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1. Introduction

02GY In this chapter we continue our study of properties of morphisms of schemes. A
fundamental reference is [DG67].

2. Thickenings

04EW The following terminology may not be completely standard, but it is convenient.

Definition 2.1.04EX Thickenings.
(1) We say a scheme X ′ is a thickening of a scheme X if X is a closed subscheme

of X ′ and the underlying topological spaces are equal.
(2) We say a scheme X ′ is a first order thickening of a scheme X if X is a closed

subscheme of X ′ and the quasi-coherent sheaf of ideals I ⊂ OX′ defining
X has square zero.

(3) Given two thickenings X ⊂ X ′ and Y ⊂ Y ′ a morphism of thickenings
is a morphism f ′ : X ′ → Y ′ such that f ′(X) ⊂ Y , i.e., such that f ′|X
factors through the closed subscheme Y . In this situation we set f = f ′|X :
X → Y and we say that (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) is a morphism of
thickenings.

(4) Let S be a scheme. We similarly define thickenings over S, and morphisms
of thickenings over S. This means that the schemes X,X ′, Y, Y ′ above are
schemes over S, and that the morphisms X → X ′, Y → Y ′ and f ′ : X ′ →
Y ′ are morphisms over S.

Finite order thickenings. Let iX : X → X ′ be a thickening. Any local section of
the kernel I = Ker(i♯X) is locally nilpotent. Let us say that X ⊂ X ′ is a finite
order thickening if the ideal sheaf I is “globally” nilpotent, i.e., if there exists an
n ≥ 0 such that In+1 = 0. Technically the class of finite order thickenings X ⊂ X ′

is much easier to handle than the general case. Namely, in this case we have a
filtration

0 = In+1 ⊂ In ⊂ In−1 ⊂ . . . ⊂ I ⊂ OX′

and we see that X ′ is filtered by closed subspaces

X = X1 ⊂ X2 ⊂ . . . ⊂ Xn ⊂ Xn+1 = X ′

such that each pair Xi ⊂ Xi+1 is a first order thickening over S. Using simple in-
duction arguments many results proved for first order thickenings can be rephrased
as results on finite order thickenings.

First order thickening are described as follows (see Modules, Lemma 28.11).

Lemma 2.2.05YV Let X be a scheme over a base S. Consider a short exact sequence

0→ I → A → OX → 0

of sheaves on X where A is a sheaf of f−1OS-algebras, A → OX is a surjection of
sheaves of f−1OS-algebras, and I is its kernel. If

(1) I is an ideal of square zero in A, and
(2) I is quasi-coherent as an OX-module

then X ′ = (X,A) is a scheme and X → X ′ is a first order thickening over S.
Moreover, any first order thickening over S is of this form.

https://stacks.math.columbia.edu/tag/04EX
https://stacks.math.columbia.edu/tag/05YV
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Proof. It is clear that X ′ is a locally ringed space. Let U = Spec(B) be an affine
open of X. Set A = Γ(U,A). Note that since H1(U, I) = 0 (see Cohomology of
Schemes, Lemma 2.2) the map A → B is surjective. By assumption the kernel
I = I(U) is an ideal of square zero in the ring A. By Schemes, Lemma 6.4 there is
a canonical morphism of locally ringed spaces

(U,A|U ) −→ Spec(A)

coming from the map B → Γ(U,A). Since this morphism fits into the commutative
diagram

(U,OX |U )

��

// Spec(B)

��
(U,A|U ) // Spec(A)

we see that it is a homeomorphism on underlying topological spaces. Thus to see
that it is an isomorphism, it suffices to check it induces an isomorphism on the
local rings. For u ∈ U corresponding to the prime p ⊂ A we obtain a commutative
diagram of short exact sequences

0 // Ip //

��

Ap
//

��

Bp
//

��

0

0 // Iu // Au // OX,u // 0.

The left and right vertical arrows are isomorphisms because I and OX are quasi-
coherent sheaves. Hence also the middle map is an isomorphism. Hence every point
of X ′ = (X,A) has an affine neighbourhood and X ′ is a scheme as desired. □

Lemma 2.3.06AD The case of a finite
order thickening is
[GD60, Proposition
5.1.9].

Any thickening of an affine scheme is affine.

Proof. This is a special case of Limits, Proposition 11.2. □

Proof for a finite order thickening. Suppose that X ⊂ X ′ is a finite order
thickening with X affine. Then we may use Serre’s criterion to prove X ′ is affine.
More precisely, we will use Cohomology of Schemes, Lemma 3.1. Let F be a quasi-
coherent OX′ -module. It suffices to show that H1(X ′,F) = 0. Denote i : X → X ′

the given closed immersion and denote I = Ker(i♯ : OX′ → i∗OX). By our discus-
sion of finite order thickenings (following Definition 2.1) there exists an n ≥ 0 and
a filtration

0 = Fn+1 ⊂ Fn ⊂ Fn−1 ⊂ . . . ⊂ F0 = F
by quasi-coherent submodules such that Fa/Fa+1 is annihilated by I. Namely, we
can take Fa = IaF . Then Fa/Fa+1 = i∗Ga for some quasi-coherent OX -module
Ga, see Morphisms, Lemma 4.1. We obtain

H1(X ′,Fa/Fa+1) = H1(X ′, i∗Ga) = H1(X,Ga) = 0

The second equality comes from Cohomology of Schemes, Lemma 2.4 and the last
equality from Cohomology of Schemes, Lemma 2.2. Thus F has a finite filtration
whose successive quotients have vanishing first cohomology and it follows by a
simple induction argument that H1(X ′,F) = 0. □

https://stacks.math.columbia.edu/tag/06AD
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Lemma 2.4.09ZU Let S ⊂ S′ be a thickening of schemes. Let X ′ → S′ be a morphism
and set X = S ×S′ X ′. Then (X ⊂ X ′)→ (S ⊂ S′) is a morphism of thickenings.
If S ⊂ S′ is a first (resp. finite order) thickening, then X ⊂ X ′ is a first (resp.
finite order) thickening.

Proof. Omitted. □

Lemma 2.5.0BPE If S ⊂ S′ and S′ ⊂ S′′ are thickenings, then so is S ⊂ S′′.

Proof. Omitted. □

Lemma 2.6.0BPF The property of being a thickening is fpqc local. Similarly for first
order thickenings.

Proof. The statement means the following: Let X → X ′ be a morphism of schemes
and let {gi : X ′

i → X ′} be an fpqc covering such that the base change Xi → X ′
i is

a thickening for all i. Then X → X ′ is a thickening. Since the morphisms gi are
jointly surjective we conclude that X → X ′ is surjective. By Descent, Lemma 23.19
we conclude that X → X ′ is a closed immersion. Thus X → X ′ is a thickening.
We omit the proof in the case of first order thickenings. □

3. Morphisms of thickenings

0CF2 If (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) is a morphism of thickenings of schemes, then
often properties of the morphism f are inherited by f ′. There are several variants.

Lemma 3.1.09ZV Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of thickenings.
Then

(1) f is an affine morphism if and only if f ′ is an affine morphism,
(2) f is a surjective morphism if and only if f ′ is a surjective morphism,
(3) f is quasi-compact if and only if f ′ quasi-compact,
(4) f is universally closed if and only if f ′ is universally closed,
(5) f is integral if and only if f ′ is integral,
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(7) f is universally injective if and only if f ′ is universally injective,
(8) f is universally open if and only if f ′ is universally open,
(9) f is quasi-affine if and only if f ′ is quasi-affine, and

(10) add more here.

Proof. Observe that S → S′ and X → X ′ are universal homeomorphisms (see for
example Morphisms, Lemma 45.6). This immediately implies parts (2), (3), (4),
(7), and (8). Part (1) follows from Lemma 2.3 which tells us that there is a 1-to-1
correspondence between affine opens of S and S′ and between affine opens of X
and X ′. Part (9) follows from Limits, Lemma 11.5 and the remark just made about
affine opens of S and S′. Part (5) follows from (1) and (4) by Morphisms, Lemma
44.7. Finally, note that

S ×X S = S ×X′ S → S ×X′ S′ → S′ ×X′ S′

is a thickening (the two arrows are thickenings by Lemma 2.4). Hence applying (3)
and (4) to the morphism (S ⊂ S′)→ (S ×X S → S′ ×X′ S′) we obtain (6). □

Lemma 3.2.0D2R Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of thickenings.
Let L′ be an invertible sheaf on X ′ and denote L the restriction to X. Then L′ is
f ′-ample if and only if L is f -ample.

https://stacks.math.columbia.edu/tag/09ZU
https://stacks.math.columbia.edu/tag/0BPE
https://stacks.math.columbia.edu/tag/0BPF
https://stacks.math.columbia.edu/tag/09ZV
https://stacks.math.columbia.edu/tag/0D2R
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Proof. Recall that being relatively ample is a condition for each affine open in the
base, see Morphisms, Definition 37.1. By Lemma 2.3 there is a 1-to-1 correspon-
dence between affine opens of S and S′. Thus we may assume S and S′ are affine
and we reduce to proving that L′ is ample if and only if L is ample. This is Limits,
Lemma 11.4. □

Lemma 3.3.09ZW Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of thickenings
such that X = S ×S′ X ′. If S ⊂ S′ is a finite order thickening, then

(1) f is a closed immersion if and only if f ′ is a closed immersion,
(2) f is locally of finite type if and only if f ′ is locally of finite type,
(3) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(4) f is locally of finite type of relative dimension d if and only if f ′ is locally

of finite type of relative dimension d,
(5) ΩX/S = 0 if and only if ΩX′/S′ = 0,
(6) f is unramified if and only if f ′ is unramified,
(7) f is proper if and only if f ′ is proper,
(8) f is finite if and only if f ′ is finite,
(9) f is a monomorphism if and only if f ′ is a monomorphism,

(10) f is an immersion if and only if f ′ is an immersion, and
(11) add more here.

Proof. The properties P listed in the lemma are all stable under base change,
hence if f ′ has property P, then so does f . See Schemes, Lemmas 18.2 and 23.5
and Morphisms, Lemmas 15.4, 20.13, 29.2, 32.10, 35.5, 41.5, and 44.6.

The interesting direction in each case is therefore to assume that f has the property
and deduce that f ′ has it too. By induction on the order of the thickening we may
assume that S ⊂ S′ is a first order thickening, see discussion immediately following
Definition 2.1.

Most of the proofs will use a reduction to the affine case. Let U ′ ⊂ S′ be an affine
open and let V ′ ⊂ X ′ be an affine open lying over U ′. Let U ′ = Spec(A′) and denote
I ⊂ A′ be the ideal defining the closed subscheme U ′∩S. Say V ′ = Spec(B′). Then
V ′ ∩X = Spec(B′/IB′). Setting A = A′/I and B = B′/IB′ we get a commutative
diagram

0 // IB′ // B′ // B // 0

0 // IA′ //

OO

A′ //

OO

A //

OO

0
with exact rows and I2 = 0.

The translation of (1) into algebra: If A → B is surjective, then A′ → B′ is
surjective. This follows from Nakayama’s lemma (Algebra, Lemma 20.1).

The translation of (2) into algebra: If A → B is a finite type ring map, then
A′ → B′ is a finite type ring map. This follows from Nakayama’s lemma (Algebra,
Lemma 20.1) applied to a map A′[x1, . . . , xn]→ B′ such that A[x1, . . . , xn]→ B is
surjective.

Proof of (3). Follows from (2) and that quasi-finiteness of a morphism which is
locally of finite type can be checked on fibres, see Morphisms, Lemma 20.6.

https://stacks.math.columbia.edu/tag/09ZW
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Proof of (4). Follows from (2) and that the additional property of “being of relative
dimension d” can be checked on fibres (by definition, see Morphisms, Definition
29.1.
The translation of (5) into algebra: If ΩB/A = 0, then ΩB′/A′ = 0. By Alge-
bra, Lemma 131.12 we have 0 = ΩB/A = ΩB′/A′/IΩB′/A′ . Hence ΩB′/A′ = 0 by
Nakayama’s lemma (Algebra, Lemma 20.1).
The translation of (6) into algebra: If A → B is unramified map, then A′ → B′ is
unramified. Since A → B is of finite type we see that A′ → B′ is of finite type by
(2) above. Since A → B is unramified we have ΩB/A = 0. By part (5) we have
ΩB′/A′ = 0. Thus A′ → B′ is unramified.
Proof of (7). Follows by combining (2) with results of Lemma 3.1 and the fact
that proper equals quasi-compact + separated + locally of finite type + universally
closed.
Proof of (8). Follows by combining (2) with results of Lemma 3.1 and using the
fact that finite equals integral + locally of finite type (Morphisms, Lemma 44.4).
Proof of (9). As f is a monomorphism we have X = X ×S X. We may apply
the results proved so far to the morphism of thickenings (X ⊂ X ′) → (X ×S X ⊂
X ′×S′ X ′). We conclude X ′ → X ′×S′ X ′ is a closed immersion by (1). In fact, it is
a first order thickening as the ideal defining the closed immersion X ′ → X ′ ×S′ X ′

is contained in the pullback of the ideal I ⊂ OS′ cutting out S in S′. Indeed,
X = X ×S X = (X ′ ×S′ X ′) ×S′ S is contained in X ′. Hence by Morphisms,
Lemma 32.7 it suffices to show that ΩX′/S′ = 0 which follows from (5) and the
corresponding statement for X/S.
Proof of (10). If f : X → S is an immersion, then it factors as X → U → S where
U → S is an open immersion and X → U is a closed immersion. Let U ′ ⊂ S′ be
the open subscheme whose underlying topological space is the same as U . Then
X ′ → S′ factors through U ′ and we conclude that X ′ → U ′ is a closed immersion
by part (1). This finishes the proof. □

The following lemma is a variant on the preceding one. Rather than assume that
the thickenings involved are finite order (which allows us to transfer the property
of being locally of finite type from f to f ′), we instead take as given that each of f
and f ′ is locally of finite type.

Lemma 3.4.0BPG Let (f, f ′) : (X ⊂ X ′) → (Y → Y ′) be a morphism of thickenings.
Assume f and f ′ are locally of finite type and X = Y ×Y ′ X ′. Then

(1) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(2) f is finite if and only if f ′ is finite,
(3) f is a closed immersion if and only if f ′ is a closed immersion,
(4) ΩX/Y = 0 if and only if ΩX′/Y ′ = 0,
(5) f is unramified if and only if f ′ is unramified,
(6) f is a monomorphism if and only if f ′ is a monomorphism,
(7) f is an immersion if and only if f ′ is an immersion,
(8) f is proper if and only if f ′ is proper, and
(9) add more here.

Proof. The properties P listed in the lemma are all stable under base change,
hence if f ′ has property P, then so does f . See Schemes, Lemmas 18.2 and 23.5

https://stacks.math.columbia.edu/tag/0BPG


MORE ON MORPHISMS 8

and Morphisms, Lemmas 20.13, 29.2, 32.10, 35.5, 41.5, and 44.6. Hence in each
case we need only to prove that if f has the desired property, so does f ′.

A morphism is locally quasi-finite if and only if it is locally of finite type and the
scheme theoretic fibres are discrete spaces, see Morphisms, Lemma 20.8. Since the
underlying topological space is unchanged by passing to a thickening, we see that
f ′ is locally quasi-finite if (and only if) f is. This proves (1).

Case (2) follows from case (5) of Lemma 3.1 and the fact that the finite morphisms
are precisely the integral morphisms that are locally of finite type (Morphisms,
Lemma 44.4).

Case (3). This follows immediately from Morphisms, Lemma 45.7.

Case (4) follows from the following algebra statement: Let A be a ring and let I ⊂ A
be a locally nilpotent ideal. Let B be a finite type A-algebra. If Ω(B/IB)/(A/I) = 0,
then ΩB/A = 0. Namely, the assumption means that IΩB/A = 0, see Algebra,
Lemma 131.12. On the other hand ΩB/A is a finite B-module, see Algebra, Lemma
131.16. Hence the vanishing of ΩB/A follows from Nakayama’s lemma (Algebra,
Lemma 20.1) and the fact that IB is contained in the Jacobson radical of B.

Case (5) follows immediately from (4) and Morphisms, Lemma 35.2.

Proof of (6). As f is a monomorphism we have X = X ×Y X. We may apply
the results proved so far to the morphism of thickenings (X ⊂ X ′)→ (X ×Y X ⊂
X ′ ×Y ′ X ′). We conclude ∆X′/Y ′ : X ′ → X ′ ×Y ′ X ′ is a closed immersion by
(3). In fact ∆X′/Y ′ is a bijection on underlying sets, hence ∆X′/Y ′ is a thickening.
On the other hand ∆X′/Y ′ is locally of finite presentation by Morphisms, Lemma
21.12. In other words, ∆X′/Y ′(X ′) is cut out by a quasi-coherent sheaf of ideals
J ⊂ OX′×Y ′X′ of finite type. Since ΩX′/Y ′ = 0 by (5) we see that the conormal
sheaf of X ′ → X ′ ×Y ′ X ′ is zero by Morphisms, Lemma 32.7. In other words,
J /J 2 = 0. This implies ∆X′/Y ′ is an isomorphism, for example by Algebra,
Lemma 21.5.

Proof of (7). If f : X → Y is an immersion, then it factors as X → V → Y where
V → Y is an open immersion and X → V is a closed immersion. Let V ′ ⊂ Y ′ be
the open subscheme whose underlying topological space is the same as V . Then
X ′ → V ′ factors through V ′ and we conclude that X ′ → V ′ is a closed immersion
by part (3).

Case (8) follows from Lemma 3.1 and the definition of proper morphisms as being
the quasi-compact, universally closed, and separated morphisms that are locally of
finite type. □

4. Picard groups of thickenings

0C6Q Some material on Picard groups of thickenings.
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Lemma 4.1.0C6R Let X ⊂ X ′ be a first order thickening with ideal sheaf I. Then
there is a canonical exact sequence

0 // H0(X, I) // H0(X ′,O∗
X′) // H0(X,O∗

X)

// H1(X, I) // Pic(X ′) // Pic(X)

// H2(X, I) // . . . // . . .

of abelian groups.

Proof. This is the long exact cohomology sequence associated to the short exact
sequence of sheaves of abelian groups

0→ I → O∗
X′ → O∗

X → 0

where the first map sends a local section f of I to the invertible section 1 + f of
OX′ . We also use the identification of the Picard group of a ringed space with the
first cohomology group of the sheaf of invertible functions, see Cohomology, Lemma
6.1. □

Lemma 4.2.0C6S Let X ⊂ X ′ be a thickening. Let n be an integer invertible in OX .
Then the map Pic(X ′)[n]→ Pic(X)[n] is bijective.

Proof for a finite order thickening. By the general principle explained follow-
ing Definition 2.1 this reduces to the case of a first order thickening. Then may
use Lemma 4.1 to see that it suffices to show that H1(X, I)[n], H1(X, I)/n, and
H2(X, I)[n] are zero. This follows as multiplication by n on I is an isomorphism
as it is an OX -module. □

Proof in general. Let I ⊂ OX′ be the quasi-coherent ideal sheaf cutting out X.
Then we have a short exact sequence of abelian groups

0→ (1 + I)∗ → O∗
X′ → O∗

X → 0

We obtain a long exact cohomology sequence as in the statement of Lemma 4.1
with Hi(X, I) replaced by Hi(X, (1 + I)∗). Thus it suffices to show that raising to
the nth power is an isomorphism (1 + I)∗ → (1 + I)∗. Taking sections over affine
opens this follows from Algebra, Lemma 32.8. □

5. First order infinitesimal neighbourhood

05YW A natural construction of first order thickenings is the following. Suppose that
i : Z → X be an immersion of schemes. Choose an open subscheme U ⊂ X
such that i identifies Z with a closed subscheme Z ⊂ U . Let I ⊂ OU be the
quasi-coherent sheaf of ideals defining Z in U . Then we can consider the closed
subscheme Z ′ ⊂ U defined by the quasi-coherent sheaf of ideals I2.

Definition 5.1.04EY Let i : Z → X be an immersion of schemes. The first order
infinitesimal neighbourhood of Z in X is the first order thickening Z ⊂ Z ′ over X
described above.

https://stacks.math.columbia.edu/tag/0C6R
https://stacks.math.columbia.edu/tag/0C6S
https://stacks.math.columbia.edu/tag/04EY
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This thickening has the following universal property (which will assuage any fears
that the construction above depends on the choice of the open U).

Lemma 5.2.04EZ Let i : Z → X be an immersion of schemes. The first order infin-
itesimal neighbourhood Z ′ of Z in X has the following universal property: Given
any commutative diagram

Z

i

��

T
a

oo

��
X T ′boo

where T ⊂ T ′ is a first order thickening over X, there exists a unique morphism
(a′, a) : (T ⊂ T ′)→ (Z ⊂ Z ′) of thickenings over X.

Proof. Let U ⊂ X be the open used in the construction of Z ′, i.e., an open such
that Z is identified with a closed subscheme of U cut out by the quasi-coherent
sheaf of ideals I. Since |T | = |T ′| we see that b(T ′) ⊂ U . Hence we can think of b
as a morphism into U . Let J ⊂ OT ′ be the ideal cutting out T . Since b(T ) ⊂ Z by
the diagram above we see that b♯(b−1I) ⊂ J . As T ′ is a first order thickening of
T we see that J 2 = 0 hence b♯(b−1(I2)) = 0. By Schemes, Lemma 4.6 this implies
that b factors through Z ′. Denote a′ : T ′ → Z ′ this factorization and everything is
clear. □

Lemma 5.3.04F0 Let i : Z → X be an immersion of schemes. Let Z ⊂ Z ′ be the first
order infinitesimal neighbourhood of Z in X. Then the diagram

Z //

��

Z ′

��
Z // X

induces a map of conormal sheaves CZ/X → CZ/Z′ by Morphisms, Lemma 31.3.
This map is an isomorphism.

Proof. This is clear from the construction of Z ′ above. □

6. Formally unramified morphisms

02H7 Recall that a ring map R→ A is called formally unramified (see Algebra, Definition
148.1) if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, at most one dotted arrow exists which
makes the diagram commute. This motivates the following analogue for morphisms
of schemes.

https://stacks.math.columbia.edu/tag/04EZ
https://stacks.math.columbia.edu/tag/04F0
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Definition 6.1.02H8 Let f : X → S be a morphism of schemes. We say f is formally
unramified if given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of affine schemes over S there exists at
most one dotted arrow making the diagram commute.

We first prove some formal lemmas, i.e., lemmas which can be proved by drawing
the corresponding diagrams.

Lemma 6.2.04F1 If f : X → S is a formally unramified morphism, then given any
solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of schemes over S there exists at most one
dotted arrow making the diagram commute. In other words, in Definition 6.1 the
condition that T be affine may be dropped.

Proof. This is true because a morphism is determined by its restrictions to affine
opens. □

Lemma 6.3.02HA A composition of formally unramified morphisms is formally un-
ramified.

Proof. This is formal. □

Lemma 6.4.02HB A base change of a formally unramified morphism is formally un-
ramified.

Proof. This is formal. □

Lemma 6.5.02HC Let f : X → S be a morphism of schemes. Let U ⊂ X and V ⊂ S
be open such that f(U) ⊂ V . If f is formally unramified, so is f |U : U → V .

Proof. Consider a solid diagram

U

f |U

��

T

i
��

a
oo

V T ′oo

``

as in Definition 6.1. If f is formally ramified, then there exists at most one S-
morphism a′ : T ′ → X such that a′|T = a. Hence clearly there exists at most one
such morphism into U . □

Lemma 6.6.02HD Let f : X → S be a morphism of schemes. Assume X and S are
affine. Then f is formally unramified if and only if OS(S)→ OX(X) is a formally
unramified ring map.

https://stacks.math.columbia.edu/tag/02H8
https://stacks.math.columbia.edu/tag/04F1
https://stacks.math.columbia.edu/tag/02HA
https://stacks.math.columbia.edu/tag/02HB
https://stacks.math.columbia.edu/tag/02HC
https://stacks.math.columbia.edu/tag/02HD
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Proof. This is immediate from the definitions (Definition 6.1 and Algebra, Defini-
tion 148.1) by the equivalence of categories of rings and affine schemes, see Schemes,
Lemma 6.5. □

Here is a characterization in terms of the sheaf of differentials.

Lemma 6.7.02H9 Let f : X → S be a morphism of schemes. Then f is formally
unramified if and only if ΩX/S = 0.

Proof. We recall some of the arguments of the proof of Morphisms, Lemma 32.5.
Let W ⊂ X×SX be an open such that ∆ : X → X×SX induces a closed immersion
into W . Let J ⊂ OW be the ideal sheaf of this closed immersion. Let X ′ ⊂ W be
the closed subscheme defined by the quasi-coherent sheaf of ideals J 2. Consider
the two morphisms p1, p2 : X ′ → X induced by the two projections X ×S X → X.
Note that p1 and p2 agree when composed with ∆ : X → X ′ and that X → X ′ is
a closed immersion defined by a an ideal whose square is zero. Moreover there is a
short exact sequence

0→ J /J 2 → OX′ → OX → 0
and ΩX/S = J /J 2. Moreover, J /J 2 is generated by the local sections p♯1(f)−p♯2(f)
for f a local section of OX .
Suppose that f : X → S is formally unramified. By assumption this means that
p1 = p2 when restricted to any affine open T ′ ⊂ X ′. Hence p1 = p2. By what was
said above we conclude that ΩX/S = J /J 2 = 0.
Conversely, suppose that ΩX/S = 0. Then X ′ = X. Take any pair of morphisms
f ′

1, f
′
2 : T ′ → X fitting as dotted arrows in the diagram of Definition 6.1. This

gives a morphism (f ′
1, f

′
2) : T ′ → X ×S X. Since f ′

1|T = f ′
2|T and |T | = |T ′| we see

that the image of T ′ under (f ′
1, f

′
2) is contained in the open W chosen above. Since

(f ′
1, f

′
2)(T ) ⊂ ∆(X) and since T is defined by an ideal of square zero in T ′ we see

that (f ′
1, f

′
2) factors through X ′. As X ′ = X we conclude f ′

1 = f ′
2 as desired. □

Lemma 6.8.02HE Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is unramified (resp. G-unramified), and
(2) the morphism f is locally of finite type (resp. locally of finite presentation)

and formally unramified.

Proof. Use Lemma 6.7 and Morphisms, Lemma 35.2. □

7. Universal first order thickenings

04F2 Let h : Z → X be a morphism of schemes. A universal first order thickening of Z
over X is a first order thickening Z ⊂ Z ′ over X such that given any first order
thickening T ⊂ T ′ over X and a solid commutative diagram

Z

~~

T

  

a
oo

Z ′

''

T ′a′
oo

b
ww

X

https://stacks.math.columbia.edu/tag/02H9
https://stacks.math.columbia.edu/tag/02HE
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there exists a unique dotted arrow making the diagram commute. Note that in
this situation (a, a′) : (T ⊂ T ′) → (Z ⊂ Z ′) is a morphism of thickenings over
X. Thus if a universal first order thickening exists, then it is unique up to unique
isomorphism. In general a universal first order thickening does not exist, but if h
is formally unramified then it does.

Lemma 7.1.04F3 Let h : Z → X be a formally unramified morphism of schemes.
There exists a universal first order thickening Z ⊂ Z ′ of Z over X.

Proof. During this proof we will say Z ⊂ Z ′ is a universal first order thickening of
Z over X if it satisfies the condition of the lemma. We will construct the universal
first order thickening Z ⊂ Z ′ over X by glueing, starting with the affine case which
is Algebra, Lemma 149.1. We begin with some general remarks.
If a universal first order thickening of Z over X exists, then it is unique up to unique
isomorphism. Moreover, suppose that V ⊂ Z and U ⊂ X are open subschemes such
that h(V ) ⊂ U . Let Z ⊂ Z ′ be a universal first order thickening of Z over X. Let
V ′ ⊂ Z ′ be the open subscheme such that V = Z ∩V ′. Then we claim that V ⊂ V ′

is the universal first order thickening of V over U . Namely, suppose given any
diagram

V

h

��

T
a

oo

��
U T ′boo

where T ⊂ T ′ is a first order thickening over U . By the universal property of Z ′

we obtain (a, a′) : (T ⊂ T ′) → (Z ⊂ Z ′). But since we have equality |T | = |T ′| of
underlying topological spaces we see that a′(T ′) ⊂ V ′. Hence we may think of (a, a′)
as a morphism of thickenings (a, a′) : (T ⊂ T ′)→ (V ⊂ V ′) over U . Uniqueness is
clear also. In a completely similar manner one proves that if h(Z) ⊂ U and Z ⊂ Z ′

is a universal first order thickening over U , then Z ⊂ Z ′ is a universal first order
thickening over X.
Before we glue affine pieces let us show that the lemma holds if Z and X are affine.
Say X = Spec(R) and Z = Spec(S). By Algebra, Lemma 149.1 there exists a first
order thickening Z ⊂ Z ′ over X which has the universal property of the lemma for
diagrams

Z

h

��

T
a

oo

��
X T ′boo

where T, T ′ are affine. Given a general diagram we can choose an affine open
covering T ′ =

⋃
T ′
i and we obtain morphisms a′

i : T ′
i → Z ′ over X such that

a′
i|Ti = a|Ti . By uniqueness we see that a′

i and a′
j agree on any affine open of

T ′
i ∩T ′

j . Hence the morphisms a′
i glue to a global morphism a′ : T ′ → Z ′ over X as

desired. Thus the lemma holds if X and Z are affine.
Choose an affine open covering Z =

⋃
Zi such that each Zi maps into an affine

open Ui of X. By Lemma 6.5 the morphisms Zi → Ui are formally unramified.
Hence by the affine case we obtain universal first order thickenings Zi ⊂ Z ′

i over
Ui. By the general remarks above Zi ⊂ Z ′

i is also a universal first order thickening
of Zi over X. Let Z ′

i,j ⊂ Z ′
i be the open subscheme such that Zi ∩ Zj = Z ′

i,j ∩ Zi.

https://stacks.math.columbia.edu/tag/04F3
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By the general remarks we see that both Z ′
i,j and Z ′

j,i are universal first order
thickenings of Zi ∩ Zj over X. Thus, by the first of our general remarks, we see
that there is a canonical isomorphism φij : Z ′

i,j → Z ′
j,i inducing the identity on

Zi ∩ Zj . We claim that these morphisms satisfy the cocycle condition of Schemes,
Section 14. (Verification omitted. Hint: Use that Z ′

i,j ∩ Z ′
i,k is the universal first

order thickening of Zi ∩ Zj ∩ Zk which determines it up to unique isomorphism by
what was said above.) Hence we can use the results of Schemes, Section 14 to get a
first order thickening Z ⊂ Z ′ over X which the property that the open subscheme
Z ′
i ⊂ Z ′ with Zi = Z ′

i ∩ Z is a universal first order thickening of Zi over X.
It turns out that this implies formally that Z ′ is a universal first order thickening
of Z over X. Namely, we have the universal property for any diagram

Z

h

��

T
a

oo

��
X T ′boo

where a(T ) is contained in some Zi. Given a general diagram we can choose an
open covering T ′ =

⋃
T ′
i such that a(Ti) ⊂ Zi. We obtain morphisms a′

i : T ′
i → Z ′

over X such that a′
i|Ti

= a|Ti
. We see that a′

i and a′
j necessarily agree on T ′

i ∩ T ′
j

since both a′
i|T ′

i
∩T ′

j
and a′

j |T ′
i
∩T ′

j
are solutions of the problem of mapping into the

universal first order thickening Z ′
i ∩ Z ′

j of Zi ∩ Zj over X. Hence the morphisms
a′
i glue to a global morphism a′ : T ′ → Z ′ over X as desired. This finishes the

proof. □

Definition 7.2.04F4 Let h : Z → X be a formally unramified morphism of schemes.
(1) The universal first order thickening of Z over X is the thickening Z ⊂ Z ′

constructed in Lemma 7.1.
(2) The conormal sheaf of Z over X is the conormal sheaf of Z in its universal

first order thickening Z ′ over X.
We often denote the conormal sheaf CZ/X in this situation.

Thus we see that there is a short exact sequence of sheaves
0→ CZ/X → OZ′ → OZ → 0

on Z. The following lemma proves that there is no conflict between this definition
and the definition in case Z → X is an immersion.

Lemma 7.3.04F5 Let i : Z → X be an immersion of schemes. Then
(1) i is formally unramified,
(2) the universal first order thickening of Z over X is the first order infinites-

imal neighbourhood of Z in X of Definition 5.1, and
(3) the conormal sheaf of i in the sense of Morphisms, Definition 31.1 agrees

with the conormal sheaf of i in the sense of Definition 7.2.

Proof. By Morphisms, Lemmas 35.7 and 35.8 an immersion is unramified, hence
formally unramified by Lemma 6.8. The other assertions follow by combining Lem-
mas 5.2 and 5.3 and the definitions. □

Lemma 7.4.04F6 Let Z → X be a formally unramified morphism of schemes. Then
the universal first order thickening Z ′ is formally unramified over X.

https://stacks.math.columbia.edu/tag/04F4
https://stacks.math.columbia.edu/tag/04F5
https://stacks.math.columbia.edu/tag/04F6
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Proof. There are two proofs. The first is to show that ΩZ′/X = 0 by working
affine locally and applying Algebra, Lemma 149.5. Then Lemma 6.7 implies what
we want. The second is a direct argument as follows.

Let T ⊂ T ′ be a first order thickening. Let

Z ′

��

T
c

oo

��
X T ′oo

a,b

``

be a commutative diagram. Consider two morphisms a, b : T ′ → Z ′ fitting into the
diagram. Set T0 = c−1(Z) ⊂ T and T ′

a = a−1(Z) (scheme theoretically). Since
Z ′ is a first order thickening of Z, we see that T ′ is a first order thickening of T ′

a.
Moreover, since c = a|T we see that T0 = T ∩ T ′

a (scheme theoretically). As T ′ is a
first order thickening of T it follows that T ′

a is a first order thickening of T0. Now
a|T ′

a
and b|T ′

a
are morphisms of T ′

a into Z ′ over X which agree on T0 as morphisms
into Z. Hence by the universal property of Z ′ we conclude that a|T ′

a
= b|T ′

a
. Thus

a and b are morphism from the first order thickening T ′ of T ′
a whose restrictions

to T ′
a agree as morphisms into Z. Thus using the universal property of Z ′ once

more we conclude that a = b. In other words, the defining property of a formally
unramified morphism holds for Z ′ → X as desired. □

Lemma 7.5.04F7 Consider a commutative diagram of schemes

Z
h
//

f

��

X

g

��
W

h′
// Y

with h and h′ formally unramified. Let Z ⊂ Z ′ be the universal first order thickening
of Z over X. Let W ⊂ W ′ be the universal first order thickening of W over Y .
There exists a canonical morphism (f, f ′) : (Z,Z ′) → (W,W ′) of thickenings over
Y which fits into the following commutative diagram

Z ′

~~
f ′

��
Z //

f

��

44

X

��

W ′

}}
W

44

// Y

In particular the morphism (f, f ′) of thickenings induces a morphism of conormal
sheaves f∗CW/Y → CZ/X .

Proof. The first assertion is clear from the universal property of W ′. The induced
map on conormal sheaves is the map of Morphisms, Lemma 31.3 applied to (Z ⊂
Z ′)→ (W ⊂W ′). □

https://stacks.math.columbia.edu/tag/04F7
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Lemma 7.6.04F8 Let
Z

h
//

f

��

X

g

��
W

h′
// Y

be a fibre product diagram in the category of schemes with h′ formally unramified.
Then h is formally unramified and if W ⊂W ′ is the universal first order thickening
of W over Y , then Z = X ×Y W ⊂ X ×Y W ′ is the universal first order thickening
of Z over X. In particular the canonical map f∗CW/Y → CZ/X of Lemma 7.5 is
surjective.

Proof. The morphism h is formally unramified by Lemma 6.4. It is clear that
X ×Y W ′ is a first order thickening. It is straightforward to check that it has the
universal property because W ′ has the universal property (by mapping properties
of fibre products). See Morphisms, Lemma 31.4 for why this implies that the map
of conormal sheaves is surjective. □

Lemma 7.7.04F9 Let
Z

h
//

f

��

X

g

��
W

h′
// Y

be a fibre product diagram in the category of schemes with h′ formally unramified
and g flat. In this case the corresponding map Z ′ → W ′ of universal first order
thickenings is flat, and f∗CW/Y → CZ/X is an isomorphism.

Proof. Flatness is preserved under base change, see Morphisms, Lemma 25.8.
Hence the first statement follows from the description of W ′ in Lemma 7.6. It
is clear that X×Y W ′ is a first order thickening. It is straightforward to check that
it has the universal property because W ′ has the universal property (by mapping
properties of fibre products). See Morphisms, Lemma 31.4 for why this implies that
the map of conormal sheaves is an isomorphism. □

Lemma 7.8.04FA Taking the universal first order thickenings commutes with taking
opens. More precisely, let h : Z → X be a formally unramified morphism of
schemes. Let V ⊂ Z, U ⊂ X be opens such that h(V ) ⊂ U . Let Z ′ be the universal
first order thickening of Z over X. Then h|V : V → U is formally unramified and
the universal first order thickening of V over U is the open subscheme V ′ ⊂ Z ′

such that V = Z ∩ V ′. In particular, CZ/X |V = CV/U .

Proof. The first statement is Lemma 6.5. The compatibility of universal thicken-
ings can be deduced from the proof of Lemma 7.1, or from Algebra, Lemma 149.4
or deduced from Lemma 7.7. □

Lemma 7.9.04FB Let h : Z → X be a formally unramified morphism of schemes over
S. Let Z ⊂ Z ′ be the universal first order thickening of Z over X with structure
morphism h′ : Z ′ → X. The canonical map

ch′ : (h′)∗ΩX/S −→ ΩZ′/S

induces an isomorphism h∗ΩX/S → ΩZ′/S ⊗OZ .

https://stacks.math.columbia.edu/tag/04F8
https://stacks.math.columbia.edu/tag/04F9
https://stacks.math.columbia.edu/tag/04FA
https://stacks.math.columbia.edu/tag/04FB


MORE ON MORPHISMS 17

Proof. The map ch′ is the map defined in Morphisms, Lemma 32.8. If i : Z → Z ′

is the given closed immersion, then i∗ch′ is a map h∗ΩX/S → ΩZ′/S⊗OZ . Checking
that it is an isomorphism reduces to the affine case by localization, see Lemma 7.8
and Morphisms, Lemma 32.3. In this case the result is Algebra, Lemma 149.5. □

Lemma 7.10.04FC Let h : Z → X be a formally unramified morphism of schemes over
S. There is a canonical exact sequence

CZ/X → h∗ΩX/S → ΩZ/S → 0.
The first arrow is induced by dZ′/S where Z ′ is the universal first order neighbour-
hood of Z over X.

Proof. We know that there is a canonical exact sequence
CZ/Z′ → ΩZ′/S ⊗OZ → ΩZ/S → 0.

see Morphisms, Lemma 32.15. Hence the result follows on applying Lemma 7.9. □

Lemma 7.11.067V Let
Z

i
//

j   

X

��
Y

be a commutative diagram of schemes where i and j are formally unramified. Then
there is a canonical exact sequence

CZ/Y → CZ/X → i∗ΩX/Y → 0
where the first arrow comes from Lemma 7.5 and the second from Lemma 7.10.

Proof. Denote Z → Z ′ the universal first order thickening of Z over X. Denote
Z → Z ′′ the universal first order thickening of Z over Y . By Lemma 7.10 here is a
canonical morphism Z ′ → Z ′′ so that we have a commutative diagram

Z
i′
//

j′   

Z ′ //

��

X

��
Z ′′ // Y

Apply Morphisms, Lemma 32.18 to the left triangle to get an exact sequence
CZ/Z′′ → CZ/Z′ → (i′)∗ΩZ′/Z′′ → 0

As Z ′′ is formally unramified over Y (see Lemma 7.4) we have ΩZ′/Z′′ = ΩZ/Y (by
combining Lemma 6.7 and Morphisms, Lemma 32.9). Then we have (i′)∗ΩZ′/Y =
i∗ΩX/Y by Lemma 7.9. □

Lemma 7.12.06AE Let Z → Y → X be formally unramified morphisms of schemes.
(1) If Z ⊂ Z ′ is the universal first order thickening of Z over X and Y ⊂ Y ′ is

the universal first order thickening of Y over X, then there is a morphism
Z ′ → Y ′ and Y ×Y ′ Z ′ is the universal first order thickening of Z over Y .

(2) There is a canonical exact sequence
i∗CY/X → CZ/X → CZ/Y → 0

where the maps come from Lemma 7.5 and i : Z → Y is the first morphism.

https://stacks.math.columbia.edu/tag/04FC
https://stacks.math.columbia.edu/tag/067V
https://stacks.math.columbia.edu/tag/06AE
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Proof. The map h : Z ′ → Y ′ in (1) comes from Lemma 7.5. The assertion that
Y ×Y ′Z ′ is the universal first order thickening of Z over Y is clear from the universal
properties of Z ′ and Y ′. By Morphisms, Lemma 31.5 we have an exact sequence

(i′)∗CY×Y ′Z′/Z′ → CZ/Z′ → CZ/Y×Y ′Z′ → 0
where i′ : Z → Y ×Y ′ Z ′ is the given morphism. By Morphisms, Lemma 31.4
there exists a surjection h∗CY/Y ′ → CY×Y ′Z′/Z′ . Combined with the equalities
CY/Y ′ = CY/X , CZ/Z′ = CZ/X , and CZ/Y×Y ′Z′ = CZ/Y this proves the lemma. □

8. Formally étale morphisms

02HF Recall that a ring map R → A is called formally étale (see Algebra, Definition
150.1) if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, there exists exactly one dotted arrow which
makes the diagram commute. This motivates the following analogue for morphisms
of schemes.

Definition 8.1.02HG Let f : X → S be a morphism of schemes. We say f is formally
étale if given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of affine schemes over S there exists exactly
one dotted arrow making the diagram commute.

It is clear that a formally étale morphism is formally unramified. Hence if f : X → S
is formally étale, then ΩX/S is zero, see Lemma 6.7.

Lemma 8.2.04FD If f : X → S is a formally étale morphism, then given any solid
commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of schemes over S there exists exactly one
dotted arrow making the diagram commute. In other words, in Definition 8.1 the
condition that T be affine may be dropped.

Proof. Let T ′ =
⋃
T ′
i be an affine open covering, and let Ti = T ∩ T ′

i . Then we
get morphisms a′

i : T ′
i → X fitting into the diagram. By uniqueness we see that a′

i

and a′
j agree on any affine open subscheme of T ′

i ∩ T ′
j . Hence a′

i and a′
j agree on

T ′
i ∩T ′

j . Thus we see that the morphisms a′
i glue to a global morphism a′ : T ′ → X.

The uniqueness of a′ we have seen in Lemma 6.2. □

Lemma 8.3.02HI A composition of formally étale morphisms is formally étale.

https://stacks.math.columbia.edu/tag/02HG
https://stacks.math.columbia.edu/tag/04FD
https://stacks.math.columbia.edu/tag/02HI
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Proof. This is formal. □

Lemma 8.4.02HJ A base change of a formally étale morphism is formally étale.

Proof. This is formal. □

Lemma 8.5.02HK Let f : X → S be a morphism of schemes. Let U ⊂ X and V ⊂ S
be open subschemes such that f(U) ⊂ V . If f is formally étale, so is f |U : U → V .

Proof. Consider a solid diagram

U

f |U

��

T

i
��

a
oo

V T ′oo

``

as in Definition 8.1. If f is formally ramified, then there exists exactly one S-
morphism a′ : T ′ → X such that a′|T = a. Since |T ′| = |T | we conclude that
a′(T ′) ⊂ U which gives our unique morphism from T ′ into U . □

Lemma 8.6.04FE Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is formally étale,
(2) f is formally unramified and the universal first order thickening of X over

S is equal to X,
(3) f is formally unramified and CX/S = 0, and
(4) ΩX/S = 0 and CX/S = 0.

Proof. Actually, the last assertion only make sense because ΩX/S = 0 implies that
CX/S is defined via Lemma 6.7 and Definition 7.2. This also makes it clear that (3)
and (4) are equivalent.

Either of the assumptions (1), (2), and (3) imply that f is formally unramified.
Hence we may assume f is formally unramified. The equivalence of (1), (2), and
(3) follow from the universal property of the universal first order thickening X ′

of X over S and the fact that X = X ′ ⇔ CX/S = 0 since after all by definition
CX/S = CX/X′ is the ideal sheaf of X in X ′. □

Lemma 8.7.04FF An unramified flat morphism is formally étale.

Proof. Say X → S is unramified and flat. Then ∆ : X → X ×S X is an open
immersion, see Morphisms, Lemma 35.13. We have to show that CX/S is zero.
Consider the two projections p, q : X ×S X → X. As f is formally unramified
(see Lemma 6.8), q is formally unramified (see Lemma 6.4). As f is flat, p is
flat, see Morphisms, Lemma 25.8. Hence p∗CX/S = Cq by Lemma 7.7 where Cq
denotes the conormal sheaf of the formally unramified morphism q : X ×S X → X.
But ∆(X) ⊂ X ×S X is an open subscheme which maps isomorphically to X via
q. Hence by Lemma 7.8 we see that Cq|∆(X) = CX/X = 0. In other words, the
pullback of CX/S to X via the identity morphism is zero, i.e., CX/S = 0. □

Lemma 8.8.02HL Let f : X → S be a morphism of schemes. Assume X and S are
affine. Then f is formally étale if and only if OS(S)→ OX(X) is a formally étale
ring map.

https://stacks.math.columbia.edu/tag/02HJ
https://stacks.math.columbia.edu/tag/02HK
https://stacks.math.columbia.edu/tag/04FE
https://stacks.math.columbia.edu/tag/04FF
https://stacks.math.columbia.edu/tag/02HL
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Proof. This is immediate from the definitions (Definition 8.1 and Algebra, Defini-
tion 150.1) by the equivalence of categories of rings and affine schemes, see Schemes,
Lemma 6.5. □

Lemma 8.9.02HM Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is étale, and
(2) the morphism f is locally of finite presentation and formally étale.

Proof. Assume f is étale. An étale morphism is locally of finite presentation, flat
and unramified, see Morphisms, Section 36. Hence f is locally of finite presentation
and formally étale, see Lemma 8.7.

Conversely, suppose that f is locally of finite presentation and formally étale. Being
étale is local in the Zariski topology on X and S, see Morphisms, Lemma 36.2. By
Lemma 8.5 we can cover X by affine opens U which map into affine opens V such
that U → V is formally étale (and of finite presentation, see Morphisms, Lemma
21.2). By Lemma 8.8 we see that the ring maps O(V ) → O(U) are formally
étale (and of finite presentation). We win by Algebra, Lemma 150.2. (We will give
another proof of this implication when we discuss formally smooth morphisms.) □

9. Infinitesimal deformations of maps

04BU In this section we explain how a derivation can be used to infinitesimally move a
map. Throughout this section we use that a sheaf on a thickening X ′ of X can be
seen as a sheaf on X.

Lemma 9.1.04FG Let S be a scheme. Let X ⊂ X ′ and Y ⊂ Y ′ be two first order
thickenings over S. Let (a, a′), (b, b′) : (X ⊂ X ′)→ (Y ⊂ Y ′) be two morphisms of
thickenings over S. Assume that

(1) a = b, and
(2) the two maps a∗CY/Y ′ → CX/X′ (Morphisms, Lemma 31.3) are equal.

Then the map (a′)♯ − (b′)♯ factors as

OY ′ → OY
D−→ a∗CX/X′ → a∗OX′

where D is an OS-derivation.

Proof. Instead of working on Y we work on X. The advantage is that the pullback
functor a−1 is exact. Using (1) and (2) we obtain a commutative diagram with exact
rows

0 // CX/X′ // OX′ // OX // 0

0 // a−1CY/Y ′ //

OO

a−1OY ′ //

(a′)♯

OO

(b′)♯

OO

a−1OY //

OO

0

Now it is a general fact that in such a situation the difference of the OS-algebra
maps (a′)♯ and (b′)♯ is an OS-derivation from a−1OY to CX/X′ . By adjointness of
the functors a−1 and a∗ this is the same thing as an OS-derivation from OY into
a∗CX/X′ . Some details omitted. □

https://stacks.math.columbia.edu/tag/02HM
https://stacks.math.columbia.edu/tag/04FG
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Note that in the situation of the lemma above we may write D as

(9.1.1)04BV D = dY/S ◦ θ

where θ is an OY -linear map θ : ΩY/S → a∗CX/X′ . Of course, then by adjunction
again we may view θ as an OX -linear map θ : a∗ΩY/S → CX/X′ .

Lemma 9.2.02H5 Let S be a scheme. Let (a, a′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a
morphism of first order thickenings over S. Let

θ : a∗ΩY/S → CX/X′

be an OX-linear map. Then there exists a unique morphism of pairs (b, b′) : (X ⊂
X ′) → (Y ⊂ Y ′) such that (1) and (2) of Lemma 9.1 hold and the derivation D
and θ are related by Equation (9.1.1).

Proof. We simply set b = a and we define (b′)♯ to be the map

(a′)♯ +D : a−1OY ′ → OX′

where D is as in Equation (9.1.1). We omit the verification that (b′)♯ is a map of
sheaves of OS-algebras and that (1) and (2) of Lemma 9.1 hold. Equation (9.1.1)
holds by construction. □

Remark 9.3.0CK1 Assumptions and notation as in Lemma 9.2. The action of a local
section θ on a′ is sometimes indicated by θ · a′. Note that this means nothing else
than the fact that (a′)♯ and (θ · a′)♯ differ by a derivation D which is related to θ
by Equation (9.1.1).

Lemma 9.4.04FH Let S be a scheme. Let X ⊂ X ′ and Y ⊂ Y ′ be first order thickenings
over S. Assume given a morphism a : X → Y and a map A : a∗CY/Y ′ → CX/X′ of
OX-modules. For an open subscheme U ′ ⊂ X ′ consider morphisms a′ : U ′ → Y ′

such that
(1) a′ is a morphism over S,
(2) a′|U = a|U , and
(3) the induced map a∗CY/Y ′ |U → CX/X′ |U is the restriction of A to U .

Here U = X ∩ U ′. Then the rule

(9.4.1)04FI U ′ 7→ {a′ : U ′ → Y ′ such that (1), (2), (3) hold.}

defines a sheaf of sets on X ′.

Proof. Denote F the rule of the lemma. The restriction mapping F(U ′)→ F(V ′)
for V ′ ⊂ U ′ ⊂ X ′ of F is really the restriction map a′ 7→ a′|V ′ . With this definition
in place it is clear that F is a sheaf since morphisms are defined locally. □

In the following lemma we identify sheaves on X and any thickening of X.

Lemma 9.5.04FJ Same notation and assumptions as in Lemma 9.4. There is an
action of the sheaf

HomOX
(a∗ΩY/S , CX/X′)

on the sheaf (9.4.1). Moreover, the action is simply transitive for any open U ′ ⊂ X ′

over which the sheaf (9.4.1) has a section.

Proof. This is a combination of Lemmas 9.1, 9.2, and 9.4. □

https://stacks.math.columbia.edu/tag/02H5
https://stacks.math.columbia.edu/tag/0CK1
https://stacks.math.columbia.edu/tag/04FH
https://stacks.math.columbia.edu/tag/04FJ
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Remark 9.6.04FK A special case of Lemmas 9.1, 9.2, 9.4, and 9.5 is where Y = Y ′.
In this case the map A is always zero. The sheaf of Lemma 9.4 is just given by the
rule

U ′ 7→ {a′ : U ′ → Y over S with a′|U = a|U}
and we act on this by the sheaf HomOX

(a∗ΩY/S , CX/X′).

Remark 9.7.0CK2 Another special case of Lemmas 9.1, 9.2, 9.4, and 9.5 is where S
itself is a thickening Z ⊂ Z ′ = S and Y = Z ×Z′ Y ′. Picture

(X ⊂ X ′)
(a,?)

//

(g,g′) &&

(Y ⊂ Y ′)

(h,h′)xx
(Z ⊂ Z ′)

In this case the map A : a∗CY/Y ′ → CX/X′ is determined by a: the map h∗CZ/Z′ →
CY/Y ′ is surjective (because we assumed Y = Z ×Z′ Y ′), hence the pullback
g∗CZ/Z′ = a∗h∗CZ/Z′ → a∗CY/Y ′ is surjective, and the composition g∗CZ/Z′ →
a∗CY/Y ′ → CX/X′ has to be the canonical map induced by g′. Thus the sheaf of
Lemma 9.4 is just given by the rule

U ′ 7→ {a′ : U ′ → Y ′ over Z ′ with a′|U = a|U}

and we act on this by the sheaf HomOX
(a∗ΩY/Z , CX/X′).

Lemma 9.8.04FL Let S be a scheme. Let X ⊂ X ′ be a first order thickening over
S. Let Y be a scheme over S. Let a′, b′ : X ′ → Y be two morphisms over S with
a = a′|X = b′|X . This gives rise to a commutative diagram

X //

a

��

X ′

(b′,a′)
��

Y
∆Y/S // Y ×S Y

Since the horizontal arrows are immersions with conormal sheaves CX/X′ and ΩY/S,
by Morphisms, Lemma 31.3, we obtain a map θ : a∗ΩY/S → CX/X′ . Then this θ
and the derivation D of Lemma 9.1 are related by Equation (9.1.1).

Proof. Omitted. Hint: The equality may be checked on affine opens where it comes
from the following computation. If f is a local section of OY , then 1 ⊗ f − f ⊗ 1
is a local section of CY/(Y×SY ) corresponding to dY/S(f). It is mapped to the local
section (a′)♯(f)−(b′)♯(f) = D(f) of CX/X′ . In other words, θ(dY/S(f)) = D(f). □

For later purposes we need a result that roughly states that the construction of
Lemma 9.2 is compatible with étale localization.

Lemma 9.9.04BX Let
X1

��

X2
f
oo

��
S1 S2oo

be a commutative diagram of schemes with X2 → X1 and S2 → S1 étale. Then the
map cf : f∗ΩX1/S1 → ΩX2/S2 of Morphisms, Lemma 32.8 is an isomorphism.

https://stacks.math.columbia.edu/tag/04FK
https://stacks.math.columbia.edu/tag/0CK2
https://stacks.math.columbia.edu/tag/04FL
https://stacks.math.columbia.edu/tag/04BX
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Proof. We recall that an étale morphism U → V is a smooth morphism with
ΩU/V = 0. Using this we see that Morphisms, Lemma 32.9 implies ΩX2/S2 =
ΩX2/S1 and Morphisms, Lemma 34.16 implies that the map f∗ΩX1/S1 → ΩX2/S1

(for the morphism f seen as a morphism over S1) is an isomorphism. Hence the
lemma follows. □

Lemma 9.10.04BY Consider a commutative diagram of first order thickenings

(T2 ⊂ T ′
2)

(h,h′)
��

(a2,a
′
2)

// (X2 ⊂ X ′
2)

(f,f ′)
��

(T1 ⊂ T ′
1)

(a1,a
′
1) // (X1 ⊂ X ′

1)

and a commutative
diagram of schemes

X ′
2

//

��

S2

��
X ′

1
// S1

with X2 → X1 and S2 → S1 étale. For any OT1-linear map θ1 : a∗
1ΩX1/S1 → CT1/T ′

1
let θ2 be the composition

a∗
2ΩX2/S2 h∗a∗

1ΩX1/S1

h∗θ1 // h∗CT1/T ′
1

// CT2/T ′
2

(equality sign is explained in the proof). Then the diagram

T ′
2

θ2·a′
2

//

��

X ′
2

��
T ′

1
θ1·a′

1 // X ′
1

commutes where the actions θ2 · a′
2 and θ1 · a′

1 are as in Remark 9.3.

Proof. The equality sign comes from the identification f∗ΩX1/S1 = ΩX2/S2 of
Lemma 9.9. Namely, using this we have a∗

2ΩX2/S2 = a∗
2f

∗ΩX1/S1 = h∗a∗
1ΩX1/S1

because f ◦ a2 = a1 ◦ h. Having said this, the commutativity of the diagram may
be checked on affine opens. Hence we may assume the schemes in the initial big
diagram are affine. Thus we obtain commutative diagrams

(B′
2, I2) (A′

2, J2)
a′

2

oo

(B′
1, I1)

h′

OO

(A′
1, J1)

a′
1oo

f ′

OO

and

A′
2 R2oo

A′
1

OO

R1oo

OO

The notation signifies that I1, I2, J1, J2 are ideals of square zero and maps of pairs
are ring maps sending ideals into ideals. Set A1 = A′

1/J1, A2 = A′
2/J2, B1 = B′

1/I1,
and B2 = B′

2/I2. We are given that
A2 ⊗A1 ΩA1/R1 −→ ΩA2/R2

is an isomorphism. Then θ1 : B1 ⊗A1 ΩA1/R1 → I1 is B1-linear. This gives an
R1-derivation D1 = θ1 ◦ dA1/R1 : A1 → I1. In a similar way we see that θ2 :
B2⊗A2 ΩA2/R2 → I2 gives rise to a R2-derivation D2 = θ2 ◦ dA2/R2 : A2 → I2. The
construction of θ2 implies the following compatibility between θ1 and θ2: for every
x ∈ A1 we have

h′(D1(x)) = D2(f ′(x))

as elements of I2. We may view D1 as a map A′
1 → B′

1 using A′
1 → A1

D1−−→ I1 → B1
similarly we may view D2 as a map A′

2 → B′
2. Then the displayed equality holds for

x ∈ A′
1. By the construction of the action in Lemma 9.2 and Remark 9.3 we know

https://stacks.math.columbia.edu/tag/04BY
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that θ1 · a′
1 corresponds to the ring map a′

1 +D1 : A′
1 → B′

1 and θ2 · a′
2 corresponds

to the ring map a′
2 + D2 : A′

2 → B′
2. By the displayed equality we obtain that

h′ ◦ (a′
1 +D1) = (a′

2 +D2) ◦ f ′ as desired. □

Remark 9.11.04BZ Lemma 9.10 can be improved in the following way. Suppose
that we have commutative diagrams as in Lemma 9.10 but we do not assume that
X2 → X1 and S2 → S1 are étale. Next, suppose we have θ1 : a∗

1ΩX1/S1 → CT1/T ′
1

and θ2 : a∗
2ΩX2/S2 → CT2/T ′

2
such that

f∗OX2 f∗D2

// f∗a2,∗CT2/T ′
2

OX1

D1 //

f♯

OO

a1,∗CT1/T ′
1

induced by (h′)♯

OO

is commutative where Di corresponds to θi as in Equation (9.1.1). Then we have
the conclusion of Lemma 9.10. The importance of the condition that both X2 → X1
and S2 → S1 are étale is that it allows us to construct a θ2 from θ1.

10. Infinitesimal deformations of schemes

063X The following simple lemma is often a convenient tool to check whether an infini-
tesimal deformation of a map is flat.

Lemma 10.1.063Y Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of first order
thickenings. Assume that f is flat. Then the following are equivalent

(1) f ′ is flat and X = S ×S′ X ′, and
(2) the canonical map f∗CS/S′ → CX/X′ is an isomorphism.

Proof. As the problem is local on X ′ we may assume that X,X ′, S, S′ are affine
schemes. Say S′ = Spec(A′), X ′ = Spec(B′), S = Spec(A), X = Spec(B) with
A = A′/I and B = B′/J for some square zero ideals. Then we obtain the following
commutative diagram

0 // J // B′ // B // 0

0 // I //

OO

A′ //

OO

A //

OO

0
with exact rows. The canonical map of the lemma is the map

I ⊗A B = I ⊗A′ B′ −→ J.

The assumption that f is flat signifies that A→ B is flat.

Assume (1). Then A′ → B′ is flat and J = IB′. Flatness implies TorA
′

1 (B′, A) = 0
(see Algebra, Lemma 75.8). This means I ⊗A′ B′ → B′ is injective (see Algebra,
Remark 75.9). Hence we see that I ⊗A B → J is an isomorphism.
Assume (2). Then it follows that J = IB′, so that X = S ×S′ X ′. Moreover, we
get TorA

′

1 (B′, A′/I) = 0 by reversing the implications in the previous paragraph.
Hence B′ is flat over A′ by Algebra, Lemma 99.8. □

The following lemma is the “nilpotent” version of the “critère de platitude par
fibres”, see Section 16.

https://stacks.math.columbia.edu/tag/04BZ
https://stacks.math.columbia.edu/tag/063Y
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Lemma 10.2.06AF Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

of thickenings. Assume
(1) X ′ is flat over S′,
(2) f is flat,
(3) S ⊂ S′ is a finite order thickening, and
(4) X = S ×S′ X ′ and Y = S ×S′ Y ′.

Then f ′ is flat and Y ′ is flat over S′ at all points in the image of f ′.

Proof. Immediate consequence of Algebra, Lemma 101.8. □

Many properties of morphisms of schemes are preserved under flat deformations.

Lemma 10.3.06AG Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

of thickenings. Assume S ⊂ S′ is a finite order thickening, X ′ flat over S′, X =
S ×S′ X ′, and Y = S ×S′ Y ′. Then

(1) f is flat if and only if f ′ is flat,06AH
(2) f is an isomorphism if and only if f ′ is an isomorphism,06AI
(3) f is an open immersion if and only if f ′ is an open immersion,06AJ
(4) f is quasi-compact if and only if f ′ is quasi-compact,06AK
(5) f is universally closed if and only if f ′ is universally closed,06AL
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,06AM
(7) f is a monomorphism if and only if f ′ is a monomorphism,06AN
(8) f is surjective if and only if f ′ is surjective,06AP
(9) f is universally injective if and only if f ′ is universally injective,06AQ

(10) f is affine if and only if f ′ is affine,06AR
(11)06AS f is locally of finite type if and only if f ′ is locally of finite type,
(12) f is locally quasi-finite if and only if f ′ is locally quasi-finite,06AT
(13)06AU f is locally of finite presentation if and only if f ′ is locally of finite presen-

tation,
(14)06AV f is locally of finite type of relative dimension d if and only if f ′ is locally

of finite type of relative dimension d,
(15) f is universally open if and only if f ′ is universally open,06AW
(16) f is syntomic if and only if f ′ is syntomic,06AX
(17) f is smooth if and only if f ′ is smooth,06AY
(18) f is unramified if and only if f ′ is unramified,06AZ
(19) f is étale if and only if f ′ is étale,06B0
(20) f is proper if and only if f ′ is proper,06B1

https://stacks.math.columbia.edu/tag/06AF
https://stacks.math.columbia.edu/tag/06AG
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(21) f is integral if and only if f ′ is integral,06B2
(22) f is finite if and only if f ′ is finite,06B3
(23)06B4 f is finite locally free (of rank d) if and only if f ′ is finite locally free (of

rank d), and
(24) add more here.

Proof. The assumptions on X and Y mean that f is the base change of f ′ by
X → X ′. The properties P listed in (1) – (23) above are all stable under base
change, hence if f ′ has property P, then so does f . See Schemes, Lemmas 18.2,
19.3, 21.12, and 23.5 and Morphisms, Lemmas 9.4, 10.4, 11.8, 15.4, 20.13, 21.4,
29.2, 30.4, 34.5, 35.5, 36.4, 41.5, 44.6, and 48.4.

The interesting direction in each case is therefore to assume that f has the property
and deduce that f ′ has it too. By induction on the order of the thickening we may
assume that S ⊂ S′ is a first order thickening, see discussion immediately following
Definition 2.1. We make a couple of general remarks which we will use without
further mention in the arguments below. (I) Let W ′ ⊂ S′ be an affine open and
let U ′ ⊂ X ′ and V ′ ⊂ Y ′ be affine opens lying over W ′ with f ′(U ′) ⊂ V ′. Let
W ′ = Spec(R′) and denote I ⊂ R′ be the ideal defining the closed subscheme
W ′ ∩ S. Say U ′ = Spec(B′) and V ′ = Spec(A′). Then we get a commutative
diagram

0 // IB′ // B′ // B // 0

0 // IA′ //

OO

A′ //

OO

A //

OO

0
with exact rows. Moreover IB′ ∼= I ⊗R B, see proof of Lemma 10.1. (II) The
morphisms X → X ′ and Y → Y ′ are universal homeomorphisms. Hence the
topology of the maps f and f ′ (after any base change) is identical. (III) If f is flat,
then f ′ is flat and Y ′ → S′ is flat at every point in the image of f ′, see Lemma
10.2.

Ad (1). This is general remark (III).

Ad (2). Assume f is an isomorphism. By (III) we see that Y ′ → S′ is flat. Choose
an affine open V ′ ⊂ Y ′ and set U ′ = (f ′)−1(V ′). Then V = Y ∩ V ′ is affine which
implies that V ∼= f−1(V ) = U = Y ×Y ′ U ′ is affine. By Lemma 2.3 we see that
U ′ is affine. Thus we have a diagram as in the general remark (I) and moreover
IA ∼= I ⊗R A because R′ → A′ is flat. Then IB′ ∼= I ⊗R B ∼= I ⊗R A ∼= IA′ and
A ∼= B. By the exactness of the rows in the diagram above we see that A′ ∼= B′,
i.e., U ′ ∼= V ′. Thus f ′ is an isomorphism.

Ad (3). Assume f is an open immersion. Then f is an isomorphism of X with an
open subscheme V ⊂ Y . Let V ′ ⊂ Y ′ be the open subscheme whose underlying
topological space is V . Then f ′ is a map from X ′ to V ′ which is an isomorphism
by (2). Hence f ′ is an open immersion.

Ad (4). Immediate from remark (II). See also Lemma 3.1 for a more general state-
ment.

Ad (5). Immediate from remark (II). See also Lemma 3.1 for a more general state-
ment.
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Ad (6). Note that X ×Y X = Y ×Y ′ (X ′×Y ′ X ′) so that X ′×Y ′ X ′ is a thickening
of X ×Y X. Hence the topology of the maps ∆X/Y and ∆X′/Y ′ matches and we
win. See also Lemma 3.1 for a more general statement.

Ad (7). Assume f is a monomorphism. Consider the diagonal morphism ∆X′/Y ′ :
X ′ → X ′ ×Y ′ X ′. The base change of ∆X′/Y ′ by S → S′ is ∆X/Y which is an
isomorphism by assumption. By (2) we conclude that ∆X′/Y ′ is an isomorphism.

Ad (8). This is clear. See also Lemma 3.1 for a more general statement.

Ad (9). Immediate from remark (II). See also Lemma 3.1 for a more general state-
ment.

Ad (10). Assume f is affine. Choose an affine open V ′ ⊂ Y ′ and set U ′ =
(f ′)−1(V ′). Then V = Y ∩ V ′ is affine which implies that U = Y ×Y ′ U ′ is affine.
By Lemma 2.3 we see that U ′ is affine. Hence f ′ is affine. See also Lemma 3.1 for
a more general statement.

Ad (11). Via remark (I) comes down to proving A′ → B′ is of finite type if
A → B is of finite type. Suppose that x1, . . . , xn ∈ B′ are elements whose images
in B generate B as an A-algebra. Then A′[x1, . . . , xn] → B is surjective as both
A′[x1, . . . , xn]→ B is surjective and I⊗RA[x1, . . . , xn]→ I⊗RB is surjective. See
also Lemma 3.3 for a more general statement.

Ad (12). Follows from (11) and that quasi-finiteness of a morphism of finite type
can be checked on fibres, see Morphisms, Lemma 20.6. See also Lemma 3.3 for a
more general statement.

Ad (13). Via remark (I) comes down to proving A′ → B′ is of finite presentation if
A → B is of finite presentation. We may assume that B′ = A′[x1, . . . , xn]/K ′ for
some ideal K ′ by (11). We get a short exact sequence

0→ K ′ → A′[x1, . . . , xn]→ B′ → 0

AsB′ is flat overR′ we see thatK ′⊗R′R is the kernel of the surjectionA[x1, . . . , xn]→
B. By assumption on A→ B there exist finitely many f ′

1, . . . , f
′
m ∈ K ′ whose im-

ages in A[x1, . . . , xn] generate this kernel. Since I is nilpotent we see that f ′
1, . . . , f

′
m

generate K ′ by Nakayama’s lemma, see Algebra, Lemma 20.1.

Ad (14). Follows from (11) and general remark (II). See also Lemma 3.3 for a more
general statement.

Ad (15). Immediate from general remark (II). See also Lemma 3.1 for a more
general statement.

Ad (16). Assume f is syntomic. By (13) f ′ is locally of finite presentation, by
general remark (III) f ′ is flat and the fibres of f ′ are the fibres of f . Hence f ′ is
syntomic by Morphisms, Lemma 30.11.

Ad (17). Assume f is smooth. By (13) f ′ is locally of finite presentation, by general
remark (III) f ′ is flat, and the fibres of f ′ are the fibres of f . Hence f ′ is smooth
by Morphisms, Lemma 34.3.

Ad (18). Assume f unramified. By (11) f ′ is locally of finite type and the fibres
of f ′ are the fibres of f . Hence f ′ is unramified by Morphisms, Lemma 35.12. See
also Lemma 3.3 for a more general statement.
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Ad (19). Assume f étale. By (13) f ′ is locally of finite presentation, by general
remark (III) f ′ is flat, and the fibres of f ′ are the fibres of f . Hence f ′ is étale by
Morphisms, Lemma 36.8.
Ad (20). This follows from a combination of (6), (11), (4), and (5). See also Lemma
3.3 for a more general statement.
Ad (21). Combine (5) and (10) with Morphisms, Lemma 44.7. See also Lemma 3.1
for a more general statement.
Ad (22). Combine (21), and (11) with Morphisms, Lemma 44.4. See also Lemma
3.3 for a more general statement.
Ad (23). Assume f finite locally free. By (22) we see that f ′ is finite, by general
remark (III) f ′ is flat, and by (13) f ′ is locally of finite presentation. Hence f ′ is
finite locally free by Morphisms, Lemma 48.2. □

The following lemma is the “locally nilpotent” version of the “critère de platitude
par fibres”, see Section 16.

Lemma 10.4.0CF3 Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

of thickenings. Assume
(1) Y ′ → S′ is locally of finite type,
(2) X ′ → S′ is flat and locally of finite presentation,
(3) f is flat, and
(4) X = S ×S′ X ′ and Y = S ×S′ Y ′.

Then f ′ is flat and for all y′ ∈ Y ′ in the image of f ′ the local ring OY ′,y′ is flat
and essentially of finite presentation over OS′,s′ .

Proof. Immediate consequence of Algebra, Lemma 128.10. □

Many properties of morphisms of schemes are preserved under flat deformations as
in the lemma above.

Lemma 10.5.0CF4 Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

of thickenings. Assume Y ′ → S′ locally of finite type, X ′ → S′ flat and locally of
finite presentation, X = S ×S′ X ′, and Y = S ×S′ Y ′. Then

(1) f is flat if and only if f ′ is flat,0CF5
(2) f is an isomorphism if and only if f ′ is an isomorphism,0CF6
(3) f is an open immersion if and only if f ′ is an open immersion,0CF7
(4) f is quasi-compact if and only if f ′ is quasi-compact,0CF8
(5) f is universally closed if and only if f ′ is universally closed,0CF9

https://stacks.math.columbia.edu/tag/0CF3
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(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,0CFA
(7) f is a monomorphism if and only if f ′ is a monomorphism,0CFB
(8) f is surjective if and only if f ′ is surjective,0CFC
(9) f is universally injective if and only if f ′ is universally injective,0CFD

(10) f is affine if and only if f ′ is affine,0CFE
(11) f is locally quasi-finite if and only if f ′ is locally quasi-finite,0CFF
(12)0CFG f is locally of finite type of relative dimension d if and only if f ′ is locally

of finite type of relative dimension d,
(13) f is universally open if and only if f ′ is universally open,0CFH
(14) f is syntomic if and only if f ′ is syntomic,0CFI
(15) f is smooth if and only if f ′ is smooth,0CFJ
(16) f is unramified if and only if f ′ is unramified,0CFK
(17) f is étale if and only if f ′ is étale,0CFL
(18) f is proper if and only if f ′ is proper,0CFM
(19) f is finite if and only if f ′ is finite,0CFN
(20)0CFP f is finite locally free (of rank d) if and only if f ′ is finite locally free (of

rank d), and
(21) add more here.

Proof. The assumptions on X and Y mean that f is the base change of f ′ by
X → X ′. The properties P listed in (1) – (20) above are all stable under base
change, hence if f ′ has property P, then so does f . See Schemes, Lemmas 18.2,
19.3, 21.12, and 23.5 and Morphisms, Lemmas 9.4, 10.4, 11.8, 20.13, 29.2, 30.4,
34.5, 35.5, 36.4, 41.5, 44.6, and 48.4.

The interesting direction in each case is therefore to assume that f has the property
and deduce that f ′ has it too. We make a couple of general remarks which we will
use without further mention in the arguments below. (I) Let W ′ ⊂ S′ be an affine
open and let U ′ ⊂ X ′ and V ′ ⊂ Y ′ be affine opens lying over W ′ with f ′(U ′) ⊂ V ′.
Let W ′ = Spec(R′) and denote I ⊂ R′ be the ideal defining the closed subscheme
W ′ ∩ S. Say U ′ = Spec(B′) and V ′ = Spec(A′). Then we get a commutative
diagram

0 // IB′ // B′ // B // 0

0 // IA′ //

OO

A′ //

OO

A //

OO

0

with exact rows. (II) The morphisms X → X ′ and Y → Y ′ are universal home-
omorphisms. Hence the topology of the maps f and f ′ (after any base change) is
identical. (III) If f is flat, then f ′ is flat and Y ′ → S′ is flat at every point in the
image of f ′, see Lemma 10.2.

Ad (1). This is general remark (III).

Ad (2). Assume f is an isomorphism. Choose an affine open V ′ ⊂ Y ′ and set
U ′ = (f ′)−1(V ′). Then V = Y ∩V ′ is affine which implies that V ∼= f−1(V ) = U =
Y ×Y ′ U ′ is affine. By Lemma 2.3 we see that U ′ is affine. Thus we have a diagram
as in the general remark (I). By Algebra, Lemma 126.11 we see that A′ → B′ is an
isomorphism, i.e., U ′ ∼= V ′. Thus f ′ is an isomorphism.
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Ad (3). Assume f is an open immersion. Then f is an isomorphism of X with an
open subscheme V ⊂ Y . Let V ′ ⊂ Y ′ be the open subscheme whose underlying
topological space is V . Then f ′ is a map from X ′ to V ′ which is an isomorphism
by (2). Hence f ′ is an open immersion.
Ad (4). Immediate from remark (II). See also Lemma 3.1 for a more general state-
ment.
Ad (5). Immediate from remark (II). See also Lemma 3.1 for a more general state-
ment.
Ad (6). Note that X ×Y X = Y ×Y ′ (X ′×Y ′ X ′) so that X ′×Y ′ X ′ is a thickening
of X ×Y X. Hence the topology of the maps ∆X/Y and ∆X′/Y ′ matches and we
win. See also Lemma 3.1 for a more general statement.
Ad (7). Assume f is a monomorphism. Consider the diagonal morphism ∆X′/Y ′ :
X ′ → X ′ ×Y ′ X ′. Observe that X ′ ×Y ′ X ′ → S′ is locally of finite type. The base
change of ∆X′/Y ′ by S → S′ is ∆X/Y which is an isomorphism by assumption. By
(2) we conclude that ∆X′/Y ′ is an isomorphism.
Ad (8). This is clear. See also Lemma 3.1 for a more general statement.
Ad (9). Immediate from remark (II). See also Lemma 3.1 for a more general state-
ment.
Ad (10). Assume f is affine. Choose an affine open V ′ ⊂ Y ′ and set U ′ =
(f ′)−1(V ′). Then V = Y ∩ V ′ is affine which implies that U = Y ×Y ′ U ′ is affine.
By Lemma 2.3 we see that U ′ is affine. Hence f ′ is affine. See also Lemma 3.1 for
a more general statement.
Ad (11). Follows from the fact that f ′ is locally of finite type (by Morphisms,
Lemma 15.8) and that quasi-finiteness of a morphism of finite type can be checked
on fibres, see Morphisms, Lemma 20.6.
Ad (12). Follows from general remark (II) and the fact that f ′ is locally of finite
type (Morphisms, Lemma 15.8).
Ad (13). Immediate from general remark (II). See also Lemma 3.1 for a more
general statement.
Ad (14). Assume f is syntomic. By Morphisms, Lemma 21.11 f ′ is locally of finite
presentation. By general remark (III) f ′ is flat. The fibres of f ′ are the fibres of f .
Hence f ′ is syntomic by Morphisms, Lemma 30.11.
Ad (15). Assume f is smooth. By Morphisms, Lemma 21.11 f ′ is locally of finite
presentation. By general remark (III) f ′ is flat. The fibres of f ′ are the fibres of f .
Hence f ′ is smooth by Morphisms, Lemma 34.3.
Ad (16). Assume f unramified. By Morphisms, Lemma 15.8 f ′ is locally of finite
type. The fibres of f ′ are the fibres of f . Hence f ′ is unramified by Morphisms,
Lemma 35.12.
Ad (17). Assume f étale. By Morphisms, Lemma 21.11 f ′ is locally of finite
presentation. By general remark (III) f ′ is flat. The fibres of f ′ are the fibres of f .
Hence f ′ is étale by Morphisms, Lemma 36.8.
Ad (18). This follows from a combination of (6), the fact that f is locally of finite
type (Morphisms, Lemma 15.8), (4), and (5).
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Ad (19). Combine (5), (10), Morphisms, Lemma 44.7, the fact that f is locally of
finite type (Morphisms, Lemma 15.8), and Morphisms, Lemma 44.4.
Ad (20). Assume f finite locally free. By (19) we see that f ′ is finite. By gen-
eral remark (III) f ′ is flat. By Morphisms, Lemma 21.11 f ′ is locally of finite
presentation. Hence f ′ is finite locally free by Morphisms, Lemma 48.2. □

Lemma 10.6 (Deformations of projective schemes).0D4F Let f : X → S be a morphism
of schemes which is proper, flat, and of finite presentation. Let L be f -ample.
Assume S is quasi-compact. There exists a d0 ≥ 0 such that for every cartesian
diagram

X
i′
//

f

��

X ′

f ′

��
S

i // S′

and invertible OX′-module
L′ with L ∼= (i′)∗L′

where S ⊂ S′ is a thickening and f ′ is proper, flat, of finite presentation we have
(1) Rp(f ′)∗(L′)⊗d = 0 for all p > 0 and d ≥ d0,
(2) A′

d = (f ′)∗(L′)⊗d is finite locally free for d ≥ d0,
(3) A′ = OS′⊕

⊕
d≥d0

A′
d is a quasi-coherent OS′-algebra of finite presentation,

(4) there is a canonical isomorphism r′ : X ′ → Proj
S′(A′), and

(5) there is a canonical isomorphism θ′ : (r′)∗OProj
S′ (A′)(1)→ L′.

The construction of A′, r′, θ′ is functorial in the data (X ′, S′, i, i′, f ′,L′).

Proof. We first describe the maps r′ and θ′. Observe that L′ is f ′-ample, see
Lemma 3.2. There is a canonical map of quasi-coherent graded OS′ -algebras A′ →⊕

d≥0(f ′)∗(L′)⊗d which is an isomorphism in degrees ≥ d0. Hence this induces an
isomorphism on relative Proj compatible with the Serre twists of the structure sheaf,
see Constructions, Lemma 18.4. Hence we get the morphism r′ by Morphisms,
Lemma 37.4 (which in turn appeals to the construction given in Constructions,
Lemma 19.1) and it is an isomorphism by Morphisms, Lemma 43.17. We get the
map θ′ from Constructions, Lemma 19.1. By Properties, Lemma 28.2 we find that
θ′ is an isomorphism (this also uses that the morphism r′ over affine opens of S′

is the same as the morphism from Properties, Lemma 26.9 as is explained in the
proof of Morphisms, Lemma 43.17).
Assuming the vanishing and local freeness stated in parts (1) and (2), the functori-
ality of the construction can be seen as follows. Suppose that h : T → S′ is a mor-
phism of schemes, denote fT : X ′

T → T the base change of f ′ and LT the pullback
of L to X ′

T . By cohomology and base change (as formulated in Derived Categories
of Schemes, Lemma 22.5 for example) we have the corresponding vanishing over T
and moreover h∗A′

d = fT,∗L⊗d
T (and thus the local freeness of pushforwards as well

as the finite generation of the corresponding graded OT -algebra AT ). Hence the
morphism rT : XT → Proj

T
(
⊕
fT,∗L⊗d

T ) is simply the base change of r′ to T and
the pullback of θ′ is the map θT .
Having said all of the above, we see that it suffices to prove (1), (2), and (3). Pick
d0 such that Rpf∗L⊗d = 0 for all d ≥ d0 and p > 0, see Cohomology of Schemes,
Lemma 16.1. We claim that d0 works.
By cohomology and base change (Derived Categories of Schemes, Lemma 30.4) we
see that E′

d = Rf ′
∗(L′)⊗d is a perfect object of D(OS′) and its formation commutes

https://stacks.math.columbia.edu/tag/0D4F
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with arbitrary base change. In particular, Ed = Li∗E′
d = Rf∗L⊗d. By Derived

Categories of Schemes, Lemma 32.4 we see that for d ≥ d0 the complex Ed is
isomorphic to the finite locally free OS-module f∗L⊗d placed in cohomological
degree 0. Then by Derived Categories of Schemes, Lemma 31.3 we conclude that
E′
d is isomorphic to a finite locally free module placed in cohomological degree 0.

Of course this means that E′
d = A′

d[0], that Rpf ′
∗(L′)⊗d = 0 for p > 0, and that A′

d

is finite locally free. This proves (1) and (2).
The last thing we have to show is finite presentation of A′ as a sheaf of OS′ -algebras
(this notion was introduced in Properties, Section 22). Let U ′ = Spec(R′) ⊂ S′

be an affine open. Then A′ = A′(U ′) is a graded R′-algebra whose graded parts
are finite projective R′-modules. We have to show that A′ is a finitely presented
R′-algebra. We will prove this by reduction to the Noetherian case. Namely,
we can find a finite type Z-subalgebra R′

0 ⊂ R′ and a pair1 (X ′
0,L′

0) over R′
0

whose base change is (X ′
U ′ ,L′|X′

U′
), see Limits, Lemmas 10.2, 10.3, 13.1, 8.7, and

4.15. Cohomology of Schemes, Lemma 16.1 implies A′
0 =

⊕
d≥0 H

0(X ′
0, (L′

0)⊗d)
is a finitely generated graded R′

0-algebra and implies there exists a d′
0 such that

Hp(X ′
0, (L′

0)⊗d) = 0, p > 0 for d ≥ d′
0. By the arguments given above applied to

X ′
0 → Spec(R′

0) and L′
0 we see that (A′

0)d is a finite projective R′
0-module and that

A′
d = A′

d(U ′) = H0(X ′
U ′ , (L′)⊗d|X′

U′
) = H0(X ′

0, (L′
0)⊗d)⊗R′

0
R′ = (A′

0)d ⊗R′
0
R′

for d ≥ d′
0. Now a small twist in the argument is that we don’t know that we

can choose d′
0 equal to d0

2. To get around this we use the following sequence of
arguments to finish the proof:

(a) The algebra B = R′
0 ⊕

⊕
d≥max(d0,d′

0)(A′
0)d is an R′

0-algebra of finite type:
apply the Artin-Tate lemma to B ⊂ A′

0, see Algebra, Lemma 51.7.
(b) As R′

0 is Noetherian we see that B is an R′
0-algebra of finite presentation.

(c) By right exactness of tensor product we see that B⊗R′
0
R′ is an R′-algebra

of finite presentation.
(d) By the displayed equalities this exactly says that C = R′⊕

⊕
d≥max(d0,d′

0) A
′
d

is an R′-algebra of finite presentation.
(e) The quotient A′/C is the direct sum of the finite projective R′-modules A′

d,
d0 ≤ d ≤ max(d0, d

′
0), hence finitely presented as R′-module.

(f) The quotient A′/C is finitely presented as a C-module by Algebra, Lemma
6.4.

(g) Thus A′ is finitely presented as a C-module by Algebra, Lemma 5.3.
(h) By Algebra, Lemma 7.4 this implies A′ is finitely presented as a C-algebra.
(i) Finally, by Algebra, Lemma 6.2 applied to R′ → C → A′ this implies A′ is

finitely presented as an R′-algebra.
This finishes the proof. □

11. Formally smooth morphisms

02GZ Michael Artin’s position on differential criteria of smoothness (e.g., Morphisms,
Lemma 34.14) is that they are basically useless (in practice). In this section we
introduce the notion of a formally smooth morphism X → S. Such a morphism

1With the same properties as those enjoyed by X′ → S′ and L′, i.e., X′
0 → Spec(R′

0) is flat
and proper and L′

0 is ample.
2Actually, one can reduce to this case by doing more limit arguments.
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is characterized by the property that T -valued points of X lift to infinitesimal
thickenings of T provided T is affine. The main result is that a morphism which
is formally smooth and locally of finite presentation is smooth, see Lemma 11.7.
It turns out that this criterion is often easier to use than the differential criteria
mentioned above.

Recall that a ring map R → A is called formally smooth (see Algebra, Definition
138.1) if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, a dotted arrow exists which makes the
diagram commute. This motivates the following analogue for morphisms of schemes.

Definition 11.1.02H0 Let f : X → S be a morphism of schemes. We say f is formally
smooth if given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of affine schemes over S there exists a
dotted arrow making the diagram commute.

In the cases of formally unramified and formally étale morphisms the condition that
T ′ be affine could be dropped, see Lemmas 6.2 and 8.2. This is no longer true in
the case of formally smooth morphisms. In fact, a slightly more natural condition
would be that we should be able to fill in the dotted arrow Zariski locally on T ′.
In fact, analyzing the proof of Lemma 11.10 shows that this would be equivalent
to the definition as it currently stands. In particular, being formally smooth is
Zariski local on the source (and in fact it is smooth local on the source, insert
future reference here).

Lemma 11.2.02H1 A composition of formally smooth morphisms is formally smooth.

Proof. Omitted. □

Lemma 11.3.02H2 A base change of a formally smooth morphism is formally smooth.

Proof. Omitted, but see Algebra, Lemma 138.2 for the algebraic version. □

Lemma 11.4.02HH Let f : X → S be a morphism of schemes. Then f is formally
étale if and only if f is formally smooth and formally unramified.

Proof. Omitted. □

Lemma 11.5.02H3 Let f : X → S be a morphism of schemes. Let U ⊂ X and
V ⊂ S be open subschemes such that f(U) ⊂ V . If f is formally smooth, so is
f |U : U → V .

https://stacks.math.columbia.edu/tag/02H0
https://stacks.math.columbia.edu/tag/02H1
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https://stacks.math.columbia.edu/tag/02HH
https://stacks.math.columbia.edu/tag/02H3
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Proof. Consider a solid diagram
U

f |U

��

T

i
��

a
oo

V T ′oo

``

as in Definition 11.1. If f is formally smooth, then there exists an S-morphism
a′ : T ′ → X such that a′|T = a. Since the underlying sets of T and T ′ are the same
we see that a′ is a morphism into U (see Schemes, Section 3). And it clearly is a
V -morphism as well. Hence the dotted arrow above as desired. □

Lemma 11.6.02H4 Let f : X → S be a morphism of schemes. Assume X and S are
affine. Then f is formally smooth if and only if OS(S) → OX(X) is a formally
smooth ring map.

Proof. This is immediate from the definitions (Definition 11.1 and Algebra, Defini-
tion 138.1) by the equivalence of categories of rings and affine schemes, see Schemes,
Lemma 6.5. □

The following lemma is the main result of this section. It is a victory of the functorial
point of view in that it implies (combined with Limits, Proposition 6.1) that we can
recognize whether a morphism f : X → S is smooth in terms of “simple” properties
of the functor hX : Sch/S → Sets.

