.10.0F5J Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f locally quasi-finite. There is an isomorphism g−1f!F → f ′
! (g′)−1F

functorial for F in Ab(Xétale) which is compatible with the descriptions of stalks
given in Lemma 4.5 (see proof for the precise statement).

Proof. With conventions as in Remark 4.9 we will explicitly construct a map
c : fp!F −→ g∗f ′

p!(g′)−1F
of abelian presheaves on Yétale. By the discussion in Remark 4.9 this will determine
a canonical map g−1f!F → f ′

! (g′)−1F . Finally, we will show this map induces
isomorphisms on stalks and conclude by Étale Cohomology, Theorem 29.10.
Construction of the map c. Let V ∈ Yétale and consider a section s =

∑
i=1,...,n(Zi, si)

as in (4.0.1) defining an element of fp!F(V ). The value of g∗f ′
p!(g′)−1F at V

is f ′
p!(g′)−1F(V ′) where V ′ = V ×Y Y ′. Denote Z ′

i ⊂ X ′
V ′ the base change of

Zi to V ′. By (2) there is a pullback map HZi(F) → HZ′
i
((g′)−1F). Denoting

s′
i ∈ HZ′

i
((g′)−1F) the image of si under pullback, we set c(s) =

∑
i=1,...,n(Z ′

i, s′
i)

https://stacks.math.columbia.edu/tag/0F78
https://stacks.math.columbia.edu/tag/0F5J
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as in (4.0.1) defining an element of f ′
p!(g′)−1F(V ′). We omit the verification that

this construction is compatible the relations (1) and (2) and compatible with re-
striction mappings. The construction is clearly functorial in F .
Let y′ : Spec(k) → Y ′ be a geometric point with image y = g ◦ y′ in Y . Observe
that X ′

y′ = Xy by transitivity of fibre products. Hence g′ produces a bijection
{f ′(x′) = y′} → {f(x) = y} and if x′ maps to x, then ((g′)−1F)x′ = Fx by Étale
Cohomology, Lemma 36.2. Now we claim that the diagram

(g−1f!F)y′

��

(f!F)y
//

xx

⊕
f(x)=y Fx

��
(f ′

! (g′)−1F)y′ //⊕
f ′(x′)=y′(g′)−1Fx′

commutes where the horizontal arrows are given in the proof of Lemma 4.2 and
where the right vertical arrow is an equality by what we just said above. The
southwest arrow is described in Remark 4.9 as the pullback map, i.e., simply given
by our construction c above. Then the simple description of the image of a sum∑

(Zi, zi) in the stalk at x given in the proof of Lemma 4.2 immediately shows the
diagram commutes. This finishes the proof of the lemma. □

Lemma 4.11.0F79 Let f ′ : X → Y ′ and g : Y ′ → Y be composable morphisms of
schemes with f ′ and f = g ◦ f ′ locally quasi-finite and g separated and locally of
finite type. Then there is a canonical isomorphism of functors g! ◦ f ′

! = f!. This
isomorphism is compatible with

(a) covariance with respect to open embeddings as in Remarks 3.5 and 4.6,
(b) the base change isomorphisms of Lemmas 4.10 and 3.12, and
(c) equal to the isomorphism of Lemma 3.13 via the identifications of Lemma

4.1 in case f ′ is separated.

Proof. Let F be an abelian sheaf on Xétale. With conventions as in Remark 4.9
we will explicitly construct a map

c : fp!F −→ g∗f ′
p!F

of abelian presheaves on Yétale. By the discussion in Remark 4.9 this will determine
a canonical map c# : f!F → g∗f ′

! F . We will show that c# has image contained
in the subsheaf g!f

′
! F , thereby obtaining a map c′ : f!F → g!f

′
! F . Next, we will

prove (a), (b), and (c) that. Finally, part (b) will allow us to show that c′ is an
isomorphism.
Construction of the map c. Let V ∈ Yétale and let s =

∑
(Zi, si) be a sum as in

(4.0.1) defining an element of fp!F(V ). Recall that Zi ⊂ XV = X ×Y V is a locally
closed subscheme finite over V . Setting V ′ = Y ′×Y V we get XV ′ = X×Y ′ V ′ = XV .
Hence Zi ⊂ XV ′ is locally closed and Zi is finite over V ′ because g is separated
(Morphisms, Lemma 44.14). Hence we may set c(s) =

∑
(Zi, si) but now viewed

as an element of f ′
p!F(V ′) = (g∗f ′

p!F)(V ). The construction is clearly compatible
with relations (1) and (2) and compatible with restriction mappings and hence we
obtain the map c.
Observe that in the discussion above our section c(s) =

∑
(Zi, si) of f ′

! F over V ′

restricts to zero on V ′ \ Im(
∐

Zi → V ′). Since Im(
∐

Zi → V ′) is proper over V

https://stacks.math.columbia.edu/tag/0F79
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(for example by Morphisms, Lemma 41.10) we conclude that c(s) defines a section
of g!f

′
! F ⊂ g∗f ′

! F over V . Since every local section of f!F locally comes from a
local section of fp!F we conclude that the image of c# is contained in g!f

′
! F . Thus

we obtain an induced map c′ : f!F → g!f
′
! F factoring c# as predicted in the first

paragraph of the proof.

Proof of (a). Let Y ′
1 ⊂ Y ′ be an open subscheme and set X1 = (f ′)−1(W ′). We

obtain a diagram
X1

f ′
1
��

a
//

f1

��

X

f ′

��
f

��

Y ′
1

g1

��

b′
// Y ′

g

��
Y Y

where the horizontal arrows are open immersions. Then our claim is that the
diagram

f1,!F|X1
c′

1

//

��

g1,!f
′
1,!F|X1

g1,!(f ′
! F)|Y ′

1

��
f!F

c′
// g!f

′
! F // g∗f ′

! F

commutes where the left vertical arrow is Remark 4.6 and the right vertical arrow
is Remark 3.5. The equality sign in the diagram comes about because f ′

1 is the
restriction of f ′ to Y ′

1 and our construction of f ′
! is local on the base. Finally,

to prove the commutativity we choose an object V of Yétale and a formal sum
s1 =

∑
(Z1,i, s1,i) as in (4.0.1) defining an element of f1,p!F|X1(V ). Recall this

means Z1,i ⊂ X1 ×Y V is locally closed finite over V and s1,i ∈ HZ1,i
(F). Then we

chase this section across the maps involved, but we only need to show we end up
with the same element of g∗f ′

! F(V ) = f ′
! F(Y ′ ×Y V ). Going around both sides of

the diagram the reader immediately sees we end up with the element
∑

(Z1,i, s1,i)
where now Z1,i is viewed as a locally closed subscheme of X×Y ′ (Y ′×Y V ) = X×Y V
finite over Y ′ ×Y V .

Proof of (b). Let b : Y1 → Y be a morphism of schemes. Let us form the commu-
tative diagram

X1

f ′
1
��

a
//

f1

��

X

f ′

��
f

��

Y ′
1

g1

��

b′
// Y ′

g

��
Y1

b // Y
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with cartesian squares. We claim that our construction is compatible with the base
change maps of Lemmas 4.10 and 3.12, i.e., that the top rectangle of the diagram

b−1f!F //

b−1c′

��

f1,!a
−1F

c′
1
��

b−1g!f
′
! F //

��

g1,!(b′)−1f ′
! F //

��

g1,!f
′
1,!a

−1F

��
b−1g∗f ′

! F // g1,∗(b′)−1f ′
! F // g1,∗f ′

1,!a
−1F

commutes. The verification of this is completely routine and we urge the reader
to skip it. Since the arrows going from the middle row down to the bottom row
are injective, it suffices to show that the outer diagram commutes. To show this it
suffices to take a local section of b−1f!F and show we end up with the same local
section of g1,∗f ′

1,!a
−1F going around either way. However, in fact it suffices to check

this for local sections which are of the the pullback by b of a section s =
∑

(Zi, si) of
fp!F(V ) as above (since such pullbacks generate the abelian sheaf b−1f!F). Denote
V1, V ′

1 , and Z1,i the base change of V , V ′ = Y ′ ×Y V , Zi by Y1 → Y . Recall
that Zi is a locally closed subscheme of XV = XV ′ and hence Z1,i is a locally
closed subscheme of (X1)V1 = (X1)V ′

1
. Then b−1c′ sends the pullback of s to the

pullback of the local section c(s)
∑

(Zi, si) viewed as an element of f ′
p!F(V ′) =

(g∗f ′
p!F)(V ). The composition of the bottom two base change maps simply maps

this to
∑

(Zi,1, s1,i) viewed as an element of f ′
1,p!a

−1F(V ′
1) = g1,∗f ′

1,p!a
−1F(V1). On

the other hand, the base change map at the top of the diagram sends the pullback
of s to

∑
(Z1,i, s1,i) viewed as an element of f1,!a

−1F(V1). Then finally c′
1 by its

very construction does indeed map this to
∑

(Zi,1, s1,i) viewed as an element of
f ′

1,p!a
−1F(V ′

1) = g1,∗f ′
1,p!a

−1F(V1) and the commutativity has been verified.

Proof of (c). This follows from comparing the definitions for both maps; we omit
the details.

To finish the proof it suffices to show that the pullback of c′ via any geometric
point y : Spec(k) → Y is an isomorphism. Namely, pulling back by y is the same
thing as taking stalks and y (Étale Cohomology, Remark 56.6) and hence we can
invoke Étale Cohomology, Theorem 29.10. By the compatibility (b) just shown, we
conclude that we may assume Y is the spectrum of k and we have to show that c′

is an isomorphism. To do this it suffices to show that the induced map⊕
x∈X

Fx = H0(Y, f!F) −→ H0(Y, g!f
′
! F) = H0

c (Y ′, f ′
! F)

is an isomorphism. The equalities hold by Lemmas 4.5 and 3.11. Recall that
X is a disjoint union of spectra of Artinian local rings with residue field k, see
Varieties, Lemma 20.2. Since the left and right hand side commute with direct
sums (details omitted) we may assume that F is a skyscraper sheaf x∗A supported
at some x ∈ X. Then f ′

! F is the skyscraper sheaf at the image y′ of x in Y by
Lemma 4.5. In this case it is obvious that our construction produces the identity
map A → H0

c (Y ′, y′
∗A) = A as desired. □
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Lemma 4.12.0F6T Let f : X → Y and g : Y → Z be composable locally quasi-finite
morphisms of schemes. Then there is a canonical isomorphism of functors

(g ◦ f)! −→ g! ◦ f!

These isomorphisms satisfy the following properties:
(1) If f and g are separated, then the isomorphism agrees with Lemma 3.13.
(2) If g is separated, then the isomorphism agrees with Lemma 4.11.
(3) For a geometric point z : Spec(k) → Z the diagram

((g ◦ f)!F)z

��

//⊕
g(f(x))=z Fx

(g!f!F)z
//⊕

g(y)=z(f!F)y
//⊕

g(f(x))=z Fx

is commutative where the horizontal arrows are given by Lemma 4.5.
(4) Let h : Z → T be a third locally quasi-finite morphism of schemes. Then

the diagram
(h ◦ g ◦ f)! //

��

(h ◦ g)! ◦ f!

��
h! ◦ (g ◦ f)! // h! ◦ g! ◦ f!

commutes.
(5) Suppose that we have a diagram of schemes

X ′

f ′

��

c
// X

f

��
Y ′

g′

��

b
// Y

g

��
Z ′ a // Z

with both squares cartesian and f and g locally quasi-finite. Then the dia-
gram

a−1 ◦ (g ◦ f)!

��

// (g′ ◦ f ′)! ◦ c−1

��
a−1 ◦ g! ◦ f! // g′

! ◦ b−1 ◦ f! // g′
! ◦ f ′

! ◦ c−1

commutes where the horizontal arrows are those of Lemma 4.10.

Proof. If f and g are separated, then this is a special case of Lemma 3.13. If g
is separated, then this is a special case of Lemma 4.11 which moreover agrees with
the case where f and g are separated.

Construction in the general case. Choose an open covering Y =
⋃

Yi such that the
restriction gi : Yi → Z of g is separated. Set Xi = f−1(Yi) and denote fi : Xi → Yi

https://stacks.math.columbia.edu/tag/0F6T
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the restriction of f . Also denote h = g ◦ f and hi : Xi → Z the restriction of h.
Consider the following diagram⊕

i0,i1
hi0i1,!F|Xi0i1

//

��

⊕
i0

hi0,!F|Xi0
//

��

h!F //

��

0

⊕
i0,i1

gi0i1,!fi0i1,!F|Xi0i1
//

��

⊕
i0

gi0,!fi0,!F|Xi0

��⊕
i0,i1

gi0i1,!(f!F)|Yi0i1
//⊕

i0
gi0,!(f!F)|Yi0

// g!f!F // 0

By Lemma 4.7 the top and bottom row in the diagram are exact. By Lemma 4.11
the top left square commutes. The vertical arrows in the lower left square come
about because (f!F)|Yi0i1

= fi0i1,!F|Xi0i1
and (f!F)|Yi0

= fi0,!F|Xi0
as the con-

struction of f! is local on the base. Moreover, these equalities are (of course) compat-
ible with the identifications ((f!F)|Yi0

)|Yi0i1
= (f!F)|Yi0i1

and (fi0,!F|Xi0
)|Yi0i1

=
fi0i1,!F|Xi0i1

which are used (together with the covariance for open embeddings
for Yi0i1 ⊂ Yi0) to define the horizontal maps of the lower left square. Thus this
square commutes as well. In this way we conclude there is a unique dotted arrow
as indicated in the diagram and moreover this arrow is an isomorphism.

