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1. Introduction

In this chapter we continue our study of properties of morphisms of schemes. A
fundamental reference is [DG67].

2. Thickenings
The following terminology may not be completely standard, but it is convenient.

Definition 2.1. Thickenings.

(1) We say a scheme X' is a thickening of a scheme X if X is a closed subscheme
of X’ and the underlying topological spaces are equal.

(2) We say a scheme X' is a first order thickening of a scheme X if X is a closed
subscheme of X’ and the quasi-coherent sheaf of ideals Z C Ox- defining
X has square zero.

(3) Given two thickenings X C X' and Y C Y’ a morphism of thickenings
is a morphism f’ : X’ — Y’ such that f/(X) C Y, ie., such that f/|x
factors through the closed subscheme Y. In this situation we set f = f|x :
X — Y and we say that (f, ') : (X € X') — (Y C Y’) is a morphism of
thickenings.

(4) Let S be a scheme. We similarly define thickenings over S, and morphisms
of thickenings over S. This means that the schemes X, X', Y, Y’ above are
schemes over S, and that the morphisms X — X, Y - Y’ and f': X' —
Y’ are morphisms over S.

Finite order thickenings. Let ix : X — X’ be a thickening. Any local section of
the kernel Z = Ker(ig() is locally nilpotent. Let us say that X C X' is a finite
order thickening if the ideal sheaf 7 is “globally” nilpotent, i.e., if there exists an
n > 0 such that Z"*! = 0. Technically the class of finite order thickenings X C X’
is much easier to handle than the general case. Namely, in this case we have a
filtration

0=I""'c71"cI1"'c...cITCOx
and we see that X' is filtered by closed subspaces
X=XcXscCc..cX,cX,y1=X

such that each pair X; C X;;1 is a first order thickening over S. Using simple in-
duction arguments many results proved for first order thickenings can be rephrased
as results on finite order thickenings.

First order thickening are described as follows (see Modules, Lemma [28.11]).
Lemma 2.2. Let X be a scheme over a base S. Consider a short exact sequence
0—-Z—-A—-0x—0

of sheaves on X where A is a sheaf of f~*Ogs-algebras, A — Ox is a surjection of
sheaves of f~1O0g-algebras, and T is its kernel. If

(1) Z is an ideal of square zero in A, and
(2) T is quasi-coherent as an Ox-module

then X' = (X, A) is a scheme and X — X' is a first order thickening over S.
Moreover, any first order thickening over S is of this form.


https://stacks.math.columbia.edu/tag/04EX
https://stacks.math.columbia.edu/tag/05YV
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Proof. It is clear that X' is a locally ringed space. Let U = Spec(B) be an affine
open of X. Set A = I'(U, A). Note that since H(U,Z) = 0 (see Cohomology of
Schemes, Lemma the map A — B is surjective. By assumption the kernel
I =Z(U) is an ideal of square zero in the ring A. By Schemes, Lemma there is
a canonical morphism of locally ringed spaces

(U, Aly) — Spec(A)
coming from the map B — I'(U, .A). Since this morphism fits into the commutative
diagram
(U, Ox|y) — Spec(B)

| l

(U, Aly) — Spec(A4)

we see that it is a homeomorphism on underlying topological spaces. Thus to see
that it is an isomorphism, it suffices to check it induces an isomorphism on the
local rings. For u € U corresponding to the prime p C A we obtain a commutative
diagram of short exact sequences

0 Iu Au OX,u —0.

The left and right vertical arrows are isomorphisms because Z and Ox are quasi-
coherent sheaves. Hence also the middle map is an isomorphism. Hence every point
of X’ = (X, .A) has an affine neighbourhood and X’ is a scheme as desired. O

Lemma 2.3. Any thickening of an affine scheme is affine.

Proof. This is a special case of Limits, Proposition [I1.2] O

Proof for a finite order thickening. Suppose that X C X’ is a finite order
thickening with X affine. Then we may use Serre’s criterion to prove X’ is affine.
More precisely, we will use Cohomology of Schemes, Lemma [3.1] Let F be a quasi-
coherent Ox-module. It suffices to show that H!(X’, F) = 0. Denote i : X — X’
the given closed immersion and denote Z = Ker(i* : Ox/ — i.Ox). By our discus-
sion of finite order thickenings (following Definition there exists an n > 0 and
a filtration

Ozfn+1CfnC}—n71C...C}—0=}—

by quasi-coherent submodules such that F,/F,+1 is annihilated by Z. Namely, we
can take F, = Z°F. Then F,/F,t1 = i+G, for some quasi-coherent Ox-module
G., see Morphisms, Lemma We obtain

Hl(Xlafa/]:a+1) = Hl(lei*ga) = Hl(nga) =0

The second equality comes from Cohomology of Schemes, Lemma and the last
equality from Cohomology of Schemes, Lemma Thus F has a finite filtration
whose successive quotients have vanishing first cohomology and it follows by a
simple induction argument that H(X’, F) = 0. O

The case of a finite
order thickening is

[GD60, Proposition
5.1.9).
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Lemma 2.4. Let S C S’ be a thickening of schemes. Let X' — 8" be a morphism
and set X = S xg X'. Then (X C X') — (S C 5’) is a morphism of thickenings.
If S € S is a first (resp. finite order) thickening, then X C X' is a first (resp.
finite order) thickening.

Proof. Omitted. U
Lemma 2.5. IfS C S and S’ C S” are thickenings, then so is S C S”.
Proof. Omitted. O

Lemmal 2.6. The property of being a thickening is fpqc local. Similarly for first
order thickenings.

Proof. The statement means the following: Let X — X’ be a morphism of schemes
and let {g; : X — X'} be an fpqc covering such that the base change X; — X is
a thickening for all 7. Then X — X’ is a thickening. Since the morphisms g; are
jointly surjective we conclude that X — X is surjective. By Descent, Lemma [23.19]
we conclude that X — X’ is a closed immersion. Thus X — X’ is a thickening.
We omit the proof in the case of first order thickenings. O

3. Morphisms of thickenings

If (f,f): (X CX')— (Y CY’')is a morphism of thickenings of schemes, then
often properties of the morphism f are inherited by f’. There are several variants.

Lemma 3.1. Let (f,f"): (X C X') = (S C S’) be a morphism of thickenings.
Then

f is an affine morphism if and only if f' is an affine morphism,

f 1s a surjective morphism if and only if f' is a surjective morphism,
f is quasi-compact if and only if ' quasi-compact,

f is universally closed if and only if f' is universally closed,

f is integral if and only if f' is integral,

f s (quasi-)separated if and only if ' is (quasi-)separated,

f 1s universally injective if and only if f' is universally injective,

f is universally open if and only if [’ is universally open,

[ is quasi-affine if and only if ' is quasi-affine, and

(10) add more here.

(1)
(2)
(3)
(4)
()
(6)
(7)
(8)
(9)

Proof. Observe that S — 5" and X — X' are universal homeomorphisms (see for
example Morphisms, Lemma [45.6). This immediately implies parts (2), (3), (4),
(7), and (8). Part (1) follows from Lemma [2.3| which tells us that there is a 1-to-1
correspondence between affine opens of S and S’ and between affine opens of X
and X'. Part (9) follows from Limits, Lemma and the remark just made about
affine opens of S and S’. Part (5) follows from (1) and (4) by Morphisms, Lemma
Finally, note that
SXXS:SXX/S—)SXX/S/%S'XX/S'

is a thickening (the two arrows are thickenings by Lemma[2.4). Hence applying (3)
and (4) to the morphism (S C §') = (S xx S — S’ xx/ S") we obtain (6). O

Lemma 3.2. Let (f,f) : (X € X') = (S C S") be a morphism of thickenings.
Let L' be an invertible sheaf on X' and denote L the restriction to X. Then L' is
f'-ample if and only if L is f-ample.


https://stacks.math.columbia.edu/tag/09ZU
https://stacks.math.columbia.edu/tag/0BPE
https://stacks.math.columbia.edu/tag/0BPF
https://stacks.math.columbia.edu/tag/09ZV
https://stacks.math.columbia.edu/tag/0D2R
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Proof. Recall that being relatively ample is a condition for each affine open in the
base, see Morphisms, Definition By Lemma [2.3] there is a 1-to-1 correspon-
dence between affine opens of S and S’. Thus we may assume S and S’ are affine
and we reduce to proving that £’ is ample if and only if £ is ample. This is Limits,
Lemma, [T1.41 O

Lemma 3.3. Let (f,f') : (X € X') — (S C S') be a morphism of thickenings
such that X = S xg X'. If S C S’ is a finite order thickening, then

1) f is a closed immersion if and only if f' is a closed immersion,

2) f is locally of finite type if and only if f' is locally of finite type,

3) [ is locally quasi-finite if and only if f' is locally quasi-finite,

4) f is locally of finite type of relative dimension d if and only if f' is locally
of finite type of relative dimension d,

(5) Qx/s =0 ’Lf and only ifQX//S/ = 0,

(6) f is unramified if and only if f' is unramified,

(7) f is proper if and only if f’ is proper,

(8) f is finite if and only if f' is finite,

(9)

10)

11

(
(
(
(

f 15 a monomorphism if and only if f’ is a monomorphism,
f is an immersion if and only if ' is an immersion, and
) add more here.

(
(

Proof. The properties P listed in the lemma are all stable under base change,
hence if f’ has property P, then so does f. See Schemes, Lemmas and
and Morphisms, Lemmas [15.4] [20.13] [29.2] [32.10], [35.5] [41.5] and [44.6]

The interesting direction in each case is therefore to assume that f has the property
and deduce that f’ has it too. By induction on the order of the thickening we may
assume that S C S’ is a first order thickening, see discussion immediately following
Definition .11

Most of the proofs will use a reduction to the affine case. Let U’ C S’ be an affine
open and let V' C X’ be an affine open lying over U’. Let U’ = Spec(A’) and denote
I C A’ be the ideal defining the closed subscheme U'NS. Say V' = Spec(B’). Then
V'NX = Spec(B’'/IB’). Setting A = A'/I and B = B'/IB’ we get a commutative
diagram

0 1B’ B’ B 0
0 1A A A 0

with exact rows and I? = 0.

The translation of (1) into algebra: If A — B is surjective, then A’ — B’ is
surjective. This follows from Nakayama’s lemma (Algebra, Lemma [20.1]).

The translation of (2) into algebra: If A — B is a finite type ring map, then
A’ — B’ is a finite type ring map. This follows from Nakayama’s lemma (Algebra,
Lemma [20.1)) applied to a map A'[z1,...,2,] — B’ such that Afzq,...,z,] — B is
surjective.

Proof of (3). Follows from (2) and that quasi-finiteness of a morphism which is
locally of finite type can be checked on fibres, see Morphisms, Lemma [20.6]


https://stacks.math.columbia.edu/tag/09ZW
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Proof of (4). Follows from (2) and that the additional property of “being of relative
dimension d” can be checked on fibres (by definition, see Morphisms, Definition
29. 11

The translation of (5) into algebra: If Qg4 = 0, then Qp/ 4 = 0. By Alge-
bra, Lemma [131.12 we haVe 0= QB/A = QB'/A’/IQB’/A" Hence QB’/A’ =0 by
Nakayama’s lemma (Algebra, Lemma [20.1]).

The translation of (6) into algebra: If A — B is unramified map, then A" — B’ is
unramified. Since A — B is of finite type we see that A’ — B’ is of finite type by
(2) above. Since A — B is unramified we have Qp,4 = 0. By part (5) we have
Qprjar = 0. Thus A’ — B’ is unramified.

Proof of (7). Follows by combining (2) with results of Lemma and the fact
that proper equals quasi-compact + separated + locally of finite type + universally
closed.

Proof of (8). Follows by combining (2) with results of Lemma and using the
fact that finite equals integral + locally of finite type (Morphisms, Lemma [44.4]).

Proof of (9). As f is a monomorphism we have X = X xg X. We may apply
the results proved so far to the morphism of thickenings (X C X’) — (X xg X C
X' x5 X'"). We conclude X' — X’ x g X’ is a closed immersion by (1). In fact, it is
a first order thickening as the ideal defining the closed immersion X’ — X’ x g X'
is contained in the pullback of the ideal Z C Og: cutting out S in S’. Indeed,
X = X xg X = (X' xgr X') xg S is contained in X’. Hence by Morphisms,
Lemma it suffices to show that Qx//gs = 0 which follows from (5) and the
corresponding statement for X/S.

Proof of (10). If f: X — S is an immersion, then it factors as X — U — S where
U — S is an open immersion and X — U is a closed immersion. Let U’ C S’ be
the open subscheme whose underlying topological space is the same as U. Then
X' — 8’ factors through U’ and we conclude that X’ — U’ is a closed immersion
by part (1). This finishes the proof. O

The following lemma is a variant on the preceding one. Rather than assume that
the thickenings involved are finite order (which allows us to transfer the property
of being locally of finite type from f to f’), we instead take as given that each of f
and f’ is locally of finite type.

Lemma 3.4. Let (f,f"): (X C X') = (Y = Y’) be a morphism of thickenings.

Assume [ and f' are locally of finite type and X =Y xy: X'. Then
(1) f is locally quasi-finite if and only if f' is locally quasi-finite,

) f is finite if and only if [’ is finite,

) f is a closed immersion if and only if f' is a closed immersion,

) Qx/y =0 Zf and only Z'fQX’/Y/ = 0,

) f is unramified if and only if [’ is unramified,

) [ is a monomorphism if and only if f' is a monomorphism,

) [ is an immersion if and only if f' is an immersion,

) f is proper if and only if f' is proper, and

(9) add more here.

Proof. The properties P listed in the lemma are all stable under base change,
hence if f’ has property P, then so does f. See Schemes, Lemmas and


https://stacks.math.columbia.edu/tag/0BPG
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and Morphisms, Lemmas [20.13] [29.2] [32.10] [35.5] [41.5] and [44.6] Hence in each

case we need only to prove that if f has the desired property, so does f”.

A morphism is locally quasi-finite if and only if it is locally of finite type and the
scheme theoretic fibres are discrete spaces, see Morphisms, Lemma, Since the
underlying topological space is unchanged by passing to a thickening, we see that
1’ is locally quasi-finite if (and only if) f is. This proves (1).

Case (2) follows from case (5) of Lemma [3.1]and the fact that the finite morphisms
are precisely the integral morphisms that are locally of finite type (Morphisms,

Lemma [44.4]).

Case (3). This follows immediately from Morphisms, Lemma [45.7}

Case (4) follows from the following algebra statement: Let A be aring andlet I C A
be a locally nilpotent ideal. Let B be a finite type A-algebra. If Qg/1py/(a/1) =0,
then Qp,4 = 0. Namely, the assumption means that IQg,4 = 0, see Algebra,
Lemma [I31.12] On the other hand Qp/ 4 is a finite B-module, see Algebra, Lemma
Hence the vanishing of Qp/4 follows from Nakayama’s lemma (Algebra,
Lemma and the fact that I B is contained in the Jacobson radical of B.

Case (5) follows immediately from (4) and Morphisms, Lemma [35.2]

Proof of (6). As f is a monomorphism we have X = X xy X. We may apply
the results proved so far to the morphism of thickenings (X € X’) — (X xy X C
X" xyr X'). We conclude Ay/)ys : X' — X' xy» X' is a closed immersion by
(3). In fact Ax//y- is a bijection on underlying sets, hence Ax/,y is a thickening.
On the other hand Ax//y- is locally of finite presentation by Morphisms, Lemma
21.12, In other words, Ax//y/(X’) is cut out by a quasi-coherent sheaf of ideals
J C Oxrx,,x of finite type. Since Qx//y+ = 0 by (5) we see that the conormal
sheaf of X’ — X’ xy+ X' is zero by Morphisms, Lemma In other words,
J/J? = 0. This implies Ax/y: is an isomorphism, for example by Algebra,
Lemma 215

Proof of (7). If f: X — Y is an immersion, then it factors as X — V — Y where
V — Y is an open immersion and X — V is a closed immersion. Let V' C Y’ be
the open subscheme whose underlying topological space is the same as V. Then
X' — V' factors through V' and we conclude that X’ — V' is a closed immersion
by part (3).

Case (8) follows from Lemma [3.1]and the definition of proper morphisms as being
the quasi-compact, universally closed, and separated morphisms that are locally of
finite type. O

4. Picard groups of thickenings

0C6Q Some material on Picard groups of thickenings.
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0C6R Lemmal 4.1. Let X C X' be a first order thickening with ideal sheaf . Then

0C68S

05YW

04EY

there is a canonical exact sequence

OHHO(X%’Z) HI—IO()(/7(9;(’) 4>HO(X70;() >

C—>H1(X,I) —— > Pic(X') ——— Pic(X)
)
C—>H2(X,I)

of abelian groups.

Proof. This is the long exact cohomology sequence associated to the short exact
sequence of sheaves of abelian groups

0-7Z—0%x —-0%x =0

where the first map sends a local section f of Z to the invertible section 1 4 f of
Ox:. We also use the identification of the Picard group of a ringed space with the
first cohomology group of the sheaf of invertible functions, see Cohomology, Lemma

O

Lemma 4.2. Let X C X' be a thickening. Let n be an integer invertible in Ox.
Then the map Pic(X')[n] — Pic(X)[n] is bijective.

Proof for a finite order thickening. By the general principle explained follow-
ing Definition [2.1] this reduces to the case of a first order thickening. Then may
use Lemma see that it suffices to show that H'(X,Z)[n], H'(X,Z)/n, and
H?(X,T)[n] are zero. This follows as multiplication by n on Z is an isomorphism
as it is an Ox-module. O

Proof in general. Let Z C Ox/ be the quasi-coherent ideal sheaf cutting out X.
Then we have a short exact sequence of abelian groups

0-14+D)" - 0% - 0% =0

We obtain a long exact cohomology sequence as in the statement of Lemma
with H(X,Z) replaced by H*(X, (1+2Z)*). Thus it suffices to show that raising to
the nth power is an isomorphism (1 + Z)* — (1 4+ Z)*. Taking sections over affine
opens this follows from Algebra, Lemma [32.8 ]

5. First order infinitesimal neighbourhood

A natural construction of first order thickenings is the following. Suppose that
i : Z — X be an immersion of schemes. Choose an open subscheme U C X
such that ¢ identifies Z with a closed subscheme Z C U. Let Z C Oy be the
quasi-coherent sheaf of ideals defining Z in U. Then we can consider the closed
subscheme Z’ C U defined by the quasi-coherent sheaf of ideals Z2.

Definition 5.1. Let i : Z — X be an immersion of schemes. The first order
mnfinitesimal neighbourhood of Z in X is the first order thickening Z C Z’ over X
described above.


https://stacks.math.columbia.edu/tag/0C6R
https://stacks.math.columbia.edu/tag/0C6S
https://stacks.math.columbia.edu/tag/04EY

04EZ

04F0

02H7

MORE ON MORPHISMS 10

This thickening has the following universal property (which will assuage any fears
that the construction above depends on the choice of the open U).

Lemma 5.2. Leti: Z — X be an immersion of schemes. The first order infin-
itesimal neighbourhood Z' of Z in X has the following universal property: Given
any commutative diagram

b /
X<=—T
where T C T" is a first order thickening over X, there exists a unique morphism

(d/;a): (T CT)— (Z C Z') of thickenings over X.

Proof. Let U C X be the open used in the construction of Z’, i.e., an open such
that Z is identified with a closed subscheme of U cut out by the quasi-coherent
sheaf of ideals Z. Since |T'| = |T'| we see that b(T") C U. Hence we can think of b
as a morphism into U. Let J C O be the ideal cutting out T'. Since b(T) C Z by
the diagram above we see that b%(b='Z) C J. As T’ is a first order thickening of
T we see that J2 = 0 hence b*(b~*(Z?)) = 0. By Schemes, Lemma this implies
that b factors through Z’. Denote a’ : T" — Z’ this factorization and everything is
clear. O

Lemma 5.3. Leti: Z — X be an immersion of schemes. Let Z C Z' be the first
order infinitesimal neighbourhood of Z in X. Then the diagram

——

|

7 ——X

induces a map of conormal sheaves Cz/x — Cz;z: by Morphisms, Lemma [31.5
This map is an isomorphism.

Proof. This is clear from the construction of Z’ above. O

6. Formally unramified morphisms

Recall that a ring map R — A is called formally unramified (see Algebra, Definition
148.1)) if for every commutative solid diagram

A——=B/I

N

R B

where I C B is an ideal of square zero, at most one dotted arrow exists which
makes the diagram commute. This motivates the following analogue for morphisms
of schemes.


https://stacks.math.columbia.edu/tag/04EZ
https://stacks.math.columbia.edu/tag/04F0
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Definition 6.1. Let f: X — S be a morphism of schemes. We say f is formally
unramified if given any solid commutative diagram

X~—T

(S

fl AN J{z
AN

S~—T

where T C T’ is a first order thickening of affine schemes over S there exists at
most one dotted arrow making the diagram commute.

We first prove some formal lemmas, i.e., lemmas which can be proved by drawing
the corresponding diagrams.

Lemma 6.2. If f: X — S is a formally unramified morphism, then given any
solid commutative diagram

X<=—T
k\
fl N lz
AN
S <~—1T

where T C T' is a first order thickening of schemes over S there exists at most one
dotted arrow making the diagram commute. In other words, in Definition the
condition that T be affine may be dropped.

Proof. This is true because a morphism is determined by its restrictions to affine
opens. ([

Lemma 6.3. A composition of formally unramified morphisms is formally un-
ramified.

Proof. This is formal. O

Lemma 6.4. A base change of a formally unramified morphism is formally un-
ramified.

Proof. This is formal. O

Lemma 6.5. Let f: X — S be a morphism of schemes. Let U C X and V C S
be open such that f(U) C V. If f is formally unramified, so is fly : U = V.

Proof. Consider a solid diagram

U<——T

a

V
fUl \\ \LZ
N
V<~—1T

as in Definition If f is formally ramified, then there exists at most one S-
morphism a’ : T — X such that a’|r = a. Hence clearly there exists at most one
such morphism into U. (|

Lemmal 6.6. Let f : X — S be a morphism of schemes. Assume X and S are
affine. Then f is formally unramified if and only if Og(S) — Ox(X) is a formally
unramified ring map.
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Proof. This is immediate from the definitions (Definition and Algebra, Defini-
tion|148.1)) by the equivalence of categories of rings and affine schemes, see Schemes,
Lemma [6.5] O

Here is a characterization in terms of the sheaf of differentials.

Lemmal 6.7. Let f : X — S be a morphism of schemes. Then f is formally
unramified if and only if Qx,5 = 0.

Proof. We recall some of the arguments of the proof of Morphisms, Lemma |32.5
Let W C X xgX be an open such that A : X — X x¢X induces a closed immersion
into W. Let J C Ow be the ideal sheaf of this closed immersion. Let X’ C W be
the closed subscheme defined by the quasi-coherent sheaf of ideals J2. Consider
the two morphisms p1,ps : X’ — X induced by the two projections X xg X — X.
Note that p; and py agree when composed with A : X — X’ and that X — X' is
a closed immersion defined by a an ideal whose square is zero. Moreover there is a
short exact sequence
0—=J/J* = Ox —Ox =0

and Qx /s = J/J?. Moreover, J /J? is generated by the local sections Pt (f) —pg (f)
for f a local section of Ox.

Suppose that f : X — S is formally unramified. By assumption this means that
p1 = p2 when restricted to any affine open 7" C X’. Hence p; = py. By what was
said above we conclude that QX/S = \7/‘72 =0.

Conversely, suppose that Qx/s = 0. Then X’ = X. Take any pair of morphisms
fi, f5 + T — X fitting as dotted arrows in the diagram of Definition This
gives a morphism (f1, f3) : 7" — X xg X. Since fi|r = fi|r and |T| = |T’| we see
that the image of T" under (f], f3) is contained in the open W chosen above. Since
(f1, f5)(T) € A(X) and since T is defined by an ideal of square zero in 7" we see
that (f1, f4) factors through X’. As X’ = X we conclude f] = f4 as desired. O

Lemmal 6.8. Let f : X — S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is unramified (resp. G-unramified), and
(2) the morphism f is locally of finite type (resp. locally of finite presentation)
and formally unramified.

Proof. Use Lemma [6.7] and Morphisms, Lemma [35.2 U

7. Universal first order thickenings

Let h: Z — X be a morphism of schemes. A universal first order thickening of Z
over X is a first order thickening Z C Z’ over X such that given any first order
thickening T'C T” over X and a solid commutative diagram

Z<— T

a’ \\ T
/
X

Z/

/A\
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there exists a unique dotted arrow making the diagram commute. Note that in
this situation (a,a’) : (T’ C T') — (Z C Z’) is a morphism of thickenings over
X. Thus if a universal first order thickening exists, then it is unique up to unique
isomorphism. In general a universal first order thickening does not exist, but if h
is formally unramified then it does.

Lemma 7.1. Let h : Z — X be a formally unramified morphism of schemes.
There exists a universal first order thickening Z C Z' of Z over X.

Proof. During this proof we will say Z C Z’ is a universal first order thickening of
Z over X if it satisfies the condition of the lemma. We will construct the universal
first order thickening Z C Z’ over X by glueing, starting with the affine case which
is Algebra, Lemma [I49.1] We begin with some general remarks.

If a universal first order thickening of Z over X exists, then it is unique up to unique
isomorphism. Moreover, suppose that V C Z and U C X are open subschemes such
that h(V) C U. Let Z C Z' be a universal first order thickening of Z over X. Let
V' C Z' be the open subscheme such that V= ZNV’. Then we claim that V c V'
is the universal first order thickening of V over U. Namely, suppose given any
diagram

V?T

|,

P

where T C T is a first order thickening over U. By the universal property of Z’
we obtain (a,a’) : (T C T') — (Z C Z'). But since we have equality |T| = |T"| of
underlying topological spaces we see that o/ (T") C V. Hence we may think of (a, a’)
as a morphism of thickenings (a,a’) : (T' € T') — (V C V') over U. Uniqueness is
clear also. In a completely similar manner one proves that if h(Z) C U and Z C Z’
is a universal first order thickening over U, then Z C Z’ is a universal first order
thickening over X.

Before we glue affine pieces let us show that the lemma holds if Z and X are affine.
Say X = Spec(R) and Z = Spec(S). By Algebra, Lemma there exists a first
order thickening Z C Z’ over X which has the universal property of the lemma for
diagrams

Z?T

o

X<t
where T,T’ are affine. Given a general diagram we can choose an affine open
covering 7" = |JT] and we obtain morphisms a} : 7] — Z’ over X such that
ilr, = alr,. By uniqueness we see that a} and a; agree on any affine open of

a;
T;NT}. Hence the morphisms a; glue to a global morphism a’ : 7" — Z’ over X as
desired. Thus the lemma holds if X and Z are affine.

Choose an affine open covering Z = |J Z; such that each Z; maps into an affine
open U; of X. By Lemma the morphisms Z; — U, are formally unramified.
Hence by the affine case we obtain universal first order thickenings Z; C Z/ over
U;. By the general remarks above Z; C Z! is also a universal first order thickening
of Z; over X. Let Z] ; C Z] be the open subscheme such that Z; N Z; = Z; ; N Z;.
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By the general remarks we see that both Z], and Z], are universal first order
thickenings of Z; N Z; over X. Thus, by the first of our general remarks, we see
that there is a canonical isomorphism ¢;; : Zz{,j — Z]/l inducing the identity on
Z; N Z;. We claim that these morphisms satisfy the cocycle condition of Schemes,
Section (Verification omitted. Hint: Use that Z; ; N Z; . is the universal first
order thickening of Z; N Z; N Z;, which determines it up to unique isomorphism by
what was said above.) Hence we can use the results of Schemes, Section [14]to get a
first order thickening Z C Z’ over X which the property that the open subscheme
Z! C Z' with Z; = Z] N Z is a universal first order thickening of Z; over X.

It turns out that this implies formally that Z’ is a universal first order thickening
of Z over X. Namely, we have the universal property for any diagram

Z?T

),

X<t-7
where a(T) is contained in some Z;. Given a general diagram we can choose an
open covering T" = [J T} such that a(T;) C Z;. We obtain morphisms a} : T} — Z’
over X such that aj|r, = a|r,. We see that a; and a; necessarily agree on T} N T}
since both a/z‘|T{ﬂT]’ and a;.|T7ng7( are solutions of the problem of mapping into the

universal first order thickening'Z{ N Z;» of Z; N Z; over X. Hence the morphisms
a; glue to a global morphism a’ : 7" — Z’ over X as desired. This finishes the
proof. ([

Definition 7.2. Let h: Z — X be a formally unramified morphism of schemes.

(1) The universal first order thickening of Z over X is the thickening Z C Z’
constructed in Lemma [T.1}

(2) The conormal sheaf of Z over X is the conormal sheaf of Z in its universal
first order thickening Z’ over X.

We often denote the conormal sheaf Cz,x in this situation.
Thus we see that there is a short exact sequence of sheaves
0—=Cz/x >0z -0z —0
on Z. The following lemma proves that there is no conflict between this definition
and the definition in case Z — X is an immersion.
Lemma 7.3. Leti: Z — X be an immersion of schemes. Then
(1) 4 is formally unramified,
(2) the universal first order thickening of Z over X is the first order infinites-
imal neighbourhood of Z in X of Definition[5.1], and

(3) the conormal sheaf of i in the sense of Morphisms, Definition agrees
with the conormal sheaf of i in the sense of Definition[7.3

Proof. By Morphisms, Lemmas and an immersion is unramified, hence
formally unramified by Lemma The other assertions follow by combining Lem-
mas [5.2] and [5.3] and the definitions. O

Lemma 7.4. Let Z — X be a formally unramified morphism of schemes. Then
the universal first order thickening Z' is formally unramified over X.
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Proof. There are two proofs. The first is to show that (27,,x = 0 by working
affine locally and applying Algebra, Lemma Then Lemma [6.7] implies what
we want. The second is a direct argument as follows.

Let T C T’ be a first order thickening. Let

ZlﬁT

N

X~—1T

be a commutative diagram. Consider two morphisms a,b : T’ — Z' fitting into the
diagram. Set Ty = ¢~ 1(Z) C T and T, = a=1(Z) (scheme theoretically). Since
7' is a first order thickening of Z, we see that T” is a first order thickening of 7.
Moreover, since ¢ = a|r we see that To = T'N T, (scheme theoretically). As T' is a
first order thickening of T it follows that T is a first order thickening of Tj. Now
a|r: and b7, are morphisms of T}, into Z’ over X which agree on Ty as morphisms
into Z. Hence by the universal property of Z’ we conclude that a|r, = b|7,. Thus
a and b are morphism from the first order thickening 7" of T, whose restrictions
to T, agree as morphisms into Z. Thus using the universal property of Z’ once
more we conclude that a = b. In other words, the defining property of a formally
unramified morphism holds for Z/ — X as desired. O

Lemma) 7.5. Consider a commutative diagram of schemes

Z——X

1)

WL>Y

with h and h' formally unramified. Let Z C Z' be the universal first order thickening
of Z over X. Let W C W' be the universal first order thickening of W over Y.
There exists a canonical morphism (f, f') : (Z,Z") — (W,W') of thickenings over
Y which fits into the following commutative diagram

Z/

/ I

X w’

|17

w Y

In particular the morphism (f, f') of thickenings induces a morphism of conormal
sheaves f*Cy/y — Cz/x-

Proof. The first assertion is clear from the universal property of W’. The induced
map on conormal sheaves is the map of Morphisms, Lemma applied to (Z C
Z') = (W cCcW'). O
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Lemma 7.6. Let

h
ok
Wy
be a fibre product diagram in the category of schemes with h' formally unramified.
Then h is formally unramified and if W C W’ is the universal first order thickening
of W overY, then Z = X xy W C X xy W’ is the universal first order thickening
of Z over X. In particular the canonical map f*Cyw/y — Cz/x of Lemma is

surjective.

Proof. The morphism & is formally unramified by Lemma It is clear that
X xy W' is a first order thickening. It is straightforward to check that it has the
universal property because W' has the universal property (by mapping properties
of fibre products). See Morphisms, Lemma for why this implies that the map
of conormal sheaves is surjective. O

Lemma 7.7. Let
7 ——X
h
ok
h/
W——Y
be a fibre product diagram in the category of schemes with h' formally unramified

and g flat. In this case the corresponding map Z' — W' of universal first order
thickenings is flat, and f*Cw,y — Cz/x is an isomorphism.

Proof. Flatness is preserved under base change, see Morphisms, Lemma [25.8
Hence the first statement follows from the description of W’ in Lemma (7.6 It
is clear that X xy W’ is a first order thickening. It is straightforward to check that
it has the universal property because W’ has the universal property (by mapping
properties of fibre products). See Morphisms, Lemma for why this implies that
the map of conormal sheaves is an isomorphism. [l

Lemma 7.8. Tuaking the universal first order thickenings commutes with taking
opens. More precisely, let h : Z — X be a formally unramified morphism of
schemes. LetV C Z, U C X be opens such that h(V) C U. Let Z’' be the universal
first order thickening of Z over X. Then hly : V — U is formally unramified and
the universal first order thickening of V' over U is the open subscheme V' C Z'
such that V.= Z NV'. In particular, Cz/x|v = Cyu.

Proof. The first statement is Lemma [6.5] The compatibility of universal thicken-
ings can be deduced from the proof of Lemma [7.1] or from Algebra, Lemma [149.4
or deduced from Lemma O

Lemma 7.9. Let h:Z — X be a formally unramified morphism of schemes over
S. Let Z C Z' be the universal first order thickening of Z over X with structure
morphism h' : Z' — X. The canonical map

e s (W) Qxys — Qzys

induces an isomorphism h*Qx g — Qz/ /)5 ® Oz.
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Proof. The map ¢/ is the map defined in Morphisms, Lemma Ifti: 72— 27
is the given closed immersion, then i*cy/ is a map h*{lx,5 — Q7,5 ®@0z. Checking
that it is an isomorphism reduces to the affine case by localization, see Lemma [7.§]
and Morphisms, Lemma In this case the result is Algebra, Lemma O

04FC Lemma 7.10. Let h: Z — X be a formally unramified morphism of schemes over
S. There is a canonical exact sequence

CZ/X — h*QX/S — QZ/S — 0.

The first arrow is induced by dz: )5 where Z' is the universal first order neighbour-
hood of Z over X.

Proof. We know that there is a canonical exact sequence
CZ/Z’ — QZ’/S X OZ — QZ/S — 0.
see Morphisms, Lemma[32.15] Hence the result follows on applying Lemmal[7.9] O

X

be a commutative diagram of schemes where i and j are formally unramified. Then
there is a canonical exact sequence

067V Lemma 7.11. Let

Cz/y — CZ/X — i*Qx/y — 0
where the first arrow comes from Lemma[7.5 and the second from Lemma[7.10,

Proof. Denote Z — Z’ the universal first order thickening of Z over X. Denote
7 — 7' the universal first order thickening of Z over Y. By Lemma here is a
canonical morphism Z' — Z” so that we have a commutative diagram

Z—7 —X
Nt
ZI/ . Y
Apply Morphisms, Lemma [32.18| to the left triangle to get an exact sequence
CZ/Z” — CZ/Z’ — (i/)*QZ//Z// —0

As Z" is formally unramified over Y (see Lemma [7.4) we have Qz: /5 = Qz/y (by
combining Lemma and Morphisms, Lemma [32.9). Then we have (i')*Q /vy =

i"*Qx/y by Lemma 7.9
06AE Lemmal 7.12. Let Z — Y — X be formally unramified morphisms of schemes.

(1) If Z C Z' is the universal first order thickening of Z over X andY C Y’ is
the universal first order thickening of Y over X, then there is a morphism
Z' =Y andY xy+ Z' is the universal first order thickening of Z over Y .
(2) There is a canonical exact sequence

i*Cy/X — CZ/X — Cz/y —0

where the maps come from Lemma[7.0 and i : Z —'Y is the first morphism.
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Proof. The map h: Z’ — Y’ in (1) comes from Lemma [7.5] The assertion that
Y Xy Z' is the universal first order thickening of Z over Y is clear from the universal
properties of Z/ and Y’. By Morphisms, Lemma, we have an exact sequence

(") Cyxy 21z = Crz0 = Cayy 20 — 0
where i’ : Z — Y xys Z' is the given morphism. By Morphisms, Lemma
there exists a surjection h*Cy;y» — Cyx,, z//z. Combined with the equalities
Cy;yr =Cy/x,Cz/z =Cz/x, and Cz)y«,,z = Cz/y this proves the lemma. [

8. Formally étale morphisms

Recall that a ring map R — A is called formally étale (see Algebra, Definition
150.1)) if for every commutative solid diagram

A—B/I

AN
N
N
N
R——B

where I C B is an ideal of square zero, there exists exactly one dotted arrow which
makes the diagram commute. This motivates the following analogue for morphisms
of schemes.

Definition 8.1. Let f: X — S be a morphism of schemes. We say f is formally
étale if given any solid commutative diagram

X~—T

NS

fl AN J{z
AN

S <~—T

where T' C T” is a first order thickening of affine schemes over S there exists exactly
one dotted arrow making the diagram commute.

It is clear that a formally étale morphism is formally unramified. Henceif f : X — S
is formally étale, then x5 is zero, see Lemma

Lemma 8.2. If f: X — S is a formally étale morphism, then given any solid
commutative diagram
X~—T

(S
fl N J/z
N
S<~—1T
where T C T' is a first order thickening of schemes over S there exists exactly one

dotted arrow making the diagram commute. In other words, in Definition the
condition that T be affine may be dropped.

Proof. Let 7" = |JT] be an affine open covering, and let T; = T'N7T]. Then we
get morphisms af : T/ — X fitting into the diagram. By uniqueness we see that a}
and a; agree on any affine open subscheme of 7] N T}. Hence a; and a/; agree on
T;NT;. Thus we see that the morphisms a; glue to a global morphism a’ : 7" — X.
The uniqueness of a’ we have seen in Lemma ([

Lemma 8.3. A composition of formally étale morphisms is formally étale.
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Proof. This is formal. O

Lemma 8.4. A base change of a formally étale morphism is formally étale.

Proof. This is formal. O

Lemma 8.5. Let f: X — S be a morphism of schemes. Let U C X and V C S
be open subschemes such that f(U) C V. If [ is formally étale, so is fly : U — V.

Proof. Consider a solid diagram

Ve T
k
fUl b AN \Ll
N

V<—1T
as in Definition If f is formally ramified, then there exists exactly one S-
morphism ' : T — X such that a’|r = a. Since |T'| = |T| we conclude that
a/(T") C U which gives our unique morphism from 7" into U. O

Lemma 8.6. Let f : X — S be a morphism of schemes. The following are
equivalent:
(1) f is formally étale,
(2) f is formally unramified and the universal first order thickening of X over
S is equal to X,
(3) [f is formally unramified and Cx/s = 0, and
(4) QX/S =0 and Cx/s =0.

Proof. Actually, the last assertion only make sense because Q2x /s = 0 implies that
Cx/s is defined via Lemma 6.7 and Definition This also makes it clear that (3)
and (4) are equivalent.

Either of the assumptions (1), (2), and (3) imply that f is formally unramified.
Hence we may assume f is formally unramified. The equivalence of (1), (2), and
(3) follow from the universal property of the universal first order thickening X’
of X over S and the fact that X = X’ < Cx/g = 0 since after all by definition
Cx/s = Cx/x is the ideal sheaf of X in X'. O

Lemma 8.7. An unramified flat morphism is formally étale.

Proof. Say X — S is unramified and flat. Then A : X — X xg X is an open
immersion, see Morphisms, Lemma We have to show that Cx/s is zero.
Consider the two projections p,q : X xg X — X. As f is formally unramified
(see Lemma , q is formally unramified (see Lemma . As f is flat, p is
flat, see Morphisms, Lemma Hence p*Cx/s = C; by Lemma @ where C,
denotes the conormal sheaf of the formally unramified morphism ¢ : X x¢g X — X.
But A(X) C X xg X is an open subscheme which maps isomorphically to X via
q. Hence by Lemma we see that Cylax) = Cx/x = 0. In other words, the
pullback of Cx /s to X via the identity morphism is zero, i.e., Cx;5 = 0. O

Lemmal 8.8. Let f: X — S be a morphism of schemes. Assume X and S are
affine. Then f is formally étale if and only if Og(S) — Ox(X) is a formally étale
ring map.
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Proof. This is immediate from the definitions (Definition and Algebra, Defini-
tion|150.1)) by the equivalence of categories of rings and affine schemes, see Schemes,
Lemma [6.5] O

Lemmal 8.9. Let f : X — S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is étale, and

(2) the morphism f is locally of finite presentation and formally étale.

Proof. Assume f is étale. An étale morphism is locally of finite presentation, flat
and unramified, see Morphisms, Section Hence f is locally of finite presentation
and formally étale, see Lemma

Conversely, suppose that f is locally of finite presentation and formally étale. Being
étale is local in the Zariski topology on X and S, see Morphisms, Lemma By
Lemma [8.5] we can cover X by affine opens U which map into affine opens V' such
that U — V is formally étale (and of finite presentation, see Morphisms, Lemma
21.2). By Lemma we see that the ring maps O(V) — O(U) are formally
étale (and of finite presentation). We win by Algebra, Lemma (We will give
another proof of this implication when we discuss formally smooth morphisms.) O

9. Infinitesimal deformations of maps

In this section we explain how a derivation can be used to infinitesimally move a
map. Throughout this section we use that a sheaf on a thickening X’ of X can be
seen as a sheaf on X.

Lemma 9.1. Let S be a scheme. Let X C X' and Y C Y’ be two first order
thickenings over S. Let (a,a’), (b,b") : (X C X') = (Y C Y') be two morphisms of
thickenings over S. Assume that

(1) a=b, and

(2) the two maps a*Cy/y: — Cx/x+ (Morphisms, Lemma are equal.

Then the map (a’)* — (b')* factors as
OY/ — Oy £> a*CX/X/ — CL*OX/
where D is an Og-derivation.

Proof. Instead of working on Y we work on X. The advantage is that the pullback
functor a~! is exact. Using (1) and (2) we obtain a commutative diagram with exact
rows

0 Cx/x/ Ox Ox 0

el ]

0—— a_1Cy/y/ ——> a0y —>a 10y —=0

Now it is a general fact that in such a situation the difference of the Og-algebra
maps (a')* and (b')* is an Og-derivation from a~'Oy to Cx/x’. By adjointness of
the functors a~! and a, this is the same thing as an Og-derivation from Oy into
a«Cx/x:. Some details omitted. O
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Note that in the situation of the lemma above we may write D as
(9.1.1) D =dy;g080

where 6 is an Oy-linear map 0 : (dy;5 — a.Cx,x:. Of course, then by adjunction
again we may view ¢ as an Ox-linear map 6 : a*Qy,s — Cx/x/.

Lemma 9.2. Let S be a scheme. Let (a,a’) : (X € X') = (Y CY') bea
morphism of first order thickenings over S. Let

0: a*Qy/S — CX/X’

be an Ox-linear map. Then there exists a unique morphism of pairs (b,b') : (X C
X') = (Y CY') such that (1) and (2) of Lemma[9.1] hold and the derivation D

and 0 are related by Equation .
Proof. We simply set b = a and we define (b')* to be the map

(a')ﬁ + D : zflOy/ — OX’

where D is as in Equation (9.1.1). We omit the verification that (') is a map of
sheaves of Og-algebras and that (1) and (2) of Lemma hold. Equation (9.1.1])
holds by construction. O

Remark| 9.3. Assumptions and notation as in Lemma The action of a local
section # on a’ is sometimes indicated by 6 - a’. Note that this means nothing else
than the fact that (a’)! and (0 - a’)? differ by a derivation D which is related to 6

by Equation (9.1.1)).

Lemmal9.4. Let S be a scheme. Let X C X' andY C Y’ be first order thickenings
over S. Assume given a morphism a : X —Y and a map A: a*Cy;yr — Cx;x+ of
Ox-modules. For an open subscheme U' C X' consider morphisms o' : U’ — Y’
such that

(1) @ is a morphism over S,

(2) |y = aly, and

(3) the induced map a*Cyy+|v — Cx/x/|u is the restriction of A to U.
Here U = X NU’'. Then the rule

(9.4.1) U'w—{d :U =Y’ such that (1), (2), (3) hold.}
defines a sheaf of sets on X'.

Proof. Denote F the rule of the lemma. The restriction mapping F(U’) — F(V')
for V! C U’ C X' of F is really the restriction map a’ — a’|y,. With this definition
in place it is clear that F is a sheaf since morphisms are defined locally. [

In the following lemma we identify sheaves on X and any thickening of X.

Lemma 9.5. Same notation and assumptions as in Lemma . There is an
action of the sheaf

Homoy (a*Qy/s,Cx/x7)
on the sheaf . Moreover, the action is simply transitive for any open U’ C X'
over which the sheaf has a section.

Proof. This is a combination of Lemmas and O
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Remark| 9.6. A special case of Lemmas and 5 1s where Y = Y.
In this case the map A is always zero. The sheaf of Lemma [9.4]is just given by the
rule

U'w{d :U" =Y over S with d'|y = a|v}
and we act on this by the sheaf Homo (a*Qy/s,Cx/x:).

Remark| 9.7. Another special case of Lemmas ﬂ . E and is where S
itself is a thickening Z C Z' =S and Y = Z xz Y’. Picture

(X CcX’) >(Y CcY’)

k%

(ZzcZ

In this case the map A : a*Cy/ys — Cx/x is determined by a: the map h*Cz,; —
Cy,y is surjective (because we assumed Y = Z xz Y’), hence the pullback
g*CZ/Z’ = a*h*CZ/Z/ — a,*Cy/y/ is surjective, and the composition g*CZ/Z’ —
a*Cy;y+ — Cx/x has to be the canonical map induced by g’. Thus the sheaf of
Lemma [9-4] is just given by the rule

U'—{d :U — Y over Z' with d'|y = a|u}
and we act on this by the sheaf Homo, (a*Qy/z,Cx/x7)-
Lemma 9.8. Let S be a scheme. Let X C X' be a first order thickening over

S. LetY be a scheme over S. Let a’,b' : X' — Y be two morphisms over S with
a=d'|x =V|x. This gives rise to a commutative diagram

X——X

e
Ayys

Y ——Y xgY

Since the horizontal arrows are immersions with conormal sheaves Cx/x+ and dy g,
by Morphisms, Lemma we obtain a map 0 : a*Qy g — Cx/x:. Then this 0
and the derivation D of Lemma[9.1] are related by Equation .

Proof. Omitted. Hint: The equality may be checked on affine opens where it comes
from the following computation. If f is a local section of Oy, then 1® f — f® 1
is a local section of Cy/(y x4y corresponding to dy,s(f). It is mapped to the local
section (a’)*(f)—(b')*(f) = D(f) of Cx,x+. In other words, §(dy,s(f)) = D(f). O

For later purposes we need a result that roughly states that the construction of
Lemma is compatible with étale localization.
Lemma 9.9. Let

X1 <T X2

Sl < SQ

be a commutative diagram of schemes with Xo — X1 and Sy — Sy étale. Then the
map cy : [*Qx, /5, = Qx,/s, of Morphisms, Lemmal[32.8 is an isomorphism.
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Proof. We recall that an étale morphism U — V is a smooth morphism with
Qu/v = 0. Using this we see that Morphisms, Lemma implies Qx,/s, =
Qx,/s, and Morphisms, Lemma implies that the map f*Qx, /s, = Qx,/s,
(for the morphism f seen as a morphism over Sp) is an isomorphism. Hence the
lemma follows. O

Lemma 9.10. Consider a commutative diagram of first order thickenings

(Th C TY) -~ (Xe C X)) X, ——= S,
(h.h) o ) and a commutative

’ (sl ’ diagram of schemes
(T, c T)) — o (X, € X)) X, —= 5,

with Xo — X1 and So — Sy étale. For any Or, -linear map 01 : aiQx, /s, — CTl/Tl’
let O be the composition

h*6,
a3Qx, s, = h*aiSx, s, — W*Cr,y7; — Cr,/my

(equality sign is explained in the proof). Then the diagram

T, ——— X,

]

/ 01-a} /
Tl Xl

commutes where the actions 02 - ab, and 0; - a} are as in Remark .

Proof. The equality sign comes from the identification f*Qx, /s, = {lx,/s, of
Lemma Namely, using this we have a58x, /s, = a3f*Qx, /5, = h*aiQx, /s,
because f o as = a; o h. Having said this, the commutativity of the diagram may
be checked on affine opens. Hence we may assume the schemes in the initial big
diagram are affine. Thus we obtain commutative diagrams

(B, o) <———— (A5, J2) Ay<——Ry
h’T Tf’ and T T
(B, ) ~———— (A}, 1) Ay~ R

The notation signifies that Iy, I, Ji, Jo are ideals of square zero and maps of pairs
are ring maps sending ideals into ideals. Set Ay = A/ J1, As = A}/ Js, By = B} /1,
and By = B} /I,. We are given that

A2 @4, Qa, /R, — QAy/R,

is an isomorphism. Then 60; : By ®a, Q4,/r, — I1 is Bi-linear. This gives an
Ri-derivation Dy = 61 0oda, /g, : A1 — I1. In a similar way we see that 0 :
By ®a4, QAQ/R2 — I gives rise to a Ro-derivation Dy = 65 oda,/R, : Ao — I5. The
construction of #» implies the following compatibility between 6; and 65: for every
z € A; we have

W (D1(z)) = D2(f'(2))

as elements of Io. We may view D; as a map A} — Bj using 4] — A D, I, = By
similarly we may view D5 as a map A5 — Bj. Then the displayed equality holds for
x € Al. By the construction of the action in Lemma and Remark we know
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that 7 - a} corresponds to the ring map aj + D; : A} — Bj and 05 - @)y, corresponds
to the ring map ab + Dy : Ay — Bj}. By the displayed equality we obtain that
K o (a} + D1) = (ah + D3) o f' as desired. O

Remark| 9.11. Lemma can be improved in the following way. Suppose
that we have commutative diagrams as in Lemma but we do not assume that
X2 — X1 and Sy — S; are étale. Next, suppose we have 01 : ajQx, /5, — CTl/Tl’
and 6 : a3{lx, /s, — Cr,/7; such that

[+O0x, 7D Jra2,:Cry/my
fﬁT Tinduced by (h')#
D,
Ox, a1,+Cry j1;

is commutative where D; corresponds to 6; as in Equation (9.1.1). Then we have
the conclusion of Lemma[9.10} The importance of the condition that both X5 — X3
and Sy — S are étale is that it allows us to construct a 6 from 6.

10. Infinitesimal deformations of schemes

The following simple lemma is often a convenient tool to check whether an infini-
tesimal deformation of a map is flat.

Lemma 10.1. Let (f,f) : (X € X') = (S C S) be a morphism of first order
thickenings. Assume that f is flat. Then the following are equivalent

(1) f"is flat and X = S xg X', and

(2) the canonical map f*Csssi — Cx/x+ is an isomorphism.

Proof. As the problem is local on X’ we may assume that X, X’, S, S are affine
schemes. Say S’ = Spec(A’), X' = Spec(B’), S = Spec(A), X = Spec(B) with
A= A"/T and B = B’/J for some square zero ideals. Then we obtain the following
commutative diagram

0 J B’ B 0
0 1 A’ A 0

with exact rows. The canonical map of the lemma is the map
I®aB=1®4s B — J.
The assumption that f is flat signifies that A — B is flat.

Assume (1). Then A’ — B’ is flat and J = IB’. Flatness implies Torf/ (B',A)=0
(see Algebra, Lemma [75.8)). This means I ® - B’ — B’ is injective (see Algebra,
Remark [75.9)). Hence we see that I ® 4 B — J is an isomorphism.

Assume (2). Then it follows that J = IB’, so that X = S xg X’. Moreover, we
get Tori" (B', A’/I) = 0 by reversing the implications in the previous paragraph.
Hence B’ is flat over A’ by Algebra, Lemma [99.8] O

The following lemma is the “nilpotent” version of the “critere de platitude par
fibres”, see Section [16]
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06AF Lemmal 10.2. Consider a commutative diagram

06AG

06AH
06AI
06AJ
06AK
06AL
06AM
06AN
06AP
06AQ
06AR
06AS
06AT
06AU

06AV

06AW
06AX
06AY
06AZ
06B0
06B1

(X CcX') Y cvy’)

\ (f,f) /
(Scs)

of thickenings. Assume

(1) X' is flat over S’,

(2) 1 is flat,

(3) S C S is a finite order thickening, and

(4) X =Sxs X' andY = S xg Y.
Then f' is flat and Y’ is flat over S’ at all points in the image of f'.

Proof. Immediate consequence of Algebra, Lemma [101.§ ]
Many properties of morphisms of schemes are preserved under flat deformations.

Lemma 10.3. Consider a commutative diagram

(X cX’) (YY)

\ (£, /

(Scs)

of thickenings. Assume S C S’ is a finite order thickening, X' flat over S’, X =
Sxg X', andY =S xg:Y'. Then
(1) f is flat if and only if f' is flat,

) f is an isomorphism if and only if ' is an isomorphism,

) f is an open immersion if and only if f' is an open immersion,

) f is quasi-compact if and only if ' is quasi-compact,

) f is universally closed if and only if [’ is universally closed,

) f is (quasi-)separated if and only if ' is (quasi-)separated,

) f is a monomorphism if and only if f' is a monomorphism,
8) [ is surjective if and only if f' is surjective,

) f is universally injective if and only if f' is universally injective,

) [ is affine if and only if f' is affine,

) f is locally of finite type if and only if f' is locally of finite type,

) f is locally quasi-finite if and only if [ is locally quasi-finite,

) [ is locally of finite presentation if and only if f’ is locally of finite presen-
tation,
(14) f is locally of finite type of relative dimension d if and only if f' is locally

of finite type of relative dimension d,

(15) f is universally open if and only if [’ is universally open,
(16) f is syntomic if and only if f' is syntomic,
(17) f is smooth if and only if [’ is smooth,
(18) f is unramified if and only if f' is unramified,
(19) f is étale if and only if [ is étale,
(20)

20) f is proper if and only if [’ is proper,
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(21) f is integral if and only if f' is integral,

(22) f is finite if and only if f' is finite,

(23) f is finite locally free (of rank d) if and only if [’ is finite locally free (of
rank d), and

(24) add more here.

Proof. The assumptions on X and Y mean that f is the base change of f’ by
X — X’'. The properties P listed in (1) — (23) above are all stable under base
change, hence if f’ has property P, then so does f. See Schemes, Lemmas
[19.3] 21.12] and [23.5] and Morphisms, Lemmas [10.4] [11.8] [15.4] [20.13] [21.4]
[29-2] [30.4] [34.5], [35-5] [36.4] [41.5] [44.6], and [48.4]

The interesting direction in each case is therefore to assume that f has the property
and deduce that f’ has it too. By induction on the order of the thickening we may
assume that S C S’ is a first order thickening, see discussion immediately following
Definition 2.1} We make a couple of general remarks which we will use without
further mention in the arguments below. (I) Let W/ C S’ be an affine open and
let U' € X’ and V' C Y’ be affine opens lying over W’ with f/(U’') C V’. Let
W’ = Spec(R’) and denote I C R’ be the ideal defining the closed subscheme
W’'nS. Say U = Spec(B’) and V' = Spec(A’). Then we get a commutative
diagram

0 1B’ B’ B 0
0 1A A A 0

with exact rows. Moreover IB’ = | ®g B, see proof of Lemma (IT) The
morphisms X — X’ and Y — Y’ are universal homeomorphisms. Hence the
topology of the maps f and f’ (after any base change) is identical. (IIT) If f is flat,
then f’ is flat and Y’ — S’ is flat at every point in the image of f/, see Lemma
0.2

Ad (). This is general remark (III).

Ad . Assume f is an isomorphism. By (III) we see that Y’ — S’ is flat. Choose
an affine open V' C Y’ and set U’ = (f)~1(V’). Then V =Y NV’ is affine which
implies that V = f~1(V) = U = Y xy U’ is affine. By Lemma we see that
U’ is affine. Thus we have a diagram as in the general remark (I) and moreover
TA =1 ®g A because R — A’ is flat. Then IB' 2 I®r B =1®r A= IA" and
A = B. By the exactness of the rows in the diagram above we see that A’ = B/,
i.e., U 2 V' Thus f' is an isomorphism.

Ad . Assume f is an open immersion. Then f is an isomorphism of X with an
open subscheme V C Y. Let V' C Y’ be the open subscheme whose underlying
topological space is V. Then f’ is a map from X’ to V'’ which is an isomorphism
by . Hence f’ is an open immersion.

Ad (). Immediate from remark (II). See also Lemma [3.1] for a more general state-
ment.

Ad (f). Immediate from remark (II). See also Lemma [3.1] for a more general state-
ment.
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Ad @ Note that X xy X =Y xy/ (X’ xys» X') so that X’ xy+ X’ is a thickening
of X Xy X. Hence the topology of the maps Ay,y and Ay /y; matches and we
win. See also Lemma [3.1] for a more general statement.

Ad (7). Assume f is a monomorphism. Consider the diagonal morphism Ax//y- :
X" — X' xys» X'. The base change of Ax//y, by S — S" is Ax/y which is an
isomorphism by assumption. By we conclude that Ax//y/ is an isomorphism.

Ad . This is clear. See also Lemma for a more general statement.

Ad (9). Immediate from remark (II). See also Lemma [3.1] for a more general state-
ment.

Ad (10). Assume f is affine. Choose an affine open V' C Y’ and set U’ =
(f)~Y(V"). Then V =Y NV’ is affine which implies that U =Y xy- U’ is affine.
By Lemma we see that U’ is affine. Hence f’ is affine. See also Lemma for
a more general statement.

Ad (11). Via remark (I) comes down to proving A’ — B’ is of finite type if

A — B is of finite type. Suppose that z1,...,x, € B’ are elements whose images
in B generate B as an A-algebra. Then A'[z1,...,2,] — B is surjective as both
A'lxy,...,z,] — Bis surjective and I @ g Alx1,...,2,] = I ®p B is surjective. See

also Lemma [3.3] for a more general statement.

Ad . Follows from and that quasi-finiteness of a morphism of finite type
can be checked on fibres, see Morphisms, Lemma See also Lemma [3.3 for a
more general statement.

Ad . Via remark (I) comes down to proving A’ — B’ is of finite presentation if
A — B is of finite presentation. We may assume that B’ = A'[xy,...,2,]/K’ for
some ideal K’ by . We get a short exact sequence

0— K — A'lzy,...,z,)] > B' =0
As B’ is flat over R’ we see that K’®p/ R is the kernel of the surjection A[zq, ..., z,] —
B. By assumption on A — B there exist finitely many fi,..., f/, € K’ whose im-
ages in A[xy,...,x,] generate this kernel. Since I is nilpotent we see that fi,..., f/,

generate K’ by Nakayama’s lemma, see Algebra, Lemma m

Ad (14). Follows from and general remark (II). See also Lemma [3.3|for a more
general statement.

Ad . Immediate from general remark (II). See also Lemma for a more
general statement.

Ad . Assume f is syntomic. By f’ is locally of finite presentation, by
general remark (IIT) f’ is flat and the fibres of f’ are the fibres of f. Hence f’ is
syntomic by Morphisms, Lemma |30.11

Ad . Assume f is smooth. By f! is locally of finite presentation, by general
remark (IIT) f’ is flat, and the fibres of f’ are the fibres of f. Hence f’ is smooth
by Morphisms, Lemma [34.3

Ad . Assume f unramified. By f! is locally of finite type and the fibres
of f" are the fibres of f. Hence f’ is unramified by Morphisms, Lemma [35.12 See
also Lemma [3.3] for a more general statement.
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Ad . Assume f étale. By f' is locally of finite presentation, by general
remark (IIT) f’ is flat, and the fibres of f” are the fibres of f. Hence f’ is étale by
Morphisms, Lemma [36.8

Ad . This follows from a combination of @7 , , and . See also Lemma
for a more general statement.

Ad (21). Combine (5) and with Morphisms, Lemma See also Lemma [3.1]

for a more general statement.

Ad (22). Combine (21)), and with Morphisms, Lemma See also Lemma
[3-3] for a more general statement.

Ad . Assume f finite locally free. By we see that f’ is finite, by general
remark (IIT) f’ is flat, and by f! is locally of finite presentation. Hence f’ is
finite locally free by Morphisms, Lemma [48.2) (]

The following lemma is the “locally nilpotent” version of the “critére de platitude
par fibres”, see Section

Lemma 10.4. Consider a commutative diagram

(X Cc X' (YY)

\ (£, /

(Scs)

of thickenings. Assume

(1) Y/ = 8 is locally of finite type,

(2) X' — 8 is flat and locally of finite presentation,

(3) f is flat, and

(4) X =Sxs X' andY = S xg Y.
Then f' is flat and for all y' € Y’ in the image of f' the local ring Oy v is flat
and essentially of finite presentation over Og 4.

Proof. Immediate consequence of Algebra, Lemma [128.10 (I

Many properties of morphisms of schemes are preserved under flat deformations as
in the lemma above.

Lemma 10.5. Consider a commutative diagram

(X CX') (YY)

\ (f.£") /

(S c S

of thickenings. Assume Y' — S’ locally of finite type, X' — S’ flat and locally of
finite presentation, X = S xg: X', andY = S xg: Y’'. Then
(1) f is flat if and only if f' is flat,
(2) f is an isomorphism if and only if [’ is an isomorphism,
(3) f is an open immersion if and only if f' is an open immersion,
(4) f is quasi-compact if and only if [’ is quasi-compact,
(5) f is universally closed if and only if f' is universally closed,
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f is (quasi-)separated if and only if f' is (quasi-)separated,

f is a monomorphism if and only if [’ is a monomorphism,

f is surjective if and only if [’ is surjective,

[ is undversally injective if and only if f' is universally injective,

f is affine if and only if [’ is affine,

[ is locally quasi-finite if and only if f' is locally quasi-finite,

f is locally of finite type of relative dimension d if and only if [’ is locally

of finite type of relative dimension d,

(13) f is undversally open if and only if f' is universally open,

(14) f is syntomic if and only if f' is syntomic,

(15) f is smooth if and only if ' is smooth,

(16) f is unramified if and only if f' is unramified,

(17) f is étale if and only if f' is étale,

(18) f is proper if and only if [’ is proper,

(19) f is finite if and only if f' is finite,

(20) f is finite locally free (of rank d) if and only if [’ is finite locally free (of
rank d), and

(21) add more here.

Proof. The assumptions on X and Y mean that f is the base change of f’ by
X — X’. The properties P listed in (1) — (20) above are all stable under base
change, hence if f’ has property P, then so does f. See Schemes, Lemmas [18.2]

19.3] 21.12] and 23.5] and Morphisms, Lemmas [10.4] [11.8] [20.13] [29.2] [30.4]
34.5] [35.5] [36.4] [41.5] [44.6] and [48:4]

The interesting direction in each case is therefore to assume that f has the property
and deduce that f’ has it too. We make a couple of general remarks which we will
use without further mention in the arguments below. (I) Let W/ C S’ be an affine
open and let U’ C X’ and V' C Y” be affine opens lying over W’ with f/(U’) C V.
Let W' = Spec(R’) and denote I C R’ be the ideal defining the closed subscheme
W’'nS. Say U’ = Spec(B’) and V' = Spec(A’). Then we get a commutative
diagram

0 1B’ B’ B 0
0 IA Al A 0

with exact rows. (II) The morphisms X — X’ and Y — Y’ are universal home-
omorphisms. Hence the topology of the maps f and f’ (after any base change) is
identical. (III) If f is flat, then f’ is flat and Y’ — S’ is flat at every point in the
image of f’, see Lemma [10.2

Ad (1)). This is general remark (III).

Ad . Assume f is an isomorphism. Choose an affine open V' C Y’ and set
U'=(f)"Y(V"). Then V =Y NV’ is affine which implies that V = f~1(V) = U =
Y xy/ U’ is affine. By Lemma we see that U’ is affine. Thus we have a diagram
as in the general remark (I). By Algebra, Lemma we see that A’ — B’ is an
isomorphism, i.e., U’ = V'. Thus f’ is an isomorphism.
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Ad . Assume f is an open immersion. Then f is an isomorphism of X with an
open subscheme V' C Y. Let V' C Y’ be the open subscheme whose underlying
topological space is V. Then f’ is a map from X’ to V' which is an isomorphism
by . Hence f’ is an open immersion.

Ad (). Immediate from remark (II). See also Lemma for a more general state-

ment.

Ad (5). Immediate from remark (II). See also Lemma for a more general state-

ment.

Ad @ Note that X xy X =Y Xy+ (X’ xys X’) so that X’ xy~+ X’ is a thickening
of X xy X. Hence the topology of the maps Ay,y and Ax/ y, matches and we
win. See also Lemma [3.1] for a more general statement.

Ad @ Assume f is a monomorphism. Consider the diagonal morphism Ax//y- :
X' — X' Xy X'. Observe that X’ xy, X’ — S’ is locally of finite type. The base
change of Ay ys by S — S’ is Ax/y which is an isomorphism by assumption. By
(2) we conclude that Ax//y is an isomorphism.

Ad . This is clear. See also Lemma for a more general statement.

Ad (9). Immediate from remark (II). See also Lemma for a more general state-
ment.

Ad (10). Assume f is affine. Choose an affine open V' C Y’ and set U’ =
(f)~1(V"). Then V =Y NV’ is affine which implies that U =Y xy- U’ is affine.
By Lemma we see that U’ is affine. Hence f’ is affine. See also Lemma for
a more general statement.

Ad . Follows from the fact that f’ is locally of finite type (by Morphisms,
Lemma [15.8) and that quasi-finiteness of a morphism of finite type can be checked
on fibres, see Morphisms, Lemma [20.6

Ad (12). Follows from general remark (II) and the fact that f’ is locally of finite
type (Morphisms, Lemma [15.8]).

Ad (13). Immediate from general remark (II). See also Lemma for a more
general statement.

Ad . Assume f is syntomic. By Morphisms, Lemma [21.11] f/ is locally of finite
presentation. By general remark (IIT) f’ is flat. The fibres of f are the fibres of f.
Hence f’ is syntomic by Morphisms, Lemma [30.11

Ad . Assume f is smooth. By Morphisms, Lemma [21.11] f/ is locally of finite
presentation. By general remark (IIT) f’ is flat. The fibres of f” are the fibres of f.
Hence f’ is smooth by Morphisms, Lemma [34.3]

Ad . Assume f unramified. By Morphisms, Lemma f' is locally of finite
type. The fibres of f’ are the fibres of f. Hence f’ is unramified by Morphisms,
Lemma [35.12]

Ad . Assume f étale. By Morphisms, Lemma f is locally of finite
presentation. By general remark (III) f’ is flat. The fibres of f’ are the fibres of f.
Hence f' is étale by Morphisms, Lemma [36.8]

Ad . This follows from a combination of @, the fact that f is locally of finite
type (Morphisms, Lemma [15.8), (), and (5).
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Ad ([19). Combine (F)), , Morphisms, Lemma [44.7] the fact that f is locally of
ﬁmte type (Morphisms, Lemma, and Morphlsms Lemma m

Ad (20). Assume f finite locally free. By (19) we see that f’ is finite. By gen-
eral remark (II1) f’ is flat. By Morphisms, Lemma 21.11| f’ is locally of finite
presentation. Hence f’ is finite locally free by Morphisms, Lemma [48.2] O

Lemma 10.6 (Deformations of projective schemes). Let f : X — S be a morphism
of schemes which is proper, flat, and of finite presentation. Let L be f-ample.
Assume S is quasi-compact. There exists a dy > 0 such that for every cartesian
diagram

X —X

! invertible O x/-module

fl lf' and e with £ (i) L

S —tsg
where S C S is a thickening and ' is proper, flat, of finite presentation we have

(1) R ( (L)% =0 for all p> 0 and d > dy,
) = (f)«(L")® is finite locally free for d > dy,

3) A OS’@®d>d Al is a quasi-coherent Ogs-algebra of finite presentation,
4) there is a canonical isomorphism 1’ : X" — Proj., (A’), and
5) there is a canonical isomorphism 6’ : (r')* Opmjs,(A/)(l) = L.

The construction of A’, r', 0’ is functorial in the data (X', 5,4, f', L").

(2
(
(
(

Proof. We first describe the maps r’ and #’. Observe that £’ is f’-ample, see
Lemma There is a canonical map of quasi-coherent graded Og/-algebras A" —
D0 (f)«(L)®4 which is an isomorphism in degrees > dy. Hence this induces an
isomorphism on relative Proj compatible with the Serre twists of the structure sheaf,
see Constructions, Lemma [18.4f Hence we get the morphism 7’ by Morphisms,
Lemma (Which in turn appeals to the construction given in Constructions,
Lemma and it is an isomorphism by Morphisms, Lemma We get the
map 6’ from Constructions, Lemma [19.1] By Properties, Lemma-we find that
6" is an isomorphism (this also uses that the morphism r’ over affine opens of S’
is the same as the morphism from Properties, Lemma [26.9] as is explained in the
proof of Morphisms, Lemma .

Assuming the vanishing and local freeness stated in parts (1) and (2), the functori-
ality of the construction can be seen as follows. Suppose that h: T — S’ is a mor-
phism of schemes, denote fr : X} — T the base change of f’ and L the pullback
of £ to X/.. By cohomology and base change (as formulated in Derived Categories
of Schemes, Lemma [22.5] for example) we have the corresponding vanishing over T'
and moreover h* A, = fr, *£® (and thus the local freeness of pushforwards as well
as the finite generatlon of the corresponding graded Op-algebra Ar). Hence the
morphism r7 : X — @T(EB fT,*/J?d) is simply the base change of r’ to T' and
the pullback of ¢’ is the map 6.

Having said all of the above, we see that it suffices to prove (1), (2), and (3). Pick

do such that RPf, L% =0 for all d > dy and p > 0, see Cohomology of Schemes,
Lemma We claim that dy works.

By cohomology and base change (Derived Categories of Schemes, Lemma [30.4]) we
see that B/, = Rfl(L')®? is a perfect object of D(Og/) and its formation commutes
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with arbitrary base change. In particular, By = Li*E), = Rf.L®?. By Derived
Categories of Schemes, Lemma we see that for d > dy the complex F, is
isomorphic to the finite locally free Og-module f,L£®¢ placed in cohomological
degree 0. Then by Derived Categories of Schemes, Lemma we conclude that
E/; is isomorphic to a finite locally free module placed in cohomological degree 0.
Of course this means that E/; = A}[0], that RP f(£)®? = 0 for p > 0, and that A},
is finite locally free. This proves (1) and (2).

The last thing we have to show is finite presentation of A’ as a sheaf of Og/-algebras
(this notion was introduced in Properties, Section [22)). Let U’ = Spec(R’) C S’
be an affine open. Then A" = A'(U’) is a graded R’-algebra whose graded parts
are finite projective R’-modules. We have to show that A’ is a finitely presented
R’-algebra. We will prove this by reduction to the Noetherian case. Namely,
we can find a finite type Z-subalgebra Rj; C R’ and a panE| (X4, L) over Ry

whose base change is (X{;/, L |X/ ), see Limits, Lemmas -’ . - ., and

Cohomology of Schemes, Lemma implies Ay = Py H' (X0, (L5)®?)

is a finitely generated graded Rj-algebra and implies there exists a dj such that
HP(X(, (L£)®4) =0, p > 0 for d > dj,. By the arguments given above applied to
Xy — Spec(RY{) and L{, we see that (Af)4 is a finite projective R{-module and that

= Ay(U') = H(X{p, (L)% x1 ) = H(Xg, (£0)%7) @y R = (AQ)a @y R

for d > dé. Now a small twist in the argument is that we don’t know that we
can choose dj equal to doﬂ To get around this we use the following sequence of
arguments to finish the proof:
(a) The algebra B = Ry © D 4> max(d, d y(Ap)a is an Rp-algebra of finite type:
apply the Artin-Tate lemma to B C Aj), see Algebra, Lemma
(b) As Rj, is Noetherian we see that B is an Rj-algebra of finite presentation.
(c) By right exactness of tensor product we see that B ®p, ' is an '-algebra
of finite presentation.
(d) By the displayed equalities this exactly says that C = R’G}@dZmax(do’dé) Al
is an R’-algebra of finite presentation.
(e) The quotient A’/C is the direct sum of the finite projective R’-modules A/,
do < d < max(dp, d}), hence finitely presented as R’-module.
(f) The quotient A’/C is finitely presented as a C-module by Algebra, Lemma
6.4]
(g) Thus A’ is finitely presented as a C-module by Algebra, Lemma
(h) By Algebra, Lemma this implies A’ is finitely presented as a C-algebra.
(i) Finally, by Algebra, Lemma applied to R' — C — A’ this implies A’ is
finitely presented as an R’-algebra.
This finishes the proof. (I

11. Formally smooth morphisms

Michael Artin’s position on differential criteria of smoothness (e.g., Morphisms,
Lemma [34.14)) is that they are basically useless (in practice). In this section we

introduce the notion of a formally smooth morphism X — S. Such a morphism

13With the same properties as those enjoyed by X’ — S’ and £/, i.e., X{ — Spec(Ry) is flat
and proper and [,6 is ample.
2Actually, one can reduce to this case by doing more limit arguments.
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is characterized by the property that T-valued points of X lift to infinitesimal
thickenings of T provided T is affine. The main result is that a morphism which
is formally smooth and locally of finite presentation is smooth, see Lemma [I1.7]
It turns out that this criterion is often easier to use than the differential criteria
mentioned above.

Recall that a ring map R — A is called formally smooth (see Algebra, Definition
138.1)) if for every commutative solid diagram

A——=B/I

N

R B

where I C B is an ideal of square zero, a dotted arrow exists which makes the
diagram commute. This motivates the following analogue for morphisms of schemes.

Definition 11.1. Let f: X — S be a morphism of schemes. We say f is formally
smooth if given any solid commutative diagram

X~—T

™
fl AN J{z
AN

S<~—T

where T' C T’ is a first order thickening of affine schemes over S there exists a
dotted arrow making the diagram commute.

In the cases of formally unramified and formally étale morphisms the condition that
T’ be affine could be dropped, see Lemmas and This is no longer true in
the case of formally smooth morphisms. In fact, a slightly more natural condition
would be that we should be able to fill in the dotted arrow Zariski locally on T”.
In fact, analyzing the proof of Lemma [11.10] shows that this would be equivalent
to the definition as it currently stands. In particular, being formally smooth is
Zariski local on the source (and in fact it is smooth local on the source, insert
future reference here).

Lemma 11.2. A composition of formally smooth morphisms is formally smooth.

Proof. Omitted. O

Lemma 11.3. A base change of a formally smooth morphism is formally smooth.

Proof. Omitted, but see Algebra, Lemma [138.2] for the algebraic version. ]

Lemmal 11.4. Let f : X — S be a morphism of schemes. Then f is formally
étale if and only if f is formally smooth and formally unramified.

Proof. Omitted. |

Lemmal 11.5. Let f : X — S be a morphism of schemes. Let U C X and
V C S be open subschemes such that f(U) C V. If [ is formally smooth, so is
f|U U — V.


https://stacks.math.columbia.edu/tag/02H0
https://stacks.math.columbia.edu/tag/02H1
https://stacks.math.columbia.edu/tag/02H2
https://stacks.math.columbia.edu/tag/02HH
https://stacks.math.columbia.edu/tag/02H3

02H4

02H6

MORE ON MORPHISMS 34

Proof. Consider a solid diagram

V<~—T

as in Definition If f is formally smooth, then there exists an S-morphism
a' : T' — X such that a’|r = a. Since the underlying sets of T and T” are the same
we see that o' is a morphism into U (see Schemes, Section . And it clearly is a
V-morphism as well. Hence the dotted arrow above as desired. O

Lemmal 11.6. Let f: X — S be a morphism of schemes. Assume X and S are
affine. Then f is formally smooth if and only if Os(S) — Ox(X) is a formally
smooth ring map.

Proof. This is immediate from the definitions (Definition and Algebra, Defini-
tion|138.1)) by the equivalence of categories of rings and affine schemes, see Schemes,
Lemma, [6.5] O

The following lemma is the main result of this section. It is a victory of the functorial
point of view in that it implies (combined with Limits, Proposition that we can
recognize whether a morphism f : X — S is smooth in terms of “simple” properties
of the functor hx : Sch/S — Sets.

Lemma 11.7 (Infinitesimal lifting criterion). Let f : X — S be a morphism of
schemes. The following are equivalent:

(1) The morphism f is smooth, and
(2) the morphism [ is locally of finite presentation and formally smooth.

Proof. Assume f : X — S is locally of finite presentation and formally smooth.
Consider a pair of affine opens Spec(A) = U C X and Spec(R) =V C S such that
f(U) C V. By Lemma[[1.5| we see that U — V is formally smooth. By Lemma[I1.6]
we see that R — A is formally smooth. By Morphisms, Lemma [21.2] we see that
R — A is of finite presentation. By Algebra, Proposition [I38.13| we see that R — A
is smooth. Hence by the definition of a smooth morphism we see that X — S is
smooth.

Conversely, assume that f : X — S is smooth. Consider a solid commutative
diagram
X<~—T

v @
fl N J{z
N

S<—1T
as in Definition We will show the dotted arrow exists thereby proving that f
is formally smooth.
Let F be the sheaf of sets on T” of Lemma in the special case discussed in
Remark Let

H= Hom@T (G*Qx/s, CT/T/)

be the sheaf of Or-modules with action H x F — F as in Lemma Our goal

is simply to show that F(T) # (). In other words we are trying to show that F is
a trivial H-torsor on T' (see Cohomology, Section . There are two steps: (I) To
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show that F is a torsor we have to show that F; # () for all t € T' (see Cohomology,
Definition [4.1)). (II) To show that F is the trivial torsor it suffices to show that
HY(T,H) = 0 (see Cohomology, Lemma f we may use either cohomology of ‘H
as an abelian sheaf or as an Op-module, see Cohomology, Lemma .

First we prove (I). To see this, for every ¢t € T' we can choose an affine open U C T
neighbourhood of ¢ such that a(U) is contained in an affine open Spec(A) =W C X
which maps to an affine open Spec(R) =V C S. By Morphisms, Lemma the
ring map R — A is smooth. Hence by Algebra, Proposition the ring map
R — A is formally smooth. Lemma [TT.6] in turn implies that W — V is formally
smooth. Hence we can lift a|y : U — W to a V-morphism o' : U' — W C X
showing that F(U) # 0.

Finally we prove (II). By Morphisms, Lemma we see that (x5 is of finite
presentation (it is even finite locally free by Morphisms, Lemma . Hence
a*$Qlx g is of finite presentation (see Modules, Lemma . Hence the sheaf H =
Homo,.(a*Qx/s,Cr/r) is quasi-coherent by the discussion in Schemes, Section
Thus by Cohomology of Schemes, Lemmawe have H(T,H) = 0 as desired. [

Locally projective quasi-coherent modules are defined in Properties, Section

Lemma 11.8. Let f: X — Y be a formally smooth morphism of schemes. Then
Qx/y 1s locally projective on X.

