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1. Introduction

01QM In this chapter we introduce some types of morphisms of schemes. A basic reference
is [DG67].

2. Closed immersions

01QN In this section we elucidate some of the results obtained previously on closed im-
mersions of schemes. Recall that a morphism of schemes i : Z → X is defined to
be a closed immersion if (a) i induces a homeomorphism onto a closed subset of X,
(b) i♯ : OX → i∗OZ is surjective, and (c) the kernel of i♯ is locally generated by
sections, see Schemes, Definitions 10.2 and 4.1. It turns out that, given that Z and
X are schemes, there are many different ways of characterizing a closed immersion.

Lemma 2.1.01QO Let i : Z → X be a morphism of schemes. The following are
equivalent:

(1) The morphism i is a closed immersion.
(2) For every affine open Spec(R) = U ⊂ X, there exists an ideal I ⊂ R such

that i−1(U) = Spec(R/I) as schemes over U = Spec(R).
(3) There exists an affine open covering X =

⋃
j∈J Uj, Uj = Spec(Rj) and for

every j ∈ J there exists an ideal Ij ⊂ Rj such that i−1(Uj) = Spec(Rj/Ij)
as schemes over Uj = Spec(Rj).

(4) The morphism i induces a homeomorphism of Z with a closed subset of X
and i♯ : OX → i∗OZ is surjective.

https://stacks.math.columbia.edu/tag/01QO
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(5) The morphism i induces a homeomorphism of Z with a closed subset of X,
the map i♯ : OX → i∗OZ is surjective, and the kernel Ker(i♯) ⊂ OX is a
quasi-coherent sheaf of ideals.

(6) The morphism i induces a homeomorphism of Z with a closed subset of X,
the map i♯ : OX → i∗OZ is surjective, and the kernel Ker(i♯) ⊂ OX is a
sheaf of ideals which is locally generated by sections.

Proof. Condition (6) is our definition of a closed immersion, see Schemes, Defini-
tions 4.1 and 10.2. So (6) ⇔ (1). We have (1) ⇒ (2) by Schemes, Lemma 10.1.
Trivially (2) ⇒ (3).

Assume (3). Each of the morphisms Spec(Rj/Ij)→ Spec(Rj) is a closed immersion,
see Schemes, Example 8.1. Hence i−1(Uj) → Uj is a homeomorphism onto its
image and i♯|Uj is surjective. Hence i is a homeomorphism onto its image and i♯ is
surjective since this may be checked locally. We conclude that (3) ⇒ (4).

The implication (4) ⇒ (1) is Schemes, Lemma 24.2. The implication (5) ⇒ (6) is
trivial. And the implication (6) ⇒ (5) follows from Schemes, Lemma 10.1. □

Lemma 2.2.01QP Let X be a scheme. Let i : Z → X and i′ : Z ′ → X be closed
immersions and consider the ideal sheaves I = Ker(i♯) and I ′ = Ker((i′)♯) of OX .

(1) The morphism i : Z → X factors as Z → Z ′ → X for some a : Z → Z ′ if
and only if I ′ ⊂ I. If this happens, then a is a closed immersion.

(2) We have Z ∼= Z ′ over X if and only if I = I ′.

Proof. This follows from our discussion of closed subspaces in Schemes, Section 4
especially Schemes, Lemmas 4.5 and 4.6. It also follows in a straightforward way
from characterization (3) in Lemma 2.1 above. □

Lemma 2.3.01QQ Let X be a scheme. Let I ⊂ OX be a sheaf of ideals. The following
are equivalent:

(1) I is locally generated by sections as a sheaf of OX-modules,
(2) I is quasi-coherent as a sheaf of OX-modules, and
(3) there exists a closed immersion i : Z → X of schemes whose corresponding

sheaf of ideals Ker(i♯) is equal to I.

Proof. The equivalence of (1) and (2) is immediate from Schemes, Lemma 10.1.
If (1) holds, then there is a closed subspace i : Z → X with I = Ker(i♯) by
Schemes, Definition 4.4 and Example 4.3. By Schemes, Lemma 10.1 this is a closed
immersion of schemes and (3) holds. Conversely, if (3) holds, then (2) holds by
Schemes, Lemma 10.1 (which applies because a closed immersion of schemes is a
fortiori a closed immersion of locally ringed spaces). □

Lemma 2.4.01QR The base change of a closed immersion is a closed immersion.

Proof. See Schemes, Lemma 18.2. □

Lemma 2.5.01QS A composition of closed immersions is a closed immersion.

Proof. We have seen this in Schemes, Lemma 24.3, but here is another proof.
Namely, it follows from the characterization (3) of closed immersions in Lemma
2.1. Since if I ⊂ R is an ideal, and J ⊂ R/I is an ideal, then J = J/I for some
ideal J ⊂ R which contains I and (R/I)/J = R/J . □

https://stacks.math.columbia.edu/tag/01QP
https://stacks.math.columbia.edu/tag/01QQ
https://stacks.math.columbia.edu/tag/01QR
https://stacks.math.columbia.edu/tag/01QS
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Lemma 2.6.01QT A closed immersion is quasi-compact.

Proof. This lemma is a duplicate of Schemes, Lemma 19.5. □

Lemma 2.7.01QU A closed immersion is separated.

Proof. This lemma is a special case of Schemes, Lemma 23.8. □

3. Immersions

07RJ In this section we collect some facts on immersions.

Lemma 3.1.07RK Let Z → Y → X be morphisms of schemes.
(1) If Z → X is an immersion, then Z → Y is an immersion.
(2) If Z → X is a quasi-compact immersion and Y → X is quasi-separated,

then Z → Y is a quasi-compact immersion.
(3) If Z → X is a closed immersion and Y → X is separated, then Z → Y is

a closed immersion.

Proof. In each case the proof is to contemplate the commutative diagram
Z //

##

Y ×X Z //

��

Z

��
Y // X

where the composition of the top horizontal arrows is the identity. Let us prove
(1). The first horizontal arrow is a section of Y ×X Z → Z, whence an immersion
by Schemes, Lemma 21.11. The arrow Y ×X Z → Y is a base change of Z → X
hence an immersion (Schemes, Lemma 18.2). Finally, a composition of immersions
is an immersion (Schemes, Lemma 24.3). This proves (1). The other two results
are proved in exactly the same manner. □

Lemma 3.2.01QV Let h : Z → X be an immersion. If h is quasi-compact, then we
can factor h = i ◦ j with j : Z → Z an open immersion and i : Z → X a closed
immersion.

Proof. Note that h is quasi-compact and quasi-separated (see Schemes, Lemma
23.8). Hence h∗OZ is a quasi-coherent sheaf of OX -modules by Schemes, Lemma
24.1. This implies that I = Ker(OX → h∗OZ) is a quasi-coherent sheaf of ideals,
see Schemes, Section 24. Let Z ⊂ X be the closed subscheme corresponding to
I, see Lemma 2.3. By Schemes, Lemma 4.6 the morphism h factors as h = i ◦ j
where i : Z → X is the inclusion morphism. To see that j is an open immersion,
choose an open subscheme U ⊂ X such that h induces a closed immersion of Z
into U . Then it is clear that I|U is the sheaf of ideals corresponding to the closed
immersion Z → U . Hence we see that Z = Z ∩ U . □

Lemma 3.3.03DQ Let h : Z → X be an immersion. If Z is reduced, then we can factor
h = i ◦ j with j : Z → Z an open immersion and i : Z → X a closed immersion.

Proof. Let Z ⊂ X be the closure of h(Z) with the reduced induced closed sub-
scheme structure, see Schemes, Definition 12.5. By Schemes, Lemma 12.7 the mor-
phism h factors as h = i ◦ j with i : Z → X the inclusion morphism and j : Z → Z.
From the definition of an immersion we see there exists an open subscheme U ⊂ X
such that h factors through a closed immersion into U . Hence Z ∩U and h(Z) are

https://stacks.math.columbia.edu/tag/01QT
https://stacks.math.columbia.edu/tag/01QU
https://stacks.math.columbia.edu/tag/07RK
https://stacks.math.columbia.edu/tag/01QV
https://stacks.math.columbia.edu/tag/03DQ
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reduced closed subschemes of U with the same underlying closed set. Hence by the
uniqueness in Schemes, Lemma 12.4 we see that h(Z) ∼= Z ∩ U . So j induces an
isomorphism of Z with Z ∩ U . In other words j is an open immersion. □

Example 3.4.01QW Here is an example of an immersion which is not a composition
of an open immersion followed by a closed immersion. Let k be a field. Let X =
Spec(k[x1, x2, x3, . . .]). Let U =

⋃∞
n=1 D(xn). Then U → X is an open immersion.

Consider the ideals
In = (xn1 , xn2 , . . . , xnn−1, xn − 1, xn+1, xn+2, . . .) ⊂ k[x1, x2, x3, . . .][1/xn].

Note that Ink[x1, x2, x3, . . .][1/xnxm] = (1) for any m ̸= n. Hence the quasi-
coherent ideals Ĩn on D(xn) agree on D(xnxm), namely Ĩn|D(xnxm) = OD(xnxm) if
n ̸= m. Hence these ideals glue to a quasi-coherent sheaf of ideals I ⊂ OU . Let
Z ⊂ U be the closed subscheme corresponding to I. Thus Z → X is an immersion.
We claim that we cannot factor Z → X as Z → Z → X, where Z → X is closed and
Z → Z is open. Namely, Z would have to be defined by an ideal I ⊂ k[x1, x2, x3, . . .]
such that In = Ik[x1, x2, x3, . . .][1/xn]. But the only element f ∈ k[x1, x2, x3, . . .]
which ends up in all In is 0! Hence I does not exist.

Lemma 3.5.0FCZ Let f : Y → X be a morphism of schemes. If for all y ∈ Y there
is an open subscheme f(y) ∈ U ⊂ X such that f |f−1(U) : f−1(U) → U is an
immersion, then f is an immersion.

Proof. This statement follows readily from the discussion of closed subschemes at
the end of Schemes, Section 10 but we will also give a detailed proof. Let Z ⊂ X
be the closure of f(Y ). Since taking closures commutes with restricting to opens,
we see from the assumption that f(Y ) ⊂ Z is open. Hence Z ′ = Z \ f(Y ) is closed.
Hence X ′ = X \Z ′ is an open subscheme of X and f factors as f : Y → X ′ followed
by the inclusion. If y ∈ Y and U ⊂ X is as in the statement of the lemma, then
U ′ = X ′ ∩ U is an open neighbourhood of f ′(y) such that (f ′)−1(U ′) → U ′ is an
immersion (Lemma 3.1) with closed image. Hence it is a closed immersion, see
Schemes, Lemma 10.4. Since being a closed immersion is local on the target (for
example by Lemma 2.1) we conclude that f ′ is a closed immersion as desired. □

4. Closed immersions and quasi-coherent sheaves

01QX The following lemma finally does for quasi-coherent sheaves on schemes what Mod-
ules, Lemma 6.1 does for abelian sheaves. See also the discussion in Modules,
Section 13.

Lemma 4.1.01QY Let i : Z → X be a closed immersion of schemes. Let I ⊂ OX be
the quasi-coherent sheaf of ideals cutting out Z. The functor

i∗ : QCoh(OZ) −→ QCoh(OX)
is exact, fully faithful, with essential image those quasi-coherent OX-modules G such
that IG = 0.

Proof. A closed immersion is quasi-compact and separated, see Lemmas 2.6 and
2.7. Hence Schemes, Lemma 24.1 applies and the pushforward of a quasi-coherent
sheaf on Z is indeed a quasi-coherent sheaf on X.
By Modules, Lemma 13.4 the functor i∗ is fully faithful.

https://stacks.math.columbia.edu/tag/01QW
https://stacks.math.columbia.edu/tag/0FCZ
https://stacks.math.columbia.edu/tag/01QY
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Now we turn to the description of the essential image of the functor i∗. We have
I(i∗F) = 0 for any quasi-coherent OZ-module, for example by Modules, Lemma
13.4. Next, suppose that G is any quasi-coherent OX -module such that IG = 0. It
suffices to show that the canonical map

G −→ i∗i
∗G

is an isomorphism1. In the case of schemes and quasi-coherent modules, working
affine locally on X and using Lemma 2.1 and Schemes, Lemma 7.3 it suffices to
prove the following algebraic statement: Given a ring R, an ideal I and an R-module
N such that IN = 0 the canonical map

N −→ N ⊗R R/I, n 7−→ n⊗ 1
is an isomorphism of R-modules. Proof of this easy algebra fact is omitted. □

Let i : Z → X be a closed immersion. Because of the lemma above we often, by
abuse of notation, denote F the sheaf i∗F on X.

Lemma 4.2.01QZ Let X be a scheme. Let F be a quasi-coherent OX-module. Let
G ⊂ F be a OX-submodule. There exists a unique quasi-coherent OX-submodule
G′ ⊂ G with the following property: For every quasi-coherent OX-module H the
map

HomOX
(H,G′) −→ HomOX

(H,G)
is bijective. In particular G′ is the largest quasi-coherent OX-submodule of F con-
tained in G.

Proof. Let Ga, a ∈ A be the set of quasi-coherent OX -submodules contained in G.
Then the image G′ of ⊕

a∈A
Ga −→ F

is quasi-coherent as the image of a map of quasi-coherent sheaves on X is quasi-
coherent and since a direct sum of quasi-coherent sheaves is quasi-coherent, see
Schemes, Section 24. The module G′ is contained in G. Hence this is the largest
quasi-coherent OX -module contained in G.
To prove the formula, let H be a quasi-coherent OX -module and let α : H → G be
an OX -module map. The image of the composition H → G → F is quasi-coherent
as the image of a map of quasi-coherent sheaves. Hence it is contained in G′. Hence
α factors through G′ as desired. □

Lemma 4.3.01R0 Let i : Z → X be a closed immersion of schemes. There is a functor2

i! : QCoh(OX) → QCoh(OZ) which is a right adjoint to i∗. (Compare Modules,
Lemma 6.3.)

Proof. Given quasi-coherent OX -module G we consider the subsheaf HZ(G) of
G of local sections annihilated by I. By Lemma 4.2 there is a canonical largest
quasi-coherent OX -submodule HZ(G)′. By construction we have

HomOX
(i∗F ,HZ(G)′) = HomOX

(i∗F ,G)
for any quasi-coherent OZ-module F . Hence we can set i!G = i∗(HZ(G)′). Details
omitted. □

1This was proved in a more general situation in the proof of Modules, Lemma 13.4.
2This is likely nonstandard notation.

https://stacks.math.columbia.edu/tag/01QZ
https://stacks.math.columbia.edu/tag/01R0
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Using the 1-to-1 corresponding between quasi-coherent sheaves of ideals and closed
subschemes (see Lemma 2.3) we can define scheme theoretic intersections and
unions of closed subschemes.

Definition 4.4.0C4H Let X be a scheme. Let Z, Y ⊂ X be closed subschemes corre-
sponding to quasi-coherent ideal sheaves I,J ⊂ OX . The scheme theoretic inter-
section of Z and Y is the closed subscheme of X cut out by I + J . The scheme
theoretic union of Z and Y is the closed subscheme of X cut out by I ∩ J .

Lemma 4.5.0C4I Let X be a scheme. Let Z, Y ⊂ X be closed subschemes. Let Z ∩ Y
be the scheme theoretic intersection of Z and Y . Then Z ∩Y → Z and Z ∩Y → Y
are closed immersions and

Z ∩ Y //

��

Z

��
Y // X

is a cartesian diagram of schemes, i.e., Z ∩ Y = Z ×X Y .

Proof. The morphisms Z ∩ Y → Z and Z ∩ Y → Y are closed immersions by
Lemma 2.2. Let U = Spec(A) be an affine open of X and let Z ∩ U and Y ∩ U
correspond to the ideals I ⊂ A and J ⊂ A. Then Z ∩ Y ∩ U corresponds to
I + J ⊂ A. Since A/I ⊗A A/J = A/(I + J) we see that the diagram is cartesian
by our description of fibre products of schemes in Schemes, Section 17. □

Lemma 4.6.0C4J Let S be a scheme. Let X,Y ⊂ S be closed subschemes. Let X ∪ Y
be the scheme theoretic union of X and Y . Let X ∩ Y be the scheme theoretic
intersection of X and Y . Then X → X∪Y and Y → X∪Y are closed immersions,
there is a short exact sequence

0→ OX∪Y → OX ×OY → OX∩Y → 0
of OS-modules, and the diagram

X ∩ Y //

��

X

��
Y // X ∪ Y

is cocartesian in the category of schemes, i.e., X ∪ Y = X ⨿X∩Y Y .

Proof. The morphisms X → X ∪ Y and Y → X ∪ Y are closed immersions by
Lemma 2.2. In the short exact sequence we use the equivalence of Lemma 4.1 to
think of quasi-coherent modules on closed subschemes of S as quasi-coherent mod-
ules on S. For the first map in the sequence we use the canonical mapsOX∪Y → OX
and OX∪Y → OY and for the second map we use the canonical map OX → OX∩Y
and the negative of the canonical map OY → OX∩Y . Then to check exactness we
may work affine locally. Let U = Spec(A) be an affine open of S and let X ∩U and
Y ∩ U correspond to the ideals I ⊂ A and J ⊂ A. Then (X ∪ Y ) ∩ U corresponds
to I ∩ J ⊂ A and X ∩ Y ∩ U corresponds to I + J ⊂ A. Thus exactness follows
from the exactness of

0→ A/I ∩ J → A/I ×A/J → A/(I + J)→ 0
To show the diagram is cocartesian, suppose we are given a scheme T and mor-
phisms of schemes f : X → T , g : Y → T agreeing as morphisms X ∩ Y → T .

https://stacks.math.columbia.edu/tag/0C4H
https://stacks.math.columbia.edu/tag/0C4I
https://stacks.math.columbia.edu/tag/0C4J
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Goal: Show there exists a unique morphism h : X ∪ Y → T agreeing with f and g.
To construct h we may work affine locally on X ∪ Y , see Schemes, Section 14. If
s ∈ X, s ̸∈ Y , then X → X ∪ Y is an isomorphism in a neighbourhood of s and it
is clear how to construct h. Similarly for s ∈ Y , s ̸∈ X. For s ∈ X ∩ Y we can pick
an affine open V = Spec(B) ⊂ T containing f(s) = g(s). Then we can choose an
affine open U = Spec(A) ⊂ S containing s such that f(X ∩ U) and g(Y ∩ U) are
contained in V . The morphisms f |X∩U and g|Y ∩V into V correspond to ring maps

B → A/I and B → A/J

which agree as maps into A/(I + J). By the short exact sequence displayed above
there is a unique lift of these ring homomorphism to a ring map B → A/I ∩ J as
desired. □

5. Supports of modules

056H In this section we collect some elementary results on supports of quasi-coherent
modules on schemes. Recall that the support of a sheaf of modules has been defined
in Modules, Section 5. On the other hand, the support of a module was defined in
Algebra, Section 62. These match.

Lemma 5.1.056I Let X be a scheme. Let F be a quasi-coherent sheaf on X. Let
Spec(A) = U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let
p ⊂ A be the corresponding prime. The following are equivalent

(1) p is in the support of M , and
(2) x is in the support of F .

Proof. This follows from the equality Fx = Mp, see Schemes, Lemma 5.4 and the
definitions. □

Lemma 5.2.05AC Let X be a scheme. Let F be a quasi-coherent sheaf on X. The
support of F is closed under specialization.

Proof. If x′ ⇝ x is a specialization and Fx = 0 then Fx′ is zero, as Fx′ is a
localization of the module Fx. Hence the complement of Supp(F) is closed under
generalization. □

For finite type quasi-coherent modules the support is closed, can be checked on
fibres, and commutes with base change.