Proof of properties (1) – (5). Fix the open covering Y =
⋃

Yi. Observe that if
Y → Z happens to be separated, then we get a dotted arrow fitting into the huge
diagram above by using the map of Lemma 4.11 (by the very properties of that
lemma). This proves (2) and hence also (1) by the compatibility of the maps of
Lemma 4.11 and Lemma 3.13. Next, for any scheme Z ′ over Z, we obtain the
compatibility in (5) for the map (g′ ◦ f ′)! → g′

! ◦ f ′
! constructed using the open

covering Y ′ =
⋃

b−1(Yi). This is clear from the corresponding compatibility of the
maps constructed in Lemma 4.11. In particular, we can consider a geometric point
z : Spec(k) → Z. Since Xz → Yz → Spec(k) are separated maps, we find that the
base change of (g ◦ f)!F → g!f!F by z is equal to the map of Lemma 3.13. The
reader then immediately sees that we obtain property (3). Of course, property (3)
guarantees that our transformation of functors (g ◦ f)! → g! ◦ f! constructed using
the open covering Y =

⋃
Yi doesn’t depend on the choice of this open covering.

Finally, property (4) follows by looking at what happens on stalks using the already
proven property (3). □

5. Weightings and trace maps for locally quasi-finite morphisms

0GKE A reference for this section is [AGV71, Exposee XVII, Proposition 6.2.5].

Let f : X → Y be a locally quasi-finite morphism of schemes. Let w : X → Z be a
weighting of f , see More on Morphisms, Definition 75.2. Let F be an abelian sheaf
on Yétale. In this section we will show that there exists map

Trf,w,F : f!f
−1F −→ F

of abelian sheaves on Yétale characterized by the following property: on stalks at a
geometric point y of Y we obtain the map⊕

f(x)=y
w(x) : (f!f

−1F)y =
⊕

f(x)=y
Fy −→ Fy
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Here as indicated the arrow is given by multiplication by the integer w(x) on the
summand corresponding to x. The equality on the left of the arrow follows from
Lemma 4.5 combined with Étale Cohomology, Lemma 36.2.
If the morphism f : X → Y is flat, locally quasi-finite, and locally of finite pre-
sentation, then there exists a canonical weighting and we obtain a canonical trace
map whose formation is compatible with base change, see Example 5.5. If Y is a
locally Noetherian unibranch scheme and f : X → Y is locally quasi-finite, then
we can also define a (natural) weighting for f and we have trace maps in this case
as well, see Example 5.7.

Lemma 5.1.0GKF Let f : X → Y be a locally quasi-finite morphism of schemes. Let Λ
be a ring. Let F be a sheaf of Λ-modules on Xétale and let G be a sheaf of Λ-modues
on Yétale. There is a canonical isomorphism

can : f!F ⊗Λ G −→ f!(F ⊗Λ f−1G)
of sheaves of Λ-modules on Yétale.

Proof. Recall that f!F = (fp!F)# by Definition 4.4 where fp!F is the presheaf
constructed in Section 4. Thus in order to construct the arrow it suffices to construct
a map

fp!F ⊗p,Λ G −→ fp!(F ⊗Λ f−1G)
of presheaves on Yétale. Here the symbol ⊗p,Λ denotes the presheaf tensor product,
see Modules on Sites, Section 26. Let V be an object of Yétale. Recall that
fp!F(V ) = colimZ HZ(F) and fp!(F ⊗Λ f−1G)(V ) = colimZ HZ(F ⊗Λ f−1G)

See Section 4. Our map will be defined on pure tensors by the rule
(Z, s) ⊗ t 7−→ (Z, s ⊗ f−1t)

(for notation see below) and extended by linearity to all of (fp!F ⊗p,Λ G)(V ) =
fp!F(V ) ⊗Λ G(V ). Here the notation used is as follows

(1) Z ⊂ XV is a locally closed subscheme finite over V ,
(2) s ∈ HZ(F) which means that s ∈ F(U) with Supp(s) ⊂ Z for some U ⊂ XV

open such that Z ⊂ U is closed, and
(3) t ∈ G(V ) with image f−1t ∈ f−1G(U).

Since the support of s ∈ F(U) is contained in Z it is clear that the support of
s ⊗ f−1t is contained in Z as well. Thus considering the pair (Z, s ⊗ f−1t) makes
sense. It is immediate that the construction commutes with the transition maps
in the colimit colimZ HZ(F) and that it is compatible with restriction mappings.
Finally, it is equally clear that the construction is compatible with the identifications
of stalks of f! in Lemma 4.5. In other words, the map can we’ve produced on stalks
at a geometric point y fits into a commutative diagram

(f!F ⊗Λ G)y cany

//

��

f!(F ⊗Λ f−1G)y

��
(
⊕

Fx) ⊗Λ Gy
//⊕(Fx ⊗Λ Gy)

where the direct sums are over the geometric points x lying over y, where the vertical
arrows are the identifications of Lemma 4.5, and where the lower horizontal arrow is
the obvious isomorphism. We conclude that can is an isomorphism as desired. □

https://stacks.math.columbia.edu/tag/0GKF
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Lemma 5.2.0GKG Let f : X → Y be a locally quasi-finite morphism of schemes. Let
w : X → Z be a weighting of f . For any abelian sheaf F on Y there exists a unique
trace map Trf,w,F : f!f

−1F → F having the prescribed behaviour on stalks.

Proof. By Lemma 5.1 we have an identification f!f
−1F = f!Z ⊗ F compatible

with the description of stalks of these sheaves at geometric points. Hence it suffices
to produce the map

Trf,w,Z : f!Z −→ Z
having the prescribed behaviour on stalks. By Definition 4.4 we have f!Z = (fp!Z)#

where fp!Z is the presheaf constructed in Section 4. Thus it suffices to construct a
map

fp!Z −→ Z
of presheaves on Yétale. Let V be an object of Yétale. Recall from Section 4 that

fp!Z(V ) = colimZ HZ(Z)

Here the colimit is over the (partially ordered) collection of locally closed sub-
schemes Z ⊂ XV which are finite over V . For each such Z we will define a map

HZ(Z) −→ Z(V )

compatible with the maps defining the colimit.

Let Z ⊂ XV be locally closed and finite over V . Choose an open U ⊂ XV containing
Z as a closed subset. An element s of HZ(Z) is a section s ∈ Z(U) whose support
is contained in Z. Let Un ⊂ U be the open and closed subset where the value of s
is n ∈ Z. By the support condition we see that Z ∩ Un = Un for n ̸= 0. Hence for
n ̸= 0, the open Un is also closed in Z (as the complement of all the others) and
we conclude that Un → V is finite as Z is finite over V . By the very definition of
a weighting this means the function

∫
Un→V

w|Un
is locally constant on V and we

may view it as an element of Z(V ). Our construction sends (Z, s) to the element∑
n∈Z, n ̸=0

n

(∫
Un→V

w|Un

)
∈ Z(V )

The sum is locally finite on V and hence makes sense; details omitted (in the whole
discussion the reader may first choose affine opens and make sure all the schemes
occuring in the argument are quasi-compact so the sum is finite). We omit the
verification that this construction is compatible with the maps in the colimit and
with the restriction mappings defining fp!Z.

Let y be a geometric point of Y lying over the point y ∈ Y . Taking stalks at y the
construction above determines a map

(f!Z)y =
⊕

f(x)=y
Z −→ Z = Zy

To finish the proof we will show this map is given by multiplication by w(x) on
the summand corresponding to x. Namely, pick x lying over y. We can find an
étale neighbourhood (V, v) → (Y, y) such that XV contains an open U finite over
V such that only the geometric point x is in U and not the other geometric points
of X lifting y. This follows from More on Morphisms, Lemma 41.3; some details
omitted. Then (U, 1) defines a section of f!Z over V which maps to 1 in the
summand corresponding to x and zero in the other summands (see proof of Lemma

https://stacks.math.columbia.edu/tag/0GKG
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4.2) and our construction above sends (U, 1) to
∫

U→V
w|U which is constant with

value w(x) in a neighbourhood of v as desired. □

Lemma 5.3.0GKH Let f : X → Y be a locally quasi-finite morphism of schemes. Let
w : X → Z be a weighting of f . The trace maps constructed above have the following
properties:

(1) Trf,w,F is functorial in F ,
(2) Trf,w,F is compatible with arbitrary base change,
(3) given a ring Λ and K in D(Yétale, Λ) we obtain Trf,w,K : f!f

−1K → K
functorial in K and compatible with arbitrary base change.

Proof. Part (1) either follows from the construction of the trace map in the proof
of Lemma 5.2 or more simply because the characterization of the map forces it to
be true on all stalks. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of schemes. Then the function w′ = w ◦ g′ : X ′ → Z is a
weighting of f ′ by More on Morphisms, Lemma 75.3. Statement (2) means that
the diagram

g−1f!f
−1F

g−1Trf,w,F

// g−1F

f ′
! (f ′)−1g−1F

Trf′,w′,g−1F // g−1F

is commutative where the left vertical equality is given by

g−1f!f
−1F = f ′

! (g′)−1f−1F = f ′
! (f ′)−1g−1F

with first equality sign given by Lemma 4.10 (base change for lower shriek). The
commutativity of this diagram follows from the characterization of the action of
our trace maps on stalks and the fact that the base change map of Lemma 4.10
respects the descriptions of stalks.

Given parts (1) and (2), part (3) follows as the functors f−1 : D(Yétale, Λ) →
D(Xétale, Λ) and f! : D(Xétale, Λ) → D(Yétale, Λ) are obtained by applying f−1

and f! to any complexes of modules representing the objects in question. □

Lemma 5.4.0GL3 Let f : X → Y and g : Y → Z be locally quasi-finite morphisms.
Let wf : X → Z be a weighting of f and let wg : Y → Z be a weighting of g. For
K ∈ D(Zétale, Λ) the composition

(g ◦ f)!(g ◦ f)−1K = g!f!f
−1g−1K

g!Trf,wf ,g−1K

−−−−−−−−−→ g!g
−1K

Trg,wg,K−−−−−−→ K

is equal to Trg◦f,wg◦f ,K where wg◦f (x) = wf (x)wg(f(x)).

Proof. We have (g ◦ f)! = g! ◦ f! by Lemma 4.12. In More on Morphisms, Lemma
75.5 we have seen that wg◦f is a weighting for g ◦ f so the statement makes sense.
To check equality compute on stalks. Details omitted. □

https://stacks.math.columbia.edu/tag/0GKH
https://stacks.math.columbia.edu/tag/0GL3
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Example 5.5 (Trace for flat quasi-finite).0GKI Let f : X → Y be a morphism of
schemes which is flat, locally quasi-finite, and locally of finite presentation. Then
we obtain a canonical positive weighting w : X → Z by setting

w(x) = lengthOX,x
(OX,x/mf(x)OX,x)[κ(x) : κ(f(x))]i

See More on Morphisms, Lemma 75.7. Thus by Lemmas 5.2 and 5.3 for f we obtain
trace maps

Trf,K : f!f
−1K −→ K

functorial for K in D(Yétale, Λ) and compatible with arbitrary base change. Note
that any base change f ′ : X ′ → Y ′ of f satisfies the same properties and that w
restricts to the canonical weighting for f ′.

Remark 5.6.0GL4 Let j : U → X be an étale morphism of schemes. Then the trace
map Tr : j!j

−1K → K of Example 5.5 is equal to the counit for the adjunction
between j! and j−1. We already used the terminology “trace” for this counit in
Étale Cohomology, Section 66.

Example 5.7 (Trace for quasi-finite over normal).0GKJ Let Y be a geometrically
unibranch and locally Noetherian scheme, for example Y could be a normal variety.
Let f : X → Y be a locally quasi-finite morphism of schemes. Then there exists a
positive weighting w : X → Z for f which is roughly defined by sending x to the
“generic separable degree” of Osh

X,x over Osh
Y,f(x). See More on Morphisms, Lemma

75.8. Thus by Lemmas 5.2 and 5.3 for f and w we obtain trace maps

Trf,w,K : f!f
−1K −→ K

functorial for K in D(Yétale, Λ) and compatible with arbitrary base change. How-
ever, in this case, given a base change f ′ : X ′ → Y ′ of f the restriction of w to X ′

in general does not have a “natural” interpretation in terms of the morphism f ′.

6. Upper shriek for locally quasi-finite morphisms

0F58 For a locally quasi-finite morphism f : X → Y of schemes, the functor f! :
Ab(Xétale) → Ab(Yétale) commutes with direct sums and is exact, see Lemma 4.5.
This suggests that it has a right adjoint which we will denote f !.

Warning: This functor is the non-derived version!

Lemma 6.1.0F59 Let f : X → Y be a locally quasi-finite morphism of schemes.
(1) The functor f! : Ab(Xétale) → Ab(Yétale) has a right adjoint f ! : Ab(Yétale) →

Ab(Xétale).
(2) We have f !(y∗A) =

∏
f(x)=y x∗A.

(3) If Λ is a ring, then the functor f! : Mod(Xétale, Λ) → Mod(Yétale, Λ) has a
right adjoint f ! : Mod(Yétale, Λ) → Mod(Xétale, Λ) which agrees with f ! on
underlying abelian sheaves.

Proof. Proof of (1). Let E ⊂ Ob(Ab(Yétale)) be the class consisting of products of
skyscraper sheaves. We claim that

(a) every G in Ab(Yétale) is a subsheaf of an element of E, and
(b) for every G ∈ E there exists an object H of Ab(Xétale) such that Hom(f!F , G) =

Hom(F , H) functorially in F .

https://stacks.math.columbia.edu/tag/0GKI
https://stacks.math.columbia.edu/tag/0GL4
https://stacks.math.columbia.edu/tag/0GKJ
https://stacks.math.columbia.edu/tag/0F59
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Once the claim has been verified, the dual of Homology, Lemma 29.6 produces the
adjoint functor f !.

Part (a) is true because we can map G to the sheaf
∏

y∗Gy where the product is
over all geometric points of Y . This is an injection by Étale Cohomology, Theorem
29.10. (This is the first step in the Godement resolution when done in the setting
of abelian sheaves on topological spaces.)