Proof. Choose U C X and V C Y affine open such that f(U) C V. By Lemma[l1.5
flu : U = V is formally smooth. Hence I'(V, Oy ) — I'(U, Oy ) is a formally smooth
ring map, see Lemma m Hence by Algebra, Lemma the I'(U, Oy )-module
Qrw,0u)/r(v,0v) is projective. Hence Qv is locally projective, see Properties,
Section O

Lemma 11.9. LetT be an affine scheme. Let F, G be quasi-coherent Or-modules.
Consider H = Homo, (F,G). If F is locally projective, then H'(T,H) = 0.

Proof. By the definition of a locally projective sheaf on a scheme (see Properties,
Definition we see that F is a direct summand of a free Op-module. Hence
we may assume that F = @, ; Or is a free module. In this case H = [],.; G is
a product of quasi-coherent modules. By Cohomology, Lemma [11.12| we conclude
that H' = 0 because the cohomology of a quasi-coherent sheaf on an affine scheme
is zero, see Cohomology of Schemes, Lemma [2.2 O

Lemmal 11.10. Let f : X — Y be a morphism of schemes. The following are
equivalent:
(1) f is formally smooth,
(2) for every x € X there exist opens x € U C X and f(z) € V C Y with
f(U) CV such that f|y : U — V is formally smooth,
(3) for every pair of affine opens U C X and V CY with f(U) C V the ring
map Oy (V) — Ox (U) is formally smooth, and
(4) there exists an affine open coveringY = |JV; and for each j an affine open
covering f~1(V;) = JUji such that Oy (V) = Ox (U) is a formally smooth
ring map for all j and i.

Proof. The implications (1) = (2), (1) = (3), and (2) = (4) follow from Lemma
11.5] The implication (3) = (4) is immediate.
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Assume (4). The proof that f is formally smooth is the same as the second part of
the proof of Lemma [T1.7] Consider a solid commutative diagram

X=<=—T

¥ a
fl AN J/l
AN
Y ~— 1T

as in Definition We will show the dotted arrow exists thereby proving that f
is formally smooth. Let F be the sheaf of sets on 7 of Lemma [9.4] as in the special
case discussed in Remark Let

H = Homo, (a*Qx/y, Cry7r)

be the sheaf of Op-modules on T with action H x F — F as in Lemma [9.5] The
action ‘H x F — F turns F into a pseudo H-torsor, see Cohomology, Definition
Our goal is to show that F is a trivial H-torsor. There are two steps: (I) To
show that F is a torsor we have to show that F locally has a section. (IT) To show
that F is the trivial torsor it suffices to show that H'(T,H) = 0, see Cohomology,
Lemma [4.3]

First we prove (I). To see this, for every ¢t € T' we can choose an affine open W C T
neighbourhood of ¢ such that a(W) is contained in Uj; for some 4, j. Let W' C T” be
the corresponding open subscheme. By assumption (4) we can lift a|w : W — Uj;
to a Vj-morphism o' : W' — U,; showing that F(WW’') is nonempty.

Finally we prove (IT). By Lemma we see that Qp /v, locally projective. Hence
Qx/y is locally projective, see Properties, Lemma Hence a*Qx/y is locally
projective, see Properties, Lemma Hence

H' (T’ H) = H' (T7 Homo, (a*QX/Ya CT/T’) =0
by Lemma [11.9] as desired. O

Lemmal 11.11. Let f: X =Y, g: Y — S be morphisms of schemes. Assume f
s formally smooth. Then

0— f*Qy/S — Qx/s — Qx/y — 0
(see Morphisms, Lemma is short ezact.

Proof. The algebraic version of this lemma is the following: Given ring maps
A — B — C with B — C formally smooth, then the sequence

0—-C®p QB/A — QC/A — QC/B — 0
of Algebra, Lemma [131.7] is exact. This is Algebra, Lemma [138.9 (I

Lemma 11.12. Leth: Z — X be a formally unramified morphism of schemes over
S. Assume that Z is formally smooth over S. Then the canonical exact sequence

0— CZ/X — h*QX/S — Qz/s — 0
of Lemma[7.10 is short ezact.

Proof. Let Z — Z' be the universal first order thickening of Z over X. From the
proof of Lemma we see that our sequence is identified with the sequence

CZ/Z/ — QZ’/S ® OZ — QZ/S — 0.
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Since Z — S is formally smooth we can locally on Z’ find a left inverse Z' — Z over
S to the inclusion map Z — Z’. Thus the sequence is locally split, see Morphisms,

Lemma [32.16] O

Lemma 11.13. Let

be a commutative diagram of schemes where i and j are formally unramified and f
is formally smooth. Then the canonical exact sequence

0— Cz/y — CZ/X — i*Qx/y —0
of Lemma is exact and locally split.
Proof. Denote Z — Z’ the universal first order thickening of Z over X. Denote

Z — 7" the universal first order thickening of Z over Y. By Lemma here is a
canonical morphism Z’ — Z” so that we have a commutative diagram

J——7——=X

7;/ a
’ ik J/f
J

b

Z// - o Y
In the proof of Lemma we identified the sequence above with the sequence
CZ/Z” — CZ/Z’ — (i/)*QZ’/Z” —0

Let U” C Z" be an affine open. Denote U C Z and U’ C Z’ the corresponding affine
open subschemes. As f is formally smooth there exists a morphism A : U” — X
which agrees with ¢ on U and such that foh equals b|y~. Since Z’ is the universal
first order thickening we obtain a unique morphism g : U” — Z’ such that g = aoh.
The universal property of Z” implies that kog is the inclusion map U” — Z”. Hence
g is a left inverse to k. Picture

U——27

]
k

U YA

Thus g induces a map Cz/z/|u — Cz/z+|y which is a left inverse to the map
CZ/Z” — CZ/Z/ over U. [

12. Smoothness over a Noetherian base

It turns out that if the base is Noetherian then we can get away with less in the
formulation of formal smoothness. In some sense the following lemmas are the
beginning of deformation theory.

Lemmal12.1. Let f: X — S be a morphism of schemes. Let x € X. Assume that
S is locally Noetherian and f locally of finite type. The following are equivalent:

(1) f is smooth at x,
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(2) for every solid commutative diagram

X <—— Spec(B)

~
~
~

s Spec(B')

where B" — B is a surjection of local rings with Ker(B" — B) of square
zero, and o mapping the closed point of Spec(B) to x there exists a dotted
arrow making the diagram commute,

(3) same as in (2) but with B' — B ranging over small extensions (see Algebra,
Definition , and

(4) same as in (2) but with B' — B ranging over small extensions such that «
induces an isomorphism k(x) — k(m) where m C B is the mazimal ideal.

Proof. Choose an affine neighbourhood V' C S of f(z) and choose an affine neigh-
bourhood U C X of x such that f(U) C V. For any “test” diagram as in (2) the
morphism « will map Spec(B) into U and the morphism 8 will map Spec(B’) into V
(see Schemes, Section. Hence the lemma reduces to the morphism f|y : U — V
of affines. (Indeed, V' is Noetherian and f|y is of finite type, see Properties, Lemma
and Morphisms, Lemma [15.2]) In this affine case the lemma is identical to Al-

gebra, Lemma [141.2 O

Sometimes it is useful to know that one only needs to check the lifting criterion for
small extensions “centered” at points of finite type (see Morphisms, Section .

Lemmal12.2. Let f : X — S be a morphism of schemes. Assume that S is locally
Noetherian and f locally of finite type. The following are equivalent:

(1) f is smooth,
(2) for every solid commutative diagram

X <—— Spec(B)

Ay
~
~

s Spec(B’)

where B’ — B is a small extension of Artinian local rings and B of finite
type (!) there exists a dotted arrow making the diagram commute.

Proof. If f is smooth, then the infinitesimal lifting criterion (Lemma [L1.7)) says f
is formally smooth and (2) holds.

Assume (2). The set of points € X where f is not smooth forms a closed subset
T of X. By the discussion in Morphisms, Section [16] if 7' # () there exists a point
x €T C X such that the morphism

Spec(k(z)) - X — S
is of finite type (namely, pick any point a of T which is closed in an affine open
of X). By Morphisms, Lemma given any local Artinian ring B’ with residue
field x(x) then any morphism S : Spec(B’) — S is of finite type. Thus we see that
all the diagrams used in Lemma [12.1] (4) correspond to diagrams as in the current
lemma (2). Whence X — S is smooth a x a contradiction. O
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Here is a useful application.

Lemmal 12.3. Let f : X — S be a finite type morphism of locally Noetherian
schemes. Let Z C S be a closed subscheme with nth infinitesimal neighbourhood
Zn CS. Set X, =7, xg X.
(1) If X,, — Z,, is smooth for all n, then f is smooth at every point of f~1(Z).
(2) If X,, — Z, is étale for all n, then f is étale at every point of f~1(Z).

Proof. Assume X,, — Z, is smooth for all n. Let z € X be a point lying over
a point of Z. Given a small extension B’ — B and morphisms «, § as in Lemma
12.1| part (3) the maximal ideal of B’ is nilpotent (as B’ is Artinian) and hence the
morphism f factors through Z, and « factors through X,, for a suitable n. Thus
the lifting property for X,, — Z, kicks in to get the desired dotted arrow in the
diagram. This proves (1). Part (2) follows from (1) and the fact that a morphism
is étale if and only if it is smooth of relative dimension 0. O

Lemmal 12.4. Let f : X — S be a morphism of locally Noetherian schemes. Let
Z C S be a closed subscheme with nth infinitesimal neighbourhood Z, C S. Set
X, = ZyxsX. If X;, = Zy, is flat for all n, then f is flat at every point of f~(2).

Proof. This is a translation of Algebra, Lemma|[99.11]into the language of schemes.
O

13. The naive cotangent complex

This section is the continuation of Modules, Section [31] which in turn continues the
discussion in Algebra, Section [I134]

Definition 13.1. Let f : X — Y be a morphism of schemes. The naive cotangent
complex of f is the complex defined in Modules, Definition Notation: NLy or
NLx/y .

Lemma 13.2. Let f : X =Y be a morphism of schemes. Let Spec(A) =U C X
and Spec(R) =V C S be affine opens with f(U) C V. There is a canonical map

NLA/R — NLx/y ‘U
of complexes which is an isomorphism in D(Oy).

Proof. From the construction of NLy,y in Modules, Section we see there is
a canonical map of complexes NLo (v)/f-10y ) — NLx/y(U) of A = Ox(U)-
modules, which is compatible with further restrictions. Using the canonical map
R — f~1Oy(U) we obtain a canonical map NL/r — NLo () f-10y ) of com-
plexes of A-modules. Using the universal property of the ~ functor (see Schemes,
Lemma we obtain a map as in the statement of the lemma. We may check
this map is an isomorphism on cohomology sheaves by checking it induces iso-
morphisms on stalks. This follows from Algebra, Lemma [134.11| and [134.13] and
Modules, Lemma (and the description of the stalks of Ox and f~'Oy at a
point p € Spec(A) as A, and Ry where q = R N p; references used are Schemes,
Lemma and Sheaves, Lemma . O

Lemma 13.3. Let f: X — Y be a morphism of schemes. The cohomology sheaves
of the complex NLx,y are quasi-coherent, zero outside degrees —1, 0 and equal to
Qx/y in degree 0.
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Proof. By construction of the naive cotangent complex in Modules, Section [31| we
have that NLx,y is a complex sitting in degrees —1, 0 and that its cohomology
in degree 0 is 2x/y. The sheaf of differentials is quasi-coherent (by Morphisms,
Lemma . To finish the proof it suffices to show that H~'(NLy,y) is quasi-
coherent. This follows by checking over affines using Lemma [13.2 (]

0DOK |Lemma 13.4. Let f: X — Y be a morphism of schemes. If f is locally of finite
presentation, then NLx y is locally on X quasi-isomorphic to a complex

= 0 F P FO 0
of quasi-coherent O x -modules with F° of finite presentation and F~ of finite type.

Proof. By Lemma it suffices to show that NL 4, has this shape if R — A is
a finitely presented ring map. Write A = R[zq,...,x,)/I with I finitely generated.
Then I/I? is a finite A-module and NL4,p is quasi-isomorphic to

2 )
=0 1/IF — @izlmnAdxz —0—...
by Algebra, Section and in particular Algebra, Lemma [134.2 O

0DOL Lemma 13.5. Let f : X — Y be a morphism of schemes. The following are
equivalent
(1) f is formally smooth,
(2) H_l(NLx/y) =0 and HO(NLX/Y) = Qx/y is locally projective.

Proof. This follows from Algebra, Proposition [138.8] and Lemma [11.10 (]

0DOM Lemma 13.6. Let f : X — Y be a morphism of schemes. The following are
equivalent
(1) f is formally étale,
(2) HY(NLx/y) = H°(NLx,y) = 0.

Proof. A formally étale morphism is formally smooth and hence we have H ' (NLx/y) =
0 by Lemma @ On the other hand, we have Qx/y = 0 by Lemma @ Con-
versely, if (2) holds, then f is formally smooth by Lemma and formally un-
ramified by Lemma [6.7] and hence formally étale by Lemmas [I1.4] O

0DON Lemmal 13.7. Let f : X — Y be a morphism of schemes. The following are
equivalent

(1) f is smooth, and
(2) f is locally of finite presentation, H '(NLx,y) = 0, and H*(NLx/y) =
Qx/y is finite locally free.

Proof. This follows from the definition of a smooth ring homomorphism (Algebra,
Definition [137.1]), Lemma[13.2] and the definition of a smooth morphism of schemes
(Morphisms, Definition . We also use that finite locally free is the same as
finite projective for modules over rings (Algebra, Lemma . O

0G7Z Lemma 13.8. Let f : X — Y be a morphism of schemes. The following are
equivalent
(1) f is étale, and
(2) f is locally of finite presentation and Hil(NLX/y) = HO(NLX/Y) =0.
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Proof. This follows from the definition of an étale ring homomorphism (Algebra,
Definition [143.1)), Lemma and the definition of an étale morphism of schemes
(Morphisms, Definition [36.1]). O

0FV2 Lemma 13.9. Leti: Z — X be an immersion of schemes. Then NLz,x is
isomorphic to Czx[1] in D(Oz) where Cz/x is the conormal sheaf of Z in X.

Proof. This follows from Algebra, Lemma [134.6] Morphisms, Lemma [31.2] and
Lemma [13.21 O

0E44 Lemma 13.10. Let f: X — Y and g:Y — Z be morphisms of schemes. There
is a canonical six term exact sequence
Hﬁl(f* NLy/Z) — Hﬁl(NLx/Z) — Hﬁl(NLx/y) — f*QY/Z — QX/Z — Qx/y — 0
of cohomology sheaves.

Proof. Special case of Modules, Lemma [31.7] O

0FV3 Lemmal 13.11. Let f: X — Y and Y — Z be morphisms of schemes. Assume
X — Y is a complete intersection morphism. Then there is a canonical distin-
guished triangle

f* NLy/Z — NLX/Z — NLX/Y — f* NLy/Z[l]
in D(Ox) which recovers the 6-term exact sequence of Lemma |13.10

Proof. It suffices to show the canonical map
f* NLy/Z — COHQ(NLX/Y — NLx/Z)[—l}

of Modules, Lemma is an isomorphism in D(Ox). In order to show this,
it suffices to show that the 6-term sequence has a zero on the left, i.e., that
H=(f*NLy,z) - H '(NLx/z) is injective. Affine locally this follows from the
corresponding algebra result in More on Algebra, Lemma To translate into
algebra use Lemma [13.2] O

0G80 Lemma 13.12. Let X — Y — Z be morphisms of schemes. Assume X — Z
smooth and Y — Z étale. Then X —'Y is smooth.

Proof. The morphism X — Y is locally of finite presentation by Morphisms,
Lemma By Lemma @ we have H_I(NLX/Z) = 0 and the module Q/, is
finite locally free. By Lemma @l we have H '(NLy,z) = H°(NLy,z) = 0. By
Lemma @ we get H’l(NLX/y) =0and Qx,y = Qx/z is finite locally free. By
Lemma [13.7] the morphism X — Y is smooth. O

0FV4 Lemma 13.13. Let f: X — Y be a morphism of schemes which factors as f = goi
with i an immersion and g : P —'Y formally smooth (for example smooth). Then
there is a canonical isomorphism
NLX/Y = (CX/P — i*Qp/y)
in D(Ox) where the conormal sheaf Cx/p is placed in degree —1.
Proof. (For the parenthetical statement see Lemma [I1.7]) By Lemmas and

we have NLx,p = Cx/p[l] and NLp,y = Qp/y with Qp,y locally projective.
This implies that i* NLp;y — i*Qp/y is a quasi-isomorphism too (small detail
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omitted; the reason is that i* NLp,y is the same thing as 7>_1Li* NLpy, see
More on Algebra, Lemma [85.1]). Thus the canonical map

7" NLP/Y — CODG(NLX/Y — NLX/p)[—l]

of Modules, Lemma is an isomorphism in D(Ox) because the cohomology
group H (i NLp,y) is zero by what we said above. In other words, we have a
distinguished triangle

7 NLP/Y — NLX/Y — NLx/p — 3 NLP/YD]

Clearly, this means that NLx/y is the cone on the map NLy,p[—1] — i* NLp,y
which is equivalent to the statement of the lemma by our computation of the co-
homology sheaves of these objects in the derived category given above. O

0FV5 Lemma 13.14. Consider a cartesian diagram of schemes
X —X
.
Y —=Y

The canonical map (g')* NLx;y — NLx/,y: induces an isomorphism on HY and a
surjection on H~'.

Proof. Translated into algebra this is More on Algebra, Lemma To do the
translation use Lemma [13.2] O

0FJZ Lemma 13.15. Consider a cartesian diagram of schemes

X —-X
.
Y ——=Y
If Y' — Y is flat, then the canonical map (9')* NLx;y — NLx//y+ is a quasi-
isomorphism.
Proof. By Lemma this follows from Algebra, Lemma [134.8 (I

0FKO |Lemma 13.16. Consider a cartesian diagram of schemes
X —=X
| "]
Y —=Y
If X — Y s flat, then the canonical map (g')* NLx;y — NLx:/y: is a quasi-

isomorphism. If in addition NLx /vy has tor-amplitude in [—1,0] then L(g')* NLx,y —
NLx:/y+ is a quasi-isomorphism too.

Proof. Translated into algebra this is More on Algebra, Lemma To do the

translation use Lemma [I3:2] and Derived Categories of Schemes, Lemmas and
104 O
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14. Pushouts in the category of schemes, I

In this section we construct pushouts of Y <~ X — X’ where X — Y is affine and
X — X' is a thickening. This will actually be an important case for us, hence a
detailed discussion is merited. In Section [67]we discuss a more interesting and more
difficult case. See Categories, Section [J] for a general discussion of pushouts in any
category.

Lemmal 14.1. Let A’ — A be a surjection of rings and let B — A be a ring map.
Let B' = B x4 A’ be the fibre product of rings. Set S = Spec(A), S’ = Spec(A’),
T = Spec(B), and T' = Spec(B’). Then

S— =8 A A
fi l ¢ corresponding to T T
T B<— B

is a pushout of schemes.

Proof. By More on Algebra, Lemma we have T" = T IIg S’ as topological
spaces, i.e., the diagram is a pushout in the category of topological spaces. Next,
consider the map

(@), (f)F) - Orr — .01 X405 fLOs

where g = i/ o f = f/ oi. We claim this map is an isomorphism of sheaves of
rings. Namely, we can view both sides as quasi-coherent O7/-modules (use Schemes,
Lemmas for the right hand side) and the map is Ops-linear. Thus it suffices to
show the map is an isomorphism on the level of global sections (Schemes, Lemma
. On global sections we recover the identification B’ — B x 4 A’ from statement
of the lemma (this is how we chose B).

Let X be a scheme. Suppose we are given morphisms of schemes m’ : S — X
and n : T — X such that m' oi = no f (call this m). We get a unique map of
topological spaces n’ : 7" — X compatible with m’ and n as T/ = T 1Ig S’ (see
above). By the description of Or in the previous paragraph we obtain a unique
homomorphism of sheaves of rings

(n/)’:i : OX — (nl>*OT’ = m;OT Xm.Op n*OS

given by (m/)* and nf. Thus (n/,(n’)?) is the unque morphism of ringed spaces
T’ — X compatible with m’ and n. To finish the proof it suffices to show that n’
is a morphism of schemes, i.e., a morphism of locally ringed spaces.

Let ¢’ € T" with image x € X. We have to show that Ox , — Op/  is local. If
t' ¢ T, then t’ is the image of a unique point s’ € S" and O/ = Og . Namely,
S'\ S — T"\ T is an isomorphism of schemes as B’ — A’ induces an isomorphism
Ker(B' — B) = Ker(A' — A). If ¢’ is the image of ¢ € T, then we know that the
composition Ox ; = O7r v — Or, is local and we conclude also. O

Lemma 14.2. Let T — (Sch/S)spps, @ — X, be a diagram of schemes. Let

(W, X; — W) be a cocone for the diagram in the category of schemes (Categories,

Remark . If there exists a fpgc covering {W, — W}aca of schemes such that

(1) for all a € A we have W, = colim X; xw W, in the category of schemes,
and
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(2) for all a,b € A we have W, xw Wy, = colim X; xw W, xw Wy in the
category of schemes,

then W = colim X; in the category of schemes.

Proof. Namely, for a scheme T a morphism W — T is the same thing as collection
of morphism W, — T, a € A which agree on the overlaps W, xy W}, see Descent,
Lemma O

Lemmal 14.3. Let X — X' be a thickening of schemes and let X — Y be an
affine morphism of schemes. Then there exists a pushout

X—X

fl if’
Y —=Y'
in the category of schemes. Moreover, Y C Y’ is a thickening, X =Y xy: X', and
Oy = Oy X0, [1Ox

as sheaves on |Y| = |Y’|.

Proof. We first construct Y’ as a ringed space. Namely, as topological space we
take Y/ = Y. Denote f’ : X’ — Y’ the map of topological spaces which equals
f- As structure sheaf Oy, we take the right hand side of the equation of the
lemma. To see that Y’ is a scheme, we have to show that any point has an affine
neighbourhood. Since the formation of the fibre product of sheaves commutes with
restricting to opens, we may assume Y is affine. Then X is affine (as f is affine)
and X’ is affine as well (see Lemma . Say Y + X — X’ corresponds to
B — A<+ A'. Set B = B x4 A’; this is the global sections of Oy/. As A’ — A
is surjective with locally nilpotent kernel we see that B’ — B is surjective with
locally nilpotent kernel. Hence Spec(B’) = Spec(B) (as topological spaces). We
claim that Y’ = Spec(B’). To see this we will show for ¢’ € B’ with image g € B
that Oy (D(g)) = By,. Namely, by More on Algebra, Lemma We see that

(B/)g’ - Bg XAy A/h’

where h € A, b/ € A’ are the images of ¢’. Since By, resp. Ay, resp. A}, is equal to
Oy (D(g)), resp. f«Ox(D(g)), resp. fiOx/(D(g)) the claim follows.

It remains to show that Y’ is the pushout. The discussion above shows the scheme
Y’ has an affine open covering Y/ = (JW/ such that the corresponding opens
U/ c X', W, CY,and U; C X are affine open. Moreover, if A, B;, A; are the
rings corresponding to U/, W;, U;, then W/ corresponds to B; x4, A}. Thus we

can apply Lemmas and to conclude our construction is a pushout in the
category of schemes. |

In the following lemma we use the fibre product of categories as defined in Cate-
gories, Example |31.3

Lemmal 14.4. Let X — X' be a thickening of schemes and let X — Y be an
affine morphism of schemes. Let Y =Y llx X' be the pushout (see Lemma ,
Base change gives a functor

F (SCh/Y/) — (SCh/Y) X (Sch/Y") (SCh/X/)
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given by V' +— (V' xy+ Y, V' xy+ X', 1) which has a left adjoint
G (SCh/Y) X(Sch/Y’) (SCh/X/) — (SCh/Y/)

which sends the triple (V,U’, @) to the pushout V Iy, xy U'. Finally, F'o G is
isomorphic to the identity functor.

Proof. Let (V,U’, ) be an object of the fibre product category. Set U = U’ x x+ X.
Note that U — U’ is a thickening. Since ¢ : V Xy X — U’ xx» X = U is an
isomorphism we have a morphism U — V over X — Y which identifies U with the
fibre product X xy V. In particular U — V is affine, see Morphisms, Lemma [11.§
Hence we can apply Lemma [14.3]to get a pushout V/ = V 1l U’. Denote V' — Y
the morphism we obtain in virtue of the fact that V' is a pushout and because we
are given morphisms V' — Y and U’ — X’ agreeing on U as morphisms into Y.
Setting G(V,U’, ) = V' gives the functor G.

Let us prove that G is a left adjoint to F. Let Z be a scheme over Y’. We have to
show that

Mor(V', Z) = Mor((V,U’, @), F(Z))

where the morphism sets are taking in their respective categories. Let ¢’ : V/ — Z
be a morphism. Denote §, resp. f the composition of ¢’ with the morphism V — V”,
resp. U’ — V. Base change §, resp. f' by Y — Y’ resp. X’ — Y” to get a morphism
g:V = Zxy Y, resp. f': U — Z xy: X'. Then (g, f’) is an element of the
right hand side of the equation above (details omitted). Conversely, suppose that
(9, 1) : (V,U',p) — F(Z) is an element of the right hand side. We may consider
the composition § : V — Z, resp. f: U’ — Z of g, resp. f by Z xy+ X' — Z, resp.
Z xy'Y — Z. Then § and f’ agree as morphism from U to Z. By the universal
property of pushout, we obtain a morphism ¢’ : V' — Z, i.e., an element of the left
hand side. We omit the verification that these constructions are mutually inverse.

To prove that F oG is isomorphic to the identity we have to show that the adjunction
mapping (V,U’,¢) — F(G(V,U’,y)) is an isomorphism. To do this we may work
affine locally. Say X = Spec(A), X’ = Spec(A’), and Y = Spec(B). Then A’ — A
and B — A are ring maps as in More on Algebra, Lemma and Y’ = Spec(B’)
with B’ = Bx 4 A’. Next, suppose that V' = Spec(D), U’ = Spec(C"’) and ¢ is given
by an A-algebra isomorphism D@pA — C'®4 A = C'/IC". Set D' = Dx¢rjpc:C'.
In this case the statement we have to prove is that D'®p/ B = D and D'®p A’ = C'.
This is a special case of More on Algebra, Lemma [6.4 ([l

Lemmal 14.5. Let X — X' be a thickening of schemes and let X — Y be an
affine morphism of schemes. Let Y =Y Ilx X' be the pushout (see Lemma ,
Let V! =Y’ be a morphism of schemes. Set V =Y xy. V', U = X' xy: V', and
U= X xy' V'. There is an equivalence of categories between

(1) quasi-coherent Oy -modules flat over Y', and
(2) the category of triples (G, F', ) where
(a) G is a quasi-coherent Oy -module flat overY,
(b) F' is a quasi-coherent Oy -module flat over X', and
(c) p: (U—=V)G— (U—U)F is an isomorphism of Oy-modules.
The equivalence maps G' to (V. — V')*G', (U — V')*G’,can). Suppose G’ corre-
sponds to the triple (G, F', ). Then
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(a) G is a finite type Oy-module if and only if G and F' are finite type Oy
and Oyr-modules.

(b) if V! = Y is locally of finite presentation, then G' is an Oy-module of
finite presentation if and only if G and F' are Oy and Oy -modules of
finite presentation.

Proof. A quasi-inverse functor assigns to the triple (G, F’, ) the fibre product
(V — Vl)*g X U=V, F (UI — V/)*f/

where F = (U — U’)*F’. This works, because on affines we recover the equivalence
of More on Algebra, Lemma Some details omitted.

Parts (a) and (b) follow from More on Algebra, Lemmas and O

Lemma 14.6. In the situation of Lemma m IfV' = G(V,U’, p) for some triple
(V,U',p), then
(1) V' = Y is locally of finite type if and only if V. —Y and U — X' are
locally of finite type,
(2) V! =Y’ is flat if and only if V =Y and U' — X' are flat,
) V! =Y’ is flat and locally of finite presentation if and only if V. —Y and
U — X’ are flat and locally of finite presentation,
(4) V' =Y’ is smooth if and only if V —Y and U' — X' are smooth,
(5) V' =Y’ is étale if and only if V=Y and U' — X' are étale, and
(6) add more here as needed.
If W' is flat over Y', then the adjunction mapping G(F(W')) — W' is an isomor-
phism. Hence F and G define mutually quasi-inverse functors between the category
of schemes flat over Y’ and the category of triples (V,U' ) with V. — Y and
U — X' flat.
Proof. Looking over affine pieces the assertions of this lemma are equivalent to

the corresponding assertions of More on Algebra, Lemma O

15. Openness of the flat locus

This result takes some work to prove, and (perhaps) deserves its own section. Here
it is.
Theorem 15.1. Let S be a scheme. Let f : X — S be a morphism which is

locally of finite presentation. Let F be a quasi-coherent Ox -module which is locally
of finite presentation. Then

U={ze€X|Fis flat over S at z}
is open in X.

Proof. We may test for openness locally on X hence we may assume that f is a
morphism of affine schemes. In this case the theorem is exactly Algebra, Theorem
[129.4] O

Lemma 15.2. Let S be a scheme. Let
X' ——X
f’l ’ lf
525

[DG67, TV Theorem
11.3.1]
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be a cartesian diagram of schemes. Let F be a quasi-coherent Ox-module. Let
' € X' with images x = ¢'(¢") and ' = f'(2').

(1) If F is flat over S at x, then (¢')*F is flat over S" at x’.

(2) If g is flat at ' and (¢')*F is flat over S" at a', then F is flat over S at x.

In particular, if g is flat, f is locally of finite presentation, and F is locally of finite
presentation, then formation of the open subset of Theorem [15.1] commutes with
base change.

Proof. Consider the commutative diagram of local rings
OX’@’ <~ OX,w
OS/,S/ D — OS,s

Note that Ox 4 is a localization of Ox , ®os, O s, and that ((¢')*F ). is equal
to Fz ®ox., Ox .. Hence the lemma follows from Algebra, Lemma [100.1 (]

16. Critere de platitude par fibres

Consider a commutative diagram of schemes (left hand diagram)

and a quasi-coherent Ox-module F. Given a point x € X lying over s € S with
image y = f(x) we consider the question: Is F flat over Y at «? If F is flat over S
at x, then the theorem states this question is intimately related to the question of
whether the restriction of F to the fibre

Fs=(Xs = X)*F

is flat over Yy at x. Below you will find a “Noetherian” version, a “finitely presented”
version, and earlier we treated a “nilpotent” version, see Lemma

Theorem 16.1. Let S be a scheme. Let f : X — Y be a morphism of schemes
over S. Let F be a quasi-coherent Ox-module. Let x € X. Sety = f(x) and s € S
the image of x in S. Assume S, X, Y locally Noetherian, F coherent, and F, # 0.
Then the following are equivalent:

(1) F is flat over S at x, and Fy is flat over Ys at z, and
(2) Y is flat over S aty and F is flat over Y at x.

Proof. Consider the ring maps
OS,s — Oyyy — OX@

and the module F,. The stalk of Fs at x is the module F,/m,F, and the local
ring of Y; at y is Oy, /m;Oy,. Thus the implication (1) = (2) is Algebra, Lemma
If (2) holds, then the first ring map is faithfully flat and F, is flat over Oy,
so by Algebra, Lemma we see that F, is flat over Og . Moreover, F,/m F,
is the base change of the flat module F, by Oy, — Oy,/m;Oy,,, hence flat by
Algebra, Lemma [39. g
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Here is the non-Noetherian version.

Theorem 16.2. Let S be a scheme. Let f : X — Y be a morphism of schemes
over S. Let F be a quasi-coherent Ox-module. Assume

(1) X is locally of finite presentation over S,

(2) F an Ox-module of finite presentation, and

(3) Y s locally of finite type over S.
Let x € X. Sety = f(x) and let s € S be the image of x in S. If F, # 0, then the
following are equivalent:

(1) F is flat over S at x, and Fy is flat over Ys at z, and

(2) Y is flat over S aty and F is flat over Y at x.

Moreover, the set of points x where (1) and (2) hold is open in Supp(F).

Proof. Consider the ring maps

0575 — Oyyy — OX,m
and the module F,. The stalk of F; at z is the module F,/m;F, and the local
ring of Y, at y is Oy, /m;Oy,,. Thus the implication (1) = (2) is Algebra, Lemma
128.9] If (2) holds, then the first ring map is faithfully flat and F, is flat over Oy,
so by Algebra, Lemma we see that F, is flat over Og 5. Moreover, F,/msF,

is the base change of the flat module F, by Oy, — Oy,/m;Oy,,, hence flat by
Algebra, Lemma [39.7

By Morphisms, Lemma [21.11]the morphism f is locally of finite presentation. Con-
sider the set

(16.2.1) U = {x € X | F flat at = over both Y and S}.

This set is open in X by Theorem[I5.1} Note that if x € U, then F; is flat at = over
Y, as a base change of a flat module under the morphism Yy — Y, see Morphisms,
Lemma Hence at every point of U N Supp(F) condition (1) is satisfied. On
the other hand, it is clear that if € Supp(F) satisfies (1) and (2), then z € U.
Thus the open set we are looking for is U N Supp(F). O

These theorems are often used in the following simplified forms. We give only the
global statements — of course there are also pointwise versions.

Lemma 16.3. Let S be a scheme. Let f: X — Y be a morphism of schemes over
S. Assume

(1) S, X, Y are locally Noetherian,

(2) X is flat over S,

(3) for every s € S the morphism fs: Xy — Yy is flat.
Then f is flat. If f is also surjective, then'Y is flat over S.

Proof. This is a special case of Theorem [16.1 ([l

Lemma 16.4. Let S be a scheme. Let f: X — Y be a morphism of schemes over
S. Assume

(1) X is locally of finite presentation over S,

(2) X is flat over S,

(3) for every s € S the morphism fs: X — Yy is flat, and

(4) Y is locally of finite type over S.
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Then f is flat. If f is also surjective, then Y is flat over S.
Proof. This is a special case of Theorem [16.2] O

Lemma 16.5. Let S be a scheme. Let f: X — Y be a morphism of schemes over
S. Let F be a quasi-coherent Ox-module. Assume

(1) X is locally of finite presentation over S,
(2) F an Ox-module of finite presentation,
(3) F is flat over S, and
(4) Y is locally of finite type over S.
Then the set
U={ze€X|F flat at x over Y}.
is open in X and its formation commutes with arbitrary base change: If 8" — S

is a morphism of schemes, and U’ is the set of points of X' = X xg S’ where
F'=F xg8 is flat over Y =Y xg 8, thenU' =U x5 5'.

Proof. By Morphisms, Lemma [21.11] the morphism f is locally of finite presenta-
tion. Hence U is open by Theorem Because we have assumed that F is flat
over S we see that Theorem [I6.2] implies

U={ze X|Fs flat at = over Y;}.

where s always denotes the image of z in S. (This description also works trivially
when F,, = 0.) Moreover, the assumptions of the lemma remain in force for the
morphism f’: X’ — Y’ and the sheaf 7'. Hence U’ has a similar description. In
other words, it suffices to prove that given s’ € S’ mapping to s € S we have

{z' € X[, | F,, flat at 2’ over Y, }
is the inverse image of the corresponding locus in X,. This is true by Lemma [15.2

because in the cartesian diagram

X, —X;

L

the horizontal morphisms are flat as they are base changes by the flat morphism
Spec(k(s")) — Spec(k(s)). O

Lemma 16.6. Let S be a scheme. Let f: X — Y be a morphism of schemes over

S. Assume

(1) X is locally of finite presentation over S,
(2) X is flat over S, and
(3) Y is locally of finite type over S.

Then the set
U={z€X|X flat at x over Y}.

is open in X and its formation commutes with arbitrary base change.

Proof. This is a special case of Lemma [16.5 (]
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The following lemma is a variant of Algebra, Lemma[99.4] Note that the hypothesis
that (Fs), is a flat Ox, z-module means that (F;), is a free Ox, ;-module which
is always the case if z € X, is a generic point of an irreducible component of X
and X is reduced (namely, in this case Ox, , is a field, see Algebra, Lemma .

Lemma 16.7. Let f : X — S be a morphism of schemes of finite presentation. Let
F be a finitely presented Ox-module. Let x € X with image s € S. If F is flat at
x over S and (Fs)y is a flat Ox, z-module, then F is finite free in a neighbourhood

of x.

Proof. If 7, ® k(z) is zero, then F, = 0 by Nakayama’s lemma (Algebra, Lemma
and hence F is zero in a neighbourhood of x (Modules, Lemma and
the lemma holds. Thus we may assume F, ® k(z) is not zero and we see that
Theorem applies with f = id : X — X. We conclude that F, is flat over
Ox .. Hence F, is free, see Algebra, Lemma for example. Choose an open
neighbourhood x € U C X and sections s1,...,s, € F(U) which map to a basis
in F,. The corresponding map 1 : OF" — F|y is surjective after shrinking U
(Modules, Lemma . Then Ker(%)) is of finite type (see Modules, Lemma
and Ker(v), = 0. Whence after shrinking U once more 1 is an isomorphism. O

Lemma 16.8. Let f: X — S be a morphism of schemes which is locally of finite
presentation. Let F be a finitely presented Ox -module flat over S. Then the set

{x € X : F free in a neighbourhood of x}
is open in X and its formation commutes with arbitrary base change 8" — S.

Proof. Openness holds trivially. Let x € X mapping to s € S. By Lemma [16.7]
we see that z is in our set if and only if F|x, is flat at « over X,. Clearly this is
also equivalent to F being flat at z over X (because this statement is implied by
freeness of F, and implies flatness of F|x, at x over X,). Thus the base change
statement follows from Lemma [16.5] applied to id : X — X over S. O

17. Closed immersions between smooth schemes
Some results that do not fit elsewhere very well.

Lemma 17.1. Let S be a scheme. Let Y — X be a closed immersion of schemes
smooth over S. For every y € Y there exist integers 0 < m,n and a commutative
diagram

Y<~—V ——-A?

l l \L(al ..... am)—(ar,..., am,0...,0)

X <——U—"> A7

where U C X is open, V. =Y NU, 7 is étale, V =7 1(A?), andy € V.

Proof. The question is local on X hence we may replace X by an open neighbour-
hood of y. Since Y — X is a regular immersion by Divisors, Lemma we may
assume X = Spec(A) is affine and there exists a regular sequence f1,...,f, € 4
such that Y = V(f1,..., fn). After shrinking X (and hence Y') further we may as-
sume there exists an étale morphism ¥ — A%, see Morphisms, Lemma Let
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Gis--+,0m in Oy (Y) be the coordinate functions of this étale morphism. Choose
lifts g1, ..., gm € A of these functions and consider the morphism

(glv'-'agm7f17'-'7fn) :XHAZ:HJH

over S. This is a morphism of schemes locally of finite presentation over S and
hence is locally of finite presentation (Morphisms, Lemma . The restriction
of this morphism to A C Ag”r" is étale by construction. Thus, in order to show
that X — Ag”r" is étale at y it suffices to show that X — Ag”'" is flat at y, see
Morphisms, Lemma Let s € S be the image of y. It suffices to check that
X5 — A" is flat at y, see Theorem Let z € A™*" be the image of y. The
local ring map
OAT+",Z — OXs7y

is flat by Algebra, Lemma Namely, schemes smooth over fields are regu-
lar and regular rings are Cohen-Macaulay, see Varieties, Lemma and Algebra,
Lemma Thus both source and target are regular local rings (and hence CM).
The source and target have the same dimension: namely, we have dim(Oy, ,) =
dim(Oam ) by More on Algebra, Lemma we have dim(Opm+n ) = n +
dim(Oam .), and we have dim(Ox, ,) = n + dim(Oy, ) because Oy, , is the quo-

tient of Ox, , by the regular sequence fi,..., f, of length n (see Divisors, Remark
22.5)). Finally, the fibre ring of the displayed arrow is finite over k(z) since Yy — A™
is étale at y. This finishes the proof. O

Remark 17.2. We fix a ring R and we set S = Spec(R). Fix integers 0 < m and
1 < n. Consider the closed immersion

Z =A% — Ag“"'” =X, (a1,...,am) = (a1,...,am,0,...0).
We are going to consider the blowing up X’ of X along the closed subscheme Z.
Write
X =Spec(4) with A=R[z1,...,Tm,Y1,---Yn]
Then X’ is the Proj of the Rees algebra of A with respect ot the ideal (y1,...,yn)-

This Rees algebra is equal to B = A[Ty,...,T,]/(y;T; — y;T3); details omitted.
Hence X’ = Proj(B) is smooth over S as it is covered by the affine opens

D (T3) = Spec(Bry))
= Spec(Aftr, ..., ti, ... ta]/(y; — yit;))

~

= SpeC(R[xla s 7xm7yiatla s 7tia s 7tnD

which are isomorphic to A%, In this chart the exceptional divisor is cut out by
setting y; = 0 hence the exceptional divisor is smooth over S as well.

Lemma 17.3. Let S be a scheme. Let Z — X be a closed immersion of schemes
smooth over S. Let b : X' — X be the blowing up of Z with exceptional divisor
E Cc X'. Then X' and E are smooth over S. The morphism p : E — Z is
canonically isomorphic to the projective space bundle

P(Z/1?) — Z

where I C Ox is the ideal sheaf of Z. The relative O (1) coming from the projective
space bundle structure is isomorphic to the restriction of Ox:/(—FE) to E.
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Proof. By Divisors, Lemma [22.11] the immersion Z — X is a regular immmersion,
hence the ideal sheaf Z is of finite type, hence b is a projective morphism with
relatively ample invertible sheaf Ox/ (1) = Ox/(—FE), see Divisors, Lemmas
and The canonical map Z — b,Ox- (1) gives a closed immersion

X —P (@nzo Sym (I))

by the very construction of the blowup. The restriction of this morphism to E gives
a canonical map

E—P (@, symp,(T/1%)

over Z. Since Z/Z? is finite locally free if this canonical map is an isomorphism,
then the final part of the lemma holds. Having said all of this, now the question is
étale local on X. Namely, blowing up commutes with flat base change by Divisors,
Lemma[32.3]and we can check smoothness after precomposing with a surjective étale
morphism. Thus by the étale local structure of a closed immersion of schemes over
S given in Lemma this reduces us to the case discussed in Remark O

18. Flat modules and relative assassins

In this section we will prove that the support of a flat module is (in some sense)
equidimensional over the base in geometric situations. For the Noetherian case we
refer the reader to [DG6T, IV Proposition 12.1.1.5]. First, we prove two helper
lemmas.

Lemmal 18.1. Let A be a valuation ring. Let A — B is a local homomorphism
of local rings which is essentially of finite type. Let uw : N — M be a map of finite
B-modules. Assume M is flat over A and @ : N/maN — M/maM is injective.
Then u is injective and M /u(N) is flat over A.

Proof. We will deduce this lemma from Algebra, Lemma [128.4] (please note that
we exchanged the roles of M and N). To do the reduction we will use More on
Algebra, Lemma to reduce to the finitely presented case.

By assumption we can write B as a quotient of the localization of a polynomial
algebra P = Alxy,...,x,] at a prime ideal q. Then we can think of u : N — M as
a map of finite P;-modules. Hence we may and do assume that B is essentially of
finite presentation over A.

Next, the B-module N is finite but perhaps not of finite presentation. Write
N = colim N, as a filtered colimit of finitely presented B-modules with surjec-
tive transition maps. For example choose a presentation 0 — K — B — N — 0,
write K as the union of its finite submodules K, and set N = Coker(K) — B®").
The module N/msN is of finite presentation over the Noetherian ring B/myB.
Hence for A large enough we have Ny/maNy = N/m N. Now, if we can show the
lemma for the composition uy : Ny — M, then we conclude that Ny = N and the
result holds for u. Hence we may and do assume N is of finite presentation over B.

By More on Algebra, Lemma the module M is of finite presentation over B.
Thus all the assumptions of Algebra, Lemma [128.4] hold and we conclude. (Il

Lemmal 18.2. Let f : X — S be a morphism of schemes. Let y € X be a point
with image t € S. Denote Y C X the closure of {y} viewed as an integral closed

This can be found
in the proof of
IDG67, TV
Proposition 12.1.1.5]
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subscheme of X. Let s € S and let x € Y, be a generic point of an irreducible
component of Ys. There exists a cartesian diagram

X/H/X

g
f’l lf
s 2.9

with the following properties:

(1) S’ is the spectrum of a valuation ring with generic point t' and closed point
s,

(2) g(t') =t and g(s') = s,

(3) there exists a point y' € X, which is a generic point of an irreducible
component of (8" x5 Y)y =Y, X t' and satisfies ¢'(v') = v,

(4) denotingY' C X' the closure of {y'} viewed as an integral closed subscheme
of X' there exists a point ' € Y., which is a generic point of an irreducible

component of Y/, with ¢'(x') = .

Proof. We choose a valuation ring R, we set S’ = Spec(R) with generic point ¢’
and closed point ', and we choose a morphism h : S — X with A(t') = y and
h(s') = . See Schemes, Lemma[20.4] Set g = f o h so that g(t') =t and g(s') = s.
Consider the base change

X/ H] X
(]
g 7.9
We obtain a section o of the base change such that h = ¢’ o 0.

Of course o factors through the base change S’ xgY of Y as h factors through Y.
Let ' € X], C X’ be the generic point of an irreducible component of the fibre

(8" xsY)py =Y x4 tf

containing the point o(t'), i.e., such that 3’ ~ o(t’). Since ¢'(y’) € Y; and g(y’) ~
g(o(t')) = y we find that ¢'(y') = y because y is the generic point of the fibre Y;.
Denote Y’ C X’ the closure of {3/} in X’ viewed as an integral closed subscheme.
Then o factors through Y’ as o(t') € Y’'. Choose a generic point z’ € Y}, of an
irreducible component of Y, which contains o(s'), i.e., we get 2’ ~» o(s’) and hence
g (a') ~ ¢'(o(s")) = x. Again as z is a generic point of an irreducible component
of Y; by assumption and as ¢’(Y’) C Y we conclude that ¢'(2') = x. O

Lemmal 18.3. Let f: X — S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent finite type Ox-module. Let y € Assx;s(F) with
image t € S. Denote Y C X the closure of {y} in X viewed as an integral closed
subscheme. Let s € S and let x € Y be a generic point of an irreducible component
of Ys. If F is flat over S at x, then x € Assx;s(F) and dim,(Y;) = dim(Y;).

Proof. Choose a diagram as in Lemma Set F' = (¢’)*F. Divisors, Lemma

implies that y' € Assx/ s/ (F'). By our choice of 3’ we also see that dim(Y},) =

dim(Y;), see for example Algebra, Lemma [116.7, By Algebra, Lemma [125.9 we see
that Y}, is equidimensional of dimension equal to dim(Y;). Since F is flat at = over

S we see that F is flat at 2’ over S’, see Morphisms, Lemma [25.7]
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Suppose that we can show 2’ € Assy:/g(F’). Then Divisors, Lemma implies
that = € Assx,s(F) and that the irreducible component C” of Y, containing z’ is
an irreducible component of C' x, s’ where C C Y is the irreducible component
containing x. Whence dim(C) = dim(C") = dim(Y}) (see above) and the proof is
complete. This reduces us to the case discussed in the next paragraph.

Assume S = Spec(A) where A is a valuation ring and ¢ and s are the generic and
closed points of S. We will assume 2 ¢ Assx,g(F) in order to get a contradiction.
In other words, we assume = ¢ Assx, (Fs) where Fy is the pullback of F to Xj.
Consider the ring map
A— OX@ =B
and the module N = F, over B = Ox . Then B/msB = Ox, , and N/maN
is the stalk of Fs at the point z. Denote q C B the prime ideal corresponding to
the point y, see Schemes, Lemma Since x is a generic point of Y; we see that
the radical of ¢ +msB is mp. Then Assg/m,5(N/maN) is a finite set of prime
ideals (Algebra, Lemma which doesn’t contain the maximal ideal of B/m 4B
since x ¢ Assx;s(F). Thus the image of of q in B/m4B is not contained in any of
those prime ideals. Hence by prime avoidance (Algebra, Lemma we can find
an element g € q whose image in B/m4 B is a nonzerodivisor on N/m4N (this uses
the description of zerodivisors in Algebra, Lemma. Since N = F, is A-flat by
Lemma [I8.1] we see that
g:N—N
is injective. In particular, if K = Frac(A) is the fraction field of A, then we see
that
g NAa K — N1 K
is injective. Observe that g corresponds to a prime ideal of B® 4 K. Denote F; the
restriction of F to the generic fibre X;. We have (B®4 K)q = Ox, y and (N®4K)4
is the stalk at y of ;. Hence we find that g € m, C Ox,,, is a nonzerodivisor on
the stalk (F;), which contradicts our assumption that y € Assx,g(F). O

Lemma 18.4. Let f: X — S be a morphism of schemes which is locally of finite
type. Let F be a finite type, quasi-coherent Ox-module flat over S. Assume S is
irreducible with generic point . If dim(Supp(F,)) < r then for all s € S we have
dim(Supp(Fs)) < r.

Proof. Let x € Supp(Fs) be a generic point of an irreducible component of
Supp(Fs). By Algebra, Lemmawe can find a specialization y ~> x in Supp(F)
with f(y) = n. Of course we may assume y is a generic point of an irreducible com-
ponent of Supp(F,). We conclude from Lemma that the dimension of {37} is
at most r. ([

Lemma 18.5. Let f: X — S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent Ox-module of finite type. Let y € Assx;s(F).
Denote Y C X the closure of {y} in X viewed as an integral closed subscheme.
Denote T C S the closure of {f(y)} viewed as an integral closed subscheme. We
obtain a commutative diagram

Y —X

|

T——S8
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where Y — T is dominant. Assume F is flat over S at all generic points of
irreducible components of fibres of Y — T (for example if F is flat over S). Then

(1) if s € S and x €Yy is the generic point of an irreducible component of Y,
then x € Assx/g(F), and

(2) there is an integer d > 0 such that Y — T is of relative dimension d, see
Morphisms, Definition |29.1].

Proof. This follows immediately from the pointwise version Lemma Note
that to compute the dimension of the locally algebraic schemes Y it suffices to look
near the generic points, see Varieties, Section [

Remark| 18.6. Here are some cases where the material above, especially Lemma
18.5] allows one to conclude that a morphism f : X — S of schemes has relative
dimension d as defined in Morphisms, Definition For example, this is true if
(1) X is integral with generic point &,
(2) the transcendence degree of k(&) over k(f(£)) is d,
(3) f is locally of finite type, and
(4) there exists a quasi-coherent O x-module F of finite type which is flat over
S with Supp(F) = X.
Another set of hypotheses that work are the following;:

(1) S is irreducible with generic point 7,

(2) X, is dense in X,

(3) every irreducible component of X, has dimension d,

(4) f is locally of finite type, and

(5) there exists a quasi-coherent Ox-module F of finite type which is flat over

S with Supp(F) = X.

Of course, we can relax the flatness condition on F and require only that F is flat
over S in codimension 0, i.e., that F is flat over S at every generic point of every
fibre. If we ever need these results, we will carefully state and prove them here.

19. Normalization revisited

Normalization commutes with smooth base change.

Lemmal 19.1. Let f : Y — X be a smooth morphism of schemes. Let A be a
quasi-coherent sheaf of Ox-algebras. The integral closure of Oy in f*A is equal to
f* A where A" C A is the integral closure of Ox in A.

Proof. This is a translation of Algebra, Lemma[147.4]into the language of schemes.
Details omitted. O

Lemma 19.2 (Normalization commutes with smooth base change). Let
Yo —1
fa i \Lh
%]
Xo— X4

be a fibre square in the category of schemes. Assume f1 is quasi-compact and quasi-
separated, and ¢ is smooth. Let Y; — X! — X, be the normalization of X; in Y;.
Then X, = Xo xx, X].
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Proof. The base change of the factorization Y7 — X{ — X to X5 is a factorization
Yy = Xo xx, X] — Xo and Xo xx, X| — X5 is integral (Morphisms, Lemma
. Hence we get a morphism h : X}, — X5 x x, X by the universal property of
Morphisms, Lemma Observe that X} is the relative spectrum of the integral
closure of Ox, in f2.,0y,. If A" C f1.0Oy, denotes the integral closure of Ox,,
then Xo X x, X} is the relative spectrum of ¢*A’, see Constructions, Lemma
By Cohomology of Schemes, Lemmawe know that f2 .0y, = ¢* f1,+Oy,. Hence
the result follows from Lemma [T9.1] O

Lemma 19.3 (Normalization and smooth morphisms). Let X — Y be a smooth
morphism of schemes. Assume every quasi-compact open of Y has finitely many
irreducible components. Then the same is true for X and there is a unique iso-
morphism XV = X Xy YY" over X where XV, YV are the normalizations of X,
Y.

Proof. By Descent, Lemma [16.3] every quasi-compact open of X has finitely many
irreducible components. Note that X,.q = X Xy Y,cq as a scheme smooth over a
reduced scheme is reduced, see Descent, Lemma|[I8.1] Hence we may assume that X
and Y are reduced (as the normalization of a scheme is equal to the normalization
of its reduction by definition). Next, note that X’ = X xy Y is a normal scheme
by Descent, Lemma The morphism X’ — Y is smooth (hence flat) thus the
generic points of irreducible components of X’ lie over generic points of irreducible
components of Y”. Since Y” — Y is birational we conclude that X' — X is
birational too (because X’ — Y induces an isomorphism on fibres over generic
points of Y)). We conclude that there exists a factorization X¥ — X' — X, see
Morphisms, Lemma which is an isomorphism as X’ is normal and integral over
X. O

Lemma 19.4 (Normalization and henselization). Let X be a locally Noetherian
scheme. Let v : XY — X be the normalization morphism. Then for any point
x € X the base change

XY xx Spec(O%m) — Spec((’)’}(m), resp. X" Xx Spec(Oﬁgm) — Spec(Oi&)
is the normalization of Spec(O% ), resp. Spec(O%",).

Proof. Letny,...,n, be the generic points of the irreducible components of X pass-
ing through x. The base change of the normalization to Spec(Ox ;) is the spectrum
of the integral closure of Ox , in [ x(#;). This follows from our construction of the
normalization of X in Morphisms, Definition and Morphisms, Lemma [53.1
you can also use the description of the normalization in Morphisms, Lemma [54.3
Thus we reduce to the following algebra problem. Let A be a Noetherian local ring;
recall that this implies the henselization A" and strict henselization A*" are Noe-
therian too (More on Algebra, Lemma . Let py,...,p, be its minimal primes.
Let A’ be the integral closure of A in [] #(p;). Problem: show that A’ ®4 A", resp.
A’ ® 4 At is constructed from the Noetherian local ring A", resp. A*" in the same
manner.

Since A", resp. A" are colimits of étale A-algebras, we see that the minimal primes
of A and A%" are exactly the primes of A, resp. A*" lying over the minimal primes
of A (by going down, see Algebra, Lemmas and . Thus More on Algebra,
Lemma tells us that A" @4 [T k(p;), resp. A" ®4 [[ x(p;) is the product of


https://stacks.math.columbia.edu/tag/07TD
https://stacks.math.columbia.edu/tag/0CBM

0382

0390

0391

056 W

0392

MORE ON MORPHISMS 57

the residue fields at the minimal primes of A", resp. A*". We know that taking
the integral closure in an overring commutes with étale base change, see Algebra,
Lemma Writing A" and A*" as a limit of étale A-algebras we see that the
same thing is true for the base change to A" and A*" (you can also use the more

general Algebra, Lemma [147.5]). (]

20. Normal morphisms

In the article [DMG69] of Deligne and Mumford the notion of a normal morphism
is mentioned. This is just one in a series of typeaﬂ of morphisms that can all be
defined similarly. Over time we will add these in their own sections as needed.

Definition 20.1. Let f: X — Y be a morphism of schemes. Assume that all the
fibres X, are locally Noetherian schemes.

(1) Let z € X, and y = f(z). We say that f is normal at x if f is flat at z,
and the scheme X, is geometrically normal at = over k(y) (see Varieties,

Definition [10.1)).

(2) We say f is a normal morphism if f is normal at every point of X.

So the condition that the morphism X — Y is normal is stronger than just requiring
all the fibres to be normal locally Noetherian schemes.

Lemma 20.2. Let f: X — Y be a morphism of schemes. Assume all fibres of f
are locally Noetherian. The following are equivalent

(1) f is normal, and
(2) f is flat and its fibres are geometrically normal schemes.

Proof. This follows directly from the definitions. O
Lemma 20.3. A smooth morphism is normal.

Proof. Let f: X — Y be asmooth morphism. As f is locally of finite presentation,
see Morphisms, Lemma[34.8]the fibres X, are locally of finite type over a field, hence
locally Noetherian. Moreover, f is flat, see Morphisms, Lemma Finally,
the fibres X, are smooth over a field (by Morphisms, Lemma and hence
geometrically normal by Varieties, Lemma Thus f is normal by Lemma
20.2 [l

We want to show that this notion is local on the source and target for the smooth
topology. First we deal with the property of having locally Noetherian fibres.

Lemma 20.4. The property P(f) =“the fibres of f are locally Noetherian” is local
in the fppf topology on the source and the target.

Proof. Let f : X — Y be a morphism of schemes. Let {¢; : ¥; = Y};cr be an
fppf covering of Y. Denote f; : X; — Y; the base change of f by ¢;. Let ¢ € I and
let y; € Y; be a point. Set y = ¢;(y;). Note that

Xiy, = Spec(h(yi)) Xspee(r(y)) Xy-
Moreover, as ; is of finite presentation the field extension x(y;)/k(y) is finitely
generated. Hence in this situation we have that X, is locally Noetherian if and

3The other types are coprof < k, Cohen-Macaulay, (Sy), regular, (Rg), and reduced. See
ﬁGG?, IV Definition 6.8.1.]. Gorenstein morphisms will be defined in Duality for Schemes, Section


https://stacks.math.columbia.edu/tag/0390
https://stacks.math.columbia.edu/tag/0391
https://stacks.math.columbia.edu/tag/056W
https://stacks.math.columbia.edu/tag/0392

0393

07R6

07R7

07RS8

MORE ON MORPHISMS 58

only if X, . is locally Noetherian, see Varieties, Lemma This fact implies
locality on the target.

Let {X; — X} be an fppf covering of X. Let y € Y. In this case {X;, — X,} is
an fppf covering of the fibre. Hence the locality on the source follows from Descent,
Lemma [16.7] O

Lemma 20.5. The property P(f) =“the fibres of f are locally Noetherian and f
is normal” is local in the fppf topology on the target and local in the smooth topology
on the source.

Proof. We have P(f) = P1(f) A Pa(f) APs(f) where P;1(f) =“the fibres of f are
locally Noetherian”, Po(f) =“f is flat”, and Ps3(f) =“the fibres of f are geometri-
cally normal”. We have already seen that P; and Ps are local in the fppf topology
on the source and the target, see Lemma [20.4] and Descent, Lemmas and
Thus we have to deal with Ps.

Let f : X — Y be a morphism of schemes. Let {p; : Y; — Y}ier be an fpqc
covering of Y. Denote f; : X; — Y; the base change of f by ;. Let i € I and let
y; € Y; be a point. Set y = v;(y;). Note that

Xi-,yz‘ = Spec(”(yi)) XSpec(r;(y)) Xy
Hence in this situation we have that X, is geometrically normal if and only if X ,,
is geometrically normal, see Varieties, Lemma This fact implies Pj is fpqc
local on the target.

Let {X; — X} be a smooth covering of X. Let y € Y. In this case {X, , — X, }
is a smooth covering of the fibre. Hence the locality of P3 for the smooth topology
on the source follows from Descent, Lemma Combining the above the lemma
follows. ([

21. Regular morphisms

Compare with Section The algebraic version of this notion is discussed in More
on Algebra, Section

Definition 21.1. Let f: X — Y be a morphism of schemes. Assume that all the
fibres X, are locally Noetherian schemes.
(1) Let x € X, and y = f(x). We say that f is reqular at x if f is flat at z,
and the scheme X, is geometrically regular at x over k(y) (see Varieties,
Definition .

(2) We say f is a regular morphism if f is regular at every point of X.

The condition that the morphism X — Y is regular is stronger than just requiring
all the fibres to be regular locally Noetherian schemes.

Lemmal 21.2. Let f: X — Y be a morphism of schemes. Assume all fibres of f
are locally Noetherian. The following are equivalent
(1) f is regular,
(2) f is flat and its fibres are geometrically regular schemes,
(3) for every pair of affine opens U C X, V CY with f(U) CV the ring map
OV) = O(U) is regular,
(4) there exists an open covering Y = J;c; V; and open coverings 7YV =
Uielj U; such that each of the morphisms U; — V; is regular, and
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(5) there exists an affine open coveringY = UjeJ V; and affine open coverings
vy = Uielj U; such that the ring maps O(V;) — O(U;) are regular.

Proof. The equivalence of (1) and (2) is immediate from the definitions. Let
z € X with y = f(z). By definition f is flat at z if and only if Oy, — Ox,
is a flat ring map, and X, is geometrically regular at = over x(y) if and only
if Ox, 2 = Ox,./m;Ox; is a geometrically regular algebra over r(y). Hence
Whether or not f is regular at « depends only on the local homomorphism of local
rings Oy, — Ox 5. Thus the equivalence of (1) and (4) is clear.

Recall (More on Algebra, Definition that a ring map A — B is regular if and
only if it is flat and the fibre rings B ® 4 k(p) are Noetherian and geometrically
regular for all primes p C A. By Varieties, Lemma this is equivalent to
Spec(B ®4 k(p)) being a geometrically regular scheme over x(p). Thus we see that
(2) implies (3). It is clear that (3) implies (5). Finally, assume (5). This implies
that f is flat (see Morphisms, Lemma [25.3). Moreover, if y € Y, then y € V;
for some j and we see that X, = (J,c I Ui,y with each U; , geometrically regular
over k(y) by Varieties, Lemma Another application of Varieties, Lemma m
shows that X, is geometrically regular. Hence (2) holds and the proof of the lemma
is finished. ([l

Lemmal 21.3. A smooth morphism is reqular.

Proof. Let f: X — Y be a smooth morphism. As f is locally of finite presentation,
see Morphisms, Lemmathe fibres X, are locally of finite type over a field, hence
locally Noetherian. Moreover, f is flat, see Morphisms, Lemma Finally,
the fibres X, are smooth over a field (by Morphisms, Lemma and hence
geometrically regular by Varieties, Lemma Thus f is regular by Lemma
21.2 ([l

Lemma 21.4. The property P(f) =“the fibres of f are locally Noetherian and f
is reqular” is local in the fppf topology on the target and local in the smooth topology
on the source.

Proof. We have P(f) = P1(f) A Pa(f) A Ps(f) where P1(f) =“the fibres of f are
locally Noetherian”, P2(f) =“f is flat”, and Ps(f) =“the fibres of f are geometri-
cally regular”. We have already seen that P; and P, are local in the fppf topology
on the source and the target, see Lemma [20.4] and Descent, Lemmas and
Thus we have to deal with Ps.

Let f : X — Y be a morphism of schemes. Let {p; : Y; — Y}ier be an fpqe
covering of Y. Denote f; : X; — Y, the base change of f by ¢;. Let ¢ € I and let
y; € Y; be a point. Set y = v;(y;). Note that

Xiy: = Spec(k(¥i)) Xspec(n(y)) Xy-
Hence in this situation we have that X, is geometrically regular if and only if X ,,
is geometrically regular, see Varieties, Lemma This fact implies P53 is fpqc
local on the target.
Let {X; — X} be a smooth covering of X. Let y € Y. In this case {X; , = X,}
is a smooth covering of the fibre. Hence the locality of P3 for the smooth topology

on the source follows from Descent, Lemma Combining the above the lemma
follows. O
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22. Cohen-Macaulay morphisms

Compare with Section 20l Note that, as pointed out in Algebra, Section and
Varieties, Section [13] “geometrically Cohen-Macaulay” is the same as plain Cohen-
Macaulay.

Definition 22.1. Let f: X — Y be a morphism of schemes. Assume that all the
fibres X, are locally Noetherian schemes.
(1) Let z € X, and y = f(x). We say that f is Cohen-Macaulay at x if f is
flat at =, and the local ring of the scheme X, at x is Cohen-Macaulay.
(2) We say f is a Cohen-Macaulay morphism if f is Cohen-Macaulay at every
point of X.

Here is a translation.

Lemma 22.2. Let f: X — Y be a morphism of schemes. Assume all fibres of f
are locally Noetherian. The following are equivalent

(1) f is Cohen-Macaulay, and
(2) f is flat and its fibres are Cohen-Macaulay schemes.

Proof. This follows directly from the definitions. O

Lemma 22.3. Let f: X — Y be a morphism of locally Noetherian schemes which
1s locally of finite type and Cohen-Macaulay. For every point x in X with image y
nY,

dimg (X) = dimy (Y") + dim, (X)),
where X, denotes the fiber over y.

Proof. After replacing X by an open neighborhood of z, there is a natural number
d such that all fibers of X — Y have dimension d at every point, see Morphisms,
Lemma[29.4 Then f is flat, locally of finite type and of relative dimension d. Hence
the result follows from Morphisms, Lemma [29.6 (|

Lemmal 22.4. Let f: X - Y and g:Y — Z be morphisms of schemes. Assume
that the fibres of f, g, and g o f are locally Noetherian. Let x € X with images
ye€Y and z € Z.

(1) If f is Cohen-Macaulay at x and g is Cohen-Macaulay at f(x), then go f
is Cohen-Macaulay at x.

(2) If f and g are Cohen-Macaulay, then go f is Cohen-Macaulay.

(3) Ifgof is Cohen-Macaulay at x and f is flat at x, then f is Cohen-Macaulay
at x and g is Cohen-Macaulay at f(x).

(4) If go f is Cohen-Macaulay and f is flat, then f is Cohen-Macaulay and g
is Cohen-Macaulay at every point in the image of f.

Proof. Consider the map of Noetherian local rings
Oyv.y > Ox. .z
and observe that its fibre is
Ox. z/my, yOx, 2 = Ox, 2

Thus the lemma this follows from Algebra, Lemma [163.3 (]
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Lemma 22.5. Let f : X — Y be a flat morphism of locally Noetherian schemes. If
X is Cohen-Macaulay, then f is Cohen-Macaulay and Oy, is Cohen-Macaulay
forallx € X.

Proof. After translating into algebra this follows from Algebra, Lemma [163.3] [

Lemma 22.6. Let f : X — Y be a morphism of schemes. Assume that all the
fibres X, are locally Noetherian schemes. Let Y' — Y be locally of finite type. Let
J X" =Y be the base change of f. Let ' € X' be a point with image v € X .

(1) If f is Cohen-Macaulay at x, then f': X' = Y" is Cohen-Macaulay at x’.

(2) If f is flat at x and f' is Cohen-Macaulay at &', then f is Cohen-Macaulay
at x.

(3) If Y = Y is flat at f'(2') and f’ is Cohen-Macaulay at x', then [ is
Cohen-Macaulay at x.

Proof. Note that the assumption on Y/ — Y implies that for 3/ € Y’ mapping
to y € Y the field extension k(y’)/k(y) is finitely generated. Hence also all the
fibres X, = (Xy)y(y) are locally Noetherian, see Varieties, Lemma Thus the
lemma makes sense. Set ¢y’ = f'(2’) and y = f(x). Hence we get the following
commutative diagram of local rings

OX’,I’ < OX,I

]

Oy yr =< Oyy

where the upper left corner is a localization of the tensor product of the upper right
and lower left corners over the lower right corner.

Assume f is Cohen-Macaulay at x. The flatness of Oy, = Ox , implies the flatness
of Oyry — Ox/ 4, see Algebra, Lemma The fact that Ox ,/m,Ox , is
Cohen-Macaulay implies that Ox ,/m, Ox/ » is Cohen-Macaulay, see Varieties,
Lemma Hence we see that f’ is Cohen-Macaulay at z’.

Assume f is flat at x and f’ is Cohen-Macaulay at z’. The fact that Ox/ , /my Ox/ 4
is Cohen-Macaulay implies that Ox ,/m,Ox , is Cohen-Macaulay, see Varieties,
Lemma Hence we see that f is Cohen-Macaulay at x.

Assume Y’ — Y is flat at ¢ and f’ is Cohen-Macaulay at z’. The flatness of
Oy y — Oxr o and Oy,y — Oy, implies the flatness of Oy, — Ox , see
Algebra, Lemma The fact that Ox/ 5 /my Ox/ 5 is Cohen-Macaulay implies
that Ox ,/m,Ox , is Cohen-Macaulay, see Varieties, Lemma Hence we see
that f is Cohen-Macaulay at x. O

Lemma 22.7. Let f: X — S be a morphism of schemes which is flat and locally
of finite presentation. Let

W ={z € X | f is Cohen-Macaulay at x}

Then
(1) W={z € X |Ox,,, .« is Cohen-Macaulay},
(2) W is open in X,
(3) W dense in every fibre of X — S,

[DG67, TV Corollary
12.1.7(iii)]
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(4) the formation of W commutes with arbitrary base change of f: For any
morphism g : S — S, consider the base change ' : X' — S' of [ and the
projection g’ : X' — X. Then the corresponding set W' for the morphism
1 is equal to W' = (¢') "L (W).

Proof. As f is flat with locally Noetherian fibres the equality in (1) holds by
definition. Parts (2) and (3) follow from Algebra, Lemma [130.5| Part (4) follows
either from Algebra, Lemma [130.7] or Varieties, Lemma [13.1 (Il

Lemmal 22.8. Let f: X — S be a morphism of schemes which is flat and locally
of finite presentation. Let x € X with image s € S. Set d = dim,(X,). The
following are equivalent

(1) f is Cohen-Macaulay at z,

(2) there exists an open neighbourhood U C X of x and a locally quasi-finite
morphism U — Ads over S which is flat at x,

(3) there exists an open neighbourhood U C X of x and a locally quasi-finite
flat morphism U — A‘é over S,

(4) for any S-morphism g : U — Aflg of an open neighbourhood U C X of x we
have: g is quasi-finite at © = g is flat at x.

Proof. Openness of flatness shows (2) and (3) are equivalent, see Theorem

Choose affine open U = Spec(4) C X with ¢ € U and V = Spec(R) C S with
f(U) CcV. Then R — A is a flat ring map of finite presentation. Let p C A be the
prime ideal corresponding to x. After replacing A by a principal localization we
may assume there exists a quasi-finite map R[z1,...,z4] — A, see Algebra, Lemma
Thus there exists at least one pair (U, ¢g) consisting of an open neighbourhood
UCX of zand a locallyﬁ quasi-finite morphism g : U — A$.

Claim: Given R — A flat and of finite presentation, a prime p C A and ¢ :
Rlx1,...,24) — A quasi-finite at p we have: Spec(yp) is flat at p if and only if
Spec(A) — Spec(R) is Cohen-Macaulay at p. Namely, by Theorem flatness
may be checked on fibres. The same is true for being Cohen-Macaulay (as A is
already assumed flat over R). Thus the claim follows from Algebra, Lemma

The claim shows that (1) is equivalent to (4) and combined with the fact that we
have constructed a suitable (U, g) in the second paragraph, the claim also shows
that (1) is equivalent to (2). O

Lemmal 22.9. Let f: X — S be a morphism of schemes which is flat and locally
of finite presentation. For d > 0 there exist opens Uy C X with the following
properties

(1) W =U_s¢Ua is dense in every fibre of f, and

(2) Ug — S is of relative dimension d (see Morphisms, Definition .

Proof. This follows by combining Lemma with Morphisms, Lemma ([

Lemma 22.10. Let f : X — S be a morphism of schemes which is flat and
locally of finite presentation. Suppose ' ~ x is a specialization of points of X with
image s’ ~ s in S. If x is a generic point of an irreducible component of X then

dimz/(XS/) = dimx (Xs)

Af S is quasi-separated, then g will be quasi-finite.
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Proof. The point x is contained in U, for some d, where Uy as in Lemma [22.9, [

Lemma 22.11. The property P(f) =“the fibres of f are locally Noetherian and
f is Cohen-Macaulay” is local in the fppf topology on the target and local in the
syntomic topology on the source.

Proof. We have P(f) = P1(f) AP2(f) where P1(f) =“f is flat”, and Pa(f) =“the
fibres of f are locally Noetherian and Cohen-Macaulay”. We know that P; is local
in the fppf topology on the source and the target, see Descent, Lemmas and
Thus we have to deal with Ps.

Let f : X — Y be a morphism of schemes. Let {p; : Y; — Y},c; be an fppf
covering of Y. Denote f; : X; — Y; the base change of f by ;. Let i € I and let
y; € Y; be a point. Set y = ¢;(y;). Note that

Xi,yi = SpeC(KZ(yQ) XSpec(n(y)) Xy-

and that x(y;)/k(y) is a finitely generated field extension. Hence if X, is locally
Noetherian, then X ,. is locally Noetherian, see Varieties, Lemma And if
in addition X, is Cohen-Macaulay, then X;,, is Cohen-Macaulay, see Varieties,
Lemma [I3.1} Thus P, is fppf local on the target.

Let {X; — X} be a syntomic covering of X. Let y € Y. In this case {X, , = X} is
a syntomic covering of the fibre. Hence the locality of Ps for the syntomic topology
on the source follows from Descent, Lemma Combining the above the lemma
follows. O

23. Slicing Cohen-Macaulay morphisms

The results in this section eventually lead to the assertion that the fppf topology
is the same as the “finitely presented, flat, quasi-finite” topology. The following
lemma is very closely related to Divisors, Lemma [18.9

Lemma 23.1. Let f: X — S be a morphism of schemes. Let x € X be a point
with image s € S. Let h € my; C Ox . Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) the image h of h in Ox, .o = Ox,/msOx 5 is a nonzerodivisor.

Then there exists an affine open neighbourhood U C X of x such that h comes from
h € T(U,Oy) and such that D = V(h) is an effective Cartier divisor in U with
x €D and D — S flat and locally of finite presentation.

Proof. We are going to prove this by reducing to the Noetherian case. By openness
of flatness (see Theorem we may assume, after replacing X by an open neigh-
bourhood of x, that X — S is flat. We may also assume that X and S are affine.
After possible shrinking X a bit we may assume that there exists an h € T'(X, Ox)
which maps to our given h.

We may write S = Spec(A) and we may write A = colim; A; as a directed colimit
of finite type Z algebras. Then by Algebra, Lemma [168.1] or Limits, Lemmas [10.1
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and we can find a cartesian diagram
X — Xo

S

S*>So

with fy flat and of finite presentation, X, affine, and Sy affine and Noetherian.
Let zg € Xy, resp. so € Sy be the image of z, resp. s. We may also assume
there exists an element hy € T'(Xy, Ox,) which restricts to h on X. (If you used
the algebra reference above then this is clear; if you used the references to the
chapter on limits then this follows from Limits, Lemma by thinking of h as a
morphism X — Aj.) Note that Ox, , is a localization of O(X0)ay 0 Or(so) £(S),
so that O(x,),, .z = Ox,,z is a flat local ring map, in particular faithfully flat.
Hence the image hg € O(X0)507$0 is contained in M(X0).0 70 and is a nonzerodivisor.
We claim that after replacing Xy by a principal open neighbourhood of z the
element hg is a nonzerodivisor in By = I'(Xy, Ox,) such that By/hoBy is flat over
Ao =T(So, Osg,). If so then

0—>Boh—0>Bo—>Bo/hoBo—>0

is a short exact sequence of flat Ag-modules. Hence this remains exact on tensoring
with A (by Algebra, Lemma [39.12) and the lemma follows.

It remains to prove the claim above. The corresponding algebra statement is the
following (we drop the subscript o here): Let A — B be a flat, finite type ring
map of Noetherian rings. Let q C B be a prime lying over p C A. Assume h € q
maps to a nonzerodivisor in B,/pB,. Goal: show that after possible replacing B
by B, for some g € B, g ¢ q the element h becomes a nonzerodivisor and B/hB
becomes flat over A. By Algebra, Lemma we see that h is a nonzerodivisor in
By and that By/hBj is flat over A. By openness of flatness, see Algebra, Theorem
or Theorem we see that B/hB is flat over A after replacing B by B,
for some g € B, g & q. Finally, let I = {b € B | hb = 0} be the annihilator of h.
Then IBq = 0 as h is a nonzerodivisor in By. Also [ is finitely generated as B is
Noetherian. Hence there exists a g € B, g € q such that B, = 0. After replacing
B by B, we see that h is a nonzerodivisor. (I

Lemma 23.2. Let f: X — S be a morphism of schemes. Let x € X be a point
with image s € S. Let hq,..., h, € Ox 5. Assume

(1) f is locally of finite presentation,

(2) f is flat at x, and

(3) the images of b, ..., hy in Ox, » = Ox 2/msOx 5 form a regular sequence.
Then there exists an affine open neighbourhood U C X of x such that hq,..., ",
come from hq, ..., h, € D(U, Oy) and such that Z =V (hq,...,h,) = U is a regular
immersion with x € Z and Z — S flat and locally of finite presentation. Moreover,
the base change Zs: — Ug: is a reqular immersion for any scheme S’ over S.

Proof. (Our conventions on regular sequences imply that h; € m, for each i.) The
case = 1 follows from Lemma [23.1] combined with Divisors, Lemma to see
that V' (hq) remains an effective Cartier divisor after base change. The case r > 1
follows from a straightforward induction on r (applying the result for r = 1 exactly
r times; details omitted).
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Another way to prove the lemma is using the material from Divisors, Section
Namely, first by openness of flatness (see Theorem we may assume, after
replacing X by an open neighbourhood of x, that X — S is flat. We may also
assume that X and S are affine. After possible shrinking X a bit we may assume
that we have hy,...,h, € T'(X,0x). Set Z = V(hq,...,h,). Note that X is a
Noetherian scheme (because it is an algebraic k(s)-scheme, see Varieties, Section
and that the topology on X is induced from the topology on X (see Schemes,
Lemma . Hence after shrinking X a bit more we may assume that Z; C X
is a regular immersion cut out by the r elements h;|x., see Divisors, Lemma
and its proof. Tt is also clear that r = dim, (X;) — dim,(Z,) because

dim, (Xs) = dim(Ox, ) + trdeg, 4 (k(z)),

dim,(Z;) = dim(Og, ) + trdeg, ) (x(x)),
dim(Ox, ») = dim(Oz, z) + 7
the first two equalities by Algebra, Lemma[116.3|and the second by r times applying
Algebra, Lemma [60.13] Hence Divisors, Lemma part (3) applies to show that
(after Zariski shrinking X) the morphism Z — X is a regular immersion to which

Divisors, Lemma applies (which gives the flatness and the statement on base
change). O

Lemma 23.3. Let f: X — S be a morphism of schemes. Let x € X be a point
with image s € S. Assume

(1) f is locally of finite presentation,

(2) f is flat at x, and

(3) Ox, o has depth > 1.
Then there exists an affine open neighbourhood U C X of x and an effective Cartier
divisor D C U containing x such that D — S is flat and of finite presentation.