Lemma 11.7 (Infinitesimal lifting criterion).02H6 Let f : X → S be a morphism of
schemes. The following are equivalent:

(1) The morphism f is smooth, and
(2) the morphism f is locally of finite presentation and formally smooth.

Proof. Assume f : X → S is locally of finite presentation and formally smooth.
Consider a pair of affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S such that
f(U) ⊂ V . By Lemma 11.5 we see that U → V is formally smooth. By Lemma 11.6
we see that R → A is formally smooth. By Morphisms, Lemma 21.2 we see that
R→ A is of finite presentation. By Algebra, Proposition 138.13 we see that R→ A
is smooth. Hence by the definition of a smooth morphism we see that X → S is
smooth.
Conversely, assume that f : X → S is smooth. Consider a solid commutative
diagram

X

f

��

T

i
��

a
oo

S T ′oo

``

as in Definition 11.1. We will show the dotted arrow exists thereby proving that f
is formally smooth.
Let F be the sheaf of sets on T ′ of Lemma 9.4 in the special case discussed in
Remark 9.6. Let

H = HomOT
(a∗ΩX/S , CT/T ′)

be the sheaf of OT -modules with action H × F → F as in Lemma 9.5. Our goal
is simply to show that F(T ) ̸= ∅. In other words we are trying to show that F is
a trivial H-torsor on T (see Cohomology, Section 4). There are two steps: (I) To

https://stacks.math.columbia.edu/tag/02H4
https://stacks.math.columbia.edu/tag/02H6
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show that F is a torsor we have to show that Ft ̸= ∅ for all t ∈ T (see Cohomology,
Definition 4.1). (II) To show that F is the trivial torsor it suffices to show that
H1(T,H) = 0 (see Cohomology, Lemma 4.3 – we may use either cohomology of H
as an abelian sheaf or as an OT -module, see Cohomology, Lemma 13.3).
First we prove (I). To see this, for every t ∈ T we can choose an affine open U ⊂ T
neighbourhood of t such that a(U) is contained in an affine open Spec(A) = W ⊂ X
which maps to an affine open Spec(R) = V ⊂ S. By Morphisms, Lemma 34.2 the
ring map R → A is smooth. Hence by Algebra, Proposition 138.13 the ring map
R → A is formally smooth. Lemma 11.6 in turn implies that W → V is formally
smooth. Hence we can lift a|U : U → W to a V -morphism a′ : U ′ → W ⊂ X
showing that F(U) ̸= ∅.
Finally we prove (II). By Morphisms, Lemma 32.13 we see that ΩX/S is of finite
presentation (it is even finite locally free by Morphisms, Lemma 34.12). Hence
a∗ΩX/S is of finite presentation (see Modules, Lemma 11.4). Hence the sheaf H =
HomOT

(a∗ΩX/S , CT/T ′) is quasi-coherent by the discussion in Schemes, Section 24.
Thus by Cohomology of Schemes, Lemma 2.2 we have H1(T,H) = 0 as desired. □

Locally projective quasi-coherent modules are defined in Properties, Section 21.

Lemma 11.8.06B5 Let f : X → Y be a formally smooth morphism of schemes. Then
ΩX/Y is locally projective on X.

Proof. Choose U ⊂ X and V ⊂ Y affine open such that f(U) ⊂ V . By Lemma 11.5
f |U : U → V is formally smooth. Hence Γ(V,OV )→ Γ(U,OU ) is a formally smooth
ring map, see Lemma 11.6. Hence by Algebra, Lemma 138.7 the Γ(U,OU )-module
ΩΓ(U,OU )/Γ(V,OV ) is projective. Hence ΩU/V is locally projective, see Properties,
Section 21. □

Lemma 11.9.0D0E Let T be an affine scheme. Let F , G be quasi-coherent OT -modules.
Consider H = HomOT

(F ,G). If F is locally projective, then H1(T,H) = 0.

Proof. By the definition of a locally projective sheaf on a scheme (see Properties,
Definition 21.1) we see that F is a direct summand of a free OT -module. Hence
we may assume that F =

⊕
i∈I OT is a free module. In this case H =

∏
i∈I G is

a product of quasi-coherent modules. By Cohomology, Lemma 11.12 we conclude
that H1 = 0 because the cohomology of a quasi-coherent sheaf on an affine scheme
is zero, see Cohomology of Schemes, Lemma 2.2. □

Lemma 11.10.0D0F Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f is formally smooth,
(2) for every x ∈ X there exist opens x ∈ U ⊂ X and f(x) ∈ V ⊂ Y with

f(U) ⊂ V such that f |U : U → V is formally smooth,
(3) for every pair of affine opens U ⊂ X and V ⊂ Y with f(U) ⊂ V the ring

map OY (V )→ OX(U) is formally smooth, and
(4) there exists an affine open covering Y =

⋃
Vj and for each j an affine open

covering f−1(Vj) =
⋃
Uji such that OY (V )→ OX(U) is a formally smooth

ring map for all j and i.

Proof. The implications (1) ⇒ (2), (1) ⇒ (3), and (2) ⇒ (4) follow from Lemma
11.5. The implication (3) ⇒ (4) is immediate.

https://stacks.math.columbia.edu/tag/06B5
https://stacks.math.columbia.edu/tag/0D0E
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Assume (4). The proof that f is formally smooth is the same as the second part of
the proof of Lemma 11.7. Consider a solid commutative diagram

X

f

��

T

i
��

a
oo

Y T ′oo

``

as in Definition 11.1. We will show the dotted arrow exists thereby proving that f
is formally smooth. Let F be the sheaf of sets on T ′ of Lemma 9.4 as in the special
case discussed in Remark 9.6. Let

H = HomOT
(a∗ΩX/Y , CT/T ′)

be the sheaf of OT -modules on T with action H × F → F as in Lemma 9.5. The
action H × F → F turns F into a pseudo H-torsor, see Cohomology, Definition
4.1. Our goal is to show that F is a trivial H-torsor. There are two steps: (I) To
show that F is a torsor we have to show that F locally has a section. (II) To show
that F is the trivial torsor it suffices to show that H1(T,H) = 0, see Cohomology,
Lemma 4.3.
First we prove (I). To see this, for every t ∈ T we can choose an affine open W ⊂ T
neighbourhood of t such that a(W ) is contained in Uji for some i, j. Let W ′ ⊂ T ′ be
the corresponding open subscheme. By assumption (4) we can lift a|W : W → Uji
to a Vj-morphism a′ : W ′ → Uji showing that F(W ′) is nonempty.
Finally we prove (II). By Lemma 11.8 we see that ΩUji/Vj

locally projective. Hence
ΩX/Y is locally projective, see Properties, Lemma 21.2. Hence a∗ΩX/Y is locally
projective, see Properties, Lemma 21.3. Hence

H1(T,H) = H1(T,HomOT
(a∗ΩX/Y , CT/T ′) = 0

by Lemma 11.9 as desired. □

Lemma 11.11.06B6 Let f : X → Y , g : Y → S be morphisms of schemes. Assume f
is formally smooth. Then

0→ f∗ΩY/S → ΩX/S → ΩX/Y → 0
(see Morphisms, Lemma 32.9) is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps
A→ B → C with B → C formally smooth, then the sequence

0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0
of Algebra, Lemma 131.7 is exact. This is Algebra, Lemma 138.9. □

Lemma 11.12.06B7 Let h : Z → X be a formally unramified morphism of schemes over
S. Assume that Z is formally smooth over S. Then the canonical exact sequence

0→ CZ/X → h∗ΩX/S → ΩZ/S → 0
of Lemma 7.10 is short exact.

Proof. Let Z → Z ′ be the universal first order thickening of Z over X. From the
proof of Lemma 7.10 we see that our sequence is identified with the sequence

CZ/Z′ → ΩZ′/S ⊗OZ → ΩZ/S → 0.

https://stacks.math.columbia.edu/tag/06B6
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Since Z → S is formally smooth we can locally on Z ′ find a left inverse Z ′ → Z over
S to the inclusion map Z → Z ′. Thus the sequence is locally split, see Morphisms,
Lemma 32.16. □

Lemma 11.13.067W Let
Z

i
//

j   

X

f

��
Y

be a commutative diagram of schemes where i and j are formally unramified and f
is formally smooth. Then the canonical exact sequence

0→ CZ/Y → CZ/X → i∗ΩX/Y → 0

of Lemma 7.11 is exact and locally split.

Proof. Denote Z → Z ′ the universal first order thickening of Z over X. Denote
Z → Z ′′ the universal first order thickening of Z over Y . By Lemma 7.10 here is a
canonical morphism Z ′ → Z ′′ so that we have a commutative diagram

Z
i′
//

j′   

Z ′
a
//

k
��

X

f

��
Z ′′ b // Y

In the proof of Lemma 7.11 we identified the sequence above with the sequence

CZ/Z′′ → CZ/Z′ → (i′)∗ΩZ′/Z′′ → 0

Let U ′′ ⊂ Z ′′ be an affine open. Denote U ⊂ Z and U ′ ⊂ Z ′ the corresponding affine
open subschemes. As f is formally smooth there exists a morphism h : U ′′ → X
which agrees with i on U and such that f ◦ h equals b|U ′′ . Since Z ′ is the universal
first order thickening we obtain a unique morphism g : U ′′ → Z ′ such that g = a◦h.
The universal property of Z ′′ implies that k◦g is the inclusion map U ′′ → Z ′′. Hence
g is a left inverse to k. Picture

U

��

// Z ′

k
��

U ′′ //

g

==

Z ′′

Thus g induces a map CZ/Z′ |U → CZ/Z′′ |U which is a left inverse to the map
CZ/Z′′ → CZ/Z′ over U . □

12. Smoothness over a Noetherian base

02HW It turns out that if the base is Noetherian then we can get away with less in the
formulation of formal smoothness. In some sense the following lemmas are the
beginning of deformation theory.

Lemma 12.1.02HX Let f : X → S be a morphism of schemes. Let x ∈ X. Assume that
S is locally Noetherian and f locally of finite type. The following are equivalent:

(1) f is smooth at x,

https://stacks.math.columbia.edu/tag/067W
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(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

S Spec(B′)βoo

cc

where B′ → B is a surjection of local rings with Ker(B′ → B) of square
zero, and α mapping the closed point of Spec(B) to x there exists a dotted
arrow making the diagram commute,

(3) same as in (2) but with B′ → B ranging over small extensions (see Algebra,
Definition 141.1), and

(4) same as in (2) but with B′ → B ranging over small extensions such that α
induces an isomorphism κ(x)→ κ(m) where m ⊂ B is the maximal ideal.

Proof. Choose an affine neighbourhood V ⊂ S of f(x) and choose an affine neigh-
bourhood U ⊂ X of x such that f(U) ⊂ V . For any “test” diagram as in (2) the
morphism α will map Spec(B) into U and the morphism β will map Spec(B′) into V
(see Schemes, Section 13). Hence the lemma reduces to the morphism f |U : U → V
of affines. (Indeed, V is Noetherian and f |U is of finite type, see Properties, Lemma
5.2 and Morphisms, Lemma 15.2.) In this affine case the lemma is identical to Al-
gebra, Lemma 141.2. □

Sometimes it is useful to know that one only needs to check the lifting criterion for
small extensions “centered” at points of finite type (see Morphisms, Section 16).

Lemma 12.2.02HY Let f : X → S be a morphism of schemes. Assume that S is locally
Noetherian and f locally of finite type. The following are equivalent:

(1) f is smooth,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

S Spec(B′)βoo

cc

where B′ → B is a small extension of Artinian local rings and β of finite
type (!) there exists a dotted arrow making the diagram commute.

Proof. If f is smooth, then the infinitesimal lifting criterion (Lemma 11.7) says f
is formally smooth and (2) holds.
Assume (2). The set of points x ∈ X where f is not smooth forms a closed subset
T of X. By the discussion in Morphisms, Section 16, if T ̸= ∅ there exists a point
x ∈ T ⊂ X such that the morphism

Spec(κ(x))→ X → S

is of finite type (namely, pick any point x of T which is closed in an affine open
of X). By Morphisms, Lemma 16.2 given any local Artinian ring B′ with residue
field κ(x) then any morphism β : Spec(B′)→ S is of finite type. Thus we see that
all the diagrams used in Lemma 12.1 (4) correspond to diagrams as in the current
lemma (2). Whence X → S is smooth a x a contradiction. □

https://stacks.math.columbia.edu/tag/02HY
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Here is a useful application.

Lemma 12.3.0A43 Let f : X → S be a finite type morphism of locally Noetherian
schemes. Let Z ⊂ S be a closed subscheme with nth infinitesimal neighbourhood
Zn ⊂ S. Set Xn = Zn ×S X.

(1) If Xn → Zn is smooth for all n, then f is smooth at every point of f−1(Z).
(2) If Xn → Zn is étale for all n, then f is étale at every point of f−1(Z).

Proof. Assume Xn → Zn is smooth for all n. Let x ∈ X be a point lying over
a point of Z. Given a small extension B′ → B and morphisms α, β as in Lemma
12.1 part (3) the maximal ideal of B′ is nilpotent (as B′ is Artinian) and hence the
morphism β factors through Zn and α factors through Xn for a suitable n. Thus
the lifting property for Xn → Zn kicks in to get the desired dotted arrow in the
diagram. This proves (1). Part (2) follows from (1) and the fact that a morphism
is étale if and only if it is smooth of relative dimension 0. □

Lemma 12.4.0D4G Let f : X → S be a morphism of locally Noetherian schemes. Let
Z ⊂ S be a closed subscheme with nth infinitesimal neighbourhood Zn ⊂ S. Set
Xn = Zn×SX. If Xn → Zn is flat for all n, then f is flat at every point of f−1(Z).

Proof. This is a translation of Algebra, Lemma 99.11 into the language of schemes.
□

13. The naive cotangent complex

0D0G This section is the continuation of Modules, Section 31 which in turn continues the
discussion in Algebra, Section 134.

Definition 13.1.0D0H Let f : X → Y be a morphism of schemes. The naive cotangent
complex of f is the complex defined in Modules, Definition 31.6. Notation: NLf or
NLX/Y .

Lemma 13.2.0D0I Let f : X → Y be a morphism of schemes. Let Spec(A) = U ⊂ X
and Spec(R) = V ⊂ S be affine opens with f(U) ⊂ V . There is a canonical map

ÑLA/R −→ NLX/Y |U
of complexes which is an isomorphism in D(OU ).

Proof. From the construction of NLX/Y in Modules, Section 31 we see there is
a canonical map of complexes NLOX (U)/f−1OY (U) → NLX/Y (U) of A = OX(U)-
modules, which is compatible with further restrictions. Using the canonical map
R→ f−1OY (U) we obtain a canonical map NLA/R → NLOX (U)/f−1OY (U) of com-
plexes of A-modules. Using the universal property of the ˜ functor (see Schemes,
Lemma 7.1) we obtain a map as in the statement of the lemma. We may check
this map is an isomorphism on cohomology sheaves by checking it induces iso-
morphisms on stalks. This follows from Algebra, Lemma 134.11 and 134.13 and
Modules, Lemma 31.4 (and the description of the stalks of OX and f−1OY at a
point p ∈ Spec(A) as Ap and Rq where q = R ∩ p; references used are Schemes,
Lemma 5.4 and Sheaves, Lemma 21.5). □

Lemma 13.3.0D0J Let f : X → Y be a morphism of schemes. The cohomology sheaves
of the complex NLX/Y are quasi-coherent, zero outside degrees −1, 0 and equal to
ΩX/Y in degree 0.
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Proof. By construction of the naive cotangent complex in Modules, Section 31 we
have that NLX/Y is a complex sitting in degrees −1, 0 and that its cohomology
in degree 0 is ΩX/Y . The sheaf of differentials is quasi-coherent (by Morphisms,
Lemma 32.7). To finish the proof it suffices to show that H−1(NLX/Y ) is quasi-
coherent. This follows by checking over affines using Lemma 13.2. □

Lemma 13.4.0D0K Let f : X → Y be a morphism of schemes. If f is locally of finite
presentation, then NLX/Y is locally on X quasi-isomorphic to a complex

. . .→ 0→ F−1 → F0 → 0→ . . .

of quasi-coherent OX-modules with F0 of finite presentation and F−1 of finite type.

Proof. By Lemma 13.2 it suffices to show that NLA/R has this shape if R→ A is
a finitely presented ring map. Write A = R[x1, . . . , xn]/I with I finitely generated.
Then I/I2 is a finite A-module and NLA/R is quasi-isomorphic to

. . .→ 0→ I/I2 →
⊕

i=1,...,n
Adxi → 0→ . . .

by Algebra, Section 134 and in particular Algebra, Lemma 134.2. □

Lemma 13.5.0D0L Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is formally smooth,
(2) H−1(NLX/Y ) = 0 and H0(NLX/Y ) = ΩX/Y is locally projective.

Proof. This follows from Algebra, Proposition 138.8 and Lemma 11.10. □

Lemma 13.6.0D0M Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is formally étale,
(2) H−1(NLX/Y ) = H0(NLX/Y ) = 0.

Proof. A formally étale morphism is formally smooth and hence we haveH−1(NLX/Y ) =
0 by Lemma 13.5. On the other hand, we have ΩX/Y = 0 by Lemma 8.6. Con-
versely, if (2) holds, then f is formally smooth by Lemma 13.5 and formally un-
ramified by Lemma 6.7 and hence formally étale by Lemmas 11.4. □

Lemma 13.7.0D0N Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is smooth, and
(2) f is locally of finite presentation, H−1(NLX/Y ) = 0, and H0(NLX/Y ) =

ΩX/Y is finite locally free.

Proof. This follows from the definition of a smooth ring homomorphism (Algebra,
Definition 137.1), Lemma 13.2, and the definition of a smooth morphism of schemes
(Morphisms, Definition 34.1). We also use that finite locally free is the same as
finite projective for modules over rings (Algebra, Lemma 78.2). □

Lemma 13.8.0G7Z Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is étale, and
(2) f is locally of finite presentation and H−1(NLX/Y ) = H0(NLX/Y ) = 0.
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Proof. This follows from the definition of an étale ring homomorphism (Algebra,
Definition 143.1), Lemma 13.2, and the definition of an étale morphism of schemes
(Morphisms, Definition 36.1). □

Lemma 13.9.0FV2 Let i : Z → X be an immersion of schemes. Then NLZ/X is
isomorphic to CZ/X [1] in D(OZ) where CZ/X is the conormal sheaf of Z in X.

Proof. This follows from Algebra, Lemma 134.6, Morphisms, Lemma 31.2, and
Lemma 13.2. □

Lemma 13.10.0E44 Let f : X → Y and g : Y → Z be morphisms of schemes. There
is a canonical six term exact sequence

H−1(f∗ NLY/Z)→ H−1(NLX/Z)→ H−1(NLX/Y )→ f∗ΩY/Z → ΩX/Z → ΩX/Y → 0

of cohomology sheaves.

Proof. Special case of Modules, Lemma 31.7. □

Lemma 13.11.0FV3 Let f : X → Y and Y → Z be morphisms of schemes. Assume
X → Y is a complete intersection morphism. Then there is a canonical distin-
guished triangle

f∗ NLY/Z → NLX/Z → NLX/Y → f∗ NLY/Z [1]

in D(OX) which recovers the 6-term exact sequence of Lemma 13.10.

Proof. It suffices to show the canonical map

f∗ NLY/Z → Cone(NLX/Y → NLX/Z)[−1]

of Modules, Lemma 31.7 is an isomorphism in D(OX). In order to show this,
it suffices to show that the 6-term sequence has a zero on the left, i.e., that
H−1(f∗ NLY/Z) → H−1(NLX/Z) is injective. Affine locally this follows from the
corresponding algebra result in More on Algebra, Lemma 33.6. To translate into
algebra use Lemma 13.2. □

Lemma 13.12.0G80 Let X → Y → Z be morphisms of schemes. Assume X → Z
smooth and Y → Z étale. Then X → Y is smooth.

Proof. The morphism X → Y is locally of finite presentation by Morphisms,
Lemma 21.11. By Lemma 13.7 we have H−1(NLX/Z) = 0 and the module ΩX/Z is
finite locally free. By Lemma 13.8 we have H−1(NLY/Z) = H0(NLY/Z) = 0. By
Lemma 13.10 we get H−1(NLX/Y ) = 0 and ΩX/Y ∼= ΩX/Z is finite locally free. By
Lemma 13.7 the morphism X → Y is smooth. □

Lemma 13.13.0FV4 Let f : X → Y be a morphism of schemes which factors as f = g◦i
with i an immersion and g : P → Y formally smooth (for example smooth). Then
there is a canonical isomorphism

NLX/Y ∼=
(
CX/P → i∗ΩP/Y

)
in D(OX) where the conormal sheaf CX/P is placed in degree −1.

Proof. (For the parenthetical statement see Lemma 11.7.) By Lemmas 13.9 and
13.5 we have NLX/P = CX/P [1] and NLP/Y = ΩP/Y with ΩP/Y locally projective.
This implies that i∗ NLP/Y → i∗ΩP/Y is a quasi-isomorphism too (small detail
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omitted; the reason is that i∗ NLP/Y is the same thing as τ≥−1Li
∗ NLP/Y , see

More on Algebra, Lemma 85.1). Thus the canonical map

i∗ NLP/Y → Cone(NLX/Y → NLX/P )[−1]

of Modules, Lemma 31.7 is an isomorphism in D(OX) because the cohomology
group H−1(i∗ NLP/Y ) is zero by what we said above. In other words, we have a
distinguished triangle

i∗ NLP/Y → NLX/Y → NLX/P → i∗ NLP/Y [1]

Clearly, this means that NLX/Y is the cone on the map NLX/P [−1] → i∗ NLP/Y
which is equivalent to the statement of the lemma by our computation of the co-
homology sheaves of these objects in the derived category given above. □

Lemma 13.14.0FV5 Consider a cartesian diagram of schemes

X ′
g′
//

��

X

��
Y ′ // Y

The canonical map (g′)∗ NLX/Y → NLX′/Y ′ induces an isomorphism on H0 and a
surjection on H−1.

Proof. Translated into algebra this is More on Algebra, Lemma 85.2. To do the
translation use Lemma 13.2. □

Lemma 13.15.0FJZ Consider a cartesian diagram of schemes

X ′

��

g′
// X

��
Y ′ // Y

If Y ′ → Y is flat, then the canonical map (g′)∗ NLX/Y → NLX′/Y ′ is a quasi-
isomorphism.

Proof. By Lemma 13.2 this follows from Algebra, Lemma 134.8. □

Lemma 13.16.0FK0 Consider a cartesian diagram of schemes

X ′
g′
//

��

X

��
Y ′ // Y

If X → Y is flat, then the canonical map (g′)∗ NLX/Y → NLX′/Y ′ is a quasi-
isomorphism. If in addition NLX/Y has tor-amplitude in [−1, 0] then L(g′)∗ NLX/Y →
NLX′/Y ′ is a quasi-isomorphism too.

Proof. Translated into algebra this is More on Algebra, Lemma 85.3. To do the
translation use Lemma 13.2 and Derived Categories of Schemes, Lemmas 3.5 and
10.4. □
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14. Pushouts in the category of schemes, I

07RS In this section we construct pushouts of Y ← X → X ′ where X → Y is affine and
X → X ′ is a thickening. This will actually be an important case for us, hence a
detailed discussion is merited. In Section 67 we discuss a more interesting and more
difficult case. See Categories, Section 9 for a general discussion of pushouts in any
category.

Lemma 14.1.0ET0 Let A′ → A be a surjection of rings and let B → A be a ring map.
Let B′ = B ×A A′ be the fibre product of rings. Set S = Spec(A), S′ = Spec(A′),
T = Spec(B), and T ′ = Spec(B′). Then

S
i
//

f

��

S′

f ′

��
T

i′ // T ′

corresponding to

A A′oo

B

OO

B′oo

OO

is a pushout of schemes.

Proof. By More on Algebra, Lemma 6.2 we have T ′ = T ⨿S S′ as topological
spaces, i.e., the diagram is a pushout in the category of topological spaces. Next,
consider the map

((i′)♯, (f ′)♯) : OT ′ −→ i′∗OT ×g∗OS
f ′

∗OS′

where g = i′ ◦ f = f ′ ◦ i. We claim this map is an isomorphism of sheaves of
rings. Namely, we can view both sides as quasi-coherent OT ′ -modules (use Schemes,
Lemmas 24.1 for the right hand side) and the map is OT ′ -linear. Thus it suffices to
show the map is an isomorphism on the level of global sections (Schemes, Lemma
7.5). On global sections we recover the identification B′ → B×AA′ from statement
of the lemma (this is how we chose B′).
Let X be a scheme. Suppose we are given morphisms of schemes m′ : S′ → X
and n : T → X such that m′ ◦ i = n ◦ f (call this m). We get a unique map of
topological spaces n′ : T ′ → X compatible with m′ and n as T ′ = T ⨿S S′ (see
above). By the description of OT ′ in the previous paragraph we obtain a unique
homomorphism of sheaves of rings

(n′)♯ : OX −→ (n′)∗OT ′ = m′
∗OT ×m∗OT

n∗OS
given by (m′)♯ and n♯. Thus (n′, (n′)♯) is the unque morphism of ringed spaces
T ′ → X compatible with m′ and n. To finish the proof it suffices to show that n′

is a morphism of schemes, i.e., a morphism of locally ringed spaces.
Let t′ ∈ T ′ with image x ∈ X. We have to show that OX,x → OT ′,t′ is local. If
t′ ̸∈ T , then t′ is the image of a unique point s′ ∈ S′ and OT ′,t′ = OS′,s′ . Namely,
S′ \ S → T ′ \ T is an isomorphism of schemes as B′ → A′ induces an isomorphism
Ker(B′ → B) = Ker(A′ → A). If t′ is the image of t ∈ T , then we know that the
composition OX,x → OT ′,t′ → OT,t is local and we conclude also. □

Lemma 14.2.0BMP Let I → (Sch/S)fppf , i 7→ Xi be a diagram of schemes. Let
(W,Xi → W ) be a cocone for the diagram in the category of schemes (Categories,
Remark 14.5). If there exists a fpqc covering {Wa →W}a∈A of schemes such that

(1) for all a ∈ A we have Wa = colimXi ×W Wa in the category of schemes,
and
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(2) for all a, b ∈ A we have Wa ×W Wb = colimXi ×W Wa ×W Wb in the
category of schemes,

then W = colimXi in the category of schemes.

Proof. Namely, for a scheme T a morphism W → T is the same thing as collection
of morphism Wa → T , a ∈ A which agree on the overlaps Wa ×W Wb, see Descent,
Lemma 13.7. □

Lemma 14.3.07RT Let X → X ′ be a thickening of schemes and let X → Y be an
affine morphism of schemes. Then there exists a pushout

X //

f

��

X ′

f ′

��
Y // Y ′

in the category of schemes. Moreover, Y ⊂ Y ′ is a thickening, X = Y ×Y ′ X ′, and
OY ′ = OY ×f∗OX

f ′
∗OX′

as sheaves on |Y | = |Y ′|.

Proof. We first construct Y ′ as a ringed space. Namely, as topological space we
take Y ′ = Y . Denote f ′ : X ′ → Y ′ the map of topological spaces which equals
f . As structure sheaf OY ′ we take the right hand side of the equation of the
lemma. To see that Y ′ is a scheme, we have to show that any point has an affine
neighbourhood. Since the formation of the fibre product of sheaves commutes with
restricting to opens, we may assume Y is affine. Then X is affine (as f is affine)
and X ′ is affine as well (see Lemma 2.3). Say Y ← X → X ′ corresponds to
B → A ← A′. Set B′ = B ×A A′; this is the global sections of OY ′ . As A′ → A
is surjective with locally nilpotent kernel we see that B′ → B is surjective with
locally nilpotent kernel. Hence Spec(B′) = Spec(B) (as topological spaces). We
claim that Y ′ = Spec(B′). To see this we will show for g′ ∈ B′ with image g ∈ B
that OY ′(D(g)) = B′

g′ . Namely, by More on Algebra, Lemma 5.3 we see that

(B′)g′ = Bg ×Ah
A′
h′

where h ∈ A, h′ ∈ A′ are the images of g′. Since Bg, resp. Ah, resp. A′
h′ is equal to

OY (D(g)), resp. f∗OX(D(g)), resp. f ′
∗OX′(D(g)) the claim follows.

It remains to show that Y ′ is the pushout. The discussion above shows the scheme
Y ′ has an affine open covering Y ′ =

⋃
W ′
i such that the corresponding opens

U ′
i ⊂ X ′, Wi ⊂ Y , and Ui ⊂ X are affine open. Moreover, if A′

i, Bi, Ai are the
rings corresponding to U ′

i , Wi, Ui, then W ′
i corresponds to Bi ×Ai A

′
i. Thus we

can apply Lemmas 14.1 and 14.2 to conclude our construction is a pushout in the
category of schemes. □

In the following lemma we use the fibre product of categories as defined in Cate-
gories, Example 31.3.

Lemma 14.4.07RV Let X → X ′ be a thickening of schemes and let X → Y be an
affine morphism of schemes. Let Y ′ = Y ⨿X X ′ be the pushout (see Lemma 14.3).
Base change gives a functor

F : (Sch/Y ′) −→ (Sch/Y )×(Sch/Y ′) (Sch/X ′)
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given by V ′ 7−→ (V ′ ×Y ′ Y, V ′ ×Y ′ X ′, 1) which has a left adjoint

G : (Sch/Y )×(Sch/Y ′) (Sch/X ′) −→ (Sch/Y ′)

which sends the triple (V,U ′, φ) to the pushout V ⨿(V×Y X) U
′. Finally, F ◦ G is

isomorphic to the identity functor.

Proof. Let (V,U ′, φ) be an object of the fibre product category. Set U = U ′×X′X.
Note that U → U ′ is a thickening. Since φ : V ×Y X → U ′ ×X′ X = U is an
isomorphism we have a morphism U → V over X → Y which identifies U with the
fibre product X ×Y V . In particular U → V is affine, see Morphisms, Lemma 11.8.
Hence we can apply Lemma 14.3 to get a pushout V ′ = V ⨿U U ′. Denote V ′ → Y ′

the morphism we obtain in virtue of the fact that V ′ is a pushout and because we
are given morphisms V → Y and U ′ → X ′ agreeing on U as morphisms into Y ′.
Setting G(V,U ′, φ) = V ′ gives the functor G.

Let us prove that G is a left adjoint to F . Let Z be a scheme over Y ′. We have to
show that

Mor(V ′, Z) = Mor((V,U ′, φ), F (Z))
where the morphism sets are taking in their respective categories. Let g′ : V ′ → Z
be a morphism. Denote g̃, resp. f̃ ′ the composition of g′ with the morphism V → V ′,
resp. U ′ → V ′. Base change g̃, resp. f̃ ′ by Y → Y ′, resp.X ′ → Y ′ to get a morphism
g : V → Z ×Y ′ Y , resp. f ′ : U ′ → Z ×Y ′ X ′. Then (g, f ′) is an element of the
right hand side of the equation above (details omitted). Conversely, suppose that
(g, f ′) : (V,U ′, φ) → F (Z) is an element of the right hand side. We may consider
the composition g̃ : V → Z, resp. f̃ ′ : U ′ → Z of g, resp. f by Z ×Y ′ X ′ → Z, resp.
Z ×Y ′ Y → Z. Then g̃ and f̃ ′ agree as morphism from U to Z. By the universal
property of pushout, we obtain a morphism g′ : V ′ → Z, i.e., an element of the left
hand side. We omit the verification that these constructions are mutually inverse.

To prove that F ◦G is isomorphic to the identity we have to show that the adjunction
mapping (V,U ′, φ) → F (G(V,U ′, φ)) is an isomorphism. To do this we may work
affine locally. Say X = Spec(A), X ′ = Spec(A′), and Y = Spec(B). Then A′ → A
and B → A are ring maps as in More on Algebra, Lemma 6.4 and Y ′ = Spec(B′)
with B′ = B×AA′. Next, suppose that V = Spec(D), U ′ = Spec(C ′) and φ is given
by an A-algebra isomorphism D⊗BA→ C ′⊗A′A = C ′/IC ′. Set D′ = D×C′/IC′C ′.
In this case the statement we have to prove is thatD′⊗B′B ∼= D andD′⊗B′A′ ∼= C ′.
This is a special case of More on Algebra, Lemma 6.4. □

Lemma 14.5.08KU Let X → X ′ be a thickening of schemes and let X → Y be an
affine morphism of schemes. Let Y ′ = Y ⨿X X ′ be the pushout (see Lemma 14.3).
Let V ′ → Y ′ be a morphism of schemes. Set V = Y ×Y ′ V ′, U ′ = X ′ ×Y ′ V ′, and
U = X ×Y ′ V ′. There is an equivalence of categories between

(1) quasi-coherent OV ′-modules flat over Y ′, and
(2) the category of triples (G,F ′, φ) where

(a) G is a quasi-coherent OV -module flat over Y ,
(b) F ′ is a quasi-coherent OU ′-module flat over X ′, and
(c) φ : (U → V )∗G → (U → U ′)∗F ′ is an isomorphism of OU -modules.

The equivalence maps G′ to ((V → V ′)∗G′, (U ′ → V ′)∗G′, can). Suppose G′ corre-
sponds to the triple (G,F ′, φ). Then
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(a) G′ is a finite type OV ′-module if and only if G and F ′ are finite type OY
and OU ′-modules.

(b) if V ′ → Y ′ is locally of finite presentation, then G′ is an OV ′-module of
finite presentation if and only if G and F ′ are OY and OU ′-modules of
finite presentation.

Proof. A quasi-inverse functor assigns to the triple (G,F ′, φ) the fibre product
(V → V ′)∗G ×(U→V ′)∗F (U ′ → V ′)∗F ′

where F = (U → U ′)∗F ′. This works, because on affines we recover the equivalence
of More on Algebra, Lemma 7.5. Some details omitted.
Parts (a) and (b) follow from More on Algebra, Lemmas 7.4 and 7.6. □

Lemma 14.6.07RX In the situation of Lemma 14.4. If V ′ = G(V,U ′, φ) for some triple
(V,U ′, φ), then

(1) V ′ → Y ′ is locally of finite type if and only if V → Y and U ′ → X ′ are
locally of finite type,

(2) V ′ → Y ′ is flat if and only if V → Y and U ′ → X ′ are flat,
(3) V ′ → Y ′ is flat and locally of finite presentation if and only if V → Y and

U ′ → X ′ are flat and locally of finite presentation,
(4) V ′ → Y ′ is smooth if and only if V → Y and U ′ → X ′ are smooth,
(5) V ′ → Y ′ is étale if and only if V → Y and U ′ → X ′ are étale, and
(6) add more here as needed.

If W ′ is flat over Y ′, then the adjunction mapping G(F (W ′))→W ′ is an isomor-
phism. Hence F and G define mutually quasi-inverse functors between the category
of schemes flat over Y ′ and the category of triples (V,U ′, φ) with V → Y and
U ′ → X ′ flat.

Proof. Looking over affine pieces the assertions of this lemma are equivalent to
the corresponding assertions of More on Algebra, Lemma 7.7. □

15. Openness of the flat locus

0398 This result takes some work to prove, and (perhaps) deserves its own section. Here
it is.

Theorem 15.1.0399 [DG67, IV Theorem
11.3.1]

Let S be a scheme. Let f : X → S be a morphism which is
locally of finite presentation. Let F be a quasi-coherent OX-module which is locally
of finite presentation. Then

U = {x ∈ X | F is flat over S at x}
is open in X.

Proof. We may test for openness locally on X hence we may assume that f is a
morphism of affine schemes. In this case the theorem is exactly Algebra, Theorem
129.4. □

Lemma 15.2.047C Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
S′ g // S
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be a cartesian diagram of schemes. Let F be a quasi-coherent OX-module. Let
x′ ∈ X ′ with images x = g′(x′) and s′ = f ′(x′).

(1) If F is flat over S at x, then (g′)∗F is flat over S′ at x′.
(2) If g is flat at s′ and (g′)∗F is flat over S′ at x′, then F is flat over S at x.

In particular, if g is flat, f is locally of finite presentation, and F is locally of finite
presentation, then formation of the open subset of Theorem 15.1 commutes with
base change.

Proof. Consider the commutative diagram of local rings

OX′,x′ OX,xoo

OS′,s′

OO

OS,soo

OO

Note that OX′,x′ is a localization of OX,x⊗OS,s
OS′,s′ , and that ((g′)∗F)x′ is equal

to Fx ⊗OX,x
OX′,x′ . Hence the lemma follows from Algebra, Lemma 100.1. □

16. Critère de platitude par fibres

039A Consider a commutative diagram of schemes (left hand diagram)

X
f

//

��

Y

��
S

Xs
fs

//

$$

Ys

zz
Spec(κ(s))

and a quasi-coherent OX -module F . Given a point x ∈ X lying over s ∈ S with
image y = f(x) we consider the question: Is F flat over Y at x? If F is flat over S
at x, then the theorem states this question is intimately related to the question of
whether the restriction of F to the fibre

Fs = (Xs → X)∗F
is flat over Ys at x. Below you will find a “Noetherian” version, a “finitely presented”
version, and earlier we treated a “nilpotent” version, see Lemma 10.2.

Theorem 16.1.039B Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Let F be a quasi-coherent OX-module. Let x ∈ X. Set y = f(x) and s ∈ S
the image of x in S. Assume S, X, Y locally Noetherian, F coherent, and Fx ̸= 0.
Then the following are equivalent:

(1) F is flat over S at x, and Fs is flat over Ys at x, and
(2) Y is flat over S at y and F is flat over Y at x.

Proof. Consider the ring maps
OS,s −→ OY,y −→ OX,x

and the module Fx. The stalk of Fs at x is the module Fx/msFx and the local
ring of Ys at y is OY,y/msOY,y. Thus the implication (1) ⇒ (2) is Algebra, Lemma
99.15. If (2) holds, then the first ring map is faithfully flat and Fx is flat over OY,y
so by Algebra, Lemma 39.4 we see that Fx is flat over OS,s. Moreover, Fx/msFx
is the base change of the flat module Fx by OY,y → OY,y/msOY,y, hence flat by
Algebra, Lemma 39.7. □

https://stacks.math.columbia.edu/tag/039B
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Here is the non-Noetherian version.

Theorem 16.2.039C Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Let F be a quasi-coherent OX-module. Assume

(1) X is locally of finite presentation over S,
(2) F an OX-module of finite presentation, and
(3) Y is locally of finite type over S.

Let x ∈ X. Set y = f(x) and let s ∈ S be the image of x in S. If Fx ̸= 0, then the
following are equivalent:

(1) F is flat over S at x, and Fs is flat over Ys at x, and
(2) Y is flat over S at y and F is flat over Y at x.

Moreover, the set of points x where (1) and (2) hold is open in Supp(F).

Proof. Consider the ring maps
OS,s −→ OY,y −→ OX,x

and the module Fx. The stalk of Fs at x is the module Fx/msFx and the local
ring of Ys at y is OY,y/msOY,y. Thus the implication (1) ⇒ (2) is Algebra, Lemma
128.9. If (2) holds, then the first ring map is faithfully flat and Fx is flat over OY,y
so by Algebra, Lemma 39.4 we see that Fx is flat over OS,s. Moreover, Fx/msFx
is the base change of the flat module Fx by OY,y → OY,y/msOY,y, hence flat by
Algebra, Lemma 39.7.
By Morphisms, Lemma 21.11 the morphism f is locally of finite presentation. Con-
sider the set
(16.2.1)05VI U = {x ∈ X | F flat at x over both Y and S}.
This set is open in X by Theorem 15.1. Note that if x ∈ U , then Fs is flat at x over
Ys as a base change of a flat module under the morphism Ys → Y , see Morphisms,
Lemma 25.7. Hence at every point of U ∩ Supp(F) condition (1) is satisfied. On
the other hand, it is clear that if x ∈ Supp(F) satisfies (1) and (2), then x ∈ U .
Thus the open set we are looking for is U ∩ Supp(F). □

These theorems are often used in the following simplified forms. We give only the
global statements – of course there are also pointwise versions.

Lemma 16.3.039D Let S be a scheme. Let f : X → Y be a morphism of schemes over
S. Assume

(1) S, X, Y are locally Noetherian,
(2) X is flat over S,
(3) for every s ∈ S the morphism fs : Xs → Ys is flat.

Then f is flat. If f is also surjective, then Y is flat over S.

Proof. This is a special case of Theorem 16.1. □

Lemma 16.4.039E Let S be a scheme. Let f : X → Y be a morphism of schemes over
S. Assume

(1) X is locally of finite presentation over S,
(2) X is flat over S,
(3) for every s ∈ S the morphism fs : Xs → Ys is flat, and
(4) Y is locally of finite type over S.

https://stacks.math.columbia.edu/tag/039C
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Then f is flat. If f is also surjective, then Y is flat over S.

Proof. This is a special case of Theorem 16.2. □

Lemma 16.5.05VJ Let S be a scheme. Let f : X → Y be a morphism of schemes over
S. Let F be a quasi-coherent OX-module. Assume

(1) X is locally of finite presentation over S,
(2) F an OX-module of finite presentation,
(3) F is flat over S, and
(4) Y is locally of finite type over S.

Then the set
U = {x ∈ X | F flat at x over Y }.

is open in X and its formation commutes with arbitrary base change: If S′ → S
is a morphism of schemes, and U ′ is the set of points of X ′ = X ×S S′ where
F ′ = F ×S S′ is flat over Y ′ = Y ×S S′, then U ′ = U ×S S′.

Proof. By Morphisms, Lemma 21.11 the morphism f is locally of finite presenta-
tion. Hence U is open by Theorem 15.1. Because we have assumed that F is flat
over S we see that Theorem 16.2 implies

U = {x ∈ X | Fs flat at x over Ys}.

where s always denotes the image of x in S. (This description also works trivially
when Fx = 0.) Moreover, the assumptions of the lemma remain in force for the
morphism f ′ : X ′ → Y ′ and the sheaf F ′. Hence U ′ has a similar description. In
other words, it suffices to prove that given s′ ∈ S′ mapping to s ∈ S we have

{x′ ∈ X ′
s′ | F ′

s′ flat at x′ over Y ′
s′}

is the inverse image of the corresponding locus in Xs. This is true by Lemma 15.2
because in the cartesian diagram

X ′
s′

��

// Xs

��
Y ′
s′ // Ys

the horizontal morphisms are flat as they are base changes by the flat morphism
Spec(κ(s′))→ Spec(κ(s)). □

Lemma 16.6.05VK Let S be a scheme. Let f : X → Y be a morphism of schemes over
S. Assume

(1) X is locally of finite presentation over S,
(2) X is flat over S, and
(3) Y is locally of finite type over S.

Then the set
U = {x ∈ X | X flat at x over Y }.

is open in X and its formation commutes with arbitrary base change.

Proof. This is a special case of Lemma 16.5. □
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The following lemma is a variant of Algebra, Lemma 99.4. Note that the hypothesis
that (Fs)x is a flat OXs,x-module means that (Fs)x is a free OXs,x-module which
is always the case if x ∈ Xs is a generic point of an irreducible component of Xs

and Xs is reduced (namely, in this case OXs,x is a field, see Algebra, Lemma 25.1).

Lemma 16.7.080Q Let f : X → S be a morphism of schemes of finite presentation. Let
F be a finitely presented OX-module. Let x ∈ X with image s ∈ S. If F is flat at
x over S and (Fs)x is a flat OXs,x-module, then F is finite free in a neighbourhood
of x.

Proof. If Fx ⊗ κ(x) is zero, then Fx = 0 by Nakayama’s lemma (Algebra, Lemma
20.1) and hence F is zero in a neighbourhood of x (Modules, Lemma 9.5) and
the lemma holds. Thus we may assume Fx ⊗ κ(x) is not zero and we see that
Theorem 16.2 applies with f = id : X → X. We conclude that Fx is flat over
OX,x. Hence Fx is free, see Algebra, Lemma 78.5 for example. Choose an open
neighbourhood x ∈ U ⊂ X and sections s1, . . . , sr ∈ F(U) which map to a basis
in Fx. The corresponding map ψ : O⊕r

U → F|U is surjective after shrinking U
(Modules, Lemma 9.5). Then Ker(ψ) is of finite type (see Modules, Lemma 11.3)
and Ker(ψ)x = 0. Whence after shrinking U once more ψ is an isomorphism. □

Lemma 16.8.0CZR Let f : X → S be a morphism of schemes which is locally of finite
presentation. Let F be a finitely presented OX-module flat over S. Then the set

{x ∈ X : F free in a neighbourhood of x}

is open in X and its formation commutes with arbitrary base change S′ → S.

Proof. Openness holds trivially. Let x ∈ X mapping to s ∈ S. By Lemma 16.7
we see that x is in our set if and only if F|Xs

is flat at x over Xs. Clearly this is
also equivalent to F being flat at x over X (because this statement is implied by
freeness of Fx and implies flatness of F|Xs at x over Xs). Thus the base change
statement follows from Lemma 16.5 applied to id : X → X over S. □

17. Closed immersions between smooth schemes

0H1G Some results that do not fit elsewhere very well.

Lemma 17.1.0FUE Let S be a scheme. Let Y → X be a closed immersion of schemes
smooth over S. For every y ∈ Y there exist integers 0 ≤ m,n and a commutative
diagram

Y

��

Voo

��

// Am
S

(a1,...,am) 7→(a1,...,am,0...,0)
��

X Uoo π // Am+n
S

where U ⊂ X is open, V = Y ∩ U , π is étale, V = π−1(Am
S ), and y ∈ V .

Proof. The question is local on X hence we may replace X by an open neighbour-
hood of y. Since Y → X is a regular immersion by Divisors, Lemma 22.11 we may
assume X = Spec(A) is affine and there exists a regular sequence f1, . . . , fn ∈ A
such that Y = V (f1, . . . , fn). After shrinking X (and hence Y ) further we may as-
sume there exists an étale morphism Y → Am

S , see Morphisms, Lemma 36.20. Let
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g1, . . . , gm in OY (Y ) be the coordinate functions of this étale morphism. Choose
lifts g1, . . . , gm ∈ A of these functions and consider the morphism

(g1, . . . , gm, f1, . . . , fn) : X −→ Am+n
S

over S. This is a morphism of schemes locally of finite presentation over S and
hence is locally of finite presentation (Morphisms, Lemma 21.11). The restriction
of this morphism to Am

S ⊂ Am+n
S is étale by construction. Thus, in order to show

that X → Am+n
S is étale at y it suffices to show that X → Am+n

S is flat at y, see
Morphisms, Lemma 36.15. Let s ∈ S be the image of y. It suffices to check that
Xs → Am+n

s is flat at y, see Theorem 16.2. Let z ∈ Am+n
s be the image of y. The

local ring map
OAm+n

s ,z −→ OXs,y

is flat by Algebra, Lemma 128.1. Namely, schemes smooth over fields are regu-
lar and regular rings are Cohen-Macaulay, see Varieties, Lemma 25.3 and Algebra,
Lemma 106.3. Thus both source and target are regular local rings (and hence CM).
The source and target have the same dimension: namely, we have dim(OYs,y) =
dim(OAm

s ,z
) by More on Algebra, Lemma 44.2, we have dim(OAm+n

s ,z) = n +
dim(OAm

s ,z
), and we have dim(OXs,y) = n+ dim(OYs,y) because OYs,y is the quo-

tient of OXs,y by the regular sequence f1, . . . , fn of length n (see Divisors, Remark
22.5). Finally, the fibre ring of the displayed arrow is finite over κ(z) since Ys → Am

s

is étale at y. This finishes the proof. □

Remark 17.2.0H1H We fix a ring R and we set S = Spec(R). Fix integers 0 ≤ m and
1 ≤ n. Consider the closed immersion

Z = Am
S −→ Am+n

S = X, (a1, . . . , am) 7→ (a1, . . . , am, 0, . . . 0).

We are going to consider the blowing up X ′ of X along the closed subscheme Z.
Write

X = Spec(A) with A = R[x1, . . . , xm, y1, . . . , yn]
Then X ′ is the Proj of the Rees algebra of A with respect ot the ideal (y1, . . . , yn).
This Rees algebra is equal to B = A[T1, . . . , Tn]/(yiTj − yjTi); details omitted.
Hence X ′ = Proj(B) is smooth over S as it is covered by the affine opens

D+(Ti) = Spec(B(Ti))
= Spec(A[t1, . . . , t̂i, . . . tn]/(yj − yitj))
= Spec(R[x1, . . . , xm, yi, t1, . . . , t̂i, . . . , tn])

which are isomorphic to An+m
S . In this chart the exceptional divisor is cut out by

setting yi = 0 hence the exceptional divisor is smooth over S as well.

Lemma 17.3.0FUT Let S be a scheme. Let Z → X be a closed immersion of schemes
smooth over S. Let b : X ′ → X be the blowing up of Z with exceptional divisor
E ⊂ X ′. Then X ′ and E are smooth over S. The morphism p : E → Z is
canonically isomorphic to the projective space bundle

P(I/I2) −→ Z

where I ⊂ OX is the ideal sheaf of Z. The relative OE(1) coming from the projective
space bundle structure is isomorphic to the restriction of OX′(−E) to E.

https://stacks.math.columbia.edu/tag/0H1H
https://stacks.math.columbia.edu/tag/0FUT


MORE ON MORPHISMS 52

Proof. By Divisors, Lemma 22.11 the immersion Z → X is a regular immmersion,
hence the ideal sheaf I is of finite type, hence b is a projective morphism with
relatively ample invertible sheaf OX′(1) = OX′(−E), see Divisors, Lemmas 32.4
and 32.13. The canonical map I → b∗OX′(1) gives a closed immersion

X ′ −→ P
(⊕

n≥0
Symn

OX
(I)

)
by the very construction of the blowup. The restriction of this morphism to E gives
a canonical map

E −→ P
(⊕

n≥0
Symn

OZ
(I/I2)

)
over Z. Since I/I2 is finite locally free if this canonical map is an isomorphism,
then the final part of the lemma holds. Having said all of this, now the question is
étale local on X. Namely, blowing up commutes with flat base change by Divisors,
Lemma 32.3 and we can check smoothness after precomposing with a surjective étale
morphism. Thus by the étale local structure of a closed immersion of schemes over
S given in Lemma 17.1 this reduces us to the case discussed in Remark 17.2. □

18. Flat modules and relative assassins

0GSF In this section we will prove that the support of a flat module is (in some sense)
equidimensional over the base in geometric situations. For the Noetherian case we
refer the reader to [DG67, IV Proposition 12.1.1.5]. First, we prove two helper
lemmas.

Lemma 18.1.0GSG Let A be a valuation ring. Let A → B is a local homomorphism
of local rings which is essentially of finite type. Let u : N → M be a map of finite
B-modules. Assume M is flat over A and u : N/mAN → M/mAM is injective.
Then u is injective and M/u(N) is flat over A.

Proof. We will deduce this lemma from Algebra, Lemma 128.4 (please note that
we exchanged the roles of M and N). To do the reduction we will use More on
Algebra, Lemma 25.7 to reduce to the finitely presented case.

By assumption we can write B as a quotient of the localization of a polynomial
algebra P = A[x1, . . . , xn] at a prime ideal q. Then we can think of u : N →M as
a map of finite Pq-modules. Hence we may and do assume that B is essentially of
finite presentation over A.

Next, the B-module N is finite but perhaps not of finite presentation. Write
N = colimNλ as a filtered colimit of finitely presented B-modules with surjec-
tive transition maps. For example choose a presentation 0→ K → B⊕r → N → 0,
write K as the union of its finite submodules Kλ, and set Nλ = Coker(Kλ → B⊕r).
The module N/mAN is of finite presentation over the Noetherian ring B/mAB.
Hence for λ large enough we have Nλ/mANλ = N/mAN . Now, if we can show the
lemma for the composition uλ : Nλ →M , then we conclude that Nλ = N and the
result holds for u. Hence we may and do assume N is of finite presentation over B.

By More on Algebra, Lemma 25.7 the module M is of finite presentation over B.
Thus all the assumptions of Algebra, Lemma 128.4 hold and we conclude. □

Lemma 18.2.0GSH This can be found
in the proof of
[DG67, IV
Proposition 12.1.1.5]

Let f : X → S be a morphism of schemes. Let y ∈ X be a point
with image t ∈ S. Denote Y ⊂ X the closure of {y} viewed as an integral closed
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subscheme of X. Let s ∈ S and let x ∈ Ys be a generic point of an irreducible
component of Ys. There exists a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

with the following properties:
(1) S′ is the spectrum of a valuation ring with generic point t′ and closed point

s′,
(2) g(t′) = t and g(s′) = s,
(3) there exists a point y′ ∈ X ′

t′ which is a generic point of an irreducible
component of (S′ ×S Y )t′ = Yt ×t t′ and satisfies g′(y′) = y,

(4) denoting Y ′ ⊂ X ′ the closure of {y′} viewed as an integral closed subscheme
of X ′ there exists a point x′ ∈ Y ′

s′ which is a generic point of an irreducible
component of Y ′

s′ with g′(x′) = x.

Proof. We choose a valuation ring R, we set S′ = Spec(R) with generic point t′
and closed point s′, and we choose a morphism h : S′ → X with h(t′) = y and
h(s′) = x. See Schemes, Lemma 20.4. Set g = f ◦ h so that g(t′) = t and g(s′) = s.
Consider the base change

X ′
g′
//

��

X

��
S′

σ

CC

g // S

We obtain a section σ of the base change such that h = g′ ◦ σ.
Of course σ factors through the base change S′ ×S Y of Y as h factors through Y .
Let y′ ∈ X ′

t′ ⊂ X ′ be the generic point of an irreducible component of the fibre
(S′ ×S Y )t′ = Yt ×t t′

containing the point σ(t′), i.e., such that y′ ⇝ σ(t′). Since g′(y′) ∈ Yt and g(y′)⇝
g(σ(t′)) = y we find that g′(y′) = y because y is the generic point of the fibre Yt.
Denote Y ′ ⊂ X ′ the closure of {y′} in X ′ viewed as an integral closed subscheme.
Then σ factors through Y ′ as σ(t′) ∈ Y ′. Choose a generic point x′ ∈ Y ′

s′ of an
irreducible component of Y ′

s′ which contains σ(s′), i.e., we get x′ ⇝ σ(s′) and hence
g′(x′) ⇝ g′(σ(s′)) = x. Again as x is a generic point of an irreducible component
of Ys by assumption and as g′(Y ′) ⊂ Y we conclude that g′(x′) = x. □

Lemma 18.3.0GSI Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent finite type OX-module. Let y ∈ AssX/S(F) with
image t ∈ S. Denote Y ⊂ X the closure of {y} in X viewed as an integral closed
subscheme. Let s ∈ S and let x ∈ Ys be a generic point of an irreducible component
of Ys. If F is flat over S at x, then x ∈ AssX/S(F) and dimx(Ys) = dim(Yt).

Proof. Choose a diagram as in Lemma 18.2. Set F ′ = (g′)∗F . Divisors, Lemma
7.3 implies that y′ ∈ AssX′/S′(F ′). By our choice of y′ we also see that dim(Y ′

t′) =
dim(Yt), see for example Algebra, Lemma 116.7. By Algebra, Lemma 125.9 we see
that Y ′

s′ is equidimensional of dimension equal to dim(Yt). Since F is flat at x over
S we see that F ′ is flat at x′ over S′, see Morphisms, Lemma 25.7.

https://stacks.math.columbia.edu/tag/0GSI
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Suppose that we can show x′ ∈ AssX′/S(F ′). Then Divisors, Lemma 7.3 implies
that x ∈ AssX/S(F) and that the irreducible component C ′ of Y ′

s′ containing x′ is
an irreducible component of C ×s s′ where C ⊂ Ys is the irreducible component
containing x. Whence dim(C) = dim(C ′) = dim(Yt) (see above) and the proof is
complete. This reduces us to the case discussed in the next paragraph.
Assume S = Spec(A) where A is a valuation ring and t and s are the generic and
closed points of S. We will assume x ̸∈ AssX/S(F) in order to get a contradiction.
In other words, we assume x ̸∈ AssXs

(Fs) where Fs is the pullback of F to Xs.
Consider the ring map

A −→ OX,x = B

and the module N = Fx over B = OX,x. Then B/mAB = OXs,x and N/mAN
is the stalk of Fs at the point x. Denote q ⊂ B the prime ideal corresponding to
the point y, see Schemes, Lemma 13.2. Since x is a generic point of Ys we see that
the radical of q + mAB is mB . Then AssB/mAB(N/mAN) is a finite set of prime
ideals (Algebra, Lemma 63.5) which doesn’t contain the maximal ideal of B/mAB
since x ̸∈ AssX/S(F). Thus the image of of q in B/mAB is not contained in any of
those prime ideals. Hence by prime avoidance (Algebra, Lemma 15.2) we can find
an element g ∈ q whose image in B/mAB is a nonzerodivisor on N/mAN (this uses
the description of zerodivisors in Algebra, Lemma 63.9). Since N = Fx is A-flat by
Lemma 18.1 we see that

g : N −→ N

is injective. In particular, if K = Frac(A) is the fraction field of A, then we see
that

g : N ⊗A K −→ N ⊗A K
is injective. Observe that q corresponds to a prime ideal of B⊗AK. Denote Ft the
restriction of F to the generic fibre Xt. We have (B⊗AK)q = OXt,y and (N⊗AK)q
is the stalk at y of Ft. Hence we find that g ∈ my ⊂ OXt,y is a nonzerodivisor on
the stalk (Ft)y which contradicts our assumption that y ∈ AssX/S(F). □

Lemma 18.4.0H3X Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a finite type, quasi-coherent OX-module flat over S. Assume S is
irreducible with generic point η. If dim(Supp(Fη)) ≤ r then for all s ∈ S we have
dim(Supp(Fs)) ≤ r.

Proof. Let x ∈ Supp(Fs) be a generic point of an irreducible component of
Supp(Fs). By Algebra, Lemma 41.12 we can find a specialization y ⇝ x in Supp(F)
with f(y) = η. Of course we may assume y is a generic point of an irreducible com-
ponent of Supp(Fη). We conclude from Lemma 18.3 that the dimension of {x} is
at most r. □

Lemma 18.5.0GSJ Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX-module of finite type. Let y ∈ AssX/S(F).
Denote Y ⊂ X the closure of {y} in X viewed as an integral closed subscheme.
Denote T ⊂ S the closure of {f(y)} viewed as an integral closed subscheme. We
obtain a commutative diagram

Y //

��

X

��
T // S

https://stacks.math.columbia.edu/tag/0H3X
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where Y → T is dominant. Assume F is flat over S at all generic points of
irreducible components of fibres of Y → T (for example if F is flat over S). Then

(1) if s ∈ S and x ∈ Ys is the generic point of an irreducible component of Ys,
then x ∈ AssX/S(F), and

(2) there is an integer d ≥ 0 such that Y → T is of relative dimension d, see
Morphisms, Definition 29.1.

Proof. This follows immediately from the pointwise version Lemma 18.3. Note
that to compute the dimension of the locally algebraic schemes Ys it suffices to look
near the generic points, see Varieties, Section 20. □

Remark 18.6.0GSK Here are some cases where the material above, especially Lemma
18.5, allows one to conclude that a morphism f : X → S of schemes has relative
dimension d as defined in Morphisms, Definition 29.1. For example, this is true if

(1) X is integral with generic point ξ,
(2) the transcendence degree of κ(ξ) over κ(f(ξ)) is d,
(3) f is locally of finite type, and
(4) there exists a quasi-coherent OX -module F of finite type which is flat over

S with Supp(F) = X.
Another set of hypotheses that work are the following:

(1) S is irreducible with generic point η,
(2) Xη is dense in X,
(3) every irreducible component of Xη has dimension d,
(4) f is locally of finite type, and
(5) there exists a quasi-coherent OX -module F of finite type which is flat over

S with Supp(F) = X.
Of course, we can relax the flatness condition on F and require only that F is flat
over S in codimension 0, i.e., that F is flat over S at every generic point of every
fibre. If we ever need these results, we will carefully state and prove them here.

19. Normalization revisited

081J Normalization commutes with smooth base change.

Lemma 19.1.081K Let f : Y → X be a smooth morphism of schemes. Let A be a
quasi-coherent sheaf of OX-algebras. The integral closure of OY in f∗A is equal to
f∗A′ where A′ ⊂ A is the integral closure of OX in A.

Proof. This is a translation of Algebra, Lemma 147.4 into the language of schemes.
Details omitted. □

Lemma 19.2 (Normalization commutes with smooth base change).03GV Let

Y2 //

f2

��

Y1

f1

��
X2

φ // X1

be a fibre square in the category of schemes. Assume f1 is quasi-compact and quasi-
separated, and φ is smooth. Let Yi → X ′

i → Xi be the normalization of Xi in Yi.
Then X ′

2
∼= X2 ×X1 X

′
1.

https://stacks.math.columbia.edu/tag/0GSK
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Proof. The base change of the factorization Y1 → X ′
1 → X1 to X2 is a factorization

Y2 → X2 ×X1 X
′
1 → X2 and X2 ×X1 X

′
1 → X2 is integral (Morphisms, Lemma

44.6). Hence we get a morphism h : X ′
2 → X2 ×X1 X

′
1 by the universal property of

Morphisms, Lemma 53.4. Observe that X ′
2 is the relative spectrum of the integral

closure of OX2 in f2,∗OY2 . If A′ ⊂ f1,∗OY1 denotes the integral closure of OX1 ,
then X2 ×X1 X

′
1 is the relative spectrum of φ∗A′, see Constructions, Lemma 4.6.

By Cohomology of Schemes, Lemma 5.2 we know that f2,∗OY2 = φ∗f1,∗OY1 . Hence
the result follows from Lemma 19.1. □

Lemma 19.3 (Normalization and smooth morphisms).07TD Let X → Y be a smooth
morphism of schemes. Assume every quasi-compact open of Y has finitely many
irreducible components. Then the same is true for X and there is a unique iso-
morphism Xν = X ×Y Y ν over X where Xν , Y ν are the normalizations of X,
Y .

Proof. By Descent, Lemma 16.3 every quasi-compact open of X has finitely many
irreducible components. Note that Xred = X ×Y Yred as a scheme smooth over a
reduced scheme is reduced, see Descent, Lemma 18.1. Hence we may assume that X
and Y are reduced (as the normalization of a scheme is equal to the normalization
of its reduction by definition). Next, note that X ′ = X ×Y Y ν is a normal scheme
by Descent, Lemma 18.2. The morphism X ′ → Y ν is smooth (hence flat) thus the
generic points of irreducible components of X ′ lie over generic points of irreducible
components of Y ν . Since Y ν → Y is birational we conclude that X ′ → X is
birational too (because X ′ → Y ν induces an isomorphism on fibres over generic
points of Y ). We conclude that there exists a factorization Xν → X ′ → X, see
Morphisms, Lemma 54.5 which is an isomorphism as X ′ is normal and integral over
X. □

Lemma 19.4 (Normalization and henselization).0CBM Let X be a locally Noetherian
scheme. Let ν : Xν → X be the normalization morphism. Then for any point
x ∈ X the base change

Xν ×X Spec(OhX,x)→ Spec(OhX,x), resp. Xν ×X Spec(OshX,x)→ Spec(OshX,x)

is the normalization of Spec(OhX,x), resp. Spec(OshX,x).

Proof. Let η1, . . . , ηr be the generic points of the irreducible components of X pass-
ing through x. The base change of the normalization to Spec(OX,x) is the spectrum
of the integral closure of OX,x in

∏
κ(ηi). This follows from our construction of the

normalization of X in Morphisms, Definition 54.1 and Morphisms, Lemma 53.1;
you can also use the description of the normalization in Morphisms, Lemma 54.3.
Thus we reduce to the following algebra problem. Let A be a Noetherian local ring;
recall that this implies the henselization Ah and strict henselization Ash are Noe-
therian too (More on Algebra, Lemma 45.3). Let p1, . . . , pr be its minimal primes.
Let A′ be the integral closure of A in

∏
κ(pi). Problem: show that A′⊗AAh, resp.

A′ ⊗A Ash is constructed from the Noetherian local ring Ah, resp. Ash in the same
manner.

Since Ah, resp. Ash are colimits of étale A-algebras, we see that the minimal primes
of A and Ash are exactly the primes of Ah, resp. Ash lying over the minimal primes
of A (by going down, see Algebra, Lemmas 39.19 and 30.7). Thus More on Algebra,
Lemma 45.13 tells us that Ah ⊗A

∏
κ(pi), resp. Ash ⊗A

∏
κ(pi) is the product of

https://stacks.math.columbia.edu/tag/07TD
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the residue fields at the minimal primes of Ah, resp. Ash. We know that taking
the integral closure in an overring commutes with étale base change, see Algebra,
Lemma 147.2. Writing Ah and Ash as a limit of étale A-algebras we see that the
same thing is true for the base change to Ah and Ash (you can also use the more
general Algebra, Lemma 147.5). □

20. Normal morphisms

038Z In the article [DM69] of Deligne and Mumford the notion of a normal morphism
is mentioned. This is just one in a series of types3 of morphisms that can all be
defined similarly. Over time we will add these in their own sections as needed.

Definition 20.1.0390 Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X, and y = f(x). We say that f is normal at x if f is flat at x,
and the scheme Xy is geometrically normal at x over κ(y) (see Varieties,
Definition 10.1).

(2) We say f is a normal morphism if f is normal at every point of X.

So the condition that the morphism X → Y is normal is stronger than just requiring
all the fibres to be normal locally Noetherian schemes.

Lemma 20.2.0391 Let f : X → Y be a morphism of schemes. Assume all fibres of f
are locally Noetherian. The following are equivalent

(1) f is normal, and
(2) f is flat and its fibres are geometrically normal schemes.

Proof. This follows directly from the definitions. □

Lemma 20.3.056W A smooth morphism is normal.

Proof. Let f : X → Y be a smooth morphism. As f is locally of finite presentation,
see Morphisms, Lemma 34.8 the fibres Xy are locally of finite type over a field, hence
locally Noetherian. Moreover, f is flat, see Morphisms, Lemma 34.9. Finally,
the fibres Xy are smooth over a field (by Morphisms, Lemma 34.5) and hence
geometrically normal by Varieties, Lemma 25.4. Thus f is normal by Lemma
20.2. □

We want to show that this notion is local on the source and target for the smooth
topology. First we deal with the property of having locally Noetherian fibres.

Lemma 20.4.0392 The property P(f) =“the fibres of f are locally Noetherian” is local
in the fppf topology on the source and the target.

Proof. Let f : X → Y be a morphism of schemes. Let {φi : Yi → Y }i∈I be an
fppf covering of Y . Denote fi : Xi → Yi the base change of f by φi. Let i ∈ I and
let yi ∈ Yi be a point. Set y = φi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

Moreover, as φi is of finite presentation the field extension κ(yi)/κ(y) is finitely
generated. Hence in this situation we have that Xy is locally Noetherian if and

3The other types are coprof ≤ k, Cohen-Macaulay, (Sk), regular, (Rk), and reduced. See
[DG67, IV Definition 6.8.1.]. Gorenstein morphisms will be defined in Duality for Schemes, Section
24.
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only if Xi,yi
is locally Noetherian, see Varieties, Lemma 11.1. This fact implies

locality on the target.
Let {Xi → X} be an fppf covering of X. Let y ∈ Y . In this case {Xi,y → Xy} is
an fppf covering of the fibre. Hence the locality on the source follows from Descent,
Lemma 16.1. □

Lemma 20.5.0393 The property P(f) =“the fibres of f are locally Noetherian and f
is normal” is local in the fppf topology on the target and local in the smooth topology
on the source.

Proof. We have P(f) = P1(f) ∧ P2(f) ∧ P3(f) where P1(f) =“the fibres of f are
locally Noetherian”, P2(f) =“f is flat”, and P3(f) =“the fibres of f are geometri-
cally normal”. We have already seen that P1 and P2 are local in the fppf topology
on the source and the target, see Lemma 20.4, and Descent, Lemmas 23.15 and
27.1. Thus we have to deal with P3.
Let f : X → Y be a morphism of schemes. Let {φi : Yi → Y }i∈I be an fpqc
covering of Y . Denote fi : Xi → Yi the base change of f by φi. Let i ∈ I and let
yi ∈ Yi be a point. Set y = φi(yi). Note that

Xi,yi
= Spec(κ(yi))×Spec(κ(y)) Xy.

Hence in this situation we have that Xy is geometrically normal if and only if Xi,yi

is geometrically normal, see Varieties, Lemma 10.4. This fact implies P3 is fpqc
local on the target.
Let {Xi → X} be a smooth covering of X. Let y ∈ Y . In this case {Xi,y → Xy}
is a smooth covering of the fibre. Hence the locality of P3 for the smooth topology
on the source follows from Descent, Lemma 18.2. Combining the above the lemma
follows. □

21. Regular morphisms

07R6 Compare with Section 20. The algebraic version of this notion is discussed in More
on Algebra, Section 41.

Definition 21.1.07R7 Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X, and y = f(x). We say that f is regular at x if f is flat at x,
and the scheme Xy is geometrically regular at x over κ(y) (see Varieties,
Definition 12.1).

(2) We say f is a regular morphism if f is regular at every point of X.

The condition that the morphism X → Y is regular is stronger than just requiring
all the fibres to be regular locally Noetherian schemes.

Lemma 21.2.07R8 Let f : X → Y be a morphism of schemes. Assume all fibres of f
are locally Noetherian. The following are equivalent

(1) f is regular,
(2) f is flat and its fibres are geometrically regular schemes,
(3) for every pair of affine opens U ⊂ X, V ⊂ Y with f(U) ⊂ V the ring map
O(V )→ O(U) is regular,

(4) there exists an open covering Y =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij
Ui such that each of the morphisms Ui → Vj is regular, and

https://stacks.math.columbia.edu/tag/0393
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(5) there exists an affine open covering Y =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij

Ui such that the ring maps O(Vj)→ O(Ui) are regular.

Proof. The equivalence of (1) and (2) is immediate from the definitions. Let
x ∈ X with y = f(x). By definition f is flat at x if and only if OY,y → OX,x
is a flat ring map, and Xy is geometrically regular at x over κ(y) if and only
if OXy,x = OX,x/myOX,x is a geometrically regular algebra over κ(y). Hence
Whether or not f is regular at x depends only on the local homomorphism of local
rings OY,y → OX,x. Thus the equivalence of (1) and (4) is clear.
Recall (More on Algebra, Definition 41.1) that a ring map A→ B is regular if and
only if it is flat and the fibre rings B ⊗A κ(p) are Noetherian and geometrically
regular for all primes p ⊂ A. By Varieties, Lemma 12.3 this is equivalent to
Spec(B⊗A κ(p)) being a geometrically regular scheme over κ(p). Thus we see that
(2) implies (3). It is clear that (3) implies (5). Finally, assume (5). This implies
that f is flat (see Morphisms, Lemma 25.3). Moreover, if y ∈ Y , then y ∈ Vj
for some j and we see that Xy =

⋃
i∈Ij

Ui,y with each Ui,y geometrically regular
over κ(y) by Varieties, Lemma 12.3. Another application of Varieties, Lemma 12.3
shows that Xy is geometrically regular. Hence (2) holds and the proof of the lemma
is finished. □

Lemma 21.3.07R9 A smooth morphism is regular.

Proof. Let f : X → Y be a smooth morphism. As f is locally of finite presentation,
see Morphisms, Lemma 34.8 the fibres Xy are locally of finite type over a field, hence
locally Noetherian. Moreover, f is flat, see Morphisms, Lemma 34.9. Finally,
the fibres Xy are smooth over a field (by Morphisms, Lemma 34.5) and hence
geometrically regular by Varieties, Lemma 25.4. Thus f is regular by Lemma
21.2. □

Lemma 21.4.07RA The property P(f) =“the fibres of f are locally Noetherian and f
is regular” is local in the fppf topology on the target and local in the smooth topology
on the source.

Proof. We have P(f) = P1(f) ∧ P2(f) ∧ P3(f) where P1(f) =“the fibres of f are
locally Noetherian”, P2(f) =“f is flat”, and P3(f) =“the fibres of f are geometri-
cally regular”. We have already seen that P1 and P2 are local in the fppf topology
on the source and the target, see Lemma 20.4, and Descent, Lemmas 23.15 and
27.1. Thus we have to deal with P3.
Let f : X → Y be a morphism of schemes. Let {φi : Yi → Y }i∈I be an fpqc
covering of Y . Denote fi : Xi → Yi the base change of f by φi. Let i ∈ I and let
yi ∈ Yi be a point. Set y = φi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

Hence in this situation we have that Xy is geometrically regular if and only if Xi,yi

is geometrically regular, see Varieties, Lemma 12.4. This fact implies P3 is fpqc
local on the target.
Let {Xi → X} be a smooth covering of X. Let y ∈ Y . In this case {Xi,y → Xy}
is a smooth covering of the fibre. Hence the locality of P3 for the smooth topology
on the source follows from Descent, Lemma 18.4. Combining the above the lemma
follows. □

https://stacks.math.columbia.edu/tag/07R9
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22. Cohen-Macaulay morphisms

045Q Compare with Section 20. Note that, as pointed out in Algebra, Section 167 and
Varieties, Section 13 “geometrically Cohen-Macaulay” is the same as plain Cohen-
Macaulay.

Definition 22.1.045R Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X, and y = f(x). We say that f is Cohen-Macaulay at x if f is
flat at x, and the local ring of the scheme Xy at x is Cohen-Macaulay.

(2) We say f is a Cohen-Macaulay morphism if f is Cohen-Macaulay at every
point of X.

Here is a translation.

Lemma 22.2.045S Let f : X → Y be a morphism of schemes. Assume all fibres of f
are locally Noetherian. The following are equivalent

(1) f is Cohen-Macaulay, and
(2) f is flat and its fibres are Cohen-Macaulay schemes.

Proof. This follows directly from the definitions. □

Lemma 22.3.0AFG Let f : X → Y be a morphism of locally Noetherian schemes which
is locally of finite type and Cohen-Macaulay. For every point x in X with image y
in Y ,

dimx(X) = dimy(Y ) + dimx(Xy),
where Xy denotes the fiber over y.

Proof. After replacing X by an open neighborhood of x, there is a natural number
d such that all fibers of X → Y have dimension d at every point, see Morphisms,
Lemma 29.4. Then f is flat, locally of finite type and of relative dimension d. Hence
the result follows from Morphisms, Lemma 29.6. □

Lemma 22.4.0C0W Let f : X → Y and g : Y → Z be morphisms of schemes. Assume
that the fibres of f , g, and g ◦ f are locally Noetherian. Let x ∈ X with images
y ∈ Y and z ∈ Z.

(1) If f is Cohen-Macaulay at x and g is Cohen-Macaulay at f(x), then g ◦ f
is Cohen-Macaulay at x.

(2) If f and g are Cohen-Macaulay, then g ◦ f is Cohen-Macaulay.
(3) If g◦f is Cohen-Macaulay at x and f is flat at x, then f is Cohen-Macaulay

at x and g is Cohen-Macaulay at f(x).
(4) If g ◦ f is Cohen-Macaulay and f is flat, then f is Cohen-Macaulay and g

is Cohen-Macaulay at every point in the image of f .

Proof. Consider the map of Noetherian local rings

OYz,y → OXz,x

and observe that its fibre is

OXz,x/mYz,yOXz,x = OXy,x

Thus the lemma this follows from Algebra, Lemma 163.3. □

https://stacks.math.columbia.edu/tag/045R
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Lemma 22.5.0C0X Let f : X → Y be a flat morphism of locally Noetherian schemes. If
X is Cohen-Macaulay, then f is Cohen-Macaulay and OY,f(x) is Cohen-Macaulay
for all x ∈ X.

Proof. After translating into algebra this follows from Algebra, Lemma 163.3. □

Lemma 22.6.045T Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes. Let Y ′ → Y be locally of finite type. Let
f ′ : X ′ → Y ′ be the base change of f . Let x′ ∈ X ′ be a point with image x ∈ X.

(1) If f is Cohen-Macaulay at x, then f ′ : X ′ → Y ′ is Cohen-Macaulay at x′.
(2) If f is flat at x and f ′ is Cohen-Macaulay at x′, then f is Cohen-Macaulay

at x.
(3) If Y ′ → Y is flat at f ′(x′) and f ′ is Cohen-Macaulay at x′, then f is

Cohen-Macaulay at x.

Proof. Note that the assumption on Y ′ → Y implies that for y′ ∈ Y ′ mapping
to y ∈ Y the field extension κ(y′)/κ(y) is finitely generated. Hence also all the
fibres X ′

y′ = (Xy)κ(y′) are locally Noetherian, see Varieties, Lemma 11.1. Thus the
lemma makes sense. Set y′ = f ′(x′) and y = f(x). Hence we get the following
commutative diagram of local rings

OX′,x′ OX,xoo

OY ′,y′

OO

OY,yoo

OO

where the upper left corner is a localization of the tensor product of the upper right
and lower left corners over the lower right corner.

Assume f is Cohen-Macaulay at x. The flatness of OY,y → OX,x implies the flatness
of OY ′,y′ → OX′,x′ , see Algebra, Lemma 100.1. The fact that OX,x/myOX,x is
Cohen-Macaulay implies that OX′,x′/my′OX′,x′ is Cohen-Macaulay, see Varieties,
Lemma 13.1. Hence we see that f ′ is Cohen-Macaulay at x′.

Assume f is flat at x and f ′ is Cohen-Macaulay at x′. The fact thatOX′,x′/my′OX′,x′

is Cohen-Macaulay implies that OX,x/myOX,x is Cohen-Macaulay, see Varieties,
Lemma 13.1. Hence we see that f is Cohen-Macaulay at x.

Assume Y ′ → Y is flat at y′ and f ′ is Cohen-Macaulay at x′. The flatness of
OY ′,y′ → OX′,x′ and OY,y → OY ′,y′ implies the flatness of OY,y → OX,x, see
Algebra, Lemma 100.1. The fact that OX′,x′/my′OX′,x′ is Cohen-Macaulay implies
that OX,x/myOX,x is Cohen-Macaulay, see Varieties, Lemma 13.1. Hence we see
that f is Cohen-Macaulay at x. □

Lemma 22.7.045U [DG67, IV Corollary
12.1.7(iii)]

Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. Let

W = {x ∈ X | f is Cohen-Macaulay at x}

Then
(1) W = {x ∈ X | OXf(x),x is Cohen-Macaulay},
(2) W is open in X,
(3) W dense in every fibre of X → S,

https://stacks.math.columbia.edu/tag/0C0X
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(4) the formation of W commutes with arbitrary base change of f : For any
morphism g : S′ → S, consider the base change f ′ : X ′ → S′ of f and the
projection g′ : X ′ → X. Then the corresponding set W ′ for the morphism
f ′ is equal to W ′ = (g′)−1(W ).

Proof. As f is flat with locally Noetherian fibres the equality in (1) holds by
definition. Parts (2) and (3) follow from Algebra, Lemma 130.5. Part (4) follows
either from Algebra, Lemma 130.7 or Varieties, Lemma 13.1. □

Lemma 22.8.0BUU Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. Let x ∈ X with image s ∈ S. Set d = dimx(Xs). The
following are equivalent

(1) f is Cohen-Macaulay at x,
(2) there exists an open neighbourhood U ⊂ X of x and a locally quasi-finite

morphism U → Ad
S over S which is flat at x,

(3) there exists an open neighbourhood U ⊂ X of x and a locally quasi-finite
flat morphism U → Ad

S over S,
(4) for any S-morphism g : U → Ad

S of an open neighbourhood U ⊂ X of x we
have: g is quasi-finite at x ⇒ g is flat at x.

Proof. Openness of flatness shows (2) and (3) are equivalent, see Theorem 15.1.
Choose affine open U = Spec(A) ⊂ X with x ∈ U and V = Spec(R) ⊂ S with
f(U) ⊂ V . Then R→ A is a flat ring map of finite presentation. Let p ⊂ A be the
prime ideal corresponding to x. After replacing A by a principal localization we
may assume there exists a quasi-finite map R[x1, . . . , xd]→ A, see Algebra, Lemma
125.2. Thus there exists at least one pair (U, g) consisting of an open neighbourhood
U ⊂ X of x and a locally4 quasi-finite morphism g : U → Ad

S .
Claim: Given R → A flat and of finite presentation, a prime p ⊂ A and φ :
R[x1, . . . , xd] → A quasi-finite at p we have: Spec(φ) is flat at p if and only if
Spec(A) → Spec(R) is Cohen-Macaulay at p. Namely, by Theorem 16.2 flatness
may be checked on fibres. The same is true for being Cohen-Macaulay (as A is
already assumed flat over R). Thus the claim follows from Algebra, Lemma 130.1.
The claim shows that (1) is equivalent to (4) and combined with the fact that we
have constructed a suitable (U, g) in the second paragraph, the claim also shows
that (1) is equivalent to (2). □

Lemma 22.9.054T Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. For d ≥ 0 there exist opens Ud ⊂ X with the following
properties

(1) W =
⋃
d≥0 Ud is dense in every fibre of f , and

(2) Ud → S is of relative dimension d (see Morphisms, Definition 29.1).

Proof. This follows by combining Lemma 22.7 with Morphisms, Lemma 29.4. □

Lemma 22.10.054U Let f : X → S be a morphism of schemes which is flat and
locally of finite presentation. Suppose x′ ⇝ x is a specialization of points of X with
image s′ ⇝ s in S. If x is a generic point of an irreducible component of Xs then
dimx′(Xs′) = dimx(Xs).

4If S is quasi-separated, then g will be quasi-finite.
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Proof. The point x is contained in Ud for some d, where Ud as in Lemma 22.9. □

Lemma 22.11.045V The property P(f) =“the fibres of f are locally Noetherian and
f is Cohen-Macaulay” is local in the fppf topology on the target and local in the
syntomic topology on the source.

Proof. We have P(f) = P1(f)∧P2(f) where P1(f) =“f is flat”, and P2(f) =“the
fibres of f are locally Noetherian and Cohen-Macaulay”. We know that P1 is local
in the fppf topology on the source and the target, see Descent, Lemmas 23.15 and
27.1. Thus we have to deal with P2.

Let f : X → Y be a morphism of schemes. Let {φi : Yi → Y }i∈I be an fppf
covering of Y . Denote fi : Xi → Yi the base change of f by φi. Let i ∈ I and let
yi ∈ Yi be a point. Set y = φi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

and that κ(yi)/κ(y) is a finitely generated field extension. Hence if Xy is locally
Noetherian, then Xi,yi is locally Noetherian, see Varieties, Lemma 11.1. And if
in addition Xy is Cohen-Macaulay, then Xi,yi is Cohen-Macaulay, see Varieties,
Lemma 13.1. Thus P2 is fppf local on the target.

Let {Xi → X} be a syntomic covering of X. Let y ∈ Y . In this case {Xi,y → Xy} is
a syntomic covering of the fibre. Hence the locality of P2 for the syntomic topology
on the source follows from Descent, Lemma 17.2. Combining the above the lemma
follows. □

23. Slicing Cohen-Macaulay morphisms

056X The results in this section eventually lead to the assertion that the fppf topology
is the same as the “finitely presented, flat, quasi-finite” topology. The following
lemma is very closely related to Divisors, Lemma 18.9.

Lemma 23.1.056Y Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Let h ∈ mx ⊂ OX,x. Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) the image h of h in OXs,x = OX,x/msOX,x is a nonzerodivisor.

Then there exists an affine open neighbourhood U ⊂ X of x such that h comes from
h ∈ Γ(U,OU ) and such that D = V (h) is an effective Cartier divisor in U with
x ∈ D and D → S flat and locally of finite presentation.

Proof. We are going to prove this by reducing to the Noetherian case. By openness
of flatness (see Theorem 15.1) we may assume, after replacing X by an open neigh-
bourhood of x, that X → S is flat. We may also assume that X and S are affine.
After possible shrinking X a bit we may assume that there exists an h ∈ Γ(X,OX)
which maps to our given h.

We may write S = Spec(A) and we may write A = colimiAi as a directed colimit
of finite type Z algebras. Then by Algebra, Lemma 168.1 or Limits, Lemmas 10.1,
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8.2, and 10.1 we can find a cartesian diagram
X //

f

��

X0

f0

��
S // S0

with f0 flat and of finite presentation, X0 affine, and S0 affine and Noetherian.
Let x0 ∈ X0, resp. s0 ∈ S0 be the image of x, resp. s. We may also assume
there exists an element h0 ∈ Γ(X0,OX0) which restricts to h on X. (If you used
the algebra reference above then this is clear; if you used the references to the
chapter on limits then this follows from Limits, Lemma 10.1 by thinking of h as a
morphism X → A1

S .) Note that OXs,x is a localization of O(X0)s0 ,x0 ⊗κ(s0) κ(s),
so that O(X0)s0 ,x0 → OXs,x is a flat local ring map, in particular faithfully flat.
Hence the image h0 ∈ O(X0)s0 ,x0 is contained in m(X0)s0 ,x0 and is a nonzerodivisor.
We claim that after replacing X0 by a principal open neighbourhood of x0 the
element h0 is a nonzerodivisor in B0 = Γ(X0,OX0) such that B0/h0B0 is flat over
A0 = Γ(S0,OS0). If so then

0→ B0
h0−→ B0 → B0/h0B0 → 0

is a short exact sequence of flat A0-modules. Hence this remains exact on tensoring
with A (by Algebra, Lemma 39.12) and the lemma follows.
It remains to prove the claim above. The corresponding algebra statement is the
following (we drop the subscript 0 here): Let A → B be a flat, finite type ring
map of Noetherian rings. Let q ⊂ B be a prime lying over p ⊂ A. Assume h ∈ q
maps to a nonzerodivisor in Bq/pBq. Goal: show that after possible replacing B
by Bg for some g ∈ B, g ̸∈ q the element h becomes a nonzerodivisor and B/hB
becomes flat over A. By Algebra, Lemma 99.2 we see that h is a nonzerodivisor in
Bq and that Bq/hBq is flat over A. By openness of flatness, see Algebra, Theorem
129.4 or Theorem 15.1 we see that B/hB is flat over A after replacing B by Bg
for some g ∈ B, g ̸∈ q. Finally, let I = {b ∈ B | hb = 0} be the annihilator of h.
Then IBq = 0 as h is a nonzerodivisor in Bq. Also I is finitely generated as B is
Noetherian. Hence there exists a g ∈ B, g ̸∈ q such that IBg = 0. After replacing
B by Bg we see that h is a nonzerodivisor. □

Lemma 23.2.06LI Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Let h1, . . . , hr ∈ OX,x. Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) the images of h1, . . . , hr in OXs,x = OX,x/msOX,x form a regular sequence.

Then there exists an affine open neighbourhood U ⊂ X of x such that h1, . . . , hr
come from h1, . . . , hr ∈ Γ(U,OU ) and such that Z = V (h1, . . . , hr)→ U is a regular
immersion with x ∈ Z and Z → S flat and locally of finite presentation. Moreover,
the base change ZS′ → US′ is a regular immersion for any scheme S′ over S.

Proof. (Our conventions on regular sequences imply that hi ∈ mx for each i.) The
case r = 1 follows from Lemma 23.1 combined with Divisors, Lemma 18.1 to see
that V (h1) remains an effective Cartier divisor after base change. The case r > 1
follows from a straightforward induction on r (applying the result for r = 1 exactly
r times; details omitted).
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Another way to prove the lemma is using the material from Divisors, Section 22.
Namely, first by openness of flatness (see Theorem 15.1) we may assume, after
replacing X by an open neighbourhood of x, that X → S is flat. We may also
assume that X and S are affine. After possible shrinking X a bit we may assume
that we have h1, . . . , hr ∈ Γ(X,OX). Set Z = V (h1, . . . , hr). Note that Xs is a
Noetherian scheme (because it is an algebraic κ(s)-scheme, see Varieties, Section
20) and that the topology on Xs is induced from the topology on X (see Schemes,
Lemma 18.5). Hence after shrinking X a bit more we may assume that Zs ⊂ Xs

is a regular immersion cut out by the r elements hi|Xs , see Divisors, Lemma 20.8
and its proof. It is also clear that r = dimx(Xs)− dimx(Zs) because

dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)),
dimx(Zs) = dim(OZs,x) + trdegκ(s)(κ(x)),

dim(OXs,x) = dim(OZs,x) + r

the first two equalities by Algebra, Lemma 116.3 and the second by r times applying
Algebra, Lemma 60.13. Hence Divisors, Lemma 22.7 part (3) applies to show that
(after Zariski shrinking X) the morphism Z → X is a regular immersion to which
Divisors, Lemma 22.4 applies (which gives the flatness and the statement on base
change). □

Lemma 23.3.056Z Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) OXs,x has depth ≥ 1.