Part (b) and part (2) of the lemma can be seen as follows. Suppose that G =
∏

y∗Ay

for some abelian groups Ay. Then

Hom(f!F , G) =
∏

Hom(f!F , y∗Ay)

Thus it suffices to find abelian sheaves Hy on Xétale representing the functors
F 7→ Hom(f!F , y∗Ay) and to take H =

∏
Hy. This reduces us to the case H = y∗A

for some fixed geometric point y : Spec(k) → Y and some fixed abelian group A.
We claim that in this case H =

∏
f(x)=y x∗A works. This will finish the proof of

parts (1) and (2) of the lemma. Namely, we have

Hom(f!F , y∗A) = HomAb((f!F)y, A) = HomAb(
⊕

f(x)=y
Fx, A)

by the description of stalks in Lemma 4.5 on the one hand and on the other hand
we have

Hom(F , H) =
∏

f(x)=y
Hom(F , x∗A) =

∏
f(x)=y

HomAb(Fx, A)

We leave it to the reader to identify these as functors of F .

Proof of part (3). Observe that an object Mod(Xétale, Λ) is the same thing as an
object F of Ab(Xétale) together with a map Λ → End(F). Hence the functors f!
and f ! in (1) define functors f! and f ! as in (3). A straightforward computation
shows that they are adjoints. □

Lemma 6.2.0F5A Let j : U → X be an étale morphism. Then j! = j−1.

Proof. This is true because j! as defined in Section 4 agrees with j! as defined
in Étale Cohomology, Section 70, see Lemma 4.3. Finally, in Étale Cohomology,
Section 70 the functor j! is defined as the left adjoint of j−1 and hence we conclude
by uniqueness of adjoint functors. □

Lemma 6.3.0F5B Let f : X → Y and g : Y → Z be separated and locally quasi-finite
morphisms. There is a canonical isomorphism (g ◦ f)! → f ! ◦ g!. Given a third
locally quasi-finite morphism h : Z → T the diagram

(h ◦ g ◦ f)! //

��

f ! ◦ (h ◦ g)!

��
(g ◦ f)! ◦ h! // f ! ◦ g! ◦ h!

commutes.

Proof. By uniqueness of adjoint functors, this immediately translates into the
corresponding (dual) statement for the functors f!. See Lemma 4.12. □

https://stacks.math.columbia.edu/tag/0F5A
https://stacks.math.columbia.edu/tag/0F5B
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Lemma 6.4.0F5C Let j : U → X and j′ : V → U be étale morphisms. The isomorphism
(j ◦ j′)−1 = (j′)−1 ◦ j−1 and the isomorphism (j ◦ j′)! = (j′)! ◦ j! of Lemma 6.3
agree via the isomorphism of Lemma 6.2.

Proof. Omitted. □

Lemma 6.5.0F6U Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f locally quasi-finite. For any abelian sheaf F on Y ′
étale we have

(g′)∗(f ′)!F = f !g∗F .

Proof. By uniqueness of adjoint functors, this follows from the corresponding
(dual) statement for the functors f!. See Lemma 4.10. □

Remark 6.6.0F5L The material in this section can be generalized to sheaves of pointed
sets. Namely, for a site C denote Sh∗(C) the category of sheaves of pointed sets.
The constructions in this and the preceding section apply, mutatis mutandis, to
sheaves of pointed sets. Thus given a locally quasi-finite morphism f : X → Y of
schemes we obtain an adjoint pair of functors

f! : Sh∗(Xétale) −→ Sh∗(Yétale) and f ! : Sh∗(Yétale) −→ Sh∗(Xétale)
such that for every geometric point y of Y there are isomorphisms

(f!F)y =
∐

f(x)=y
Fx

(coproduct taken in the category of pointed sets) functorial in F ∈ Sh∗(Xétale) and
isomorphisms

f !(y∗S) =
∏

f(x)=y
x∗S

functorial in the pointed set S. If F : Ab(Xétale) → Sh∗(Xétale) and F : Ab(Yétale) →
Sh∗(Yétale) denote the forgetful functors, compatibility between the constructions
will guarantee the existence of canonical maps

f!F (F) −→ F (f!F)
functorial in F ∈ Ab(Xétale) and

F (f !G) −→ f !F (G)
functorial in G ∈ Ab(Yétale) which produce the obvious maps on stalks, resp.
skyscraper sheaves. In fact, the transformation F ◦ f ! → f ! ◦ F is an isomorphism
(because f ! commutes with products).

7. Derived upper shriek for locally quasi-finite morphisms

0F5M We can take the derived versions of the functors in Section 6 and obtain the fol-
lowing.

Lemma 7.1.0F5N Let f : X → Y be a locally quasi-finite morphism of schemes. Let Λ
be a ring. The functors f! and f ! of Definition 4.4 and Lemma 6.1 induce adjoint
functors f! : D(Xétale, Λ) → D(Yétale, Λ) and Rf ! : D(Yétale, Λ) → D(Xétale, Λ) on
derived categories.

https://stacks.math.columbia.edu/tag/0F5C
https://stacks.math.columbia.edu/tag/0F6U
https://stacks.math.columbia.edu/tag/0F5L
https://stacks.math.columbia.edu/tag/0F5N
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In the separated case the functor f! is defined in Section 3.

Proof. This follows immediately from Derived Categories, Lemma 30.3, the fact
that f! is exact (Lemma 4.5) and hence Lf! = f! and the fact that we have enough
K-injective complexes of Λ-modules on Yétale so that Rf ! is defined. □

Remark 7.2.0GJX Let f : X → Y be a locally quasi-finite morphism of schemes. Let
Λ be a ring. The functor f! : D(Xétale, Λ) → D(Yétale, Λ) of Lemma 7.1 sends
complexes with torsion cohomology sheaves to complexes with torsion cohomology
sheaves. This is immediate from the description of the stalks of f!, see Lemma 4.5.

Lemma 7.3.0GKK Let X be a scheme. Let X = U ∪ V with U and V open. Let Λ be
a ring. Let K ∈ D(Xétale, Λ). There is a distinguished triangle

jU∩V !K|U∩V → jU !K|U ⊕ jV !K|V → K → jU∩V !K|U∩V [1]

in D(Xétale, Λ) with obvious notation.

Proof. Since the restriction functors and the lower shriek functors we use are exact,
it suffices to show for any abelian sheaf F on Xétale the sequence

0 → jU∩V !F|U∩V → jU !F|U ⊕ jV !F|V → F → 0

is exact. This can be seen by looking at stalks. □

Lemma 7.4.0GKL Let X be a scheme. Let Z ⊂ X be a closed subscheme and let U ⊂ X
be the complement. Denote i : Z → X and j : U → X the inclusion morphisms.
Let Λ be a ring. Let K ∈ D(Xétale, Λ). There is a distinguished triangle

j!j
−1K → K → i∗i−1K → j!j

−1K[1]

in D(Xétale, Λ).

Proof. Immediate consequence of Étale Cohomology, Lemma 70.8 and the fact
that the functors j!, j−1, i∗, i−1 are exact and hence their derived versions are
computed by applying these functors to any complex of sheaves representing K. □

8. Preliminaries to derived lower shriek via compactifications

0F7A In this section we prove some lemmas on the existence of certain natural isomor-
phisms of functors which follow immediately from proper base change.

Lemma 8.1.0F7B Consider a commutative diagram of schemes

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

with f and f ′ proper and g and g′ separated and locally quasi-finite. Let Λ be a
ring. Functorially in K ∈ D(X ′

étale, Λ) there is a canonical map

g!Rf ′
∗K −→ Rf∗(g′

!K)

in D(Yétale, Λ). This map is an isomorphism if (a) K is bounded below and has
torsion cohomology sheaves, or (b) Λ is a torsion ring.

https://stacks.math.columbia.edu/tag/0GJX
https://stacks.math.columbia.edu/tag/0GKK
https://stacks.math.columbia.edu/tag/0GKL
https://stacks.math.columbia.edu/tag/0F7B
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Proof. Represent K by a K-injective complex J • of sheaves of Λ-modules on
X ′

étale. Choose a quasi-isomorphism g′
!J • → I• to a K-injective complex I• of

sheaves of Λ-modules on Xétale. Then we can consider the map

g!f
′
∗J • = g!f

′
! J • = f!g

′
!J • = f∗g′

!J • → f∗I•

where the first and third equality come from Lemma 3.4 and the second equality
comes from Lemma 3.13 which tells us that both g! ◦ f ′

! and f! ◦ g′
! are equal to

(g ◦ f ′)! = (f ◦ g′)! as subsheaves of (g ◦ f ′)∗ = (f ◦ g′)∗.

Assume Λ is torsion, i.e., we are in case (b). With notation as above, it suffices
to show that f∗g′

!J • → f∗I• is an isomorphism. The question is local on Y .
Hence we may assume that the dimension of fibres of f is bounded, see Morphisms,
Lemma 28.5. Then we see that Rf∗ has finite cohomological dimension, see Étale
Cohomology, Lemma 92.2. Hence by Derived Categories, Lemma 32.2, if we show
that Rqf∗(g′

!J ) = 0 for q > 0 and any injective sheaf of Λ-modules J on X ′
étale,

then the result follows.

The stalk of Rqf∗(g′
!J ) at a geometric point y is equal to Hq(Xy, (g′

!J )|Xy
) by

Étale Cohomology, Lemma 91.13. Since formation of g′
! commutes with base change

(Lemma 3.12) this is equal to

Hq(Xy, g′
y,!(J |X′

y
))

where g′
y : X ′

y → Xy is the induced morphism between geometric fibres. Since
Y ′ → Y is locally quasi-finite, we see that X ′

y is a disjoint union of the fibres X ′
y′

at geometric points y′ of Y ′ lying over y. Denote g′
y′ : X ′

y′ → Xy the restriction of
g′

y to X ′
y′ . Thus the previous cohomology group is equal to

Hq(Xy,
⊕

y′/y
g′

y′,!(J |X′
y′

))

for example by Lemma 3.15 (but it is also obvious from the definition of g′
y,! in

Section 3). Since taking étale cohomology over Xy commutes with direct sums
(Étale Cohomology, Theorem 51.3) we conclude it suffices to show that

Hq(Xy, g′
y′,!(J |X′

y′
))

is zero. Observe that gy′ : X ′
y′ → Xy is a morphism between proper scheme over y

and hence is proper itself. As it is locally quasi-finite as well we conclude that gy′

is finite. Thus we see that g′
y′,! = g′

y′,∗ = Rg′
y′,∗. By Leray we conlude that we have

to show
Hq(X ′

y′ , J |X′
y′

)

is zero. As Λ is torsion, this follows from proper base change (Étale Cohomology,
Lemma 91.13) as the higher direct images of J under f ′ are zero.

Proof in case (a). We will deduce this from case (b) by standard arguments. We
will show that the induced map g!R

pf ′
∗K → Rpf∗(g′

!K) is an isomorphism for all
p ∈ Z. Fix an integer p0 ∈ Z. Let a be an integer such that Hj(K) = 0 for j < a.
We will prove g!R

pf ′
∗K → Rpf∗(g′

!K) is an isomorphism for p ≤ p0 by descending
induction on a. If a > p0, then we see that the left and right hand side of the map
are zero for p ≤ p0 by trivial vanishing, see Derived Categories, Lemma 16.1 (and
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use that g! and g′
! are exact functors). Assume a ≤ p0. Consider the distinguished

triangle
Ha(K)[−a] → K → τ≥a+1K

By induction we have the result for τ≥a+1K. In the next paragraph, we will prove
the result for Ha(K)[−a]. Then five lemma applied to the map between long exact
sequence of cohomology sheaves associated to the map of distinguished triangles

g!Rf ′
∗(Ha(K)[−a])

��

// g!Rf ′
∗K //

��

g!Rf ′
∗τ≥a+1K

��
Rf∗(g′

!(Ha(K)[−a])) // Rf∗(g′
!K) // Rf∗(g′

!τ|geqa+1K)

gives the result for K. Some details omitted.

Let F be a torsion abelian sheaf on X ′
étale. To finish the proof we show that

g!Rf ′
∗F → Rpf∗(g′

!F) is an isomorphism for all p. We can write F =
⋃

F [n] where
F [n] = Ker(n : F → F). We have the isomorphism for F [n] by case (b). Since
the functors g!, g′

! , Rpf∗, Rpf ′
∗ commute with filtered colimits (follows from Lemma

3.17 and Étale Cohomology, Lemma 51.8) the proof is complete. □

Lemma 8.2.0F7C Consider a commutative diagram of schemes

X ′
k
//

f ′

��

X

f

��
Y ′

l
//

g′

��

Y

g

��
Z ′ m // Z

with f , f ′, g and g′ proper and k, l, and m separated and locally quasi-finite.
Then the isomorphisms of Lemma 8.1 for the two squares compose to give the
isomorphism for the outer rectangle (see proof for a precise statement).