Lemma 5.3.056J Let F be a finite type quasi-coherent module on a scheme X. Then
(1) The support of F is closed.
(2) For x ∈ X we have

x ∈ Supp(F)⇔ Fx ̸= 0⇔ Fx ⊗OX,x
κ(x) ̸= 0.

(3) For any morphism of schemes f : Y → X the pullback f∗F is of finite type
as well and we have Supp(f∗F) = f−1(Supp(F)).

Proof. Part (1) is a reformulation of Modules, Lemma 9.6. You can also combine
Lemma 5.1, Properties, Lemma 16.1, and Algebra, Lemma 40.5 to see this. The
first equivalence in (2) is the definition of support, and the second equivalence
follows from Nakayama’s lemma, see Algebra, Lemma 20.1. Let f : Y → X be a

https://stacks.math.columbia.edu/tag/056I
https://stacks.math.columbia.edu/tag/05AC
https://stacks.math.columbia.edu/tag/056J
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morphism of schemes. Note that f∗F is of finite type by Modules, Lemma 9.2. For
the final assertion, let y ∈ Y with image x ∈ X. Recall that

(f∗F)y = Fx ⊗OX,x
OY,y,

see Sheaves, Lemma 26.4. Hence (f∗F)y ⊗ κ(y) is nonzero if and only if Fx ⊗ κ(x)
is nonzero. By (2) this implies x ∈ Supp(F) if and only if y ∈ Supp(f∗F), which is
the content of assertion (3). □

Lemma 5.4.05JU Let F be a finite type quasi-coherent module on a scheme X. There
exists a smallest closed subscheme i : Z → X such that there exists a quasi-coherent
OZ-module G with i∗G ∼= F . Moreover:

(1) If Spec(A) ⊂ X is any affine open, and F|Spec(A) = M̃ then Z ∩Spec(A) =
Spec(A/I) where I = AnnA(M).

(2) The quasi-coherent sheaf G is unique up to unique isomorphism.
(3) The quasi-coherent sheaf G is of finite type.
(4) The support of G and of F is Z.

Proof. Suppose that i′ : Z ′ → X is a closed subscheme which satisfies the descrip-
tion on open affines from the lemma. Then by Lemma 4.1 we see that F ∼= i′∗G′

for some unique quasi-coherent sheaf G′ on Z ′. Furthermore, it is clear that Z ′ is
the smallest closed subscheme with this property (by the same lemma). Finally,
using Properties, Lemma 16.1 and Algebra, Lemma 5.5 it follows that G′ is of finite
type. We have Supp(G′) = Z by Algebra, Lemma 40.5. Hence, in order to prove
the lemma it suffices to show that the characterization in (1) actually does define
a closed subscheme. And, in order to do this it suffices to prove that the given
rule produces a quasi-coherent sheaf of ideals, see Lemma 2.3. This comes down to
the following algebra fact: If A is a ring, f ∈ A, and M is a finite A-module, then
AnnA(M)f = AnnAf (Mf ). We omit the proof. □

Definition 5.5.05JV Let X be a scheme. Let F be a quasi-coherent OX -module of
finite type. The scheme theoretic support of F is the closed subscheme Z ⊂ X
constructed in Lemma 5.4.

In this situation we often think of F as a quasi-coherent sheaf of finite type on Z
(via the equivalence of categories of Lemma 4.1).

6. Scheme theoretic image

01R5 Caution: Some of the material in this section is ultra-general and behaves differently
from what you might expect.

Lemma 6.1.01R6 Let f : X → Y be a morphism of schemes. There exists a closed
subscheme Z ⊂ Y such that f factors through Z and such that for any other closed
subscheme Z ′ ⊂ Y such that f factors through Z ′ we have Z ⊂ Z ′.

Proof. Let I = Ker(OY → f∗OX). If I is quasi-coherent then we just take Z to
be the closed subscheme determined by I, see Lemma 2.3. This works by Schemes,
Lemma 4.6. In general the same lemma requires us to show that there exists a
largest quasi-coherent sheaf of ideals I ′ contained in I. This follows from Lemma
4.2. □

https://stacks.math.columbia.edu/tag/05JU
https://stacks.math.columbia.edu/tag/05JV
https://stacks.math.columbia.edu/tag/01R6
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Definition 6.2.01R7 Let f : X → Y be a morphism of schemes. The scheme theoretic
image of f is the smallest closed subscheme Z ⊂ Y through which f factors, see
Lemma 6.1 above.

For a morphism f : X → Y of schemes with scheme theoretic image Z we often
denote f : X → Z the factorization of f through its scheme theoretic image. If the
morphism f is not quasi-compact, then (in general)

(1) the set theoretic inclusion f(X) ⊂ Z is not an equality, i.e., f(X) ⊂ Z is
not a dense subset, and

(2) the construction of the scheme theoretic image does not commute with
restriction to open subschemes to Y .

In Examples, Section 23 the reader finds an example for both phenomena. These
phenomena can arise even for immersions, see Examples, Section 25. However, the
next lemma shows that both disasters are avoided when the morphism is quasi-
compact.

Lemma 6.3.01R8 Let f : X → Y be a morphism of schemes. Let Z ⊂ Y be the scheme
theoretic image of f . If f is quasi-compact then

(1) the sheaf of ideals I = Ker(OY → f∗OX) is quasi-coherent,
(2) the scheme theoretic image Z is the closed subscheme determined by I,
(3) for any open U ⊂ Y the scheme theoretic image of f |f−1(U) : f−1(U)→ U

is equal to Z ∩ U , and
(4) the image f(X) ⊂ Z is a dense subset of Z, in other words the morphism

X → Z is dominant (see Definition 8.1).

Proof. Part (4) follows from part (3). To show (3) it suffices to prove (1) since
the formation of I commutes with restriction to open subschemes of Y . And if
(1) holds then in the proof of Lemma 6.1 we showed (2). Thus it suffices to prove
that I is quasi-coherent. Since the property of being quasi-coherent is local we may
assume Y is affine. As f is quasi-compact, we can find a finite affine open covering
X =

⋃
i=1,...,n Ui. Denote f ′ the composition

X ′ =
∐

Ui −→ X −→ Y.

Then f∗OX is a subsheaf of f ′
∗OX′ , and hence I = Ker(OY → f ′

∗OX′). By Schemes,
Lemma 24.1 the sheaf f ′

∗OX′ is quasi-coherent on Y . Hence we win. □

Example 6.4.056A If A → B is a ring map with kernel I, then the scheme theoretic
image of Spec(B)→ Spec(A) is the closed subscheme Spec(A/I) of Spec(A). This
follows from Lemma 6.3.

If the morphism is quasi-compact, then the scheme theoretic image only adds points
which are specializations of points in the image.

Lemma 6.5.02JQ Let f : X → Y be a quasi-compact morphism. Let Z be the scheme
theoretic image of f . Let z ∈ Z3. There exists a valuation ring A with fraction field

3By Lemma 6.3 set-theoretically Z agrees with the closure of f(X) in Y .

https://stacks.math.columbia.edu/tag/01R7
https://stacks.math.columbia.edu/tag/01R8
https://stacks.math.columbia.edu/tag/056A
https://stacks.math.columbia.edu/tag/02JQ
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K and a commutative diagram

Spec(K) //

��

X

����
Spec(A) // Z // Y

such that the closed point of Spec(A) maps to z. In particular any point of Z is the
specialization of a point of f(X).

Proof. Let z ∈ Spec(R) = V ⊂ Y be an affine open neighbourhood of z. By
Lemma 6.3 the intersection Z ∩ V is the scheme theoretic image of f−1(V ) → V .
Hence we may replace Y by V and assume Y = Spec(R) is affine. In this case X
is quasi-compact as f is quasi-compact. Say X = U1 ∪ . . . ∪ Un is a finite affine
open covering. Write Ui = Spec(Ai). Let I = Ker(R → A1 × . . . × An). By
Lemma 6.3 again we see that Z corresponds to the closed subscheme Spec(R/I) of
Y . If p ⊂ R is the prime corresponding to z, then we see that Ip ⊂ Rp is not an
equality. Hence (as localization is exact, see Algebra, Proposition 9.12) we see that
Rp → (A1)p × . . . × (An)p is not zero. Hence one of the rings (Ai)p is not zero.
Hence there exists an i and a prime qi ⊂ Ai lying over a prime pi ⊂ p. By Algebra,
Lemma 50.2 we can choose a valuation ring A ⊂ K = κ(qi) dominating the local
ring Rp/piRp ⊂ κ(qi). This gives the desired diagram. Some details omitted. □

Lemma 6.6.01R9 Let
X1

��

f1

// Y1

��
X2

f2 // Y2

be a commutative diagram of schemes. Let Zi ⊂ Yi, i = 1, 2 be the scheme theoretic
image of fi. Then the morphism Y1 → Y2 induces a morphism Z1 → Z2 and a
commutative diagram

X1 //

��

Z1

��

// Y1

��
X2 // Z2 // Y2

Proof. The scheme theoretic inverse image of Z2 in Y1 is a closed subscheme of Y1
through which f1 factors. Hence Z1 is contained in this. This proves the lemma. □

Lemma 6.7.056B Let f : X → Y be a morphism of schemes. If X is reduced, then the
scheme theoretic image of f is the reduced induced scheme structure on f(X).

Proof. This is true because the reduced induced scheme structure on f(X) is
clearly the smallest closed subscheme of Y through which f factors, see Schemes,
Lemma 12.7. □

Lemma 6.8.0CNG Let f : X → Y be a separated morphism of schemes. Let V ⊂ Y be
a retrocompact open. Let s : V → X be a morphism such that f ◦ s = idV . Let Y ′

be the scheme theoretic image of s. Then Y ′ → Y is an isomorphism over V .

https://stacks.math.columbia.edu/tag/01R9
https://stacks.math.columbia.edu/tag/056B
https://stacks.math.columbia.edu/tag/0CNG
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Proof. The assumption that V is retrocompact in Y (Topology, Definition 12.1)
means that V → Y is a quasi-compact morphism. By Schemes, Lemma 21.14 the
morphism s : V → X is quasi-compact. Hence the construction of the scheme
theoretic image Y ′ of s commutes with restriction to opens by Lemma 6.3. In
particular, we see that Y ′ ∩ f−1(V ) is the scheme theoretic image of a section of
the separated morphism f−1(V )→ V . Since a section of a separated morphism is
a closed immersion (Schemes, Lemma 21.11), we conclude that Y ′ ∩ f−1(V ) → V
is an isomorphism as desired. □

7. Scheme theoretic closure and density

01RA We take the following definition from [DG67, IV, Definition 11.10.2].

Definition 7.1.01RB Let X be a scheme. Let U ⊂ X be an open subscheme.
(1) The scheme theoretic image of the morphism U → X is called the scheme

theoretic closure of U in X.
(2) We say U is scheme theoretically dense in X if for every open V ⊂ X the

scheme theoretic closure of U ∩ V in V is equal to V .

With this definition it is not the case that U is scheme theoretically dense in X
if and only if the scheme theoretic closure of U is X, see Example 7.2. This is
somewhat inelegant; but see Lemmas 7.3 and 7.8 below. On the other hand, with
this definition U is scheme theoretically dense in X if and only if for every V ⊂ X
open the ring map OX(V ) → OX(U ∩ V ) is injective, see Lemma 7.5 below. In
particular we see that scheme theoretically dense implies dense which is pleasing.

Example 7.2.01RC Here is an example where scheme theoretic closure being X does
not imply dense for the underlying topological spaces. Let k be a field. Set A =
k[x, z1, z2, . . .]/(xnzn) Set I = (z1, z2, . . .) ⊂ A. Consider the affine scheme X =
Spec(A) and the open subscheme U = X \ V (I). Since A →

∏
nAzn is injective

we see that the scheme theoretic closure of U is X. Consider the morphism X →
Spec(k[x]). This morphism is surjective (set all zn = 0 to see this). But the
restriction of this morphism to U is not surjective because it maps to the point
x = 0. Hence U cannot be topologically dense in X.

Lemma 7.3.01RD Let X be a scheme. Let U ⊂ X be an open subscheme. If the
inclusion morphism U → X is quasi-compact, then U is scheme theoretically dense
in X if and only if the scheme theoretic closure of U in X is X.

Proof. Follows from Lemma 6.3 part (3). □

Example 7.4.056C Let A be a ring and X = Spec(A). Let f1, . . . , fn ∈ A and let
U = D(f1) ∪ . . . ∪ D(fn). Let I = Ker(A →

∏
Afi). Then the scheme theoretic

closure of U in X is the closed subscheme Spec(A/I) of X. Note that U → X is
quasi-compact. Hence by Lemma 7.3 we see U is scheme theoretically dense in X
if and only if I = 0.

Lemma 7.5.01RE Let j : U → X be an open immersion of schemes. Then U is scheme
theoretically dense in X if and only if OX → j∗OU is injective.

Proof. If OX → j∗OU is injective, then the same is true when restricted to any
open V of X. Hence the scheme theoretic closure of U ∩ V in V is equal to V ,
see proof of Lemma 6.1. Conversely, suppose that the scheme theoretic closure of

https://stacks.math.columbia.edu/tag/01RB
https://stacks.math.columbia.edu/tag/01RC
https://stacks.math.columbia.edu/tag/01RD
https://stacks.math.columbia.edu/tag/056C
https://stacks.math.columbia.edu/tag/01RE
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U ∩ V is equal to V for all opens V . Suppose that OX → j∗OU is not injective.
Then we can find an affine open, say Spec(A) = V ⊂ X and a nonzero element
f ∈ A such that f maps to zero in Γ(V ∩U,OX). In this case the scheme theoretic
closure of V ∩ U in V is clearly contained in Spec(A/(f)) a contradiction. □

Lemma 7.6.01RF Let X be a scheme. If U , V are scheme theoretically dense open
subschemes of X, then so is U ∩ V .

Proof. Let W ⊂ X be any open. Consider the map OX(W ) → OX(W ∩ V ) →
OX(W ∩ V ∩ U). By Lemma 7.5 both maps are injective. Hence the composite is
injective. Hence by Lemma 7.5 U ∩ V is scheme theoretically dense in X. □

Lemma 7.7.01RG Let h : Z → X be an immersion. Assume either h is quasi-compact
or Z is reduced. Let Z ⊂ X be the scheme theoretic image of h. Then the morphism
Z → Z is an open immersion which identifies Z with a scheme theoretically dense
open subscheme of Z. Moreover, Z is topologically dense in Z.

Proof. By Lemma 3.2 or Lemma 3.3 we can factor Z → X as Z → Z1 → X
with Z → Z1 open and Z1 → X closed. On the other hand, let Z → Z ⊂ X
be the scheme theoretic closure of Z → X. We conclude that Z ⊂ Z1. Since Z
is an open subscheme of Z1 it follows that Z is an open subscheme of Z as well.
In the case that Z is reduced we know that Z ⊂ Z1 is topologically dense by the
construction of Z1 in the proof of Lemma 3.3. Hence Z1 and Z have the same
underlying topological spaces. Thus Z ⊂ Z1 is a closed immersion into a reduced
scheme which induces a bijection on underlying topological spaces, and hence it is
an isomorphism. In the case that Z → X is quasi-compact we argue as follows:
The assertion that Z is scheme theoretically dense in Z follows from Lemma 6.3
part (3). The last assertion follows from Lemma 6.3 part (4). □

Lemma 7.8.056D Let X be a reduced scheme and let U ⊂ X be an open subscheme.
Then the following are equivalent

(1) U is topologically dense in X,
(2) the scheme theoretic closure of U in X is X, and
(3) U is scheme theoretically dense in X.

Proof. This follows from Lemma 7.7 and the fact that a closed subscheme Z of X
whose underlying topological space equals X must be equal to X as a scheme. □

Lemma 7.9.056E Let X be a scheme and let U ⊂ X be a reduced open subscheme.
Then the following are equivalent

(1) the scheme theoretic closure of U in X is X, and
(2) U is scheme theoretically dense in X.

If this holds then X is a reduced scheme.

Proof. This follows from Lemma 7.7 and the fact that the scheme theoretic closure
of U in X is reduced by Lemma 6.7. □

Lemma 7.10.01RH Let S be a scheme. Let X, Y be schemes over S. Let f, g : X → Y
be morphisms of schemes over S. Let U ⊂ X be an open subscheme such that
f |U = g|U . If the scheme theoretic closure of U in X is X and Y → S is separated,
then f = g.

Proof. Follows from the definitions and Schemes, Lemma 21.5. □

https://stacks.math.columbia.edu/tag/01RF
https://stacks.math.columbia.edu/tag/01RG
https://stacks.math.columbia.edu/tag/056D
https://stacks.math.columbia.edu/tag/056E
https://stacks.math.columbia.edu/tag/01RH
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8. Dominant morphisms

01RI The definition of a morphism of schemes being dominant is a little different from
what you might expect if you are used to the notion of a dominant morphism of
varieties.

Definition 8.1.01RJ A morphism f : X → S of schemes is called dominant if the
image of f is a dense subset of S.

So for example, if k is an infinite field and λ1, λ2, . . . is a countable collection of
distinct elements of k, then the morphism∐

i=1,2,...
Spec(k) −→ Spec(k[x])

with ith factor mapping to the point x = λi is dominant.

Lemma 8.2.01RK Let f : X → S be a morphism of schemes. If every generic point of
every irreducible component of S is in the image of f , then f is dominant.

Proof. This is a topological fact which follows directly from the fact that the
topological space underlying a scheme is sober, see Schemes, Lemma 11.1, and
that every point of S is contained in an irreducible component of S, see Topology,
Lemma 8.3. □

The expectation that morphisms are dominant only if generic points of the target
are in the image does hold if the morphism is quasi-compact.

Lemma 8.3.01RL Let f : X → S be a quasi-compact morphism of schemes. Then f is
dominant if and only if for every irreducible component Z ⊂ S the generic point of
Z is in the image of f .

Proof. Let V ⊂ S be an affine open. Because f is quasi-compact we may choose
finitely many affine opens Ui ⊂ f−1(V ), i = 1, . . . , n covering f−1(V ). Consider
the morphism of affines

f ′ :
∐

i=1,...,n
Ui −→ V.

A disjoint union of affines is affine, see Schemes, Lemma 6.8. Generic points of
irreducible components of V are exactly the generic points of the irreducible com-
ponents of S that meet V . Also, f is dominant if and only if f ′ is dominant no
matter what choices of V, n, Ui we make above. Thus we have reduced the lemma
to the case of a morphism of affine schemes. The affine case is Algebra, Lemma
30.6. □

Lemma 8.4.0H3F Let f : X → S be a quasi-compact dominant morphism of schemes.
Let g : S′ → S be a morphism of schemes and denote f ′ : X ′ → S′ the base change
of f by g. If generalizations lift along g, then f ′ is dominant.

Proof. Observe that f ′ is quasi-compact by Schemes, Lemma 19.3. Let η′ ∈ S′ be
the generic point of an irreducible component of S′. If generalizations lift along g,
then η = g(η′) is the generic point of an irreducible component of S. By Lemma
8.3 we see that η is in the image of f . Hence η′ is in the image of f ′ by Schemes,
Lemma 17.5. It follows that f ′ is dominant by Lemma 8.3. □

Lemma 8.5.02NE Let f : X → S be a quasi-compact morphism of schemes. Let η ∈ S
be a generic point of an irreducible component of S. If η ̸∈ f(X) then there exists
an open neighbourhood V ⊂ S of η such that f−1(V ) = ∅.

https://stacks.math.columbia.edu/tag/01RJ
https://stacks.math.columbia.edu/tag/01RK
https://stacks.math.columbia.edu/tag/01RL
https://stacks.math.columbia.edu/tag/0H3F
https://stacks.math.columbia.edu/tag/02NE
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Proof. Let Z ⊂ S be the scheme theoretic image of f . We have to show that η ̸∈ Z.
This follows from Lemma 6.5 but can also be seen as follows. By Lemma 6.3 the
morphism X → Z is dominant, which by Lemma 8.3 means all the generic points
of all irreducible components of Z are in the image of X → Z. By assumption we
see that η ̸∈ Z since η would be the generic point of some irreducible component of
Z if it were in Z. □

There is another case where dominant is the same as having all generic points of
irreducible components in the image.