Then there exists an affine open neighbourhood U ⊂ X of x and an effective Cartier
divisor D ⊂ U containing x such that D → S is flat and of finite presentation.

Proof. Pick any h ∈ mx ⊂ OX,x which maps to a nonzerodivisor in OXs,x and
apply Lemma 23.1. □

Lemma 23.4.0570 [DG67, IV
Proposition 17.16.1]

Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is locally of finite presentation,
(2) f is Cohen-Macaulay at x, and
(3) x is a closed point of Xs.

Then there exists a regular immersion Z → X containing x such that
(a) Z → S is flat and locally of finite presentation,
(b) Z → S is locally quasi-finite, and
(c) Zs = {x} set theoretically.

Proof. We may and do replace S by an affine open neighbourhood of s. We will
prove the lemma for affine S by induction on d = dimx(Xs).
The case d = 0. In this case we show that we may take Z to be an open neigh-
bourhood of x. (Note that an open immersion is a regular immersion.) Namely, if
d = 0, then X → S is quasi-finite at x, see Morphisms, Lemma 29.5. Hence there
exists an affine open neighbourhood U ⊂ X such that U → S is quasi-finite, see
Morphisms, Lemma 56.2. Thus after replacing X by U we see that the fibre Xs is a
finite discrete set. Hence after replacing X by a further affine open neighbourhood
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of X we see that f−1({s}) = {x} (because the topology on Xs is induced from the
topology on X, see Schemes, Lemma 18.5). This proves the lemma in this case.

Next, assume d > 0. Note that because x is a closed point of its fibre the extension
κ(x)/κ(s) is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma 20.3).
Thus we see

depth(OXs,x) = dim(OXs,x) = d > 0
the first equality as OXs,x is Cohen-Macaulay and the second by Morphisms,
Lemma 28.1. Thus we may apply Lemma 23.3 to find a diagram

D //

''

U //

  

X

��
S

with x ∈ D. Note that ODs,x = OXs,x/(h) for some nonzerodivisor h, see Di-
visors, Lemma 18.1. Hence ODs,x is Cohen-Macaulay of dimension one less than
the dimension of OXs,x, see Algebra, Lemma 104.2 for example. Thus the mor-
phism D → S is flat, locally of finite presentation, and Cohen-Macaulay at x with
dimx(Ds) = dimx(Xs)− 1 = d− 1. By induction hypothesis we can find a regular
immersion Z → D having properties (a), (b), (c). As Z → D → U are both regular
immersions, we see that also Z → U is a regular immersion by Divisors, Lemma
21.7. This finishes the proof. □

Lemma 23.5.0571 Let f : X → S be a flat morphism of schemes which is locally of
finite presentation. Let s ∈ S be a point in the image of f . Then there exists a
commutative diagram

S′ //

g
��

X

f��
S

where g : S′ → S is flat, locally of finite presentation, locally quasi-finite, and
s ∈ g(S′).

Proof. The fibre Xs is not empty by assumption. Hence there exists a closed point
x ∈ Xs where f is Cohen-Macaulay, see Lemma 22.7. Apply Lemma 23.4 and set
S′ = S. □

The following lemma shows that sheaves for the fppf topology are the same thing
as sheaves for the “quasi-finite, flat, finite presentation” topology.

Lemma 23.6.0572 Let S be a scheme. Let U = {Si → S}i∈I be an fppf covering of S,
see Topologies, Definition 7.1. Then there exists an fppf covering V = {Tj → S}j∈J
which refines (see Sites, Definition 8.1) U such that each Tj → S is locally quasi-
finite.

Proof. For every s ∈ S there exists an i ∈ I such that s is in the image of Si → S.
By Lemma 23.5 we can find a morphism gs : Ts → S such that s ∈ gs(Ts) which is
flat, locally of finite presentation and locally quasi-finite and such that gs factors
through Si → S. Hence {Ts → S} is the desired covering of S that refines U . □
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24. Generic fibres

054V Some results on the relationship between generic fibres and nearby fibres.

Lemma 24.1.054W Let f : X → Y be a finite type morphism of schemes. Assume
Y irreducible with generic point η. If Xη = ∅ then there exists a nonempty open
V ⊂ Y such that XV = V ×Y X = ∅.

Proof. Follows immediately from the more general Morphisms, Lemma 8.5. □

Lemma 24.2.05F5 Let f : X → Y be a finite type morphism of schemes. Assume
Y irreducible with generic point η. If Xη ̸= ∅ then there exists a nonempty open
V ⊂ Y such that XV = V ×Y X → V is surjective.

Proof. This follows, upon taking affine opens, from Algebra, Lemma 30.2. (Of
course it also follows from generic flatness.) □

Lemma 24.3.054X Let f : X → Y be a finite type morphism of schemes. Assume Y
irreducible with generic point η. If Z ⊂ X is a closed subset with Zη nowhere dense
in Xη, then there exists a nonempty open V ⊂ Y such that Zy is nowhere dense in
Xy for all y ∈ V .

Proof. Let Y ′ ⊂ Y be the reduction of Y . Set X ′ = Y ′ ×Y X and Z ′ = Y ′ ×Y Z.
As Y ′ → Y is a universal homeomorphism by Morphisms, Lemma 45.6 we see that
it suffices to prove the lemma for Z ′ ⊂ X ′ → Y ′. Thus we may assume that Y is
integral, see Properties, Lemma 3.4. By Morphisms, Proposition 27.1 there exists a
nonempty affine open V ⊂ Y such that XV → V and ZV → V are flat and of finite
presentation. We claim that V works. Pick y ∈ V . If Zy has a nonempty interior,
then Zy contains a generic point ξ of an irreducible component of Xy. Note that
η ⇝ f(ξ). Since ZV → V is flat we can choose a specialization ξ′ ⇝ ξ, ξ′ ∈ Z with
f(ξ′) = η, see Morphisms, Lemma 25.9. By Lemma 22.10 we see that

dimξ′(Zη) = dimξ(Zy) = dimξ(Xy) = dimξ′(Xη).

Hence some irreducible component of Zη passing through ξ′ has dimension dimξ′(Xη)
which contradicts the assumption that Zη is nowhere dense in Xη and we win. □

Lemma 24.4.0573 Let f : X → Y be a finite type morphism of schemes. Assume Y
irreducible with generic point η. Let U ⊂ X be an open subscheme such that Uη is
scheme theoretically dense in Xη. Then there exists a nonempty open V ⊂ Y such
that Uy is scheme theoretically dense in Xy for all y ∈ V .

Proof. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ = Y ′ ×Y X and U ′ = Y ′ ×Y U .
As Y ′ → Y induces a bijection on points, and as U ′ → U and X ′ → X induce
isomorphisms of scheme theoretic fibres, we may replace Y by Y ′ and X by X ′.
Thus we may assume that Y is integral, see Properties, Lemma 3.4. We may
also replace Y by a nonempty affine open. In other words we may assume that
Y = Spec(A) where A is a domain with fraction field K.

As f is of finite type we see that X is quasi-compact. Write X = X1 ∪ . . .∪Xn for
some affine opens Xi. By Morphisms, Definition 7.1 we see that Ui = Xi ∩U is an
open subscheme of Xi such that Ui,η is scheme theoretically dense in Xi,η. Thus
it suffices to prove the result for the pairs (Xi, Ui), in other words we may assume
that X is affine.
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Write X = Spec(B). Note that BK is Noetherian as it is a finite type K-algebra.
Hence Uη is quasi-compact. Thus we can find finitely many g1, . . . , gm ∈ B such
that D(gj) ⊂ U and such that Uη = D(g1)η ∪ . . . ∪ D(gm)η. The fact that Uη
is scheme theoretically dense in Xη means that BK →

⊕
j(BK)gj

is injective,
see Morphisms, Example 7.4. By Algebra, Lemma 24.4 this is equivalent to the
injectivity of BK →

⊕
j=1,...,mBK , b 7→ (g1b, . . . , gmb). Let M be the cokernel of

this map over A, i.e., such that we have an exact sequence

0→ I → B
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

B →M → 0

After replacing A by Ah for some nonzero h we may assume that B is a flat, finitely
presented A-algebra, and that M is flat over A, see Algebra, Lemma 118.3. The
flatness of B over A implies that B is torsion free as an A-module, see More on
Algebra, Lemma 22.9. Hence B ⊂ BK . By assumption IK = 0 which implies that
I = 0 (as I ⊂ B ⊂ BK is a subset of IK). Hence now we have a short exact
sequence

0→ B
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

B →M → 0

with M flat over A. Hence for every homomorphism A→ κ where κ is a field, we
obtain a short exact sequence

0→ B ⊗A κ
(g1⊗1,...,gm⊗1)−−−−−−−−−−→

⊕
j=1,...,m

B ⊗A κ→M ⊗A κ→ 0

see Algebra, Lemma 39.12. Reversing the arguments above this means that
⋃
D(gj⊗

1) is scheme theoretically dense in Spec(B⊗A κ). As
⋃
D(gj⊗1) =

⋃
D(gj)κ ⊂ Uκ

we obtain that Uκ is scheme theoretically dense in Xκ which is what we wanted to
prove. □

Suppose given a morphism of schemes f : X → Y and a point y ∈ Y . Recall that
the fibre Xy is homeomorphic to the subset f−1({y}) of X with induced topology,
see Schemes, Lemma 18.5. Suppose given a closed subset T (y) ⊂ Xy. Let T be the
closure of T (y) in X. Endow T with the induced reduced scheme structure. Then
T is a closed subscheme of X with the property that Ty = T (y) set-theoretically.
In fact T is the smallest closed subscheme of X with this property. Thus it is
“harmless” to denote a closed subset of Xy by Ty if we so desire. In the following
lemma we apply this to the generic fibre of f .

Lemma 24.5.054Y Let f : X → Y be a finite type morphism of schemes. Assume
Y irreducible with generic point η. Let Xη = Z1,η ∪ . . . ∪ Zn,η be a covering of
the generic fibre by closed subsets of Xη. Let Zi be the closure of Zi,η in X (see
discussion above). Then there exists a nonempty open V ⊂ Y such that Xy =
Z1,y ∪ . . . ∪ Zn,y for all y ∈ V .

Proof. If Y is Noetherian then U = X \ (Z1 ∪ . . . ∪ Zn) is of finite type over Y
and we can directly apply Lemma 24.1 to get that UV = ∅ for a nonempty open
V ⊂ Y . In general we argue as follows. As the question is topological we may
replace Y by its reduction. Thus Y is integral, see Properties, Lemma 3.4. After
shrinking Y we may assume that X → Y is flat, see Morphisms, Proposition 27.1.
In this case every point x in Xy is a specialization of a point x′ ∈ Xη by Morphisms,
Lemma 25.9. As the Zi are closed in X and cover the generic fibre this implies that
Xy =

⋃
Zi,y for y ∈ Y as desired. □
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The following lemma says that generic fibres of morphisms whose source is reduced
are reduced.

Lemma 24.6.054Z Let f : X → Y be a morphism of schemes. Let η ∈ Y be a generic
point of an irreducible component of Y . Then (Xη)red = (Xred)η.

Proof. Choose an affine neighbourhood Spec(A) ⊂ Y of η. Choose an affine open
Spec(B) ⊂ X mapping into Spec(A) via the morphism f . Let p ⊂ A be the minimal
prime corresponding to η. Let Bred be the quotient of B by the nilradical

√
(0).

The algebraic content of the lemma is that C = Bred ⊗A κ(p) is reduced. Denote
I ⊂ A the nilradical so that Ared = A/I. Denote pred = p/I which is a minimal
prime of Ared with κ(p) = κ(pred). Since A → Bred and A → κ(p) both factor
through A→ Ared we have C = Bred ⊗Ared

κ(pred). Now κ(pred) = (Ared)pred
is a

localization by Algebra, Lemma 25.1. Hence C is a localization of Bred (Algebra,
Lemma 12.15) and hence reduced. □

Lemma 24.7.0550 Let f : X → Y be a morphism of schemes. Assume that Y is
irreducible and f is of finite type. There exists a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

where
(1) V is a nonempty open of Y ,
(2) XV = V ×Y X,
(3) g : Y ′ → V is a finite universal homeomorphism,
(4) X ′ = (Y ′ ×Y X)red = (Y ′ ×V XV )red,
(5) g′ is a finite universal homeomorphism,
(6) Y ′ is an integral affine scheme,
(7) f ′ is flat and of finite presentation, and
(8) the generic fibre of f ′ is geometrically reduced.

Proof. Let V = Spec(A) be a nonempty affine open of Y . By assumption the
Jacobson radical of A is a prime ideal p. Let K = κ(p). Let p be the characteristic
of K if positive and 1 if the characteristic is zero. By Varieties, Lemma 6.11 there
exists a finite purely inseparable field extension K ′/K such that XK′ is geometri-
cally reduced over K ′. Choose elements x1, . . . , xn ∈ K ′ which generate K ′ over K
and such that some p-power of xi is in A/p. Let A′ ⊂ K ′ be the finite A-subalgebra
of K ′ generated by x1, . . . , xn. Note that A′ is a domain with fraction field K ′.
By Algebra, Lemma 46.7 we see that A→ A′ induces a universal homeomorphism
on spectra. Set Y ′ = Spec(A′). Set X ′ = (Y ′ ×Y X)red. The generic fibre of
X ′ → Y ′ is (XK)red by Lemma 24.6 which is geometrically reduced by construc-
tion. Note that X ′ → XV is a finite universal homeomorphism as the composition
of the reduction morphism X ′ → Y ′ ×Y X (see Morphisms, Lemma 45.6) and the
base change of g. At this point all of the properties of the lemma hold except for
possibly (7). This can be achieved by shrinking Y ′ and hence V , see Morphisms,
Proposition 27.1. □
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Lemma 24.8.0551 Let f : X → Y be a morphism of schemes. Assume that Y is
irreducible and f is of finite type. There exists a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

where
(1) V is a nonempty open of Y ,
(2) XV = V ×Y X,
(3) g : Y ′ → V is surjective finite étale,
(4) X ′ = Y ′ ×Y X = Y ′ ×V XV ,
(5) g′ is surjective finite étale,
(6) Y ′ is an irreducible affine scheme, and
(7) all irreducible components of the generic fibre of f ′ are geometrically irre-

ducible.

Proof. Let V = Spec(A) be a nonempty affine open of Y . By assumption the
Jacobson radical of A is a prime ideal p. Let K = κ(p). By Varieties, Lemma
8.15 there exists a finite separable field extension K ′/K such that all irreducible
components of XK′ are geometrically irreducible over K ′. Choose an element α ∈
K ′ which generates K ′ over K, see Fields, Lemma 19.1. Let P (T ) ∈ K[T ] be the
minimal polynomial for α over K. After replacing α by fα for some f ∈ A, f ̸∈ p
we may assume that there exists a monic polynomial T d+a1T

d−1 + . . .+ad ∈ A[T ]
which maps to P (T ) ∈ K[T ] under the map A[T ] → K[T ]. Set A′ = A[T ]/(P ).
Then A→ A′ is a finite free ring map such that there exists a unique prime q lying
over p, such that K = κ(p) ⊂ κ(q) = K ′ is finite separable, and such that pA′

q is
the maximal ideal of A′

q. Hence g : Y ′ = Spec(A′)→ V = Spec(A) is étale at q, see
Algebra, Lemma 143.7. This means that there exists an open W ⊂ Spec(A′) such
that g|W : W → Spec(A) is étale. Since g is finite and since q is the only point
lying over p we see that Z = g(Y ′ \W ) is a closed subset of V not containing p.
Hence after replacing V by a principal affine open of V which does not meet Z we
obtain that g is finite étale. □

25. Relative assassins

05KM
Lemma 25.1.05F1 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let ξ ∈ AssX/S(F) and set Z = {ξ} ⊂ X. If f is locally of
finite type and F is a finite type OX-module, then there exists a nonempty open
V ⊂ Z such that for every s ∈ f(V ) the generic points of Vs are elements of
AssX/S(F).

Proof. We may replace S by an affine open neighbourhood of f(ξ) and X by an
affine open neighbourhood of ξ. Hence we may assume S = Spec(A), X = Spec(B)
and that f is given by the finite type ring map A → B, see Morphisms, Lemma
15.2. Moreover, we may write F = M̃ for some finite B-module M , see Properties,
Lemma 16.1. Let q ⊂ B be the prime corresponding to ξ and let p ⊂ A be the
corresponding prime of A. By assumption q ∈ AssB(M ⊗A κ(p)), see Algebra,
Remark 65.6 and Divisors, Lemma 2.2. With this notation Z = V (q) ⊂ Spec(B).
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In particular f(Z) ⊂ V (p). Hence clearly it suffices to prove the lemma after
replacing A, B, and M by A/pA, B/pB, and M/pM . In other words we may
assume that A is a domain with fraction field K and q ⊂ B is an associated prime
of M ⊗A K.

At this point we can use generic flatness. Namely, by Algebra, Lemma 118.3 there
exists a nonzero g ∈ A such that Mg is flat as an Ag-module. After replacing A by
Ag we may assume that M is flat as an A-module.

In this case, by Algebra, Lemma 65.4 we see that q is also an associated prime of
M . Hence we obtain an injective B-module map B/q→M . Let Q be the cokernel
so that we obtain a short exact sequence

0→ B/q→M → Q→ 0

of finite B-modules. After applying generic flatness Algebra, Lemma 118.3 once
more, this time to the B-module Q, we may assume that Q is a flat A-module. In
particular we may assume the short exact sequence above is universally injective, see
Algebra, Lemma 39.12. In this situation (B/q)⊗Aκ(p′) ⊂M⊗Aκ(p′) for any prime
p′ of A. The lemma follows as a minimal prime q′ of the support of (B/q)⊗A κ(p′)
is an associated prime of (B/q)⊗A κ(p′) by Divisors, Lemma 2.9. □

Lemma 25.2.05KN Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let U ⊂ X be an open subscheme. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) Y is irreducible with generic point η, and
(4) AssXη (Fη) is not contained in Uη.

Then there exists a nonempty open subscheme V ⊂ Y such that for all y ∈ V the
set AssXy

(Fy) is not contained in Uy.

Proof. Let Z ⊂ X be the scheme theoretic support of F , see Morphisms, Defi-
nition 5.5. Then Zη is the scheme theoretic support of Fη (Morphisms, Lemma
25.14). Hence the generic points of irreducible components of Zη are contained
in AssXη (Fη) by Divisors, Lemma 2.9. Hence we see that Zη ∩ Uη = ∅. Thus
T = Z \ U is a closed subset of Z with Tη = ∅. If we endow T with the induced
reduced scheme structure then T → Y is a morphism of finite type. By Lemma
24.1 there is a nonempty open V ⊂ Y with TV = ∅. Then V works. □

Lemma 25.3.05KP Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let U ⊂ X be an open subscheme. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) Y is irreducible with generic point η, and
(4) AssXη

(Fη) ⊂ Uη.
Then there exists a nonempty open subscheme V ⊂ Y such that for all y ∈ V we
have AssXy

(Fy) ⊂ Uy.

Proof. (This proof is the same as the proof of Lemma 24.4. We urge the reader
to read that proof first.) Since the statement is about fibres it is clear that we may
replace Y by its reduction. Hence we may assume that Y is integral, see Properties,
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Lemma 3.4. We may also assume that Y = Spec(A) is affine. Then A is a domain
with fraction field K.

As f is of finite type we see that X is quasi-compact. Write X = X1 ∪ . . . ∪ Xn

for some affine opens Xi and set Fi = F|Xi
. By assumption the generic fibre of

Ui = Xi ∩ U contains AssXi,η
(Fi,η). Thus it suffices to prove the result for the

triples (Xi,Fi, Ui), in other words we may assume that X is affine.

Write X = Spec(B). Let N be a finite B-module such that F = Ñ . Note that
BK is Noetherian as it is a finite type K-algebra. Hence Uη is quasi-compact.
Thus we can find finitely many g1, . . . , gm ∈ B such that D(gj) ⊂ U and such that
Uη = D(g1)η ∪ . . .∪D(gm)η. Since AssXη

(Fη) ⊂ Uη we see that NK →
⊕

j(NK)gj

is injective. By Algebra, Lemma 24.4 this is equivalent to the injectivity of NK →⊕
j=1,...,mNK , n 7→ (g1n, . . . , gmn). Let I and M be the kernel and cokernel of

this map over A, i.e., such that we have an exact sequence

0→ I → N
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

N →M → 0

After replacing A by Ah for some nonzero h we may assume that B is a flat, finitely
presented A-algebra and that both M and N are flat over A, see Algebra, Lemma
118.3. The flatness of N over A implies that N is torsion free as an A-module, see
More on Algebra, Lemma 22.9. Hence N ⊂ NK . By construction IK = 0 which
implies that I = 0 (as I ⊂ N ⊂ NK is a subset of IK). Hence now we have a short
exact sequence

0→ N
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

N →M → 0

with M flat over A. Hence for every homomorphism A→ κ where κ is a field, we
obtain a short exact sequence

0→ N ⊗A κ
(g1⊗1,...,gm⊗1)−−−−−−−−−−→

⊕
j=1,...,m

N ⊗A κ→M ⊗A κ→ 0

see Algebra, Lemma 39.12. Reversing the arguments above this means that
⋃
D(gj⊗

1) contains AssB⊗Aκ(N ⊗A κ). As
⋃
D(gj ⊗ 1) =

⋃
D(gj)κ ⊂ Uκ we obtain that

Uκ contains AssX⊗κ(F ⊗ κ) which is what we wanted to prove. □

Lemma 25.4.05KQ Let f : X → S be a morphism which is locally of finite type. Let
F be a quasi-coherent OX-module of finite type. Let U ⊂ X be an open subscheme.
Let g : S′ → S be a morphism of schemes, let f ′ : X ′ = XS′ → S′ be the base change
of f , let g′ : X ′ → X be the projection, set F ′ = (g′)∗F , and set U ′ = (g′)−1(U).
Finally, let s′ ∈ S′ with image s = g(s′). In this case

AssXs
(Fs) ⊂ Us ⇔ AssX′

s′
(F ′

s′) ⊂ U ′
s′ .

Proof. This follows immediately from Divisors, Lemma 7.3. See also Divisors,
Remark 7.4. □

Lemma 25.5.05KR Let f : X → Y be a morphism of finite presentation. Let F be a
quasi-coherent OX-module of finite presentation. Let U ⊂ X be an open subscheme
such that U → Y is quasi-compact. Then the set

E = {y ∈ Y | AssXy
(Fy) ⊂ Uy}

is locally constructible in Y .
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Proof. Let y ∈ Y . We have to show that there exists an open neighbourhood V of
y in Y such that E∩V is constructible in V . Thus we may assume that Y is affine.
Write Y = Spec(A) and A = colimAi as a directed limit of finite type Z-algebras.
By Limits, Lemma 10.1 we can find an i and a morphism fi : Xi → Spec(Ai) of
finite presentation whose base change to Y recovers f . After possibly increasing i
we may assume there exists a quasi-coherent OXi

-module Fi of finite presentation
whose pullback to X is isomorphic to F , see Limits, Lemma 10.2. After possibly
increasing i one more time we may assume there exists an open subscheme Ui ⊂ Xi

whose inverse image in X is U , see Limits, Lemma 4.11. By Lemma 25.4 it suffices
to prove the lemma for fi. Thus we reduce to the case where Y is the spectrum of
a Noetherian ring.

We will use the criterion of Topology, Lemma 16.3 to prove that E is constructible
in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed
subscheme. We have to show that E ∩ Z either contains a nonempty open subset
or is not dense in Z. This follows from Lemmas 25.2 and 25.3 applied to the base
change (X,F , U)×Y Z over Z. □

26. Reduced fibres

0574
Lemma 26.1.0575 Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη is nonreduced, then there exists a
nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy is nonreduced.

Proof. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ → Y ′ be the base change of
f . Note that Y ′ → Y induces a bijection on points and that X ′ → X identifies
fibres. Hence we may assume that Y ′ is reduced, i.e., integral, see Properties,
Lemma 3.4. We may also replace Y by an affine open. Hence we may assume
that Y = Spec(A) with A a domain. Denote K the fraction field of A. Pick
an affine open Spec(B) = U ⊂ X and a section hη ∈ Γ(Uη,OUη

) = BK which
is nonzero and nilpotent. After shrinking Y we may assume that h comes from
h ∈ Γ(U,OU ) = B. After shrinking Y a bit more we may assume that h is nilpotent.
Let I = {b ∈ B | hb = 0} be the annihilator of h. Then C = B/I is a finite type
A-algebra whose generic fiber (B/I)K is nonzero (as hη ̸= 0). We apply generic
flatness to A → C and A → B/hB, see Algebra, Lemma 118.3, and we obtain
a g ∈ A, g ̸= 0 such that Cg is free as an Ag-module and (B/hB)g is flat as an
Ag-module. Replace Y by D(g) ⊂ Y . Now we have the short exact sequence

0→ C → B → B/hB → 0.

with B/hB flat over A and with C nonzero free as an A-module. It follows that for
any homomorphism A→ κ to a field the ring C ⊗A κ is nonzero and the sequence

0→ C ⊗A κ→ B ⊗A κ→ B/hB ⊗A κ→ 0

is exact, see Algebra, Lemma 39.12. Note that B/hB ⊗A κ = (B ⊗A κ)/h(B ⊗A κ)
by right exactness of tensor product. Thus we conclude that multiplication by h is
not zero on B ⊗A κ. This clearly means that for any point y ∈ Y the element h
restricts to a nonzero element of Uy, whence Xy is nonreduced. □
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Lemma 26.2.0576 Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be any
morphism, and denote f ′ : X ′ → Y ′ the base change of f . Then

{y′ ∈ Y ′ | X ′
y′ is geometrically reduced}

= g−1({y ∈ Y | Xy is geometrically reduced}).

Proof. This comes down to the statement that for y′ ∈ Y ′ with image y ∈ Y
the fibre X ′

y′ = Xy ×y y′ is geometrically reduced over κ(y′) if and only if Xy is
geometrically reduced over κ(y). This follows from Varieties, Lemma 6.6. □

Lemma 26.3.0577 Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη is not geometrically reduced, then
there exists a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy is not
geometrically reduced.

Proof. Apply Lemma 24.7 to get

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

with all the properties mentioned in that lemma. Let η′ be the generic point of
Y ′. Consider the morphism X ′ → XY ′ (which is the reduction morphism) and the
resulting morphism of generic fibres X ′

η′ → Xη′ . Since X ′
η′ is geometrically reduced,

and Xη is not this cannot be an isomorphism, see Varieties, Lemma 6.6. Hence Xη′

is nonreduced. Hence by Lemma 26.1 the fibres of XY ′ → Y ′ are nonreduced at all
points y′ ∈ V ′ of a nonempty open V ′ ⊂ Y ′. Since g : Y ′ → V is a homeomorphism
Lemma 26.2 proves that g(V ′) is the open we are looking for. □

Lemma 26.4.0578 Let f : X → Y be a morphism of schemes. Assume
(1) Y is irreducible with generic point η,
(2) Xη is geometrically reduced, and
(3) f is of finite type.

Then there exists a nonempty open subscheme V ⊂ Y such that XV → V has
geometrically reduced fibres.

Proof. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ → Y ′ be the base change of f .
Note that Y ′ → Y induces a bijection on points and that X ′ → X identifies fibres.
Hence we may assume that Y ′ is reduced, i.e., integral, see Properties, Lemma 3.4.
We may also replace Y by an affine open. Hence we may assume that Y = Spec(A)
with A a domain. Denote K the fraction field of A. After shrinking Y a bit we
may also assume that X → Y is flat and of finite presentation, see Morphisms,
Proposition 27.1.
As Xη is geometrically reduced there exists an open dense subset V ⊂ Xη such that
V → Spec(K) is smooth, see Varieties, Lemma 25.7. Let U ⊂ X be the set of points
where f is smooth. By Morphisms, Lemma 34.15 we see that V ⊂ Uη. Thus the
generic fibre of U is dense in the generic fibre of X. Since Xη is reduced, it follows
that Uη is scheme theoretically dense in Xη, see Morphisms, Lemma 7.8. We note
that as U → Y is smooth all the fibres of U → Y are geometrically reduced. Thus
it suffices to show that, after shrinking Y , for all y ∈ Y the scheme Uy is scheme
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theoretically dense in Xy, see Morphisms, Lemma 7.9. This follows from Lemma
24.4. □

Lemma 26.5.0579 Let f : X → Y be a morphism which is quasi-compact and locally
of finite presentation. Then the set

E = {y ∈ Y | Xy is geometrically reduced}

is locally constructible in Y .

Proof. Let y ∈ Y . We have to show that there exists an open neighbourhood V of
y in Y such that E∩V is constructible in V . Thus we may assume that Y is affine.
Then X is quasi-compact. Choose a finite affine open covering X = U1 ∪ . . . ∪ Un.
Then the fibres of Ui → Y at y form an affine open covering of the fibre of X → Y
at y. Hence we may assume X is affine as well. Write Y = Spec(A). Write
A = colimAi as a directed limit of finite type Z-algebras. By Limits, Lemma 10.1
we can find an i and a morphism fi : Xi → Spec(Ai) of finite presentation whose
base change to Y recovers f . By Lemma 26.2 it suffices to prove the lemma for fi.
Thus we reduce to the case where Y is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 16.3 to prove that E is constructible
in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed
subscheme. We have to show that E ∩ Z either contains a nonempty open subset
or is not dense in Z. If Xξ is geometrically reduced, then Lemma 26.4 (applied to
the morphism XZ → Z) implies that all fibres Xy are geometrically reduced for
a nonempty open V ⊂ Z. If Xξ is not geometrically reduced, then Lemma 26.3
(applied to the morphism XZ → Z) implies that all fibres Xy are geometrically
reduced for a nonempty open V ⊂ Z. Thus we win. □

Lemma 26.6.0C0D Let X → Spec(R) be a proper flat morphism where R is a discrete
valuation ring. If the special fibre is reduced, then both X and the generic fibre Xη

are reduced.

Proof. Assume the special fibre Xs is reduced. Let x ∈ X be any point, and let
us show that OX,x is reduced; this will prove that X and Xη are reduced. Let
x ⇝ x′ be a specialization with x′ in the special fibre; such a specialization exists
as a proper morphism is closed. Consider the local ring A = OX,x′ . Then OX,x
is a localization of A, so it suffices to show that A is reduced. Let π ∈ R be a
uniformizer. If a ∈ A then there exists an n ≥ 0 and an element a′ ∈ A such that
a = πna′ and a′ ̸∈ πA. This follows from Krull intersection theorem (Algebra,
Lemma 51.4). If a is nilpotent, so is a′, because π is a nonzerodivisor by flatness of
A over R. But a′ maps to a nonzero element of the reduced ring A/πA = OXs,x′ .
This is a contradiction unless A is reduced, which is what we wanted to show. □

Lemma 26.7.0C0E Let f : X → Y be a flat proper morphism of finite presentation.
Then the set {y ∈ Y | Xy is geometrically reduced} is open in Y .

Proof. We may assume Y is affine. Then Y is a cofiltered limit of affine schemes
of finite type over Z. Hence we can assume X → Y is the base change of X0 → Y0
where Y0 is the spectrum of a finite type Z-algebra and X0 → Y0 is flat and proper.
See Limits, Lemma 10.1, 8.7, and 13.1. Since the formation of the set of points
where the fibres are geometrically reduced commutes with base change (Lemma
26.2), we may assume the base is Noetherian.
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Assume Y is Noetherian. The set is constructible by Lemma 26.5. Hence it suf-
fices to show the set is stable under generalization (Topology, Lemma 19.10). By
Properties, Lemma 5.10 we reduce to the case where Y = Spec(R), R is a discrete
valuation ring, and the closed fibre Xy is geometrically reduced. To show: the
generic fibre Xη is geometrically reduced.
If not then there exists a finite extension L of the fraction field of R such that XL

is not reduced, see Varieties, Lemma 6.4. There exists a discrete valuation ring
R′ ⊂ L with fraction field L dominating R, see Algebra, Lemma 120.18. After
replacing R by R′ we reduce to Lemma 26.6. □

27. Irreducible components of fibres

0553
Lemma 27.1.0554 Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη has n irreducible components, then
there exists a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy has at
least n irreducible components.

Proof. As the question is purely topological we may replace X and Y by their
reductions. In particular this implies that Y is integral, see Properties, Lemma 3.4.
Let Xη = X1,η∪ . . .∪Xn,η be the decomposition of Xη into irreducible components.
Let Xi ⊂ X be the reduced closed subscheme whose generic fibre is Xi,η. Note that
Zi,j = Xi∩Xj is a closed subset of Xi whose generic fibre Zi,j,η is nowhere dense in
Xi,η. Hence after shrinking Y we may assume that Zi,j,y is nowhere dense in Xi,y

for every y ∈ Y , see Lemma 24.3. After shrinking Y some more we may assume
that Xy =

⋃
Xi,y for y ∈ Y , see Lemma 24.5. Moreover, after shrinking Y we

may assume that each Xi → Y is flat and of finite presentation, see Morphisms,
Proposition 27.1. The morphisms Xi → Y are open, see Morphisms, Lemma 25.10.
Thus there exists an open neighbourhood V of η which is contained in f(Xi) for
each i. For each y ∈ V the schemes Xi,y are nonempty closed subsets of Xy, we
have Xy =

⋃
Xi,y and the intersections Zi,j,y = Xi,y ∩Xj,y are not dense in Xi,y.

Clearly this implies that Xy has at least n irreducible components. □

Lemma 27.2.0555 Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be any
morphism, and denote f ′ : X ′ → Y ′ the base change of f . Then

{y′ ∈ Y ′ | X ′
y′ is geometrically irreducible}

= g−1({y ∈ Y | Xy is geometrically irreducible}).

Proof. This comes down to the statement that for y′ ∈ Y ′ with image y ∈ Y the
fibre X ′

y′ = Xy ×y y′ is geometrically irreducible over κ(y′) if and only if Xy is
geometrically irreducible over κ(y). This follows from Varieties, Lemma 8.2. □

Lemma 27.3.0556 Let f : X → Y be a morphism of schemes. Let
nX/Y : Y → {0, 1, 2, 3, . . . ,∞}

be the function which associates to y ∈ Y the number of irreducible components of
(Xy)K where K is a separably closed extension of κ(y). This is well defined and if
g : Y ′ → Y is a morphism then

nX′/Y ′ = nX/Y ◦ g
where X ′ → Y ′ is the base change of f .
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Proof. Suppose that y′ ∈ Y ′ has image y ∈ Y . Suppose K ⊃ κ(y) and K ′ ⊃ κ(y′)
are separably closed extensions. Then we may choose a commutative diagram

K // K ′′ K ′oo

κ(y)

OO

// κ(y′)

OO

of fields. The result follows as the morphisms of schemes

(X ′
y′)K′ (X ′

y′)K′′ = (Xy)K′′oo // (Xy)K

induce bijections between irreducible components, see Varieties, Lemma 8.7. □

Lemma 27.4.0557 Let A be a domain with fraction field K. Let P ∈ A[x1, . . . , xn].
Denote K the algebraic closure of K. Assume P is irreducible in K[x1, . . . , xn].
Then there exists a f ∈ A such that Pφ ∈ κ[x1, . . . , xn] is irreducible for all homo-
morphisms φ : Af → κ into fields.

Proof. There exists an automorphism Ψ of A[x1, . . . , xn] over A such that Ψ(P ) =
axdn+ lower order terms in xn with a ̸= 0, see Algebra, Lemma 115.2. We may
replace P by Ψ(P ) and we may replace A by Aa. Thus we may assume that P is
monic in xn of degree d > 0. For i = 1, . . . , n − 1 let di be the degree of P in xi.
Note that this implies that Pφ is monic of degree d in xn and has degree ≤ di in
xi for every homomorphism φ : A→ κ where κ is a field. Thus if Pφ is reducible,
then we can write

Pφ = Q1Q2

with Q1, Q2 monic of degree e1, e2 ≥ 0 in xn with e1 + e2 = d and having degree
≤ di in xi for i = 1, . . . , n− 1. In other words we can write

(27.4.1)0558 Qj = xej
n +

∑
0≤l<ej

(∑
L∈L

aj,l,Lx
L

)
xln

where the sum is over the set L of multi-indices L of the form L = (l1, . . . , ln−1)
with 0 ≤ li ≤ di. For any e1, e2 ≥ 0 with e1 + e2 = d we consider the A-algebra

Be1,e2 = A[{a1,l,L}0≤l<e1,L∈L, {a2,l,L}0≤l<e2,L∈L]/(relations)
where the (relations) is the ideal generated by the coefficients of the polynomial

P −Q1Q2 ∈ A[{a1,l,L}0≤l<e1,L∈L, {a2,l,L}0≤l<e2,L∈L][x1, . . . , xn]
with Q1 and Q2 defined as in (27.4.1). OK, and the assumption that P is irreducible
over K implies that there does not exist any A-algebra homomorphism Be1,e2 →
K. By the Hilbert Nullstellensatz, see Algebra, Theorem 34.1 this means that
Be1,e2 ⊗A K = 0. As Be1,e2 is a finitely generated A-algebra this signifies that we
can find an fe1,e2 ∈ A such that (Be1,e2)fe1,e2

= 0. By construction this means
that if φ : Afe1,e2

→ κ is a homomorphism to a field, then Pφ does not have a
factorization Pφ = Q1Q2 with Q1 of degree e1 in xn and Q2 of degree e2 in xn.
Thus taking f =

∏
e1,e2≥0,e1+e2=d fe1,e2 we win. □

Lemma 27.5.0559 Let f : X → Y be a morphism of schemes. Assume
(1) Y is irreducible with generic point η,
(2) Xη is geometrically irreducible, and
(3) f is of finite type.
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Then there exists a nonempty open subscheme V ⊂ Y such that XV → V has
geometrically irreducible fibres.

First proof of Lemma 27.5. We give two proofs of the lemma. These are es-
sentially equivalent; the second is more self contained but a bit longer. Choose a
diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

as in Lemma 24.7. Note that the generic fibre of f ′ is the reduction of the generic
fibre of f (see Lemma 24.6) and hence is geometrically irreducible. Suppose that
the lemma holds for the morphism f ′. Then after shrinking V all the fibres of f ′ are
geometrically irreducible. As X ′ = (Y ′ ×V XV )red this implies that all the fibres
of Y ′ ×V XV are geometrically irreducible. Hence by Lemma 27.2 all the fibres of
XV → V are geometrically irreducible and we win. In this way we see that we
may assume that the generic fibre is geometrically reduced as well as geometrically
irreducible and we may assume Y = Spec(A) with A a domain.
Let x ∈ Xη be the generic point. As Xη is geometrically irreducible and re-
duced we see that L = κ(x) is a finitely generated extension of K = κ(η) which
is geometrically reduced and geometrically irreducible, see Varieties, Lemmas 6.2
and 8.6. In particular the field extension L/K is separable, see Algebra, Lemma
44.1. Hence we can find x1, . . . , xr+1 ∈ L which generate L over K and such that
x1, . . . , xr is a transcendence basis for L over K, see Algebra, Lemma 42.3. Let
P ∈ K(x1, . . . , xr)[T ] be the minimal polynomial for xr+1. Clearing denominators
we may assume that P has coefficients in A[x1, . . . , xr]. Note that as L is geometri-
cally reduced and geometrically irreducible over K, the polynomial P is irreducible
in K[x1, . . . , xr, T ] where K is the algebraic closure of K. Denote

B′ = A[x1, . . . , xr+1]/(P (xr+1))
and set X ′ = Spec(B′). By construction the fraction field of B′ is isomorphic to
L = κ(x) as K-extensions. Hence there exists an open U ⊂ X, and open U ′ ⊂ X ′

and a Y -isomorphism U → U ′, see Morphisms, Lemma 50.7. Here is a diagram:

X

��

Uoo

��

U ′ //

��

X ′

~~

Spec(B′)

Y Y

Note that Uη ⊂ Xη and U ′
η ⊂ X ′

η are dense opens. Thus after shrinking Y by
applying Lemma 24.3 we obtain that Uy is dense in Xy and U ′

y is dense in X ′
y for

all y ∈ Y . Thus it suffices to prove the lemma for X ′ → Y which is the content of
Lemma 27.4. □

Second proof of Lemma 27.5. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ → X
be the reduction of X. Note that X ′ → X → Y factors through Y ′, see Schemes,
Lemma 12.7. As Y ′ → Y and X ′ → X are universal homeomorphisms by Mor-
phisms, Lemma 45.6 we see that it suffices to prove the lemma for X ′ → Y ′. Thus
we may assume that X and Y are reduced. In particular Y is integral, see Prop-
erties, Lemma 3.4. Thus by Morphisms, Proposition 27.1 there exists a nonempty
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affine open V ⊂ Y such that XV → V is flat and of finite presentation. After re-
placing Y by V we may assume, in addition to (1), (2), (3) that Y is integral affine,
X is reduced, and f is flat and of finite presentation. In particular f is universally
open, see Morphisms, Lemma 25.10.

Pick a nonempty affine open U ⊂ X. Then U → Y is flat and of finite presentation
with geometrically irreducible generic fibre. The complement Xη \ Uη is nowhere
dense. Thus after shrinking Y we may assume Uy ⊂ Xy is open dense for all y ∈ Y ,
see Lemma 24.3. Thus we may replace X by U and we reduce to the case where
Y is integral affine and X is reduced affine, flat and of finite presentation over Y
with geometrically irreducible generic fibre Xη.

Write X = Spec(B) and Y = Spec(A). Then A is a domain, B is reduced, A→ B
is flat of finite presentation, and BK is geometrically irreducible over the fraction
field K of A. In particular we see that BK is a domain. Let L be the fraction
field of BK . Note that L is a finitely generated field extension of K as B is an
A-algebra of finite presentation. Let K ′/K be a finite purely inseparable extension
such that (L⊗KK ′)red is a separably generated field extension, see Algebra, Lemma
45.3. Choose x1, . . . , xn ∈ K ′ which generate the field extension K ′ over K, and
such that xqi

i ∈ A for some prime power qi (proof existence xi omitted). Let
A′ be the A-subalgebra of K ′ generated by x1, . . . , xn. Then A′ is a finite A-
subalgebra A′ ⊂ K ′ whose fraction field is K ′. Note that Spec(A′) → Spec(A) is
a universal homeomorphism, see Algebra, Lemma 46.7. Hence it suffices to prove
the result after base changing to Spec(A′). We are going to replace A by A′ and
B by (B⊗A A′)red to arrive at the situation where L is a separably generated field
extension of K. Of course it may happen that (B ⊗A A′)red is no longer flat, or of
finite presentation over A′, but this can be remedied by replacing A′ by A′

f for a
suitable f ∈ A′, see Algebra, Lemma 118.3.

At this point we know that A is a domain, B is reduced, A → B is flat and of
finite presentation, BK is a domain whose fraction field L is a separably generated
field extension of the fraction field K of A. By Algebra, Lemma 42.3 we may write
L = K(x1, . . . , xr+1) where x1, . . . , xr are algebraically independent over K, and
xr+1 is separable over K(x1, . . . , xr). After clearing denominators we may assume
that the minimal polynomial P ∈ K(x1, . . . , xr)[T ] of xr+1 over K(x1, . . . , xr)
has coefficients in A[x1, . . . , xr]. Note that since L/K is separable and since L is
geometrically irreducible over K, the polynomial P is irreducible over the algebraic
closure K of K. Denote

B′ = A[x1, . . . , xr+1]/(P (xr+1)).

By construction the fraction fields of B and B′ are isomorphic as K-extensions.
Hence there exists an isomorphism of A-algebras Bh ∼= B′

h′ for suitable h ∈ B and
h′ ∈ B′, see Morphisms, Lemma 50.7. In other words X and X ′ = Spec(B′) have
a common affine open U . Here is a diagram:

X = Spec(B)

((

Uoo //

��

Spec(B′) = X ′

vv
Y = Spec(A)
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After shrinking Y once more (by applying Lemma 24.3 to Z = X \ U in X and
Z ′ = X ′ \ U in X ′) we see that Uy is dense in Xy and Uy is dense in X ′

y for all
y ∈ Y . Thus it suffices to prove the lemma for X ′ → Y which is the content of
Lemma 27.4. □

Lemma 27.6.055A Let f : X → Y be a morphism of schemes. Let nX/Y be the function
on Y counting the numbers of geometrically irreducible components of fibres of f
introduced in Lemma 27.3. Assume f of finite type. Let y ∈ Y be a point. Then
there exists a nonempty open V ⊂ {y} such that nX/Y |V is constant.

Proof. Let Z be the reduced induced scheme structure on {y}. Let fZ : XZ → Z
be the base change of f . Clearly it suffices to prove the lemma for fZ and the generic
point of Z. Hence we may assume that Y is an integral scheme, see Properties,
Lemma 3.4. Our goal in this case is to produce a nonempty open V ⊂ Y such that
nX/Y |V is constant.

We apply Lemma 24.8 to f : X → Y and we get g : Y ′ → V ⊂ Y . As g : Y ′ → V is
surjective finite étale, in particular open (see Morphisms, Lemma 36.13), it suffices
to prove that there exists an open V ′ ⊂ Y ′ such that nX′/Y ′ |V ′ is constant, see
Lemma 27.3. Thus we see that we may assume that all irreducible components of
the generic fibre Xη are geometrically irreducible over κ(η).
At this point suppose that Xη = X1,η

⋃
. . .

⋃
Xn,η is the decomposition of the

generic fibre into (geometrically) irreducible components. In particular nX/Y (η) =
n. Let Xi be the closure of Xi,η in X. After shrinking Y we may assume that
X =

⋃
Xi, see Lemma 24.5. After shrinking Y some more we see that each fibre

of f has at least n irreducible components, see Lemma 27.1. Hence nX/Y (y) ≥ n
for all y ∈ Y . After shrinking Y some more we obtain that Xi,y is geometrically
irreducible for each i and all y ∈ Y , see Lemma 27.5. Since Xy =

⋃
Xi,y this shows

that nX/Y (y) ≤ n and finishes the proof. □

Lemma 27.7.055B Let f : X → Y be a morphism of schemes. Let nX/Y be the function
on Y counting the numbers of geometrically irreducible components of fibres of f
introduced in Lemma 27.3. Assume f of finite presentation. Then the level sets

En = {y ∈ Y | nX/Y (y) = n}

of nX/Y are locally constructible in Y .

Proof. Fix n. Let y ∈ Y . We have to show that there exists an open neighbour-
hood V of y in Y such that En ∩ V is constructible in V . Thus we may assume
that Y is affine. Write Y = Spec(A) and A = colimAi as a directed limit of fi-
nite type Z-algebras. By Limits, Lemma 10.1 we can find an i and a morphism
fi : Xi → Spec(Ai) of finite presentation whose base change to Y recovers f . By
Lemma 27.3 it suffices to prove the lemma for fi. Thus we reduce to the case where
Y is the spectrum of a Noetherian ring.
We will use the criterion of Topology, Lemma 16.3 to prove that En is constructible
in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed
subscheme. We have to show that En ∩ Z either contains a nonempty open subset
or is not dense in Z. Let ξ ∈ Z be the generic point. Then Lemma 27.6 shows
that nX/Y is constant in a neighbourhood of ξ in Z. This clearly implies what we
want. □

https://stacks.math.columbia.edu/tag/055A
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28. Connected components of fibres

055C
Lemma 28.1.055D Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη has n connected components, then
there exists a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy has at
least n connected components.

Proof. As the question is purely topological we may replace X and Y by their
reductions. In particular this implies that Y is integral, see Properties, Lemma 3.4.
Let Xη = X1,η ∪ . . .∪Xn,η be the decomposition of Xη into connected components.
Let Xi ⊂ X be the reduced closed subscheme whose generic fibre is Xi,η. Note that
Zi,j = Xi∩Xj is a closed subset of X whose generic fibre Zi,j,η is empty. Hence after
shrinking Y we may assume that Zi,j = ∅, see Lemma 24.1. After shrinking Y some
more we may assume that Xy =

⋃
Xi,y for y ∈ Y , see Lemma 24.5. Moreover, after

shrinking Y we may assume that each Xi → Y is flat and of finite presentation, see
Morphisms, Proposition 27.1. The morphisms Xi → Y are open, see Morphisms,
Lemma 25.10. Thus there exists an open neighbourhood V of η which is contained
in f(Xi) for each i. For each y ∈ V the schemes Xi,y are nonempty closed subsets
of Xy, we have Xy =

⋃
Xi,y and the intersections Zi,j,y = Xi,y ∩Xj,y are empty!

Clearly this implies that Xy has at least n connected components. □

Lemma 28.2.055E Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be any
morphism, and denote f ′ : X ′ → Y ′ the base change of f . Then

{y′ ∈ Y ′ | X ′
y′ is geometrically connected}

= g−1({y ∈ Y | Xy is geometrically connected}).

Proof. This comes down to the statement that for y′ ∈ Y ′ with image y ∈ Y the
fibre X ′

y′ = Xy ×y y′ is geometrically connected over κ(y′) if and only if Xy is
geometrically connected over κ(y). This follows from Varieties, Lemma 7.3. □

Lemma 28.3.055F Let f : X → Y be a morphism of schemes. Let
nX/Y : Y → {0, 1, 2, 3, . . . ,∞}

be the function which associates to y ∈ Y the number of connected components of
(Xy)K where K is a separably closed extension of κ(y). This is well defined and if
g : Y ′ → Y is a morphism then

nX′/Y ′ = nX/Y ◦ g
where X ′ → Y ′ is the base change of f .

Proof. Suppose that y′ ∈ Y ′ has image y ∈ Y . Suppose K ⊃ κ(y) and K ′ ⊃ κ(y′)
are separably closed extensions. Then we may choose a commutative diagram

K // K ′′ K ′oo

κ(y)

OO

// κ(y′)

OO

of fields. The result follows as the morphisms of schemes

(X ′
y′)K′ (X ′

y′)K′′ = (Xy)K′′oo // (Xy)K

https://stacks.math.columbia.edu/tag/055D
https://stacks.math.columbia.edu/tag/055E
https://stacks.math.columbia.edu/tag/055F
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induce bijections between connected components, see Varieties, Lemma 7.6. □

Lemma 28.4.055G Let f : X → Y be a morphism of schemes. Assume
(1) Y is irreducible with generic point η,
(2) Xη is geometrically connected, and
(3) f is of finite type.

Then there exists a nonempty open subscheme V ⊂ Y such that XV → V has
geometrically connected fibres.

Proof. Choose a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

as in Lemma 24.8. Note that the generic fibre of f ′ is geometrically connected
(for example by Lemma 28.3). Suppose that the lemma holds for the morphism
f ′. This means that there exists a nonempty open W ⊂ Y ′ such that every fibre
of X ′ → Y ′ over W is geometrically connected. Then, as g is an open morphism
by Morphisms, Lemma 36.13 all the fibres of f at points of the nonempty open
V = g(W ) are geometrically connected, see Lemma 28.3. In this way we see
that we may assume that the irreducible components of the generic fibre Xη are
geometrically irreducible.

Let Y ′ be the reduction of Y , and set X ′ = Y ′ ×Y X. Then it suffices to prove
the lemma for the morphism X ′ → Y ′ (for example by Lemma 28.3 once again).
Since the generic fibre of X ′ → Y ′ is the same as the generic fibre of X → Y
we see that we may assume that Y is irreducible and reduced (i.e., integral, see
Properties, Lemma 3.4) and that the irreducible components of the generic fibre
Xη are geometrically irreducible.

At this point suppose that Xη = X1,η
⋃
. . .

⋃
Xn,η is the decomposition of the

generic fibre into (geometrically) irreducible components. Let Xi be the closure of
Xi,η in X. After shrinking Y we may assume that X =

⋃
Xi, see Lemma 24.5. Let

Zi,j = Xi ∩Xj . Let
{1, . . . , n} × {1, . . . , n} = I ⨿ J

where (i, j) ∈ I if Zi,j,η = ∅ and (i, j) ∈ J if Zi,j,η ̸= ∅. After shrinking Y we
may assume that Zi,j = ∅ for all (i, j) ∈ I, see Lemma 24.1. After shrinking Y we
obtain that Xi,y is geometrically irreducible for each i and all y ∈ Y , see Lemma
27.5. After shrinking Y some more we achieve the situation where each Zi,j → Y
is flat and of finite presentation for all (i, j) ∈ J , see Morphisms, Proposition 27.1.
This means that f(Zi,j) ⊂ Y is open, see Morphisms, Lemma 25.10. We claim that

V =
⋂

(i,j)∈J
f(Zi,j)

works, i.e., that Xy is geometrically connected for each y ∈ V . Namely, the fact
that Xη is connected implies that the equivalence relation generated by the pairs
in J has only one equivalence class. Now if y ∈ V and K ⊃ κ(y) is a separably
closed extension, then the irreducible components of (Xy)K are the fibres (Xi,y)K .
Moreover, we see by construction and y ∈ V that (Xi,y)K meets (Xj,y)K if and

https://stacks.math.columbia.edu/tag/055G
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only if (i, j) ∈ J . Hence the remark on equivalence classes shows that (Xy)K is
connected and we win. □

Lemma 28.5.055H Let f : X → Y be a morphism of schemes. Let nX/Y be the
function on Y counting the numbers of geometrically connected components of fibres
of f introduced in Lemma 28.3. Assume f of finite type. Let y ∈ Y be a point.
Then there exists a nonempty open V ⊂ {y} such that nX/Y |V is constant.

Proof. Let Z be the reduced induced scheme structure on {y}. Let fZ : XZ → Z
be the base change of f . Clearly it suffices to prove the lemma for fZ and the generic
point of Z. Hence we may assume that Y is an integral scheme, see Properties,
Lemma 3.4. Our goal in this case is to produce a nonempty open V ⊂ Y such that
nX/Y |V is constant.

We apply Lemma 24.8 to f : X → Y and we get g : Y ′ → V ⊂ Y . As g : Y ′ → V is
surjective finite étale, in particular open (see Morphisms, Lemma 36.13), it suffices
to prove that there exists an open V ′ ⊂ Y ′ such that nX′/Y ′ |V ′ is constant, see
Lemma 27.3. Thus we see that we may assume that all irreducible components of
the generic fibre Xη are geometrically irreducible over κ(η). By Varieties, Lemma
8.16 this implies that also the connected components of Xη are geometrically con-
nected.

At this point suppose that Xη = X1,η
⋃
. . .

⋃
Xn,η is the decomposition of the

generic fibre into (geometrically) connected components. In particular nX/Y (η) =
n. Let Xi be the closure of Xi,η in X. After shrinking Y we may assume that
X =

⋃
Xi, see Lemma 24.5. After shrinking Y some more we see that each fibre

of f has at least n connected components, see Lemma 28.1. Hence nX/Y (y) ≥ n
for all y ∈ Y . After shrinking Y some more we obtain that Xi,y is geometrically
connected for each i and all y ∈ Y , see Lemma 28.4. Since Xy =

⋃
Xi,y this shows

that nX/Y (y) ≤ n and finishes the proof. □

Lemma 28.6.055I Let f : X → Y be a morphism of schemes. Let nX/Y be the
function on Y counting the numbers of geometric connected components of fibres of
f introduced in Lemma 28.3. Assume f of finite presentation. Then the level sets

En = {y ∈ Y | nX/Y (y) = n}

of nX/Y are locally constructible in Y .

Proof. Fix n. Let y ∈ Y . We have to show that there exists an open neighbour-
hood V of y in Y such that En ∩ V is constructible in V . Thus we may assume
that Y is affine. Write Y = Spec(A) and A = colimAi as a directed limit of fi-
nite type Z-algebras. By Limits, Lemma 10.1 we can find an i and a morphism
fi : Xi → Spec(Ai) of finite presentation whose base change to Y recovers f . By
Lemma 28.3 it suffices to prove the lemma for fi. Thus we reduce to the case where
Y is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 16.3 to prove that En is constructible
in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed
subscheme. We have to show that En ∩ Z either contains a nonempty open subset
or is not dense in Z. Let ξ ∈ Z be the generic point. Then Lemma 28.5 shows
that nX/Y is constant in a neighbourhood of ξ in Z. This clearly implies what we
want. □

https://stacks.math.columbia.edu/tag/055H
https://stacks.math.columbia.edu/tag/055I


MORE ON MORPHISMS 84

Lemma 28.7.055J Let f : X → S be a morphism of schemes. Assume that
(1) S is the spectrum of a discrete valuation ring,
(2) f is flat,
(3) X is connected,
(4) the closed fibre Xs is reduced.

Then the generic fibre Xη is connected.

Proof. Write S = Spec(R) and let π ∈ R be a uniformizer. To get a contradiction
assume that Xη is disconnected. This means there exists a nontrivial idempotent
e ∈ Γ(Xη,OXη

). Let U = Spec(A) be any affine open in X. Note that π is a
nonzerodivisor on A as A is flat over R, see More on Algebra, Lemma 22.9 for
example. Then e|Uη

corresponds to an element e ∈ A[1/π]. Let z ∈ A be an
element such that e = z/πn with n ≥ 0 minimal. Note that z2 = πnz. This means
that z mod πA is nilpotent if n > 0. By assumption A/πA is reduced, and hence
minimality of n implies n = 0. Thus we conclude that e ∈ A! In other words
e ∈ Γ(X,OX). As X is connected it follows that e is a trivial idempotent which is
a contradiction. □

29. Connected components meeting a section

055K The results in this section are in particular applicable to a group scheme G → S
and its neutral section e : S → G.

Situation 29.1.055L Here f : X → Y be a morphism of schemes, and s : Y → X

is a section of f . For every y ∈ Y we denote X0
y the connected component of Xy

containing s(y). Finally, we set X0 =
⋃
y∈Y X

0
y .

Lemma 29.2.055M Let f : X → Y , s : Y → X be as in Situation 29.1. If g : Y ′ → Y
is any morphism, consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′

s′

AA

g // Y

s

]]

so that we obtain (X ′)0 ⊂ X ′. Then (X ′)0 = (g′)−1(X0).

Proof. Let y′ ∈ Y ′ with image y ∈ Y . We may think of X0
y as a closed subscheme

of Xy, see for example Morphisms, Definition 26.3. As s(y) ∈ X0
y we conclude from

Varieties, Lemma 7.14 that X0
y is a geometrically connected scheme over κ(y).

Hence X0
y ×y y′ → X ′

y′ is a connected closed subscheme which contains s′(y′). Thus
X0
y ×y y′ ⊂ (X ′

y′)0. The other inclusion X0
y ×y y′ ⊃ (X ′

y′)0 is clear as the image of
(X ′

y′)0 in Xy is a connected subset of Xy which contains s(y). □

Lemma 29.3.055N Let f : X → Y , s : Y → X be as in Situation 29.1. Assume f of
finite type. Let y ∈ Y be a point. Then there exists a nonempty open V ⊂ {y} such
that the inverse image of X0 in the base change XV is open and closed in XV .

Proof. Let Z ⊂ Y be the induced reduced closed subscheme structure on {y}. Let
fZ : XZ → Z and sZ : Z → XZ be the base changes of f and s. By Lemma 29.2
we have (XZ)0 = (X0)Z . Hence it suffices to prove the lemma for the morphism
XZ → Z and the point x ∈ XZ which maps to the generic point of Z. In other

https://stacks.math.columbia.edu/tag/055J
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words we have reduced the problem to the case where Y is an integral scheme
(see Properties, Lemma 3.4) with generic point η. Our goal is to show that after
shrinking Y the subset X0 becomes an open and closed subset of X.
Note that the scheme Xη is of finite type over a field, hence Noetherian. Thus its
connected components are open as well as closed. Hence we may write Xη = X0

η⨿Tη
for some open and closed subset Tη of Xη. Next, let T ⊂ X be the closure of Tη
and let X00 ⊂ X be the closure of X0

η . Note that Tη, resp. X0
η is the generic

fibre of T , resp. X00, see discussion preceding Lemma 24.5. Moreover, that lemma
implies that after shrinking Y we may assume that X = X00∪T (set theoretically).
Note that (T ∩ X00)η = Tη ∩ X0

η = ∅. Hence after shrinking Y we may assume
that T ∩ X00 = ∅, see Lemma 24.1. In particular X00 is open in X. Note that
X0
η is connected and has a rational point, namely s(η), hence it is geometrically

connected, see Varieties, Lemma 7.14. Thus after shrinking Y we may assume that
all fibres of X00 → Y are geometrically connected, see Lemma 28.4. At this point it
follows that the fibres X00

y are open, closed, and connected subsets of Xy containing
σ(y). It follows that X0 = X00 and we win. □

Lemma 29.4.055P Let f : X → Y , s : Y → X be as in Situation 29.1. If f is of finite
presentation then X0 is locally constructible in X.

Proof. Let x ∈ X. We have to show that there exists an open neighbourhood U
of x such that X0 ∩ U is constructible in U . This reduces us to the case where Y
is affine. Write Y = Spec(A) and A = colimAi as a directed limit of finite type
Z-algebras. By Limits, Lemma 10.1 we can find an i and a morphism fi : Xi →
Spec(Ai) of finite presentation, endowed with a section si : Spec(Ai) → Xi whose
base change to Y recovers f and the section s. By Lemma 29.2 it suffices to prove
the lemma for fi, si. Thus we reduce to the case where Y is the spectrum of a
Noetherian ring.
Assume Y is a Noetherian affine scheme. Since f is of finite presentation, i.e., of
finite type, we see that X is a Noetherian scheme too, see Morphisms, Lemma 15.6.
In order to prove the lemma in this case it suffices to show that for every irreducible
closed subset Z ⊂ X the intersection Z ∩X0 either contains a nonempty open of
Z or is not dense in Z, see Topology, Lemma 16.3. Let x ∈ Z be the generic point,
and let y = f(x). By Lemma 29.3 there exists a nonempty open subset V ⊂ {y}
such that X0 ∩XV is open and closed in XV . Since f(Z) ⊂ {y} and f(x) = y ∈ V
we see that W = f−1(V ) ∩ Z is a nonempty open subset of Z. It follows that
X0 ∩W is open and closed in W . Since W is irreducible we see that X0 ∩W is
either empty or equal to W . This proves the lemma. □

Lemma 29.5.055Q Let f : X → Y , s : Y → X be as in Situation 29.1. Let y ∈ Y be
a point. Assume

(1) f is of finite presentation and flat, and
(2) the fibre Xy is geometrically reduced.

Then X0 is a neighbourhood of X0
y in X.

Proof. We may replace Y with an affine open neighbourhood of y. Write Y =
Spec(A) and A = colimAi as a directed limit of finite type Z-algebras. By Limits,
Lemma 10.1 we can find an i and a morphism fi : Xi → Spec(Ai) of finite presenta-
tion, endowed with a section si : Spec(Ai)→ Xi whose base change to Y recovers f
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and the section s. After possibly increasing i we may also assume that fi is flat, see
Limits, Lemma 8.7. Let yi be the image of y in Yi. Note that Xy = (Xi,yi)×yi y.
Hence Xi,yi is geometrically reduced, see Varieties, Lemma 6.6. By Lemma 29.2 it
suffices to prove the lemma for the system fi, si, yi ∈ Yi. Thus we reduce to the
case where Y is the spectrum of a Noetherian ring.

Assume Y is the spectrum of a Noetherian ring. Since f is of finite presentation, i.e.,
of finite type, we see that X is a Noetherian scheme too, see Morphisms, Lemma
15.6. Let x ∈ X0 be a point lying over y. By Topology, Lemma 16.4 it suffices
to prove that for any irreducible closed Z ⊂ X passing through x the intersection
X0∩Z is dense in Z. In particular it suffices to prove that the generic point x′ ∈ Z
is in X0. By Properties, Lemma 5.10 we can find a discrete valuation ring R and a
morphism Spec(R) → X which maps the special point to x and the generic point
to x′. We are going to think of Spec(R) as a scheme over Y via the composition
Spec(R) → X → Y . By Lemma 29.2 we have that (XR)0 is the inverse image of
X0. By construction we have a second section t : Spec(R)→ XR (besides the base
change sR of s) of the structure morphism XR → Spec(R) such that t(ηR) is a
point of XR which maps to x′ and t(0R) is a point of XR which maps to x. Note
that t(0R) is in (XR)0 and that t(ηR) ⇝ t(0R). Thus it suffices to prove that this
implies that t(ηR) ∈ (XR)0. Hence it suffices to prove the lemma in the case where
Y is the spectrum of a discrete valuation ring and y its closed point.

Assume Y is the spectrum of a discrete valuation ring and y is its closed point. Our
goal is to prove that X0 is a neighbourhood of X0

y . Note that X0
y is open and closed

in Xy as Xy has finitely many irreducible components. Hence the complement
C = Xy \X0

y is closed in X. Thus U = X \C is an open neighbourhood of X0
y and

U0 = X0. Hence it suffices to prove the result for the morphism U → Y . In other
words, we may assume that Xy is connected. Suppose that X is disconnected, say
X = X1 ⨿ . . . ⨿Xn is a decomposition into connected components. Then s(Y ) is
completely contained in one of the Xi. Say s(Y ) ⊂ X1. Then X0 ⊂ X1. Hence we
may replace X by X1 and assume that X is connected. At this point Lemma 28.7
implies that Xη is connected, i.e., X0 = X and we win. □

Lemma 29.6.055R Let f : X → Y , s : Y → X be as in Situation 29.1. Assume
(1) f is of finite presentation and flat, and
(2) all fibres of f are geometrically reduced.

Then X0 is open in X.

Proof. This is an immediate consequence of Lemma 29.5. □

30. Dimension of fibres

05F6
Lemma 30.1.05F7 Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη has dimension n, then there exists
a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy has dimension n.

Proof. Let Z = {x ∈ X | dimx(Xf(x)) > n}. By Morphisms, Lemma 28.4 this is a
closed subset of X. By assumption Zη = ∅. Hence by Lemma 24.1 we may shrink
Y and assume that Z = ∅. Let Z ′ = {x ∈ X | dimx(Xf(x)) > n − 1} = {x ∈ X |
dimx(Xf(x)) = n}. As before this is a closed subset of X. By assumption we have
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Z ′
η ̸= ∅. Hence after shrinking Y we may assume that Z ′ → Y is surjective, see

Lemma 24.2. Hence we win. □

Lemma 30.2.05F8 Let f : X → Y be a morphism of finite type. Let
nX/Y : Y → {0, 1, 2, 3, . . . ,∞}

be the function which associates to y ∈ Y the dimension of Xy. If g : Y ′ → Y is a
morphism then

nX′/Y ′ = nX/Y ◦ g
where X ′ → Y ′ is the base change of f .

Proof. This follows from Morphisms, Lemma 28.3. □

Lemma 30.3.05F9 Let f : X → Y be a morphism of schemes. Let nX/Y be the function
on Y giving the dimension of fibres of f introduced in Lemma 30.2. Assume f of
finite presentation. Then the level sets

En = {y ∈ Y | nX/Y (y) = n}
of nX/Y are locally constructible in Y .

Proof. Fix n. Let y ∈ Y . We have to show that there exists an open neighbour-
hood V of y in Y such that En ∩ V is constructible in V . Thus we may assume
that Y is affine. Write Y = Spec(A) and A = colimAi as a directed limit of fi-
nite type Z-algebras. By Limits, Lemma 10.1 we can find an i and a morphism
fi : Xi → Spec(Ai) of finite presentation whose base change to Y recovers f . By
Lemma 30.2 it suffices to prove the lemma for fi. Thus we reduce to the case where
Y is the spectrum of a Noetherian ring.
We will use the criterion of Topology, Lemma 16.3 to prove that En is constructible
in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed
subscheme. We have to show that En ∩ Z either contains a nonempty open subset
or is not dense in Z. Let ξ ∈ Z be the generic point. Then Lemma 30.1 shows that
nX/Y is constant in a neighbourhood of ξ in Z. This implies what we want. □

Lemma 30.4.0D4H Let f : X → Y be a flat morphism of schemes of finite presentation.
Let nX/Y be the function on Y giving the dimension of fibres of f introduced in
Lemma 30.2. Then nX/Y is lower semi-continuous.

Proof. Let W ⊂ X, W =
∐
d≥0 Ud be the open constructed in Lemmas 22.7 and

22.9. Let y ∈ Y be a point. If nX/Y (y) = dim(Xy) = n, then y is in the image
of Un → Y . By Morphisms, Lemma 25.10 we see that f(Un) is open in Y . Hence
there is an open neighbourhoof of y where nX/Y is ≥ n. □

Lemma 30.5.0D4I Let f : X → Y be a proper morphism of schemes. Let nX/Y be the
function on Y giving the dimension of fibres of f introduced in Lemma 30.2. Then
nX/Y is upper semi-continuous.

Proof. Let Zd = {x ∈ X | dimx(Xf(x)) > d}. Then Zd is a closed subset of X
by Morphisms, Lemma 28.4. Since f is proper f(Zd) is closed. Since y ∈ f(Zd)⇔
nX/Y (y) > d we see that the lemma is true. □

Lemma 30.6.0D4J Let f : X → Y be a proper, flat morphism of schemes of finite
presentation. Let nX/Y be the function on Y giving the dimension of fibres of f
introduced in Lemma 30.2. Then nX/Y is locally constant.
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Proof. Immediate consequence of Lemmas 30.4 and 30.5. □

31. Weak relative Noether normalization

0GTD The goal of this section is to prove Lemma 31.3.

Lemma 31.1.0GTE Let R be a ring. Let p1, . . . , pr be prime ideals of R with pi ̸⊂ pj if
i ̸= j. Let ki ⊂ κ(pi) be subfields such that the extensions κ(pi)/ki are not algebraic.
Let J ⊂ R be an ideal not contained in any of the pi. Then there exists an element
x ∈ J such that the image of x in κ(pi) is transcendental over ki for i = 1, . . . , r.

Proof. The ideal Ji = Jp1 . . . p̂i . . . pr is not contained in pi, see Algebra, Lemma
15.1. It follows that every element ξ of κ(pi) = Frac(B/pi) is of the form ξ = a/b
with a, b ∈ Ji and b ̸∈ pi. Choosing ξ transcendental over ki we see that either a or
b maps to an element of κ(pi) transcendental over ki. We conclude that for every
i = 1, . . . , r we can find an element xi ∈ Ji = Jp1 . . . p̂i . . . pr which maps to an
element of κ(pi) transcendental over ki. Then x = x1 + . . .+ xr works. □

Lemma 31.2.0GTF Let R → S be a finite type ring map. Let d ≥ 0. Let a, b ∈ S.
Assume that the fibres of

fa : Spec(S) −→ A1
R

given by the R-algebra map R[x] → S sending x to a have dimension ≤ d. Then
there exists an n0 such that for n ≥ n0 the fibres of

fan+b : Spec(S) −→ A1
R

given by the R-algebra map R[x]→ S sending x to an + b have dimension ≤ d.

Proof. In this paragraph we reduce to the case where R → S is of finite presen-
tation. Namely, write S = R[A,B, x1, . . . , xn]/J for some ideal J ⊂ R[x1, . . . , xn]
where A and B map to a and b in S. Then J is the union of its finitely generated
ideals Jλ ⊂ J . Set Sλ = R[A,B, x1, . . . , xn]/Jλ and denote aλ, bλ ∈ Sλ the images
of A and B. Then for some λ the fibres of

faλ
: Spec(Sλ) −→ A1

R

have dimension ≤ d, see Limits, Lemma 18.1. Fix such a λ. If we can find n0
which works for R → Sλ, aλ, bλ, then n0 works for R → S. Namely, the fibres of
fan

λ
+bλ

: Spec(Sλ)→ A1
R contain the fibres of fan+b : Spec(S)→ A1

R. This reduces
us to the case discussed in the next paragraph.
Assume R → S is of finite presentation. In this paragraph we reduce to the case
where R is of finite type over Z. By Algebra, Lemma 127.18 we can find a directed
set Λ and a system of ring maps Rλ → Sλ over Λ whose colimit is R→ S such that
Sµ = Sλ ⊗Rλ

Rµ for µ ≥ λ and such that each Rλ and Sλ is of finite type over Z.
Choose λ0 ∈ Λ and elements aλ0 , bλ0 ∈ Sλ0 mapping to a, b ∈ S. For λ ≥ λ0 denote
aλ, bλ ∈ Sλ the image of aλ0 , bλ0 . Then for λ ≥ λ0 large enough the fibres of

faλ
: Spec(Sλ) −→ A1

Rλ

have dimension ≤ d, see Limits, Lemma 18.4. Fix such a λ. If we can find n0 which
works for Rλ → Sλ, aλ, bλ, then n0 works for R→ S. Namely, any fibre of fan+b :
Spec(S) → A1

R has the same dimension as a fibre of fan
λ

+bλ
: Spec(Sλ) → A1

Rλ

by Morphisms, Lemma 28.3. This reduces us the the case discussed in the next
paragraph.
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Assume R and S are of finite type over Z. In particular the dimension of R is finite,
and we may use induction on dim(R). Thus we may assume the result holds for all
situations with R′ → S′, a, b as in the lemma with R′ and S′ of finite type over Z
but with dim(R′) < dim(R).
Since the statement is about the topology of the spectrum of S we may assume S is
reduced. Let Sν be the normalization of S. Then S ⊂ Sν is a finite extension as S
is excellent, see Algebra, Proposition 162.16 and Morphisms, Lemma 54.10. Thus
Spec(Sν) → Spec(S) is surjective and finite (Algebra, Lemma 36.17). It follows
that if the result holds for R → Sν and the images of a, b in Sν , then the result
holds for R→ S, a, b. (Small detail omitted.) This reduces us to the case discussed
in the next paragraph.
Assume R and S are of finite type over Z and S normal. Then S = S1 × . . . × Sr
for some normal domains Si. If the result holds for each R → Si and the images
of a, b in Si, then the result holds for R → S, a, b. (Small detail omitted.) This
reduces us to the case discussed in the next paragraph.
Assume R and S are of finite type over Z and S a normal domain. We may replace
R by the image of R in S (this does not increase the dimension of R). This reduces
us to the case discussed in the next paragraph.
Assume R ⊂ S are of finite type over Z and S a normal domain. Consider the
morphism

fa : Spec(S)→ A1
R

The assumption tells us that fa has fibres of dimension ≤ d. Hence the fibres
of f : Spec(S) → Spec(R) have dimension ≤ d + 1 (Morphisms, Lemma 28.2).
Consider the morphism of integral schemes

ϕ : Spec(S)→ A2
R = Spec(R[x, y])

corresponding to the R-algebra map R[x, y]→ S sending x to a and y to b. There
are two cases to consider

(1) ϕ is dominant, and
(2) ϕ is not dominant.

We claim that in both cases there exists an integer n0 and a nonempty open V ⊂
Spec(R) such that for n ≥ n0 the fibres of fan+b at points q ∈ A1

V have dimension
≤ d.
Proof of the claim in case (1). We have fan+b = πn ◦ ϕ where

πn : A2
R → A1

R

is the flat morphism corresponding to the R-algebra map R[x] → R[x, y] sending
x to xn + y. Since ϕ is dominant there is a dense open U ⊂ Spec(S) such that
ϕ|U : U → A2

R is flat (this follows for example from generic flatness, see Morphisms,
Proposition 27.1). Then the composition

fan+b|U : U ϕ|U−−→ A2
R

πn−−→ A1
R

is flat as well. Hence the fibres of this morphism have at least codimension 1 in the
fibres of f |U : U → Spec(R) by Morphisms, Lemma 28.2. In other words, the fibres
of fan+b|U have dimension ≤ d. On the other hand, since U is dense in Spec(S),
we can find a nonempty open V ⊂ Spec(R) such that U ∩ f−1(p) ⊂ f−1(p) is dense
for all p ∈ V (see for example Lemma 24.3). Thus dim(f−1(p) \ U ∩ f−1(p)) ≤ d
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and we conclude that our claim is true (as any fibres of fan+b : Spec(S) → A1
R is

contained in a fibre of f).
Case (2). In this case we can find a nonzero g =

∑
cijx

iyj in R[x, y] such that
Im(ϕ) ⊂ V (g). In fact, we may assume g is irreducible over Frac(R). If g ∈ R[x],
say with leading coefficient c, then over V = D(c) ⊂ Spec(R) the fibres of f already
have dimension ≤ d (because the image of fa is contained in V (g) ⊂ A1

R which
has finite fibres over V ). Hence we may assume g is not contained in R[x]. Let
s ≥ 1 be the degree of g as a polynomial in y and let t be the degree of

∑
cisx

i as
a polynomial in x. Then cts is nonzero and

g(x,−xn) = (−1)sctsxt+sn + l.o.t.

provided that n is bigger than the degree of g as a polynomial in x (small detail
omitted). For such n the polynomial g(x,−xn) is a nonzero polynomial in x and
maps to a nonzero polynomial in κ(p)[x] for all p ⊂ R, cst ̸∈ p. We conclude that
our claim is true for V equal to the principal open D(cts) of Spec(R).
OK, and now we can use induction on dim(R). Namely, let I ⊂ R be an ideal such
that V (I) = Spec(R) \V . Observe that dim(R/I) < dim(R) as R is a domain. Let
n′

0 be the integer we have by induction on dim(R) for R/I → S/IS and the images
of a and b in S/IS. Then max(n0, n

′
0) works. □

Lemma 31.3.0GTG Let R→ S be a finite type ring map. Let d be the maximum of the
dimensions of fibres of Spec(S) → Spec(R). Then there exists a quasi-finite ring
map R[t1, . . . , td]→ S.

Proof. In this paragraph we reduce to the case where R → S is of finite presen-
tation. Namely, write S = R[x1, . . . , xn]/J for some ideal J ⊂ R[x1, . . . , xn]. Then
J is the union of its finitely generated ideals Jλ ⊂ J . Set Sλ = R[x1, . . . , xn]/Jλ.
Then for some λ the fibres of Spec(Sλ)→ Spec(R) have dimension ≤ d, see Limits,
Lemma 18.1. Fix such a λ. If we can find a quasi-finite R[t1, . . . , td] → Sλ, then
of course the composition R[t1, . . . , td] → S is quasi-finite. This reduces us to the
case discussed in the next paragraph.
Assume R → S is of finite presentation. In this paragraph we reduce to the case
where R is of finite type over Z. By Algebra, Lemma 127.18 we can find a directed
set Λ and a system of ring maps Rλ → Sλ over Λ whose colimit is R → S such
that Sµ = Sλ⊗Rλ

Rµ for µ ≥ λ and such that each Rλ and Sλ is of finite type over
Z. Then for λ large enough the fibres of Spec(Sλ) → Spec(Rλ) have dimension
≤ d, see Limits, Lemma 18.4. Fix such a λ. If we can find a quasi-finite ring
map Rλ[t1, . . . , td] → Sλ, then the base change R[t1, . . . , td] → S is quasi-finite
too (Algebra, Lemma 122.8). This reduces us the the case discussed in the next
paragraph.
Assume R and S are of finite type over Z. If d = 0, then the ring map is quasi-finite
and we are done. Assume d > 0. We will find an element a ∈ S such that the fibres
of the R-algebra map R[x] → S, x 7→ a have dimension < d. This will finish the
proof by induction.
We will prove the existence of a by induction on dim(R).
Let q1, . . . , qr ⊂ S be those among the minimal primes of S such that dimqi

(S/R) =
d. For notation, see Algebra, Definition 125.1. Say qi lies over the prime pi ⊂ R.
We have trdegκ(pi)(κ(qi)) = d as qi is a generic point of its fibre; for example apply
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Algebra, Lemma 116.3 to S⊗Rκ(pi). Hence by Lemma 31.1 we can find an element
a ∈ S such that the image of a in κ(qi) is transcendental over κ(pi) for i = 1, . . . , r.
Consider the morphism

fa : Spec(S) −→ A1
R

corresponding the R-algebra homomorphism R[x] → S to mapping x to a. Let
U ⊂ Spec(S) be the open subset where the fibres have dimension ≤ d − 1, see
Morphisms, Lemma 28.4. By construction U contains all the generic points of
Spec(S). In particular we see that U contains all generic points of all the generic
fibres of Spec(S)→ Spec(R) as such points are necessarily generic points of Spec(S).
Set T = Spec(S) \ U viewed as a reduced closed subscheme of Spec(S). It follows
from what we just said and the assumption that dim(S/R) ≤ d that the generic
fibres of T → Spec(R) have dimension ≤ d − 1. Hence by Lemma 30.1, applied
several times to produce open neighbourhoods of the generic points of Spec(R), we
can find a dense open V ⊂ Spec(R) such that TV → V has fibres of dimension
≤ d− 1. We conclude that for q ∈ A1

V the fibre of fa over q has dimension ≤ d− 1
(as we have bounded the dimension of the fibre of fa|U and of the fibre of fa|T ).
By prime avoidance, we may assume that V = D(f) for some f ∈ R. Then we
see that the ring map Rf [x] → Sf , x 7→ a has fibres of dimension ≤ d − 1. We
may replace a by fa and assume a ∈ (f). By induction on dim(R) we can find
an element b ∈ S/fS such that the fibres of Spec(S/fS)→ Spec(R/fR[x]), x 7→ b
have dimension ≤ d − 1. Let b ∈ S be a lift of b. By Lemma 31.2 there exists an
n > 0 such that an + b still works for Rf → Sf . On the other hand, the image of
an + b in S/fS is b and the proof is complete. □

32. Bertini theorems

0G4C We continue the discussion started in Varieties, Section 47. In this section we
prove that general hyperplane sections of geometrically irreducible varieties are
geometrically irreducible following the remarkable argument given in [Jou83].

Lemma 32.1.0G4D See pages 71 and 72
of [Jou83]

Let K/k be a geometrically irreducible and finitely generated field
extension. Let n ≥ 1. Let g1, . . . , gn ∈ K be elements such that there exist
c1, . . . , cn ∈ k such that the elements

x1, . . . , xn,
∑

gixi,
∑

cigi ∈ K(x1, . . . , xn)

are algebraically independent over k. Then K(x1, . . . , xn) is geometrically irre-
ducible over k(x1, . . . , xn,

∑
gixi).

Proof. Let c1, . . . , cn ∈ k be as in the statement of the lemma. Write ξ =
∑
gixi

and δ =
∑
cigi. For a ∈ k consider the automorphism σa of K(x1, . . . , xn) given

by the identity on K and the rules
σa(xi) = xi + aci

Observe that σa(ξ) = ξ + aδ and σa(δ) = δ. Consider the tower of fields
K0 = k(x1, . . . , xn) ⊂ K1 = K0(ξ) ⊂ K2 = K0(ξ, δ) ⊂ K(x1, . . . , xn) = Ω

Observe that σa(K0) = K0 and σa(K2) = K2. Let θ ∈ Ω be separable algebraic
over K1. We have to show θ ∈ K1, see Algebra, Lemma 47.12.
Denote K ′

2 the separable algebraic closure of K2 in Ω. Since K ′
2/K2 is finite (Alge-

bra, Lemma 47.13) and separable there are only a finite number of fields in between
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K ′
2 and K2 (Fields, Lemma 19.1). If k is infinite5, then we can find distinct elements

a1, a2 of k such that
K2(σa1(θ)) = K2(σa2(θ))

as subfields of Ω. Write θi = σai
(θ) and ξi = σai

(ξ) = ξ + aiδ. Observe that
K2 = K0(ξ1, ξ2)

as we have ξi = ξ + aiδ, ξ = (a2ξ1 − a1ξ2)/(a2 − a1), and δ = (ξ1 − ξ2)/(a1 − a2).
Since K2/K0 is purely transcendental of degree 2 we conclude that ξ1 and ξ2 are
algebraically indepedent over K0. Since θ1 is algebraic over K0(ξ1) we conclude
that ξ2 is transcendental over K0(ξ1, θ1).
By assumptionK/k is geometrically irreducible. This implies thatK(x1, . . . , xn)/K0
is geometrically irreducible (Algebra, Lemma 47.10). This in turn implies that
K0(ξ1, θ1)/K0 is geometrically irreducible as a subextension (Algebra, Lemma 47.6).
Since ξ2 is transcendental over K0(ξ1, θ1) we conclude that K0(ξ1, ξ2, θ1)/K0(ξ2) is
geometrically irreducible (Algebra, Lemma 47.11). By our choice of a1, a2 above
we have

K0(ξ1, ξ2, θ1) = K2(σa1(θ)) = K2(σa2(θ)) = K0(ξ1, ξ2, θ2)
Since θ2 is separably algebraic over K0(ξ2) we conclude by Algebra, Lemma 47.12
again that θ2 ∈ K0(ξ2). Taking σ−1

a2
of this relation givens θ ∈ K0(ξ) = K1 as

desired.
This finishes the proof in case k is infinite. If k is finite, then we can choose a
variable t and consider the extension K(t)/k(t) which is geometrically irreducible
by Algebra, Lemma 47.10. Since it is still be true that x1, . . . , xn,

∑
gixi,

∑
cigi in

K(t, x1, . . . , xn) are algebraically independent over k(t) we conclude thatK(t, x1, . . . , xn)
is geometrically irreducible over k(t, x1, . . . , xn,

∑
gixi) by the argument already

given. Then using Algebra, Lemma 47.10 once more finishes the job. □

Lemma 32.2.0G4E Let A be a domain of finite type over a field k. Let n ≥ 2. Let
g1, . . . , gn ∈ A be elements such that V (g1, g2) has an irreducible component of
dimension dim(A)− 2. Then there exist c1, . . . , cn ∈ k such that the elements

x1, . . . , xn,
∑

gixi,
∑

cigi ∈ Frac(A)(x1, . . . , xn)

are algebraically independent over k.

Proof. The algebraic independence over k means that the morphism
T = Spec(A[x1, . . . , xn]) −→ Spec(k[x1, . . . , xn, y, z]) = S

given by y =
∑
gixi and z =

∑
cigi is dominant. Set d = dim(A). If T → S is

not dominant, then the image has dimension < n + 2 and hence every irreducible
component of every fibre has dimension > d + n − (n + 2) = d − 2, see Varieties,
Lemma 20.4. Choose a closed point u ∈ V (g1, g2) contained in an irreducible
component of dimension d − 2 and in no other component of V (g1, g2). Consider
the closed point t = (u, 1, 0, . . . 0) of T lying over u. Set (c1, . . . , cn) = (0, 1, 0, . . . , 0).
Then t maps to the point s = (1, 0, . . . , 0) of S. The fibre of T → S over s is cut
out by

x1 − 1, x2, . . . , xn,
∑

xigi, g2

5We will deal with the finite field case in the last paragraph of the proof.
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and hence equivalently is cut out by

x1 − 1, x2, . . . , xn, g1, g2

By our condition on g1, g2 this subscheme has an irreducible component of dimen-
sion d− 2. □

Lemma 32.3.0G4F [Jou83, Theorem 6.3
part 4)]

In Varieties, Situation 47.2 assume
(1) X is of finite type over k,
(2) X is geometrically irreducible over k,
(3) there exist v1, v2, v3 ∈ V and an irreducible component Z of Hv2 ∩Hv3 such

that Z ̸⊂ Hv1 and codim(Z,X) = 2, and
(4) every irreducible component Y of

⋂
v∈V Hv has codim(Y,X) ≥ 2.

Then for general v ∈ V ⊗k k′ the scheme Hv is geometrically irreducible over k′.

Proof. In order for assumption (3) to hold, the elements v1, v2, v3 must be k-
linearly independent in V (small detail omitted). Thus we may choose a basis
v1, . . . , vr of V incorporating these elements as the first 3. Recall that Huniv ⊂
Ar
k ×k X is the “universal divisor”. Consider the projection q : Huniv → Ar

k whose
scheme theoretic fibres are the divisors Hv. By Lemma 27.5 it suffices to show that
the generic fibre of q is geometrically irreducible. To prove this we may replace X
by its reduction, hence we may assume X is an integral scheme of finite type over
k.