Proof. Pick any h € m; C Ox, which maps to a nonzerodivisor in Ox_, and
apply Lemma [23.1 (]

Lemmal 23.4. Let f: X — S be a morphism of schemes. Let x € X be a point
with image s € S. Assume

(1) f is locally of finite presentation,
(2) f is Cohen-Macaulay at x, and
(3) x is a closed point of Xs.
Then there exists a reqular immersion Z — X containing x such that

(a) Z — S is flat and locally of finite presentation,
(b) Z — S is locally quasi-finite, and
(¢) Zs ={x} set theoretically.

Proof. We may and do replace S by an affine open neighbourhood of s. We will
prove the lemma for affine S by induction on d = dim, (X5).

The case d = 0. In this case we show that we may take Z to be an open neigh-
bourhood of z. (Note that an open immersion is a regular immersion.) Namely, if
d =0, then X — S is quasi-finite at x, see Morphisms, Lemma [29.5] Hence there
exists an affine open neighbourhood U C X such that U — S is quasi-finite, see
Morphisms, Lemma [56.2] Thus after replacing X by U we see that the fibre X is a
finite discrete set. Hence after replacing X by a further affine open neighbourhood

[IDGET, IV
Proposition 17.16.1]
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of X we see that f~1({s}) = {z} (because the topology on X, is induced from the
topology on X, see Schemes, Lemma [18.5]). This proves the lemma in this case.

Next, assume d > 0. Note that because z is a closed point of its fibre the extension
k(z)/k(s) is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma [20.3)).
Thus we see

depth(Ox, ») = dim(Ox, ) =d >0

the first equality as Ox, , is Cohen-Macaulay and the second by Morphisms,
Lemma Thus we may apply Lemma to find a diagram

D—U——=X

A

S

with # € D. Note that Op_ ., = Ox, ./(h) for some nonzerodivisor h, see Di-
visors, Lemma Hence Op, , is Cohen-Macaulay of dimension one less than
the dimension of Ox, ., see Algebra, Lemma for example. Thus the mor-
phism D — S is flat, locally of finite presentation, and Cohen-Macaulay at x with
dim, (Dy) = dim,(X;) — 1 = d — 1. By induction hypothesis we can find a regular
immersion Z — D having properties (a), (b), (¢). As Z — D — U are both regular
immersions, we see that also Z — U is a regular immersion by Divisors, Lemma
This finishes the proof. O

Lemma 23.5. Let f: X — S be a flat morphism of schemes which is locally of
finite presentation. Let s € S be a point in the image of f. Then there exists a

commutative diagram
S X
X /
S

where g : S’ — S is flat, locally of finite presentation, locally quasi-finite, and
s€g(s').

Proof. The fibre X, is not empty by assumption. Hence there exists a closed point
x € Xs where f is Cohen-Macaulay, see Lemma Apply Lemma and set
S'=S5. O

The following lemma shows that sheaves for the fppf topology are the same thing
as sheaves for the “quasi-finite, flat, finite presentation” topology.

Lemma 23.6. Let S be a scheme. Let U = {S; — S}icr be an fppf covering of S,
see Topologies, Definition . Then there exists an fppf coveringV = {T; — S}tjcs
which refines (see Sites, Definition U such that each T; — S is locally quasi-
finite.

Proof. For every s € S there exists an ¢ € I such that s is in the image of S; — S.
By Lemma we can find a morphism g : Ts — S such that s € g4(Ts) which is
flat, locally of finite presentation and locally quasi-finite and such that g5 factors
through S; — S. Hence {T, — S} is the desired covering of S that refines /. O
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24. Generic fibres
Some results on the relationship between generic fibres and nearby fibres.

Lemmal 24.1. Let f : X — Y be a finite type morphism of schemes. Assume
Y irreducible with generic point n. If X, = () then there exists a nonempty open
V CY such that Xy =V xy X = 0.

Proof. Follows immediately from the more general Morphisms, Lemma [8.5 ([l

Lemma 24.2. Let f : X — Y be a finite type morphism of schemes. Assume
Y irreducible with generic point n. If X, # 0 then there exists a nonempty open
V CY such that Xy =V xy X — V is surjective.

Proof. This follows, upon taking affine opens, from Algebra, Lemma m (Of
course it also follows from generic flatness.) O

Lemma 24.3. Let f: X — Y be a finite type morphism of schemes. Assume Y
irreducible with generic point n. If Z C X 1is a closed subset with Z, nowhere dense
in X,, then there exists a nonempty open V C Y such that Z, is nowhere dense in
Xy forallyeV.

Proof. Let Y/ C Y be the reduction of Y. Set X' =Y’ xy X and Z/ =Y’ xy Z.
AsY’ — Y is a universal homeomorphism by Morphisms, Lemma we see that
it suffices to prove the lemma for Z’ C X’ — Y’. Thus we may assume that Y is
integral, see Properties, Lemma [3.4L By Morphisms, Proposition [27.1] there exists a
nonempty affine open V' C Y such that Xy — V and Zy — V are flat and of finite
presentation. We claim that V works. Pick y € V. If Z, has a nonempty interior,
then Z, contains a generic point £ of an irreducible component of X,. Note that
1~ f(§). Since Zy — V is flat we can choose a specialization £ ~~ &, £’ € Z with

f(&) =mn, see Morphisms, Lemma [25.9] By Lemma [22.10] we see that
dimg/(Zn) = dlmg(Zy) = dimg (Xy) = dimg/(Xn).

Hence some irreducible component of Z,, passing through ¢ has dimension dimg/ (X))
which contradicts the assumption that Z, is nowhere dense in X, and we win. [

Lemma 24.4. Let f : X = Y be a finite type morphism of schemes. Assume Y
irreducible with generic point . Let U C X be an open subscheme such that U, is
scheme theoretically dense in X,. Then there exists a nonempty open V CY such
that Uy is scheme theoretically dense in X, for ally € V.

Proof. Let Y/ C Y be the reduction of Y. Let X' =Y’ xy X and U' =Y’ xy U.
As Y’ — Y induces a bijection on points, and as U’ — U and X’ — X induce
isomorphisms of scheme theoretic fibres, we may replace Y by Y’ and X by X'.
Thus we may assume that Y is integral, see Properties, Lemma We may
also replace Y by a nonempty affine open. In other words we may assume that
Y = Spec(A) where A is a domain with fraction field K.

As f is of finite type we see that X is quasi-compact. Write X = X; U...UX,, for
some affine opens X;. By Morphisms, Definition we see that U; = X; NU is an
open subscheme of X; such that U;, is scheme theoretically dense in X; ,. Thus
it suffices to prove the result for the pairs (X;, U;), in other words we may assume
that X is affine.
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Write X = Spec(B). Note that Bg is Noetherian as it is a finite type K-algebra.
Hence U, is quasi-compact. Thus we can find finitely many ¢1,...,9m € B such
that D(g;) C U and such that U, = D(g1), U ... U D(gm),. The fact that U,
is scheme theoretically dense in X, means that Bx — @j(BK)gj is injective,
see Morphisms, Example By Algebra, Lemma this is equivalent to the
injectivity of Bx — @;_; _,, Bk, b= (g1b,...,gmb). Let M be the cokernel of
this map over A, i.e., such that we have an exact sequence

0—>I—>Bﬂ>@ B M —0

After replacing A by A, for some nonzero h we may assume that B is a flat, finitely
presented A-algebra, and that M is flat over A, see Algebra, Lemma The
flatness of B over A implies that B is torsion free as an A-module, see More on
Algebra, Lemma Hence B C Bg. By assumption Ix = 0 which implies that
I =0 (as I C B C Bg is a subset of Ix). Hence now we have a short exact
sequence

0 B ormin), (Y B—M—0
j m

with M flat over A. Hence for every homomorphism A — x where k is a field, we
obtain a short exact sequence

0—>B®AK—>(91®17W79M®1) @ B®Rsark —>MRar—0
j=1,....m

see Algebra, Lemma(39.12) Reversing the arguments above this means that | D(g;®
1) is scheme theoretically dense in Spec(B®4 k). As |JD(g;®1) = D(g;)x C Uk
we obtain that U, is scheme theoretically dense in X, which is what we wanted to
prove. (I

Suppose given a morphism of schemes f : X — Y and a point y € Y. Recall that
the fibre X, is homeomorphic to the subset f~!({y}) of X with induced topology,
see Schemes, Lemma Suppose given a closed subset T'(y) C X,. Let T be the
closure of T'(y) in X. Endow T with the induced reduced scheme structure. Then
T is a closed subscheme of X with the property that T, = T'(y) set-theoretically.
In fact T is the smallest closed subscheme of X with this property. Thus it is
“harmless” to denote a closed subset of X, by T}, if we so desire. In the following
lemma we apply this to the generic fibre of f.

Lemmal 24.5. Let f : X — Y be a finite type morphism of schemes. Assume
Y idrreducible with generic point . Let X,, = Z1,U ... U Z,, be a covering of
the generic fibre by closed subsets of X,. Let Z; be the closure of Z; , in X (see
discussion above). Then there exists a nonempty open V. C Y such that X, =
ZiyU...UZy,y forallyeV.

Proof. If Y is Noetherian then U = X \ (Z; U... U Z,) is of finite type over Y
and we can directly apply Lemma to get that Uy = ) for a nonempty open
V C Y. In general we argue as follows. As the question is topological we may
replace Y by its reduction. Thus Y is integral, see Properties, Lemma After
shrinking ¥ we may assume that X — Y is flat, see Morphisms, Proposition [27.1]
In this case every point x in X, is a specialization of a point 2’ € X,, by Morphisms,
Lemma[25.9] As the Z; are closed in X and cover the generic fibre this implies that
X, =UZ, for y €Y as desired. O
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The following lemma says that generic fibres of morphisms whose source is reduced
are reduced.

Lemmal 24.6. Let f: X — Y be a morphism of schemes. Let n € Y be a generic
point of an irreducible component of Y. Then (X,)rea = (Xred)n-

Proof. Choose an affine neighbourhood Spec(A4) C Y of . Choose an affine open
Spec(B) C X mapping into Spec(A) via the morphism f. Let p C A be the minimal
prime corresponding to 7. Let B.q be the quotient of B by the nilradical \/@
The algebraic content of the lemma is that C' = B,..q ® 4 k(p) is reduced. Denote
I C A the nilradical so that A,.q = A/I. Denote p,.q = p/I which is a minimal
prime of A,cq with £(p) = K(Preq). Since A — Bj.q and A — k(p) both factor
through A — A,cq we have C = B,cq ®a4,,, K(Pred). Now K(Pred) = (Ared)p,.q 1S @
localization by Algebra, Lemma Hence C is a localization of B,.q (Algebra,
Lemma and hence reduced. (Il

Lemma 24.7. Let f : X = Y be a morphism of schemes. Assume that Y is
irreducible and f is of finite type. There exists a diagram

X — Xy —X

17170

Y —>V——Y

where

(1) V is a nonempty open of Y,

) XV =V Xy X,

) g:Y' =V is a finite universal homeomorphism,
) X' = (Y/ Xy X)red = (Y/ Xy XV)red7

) ¢ is a finite universal homeomorphism,

) Y’ is an integral affine scheme,

) [ is flat and of finite presentation, and

)

the generic fibre of f' is geometrically reduced.

00 ~J O Ut~ W N

(
(
(
(
(
(
(

Proof. Let V = Spec(A) be a nonempty affine open of Y. By assumption the
Jacobson radical of A is a prime ideal p. Let K = k(p). Let p be the characteristic
of K if positive and 1 if the characteristic is zero. By Varieties, Lemma there
exists a finite purely inseparable field extension K’/K such that X is geometri-
cally reduced over K’'. Choose elements 1, ..., x, € K’ which generate K’ over K
and such that some p-power of z; is in A/p. Let A’ C K’ be the finite A-subalgebra
of K’ generated by z1,...,z,. Note that A’ is a domain with fraction field K’.
By Algebra, Lemma we see that A — A’ induces a universal homeomorphism
on spectra. Set Y’ = Spec(A’). Set X’ = (Y’ Xy X);eq- The generic fibre of
X' = Y'"is (Xk)rea by Lemma which is geometrically reduced by construc-
tion. Note that X’ — Xy is a finite universal homeomorphism as the composition
of the reduction morphism X’ — Y’ xy X (see Morphisms, Lemma and the
base change of g. At this point all of the properties of the lemma hold except for
possibly (7). This can be achieved by shrinking Y’ and hence V', see Morphisms,
Proposition [27.1 O
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Lemmal 24.8. Let f : X — Y be a morphism of schemes. Assume that Y is
irreducible and f is of finite type. There exists a diagram

X — Xy ——X

g/
N
Y —=V——=Y

where

(1) V is a nonempty open of Y,

) XV =V Xy X

) g:Y' =V is surjective finite étale,

) X,:Y/XYX:Y/ Xva,

) g’ is surjective finite étale,

) Y’ is an irreducible affine scheme, and

) all irreducible components of the generic fibre of f' are geometrically irre-

ducible.

(2
(3
(4
(5
(6
(7

Proof. Let V = Spec(A) be a nonempty affine open of Y. By assumption the
Jacobson radical of A is a prime ideal p. Let K = k(p). By Varieties, Lemma
there exists a finite separable field extension K'/K such that all irreducible
components of Xg- are geometrically irreducible over K’. Choose an element a €
K’ which generates K’ over K, see Fields, Lemma Let P(T) € K[T] be the
minimal polynomial for « over K. After replacing o by fa for some f € A, f & p
we may assume that there exists a monic polynomial 7% +a, T4 1 4 ...+ a4 € A[T]
which maps to P(T) € K[T] under the map A[T] — K[T]. Set A" = A[T]/(P).
Then A — A’ is a finite free ring map such that there exists a unique prime ¢ lying
over p, such that K = x(p) C r(q) = K’ is finite separable, and such that pAj is
the maximal ideal of Ay. Hence g : Y’ = Spec(A’) — V = Spec(A) is étale at q, see
Algebra, Lemma This means that there exists an open W C Spec(A’) such
that glw : W — Spec(A) is étale. Since g is finite and since q is the only point
lying over p we see that Z = g(Y’' \ W) is a closed subset of V' not containing p.
Hence after replacing V' by a principal affine open of V' which does not meet Z we
obtain that g is finite étale. |

25. Relative assassins

Lemma 25.1. Let f : X — S be a morphism of schemes. Let F be a quasi-

coherent Ox -module. Let § € Assx;s(F) and set Z = {&}y € X. If f is locally of
finite type and F is a finite type Ox-module, then there exists a nonempty open
V C Z such that for every s € f(V) the generic points of Vs are elements of
Assx/s(F)-

Proof. We may replace S by an affine open neighbourhood of f(£) and X by an
affine open neighbourhood of £. Hence we may assume S = Spec(A), X = Spec(B)
and that f is given by the finite type ring map A — B, see Morphisms, Lemma
Moreover, we may write F = M for some finite B-module M, see Properties,
Lemma [[6.1] Let q C B be the prime corresponding to & and let p C A be the
corresponding prime of A. By assumption q € Assg(M ®4 x(p)), see Algebra,
Remark and Divisors, Lemma With this notation Z = V(q) C Spec(B).
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In particular f(Z) C V(p). Hence clearly it suffices to prove the lemma after
replacing A, B, and M by A/pA, B/pB, and M/pM. In other words we may
assume that A is a domain with fraction field K and q C B is an associated prime
of M ®4 K.

At this point we can use generic flatness. Namely, by Algebra, Lemma [118.3| there
exists a nonzero g € A such that M, is flat as an Ag-module. After replacing A by
Ay we may assume that M is flat as an A-module.

In this case, by Algebra, Lemma we see that q is also an associated prime of
M. Hence we obtain an injective B-module map B/q — M. Let @ be the cokernel
so that we obtain a short exact sequence

0—-B/q—-M-—-0Q—0

of finite B-modules. After applying generic flatness Algebra, Lemma once
more, this time to the B-module @, we may assume that @ is a flat A-module. In
particular we may assume the short exact sequence above is universally injective, see
Algebra, Lemma[39.12] In this situation (B/q)®ak(p’) C M ®4k(p’) for any prime
p’ of A. The lemma follows as a minimal prime g’ of the support of (B/q) ® 4 k(p’)
is an associated prime of (B/q) ® 4 #(p’) by Divisors, Lemma O

Lemma 25.2. Let f : X — Y be a morphism of schemes. Let F be a quasi-
coherent Ox-module. Let U C X be an open subscheme. Assume

(1) f is of finite type,

(2) F is of finite type,

(3) Y is irreducible with generic point n, and

(4) Assx, (Fy) is not contained in U,.

Then there exists a nonempty open subscheme V. C'Y such that for all y € V the
set Assx, (Fy) is not contained in U,.

Proof. Let Z C X be the scheme theoretic support of F, see Morphisms, Defi-
nition Then Z,, is the scheme theoretic support of F,, (Morphisms, Lemma
25.14). Hence the generic points of irreducible components of Z, are contained
in Assx, (F,) by Divisors, Lemma Hence we see that Z, N U, = 0. Thus
T = Z\U is a closed subset of Z with T,, = (. If we endow 7" with the induced
reduced scheme structure then T — Y is a morphism of finite type. By Lemma
there is a nonempty open V C Y with Ty = (). Then V works. (]

Lemmal 25.3. Let f : X — Y be a morphism of schemes. Let F be a quasi-
coherent Ox-module. Let U C X be an open subscheme. Assume

(1) f is of finite type,

(2) F is of finite type,

(3) Y is irreducible with generic point n, and

(4) Assx,(Fp) C Uy.
Then there exists a nonempty open subscheme V. .C'Y such that for all y € V we
have Assx,(Fy) C Uy.

Proof. (This proof is the same as the proof of Lemma We urge the reader
to read that proof first.) Since the statement is about fibres it is clear that we may
replace Y by its reduction. Hence we may assume that Y is integral, see Properties,


https://stacks.math.columbia.edu/tag/05KN
https://stacks.math.columbia.edu/tag/05KP

05KQ

05KR

MORE ON MORPHISMS 72

Lemma We may also assume that Y = Spec(A) is affine. Then A is a domain
with fraction field K.

As f is of finite type we see that X is quasi-compact. Write X = X; U... U X,
for some affine opens X; and set F; = F|x,. By assumption the generic fibre of
U;, = X; NU contains Asin_’n(.Em). Thus it suffices to prove the result for the
triples (X;, F;,U;), in other words we may assume that X is affine.

Write X = Spec(B). Let N be a finite B-module such that 7 = N. Note that
Bk is Noetherian as it is a finite type K-algebra. Hence U, is quasi-compact.
Thus we can find finitely many g¢1, ..., gn € B such that D(g;) C U and such that
Uy = D(g1)yU...UD(gm)y. Since Assx, (F,) C U, we see that Nx — @,(Nk )y,
is injective. By Algebra, Lemma [24.4] this is equivalent to the injectivity of Nx —
D=1 N, n = (gin,...,gmn). Let I and M be the kernel and cokernel of
this map over A, i.e., such that we have an exact sequence

0—>I—>NM>@ N M0

After replacing A by Ay, for some nonzero h we may assume that B is a flat, finitely
presented A-algebra and that both M and N are flat over A, see Algebra, Lemma
The flatness of N over A implies that IV is torsion free as an A-module, see
More on Algebra, Lemma [22.9] Hence N C Nk. By construction Ix = 0 which
implies that I =0 (as I C N C Nk is a subset of I ). Hence now we have a short
exact sequence
0 N mm), @ N—-M-—=0
j=1,....m

with M flat over A. Hence for every homomorphism A — k where « is a field, we
obtain a short exact sequence

0= N®y HM@ N@ar— M@ak—0

.....

see Algebra, Lemma 2| Reversing the arguments above this means that | D(g;®
1) contains Asspg (N ®a k). As |UD(g; ® 1) = UD(g;)x C Ux we obtain that
U, contains Assxgx(F ® ) which is what we wanted to prove. O

Lemma 25.4. Let f: X — S be a morphism which is locally of finite type. Let
F be a quasi-coherent Ox-module of finite type. Let U C X be an open subscheme.
Let g : S — S be a morphism of schemes, let f' : X' = Xg/ — S’ be the base change
of f, let ¢ : X' — X be the projection, set F' = (¢')*F, and set U' = (¢')~*(U).
Finally, let s € S with image s = g(s"). In this case

Assx (Fs) C Us & AssX;/(]:;/) cUul,.

Proof. This follows immediately from Divisors, Lemma See also Divisors,
Remark [T.4 O

Lemma 25.5. Let f: X — Y be a morphism of finite presentation. Let F be a
quasi-coherent Ox -module of finite presentation. Let U C X be an open subscheme
such that U — 'Y 1is quasi-compact. Then the set

E={yecY | Assx, (F,) CUy}

is locally constructible in'Y .
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Proof. Let y € Y. We have to show that there exists an open neighbourhood V' of
y in Y such that ENV is constructible in V. Thus we may assume that Y is affine.
Write Y = Spec(A) and A = colim A; as a directed limit of finite type Z-algebras.
By Limits, Lemma we can find an ¢ and a morphism f; : X; — Spec(4;) of
finite presentation whose base change to Y recovers f. After possibly increasing i
we may assume there exists a quasi-coherent Ox,-module F; of finite presentation
whose pullback to X is isomorphic to F, see Limits, Lemma After possibly
increasing ¢ one more time we may assume there exists an open subscheme U; C X;
whose inverse image in X is U, see Limits, Lemma By Lemma [25.4] it suffices
to prove the lemma for f;. Thus we reduce to the case where Y is the spectrum of
a Noetherian ring.

We will use the criterion of Topology, Lemma to prove that F is constructible
in case Y is a Noetherian scheme. To see this let Z C Y be an irreducible closed
subscheme. We have to show that N Z either contains a nonempty open subset
or is not dense in Z. This follows from Lemmas and applied to the base
change (X, F,U) xy Z over Z. O

26. Reduced fibres

Lemma 26.1. Let f: X — Y be a morphism of schemes. Assume Y irreducible
with generic point nn and f of finite type. If X, is nonreduced, then there exists a
nonempty open V C Y such that for ally € V the fibre X, is nonreduced.

Proof. Let Y’ C Y be the reduction of Y. Let X’ — Y’ be the base change of
f- Note that Y/ — Y induces a bijection on points and that X’ — X identifies
fibres. Hence we may assume that Y’ is reduced, i.e., integral, see Properties,
Lemma We may also replace Y by an affine open. Hence we may assume
that ¥ = Spec(A) with A a domain. Denote K the fraction field of A. Pick
an affine open Spec(B) = U C X and a section h, € I'(U,,Oy,) = Bk which
is nonzero and nilpotent. After shrinking ¥ we may assume that h comes from
h € T'(U,Op) = B. After shrinking Y a bit more we may assume that  is nilpotent.
Let I = {b € B | hb = 0} be the annihilator of h. Then C' = B/I is a finite type
A-algebra whose generic fiber (B/I)k is nonzero (as h, # 0). We apply generic
flatness to A — C and A — B/hB, see Algebra, Lemma and we obtain
a g€ A, g# 0 such that Cy is free as an Aj-module and (B/hB), is flat as an
Ag-module. Replace Y by D(g) C Y. Now we have the short exact sequence

0—-C—B— B/hB—0.

with B/hB flat over A and with C nonzero free as an A-module. It follows that for
any homomorphism A — k to a field the ring C' ® 4 k is nonzero and the sequence

0—>C®ak—>BRak— B/hBRak—0

is exact, see Algebra, Lemma Note that B/hB®4 k= (B®4 k)/h(B®4 K)
by right exactness of tensor product. Thus we conclude that multiplication by h is
not zero on B ® 4 k. This clearly means that for any point y € Y the element h
restricts to a nonzero element of Uy, whence X, is nonreduced. d
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Lemmal 26.2. Let f: X — Y be a morphism of schemes. Let g :Y' —Y be any
morphism, and denote f': X' — Y’ the base change of f. Then

{y e Y'| X, is geometrically reduced}
= 9_1({?/ €Y | X, is geometrically reduced}).

Proof. This comes down to the statement that for y’ € Y’ with image y € Y
the fibre le;’ = X, %, ¢ is geometrically reduced over x(y’) if and only if X, is
geometrically reduced over (y). This follows from Varieties, Lemma O

Lemma 26.3. Let f: X — Y be a morphism of schemes. Assume Y irreducible
with generic point n and f of finite type. If X, is not geometrically reduced, then
there exists a nonempty open V. C Y such that for all y € V the fibre X, is not
geometrically reduced.

Proof. Apply Lemma to get

X — Xy —X

g
R
Y —V——Y

with all the properties mentioned in that lemma. Let 1’ be the generic point of
Y’. Counsider the morphism X’ — Xy (which is the reduction morphism) and the
resulting morphism of generic fibres X 7'7, — X,y. Since X 7’7, is geometrically reduced,
and X, is not this cannot be an isomorphism, see Varieties, Lemma Hence X,
is nonreduced. Hence by Lemma the fibres of Xy — Y’ are nonreduced at all
points ¢y’ € V' of a nonempty open V' C Y’. Since g : Y/ — V is a homeomorphism
Lemma m proves that g(V’) is the open we are looking for. ]

Lemma 26.4. Let f: X — Y be a morphism of schemes. Assume

(1) Y is irreducible with generic point n,

(2) X, is geometrically reduced, and

(3) f is of finite type.
Then there exists a nonempty open subscheme V. C Y such that Xy — V has
geometrically reduced fibres.

Proof. Let Y’ C Y be the reduction of Y. Let X’ — Y’ be the base change of f.
Note that Y/ — Y induces a bijection on points and that X’ — X identifies fibres.
Hence we may assume that Y is reduced, i.e., integral, see Properties, Lemma
We may also replace Y by an affine open. Hence we may assume that Y = Spec(A)
with A a domain. Denote K the fraction field of A. After shrinking Y a bit we
may also assume that X — Y is flat and of finite presentation, see Morphisms,
Proposition [27.1

As X, is geometrically reduced there exists an open dense subset V' C X, such that
V' — Spec(K) is smooth, see Varieties, Lemma Let U C X be the set of points
where f is smooth. By Morphisms, Lemma we see that V' C U,. Thus the
generic fibre of U is dense in the generic fibre of X. Since X, is reduced, it follows
that U, is scheme theoretically dense in X, see Morphisms, Lemma We note
that as U — Y is smooth all the fibres of U — Y are geometrically reduced. Thus
it suffices to show that, after shrinking Y, for all y € Y the scheme U, is scheme
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theoretically dense in X, see Morphisms, Lemma This follows from Lemma
244 O

Lemma 26.5. Let f: X — Y be a morphism which is quasi-compact and locally
of finite presentation. Then the set

E={yeY | X, is geometrically reduced}
is locally constructible in'Y .

Proof. Let y € Y. We have to show that there exists an open neighbourhood V' of
y in Y such that E NV is constructible in V. Thus we may assume that Y is affine.
Then X is quasi-compact. Choose a finite affine open covering X =U; U...UU,.
Then the fibres of U; — Y at y form an affine open covering of the fibre of X — Y
at y. Hence we may assume X is affine as well. Write Y = Spec(A). Write
A = colim A; as a directed limit of finite type Z-algebras. By Limits, Lemma [10.1
we can find an ¢ and a morphism f; : X; — Spec(A4;) of finite presentation whose
base change to Y recovers f. By Lemma [26.2|it suffices to prove the lemma for f;.
Thus we reduce to the case where Y is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma to prove that F is constructible
in case Y is a Noetherian scheme. To see this let Z C Y be an irreducible closed
subscheme. We have to show that I N Z either contains a nonempty open subset
or is not dense in Z. If X¢ is geometrically reduced, then Lemma (applied to
the morphism X — Z) implies that all fibres X, are geometrically reduced for
a nonempty open V C Z. If X¢ is not geometrically reduced, then Lemma @
(applied to the morphism Xz — Z) implies that all fibres X, are geometrically
reduced for a nonempty open V' C Z. Thus we win. (]

Lemma 26.6. Let X — Spec(R) be a proper flat morphism where R is a discrete
valuation ring. If the special fibre is reduced, then both X and the generic fibre X,
are reduced.

Proof. Assume the special fibre X, is reduced. Let € X be any point, and let
us show that Ox , is reduced; this will prove that X and X, are reduced. Let
z ~ z' be a specialization with 2’ in the special fibre; such a specialization exists
as a proper morphism is closed. Consider the local ring A = Ox ;. Then Ox ,
is a localization of A, so it suffices to show that A is reduced. Let @ € R be a
uniformizer. If a € A then there exists an n > 0 and an element ¢’ € A such that
a = 7"a’ and @’ ¢ wA. This follows from Krull intersection theorem (Algebra,
Lemma. If a is nilpotent, so is a’, because 7 is a nonzerodivisor by flatness of
A over R. But ¢’ maps to a nonzero element of the reduced ring A/mA = Ox_ ..
This is a contradiction unless A is reduced, which is what we wanted to show. [

Lemma 26.7. Let f: X — Y be a flat proper morphism of finite presentation.
Then the set {y € Y | X, is geometrically reduced} is open in'Y .

Proof. We may assume Y is affine. Then Y is a cofiltered limit of affine schemes
of finite type over Z. Hence we can assume X — Y is the base change of Xy — Y}
where Y} is the spectrum of a finite type Z-algebra and Xy — Yj is flat and proper.
See Limits, Lemma and Since the formation of the set of points
where the fibres are geometrically reduced commutes with base change (Lemma
, we may assume the base is Noetherian.
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Assume Y is Noetherian. The set is constructible by Lemma Hence it suf-
fices to show the set is stable under generalization (Topology, Lemma . By
Properties, Lemma we reduce to the case where Y = Spec(R), R is a discrete
valuation ring, and the closed fibre X, is geometrically reduced. To show: the
generic fibre X, is geometrically reduced.

If not then there exists a finite extension L of the fraction field of R such that X,
is not reduced, see Varieties, Lemma There exists a discrete valuation ring
R’ C L with fraction field L dominating R, see Algebra, Lemma After
replacing R by R’ we reduce to Lemma [26.6] O

27. Irreducible components of fibres

Lemmal 27.1. Let f: X — Y be a morphism of schemes. Assume Y irreducible
with generic point n and f of finite type. If X,, has n irreducible components, then
there exists a nonempty open V. C 'Y such that for all y € V the fibre X, has at
least n irreducible components.

Proof. As the question is purely topological we may replace X and Y by their
reductions. In particular this implies that Y is integral, see Properties, Lemma
Let X,, = X; ,U...UX, , be the decomposition of X, into irreducible components.
Let X; C X be the reduced closed subscheme whose generic fibre is X; ;. Note that
Z;; = X;N X is a closed subset of X; whose generic fibre Z; ; ,, is nowhere dense in
Xi,,. Hence after shrinking ¥ we may assume that Z; ; , is nowhere dense in X,
for every y € Y, see Lemma [24.3] After shrinking ¥ some more we may assume
that X, = JX,, for y € Y, see Lemma Moreover, after shrinking Y we
may assume that each X; — Y is flat and of finite presentation, see Morphisms,
Proposition 27.1] The morphisms X; — Y are open, see Morphisms, Lemma
Thus there exists an open neighbourhood V' of n which is contained in f(X;) for
each i. For each y € V the schemes X, , are nonempty closed subsets of X, we
have X, = |J X, , and the intersections Z; ; , = X, , N X, , are not dense in X ,.
Clearly this implies that X, has at least n irreducible components. O

Lemmal 27.2. Let f: X — Y be a morphism of schemes. Let g:Y' — Y be any
morphism, and denote f' : X' — Y the base change of f. Then

{v' €Y' | X, is geometrically irreducible}
=g '({y € Y | X, is geometrically irreducible}).
Proof. This comes down to the statement that for ¢y € Y’ with image y € Y the

fibre X, = X, x, y' is geometrically irreducible over (y’) if and only if X, is
geometrically irreducible over k(y). This follows from Varieties, Lemma (]

Lemma 27.3. Let f: X — Y be a morphism of schemes. Let
nx/y : Y —» {071,2,3,...,00}
be the function which associates to y € Y the number of irreducible components of
(Xy)x where K is a separably closed extension of k(y). This is well defined and if
g:Y' =Y is a morphism then
Nx//yr =Nx/y °4g
where X' — Y’ is the base change of f.
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Proof. Suppose that 3’ € Y’ has image y € Y. Suppose K D x(y) and K’ D x(y’)
are separably closed extensions. Then we may choose a commutative diagram

K K// KI

| T

wlYy) ———————=r(y)

of fields. The result follows as the morphisms of schemes
Xy =— (X )k = (Xy) g — (Xy)k
induce bijections between irreducible components, see Varieties, Lemma O

Lemma 27.4. Let A be a domain with fraction field K. Let P € Alxy,...,x,].
Denote K the algebraic closure of K. Assume P is irreducible in K[xy,...,x,)].
Then there exists a f € A such that P¥ € k[x1,...,2y] is irreducible for all homo-
morphisms ¢ : Ay — K into fields.

Proof. There exists an automorphism ¥ of A[zy,...,x,] over A such that ¥(P) =
azld+ lower order terms in x, with a # 0, see Algebra, Lemma We may
replace P by ¥(P) and we may replace A by A,. Thus we may assume that P is
monic in z,, of degree d > 0. For i =1,...,n — 1 let d; be the degree of P in x;.
Note that this implies that P¥ is monic of degree d in x,, and has degree < d; in
x; for every homomorphism ¢ : A — k where k is a field. Thus if P¥ is reducible,
then we can write

P? =Q1Q2
with @1, Q2 monic of degree e1,es > 0 in x, with e; + eo = d and having degree
<d;in x; fori=1,...,n— 1. In other words we can write
€ , J AR
(27.4.1) @ =zl + Zo§l<ej (ZLELZ @il L )x”
where the sum is over the set £ of multi-indices L of the form L = (I3,...,lh—1)

with 0 < I; < d;. For any ey, es > 0 with e; + eo = d we consider the A-algebra

Bey ey = Al{a1,L}0<i<er Lecs {02,1,1 }o<i<e,, Lec]/ (velations)

where the (relations) is the ideal generated by the coefficients of the polynomial

P—Q1Q2 € Al{a1,1,1}o<i<er,Lec, {a2,1,0 Yo<i<es,Lec] (1, - - Tn]

with Q1 and @2 defined as in . OK, and the assumption that P is irreducible
over K implies that there does not exist any A-algebra homomorphism B, ¢, —
K. By the Hilbert Nullstellensatz, see Algebra, Theorem this means that
Beye, ®4 K =0. As B, ., is a finitely generated A-algebra this signifies that we
can find an fe, ., € A such that (Be, e,)s,, ., = 0. By construction this means
that if ¢ : Ay, . — £ is a homomorphism to a field, then P¥ does not have a
factorization P¥ = (Q1Q2 with @y of degree e; in x, and @ of degree es in x,.
Thus taking f = [.; c,50.¢, 4 e9=d fer,eo We win. O

Lemmal 27.5. Let f: X — Y be a morphism of schemes. Assume

(1) Y is irreducible with generic point 1,
(2) X,, is geometrically irreducible, and

(3) f is of finite type.
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Then there exists a monempty open subscheme V. C Y such that Xy — V has
geometrically irreducible fibres.

First proof of Lemma We give two proofs of the lemma. These are es-
sentially equivalent; the second is more self contained but a bit longer. Choose a
diagram

X — Xy —X

ok

vy v .y

as in Lemma Note that the generic fibre of f’ is the reduction of the generic
fibre of f (see Lemma and hence is geometrically irreducible. Suppose that
the lemma holds for the morphism f’. Then after shrinking V" all the fibres of f" are
geometrically irreducible. As X' = (Y’ Xy Xy )req this implies that all the fibres
of Y’ xy Xy are geometrically irreducible. Hence by Lemma all the fibres of
Xy — V are geometrically irreducible and we win. In this way we see that we
may assume that the generic fibre is geometrically reduced as well as geometrically
irreducible and we may assume Y = Spec(A) with A a domain.

Let z € X, be the generic point. As X, is geometrically irreducible and re-
duced we see that L = k(x) is a finitely generated extension of K = k(n) which
is geometrically reduced and geometrically irreducible, see Varieties, Lemmas
and In particular the field extension L/K is separable, see Algebra, Lemma
Hence we can find z1,...,2,41 € L which generate L over K and such that
T1,...,T, is a transcendence basis for L over K, see Algebra, Lemma Let
P e K(x1,...,z,)[T] be the minimal polynomial for ,;1. Clearing denominators
we may assume that P has coefficients in A[z1,...,z,]. Note that as L is geometri-
cally reduced and geometrically irreducible over K, the polynomial P is irreducible
in K[x1,...,2,,T] where K is the algebraic closure of K. Denote

B = A[[El, ce 7xr+1]/(P(ajT+1))

and set X’ = Spec(B’). By construction the fraction field of B’ is isomorphic to
L = k(x) as K-extensions. Hence there exists an open U C X, and open U’ C X’
and a Y-isomorphism U — U’, see Morphisms, Lemmam Here is a diagram:

XiTT/HX/SPeC(B/)
YY/

Note that U, C X, and U; C X, are dense opens. Thus after shrinking Y by
applying Lemma we obtain that U, is dense in X, and U; is dense in X; for
all y € Y. Thus it suffices to prove the lemma for X’ — Y which is the content of
Lemma 7.4 O

Second proof of Lemma Let Y’ C Y be the reduction of Y. Let X' — X
be the reduction of X. Note that X’ — X — Y factors through Y”’, see Schemes,
Lemma As Y’ — Y and X’ — X are universal homeomorphisms by Mor-
phisms, Lemma we see that it suffices to prove the lemma for X’ — Y. Thus
we may assume that X and Y are reduced. In particular Y is integral, see Prop-
erties, Lemma Thus by Morphisms, Proposition there exists a nonempty
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affine open V' C Y such that Xy — V is flat and of finite presentation. After re-
placing Y by V' we may assume, in addition to (1), (2), (3) that Y is integral affine,
X is reduced, and f is flat and of finite presentation. In particular f is universally
open, see Morphisms, Lemma [25.10

Pick a nonempty affine open U C X. Then U — Y is flat and of finite presentation
with geometrically irreducible generic fibre. The complement X, \ U, is nowhere
dense. Thus after shrinking ¥ we may assume U, C X, is open dense for all y € Y/,
see Lemma Thus we may replace X by U and we reduce to the case where
Y is integral affine and X is reduced affine, flat and of finite presentation over Y’
with geometrically irreducible generic fibre X,.

Write X = Spec(B) and Y = Spec(A). Then A is a domain, B is reduced, A — B
is flat of finite presentation, and By is geometrically irreducible over the fraction
field K of A. In particular we see that Bk is a domain. Let L be the fraction
field of Bi. Note that L is a finitely generated field extension of K as B is an
A-algebra of finite presentation. Let K’/K be a finite purely inseparable extension
such that (L®k K')eq is a separably generated field extension, see Algebra, Lemma
Choose z1,...,z, € K’ which generate the field extension K’ over K, and
such that 2" € A for some prime power ¢; (proof existence x; omitted). Let
A’ be the A-subalgebra of K’ generated by z1,...,z,. Then A’ is a finite A-
subalgebra A’ C K’ whose fraction field is K’. Note that Spec(A’) — Spec(A) is
a universal homeomorphism, see Algebra, Lemma Hence it suffices to prove
the result after base changing to Spec(A’). We are going to replace A by A’ and
B by (B®a A')req to arrive at the situation where L is a separably generated field
extension of K. Of course it may happen that (B ® 4 A");cq is no longer flat, or of
finite presentation over A’, but this can be remedied by replacing A" by A’ for a
suitable f € A’, see Algebra, Lemma

At this point we know that A is a domain, B is reduced, A — B is flat and of
finite presentation, By is a domain whose fraction field L is a separably generated
field extension of the fraction field K of A. By Algebra, Lemma we may write

L = K(x1,...,2y41) where z1,...,x, are algebraically independent over K, and
Zy41 is separable over K (x1,...,x,). After clearing denominators we may assume
that the minimal polynomial P € K(z1,...,2,)[T] of z,41 over K(z1,...,2,)
has coefficients in A[zy,...,x,]. Note that since L/K is separable and since L is

geometrically irreducible over K, the polynomial P is irreducible over the algebraic
closure K of K. Denote

B = A[ml’ s 7xr+1]/(P(xT+1))'

By construction the fraction fields of B and B’ are isomorphic as K-extensions.
Hence there exists an isomorphism of A-algebras B, = B}, for suitable h € B and
h' € B’, see Morphisms, Lemma In other words X and X’ = Spec(B’) have
a common affine open U. Here is a diagram:

X = Spec(B) U Spec(B’) = X'

Y = Spec(A)
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After shrinking Y once more (by applying Lemma to Z=X\U in X and
Z' = X"\ U in X') we see that U, is dense in X, and U, is dense in X for all
y € Y. Thus it suffices to prove the lemma for X’ — Y which is the content of
Lemma 2741 O

Lemma|27.6. Let f: X — Y be a morphism of schemes. Letnx,y be the function
on Y counting the numbers of geometrically irreducible components of fibres of f
introduced in Lemma [27.3. Assume f of finite type. Let y € Y be a point. Then

there exists a nonempty open V C @ such that nxy|v is constant.

Proof. Let Z be the reduced induced scheme structure on @ Let fz : Xz > Z
be the base change of f. Clearly it suffices to prove the lemma for fz and the generic
point of Z. Hence we may assume that Y is an integral scheme, see Properties,
Lemma Our goal in this case is to produce a nonempty open V C Y such that
nx,y|v is constant.

We apply LemmaR4.§to f: X - Y andwegetg: Y -V CY. Asg:Y' = Vis
surjective finite étale, in particular open (see Morphisms, Lemma , it suffices
to prove that there exists an open V' C Y’ such that nx, y/|y: is constant, see
Lemma 27.3] Thus we see that we may assume that all irreducible components of
the generic fibre X, are geometrically irreducible over x(n).

At this point suppose that X, = X1 ,J...UXn,, is the decomposition of the
generic fibre into (geometrically) irreducible components. In particular nx /vy (1) =
n. Let X; be the closure of X;, in X. After shrinking ¥ we may assume that
X =X, see Lemma After shrinking Y some more we see that each fibre
of f has at least n irreducible components, see Lemma Hence nx/y(y) > n
for all y € Y. After shrinking Y some more we obtain that X;, is geometrically
irreducible for each i and all y € Y, see Lemma Since X, = |J X, this shows
that nx,y(y) < n and finishes the proof. O

Lemma|27.7. Let f : X — Y be a morphism of schemes. Letnx,y be the function
on Y counting the numbers of geometrically irreducible components of fibres of f
introduced in Lemma[27.3 Assume f of finite presentation. Then the level sets

E,={y €Y |nx)y(y) =n}
of nx,y are locally constructible in Y.

Proof. Fix n. Let y € Y. We have to show that there exists an open neighbour-
hood V of y in Y such that E, NV is constructible in V. Thus we may assume
that Y is affine. Write Y = Spec(A) and A = colim 4; as a directed limit of fi-
nite type Z-algebras. By Limits, Lemma we can find an ¢ and a morphism
fi + Xi — Spec(4;) of finite presentation whose base change to Y recovers f. By
Lemma [27.3]it suffices to prove the lemma for f;. Thus we reduce to the case where
Y is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma [I6.3]to prove that E,, is constructible
in case Y is a Noetherian scheme. To see this let Z C Y be an irreducible closed
subscheme. We have to show that F, N Z either contains a nonempty open subset
or is not dense in Z. Let £ € Z be the generic point. Then Lemma [27.6] shows
that nx,y is constant in a neighbourhood of § in Z. This clearly implies what we
want. (I
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28. Connected components of fibres

Lemma 28.1. Let f: X — Y be a morphism of schemes. Assume Y irreducible
with generic point n and f of finite type. If X, has n connected components, then
there exists a nonempty open V. C Y such that for all y € V the fibre X, has at
least n connected components.

Proof. As the question is purely topological we may replace X and Y by their
reductions. In particular this implies that Y is integral, see Properties, Lemma (3.4
Let X, = X1 ,U...UX, , be the decomposition of X,, into connected components.
Let X; C X be the reduced closed subscheme whose generic fibre is X; ;. Note that
Z;.; = X;NXj is a closed subset of X whose generic fibre Z; ; ,, is empty. Hence after
shrinking ¥ we may assume that Z; ; = 0, see Lemma After shrinking Y some
more we may assume that X, = [J X, ,, for y € Y, see Lemma[24.5] Moreover, after
shrinking Y we may assume that each X; — Y is flat and of finite presentation, see
Morphisms, Proposition The morphisms X; — Y are open, see Morphisms,
Lemma[25.10] Thus there exists an open neighbourhood V' of  which is contained
in f(X;) for each i. For each y € V' the schemes X; , are nonempty closed subsets
of X,,, we have X, = |JX;, and the intersections Z; ; , = X, , N X, are empty!
Clearly this implies that X, has at least n connected components. ([l

Lemmal 28.2. Let f: X — Y be a morphism of schemes. Let g:Y' — Y be any
morphism, and denote f': X' — Y’ the base change of f. Then

{y' e Y'| X, is geometrically connected}

=g '({y € Y | X, is geometrically connected}).
Proof. This comes down to the statement that for ¢ € Y’ with image y € Y the
fibre X, = X, x, y' is geometrically connected over x(y') if and only if X, is
geometrically connected over k(y). This follows from Varieties, Lemma (]
Lemmal 28.3. Let f: X — Y be a morphism of schemes. Let

nx/y : Y — {0,1,2,3,...,00}
be the function which associates to y € Y the number of connected components of
(Xy)x where K is a separably closed extension of k(y). This is well defined and if
g:Y' =Y is a morphism then
Nx/jyr =Nx/y ©9

where X' — Y’ is the base change of f.

Proof. Suppose that 3’ € Y’ has image y € Y. Suppose K D x(y) and K’ D s(y’)
are separably closed extensions. Then we may choose a commutative diagram

IT(' K// ‘7\'/
K (y) K(y')

of fields. The result follows as the morphisms of schemes

(X)) = (X)) )k = (Xy) gk — (Xy)K
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induce bijections between connected components, see Varieties, Lemma [7.6 ([

Lemmal 28.4. Let f: X — Y be a morphism of schemes. Assume

(1) Y is irreducible with generic point n,

(2) X, is geometrically connected, and

(3) f is of finite type.
Then there exists a nonempty open subscheme V. C Y such that Xy — V has
geometrically connected fibres.

Proof. Choose a diagram

X — Xy —X

ok

) (S 7

as in Lemma Note that the generic fibre of f’ is geometrically connected
(for example by Lemma . Suppose that the lemma holds for the morphism
f’. This means that there exists a nonempty open W C Y’ such that every fibre
of X' — Y’ over W is geometrically connected. Then, as g is an open morphism
by Morphisms, Lemma [36.13| all the fibres of f at points of the nonempty open
V = g(W) are geometrically connected, see Lemma In this way we see
that we may assume that the irreducible components of the generic fibre X, are
geometrically irreducible.

Let Y’/ be the reduction of Y, and set X’ = Y’ xy X. Then it suffices to prove
the lemma for the morphism X’ — Y’ (for example by Lemma once again).
Since the generic fibre of X’ — Y’ is the same as the generic fibre of X — Y
we see that we may assume that Y is irreducible and reduced (i.e., integral, see
Properties, Lemma [3.4) and that the irreducible components of the generic fibre
X, are geometrically irreducible.

At this point suppose that X, = X1 ,J...UXn,, is the decomposition of the
generic fibre into (geometrically) irreducible components. Let X; be the closure of
X, in X. After shrinking ¥ we may assume that X = |J X;, see Lemma Let
Zi,j = Xl n Xj. Let
{1,...,n}x{1,...,n}=1T101J

where (i,7) € I'if Z; j,, = 0 and (i,5) € J if Z; ;,, # 0. After shrinking ¥ we
may assume that Z; ; = 0 for all (i,7) € I, see Lemma After shrinking Y we
obtain that X, is geometrically irreducible for each ¢ and all y € Y, see Lemma
After shrinking ¥ some more we achieve the situation where each Z; ; — Y
is flat and of finite presentation for all (i, j) € J, see Morphisms, Proposition m
This means that f(Z; ;) C Y is open, see Morphisms, Lemma We claim that

V=Nies 129)

works, i.e., that X, is geometrically connected for each y € V. Namely, the fact
that X, is connected implies that the equivalence relation generated by the pairs
in J has only one equivalence class. Now if y € V and K D k(y) is a separably
closed extension, then the irreducible components of (X, )k are the fibres (X, ) k.
Moreover, we see by construction and y € V that (X, ,)x meets (X;,)x if and
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only if (¢,j) € J. Hence the remark on equivalence classes shows that (X,)x is
connected and we win. (]

Lemma| 28.5. Let f : X — Y be a morphism of schemes. Let nx;y be the
function on'Y counting the numbers of geometrically connected components of fibres
of f introduced in Lemma [28.5. Assume f of finite type. Let y € Y be a point.
Then there exists a nonempty open V C @ such that nxy |y is constant.

Proof. Let Z be the reduced induced scheme structure on @ Let fz : Xz —> 27
be the base change of f. Clearly it suffices to prove the lemma for fz and the generic
point of Z. Hence we may assume that Y is an integral scheme, see Properties,
Lemma Our goal in this case is to produce a nonempty open V C Y such that
nx/y|v is constant.

We apply Lemma248to f: X - Y andwegetg: Y -V CY. Asg:Y' — Vis
surjective finite étale, in particular open (see Morphisms, Lemma , it suffices
to prove that there exists an open V' C Y’ such that nxsy+|v: is constant, see
Lemma Thus we see that we may assume that all irreducible components of
the generic fibre X, are geometrically irreducible over x(n). By Varieties, Lemma
this implies that also the connected components of X, are geometrically con-
nected.

At this point suppose that X, = X1 ,J...UXn,, is the decomposition of the
generic fibre into (geometrically) connected components. In particular nx,y (1) =
n. Let X, be the closure of X, in X. After shrinking ¥ we may assume that
X = J X, see Lemma After shrinking Y some more we see that each fibre
of f has at least n connected components, see Lemma M Hence nx,y(y) > n
for all y € Y. After shrinking Y some more we obtain that X;, is geometrically
connected for each ¢ and all y € Y, see Lemma Since X, = |J X;,, this shows
that nx/y (y) < n and finishes the proof. O

Lemma| 28.6. Let f : X — Y be a morphism of schemes. Let nx;y be the
function on'Y counting the numbers of geometric connected components of fibres of
[ introduced in Lemma[28.3 Assume f of finite presentation. Then the level sets

E,={yeY [nx)y(y) =n}

of nx,y are locally constructible in Y.

Proof. Fix n. Let y € Y. We have to show that there exists an open neighbour-
hood V of y in Y such that E, NV is constructible in V. Thus we may assume
that Y is affine. Write Y = Spec(A) and A = colim A4; as a directed limit of fi-
nite type Z-algebras. By Limits, Lemma we can find an ¢ and a morphism
fi + X; — Spec(A;) of finite presentation whose base change to Y recovers f. By
Lemma [28.3|it suffices to prove the lemma for f;. Thus we reduce to the case where
Y is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma [I6.3]to prove that E,, is constructible
in case Y is a Noetherian scheme. To see this let Z C Y be an irreducible closed
subscheme. We have to show that F, N Z either contains a nonempty open subset
or is not dense in Z. Let £ € Z be the generic point. Then Lemma shows
that nx,y is constant in a neighbourhood of § in Z. This clearly implies what we
want. (I
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Lemmal 28.7. Let f: X — S be a morphism of schemes. Assume that

(1) S is the spectrum of a discrete valuation ring,
(2) f is ﬂa't7

(3) X is connected,

(4) the closed fibre X is reduced.

Then the generic fibre X, is connected.

Proof. Write S = Spec(R) and let 7 € R be a uniformizer. To get a contradiction
assume that X, is disconnected. This means there exists a nontrivial idempotent
e € I'(X,,0x,). Let U = Spec(A) be any affine open in X. Note that 7 is a
nonzerodivisor on A as A is flat over R, see More on Algebra, Lemma for
example. Then e|y, corresponds to an element e € A[l/n]. Let z € A be an
element such that e = z/7™ with n > 0 minimal. Note that 22 = 7"z, This means
that z mod 7A is nilpotent if n > 0. By assumption A/mA is reduced, and hence
minimality of n implies n = 0. Thus we conclude that e € A! In other words
e € I'(X,0x). As X is connected it follows that e is a trivial idempotent which is
a contradiction. O

29. Connected components meeting a section

The results in this section are in particular applicable to a group scheme G — S
and its neutral section e : S — G.

Situation 29.1. Here f : X — Y be a morphism of schemes, and s : ¥ — X
is a section of f. For every y € Y we denote XS the connected component of X,

containing s(y). Finally, we set X° = Uyey Xp.

Lemmal 29.2. Let f: X =Y, s:Y — X be as in Situation . Ifg: Y —»Y
is any morphism, consider the base change diagram

X ——=X

g/
(o)
e
so that we obtain (X')° C X'. Then (X")° = (¢/)~1(X0).

Proof. Let y’ € Y’ with image y € Y. We may think of XS as a closed subscheme
of X, see for example Morphisms, Definition As s(y) € X|) we conclude from
Varieties, Lemma that Xg is a geometrically connected scheme over x(y).
Hence X} x, 3’ — X/, is a connected closed subscheme which contains s'(y’). Thus
Xy xyy' C (X,,)°. The other inclusion X} x, 3’ D (X,,)? is clear as the image of
(XZ’/,)O in X, is a connected subset of X, which contains s(y). O

Lemma 29.3. Let f: X —-Y,s:Y — X be as in Situation . Assume f of

finite type. Let y € Y be a point. Then there exists a nonempty open V C @ such
that the inverse image of X in the base change Xy is open and closed in Xy .

Proof. Let Z C Y be the induced reduced closed subscheme structure on {y}. Let
fz:Xz — Zand sz : Z — Xz be the base changes of f and s. By Lemma [29.2]
we have (Xz)? = (X%)z. Hence it suffices to prove the lemma for the morphism
Xz — Z and the point © € Xz which maps to the generic point of Z. In other
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words we have reduced the problem to the case where Y is an integral scheme
(see Properties, Lemma with generic point 7. Our goal is to show that after
shrinking Y the subset X° becomes an open and closed subset of X.

Note that the scheme X, is of finite type over a field, hence Noetherian. Thus its
connected components are open as well as closed. Hence we may write X, = X 2HT,,
for some open and closed subset T;, of X,,. Next, let 7' C X be the closure of T;,
and let X% C X be the closure of X. Note that T,, resp. X} is the generic
fibre of T, resp. X, see discussion preceding Lemma Moreover, that lemma
implies that after shrinking Y we may assume that X = X% UT (set theoretically).
Note that (77N X)), = T,, N XY = (. Hence after shrinking Y we may assume
that TN X% = (), see Lemma m In particular X% is open in X. Note that
X?, is connected and has a rational point, namely s(n), hence it is geometrically
connected, see Varieties, Lemma [7.14] Thus after shrinking ¥ we may assume that
all fibres of X% — Y are geometrically connected, see Lemma At this point it
follows that the fibres XSO are open, closed, and connected subsets of X, containing
a(y). Tt follows that X° = X% and we win. O

Lemmal29.4. Let f: X =Y, s:Y — X be as in Situation W If f is of finite
presentation then X is locally constructible in X.

Proof. Let x € X. We have to show that there exists an open neighbourhood U
of x such that X° N U is constructible in U. This reduces us to the case where Y
is affine. Write Y = Spec(A) and A = colim A; as a directed limit of finite type
Z-algebras. By Limits, Lemma [10.1) we can find an ¢ and a morphism f; : X; —
Spec(4;) of finite presentation, endowed with a section s; : Spec(A;) — X; whose
base change to Y recovers f and the section s. By Lemma it suffices to prove
the lemma for f;,s;. Thus we reduce to the case where Y is the spectrum of a
Noetherian ring.

Assume Y is a Noetherian affine scheme. Since f is of finite presentation, i.e., of
finite type, we see that X is a Noetherian scheme too, see Morphisms, Lemma [15.6
In order to prove the lemma in this case it suffices to show that for every irreducible
closed subset Z C X the intersection Z N X either contains a nonempty open of
Z or is not dense in Z, see Topology, Lemma [16.3] Let 2 € Z be the generic point,
and let y = f(z). By Lemma here exists a nonempty open subset V' C {y}
such that X% N Xy is open and closed in Xy. Since f(Z) C {y} and f(z) =y eV
we see that W = f~}(V) N Z is a nonempty open subset of Z. It follows that
XN W is open and closed in W. Since W is irreducible we see that X° N W is
either empty or equal to W. This proves the lemma. O

Lemma 29.5. Let f: X =Y, s:Y — X be as in Situation W Lety €Y be
a point. Assume

(1) f is of finite presentation and flat, and

(2) the fibre X, is geometrically reduced.

Then X° is a neighbourhood of Xz? in X.

Proof. We may replace Y with an affine open neighbourhood of y. Write Y =
Spec(A) and A = colim A; as a directed limit of finite type Z-algebras. By Limits,
Lemmawe can find an ¢ and a morphism f; : X; — Spec(4;) of finite presenta-
tion, endowed with a section s; : Spec(A;) — X; whose base change to Y recovers f
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and the section s. After possibly increasing i we may also assume that f; is flat, see
Limits, Lemma Let y; be the image of y in Y;. Note that X, = (X ,,) Xy, y-
Hence X; ,, is geometrically reduced, see Varieties, Lemma By Lemma @ it
suffices to prove the lemma for the system f;, s;,y; € Y;. Thus we reduce to the
case where Y is the spectrum of a Noetherian ring.

Assume Y is the spectrum of a Noetherian ring. Since f is of finite presentation, i.e.,
of finite type, we see that X is a Noetherian scheme too, see Morphisms, Lemma
Let € X° be a point lying over y. By Topology, Lemma it suffices
to prove that for any irreducible closed Z C X passing through x the intersection
X%NZ is dense in Z. In particular it suffices to prove that the generic point 2’ € Z
is in X°. By Properties, Lemma we can find a discrete valuation ring R and a
morphism Spec(R) — X which maps the special point to z and the generic point
to o’. We are going to think of Spec(R) as a scheme over Y via the composition
Spec(R) -+ X — Y. By Lemma we have that (Xg)° is the inverse image of
XY, By construction we have a second section ¢ : Spec(R) — Xp (besides the base
change sg of s) of the structure morphism Xp — Spec(R) such that ¢(ng) is a
point of Xr which maps to 2’ and ¢(0g) is a point of X which maps to x. Note
that t(0g) is in (Xg)° and that t(ng) ~» t(Og). Thus it suffices to prove that this
implies that t(nr) € (Xg)°. Hence it suffices to prove the lemma in the case where
Y is the spectrum of a discrete valuation ring and y its closed point.

Assume Y is the spectrum of a discrete valuation ring and y is its closed point. Our
goal is to prove that X© is a neighbourhood of Xg. Note that Xg is open and closed
in X, as X, has finitely many irreducible components. Hence the complement
C = X, \ X} is closed in X. Thus U = X \ C'is an open neighbourhood of X} and
U® = X, Hence it suffices to prove the result for the morphism U — Y. In other
words, we may assume that X, is connected. Suppose that X is disconnected, say
X =X;10...11 X, is a decomposition into connected components. Then s(Y) is
completely contained in one of the X;. Say s(Y) C X;. Then X° C X;. Hence we
may replace X by X; and assume that X is connected. At this point Lemma [28.7]
implies that X, is connected, i.e., X° = X and we win. O

Lemma 29.6. Let f: X =Y, s:Y — X be as in Situation . Assume

(1) f is of finite presentation and flat, and
(2) all fibres of f are geometrically reduced.

Then X° is open in X.

Proof. This is an immediate consequence of Lemma [29.5 (]

30. Dimension of fibres

Lemma 30.1. Let f: X — Y be a morphism of schemes. Assume Y irreducible
with generic point n and f of finite type. If X, has dimension n, then there exists
a nonempty open V C Y such that for all y € V the fibre Xy has dimension n.

Proof. Let Z = {z € X | dim,(Xy(;)) > n}. By Morphisms, Lemmathis isa
closed subset of X. By assumption Z, = (). Hence by Lemma we may shrink
Y and assume that Z = 0. Let Z’' = {z € X | dim, (X)) >n -1} = {z € X |
dimg(X¢(z)) = n}. As before this is a closed subset of X. By assumption we have
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Z,) # . Hence after shrinking Y we may assume that Z" — Y is surjective, see
Lemma [24.2 Hence we win. (]

Lemma 30.2. Let f: X — Y be a morphism of finite type. Let
nx/y : Y — {0,1,2,3,...,00}
be the function which associates to y € Y the dimension of Xy. If g:Y' =Y is a
morphism then
Nx//yr =Nx/y °4g
where X' — Y’ is the base change of f.

Proof. This follows from Morphisms, Lemma, [28.3] U

Lemma/30.3. Let f: X — Y be a morphism of schemes. Let ny,y be the function
on'Y giving the dimension of fibres of f introduced in Lemma[30.3 Assume f of
finite presentation. Then the level sets

E,={yeY |nx/y(y) =n}

of nx,y are locally constructible in Y.

Proof. Fix n. Let y € Y. We have to show that there exists an open neighbour-
hood V of y in Y such that E, NV is constructible in V. Thus we may assume
that Y is affine. Write Y = Spec(A) and A = colim 4; as a directed limit of fi-
nite type Z-algebras. By Limits, Lemma [10.1] we can find an ¢ and a morphism
fi + Xi — Spec(4;) of finite presentation whose base change to Y recovers f. By
Lemma [30.2] it suffices to prove the lemma for f;. Thus we reduce to the case where
Y is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma [I6.3]to prove that E,, is constructible
in case Y is a Noetherian scheme. To see this let Z C Y be an irreducible closed
subscheme. We have to show that F, N Z either contains a nonempty open subset
or is not dense in Z. Let £ € Z be the generic point. Then Lemma shows that
nxy is constant in a neighbourhood of £ in Z. This implies what we want. O

Lemma 30.4. Let f : X — Y be a flat morphism of schemes of finite presentation.
Let nx,y be the function on Y giving the dimension of fibres of f introduced in
Lemma . Then nxy is lower semi-continuous.

Proof. Let W C X, W = [[,;>, Ua be the open constructed in Lemmas @ and
Let y € Y be a point. If nx,y(y) = dim(X,) = n, then y is in the image
of U, — Y. By Morphisms, Lemma we see that f(U,) is open in Y. Hence
there is an open neighbourhoof of y where nx,y is > n. O

Lemma| 30.5. Let f: X — Y be a proper morphism of schemes. Let nx,y be the
function on'Y giving the dimension of fibres of f introduced in Lemma[30.3. Then
Nx/y S upper semi-continuous.

Proof. Let Z; = {r € X | dim,(Xy(;)) > d}. Then Z; is a closed subset of X
by Morphisms, Lemma Since f is proper f(Z) is closed. Since y € f(Z4) <
nx/y(y) > d we see that the lemma is true. O

Lemma 30.6. Let f : X — Y be a proper, flat morphism of schemes of finite
presentation. Let nx,y be the function on'Y giving the dimension of fibres of f
introduced in Lemma @ Then nx y is locally constant.
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Proof. Immediate consequence of Lemmas and ([

31. Weak relative Noether normalization
The goal of this section is to prove Lemma [31.3]

Lemma 31.1. Let R be a ring. Let p1,...,p, be prime ideals of R with p; ¢ p; if
1 # j. Let k; C k(p;) be subfields such that the extensions k(p;)/k; are not algebraic.
Let J C R be an ideal not contained in any of the p;. Then there exists an element
x € J such that the image of x in k(p;) is transcendental over k; fori=1,... 7.

Proof. The ideal J; = Jp1...P;...p, is not contained in p;, see Algebra, Lemma
It follows that every element & of x(p;) = Frac(B/p;) is of the form £ = a/b
with a,b € J; and b & p;. Choosing £ transcendental over k; we see that either a or
b maps to an element of x(p;) transcendental over k;. We conclude that for every
i =1,...,r we can find an element z; € J; = Jp1...p;...p, which maps to an
element of x(p;) transcendental over k;. Then x = z1 + ...+ x, works. O

Lemma 31.2. Let R — S be a finite type ring map. Let d > 0. Let a,b € S.
Assume that the fibres of

fa : Spec(S) — AL
given by the R-algebra map R[z] — S sending x to a have dimension < d. Then
there exists an ng such that for n > ng the fibres of

fants : Spec(S) — A%
given by the R-algebra map R[z] — S sending x to a™ + b have dimension < d.

Proof. In this paragraph we reduce to the case where R — S is of finite presen-
tation. Namely, write S = R[A, B,x1,...,x,]/J for some ideal J C R[z1,...,zy]
where A and B map to a and b in S. Then J is the union of its finitely generated
ideals Jy C J. Set S\ = R[A, B, z1,...,2,]/Jx and denote ay,by € Sy the images
of A and B. Then for some A\ the fibres of

fay : Spec(Sy) — AL

have dimension < d, see Limits, Lemma Fix such a A. If we can find ng
which works for R — S, ay, by, then ng works for R — S. Namely, the fibres of
fan+by : Spec(Sy) — AL contain the fibres of fy»1p : Spec(S) — AL. This reduces
us to the case discussed in the next paragraph.

Assume R — S is of finite presentation. In this paragraph we reduce to the case
where R is of finite type over Z. By Algebra, Lemma[127.18 we can find a directed
set A and a system of ring maps Ry — S over A whose colimit is R — S such that
Sy = S\ ®r, R, for p > X and such that each Ry and S) is of finite type over Z.
Choose Ao € A and elements ay,, by, € S, mapping to a,b € S. For A > Ao denote
ax, by € Sy the image of ay,,by,. Then for A > Xy large enough the fibres of

fax 1 Spec(Sy) — Aj,
have dimension < d, see Limits, Lemma[I8.4] Fix such a A. If we can find ng which
works for Ry — Sy, ax, by, then ng works for R — S. Namely, any fibre of finp :
Spec(S) — Ap has the same dimension as a fibre of fanip, : Spec(Sy) — Ap,
by Morphisms, Lemma [28.3] This reduces us the the case discussed in the next
paragraph.
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Assume R and S are of finite type over Z. In particular the dimension of R is finite,
and we may use induction on dim(R). Thus we may assume the result holds for all
situations with R’ — §’, a, b as in the lemma with R’ and S’ of finite type over Z
but with dim(R’) < dim(R).

Since the statement is about the topology of the spectrum of .S we may assume S is
reduced. Let S¥ be the normalization of S. Then S C S is a finite extension as S
is excellent, see Algebra, Proposition and Morphisms, Lemma [54.10 Thus
Spec(S¥) — Spec(S) is surjective and finite (Algebra, Lemma [36.17). It follows
that if the result holds for R — S” and the images of a, b in S¥, then the result
holds for R — S, a, b. (Small detail omitted.) This reduces us to the case discussed
in the next paragraph.

Assume R and S are of finite type over Z and S normal. Then S =57 x ... x S,
for some normal domains S;. If the result holds for each R — S; and the images
of a, b in S;, then the result holds for R — S, a, b. (Small detail omitted.) This
reduces us to the case discussed in the next paragraph.

Assume R and S are of finite type over Z and S a normal domain. We may replace
R by the image of R in S (this does not increase the dimension of R). This reduces
us to the case discussed in the next paragraph.

Assume R C S are of finite type over Z and S a normal domain. Consider the
morphism
fa : Spec(S) — A%
The assumption tells us that f, has fibres of dimension < d. Hence the fibres
of f : Spec(S) — Spec(R) have dimension < d + 1 (Morphisms, Lemma [28.2).
Consider the morphism of integral schemes
¢ : Spec(S) — A% = Spec(R[z,y))

corresponding to the R-algebra map R[x,y] — S sending = to a and y to b. There
are two cases to consider

(1) ¢ is dominant, and

(2) ¢ is not dominant.
We claim that in both cases there exists an integer ng and a nonempty open V C

Spec(R) such that for n > ng the fibres of fyn4p at points ¢ € A}, have dimension
<d.

Proof of the claim in case (1). We have funp = 7, 0 ¢ where

Ty, - A% — A}%
is the flat morphism corresponding to the R-algebra map R[z] — Rlx,y| sending
x to ™ + y. Since ¢ is dominant there is a dense open U C Spec(S) such that

dlu:U — A2R is flat (this follows for example from generic flatness, see Morphisms,
Proposition [27.1). Then the composition

¢l n
fargolu 1 U =5 AR T A

is flat as well. Hence the fibres of this morphism have at least codimension 1 in the
fibres of f|y : U — Spec(R) by Morphisms, Lemma In other words, the fibres
of fanis|ly have dimension < d. On the other hand, since U is dense in Spec(S),
we can find a nonempty open V' C Spec(R) such that U N f~1(p) C f~1(p) is dense
for all p € V' (see for example Lemma . Thus dim(f~*(p) \UN f~1(p)) < d
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and we conclude that our claim is true (as any fibres of fg»1p : Spec(S) — AL is
contained in a fibre of f).

Case (2). In this case we can find a nonzero g = > ¢;;z'y? in R[z,y] such that
Im(¢) C V(g). In fact, we may assume g is irreducible over Frac(R). If g € R[z],
say with leading coefficient ¢, then over V= D(c¢) C Spec(R) the fibres of f already
have dimension < d (because the image of f, is contained in V(g) C AL which
has finite fibres over V). Hence we may assume g is not contained in R[z]. Let
s > 1 be the degree of g as a polynomial in y and let ¢ be the degree of 3 ¢;sx% as
a polynomial in z. Then ¢, is nonzero and

gz, —2"™) = (=1)%cysx' ™" + Lot

provided that n is bigger than the degree of g as a polynomial in = (small detail
omitted). For such n the polynomial g(z, —z™) is a nonzero polynomial in z and
maps to a nonzero polynomial in x(p)[z] for all p C R, cst & p. We conclude that
our claim is true for V' equal to the principal open D(cts) of Spec(R).

OK, and now we can use induction on dim(R). Namely, let I C R be an ideal such
that V(I) = Spec(R) \ V. Observe that dim(R/I) < dim(R) as R is a domain. Let
n{, be the integer we have by induction on dim(R) for R/I — S/IS and the images
of a and b in S/IS. Then max(ng, n() works. O

Lemmal 31.3. Let R — S be a finite type ring map. Let d be the mazximum of the
dimensions of fibres of Spec(S) — Spec(R). Then there exists a quasi-finite ring
map Rt1,...,tq] = S.

Proof. In this paragraph we reduce to the case where R — S is of finite presen-
tation. Namely, write S = R[z1,...,x,]/J for some ideal J C R[z1,...,2,]. Then
J is the union of its finitely generated ideals Jy C J. Set S\ = R[z1,...,zy]/JIx
Then for some A the fibres of Spec(Sy) — Spec(R) have dimension < d, see Limits,
Lemma Fix such a A. If we can find a quasi-finite R[t,...,t4] — Sy, then
of course the composition Rlti,...,ts] — S is quasi-finite. This reduces us to the
case discussed in the next paragraph.

Assume R — S is of finite presentation. In this paragraph we reduce to the case
where R is of finite type over Z. By Algebra, Lemma we can find a directed
set A and a system of ring maps Ry — Sy over A whose colimit is R — S such
that S, = S\ ®r, R, for p > X and such that each R and Sy is of finite type over
Z. Then for X large enough the fibres of Spec(Sy) — Spec(R)) have dimension
< d, see Limits, Lemma Fix such a A. If we can find a quasi-finite ring
map Ry[t1,...,ta] — S, then the base change R[ti,...,tq] — S is quasi-finite
too (Algebra, Lemma [122.8). This reduces us the the case discussed in the next
paragraph.

Assume R and S are of finite type over Z. If d = 0, then the ring map is quasi-finite
and we are done. Assume d > 0. We will find an element a € S such that the fibres
of the R-algebra map R[z] — S, z — a have dimension < d. This will finish the
proof by induction.

We will prove the existence of a by induction on dim(R).

Let q1,...,q, C S be those among the minimal primes of S such that dimg, (S/R) =
d. For notation, see Algebra, Definition [125.1] Say q; lies over the prime p; C R.
We have trdeg,,,)(+(qi)) = d as q; is a generic point of its fibre; for example apply


https://stacks.math.columbia.edu/tag/0GTG

0G4C

0G4D

MORE ON MORPHISMS 91

Algebra, Lemma([116.3|to S®pg £(p;). Hence by Lemma [31.1] we can find an element
a € S such that the image of a in x(q;) is transcendental over x(p;) for i =1,...,r.
Consider the morphism
fa : Spec(S) — AL

corresponding the R-algebra homomorphism R[z] — S to mapping z to a. Let
U C Spec(S) be the open subset where the fibres have dimension < d — 1, see
Morphisms, Lemma [28.4L By construction U contains all the generic points of
Spec(S). In particular we see that U contains all generic points of all the generic
fibres of Spec(S) — Spec(R) as such points are necessarily generic points of Spec(S).
Set T' = Spec(S) \ U viewed as a reduced closed subscheme of Spec(S). It follows
from what we just said and the assumption that dim(S/R) < d that the generic
fibres of T — Spec(R) have dimension < d — 1. Hence by Lemma applied
several times to produce open neighbourhoods of the generic points of Spec(R), we
can find a dense open V' C Spec(R) such that Ty, — V has fibres of dimension
< d—1. We conclude that for ¢ € A}, the fibre of f, over ¢ has dimension < d —1
(as we have bounded the dimension of the fibre of f,|y and of the fibre of fu|7).

By prime avoidance, we may assume that V = D(f) for some f € R. Then we
see that the ring map Ry[z] — Sy,  — a has fibres of dimension < d — 1. We
may replace a by fa and assume a € (f). By induction on dim(R) we can find
an element b € S/ fS such that the fibres of Spec(S/fS) — Spec(R/fR[x]), x — b
have dimension < d — 1. Let b € S be a lift of b. By Lemma there exists an
n > 0 such that a™ + b still works for Ry — Sy. On the other hand, the image of
a” +bin S/fS is b and the proof is complete. O

32. Bertini theorems

We continue the discussion started in Varieties, Section In this section we
prove that general hyperplane sections of geometrically irreducible varieties are
geometrically irreducible following the remarkable argument given in [Jou83].

Lemma 32.1. Let K/k be a geometrically irreducible and finitely generated field

ertension. Let n > 1. Let g1,...,9n, € K be elements such that there exist
C1,...,Cn € k such that the elements

Ty ';xnazgixiazcigi S K(xla' B ,xn)
are algebraically independent over k. Then K(xy,...,2,) is geometrically irre-

ducible over k(x1,...,Zn, Y. §i%;).

Proof. Let cy,...,¢c, € k be as in the statement of the lemma. Write & = > g;x;
and 6 = Y ¢;g;. For a € k consider the automorphism o, of K(z1,...,x,) given
by the identity on K and the rules

oo(x;) = 2 + ac;
Observe that 0,(&) = & 4+ ad and 0,(d) = 6. Consider the tower of fields
Ky Zk(dil,...,fﬁn) C Ky :Ko(é-) C Ko :Ko(f,a) C K(zl,...,:cn) =Q

Observe that ,(Kg) = Ko and 0,(K3) = Ky. Let 6 € Q be separable algebraic
over K. We have to show 6 € K1, see Algebra, Lemma

Denote K the separable algebraic closure of K5 in . Since K} /K> is finite (Alge-
bra, Lemma [47.13)) and separable there are only a finite number of fields in between

See pages 71 and 72
of [Jou83]
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K} and K> (Fields, Lemmal[19.1). If k is infinitd} then we can find distinct elements
ay,as of k such that

K (04, (0)) = Ka(04,(0))
as subfields of Q. Write 0; = 0,,(0) and & = 0,4,(¢) = £ + a;6. Observe that

Ky = Ko(&1,&)

as we have §; = { + a0, { = (a261 — a1&2)/(az — a1), and § = ({1 — &2)/(a1 — az).
Since K»/Kj is purely transcendental of degree 2 we conclude that & and & are
algebraically indepedent over K. Since 6 is algebraic over Ky(&1) we conclude
that & is transcendental over Ko(&1,61).

By assumption K/k is geometrically irreducible. This implies that K (z1,...,2z,)/ Ko
is geometrically irreducible (Algebra, Lemma . This in turn implies that
Ko(&1,01)/ Ky is geometrically irreducible as a subextension (Algebra, Lemma47.6)).
Since &5 is transcendental over K(&1,6;) we conclude that Ko(&1,&2,01)/Ko(&2) is
geometrically irreducible (Algebra, Lemma . By our choice of ay,as above
we have
Ko(&1,82,01) = Ka(04,(0)) = K2(04,(0)) = Ko(&1, 62, 02)

Since 65 is separably algebraic over Ky(&2) we conclude by Algebra, Lemma
again that 0 € Ko(£2). Taking o' of this relation givens § € Ko(§) = K as
desired.

This finishes the proof in case k is infinite. If k is finite, then we can choose a
variable ¢ and consider the extension K (t)/k(t) which is geometrically irreducible
by Algebra, Lemma Since it is still be true that 1, ..., 25, ¢, Y ¢ig; in
K(t,z1,...,z,) are algebraically independent over k(t) we conclude that K (¢, 21, ..., %)
is geometrically irreducible over k(t,xz1,...,2z,, Y. gix;) by the argument already
given. Then using Algebra, Lemma once more finishes the job. [

0G4E Lemma 32.2. Let A be a domain of finite type over a field k. Let n > 2. Let
g1,---,9n € A be elements such that V(g1,g2) has an irreducible component of
dimension dim(A) — 2. Then there exist c1,...,cn € k such that the elements

T1y.e.y Ty Zgixi, Zcigi € Frac(A)(z1,...,%n)
are algebraically independent over k.
Proof. The algebraic independence over k£ means that the morphism
T = Spec(A[z1,...,x,]) — Spec(klz1,...,Tn,y,2]) =S

given by y = > g;z; and z = > ¢;g; is dominant. Set d = dim(A). If T — S is
not dominant, then the image has dimension < n + 2 and hence every irreducible
component of every fibre has dimension > d +n — (n + 2) = d — 2, see Varieties,
Lemma Choose a closed point u € V(g1,g2) contained in an irreducible
component of dimension d — 2 and in no other component of V (g1, g2). Consider
the closed point t = (u, 1,0, ...0) of T lying over u. Set (c1,...,¢,) = (0,1,0,...,0).
Then ¢ maps to the point s = (1,0,...,0) of S. The fibre of T' — S over s is cut
out by

$1—17x27...,$n, E TiGiy, g2

5We will deal with the finite field case in the last paragraph of the proof.
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and hence equivalently is cut out by

x _17m27"';xn791792

By our condition on ¢, g2 this subscheme has an irreducible component of dimen-
sion d — 2. 0

Lemma 32.3. [In Varieties, Situation assume

(1) X is of finite type over k,

(2) X is geometrically irreducible over k,

(3) there exist v1,va,v3 € V and an irreducible component Z of H,, N H,, such
that Z ¢ H,, and codim(Z,X) =2, and

(4) every drreducible component Y of ¢y Hy has codim(Y, X) > 2.

Then for general v € V ®y k' the scheme H, is geometrically irreducible over k'.