Lemma 8.6.01RM Let f : X → S be a morphism of schemes. Suppose that X has
finitely many irreducible components. Then f is dominant (if and) only if for every
irreducible component Z ⊂ S the generic point of Z is in the image of f . If so,
then S has finitely many irreducible components as well.

Proof. Assume f is dominant. Say X = Z1 ∪ Z2 ∪ . . . ∪ Zn is the decomposition
of X into irreducible components. Let ξi ∈ Zi be its generic point, so Zi = {ξi}.
Note that f(Zi) is an irreducible subset of S. Hence

S = f(X) =
⋃
f(Zi) =

⋃
{f(ξi)}

is a finite union of irreducible subsets whose generic points are in the image of f .
The lemma follows. □

Lemma 8.7.0CC1 Let f : X → Y be a morphism of integral schemes. The following
are equivalent

(1) f is dominant,
(2) f maps the generic point of X to the generic point of Y ,
(3) for some nonempty affine opens U ⊂ X and V ⊂ Y with f(U) ⊂ V the

ring map OY (V )→ OX(U) is injective,
(4) for all nonempty affine opens U ⊂ X and V ⊂ Y with f(U) ⊂ V the ring

map OY (V )→ OX(U) is injective,
(5) for some x ∈ X with image y = f(x) ∈ Y the local ring map OY,y → OX,x

is injective, and
(6) for all x ∈ X with image y = f(x) ∈ Y the local ring map OY,y → OX,x is

injective.

Proof. The equivalence of (1) and (2) follows from Lemma 8.6. Let U ⊂ X and
V ⊂ Y be nonempty affine opens with f(U) ⊂ V . Recall that the rings A = OX(U)
and B = OY (V ) are integral domains. The morphism f |U : U → V corresponds to
a ring map φ : B → A. The generic points of X and Y correspond to the prime
ideals (0) ⊂ A and (0) ⊂ B. Thus (2) is equivalent to the condition (0) = φ−1((0)),
i.e., to the condition that φ is injective. In this way we see that (2), (3), and (4)
are equivalent. Similarly, given x and y as in (5) the local rings OX,x and OY,y are
domains and the prime ideals (0) ⊂ OX,x and (0) ⊂ OY,y correspond to the generic
points of X and Y (via the identification of the spectrum of the local ring at x with
the set of points specializing to x, see Schemes, Lemma 13.2). Thus we can argue
in the exact same manner as above to see that (2), (5), and (6) are equivalent. □

9. Surjective morphisms

01RY

https://stacks.math.columbia.edu/tag/01RM
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Definition 9.1.01RZ A morphism of schemes is said to be surjective if it is surjective
on underlying topological spaces.

Lemma 9.2.01S0 The composition of surjective morphisms is surjective.

Proof. Omitted. □

Lemma 9.3.0495 Let X and Y be schemes over a base scheme S. Given points x ∈ X
and y ∈ Y , there is a point of X ×S Y mapping to x and y under the projections if
and only if x and y lie above the same point of S.

Proof. The condition is obviously necessary, and the converse follows from the
proof of Schemes, Lemma 17.5. □

Lemma 9.4.01S1 The base change of a surjective morphism is surjective.

Proof. Let f : X → Y be a morphism of schemes over a base scheme S. If S′ → S
is a morphism of schemes, let p : XS′ → X and q : YS′ → Y be the canonical
projections. The commutative square

XS′

fS′

��

p
// X

f

��
YS′

q // Y.

identifies XS′ as a fibre product of X → Y and YS′ → Y . Let Z be a subset of
the underlying topological space of X. Then q−1(f(Z)) = fS′(p−1(Z)), because
y′ ∈ q−1(f(Z)) if and only if q(y′) = f(x) for some x ∈ Z, if and only if, by Lemma
9.3, there exists x′ ∈ XS′ such that fS′(x′) = y′ and p(x′) = x. In particular taking
Z = X we see that if f is surjective so is the base change fS′ : XS′ → YS′ . □

Example 9.5.0496 Bijectivity is not stable under base change, and so neither is
injectivity. For example consider the bijection Spec(C) → Spec(R). The base
change Spec(C ⊗R C) → Spec(C) is not injective, since there is an isomorphism
C ⊗R C ∼= C × C (the decomposition comes from the idempotent 1⊗1+i⊗i

2 ) and
hence Spec(C⊗R C) has two points.

Lemma 9.6.04ZD Let
X

f
//

p
  

Y

q
��

Z

be a commutative diagram of morphisms of schemes. If f is surjective and p is
quasi-compact, then q is quasi-compact.

Proof. Let W ⊂ Z be a quasi-compact open. By assumption p−1(W ) is quasi-
compact. Hence by Topology, Lemma 12.7 the inverse image q−1(W ) = f(p−1(W ))
is quasi-compact too. This proves the lemma. □

10. Radicial and universally injective morphisms

01S2 In this section we define what it means for a morphism of schemes to be radicial
and what it means for a morphism of schemes to be universally injective. We then
show that these notions agree. The reason for introducing both is that in the case
of algebraic spaces there are corresponding notions which may not always agree.

https://stacks.math.columbia.edu/tag/01RZ
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https://stacks.math.columbia.edu/tag/04ZD
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Definition 10.1.01S3 Let f : X → S be a morphism.
(1) We say that f is universally injective if and only if for any morphism of

schemes S′ → S the base change f ′ : XS′ → S′ is injective (on underlying
topological spaces).

(2) We say f is radicial if f is injective as a map of topological spaces, and for
every x ∈ X the field extension κ(x)/κ(f(x)) is purely inseparable.

Lemma 10.2.01S4 Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) For every field K the induced map Mor(Spec(K), X) → Mor(Spec(K), S)
is injective.

(2) The morphism f is universally injective.
(3) The morphism f is radicial.
(4) The diagonal morphism ∆X/S : X −→ X ×S X is surjective.

Proof. Let K be a field, and let s : Spec(K) → S be a morphism. Giving a
morphism x : Spec(K) → X such that f ◦ x = s is the same as giving a section
of the projection XK = Spec(K) ×S X → Spec(K), which in turn is the same as
giving a point x ∈ XK whose residue field is K. Hence we see that (2) implies (1).

Conversely, suppose that (1) holds. Assume that x, x′ ∈ XS′ map to the same point
s′ ∈ S′. Choose a commutative diagram

K κ(x)oo

κ(x′)

OO

κ(s′)oo

OO

of fields. By Schemes, Lemma 13.3 we get two morphisms a, a′ : Spec(K) → XS′ .
One corresponding to the point x and the embedding κ(x) ⊂ K and the other
corresponding to the point x′ and the embedding κ(x′) ⊂ K. Also we have f ′ ◦a =
f ′ ◦ a′. Condition (1) now implies that the compositions of a and a′ with XS′ → X
are equal. Since XS′ is the fibre product of S′ and X over S we see that a = a′.
Hence x = x′. Thus (1) implies (2).

If there are two different points x, x′ ∈ X mapping to the same point of s then (2)
is violated. If for some s = f(x), x ∈ X the field extension κ(x)/κ(s) is not purely
inseparable, then we may find a field extension K/κ(s) such that κ(x) has two
κ(s)-homomorphisms into K. By Schemes, Lemma 13.3 this implies that the map
Mor(Spec(K), X) → Mor(Spec(K), S) is not injective, and hence (1) is violated.
Thus we see that the equivalent conditions (1) and (2) imply f is radicial, i.e., they
imply (3).

Assume (3). By Schemes, Lemma 13.3 a morphism Spec(K)→ X is given by a pair
(x, κ(x)→ K). Property (3) says exactly that associating to the pair (x, κ(x)→ K)
the pair (s, κ(s)→ κ(x)→ K) is injective. In other words (1) holds. At this point
we know that (1), (2) and (3) are all equivalent.

Finally, we prove the equivalence of (4) with (1), (2) and (3). A point of X ×S X
is given by a quadruple (x1, x2, s, p), where x1, x2 ∈ X, f(x1) = f(x2) = s and
p ⊂ κ(x1)⊗κ(s) κ(x2) is a prime ideal, see Schemes, Lemma 17.5. If f is universally
injective, then by taking S′ = X in the definition of universally injective, ∆X/S

https://stacks.math.columbia.edu/tag/01S3
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must be surjective since it is a section of the injective morphism X ×S X −→ X.
Conversely, if ∆X/S is surjective, then always x1 = x2 = x and there is exactly one
such prime ideal p, which means that κ(s) ⊂ κ(x) is purely inseparable. Hence f is
radicial. Alternatively, if ∆X/S is surjective, then for any S′ → S the base change
∆XS′/S′ is surjective which implies that f is universally injective. This finishes the
proof of the lemma. □

Lemma 10.3.05VE A universally injective morphism is separated.

Proof. Combine Lemma 10.2 with the remark that X → S is separated if and
only if the image of ∆X/S is closed in X ×S X, see Schemes, Definition 21.3 and
the discussion following it. □

Lemma 10.4.0472 A base change of a universally injective morphism is universally
injective.

Proof. This is formal. □

Lemma 10.5.02V1 A composition of radicial morphisms is radicial, and so the same
holds for the equivalent condition of being universally injective.

Proof. Omitted. □

11. Affine morphisms

01S5
Definition 11.1.01S6 A morphism of schemes f : X → S is called affine if the inverse
image of every affine open of S is an affine open of X.

Lemma 11.2.01S7 An affine morphism is separated and quasi-compact.

Proof. Let f : X → S be affine. Quasi-compactness is immediate from Schemes,
Lemma 19.2. We will show f is separated using Schemes, Lemma 21.7. Let x1, x2 ∈
X be points of X which map to the same point s ∈ S. Choose any affine open
W ⊂ S containing s. By assumption f−1(W ) is affine. Apply the lemma cited with
U = V = f−1(W ). □

Lemma 11.3.01S8 [DG67, II, Corollary
1.3.2]

Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is affine.
(2) There exists an affine open covering S =

⋃
Wj such that each f−1(Wj) is

affine.
(3) There exists a quasi-coherent sheaf of OS-algebras A and an isomorphism

X ∼= Spec
S

(A) of schemes over S. See Constructions, Section 4 for nota-
tion.

Moreover, in this case X = Spec
S

(f∗OX).

Proof. It is obvious that (1) implies (2).
Assume S =

⋃
j∈JWj is an affine open covering such that each f−1(Wj) is affine.

By Schemes, Lemma 19.2 we see that f is quasi-compact. By Schemes, Lemma
21.6 we see the morphism f is quasi-separated. Hence by Schemes, Lemma 24.1
the sheaf A = f∗OX is a quasi-coherent sheaf of OS-algebras. Thus we have the
scheme g : Y = Spec

S
(A) → S over S. The identity map id : A = f∗OX → f∗OX

provides, via the definition of the relative spectrum, a morphism can : X → Y over
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S, see Constructions, Lemma 4.7. By assumption and the lemma just cited the
restriction can|f−1(Wj) : f−1(Wj) → g−1(Wj) is an isomorphism. Thus can is an
isomorphism. We have shown that (2) implies (3).

Assume (3). By Constructions, Lemma 4.6 we see that the inverse image of every
affine open is affine, and hence the morphism is affine by definition. □

Remark 11.4.01S9 We can also argue directly that (2) implies (1) in Lemma 11.3 above
as follows. Assume S =

⋃
Wj is an affine open covering such that each f−1(Wj)

is affine. First argue that A = f∗OX is quasi-coherent as in the proof above. Let
Spec(R) = V ⊂ S be affine open. We have to show that f−1(V ) is affine. Set A =
A(V ) = f∗OX(V ) = OX(f−1(V )). By Schemes, Lemma 6.4 there is a canonical
morphism ψ : f−1(V ) → Spec(A) over Spec(R) = V . By Schemes, Lemma 11.6
there exists an integer n ≥ 0, a standard open covering V =

⋃
i=1,...,nD(hi),

hi ∈ R, and a map a : {1, . . . , n} → J such that each D(hi) is also a standard
open of the affine scheme Wa(i). The inverse image of a standard open under a
morphism of affine schemes is standard open, see Algebra, Lemma 17.4. Hence we
see that f−1(D(hi)) is a standard open of f−1(Wa(i)), in particular that f−1(D(hi))
is affine. Because A is quasi-coherent we have Ahi = A(D(hi)) = OX(f−1(D(hi))),
so f−1(D(hi)) is the spectrum of Ahi . It follows that the morphism ψ induces an
isomorphism of the open f−1(D(hi)) with the open Spec(Ahi) of Spec(A). Since
f−1(V ) =

⋃
f−1(D(hi)) and Spec(A) =

⋃
Spec(Ahi) we win.

Lemma 11.5.01SA Let S be a scheme. There is an anti-equivalence of categories

Schemes affine
over S ←→ quasi-coherent sheaves

of OS-algebras

which associates to f : X → S the sheaf f∗OX . Moreover, this equivalence is
compatible with arbitrary base change.

Proof. The functor from right to left is given by Spec
S

. The two functors are
mutually inverse by Lemma 11.3 and Constructions, Lemma 4.6 part (3). The final
statement is Constructions, Lemma 4.6 part (2). □

Lemma 11.6.01SB Let f : X → S be an affine morphism of schemes. Let A = f∗OX .
The functor F 7→ f∗F induces an equivalence of categories{

category of quasi-coherent
OX-modules

}
−→

{
category of quasi-coherent

A-modules

}
Moreover, an A-module is quasi-coherent as an OS-module if and only if it is quasi-
coherent as an A-module.

Proof. Omitted. □

Lemma 11.7.01SC The composition of affine morphisms is affine.

Proof. Let f : X → Y and g : Y → Z be affine morphisms. Let U ⊂ Z be affine
open. Then g−1(U) is affine by assumption on g. Whereupon f−1(g−1(U)) is affine
by assumption on f . Hence (g ◦ f)−1(U) is affine. □

Lemma 11.8.01SD The base change of an affine morphism is affine.
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Proof. Let f : X → S be an affine morphism. Let S′ → S be any morphism.
Denote f ′ : XS′ = S′ ×S X → S′ the base change of f . For every s′ ∈ S′ there
exists an open affine neighbourhood s′ ∈ V ⊂ S′ which maps into some open affine
U ⊂ S. By assumption f−1(U) is affine. By the material in Schemes, Section 17
we see that f−1(U)V = V ×U f−1(U) is affine and equal to (f ′)−1(V ). This proves
that S′ has an open covering by affines whose inverse image under f ′ is affine. We
conclude by Lemma 11.3 above. □

Lemma 11.9.01SE A closed immersion is affine.

Proof. The first indication of this is Schemes, Lemma 8.2. See Schemes, Lemma
10.1 for a complete statement. □

Lemma 11.10.01SF Let X be a scheme. Let L be an invertible OX-module. Let
s ∈ Γ(X,L). The inclusion morphism j : Xs → X is affine.

Proof. This follows from Properties, Lemma 26.4 and the definition. □

Lemma 11.11.01SG Suppose g : X → Y is a morphism of schemes over S.
(1) If X is affine over S and ∆ : Y → Y ×S Y is affine, then g is affine.
(2) If X is affine over S and Y is separated over S, then g is affine.
(3) A morphism from an affine scheme to a scheme with affine diagonal is

affine.
(4) A morphism from an affine scheme to a separated scheme is affine.

Proof. Proof of (1). The base change X ×S Y → Y is affine by Lemma 11.8. The
morphism (1, g) : X → X×S Y is the base change of Y → Y ×S Y by the morphism
X ×S Y → Y ×S Y . Hence it is affine by Lemma 11.8. The composition of affine
morphisms is affine (see Lemma 11.7) and (1) follows. Part (2) follows from (1)
as a closed immersion is affine (see Lemma 11.9) and Y/S separated means ∆ is a
closed immersion. Parts (3) and (4) are special cases of (1) and (2). □

Lemma 11.12.01SH A morphism between affine schemes is affine.

Proof. Immediate from Lemma 11.11 with S = Spec(Z). It also follows directly
from the equivalence of (1) and (2) in Lemma 11.3. □

Lemma 11.13.01SI Let S be a scheme. Let A be an Artinian ring. Any morphism
Spec(A)→ S is affine.

Proof. Omitted. □

Lemma 11.14.0C3A Let j : Y → X be an immersion of schemes. Assume there exists
an open U ⊂ X with complement Z = X \ U such that

(1) U → X is affine,
(2) j−1(U)→ U is affine, and
(3) j(Y ) ∩ Z is closed.

Then j is affine. In particular, if X is affine, so is Y .

Proof. By Schemes, Definition 10.2 there exists an open subscheme W ⊂ X such
that j factors as a closed immersion i : Y →W followed by the inclusion morphism
W → X. Since a closed immersion is affine (Lemma 11.9), we see that for every
x ∈W there is an affine open neighbourhood of x in X whose inverse image under
j is affine. If x ∈ U , then the same thing is true by assumption (2). Finally,
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assume x ∈ Z and x ̸∈ W . Then x ̸∈ j(Y ) ∩ Z. By assumption (3) we can find
an affine open neighbourhood V ⊂ X of x which does not meet j(Y ) ∩ Z. Then
j−1(V ) = j−1(V ∩ U) which is affine by assumptions (1) and (2). It follows that j
is affine by Lemma 11.3. □

12. Families of ample invertible modules

0FXQ A short section on the notion of a family of ample invertible modules.

Definition 12.1.0FXR [BGI71, II
Definition 2.2.4]

Let X be a scheme. Let {Li}i∈I be a family of invertible OX -
modules. We say {Li}i∈I is an ample family of invertible modules on X if

(1) X is quasi-compact, and
(2) for every x ∈ X there exists an i ∈ I, an n ≥ 1, and s ∈ Γ(X,L⊗n

i ) such
that x ∈ Xs and Xs is affine.

If {Li}i∈I is an ample family of invertible modules on a scheme X, then there exists
a finite subset I ′ ⊂ I such that {Li}i∈I′ is an ample family of invertible modules
on X (follows immediately from quasi-compactness). A scheme having an ample
family of invertible modules has an affine diagonal by the next lemma and hence is
a fortiori quasi-separated.

Lemma 12.2.0FXS Let X be a scheme such that for every point x ∈ X there exists an
invertible OX-module L and a global section s ∈ Γ(X,L) such that x ∈ Xs and Xs

is affine. Then the diagonal of X is an affine morphism.

Proof. Given invertible OX -modules L, M and global sections s ∈ Γ(X,L), t ∈
Γ(X,M) such that Xs and Xt are affine we have to prove Xs∩Xt is affine. Namely,
then Lemma 11.3 applied to ∆ : X → X ×X and the fact that ∆−1(Xs ×Xt) =
Xs ∩ Xt shows that ∆ is affine. The fact that Xs ∩ Xt is affine follows from
Properties, Lemma 26.4. □

Remark 12.3.0FXT In Properties, Lemma 26.7 we see that a scheme which has an
ample invertible module is separated. This is wrong for schemes having an ample
family of invertible modules. Namely, let X be as in Schemes, Example 14.3 with
n = 1, i.e., the affine line with zero doubled. We use the notation of that example
except that we write x for x1 and y for y1. There is, for every integer n, an invertible
sheaf Ln on X which is trivial on X1 and X2 and whose transition function U12 →
U21 is f(x) 7→ ynf(y). The global sections of Ln are pairs (f(x), g(y)) ∈ k[x]⊕ k[y]
such that ynf(y) = g(y). The sections s = (1, y) of L1 and t = (x, 1) of L−1
determine an open affine cover because Xs = X1 and Xt = X2. Therefore X has
an ample family of invertible modules but it is not separated.