Proof. The statement means that if we write R(g◦f)∗ = Rg∗◦Rf∗ and R(g′◦f ′)∗ =
Rg′

∗◦Rf ′
∗, then the isomorphism m!◦Rg′

∗◦Rf ′
∗ → Rg∗◦Rf∗◦k! of the outer rectangle

is equal to the composition

m! ◦ Rg′
∗ ◦ Rf ′

∗ → Rg∗ ◦ l! ◦ Rf ′
∗ → Rg∗ ◦ Rf∗ ◦ k!

of the two maps of the squares in the diagram. To prove this choose a K-injective
complex J • of Λ-modules on X ′

étale and a quasi-isomorphism k!J • → I• to a K-
injective complex I• of Λ-modules on Xétale. The proof of Lemma 8.1 shows that
the canonical map

a : l!f
′
∗J • → f∗I•

is a quasi-isomorphism and this quasi-isomorphism produces the second arrow on
applying Rg∗. By Cohomology on Sites, Lemma 20.10 the complex f∗I•, resp.
f ′

∗J • is a K-injective complex of Λ-modules on Yétale, resp. Y ′
étale. (Using this is

cheating and could be avoided.) In particular, the same reasoning gives that the
canonical map

b : m!g
′
∗f ′

∗J • → g∗f∗I•

https://stacks.math.columbia.edu/tag/0F7C
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is a quasi-isomorphism and this quasi-isomorphism represents the first arrow. Fi-
nally, the proof of Lemma 8.1 show that g∗l!f

′
! J • represents Rg∗(l!f ′

∗J •) because
f ′

∗J • is K-injective. Hence Rg∗(a) = g∗(a) and the composition g∗(a) ◦ b is the
arrow of Lemma 8.1 for the rectangle. □

Lemma 8.3.0F7D Consider a commutative diagram of schemes

X ′′
g′
//

f ′′

��

X ′
g
//

f ′

��

X

f

��
Y ′′ h′

// Y ′ h // Y

with f , f ′, and f ′′ proper and g, g′, h, and h′ separated and locally quasi-finite.
Then the isomorphisms of Lemma 8.1 for the two squares compose to give the
isomorphism for the outer rectangle (see proof for a precise statement).

Proof. The statement means that if we write (h◦h′)! = h! ◦h′
! and (g ◦g′)! = g! ◦g′

!
using the equalities of Lemma 3.13, then the isomorphism h! ◦h′

! ◦Rf ′′
∗ → Rf∗ ◦g! ◦g′

!
of the outer rectangle is equal to the composition

h! ◦ h′
! ◦ Rf ′′

∗ → h! ◦ Rf ′
∗ ◦ g′

! → Rf∗ ◦ g! ◦ g′
!

of the two maps of the squares in the diagram. To prove this choose a K-injective
complex I• of Λ-modules on X ′′

étale and a quasi-isomorphism g′
!I• → J • to a K-

injective complex J • of Λ-modules on X ′
étale. Next, choose a quasi-isomorphism

g!J • → K• to a K-injective complex K• of Λ-modules on Xétale. The proof of
Lemma 8.1 shows that the canonical maps

h′
!f

′′
∗ I• → f ′

∗J • and h!f
′
∗J • → f∗K•

are quasi-isomorphisms and these quasi-isomorphisms define the first and second
arrow above. Since g! is an exact functor (Lemma 3.17) we find that g!g

′
!I• → K•

is a quasi-ismorphism and hence the canonical map

h!h
′
!f

′′
∗ I• → f∗K•

is a quasi-isomorphism and represents the map for the outer rectangle in the derived
category. Clearly this map is the composition of the other two and the proof is
complete. □

Remark 8.4.0F7E Consider a commutative diagram

X ′′
k′
//

f ′′

��

X ′
k
//

f ′

��

X

f

��
Y ′′ l′

//

g′′

��

Y ′ l //

g′

��

Y

g

��
Z ′′ m′

// Z ′ m // Z

of schemes whose vertical arrows are proper and whose horizontal arrows are sepa-
rated and locally quasi-finite. Let us label the squares of the diagram A, B, C, D
as follows

A B
C D

https://stacks.math.columbia.edu/tag/0F7D
https://stacks.math.columbia.edu/tag/0F7E
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Then the maps of Lemma 8.1 for the squares are (where we use Rf∗ = f∗, etc)

γA : l′
! ◦ f ′′

∗ → f ′
∗ ◦ k′

! γB : l! ◦ f ′
∗ → f∗ ◦ k!

γC : m′
! ◦ g′′

∗ → g′
∗ ◦ l′

! γD : m! ◦ g′
∗ → g∗ ◦ l!

For the 2 × 1 and 1 × 2 rectangles we have four further maps

γA+B : (l ◦ l′)! ◦ f ′′
∗ → f∗ ◦ (k ◦ k′)∗

γC+D : (m ◦ m′)! ◦ g′′
∗ → g∗ ◦ (l ◦ l′)!

γA+C : m′
! ◦ (g′′ ◦ f ′′)∗ → (g′ ◦ f ′)∗ ◦ k′

!
γB+D : m! ◦ (g′ ◦ f ′)∗ → (g ◦ f)∗ ◦ k!

By Lemma 8.3 we have

γA+B = γB ◦ γA, γC+D = γD ◦ γC

and by Lemma 8.2 we have

γA+C = γA ◦ γC , γB+D = γB ◦ γD

Here it would be more correct to write γA+B = (γB ⋆ idk′
!
)◦ (idl! ⋆γA) with notation

as in Categories, Section 28 and similarly for the others. Having said all of this we
find (a priori) two transformations

m! ◦ m′
! ◦ g′′

∗ ◦ f ′′
∗ −→ g∗ ◦ f∗ ◦ k! ◦ k′

!

namely
γB ◦ γD ◦ γA ◦ γC = γB+D ◦ γA+C

and
γB ◦ γA ◦ γD ◦ γC = γA+B ◦ γC+D

The point of this remark is to point out that these transformations are equal.
Namely, to see this it suffices to show that

m! ◦ g′
∗ ◦ l′

! ◦ f ′′
∗ γD

//

γA

��

g∗ ◦ l! ◦ l′
! ◦ f ′′

∗

γA

��
m! ◦ g′

∗ ◦ f ′
∗ ◦ k′

!
γD // g∗ ◦ l! ◦ f ′

∗ ◦ k′
!

commutes. This is true because the squares A and D meet in only one point,
more precisely by Categories, Lemma 28.2 or more simply the discussion preceding
Categories, Definition 28.1.

Lemma 8.5.0F7F Let b : Y1 → Y be a morphism of schemes. Consider a commutative
diagram of schemes

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

and let

X ′
1

g′
1

//

f ′
1
��

X1

f1

��
Y ′

1
g1 // Y1

https://stacks.math.columbia.edu/tag/0F7F
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be the base change by b. Assume f and f ′ proper and g and g′ separated and locally
quasi-finite. For a ring Λ and K in D(X ′

étale, Λ) there is commutative diagram

b−1g!Rf ′
∗K

��

// g1,!(b′)−1Rf ′
∗K // g1,!Rf ′

1,∗(a′)−1K

��
b−1Rf∗g′

!K
// Rf1,∗a−1g′

!K
// Rf1,∗g′

1,!(a′)−1K

in D(Y1,étale, Λ) where a : X1 → X, a′ : X ′
1 → X ′, b′ : Y ′

1 → Y ′ are the projections,
the vertical maps are the arrows of Lemma 8.1 and the horizontal arrows are the
base change map (from Étale Cohomology, Section 86) and the base change map of
Lemma 3.12.

Proof. Represent K by a K-injective complex J • of sheaves of Λ-modules on
X ′

étale. Choose a quasi-isomorphism g′
!J • → I• to a K-injective complex I• of

sheaves of Λ-modules on Xétale. The proof of Lemma 8.1 constructs g!Rf ′
∗K →

Rf∗g′
!K as

g!f
′
∗J • = g!f

′
! J • = f!g

′
!J • = f∗g′

!J • → f∗I•

Choose a quasi-isomorphism (a′)−1J • → J •
1 to a K-injective complex J •

1 of sheaves
of Λ-modules on X ′

1,étale. Then we can pick a diagram of complexes

g′
1,!J •

1
// I•

1

g′
1,!(a′)−1J •

OO

a−1g′
!J • // a−1I•

OO

commuting up to homotopy where all arrows are quasi-isomorphisms, the equality
comes from Lemma 3.4, and I•

1 is a K-injective complex of sheaves of Λ-modules
on X1,étale. The map g1,!Rf ′

1,∗(a′)−1K → Rf1,∗g′
1,!(a′)−1K is given by

g1,!f
′
1,∗J •

1 = g1,!f
′
1,!J •

1 = f1,!g
′
1,!J •

1 = f1,∗g′
1,!J •

1 → f1,∗I•
1

The identifications across the 3 equal signs in both arrows are compatible with
pullback maps, i.e., the diagram

b−1g!f
′
∗J • // g1,!(b′)−1f ′

∗J • // g1,!f
′
1,∗(a′)−1J •

b−1f∗g′
!J • // f1,∗a−1g′

!J • // f1,∗g′
1,!(a′)−1J •

of complexes of abelian sheaves commutes. To show this it is enough to show
the diagram commutes with g!, g1,!, g′

! , g′
1,! replaced by g∗, g1,∗, g′

∗, g′
1,∗ (because the

shriek functors are defined as subfunctors of the ∗ functors and the base change
maps are defined in a manner compatible with this, see proof of Lemma 3.12).
For this new diagram the commutativity follows from the compatibility of pullback
maps with horizontal and vertical stacking of diagrams, see Sites, Remarks 45.3
and 45.4 so that going around the diagram in either direction is the pullback map
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for the base change of f ◦ g′ = g ◦ f ′ by b. Since of course

g1,!f
′
1,∗(a′)−1J • // g1,!f

′
1,∗J •

1

f1,∗g′
1,!(a′)−1J • // f1,∗g′

1,!J •
1

commutes, to finish the proof it suffices to show that

b−1f∗g′
!J • //

��

f1,∗a−1g′
!J • //

��

f1,∗g′
1,!(a′)−1J • // f1,∗g′

1,!J •
1

��
b−1f∗I• // f1,∗a−1I• // f1,∗I•

1

commutes in the derived category, which holds by our choice of maps earlier. □

Lemma 8.6.0F7G Consider a commutative diagram of schemes

X
f
//

g
  

Y

h
��

Z

with f and g locally quasi-finite and h proper. Let Λ be a ring. Funtorially in
K ∈ D(Xétale, Λ) there is a canonical map

g!K −→ Rh∗(f!K)
in D(Zétale, Λ). This map is an isomorphism if (a) K is bounded below and has
torsion cohomology sheaves, or (b) Λ is a torsion ring.

Proof. This is a special case of Lemma 8.1 if f and g are separated. We urge the
reader to skip the proof in the general case as we’ll mainly use the case where f
and g are separated.
Represent K by a complex K• of sheaves of Λ-modules on Xétale. Choose a quasi-
isomorphism f!K• → I• into a K-injective complex I• of sheaves of Λ-modules on
Yétale. Consider the map

g!K• = h!f!K• = h∗f!K• −→ h∗I•

where the equalities are Lemmas 4.11 and 3.4. This map of complexes determines
the map g!K → Rh∗(f!K) of the statement of the lemma.
Assume Λ is torsion, i.e., we are in case (b). To check the map is an isomorphism
we may work locally on Z. Hence we may assume that the dimension of fibres
of h is bounded, see Morphisms, Lemma 28.5. Then we see that Rh∗ has finite
cohomological dimension, see Étale Cohomology, Lemma 92.2. Hence by Derived
Categories, Lemma 32.2, if we show that Rqh∗(f!F) = 0 for q > 0 and any sheaf F
of Λ-modules on Xétale, then h∗f!K• → h∗I• is a quasi-isomorphism.
Observe that G = f!F is a sheaf of Λ-modules on Y whose stalks are nonzero only
at points y ∈ Y such that κ(y)/κ(h(y)) is a finite extension. This follows from
the description of stalks of f!F in Lemma 4.5 and the fact that both f and g are
locally quasi-finite. Hence by the proper base change theorem (Étale Cohomology,
Lemma 91.13) it suffices to show that Hq(Yz, H) = 0 where H is a sheaf on the

https://stacks.math.columbia.edu/tag/0F7G
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proper scheme Yz over κ(z) whose support is contained in the set of closed points.
Thus the required vanishing by Étale Cohomology, Lemma 97.3.
Case (a) follows from case (b) by the exact same argument as used in the proof of
Lemma 8.1 (using Lemma 4.5 instead of Lemma 3.17). □

9. Derived lower shriek via compactifications

0F7H Let f : X → Y be a finite type separated morphism of schemes with Y quasi-
compact and quasi-separated. Choose a compactification j : X → X over Y ,
see More on Flatness, Theorem 33.8. Let Λ be a ring. Denote D+

tors(Xétale, Λ) the
strictly full saturated triangulated subcategory of D(Xétale, Λ) consisting of objects
K which are bounded below and whose cohomology sheaves are torsion. We will
consider the functor

Rf! = Rf∗ ◦ j! : D+
tors(Xétale, Λ) −→ D+

tors(Yétale, Λ)

where f : X → Y is the structure morphism. This makes sense: the func-
tor j! sends D+

tors(Xétale, Λ) into D+
tors(X étale, Λ) by Remark 7.2 and Rf∗ sends

D+
tors(X étale, Λ) into D+

tors(Yétale, Λ) by Étale Cohomology, Lemma 78.2. If Λ is a
torsion ring, then we define

Rf! = Rf∗ ◦ j! : D(Xétale, Λ) −→ D(Yétale, Λ)
Here is the obligatory lemma.

Lemma 9.1.0F7I Let f : X → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. The functors Rf! constructed above are, up to canon-
ical isomorphism, independent of the choice of the compactification.

Proof. We will prove this for the functor Rf! : D(Xétale, Λ) → D(Yétale, Λ) when
Λ is a torsion ring; the case of the functor Rf! : D+

tors(Xétale, Λ) → D+
tors(Yétale, Λ)

is proved in exactly the same way.
Consider the category of compactifications of X over Y , which is cofiltered according
to More on Flatness, Theorem 33.8 and Lemmas 32.1 and 32.2. To every choice of
a compactification

j : X → X, f : X → Y

the construction above associates the functor Rf∗ ◦j! : D(Xétale, Λ) → D(Yétale, Λ).
Let’s be a little more explicit. Given a complex K• of sheaves of Λ-modules on
Xétale, we choose a quasi-isomorphism j!K• → I• into a K-injective complex of
sheaves of Λ-modules on X étale. Then our functor sends K• to f∗I•.