Proof. In order for assumption (3) to hold, the elements v1,ve,v3 must be k-
linearly independent in V' (small detail omitted). Thus we may choose a basis
v1,...,0. of V incorporating these elements as the first 3. Recall that H, ., C
A} xj X is the “universal divisor”. Consider the projection q : Hyyiy — Aj whose
scheme theoretic fibres are the divisors H,. By Lemma [27.5]it suffices to show that
the generic fibre of ¢ is geometrically irreducible. To prove this we may replace X

by its reduction, hence we may assume X is an integral scheme of finite type over
k.

Let U C X be a nonempty affine open such that L]y = Opy. Write U = Spec(A).
Denote f; € A the element corresponding to section ¢ (v;)|y via the isomorphism
Ly = Opy. Then Hyyiw N (A}, X U) is given by

Hy = Spec(Alzy, ..., x| /(z1f1+ ... + 2 fr))

By our choice of basis we see that f; cannot be zero because this would mean
v; = 0 and hence H,, = X which contradicts assumption (3). Hence > x;f; is a
nonzerodivisor in A[z1,...,z,]. It follows that every irreducible component of Hy
has dimension d + r — 1 where d = dim(X) = dim(A). If U’ = U N D(f1) then we
see that

Hyr = Spec(Ay, [w1,. .., x0)/(x1 fit. . Az fr)) = Spec(Ay, [22, ... 2,]) = A < U’
is irreducible. On the other hand, we have

Hy \ Hy» = Spec(A/(f1)[x1,- .- x]/(xafo + ...+ xr fr))

which has dimension at most d+r —2. Namely, for i # 1 the scheme (Hy \ Hy/) Xu
D(f;) is either empty (if f; = 0) or by the same argument as above isomorphic to
an r — 1 dimensional affine space over an open of Spec(A/(f1)) and hence has
dimension at most d + 7 — 2. On the other hand, (Hy \ Hy/) xu V(fo,..., fr) is
an r dimensional affine space over Spec(A/(f1,..., fr)) and hence assumption (4)
tells us this has dimension at most d + r — 2. We conclude that Hy is irreducible
for every U as above. It follows that H,,;, is irreducible.

Thus it suffices to show that the generic point of H, ., is geometrically irreducible
over the generic point of A}, see Varieties, Lemma Choose a nonempty affine
open U = Spec(A) of X contained in X\ H,, which meets the irreducible component

[Jou83l Theorem 6.3
part 4)]
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Z of H,, N H,, whose existence is asserted in assumption (3). With notation as
above we have to prove that the field extension

Frac(Alz1,...,z)/(z1fr + ...+ zo o) k(z1,..., 20)

is geometrically irreducible. Observe that f; is invertible in A by our choice of U.

Set K = Frac(A) equal to the fraction field of A. Eliminating the variable z; as

above, we find that we have to show that the field extension
K(x27'"73:7")/]6(%‘23""3:7“7_21.:2 ..... Tfl_lfil'i)

is geometrically irreducible. By Lemma [32]] it suffices to show that for some

Ca,...,Cr € k the elements

$27~~~,$mz. fl_lfil'i,ZA cifitfi
1=2,...,1 1=2,...,1

are algebraically independent over k in the fraction field of A[zo,...,x,]. This
follows from Lemma [32.2] and the fact that Z N U is an irreducible component of
V(fi ' fa, i f3) C U 0

Remark| 32.4. Let us sketch a “geometric” proof of a special case of Lemma
Namely, say k is an algebraically closed field and X C P} is smooth and
irreducible of dimension > 2. Then we claim there is a hyperplane H C P} such
that X N H is smooth and irreducible. Namely, by Varieties, Lemma for a
general v € V = kT @ ... & kT, the corresponding hyperplane section X N H,
is smooth. On the other hand, by Enriques-Severi-Zariski the scheme X N H,, is
connected, see Varieties, Lemma [48.3] Hence X N H, is smooth and irreducible.

33. Theorem of the cube

The following lemma tells us that the diagonal of the Picard functor is representable
by locally closed immersions under the assumptions made in the lemma.

Lemma 33.1. Let f: X — S be a flat, proper morphism of finite presentation.
Let £ be a finite locally free Ox-module. For a morphism g : T — S consider the
base change diagram

XT T> X

)

7% .49

Assume O — p.Ox, s an isomorphism for all g : T — S. Then there exists
an immersion j : Z — S of finite presentation such that a morphism g : T — S
factors through Z if and only if there exists a finite locally free Or-module N with
PN = g*E.

Proof. Observe that the fibres X of f are connected by our assumption that
H°(X,,Ox.) = k(s). Thus the rank of £ is constant on the fibres. Since f is open
(Morphisms, Lemma and closed we conclude that there is a decomposition
S = ]IS, of S into open and closed subschemes such that £ has constant rank r
on the inverse image of S,. Thus we may assume £ has constant rank r. We will
denote &Y = Hom(E,Ox) the dual rank » module.

By cohomology and base change (more precisely by Derived Categories of Schemes,
Lemma [30.4) we see that £ = Rf.£ is a perfect object of the derived category of
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S and that its formation commutes with arbitrary change of base. Similarly for
E’ = Rf.£V. Since there is never any cohomology in degrees < 0, we see that £ and
E’ have (locally) tor-amplitude in [0, b] for some b. Observe that for any g : T — S
we have p.(q¢*8) = HY(Lg*E) and p.(q*€Y) = H°(Lg*E’). Let j : Z — S and
j': Z" — S be immersions of finite presentation constructed in Derived Categories
of Schemes, Lemma for E and E’ with @ = 0 and 7 = r; these are roughly
speaking characterized by the property that H°(Lj*E) and HO((j')*E’) are finite
locally free modules compatible with pullback.

Let g : T — S be a morphism. If there exists an A as in the lemma, then, using
the projection formula Cohomology, Lemma we see that the modules

(L) Z pu(p*N) 2N ®0, pOx, =N and similarly  p,(¢*EY) 2 NV

are finite locally free modules of rank r and remain so after any further base change
T’ — T. Hence in this case T — S factors through j and through j’. Thus we
may replace S by Z xg Z’ and assume that f.£ and f.£V are finite locally free
Og-modules of rank r whose formation commutes with arbitrary change of base
(small detail omitted).

In this sitation if g : T — S be a morphism and there exists an A/ as in the lemma,
then the map (cup product in degree 0)

p(q"E) ®oy p(q°EY) — Or
is a perfect pairing. Conversely, if this cup product map is a perfect pairing, then
we see that locally on T we may choose a basis of sections o1, ...,0, in p.(¢*E)
and 71,...,7, in p.(¢*EY) whose products satisfy o;7; = d;;. Thinking of o; as a
section of ¢*€ on Xp and 7; as a section of ¢*£Y on Xr, we conclude that

OlyeneyOp O?@; —q*E
is an isomorphism with inverse given by
TiyeeoyTp t ¢FE — (’)g’?;

In other words, we see that p*p.q¢*E = ¢*£. But the condition that the cupproduct
is nondegenerate picks out a retrocompact open subscheme (namely, the locus where
a suitable determinant is nonzero) and the proof is complete. O

The lemma above in particular tells us, that if a vector bundle is trivial on fibres
for a proper flat family of proper spaces, then it is the pull back of a vector bundle.
Let’s spell this out a bit.

Lemma 33.2. Let f: X — S be a flat, proper morphism of finite presentation
such that f,Ox = Og and this remains true after arbitrary base change. Let £ be
a finite locally free Ox-module. Assume

(1) &lx. is isomorphic to O?ZS forall s € S, and

(2) S is reduced.
Then € = f*N for some finite locally free Og-module N .
Proof. Namely, in this case the locally closed immersion j : Z — S of Lemma

is bijective and hence a closed immersion. But since S is reduced, j is an
isomorphism. O

Lemma 33.3. Let f : X — S be a proper flat morphism of finite presentation.
Let L be an invertible O x-module. Assume
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(1) S is the spectrum of a valuation ring,

(2) L is trivial on the generic fibre X, of f,

(3) the closed fibre Xo of f is integral,

(4) H°(X,,Ox,) is equal to the function field of S.

Then L is trivial.

Proof. Write S = Spec(A4). We will first prove the lemma when A is a discrete
valuation ring (as this is the case most often used in practice). Let m € A be a
uniformizer. Take a trivializing section s € I'(X,, £,). After replacing s by 7"s
if necessary we can assume that s € I'(X, £). If s|x, = 0, then we see that s is
divisible by 7 (because Xy is the scheme theoretic fibre and X is flat over A). Thus
we may assume that s|x, is nonzero. Then the zero locus Z(s) of s is contained
in X but does not contain the generic point of Xy (because X is integral). This
means that the Z(s) has codimension > 2 in X which contradicts Divisors, Lemma
15.3| unless Z(s) = 0 as desired.

Proof in the general case. Since the valuation ring A is coherent (Algebra, Example
we see that H°(X, L) is a coherent A-module, see Derived Categories of
Schemes, Lemma [33.1} Equivalently, H°(X, L) is a finitely presented A-module
(Algebra, Lemma [90.4). Since H°(X, L) is torsion free (by flatness of X over A),
we see from More on Algebra, Lemma that HO(X, £) = A®" for some n. By
flat base change (Cohomology of Schemes, Lemma we have

K =H(X,,0x,) = H(X,,L,) = H (X, L) ®4 K

where K is the fraction field of A. Thus n = 1. Pick a generator s € H(X, £).
Let m C A be the maximal ideal. Then x = A/m = colim A/7 where this is a
filtered colimit over nonzero m € m (here we use that A is a valuation ring). Thus
Xo = lim X xg Spec(A4/m). If s|x, is zero, then for some m we see that s restricts
to zero on X Xxg Spec(A/7), see Limits, Lemma But if this happens, then
7 1s is a global section of £ which contradicts the fact that s is a generator of
HO(X,L). Thus s|x, is not zero. Let Z(s) C X be the zero scheme of s. Since
s|x, is not zero and since X is integral, we see that Z(s)g C X is an effective
Cartier divisor. Since f is proper and S is local, every point of Z(s) specializes
to a point of Z(s)g. Thus by Divisors, Lemma [18.9 part (3) we see that Z(s) is a
relative effective Cartier divisor, in particular Z(s) — S is flat. Hence if Z(s) were
nonemtpy, then Z(s), would be nonempty which contradicts the fact that s|x, is
a trivialization of £,. Thus Z(s) = () as desired. O

Lemma 33.4. Let f: X — S and £ be as in Lemma and in addition assume
E s an invertible Ox-module. If moreover the geometric fibres of f are integral,
then Z is closed in S.

Proof. Since j : Z — S is of finite presentation, it suffices to show: for any
morphism g : Spec(A) — S where A is a valuation ring with fraction field K such
that g(Spec(K)) € j(Z) we have g(Spec(A)) C j(Z). See Morphisms, Lemma [6.5]
This follows from Lemma and the characterization of j : Z — S in Lemma

B3.11 O
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Lemma 33.5. Consider a commutative diagram of schemes

X — =X
X\ /
S

with f' : X' — S and f : X — S satisfying the hypotheses of Lemma|33.1 Let L be
an invertible O x-module and let L' be the pullback to X'. Let Z C S, resp. Z' C S
be the locally closed subscheme constructed in Lemma for (f, L), resp. (f', L)
sothat ZC Z'. If s€ Z and

H(X,,0) — H'(X.,0)
is injective, then Z NU = Z' N U for some open neighbourhood U of s.
Proof. We may replace S by Z’. After shrinking S to an affine open neighbourhood
of s we may assume that £ = Ox:. Let F = Rf.L and E' = Rf.L = Rf.Ox:.
These are perfect complexes whose formation commutes with arbitrary change of
base (Derived Categories of Schemes, Lemma [30.4)). In particular we see that

E®p, k(s) = RT(X,, L) = RT(X,,Ox,)

The second equality because s € Z. Set h; = dim, () H'(X,, Ox,). After shrinking
S we can represent F by a complex

Og — 02" — 0" — .

see More on Algebra, Lemma (strictly speaking this also uses Derived Cate-
gories of Schemes, Lemmas and [10.7). Similarly, we may assume E’ is repre-
sented by a complex

Os —>O§?h/1 —>O?h/2 — ...
where h} = dim,,;) H' (X}, Ox;). By functoriality of cohomology we have a map
E—F
in D(Og) whose formation commutes with change of base. Since the complex

representing F is a finite complex of finite free modules and since S is affine, we
can choose a map of complexes

Dh1 @ha
05— O o)
al bl C\L
d’ ®h] Dhl
05 —%- 0F o

representing the given map E — E’. Since s € Z we see that the trivializing
section of L, pulls back to a trivializing section of £, = Ox,. Thus a ® (s) is
an isomorphism, hence after shrinking S we see that a is an isomorphism. Finally,
we use the hypothesis that H!'(X,, 0) — H'(X.,0) is injective, to see that there
exists a hy X hy minor of the matrix defining b which maps to a nonzero element
in x(s). Hence after shrinking S we may assume that b is injective. However, since
L' = Ox: we see that d’ = 0. It follows that d = 0. In this way we see that the
trivializing section of Ly lifts to a section of £ over X. A straightforward topological
argument (omitted) shows that this means that £ is trivial after possibly shrinking
S a bit further. O


https://stacks.math.columbia.edu/tag/0BF1

0BF2

MORE ON MORPHISMS 98

Lemma 33.6. Consider n commutative diagrams of schemes

X,— =X

N

with f; : X; = S and f : X — S satisfying the hypotheses of Lemma[33.1 Let L be
an invertible O x -module and let L; be the pullback to X;. Let Z C S, resp. Z; C S
be the locally closed subscheme constructed in Lemmafor (f, L), resp. (fi, L)
sothat Z C (1 o Zi- If s€ Z and

1 1 )
H (X,,0) — @i:l,...,nH (Xis, 0)

.....

is injective, then Z NU = ((\,_y_ ., Zi) N U (scheme theoretic intersection) for
some open neighbourhood U of s.

Proof. This lemma is a variant of Lemma [33.5| and we strongly urge the reader
to read that proof first; this proof is basically a copy of that proof with minor
modifications. It follows from the description of (scheme valued) points of Z and the
Z; that Z C ﬂi:L_“’n Z; where we take the scheme theoretic intersection. Thus we
may replace S by the scheme theoretic intersection (),_, ,, Z;. After shrinking S
to an affine open neighbourhood of s we may assume that L:Z =0x, fori=1,...,n.
Let E = Rf.L and E; = Rf; .L; = Rf; +Ox,. These are perfect complexes whose
formation commutes with arbitrary change of base (Derived Categories of Schemes,
Lemma [30.4). In particular we see that

E ®, K(s) = RI'(X,, L) = RT(X,, Ox,)

The second equality because s € Z. Set h; = dim,(5) H (X, Ox, ). After shrinking
S we can represent F by a complex

Os = 0F" — 0" — ...

see More on Algebra, Lemma (strictly speaking this also uses Derived Cate-
gories of Schemes, Lemmas and . Similarly, we may assume FE; is repre-
sented by a complex

Os — O?h“ — O?h“ = ...

where h;; = dim,y) Hj(Xiys,OXm). By functoriality of cohomology we have a
map

E— FE;
in D(Og) whose formation commutes with change of base. Since the complex
representing F is a finite complex of finite free modules and since S is affine, we
can choose a map of complexes

Dh1 @ha
05 —— 0% 08

N

d; ) )
OS Og?hz,l Og?hzﬂ

representing the given map £ — FE;. Since s € Z we see that the trivializing

section of L pulls back to a trivializing section of £; s = Ox, ,. Thus a; ® x(s) is

an isomorphism, hence after shrinking S we see that a; is an isomorphism. Finally,
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we use the hypothesis that H'(X,,0) — @,_, , H'(Xis, O) is injective, to see
that there exists a hy; X h; minor of the matrix defining @b; which maps to a
nonzero element in x(s). Hence after shrinking S we may assume that (by,...,b,) :
o — Dizi..m O is injective. However, since £; = Ox, we see that d; = 0
for i =1,...n. It follows that d = 0 because (by,...,b,) od = (®d;) o (a1,...,a,).
In this way we see that the trivializing section of Ly lifts to a section of £ over X.
A straightforward topological argument (omitted) shows that this means that £ is
trivial after possibly shrinking S a bit further. O

Lemma 33.7. Let f: X — S and g:Y — S be morphisms of schemes satisfying
the hypotheses of Lemma[33.1 Let o: S — X and 7:S =Y be sections of f and
g. Let s € S. Let L be an invertible sheaf on X xgY . If 1 x7)*L on X, (o x 1)*L
onY, and L|(xxsy), are trivial, then there is an open neighbourhood U of s such

s

that L is trivial over (X xgY)y.

Proof. By Kiinneth (Varieties, Lemma the map
HY (X Xspec(n(s)) Y, O) = H' (X,,0) & H' (Y, 0)
is injective. Thus we may apply Lemma [33.6] to the two morphisms
Ix7: X >XXxgY and ox1:Y > X xgY

to conclude. O

Theorem 33.8 (Theorem of the cube). Let S be a scheme. Let X, Y, and Z
be schemes over S. Let x : S — X andy : S — Y be sections of the structure
morphisms. Let L be an invertible module on X xgY xg Z. If

(1) X = S and Y — S are flat, proper morphisms of finite presentation with
geometrically integral fibres,

(2) the pullbacks of L by x X idy x idy and idx Xy X idy are trivial over Y xgZ
and X Xg Z,

(3) there is a point z € Z such that L restricted to X xgY Xg z is trivial, and

(4) Z is connected,

then L is trivial.

An often used special case is the following. Let &k be a field. Let X,Y, Z be varieties
with k-rational points z,y, z. Let £ be an invertible module on X x Y x Z. If

(1) Listrivial over t X Y x Z, X xy x Z, and X XY X z, and

(2) X and Y are geometrically integral and proper over k,
then L is trivial.

Proof. Observe that the morphism X xgY — S is a flat, proper morphism of
finite presentation whose geometrically integral fibres (see Varieties, Lemmas
and for the statement about the fibres). By Derived Categories of Schemes,
Lemma [32.6] we see that the pushforward of the structure sheaf by X — S, Y — S,
or X xgY — S is the structure sheaf of S and the same remains true after any
base change. Thus we may apply Lemma to the morphism

p: X Xs Y Xs Z — 7
and the invertible module £ to get a “universal” locally closed subscheme 7’ C Z

such that L|xxsyxsz is the pullback of an invertible module N' on Z’. The
existence of z shows that Z’ is nonempty. By Lemma we see that Z/ C 7 is
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a closed subscheme. Let 2/ € Z’ be a point. Observe that we may write p as the
product morphism
(X ><5Z) Xz(YXSZ)—>Z

Hence we may apply Lemmato the morphism p, the point 2/, and the sections
0:7Z—XxgZand7T:Z —Y xgZ given by x and yy. We conclude that Z’ is
open. Hence Z’ = Z and £ = p*N for some invertible module A" on Z. Pulling
back via z x y x idz : Z — X xgY xg Z we obtain on the one hand N and on
the other hand we obtain the trivial invertible module by assumption (2). Thus
N = Oz and the proof is complete. O

34. Limit arguments

Some lemmas involving limits of schemes, and Noetherian approximation. We stick
mostly to the affine case. Some of these lemmas are special cases of lemmas in the
chapter on limits.

Lemma 34.1. Let f: X — S be a morphism of affine schemes, which is of finite
presentation. Then there exists a cartesian diagram

XOQ%X

J

Sog<=—3S8
such that

(1) Xo, So are affine schemes,
(2) So of finite type over Z,
(3) fo is of finite type.

Proof. Write S = Spec(A4) and X = Spec(B). As f is of finite presentation we
see that B is of finite presentation as an A-algebra, see Morphisms, Lemma [21.2
Thus the lemma follows from Algebra, Lemma [127.1§ (]

Lemma 34.2. Let f : X — S be a morphism of affine schemes, which is of
finite presentation. Let F be a quasi-coherent Ox-module of finite presentation.
Then there exists a diagram as in Lemma such that there exists a coherent
Ox,-module Fo with g*Fy = F.

Proof. Write S = Spec(A), X = Spec(B), and F = M. As f is of finite presenta-
tion we see that B is of finite presentation as an A-algebra, see Morphisms, Lemma
As F is of finite presentation over Ox we see that M is of finite presentation
as a B-module, see Properties, Lemma Thus the lemma follows from Algebra,

Lemma [127.18 O

Lemma 34.3. Let f: X — S be a morphism of affine schemes, which is of finite
presentation. Let F be a quasi-coherent Ox-module of finite presentation and flat
over S. Then we may choose a diagram as in Lemma[34.3 and sheaf Fo such that
in addition Fy is flat over Sy.

Proof. Write S = Spec(A4), X = Spec(B), and F = M. As f is of finite presenta-
tion we see that B is of finite presentation as an A-algebra, see Morphisms, Lemma
As F is of finite presentation over Ox we see that M is of finite presentation
as a B-module, see Properties, Lemma As F is flat over S we see that M is
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flat over A, see Morphisms, Lemma Thus the lemma follows from Algebra,
Lemma [168.1] ]

Lemmal 34.4. Let f: X — S be a morphism of affine schemes, which is of finite
presentation and flat. Then there exists a diagram as in Lemma such that in
addition fo is flat.

Proof. This is a special case of Lemma [34.3 O

Lemma 34.5. Let f: X — S be a morphism of affine schemes, which is smooth.
Then there exists a diagram as in Lemma[34.1) such that in addition fq is smooth.

Proof. Write S = Spec(A), X = Spec(B), and as f is smooth we see that B is
smooth as an A-algebra, see Morphisms, Lemma Hence the lemma follows
from Algebra, Lemma [138.14 O

Lemma) 34.6. Let f: X — S be a morphism of affine schemes, which is of finite
presentation with geometrically reduced fibres. Then there exists a diagram as in
Lemma[34.1] such that in addition fo has geometrically reduced fibres.

Proof. Apply Lemma to get a cartesian diagram

fol lf
h

SO%S

of affine schemes with Xy — Sy a finite type morphism of schemes of finite type over
Z. By Lemma the set F C Sy of points where the fibre of fj is geometrically
reduced is a constructible subset. By Lemma we have h(S) C E. Write
So = Spec(Ap) and S = Spec(A). Write A = colim; 4; as a direct colimit of
finite type Ap-algebras. By Limits, Lemma we see that Spec(4;) — Sy has
image contained in E for some i. After replacing Sy by Spec(4;) and Xy by
Xo xs, Spec(A;) we see that all fibres of fy are geometrically reduced. O

Lemma 34.7. Let f: X — S be a morphism of affine schemes, which is of finite
presentation with geometrically irreducible fibres. Then there exists a diagram as
in Lemma [3.1] such that in addition fo has geometrically irreducible fibres.

Proof. Apply Lemma to get a cartesian diagram

fol lf
h

SO%S

of affine schemes with Xy — Sy a finite type morphism of schemes of finite type over
Z. By Lemma the set F C Sy of points where the fibre of fj is geometrically
irreducible is a constructible subset. By Lemma we have h(S) C E. Write
So = Spec(Ap) and S = Spec(A). Write A = colim; 4; as a direct colimit of
finite type Ag-algebras. By Limits, Lemma we see that Spec(4;) — Sy has
image contained in F for some i. After replacing Sy by Spec(4;) and Xy by
Xo x5, Spec(A;) we see that all fibres of fy are geometrically irreducible. O
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Lemma 34.8. Let f: X — S be a morphism of affine schemes, which is of finite
presentation with geometrically connected fibres. Then there exists a diagram as in
Lemma [34.1] such that in addition fo has geometrically connected fibres.

Proof. Apply Lemma to get a cartesian diagram
XQ — X

g
fol lf
Sy <8
of affine schemes with Xy — Sy a finite type morphism of schemes of finite type over
Z. By Lemma the set E C Sy of points where the fibre of fj is geometrically
connected is a constructible subset. By Lemma we have h(S) C E. Write
So = Spec(Ap) and S = Spec(A). Write A = colim; 4; as a direct colimit of
finite type Ag-algebras. By Limits, Lemma we see that Spec(4;) — Sp has
image contained in E for some i. After replacing Sy by Spec(4;) and Xy by
Xo x5, Spec(A;) we see that all fibres of fy are geometrically connected. O

Lemma 34.9. Let d > 0 be an integer. Let f : X — S be a morphism of affine
schemes, which is of finite presentation all of whose fibres have dimension d. Then
there exists a diagram as in Lemma such that in addition all fibres of fo have
dimension d.

Proof. Apply Lemma to get a cartesian diagram

)

Sy <"— 8
of affine schemes with Xy — Sy a finite type morphism of schemes of finite type over
Z. By Lemma the set £ C Sy of points where the fibre of fy has dimension d
is a constructible subset. By Lemma [30.2] we have h(S) C E. Write Sy = Spec(Ay)
and S = Spec(A4). Write A = colim; A; as a direct colimit of finite type Ag-algebras.
By Limits, Lemma we see that Spec(4;) — Sp has image contained in E for
some 4. After replacing Sy by Spec(4;) and Xy by X x5, Spec(4;) we see that all
fibres of fy have dimension d. O

Lemma|34.10. Let f : X — S be a morphism of affine schemes, which is standard
syntomic (see Morphisms, Definition . Then there exists a diagram as in
Lemma such that in addition fy is standard syntomic.

Proof. This lemma is a copy of Algebra, Lemma [136.11 d

Lemma 34.11. (Noetherian approximation and combining properties.) Let P,
Q be properties of morphisms of schemes which are stable under base change. Let
f: X — S be a morphism of finite presentation of affine schemes. Assume we can
find cartesian diagrams

X1<7X X2<7X

'BELE

Sl<75 SQ<7S
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of affine schemes, with S1, Sa of finite type over Z and f1, fo of finite type such that
f1 has property P and fo has property Q. Then we can find a cartesian diagram

Xo=—X
fol lf
Sop<=—3S

of affine schemes with Sy of finite type over Z and fy of finite type such that fy has
both property P and property Q.

Proof. The given pair of diagrams correspond to cocartesian diagrams of rings

B14>B B24>B
RN
AlﬁA AQHA

Let Ay C A be a finite type Z-subalgebra of A containing the image of both A; — A
and As — A. Such a subalgebra exists because by assumption both A; and A, are
of finite type over Z. Note that the rings By 1 = B1 ®4, Ao and By 2 = Bs ®4, Ao
are finite type Ag-algebras with the property that By 1 ®a, A = B = By 2 ®4, A as
A-algebras. As A is the directed colimit of its finite type Ag-subalgebras, by Limits,
Lemma we may assume after enlarging Ay that there exists an isomorphism
By,1 = By as Ap-algebras. Since properties P and () are assumed stable under
base change we conclude that setting Sy = Spec(Ap) and

Xo = X1 XS, SO = Spec(Bo’l) = SpeC(Bo,g) = X2 X 8y S()
works. (I

35. Etale neighbourhoods

It turns out that some properties of morphisms are easier to study after doing an
étale base change. It is convenient to introduce the following terminology.

Definition| 35.1. Let S be a scheme. Let s € S be a point.
(1) An étale neighbourhood of (S,s) is a pair (U,u) together with an étale
morphism of schemes ¢ : U — S such that ¢(u) = s.
(2) A morphism of étale neighbourhoods f : (V,v) — (U,u) of (S,s) is simply
a morphism of S-schemes f : V — U such that f(v) = u.

(3) An elementary étale neighbourhood is an étale neighbourhood ¢ : (U,u) —
(S, s) such that k(s) = x(u).

The notion of an elementary étale neighbourhood has many different names in the
literature, for example these are sometimes called “étale neighbourhoods” ([Mil80}
Page 36] or “strongly étale” ([KPR75, Page 108]). Here we follow the convention
of the paper [GRT71] by calling them elementary étale neighbourhoods.

If f: (V,v) - (Uyu) is a morphism of étale neighbourhoods, then f is auto-
matically étale, see Morphisms, Lemma Hence it turns (V,v) into an étale
neighbourhood of (U,u). Of course, since the composition of étale morphisms is
étale (Morphisms, Lemma we see that conversely any étale neighbourhood
(V,v) of (U,u) is an étale neighbourhood of (S, s) as well. We also remark that
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if U C S is an open neighbourhood of s, then (U,s) — (5,s) is an étale neigh-
bourhood. This follows from the fact that an open immersion is étale (Morphisms,
Lemma [36.9). We will use these remarks without further mention throughout this
section.

Note that x(u)/k(s) is a finite separable extension if (U,u) — (5,s) is an étale
neighbourhood, see Morphisms, Lemma [36.15

Lemma 35.2. Let S be a scheme. Let s € S. Let k/k(s) be a finite separable field
extension. Then there exists an étale neighbourhood (U,u) — (S, s) such that the
field extension k(u)/k(s) is isomorphic to k/k(s).

Proof. We may assume S is affine. In this case the lemma follows from Algebra,
Lemma O

Lemmal 35.3. Let S be a scheme, and let s be a point of S. The category of étale
neighborhoods has the following properties:

(1) Let (Ui,u;)i=1,2 be two étale neighborhoods of s in S. Then there exists a
third étale neighborhood (U,u) and morphisms (U,u) — (U;,u;), i =1,2.

(2) Let hyi,hy : (Uyu) — (U',u') be two morphisms between étale neighbor-
hoods of s. Assume hi, he induce the same map x(u') — r(u) of residue
fields. Then there exist an étale neighborhood (U” ,u") and a morphism h :
(U, u") = (U,u) which equalizes h1 and ha, i.e., such that hyoh = haoh.

Proof. For part (1), consider the fibre product U = Uy xg Us. It is étale over
both U; and Us; because étale morphisms are preserved under base change, see
Morphisms, Lemma There is a point of U mapping to both u; and us for
example by the description of points of a fibre product in Schemes, Lemma [17.5]
For part (2), define U” as the fibre product

UI/%U

L

U —2 U xgU.

Since h; and hs induce the same map of residue fields k(u') — k(u) there exists a
point u” € U” lying over v’ with x(v”) = k(u’). In particular U” # (). Moreover,
since U’ is étale over S, so is the fibre product U’ xgs U’ (see Morphisms, Lemmas
@ and . Hence the vertical arrow (hq, ho) is étale by Morphisms, Lemma

36.18] Therefore U” is étale over U’ by base change, and hence also étale over S
(because compositions of étale morphisms are étale). Thus (U”,u”) is a solution
to the problem. O

Lemmal 35.4. Let S be a scheme, and let s be a point of S. The category of ele-
mentary étale neighborhoods of (S, s) is cofiltered (see Categories, Definition .

Proof. This is immediate from the definitions and Lemma 35.3 O
Lemma 35.5. Let S be a scheme. Let s € S. Then we have
Og,s = colim () O(U)

where the colimit is over the filtered category which is opposite to the category of
elementary étale neighbourhoods (U, u) of (S, s).
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Proof. Let Spec(A) C S be an affine neighbourhood of s. Let p C A be the
prime ideal corresponding to s. With these choices we have canonical isomorphisms
Os,s = Ay and k(s) = k(p). A cofinal system of elementary étale neighbourhoods
is given by those elementary étale neighbourhoods (U, ) such that U is affine and
U — S factors through Spec(A). In other words, we see that the right hand side
is equal to colim(p ) B where the colimit is over étale A-algebras B endowed with
a prime q lying over p with x(p) = k(q). Thus the lemma follows from Algebra,
Lemma, O

We can lift étale neighbourhoods of points on fibres to the total space.

Lemmal 35.6. Let X — S be a morphism of schemes. Let x € X with image
s€S. Let (V,v) = (Xs,x) be an étale neighbourhood. Then there exists an étale
neighbourhood (U,u) — (X, ) such that there exists a morphism (Us,u) — (V,v)
of étale neighbourhoods of (X, x) which is an open immersion.

Proof. We may assume X, V, and S affine. Say the morphism X — S is given by
A — B the point x by a prime q C B, the point s by p = AN q, and the morphism
V — X, by B®a k(p) — C. Since k(p) is a localization of A/p there exists an
feA, fé&pand an étale ring map B®y4 (A/p)s — D such that

C = (B®ak(p)) ®oaasm),; D

See Algebra, Lemma [143.3| part (9). After replacing A by Ay and B by By we may
assume D is étale over B®4 A/p = B/pB. Then we can apply Algebra, Lemma
143.10} This proves the lemma. O

36. Etale neighbourhoods and branches

The number of (geometric) branches of a scheme at a point was defined in Proper-
ties, Section[I5] In Varieties, Section[40] we related this to fibres of the normalization
morphism. In this section we discuss a characterization of this number in terms of
étale neighbourhoods.

Lemmal 36.1. Let R = colim R; be colimit of a directed system of rings whose
transition maps are faithfully flat. Then the number of minimal primes of R taken
as an element of {0,1,2,...,00} is the supremum of the numbers of minimal primes

of the R;.

Proof. If A — B is a flat ring map, then Spec(B) — Spec(A) maps minimal
primes to minimal primes by going down (Algebra, Lemma . IfA— B
is faithfully flat, then every minimal prime is the image of a minimal prime (by
Algebra, Lemma and . Hence the number of minimal primes of R;
is > the number of minimal primes of Ry if ¢ < /. By Algebra, Lemma
each of the maps R; — R is faithfully flat and we also see that the number of
minimal primes of R is > the number of minimal primes of R;. Finally, suppose

that qi,...,q, are pairwise distinct minimal primes of R. Then we can find an
i such that R; Nqq,...,R; N g, are pairwise distinct (as sets and hence as prime
ideals). This implies the lemma. (]

Lemma 36.2. Let X be a scheme and x € X a point. Then

(1) the number of branches of X at x is equal to the supremum of the number of
irreducible components of U passing through u taken over elementary étale

neighbourhoods (U,u) — (X, z),
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(2) the number of geometric branches of X at x is equal to the supremum of the
number of irreducible components of U passing through u taken over étale
neighbourhoods (U,u) — (X, x),

(3) X is unibranch at x if and only if for every elementary étale neighbourhood
(U,u) — (X, z) there is exactly one irreducible component of U passing
through u, and

(4) X is geometrically unibranch at x if and only if for every étale neighbour-
hood (U, u) — (X, x) there is exactly one irreducible component of U passing
through u.

Proof. Parts (3) and (4) follow from parts (1) and (2) via Properties, Lemma

Proof of (1). Let Spec(A) be an affine open neighbourhood of x and let p C A be
the prime ideal corresponding to . We may replace X by Spec(A) and it suffices
to consider affine elementary étale neighbourhoods (U, u) in the supremum as they
form a cofinal subsystem. Recall that the henselization A:} is the colimit of the
rings By over the category of pairs (B,q) where B is an étale A-algebra and q is
a prime lying over p with x(q) = x(p), see Algebra, Lemma These pairs
(B, q) correspond exactly to the affine elementary étale neighbourhoods (U, u) by
the correspondence between rings and affine schemes. Observe that irreducible
components of Spec(B) passing through ¢ are exactly the minimal prime ideals of
B,. The number of minimal primes of A;‘ is the number of branches of X at x
by Properties, Definition Observe that the transition maps By — B;, in the
system are all flat. Since a flat local ring map is faithfully flat (Algebra, Lemma
we see that the lemma follows from Lemma m

Proof of (2). The proof is the same as the proof of (1), except that we use Algebra,
Lemma There is a tiny difference: given a separable algebraic closure
k5P of k(x) for every étale neighbourhood (U, u) we can choose a k(z)-embedding
¢ : k(u) — £°P because k(u)/k(z) is finite separable (Morphisms, Lemma [36.15).
Hence we can look at the supremum over all triples (U, u, ¢) where (U, u) — (X, z)
is an affine étale neighbourhood and ¢ : k(u) — k°P is a k(z)-embedding. These
triples correspond exactly to the triples in Algebra, Lemma and the rest of
the proof is exactly the same. (|

We will need a relative variant of the lemma above.

Lemmal 36.3. Let X — S be a morphism of schemes and x € X a point with
image s. Then

(1) the number of branches of the fibre X at x is equal to the supremum of the
number of irreducible components of the fibre Us passing through u taken
over elementary étale neighbourhoods (U,u) — (X, x),

(2) the number of geometric branches of the fibre X at x is equal to the supre-
mum of the number of irreducible components of the fibre Us passing through
u taken over étale neighbourhoods (U,u) — (X, x),

(3) the fibre X is unibranch at x if and only if for every elementary étale
neighbourhood (U,u) — (X,x) there is exactly one irreducible component
of the fibre Uy passing through u, and

(4) X is geometrically unibranch at x if and only if for every étale neighbour-
hood (U,u) — (X, x) there is exactly one irreducible component of Uy pass-
ing through u.
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Proof. Combine Lemmas [36.2] and [35.6] O

Lemmal 36.4. Let X — S be a smooth morphism of schemes. Let x € X with
tmage s € S. Then

(1) The number of geometric branches of X at x is equal to the number of
geometric branches of S at s.

(2) If k(z)/k(s) is a purely z'nsepamblfﬂ extension of fields, then number of
branches of X at x is equal to the number of branches of S at s.

Proof. Follows immediately from More on Algebra, Lemma [106.8] and the defini-
tions. ]

37. Unramified and étale morphisms

Sometimes unramified morphisms are automatically étale.

Lemmal 37.1. Let f: X — Y be a morphism of schemes. Let x € X with image
y €Y. Assume

(1) Y is integral and geometrically unibranch at y,

(2) f is locally of finite type,

(3) there is a specialization x' ~ x such that f(z') is the generic point of Y,
(4) f is unramified at x.

Then f is étale at x.

Proof. We may replace X and Y by suitable affine open neighbourhoods of x and
y. Then Y is the spectrum of a domain A and X is the spectrum of a finite type A-
algebra B. Let q C B be the prime ideal corresponding to « and p C A the prime
ideal corresponding to y. The local ring A, = Oy,, is geometrically unibranch.
The ring map A — B is unramified at q. Also, the point 2’ in (3) corresponds to a
prime ideal q' C q such that ANgq’ = (0). It follows that A, — By is injective. We
conclude by More on Algebra, Lemma [I07.2 (]

Lemma 37.2. Let f: X — Y be a morphism of schemes. Assume

(1) Y is integral and geometrically unibranch,
(2) at least one irreducible component of X dominates Y,
(3) f is unramified, and
(4) X is connected.
Then f is étale and X is irreducible.

Proof. Let X’ C X be the irreducible component which dominates Y. This means
that the generic point of X’ maps to the generic point of ¥ (see for example
Morphisms, Lemma . By Lemma we see that f is étale at every point of
X'. In particular, the open subscheme U C X where f is étale contains X’. Note
that every quasi-compact open of U has finitely many irreducible components,
see Descent, Lemma On the other hand since Y is geometrically unibranch
and U is étale over Y, the scheme U is geometrically unibranch. In particular,
through every point of U there passes at most one irreducible component. A simple
topological argument now shows that X’ C U is both open and closed. Then of
course X’ is open and closed in X and by connectedness we find X = U = X’ as

desired. 0

6In fact, it would suffice if x(z) is geometrically irreducible over x(s). If we ever need this we
will add a detailed proof.

[Gro71l, Expose I,
Corollary 9.11]
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Lemma 37.3. Let f : X - Y and g : Y — Z be morphisms of schemes. Let
x € X with image y € Y. Assume

(1) Y is integral and geometrically unibranch at y,
(2) f is locally of finite type,
(3) go f is étale at x,

(4) there is a specialization x' ~ x such that f(z') is the generic point of Y.

Then f is étale at x and g is étale at y.

Proof. The morphism f is unramified at x by Morphisms, Lemmas|35.16|and
Hence f is étale at 2 by Lemma Then by étale descent we see that g is étale
at y, see for example Descent, Lemma [14.4] |

Lemma 37.4. Let f: X —Y and g:Y — Z be morphisms of schemes. Assume

(1) Y is integral and geometrically unibranch,

(2) f is locally of finite type,

(3) go f is étale,

(4) every irreducible component of X dominates Y.

Then f is étale and g is €étale at every point in the image of f.

Proof. Immediate from the pointwise version Lemma [37.3 (Il

38. Slicing smooth morphisms

In this section we explain a result that roughly states that smooth coverings of a
scheme S can be refined by étale coverings. The technique to prove this relies on a
slicing argument.

Lemmal 38.1. Let f: X — S be a morphism of schemes. Let x € X be a point
with image s € S. Let h € my C Ox . Assume

(1) f is smooth at x, and
(2) the image dh of dh in

Ox, /5,2 P0ox, . B(T) = Qx/5.0 oy, K(T)
1S nonzero.

Then there exists an affine open neighbourhood U C X of x such that h comes from
h € T'(U,Oy) and such that D = V(h) is an effective Cartier divisor in U with
x €D and D — S smooth.

Proof. As f is smooth at  we may assume, after replacing X by an open neigh-
bourhood of x that f is smooth. In particular we see that f is flat and locally of finite
presentation. By Lemma we already know there exists an open neighbourhood
U C X of x such that h comes from h € I'(U, Oy) and such that D = V' (h) is an
effective Cartier divisor in U with € D and D — S flat and of finite presentation.
By Morphisms, Lemma we have a short exact sequence

CD/U — i*QU/S — QD/S —0

where i : D — U is the closed immersion and Cp,y is the conormal sheaf of D
in U. As D is an effective Cartier divisor cut out by h € T'(U,Oy) we see that
Cpyu = h-0Os. Since U — S is smooth the sheaf Q5 is finite locally free, hence
its pullback i*Q)y;/s is finite locally free also. The first arrow of the sequence maps
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the free generator h to the section dh|p of i*Qy /g which has nonzero value in the
fibre Q5. ® k(x) by assumption. By right exactness of ®#x(z) we conclude that

dim,{(z) (QD/S,z & I{(CC)) = dim,{(m) (QU/S,x ® H(IL‘)) — 1.

By Morphisms, Lemmawe see that Qp g, ®k(z) can be generated by at most
dim, (Us) elements. By the displayed formula we see that Qp/g, ® r(x) can be
generated by at most dim,(Us) — 1 elements. Note that dim,(Dy) = dim,(Us) — 1
for example because dim(Op, ;) = dim(Oy, ,) — 1 by Algebra, Lemma (also
Dy C Us is effective Cartier, see Divisors, Lemma and then using Morphisms,
Lemma Thus we conclude that Qp /g, ® k(x) can be generated by at most
dim, (Ds) elements and we conclude that D — S is smooth at z by Morphisms,
Lemma [34.14] again. After shrinking U we get that D — S is smooth and we
win. U

Lemma 38.2. Let f: X — S be a morphism of schemes. Let x € X be a point
with image s € S. Assume
(1) f is smooth at x, and
(2) the map
Qx, /5,0 ®0x, .0 K(T) — Q) /1 (s)
has a nonzero kernel.

Then there exists an affine open neighbourhood U C X of x and an effective Cartier
divisor D C U containing x such that D — S is smooth.

Proof. Write k = £(s) and R = Ox_,. Denote m the maximal ideal of R and
k = R/m so that x = k(z). As formation of modules of differentials commutes with
localization (see Algebra, Lemma we have Qx /5. = Q. By Algebra,
Lemma there is an exact sequence

m/m? 4, Qr/k @r K — Qi — 0.

Hence if (2) holds, there exists an element h € m such that dh is nonzero. Choose
a lift h € Ox  of h and apply Lemma m (]

Remark| 38.3. The second condition in Lemma is necessary even if x is a
closed point of a positive dimensional fibre. An example is the following: Let k£ be
a field of characteristic p > 0 which is imperfect. Let a € k be an element which is
not a pth power. Let m = (z,y? — a) C k[x,y]. This corresponds to a closed point
wof X = Ai. Set S = A} and let f : X — S be the morphism corresponding to
klz] — klz,y]. Then there does not exist any commutative diagram

h
X /
S
with g étale and w in the image of h. This is clear as the residue field extension

k(w)/k(f(w)) is purely inseparable, but for any s’ € S’ with g(s’) = f(w) the
extension k(s")/k(f(w)) would be separable.

If you assume the residue field extension is separable then the phenomenon of
Remark [38:3] does not happen. Here is the precise result.
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Lemma 38.4. Let f: X — S be a morphism of schemes. Let x € X be a point
with image s € S. Assume

(1) f is smooth at x,
(2) the residue field extension k(x)/k(s) is separable, and
(3) x is not a generic point of X,.

Then there exists an affine open neighbourhood U C X of x and an effective Cartier
divisor D C U containing x such that D — S is smooth.

Proof. Write k = k(s) and R = Ox, ,. Denote m the maximal ideal of R and
k = R/m so that k = k(x). As formation of modules of differentials commutes with
localization (see Algebra, Lemma we have Qx_ /s, = Qr/ir. By assumption
(2) and Algebra, Lemma the map

d:m/m®> — Qg1 ®p K(m)

is injective. Assumption (3) implies that m/m? # 0. Thus there exists an element
h € m such that dh is nonzero. Choose a lift h € Ox , of h and apply Lemma
B3Il O

The subscheme Z constructed in the following lemma is really a complete intersec-
tion in an affine open neighbourhood of x. If we ever need this we will explicitly
formulate a separate lemma stating this fact.

Lemma 38.5. Let f: X — S be a morphism of schemes. Let x € X be a point
with image s € S. Assume

(1) f is smooth at x, and
(2) = is a closed point of X5 and k(s) C k(x) is separable.

Then there exists an immersion Z — X containing x such that

(1) Z — S is étale, and
(2) Zs = {x} set theoretically.

Proof. We may and do replace S by an affine open neighbourhood of s. We
may and do replace X by an affine open neighbourhood of = such that X — S is
smooth. We will prove the lemma for smooth morphisms of affines by induction on
d = dim, (Xs).

The case d = 0. In this case we show that we may take Z to be an open neigh-
bourhood of x. Namely, if d = 0, then X — S is quasi-finite at x, see Morphisms,
Lemma [29.5] Hence there exists an affine open neighbourhood U C X such that
U — S is quasi-finite, see Morphisms, Lemma Thus after replacing X by U
we see that X is quasi-finite and smooth over S, hence smooth of relative dimen-
sion 0 over S, hence étale over S. Moreover, the fibre X, is a finite discrete set.
Hence after replacing X by a further affine open neighbourhood of X we see that
F1({s}) = {z} (because the topology on X, is induced from the topology on X,
see Schemes, Lemma [I8.5)). This proves the lemma in this case.

Next, assume d > 0. Note that because z is a closed point of its fibre the extension
k(z)/k(s) is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma [20.3)).
Thus we see Q,.(2)/x(s) = 0 as this holds for algebraic separable field extensions.
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Thus we may apply Lemma [38:2) to find a diagram

D——sU——-X

A

S

with x € D. Note that dim, (D) = dim, (X,)—1 for example because dim(Op, ,) =
dim(Oyx, »)—1 by Algebra, Lemma (also Dg C X is effective Cartier, see Di-
visors, Lemma and then using Morphisms, Lemma Thus the morphism
D — S is smooth with dim,(D;) = dim,(X,) —1 = d — 1. By induction hypothesis
we can find an immersion Z — D as desired, which finishes the proof. O

Lemma 38.6. Let f: X — S be a smooth morphism of schemes. Let s € S be a
point in the image of f. Then there exists an étale neighbourhood (S’,s") — (5, s)
and a S-morphism 8" — X.

First proof of Lemma By assumption X # (). By Varieties, Lemma [25.6]
there exists a closed point z € X such that x(z) is a finite separable field extension
of x(s). Hence by Lemmathere exists an immersion Z — X such that Z — S
is étale and such that « € Z. Take (5’,5") = (Z, ). O

Second proof of Lemma Pick a point z € X with f(z) = s. Choose a
diagram

X<—U—7T>A§l/

L

S <~—

with 7 étale, x € U and V = Spec(R) affine, see Morphisms, Lemma [36.20, In
particular s € V. The morphism 7 : U — A{l, is open, see Morphisms, Lemma
36.13 Thus W = 7(U) N A? is a nonempty open subset of A%, Let w € W be a

point with x(s) C x(w) finite separable, see Varieties, Lemma By Algebra,
i

Lemma 1) there exist d elements f;,...,f,; € k(s)[z1,-..,2q] which generate
the maximal ideal corresponding to w in s(s)[x1,...,24]. After replacing R by
a principal localization we may assume there are fi,..., fqg € R[z1,...,24] which

map to f,...,fq € k(s)[z1,...,24). Consider the R-algebra
R/ = R[xla""'rd]/(fla'”vfd)

and set S’ = Spec(R'). By construction we have a closed immersion j : S’ — A¢
over V. By construction the fibre of S’ — V over s is a single point s’ whose residue
field is finite separable over x(s). Let ¢’ C R’ be the corresponding prime. By
Algebra, Lemma we see that (R'), is a relative global complete intersection
over R for some g € R', g ¢ q. Thus S’ — V is flat and of finite presentation in
a neighbourhood of s’, see Algebra, Lemma By construction the scheme
theoretic fibre of S’ — V over s is Spec(k(s’)). Hence it follows from Morphisms,
Lemma [36.15] that S’ — S is étale at s’. Set

" __ !
S _Ux‘n',A‘é,jS'

By construction there exists a point s’ € S” which maps to s’ via the projection
p: S” — S’. Note that p is étale as the base change of the étale morphism ,
see Morphisms, Lemma Choose a small affine neighbourhood S S of s”
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which maps into the nonempty open neighbourhood of s’ € S’ where the morphism
S’ — S is étale. Then the étale neighbourhood (S",s"”) — (S, s) is a solution to
the problem posed by the lemma. O

The following lemma shows that sheaves for the smooth topology are the same
thing as sheaves for the étale topology.

Lemma 38.7. Let S be a scheme. LetU = {S; — S}ticr be a smooth covering of S,

see Topologies, Definition|5.1 Then there exists an étale coveringV = {T; — S}jcs
(see Topologies, Definition which refines (see Sites, Deﬁnition U.

Proof. For every s € S there exists an ¢ € I such that s is in the image of S; — S.
By Lemma we can find an étale morphism g : Ts — S such that s € g4(T%)
and such that g5 factors through S; — S. Hence {Ts — S} is an étale covering of
S that refines U. O

Lemmal 38.8. Let f : X — S be a smooth morphism of schemes. Then there
exists an étale covering {U; — X }ier such that U; — S factors as U; — V; — S
where V; — S is étale and U; — V; is a smooth morphism of affine schemes, which
has a section, and has geometrically connected fibres.

Proof. Let s € S. By Varieties, Lemma the set of closed points z € X, such
that x(z)/k(s) is separable is dense in X;. Thus it suffices to construct an étale
morphism U — X with x in the image such that U — S factors in the manner
described in the lemma. To do this, choose an immersion Z — X passing through
x such that Z — S is étale (Lemma. After replacing S by Z and X by Z xg X
we see that we may assume X — S has a section o : § — X with o(s) = . Then
we can first replace S by an affine open neighbourhood of s and next replace X by
an affine open neighbourhood of x. Then finally, we consider the subset X° C X
of Section 29 By Lemmas [29.6] and [29.4] this is a retrocompact open subscheme
containing o such that the fibres X% — S are geometrically connected. If X© is
not affine, then we choose an affine open U C X° containing =. Since X° — § is
smooth, the image of U is open. Choose an affine open neighbourhood V' C S of
s contained in ¢~1(U) and in the image of U — S. Finally, the reader sees that
UN f~1(V) — V has all the desired properties. For example U N f~1(V) is equal
to U xg V is affine as a fibre product of affine schemes. Also, the geometric fibres
of UN f~Y(V) — V are nonempty open subschemes of the irreducible fibres of
X% — S and hence connected. Some details omitted. O

39. Etale neighbourhoods and Artin approximation

In this section we prove results of the form: if two pointed schemes have isomorphic
complete local rings, then they have isomorphic étale neighbourhoods. We will rely
on Popescu’s theorem, see Smoothing Ring Maps, Theorem [12.1]

Lemma 39.1. Let S be a locally Noetherian scheme. Let X, Y be schemes locally
of finite type over S. Let x € X and y € Y be points lying over the same point
s € S. Assume Og s is a G-ring. Assume further we are given a local Og s-algebra
map

@ : Oy7y — O?{,x
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For every N > 1 there exists an elementary étale neighbourhood (U,u) — (X, x)
and an S-morphism f: U — 'Y mapping u to y such that the diagram

A 5 A
OX,m OU,u

(P

OY,y — OU,u

commutes modulo mfy.

Proof. The question is local on X hence we may assume X, Y, S are affine. Say
S = Spec(R), X = Spec(A), Y = Spec(B). Write B = R[z1,...,2|/(f1,-- -, fm)-
Let p C A be the prime ideal corresponding to . The local ring Ox , = A4, is a
G-ring by More on Algebra, Proposition The map ¢ is a map

A A
By — A

where q C B is the prime corresponding to y. Let aq,...,a, € AQ be the images of

Ty, ...,y via Rz, ..., 2] = B — By — Ap. Then we can apply Smoothing Ring

Maps, Lemma to get an étale ring map A — A’ and a prime ideal p’ C A’ and
bi,...,b, € A" such that s(p) = £(p'), a; —b; € (p")N(A4})", and f;(by,...,bn) =0
for j = 1,...,n. This determines an R-algebra map B — A’ by sending the class
of z; to b; € A’. This finishes the proof by taking U = Spec(A’) — Spec(B) as the
morphism f and u = p’. O

Lemmal 39.2. Let S be a locally Noetherian scheme. Let X, Y be schemes locally
of finite type over S. Let x € X and y € Y be points lying over the same point
s € S. Assume Og s is a G-ring. Assume we have an Og s-algebra isomorphism

p: (’)Q,y — (’))A(J
between the complete local rings. Then for every N > 1 there exists morphisms
(X, 2) + (U,u) = (Y,y)

of pointed schemes over S such that both arrows define elementary étale neighbour-
hoods and such that the diagram

N

w

commutes modulo m

Proof. We may assume N > 2. Apply Lemma to get (U,u) — (X,z) and
f:(U,u) = (Y,y). We claim that f is étale at v which will finish the proof. In fact,
we will show that the induced map OQy — O(/}’u is an isomorphism. Having proved
this, Lemma [I2.1] will show that f is smooth at u and of course f is unramified at
u as well, so Morphisms, Lemmatells us f is étale at u. For a local ring (R, m)
we set Grm(R) = ,5,m"/m". To prove the claim we look at the induced
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diagram of graded rings

Grmu OU u

/\

Grmy (Oy y Gru, (OX z)

Since N > 2 this diagram is actually commutative as the displayed graded algebras
are generated in degree 1! By assumption the lower arrow is an isomorphism.
By More on Algebra, Lemma (for example) the map O% , — Op, is an
isomorphism and hence the north-west arrow in the diagram is an isomorphism.
We conclude that f induces an isomorphism Grm, (Ox,z) — Grm,(Op,). Using

induction and the short exact sequences
0 — Gr:(R) — R/m"*' — R/m" — 0

for both local rings we conclude (from the snake lemma) that f induces isomor-
phisms Oy, /my — Oy, /my; for all n which is what we wanted to show. O

Lemma 39.3. Let X — S, Y =-T,z,s,y,t, 0, ys, and @ be given as follows:
we have morphisms of schemes

X Y z Y
l l with points l l
S T S t

Here S is locally Noetherian and T is of finite type over Z. The morphisms X — S
and Y — T are locally of finite type. The local ring Og s is a G-ring. The map

0:0r — Oé\,s
is a local homomorphism. Set Y, =Y X1, Spec((’)/s\’s). Next, y, is a point of Yy,
mapping to y and the closed point of Spec(Ogvs), Finally

. A A
e OX,m ’ OYa,yg

is an isomorphism of O@ys-algebms, In this situation there exists a commutative
diagram

X Y xp,V—Y

N

of schemes and points w € W, v € V such that

(1) (V,v) = (S, s) is an elementary étale neighbourhood,
(2) (W,w) — (X,x) is an elementary étale neighbourhood, and
(3) 7(v) =t.
Let y, € Y xp V correspond to y, via the identification (Y;)s = (Y X1 V),. Then
(4) W,w) = (Y xp. V,y,) is an elementary étale neighbourhood.

Proof. Denote X, = X xg Spec(O@ys) and z, € X, the unique point lying over x.
Observe that 0% is a G-ring by More on Algebra, Proposition W By Lemma

,S
39.2] we can choose

(Xa,l'a) A (Ua u) - (Yovya)
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where both arrows are elementary étale neighbourhoods.

After replacing S by an open neighbourhood of s, we may assume S = Spec(R)
is affine. Since Og s is a G-ring by Smoothing Ring Maps, Theorem the ring
(93 s is a filtered colimit of smooth R-algebras. Thus we can write

Spec(Og ) = lim S;

as a directed limit of affine schemes S; smooth over S. Denote s; € S; the image of
the closed point of Spec(Oj ,). Observe that r(s) = s(s;). Set X; = X x5 5; and
denote x; € X; the unique point mapping to x. Note that x(z) = k(x;). Since T is
of finite type over Z by Limits, Proposition [6.I] we can choose an ¢ and a morphism
i : (Si,s:) — (T,t) of pointed schemes whose composition with Spec(Og ;) — S is
equal to 0. Set ¥; = Y x1.S; and denote y; the image of y,. Note that x(y;) = £(ys)-
By Limits, Lemma we can choose an ¢ and a diagram

Xi=—U;—=Y;

N

Si

whose base change to Spec(O@ys) recovers X, <~ U — Y,. By Limits, Lemma
after increasing i we may assume the morphisms X; < U; — Y; are étale.
Let u; € U; be the image of u. Then w; — z; hence k(z) = k(xy) = Kk(u) D
k(u;) D k(z;) = k(x) and we see that x(u;) = k(x;). Hence (X;,x;) + (Us,u;) is
an elementary étale neighbourhood. Since also x(y;) = k(y,) = k(u) we see that
also (U;,u;) = (Yi,y;) is an elementary étale neighbourhood.

At this point we have constructed a diagram

X%XXsSi%UiHYXTSiHY

AN

i

as in the statement of the lemma, except that S; — S is smooth. By Lemma
[38:5] and after shrinking S; we can assume there exists a closed subscheme V' C S;
passing through s; such that V' — S is étale. Setting W equal to the scheme
theoretic inverse image of V' in U; we conclude. (]

We strongly encourage the reader to skip the rest of this section.

Lemma 39.4. Consider a diagram

X Y T Y
l l with points l i
S<~—T s<—-1

where S be a locally Noetherian scheme and the morphisms are locally of finite type.
Assume Og s is a G-ring. Assume further we are given a local Og s-algebra map

0:0r — Oé\,s
and a local Og s-algebra map

. A
¢:0xo — Oy, ,,
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where Y, =Y X1, Spec(@@vs) and Yy, 1s the unique point of Y, lying over y. For
every N > 1 there exists a commutative diagram

X<~—X XSV<TW*>Y XprsV—Y
S |4 T T

of schemes over S and points w € W, v € V' such that

(1) vi=s, 7(v) = t, f(w) = (2,v), and w = (y,v),
(2) (V,v) = (S, s) is an elementary étale neighbourhood,
(3) the diagram

A A
OS,s OV,'U

]
Ory ——= Oy,

commutes module m
(4) W,w) = (Y xr.V,(y,v)) is an elementary étale neighbourhood,
(5) the diagram

A N N
Ox,z 2 Oy, 4. Oy, v, /myo —_— OYXT,TV,(y,v)/m(y,v)
£ i N
OX,I > OXXSV,(z,v) OW,w OW,w/mw

commutes. The equality comes from the fact that Y, and Y X7,V are
canonically isomorphic over Oy, /ml = Og s/mY by parts (2) and (3).

Proof. After replacing X, S, T, Y by affine open subschemes we may assume the
diagram in the statement of the lemma comes from applying Spec to a diagram

A B pa ]
T T with primes
R——C PR pc

of Noetherian rings and finite type ring maps. In this proof every ring F will be
a Noetherian R-algebra endowed with a prime ideal pg lying over pr and all ring
maps will be R-algebra maps compatible with the given primes. Moreover, if we
write E” we mean the completion of the localization of F at pg. We will also use
without further mention that an étale ring map Fy — Fs such that x(pg,) = c(pg,)
induces an isomorphism E7* = E5 by More on Algebra, Lemma m

With this notation ¢ and ¢ correspond to ring maps

oc:C—R" and ¢:A— (B®co, RM)"



MORE ON MORPHISMS 117

Here is a picture

©
e o T
A B——> B®cy, R —> (B®c,, RM)"

R

R C R"

Observe that R is a G-ring by More on Algebra, Proposition Thus B®¢ - R"
is a G-ring by More on Algebra, Proposition[50.10 By Lemma (translated into
algebra) there exists an étale ring map B ®¢,, R" — B’ inducing an isomorphism
k(PBoe ., rRA) — K(pp/) and an R-algebra map A — B’ such that the composition

A— B — (B)" = (B®&c,, R")"

is the same as ¢ modulo (p(B@)C’G_R/\)A)N. Thus we may replace ¢ by this com-
position because the only way ¢ enters the conclusion is via the commutativity
requirement in part (5) of the statement of the lemma. Picture:

B/ (B/)/\

RN

c RM

Next, we use that R is a filtered colimit of smooth R-algebras (Smoothing Ring
Maps, Theorem [12.1)) because Ry, is a G-ring by assumption. Since C is of finite
presentation over R we get a factorization

C R - R"

for some R — R’ smooth, see Algebra, Lemma After increasing R’ we may
assume there exists an étale B ®c R’-algebra B” whose base change to B ®¢,, R"
is B’, see Algebra, Lemma Then B’ is the filtered colimit of these B’
and we conclude that after increasing R’ we may assume there is an R-algebra
map A — B” such that A — B” — B’ is the previously constructed map (same
reference as above). Picture

B// B/ (B/)/\
Aé(@c R — > B®c., RN ——~= (B ®c.0 RMA
! ! ) i) /

and
B/ o BI/ B R/\
= B" ®ecr) (B®c,.e R)
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This means that we may replace C by R, 0 : C — R by R’ — R", and B by B”
so that we simplify to the diagram

A——>B——> B®c, R

1]

R C z R"
with ¢ equal to the composition of the horizontal arrows followed by the canonical
map from B ®c,, R" to its completion. The final step in the proof is to apply
Lemma (or its proof) one more time to Spec(C') and Spec(R) over Spec(R)
and the map C — R”. The lemma produces a ring map C' — D such that R — D
is étale, such that k(pr) = k(pp), and such that

C—D— D"=R"
is equal to o : C' — R" modulo (pr)~. Then we can take
V =Spec(D) and W = Spec(B ®c D)

as our solution to the problem posed by the lemma. Namely the diagram

A——= B®c, R —= B®c,, R"/(ppr)N == B ®c D/(pp)"

A——>A®rD——B®rD——>B®c D/(pp)"

commutes because C — D — D" = R" is equal to ¢ modulo (pr~)". This proves
part (5) and the other properties are immediate from the construction. O

Lemma 39.5. Let T — S be finite type morphisms of Noetherian schemes. Let
t € T map tos € S and let 0 : Ory — O be a local Os s-algebra map. For
every N > 1 there exists a finite type morphism (T',t') — (T, t) such that o factors
through Oy — O and such that for every local Og s-algebra map o’ : Oy —
(9§78 which factors through Opy — Oy the maps o and o’ agree modulo ml.

Proof. We may assume S and T are affine. Say S = Spec(R) and T = Spec(C).
Let ¢1,...,¢, € C be generators of C' as an R-algebra. Let p C R be the prime
ideal corresponding to s. Say p = (f1,..., fm). After replacing R by a principal
localization (to clear denominators in R,) we may assume there exist r1,...,7, € R
and a; 1 € (’)Q’S where I = (i1,...,%y,) with >_i; = N such that

O'(Ci) =T =+ ZI G,Z'Jflil e ffﬁn

in Of .. Then we consider
)

C' = Cltis)/ (Ci —r; — Z[ tz‘,Iflil f:ﬁ")

with p’ = pC’+(t; 1) and factorization of o : C' — Of , through C” given by sending
ti.1 t0 a; . Taking T = Spec(C’) works because any ¢’ as in the statement of the
lemma will send ¢; to r; modulo the maximal ideal to the power N. O

Lemma 39.6. LetY — T — S be finite type morphisms of Noetherian schemes.
Lett € T map to s € S and let o : Opy — Of be a local Os s-algebra map.
There exists a finite type morphism (T',t") — (T,t) such that o factors through
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Ot — Ori o and such that for every local Og s-algebra map o' : Ory — Of
which factors through Or — Op: 4 the closed immersions

Y X714 Spec(0g,) = Yo «— Y, — Yoo =Y X700 Spec(Og )
have isomorphic conormal algebras.

Proof. A useful observation is that k(s) = k(t) by the existence of o. Observe that
the statement makes sense as the fibres of Y, and Y, over s € Spec(Og ,) are both
canonically isomorphic to Y;. We will think of the property “o’ factors through
Ory — Opr 7 as a constraint on o’. If we have several such constraints, say
given by (T7,t,) — (T,t), i =1,...,n then we can combined them by considering

(T) xp ... xp T}, (th,...,t.)) = (T,t). We will use this without further mention
in the following.

By Lemma we can assume that any ¢’ as in the statement of the lemma is
the same as o modulo m?. Note that the conormal algebra of Y; in Y, is just the
quasi-coherent graded Oy,-algebra

B . mlOy, /miT Oy,
n>0

and similarly for Y. Since o and ¢’ agree modulo m? we see that these two algebras
are the same in degrees 0 and 1. On the other hand, these conormal algebras are
generated in degree 1 over degree 0. Hence if there is an isomorphism extending
the isomorphism just constructed in degrees 0 and 1, then it is unique.

We may assume S and T are affine. Let Y = Y; U...UY, be an affine open
covering. If we can construct (77,t¢;) — (T,t) as in the lemma such that the desired

isomorphism (see previous paragraph) exists for Y; — T — S and o, then these
glue by uniqueness to prove the result for Y — T'. Thus we may assume Y is affine.

Write S = Spec(R), T = Spec(C), and Y = Spec(B). Choose a presentation
B = Clx1,...;20]/(f15- -, fm). Denote R" = Og . Let ar; € R [z1,...,z,] be
polynomials such that

Z' L agjo(f;) =0, fork=1,...,K
j=1,....m

is a set of generators for the module of relations among the o(f;) € R [x1,...,zy,].
Thus we have an exact sequence
(39.6.1)

RMzy, ... ,xn]@K — RMxy, .. 2% — RMa,...,2,] = B ®c,o RN >0

Let ¢ be an integer which works in the Artin-Rees lemma for both the first and the
second map in this sequence and the ideal mpa R z1, ..., x,] as defined in More
on Algebra, Section [d Write

_ 4 - R
arj = E IEQakJ’Ix and f; = E 1ea firx

in multiindex notation where ay; ; € R", f; 1 € C, and Q a finite set of multiindices.
Then we see that

Zj:l m, I,LI'EQ, T+I'=I" akj,IU(fj,l’) =0, I" a multiindex

in R". Thus we take

C' = C[tij]/ ( tej 1 fi1, I’ a multiindex)

Zj:l,..‘,m, II'eQ, I+I'=1"
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Then o factors through a map ¢ : ¢’ — R” sending tx; s to aji ;. Thus T7 =
Spec(C”) comes with a point ¢ € T’ such that o factors through Or; — Op p.
Let t; = Ztkj,lfcl in C’'[xy,...,2,]. Then we see that we have a complex

(39.6.2) C'x1,..., 2% = C'xy,y .. 2,]%™ = Oy, .. 2] = B®c O — 0
which is exact at C’[z1, ..., x,] and whose base change by & gives (39.6.1)).

By Lemma we can find a further morphism (7”,¢") — (T’,t') such that &
factors through Op/y — Opv v and such that if ¢/ : C — R” factors through
Orv yr, then the induced map &' : C' — R" agrees modulo m¢™! with &. Thus if
o’ is such a map, then we obtain a complex

RNy, 205 = RMay, .o, 2,]%™ — RMay, .. 20] = B®cor RN =0

over RM[z1,...,x,] by applying &’ to the polynomials tx; and f;. In other words,
this is the base change of the complex by &'. The matrices defining this
complex are congruent modulo m$*t! to the matrices defining the complex (39.6.1))
because & and & are congruent modulo m¢*t1. Since (39.6.1)) is exact, we can apply
More on Algebra, Lemma to conclude that

G, (B ®c,or R") = Gy, (B ®c,» R")
as desired. O

Lemmal 39.7. With notation an assumptions as in Lemma assume that ¢
induces an isomorphism on completions. Then we can choose our diagram such
that f is étale.

Proof. We may assume N > 2 and we may replace (T,t) with (77,t) as in
Lemma Since (V,v) — (S5,s) is an elementary étale neighbourhood, so is
(X x5V, (z,v)) = (X,2). Thus Ox , — Oxxsv () induces an isomorphism on
completions by More on Algebra, Lemma We claim Ox , — Ow,, induces
an isomorphism on completions. Having proved this, Lemma will show that f
is smooth at w and of course f is unramified at u as well, so Morphisms, Lemma
tells us f is étale at w.

First we use the commutativity in part (5) of Lemma to see that for i < N
there is a commutative diagram

OX x —Lp> Grfnya (Og\/mya) - Grfn(y,v) (OYXT’TV’(y’U))

d

Y rL i
OX z — Grm(m ) (OXXSV,(J;,U)) I Grmw (OW,M)

This implies that f¥ defines an isomorphism (z) — x(w) on residue fields and an
isomorphism m, /m? — m,, /m2 on cotangent spaces. Hence f¥ defines a surjection
O% .. — Of,, on complete local rings.

By Lemmathere is an isomorphism of Gru, (O(y x 1, v,(y,0)) With Gr, (O, 4, )-
This follows by taking stalks of the isomorphism of conormal sheaves at the point
y. Since our local rings are Noetherian taking associated graded with respect to m,
commutes with completion because completion with respect to an ideal is an exact
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functor on finite modules over Noetherian rings. This produces the right vertical
isomorphism in the diagram of graded rings

Grm, (Oov,w) ~— Grnp, (Oé\yXT,Tv,(yﬂ)))

Lk

Grms (03\(,3:) Grms (Og/\'a,yg)

We do not claim the diagram commutes. By the result of the previous paragraph
the left arrow is surjective. The other three arrows are isomorphisms. It follows
that the left arrow is a surjective map between isomorphic Noetherian rings. Hence
it is an isomorphism by Algebra, Lemma (you can argue this directly using
Hilbert functions as well). In particular O% , — Oy, must be injective as well as
surjective which finishes the proof. O

40. Finite free locally dominates étale

In this section we explain a result that roughly states that étale coverings of a
scheme S can be refined by Zariski coverings of finite locally free covers of S.

Lemma 40.1. Let S be a scheme. Let s € S. Let f : (Uu) — (S,s) be an
étale neighbourhood. There exists an affine open neighbourhood s € V-.C S and a
surjective, finite locally free morphism © : T — V such that for every t € w=1(s)
there exists an open neighbourhood t € Wy C T and a commutative diagram

N4

V———---==5§

with hy(t) = u.

Proof. The problem is local on S hence we may replace S by any open neigh-
bourhood of s. We may also replace U by an open neighbourhood of w. Hence,
by Morphisms, Lemma we may assume that U — S is a standard étale mor-
phism of affine schemes. In this case the lemma (with V' = 5) follows from Algebra,

Lemma [[44.5] O

Lemma 40.2. Let f: U — S be a surjective étale morphism of affine schemes.
There exists a surjective, finite locally free morphism ©: T — S and a finite open
covering T =Ty U...UT, such that each T; — S factors through U — S. Diagram:

Tz\U
e

where the south-west arrow is a Zariski-covering.

v
N

Proof. This is a restatement of Algebra, Lemma [144.6 (]
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Remark| 40.3. In terms of topologies Lemmas and mean the following.
Let S be any scheme. Let {f; : U; — S} be an étale covering of S. There exists a
Zariski open covering S = |JV}, for each j a finite locally free, surjective morphism
W; — V;, and for each j a Zariski open covering {W; ; — W;} such that the family
{W;r — S} refines the given étale covering {f; : U; = S}. What does this mean in
practice? Well, for example, suppose we have a descent problem which we know how
to solve for Zariski coverings and for fppf coverings of the form {r : T'— S} with
7 finite locally free and surjective. Then this descent problem has an affirmative
answer for étale coverings as well. This trick was used by Gabber in his proof that
Br(X) = Br/(X) for an affine scheme X, see [H0082].

41. Etale localization of quasi-finite morphisms

Now we come to a series of lemmas around the theme “quasi-finite morphisms
become finite after étale localization”. The general idea is the following. Suppose
given a morphism of schemes f: X — S and a point s € S. Let ¢ : (U,u) — (5, 3)
be an étale neighbourhood of s in S. Consider the fibre product Xy = U xg X and
the basic diagram

V—Xy—>X

N

U——38

where V' C Xy is open. Is there some standard model for the morphism fy : Xy —
U, or for the morphism V — U for suitable opens V? Of course the answer is no
in general. But for quasi-finite morphisms we can say something.

Lemma 41.1. Let f : X — S be a morphism of schemes. Let x € X. Set
s = f(x). Assume that

(1) f is locally of finite type, and

(2) x € X, is isolated’|
Then there exist

(a) an elementary étale neighbourhood (U,u) — (S, s),

(b) an open subscheme V C Xy (see[41.0.1))
such that

(i) V = U is a finite morphism,

(ii) there is a unique point v of V. mapping to u in U, and

(iii) the point v maps to x under the morphism Xy — X, inducing k(z) = k(v).
Moreover, for any elementary étale neighbourhood (U',v') — (U,u) setting V' =
U xyV C Xy the triple (U',u’', V") satisfies the properties (i), (ii), and (iii) as
well.

Proof. Let Y C X, W C S be affine opens such that f(Y) C W and such that
x € Y. Note that z is also an isolated point of the fibre of the morphism f|y : Y —
W. If we can prove the theorem for f|y : Y — W, then the theorem follows for f.
Hence we reduce to the case where f is a morphism of affine schemes. This case is

Algebra, Lemma [145.2) (]

"In the presence of (1) this means that f is quasi-finite at z, see Morphisms, Lemmam
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In the preceding and following lemma we do not assume that the morphism f is
separated. This means that the opens V', V; created in them are not necessarily
closed in Xy. Moreover, if we choose the neighbourhood U to be affine, then each
Vi is affine, but the intersections V; N V; need not be affine (in the nonseparated
case).

Lemma 41.2. Let f: X — S be a morphism of schemes. Let x1,...,x, € X be
points having the same image s in S. Assume that

(1) f is locally of finite type, and

(2) x; € X5 is isolated fori=1,...,n.
Then there exist

(a) an elementary étale neighbourhood (U,u) — (S, s),
(b) for each i an open subscheme V; C Xy,

such that for each i we have
(i) V; = U is a finite morphism,
(ii) there is a unique point v; of V; mapping to w in U, and
(iii) the point v; maps to x; in X and k(x;) = k(v;).

Proof. We will use induction on n. Namely, suppose (U, u) — (S, s) and V; C Xy,
i=1,...,n—1 work for x1,...,2,_1. Since x(s) = k(u) the fibre (Xy), = X;.
Hence there exists a unique point z/, € X, C Xy corresponding to z, € X,.
Also !, is isolated in X,,. Hence by Lemma there exists an elementary étale
neighbourhood (U’, ') — (U,u) and an open V,, C Xy which works for z/, and
hence for x,. By the final assertion of Lemma the open subschemes V; =
U xy V; for i = 1,...,n — 1 still work with respect to z1,...,z,_1. Hence we
win. ([l

If we allow a nontrivial field extension x(u)/k(s), i.e., general étale neighbourhoods,
then we can split the points as follows.

Lemma 41.3. Let f: X — S be a morphism of schemes. Let x1,...,x, € X be
points having the same image s in S. Assume that

(1) f is locally of finite type, and

(2) z; € X is isolated for i=1,...,n.
Then there exist

(a) an étale neighbourhood (U,u) — (S, s),

(b) for each i an integer m; and open subschemes V; ; C Xy, j=1,...,m;
such that we have

(i) each V;; = U is a finite morphism,

(ii) there is a unique point v, ; of V; ; mapping to u in U with k(u) C k(v; ;)

finite purely inseparable,
(iv) if vij = vy jr, theni =14 and j =7, and
(ili) the points v;; map to z; in X and no other points of (Xy), map to x;.

Proof. This proof is a variant of the proof of Algebra, Lemma[145.4in the language
of schemes. By Morphisms, Lemma the morphism f is quasi-finite at each
of the points z;. Hence k(s) C k(x;) is finite for each ¢ (Morphisms, Lemma
[20.5). For each 4, let k(s) C L; C k(z;) be the subfield such that L;/k(s) is
separable, and x(x;)/L; is purely inseparable. Choose a finite Galois extension


https://stacks.math.columbia.edu/tag/02LL
https://stacks.math.columbia.edu/tag/02LM

02LN

02LO

MORE ON MORPHISMS 124

L/k(s) such that there exist x(s)-embeddings L; — L for ¢ = 1,...,n. Choose an
étale neighbourhood (U, u) — (S, s) such that L = k(u) as k(s)-extensions (Lemma
35.2)).

Let y;4, j = 1,...,m; be the points of Xy lying over z; € X and u € U. By
Schemes, Lemma these points y; ; correspond exactly to the primes in the
rings k(u) ®,(s) k(z;). This also explains why there are finitely many; in fact
m; = [L; : £(s)] but we do not need this. By our choice of L (and elementary
field theory) we see that x(u) C k(y; ;) is finite purely inseparable for each pair
1,7. Also, by Morphisms, Lemma for example, the morphism Xy — U is
quasi-finite at the points y; ; for all i, j.

Apply Lemma to the morphism Xy — U, the point v € U and the points
Yij € (Xv)u. This gives an étale neighbourhood (U’ v') — (U, u) with k(u) = k(')
and opens V; ; C Xy with the properties (i), (ii), and (iii) of that lemma. We
claim that the étale neighbourhood (U’,u’) — (S, s) and the opens V; ; C Xy are
a solution to the problem posed by the lemma. We omit the verifications. g

Lemmal 41.4. Let f : X — S be a morphism of schemes. Let s € S. Let
T1,...,Tn € X, Assume that

(1) f is locally of finite type,

(2) f is separated, and

(3) x1,..., 2, are pairwise distinct isolated points of Xs.
Then there exists an elementary étale neighbourhood (U,u) — (S, s) and a decom-
position

UxgX=WHIOVia...1uVv,

into open and closed subschemes such that the morphisms V; — U are finite, the
fibres of V; = U over u are singletons {v;}, each v; maps to x; with k(x;) = k(v;),
and the fibre of W — U owver u contains no points mapping to any of the ;.

Proof. Choose (U,u) — (S, s) and V; C Xy as in Lemma [i1.2] Since Xy — U is
separated (Schemes, Lemma and V; — U is finite hence proper (Morphisms,
Lemma we see that V; € Xy is closed by Morphisms, Lemma Hence
Vi;NVj is a closed subset of V; which does not contain v;. Hence the image of V;NV;
in U is a closed set (because V; — U proper) not containing u. After shrinking U
we may therefore assume that V; NV; = 0 for all 4, j. This gives the decomposition
as in the lemma. (]

Here is the variant where we reduce to purely inseparable field extensions.

Lemma 41.5. Let f : X — S be a morphism of schemes. Let s € S. Let
T1,...,T, € Xs. Assume that
(1) f is locally of finite type,
(2) f is separated, and
3) x1,...,&, are pairwise distinct isolated points of X.
t

Then there exists an étale neighbourhood (U,u) — (S, s) and a decomposition

Uxsg X =WI Hi:l,...m Hj:l,.i.m Vi,

into open and closed subschemes such that the morphisms V; ; — U are finite, the
fibres of Vi j — U over u are singletons {v; ;}, each v; ; maps to z;, k(u) C k(v; ;)
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is purely inseparable, and the fibre of W — U over u contains no points mapping
to any of the x;.