13. Quasi-affine morphisms

01SJ Recall that a scheme X is called quasi-affine if it is quasi-compact and isomorphic
to an open subscheme of an affine scheme, see Properties, Definition 18.1.

Definition 13.1.01SK A morphism of schemes f : X → S is called quasi-affine if the
inverse image of every affine open of S is a quasi-affine scheme.

Lemma 13.2.01SL A quasi-affine morphism is separated and quasi-compact.
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Proof. Let f : X → S be quasi-affine. Quasi-compactness is immediate from
Schemes, Lemma 19.2. Let U ⊂ S be an affine open. If we can show that f−1(U)
is a separated scheme, then f is separated (Schemes, Lemma 21.7 shows that being
separated is local on the base). By assumption f−1(U) is isomorphic to an open
subscheme of an affine scheme. An affine scheme is separated and hence every open
subscheme of an affine scheme is separated as desired. □

Lemma 13.3.01SM Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is quasi-affine.
(2) There exists an affine open covering S =

⋃
Wj such that each f−1(Wj) is

quasi-affine.
(3) There exists a quasi-coherent sheaf of OS-algebras A and a quasi-compact

open immersion

X //

��

Spec
S

(A)

{{
S

over S.
(4) Same as in (3) but with A = f∗OX and the horizontal arrow the canonical

morphism of Constructions, Lemma 4.7.

Proof. It is obvious that (1) implies (2) and that (4) implies (3).

Assume S =
⋃
j∈JWj is an affine open covering such that each f−1(Wj) is quasi-

affine. By Schemes, Lemma 19.2 we see that f is quasi-compact. By Schemes,
Lemma 21.6 we see the morphism f is quasi-separated. Hence by Schemes, Lemma
24.1 the sheafA = f∗OX is a quasi-coherent sheaf ofOX -algebras. Thus we have the
scheme g : Y = Spec

S
(A) → S over S. The identity map id : A = f∗OX → f∗OX

provides, via the definition of the relative spectrum, a morphism can : X → Y
over S, see Constructions, Lemma 4.7. By assumption, the lemma just cited, and
Properties, Lemma 18.4 the restriction can|f−1(Wj) : f−1(Wj) → g−1(Wj) is a
quasi-compact open immersion. Thus can is a quasi-compact open immersion. We
have shown that (2) implies (4).

Assume (3). Choose any affine open U ⊂ S. By Constructions, Lemma 4.6 we see
that the inverse image of U in the relative spectrum is affine. Hence we conclude
that f−1(U) is quasi-affine (note that quasi-compactness is encoded in (3) as well).
Thus (3) implies (1). □

Lemma 13.4.01SN The composition of quasi-affine morphisms is quasi-affine.

Proof. Let f : X → Y and g : Y → Z be quasi-affine morphisms. Let U ⊂ Z be
affine open. Then g−1(U) is quasi-affine by assumption on g. Let j : g−1(U)→ V
be a quasi-compact open immersion into an affine scheme V . By Lemma 13.3
above we see that f−1(g−1(U)) is a quasi-compact open subscheme of the relative
spectrum Spec

g−1(U)(A) for some quasi-coherent sheaf of Og−1(U)-algebras A. By
Schemes, Lemma 24.1 the sheaf A′ = j∗A is a quasi-coherent sheaf of OV -algebras
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with the property that j∗A′ = A. Hence we get a commutative diagram

f−1(g−1(U)) // Spec
g−1(U)(A) //

��

Spec
V

(A′)

��
g−1(U) j // V

with the square being a fibre square, see Constructions, Lemma 4.6. Note that the
upper right corner is an affine scheme. Hence (g ◦ f)−1(U) is quasi-affine. □

Lemma 13.5.01SO The base change of a quasi-affine morphism is quasi-affine.

Proof. Let f : X → S be a quasi-affine morphism. By Lemma 13.3 above we can
find a quasi-coherent sheaf of OS-algebras A and a quasi-compact open immersion
X → Spec

S
(A) over S. Let g : S′ → S be any morphism. Denote f ′ : XS′ =

S′×SX → S′ the base change of f . Since the base change of a quasi-compact open
immersion is a quasi-compact open immersion we see that XS′ → Spec

S′(g∗A) is a
quasi-compact open immersion (we have used Schemes, Lemmas 19.3 and 18.2 and
Constructions, Lemma 4.6). By Lemma 13.3 again we conclude that XS′ → S′ is
quasi-affine. □

Lemma 13.6.02JR A quasi-compact immersion is quasi-affine.

Proof. Let X → S be a quasi-compact immersion. We have to show the inverse
image of every affine open is quasi-affine. Hence, assuming S is an affine scheme,
we have to show X is quasi-affine. By Lemma 7.7 the morphism X → S factors as
X → Z → S where Z is a closed subscheme of S and X ⊂ Z is a quasi-compact
open. Since S is affine Lemma 2.1 implies Z is affine. Hence we win. □

Lemma 13.7.01SP Let S be a scheme. Let X be an affine scheme. A morphism
f : X → S is quasi-affine if and only if it is quasi-compact. In particular any
morphism from an affine scheme to a quasi-separated scheme is quasi-affine.

Proof. Let V ⊂ S be an affine open. Then f−1(V ) is an open subscheme of
the affine scheme X, hence quasi-affine if and only if it is quasi-compact. This
proves the first assertion. The quasi-compactness of any f : X → S where X
is affine and S quasi-separated follows from Schemes, Lemma 21.14 applied to
X → S → Spec(Z). □

Lemma 13.8.054G Suppose g : X → Y is a morphism of schemes over S. If X
is quasi-affine over S and Y is quasi-separated over S, then g is quasi-affine. In
particular, any morphism from a quasi-affine scheme to a quasi-separated scheme
is quasi-affine.

Proof. The base change X ×S Y → Y is quasi-affine by Lemma 13.5. The mor-
phism X → X×S Y is a quasi-compact immersion as Y → S is quasi-separated, see
Schemes, Lemma 21.11. A quasi-compact immersion is quasi-affine by Lemma 13.6
and the composition of quasi-affine morphisms is quasi-affine (see Lemma 13.4).
Thus we win. □
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14. Types of morphisms defined by properties of ring maps

01SQ In this section we study what properties of ring maps allow one to define local
properties of morphisms of schemes.

Definition 14.1.01SR Let P be a property of ring maps.
(1) We say that P is local if the following hold:

(a) For any ring map R → A, and any f ∈ R we have P (R → A) ⇒
P (Rf → Af ).

(b) For any rings R, A, any f ∈ R, a ∈ A, and any ring map Rf → A we
have P (Rf → A)⇒ P (R→ Aa).

(c) For any ring map R→ A, and ai ∈ A such that (a1, . . . , an) = A then
∀i, P (R→ Aai)⇒ P (R→ A).

(2) We say that P is stable under base change if for any ring maps R → A,
R→ R′ we have P (R→ A)⇒ P (R′ → R′ ⊗R A).

(3) We say that P is stable under composition if for any ring maps A → B,
B → C we have P (A→ B) ∧ P (B → C)⇒ P (A→ C).

Definition 14.2.01SS Let P be a property of ring maps. Let f : X → S be a morphism
of schemes. We say f is locally of type P if for any x ∈ X there exists an affine
open neighbourhood U of x in X which maps into an affine open V ⊂ S such that
the induced ring map OS(V )→ OX(U) has property P .

This is not a “good” definition unless the property P is a local property. Even if P is
a local property we will not automatically use this definition to say that a morphism
is “locally of type P” unless we also explicitly state the definition elsewhere.

Lemma 14.3.01ST Let f : X → S be a morphism of schemes. Let P be a property
of ring maps. Let U be an affine open of X, and V an affine open of S such that
f(U) ⊂ V . If f is locally of type P and P is local, then P (OS(V )→ OX(U)) holds.

Proof. As f is locally of type P for every u ∈ U there exists an affine open
Uu ⊂ X mapping into an affine open Vu ⊂ S such that P (OS(Vu) → OX(Uu))
holds. Choose an open neighbourhood U ′

u ⊂ U ∩ Uu of u which is standard affine
open in both U and Uu, see Schemes, Lemma 11.5. By Definition 14.1 (1)(b) we see
that P (OS(Vu)→ OX(U ′

u)) holds. Hence we may assume that Uu ⊂ U is a standard
affine open. Choose an open neighbourhood V ′

u ⊂ V ∩Vu of f(u) which is standard
affine open in both V and Vu, see Schemes, Lemma 11.5. Then U ′

u = f−1(V ′
u)∩Uu

is a standard affine open of Uu (hence of U) and we have P (OS(V ′
u) → OX(U ′

u))
by Definition 14.1 (1)(a). Hence we may assume both Uu ⊂ U and Vu ⊂ V are
standard affine open. Applying Definition 14.1 (1)(b) one more time we conclude
that P (OS(V ) → OX(Uu)) holds. Because U is quasi-compact we may choose a
finite number of points u1, . . . , un ∈ U such that

U = Uu1 ∪ . . . ∪ Uun .
By Definition 14.1 (1)(c) we conclude that P (OS(V )→ OX(U)) holds. □

Lemma 14.4.01SU Let P be a local property of ring maps. Let f : X → S be a
morphism of schemes. The following are equivalent

(1) The morphism f is locally of type P .
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V we have P (OS(V )→
OX(U)).
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(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is locally
of type P .

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that P (OS(Vj)→ OX(Ui)) holds, for all j ∈ J, i ∈

Ij.
Moreover, if f is locally of type P then for any open subschemes U ⊂ X, V ⊂ S
with f(U) ⊂ V the restriction f |U : U → V is locally of type P .

Proof. This follows from Lemma 14.3 above. □

Lemma 14.5.01SV Let P be a property of ring maps. Assume P is local and stable
under composition. The composition of morphisms locally of type P is locally of
type P .

Proof. Let f : X → Y and g : Y → Z be morphisms locally of type P . Let
x ∈ X. Choose an affine open neighbourhood W ⊂ Z of g(f(x)). Choose an affine
open neighbourhood V ⊂ g−1(W ) of f(x). Choose an affine open neighbourhood
U ⊂ f−1(V ) of x. By Lemma 14.4 the ring maps OZ(W )→ OY (V ) and OY (V )→
OX(U) satisfy P . Hence OZ(W ) → OX(U) satisfies P as P is assumed stable
under composition. □

Lemma 14.6.01SW Let P be a property of ring maps. Assume P is local and stable
under base change. The base change of a morphism locally of type P is locally of
type P .

Proof. Let f : X → S be a morphism locally of type P . Let S′ → S be any
morphism. Denote f ′ : XS′ = S′ ×S X → S′ the base change of f . For every
s′ ∈ S′ there exists an open affine neighbourhood s′ ∈ V ′ ⊂ S′ which maps into
some open affine V ⊂ S. By Lemma 14.4 the open f−1(V ) is a union of affines
Ui such that the ring maps OS(V ) → OX(Ui) all satisfy P . By the material in
Schemes, Section 17 we see that f−1(U)V ′ = V ′ ×V f−1(V ) is the union of the
affine opens V ′ ×V Ui. Since OXS′ (V ′ ×V Ui) = OS′(V ′) ⊗OS(V ) OX(Ui) we see
that the ring maps OS′(V ′) → OXS′ (V ′ ×V Ui) satisfy P as P is assumed stable
under base change. □

Lemma 14.7.01SX The following properties of a ring map R→ A are local.
(1) (Isomorphism on local rings.) For every prime q of A lying over p ⊂ R the

ring map R→ A induces an isomorphism Rp → Aq.
(2) (Open immersion.) For every prime q of A there exists an f ∈ R, φ(f) ̸∈ q

such that the ring map φ : R→ A induces an isomorphism Rf → Af .
(3) (Reduced fibres.) For every prime p of R the fibre ring A⊗Rκ(p) is reduced.
(4) (Fibres of dimension at most n.) For every prime p of R the fibre ring

A⊗R κ(p) has Krull dimension at most n.
(5) (Locally Noetherian on the target.) The ring map R→ A has the property

that A is Noetherian.
(6) Add more here as needed4.

Proof. Omitted. □

4But only those properties that are not already dealt with separately elsewhere.

https://stacks.math.columbia.edu/tag/01SV
https://stacks.math.columbia.edu/tag/01SW
https://stacks.math.columbia.edu/tag/01SX


MORPHISMS OF SCHEMES 26

Lemma 14.8.01SY The following properties of ring maps are stable under base change.
(1) (Isomorphism on local rings.) For every prime q of A lying over p ⊂ R the

ring map R→ A induces an isomorphism Rp → Aq.
(2) (Open immersion.) For every prime q of A there exists an f ∈ R, φ(f) ̸∈ q

such that the ring map φ : R→ A induces an isomorphism Rf → Af .
(3) Add more here as needed5.

Proof. Omitted. □

Lemma 14.9.01SZ The following properties of ring maps are stable under composition.
(1) (Isomorphism on local rings.) For every prime q of A lying over p ⊂ R the

ring map R→ A induces an isomorphism Rp → Aq.
(2) (Open immersion.) For every prime q of A there exists an f ∈ R, φ(f) ̸∈ q

such that the ring map φ : R→ A induces an isomorphism Rf → Af .
(3) (Locally Noetherian on the target.) The ring map R→ A has the property

that A is Noetherian.
(4) Add more here as needed6.

Proof. Omitted. □

15. Morphisms of finite type

01T0 Recall that a ring map R → A is said to be of finite type if A is isomorphic to a
quotient of R[x1, . . . , xn] as an R-algebra, see Algebra, Definition 6.1.

Definition 15.1.01T1 Let f : X → S be a morphism of schemes.
(1) We say that f is of finite type at x ∈ X if there exists an affine open

neighbourhood Spec(A) = U ⊂ X of x and an affine open Spec(R) = V ⊂ S
with f(U) ⊂ V such that the induced ring map R→ A is of finite type.

(2) We say that f is locally of finite type if it is of finite type at every point of
X.

(3) We say that f is of finite type if it is locally of finite type and quasi-compact.

Lemma 15.2.01T2 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is locally of finite type.
(2) For all affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map OS(V )→
OX(U) is of finite type.

(3) There exist an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is locally
of finite type.

(4) There exist an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is of finite

type, for all j ∈ J, i ∈ Ij.
Moreover, if f is locally of finite type then for any open subschemes U ⊂ X, V ⊂ S
with f(U) ⊂ V the restriction f |U : U → V is locally of finite type.

5But only those properties that are not already dealt with separately elsewhere.
6But only those properties that are not already dealt with separately elsewhere.
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Proof. This follows from Lemma 14.3 if we show that the property “R → A is of
finite type” is local. We check conditions (a), (b) and (c) of Definition 14.1. By
Algebra, Lemma 14.2 being of finite type is stable under base change and hence
we conclude (a) holds. By Algebra, Lemma 6.2 being of finite type is stable under
composition and trivially for any ring R the ring map R → Rf is of finite type.
We conclude (b) holds. Finally, property (c) is true according to Algebra, Lemma
23.3. □

Lemma 15.3.01T3 The composition of two morphisms which are locally of finite type
is locally of finite type. The same is true for morphisms of finite type.

Proof. In the proof of Lemma 15.2 we saw that being of finite type is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma
14.5 combined with the fact that being of finite type is a property of ring maps that
is stable under composition, see Algebra, Lemma 6.2. By the above and the fact
that compositions of quasi-compact morphisms are quasi-compact, see Schemes,
Lemma 19.4 we see that the composition of morphisms of finite type is of finite
type. □

Lemma 15.4.01T4 The base change of a morphism which is locally of finite type is
locally of finite type. The same is true for morphisms of finite type.

Proof. In the proof of Lemma 15.2 we saw that being of finite type is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma
14.6 combined with the fact that being of finite type is a property of ring maps that
is stable under base change, see Algebra, Lemma 14.2. By the above and the fact
that a base change of a quasi-compact morphism is quasi-compact, see Schemes,
Lemma 19.3 we see that the base change of a morphism of finite type is a morphism
of finite type. □

Lemma 15.5.01T5 A closed immersion is of finite type. An immersion is locally of
finite type.

Proof. This is true because an open immersion is a local isomorphism, and a closed
immersion is obviously of finite type. □

Lemma 15.6.01T6 Let f : X → S be a morphism. If S is (locally) Noetherian and f
(locally) of finite type then X is (locally) Noetherian.

Proof. This follows immediately from the fact that a ring of finite type over a
Noetherian ring is Noetherian, see Algebra, Lemma 31.1. (Also: use the fact
that the source of a quasi-compact morphism with quasi-compact target is quasi-
compact.) □

Lemma 15.7.01T7 Let f : X → S be locally of finite type with S locally Noetherian.
Then f is quasi-separated.

Proof. In fact, it is true that X is quasi-separated, see Properties, Lemma 5.4
and Lemma 15.6 above. Then apply Schemes, Lemma 21.13 to conclude that f is
quasi-separated. □

Lemma 15.8.01T8 Let X → Y be a morphism of schemes over a base scheme S. If
X is locally of finite type over S, then X → Y is locally of finite type.
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Proof. Via Lemma 15.2 this translates into the following algebra fact: Given ring
maps A→ B → C such that A→ C is of finite type, then B → C is of finite type.
(See Algebra, Lemma 6.2). □

16. Points of finite type and Jacobson schemes

01T9 Let S be a scheme. A finite type point s of S is a point such that the morphism
Spec(κ(s)) → S is of finite type. The reason for studying this is that finite type
points can replace closed points in a certain sense and in certain situations. There
are always enough of them for example. Moreover, a scheme is Jacobson if and only
if all finite type points are closed points.

Lemma 16.1.01TA Let S be a scheme. Let k be a field. Let f : Spec(k) → S be a
morphism. The following are equivalent:

(1) The morphism f is of finite type.
(2) The morphism f is locally of finite type.
(3) There exists an affine open U = Spec(R) of S such that f corresponds to a

finite ring map R→ k.
(4) There exists an affine open U = Spec(R) of S such that the image of f

consists of a closed point u in U and the field extension k/κ(u) is finite.

Proof. The equivalence of (1) and (2) is obvious as Spec(k) is a singleton and
hence any morphism from it is quasi-compact.
Suppose f is locally of finite type. Choose any affine open Spec(R) = U ⊂ S such
that the image of f is contained in U , and the ring map R → k is of finite type.
Let p ⊂ R be the kernel. Then R/p ⊂ k is of finite type. By Algebra, Lemma 34.2
there exist a f ∈ R/p such that (R/p)f is a field and (R/p)f → k is a finite field
extension. If f ∈ R is a lift of f , then we see that k is a finite Rf -module. Thus
(2) ⇒ (3).
Suppose that Spec(R) = U ⊂ S is an affine open such that f corresponds to a finite
ring map R→ k. Then f is locally of finite type by Lemma 15.2. Thus (3) ⇒ (2).
Suppose R → k is finite. The image of R → k is a field over which k is finite by
Algebra, Lemma 36.18. Hence the kernel of R → k is a maximal ideal. Thus (3)
⇒ (4).
The implication (4) ⇒ (3) is immediate. □

Lemma 16.2.02HV Let S be a scheme. Let A be an Artinian local ring with residue
field κ. Let f : Spec(A)→ S be a morphism of schemes. Then f is of finite type if
and only if the composition Spec(κ)→ Spec(A)→ S is of finite type.