Let U ⊂ X be a nonempty affine open such that L|U ∼= OU . Write U = Spec(A).
Denote fi ∈ A the element corresponding to section ψ(vi)|U via the isomorphism
L|U ∼= OU . Then Huniv ∩ (Ar

k ×k U) is given by

HU = Spec(A[x1, . . . , xr]/(x1f1 + . . .+ xrfr))

By our choice of basis we see that f1 cannot be zero because this would mean
v1 = 0 and hence Hv1 = X which contradicts assumption (3). Hence

∑
xifi is a

nonzerodivisor in A[x1, . . . , xr]. It follows that every irreducible component of HU

has dimension d+ r − 1 where d = dim(X) = dim(A). If U ′ = U ∩D(f1) then we
see that

HU ′ = Spec(Af1 [x1, . . . , xr]/(x1f1+. . .+xrfr)) ∼= Spec(Af1 [x2, . . . xr]) = Ar−1
k ×kU ′

is irreducible. On the other hand, we have

HU \HU ′ = Spec(A/(f1)[x1, . . . , xr]/(x2f2 + . . .+ xrfr))

which has dimension at most d+r−2. Namely, for i ̸= 1 the scheme (HU \HU ′)×U
D(fi) is either empty (if fi = 0) or by the same argument as above isomorphic to
an r − 1 dimensional affine space over an open of Spec(A/(f1)) and hence has
dimension at most d + r − 2. On the other hand, (HU \HU ′) ×U V (f2, . . . , fr) is
an r dimensional affine space over Spec(A/(f1, . . . , fr)) and hence assumption (4)
tells us this has dimension at most d + r − 2. We conclude that HU is irreducible
for every U as above. It follows that Huniv is irreducible.

Thus it suffices to show that the generic point of Huniv is geometrically irreducible
over the generic point of Ar

k, see Varieties, Lemma 8.6. Choose a nonempty affine
open U = Spec(A) ofX contained inX\Hv1 which meets the irreducible component
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Z of Hv2 ∩ Hv3 whose existence is asserted in assumption (3). With notation as
above we have to prove that the field extension

Frac(A[x1, . . . , xr]/(x1f1 + . . .+ xrfr))/k(x1, . . . , xr)
is geometrically irreducible. Observe that f1 is invertible in A by our choice of U .
Set K = Frac(A) equal to the fraction field of A. Eliminating the variable x1 as
above, we find that we have to show that the field extension

K(x2, . . . , xr)/k(x2, . . . , xr,−
∑

i=2,...,r
f−1

1 fixi)

is geometrically irreducible. By Lemma 32.1 it suffices to show that for some
c2, . . . , cr ∈ k the elements

x2, . . . , xr,
∑

i=2,...,r
f−1

1 fixi,
∑

i=2,...,r
cif

−1
1 fi

are algebraically independent over k in the fraction field of A[x2, . . . , xr]. This
follows from Lemma 32.2 and the fact that Z ∩ U is an irreducible component of
V (f−1

1 f2, f
−1
1 f3) ⊂ U . □

Remark 32.4.0G4G Let us sketch a “geometric” proof of a special case of Lemma
32.3. Namely, say k is an algebraically closed field and X ⊂ Pn

k is smooth and
irreducible of dimension ≥ 2. Then we claim there is a hyperplane H ⊂ Pn

k such
that X ∩ H is smooth and irreducible. Namely, by Varieties, Lemma 47.3 for a
general v ∈ V = kT0 ⊕ . . . ⊕ kTn the corresponding hyperplane section X ∩ Hv

is smooth. On the other hand, by Enriques-Severi-Zariski the scheme X ∩ Hv is
connected, see Varieties, Lemma 48.3. Hence X ∩Hv is smooth and irreducible.

33. Theorem of the cube

0BEZ The following lemma tells us that the diagonal of the Picard functor is representable
by locally closed immersions under the assumptions made in the lemma.

Lemma 33.1.0BDP Let f : X → S be a flat, proper morphism of finite presentation.
Let E be a finite locally free OX-module. For a morphism g : T → S consider the
base change diagram

XT

p

��

q
// X

f

��
T

g // S
Assume OT → p∗OXT

is an isomorphism for all g : T → S. Then there exists
an immersion j : Z → S of finite presentation such that a morphism g : T → S
factors through Z if and only if there exists a finite locally free OT -module N with
p∗N ∼= q∗E.

Proof. Observe that the fibres Xs of f are connected by our assumption that
H0(Xs,OXs

) = κ(s). Thus the rank of E is constant on the fibres. Since f is open
(Morphisms, Lemma 25.10) and closed we conclude that there is a decomposition
S =

∐
Sr of S into open and closed subschemes such that E has constant rank r

on the inverse image of Sr. Thus we may assume E has constant rank r. We will
denote E∨ = Hom(E ,OX) the dual rank r module.
By cohomology and base change (more precisely by Derived Categories of Schemes,
Lemma 30.4) we see that E = Rf∗E is a perfect object of the derived category of
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S and that its formation commutes with arbitrary change of base. Similarly for
E′ = Rf∗E∨. Since there is never any cohomology in degrees < 0, we see that E and
E′ have (locally) tor-amplitude in [0, b] for some b. Observe that for any g : T → S
we have p∗(q∗E) = H0(Lg∗E) and p∗(q∗E∨) = H0(Lg∗E′). Let j : Z → S and
j′ : Z ′ → S be immersions of finite presentation constructed in Derived Categories
of Schemes, Lemma 31.4 for E and E′ with a = 0 and r = r; these are roughly
speaking characterized by the property that H0(Lj∗E) and H0((j′)∗E′) are finite
locally free modules compatible with pullback.
Let g : T → S be a morphism. If there exists an N as in the lemma, then, using
the projection formula Cohomology, Lemma 54.2, we see that the modules

p∗(q∗L) ∼= p∗(p∗N ) ∼= N ⊗OT
p∗OXT

∼= N and similarly p∗(q∗E∨) ∼= N∨

are finite locally free modules of rank r and remain so after any further base change
T ′ → T . Hence in this case T → S factors through j and through j′. Thus we
may replace S by Z ×S Z ′ and assume that f∗E and f∗E∨ are finite locally free
OS-modules of rank r whose formation commutes with arbitrary change of base
(small detail omitted).
In this sitation if g : T → S be a morphism and there exists an N as in the lemma,
then the map (cup product in degree 0)

p∗(q∗E)⊗OT
p∗(q∗E∨) −→ OT

is a perfect pairing. Conversely, if this cup product map is a perfect pairing, then
we see that locally on T we may choose a basis of sections σ1, . . . , σr in p∗(q∗E)
and τ1, . . . , τr in p∗(q∗E∨) whose products satisfy σiτj = δij . Thinking of σi as a
section of q∗E on XT and τj as a section of q∗E∨ on XT , we conclude that

σ1, . . . , σr : O⊕r
XT
−→ q∗E

is an isomorphism with inverse given by
τ1, . . . , τr : q∗E −→ O⊕r

XT

In other words, we see that p∗p∗q
∗E ∼= q∗E . But the condition that the cupproduct

is nondegenerate picks out a retrocompact open subscheme (namely, the locus where
a suitable determinant is nonzero) and the proof is complete. □

The lemma above in particular tells us, that if a vector bundle is trivial on fibres
for a proper flat family of proper spaces, then it is the pull back of a vector bundle.
Let’s spell this out a bit.

Lemma 33.2.0EX7 Let f : X → S be a flat, proper morphism of finite presentation
such that f∗OX = OS and this remains true after arbitrary base change. Let E be
a finite locally free OX-module. Assume

(1) E|Xs is isomorphic to O⊕rs

Xs
for all s ∈ S, and

(2) S is reduced.
Then E = f∗N for some finite locally free OS-module N .

Proof. Namely, in this case the locally closed immersion j : Z → S of Lemma
33.1 is bijective and hence a closed immersion. But since S is reduced, j is an
isomorphism. □

Lemma 33.3.0EX8 Let f : X → S be a proper flat morphism of finite presentation.
Let L be an invertible OX-module. Assume
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(1) S is the spectrum of a valuation ring,
(2) L is trivial on the generic fibre Xη of f ,
(3) the closed fibre X0 of f is integral,
(4) H0(Xη,OXη

) is equal to the function field of S.
Then L is trivial.

Proof. Write S = Spec(A). We will first prove the lemma when A is a discrete
valuation ring (as this is the case most often used in practice). Let π ∈ A be a
uniformizer. Take a trivializing section s ∈ Γ(Xη,Lη). After replacing s by πns
if necessary we can assume that s ∈ Γ(X,L). If s|X0 = 0, then we see that s is
divisible by π (because X0 is the scheme theoretic fibre and X is flat over A). Thus
we may assume that s|X0 is nonzero. Then the zero locus Z(s) of s is contained
in X0 but does not contain the generic point of X0 (because X0 is integral). This
means that the Z(s) has codimension ≥ 2 in X which contradicts Divisors, Lemma
15.3 unless Z(s) = ∅ as desired.

Proof in the general case. Since the valuation ring A is coherent (Algebra, Example
90.2) we see that H0(X,L) is a coherent A-module, see Derived Categories of
Schemes, Lemma 33.1. Equivalently, H0(X,L) is a finitely presented A-module
(Algebra, Lemma 90.4). Since H0(X,L) is torsion free (by flatness of X over A),
we see from More on Algebra, Lemma 124.3 that H0(X,L) = A⊕n for some n. By
flat base change (Cohomology of Schemes, Lemma 5.2) we have

K = H0(Xη,OXη ) ∼= H0(Xη,Lη) = H0(X,L)⊗A K

where K is the fraction field of A. Thus n = 1. Pick a generator s ∈ H0(X,L).
Let m ⊂ A be the maximal ideal. Then κ = A/m = colimA/π where this is a
filtered colimit over nonzero π ∈ m (here we use that A is a valuation ring). Thus
X0 = limX ×S Spec(A/π). If s|X0 is zero, then for some π we see that s restricts
to zero on X ×S Spec(A/π), see Limits, Lemma 4.7. But if this happens, then
π−1s is a global section of L which contradicts the fact that s is a generator of
H0(X,L). Thus s|X0 is not zero. Let Z(s) ⊂ X be the zero scheme of s. Since
s|X0 is not zero and since X0 is integral, we see that Z(s)0 ⊂ X0 is an effective
Cartier divisor. Since f is proper and S is local, every point of Z(s) specializes
to a point of Z(s)0. Thus by Divisors, Lemma 18.9 part (3) we see that Z(s) is a
relative effective Cartier divisor, in particular Z(s)→ S is flat. Hence if Z(s) were
nonemtpy, then Z(s)η would be nonempty which contradicts the fact that s|Xη

is
a trivialization of Lη. Thus Z(s) = ∅ as desired. □

Lemma 33.4.0BF0 Let f : X → S and E be as in Lemma 33.1 and in addition assume
E is an invertible OX-module. If moreover the geometric fibres of f are integral,
then Z is closed in S.

Proof. Since j : Z → S is of finite presentation, it suffices to show: for any
morphism g : Spec(A) → S where A is a valuation ring with fraction field K such
that g(Spec(K)) ∈ j(Z) we have g(Spec(A)) ⊂ j(Z). See Morphisms, Lemma 6.5.
This follows from Lemma 33.3 and the characterization of j : Z → S in Lemma
33.1. □
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Lemma 33.5.0BF1 Consider a commutative diagram of schemes

X ′ //

f ′
  

X

f��
S

with f ′ : X ′ → S and f : X → S satisfying the hypotheses of Lemma 33.1. Let L be
an invertible OX-module and let L′ be the pullback to X ′. Let Z ⊂ S, resp. Z ′ ⊂ S
be the locally closed subscheme constructed in Lemma 33.1 for (f,L), resp. (f ′,L′)
so that Z ⊂ Z ′. If s ∈ Z and

H1(Xs,O) −→ H1(X ′
s,O)

is injective, then Z ∩ U = Z ′ ∩ U for some open neighbourhood U of s.

Proof. We may replace S by Z ′. After shrinking S to an affine open neighbourhood
of s we may assume that L′ = OX′ . Let E = Rf∗L and E′ = Rf ′

∗L′ = Rf ′
∗OX′ .

These are perfect complexes whose formation commutes with arbitrary change of
base (Derived Categories of Schemes, Lemma 30.4). In particular we see that

E ⊗L
OS

κ(s) = RΓ(Xs,Ls) = RΓ(Xs,OXs
)

The second equality because s ∈ Z. Set hi = dimκ(s) H
i(Xs,OXs

). After shrinking
S we can represent E by a complex

OS → O⊕h1
S → O⊕h2

S → . . .

see More on Algebra, Lemma 75.6 (strictly speaking this also uses Derived Cate-
gories of Schemes, Lemmas 3.5 and 10.7). Similarly, we may assume E′ is repre-
sented by a complex

OS → O
⊕h′

1
S → O⊕h′

2
S → . . .

where h′
i = dimκ(s) H

i(X ′
s,OX′

s
). By functoriality of cohomology we have a map

E −→ E′

in D(OS) whose formation commutes with change of base. Since the complex
representing E is a finite complex of finite free modules and since S is affine, we
can choose a map of complexes

OS
d
//

a

��

O⊕h1
S

//

b
��

O⊕h2
S

//

c
��

. . .

OS
d′
// O⊕h′

1
S

// O⊕h′
2

S
// . . .

representing the given map E → E′. Since s ∈ Z we see that the trivializing
section of Ls pulls back to a trivializing section of L′

s = OX′
s
. Thus a ⊗ κ(s) is

an isomorphism, hence after shrinking S we see that a is an isomorphism. Finally,
we use the hypothesis that H1(Xs,O) → H1(X ′

s,O) is injective, to see that there
exists a h1 × h1 minor of the matrix defining b which maps to a nonzero element
in κ(s). Hence after shrinking S we may assume that b is injective. However, since
L′ = OX′ we see that d′ = 0. It follows that d = 0. In this way we see that the
trivializing section of Ls lifts to a section of L over X. A straightforward topological
argument (omitted) shows that this means that L is trivial after possibly shrinking
S a bit further. □
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Lemma 33.6.0BF2 Consider n commutative diagrams of schemes

Xi
//

fi   

X

f��
S

with fi : Xi → S and f : X → S satisfying the hypotheses of Lemma 33.1. Let L be
an invertible OX-module and let Li be the pullback to Xi. Let Z ⊂ S, resp. Zi ⊂ S
be the locally closed subscheme constructed in Lemma 33.1 for (f,L), resp. (fi,Li)
so that Z ⊂

⋂
i=1,...,n Zi. If s ∈ Z and

H1(Xs,O) −→
⊕

i=1,...,n
H1(Xi,s,O)

is injective, then Z ∩ U = (
⋂
i=1,...,n Zi) ∩ U (scheme theoretic intersection) for

some open neighbourhood U of s.

Proof. This lemma is a variant of Lemma 33.5 and we strongly urge the reader
to read that proof first; this proof is basically a copy of that proof with minor
modifications. It follows from the description of (scheme valued) points of Z and the
Zi that Z ⊂

⋂
i=1,...,n Zi where we take the scheme theoretic intersection. Thus we

may replace S by the scheme theoretic intersection
⋂
i=1,...,n Zi. After shrinking S

to an affine open neighbourhood of s we may assume that Li = OXi
for i = 1, . . . , n.

Let E = Rf∗L and Ei = Rfi,∗Li = Rfi,∗OXi
. These are perfect complexes whose

formation commutes with arbitrary change of base (Derived Categories of Schemes,
Lemma 30.4). In particular we see that

E ⊗L
OS

κ(s) = RΓ(Xs,Ls) = RΓ(Xs,OXs
)

The second equality because s ∈ Z. Set hj = dimκ(s) H
j(Xs,OXs

). After shrinking
S we can represent E by a complex

OS → O⊕h1
S → O⊕h2

S → . . .

see More on Algebra, Lemma 75.6 (strictly speaking this also uses Derived Cate-
gories of Schemes, Lemmas 3.5 and 10.7). Similarly, we may assume Ei is repre-
sented by a complex

OS → O
⊕hi,1
S → O⊕hi,2

S → . . .

where hi,j = dimκ(s) H
j(Xi,s,OXi,s

). By functoriality of cohomology we have a
map

E −→ Ei

in D(OS) whose formation commutes with change of base. Since the complex
representing E is a finite complex of finite free modules and since S is affine, we
can choose a map of complexes

OS
d
//

ai

��

O⊕h1
S

//

bi

��

O⊕h2
S

//

ci

��

. . .

OS
di // O⊕hi,1

S
// O⊕hi,2

S
// . . .

representing the given map E → Ei. Since s ∈ Z we see that the trivializing
section of Ls pulls back to a trivializing section of Li,s = OXi,s . Thus ai ⊗ κ(s) is
an isomorphism, hence after shrinking S we see that ai is an isomorphism. Finally,
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we use the hypothesis that H1(Xs,O) →
⊕

i=1,...,nH
1(Xi,s,O) is injective, to see

that there exists a h1 × h1 minor of the matrix defining ⊕bi which maps to a
nonzero element in κ(s). Hence after shrinking S we may assume that (b1, . . . , bn) :
Oh1
S →

⊕
i=1,...,nO

hi,1
S is injective. However, since Li = OXi

we see that di = 0
for i = 1, . . . n. It follows that d = 0 because (b1, . . . , bn) ◦ d = (⊕di) ◦ (a1, . . . , an).
In this way we see that the trivializing section of Ls lifts to a section of L over X.
A straightforward topological argument (omitted) shows that this means that L is
trivial after possibly shrinking S a bit further. □

Lemma 33.7.0BF3 Let f : X → S and g : Y → S be morphisms of schemes satisfying
the hypotheses of Lemma 33.1. Let σ : S → X and τ : S → Y be sections of f and
g. Let s ∈ S. Let L be an invertible sheaf on X×S Y . If (1× τ)∗L on X, (σ×1)∗L
on Y , and L|(X×SY )s

are trivial, then there is an open neighbourhood U of s such
that L is trivial over (X ×S Y )U .

Proof. By Künneth (Varieties, Lemma 29.1) the map
H1(Xs ×Spec(κ(s)) Ys,O)→ H1(Xs,O)⊕H1(Ys,O)

is injective. Thus we may apply Lemma 33.6 to the two morphisms
1× τ : X → X ×S Y and σ × 1 : Y → X ×S Y

to conclude. □

Theorem 33.8 (Theorem of the cube).0BF4 Let S be a scheme. Let X, Y , and Z
be schemes over S. Let x : S → X and y : S → Y be sections of the structure
morphisms. Let L be an invertible module on X ×S Y ×S Z. If

(1) X → S and Y → S are flat, proper morphisms of finite presentation with
geometrically integral fibres,

(2) the pullbacks of L by x× idY × idZ and idX×y× idZ are trivial over Y ×SZ
and X ×S Z,

(3) there is a point z ∈ Z such that L restricted to X ×S Y ×S z is trivial, and
(4) Z is connected,

then L is trivial.

An often used special case is the following. Let k be a field. Let X,Y, Z be varieties
with k-rational points x, y, z. Let L be an invertible module on X × Y × Z. If

(1) L is trivial over x× Y × Z, X × y × Z, and X × Y × z, and
(2) X and Y are geometrically integral and proper over k,

then L is trivial.

Proof. Observe that the morphism X ×S Y → S is a flat, proper morphism of
finite presentation whose geometrically integral fibres (see Varieties, Lemmas 9.2,
8.4, and 6.7 for the statement about the fibres). By Derived Categories of Schemes,
Lemma 32.6 we see that the pushforward of the structure sheaf by X → S, Y → S,
or X ×S Y → S is the structure sheaf of S and the same remains true after any
base change. Thus we may apply Lemma 33.1 to the morphism

p : X ×S Y ×S Z −→ Z

and the invertible module L to get a “universal” locally closed subscheme Z ′ ⊂ Z
such that L|X×SY×SZ′ is the pullback of an invertible module N on Z ′. The
existence of z shows that Z ′ is nonempty. By Lemma 33.4 we see that Z ′ ⊂ Z is
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a closed subscheme. Let z′ ∈ Z ′ be a point. Observe that we may write p as the
product morphism

(X ×S Z)×Z (Y ×S Z) −→ Z

Hence we may apply Lemma 33.7 to the morphism p, the point z′, and the sections
σ : Z → X ×S Z and τ : Z → Y ×S Z given by x and y. We conclude that Z ′ is
open. Hence Z ′ = Z and L = p∗N for some invertible module N on Z. Pulling
back via x × y × idZ : Z → X ×S Y ×S Z we obtain on the one hand N and on
the other hand we obtain the trivial invertible module by assumption (2). Thus
N = OZ and the proof is complete. □

34. Limit arguments

05FA Some lemmas involving limits of schemes, and Noetherian approximation. We stick
mostly to the affine case. Some of these lemmas are special cases of lemmas in the
chapter on limits.

Lemma 34.1.05FB Let f : X → S be a morphism of affine schemes, which is of finite
presentation. Then there exists a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 Soo

such that
(1) X0, S0 are affine schemes,
(2) S0 of finite type over Z,
(3) f0 is of finite type.

Proof. Write S = Spec(A) and X = Spec(B). As f is of finite presentation we
see that B is of finite presentation as an A-algebra, see Morphisms, Lemma 21.2.
Thus the lemma follows from Algebra, Lemma 127.18. □

Lemma 34.2.05FC Let f : X → S be a morphism of affine schemes, which is of
finite presentation. Let F be a quasi-coherent OX-module of finite presentation.
Then there exists a diagram as in Lemma 34.1 such that there exists a coherent
OX0-module F0 with g∗F0 = F .

Proof. Write S = Spec(A), X = Spec(B), and F = M̃ . As f is of finite presenta-
tion we see that B is of finite presentation as an A-algebra, see Morphisms, Lemma
21.2. As F is of finite presentation over OX we see that M is of finite presentation
as a B-module, see Properties, Lemma 16.2. Thus the lemma follows from Algebra,
Lemma 127.18. □

Lemma 34.3.05FD Let f : X → S be a morphism of affine schemes, which is of finite
presentation. Let F be a quasi-coherent OX-module of finite presentation and flat
over S. Then we may choose a diagram as in Lemma 34.2 and sheaf F0 such that
in addition F0 is flat over S0.

Proof. Write S = Spec(A), X = Spec(B), and F = M̃ . As f is of finite presenta-
tion we see that B is of finite presentation as an A-algebra, see Morphisms, Lemma
21.2. As F is of finite presentation over OX we see that M is of finite presentation
as a B-module, see Properties, Lemma 16.2. As F is flat over S we see that M is
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flat over A, see Morphisms, Lemma 25.2. Thus the lemma follows from Algebra,
Lemma 168.1. □

Lemma 34.4.05FE Let f : X → S be a morphism of affine schemes, which is of finite
presentation and flat. Then there exists a diagram as in Lemma 34.1 such that in
addition f0 is flat.

Proof. This is a special case of Lemma 34.3. □

Lemma 34.5.05FF Let f : X → S be a morphism of affine schemes, which is smooth.
Then there exists a diagram as in Lemma 34.1 such that in addition f0 is smooth.

Proof. Write S = Spec(A), X = Spec(B), and as f is smooth we see that B is
smooth as an A-algebra, see Morphisms, Lemma 34.2. Hence the lemma follows
from Algebra, Lemma 138.14. □

Lemma 34.6.05FG Let f : X → S be a morphism of affine schemes, which is of finite
presentation with geometrically reduced fibres. Then there exists a diagram as in
Lemma 34.1 such that in addition f0 has geometrically reduced fibres.

Proof. Apply Lemma 34.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over
Z. By Lemma 26.5 the set E ⊂ S0 of points where the fibre of f0 is geometrically
reduced is a constructible subset. By Lemma 26.2 we have h(S) ⊂ E. Write
S0 = Spec(A0) and S = Spec(A). Write A = colimiAi as a direct colimit of
finite type A0-algebras. By Limits, Lemma 4.10 we see that Spec(Ai) → S0 has
image contained in E for some i. After replacing S0 by Spec(Ai) and X0 by
X0 ×S0 Spec(Ai) we see that all fibres of f0 are geometrically reduced. □

Lemma 34.7.05FH Let f : X → S be a morphism of affine schemes, which is of finite
presentation with geometrically irreducible fibres. Then there exists a diagram as
in Lemma 34.1 such that in addition f0 has geometrically irreducible fibres.

Proof. Apply Lemma 34.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over
Z. By Lemma 27.7 the set E ⊂ S0 of points where the fibre of f0 is geometrically
irreducible is a constructible subset. By Lemma 27.2 we have h(S) ⊂ E. Write
S0 = Spec(A0) and S = Spec(A). Write A = colimiAi as a direct colimit of
finite type A0-algebras. By Limits, Lemma 4.10 we see that Spec(Ai) → S0 has
image contained in E for some i. After replacing S0 by Spec(Ai) and X0 by
X0 ×S0 Spec(Ai) we see that all fibres of f0 are geometrically irreducible. □

https://stacks.math.columbia.edu/tag/05FE
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Lemma 34.8.05FI Let f : X → S be a morphism of affine schemes, which is of finite
presentation with geometrically connected fibres. Then there exists a diagram as in
Lemma 34.1 such that in addition f0 has geometrically connected fibres.

Proof. Apply Lemma 34.1 to get a cartesian diagram
X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over
Z. By Lemma 28.6 the set E ⊂ S0 of points where the fibre of f0 is geometrically
connected is a constructible subset. By Lemma 28.2 we have h(S) ⊂ E. Write
S0 = Spec(A0) and S = Spec(A). Write A = colimiAi as a direct colimit of
finite type A0-algebras. By Limits, Lemma 4.10 we see that Spec(Ai) → S0 has
image contained in E for some i. After replacing S0 by Spec(Ai) and X0 by
X0 ×S0 Spec(Ai) we see that all fibres of f0 are geometrically connected. □

Lemma 34.9.05FJ Let d ≥ 0 be an integer. Let f : X → S be a morphism of affine
schemes, which is of finite presentation all of whose fibres have dimension d. Then
there exists a diagram as in Lemma 34.1 such that in addition all fibres of f0 have
dimension d.

Proof. Apply Lemma 34.1 to get a cartesian diagram
X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over
Z. By Lemma 30.3 the set E ⊂ S0 of points where the fibre of f0 has dimension d
is a constructible subset. By Lemma 30.2 we have h(S) ⊂ E. Write S0 = Spec(A0)
and S = Spec(A). Write A = colimiAi as a direct colimit of finite type A0-algebras.
By Limits, Lemma 4.10 we see that Spec(Ai) → S0 has image contained in E for
some i. After replacing S0 by Spec(Ai) and X0 by X0×S0 Spec(Ai) we see that all
fibres of f0 have dimension d. □

Lemma 34.10.05FK Let f : X → S be a morphism of affine schemes, which is standard
syntomic (see Morphisms, Definition 30.1). Then there exists a diagram as in
Lemma 34.1 such that in addition f0 is standard syntomic.

Proof. This lemma is a copy of Algebra, Lemma 136.11. □

Lemma 34.11.05FL (Noetherian approximation and combining properties.) Let P ,
Q be properties of morphisms of schemes which are stable under base change. Let
f : X → S be a morphism of finite presentation of affine schemes. Assume we can
find cartesian diagrams

X1

f1

��

Xoo

f

��
S1 Soo

and

X2

f2

��

Xoo

f

��
S2 Soo

https://stacks.math.columbia.edu/tag/05FI
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of affine schemes, with S1, S2 of finite type over Z and f1, f2 of finite type such that
f1 has property P and f2 has property Q. Then we can find a cartesian diagram

X0

f0

��

Xoo

f

��
S0 Soo

of affine schemes with S0 of finite type over Z and f0 of finite type such that f0 has
both property P and property Q.

Proof. The given pair of diagrams correspond to cocartesian diagrams of rings

B1 // B

A1

OO

// A

OO

and

B2 // B

A2

OO

// A

OO

Let A0 ⊂ A be a finite type Z-subalgebra of A containing the image of both A1 → A
and A2 → A. Such a subalgebra exists because by assumption both A1 and A2 are
of finite type over Z. Note that the rings B0,1 = B1 ⊗A1 A0 and B0,2 = B2 ⊗A2 A0
are finite type A0-algebras with the property that B0,1⊗A0 A

∼= B ∼= B0,2⊗A0 A as
A-algebras. As A is the directed colimit of its finite type A0-subalgebras, by Limits,
Lemma 10.1 we may assume after enlarging A0 that there exists an isomorphism
B0,1 ∼= B0,2 as A0-algebras. Since properties P and Q are assumed stable under
base change we conclude that setting S0 = Spec(A0) and

X0 = X1 ×S1 S0 = Spec(B0,1) ∼= Spec(B0,2) = X2 ×S2 S0

works. □

35. Étale neighbourhoods

02LD It turns out that some properties of morphisms are easier to study after doing an
étale base change. It is convenient to introduce the following terminology.

Definition 35.1.02LE Let S be a scheme. Let s ∈ S be a point.
(1) An étale neighbourhood of (S, s) is a pair (U, u) together with an étale

morphism of schemes φ : U → S such that φ(u) = s.
(2) A morphism of étale neighbourhoods f : (V, v) → (U, u) of (S, s) is simply

a morphism of S-schemes f : V → U such that f(v) = u.
(3) An elementary étale neighbourhood is an étale neighbourhood φ : (U, u)→

(S, s) such that κ(s) = κ(u).

The notion of an elementary étale neighbourhood has many different names in the
literature, for example these are sometimes called “étale neighbourhoods” ([Mil80,
Page 36] or “strongly étale” ([KPR75, Page 108]). Here we follow the convention
of the paper [GR71] by calling them elementary étale neighbourhoods.
If f : (V, v) → (U, u) is a morphism of étale neighbourhoods, then f is auto-
matically étale, see Morphisms, Lemma 36.18. Hence it turns (V, v) into an étale
neighbourhood of (U, u). Of course, since the composition of étale morphisms is
étale (Morphisms, Lemma 36.3) we see that conversely any étale neighbourhood
(V, v) of (U, u) is an étale neighbourhood of (S, s) as well. We also remark that

https://stacks.math.columbia.edu/tag/02LE
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if U ⊂ S is an open neighbourhood of s, then (U, s) → (S, s) is an étale neigh-
bourhood. This follows from the fact that an open immersion is étale (Morphisms,
Lemma 36.9). We will use these remarks without further mention throughout this
section.
Note that κ(u)/κ(s) is a finite separable extension if (U, u) → (S, s) is an étale
neighbourhood, see Morphisms, Lemma 36.15.

Lemma 35.2.02LF Let S be a scheme. Let s ∈ S. Let k/κ(s) be a finite separable field
extension. Then there exists an étale neighbourhood (U, u) → (S, s) such that the
field extension κ(u)/κ(s) is isomorphic to k/κ(s).

Proof. We may assume S is affine. In this case the lemma follows from Algebra,
Lemma 144.3. □

Lemma 35.3.057A Let S be a scheme, and let s be a point of S. The category of étale
neighborhoods has the following properties:

(1) Let (Ui, ui)i=1,2 be two étale neighborhoods of s in S. Then there exists a
third étale neighborhood (U, u) and morphisms (U, u)→ (Ui, ui), i = 1, 2.

(2) Let h1, h2 : (U, u) → (U ′, u′) be two morphisms between étale neighbor-
hoods of s. Assume h1, h2 induce the same map κ(u′) → κ(u) of residue
fields. Then there exist an étale neighborhood (U ′′, u′′) and a morphism h :
(U ′′, u′′)→ (U, u) which equalizes h1 and h2, i.e., such that h1 ◦h = h2 ◦h.

Proof. For part (1), consider the fibre product U = U1 ×S U2. It is étale over
both U1 and U2 because étale morphisms are preserved under base change, see
Morphisms, Lemma 36.4. There is a point of U mapping to both u1 and u2 for
example by the description of points of a fibre product in Schemes, Lemma 17.5.
For part (2), define U ′′ as the fibre product

U ′′ //

��

U

(h1,h2)
��

U ′ ∆ // U ′ ×S U ′.

Since h1 and h2 induce the same map of residue fields κ(u′)→ κ(u) there exists a
point u′′ ∈ U ′′ lying over u′ with κ(u′′) = κ(u′). In particular U ′′ ̸= ∅. Moreover,
since U ′ is étale over S, so is the fibre product U ′ ×S U ′ (see Morphisms, Lemmas
36.4 and 36.3). Hence the vertical arrow (h1, h2) is étale by Morphisms, Lemma
36.18. Therefore U ′′ is étale over U ′ by base change, and hence also étale over S
(because compositions of étale morphisms are étale). Thus (U ′′, u′′) is a solution
to the problem. □

Lemma 35.4.057B Let S be a scheme, and let s be a point of S. The category of ele-
mentary étale neighborhoods of (S, s) is cofiltered (see Categories, Definition 20.1).

Proof. This is immediate from the definitions and Lemma 35.3. □

Lemma 35.5.05KS Let S be a scheme. Let s ∈ S. Then we have

OhS,s = colim(U,u)O(U)
where the colimit is over the filtered category which is opposite to the category of
elementary étale neighbourhoods (U, u) of (S, s).

https://stacks.math.columbia.edu/tag/02LF
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Proof. Let Spec(A) ⊂ S be an affine neighbourhood of s. Let p ⊂ A be the
prime ideal corresponding to s. With these choices we have canonical isomorphisms
OS,s = Ap and κ(s) = κ(p). A cofinal system of elementary étale neighbourhoods
is given by those elementary étale neighbourhoods (U, u) such that U is affine and
U → S factors through Spec(A). In other words, we see that the right hand side
is equal to colim(B,q) B where the colimit is over étale A-algebras B endowed with
a prime q lying over p with κ(p) = κ(q). Thus the lemma follows from Algebra,
Lemma 155.7. □

We can lift étale neighbourhoods of points on fibres to the total space.
Lemma 35.6.0CAS Let X → S be a morphism of schemes. Let x ∈ X with image
s ∈ S. Let (V, v) → (Xs, x) be an étale neighbourhood. Then there exists an étale
neighbourhood (U, u) → (X,x) such that there exists a morphism (Us, u) → (V, v)
of étale neighbourhoods of (Xs, x) which is an open immersion.
Proof. We may assume X, V , and S affine. Say the morphism X → S is given by
A→ B the point x by a prime q ⊂ B, the point s by p = A∩ q, and the morphism
V → Xs by B ⊗A κ(p) → C. Since κ(p) is a localization of A/p there exists an
f ∈ A, f ̸∈ p and an étale ring map B ⊗A (A/p)f → D such that

C = (B ⊗A κ(p))⊗B⊗A(A/p)f
D

See Algebra, Lemma 143.3 part (9). After replacing A by Af and B by Bf we may
assume D is étale over B ⊗A A/p = B/pB. Then we can apply Algebra, Lemma
143.10. This proves the lemma. □

36. Étale neighbourhoods and branches

0CB2 The number of (geometric) branches of a scheme at a point was defined in Proper-
ties, Section 15. In Varieties, Section 40 we related this to fibres of the normalization
morphism. In this section we discuss a characterization of this number in terms of
étale neighbourhoods.
Lemma 36.1.0CB3 Let R = colimRi be colimit of a directed system of rings whose
transition maps are faithfully flat. Then the number of minimal primes of R taken
as an element of {0, 1, 2, . . . ,∞} is the supremum of the numbers of minimal primes
of the Ri.
Proof. If A → B is a flat ring map, then Spec(B) → Spec(A) maps minimal
primes to minimal primes by going down (Algebra, Lemma 39.19). If A → B
is faithfully flat, then every minimal prime is the image of a minimal prime (by
Algebra, Lemma 39.16 and 30.7). Hence the number of minimal primes of Ri
is ≥ the number of minimal primes of Ri′ if i ≤ i′. By Algebra, Lemma 39.20
each of the maps Ri → R is faithfully flat and we also see that the number of
minimal primes of R is ≥ the number of minimal primes of Ri. Finally, suppose
that q1, . . . , qn are pairwise distinct minimal primes of R. Then we can find an
i such that Ri ∩ q1, . . . , Ri ∩ qn are pairwise distinct (as sets and hence as prime
ideals). This implies the lemma. □

Lemma 36.2.0CB4 Let X be a scheme and x ∈ X a point. Then
(1) the number of branches of X at x is equal to the supremum of the number of

irreducible components of U passing through u taken over elementary étale
neighbourhoods (U, u)→ (X,x),

https://stacks.math.columbia.edu/tag/0CAS
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(2) the number of geometric branches of X at x is equal to the supremum of the
number of irreducible components of U passing through u taken over étale
neighbourhoods (U, u)→ (X,x),

(3) X is unibranch at x if and only if for every elementary étale neighbourhood
(U, u) → (X,x) there is exactly one irreducible component of U passing
through u, and

(4) X is geometrically unibranch at x if and only if for every étale neighbour-
hood (U, u)→ (X,x) there is exactly one irreducible component of U passing
through u.

Proof. Parts (3) and (4) follow from parts (1) and (2) via Properties, Lemma 15.6.
Proof of (1). Let Spec(A) be an affine open neighbourhood of x and let p ⊂ A be
the prime ideal corresponding to x. We may replace X by Spec(A) and it suffices
to consider affine elementary étale neighbourhoods (U, u) in the supremum as they
form a cofinal subsystem. Recall that the henselization Ahp is the colimit of the
rings Bq over the category of pairs (B, q) where B is an étale A-algebra and q is
a prime lying over p with κ(q) = κ(p), see Algebra, Lemma 155.7. These pairs
(B, q) correspond exactly to the affine elementary étale neighbourhoods (U, u) by
the correspondence between rings and affine schemes. Observe that irreducible
components of Spec(B) passing through q are exactly the minimal prime ideals of
Bq. The number of minimal primes of Ahp is the number of branches of X at x
by Properties, Definition 15.4. Observe that the transition maps Bq → B′

q′ in the
system are all flat. Since a flat local ring map is faithfully flat (Algebra, Lemma
39.17) we see that the lemma follows from Lemma 36.1.
Proof of (2). The proof is the same as the proof of (1), except that we use Algebra,
Lemma 155.11. There is a tiny difference: given a separable algebraic closure
κsep of κ(x) for every étale neighbourhood (U, u) we can choose a κ(x)-embedding
ϕ : κ(u) → κsep because κ(u)/κ(x) is finite separable (Morphisms, Lemma 36.15).
Hence we can look at the supremum over all triples (U, u, ϕ) where (U, u)→ (X,x)
is an affine étale neighbourhood and ϕ : κ(u) → κsep is a κ(x)-embedding. These
triples correspond exactly to the triples in Algebra, Lemma 155.11 and the rest of
the proof is exactly the same. □

We will need a relative variant of the lemma above.

Lemma 36.3.0CB5 Let X → S be a morphism of schemes and x ∈ X a point with
image s. Then

(1) the number of branches of the fibre Xs at x is equal to the supremum of the
number of irreducible components of the fibre Us passing through u taken
over elementary étale neighbourhoods (U, u)→ (X,x),

(2) the number of geometric branches of the fibre Xs at x is equal to the supre-
mum of the number of irreducible components of the fibre Us passing through
u taken over étale neighbourhoods (U, u)→ (X,x),

(3) the fibre Xs is unibranch at x if and only if for every elementary étale
neighbourhood (U, u) → (X,x) there is exactly one irreducible component
of the fibre Us passing through u, and

(4) X is geometrically unibranch at x if and only if for every étale neighbour-
hood (U, u)→ (X,x) there is exactly one irreducible component of Us pass-
ing through u.

https://stacks.math.columbia.edu/tag/0CB5
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Proof. Combine Lemmas 36.2 and 35.6. □

Lemma 36.4.0DQ2 Let X → S be a smooth morphism of schemes. Let x ∈ X with
image s ∈ S. Then

(1) The number of geometric branches of X at x is equal to the number of
geometric branches of S at s.

(2) If κ(x)/κ(s) is a purely inseparable6 extension of fields, then number of
branches of X at x is equal to the number of branches of S at s.

Proof. Follows immediately from More on Algebra, Lemma 106.8 and the defini-
tions. □

37. Unramified and étale morphisms

0GS7 Sometimes unramified morphisms are automatically étale.
Lemma 37.1.0GS8 Let f : X → Y be a morphism of schemes. Let x ∈ X with image
y ∈ Y . Assume

(1) Y is integral and geometrically unibranch at y,
(2) f is locally of finite type,
(3) there is a specialization x′ ⇝ x such that f(x′) is the generic point of Y ,
(4) f is unramified at x.

Then f is étale at x.
Proof. We may replace X and Y by suitable affine open neighbourhoods of x and
y. Then Y is the spectrum of a domain A and X is the spectrum of a finite type A-
algebra B. Let q ⊂ B be the prime ideal corresponding to x and p ⊂ A the prime
ideal corresponding to y. The local ring Ap = OY,y is geometrically unibranch.
The ring map A→ B is unramified at q. Also, the point x′ in (3) corresponds to a
prime ideal q′ ⊂ q such that A ∩ q′ = (0). It follows that Ap → Bq is injective. We
conclude by More on Algebra, Lemma 107.2. □

Lemma 37.2.0GS9 [Gro71, Expose I,
Corollary 9.11]

Let f : X → Y be a morphism of schemes. Assume
(1) Y is integral and geometrically unibranch,
(2) at least one irreducible component of X dominates Y ,
(3) f is unramified, and
(4) X is connected.

Then f is étale and X is irreducible.
Proof. Let X ′ ⊂ X be the irreducible component which dominates Y . This means
that the generic point of X ′ maps to the generic point of Y (see for example
Morphisms, Lemma 8.6). By Lemma 37.1 we see that f is étale at every point of
X ′. In particular, the open subscheme U ⊂ X where f is étale contains X ′. Note
that every quasi-compact open of U has finitely many irreducible components,
see Descent, Lemma 16.3. On the other hand since Y is geometrically unibranch
and U is étale over Y , the scheme U is geometrically unibranch. In particular,
through every point of U there passes at most one irreducible component. A simple
topological argument now shows that X ′ ⊂ U is both open and closed. Then of
course X ′ is open and closed in X and by connectedness we find X = U = X ′ as
desired. □

6In fact, it would suffice if κ(x) is geometrically irreducible over κ(s). If we ever need this we
will add a detailed proof.
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Lemma 37.3.0GSA Let f : X → Y and g : Y → Z be morphisms of schemes. Let
x ∈ X with image y ∈ Y . Assume

(1) Y is integral and geometrically unibranch at y,
(2) f is locally of finite type,
(3) g ◦ f is étale at x,
(4) there is a specialization x′ ⇝ x such that f(x′) is the generic point of Y .

Then f is étale at x and g is étale at y.

Proof. The morphism f is unramified at x by Morphisms, Lemmas 35.16 and 36.5.
Hence f is étale at x by Lemma 37.1. Then by étale descent we see that g is étale
at y, see for example Descent, Lemma 14.4. □

Lemma 37.4.0GSB Let f : X → Y and g : Y → Z be morphisms of schemes. Assume
(1) Y is integral and geometrically unibranch,
(2) f is locally of finite type,
(3) g ◦ f is étale,
(4) every irreducible component of X dominates Y .

Then f is étale and g is étale at every point in the image of f .

Proof. Immediate from the pointwise version Lemma 37.3. □

38. Slicing smooth morphisms

055S In this section we explain a result that roughly states that smooth coverings of a
scheme S can be refined by étale coverings. The technique to prove this relies on a
slicing argument.

Lemma 38.1.057C Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Let h ∈ mx ⊂ OX,x. Assume

(1) f is smooth at x, and
(2) the image dh of dh in

ΩXs/s,x ⊗OXs,x
κ(x) = ΩX/S,x ⊗OX,x

κ(x)

is nonzero.
Then there exists an affine open neighbourhood U ⊂ X of x such that h comes from
h ∈ Γ(U,OU ) and such that D = V (h) is an effective Cartier divisor in U with
x ∈ D and D → S smooth.

Proof. As f is smooth at x we may assume, after replacing X by an open neigh-
bourhood of x that f is smooth. In particular we see that f is flat and locally of finite
presentation. By Lemma 23.1 we already know there exists an open neighbourhood
U ⊂ X of x such that h comes from h ∈ Γ(U,OU ) and such that D = V (h) is an
effective Cartier divisor in U with x ∈ D and D → S flat and of finite presentation.
By Morphisms, Lemma 32.15 we have a short exact sequence

CD/U → i∗ΩU/S → ΩD/S → 0

where i : D → U is the closed immersion and CD/U is the conormal sheaf of D
in U . As D is an effective Cartier divisor cut out by h ∈ Γ(U,OU ) we see that
CD/U = h · OS . Since U → S is smooth the sheaf ΩU/S is finite locally free, hence
its pullback i∗ΩU/S is finite locally free also. The first arrow of the sequence maps
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the free generator h to the section dh|D of i∗ΩU/S which has nonzero value in the
fibre ΩU/S,x ⊗ κ(x) by assumption. By right exactness of ⊗κ(x) we conclude that

dimκ(x)
(
ΩD/S,x ⊗ κ(x)

)
= dimκ(x)

(
ΩU/S,x ⊗ κ(x)

)
− 1.

By Morphisms, Lemma 34.14 we see that ΩU/S,x⊗κ(x) can be generated by at most
dimx(Us) elements. By the displayed formula we see that ΩD/S,x ⊗ κ(x) can be
generated by at most dimx(Us)− 1 elements. Note that dimx(Ds) = dimx(Us)− 1
for example because dim(ODs,x) = dim(OUs,x)− 1 by Algebra, Lemma 60.13 (also
Ds ⊂ Us is effective Cartier, see Divisors, Lemma 18.1) and then using Morphisms,
Lemma 28.1. Thus we conclude that ΩD/S,x ⊗ κ(x) can be generated by at most
dimx(Ds) elements and we conclude that D → S is smooth at x by Morphisms,
Lemma 34.14 again. After shrinking U we get that D → S is smooth and we
win. □

Lemma 38.2.057D Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is smooth at x, and
(2) the map

ΩXs/s,x ⊗OXs,x
κ(x) −→ Ωκ(x)/κ(s)

has a nonzero kernel.
Then there exists an affine open neighbourhood U ⊂ X of x and an effective Cartier
divisor D ⊂ U containing x such that D → S is smooth.

Proof. Write k = κ(s) and R = OXs,x. Denote m the maximal ideal of R and
κ = R/m so that κ = κ(x). As formation of modules of differentials commutes with
localization (see Algebra, Lemma 131.8) we have ΩXs/s,x = ΩR/k. By Algebra,
Lemma 131.9 there is an exact sequence

m/m2 d−→ ΩR/k ⊗R κ→ Ωκ/k → 0.

Hence if (2) holds, there exists an element h ∈ m such that dh is nonzero. Choose
a lift h ∈ OX,x of h and apply Lemma 38.1. □

Remark 38.3.057E The second condition in Lemma 38.2 is necessary even if x is a
closed point of a positive dimensional fibre. An example is the following: Let k be
a field of characteristic p > 0 which is imperfect. Let a ∈ k be an element which is
not a pth power. Let m = (x, yp − a) ⊂ k[x, y]. This corresponds to a closed point
w of X = A2

k. Set S = A1
k and let f : X → S be the morphism corresponding to

k[x]→ k[x, y]. Then there does not exist any commutative diagram

S′
h

//

g
��

X

f��
S

with g étale and w in the image of h. This is clear as the residue field extension
κ(w)/κ(f(w)) is purely inseparable, but for any s′ ∈ S′ with g(s′) = f(w) the
extension κ(s′)/κ(f(w)) would be separable.

If you assume the residue field extension is separable then the phenomenon of
Remark 38.3 does not happen. Here is the precise result.
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Lemma 38.4.057F Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is smooth at x,
(2) the residue field extension κ(x)/κ(s) is separable, and
(3) x is not a generic point of Xs.

Then there exists an affine open neighbourhood U ⊂ X of x and an effective Cartier
divisor D ⊂ U containing x such that D → S is smooth.

Proof. Write k = κ(s) and R = OXs,x. Denote m the maximal ideal of R and
κ = R/m so that κ = κ(x). As formation of modules of differentials commutes with
localization (see Algebra, Lemma 131.8) we have ΩXs/s,x = ΩR/k. By assumption
(2) and Algebra, Lemma 140.4 the map

d : m/m2 −→ ΩR/k ⊗R κ(m)

is injective. Assumption (3) implies that m/m2 ̸= 0. Thus there exists an element
h ∈ m such that dh is nonzero. Choose a lift h ∈ OX,x of h and apply Lemma
38.1. □

The subscheme Z constructed in the following lemma is really a complete intersec-
tion in an affine open neighbourhood of x. If we ever need this we will explicitly
formulate a separate lemma stating this fact.

Lemma 38.5.057G Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is smooth at x, and
(2) x is a closed point of Xs and κ(s) ⊂ κ(x) is separable.

Then there exists an immersion Z → X containing x such that
(1) Z → S is étale, and
(2) Zs = {x} set theoretically.

Proof. We may and do replace S by an affine open neighbourhood of s. We
may and do replace X by an affine open neighbourhood of x such that X → S is
smooth. We will prove the lemma for smooth morphisms of affines by induction on
d = dimx(Xs).

The case d = 0. In this case we show that we may take Z to be an open neigh-
bourhood of x. Namely, if d = 0, then X → S is quasi-finite at x, see Morphisms,
Lemma 29.5. Hence there exists an affine open neighbourhood U ⊂ X such that
U → S is quasi-finite, see Morphisms, Lemma 56.2. Thus after replacing X by U
we see that X is quasi-finite and smooth over S, hence smooth of relative dimen-
sion 0 over S, hence étale over S. Moreover, the fibre Xs is a finite discrete set.
Hence after replacing X by a further affine open neighbourhood of X we see that
f−1({s}) = {x} (because the topology on Xs is induced from the topology on X,
see Schemes, Lemma 18.5). This proves the lemma in this case.

Next, assume d > 0. Note that because x is a closed point of its fibre the extension
κ(x)/κ(s) is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma 20.3).
Thus we see Ωκ(x)/κ(s) = 0 as this holds for algebraic separable field extensions.

https://stacks.math.columbia.edu/tag/057F
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Thus we may apply Lemma 38.2 to find a diagram

D //

''

U //

  

X

��
S

with x ∈ D. Note that dimx(Ds) = dimx(Xs)−1 for example because dim(ODs,x) =
dim(OXs,x)−1 by Algebra, Lemma 60.13 (also Ds ⊂ Xs is effective Cartier, see Di-
visors, Lemma 18.1) and then using Morphisms, Lemma 28.1. Thus the morphism
D → S is smooth with dimx(Ds) = dimx(Xs)−1 = d−1. By induction hypothesis
we can find an immersion Z → D as desired, which finishes the proof. □

Lemma 38.6.055U Let f : X → S be a smooth morphism of schemes. Let s ∈ S be a
point in the image of f . Then there exists an étale neighbourhood (S′, s′) → (S, s)
and a S-morphism S′ → X.

First proof of Lemma 38.6. By assumption Xs ̸= ∅. By Varieties, Lemma 25.6
there exists a closed point x ∈ Xs such that κ(x) is a finite separable field extension
of κ(s). Hence by Lemma 38.5 there exists an immersion Z → X such that Z → S
is étale and such that x ∈ Z. Take (S′, s′) = (Z, x). □

Second proof of Lemma 38.6. Pick a point x ∈ X with f(x) = s. Choose a
diagram

X

��

Uoo

��

π
// Ad

V

~~
S Voo

with π étale, x ∈ U and V = Spec(R) affine, see Morphisms, Lemma 36.20. In
particular s ∈ V . The morphism π : U → Ad

V is open, see Morphisms, Lemma
36.13. Thus W = π(U) ∩Ad

s is a nonempty open subset of Ad
s . Let w ∈ W be a

point with κ(s) ⊂ κ(w) finite separable, see Varieties, Lemma 25.5. By Algebra,
Lemma 114.1 there exist d elements f1, . . . , fd ∈ κ(s)[x1, . . . , xd] which generate
the maximal ideal corresponding to w in κ(s)[x1, . . . , xd]. After replacing R by
a principal localization we may assume there are f1, . . . , fd ∈ R[x1, . . . , xd] which
map to f1, . . . , fd ∈ κ(s)[x1, . . . , xd]. Consider the R-algebra

R′ = R[x1, . . . , xd]/(f1, . . . , fd)
and set S′ = Spec(R′). By construction we have a closed immersion j : S′ → Ad

V

over V . By construction the fibre of S′ → V over s is a single point s′ whose residue
field is finite separable over κ(s). Let q′ ⊂ R′ be the corresponding prime. By
Algebra, Lemma 136.10 we see that (R′)g is a relative global complete intersection
over R for some g ∈ R′, g ̸∈ q. Thus S′ → V is flat and of finite presentation in
a neighbourhood of s′, see Algebra, Lemma 136.13. By construction the scheme
theoretic fibre of S′ → V over s is Spec(κ(s′)). Hence it follows from Morphisms,
Lemma 36.15 that S′ → S is étale at s′. Set

S′′ = U ×π,Ad
V
,j S

′.

By construction there exists a point s′′ ∈ S′′ which maps to s′ via the projection
p : S′′ → S′. Note that p is étale as the base change of the étale morphism π,
see Morphisms, Lemma 36.4. Choose a small affine neighbourhood S′′′ ⊂ S′′ of s′′

https://stacks.math.columbia.edu/tag/055U
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which maps into the nonempty open neighbourhood of s′ ∈ S′ where the morphism
S′ → S is étale. Then the étale neighbourhood (S′′′, s′′) → (S, s) is a solution to
the problem posed by the lemma. □

The following lemma shows that sheaves for the smooth topology are the same
thing as sheaves for the étale topology.

Lemma 38.7.055V Let S be a scheme. Let U = {Si → S}i∈I be a smooth covering of S,
see Topologies, Definition 5.1. Then there exists an étale covering V = {Tj → S}j∈J
(see Topologies, Definition 4.1) which refines (see Sites, Definition 8.1) U .

Proof. For every s ∈ S there exists an i ∈ I such that s is in the image of Si → S.
By Lemma 38.6 we can find an étale morphism gs : Ts → S such that s ∈ gs(Ts)
and such that gs factors through Si → S. Hence {Ts → S} is an étale covering of
S that refines U . □

Lemma 38.8.0EY4 Let f : X → S be a smooth morphism of schemes. Then there
exists an étale covering {Ui → X}i∈I such that Ui → S factors as Ui → Vi → S
where Vi → S is étale and Ui → Vi is a smooth morphism of affine schemes, which
has a section, and has geometrically connected fibres.

Proof. Let s ∈ S. By Varieties, Lemma 25.6 the set of closed points x ∈ Xs such
that κ(x)/κ(s) is separable is dense in Xs. Thus it suffices to construct an étale
morphism U → X with x in the image such that U → S factors in the manner
described in the lemma. To do this, choose an immersion Z → X passing through
x such that Z → S is étale (Lemma 38.5). After replacing S by Z and X by Z×SX
we see that we may assume X → S has a section σ : S → X with σ(s) = x. Then
we can first replace S by an affine open neighbourhood of s and next replace X by
an affine open neighbourhood of x. Then finally, we consider the subset X0 ⊂ X
of Section 29. By Lemmas 29.6 and 29.4 this is a retrocompact open subscheme
containing σ such that the fibres X0 → S are geometrically connected. If X0 is
not affine, then we choose an affine open U ⊂ X0 containing x. Since X0 → S is
smooth, the image of U is open. Choose an affine open neighbourhood V ⊂ S of
s contained in σ−1(U) and in the image of U → S. Finally, the reader sees that
U ∩ f−1(V ) → V has all the desired properties. For example U ∩ f−1(V ) is equal
to U ×S V is affine as a fibre product of affine schemes. Also, the geometric fibres
of U ∩ f−1(V ) → V are nonempty open subschemes of the irreducible fibres of
X0 → S and hence connected. Some details omitted. □

39. Étale neighbourhoods and Artin approximation

0CAT In this section we prove results of the form: if two pointed schemes have isomorphic
complete local rings, then they have isomorphic étale neighbourhoods. We will rely
on Popescu’s theorem, see Smoothing Ring Maps, Theorem 12.1.

Lemma 39.1.0CAU Let S be a locally Noetherian scheme. Let X, Y be schemes locally
of finite type over S. Let x ∈ X and y ∈ Y be points lying over the same point
s ∈ S. Assume OS,s is a G-ring. Assume further we are given a local OS,s-algebra
map

φ : OY,y −→ O∧
X,x

https://stacks.math.columbia.edu/tag/055V
https://stacks.math.columbia.edu/tag/0EY4
https://stacks.math.columbia.edu/tag/0CAU
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For every N ≥ 1 there exists an elementary étale neighbourhood (U, u) → (X,x)
and an S-morphism f : U → Y mapping u to y such that the diagram

O∧
X,x

// O∧
U,u

OY,y
f♯

u //

φ

OO

OU,u

OO

commutes modulo mNu .

Proof. The question is local on X hence we may assume X, Y , S are affine. Say
S = Spec(R), X = Spec(A), Y = Spec(B). Write B = R[x1, . . . , xn]/(f1, . . . , fm).
Let p ⊂ A be the prime ideal corresponding to x. The local ring OX,x = Ap is a
G-ring by More on Algebra, Proposition 50.10. The map φ is a map

B∧
q −→ A∧

p

where q ⊂ B is the prime corresponding to y. Let a1, . . . , an ∈ A∧
p be the images of

x1, . . . , xn via R[x1, . . . , xn]→ B → B∧
q → A∧

p . Then we can apply Smoothing Ring
Maps, Lemma 13.4 to get an étale ring map A→ A′ and a prime ideal p′ ⊂ A′ and
b1, . . . , bn ∈ A′ such that κ(p) = κ(p′), ai− bi ∈ (p′)N (A′

p′)∧, and fj(b1, . . . , bn) = 0
for j = 1, . . . , n. This determines an R-algebra map B → A′ by sending the class
of xi to bi ∈ A′. This finishes the proof by taking U = Spec(A′)→ Spec(B) as the
morphism f and u = p′. □

Lemma 39.2.0CAV Let S be a locally Noetherian scheme. Let X, Y be schemes locally
of finite type over S. Let x ∈ X and y ∈ Y be points lying over the same point
s ∈ S. Assume OS,s is a G-ring. Assume we have an OS,s-algebra isomorphism

φ : O∧
Y,y −→ O∧

X,x

between the complete local rings. Then for every N ≥ 1 there exists morphisms

(X,x)← (U, u)→ (Y, y)

of pointed schemes over S such that both arrows define elementary étale neighbour-
hoods and such that the diagram

O∧
U,u

O∧
Y,y

φ //

<<

O∧
X,x

bb

commutes modulo mNu .

Proof. We may assume N ≥ 2. Apply Lemma 39.1 to get (U, u) → (X,x) and
f : (U, u)→ (Y, y). We claim that f is étale at u which will finish the proof. In fact,
we will show that the induced map O∧

Y,y → O∧
U,u is an isomorphism. Having proved

this, Lemma 12.1 will show that f is smooth at u and of course f is unramified at
u as well, so Morphisms, Lemma 36.5 tells us f is étale at u. For a local ring (R,m)
we set Grm(R) =

⊕
n≥0 m

n/mn+1. To prove the claim we look at the induced

https://stacks.math.columbia.edu/tag/0CAV
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diagram of graded rings

Grmu(OU,u)

Grmy
(OY,y)

φ //

77

Grmx
(OX,x)

gg

Since N ≥ 2 this diagram is actually commutative as the displayed graded algebras
are generated in degree 1! By assumption the lower arrow is an isomorphism.
By More on Algebra, Lemma 43.9 (for example) the map O∧

X,x → O∧
U,u is an

isomorphism and hence the north-west arrow in the diagram is an isomorphism.
We conclude that f induces an isomorphism Grmx

(OX,x) → Grmy
(OU,u). Using

induction and the short exact sequences
0→ Grnm(R)→ R/mn+1 → R/mn → 0

for both local rings we conclude (from the snake lemma) that f induces isomor-
phisms OY,y/mny → OU,u/mnu for all n which is what we wanted to show. □

Lemma 39.3.0GDX Let X → S, Y → T , x, s, y, t, σ, yσ, and φ be given as follows:
we have morphisms of schemes

X

��

Y

��
S T

with points

x

��

y

��
s t

Here S is locally Noetherian and T is of finite type over Z. The morphisms X → S
and Y → T are locally of finite type. The local ring OS,s is a G-ring. The map

σ : OT,t −→ O∧
S,s

is a local homomorphism. Set Yσ = Y ×T,σ Spec(O∧
S,s). Next, yσ is a point of Yσ

mapping to y and the closed point of Spec(O∧
S,s). Finally

φ : O∧
X,x −→ O∧

Yσ,yσ

is an isomorphism of O∧
S,s-algebras. In this situation there exists a commutative

diagram
X

��

Woo

��

// Y ×T,τ V //

zz

Y

��
S Voo τ // T

of schemes and points w ∈W , v ∈ V such that
(1) (V, v)→ (S, s) is an elementary étale neighbourhood,
(2) (W,w)→ (X,x) is an elementary étale neighbourhood, and
(3) τ(v) = t.

Let yτ ∈ Y ×T V correspond to yσ via the identification (Yσ)s = (Y ×T V )v. Then
(4) (W,w)→ (Y ×T,τ V, yτ ) is an elementary étale neighbourhood.

Proof. Denote Xσ = X×S Spec(O∧
S,s) and xσ ∈ Xσ the unique point lying over x.

Observe that O∧
S,s is a G-ring by More on Algebra, Proposition 50.6. By Lemma

39.2 we can choose
(Xσ, xσ)← (U, u)→ (Yσ, yσ)

https://stacks.math.columbia.edu/tag/0GDX
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where both arrows are elementary étale neighbourhoods.
After replacing S by an open neighbourhood of s, we may assume S = Spec(R)
is affine. Since OS,s is a G-ring by Smoothing Ring Maps, Theorem 12.1 the ring
O∧
S,s is a filtered colimit of smooth R-algebras. Thus we can write

Spec(O∧
S,s) = limSi

as a directed limit of affine schemes Si smooth over S. Denote si ∈ Si the image of
the closed point of Spec(O∧

S,s). Observe that κ(s) = κ(si). Set Xi = X ×S Si and
denote xi ∈ Xi the unique point mapping to x. Note that κ(x) = κ(xi). Since T is
of finite type over Z by Limits, Proposition 6.1 we can choose an i and a morphism
σi : (Si, si)→ (T, t) of pointed schemes whose composition with Spec(O∧

S,s)→ Si is
equal to σ. Set Yi = Y ×TSi and denote yi the image of yσ. Note that κ(yi) = κ(yσ).
By Limits, Lemma 10.1 we can choose an i and a diagram

Xi

  

Uioo

��

// Yi

~~
Si

whose base change to Spec(O∧
S,s) recovers Xσ ← U → Yσ. By Limits, Lemma

8.10 after increasing i we may assume the morphisms Xi ← Ui → Yi are étale.
Let ui ∈ Ui be the image of u. Then ui 7→ xi hence κ(x) = κ(xσ) = κ(u) ⊃
κ(ui) ⊃ κ(xi) = κ(x) and we see that κ(ui) = κ(xi). Hence (Xi, xi) ← (Ui, ui) is
an elementary étale neighbourhood. Since also κ(yi) = κ(yσ) = κ(u) we see that
also (Ui, ui)→ (Yi, yi) is an elementary étale neighbourhood.
At this point we have constructed a diagram

X

��

X ×S Sioo

$$

Uioo //

��

Y ×T Si //

{{

Y

��
S Sioo // T

as in the statement of the lemma, except that Si → S is smooth. By Lemma
38.5 and after shrinking Si we can assume there exists a closed subscheme V ⊂ Si
passing through si such that V → S is étale. Setting W equal to the scheme
theoretic inverse image of V in Ui we conclude. □

We strongly encourage the reader to skip the rest of this section.

Lemma 39.4.0CAW Consider a diagram

X

��

Y

��
S Too

with points

x

��

y

��
s too

where S be a locally Noetherian scheme and the morphisms are locally of finite type.
Assume OS,s is a G-ring. Assume further we are given a local OS,s-algebra map

σ : OT,t −→ O∧
S,s

and a local OS,s-algebra map
φ : OX,x −→ O∧

Yσ,yσ

https://stacks.math.columbia.edu/tag/0CAW
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where Yσ = Y ×T,σ Spec(O∧
S,s) and yσ is the unique point of Yσ lying over y. For

every N ≥ 1 there exists a commutative diagram

X

��

X ×S Voo

##

W
f
oo //

��

Y ×T,τ V //

zz

Y

��
S Voo τ // T

of schemes over S and points w ∈W , v ∈ V such that

(1) v 7→ s, τ(v) = t, f(w) = (x, v), and w 7→ (y, v),
(2) (V, v)→ (S, s) is an elementary étale neighbourhood,
(3) the diagram

O∧
S,s

// O∧
V,v

OT,t
τ♯

v //

σ

OO

OV,v

OO

commutes module mNv ,
(4) (W,w)→ (Y ×T,τ V, (y, v)) is an elementary étale neighbourhood,
(5) the diagram

OX,x φ
// O∧

Yσ,yσ

// OYσ,yσ
/mNyσ

OY×T,τV,(y,v)/m
N
(y,v)

∼=
��

OX,x // OX×SV,(x,v)
f♯

w // OW,w // OW,w/mNw

commutes. The equality comes from the fact that Yσ and Y ×T,τ V are
canonically isomorphic over OV,v/mNv = OS,s/mNs by parts (2) and (3).

Proof. After replacing X, S, T , Y by affine open subschemes we may assume the
diagram in the statement of the lemma comes from applying Spec to a diagram

A B

R

OO

// C

OO

with primes

pA pB

pR pC

of Noetherian rings and finite type ring maps. In this proof every ring E will be
a Noetherian R-algebra endowed with a prime ideal pE lying over pR and all ring
maps will be R-algebra maps compatible with the given primes. Moreover, if we
write E∧ we mean the completion of the localization of E at pE . We will also use
without further mention that an étale ring map E1 → E2 such that κ(pE1) = κ(pE2)
induces an isomorphism E∧

1 = E∧
2 by More on Algebra, Lemma 43.9.

With this notation σ and φ correspond to ring maps

σ : C → R∧ and φ : A −→ (B ⊗C,σ R∧)∧
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Here is a picture

A

φ
--

B // B ⊗C,σ R∧ // (B ⊗C,σ R∧)∧

R //

OO

C
σ //

OO

R∧

OO 66

Observe that R∧ is a G-ring by More on Algebra, Proposition 50.6. Thus B⊗C,σR∧

is a G-ring by More on Algebra, Proposition 50.10. By Lemma 39.1 (translated into
algebra) there exists an étale ring map B ⊗C,σ R∧ → B′ inducing an isomorphism
κ(pB⊗C,σR∧)→ κ(pB′) and an R-algebra map A→ B′ such that the composition

A→ B′ → (B′)∧ = (B ⊗C,σ R∧)∧

is the same as φ modulo (p(B⊗C,σR∧)∧)N . Thus we may replace φ by this com-
position because the only way φ enters the conclusion is via the commutativity
requirement in part (5) of the statement of the lemma. Picture:

B′ // (B′)∧

A

66

B // B ⊗C,σ R∧ //

OO

(B ⊗C,σ R∧)∧

R //

OO

C
σ //

OO

R∧

OO 66

Next, we use that R∧ is a filtered colimit of smooth R-algebras (Smoothing Ring
Maps, Theorem 12.1) because RpR

is a G-ring by assumption. Since C is of finite
presentation over R we get a factorization

C → R′ → R∧

for some R → R′ smooth, see Algebra, Lemma 127.3. After increasing R′ we may
assume there exists an étale B ⊗C R′-algebra B′′ whose base change to B ⊗C,σ R∧

is B′, see Algebra, Lemma 143.3. Then B′ is the filtered colimit of these B′′

and we conclude that after increasing R′ we may assume there is an R-algebra
map A → B′′ such that A → B′′ → B′ is the previously constructed map (same
reference as above). Picture

B′′ // B′ // (B′)∧

A

66

B // B ⊗C R′ //

OO

B ⊗C,σ R∧ //

OO

(B ⊗C,σ R∧)∧

R //

OO

C //

OO

R′ //

OO

R∧

OO 66

and
B′ = B′′ ⊗(B⊗CR′) (B ⊗C,σ R∧)
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This means that we may replace C by R′, σ : C → R∧ by R′ → R∧, and B by B′′

so that we simplify to the diagram

A // B // B ⊗C,σ R∧

R //

OO

C
σ //

OO

R∧

OO

with φ equal to the composition of the horizontal arrows followed by the canonical
map from B ⊗C,σ R∧ to its completion. The final step in the proof is to apply
Lemma 39.1 (or its proof) one more time to Spec(C) and Spec(R) over Spec(R)
and the map C → R∧. The lemma produces a ring map C → D such that R→ D
is étale, such that κ(pR) = κ(pD), and such that

C → D → D∧ = R∧

is equal to σ : C → R∧ modulo (pR∧)N . Then we can take
V = Spec(D) and W = Spec(B ⊗C D)

as our solution to the problem posed by the lemma. Namely the diagram

A // B ⊗C,σ R∧ // B ⊗C,σ R∧/(pR∧)N B ⊗C D/(pD)N

A // A⊗R D // B ⊗R D // B ⊗C D/(pD)N

commutes because C → D → D∧ = R∧ is equal to σ modulo (pR∧)N . This proves
part (5) and the other properties are immediate from the construction. □

Lemma 39.5.0CAX Let T → S be finite type morphisms of Noetherian schemes. Let
t ∈ T map to s ∈ S and let σ : OT,t → O∧

S,s be a local OS,s-algebra map. For
every N ≥ 1 there exists a finite type morphism (T ′, t′)→ (T, t) such that σ factors
through OT,t → OT ′,t′ and such that for every local OS,s-algebra map σ′ : OT,t →
O∧
S,s which factors through OT,t → OT ′,t′ the maps σ and σ′ agree modulo mNs .

Proof. We may assume S and T are affine. Say S = Spec(R) and T = Spec(C).
Let c1, . . . , cn ∈ C be generators of C as an R-algebra. Let p ⊂ R be the prime
ideal corresponding to s. Say p = (f1, . . . , fm). After replacing R by a principal
localization (to clear denominators in Rp) we may assume there exist r1, . . . , rn ∈ R
and ai,I ∈ O∧

S,s where I = (i1, . . . , im) with
∑
ij = N such that

σ(ci) = ri +
∑

I
ai,If

i1
1 . . . f imm

in O∧
S,s. Then we consider

C ′ = C[ti,I ]/
(
ci − ri −

∑
I
ti,If

i1
1 . . . f imm

)
with p′ = pC ′ +(ti,I) and factorization of σ : C → O∧

S,s through C ′ given by sending
ti,I to ai,I . Taking T ′ = Spec(C ′) works because any σ′ as in the statement of the
lemma will send ci to ri modulo the maximal ideal to the power N . □

Lemma 39.6.0CAY Let Y → T → S be finite type morphisms of Noetherian schemes.
Let t ∈ T map to s ∈ S and let σ : OT,t → O∧

S,s be a local OS,s-algebra map.
There exists a finite type morphism (T ′, t′) → (T, t) such that σ factors through

https://stacks.math.columbia.edu/tag/0CAX
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OT,t → OT ′,t′ and such that for every local OS,s-algebra map σ′ : OT,t → O∧
S,s

which factors through OT,t → OT ′,t′ the closed immersions
Y ×T,σ Spec(O∧

S,s) = Yσ ←− Yt −→ Yσ′ = Y ×T,σ′ Spec(O∧
S,s)

have isomorphic conormal algebras.

Proof. A useful observation is that κ(s) = κ(t) by the existence of σ. Observe that
the statement makes sense as the fibres of Yσ and Yσ′ over s ∈ Spec(O∧

S,s) are both
canonically isomorphic to Yt. We will think of the property “σ′ factors through
OT,t → OT ′,t′” as a constraint on σ′. If we have several such constraints, say
given by (T ′

i , t
′
i) → (T, t), i = 1, . . . , n then we can combined them by considering

(T ′
1 ×T . . . ×T T ′

n, (t′1, . . . , t′n)) → (T, t). We will use this without further mention
in the following.
By Lemma 39.5 we can assume that any σ′ as in the statement of the lemma is
the same as σ modulo m2

s. Note that the conormal algebra of Yt in Yσ is just the
quasi-coherent graded OYt

-algebra⊕
n≥0

mnsOYσ
/mn+1

s OYσ

and similarly for Yσ′ . Since σ and σ′ agree modulo m2
s we see that these two algebras

are the same in degrees 0 and 1. On the other hand, these conormal algebras are
generated in degree 1 over degree 0. Hence if there is an isomorphism extending
the isomorphism just constructed in degrees 0 and 1, then it is unique.
We may assume S and T are affine. Let Y = Y1 ∪ . . . ∪ Yn be an affine open
covering. If we can construct (T ′

i , t
′
i)→ (T, t) as in the lemma such that the desired

isomorphism (see previous paragraph) exists for Yi → T → S and σ, then these
glue by uniqueness to prove the result for Y → T . Thus we may assume Y is affine.
Write S = Spec(R), T = Spec(C), and Y = Spec(B). Choose a presentation
B = C[x1, . . . , xn]/(f1, . . . , fm). Denote R∧ = O∧

S,s. Let akj ∈ R∧[x1, . . . , xn] be
polynomials such that∑

j=1,...,m
akjσ(fj) = 0, for k = 1, . . . ,K

is a set of generators for the module of relations among the σ(fj) ∈ R∧[x1, . . . , xn].
Thus we have an exact sequence
(39.6.1)

0CAZ R∧[x1, . . . , xn]⊕K → R∧[x1, . . . , xn]⊕m → R∧[x1, . . . , xn]→ B ⊗C,σ R∧ → 0
Let c be an integer which works in the Artin-Rees lemma for both the first and the
second map in this sequence and the ideal mR∧R∧[x1, . . . , xn] as defined in More
on Algebra, Section 4. Write

akj =
∑

I∈Ω
akj,Ix

I and fj =
∑

I∈Ω
fj,Ix

I

in multiindex notation where akj,I ∈ R∧, fj,I ∈ C, and Ω a finite set of multiindices.
Then we see that∑

j=1,...,m, I,I′∈Ω, I+I′=I′′
akj,Iσ(fj,I′) = 0, I ′′ a multiindex

in R∧. Thus we take

C ′ = C[tjk,I ]/
(∑

j=1,...,m, I,I′∈Ω, I+I′=I′′
tkj,Ifj,I′ , I ′′ a multiindex

)
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Then σ factors through a map σ̃ : C ′ → R∧ sending tkj,I to ajk,I . Thus T ′ =
Spec(C ′) comes with a point t′ ∈ T ′ such that σ factors through OT,t → OT ′,t′ .
Let tkj =

∑
tkj,Ix

I in C ′[x1, . . . , xn]. Then we see that we have a complex

(39.6.2)0CB0 C ′[x1, . . . , xn]⊕K → C ′[x1, . . . , xn]⊕m → C ′[x1, . . . , xn]→ B ⊗C C ′ → 0

which is exact at C ′[x1, . . . , xn] and whose base change by σ̃ gives (39.6.1).

By Lemma 39.5 we can find a further morphism (T ′′, t′′) → (T ′, t′) such that σ̃
factors through OT ′,t′ → OT ′′,t′′ and such that if σ′ : C → R∧ factors through
OT ′′,t′′ , then the induced map σ̃′ : C ′ → R∧ agrees modulo mc+1

s with σ̃. Thus if
σ′ is such a map, then we obtain a complex

R∧[x1, . . . , xn]⊕K → R∧[x1, . . . , xn]⊕m → R∧[x1, . . . , xn]→ B ⊗C,σ′ R∧ → 0

over R∧[x1, . . . , xn] by applying σ̃′ to the polynomials tkj and fj . In other words,
this is the base change of the complex (39.6.2) by σ̃′. The matrices defining this
complex are congruent modulo mc+1

s to the matrices defining the complex (39.6.1)
because σ̃ and σ̃′ are congruent modulo mc+1

s . Since (39.6.1) is exact, we can apply
More on Algebra, Lemma 4.2 to conclude that

Grms(B ⊗C,σ′ R∧) ∼= Grms(B ⊗C,σ R∧)

as desired. □

Lemma 39.7.0CB1 With notation an assumptions as in Lemma 39.4 assume that φ
induces an isomorphism on completions. Then we can choose our diagram such
that f is étale.

Proof. We may assume N ≥ 2 and we may replace (T, t) with (T ′, t′) as in
Lemma 39.6. Since (V, v) → (S, s) is an elementary étale neighbourhood, so is
(X ×S V, (x, v)) → (X,x). Thus OX,x → OX×SV,(x,v) induces an isomorphism on
completions by More on Algebra, Lemma 43.9. We claim OX,x → OW,w induces
an isomorphism on completions. Having proved this, Lemma 12.1 will show that f
is smooth at w and of course f is unramified at u as well, so Morphisms, Lemma
36.5 tells us f is étale at w.

First we use the commutativity in part (5) of Lemma 39.4 to see that for i ≤ N
there is a commutative diagram

Grimx
(OX,x)

φ
// Grimyσ

(O∧
Yσ,yσ

) Grim(y,v)
(OY×T,τV,(y,v))

∼=
��

Grimx
(OX,x)

∼= // Grim(x,v)
(OX×SV,(x,v))

f♯
w // Grimw

(OW,w)

This implies that f ♯w defines an isomorphism κ(x)→ κ(w) on residue fields and an
isomorphism mx/m

2
x → mw/m

2
w on cotangent spaces. Hence f ♯w defines a surjection

O∧
X,x → O∧

W,w on complete local rings.

By Lemma 39.6 there is an isomorphism of Grms
(O(Y×T,τV,(y,v)) with Grms

(OYσ,yσ
).

This follows by taking stalks of the isomorphism of conormal sheaves at the point
y. Since our local rings are Noetherian taking associated graded with respect to ms
commutes with completion because completion with respect to an ideal is an exact

https://stacks.math.columbia.edu/tag/0CB1
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functor on finite modules over Noetherian rings. This produces the right vertical
isomorphism in the diagram of graded rings

Grms
(O∧

W,w) Grms
(O∧

(Y×T,τV,(y,v))oo

Grms
(O∧

X,x) φ //

OO

Grms
(O∧

Yσ,yσ
)

∼=

OO

We do not claim the diagram commutes. By the result of the previous paragraph
the left arrow is surjective. The other three arrows are isomorphisms. It follows
that the left arrow is a surjective map between isomorphic Noetherian rings. Hence
it is an isomorphism by Algebra, Lemma 31.10 (you can argue this directly using
Hilbert functions as well). In particular O∧

X,x → O∧
W,w must be injective as well as

surjective which finishes the proof. □

40. Finite free locally dominates étale

04HE In this section we explain a result that roughly states that étale coverings of a
scheme S can be refined by Zariski coverings of finite locally free covers of S.

Lemma 40.1.02LG Let S be a scheme. Let s ∈ S. Let f : (U, u) → (S, s) be an
étale neighbourhood. There exists an affine open neighbourhood s ∈ V ⊂ S and a
surjective, finite locally free morphism π : T → V such that for every t ∈ π−1(s)
there exists an open neighbourhood t ∈Wt ⊂ T and a commutative diagram

T

π

��

Wt
oo

ht

//

  

U

��
V // S

with ht(t) = u.

Proof. The problem is local on S hence we may replace S by any open neigh-
bourhood of s. We may also replace U by an open neighbourhood of u. Hence,
by Morphisms, Lemma 36.14 we may assume that U → S is a standard étale mor-
phism of affine schemes. In this case the lemma (with V = S) follows from Algebra,
Lemma 144.5. □

Lemma 40.2.02LH Let f : U → S be a surjective étale morphism of affine schemes.
There exists a surjective, finite locally free morphism π : T → S and a finite open
covering T = T1∪ . . .∪Tn such that each Ti → S factors through U → S. Diagram:∐

Ti

!!}}
T

π

""

U
f

||
S

where the south-west arrow is a Zariski-covering.

Proof. This is a restatement of Algebra, Lemma 144.6. □

https://stacks.math.columbia.edu/tag/02LG
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Remark 40.3.02LI In terms of topologies Lemmas 40.1 and 40.2 mean the following.
Let S be any scheme. Let {fi : Ui → S} be an étale covering of S. There exists a
Zariski open covering S =

⋃
Vj , for each j a finite locally free, surjective morphism

Wj → Vj , and for each j a Zariski open covering {Wj,k →Wj} such that the family
{Wj,k → S} refines the given étale covering {fi : Ui → S}. What does this mean in
practice? Well, for example, suppose we have a descent problem which we know how
to solve for Zariski coverings and for fppf coverings of the form {π : T → S} with
π finite locally free and surjective. Then this descent problem has an affirmative
answer for étale coverings as well. This trick was used by Gabber in his proof that
Br(X) = Br′(X) for an affine scheme X, see [Hoo82].

41. Étale localization of quasi-finite morphisms

04HF Now we come to a series of lemmas around the theme “quasi-finite morphisms
become finite after étale localization”. The general idea is the following. Suppose
given a morphism of schemes f : X → S and a point s ∈ S. Let φ : (U, u)→ (S, s)
be an étale neighbourhood of s in S. Consider the fibre product XU = U ×SX and
the basic diagram

(41.0.1)02LJ

V //

!!

XU

��

// X

f

��
U

φ // S

where V ⊂ XU is open. Is there some standard model for the morphism fU : XU →
U , or for the morphism V → U for suitable opens V ? Of course the answer is no
in general. But for quasi-finite morphisms we can say something.

Lemma 41.1.02LK Let f : X → S be a morphism of schemes. Let x ∈ X. Set
s = f(x). Assume that

(1) f is locally of finite type, and
(2) x ∈ Xs is isolated7.

Then there exist
(a) an elementary étale neighbourhood (U, u)→ (S, s),
(b) an open subscheme V ⊂ XU (see 41.0.1)

such that
(i) V → U is a finite morphism,
(ii) there is a unique point v of V mapping to u in U , and
(iii) the point v maps to x under the morphism XU → X, inducing κ(x) = κ(v).

Moreover, for any elementary étale neighbourhood (U ′, u′) → (U, u) setting V ′ =
U ′ ×U V ⊂ XU ′ the triple (U ′, u′, V ′) satisfies the properties (i), (ii), and (iii) as
well.

Proof. Let Y ⊂ X, W ⊂ S be affine opens such that f(Y ) ⊂ W and such that
x ∈ Y . Note that x is also an isolated point of the fibre of the morphism f |Y : Y →
W . If we can prove the theorem for f |Y : Y →W , then the theorem follows for f .
Hence we reduce to the case where f is a morphism of affine schemes. This case is
Algebra, Lemma 145.2. □

7In the presence of (1) this means that f is quasi-finite at x, see Morphisms, Lemma 20.6.

https://stacks.math.columbia.edu/tag/02LI
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In the preceding and following lemma we do not assume that the morphism f is
separated. This means that the opens V , Vi created in them are not necessarily
closed in XU . Moreover, if we choose the neighbourhood U to be affine, then each
Vi is affine, but the intersections Vi ∩ Vj need not be affine (in the nonseparated
case).

Lemma 41.2.02LL Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume that

(1) f is locally of finite type, and
(2) xi ∈ Xs is isolated for i = 1, . . . , n.

Then there exist
(a) an elementary étale neighbourhood (U, u)→ (S, s),
(b) for each i an open subscheme Vi ⊂ XU ,

such that for each i we have
(i) Vi → U is a finite morphism,
(ii) there is a unique point vi of Vi mapping to u in U , and
(iii) the point vi maps to xi in X and κ(xi) = κ(vi).

Proof. We will use induction on n. Namely, suppose (U, u)→ (S, s) and Vi ⊂ XU ,
i = 1, . . . , n − 1 work for x1, . . . , xn−1. Since κ(s) = κ(u) the fibre (XU )u = Xs.
Hence there exists a unique point x′

n ∈ Xu ⊂ XU corresponding to xn ∈ Xs.
Also x′

n is isolated in Xu. Hence by Lemma 41.1 there exists an elementary étale
neighbourhood (U ′, u′) → (U, u) and an open Vn ⊂ XU ′ which works for x′

n and
hence for xn. By the final assertion of Lemma 41.1 the open subschemes V ′

i =
U ′ ×U Vi for i = 1, . . . , n − 1 still work with respect to x1, . . . , xn−1. Hence we
win. □

If we allow a nontrivial field extension κ(u)/κ(s), i.e., general étale neighbourhoods,
then we can split the points as follows.

Lemma 41.3.02LM Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume that

(1) f is locally of finite type, and
(2) xi ∈ Xs is isolated for i = 1, . . . , n.

Then there exist
(a) an étale neighbourhood (U, u)→ (S, s),
(b) for each i an integer mi and open subschemes Vi,j ⊂ XU , j = 1, . . . ,mi

such that we have
(i) each Vi,j → U is a finite morphism,
(ii) there is a unique point vi,j of Vi,j mapping to u in U with κ(u) ⊂ κ(vi,j)

finite purely inseparable,
(iv) if vi,j = vi′,j′ , then i = i′ and j = j′, and
(iii) the points vi,j map to xi in X and no other points of (XU )u map to xi.

Proof. This proof is a variant of the proof of Algebra, Lemma 145.4 in the language
of schemes. By Morphisms, Lemma 20.6 the morphism f is quasi-finite at each
of the points xi. Hence κ(s) ⊂ κ(xi) is finite for each i (Morphisms, Lemma
20.5). For each i, let κ(s) ⊂ Li ⊂ κ(xi) be the subfield such that Li/κ(s) is
separable, and κ(xi)/Li is purely inseparable. Choose a finite Galois extension
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L/κ(s) such that there exist κ(s)-embeddings Li → L for i = 1, . . . , n. Choose an
étale neighbourhood (U, u)→ (S, s) such that L ∼= κ(u) as κ(s)-extensions (Lemma
35.2).

Let yi,j , j = 1, . . . ,mi be the points of XU lying over xi ∈ X and u ∈ U . By
Schemes, Lemma 17.5 these points yi,j correspond exactly to the primes in the
rings κ(u) ⊗κ(s) κ(xi). This also explains why there are finitely many; in fact
mi = [Li : κ(s)] but we do not need this. By our choice of L (and elementary
field theory) we see that κ(u) ⊂ κ(yi,j) is finite purely inseparable for each pair
i, j. Also, by Morphisms, Lemma 20.13 for example, the morphism XU → U is
quasi-finite at the points yi,j for all i, j.

Apply Lemma 41.2 to the morphism XU → U , the point u ∈ U and the points
yi,j ∈ (XU )u. This gives an étale neighbourhood (U ′, u′)→ (U, u) with κ(u) = κ(u′)
and opens Vi,j ⊂ XU ′ with the properties (i), (ii), and (iii) of that lemma. We
claim that the étale neighbourhood (U ′, u′)→ (S, s) and the opens Vi,j ⊂ XU ′ are
a solution to the problem posed by the lemma. We omit the verifications. □

Lemma 41.4.02LN Let f : X → S be a morphism of schemes. Let s ∈ S. Let
x1, . . . , xn ∈ Xs. Assume that

(1) f is locally of finite type,
(2) f is separated, and
(3) x1, . . . , xn are pairwise distinct isolated points of Xs.

Then there exists an elementary étale neighbourhood (U, u) → (S, s) and a decom-
position

U ×S X = W ⨿ V1 ⨿ . . .⨿ Vn
into open and closed subschemes such that the morphisms Vi → U are finite, the
fibres of Vi → U over u are singletons {vi}, each vi maps to xi with κ(xi) = κ(vi),
and the fibre of W → U over u contains no points mapping to any of the xi.