Proof. This is proved in exactly the same way as the proof of Lemma except
that it uses Lemma B1.3] instead of Lemma 4121 O

The following version may be a little easier to parse.

Lemmal 41.6. Let f : X — S be a morphism of schemes. Let s € S. Assume that
(1) f is locally of finite type,
(2) f is separated, and
(3) X, has at most finitely many isolated points.
Then there exists an elementary étale neighbourhood (U,u) — (S, s) and a decom-
position
Uxg X=WIHIV
into open and closed subschemes such that the morphism V — U is finite, and the

fibre Wy, of the morphism W — U contains no isolated points. In particular, if
f71(s) is a finite set, then W, = 0).

Proof. This is clear from Lemma by choosing x1,...,x, the complete set of
isolated points of X, and setting V = |J V;. (]

42. Etale localization of integral morphisms
Some variants of the results of Section [41] for the case of integral morphisms.

Lemmal 42.1. Let R — S be an integral ring map. Let p C R be a prime ideal.
Assume
(1) there are finitely many primes q1,...,qy lying over p, and
(2) for each i the mazimal separable subextension k(q)/k(qi)sep/k(p) (Fields,
Lemma [14.6)) is finite over k(p).

Then there exists an étale ring map R — R’ and a prime p’ lying over p such that
SRrR =A; x...x A,

with R' — A; integral having a unique prime t; over p' such that k(x;)/k(p’) is
purely inseparable.

First proof. This proof uses Algebra, Lemma Namely, choose a generator
0; € K(d:)sep of this field over £(p) (Fields, Lemma[19.1). The spectrum of the fibre
ring S ®p k(p) is finite discrete with points corresponding to qi,...,q,. By the
Chinese remainder theorem (Algebra, Lemmal[15.4) we see that S®@ gk (p) — [] £(ds)
is surjective. Hence after replacing R by R, for some g € R, g & p we may assume
that (0,...,0,0;,0,...,0) € [ x(q;) is the image of some z; € S. Let S’ C S be the
R-subalgebra generated by our x;. Since Spec(S) — Spec(S’) is surjective (Algebra,
Lemma we conclude that g} = S’ N g; are the primes of S” over p. By our
choice of z; we conclude these primes are distinct that and £(q;)sep = £(qi)sep- In
particular the field extensions x(q;)/k(q;) are purely inseparable. Since R — S’
is finite we may apply Algebra, Lemma and we get R — R’ and p’ and a
decomposition
S'@rR =A] x...x Al x B

with R’ — A} integral having a unique prime v} over p’ such that x(v})/s(p’) is
purely inseparable and such that B’ does not have a prime lying over p’. Since
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R’ — B’ is finite (as R — S’ is finite) we can after localizing R’ at some ¢’ € R/,
g & p’ assume that B’ = 0. Via the map S’ g R’ — S ®r R’ we get the
corresponding decomposition for S. (]

Second proof. This proof uses strict henselization. First, assume R is strictly
henselization with maximal ideal p. Then S/pS has finitely many primes corre-
sponding to qi,...,qn, each maximal, each with purely inseparable residue field
over £(p). Hence S/pS is equal to [](S/pS)s,. By More on Algebra, Lemma [11.6]
we can lift this product decomposition to a product composition of S as in the
statement.

In the general case, let R*" be the strict henselization of Ry,. Then we can apply
the result of the first paragraph to R*" — S @ R*". Consider the m mutually
orthogonal idempotents in S ®z R*" corresponding to the product decomposition.
Since R*" is a filtered colimit of étale ring maps (R,p) — (R',p’) by Algebra,
Lemma we see that these idempotents descend to some R’ as desired. O

43. Zariski’s Main Theorem

In this section we prove Zariski’s main theorem as reformulated by Grothendieck.
Often when we say “Zariski’s main theorem” in this content we mean either of
Lemma [43.1] Lemma (3.2 or Lemma [A3.3] In most texts people refer to the last
of these as Zariski’s main theorem.

We have already proved the algebraic version in Algebra, Theorem and
we have already restated this algebraic version in the language of schemes, see
Morphisms, Theorem The version in this section is more subtle; to get the
full result we use the étale localization techniques of Section [41] to reduce to the
algebraic case.

Lemma 43.1. Let f : X — S be a morphism of schemes. Assume f is of finite type
and separated. Let S’ be the normalization of S in X, see Morphisms, Definition

[53.3. Picture:
X— =9
f/
DA
S

Then there exists an open subscheme U’ C S’ such that
(1) (f)"YU") = U’ is an isomorphism, and
(2) (f)"YU') C X is the set of points at which f is quasi-finite.

Proof. By Morphisms, Lemma the subset U C X of points where f is quasi-
finite is open. The lemma is equivalent to

(a) U' = f'(U) C S’ is open,

(b) U= (f)""(U’), and

(¢) U — U’ is an isomorphism.
Let « € U be arbitrary. We claim there exists an open neighbourhood f/(z) € V C
S’ such that (f')~1V — V is an isomorphism. We first prove the claim implies the
lemma. Namely, then (f')~'V 2 V is both locally of finite type over S (as an open
subscheme of X') and for v € V the residue field extension x(v)/k(v(v)) is algebraic
(as V C S and S’ is integral over S). Hence the fibres of V' — S are discrete
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(Morphisms, Lemma [20.2)) and (f')~'V — S is locally quasi-finite (Morphisms,
Lemma [20.8). This implies (f)~'V € U and V C U’. Since = was arbitrary we
see that (a), (b), and (c) are true.

Let s = f(z). Let (T,t) — (S,s) be an elementary étale neighbourhood. Denote
by a subscript 7 the base change to T. Let y = (x,t) € X be the unique point
in the fibre X; lying over . Note that Ur C X is the set of points where fr is
quasi-finite, see Morphisms, Lemma Note that
Xp Ty g vy

is the normalization of 7" in Xp, see Lemma Suppose that the claim holds for
y € Up C Xpr — S% — T, i.e., suppose that we can find an open neighbourhood
Ir(y) € V! C S such that (f7)~'V’ — V' is an isomorphism. The morphism
S’ — S’ is étale hence the image V' C 8" of V' is open. Observe that f/'(z) € V as
15 (y) € V'. Observe that

(fp) 7V ——=(f)7'(V)

i l

Vi >V

is a fibre square (as S X s X = Xr). Since the left vertical arrow is an isomorphism
and {V' — V} is a étale covering, we conclude that the right vertical arrow is
an isomorphism by Descent, Lemma In other words, the claim holds for
reUcX =8 =5

By the result of the previous paragraph we may replace S by an elementary étale
neighbourhood of s = f(z) in order to prove the claim. Thus we may assume there
is a decomposition

X=vaw
into open and closed subschemes where V' — S is finite and x € V, see Lemma
Since X is a disjoint union of V and W over S and since V' — S is finite we
see that the normalization of S in X is the morphism

X=vIW —VIw — 8§

where W' is the normalization of S in W, see Morphisms, Lemmas [53.10) and
(3020 The claim follows and we win. O

Lemma 43.2. Let f: X — S be a morphism of schemes. Assume f is quasi-finite
and separated. Let S’ be the normalization of S in X, see Morphisms, Definition

[53.3 Picture:
X v —— S/
f
x /
S

Then f' is a quasi-compact open immersion and v is integral. In particular f is
quasi-affine.

Proof. This follows from Lemma Namely, by that lemma there exists an open
subscheme U’ C S’ such that (f')"'(U’) = X and X — U’ is an isomorphism. In
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other words, f’ is an open immersion. Note that f’ is quasi-compact as f is quasi-
compact and v : S” — S is separated (Schemes, Lemma [21.14]). It follows that f is
quasi-affine by Morphisms, Lemma [13.3 (]

Lemma 43.3 (Zariski’'s Main Theorem). Let f : X — S be a morphism of
schemes. Assume f is quasi-finite and separated and assume that S is quasi-compact
and quasi-separated. Then there exists a factorization

X——=T
J
S

where j is a quasi-compact open immersion and T is finite.

Proof. Let X — S’ — S be as in the conclusion of Lemma [43.2] By Properties,
Lemma we can write v,0g: = colim;er A; as a directed colimit of finite
quasi-coherent O x-algebras A; C v,Og/. Then 7; : T; = Spec S('Ai) — S is a finite
morphism for each i. Note that the transition morphisms T;; — T; are affine and
that S’ = lim T;.

By Limits, Lemma there exists an 4 and a quasi-compact open U; C T; whose
inverse image in S’ equals f/(X). For i’ > i let U;s be the inverse image of U; in Tj.
Then X = f/(X) = limy>; Uy, see Limits, Lemma By Limits, Lemma m
we see that X — Uy is a closed immersion for some i’ > i. (In fact X = U, for
sufficiently large " but we don’t need this.) Hence X — T}/ is an immersion. By
Morphisms, Lemma we can factor this as X — T — T, where the first arrow
is an open immersion and the second a closed immersion. Thus we win. ([l

Lemma 43.4. With notation and hypotheses as in Lemma , Assume moreover
that f is locally of finite presentation. Then we can choose the factorization such
that T is finite and of finite presentation over S.

Proof. By Limits, Lemma we can write T = lim T; where all T; are finite and
of finite presentation over Y and the transition morphisms 7;; — T; are closed
immersions. By Limits, Lemma there exists an ¢ and an open subscheme
U; C T; whose inverse image in 7" is X. By Limits, Lemma |4.16| we see that X = U;
for large enough i. Replacing T' by 7; finishes the proof. O

44. Applications of Zariski’s Main Theorem, I

A first application is the characterization of finite morphisms as proper morphisms
with finite fibres.

Lemma 44.1. Let f : X — S be a morphism of schemes. The following are
equivalent:

(1) f s finite,

(2) f is proper with finite fibres,

(3) f is proper and locally quasi-finite,

(4) f is universally closed, separated, locally of finite type and has finite fibres.

Proof. We have (1) implies (2) by Morphisms, Lemmas [44.11] [20.10] and [44.10]
We have (2) implies (3) by Morphisms, Lemma [20.77 We have (3) implies (4) by
the definition of proper morphisms and Morphisms, Lemmas and [20.10

[DG67, TV Corollary
18.12.13]
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Assume (4). Pick s € S. By Morphisms, Lemma we see that all the finitely
many points of X, are isolated in X,. Choose an elementary étale neighbourhood
(U,u) — (S,s) and decomposition Xy = VI W as in Lemma Note that
W, = () because all points of X, are isolated. Since f is universally closed we see
that the image of W in U is a closed set not containing u. After shrinking U we
may assume that W = (. In other words we see that Xy = V is finite over U. Since
s € S was arbitrary this means there exists a family {U; — S} of étale morphisms
whose images cover S such that the base changes Xy, — U, are finite. Note that
{U; — S} is an étale covering, see Topologies, Definition Hence it is an fpqc
covering, see Topologies, Lemma Hence we conclude f is finite by Descent,
Lemma [23.23] |

As a consequence we have the following useful results.

Lemma 44.2. Let f : X — S be a morphism of schemes. Let s € S. Assume that

f is proper and f=1({s}) is a finite set. Then there exists an open neighbourhood
V C S of s such that f|p-1(vy: Y V) =V is finite.

Proof. The morphism f is quasi-finite at all the points of f~1({s}) by Morphisms,
Lemma [20.7] By Morphisms, Lemma the set of points at which f is quasi-
finite is an open U C X. Let Z = X \ U. Then s ¢ f(Z). Since f is proper
the set f(Z) C S is closed. Choose any open neighbourhood V' C S of s with
f(Z)NV = 0. Then f~%(V) — V is locally quasi-finite and proper. Hence it is
quasi-finite (Morphisms, Lemma [20.9)), hence has finite fibres (Morphisms, Lemma
[20.10)), hence is finite by Lemma [44.1 O

Lemma 44.3. Consider a commutative diagram of schemes

X—Y

h
S
Let s € S§. Assume

(1) X — S is a proper morphism,

(2) Y — S is separated and locally of finite type, and

(3) the image of X5 — Y is finite.
Then there is an open subspace U C S containing s such that Xy — Yy factors
through a closed subscheme Z C Yy finite over U.

Proof. Let Z C Y be the scheme theoretic image of h, see Morphisms, Section
[6l By Morphisms, Lemma the morphism X — Z is surjective and Z — S
is proper. Thus X; — Z; is surjective. We see that either (3) implies Z, is finite.
Hence Z — S is finite in an open neighbourhood of s by Lemma O

45. Applications of Zariski’s Main Theorem, II

In this section we give a few more consequences of Zariski’s main theorem to the
structure of quasi-finite morphisms.

Lemma 45.1. Let f : X — Y be a separated, locally quasi-finite morphism with
Y affine. Then every finite set of points of X is contained in an open affine of X.
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Proof. Let z1,...,z, € X. Choose a quasi-compact open U C X with x; € U.
Then U — Y is quasi-affine by Lemma [I3.2 Hence there exists an affine open
V C U containing 1, ..., x, by Properties, Lemma [29.5 O

Lemma 45.2. Let f:Y — X be a quasi-finite morphism. There exists a dense
open U C X such that f|s-1y : f7H(U) = U is finite.

Proof. If U; C X, i € I is a collection of opens such that the restrictions f|;-1(y,) :
71 (Us) — U; are finite, then with U = |J U; the restriction f|z-1 ¢ : f~1(U) = U
is finite, see Morphisms, Lemma Thus the problem is local on X and we may
assume that X is affine.

Assume X is affine. Write Y = J,_, ,, V; with V; affine. This is possible since
f is quasi-finite and hence in particular quasi-compact. Each V; — X is quasi-
finite and separated. Let n € X be a generic point of an irreducible component
of X. We see from Morphisms, Lemmas and that there exists an open
neighbourhood n € U, such that f~*(U,) NV; — U, is finite. We may choose U,
such that it works for each j = 1,...,m. Note that the collection of generic points
of X is dense in X. Thus we see there exists a dense open W = UT7 U, such that
each f~1(W)NV; — W is finite. It suffices to show that there exists a dense open
U C W such that f|s-1(y : f71(U) — U is finite. Thus we may replace X by an
affine open subscheme of W and assume that each V; — X is finite.

Assume X is affine, Y = |J;_,
V; — X are finite. Set

m V; with V; affine, and the restrictions fly, :

.....

Ay = (VA \Vinv;) nv;.

This is a nowhere dense closed subset of V; because it is the boundary of the open
subset V; NV} in V;. By Morphisms, Lemma image f(A;;) is a nowhere
dense closed subset of X. By Topology, Lemma the union T' = | f(Ay;) is
a nowhere dense closed subset of X. Thus U = X \ T is a dense open subset of
X. We claim that f|;-1) : f71(U) — U is finite. To see this let U’ C U be an
affine open. Set Y’ = f~H(U') =U' xx Y, V] =Y'NV; = U’ xx Vj. Consider the
restriction
f/ :f|y/ Y — U

of f. This morphism now has the property that Y =J,_, _,, V; is an affine open
covering, each V! — U’ is finite, and V;/ NV is (open and) closed both in V; and
V/. Hence V/ N V] is affine, and the map

O(V}) @z O(V}) — O(V/ NVj)

is surjective. This implies that Y is separated, see Schemes, Lemma Finally,
consider the commutative diagram

.....

The south-east arrow is finite, hence proper, the horizontal arrow is surjective, and
the south-west arrow is separated. Hence by Morphisms, Lemma we conclude
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that Y’ — U’ is proper. Since it is also quasi-finite, we see that it is finite by
Lemma 4.1} and we win. O

Lemma 45.3. Let f : X — S be flat, locally of finite presentation, separated,
locally quasi-finite with universally bounded fibres. Then there exist closed subsets

0\=Z.,CZyCcZiCZyC...CZ,=28

such that with S, = Z, \ Z._1 the stratification S = Hr:O,A..,n S, is characterized
by the following universal property: Given g : T — S the projection X xgT — T
is finite locally free of degree r if and only if g(T) C S, (set theoretically).

Proof. Let n be an integer bounding the degree of the fibres of X — S. By
Morphisms, Lemma we see that any base change has degrees of fibres bounded
by n also. In particular, all the integers r that occur in the statement of the lemma
will be < n. We will prove the lemma by induction on n. The base case is n = 0
which is obvious.

We claim the set of points s € S with deg,,)(X;s) = n is an open subset S, C S
and that X xg S, — S, is finite locally free of degree n. Namely, suppose that
s € S is such a point. Choose an elementary étale morphism (U, u) — (S, s) and
a decomposition U xg X = W IIV as in Lemma Since V' — U is finite,
flat, and locally of finite presentation, we see that V' — U is finite locally free, see
Morphisms, Lemma After shrinking U to a smaller neighbourhood of u we
may assume V — U is finite locally free of some degree d, see Morphisms, Lemma
As u — s and W, = () we see that d = n. Since n is the maximum degree
of a fibre we see that W = ()! Thus U xg X — U is finite locally free of degree n.
By Descent, Lemma [23.30] we conclude that X — S is finite locally free of degree n
over Im(U — S) which is an open neighbourhood of s (Morphisms, Lemma [36.13)).
This proves the claim.

Let 8" = S\ S, endowed with the reduced induced scheme structure and set
X' = X x5 5. Note that the degrees of fibres of X’ — S’ are universally bounded
by n — 1. By induction we find a stratification S’ = SoII...II S,,_; adapted to
the morphism X’ — S’. We claim that S = HT:O,M,n S, works for the morphism
X — S. Let g : T — S be a morphism of schemes and assume that X xgT — T is
finite locally free of degree r. As remarked above this implies that r < n. If r = n,
then it is clear that T — S factors through S,,. If r < n, then g(T) C ' =5\ Sy
(set theoretically) hence Ty..q — S factors through S’, see Schemes, Lemma m
Note that X X g Treq — Treq is also finite locally free of degree r as a base change.
By the universal property of the stratification S’ = HT:O,‘..,nfl S, we see that
g(T) = g(Tyeq) is contained in S,. Conversely, suppose that we have g : T — S
such that g(T) C S, (set theoretically). If r = n, then g factors through S, and
it is clear that X xg T — T is finite locally free of degree n as a base change. If
r < n, then X xgT — T is a morphism which is separated, flat, and locally of finite
presentation, such that the restriction to T;..4 is finite locally free of degree r. Since
Treq — T is a universal homeomorphism, we conclude that X xXg Tyeq — X Xg T
is a universal homeomorphism too and hence X xgT — T is universally closed (as
this is true for the finite morphism X X g Tyeq = Treq). It follows that X xgT — T
is finite, for example by Lemma [44.1] Then we can use Morphisms, Lemma [48.2] to
see that X xg T — T is finite locally free. Finally, the degree is r as all the fibres
have degree r. [
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Lemma 45.4. Let f: X — S be a morphism of schemes which is flat, locally of
finite presentation, separated, and quasi-finite. Then there exist closed subsets

0V=Z_,1CZyCZiCZyC...CS

such that with S, = Z, \ Z,._1 the stratification S = [[ S, is characterized by the
following universal property: Given a morphism g :T — S the projection X xgT —
T is finite locally free of degree r if and only if g(T') C S, (set theoretically).
Moreover, the inclusion maps S, — S are quasi-compact.

Proof. The question is local on S, hence we may assume that S is affine. By
Morphisms, Lemma the fibres of f are universally bounded in this case. Hence
the existence of the stratification follows from Lemma E5.3]

We will show that U, = S\ Z,, — S is quasi-compact for each r > 0. This will prove
the final statement by elementary topology. Since a composition of quasi-compact
maps is quasi-compact it suffices to prove that U, — U,._1 is quasi-compact. Choose
an affine open W C U,_;. Write W = Spec(A4). Then Z. N W = V(I) for some
ideal I € A and X xg Spec(A/I) — Spec(A/I) is finite locally free of degree
r. Note that A/I = colim A/I; where I; C I runs through the finitely generated
ideals. By Limits, Lemma we see that X Xg Spec(A/I;) — Spec(A/I;) is
finite locally free of degree r for some i. (This uses that X — S is of finite
presentation, as it is locally of finite presentation, separated, and quasi-compact.)
Hence Spec(A/I;) — Spec(A) = W factors (set theoretically) through Z, N W. It
follows that Z, "W = V(I;) is the zero set of a finite subset of elements of A. This
means that W\ Z, is a finite union of standard opens, hence quasi-compact, as
desired. |

Lemma 45.5. Let f: X — S be a flat, locally of finite presentation, separated,
and locally quasi-finite morphism of schemes. Then there exist open subschemes

S=Uy>U;DU;D...

such that a morphism Spec(k) — S where k is a field factors through Uy if and only
if X xg Spec(k) has degree > d over k.

Proof. The statement simply means that the collection of points where the degree
of the fibre is > d is open. Thus we can work locally on S and assume S is affine. In
this case, for every W C X quasi-compact open, the set of points U;(W) where the
fibres of W — S have degree > d is open by Lemma Since Uq = Uy Ua(W)
the result follows. O

Lemma 45.6. Let f: X — S be a morphism of schemes which is flat, locally of
finite presentation, and locally quasi-finite. Let g € T'(X, Ox) nonzero. Then there
exist an open V- C X such that gly # 0, an open U C S fitting into a commutative
diagram

V——X

| b
U——=35,

a quasi-coherent subsheaf F C Oy, an integer r > 0, and an injective Oy -module
map F®" — 7.0y whose image contains gy .
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Proof. We may assume X and S affine. We obtain a filtration § = Z_; C Zy C
7y CZyC...C Zy=_S as in Lemmas (5.3 and [45.4] Let T'C X be the scheme
theoretic support of the finite Ox-module Im(g : Ox — Ox). Note that T is the
support of g as a section of Ox (Modules, Deﬁnition and for any open V' C X
we have gly # 0 if and only if V. NT # (. Let r be the smallest integer such
that f(T') C Z, set theoretically. Let £ € T be a generic point of an irreducible
component of T such that f(§) € Z,_; (and hence f(§) € Z,.). We may replace
S by an affine neighbourhood of f(£) contained in S\ Z,_;. Write S = Spec(A)
and let I = (a1,...,a,) C A be a finitely generated ideal such that V(I) = Z,
(set theoretically, see Algebra, Lemma . Since the support of g is contained
in f~'V(I) by our choice of r we see that there exists an integer N such that
aévg =0for j =1,...,m. Replacing a; by a} we may assume that Ig = 0. For any
A-module M write M[I] for the I-torsion of M, i.e., M[I] = {m € M | Im = 0}.
Write X = Spec(B), so g € B[I]. Since A — B is flat we see that

BlI] = A[l}®4 B = All| ®,,; B/IB

By our choice of Z,., the A/I-module B/IB is finite locally free of rank r. Hence
after replacing S by a smaller affine open neighbourhood of f(£) we may assume
that B/IB = (A/IA)®" as A/I-modules. Choose a map ¢ : A®” — B which
reduces modulo I to the isomorphism of the previous sentence. Then we see that
the induced map

A[I®*" — BI[I]
is an isomorphism. The lemma follows by taking F the quasi-coherent sheaf asso-

ciated to the A-module A[I] and the map F®" — 7.0y the one corresponding to
A[I®" C A®" - B. O

Lemmal 45.7. Let U — X be a surjective étale morphism of schemes. Assume
X is quasi-compact and quasi-separated. Then there exists a surjective integral
morphism Y — X, such that for every y € Y there is an open neighbourhood
V CY such that V — X factors through U. In fact, we may assume Y — X is
finite and of finite presentation.

Proof. Since X is quasi-compact, there exist finitely many affine opens U; C U
such that U' = [JU; — X is surjective. After replacing U by U’, we see that
we may assume U is affine. In particular U — X is separated (Schemes, Lemma
21.15). Then there exists an integer d bounding the degree of the geometric fibres
of U — X (see Morphisms, Lemma . We will prove the lemma by induction
on d for all quasi-compact and separated schemes U mapping surjective and étale
onto X. If d =1, then U = X and the result holds with Y = U. Assume d > 1.

We apply Lemma [43.2] and we obtain a factorization

NOA

X

with 7 integral and j a quasi-compact open immersion. We may and do assume
that j(U) is scheme theoretically dense in Y. Note that

UxxY=U0U0OW
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where the first summand is the image of U — U x x Y (which is closed by Schemes,
Lemma [21.10| and open because it is étale as a morphism between schemes étale
over Y') and the second summand is the (open and closed) complement. The image
V CY of W is an open subscheme containing Y \ U.

The étale morphism W — Y has geometric fibres of cardinality < d. Namely, this
is clear for geometric points of U C Y by inspection. Since U C Y is dense, it holds
for all geometric points of Y for example by Lemma m (the degree of the fibres
of a quasi-compact separated étale morphism does not go up under specialization).
Thus we may apply the induction hypothesis to W — V and find a surjective
integral morphism Z — V with Z a scheme, which Zariski locally factors through
W. Choose a factorization Z — Z' — Y with Z’ — Y integral and Z — Z’ open
immersion (Lemma . After replacing Z’ by the scheme theoretic closure of Z
in Z' we may assume that Z is scheme theoretically dense in Z’. After doing this
we have Z' Xy V = Z. Finally, let T C Y be the induced reduced closed subscheme
structure on Y \ V. Consider the morphism

Z'UT — X

This is a surjective integral morphism by construction. Since T' C U it is clear that
the morphism 7" — X factors through U. On the other hand, let z € Z’ be a point.
If z ¢ Z, then z maps to a point of Y\ V C U and we find a neighbourhood of z on
which the morphism factors through U. If z € Z, then we have a neighbourhood
Q C Z which factors through W C U xx Y and hence through U. This proves
existence.

Assume we have found Y — X integral and surjective which Zariski locally factors
through U. Choose a finite affine open covering Y = | JV; such that V; — X factors
through U. We can write Y = limY; with ¥; — X finite and of finite presentation,
see Limits, Lemma For large enough 4 we can find affine opens V; ; C Y; whose
inverse image in Y recovers V;, see Limits, Lemma For even larger i the
morphisms V; — U over X come from morphisms V; ; — U over X, see Limits,
Proposition This finishes the proof. (I

46. Application to morphisms with connected fibres

In this section we prove some lemmas that produce morphisms all of whose fibres
are geometrically connected or geometrically integral. This will be useful in our
study of the local structure of morphisms of finite type later.

Lemmal 46.1. Consider a diagram of morphisms of schemes

AN

Y

an a point y € Y. Assume

1) X =Y is of finite presentation and flat,
) Z =Y is finite locally free,

) Zy # 0,

) all fibres of X —'Y are geometrically reduced, and
) Xy is geometrically connected over k(y).

(
(2
(3
(4
(5
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Then there exists a quasi-compact open X° C X such that Xg = X, and such that
all nonempty fibres of X° — Y are geometrically connected.

Proof. In this proof we will use that flat, finite presentation, finite locally free are
properties that are preserved under base change and composition. We will also use
that a finite locally free morphism is both open and closed. You can find these facts
as Morphisms, Lemmas [25.8] [21.4], [48.4], [25.6] [21.3] [48.3] 25.10] and [44.11]

Note that X; — Z is flat morphism of finite presentation which has a section s
coming from o. Let X9 denote the subset of X, defined in Situation m By
Lemma [29.0] it is an open subset of X .

The pullback Xz, 7z of X to Z xy Z comes equipped with two sections sg, s1,
namely the base changes of s by pry,pr; : Z xy Z — Z. The construction of
Situationmgves two subsets (Xzx, z)%, and (Xzx, z),. By Lemma these
are the inverse images of X% under the morphisms 1x X pry, 1x X pry : Xzxyz —
Xz. In particular these subsets are open.

Let (Z xy Z)y = {#1,...,2n}. As X, is geometrically connected, we see that the
fibres of (Xzxyz)%, and (Xzx, z)J, over each z; agree (being equal to the whole

fibre). Another way to say this is that
30(21) S (XZXYZ)gl and 31(21) € (XZXYZ)SO'

Since the sets (Xzx, z)%, and (Xzx, z)9, are open in Xz, z there exists an open

neighbourhood W C Z xy Z of (Z xy Z), such that
so(W) C (Xzxyz)?, and s1(W) C (Xzxyz2)2

So*
Then it follows directly from the construction in Situation that

P W) N (Xzxy2)sy =07 (W) N (Xzxy2)5,
wherep: Xz, z — Z Xw Z is the projection. Because Z xy Z — Y is finite locally
free, hence open and closed, there exists an affine open neighbourhood V' C Y of
y such that ¢~ (V) C W, where ¢ : Z xy Z — Y is the structure morphism. To

prove the lemma we may replace Y by V. After we do this we see that X% C Yy
is an open such that

(Lx x pro) ~H(X%) = (1x x pry) " H(X2).
This means that the image X° C X of X} is an open such that (Xz — X)~1(X?) =
X9, see Descent, Lemma Finally, X° is quasi-compact because X9 is quasi-
compact by Lemma (use that at this point Y is affine, hence X is quasi-compact
and quasi-separated, hence locally constructible is the same as constructible and in
particular quasi-compact; details omitted). In this way we see that X° has all the
desired properties. (I

Lemmal 46.2. Let h: Y — S be a morphism of schemes. Let s € S be a point.
Let T' C Yy be an open subscheme. Assume

(1) h is flat and of finite presentation,

(2) all fibres of h are geometrically reduced, and

(3) T is geometrically connected over k(s).
Then we can find an affine elementary étale neighbourhood (S’,s") — (S,s) and a
quasi-compact open V' C Ygr such that

(a) all fibres of V. — S’ are geometrically connected,
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(b) Vo =T X4 s’

Proof. The problem is clearly local on S, hence we may replace S by an affine
open neighbourhood of s. The topology on Y; is induced from the topology on
Y, see Schemes, Lemma Hence we can find a quasi-compact open V' C Y
such that Vi = T. The restriction of h to V is quasi-compact (as S affine and V
quasi-compact), quasi-separated, locally of finite presentation, and flat hence flat
of finite presentation. Thus after replacing Y by V we may assume, in addition to
(1) and (2) that Y, =T and S affine.

Pick a closed point y € Y such that h is Cohen-Macaulay at y, see Lemma
By Lemma there exists a diagram

J ——Y

N\

S

such that Z — S is flat, locally of finite presentation, locally quasi-finite with
Z, ={y}. Apply Lemma[{1.1to find an elementary neighbourhood (S, s') — (S, s)
and an open Z' C Zg = S’ xg Z with Z' — S’ finite with a unique point 2z’ € Z’
lying over s. Note that Z’ — S’ is also locally of finite presentation and flat (as
an open of the base change of Z — §), hence Z' — S’ is finite locally free, see
Morphisms, Lemma Note that Yg: — S’ is flat and of finite presentation with
geometrically reduced fibres as a base change of h. Also Yy = Y is geometrically
connected. Apply Lemma to Z' — Ysr over S’ to get V C Y quasi-compact
open satisfying (2) whose fibres over S’ are either empty or geometrically connected.
As V — S’ is open (Morphisms, Lemma [25.10)), after replacing S’ by an affine open
neighbourhood of s’ we may assume V' — S’ is surjective, whence (1) holds. O

Lemma 46.3. Let f: X — S be a morphism of schemes which is locally of finite
presentation and flat with geometrically reduced fibres. Then there exists an étale
covering {X; — X }ier such that X; — S factors as X; — S; — S where S; — S
is étale and X; — S; is flat of finite presentation with geometrically connected and
geometrically reduced fibres.

Proof. Pick a point x € X with image s € S. We will produce a diagram

X —=8xg X —=X

N

S — S

and points ' € §’, 2’ € X', y € §' xg X such that 2’ maps to z, (S’,s") — (5, s)
is an étale neighbourhood, (X', z’) — (S’ xg X, y) is an étale neighbourhoodﬁ7 and
X’ — S’ has geometrically connected fibres. If we can do this for every z € X,
then the lemma follows (with members of the covering given by the collection of
étale morphisms X’ — X so produced). The first step is the replace X and S by
affine open neighbourhoods of x and s which reduces us to the case that X and S
are affine (and hence f of finite presentation).

8The proof actually gives an open X’ C $’ X g X.
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Choose a separable algebraic extension k of x(s). Denote X7 the base change of X.
Choose a point T in X3 mapping to x € X,. Choose a connected quasi-compact
open neighbourhood V' C X3 of . (This is possible because any scheme locally
of finite type over a field is locally connected as a locally Noetherian topological
space.) By Varieties, Lemma we can find a finite separable extension k'/k(s)
and a quasi-compact open V’ C X whose base change is V. In particular V' is
geometrically connected over &, see Varieties, Lemma By Lemma we can
find an étale neighbourhood (57, s") — (S, s) such that x(s') is isomorphic to k' as
an extension of x(s). Denote 2’ € (5" xg X)s = Xy the image of T. Thus after
replacing (S, s) by (57,s") and (X, z) by (5’ xg X, z’) we reduce to the case handled
in the next paragrah.

Assume there is a quasi-compact open V' C X which contains x and is geometrically
irreducible. Then we can apply Lemma [46.2] to find an affine étale neighbourhood
(8',s") — (S, s) and a quasi-compact open X’ C S’ xg X such that X’ — S’ has
geometrically connected fibres and such that X’ contains a point mapping to z.
This finishes the proof. O

057) Lemma 46.4. Let h:Y — S be a morphism of schemes. Let s € S be a point.
Let T' C Yy be an open subscheme. Assume

(1) h is of finite presentation,
(2) h is normal, and
(3) T is geometrically irreducible over k(s).

Then we can find an affine elementary étale neighbourhood (S’,s') — (S, s) and a
quasi-compact open V' C Yg: such that

(a) all fibres of V. — S’ are geometrically integral,
(b) Voo =T x4

Proof. Apply Lemmato find an affine elementary étale neighbourhood (57, s’) —
(S,s) and a quasi-compact open V' C Yss such that all fibres of V' — S’ are ge-
ometrically connected and Vi, = T x4 s’. As V is an open of the base change of
h all fibres of V' — S’ are geometrically normal, see Lemma [20.2] In particular,
they are geometrically reduced. To finish the proof we have to show they are geo-
metrically irreducible. But, if ¢ € S’ then V; is of finite type over (t) and hence

Vi X4y k(1) is of finite type over x(t) hence Noetherian. By choice of S — S the

scheme V; x . (4) k(t) is connected. Hence V; X 4) s(t) is irreducible by Properties,
Lemma [7.6] and we win. O

47. Application to the structure of finite type morphisms

052D  The result in this section can be found in [GRT7I]. Loosely stated it says that a
finite type morphism is étale locally on the source and target the composition of
a finite morphism by a smooth morphism with geometrically connected fibres of
relative dimension equal to the fibre dimension of the original morphism.

052E |Lemma 47.1. Let f : X — S be a morphism. Let x € X and set s = f(x).
Assume that f is locally of finite type and that n = dim,(Xs). Then there exists a
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commutative diagram

X<TX’ r<—a'
Y Yy
t ]
S——=3S5 s s

and a point ' € X' with g(x') = x such that with y = n(z') we have
(1) h:Y —> S is smooth of relative dimension n,
(2) g: (X',2') = (X, x) is an elementary étale neighbourhood,
(3) mis ﬁmte and 71 ({y}) = {2'}, and
(4) k(y) is a purely transcendental extension of k(s).

Moreover, if f is locally of finite presentation then 7 is of finite presentation.
Proof. The problem is local on X and S, hence we may assume that X and

S are affine. By Algebra, Lemma [125.3] after replacing X by a standard open
neighbourhood of z in X we may assume there is a factorization

X*F>Ag*>5

such that 7 is quasi-finite and such that k(7 (z)) is purely transcendental over k(s).
By Lemma there exists an elementary étale neighbourhood

Yy) = (A, w(x))
and an open X' C X X Az Y which contains a unique point 7' lying over y such

that X’ — Y is finite. This proves (1) — (4) hold. For the final assertion, use
Morphisms, Lemma [21.11 ([

Lemma 47.2. Let f : X — S be a morphism. Let x € X and set s = f(x).
Assume that f is locally of finite type and that n = dim,(Xs). Then there exists a
commutative diagram

x/

}

/

XﬁX’

; l
ih s

K —

<

<—S
and a point ' € X' with g(x') = x such that with y' = w(a’), s’ = h(y’) we have
h:Y' — S is smooth of relative dimension n,
all ﬁbres of Y — S’ are geometrically integral,

)
)
) g: (X', 2") = (X, x) is an elementary étale neighbourhood,
) s ﬁmte and 7 ({y'}) = {2'},

)

(6) e (S’ s") = (S, s) is an elementary étale nezghbourhood.

Moreover, if f is locally of finite presentation, then w is of finite presentation.
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Proof. The question is local on S, hence we may replace S by an affine open
neighbourhood of s. Next, we apply Lemma [7.1] to get a commutative diagram

X<TXI T<—2z
Y y
¢ ]

S——3S5 s s

where h is smooth of relative dimension n and x(y) is a purely transcendental
extension of x(s). Since the question is local on X also, we may replace Y by an
affine neighbourhood of y (and X’ by the inverse image of this under 7). As S
is affine this guarantees that Y — S is quasi-compact, separated and smooth, in
particular of finite presentation. Let T be the connected component of Y, containing
y. As Yy is Noetherian we see that 1" is open. We also see that T' is geometrically
connected over k(s) by Varieties, Lemma Since T is also smooth over k(s)
it is geometrically normal, see Varieties, Lemma We conclude that T is
geometrically irreducible over x(s) (as a connected Noetherian normal scheme is
irreducible, see Properties, Lemma. Finally, note that the smooth morphism h
is normal by Lemma [20.3] At this point we have verified all assumption of Lemma
hold for the morphism h : Y — S and open T' C Y. As a result of applying
Lemma [46.4] we obtain e : S — S, s’ € S, Y’ as in the commutative diagram

X<—X’<—X’><yY’ x<—a < (2, 9)
Y<—Y’ y=—"-(y,5)

S——S~——09 §=——
where e : (57,¢") — (S, s) is an elementary étale neighbourhood, and where Y’ C
Ys: is an open neighbourhood all of whose fibres over S’ are geometrically irre-
ducible, such that Y/, = T via the identification Yy = Yy . Let (y,s') € Y’ be
the point corresponding to y € T this is also the unique point of Y xg S’ ly-
ing over y with residue field equal to x(y) which maps to s’ in S’. Similarly, let
(2',8') € X! xy Y' C X' xg S’ be the unique point over x’ with residue field equal
to k(2') lying over s’. Then the outer part of this diagram is a solution to the
problem posed in the lemma. Some minor details omitted. (]

Lemma 47.3. Assumption and notation as in Lemma . In addition to prop-
erties (1) — (6) we may also arrange it so that

(7) S, Y, X! are affine.

Proof. Note that if Y’ is affine, then X’ is affine as 7 is finite. Choose an affine
open neighbourhood U’ C S’ of s’. Choose an affine open neighbourhood V'’ C
h=Y(U") of y'. Let W' = h(V'). This is an open neighbourhood of s’ in S’, see
Morphisms, Lemma contained in U’. Choose an affine open neighbourhood
U" C W' of 8. Then h=1(U”) NV’ is affine because it is equal to U” xy V. By
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construction A1 (U") NV’ — U" is a surjective smooth morphism whose fibres are
(nonempty) open subschemes of geometrically integral fibres of Y — 57, and hence
geometrically integral. Thus we may replace S’ by U” and Y’ by h=1(U")nV'. O

The significance of the property 7=({y'}) = {2’} is partially explained by the
following lemma.

Lemma 47.4. Let 7 : X — Y be a finite morphism. Let x € X with y = m(x)
such that 7=*({y}) = {x}. Then

(1) For every neighbourhood U C X of x in X, there exists a neighbourhood
V CY ofy such that 7= 1(V) C U.

(2) The ring map Oy,y — Ox 4 is finite.

(3) If  is of finite presentation, then Oy, — Ox 5 is of finite presentation.

(4) For any quasi-coherent Ox -module F we have F, = m,F, as Oy, ,-modules.

Proof. The first assertion is purely topological; use that 7 is a continuous and
closed map such that 7=1({y}) = {x}. To prove the second and third parts we
may assume X = Spec(B) and Y = Spec(A). Then A — B is a finite ring map
and y corresponds to a prime p of A such that there exists a unique prime q of B
lying over p. Then By = By, see Algebra, Lemma In other words, the map
A, — By is equal to the map A, — B, you get from localizing A — B at p. Thus
(2) and (3) follow from simple properties of localization (some details omitted). For
the final statement, suppose that F = M for some B-module M. Then F = M,
and 7, F, = M,. By the above these localizations agree. Alternatively you can use
part (1) and the definition of stalks to see that F, = m,F, directly. O

48. Application to the fppf topology

We can use the above étale localization techniques to prove the following result
describing the fppf topology as being equal to the topology “generated by” Zariski
coverings and by coverings of the form {f : T — S} where f is surjective finite
locally free.

Lemma 48.1. Let S be a scheme. Let {S; — S}tier be an fppf covering. Then
there exist

(1) an étale covering {S!, — S},

(2) surjective finite locally free morphisms V, — S/,
such that the fppf covering {V, — S} refines the given covering {S; — S}.

Proof. We may assume that each S; — S is locally quasi-finite, see Lemma [23.6

Fix a point s € S. Pick an i € I and a point s; € S; mapping to s. Choose an
elementary étale neighbourhood (57, s) — (S, s) such that there exists an open

SiXSS/DV

which contains a unique point v € V mapping to s € S’ and such that V' — S’ is
finite, see Lemma Then V — 5’ is finite locally free, because it is finite and
because S; x 55" — S’ is flat and locally of finite presentation as a base change of the
morphism S; — S, see Morphisms, Lemmas [21.4] [25.8] and [48.2l Hence V — S’ is
open, and after shrinking S” we may assume that V' — S’ is surjective finite locally
free. Since we can do this for every point of S we conclude that {S; — S} can
be refined by a covering of the form {V, — S},ca where each V, — S factors as
Vo — Si — S with S/ — § étale and V, — S/, surjective finite locally free. O
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Lemma 48.2. Let S be a scheme. Let {S; — S}ier be an fppf covering. Then
there exist

(1) @ Zariski open covering S = |JUj,

(2) surjective finite locally free morphisms W; — Uj,

(3) Zariski open coverings W; = J, Wik,

(4) surjective finite locally free morphisms T, — W
such that the fppf covering {Tj — S} refines the given covering {S; — S}.

Proof. Let {V, — S},ca be the fppf covering found in Lemma In other
words, this covering refines {S; — S} and each V, — S factors as V, — S, — S
with S), — S étale and V,, — S/, surjective finite locally free.

By Remark there exists a Zariski open covering S = |JUj, for each j a finite
locally free, surjective morphism W; — U}, and for each j a Zariski open covering
{Wj.r — W;} such that the family {W;; — S} refines the étale covering {S}, — S},
i.e., for each pair j, k there exists an a(j, k) and a factorization W; , — S, — S of
the morphism Wj, — S. Set T}, = Wj i x5 V, and everything is clear. O

Lemma 48.3. Let S be a scheme. If U C S is open and V. — U is a surjective

integral morphism, then there exists a surjective integral morphism V — S with
V xg U isomorphic to V' as schemes over U.

Proof. Let V' — S be the normalization of S in U, see Morphisms, Section
By construction V/ — S is integral. By Morphisms, Lemmas and we
see that the inverse image of U in V' is V. Let Z be the reduced induced scheme
structure on S\ U. Then V = V' II Z works. O

Lemma 48.4. Let S be a quasi-compact and quasi-separated scheme. If U C S is
a quasi-compact open and V — U is a surjective finite morphism, then there exists
a surjective finite morphism V.— S with V x g U isomorphic to V as schemes over
U.

Proof. By Zariski’s Main Theorem (Lemma we can assume V is a quasi-
compact open in a scheme V' finite over S. After replacing V' by the scheme
theoretic image of V' we may assume that V is dense in V”. Tt follows that V' x U =
V because V. — V' xqU is closed as V is finite over U. Let Z be the reduced induced
scheme structure on S\ U. Then V = V' 11 Z works. O

Lemma 48.5. Let S be a scheme. Let {S; — S}icr be an fppf covering. Then
there exists a surjective integral morphism S” — S and an open covering S’ = |J U,
such that for each « the morphism U!, — S factors through S; — S for some i.

Proof. Choose S =JU;, W; = U;, W; =Wk, and T , — W, as in Lemma

By Lemma @ we can extend W; — U; to a surjective integral morphism
W; — S. After this we can extend T} — W to a surjective integral morphism
T;r — W,. Weset T; equal to the product of all the schemes T'; ;, over W (Limits,
Lemma . Then we set S’ equal to the product of all the schemes Tj over S. If
x € ', then there is a j such that the image of = in S lies in U;. Hence there is a k
such that the image of x under the projection S’ — Wj lies in Wj ;. Hence under
the projection S’ — T; — T, 1 the point = ends up in T} . And T} — S factors
through S; for some i. Finally, the morphism S’ — S is integral and surjective by

Limits, Lemmas [3.3] and O
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Lemma 48.6. Let S be a quasi-compact and quasi-separated scheme. Let {S; —
Stier be an fppf covering. Then there exists a surjective finite morphism S — S
of finite presentation and an open covering S’ = |JU/, such that for each « the
morphism U! — S factors through S; — S for some i.

Proof. Let Y — X be the integral surjective morphism found in Lemma [48.5
Choose a finite affine open covering Y = [JV; such that V; — X factors through
Sijy- We can write Y = limY) with ¥\ — X finite and of finite presentation,
see Limits, Lemma For large enough A we can find affine opens V) ; C Y)
whose inverse image in Y recovers Vj, see Limits, Lemma For even larger A
the morphisms V; — Sj(;) over X come from morphisms V} ; — S;(;) over X, see
Limits, Proposition Setting S’ =Y, for this A finishes the proof. (]

Lemma 48.7. An fppf covering of schemes is a ph covering.

Proof. Let {T; — T} be an fppf covering of schemes, see Topologies, Definition
Observe that T; — T is locally of finite type. Let U C T be an affine open.
It suffices to show that {T; x7 U — U} can be refined by a standard ph covering,
see Topologies, Definition This follows immediately from Lemma 8.6 and the
fact that a finite morphism is proper (Morphisms, Lemma . O

Remark|48.8. As a consequence of Lemmawe obtain a comparison morphism
€: (Sch/S)ph — (SCh/S)fppf

This is the morphism of sites given by the identity functor on underlying categories
(with suitable choices of sites as in Topologies, Remark. The functor €, is the
identity on underlying presheaves and the functor ¢! associated to an fppf sheaf
its ph sheafification. By composition we can in addition compare the ph topology
with the syntomic, smooth, étale, and Zariski topologies.

49. Quasi-projective schemes

The term “quasi-projective scheme” has not yet been defined. A possible definition
could be a scheme which has an ample invertible sheaf. However, if X is a scheme
over a base scheme S, then we say that X is quasi-projective over S if the mor-
phism X — S is quasi-projective (Morphisms, Definition . Since the identity
morphism of any scheme is quasi-projective, we see that a scheme quasi-projective
over S doesn’t necessarily have an ample invertible sheaf. For this reason it seems
better to leave the term “quasi-projective scheme” undefined.

Lemma 49.1. Let S be a scheme which has an ample invertible sheaf. Let f :
X — S be a morphism of schemes. The following are equivalent

(1) X — S is quasi-projective,

(2) X — S is H-quasi-projective,

(3) there exists a quasi-compact open immersion X — X' of schemes over S

with X' — S projective,
(4) X — S is of finite type and X has an ample invertible sheaf, and
(5) X — S is of finite type and there exists an f-very ample invertible sheaf.

Proof. The implication (2) = (1) is Morphisms, Lemma The implication
(1) = (2) is Morphisms, Lemma [43.16] The implication (2) = (3) is Morphisms,
Lemma [43.17]
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Assume X C X' is as in (3). In particular X — S is of finite type. By Morphisms,
Lemma the morphism X — S is H-projective. Thus there exists a quasi-
compact immersion 7 : X — PYg. Hence £ =14"Opr (1) is f-very ample. As X — S
is quasi-compact we conclude from Morphisms, Lemma that £ is f-ample.
Thus X — S is quasi-projective by definition.

The implication (4) = (2) is Morphisms, Lemma [39.3]

Assume the equivalent conditions (1), (2), (3) hold. Choose an immersion i : X —
P% over S. Let £ be an ample invertible sheaf on S. To finish the proof we
will show that N = f*L ®o, i*Opg(l) is ample on X. By Properties, Lemma
we reduce to the case X = P%. Let s € I'(S, £L24) be a section such that the
corresponding open S, is affine. Say S; = Spec(A). Recall that P% is the projective
bundle associated to OgTy @ ... D OgT,, see Constructions, Lemma [21.5| and its
proof. Let s; € T'(P%,0(1)) be the global section corresponding to the section T;
of OgToy ® ... P OgT,,. Then we see that Xf*s®5®n is affine because it is equal to
Spec(A[Ty/T;, ..., T,/T;]). This proves that N/ islample by definition.

The equivalence of (1) and (5) follows from Morphisms, Lemmas and O

Lemmal 49.2. Let S be a scheme which has an ample invertible sheaf. Let ()Pg
be the full subcategory of the category of schemes over S satisfying the equivalent
conditions of Lemma [9.1]

(1) if 8" = S is a morphism of schemes and S’ has an ample invertible sheaf,
then base change determines a functor QPg — QPg/,

2) if X € QPg and Y € QPx, then Y € QPg,

3) the category QPg is closed under fibre products,

4) the category QPg is closed under finite disjoint unions,

5) if X — S is projective, then X € QPg,

6) if X — S is quasi-affine of finite type, then X is in QPg,

7) if X — S is quasi-finite and separated, then X € QPg,

8) if X — S is a quasi-compact immersion, then X € QPg,

9) add more here.

(
(
(
(
(
(
(

(
Proof. Part (1) follows from Morphisms, Lemma [40.2]
Part (2) follows from the fourth characterization of Lemma [49.1]

If X - S and Y — S are quasi-projective, then X xgY — Y is quasi-projective
by Morphisms, Lemma Hence (3) follows from (2).

If X =Y IIZ is a disjoint union of schemes and £ is an invertible Ox-module
such that L|y and L]z are ample, then L is ample (details omitted). Thus part (4)
follows from the fourth characterization of Lemma F9.1]

Part (5) follows from Morphisms, Lemma [43.10

Part (6) follows from Morphisms, Lemma m

Part (7) follows from part (6) and Lemma [43.2]
(8

Part (8) follows from part (7) and Morphisms, Lemma [20.16 O

The following lemma doesn’t really belong in this section, but there does not seem
to be a good spot for it anywhere else.
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Lemma 49.3. Let X be a quasi-affine scheme. Let f : U — X be an integral
morphism. Then U is quasi-affine and the diagram

U—— SpeC(F(U, OU))

|

X — Spec(T(X, Ox))
is cartesian.

Proof. The scheme U is quasi-affine because integral morphisms are affine, affine
morphisms are quasi-affine, a scheme is quasi-affine if and only if the structure
morphism to Spec(Z) is quasi-affine, and compositions of quasi-affine morphisms
are quasi-affine. The first two statements follow immediately from the definition and
the third is Morphisms, Lemma Set U' = X Xgpee(r(x,0x)) Spec(I'(U, Ov))
and consider the extended diagram

U<T —— Spec(I(U, Oy))

X —— Spec(I'(X,Ox))
The morphism j is closed by Morphisms, Lemma combined with the fact
that an integral morphism is universally closed (Morphisms, Lemma and
the fact that the vertical arrows are in the diagram are separated. On the other
hand, j is open because the horizontal arrows in the diagram of the lemma are
open by Properties, Lemma Thus j identifies U with an open and closed
subscheme of U’. If U # U’ then U isn’t dense in U’ and a fortiori not dense in the
spectrum of I'(U, Or). However, the scheme theoretic image of U in Spec(I'(U, Oy))
is Spec(T'(U, Oy)) because any ideal in T'(U, Oy) cutting out a closed subscheme

through which U factors would have to be zero. Hence U is dense in Spec(I'(U, Oy))
for example by Morphisms, Lemma Thus U = U’ and we win. ([l

50. Projective schemes

This section is the analogue of Section [49] for projective morphisms.

Lemma 50.1. Let S be a scheme which has an ample invertible sheaf. Let f :
X — S be a morphism of schemes. The following are equivalent

1

2) X — S is H-projective,

3) X — S is quasi-projective and proper,

4) X — S is H-quasi-projective and proper,

5) X — S is proper and X has an ample invertible sheaf,

6) X — S is proper and there exists an f-ample invertible sheaf,

7) X — S is proper and there exists an f-very ample invertible sheaf,

8) there is a quasi-coherent graded Og-algebra A generated by Ay over Ay with
Ay a finite type Os-module such that X = Proj (A).

(
(
(
(
(
(
(
(

Proof. Observe first that in each case the morphism f is proper, see Morphisms,
Lemmas and Hence it suffices to prove the equivalence of the notions
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in case f is a proper morphism. We will use this without further mention in the
following.

The equivalences (1) < (3) and (2) < (4) are Morphisms, Lemma [43.13]

The implication (2) = (1) is Morphisms, Lemma [43.3]

The implications (1) = (2) and (3) = (4) are Morphisms, Lemma

The implication (1) = (7) is immediate from Morphisms, Definitions [43.1]and [38.1]
The conditions (3) and (6) are equivalent by Morphisms, Definition [40.1]

Thus (1) — (4), (6) are equivalent and imply (7). By Lemma conditions (3),
(5), and (7) are equivalent. Thus we see that (1) — (7) are equivalent.

By Divisors, Lemma we see that (8) implies (1). Conversely, if (2) holds, then

we can choose a closed immersion
i: X —Pé= ProjS(OS[TO, o Th)).

See Constructions, Lemma for the equality. By Divisors, Lemma [31.1] we
see that X is the relative Proj of a quasi-coherent graded quotient algebra A of
Os[To, - .., Ty]. Then A satisfies the conditions of (8). O

Lemmal 50.2. Let S be a scheme which has an ample invertible sheaf. Let Pg
be the full subcategory of the category of schemes over S satisfying the equivalent
conditions of Lemma[50.1].

(1) 4f " = S is a morphism of schemes and S" has an ample invertible sheaf,
then base change determines a functor Pg — Pgr,

) if X € Ps andY € Px, thenY € Pg,

) the category Ps is closed under fibre products,

) the category Ps is closed under finite disjoint unions,

) if X — S is finite, then X is in Pg,

) add more here.

Proof. Part (1) follows from Morphisms, Lemma [43.9]

Part (2) follows from the fifth characterization of Lemma and the fact that
compositions of proper morphisms are proper (Morphisms, Lemma [41.4).

If X - SandY — S are projective, then X xgY — Y is projective by Morphisms,
Lemma [43.9] Hence (3) follows from (2).

If X =Y 1IIZ is a disjoint union of schemes and L is an invertible Ox-module
such that L|y and L]z are ample, then £ is ample (details omitted). Thus part (4)
follows from the fifth characterization of Lemma [50.1]

Part (5) follows from Morphisms, Lemma [44.16 O

Here is a slightly different type of result.

Lemma 50.3. Let f : X — Y be a proper morphism of schemes. Let L be
an invertible Ox-module. Let y € Y be a point such that L, is ample on X,.
Then there is an open neighbourhood V- C 'Y of y such that L]z vy is ample on

frvv.

[DG67, TV Corollary
9.6.4]
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Proof. We may assume Y is affine. Then we find a directed set I and an inverse
system of morphisms X; — Y; of schemes with Y; of finite type over Z, with affine
transition morphisms X; — X and Y; — Y/, with X; — Y; proper, such that
X =Y = lim(X; — Y;). See Limits, Lemma After shrinking I we can
assume we have a compatible system of invertible Ox,-modules £; pulling back to
L, see Limits, Lemma[10.3] Let y; € Y; be the image of y. Then x(y) = colim (y;).
Hence for some ¢ we have £;,, is ample on X, ,, by Limits, Lemma By
Cohomology of Schemes, Lemma we find an open neigbourhood V; C Y; of
y; such that £; restricted to f[l(Vi) is ample relative to V;. Letting V C Y be
the inverse image of V; finishes the proof (hints: use Morphisms, Lemma and
the fact that X — Y xy, X, is affine and the fact that the pullback of an ample
invertible sheaf by an affine morphism is ample by Morphisms, Lemma . O

51. Proj and Spec

In this section we clarify the relationship between the Proj and the spectrum of a
graded ring.

Let R be a ring. Let A be a graded R-algebra, see Algebra, Section For m >0
we denote A>,, = @dZm A,. Consider the graded ring

B = @dzo Asg

For d’ > d and a € Ay let us denote a(¥ € B the element in By corresponding to
a. Let us denote 0 : A — B and @ : A — B the two obvious ring maps: if a € Ay,
then o(a) = a(®) and t(a) = a!?. Then ¥ is a graded ring map and o turns B into
a graded algebra over A. There is also a surjective graded ring map 7 : B — A
which for > d and a € Ay sends a'® to 0if d > d and to a if &' = d.

Affine schemes and spectra. We set X = Spec(A). The irrelevant ideal A, cuts
out a closed subscheme Z = V(A ) = Spec(A/A;) = Spec(Ap). Set U = X \ Z.

U— X —7

Projective schemes and Proj. Set P = Proj(A). We may and do view P as a scheme
over Spec(Ag) = Z. Set L = Proj(B). We may and do view L as a scheme over
Spec(By) = Spec(A) = X; observe that the identification of By with A is given by
0. The surjection 7 defines a closed immersion 0 : P — L. Since A =+ B — A is
equal to the map A — Ag — A we conclude that

P — L
Z ——X
is commutative.
We claim that ¢ defines a morphism L — P. To see this, by Constructions, Lemma

11.1} it suffices to check ¥)(Ay) ¢ p for every homogeneous prime ideal p C B with
By ¢ p. First, pick ¢ € By homogeneous g ¢ p. Then we can write g as a finite
sum g =)y, agd) with a; € Ag, for some d; > d. We conclude that there exist d’ > d
and a € Ay such that (¥ ¢ p. Then

(a(d))d' _ (ad')(d’d) — g@ (adlfl)(d(d'fl)) _ w(a)(ad'fl)(d(d'fl))
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(the notation leaves something to be desired) is not in p. Hence ¥ (a) & p, proving
the claim. Thus we can extend our diagram above to a commutative diagram

L ——X—7
where X — Z is given by Ag — A. Since 7 oy =id4 we see w0 0 = idp.

Observe that 7 is an affine morphism. This is clear from the construction in Con-
structions, Lemma In fact, if f € Ay for some d > 0, then setting g = ¥(J)
we have 7= 1(Dy(f)) = Dy (g). In this case we have the following equality of
homogeneous parts

(Bl1/ gD =D, (AL/ )

This isomorphism is compatible with further localization. Taking m’ = 0 we see
that m,Op, is the direct sum of Op(m) for m > (ﬂ We conclude L is idendified
with the relative spectrum:

L =Spec, (€D,,,0r(m)

In particular L — P is a conﬂ, see Constructions, Section |7l Moreover, it is clear
that 0 : P — L is the vertex of the cone.

Let f € Ay for some d > 0 and g = ¢(f) € By as in the previous paragraph.
Looking at the structure of the ring maps

Ao A Ao

(A[1/ o —> (B[1/g)o = Byzo(A[1/ f))m — (A[1/])o

some compuationﬂ in graded rings will show that

(1) o(A4)(B[1/g])o C Ker(r : (B[1/g])o = (A[1/[])o),
a(f) € (B[1/g])o is a nonzerodivisor,

(3) a(f)(B[1/g])o = o(Aa)(B[1/g])o as ideals,
o(f)(B[1/g])o and Ker(r : (B[1/g])o — (A[1/f])o) have the same radical,
(5) if d =1, then o(f)(B[1/g])o = Ker(r : (B[1/g])o — (A[1/f])o)-

We see in particular that

0(D+(f)) = V(a(f)) € D1(g) = Spec((B[1/g])o)

91t similarly follows that 7.Op (i) = @mz_i Op(m).

100ften L is a line bundle over P, see below.

Uparts (1) and (2) are clear. To see (3), note that if a € Ag, then o(a) = o(f)¢(a/f). For
(4) note that b/g™ is in the kernel of 7 if and only if b € A>,,4 maps to zero in A,,q. Thus it
suffices to show if m’ > md and a € A,,,/, then some power of a(md) /g™ is in the ideal generated
by o(f). Take e such that em’ — emd > d. Then

(a(md)/gm)e — (ae)(emd)/gem _ (fae)(emd+d)/gem+1 _ O'(f) . (GE)(emd+d)/gem+1

as desired (apologies for the terrible notation). To see (5) argue as before and note that
a(md)/gm =o(f) - almdtl) jgm+lif d =1,
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set theoretically. In other words, the ideal generated by o(Ay4) cuts out an effective
Cartier divisor on D (g) which is set theoretically equal to the image of the closed
immersion 0 : P — L.

We claim that L — X is an isomorphism over U. Namely, if f € A4 for some d > 0,
then

Spec(Ay) xx L = Proj(Ay ®a B) = Proj(B,y))
For each e we have (B,(s))e = Ay ®p Be = Ay ®4 As. = Ay, the final equality
induced by the injection A>. C A. Hence By () = Af[T] with T" in degree 1. This
proves the claim as Proj(A;[T]) — Spec(Ay) is an isomorphism. From now on we
identify U with the corresponding open of L.

The identification made in the previous paragraph lets us consider the restriction
wly : U — P. Pick f € Ay for some d > 0 and g = ¢(f) € By as we have done
above several times. Then

Una='(D4(f)) =UnNDy(g)

is the complement of the zero locus of o(f) € (B[1/g])o via the identification of
D, (g) with the spectrum of (B[1/g])o. This is assertion (4) above. Therefore
UnND4(g) is affine and

OL(UN D4 (9)) = (BI/g)ol1/o(N)] =D, _,(AL/fDm

where the last equal sign is the natural extension of the identification (B[1/g])o =
®D.,.>0(A[L/f]) made above. Exactly as we did before with 7 : L — P we conclude
that 7|y : U — P is affine and

U = Spec,, (@mez Op(m))
as schemes over P.

Summarising the above, our constructions produce a commutative diagram

Spec, (e Op(m)) —— L = Spec,, (@0 Or(m) ?I
U X Z

of schemes where 7 is a cone whose zero section 0 : P — L maps set theoretically
onto the inverse image of Z in L.

(51.0.1)

Let W C P be the largest open such that Op(1)|w is invertible and the natural
maps induce isomorphisms Op(m)|w = Op(1)®™ |y for all m € Z, i.e., the open
of Constructions, Lemma for d = 1. Then we see that Ly = 7= '(W) - W
is a vector bundle (Constructions, Section @ of rank 1, namely,

Llw = V(Op(1)|w)

in Grothendieckian notation. This is immediate from the above showing that L|w
is equal to the relative spectrum of the symmetric algebra over Oy on Op(1)|w.
Then clearly the morphism Oy : W — L|w is the zero section of this vector
bundle. In particular 0(WW) is an effective Cartier divisor on L|y . Moreover, the
open Ul = (m|y) 1 (W) is the complement of the zero section.
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If A is generated by fi,...,fr € Ay over Ay, then (f1,...,f.)™ = As,, for all
m > 0 and hence our B above is the Rees algebra for Ay = (f1,..., fr). Thus in
this case L — X is the blowup of Z and W = P where W is as in the preceding
paragraph.

If P is quasi-compact, then for d sufficiently divisible, the closed subscheme D C L
cut out by 0(A4)Oy is an effective Cartier divisor, 0 : P — L factors through D,
and 0(P) = D set theoretically. This follows from Constructions, Lemma and
(1), (2), (3), and (4) proved above. (Take any d divisible by the lcm of the degrees
of the elements found in the lemma.)

We continue to assume P is quasi-compact. Let F be a quasi-coherent O p-module.
Let us set Fy = 7*F|y. Then we have

(51.0.2) RI(U, Fy) = @mez RT(P, F @0, Op(m))

Moreover, this direct sum decomposition is functorial in F and the induced A-
module structure on the right is the same as the A-module structure on the left
coming from U C X. To prove the formula, since 7|y is affine and (7|y).Ov =

D,.cz Or(m) we get
R(r|v)«Fu = (7|v)«Fu
= (7lv)s(nlv)*F

=F®o, (P, _,Or(m)

- 69meZ F @0, Op(m)

By Leray we find that RI'(U, Fy) = RI'(P, R(w|v)«Fu), see Cohomology, Lemma
The proof is finished because taking cohomology commutes with direct sums
in this case, see Derived Categories of Schemes, Lemma This is where we use
that P is quasi-compact; P is separated by Constructions, Lemma [8.8

Lemma 51.1. Let R be a ring. Let P be a proper scheme over R and let L be an
ample invertible Op-module. Set A = ,,~,T(P,L*™). Then P = Proj(A) and

diagram (51.0.1|) becomes the diagram

Spec,, (Bynez £5™) > L = Spec,, (@mZO £®m) — P
U X Z
having the properties explained above.

Proof. We have P = Proj(A) by Morphisms, Lemma Moreover, by Proper-
ties, Lemma via this identification we have Op(m) = L®™ for allm € Z. O

52. Closed points in fibres
Some of the material in this section is taken from the preprint [OP10].
Lemmal 52.1. Let f: X — S be a morphism of schemes. Let Z C X be a closed

subscheme. Let s € S. Assume

(1) S is @rreducible with generic point n,
(2) X is irreducible,
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(3) f is dominant,

(4) f is locally of finite type,

(5) dim(X,) < dim(X,),

(6) Z is locally principal in X, and

(1) Z,=0.

Then the fibre Zs is (set theoretically) a union of irreducible components of Xs.

Proof. Let X,.q; denote the reduction of X. Then Z N X,.q is a locally principal
closed subscheme of X,..4, see Divisors, Lemma Hence we may assume that
X is reduced. In other words X is integral, see Properties, Lemma In this case
the morphism X — S factors through S,.q4, see Schemes, Lemma Thus we
may replace S by S;.q and assume that S is integral too.

The assertion that f is dominant signifies that the generic point of X is mapped
to 1, see Morphisms, Lemma Moreover, the scheme X, is an integral scheme
which is locally of finite type over the field x(n). Hence d = dim(X,)) > 0 is equal
to dimg (X)) for every point & of X, see Algebra, Lemmas|[114.4)and In view
of Morphisms, Lemma and condition (5) we conclude that dim,(X,) = d for
every r € X;.

In the Noetherian case the assertion can be proved as follows. If the lemma does
not holds there exists z € Z; which is a generic point of an irreducible component
of Zs but not a generic point of any irreducible component of X;. Then we see
that dim,(Z;) < d — 1, because dim,(X;) = d and in a neighbourhood of z in
X, the closed subscheme Z, does not contain any of the irreducible components
of X,. Hence after replacing X by an open neighbourhood of z we may assume
that dim(Zy(.)) < d—1 for all z € Z, see Morphisms, Lemma Let ¢ € Z
be a generic point of an irreducible component of Z and set s’ = f(€). As Z # X
is locally principal we see that dim(Ox ) = 1, see Algebra, Lemma (this is
where we use X is Noetherian). Let £ € X be the generic point of X and let &
be a generic point of any irreducible component of X, which contains £’. Then we
see that we have the specializations

£~ b8
As dim(Ox ¢) = 1 one of the two specializations has to be an equality. By assump-
tion s’ # 7, hence the first specialization is not an equality. Hence £ = & is a
generic point of an irreducible component of X,/. Applying Morphisms, Lemma
one more time this implies dimg (Zy) = dimg (Xy) > dim(X,) = d which
gives the desired contradiction.

In the general case we reduce to the Noetherian case as follows. If the lemma is
false then there exists a point x € X lying over s such that x is a generic point of
an irreducible component of Z,, but not a generic point of any of the irreducible
components of X. Let U C S be an affine neighbourhood of s and let V' C X be an
affine neighbourhood of z with f(V) C U. Write U = Spec(A4) and V = Spec(B)
so that f|y is given by a ring map A — B. Let q C B, resp. p C A be the prime
corresponding to x, resp. s. After possibly shrinking V' we may assume Z NV is
cut out by some element g € B. Denote K the fraction field of A. What we know
at this point is the following:

(1) A C B is a finitely generated extension of domains,
(2) the element g ® 1 is invertible in B ®4 K,
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(3) d=dim(B®a K) = dim(B ®4 k(p)),
(4) g ®1is not a unit of B ®4 k(p), and
(5) g ®1 is not in any of the minimal primes of B ®4 x(p).

We are seeking a contradiction.

Pick elements xy,...,x, € B which generate B over A. For a finitely generated
Z-algebra Ay C Alet By C B be the Ag-subalgebra generated by x4, ..., x,, denote
Ky the fraction field of Ay, and set pg = Ag N p. We claim that when Ag is large
enough then (1) — (5) also hold for the system (Ay C By, g,po)-

We prove each of the conditions in turn. Part (1) holds by construction. For part
(2) write (g®1)h = 1 for some h®1/a € B®a K. Write g = arz!, h =3 ajx!
(multi-index notation) for some coefficients ay,a; € A. As soon as Ay contains a
and the ay, @’ then (2) holds because By ® 4, Ko C B®4 K (as localizations of the
injective map By — B). To achieve (3) consider the exact sequence

0—>1—A[Xy,....,.X,] > B—0

which defines I where the second map sends X; to z;. Since ® is right exact we see
that T ® 4 K, respectively I ® 4 k(p) is the kernel of the surjection K[X;,..., X,] —
B ®4 K, respectively x(p)[X1,...,X,] = B®a £(p). As a polynomial ring over a
field is Noetherian there exist finitely many elements h; € I, j = 1,...,m which
generate ] ® 4 K and I ® 4 k(p). Write h; = > CljJXI. As soon as Ag contains all
aj,; we get to the situation where

By ®a, Ko ®kx, K =B®4 K and By ®a, k(Po) @u(py) k() = B @a k(p).

By either Morphisms, Lemma or Algebra, Lemma we see that the di-
mension equalities of (3) are satisfied. Part (4) is immediate. As By ® 4, k(po) C
B ®4 k(p) each minimal prime of By ®a4, k(po) lies under a minimal prime of
B ®4 k(p) by Algebra, Lemma This implies that (5) holds. In this way we
reduce the problem to the Noetherian case which we have dealt with above. (Il

Here is an algebraic application of the lemma above. The fourth assumption of the
lemma holds if A — B is flat, see Lemma [52.3]

Lemma 52.2. Let A — B be a local homomorphism of local mings, and g € mp.
Assume

(1) A and B are domains and A C B,

(2) B is essentially of finite type over A,

(3) g is not contained in any minimal prime over maB, and

(4) dim(B/maB) + trdeg,m ,)(k(mp)) = trdeg,(B).
Then A C B/gB, i.e., the generic point of Spec(A) is in the image of the morphism
Spec(B/gB) — Spec(A).

Proof. Note that the two assertions are equivalent by Algebra, Lemma To
start the proof let C' be an A-algebra of finite type and q a prime of C such that B =
Cy. Of course we may assume that C' is a domain and that g € C. After replacing
C by alocalization we see that dim(C/m4C) = dim(B/maB)+trdeg, , ,)(k(mz)),
see Morphisms, Lemma Setting K equal to the fraction field of A we see by
the same reference that dim(C ®4 K) = trdeg 4 (B). Hence assumption (4) means
that the generic and closed fibres of the morphism Spec(C) — Spec(A) have the
same dimension.
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Suppose that the lemma is false. Then (B/gB) ® 4 K = 0. This means that g ® 1
is invertible in B ®4 K = Cy ®4 K. As Cy is a limit of principal localizations
we conclude that g ® 1 is invertible in Cj ® 4 K for some h € C, h ¢ q. Thus
after replacing C by C}, we may assume that (C'/gC) ®4 K = 0. We do one more
replacement of C' to make sure that the minimal primes of C'/m4C correspond one-
to-one with the minimal primes of B/m4B. At this point we apply Lemma to
X = Spec(C) — Spec(A) = S and the locally closed subscheme Z = Spec(C/gC).
Since Zx = ) we see that Z ® k(my4) has to contain an irreducible component of
X ® k(my) = Spec(C/m4C). But this contradicts the assumption that ¢ is not
contained in any prime minimal over m4 B. The lemma follows. (I

Lemma 52.3. Let A — B be a local homomorphism of local rings. Assume

(1) A and B are domains and A C B,
(2) B is essentially of finite type over A, and
(3) B is flat over A.

Then we have
dim(B/maB) + trdeg, ) (k(mp)) = trdeg,(B).

Proof. Let C be an A-algebra of finite type and q a prime of C' such that B =
Cy. We may assume C' is a domain. We have dimq,(C/m4C) = dim(B/m4B) +
trdeg, (i, ,)(k(mp)), see Morphisms, Lemma Setting K equal to the fraction
field of A we see by the same reference that dim(C' ® 4 K) = trdeg,(B). Thus we
are really trying to prove that dimq(C/m4C) = dim(C ®4 K). Choose a valuation
ring A’ in K dominating A, see Algebra, Lemma [50.2] Set C' = C ®4 A’. Choose
a prime q' of C’ lying over q; such a prime exists because

Cl/mA/Cl = C/mAC’ ®,€(mA) m(mA/)
which proves that C/maC — C'/my C’ is faithfully flat. This also proves that
dimg(C/msC) = dimg (C'/m 4. C"), see Algebra, Lemma Note that B’ = Cf,
is a localization of B® 4 A’. Hence B’ is flat over A’. The generic fibre B'® 4/ K is a
localization of B ® 4 K. Hence B’ is a domain. If we prove the lemma for A’ C B’,
then we get the equality dimg (C"/ma/C’) = dim(C" ®4/ K) which implies the
desired equality dimq(C/msC) = dim(C ®4 K) by what was said above. This
reduces the lemma to the case where A is a valuation ring.

Let A C B be as in the lemma with A a valuation ring. As before write B = C
for some domain C of finite type over A. By Algebra, Lemma [125.9 we obtain
dim(C/myC) = dim(C ®4 K) and we win. O

Lemmal 52.4. Let f : X — S be a morphism of schemes. Let © ~ x' be a
specialization of points in X. Set s = f(x) and s’ = f(a’). Assume
(1) 2’ is a closed point of Xy, and
(2) f is locally of finite type.
Then the set
{z1 € X such that f(x1) = s and z1 is closed in X5 and x ~ x1 ~ x'}
is dense in the closure of x in X;.

Proof. We apply Schemes, Lemma to the specialization x ~~ x’. This pro-
duces a morphism ¢ : Spec(B) — X where B is a valuation ring such that ¢ maps
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the generic point to z and the closed point to 2. We may also assume that x(z)
is the fraction field of B. Let A = BN k(s). Note that this is a valuation ring (see
Algebra, Lemma which dominates the image of Og s — k(s). Consider the
commutative diagram

Spec(B) X4 X
>~
Spec(d) —= S

The generic (resp. closed) point of B maps to a point x4 (resp. z’4) of X4 lying
over the generic (resp. closed) point of Spec(A). Note that 2’4 is a closed point of
the special fibre of X4 by Morphisms, Lemma Note that the generic fibre of
X4 — Spec(A) is isomorphic to X;. Thus we have reduced the lemma to the case
where S is the spectrum of a valuation ring, s = n € S is the generic point, and
s’ € S is the closed point.

We will prove the lemma by induction on dim,(X,). If dim,(X,) = 0, then there
are no other points of X, specializing to x and z is closed in its fibre, see Morphisms,
Lemma and the result holds. Assume dim, (X)) > 0.

Let X’ C X be the reduced induced scheme structure on the irreducible closed
subscheme {z} of X, see Schemes, Definition To prove the lemma we may
replace X by X’ as this only decreases dim,(X,,). Hence we may also assume that
X is an integral scheme and that x is its generic point. In addition, we may replace
X by an affine neighbourhood of 2’. Thus we have X = Spec(B) where A C B is
a finite type extension of domains. Note that in this case dim,(X,) = dim(X,) =
dim(Xy ), and that in fact X is equidimensional, see Algebra, Lemma

Let W C X,, be a proper closed subset (this is the subset we want to “avoid”).
As X, is of finite type over a field we see that W has finitely many irreducible
components W = Wy U...UW,. Let q; C B, j = 1,...,r be the corresponding
prime ideals. Let ¢ C B be the maximal ideal corresponding to the point 2. Let
P1,...,ps C B be the minimal primes lying over mqB. There are finitely many
as these correspond to the irreducible components of the Noetherian scheme X, .
Moreover, each of these irreducible components has dimension > 0 (see above)
hence we see that p; # q for all i. Now, pick an element g € q such that g € q;
for all j and g & p; for all 4, see Algebra, Lemma [I5.2] Denote Z C X the locally
principal closed subscheme defined by g. Let Z,, = Z;, U...UZ,,, n > 0 be
the decomposition of the generic fibre of Z into irreducible components (finitely
many as the generic fibre is Noetherian). Denote Z; C X the closure of Z; ,,. After
replacing X by a smaller affine neighbourhood we may assume that =’ € Z; for each
i=1,...,n. By construction Z N X does not contain any irreducible component
of X,. Hence by Lemma we conclude that Z,, # 0! In other words n > 1.
Letting 1 € Z; be the generic point we see that x; ~» 2’ and f(x;) = n. Also,
by construction Z;, N W; C W; is a proper closed subset. Hence every irreducible
component of Z; ,NW; has codimension > 2 in X,, whereas codim(Z; ,, X)) = 1 by
Algebra, Lemma Thus W N Z, , is a proper closed subset. At this point we
see that the induction hypothesis applies to Z; — S and the specialization z7 ~ 2.
This produces a closed point xa of Z;, not contained in W which specializes to
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x’. Thus we obtain z ~» o ~» 2, the point z3 is closed in X,,, and zo ¢ W as
desired. [l

Remark| 52.5. The proof of Lemma actually shows that there exists a se-
quence of specializations

/
T~ T~ T~ .. Tg ™~ T

where all x; are in the fibre X, each specialization is immediate, and x4 is a closed
point of X;. The integer d = trdeg,,,)(x(z)) = dim({z}) where the closure is taken
in X;. Moreover, the points z; can be chosen to avoid any closed subset of X
which does not contain the point x.

Examples, Section [3§] shows that the following lemma is false if A is not assumed
Noetherian.

Lemma 52.6. Let ¢ : A — B be a local ring map of local rings. Let V' C Spec(B)
be an open subscheme which contains at least one prime not lying over my. Assume
A is Noetherian, ¢ essentially of finite type, and A/my C B/mp is finite. Then
there exists a q € V, my # qN A such that A — B/q is the localization of a
quasi-finite ring map.

Proof. Since A is Noetherian and A — B is essentially of finite type, we know that
B is Noetherian too. By Properties, Lemma the topological space Spec(B) \
{mp} is Jacobson. Hence we can choose a closed point q which is contained in the
nonempty open
VAN{gC B|my =qn A}.