Proof. Since the morphism Spec(κ) → Spec(A) is of finite type it is clear that if
f is of finite type so is the composition Spec(κ) → S (see Lemma 15.3). For the
converse, note that Spec(A)→ S maps into some affine open U = Spec(B) of S as
Spec(A) has only one point. To finish apply Algebra, Lemma 54.4 to B → A. □

Recall that given a point s of a scheme S there is a canonical morphism Spec(κ(s))→
S, see Schemes, Section 13.

Definition 16.3.02J1 Let S be a scheme. Let us say that a point s of S is a finite
type point if the canonical morphism Spec(κ(s)) → S is of finite type. We denote
Sft-pts the set of finite type points of S.
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We can describe the set of finite type points as follows.
Lemma 16.4.02J2 Let S be a scheme. We have

Sft-pts =
⋃

U⊂S open
U0

where U0 is the set of closed points of U . Here we may let U range over all opens
or over all affine opens of S.
Proof. Immediate from Lemma 16.1. □

Lemma 16.5.02J3 Let f : T → S be a morphism of schemes. If f is locally of finite
type, then f(Tft-pts) ⊂ Sft-pts.
Proof. If T is the spectrum of a field this is Lemma 16.1. In general it follows
since the composition of morphisms locally of finite type is locally of finite type
(Lemma 15.3). □

Lemma 16.6.06EB Let f : T → S be a morphism of schemes. If f is locally of finite
type and surjective, then f(Tft-pts) = Sft-pts.
Proof. We have f(Tft-pts) ⊂ Sft-pts by Lemma 16.5. Let s ∈ S be a finite type
point. As f is surjective the scheme Ts = Spec(κ(s)) ×S T is nonempty, therefore
has a finite type point t ∈ Ts by Lemma 16.4. Now Ts → T is a morphism of finite
type as a base change of s→ S (Lemma 15.4). Hence the image of t in T is a finite
type point by Lemma 16.5 which maps to s by construction. □

Lemma 16.7.02J4 Let S be a scheme. For any locally closed subset T ⊂ S we have
T ̸= ∅ ⇒ T ∩ Sft-pts ̸= ∅.

In particular, for any closed subset T ⊂ S we see that T ∩ Sft-pts is dense in T .
Proof. Note that T carries a scheme structure (see Schemes, Lemma 12.4) such
that T → S is a locally closed immersion. Any locally closed immersion is locally of
finite type, see Lemma 15.5. Hence by Lemma 16.5 we see Tft-pts ⊂ Sft-pts. Finally,
any nonempty affine open of T has at least one closed point which is a finite type
point of T by Lemma 16.4. □

It follows that most of the material from Topology, Section 18 goes through with
the set of closed points replaced by the set of points of finite type. In fact, if S is
Jacobson then we recover the closed points as the finite type points.
Lemma 16.8.01TB Let S be a scheme. The following are equivalent:

(1) the scheme S is Jacobson,
(2) Sft-pts is the set of closed points of S,
(3) for all T → S locally of finite type closed points map to closed points, and
(4) for all T → S locally of finite type closed points t ∈ T map to closed points

s ∈ S with κ(s) ⊂ κ(t) finite.
Proof. We have trivially (4) ⇒ (3) ⇒ (2). Lemma 16.7 shows that (2) implies
(1). Hence it suffices to show that (1) implies (4). Suppose that T → S is locally
of finite type. Choose t ∈ T closed and let s ∈ S be the image. Choose affine
open neighbourhoods Spec(R) = U ⊂ S of s and Spec(A) = V ⊂ T of t with V
mapping into U . The induced ring map R → A is of finite type (see Lemma 15.2)
and R is Jacobson by Properties, Lemma 6.3. Thus the result follows from Algebra,
Proposition 35.19. □
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Lemma 16.9.02J5 Let S be a Jacobson scheme. Any scheme locally of finite type over
S is Jacobson.

Proof. This is clear from Algebra, Proposition 35.19 (and Properties, Lemma 6.3
and Lemma 15.2). □

Lemma 16.10.02J6 The following types of schemes are Jacobson.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over Z.
(3) Any scheme locally of finite type over a 1-dimensional Noetherian domain

with infinitely many primes.
(4) A scheme of the form Spec(R) \ {m} where (R,m) is a Noetherian local

ring. Also any scheme locally of finite type over it.

Proof. We will use Lemma 16.9 without mention. The spectrum of a field is clearly
Jacobson. The spectrum of Z is Jacobson, see Algebra, Lemma 35.6. For (3) see
Algebra, Lemma 61.4. For (4) see Properties, Lemma 6.4. □

17. Universally catenary schemes

02J7 Recall that a topological space X is called catenary if for every pair of irreducible
closed subsets T ⊂ T ′ there exist a maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Te = T ′

and every such chain has the same length. See Topology, Definition 11.4. Recall that
a scheme is catenary if its underlying topological space is catenary. See Properties,
Definition 11.1.

Definition 17.1.02J8 Let S be a scheme. Assume S is locally Noetherian. We say
S is universally catenary if for every morphism X → S locally of finite type the
scheme X is catenary.

This is a “better” notion than catenary as there exist Noetherian schemes which are
catenary but not universally catenary. See Examples, Section 18. Many schemes
are universally catenary, see Lemma 17.5 below.
Recall that a ring A is called catenary if for any pair of prime ideals p ⊂ q there
exists a maximal chain of primes

p = p0 ⊂ . . . ⊂ pe = q

and all of these have the same length. See Algebra, Definition 105.1. We have seen
the relationship between catenary schemes and catenary rings in Properties, Section
11. Recall that a ring A is called universally catenary if A is Noetherian and for
every finite type ring map A → B the ring B is catenary. See Algebra, Definition
105.3. Many interesting rings which come up in algebraic geometry satisfy this
property.

Lemma 17.2.02J9 Let S be a locally Noetherian scheme. The following are equivalent
(1) S is universally catenary,
(2) there exists an open covering of S all of whose members are universally

catenary schemes,
(3) for every affine open Spec(R) = U ⊂ S the ring R is universally catenary,

and
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(4) there exists an affine open covering S =
⋃
Ui such that each Ui is the

spectrum of a universally catenary ring.
Moreover, in this case any scheme locally of finite type over S is universally catenary
as well.

Proof. By Lemma 15.5 an open immersion is locally of finite type. A composition
of morphisms locally of finite type is locally of finite type (Lemma 15.3). Thus it
is clear that if S is universally catenary then any open and any scheme locally of
finite type over S is universally catenary as well. This proves the final statement
of the lemma and that (1) implies (2).
If Spec(R) is a universally catenary scheme, then every scheme Spec(A) with A a
finite type R-algebra is catenary. Hence all these rings A are catenary by Algebra,
Lemma 105.2. Thus R is universally catenary. Combined with the remarks above
we conclude that (1) implies (3), and (2) implies (4). Of course (3) implies (4)
trivially.
To finish the proof we show that (4) implies (1). Assume (4) and let X → S be a
morphism locally of finite type. We can find an affine open covering X =

⋃
Vj such

that each Vj → S maps into one of the Ui. By Lemma 15.2 the induced ring map
O(Ui)→ O(Vj) is of finite type. Hence O(Vj) is catenary. Hence X is catenary by
Properties, Lemma 11.2. □

Lemma 17.3.02JA Let S be a locally Noetherian scheme. The following are equivalent:
(1) S is universally catenary, and
(2) all local rings OS,s of S are universally catenary.

Proof. Assume that all local rings of S are universally catenary. Let f : X → S be
locally of finite type. We know that X is catenary if and only if OX,x is catenary
for all x ∈ X. If f(x) = s, then OX,x is essentially of finite type over OS,s. Hence
OX,x is catenary by the assumption that OS,s is universally catenary.
Conversely, assume that S is universally catenary. Let s ∈ S. We may replace
S by an affine open neighbourhood of s by Lemma 17.2. Say S = Spec(R) and
s corresponds to the prime ideal p. Any finite type Rp-algebra A′ is of the form
Ap for some finite type R-algebra A. By assumption (and Lemma 17.2 if you like)
the ring A is catenary, and hence A′ (a localization of A) is catenary. Thus Rp is
universally catenary. □

Lemma 17.4.0G42 Let S be a locally Noetherian scheme. Then S is universally cate-
nary if and only if the irreducible components of S are universally catenary.
Proof. Omitted. For the affine case, please see Algebra, Lemma 105.8. □

Lemma 17.5.02JB The following types of schemes are universally catenary.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Cohen-Macaulay scheme.
(3) Any scheme locally of finite type over Z.
(4) Any scheme locally of finite type over a 1-dimensional Noetherian domain.
(5) And so on.

Proof. All of these follow from the fact that a Cohen-Macaulay ring is universally
catenary, see Algebra, Lemma 105.9. Also, use the last assertion of Lemma 17.2.
Some details omitted. □
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18. Nagata schemes, reprise

0359 See Properties, Section 13 for the definitions and basic properties of Nagata and
universally Japanese schemes.

Lemma 18.1.035A Let f : X → S be a morphism. If S is Nagata and f locally of
finite type then X is Nagata. If S is universally Japanese and f locally of finite
type then X is universally Japanese.

Proof. For “universally Japanese” this follows from Algebra, Lemma 162.4. For
“Nagata” this follows from Algebra, Proposition 162.15. □

Lemma 18.2.035B The following types of schemes are Nagata.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Noetherian complete local ring.
(3) Any scheme locally of finite type over Z.
(4) Any scheme locally of finite type over a Dedekind ring of characteristic zero.
(5) And so on.

Proof. By Lemma 18.1 we only need to show that the rings mentioned above are
Nagata rings. For this see Algebra, Proposition 162.16. □

19. The singular locus, reprise

07R2 We look for a criterion that implies openness of the regular locus for any scheme
locally of finite type over the base. Here is the definition.

Definition 19.1.07R3 Let X be a locally Noetherian scheme. We say X is J-2 if for
every morphism Y → X which is locally of finite type the regular locus Reg(Y ) is
open in Y .

This is the analogue of the corresponding notion for Noetherian rings, see More on
Algebra, Definition 47.1.

Lemma 19.2.07R4 Let X be a locally Noetherian scheme. The following are equivalent
(1) X is J-2,
(2) there exists an open covering of X all of whose members are J-2 schemes,
(3) for every affine open Spec(R) = U ⊂ X the ring R is J-2, and
(4) there exists an affine open covering S =

⋃
Ui such that each O(Ui) is J-2

for all i.
Moreover, in this case any scheme locally of finite type over X is J-2 as well.

Proof. By Lemma 15.5 an open immersion is locally of finite type. A composition
of morphisms locally of finite type is locally of finite type (Lemma 15.3). Thus it
is clear that if X is J-2 then any open and any scheme locally of finite type over X
is J-2 as well. This proves the final statement of the lemma.
If Spec(R) is J-2, then for every finite type R-algebra A the regular locus of the
scheme Spec(A) is open. Hence R is J-2, by definition (see More on Algebra,
Definition 47.1). Combined with the remarks above we conclude that (1) implies
(3), and (2) implies (4). Of course (1) ⇒ (2) and (3) ⇒ (4) trivially.
To finish the proof we show that (4) implies (1). Assume (4) and let Y → X be a
morphism locally of finite type. We can find an affine open covering Y =

⋃
Vj such

that each Vj → X maps into one of the Ui. By Lemma 15.2 the induced ring map
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O(Ui) → O(Vj) is of finite type. Hence the regular locus of Vj = Spec(O(Vj)) is
open. Since Reg(Y )∩Vj = Reg(Vj) we conclude that Reg(Y ) is open as desired. □

Lemma 19.3.07R5 The following types of schemes are J-2.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Noetherian complete local ring.
(3) Any scheme locally of finite type over Z.
(4) Any scheme locally of finite type over a Noetherian local ring of dimension

1.
(5) Any scheme locally of finite type over a Nagata ring of dimension 1.
(6) Any scheme locally of finite type over a Dedekind ring of characteristic zero.
(7) And so on.

Proof. By Lemma 19.2 we only need to show that the rings mentioned above are
J-2. For this see More on Algebra, Proposition 48.7. □

20. Quasi-finite morphisms

01TC A solid treatment of quasi-finite morphisms is the basis of many developments
further down the road. It will lead to various versions of Zariski’s Main Theorem,
behaviour of dimensions of fibres, descent for étale morphisms, etc, etc. Before
reading this section it may be a good idea to take a look at the algebra results in
Algebra, Section 122.
Recall that a finite type ring map R→ A is quasi-finite at a prime q if q defines an
isolated point of its fibre, see Algebra, Definition 122.3.

Definition 20.1.01TD [DG67, II Definition
6.2.3]

Let f : X → S be a morphism of schemes.
(1) We say that f is quasi-finite at a point x ∈ X if there exist an affine

neighbourhood Spec(A) = U ⊂ X of x and an affine open Spec(R) = V ⊂ S
such that f(U) ⊂ V , the ring map R → A is of finite type, and R → A is
quasi-finite at the prime of A corresponding to x (see above).

(2) We say f is locally quasi-finite if f is quasi-finite at every point x of X.
(3) We say that f is quasi-finite if f is of finite type and every point x is an

isolated point of its fibre.

Trivially, a locally quasi-finite morphism is locally of finite type. We will see below
that a morphism f which is locally of finite type is quasi-finite at x if and only if x is
isolated in its fibre. Moreover, the set of points at which a morphism is quasi-finite
is open; we will see this in Section 56 on Zariski’s Main Theorem.

Lemma 20.2.01TE Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Set s = f(x). If κ(x)/κ(s) is an algebraic field extension, then

(1) x is a closed point of its fibre, and
(2) if in addition s is a closed point of S, then x is a closed point of X.

Proof. The second statement follows from the first by elementary topology. Ac-
cording to Schemes, Lemma 18.5 to prove the first statement we may replace X by
Xs and S by Spec(κ(s)). Thus we may assume that S = Spec(k) is the spectrum
of a field. In this case, let Spec(A) = U ⊂ X be any affine open containing x. The
point x corresponds to a prime ideal q ⊂ A such that κ(q)/k is an algebraic field
extension. By Algebra, Lemma 35.9 we see that q is a maximal ideal, i.e., x ∈ U is
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a closed point. Since the affine opens form a basis of the topology of X we conclude
that {x} is closed. □

The following lemma is a version of the Hilbert Nullstellensatz.

Lemma 20.3.01TF Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Set s = f(x). Assume f is locally of finite type. Then x is a closed point of its fibre
if and only if κ(x)/κ(s) is a finite field extension.

Proof. If the extension is finite, then x is a closed point of the fibre by Lemma
20.2 above. For the converse, assume that x is a closed point of its fibre. Choose
affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S such that f(U) ⊂ V . By
Lemma 15.2 the ring map R → A is of finite type. Let q ⊂ A, resp. p ⊂ R be the
prime ideal corresponding to x, resp. s. Consider the fibre ring A = A⊗R κ(p). Let
q be the prime of A corresponding to q. The assumption that x is a closed point of
its fibre implies that q is a maximal ideal of A. Since A is an algebra of finite type
over the field κ(p) we see by the Hilbert Nullstellensatz, see Algebra, Theorem 34.1,
that κ(q) is a finite extension of κ(p). Since κ(s) = κ(p) and κ(x) = κ(q) = κ(q)
we win. □

Lemma 20.4.053M Let f : X → S be a morphism of schemes which is locally of finite
type. Let g : S′ → S be any morphism. Denote f ′ : X ′ → S′ the base change. If
x′ ∈ X ′ maps to a point x ∈ X which is closed in Xf(x) then x′ is closed in X ′

f ′(x′).

Proof. The residue field κ(x′) is a quotient of κ(f ′(x′))⊗κ(f(x)) κ(x), see Schemes,
Lemma 17.5. Hence it is a finite extension of κ(f ′(x′)) as κ(x) is a finite extension
of κ(f(x)) by Lemma 20.3. Thus we see that x′ is closed in its fibre by applying
that lemma one more time. □

Lemma 20.5.01TG Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Set s = f(x). If f is quasi-finite at x, then the residue field extension κ(x)/κ(s) is
finite.

Proof. This is clear from Algebra, Definition 122.3. □

Lemma 20.6.01TH Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Set s = f(x). Let Xs be the fibre of f at s. Assume f is locally of finite type. The
following are equivalent:

(1) The morphism f is quasi-finite at x.
(2) The point x is isolated in Xs.
(3) The point x is closed in Xs and there is no point x′ ∈ Xs, x′ ̸= x which

specializes to x.
(4) For any pair of affine opens Spec(A) = U ⊂ X, Spec(R) = V ⊂ S with

f(U) ⊂ V and x ∈ U corresponding to q ⊂ A the ring map R → A is
quasi-finite at q.

Proof. Assume f is quasi-finite at x. By assumption there exist opens U ⊂ X,
V ⊂ S such that f(U) ⊂ V , x ∈ U and x an isolated point of Us. Hence {x} ⊂ Us
is an open subset. Since Us = U ∩Xs ⊂ Xs is also open we conclude that {x} ⊂ Xs

is an open subset also. Thus we conclude that x is an isolated point of Xs.
Note that Xs is a Jacobson scheme by Lemma 16.10 (and Lemma 15.4). If x is
isolated in Xs, i.e., {x} ⊂ Xs is open, then {x} contains a closed point (by the
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Jacobson property), hence x is closed in Xs. It is clear that there is no point
x′ ∈ Xs, distinct from x, specializing to x.
Assume that x is closed in Xs and that there is no point x′ ∈ Xs, distinct from x,
specializing to x. Consider a pair of affine opens Spec(A) = U ⊂ X, Spec(R) =
V ⊂ S with f(U) ⊂ V and x ∈ U . Let q ⊂ A correspond to x and p ⊂ R correspond
to s. By Lemma 15.2 the ring map R→ A is of finite type. Consider the fibre ring
A = A ⊗R κ(p). Let q be the prime of A corresponding to q. Since Spec(A) is an
open subscheme of the fibre Xs we see that q is a maximal ideal of A and that there
is no point of Spec(A) specializing to q. This implies that dim(Aq) = 0. Hence by
Algebra, Definition 122.3 we see that R → A is quasi-finite at q, i.e., X → S is
quasi-finite at x by definition.
At this point we have shown conditions (1) – (3) are all equivalent. It is clear that
(4) implies (1). And it is also clear that (2) implies (4) since if x is an isolated point
of Xs then it is also an isolated point of Us for any open U which contains it. □

Lemma 20.7.02NG Let f : X → S be a morphism of schemes. Let s ∈ S. Assume that
(1) f is locally of finite type, and
(2) f−1({s}) is a finite set.

Then Xs is a finite discrete topological space, and f is quasi-finite at each point of
X lying over s.

Proof. Suppose T is a scheme which (a) is locally of finite type over a field k, and
(b) has finitely many points. Then Lemma 16.10 shows T is a Jacobson scheme. A
finite Jacobson space is discrete, see Topology, Lemma 18.6. Apply this remark to
the fibre Xs which is locally of finite type over Spec(κ(s)) to see the first statement.
Finally, apply Lemma 20.6 to see the second. □

Lemma 20.8.06RT Let f : X → S be a morphism of schemes. Assume f is locally of
finite type. Then the following are equivalent

(1) f is locally quasi-finite,
(2) for every s ∈ S the fibre Xs is a discrete topological space, and
(3) for every morphism Spec(k)→ S where k is a field the base change Xk has

an underlying discrete topological space.