Proof. Choose (U, u)→ (S, s) and Vi ⊂ XU as in Lemma 41.2. Since XU → U is
separated (Schemes, Lemma 21.12) and Vi → U is finite hence proper (Morphisms,
Lemma 44.11) we see that Vi ⊂ XU is closed by Morphisms, Lemma 41.7. Hence
Vi∩Vj is a closed subset of Vi which does not contain vi. Hence the image of Vi∩Vj
in U is a closed set (because Vi → U proper) not containing u. After shrinking U
we may therefore assume that Vi ∩ Vj = ∅ for all i, j. This gives the decomposition
as in the lemma. □

Here is the variant where we reduce to purely inseparable field extensions.

Lemma 41.5.02LO Let f : X → S be a morphism of schemes. Let s ∈ S. Let
x1, . . . , xn ∈ Xs. Assume that

(1) f is locally of finite type,
(2) f is separated, and
(3) x1, . . . , xn are pairwise distinct isolated points of Xs.

Then there exists an étale neighbourhood (U, u)→ (S, s) and a decomposition

U ×S X = W ⨿
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

into open and closed subschemes such that the morphisms Vi,j → U are finite, the
fibres of Vi,j → U over u are singletons {vi,j}, each vi,j maps to xi, κ(u) ⊂ κ(vi,j)
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is purely inseparable, and the fibre of W → U over u contains no points mapping
to any of the xi.

Proof. This is proved in exactly the same way as the proof of Lemma 41.4 except
that it uses Lemma 41.3 instead of Lemma 41.2. □

The following version may be a little easier to parse.

Lemma 41.6.02LP Let f : X → S be a morphism of schemes. Let s ∈ S. Assume that
(1) f is locally of finite type,
(2) f is separated, and
(3) Xs has at most finitely many isolated points.

Then there exists an elementary étale neighbourhood (U, u) → (S, s) and a decom-
position

U ×S X = W ⨿ V
into open and closed subschemes such that the morphism V → U is finite, and the
fibre Wu of the morphism W → U contains no isolated points. In particular, if
f−1(s) is a finite set, then Wu = ∅.

Proof. This is clear from Lemma 41.4 by choosing x1, . . . , xn the complete set of
isolated points of Xs and setting V =

⋃
Vi. □

42. Étale localization of integral morphisms

0BUH Some variants of the results of Section 41 for the case of integral morphisms.

Lemma 42.1.0BSR Let R → S be an integral ring map. Let p ⊂ R be a prime ideal.
Assume

(1) there are finitely many primes q1, . . . , qn lying over p, and
(2) for each i the maximal separable subextension κ(q)/κ(qi)sep/κ(p) (Fields,

Lemma 14.6) is finite over κ(p).
Then there exists an étale ring map R→ R′ and a prime p′ lying over p such that

S ⊗R R′ = A1 × . . .×Am
with R′ → Aj integral having a unique prime rj over p′ such that κ(rj)/κ(p′) is
purely inseparable.

First proof. This proof uses Algebra, Lemma 145.4. Namely, choose a generator
θi ∈ κ(qi)sep of this field over κ(p) (Fields, Lemma 19.1). The spectrum of the fibre
ring S ⊗R κ(p) is finite discrete with points corresponding to q1, . . . , qn. By the
Chinese remainder theorem (Algebra, Lemma 15.4) we see that S⊗Rκ(p)→

∏
κ(qi)

is surjective. Hence after replacing R by Rg for some g ∈ R, g ̸∈ p we may assume
that (0, . . . , 0, θi, 0, . . . , 0) ∈

∏
κ(qi) is the image of some xi ∈ S. Let S′ ⊂ S be the

R-subalgebra generated by our xi. Since Spec(S)→ Spec(S′) is surjective (Algebra,
Lemma 36.17) we conclude that q′

i = S′ ∩ qi are the primes of S′ over p. By our
choice of xi we conclude these primes are distinct that and κ(q′

i)sep = κ(qi)sep. In
particular the field extensions κ(qi)/κ(q′

i) are purely inseparable. Since R → S′

is finite we may apply Algebra, Lemma 145.4. and we get R → R′ and p′ and a
decomposition

S′ ⊗R R′ = A′
1 × . . .×A′

m ×B′

with R′ → A′
j integral having a unique prime r′

j over p′ such that κ(r′
j)/κ(p′) is

purely inseparable and such that B′ does not have a prime lying over p′. Since
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R′ → B′ is finite (as R → S′ is finite) we can after localizing R′ at some g′ ∈ R′,
g′ ̸∈ p′ assume that B′ = 0. Via the map S′ ⊗R R′ → S ⊗R R′ we get the
corresponding decomposition for S. □

Second proof. This proof uses strict henselization. First, assume R is strictly
henselization with maximal ideal p. Then S/pS has finitely many primes corre-
sponding to q1, . . . , qn, each maximal, each with purely inseparable residue field
over κ(p). Hence S/pS is equal to

∏
(S/pS)pi

. By More on Algebra, Lemma 11.6
we can lift this product decomposition to a product composition of S as in the
statement.
In the general case, let Rsh be the strict henselization of Rp. Then we can apply
the result of the first paragraph to Rsh → S ⊗R Rsh. Consider the m mutually
orthogonal idempotents in S ⊗R Rsh corresponding to the product decomposition.
Since Rsh is a filtered colimit of étale ring maps (R, p) → (R′, p′) by Algebra,
Lemma 155.11 we see that these idempotents descend to some R′ as desired. □

43. Zariski’s Main Theorem

02LQ In this section we prove Zariski’s main theorem as reformulated by Grothendieck.
Often when we say “Zariski’s main theorem” in this content we mean either of
Lemma 43.1, Lemma 43.2, or Lemma 43.3. In most texts people refer to the last
of these as Zariski’s main theorem.
We have already proved the algebraic version in Algebra, Theorem 123.12 and
we have already restated this algebraic version in the language of schemes, see
Morphisms, Theorem 56.1. The version in this section is more subtle; to get the
full result we use the étale localization techniques of Section 41 to reduce to the
algebraic case.

Lemma 43.1.03GW Let f : X → S be a morphism of schemes. Assume f is of finite type
and separated. Let S′ be the normalization of S in X, see Morphisms, Definition
53.3. Picture:

X

f ��

f ′
// S′

ν
��

S

Then there exists an open subscheme U ′ ⊂ S′ such that
(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ X is the set of points at which f is quasi-finite.

Proof. By Morphisms, Lemma 56.2 the subset U ⊂ X of points where f is quasi-
finite is open. The lemma is equivalent to

(a) U ′ = f ′(U) ⊂ S′ is open,
(b) U = (f ′)−1(U ′), and
(c) U → U ′ is an isomorphism.

Let x ∈ U be arbitrary. We claim there exists an open neighbourhood f ′(x) ∈ V ⊂
S′ such that (f ′)−1V → V is an isomorphism. We first prove the claim implies the
lemma. Namely, then (f ′)−1V ∼= V is both locally of finite type over S (as an open
subscheme of X) and for v ∈ V the residue field extension κ(v)/κ(ν(v)) is algebraic
(as V ⊂ S′ and S′ is integral over S). Hence the fibres of V → S are discrete
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(Morphisms, Lemma 20.2) and (f ′)−1V → S is locally quasi-finite (Morphisms,
Lemma 20.8). This implies (f ′)−1V ⊂ U and V ⊂ U ′. Since x was arbitrary we
see that (a), (b), and (c) are true.

Let s = f(x). Let (T, t) → (S, s) be an elementary étale neighbourhood. Denote
by a subscript T the base change to T . Let y = (x, t) ∈ XT be the unique point
in the fibre Xt lying over x. Note that UT ⊂ XT is the set of points where fT is
quasi-finite, see Morphisms, Lemma 20.13. Note that

XT
f ′

T−−→ S′
T

νT−−→ T

is the normalization of T in XT , see Lemma 19.2. Suppose that the claim holds for
y ∈ UT ⊂ XT → S′

T → T , i.e., suppose that we can find an open neighbourhood
f ′
T (y) ∈ V ′ ⊂ S′

T such that (f ′
T )−1V ′ → V ′ is an isomorphism. The morphism

S′
T → S′ is étale hence the image V ⊂ S′ of V ′ is open. Observe that f ′(x) ∈ V as
f ′
T (y) ∈ V ′. Observe that

(f ′
T )−1V ′ //

��

(f ′)−1(V )

��
V ′ // V

is a fibre square (as S′
T×S′X = XT ). Since the left vertical arrow is an isomorphism

and {V ′ → V } is a étale covering, we conclude that the right vertical arrow is
an isomorphism by Descent, Lemma 23.17. In other words, the claim holds for
x ∈ U ⊂ X → S′ → S.

By the result of the previous paragraph we may replace S by an elementary étale
neighbourhood of s = f(x) in order to prove the claim. Thus we may assume there
is a decomposition

X = V ⨿W
into open and closed subschemes where V → S is finite and x ∈ V , see Lemma
41.4. Since X is a disjoint union of V and W over S and since V → S is finite we
see that the normalization of S in X is the morphism

X = V ⨿W −→ V ⨿W ′ −→ S

where W ′ is the normalization of S in W , see Morphisms, Lemmas 53.10, 44.4, and
53.12. The claim follows and we win. □

Lemma 43.2.02LR Let f : X → S be a morphism of schemes. Assume f is quasi-finite
and separated. Let S′ be the normalization of S in X, see Morphisms, Definition
53.3. Picture:

X

f ��

f ′
// S′

ν
��

S

Then f ′ is a quasi-compact open immersion and ν is integral. In particular f is
quasi-affine.

Proof. This follows from Lemma 43.1. Namely, by that lemma there exists an open
subscheme U ′ ⊂ S′ such that (f ′)−1(U ′) = X and X → U ′ is an isomorphism. In
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other words, f ′ is an open immersion. Note that f ′ is quasi-compact as f is quasi-
compact and ν : S′ → S is separated (Schemes, Lemma 21.14). It follows that f is
quasi-affine by Morphisms, Lemma 13.3. □

Lemma 43.3 (Zariski’s Main Theorem).05K0 [DG67, IV Corollary
18.12.13]

Let f : X → S be a morphism of
schemes. Assume f is quasi-finite and separated and assume that S is quasi-compact
and quasi-separated. Then there exists a factorization

X

f ��

j
// T

π
��

S

where j is a quasi-compact open immersion and π is finite.

Proof. Let X → S′ → S be as in the conclusion of Lemma 43.2. By Properties,
Lemma 22.13 we can write ν∗OS′ = colimi∈I Ai as a directed colimit of finite
quasi-coherent OX -algebras Ai ⊂ ν∗OS′ . Then πi : Ti = Spec

S
(Ai)→ S is a finite

morphism for each i. Note that the transition morphisms Ti′ → Ti are affine and
that S′ = limTi.
By Limits, Lemma 4.11 there exists an i and a quasi-compact open Ui ⊂ Ti whose
inverse image in S′ equals f ′(X). For i′ ≥ i let Ui′ be the inverse image of Ui in Ti′ .
Then X ∼= f ′(X) = limi′≥i Ui′ , see Limits, Lemma 2.2. By Limits, Lemma 4.16
we see that X → Ui′ is a closed immersion for some i′ ≥ i. (In fact X ∼= Ui′ for
sufficiently large i′ but we don’t need this.) Hence X → Ti′ is an immersion. By
Morphisms, Lemma 3.2 we can factor this as X → T → Ti′ where the first arrow
is an open immersion and the second a closed immersion. Thus we win. □

Lemma 43.4.0F2N With notation and hypotheses as in Lemma 43.3. Assume moreover
that f is locally of finite presentation. Then we can choose the factorization such
that T is finite and of finite presentation over S.

Proof. By Limits, Lemma 9.8 we can write T = limTi where all Ti are finite and
of finite presentation over Y and the transition morphisms Ti′ → Ti are closed
immersions. By Limits, Lemma 4.11 there exists an i and an open subscheme
Ui ⊂ Ti whose inverse image in T is X. By Limits, Lemma 4.16 we see that X ∼= Ui
for large enough i. Replacing T by Ti finishes the proof. □

44. Applications of Zariski’s Main Theorem, I

0F2P A first application is the characterization of finite morphisms as proper morphisms
with finite fibres.

Lemma 44.1.02LS Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is finite,
(2) f is proper with finite fibres,
(3) f is proper and locally quasi-finite,
(4) f is universally closed, separated, locally of finite type and has finite fibres.

Proof. We have (1) implies (2) by Morphisms, Lemmas 44.11, 20.10, and 44.10.
We have (2) implies (3) by Morphisms, Lemma 20.7. We have (3) implies (4) by
the definition of proper morphisms and Morphisms, Lemmas 20.9 and 20.10.
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Assume (4). Pick s ∈ S. By Morphisms, Lemma 20.7 we see that all the finitely
many points of Xs are isolated in Xs. Choose an elementary étale neighbourhood
(U, u) → (S, s) and decomposition XU = V ⨿ W as in Lemma 41.6. Note that
Wu = ∅ because all points of Xs are isolated. Since f is universally closed we see
that the image of W in U is a closed set not containing u. After shrinking U we
may assume that W = ∅. In other words we see that XU = V is finite over U . Since
s ∈ S was arbitrary this means there exists a family {Ui → S} of étale morphisms
whose images cover S such that the base changes XUi → Ui are finite. Note that
{Ui → S} is an étale covering, see Topologies, Definition 4.1. Hence it is an fpqc
covering, see Topologies, Lemma 9.6. Hence we conclude f is finite by Descent,
Lemma 23.23. □

As a consequence we have the following useful results.

Lemma 44.2.02UP Let f : X → S be a morphism of schemes. Let s ∈ S. Assume that
f is proper and f−1({s}) is a finite set. Then there exists an open neighbourhood
V ⊂ S of s such that f |f−1(V ) : f−1(V )→ V is finite.

Proof. The morphism f is quasi-finite at all the points of f−1({s}) by Morphisms,
Lemma 20.7. By Morphisms, Lemma 56.2 the set of points at which f is quasi-
finite is an open U ⊂ X. Let Z = X \ U . Then s ̸∈ f(Z). Since f is proper
the set f(Z) ⊂ S is closed. Choose any open neighbourhood V ⊂ S of s with
f(Z) ∩ V = ∅. Then f−1(V ) → V is locally quasi-finite and proper. Hence it is
quasi-finite (Morphisms, Lemma 20.9), hence has finite fibres (Morphisms, Lemma
20.10), hence is finite by Lemma 44.1. □

Lemma 44.3.0AH8 Consider a commutative diagram of schemes

X
h

//

f ��

Y

g
��

S

Let s ∈ S. Assume
(1) X → S is a proper morphism,
(2) Y → S is separated and locally of finite type, and
(3) the image of Xs → Ys is finite.

Then there is an open subspace U ⊂ S containing s such that XU → YU factors
through a closed subscheme Z ⊂ YU finite over U .

Proof. Let Z ⊂ Y be the scheme theoretic image of h, see Morphisms, Section
6. By Morphisms, Lemma 41.10 the morphism X → Z is surjective and Z → S
is proper. Thus Xs → Zs is surjective. We see that either (3) implies Zs is finite.
Hence Z → S is finite in an open neighbourhood of s by Lemma 44.2. □

45. Applications of Zariski’s Main Theorem, II

0F2Q In this section we give a few more consequences of Zariski’s main theorem to the
structure of quasi-finite morphisms.

Lemma 45.1.07S0 Let f : X → Y be a separated, locally quasi-finite morphism with
Y affine. Then every finite set of points of X is contained in an open affine of X.
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Proof. Let x1, . . . , xn ∈ X. Choose a quasi-compact open U ⊂ X with xi ∈ U .
Then U → Y is quasi-affine by Lemma 43.2. Hence there exists an affine open
V ⊂ U containing x1, . . . , xn by Properties, Lemma 29.5. □

Lemma 45.2.03I1 Let f : Y → X be a quasi-finite morphism. There exists a dense
open U ⊂ X such that f |f−1(U) : f−1(U)→ U is finite.

Proof. If Ui ⊂ X, i ∈ I is a collection of opens such that the restrictions f |f−1(Ui) :
f−1(Ui)→ Ui are finite, then with U =

⋃
Ui the restriction f |f−1(U) : f−1(U)→ U

is finite, see Morphisms, Lemma 44.3. Thus the problem is local on X and we may
assume that X is affine.

Assume X is affine. Write Y =
⋃
j=1,...,m Vj with Vj affine. This is possible since

f is quasi-finite and hence in particular quasi-compact. Each Vj → X is quasi-
finite and separated. Let η ∈ X be a generic point of an irreducible component
of X. We see from Morphisms, Lemmas 20.10 and 51.1 that there exists an open
neighbourhood η ∈ Uη such that f−1(Uη) ∩ Vj → Uη is finite. We may choose Uη
such that it works for each j = 1, . . . ,m. Note that the collection of generic points
of X is dense in X. Thus we see there exists a dense open W =

⋃
η Uη such that

each f−1(W ) ∩ Vj →W is finite. It suffices to show that there exists a dense open
U ⊂ W such that f |f−1(U) : f−1(U) → U is finite. Thus we may replace X by an
affine open subscheme of W and assume that each Vj → X is finite.

Assume X is affine, Y =
⋃
j=1,...,m Vj with Vj affine, and the restrictions f |Vj

:
Vj → X are finite. Set

∆ij =
(
Vi ∩ Vj \ Vi ∩ Vj

)
∩ Vj .

This is a nowhere dense closed subset of Vj because it is the boundary of the open
subset Vi ∩ Vj in Vj . By Morphisms, Lemma 48.7 the image f(∆ij) is a nowhere
dense closed subset of X. By Topology, Lemma 21.2 the union T =

⋃
f(∆ij) is

a nowhere dense closed subset of X. Thus U = X \ T is a dense open subset of
X. We claim that f |f−1(U) : f−1(U) → U is finite. To see this let U ′ ⊂ U be an
affine open. Set Y ′ = f−1(U ′) = U ′ ×X Y , V ′

j = Y ′ ∩ Vj = U ′ ×X Vj . Consider the
restriction

f ′ = f |Y ′ : Y ′ −→ U ′

of f . This morphism now has the property that Y ′ =
⋃
j=1,...,m V

′
j is an affine open

covering, each V ′
j → U ′ is finite, and V ′

i ∩ V ′
j is (open and) closed both in V ′

i and
V ′
j . Hence V ′

i ∩ V ′
j is affine, and the map

O(V ′
i )⊗Z O(V ′

j ) −→ O(V ′
i ∩ V ′

j )

is surjective. This implies that Y ′ is separated, see Schemes, Lemma 21.7. Finally,
consider the commutative diagram∐

j=1,...,m V
′
j

%%

// Y ′

��
U ′

The south-east arrow is finite, hence proper, the horizontal arrow is surjective, and
the south-west arrow is separated. Hence by Morphisms, Lemma 41.9 we conclude

https://stacks.math.columbia.edu/tag/03I1


MORE ON MORPHISMS 131

that Y ′ → U ′ is proper. Since it is also quasi-finite, we see that it is finite by
Lemma 44.1, and we win. □

Lemma 45.3.07RY Let f : X → S be flat, locally of finite presentation, separated,
locally quasi-finite with universally bounded fibres. Then there exist closed subsets

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = S

such that with Sr = Zr \ Zr−1 the stratification S =
∐
r=0,...,n Sr is characterized

by the following universal property: Given g : T → S the projection X ×S T → T
is finite locally free of degree r if and only if g(T ) ⊂ Sr (set theoretically).

Proof. Let n be an integer bounding the degree of the fibres of X → S. By
Morphisms, Lemma 57.5 we see that any base change has degrees of fibres bounded
by n also. In particular, all the integers r that occur in the statement of the lemma
will be ≤ n. We will prove the lemma by induction on n. The base case is n = 0
which is obvious.
We claim the set of points s ∈ S with degκ(s)(Xs) = n is an open subset Sn ⊂ S
and that X ×S Sn → Sn is finite locally free of degree n. Namely, suppose that
s ∈ S is such a point. Choose an elementary étale morphism (U, u) → (S, s) and
a decomposition U ×S X = W ⨿ V as in Lemma 41.6. Since V → U is finite,
flat, and locally of finite presentation, we see that V → U is finite locally free, see
Morphisms, Lemma 48.2. After shrinking U to a smaller neighbourhood of u we
may assume V → U is finite locally free of some degree d, see Morphisms, Lemma
48.5. As u 7→ s and Wu = ∅ we see that d = n. Since n is the maximum degree
of a fibre we see that W = ∅! Thus U ×S X → U is finite locally free of degree n.
By Descent, Lemma 23.30 we conclude that X → S is finite locally free of degree n
over Im(U → S) which is an open neighbourhood of s (Morphisms, Lemma 36.13).
This proves the claim.
Let S′ = S \ Sn endowed with the reduced induced scheme structure and set
X ′ = X ×S S′. Note that the degrees of fibres of X ′ → S′ are universally bounded
by n − 1. By induction we find a stratification S′ = S0 ⨿ . . . ⨿ Sn−1 adapted to
the morphism X ′ → S′. We claim that S =

∐
r=0,...,n Sr works for the morphism

X → S. Let g : T → S be a morphism of schemes and assume that X ×S T → T is
finite locally free of degree r. As remarked above this implies that r ≤ n. If r = n,
then it is clear that T → S factors through Sn. If r < n, then g(T ) ⊂ S′ = S \ Sd
(set theoretically) hence Tred → S factors through S′, see Schemes, Lemma 12.7.
Note that X ×S Tred → Tred is also finite locally free of degree r as a base change.
By the universal property of the stratification S′ =

∐
r=0,...,n−1 Sr we see that

g(T ) = g(Tred) is contained in Sr. Conversely, suppose that we have g : T → S
such that g(T ) ⊂ Sr (set theoretically). If r = n, then g factors through Sn and
it is clear that X ×S T → T is finite locally free of degree n as a base change. If
r < n, then X×S T → T is a morphism which is separated, flat, and locally of finite
presentation, such that the restriction to Tred is finite locally free of degree r. Since
Tred → T is a universal homeomorphism, we conclude that X ×S Tred → X ×S T
is a universal homeomorphism too and hence X ×S T → T is universally closed (as
this is true for the finite morphism X×S Tred → Tred). It follows that X×S T → T
is finite, for example by Lemma 44.1. Then we can use Morphisms, Lemma 48.2 to
see that X ×S T → T is finite locally free. Finally, the degree is r as all the fibres
have degree r. □
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Lemma 45.4.07RZ Let f : X → S be a morphism of schemes which is flat, locally of
finite presentation, separated, and quasi-finite. Then there exist closed subsets

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ S

such that with Sr = Zr \ Zr−1 the stratification S =
∐
Sr is characterized by the

following universal property: Given a morphism g : T → S the projection X×ST →
T is finite locally free of degree r if and only if g(T ) ⊂ Sr (set theoretically).
Moreover, the inclusion maps Sr → S are quasi-compact.

Proof. The question is local on S, hence we may assume that S is affine. By
Morphisms, Lemma 57.9 the fibres of f are universally bounded in this case. Hence
the existence of the stratification follows from Lemma 45.3.

We will show that Ur = S \Zr → S is quasi-compact for each r ≥ 0. This will prove
the final statement by elementary topology. Since a composition of quasi-compact
maps is quasi-compact it suffices to prove that Ur → Ur−1 is quasi-compact. Choose
an affine open W ⊂ Ur−1. Write W = Spec(A). Then Zr ∩W = V (I) for some
ideal I ⊂ A and X ×S Spec(A/I) → Spec(A/I) is finite locally free of degree
r. Note that A/I = colimA/Ii where Ii ⊂ I runs through the finitely generated
ideals. By Limits, Lemma 8.8 we see that X ×S Spec(A/Ii) → Spec(A/Ii) is
finite locally free of degree r for some i. (This uses that X → S is of finite
presentation, as it is locally of finite presentation, separated, and quasi-compact.)
Hence Spec(A/Ii) → Spec(A) = W factors (set theoretically) through Zr ∩W . It
follows that Zr ∩W = V (Ii) is the zero set of a finite subset of elements of A. This
means that W \ Zr is a finite union of standard opens, hence quasi-compact, as
desired. □

Lemma 45.5.086R Let f : X → S be a flat, locally of finite presentation, separated,
and locally quasi-finite morphism of schemes. Then there exist open subschemes

S = U0 ⊃ U1 ⊃ U2 ⊃ . . .

such that a morphism Spec(k)→ S where k is a field factors through Ud if and only
if X ×S Spec(k) has degree ≥ d over k.

Proof. The statement simply means that the collection of points where the degree
of the fibre is ≥ d is open. Thus we can work locally on S and assume S is affine. In
this case, for every W ⊂ X quasi-compact open, the set of points Ud(W ) where the
fibres of W → S have degree ≥ d is open by Lemma 45.4. Since Ud =

⋃
W Ud(W )

the result follows. □

Lemma 45.6.082V Let f : X → S be a morphism of schemes which is flat, locally of
finite presentation, and locally quasi-finite. Let g ∈ Γ(X,OX) nonzero. Then there
exist an open V ⊂ X such that g|V ̸= 0, an open U ⊂ S fitting into a commutative
diagram

V //

π

��

X

f

��
U // S,

a quasi-coherent subsheaf F ⊂ OU , an integer r > 0, and an injective OU -module
map F⊕r → π∗OV whose image contains g|V .
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Proof. We may assume X and S affine. We obtain a filtration ∅ = Z−1 ⊂ Z0 ⊂
Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = S as in Lemmas 45.3 and 45.4. Let T ⊂ X be the scheme
theoretic support of the finite OX -module Im(g : OX → OX). Note that T is the
support of g as a section of OX (Modules, Definition 5.1) and for any open V ⊂ X
we have g|V ̸= 0 if and only if V ∩ T ̸= ∅. Let r be the smallest integer such
that f(T ) ⊂ Zr set theoretically. Let ξ ∈ T be a generic point of an irreducible
component of T such that f(ξ) ̸∈ Zr−1 (and hence f(ξ) ∈ Zr). We may replace
S by an affine neighbourhood of f(ξ) contained in S \ Zr−1. Write S = Spec(A)
and let I = (a1, . . . , am) ⊂ A be a finitely generated ideal such that V (I) = Zr
(set theoretically, see Algebra, Lemma 29.1). Since the support of g is contained
in f−1V (I) by our choice of r we see that there exists an integer N such that
aNj g = 0 for j = 1, . . . ,m. Replacing aj by arj we may assume that Ig = 0. For any
A-module M write M [I] for the I-torsion of M , i.e., M [I] = {m ∈ M | Im = 0}.
Write X = Spec(B), so g ∈ B[I]. Since A→ B is flat we see that

B[I] = A[I]⊗A B ∼= A[I]⊗A/I B/IB

By our choice of Zr, the A/I-module B/IB is finite locally free of rank r. Hence
after replacing S by a smaller affine open neighbourhood of f(ξ) we may assume
that B/IB ∼= (A/IA)⊕r as A/I-modules. Choose a map ψ : A⊕r → B which
reduces modulo I to the isomorphism of the previous sentence. Then we see that
the induced map

A[I]⊕r −→ B[I]
is an isomorphism. The lemma follows by taking F the quasi-coherent sheaf asso-
ciated to the A-module A[I] and the map F⊕r → π∗OV the one corresponding to
A[I]⊕r ⊂ A⊕r → B. □

Lemma 45.7.09Z0 Let U → X be a surjective étale morphism of schemes. Assume
X is quasi-compact and quasi-separated. Then there exists a surjective integral
morphism Y → X, such that for every y ∈ Y there is an open neighbourhood
V ⊂ Y such that V → X factors through U . In fact, we may assume Y → X is
finite and of finite presentation.

Proof. Since X is quasi-compact, there exist finitely many affine opens Ui ⊂ U
such that U ′ =

∐
Ui → X is surjective. After replacing U by U ′, we see that

we may assume U is affine. In particular U → X is separated (Schemes, Lemma
21.15). Then there exists an integer d bounding the degree of the geometric fibres
of U → X (see Morphisms, Lemma 57.9). We will prove the lemma by induction
on d for all quasi-compact and separated schemes U mapping surjective and étale
onto X. If d = 1, then U = X and the result holds with Y = U . Assume d > 1.

We apply Lemma 43.2 and we obtain a factorization

U
j

//

  

Y

π~~
X

with π integral and j a quasi-compact open immersion. We may and do assume
that j(U) is scheme theoretically dense in Y . Note that

U ×X Y = U ⨿W
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where the first summand is the image of U → U ×X Y (which is closed by Schemes,
Lemma 21.10 and open because it is étale as a morphism between schemes étale
over Y ) and the second summand is the (open and closed) complement. The image
V ⊂ Y of W is an open subscheme containing Y \ U .
The étale morphism W → Y has geometric fibres of cardinality < d. Namely, this
is clear for geometric points of U ⊂ Y by inspection. Since U ⊂ Y is dense, it holds
for all geometric points of Y for example by Lemma 45.3 (the degree of the fibres
of a quasi-compact separated étale morphism does not go up under specialization).
Thus we may apply the induction hypothesis to W → V and find a surjective
integral morphism Z → V with Z a scheme, which Zariski locally factors through
W . Choose a factorization Z → Z ′ → Y with Z ′ → Y integral and Z → Z ′ open
immersion (Lemma 43.2). After replacing Z ′ by the scheme theoretic closure of Z
in Z ′ we may assume that Z is scheme theoretically dense in Z ′. After doing this
we have Z ′×Y V = Z. Finally, let T ⊂ Y be the induced reduced closed subscheme
structure on Y \ V . Consider the morphism

Z ′ ⨿ T −→ X

This is a surjective integral morphism by construction. Since T ⊂ U it is clear that
the morphism T → X factors through U . On the other hand, let z ∈ Z ′ be a point.
If z ̸∈ Z, then z maps to a point of Y \V ⊂ U and we find a neighbourhood of z on
which the morphism factors through U . If z ∈ Z, then we have a neighbourhood
Ω ⊂ Z which factors through W ⊂ U ×X Y and hence through U . This proves
existence.
Assume we have found Y → X integral and surjective which Zariski locally factors
through U . Choose a finite affine open covering Y =

⋃
Vj such that Vj → X factors

through U . We can write Y = limYi with Yi → X finite and of finite presentation,
see Limits, Lemma 7.3. For large enough i we can find affine opens Vi,j ⊂ Yi whose
inverse image in Y recovers Vj , see Limits, Lemma 4.11. For even larger i the
morphisms Vj → U over X come from morphisms Vi,j → U over X, see Limits,
Proposition 6.1. This finishes the proof. □

46. Application to morphisms with connected fibres

057H In this section we prove some lemmas that produce morphisms all of whose fibres
are geometrically connected or geometrically integral. This will be useful in our
study of the local structure of morphisms of finite type later.

Lemma 46.1.057I Consider a diagram of morphisms of schemes

Z
σ
//

  

X

��
Y

an a point y ∈ Y . Assume
(1) X → Y is of finite presentation and flat,
(2) Z → Y is finite locally free,
(3) Zy ̸= ∅,
(4) all fibres of X → Y are geometrically reduced, and
(5) Xy is geometrically connected over κ(y).
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Then there exists a quasi-compact open X0 ⊂ X such that X0
y = Xy and such that

all nonempty fibres of X0 → Y are geometrically connected.

Proof. In this proof we will use that flat, finite presentation, finite locally free are
properties that are preserved under base change and composition. We will also use
that a finite locally free morphism is both open and closed. You can find these facts
as Morphisms, Lemmas 25.8, 21.4, 48.4, 25.6, 21.3, 48.3, 25.10, and 44.11.
Note that XZ → Z is flat morphism of finite presentation which has a section s
coming from σ. Let X0

Z denote the subset of XZ defined in Situation 29.1. By
Lemma 29.6 it is an open subset of XZ .
The pullback XZ×Y Z of X to Z ×Y Z comes equipped with two sections s0, s1,
namely the base changes of s by pr0,pr1 : Z ×Y Z → Z. The construction of
Situation 29.1 gives two subsets (XZ×Y Z)0

s0
and (XZ×Y Z)0

s1
. By Lemma 29.2 these

are the inverse images of X0
Z under the morphisms 1X × pr0, 1X × pr1 : XZ×Y Z →

XZ . In particular these subsets are open.
Let (Z ×Y Z)y = {z1, . . . , zn}. As Xy is geometrically connected, we see that the
fibres of (XZ×Y Z)0

s0
and (XZ×Y Z)0

s1
over each zi agree (being equal to the whole

fibre). Another way to say this is that
s0(zi) ∈ (XZ×Y Z)0

s1
and s1(zi) ∈ (XZ×Y Z)0

s0
.

Since the sets (XZ×Y Z)0
s0

and (XZ×Y Z)0
s1

are open in XZ×Y Z there exists an open
neighbourhood W ⊂ Z ×Y Z of (Z ×Y Z)y such that

s0(W ) ⊂ (XZ×Y Z)0
s1

and s1(W ) ⊂ (XZ×Y Z)0
s0
.

Then it follows directly from the construction in Situation 29.1 that
p−1(W ) ∩ (XZ×Y Z)0

s0
= p−1(W ) ∩ (XZ×Y Z)0

s1

where p : XZ×Y Z → Z×W Z is the projection. Because Z×Y Z → Y is finite locally
free, hence open and closed, there exists an affine open neighbourhood V ⊂ Y of
y such that q−1(V ) ⊂ W , where q : Z ×Y Z → Y is the structure morphism. To
prove the lemma we may replace Y by V . After we do this we see that X0

Z ⊂ YZ
is an open such that

(1X × pr0)−1(X0
Z) = (1X × pr1)−1(X0

Z).
This means that the image X0 ⊂ X of X0

Z is an open such that (XZ → X)−1(X0) =
X0
Z , see Descent, Lemma 13.6. Finally, X0 is quasi-compact because X0

Z is quasi-
compact by Lemma 29.4 (use that at this point Y is affine, henceX is quasi-compact
and quasi-separated, hence locally constructible is the same as constructible and in
particular quasi-compact; details omitted). In this way we see that X0 has all the
desired properties. □

Lemma 46.2.055W Let h : Y → S be a morphism of schemes. Let s ∈ S be a point.
Let T ⊂ Ys be an open subscheme. Assume

(1) h is flat and of finite presentation,
(2) all fibres of h are geometrically reduced, and
(3) T is geometrically connected over κ(s).

Then we can find an affine elementary étale neighbourhood (S′, s′) → (S, s) and a
quasi-compact open V ⊂ YS′ such that

(a) all fibres of V → S′ are geometrically connected,
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(b) Vs′ = T ×s s′.

Proof. The problem is clearly local on S, hence we may replace S by an affine
open neighbourhood of s. The topology on Ys is induced from the topology on
Y , see Schemes, Lemma 18.5. Hence we can find a quasi-compact open V ⊂ Y
such that Vs = T . The restriction of h to V is quasi-compact (as S affine and V
quasi-compact), quasi-separated, locally of finite presentation, and flat hence flat
of finite presentation. Thus after replacing Y by V we may assume, in addition to
(1) and (2) that Ys = T and S affine.

Pick a closed point y ∈ Ys such that h is Cohen-Macaulay at y, see Lemma 22.7.
By Lemma 23.4 there exists a diagram

Z //

��

Y

��
S

such that Z → S is flat, locally of finite presentation, locally quasi-finite with
Zs = {y}. Apply Lemma 41.1 to find an elementary neighbourhood (S′, s′)→ (S, s)
and an open Z ′ ⊂ ZS′ = S′ ×S Z with Z ′ → S′ finite with a unique point z′ ∈ Z ′

lying over s. Note that Z ′ → S′ is also locally of finite presentation and flat (as
an open of the base change of Z → S), hence Z ′ → S′ is finite locally free, see
Morphisms, Lemma 48.2. Note that YS′ → S′ is flat and of finite presentation with
geometrically reduced fibres as a base change of h. Also Ys′ = Ys is geometrically
connected. Apply Lemma 46.1 to Z ′ → YS′ over S′ to get V ⊂ YS′ quasi-compact
open satisfying (2) whose fibres over S′ are either empty or geometrically connected.
As V → S′ is open (Morphisms, Lemma 25.10), after replacing S′ by an affine open
neighbourhood of s′ we may assume V → S′ is surjective, whence (1) holds. □

Lemma 46.3.0EY5 Let f : X → S be a morphism of schemes which is locally of finite
presentation and flat with geometrically reduced fibres. Then there exists an étale
covering {Xi → X}i∈I such that Xi → S factors as Xi → Si → S where Si → S
is étale and Xi → Si is flat of finite presentation with geometrically connected and
geometrically reduced fibres.

Proof. Pick a point x ∈ X with image s ∈ S. We will produce a diagram

X ′ //

$$

S′ ×S X //

��

X

��
S′ // S

and points s′ ∈ S′, x′ ∈ X ′, y ∈ S′ ×S X such that x′ maps to x, (S′, s′) → (S, s)
is an étale neighbourhood, (X ′, x′)→ (S′×S X, y) is an étale neighbourhood8, and
X ′ → S′ has geometrically connected fibres. If we can do this for every x ∈ X,
then the lemma follows (with members of the covering given by the collection of
étale morphisms X ′ → X so produced). The first step is the replace X and S by
affine open neighbourhoods of x and s which reduces us to the case that X and S
are affine (and hence f of finite presentation).

8The proof actually gives an open X′ ⊂ S′ ×S X.
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Choose a separable algebraic extension k of κ(s). Denote Xk the base change of Xs.
Choose a point x in Xk mapping to x ∈ Xs. Choose a connected quasi-compact
open neighbourhood V ⊂ Xk of x. (This is possible because any scheme locally
of finite type over a field is locally connected as a locally Noetherian topological
space.) By Varieties, Lemma 7.9 we can find a finite separable extension k′/κ(s)
and a quasi-compact open V ′ ⊂ Xk′ whose base change is V . In particular V ′ is
geometrically connected over k′, see Varieties, Lemma 7.7. By Lemma 35.2 we can
find an étale neighbourhood (S′, s′)→ (S, s) such that κ(s′) is isomorphic to k′ as
an extension of κ(s). Denote x′ ∈ (S′ ×S X)s′ = Xk′ the image of x. Thus after
replacing (S, s) by (S′, s′) and (X,x) by (S′×SX,x′) we reduce to the case handled
in the next paragrah.

Assume there is a quasi-compact open V ⊂ Xs which contains x and is geometrically
irreducible. Then we can apply Lemma 46.2 to find an affine étale neighbourhood
(S′, s′) → (S, s) and a quasi-compact open X ′ ⊂ S′ ×S X such that X ′ → S′ has
geometrically connected fibres and such that X ′ contains a point mapping to x.
This finishes the proof. □

Lemma 46.4.057J Let h : Y → S be a morphism of schemes. Let s ∈ S be a point.
Let T ⊂ Ys be an open subscheme. Assume

(1) h is of finite presentation,
(2) h is normal, and
(3) T is geometrically irreducible over κ(s).

Then we can find an affine elementary étale neighbourhood (S′, s′) → (S, s) and a
quasi-compact open V ⊂ YS′ such that

(a) all fibres of V → S′ are geometrically integral,
(b) Vs′ = T ×s s′.

Proof. Apply Lemma 46.2 to find an affine elementary étale neighbourhood (S′, s′)→
(S, s) and a quasi-compact open V ⊂ YS′ such that all fibres of V → S′ are ge-
ometrically connected and Vs′ = T ×s s′. As V is an open of the base change of
h all fibres of V → S′ are geometrically normal, see Lemma 20.2. In particular,
they are geometrically reduced. To finish the proof we have to show they are geo-
metrically irreducible. But, if t ∈ S′ then Vt is of finite type over κ(t) and hence
Vt ×κ(t) κ(t) is of finite type over κ(t) hence Noetherian. By choice of S′ → S the
scheme Vt ×κ(t) κ(t) is connected. Hence Vt ×κ(t) κ(t) is irreducible by Properties,
Lemma 7.6 and we win. □

47. Application to the structure of finite type morphisms

052D The result in this section can be found in [GR71]. Loosely stated it says that a
finite type morphism is étale locally on the source and target the composition of
a finite morphism by a smooth morphism with geometrically connected fibres of
relative dimension equal to the fibre dimension of the original morphism.

Lemma 47.1.052E Let f : X → S be a morphism. Let x ∈ X and set s = f(x).
Assume that f is locally of finite type and that n = dimx(Xs). Then there exists a

https://stacks.math.columbia.edu/tag/057J
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commutative diagram
X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y

h

��

y_

��
S S s s

and a point x′ ∈ X ′ with g(x′) = x such that with y = π(x′) we have
(1) h : Y → S is smooth of relative dimension n,
(2) g : (X ′, x′)→ (X,x) is an elementary étale neighbourhood,
(3) π is finite, and π−1({y}) = {x′}, and
(4) κ(y) is a purely transcendental extension of κ(s).

Moreover, if f is locally of finite presentation then π is of finite presentation.

Proof. The problem is local on X and S, hence we may assume that X and
S are affine. By Algebra, Lemma 125.3 after replacing X by a standard open
neighbourhood of x in X we may assume there is a factorization

X
π // An

S
// S

such that π is quasi-finite and such that κ(π(x)) is purely transcendental over κ(s).
By Lemma 41.1 there exists an elementary étale neighbourhood

(Y, y)→ (An
S , π(x))

and an open X ′ ⊂ X ×An
S
Y which contains a unique point x′ lying over y such

that X ′ → Y is finite. This proves (1) – (4) hold. For the final assertion, use
Morphisms, Lemma 21.11. □

Lemma 47.2.057K Let f : X → S be a morphism. Let x ∈ X and set s = f(x).
Assume that f is locally of finite type and that n = dimx(Xs). Then there exists a
commutative diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y ′

h

��

y′
_

��
S S′eoo s s′�oo

and a point x′ ∈ X ′ with g(x′) = x such that with y′ = π(x′), s′ = h(y′) we have
(1) h : Y ′ → S′ is smooth of relative dimension n,
(2) all fibres of Y ′ → S′ are geometrically integral,
(3) g : (X ′, x′)→ (X,x) is an elementary étale neighbourhood,
(4) π is finite, and π−1({y′}) = {x′},
(5) κ(y′) is a purely transcendental extension of κ(s′), and
(6) e : (S′, s′)→ (S, s) is an elementary étale neighbourhood.

Moreover, if f is locally of finite presentation, then π is of finite presentation.
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Proof. The question is local on S, hence we may replace S by an affine open
neighbourhood of s. Next, we apply Lemma 47.1 to get a commutative diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y

h

��

y_

��
S S s s

where h is smooth of relative dimension n and κ(y) is a purely transcendental
extension of κ(s). Since the question is local on X also, we may replace Y by an
affine neighbourhood of y (and X ′ by the inverse image of this under π). As S
is affine this guarantees that Y → S is quasi-compact, separated and smooth, in
particular of finite presentation. Let T be the connected component of Ys containing
y. As Ys is Noetherian we see that T is open. We also see that T is geometrically
connected over κ(s) by Varieties, Lemma 7.14. Since T is also smooth over κ(s)
it is geometrically normal, see Varieties, Lemma 25.4. We conclude that T is
geometrically irreducible over κ(s) (as a connected Noetherian normal scheme is
irreducible, see Properties, Lemma 7.6). Finally, note that the smooth morphism h
is normal by Lemma 20.3. At this point we have verified all assumption of Lemma
46.4 hold for the morphism h : Y → S and open T ⊂ Ys. As a result of applying
Lemma 46.4 we obtain e : S′ → S, s′ ∈ S′, Y ′ as in the commutative diagram

X

��

X ′
g

oo

π

��

X ′ ×Y Y ′oo

��

x_

��

x′�oo
_

��

(x′, s′)�oo
_

��
Y

h

��

Y ′

��

oo y_

��

(y, s′)�oo
_

��
S S S′eoo s s s′�oo

where e : (S′, s′) → (S, s) is an elementary étale neighbourhood, and where Y ′ ⊂
YS′ is an open neighbourhood all of whose fibres over S′ are geometrically irre-
ducible, such that Y ′

s′ = T via the identification Ys = YS′,s′ . Let (y, s′) ∈ Y ′ be
the point corresponding to y ∈ T ; this is also the unique point of Y ×S S′ ly-
ing over y with residue field equal to κ(y) which maps to s′ in S′. Similarly, let
(x′, s′) ∈ X ′ ×Y Y ′ ⊂ X ′ ×S S′ be the unique point over x′ with residue field equal
to κ(x′) lying over s′. Then the outer part of this diagram is a solution to the
problem posed in the lemma. Some minor details omitted. □

Lemma 47.3.057L Assumption and notation as in Lemma 47.2. In addition to prop-
erties (1) – (6) we may also arrange it so that

(7) S′, Y ′, X ′ are affine.

Proof. Note that if Y ′ is affine, then X ′ is affine as π is finite. Choose an affine
open neighbourhood U ′ ⊂ S′ of s′. Choose an affine open neighbourhood V ′ ⊂
h−1(U ′) of y′. Let W ′ = h(V ′). This is an open neighbourhood of s′ in S′, see
Morphisms, Lemma 34.10, contained in U ′. Choose an affine open neighbourhood
U ′′ ⊂ W ′ of s′. Then h−1(U ′′) ∩ V ′ is affine because it is equal to U ′′ ×U ′ V ′. By
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construction h−1(U ′′)∩V ′ → U ′′ is a surjective smooth morphism whose fibres are
(nonempty) open subschemes of geometrically integral fibres of Y ′ → S′, and hence
geometrically integral. Thus we may replace S′ by U ′′ and Y ′ by h−1(U ′′)∩V ′. □

The significance of the property π−1({y′}) = {x′} is partially explained by the
following lemma.
Lemma 47.4.05B8 Let π : X → Y be a finite morphism. Let x ∈ X with y = π(x)
such that π−1({y}) = {x}. Then

(1) For every neighbourhood U ⊂ X of x in X, there exists a neighbourhood
V ⊂ Y of y such that π−1(V ) ⊂ U .

(2) The ring map OY,y → OX,x is finite.
(3) If π is of finite presentation, then OY,y → OX,x is of finite presentation.
(4) For any quasi-coherent OX-module F we have Fx = π∗Fy as OY,y-modules.

Proof. The first assertion is purely topological; use that π is a continuous and
closed map such that π−1({y}) = {x}. To prove the second and third parts we
may assume X = Spec(B) and Y = Spec(A). Then A → B is a finite ring map
and y corresponds to a prime p of A such that there exists a unique prime q of B
lying over p. Then Bq = Bp, see Algebra, Lemma 41.11. In other words, the map
Ap → Bq is equal to the map Ap → Bp you get from localizing A→ B at p. Thus
(2) and (3) follow from simple properties of localization (some details omitted). For
the final statement, suppose that F = M̃ for some B-module M . Then F = Mq

and π∗Fy = Mp. By the above these localizations agree. Alternatively you can use
part (1) and the definition of stalks to see that Fx = π∗Fy directly. □

48. Application to the fppf topology

05WM We can use the above étale localization techniques to prove the following result
describing the fppf topology as being equal to the topology “generated by” Zariski
coverings and by coverings of the form {f : T → S} where f is surjective finite
locally free.
Lemma 48.1.0DET Let S be a scheme. Let {Si → S}i∈I be an fppf covering. Then
there exist

(1) an étale covering {S′
a → S},

(2) surjective finite locally free morphisms Va → S′
a,

such that the fppf covering {Va → S} refines the given covering {Si → S}.
Proof. We may assume that each Si → S is locally quasi-finite, see Lemma 23.6.
Fix a point s ∈ S. Pick an i ∈ I and a point si ∈ Si mapping to s. Choose an
elementary étale neighbourhood (S′, s)→ (S, s) such that there exists an open

Si ×S S′ ⊃ V
which contains a unique point v ∈ V mapping to s ∈ S′ and such that V → S′ is
finite, see Lemma 41.1. Then V → S′ is finite locally free, because it is finite and
because Si×SS′ → S′ is flat and locally of finite presentation as a base change of the
morphism Si → S, see Morphisms, Lemmas 21.4, 25.8, and 48.2. Hence V → S′ is
open, and after shrinking S′ we may assume that V → S′ is surjective finite locally
free. Since we can do this for every point of S we conclude that {Si → S} can
be refined by a covering of the form {Va → S}a∈A where each Va → S factors as
Va → S′

a → S with S′
a → S étale and Va → S′

a surjective finite locally free. □
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Lemma 48.2.05WN Let S be a scheme. Let {Si → S}i∈I be an fppf covering. Then
there exist

(1) a Zariski open covering S =
⋃
Uj,

(2) surjective finite locally free morphisms Wj → Uj,
(3) Zariski open coverings Wj =

⋃
kWj,k,

(4) surjective finite locally free morphisms Tj,k →Wj,k

such that the fppf covering {Tj,k → S} refines the given covering {Si → S}.

Proof. Let {Va → S}a∈A be the fppf covering found in Lemma 48.1. In other
words, this covering refines {Si → S} and each Va → S factors as Va → S′

a → S
with S′

a → S étale and Va → S′
a surjective finite locally free.

By Remark 40.3 there exists a Zariski open covering S =
⋃
Uj , for each j a finite

locally free, surjective morphism Wj → Uj , and for each j a Zariski open covering
{Wj,k →Wj} such that the family {Wj,k → S} refines the étale covering {S′

a → S},
i.e., for each pair j, k there exists an a(j, k) and a factorization Wj,k → S′

a → S of
the morphism Wj,k → S. Set Tj,k = Wj,k ×S′

a
Va and everything is clear. □

Lemma 48.3.0CNX Let S be a scheme. If U ⊂ S is open and V → U is a surjective
integral morphism, then there exists a surjective integral morphism V → S with
V ×S U isomorphic to V as schemes over U .

Proof. Let V ′ → S be the normalization of S in U , see Morphisms, Section 53.
By construction V ′ → S is integral. By Morphisms, Lemmas 53.6 and 53.12 we
see that the inverse image of U in V ′ is V . Let Z be the reduced induced scheme
structure on S \ U . Then V = V ′ ⨿ Z works. □

Lemma 48.4.0CNY Let S be a quasi-compact and quasi-separated scheme. If U ⊂ S is
a quasi-compact open and V → U is a surjective finite morphism, then there exists
a surjective finite morphism V → S with V ×S U isomorphic to V as schemes over
U .

Proof. By Zariski’s Main Theorem (Lemma 43.3) we can assume V is a quasi-
compact open in a scheme V ′ finite over S. After replacing V ′ by the scheme
theoretic image of V we may assume that V is dense in V ′. It follows that V ′×SU =
V because V → V ′×SU is closed as V is finite over U . Let Z be the reduced induced
scheme structure on S \ U . Then V = V ′ ⨿ Z works. □

Lemma 48.5.0CNZ Let S be a scheme. Let {Si → S}i∈I be an fppf covering. Then
there exists a surjective integral morphism S′ → S and an open covering S′ =

⋃
U ′
α

such that for each α the morphism U ′
α → S factors through Si → S for some i.

Proof. Choose S =
⋃
Uj , Wj → Uj , Wj =

⋃
Wj,k, and Tj,k → Wj,k as in Lemma

48.2. By Lemma 48.3 we can extend Wj → Uj to a surjective integral morphism
W j → S. After this we can extend Tj,k → Wj,k to a surjective integral morphism
T j,k →W j . We set T j equal to the product of all the schemes T j,k over W j (Limits,
Lemma 3.1). Then we set S′ equal to the product of all the schemes T j over S. If
x ∈ S′, then there is a j such that the image of x in S lies in Uj . Hence there is a k
such that the image of x under the projection S′ → W j lies in Wj,k. Hence under
the projection S′ → T j → T j,k the point x ends up in Tj,k. And Tj,k → S factors
through Si for some i. Finally, the morphism S′ → S is integral and surjective by
Limits, Lemmas 3.3 and 3.2. □
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Lemma 48.6.0CP0 Let S be a quasi-compact and quasi-separated scheme. Let {Si →
S}i∈I be an fppf covering. Then there exists a surjective finite morphism S′ → S
of finite presentation and an open covering S′ =

⋃
U ′
α such that for each α the

morphism U ′
α → S factors through Si → S for some i.

Proof. Let Y → X be the integral surjective morphism found in Lemma 48.5.
Choose a finite affine open covering Y =

⋃
Vj such that Vj → X factors through

Si(j). We can write Y = limYλ with Yλ → X finite and of finite presentation,
see Limits, Lemma 7.3. For large enough λ we can find affine opens Vλ,j ⊂ Yλ
whose inverse image in Y recovers Vj , see Limits, Lemma 4.11. For even larger λ
the morphisms Vj → Si(j) over X come from morphisms Vλ,j → Si(j) over X, see
Limits, Proposition 6.1. Setting S′ = Yλ for this λ finishes the proof. □

Lemma 48.7.0DBT An fppf covering of schemes is a ph covering.

Proof. Let {Ti → T} be an fppf covering of schemes, see Topologies, Definition
7.1. Observe that Ti → T is locally of finite type. Let U ⊂ T be an affine open.
It suffices to show that {Ti ×T U → U} can be refined by a standard ph covering,
see Topologies, Definition 8.4. This follows immediately from Lemma 48.6 and the
fact that a finite morphism is proper (Morphisms, Lemma 44.11). □

Remark 48.8.0DBU As a consequence of Lemma 48.7 we obtain a comparison morphism
ϵ : (Sch/S)ph −→ (Sch/S)fppf

This is the morphism of sites given by the identity functor on underlying categories
(with suitable choices of sites as in Topologies, Remark 11.1). The functor ϵ∗ is the
identity on underlying presheaves and the functor ϵ−1 associated to an fppf sheaf
its ph sheafification. By composition we can in addition compare the ph topology
with the syntomic, smooth, étale, and Zariski topologies.

49. Quasi-projective schemes

0B41 The term “quasi-projective scheme” has not yet been defined. A possible definition
could be a scheme which has an ample invertible sheaf. However, if X is a scheme
over a base scheme S, then we say that X is quasi-projective over S if the mor-
phism X → S is quasi-projective (Morphisms, Definition 40.1). Since the identity
morphism of any scheme is quasi-projective, we see that a scheme quasi-projective
over S doesn’t necessarily have an ample invertible sheaf. For this reason it seems
better to leave the term “quasi-projective scheme” undefined.

Lemma 49.1.0B42 Let S be a scheme which has an ample invertible sheaf. Let f :
X → S be a morphism of schemes. The following are equivalent

(1) X → S is quasi-projective,
(2) X → S is H-quasi-projective,
(3) there exists a quasi-compact open immersion X → X ′ of schemes over S

with X ′ → S projective,
(4) X → S is of finite type and X has an ample invertible sheaf, and
(5) X → S is of finite type and there exists an f -very ample invertible sheaf.

Proof. The implication (2) ⇒ (1) is Morphisms, Lemma 40.5. The implication
(1) ⇒ (2) is Morphisms, Lemma 43.16. The implication (2) ⇒ (3) is Morphisms,
Lemma 43.11

https://stacks.math.columbia.edu/tag/0CP0
https://stacks.math.columbia.edu/tag/0DBT
https://stacks.math.columbia.edu/tag/0DBU
https://stacks.math.columbia.edu/tag/0B42


MORE ON MORPHISMS 143

Assume X ⊂ X ′ is as in (3). In particular X → S is of finite type. By Morphisms,
Lemma 43.11 the morphism X → S is H-projective. Thus there exists a quasi-
compact immersion i : X → Pn

S . Hence L = i∗OPn
S
(1) is f -very ample. As X → S

is quasi-compact we conclude from Morphisms, Lemma 38.2 that L is f -ample.
Thus X → S is quasi-projective by definition.

The implication (4) ⇒ (2) is Morphisms, Lemma 39.3.

Assume the equivalent conditions (1), (2), (3) hold. Choose an immersion i : X →
Pn
S over S. Let L be an ample invertible sheaf on S. To finish the proof we

will show that N = f∗L ⊗OX
i∗OPn

S
(1) is ample on X. By Properties, Lemma

26.14 we reduce to the case X = Pn
S . Let s ∈ Γ(S,L⊗d) be a section such that the

corresponding open Ss is affine. Say Ss = Spec(A). Recall that Pn
S is the projective

bundle associated to OST0 ⊕ . . . ⊕ OSTn, see Constructions, Lemma 21.5 and its
proof. Let si ∈ Γ(Pn

S ,O(1)) be the global section corresponding to the section Ti
of OST0 ⊕ . . . ⊕OSTn. Then we see that Xf∗s⊗s⊗n

i
is affine because it is equal to

Spec(A[T0/Ti, . . . , Tn/Ti]). This proves that N is ample by definition.

The equivalence of (1) and (5) follows from Morphisms, Lemmas 38.2 and 39.5. □

Lemma 49.2.0B43 Let S be a scheme which has an ample invertible sheaf. Let QPS
be the full subcategory of the category of schemes over S satisfying the equivalent
conditions of Lemma 49.1.

(1) if S′ → S is a morphism of schemes and S′ has an ample invertible sheaf,
then base change determines a functor QPS → QPS′ ,

(2) if X ∈ QPS and Y ∈ QPX , then Y ∈ QPS,
(3) the category QPS is closed under fibre products,
(4) the category QPS is closed under finite disjoint unions,
(5) if X → S is projective, then X ∈ QPS,
(6) if X → S is quasi-affine of finite type, then X is in QPS,
(7) if X → S is quasi-finite and separated, then X ∈ QPS,
(8) if X → S is a quasi-compact immersion, then X ∈ QPS,
(9) add more here.

Proof. Part (1) follows from Morphisms, Lemma 40.2.

Part (2) follows from the fourth characterization of Lemma 49.1.

If X → S and Y → S are quasi-projective, then X ×S Y → Y is quasi-projective
by Morphisms, Lemma 40.2. Hence (3) follows from (2).

If X = Y ⨿ Z is a disjoint union of schemes and L is an invertible OX -module
such that L|Y and L|Z are ample, then L is ample (details omitted). Thus part (4)
follows from the fourth characterization of Lemma 49.1.

Part (5) follows from Morphisms, Lemma 43.10.

Part (6) follows from Morphisms, Lemma 40.7.

Part (7) follows from part (6) and Lemma 43.2.

Part (8) follows from part (7) and Morphisms, Lemma 20.16. □

The following lemma doesn’t really belong in this section, but there does not seem
to be a good spot for it anywhere else.
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Lemma 49.3.0EJY Let X be a quasi-affine scheme. Let f : U → X be an integral
morphism. Then U is quasi-affine and the diagram

U //

��

Spec(Γ(U,OU ))

��
X // Spec(Γ(X,OX))

is cartesian.

Proof. The scheme U is quasi-affine because integral morphisms are affine, affine
morphisms are quasi-affine, a scheme is quasi-affine if and only if the structure
morphism to Spec(Z) is quasi-affine, and compositions of quasi-affine morphisms
are quasi-affine. The first two statements follow immediately from the definition and
the third is Morphisms, Lemma 13.4. Set U ′ = X ×Spec(Γ(X,OX )) Spec(Γ(U,OU ))
and consider the extended diagram

U
j
//

��

U ′

��

// Spec(Γ(U,OU ))

��
X // Spec(Γ(X,OX))

The morphism j is closed by Morphisms, Lemma 41.7 combined with the fact
that an integral morphism is universally closed (Morphisms, Lemma 44.7) and
the fact that the vertical arrows are in the diagram are separated. On the other
hand, j is open because the horizontal arrows in the diagram of the lemma are
open by Properties, Lemma 18.4. Thus j identifies U with an open and closed
subscheme of U ′. If U ̸= U ′ then U isn’t dense in U ′ and a fortiori not dense in the
spectrum of Γ(U,OU ). However, the scheme theoretic image of U in Spec(Γ(U,OU ))
is Spec(Γ(U,OU )) because any ideal in Γ(U,OU ) cutting out a closed subscheme
through which U factors would have to be zero. Hence U is dense in Spec(Γ(U,OU ))
for example by Morphisms, Lemma 6.3. Thus U = U ′ and we win. □

50. Projective schemes

0B44 This section is the analogue of Section 49 for projective morphisms.

Lemma 50.1.0B45 Let S be a scheme which has an ample invertible sheaf. Let f :
X → S be a morphism of schemes. The following are equivalent

(1) X → S is projective,
(2) X → S is H-projective,
(3) X → S is quasi-projective and proper,
(4) X → S is H-quasi-projective and proper,
(5) X → S is proper and X has an ample invertible sheaf,
(6) X → S is proper and there exists an f -ample invertible sheaf,
(7) X → S is proper and there exists an f -very ample invertible sheaf,
(8) there is a quasi-coherent graded OS-algebra A generated by A1 over A0 with
A1 a finite type OS-module such that X = Proj

S
(A).

Proof. Observe first that in each case the morphism f is proper, see Morphisms,
Lemmas 43.3 and 43.5. Hence it suffices to prove the equivalence of the notions

https://stacks.math.columbia.edu/tag/0EJY
https://stacks.math.columbia.edu/tag/0B45
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in case f is a proper morphism. We will use this without further mention in the
following.

The equivalences (1) ⇔ (3) and (2) ⇔ (4) are Morphisms, Lemma 43.13.

The implication (2) ⇒ (1) is Morphisms, Lemma 43.3.

The implications (1) ⇒ (2) and (3) ⇒ (4) are Morphisms, Lemma 43.16.

The implication (1)⇒ (7) is immediate from Morphisms, Definitions 43.1 and 38.1.

The conditions (3) and (6) are equivalent by Morphisms, Definition 40.1.

Thus (1) – (4), (6) are equivalent and imply (7). By Lemma 49.1 conditions (3),
(5), and (7) are equivalent. Thus we see that (1) – (7) are equivalent.

By Divisors, Lemma 30.5 we see that (8) implies (1). Conversely, if (2) holds, then
we can choose a closed immersion

i : X −→ Pn
S = Proj

S
(OS [T0, . . . , Tn]).

See Constructions, Lemma 21.5 for the equality. By Divisors, Lemma 31.1 we
see that X is the relative Proj of a quasi-coherent graded quotient algebra A of
OS [T0, . . . , Tn]. Then A satisfies the conditions of (8). □

Lemma 50.2.0B46 Let S be a scheme which has an ample invertible sheaf. Let PS
be the full subcategory of the category of schemes over S satisfying the equivalent
conditions of Lemma 50.1.

(1) if S′ → S is a morphism of schemes and S′ has an ample invertible sheaf,
then base change determines a functor PS → PS′ ,

(2) if X ∈ PS and Y ∈ PX , then Y ∈ PS,
(3) the category PS is closed under fibre products,
(4) the category PS is closed under finite disjoint unions,
(5) if X → S is finite, then X is in PS,
(6) add more here.

Proof. Part (1) follows from Morphisms, Lemma 43.9.

Part (2) follows from the fifth characterization of Lemma 50.1 and the fact that
compositions of proper morphisms are proper (Morphisms, Lemma 41.4).

If X → S and Y → S are projective, then X×S Y → Y is projective by Morphisms,
Lemma 43.9. Hence (3) follows from (2).

If X = Y ⨿ Z is a disjoint union of schemes and L is an invertible OX -module
such that L|Y and L|Z are ample, then L is ample (details omitted). Thus part (4)
follows from the fifth characterization of Lemma 50.1.

Part (5) follows from Morphisms, Lemma 44.16. □

Here is a slightly different type of result.

Lemma 50.3.0D2S [DG67, IV Corollary
9.6.4]

Let f : X → Y be a proper morphism of schemes. Let L be
an invertible OX-module. Let y ∈ Y be a point such that Ly is ample on Xy.
Then there is an open neighbourhood V ⊂ Y of y such that L|f−1(V ) is ample on
f−1(V )/V .

https://stacks.math.columbia.edu/tag/0B46
https://stacks.math.columbia.edu/tag/0D2S
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Proof. We may assume Y is affine. Then we find a directed set I and an inverse
system of morphisms Xi → Yi of schemes with Yi of finite type over Z, with affine
transition morphisms Xi → Xi′ and Yi → Yi′ , with Xi → Yi proper, such that
X → Y = lim(Xi → Yi). See Limits, Lemma 13.3. After shrinking I we can
assume we have a compatible system of invertible OXi

-modules Li pulling back to
L, see Limits, Lemma 10.3. Let yi ∈ Yi be the image of y. Then κ(y) = colim κ(yi).
Hence for some i we have Li,yi is ample on Xi,yi by Limits, Lemma 4.15. By
Cohomology of Schemes, Lemma 21.4 we find an open neigbourhood Vi ⊂ Yi of
yi such that Li restricted to f−1

i (Vi) is ample relative to Vi. Letting V ⊂ Y be
the inverse image of Vi finishes the proof (hints: use Morphisms, Lemma 37.9 and
the fact that X → Y ×Yi

Xi is affine and the fact that the pullback of an ample
invertible sheaf by an affine morphism is ample by Morphisms, Lemma 37.7). □

51. Proj and Spec

0EKF In this section we clarify the relationship between the Proj and the spectrum of a
graded ring.
Let R be a ring. Let A be a graded R-algebra, see Algebra, Section 56. For m ≥ 0
we denote A≥m =

⊕
d≥mAd. Consider the graded ring

B =
⊕

d≥0
A≥d

For d′ ≥ d and a ∈ Ad′ let us denote a(d) ∈ B the element in Bd corresponding to
a. Let us denote σ : A→ B and ψ : A→ B the two obvious ring maps: if a ∈ Ad,
then σ(a) = a(0) and ψ(a) = a(d). Then ψ is a graded ring map and σ turns B into
a graded algebra over A. There is also a surjective graded ring map τ : B → A
which for d′ ≥ d and a ∈ Ad′ sends a(d) to 0 if d′ > d and to a if d′ = d.
Affine schemes and spectra. We set X = Spec(A). The irrelevant ideal A+ cuts
out a closed subscheme Z = V (A+) = Spec(A/A+) = Spec(A0). Set U = X \ Z.

U −→ X −→ Z

Projective schemes and Proj. Set P = Proj(A). We may and do view P as a scheme
over Spec(A0) = Z. Set L = Proj(B). We may and do view L as a scheme over
Spec(B0) = Spec(A) = X; observe that the identification of B0 with A is given by
σ. The surjection τ defines a closed immersion 0 : P → L. Since A σ−→ B → A is
equal to the map A→ A0 → A we conclude that

P

��

0
// L

��
Z // X

is commutative.
We claim that ψ defines a morphism L→ P . To see this, by Constructions, Lemma
11.1, it suffices to check ψ(A+) ̸⊂ p for every homogeneous prime ideal p ⊂ B with
B+ ̸⊂ p. First, pick g ∈ B+ homogeneous g ̸∈ p. Then we can write g as a finite
sum g =

∑
a

(d)
i with ai ∈ Adi

for some di ≥ d. We conclude that there exist d′ ≥ d
and a ∈ Ad′ such that a(d) ̸∈ p. Then

(a(d))d
′

= (ad
′
)(d′d) = a(d)(ad

′−1)(d(d′−1)) = ψ(a)(ad
′−1)(d(d′−1))
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(the notation leaves something to be desired) is not in p. Hence ψ(a) ̸∈ p, proving
the claim. Thus we can extend our diagram above to a commutative diagram

P

��

0
// L

��

π
// P

��
Z // X // Z

where X → Z is given by A0 → A. Since τ ◦ ψ = idA we see π ◦ 0 = idP .

Observe that π is an affine morphism. This is clear from the construction in Con-
structions, Lemma 11.1. In fact, if f ∈ Ad for some d > 0, then setting g = ψ(f)
we have π−1(D+(f)) = D+(g). In this case we have the following equality of
homogeneous parts

(B[1/g])m′ =
⊕

m≥m′
(A[1/f ])m

This isomorphism is compatible with further localization. Taking m′ = 0 we see
that π∗OL is the direct sum of OP (m) for m ≥ 09. We conclude L is idendified
with the relative spectrum:

L = Spec
P

(⊕
m≥0
OP (m)

)
In particular L→ P is a cone10, see Constructions, Section 7. Moreover, it is clear
that 0 : P → L is the vertex of the cone.

Let f ∈ Ad for some d > 0 and g = ψ(f) ∈ Bd as in the previous paragraph.
Looking at the structure of the ring maps

A0 //

��

A

σ

��

// A0

��
(A[1/f ])0

ψ // (B[1/g])0 =
⊕

m≥0(A[1/f ])m
τ // (A[1/f ])0

some compuations11 in graded rings will show that
(1) σ(A+)(B[1/g])0 ⊂ Ker(τ : (B[1/g])0 → (A[1/f ])0),
(2) σ(f) ∈ (B[1/g])0 is a nonzerodivisor,
(3) σ(f)(B[1/g])0 = σ(Ad)(B[1/g])0 as ideals,
(4) σ(f)(B[1/g])0 and Ker(τ : (B[1/g])0 → (A[1/f ])0) have the same radical,
(5) if d = 1, then σ(f)(B[1/g])0 = Ker(τ : (B[1/g])0 → (A[1/f ])0).

We see in particular that

0(D+(f)) = V (σ(f)) ⊂ D+(g) = Spec((B[1/g])0)

9It similarly follows that π∗OL(i) =
⊕

m≥−i
OP (m).

10Often L is a line bundle over P , see below.
11Parts (1) and (2) are clear. To see (3), note that if a ∈ Ad, then σ(a) = σ(f)ψ(a/f). For

(4) note that b/gm is in the kernel of τ if and only if b ∈ A≥md maps to zero in Amd. Thus it
suffices to show if m′ > md and a ∈ Am′ , then some power of a(md)/gm is in the ideal generated
by σ(f). Take e such that em′ − emd ≥ d. Then

(a(md)/gm)e = (ae)(emd)/gem = (fae)(emd+d)/gem+1 = σ(f) · (ae)(emd+d)/gem+1

as desired (apologies for the terrible notation). To see (5) argue as before and note that
a(md)/gm = σ(f) · a(md+1)/gm+1 if d = 1.
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set theoretically. In other words, the ideal generated by σ(Ad) cuts out an effective
Cartier divisor on D+(g) which is set theoretically equal to the image of the closed
immersion 0 : P → L.

We claim that L→ X is an isomorphism over U . Namely, if f ∈ Ad for some d > 0,
then

Spec(Af )×X L = Proj(Af ⊗A B) = Proj(Bσ(f))
For each e we have (Bσ(f))e = Af ⊗B Be = Af ⊗A A≥e = Af , the final equality
induced by the injection A≥e ⊂ A. Hence Bσ(f) ∼= Af [T ] with T in degree 1. This
proves the claim as Proj(Af [T ]) → Spec(Af ) is an isomorphism. From now on we
identify U with the corresponding open of L.

The identification made in the previous paragraph lets us consider the restriction
π|U : U → P . Pick f ∈ Ad for some d > 0 and g = ψ(f) ∈ Bd as we have done
above several times. Then

U ∩ π−1(D+(f)) = U ∩D+(g)

is the complement of the zero locus of σ(f) ∈ (B[1/g])0 via the identification of
D+(g) with the spectrum of (B[1/g])0. This is assertion (4) above. Therefore
U ∩D+(g) is affine and

OL(U ∩D+(g)) = (B[1/g])0[1/σ(f)] =
⊕

m∈Z
(A[1/f ])m

where the last equal sign is the natural extension of the identification (B[1/g])0 =⊕
m≥0(A[1/f ])m made above. Exactly as we did before with π : L→ P we conclude

that π|U : U → P is affine and

U = Spec
P

(⊕
m∈Z

OP (m)
)

as schemes over P .

Summarising the above, our constructions produce a commutative diagram

(51.0.1)0EKG

Spec
P

(⊕
m∈ZOP (m)

)
// L = Spec

P

(⊕
m≥0OP (m)

)
σ

��

π
// P

��
U // X // Z

of schemes where π is a cone whose zero section 0 : P → L maps set theoretically
onto the inverse image of Z in L.

Let W ⊂ P be the largest open such that OP (1)|W is invertible and the natural
maps induce isomorphisms OP (m)|W ∼= OP (1)⊗m|W for all m ∈ Z, i.e., the open
of Constructions, Lemma 10.4 for d = 1. Then we see that L|W = π−1(W ) → W
is a vector bundle (Constructions, Section 6) of rank 1, namely,

L|W = V(OP (1)|W )

in Grothendieckian notation. This is immediate from the above showing that L|W
is equal to the relative spectrum of the symmetric algebra over OW on OP (1)|W .
Then clearly the morphism 0|W : W → L|W is the zero section of this vector
bundle. In particular 0(W ) is an effective Cartier divisor on L|W . Moreover, the
open U |W = (π|U )−1(W ) is the complement of the zero section.
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If A is generated by f1, . . . , fr ∈ A1 over A0, then (f1, . . . , fr)m = A≥m for all
m ≥ 0 and hence our B above is the Rees algebra for A+ = (f1, . . . , fr). Thus in
this case L → X is the blowup of Z and W = P where W is as in the preceding
paragraph.
If P is quasi-compact, then for d sufficiently divisible, the closed subscheme D ⊂ L
cut out by σ(Ad)OL is an effective Cartier divisor, 0 : P → L factors through D,
and 0(P ) = D set theoretically. This follows from Constructions, Lemma 8.9 and
(1), (2), (3), and (4) proved above. (Take any d divisible by the lcm of the degrees
of the elements found in the lemma.)
We continue to assume P is quasi-compact. Let F be a quasi-coherent OP -module.
Let us set FU = π∗F|U . Then we have

(51.0.2)0EKH RΓ(U,FU ) =
⊕

m∈Z
RΓ(P,F ⊗OP

OP (m))

Moreover, this direct sum decomposition is functorial in F and the induced A-
module structure on the right is the same as the A-module structure on the left
coming from U ⊂ X. To prove the formula, since π|U is affine and (π|U )∗OU =⊕

m∈ZOP (m) we get
R(π|U )∗FU = (π|U )∗FU

= (π|U )∗(π|U )∗F

= F ⊗OP

⊕
m∈Z

OP (m)

=
⊕

m∈Z
F ⊗OP

OP (m)

By Leray we find that RΓ(U,FU ) = RΓ(P,R(π|U )∗FU ), see Cohomology, Lemma
13.6. The proof is finished because taking cohomology commutes with direct sums
in this case, see Derived Categories of Schemes, Lemma 4.5. This is where we use
that P is quasi-compact; P is separated by Constructions, Lemma 8.8.

Lemma 51.1.0EKI Let R be a ring. Let P be a proper scheme over R and let L be an
ample invertible OP -module. Set A =

⊕
m≥0 Γ(P,L⊗m). Then P = Proj(A) and

diagram (51.0.1) becomes the diagram

Spec
P

(⊕
m∈Z L⊗m)

// L = Spec
P

(⊕
m≥0 L⊗m

)
σ

��

π
// P

��
U // X // Z

having the properties explained above.

Proof. We have P = Proj(A) by Morphisms, Lemma 43.17. Moreover, by Proper-
ties, Lemma 28.2 via this identification we have OP (m) = L⊗m for all m ∈ Z. □

52. Closed points in fibres

053Q Some of the material in this section is taken from the preprint [OP10].

Lemma 52.1.053R Let f : X → S be a morphism of schemes. Let Z ⊂ X be a closed
subscheme. Let s ∈ S. Assume

(1) S is irreducible with generic point η,
(2) X is irreducible,

https://stacks.math.columbia.edu/tag/0EKI
https://stacks.math.columbia.edu/tag/053R
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(3) f is dominant,
(4) f is locally of finite type,
(5) dim(Xs) ≤ dim(Xη),
(6) Z is locally principal in X, and
(7) Zη = ∅.

Then the fibre Zs is (set theoretically) a union of irreducible components of Xs.

Proof. Let Xred denote the reduction of X. Then Z ∩Xred is a locally principal
closed subscheme of Xred, see Divisors, Lemma 13.11. Hence we may assume that
X is reduced. In other words X is integral, see Properties, Lemma 3.4. In this case
the morphism X → S factors through Sred, see Schemes, Lemma 12.7. Thus we
may replace S by Sred and assume that S is integral too.
The assertion that f is dominant signifies that the generic point of X is mapped
to η, see Morphisms, Lemma 8.6. Moreover, the scheme Xη is an integral scheme
which is locally of finite type over the field κ(η). Hence d = dim(Xη) ≥ 0 is equal
to dimξ(Xη) for every point ξ of Xη, see Algebra, Lemmas 114.4 and 114.5. In view
of Morphisms, Lemma 28.4 and condition (5) we conclude that dimx(Xs) = d for
every x ∈ Xs.
In the Noetherian case the assertion can be proved as follows. If the lemma does
not holds there exists x ∈ Zs which is a generic point of an irreducible component
of Zs but not a generic point of any irreducible component of Xs. Then we see
that dimx(Zs) ≤ d − 1, because dimx(Xs) = d and in a neighbourhood of x in
Xs the closed subscheme Zs does not contain any of the irreducible components
of Xs. Hence after replacing X by an open neighbourhood of x we may assume
that dimz(Zf(z)) ≤ d − 1 for all z ∈ Z, see Morphisms, Lemma 28.4. Let ξ′ ∈ Z
be a generic point of an irreducible component of Z and set s′ = f(ξ). As Z ̸= X
is locally principal we see that dim(OX,ξ) = 1, see Algebra, Lemma 60.11 (this is
where we use X is Noetherian). Let ξ ∈ X be the generic point of X and let ξ1
be a generic point of any irreducible component of Xs′ which contains ξ′. Then we
see that we have the specializations

ξ ⇝ ξ1 ⇝ ξ′.

As dim(OX,ξ) = 1 one of the two specializations has to be an equality. By assump-
tion s′ ̸= η, hence the first specialization is not an equality. Hence ξ′ = ξ1 is a
generic point of an irreducible component of Xs′ . Applying Morphisms, Lemma
28.4 one more time this implies dimξ′(Zs′) = dimξ′(Xs′) ≥ dim(Xη) = d which
gives the desired contradiction.
In the general case we reduce to the Noetherian case as follows. If the lemma is
false then there exists a point x ∈ X lying over s such that x is a generic point of
an irreducible component of Zs, but not a generic point of any of the irreducible
components of Xs. Let U ⊂ S be an affine neighbourhood of s and let V ⊂ X be an
affine neighbourhood of x with f(V ) ⊂ U . Write U = Spec(A) and V = Spec(B)
so that f |V is given by a ring map A → B. Let q ⊂ B, resp. p ⊂ A be the prime
corresponding to x, resp. s. After possibly shrinking V we may assume Z ∩ V is
cut out by some element g ∈ B. Denote K the fraction field of A. What we know
at this point is the following:

(1) A ⊂ B is a finitely generated extension of domains,
(2) the element g ⊗ 1 is invertible in B ⊗A K,
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(3) d = dim(B ⊗A K) = dim(B ⊗A κ(p)),
(4) g ⊗ 1 is not a unit of B ⊗A κ(p), and
(5) g ⊗ 1 is not in any of the minimal primes of B ⊗A κ(p).

We are seeking a contradiction.
Pick elements x1, . . . , xn ∈ B which generate B over A. For a finitely generated
Z-algebra A0 ⊂ A let B0 ⊂ B be the A0-subalgebra generated by x1, . . . , xn, denote
K0 the fraction field of A0, and set p0 = A0 ∩ p. We claim that when A0 is large
enough then (1) – (5) also hold for the system (A0 ⊂ B0, g, p0).
We prove each of the conditions in turn. Part (1) holds by construction. For part
(2) write (g⊗ 1)h = 1 for some h⊗ 1/a ∈ B⊗AK. Write g =

∑
aIx

I , h =
∑
a′
Ix
I

(multi-index notation) for some coefficients aI , a′
I ∈ A. As soon as A0 contains a

and the aI , a′
I then (2) holds because B0⊗A0 K0 ⊂ B⊗AK (as localizations of the

injective map B0 → B). To achieve (3) consider the exact sequence
0→ I → A[X1, . . . , Xn]→ B → 0

which defines I where the second map sends Xi to xi. Since ⊗ is right exact we see
that I⊗AK, respectively I⊗A κ(p) is the kernel of the surjection K[X1, . . . , Xn]→
B ⊗A K, respectively κ(p)[X1, . . . , Xn]→ B ⊗A κ(p). As a polynomial ring over a
field is Noetherian there exist finitely many elements hj ∈ I, j = 1, . . . ,m which
generate I ⊗A K and I ⊗A κ(p). Write hj =

∑
aj,IX

I . As soon as A0 contains all
aj,I we get to the situation where
B0 ⊗A0 K0 ⊗K0 K = B ⊗A K and B0 ⊗A0 κ(p0)⊗κ(p0) κ(p) = B ⊗A κ(p).

By either Morphisms, Lemma 28.3 or Algebra, Lemma 116.5 we see that the di-
mension equalities of (3) are satisfied. Part (4) is immediate. As B0 ⊗A0 κ(p0) ⊂
B ⊗A κ(p) each minimal prime of B0 ⊗A0 κ(p0) lies under a minimal prime of
B ⊗A κ(p) by Algebra, Lemma 30.6. This implies that (5) holds. In this way we
reduce the problem to the Noetherian case which we have dealt with above. □

Here is an algebraic application of the lemma above. The fourth assumption of the
lemma holds if A→ B is flat, see Lemma 52.3.

Lemma 52.2.053S Let A → B be a local homomorphism of local rings, and g ∈ mB.
Assume

(1) A and B are domains and A ⊂ B,
(2) B is essentially of finite type over A,
(3) g is not contained in any minimal prime over mAB, and
(4) dim(B/mAB) + trdegκ(mA)(κ(mB)) = trdegA(B).

Then A ⊂ B/gB, i.e., the generic point of Spec(A) is in the image of the morphism
Spec(B/gB)→ Spec(A).

Proof. Note that the two assertions are equivalent by Algebra, Lemma 30.6. To
start the proof let C be an A-algebra of finite type and q a prime of C such that B =
Cq. Of course we may assume that C is a domain and that g ∈ C. After replacing
C by a localization we see that dim(C/mAC) = dim(B/mAB)+trdegκ(mA)(κ(mB)),
see Morphisms, Lemma 28.1. Setting K equal to the fraction field of A we see by
the same reference that dim(C ⊗A K) = trdegA(B). Hence assumption (4) means
that the generic and closed fibres of the morphism Spec(C) → Spec(A) have the
same dimension.

https://stacks.math.columbia.edu/tag/053S
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Suppose that the lemma is false. Then (B/gB)⊗A K = 0. This means that g ⊗ 1
is invertible in B ⊗A K = Cq ⊗A K. As Cq is a limit of principal localizations
we conclude that g ⊗ 1 is invertible in Ch ⊗A K for some h ∈ C, h ̸∈ q. Thus
after replacing C by Ch we may assume that (C/gC)⊗A K = 0. We do one more
replacement of C to make sure that the minimal primes of C/mAC correspond one-
to-one with the minimal primes of B/mAB. At this point we apply Lemma 52.1 to
X = Spec(C) → Spec(A) = S and the locally closed subscheme Z = Spec(C/gC).
Since ZK = ∅ we see that Z ⊗ κ(mA) has to contain an irreducible component of
X ⊗ κ(mA) = Spec(C/mAC). But this contradicts the assumption that g is not
contained in any prime minimal over mAB. The lemma follows. □

Lemma 52.3.053T Let A→ B be a local homomorphism of local rings. Assume
(1) A and B are domains and A ⊂ B,
(2) B is essentially of finite type over A, and
(3) B is flat over A.

Then we have
dim(B/mAB) + trdegκ(mA)(κ(mB)) = trdegA(B).

Proof. Let C be an A-algebra of finite type and q a prime of C such that B =
Cq. We may assume C is a domain. We have dimq(C/mAC) = dim(B/mAB) +
trdegκ(mA)(κ(mB)), see Morphisms, Lemma 28.1. Setting K equal to the fraction
field of A we see by the same reference that dim(C ⊗A K) = trdegA(B). Thus we
are really trying to prove that dimq(C/mAC) = dim(C ⊗AK). Choose a valuation
ring A′ in K dominating A, see Algebra, Lemma 50.2. Set C ′ = C ⊗A A′. Choose
a prime q′ of C ′ lying over q; such a prime exists because

C ′/mA′C ′ = C/mAC ⊗κ(mA) κ(mA′)
which proves that C/mAC → C ′/mA′C ′ is faithfully flat. This also proves that
dimq(C/mAC) = dimq′(C ′/mA′C ′), see Algebra, Lemma 116.6. Note that B′ = C ′

q′

is a localization of B⊗AA′. Hence B′ is flat over A′. The generic fibre B′⊗A′K is a
localization of B ⊗AK. Hence B′ is a domain. If we prove the lemma for A′ ⊂ B′,
then we get the equality dimq′(C ′/mA′C ′) = dim(C ′ ⊗A′ K) which implies the
desired equality dimq(C/mAC) = dim(C ⊗A K) by what was said above. This
reduces the lemma to the case where A is a valuation ring.
Let A ⊂ B be as in the lemma with A a valuation ring. As before write B = Cq

for some domain C of finite type over A. By Algebra, Lemma 125.9 we obtain
dim(C/mAC) = dim(C ⊗A K) and we win. □

Lemma 52.4.053U Let f : X → S be a morphism of schemes. Let x ⇝ x′ be a
specialization of points in X. Set s = f(x) and s′ = f(x′). Assume

(1) x′ is a closed point of Xs′ , and
(2) f is locally of finite type.

Then the set
{x1 ∈ X such that f(x1) = s and x1 is closed in Xs and x⇝ x1 ⇝ x′}

is dense in the closure of x in Xs.

Proof. We apply Schemes, Lemma 20.4 to the specialization x ⇝ x′. This pro-
duces a morphism φ : Spec(B)→ X where B is a valuation ring such that φ maps
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the generic point to x and the closed point to x′. We may also assume that κ(x)
is the fraction field of B. Let A = B ∩ κ(s). Note that this is a valuation ring (see
Algebra, Lemma 50.7) which dominates the image of OS,s′ → κ(s). Consider the
commutative diagram

Spec(B)

%%

// XA

��

// X

��
Spec(A) // S

The generic (resp. closed) point of B maps to a point xA (resp. x′
A) of XA lying

over the generic (resp. closed) point of Spec(A). Note that x′
A is a closed point of

the special fibre of XA by Morphisms, Lemma 20.4. Note that the generic fibre of
XA → Spec(A) is isomorphic to Xs. Thus we have reduced the lemma to the case
where S is the spectrum of a valuation ring, s = η ∈ S is the generic point, and
s′ ∈ S is the closed point.

We will prove the lemma by induction on dimx(Xη). If dimx(Xη) = 0, then there
are no other points of Xη specializing to x and x is closed in its fibre, see Morphisms,
Lemma 20.6, and the result holds. Assume dimx(Xη) > 0.

Let X ′ ⊂ X be the reduced induced scheme structure on the irreducible closed
subscheme {x} of X, see Schemes, Definition 12.5. To prove the lemma we may
replace X by X ′ as this only decreases dimx(Xη). Hence we may also assume that
X is an integral scheme and that x is its generic point. In addition, we may replace
X by an affine neighbourhood of x′. Thus we have X = Spec(B) where A ⊂ B is
a finite type extension of domains. Note that in this case dimx(Xη) = dim(Xη) =
dim(Xs′), and that in fact Xs′ is equidimensional, see Algebra, Lemma 125.9.

Let W ⊂ Xη be a proper closed subset (this is the subset we want to “avoid”).
As Xs is of finite type over a field we see that W has finitely many irreducible
components W = W1 ∪ . . . ∪Wn. Let qj ⊂ B, j = 1, . . . , r be the corresponding
prime ideals. Let q ⊂ B be the maximal ideal corresponding to the point x′. Let
p1, . . . , ps ⊂ B be the minimal primes lying over mAB. There are finitely many
as these correspond to the irreducible components of the Noetherian scheme Xs′ .
Moreover, each of these irreducible components has dimension > 0 (see above)
hence we see that pi ̸= q for all i. Now, pick an element g ∈ q such that g ̸∈ qj
for all j and g ̸∈ pi for all i, see Algebra, Lemma 15.2. Denote Z ⊂ X the locally
principal closed subscheme defined by g. Let Zη = Z1,η ∪ . . . ∪ Zn,η, n ≥ 0 be
the decomposition of the generic fibre of Z into irreducible components (finitely
many as the generic fibre is Noetherian). Denote Zi ⊂ X the closure of Zi,η. After
replacing X by a smaller affine neighbourhood we may assume that x′ ∈ Zi for each
i = 1, . . . , n. By construction Z ∩Xs′ does not contain any irreducible component
of Xs′ . Hence by Lemma 52.1 we conclude that Zη ̸= ∅! In other words n ≥ 1.
Letting x1 ∈ Z1 be the generic point we see that x1 ⇝ x′ and f(x1) = η. Also,
by construction Z1,η ∩Wj ⊂Wj is a proper closed subset. Hence every irreducible
component of Z1,η∩Wj has codimension ≥ 2 in Xη whereas codim(Z1,η, Xη) = 1 by
Algebra, Lemma 60.11. Thus W ∩ Z1,η is a proper closed subset. At this point we
see that the induction hypothesis applies to Z1 → S and the specialization x1 ⇝ x′.
This produces a closed point x2 of Z1,η not contained in W which specializes to
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x′. Thus we obtain x ⇝ x2 ⇝ x′, the point x2 is closed in Xη, and x2 ̸∈ W as
desired. □

Remark 52.5.053V The proof of Lemma 52.4 actually shows that there exists a se-
quence of specializations

x⇝ x1 ⇝ x2 ⇝ . . .⇝ xd ⇝ x′

where all xi are in the fibre Xs, each specialization is immediate, and xd is a closed
point of Xs. The integer d = trdegκ(s)(κ(x)) = dim({x}) where the closure is taken
in Xs. Moreover, the points xi can be chosen to avoid any closed subset of Xs

which does not contain the point x.