Suppose given a morphism g : X1 → X2 between compactifications ji : X → Xi

over Y . Then we get an isomorphism
Rf2,∗ ◦ j2,! = Rf2,∗ ◦ Rg∗ ◦ j1,! = Rf1,∗ ◦ j1,!

using Lemma 8.6 in the first equality.
To finish the proof, since the category of compactifications of X over Y is cofiltered,
it suffices to show compositions of morphisms of compactifications of X over Y are
turned into compositions of isomorphisms of functors3. To do this, suppose that

3Namely, if α, β : F → G are morphisms of functors and γ : G → H is an isomorphism of
functors such that γ ◦ α = γ ◦ β, then we conclude α = β.

https://stacks.math.columbia.edu/tag/0F7I
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j3 : X → X3 is a third compactification and that h : X2 → X3 is a morphism of
compactifications. Then we have to show that the composition

Rf3,∗ ◦ j3,! = Rf3,∗ ◦ Rh∗ ◦ j2,! = Rf2,∗ ◦ j2,! = Rf2,∗ ◦ Rg∗ ◦ j1,! = Rf1,∗ ◦ j1,!

is equal to the isomorphism of functors constructed using simply j3, g ◦ h, and j1.
A calculation shows that it suffices to prove that the composition of the maps

j3,! → Rh∗ ◦ j2,! → Rh∗ ◦ Rg∗ ◦ j1,!

of Lemma 8.6 agrees with the corresponding map j3,! → R(h ◦ g)∗ ◦ j1,! via the
identification R(h ◦ g)∗ = Rh∗ ◦ Rg∗. Since the map of Lemma 8.6 is a special case
of the map of Lemma 8.1 (as j1 and j2 are separated) this follows immediately from
Lemma 8.2. □

Lemma 9.2.0F7J Let f : X → Y and g : Y → Z be separated morphisms of fi-
nite type of quasi-compact and quasi-separated schemes. Then there is a canonical
isomorphism Rg! ◦ Rf! → R(g ◦ f)!.

Proof. Choose a compactification i : Y → Y of Y over Z. Choose a compactifica-
tion X → X of X over Y . This uses More on Flatness, Theorem 33.8 and Lemma
32.2 twice. Let U be the inverse image of Y in X so that we get the commutative
diagram

X
j
//

f

��

U

f ′
��

j′
// X

f��
Y

i
//

g

��

Y

g��
Z

Then we have
R(g ◦ f)! = R(g ◦ f)∗ ◦ (j′ ◦ j)!

= Rg∗ ◦ Rf∗ ◦ j′
! ◦ j!

= Rg∗ ◦ i! ◦ Rf ′
∗ ◦ j!

= Rg! ◦ Rf!

The first equality is the definition of R(g◦f)!. The second equality uses the identifi-
cations R(g◦f)∗ = Rg∗◦Rf∗ and (j′◦j)! = j′

! ◦j! of Lemma 3.13. The identification
i! ◦Rf ′

∗ → Rf∗ ◦j! used in the third equality is Lemma 8.1. The final fourth equality
is the definition of Rg! and Rf!. To finish the proof we show that this isomorphism
is independent of choices made.
Suppose we have two diagrams

X
j1

//

��

U1

f1��

j′
1

// X1

f1~~
Y

i1

//

��

Y 1

g1~~
Z

and

X
j2

//

��

U2

f2��

j′
2

// X2

f2~~
Y

i2

//

��

Y 2

g2~~
Z

https://stacks.math.columbia.edu/tag/0F7J
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We can first choose a compactification i : Y → Y of Y over Z which dominates
both Y 1 and Y 2, see More on Flatness, Lemma 32.1. By More on Flatness, Lemma
32.3 and Categories, Lemmas 27.13 and 27.14 we can choose a compactification
X → X of X over Y with morphisms X → X1 and X → X2 and such that the
composition X → Y → Y 1 is equal to the composition X → X1 → Y 1 and such
that the composition X → Y → Y 2 is equal to the composition X → X2 → Y 2.
Thus we see that it suffices to compare the maps determined by our diagrams when
we have a commutative diagram as follows

X
j1

// U1

h′

��

��

j′
1

// X1

h
��

��

X
j2 //

��

U2

��

j′
2 // X2

��

Y
i1 // Y 1

k
��

Y
i2 //

��

Y 2

xx
Z

Each of the squares

X
j1

//

id
��

A

U1

h′

��
X

j2 // U2

U2
j′

2

//

f2

��
B

X2

f2
��

Y
i2 // Y 2

U1
j′

1

//

f1

��
C

X1

f1
��

Y
i1 // Y 1

Y
i1

//

id
��

D

Y 1

k
��

Y
i2 // Y 2

X
j′

1◦j1

//

id
��

E

X1

h
��

X
j2 // X2

gives rise to an isomorphism as follows

γA : j2,! → Rh′
∗ ◦ j1,!

γB : i2,! ◦ Rf2,∗ → Rf2,∗ ◦ j′
2,!

γC : i1,! ◦ Rf1,∗ → Rf1,∗ ◦ j′
1,!

γD : i2,! → Rk∗ ◦ i1,!

γE : j2,! → Rh∗ ◦ (j′
1 ◦ j1)!

by applying the map from Lemma 8.1 (which is the same as the map in Lemma 8.6
in case the left vertical arrow is the identity). Let us write

F1 = Rf1,∗ ◦ j1,!

F2 = Rf2,∗ ◦ j2,!

G1 = Rg1,∗ ◦ i1,!

G2 = Rg2,∗ ◦ i2,!

C1 = R(g1 ◦ f1)∗ ◦ (j′
1 ◦ j1)!

C2 = R(g2 ◦ f2)∗ ◦ (j′
2 ◦ j2)!
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The construction given in the first paragraph of the proof and in Lemma 9.1 uses
(1) γC for the map G1 ◦ F1 → C1,
(2) γB for the map G2 ◦ F2 → C2,
(3) γA for the map F2 → F1,
(4) γD for the map G2 → G1, and
(5) γE for the map C2 → C1.

This implies that we have to show that the diagram

C2 γE

// C1

G2 ◦ F2
γD◦γA //

γB

OO

G1 ◦ F1

γC

OO

is commutative. We will use Lemmas 8.2 and 8.3 and with (abuse of) notation as in
Remark 8.4 (in particular dropping ⋆ products with identity transformations from
the notation). We can write γE = γF ◦ γA where

U1
j′

1

//

h′

��
F

X1

h
��

U2
j′

2 // X2

Thus we see that
γE ◦ γB = γF ◦ γA ◦ γB = γF ◦ γB ◦ γA

the last equality because the two squares A and B only intersect in one point (similar
to the last argument in Remark 8.4). Thus it suffices to prove that γC ◦γD = γF ◦γB .
Since both of these are equal to the map for the square

U1 //

��

X1

��
Y // Y 2

we conclude. □

Lemma 9.3.0F7K Let f : X → Y , g : Y → Z, h : Z → T be separated morphisms of
finite type of quasi-compact and quasi-separated schemes. Then the diagram

Rh! ◦ Rg! ◦ Rf! γC

//

γA

��

R(h ◦ g)! ◦ Rf!

γA+B

��
Rh! ◦ R(g ◦ f)!

γB+C // R(h ◦ g ◦ f)!

of isomorphisms of Lemma 9.2 commutes (for the meaning of the γ’s see proof).

Proof. To do this we choose a compactification Z of Z over T , then a compactifi-
cation Y of Y over Z, and then a compactification X of X over Y . This uses More
on Flatness, Theorem 33.8 and Lemma 32.2. Let W ⊂ Y be the inverse image of Z

https://stacks.math.columbia.edu/tag/0F7K
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under Y → Z and let U ⊂ V ⊂ X be the inverse images of Y ⊂ W under X → Y .
This produces the following diagram

X

f

��

// U //

��
A

V

��

//

B

X

��
Y

g

��

// Y //

��

W //

��
C

Y

��
Z

h

��

// Z

��

// Z

��

// Z

��
T // T // T // T

Without introducing tons of notation but arguing exactly as in the proof of Lemma
9.2 we see that the maps in the first displayed diagram use the maps of Lemma
8.1 for the rectangles A + B, B + C, A, and C as indicated in the diagram in the
statement of the lemma. Since by Lemmas 8.2 and 8.3 we have γA+B = γB ◦ γA

and γB+C = γB ◦γC we conclude that the desired equality holds provided γA ◦γC =
γC ◦ γA. This is true because the two squares A and C only intersect in one point
(similar to the last argument in Remark 8.4). □

Lemma 9.4.0F7L Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes with f separated and of finite type.
Then there is a canonical isomorphism

g−1 ◦ Rf! → Rf ′
! ◦ (g′)−1

Moreover, these isomorphisms are compatible with the isomorphisms of Lemma 9.2.

Proof. Choose a compactification j : X → X over Y and denote f : X → Y the
structure morphism. Let j′ : X ′ → X

′ and f
′ : X

′ → Y ′ denote the base changes
of j and f . Since Rf! = Rf∗ ◦ j! and Rf ′

! = Rf
′
∗ ◦ j′

! the isomorphism can be
constructed via

g−1 ◦ Rf∗ ◦ j! → Rf
′
∗ ◦ (g′)−1 ◦ j! → Rf

′
∗ ◦ j′

! ◦ (g′)−1

where the first arrow is the isomorphism given to us by the proper base change
theorem (Étale Cohomology, Lemma 91.12 in the bounded below torsion case and
Étale Cohomology, Lemma 92.3 in the case that Λ is torsion) and the second arrow
is the isomorphism of Lemma 3.12.
To finish the proof we have to show two things: first we have to show that the
isomorphism of functors so obtained does not depend on the choice of the compact-
ification and second we have to show that if we vertically stack two base change
diagrams as in the lemma, then these base change isomorphisms are compatible
with the isomorphisms of Lemma 9.2. A straightforward argument which we omit
shows that both follow if we can show that the isomorphisms

https://stacks.math.columbia.edu/tag/0F7L
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(1) Rg∗ ◦ Rf∗ = R(g ◦ f)∗ for f : X → Y and g : Y → Z proper,
(2) g! ◦ f! = (g ◦ f)! for f : X → Y and g : Y → Z separated and quasi-finite,

and
(3) g! ◦ Rf ′

∗ = Rf∗ ◦ g′
! for f : X → Y and f ′ : X ′ → Y ′ proper and g : Y ′ → Y

and g′ : X ′ → X separated and quasi-finite with f ◦ g′ = g ◦ f ′

are compatible with base change. This holds for (1) by Cohomology on Sites,
Remark 19.4, for (2) by Remark 3.14, and (3) by Lemma 8.5. □

Remark 9.5.0H6X Let f : X → Y be a finite type separated morphism of schemes
with Y quasi-compact and quasi-separated. Below we will construct a map

Rf!K −→ Rf∗K

functorial for K in D+
tors(Xétale, Λ) or D(Xétale, Λ) if Λ is torsion. This transfor-

mation of functors in both cases is compatible with
(1) the isomorphism Rg! ◦ Rf! → R(g ◦ f)! of Lemma 9.2 and the isomorphism

Rg∗ ◦ Rf∗ → R(g ◦ f)∗ of Cohomology on Sites, Lemma 19.2 and
(2) the isomorphism g−1◦Rf! → Rf ′

! ◦(g′)−1 of Lemma 9.4 and the base change
map of Cohomology on Sites, Remark 19.3.

Namely, choose a compactification j : X → X over Y and denote f : X → Y
the structure morphism. Since Rf! = Rf∗ ◦ j! and Rf∗ = Rf∗ ◦ Rj∗ it suffices
to construct a transformation of functors j! → Rj∗. For this we use the canonical
transformation j! → j∗ of Étale Cohomology, Lemma 70.6. We omit the proof that
the resulting transformation is independent of the choice of compactification and
we omit the proof of the compatibilities (1) and (2).

10. Properties of derived lower shriek

0G28 Here are some properties of derived lower shriek.

Lemma 10.1.0G29 Let f : X → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. Let Λ be a ring.

(1) Let Ki ∈ D+
tors(Xétale, Λ), i ∈ I be a family of objects. Assume given a ∈ Z

such that Hn(Ki) = 0 for n < a and i ∈ I. Then Rf!(
⊕

i Ki) =
⊕

i Rf!Ki.
(2) If Λ is torsion, then the functor Rf! : D(Xétale, Λ) → D(Yétale, Λ) com-

mutes with direct sums.

Proof. By construction it suffices to prove this when f is an open immersion and
when f is a proper morphism. For any open immersion j : U → X of schemes, the
functor j! : D(Uétale) → D(Xétale) is a left adjoint to pullback j−1 : D(Xétale) →
D(Uétale) and hence commutes with direct sums, see Cohomology on Sites, Lemma
20.8. In the proper case we have Rf! = Rf∗ and we get the result from Étale
Cohomology, Lemma 52.6 in the bounded belo case and from Étale Cohomology,
Lemma 96.4 in the case that our coefficient ring Λ is a torsion ring. □

Lemma 10.2.0G2A Let f : X → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. Let Λ be a ring. The functors Rf! constructed in
Section 9 are bounded in the following sense: There exists an integer N such that
for E ∈ D+

tors(Xétale, Λ) or E ∈ D(Xétale, Λ) if Λ is torsion, we have
(1) Hi(Rf!(τ≤aE) → Hi(Rf!(E)) is an isomorphism for i ≤ a,
(2) Hi(Rf!(E)) → Hi(Rf!(τ≥b−N E)) is an isomorphism for i ≥ b,

https://stacks.math.columbia.edu/tag/0H6X
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(3) if Hi(E) = 0 for i ̸∈ [a, b] for some −∞ ≤ a ≤ b ≤ ∞, then Hi(Rf!(E)) = 0
for i ̸∈ [a, b + N ].