Proof. It is immediate that (3) implies (2). Lemma 20.6 shows that (2) is equiva-
lent to (1). Assume (2) and let Spec(k)→ S be as in (3). Denote s ∈ S the image
of Spec(k) → S. Then Xk is the base change of Xs via Spec(k) → Spec(κ(s)).
Hence every point of Xk is closed by Lemma 20.4. As Xk → Spec(k) is locally of
finite type (by Lemma 15.4), we may apply Lemma 20.6 to conclude that every
point of Xk is isolated, i.e., Xk has a discrete underlying topological space. □

Lemma 20.9.01TJ Let f : X → S be a morphism of schemes. Then f is quasi-finite
if and only if f is locally quasi-finite and quasi-compact.

Proof. Assume f is quasi-finite. It is quasi-compact by Definition 15.1. Let x ∈ X.
We see that f is quasi-finite at x by Lemma 20.6. Hence f is quasi-compact and
locally quasi-finite.
Assume f is quasi-compact and locally quasi-finite. Then f is of finite type. Let
x ∈ X be a point. By Lemma 20.6 we see that x is an isolated point of its fibre.
The lemma is proved. □
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Lemma 20.10.02NH Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is quasi-finite, and
(2) f is locally of finite type, quasi-compact, and has finite fibres.

Proof. Assume f is quasi-finite. In particular f is locally of finite type and quasi-
compact (since it is of finite type). Let s ∈ S. Since every x ∈ Xs is isolated in Xs

we see that Xs =
⋃
x∈Xs{x} is an open covering. As f is quasi-compact, the fibre

Xs is quasi-compact. Hence we see that Xs is finite.

Conversely, assume f is locally of finite type, quasi-compact and has finite fibres.
Then it is locally quasi-finite by Lemma 20.7. Hence it is quasi-finite by Lemma
20.9. □

Recall that a ring map R → A is quasi-finite if it is of finite type and quasi-finite
at all primes of A, see Algebra, Definition 122.3.

Lemma 20.11.01TK Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is locally quasi-finite.
(2) For every pair of affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is quasi-finite.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is locally
quasi-finite.

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is quasi-

finite, for all j ∈ J, i ∈ Ij.
Moreover, if f is locally quasi-finite then for any open subschemes U ⊂ X, V ⊂ S
with f(U) ⊂ V the restriction f |U : U → V is locally quasi-finite.

Proof. For a ring map R→ A let us define P (R→ A) to mean “R→ A is quasi-
finite” (see remark above lemma). We claim that P is a local property of ring maps.
We check conditions (a), (b) and (c) of Definition 14.1. In the proof of Lemma 15.2
we have seen that (a), (b) and (c) hold for the property of being “of finite type”.
Note that, for a finite type ring map R→ A, the property R→ A is quasi-finite at
q depends only on the local ring Aq as an algebra over Rp where p = R ∩ q (usual
abuse of notation). Using these remarks (a), (b) and (c) of Definition 14.1 follow
immediately. For example, suppose R → A is a ring map such that all of the ring
maps R → Aai are quasi-finite for a1, . . . , an ∈ A generating the unit ideal. We
conclude that R → A is of finite type. Also, for any prime q ⊂ A the local ring
Aq is isomorphic as an R-algebra to the local ring (Aai)qi for some i and some
qi ⊂ Aai . Hence we conclude that R→ A is quasi-finite at q.

We conclude that Lemma 14.3 applies with P as in the previous paragraph. Hence
it suffices to prove that f is locally quasi-finite is equivalent to f is locally of type
P . Since P (R → A) is “R → A is quasi-finite” which means R → A is quasi-finite
at every prime of A, this follows from Lemma 20.6. □

Lemma 20.12.01TL The composition of two morphisms which are locally quasi-finite
is locally quasi-finite. The same is true for quasi-finite morphisms.
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Proof. In the proof of Lemma 20.11 we saw that P =“quasi-finite” is a local
property of ring maps, and that a morphism of schemes is locally quasi-finite if
and only if it is locally of type P as in Definition 14.2. Hence the first statement
of the lemma follows from Lemma 14.5 combined with the fact that being quasi-
finite is a property of ring maps that is stable under composition, see Algebra,
Lemma 122.7. By the above, Lemma 20.9 and the fact that compositions of quasi-
compact morphisms are quasi-compact, see Schemes, Lemma 19.4 we see that the
composition of quasi-finite morphisms is quasi-finite. □

We will see later (Lemma 56.2) that the set U of the following lemma is open.

Lemma 20.13.01TM Let f : X → S be a morphism of schemes. Let g : S′ → S be a
morphism of schemes. Denote f ′ : X ′ → S′ the base change of f by g and denote
g′ : X ′ → X the projection. Assume X is locally of finite type over S.

(1) Let U ⊂ X (resp. U ′ ⊂ X ′) be the set of points where f (resp. f ′) is
quasi-finite. Then U ′ = U ×S S′ = (g′)−1(U).

(2) The base change of a locally quasi-finite morphism is locally quasi-finite.
(3) The base change of a quasi-finite morphism is quasi-finite.

Proof. The first and second assertion follow from the corresponding algebra result,
see Algebra, Lemma 122.8 (combined with the fact that f ′ is also locally of finite
type by Lemma 15.4). By the above, Lemma 20.9 and the fact that a base change
of a quasi-compact morphism is quasi-compact, see Schemes, Lemma 19.3 we see
that the base change of a quasi-finite morphism is quasi-finite. □

Lemma 20.14.0AAY Let f : X → S be a morphism of schemes of finite type. Let
s ∈ S. There are at most finitely many points of X lying over s at which f is
quasi-finite.

Proof. The fibre Xs is a scheme of finite type over a field, hence Noetherian
(Lemma 15.6). Hence the topology on Xs is Noetherian (Properties, Lemma 5.5)
and can have at most a finite number of isolated points (by elementary topology).
Thus our lemma follows from Lemma 20.6. □

Lemma 20.15.0CT8 Let f : X → Y be a morphism of schemes. If f is locally of finite
type and a monomorphism, then f is separated and locally quasi-finite.

Proof. A monomorphism is separated by Schemes, Lemma 23.3. A monomorphism
is injective, hence we get f is quasi-finite at every x ∈ X for example by Lemma
20.6. □

Lemma 20.16.01TN Any immersion is locally quasi-finite.

Proof. This is true because an open immersion is a local isomorphism and a closed
immersion is clearly quasi-finite. □

Lemma 20.17.03WR Let X → Y be a morphism of schemes over a base scheme S. Let
x ∈ X. If X → S is quasi-finite at x, then X → Y is quasi-finite at x. If X is
locally quasi-finite over S, then X → Y is locally quasi-finite.

Proof. Via Lemma 20.11 this translates into the following algebra fact: Given ring
maps A → B → C such that A → C is quasi-finite, then B → C is quasi-finite.
This follows from Algebra, Lemma 122.6 with R = A, S = S′ = C and R′ = B. □
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Lemma 20.18.0GWS Let f : X → Y and g : Y → S be morphisms of schemes. If f is
surjective, g ◦ f locally quasi-finite, and g locally of finite type, then g : Y → S is
locally quasi-finite.

Proof. Let x ∈ X with images y ∈ Y and s ∈ S. Since g ◦ f is locally quasi-finite
by Lemma 20.5 the extension κ(x)/κ(s) is finite. Hence κ(y)/κ(s) is finite. Hence
y is a closed point of Ys by Lemma 20.2. Since f is surjective, we see that every
point of Y is closed in its fibre over S. Thus by Lemma 20.6 we conclude that g is
quasi-finite at every point. □

21. Morphisms of finite presentation

01TO Recall that a ring map R → A is of finite presentation if A is isomorphic to
R[x1, . . . , xn]/(f1, . . . , fm) as an R-algebra for some n,m and some polynomials
fj , see Algebra, Definition 6.1.

Definition 21.1.01TP Let f : X → S be a morphism of schemes.
(1) We say that f is of finite presentation at x ∈ X if there exists an affine

open neighbourhood Spec(A) = U ⊂ X of x and affine open Spec(R) =
V ⊂ S with f(U) ⊂ V such that the induced ring map R → A is of finite
presentation.

(2) We say that f is locally of finite presentation if it is of finite presentation
at every point of X.

(3) We say that f is of finite presentation if it is locally of finite presentation,
quasi-compact and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism
which is locally of finite presentation. Later we will characterize morphisms which
are locally of finite presentation as those morphisms such that

colim MorS(Ti, X) = MorS(limTi, X)
for any directed system of affine schemes Ti over S. See Limits, Proposition 6.1.
In Limits, Section 10 we show that, if S = limi Si is a limit of affine schemes, any
scheme X of finite presentation over S descends to a scheme Xi over Si for some i.

Lemma 21.2.01TQ Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is locally of finite presentation.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is of finite presentation.

(3) There exist an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is locally
of finite presentation.

(4) There exist an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is of finite

presentation, for all j ∈ J, i ∈ Ij.
Moreover, if f is locally of finite presentation then for any open subschemes U ⊂ X,
V ⊂ S with f(U) ⊂ V the restriction f |U : U → V is locally of finite presentation.

Proof. This follows from Lemma 14.4 if we show that the property “R → A is
of finite presentation” is local. We check conditions (a), (b) and (c) of Definition
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14.1. By Algebra, Lemma 14.2 being of finite presentation is stable under base
change and hence we conclude (a) holds. By Algebra, Lemma 6.2 being of finite
presentation is stable under composition and trivially for any ring R the ring map
R → Rf is of finite presentation. We conclude (b) holds. Finally, property (c) is
true according to Algebra, Lemma 23.3. □

Lemma 21.3.01TR The composition of two morphisms which are locally of finite pre-
sentation is locally of finite presentation. The same is true for morphisms of finite
presentation.

Proof. In the proof of Lemma 21.2 we saw that being of finite presentation is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma
14.5 combined with the fact that being of finite presentation is a property of ring
maps that is stable under composition, see Algebra, Lemma 6.2. By the above and
the fact that compositions of quasi-compact, quasi-separated morphisms are quasi-
compact and quasi-separated, see Schemes, Lemmas 19.4 and 21.12 we see that the
composition of morphisms of finite presentation is of finite presentation. □

Lemma 21.4.01TS The base change of a morphism which is locally of finite presen-
tation is locally of finite presentation. The same is true for morphisms of finite
presentation.

Proof. In the proof of Lemma 21.2 we saw that being of finite presentation is a
local property of ring maps. Hence the first statement of the lemma follows from
Lemma 14.5 combined with the fact that being of finite presentation is a property of
ring maps that is stable under base change, see Algebra, Lemma 14.2. By the above
and the fact that a base change of a quasi-compact, quasi-separated morphism is
quasi-compact and quasi-separated, see Schemes, Lemmas 19.3 and 21.12 we see
that the base change of a morphism of finite presentation is a morphism of finite
presentation. □

Lemma 21.5.01TT Any open immersion is locally of finite presentation.

Proof. This is true because an open immersion is a local isomorphism. □

Lemma 21.6.01TU Any open immersion is of finite presentation if and only if it is
quasi-compact.

Proof. We have seen (Lemma 21.5) that an open immersion is locally of finite
presentation. We have seen (Schemes, Lemma 23.8) that an immersion is separated
and hence quasi-separated. From this and Definition 21.1 the lemma follows. □

Lemma 21.7.01TV A closed immersion i : Z → X is of finite presentation if and only
if the associated quasi-coherent sheaf of ideals I = Ker(OX → i∗OZ) is of finite
type (as an OX-module).

Proof. On any affine open Spec(R) ⊂ X we have i−1(Spec(R)) = Spec(R/I) and
I = Ĩ. Moreover, I is of finite type if and only if I is a finite R-module for every
such affine open (see Properties, Lemma 16.1). And R/I is of finite presentation
over R if and only if I is a finite R-module. Hence we win. □

Lemma 21.8.01TW A morphism which is locally of finite presentation is locally of finite
type. A morphism of finite presentation is of finite type.

Proof. Omitted. □
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Lemma 21.9.01TX Let f : X → S be a morphism.
(1) If S is locally Noetherian and f locally of finite type then f is locally of

finite presentation.
(2) If S is locally Noetherian and f of finite type then f is of finite presentation.

Proof. The first statement follows from the fact that a ring of finite type over a
Noetherian ring is of finite presentation, see Algebra, Lemma 31.4. Suppose that f
is of finite type and S is locally Noetherian. Then f is quasi-compact and locally
of finite presentation by (1). Hence it suffices to prove that f is quasi-separated.
This follows from Lemma 15.7 (and Lemma 21.8). □

Lemma 21.10.01TY Let S be a scheme which is quasi-compact and quasi-separated. If
X is of finite presentation over S, then X is quasi-compact and quasi-separated.

Proof. Omitted. □

Lemma 21.11.02FV Let f : X → Y be a morphism of schemes over S.
(1) If X is locally of finite presentation over S and Y is locally of finite type

over S, then f is locally of finite presentation.
(2) If X is of finite presentation over S and Y is quasi-separated and locally of

finite type over S, then f is of finite presentation.

Proof. Proof of (1). Via Lemma 21.2 this translates into the following algebra
fact: Given ring maps A → B → C such that A → C is of finite presentation and
A→ B is of finite type, then B → C is of finite presentation. See Algebra, Lemma
6.2.
Part (2) follows from (1) and Schemes, Lemmas 21.13 and 21.14. □

Lemma 21.12.0818 Let f : X → Y be a morphism of schemes with diagonal ∆ : X →
X ×Y X. If f is locally of finite type then ∆ is locally of finite presentation. If f
is quasi-separated and locally of finite type, then ∆ is of finite presentation.

Proof. Note that ∆ is a morphism of schemes over X (via the second projection
X ×Y X → X). Assume f is locally of finite type. Note that X is of finite
presentation over X and X ×Y X is locally of finite type over X (by Lemma 15.4).
Thus the first statement holds by Lemma 21.11. The second statement follows from
the first, the definitions, and the fact that a diagonal morphism is a monomorphism,
hence separated (Schemes, Lemma 23.3). □

22. Constructible sets

054H Constructible and locally constructible sets of schemes have been discussed in Prop-
erties, Section 2. In this section we prove some results concerning images and in-
verse images of (locally) constructible sets. The main result is Chevalley’s theorem
which states that the image of a locally constructible set under a morphism of finite
presentation is locally constructible.

Lemma 22.1.054I Let f : X → Y be a morphism of schemes. Let E ⊂ Y be a subset.
If E is (locally) constructible in Y , then f−1(E) is (locally) constructible in X.

Proof. To show that the inverse image of every constructible subset is constructible
it suffices to show that the inverse image of every retrocompact open V of Y is retro-
compact in X, see Topology, Lemma 15.3. The significance of V being retrocompact
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in Y is just that the open immersion V → Y is quasi-compact. Hence the base
change f−1(V ) = X ×Y V → X is quasi-compact too, see Schemes, Lemma 19.3.
Hence we see f−1(V ) is retrocompact in X. Suppose E is locally constructible
in Y . Choose x ∈ X. Choose an affine neighbourhood V of f(x) and an affine
neighbourhood U ⊂ X of x such that f(U) ⊂ V . Thus we think of f |U : U → V as
a morphism into V . By Properties, Lemma 2.1 we see that E ∩ V is constructible
in V . By the constructible case we see that (f |U )−1(E ∩ V ) is constructible in U .
Since (f |U )−1(E ∩ V ) = f−1(E) ∩ U we win. □

Lemma 22.2.054J Let f : X → Y be a morphism of schemes. Assume
(1) f is quasi-compact and locally of finite presentation, and
(2) Y is quasi-compact and quasi-separated.

Then the image of every constructible subset of X is constructible in Y .

Proof. By Properties, Lemma 2.5 it suffices to prove this lemma in case Y is affine.
In this case X is quasi-compact. Hence we can write X = U1 ∪ . . . ∪ Un with each
Ui affine open in X. If E ⊂ X is constructible, then each E ∩ Ui is constructible
too, see Topology, Lemma 15.4. Hence, since f(E) =

⋃
f(E ∩ Ui) and since finite

unions of constructible sets are constructible, this reduces us to the case where X
is affine. In this case the result is Algebra, Theorem 29.10. □

Theorem 22.3 (Chevalley’s Theorem).054K [DG67, IV,
Theorem 1.8.4]

Let f : X → Y be a morphism of schemes.
Assume f is quasi-compact and locally of finite presentation. Then the image of
every locally constructible subset is locally constructible.

Proof. Let E ⊂ X be locally constructible. We have to show that f(E) is locally
constructible too. We will show that f(E) ∩ V is constructible for any affine open
V ⊂ Y . Thus we reduce to the case where Y is affine. In this case X is quasi-
compact. Hence we can write X = U1 ∪ . . . ∪ Un with each Ui affine open in X. If
E ⊂ X is locally constructible, then each E ∩ Ui is constructible, see Properties,
Lemma 2.1. Hence, since f(E) =

⋃
f(E∩Ui) and since finite unions of constructible

sets are constructible, this reduces us to the case where X is affine. In this case the
result is Algebra, Theorem 29.10. □

Lemma 22.4.05LW Let X be a scheme. Let x ∈ X. Let E ⊂ X be a locally constructible
subset. If {x′ | x′ ⇝ x} ⊂ E, then E contains an open neighbourhood of x.

Proof. Assume {x′ | x′ ⇝ x} ⊂ E. We may assume X is affine. In this case E is
constructible, see Properties, Lemma 2.1. In particular, also the complement Ec is
constructible. By Algebra, Lemma 29.4 we can find a morphism of affine schemes
f : Y → X such that Ec = f(Y ). Let Z ⊂ X be the scheme theoretic image of f .
By Lemma 6.5 and the assumption {x′ | x′ ⇝ x} ⊂ E we see that x ̸∈ Z. Hence
X \ Z ⊂ E is an open neighbourhood of x contained in E. □

23. Open morphisms

01TZ
Definition 23.1.01U0 Let f : X → S be a morphism.

(1) We say f is open if the map on underlying topological spaces is open.
(2) We say f is universally open if for any morphism of schemes S′ → S the

base change f ′ : XS′ → S′ is open.
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According to Topology, Lemma 19.7 generalizations lift along certain types of open
maps of topological spaces. In fact generalizations lift along any open morphism
of schemes (see Lemma 23.5). Also, we will see that generalizations lift along flat
morphisms of schemes (Lemma 25.9). This sometimes in turn implies that the
morphism is open.

Lemma 23.2.01U1 Let f : X → S be a morphism.
(1) If f is locally of finite presentation and generalizations lift along f , then f

is open.
(2) If f is locally of finite presentation and generalizations lift along every base

change of f , then f is universally open.

Proof. It suffices to prove the first assertion. This reduces to the case where both
X and S are affine. In this case the result follows from Algebra, Lemma 41.3 and
Proposition 41.8. □

See also Lemma 25.10 for the case of a morphism flat of finite presentation.

Lemma 23.3.02V2 A composition of (universally) open morphisms is (universally)
open.

Proof. Omitted. □

Lemma 23.4.0383 Let k be a field. Let X be a scheme over k. The structure morphism
X → Spec(k) is universally open.

Proof. Let S → Spec(k) be a morphism. We have to show that the base change
XS → S is open. The question is local on S and X, hence we may assume that S
and X are affine. In this case the result is Algebra, Lemma 41.10. □

Lemma 23.5.040F Follows from the
implication (a) ⇒
(b) in [DG67, IV,
Corollary 1.10.4]

Let φ : X → Y be a morphism of schemes. If φ is open, then φ
is generizing (i.e., generalizations lift along φ). If φ is universally open, then φ is
universally generizing.

Proof. Assume φ is open. Let y′ ⇝ y be a specialization of points of Y . Let x ∈ X
with φ(x) = y. Choose affine opens U ⊂ X and V ⊂ Y such that φ(U) ⊂ V and
x ∈ U . Then also y′ ∈ V . Hence we may replace X by U and Y by V and assume
X, Y affine. The affine case is Algebra, Lemma 41.2 (combined with Algebra,
Lemma 41.3). □

Lemma 23.6.04ZE Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be open
and surjective such that the base change f ′ : X ′ → Y ′ is quasi-compact. Then f is
quasi-compact.