Examples, Section 38 shows that the following lemma is false if A is not assumed
Noetherian.

Lemma 52.6.05GT Let φ : A→ B be a local ring map of local rings. Let V ⊂ Spec(B)
be an open subscheme which contains at least one prime not lying over mA. Assume
A is Noetherian, φ essentially of finite type, and A/mA ⊂ B/mB is finite. Then
there exists a q ∈ V , mA ̸= q ∩ A such that A → B/q is the localization of a
quasi-finite ring map.

Proof. Since A is Noetherian and A→ B is essentially of finite type, we know that
B is Noetherian too. By Properties, Lemma 6.4 the topological space Spec(B) \
{mB} is Jacobson. Hence we can choose a closed point q which is contained in the
nonempty open

V \ {q ⊂ B | mA = q ∩A}.
(Nonempty by assumption, open because {mA} is a closed subset of Spec(A).) Then
Spec(B/q) has two points, namely mB and q and q does not lie over mA. Write
B/q = Cm for some finite type A-algebra C and prime ideal m. Then A → C is
quasi-finite at m by Algebra, Lemma 122.2 (2). Hence by Algebra, Lemma 123.13
we see that after replacing C by a principal localization the ring map A → C is
quasi-finite. □

Lemma 52.7.05GU Let f : X → S be a morphism of schemes. Let x ∈ X with image
s ∈ S. Let U ⊂ X be an open subscheme. Assume f locally of finite type, S locally
Noetherian, x a closed point of Xs, and assume there exists a point x′ ∈ U with
x′ ⇝ x and f(x′) ̸= s. Then there exists a closed subscheme Z ⊂ X such that (a)
x ∈ Z, (b) f |Z : Z → S is quasi-finite at x, and (c) there exists a z ∈ Z, z ∈ U ,
z ⇝ x and f(z) ̸= s.

Proof. This is a reformulation of Lemma 52.6. Namely, set A = OS,s and B =
OX,x. Denote V ⊂ Spec(B) the inverse image of U . The ring map f ♯ : A → B is
essentially of finite type. By assumption there exists at least one point of V which
does not map to the closed point of Spec(A). Hence all the assumptions of Lemma
52.6 hold and we obtain a prime q ⊂ B which does not lie over mA and such that
A→ B/q is the localization of a quasi-finite ring map. Let z ∈ X be the image of
the point q under the canonical morphism Spec(B) → X. Set Z = {z} with the
induced reduced scheme structure. As z ⇝ x we see that x ∈ Z and OZ,x = B/q.
By construction Z → S is quasi-finite at x. □

Remark 52.8.05GV We can use Lemma 52.6 or its variant Lemma 52.7 to give an
alternative proof of Lemma 52.4 in case S is locally Noetherian. Here is a rough
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sketch. Namely, first replace S by the spectrum of the local ring at s′. Then we
may use induction on dim(S). The case dim(S) = 0 is trivial because then s′ = s.
Replace X by the reduced induced scheme structure on {x}. Apply Lemma 52.7
to X → S and x′ 7→ s′ and any nonempty open U ⊂ X containing x. This gives
us a closed subscheme x′ ∈ Z ⊂ X a point z ∈ Z such that Z → S is quasi-finite
at x′ and such that f(z) ̸= s′. Then z is a closed point of Xf(z), and z ⇝ x′. As
f(z) ̸= s′ we see dim(OS,f(z)) < dim(S). Since x is the generic point of X we see
x ⇝ z, hence s = f(x) ⇝ f(z). Apply the induction hypothesis to s ⇝ f(z) and
z 7→ f(z) to win.

Lemma 52.9.05GW Suppose that f : X → S is locally of finite type, S locally Noether-
ian, x ∈ X a closed point of its fibre Xs, and U ⊂ X an open subscheme such that
U ∩Xs = ∅ and x ∈ U , then the conclusions of Lemma 52.7 hold.

Proof. Namely, we can reduce this to the cited lemma as follows: First we replace
X and S by affine neighbourhoods of x and s. Then X is Noetherian, in particular
U is quasi-compact (see Morphisms, Lemma 15.6 and Topology, Lemmas 9.2 and
12.13). Hence there exists a specialization x′ ⇝ x with x′ ∈ U (see Morphisms,
Lemma 6.5). Note that f(x′) ̸= s. Thus we see all hypotheses of the lemma are
satisfied and we win. □

53. Stein factorization

03GX Stein factorization is the statement that a proper morphism f : X → S with
f∗OX = OS has connected fibres.

Lemma 53.1.03GY Let S be a scheme. Let f : X → S be a universally closed and
quasi-separated morphism. There exists a factorization

X
f ′

//

f ��

S′

π
��

S

with the following properties:
(1) the morphism f ′ is universally closed, quasi-compact, quasi-separated, and

surjective,
(2) the morphism π : S′ → S is integral,
(3) we have f ′

∗OX = OS′ ,
(4) we have S′ = Spec

S
(f∗OX), and

(5) S′ is the normalization of S in X, see Morphisms, Definition 53.3.
Formation of the factorization f = π ◦ f ′ commutes with flat base change.

Proof. By Morphisms, Lemma 41.8 the morphism f is quasi-compact. Hence the
normalization S′ of S in X is defined (Morphisms, Definition 53.3) and we have
the factorization X → S′ → S. By Morphisms, Lemma 53.11 we have (2), (4),
and (5). The morphism f ′ is universally closed by Morphisms, Lemma 41.7. It is
quasi-compact by Schemes, Lemma 21.14 and quasi-separated by Schemes, Lemma
21.13.

To show the remaining statements we may assume the base scheme S is affine, say
S = Spec(R). Then S′ = Spec(A) with A = Γ(X,OX) an integral R-algebra. Thus

https://stacks.math.columbia.edu/tag/05GW
https://stacks.math.columbia.edu/tag/03GY


MORE ON MORPHISMS 156

it is clear that f ′
∗OX is OS′ (because f ′

∗OX is quasi-coherent, by Schemes, Lemma
24.1, and hence equal to Ã). This proves (3).

Let us show that f ′ is surjective. As f ′ is universally closed (see above) the image
of f ′ is a closed subset V (I) ⊂ S′ = Spec(A). Pick h ∈ I. Then h|X = f ♯(h) is a
global section of the structure sheaf of X which vanishes at every point. As X is
quasi-compact this means that h|X is a nilpotent section, i.e., hn|X = 0 for some
n > 0. But A = Γ(X,OX), hence hn = 0. In other words I is contained in the
Jacobson radical ideal of A and we conclude that V (I) = S′ as desired. □

Lemma 53.2.0E0M In Lemma 53.1 assume in addition that f is locally of finite type.
Then for s ∈ S the fibre π−1({s}) = {s1, . . . , sn} is finite and the field extensions
κ(si)/κ(s) are finite.

Proof. Recall that there are no specializations among the points of π−1({s}), see
Algebra, Lemma 36.20. As f ′ is surjective, we find that |Xs| → π−1({s}) is sur-
jective. Observe that Xs is a quasi-separated scheme of finite type over a field
(quasi-compactness was shown in the proof of the referenced lemma). Thus Xs

is Noetherian (Morphisms, Lemma 15.6). A topological argument (omitted) now
shows that π−1({s}) is finite. For each i we can pick a finite type point xi ∈ Xs

mapping to si (Morphisms, Lemma 16.7). We conclude that κ(si)/κ(s) is finite: xi
can be represented by a morphism Spec(ki)→ Xs of finite type (by our definition
of finite type points) and hence Spec(ki) → s = Spec(κ(s)) is of finite type (as a
composition of finite type morphisms), hence ki/κ(s) is finite (Morphisms, Lemma
16.1). □

Lemma 53.3.03GZ Let f : X → S be a morphism of schemes. Let s ∈ S. Then Xs is
geometrically connected, if and only if for every étale neighbourhood (U, u)→ (S, s)
the base change XU → U has connected fibre Xu.

Proof. If Xs is geometrically connected, then any base change of it is connected.
On the other hand, suppose that Xs is not geometrically connected. Then by
Varieties, Lemma 7.11 we see that Xs ×Spec(κ(s)) Spec(k) is disconnected for some
finite separable field extension k/κ(s). By Lemma 35.2 there exists an affine étale
neighbourhood (U, u) → (S, s) such that κ(u)/κ(s) is identified with k/κ(s). In
this case Xu is disconnected. □

Theorem 53.4 (Stein factorization; Noetherian case).03H0 Let S be a locally Noether-
ian scheme. Let f : X → S be a proper morphism. There exists a factorization

X
f ′

//

f ��

S′

π
��

S

with the following properties:
(1) the morphism f ′ is proper with geometrically connected fibres,
(2) the morphism π : S′ → S is finite,
(3) we have f ′

∗OX = OS′ ,
(4) we have S′ = Spec

S
(f∗OX), and

(5) S′ is the normalization of S in X, see Morphisms, Definition 53.3.
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Proof. Let f = π ◦ f ′ be the factorization of Lemma 53.1. Note that besides the
conclusions of Lemma 53.1 we also have that f ′ is separated (Schemes, Lemma
21.13) and finite type (Morphisms, Lemma 15.8). Hence f ′ is proper. By Coho-
mology of Schemes, Proposition 19.1 we see that f∗OX is a coherent OS-module.
Hence we see that π is finite, i.e., (2) holds.

This proves all but the most interesting assertion, namely that all the fibres of f ′ are
geometrically connected. It is clear from the discussion above that we may replace
S by S′, and we may therefore assume that S is Noetherian, affine, f : X → S
is proper, and f∗OX = OS . Let s ∈ S be a point of S. We have to show that
Xs is geometrically connected. By Lemma 53.3 we see that it suffices to show
Xu is connected for every étale neighbourhood (U, u) → (S, s). We may assume
U is affine. Thus U is Noetherian (Morphisms, Lemma 15.6), the base change
fU : XU → U is proper (Morphisms, Lemma 41.5), and that also (fU )∗OXU

= OU
(Cohomology of Schemes, Lemma 5.2). Hence after replacing (f : X → S, s) by the
base change (fU : XU → U, u) it suffices to prove that the fibre Xs is connected
when f∗OX = OS . We can deduce this from Derived Categories of Schemes, Lemma
32.7 (by looking at idempotents in the structure sheaf of Xs) but we will also give
a direct argument below.

Namely, we apply the theorem on formal functions, more precisely Cohomology of
Schemes, Lemma 20.7. It tells us that

O∧
S,s = (f∗OX)∧

s = limnH
0(Xn,OXn

)

where Xn is the nth infinitesimal neighbourhood of Xs. Since the underlying topo-
logical space of Xn is equal to that of Xs we see that if Xs = T1 ⨿ T2 is a disjoint
union of nonempty open and closed subschemes, then similarly Xn = T1,n ⨿ T2,n
for all n. And this in turn means H0(Xn,OXn) contains a nontrivial idempotent
e1,n, namely the function which is identically 1 on T1,n and identically 0 on T2,n.
It is clear that e1,n+1 restricts to e1,n on Xn. Hence e1 = lim e1,n is a nontrivial
idempotent of the limit. This contradicts the fact that O∧

S,s is a local ring. Thus
the assumption was wrong, i.e., Xs is connected, and we win. □

Theorem 53.5 (Stein factorization; general case).03H2 Let S be a scheme. Let f :
X → S be a proper morphism. There exists a factorization

X
f ′

//

f ��

S′

π
��

S

with the following properties:
(1) the morphism f ′ is proper with geometrically connected fibres,
(2) the morphism π : S′ → S is integral,
(3) we have f ′

∗OX = OS′ ,
(4) we have S′ = Spec

S
(f∗OX), and

(5) S′ is the normalization of S in X, see Morphisms, Definition 53.3.

Proof. We may apply Lemma 53.1 to get the morphism f ′ : X → S′. Note that
besides the conclusions of Lemma 53.1 we also have that f ′ is separated (Schemes,
Lemma 21.13) and finite type (Morphisms, Lemma 15.8). Hence f ′ is proper. At
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this point we have proved all of the statements except for the statement that f ′ has
geometrically connected fibres.
We may assume that S = Spec(R) is affine. Set R′ = Γ(X,OX). Then S′ =
Spec(R′). Thus we may replace S by S′ and assume that S = Spec(R) is affine
R = Γ(X,OX). Next, let s ∈ S be a point. Let U → S be an étale morphism of
affine schemes and let u ∈ U be a point mapping to s. Let XU → U be the base
change of X. By Lemma 53.3 it suffices to show that the fibre of XU → U over u
is connected. By Cohomology of Schemes, Lemma 5.2 we see that Γ(XU ,OXU

) =
Γ(U,OU ). Hence we have to show: Given S = Spec(R) affine, X → S proper with
Γ(X,OX) = R and s ∈ S is a point, the fibre Xs is connected.
To do this it suffices to show that the only idempotents e ∈ H0(Xs,OXs) are 0 and
1 (we already know that Xs is nonempty by Lemma 53.1). By Derived Categories of
Schemes, Lemma 32.7 after replacing R by a principal localization we may assume
e is the image of an element of R. Since R → H0(Xs,OXs

) factors through κ(s)
we conclude. □

Here is an application.

Lemma 53.6.0AY8 Let f : X → S be a morphism of schemes. Assume
(1) f is proper,
(2) S is integral with generic point ξ,
(3) S is normal,
(4) X is reduced,
(5) every generic point of an irreducible component of X maps to ξ,
(6) we have H0(Xξ,O) = κ(ξ).

Then f∗OX = OS and f has geometrically connected fibres.

Proof. Apply Theorem 53.5 to get a factorization X → S′ → S. It is enough to
show that S′ = S. This will follow from Morphisms, Lemma 54.8. Namely, S′ is
reduced because X is reduced (Morphisms, Lemma 53.8). The morphism S′ → S
is integral by the theorem cited above. Every generic point of S′ lies over ξ by
Morphisms, Lemma 53.9 and assumption (5). On the other hand, since S′ is the
relative spectrum of f∗OX we see that the scheme theoretic fibre S′

ξ is the spectrum
of H0(Xξ,O) which is equal to κ(ξ) by assumption. Hence S′ is an integral scheme
with function field equal to the function field of S. This finishes the proof. □

Here is another application.

Lemma 53.7.0BUI Let X → S be a flat proper morphism of finite presentation. Let
nX/S be the function on S counting the numbers of geometric connected components
of fibres of f introduced in Lemma 28.3. Then nX/S is lower semi-continuous.

Proof. Let s ∈ S. Set n = nX/S(s). Note that n < ∞ as the geometric fibre of
X → S at s is a proper scheme over a field, hence Noetherian, hence has a finite
number of connected components. We have to find an open neighbourhood V of s
such that nX/S |V ≥ n. Let X → S′ → S be the Stein factorization as in Theorem
53.5. By Lemma 53.2 there are finitely many points s′

1, . . . , s
′
m ∈ S′ lying over

s and the extensions κ(s′
i)/κ(s) are finite. Then Lemma 42.1 tells us that after

replacing S by an étale neighbourhood of s we may assume S′ = V1⨿ . . .⨿Vm as a
scheme with s′

i ∈ Vi and κ(s′
i)/κ(s) purely inseparable. Then the schemes Xs′

i
are

https://stacks.math.columbia.edu/tag/0AY8
https://stacks.math.columbia.edu/tag/0BUI


MORE ON MORPHISMS 159

geometrically connected over κ(s), hence m = n. The schemes Xi = (f ′)−1(Vi),
i = 1, . . . , n are flat and of finite presentation over S. Hence the image of Xi → S is
open (Morphisms, Lemma 25.10). Thus in a neighbourhood of s we see that nX/S
is at least n. □

Lemma 53.8.0E0N Let f : X → S be a morphism of schemes. Assume
(1) f is proper, flat, and of finite presentation, and
(2) the geometric fibres of f are reduced.

Then the function nX/S : S → Z counting the numbers of geometric connected
components of fibres of f is locally constant.

Proof. By Lemma 53.7 the function nX/S is lower semincontinuous. For s ∈ S
consider the κ(s)-algebra

A = H0(Xs,OXs)
By Varieties, Lemma 9.3 and the fact that Xs is geometrically reduced A is finite
product of finite separable extensions of κ(s). Hence A ⊗κ(s) κ(s) is a product of
β0(s) = dimκ(s) H

0(E ⊗L κ(s)) copies of κ(s). Thus Xs has β0(s) = dimκ(s) A
connected components. In other words, we have nX/S = β0 as functions on S.
Thus nX/S is upper semi-continuous by Derived Categories of Schemes, Lemma
32.1. This finishes the proof. □

A final application.

Lemma 53.9.0CT9 A reference for the
case of an adic
Noetherian base is
[DG67, III,
Proposition 5.5.1]

Let (A, I) be a henselian pair. Let X → Spec(A) be separated and
of finite type. Set X0 = X ×Spec(A) Spec(A/I). Let Y ⊂ X0 be an open and closed
subscheme such that Y → Spec(A/I) is proper. Then there exists an open and
closed subscheme W ⊂ X which is proper over A with W ×Spec(A) Spec(A/I) = Y .

Proof. We will denote T 7→ T0 the base change by Spec(A/I) → Spec(A). By
Chow’s lemma (in the form of Limits, Lemma 12.1) there exists a surjective proper
morphism φ : X ′ → X such that X ′ admits an immersion into Pn

A. Set Y ′ =
φ−1(Y ). This is an open and closed subscheme of X ′

0. Suppose the lemma holds for
(X ′, Y ′). Let W ′ ⊂ X ′ be the open and closed subscheme proper over A such that
Y ′ = W ′

0. By Morphisms, Lemma 41.7 W = φ(W ′) ⊂ X and Q = φ(X ′ \W ′) ⊂ X
are closed subsets and by Morphisms, Lemma 41.9 W is proper over A. The image
of W ∩ Q in Spec(A) is closed. Since (A, I) is henselian, if W ∩ Q is nonempty,
then we find that W ∩ Q has a point lying over Spec(A/I). This is impossible as
W ′

0 = Y ′ = φ−1(Y ). We conclude that W is an open and closed subscheme of X
proper over A with W0 = Y . Thus we reduce to the case described in the next
paragraph.
Assume there exists an immersion j : X → Pn

A over A. Let X be the scheme
theoretic image of j. Since j is a quasi-compact morphism (Schemes, Lemma 21.14)
we see that j : X → X is an open immersion (Morphisms, Lemma 7.7). Hence the
base change j0 : X0 → X0 is an open immersion as well. Thus j0(Y ) ⊂ X0 is open.
It is also closed by Morphisms, Lemma 41.7. Suppose that the lemma holds for
(X, j0(Y )). Let W ⊂ X be the corresponding open and closed subscheme proper
over A such that j0(Y ) = W 0. Then T = W \j(X) is closed in W , hence has closed
image in Spec(A) by properness of W over A. Since (A, I) is henselian, we find
that if T is nonempty, then there is a point of T mapping into Spec(A/I). This
is impossible because j0(Y ) = W 0 is contained in j(X). Hence W is contained
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in j(X) and we can set W ⊂ X equal to the unique open and closed subscheme
mapping isomorphically to W via j. Thus we reduce to the case described in the
next paragraph.

Assume X ⊂ Pn
A is a closed subscheme. Then X → Spec(A) is a proper morphism.

Let Z = X0 \Y . This is an open and closed subscheme of X0 and X0 = Y ⨿Z. Let
X → X ′ → Spec(A) be the Stein factorization as in Theorem 53.5. Let Y ′ ⊂ X ′

0
and Z ′ ⊂ X ′

0 be the images of Y and Z. Since the fibres of X → Z are geometrically
connected, we see that Y ′ ∩ Z ′ = ∅. Hence X ′

0 = Y ′ ⨿ Z ′ as X → X ′ is surjective.
Since X ′ → Spec(A) is integral, we see that X ′ is the spectrum of an A-algebra
integral over A. Recall that open and closed subsets of spectra correspond 1-to-1
with idempotents in the corresponding ring, see Algebra, Lemma 21.3. Hence by
More on Algebra, Lemma 11.6 we see that we may write X ′ = W ′ ⨿ V ′ with W ′

and V ′ open and closed and with Y ′ = W ′
0 and Z ′ = V ′

0 . Let W be the inverse
image in X to finish the proof. □

54. Generic flatness stratification

0H3Y We can use generic flatness to construct a stratification of the base such that a
given module becomes flat over the strata.

Lemma 54.1 (Generic flatness stratification).0ASY Let f : X → S be a morphism of
finite presentation between quasi-compact and quasi-separated schemes. Let F be an
OX-module of finite presentation. Then there exists a t ≥ 0 and closed subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅

such that Si → S is defined by a finite type ideal sheaf, S0 ⊂ S is a thickening, and
F pulled back to X ×S (Si \ Si+1) is flat over Si \ Si+1.

Proof. We can find a cartesian diagram

X

��

// X0

��
S // S0

and a finitely presented OX0 -module F0 which pulls back to F such that X0 and
S0 are of finite type over Z. See Limits, Proposition 5.4 and Lemmas 10.1 and
10.2. Thus we may assume X and S are of finite type over Z and F is a coherent
OX -module.

Assume X and S are of finite type over Z and F is a coherent OX -module. In
this case every quasi-coherent ideal is of finite type, hence we do not have to check
the condition that Si is cut out by a finite type ideal. Set S0 = Sred equal to
the reduction of S. By generic flatness as stated in Morphisms, Proposition 27.2
there is a dense open U0 ⊂ S0 such that F pulled back to X ×S U0 is flat over U0.
Let S1 ⊂ S0 be the reduced closed subscheme whose underlying closed subset is
S \ U0. We continue in this way, provided S1 ̸= ∅, to find S0 ⊃ S1 ⊃ . . .. Because
S is Noetherian any descending chain of closed subsets stabilizes hence we see that
St = ∅ for some t ≥ 0. □

https://stacks.math.columbia.edu/tag/0ASY
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Lemma 54.2.0H3Z Let f : X → S be a morphism of finite presentation between
quasi-compact and quasi-separated schemes. Then there exists a t ≥ 0 and closed
subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
such that Si → S is defined by a finite type ideal sheaf, S0 ⊂ S is a thickening, and
X ×S (Si \ Si+1) is flat over Si \ Si+1.

Proof. Apply Lemma 54.1 with F = OX . □

Lemma 54.3.0H40 Let R be a Noetherian domain. Let R→ A→ B be finite type ring
maps. Let M be a finite A-module and let N a finite B-module. Let M → N be an
A-linear map. There exists an nonzero f ∈ R such that the cokernel of Mf → Nf
is a flat Rf -module.

Proof. By replacing M by the image of M → N , we may assume M ⊂ N . Choose
a filtration 0 = N0 ⊂ N1 ⊂ . . . ⊂ Nt = N such that Ni/Ni−1 = B/qi for some prime
ideal qi ⊂ B, see Algebra, Lemma 62.1. Set Mi = M ∩ Ni. Then Q = N/M has
a filtration by the submodules Qi = Ni/Mi. It suffices to prove Qi/Qi−1 becomes
flat after localizing at a nonzero element of f (since extensions of flat modules are
flat by Algebra, Lemma 39.13). Since Qi/Qi−1 is isomorphic to the cokernel of the
map Mi/Mi−1 → Ni/Ni−1, we reduce to the case discussed in the next paragraph.
Assume B is a domain and M ⊂ N = B. After replacing A by the image of A in B
we may assume A ⊂ B. By generic flatness, we may assume A and B are flat over
R (Algebra, Lemma 118.1). It now suffices to show M → B becomes R-universally
injective after replacing R by a principal localization (Algebra, Lemma 82.7). By
generic freeness, we can find a nonzero g ∈ A such that Bg is a free Ag-module
(Algebra, Lemma 118.1). Thus we may choose a direct summand M ′ ⊂ Bg as
an Ag-module, which is finite free as an Ag-module, and such that M → B →
Bg factors through M ′. Clearly, it suffices to show that M → M ′ becomes R-
universally injective after replacing R by a principal localization.
Say M ′ = A⊕n

g . Since M ⊂ M ′ is a finite A-module, we see that M is contained
in (1/gm)A⊕n for some m ≥ 0. After changing our basis for M ′ we may assume
M ⊂ A⊕n. Then it suffices to show that A⊕n/M and Ag/A become R-flat after
replacing R by a principal localization. Namely, then M ′ → A⊕n and A⊕n →
A⊕n
g are universally injective by Algebra, Lemma 39.12 and consequently so is the

composition M →M ′ = A⊕n
g .

By generic flatness (see reference above), we may assume the module A⊕n/M is
R-flat. For the quotient Ag/A we use the fact that

Ag/A = colim(1/gm)A/A ∼= colimA/gmA

and the module A/gmA has a filtration of length m whose succesive quotients are
isomorphic to A/gA. Again by generic flatness we may assume A/gA is R-flat and
hence each A/gmA is R-flat, and hence so is Ag/A. □

Let f : X → Y be a morphism of schemes over a base scheme S. Let Z ⊂ Y be
the scheme theoretic image of f , see Morphisms, Section 6. Let g : S′ → S be a
morphism of schemes and let f ′ : X ×S S′ → Y ×S S′ be the base change of f by
g. It is not always true that Z ×S S′ ⊂ Y ×S S′ is the scheme theoretic image of
f ′. Let us say that formation of the scheme theoretic image of f/S commutes with
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arbitrary base change if for every g as above the scheme theoretic image of f ′ is
equal to Z ×S S′.

Lemma 54.4.0H41 Let S be a quasi-compact and quasi-separated scheme. Let f : X →
Y be a morphism of schemes over S with both X and Y of finite presentation over
S. Then there exists a t ≥ 0 and closed subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
with the following properties:

(1) Si → S is defined by a finite type ideal sheaf,
(2) S0 ⊂ S is a thickening, and
(3) with Ti = Si \Si+1 and fi the base change of f to Ti we have: formation of

the scheme theoretic image of fi/Ti commutes with arbitrary base change
(see discussion above the lemma).

Proof. We can find a commutative diagram

X

��

// Y

��

// S

��
U // V // W

with cartesian squares such that U , V , W are of finite type over Z. Namely, first
write S as a cofiltered limit of finite type schemes over Z with affine transition
morphisms using Limits, Proposition 5.4 and then descend the morphism X →
Y using Limits, Lemma 10.1. This reduces us to the case discussed in the next
paragraph.
Assume S is Noetherian. In this case every quasi-coherent ideal is of finite type,
hence we do not have to check the condition that Si is cut out by a finite type ideal.
Set S0 = Sred equal to the reduction of S. Let η ∈ S0 be a generic point of an
irreducible component of S0. By Noetherian induction on the underlying topological
space of S0, we may assume the result holds for any closed subscheme of S0 not
containing η. Thus it suffices to show that there exists an open neighbourhood
U0 ⊂ S0 such that the base change f0 of f to U0 has property (3).
Let R be a Noetherian domain. Let f : X → Y be a morphism of finite type
schemes over R. By the discussion in the previous paragraph it suffices to show
that after replacing R by Rg for some g ∈ R nonzero and X, Y by their base
changes to Rg, formation of the scheme theoretic image of f/R commutes with
arbitrary base change.
Let Y = V1 ∪ . . . Vn be an affine open covering. Let Ui = f−1(Vi). If the statement
is true for each of the morphisms Ui → Vi over R, then it holds for f . Namely,
the scheme theoretic image of Ui → Vi is the intersection of Vi with the scheme
theoretic image of f : X → Y by Morphisms, Lemma 6.3. Thus we may assume Y
is affine.
Let X = U1 ∪ . . . Un be an affine open covering. Then the scheme theoretic image
of X → Y is the same as the scheme theoretic imge of

∐
Ui → Y . Thus we may

assume X is affine.
Say X = Spec(A) and Y = Spec(B) and f corresponds to the R-algebra map
φ : A→ B. Then the scheme theoretic image of f is Spec(A/Ker(φ)) and similarly
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after base change (by an affine morphism, but it is enough to check for those). Thus
formation of the scheme theoretic image commutes with base change if Ker(φ ⊗R
R′) = Ker(φ)⊗R R′ for all ring maps R→ R′.

After replacing R, A, B by Rg, Ag, Bg for a suitable nonzero g in R, we may
assume A and B are flat over R. By Lemma 54.3 we may also assume B/A is a flat
R-module. Then 0 → Ker(φ) → A → B → B/A → 0 is an exact sequence of flat
R-modules, which implies the desired base change statement. □

55. Stratifying a morphism

0H42 Let f : X → S be a finitely presented morphism of quasi-compact and quasi-
separated schemes. In Section 54 we have seen that we can stratify S such that X
is flat over the strata. In this section look for stratifications of both S and X such
that we obtain smooth strata; this won’t quite work and we’ll need a base change
by finite locally free morphisms as well.

Lemma 55.1.0H43 Let f : X → S be a morphism of schemes of finite presentation.
Let η ∈ S be a generic point of an irreducible component of S. Assume S is reduced.
Then there exist

(1) an open subscheme U ⊂ S containing η,
(2) a surjective, universally injective, finite locally free morphism V → U ,
(3) a t ≥ 0 and closed subschemes

X ×S V ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅

such that Zi → X×S V is defined by a finite type ideal sheaf, Z0 ⊂ X×S V
is a thickening, and such that the morphism Zi \ Zi+1 → V is smooth.

Proof. It is clear that we may replace S by an open neighbourhood of η and X
by the restriction to this open. Thus we may assume S = Spec(A) where A is a
reduced ring and η corresponds to a minimal prime ideal p. Recall that the local
ring OS,η = Ap is equal to κ(p) in this case, see Algebra, Lemma 25.1.

Apply Varieties, Lemma 25.11 to the scheme Xη over k = κ(η). Denote k′/k the
purely inseparable field extension this produces. In the next paragraph we reduce
to the case k′ = k. (This step corresponds to finding the morphism V → U in the
statement of the lemma; in particular we can take V = U if the characteristic of
κ(p) is zero.)

If the characteristic of k = κ(p) is zero, then k′ = k. If the characteristic of
k = κ(p) is p > 0, then p maps to zero in Ap = κ(p). Hence after replacing A by
a principal localization (i.e., shrinking S) we may assume p = 0 in A. If k′ ̸= k,
then there exists an β ∈ k′, β ̸∈ k such that βp ∈ k. After replacing A by a
principal localization we may assume there exists an a ∈ A such that βp = a. Set
A′ = A[x]/(xp − a). Then S′ = Spec(A′) → Spec(A) = S is finite locally free,
surjective, and universally injective. Moreover, if p′ ⊂ A′ denotes the unique prime
ideal lying over p, then A′

p′ = k(β) and k′/k(β) has smaller degree. Thus after
replacing S by S′ and η by the point η′ corresponding to p′ we see that the degree
of k′ over the residue field of η has decreased. Continuing like this, by induction
we reduce to the case k′ = κ(p) = κ(η).

https://stacks.math.columbia.edu/tag/0H43
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Thus we may assume S is affine, reduced, and that we have a t ≥ 0 and closed
subschemes

Xη ⊃ Zη,0 ⊃ Zη,1 ⊃ . . . ⊃ Zη,t = ∅
such that Zη,0 = (Xη)red and Zη,i \ Zη,i+1 is smooth over η for all i. Recall that
κ(η) = κ(p) = Ap is the filtered colimit of Aa for a ∈ A, a ̸∈ p. See Algebra,
Lemma 9.9. Thus we can descend the diagram above to a corresponding diagram
over Spec(Aa) for some a ∈ A, a ̸∈ p. More precisely, after replacing S by Spec(Aa)
we may assume we have a t ≥ 0 and closed subschemes

X ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅
such that Zi → X is a closed immersion of finite presentation, such that Z0 → X is
a thickening, and such that Zi \Zi+1 is smooth over S. In other words, the lemma
holds. More precisely, we first use Limits, Lemma 10.1 to obtain morphisms

Zt → Zt−1 → . . .→ Z0 → X

over S, each of finite presentation, and whose base change to η produces the in-
clusions between the given closed subschemes above. After shrinking S further we
may assume each of the morphisms is a closed immersion, see Limits, Lemma 8.5.
After shrinking S we may assume Z0 → X is surjective and hence a thickening, see
Limits, Lemma 8.15. After shrinking S once more we may assume Zi \ Zi+1 → S
is smooth, see Limits, Lemma 8.9. This finishes the proof. □

Lemma 55.2.0H44 Let f : X → S be a morphism of finite presentation between
quasi-compact and quasi-separated schemes. Then there exists a t ≥ 0 and closed
subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
such that

(1) Si → S is defined by a finite type ideal sheaf,
(2) S0 ⊂ S is a thickening,
(3) for each i there exists a surjective finite locally free morphism Ti → Si\Si+1,
(4) for each i there exists a ti ≥ 0 and closed subschemes

Xi = X ×S Ti ⊃ Zi,0 ⊃ Zi,1 ⊃ . . . ⊃ Zi,ti = ∅
such that Zi,j → Xi is defined by a finite type ideal sheaf, Zi,0 ⊂ Xi is a
thickening, and such that the morphism Zi,j \ Zi,j+1 → Ti is smooth.

Proof. We can find a cartesian diagram

X

��

// X0

��
S // S0

such that X0 and S0 are of finite type over Z. See Limits, Proposition 5.4 and
Lemma 10.1. Thus we may assume X and S are of finite type over Z. Namely,
a solution of the problem posed by the lemma for X0 → S0 will base change to a
solution over S; details omitted.
Assume X and S are of finite type over Z. In this case every quasi-coherent ideal
is of finite type, hence we do not have to check the condition that Si is cut out by
a finite type ideal. Set S0 = Sred equal to the reduction of S. Let η ∈ S0 be a
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generic point of an irreducible component. By Lemma 55.1 we can find an open
subscheme U ⊂ S0, a surjective, universally injective, finite locally free morphism
V → U , a t0 ≥ 0 and closed subschemes

X ×S V ⊃ Z0,0 ⊃ Z0,1 ⊃ . . . ⊃ Z0,t0 = ∅
such that Z0,i → X ×S V is defined by a finite type ideal sheaf, Z0,0 ⊂ X ×S V is
a thickening, and such that the morphism Z0,i \ Z0,i+1 → V is smooth. Then we
let S1 ⊂ S0 be the reduced induced subscheme structure on S0 \U . By Noetherian
induction on the underlying topological space of S, we may assume that the lemma
holds for X ×S S1 → S1. This produces t ≥ 1 and

S1 = S1 ⊃ S2 ⊃ . . . ⊃ St = ∅
and ti and Zi,j as in the statement of the lemma. This proves the lemma. □

56. Improving morphisms of relative dimension one

0GK6 We can make any curve be smooth and projective after extending the ground field,
compactifying, and normalizing. This also implies results about finite type mor-
phisms whose generic fibres have dimension 1.

Lemma 56.1.0GK7 Let f : X → S be a morphism of schemes. Let η ∈ S be a
generic point of an irreducible component of S. Assume f is separated, of finite
presentation, and dim(Xη) ≤ 1. Then there exists a commutative diagram

Y 1 ⨿ . . .⨿ Y n

((

Y1 ⨿ . . .⨿ Yn ν
//

��

j
oo XV

//

��

XU
//

��

X

f

��
T1 ⨿ . . .⨿ Tn // V // U // S

of schemes with the following properties:
(1) U ⊂ X is an open neighbourhood of η,
(2) V → U is a finite, surjective, universally injective morphism,
(3) XU = U ×S X and XV = V ×S X are the base changes,
(4) ν is finite, surjective, and there is an open W ⊂ XV such that

(a) W is dense in all fibres of XV → V ,
(b) ν−1(W ) ∩ Yi is dense in all fibres of Yi → Ti, and
(c) ν−1(W )→W is a thickening,

(5) j is an open immersion,
(6) Ti → V is finite étale,
(7) Yi → Ti is surjective and smooth,
(8) Y i → Ti is smooth, proper, with geometrically connected fibres of dimension
≤ 1.

Proof. It is clear that we may replace S by an open neighbourhood of η and X
by the restriction to this open. Moreover, we may replace S by its reduction and
X by the base change to this reduction. Thus we may assume S = Spec(A) where
A is a reduced ring and η corresponds to a minimal prime ideal p. Recall that the
local ring OS,η = Ap is equal to κ(p) in this case, see Algebra, Lemma 25.1.
Apply Varieties, Lemma 43.7 to the scheme Xη over k = κ(η). Denote k′/k the
purely inseparable field extension this produces. In the next paragraph we reduce
to the case k′ = k. (This step corresponds to finding the morphism V → U in the
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statement of the lemma; in particular we can take V = U if the characteristic of
κ(p) is zero.)
If the characteristic of k = κ(p) is zero, then k′ = k. If the characteristic of
k = κ(p) is p > 0, then p maps to zero in Ap = κ(p). Hence after replacing A by
a principal localization (i.e., shrinking S) we may assume p = 0 in A. If k′ ̸= k,
then there exists an β ∈ k′, β ̸∈ k such that βp ∈ k. After replacing A by a
principal localization we may assume there exists an a ∈ A such that βp = a. Set
A′ = A[x]/(xp − a). Then S′ = Spec(A′) → Spec(A) = S is finite, surjective, and
universally injective. Moreover, if p′ ⊂ A′ denotes the unique prime ideal lying
over p, then A′

p′ = k(β) and k′/k(β) has smaller degree. Thus after replacing S by
S′ and η by the point η′ corresponding to p′ we see that the degree of k′ over the
residue field of η has decreased. Continuing like this, by induction we reduce to the
case k′ = κ(p) = κ(η).
Thus we may assume S is affine, reduced, and that we have a diagram

Y 1,η ⨿ . . .⨿ Y n,η

**

Y1,η ⨿ . . .⨿ Yn,η ν
//

��

j
oo Xη

��
Spec(k1)⨿ . . .⨿ Spec(kn) // η

of schemes with the following properties:
(1) ν is the normalization of Xη,
(2) j is an open immersion with dense image,
(3) ki/κ(η) is a finite separable extension for i = 1, . . . , n,
(4) Y i,η is smooth, projective, and geometrically irreducible of dimension ≤ 1

over ki.
Recall that κ(η) = κ(p) = Ap is the filtered colimit of Aa for a ∈ A, a ̸∈ p. See
Algebra, Lemma 9.9. Thus we can descend the diagram above to a corresponding
diagram over Spec(Aa) for some a ∈ A, a ̸∈ p. More precisely, after replacing S by
Spec(Aa) we may assume we have a commutative diagram

Y 1 ⨿ . . .⨿ Y n

((

Y1 ⨿ . . .⨿ Yn ν
//

��

j
oo X

��
T1 ⨿ . . .⨿ Tn // S

of schemes whose base change to η is the diagram above with the following prop-
erties

(1) ν is a finite, surjective morphism,
(2) j is an open immersion,
(3) Ti → S is finite étale for i = 1, . . . , n,
(4) Yi → Ti is smooth and surjective,
(5) Y i → Ti is smooth and proper and has geometrically connected fibres of

dimension ≤ 1.
For this we first use Limits, Lemma 10.1 to obtain the diagram base changing
to the previous diagram. Then we use Limits, Lemmas 8.10, 8.9, 8.3, 4.13, 8.12,
13.1, and 8.15 to obtain ν finite, surjective, j open immersion, Ti → S finite étale,
Yi → T smooth, Y i → Ti proper and smooth. Since Yi cannot be empty, since
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smooth morphisms are open, and since Ti → S is finite étale, after shrinking S we
may assume Yi → Ti is surjective. Finally, the fibre of Y i → Ti over the unique
point ηi = Spec(ki) of Ti lying over η is geometrically connected. Hence by another
shrinking we may assume the same thing is true for all fibres, see Lemma 53.8.

It remains to prove the existence of an open W ⊂ X satisfying (a), (b), and (c).
Since νη :

∐
Yi,η → Xη is the normalization morphism, we know by Varieties,

Lemma 27.1 there exists a dense open Wη ⊂ Xη such that ν−1(Wη)→Wη is equal
to the inclusion of the reduction of Wη into Wη. Let W ⊂ X be a quasi-compact
open whose fibre over η is the open Wη we just found. After replacing A = Γ(S,OS)
by another localization we may assume ν−1(W ) → W is a closed immersion, see
Limits, Lemma 8.5. Since ν is also surjective we conclude ν−1(W ) → W is a
thickening. Set Wi = ν−1(W )∩Yi. Shrinking S once more we can assume Wi → Ti
is surjective for all i (same argument as above). Then we find that Wi ⊂ Yi is dense
in all fibres of Yi → Ti as Yi → Ti has geometrically irreducible fibres. Since ν is
finite and surjective, it then follows that W = ν(ν−1(W )) is dense in all fibres of
X → S too. □

57. Descending separated locally quasi-finite morphisms

02W7 In this section we show that “separated locally quasi-finite morphisms satisfy de-
scent for fppf-coverings”. See Descent, Definition 36.1 for terminology. This is in
the marvellous (for many reasons) paper by Raynaud and Gruson hidden in the
proof of [GR71, Lemma 5.7.1]. It can also be found in [Mur95], and [ABD+66, Ex-
posé X, Lemma 5.4] under the additional hypothesis that the morphism is locally
of finite presentation. Here is the formal statement.

Lemma 57.1.02W8 Let S be a scheme. Let {Xi → S}i∈I be an fppf covering, see
Topologies, Definition 7.1. Let (Vi/Xi, φij) be a descent datum relative to {Xi →
S}. If each morphism Vi → Xi is separated and locally quasi-finite, then the descent
datum is effective.

Proof. Being separated and being locally quasi-finite are properties of morphisms
of schemes which are preserved under any base change, see Schemes, Lemma 21.12
and Morphisms, Lemma 20.13. Hence Descent, Lemma 36.2 applies and it suffices
to prove the statement of the lemma in case the fppf-covering is given by a single
{X → S} flat surjective morphism of finite presentation of affines. Say X =
Spec(A) and S = Spec(R) so that R → A is a faithfully flat ring map. Let (V, φ)
be a descent datum relative to X over S and assume that π : V → X is separated
and locally quasi-finite.

https://stacks.math.columbia.edu/tag/02W8
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Let W 1 ⊂ V be any affine open. Consider W = pr1(φ(W 1 ×S X)) ⊂ V . Here is a
picture

W 1 ×S X //

��

&&

φ(W 1 ×S X)

��

ww
V ×S X

φ //

&&

��

X ×S V

xx

��

X ×S X
1 //

pr0

��

X ×S X

pr1

��
W 1 // V // X X Voo Woo

Ok, and now since X → S is flat and of finite presentation it is universally open
(Morphisms, Lemma 25.10). Hence we conclude that W is open. Moreover, it is
also clearly the case that W is quasi-compact, and W 1 ⊂ W . Moreover, we note
that φ(W ×S X) = X ×S W by the cocycle condition for φ. Hence we obtain a
new descent datum (W,φ′) by restricting φ to W ×S X. Note that the morphism
W → X is quasi-compact, separated and locally quasi-finite. This implies that it
is separated and quasi-finite by definition. Hence it is quasi-affine by Lemma 43.2.
Thus by Descent, Lemma 38.1 we see that the descent datum (W,φ′) is effective.
In other words, we find that there exists an open covering V =

⋃
Wi by quasi-

compact opens Wi which are stable for the descent morphism φ. Moreover, for
each such quasi-compact open W ⊂ V the corresponding descent data (W,φ′) is
effective. This means the original descent datum is effective by glueing the schemes
obtained from descending the opens Wi, see Descent, Lemma 35.13. □

58. Relative finite presentation

05GX Let R→ A be a finite type ring map. Let M be an A-module. In More on Algebra,
Section 80 we defined what it means for M to be finitely presented relative to R.
We also proved this notion has good localization properties and glues. Hence we
can define the corresponding global notion as follows.

Definition 58.1.05H1 Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX -module. We say F is finitely presented
relative to S or of finite presentation relative to S if there exists an affine open
covering S =

⋃
Vi and for every i an affine open covering f−1(Vi) =

⋃
j Uij such

that F(Uij) is a OX(Uij)-module of finite presentation relative to OS(Vi).

Note that this implies that F is a finite type OX -module. If X → S is just locally
of finite type, then F may be of finite presentation relative to S, without X → S
being locally of finite presentation. We will see that X → S is locally of finite
presentation if and only if OX is of finite presentation relative to S.

Lemma 58.2.09T7 Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX-module. The following are equivalent

(1) F is of finite presentation relative to S,
(2) for every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the OX(U)-module
F(U) is finitely presented relative to OS(V ).
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Moreover, if this is true, then for every open subschemes U ⊂ X and V ⊂ S with
f(U) ⊂ V the restriction F|U is of finite presentation relative to V .

Proof. The final statement is clear from the equivalence of (1) and (2). It is also
clear that (2) implies (1). Assume (1) holds. Let S =

⋃
Vi and f−1(Vi) =

⋃
Uij

be affine open coverings as in Definition 58.1. Let U ⊂ X and V ⊂ S be as in
(2). By More on Algebra, Lemma 80.8 it suffices to find a standard open covering
U =

⋃
Uk of U such that F(Uk) is finitely presented relative to OS(V ). In other

words, for every u ∈ U it suffices to find a standard affine open u ∈ U ′ ⊂ U such
that F(U ′) is finitely presented relative to OS(V ). Pick i such that f(u) ∈ Vi and
then pick j such that u ∈ Uij . By Schemes, Lemma 11.5 we can find v ∈ V ′ ⊂ V ∩Vi
which is standard affine open in V ′ and Vi. Then f−1V ′ ∩ U , resp. f−1V ′ ∩ Uij
are standard affine opens of U , resp. Uij . Applying the lemma again we can find
u ∈ U ′ ⊂ f−1V ′ ∩ U ∩ Uij which is standard affine open in both f−1V ′ ∩ U and
f−1V ′ ∩ Uij . Thus U ′ is also a standard affine open of U and Uij . By More on
Algebra, Lemma 80.4 the assumption that F(Uij) is finitely presented relative to
OS(Vi) implies that F(U ′) is finitely presented relative to OS(Vi). Since OX(U ′) =
OX(U ′) ⊗OS(Vi) OS(V ′) we see from More on Algebra, Lemma 80.5 that F(U ′)
is finitely presented relative to OS(V ′). Applying More on Algebra, Lemma 80.4
again we conclude that F(U ′) is finitely presented relative to OS(V ). This finishes
the proof. □

Lemma 58.3.09T8 Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX-module.

(1) If f is locally of finite presentation, then F is of finite presentation relative
to S if and only if F is of finite presentation.

(2) The morphism f is locally of finite presentation if and only if OX is of
finite presentation relative to S.

Proof. Follows immediately from the definitions, see discussion following More on
Algebra, Definition 80.2. □

Lemma 58.4.09T9 Let π : X → Y be a finite morphism of schemes locally of finite
type over a base scheme S. Let F be a quasi-coherent OX-module. Then F is of
finite presentation relative to S if and only if π∗F is of finite presentation relative
to S.

Proof. Translation of the result of More on Algebra, Lemma 80.3 into the language
of schemes. □

Lemma 58.5.09TA Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX-module. Let S′ → S be a morphism of
schemes, set X ′ = X ×S S′ and denote F ′ the pullback of F to X ′. If F is of finite
presentation relative to S, then F ′ is of finite presentation relative to S′.

Proof. Translation of the result of More on Algebra, Lemma 80.5 into the language
of schemes. □

Lemma 58.6.09TB Let X → Y → S be morphisms of schemes which are locally of
finite type. Let G be a quasi-coherent OY -module. If f : X → Y is locally of
finite presentation and G of finite presentation relative to S, then f∗G is of finite
presentation relative to S.

https://stacks.math.columbia.edu/tag/09T8
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Proof. Translation of the result of More on Algebra, Lemma 80.6 into the language
of schemes. □

Lemma 58.7.09TC Let X → Y → S be morphisms of schemes which are locally
of finite type. Let F be a quasi-coherent OX-module. If Y → S is locally of
finite presentation and F is of finite presentation relative to Y , then F is of finite
presentation relative to S.

Proof. Translation of the result of More on Algebra, Lemma 80.7 into the language
of schemes. □

Lemma 58.8.09TD Let X → S be a morphism of schemes which is locally of finite
type. Let 0 → F ′ → F → F ′′ → 0 be a short exact sequence of quasi-coherent
OX-modules.

(1) If F ′,F ′′ are finitely presented relative to S, then so is F .
(2) If F ′ is a finite type OX-module and F is finitely presented relative to S,

then F ′′ is finitely presented relative to S.

Proof. Translation of the result of More on Algebra, Lemma 80.9 into the language
of schemes. □

Lemma 58.9.09TE Let X → S be a morphism of schemes which is locally of finite type.
Let F ,F ′ be quasi-coherent OX-modules. If F ⊕F ′ is finitely presented relative to
S, then so are F and F ′.

Proof. Translation of the result of More on Algebra, Lemma 80.10 into the lan-
guage of schemes. □

59. Relative pseudo-coherence

09UH This section is the analogue of More on Algebra, Section 81 for schemes. We
strongly urge the reader to take a look at that section first. Although we have de-
veloped the material in this section and the material on pseudo-coherent complexes
in Cohomology, Sections 46, 47, 48, and 49 for arbitrary complexes of OX -modules,
if X is a scheme then working exclusively with objects in DQCoh(OX) greatly sim-
plifies many of the lemmmas and arguments, often reducing the problem at hand
immediately to the algebraic counterpart. Moreover, one of the first thing we do is
to show that being relatively pseudo-coherent implies the cohomology sheaves are
quasi-coherent, see Lemma 59.3. Hence, on a first reading we suggest the reader
work exclusively with objects in DQCoh(OX).

Lemma 59.1.09VC Let X → S be a finite type morphism of affine schemes. Let E be
an object of D(OX). Let m ∈ Z. The following are equivalent

(1) for some closed immersion i : X → An
S the object Ri∗E of D(OAn

S
) is

m-pseudo-coherent, and
(2) for all closed immersions i : X → An

S the object Ri∗E of D(OAn
S
) is m-

pseudo-coherent.

Proof. Say S = Spec(R) and X = Spec(A). Let i correspond to the surjection α :
R[x1, . . . , xn]→ A and let X → Am

S correspond to β : R[y1, . . . , ym]→ A. Choose

https://stacks.math.columbia.edu/tag/09TC
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fj ∈ R[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ R[y1, . . . , ym] with β(gi) = α(xi).
Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi

��

yj 7→fj

// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

corresponding to the commutative diagram of closed immersions

An+m
S An

S
oo

Am
S

OO

X

OO

oo

Thus it suffices to show that under a closed immersion

f : Am
S → An+m

S

an object E of D(OAm
S

) is m-pseudo-coherent if and only if Rf∗E is m-pseudo-
coherent. This follows from Derived Categories of Schemes, Lemma 12.5 and the
fact that f∗OAm

S
is a pseudo-coherent OAn+m

S
-module. The pseudo-coherence of

f∗OAm
S

is straightforward to prove directly, but it also follows from Derived Cate-
gories of Schemes, Lemma 10.2 and More on Algebra, Lemma 81.3. □

Recall that if f : X → S is a morphism of scheme which is locally of finite type,
then for every pair of affine opens U ⊂ X and V ⊂ S such that f(U) ⊂ V , the ring
map OS(V ) → OX(U) is of finite type (Morphisms, Lemma 15.2). Hence there
always exist closed immersions U → An

V and the following definition makes sense.

Definition 59.2.09UI Let f : X → S be a morphism of schemes which is locally of
finite type. Let E be an object of D(OX). Let F be an OX -module. Fix m ∈ Z.

(1) We say E is m-pseudo-coherent relative to S if there exists an affine open
covering S =

⋃
Vi and for each i an affine open covering f−1(Vi) =

⋃
Uij

such that the equivalent conditions of Lemma 59.1 are satisfied for each of
the pairs (Uij → Vi, E|Uij

).
(2) We say E is pseudo-coherent relative to S if E is m-pseudo-coherent relative

to S for all m ∈ Z.
(3) We say F is m-pseudo-coherent relative to S if F viewed as an object of

D(OX) is m-pseudo-coherent relative to S.
(4) We say F is pseudo-coherent relative to S if F viewed as an object of D(OX)

is pseudo-coherent relative to S.

If X is quasi-compact and E is m-pseudo-coherent relative to S for some m, then E
is bounded above. If E is pseudo-coherent relative to S, then E has quasi-coherent
cohomology sheaves.

Lemma 59.3.0CSU Let f : X → S be a morphism of schemes which is locally of finite
type. If E in D(OX) is m-pseudo-coherent relative to S, then Hi(E) is a quasi-
coherent OX-module for i > m. If E is pseudo-coherent relative to S, then E is an
object of DQCoh(OX).

https://stacks.math.columbia.edu/tag/09UI
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Proof. Choose an affine open covering S =
⋃
Vi and for each i an affine open

covering f−1(Vi) =
⋃
Uij such that the equivalent conditions of Lemma 59.1 are

satisfied for each of the pairs (Uij → Vi, E|Uij ). Since being quasi-coherent is local
on X, we may assume that there exists an closed immersion i : X → An

S such that
Ri∗E is m-pseudo-coherent on An

S . By Derived Categories of Schemes, Lemma
10.1 this means that Hq(Ri∗E) is quasi-coherent for q > m. Since i∗ is an exact
functor, we have i∗Hq(E) = Hq(Ri∗E) is quasi-coherent on An

S . By Morphisms,
Lemma 4.1 this implies that Hq(E) is quasi-coherent as desired (strictly speaking
it implies there exists some quasi-coherent OX -module F such that i∗F = i∗H

q(E)
and then Modules, Lemma 13.4 tells us that F ∼= Hq(E) hence the result). □

Next, we prove the condition of relative pseudo-coherence localizes well.

Lemma 59.4.09VD Let S be an affine scheme. Let V ⊂ S be a standard open. Let
X → V be a finite type morphism of affine schemes. Let U ⊂ X be an affine
open. Let E be an object of D(OX). If the equivalent conditions of Lemma 59.1
are satisfied for the pair (X → V,E), then the equivalent conditions of Lemma 59.1
are satisfied for the pair (U → S,E|U ).

Proof. Write S = Spec(R), V = D(f), X = Spec(A), and U = D(g). Assume the
equivalent conditions of Lemma 59.1 are satisfied for the pair (X → V,E).
Choose Rf [x1, . . . , xn] → A surjective. Write Rf = R[x0]/(fx0 − 1). Then
R[x0, x1, . . . , xn] → A is surjective, and Rf [x1, . . . , xn] is pseudo-coherent as an
R[x0, . . . , xn]-module. Thus we have

X → An
V → An+1

S

and we can apply Derived Categories of Schemes, Lemma 12.5 to conclude that the
pushforward E′ of E to An+1

S is m-pseudo-coherent.
Choose an element g′ ∈ R[x0, x1, . . . , xn] which maps to g ∈ A. Consider the
surjection R[x0, . . . , xn+1]→ R[x0, . . . , xn, 1/g′]. We obtain

X

��

U

��

oo

##
An+1
S D(g′)oo // An+2

S

where the lower left arrow is an open immersion and the lower right arrow is a closed
immersion. We conclude as before that the pushforward of E′|D(g′) to An+2

S is m-
pseudo-coherent. Since this is also the pushforward of E|U to An+2

S we conclude
the lemma is true. □

Lemma 59.5.09VE Let X → S be a finite type morphism of affine schemes. Let E be
an object of D(OX). Let m ∈ Z. Let X =

⋃
Ui be a standard affine open covering.

The following are equivalent
(1) the equivalent conditions of Lemma 59.1 hold for the pairs (Ui → S,E|Ui

),
(2) the equivalent conditions of Lemma 59.1 hold for the pair (X → S,E).

Proof. The implication (2) ⇒ (1) is Lemma 59.4. Assume (1). Say S = Spec(R)
and X = Spec(A) and Ui = D(fi). Write 1 =

∑
figi in A. Consider the surjections

R[xi, yi, zi]→ R[xi, yi, zi]/(
∑

yizi − 1)→ A.

https://stacks.math.columbia.edu/tag/09VD
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which sends yi to fi and zi to gi. Note that R[xi, yi, zi]/(
∑
yizi − 1) is pseudo-

coherent as an R[xi, yi, zi]-module. Thus it suffices to prove that the pushforward
of E to T = Spec(R[xi, yi, zi]/(

∑
yizi − 1)) is m-pseudo-coherent, see Derived

Categories of Schemes, Lemma 12.5. For each i0 it suffices to prove the restriction
of this pushforward to Wi0 = Spec(R[xi, yi, zi, 1/yi0 ]/(

∑
yizi − 1)) is m-pseudo-

coherent. Note that there is a commutative diagram

X

��

Ui0oo

��
T Wi0
oo

which implies that the pushforward of E to T restricted to Wi0 is the pushforward
of E|Ui0

to Wi0 . Since R[xi, yi, zi, 1/yi0 ]/(
∑
yizi−1) is isomorphic to a polynomial

ring over R this proves what we want. □

Lemma 59.6.09UJ Let f : X → S be a morphism of schemes which is locally of finite
type. Let E be an object of D(OX). Fix m ∈ Z. The following are equivalent

(1) E is m-pseudo-coherent relative to S,
(2) for every affine opens U ⊂ X and V ⊂ S with f(U) ⊂ V the equivalent

conditions of Lemma 59.1 are satisfied for the pair (U → V,E|U ).
Moreover, if this is true, then for every open subschemes U ⊂ X and V ⊂ S with
f(U) ⊂ V the restriction E|U is m-pseudo-coherent relative to V .

Proof. The final statement is clear from the equivalence of (1) and (2). It is also
clear that (2) implies (1). Assume (1) holds. Let S =

⋃
Vi and f−1(Vi) =

⋃
Uij

be affine open coverings as in Definition 59.2. Let U ⊂ X and V ⊂ S be as in
(2). By Lemma 59.5 it suffices to find a standard open covering U =

⋃
Uk of

U such that the equivalent conditions of Lemma 59.1 are satisfied for the pairs
(Uk → V,E|Uk

). In other words, for every u ∈ U it suffices to find a standard
affine open u ∈ U ′ ⊂ U such that the equivalent conditions of Lemma 59.1 are
satisfied for the pair (U ′ → V,E|U ′). Pick i such that f(u) ∈ Vi and then pick
j such that u ∈ Uij . By Schemes, Lemma 11.5 we can find v ∈ V ′ ⊂ V ∩ Vi
which is standard affine open in V ′ and Vi. Then f−1V ′ ∩ U , resp. f−1V ′ ∩ Uij
are standard affine opens of U , resp. Uij . Applying the lemma again we can find
u ∈ U ′ ⊂ f−1V ′ ∩ U ∩ Uij which is standard affine open in both f−1V ′ ∩ U and
f−1V ′ ∩Uij . Thus U ′ is also a standard affine open of U and Uij . By Lemma 59.4
the assumption that the equivalent conditions of Lemma 59.1 are satisfied for the
pair (Uij → Vi, E|Uij

) implies that the equivalent conditions of Lemma 59.1 are
satisfied for the pair (U ′ → V,E|U ′). □

For objects of the derived category whose cohomology sheaves are quasi-coherent,
we can relate relative m-pseudo-coherence to the notion defined in More on Alge-
bra, Definition 81.4. We will use the fact that for an affine scheme U = Spec(A)
the functor RΓ(U,−) induces an equivalence between DQCoh(OU ) and D(A), see
Derived Categories of Schemes, Lemma 3.5. This functor is compatible with pull-
backs: if E is an object of DQCoh(OU ) and A → B is a ring map correspond-
ing to a morphism of affine schemes g : V = Spec(B) → Spec(A) = U , then
RΓ(V,Lg∗E) = RΓ(U,E)⊗L

A B. See Derived Categories of Schemes, Lemma 3.8.

https://stacks.math.columbia.edu/tag/09UJ


MORE ON MORPHISMS 174

Lemma 59.7.09VF Let f : X → S be a morphism of schemes which is locally of finite
type. Let E be an object of DQCoh(OX). Fix m ∈ Z. The following are equivalent

(1) E is m-pseudo-coherent relative to S,
(2) there exists an affine open covering S =

⋃
Vi and for each i an affine

open covering f−1(Vi) =
⋃
Uij such that the complex of OX(Uij)-modules

RΓ(Uij , E) is m-pseudo-coherent relative to OS(Vi), and
(3) for every affine opens U ⊂ X and V ⊂ S with f(U) ⊂ V the complex of
OX(U)-modules RΓ(U,E) is m-pseudo-coherent relative to OS(V ).

Proof. Let U and V be as in (2) and choose a closed immersion i : U → An
V .

A formal argument, using Lemma 59.6, shows it suffices to prove that Ri∗(E|U ) is
m-pseudo-coherent if and only if RΓ(U,E) is m-pseudo-coherent relative to OS(V ).
Say U = Spec(A), V = Spec(R), and An

V = Spec(R[x1, . . . , xn]. By the remarks
preceding the lemma, E|U is quasi-isomorphic to the complex of quasi-coherent
sheaves on U associated to the object RΓ(U,E) of D(A). Note that RΓ(U,E) =
RΓ(An

V , Ri∗(E|U )) as i is a closed immersion (and hence i∗ is exact). Thus Ri∗E is
associated to RΓ(U,E) viewed as an object of D(R[x1, . . . , xn]). We conclude as m-
pseudo-coherence of Ri∗(E|U ) is equivalent to m-pseudo-coherence of RΓ(U,E) in
D(R[x1, . . . , xn]) by Derived Categories of Schemes, Lemma 10.2 which is equivalent
to RΓ(U,E) is m-pseudo-coherent relative to R = OS(V ) by definition. □

Lemma 59.8.09VG Let i : X → Y morphism of schemes locally of finite type over a
base scheme S. Assume that i induces a homeomorphism of X with a closed subset
of Y . Let E be an object of D(OX). Then E is m-pseudo-coherent relative to S if
and only if Ri∗E is m-pseudo-coherent relative to S.

Proof. By Morphisms, Lemma 45.4 the morphism i is affine. Thus we may assume
S, Y , and X are affine. Say S = Spec(R), Y = Spec(A), and X = Spec(B). The
condition means that A/rad(A)→ B/rad(B) is surjective; here rad(A) and rad(B)
denote the Jacobson radical of A and B. As B is of finite type over A, we can
find b1, . . . , bm ∈ rad(B) which generate B as an A-algebra. Say bNj = 0 for all j.
Consider the diagram of rings

B R[xi, yj ]/(yNj )oo R[xi, yj ]oo

A

OO

R[xi]oo

OO 77

which translates into a diagram

X

��

// T

��

// An+m
S

||
Y // An

S

of affine schemes. By Lemma 59.6 we see that E is m-pseudo-coherent relative to S
if and only if its pushforward to An+m

S ism-pseudo-coherent. By Derived Categories
of Schemes, Lemma 12.5 we see that this is true if and only if its pushforward to
T is m-pseudo-coherent. The same lemma shows that this holds if and only if the
pushforward to An

S is m-pseudo-coherent. Again by Lemma 59.6 this holds if and
only if Ri∗E is m-pseudo-coherent relative to S. □

https://stacks.math.columbia.edu/tag/09VF
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Lemma 59.9.09UK Let π : X → Y be a finite morphism of schemes locally of finite
type over a base scheme S. Let E be an object of DQCoh(OX). Then E is m-
pseudo-coherent relative to S if and only if Rπ∗E is m-pseudo-coherent relative to
S.

Proof. Translation of the result of More on Algebra, Lemma 81.5 into the lan-
guage of schemes. Observe that Rπ∗ indeed maps DQCoh(OX) into DQCoh(OY )
by Derived Categories of Schemes, Lemma 4.1. To do the translation use Lemma
59.6. □

Lemma 59.10.09UL Let f : X → S be a morphism of schemes which is locally of finite
type. Let (E,E′, E′′) be a distinguished triangle of D(OX). Let m ∈ Z.

(1) If E is (m+ 1)-pseudo-coherent relative to S and E′ is m-pseudo-coherent
relative to S then E′′ is m-pseudo-coherent relative to S.

(2) If E,E′′ are m-pseudo-coherent relative to S, then E′ is m-pseudo-coherent
relative to S.

(3) If E′ is (m+1)-pseudo-coherent relative to S and E′′ is m-pseudo-coherent
relative to S, then E is (m+ 1)-pseudo-coherent relative to S.

Moreover, if two out of three of E,E′, E′′ are pseudo-coherent relative to S, the so
is the third.

Proof. Immediate from Lemma 59.6 and Cohomology, Lemma 47.4. □

Lemma 59.11.09UM Let X → S be a morphism of schemes which is locally of finite
type. Let F be an OX-module. Then

(1) F is m-pseudo-coherent relative to S for all m > 0,
(2) F is 0-pseudo-coherent relative to S if and only if F is a finite type OX-

module,
(3) F is (−1)-pseudo-coherent relative to S if and only if F is quasi-coherent

and finitely presented relative to S.

Proof. Part (1) is immediate from the definition. To see part (3) we may work
locally on X (both properties are local). Thus we may assume X and S are affine.
Choose a closed immersion i : X → An

S . Then we see that F is (−1)-pseudo-
coherent relative to S if and only if i∗F is (−1)-pseudo-coherent, which is true if
and only if i∗F is an OAn

S
-module of finite presentation, see Cohomology, Lemma

47.9. A module of finite presentation is quasi-coherent, see Modules, Lemma 11.2.
By Morphisms, Lemma 4.1 we see that F is quasi-coherent if and only if i∗F is
quasi-coherent. Having said this part (3) follows. The proof of (2) is similar but
less involved. □

Lemma 59.12.09UN Let X → S be a morphism of schemes which is locally of finite
type. Let m ∈ Z. Let E,K be objects of D(OX). If E ⊕K is m-pseudo-coherent
relative to S so are E and K.

Proof. Follows from Cohomology, Lemma 47.6 and the definitions. □

Lemma 59.13.09UP Let X → S be a morphism of schemes which is locally of finite
type. Let m ∈ Z. Let F• be a (locally) bounded above complex of OX-modules such
that F i is (m − i)-pseudo-coherent relative to S for all i. Then F• is m-pseudo-
coherent relative to S.

Proof. Follows from Cohomology, Lemma 47.7 and the definitions. □
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Lemma 59.14.09UQ Let X → S be a morphism of schemes which is locally of finite
type. Let m ∈ Z. Let E be an object of D(OX). If E is (locally) bounded above and
Hi(E) is (m−i)-pseudo-coherent relative to S for all i, then E is m-pseudo-coherent
relative to S.
Proof. Follows from Cohomology, Lemma 47.8 and the definitions. □

Lemma 59.15.09UR Let X → S be a morphism of schemes which is locally of finite
type. Let m ∈ Z. Let E be an object of D(OX) which is m-pseudo-coherent relative
to S. Let S′ → S be a morphism of schemes. Set X ′ = X ×S S′ and denote E′ the
derived pullback of E to X ′. If S′ and X are Tor independent over S, then E′ is
m-pseudo-coherent relative to S′.
Proof. The problem is local on X and X ′ hence we may assume X, S, S′, and
X ′ are affine. Choose a closed immersion i : X → An

S and denote i′ : X ′ → An
S′

the base change to S′. Denote g : X ′ → X and g′ : An
S′ → An

S the projections,
so E′ = Lg∗E. Since X and S′ are tor-independent over S, the base change map
(Cohomology, Remark 28.3) induces an isomorphism

Ri′∗(Lg∗E) = L(g′)∗Ri∗E

Namely, for a point x′ ∈ X ′ lying over x ∈ X the base change map on stalks at x′

is the map
Ex ⊗L

OAn
S

,x
OAn

S′ ,x
′ −→ Ex ⊗L

OX,x
OX′,x′

coming from the closed immersions i and i′. Note that the source is quasi-isomorphic
to a localization of Ex ⊗L

OS,s
OS′,s′ which is isomorphic to the target as OX′,x′ is

isomorphic to (the same) localization of OX,x ⊗L
OS,s

OS′,s′ by assumption. We
conclude the lemma holds by an application of Cohomology, Lemma 47.3. □

Lemma 59.16.09US Let f : X → Y be a morphism of schemes locally of finite type
over a base S. Let m ∈ Z. Let E be an object of D(OY ). Assume

(1) OX is pseudo-coherent relative to Y 12, and
(2) E is m-pseudo-coherent relative to S.

Then Lf∗E is m-pseudo-coherent relative to S.
Proof. The problem is local on X. Thus we may assume X, Y , and S are affine.
Arguing as in the proof of More on Algebra, Lemma 81.13 we can find a commu-
tative diagram

X
i
//

f

��

Ad
Y j

//

p
~~

An+d
S

||
Y // An

S

Observe that
Ri∗Lf

∗E = Ri∗Li
∗Lp∗E = Lp∗E ⊗L

OAn
Y

Ri∗OX

by Cohomology, Lemma 54.4. By assumption and the fact that Y is affine, we
can represent Ri∗OX = i∗OX by a complexes of finite free OAn

Y
-modules F•, with

Fq = 0 for q > 0 (details omitted; use Derived Categories of Schemes, Lemma
10.2 and More on Algebra, Lemma 81.7). By assumption E is bounded above, say

12This means f is pseudo-coherent, see Definition 60.2.
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Hq(E) = 0 for q > a. Represent E by a complex E• of OY -modules with Eq = 0 for
q > a. Then the derived tensor product above is represented by Tot(p∗E•⊗OAn

Y

F•).

Since j is a closed immersion, the functor j∗ is exact and Rj∗ is computed by
applying j∗ to any representating complex of sheaves. Thus we have to show that
j∗Tot(p∗E•⊗OAn

Y

F•) is m-pseudo-coherent as a complex of OAn+m
S

-modules. Note
that Tot(p∗E•⊗OAn

Y

F•) has a filtration by subcomplexes with successive quotients
the complexes p∗E• ⊗OAn

Y

Fq[−q]. Note that for q ≪ 0 the complexes p∗E• ⊗OAn
Y

Fq[−q] have zero cohomology in degrees ≤ m and hence are m-pseudo-coherent.
Hence, applying Lemma 59.10 and induction, it suffices to show that p∗E• ⊗OAn

Y

Fq[−q] is pseudo-coherent relative to S for all q. Note that Fq = 0 for q > 0. Since
also Fq is finite free this reduces to proving that p∗E• is m-pseudo-coherent relative
to S which follows from Lemma 59.15 for instance. □

Lemma 59.17.09UT Let f : X → Y be a morphism of schemes locally of finite type over
a base S. Let m ∈ Z. Let E be an object of D(OX). Assume OY is pseudo-coherent
relative to S13. Then the following are equivalent

(1) E is m-pseudo-coherent relative to Y , and
(2) E is m-pseudo-coherent relative to S.

Proof. The question is local on X, hence we may assume X, Y , and S are affine.
Arguing as in the proof of More on Algebra, Lemma 81.13 we can find a commu-
tative diagram

X
i
//

f

��

Am
Y j

//

p
~~

An+m
S

||
Y // An

S

The assumption that OY is pseudo-coherent relative to S implies that OAm
Y

is
pseudo-coherent relative to Am

S (by flat base change; this can be seen by using
for example Lemma 59.15). This in turn implies that j∗OAn

Y
is pseudo-coherent

as an OAn+m
S

-module. Then the equivalence of the lemma follows from Derived
Categories of Schemes, Lemma 12.5. □

Lemma 59.18.09UU Let
X

��

i
// P

��
S

be a commutative diagram of schemes. Assume i is a closed immersion and P → S
flat and locally of finite presentation. Let E be an object of D(OX). Then the
following are equivalent

(1) E is m-pseudo-coherent relative to S,
(2) Ri∗E is m-pseudo-coherent relative to S, and
(3) Ri∗E is m-pseudo-coherent on P .

13This means Y → S is pseudo-coherent, see Definition 60.2.
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Proof. The equivalence of (1) and (2) is Lemma 59.9. The equivalence of (2) and
(3) follows from Lemma 59.17 applied to id : P → P provided we can show that
OP is pseudo-coherent relative to S. This follows from More on Algebra, Lemma
82.4 and the definitions. □

60. Pseudo-coherent morphisms

067X Avoid reading this section at all cost. If you need some of this material, first take
a look at the corresponding algebra sections, see More on Algebra, Sections 64,
81, and 82. For now the only thing you need to know is that a ring map A → B
is pseudo-coherent if and only if B = A[x1, . . . , xn]/I and B as an A[x1, . . . , xn]-
module has a resolution by finite free A[x1, . . . , xn]-modules.
Lemma 60.1.067Y Let f : X → S be a morphism of schemes. The following are
equivalent

(1) there exist an affine open covering S =
⋃
Vj and for each j an affine

open covering f−1(Vj) =
⋃
Uji such that OS(Vj) → OX(Uij) is a pseudo-

coherent ring map,
(2) for every pair of affine opens U ⊂ X, V ⊂ S such that f(U) ⊂ V the ring

map OS(V )→ OX(U) is pseudo-coherent, and
(3) f is locally of finite type and OX is pseudo-coherent relative to S.

Proof. To see the equivalence of (1) and (2) it suffices to check conditions (1)(a),
(b), (c) of Morphisms, Definition 14.1 for the property of being a pseudo-coherent
ring map. These properties follow (using localization is flat) from More on Algebra,
Lemmas 81.12, 81.11, and 81.16.
If (1) holds, then f is locally of finite type as a pseudo-coherent ring map is of finite
type by definition. Moreover, (1) implies via Lemma 59.7 and the definitions that
OX is pseudo-coherent relative to S. Conversely, if (3) holds, then we see that for
every U and V as in (2) the ring OX(U) is of finite type over OS(V ) and OX(U)
is as a module pseudo-coherent relative to OS(V ), see Lemmas 59.6 and 59.7. This
is the definition of a pseudo-coherent ring map, hence (2) and (1) hold. □

Definition 60.2.067Z A morphism of schemes f : X → S is called pseudo-coherent if
the equivalent conditions of Lemma 60.1 are satisfied. In this case we also say that
X is pseudo-coherent over S.
Beware that a base change of a pseudo-coherent morphism is not pseudo-coherent
in general.
Lemma 60.3.0680 A flat base change of a pseudo-coherent morphism is pseudo-
coherent.
Proof. This translates into the following algebra result: Let A→ B be a pseudo-
coherent ring map. Let A → A′ be flat. Then A′ → B ⊗A A′ is pseudo-coherent.
This follows from the more general More on Algebra, Lemma 81.12. □

Lemma 60.4.0681 A composition of pseudo-coherent morphisms of schemes is pseudo-
coherent.
Proof. This translates into the following algebra result: If A → B → C are
composable pseudo-coherent ring maps then A → C is pseudo-coherent. This
follows from either More on Algebra, Lemma 81.13 or More on Algebra, Lemma
81.15. □
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Lemma 60.5.0682 A pseudo-coherent morphism is locally of finite presentation.

Proof. Immediate from the definitions. □

Lemma 60.6.0695 A flat morphism which is locally of finite presentation is pseudo-
coherent.

Proof. This follows from the fact that a flat ring map of finite presentation is
pseudo-coherent (and even perfect), see More on Algebra, Lemma 82.4. □

Lemma 60.7.0683 Let f : X → Y be a morphism of schemes pseudo-coherent over a
base scheme S. Then f is pseudo-coherent.

Proof. This translates into the following algebra result: If R → A → B are
composable ring maps and R → A, R → B pseudo-coherent, then R → B is
pseudo-coherent. This follows from More on Algebra, Lemma 81.15. □

Lemma 60.8.0AVX Let f : X → S be a finite morphism of schemes. Then f is
pseudo-coherent if and only if f∗OX is pseudo-coherent as an OS-module.

Proof. Translated into algebra this lemma says the following: If R→ A is a finite
ring map, then R→ A is pseudo-coherent as a ring map (which means by definition
that A as an A-module is pseudo-coherent relative to R) if and only if A is pseudo-
coherent as an R-module. This follows from the more general More on Algebra,
Lemma 81.5. □

Lemma 60.9.0684 Let f : X → S be a morphism of schemes. If S is locally Noether-
ian, then f is pseudo-coherent if and only if f is locally of finite type.

Proof. This translates into the following algebra result: If R → A is a finite
type ring map with R Noetherian, then R → A is pseudo-coherent if and only if
R → A is of finite type. To see this, note that a pseudo-coherent ring map is of
finite type by definition. Conversely, if R → A is of finite type, then we can write
A = R[x1, . . . , xn]/I and it follows from More on Algebra, Lemma 64.17 that A is
pseudo-coherent as an R[x1, . . . , xn]-module, i.e., R→ A is a pseudo-coherent ring
map. □

Lemma 60.10.0696 The property P(f) =“f is pseudo-coherent” is fpqc local on the
base.

Proof. We will use the criterion of Descent, Lemma 22.4 to prove this. By Def-
inition 60.2 being pseudo-coherent is Zariski local on the base. By Lemma 60.3
being pseudo-coherent is preserved under flat base change. The final hypothesis
(3) of Descent, Lemma 22.4 translates into the following algebra statement: Let
A→ B be a faithfully flat ring map. Let C = A[x1, . . . , xn]/I be an A-algebra. If
C ⊗A B is pseudo-coherent as an B[x1, . . . , xn]-module, then C is pseudo-coherent
as a A[x1, . . . , xn]-module. This is More on Algebra, Lemma 64.15. □

Lemma 60.11.0697 Let A → B be a flat ring map of finite presentation. Let I ⊂ B
be an ideal. Then A→ B/I is pseudo-coherent if and only if I is pseudo-coherent
as a B-module.

Proof. Choose a presentation B = A[x1, . . . , xn]/J . Note that B is pseudo-
coherent as an A[x1, . . . , xn]-module because A → B is a pseudo-coherent ring
map by Lemma 60.6. Note that A→ B/I is pseudo-coherent if and only if B/I is
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pseudo-coherent as an A[x1, . . . , xn]-module. By More on Algebra, Lemma 64.11 we
see this is equivalent to the condition that B/I is pseudo-coherent as an B-module.
This proves the lemma as the short exact sequence 0 → I → B → B/I → 0
shows that I is pseudo-coherent if and only if B/I is (see More on Algebra, Lemma
64.6). □

The following lemma will be obsoleted by the stronger Lemma 60.13.

Lemma 60.12.0698 The property P(f) =“f is pseudo-coherent” is syntomic local on
the source.

Proof. We will use the criterion of Descent, Lemma 26.4 to prove this. It follows
from Lemmas 60.6 and 60.4 that being pseudo-coherent is preserved under pre-
composing with flat morphisms locally of finite presentation, in particular under
precomposing with syntomic morphisms (see Morphisms, Lemmas 30.7 and 30.6).
It is clear from Definition 60.2 that being pseudo-coherent is Zariski local on the
source and target. Hence, according to the aforementioned Descent, Lemma 26.4
it suffices to prove the following: Suppose X ′ → X → Y are morphisms of affine
schemes with X ′ → X syntomic and X ′ → Y pseudo-coherent. Then X → Y is
pseudo-coherent. To see this, note that in any case X → Y is of finite presenta-
tion by Descent, Lemma 14.1. Choose a closed immersion X → An

Y . By Algebra,
Lemma 136.18 we can find an affine open covering X ′ =

⋃
i=1,...,nX

′
i and syntomic

morphisms Wi → An
Y lifting the morphisms X ′

i → X, i.e., such that there are fibre
product diagrams

X ′
i

��

// Wi

��
X // An

Y

After replacing X ′ by
∐
X ′
i and setting W =

∐
Wi we obtain a fibre product

diagram
X ′

��

// W

h

��
X // An

Y

with W → An
Y flat and of finite presentation and X ′ → Y still pseudo-coherent.

Since W → An
Y is open (see Morphisms, Lemma 25.10) and X ′ → X is surjective

we can find f ∈ Γ(An
Y ,O) such that X ⊂ D(f) ⊂ Im(h). Write Y = Spec(R), X =

Spec(A), X ′ = Spec(A′) and W = Spec(B), A = R[x1, . . . , xn]/I and A′ = B/IB.
Then R→ A′ is pseudo-coherent. Picture

A′ = B/IB Boo

A = R[x1, . . . , xn]/I

OO

R[x1, . . . , xn]oo

OO

By Lemma 60.11 we see that IB is pseudo-coherent as a B-module. The ring
map R[x1, . . . , xn]f → Bf is faithfully flat by our choice of f above. This implies
that If ⊂ R[x1, . . . , xn]f is pseudo-coherent, see More on Algebra, Lemma 64.15.
Applying Lemma 60.11 one more time we see that R→ A is pseudo-coherent. □
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Lemma 60.13.0699 The property P(f) =“f is pseudo-coherent” is fppf local on the
source.

Proof. Let f : X → S be a morphism of schemes. Let {gi : Xi → X} be an fppf
covering such that each composition f ◦gi is pseudo-coherent. According to Lemma
48.2 there exist

(1) a Zariski open covering X =
⋃
Uj ,

(2) surjective finite locally free morphisms Wj → Uj ,
(3) Zariski open coverings Wj =

⋃
kWj,k,

(4) surjective finite locally free morphisms Tj,k →Wj,k

such that the fppf covering {hj,k : Tj,k → X} refines the given covering {Xi → X}.
Denote ψj,k : Tj,k → Xα(j,k) the morphisms that witness the fact that {Tj,k → X}
refines the given covering {Xi → X}. Note that Tj,k → X is a flat, locally finitely
presented morphism, so both Xi and Tj,k are pseudo-coherent over X by Lemma
60.6. Hence ψj,k : Tj,k → Xi is pseudo-coherent, see Lemma 60.7. Hence Tj,k → S
is pseudo coherent as the composition of ψj,k and f ◦gα(j,k), see Lemma 60.4. Thus
we see we have reduced the lemma to the case of a Zariski open covering (which
is OK) and the case of a covering given by a single surjective finite locally free
morphism which we deal with in the following paragraph.
Assume that X ′ → X → S is a sequence of morphisms of schemes with X ′ → X
surjective finite locally free and X ′ → Y pseudo-coherent. Our goal is to show
that X → S is pseudo-coherent. Note that by Descent, Lemma 14.3 the morphism
X → S is locally of finite presentation. It is clear that the problem reduces to the
case that X ′, X and S are affine and X ′ → X is free of some rank r > 0. The
corresponding algebra problem is the following: Suppose R → A → A′ are ring
maps such that R → A′ is pseudo-coherent, R → A is of finite presentation, and
A′ ∼= A⊕r as an A-module. Goal: Show R→ A is pseudo-coherent. The assumption
that R→ A′ is pseudo-coherent means that A′ as an A′-module is pseudo-coherent
relative to R. By More on Algebra, Lemma 81.5 this implies that A′ as an A-module
is pseudo-coherent relative to R. Since A′ ∼= A⊕r as an A-module we see that A as
an A-module is pseudo-coherent relative to R, see More on Algebra, Lemma 81.8.
This by definition means that R→ A is pseudo-coherent and we win. □

61. Perfect morphisms

0685 In order to understand the material in this section you have to understand the
material of the section on pseudo-coherent morphisms just a little bit. For now the
only thing you need to know is that a ring map A → B is perfect if and only if it
is pseudo-coherent and B has finite tor dimension as an A-module.

Lemma 61.1.0686 Let f : X → S be a morphism of schemes which is locally of finite
type. The following are equivalent

(1) there exist an affine open covering S =
⋃
Vj and for each j an affine open

covering f−1(Vj) =
⋃
Uji such that OS(Vj) → OX(Uij) is a perfect ring

map, and
(2) for every pair of affine opens U ⊂ X, V ⊂ S such that f(U) ⊂ V the ring

map OS(V )→ OX(U) is perfect.

Proof. Assume (1) and let U, V be as in (2). It follows from Lemma 60.1 that
OS(V ) → OX(U) is pseudo-coherent. Hence it suffices to prove that the property
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of a ring map being "of finite tor dimension" satisfies conditions (1)(a), (b), (c)
of Morphisms, Definition 14.1. These properties follow from More on Algebra,
Lemmas 66.11, 66.14, and 66.16. Some details omitted. □

Definition 61.2.0687 A morphism of schemes f : X → S is called perfect if the
equivalent conditions of Lemma 61.1 are satisfied. In this case we also say that X
is perfect over S.

Note that a perfect morphism is in particular pseudo-coherent, hence locally of
finite presentation. Beware that a base change of a perfect morphism is not perfect
in general.

Lemma 61.3.0688 A flat base change of a perfect morphism is perfect.

Proof. This translates into the following algebra result: Let A → B be a perfect
ring map. Let A → A′ be flat. Then A′ → B ⊗A A′ is perfect. This result for
pseudo-coherent ring maps we have seen in Lemma 60.3. The corresponding fact
for finite tor dimension follows from More on Algebra, Lemma 66.14. □

Lemma 61.4.0689 A composition of perfect morphisms of schemes is perfect.

Proof. This translates into the following algebra result: If A → B → C are
composable perfect ring maps then A → C is perfect. We have seen this is the
case for pseudo-coherent in Lemma 60.4 and its proof. By assumption there exist
integers n, m such that B has tor dimension ≤ n over A and C has tor dimension
≤ m over B. Then for any A-module M we have

M ⊗L
A C = (M ⊗L

A B)⊗L
B C

and the spectral sequence of More on Algebra, Example 62.4 shows that TorAp (M,C) =
0 for p > n+m as desired. □

Lemma 61.5.068A Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is flat and perfect, and
(2) f is flat and locally of finite presentation.

Proof. The implication (2) ⇒ (1) is More on Algebra, Lemma 82.4. The con-
verse follows from the fact that a pseudo-coherent morphism is locally of finite
presentation, see Lemma 60.5. □

Lemma 61.6.068B Let f : X → S be a morphism of schemes. Assume S is regular
and f is locally of finite type. Then f is perfect.

Proof. See More on Algebra, Lemma 82.5. □

Lemma 61.7.068C A regular immersion of schemes is perfect. A Koszul-regular im-
mersion of schemes is perfect.

Proof. Since a regular immersion is a Koszul-regular immersion, see Divisors,
Lemma 21.2, it suffices to prove the second statement. This translates into the
following algebraic statement: Suppose that I ⊂ A is an ideal generated by a
Koszul-regular sequence f1, . . . , fr of A. Then A → A/I is a perfect ring map.
Since A→ A/I is surjective this is a presentation of A/I by a polynomial algebra
over A. Hence it suffices to see that A/I is pseudo-coherent as an A-module and
has finite tor dimension. By definition of a Koszul sequence the Koszul complex
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K(A, f1, . . . , fr) is a finite free resolution of A/I. Hence A/I is a perfect complex
of A-modules and we win. □

Lemma 61.8.068D Let
X

f
//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume Y → S smooth and
X → S perfect. Then f : X → Y is perfect.

Proof. We can factor f as the composition
X −→ X ×S Y −→ Y

where the first morphism is the map i = (1, f) and the second morphism is the
projection. Since Y → S is flat, see Morphisms, Lemma 34.9, we see that X×SY →
Y is perfect by Lemma 61.3. As Y → S is smooth, also X ×S Y → X is smooth,
see Morphisms, Lemma 34.5. Hence i is a section of a smooth morphism, therefore
i is a regular immersion, see Divisors, Lemma 22.8. This implies that i is perfect,
see Lemma 61.7. We conclude that f is perfect because the composition of perfect
morphisms is perfect, see Lemma 61.4. □

Remark 61.9.069A It is not true that a morphism between schemes X,Y perfect over
a base S is perfect. An example is S = Spec(k), X = Spec(k), Y = Spec(k[x]/(x2)
and X → Y the unique S-morphism.