Proof. Assume Λ is torsion and consider the functor Rf! : D(Xétale, Λ) → D(Yétale, Λ).
By construction it suffices to prove this when f is an open immersion and when
f is a proper morphism. For any open immersion j : U → X of schemes, the
functor j! : D(Uétale) → D(Xétale) is exact and hence the statement holds with
N = 0 in this case. If f is proper then Rf! = Rf∗, i.e., it is a right derived functor.
Hence the bound on the left by Derived Categories, Lemma 16.1. Moreover in this
case f∗ : Mod(Xétale, Λ) → Mod(Yétale, Λ) has bounded cohomological dimension by
Morphisms, Lemma 28.5 and Étale Cohomology, Lemma 92.2. Thus we conclude
by Derived Categories, Lemma 32.2.
Next, assume Λ is arbitrary and let us consider the functor Rf! : D+

tors(Xétale, Λ) →
D+

tors(Yétale, Λ). Again we immediately reduce to the case where f is proper and
Rf! = Rf∗. Again part (1) is immediate. To show part (3) we can use induction
on b − a, the distinguished triangles of trunctions, and Étale Cohomology, Lemma
92.2. Part (2) follows from (3). Details omitted. □

Lemma 10.3.0GKM Let f : X → Y be a quasi-finite separated morphism of quasi-
compact and quasi-separated schemes. Then the functors Rf! constructed in Sec-
tion 9 agree with the restriction of the functor f! : D(Xétale, Λ) → D(Yétale, Λ)
constructed in Section 7 to their common domains of definition.

Proof. By Zariski’s main theorem (More on Morphisms, Lemma 43.3) we can find
an open immersion j : X → X and a finite morphism f : X → Y with f = f ◦ j.
By construction we have Rf! = Rf∗ ◦ j!. Since f is finite, we have Rf∗ = f∗ by
Étale Cohomology, Proposition 55.2. The lemma follows because f∗ ◦ j! = f! for
example by Lemma 3.6. □

Lemma 10.4.0GKN Let f : X → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. Let U and V be quasi-compact opens of X such that
X = U ∪ V . Denote a : U → Y , b : V → Y and c : U ∩ V → Y the restrictions of
f . Let Λ be a ring. For K in D+

tors(Xétale, Λ) or K ∈ D(Xétale, Λ) if Λ is torsion,
we have a distinguished triangle

Rc!(K|U∩V ) → Ra!(K|U ) ⊕ Rb!(K|V ) → Rf!K → Rc!(K|U∩V )[1]
in D(Yétale, Λ).

Proof. This follows from Lemma 7.3, the fact that Rf! ◦ RjU ! = Ra! by Lemma
9.2, and the fact that RjU ! = jU ! by Lemma 10.3. □

Lemma 10.5.0GKP Let f : X → Y be a finite type separated morphism of quasi-
compact and quasi-separated schemes. Let U be a quasi-compact open of X with
complement Z ⊂ X. Denote g : U → Y and h : Z → Y the restrictions of f . Let Λ
be a ring. For K in D+

tors(Xétale, Λ) or K ∈ D(Xétale, Λ) if Λ is torsion, we have
a distinguished triangle

Rg!(K|U ) → Rf!K → Rh!(K|Z) → Rg!(K|U )[1]
in D(Yétale, Λ).

Proof. This follows from Lemma 7.4, the fact that Rf! ◦ Rj! = Rg! and Rf! ◦ Ri!
by Lemma 9.2, and the fact that Rj! = j! and Ri! = i! = i∗ by Lemma 10.3. □

https://stacks.math.columbia.edu/tag/0GKM
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Lemma 10.6.0GKQ Let f ′ : X ′ → Y be a finite type separated morphism of quasi-
compact and quasi-separated schemes. Let i : X → X ′ be a thickening and denote
f = f ′ ◦ i. Let Λ be a ring. For K ′ in D+

tors(X ′
étale, Λ) or K ′ ∈ D(X ′

étale, Λ) if Λ is
torsion, we have Rf!i

−1K ′ = Rf ′
! K

′.

Proof. This is true because i−1 and i∗ = i! inverse equivalences of categories by
the topological invariance of the small étale topos (Étale Cohomology, Theorem
45.2) and we can apply Lemma 9.2. □

Lemma 10.7.0GL5 Let f : X → Y be a separated finite type morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion ring. Let E ∈ D(Xétale, Λ) and
K ∈ D(Yétale, Λ). Then

Rf!E ⊗L
Λ K = Rf!(E ⊗L

Λ f−1K)

in D(Yétale, Λ).

Proof. Choose j : X → X and f : X → Y as in the construction of Rf!. We have
j!E ⊗L

Λ f
−1

K = j!(E ⊗L
Λ f−1K) by Cohomology on Sites, Lemma 20.9. Then we

get the result by applying Étale Cohomology, Lemma 96.6 and using that f−1 =
j−1 ◦ f

−1 and Rf! = Rf∗j!. □

Remark 10.8.0GL6 Let Λ1 → Λ2 be a homomorphism of torsion rings. Let f : X → Y
be a separated finite type morphism of quasi-compact and quasi-separated schemes.
The diagram

D(Xétale, Λ2)
res
//

Rf!

��

D(Xétale, Λ1)

Rf!

��
D(Yétale, Λ2) res // D(Yétale, Λ1)

commutes where res is the “restriction” functor which turns a Λ2-module into a
Λ1-module using the given ring map. Writing Rf! = Rf∗ ◦ j! for a factorization
f = f ◦ j as in Section 9, we see that the result holds for j! by inspection and for
Rf∗ by Cohomology on Sites, Lemma 20.7. On the other hand, also the diagram

D(Xétale, Λ1)
−⊗L

Λ1
Λ2

//

Rf!

��

D(Xétale, Λ2)

Rf!

��
D(Yétale, Λ1)

−⊗L
Λ1

Λ2
// D(Yétale, Λ2)

is commutative as follows from Lemma 10.7.

Remark 10.9.0GL7 Let f : X → Y be a separated finite type morphism of quasi-
compact and quasi-separated schemes. Let Λ be a torsion coefficient ring and let
K and L be objects of D(Xétale, Λ). We claim there is a canonical map

α : Rf∗R HomΛ(K, L) −→ R HomΛ(Rf!K, Rf!L)

functorial in K and L. Namely, choose j : X → X and f : X → Y as in the
construction of Rf!. We first define a map

β : Rj∗R HomΛ(K, L) −→ R HomΛ(j!K, j!L)

https://stacks.math.columbia.edu/tag/0GKQ
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By the construction of internal hom in the derived category, this is the same thing
as defining a map

β′ : Rj∗R HomΛ(K, L) ⊗L
Λ j!K −→ j!L

See Cohomology on Sites, Section 35. The source of β′ is equal to

j!
(
R HomΛ(K, L) ⊗L

Λ K
)

by Cohomology on Sites, Lemma 20.9. Hence we can set β′ = j!β
′′ where β′′ :

R HomΛ(K, L) ⊗L
Λ K → L corresponds to the identity on R HomΛ(K, L) via the

universal property of internal hom mentioned above. By Cohomology on Sites,
Remark 35.10 we have a canonical map

γ : Rf∗R HomΛ(j!K, j!L) −→ R HomΛ(Rf∗j!K, Rf∗j!L)

Since Rf! = Rf∗j! and Rf∗ = Rf∗Rj∗ (by Leray) we obtain the desired map
α = γ ◦ Rf∗β.

11. Derived upper shriek

0G2B We obtain Rf ! by a Brown representability theorem.

Lemma 11.1.0G2C Let f : X → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion coefficient ring. The functor Rf! :
D(Xétale, Λ) → D(Yétale, Λ) has a right adjoint Rf ! : D(Yétale, Λ) → D(Xétale, Λ).

Proof. This follows from Injectives, Proposition 15.2 and Lemma 10.1 above. □

Lemma 11.2.0GL8 Let f : X → Y be a separated quasi-finite morphism of quasi-
compact and quasi-separated schemes. Let Λ be a torsion coefficient ring. The
functor Rf ! : D(Yétale, Λ) → D(Xétale, Λ) of Lemma 11.1 is the same as the functor
Rf ! of Lemma 7.1.

Proof. Follows from uniqueness of adjoints as Rf! = f! by Lemma 10.3. □

Lemma 11.3.0GL9 Let j : U → X be a separated étale morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion coefficient ring. The functor
Rj! : D(Xétale, Λ) → D(Uétale, Λ) is equal to j−1.

Proof. This is true because both Rj! and j−1 are right adjoints to Rj! = j!. See
for example Lemmas 11.2 and 6.2. □

Lemma 11.4.0GLA Let f : X → Y be a finite type separated morphism of quasi-
compact and quasi-separated schemes. Let Λ be a torsion ring. The functor Rf !

sends D+(Yétale, Λ) into D+(Xétale, Λ). More precisely, there exists an integer
N ≥ 0 such that if K ∈ D(Yétale, Λ) has Hi(K) = 0 for i < a then Hi(Rf !K) = 0
for i < a − N .

Proof. Let N be the integer found in Lemma 10.2. By construction, for K ∈
D(Yétale, Λ) and L ∈∈ D(Xétale, Λ) we have HomX(L, Rf !K) = HomY (Rf!L, K).
Suppose Hi(K) = 0 for i < a. Then we take L = τ≤a−N−1Rf !K. By Lemma 10.2
the complex Rf!L has vanishing cohomology sheaves in degrees ≤ a − 1. Hence
HomY (Rf!L, K) = 0 by Derived Categories, Lemma 27.3. Hence the canonical map
τ≤a−N−1Rf !K → Rf !K is zero which implies Hi(Rf !K) = 0 for i ≤ a−N −1. □

https://stacks.math.columbia.edu/tag/0G2C
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Let f : X → Y be a separated finite type morphism of quasi-separated and quasi-
compact schemes. Let Λ be a torsion coefficient ring. For every K ∈ D(Yétale, Λ)
and L ∈ D(Xétale, Λ) we obtain a canonical map

(11.4.1)0GLB Rf∗R HomΛ(L, Rf !K) −→ R HomΛ(Rf!L, K)

Namely, this map is constructed as the composition

Rf∗R HomΛ(L, Rf !K) → R HomΛ(Rf!L, Rf!Rf !K) → R HomΛ(Rf!L, K)

where the first arrow is Remark 10.9 and the second arrow is the counit Rf!Rf !K →
K of the adjunction.

Lemma 11.5.0GLC Let f : X → Y be a separated finite type morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion ring. For every K ∈ D(Yétale, Λ)
and L ∈ D(Xétale, Λ) the map (11.4.1)

Rf∗R HomΛ(L, Rf !K) −→ R HomΛ(Rf!L, K)

is an isomorphism.

Proof. To prove the lemma we have to show that for any M ∈ D(Yétale, Λ) the
map (11.4.1) induces an bijection

HomY (M, Rf∗R HomΛ(L, Rf !K)) −→ HomY (M, R HomΛ(Rf!L, K))

To see this we use the following string of equalities

HomY (M, Rf∗R HomΛ(L, Rf !K)) = HomX(f−1M, R HomΛ(L, Rf !K))
= HomX(f−1M ⊗L

Λ L, Rf !K)
= HomY (Rf!(f−1M ⊗L

Λ L), K)
= HomY (M ⊗L

Λ Rf!L, K)
= HomY (M, R HomΛ(Rf!L, K))

The first equality holds by Cohomology on Sites, Lemma 19.1. The second equality
by Cohomology on Sites, Lemma 35.2. The third equality by construction of Rf !.
The fourth equality by Lemma 10.7 (this is the important step). The fifth by
Cohomology on Sites, Lemma 35.2. □

Lemma 11.6.0GLD Let f : X → Y be a separated finite type morphism of quasi-
separated and quasi-compact schemes. Let Λ be a torsion ring. For every K ∈
D(Yétale, Λ) and L ∈ D(Xétale, Λ) the map (11.4.1) induces an isomorphism

R HomX(L, Rf !K) −→ R HomY (Rf!L, K)

of global derived homs.

Proof. By the construction in Cohomology on Sites, Section 36 we have

R HomX(L, Rf !K) = RΓ(X, R HomΛ(L, Rf !K)) = RΓ(Y, Rf∗R HomΛ(L, Rf !K))

(the second equality by Leray) and

R HomY (Rf!L, K) = RΓ(Y, R HomΛ(Rf!L, K))

Thus the lemma is a consequence of Lemma 11.5. □
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Lemma 11.7.0GLE Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes with f separated and of finite type.
Then we have Rf ! ◦ Rg∗ = Rg′

∗ ◦ R(f ′)!.
Proof. By uniqueness of adjoint functors this follows from base change for derived
lower shriek: we have g−1 ◦ Rf! = Rf ′

! ◦ (g′)−1 by Lemma 9.4. □

Remark 11.8.0GLF Let Λ1 → Λ2 be a homomorphism of torsion rings. Let f : X → Y
be a separated finite type morphism of quasi-compact and quasi-separated schemes.
The diagram

D(Xétale, Λ2)
res
// D(Xétale, Λ1)

D(Yétale, Λ2) res //

Rf !

OO

D(Yétale, Λ1)

Rf !

OO

commutes where res is the “restriction” functor which turns a Λ2-module into a Λ1-
module using the given ring map. This holds by uniquenss of adjoints, the second
commutative diagram of Remark 10.8 and because we have

HomΛ2(K1 ⊗L
Λ1

Λ2, K2) = HomΛ1(K1, res(K2))
This equality either for objects living over Xétale or on Yétale is a very special case
of Cohomology on Sites, Lemma 19.1.