(Nonempty by assumption, open because {m 4} is a closed subset of Spec(A).) Then
Spec(B/q) has two points, namely mp and q and q does not lie over m4. Write
B/q = Cy, for some finite type A-algebra C' and prime ideal m. Then A — C' is
quasi-finite at m by Algebra, Lemma (2). Hence by Algebra, Lemma
we see that after replacing C' by a principal localization the ring map A — C' is
quasi-finite. O

Lemma 52.7. Let f: X — S be a morphism of schemes. Let x € X with image
s€S. Let U C X be an open subscheme. Assume f locally of finite type, S locally
Noetherian, x a closed point of X, and assume there exists a point ¥’ € U with
' ~ x and f(x') # s. Then there exists a closed subscheme Z C X such that (a)
x€Z,(b) flz:Z — S is quasi-finite at x, and (c) there exists a z € Z, z € U,
z~x and f(z) # s.

Proof. This is a reformulation of Lemma @ Namely, set A = Og s and B =
Ox .. Denote V' C Spec(B) the inverse image of U. The ring map f*: A — B is
essentially of finite type. By assumption there exists at least one point of V' which
does not map to the closed point of Spec(A4). Hence all the assumptions of Lemma
[52.6) hold and we obtain a prime q C B which does not lie over my and such that
A — B/q is the localization of a quasi-finite ring map. Let z € X be the image of
the point q under the canonical morphism Spec(B) — X. Set Z = {z} with the
induced reduced scheme structure. As z ~» z we see that x € Z and Oz, = B/q.
By construction Z — S is quasi-finite at x. ]

Remark 52.8. We can use Lemma or its variant Lemma to give an
alternative proof of Lemma [52.4] in case S is locally Noetherian. Here is a rough
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sketch. Namely, first replace S by the spectrum of the local ring at s’. Then we
may use induction on dim(S). The case dim(S) = 0 is trivial because then s’ = s.
Replace X by the reduced induced scheme structure on @ Apply Lemma
to X — S and 2/ — s’ and any nonempty open U C X containing z. This gives
us a closed subscheme 2’ € Z C X a point 2z € Z such that Z — S is quasi-finite
at 2’ and such that f(z) # s’. Then z is a closed point of X;(,), and z ~ 2'. As
f(2) # s we see dim(Og f(»)) < dim(S). Since z is the generic point of X we see
x ~ z, hence s = f(x) ~ f(z). Apply the induction hypothesis to s ~» f(z) and
z +— f(z) to win.

Lemma 52.9. Suppose that f: X — S is locally of finite type, S locally Noether-
ian, x € X a closed point of its fibre X5, and U C X an_open subscheme such that
UNX,=0 and x € U, then the conclusions of Lemma hold.

Proof. Namely, we can reduce this to the cited lemma as follows: First we replace
X and S by affine neighbourhoods of x and s. Then X is Noetherian, in particular
U is quasi-compact (see Morphisms, Lemma and Topology, Lemmas and
[12.13). Hence there exists a specialization 2/ ~ 2 with 2/ € U (see Morphisms,
Lemma [6.5)). Note that f(z’) # s. Thus we see all hypotheses of the lemma are
satisfied and we win. O

53. Stein factorization

Stein factorization is the statement that a proper morphism f : X — S with
f+Ox = Og has connected fibres.

Lemma 53.1. Let S be a scheme. Let f : X — S be a universally closed and
quasi-separated morphism. There exists a factorization

X— g
f/

N A
S

(1) the morphism ' is universally closed, quasi-compact, quasi-separated, and
surjective,

(2) the morphism w: 8" — S is integral,

(3) we have f.Ox = Og,

(4) we have S" = Spec(f.Ox), and

(5) S’ is the normalization of S in X, see Morphisms, Definition .

Formation of the factorization f = wo f' commutes with flat base change.

with the following properties:

Proof. By Morphisms, Lemma the morphism f is quasi-compact. Hence the
normalization S’ of S in X is defined (Morphisms, Definition and we have
the factorization X — S’ — S. By Morphisms, Lemma we have (2), (4),
and (5). The morphism [’ is universally closed by Morphisms, Lemma It is
quasi-compact by Schemes, Lemma 21.14] and quasi-separated by Schemes, Lemma
2LI3

To show the remaining statements we may assume the base scheme S is affine, say
S = Spec(R). Then S" = Spec(A) with A = T'(X, Ox) an integral R-algebra. Thus
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it is clear that f.Ox is Og (because f.Ox is quasi-coherent, by Schemes, Lemma

and hence equal to A). This proves (3).

Let us show that f’ is surjective. As f’ is universally closed (see above) the image
of f"is a closed subset V(I) C S’ = Spec(A). Pick h € I. Then h|x = f#(h) is a
global section of the structure sheaf of X which vanishes at every point. As X is
quasi-compact this means that h|x is a nilpotent section, i.e., h™|X = 0 for some
n > 0. But A = I'(X,0Ox), hence h™ = 0. In other words I is contained in the
Jacobson radical ideal of A and we conclude that V(I) = S’ as desired. O

Lemmal 53.2. In Lemma assume in addition that f is locally of finite type.
Then for s € S the fibre 1= ({s}) = {s1,...,8n} is finite and the field extensions
k(si)/K(s) are finite.

Proof. Recall that there are no specializations among the points of 7=1({s}), see
Algebra, Lemma As f' is surjective, we find that |X,| — 7=1({s}) is sur-
jective. Observe that X, is a quasi-separated scheme of finite type over a field
(quasi-compactness was shown in the proof of the referenced lemma). Thus X,
is Noetherian (Morphisms, Lemma . A topological argument (omitted) now
shows that m=1({s}) is finite. For each i we can pick a finite type point x; € X,
mapping to s; (Morphisms, Lemma [16.7). We conclude that x(s;)/k(s) is finite: z;
can be represented by a morphism Spec(k;) — X, of finite type (by our definition
of finite type points) and hence Spec(k;) — s = Spec(x(s)) is of finite type (as a
composition of finite type morphisms), hence k;/k(s) is finite (Morphisms, Lemma
16.1). 0

Lemma 53.3. Let f: X — S be a morphism of schemes. Let s € S. Then Xy is
geometrically connected, if and only if for every étale neighbourhood (U, u) — (S, s)
the base change Xy — U has connected fibre X,,.

Proof. If X, is geometrically connected, then any base change of it is connected.
On the other hand, suppose that X, is not geometrically connected. Then by
Varieties, Lemma we see that Xy Xgpec(n(s)) Spec(k) is disconnected for some
finite separable field extension k/k(s). By Lemma there exists an affine étale
neighbourhood (U,u) — (S, s) such that x(u)/k(s) is identified with k/x(s). In
this case X, is disconnected. O

Theorem 53.4 (Stein factorization; Noetherian case). Let S be a locally Noether-
ian scheme. Let f: X — S be a proper morphism. There exists a factorization

X— g
f/
S

(1) the morphism f' is proper with geometrically connected fibres,
(2) the morphism w:S" — S is finite,

(3) we have fLOx = Ogy,
(4)
()

with the following properties:

we have S’ = Specs(f*OX), and
S’ is the normalization of S in X, see Morphisms, Definition W
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Proof. Let f = mo f’ be the factorization of Lemma Note that besides the
conclusions of Lemma we also have that f’ is separated (Schemes, Lemma
and finite type (Morphisms, Lemma . Hence f’ is proper. By Coho-
mology of Schemes, Proposition we see that f,Ox is a coherent Og-module.
Hence we see that = is finite, i.e., (2) holds.

This proves all but the most interesting assertion, namely that all the fibres of f” are
geometrically connected. It is clear from the discussion above that we may replace
S by S, and we may therefore assume that S is Noetherian, affine, f : X — S
is proper, and f,Ox = Og. Let s € S be a point of S. We have to show that
X, is geometrically connected. By Lemma [53.3] we see that it suffices to show
X, is connected for every étale neighbourhood (U,u) — (S,s). We may assume
U is affine. Thus U is Noetherian (Morphisms, Lemma , the base change
fu : Xy — U is proper (Morphisms, Lemma , and that also (f).Ox, = Ovu
(Cohomology of Schemes, Lemmal5.2). Hence after replacing (f : X — S, s) by the
base change (fu : Xy — U, u) it suffices to prove that the fibre X is connected
when f,Ox = Og. We can deduce this from Derived Categories of Schemes, Lemma
(by looking at idempotents in the structure sheaf of X) but we will also give
a direct argument below.

Namely, we apply the theorem on formal functions, more precisely Cohomology of
Schemes, Lemma It tells us that

Oé\,s = (f*OX)g\ = lim,, HO(X’I’H OX,,L>

where X, is the nth infinitesimal neighbourhood of X,. Since the underlying topo-
logical space of X, is equal to that of X, we see that if Xy =T; I1 T5 is a disjoint
union of nonempty open and closed subschemes, then similarly X,, = T1, I T,
for all n. And this in turn means H°(X,,,Ox,) contains a nontrivial idempotent
e1,n, namely the function which is identically 1 on 77, and identically 0 on 75 .
It is clear that ey ,41 restricts to e;, on X,. Hence e; = lime; , is a nontrivial
idempotent of the limit. This contradicts the fact that OQ’S is a local ring. Thus
the assumption was wrong, i.e., X, is connected, and we win. ([

Theorem 53.5 (Stein factorization; general case). Let S be a scheme. Let f :
X — S be a proper morphism. There exists a factorization

X — > 9
f/
S

(1) the morphism f' is proper with geometrically connected fibres,

(2) the morphism m: 8" — S is integral,

(3) we have f.Ox = Og,

(4) we have S" = Spec(f.Ox), and

(5) S’ is the normalization of S in X, see Morphisms, Definition .

with the following properties:

Proof. We may apply Lemma to get the morphism f’ : X — S’. Note that
besides the conclusions of Lemma we also have that f’ is separated (Schemes,

Lemma [21.13)) and finite type (Morphisms, Lemma [15.8)). Hence f’ is proper. At


https://stacks.math.columbia.edu/tag/03H2

0AYS

0BUI

MORE ON MORPHISMS 158

this point we have proved all of the statements except for the statement that f’ has
geometrically connected fibres.

We may assume that S = Spec(R) is affine. Set R’ = I'(X,0Ox). Then S’ =
Spec(R’). Thus we may replace S by S’ and assume that S = Spec(R) is affine
R =T(X,0x). Next, let s € S be a point. Let U — S be an étale morphism of
affine schemes and let v € U be a point mapping to s. Let Xy — U be the base
change of X. By Lemma [53.3| it suffices to show that the fibre of Xy — U over u
is connected. By Cohomology of Schemes, Lemma we see that I'( Xy, Ox,) =
I'(U,Op). Hence we have to show: Given S = Spec(R) affine, X — S proper with
I'(X,0x) = R and s € S is a point, the fibre X, is connected.

To do this it suffices to show that the only idempotents e € H°(X,, Ox,) are 0 and
1 (we already know that X is nonempty by Lemma(53.1f). By Derived Categories of
Schemes, Lemma after replacing R by a principal localization we may assume
e is the image of an element of R. Since R — HY(X,, Ox,) factors through x(s)
we conclude. O

Here is an application.

Lemmal 53.6. Let f: X — S be a morphism of schemes. Assume
(1) f is proper,
(2) S is integral with generic point &,
(3) S is normal,
(4) X is reduced,
(5) every generic point of an irreducible component of X maps to &,
(6) we have H°(X¢, O) = k(€).

Then f.Ox = Og and f has geometrically connected fibres.

Proof. Apply Theorem to get a factorization X — S’ — S. It is enough to
show that S” = S. This will follow from Morphisms, Lemma Namely, S’ is
reduced because X is reduced (Morphisms, Lemma . The morphism S’ — S
is integral by the theorem cited above. Every generic point of S’ lies over £ by
Morphisms, Lemma and assumption (5). On the other hand, since S’ is the
relative spectrum of f,Ox we see that the scheme theoretic fibre Sé is the spectrum
of H°(X¢, ©) which is equal to x(£) by assumption. Hence S’ is an integral scheme
with function field equal to the function field of S. This finishes the proof. (]

3
4
5
6

Here is another application.

Lemma 53.7. Let X — S be a flat proper morphism of finite presentation. Let
nx/s be the function on S counting the numbers of geometric connected components
of fibres of f introduced in Lemma[28.3 Then nx s is lower semi-continuous.

Proof. Let s € S. Set n = nx,g(s). Note that n < oo as the geometric fibre of
X — S at s is a proper scheme over a field, hence Noetherian, hence has a finite
number of connected components. We have to find an open neighbourhood V of s
such that nx/gly > n. Let X — S — S be the Stein factorization as in Theorem
53.50 By Lemma there are finitely many points s,...,s!, € S’ lying over
s and the extensions k(s;)/k(s) are finite. Then Lemma tells us that after
replacing S by an étale neighbourhood of s we may assume S’ = V1 I1...11V,, as a

scheme with s; € V; and r(s})/r(s) purely inseparable. Then the schemes X/ are
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geometrically connected over r(s), hence m = n. The schemes X; = (f')~}(V;),

i =1,...,n are flat and of finite presentation over S. Hence the image of X; — S is
open (Morphisms, Lemma 25.10)). Thus in a neighbourhood of s we see that ny,g
is at least n. (]

Lemmal 53.8. Let f: X — S be a morphism of schemes. Assume

(1) f is proper, flat, and of finite presentation, and

(2) the geometric fibres of f are reduced.
Then the function nx,s : S — Z counting the numbers of geometric connected
components of fibres of f is locally constant.

Proof. By Lemma the function ny /g is lower semincontinuous. For s € S
consider the «(s)-algebra

A=H"X,,0x.)
By Varieties, Lemma [9.3] and the fact that X is geometrically reduced A is finite
product of finite separable extensions of x(s). Hence A ®,4) #(5) is a product of
Bo(s) = dimys) HO(E ®" k(s)) copies of £(5). Thus X5 has By(s) = dim,) A
connected components. In other words, we have nx,s = [y as functions on S.

Thus nx,s is upper semi-continuous by Derived Categories of Schemes, Lemma
This finishes the proof. O

A final application.

Lemma 53.9. Let (A,I) be a henselian pair. Let X — Spec(A) be separated and
of finite type. Set Xo = X Xgpec(a) Spec(A/I). Let Y C Xg be an open and closed
subscheme such that Y — Spec(A/I) is proper. Then there exists an open and
closed subscheme W C X which is proper over A with W Xgpec(a) Spec(A/I) =Y.

Proof. We will denote T' — T the base change by Spec(A/I) — Spec(A). By
Chow’s lemma (in the form of Limits, Lemma there exists a surjective proper
morphism ¢ : X’ — X such that X’ admits an immersion into P%. Set Y’ =
¢~ 1(Y). This is an open and closed subscheme of X{;. Suppose the lemma holds for
(X',Y’). Let W' C X' be the open and closed subscheme proper over A such that
Y’ = W{. By Morphisms, Lemma[d1.7|W = o(W') C X and Q = (X' \W') C X
are closed subsets and by Morphisms, Lemma W is proper over A. The image
of W N @ in Spec(A) is closed. Since (A, ) is henselian, if W N @ is nonempty,
then we find that W N @ has a point lying over Spec(A/I). This is impossible as
W =Y"= ¢ 1(Y). We conclude that W is an open and closed subscheme of X
proper over A with Wy = Y. Thus we reduce to the case described in the next
paragraph.

Assume there exists an immersion j : X — P% over A. Let X be the scheme
theoretic image of j. Since j is a quasi-compact morphism (Schemes, Lemma
we see that j : X — X is an open immersion (Morphisms, Lemma . Hence the
base change jo : Xo — X is an open immersion as well. Thus jo(Y) C X is open.
It is also closed by Morphisms, Lemma Suppose that the lemma holds for
(X,jo(Y)). Let W C X be the corresponding open and closed subscheme proper
over A such that jo(Y) = Wy. Then T = W\ j(X) is closed in W, hence has closed
image in Spec(A) by properness of W over A. Since (A, 1) is henselian, we find
that if 7' is nonempty, then there is a point of T mapping into Spec(A/I). This
is impossible because jo(Y) = Wy is contained in j(X). Hence W is contained

A reference for the
case of an adic
Noetherian base is
DG, 111,
Proposition 5.5.1]
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in j(X) and we can set W C X equal to the unique open and closed subscheme
mapping isomorphically to W via j. Thus we reduce to the case described in the
next paragraph.

Assume X C P’ is a closed subscheme. Then X — Spec(A) is a proper morphism.
Let Z = X\ Y. This is an open and closed subscheme of Xy and Xo = Y11 Z. Let
X — X' — Spec(A) be the Stein factorization as in Theorem Let Y’ C X
and Z’' C X be the images of Y and Z. Since the fibres of X — Z are geometrically
connected, we see that Y/ NZ' = (). Hence X[, =Y'II1 Z' as X — X' is surjective.
Since X’ — Spec(A) is integral, we see that X’ is the spectrum of an A-algebra
integral over A. Recall that open and closed subsets of spectra correspond 1-to-1
with idempotents in the corresponding ring, see Algebra, Lemma [21.3] Hence by
More on Algebra, Lemma we see that we may write X’ = W/ I V' with W’
and V' open and closed and with Y/ = W and Z’ = V{j. Let W be the inverse
image in X to finish the proof. O

54. Generic flatness stratification

We can use generic flatness to construct a stratification of the base such that a
given module becomes flat over the strata.

Lemma 54.1 (Generic flatness stratification). Let f : X — S be a morphism of
finite presentation between quasi-compact and quasi-separated schemes. Let F be an
Ox -module of finite presentation. Then there exists a t > 0 and closed subschemes

$D585 D08, D...08 =10

such that S; — S is defined by a finite type ideal sheaf, So C S is a thickening, and
F pulled back to X xg (S; \ Si+1) s flat over S; \ Siy1.

Proof. We can find a cartesian diagram

X*>X0

L

SHSO

and a finitely presented Ox,-module Fy which pulls back to F such that X, and
S are of finite type over Z. See Limits, Proposition and Lemmas and
Thus we may assume X and S are of finite type over Z and F is a coherent
O x-module.

Assume X and S are of finite type over Z and F is a coherent Ox-module. In
this case every quasi-coherent ideal is of finite type, hence we do not have to check
the condition that S; is cut out by a finite type ideal. Set Sy = S,.q equal to
the reduction of S. By generic flatness as stated in Morphisms, Proposition 27.2
there is a dense open Uy C Sy such that F pulled back to X xg Uy is flat over Uj.
Let S; C Sy be the reduced closed subscheme whose underlying closed subset is
S\ Up. We continue in this way, provided S; # 0, to find Sy D S; D .... Because
S is Noetherian any descending chain of closed subsets stabilizes hence we see that
S; = ) for some t > 0. O
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Lemma 54.2. Let f : X — S be a morphism of finite presentation between
quasi-compact and quasi-separated schemes. Then there exists a t > 0 and closed
subschemes

$D85 D28 D...08 =0

such that S; — S is defined by a finite type ideal sheaf, So C S is a thickening, and
X Xg (Sz \ Si—i—l) 18 ﬂat over Sl \Si-i-l-

Proof. Apply Lemma with F = Ox. ]

Lemmal 54.3. Let R be a Noetherian domain. Let R — A — B be finite type ring
maps. Let M be a finite A-module and let N a finite B-module. Let M — N be an
A-linear map. There exists an nonzero f € R such that the cokernel of My — Ny
is a flat Ryp-module.

Proof. By replacing M by the image of M — N, we may assume M C N. Choose
a filtration 0 = Ng C N7 C ... C Ny = N such that N;/N,_y = B/q; for some prime
ideal q; C B, see Algebra, Lemma Set M; = M N'N;. Then @ = N/M has
a filtration by the submodules Q; = N;/M;. It suffices to prove @Q;/Q;—1 becomes
flat after localizing at a nonzero element of f (since extensions of flat modules are
flat by Algebra, Lemma . Since @Q;/Q;—1 is isomorphic to the cokernel of the
map M;/M;_1 — N;/N;_1, we reduce to the case discussed in the next paragraph.

Assume B is a domain and M C N = B. After replacing A by the image of A in B
we may assume A C B. By generic flatness, we may assume A and B are flat over
R (Algebra, Lemma[118.1)). It now suffices to show M — B becomes R-universally
injective after replacing R by a principal localization (Algebra, Lemma . By
generic freeness, we can find a nonzero g € A such that B, is a free A -module
(Algebra, Lemma . Thus we may choose a direct summand M’ C B, as
an Ag-module, which is finite free as an Ag-module, and such that M — B —
B, factors through M’. Clearly, it suffices to show that M — M’ becomes R-
universally injective after replacing R by a principal localization.

Say M' = AZ‘B”. Since M C M’ is a finite A-module, we see that M is contained
in (1/g™)A®" for some m > 0. After changing our basis for M’ we may assume
M C A®™. Then it suffices to show that A®"/M and A;/A become R-flat after
replacing R by a principal localization. Namely, then M’ — A®" and A" —
A;e” are universally injective by Algebra, Lemma and consequently so is the
composition M — M' = A"

By generic flatness (see reference above), we may assume the module A®"/M is
R-flat. For the quotient A;/A we use the fact that

Ay/A = colim(1/¢g™)A/A = colim A/g™ A

and the module A/g™ A has a filtration of length m whose succesive quotients are
isomorphic to A/gA. Again by generic flatness we may assume A/gA is R-flat and
hence each A/¢g™A is R-flat, and hence so is A,/A. O

Let f : X — Y be a morphism of schemes over a base scheme S. Let Z C Y be
the scheme theoretic image of f, see Morphisms, Section [f] Let g : S’ — S be a
morphism of schemes and let ' : X xgS" — Y Xxg S’ be the base change of f by
g. It is not always true that Z xg S’ C Y xg S’ is the scheme theoretic image of
f'. Let us say that formation of the scheme theoretic image of f/S commutes with
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arbitrary base change if for every g as above the scheme theoretic image of f’ is
equal to Z xg §’.

Lemma 54.4. Let S be a quasi-compact and quasi-separated scheme. Let f : X —
Y be a morphism of schemes over S with both X andY of finite presentation over
S. Then there exists a t > 0 and closed subschemes

S8 D28,D...08 =10

with the following properties:
(1) S; = S is defined by a finite type ideal sheaf,
(2) So C S is a thickening, and
(3) with T; = S;\ Si+1 and f; the base change of f to T; we have: formation of
the scheme theoretic image of f;/T; commutes with arbitrary base change
(see discussion above the lemma).

Proof. We can find a commutative diagram

X—Y ——S

L

U——V ——W

with cartesian squares such that U, V', W are of finite type over Z. Namely, first
write S as a cofiltered limit of finite type schemes over Z with affine transition
morphisms using Limits, Proposition and then descend the morphism X —
Y using Limits, Lemma [10.1] This reduces us to the case discussed in the next
paragraph.

Assume S is Noetherian. In this case every quasi-coherent ideal is of finite type,
hence we do not have to check the condition that S; is cut out by a finite type ideal.
Set So = Sreq equal to the reduction of S. Let n € Sy be a generic point of an
irreducible component of Sy. By Noetherian induction on the underlying topological
space of Sy, we may assume the result holds for any closed subscheme of Sy not
containing 7. Thus it suffices to show that there exists an open neighbourhood
Uy C Sy such that the base change fy of f to Uy has property (3).

Let R be a Noetherian domain. Let f : X — Y be a morphism of finite type
schemes over R. By the discussion in the previous paragraph it suffices to show
that after replacing R by R, for some g € R nonzero and X, Y by their base
changes to R, formation of the scheme theoretic image of f/R commutes with
arbitrary base change.

Let Y =V U...V, be an affine open covering. Let U; = f~1(V;). If the statement
is true for each of the morphisms U; — V; over R, then it holds for f. Namely,
the scheme theoretic image of U; — V; is the intersection of V; with the scheme
theoretic image of f : X — Y by Morphisms, Lemma [6.3] Thus we may assume Y
is affine.

Let X =U; U...U, be an affine open covering. Then the scheme theoretic image
of X — Y is the same as the scheme theoretic imge of [[U; — Y. Thus we may
assume X is affine.

Say X = Spec(A) and Y = Spec(B) and f corresponds to the R-algebra map
¢ : A — B. Then the scheme theoretic image of f is Spec(A/Ker(y)) and similarly


https://stacks.math.columbia.edu/tag/0H41

0H42

0H43

MORE ON MORPHISMS 163

after base change (by an affine morphism, but it is enough to check for those). Thus
formation of the scheme theoretic image commutes with base change if Ker(p ®p
R') = Ker(p) ®g R’ for all ring maps R — R’.

After replacing R, A, B by Ry, Ay, By for a suitable nonzero g in R, we may
assume A and B are flat over R. By Lemmawe may also assume B/A is a flat
R-module. Then 0 — Ker(¢) - A — B — B/A — 0 is an exact sequence of flat
R-modules, which implies the desired base change statement. O

55. Stratifying a morphism

Let f : X — S be a finitely presented morphism of quasi-compact and quasi-
separated schemes. In Section [p4] we have seen that we can stratify S such that X
is flat over the strata. In this section look for stratifications of both S and X such
that we obtain smooth strata; this won’t quite work and we’ll need a base change
by finite locally free morphisms as well.

Lemma 55.1. Let f: X — S be a morphism of schemes of finite presentation.
Letn € S be a generic point of an irreducible component of S. Assume S is reduced.
Then there exist

(1) an open subscheme U C S containing 1,
(2) a surjective, universally injective, finite locally free morphism V. — U,
(3) at >0 and closed subschemes

XXSVDZODZ13...:)Z,::@

such that Z; — X xgV is defined by a finite type ideal sheaf, Zg C X xgV
is a thickening, and such that the morphism Z; \ Z;11 — V is smooth.

Proof. It is clear that we may replace S by an open neighbourhood of n and X
by the restriction to this open. Thus we may assume S = Spec(A) where A is a
reduced ring and 7 corresponds to a minimal prime ideal p. Recall that the local
ring Og,,, = A, is equal to x(p) in this case, see Algebra, Lemma

Apply Varieties, Lemma to the scheme X, over k = k(7). Denote k’/k the
purely inseparable field extension this produces. In the next paragraph we reduce
to the case k' = k. (This step corresponds to finding the morphism V' — U in the
statement of the lemma; in particular we can take V = U if the characteristic of
k(p) is zero.)

If the characteristic of k& = k(p) is zero, then k' = k. If the characteristic of
k = k(p) is p > 0, then p maps to zero in A, = k(p). Hence after replacing A by
a principal localization (i.e., shrinking S) we may assume p = 0 in A. If ¥’ # k,
then there exists an 8 € k', 8 & k such that 87 € k. After replacing A by a
principal localization we may assume there exists an a € A such that P = a. Set
A" = Alx]/(z? — a). Then S’ = Spec(A’) — Spec(A4) = S is finite locally free,
surjective, and universally injective. Moreover, if p’ C A’ denotes the unique prime
ideal lying over p, then Aj, = k(B) and k'/k(B) has smaller degree. Thus after
replacing S by S’ and 71 by the point 1’ corresponding to p’ we see that the degree
of k' over the residue field of 7 has decreased. Continuing like this, by induction
we reduce to the case k' = k(p) = x(n).
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Thus we may assume S is affine, reduced, and that we have a t > 0 and closed
subschemes
Xy D ZyoDZn1D...D Zyy =10

such that Z, o = (X)rea and Z,; \ Z, ;41 is smooth over 7 for all i. Recall that
k(n) = k(p) = A, is the filtered colimit of A, for a € A, a & p. See Algebra,
Lemma Thus we can descend the diagram above to a corresponding diagram
over Spec(A,) for some a € A, a &€ p. More precisely, after replacing S by Spec(A4,)
we may assume we have a t > 0 and closed subschemes

XD>ZyDZ1D...0Z =0

such that Z; — X is a closed immersion of finite presentation, such that Zo — X is
a thickening, and such that Z; \ Z;11 is smooth over S. In other words, the lemma
holds. More precisely, we first use Limits, Lemma to obtain morphisms

Ly > Ly 1—>...—>Zy— X

over S, each of finite presentation, and whose base change to 1 produces the in-
clusions between the given closed subschemes above. After shrinking S further we
may assume each of the morphisms is a closed immersion, see Limits, Lemma [8.5
After shrinking S we may assume Zy — X is surjective and hence a thickening, see
Limits, Lemma After shrinking S once more we may assume Z; \ Z;11 — S
is smooth, see Limits, Lemma This finishes the proof. [l

Lemmal 55.2. Let f : X — S be a morphism of finite presentation between
quasi-compact and quasi-separated schemes. Then there exists at > 0 and closed
subschemes
S25 D85 D...08 =0

such that

(1) S; = S is defined by a finite type ideal sheaf,

(2) So C S is a thickening,

(3) for eachi there exists a surjective finite locally free morphism T; — S;\Si+1,

(4) for each i there exists a t; > 0 and closed subschemes

X, =X xgT; DZ@O DZZ‘J 3~~~DZz‘,ti =0
such that Z; ; — X; is defined by a finite type ideal sheaf, Z; o C X; is a
thickening, and such that the morphism Z; ; \Zi)j+]_ — T is smooth.
Proof. We can find a cartesian diagram

X*>XO

L

SHSO

such that Xg and Sy are of finite type over Z. See Limits, Proposition [5.4] and
Lemma Thus we may assume X and S are of finite type over Z. Namely,
a solution of the problem posed by the lemma for X, — Sy will base change to a
solution over S; details omitted.

Assume X and S are of finite type over Z. In this case every quasi-coherent ideal
is of finite type, hence we do not have to check the condition that S; is cut out by
a finite type ideal. Set Sy = Syeq equal to the reduction of S. Let n € Sy be a
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generic point of an irreducible component. By Lemma we can find an open
subscheme U C Sy, a surjective, universally injective, finite locally free morphism
V — U, atyg >0 and closed subschemes

X x5V D ZooD Zo1 DD Zogy =10

such that Zy; = X x gV is defined by a finite type ideal sheaf, Zpo C X xgV is
a thickening, and such that the morphism Zj; \ Zy,+1 — V is smooth. Then we
let S; C Sp be the reduced induced subscheme structure on Sy \ U. By Noetherian
induction on the underlying topological space of S, we may assume that the lemma
holds for X xgS7 — S1. This produces ¢t > 1 and

51251352:)...3515:@

and ¢; and Z; ; as in the statement of the lemma. This proves the lemma. O

56. Improving morphisms of relative dimension one

We can make any curve be smooth and projective after extending the ground field,
compactifying, and normalizing. This also implies results about finite type mor-
phisms whose generic fibres have dimension 1.

Lemma 56.1. Let f : X — S be a morphism of schemes. Let n € S be a
generic point of an irreducible component of S. Assume f is separated, of finite
presentation, and dim(X,)) < 1. Then there exists a commutative diagram

Vil 1Y, <—Y .. 1Y, —>Xy Xy X
T~ L
T, 10... 117, 1 U S

of schemes with the following properties:

(1) U C X is an open neighbourhood of 7,

(2) V= U is a finite, surjective, universally injective morphism,
(3) Xy =U xg X and Xy =V xg X are the base changes,
(4) v is finite, surjective, and there is an open W C Xy such that
(a) W is dense in all fibres of Xy — V,

(b) v=Y(W)NY; is dense in all fibres of Y; — T;, and

(c) v™Y(W) — W is a thickening,
Jj is an open immersion,

T; — V is finite étale,

— T; s surjective and smooth,

Y;
Y, — T; is smooth, proper, with geometrically connected fibres of dimension
<1.

Proof. It is clear that we may replace S by an open neighbourhood of n and X
by the restriction to this open. Moreover, we may replace S by its reduction and
X by the base change to this reduction. Thus we may assume S = Spec(A) where
A is a reduced ring and 7 corresponds to a minimal prime ideal p. Recall that the
local ring Og, = A, is equal to £(p) in this case, see Algebra, Lemma m

Apply Varieties, Lemma to the scheme X, over k = k(7). Denote k'/k the
purely inseparable field extension this produces. In the next paragraph we reduce
to the case ¥’ = k. (This step corresponds to finding the morphism V — U in the
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statement of the lemma; in particular we can take V = U if the characteristic of
k(p) is zero.)

If the characteristic of k = k(p) is zero, then &’ = k. If the characteristic of
k = k(p) is p > 0, then p maps to zero in A, = k(p). Hence after replacing A by
a principal localization (i.e., shrinking S) we may assume p = 0 in A. If k' # k,
then there exists an 8 € k', 8 € k such that 8P € k. After replacing A by a
principal localization we may assume there exists an a € A such that P = a. Set
A’ = Alz]/(a? — a). Then S’ = Spec(A’) — Spec(A) = S is finite, surjective, and
universally injective. Moreover, if p’ C A’ denotes the unique prime ideal lying
over p, then A}, = k(5) and k'/k(B) has smaller degree. Thus after replacing S by
S’ and 7 by the point ' corresponding to p’ we see that the degree of k¥’ over the
residue field of 7 has decreased. Continuing like this, by induction we reduce to the
case k' = k(p) = k(n).

Thus we may assume S is affine, reduced, and that we have a diagram
?Lnu...u?n,“j—ymu...uynm—V>Xn
Spec(k1) IT ... IT Spec(k,) —=1n

of schemes with the following properties:

(1) v is the normalization of X,

(2) j is an open immersion with dense image,

(3) ki/k(n) is a finite separable extension for i = 1,...,n,

(4) ?im is smooth, projective, and geometrically irreducible of dimension < 1
over k;.

Recall that x(n) = k(p) = A, is the filtered colimit of A, for a € A, a € p. See

Algebra, Lemma Thus we can descend the diagram above to a corresponding

diagram over Spec(A,) for some a € A, a ¢ p. More precisely, after replacing S by

Spec(4,) we may assume we have a commutative diagram

71H...H?n<j—Y1H...HYnT>X
of schemes whose base change to 7 is the diagram above with the following prop-
erties
1) v is a finite, surjective morphism,
(2) j is an open immersion,
(3) T; — S is finite étale for i =1,...,n,
(4) Y; — T; is smooth and surjective,
(5)

dimension < 1.
For this we first use Limits, Lemma to obtain the diagram base changing

to the previous diagram. Then we use Limits, Lemmas
13.1} and to obtain v finite, surjective, j open immersion, 7; — S finite étale,

Y; — T smooth, Y; — T; proper and smooth. Since Y; cannot be empty, since
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smooth morphisms are open, and since 7; — S is finite étale, after shrinking S we
may assume Y; — T; is surjective. Finally, the fibre of Y; — T; over the unique
point 7; = Spec(k;) of T; lying over 7 is geometrically connected. Hence by another
shrinking we may assume the same thing is true for all fibres, see Lemma [53.8

It remains to prove the existence of an open W C X satisfying (a), (b), and (c).
Since v, : [[Y;,, — X, is the normalization morphism, we know by Varieties,
Lemma there exists a dense open W, C X,; such that v=1(W,) — W,, is equal
to the inclusion of the reduction of W, into W,. Let W C X be a quasi-compact
open whose fibre over 7 is the open W;, we just found. After replacing A =T'(S, Ogs)
by another localization we may assume v~1(W) — W is a closed immersion, see
Limits, Lemma Since v is also surjective we conclude v=1(W) — W is a
thickening. Set W; = v~ 1(W)NY;. Shrinking S once more we can assume W; — T;
is surjective for all ¢ (same argument as above). Then we find that W; C Y; is dense
in all fibres of Y; — T; as Y; — T; has geometrically irreducible fibres. Since v is
finite and surjective, it then follows that W = v(v=1(W)) is dense in all fibres of
X — S too. ]

57. Descending separated locally quasi-finite morphisms

In this section we show that “separated locally quasi-finite morphisms satisfy de-
scent for fppf-coverings”. See Descent, Definition for terminology. This is in
the marvellous (for many reasons) paper by Raynaud and Gruson hidden in the
proof of [GR71, Lemma 5.7.1]. It can also be found in [Mur95], and [ABD™ 66} Ex-
posé X, Lemma 5.4] under the additional hypothesis that the morphism is locally
of finite presentation. Here is the formal statement.

Lemma 57.1. Let S be a scheme. Let {X; — Sticr be an fppf covering, see
Topologies, Definition . Let (V;/ X, i;) be a descent datum relative to {X; —
S}. If each morphism V; — X; is separated and locally quasi-finite, then the descent
datum s effective.

Proof. Being separated and being locally quasi-finite are properties of morphisms
of schemes which are preserved under any base change, see Schemes, Lemma [21.12
and Morphisms, Lemma Hence Descent, Lemma applies and it suffices
to prove the statement of the lemma in case the fppf-covering is given by a single
{X — S} flat surjective morphism of finite presentation of affines. Say X =
Spec(A) and S = Spec(R) so that R — A is a faithfully flat ring map. Let (V)
be a descent datum relative to X over S and assume that 7 : V' — X is separated
and locally quasi-finite.
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Let W1 C V be any affine open. Consider W = pry(p(W?! x5 X)) C V. Here is a
picture

Wl xg X oW x5 X)

™~ —

VXSX XXSV

N ~

X xg X —> X xg X

pro i J/prl

wt v X X |4 w

Ok, and now since X — S is flat and of finite presentation it is universally open
(Morphisms, Lemma [25.10). Hence we conclude that W is open. Moreover, it is
also clearly the case that W is quasi-compact, and W' C W. Moreover, we note
that (W xg¢ X) = X xg W by the cocycle condition for ¢. Hence we obtain a
new descent datum (W, ¢’) by restricting ¢ to W xg X. Note that the morphism
W — X is quasi-compact, separated and locally quasi-finite. This implies that it
is separated and quasi-finite by definition. Hence it is quasi-affine by Lemma [£3.2]
Thus by Descent, Lemma we see that the descent datum (W, ') is effective.

In other words, we find that there exists an open covering V' = (JW; by quasi-
compact opens W; which are stable for the descent morphism ¢. Moreover, for
each such quasi-compact open W C V the corresponding descent data (W, ') is
effective. This means the original descent datum is effective by glueing the schemes
obtained from descending the opens W;, see Descent, Lemma [35.13 O

58. Relative finite presentation

05GX Let R — A be a finite type ring map. Let M be an A-module. In More on Algebra,
Section [80] we defined what it means for M to be finitely presented relative to R.
We also proved this notion has good localization properties and glues. Hence we
can define the corresponding global notion as follows.

05H1 Definition| 58.1. Let f : X — S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent Ox-module. We say F is finitely presented
relative to S or of finite presentation relative to S if there exists an affine open
covering S = |JV; and for every i an affine open covering f~1(V;) = Uj Ui; such
that F(U;;) is a Ox (U;;)-module of finite presentation relative to Og(V;).

Note that this implies that F is a finite type Ox-module. If X — S is just locally
of finite type, then F may be of finite presentation relative to S, without X — S
being locally of finite presentation. We will see that X — S is locally of finite
presentation if and only if Ox is of finite presentation relative to S.

09T7 |Lemma 58.2. Let f: X — S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent Ox -module. The following are equivalent
(1) F is of finite presentation relative to S,
(2) for every affine opens U C X, V C S with f(U) C V the Ox(U)-module
F(U) is finitely presented relative to Og(V).
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Moreover, if this is true, then for every open subschemes U C X and V C S with
f(U) CV the restriction F|y is of finite presentation relative to V.

Proof. The final statement is clear from the equivalence of (1) and (2). It is also
clear that (2) implies (1). Assume (1) holds. Let S = JV; and f~1(V;) = JU;;
be affine open coverings as in Definition Let U € X and V C S be as in
(2). By More on Algebra, Lemma it suffices to find a standard open covering
U = |JUy, of U such that F(Uy) is finitely presented relative to Og(V'). In other
words, for every u € U it suffices to find a standard affine open u € U’ C U such
that F(U') is finitely presented relative to Og(V). Pick ¢ such that f(u) € V; and
then pick j such that v € U;;. By Schemes, Lemmawe canfindv € V/ C VNV,
which is standard affine open in V’ and V;. Then f~'V'NU, resp. f~'V' NU;;
are standard affine opens of U, resp. U;;. Applying the lemma again we can find
we U C f~'V'NnUNU; which is standard affine open in both f~'V/'NU and
f7V' ' NU;. Thus U’ is also a standard affine open of U and U;;. By More on
Algebra, Lemma the assumption that F(U;;) is finitely presented relative to
Os(V;) implies that F(U’) is finitely presented relative to Og(V;). Since Ox (U’) =
Ox(U") @04 (v;) Os(V') we see from More on Algebra, Lemma [80.5] that F(U’)
is finitely presented relative to Og(V"). Applying More on Algebra, Lemma
again we conclude that F(U’) is finitely presented relative to Og(V'). This finishes
the proof. ([l

Lemma 58.3. Let f: X — S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent Ox-module.

(1) If f is locally of finite presentation, then F is of finite presentation relative
to S if and only if F is of finite presentation.

(2) The morphism f is locally of finite presentation if and only if Ox is of
finite presentation relative to S.

Proof. Follows immediately from the definitions, see discussion following More on
Algebra, Definition [80.2] O

Lemma 58.4. Let m: X — Y be a finite morphism of schemes locally of finite
type over a base scheme S. Let F be a quasi-coherent Ox-module. Then F is of

finite presentation relative to S if and only if m.F is of finite presentation relative
to S.

Proof. Translation of the result of More on Algebra, Lemma|80.3|into the language
of schemes. O

Lemmal 58.5. Let f : X — S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent Ox-module. Let S — S be a morphism of
schemes, set X' = X xg 8" and denote F' the pullback of F to X'. If F is of finite
presentation relative to S, then F' is of finite presentation relative to S’.

Proof. Translation of the result of More on Algebra, Lemma|80.5|into the language
of schemes. 0

Lemma 58.6. Let X — Y — S be morphisms of schemes which are locally of
finite type. Let G be a quasi-coherent Oy -module. If f : X — Y s locally of
finite presentation and G of finite presentation relative to S, then f*G is of finite
presentation relative to S.
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Proof. Translation of the result of More on Algebra, Lemma into the language
of schemes. ([

Lemma 58.7. Let X — Y — S be morphisms of schemes which are locally
of finite type. Let F be a quasi-coherent Ox-module. If' Y — S is locally of
finite presentation and F is of finite presentation relative to Y, then F is of finite
presentation relative to S.

Proof. Translation of the result of More on Algebra, Lemma[80.7]into the language
of schemes. (I

Lemma 58.8. Let X — S be a morphism of schemes which is locally of finite
type. Let 0 — F' — F — F" — 0 be a short exact sequence of quasi-coherent
Ox-modules.

(1) If F',F" are finitely presented relative to S, then so is F.
(2) If F' is a finite type Ox-module and F is finitely presented relative to S,
then F'' is finitely presented relative to S.

Proof. Translation of the result of More on Algebra, Lemma into the language
of schemes. O

Lemmal58.9. Let X — S be a morphism of schemes which is locally of finite type.
Let F,F' be quasi-coherent Ox-modules. If F & F' is finitely presented relative to
S, then so are F and F'.

Proof. Translation of the result of More on Algebra, Lemma [80.10] into the lan-
guage of schemes. O

59. Relative pseudo-coherence

This section is the analogue of More on Algebra, Section for schemes. We
strongly urge the reader to take a look at that section first. Although we have de-
veloped the material in this section and the material on pseudo-coherent complexes
in Cohomology, Sections and [49] for arbitrary complexes of O x-modules,
if X is a scheme then working exclusively with objects in D gcon(Ox) greatly sim-
plifies many of the lemmmas and arguments, often reducing the problem at hand
immediately to the algebraic counterpart. Moreover, one of the first thing we do is
to show that being relatively pseudo-coherent implies the cohomology sheaves are
quasi-coherent, see Lemma [59.3] Hence, on a first reading we suggest the reader
work exclusively with objects in Dgcon(Ox).

Lemma 59.1. Let X — S be a finite type morphism of affine schemes. Let E be
an object of D(Ox). Let m € Z. The following are equivalent
(1) for some closed immersion i : X — Ag the object Ri.E of D(Oar) is
m-pseudo-coherent, and
(2) for all closed immersions i : X — AY the object Ri.E of D(Oar) is m-
pseudo-coherent.

Proof. Say S = Spec(R) and X = Spec(A). Let ¢ correspond to the surjection « :
R[z1,...,25] = A and let X — AT correspond to 8 : R[y1,...,Ym] = A. Choose
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fi € Rlzy, ..., zn] with a(f;) = B(y;) and g; € Rly, ..., ym] with B(g;) = a(z;).
Then we get a commutative diagram

R[xlv"wl’naylv"‘vym} Vi I R[ifl,...,fl?n}
\Lfl’i'—hl]z‘ l
Rlyi, -\ Ym) A

corresponding to the commutative diagram of closed immersions

n+m n
AS AS

]

A ~—X
Thus it suffices to show that under a closed immersion
f:AY — Ag*m

an object E of D((’)A?) is m-pseudo-coherent if and only if Rf,F is m-pseudo-
coherent. This follows from Derived Categories of Schemes, Lemma and the
fact that f,Oam is a pseudo-coherent O An+m= -module. The pseudo-coherence of
J+Oarp is straightforward to prove d1rectly, but it also follows from Derived Cate-
gories of Schemes, Lemma [10.2] and More on Algebra, Lemma [81.3 (]

Recall that if f : X — S is a morphism of scheme which is locally of finite type,
then for every pair of affine opens U C X and V' C S such that f(U) C V, the ring
map Og(V) — Ox(U) is of finite type (Morphisms, Lemma [15.2). Hence there
always exist closed immersions U — A}, and the following definition makes sense.

Definition 59.2. Let f : X — S be a morphism of schemes which is locally of
finite type. Let F be an object of D(Ox). Let F be an Ox-module. Fix m € Z.

(1) We say E is m-pseudo-coherent relative to S if there exists an affine open
covering S = |JV; and for each i an affine open covering f~(V;) = J Ui,
such that the equivalent conditions of Lemma [59.1] are satisfied for each of
the pairs (U;; Uiy

(2) We say E is pseudo-coherent relative to S if E is m-pseudo-coherent relative
to S for all m € Z.

(3) We say F is m-pseudo-coherent relative to S if F viewed as an object of
D(Ox) is m-pseudo-coherent relative to S.

(4) We say F is pseudo-coherent relative to S if F viewed as an object of D(Ox)
is pseudo-coherent relative to S.

(2]

If X is quasi-compact and E is m-pseudo-coherent relative to S for some m, then F
is bounded above. If E is pseudo-coherent relative to .S, then E has quasi-coherent
cohomology sheaves.

Lemmal 59.3. Let f: X — S be a morphism of schemes which is locally of finite
type. If E in D(Ox) is m-pseudo-coherent relative to S, then H'(E) is a quasi-
coherent Ox-module for i > m. If E is pseudo-coherent relative to S, then E is an
object Of DQCoh(OX)'
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Proof. Choose an affine open covering S = |JV; and for each i an affine open
covering f~1(V;) = JU;; such that the equivalent conditions of Lemma are
satisfied for each of the pairs (U;; — V;, E|y,;). Since being quasi-coherent is local
on X, we may assume that there exists an closed immersion 7 : X — A% such that
RiE is m-pseudo-coherent on A%. By Derived Categories of Schemes, Lemma
this means that HY(Ri,FE) is quasi-coherent for ¢ > m. Since i, is an exact
functor, we have i, HY(E) = HY(Ri,E) is quasi-coherent on A%. By Morphisms,
Lemma this implies that H9(E) is quasi-coherent as desired (strictly speaking
it implies there exists some quasi-coherent Ox-module F such that i, F = i, H1(E)
and then Modules, Lemma [13.4] tells us that F = H%(E) hence the result). O

Next, we prove the condition of relative pseudo-coherence localizes well.

Lemma 59.4. Let S be an affine scheme. Let V C S be a standard open. Let
X — V be a finite type morphism of affine schemes. Let U C X be an affine
open. Let E be an object of D(Ox). If the equivalent conditions of Lemma |59.1
are satisfied for the pair (X — V, E), then the equivalent conditions of Lemma|59. 1
are satisfied for the pair (U — S, E|y).

Proof. Write S = Spec(R), V = D(f), X = Spec(A), and U = D(g). Assume the
equivalent conditions of Lemma [59.1] are satisfied for the pair (X — V, E).

Choose Ry[x1,...,xn] — A surjective. Write Ry = R[xzo]/(fzo — 1). Then
Rzg,x1,...,2,] — A is surjective, and R¢[z1,...,2,] is pseudo-coherent as an
R[zo,...,zp]-module. Thus we have

X — A} — AL

and we can apply Derived Categories of Schemes, Lemma to conclude that the
pushforward E’ of E to Ag"H is m-pseudo-coherent.

Choose an element ¢ € R[zg,x1,...,%,] which maps to g € A. Consider the
surjection R[xg,...,Tnt+1] = R[zo,...,Zn,1/g’]. We obtain

X<~—U

LN

AL < D(¢) —— A%
where the lower left arrow is an open immersion and the lower right arrow is a closed

immersion. We conclude as before that the pushforward of E'|p(4 to AT i m-

pseudo-coherent. Since this is also the pushforward of E|y to Ag+2 we conclude
the lemma is true. (]

Lemmal 59.5. Let X — S be a finite type morphism of affine schemes. Let E be
an object of D(Ox). Let m € Z. Let X = JU; be a standard affine open covering.
The following are equivalent
(1) the equivalent conditions of Lemma|59.1| hold for the pairs (U; — S, E
(2) the equivalent conditions of Lemma|59.1| hold for the pair (X — S, E).

Proof. The implication (2) = (1) is Lemma Assume (1). Say S = Spec(R)
and X = Spec(A) and U; = D(f;). Write 1 =, f;g; in A. Consider the surjections

Uf,)’
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which sends y; to f; and z; to g;. Note that R[x;,y:, 2]/ vyizi — 1) is pseudo-
coherent as an R[x;, y;, z;]-module. Thus it suffices to prove that the pushforward
of E to T = Spec(R[zi,yi, 2]/ (O yizi — 1)) is m-pseudo-coherent, see Derived
Categories of Schemes, Lemma For each i it suffices to prove the restriction
of this pushforward to W;, = Spec(R[z;, ¥i, zis 1/¥io]/ O vizi — 1)) is m-pseudo-
coherent. Note that there is a commutative diagram

X<7Ui0
T%Wio

which implies that the pushforward of E to T restricted to W;, is the pushforward
of Ely,, to Wj,. Since R[x;, yi, 2i, 1/yiy] /(3 yizi — 1) is isomorphic to a polynomial
ring over R this proves what we want. (Il

Lemma 59.6. Let f: X — S be a morphism of schemes which is locally of finite
type. Let E be an object of D(Ox). Fix m € Z. The following are equivalent

(1) E is m-pseudo-coherent relative to S,
(2) for every affine opens U C X and V C S with f(U) C V the equivalent
conditions of Lemma are satisfied for the pair (U — V, E|y).

Moreover, if this is true, then for every open subschemes U C X and V C S with
f(U) C 'V the restriction E|y is m-pseudo-coherent relative to V.

Proof. The final statement is clear from the equivalence of (1) and (2). It is also
clear that (2) implies (1). Assume (1) holds. Let S = JV; and f~1(Vi) = UUj;
be affine open coverings as in Definition £9.2] Let U C X and V C S be as in
(2). By Lemma it suffices to find a standard open covering U = |JU of
U such that the equivalent conditions of Lemma [59.1] are satisfied for the pairs
(Ux — V,E|y,). In other words, for every u € U it suffices to find a standard
affine open v € U’ C U such that the equivalent conditions of Lemma are
satisfied for the pair (U’ — V, E|ys). Pick i such that f(u) € V; and then pick
j such that v € U;;. By Schemes, Lemma we can find v € V! C VNV,
which is standard affine open in V’ and V;. Then f~'V' N U, resp. f~'V' NU;;
are standard affine opens of U, resp. U;;. Applying the lemma again we can find
we U C f~'V'NnU NU;; which is standard affine open in both f~'V/'NU and
~v'n Uij. Thus U’ is also a standard affine open of U and U;;. By Lemma
the assumption that the equivalent conditions of Lemma [59.1] are satisfied for the
pair (U;; — Vi, E|y,;) implies that the equivalent conditions of Lemma are
satisfied for the pair (U — V, E|y/). O

For objects of the derived category whose cohomology sheaves are quasi-coherent,
we can relate relative m-pseudo-coherence to the notion defined in More on Alge-
bra, Definition We will use the fact that for an affine scheme U = Spec(A)
the functor RI'(U, —) induces an equivalence between D gcon(Oy) and D(A), see
Derived Categories of Schemes, Lemma This functor is compatible with pull-
backs: if E is an object of Dgcon(Oy) and A — B is a ring map correspond-
ing to a morphism of affine schemes g : V' = Spec(B) — Spec(A) = U, then
RT(V,Lg*E) = RT(U, E) ®% B. See Derived Categories of Schemes, Lemma


https://stacks.math.columbia.edu/tag/09UJ

09VF

09VG

MORE ON MORPHISMS 174

Lemma 59.7. Let f: X — S be a morphism of schemes which is locally of finite
type. Let E be an object of Dgcon(Ox). Fizx m € Z. The following are equivalent

(1) E is m-pseudo-coherent relative to S,

(2) there exists an affine open covering S = \JV; and for each i an affine
open covering f~1(V;) = JUi; such that the complex of Ox (U;;)-modules
RT(U;j, E) is m-pseudo-coherent relative to Og(V;), and

(3) for every affine opens U C X and V C S with f(U) C V the complex of
Ox (U)-modules RT'(U, E) is m-pseudo-coherent relative to Og(V).

Proof. Let U and V be as in (2) and choose a closed immersion i : U — AJ,.
A formal argument, using Lemma shows it suffices to prove that Ri,(F|y) is
m-pseudo-coherent if and only if RT'(U, E) is m-pseudo-coherent relative to Og(V).
Say U = Spec(A), V = Spec(R), and A}, = Spec(R][z1,...,z,]. By the remarks
preceding the lemma, E|y is quasi-isomorphic to the complex of quasi-coherent
sheaves on U associated to the object RI'(U, E) of D(A). Note that RI'(U, E) =
RT(AY, Ri.(E|y)) as i is a closed immersion (and hence i, is exact). Thus Ri, FE is
associated to RT(U, E) viewed as an object of D(R|[x1, ..., 2,]). We conclude as m-
pseudo-coherence of Ri.(F|y) is equivalent to m-pseudo-coherence of RT'(U, E) in
D(R[z1,...,x,)]) by Derived Categories of Schemes, Lemmal[10.2) which is equivalent
to RI'(U, E) is m-pseudo-coherent relative to R = Og(V') by definition. O

Lemma 59.8. Leti: X — Y morphism of schemes locally of finite type over a
base scheme S. Assume that i induces a homeomorphism of X with a closed subset
of Y. Let E be an object of D(Ox). Then E is m-pseudo-coherent relative to S if
and only if Ri,E is m-pseudo-coherent relative to S.

Proof. By Morphisms, Lemma [45.4] the morphism ¢ is affine. Thus we may assume
S, Y, and X are affine. Say S = Spec(R), Y = Spec(A4), and X = Spec(B). The
condition means that A/rad(A) — B/rad(B) is surjective; here rad(A) and rad(B)
denote the Jacobson radical of A and B. As B is of finite type over A, we can
find by,...,b,, € rad(B) which generate B as an A-algebra. Say b;v =0 for all j.
Consider the diagram of rings

B <—— Rz, y;]/(y}) =— Rlwi,y5]

1

which translates into a diagram

X—sT ——=Alm

e

Y —— A%

of affine schemes. By Lemma [59.6| we see that E is m-pseudo-coherent relative to S
if and only if its pushforward to Ag*m is m-pseudo-coherent. By Derived Categories
of Schemes, Lemma [12.5| we see that this is true if and only if its pushforward to
T is m-pseudo-coherent. The same lemma shows that this holds if and only if the
pushforward to A% is m-pseudo-coherent. Again by Lemma [59.6] this holds if and
only if Ri,FE is m-pseudo-coherent relative to S. (]
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Lemma 59.9. Let m: X — Y be a finite morphism of schemes locally of finite
type over a base scheme S. Let E be an object of Dgcon(Ox). Then E is m-
pseudo-coherent relative to S if and only if RmE is m-pseudo-coherent relative to
S.

Proof. Translation of the result of More on Algebra, Lemma into the lan-
guage of schemes. Observe that Rm, indeed maps Dgcon(Ox) into Dgeoon(Oy)
by Derived Categories of Schemes, Lemma To do the translation use Lemma
09.6! O

Lemma 59.10. Let f: X — S be a morphism of schemes which is locally of finite
type. Let (E,E', E") be a distinguished triangle of D(Ox). Let m € Z.
(1) If E is (m + 1)-pseudo-coherent relative to S and E' is m-pseudo-coherent
relative to S then E" is m-pseudo-coherent relative to S.
(2) If E, E" are m-pseudo-coherent relative to S, then E' is m-pseudo-coherent
relative to S.
(3) If E' is (m—+1)-pseudo-coherent relative to S and E" is m-pseudo-coherent
relative to S, then E is (m + 1)-pseudo-coherent relative to S.

Moreover, if two out of three of E,E', E"” are pseudo-coherent relative to S, the so
is the third.

Proof. Immediate from Lemma [59.6| and Cohomology, Lemma [47.4 ]

Lemma 59.11. Let X — S be a morphism of schemes which is locally of finite
type. Let F be an Ox-module. Then

(1) F is m-pseudo-coherent relative to S for all m >0,

(2) F is 0-pseudo-coherent relative to S if and only if F is a finite type Ox -
module,

(3) F is (—1)-pseudo-coherent relative to S if and only if F is quasi-coherent
and finitely presented relative to S.

Proof. Part (1) is immediate from the definition. To see part (3) we may work
locally on X (both properties are local). Thus we may assume X and S are affine.
Choose a closed immersion i : X — A%. Then we see that F is (—1)-pseudo-
coherent relative to S if and only if i, F is (—1)-pseudo-coherent, which is true if
and only if ¢, F is an Oar-module of finite presentation, see Cohomology, Lemma
A module of finite presentation is quasi-coherent, see Modules, Lemma, [11.2)
By Morphisms, Lemma we see that F is quasi-coherent if and only if ¢, F is
quasi-coherent. Having said this part (3) follows. The proof of (2) is similar but
less involved. (]

Lemma) 59.12. Let X — S be a morphism of schemes which is locally of finite
type. Let m € Z. Let E, K be objects of D(Ox). If E® K is m-pseudo-coherent
relative to S so are E and K.

Proof. Follows from Cohomology, Lemma [47.6] and the definitions. g

Lemma) 59.13. Let X — S be a morphism of schemes which is locally of finite
type. Let m € Z. Let F* be a (locally) bounded above complex of Ox-modules such
that F' is (m — i)-pseudo-coherent relative to S for all i. Then F* is m-pseudo-
coherent relative to S.

Proof. Follows from Cohomology, Lemma [47.7] and the definitions. [
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Lemma 59.14. Let X — S be a morphism of schemes which is locally of finite
type. Let m € Z. Let E be an object of D(Ox). If E is (locally) bounded above and
HY(E) is (m—i)-pseudo-coherent relative to S for alli, then E is m-pseudo-coherent
relative to S.

Proof. Follows from Cohomology, Lemma [47.8| and the definitions. O

Lemmal 59.15. Let X — S be a morphism of schemes which is locally of finite
type. Let m € Z. Let E be an object of D(Ox) which is m-pseudo-coherent relative
to S. Let 8" — S be a morphism of schemes. Set X' = X xg S’ and denote E’ the
derived pullback of E to X'. If 8’ and X are Tor independent over S, then E' is
m-pseudo-coherent relative to S'.

Proof. The problem is local on X and X’ hence we may assume X, S, S’, and
X' are affine. Choose a closed immersion ¢ : X — A% and denote i’ : X' — A%,
the base change to S’. Denote g : X’ — X and ¢’ : A% — A% the projections,
so B/ = Lg*E. Since X and S’ are tor-independent over S, the base change map
(Cohomology, Remark [28.3)) induces an isomorphism
Ril (Lg*E) = L(¢')*Ri.E
Namely, for a point ' € X’ lying over x € X the base change map on stalks at z’
is the map
E, ®éAgﬁ,m OAg,,x/ — B, ®éx,z OX/J/

coming from the closed immersions 7 and 7’. Note that the source is quasi-isomorphic
to a localization of E, (X%S . Og/,¢» which is isomorphic to the target as Ox/ 5 is
isomorphic to (the same) localization of Ox , ®%95_5 Og/ s by assumption. We
conclude the lemma holds by an application of Cohomology, Lemma O

Lemma 59.16. Let f : X — Y be a morphism of schemes locally of finite type
over a base S. Let m € Z. Let E be an object of D(Oy). Assume

(1) Ox is pseudo-coherent relative to Y[, and
(2) E is m-pseudo-coherent relative to S.

Then Lf*E is m-pseudo-coherent relative to S.
Proof. The problem is local on X. Thus we may assume X, Y, and S are affine.

Arguing as in the proof of More on Algebra, Lemma [81.13] we can find a commu-
tative diagram

X —=Af —= A

! l / /

Y —— A%
Observe that

Ri.Lf*E = Ri,Li*"Lp*E = Lp*E ®,, Ri.Ox
Y

by Cohomology, Lemma [54.4] By assumption and the fact that Y is affine, we
can represent Ri,Ox = i,Ox by a complexes of finite free O A7 -modules F*, with

F1 = 0 for ¢ > 0 (details omitted; use Derived Categories of Schemes, Lemma
and More on Algebra, Lemma [81.7)). By assumption E is bounded above, say

12This means f is pseudo-coherent, see Definition m
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HY(E) =0 for ¢ > a. Represent E by a complex £° of Oy-modules with £7 = 0 for
g > a. Then the derived tensor product above is represented by Tot(p*€*®0,, F*).
Y

Since j is a closed immersion, the functor j, is exact and Rj, is computed by
applying j,. to any representating complex of sheaves. Thus we have to show that
J«Tot(p*E® ®ov . F*) is m-pseudo-coherent as a complex of O Ag+m—modu1es. Note
Y
that Tot(p*E°® ®eo,,, F*) has a filtration by subcomplexes with successive quotients
Y

the complexes p*€® ®o,, FI—q]. Note that for ¢ < 0 the complexes p*E® @0,
Y Y

F9[—q] have zero cohomology in degrees < m and hence are m-pseudo-coherent.
Hence, applying Lemma and induction, it suffices to show that p*€® ®p,.
Y

F[—q] is pseudo-coherent relative to S for all g. Note that 77 = 0 for ¢ > 0. Since
also F4 is finite free this reduces to proving that p*E® is m-pseudo-coherent relative
to S which follows from Lemma [F9.T5 for instance. O

Lemma 59.17. Let f : X — Y be a morphism of schemes locally of finite type over
a base S. Letm € Z. Let E be an object of D(Ox). Assume Oy is pseudo-coherent
relative to S5} Then the following are equivalent

(1) E is m-pseudo-coherent relative to' Y, and
(2) E is m-pseudo-coherent relative to S.

Proof. The question is local on X, hence we may assume X, Y, and S are affine.
Arguing as in the proof of More on Algebra, Lemma [81.13| we can find a commu-
tative diagram

i J
! l / /
Y —— A%
The assumption that Oy is pseudo-coherent relative to S implies that Oam is
pseudo-coherent relative to A (by flat base change; this can be seen by using
for example Lemma [59.15). This in turn implies that j.Oar is pseudo-coherent
as an Opn+m-module. Then the equivalence of the lemma follows from Derived

Categoriess of Schemes, Lemma [12.5) ]

Lemma 59.18. Let

be a commutative diagram of schemes. Assume i is a closed immersion and P — S
flat and locally of finite presentation. Let E be an object of D(Ox). Then the
following are equivalent

(1) E is m-pseudo-coherent relative to S,

(2) Ri.E is m-pseudo-coherent relative to S, and

(3) Ri.E is m-pseudo-coherent on P.

13This means Y — S is pseudo-coherent, see Definition m
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Proof. The equivalence of (1) and (2) is Lemma [59.9] The equivalence of (2) and
(3) follows from Lemma applied to id : P — P provided we can show that
Op is pseudo-coherent relative to S. This follows from More on Algebra, Lemma
[R2.4 and the definitions. O

60. Pseudo-coherent morphisms

Avoid reading this section at all cost. If you need some of this material, first take
a look at the corresponding algebra sections, see More on Algebra, Sections [64]
and For now the only thing you need to know is that a ring map A — B
is pseudo-coherent if and only if B = Alx1,...,z,]/I] and B as an Afxq,...,z,]-
module has a resolution by finite free A[xy,...,x,]-modules.

Lemma 60.1. Let f : X — S be a morphism of schemes. The following are
equivalent

(1) there exist an affine open covering S = |JV; and for each j an affine
open covering f~1(V;) = JUji such that Og(V;) = Ox (Ui;) is a pseudo-
coherent ring map,

(2) for every pair of affine opens U C X, V C S such that f(U) CV the ring
map Og(V) — Ox(U) is pseudo-coherent, and

(3) f is locally of finite type and Ox is pseudo-coherent relative to S.

Proof. To see the equivalence of (1) and (2) it suffices to check conditions (1)(a),
(b), (c) of Morphisms, Definition for the property of being a pseudo-coherent
ring map. These properties follow (using localization is flat) from More on Algebra,
Lemmas [81.12] [8I.11], and [81.16]

If (1) holds, then f is locally of finite type as a pseudo-coherent ring map is of finite
type by definition. Moreover, (1) implies via Lemma and the definitions that
Ox is pseudo-coherent relative to S. Conversely, if (3) holds, then we see that for
every U and V as in (2) the ring Ox (U) is of finite type over Og(V) and Ox(U)
is as a module pseudo-coherent relative to Og(V), see Lemmas and This
is the definition of a pseudo-coherent ring map, hence (2) and (1) hold. O

Definition 60.2. A morphism of schemes f : X — S is called pseudo-coherent if
the equivalent conditions of Lemma [60.1| are satisfied. In this case we also say that
X is pseudo-coherent over S.

Beware that a base change of a pseudo-coherent morphism is not pseudo-coherent
in general.

Lemma 60.3. A flat base change of a pseudo-coherent morphism is pseudo-
coherent.

Proof. This translates into the following algebra result: Let A — B be a pseudo-
coherent ring map. Let A — A’ be flat. Then A’ — B ®4 A’ is pseudo-coherent.
This follows from the more general More on Algebra, Lemma [81.12 O

Lemmal 60.4. A composition of pseudo-coherent morphisms of schemes is pseudo-
coherent.

Proof. This translates into the following algebra result: If A — B — C are
composable pseudo-coherent ring maps then A — C' is pseudo-coherent. This
follows from either More on Algebra, Lemma [81.13] or More on Algebra, Lemma

[BT.T5 a
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Lemmal 60.5. A pseudo-coherent morphism is locally of finite presentation.
Proof. Immediate from the definitions. O

Lemmal 60.6. A flat morphism which is locally of finite presentation is pseudo-
coherent.

Proof. This follows from the fact that a flat ring map of finite presentation is
pseudo-coherent (and even perfect), see More on Algebra, Lemma O

Lemma 60.7. Let f: X — Y be a morphism of schemes pseudo-coherent over a
base scheme S. Then f is pseudo-coherent.

Proof. This translates into the following algebra result: If R — A — B are
composable ring maps and R — A, R — B pseudo-coherent, then R — B is
pseudo-coherent. This follows from More on Algebra, Lemma [81.15 (]

Lemma 60.8. Let f : X — S be a finite morphism of schemes. Then f is
pseudo-coherent if and only if f.Ox is pseudo-coherent as an Og-module.

Proof. Translated into algebra this lemma says the following: If R — A is a finite
ring map, then R — A is pseudo-coherent as a ring map (which means by definition
that A as an A-module is pseudo-coherent relative to R) if and only if A is pseudo-
coherent as an R-module. This follows from the more general More on Algebra,
Lemma [RT.5 O

Lemma 60.9. Let f: X — S be a morphism of schemes. If S is locally Noether-
ian, then f is pseudo-coherent if and only if f is locally of finite type.

Proof. This translates into the following algebra result: If R — A is a finite
type ring map with R Noetherian, then R — A is pseudo-coherent if and only if
R — A is of finite type. To see this, note that a pseudo-coherent ring map is of
finite type by definition. Conversely, if R — A is of finite type, then we can write
A = Rlz1,...,2,]/I and it follows from More on Algebra, Lemma that A is
pseudo-coherent as an R[xy,...,2,|-module, i.e., R — A is a pseudo-coherent ring
map. ([l

Lemma 60.10. The property P(f) =“f is pseudo-coherent” is fpqc local on the
base.

Proof. We will use the criterion of Descent, Lemma to prove this. By Def-
inition [60.2] being pseudo-coherent is Zariski local on the base. By Lemma [60.3|
being pseudo-coherent is preserved under flat base change. The final hypothesis
(3) of Descent, Lemma translates into the following algebra statement: Let
A — B be a faithfully flat ring map. Let C' = A[zy,...,x,]/I be an A-algebra. If

C ®4 B is pseudo-coherent as an B[z1, ..., z,]-module, then C is pseudo-coherent
as a A[zy,...,x,]-module. This is More on Algebra, Lemma |64.15 O

Lemmal 60.11. Let A — B be a flat ring map of finite presentation. Let I C B
be an ideal. Then A — B/I is pseudo-coherent if and only if I is pseudo-coherent
as a B-module.

Proof. Choose a presentation B = Alzy,...,x,]/J. Note that B is pseudo-
coherent as an Afzy,...,z,]-module because A — B is a pseudo-coherent ring
map by Lemma Note that A — B/I is pseudo-coherent if and only if B/I is
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pseudo-coherent as an A[zy, ..., z,]-module. By More on Algebra, Lemma|64.11| we
see this is equivalent to the condition that B/I is pseudo-coherent as an B-module.
This proves the lemma as the short exact sequence 0 — I — B — B/I — 0

shows that I is pseudo-coherent if and only if B/I is (see More on Algebra, Lemma
64.6)). O

The following lemma will be obsoleted by the stronger Lemma [60.13]

Lemma 60.12. The property P(f) =“f is pseudo-coherent” is syntomic local on
the source.

Proof. We will use the criterion of Descent, Lemma to prove this. It follows
from Lemmas and that being pseudo-coherent is preserved under pre-
composing with flat morphisms locally of finite presentation, in particular under
precomposing with syntomic morphisms (see Morphisms, Lemmas and .
It is clear from Definition [60.2] that being pseudo-coherent is Zariski local on the
source and target. Hence, according to the aforementioned Descent, Lemma [26.4
it suffices to prove the following: Suppose X’ — X — Y are morphisms of affine
schemes with X’ — X syntomic and X’ — Y pseudo-coherent. Then X — Y is
pseudo-coherent. To see this, note that in any case X — Y is of finite presenta-
tion by Descent, Lemma Choose a closed immersion X — A}. By Algebra,
Lemma we can find an affine open covering X' =J,_, , X/ and syntomic
morphisms W; — A} lifting the morphisms X — X, i.e., such that there are fibre
product diagrams

X — =W,

|

X —— A}
After replacing X’ by [[ X/ and setting W = [[W; we obtain a fibre product
diagram

X —W

L

X —— A}
with W — AY flat and of finite presentation and X’ — Y still pseudo-coherent.
Since W — A% is open (see Morphisms, Lemma and X’ — X is surjective
we can find f € T'(A}, O) such that X C D(f) C Im(h). Write Y = Spec(R), X =
Spec(A), X’ = Spec(A’) and W = Spec(B), A = R[z1,...,z,]/I and A’ = B/IB.
Then R — A’ is pseudo-coherent. Picture

A’ =B/IB

|

A=R[z1,...,2,)/] =<— Rlz1,..., 2]

By Lemma we see that IB is pseudo-coherent as a B-module. The ring
map R[z1,...,x,); — By is faithfully flat by our choice of f above. This implies
that Iy C R[z1,...,2,]s is pseudo-coherent, see More on Algebra, Lemma
Applying Lemma [60.11] one more time we see that R — A is pseudo-coherent. [

B
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Lemma 60.13. The property P(f) =“f is pseudo-coherent” is fppf local on the
source.

Proof. Let f: X — S be a morphism of schemes. Let {g; : X; — X} be an fppf
covering such that each composition fog; is pseudo-coherent. According to Lemma
482 there exist

(1) a Zariski open covering X = |JUj,

(2) surjective finite locally free morphisms W; — Uj,

(3) Zariski open coverings W; = |, Wik,

(4) surjective finite locally free morphisms T, — W
such that the fppf covering {h;; : Tjr — X} refines the given covering {X; — X}.
Denote 9; ¢ : Tjx — Xa(;,k) the morphisms that witness the fact that {7} — X}
refines the given covering {X; — X}. Note that T}, — X is a flat, locally finitely
presented morphism, so both X; and T} are pseudo-coherent over X by Lemma
@ Hence ¢; ;. : Tj , — X; is pseudo-coherent, see Lemma @ Hence T}, — S
is pseudo coherent as the composition of v, and foga(j i), see Lemmam Thus
we see we have reduced the lemma to the case of a Zariski open covering (which
is OK) and the case of a covering given by a single surjective finite locally free
morphism which we deal with in the following paragraph.

Assume that X’ — X — S is a sequence of morphisms of schemes with X’ — X
surjective finite locally free and X’ — Y pseudo-coherent. Our goal is to show
that X — S is pseudo-coherent. Note that by Descent, Lemma [14.3] the morphism
X — S is locally of finite presentation. It is clear that the problem reduces to the
case that X', X and S are affine and X’ — X is free of some rank r > 0. The
corresponding algebra problem is the following: Suppose R — A — A’ are ring
maps such that R — A’ is pseudo-coherent, R — A is of finite presentation, and
A’ =2 A®" as an A-module. Goal: Show R — A is pseudo-coherent. The assumption
that R — A’ is pseudo-coherent means that A’ as an A’-module is pseudo-coherent
relative to R. By More on Algebra, Lemma[81.5|this implies that A’ as an A-module
is pseudo-coherent relative to R. Since A’ = A®" as an A-module we see that A as
an A-module is pseudo-coherent relative to R, see More on Algebra, Lemma [31.8
This by definition means that R — A is pseudo-coherent and we win. O

61. Perfect morphisms

In order to understand the material in this section you have to understand the
material of the section on pseudo-coherent morphisms just a little bit. For now the
only thing you need to know is that a ring map A — B is perfect if and only if it
is pseudo-coherent and B has finite tor dimension as an A-module.

Lemmal 61.1. Let f: X — S be a morphism of schemes which is locally of finite
type. The following are equivalent
(1) there exist an affine open covering S =\JV; and for each j an affine open
covering f~Y(V;) = UUj; such that Og(V;) — Ox(Ui;) is a perfect ring
map, and
(2) for every pair of affine opens U C X, V C S such that f(U) CV the ring
map Ogs(V) — Ox (U) is perfect.

Proof. Assume (1) and let U,V be as in (2). It follows from Lemma that
Os(V) = Ox(U) is pseudo-coherent. Hence it suffices to prove that the property
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of a ring map being "of finite tor dimension" satisfies conditions (1)(a), (b), (c)
of Morphisms, Definition These properties follow from More on Algebra,
Lemmas [66.11], [66.14] and [66.16] Some details omitted. (]

0687 Definition 61.2. A morphism of schemes f : X — S is called perfect if the
equivalent conditions of Lemma [61.1] are satisfied. In this case we also say that X
is perfect over S.

Note that a perfect morphism is in particular pseudo-coherent, hence locally of
finite presentation. Beware that a base change of a perfect morphism is not perfect
in general.

0688 Lemma 61.3. A flat base change of a perfect morphism is perfect.

Proof. This translates into the following algebra result: Let A — B be a perfect
ring map. Let A — A’ be flat. Then A’ — B ®4 A’ is perfect. This result for
pseudo-coherent ring maps we have seen in Lemma [60.3] The corresponding fact
for finite tor dimension follows from More on Algebra, Lemma t

0689 Lemma 61.4. A composition of perfect morphisms of schemes is perfect.

Proof. This translates into the following algebra result: If A — B — C are
composable perfect ring maps then A — C' is perfect. We have seen this is the
case for pseudo-coherent in Lemma and its proof. By assumption there exist
integers n, m such that B has tor dimension < n over A and C has tor dimension
< m over B. Then for any A-module M we have

Mok c=mek B) ek

and the spectral sequence of More on Algebra, Example shows that T01r;;x (M,C) =
0 for p > n + m as desired. O

068A Lemma 61.5. Let f : X — S be a morphism of schemes. The following are
equivalent
(1) f is flat and perfect, and
(2) f is flat and locally of finite presentation.

Proof. The implication (2) = (1) is More on Algebra, Lemma The con-
verse follows from the fact that a pseudo-coherent morphism is locally of finite
presentation, see Lemma [60.5] O

068B Lemma 61.6. Let f: X — S be a morphism of schemes. Assume S is reqular
and f is locally of finite type. Then f is perfect.

Proof. See More on Algebra, Lemma [32.5 O

068C |Lemma 61.7. A regular immersion of schemes is perfect. A Koszul-reqular im-
mersion of schemes is perfect.

Proof. Since a regular immersion is a Koszul-regular immersion, see Divisors,
Lemma [21.2] it suffices to prove the second statement. This translates into the
following algebraic statement: Suppose that I C A is an ideal generated by a
Koszul-regular sequence fi,...,f, of A. Then A — A/I is a perfect ring map.
Since A — A/I is surjective this is a presentation of A/I by a polynomial algebra
over A. Hence it suffices to see that A/I is pseudo-coherent as an A-module and
has finite tor dimension. By definition of a Koszul sequence the Koszul complex
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K(A, fi,..., fr) is a finite free resolution of A/I. Hence A/I is a perfect complex
of A-modules and we win. O

\ f /
S
be a commutative diagram of morphisms of schemes. Assume Y — S smooth and
X — S perfect. Then f: X — Y is perfect.

Lemma 61.8. Let

X Y

Proof. We can factor f as the composition
X —XxgY —Y

where the first morphism is the map ¢ = (1, f) and the second morphism is the
projection. Since Y — S is flat, see Morphisms, Lemma [34.9] we see that X xgY —
Y is perfect by Lemma [61.3] As Y — S is smooth, also X xgY — X is smooth,
see Morphisms, Lemma Hence ¢ is a section of a smooth morphism, therefore
1 is a regular immersion, see Divisors, Lemma This implies that 7 is perfect,
see Lemma We conclude that f is perfect because the composition of perfect
morphisms is perfect, see Lemma [61.4] O

Remark| 61.9. It is not true that a morphism between schemes X, Y perfect over
a base S is perfect. An example is S = Spec(k), X = Spec(k), Y = Spec(k[z]/(x?)
and X — Y the unique S-morphism.

Lemma 61.10. The property P(f) =“f is perfect” is fpgc local on the base.

Proof. We will use the criterion of Descent, Lemma to prove this. By Defini-
tion being perfect is Zariski local on the base. By Lemma being perfect
is preserved under flat base change. The final hypothesis (3) of Descent, Lemma
translates into the following algebra statement: Let A — B be a faithfully flat
ring map. Let C' = Alxy,...,x,]/I be an A-algebra. If C' ® 4 B is perfect as an

Blz1,...,x,]-module, then C' is perfect as a A[xy,...,z,]-module. This is More
on Algebra, Lemma [74.13 O

Lemma 61.11. Let f: X — S be a pseudo-coherent morphism of schemes. The
following are equivalent

(1) f is perfect,

(2) Ox locally has finite tor dimension as a sheaf of f~1Og-modules, and

(3) for allx € X the ring Ox , has finite tor dimension as an Og, ¢(y)-module.