Lemma 61.10.069B The property P(f) =“f is perfect” is fpqc local on the base.

Proof. We will use the criterion of Descent, Lemma 22.4 to prove this. By Defini-
tion 61.2 being perfect is Zariski local on the base. By Lemma 61.3 being perfect
is preserved under flat base change. The final hypothesis (3) of Descent, Lemma
22.4 translates into the following algebra statement: Let A→ B be a faithfully flat
ring map. Let C = A[x1, . . . , xn]/I be an A-algebra. If C ⊗A B is perfect as an
B[x1, . . . , xn]-module, then C is perfect as a A[x1, . . . , xn]-module. This is More
on Algebra, Lemma 74.13. □

Lemma 61.11.069C Let f : X → S be a pseudo-coherent morphism of schemes. The
following are equivalent

(1) f is perfect,
(2) OX locally has finite tor dimension as a sheaf of f−1OS-modules, and
(3) for all x ∈ X the ring OX,x has finite tor dimension as an OS,f(x)-module.

Proof. The problem is local onX and S. Hence we may assume thatX = Spec(B),
S = Spec(A) and f corresponds to a pseudo-coherent ring map A→ B.
If (1) holds, then B has finite tor dimension d as A-module. Then Bq has tor
dimension d as an Ap-module for all primes q ⊂ B with p = A ∩ q, see More on
Algebra, Lemma 66.15. Then OX has tor dimension d as a sheaf of f−1OS-modules
by Cohomology, Lemma 48.5. Thus (1) implies (2).
By Cohomology, Lemma 48.5 (2) implies (3).
Assume (3). We cannot use More on Algebra, Lemma 66.15 to conclude as we are
not given that the tor dimension of Bq over Ap is bounded independent of q. Choose
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a presentation A[x1, . . . , xn] → B. Then B is pseudo-coherent as a A[x1, . . . , xn]-
module. Let q ⊂ A[x1, . . . , xn] be a prime ideal lying over p ⊂ A. Then either Bq is
zero or by assumption it has finite tor dimension as an Ap-module. Since the fibres
of A→ A[x1, . . . , xn] have finite global dimension, we can apply More on Algebra,
Lemma 77.5 to Ap → A[x1, . . . , xn]q to see that Bq is a perfect A[x1, . . . , xn]q-
module. Hence B is a perfect A[x1, . . . , xn]-module by More on Algebra, Lemma
77.3. Thus A→ B is a perfect ring map by definition. □

Lemma 61.12.0G2E Let i : Z → X be a perfect closed immersion of schemes. Then
i∗OZ is a perfect OX-module, i.e., it is a perfect object of D(OX).

Proof. This is more or less immediate from the definition. Namely, let U =
Spec(A) be an affine open of X. Then i−1(U) = Spec(A/I) for some ideal I ⊂ A
and A/I has a finite resolution by finite projective A-modules by More on Algebra,
Lemma 82.2. Hence i∗OZ |U can be represented by a finite length complex of finite
locally free OU -modules. This is what we had to show, see Cohomology, Section
49. □

Lemma 61.13.0B6G Let S be a Noetherian scheme. Let f : X → S be a perfect proper
morphism of schemes. Let E ∈ D(OX) be perfect. Then Rf∗E is a perfect object
of D(OS).

Proof. We claim that Derived Categories of Schemes, Lemma 27.1 applies. Con-
ditions (1) and (2) are immediate. Condition (3) is local on X. Thus we may
assume X and S affine and E represented by a strictly perfect complex of OX -
modules. Thus it suffices to show that OX has finite tor dimension as a sheaf of
f−1OS-modules. This is equivalent to being perfect by Lemma 61.11. □

Lemma 61.14.069D The property P(f) =“f is perfect” is fppf local on the source.

Proof. Let {gi : Xi → X}i∈I be an fppf covering of schemes and let f : X → S
be a morphism such that each f ◦ gi is perfect. By Lemma 60.13 we conclude that
f is pseudo-coherent. Hence by Lemma 61.11 it suffices to check that OX,x is an
OS,f(x)-module of finite tor dimension for all x ∈ X. Pick i ∈ I and xi ∈ Xi

mapping to x. Then we see that OXi,xi has finite tor dimension over OS,f(x) and
that OX,x → OXi,xi is faithfully flat. The desired conclusion follows from More on
Algebra, Lemma 66.17. □

Lemma 61.15.09RK Let i : Z → Y and j : Y → X be immersions of schemes. Assume
(1) X is locally Noetherian,
(2) j ◦ i is a regular immersion, and
(3) i is perfect.

Then i and j are regular immersions.

Proof. Since X (and hence Y ) is locally Noetherian all 4 types of regular immer-
sions agree, and moreover we may check whether a morphism is a regular immersion
on the level of local rings, see Divisors, Lemma 20.8. Thus the result follows from
Divided Power Algebra, Lemma 7.5. □
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62. Local complete intersection morphisms

068E In Divisors, Section 21 we have defined 4 different types of regular immersions:
regular, Koszul-regular, H1-regular, and quasi-regular. In this section we consider
morphisms f : X → S which locally on X factor as

X
i

//

��

An
S

~~
S

where i is a ∗-regular immersion for ∗ ∈ {∅,Koszul,H1, quasi}. However, we don’t
know how to prove that this condition is independent of the factorization if ∗ = ∅,
i.e., when we require i to be a regular immersion. On the other hand, we want a
local complete intersection morphism to be perfect, which is only going to be true if
∗ = Koszul or ∗ = ∅. Hence we will define a local complete intersection morphism
or Koszul morphism to be a morphism of schemes f : X → S that locally on X has
a factorization as above with i a Koszul-regular immersion. To see that this works
we first prove this is independent of the chosen factorizations.

Lemma 62.1.069E Let S be a scheme. Let U , P , P ′ be schemes over S. Let u ∈ U .
Let i : U → P , i′ : U → P ′ be immersions over S. Assume P and P ′ smooth over
S. Then the following are equivalent

(1) i is a Koszul-regular immersion in a neighbourhood of x, and
(2) i′ is a Koszul-regular immersion in a neighbourhood of x.

Proof. Assume i is a Koszul-regular immersion in a neighbourhood of x. Consider
the morphism j = (i, i′) : U → P ×S P ′ = P ′′. Since P ′′ = P ×S P ′ → P is
smooth, it follows from Divisors, Lemma 22.9 that j is a Koszul-regular immer-
sion, whereupon it follows from Divisors, Lemma 22.12 that i′ is a Koszul-regular
immersion. □

Before we state the definition, let us make the following simple remark. Let f :
X → S be a morphism of schemes which is locally of finite type. Let x ∈ X.
Then there exist an open neighbourhood U ⊂ X and a factorization of f |U as the
composition of an immersion i : U → An

S followed by the projection An
S → S which

is smooth. Picture
X

��

Uoo

��

i
// An

S = P

π
{{

S

In fact you can do this with any affine open neighbourhood U of x in X, see
Morphisms, Lemma 39.2.

Definition 62.2.069F Let f : X → S be a morphism of schemes.
(1) Let x ∈ X. We say that f is Koszul at x if f is of finite type at x and

there exists an open neighbourhood and a factorization of f |U as π◦i where
i : U → P is a Koszul-regular immersion and π : P → S is smooth.

(2) We say f is a Koszul morphism, or that f is a local complete intersection
morphism if f is Koszul at every point.

https://stacks.math.columbia.edu/tag/069E
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We have seen above that the choice of the factorization f |U = π◦ i is irrelevant, i.e.,
given a factorization of f |U as an immersion i followed by a smooth morphism π,
whether or not i is Koszul regular in a neighbourhood of x is an intrinsic property
of f at x. Let us record this here explicitly as a lemma so that we can refer to it

Lemma 62.3.069G Let f : X → S be a local complete intersection morphism. Let P
be a scheme smooth over S. Let U ⊂ X be an open subscheme and i : U → P an
immersion of schemes over S. Then i is a Koszul-regular immersion.

Proof. This is the defining property of a local complete intersection morphism.
See discussion above. □

It seems like a good idea to collect here some properties in common with all Koszul
morphisms.

Lemma 62.4.069H Let f : X → S be a local complete intersection morphism. Then
(1) f is locally of finite presentation,
(2) f is pseudo-coherent, and
(3) f is perfect.

Proof. Since a perfect morphism is pseudo-coherent (because a perfect ring map is
pseudo-coherent) and a pseudo-coherent morphism is locally of finite presentation
(because a pseudo-coherent ring map is of finite presentation) it suffices to prove
the last statement. Being perfect is a local property, hence we may assume that f
factors as π ◦ i where π is smooth and i is a Koszul-regular immersion. A Koszul-
regular immersion is perfect, see Lemma 61.7. A smooth morphism is perfect as it
is flat and locally of finite presentation, see Lemma 61.5. Finally a composition of
perfect morphisms is perfect, see Lemma 61.4. □

Lemma 62.5.07DB Let f : X = Spec(B) → S = Spec(A) be a morphism of affine
schemes. Then f is a local complete intersection morphism if and only if A→ B is
a local complete intersection homomorphism, see More on Algebra, Definition 33.2.

Proof. Follows immediately from the definitions. □

Beware that a base change of a Koszul morphism is not Koszul in general.

Lemma 62.6.069I A flat base change of a local complete intersection morphism is a
local complete intersection morphism.

Proof. Omitted. Hint: This is true because a base change of a smooth morphism
is smooth and a flat base change of a Koszul-regular immersion is a Koszul-regular
immersion, see Divisors, Lemma 21.3. □

Lemma 62.7.069J A composition of local complete intersection morphisms is a local
complete intersection morphism.

Proof. Let g : Y → S and f : X → Y be local complete intersection morphisms.
Let x ∈ X and set y = f(x). Choose an open neighbourhood V ⊂ Y of y and
a factorization g|V = π ◦ i for some Koszul-regular immersion i : V → P and
smooth morphism π : P → S. Next choose an open neighbourhood U of x ∈ X
and a factorization f |U = π′ ◦ i′ for some Koszul-regular immersion i′ : U → P ′

https://stacks.math.columbia.edu/tag/069G
https://stacks.math.columbia.edu/tag/069H
https://stacks.math.columbia.edu/tag/07DB
https://stacks.math.columbia.edu/tag/069I
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and smooth morphism π′ : P ′ → Y . In fact, we may assume that P ′ = An
V , see

discussion preceding and following Definition 62.2. Picture:

X

��

Uoo
i′
// P ′ = An

V

��
Y

��

Voo
i

// P

��
S Soo

Set P ′′ = An
P . Then U → P ′ → P ′′ is a Koszul-regular immersion as a composition

of Koszul-regular immersions, namely i′ and the flat base change of i via P ′′ → P ,
see Divisors, Lemma 21.3 and Divisors, Lemma 21.7. Also P ′′ → P → S is smooth
as a composition of smooth morphisms, see Morphisms, Lemma 34.4. Hence we
conclude that X → S is Koszul at x as desired. □

Lemma 62.8.069K Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is flat and a local complete intersection morphism, and
(2) f is syntomic.

Proof. Working affine locally this is More on Algebra, Lemma 33.5. We also give
a more geometric proof.

Assume (2). By Morphisms, Lemma 30.10 for every point x of X there exist affine
open neighbourhoods U of x and V of f(x) such that f |U : U → V is standard
syntomic. This means that U = Spec(R[x1, . . . , xn]/(f1, . . . , fc)) → V = Spec(R)
where R[x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection over R.
By Algebra, Lemma 136.12 the sequence f1, . . . , fc is a regular sequence in each
local ring R[x1, . . . , xn]q for every prime q ⊃ (f1, . . . , fc). Consider the Koszul
complex K• = K•(R[x1, . . . , xn], f1, . . . , fc) with homology groups Hi = Hi(K•).
By More on Algebra, Lemma 30.2 we see that (Hi)q = 0, i > 0 for every q as above.
On the other hand, by More on Algebra, Lemma 28.6 we see that Hi is annihilated
by (f1, . . . , fc). Hence we see that Hi = 0, i > 0 and f1, . . . , fc is a Koszul-regular
sequence. This proves that U → V factors as a Koszul-regular immersion U → An

V

followed by a smooth morphism as desired.

Assume (1). Then f is a flat and locally of finite presentation (Lemma 62.4).
Hence, according to Morphisms, Lemma 30.10 it suffices to show that the local rings
OXs,x are local complete intersection rings. Choose, locally on X, a factorization
f = π ◦ i for some Koszul-regular immersion i : X → P and smooth morphism
π : P → S. Note that X → P is a relative quasi-regular immersion over S, see
Divisors, Definition 22.2. Hence according to Divisors, Lemma 22.4 we see that
X → P is a regular immersion and the same remains true after any base change.
Thus each fibre is a regular immersion, whence all the local rings of all the fibres
of X are local complete intersections. □

Lemma 62.9.069L A regular immersion of schemes is a local complete intersection
morphism. A Koszul-regular immersion of schemes is a local complete intersection
morphism.

https://stacks.math.columbia.edu/tag/069K
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Proof. Since a regular immersion is a Koszul-regular immersion, see Divisors,
Lemma 21.2, it suffices to prove the second statement. The second statement
follows immediately from the definition. □

Lemma 62.10.069M Let

X
f

//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume Y → S smooth and
X → S is a local complete intersection morphism. Then f : X → Y is a local
complete intersection morphism.

Proof. Immediate from the definitions. □

Lemma 62.11.0E9K Let f : X → Y be a morphism of schemes. If f is locally of finite
type and X and Y are regular, then f is a local complete intersection morphism.

Proof. We may assume there is a factorization X → An
Y → Y where the first

arrow is an immersion. As Y is regular also An
Y is regular by Algebra, Lemma

163.10. Hence X → An
Y is a regular immersion by Divisors, Lemma 21.12. □

The following lemma is of a different nature.

Lemma 62.12.09RL Let

X
f

//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume

(1) S is locally Noetherian,
(2) Y → S is locally of finite type,
(3) f : X → Y is perfect,
(4) X → S is a local complete intersection morphism.

Then X → Y is a local complete intersection morphism and Y → S is Koszul at
f(x) for all x ∈ X.

Proof. In the course of this proof all schemes will be locally Noetherian and all
rings will be Noetherian. We will use without further mention that regular se-
quences and Koszul regular sequences agree in this setting, see More on Alge-
bra, Lemma 30.7. Moreover, whether an ideal (resp. ideal sheaf) is regular may
be checked on local rings (resp. stalks), see Algebra, Lemma 68.6 (resp. Divisors,
Lemma 20.8)

https://stacks.math.columbia.edu/tag/069M
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The question is local. Hence we may assume S, X, Y are affine. In this situation
we may choose a commutative diagram

An+m
S

��

Xoo

��
An
S

��

Yoo

||
S

whose horizontal arrows are closed immersions. Let x ∈ X be a point and consider
the corresponding commutative diagram of local rings

J // OAn+m
S

,x
// OX,x

I //

OO

OAn
S
,f(x) //

OO

OY,f(x)

OO

where J and I are the kernels of the horizontal arrows. Since X → S is a local
complete intersection morphism, the ideal J is generated by a regular sequence.
Since X → Y is perfect the ring OX,x has finite tor dimension over OY,f(x). Hence
we may apply Divided Power Algebra, Lemma 7.6 to conclude that I and J/I are
generated by regular sequences. By our initial remarks, this finishes the proof. □

Lemma 62.13.0FJ2 Let
X

f
//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume S is locally Noether-
ian, Y → S is locally of finite type, Y is regular, and X → S is a local complete
intersection morphism. Then f : X → Y is a local complete intersection morphism
and Y → S is Koszul at f(x) for all x ∈ X.

Proof. This is a special case of Lemma 62.12 in view of Lemma 61.6 (and Mor-
phisms, Lemma 15.8). □

Lemma 62.14.0FK1 Let i : X → Y be an immersion. If
(1) i is perfect,
(2) Y is locally Noetherian, and
(3) the conormal sheaf CX/Y is finite locally free,

then i is a regular immersion.

Proof. Translated into algebra, this is Divided Power Algebra, Proposition 11.3.
□

Lemma 62.15.0FV6 Let f : X → Y be a local complete intersection homomorphism.
Then the naive cotangent complex NLX/Y is a perfect object of D(OX) of tor-
amplitude in [−1, 0].

https://stacks.math.columbia.edu/tag/0FJ2
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Proof. Translated into algebra this is More on Algebra, Lemma 85.4. To do the
translation use Lemmas 62.5 and 13.2 as well as Derived Categories of Schemes,
Lemmas 3.5, 10.4 and 10.7. □

Lemma 62.16.0FK2 Let f : X → Y be a perfect morphism of locally Noetherian
schemes. The following are equivalent

(1) f is a local complete intersection morphism,
(2) NLX/Y has tor-amplitude in [−1, 0], and
(3) NLX/Y is perfect with tor-amplitude in [−1, 0].

Proof. Translated into algebra this is Divided Power Algebra, Lemma 11.4. To do
the translation use Lemmas 62.5 and 13.2 as well as Derived Categories of Schemes,
Lemmas 3.5, 10.4 and 10.7. □

Lemma 62.17.0FK3 Let f : X → Y be a flat morphism of finite presentation. The
following are equivalent

(1) f is a local complete intersection morphism,
(2) f is syntomic,
(3) NLX/Y has tor-amplitude in [−1, 0], and
(4) NLX/Y is perfect with tor-amplitude in [−1, 0].

Proof. Translated into algebra this is Divided Power Algebra, Lemma 11.5. To do
the translation use Lemmas 62.5 and 13.2 as well as Derived Categories of Schemes,
Lemmas 3.5, 10.4 and 10.7. □

The following lemma gives a characterization of smooth morphisms as flat mor-
phisms whose diagonal is perfect.

Lemma 62.18.0FDP Let f : X → Y be a finite type morphism of locally Noetherian
schemes. Denote ∆ : X → X ×Y X the diagonal morphism. The following are
equivalent

(1) f is smooth,
(2) f is flat and ∆ : X → X ×Y X is a regular immersion,
(3) f is flat and ∆ : X → X ×Y X is a local complete intersection morphism,
(4) f is flat and ∆ : X → X ×Y X is perfect.

Proof. Assume (1). Then f is flat by Morphisms, Lemma 34.9. The projections
X ×Y X → X are smooth by Morphisms, Lemma 34.5. Hence the diagonal is a
section to a smooth morphism and hence a regular immersion, see Divisors, Lemma
22.8. Hence (1) ⇒ (2). The implication (2) ⇒ (3) is Lemma 62.9. The implication
(3)⇒ (4) is Lemma 62.4. The interesting implication (4)⇒ (1) follows immediately
from Divided Power Algebra, Lemma 10.2. □

Lemma 62.19.069N The property P(f) =“f is a local complete intersection morphism”
is fpqc local on the base.

Proof. Let f : X → S be a morphism of schemes. Let {Si → S} be an fpqc
covering of S. Assume that each base change fi : Xi → Si of f is a local complete
intersection morphism. Note that this implies in particular that f is locally of
finite type, see Lemma 62.4 and Descent, Lemma 23.10. Let x ∈ X. Choose an
open neighbourhood U of x and an immersion j : U → An

S over S (see discussion
preceding Definition 62.2). We have to show that j is a Koszul-regular immersion.
Since fi is a local complete intersection morphism, we see that the base change

https://stacks.math.columbia.edu/tag/0FK2
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ji : U ×S Si → An
Si

is a Koszul-regular immersion, see Lemma 62.3. Because
{An

Si
→ An

S} is a fpqc covering we see from Descent, Lemma 23.32 that j is a
Koszul-regular immersion as desired. □

Lemma 62.20.069P The property P(f) =“f is a local complete intersection morphism”
is syntomic local on the source.

Proof. We will use the criterion of Descent, Lemma 26.4 to prove this. It follows
from Lemmas 62.8 and 62.7 that being a local complete intersection morphism is
preserved under precomposing with syntomic morphisms. It is clear from Definition
62.2 that being a local complete intersection morphism is Zariski local on the source
and target. Hence, according to the aforementioned Descent, Lemma 26.4 it suffices
to prove the following: Suppose X ′ → X → Y are morphisms of affine schemes
with X ′ → X syntomic and X ′ → Y a local complete intersection morphism.
Then X → Y is a local complete intersection morphism. To see this, note that
in any case X → Y is of finite presentation by Descent, Lemma 14.1. Choose
a closed immersion X → An

Y . By Algebra, Lemma 136.18 we can find an affine
open covering X ′ =

⋃
i=1,...,nX

′
i and syntomic morphisms Wi → An

Y lifting the
morphisms X ′

i → X, i.e., such that there are fibre product diagrams

X ′
i

��

// Wi

��
X // An

Y

After replacing X ′ by
∐
X ′
i and setting W =

∐
Wi we obtain a fibre product

diagram of affine schemes
X ′

��

// W

h

��
X // An

Y

with h : W → An
Y syntomic and X ′ → Y still a local complete intersection mor-

phism. Since W → An
Y is open (see Morphisms, Lemma 25.10) and X ′ → X is

surjective we see that X is contained in the image of W → An
Y . Choose a closed

immersion W → An+m
Y over An

Y . Now the diagram looks like

X ′

��

// W

h

��

// An+m
Y

||
X // An

Y

Because h is syntomic and hence a local complete intersection morphism (see above)
the morphism W → An+m

Y is a Koszul-regular immersion. Because X ′ → Y is
a local complete intersection morphism the morphism X ′ → An+m

Y is a Koszul-
regular immersion. We conclude from Divisors, Lemma 21.8 that X ′ → W is a
Koszul-regular immersion. Hence, since being a Koszul-regular immersion is fpqc
local on the target (see Descent, Lemma 23.32) we conclude that X → An

Y is a
Koszul-regular immersion which is what we had to show. □

https://stacks.math.columbia.edu/tag/069P
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Lemma 62.21.06B8 Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Assume both X and Y are flat and locally of finite presentation over S.
Then the set

{x ∈ X | f Koszul at x}.
is open in X and its formation commutes with arbitrary base change S′ → S.

Proof. The set is open by definition (see Definition 62.2). Let S′ → S be a
morphism of schemes. Set X ′ = S′ ×S X, Y ′ = S′ ×S Y , and denote f ′ : X ′ → Y ′

the base change of f . Let x′ ∈ X ′ be a point such that f ′ is Koszul at x′. Denote
s′ ∈ S′, x ∈ X, y′ ∈ Y ′ , y ∈ Y , s ∈ S the image of x′. Note that f is locally of
finite presentation, see Morphisms, Lemma 21.11. Hence we may choose an affine
neighbourhood U ⊂ X of x and an immersion i : U → An

Y . Denote U ′ = S′ ×S U
and i′ : U ′ → An

Y ′ the base change of i. The assumption that f ′ is Koszul at x′

implies that i′ is a Koszul-regular immersion in a neighbourhood of x′, see Lemma
62.3. The scheme X ′ is flat and locally of finite presentation over S′ as a base change
of X (see Morphisms, Lemmas 25.8 and 21.4). Hence i′ is a relative H1-regular
immersion over S′ in a neighbourhood of x′ (see Divisors, Definition 22.2). Thus the
base change i′s′ : U ′

s′ → An
Y ′

s′
is a H1-regular immersion in an open neighbourhood

of x′, see Divisors, Lemma 22.1 and the discussion following Divisors, Definition
22.2. Since s′ = Spec(κ(s′)) → Spec(κ(s)) = s is a surjective flat universally
open morphism (see Morphisms, Lemma 23.4) we conclude that the base change
is : Us → An

Ys
is an H1-regular immersion in a neighbourhood of x, see Descent,

Lemma 23.32. Finally, note that An
Y is flat and locally of finite presentation over

S, hence Divisors, Lemma 22.7 implies that i is a (Koszul-)regular immersion in a
neighbourhood of x as desired. □

Lemma 62.22.06B9 Let f : X → Y be a local complete intersection morphism of
schemes. Then f is unramified if and only if f is formally unramified and in this
case the conormal sheaf CX/Y is finite locally free on X.

Proof. The first assertion follows immediately from Lemma 6.8 and the fact that
a local complete intersection morphism is locally of finite type. To compute the
conormal sheaf of f we choose, locally on X, a factorization of f as f = p ◦ i where
i : X → V is a Koszul-regular immersion and V → Y is smooth. By Lemma 11.13
we see that CX/Y is a locally direct summand of CX/V which is finite locally free as i
is a Koszul-regular (hence quasi-regular) immersion, see Divisors, Lemma 21.5. □

Lemma 62.23.06BA Let Z → Y → X be formally unramified morphisms of schemes.
Assume that Z → Y is a local complete intersection morphism. The exact sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0

of Lemma 7.12 is short exact.

Proof. The question is local on Z hence we may assume there exists a factorization
Z → An

Y → Y of the morphism Z → Y . Then we get a commutative diagram

Z
i′
// An

Y
//

��

An
X

��
Z

i // Y // X

https://stacks.math.columbia.edu/tag/06B8
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As Z → Y is a local complete intersection morphism, we see that Z → An
Y is a

Koszul-regular immersion. Hence by Divisors, Lemma 21.6 the sequence
0→ (i′)∗CAn

Y
/An

X
→ CZ/An

X
→ CZ/An

Y
→ 0

is exact and locally split. Note that i∗CY/X = (i′)∗CAn
Y
/An

X
by Lemma 7.7 and note

that the diagram
(i′)∗CAn

Y
/An

X

// CZ/An
X

i∗CY/X

∼=

OO

// CZ/X

OO

is commutative. Hence the lower horizontal arrow is a locally split injection. This
proves the lemma. □

63. Exact sequences of differentials and conormal sheaves

06BB In this section we collect some results on exact sequences of conormal sheaves and
sheaves of differentials. In some sense these are all realizations of the triangle of
cotangent complexes associated to a pair of composable morphisms of schemes.
Let g : Z → Y and f : Y → X be morphisms of schemes.

(1) There is a canonical exact sequence
g∗ΩY/X → ΩZ/X → ΩZ/Y → 0,

see Morphisms, Lemma 32.9. If g : Z → Y is smooth or more generally for-
mally smooth, then this sequence is a short exact sequence, see Morphisms,
Lemma 34.16 or see Lemma 11.11.

(2) If g is an immersion or more generally formally unramified, then there is a
canonical exact sequence

CZ/Y → g∗ΩY/X → ΩZ/X → 0,
see Morphisms, Lemma 32.15 or see Lemma 7.10. If f ◦ g : Z → X is
smooth or more generally formally smooth, then this sequence is a short
exact sequence, see Morphisms, Lemma 34.17 or see Lemma 11.12.

(3) If g and f ◦ g are immersions or more generally formally unramified, then
there is a canonical exact sequence

CZ/X → CZ/Y → g∗ΩY/X → 0,
see Morphisms, Lemma 32.18 or see Lemma 7.11. If f : Y → X is smooth
or more generally formally smooth, then this sequence is a short exact
sequence, see Morphisms, Lemma 34.18 or see Lemma 11.13.

(4) If g and f are immersions or more generally formally unramified, then there
is a canonical exact sequence

g∗CY/X → CZ/X → CZ/Y → 0.
see Morphisms, Lemma 31.5 or see Lemma 7.12. If g : Z → Y is a regular
immersion14 or more generally a local complete intersection morphism, then
this sequence is a short exact sequence, see Divisors, Lemma 21.6 or see
Lemma 62.23.

14It suffices for g to be a H1-regular immersion. Observe that an immersion which is a local
complete intersection morphism is Koszul regular.
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64. Weakly étale morphisms

094N A ring homomorphism A→ B is weakly étale if both A→ B and B⊗AB → B are
flat, see More on Algebra, Definition 104.1. The analogous notion for morphisms
of schemes is the following.

Definition 64.1.094P A morphism of schemes X → Y is weakly étale or absolutely flat
if both X → Y and the diagonal morphism X → X ×Y X are flat.

An étale morphism is weakly étale and conversely it turns out that a weakly étale
morphism is indeed somewhat like an étale morphism. For example, if X → Y is
weakly étale, then LX/Y = 0, as follows from Cotangent, Lemma 8.4. We will prove
a very precise result relating weakly étale morphisms to étale morphisms later (see
Pro-étale Cohomology, Section 9). In this section we stick with the basics.

Lemma 64.2.094Q Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) X → Y is weakly étale, and
(2) for every x ∈ X the ring map OY,f(x) → OX,x is weakly étale.

Proof. Observe that under both assumptions (1) and (2) the morphism f is flat.
Thus we may assume f is flat. Let x ∈ X with image y = f(x) in Y . There are
canonical maps of rings

OX,x ⊗OY,y
OX,x −→ OX×Y X,∆X/Y (x) −→ OX,x

where the first map is a localization (hence flat) and the second map is a surjection
(hence an epimorphism of rings). Condition (1) means that for all x the second
arrow is flat. Condition (2) is that for all x the composition is flat. These conditions
are equivalent by Algebra, Lemma 39.4 and More on Algebra, Lemma 104.2. □

Lemma 64.3.094R Let X → Y be a morphism of schemes such that X → X ×Y X is
flat. Let F be an OX-module. If F is flat over Y , then F is flat over X.

Proof. Let x ∈ X with image y = f(x) in Y . Since X → X ×Y X is flat, we
see that OX,x ⊗OY,y

OX,x → OX,x is flat. Hence the result follows from More on
Algebra, Lemma 104.2 and the definitions. □

Lemma 64.4.094S Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is weakly étale.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is weakly étale.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij
Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is weakly

étale.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij

Ui such that the ring map OS(Vj)→ OX(Ui) is of weakly
étale, for all j ∈ J, i ∈ Ij.

Moreover, if f is weakly étale then for any open subschemes U ⊂ X, V ⊂ S with
f(U) ⊂ V the restriction f |U : U → V is weakly-étale.

https://stacks.math.columbia.edu/tag/094P
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Proof. Suppose given open subschemes U ⊂ X, V ⊂ S with f(U) ⊂ V . Then
U ×V U ⊂ X ×Y X is open (Schemes, Lemma 17.3) and the diagonal ∆U/V of
f |U : U → V is the restriction ∆X/Y |U : U → U ×V U . Since flatness is a local
property of morphisms of schemes (Morphisms, Lemma 25.3) the final statement
of the lemma is follows as well as the equivalence of (1) and (3). If X and Y are
affine, then X → Y is weakly étale if and only if OY (Y )→ OX(X) is weakly étale
(use again Morphisms, Lemma 25.3). Thus (1) and (3) are also equivalent to (2)
and (4). □

Lemma 64.5.094T Let X → Y → Z be morphisms of schemes.
(1) If X → X ×Y X and Y → Y ×Z Y are flat, then X → X ×Z X is flat.
(2) If X → Y and Y → Z are weakly étale, then X → Z is weakly étale.

Proof. Part (1) follows from the factorization
X → X ×Y X → X ×Z X

of the diagonal of X over Z, the fact that
X ×Y X = (X ×Z X)×(Y×ZY ) Y,

the fact that a base change of a flat morphism is flat, and the fact that the composi-
tion of flat morphisms is flat (Morphisms, Lemmas 25.8 and 25.6). Part (2) follows
from part (1) and the fact (just used) that the composition of flat morphisms is
flat. □

Lemma 64.6.094U Let X → Y and Y ′ → Y be morphisms of schemes and let X ′ =
Y ′ ×Y X be the base change of X.

(1) If X → X ×Y X is flat, then X ′ → X ′ ×Y ′ X ′ is flat.
(2) If X → Y is weakly étale, then X ′ → Y ′ is weakly étale.

Proof. Assume X → X ×Y X is flat. The morphism X ′ → X ′ ×Y ′ X ′ is the base
change of X → X ×Y X by Y ′ → Y . Hence it is flat by Morphisms, Lemmas 25.8.
This proves (1). Part (2) follows from (1) and the fact (just used) that the base
change of a flat morphism is flat. □

Lemma 64.7.094V Let X → Y → Z be morphisms of schemes. Assume that X → Y
is flat and surjective and that X → X ×Z X is flat. Then Y → Y ×Z Y is flat.

Proof. Consider the commutative diagram

X //

��

X ×Z X

��
Y // Y ×Z Y

The top horizontal arrow is flat and the vertical arrows are flat. Hence X is flat
over Y ×Z Y . By Morphisms, Lemma 25.13 we see that Y is flat over Y ×Z Y . □

Lemma 64.8.094W Let f : X → Y be a weakly étale morphism of schemes. Then f is
formally unramified, i.e., ΩX/Y = 0.

Proof. Recall that f is formally unramified if and only if ΩX/Y = 0 by Lemma
6.7. Via Lemma 64.4 and Morphisms, Lemma 32.5 this follows from the case of
rings which is More on Algebra, Lemma 104.12. □
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Lemma 64.9.094X Let f : X → Y be a morphism of schemes. Then X → Y is weakly
étale in each of the following cases

(1) X → Y is a flat monomorphism,
(2) X → Y is an open immersion,
(3) X → Y is flat and unramified,
(4) X → Y is étale.

Proof. If (1) holds, then ∆X/Y is an isomorphism (Schemes, Lemma 23.2), hence
certainly f is weakly étale. Case (2) is a special case of (1). The diagonal of an
unramified morphism is an open immersion (Morphisms, Lemma 35.13), hence flat.
Thus a flat unramified morphism is weakly étale. An étale morphism is flat and
unramified (Morphisms, Lemma 36.5), hence (4) follows from (3). □

Lemma 64.10.094Y Let f : X → Y be a morphism of schemes. If Y is reduced and f
weakly étale, then X is reduced.

Proof. Via Lemma 64.4 this follows from the case of rings which is More on Alge-
bra, Lemma 104.8. □

The following lemma uses a nontrivial result about weakly étale ring maps.

Lemma 64.11.094Z Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is weakly étale, and
(2) for x ∈ X the local ring map OY,f(x) → OX,x induces an isomorphism on

strict henselizations.

Proof. Let x ∈ X be a point with image y = f(x) in Y . Choose a separable
algebraic closure κsep of κ(x). Let OshX,x be the strict henselization corresponding
to κsep and OshY,y the strict henselization relative to the separable algebraic closure
of κ(y) in κsep. Consider the commutative diagram

OX,x // OshX,x

OY,y

OO

// OshY,y

OO

local homomorphisms of local rings, see Algebra, Lemma 155.10. Since the strict
henselization is a filtered colimit of étale ring maps, More on Algebra, Lemma
104.14 shows the horizontal maps are weakly étale. Moreover, the horizontal maps
are faithfully flat by More on Algebra, Lemma 45.1.
Assume f weakly étale. By Lemma 64.2 the left vertical arrow is weakly étale.
By More on Algebra, Lemmas 104.9 and 104.11 the right vertical arrow is weakly
étale. By More on Algebra, Theorem 104.24 we conclude the right vertical map is
an isomorphism.
Assume OshY,y → OshX,x is an isomorphism. Then OY,y → OshX,x is weakly étale. Since
OX,x → OshX,x is faithfully flat we conclude that OY,y → OX,x is weakly étale by
More on Algebra, Lemma 104.10. Thus (2) implies (1) by Lemma 64.2. □

Lemma 64.12.0950 Let f : X → Y be a morphism of schemes. If Y is a normal
scheme and f weakly étale, then X is a normal scheme.
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Proof. By More on Algebra, Lemma 45.6 a scheme S is normal if and only if for
all s ∈ S the strict henselization of OS,s is a normal domain. Hence the lemma
follows from Lemma 64.11. □

Lemma 64.13.0951 Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. If X, Y are weakly étale over S, then f is weakly étale.

Proof. We will use Morphisms, Lemmas 25.8 and 25.6 without further mention.
Write X → Y as the composition X → X ×S Y → Y . The second morphism is flat
as the base change of the flat morphism X → S. The first is the base change of
the flat morphism Y → Y ×S Y by the morphism X ×S Y → Y ×S Y , hence flat.
Thus X → Y is flat. The morphism X ×Y X → X ×S X is an immersion. Thus
Lemma 64.3 implies, that since X is flat over X ×S X it follows that X is flat over
X ×Y X. □

The following is a scheme theoretic generalization of the observation that a field
extension that is simultaneously separable and purely inseparable must be an iso-
morphism.

Lemma 64.14.0F6V Let f : X → Y be a morphism of schemes. If f is weakly étale
and a universal homeomorphism, it is an isomorphism.

Proof. Since f is a universal homeomorphism, the diagonal ∆ : X → X ×Y X is
a surjective closed immersion by Morphisms, Lemmas 45.4 and 10.2. Since ∆ is
also flat, we see that ∆ must be an isomorphism by Morphisms, Lemma 26.1. In
other words, f is a monomorphism (Schemes, Lemma 23.2). Since f is a universal
homeomorphism it is certainly quasi-compact. Hence by Descent, Lemma 25.1 we
find that f is an isomorphism. □

The following is a weakly étale generalization of Étale Morphisms, Lemma 14.3.

Lemma 64.15.0F6W Let U → X be a weakly étale morphism of schemes where X is a
scheme in characteristic p. Then the relative Frobenius FU/X : U → U ×X,FX

X is
an isomorphism.

Proof. The morphism FU/X is a universal homeomorphism by Varieties, Lemma
36.6. The morphism FU/X is weakly étale as a morphism between schemes weakly
étale over X by Lemma 64.13. Hence FU/X is an isomorphism by Lemma 64.14. □

65. Reduced fibre theorem

09IJ In this section we discuss the simplest kind of theorem of the kind advertised by the
title. Although the proof of the result is kind of laborious, in essence it follows in
a straightforward manner from Epp’s result on eliminating ramification, see More
on Algebra, Theorem 115.18.

Let A be a Dedekind domain with fraction field K. Let X be a scheme flat and
of finite type over A. Let L be a finite extension of K. Let B be the integral
closure of A in L. Then B is a Dedekind domain (Algebra, Lemma 120.18). Let
XB = X ×Spec(A) Spec(B) be the base change. Then XB → Spec(B) is of finite
type (Morphisms, Lemma 15.4). Hence XB is Noetherian (Morphisms, Lemma
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15.6). Thus the normalization ν : Y → XB exists (see Morphisms, Definition 54.1
and the discussion following). Picture

(65.0.1)09IK Y

##

ν
// XB

//

��

X

��
Spec(B) // Spec(A)

We sometimes call Y the normalized base change of X. In general the morphism ν
may not be finite. But if A is a Nagata ring (a condition that is virtually always
satisfied in practice) then ν is finite and Y is of finite type over B, see Morphisms,
Lemmas 54.10 and 18.1.
Taking the normalized base change commutes with composition. More precisely,
if M/L/K are finite extensions of fields with integral closures A ⊂ B ⊂ C then
the normalized base change Z of Y → Spec(B) relative to M/L is equal to the
normalized base change of X → Spec(A) relative to M/K.

Theorem 65.1.09IL Let A be a Dedekind ring with fraction field K. Let X be a scheme
flat and of finite type over A. Assume A is a Nagata ring. There exists a finite
extension L/K such that the normalized base change Y is smooth over Spec(B) at
all generic points of all fibres.

Proof. During the proof we will repeatedly use that formation of the set of points
where a (flat, finitely presented) morphism like X → Spec(A) is smooth commutes
with base change, see Morphisms, Lemma 34.15.
We first choose a finite extension L/K such that (XL)red is geometrically reduced
over L, see Varieties, Lemma 6.11. Since Y → (XB)red is birational we see applying
Varieties, Lemma 6.8 that YL is geometrically reduced over L as well. Hence YL →
Spec(L) is smooth on a dense open V ⊂ YL by Varieties, Lemma 25.7. Thus
the smooth locus U ⊂ Y of the morphism Y → Spec(B) is open (by Morphisms,
Definition 34.1) and is dense in the generic fibre. Replacing A by B and X by Y
we reduce to the case treated in the next paragraph.
Assume X is normal and the smooth locus U ⊂ X of X → Spec(A) is dense
in the generic fibre. This implies that U is dense in all but finitely many fibres,
see Lemma 24.3. Let x1, . . . , xr ∈ X \ U be the finitely many generic points of
irreducible components of X \ U which are moreover generic points of irreducible
components of fibres of X → Spec(A). Set Oi = OX,xi . Let Ai be the localization
of A at the maximal ideal corresponding to the image of xi in Spec(A). By More on
Algebra, Proposition 116.8 there exist finite extensions Ki/K which are solutions
for the extension of discrete valuation rings Ai → Oi. Let L/K be a finite extension
dominating all of the extensions Ki/K. Then L/K is still a solution for Ai → Oi
by More on Algebra, Lemma 116.1.
Consider the diagram (65.0.1) with the extension L/K we just produced. Note
that UB ⊂ XB is smooth over B, hence normal (for example use Algebra, Lemma
163.9). Thus Y → XB is an isomorphism over UB . Let y ∈ Y be a generic point of
an irreducible component of a fibre of Y → Spec(B) lying over the maximal ideal
m ⊂ B. Assume that y ̸∈ UB . Then y maps to one of the points xi. It follows that
OY,y is a local ring of the integral closure of Oi in R(X) ⊗K L (details omitted).
Hence because L/K is a solution for Ai → Oi we see that Bm → OY,y is formally
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smooth in the my-adic topology (this is the definition of being a "solution"). In
other words, mOY,y = my and the residue field extension is separable, see More on
Algebra, Lemma 111.5. Hence the local ring of the fibre at y is κ(y). This implies
the fibre is smooth over κ(m) at y for example by Algebra, Lemma 140.5. This
finishes the proof. □

Lemma 65.2 (Variant over curves).0BRQ Let f : X → S be a flat, finite type morphism
of schemes. Assume S is Nagata, integral with function field K, and regular of
dimension 1. Then there exists a finite extension L/K such that in the diagram

Y

g
##

ν
// X ×S T

��

// X

f

��
T // S

the morphism g is smooth at all generic points of fibres. Here T is the normalization
of S in Spec(L) and ν : Y → X ×S T is the normalization.

Proof. Choose a finite affine open covering S =
⋃

Spec(Ai). Then K is equal
to the fraction field of Ai for all i. Let Xi = X ×S Spec(Ai). Choose Li/K as
in Theorem 65.1 for the morphism Xi → Spec(Ai). Let Bi ⊂ Li be the integral
closure of Ai and let Yi be the normalized base change of X to Bi. Let L/K be a
finite extension dominating each Li. Let Ti ⊂ T be the inverse image of Spec(Ai).
For each i we get a commutative diagram

g−1(Ti) //

��

Yi //

��

X ×S Spec(Ai)

��
Ti // Spec(Bi) // Spec(Ai)

and in fact the left hand square is a normalized base change as discussed at the
beginning of the section. In the proof of Theorem 65.1 we have seen that the smooth
locus of Y → T contains the inverse image in g−1(Ti) of the set of points where Yi
is smooth over Bi. This proves the lemma. □

Lemma 65.3 (Variant with separable extension).0BRR Let A be a Dedekind ring with
fraction field K. Let X be a scheme flat and of finite type over A. Assume A is a
Nagata ring and that for every generic point η of an irreducible component of X the
field extension κ(η)/K is separable. Then there exists a finite separable extension
L/K such that the normalized base change Y is smooth over Spec(B) at all generic
points of all fibres.

Proof. This is proved in exactly the same manner as Theorem 65.1 with a few
minor modifications. The most important change is to use More on Algebra, Lemma
116.9 instead of More on Algebra, Proposition 116.8. During the proof we will
repeatedly use that formation of the set of points where a (flat, finitely presented)
morphism like X → Spec(A) is smooth commutes with base change, see Morphisms,
Lemma 34.15.
Since X is flat over A every generic point η of X maps to the generic point of
Spec(A). After replacing X by its reduction we may assume X is reduced. In
this case XK is geometrically reduced over K by Varieties, Lemma 6.8. Hence
XK → Spec(K) is smooth on a dense open by Varieties, Lemma 25.7. Thus the
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smooth locus U ⊂ X of the morphism X → Spec(A) is open (by Morphisms,
Definition 34.1) and is dense in the generic fibre. This reduces us to the situation
of the following paragraph.

Assume X is normal and the smooth locus U ⊂ X of X → Spec(A) is dense
in the generic fibre. This implies that U is dense in all but finitely many fibres,
see Lemma 24.3. Let x1, . . . , xr ∈ X \ U be the finitely many generic points of
irreducible components of X \ U which are moreover generic points of irreducible
components of fibres of X → Spec(A). Set Oi = OX,xi

. Observe that the fraction
field of Oi is the residue field of a generic point of X. Let Ai be the localization of
A at the maximal ideal corresponding to the image of xi in Spec(A). We may apply
More on Algebra, Lemma 116.9 and we find finite separable extensions Ki/K which
are solutions for Ai → Oi. Let L/K be a finite separable extension dominating all
of the extensions Ki/K. Then L/K is still a solution for Ai → Oi by More on
Algebra, Lemma 116.1.

Consider the diagram (65.0.1) with the extension L/K we just produced. Note
that UB ⊂ XB is smooth over B, hence normal (for example use Algebra, Lemma
163.9). Thus Y → XB is an isomorphism over UB . Let y ∈ Y be a generic point of
an irreducible component of a fibre of Y → Spec(B) lying over the maximal ideal
m ⊂ B. Assume that y ̸∈ UB . Then y maps to one of the points xi. It follows that
OY,y is a local ring of the integral closure of Oi in R(X) ⊗K L (details omitted).
Hence because L/K is a solution for Ai → Oi we see that Bm → OY,y is formally
smooth (this is the definition of being a "solution"). In other words, mOY,y = my
and the residue field extension is separable. Hence the local ring of the fibre at y
is κ(y). This implies the fibre is smooth over κ(m) at y for example by Algebra,
Lemma 140.5. This finishes the proof. □

Lemma 65.4 (Variant with separable extensions over curves).0BRS Let f : X → S
be a flat, finite type morphism of schemes. Assume S is Nagata, integral with
function field K, and regular of dimension 1. Assume the field extensions κ(η)/K
are separable for every generic point η of an irreducible component of X. Then
there exists a finite separable extension L/K such that in the diagram

Y

g
##

ν
// X ×S T

��

// X

f

��
T // S

the morphism g is smooth at all generic points of fibres. Here T is the normalization
of S in Spec(L) and ν : Y → X ×S T is the normalization.

Proof. This follows from Lemma 65.3 in exactly the same manner that Lemma
65.2 follows from Theorem 65.1. □

66. Ind-quasi-affine morphisms

0AP5 A bit of theory to be used later.

Definition 66.1.0AP6 A scheme X is ind-quasi-affine if every quasi-compact open of
X is quasi-affine. Similarly, a morphism of schemes X → Y is ind-quasi-affine if
f−1(V ) is ind-quasi-affine for each affine open V in Y .
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An example of an ind-quasi-affine scheme is an open of an affine scheme. If X =⋃
i∈I Ui is a union of quasi-affine opens such that any two Ui are contained in a third,

then X is ind-quasi-affine. An ind-quasi-affine scheme X is separated because any
two affine opens U, V are contained in a separated open subscheme of X, namely
U ∪ V . Similarly an ind-quasi-affine morphism is separated.

Lemma 66.2.0F1U For a morphism of schemes f : X → Y , the following are equiva-
lent:

(1) f is ind-quasi-affine,
(2) for every affine open subscheme V ⊂ Y and every quasi-compact open sub-

scheme U ⊂ f−1(V ), the induced morphism U → V is quasi-affine.
(3) for some cover {Vj}j∈J of Y by quasi-compact and quasi-separated open

subschemes Vj ⊂ Y , every j ∈ J , and every quasi-compact open subscheme
U ⊂ f−1(Vj), the induced morphism U → Vj is quasi-affine.

(4) for every quasi-compact and quasi-separated open subscheme V ⊂ Y and
every quasi-compact open subscheme U ⊂ f−1(V ), the induced morphism
U → V is quasi-affine.

In particular, the property of being an ind-quasi-affine morphism is Zariski local on
the base.

Proof. The equivalence (1) ⇔ (2) follows from the definitions and Morphisms,
Lemma 13.3. For (2)⇒ (4), let U and V be as in (4). By Schemes, Lemma 21.14, the
induced morphism U → V is quasi-compact. Thus, for every affine open V ′ ⊂ V ,
the fiber product V ′×V U is quasi-compact, so, by (2), the induced map V ′×V U →
V ′ is quasi-affine. Thus, U → V is also quasi-affine by Morphisms, Lemma 13.3.
This argument also gives (3) ⇒ (4): indeed, keeping the same notation, those
affine opens V ′ ⊂ V that lie in one of the Vj cover V , so one needs to argue
that the quasi-compact map V ′ ×V U → V ′ is quasi-affine. However, by (3), the
composition V ′×V U → V ′ → Vj is quasi-affine and, by Schemes, Lemma 21.13, the
map V ′ → Vj is quasi-separated. Thus, V ′×V U → V ′ is quasi-affine by Morphisms,
Lemma 13.8. The final implications (4) ⇒ (2) and (4) ⇒ (3) are evident. □

Lemma 66.3.0F1V The property of being an ind-quasi-affine morphism is stable under
composition.

Proof. Let f : X → Y and g : Y → Z be ind-quasi-affine morphisms. Let V ⊂ Z
and U ⊂ f−1(g−1(V )) be quasi-compact opens such that V is also quasi-separated.
The image f(U) is a quasi-compact subset of g−1(V ), so it is contained in some
quasi-compact open W ⊂ g−1(V ) (a union of finitely many affines). We obtain
a factorization U → W → V . The map W → V is quasi-affine by Lemma 66.2,
so, in particular, W is quasi-separated. Then, by Lemma 66.2 again, U → W is
quasi-affine as well. Consequently, by Morphisms, Lemma 13.4, the composition
U → V is also quasi-affine, and it remains to apply Lemma 66.2 once more. □

Lemma 66.4.0F1W Any quasi-affine morphism is ind-quasi-affine. Any immersion is
ind-quasi-affine.

Proof. The first assertion is immediate from the definitions. In particular, affine
morphisms, such as closed immersions, are ind-quasi-affine. Thus, by Lemma 66.3,
it remains to show that an open immersion is ind-quasi-affine. This, however, is
immediate from the definitions. □
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Lemma 66.5.0F1X If f : X → Y and g : Y → Z are morphisms of schemes such that
g ◦ f is ind-quasi-affine, then f is ind-quasi-affine.

Proof. By Lemma 66.2, we may work Zariski locally on Z and then on Y , so
we lose no generality by assuming that Z, and then also Y , is affine. Then any
quasi-compact open of X is quasi-affine, so Lemma 66.2 gives the claim. □

Lemma 66.6.0AP7 The property of being ind-quasi-affine is stable under base change.

Proof. Let f : X → Y be an ind-quasi-affine morphism. For checking that every
base change of f is ind-quasi-affine, by Lemma 66.2, we may work Zariski locally on
Y , so we assume that Y is affine. Furthermore, we may also assume that in the base
change morphism Z → Y the scheme Z is affine, too. The base change X×Y Z → X
is an affine morphism, so, by Lemmas 66.3 and 66.4, the map X ×Y Z → Y is ind-
quasi-affine. Then, by Lemma 66.5, the base change X×Y Z → Z is ind-quasi-affine,
as desired. □

Lemma 66.7.0AP8 The property of being ind-quasi-affine is fpqc local on the base.

Proof. The stability of ind-quasi-affineness under base change supplied by Lemma
66.6 gives one direction. For the other, let f : X → Y be a morphism of schemes
and let {gi : Yi → Y } be an fpqc covering such that the base change fi : Xi → Yi
is ind-quasi-affine for all i. We need to show f is ind-quasi-affine.

By Lemma 66.2, we may work Zariski locally on Y , so we assume that Y is affine.
Then we use stability under base change ensured by Lemma 66.6 to refine the cover
and assume that it is given by a single affine, faithfully flat morphism g : Y ′ → Y .
For any quasi-compact open U ⊂ X, its Y ′-base change U ×Y Y ′ ⊂ X ×Y Y ′ is
also quasi-compact. It remains to observe that, by Descent, Lemma 23.20, the map
U → Y is quasi-affine if and only if so is U ×Y Y ′ → Y ′. □

Lemma 66.8.0AP9 A separated locally quasi-finite morphism of schemes is ind-quasi-
affine.

Proof. Let f : X → Y be a separated locally quasi-finite morphism of schemes.
Let V ⊂ Y be affine and U ⊂ f−1(V ) quasi-compact open. We have to show U
is quasi-affine. Since U → V is a separated quasi-finite morphism of schemes, this
follows from Zariski’s Main Theorem. See Lemma 43.2. □

67. Pushouts in the category of schemes, II

0ECH This section is a continuation of Section 14. In this section we construct pushouts
of Y ← Z → X where Z → X is a closed immersion and Z → Y is integral and an
additional condition is satisfied. Please see the detailed discussion in [Fer03].

Situation 67.1.0ECI Here S is a scheme and i : Z → X and j : Z → Y are morphisms
of schemes over S. We assume

(1) i is a closed immersion,
(2) j is an integral morphism of schemes,
(3) for y ∈ Y there exists an affine open U ⊂ X with j−1({y}) ⊂ i−1(U).

Lemma 67.2.0ECJ In Situation 67.1 then for y ∈ Y there exist affine opens U ⊂ X

and V ⊂ Y with i−1(U) = j−1(V ) and y ∈ V .

https://stacks.math.columbia.edu/tag/0F1X
https://stacks.math.columbia.edu/tag/0AP7
https://stacks.math.columbia.edu/tag/0AP8
https://stacks.math.columbia.edu/tag/0AP9
https://stacks.math.columbia.edu/tag/0ECI
https://stacks.math.columbia.edu/tag/0ECJ


MORE ON MORPHISMS 203

Proof. Let y ∈ Y . Choose an affine open U ⊂ X such that j−1({y}) ⊂ i−1(U)
(possible by assumption). Choose an affine open V ⊂ Y neighbourhood of y such
that j−1(V ) ⊂ i−1(U). This is possible because j : Z → Y is a closed morphism
(Morphisms, Lemma 44.7) and i−1(U) contains the fibre over y. Since j is integral,
the scheme theoretic fibre Zy is the spectrum of an algebra integral over a field.
By Limits, Lemma 11.6 we can find an f ∈ Γ(i−1(U),Oi−1(U)) such that Zy ⊂
D(f) ⊂ j−1(V ). Since i|i−1(U) : i−1(U) → U is a closed immersion of affines, we
can choose an f ∈ Γ(U,OU ) whose restriction to i−1(U) is f . After replacing U by
the principal open D(f) ⊂ U we find affine opens y ∈ V ⊂ Y and U ⊂ X with

j−1({y}) ⊂ i−1(U) ⊂ j−1(V )
Now we (in some sense) repeat the argument. Namely, we choose g ∈ Γ(V,OV )
such that y ∈ D(g) and j−1(D(g)) ⊂ i−1(U) (possible by the same argument as
above). Then we can pick f ∈ Γ(U,OU ) whose restriction to i−1(U) is the pullback
of g by i−1(U)→ V (again possible by the same reason as above). Then we finally
have affine opens y ∈ V ′ = D(g) ⊂ V ⊂ Y and U ′ = D(f) ⊂ U ⊂ X with
j−1(V ′) = i−1(V ′). □

Proposition 67.3.0E25 [Fer03, Theorem 7.1
part iii]

In Situation 67.1 the pushout Y ⨿Z X exists in the category
of schemes. Picture

Z
i
//

j

��

X

a

��
Y

b // Y ⨿Z X
The diagram is a fibre square, the morphism a is integral, the morphism b is a
closed immersion, and

OY⨿ZX = b∗OY ×c∗OZ
a∗OX

as sheaves of rings where c = a ◦ i = b ◦ j.

Proof. As a topological space we set Y ⨿ZX equal to the pushout of the diagram in
the category of topological spaces (Topology, Section 29). This is just the pushout
of the underlying sets (Topology, Lemma 29.1) endowed with the quotient topology.
On Y ⨿Z X we have the maps of sheaves of rings

b∗OY −→ c∗OZ ←− a∗OX
and we can define

OY⨿ZX = b∗OY ×c∗OZ
a∗OX

as the fibre product in the category of sheaves of rings. To prove that we obtain a
scheme we have to show that every point has an affine open neighbourhood. This
is clear for points not in the image of c as the image of c is a closed subset whose
complement is isomorphic as a ringed space to (Y \ j(Z))⨿ (X \ i(Z)).
A point in the image of c corresponds to a unique y ∈ Y in the image of j. By
Lemma 67.2 we find affine opens U ⊂ X and V ⊂ Y with y ∈ V and i−1(U) =
j−1(V ). Since the construction of the first paragraph is clearly compatible with
restriction to compatible open subschemes, to prove that it produces a scheme we
may assume X, Y , and Z are affine.
If X = Spec(A), Y = Spec(B), and Z = Spec(C) are affine, then More on Algebra,
Lemma 6.2 shows that Y ⨿Z X = Spec(B ×C A) as topological spaces. To finish
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the proof that Y ×Z X is a scheme, it suffices to show that on Spec(B ×C A) the
structure sheaf is the fibre product of the pushforwards. This follows by applying
More on Algebra, Lemma 5.3 to principal affine opens of Spec(B ×C A).
The discussion above shows the scheme Y ⨿XZ has an affine open covering Y ⨿XZ =⋃
Wi such that Ui = a−1(Wi), Vi = b−1(Wi), and Ωi = c−1(Wi) are affine open

in X, Y , and Z. Thus a and b are affine. Moreover, if Ai, Bi, Ci are the rings
corresponding to Ui, Vi, Ωi, then Ai → Ci is surjective and Wi corresponds to
Ai ×Ci

Bi which surjects onto Bi. Hence b is a closed immersion. The ring map
Ai ×Ci

Bi → Ai is integral by More on Algebra, Lemma 6.3 hence a is integral.
The diagram is cartesian because

Ci ∼= Bi ⊗Bi×Ci
Ai
Ai

This follows as Bi×Ci
Ai → Bi and Ai → Ci are surjective maps whose kernels are

the same.
Finally, we can apply Lemmas 14.1 and 14.2 to conclude our construction is a
pushout in the category of schemes. □

Lemma 67.4.0E26 In Situation 67.1. If X and Y are separated, then the pushout
Y ⨿Z X (Proposition 67.3) is separated. Same with “separated over S”, “quasi-
separated”, and “quasi-separated over S”.

Proof. The morphism Y ⨿X → Y ⨿Z X is surjective and universall closed. Thus
we may apply Morphisms, Lemma 41.11. □

Lemma 67.5.0E27 In Situation 67.1 assume S is a locally Noetherian scheme and X,
Y , and Z are locally of finite type over S. Then the pushout Y ⨿Z X (Proposition
67.3) is locally of finite type over S.

Proof. Looking on affine opens we recover the result of More on Algebra, Lemma
5.1. □

Lemma 67.6.0ECK In Situation 67.1 suppose given a commutative diagram

Y ′

g

��

Z ′
j′
oo

i′
//

h

��

X ′

f

��
Y Zoo // X

with cartesian squares and f, g, h separated and locally quasi-finite. Then
(1) the pushouts Y ⨿Z X and Y ′ ⨿Z′ X ′ exist,
(2) Y ′ ⨿Z′ X ′ → Y ⨿Z X is separated and locally quasi-finite, and
(3) the squares

Y ′ //

��

Y ′ ⨿Z′ X ′

��

X ′oo

��
Y // Y ⨿Z X Xoo

are cartesian.

Proof. The pushout Y ⨿Z X exists by Proposition 67.3. To see that the pushout
Y ′⨿Z′X ′ exists, we check condition (3) of Situation 67.1 holds for (X ′, Y ′, Z ′, i′, j′).
Namely, let y′ ∈ Y ′ and denote y ∈ Y the image. Choose U ⊂ X affine open

https://stacks.math.columbia.edu/tag/0E26
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with i(j−1(y)) ⊂ U . Choose a quasi-compact open U ′ ⊂ X ′ contained in f−1(U)
containing the quasi-compact subset i′((j′)−1({y′})). By Lemma 66.8 we see that
U ′ is quasi-affine. Since Z ′

y′ is the spectrum of an algebra integral over a field, we
can apply Limits, Lemma 11.6 and we find there exists an affine open subscheme
of U ′ containing i′((j′)−1({y′})) as desired.

Having verified existence we check the other assertions. Affine locally we are exactly
in the situation of More on Algebra, Lemma 7.7 with B → D and A′ → C ′ locally
quasi-finite15. In particular, the morphism Y ′ ⨿Z′ X ′ → Y ⨿Z X is locally of finite
type. The squares in of the diagram are cartesian by More on Algebra, Lemma 6.4.
Since being locally quasi-finite can be checked on fibres (Morphisms, Lemma 20.6)
we conclude that Y ′ ⨿Z′ X ′ → Y ⨿Z X is locally quasi-finite.

We still have to check Y ′ ⨿Z′ X ′ → Y ⨿Z X is separated. Observe that Y ′ ⨿X ′ →
Y ′ ⨿Z′ X ′ is universally closed and surjective by Proposition 67.3. Since also the
morphism Y ′ ⨿X ′ → Y ⨿Z X is separated (as it factors as Y ′ ⨿X ′ → Y ⨿X →
Y ⨿Z X) we conclude by Morphisms, Lemma 41.11. □

Lemma 67.7.0ECL In Situation 67.1 the category of schemes flat, separated, and locally
quasi-finite over the pushout Y⨿ZX is equivalent to the category of (X ′, Y ′, Z ′, i′, j′, f, g, h)
as in Lemma 67.6 with f, g, h flat. Similarly with “flat” replaced with “étale”.

Proof. If we start with (X ′, Y ′, Z ′, i′, j′, f, g, h) as in Lemma 67.6 with f, g, h flat
or étale, then Y ′⨿Z′ X ′ → Y ⨿ZX is flat or étale by More on Algebra, Lemma 7.7.

For the converse, let W → Y ⨿ZX be a separated and locally quasi-finite morphism.
Set X ′ = W ×Y⨿ZX X, Y ′ = W ×Y⨿ZX Y , and Z ′ = W ×Y⨿ZX Z with obvious
morphisms i′, j′, f, g, h. Form the pushout Y ′ ⨿Z′ X ′. We obtain a morphism

Y ′ ⨿Z′ X ′ −→W

of schemes over Y ⨿X Z by the universal property of the pushout. If we do not
assume that W → Y ⨿Z X is flat, then in general this morphism won’t be an
isomorphism. (In fact, More on Algebra, Lemma 6.5 shows the displayed arrow is
a closed immersion but not an isomorphism in general.) However, if W → Y ×Z X
is flat, then it is an isomorphism by More on Algebra, Lemma 7.7. □

Next, we discuss existence in the case where both morphisms are closed immersions.

Lemma 67.8.0B7M Let i : Z → X and j : Z → Y be closed immersions of schemes.
Then the pushout Y ⨿Z X exists in the category of schemes. Picture

Z
i
//

j

��

X

a

��
Y

b // Y ⨿Z X

The diagram is a fibre square, the morphisms a and b are closed immersions, and
there is a short exact sequence

0→ OY⨿ZX → a∗OX ⊕ b∗OY → c∗OZ → 0

where c = a ◦ i = b ◦ j.

15To be precise X,Y, Z, Y ⨿Z X,X
′, Y ′, Z′, Y ′ ⨿Z′ X′ correspond to A′, B,A,B′, C′, D,C,D′.
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Proof. This is a special case of Proposition 67.3. Observe that hypothesis (3) in
Situation 67.1 is immediate because the fibres of j are singletons. Finally, reverse
the roles of the arrows to conclude that both a and b are closed immersions. □

Lemma 67.9.0CYY Let i : Z → X and j : Z → Y be closed immersions of schemes.
Let f : X ′ → X and g : Y ′ → Y be morphisms of schemes and let φ : X ′ ×X,i Z →
Y ′ ×Y,j Z be an isomorphism of schemes over Z. Consider the morphism

h : X ′ ⨿X′×X,iZ,φ Y
′ −→ X ⨿Z Y

Then we have
(1) h is locally of finite type if and only if f and g are locally of finite type,
(2) h is flat if and only if f and g are flat,
(3) h is flat and locally of finite presentation if and only if f and g are flat and

locally of finite presentation,
(4) h is smooth if and only if f and g are smooth,
(5) h is étale if and only if f and g are étale, and
(6) add more here as needed.

Proof. We know that the pushouts exist by Lemma 67.8. In particular we get the
morphism h. Hence we may replace all schemes in sight by affine schemes. In this
case the assertions of the lemma are equivalent to the corresponding assertions of
More on Algebra, Lemma 7.7. □

68. Relative morphisms

0BL0 In this section we prove a representability result which we will use in Fundamental
Groups, Section 5 to prove a result on the category of finite étale coverings of a
scheme. The material in this section is discussed in the correct generality in Criteria
for Representability, Section 10.
Let S be a scheme. Let Z and X be schemes over S. Given a scheme T over S we
can consider morphisms b : T ×S Z → T ×S X over S. Picture

(68.0.1)0BL1

T ×S Z

##

b
// T ×S X

{{

Z

��

X

��
T // S

Of course, we can also think of b as a morphism b : T ×S Z → X such that

T ×S Z //

��

b **
Z

��

X

��
T // S

commutes. In this situation we can define a functor
(68.0.2)0BL2 MorS(Z,X) : (Sch/S)opp −→ Sets, T 7−→ {b as above}
Here is a basic representability result.

Lemma 68.1.05Y6 Let Z → S and X → S be morphisms of affine schemes. Assume
Γ(Z,OZ) is a finite free Γ(S,OS)-module. Then MorS(Z,X) is representable by an
affine scheme over S.
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Proof. Write S = Spec(R). Choose a basis {e1, . . . , em} for Γ(Z,OZ) over R.
Choose a presentation

Γ(X,OX) = R[{xi}i∈I ]/({fk}k∈K).
We will denote xi the image of xi in this quotient. Write

P = R[{aij}i∈I,1≤j≤m].
Consider the R-algebra map

Ψ : R[{xi}i∈I ] −→ P ⊗R Γ(Z,OZ), xi 7−→
∑

j
aij ⊗ ej .

Write Ψ(fk) =
∑
ckj ⊗ ej with ckj ∈ P . Finally, denote J ⊂ P the ideal generated

by the elements ckj , k ∈ K, 1 ≤ j ≤ m. We claim that W = Spec(P/J) represents
the functor MorS(Z,X).
First, note that by construction P/J is an R-algebra, hence a morphism W → S.
Second, by construction the map Ψ factors through Γ(X,OX), hence we obtain an
P/J-algebra homomorphism

P/J ⊗R Γ(X,OX) −→ P/J ⊗R Γ(Z,OZ)
which determines a morphism buniv : W ×S Z → W ×S X. By the Yoneda lemma
buniv determines a transformation of functors W → MorS(Z,X) which we claim
is an isomorphism. To show that it is an isomorphism it suffices to show that it
induces a bijection of sets W (T )→ MorS(Z,X)(T ) over any affine scheme T .
Suppose T = Spec(R′) is an affine scheme over S and b ∈ MorS(Z,X)(T ). The
structure morphism T → S defines an R-algebra structure on R′ and b defines an
R′-algebra map

b♯ : R′ ⊗R Γ(X,OX) −→ R′ ⊗R Γ(Z,OZ).
In particular we can write b♯(1 ⊗ xi) =

∑
αij ⊗ ej for some αij ∈ R′. This

corresponds to an R-algebra map P → R′ determined by the rule aij 7→ αij .
This map factors through the quotient P/J by the construction of the ideal J to
give a map P/J → R′. This in turn corresponds to a morphism T →W such that
b is the pullback of buniv. Some details omitted. □

Lemma 68.2.0BL3 Let Z → S and X → S be morphisms of schemes. If Z → S
is finite locally free and X → S is affine, then MorS(Z,X) is representable by a
scheme affine over S.

Proof. Choose an affine open covering S =
⋃
Ui such that Γ(Z ×S Ui,OZ×SUi)

is finite free over OS(Ui). Let Fi ⊂ MorS(Z,X) be the subfunctor which assigns
to T/S the empty set if T → S does not factor through Ui and MorS(Z,X)(T )
otherwise. Then the collection of these subfunctors satisfy the conditions (2)(a),
(2)(b), (2)(c) of Schemes, Lemma 15.4 which proves the lemma. Condition (2)(a)
follows from Lemma 68.1 and the other two follow from straightforward arguments.

□

The condition on the morphism f : X → S in the lemma below is very useful to
prove statements like it. It holds if one of the following is true: X is quasi-affine,
f is quasi-affine, f is quasi-projective, f is locally projective, there exists an ample
invertible sheaf on X, there exists an f -ample invertible sheaf on X, or there exists
an f -very ample invertible sheaf on X.
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Lemma 68.3.0BL4 Let Z → S and X → S be morphisms of schemes. Assume
(1) Z → S is finite locally free, and
(2) for all (s, x1, . . . , xd) where s ∈ S and x1, . . . , xd ∈ Xs there exists an affine

open U ⊂ X with x1, . . . , xd ∈ U .
Then MorS(Z,X) is representable by a scheme.

Proof. Consider the set I of pairs (U, V ) where U ⊂ X and V ⊂ S are affine open
and U → S factors through V . For i ∈ I denote (Ui, Vi) the corresponding pair.
Set Fi = MorVi

(ZVi
, Ui). It is immediate that Fi is a subfunctor of MorS(Z,X).

Then we claim that conditions (2)(a), (2)(b), (2)(c) of Schemes, Lemma 15.4 which
proves the lemma.

Condition (2)(a) follows from Lemma 68.2.

To check condition (2)(b) consider T/S and b ∈ MorS(Z,X). Thinking of b as a
morphism T ×S Z → X we find an open b−1(Ui) ⊂ T ×S Z. Clearly, b ∈ Fi(T )
if and only if b−1(Ui) = T ×S Z. Since the projection p : T ×S Z → T is finite
hence closed, the set Ui,b ⊂ T of points t ∈ T with p−1({t}) ⊂ b−1(Ui) is open.
Then f : T ′ → T factors through Ui,b if and only if b ◦ f ∈ Fi(T ′) and we are done
checking (2)(b).

Finally, we check condition (2)(c) and this is where our condition on X → S is used.
Namely, consider T/S and b ∈ MorS(Z,X). It suffices to prove that every t ∈ T
is contained in one of the opens Ui,b defined in the previous paragraph. This is
equivalent to the condition that b(p−1({t})) ⊂ Ui for some i where p : T ×S Z → T
is the projection and b : T ×S Z → X is the given morphism. Since p is finite, the
set b(p−1({t})) ⊂ X is finite and contained in the fibre of X → S over the image s
of t in S. Thus our condition on X → S exactly shows a suitable pair exists. □

Lemma 68.4.0BL5 Let Z → S and X → S be morphisms of schemes. Assume Z →
S is finite locally free and X → S is separated and locally quasi-finite. Then
MorS(Z,X) is representable by a scheme.

Proof. This follows from Lemmas 68.3 and 45.1. □

69. Characterizing pseudo-coherent complexes, III

0CSI In this section we discuss characterizations of pseudo-coherent complexes in terms
of cohomology. This is a continuation of Derived Categories of Schemes, Section
34. A basic tool will be to reduce to the case of projective space using a derived
version of Chow’s lemma, see Lemma 69.2.

Lemma 69.1.0CTA Consider a commutative diagram of schemes

Z ′

��

// Y ′

��
X ′ // S′

Let S → S′ be a morphism. Denote by X and Y the base changes of X ′ and Y ′

to S. Assume Y ′ → S′ and Z ′ → X ′ are flat. Then X ×S Y and Z ′ are Tor
independent over X ′ ×S′ Y ′.
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Proof. The question is local, hence we may assume all schemes are affine (some
details omitted). Observe that

X ×S Y //

��

X ′ ×S′ Y ′

��
X // X ′

is cartesian with flat vertical arrows. Write X = Spec(A), X ′ = Spec(A′), X ′ ×S′

Y ′ = Spec(B′). Then X ×S Y = Spec(A ⊗A′ B′). Write Z ′ = Spec(C ′). We have
to show

TorB
′

p (A⊗A′ B′, C ′) = 0, for p > 0
Since A′ → B′ is flat we have A⊗A′ B′ = A⊗L

A′ B′. Hence

(A⊗A′ B′)⊗L
B′ C ′ = (A⊗L

A′ B′)⊗L
B′ C ′ = A⊗L

A′ C ′ = A⊗A′ C ′

The second equality by More on Algebra, Lemma 60.5. The last equality because
A′ → C ′ is flat. This proves the lemma. □

Lemma 69.2 (Derived Chow’s lemma).0CSJ Let A be a ring. Let X be a separated
scheme of finite presentation over A. Let x ∈ X. Then there exist an open
neighbourhood U ⊂ X of x, an n ≥ 0, an open V ⊂ Pn

A, a closed subscheme
Z ⊂ X ×A Pn

A, a point z ∈ Z, and an object E in D(OX×APn
A

) such that
(1) Z → X ×A Pn

A is of finite presentation,
(2) b : Z → X is an isomorphism over U and b(z) = x,
(3) c : Z → Pn

A is a closed immersion over V ,
(4) b−1(U) = c−1(V ), in particular c(z) ∈ V ,
(5) E|X×AV

∼= (b, c)∗OZ |X×AV ,
(6) E is pseudo-coherent and supported on Z.

Proof. We can find a finite type Z-subalgebra A′ ⊂ A and a scheme X ′ separated
and of finite presentation over A′ whose base change to A is X. See Limits, Lemmas
10.1 and 8.6. Let x′ ∈ X ′ be the image of x. If we can prove the lemma for
x′ ∈ X ′/A′, then the lemma follows for x ∈ X/A. Namely, if U ′, n′, V ′, Z ′, z′, E′

provide the solution for x′ ∈ X ′/A′, then we can let U ⊂ X be the inverse image of
U ′, let n = n′, let V ⊂ Pn

A be the inverse image of V ′, let Z ⊂ X×Pn be the scheme
theoretic inverse image of Z ′, let z ∈ Z be the unique point mapping to x, and let E
be the derived pullback of E′. Observe that E is pseudo-coherent by Cohomology,
Lemma 47.3. It only remains to check (5). To see this set W = b−1(U) = c−1(V )
and W ′ = (b′)−1(U) = (c′)−1(V ′) and consider the cartesian square

W

(b,c)
��

// W ′

(b′,c′)
��

X ×A V // X ′ ×A′ V ′

By Lemma 69.1 the schemes X ×A V and W ′ are Tor independent over X ′ ×A′ V ′.
Hence the derived pullback of (b′, c′)∗OW ′ to X ×A V is (b, c)∗OW by Derived
Categories of Schemes, Lemma 22.5. This also uses that R(b′, c′)∗OZ′ = (b′, c′)∗OZ′

because (b′, c′) is a closed immersion and simiarly for (b, c)∗OZ . Since E′|U ′×A′V ′ =
(b′, c′)∗OW ′ we obtain E|U×AV = (b, c)∗OW and (5) holds. This reduces us to the
situation described in the next paragraph.
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Assume A is of finite type over Z. Choose an affine open neighbourhood U ⊂ X
of x. Then U is of finite type over A. Choose a closed immersion U → An

A and
denote j : U → Pn

A the immersion we get by composing with the open immersion
An
A → Pn

A. Let Z be the scheme theoretic closure of

(idU , j) : U −→ X ×A Pn
A

Since the projection X × Pn → X is separated, we conclude from Morphisms,
Lemma 6.8 that b : Z → X is an isomorphism over U . Let z ∈ Z be the unique
point lying over x.

Let Y ⊂ Pn
A be the scheme theoretic closure of j. Then it is clear that Z ⊂ X×AY

is the scheme theoretic closure of (idU , j) : U → X ×A Y . As X is separated,
the morphism X ×A Y → Y is separated as well. Hence we see that Z → Y is
an isomorphism over the open subscheme j(U) ⊂ Y by the same lemma we used
above. Choose V ⊂ Pn

A open with V ∩ Y = j(U). Then we see that (3) and (4)
hold.

Because A is Noetherian we see that X and X ×A Pn
A are Noetherian schemes.

Hence we can take E = (b, c)∗OZ in this case, see Derived Categories of Schemes,
Lemma 10.3. This finishes the proof. □

Lemma 69.3.0CSK Let A, x ∈ X, and U, n, V, Z, z, E be as in Lemma 69.2. For any
K ∈ DQCoh(OX) we have

Rq∗(Lp∗K ⊗L E)|V = R(U → V )∗K|U
where p : X ×A Pn

A → X and q : X ×A Pn
A → Pn

A are the projections and where the
morphism U → V is the finitely presented closed immersion c ◦ (b|U )−1.

Proof. Since b−1(U) = c−1(V ) and since c is a closed immersion over V , we see
that c ◦ (b|U )−1 is a closed immersion. It is of finite presentation because U and V
are of finite presentation over A, see Morphisms, Lemma 21.11. First we have

Rq∗(Lp∗K ⊗L E)|V = Rq′
∗

(
(Lp∗K ⊗L E)|X×AV

)
where q′ : X ×A V → V is the projection because formation of total direct image
commutes with localization. Set W = b−1(U) = c−1(V ) and denote i : W →
X ×A V the closed immersion i = (b, c)|W . Then

Rq′
∗

(
(Lp∗K ⊗L E)|X×AV

)
= Rq′

∗(Lp∗K|X×AV ⊗L i∗OW )

by property (5). Since i is a closed immersion we have i∗OW = Ri∗OW . Using
Derived Categories of Schemes, Lemma 22.1 we can rewrite this as

Rq′
∗Ri∗Li

∗Lp∗K|X×AV = R(q′ ◦ i)∗Lb
∗K|W = R(U → V )∗K|U

which is what we want. □

Lemma 69.4.0CSL Let A be a ring. Let X be a scheme separated and of finite pre-
sentation over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is pseudo-coherent in
D(A) for every pseudo-coherent E in D(OX), then K is pseudo-coherent relative
to A.

Proof. Assume K ∈ DQCoh(OX) and RΓ(X,E⊗L K) is pseudo-coherent in D(A)
for every pseudo-coherent E in D(OX). Let x ∈ X. We will show that K is pseudo-
coherent relative to A in a neighbourhood of x and this will prove the lemma.
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Choose U, n, V, Z, z, E as in Lemma 69.2. Denote p : X×Pn → X and q : X×Pn →
Pn
A the projections. Then for any i ∈ Z we have

RΓ(Pn
A, Rq∗(Lp∗K ⊗L E)⊗L OPn

A
(i))

= RΓ(X ×Pn, Lp∗K ⊗L E ⊗L Lq∗OPn
A

(i))
= RΓ(X,K ⊗L Rq∗(E ⊗L Lq∗OPn

A
(i)))

by Derived Categories of Schemes, Lemma 22.1. By Derived Categories of Schemes,
Lemma 30.5 the complex Rq∗(E ⊗L Lq∗OPn

A
(i)) is pseudo-coherent on X. Hence

the assumption tells us the expression in the displayed formula is a pseudo-coherent
object of D(A). By Derived Categories of Schemes, Lemma 34.2 we conclude that
Rq∗(Lp∗K ⊗L E) is pseudo-coherent on Pn

A. By Lemma 69.3 we have

Rq∗(Lp∗K ⊗L E)|X×AV = R(U → V )∗K|U

Since U → V is a closed immersion into an open subscheme of Pn
A this means K|U

is pseudo-coherent relative to A by Lemma 59.18. □

Lemma 69.5.0GES Let A be a ring. Let X be a scheme separated and of finite pre-
sentation over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is pseudo-coherent in
D(A) for every perfect E ∈ D(OX), then K is pseudo-coherent relative to A.

Proof. In view of Lemma 69.4, it suffices to show RΓ(X,E ⊗L K) is pseudo-
coherent in D(A) for every pseudo-coherent E ∈ D(OX). By Derived Categories of
Schemes, Proposition 40.5 it follows that K ∈ D−

QCoh(OX). Now the result follows
by Derived Categories of Schemes, Lemma 34.3. □

Lemma 69.6.0GET Let A be a ring. Let X be a scheme separated, of finite presentation,
and flat over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is perfect in D(A) for
every perfect E ∈ D(OX), then K is Spec(A)-perfect.

Proof. By Lemma 69.5, K is pseudo-coherent relative to A. By Lemma 59.18, K
is pseudo-coherent in D(OX). By Derived Categories of Schemes, Proposition 40.6
we see that K is in D−(OX). Let p be a prime ideal of A and denote i : Y → X
the inclusion of the scheme theoretic fibre over p, i.e., Y is a scheme over κ(p). By
Derived Categories of Schemes, Lemma 35.13, we will be done if we can show Li∗(K)
is bounded below. Let G ∈ Dperf (OX) be a perfect complex which generates
DQCoh(OX), see Derived Categories of Schemes, Theorem 15.3. We have

RHomOY
(Li∗(G), Li∗(K)) = RΓ(Y,Li∗(G∨ ⊗L K))

= RΓ(X,G∨ ⊗L K)⊗L
A κ(p)

The first equality uses that Li∗ preserves perfect objects and duals and Cohomol-
ogy, Lemma 50.5; we omit some details. The second equality follows from Derived
Categories of Schemes, Lemma 22.5 as X is flat over A. It follows from our hy-
pothesis that this is a perfect object of D(κ(p)). The object Li∗(G) ∈ Dperf (OY )
generates DQCoh(OY ) by Derived Categories of Schemes, Remark 16.4. Hence De-
rived Categories of Schemes, Proposition 40.6 now implies that Li∗(K) is bounded
below and we win. □
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70. Descent finiteness properties of complexes

0CSM This section is the continuation of Derived Categories of Schemes, Section 12.

Lemma 70.1.0CSN Let X → S be locally of finite type. Let {fi : Xi → X} be an
fppf covering of schemes. Let E ∈ DQCoh(OX). Let m ∈ Z. Then E is m-pseudo-
coherent relative to S if and only if each Lf∗

i E is m-pseudo-coherent relative to
S.

Proof. Assume E is m-pseudo-coherent relative to S. The morphisms fi are
pseudo-coherent by Lemma 60.6. Hence Lf∗

i E is m-pseudo-coherent relative to
S by Lemma 59.16.

Conversely, assume that Lf∗
i E is m-pseudo-coherent relative to S for each i. Pick

S =
⋃
Uj , Wj → Uj , Wj =

⋃
Wj,k, Tj,k → Wj,k, and morphisms αj,k : Tj,k →

Xi(j,k) over S as in Lemma 48.2. Since the morphism Tj,K → S is flat and of finite
presentation, we see that αj,k is pseudo-coherent by Lemma 60.7. Hence

Lα∗
j,kLf

∗
i(j,k)E = L(Ti,k → S)∗E

is m-pseudo-coherent relative to S by Lemma 59.16. Now we want to descend
this property through the coverings {Tj,k → Wj,k}, Wj =

⋃
Wj,k, {Wj → Uj},

and S =
⋃
Uj . Since for Zariski coverings the result is true (by the definition of

m-pseudo-coherence relative to S), this means we may assume we have a single
surjective finite locally free morphism π : Y → X such that Lπ∗E is pseudo-
coherent relative to S. In this case Rπ∗Lπ

∗E is pseudo-coherent relative to S by
Lemma 59.9 (this is the first time we use that E has quasi-coherent cohomology
sheaves). We have Rπ∗Lπ

∗E = E ⊗L
OX

π∗OY for example by Derived Categories
of Schemes, Lemma 22.1 and locally on X the map OX → π∗OY is the inclusion of
a direct summand. Hence we conclude by Lemma 59.12. □

Lemma 70.2.0CSP Let X → T → S be morphisms of schemes. Assume T → S is flat
and locally of finite presentation and X → T locally of finite type. Let E ∈ D(OX).
Let m ∈ Z. Then E is m-pseudo-coherent relative to S if and only if E is m-
pseudo-coherent relative to T .

Proof. Locally onX we can choose a closed immersion i : X → An
T . Then An

T → S
is flat and locally of finite presentation. Thus we may apply Lemma 59.17 to see
the equivalence holds. □

Lemma 70.3.0CSQ Let f : X → S be locally of finite type. Let {Si → S} be an fppf
covering of schemes. Denote fi : Xi → Si the base change of f and gi : Xi → X
the projection. Let E ∈ DQCoh(OX). Let m ∈ Z. Then E is m-pseudo-coherent
relative to S if and only if each Lg∗

iE is m-pseudo-coherent relative to Si.

Proof. This follows formally from Lemmas 70.1 and 70.2. Namely, if E is m-
pseudo-coherent relative to S, then Lg∗

iE is m-pseudo-coherent relative to S (by
the first lemma), hence Lg∗

iE is m-pseudo-coherent relative to Si (by the second).
Conversely, if Lg∗

iE is m-pseudo-coherent relative to Si, then Lg∗
iE is m-pseudo-

coherent relative to S (by the second lemma), hence E is m-pseudo-coherent relative
to S (by the first lemma). □
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71. Relatively perfect objects

0DJW This section is a continuation of the discussion in Derived Categories of Schemes,
Section 35.
Lemma 71.1.0DJX Let i : X → X ′ be a finite order thickening of schemes. Let
K ′ ∈ D(OX′) be an object such that K = Li∗K ′ is pseudo-coherent. Then K ′ is
pseudo-coherent.
Proof. We first prove K ′ has quasi-coherent cohomology sheaves. To do this, we
may reduce to the case of a first order thickening, see Section 2. Let I ⊂ OX′ be the
quasi-coherent sheaf of ideals cutting out X. Tensoring the short exact sequence

0→ I → OX′ → i∗OX → 0
with K ′ we obtain a distinguished triangle

K ′ ⊗L
OX′ I → K ′ → K ′ ⊗L

OX′ i∗OX → (K ′ ⊗L
OX′ I)[1]

Since i∗ = Ri∗ and since we may view I as a quasi-coherent OX -module (as we
have a first order thickening) we may rewrite this as

i∗(K ⊗L
OX
I)→ K ′ → i∗K → i∗(K ⊗L

OX
I)[1]

Please use Cohomology, Lemma 54.4 to identify the terms. SinceK is inDQCoh(OX)
we conclude that K ′ is in DQCoh(OX′); this uses Derived Categories of Schemes,
Lemmas 10.1, 3.9, and 4.1.
Assume K ′ is in DQCoh(OX′). The question is local on X ′ hence we may assume
X ′ is affine. Say X ′ = Spec(A′) and X = Spec(A) with A = A′/I and I nilpotent.
Then K ′ comes from an object M ′ ∈ D(A′), see Derived Categories of Schemes,
Lemma 3.5. Thus M = M ′ ⊗L

A′ A is a pseudo-coherent object of D(A) by Derived
Categories of Schemes, Lemma 10.2 and our assumption on K. Hence we can
represent M by a bounded above complex of finite free A-modules E•, see More on
Algebra, Lemma 64.5. By More on Algebra, Lemma 75.3 we conclude that M ′ is
pseudo-coherent as desired. □

Lemma 71.2.0DJY Consider a cartesian diagram

X
i
//

f

��

X ′

f ′

��
Y

j // Y ′

of schemes. Assume X ′ → Y ′ is flat and locally of finite presentation and Y → Y ′

is a finite order thickening. Let E′ ∈ D(OX′). If E = Li∗(E′) is Y -perfect, then
E′ is Y ′-perfect.
Proof. Recall that being Y -perfect for E means E is pseudo-coherent and locally
has finite tor dimension as a complex of f−1OY -modules (Derived Categories of
Schemes, Definition 35.1). By Lemma 71.1 we find that E′ is pseudo-coherent.
In particular, E′ is in DQCoh(OX′), see Derived Categories of Schemes, Lemma
10.1. To prove that E′ locally has finite tor dimension we may work locally on
X ′. Hence we may assume X ′, S′, X, S are affine, say given by rings A′, R′,
A, R. Then we reduce to the commutative algebra version by Derived Categories
of Schemes, Lemma 35.3. The commutative algebra version in More on Algebra,
Lemma 83.8. □
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Lemma 71.3.0DJZ Let (R, I) be a pair consisting of a ring and an ideal I contained
in the Jacobson radical. Set S = Spec(R) and S0 = Spec(R/I). Let f : X → S be
proper, flat, and of finite presentation. Denote X0 = S0 ×S X. Let E ∈ D(OX) be
pseudo-coherent. If the derived restriction E0 of E to X0 is S0-perfect, then E is
S-perfect.