12. Compactly supported cohomology

0GJY Let k be a field. Let Λ be a ring. Let X be a separated scheme of finite type over k
with structure morphism f : X → Spec(k). In Section 9 we have defined the functor
Rf! : D+

tors(Xétale, Λ) → D+
tors(Spec(k), Λ) and the functor Rf! : D(Xétale, Λ) →

D(Spec(k), Λ) if Λ is a torsion ring. Composing with the global sections functor on
Spec(k) we obtain what we will call the compactly supported cohomology.
Definition 12.1.0GJZ Let X be a separated scheme of finite type over a field k. Let
Λ be a ring. Let K be an object of D+

tors(Xétale, Λ) or of D(Xétale, Λ) in case Λ
is torsion. The cohomology of K with compact support or the compactly supported
cohomology of K is

RΓc(X, K) = RΓ(Spec(k), Rf!K)
where f : X → Spec(k) is the structure morphism. We will write Hi

c(X, K) =
Hi(RΓc(X, K)).
We will check that this definition doesn’t conflict with Definition 3.7 by Lemma
12.3. The utility of this definition lies in the following result.
Lemma 12.2.0GK0 Let f : X → Y be a finite type separated morphism of schemes
with Y quasi-compact and quasi-separated. Let K be an object of D+

tors(Xétale, Λ)
or of D(Xétale, Λ) in case Λ is torsion. Then there is a canonical isomorphism

(Rf!K)y −→ RΓc(Xy, K|Xy
)

in D(Λ) for any geometric point y : Spec(k) → Y .
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Proof. Immediate consequence of Lemma 9.4 and the definitions. □

Lemma 12.3.0GK1 Let X be a separated scheme of finite type over a field k. If F is
a torsion abelian sheaf, then the abelian group H0

c (X, F) defined in Definition 3.7
agrees with the abelian group H0

c (X, F) defined in Definition 12.1.

Proof. Choose a compactification j : X → X over k. In both cases the group is
defined as H0(X, j!F). This is true for the first version by Lemma 3.10 and for the
second version by construction. □

Lemma 12.4.0GKR Let k be an algebraically closed field. Let X be a separated scheme
of finite type type over k of dimension ≤ 1. Let Λ be a Noetherian ring. Let F be a
constructible sheaf of Λ-modules on X which is torsion. Then Hq

c (X, F) is a finite
Λ-module.

Proof. This is a consequence of Étale Cohomology, Theorem 84.7. Namely, choose
a compactification j : X → X. After replacing X by the scheme theoretic closure
of X, we see that we may assume dim(X) ≤ 1. Then Hq

c (X, F) = Hq(X, j!F) and
the theorem applies. □

Remark 12.5 (Covariance of compactly supported cohomology).0GKS Let k be a field.
Let f : X → Y be a morphism of separated schemes of finite type over k. If X, Y ,
and f satisfies one of the following conditions

(1) f is étale, or
(2) f is flat and quasi-finite, or
(3) f is quasi-finite and Y is geometrically unibranch, or
(4) f is quasi-finite and there exists a weighting w : X → Z of f

then compactly supported cohomology is covariant with respect to f . More pre-
cisely, let Λ be a ring. Let K be an object of D+

tors(Yétale, Λ) or of D(Yétale, Λ) in
case Λ is torsion. Under one of the assumptions (1) – (4) there is a canonical map

Trf,w,K : f!f
−1K −→ K

See Section 5 for the existence of the trace map and Examples 5.5 and 5.7 for
cases (2) and (3). If p : X → Spec(k) and q : Y → Spec(k) denote the structure
morphisms, then we have Rq! ◦ f! = Rp! by Lemma 9.2 and the fact that Rf! = f!
for the quasi-finite separated morphism f by Lemma 10.3. Hence we can look at
the map

RΓc(X, f−1K) = RΓ(Spec(k), Rp!f
−1K)

= RΓ(Spec(k), Rq!f!f
−1K)

Rq!Trf,w,K−−−−−−−→ RΓ(Spec(k), Rq!K)
= RΓc(Y, K)

In particular, if Λ is a torsion ring, then we obtain an arrow

Trf : RΓc(X, Λ) −→ RΓc(Y, Λ)

This map has lots of additional properties, for example it is compatible with taking
ground field extensions.
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13. A constructibility result

0GKT We “compute” the cohomology of a smooth projective family of curves with constant
coefficients.

Lemma 13.1.0GKU Let p be a prime number. Let S be a scheme over Fp. Let E be a
finite locally free OS-module viewed as an OS-module on Sétale. Let F : E → E be
a homomorphism of abelian sheaves on Sétale such that F (ae) = apF (e) for local
sections a, e of OS, E on Sétale. Then

Coker(F − 1 : E → E)

is zero and
Ker(F − 1 : E → E)

is a constructible abelian sheaf on Sétale.

This lemma is a generalization of Étale Cohomology, Lemma 63.2.

Proof. We may assume S = Spec(A) where A is an Fp-algebra and that E is the
quasi-coherent module associated to the free A-module Ae1 ⊕ . . . ⊕ Aen. We write
F (ei) =

∑
aijej .

Surjectivity of F − 1. It suffices to show that any element
∑

aiei, ai ∈ A is in the
image of F − 1 after replacing A by a faithfully flat étale extension. Observe that

F (
∑

xiei) −
∑

xiei =
∑

xp
i aijej −

∑
xiei

Consider the A-algebra

A′ = A[x1, . . . , xn]/(ai + xi −
∑

j
ajix

p
j )

A computation shows that dxi is zero in ΩA′/A and hence ΩA′/A = 0. Since
A′ is of finite type over A, this implies that Spec(A′) → Spec(A) is unramified
and hence is quasi-finite. Since A′ is generated by n elements and cut out by
n equations, we conclude that A′ is a global relative complete intersection over
A. Thus A′ is flat over A and we conclude that A → A′ is étale (as a flat and
unramified ring map). Finally, the reader can show that A → A′ is faithfully flat
by verifying directly that all geometric fibres of Spec(A′) → Spec(A) are nonempty,
however this also follows from Étale Cohomology, Lemma 63.2. Finally, the element∑

xiei ∈ A′e1 ⊕ . . . ⊕ A′en maps to
∑

aiei by F − 1.

Constructibility of the kernel. The calculations above show that Ker(F − 1) is
represented by the scheme

Spec(A[x1, . . . , xn]/(xi −
∑

j
ajix

p
j ))

over S = Spec(A). Since this is a scheme affine and étale over S we obtain the
result from Étale Cohomology, Lemma 73.1. □

Lemma 13.2.0GKV Let f : X → S be a proper smooth morphism of schemes with
geometrically connected fibres of dimension 1. Let ℓ be a prime number. Then
Rqf∗Z/ℓZ is a constructible.
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Proof. We may assume S is affine. Say S = Spec(A). Then, if we write A =
⋃

Ai

as the union of its finite type Z-subalgebras, we can find an i and a morphism
fi : Xi → Si = Spec(Ai) of finite type whose base change to S is f : X → S, see
Limits, Lemma 10.1. After increasing i we may assume fi : Xi → Si is smooth,
proper, and of relative dimension 1, see Limits, Lemmas 13.1 8.9, and 18.4. By
More on Morphisms, Lemma 53.8 we obtain an open subscheme Ui ⊂ Si such that
the fibres of fi : Xi → Si over Ui are geometrically connected. Then S → Si

maps into Ui. We may replace X → S by fi : f−1
i (Ui) → Ui to reduce to the case

discussed in the next paragraph.
Assume S is Noetherian. We may write S = U ∪ Z where U is the open sub-
scheme defined by the nonvanishing of ℓ and Z = V (ℓ) ⊂ S. Since the formation
of Rqf∗Z/ℓZ commutes with arbtrary base change (Étale Cohomology, Theorem
91.11), it suffices to prove the result over U and over Z. Thus we reduce to the
following two cases: (a) ℓ is invertible on S and (b) ℓ is zero on S.
Case (a). We claim that in this case the sheaves Rqf∗Z/ℓZ are finite locally constant
on S. First, by proper base change (in the form of Étale Cohomology, Lemma
91.13) and by finiteness (Étale Cohomology, Theorem 83.10) we see that the stalks
of Rqf∗Z/ℓZ are finite. By Étale Cohomology, Lemma 94.4 all specialization maps
are isomorphisms. We conclude the claim holds by Étale Cohomology, Lemma 75.6.
Case (b). Here ℓ = p is a prime and S is a scheme over Spec(Fp). By the same
references as above we already know that the stalks of Rqf∗Z/pZ are finite and zero
for q ≥ 2. It follows from Étale Cohomology, Lemma 39.3 that f∗Z/pZ = Z/pZ.
It remains to prove that R1f∗Z/pZ is constructible. Consider the Artin-Schreyer
sequence

0 → Z/pZ → OX
F −1−−−→ OX → 0

See Étale Cohomology, Section 63. Recall that f∗OX = OS and R1f∗OX is a finite
locally free OS-module of rank equal to the genera of the fibres of X → S, see
Algebraic Curves, Lemma 20.13. We conclude that we have a short exact sequence
0 → Coker(F−1 : OS → OS) → R1f∗Z/pZ → Ker(F−1 : R1f∗OX → R1f∗OX) → 0
Applying Lemma 13.1 we win. □

Lemma 13.3.0GKW Let f : X → S be a proper smooth morphism of schemes with
geometrically connected fibres of dimension 1. Let Λ be a Noetherian ring. Let M
be a finite Λ-module annihilated by an integer n > 0. Then Rqf∗M is a constructible
sheaf of Λ-modules on S.

Proof. If n = ℓn′ for some prime number ℓ, then we get a short exact sequence
0 → M [ℓ] → M → M ′ → 0 of finite Λ-modules and M ′ is annihilated by n′. This
produces a corresponding short exact sequence of constant sheaves, which in turn
gives rise to an exact sequence

Rq−1f∗M ′ → Rqf∗M [n] → Rqf∗M → Rqf∗M ′ → Rq+1f∗M [n]
Thus, if we can show the result in case M is annihilated by a prime number, then
by induction on n we win by Étale Cohomology, Lemma 71.6.
Let ℓ be a prime number such that ℓ annihilates M . Then we can replace Λ by
the Fℓ-algebra Λ/ℓΛ. Namely, the sheaf Rqf∗M where M is viewed as a sheaf of
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Λ-modules is the same as the sheaf Rqf∗M computed by viewing M as a sheaf of
Λ/ℓΛ-modules, see Cohomology on Sites, Lemma 20.7.

Assume ℓ be a prime number such that ℓ annihilates M and Λ. Let us reduce to
the case where M is a finite free Λ-module. Namely, choose a resolution

. . . → Λ⊕m2 → Λ⊕m1 → Λ⊕m0 → M → 0

Recall that f∗ has finite cohomological dimension on sheaves of Λ-modules, see
Étale Cohomology, Lemma 92.2 and Derived Categories, Lemma 32.2. Thus we see
that Rqf∗M is the qth cohomology sheaf of the object

Rf∗(Λ⊕ma → . . . → Λ⊕m0)

in D(Sétale, Λ) for some integer a large enough. Using the first spectral sequence
of Derived Categories, Lemma 21.3 (or alternatively using an argument with trun-
cations) we conclude that it suffices to prove that Rqf∗Λ) is constructible.

At this point we can finally use that

(Rf∗Z/ℓZ) ⊗L
Z/ℓZ Λ = Rf∗Λ

by Étale Cohomology, Lemma 96.6. Since any module over the field Z/ℓZ is flat
we obtain

(Rqf∗Z/ℓZ) ⊗Z/ℓZ Λ = Rqf∗Λ

Hence it suffices to prove the result for Rqf∗Z/ℓZ by Étale Cohomology, Lemma
71.10. This case is Lemma 13.2. □

14. Complexes with constructible cohomology

0GK2 We continue the discussion started in Étale Cohomology, Section 76. In particu-
lar, for a scheme X and a Noetherian ring Λ we denote Dc(Xétale, Λ) the strictly
full saturated triangulated subcategory of D(Xétale, Λ) consisting of objects whose
cohomology sheaves are constructible sheaves of Λ-modules.

Lemma 14.1.0GK3 Let f : X → Y be a morphism of schemes which is locally quasi-
finite and of finite presentation. The functor f! : D(Xétale, Λ) → D(Yétale, Λ) of
Lemma 7.1 sends Dc(Xétale, Λ) into Dc(Yétale, Λ).

Proof. Since the functor f! is exact, it suffices to show that f!F is constructible
for any constructible sheaf F of Λ-modules on Xétale. The question is local on
Y and hence we may and do assume Y is affine. Then X is quasi-compact and
quasi-separated, see Morphisms, Definition 21.1. Say X =

⋃
i=1,...,n Xi is a finite

affine open covering. By Lemma 4.7 we see that it suffices to show that fi,!F|Xi

and fii′,!F|Xi∩Xi′ are constructible where fi : Xi → Y and fii′ : Xi ∩ Xi′ → Y are
the restrictions of f . Since Xi and Xi ∩ Xi′ are quasi-compact and separated this
means we may assume f is separated. By Zariski’s main theorem (in the form of
More on Morphisms, Lemma 43.4) we can choose a factorization f = g ◦ j where
j : X → X ′ is an open immersion and g : X ′ → Y is finite and of finite presentation.
Then f! = g! ◦ j! by Lemma 3.13. By Étale Cohomology, Lemma 73.1 we see that
j!F is constructible on X ′. The morphism g is finite hence g! = g∗ by Lemma 3.4.
Thus f!F = g!j!F = g∗j!F is constructible by Étale Cohomology, Lemma 73.9. □
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Lemma 14.2.0GKX Let S be a Noetherian affine scheme of finite dimension. Let
f : X → S be a separated, affine, smooth morphism of relative dimension 1. Let
Λ be a Noetherian ring which is torsion. Let M be a finite Λ-module. Then Rf!M
has constructible cohomology sheaves.