Proof. The problem is local on X and S. Hence we may assume that X = Spec(B),
S = Spec(A) and f corresponds to a pseudo-coherent ring map A — B.

If (1) holds, then B has finite tor dimension d as A-module. Then B, has tor
dimension d as an A,-module for all primes q C B with p = AN q, see More on
Algebra, Lemma [66.150 Then Ox has tor dimension d as a sheaf of f~'0g-modules
by Cohomology, Lemma Thus (1) implies (2).

By Cohomology, Lemma [48.5] (2) implies (3).

Assume (3). We cannot use More on Algebra, Lemma [66.15| to conclude as we are
not given that the tor dimension of B, over A, is bounded independent of q. Choose
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a presentation A[zy,...,z,] — B. Then B is pseudo-coherent as a Alzy,...,z,]-
module. Let q C A[z1,...,2,] be a prime ideal lying over p C A. Then either By is
zero or by assumption it has finite tor dimension as an Ay,-module. Since the fibres
of A — Alxy,...,x,] have finite global dimension, we can apply More on Algebra,
Lemma to Ay — Alx1,...,x,]q to see that By is a perfect Alxy,...,2,]q-
module. Hence B is a perfect A[zy,...,x,]-module by More on Algebra, Lemma
Thus A — B is a perfect ring map by definition. O

Lemma 61.12. Let:: Z — X be a perfect closed immersion of schemes. Then
1.0z is a perfect Ox-module, i.e., it is a perfect object of D(Ox).

Proof. This is more or less immediate from the definition. Namely, let U =
Spec(A) be an affine open of X. Then i~1(U) = Spec(A/I) for some ideal I C A
and A/I has a finite resolution by finite projective A-modules by More on Algebra,
Lemma, Hence i.Oz|y can be represented by a finite length complex of finite
locally free Opy-modules. This is what we had to show, see Cohomology, Section

49l O

Lemma 61.13. Let S be a Noetherian scheme. Let f : X — S be a perfect proper
morphism of schemes. Let E € D(Ox) be perfect. Then Rf.E is a perfect object
of D(Og).

Proof. We claim that Derived Categories of Schemes, Lemma applies. Con-
ditions (1) and (2) are immediate. Condition (3) is local on X. Thus we may
assume X and S affine and F represented by a strictly perfect complex of Ox-
modules. Thus it suffices to show that Ox has finite tor dimension as a sheaf of
f~'Og-modules. This is equivalent to being perfect by Lemma O

Lemma 61.14. The property P(f) =“f is perfect” is fppf local on the source.

Proof. Let {g; : X; — X}icsr be an fppf covering of schemes and let f: X — §
be a morphism such that each f o g; is perfect. By Lemma we conclude that
f is pseudo-coherent. Hence by Lemma it suffices to check that Ox , is an
Os, f(z)-module of finite tor dimension for all x € X. Pick i € I and z; € X;
mapping to z. Then we see that Ox, ., has finite tor dimension over Og f(,) and
that Ox , — Ox;, o, is faithfully flat. The desired conclusion follows from More on
Algebra, Lemma O

Lemma 61.15. Leti: Z —Y andj:Y — X be immersions of schemes. Assume

(1) X is locally Noetherian,
(2) joi is a regular immersion, and
(3) 1 is perfect.

Then i and j are regular immersions.

Proof. Since X (and hence Y') is locally Noetherian all 4 types of regular immer-
sions agree, and moreover we may check whether a morphism is a regular immersion
on the level of local rings, see Divisors, Lemma [20.8] Thus the result follows from
Divided Power Algebra, Lemma O
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62. Local complete intersection morphisms

In Divisors, Section we have defined 4 different types of regular immersions:
regular, Koszul-regular, H;-regular, and quasi-regular. In this section we consider
morphisms f : X — S which locally on X factor as

S
where i is a x-regular immersion for x € {0}, Koszul, Hy, quasi}. However, we don’t
know how to prove that this condition is independent of the factorization if * = (),
i.e., when we require ¢ to be a regular immersion. On the other hand, we want a
local complete intersection morphism to be perfect, which is only going to be true if
* = Koszul or * = (). Hence we will define a local complete intersection morphism
or Koszul morphism to be a morphism of schemes f : X — S that locally on X has

a factorization as above with i a Koszul-regular immersion. To see that this works
we first prove this is independent of the chosen factorizations.

Lemmal 62.1. Let S be a scheme. Let U, P, P’ be schemes over S. Let u € U.
Leti:U — P, i : U — P’ be immersions over S. Assume P and P’ smooth over
S. Then the following are equivalent

(1) @ 4s a Koszul-regular immersion in a neighbourhood of x, and
(2) ' is a Koszul-regular immersion in a neighbourhood of x.

Proof. Assume i is a Koszul-regular immersion in a neighbourhood of z. Consider
the morphism j = (i,¢/) : U — P xg P’ = P”. Since P” = P xg P/ — P is
smooth, it follows from Divisors, Lemma that j is a Koszul-regular immer-
sion, whereupon it follows from Divisors, Lemma that ¢/ is a Koszul-regular
immersion. (]

Before we state the definition, let us make the following simple remark. Let f :
X — S be a morphism of schemes which is locally of finite type. Let z € X.
Then there exist an open neighbourhood U C X and a factorization of f|y as the
composition of an immersion i : U — A% followed by the projection A% — S which
is smooth. Picture

X%U*ﬁ Al =P
S

In fact you can do this with any affine open neighbourhood U of x in X, see
Morphisms, Lemma, [39.2

Definition 62.2. Let f: X — S be a morphism of schemes.

(1) Let z € X. We say that f is Koszul at x if f is of finite type at  and
there exists an open neighbourhood and a factorization of f|y as woi where
i: U — P is a Koszul-regular immersion and 7 : P — S is smooth.

(2) We say f is a Koszul morphism, or that f is a local complete intersection
morphism if f is Koszul at every point.
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We have seen above that the choice of the factorization f|y = woi is irrelevant, i.e.,
given a factorization of f|y as an immersion ¢ followed by a smooth morphism ,
whether or not 7 is Koszul regular in a neighbourhood of x is an intrinsic property
of f at x. Let us record this here explicitly as a lemma so that we can refer to it

Lemma 62.3. Let f: X — S be a local complete intersection morphism. Let P
be a scheme smooth over S. Let U C X be an open subscheme and i : U — P an
immersion of schemes over S. Then i is a Koszul-reqular immersion.

Proof. This is the defining property of a local complete intersection morphism.
See discussion above. O

It seems like a good idea to collect here some properties in common with all Koszul
morphisms.

Lemma 62.4. Let f: X — S be a local complete intersection morphism. Then

(1) f is locally of finite presentation,
(2) f is pseudo-coherent, and

(3) f is perfect.

Proof. Since a perfect morphism is pseudo-coherent (because a perfect ring map is
pseudo-coherent) and a pseudo-coherent morphism is locally of finite presentation
(because a pseudo-coherent ring map is of finite presentation) it suffices to prove
the last statement. Being perfect is a local property, hence we may assume that f
factors as m o ¢ where 7 is smooth and ¢ is a Koszul-regular immersion. A Koszul-
regular immersion is perfect, see Lemma A smooth morphism is perfect as it
is flat and locally of finite presentation, see Lemma Finally a composition of
perfect morphisms is perfect, see Lemma O

Lemma 62.5. Let f : X = Spec(B) — S = Spec(A) be a morphism of affine
schemes. Then f is a local complete intersection morphism if and only if A — B is
a local complete intersection homomorphism, see More on Algebra, Definition[33.2.

Proof. Follows immediately from the definitions. O

Beware that a base change of a Koszul morphism is not Koszul in general.

Lemma 62.6. A flat base change of a local complete intersection morphism is a
local complete intersection morphism.

Proof. Omitted. Hint: This is true because a base change of a smooth morphism
is smooth and a flat base change of a Koszul-regular immersion is a Koszul-regular
immersion, see Divisors, Lemma [21.3 (]

Lemmal 62.7. A composition of local complete intersection morphisms is a local
complete intersection morphism.

Proof. Let g: Y — S and f: X — Y be local complete intersection morphisms.
Let z € X and set y = f(z). Choose an open neighbourhood V' C Y of y and
a factorization g|ly = m o i for some Koszul-regular immersion ¢ : V. — P and
smooth morphism 7 : P — S. Next choose an open neighbourhood U of z € X
and a factorization f|y = 7’ o’ for some Koszul-regular immersion i’ : U — P’
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and smooth morphism 7’ : P’ — Y. In fact, we may assume that P’ = AJ,, see
discussion preceding and following Definition [62.2] Picture:

X<~—U——=PFP =A}

]

Y % ; P
S S

Set P” = A%. Then U — P’ — P” is a Koszul-regular immersion as a composition
of Koszul-regular immersions, namely ' and the flat base change of i via P" — P,
see Divisors, Lemma and Divisors, Lemma Also P — P — S is smooth
as a composition of smooth morphisms, see Morphisms, Lemma [34.4l Hence we
conclude that X — S is Koszul at = as desired. O

Lemma 62.8. Let f : X — S be a morphism of schemes. The following are
equivalent

(1) f is flat and a local complete intersection morphism, and
(2) f is syntomic.

Proof. Working affine locally this is More on Algebra, Lemma We also give
a more geometric proof.

Assume (2). By Morphisms, Lemma for every point x of X there exist affine
open neighbourhoods U of z and V of f(x) such that f|y : U — V is standard
syntomic. This means that U = Spec(R[z1,...,z,])/(f1,--., fc)) = V = Spec(R)
where R[x1,...,2,]/(f1,..., fc) is a relative global complete intersection over R.
By Algebra, Lemma the sequence fi,..., f. is a regular sequence in each
local ring R[z1,...,zy]q for every prime q D (fi,...,f.). Consider the Koszul
complex Ko = Ko(R[Z1,...,%xs], f1,.-., fc) with homology groups H; = H,;(K,).
By More on Algebra, Lemmawe see that (H;)q = 0, i > 0 for every q as above.
On the other hand, by More on Algebra, Lemma we see that H; is annihilated
by (f1,..., fc). Hence we see that H; =0, ¢ > 0 and f,..., f. is a Koszul-regular
sequence. This proves that U — V factors as a Koszul-regular immersion U — A,
followed by a smooth morphism as desired.

Assume (1). Then f is a flat and locally of finite presentation (Lemma [62.4).
Hence, according to Morphisms, Lemma it suffices to show that the local rings
Ox, . are local complete intersection rings. Choose, locally on X, a factorization
f = mo i for some Koszul-regular immersion 7 : X — P and smooth morphism
m: P — 5. Note that X — P is a relative quasi-regular immersion over S, see
Divisors, Definition Hence according to Divisors, Lemma we see that
X — P is a regular immersion and the same remains true after any base change.
Thus each fibre is a regular immersion, whence all the local rings of all the fibres
of X are local complete intersections. O

Lemmal 62.9. A regular immersion of schemes is a local complete intersection
morphism. A Koszul-reqular immersion of schemes is a local complete intersection
morphism.
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Proof. Since a regular immersion is a Koszul-regular immersion, see Divisors,
Lemma [21.2] it suffices to prove the second statement. The second statement
follows immediately from the definition. O

Lemma 62.10. Let
X— =Y
\ f /
S
be a commutative diagram of morphisms of schemes. Assume Y — S smooth and

X — S is a local complete intersection morphism. Then f : X — Y is a local
complete intersection morphism.

Proof. Immediate from the definitions. O

Lemma 62.11. Let f: X — Y be a morphism of schemes. If f is locally of finite
type and X and Y are regular, then f is a local complete intersection morphism.

Proof. We may assume there is a factorization X — A} — Y where the first
arrow is an immersion. As Y is regular also AY is regular by Algebra, Lemma
163.10] Hence X — AY is a regular immersion by Divisors, Lemma [21.12 O

The following lemma is of a different nature.

Lemma 62.12. Let

be a commutative diagram of morphisms of schemes. Assume

(1) S is locally Noetherian,

(2) Y — S is locally of finite type,

(3) f: X =Y is perfect,

(4) X — S is a local complete intersection morphism.

Then X — Y is a local complete intersection morphism and Y — S is Koszul at
f(z) forallx € X.

Proof. In the course of this proof all schemes will be locally Noetherian and all
rings will be Noetherian. We will use without further mention that regular se-
quences and Koszul regular sequences agree in this setting, see More on Alge-
bra, Lemma Moreover, whether an ideal (resp. ideal sheaf) is regular may
be checked on local rings (resp. stalks), see Algebra, Lemma m (resp. Divisors,

Lemma [20.8))
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The question is local. Hence we may assume S, X, Y are affine. In this situation
we may choose a commutative diagram

Ag+m <~ X

whose horizontal arrows are closed immersions. Let x € X be a point and consider
the corresponding commutative diagram of local rings

J —— OAg*’”,x — Ox 4

o]

I ——=Oazn re) — Oy 5(0)

where J and I are the kernels of the horizontal arrows. Since X — S is a local
complete intersection morphism, the ideal J is generated by a regular sequence.
Since X — Y is perfect the ring Ox , has finite tor dimension over Oy, (). Hence
we may apply Divided Power Algebra, Lemma to conclude that I and J/I are
generated by regular sequences. By our initial remarks, this finishes the proof. [

X——=Y
\ f /
S
be a commutative diagram of morphisms of schemes. Assume S is locally Noether-
ian, Y — S is locally of finite type, Y is reqular, and X — S is a local complete

intersection morphism. Then f: X — Y is a local complete intersection morphism
andY — S is Koszul at f(x) for allx € X.

Proof. This is a special case of Lemma [62.12] in view of Lemma (and Mor-
phisms, Lemma [15.8|). [

Lemma 62.13. Let

Lemma 62.14. Leti: X — Y be an immersion. If
(1) 4 is perfect,
(2) Y is locally Noetherian, and
(3) the conormal sheaf Cxy is finite locally free,

then i is a reqular immersion.

Proof. Translated into algebra, this is Divided Power Algebra, Proposition [11.3]
t

Lemma 62.15. Let f: X — Y be a local complete intersection homomorphism.
Then the naive cotangent compler NLx,y is a perfect object of D(Ox) of tor-
amplitude in [—1,0].
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Proof. Translated into algebra this is More on Algebra, Lemma To do the
translation use Lemmas [62.5] and [I3.2] as well as Derived Categories of Schemes,

Lemmas and O

Lemma 62.16. Let f : X — Y be a perfect morphism of locally Noetherian
schemes. The following are equivalent

(1) f is a local complete intersection morphism,
(2) NLx/y has tor-amplitude in [-1,0], and
(3) NLx/y is perfect with tor-amplitude in [—1,0].

Proof. Translated into algebra this is Divided Power Algebra, Lemma To do
the translation use Lemmas and [[3:2]as well as Derived Categories of Schemes,

Lemmas and O

Lemma 62.17. Let f: X — Y be a flat morphism of finite presentation. The
following are equivalent

(1) f is a local complete intersection morphism,

(2) f is syntomic,

(3) NLx/y has tor-amplitude in [-1,0], and

(4) NLx/y is perfect with tor-amplitude in [—1,0].

Proof. Translated into algebra this is Divided Power Algebra, Lemma To do
the translation use Lemmas and as well as Derived Categories of Schemes,

Lemmas and a

The following lemma gives a characterization of smooth morphisms as flat mor-
phisms whose diagonal is perfect.

Lemma 62.18. Let f: X — Y be a finite type morphism of locally Noetherian
schemes. Denote A : X — X xy X the diagonal morphism. The following are
equivalent

(1) f is smooth,

(2) f is flat and A : X — X xy X is a regular immersion,

(3) fis flat and A : X — X Xy X is a local complete intersection morphism,

(4) fis flat and A : X — X xy X is perfect.

Proof. Assume (1). Then f is flat by Morphisms, Lemma The projections
X xy X — X are smooth by Morphisms, Lemma |34.5l Hence the diagonal is a
section to a smooth morphism and hence a regular immersion, see Divisors, Lemma
22.8] Hence (1) = (2). The implication (2) = (3) is Lemma [62.9] The implication
(3) = (4) is Lemma[62.4] The interesting implication (4) = (1) follows immediately
from Divided Power Algebra, Lemma [10.2 (]

Lemma 62.19. The property P(f) =“f is a local complete intersection morphism”
is fpqc local on the base.

Proof. Let f : X — S be a morphism of schemes. Let {S; — S} be an fpqc
covering of S. Assume that each base change f; : X; — S; of f is a local complete
intersection morphism. Note that this implies in particular that f is locally of
finite type, see Lemma and Descent, Lemma Let z € X. Choose an
open neighbourhood U of z and an immersion j : U — A% over S (see discussion
preceding Definition . We have to show that j is a Koszul-regular immersion.
Since f; is a local complete intersection morphism, we see that the base change
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Ji + Uxg S — A% is a Koszul-regular immersion, see Lemm Because

{AS, — AY} is a fpqe covering we see from Descent, Lemma [23.32] that j is a
Koszul-regular immersion as desired. (I

Lemma 62.20. The property P(f) =“f is a local complete intersection morphism”
is syntomic local on the source.

Proof. We will use the criterion of Descent, Lemma to prove this. It follows
from Lemmas [62.8) and [62.7] that being a local complete intersection morphism is
preserved under precomposing with syntomic morphisms. It is clear from Definition
[62.2] that being a local complete intersection morphism is Zariski local on the source
and target. Hence, according to the aforementioned Descent, Lemma it suffices
to prove the following: Suppose X’ — X — Y are morphisms of affine schemes
with X/ — X syntomic and X’ — Y a local complete intersection morphism.
Then X — Y is a local complete intersection morphism. To see this, note that
in any case X — Y is of finite presentation by Descent, Lemma Choose
a closed immersion X — A}.. By Algebra, Lemma we can find an affine
open covering X’ = J,_, , X; and syntomic morphisms W; — AY lifting the
morphisms X] — X, i.e., such that there are fibre product diagrams

L

X —— A}

After replacing X’ by [[ X/ and setting W = [[W; we obtain a fibre product
diagram of affine schemes

X ——W

L

X —— A}

with h : W — AL syntomic and X’ — Y still a local complete intersection mor-
phism. Since W — A% is open (see Morphisms, Lemma and X’ — X is
surjective we see that X is contained in the image of W — Af}.. Choose a closed
immersion W — AT{,“" over Ay.. Now the diagram looks like

X — W —— AL

| B

X —— A}

Because h is syntomic and hence a local complete intersection morphism (see above)
the morphism W — A’{/J“m is a Koszul-regular immersion. Because X' — Y is
a local complete intersection morphism the morphism X’ — A’;,er is a Koszul-
regular immersion. We conclude from Divisors, Lemma that X’ — W is a
Koszul-regular immersion. Hence, since being a Koszul-regular immersion is fpqc
local on the target (see Descent, Lemma we conclude that X — Ay is a
Koszul-regular immersion which is what we had to show. O
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Lemma 62.21. Let S be a scheme. Let f : X — Y be a morphism of schemes
over S. Assume both X and Y are flat and locally of finite presentation over S.
Then the set

{z € X | f Koszul at x}.

is open in X and its formation commutes with arbitrary base change 8" — S.

Proof. The set is open by definition (see Definition [62.2). Let S” — S be a
morphism of schemes. Set X' = 5" xg X, Y’ =5 x5 Y, and denote f' : X' — Y’
the base change of f. Let 2/ € X’ be a point such that f’ is Koszul at x’. Denote
seS reX,yeY ,yeY,se S the image of /. Note that f is locally of
finite presentation, see Morphisms, Lemma Hence we may choose an affine
neighbourhood U C X of z and an immersion ¢ : U — AY}.. Denote U’ = S’ xg U
and ¢’ : U’ — AY, the base change of i. The assumption that f’ is Koszul at z’
implies that i’ is a Koszul-regular immersion in a neighbourhood of z’, see Lemma
62.3] The scheme X' is flat and locally of finite presentation over S’ as a base change
of X (see Morphisms, Lemmas and . Hence i’ is a relative Hi-regular
immersion over S’ in a neighbourhood of 2’ (see Divisors, Definition [22.2)). Thus the
base change i/, : U., — AY, is a Hp-regular immersion in an open neighbourhood

of x/, see Divisors, Lemma and the discussion following Divisors, Definition
22.2| Since s’ = Spec(k (s’)) — Spec(k (s)) = s is a surjective flat universally
open morphism (See Morphisms, Lemma [23.4) we conclude that the base change

: Us — Ay is an Hj-regular immersion in a neighbourhood of x, see Descent,
Lemma m Finally, note that A7y is flat and locally of finite presentation over
S, hence Divisors, Lemma implies that ¢ is a (Koszul-)regular immersion in a
neighbourhood of = as desired. [l

Lemma 62.22. Let f: X — Y be a local complete intersection morphism of
schemes. Then f is unramified if and only if f is formally unramified and in this
case the conormal sheaf Cxy is finite locally free on X.

Proof. The first assertion follows immediately from Lemma and the fact that
a local complete intersection morphism is locally of finite type. To compute the
conormal sheaf of f we choose, locally on X, a factorization of f as f = poi where
i: X — V is a Koszul-regular immersion and V' — Y is smooth. By Lemma
we see that Cx/y is a locally direct summand of Cx /- which is finite locally free as i
is a Koszul-regular (hence quasi-regular) immersion, see Divisors, Lemma ([

Lemma 62.23. Let Z — Y — X be formally unramified morphisms of schemes.
Assume that Z — 'Y is a local complete intersection morphism. The exact sequence

0— i*Cy/X — CZ/X — Cz/y — 0
of Lemma is short exact.

Proof. The question is local on Z hence we may assume there exists a factorization
Z — Ay, =Y of the morphism Z — Y. Then we get a commutative diagram

Z—>A” — A%

|

X
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As Z — Y is a local complete intersection morphism, we see that Z — A} is a
Koszul-regular immersion. Hence by Divisors, Lemma the sequence
A
0— (Z ) CA;/A} — Cz/A} — Cz/A;z, —0
is exact and locally split. Note that *Cy/x = (¢')*Can jan by Lemmaand note
that the diagram

(i')*Cap/ay, —=Cz/ay

T

i*Cy)x ———Cgz/x

is commutative. Hence the lower horizontal arrow is a locally split injection. This
proves the lemma. O

63. Exact sequences of differentials and conormal sheaves

In this section we collect some results on exact sequences of conormal sheaves and
sheaves of differentials. In some sense these are all realizations of the triangle of
cotangent complexes associated to a pair of composable morphisms of schemes.

Let g: Z — Y and f: Y — X be morphisms of schemes.
(1) There is a canonical exact sequence

9 Qyx = Qz/x = Qz/v =0,

see Morphisms, Lemma[32.9] If g : Z — Y is smooth or more generally for-
mally smooth, then this sequence is a short exact sequence, see Morphisms,
Lemma [34.16] or see Lemma [ITT.11]

(2) If g is an immersion or more generally formally unramified, then there is a
canonical exact sequence

Czyy = 9" Qy/x = Qz/x — 0,
see Morphisms, Lemma [32.15] or see Lemma If fog:Z — X is
smooth or more generally formally smooth, then this sequence is a short
exact sequence, see Morphisms, Lemma [34.17] or see Lemma [TT.12}

(3) If g and f o g are immersions or more generally formally unramified, then
there is a canonical exact sequence

Cz/x = Czyy = g Qyyx — 0,

see Morphisms, Lemma, or see Lemma, If f:Y — X is smooth
or more generally formally smooth, then this sequence is a short exact
sequence, see Morphisms, Lemma or see Lemma [11.13

(4) If g and f are immersions or more generally formally unramified, then there
is a canonical exact sequence

9°Cy;x = Cz/x — Cz)y — 0.

see Morphisms, Lemma [31.5| or see Lemma Ifg: Z—Y is aregular
immersioﬂ or more generally a local complete intersection morphism, then
this sequence is a short exact sequence, see Divisors, Lemma [21.6| or see
Lemma

114 suffices for g to be a Hj-regular immersion. Observe that an immersion which is a local
complete intersection morphism is Koszul regular.
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64. Weakly étale morphisms

A ring homomorphism A — B is weakly étale if both A — B and B®4 B — B are
flat, see More on Algebra, Definition [I04.1] The analogous notion for morphisms
of schemes is the following.

Definition 64.1. A morphism of schemes X — Y is weakly étale or absolutely flat
if both X — Y and the diagonal morphism X — X xy X are flat.

An étale morphism is weakly étale and conversely it turns out that a weakly étale
morphism is indeed somewhat like an étale morphism. For example, if X — Y is
weakly étale, then Ly, y = 0, as follows from Cotangent, Lemma We will prove
a very precise result relating weakly étale morphisms to étale morphisms later (see
Pro-étale Cohomology, Section @ In this section we stick with the basics.

Lemma 64.2. Let f : X — Y be a morphism of schemes. The following are
equivalent

(1) X =Y is weakly étale, and
(2) for every x € X the ring map Oy, ) — Ox . 15 weakly étale.

Proof. Observe that under both assumptions (1) and (2) the morphism f is flat.
Thus we may assume f is flat. Let z € X with image y = f(z) in Y. There are
canonical maps of rings

OX,z ®Oy,y OX,:I: ? OXXyX,AX/y(m) > OX,CE

where the first map is a localization (hence flat) and the second map is a surjection
(hence an epimorphism of rings). Condition (1) means that for all z the second
arrow is flat. Condition (2) is that for all « the composition is flat. These conditions
are equivalent by Algebra, Lemma and More on Algebra, Lemma, O

Lemma 64.3. Let X — Y be a morphism of schemes such that X — X Xy X is
flat. Let F be an Ox-module. If F is flat over Y, then F is flat over X.

Proof. Let x € X with image y = f(z) in Y. Since X — X xy X is flat, we
see that Ox ; ®o,. , Ox .+ — Ox, is flat. Hence the result follows from More on
Algebra, Lemma [104.2] and the definitions. (]

Lemma 64.4. Let f : X — S be a morphism of schemes. The following are
equivalent

(1) The morphism f is weakly étale.

(2) For every affine opens U C X, V. C S with f(U) C V the ring map
Os(V) = Ox(U) is weakly étale.

(3) There exists an open covering S = J;c; V; and open coverings V) =
Uielj U; such that each of the morphisms U; — V;, j € J,i € I; is weakly
étale.

(4) There exists an affine open covering S = UjeJ V; and affine open coverings
i) = Uielj U; such that the ring map Og(V;) — Ox (U;) is of weakly
étale, for all j € J,i € I;.

Moreover, if f is weakly étale then for any open subschemes U C X, V C S with
f(U) CV the restriction fly : U =V is weakly-étale.
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Proof. Suppose given open subschemes U C X, V C S with f(U) C V. Then
Uxy U C X xy X is open (Schemes, Lemma and the diagonal Ay/y of
flu : U — V is the restriction Ax/y|y : U — U xy U. Since flatness is a local
property of morphisms of schemes (Morphisms, Lemma the final statement
of the lemma is follows as well as the equivalence of (1) and (3). If X and Y are
affine, then X — Y is weakly étale if and only if Oy (Y) = Ox(X) is weakly étale
(use again Morphisms, Lemma [25.3)). Thus (1) and (3) are also equivalent to (2)
and (4). O

Lemmal 64.5. Let X — Y — Z be morphisms of schemes.
1) IFX—>XxyXandY =Y xzY are flat, then X — X xz X is flat.
(2) If X =Y and Y — Z are weakly étale, then X — Z is weakly étale.
Proof. Part (1) follows from the factorization
X=X Xy X=X Xz X
of the diagonal of X over Z, the fact that
X xy X = (X Xz X) X(YxzY) K

the fact that a base change of a flat morphism is flat, and the fact that the composi-
tion of flat morphisms is flat (Morphisms, Lemmas and [25.6). Part (2) follows
from part (1) and the fact (just used) that the composition of flat morphisms is
flat. O

Lemmal 64.6. Let X — Y and Y’ — Y be morphisms of schemes and let X' =
Y’ xy X be the base change of X.

(1) If X - X xy X is flat, then X' — X' xy+ X' is flat.

(2) If X =Y is weakly étale, then X' — Y' is weakly étale.
Proof. Assume X — X xy X is flat. The morphism X’ — X’ Xy X’ is the base
change of X — X xy X by Y/ — Y. Hence it is flat by Morphisms, Lemmas

This proves (1). Part (2) follows from (1) and the fact (just used) that the base
change of a flat morphism is flat. O

Lemma 64.7. Let X — Y — Z be morphisms of schemes. Assume that X —'Y
s flat and surjective and that X — X Xz X is flat. ThenY =Y xzY is flat.

Proof. Consider the commutative diagram

X—XxzX

L

Y —Y xzY

The top horizontal arrow is flat and the vertical arrows are flat. Hence X is flat
over Y Xz Y. By Morphisms, Lemma [25.13| we see that YV is flat over Y xz Y. O

Lemma 64.8. Let f: X =Y be a weakly étale morphism of schemes. Then f is
formally unramified, i.e., Qx/y = 0.

Proof. Recall that f is formally unramified if and only if Qy,y = 0 by Lemma
[6.:71 Via Lemma [64.4] and Morphisms, Lemma this follows from the case of
rings which is More on Algebra, Lemma [104.12 (]
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Lemma 64.9. Let f: X — Y be a morphism of schemes. Then X —Y is weakly
étale in each of the following cases

(1) X =Y is a flat monomorphism,

(2) X =Y is an open immersion,

(3) X =Y is flat and unramified,

(4) X =Y is étale.

Proof. If (1) holds, then Ax/y is an isomorphism (Schemes, Lemma , hence
certainly f is weakly étale. Case (2) is a special case of (1). The diagonal of an
unramified morphism is an open immersion (Morphisms, Lemma , hence flat.
Thus a flat unramified morphism is weakly étale. An étale morphism is flat and
unramified (Morphisms, Lemma [36.5), hence (4) follows from (3). O

Lemma 64.10. Let f: X =Y be a morphism of schemes. If Y is reduced and f
weakly étale, then X is reduced.

Proof. Via Lemma this follows from the case of rings which is More on Alge-
bra, Lemma [104.8 |

The following lemma uses a nontrivial result about weakly étale ring maps.

Lemma 64.11. Let f : X — Y be a morphism of schemes. The following are
equivalent
(1) f is weakly étale, and
(2) for x € X the local ring map Oy, j) — Ox o induces an isomorphism on
strict henselizations.

Proof. Let x € X be a point with image y = f(z) in Y. Choose a separable
algebraic closure £°? of k(x). Let (’)ﬁgﬁw be the strict henselization corresponding

1

to kP and Of,h , the strict henselization relative to the separable algebraic closure
of k(y) in k*. Consider the commutative diagram

R sh
OXJ/‘ O;(L,x

]

R sh
OY;Z/ OY,y

local homomorphisms of local rings, see Algebra, Lemma Since the strict
henselization is a filtered colimit of étale ring maps, More on Algebra, Lemma
shows the horizontal maps are weakly étale. Moreover, the horizontal maps
are faithfully flat by More on Algebra, Lemma [45.1

Assume f weakly étale. By Lemma [64.2] the left vertical arrow is weakly étale.
By More on Algebra, Lemmas [104.9] and [104.11] the right vertical arrow is weakly
étale. By More on Algebra, Theorem we conclude the right vertical map is
an isomorphism.

Assume (’)i}}fy — (’)ﬁ(h’z is an isomorphism. Then Oy, — O%ﬁz is weakly étale. Since
Oxqz — Oﬁ(h,w is faithfully flat we conclude that Oy, — Ox . is weakly étale by
More on Algebra, Lemma [104.10} Thus (2) implies (1) by Lemmam |

Lemma 64.12. Let f : X — Y be a morphism of schemes. IfY is a normal
scheme and f weakly étale, then X is a normal scheme.
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Proof. By More on Algebra, Lemma a scheme S is normal if and only if for
all s € S the strict henselization of Og is a normal domain. Hence the lemma
follows from Lemma [64.11] O

Lemma 64.13. Let S be a scheme. Let f: X — Y be a morphism of schemes
over S. If X, Y are weakly étale over S, then f is weakly étale.

Proof. We will use Morphisms, Lemmas and without further mention.
Write X — Y as the composition X — X xgY — Y. The second morphism is flat
as the base change of the flat morphism X — S. The first is the base change of
the flat morphism ¥ — Y X g Y by the morphism X xgY — Y Xxg Y, hence flat.
Thus X — Y is flat. The morphism X Xy X — X Xg X is an immersion. Thus
Lemma [64.3] implies, that since X is flat over X x g X it follows that X is flat over
X xy X. |

The following is a scheme theoretic generalization of the observation that a field
extension that is simultaneously separable and purely inseparable must be an iso-
morphism.

Lemma 64.14. Let f : X — Y be a morphism of schemes. If f is weakly étale
and a universal homeomorphism, it is an isomorphism.

Proof. Since f is a universal homeomorphism, the diagonal A : X — X xy X is
a surjective closed immersion by Morphisms, Lemmas and Since A is
also flat, we see that A must be an isomorphism by Morphisms, Lemma In
other words, f is a monomorphism (Schemes, Lemma . Since f is a universal
homeomorphism it is certainly quasi-compact. Hence by Descent, Lemma [25.1| we
find that f is an isomorphism. O

The following is a weakly étale generalization of Etale Morphisms, Lemma m

Lemmal 64.15. Let U — X be a weakly étale morphism of schemes where X is a
scheme in characteristic p. Then the relative Frobenius Fy,x : U — U Xx gy X 15
an isomorphism.

Proof. The morphism Fy/x is a universal homeomorphism by Varieties, Lemma

The morphism Fy;, x is weakly étale as a morphism between schemes weakly

étale over X by Lemmal[64.13] Hence Fy,x is an isomorphism by Lemma[64.14 O

65. Reduced fibre theorem

In this section we discuss the simplest kind of theorem of the kind advertised by the
title. Although the proof of the result is kind of laborious, in essence it follows in
a straightforward manner from Epp’s result on eliminating ramification, see More

on Algebra, Theorem [115.18

Let A be a Dedekind domain with fraction field K. Let X be a scheme flat and
of finite type over A. Let L be a finite extension of K. Let B be the integral
closure of A in L. Then B is a Dedekind domain (Algebra, Lemma [120.18). Let
XB = X Xgpec(a) Spec(B) be the base change. Then Xp — Spec(B) is of finite
type (Morphisms, Lemma . Hence Xp is Noetherian (Morphisms, Lemma
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[15.6). Thus the normalization v : Y — Xp exists (see Morphisms, Definition [54.1]
and the discussion following). Picture

(65.0.1) Y Xp X

v

N

Spec(B) — Spec(A)

We sometimes call Y the normalized base change of X. In general the morphism v
may not be finite. But if A is a Nagata ring (a condition that is virtually always
satisfied in practice) then v is finite and Y is of finite type over B, see Morphisms,

Lemmas and

Taking the normalized base change commutes with composition. More precisely,
if M/L/K are finite extensions of fields with integral closures A C B C C then
the normalized base change Z of Y — Spec(B) relative to M/L is equal to the
normalized base change of X — Spec(A) relative to M/K.

Theorem 65.1. Let A be a Dedekind ring with fraction field K. Let X be a scheme
flat and of finite type over A. Assume A is a Nagata ring. There exists a finite
extension L/ K such that the normalized base change Y is smooth over Spec(B) at
all generic points of all fibres.

Proof. During the proof we will repeatedly use that formation of the set of points
where a (flat, finitely presented) morphism like X — Spec(A) is smooth commutes
with base change, see Morphisms, Lemma [34.15

We first choose a finite extension L/K such that (X} ),.q is geometrically reduced
over L, see Varieties, Lemma Since Y — (X p)yeq is birational we see applying
Varieties, Lemma that Y7, is geometrically reduced over L as well. Hence Y7, —
Spec(L) is smooth on a dense open V' C Y by Varieties, Lemma Thus
the smooth locus U C Y of the morphism Y — Spec(B) is open (by Morphisms,
Definition and is dense in the generic fibre. Replacing A by B and X by Y
we reduce to the case treated in the next paragraph.

Assume X is normal and the smooth locus U C X of X — Spec(A) is dense
in the generic fibre. This implies that U is dense in all but finitely many fibres,
see Lemma Let 1,...,2. € X \ U be the finitely many generic points of
irreducible components of X \ U which are moreover generic points of irreducible
components of fibres of X — Spec(A). Set O; = Ox 5,. Let A; be the localization
of A at the maximal ideal corresponding to the image of x; in Spec(A4). By More on
Algebra, Proposition there exist finite extensions K;/K which are solutions
for the extension of discrete valuation rings 4; — O;. Let L/K be a finite extension
dominating all of the extensions K;/K. Then L/K is still a solution for 4, — O;
by More on Algebra, Lemma

Consider the diagram with the extension L/K we just produced. Note
that Up C Xp is smooth over B, hence normal (for example use Algebra, Lemma
. Thus Y — Xp is an isomorphism over Up. Let y € Y be a generic point of
an irreducible component of a fibre of ¥ — Spec(B) lying over the maximal ideal
m C B. Assume that y € Up. Then y maps to one of the points z;. It follows that
Oy, is a local ring of the integral closure of O; in R(X) @k L (details omitted).
Hence because L/K is a solution for A; — O; we see that By, — Oy, is formally
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smooth in the my-adic topology (this is the definition of being a "solution"). In
other words, mOy, = m, and the residue field extension is separable, see More on
Algebra, Lemma Hence the local ring of the fibre at y is k(y). This implies
the fibre is smooth over x(m) at y for example by Algebra, Lemma This
finishes the proof. O

Lemma 65.2 (Variant over curves). Let f: X — S be a flat, finite type morphism
of schemes. Assume S is Nagata, integral with function field K, and regular of
dimension 1. Then there exists a finite extension L/K such that in the diagram

Y4U>X XgT ——X

N

T——8S

the morphism g is smooth at all generic points of fibres. Here T is the normalization
of S in Spec(L) and v:Y — X xg T is the normalization.

Proof. Choose a finite affine open covering S = |JSpec(A4;). Then K is equal
to the fraction field of A; for all i. Let X; = X Xxg Spec(4;). Choose L;/K as
in Theorem for the morphism X; — Spec(A;). Let B; C L; be the integral
closure of A; and let Y; be the normalized base change of X to B;. Let L/K be a
finite extension dominating each L;. Let T; C T be the inverse image of Spec(4;).
For each ¢ we get a commutative diagram

g NTy) Y; X X g Spec(4;)

L |

T; ——— Spec(B;) —— Spec(4;)

and in fact the left hand square is a normalized base change as discussed at the
beginning of the section. In the proof of Theorem we have seen that the smooth
locus of Y — T contains the inverse image in g~(7T;) of the set of points where Y;
is smooth over B;. This proves the lemma. O

Lemma 65.3 (Variant with separable extension). Let A be a Dedekind ring with
fraction field K. Let X be a scheme flat and of finite type over A. Assume A is a
Nagata ring and that for every generic point n of an irreducible component of X the
field extension k(n)/K is separable. Then there exists a finite separable extension
L/K such that the normalized base change Y is smooth over Spec(B) at all generic
points of all fibres.

Proof. This is proved in exactly the same manner as Theorem with a few
minor modifications. The most important change is to use More on Algebra, Lemma
instead of More on Algebra, Proposition During the proof we will
repeatedly use that formation of the set of points where a (flat, finitely presented)
morphism like X — Spec(A) is smooth commutes with base change, see Morphisms,

Lemma [34.15]

Since X is flat over A every generic point 1 of X maps to the generic point of
Spec(A). After replacing X by its reduction we may assume X is reduced. In
this case Xk is geometrically reduced over K by Varieties, Lemma Hence
Xk — Spec(K) is smooth on a dense open by Varieties, Lemma Thus the
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smooth locus U C X of the morphism X — Spec(A) is open (by Morphisms,
Definition [34.1)) and is dense in the generic fibre. This reduces us to the situation
of the following paragraph.

Assume X is normal and the smooth locus U C X of X — Spec(A) is dense
in the generic fibre. This implies that U is dense in all but finitely many fibres,
see Lemma Let x1,...,2, € X \ U be the finitely many generic points of
irreducible components of X \ U which are moreover generic points of irreducible
components of fibres of X — Spec(A). Set O; = Ox ,. Observe that the fraction
field of O; is the residue field of a generic point of X. Let A; be the localization of
A at the maximal ideal corresponding to the image of x; in Spec(A4). We may apply
More on Algebra, Lemma and we find finite separable extensions K; /K which
are solutions for A; — O;. Let L/K be a finite separable extension dominating all
of the extensions K;/K. Then L/K is still a solution for A; — O; by More on

Algebra, Lemma [116.1

Consider the diagram with the extension L/K we just produced. Note
that Ug C Xp is smooth over B, hence normal (for example use Algebra, Lemma
. Thus Y — Xp is an isomorphism over Ug. Let y € Y be a generic point of
an irreducible component of a fibre of Y — Spec(B) lying over the maximal ideal
m C B. Assume that y ¢ Ug. Then y maps to one of the points x;. It follows that
Oy, is a local ring of the integral closure of O; in R(X) @k L (details omitted).
Hence because L/K is a solution for A; — O; we see that By, — Oy, is formally
smooth (this is the definition of being a "solution"). In other words, mOy, = m,
and the residue field extension is separable. Hence the local ring of the fibre at y
is k(y). This implies the fibre is smooth over x(m) at y for example by Algebra,
Lemma This finishes the proof. O

Lemma 65.4 (Variant with separable extensions over curves). Let f: X — S
be a flat, finite type morphism of schemes. Assume S is Nagata, integral with
function field K, and regular of dimension 1. Assume the field extensions x(n)/K
are separable for every generic point m of an irreducible component of X. Then
there exists a finite separable extension L/K such that in the diagram

Y4U>X XgT ——X
\l fl
T——S

the morphism g is smooth at all generic points of fibres. Here T is the normalization
of S in Spec(L) and v :Y — X xg T is the normalization.

Proof. This follows from Lemma [65.3] in exactly the same manner that Lemma
[65.2] follows from Theorem [65.11 O
66. Ind-quasi-affine morphisms

A bit of theory to be used later.

Definition 66.1. A scheme X is ind-quasi-affine if every quasi-compact open of
X is quasi-affine. Similarly, a morphism of schemes X — Y is ind-quasi-affine if
f~1(V) is ind-quasi-affine for each affine open V in Y.
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An example of an ind-quasi-affine scheme is an open of an affine scheme. If X =
U, Ui is a union of quasi-affine opens such that any two U; are contained in a third,
then X is ind-quasi-affine. An ind-quasi-affine scheme X is separated because any
two affine opens U,V are contained in a separated open subscheme of X, namely
U U V. Similarly an ind-quasi-affine morphism is separated.

Lemma 66.2. For a morphism of schemes f : X — Y, the following are equiva-
lent:
(1) f is ind-quasi-affine,
(2) for every affine open subscheme V- CY and every quasi-compact open sub-
scheme U C f=Y(V), the induced morphism U — V is quasi-affine.
(3) for some cover {V;}jes of Y by quasi-compact and quasi-separated open
subschemes V; C Y, every j € J, and every quasi-compact open subscheme
U C f~X(V;), the induced morphism U — V; is quasi-affine.
(4) for every quasi-compact and quasi-separated open subscheme V. C'Y and
every quasi-compact open subscheme U C f=1(V), the induced morphism
U — V is quasi-affine.
In particular, the property of being an ind-quasi-affine morphism is Zariski local on
the base.

Proof. The equivalence (1) < (2) follows from the definitions and Morphisms,
Lemmal13.3] For (2) = (4),let U and V be as in (4). By Schemes, Lemma[21.14] the
induced morphism U — V is quasi-compact. Thus, for every affine open V' C V,
the fiber product V’ x U is quasi-compact, so, by (2), the induced map V' xy U —
V' is quasi-affine. Thus, U — V is also quasi-affine by Morphisms, Lemma [13.3]
This argument also gives (3) = (4): indeed, keeping the same notation, those
affine opens V' C V that lie in one of the V; cover V, so one needs to argue
that the quasi-compact map V' xy U — V' is quasi-affine. However, by (3), the
composition V' xy U — V' — V; is quasi-affine and, by Schemes, Lemma the
map V' — Vj is quasi-separated. Thus, V' xy U — V' is quasi-affine by Morphisms,
Lemma[13.8 The final implications (4) = (2) and (4) = (3) are evident. O

Lemma 66.3. The property of being an ind-quasi-affine morphism is stable under
composition.

Proof. Let f: X - Y and g: Y — Z be ind-quasi-affine morphisms. Let V C Z
and U C f~1(g7*(V)) be quasi-compact opens such that V is also quasi-separated.
The image f(U) is a quasi-compact subset of g=(V), so it is contained in some
quasi-compact open W C ¢~ 1(V) (a union of finitely many affines). We obtain
a factorization U — W — V. The map W — V is quasi-affine by Lemma [66.2]
so, in particular, W is quasi-separated. Then, by Lemma [66.2] again, U — W is
quasi-affine as well. Consequently, by Morphisms, Lemma the composition
U — V is also quasi-affine, and it remains to apply Lemma [66.2| once more. ([

Lemma 66.4. Any quasi-affine morphism is ind-quasi-affine. Any immersion is
ind-quasi-affine.

Proof. The first assertion is immediate from the definitions. In particular, affine
morphisms, such as closed immersions, are ind-quasi-affine. Thus, by Lemma [66.3]
it remains to show that an open immersion is ind-quasi-affine. This, however, is
immediate from the definitions. O


https://stacks.math.columbia.edu/tag/0F1U
https://stacks.math.columbia.edu/tag/0F1V
https://stacks.math.columbia.edu/tag/0F1W

0F1X

0AP7

0APS

0AP9

OECH

0ECI

0ECJ

MORE ON MORPHISMS 202

Lemmal 66.5. If f: X —Y and g:Y — Z are morphisms of schemes such that
g o f is ind-quasi-affine, then f is ind-quasi-affine.

Proof. By Lemma we may work Zariski locally on Z and then on Y, so
we lose no generality by assuming that Z, and then also Y, is affine. Then any
quasi-compact open of X is quasi-affine, so Lemma [66.2] gives the claim. O

Lemma 66.6. The property of being ind-quasi-affine is stable under base change.

Proof. Let f: X — Y be an ind-quasi-affine morphism. For checking that every
base change of f is ind-quasi-affine, by Lemma [66.2] we may work Zariski locally on
Y, so we assume that Y is affine. Furthermore, we may also assume that in the base
change morphism Z — Y the scheme Z is affine, too. The base change X xy Z — X
is an affine morphism, so, by Lemmas and the map X xy Z — Y is ind-
quasi-affine. Then, by Lemma[66.5] the base change X Xy Z — Z is ind-quasi-affine,
as desired. O

Lemma 66.7. The property of being ind-quasi-affine is fpqc local on the base.

Proof. The stability of ind-quasi-affineness under base change supplied by Lemma
[66.6] gives one direction. For the other, let f: X — Y be a morphism of schemes
and let {g; : Y; — Y} be an fpqc covering such that the base change f; : X; — Y;
is ind-quasi-affine for all i. We need to show f is ind-quasi-affine.

By Lemma [66.2] we may work Zariski locally on Y, so we assume that Y is affine.
Then we use stability under base change ensured by Lemma [66.6] to refine the cover
and assume that it is given by a single affine, faithfully flat morphism ¢ : Y’ — Y.
For any quasi-compact open U C X, its Y'-base change U xy Y/ C X xy Y’ is
also quasi-compact. It remains to observe that, by Descent, Lemma the map
U — Y is quasi-affine if and only if so is U xy Y’ — Y. O

Lemmal 66.8. A separated locally quasi-finite morphism of schemes is ind-quasi-

affine.

Proof. Let f: X — Y be a separated locally quasi-finite morphism of schemes.
Let V C Y be affine and U C f~1(V) quasi-compact open. We have to show U
is quasi-affine. Since U — V is a separated quasi-finite morphism of schemes, this
follows from Zariski’s Main Theorem. See Lemma O

67. Pushouts in the category of schemes, IT

This section is a continuation of Section In this section we construct pushouts
of Y «< Z — X where Z — X is a closed immersion and Z — Y is integral and an
additional condition is satisfied. Please see the detailed discussion in [Fer03].

Situation/ 67.1. Here S is a scheme and i : Z — X and j : Z — Y are morphisms
of schemes over S. We assume
(1) 4 is a closed immersion,

(2) j is an integral morphism of schemes,
(3) for y € Y there exists an affine open U C X with j~!({y}) C i~1(U).

Lemma 67.2. In Situation |67.1| then for y € Y there exist affine opens U C X
and V CY withi Y (U)=j"Y(V) andy € V.
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Proof. Let y € Y. Choose an affine open U C X such that j=*({y}) C i~1(U)
(possible by assumption). Choose an affine open V' C Y neighbourhood of y such
that j=1(V) C i~ *(U). This is possible because j : Z — Y is a closed morphism
(Morphisms, Lemma and i~ (U) contains the fibre over y. Since j is integral,
the scheme theoretic fibre Z, is the spectrum of an algebra integral over a field.
By Limits, Lemma we can find an f € T'(i"'(U), O;-1(y)) such that Z, C
D(f) € j=*(V). Since i|;-1(yy : i H(U) = U is a closed immersion of affines, we
can choose an f € I'(U, Oy) whose restriction to i~1(U) is f. After replacing U by
the principal open D(f) C U we find affine opens y € V C Y and U C X with

i ) CiTHU) ciTHV)
Now we (in some sense) repeat the argument. Namely, we choose g € T'(V,Oy)
such that y € D(g) and j=1(D(g)) C i~ *(U) (possible by the same argument as
above). Then we can pick f € T'(U, O) whose restriction to i 1 (U) is the pullback
of g by i71(U) — V (again possible by the same reason as above). Then we finally
have affine opens y € V/ = D(g) C V C Y and U’ = D(f) C U C X with
TtV =i (V). 0

Proposition| 67.3. In S’ituatz’onm the pushout Y 11z X exists in the category
of schemes. Picture

7 ——X

.

Y 2> VI, X

The diagram is a fibre square, the morphism a is integral, the morphism b is a
closed immersion, and

Oy, x = 0.0y X, 0, 0a.O0x
as sheaves of rings where c=aoi="boj.

Proof. As a topological space we set Y11z X equal to the pushout of the diagram in
the category of topological spaces (Topology, Section . This is just the pushout
of the underlying sets (Topology, Lemma endowed with the quotient topology.
On Y IIz X we have the maps of sheaves of rings

b*Oy — C*OZ <— G,*OX

and we can define

Oyiiyx = 0.0y X, 0, a.0x
as the fibre product in the category of sheaves of rings. To prove that we obtain a
scheme we have to show that every point has an affine open neighbourhood. This
is clear for points not in the image of ¢ as the image of ¢ is a closed subset whose
complement is isomorphic as a ringed space to (Y \ j(Z)) II (X \ i(2)).

A point in the image of ¢ corresponds to a unique y € Y in the image of j. By
Lemma we find affine opens U C X and V C Y with y € V and i }(U) =
7~Y(V). Since the construction of the first paragraph is clearly compatible with
restriction to compatible open subschemes, to prove that it produces a scheme we

may assume X, Y, and Z are affine.

If X = Spec(A), Y = Spec(B), and Z = Spec(C) are affine, then More on Algebra,
Lemma shows that Y 1Tz X = Spec(B x¢ A) as topological spaces. To finish

[Fer03, Theorem 7.1
part iii]
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the proof that Y xz X is a scheme, it suffices to show that on Spec(B x¢ A) the
structure sheaf is the fibre product of the pushforwards. This follows by applying
More on Algebra, Lemma to principal affine opens of Spec(B x¢ A).

The discussion above shows the scheme Y1l x Z has an affine open covering Y1l x Z =
UW; such that U; = a=t(W;), V; = b=1(W;), and Q; = ¢~ 1(W;) are affine open
in X, Y, and Z. Thus a and b are affine. Moreover, if A;, B;, C; are the rings
corresponding to U;, V;, €;, then A; — C; is surjective and W; corresponds to
A; x¢, B; which surjects onto B;. Hence b is a closed immersion. The ring map
A; X¢, B; = A; is integral by More on Algebra, Lemma hence a is integral.
The diagram is cartesian because

Ci & B; ®B;x¢, A; Ai

This follows as B; x¢, A; — B; and A; — C; are surjective maps whose kernels are
the same.

Finally, we can apply Lemmas and to conclude our construction is a
pushout in the category of schemes. O

Lemma 67.4. In Situation . If X and Y are separated, then the pushout
Y Il X (Proposition is separated. Same with “separated over S7, “quasi-
separated”, and “quasi-separated over S,

Proof. The morphism Y II X — Y II; X is surjective and universall closed. Thus
we may apply Morphisms, Lemma |41.11 O

Lemmal 67.5. In Situation assume S is a locally Noetherian scheme and X,
Y, and Z are locally of finite type over S. Then the pushout Y 11z X (Proposition
67.3) is locally of finite type over S.

Proof. Looking on affine opens we recover the result of More on Algebra, Lemma

b1l O
Lemma 67.6. In Situation suppose given a commutative diagram

Y’%ZIHXI

j, 7//
Pk
Y<~—7—X

with cartesian squares and f, g, h separated and locally quasi-finite. Then

(1) the pushouts Y Iz X and Y' Il X' ewist,
(2) Y'1Iz X' — Y 1z X is separated and locally quasi-finite, and
(3) the squares

Y/4>Y/ HZ’ X/<;X/

L

Y ——=YI;, X=~—X
are cartesian.
Proof. The pushout Y I, X exists by Proposition [67.3} To see that the pushout

Y1z X' exists, we check condition (3) of Situation holds for (X', Y, 2,4, j').
Namely, let 4’ € Y’ and denote y € Y the image. Choose U C X affine open
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with i(j7%(y)) € U. Choose a quasi-compact open U’ C X' contained in f~1(U)
containing the quasi-compact subset i'((5’)"*({¢’})). By Lemma we see that
U’ is quasi-affine. Since Z/, is the spectrum of an algebra integral over a field, we
can apply Limits, Lemma and we find there exists an affine open subscheme
of U’ containing '((5') "' ({y'})) as desired.

Having verified existence we check the other assertions. Affine locally we are exactly
in the situation of More on Algebra, Lemma [7.7] with B — D and A’ — C’ locally
quasi—ﬁnitﬂ In particular, the morphism Y’ 11z X’ — Y 11z X is locally of finite
type. The squares in of the diagram are cartesian by More on Algebra, Lemma[6.4]
Since being locally quasi-finite can be checked on fibres (Morphisms, Lemma
we conclude that Y' 11, X’ — Y 11z X is locally quasi-finite.

We still have to check Y' 115 X’ — Y II; X is separated. Observe that Y/ IT X’ —
Y’ Iz X' is universally closed and surjective by Proposition Since also the
morphism Y’ 1T X’ — Y Iz X is separated (as it factors as Y II X' - Y II X —
Y Iz X) we conclude by Morphisms, Lemma O

OECL |Lemmal67.7. In Situation the category of schemes flat, separated, and locally
quasi-finite over the pushout Y11z X is equivalent to the category of (X', Y', Z',i', 5, f,9,h)
as in Lemma with f,g,h flat. Similarly with “flat” replaced with “étale’.

Proof. If we start with (X', Y, Z’,4,5', f,g,h) as in Lemma with f, g, h flat
or étale, then Y/ I1z X’ — Y 1z X is flat or étale by More on Algebra, Lemmal7.7}

For the converse, let W — Y117 X be a separated and locally quasi-finite morphism.
Set X' =W Xyllz X )(7 Y =W Xyllz X Y, and Z' =W Xyllz X Z with obvious
morphisms 4, 7/, f, g, h. Form the pushout Y’ Iz, X’. We obtain a morphism

YIHZ/ X — W

of schemes over Y IIx Z by the universal property of the pushout. If we do not
assume that W — Y Il X is flat, then in general this morphism won’t be an
isomorphism. (In fact, More on Algebra, Lemma shows the displayed arrow is
a closed immersion but not an isomorphism in general.) However, if W — Y xz X
is flat, then it is an isomorphism by More on Algebra, Lemma [7.7] O

Next, we discuss existence in the case where both morphisms are closed immersions.

0B™ |Lemmal 67.8. Leti: Z — X and j : Z — Y be closed immersions of schemes.
Then the pushout Y 11z X exists in the category of schemes. Picture

Z———X
o
Yy oy, X

The diagram is a fibre square, the morphisms a and b are closed immersions, and
there is a short exact sequence

0— OYHZX — a:O0x ®b. 0Oy — .0z — 0

where c=aoi=2"0o0j.

15T be precise X,Y, Z, Y1z X, X', Y’,Z' Y' 11z X' correspond to A’, B, A, B’,C’,D,C, D'".
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Proof. This is a special case of Proposition Observe that hypothesis (3) in
Situation [67.1] is immediate because the fibres of j are singletons. Finally, reverse
the roles of the arrows to conclude that both a and b are closed immersions. (]

Lemma 67.9. Leti:Z — X and j : Z — Y be closed immersions of schemes.
Let f: X' — X and g : Y’ — 'Y be morphisms of schemes and let ¢ : X' xx,; Z —
Y' Xy ; Z be an isomorphism of schemes over Z. Consider the morphism

h:X' HX/XXJ.Z#, Y — X1lzY
Then we have

(1) h is locally of finite type if and only if f and g are locally of finite type,

(2) h is flat if and only if f and g are flat,

(3) h is flat and locally of finite presentation if and only if f and g are flat and
locally of finite presentation,

(4) h is smooth if and only if f and g are smooth,

(5) h is étale if and only if f and g are étale, and

(6) add more here as needed.

Proof. We know that the pushouts exist by Lemma [67.8] In particular we get the
morphism h. Hence we may replace all schemes in sight by affine schemes. In this
case the assertions of the lemma are equivalent to the corresponding assertions of

More on Algebra, Lemma O
68. Relative morphisms

In this section we prove a representability result which we will use in Fundamental
Groups, Section [5| to prove a result on the category of finite étale coverings of a
scheme. The material in this section is discussed in the correct generality in Criteria
for Representability, Section

Let S be a scheme. Let Z and X be schemes over S. Given a scheme T over S we
can consider morphisms b: T xg Z — T xg X over S. Picture

TXSZ4Z)>TXSX Z X
(68.0.1) \\\\ //// \\\ ///
T S

Of course, we can also think of b as a morphism b: T xg Z — X such that

/—\
TxsZ—>z " X
T S
commutes. In this situation we can define a functor
(68.0.2) Morg(Z,X) : (Sch/S)°PP — Sets, T —— {b as above}

Here is a basic representability result.

Lemmal 68.1. Let Z — S and X — S be morphisms of affine schemes. Assume
[(Z,0z) is a finite free T(S, Og)-module. Then Morg(Z, X) is representable by an
affine scheme over S.
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Proof. Write S = Spec(R). Choose a basis {e1,...,en} for T'(Z,0z) over R.
Choose a presentation

['(X,0x) = R[{zi}ier]/({ frtrex)-

We will denote T; the image of x; in this quotient. Write
P = R[{ai; }ier1<j<m]-
Consider the R-algebra map

U: R{zitier] — POrT(Z,0z), xj+— Zj aij ® €.

Write ¥(fx) = > cxj ® ej with cx; € P. Finally, denote J C P the ideal generated
by the elements c;, k € K, 1 < j < m. We claim that W = Spec(P/J) represents
the functor Mors(Z, X).

First, note that by construction P/J is an R-algebra, hence a morphism W — S.
Second, by construction the map ¥ factors through T'(X, Ox), hence we obtain an
P/J-algebra homomorphism

P/J®RF(X,O)() — P/J@R F(Z,Oz)

which determines a morphism by, : W Xg Z — W xg X. By the Yoneda lemma
buniv determines a transformation of functors W — Morg(Z, X) which we claim
is an isomorphism. To show that it is an isomorphism it suffices to show that it
induces a bijection of sets W(T') — Morg(Z, X)(T) over any affine scheme T

Suppose T" = Spec(R') is an affine scheme over S and b € Morg(Z,X)(T). The
structure morphism T° — S defines an R-algebra structure on R’ and b defines an
R’-algebra map
V:R @rT(X,0x) — R @rT(Z,0z).

In particular we can write b*(1 ® Z;) = Y i; ® e; for some «a;; € R'. This
corresponds to an R-algebra map P — R’ determined by the rule a;; — «;.
This map factors through the quotient P/J by the construction of the ideal J to
give a map P/J — R’. This in turn corresponds to a morphism 7' — W such that
b is the pullback of b,,;,. Some details omitted. O

Lemma 68.2. Let Z — S and X — S be morphisms of schemes. If Z — S
is finite locally free and X — S is affine, then Morg(Z,X) is representable by a
scheme affine over S.

Proof. Choose an affine open covering S = |JU; such that T'(Z xg U;, Ozx,u,)
is finite free over Og(U;). Let F; C Morg(Z,X) be the subfunctor which assigns
to T/S the empty set if T — S does not factor through U; and Morg(Z, X)(T)
otherwise. Then the collection of these subfunctors satisfy the conditions (2)(a),
(2)(b), (2)(c) of Schemes, Lemma which proves the lemma. Condition (2)(a)
follows from Lemma and the other two follow from straightforward arguments.

([l

The condition on the morphism f : X — S in the lemma below is very useful to
prove statements like it. It holds if one of the following is true: X is quasi-affine,
f is quasi-affine, f is quasi-projective, f is locally projective, there exists an ample
invertible sheaf on X, there exists an f-ample invertible sheaf on X, or there exists
an f-very ample invertible sheaf on X.
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Lemmal 68.3. Let Z — S and X — S be morphisms of schemes. Assume

(1) Z — S is finite locally free, and
(2) forall(s,z1,...,2q) wheres € S and x1,...,xq4 € X there exists an affine
open U C X with x1,...,xq4€ U.

Then Morg(Z,X) is representable by a scheme.

Proof. Consider the set I of pairs (U, V) where U C X and V' C S are affine open
and U — S factors through V. For i € I denote (U;,V;) the corresponding pair.
Set F; = Mory,(Zy,,U;). It is immediate that F; is a subfunctor of Morg(Z, X).
Then we claim that conditions (2)(a), (2)(b), (2)(c) of Schemes, Lemma [15.4] which
proves the lemma.

Condition (2)(a) follows from Lemma [68.2]

To check condition (2)(b) consider T'/S and b € Mors(Z, X). Thinking of b as a
morphism 7' xg Z — X we find an open b=}(U;) C T x5 Z. Clearly, b € F;(T)
if and only if b= (U;) = T xg Z. Since the projection p : T xg Z — T is finite
hence closed, the set U;, C T of points t € T with p~!({t}) C b=*(U;) is open.
Then f : 7" — T factors through U, ; if and only if bo f € F;(T") and we are done
checking (2)(b).

Finally, we check condition (2)(c) and this is where our condition on X — S is used.
Namely, consider T//S and b € Morg(Z,X). It suffices to prove that every t € T
is contained in one of the opens U;; defined in the previous paragraph. This is
equivalent to the condition that b(p~1({t})) C U; for some i where p: T xgZ — T
is the projection and b : T' X g Z — X is the given morphism. Since p is finite, the
set b(p~({t})) C X is finite and contained in the fibre of X — S over the image s
of t in S. Thus our condition on X — S exactly shows a suitable pair exists. [

Lemmal 68.4. Let Z — S and X — S be morphisms of schemes. Assume Z —
S s finite locally free and X — S is separated and locally quasi-finite. Then
Mors(Z, X) is representable by a scheme.

Proof. This follows from Lemmas [68.3 and [45.1] O

69. Characterizing pseudo-coherent complexes, IT1

In this section we discuss characterizations of pseudo-coherent complexes in terms
of cohomology. This is a continuation of Derived Categories of Schemes, Section
A basic tool will be to reduce to the case of projective space using a derived
version of Chow’s lemma, see Lemma [69.2}

Lemma 69.1. Consider a commutative diagram of schemes

7 ——=Y'

]

X —9

Let S — S’ be a morphism. Denote by X and Y the base changes of X' and Y’
to S. Assume Y — S and Z' — X' are flat. Then X XgY and Z' are Tor
independent over X' xg Y.
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Proof. The question is local, hence we may assume all schemes are affine (some
details omitted). Observe that

XXSYHX/ X gt Y’

l i

X X'

is cartesian with flat vertical arrows. Write X = Spec(A), X’ = Spec(A’), X' x g
Y’ = Spec(B’). Then X xsY = Spec(A ®4/ B'). Write Z' = Spec(C’). We have
to show

Torf,(A ®a B',C"Y=0, forp>0
Since A" — B’ is flat we have A®4 B’ = A®Y%, B'. Hence
(Ao BY@L ' =A% Bk =A% C'=A0,4 C

The second equality by More on Algebra, Lemma The last equality because
A’ — (" is flat. This proves the lemma. O

Lemma 69.2 (Derived Chow’s lemma). Let A be a ring. Let X be a separated
scheme of finite presentation over A. Let x € X. Then there exist an open
neighbourhood U C X of , an n > 0, an open V C P%, a closed subscheme
Z C X xaP%, apoint z € Z, and an object E in D(OXXAPZ) such that

) Z — X x4 P is of finite presentation,

) b:Z — X is an isomorphism over U and b(z) = z,
) ¢: Z — P is a closed immersion over V,

) b=HU) = ¢ Y(V), in particular c(z) € V,

) Elxxav = (b,0):0z]xxav,

(6) E is pseudo-coherent and supported on Z.

(1
(2
(3
(4
(5
6

Proof. We can find a finite type Z-subalgebra A’ C A and a scheme X' separated
and of finite presentation over A’ whose base change to A is X. See Limits, Lemmas
and Let z’ € X’ be the image of z. If we can prove the lemma for
2’ € X'/A’, then the lemma follows for x € X/A. Namely, if U',n', V', Z' 2/ E'
provide the solution for 2’ € X’/A’, then we can let U C X be the inverse image of
U',let n =n',let VC P’ be the inverse image of V', let Z C X x P™ be the scheme
theoretic inverse image of Z’, let z € Z be the unique point mapping to x, and let F
be the derived pullback of E’. Observe that F is pseudo-coherent by Cohomology,
Lemma [47.3] It only remains to check (5). To see this set W = b~1(U) = ¢~ (V)
and W' = (')"1(U) = (¢/)~}(V’') and consider the cartesian square

w w’

(b,C)l i( ")

XXAVHX/XAIV/

By Lemma the schemes X x 4 V and W’ are Tor independent over X’ x 4/ V.
Hence the derived pullback of (b,¢).Ow to X x4 V is (b,¢).Ow by Derived
Categories of Schemes, Lemma This also uses that R(V, )0z = (b, )OOz
because (b', ¢’) is a closed immersion and simiarly for (b, ¢).Oz. Since E'|y« ,, v/ =
(0, )« O+ we obtain E|yx v = (b,¢)«Ow and (5) holds. This reduces us to the
situation described in the next paragraph.
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Assume A is of finite type over Z. Choose an affine open neighbourhood U C X
of . Then U is of finite type over A. Choose a closed immersion U — A’ and
denote j : U — P7 the immersion we get by composing with the open immersion
A", — P7. Let Z be the scheme theoretic closure of

(idU,j)ZU—)XXAPz

Since the projection X x P™ — X is separated, we conclude from Morphisms,
Lemma that b : Z — X is an isomorphism over U. Let z € Z be the unique
point lying over x.

Let Y C P7; be the scheme theoretic closure of j. Then it is clear that Z C X x4 Y
is the scheme theoretic closure of (idy,j) : U — X x4 Y. As X is separated,
the morphism X x4 Y — Y is separated as well. Hence we see that Z — Y is
an isomorphism over the open subscheme j(U) C Y by the same lemma we used

above. Choose V' C P7 open with VNY = j(U). Then we see that (3) and (4)
hold.

Because A is Noetherian we see that X and X x4 P7 are Noetherian schemes.
Hence we can take E = (b, ¢).Oz in this case, see Derived Categories of Schemes,
Lemma This finishes the proof. O

Lemma 69.3. Let A, z € X, and U,n,V,Z,z, E be as in Lemma . For any
K € Dgcon(Ox) we have

Rq.(Lp*K @ E)|y = R(U = V). K|u
where p: X x4 Py — X and q : X x4 Py — P are the projections and where the

morphism U — V is the finitely presented closed immersion c o (b|y)~L.

Proof. Since b=1(U) = ¢ (V) and since c is a closed immersion over V, we see
that co (b|y)~! is a closed immersion. It is of finite presentation because U and V/
are of finite presentation over A, see Morphisms, Lemma [21.11} First we have

Rq.(Lp*K @" E)|v = Rq, (Lp*K &" E)|xx ,v)

where ¢/ : X x4 V — V is the projection because formation of total direct image
commutes with localization. Set W = b=1(U) = ¢7}(V) and denote i : W —
X x4V the closed immersion i = (b, ¢)|w. Then

Rq, (Lp*K ®@" E)|xx,v) = R, (Lp*K|x x ,v ®" i.0w)

by property (5). Since i is a closed immersion we have i,Ow = Ri.Ow. Using
Derived Categories of Schemes, Lemma we can rewrite this as

RG.Ri.Li*Lp*K|xx ,v = R(¢' 09).Lb*K|w = R(U = V).K|u
which is what we want. O

Lemma 69.4. Let A be a ring. Let X be a scheme separated and of finite pre-
sentation over A. Let K € Dgcon(Ox). If RU(X, E ® K) is pseudo-coherent in
D(A) for every pseudo-coherent E in D(Ox), then K is pseudo-coherent relative
to A.

Proof. Assume K € Dgcon(Ox) and RT(X, E ®" K) is pseudo-coherent in D(A)
for every pseudo-coherent F in D(Ox). Let € X. We will show that K is pseudo-
coherent relative to A in a neighbourhood of x and this will prove the lemma.
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Choose U,n,V, Z, z, E as in Lemmal69.2] Denotep: X xP"™ — X and ¢ : X xP" —
P7, the projections. Then for any ¢ € Z we have

RT(P%, Rq.(Lp*K @ E) @ Opn (i))

= RI(X x P", Lp*K @ E @ Lq*Opn (i))

= RT(X, K @" Rq.(E @" Lq*Opx (1))
by Derived Categories of Schemes, Lemma [22.1] By Derived Categories of Schemes,
Lemma [30.5| the complex Rgq.(E & Lq*Opr (i)) is pseudo-coherent on X. Hence
the assumption tells us the expression in the displayed formula is a pseudo-coherent

object of D(A). By Derived Categories of Schemes, Lemma we conclude that
Rq.(Lp*K @ E) is pseudo-coherent on P%. By Lemma we have

Rq*(Lp*K ®L E)|X><AV = R(U — V)*K|U

Since U — V is a closed immersion into an open subscheme of P% this means K|y
is pseudo-coherent relative to A by Lemma [59.18 O

Lemma 69.5. Let A be a ring. Let X be a scheme separated and of finite pre-
sentation over A. Let K € Dgcon(Ox). If RT'(X,E @ K) is pseudo-coherent in
D(A) for every perfect E € D(Ox), then K is pseudo-coherent relative to A.

Proof. In view of Lemma it suffices to show RI(X,FE ®' K) is pseudo-
coherent in D(A) for every pseudo-coherent E € D(Ox). By Derived Categories of
Schemes, Proposition it follows that K € D¢, (Ox). Now the result follows
by Derived Categories of Schemes, Lemma [34.3] (]

Lemma 69.6. Let A be a ring. Let X be a scheme separated, of finite presentation,
and flat over A. Let K € Dgcon(Ox). If RU(X, E @Y K) is perfect in D(A) for
every perfect E € D(Ox), then K is Spec(A)-perfect.

Proof. By Lemma K is pseudo-coherent relative to A. By Lemma K
is pseudo-coherent in D(Ox). By Derived Categories of Schemes, Proposition m
we see that K is in D™ (Ox). Let p be a prime ideal of A and denote i : ¥ — X
the inclusion of the scheme theoretic fibre over p, i.e., Y is a scheme over x(p). By
Derived Categories of Schemes, Lemma35.13] we will be done if we can show Li* (K)
is bounded below. Let G € Dpe,r(Ox) be a perfect complex which generates
Dgcon(Ox ), see Derived Categories of Schemes, Theorem We have

RHomo, (Li*(G), Li*(K)) = RU(Y, Li*(GY @ K))
= RT(X,GY @™ K) ®% x(p)

The first equality uses that Li* preserves perfect objects and duals and Cohomol-
ogy, Lemma we omit some details. The second equality follows from Derived
Categories of Schemes, Lemma as X is flat over A. It follows from our hy-
pothesis that this is a perfect object of D(k(p)). The object Li*(G) € Dper¢(Oy)
generates D gcon(Oy) by Derived Categories of Schemes, Remark Hence De-
rived Categories of Schemes, Proposition now implies that Li*(K) is bounded
below and we win. (]
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70. Descent finiteness properties of complexes

0CSM This section is the continuation of Derived Categories of Schemes, Section

0CSN Lemmal 70.1. Let X — S be locally of finite type. Let {f; : X; — X} be an

0CSP

0CSQ

fopf covering of schemes. Let E € Dgcon(Ox). Let m € Z. Then E is m-pseudo-
coherent relative to S if and only if each Lf'E is m-pseudo-coherent relative to

S.

Proof. Assume E is m-pseudo-coherent relative to S. The morphisms f; are
pseudo-coherent by Lemma Hence Lf}E is m-pseudo-coherent relative to
S by Lemma [59.16

Conversely, assume that Lf*E is m-pseudo-coherent relative to S for each i. Pick
S = UUj’ Wj — Uj, Wj = UWj,k; Tj,k — Wj,k, and HlOI“phiSl’IlS Qjk : rfch —
Xi(j,k) over S as in Lemma Since the morphism Tj x — S is flat and of finite
presentation, we see that o; ) is pseudo-coherent by Lemmal@ Hence

Loy Lff B = L(Tix — S)*E

is m-pseudo-coherent relative to S by Lemma Now we want to descend
this property through the coverings {7, — Wi}, W; = UW,k, {W; — U;},
and S = |JU;. Since for Zariski coverings the result is true (by the definition of
m-pseudo-coherence relative to ), this means we may assume we have a single
surjective finite locally free morphism n : ¥ — X such that L7x*FE is pseudo-
coherent relative to S. In this case Rm,L7n*FE is pseudo-coherent relative to S by
Lemma (this is the first time we use that E has quasi-coherent cohomology
sheaves). We have Rm,Ln*E = FE (X%X 7Oy for example by Derived Categories
of Schemes, Lemma [22.1] and locally on X the map Ox — 7.0y is the inclusion of
a direct summand. Hence we conclude by Lemma [59.12 O

Lemmal 70.2. Let X — T — S be morphisms of schemes. Assume T — S is flat
and locally of finite presentation and X — T locally of finite type. Let E € D(Ox).
Let m € Z. Then E is m-pseudo-coherent relative to S if and only if E is m-
pseudo-coherent relative to T'.

Proof. Locally on X we can choose a closed immersion s : X — A%.. Then AT — S
is flat and locally of finite presentation. Thus we may apply Lemma to see
the equivalence holds. O

Lemma 70.3. Let f : X — S be locally of finite type. Let {S; — S} be an fppf
covering of schemes. Denote f; : X; — S; the base change of f and g; : X; — X
the projection. Let E € Dgcon(Ox). Let m € Z. Then E is m-pseudo-coherent
relative to S if and only if each Lg} E is m-pseudo-coherent relative to S;.

Proof. This follows formally from Lemmas and Namely, if E is m-
pseudo-coherent relative to S, then Lg;E is m-pseudo-coherent relative to S (by
the first lemma), hence Lg;E is m-pseudo-coherent relative to .S; (by the second).
Conversely, if LgfE is m-pseudo-coherent relative to S;, then Lg; E is m-pseudo-
coherent relative to S (by the second lemma), hence E is m-pseudo-coherent relative
to S (by the first lemma). O
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71. Relatively perfect objects

This section is a continuation of the discussion in Derived Categories of Schemes,

Section [351

Lemmal 71.1. Let i : X — X' be a finite order thickening of schemes. Let
K' € D(Ox/) be an object such that K = Li*K' is pseudo-coherent. Then K' is
pseudo-coherent.

Proof. We first prove K’ has quasi-coherent cohomology sheaves. To do this, we
may reduce to the case of a first order thickening, see Section[2} Let Z C Ox- be the
quasi-coherent sheaf of ideals cutting out X. Tensoring the short exact sequence

0—-+7Z—0x —-i.0x =0
with K’ we obtain a distinguished triangle
K'@g ,I—K - K @p, i.0x = (K @6, I)[1]

Since i, = Ri, and since we may view Z as a quasi-coherent Ox-module (as we
have a first order thickening) we may rewrite this as

i(Kop, I) = K —i.K—i(Keg, I

Please use Cohomology, Lemma to identify the terms. Since K isin D gcon(Ox)
we conclude that K’ is in Dgeon(Ox/); this uses Derived Categories of Schemes,

Lemmas and

Assume K’ is in Dgcon(Ox+). The question is local on X’ hence we may assume
X' is affine. Say X' = Spec(A’) and X = Spec(A) with A = A’/I and I nilpotent.
Then K’ comes from an object M’ € D(A’), see Derived Categories of Schemes,
Lemma Thus M = M’ ®Y, A is a pseudo-coherent object of D(A) by Derived
Categories of Schemes, Lemma and our assumption on K. Hence we can
represent M by a bounded above complex of finite free A-modules E*, see More on
Algebra, Lemma By More on Algebra, Lemma we conclude that M’ is
pseudo-coherent as desired. (Il

Lemma 71.2. Consider a cartesian diagram

XHXI

f\L if/
Y _J v/
of schemes. Assume X' — Y' is flat and locally of finite presentation and Y — Y’

is a finite order thickening. Let E' € D(Ox/). If E = Li*(E') is Y -perfect, then
E’ is Y'-perfect.

Proof. Recall that being Y-perfect for £ means F is pseudo-coherent and locally
has finite tor dimension as a complex of f~!Oy-modules (Derived Categories of
Schemes, Definition . By Lemma we find that E’ is pseudo-coherent.
In particular, E’ is in Dgcon(Ox1), see Derived Categories of Schemes, Lemma
To prove that E’ locally has finite tor dimension we may work locally on
X’. Hence we may assume X', S/, X, S are affine, say given by rings A’, R/,
A, R. Then we reduce to the commutative algebra version by Derived Categories
of Schemes, Lemma The commutative algebra version in More on Algebra,
Lemma, [83.8 O
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Lemma 71.3. Let (R,I) be a pair consisting of a ring and an ideal I contained
in the Jacobson radical. Set S = Spec(R) and Sy = Spec(R/I). Let f : X — S be
proper, flat, and of finite presentation. Denote Xog = Sg xg X. Let E € D(Ox) be
pseudo-coherent. If the derived restriction Ey of E to Xg is So-perfect, then E is
S-perfect.