Proof. Let V ⊂ Y be a quasi-compact open. As g is open and surjective we
can find a quasi-compact open W ′ ⊂ W such that g(W ′) = V . By assumption
(f ′)−1(W ′) is quasi-compact. The image of (f ′)−1(W ′) in X is equal to f−1(V ),
see Lemma 9.3. Hence f−1(V ) is quasi-compact as the image of a quasi-compact
space, see Topology, Lemma 12.7. Thus f is quasi-compact. □

24. Submersive morphisms

040G
Definition 24.1.040H Let f : X → Y be a morphism of schemes.
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(1) We say f is submersive7 if the continuous map of underlying topological
spaces is submersive, see Topology, Definition 6.3.

(2) We say f is universally submersive if for every morphism of schemes Y ′ → Y
the base change Y ′ ×Y X → Y ′ is submersive.

We note that a submersive morphism is in particular surjective.

Lemma 24.2.0CES The base change of a universally submersive morphism of schemes
by any morphism of schemes is universally submersive.

Proof. This is immediate from the definition. □

Lemma 24.3.0CET The composition of a pair of (universally) submersive morphisms
of schemes is (universally) submersive.

Proof. Omitted. □

25. Flat morphisms

01U2 Flatness is one of the most important technical tools in algebraic geometry. In
this section we introduce this notion. We intentionally limit the discussion to
straightforward observations, apart from Lemma 25.10. A very important class of
results, namely criteria for flatness, are discussed in Algebra, Sections 99, 101, 128,
and More on Morphisms, Section 16. There is a chapter dedicated to advanced
material on flat morphisms of schemes, namely More on Flatness, Section 1.
Recall that a module M over a ring R is flat if the functor −⊗RM : ModR → ModR
is exact. A ring map R → A is said to be flat if A is flat as an R-module. See
Algebra, Definition 39.1.

Definition 25.1.01U3 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf of OX -modules.

(1) We say f is flat at a point x ∈ X if the local ring OX,x is flat over the local
ring OS,f(x).

(2) We say that F is flat over S at a point x ∈ X if the stalk Fx is a flat
OS,f(x)-module.

(3) We say f is flat if f is flat at every point of X.
(4) We say that F is flat over S if F is flat over S at every point x of X.

Thus we see that f is flat if and only if the structure sheaf OX is flat over S.

Lemma 25.2.01U4 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf of OX-modules. The following are equivalent

(1) The sheaf F is flat over S.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the OS(V )-module
F(U) is flat.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the modules F|Ui is flat over Vj, for all j ∈ J, i ∈
Ij.

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that F(Ui) is a flat OS(Vj)-module, for all j ∈

J, i ∈ Ij.

7This is very different from the notion of a submersion of differential manifolds.
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Moreover, if F is flat over S then for any open subschemes U ⊂ X, V ⊂ S with
f(U) ⊂ V the restriction F|U is flat over V .

Proof. Let R → A be a ring map. Let M be an A-module. If M is R-flat, then
for all primes q the module Mq is flat over Rp with p the prime of R lying under
q. Conversely, if Mq is flat over Rp for all primes q of A, then M is flat over R.
See Algebra, Lemma 39.18. This equivalence easily implies the statements of the
lemma. □

Lemma 25.3.01U5 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is flat.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is flat.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is flat.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that OS(Vj)→ OX(Ui) is flat, for all j ∈ J, i ∈ Ij.

Moreover, if f is flat then for any open subschemes U ⊂ X, V ⊂ S with f(U) ⊂ V
the restriction f |U : U → V is flat.

Proof. This is a special case of Lemma 25.2 above. □

Lemma 25.4.0FLM Let f : X → Y be an affine morphism of schemes over a base
scheme S. Let F be a quasi-coherent OX-module. Then F is flat over S if and
only if f∗F is flat over S.

Proof. By Lemma 25.2 and the fact that f is an affine morphism, this reduces us
to the affine case. Say X → Y → S corresponds to the ring maps C ← B ← A.
Let N be the C-module corresponding to F . Recall that f∗F corresponds to N
viewed as a B-module, see Schemes, Lemma 7.3. Thus the result is clear. □

Lemma 25.5.01U6 Let X → Y → Z be morphisms of schemes. Let F be a quasi-
coherent OX-module. Let x ∈ X with image y in Y . If F is flat over Y at x, and
Y is flat over Z at y, then F is flat over Z at x.

Proof. See Algebra, Lemma 39.4. □

Lemma 25.6.01U7 The composition of flat morphisms is flat.

Proof. This is a special case of Lemma 25.5. □

Lemma 25.7.01U8 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf of OX-modules. Let g : S′ → S be a morphism of schemes. Denote
g′ : X ′ = XS′ → X the projection. Let x′ ∈ X ′ be a point with image x = g′(x′) ∈
X. If F is flat over S at x, then (g′)∗F is flat over S′ at x′. In particular, if F is
flat over S, then (g′)∗F is flat over S′.

Proof. See Algebra, Lemma 39.7. □

Lemma 25.8.01U9 The base change of a flat morphism is flat.

Proof. This is a special case of Lemma 25.7. □
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Lemma 25.9.03HV Let f : X → S be a flat morphism of schemes. Then generalizations
lift along f , see Topology, Definition 19.4.

Proof. See Algebra, Section 41. □

Lemma 25.10.01UA A flat morphism locally of finite presentation is universally open.

Proof. This follows from Lemmas 25.9 and Lemma 23.2 above. We can also argue
directly as follows.

Let f : X → S be flat and locally of finite presentation. By Lemmas 25.8 and
21.4 any base change of f is flat and locally of finite presentation. Hence it suffices
to show f is open. To show f is open it suffices to show that we may cover X
by open affines X =

⋃
Ui such that Ui → S is open. We may cover X by affine

opens Ui ⊂ X such that each Ui maps into an affine open Vi ⊂ S and such that
the induced ring map OS(Vi)→ OX(Ui) is flat and of finite presentation (Lemmas
25.3 and 21.2). Then Ui → Vi is open by Algebra, Proposition 41.8 and the proof
is complete. □

Lemma 25.11.0CVT Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX-module. Assume f locally finite presentation, F of finite type, X =
Supp(F), and F flat over Y . Then f is universally open.

Proof. By Lemmas 25.7, 21.4, and 5.3 the assumptions are preserved under base
change. By Lemma 23.2 it suffices to show that generalizations lift along f . This
follows from Algebra, Lemma 41.12. □

Lemma 25.12.02JY [Gro71, Expose
VIII, Corollaire 4.3]
and [DG67, IV,
Corollaire 2.3.12]

Let f : X → Y be a quasi-compact, surjective, flat morphism. A
subset T ⊂ Y is open (resp. closed) if and only f−1(T ) is open (resp. closed). In
other words, f is a submersive morphism.

Proof. The question is local on Y , hence we may assume that Y is affine. In this
case X is quasi-compact as f is quasi-compact. Write X = X1 ∪ . . . ∪ Xn as a
finite union of affine opens. Then f ′ : X ′ = X1 ⨿ . . . ⨿Xn → Y is a surjective flat
morphism of affine schemes. Note that for T ⊂ Y we have (f ′)−1(T ) = f−1(T ) ∩
X1 ⨿ . . . ⨿ f−1(T ) ∩ Xn. Hence, f−1(T ) is open if and only if (f ′)−1(T ) is open.
Thus we may assume both X and Y are affine.

Let f : Spec(B)→ Spec(A) be a surjective morphism of affine schemes correspond-
ing to a flat ring map A → B. Suppose that f−1(T ) is closed, say f−1(T ) =
V (J) for J ⊂ B an ideal. Then T = f(f−1(T )) = f(V (J)) is the image of
Spec(B/J) → Spec(A) (here we use that f is surjective). On the other hand,
generalizations lift along f (Lemma 25.9). Hence by Topology, Lemma 19.6 we
see that Y \ T = f(X \ f−1(T )) is stable under generalization. Hence T is stable
under specialization (Topology, Lemma 19.2). Thus T is closed by Algebra, Lemma
41.5. □

Lemma 25.13.02JZ Let h : X → Y be a morphism of schemes over S. Let G be a
quasi-coherent sheaf on Y . Let x ∈ X with y = h(x) ∈ Y . If h is flat at x, then

G flat over S at y ⇔ h∗G flat over S at x.

In particular: If h is surjective and flat, then G is flat over S, if and only if h∗G is
flat over S. If h is surjective and flat, and X is flat over S, then Y is flat over S.
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Proof. You can prove this by applying Algebra, Lemma 39.9. Here is a direct proof.
Let s ∈ S be the image of y. Consider the local ring maps OS,s → OY,y → OX,x.
By assumption the ring map OY,y → OX,x is faithfully flat, see Algebra, Lemma
39.17. Let N = Gy. Note that h∗Gx = N ⊗OY,y

OX,x, see Sheaves, Lemma 26.4.
Let M ′ → M be an injection of OS,s-modules. By the faithful flatness mentioned
above we have

Ker(M ′ ⊗OS,s
N →M ⊗OS,s

N)⊗OY,y
OX,x

= Ker(M ′ ⊗OS,s
N ⊗OY,y

OX,x →M ⊗OS,s
N ⊗OY,y

OX,x)
Hence the equivalence of the lemma follows from the second characterization of
flatness in Algebra, Lemma 39.5. □

Lemma 25.14.07T9 Let f : Y → X be a morphism of schemes. Let F be a finite type
quasi-coherent OX-module with scheme theoretic support Z ⊂ X. If f is flat, then
f−1(Z) is the scheme theoretic support of f∗F .

Proof. Using the characterization of scheme theoretic support on affines as given
in Lemma 5.4 we reduce to Algebra, Lemma 40.4. □

Lemma 25.15.081H Let f : X → Y be a flat morphism of schemes. Let V ⊂ Y be
a retrocompact open which is scheme theoretically dense. Then f−1V is scheme
theoretically dense in X.

Proof. We will use the characterization of Lemma 7.5. We have to show that for
any open U ⊂ X the map OX(U) → OX(U ∩ f−1V ) is injective. It suffices to
prove this when U is an affine open which maps into an affine open W ⊂ Y . Say
W = Spec(A) and U = Spec(B). Then V ∩W = D(f1) ∪ . . . ∪ D(fn) for some
fi ∈ A, see Algebra, Lemma 29.1. Thus we have to show that B → Bf1 × . . .×Bfn
is injective. We are given that A→ Af1 × . . .×Afn is injective and that A→ B is
flat. Since Bfi = Afi ⊗A B we win. □

Lemma 25.16.081I Let f : X → Y be a flat morphism of schemes. Let g : V → Y be
a quasi-compact morphism of schemes. Let Z ⊂ Y be the scheme theoretic image of
g and let Z ′ ⊂ X be the scheme theoretic image of the base change V ×Y X → X.
Then Z ′ = f−1Z.

Proof. Recall that Z is cut out by I = Ker(OY → g∗OV ) and Z ′ is cut out by
I ′ = Ker(OX → (V ×Y X → X)∗OV×YX), see Lemma 6.3. Hence the question is
local on X and Y and we may assume X and Y affine. Note that we may replace
V by

∐
Vi where V = V1 ∪ . . . ∪ Vn is a finite affine open covering. Hence we may

assume g is affine. In this case (V ×Y X → X)∗OV×YX is the pullback of g∗OV by
f . Since f is flat we conclude that f∗I = I ′ and the lemma holds. □

26. Flat closed immersions

04PV Connected components of schemes are not always open. But they do always have
a canonical scheme structure. We explain this in this section.

Lemma 26.1.04PW Let X be a scheme. The rule which associates to a closed subscheme
of X its underlying closed subset defines a bijection{

closed subschemes Z ⊂ X
such that Z → X is flat

}
↔

{
closed subsets Z ⊂ X

closed under generalizations

}
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If Z ⊂ X is such a closed subscheme, every morphism of schemes g : Y → X with
g(Y ) ⊂ Z set theoretically factors (scheme theoretically) through Z.

Proof. The affine case of the bijection is Algebra, Lemma 108.4. For general
schemes X the bijection follows by covering X by affines and glueing. Details
omitted. For the final assertion, observe that the projection Z×X,g Y → Y is a flat
(Lemma 25.8) closed immersion which is bijective on underlying topological spaces
and hence must be an isomorphism by the bijection esthablished in the first part
of the proof. □

Lemma 26.2.0819 A flat closed immersion of finite presentation is the open immersion
of an open and closed subscheme.

Proof. The affine case is Algebra, Lemma 108.5. In general the lemma follows by
covering X by affines. Details omitted. □

Note that a connected component T of a scheme X is a closed subset stable under
generalization. Hence the following definition makes sense.

Definition 26.3.04PX Let X be a scheme. Let T ⊂ X be a connected component. The
canonical scheme structure on T is the unique scheme structure on T such that the
closed immersion T → X is flat, see Lemma 26.1.

It turns out that we can determine when every finite flat OX -module is finite locally
free using the previous lemma.

Lemma 26.4.053N Let X be a scheme. The following are equivalent
(1) every finite flat quasi-coherent OX-module is finite locally free, and
(2) every closed subset Z ⊂ X which is closed under generalizations is open.

Proof. In the affine case this is Algebra, Lemma 108.6. The scheme case does not
follow directly from the affine case, so we simply repeat the arguments.
Assume (1). Consider a closed immersion i : Z → X such that i is flat. Then i∗OZ
is quasi-coherent and flat, hence finite locally free by (1). Thus Z = Supp(i∗OZ) is
also open and we see that (2) holds. Hence the implication (1) ⇒ (2) follows from
the characterization of flat closed immersions in Lemma 26.1.
For the converse assume that X satisfies (2). Let F be a finite flat quasi-coherent
OX -module. The support Z = Supp(F) of F is closed, see Modules, Lemma 9.6.
On the other hand, if x⇝ x′ is a specialization, then by Algebra, Lemma 78.5 the
module Fx′ is free over OX,x′ , and

Fx = Fx′ ⊗OX,x′ OX,x.

Hence x′ ∈ Supp(F) ⇒ x ∈ Supp(F), in other words, the support is closed under
generalization. As X satisfies (2) we see that the support of F is open and closed.
The modules ∧i(F), i = 1, 2, 3, . . . are finite flat quasi-coherent OX -modules also,
see Modules, Section 21. Note that Supp(∧i+1(F)) ⊂ Supp(∧i(F)). Thus we see
that there exists a decomposition

X = U0 ⨿ U1 ⨿ U2 ⨿ . . .
by open and closed subsets such that the support of ∧i(F) is Ui ∪ Ui+1 ∪ . . . for
all i. Let x be a point of X, and say x ∈ Ur. Note that ∧i(F)x ⊗ κ(x) = ∧i(Fx ⊗
κ(x)). Hence, x ∈ Ur implies that Fx ⊗ κ(x) is a vector space of dimension r.
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By Nakayama’s lemma, see Algebra, Lemma 20.1 we can choose an affine open
neighbourhood U ⊂ Ur ⊂ X of x and sections s1, . . . , sr ∈ F(U) such that the
induced map

O⊕r
U −→ F|U , (f1, . . . , fr) 7−→

∑
fisi

is surjective. This means that ∧r(F|U ) is a finite flat quasi-coherent OU -module
whose support is all of U . By the above it is generated by a single element, namely
s1 ∧ . . . ∧ sr. Hence ∧r(F|U ) ∼= OU/I for some quasi-coherent sheaf of ideals I
such that OU/I is flat over OU and such that V (I) = U . It follows that I = 0
by applying Lemma 26.1. Thus s1 ∧ . . . ∧ sr is a basis for ∧r(F|U ) and it follows
that the displayed map is injective as well as surjective. This proves that F is finite
locally free as desired. □

27. Generic flatness

0529 A scheme of finite type over an integral base is flat over a dense open of the base.
In Algebra, Section 118 we proved a Noetherian version, a version for morphisms
of finite presentation, and a general version. We only state and prove the general
version here. However, it turns out that this will be superseded by Proposition 27.2
which shows the result holds if we only assume the base is reduced.

Proposition 27.1 (Generic flatness).052A Let f : X → S be a morphism of schemes.
Let F be a quasi-coherent sheaf of OX-modules. Assume

(1) S is integral,
(2) f is of finite type, and
(3) F is a finite type OX-module.

Then there exists an open dense subscheme U ⊂ S such that XU → U is flat and
of finite presentation and such that F|XU is flat over U and of finite presentation
over OXU .

Proof. As S is integral it is irreducible (see Properties, Lemma 3.4) and any
nonempty open is dense. Hence we may replace S by an affine open of S and
assume that S = Spec(A) is affine. As S is integral we see that A is a domain. As
f is of finite type, it is quasi-compact, so X is quasi-compact. Hence we can find
a finite affine open cover X =

⋃
i=1,...,nXi. Write Xi = Spec(Bi). Then Bi is a

finite type A-algebra, see Lemma 15.2. Moreover there are finite type Bi-modules
Mi such that F|Xi is the quasi-coherent sheaf associated to the Bi-module Mi, see
Properties, Lemma 16.1. Next, for each pair of indices i, j choose an ideal Iij ⊂ Bi
such that Xi \Xi ∩Xj = V (Iij) inside Xi = Spec(Bi). Set Mij = Bi/Iij and think
of it as a Bi-module. Then V (Iij) = Supp(Mij) and Mij is a finite Bi-module.
At this point we apply Algebra, Lemma 118.3 the pairs (A→ Bi,Mij) and to the
pairs (A→ Bi,Mi). Thus we obtain nonzero fij , fi ∈ A such that (a) Afij → Bi,fij
is flat and of finite presentation and Mij,fij is flat over Afij and of finite presentation
over Bi,fij , and (b) Bi,fi is flat and of finite presentation over Af and Mi,fi is flat
and of finite presentation over Bi,fi . Set f = (

∏
fi)(

∏
fij). We claim that taking

U = D(f) works.
To prove our claim we may replace A by Af , i.e., perform the base change by
U = Spec(Af )→ S. After this base change we see that each of A→ Bi is flat and
of finite presentation and that Mi, Mij are flat over A and of finite presentation over
Bi. This already proves that X → S is quasi-compact, locally of finite presentation,
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flat, and that F is flat over S and of finite presentation over OX , see Lemma 21.2
and Properties, Lemma 16.2. Since Mij is of finite presentation over Bi we see that
Xi ∩ Xj = Xi \ Supp(Mij) is a quasi-compact open of Xi, see Algebra, Lemma
40.8. Hence we see that X → S is quasi-separated by Schemes, Lemma 21.6. This
proves the proposition. □

It actually turns out that there is also a version of generic flatness over an arbitrary
reduced base. Here it is.

Proposition 27.2 (Generic flatness, reduced case).052B Let f : X → S be a morphism
of schemes. Let F be a quasi-coherent sheaf of OX-modules. Assume

(1) S is reduced,
(2) f is of finite type, and
(3) F is a finite type OX-module.

Then there exists an open dense subscheme U ⊂ S such that XU → U is flat and
of finite presentation and such that F|XU is flat over U and of finite presentation
over OXU .