Proof. We will prove the result by induction on d = dim(S).
Base case. If d = 0, then the only thing to show is that the stalks of Rqf!M are finite
Λ-modules. If s is a geometric point of S, then we have (Rqf!M)s = Hq

c (Xs, M)
by Lemma 12.2. This is a finite Λ-module by Lemma 12.4.
Induction step. It suffices to find a dense open U ⊂ S such that Rf!M |U has con-
structible cohomology sheaves. Namely, the restriction of Rf!M to the complement
S \ U will have constructible cohomology sheaves by induction and the fact that
formation of Rf!M commutes with all base change (Lemma 9.4). In fact, let η ∈ S
be a generic point of an irreducible component of S. Then it suffices to find an
open neighbourhood U of η such that the restriction of Rf!M to U is constructible.
This is what we will do in the next paragraph.
Given a generic point η ∈ S we choose a diagram

Y 1 ⨿ . . . ⨿ Y n

((

Y1 ⨿ . . . ⨿ Yn ν
//

��

j
oo XV

//

��

XU
//

��

X

f

��
T1 ⨿ . . . ⨿ Tn

// V // U // S

as in More on Morphisms, Lemma 56.1. We will show that Rf!M |U is constructible.
First, since V → U is finite and surjective, it suffices to show that the pullback to
V is constructible, see Étale Cohomology, Lemma 73.3. Since formation of Rf!
commutes with base change, we see that it suffices to show that R(XV → V )!M
is constructible. Let W ⊂ XV be the open subscheme given to us by More on
Morphisms, Lemma 56.1 part (4). Let Z ⊂ XV be the reduced induced scheme
structure on the complement of W in XV . Then the fibres of Z → V have dimen-
sion 0 (as W is dense in the fibres) and hence Z → V is quasi-finite. From the
distinguished triangle

R(W → V )!M → R(XV → V )!M → R(Z → V )!M → . . .

of Lemma 10.5 and from Lemma 14.1 we conclude that it suffices to show that
R(W → V )!M has constructible cohomology sheaves. Next, we have

R(W → V )!M = R(ν−1(W ) → V )!M

because the morphism ν : ν−1(W ) → W is a thickening and we may apply Lemma
10.6. Next, we let Z ′ ⊂

∐
Y i denote the complement of the open j(ν−1(W )).

Again Z ′ → V is quasi-finite. Again use the distinguished triangle

R(ν−1(W ) → V )!M → R(
∐

Y i → V )!M → R(Z ′ → V )!M → . . .

to conclude that it suffices to prove

R(
∐

Y i → V )!M =
⊕

i
R(Y i → V )!M =

⊕
i
R(Ti → V )!R(Y i → Ti)!M

has constructible cohomology sheaves (second equality by Lemma 9.2). The result
for R(Y i → Ti)!M is Lemma 13.3 and we win because Ti → V is finite étale and
we can apply Lemma 14.1. □
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Lemma 14.3.0GKY Let Y be a Noetherian affine scheme of finite dimension. Let Λ be a
Noetherian ring which is torsion. Let F be a finite type, locally constant sheaf of Λ-
modules on an open subscheme U ⊂ A1

Y . Then Rf!F has constructible cohomology
sheaves where f : U → Y is the structure morphism.

Proof. We may decompose Λ as a product Λ = Λ1 ×. . .×Λr where Λi is ℓi-primary
for some prime ℓi. Thus we may assume there exists a prime ℓ and an integer n > 0
such that ℓn annihilates Λ (and hence F).

Since U is Noetherian, we see that U has finitely many connected components. Thus
we may assume U is connected. Let g : U ′ → U be the finite étale covering con-
structed in Étale Cohomology, Lemma 66.4. The discussion in Étale Cohomology,
Section 66 gives maps

F → g∗g−1F → F
whose composition is an isomorphism. Hence it suffices to prove the result for
g∗g−1F . On the other hand, we have Rf!g∗g−1F = R(f ◦ g)!g

−1F by Lemma 9.2.
Since g−1F has a finite filtration by constant sheaves of Λ-modules of the form M
for some finite Λ-module M (by our choice of g) this reduces us to the case proved
in Lemma 14.2. □

Lemma 14.4.0GKZ Let Y be an affine scheme. Let Λ be a Noetherian ring. Let F
be a constructible sheaf of Λ-modules on A1

Y which is torsion. Then Rf!F has
constructible cohomology sheaves where f : A1

Y → Y is the structure morphism.

Proof. Say F is annihilated by n > 0. Then we can replace Λ by Λ/nΛ without
changing Rf!F . Thus we may and do assume Λ is a torsion ring.

Say Y = Spec(R). Then, if we write R =
⋃

Ri as the union of its finite type
Z-subalgebras, we can find an i such that F is the pullback of a constructible sheaf
of Λ-modules on A1

Ri
, see Étale Cohomology, Lemma 73.10. Hence we may assume

Y is a Noetherian scheme of finite dimension.

Assume Y is a Noetherian scheme of finite dimension d = dim(Y ) and Λ is torsion.
We will prove the result by induction on d.

Base case. If d = 0, then the only thing to show is that the stalks of Rqf!F are finite
Λ-modules. If y is a geometric point of Y , then we have (Rqf!F)y = Hq

c (Xy, F) by
Lemma 12.2. This is a finite Λ-module by Lemma 12.4.

Induction step. It suffices to find a dense open V ⊂ Y such that Rf!F|V has con-
structible cohomology sheaves. Namely, the restriction of Rf!F to the complement
Y \ V will have constructible cohomology sheaves by induction and the fact that
formation of Rf!F commutes with all base change (Lemma 9.4). By definition of
constructible sheaves of Λ-modules, there is a dense open subscheme U ⊂ A1

Y such
that F|U is a finite type, locally constant sheaf of Λ-modules. Denote Z ⊂ A1

Y

the complement (viewed as a reduced closed subscheme). Note that U contains all
the generic points of the fibres of A1

Y → Y over the generic points ξ1, . . . , ξn of
the irreducible components of Y . Hence Z → Y has finite fibres over ξ1, . . . , ξn.
After replacing Y by a dense open (which is allowed), we may assume Z → Y is
finite, see Morphisms, Lemma 51.1. By the distinguished triangle of Lemma 10.5
and the result for Z → Y (Lemma 14.1) we reduce to showing that R(U → Y )!F
has constructible cohomology sheaves. This is Lemma 14.3. □
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Theorem 14.5.0GL0 Let f : X → Y be a separated morphism of finite presentation
of quasi-compact and quasi-separated schemes. Let Λ be a Noetherian ring. Let K
be an object of D+

tors,c(Xétale, Λ) or of Dc(Xétale, Λ) in case Λ is torsion. Then
Rf!K has constructible cohomology sheaves, i.e., Rf!K is in D+

tors,c(Yétale, Λ) or in
Dc(Yétale, Λ) in case Λ is torsion.

Proof. The question is local on Y hence we may and do assume Y is affine. By the
induction principle and Lemma 10.4 we reduce to the case where X is also affine.

Assume X and Y are affine. Since X is of finite presentation, we can choose a
closed immersion i : X → An

Y which is of finite presentation. If p : An
Y → Y

denotes the structure morphism, then we see that Rf! = Rp! ◦ Ri! by Lemma 9.2.
By Lemma 14.1 we have the result for Ri! = i!. Hence we may assume f is the
projection morphism An

Y → Y . Since we can view f as the composition

X = An
Y → An−1

Y → An−2
S → . . . → A1

Y → Y

we may assume n = 1.

Assume Y is affine and X = A1
Y . Since Rf! has finite cohomological dimension

(Lemma 10.2) we may assume K is bounded below. Using the first spectral se-
quence of Derived Categories, Lemma 21.3 (or alternatively using an argument
with truncations), we reduce to showing the result of Lemma 14.4. □

15. Applications

0GLG In this section we give some applications of Theorem 14.5.

Lemma 15.1.0GLH Let k be an algebraically closed field. Let X be a finite type separated
scheme over k. Let Λ be a Noetherian ring. Let K be an object of D+

tors,c(Xétale, Λ)
or of Dc(Xétale, Λ) in case Λ is torsion. Then Hi

c(X, K) is a finite Λ-module for
all i ∈ Z.

Proof. Immediate consequence of Theorem 14.5 and the definition of compactly
supported cohomology in Section 12. □

Proposition 15.2.0GLI Let f : X → S be a smooth proper morphism of schemes. Let
Λ be a Noetherian ring. Let F be a finite type, locally constant sheaf of Λ-modules
on Xétale such that for every geometric point x of X the stalk Fx is annihilated by
an integer n > 0 prime to the residue characteristic of x. Then Rif∗F is a finite
type, locally constant sheaf of Λ-modules on Sétale for all i ∈ Z.

Proof. The question is local on S and hence we may assume S is affine. For a point
x of X denote nx ≥ 1 the smallest integer annihilating Fx for some (equivalently
any) geometric point x of X lying over x. Since X is quasi-compact (being proper
over affine) there exists a finite étale covering {Uj → X}j=1,...,m such that F|Uj

is constant. Since Uj → X is open, we conclude that the function x 7→ nx is
locally constant and takes finitely many values. Accordingly we obtain a finite
decomposition X = X1 ⨿ . . . ⨿ XN into open and closed subschemes such that
nx = n if and only if x ∈ Xn. Then it suffices to prove the lemma for the induced
morphisms Xn → S and the restriction of F to Xn. Thus we may and do assume
there exists an integer n > 0 such that F is annihilated by n and such that n is
prime to the residue characteristics of all residue fields of X.

https://stacks.math.columbia.edu/tag/0GL0
https://stacks.math.columbia.edu/tag/0GLH
https://stacks.math.columbia.edu/tag/0GLI
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Since f is smooth and proper the image f(X) ⊂ S is open and closed. Hence we
may replace S by f(X) and assume f(X) = S. In particular, we see that we may
assume n is invertible in the ring defining the affine scheme S.

In this paragraph we reduce to the case where S is Noetherian. Write S = Spec(A)
for some Z[1/n]-algebra A. Write A =

⋃
Ai as the union of its finite type Z[1/n]-

subalgebras. We can find an i and a morphism fi : Xi → Si = Spec(Ai) of
finite type whose base change to S is f : X → S, see Limits, Lemma 10.1. After
increasing i we may assume fi : Xi → Si is smooth and proper, see Limits, Lemmas
13.1 8.9, and 18.4. By Étale Cohomology, Lemma 73.11 we see that there exists an
i and a finite type, locally constant sheaf of Λ-modules Fi whose pullback to X is
isomorphic to F . As F is annihilated by n, we may replace Fi by Ker(n : Fi → Fi)
and assume the same thing is true for Fi. This reduces us to the case discussed in
the next paragraph.

Assume we have an integer n ≥ 1, the base scheme S is Noetherian and lives over
Z[1/n], and F is n-torsion. By Theorem 14.5 the sheaves Rif∗F are constructible
sheaves of Λ-modules. By Étale Cohomology, Lemma 94.3 the specialization maps
of Rif∗F are always isomorphisms. We conclude by Étale Cohomology, Lemma
75.6. □

16. More on derived upper shriek

0GLJ Let Λ be a torsion ring. Consider a commutative diagram

U
j

//

g
��

U ′

g′
~~

Y

of quasi-compact and quasi-separated schemes with g and g′ separated and of finite
type and with j étale. This induces a canonical map

Rg!Λ −→ Rg′
!Λ

in D(Yétale, Λ). Namely, by Lemmas 9.2 and 10.3 we have Rg! = Rg′
! ◦ j!. On the

other hand, since j! is left adjoint to j−1 we have the counit Trj : j!Λ = j!j
−1Λ → Λ;

we also call this the trace map for j, see Remark 5.6. The map above is constructed
as the composition

Rg!Λ = Rg′
!j!Λ

Rg′
! Trj−−−−→ Rg′

!Λ
Given a second étale morphism j′ : U ′ → U ′′ for some g′′ : U ′′ → Y separated and
of finite type the composition

Rg!Λ −→ Rg′
!Λ −→ Rg′′

! Λ

of the maps for j and j′ is equal to the map Rg!Λ −→ Rg′′
! Λ constructed for j′ ◦ j.

This follows from the corresponding statement on trace maps, see Lemma 5.4 for a
more general case.

Let f : X → Y be a separated finite type morphism of quasi-compact and quasi-
separated schemes. Then we obtain a functor

Xaffine,étale −→
{

schemes separated of finite type over Y
with étale morphisms between them

}
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Thus the construction above determines a functor Xopp
affine,étale → D(Yétale, Λ)

sending U to R(U → Y )!Λ.

Lemma 16.1.0GLK Let f : X → Y be a separated finite type morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion ring. Let K ∈ D(Yétale, Λ). For
n ∈ Z the cohomology sheaf Hn(Rf !K) restricted to Xaffine,étale is the sheaf asso-
ciated to the presheaf

U 7−→ HomY (R(U → Y )!Λ, K[n])
See discussion above for the functorial nature of R(U → Y )!Λ.

Proof. Let j : U → X be an object of Xaffine,étale and set g = f ◦ j. Recall that
HomX(j!Λ, M [n]) = Hn(U, M) for any M in D(Xétale, Λ). Then Hn(Rf !K) is the
sheaf associated to the presheaf
U 7→ Hn(U, Rf !K) = HomX(j!Λ, Rf !K[n]) = HomY (Rf!j!Λ, K[n] = HomY (Rg!Λ, K[n])
We omit the verification that the transition maps are given by the transition maps
between the objects Rg!Λ = R(U → Y )!Λ we constructed above. □

17. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes

(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction

https://stacks.math.columbia.edu/tag/0GLK


MORE ÉTALE COHOMOLOGY 54

(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal Spaces

(89) Resolution of Surfaces Revisited
Deformation Theory

(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index

References
[AGV71] Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier, Theorie de topos et

cohomologie etale des schemas I, II, III, Lecture Notes in Mathematics, vol. 269, 270,
305, Springer, 1971.


	1. Introduction
	2. Growing sections
	3. Sections with compact support
	4. Sections with finite support
	5. Weightings and trace maps for locally quasi-finite morphisms
	6. Upper shriek for locally quasi-finite morphisms
	7. Derived upper shriek for locally quasi-finite morphisms
	8. Preliminaries to derived lower shriek via compactifications
	9. Derived lower shriek via compactifications
	10. Properties of derived lower shriek
	11. Derived upper shriek
	12. Compactly supported cohomology
	13. A constructibility result
	14. Complexes with constructible cohomology
	15. Applications
	16. More on derived upper shriek
	17. Other chapters
	References