Proof. Choose a finite affine open covering X = U; U...UU,. For each i we can
choose a closed immersion U; — A‘éi. Set U; o = So xs U;. For each ¢ the complex
Ey|u, , has tor amplitude in [a;, b;] for some a;,b; € Z. Let x € X be a point. We
will show that the tor amplitude of E, over R is in [a; — d;, b;] for some ¢. This will
finish the proof as the tor amplitude can be read off from the stalks by Cohomology,

Lemma [48.5]

Since f is proper f({x}) is a closed subset of S. Since I is contained in the Jacobson
radical, we see that f({z}) meeting the closed subset Sy C S. Hence there is a
specialization x ~» xg with 29 € Xo. Pick an ¢ with z¢ € U;, so ¢ € U; 0. We
will fix ¢ for the rest of the proof. Write U; = Spec(A). Then A is a flat, finitely
presented R-algebra which is a quotient of a polynomial R-algebra in d;-variables.
The restriction F|y, corresponds (by Derived Categories of Schemes, Lemma
and to a pseudo-coherent object K of D(A). Observe that Ejy corresponds to
K@% A/IA. Let q C qo C A be the prime ideals corresponding to x ~» 9. Then
E, = K4 and K, is a localization of Kg,. Hence it suffices to show that K¢, has
tor amplitude in [a; — d;, b;] as a complex of R-modules. Let I C pg C R be the
prime ideal corresponding to f(xg). Then we have

K ®F K(po) = (K ®% R/T) @5 1 £(po)
= (K ®% A/IA) @) k(po)

the second equality because R — A is flat. By our choice of a;, b; this complex has
cohomology only in degrees in the interval [a;, b;]. Thus we may finally apply More
on Algebra, Lemma to R — A, qo, po and K to conclude. O

72. Contracting rational curves

In this section we study proper morphisms f : X — Y whose fibres have dimension
< 1 having R'f,Ox = 0. To understand the title of this section, please take a look

at Algebraic Curves, Sections and

Lemmal 72.1. Let f: X — Y be a proper morphism of schemes. Let y € Y be a
point with dim(X,) < 1. If

(1) R'f.Ox =0, or more generally
(2) there is a morphism g : Y' —'Y such that y is in the image of g and such
that R'fIOx: =0 where f': X' — Y’ is the base change of [ by g.

Then H'(X,,0x,) = 0.

Proof. To prove the lemma we may replace Y by an open neighbourhood of y.
Thus we may assume Y is affine and that all fibres of f have dimension < 1, see
Morphisms, Lemma In this case R!'f,Ox is a quasi-coherent Oy-module
of finite type and its formation commutes with arbitrary base change, see Limits,
Lemmas and The lemma follows immediately. O
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Lemma 72.2. Let f : X — Y be a proper morphism of schemes. Let y €
Y be a point with dim(X,) < 1 and H'(X,,Ox,) = 0. Then there is an open
neighbourhood V. C'Y of y such that R' f.Ox |y = 0 and the same is true after base
change by any Y’ — V.

Proof. To prove the lemma we may replace Y by an open neighbourhood of y.
Thus we may assume Y is affine and that all fibres of f have dimension < 1, see
Morphisms, Lemma In this case R!'f,Ox is a quasi-coherent Oy-module
of finite type and its formation commutes with arbitrary base change, see Limits,
Lemmas and Say Y = Spec(A), y corresponds to the prime p C A, and
R'f.Ox corresponds to the finite A-module M. Then H'(X,,Ox,) = 0 means
that pM, = M, by the statement on base change. By Nakayama’s lemma we
conclude M, = 0. Since M is finite, we find an f € A, f & p such that M; = 0.
Thus taking V' the principal open D(f) we obtain the desired result. (I

Lemma 72.3. Let f : X — Y be a proper morphism of schemes such that
dim(X,) <1 and H(X,,0x,) = 0 for ally € Y. Let F be quasi-coherent on
X. Then

(1) RRf,F=0 forp>1, and

(2) RYf.F =0 if there is a surjection f*G — F with G quasi-coherent on 'Y .

If Y is affine, then we also have

(3) H?(X,F) =0 for p ¢{0,1}, and
(4) HY(X,F) =0 if F is globally generated.

Proof. The vanishing in (1) is Limits, Lemma To prove (2) we may work
locally on Y and assume Y is affine. Then R!f,F is the quasi-coherent module on
Y associated to the module H!(X, F). Here we use that Y is affine, quasi-coherence
of higher direct images (Cohomology of Schemes, Lemma , and Cohomology of
Schemes, Lemma Since Y is affine, the quasi-coherent module G is globally
generated, and hence so is f*G and F. In this way we see that (4) implies (2).
Part (3) follows from (1) as well as the remarks on quasi-coherence of direct images
just made. Thus all that remains is the prove (4). If F is globally generated, then
there is a surjection ,.; Ox — F. By part (1) and the long exact sequence
of cohomology this induces a surjection on H!. Since H'(X,Ox) = 0 because

R'f.Ox = 0 by Lemma [72.2, and since H'(X,—) commutes with direct sums
(Cohomology, Lemma [19.1]) we conclude. O

Lemma 72.4. Let f: X — Y be a proper morphism of schemes. Assume
(1) for ally € Y we have dim(X,) <1 and H'(X,,0x,) =0, and
(2) Oy — f.Ox is surjective.

Then Oy — fLOx. is surjective for any base change f': X' =Y’ of f.

Proof. We may assume Y and Y affine. Then we can choose a closed immersion
Y’ = Y"” withY” — Y a flat morphism of affines. By flat base change (Cohomology
of Schemes, Lemma we see that the result holds for X" — Y. Thus we may
assume Y’ is a closed subscheme of Y. Let Z C Oy be the ideal cutting out Y.
Then there is a short exact sequence

OHIOX%OX*)OX/—)O
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where we view Ox/ as a quasi-coherent module on X. By Lemma [72.3] we have
HY(X,ZOx) = 0. It follows that

H°(Y,0y) = H(Y, f.Ox) = H*(X,0x) = H°(X,0x)

is surjective as desired. The first arrow is surjective as Y is affine and since we
assumed Oy — f.Ox is surjective and the second by the long exact sequence of
cohomology associated to the short exact sequence above and the vanishing just
proved. (Il

Lemma 72.5. Consider a commutative diagram
X—Y
\ f /
S

of morphisms of schemes. Let s € S be a point. Assume

(1) X — S is locally of finite presentation and flat at points of X,

(2) f is proper,

(3) the fibres of fs: Xs — Ys have dimension <1 and R'f;.Ox, =0,

(4) Oy, — fs+Ox, is surjective.
Then there is an open Yy C V. C Y such that (a) f~1(V) is flat over S, (b)

dim(X,) <1 fory eV, (c) R* f.Ox|y =0, (d) Ov — f.Ox|v is surjective, and
(b), (¢), and (d) remain true after base change by any Y' — V.

Proof. Let y € Y be a point over s. It suffices to find an open neighbourhood of
y with the desired properties. As a first step, we replace Y by the open V found
in Lemma so that R'f,Ox is zero universally (the hypothesis of the lemma
holds by Lemma . We also shrink Y so that all fibres of f have dimension <1
(use Morphisms, Lemma and properness of f). Thus we may assume we have
(b) and (c) with V =Y and after any base change Y’ — Y. Thus by Lemma
it now suffices to show (d) over Y. We may still shrink Y further; for example, we
may and do assume Y and S are affine.

By Theorem there is an open subset U C X where X — S is flat which contains
X by hypothesis. Then f(X \ U) is a closed subset not containing y. Thus after
shrinking Y we may assume X is flat over S.

Say S = Spec(R). Choose a closed immersion Y — Y’ where Y is the spectrum
of a polynomial ring R[z.;e € E] on a set E. Denote f': X — Y’ the composition
of f with Y — Y’. Then the hypotheses (1) — (4) as well as (b) and (c) hold for
f" and s. If we we show Oy — f/Ox is surjective in an open neighbourhood of y,
then the same is true for Oy — f.Ox. Thus we may assume Y is the spectrum of
R[z.;e € E.

At this point X and Y are flat over S. Then Ys and X are tor independent over Y.
We urge the reader to find their own proof, but it also follows from Lemma [69.1]
applied to the square with corners X, Y, S, S and its base change by s — S. Hence

Rf&*OXS = L(Y; — Y)*Rf*OX
by Derived Categories of Schemes, Lemma [22.5] Because of the vanishing already

established this implies f; .Ox, = (Ys — Y)* f.Ox. We conclude that Oy — f.Ox
is a map of quasi-coherent Oy-modules whose pullback to Yy is surjective. We
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claim f,Ox is a finite type Oy-module. If true, then the cokernel F of Oy —
f+Ox 1is a finite type quasi-coherent Oy-module such that F, ® x(y) = 0. By
Nakayama’s lemma (Algebra, Lemma we have F, = 0. Thus F is zero in an
open neighbourhood of y (Modules, Lemma and the proof is complete.

Proof of the claim. For a finite subset £’ C E set Y’ = Spec(R[z.;e € E']). For
large enough E’ the morphism f' : X — Y — Y’ is proper, see Limits, Lemma
We fix E' and Y’ in the following. Write R = colim R; as the colimit of its
finite type Z-subalgebras. Set S; = Spec(R;) and Y/ = Spec(R;[z.;e € E']). For ¢
large enough we can find a diagram

X—Y ——S9

]

Xi——=Y/ —=5;

with cartesian squares such that X; is flat over S; and X; — Y/ is proper. See

Limits, Lemmas [10.1] and The same argument as above shows Y’ and
X; are tor independent over Y; and hence

RI(X,0x) = RU(X;,0x,) @, (..ccp) Rlese € E']

by the same reference as above. By Cohomology of Schemes, Lemma the
complex RT'(X;, Ox,) is pseudo-coherent in the derived category of the Noetherian
ring R;[zc;e € E'] (see More on Algebra, Lemma [64.17). Hence RT'(X,Ox) is
pseudo-coherent in the derived category of R[z.;e € FE’], see More on Algebra,
Lemma Since the only nonvanishing cohomology module is H°(X,Ox) we
conclude it is a finite R[z.;e € E’]-module, see More on Algebra, Lemma
This concludes the proof. (Il

Lemmal 72.6. Consider a commutative diagram

X——Y
\ f /
S
of morphisms of schemes. Assume X — S is flat, f is proper, dim(X,) < 1 for

y€eY, and R f.Ox = 0. Then f.Ox is S-flat and formation of f.Ox commutes
with arbitrary base change S' — S.

Proof. We may assume Y and S are affine, say S = Spec(A). To show the quasi-
coherent Oy-module f,Oyx is flat relative to S it suffices to show that H°(X, Ox) is
flat over A (some details omitted). By Lemma we have H'(X,0x ®4 M) =0
for every A-module M. Since also Ox is flat over A we deduce the functor M —
H°(X,0x ®4 M) is exact. Moreover, this functor commutes with direct sums by
Cohomology, Lemma Then it is an exercise to see that HY(X,Ox @4 M) =
M ®4 H°(X,Ox) functorially in M and this gives the desired flatness. Finally, if
S’ — S is a morphism of affines given by the ring map A — A’, then in the affine
case just discussed we see that

H(X x5 8" ,0xxs5)=H(X,0x @4 A') = H'(X,0x) @4 A’

This shows that formation of f,Ox commutes with any base change S’ — S. Some
details omitted. ]
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OE7L Lemma 72.7. Consider a commutative diagram

X——Y
\ f /
S
of morphisms of schemes. Let s € S be a point. Assume

(1) X — S is locally of finite presentation and flat at points of X,
(2) Y — S is locally of finite presentation,

(3) f is proper,

(4) the fibres of fs: Xs — Ys have dimension <1 and R'fs.Ox, =0,
(5) Oy, = fs+Ox, is an isomorphism.

Then there is an open Ys C V. C Y such that (a) V is flat over S, (b) f=Y(V) is
flat over S, (c) dim(X,) <1 fory €V, (d) R f.Ox|v =0, (¢) Ov — f.Ox|v is
an isomorphism, and (a) — (e) remain true after base change of f=1(V) — V by
any 8" — S.

Proof. Let y € Y;. We may always replace Y by an open neighbourhood of y.
Thus we may assume Y and S affine. We may also assume that X is flat over
S, dim(X,) < 1fory € Y, R'f.Ox = 0 universally, and that Oy — f.Ox is
surjective, see Lemma (We won’t use all of this.)

Assume S and Y affine. Write S = lim.S; as a cofiltered of affine Noetherian
schemes S;. By Limits, Lemma there exists an element 0 € I and a diagram

\fo /YO
So

of finite type morphisms of schemes whose base change to S is the diagram of the
lemma. After increasing 0 we may assume Yj is affine and Xy — Sy proper, see
Limits, Lemmas[13.1]and[4.13] Let so € Sp be the image of s. As Y is affine, we see
that R'f; .Ox, = 0 is equivalent to H*(X,,Ox,) = 0. Since X is the base change
of X, by the faithfully flat map x(so) — s(s) we see that H' (X s,, Ox,.,) =0
and hence leO,*OXo,SD = 0. Similarly, as Oy, = f;+«Ox, is an isomorphism, so
is Oy, ., = f0,+Ox,.,- Since the dimensions of the fibres of X5 — Y are at most
1, the same is true for the morphism Xg ,, — Yp s,. Finally, since X — S is flat,
after increasing 0 we may assume Xy is flat over Sy, see Limits, Lemma Thus
it suffices to prove the lemma for Xy — Yy — Sy and the point sg.

Xo

Combining the reduction arguments above we reduce to the case where S and
Y affine, S Noetherian, the fibres of f have dimension < 1, and R'f.Ox = 0
universally. Let y € Y be a point. Claim:

Oyy — (f+Ox)y

is an isomorphism. The claim implies the lemma. Namely, since f,Ox is coherent
(Cohomology of Schemes, Proposition the claim means we can replace Y by
an open neighbourhood of y and obtain an isomorphism Oy — f,Ox. Then we
conclude that Y is flat over S by Lemma [72.6] Finally, the isomorphism Oy —
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f+Ox remains an isomorphism after any base change S’ — S by the final statement
of Lemma [72.6]

Proof of the claim. We already know that Oy, — (f+Ox), is surjective (Lemma
72.5) and that (f.Ox), is Og s-flat (Lemma [72.6]) and that the induced map

Oy,y = Oy,y/msOy,y — (f:Ox)y/ms(f-Ox)y — (fs.+Ox,)y

is injective by the assumption in the lemma. Then it follows from Algebra, Lemma
that Oy,;, — (f+Ox)y is injective as desired. O

Lemma 72.8. Let f: X — Y be a proper morphism of Noetherian schemes such
that f.Ox = Oy, such that the fibres of f have dimension < 1, and such that
HY(X,,0x,) =0 fory € Y. Then f* : Pic(Y) — Pic(X) is a bijection onto the
subgroup of L € Pic(X) with L|x, = Ox, for ally €Y.

Proof. By the projection formula (Cohomology, Lemmal54.2)) we see that f. f*N =
N for N € Pic(Y'). We claim that for £ € Pic(X) with L|x, = Ox, forally € Y
we have N' = f,.L is invertible and £ = f*N. This will finish the proof.

The Oy-module N = f, L is coherent by Cohomology of Schemes, Proposition [19.1]
Thus to see that it is an invertible Oy-module, it suffices to check on stalks (Algebra,
Lemma . Since the map from a Noetherian local ring to its completion is
faithfully flat, it suffices to check the completion ( f*E)Q is free (see Algebra, Section
and Lemma . For this we will use the theorem of formal functions as
formulated in Cohomology of Schemes, Lemma Since f,Ox = Oy and hence
(f«Ox)y = Oy, it suffices to show that L|x, = Ox, for each n (compatibly for
varying n. By Lemma we have an exact sequence

HY (X, mpOx /mitOx) — Pic(Xp41) — Pic(X,)
with notation as in the theorem on formal functions. Observe that we have a
surjection

O;.Z/n = mz/mZH ®”(y) OX?/ - mZOX/mZJrlOX
for some integers 7, > 0. Since dim(X,) < 1 this surjection induces a surjection
on first cohomology groups (by the vanishing of cohomology in degrees > 2 coming

from Cohomology, Proposition [20.7). Hence the H' in the sequence is zero and the
transition maps Pic(X,,11) — Pic(X,,) are injective as desired.

We still have to show that f*A = £. This is proved by the same method and we
omit the details. O

73. Affine stratifications

This material is taken from [RV04]. Please read a little bit about stratifications in
Topology, Section [28] before reading this section.

If X is a scheme, then a stratification of X usually means a stratification of the
underlying topological space of X. The strata are locally closed subsets. We will
view these strata as reduced locally closed subschemes of X using Schemes, Remark
[12.06l

Definition 73.1. Let X be a scheme. An affine stratification is a locally finite
stratification X = Hie ; X; whose strata X; are affine and such that the inclusion
morphisms X; — X are affine.
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The condition that a stratification X = J[ X, is locally finite is, in the presence of
the condition that the inclusion morphisms X; — X are quasi-compact, equivalent
to the condition that the strata are locally constructible subsets of X, see Properties,
Lemma 2.7

The condition that X; — X is an affine morphism is independent on the scheme
structure we put on the locally closed subset X;, see Lemma Moreover, if X
is separated (or more generally has affine diagonal) and X = [[X; is a locally
finite stratification with affine strata, then the morphisms X; — X are affine. See
Morphisms, Lemma [11.11} This allows us to disregard the condition of affineness
of the inclusion morphisms X; — X in most cases of interest.

We are often interested in the case where the partially ordered index set I of the
stratification is finite. Recall that the length of a partially ordered set I is the
supremum of the lengths p of chains iy < i; < ... <1, of elements of I.

Lemma 73.2. Let X be a scheme. Let X = [],.; X; be a finite affine stratification.
There exists an affine stratification with index set {0,...,n} where n is the length

of 1.

Proof. Recall that we have a partial ordering on I such that the closure of X; is
contained in (J;, X; for all i € I. Let I C I be the set of maximal indices of I. If
i € I’, then X; is open in X because the union of the closures of the other strata
is the complement of X;. Let U = J,.;, X; viewed as an open subscheme of X so
that Uyeq = Hiel’ X; as schemes. Then U is an affine scheme by Schemes, Lemma
and Lemma [2.3] The morphism U — X is affine as each X; — X, i € I’
is affine by the same reasoning using Lemma The complement Z = X \ U
endowed with the reduced induced scheme structure has the affine stratification
7 = Uiel\l, X;. Here we use that a morphism of schemes T' — Z is affine if and
only if the composition T — X is affine; this follows from Morphisms, Lemmas[11.9
and Observe that the partially ordered set I\ I’ has length exactly
one less than the length of I. Hence by induction we find that Z has an affine
stratification Z = Zp I1... Il Z,,_; with index set {1,...,n}. Setting Z,, = U we
obtain the desired stratification of X. (]

If a scheme X has a finite affine stratification, then of course X is quasi-compact.
A bit less obvious is the fact that it forces X to be quasi-separated as well.

Lemma 73.3. Let X be a scheme. The following are equivalent

(1) X has a finite affine stratification, and
(2) X is quasi-compact and quasi-separated.

Proof. Let X = [J X; be a finite affine stratification. Since each X is affine hence
quasi-compact, we conclude that X is quasi-compact. Let U,V C X be affine open.
Then U NX; and V N X; are affine open in X; since X; — X is an affine morphism.
Hence U NV N X is an affine open of the affine scheme X; (see Schemes, Lemma
for example). Therefore UNV = [[U NV N X; is quasi-compact as a finite
union of affine strata. We conclude that X is quasi-separated by Schemes, Lemma

21.0

Assume X is quasi-compact and quasi-separated. We may use the induction prin-
ciple of Cohomology of Schemes, Lemma to prove the assertion that X has a
finite affine stratification. If X is empty, then it has an empty affine stratification.
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If X is nonempty affine then it has an affine stratification with one stratum. Next,
asssume X = U UV where U is quasi-compact open, V is affine open, and we have
a finite affine stratifications U = {J,c; Ui and UNV =[] ; W;. Denote Z = X \V
and Z' = X \ U. Note that Z is closed in U and Z’ is closed in V. Observe that
UiNZ and U; N W; = U; xy W; are affine schemes affine over U. (Hints: use that
U; xy W; — Wj is affine as a base change of U; — U, hence U; "W} is affine, hence
UiNW; = Uj is affine, hence U; N W; — U is affine.) It follows that

U= HieI(Ui NnZ)1 H(i,j)eIxJ(Ui nw;)

is a finite affine stratification with partial ordering on ITII x J given by i’ < (4, j) <
i <iand (i,5) < (4,5) & ¢ <iand j' < j. Observe that (U;NZ) xx V =10
and (U; N W;) xx V = U; N W; are affine. Hence the morphisms U; N Z — X
and U; N W; — X are affine because we can check affineness of a morphism locally
on the target (Morphisms, Lemma and we have affineness over both U and
V. To finish the proof we take the stratification above and we add one additional
stratum, namely Z’, whose index we add as a minimal element to the partially
ordered set. (I

Definition/73.4. Let X be a nonempty quasi-compact and quasi-separated scheme.
The affine stratification number is the smallest integer n > 0 such that the following
equivalent conditions are satisfied

(1) there exists a finite affine stratification X = [[,.; X; where I has length n,
(2) there exists an affine stratification X = Xy II X7 IT...II X,, with index set

{0,...,n}.

The equivalence of the conditions holds by Lemma [73.2] The existence of a finite
affine stratification is proven in Lemma [73.3

Lemma 73.5. Let X be a separated scheme which has an open covering by n + 1
affines. Then the affine stratification number of X is at most n.

Proof. Say X =UyU...UU, is an affine open covering. Set
Xi=UU...uU)\ (Uig1U...UTU,)

Then X; is affine as a closed subscheme of U;. The morphism X; — X is affine by
Morphisms, Lemma [11.11} Finally, we have X; C X; U X;_1 U... Xp. O

Lemma 73.6. Let X be a Noetherian scheme of dimension oo > d > 0. Then the
affine stratification number of X is at most d.

Proof. By induction on d. If d = 0, then X is affine, see Properties, Lemma [10.5)
Assume d > 0. Let 1y, ...,n, be the generic points of the irreducible components of
X (Properties, Lemma . We can cover X by affine opens containing 71, . .., 7,
see Properties, Lemma Since X is quasi-compact we can find a finite affine
open covering X = szl,_“’m U; with m1,...,m, € Uj for all j =1,...,m. Choose
an affine open U C UyN...NU,, containing 7y, . . ., N, (possible by the lemma already
quoted). Then the morphism U — X is affine because U — Uj is affine for all j,
see Morphisms, Lemma Let Z = X \ U. By construction dim(Z) < dim(X).
By induction hypothesis we can find an affine stratification Z = Uie{O,...,n} Z;of Z
with n < dim(Z). Setting U = X,,+1 and X; = Z; for i < n we conclude. O


https://stacks.math.columbia.edu/tag/0F2V
https://stacks.math.columbia.edu/tag/0F2W
https://stacks.math.columbia.edu/tag/0F2X

0F2Y

0F2%7

0F30
0F31

MORE ON MORPHISMS 222

Proposition|73.7. Let X be a nonempty quasi-compact and quasi-separated scheme
with affine stratification number n. Then HP(X,F) = 0, p > n for every quasi-
coherent O x-module F.

Proof. We will prove this by induction on the affine stratification number n. If
n = 0, then X is affine and the result is Cohomology of Schemes, Lemma [2.2
Assume n > 0. By Definition [73.4] there is an affine scheme U and an affine open
immersion j : U — X such that the complement Z has affine stratification number
n—1. As U and j are affine we have HP (X, j.(F|v)) = 0 for p > 0, see Cohomology
of Schemes, Lemmas and Denote K and Q the kernel and cokernel of the
map F — j.(F|v). Thus we obtain an exact sequence

0=>K—=>F—=4i(Flv) >2—0

of quasi-coherent Ox-modules (see Schemes, Section . A standard argument,
breaking our exact sequence into short exact sequences and using the long exact
cohomology sequence, shows it suffices to prove H?(X,K) = 0 and H?(X,Q) =0
for p > n. Since F — j.(F|y) restricts to an isomorphism over U, we see that K
and Q are supported on Z. By Properties, Lemma [22.3] we can write these modules
as the filtered colimits of their finite type quasi-coherent submodules. Using the fact
that cohomology of sheaves on X commutes with filtered colimits, see Cohomology,
Lemma [19.1] we conclude it suffices to show that if G is a finite type quasi-coherent
module whose support is contained in Z, then HP(X,G) = 0 for p > n. Let
7' C X be the scheme theoretic support of G & Oz; we may and do think of G as a
quasi-coherent module on Z’, see Morphisms, Section 5| Then Z’ and Z have the
same underlying topological space and hence the same affine stratification number,
namely n — 1. Hence H?(X,G) = H?(Z',G) (equality by Cohomology of Schemes,
Lemma vanishes for p > n by induction hypothesis. O

Example 73.8. Let k be a field and let X = P} be n-dimensional projective
space over k. Lemma [73.5| applies to this by Constructions, Lemma Hence
the affine stratification number of P} is at most n. On the other hand, we have
nonzero cohomology in degree n for some quasi-coherent modules on P}, see Co-
homology of Schemes, Lemma Using Proposition we conclude that the
affine stratification number of P} is equal to n.

74. Universally open morphisms
Some material on universally open morphisms.

Lemma 74.1. Let f : X — S be a morphism of schemes. The following are
equivalent
(1) f is universally open,
(2) for every morphism S’ — S which is locally of finite presentation the base
change X — S’ is open, and
(3) for every n the morphism A™ x X — A™ x S is open.

Proof. It is clear that (1) implies (2) and (2) implies (3). Let us prove that (3)
implies (1). Suppose that the base change X1 — T is not open for some morphism
of schemes g : T'— S. Then we can find some affine opens VC S, U C X, W CT
with f(U) C V and g(W) C V such that U xy W — W is not open. If we can
show that this implies A™ x U — A™ x V is not open, then A" x X — A" x S


https://stacks.math.columbia.edu/tag/0F2Y
https://stacks.math.columbia.edu/tag/0F2Z
https://stacks.math.columbia.edu/tag/0F31

0F32

MORE ON MORPHISMS 223

is not open and the proof is complete. This reduces us to the result proved in the
next paragraph.

Let A — B be a ring map such that A’ -+ B’ = A’ ® 4 B does not induce an open
map of spectra for some A-algebra A’. As the principal opens give a basis for the
topology of Spec(B’) we conclude that the image of D(g) in Spec(A’) is not open
for some g € B'. Write g = >_,_, , a; ®b; for some n, a; € A’, and b; € B.
Consider the element h =}, , ;b in Blz1,...,2,]|. Assume that D(h) maps
to an open subset under the morp7hism

Spec(Blz1,...,x,]) — Spec(A[z1,...,z,])

in order to get a contradiction. Then D(h) would map surjectively onto a quasi-
compact open U C Spec(A[x1,...,z,]). Let Alxy,...,z,] — A’ be the A-algebra
homomorphism sending z; to a}. This also induces a B-algebra homomorphism
Blzy,...,x,] — B’ sending h to g. Since

Spec(B[x1, ..., %)) <— Spec(B’)

| |

Spec(Alzy,...,xy]) =<—— Spec(A’)

is cartesian the image of D(g) in Spec(A’) is equal to the inverse image of U in
Spec(A’) and hence open which is the desired contradiction. O

Lemma 74.2. Let f: X — Y be a morphism of schemes. If
(1) f is locally quasi-finite,
(2) Y is geometrically unibranch and locally Noetherian, and
(3) every irreducible component of X dominates an irreducible component of
Y,
then f is universally open.

Proof. For any n the scheme A™ x Y is geometrically unibranch by Lemma |36.4
and Properties, Lemma Hence the hypotheses of the lemma hold for the
morphisms A™ x X — A™ x Y for all n. By Lemma [74.1| it suffices to prove f is
open. By Morphisms, Lemma it suffices to show that generalizations lift along
f. Suppose that y’ ~ y is a specialization of points in Y and z € X is a point
mapping to y. As in Lemma [{1.1] choose a diagram

e

where (V,v) — (Y,y) is an elementary étale neighbourhood, U — V is finite, u is
the unique point of U mapping to v, U C V xy X is open, and v — y and u — x.
Let E be an irreducible component of U passing through wu (there is at least one of
these). Since U — X is étale, F maps to an irreducible component of X, which in
turn dominates an irreducible component of Y (by assumption). Since U — V is
finite hence closed, we conclude that the image E’ C V of E is an irreducible closed
subset passing through v which dominates an irreducible component of Y. Since
V — Y is étale E' must be an irreducible component of V passing through v. Since
Y is geometrically unibranch we see that E’ is the unique irreducible component
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of V passing through v (Lemma [36.2)). Since V' is locally Noetherian we may after
shrinking V' assume that E' =V (equality of sets).

Since V' — Y is étale we can find a specialization v’ ~» v whose image is y' ~ y.
By the above we can find v’ € U mapping to v'. Then u’ ~ u because u is the only
point of U mapping to v and U — V is closed. Then finally the image ' € X of v’
is a point specializing to z and mapping to 3’ and the proof is complete. (I

Lemmal 74.3. Let A — B be a ring map. Say B is generated as an A-module
by by,...,bg € B. Set h = > x;b; € Blz1,...,24). Then Spec(B) — Spec(A) is
universally open if and only if the image of D(h) in Spec(A[zry,...,xq4]) is open.

Proof. If Spec(B) — Spec(A) is universally open, then of course the image of D(h)
is open. Conversely, assume the image U of D(h) is open. Let A — A’ be a ring
map. It suffices to show that the image of any principal open D(g) C Spec(A’®4 B)
in Spec(A’) is open. We may write g = >_,_; ;a; ® b; for some aj € A". Let
Alx1,...,z,] — A’ be the A-algebra homomorphism sending z; to a;. This also
induces a B-algebra homomorphism B[z, ..., 2z,] = A’ ®4 B sending h to g. Since

Spec(B[z1, ..., x,]) =<— Spec(B’)

| |

Spec(Alz1,...,x,]) =<—— Spec(A’)

is cartesian the image of D(g) in Spec(A’) is equal to the inverse image of U in
Spec(A’) and hence open. O

Lemmal 74.4. Let S = limS; be a limit of a directed system of schemes with
affine transition morphisms. Let 0 € I and let fy : Xo — Yy be a morphism of
schemes over Sy. Assume Sy, Xo, Yy are quasi-compact and quasi-separated. Let
fi : Xi = Y; be the base change of fy to S; and let f : X — Y be the base change

of fo to S. If

(1) f is locally quasi-finite and universally open, and
(2) fo is locally of finite presentation,

then there exists an @ > 0 such that f; is locally quasi-finite and universally open.

Proof. By Limits, Lemma after increasing 0 we may assume f; is locally
quasi-finite. Let x € X. By étale localization of quasi-finite morphisms we can find
a diagram

X<~—U

Y-—V
where V' — Y is étale, U C Xy is open, U — V is finite, and x is in the image of
U — X, see Lemma After shrinking V' we may assume V and U are affine.
Since X is quasi-compact, it follows, by taking a finite disjoint union of such V'

and U, that we can make a diagram as above such that U — X is surjective. By
Limits, Lemmas [10.], [£.17] [8.15] 8.10] and [A.13] after possibly increasing 0 we
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may assume we have a diagram

XO%UO

|

Yo=—W

where Vp is affine, Vo — Yp is étale, Uy C (Xo)y, is open, Uy — Vj is finite, and
Up — Xy is surjective. Since V; — Y; is étale and hence universally open, follows
that it suffices to prove that U; — V; is universally open for large enough i. This
reduces us to the case discussed in the next paragraph.

Let A = colim A; be a filtered colimit of rings. Let A9 — By be a ring map.
Set B = A®a, By and B; = A; ®4, Bo. Assume Ay — By is finite, of finite
presentation, and A — B is universally open. We have to show that A; — B;
is universally open for i large enough. Pick by 1,...,b0,4 € By which generate By
as an Ag-module. Set hg = Zj:17___7d zjbo; in Bo[z1,...,zq4]. Denote h, resp.
h; the image of hg in Blz1,...,z4], resp. B;[x1,...,24]. The image U of D(h)
in Spec(A[z1,...,xq]) is open as A — B is universally open. Of course U is
quasi-compact as the image of an affine scheme. For ¢ large enough there is a quasi-
compact open U; C Spec(A;[z1,. .., z4]) whose inverse image in Spec(A[z1,...,z4])
is U, see Limits, Lemma After increasing ¢ we may assume that D(h;) maps
into U;; this follows from the same lemma by considering the pullback of U; in
D(h;). Finally, for i even larger the morphism of schemes D(h;) — U; will be
surjective by an application of the already used Limits, Lemma We conclude
A; — B; is universally open by Lemma [74.3] O

Lemma 74.5. Let f: X — Y be a locally quasi-finite morphism. Then

(1) the functions nx,y of Lemmas and agree,

(2) if X is quasi-compact, then nx/y attains a mazimum d < oc.

Proof. Agreement of the functions is immediate from the fact that the (geometric)
fibres of a locally quasi-finite morphism are discrete, see Morphisms, Lemma [20.§
Boundedness follows from Morphisms, Lemmas and O

Lemma 74.6. Let f: X — Y be a separated, locally quasi-finite, and universally
open morphism of schemes. Let nx,y be as in Lemma . If nx,y(y) > d for
somey €Y and d >0, then nx,y > d in an open neighbourhood of y.

Proof. The question is local on Y hence we may assume Y affine. Let K be
an algebraic closure of the residue field x(y). Our assumption is that (X,)x has
> d connected components. Then for a suitable quasi-compact open X’ C X the
scheme (X?;) x has > d connected components; details omitted. After replacing X
by X’ we may assume X is quasi-compact. Then f is quasi-finite. Let z1,...,z,
be the points of X lying over y. Apply Lemma to get an étale neighbourhood
(U,u) — (Y,y) and a decomposition

U Xy X=wi Hi:l,m,n Hj:l,.“,mi ‘/i’j

as in locus citatus. Observe that nx,y (y) = >, m; in this situation; some details
omitted. Since f is universally open, we see that V; ; — U is open for all 7, j. Hence
after shrinking U we may assume V; ; — U is surjective for all 4, j. This proves that
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NUxyX/U = 2; Mi = Nx/y(y) > d. Since the construction of nx/y is compatible
with base change the proof is complete. ([

Lemma 74.7. Let f: X — Y be a separated, locally quasi-finite, and universally
open morphism of schemes. Let nx/y be as in Lemma [7{.5 If nx/y attains a
mazimum d < 0o, then the set

Yo={y €Y |nx/v(y) =d}
is open in'Y and the morphism f~1(Yy) — Yy is finite.

Proof. The openness of Yy is immediate from Lemma [74.6] To prove finiteness
over Y; we redo the argument of the proof of that lemma. Namely, let y € Yjy.
Then there are at most d points of X lying over y. Say z1,...,x, are the points of
X lying over y. Apply Lemma to get an étale neighbourhood (U,u) — (Y,y)
and a decomposition

Uxy X =WI ]_L:lmn Hj:L...,m Vi

1

as in locus citatus. Observe that d = nx,y(y) = >, m; in this situation; some
details omitted. Since f is universally open, we see that V;; — U is open for all
i, j. Hence after shrinking U we may assume V; ; — U is surjective for all 7, j and we
may assume U maps into W. This proves that ny, x,u > >, m; = d. Since the
construction of nx/y is compatible with base change we know that ny ., x/v = d.
This means that W has to be empty and we conclude that U xy X — U is finite.
By Descent, Lemma this implies that X — Y is finite over the image of
the open morphism U — Y. In other words, we see that f is finite over an open
neighbourhood of y as desired. O

75. Weightings
The material in this section is taken from [AGVTIl Exposee XVII, 6.2.4].

Let # : U — V be a locally quasi-finite morphism of schemes with finite fibres.
Given a function w : U — Z we define a function

Jow:V—127Z, v—3 r(uy=o W(W)[R(u) : £(V)]s

Note that the field extensions are finite (Morphisms, Lemma [20.5), [’ : k], is the
separable degree (Fields, Definition , and the sum is finite as the fibres of 7
are assumed finite. Another way to compute the value of fw w at a point v € V is
as follows. Choose an algebraically closed field k and a morphism @ : Spec(k) — V'
whose image is v. Then we have

(Jrw)(v) = Xgep, w@)

where of course w(u) denotes the value of w at the image w of the point @ under the
morphism Uiy — U. Note that we may view @ € Uy as morphisms @ : Spec(k) — U
such that m ow = v. Namely, since U — V is locally quasi-finite with finite fibres,
the scheme Uy is the spectrum of a finite dimension algebra over k and all of whose
prime ideals are maximal ideals with residue field k. To see that the equality holds,
note that the number of morphisms @ lying over a given w is equal to [k(u) : kK(v)]s
by Fields, Lemma [14.8
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Lemma 75.1. Given a cartesian square

U<—U
.
9 ’
V<~——"-V
with m locally quasi-finite with finite fibres and a function w : U — Z we have
(Jyw)og= [, (woh).
Proof. This follows immediately from the second description of fﬂ w given above.
To prove it from the definition, you use that if E/F is a finite extension of fields
and F’/F is another field extension, then writing (E®p F’);cq = [[ E! as a product
of fields finite over F’, we have
[E:Flo =) [E]: F'],
To prove this equality pick an algebraically closed field extension Q/F’ and observe
that
[E : F|s = |Morg(E, Q)]
= | MOI“F/(E RF F‘l7 Q)|
= [Morp ((E @F F')rea, Q)

=3 | Morp (EL 9)|
= Z[E; Y

where we have used Fields, Lemma [14.§ O

Definition 75.2. Let f: X — Y be a locally quasi-finite morphism. A weighting
or a pondération of f is a map w : X — Z such that for any diagram

X~—U

17

y <2 v

where V' — Y is étale, U C Xy is open, and U — V finite, the function fﬂ(w oh)
is locally constant.

Of course taking w = 0 we obtain a weighting of any locally quasi-finite morphism
f, albeit not a very interesting one. It will turn out that positive weightings, i.e.,
w : X — Z~( are the most interesting ones for various purposes.

Lemma 75.3. Let f: X — Y be a locally quasi-finite morphism. Let w: X — Z
be a weighting. Let f' : X' — Y’ be the base change of f by a morphismY' — Y.
Then the composition w' : X' — Z of w and the projection X' — X is a weighting

of f'.

Proof. Consider a diagram
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as in Definition for the morphism f’. For any v’ € V' we have to show that
J...(w’ o B') is constant in an open neighbourhood of v’. By Lemma @ (and the
fact that étale morphisms are open) we may replace V' by any étale neighbourhood
of v'. After replacing V’ by an étale neighbourhood of v/ we may assume that
U' =UjI...101U], where each U/ has a unique point u} lying over v’ such that
k(u})/k(v") is purely inseparable, see Lemma Clearly, it suffices to prove that
fU_,ﬁV, w/|U{ is constant in a neighbourhood of v’. This reduces us to the case
discussed in the next paragraph.

We have v' € V'’ and there is a unique point u’ of U’ lying over v with x(u’)/k(v")
purely inseparable. Denote z € X and y € Y the image of v’ and v'. We can find an
étale neighbourhood (V,v) — (Y,y) and an open U C Xy such that 7 : U — V' is
finite and such that there is a unique point v € U lying over v which maps to x € X
via the projection h : U — X such that moreover x(u)/k(v) is purely inseparable.
This is possible by the lemma used above. Consider the morphism

U'=UxxU —VxyV =V"

Since u and «' both map to x € X there is a point v” € U” mapping to (u,u’).
Denote v/ € V" the image of u”. After replacing V’,v' by V", v"” we may assume
that the composition V' — Y’ — Y factors through a map of étale neighbourhoods
(V',v") = (V,v) such that the induced morphism X7, = Xy — Xy sends v’ to u.
Inside the base change X{, = Xy we have two open subschemes, namely U’ and
the inverse image Uy of U C Xy. By construction both contain a unique point
lying over v, namely u’ for both of them. Thus after shrinking V' we may assume
these open subsets are the same; namely, U’ \ (U'NUy/) and Uy \ (U'NUy) have
a closed image in V' and these images do not contain v’. Thus U’ = Uy and we
find a cartesian diagram as in Lemma Since fﬂ (w o h) is locally constant by
assumption we conclude. O

Lemmal 75.4. Let f: X =Y be a locally quasi-finite morphism. Let w: X — Z
be a weighting of f. If X' C X is open, then w|x: is a weighting of f|x : X' =Y.

Proof. Immediate from the definition. O

Lemma 75.5. Let f: X =Y and g:Y — Z be locally quasi-finite morphisms.
Let wy : X — 7Z be a weighting of f and let wy : Y — Z be a weighting of g. Then
the function

X —Z, z+— wi(z)wy(f(x))
is a weighting of go f.
Proof. Let us set wgos(z) = wy(z)wy(f(x)) for € X. Consider a diagram

X<=—U

Z<—W

where W — Z is étale, U C Xy is open, and U — W finite. We have to show that
fﬂ Wyo f|rr s locally constant. Choose a point w € W. By Lemma (and the fact
that étale morphisms are open) it suffices to show that [ wgos|u is constant after
replacing (W, w) by an étale neighbourhood. After replacing (W, w) by an étale
neighbourhood we may assume U = U, II...11U,, where each U; has a unique point
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u; lying over w such that x(u;)/k(w) is purely inseparable, see Lemma[41.5] Clearly,
it suffices to show that fU’_ _w Wgor|u, is constant in an étale neighbourhood of w.
This reduces us to the case discussed in the next paragraph.

We have w € W and there is a unique point v € U lying over w with x(u)/k(w)
purely inseparable. Consider the point v = f(u) € Y. After replacing (W, w) by an
elementary étale neighbourhood we may assume there is an open neighbourhood
V C Y of v such that V' — W is finite, see Lemma Then fV_Vl(V) NU is
an open neighbourhood of u where fy : Xy — Y is the base change of f to W.
Hence after Zariski shrinking W, we may assume fy (U) C V. Thus we obtain
morphisms

Uvsvhw
and U — V is finite as V' — W is separated (because finite). Since w; and wy
are weightings of f and g we see that [ wy|y is locally constant on V and [, w|v
is locally constant on W. Thus after shrinking W one more time we may assume

these functions are constant say with values n and m. It follows immediately that
S wgoslu = fboa Wgof|u is constant with value nm as desired. O

Lemma 75.6. Let f: X — Y be a locally quasi-finite morphism. Let w: X — Z
be a weighting. If w(xz) > 0 for all x € X, then f is universally open.

Proof. Since the property is preserved by base change, see Lemma [75.3] it suffices
to prove that f is open. Since we may also replace X by any open of X, it suffices to
prove that f(X) is open. Let y € f(X). Choose z € X with f(z) = y. It suffices to
prove that f(X) contains an open neighbourhood of y and it suffices to do so after
replacing Y by an étale neighbourhood of y. By étale localization of quasi-finite
morphisms, see Section [f1] we may assume there is an open neighbourhood U C X
of z such that 7 = f|y : U — Y is finite. Then fﬂ w|y is locally constant and has
positive value at y. Hence 7(U) contains an open neighbourhood of y and the proof
is complete. [

Lemma 75.7. Let f: X — Y be a morphism of schemes. Assume f is locally
quasi-finite, locally of finite presentation, and flat. Then there is a positive weight-
ing w : X — Zsgo of f given by the rule that sends x € X lying over y € Y
to

w(z) = lengthox’w(OX’z/myOX,z)[Fé(x) s k(y)]i
where [k’ : K; is the inseparable degree (Fields, Definition[14.7).

Proof. Consider a diagram as in Definition Let u € U with images z,y,v in
X,Y, V. Then we claim that

lengthy  (Ox2/myOx ;) = lengthy,  (Ovu/muOv,u)

and

[k(@) : k(y)]i = [K(u) : £ (V)]s
The first equality follows as Ox , — Oy, is a flat local homomorphism such that
m, Oy, = m,Op,, and m, Oy, = m, (because Oy, — Oy, and Ox , = Oy
are unramified) and hence the equality by Algebra, Lemma The second
equality follows because k(v)/k(y) is a finite separable extension and k(u) is a
factor of k(x) ®,(y) k(v) and hence the inseparable degree is unchanged. Having
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said this, we see that formation of the function in the lemma commutes with étale
base change. This reduces the problem to the discussion of the next paragraph.

Assume that f is a finite, flat morphism of finite presentation. We have to show
that f W is locally constant on Y. In fact, f is finite locally free (Morphisms,
Lemma D and we will show that [ s w is equal to the degree of f (which is a
locally constant function on Y'). Namely, for y € Y we see that

(Jjw)(y) = Zf(r):y lengtho ., (Ox.o/myOx.q)[k(x) : £(y)ilw(2) : £(y)]s

= Zf(j):y lengthy (Ox z/myOx .)[K(x) : K(y)]

= length@,,,y ((f*OX)y/my(f*OX)y)

Last equality by Algebra, Lemma [52.12] The final number is the rank of f,Ox at
y as desired. 0O

Lemma 75.8. Let f: X — Y be a morphism of schemes. Assume

(1) f is locally quasi-finite, and

(2) Y is geometrically unibranch and locally Noetherian.
Then there is a weighting w : X — Zx>q given by the rule that sends x € X lying
over y €Y to the “generic separable degree” of Oﬁffm over Of/hy

Proof. It follows from Algebra, Lemma |156.3| that Of/hy — (’)fxffr is finite. Since Y

is geometrically unibranch there is a unique minimal prime p in Of,hy, see More on

Algebra, Lemma [106.5] Write
(k(p) ®O-§,’}y Oggl,gg)red = HKz'
as a finite product of fields. We set w(x) = > [K; : &(p)]s.

Since this definition is clearly insensitive to étale localization, in order to show that
w is a weighting we reduce to showing that if f is a finite morphism, then f W is
locally constant. Observe that the value of f Fw in a generic point 1 of Y is just
the number of points of the geometric fibre X5 of X — Y over n. Moreover, since
Y is unibranch a point y of Y is the specialization of a unique generic point 7.
Hence it suffices to show that (ff w)(y) is equal to the number of points of Xz.
After passing to an affine neighbourhood of y we may assume X — Y is given by
a finite ring map A — B. Suppose (’);}f‘y is constructed using a map k(y) — k into
an algebraically closed field k. Then

Osh ® B = Osh
Yy oA Hf(z)zyHweMorW(n(m),k) X

by Algebra, Lemma and the lemma used above. Observe that the minimal
prime p of O;f/hy maps to the prime of A corresponding to 1. Hence we see that
the desired equality holds because the number of points of a geometric fibre is
unchanged by a field extension. (|

76. More on weightings

We prove a few more basic properties of weightings. Allthough at first it appears
that weightings can be very wild, it actually turns out the condition imposed in
Definition [75.2] is rather strong.


https://stacks.math.columbia.edu/tag/0F3E

OF3G

0F3H

MORE ON MORPHISMS 231

Lemma 76.1. Let f: X — Y be a locally quasi-finite morphism. Let w: X — Z
be a weighting of f. Then the level sets of the function w are locally constructible
in X.

Proof. In the proof below we will use Lemmas and without further
mention. We will also use elementary properties of constructible subsets of schemes
and topological spaces, see Topology, Section [L5| and Properties, Section [2| Using
this the reader sees question is local on X and Y'; details omitted. Hence we may
assume X and Y are affine. If we can find a surjective morphism Y’ — Y of finite

presentation such that the level sets of w pull back to locally constructible subsets
of X' =Y’ xy X, then we conclude by Morphisms, Theorem [22.3]

Assume X and Y affine. We may choose an immersion X — T where T — Y
is finite, see Lemma m By Morphisms, Lemma after replacing Y by Y’
surjective finite locally free over Y, replacing X by Y’ xy X and T by a scheme
finite locally free over Y’ containing Y’ xy T as a closed subscheme, we may assume
T is finite locally free over Y, contains closed subschemes T; mapping isomorphically
to Y such that T'={J,_, , T (set theoretically). Since 7; C T'is a constructible
closed subset (as the image of a finitely presented morphism Y — T of schemes), we
see that for I C {1,...,n} the intersection (), T; is a constructible closed subset
of T and hence maps to a constructible closed subset of Y.

For a disjoint union decomposition {1,...,n} = I} IT ... II I, with nonempty
parts consider the subset Y7, . C Y consisting of points ¥y € Y such that
T, = {x1,...,z,} consists of exactly r points with z; € T; & ¢ € I;. By our
remarks above this is a constructible partition of Y. There exists an affine scheme
Y’ of finite presentation over Y such that the image of Y/ — Y is exactly Y7, 1.,
see Algebra, Lemma Hence we may assume that Y = Y7, ;. for some disjoint
union decomposition {1,...,n} =L II...111.. In thiscase T =T(1)II... 1T T(r)
with T'(j) = ;¢ 1, Ti is a decomposition of T' into disjoint closed (and hence open)
subsets. Intersecting with the locally closed subscheme X we obtain an analogous
decomposition X = X (1)IT...II X (r) into open and closed parts. The morphism
X(j) — Y an immersion. Since w is a weighting, it follows that w|x ;) is locally
constant and we conclude. (I

Lemma 76.2. Let f: X — Y be a locally quasi-finite morphism of finite presen-
tation. Let w : X — Z be a weighting of f. Then the level sets of the function ff w
are locally constructible in Y .

Proof. By Lemma formation of the function [, w commutes with arbitrary
base change and by Lemma [75.3] after base change we still have a weighthing. This
means that if we can find Y/ — Y surjective and of finite presentation, then it
suffices to prove the result after base change to Y’ see Morphisms, Theorem [22.3]

The question is local on Y hence we may assume Y is affine. Then X is quasi-
compact and quasi-separated (as f is of finite presentation). Suppose that X =
U UV are quasi-compact open. Then we have

ffw = ff\Uw|U + ff|vw|v - ff|Ume|Um/

161y fact, if f: X — Y is an immersion and w is a weighting of f, then f restricts to an open
map on the locus where w is nonzero.


https://stacks.math.columbia.edu/tag/0F3G
https://stacks.math.columbia.edu/tag/0F3H

0F3I

0F3J

O0F3K

0F3L

MORE ON MORPHISMS 232

Thus if we know the result for w|y, w|y, w|yny then we know the result for w. By
the induction principle (Cohomology of Schemes, Lemma it suffices to prove
the lemma when X is affine.

Assume X and Y are affine. We may choose an open immersion X — T where
T — Y is finite, see Lemma [I3.3] Because we may still base change with a suitable
Y’ — Y we can use Morphisms, Lemma to reduce to the case where all residue
field extensions induced by the morphism 7' — Y (and a foriori induced by X — Y)
are trivial. In this situation | Fw is just taking the sums of the values of w in fibres.
The level sets of w are locally constructible in X (Lemmal[76.1]). The function w only
takes a finite number of values by Properties, Lemma Hence we conclude by
Morphisms, Theorem [22.3|and some elementary arguments on sums of integers. [

Lemma 76.3. Let f: X — Y be a locally quasi-finite morphism. Letw : X — Zi~g
be a positive weighting of f. Then w is upper semi-continuous.

Proof. Let z € X with image y € Y. Choose an étale neighbourhood (V,v) —
(Y,y) and an open U C Xy such that 7 : U — V is finite and there is a unique
point v € U mapping to v with k(u)/k(v) purely inseparable. See Lemma
Then ([ w|y)(v) = w(u). It follows from Definition that after replacing V' by
a neighbourhood of v we we have w|y (v') < w|y(u) = w(x) for all v’ € U. Namely,
wly(u') occurs as a summand in the expression for ([ w|y)(w(u’)). This proves
the lemma because the étale morphism U — X is open.

Lemma 76.4. Let f: X — Y be a separated, locally quasi-finite morphism with
finite fibres. Let w : X — Z~q be a positive weighting of f. Then ffw is lower
semi-continuous.

Proof. Let y € Y. Let x1,...,2z, € X be the points lying over y. Apply Lemma
to get an étale neighbourhood (U, u) — (Y, y) and a decomposition

as in locus citatus. Observe that (ff w)(y) = > w(v; ;) where w(v; ;) = w(z;).
Since f‘/i S Ly wlv;,; is locally constant by definition, we may after shrinking U
assume these functions are constant with value w(v; ;). We conclude that

Vi — fWHUw|W + (ff w)(y)

This is > ([ s w)(y) and we conclude because U — Y is open and formation of the
integral commutes with base change (Lemma [75.1)). O

fUXyX—)Uw|U><YX = fWan|W + vai,jan

Lemma 76.5. Let f : X — Y be a locally quasi-finite morphism with X quasi-
compact. Let w: X — Z be a weighting of f. Then ff w attains its mazximum.

Proof. It follows from Lemma and Properties, Lemma [2.7] that w only takes a
finite number of values on X. It follows from Morphisms, Lemma that X — Y
has bounded geometric fibres. This shows that f W is bounded. (Il

Lemma 76.6. Let f: X =Y be a separated, locally quasi-finite morphism. Let
w: X — Zsg be a positive weighting of f. Assume fw f attains its mazimum d
and let Yy C'Y be the open set of points y with (ff w)(y) = d. Then the morphism
F1(Yq) — Yq is finite.
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Proof. Observe that Y is open by Lemma Let y € Yy. Say z1,...,z, are
the points of X lying over y. Apply Lemma [{1.5] to get an étale neighbourhood
(U,u) — (Y,y) and a decomposition

U XYX =wi Hi:l..“n H

as in locus citatus. Observe that d = > w(v; ;) where w(v; ;) = w(x;). Since
f% v Wl is locally constant by definition, we may after shrinking U assume

these functions are constant with value w(v; ;). We conclude that

Vij

Jj=1,...,m;

foyX_>Uw|U><yX = fW_>Uw|W + vam_mw Vij — fw_>Uw|W + (ff w)(y)

This is > (ff w)(y) = d and we conclude that W must be the emptyset. Thus
U xy X — U is finite. By Descent, Lemma this implies that X — Y is finite
over the image of the open morphism U — Y. In other words, we see that f is
finite over an open neighbourhood of y as desired. O

Lemma 76.7. Let A — B be a ring map which is finite and of finite presentation.
There exists a finitely presented ring map A — Auniv and an idempotent eypni, €
B ®4 Ayniv such that for any ring map A — A’ and idempotent e € B®4 A’ there
is a Ting map Ayniv — A’ mapping eyniv to e.

Proof. Choose by, ...,b, € B generating B as an A-module. For each i choose a
monic P; € Alz] such that P;(b;) =0 in B, see Algebra, Lemma [36.3] Thus B is a
quotient of the finite free A-algebra B’ = Alzy,...,z,])/(P1(21),. .., Pu(xy,)). Let
J C B’ be the kernel of the surjection B — B. Then J = (f1,..., fm,) is finitely
generated as B is a finitely generated A-algebra, see Algebra, Lemma Choose
an A-basis b}, ...,V of B’. Consider the algebra

Auni’v = A[Zl,. c3ZNS YLy e 7ym]/I
where I is the ideal generated by the coefficients in A[z1,...,2n, Y1, ., Ym] of the

basis elements b}, ..., of the expresssion
2
O 27 =D 2+ >y
in B'[21,...,2N,41,- -, Ym]- By construction the element ) z;b’ maps to an idem-

potent e,,i, in the algebra B® s Ayni,. Moreover, if e € B® 4 A’ is an idempotent,
then we can lift e to an element of the form ) b’ ® a} in B’ ®4 A’ and we can find
ay € A’ such that

QW @a)® = ti@d+3_ fread
is zero in B’ ®4 A’. Hence we get an A-algebra map Ay, — A sending z; to a;-
and yj to a)l mapping eyni, to e. This finishes the proof. O

Lemma 76.8. Let X — Y be a morphism of affine schemes which is quasi-finite
and of finite presentation. There exists a morphism Yyniw — Y of finite presentation
and an open subscheme Uypniy C Yuniv Xy X such that Uypiw = Yuniv @S finite with
the following property: given any morphismY' — Y of affine schemes and an open
subscheme U' C Y' xy X such that U' — Y’ is finite, there exists a morphism
Y’ = Yyniv such that the inverse image of Uypiy s U'.
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Proof. Recall that a finite type morphism is quasi-finite if and only if it has relative
dimension 0, see Morphisms, Lemma By Lemma applied with d = 0
we reduce to the case where X and Y are Noetherian. We may choose an open
immersion X — X’ such that X’ — Y is finite, see Algebra, Lemma Note
that if we have Y/ — Y and U’ as in (2), then

U/—>Y/XyX—>Y/XyX/

is open immersion between schemes finite over Y’/ and hence is closed as well. We
conclude that U’ corresponds to an idempotent in

LY, Oyr) ®r(y,0y) T(X', Ox/)

whose corresponding open and closed subset is contained in the open Y/ xy X. Let
Y’ . — Y and idempotent

Cuniv € L (Yunivs Oy,,,.1,) @r(yv,0y) DX, Ox/)

be the pair constructed in Lemma for the ring map I'(Y, Oy ) — T'(X’, Ox)
(here we use that Y is Noetherian to see that X’ is of finite presentation over Y').
Let U],.., C Y. . Xy X’ be the corresponding open and closed subscheme. Then

we see that
Ulltniv \ YI

UNIV

!

Xy X
is a closed subset of U, and hence has closed image T C

i 1 we set
Yuniv = Yinin \ T and Uypip the restriction of U, ;. t0 Yyniw Xy X, then we see

that the lemma is true. O

Lemma 76.9. Let Y = limY; be a directed limit of affine schemes. Let 0 € T
and let fo: Xg = Yy be a morphism of affine schemes which is quasi-finite and of
finite presentation. Let f : X —Y and f; : X; = Y; fori > 0 be the base changes
of fo. If w: X — Z is a weighting of f, then for sufficiently large i there exists a
weighting w; : X; — Z of f; whose pullback to X is w.

Proof. By Lemma the level sets of w are constructible subsets Ej, of X. This
implies the function w only takes a finite number of values by Properties, Lemma

Thus there exists an ¢ such that Ej descends to a construcible subset E; j in

X, for all k; moreover, we may assume X; = [[ E; 5. This follows as the topological
space of X is the limit in the category of topological spaces of the spectral spaces
X, along a directed system with spectral transition maps. See Limits, Section
and Topology, Section We define w; : X; — Z such that its level sets are the
constructible sets F; .

Choose Y; yniv — Y; and Uj yniv C Yiunio Xy; X; as in Lemma By the
universal property of the construction, in order to show that w; is a weighting, it
would suffice to show that

Ui, univ

Ti = fUi,umv%Yi,umvwi
is locally constant on Yj yniy. By Lemma [76.2] this function has constructible level
sets but it may not (yet) be locally constant. Set Yyniv = Yiuniv Xy; ¥ and let
Uuniv C Yuniv Xy X be the inverse image of U; yniv. Then, since the pullback of
w t0 Yyniv Xy X is a weighting for Yy iy Xy X — Yynio (Lemma [75.3) we do have
that

T= fUuniv —Yuniv Wi | Uuniv
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is locally constant on Yy,i,. Thus the level sets of 7 are open and closed. Finally,
we have Yyni = limy>; Yy yniw and the level sets of 7 are the inverse limits of
the level sets of 7,/ (similarly defined). Hence the references above imply that for
sufficiently large i’ the level sets of 7, are open as well. For such an index i’ we
conclude that w; is a weighting of f;; as desired. O

77. Weightings and affine stratification numbers

In this section we give a bound for the affine stratification number of a scheme
which has a certain kind of cover by an affine scheme.

Lemma 77.1. Let f : X — Y be a morphism of affine schemes which is quasi-
finite and of finite presentation. Let w : X — Z~q be a postive weighting of f. Let
d < 0o be the maximum value of ff w. The open

Ya={yeY | (f w)y) =d)
of Y is affine.

Proof. Observe that [ ; w attains its maximum by Lemma The set Y, is open
by Lemma Thus the statement of the lemma makes sense.

Reduction to the Noetherian case; please skip this paragraph. Recall that a finite
type morphism is quasi-finite if and only if it has relative dimension 0, see Mor-
phisms, Lemma By Lemma [34.9| applied with d = 0 we can find a quasi-finite
morphism fy : Xo — Y) of affine Noetherian schemes and a morphism Y — Y{ such
that f is the base change of fy. Then we can write Y = limY; as a directed limit
of affine schemes of finite type over Yy, see Algebra, Lemma By Lemma
we can find an ¢ such that our weighting w descends to a weighting w; of the base
change f; : X; — Y; of fy. Now if the lemma holds for f;, w;, then it implies the
lemma for f as formation of [ 5w commutes with base change, see Lemma |75.1

Assume X and Y Noetherian. Let X’ — Y be the base change of f by a morphism
g : Y — Y. The formation of ff w and hence the open Yy commute with base
change. If g is finite and surjective, then Y, — Yj is finite and surjective. In
this case proving that Yy is affine is equivalent to showing that Y is affine, see
Cohomology of Schemes, Lemma [13.3

We may choose an immersion X — T with T finite over Y, see Lemma We
are going to apply Morphisms, Lemma to the finite morphism 7" — Y. This
lemma tells us that there is a finite surjective morphism Y/ — Y such that Y’ xy T
is a closed subscheme of a scheme T” finite over Y/ which has a special form. By
the discussion in the first paragraph, we may replace Y by Y', T by T’, and X by
Y’ xy X. Thus we may assume there is an immersion X — T (not necessarily open
or closed) and closed subschemes T; C T, i = 1,...,n where

(1) T =Y is finite (and locally free),

(2) T; — Y is an isomorphism, and

(3) T'=U;=1,.,Ti set theoretically.
Let Y/ = [ Yk be the disjoint union of the irreducible components of Y (viewed as
integral closed subschemes of V). Then we may base change once more by Y’ — Y’;
here we are using that Y is Noetherian. Thus we may in addition assume Y is
integral and Noetherian.
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We also may and do assume that T; # T if ¢ # j by removing repeats. Since Y and
hence all T; are integral, this means that if 7; and T} intersect, then they intersect
in a closed subset which maps to a proper closed subset of Y.

Observe that V; = X N T; is a locally closed subset which is in addition a closed
subscheme of X hence affine. Let n € Y and n; € T; be the generic points. If
n € Yy, then Yy = ) and we're done. Assume 1 € Y;. Denote I € {1,...,n} the
subset of indices ¢ such that n; € V;. For ¢ € I the locally closed subset V; C T;
contains the generic point of the irreducible space T; and hence is open. On the
other hand, since f is open (Lemma 7 for any x € X we can find an i € I and
a specialization 7n; ~» x. It follows that x € T; and hence z € V;. In other words, we
see that X = (J,c; Vi set theoretically. We claim that Yy = [);c; Im(V; — Y); this
will finish the proof as the intersection of affine opens Im(V; — Y') of YV is affine.

Fory € Y let f~*({y}) = {x1,...,2,.} in X. For each i € I there is at most one
J(i) € {1,...,2,} such that n; ~ ;4. In fact, j(i) exists and is equal to j if and
only if &; € V;. If ¢ € I is such that j = j(i) exists, then V; — Y is an isomorphism
in a neighbourhood of z; — y. Hence Uiel’ j()=j Vi — Y is finite after replacing
source and target by neighbourhoods of z; — y. Thus the definition of a weighting
tells us that w(2;) = > icr. j(i)=; w(n:). Thus we see that

([ y0)(1) = Sier (1) = 30y enasts W) = 32, wlaey) = (f w)(y)

Thus equality holds if and only if y is contained in [, ; Im(V; — Y’) which is what
we wanted to show. (]

Proposition| 77.2. Let f : X — Y be a surjective quasi-finite morphism of
schemes. Let w : X — Zsq be a positive weighting of f. Assume X affine and Y
sepamteﬂ. Then the affine stratification number of Y is at most the number of
distinct values of ff w.

Proof. Note that since Y is separated, the morphism X — Y is affine (Morphisms,

Lemma[11.11)). The function [ Fw attains its maximum d by Lemma We will
)

use induction on d. Consider the open subscheme Y; = {y € Y | ( (y) = d}

of Y and recall that f=1(Y;) — Yy is finite, see Lemma By Lemma for
every affine open W C Y we have that Y; N W is affine (this uses that W xy X is
affine, being affine over X). Hence Y; — Y is an affine morphism of schemes. We
conclude that f~1(Yy) = Yy xy X is an affine scheme being affine over X. Then
f~Y(Yy) — Yy is surjective and hence Yy is affine by Limits, Lemma Set
X=X\ f1(Yy) and Y’ = Y \ Yy viewed as closed subschemes of X and Y. Since
X' is closed in X it is affine. Since Y is closed in Y it is separated. The morphism
f': X' =Y’ is surjective and w induces a weighting w’ of f’, see Lemma [75.3] By
induction Y’ has an affine stratification of length < the number of distinct values
of [ 5 w’ and the proof is complete. ([

78. Completely decomposed morphisms

Nishnevich studied the notion of a completely decomposed family of étale mor-
phisms, in order to define what is now called the Nishnevich topology, see for
example [Nis89].

171t suffices if the diagonal of Y is affine.
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Definition 78.1. A morphism f : X — Y of schemes is said to be completely
decomposeﬂ if for all points y € Y there is a point 2 € X with f(z) = y such that
the field extension x(z)/k(y) is trivial. A family of morphisms {f; : X; — Y }ier of
schemes with fixed target is said to be completely decomposed if [ f; : [[Yi = X
is completely decomposed.

We start with some basic lemmas.

Lemma 78.2. The composition of two completely decomposed morphisms of schemes

is completely decomposed. If {f; : Xi — Y}ier is completely decomposed and for
each i we have a family {X;; — X;}jes, which is completely decomposed, then the
family {X;; — Y }icr jeg, s completely decomposed.

Proof. Omitted. O

Lemma 78.3. The base change of a completely decomposed morphism of schemes
is completely decomposed. If {f; : X; — Y }ier is completely decomposed and Y' —
Y is a morphism of schemes, then {X; xy Y’ — Y'}icr is completely decomposed.

Proof. Let f: X — Y and g : Y/ — Y be morphisms of schemes. Let ¢y’ € Y’ be
a point with image y = ¢g(y') in Y. If x € X is a point such that f(z) = y and
k(z) = k(y), then there exists a unique point 2’ € X’ = X xy Y’ which maps to 3’
in Y’ and to z in X and moreover x(z') = k(y’), see Schemes, Lemma From
this fact the lemma follows easily; we omit the details. O

Lemma 78.4. Let f: X — Y be a morphism of schemes. Assume [ is completely
decomposed, f is locally of finite presentation, and Y is quasi-compact and quasi-
separated. Then there exist n > 0 and morphisms Z; — Y, i = 1,...,n with the
following properties

(1) 11%; = Y is surjective,

(2) Z; = Y is an immersion for all i,

(3) Z; = Y is of finite presentation for all i, and

(4) the base change X Xy Z; — Z; has a section for all i.

Proof. Let y € Y. By assumption there is a morphism o : Spec(k(y)) — X over
Y. We can write Spec(x(y)) as a directed limit of affine schemes Z over Y such
that Z — Y is an immersion of finite presentation. Namely, choose an affine open
y € Spec(A) C Y and say y corresponds to the prime ideal p of A. Then k(p) is
the filtered colimit of the rings (A/I); where I C p is a finitely generated ideal
and f € A, f ¢ p. The morphisms Z = Spec((A/I);) — Y are immersions of
finite presentation; quasi-compactness of Z — Y follows as Y is quasi-separated,
see Schemes, Lemma By Limits, Proposition [6.1] for some such Z there is a
morphism ¢’ : Z — X over Y agreeing with o on the spectrum of x(p). Since o’ is
a morphism over Y, we obtain a section of the projection X xy Z — Z

We conclude that Y is the union of the images of immersions Z — Y of finite
presentation such that X xy Z — Z has a section. Since the image of Z — Y is
constructible (Morphisms, Lemma and since Y is compact in the constructible
topology (Properties, Lemma and Topology, Lemma , we see that a finite
number of these suffice. O

18This may be nonstandard terminology.

[EHIK21], Lemma
2.1.2]
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Lemma 78.5. Let S =limycp S\ be a limit of a directed system of schemes with
affine transition morphisms. Let 0 € A and let fy : Xg — Yo be a morphism of
schemes over Sy. For A > 0 let f\ : X\ — Yy be the base change of fy to Sy and
let f: X —Y be the base change of fo to S. If

(1) f is completely decomposed,
(2) Yy is quasi-compact and quasi-separated, and
(3) fo is locally of finite presentation,
then there exists an A > 0 such that fy is completely decomposed.

Proof. Since Y is quasi-compact and quasi-separated, the scheme Y, which is
affine over Yj, is quasi-compact and quasi-separated. Choose n > 0 and Z; — Y,
i=1,...,n as in Lemma Denote o; : Z; — X morphisms over Y which exist
by our choice of Z;. After increasing 0 € A we may assume there exist morphisms
Z; o — Yp of finite presentation whose base changes to S are the morphisms Z; — Y,
see Limits, Lemma By Limits, Lemma we may assume, after possibly
increasing 0, that Z; o — Yy is an immersion. Since [[Z; — Y is surjective, we
may assume, after possibly increasing 0, that [[ Z; o — Yj is surjective, see Limits,
Lemma [8.15] Observe that Z; = limy>o Z; x where Z; y = Y Xy, Z; 0. Let us view
the compositions
Z; 25 X - Xo

as morphisms over Y. Since fy is locally of finite presentation by Limits, Propo-
sition we can find a A > 0 such that there exist morphisms ag)\ tZix — Xo
over Y, whose precomposition with Z; — Z;  are the displayed arrows. Of course,
then o] , determines a morphism oy : Z; x» — X\ = Xo Xy, Y over Y. Since
L1 Z:i,x — Y, is surjective we conclude that Xy — Y} is completely decomposed. O

79. Families of ample invertible modules
We continue the discussion from Morphisms, Section

Lemma 79.1. Let f: X — Y be a morphism of schemes. Assume

(1) Y has an ample family of invertible modules,
(2) there exists an f-ample invertible module on X.

Then X has an ample family of invertible modules.

Proof. Let £ be an f-ample invertible module on X. This in particular implies
that f is quasi-compact, see Morphisms, Definition Since Y is quasi-compact
by Morphisms, Definition we see that X is quasi-compact (and hence X itself
satisfies the first condition of Morphisms, Definition . Let x € X with image
y € Y. By assumption (2) we can find an invertible Oy-module A/ and a section
t € I(Y,N) such that the locus Y; where ¢ does not vanish is affine. Then L is
ample over f~1(Y;) = X¢+; and hence we can find a section s € I'(X s+, £) such
that (Xj+)s is affine and contains z. By Properties, Lemma for some n > 0
the product (f*t)"s extends to a section s’ € I'(X, f*N®" @ L). Then finally the
section s” = f*ts’ of f*N®" 1 ® L vanishes at every point of X \ Xy-; hence we
see that X » = (Xf*t)s is affine as desired. O

Lemma 79.2. Let f: X — Y be an affine or quasi-affine morphism of schemes.
If Y has an ample family of invertible modules, so does X .

Proof. By Morphisms, Lemma, this is a special case of Lemma [79.1 (]
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80. Blowing up and ample families of invertible modules
We prove a result from [Grol0)].

Lemma 80.1. Let X be a scheme. Suppose given effective Cartier divisors
D1,...,D,, on X and invertible modules L1,...,L,, such that (\D; = 0 and
Li|x\p, is ample. Then X has an ample family of invertible modules.

Proof. Let z € X. Choose an index ¢ € {l,...,m} such that x € D;. Set
U; = X \ D;. Since £;|r, we can find an n > 1 and a section s € I'(U;, LS™) such
that the locus (U;)s where s doesn’t vanish is affine (Properties, Definition [26.1)).
Since U; is the locus where the canonical section 1 € Ox(D;) doesn’t vanish, we
see from Properties, Lemma there exists an N > 0 such that s extends to a
section

s' € D(X,LP" ®o Ox(ND;))
After replacing N by N + 1 we see that s’ vanishes at every point of D; and hence

that Xs = (U;)s is affine. This proves that X has an ample family of invertible
modules, see Morphisms, Definition [I12.1} O

Lemma 80.2. Let X be a quasi-compact and quasi-separated scheme with finitely
many irreducible components. There exists a quasi-compact dense open U C X and
a U-admissible blowing up X' — X such that the scheme X' has an ample family
of invertible modules.

Proof. Let n1,...,m, € X be the generic points of the irreducible components of
X. By Properties, Lemma[29.4) and the fact that X is quasi-compact we can find a
finite affine open covering X = Uy U...UU,, such that each U; contains 7y, ..., 7,.
In particular the quasi-compact open subset U = U; N...NU,, is dense in X. Let
Z;, C Ox be a finite type quasi-coherent ideal sheaf such that U; = X \ Z; where
Z; = V(Z;), see Properties, Lemma Let
f: X —X

be the blowing up of X in the ideal sheaf Z = 7; ---Z,,. Note that f is a U-
admissible blowing up as V(Z) is (set theoretically) the union of the Z; which are
disjoint from U. Also, f is a projective morphism and Ox (1) is f-relatively ample,
see Divisors, Lemma By Divisors, Lemma for each ¢ the morphism f’
factors as X’ — X/ — X where X] — X is the blowing up in Z; and X' — X/ is
another blowing up (namely in the pullback of the products of the ideals Z; omitting
Z.). Tt follows from this that D; = f=*(Z;) C X' is an effective Cartier divisor,
see Divisors, Lemmas and We have X'\ D; = f~Y(U;). As Ox/(1) is
f-ample, the restriction of Ox/(1) to X'\ D; is ample. It follows from Lemma m
that X’ has an ample family of invertible modules. O

Proposition 80.3. Let X be a quasi-compact and quasi-separated scheme. There
extsts a morphism f 'Y — X which is of finite presentation, proper, and com-
pletely decomposed (Definition such that the scheme Y has an ample family
of invertible modules.

Proof. By Limits, Proposition there exists an affine morphism X — X where
X is a scheme of finite type over Z. Below we produce a morphism Yy — X with all
the desired properties. Then setting ¥ = X xx, Yp and f equal to the projection
f Y — X we conclude. To see this observe that f is of finite presentation

[Gro10l, Proposition
1.3.1]
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(Morphisms, Lemma [21.4)), f is proper (Morphisms, Lemma [41.5)), f is completely
decomposed (Lemma [78.3). Finally, since Y — Y} is affine (as the base change of

X — Xp) we see that Y has an ample family of invertible modules by Lemma
This reduces us to the case discussed in the next paragraph.

Assume X is of finite type over Z. In particular dim(X) < co. We will argue
by induction on dim(X). If dim(X) = 0, then X is affine and has the resolution
property. In general, there exists a dense open U C X and a U-admissible blowing
up X’ — X such that X’ has an ample family of invertible modules, see Lemma
Since f : X’ — X is an isomorphism over U we see that every point of
U lifts to a point of X’ with the same residue field. Let Z = X \ U with the
reduced induced scheme structure. Then dim(Z) < dim(X) as U is dense in X
(see above). By induction we find a proper, completely decomposed morphism
W — Z such that W has an ample family of invertible modules. Then it follows
that Y = X’ IIW — X is the desired morphism. |

81. The extensive criterion for closed immersions

In this section, we give a criterion for a morphism of schemes to be a closed immer-
sion.

Lemma 81.1. A morphism f: X — Y of affine schemes is a closed immersion
if and only if for every injective ring map A — B and commutative square

Spec(B) ——= X

Spec(A) ——Y
there exists a lift Spec(A) — X making the two triangles commute.

Proof. Let the morphism f be given by the ring map ¢ : R — S. Then f is a
closed immersion if and only if ¢ is surjective.

First, we assume that ¢ is surjective. Let v : A — B be an injective ring map, and
suppose we are given a commutative diagram

R—2sA

!

— > B

Then we define a lift S — A by s — a(r), where r € R is such that ¢(r) = s.
This is well-defined because 1 is injective and the square commutes. Since taking
the ring spectrum defines an anti-equivalence between commutative rings and affine
schemes, the desired lifting property for f holds.

Next, we assume that ¢ has lifts against all injective ring maps ¢ : A — B. Note
that ¢(R) is a subring of S, so we obtain a commutative square

R *>.¢(R)

T

S S



https://stacks.math.columbia.edu/tag/0H2P

0H2Q

0H2R

0H2S
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in which a lift S — ¢(R) exists. Hence, the inclusion ¢(R) — S must be an
isomorphism, which shows that ¢ is surjective, and we win. ([

Lemma 81.2. Let X be a scheme. If the canonical morphism X — Spec(I'(X, Ox))
of Schemes, Lemma[6.4) has a retraction, then X is an affine scheme.

Proof. Write S = Spec(I'(X,0x)) and f : X — S the morphism given in the
lemma. Let s : S — X be a retraction; so idx = sf. Then fsf = idgf. Since f
induces an isomorphism I'(S, Og) — I'(X, Ox) this means that fs and idg induce
the same map on I'(S,0g). Whence fs = idg as S is affine. Hence f is an
isomorphism and X is an affine scheme, as was to be shown. ([

Lemma 81.3. Let X be a scheme. Let f : X — S = Spec(T'(X,Ox)) be the
canonical morphism of Schemes, Lemmal[6.4} The largest quasi-coherent Og-module
contained in the kernel of f*: Og — f,Ox is zero. If X is quasi-compact, then f*
is injective. In particular, if X is quasi-compact, then f is a dominant morphism.

Proof. Let M C I'(S,Og) be the submodule corresponding to the largest quasi-
coherent Og-module contained in the kernel of f¥. Then any element a € M is
mapped to zero by f*. However, f¥(a) is the element of

F(S7f*OX) = F(X,Ox) = F(Sa OS)

corresponding to a itself! Thus a = 0. Hence M = 0 which proves the first assertion.
Note that this is equivalent to the morphism f : X — S being scheme-theoretically
surjective.

If X is quasi-compact, then Ker(f¥) is quasi-coherent by Morphisms, Lemma
Hence Ker(f*) = 0 and f* is injective. In this case, f is a dominant morphism by
part (4) of Morphisms, Lemma (]

Lemma 81.4. Let f: X — Y be a quasi-compact morphism of schemes. Then
f is a closed immersion if and only if for every injective ring map A — B and
commutative square

Spec(B) —— X

Spec(A) ——=Y
there exists a lift Spec A — X making the diagram commute.

Proof. Assume that f is a closed immersion. Let A — B be an injective ring map
and consider a commutative square

Spec(B) —— X

Spec(A) —Y


https://stacks.math.columbia.edu/tag/0H2Q
https://stacks.math.columbia.edu/tag/0H2R
https://stacks.math.columbia.edu/tag/0H2S

MORE ON MORPHISMS 242

Then Spec(A4) xy X — Spec(A) is a closed immersion and hence we get an ideal
I C A and a commutative diagram

Spec(B) —— Spec(A/I) —= X

Spec(A) — Spec(A) ——=Y
We obtain a lift by Lemma

Assume that f has the lifting property stated in the lemma. To prove that f is
a closed immersion is local on Y, hence we may and do assume Y is affine. In
particular, Y is quasi-compact and therefore X is quasi-compact. Hence there
exists a finite affine open covering X = U; U...UU,. The source of the morphism

mU=][ui— X
is affine and the induced ring map I'(X, Ox) — I'(U, Oyp) is injective. By assump-
tion, there exists a lift in the diagram
U —ﬂ_>/ X
7
Spec(T'(X, OX)) S Y

where f’ is the morphism of affine schemes corresponding to the ring map I'(Y, Oy ) —
I'(X,0x). It follows from the fact that 7 is an epimorphism that the morphism h
is a retraction of the canonical morphism X — Spec(I'(X, Ox)); details omitted.
Hence X is affine by Lemma [81.2] By Lemma [81.1] we conclude that f is a closed

immersion. |
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