Proof. Choose a finite affine open covering X = U1 ∪ . . . ∪ Un. For each i we can
choose a closed immersion Ui → Adi

S . Set Ui,0 = S0 ×S Ui. For each i the complex
E0|Ui,0 has tor amplitude in [ai, bi] for some ai, bi ∈ Z. Let x ∈ X be a point. We
will show that the tor amplitude of Ex over R is in [ai−di, bi] for some i. This will
finish the proof as the tor amplitude can be read off from the stalks by Cohomology,
Lemma 48.5.

Since f is proper f({x}) is a closed subset of S. Since I is contained in the Jacobson
radical, we see that f({x}) meeting the closed subset S0 ⊂ S. Hence there is a
specialization x ⇝ x0 with x0 ∈ X0. Pick an i with x0 ∈ Ui, so x0 ∈ Ui,0. We
will fix i for the rest of the proof. Write Ui = Spec(A). Then A is a flat, finitely
presented R-algebra which is a quotient of a polynomial R-algebra in di-variables.
The restriction E|Ui

corresponds (by Derived Categories of Schemes, Lemma 3.5
and 10.2) to a pseudo-coherent object K of D(A). Observe that E0 corresponds to
K ⊗L

A A/IA. Let q ⊂ q0 ⊂ A be the prime ideals corresponding to x ⇝ x0. Then
Ex = Kq and Kq is a localization of Kq0 . Hence it suffices to show that Kq0 has
tor amplitude in [ai − di, bi] as a complex of R-modules. Let I ⊂ p0 ⊂ R be the
prime ideal corresponding to f(x0). Then we have

K ⊗L
R κ(p0) = (K ⊗L

R R/I)⊗L
R/I κ(p0)

= (K ⊗L
A A/IA)⊗L

R/I κ(p0)

the second equality because R→ A is flat. By our choice of ai, bi this complex has
cohomology only in degrees in the interval [ai, bi]. Thus we may finally apply More
on Algebra, Lemma 83.9 to R→ A, q0, p0 and K to conclude. □

72. Contracting rational curves

0E7E In this section we study proper morphisms f : X → Y whose fibres have dimension
≤ 1 having R1f∗OX = 0. To understand the title of this section, please take a look
at Algebraic Curves, Sections 22, 23, and 24.

Lemma 72.1.0E7F Let f : X → Y be a proper morphism of schemes. Let y ∈ Y be a
point with dim(Xy) ≤ 1. If

(1) R1f∗OX = 0, or more generally
(2) there is a morphism g : Y ′ → Y such that y is in the image of g and such

that R′f ′
∗OX′ = 0 where f ′ : X ′ → Y ′ is the base change of f by g.

Then H1(Xy,OXy
) = 0.

Proof. To prove the lemma we may replace Y by an open neighbourhood of y.
Thus we may assume Y is affine and that all fibres of f have dimension ≤ 1, see
Morphisms, Lemma 28.4. In this case R1f∗OX is a quasi-coherent OY -module
of finite type and its formation commutes with arbitrary base change, see Limits,
Lemmas 19.3 and 19.2. The lemma follows immediately. □
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Lemma 72.2.0E7G Let f : X → Y be a proper morphism of schemes. Let y ∈
Y be a point with dim(Xy) ≤ 1 and H1(Xy,OXy ) = 0. Then there is an open
neighbourhood V ⊂ Y of y such that R1f∗OX |V = 0 and the same is true after base
change by any Y ′ → V .

Proof. To prove the lemma we may replace Y by an open neighbourhood of y.
Thus we may assume Y is affine and that all fibres of f have dimension ≤ 1, see
Morphisms, Lemma 28.4. In this case R1f∗OX is a quasi-coherent OY -module
of finite type and its formation commutes with arbitrary base change, see Limits,
Lemmas 19.3 and 19.2. Say Y = Spec(A), y corresponds to the prime p ⊂ A, and
R1f∗OX corresponds to the finite A-module M . Then H1(Xy,OXy

) = 0 means
that pMp = Mp by the statement on base change. By Nakayama’s lemma we
conclude Mp = 0. Since M is finite, we find an f ∈ A, f ̸∈ p such that Mf = 0.
Thus taking V the principal open D(f) we obtain the desired result. □

Lemma 72.3.0E7H Let f : X → Y be a proper morphism of schemes such that
dim(Xy) ≤ 1 and H1(Xy,OXy ) = 0 for all y ∈ Y . Let F be quasi-coherent on
X. Then

(1) Rpf∗F = 0 for p > 1, and
(2) R1f∗F = 0 if there is a surjection f∗G → F with G quasi-coherent on Y .

If Y is affine, then we also have
(3) Hp(X,F) = 0 for p ̸∈ {0, 1}, and
(4) H1(X,F) = 0 if F is globally generated.

Proof. The vanishing in (1) is Limits, Lemma 19.2. To prove (2) we may work
locally on Y and assume Y is affine. Then R1f∗F is the quasi-coherent module on
Y associated to the module H1(X,F). Here we use that Y is affine, quasi-coherence
of higher direct images (Cohomology of Schemes, Lemma 4.5), and Cohomology of
Schemes, Lemma 4.6. Since Y is affine, the quasi-coherent module G is globally
generated, and hence so is f∗G and F . In this way we see that (4) implies (2).
Part (3) follows from (1) as well as the remarks on quasi-coherence of direct images
just made. Thus all that remains is the prove (4). If F is globally generated, then
there is a surjection

⊕
i∈I OX → F . By part (1) and the long exact sequence

of cohomology this induces a surjection on H1. Since H1(X,OX) = 0 because
R1f∗OX = 0 by Lemma 72.2, and since H1(X,−) commutes with direct sums
(Cohomology, Lemma 19.1) we conclude. □

Lemma 72.4.0E7I Let f : X → Y be a proper morphism of schemes. Assume
(1) for all y ∈ Y we have dim(Xy) ≤ 1 and H1(Xy,OXy ) = 0, and
(2) OY → f∗OX is surjective.

Then OY ′ → f ′
∗OX′ is surjective for any base change f ′ : X ′ → Y ′ of f .

Proof. We may assume Y and Y ′ affine. Then we can choose a closed immersion
Y ′ → Y ′′ with Y ′′ → Y a flat morphism of affines. By flat base change (Cohomology
of Schemes, Lemma 5.2) we see that the result holds for X ′′ → Y ′′. Thus we may
assume Y ′ is a closed subscheme of Y . Let I ⊂ OY be the ideal cutting out Y ′.
Then there is a short exact sequence

0→ IOX → OX → OX′ → 0
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where we view OX′ as a quasi-coherent module on X. By Lemma 72.3 we have
H1(X, IOX) = 0. It follows that

H0(Y,OY )→ H0(Y, f∗OX) = H0(X,OX)→ H0(X,OX′)
is surjective as desired. The first arrow is surjective as Y is affine and since we
assumed OY → f∗OX is surjective and the second by the long exact sequence of
cohomology associated to the short exact sequence above and the vanishing just
proved. □

Lemma 72.5.0E7J Consider a commutative diagram

X
f

//

��

Y

��
S

of morphisms of schemes. Let s ∈ S be a point. Assume
(1) X → S is locally of finite presentation and flat at points of Xs,
(2) f is proper,
(3) the fibres of fs : Xs → Ys have dimension ≤ 1 and R1fs,∗OXs

= 0,
(4) OYs

→ fs,∗OXs
is surjective.

Then there is an open Ys ⊂ V ⊂ Y such that (a) f−1(V ) is flat over S, (b)
dim(Xy) ≤ 1 for y ∈ V , (c) R1f∗OX |V = 0, (d) OV → f∗OX |V is surjective, and
(b), (c), and (d) remain true after base change by any Y ′ → V .

Proof. Let y ∈ Y be a point over s. It suffices to find an open neighbourhood of
y with the desired properties. As a first step, we replace Y by the open V found
in Lemma 72.2 so that R1f∗OX is zero universally (the hypothesis of the lemma
holds by Lemma 72.1). We also shrink Y so that all fibres of f have dimension ≤ 1
(use Morphisms, Lemma 28.4 and properness of f). Thus we may assume we have
(b) and (c) with V = Y and after any base change Y ′ → Y . Thus by Lemma 72.4
it now suffices to show (d) over Y . We may still shrink Y further; for example, we
may and do assume Y and S are affine.
By Theorem 15.1 there is an open subset U ⊂ X where X → S is flat which contains
Xs by hypothesis. Then f(X \ U) is a closed subset not containing y. Thus after
shrinking Y we may assume X is flat over S.
Say S = Spec(R). Choose a closed immersion Y → Y ′ where Y ′ is the spectrum
of a polynomial ring R[xe; e ∈ E] on a set E. Denote f ′ : X → Y ′ the composition
of f with Y → Y ′. Then the hypotheses (1) – (4) as well as (b) and (c) hold for
f ′ and s. If we we show OY ′ → f ′

∗OX is surjective in an open neighbourhood of y,
then the same is true for OY → f∗OX . Thus we may assume Y is the spectrum of
R[xe; e ∈ E].
At this point X and Y are flat over S. Then Ys and X are tor independent over Y .
We urge the reader to find their own proof, but it also follows from Lemma 69.1
applied to the square with corners X,Y, S, S and its base change by s→ S. Hence

Rfs,∗OXs
= L(Ys → Y )∗Rf∗OX

by Derived Categories of Schemes, Lemma 22.5. Because of the vanishing already
established this implies fs,∗OXs

= (Ys → Y )∗f∗OX . We conclude thatOY → f∗OX
is a map of quasi-coherent OY -modules whose pullback to Ys is surjective. We
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claim f∗OX is a finite type OY -module. If true, then the cokernel F of OY →
f∗OX is a finite type quasi-coherent OY -module such that Fy ⊗ κ(y) = 0. By
Nakayama’s lemma (Algebra, Lemma 20.1) we have Fy = 0. Thus F is zero in an
open neighbourhood of y (Modules, Lemma 9.5) and the proof is complete.
Proof of the claim. For a finite subset E′ ⊂ E set Y ′ = Spec(R[xe; e ∈ E′]). For
large enough E′ the morphism f ′ : X → Y → Y ′ is proper, see Limits, Lemma
13.4. We fix E′ and Y ′ in the following. Write R = colimRi as the colimit of its
finite type Z-subalgebras. Set Si = Spec(Ri) and Y ′

i = Spec(Ri[xe; e ∈ E′]). For i
large enough we can find a diagram

X

��

f ′
// Y ′

��

// S

��
Xi

f ′
i // Y ′

i
// Si

with cartesian squares such that Xi is flat over Si and Xi → Y ′
i is proper. See

Limits, Lemmas 10.1, 8.7, and 13.1. The same argument as above shows Y ′ and
Xi are tor independent over Y ′

i and hence
RΓ(X,OX) = RΓ(Xi,OXi

)⊗L
Ri[xe;e∈E′] R[xe; e ∈ E′]

by the same reference as above. By Cohomology of Schemes, Lemma 19.2 the
complex RΓ(Xi,OXi

) is pseudo-coherent in the derived category of the Noetherian
ring Ri[xe; e ∈ E′] (see More on Algebra, Lemma 64.17). Hence RΓ(X,OX) is
pseudo-coherent in the derived category of R[xe; e ∈ E′], see More on Algebra,
Lemma 64.12. Since the only nonvanishing cohomology module is H0(X,OX) we
conclude it is a finite R[xe; e ∈ E′]-module, see More on Algebra, Lemma 64.4.
This concludes the proof. □

Lemma 72.6.0E7K Consider a commutative diagram

X
f

//

��

Y

��
S

of morphisms of schemes. Assume X → S is flat, f is proper, dim(Xy) ≤ 1 for
y ∈ Y , and R1f∗OX = 0. Then f∗OX is S-flat and formation of f∗OX commutes
with arbitrary base change S′ → S.
Proof. We may assume Y and S are affine, say S = Spec(A). To show the quasi-
coherent OY -module f∗OX is flat relative to S it suffices to show that H0(X,OX) is
flat over A (some details omitted). By Lemma 72.3 we have H1(X,OX ⊗AM) = 0
for every A-module M . Since also OX is flat over A we deduce the functor M 7→
H0(X,OX ⊗AM) is exact. Moreover, this functor commutes with direct sums by
Cohomology, Lemma 19.1. Then it is an exercise to see that H0(X,OX ⊗AM) =
M ⊗A H0(X,OX) functorially in M and this gives the desired flatness. Finally, if
S′ → S is a morphism of affines given by the ring map A → A′, then in the affine
case just discussed we see that

H0(X ×S S′,OX×SS′) = H0(X,OX ⊗A A′) = H0(X,OX)⊗A A′

This shows that formation of f∗OX commutes with any base change S′ → S. Some
details omitted. □
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Lemma 72.7.0E7L Consider a commutative diagram

X
f

//

��

Y

��
S

of morphisms of schemes. Let s ∈ S be a point. Assume
(1) X → S is locally of finite presentation and flat at points of Xs,
(2) Y → S is locally of finite presentation,
(3) f is proper,
(4) the fibres of fs : Xs → Ys have dimension ≤ 1 and R1fs,∗OXs

= 0,
(5) OYs

→ fs,∗OXs
is an isomorphism.

Then there is an open Ys ⊂ V ⊂ Y such that (a) V is flat over S, (b) f−1(V ) is
flat over S, (c) dim(Xy) ≤ 1 for y ∈ V , (d) R1f∗OX |V = 0, (e) OV → f∗OX |V is
an isomorphism, and (a) – (e) remain true after base change of f−1(V ) → V by
any S′ → S.

Proof. Let y ∈ Ys. We may always replace Y by an open neighbourhood of y.
Thus we may assume Y and S affine. We may also assume that X is flat over
S, dim(Xy) ≤ 1 for y ∈ Y , R1f∗OX = 0 universally, and that OY → f∗OX is
surjective, see Lemma 72.5. (We won’t use all of this.)

Assume S and Y affine. Write S = limSi as a cofiltered of affine Noetherian
schemes Si. By Limits, Lemma 10.1 there exists an element 0 ∈ I and a diagram

X0
f0

//

  

Y0

~~
S0

of finite type morphisms of schemes whose base change to S is the diagram of the
lemma. After increasing 0 we may assume Y0 is affine and X0 → S0 proper, see
Limits, Lemmas 13.1 and 4.13. Let s0 ∈ S0 be the image of s. As Ys is affine, we see
that R1fs,∗OXs

= 0 is equivalent to H1(Xs,OXs
) = 0. Since Xs is the base change

of X0,s0 by the faithfully flat map κ(s0)→ κ(s) we see that H1(X0,s0 ,OX0,s0
) = 0

and hence R1f0,∗OX0,s0
= 0. Similarly, as OYs → fs,∗OXs is an isomorphism, so

is OY0,s0
→ f0,∗OX0,s0

. Since the dimensions of the fibres of Xs → Ys are at most
1, the same is true for the morphism X0,s0 → Y0,s0 . Finally, since X → S is flat,
after increasing 0 we may assume X0 is flat over S0, see Limits, Lemma 8.7. Thus
it suffices to prove the lemma for X0 → Y0 → S0 and the point s0.

Combining the reduction arguments above we reduce to the case where S and
Y affine, S Noetherian, the fibres of f have dimension ≤ 1, and R1f∗OX = 0
universally. Let y ∈ Ys be a point. Claim:

OY,y −→ (f∗OX)y
is an isomorphism. The claim implies the lemma. Namely, since f∗OX is coherent
(Cohomology of Schemes, Proposition 19.1) the claim means we can replace Y by
an open neighbourhood of y and obtain an isomorphism OY → f∗OX . Then we
conclude that Y is flat over S by Lemma 72.6. Finally, the isomorphism OY →
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f∗OX remains an isomorphism after any base change S′ → S by the final statement
of Lemma 72.6.
Proof of the claim. We already know that OY,y −→ (f∗OX)y is surjective (Lemma
72.5) and that (f∗OX)y is OS,s-flat (Lemma 72.6) and that the induced map

OYs,y = OY,y/msOY,y −→ (f∗OX)y/ms(f∗OX)y → (fs,∗OXs
)y

is injective by the assumption in the lemma. Then it follows from Algebra, Lemma
99.1 that OY,y −→ (f∗OX)y is injective as desired. □

Lemma 72.8.0E24 Let f : X → Y be a proper morphism of Noetherian schemes such
that f∗OX = OY , such that the fibres of f have dimension ≤ 1, and such that
H1(Xy,OXy

) = 0 for y ∈ Y . Then f∗ : Pic(Y ) → Pic(X) is a bijection onto the
subgroup of L ∈ Pic(X) with L|Xy

∼= OXy
for all y ∈ Y .

Proof. By the projection formula (Cohomology, Lemma 54.2) we see that f∗f
∗N ∼=

N for N ∈ Pic(Y ). We claim that for L ∈ Pic(X) with L|Xy
∼= OXy

for all y ∈ Y
we have N = f∗L is invertible and L ∼= f∗N . This will finish the proof.
The OY -module N = f∗L is coherent by Cohomology of Schemes, Proposition 19.1.
Thus to see that it is an invertibleOY -module, it suffices to check on stalks (Algebra,
Lemma 78.2). Since the map from a Noetherian local ring to its completion is
faithfully flat, it suffices to check the completion (f∗L)∧

y is free (see Algebra, Section
97 and Lemma 78.6). For this we will use the theorem of formal functions as
formulated in Cohomology of Schemes, Lemma 20.7. Since f∗OX = OY and hence
(f∗OX)∧

y
∼= O∧

Y,y, it suffices to show that L|Xn
∼= OXn

for each n (compatibly for
varying n. By Lemma 4.1 we have an exact sequence

H1(Xy,m
n
yOX/mn+1

y OX)→ Pic(Xn+1)→ Pic(Xn)
with notation as in the theorem on formal functions. Observe that we have a
surjection

O⊕rn

Xy

∼= mny/m
n+1
y ⊗κ(y) OXy

−→ mnyOX/mn+1
y OX

for some integers rn ≥ 0. Since dim(Xy) ≤ 1 this surjection induces a surjection
on first cohomology groups (by the vanishing of cohomology in degrees ≥ 2 coming
from Cohomology, Proposition 20.7). Hence the H1 in the sequence is zero and the
transition maps Pic(Xn+1)→ Pic(Xn) are injective as desired.
We still have to show that f∗N ∼= L. This is proved by the same method and we
omit the details. □

73. Affine stratifications

0F2R This material is taken from [RV04]. Please read a little bit about stratifications in
Topology, Section 28 before reading this section.
If X is a scheme, then a stratification of X usually means a stratification of the
underlying topological space of X. The strata are locally closed subsets. We will
view these strata as reduced locally closed subschemes of X using Schemes, Remark
12.6.

Definition 73.1.0F2S Let X be a scheme. An affine stratification is a locally finite
stratification X =

∐
i∈I Xi whose strata Xi are affine and such that the inclusion

morphisms Xi → X are affine.
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The condition that a stratification X =
∐
Xi is locally finite is, in the presence of

the condition that the inclusion morphisms Xi → X are quasi-compact, equivalent
to the condition that the strata are locally constructible subsets ofX, see Properties,
Lemma 2.7.
The condition that Xi → X is an affine morphism is independent on the scheme
structure we put on the locally closed subset Xi, see Lemma 3.1. Moreover, if X
is separated (or more generally has affine diagonal) and X =

∐
Xi is a locally

finite stratification with affine strata, then the morphisms Xi → X are affine. See
Morphisms, Lemma 11.11. This allows us to disregard the condition of affineness
of the inclusion morphisms Xi → X in most cases of interest.
We are often interested in the case where the partially ordered index set I of the
stratification is finite. Recall that the length of a partially ordered set I is the
supremum of the lengths p of chains i0 < i1 < . . . < ip of elements of I.

Lemma 73.2.0F2T Let X be a scheme. Let X =
∐
i∈I Xi be a finite affine stratification.

There exists an affine stratification with index set {0, . . . , n} where n is the length
of I.

Proof. Recall that we have a partial ordering on I such that the closure of Xi is
contained in

⋃
j≤iXj for all i ∈ I. Let I ′ ⊂ I be the set of maximal indices of I. If

i ∈ I ′, then Xi is open in X because the union of the closures of the other strata
is the complement of Xi. Let U =

⋃
i∈I′ Xi viewed as an open subscheme of X so

that Ured =
∐
i∈I′ Xi as schemes. Then U is an affine scheme by Schemes, Lemma

6.8 and Lemma 2.3. The morphism U → X is affine as each Xi → X, i ∈ I ′

is affine by the same reasoning using Lemma 3.1. The complement Z = X \ U
endowed with the reduced induced scheme structure has the affine stratification
Z =

⋃
i∈I\I′ Xi. Here we use that a morphism of schemes T → Z is affine if and

only if the composition T → X is affine; this follows from Morphisms, Lemmas 11.9,
11.7, and 11.11. Observe that the partially ordered set I \ I ′ has length exactly
one less than the length of I. Hence by induction we find that Z has an affine
stratification Z = Z0 ⨿ . . . ⨿ Zn−1 with index set {1, . . . , n}. Setting Zn = U we
obtain the desired stratification of X. □

If a scheme X has a finite affine stratification, then of course X is quasi-compact.
A bit less obvious is the fact that it forces X to be quasi-separated as well.

Lemma 73.3.0F2U Let X be a scheme. The following are equivalent
(1) X has a finite affine stratification, and
(2) X is quasi-compact and quasi-separated.

Proof. Let X =
⋃
Xi be a finite affine stratification. Since each Xi is affine hence

quasi-compact, we conclude that X is quasi-compact. Let U, V ⊂ X be affine open.
Then U ∩Xi and V ∩Xi are affine open in Xi since Xi → X is an affine morphism.
Hence U ∩ V ∩Xi is an affine open of the affine scheme Xi (see Schemes, Lemma
21.7 for example). Therefore U ∩ V =

∐
U ∩ V ∩ Xi is quasi-compact as a finite

union of affine strata. We conclude that X is quasi-separated by Schemes, Lemma
21.6.
Assume X is quasi-compact and quasi-separated. We may use the induction prin-
ciple of Cohomology of Schemes, Lemma 4.1 to prove the assertion that X has a
finite affine stratification. If X is empty, then it has an empty affine stratification.
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If X is nonempty affine then it has an affine stratification with one stratum. Next,
asssume X = U ∪ V where U is quasi-compact open, V is affine open, and we have
a finite affine stratifications U =

⋃
i∈I Ui and U ∩V =

∐
j∈JWj . Denote Z = X \V

and Z ′ = X \ U . Note that Z is closed in U and Z ′ is closed in V . Observe that
Ui ∩ Z and Ui ∩Wj = Ui ×U Wj are affine schemes affine over U . (Hints: use that
Ui×UWj →Wj is affine as a base change of Ui → U , hence Ui∩Wj is affine, hence
Ui ∩Wj → Ui is affine, hence Ui ∩Wj → U is affine.) It follows that

U =
∐

i∈I
(Ui ∩ Z)⨿

∐
(i,j)∈I×J

(Ui ∩Wj)

is a finite affine stratification with partial ordering on I⨿I×J given by i′ ≤ (i, j)⇔
i′ ≤ i and (i′, j′) ≤ (i, j) ⇔ i′ ≤ i and j′ ≤ j. Observe that (Ui ∩ Z) ×X V = ∅
and (Ui ∩ Wj) ×X V = Ui ∩ Wj are affine. Hence the morphisms Ui ∩ Z → X
and Ui ∩Wj → X are affine because we can check affineness of a morphism locally
on the target (Morphisms, Lemma 11.3) and we have affineness over both U and
V . To finish the proof we take the stratification above and we add one additional
stratum, namely Z ′, whose index we add as a minimal element to the partially
ordered set. □

Definition 73.4.0F2V LetX be a nonempty quasi-compact and quasi-separated scheme.
The affine stratification number is the smallest integer n ≥ 0 such that the following
equivalent conditions are satisfied

(1) there exists a finite affine stratification X =
∐
i∈I Xi where I has length n,

(2) there exists an affine stratification X = X0 ⨿X1 ⨿ . . .⨿Xn with index set
{0, . . . , n}.

The equivalence of the conditions holds by Lemma 73.2. The existence of a finite
affine stratification is proven in Lemma 73.3.

Lemma 73.5.0F2W Let X be a separated scheme which has an open covering by n+ 1
affines. Then the affine stratification number of X is at most n.

Proof. Say X = U0 ∪ . . . ∪ Un is an affine open covering. Set

Xi = (Ui ∪ . . . ∪ Un) \ (Ui+1 ∪ . . . ∪ Un)

Then Xi is affine as a closed subscheme of Ui. The morphism Xi → X is affine by
Morphisms, Lemma 11.11. Finally, we have Xi ⊂ Xi ∪Xi−1 ∪ . . . X0. □

Lemma 73.6.0F2X Let X be a Noetherian scheme of dimension ∞ > d ≥ 0. Then the
affine stratification number of X is at most d.

Proof. By induction on d. If d = 0, then X is affine, see Properties, Lemma 10.5.
Assume d > 0. Let η1, . . . , ηn be the generic points of the irreducible components of
X (Properties, Lemma 5.7). We can cover X by affine opens containing η1, . . . , ηn,
see Properties, Lemma 29.4. Since X is quasi-compact we can find a finite affine
open covering X =

⋃
j=1,...,m Uj with η1, . . . , ηn ∈ Uj for all j = 1, . . . ,m. Choose

an affine open U ⊂ U1∩. . .∩Um containing η1, . . . , ηn (possible by the lemma already
quoted). Then the morphism U → X is affine because U → Uj is affine for all j,
see Morphisms, Lemma 11.3. Let Z = X \ U . By construction dim(Z) < dim(X).
By induction hypothesis we can find an affine stratification Z =

⋃
i∈{0,...,n} Zi of Z

with n ≤ dim(Z). Setting U = Xn+1 and Xi = Zi for i ≤ n we conclude. □
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Proposition 73.7.0F2Y Let X be a nonempty quasi-compact and quasi-separated scheme
with affine stratification number n. Then Hp(X,F) = 0, p > n for every quasi-
coherent OX-module F .

Proof. We will prove this by induction on the affine stratification number n. If
n = 0, then X is affine and the result is Cohomology of Schemes, Lemma 2.2.
Assume n > 0. By Definition 73.4 there is an affine scheme U and an affine open
immersion j : U → X such that the complement Z has affine stratification number
n−1. As U and j are affine we have Hp(X, j∗(F|U )) = 0 for p > 0, see Cohomology
of Schemes, Lemmas 2.4 and 2.3. Denote K and Q the kernel and cokernel of the
map F → j∗(F|U ). Thus we obtain an exact sequence

0→ K → F → j∗(F|U )→ Q→ 0

of quasi-coherent OX -modules (see Schemes, Section 24). A standard argument,
breaking our exact sequence into short exact sequences and using the long exact
cohomology sequence, shows it suffices to prove Hp(X,K) = 0 and Hp(X,Q) = 0
for p ≥ n. Since F → j∗(F|U ) restricts to an isomorphism over U , we see that K
and Q are supported on Z. By Properties, Lemma 22.3 we can write these modules
as the filtered colimits of their finite type quasi-coherent submodules. Using the fact
that cohomology of sheaves on X commutes with filtered colimits, see Cohomology,
Lemma 19.1, we conclude it suffices to show that if G is a finite type quasi-coherent
module whose support is contained in Z, then Hp(X,G) = 0 for p ≥ n. Let
Z ′ ⊂ X be the scheme theoretic support of G ⊕OZ ; we may and do think of G as a
quasi-coherent module on Z ′, see Morphisms, Section 5. Then Z ′ and Z have the
same underlying topological space and hence the same affine stratification number,
namely n− 1. Hence Hp(X,G) = Hp(Z ′,G) (equality by Cohomology of Schemes,
Lemma 2.4) vanishes for p ≥ n by induction hypothesis. □

Example 73.8.0F2Z Let k be a field and let X = Pn
k be n-dimensional projective

space over k. Lemma 73.5 applies to this by Constructions, Lemma 13.3. Hence
the affine stratification number of Pn

k is at most n. On the other hand, we have
nonzero cohomology in degree n for some quasi-coherent modules on Pn

k , see Co-
homology of Schemes, Lemma 8.1. Using Proposition 73.7 we conclude that the
affine stratification number of Pn

k is equal to n.

74. Universally open morphisms

0F30 Some material on universally open morphisms.

Lemma 74.1.0F31 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is universally open,
(2) for every morphism S′ → S which is locally of finite presentation the base

change XS′ → S′ is open, and
(3) for every n the morphism An ×X → An × S is open.

Proof. It is clear that (1) implies (2) and (2) implies (3). Let us prove that (3)
implies (1). Suppose that the base change XT → T is not open for some morphism
of schemes g : T → S. Then we can find some affine opens V ⊂ S, U ⊂ X, W ⊂ T
with f(U) ⊂ V and g(W ) ⊂ V such that U ×V W → W is not open. If we can
show that this implies An × U → An × V is not open, then An × X → An × S
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is not open and the proof is complete. This reduces us to the result proved in the
next paragraph.
Let A→ B be a ring map such that A′ → B′ = A′ ⊗A B does not induce an open
map of spectra for some A-algebra A′. As the principal opens give a basis for the
topology of Spec(B′) we conclude that the image of D(g) in Spec(A′) is not open
for some g ∈ B′. Write g =

∑
i=1,...,n a

′
i ⊗ bi for some n, a′

i ∈ A′, and bi ∈ B.
Consider the element h =

∑
i=1,...,n xibi in B[x1, . . . , xn]. Assume that D(h) maps

to an open subset under the morphism
Spec(B[x1, . . . , xn]) −→ Spec(A[x1, . . . , xn])

in order to get a contradiction. Then D(h) would map surjectively onto a quasi-
compact open U ⊂ Spec(A[x1, . . . , xn]). Let A[x1, . . . , xn] → A′ be the A-algebra
homomorphism sending xi to a′

i. This also induces a B-algebra homomorphism
B[x1, . . . , xn]→ B′ sending h to g. Since

Spec(B[x1, . . . , xn])

��

Spec(B′)oo

��
Spec(A[x1, . . . , xn]) Spec(A′)oo

is cartesian the image of D(g) in Spec(A′) is equal to the inverse image of U in
Spec(A′) and hence open which is the desired contradiction. □

Lemma 74.2.0F32 Let f : X → Y be a morphism of schemes. If
(1) f is locally quasi-finite,
(2) Y is geometrically unibranch and locally Noetherian, and
(3) every irreducible component of X dominates an irreducible component of

Y ,
then f is universally open.

Proof. For any n the scheme An × Y is geometrically unibranch by Lemma 36.4
and Properties, Lemma 15.6. Hence the hypotheses of the lemma hold for the
morphisms An ×X → An × Y for all n. By Lemma 74.1 it suffices to prove f is
open. By Morphisms, Lemma 23.2 it suffices to show that generalizations lift along
f . Suppose that y′ ⇝ y is a specialization of points in Y and x ∈ X is a point
mapping to y. As in Lemma 41.1 choose a diagram

u

��

U

��

// X

��
v V // Y

where (V, v) → (Y, y) is an elementary étale neighbourhood, U → V is finite, u is
the unique point of U mapping to v, U ⊂ V ×Y X is open, and v 7→ y and u 7→ x.
Let E be an irreducible component of U passing through u (there is at least one of
these). Since U → X is étale, E maps to an irreducible component of X, which in
turn dominates an irreducible component of Y (by assumption). Since U → V is
finite hence closed, we conclude that the image E′ ⊂ V of E is an irreducible closed
subset passing through v which dominates an irreducible component of Y . Since
V → Y is étale E′ must be an irreducible component of V passing through v. Since
Y is geometrically unibranch we see that E′ is the unique irreducible component
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of V passing through v (Lemma 36.2). Since V is locally Noetherian we may after
shrinking V assume that E′ = V (equality of sets).

Since V → Y is étale we can find a specialization v′ ⇝ v whose image is y′ ⇝ y.
By the above we can find u′ ∈ U mapping to v′. Then u′ ⇝ u because u is the only
point of U mapping to v and U → V is closed. Then finally the image x′ ∈ X of u′

is a point specializing to x and mapping to y′ and the proof is complete. □

Lemma 74.3.0F33 Let A → B be a ring map. Say B is generated as an A-module
by b1, . . . , bd ∈ B. Set h =

∑
xibi ∈ B[x1, . . . , xd]. Then Spec(B) → Spec(A) is

universally open if and only if the image of D(h) in Spec(A[x1, . . . , xd]) is open.

Proof. If Spec(B)→ Spec(A) is universally open, then of course the image of D(h)
is open. Conversely, assume the image U of D(h) is open. Let A → A′ be a ring
map. It suffices to show that the image of any principal open D(g) ⊂ Spec(A′⊗AB)
in Spec(A′) is open. We may write g =

∑
i=1,...,d a

′
i ⊗ bi for some a′

i ∈ A′. Let
A[x1, . . . , xn] → A′ be the A-algebra homomorphism sending xi to a′

i. This also
induces a B-algebra homomorphism B[x1, . . . , xn]→ A′⊗AB sending h to g. Since

Spec(B[x1, . . . , xn])

��

Spec(B′)oo

��
Spec(A[x1, . . . , xn]) Spec(A′)oo

is cartesian the image of D(g) in Spec(A′) is equal to the inverse image of U in
Spec(A′) and hence open. □

Lemma 74.4.0F34 Let S = limSi be a limit of a directed system of schemes with
affine transition morphisms. Let 0 ∈ I and let f0 : X0 → Y0 be a morphism of
schemes over S0. Assume S0, X0, Y0 are quasi-compact and quasi-separated. Let
fi : Xi → Yi be the base change of f0 to Si and let f : X → Y be the base change
of f0 to S. If

(1) f is locally quasi-finite and universally open, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is locally quasi-finite and universally open.

Proof. By Limits, Lemma 18.2 after increasing 0 we may assume f0 is locally
quasi-finite. Let x ∈ X. By étale localization of quasi-finite morphisms we can find
a diagram

X

��

Uoo

��
Y Voo

where V → Y is étale, U ⊂ XV is open, U → V is finite, and x is in the image of
U → X, see Lemma 41.1. After shrinking V we may assume V and U are affine.
Since X is quasi-compact, it follows, by taking a finite disjoint union of such V
and U , that we can make a diagram as above such that U → X is surjective. By
Limits, Lemmas 10.1, 4.11, 8.15, 8.3, 8.10, and 4.13 after possibly increasing 0 we
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may assume we have a diagram

X0

��

U0oo

��
Y0 V0oo

where V0 is affine, V0 → Y0 is étale, U0 ⊂ (X0)V0 is open, U0 → V0 is finite, and
U0 → X0 is surjective. Since Vi → Yi is étale and hence universally open, follows
that it suffices to prove that Ui → Vi is universally open for large enough i. This
reduces us to the case discussed in the next paragraph.

Let A = colimAi be a filtered colimit of rings. Let A0 → B0 be a ring map.
Set B = A ⊗A0 B0 and Bi = Ai ⊗A0 B0. Assume A0 → B0 is finite, of finite
presentation, and A → B is universally open. We have to show that Ai → Bi
is universally open for i large enough. Pick b0,1, . . . , b0,d ∈ B0 which generate B0
as an A0-module. Set h0 =

∑
j=1,...,d xjb0,j in B0[x1, . . . , xd]. Denote h, resp.

hi the image of h0 in B[x1, . . . , xd], resp. Bi[x1, . . . , xd]. The image U of D(h)
in Spec(A[x1, . . . , xd]) is open as A → B is universally open. Of course U is
quasi-compact as the image of an affine scheme. For i large enough there is a quasi-
compact open Ui ⊂ Spec(Ai[x1, . . . , xd]) whose inverse image in Spec(A[x1, . . . , xd])
is U , see Limits, Lemma 4.11. After increasing i we may assume that D(hi) maps
into Ui; this follows from the same lemma by considering the pullback of Ui in
D(hi). Finally, for i even larger the morphism of schemes D(hi) → Ui will be
surjective by an application of the already used Limits, Lemma 8.15. We conclude
Ai → Bi is universally open by Lemma 74.3. □

Lemma 74.5.0F35 Let f : X → Y be a locally quasi-finite morphism. Then
(1) the functions nX/Y of Lemmas 27.3 and 28.3 agree,
(2) if X is quasi-compact, then nX/Y attains a maximum d <∞.

Proof. Agreement of the functions is immediate from the fact that the (geometric)
fibres of a locally quasi-finite morphism are discrete, see Morphisms, Lemma 20.8.
Boundedness follows from Morphisms, Lemmas 57.2 and 57.9. □

Lemma 74.6.0F36 Let f : X → Y be a separated, locally quasi-finite, and universally
open morphism of schemes. Let nX/Y be as in Lemma 74.5. If nX/Y (y) ≥ d for
some y ∈ Y and d ≥ 0, then nX/Y ≥ d in an open neighbourhood of y.

Proof. The question is local on Y hence we may assume Y affine. Let K be
an algebraic closure of the residue field κ(y). Our assumption is that (Xy)K has
≥ d connected components. Then for a suitable quasi-compact open X ′ ⊂ X the
scheme (X ′

y)K has ≥ d connected components; details omitted. After replacing X
by X ′ we may assume X is quasi-compact. Then f is quasi-finite. Let x1, . . . , xn
be the points of X lying over y. Apply Lemma 41.5 to get an étale neighbourhood
(U, u)→ (Y, y) and a decomposition

U ×Y X = W ⨿
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

as in locus citatus. Observe that nX/Y (y) =
∑
imi in this situation; some details

omitted. Since f is universally open, we see that Vi,j → U is open for all i, j. Hence
after shrinking U we may assume Vi,j → U is surjective for all i, j. This proves that
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nU×Y X/U ≥
∑
imi = nX/Y (y) ≥ d. Since the construction of nX/Y is compatible

with base change the proof is complete. □

Lemma 74.7.0F37 Let f : X → Y be a separated, locally quasi-finite, and universally
open morphism of schemes. Let nX/Y be as in Lemma 74.5. If nX/Y attains a
maximum d <∞, then the set

Yd = {y ∈ Y | nX/Y (y) = d}

is open in Y and the morphism f−1(Yd)→ Yd is finite.

Proof. The openness of Yd is immediate from Lemma 74.6. To prove finiteness
over Yd we redo the argument of the proof of that lemma. Namely, let y ∈ Yd.
Then there are at most d points of X lying over y. Say x1, . . . , xn are the points of
X lying over y. Apply Lemma 41.5 to get an étale neighbourhood (U, u) → (Y, y)
and a decomposition

U ×Y X = W ⨿
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

as in locus citatus. Observe that d = nX/Y (y) =
∑
imi in this situation; some

details omitted. Since f is universally open, we see that Vi,j → U is open for all
i, j. Hence after shrinking U we may assume Vi,j → U is surjective for all i, j and we
may assume U maps into W . This proves that nU×Y X/U ≥

∑
imi = d. Since the

construction of nX/Y is compatible with base change we know that nU×Y X/U = d.
This means that W has to be empty and we conclude that U ×Y X → U is finite.
By Descent, Lemma 23.23 this implies that X → Y is finite over the image of
the open morphism U → Y . In other words, we see that f is finite over an open
neighbourhood of y as desired. □

75. Weightings

0F38 The material in this section is taken from [AGV71, Exposee XVII, 6.2.4].

Let π : U → V be a locally quasi-finite morphism of schemes with finite fibres.
Given a function w : U → Z we define a function∫

π
w : V −→ Z, v 7−→

∑
u∈U, π(u)=v w(u)[κ(u) : κ(v)]s

Note that the field extensions are finite (Morphisms, Lemma 20.5), [κ′ : κ]s is the
separable degree (Fields, Definition 14.7), and the sum is finite as the fibres of π
are assumed finite. Another way to compute the value of

∫
π
w at a point v ∈ V is

as follows. Choose an algebraically closed field k and a morphism v : Spec(k)→ V
whose image is v. Then we have

(
∫
π
w)(v) =

∑
u∈Uv

w(u)

where of course w(u) denotes the value of w at the image u of the point u under the
morphism Uv → U . Note that we may view u ∈ Uv as morphisms u : Spec(k)→ U
such that π ◦ u = v. Namely, since U → V is locally quasi-finite with finite fibres,
the scheme Uv is the spectrum of a finite dimension algebra over k and all of whose
prime ideals are maximal ideals with residue field k. To see that the equality holds,
note that the number of morphisms u lying over a given u is equal to [κ(u) : κ(v)]s
by Fields, Lemma 14.8.
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Lemma 75.1.0F39 Given a cartesian square

U

π

��

U ′
h

oo

π′

��
V V ′goo

with π locally quasi-finite with finite fibres and a function w : U → Z we have
(
∫
π
w) ◦ g =

∫
π′(w ◦ h).

Proof. This follows immediately from the second description of
∫
π
w given above.

To prove it from the definition, you use that if E/F is a finite extension of fields
and F ′/F is another field extension, then writing (E⊗F F ′)red =

∏
E′
i as a product

of fields finite over F ′, we have

[E : F ]s =
∑

[E′
i : F ′]s

To prove this equality pick an algebraically closed field extension Ω/F ′ and observe
that

[E : F ]s = |MorF (E,Ω)|
= |MorF ′(E ⊗F F ′,Ω)|
= |MorF ′((E ⊗F F ′)red,Ω)|

=
∑
|MorF ′(E′

i,Ω)|

=
∑

[E′
i : F ′]s

where we have used Fields, Lemma 14.8. □

Definition 75.2.0F3A Let f : X → Y be a locally quasi-finite morphism. A weighting
or a pondération of f is a map w : X → Z such that for any diagram

X

f

��

U
h
oo

π

��
Y V

goo

where V → Y is étale, U ⊂ XV is open, and U → V finite, the function
∫
π
(w ◦ h)

is locally constant.

Of course taking w = 0 we obtain a weighting of any locally quasi-finite morphism
f , albeit not a very interesting one. It will turn out that positive weightings, i.e.,
w : X → Z>0 are the most interesting ones for various purposes.

Lemma 75.3.0F3B Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z
be a weighting. Let f ′ : X ′ → Y ′ be the base change of f by a morphism Y ′ → Y .
Then the composition w′ : X ′ → Z of w and the projection X ′ → X is a weighting
of f ′.

Proof. Consider a diagram
X ′

f ′

��

U ′
h′
oo

π′

��
Y ′ V ′g′
oo
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as in Definition 75.2 for the morphism f ′. For any v′ ∈ V ′ we have to show that∫
π′(w′ ◦ h′) is constant in an open neighbourhood of v′. By Lemma 75.1 (and the

fact that étale morphisms are open) we may replace V ′ by any étale neighbourhood
of v′. After replacing V ′ by an étale neighbourhood of v′ we may assume that
U ′ = U ′

1 ⨿ . . . ⨿ U ′
n where each U ′

i has a unique point u′
i lying over v′ such that

κ(u′
i)/κ(v′) is purely inseparable, see Lemma 41.5. Clearly, it suffices to prove that∫

U ′
i
→V ′ w

′|U ′
i

is constant in a neighbourhood of v′. This reduces us to the case
discussed in the next paragraph.
We have v′ ∈ V ′ and there is a unique point u′ of U ′ lying over v′ with κ(u′)/κ(v′)
purely inseparable. Denote x ∈ X and y ∈ Y the image of u′ and v′. We can find an
étale neighbourhood (V, v) → (Y, y) and an open U ⊂ XV such that π : U → V is
finite and such that there is a unique point u ∈ U lying over v which maps to x ∈ X
via the projection h : U → X such that moreover κ(u)/κ(v) is purely inseparable.
This is possible by the lemma used above. Consider the morphism

U ′′ = U ×X U ′ −→ V ×Y V ′ = V ′′

Since u and u′ both map to x ∈ X there is a point u′′ ∈ U ′′ mapping to (u, u′).
Denote v′′ ∈ V ′′ the image of u′′. After replacing V ′, v′ by V ′′, v′′ we may assume
that the composition V ′ → Y ′ → Y factors through a map of étale neighbourhoods
(V ′, v′)→ (V, v) such that the induced morphism X ′

V ′ = XV ′ → XV sends u′ to u.
Inside the base change X ′

V ′ = XV ′ we have two open subschemes, namely U ′ and
the inverse image UV ′ of U ⊂ XV . By construction both contain a unique point
lying over v′, namely u′ for both of them. Thus after shrinking V ′ we may assume
these open subsets are the same; namely, U ′ \ (U ′ ∩UV ′) and UV ′ \ (U ′ ∩UV ′) have
a closed image in V ′ and these images do not contain v′. Thus U ′ = UV ′ and we
find a cartesian diagram as in Lemma 75.1. Since

∫
π
(w ◦ h) is locally constant by

assumption we conclude. □

Lemma 75.4.0GK8 Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z
be a weighting of f . If X ′ ⊂ X is open, then w|X′ is a weighting of f |X′ : X ′ → Y .

Proof. Immediate from the definition. □

Lemma 75.5.0GK9 Let f : X → Y and g : Y → Z be locally quasi-finite morphisms.
Let wf : X → Z be a weighting of f and let wg : Y → Z be a weighting of g. Then
the function

X −→ Z, x 7−→ wf (x)wg(f(x))
is a weighting of g ◦ f .

Proof. Let us set wg◦f (x) = wf (x)wg(f(x)) for x ∈ X. Consider a diagram

X

g◦f
��

Uoo

π

��
Z Woo

where W → Z is étale, U ⊂ XW is open, and U →W finite. We have to show that∫
π
wg◦f |U is locally constant. Choose a point w ∈W . By Lemma 75.1 (and the fact

that étale morphisms are open) it suffices to show that
∫
π
wg◦f |U is constant after

replacing (W,w) by an étale neighbourhood. After replacing (W,w) by an étale
neighbourhood we may assume U = U1⨿ . . .⨿Un where each Ui has a unique point
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ui lying over w such that κ(ui)/κ(w) is purely inseparable, see Lemma 41.5. Clearly,
it suffices to show that

∫
Ui→W

wg◦f |Ui is constant in an étale neighbourhood of w.
This reduces us to the case discussed in the next paragraph.

We have w ∈ W and there is a unique point u ∈ U lying over w with κ(u)/κ(w)
purely inseparable. Consider the point v = f(u) ∈ Y . After replacing (W,w) by an
elementary étale neighbourhood we may assume there is an open neighbourhood
V ⊂ YW of v such that V → W is finite, see Lemma 41.1. Then f−1

W (V ) ∩ U is
an open neighbourhood of u where fW : XW → YW is the base change of f to W .
Hence after Zariski shrinking W , we may assume fW (U) ⊂ V . Thus we obtain
morphisms

U
a−→ V

b−→W

and U → V is finite as V → W is separated (because finite). Since wf and wg
are weightings of f and g we see that

∫
a
wf |U is locally constant on V and

∫
b
wg|V

is locally constant on W . Thus after shrinking W one more time we may assume
these functions are constant say with values n and m. It follows immediately that∫
π
wg◦f |U =

∫
b◦a wg◦f |U is constant with value nm as desired. □

Lemma 75.6.0F3C Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z
be a weighting. If w(x) > 0 for all x ∈ X, then f is universally open.

Proof. Since the property is preserved by base change, see Lemma 75.3, it suffices
to prove that f is open. Since we may also replace X by any open of X, it suffices to
prove that f(X) is open. Let y ∈ f(X). Choose x ∈ X with f(x) = y. It suffices to
prove that f(X) contains an open neighbourhood of y and it suffices to do so after
replacing Y by an étale neighbourhood of y. By étale localization of quasi-finite
morphisms, see Section 41, we may assume there is an open neighbourhood U ⊂ X
of x such that π = f |U : U → Y is finite. Then

∫
π
w|U is locally constant and has

positive value at y. Hence π(U) contains an open neighbourhood of y and the proof
is complete. □

Lemma 75.7.0F3D Let f : X → Y be a morphism of schemes. Assume f is locally
quasi-finite, locally of finite presentation, and flat. Then there is a positive weight-
ing w : X → Z>0 of f given by the rule that sends x ∈ X lying over y ∈ Y
to

w(x) = lengthOX,x
(OX,x/myOX,x)[κ(x) : κ(y)]i

where [κ′ : κ]i is the inseparable degree (Fields, Definition 14.7).

Proof. Consider a diagram as in Definition 75.2. Let u ∈ U with images x, y, v in
X,Y, V . Then we claim that

lengthOX,x
(OX,x/myOX,x) = lengthOU,u

(OU,u/mvOU,u)

and
[κ(x) : κ(y)]i = [κ(u) : κ(v)]i

The first equality follows as OX,x → OU,u is a flat local homomorphism such that
myOU,u = mvOU,u and mxOU,u = mu (because OY,y → OV,v and OX,x → OU,u
are unramified) and hence the equality by Algebra, Lemma 52.13. The second
equality follows because κ(v)/κ(y) is a finite separable extension and κ(u) is a
factor of κ(x) ⊗κ(y) κ(v) and hence the inseparable degree is unchanged. Having
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said this, we see that formation of the function in the lemma commutes with étale
base change. This reduces the problem to the discussion of the next paragraph.
Assume that f is a finite, flat morphism of finite presentation. We have to show
that

∫
f
w is locally constant on Y . In fact, f is finite locally free (Morphisms,

Lemma 48.2) and we will show that
∫
f
w is equal to the degree of f (which is a

locally constant function on Y ). Namely, for y ∈ Y we see that

(
∫
f
w)(y) =

∑
f(x)=y

lengthOX,x
(OX,x/myOX,x)[κ(x) : κ(y)]i[κ(x) : κ(y)]s

=
∑

f(x)=y
lengthOX,x

(OX,x/myOX,x)[κ(x) : κ(y)]

= lengthOY,y
((f∗OX)y/my(f∗OX)y)

Last equality by Algebra, Lemma 52.12. The final number is the rank of f∗OX at
y as desired. □

Lemma 75.8.0F3E Let f : X → Y be a morphism of schemes. Assume
(1) f is locally quasi-finite, and
(2) Y is geometrically unibranch and locally Noetherian.

Then there is a weighting w : X → Z≥0 given by the rule that sends x ∈ X lying
over y ∈ Y to the “generic separable degree” of OshX,x over OshY,y.

Proof. It follows from Algebra, Lemma 156.3 that OshY,y → OshX,x is finite. Since Y
is geometrically unibranch there is a unique minimal prime p in OshY,y, see More on
Algebra, Lemma 106.5. Write

(κ(p)⊗Osh
Y,y
OshX,x)red =

∏
Ki

as a finite product of fields. We set w(x) =
∑

[Ki : κ(p)]s.
Since this definition is clearly insensitive to étale localization, in order to show that
w is a weighting we reduce to showing that if f is a finite morphism, then

∫
f
w is

locally constant. Observe that the value of
∫
f
w in a generic point η of Y is just

the number of points of the geometric fibre Xη of X → Y over η. Moreover, since
Y is unibranch a point y of Y is the specialization of a unique generic point η.
Hence it suffices to show that (

∫
f
w)(y) is equal to the number of points of Xη.

After passing to an affine neighbourhood of y we may assume X → Y is given by
a finite ring map A→ B. Suppose OshY,y is constructed using a map κ(y)→ k into
an algebraically closed field k. Then

OshY,y ⊗A B =
∏

f(x)=y

∏
φ∈Morκ(y)(κ(x),k)

OshX,x

by Algebra, Lemma 153.4 and the lemma used above. Observe that the minimal
prime p of OshY,y maps to the prime of A corresponding to η. Hence we see that
the desired equality holds because the number of points of a geometric fibre is
unchanged by a field extension. □

76. More on weightings

0F3F We prove a few more basic properties of weightings. Allthough at first it appears
that weightings can be very wild, it actually turns out the condition imposed in
Definition 75.2 is rather strong.
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Lemma 76.1.0F3G Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z
be a weighting of f . Then the level sets of the function w are locally constructible
in X.

Proof. In the proof below we will use Lemmas 75.4 and 75.3 without further
mention. We will also use elementary properties of constructible subsets of schemes
and topological spaces, see Topology, Section 15 and Properties, Section 2. Using
this the reader sees question is local on X and Y ; details omitted. Hence we may
assume X and Y are affine. If we can find a surjective morphism Y ′ → Y of finite
presentation such that the level sets of w pull back to locally constructible subsets
of X ′ = Y ′ ×Y X, then we conclude by Morphisms, Theorem 22.3.
Assume X and Y affine. We may choose an immersion X → T where T → Y
is finite, see Lemma 43.3. By Morphisms, Lemma 48.6 after replacing Y by Y ′

surjective finite locally free over Y , replacing X by Y ′ ×Y X and T by a scheme
finite locally free over Y ′ containing Y ′×Y T as a closed subscheme, we may assume
T is finite locally free over Y , contains closed subschemes Ti mapping isomorphically
to Y such that T =

⋃
i=1,...,n Ti (set theoretically). Since Ti ⊂ T is a constructible

closed subset (as the image of a finitely presented morphism Y → T of schemes), we
see that for I ⊂ {1, . . . , n} the intersection

⋂
i∈I Ti is a constructible closed subset

of T and hence maps to a constructible closed subset of Y .
For a disjoint union decomposition {1, . . . , n} = I1 ⨿ . . . ⨿ Ir with nonempty
parts consider the subset YI1,...,Ir

⊂ Y consisting of points y ∈ Y such that
Ty = {x1, . . . , xr} consists of exactly r points with xj ∈ Ti ⇔ i ∈ Ij . By our
remarks above this is a constructible partition of Y . There exists an affine scheme
Y ′ of finite presentation over Y such that the image of Y ′ → Y is exactly YI1,...,Ir

,
see Algebra, Lemma 29.4. Hence we may assume that Y = YI1,...,Ir

for some disjoint
union decomposition {1, . . . , n} = I1 ⨿ . . .⨿ Ir. In this case T = T (1)⨿ . . .⨿ T (r)
with T (j) =

⋂
i∈Ij

Ti is a decomposition of T into disjoint closed (and hence open)
subsets. Intersecting with the locally closed subscheme X we obtain an analogous
decomposition X = X(1) ⨿ . . . ⨿X(r) into open and closed parts. The morphism
X(j) → Y an immersion. Since w is a weighting, it follows that w|X(j) is locally
constant16 and we conclude. □

Lemma 76.2.0F3H Let f : X → Y be a locally quasi-finite morphism of finite presen-
tation. Let w : X → Z be a weighting of f . Then the level sets of the function

∫
f
w

are locally constructible in Y .

Proof. By Lemma 75.1 formation of the function
∫
f
w commutes with arbitrary

base change and by Lemma 75.3 after base change we still have a weighthing. This
means that if we can find Y ′ → Y surjective and of finite presentation, then it
suffices to prove the result after base change to Y ′, see Morphisms, Theorem 22.3.
The question is local on Y hence we may assume Y is affine. Then X is quasi-
compact and quasi-separated (as f is of finite presentation). Suppose that X =
U ∪ V are quasi-compact open. Then we have∫

f
w =

∫
f |U

w|U +
∫
f |V

w|V −
∫
f |U∩V

w|U∩V

16In fact, if f : X → Y is an immersion and w is a weighting of f , then f restricts to an open
map on the locus where w is nonzero.
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Thus if we know the result for w|U , w|V , w|U∩V then we know the result for w. By
the induction principle (Cohomology of Schemes, Lemma 4.1) it suffices to prove
the lemma when X is affine.
Assume X and Y are affine. We may choose an open immersion X → T where
T → Y is finite, see Lemma 43.3. Because we may still base change with a suitable
Y ′ → Y we can use Morphisms, Lemma 48.6 to reduce to the case where all residue
field extensions induced by the morphism T → Y (and a foriori induced by X → Y )
are trivial. In this situation

∫
f
w is just taking the sums of the values of w in fibres.

The level sets of w are locally constructible inX (Lemma 76.1). The function w only
takes a finite number of values by Properties, Lemma 2.7. Hence we conclude by
Morphisms, Theorem 22.3 and some elementary arguments on sums of integers. □

Lemma 76.3.0F3I Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z>0
be a positive weighting of f . Then w is upper semi-continuous.

Proof. Let x ∈ X with image y ∈ Y . Choose an étale neighbourhood (V, v) →
(Y, y) and an open U ⊂ XV such that π : U → V is finite and there is a unique
point u ∈ U mapping to v with κ(u)/κ(v) purely inseparable. See Lemma 41.3.
Then (

∫
π
w|U )(v) = w(u). It follows from Definition 75.2 that after replacing V by

a neighbourhood of v we we have w|U (u′) ≤ w|U (u) = w(x) for all u′ ∈ U . Namely,
w|U (u′) occurs as a summand in the expression for (

∫
π
w|U )(π(u′)). This proves

the lemma because the étale morphism U → X is open. □

Lemma 76.4.0F3J Let f : X → Y be a separated, locally quasi-finite morphism with
finite fibres. Let w : X → Z>0 be a positive weighting of f . Then

∫
f
w is lower

semi-continuous.

Proof. Let y ∈ Y . Let x1, . . . , xr ∈ X be the points lying over y. Apply Lemma
41.5 to get an étale neighbourhood (U, u)→ (Y, y) and a decomposition

U ×Y X = W ⨿
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

as in locus citatus. Observe that (
∫
f
w)(y) =

∑
w(vi,j) where w(vi,j) = w(xi).

Since
∫
Vi,j→U

w|Vi,j
is locally constant by definition, we may after shrinking U

assume these functions are constant with value w(vi,j). We conclude that∫
U×Y X→U

w|U×Y X =
∫
W→U

w|W +
∑ ∫

Vi,j→U
w|Vi,j =

∫
W→U

w|W + (
∫
f
w)(y)

This is ≥ (
∫
f
w)(y) and we conclude because U → Y is open and formation of the

integral commutes with base change (Lemma 75.1). □

Lemma 76.5.0F3K Let f : X → Y be a locally quasi-finite morphism with X quasi-
compact. Let w : X → Z be a weighting of f . Then

∫
f
w attains its maximum.

Proof. It follows from Lemma 76.1 and Properties, Lemma 2.7 that w only takes a
finite number of values on X. It follows from Morphisms, Lemma 57.9 that X → Y
has bounded geometric fibres. This shows that

∫
f
w is bounded. □

Lemma 76.6.0F3L Let f : X → Y be a separated, locally quasi-finite morphism. Let
w : X → Z>0 be a positive weighting of f . Assume

∫
w
f attains its maximum d

and let Yd ⊂ Y be the open set of points y with (
∫
f
w)(y) = d. Then the morphism

f−1(Yd)→ Yd is finite.
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Proof. Observe that Yd is open by Lemma 76.4. Let y ∈ Yd. Say x1, . . . , xn are
the points of X lying over y. Apply Lemma 41.5 to get an étale neighbourhood
(U, u)→ (Y, y) and a decomposition

U ×Y X = W ⨿
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

as in locus citatus. Observe that d =
∑
w(vi,j) where w(vi,j) = w(xi). Since∫

Vi,j→U
w|Vi,j is locally constant by definition, we may after shrinking U assume

these functions are constant with value w(vi,j). We conclude that∫
U×Y X→U

w|U×Y X =
∫
W→U

w|W +
∑ ∫

Vi,j→U
w|Vi,j =

∫
W→U

w|W + (
∫
f
w)(y)

This is ≥ (
∫
f
w)(y) = d and we conclude that W must be the emptyset. Thus

U ×Y X → U is finite. By Descent, Lemma 23.23 this implies that X → Y is finite
over the image of the open morphism U → Y . In other words, we see that f is
finite over an open neighbourhood of y as desired. □

Lemma 76.7.0F3M Let A→ B be a ring map which is finite and of finite presentation.
There exists a finitely presented ring map A → Auniv and an idempotent euniv ∈
B ⊗A Auniv such that for any ring map A→ A′ and idempotent e ∈ B ⊗A A′ there
is a ring map Auniv → A′ mapping euniv to e.

Proof. Choose b1, . . . , bn ∈ B generating B as an A-module. For each i choose a
monic Pi ∈ A[x] such that Pi(bi) = 0 in B, see Algebra, Lemma 36.3. Thus B is a
quotient of the finite free A-algebra B′ = A[x1, . . . , xn]/(P1(x1), . . . , Pn(xn)). Let
J ⊂ B′ be the kernel of the surjection B′ → B. Then J = (f1, . . . , fm) is finitely
generated as B is a finitely generated A-algebra, see Algebra, Lemma 6.2. Choose
an A-basis b′

1, . . . , b
′
N of B′. Consider the algebra

Auniv = A[z1, . . . , zN , y1, . . . , ym]/I

where I is the ideal generated by the coefficients in A[z1, . . . , zn, y1, . . . , ym] of the
basis elements b′

1, . . . , b
′
N of the expresssion

(
∑

zjb
′
j)2 −

∑
zjb

′
j +

∑
ykfk

in B′[z1, . . . , zN , y1, . . . , ym]. By construction the element
∑
zjb

′
j maps to an idem-

potent euniv in the algebra B⊗AAuniv. Moreover, if e ∈ B⊗AA′ is an idempotent,
then we can lift e to an element of the form

∑
b′
j ⊗ a′

j in B′ ⊗A A′ and we can find
a′′
k ∈ A′ such that

(
∑

b′
j ⊗ a′

j)2 −
∑

b′
j ⊗ a′

j +
∑

fk ⊗ a′′
k

is zero in B′ ⊗A A′. Hence we get an A-algebra map Auniv → A sending zj to a′
j

and yk to a′′
k mapping euniv to e. This finishes the proof. □

Lemma 76.8.0F3N Let X → Y be a morphism of affine schemes which is quasi-finite
and of finite presentation. There exists a morphism Yuniv → Y of finite presentation
and an open subscheme Uuniv ⊂ Yuniv ×Y X such that Uuniv → Yuniv is finite with
the following property: given any morphism Y ′ → Y of affine schemes and an open
subscheme U ′ ⊂ Y ′ ×Y X such that U ′ → Y ′ is finite, there exists a morphism
Y ′ → Yuniv such that the inverse image of Uuniv is U ′.
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Proof. Recall that a finite type morphism is quasi-finite if and only if it has relative
dimension 0, see Morphisms, Lemma 29.5. By Lemma 34.9 applied with d = 0
we reduce to the case where X and Y are Noetherian. We may choose an open
immersion X → X ′ such that X ′ → Y is finite, see Algebra, Lemma 123.14. Note
that if we have Y ′ → Y and U ′ as in (2), then

U ′ → Y ′ ×Y X → Y ′ ×Y X ′

is open immersion between schemes finite over Y ′ and hence is closed as well. We
conclude that U ′ corresponds to an idempotent in

Γ(Y ′,OY ′)⊗Γ(Y,OY ) Γ(X ′,OX′)

whose corresponding open and closed subset is contained in the open Y ′×Y X. Let
Y ′
univ → Y and idempotent

e′
univ ∈ Γ(Yuniv,OYuniv

)⊗Γ(Y,OY ) Γ(X ′,OX′)

be the pair constructed in Lemma 76.7 for the ring map Γ(Y,OY ) → Γ(X ′,OX′)
(here we use that Y is Noetherian to see that X ′ is of finite presentation over Y ).
Let U ′

univ ⊂ Y ′
univ ×Y X ′ be the corresponding open and closed subscheme. Then

we see that
U ′
univ \ Y ′

univ ×Y X
is a closed subset of U ′

univ and hence has closed image T ⊂ Y ′
univ. If we set

Yuniv = Y ′
univ \ T and Uuniv the restriction of U ′

univ to Yuniv ×Y X, then we see
that the lemma is true. □

Lemma 76.9.0F3P Let Y = lim Yi be a directed limit of affine schemes. Let 0 ∈ I
and let f0 : X0 → Y0 be a morphism of affine schemes which is quasi-finite and of
finite presentation. Let f : X → Y and fi : Xi → Yi for i ≥ 0 be the base changes
of f0. If w : X → Z is a weighting of f , then for sufficiently large i there exists a
weighting wi : Xi → Z of fi whose pullback to X is w.

Proof. By Lemma 76.1 the level sets of w are constructible subsets Ek of X. This
implies the function w only takes a finite number of values by Properties, Lemma
2.7. Thus there exists an i such that Ek descends to a construcible subset Ei,k in
Xi for all k; moreover, we may assume Xi =

∐
Ei,k. This follows as the topological

space of X is the limit in the category of topological spaces of the spectral spaces
Xi along a directed system with spectral transition maps. See Limits, Section 4
and Topology, Section 24. We define wi : Xi → Z such that its level sets are the
constructible sets Ei,k.

Choose Yi,univ → Yi and Ui,univ ⊂ Yi,univ ×Yi Xi as in Lemma 76.8. By the
universal property of the construction, in order to show that wi is a weighting, it
would suffice to show that

τi =
∫
Ui,univ→Yi,univ

wi|Ui,univ

is locally constant on Yi,univ. By Lemma 76.2 this function has constructible level
sets but it may not (yet) be locally constant. Set Yuniv = Yi,univ ×Yi

Y and let
Uuniv ⊂ Yuniv ×Y X be the inverse image of Ui,univ. Then, since the pullback of
w to Yuniv ×Y X is a weighting for Yuniv ×Y X → Yuniv (Lemma 75.3) we do have
that

τ =
∫
Uuniv→Yuniv

wi|Uuniv
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is locally constant on Yuniv. Thus the level sets of τ are open and closed. Finally,
we have Yuniv = limi′≥i Yi′,univ and the level sets of τ are the inverse limits of
the level sets of τi′ (similarly defined). Hence the references above imply that for
sufficiently large i′ the level sets of τi′ are open as well. For such an index i′ we
conclude that wi′ is a weighting of fi′ as desired. □

77. Weightings and affine stratification numbers

0F3Q In this section we give a bound for the affine stratification number of a scheme
which has a certain kind of cover by an affine scheme.

Lemma 77.1.0F3R Let f : X → Y be a morphism of affine schemes which is quasi-
finite and of finite presentation. Let w : X → Z>0 be a postive weighting of f . Let
d <∞ be the maximum value of

∫
f
w. The open

Yd = {y ∈ Y | (
∫
f
w)(y) = d}

of Y is affine.

Proof. Observe that
∫
f
w attains its maximum by Lemma 76.5. The set Yd is open

by Lemma 76.4. Thus the statement of the lemma makes sense.

Reduction to the Noetherian case; please skip this paragraph. Recall that a finite
type morphism is quasi-finite if and only if it has relative dimension 0, see Mor-
phisms, Lemma 29.5. By Lemma 34.9 applied with d = 0 we can find a quasi-finite
morphism f0 : X0 → Y0 of affine Noetherian schemes and a morphism Y → Y0 such
that f is the base change of f0. Then we can write Y = lim Yi as a directed limit
of affine schemes of finite type over Y0, see Algebra, Lemma 127.2. By Lemma 76.9
we can find an i such that our weighting w descends to a weighting wi of the base
change fi : Xi → Yi of f0. Now if the lemma holds for fi, wi, then it implies the
lemma for f as formation of

∫
f
w commutes with base change, see Lemma 75.1.

Assume X and Y Noetherian. Let X ′ → Y ′ be the base change of f by a morphism
g : Y ′ → Y . The formation of

∫
f
w and hence the open Yd commute with base

change. If g is finite and surjective, then Y ′
d → Yd is finite and surjective. In

this case proving that Yd is affine is equivalent to showing that Y ′
d is affine, see

Cohomology of Schemes, Lemma 13.3.

We may choose an immersion X → T with T finite over Y , see Lemma 43.3. We
are going to apply Morphisms, Lemma 48.6 to the finite morphism T → Y . This
lemma tells us that there is a finite surjective morphism Y ′ → Y such that Y ′×Y T
is a closed subscheme of a scheme T ′ finite over Y ′ which has a special form. By
the discussion in the first paragraph, we may replace Y by Y ′, T by T ′, and X by
Y ′×Y X. Thus we may assume there is an immersion X → T (not necessarily open
or closed) and closed subschemes Ti ⊂ T , i = 1, . . . , n where

(1) T → Y is finite (and locally free),
(2) Ti → Y is an isomorphism, and
(3) T =

⋃
i=1,...,n Ti set theoretically.

Let Y ′ =
∐
Yk be the disjoint union of the irreducible components of Y (viewed as

integral closed subschemes of Y ). Then we may base change once more by Y ′ → Y ;
here we are using that Y is Noetherian. Thus we may in addition assume Y is
integral and Noetherian.
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We also may and do assume that Ti ̸= Tj if i ̸= j by removing repeats. Since Y and
hence all Ti are integral, this means that if Ti and Tj intersect, then they intersect
in a closed subset which maps to a proper closed subset of Y .
Observe that Vi = X ∩ Ti is a locally closed subset which is in addition a closed
subscheme of X hence affine. Let η ∈ Y and ηi ∈ Ti be the generic points. If
η ̸∈ Yd, then Yd = ∅ and we’re done. Assume η ∈ Yd. Denote I ∈ {1, . . . , n} the
subset of indices i such that ηi ∈ Vi. For i ∈ I the locally closed subset Vi ⊂ Ti
contains the generic point of the irreducible space Ti and hence is open. On the
other hand, since f is open (Lemma 75.6), for any x ∈ X we can find an i ∈ I and
a specialization ηi ⇝ x. It follows that x ∈ Ti and hence x ∈ Vi. In other words, we
see that X =

⋃
i∈I Vi set theoretically. We claim that Yd =

⋂
i∈I Im(Vi → Y ); this

will finish the proof as the intersection of affine opens Im(Vi → Y ) of Y is affine.
For y ∈ Y let f−1({y}) = {x1, . . . , xr} in X. For each i ∈ I there is at most one
j(i) ∈ {1, . . . , xr} such that ηi ⇝ xj(i). In fact, j(i) exists and is equal to j if and
only if xj ∈ Vi. If i ∈ I is such that j = j(i) exists, then Vi → Y is an isomorphism
in a neighbourhood of xj 7→ y. Hence

⋃
i∈I, j(i)=j Vi → Y is finite after replacing

source and target by neighbourhoods of xj 7→ y. Thus the definition of a weighting
tells us that w(xj) =

∑
i∈I, j(i)=j w(ηi). Thus we see that

(
∫
f
w)(η) =

∑
i∈I w(ηi) ≥

∑
j(i) exists w(ηi) =

∑
j w(xj) = (

∫
f
w)(y)

Thus equality holds if and only if y is contained in
⋂
i∈I Im(Vi → Y ) which is what

we wanted to show. □

Proposition 77.2.0F3S Let f : X → Y be a surjective quasi-finite morphism of
schemes. Let w : X → Z>0 be a positive weighting of f . Assume X affine and Y
separated17. Then the affine stratification number of Y is at most the number of
distinct values of

∫
f
w.

Proof. Note that since Y is separated, the morphism X → Y is affine (Morphisms,
Lemma 11.11). The function

∫
f
w attains its maximum d by Lemma 76.5. We will

use induction on d. Consider the open subscheme Yd = {y ∈ Y | (
∫
f
w)(y) = d}

of Y and recall that f−1(Yd) → Yd is finite, see Lemma 76.6. By Lemma 77.1 for
every affine open W ⊂ Y we have that Yd ∩W is affine (this uses that W ×Y X is
affine, being affine over X). Hence Yd → Y is an affine morphism of schemes. We
conclude that f−1(Yd) = Yd ×Y X is an affine scheme being affine over X. Then
f−1(Yd) → Yd is surjective and hence Yd is affine by Limits, Lemma 11.1. Set
X ′ = X \ f−1(Yd) and Y ′ = Y \Yd viewed as closed subschemes of X and Y . Since
X ′ is closed in X it is affine. Since Y ′ is closed in Y it is separated. The morphism
f ′ : X ′ → Y ′ is surjective and w induces a weighting w′ of f ′, see Lemma 75.3. By
induction Y ′ has an affine stratification of length ≤ the number of distinct values
of

∫
f ′ w

′ and the proof is complete. □

78. Completely decomposed morphisms

0GTH Nishnevich studied the notion of a completely decomposed family of étale mor-
phisms, in order to define what is now called the Nishnevich topology, see for
example [Nis89].

17It suffices if the diagonal of Y is affine.
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Definition 78.1.0GTI A morphism f : X → Y of schemes is said to be completely
decomposed18 if for all points y ∈ Y there is a point x ∈ X with f(x) = y such that
the field extension κ(x)/κ(y) is trivial. A family of morphisms {fi : Xi → Y }i∈I of
schemes with fixed target is said to be completely decomposed if

∐
fi :

∐
Yi → X

is completely decomposed.

We start with some basic lemmas.

Lemma 78.2.0GTJ The composition of two completely decomposed morphisms of schemes
is completely decomposed. If {fi : Xi → Y }i∈I is completely decomposed and for
each i we have a family {Xij → Xi}j∈Ji

which is completely decomposed, then the
family {Xij → Y }i∈I,j∈Ji

is completely decomposed.

Proof. Omitted. □

Lemma 78.3.0GTK The base change of a completely decomposed morphism of schemes
is completely decomposed. If {fi : Xi → Y }i∈I is completely decomposed and Y ′ →
Y is a morphism of schemes, then {Xi ×Y Y ′ → Y ′}i∈I is completely decomposed.

Proof. Let f : X → Y and g : Y ′ → Y be morphisms of schemes. Let y′ ∈ Y ′ be
a point with image y = g(y′) in Y . If x ∈ X is a point such that f(x) = y and
κ(x) = κ(y), then there exists a unique point x′ ∈ X ′ = X ×Y Y ′ which maps to y′

in Y ′ and to x in X and moreover κ(x′) = κ(y′), see Schemes, Lemma 17.5. From
this fact the lemma follows easily; we omit the details. □

Lemma 78.4.0GTL [EHIK21, Lemma
2.1.2]

Let f : X → Y be a morphism of schemes. Assume f is completely
decomposed, f is locally of finite presentation, and Y is quasi-compact and quasi-
separated. Then there exist n ≥ 0 and morphisms Zi → Y , i = 1, . . . , n with the
following properties

(1)
∐
Zi → Y is surjective,

(2) Zi → Y is an immersion for all i,
(3) Zi → Y is of finite presentation for all i, and
(4) the base change X ×Y Zi → Zi has a section for all i.

Proof. Let y ∈ Y . By assumption there is a morphism σ : Spec(κ(y)) → X over
Y . We can write Spec(κ(y)) as a directed limit of affine schemes Z over Y such
that Z → Y is an immersion of finite presentation. Namely, choose an affine open
y ∈ Spec(A) ⊂ Y and say y corresponds to the prime ideal p of A. Then κ(p) is
the filtered colimit of the rings (A/I)f where I ⊂ p is a finitely generated ideal
and f ∈ A, f ̸∈ p. The morphisms Z = Spec((A/I)f ) → Y are immersions of
finite presentation; quasi-compactness of Z → Y follows as Y is quasi-separated,
see Schemes, Lemma 21.14. By Limits, Proposition 6.1 for some such Z there is a
morphism σ′ : Z → X over Y agreeing with σ on the spectrum of κ(p). Since σ′ is
a morphism over Y , we obtain a section of the projection X ×Y Z → Z

We conclude that Y is the union of the images of immersions Z → Y of finite
presentation such that X ×Y Z → Z has a section. Since the image of Z → Y is
constructible (Morphisms, Lemma 22.2) and since Y is compact in the constructible
topology (Properties, Lemma 2.4 and Topology, Lemma 23.2), we see that a finite
number of these suffice. □

18This may be nonstandard terminology.
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Lemma 78.5.0GTM Let S = limλ∈Λ Sλ be a limit of a directed system of schemes with
affine transition morphisms. Let 0 ∈ Λ and let f0 : X0 → Y0 be a morphism of
schemes over S0. For λ ≥ 0 let fλ : Xλ → Yλ be the base change of f0 to Sλ and
let f : X → Y be the base change of f0 to S. If

(1) f is completely decomposed,
(2) Y0 is quasi-compact and quasi-separated, and
(3) f0 is locally of finite presentation,

then there exists an λ ≥ 0 such that fλ is completely decomposed.

Proof. Since Y0 is quasi-compact and quasi-separated, the scheme Y , which is
affine over Y0, is quasi-compact and quasi-separated. Choose n ≥ 0 and Zi → Y ,
i = 1, . . . , n as in Lemma 78.4. Denote σi : Zi → X morphisms over Y which exist
by our choice of Zi. After increasing 0 ∈ Λ we may assume there exist morphisms
Zi,0 → Y0 of finite presentation whose base changes to S are the morphisms Zi → Y ,
see Limits, Lemma 10.1. By Limits, Lemma 8.13 we may assume, after possibly
increasing 0, that Zi,0 → Y0 is an immersion. Since

∐
Zi → Y is surjective, we

may assume, after possibly increasing 0, that
∐
Zi,0 → Y0 is surjective, see Limits,

Lemma 8.15. Observe that Zi = limλ≥0 Zi,λ where Zi,λ = Yλ ×Y0 Zi,0. Let us view
the compositions

Zi
σi−→ X → X0

as morphisms over Y0. Since f0 is locally of finite presentation by Limits, Propo-
sition 6.1 we can find a λ ≥ 0 such that there exist morphisms σ′

i,λ : Zi,λ → X0
over Y0 whose precomposition with Zi → Zi,λ are the displayed arrows. Of course,
then σ′

i,λ determines a morphism σi,λ : Zi,λ → Xλ = X0 ×Y0 Yλ over Yλ. Since∐
Zi,λ → Yλ is surjective we conclude that Xλ → Yλ is completely decomposed. □

79. Families of ample invertible modules

0GTN We continue the discussion from Morphisms, Section 12.

Lemma 79.1.0GTP Let f : X → Y be a morphism of schemes. Assume
(1) Y has an ample family of invertible modules,
(2) there exists an f -ample invertible module on X.

Then X has an ample family of invertible modules.

Proof. Let L be an f -ample invertible module on X. This in particular implies
that f is quasi-compact, see Morphisms, Definition 37.1. Since Y is quasi-compact
by Morphisms, Definition 12.1 we see that X is quasi-compact (and hence X itself
satisfies the first condition of Morphisms, Definition 12.1). Let x ∈ X with image
y ∈ Y . By assumption (2) we can find an invertible OY -module N and a section
t ∈ Γ(Y,N ) such that the locus Yt where t does not vanish is affine. Then L is
ample over f−1(Yt) = Xf∗t and hence we can find a section s ∈ Γ(Xf∗t,L) such
that (Xf∗t)s is affine and contains x. By Properties, Lemma 17.2 for some n ≥ 0
the product (f∗t)ns extends to a section s′ ∈ Γ(X, f∗N⊗n ⊗ L). Then finally the
section s′′ = f∗ts′ of f∗N⊗n+1 ⊗ L vanishes at every point of X \Xf∗t hence we
see that Xs′′ = (Xf∗t)s is affine as desired. □

Lemma 79.2.0GTQ Let f : X → Y be an affine or quasi-affine morphism of schemes.
If Y has an ample family of invertible modules, so does X.

Proof. By Morphisms, Lemma 37.6 this is a special case of Lemma 79.1. □
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80. Blowing up and ample families of invertible modules

0GTR We prove a result from [Gro10].

Lemma 80.1.0GTS Let X be a scheme. Suppose given effective Cartier divisors
D1, . . . , Dm on X and invertible modules L1, . . . ,Lm such that

⋂
Di = ∅ and

Li|X\Di
is ample. Then X has an ample family of invertible modules.

Proof. Let x ∈ X. Choose an index i ∈ {1, . . . ,m} such that x ̸∈ Di. Set
Ui = X \Di. Since Li|Ui we can find an n ≥ 1 and a section s ∈ Γ(Ui,L⊗n

i ) such
that the locus (Ui)s where s doesn’t vanish is affine (Properties, Definition 26.1).
Since Ui is the locus where the canonical section 1 ∈ OX(Di) doesn’t vanish, we
see from Properties, Lemma 17.2 there exists an N ≥ 0 such that s extends to a
section

s′ ∈ Γ(X,L⊗n
i ⊗OX

OX(NDi))
After replacing N by N + 1 we see that s′ vanishes at every point of Di and hence
that Xs′ = (Ui)s is affine. This proves that X has an ample family of invertible
modules, see Morphisms, Definition 12.1. □

Lemma 80.2.0GTT [Gro10, Proposition
1.3.1]

Let X be a quasi-compact and quasi-separated scheme with finitely
many irreducible components. There exists a quasi-compact dense open U ⊂ X and
a U -admissible blowing up X ′ → X such that the scheme X ′ has an ample family
of invertible modules.

Proof. Let η1, . . . , ηn ∈ X be the generic points of the irreducible components of
X. By Properties, Lemma 29.4 and the fact that X is quasi-compact we can find a
finite affine open covering X = U1 ∪ . . .∪Um such that each Ui contains η1, . . . , ηn.
In particular the quasi-compact open subset U = U1 ∩ . . . ∩ Um is dense in X. Let
Ii ⊂ OX be a finite type quasi-coherent ideal sheaf such that Ui = X \ Zi where
Zi = V (Ii), see Properties, Lemma 24.1. Let

f : X ′ −→ X

be the blowing up of X in the ideal sheaf I = I1 · · · Im. Note that f is a U -
admissible blowing up as V (I) is (set theoretically) the union of the Zi which are
disjoint from U . Also, f is a projective morphism and OX′(1) is f -relatively ample,
see Divisors, Lemma 32.13. By Divisors, Lemma 32.12 for each i the morphism f ′

factors as X ′ → X ′
i → X where X ′

i → X is the blowing up in Ii and X ′ → X ′
i is

another blowing up (namely in the pullback of the products of the ideals Ij omitting
Ii). It follows from this that Di = f−1(Zi) ⊂ X ′ is an effective Cartier divisor,
see Divisors, Lemmas 32.11 and 32.4. We have X ′ \ Di = f−1(Ui). As OX′(1) is
f -ample, the restriction of OX′(1) to X ′ \Di is ample. It follows from Lemma 80.1
that X ′ has an ample family of invertible modules. □

Proposition 80.3.0GTU Let X be a quasi-compact and quasi-separated scheme. There
exists a morphism f : Y → X which is of finite presentation, proper, and com-
pletely decomposed (Definition 78.1) such that the scheme Y has an ample family
of invertible modules.

Proof. By Limits, Proposition 5.4 there exists an affine morphism X → X0 where
X0 is a scheme of finite type over Z. Below we produce a morphism Y0 → X0 with all
the desired properties. Then setting Y = X ×X0 Y0 and f equal to the projection
f : Y → X we conclude. To see this observe that f is of finite presentation
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(Morphisms, Lemma 21.4), f is proper (Morphisms, Lemma 41.5), f is completely
decomposed (Lemma 78.3). Finally, since Y → Y0 is affine (as the base change of
X → X0) we see that Y has an ample family of invertible modules by Lemma 79.2.
This reduces us to the case discussed in the next paragraph.
Assume X is of finite type over Z. In particular dim(X) < ∞. We will argue
by induction on dim(X). If dim(X) = 0, then X is affine and has the resolution
property. In general, there exists a dense open U ⊂ X and a U -admissible blowing
up X ′ → X such that X ′ has an ample family of invertible modules, see Lemma
80.2. Since f : X ′ → X is an isomorphism over U we see that every point of
U lifts to a point of X ′ with the same residue field. Let Z = X \ U with the
reduced induced scheme structure. Then dim(Z) < dim(X) as U is dense in X
(see above). By induction we find a proper, completely decomposed morphism
W → Z such that W has an ample family of invertible modules. Then it follows
that Y = X ′ ⨿W → X is the desired morphism. □

81. The extensive criterion for closed immersions

0H2N In this section, we give a criterion for a morphism of schemes to be a closed immer-
sion.

Lemma 81.1.0H2P A morphism f : X → Y of affine schemes is a closed immersion
if and only if for every injective ring map A→ B and commutative square

Spec(B)

��

// X

f

��
Spec(A) //

;;

Y

there exists a lift Spec(A)→ X making the two triangles commute.

Proof. Let the morphism f be given by the ring map ϕ : R → S. Then f is a
closed immersion if and only if ϕ is surjective.
First, we assume that ϕ is surjective. Let ψ : A→ B be an injective ring map, and
suppose we are given a commutative diagram

R
α //

ϕ

��

A

ψ

��
S

β //

??

B

Then we define a lift S → A by s 7→ α(r), where r ∈ R is such that ϕ(r) = s.
This is well-defined because ψ is injective and the square commutes. Since taking
the ring spectrum defines an anti-equivalence between commutative rings and affine
schemes, the desired lifting property for f holds.
Next, we assume that ϕ has lifts against all injective ring maps ψ : A → B. Note
that ϕ(R) is a subring of S, so we obtain a commutative square

R //

ϕ

��

ϕ(R)

��
S

==

S
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in which a lift S → ϕ(R) exists. Hence, the inclusion ϕ(R) → S must be an
isomorphism, which shows that ϕ is surjective, and we win. □

Lemma 81.2.0H2Q Let X be a scheme. If the canonical morphism X → Spec(Γ(X,OX))
of Schemes, Lemma 6.4 has a retraction, then X is an affine scheme.

Proof. Write S = Spec(Γ(X,OX)) and f : X → S the morphism given in the
lemma. Let s : S → X be a retraction; so idX = sf . Then fsf = idSf . Since f
induces an isomorphism Γ(S,OS)→ Γ(X,OX) this means that fs and idS induce
the same map on Γ(S,OS). Whence fs = idS as S is affine. Hence f is an
isomorphism and X is an affine scheme, as was to be shown. □

Lemma 81.3.0H2R Let X be a scheme. Let f : X → S = Spec(Γ(X,OX)) be the
canonical morphism of Schemes, Lemma 6.4. The largest quasi-coherent OS-module
contained in the kernel of f ♯ : OS → f∗OX is zero. If X is quasi-compact, then f ♯

is injective. In particular, if X is quasi-compact, then f is a dominant morphism.

Proof. Let M ⊂ Γ(S,OS) be the submodule corresponding to the largest quasi-
coherent OS-module contained in the kernel of f ♯. Then any element a ∈ M is
mapped to zero by f ♯. However, f ♯(a) is the element of

Γ(S, f∗OX) = Γ(X,OX) = Γ(S,OS)

corresponding to a itself! Thus a = 0. Hence M = 0 which proves the first assertion.
Note that this is equivalent to the morphism f : X → S being scheme-theoretically
surjective.

If X is quasi-compact, then Ker(f ♯) is quasi-coherent by Morphisms, Lemma 6.3.
Hence Ker(f ♯) = 0 and f ♯ is injective. In this case, f is a dominant morphism by
part (4) of Morphisms, Lemma 6.3. □

Lemma 81.4.0H2S Let f : X → Y be a quasi-compact morphism of schemes. Then
f is a closed immersion if and only if for every injective ring map A → B and
commutative square

Spec(B)

��

// X

f

��
Spec(A) //

;;

Y

there exists a lift SpecA→ X making the diagram commute.

Proof. Assume that f is a closed immersion. Let A→ B be an injective ring map
and consider a commutative square

Spec(B)

��

// X

f

��
Spec(A) //

;;

Y
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Then Spec(A) ×Y X → Spec(A) is a closed immersion and hence we get an ideal
I ⊂ A and a commutative diagram

Spec(B)

��

// Spec(A/I) //

��

X

f

��
Spec(A) //

88

Spec(A) // Y

We obtain a lift by Lemma 81.1.
Assume that f has the lifting property stated in the lemma. To prove that f is
a closed immersion is local on Y , hence we may and do assume Y is affine. In
particular, Y is quasi-compact and therefore X is quasi-compact. Hence there
exists a finite affine open covering X = U1 ∪ . . . ∪Un. The source of the morphism

π : U =
∐

Ui −→ X

is affine and the induced ring map Γ(X,OX)→ Γ(U,OU ) is injective. By assump-
tion, there exists a lift in the diagram

U
π //

��

X

f

��
Spec(Γ(X,OX)) f ′

//

h

88

Y

where f ′ is the morphism of affine schemes corresponding to the ring map Γ(Y,OY )→
Γ(X,OX). It follows from the fact that π is an epimorphism that the morphism h
is a retraction of the canonical morphism X → Spec(Γ(X,OX)); details omitted.
Hence X is affine by Lemma 81.2. By Lemma 81.1 we conclude that f is a closed
immersion. □
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