Proof. For the impatient reader: This proof is a repeat of the proof of Proposition
27.1 using Algebra, Lemma 118.7 instead of Algebra, Lemma 118.3.
Since being flat and being of finite presentation is local on the base, see Lemmas
25.2 and 21.2, we may work affine locally on S. Thus we may assume that S =
Spec(A), where A is a reduced ring (see Properties, Lemma 3.2). As f is of finite
type, it is quasi-compact, so X is quasi-compact. Hence we can find a finite affine
open cover X =

⋃
i=1,...,nXi. Write Xi = Spec(Bi). Then Bi is a finite type A-

algebra, see Lemma 15.2. Moreover there are finite type Bi-modules Mi such that
F|Xi is the quasi-coherent sheaf associated to the Bi-module Mi, see Properties,
Lemma 16.1. Next, for each pair of indices i, j choose an ideal Iij ⊂ Bi such that
Xi \Xi ∩Xj = V (Iij) inside Xi = Spec(Bi). Set Mij = Bi/Iij and think of it as a
Bi-module. Then V (Iij) = Supp(Mij) and Mij is a finite Bi-module.
At this point we apply Algebra, Lemma 118.7 the pairs (A→ Bi,Mij) and to the
pairs (A → Bi,Mi). Thus we obtain dense opens U(A → Bi,Mij) ⊂ S and dense
opens U(A → Bi,Mi) ⊂ S with notation as in Algebra, Equation (118.3.2). Since
a finite intersection of dense opens is dense open, we see that

U =
⋂

i,j
U(A→ Bi,Mij) ∩

⋂
i
U(A→ Bi,Mi)

is open and dense in S. We claim that U is the desired open.
Pick u ∈ U . By definition of the loci U(A → Bi,Mij) and U(A → B,Mi) there
exist fij , fi ∈ A such that (a) u ∈ D(fi) and u ∈ D(fij), (b) Afij → Bi,fij is flat
and of finite presentation and Mij,fij is flat over Afij and of finite presentation over
Bi,fij , and (c) Bi,fi is flat and of finite presentation over Af and Mi,fi is flat and of
finite presentation over Bi,fi . Set f = (

∏
fi)(

∏
fij). Now it suffices to prove that

X → S is flat and of finite presentation over D(f) and that F restricted to XD(f)
is flat over D(f) and of finite presentation over the structure sheaf of XD(f).
Hence we may replace A by Af , i.e., perform the base change by Spec(Af ) → S.
After this base change we see that each of A→ Bi is flat and of finite presentation
and that Mi, Mij are flat over A and of finite presentation over Bi. This already
proves that X → S is quasi-compact, locally of finite presentation, flat, and that F
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is flat over S and of finite presentation over OX , see Lemma 21.2 and Properties,
Lemma 16.2. Since Mij is of finite presentation over Bi we see that Xi ∩ Xj =
Xi \ Supp(Mij) is a quasi-compact open of Xi, see Algebra, Lemma 40.8. Hence
we see that X → S is quasi-separated by Schemes, Lemma 21.6. This proves the
proposition. □

Remark 27.3.052C The results above are a first step towards more refined flattening
techniques for morphisms of schemes. The article [GR71] by Raynaud and Gruson
contains many wonderful results in this direction.

28. Morphisms and dimensions of fibres

02FW Let X be a topological space, and x ∈ X. Recall that we have defined dimx(X)
as the minimum of the dimensions of the open neighbourhoods of x in X. See
Topology, Definition 10.1.

Lemma 28.1.02FX Let f : X → S be a morphism of schemes. Let x ∈ X and set
s = f(x). Assume f is locally of finite type. Then

dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)).

Proof. This immediately reduces to the case S = s, and X affine. In this case the
result follows from Algebra, Lemma 116.3. □

Lemma 28.2.02JS Let f : X → Y and g : Y → S be morphisms of schemes. Let
x ∈ X and set y = f(x), s = g(y). Assume f and g locally of finite type. Then

dimx(Xs) ≤ dimx(Xy) + dimy(Ys).

Moreover, equality holds if OXs,x is flat over OYs,y, which holds for example if OX,x
is flat over OY,y.

Proof. Note that trdegκ(s)(κ(x)) = trdegκ(y)(κ(x)) + trdegκ(s)(κ(y)). Thus by
Lemma 28.1 the statement is equivalent to

dim(OXs,x) ≤ dim(OXy,x) + dim(OYs,y).

For this see Algebra, Lemma 112.6. For the flat case see Algebra, Lemma 112.7. □

Lemma 28.3.02FY Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a fibre product diagram of schemes. Assume f locally of finite type. Suppose that
x′ ∈ X ′, x = g′(x′), s′ = f ′(x′) and s = g(s′) = f(x). Then

(1) dimx(Xs) = dimx′(X ′
s′),

(2) if F is the fibre of the morphism X ′
s′ → Xs over x, then

dim(OF,x′) = dim(OX′
s′ ,x

′)− dim(OXs,x) = trdegκ(s)(κ(x))− trdegκ(s′)(κ(x′))

In particular dim(OX′
s′ ,x

′) ≥ dim(OXs,x) and trdegκ(s)(κ(x)) ≥ trdegκ(s′)(κ(x′)).
(3) given s′, s, x there exists a choice of x′ such that dim(OX′

s′ ,x
′) = dim(OXs,x)

and trdegκ(s)(κ(x)) = trdegκ(s′)(κ(x′)).
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Proof. Part (1) follows immediately from Algebra, Lemma 116.6. Parts (2) and
(3) from Algebra, Lemma 116.7. □

The following lemma follows from a nontrivial algebraic result. Namely, the alge-
braic version of Zariski’s main theorem.

Lemma 28.4.02FZ [DG67, IV Theorem
13.1.3]

Let f : X → S be a morphism of schemes. Let n ≥ 0. Assume f
is locally of finite type. The set

Un = {x ∈ X | dimxXf(x) ≤ n}
is open in X.

Proof. This is immediate from Algebra, Lemma 125.6 □

Lemma 28.5.0A3V Let f : X → Y be a morphism of finite type with Y quasi-compact.
Then the dimension of the fibres of f is bounded.

Proof. By Lemma 28.4 the set Un ⊂ X of points where the dimension of the
fibre is ≤ n is open. Since f is of finite type, every point is contained in some
Un (because the dimension of a finite type algebra over a field is finite). Since Y
is quasi-compact and f is of finite type, we see that X is quasi-compact. Hence
X = Un for some n. □

Lemma 28.6.02G0 Let f : X → S be a morphism of schemes. Let n ≥ 0. Assume f
is locally of finite presentation. The open

Un = {x ∈ X | dimxXf(x) ≤ n}
of Lemma 28.4 is retrocompact in X. (See Topology, Definition 12.1.)

Proof. The topological space X has a basis for its topology consisting of affine
opens U ⊂ X such that the induced morphism f |U : U → S factors through an
affine open V ⊂ S. Hence it is enough to show that U ∩ Un is quasi-compact for
such a U . Note that Un∩U is the same as the open {x ∈ U | dimx Uf(x) ≤ n}. This
reduces us to the case where X and S are affine. In this case the lemma follows
from Algebra, Lemma 125.8 (and Lemma 21.2). □

Lemma 28.7.06RU Let f : X → S be a morphism of schemes. Let x ⇝ x′ be a
nontrivial specialization of points in X lying over the same point s ∈ S. Assume f
is locally of finite type. Then

(1) dimx(Xs) ≤ dimx′(Xs),
(2) dim(OXs,x) < dim(OXs,x′), and
(3) trdegκ(s)(κ(x)) > trdegκ(s)(κ(x′)).

Proof. Part (1) follows from the fact that any open of Xs containing x′ also con-
tains x. Part (2) follows since OXs,x is a localization of OXs,x′ at a prime ideal,
hence any chain of prime ideals in OXs,x is part of a strictly longer chain of primes
in OXs,x′ . The last inequality follows from Algebra, Lemma 116.2. □

29. Morphisms of given relative dimension

02NI In order to be able to speak comfortably about morphisms of a given relative
dimension we introduce the following notion.

Definition 29.1.02NJ Let f : X → S be a morphism of schemes. Assume f is locally
of finite type.
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(1) We say f is of relative dimension ≤ d at x if dimx(Xf(x)) ≤ d.
(2) We say f is of relative dimension ≤ d if dimx(Xf(x)) ≤ d for all x ∈ X.
(3) We say f is of relative dimension d if all nonempty fibres Xs are equidi-

mensional of dimension d.

This is not a particularly well behaved notion, but it works well in a number of
situations.

Lemma 29.2.02NK Let f : X → S be a morphism of schemes which is locally of finite
type. If f has relative dimension d, then so does any base change of f . Same for
relative dimension ≤ d.

Proof. This is immediate from Lemma 28.3. □

Lemma 29.3.02NL Let f : X → Y , g : Y → Z be locally of finite type. If f has relative
dimension ≤ d and g has relative dimension ≤ e then g ◦ f has relative dimension
≤ d+ e. If

(1) f has relative dimension d,
(2) g has relative dimension e, and
(3) f is flat,

then g ◦ f has relative dimension d+ e.

Proof. This is immediate from Lemma 28.2. □

In general it is not possible to decompose a morphism into its pieces where the
relative dimension is a given one. However, it is possible if the morphism has
Cohen-Macaulay fibres and is flat of finite presentation.

Lemma 29.4.02NM Let f : X → S be a morphism of schemes. Assume that
(1) f is flat,
(2) f is locally of finite presentation, and
(3) for all s ∈ S the fibre Xs is Cohen-Macaulay (Properties, Definition 8.1)

Then there exist open and closed subschemes Xd ⊂ X such that X =
∐
d≥0 Xd and

f |Xd : Xd → S has relative dimension d.

Proof. This is immediate from Algebra, Lemma 130.8. □

Lemma 29.5.0397 Let f : X → S be a morphism of schemes. Assume f is locally
of finite type. Let x ∈ X with s = f(x). Then f is quasi-finite at x if and only if
dimx(Xs) = 0. In particular, f is locally quasi-finite if and only if f has relative
dimension 0.

Proof. If f is quasi-finite at x then κ(x) is a finite extension of κ(s) (by Lemma
20.5) and x is isolated in Xs (by Lemma 20.6), hence dimx(Xs) = 0 by Lemma 28.1.
Conversely, if dimx(Xs) = 0 then by Lemma 28.1 we see κ(s) ⊂ κ(x) is algebraic
and there are no other points of Xs specializing to x. Hence x is closed in its fibre
by Lemma 20.2 and by Lemma 20.6 (3) we conclude that f is quasi-finite at x. □

Lemma 29.6.0AFE Let f : X → Y be a morphism of locally Noetherian schemes which
is flat, locally of finite type and of relative dimension d. For every point x in X
with image y in Y we have dimx(X) = dimy(Y ) + d.
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Proof. After shrinking X and Y to open neighborhoods of x and y, we can assume
that dim(X) = dimx(X) and dim(Y ) = dimy(Y ), by definition of the dimension
of a scheme at a point (Properties, Definition 10.1). The morphism f is open by
Lemmas 21.9 and 25.10. Hence we can shrink Y to arrange that f is surjective. It
remains to show that dim(X) = dim(Y ) + d.

Let a be a point in X with image b in Y . By Algebra, Lemma 112.7,

dim(OX,a) = dim(OY,b) + dim(OXb,a).

Taking the supremum over all points a in X, it follows that dim(X) = dim(Y ) + d,
as we want, see Properties, Lemma 10.2. □

30. Syntomic morphisms

01UB An algebra A over a field k is called a global complete intersection over k if A ∼=
k[x1, . . . , xn]/(f1, . . . , fc) and dim(A) = n− c. An algebra A over a field k is called
a local complete intersection if Spec(A) can be covered by standard opens each of
which are global complete intersections over k. See Algebra, Section 135. Recall
that a ring map R → A is syntomic if it is of finite presentation, flat with local
complete intersection rings as fibres, see Algebra, Definition 136.1.

Definition 30.1.01UC Let f : X → S be a morphism of schemes.
(1) We say that f is syntomic at x ∈ X if there exists an affine open neigh-

bourhood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with
f(U) ⊂ V such that the induced ring map R→ A is syntomic.

(2) We say that f is syntomic if it is syntomic at every point of X.
(3) If S = Spec(k) and f is syntomic, then we say that X is a local complete

intersection over k.
(4) A morphism of affine schemes f : X → S is called standard syntomic if there

exists a global relative complete intersection R→ R[x1, . . . , xn]/(f1, . . . , fc)
(see Algebra, Definition 136.5) such that X → S is isomorphic to

Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ Spec(R).

In the literature a syntomic morphism is sometimes referred to as a flat local com-
plete intersection morphism. It turns out this is a convenient class of morphisms.
For example one can define a syntomic topology using these, which is finer than
the smooth and étale topologies, but has many of the same formal properties.

A global relative complete intersection (which we used to define standard syntomic
ring maps) is in particular flat. In More on Morphisms, Section 62 we will consider
morphisms X → S which locally are of the form

Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ Spec(R).

for some Koszul-regular sequence f1, . . . , fr in R[x1, . . . , xn]. Such a morphism will
be called a local complete intersection morphism. Once we have this definition in
place it will be the case that a morphism is syntomic if and only if it is a flat, local
complete intersection morphism.

Note that there is no separation or quasi-compactness hypotheses in the definition
of a syntomic morphism. Hence the question of being syntomic is local in nature
on the source. Here is the precise result.
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Lemma 30.2.01UD Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is syntomic.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is syntomic.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is syntomic.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj)→ OX(Ui) is syntomic,

for all j ∈ J, i ∈ Ij.
Moreover, if f is syntomic then for any open subschemes U ⊂ X, V ⊂ S with
f(U) ⊂ V the restriction f |U : U → V is syntomic.

Proof. This follows from Lemma 14.3 if we show that the property “R → A is
syntomic” is local. We check conditions (a), (b) and (c) of Definition 14.1. By
Algebra, Lemma 136.3 being syntomic is stable under base change and hence we
conclude (a) holds. By Algebra, Lemma 136.17 being syntomic is stable under
composition and trivially for any ring R the ring map R → Rf is syntomic. We
conclude (b) holds. Finally, property (c) is true according to Algebra, Lemma
136.4. □

Lemma 30.3.01UH The composition of two morphisms which are syntomic is syntomic.

Proof. In the proof of Lemma 30.2 we saw that being syntomic is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma 14.5
combined with the fact that being syntomic is a property of ring maps that is
stable under composition, see Algebra, Lemma 136.17. □

Lemma 30.4.01UI The base change of a morphism which is syntomic is syntomic.

Proof. In the proof of Lemma 30.2 we saw that being syntomic is a local property
of ring maps. Hence the lemma follows from Lemma 14.5 combined with the fact
that being syntomic is a property of ring maps that is stable under base change,
see Algebra, Lemma 136.3. □

Lemma 30.5.01UJ Any open immersion is syntomic.

Proof. This is true because an open immersion is a local isomorphism. □

Lemma 30.6.01UK A syntomic morphism is locally of finite presentation.

Proof. True because a syntomic ring map is of finite presentation by definition. □

Lemma 30.7.01UL A syntomic morphism is flat.

Proof. True because a syntomic ring map is flat by definition. □

Lemma 30.8.056F A syntomic morphism is universally open.

Proof. Combine Lemmas 30.6, 30.7, and 25.10. □

Let k be a field. Let A be a local k-algebra essentially of finite type over k. Recall
that A is called a complete intersection over k if we can write A ∼= R/(f1, . . . , fc)
where R is a regular local ring essentially of finite type over k, and f1, . . . , fc is a
regular sequence in R, see Algebra, Definition 135.5.
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Lemma 30.9.01UG Let k be a field. Let X be a scheme locally of finite type over k.
The following are equivalent:

(1) X is a local complete intersection over k,
(2) for every x ∈ X there exists an affine open U = Spec(R) ⊂ X neigh-

bourhood of x such that R ∼= k[x1, . . . , xn]/(f1, . . . , fc) is a global complete
intersection over k, and

(3) for every x ∈ X the local ring OX,x is a complete intersection over k.

Proof. The corresponding algebra results can be found in Algebra, Lemmas 135.8
and 135.9. □

The following lemma says locally any syntomic morphism is standard syntomic.
Hence we can use standard syntomic morphisms as a local model for a syntomic
morphism. Moreover, it says that a flat morphism of finite presentation is syntomic
if and only if the fibres are local complete intersection schemes.

Lemma 30.10.01UE Let f : X → S be a morphism of schemes. Let x ∈ X be a
point with image s = f(x). Let V ⊂ S be an affine open neighbourhood of s. The
following are equivalent

(1) The morphism f is syntomic at x.
(2) There exist an affine open U ⊂ X with x ∈ U and f(U) ⊂ V such that

f |U : U → V is standard syntomic.
(3) The morphism f is of finite presentation at x, the local ring map OS,s →
OX,x is flat and OX,x/msOX,x is a complete intersection over κ(s) (see
Algebra, Definition 135.5).

Proof. Follows from the definitions and Algebra, Lemma 136.15. □

Lemma 30.11.01UF Let f : X → S be a morphism of schemes. If f is flat, locally
of finite presentation, and all fibres Xs are local complete intersections, then f is
syntomic.

Proof. Clear from Lemmas 30.9 and 30.10 and the isomorphisms of local rings
OX,x/msOX,x ∼= OXs,x. □

Lemma 30.12.02V3 Let f : X → S be a morphism of schemes. Assume f locally of
finite type. Formation of the set

T = {x ∈ X | OXf(x),x is a complete intersection over κ(f(x))}

commutes with arbitrary base change: For any morphism g : S′ → S, consider
the base change f ′ : X ′ → S′ of f and the projection g′ : X ′ → X. Then the
corresponding set T ′ for the morphism f ′ is equal to T ′ = (g′)−1(T ). In particular,
if f is assumed flat, and locally of finite presentation then the same holds for the
open set of points where f is syntomic.

Proof. Let s′ ∈ S′ be a point, and let s = g(s′). Then we have
X ′
s′ = Spec(κ(s′))×Spec(κ(s)) Xs

In other words the fibres of the base change are the base changes of the fibres.
Hence the first part is equivalent to Algebra, Lemma 135.10. The second part
follows from the first because in that case T is the set of points where f is syntomic
according to Lemma 30.10. □
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Lemma 30.13.02K0 Let R be a ring. Let R → A = R[x1, . . . , xn]/(f1, . . . , fc) be a
relative global complete intersection. Set S = Spec(R) and X = Spec(A). Consider
the morphism f : X → S associated to the ring map R → A. The function
x 7→ dimx(Xf(x)) is constant with value n− c.

Proof. By Algebra, Definition 136.5 R → A being a relative global complete in-
tersection means all nonzero fibre rings have dimension n − c. Thus for a prime p
of R the fibre ring κ(p)[x1, . . . , xn]/(f1, . . . , f c) is either zero or a global complete
intersection ring of dimension n−c. By the discussion following Algebra, Definition
135.1 this implies it is equidimensional of dimension n− c. Whence the lemma. □

Lemma 30.14.02K1 Let f : X → S be a syntomic morphism. The function x 7→
dimx(Xf(x)) is locally constant on X.

Proof. By Lemma 30.10 the morphism f locally looks like a standard syntomic
morphism of affines. Hence the result follows from Lemma 30.13. □

Lemma 30.14 says that the following definition makes sense.

Definition 30.15.02K2 Let d ≥ 0 be an integer. We say a morphism of schemes
f : X → S is syntomic of relative dimension d if f is syntomic and the function
dimx(Xf(x)) = d for all x ∈ X.

In other words, f is syntomic and the nonempty fibres are equidimensional of
dimension d.

Lemma 30.16.02K3 Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective and syntomic,
(2) p is syntomic, and
(3) q is locally of finite presentation8.

Then q is syntomic.

Proof. By Lemma 25.13 we see that q is flat. Hence it suffices to show that the
fibres of Y → S are local complete intersections, see Lemma 30.11. Let s ∈ S.
Consider the morphism Xs → Ys. This is a base change of the morphism X → Y
and hence surjective, and syntomic (Lemma 30.4). For the same reason Xs is
syntomic over κ(s). Moreover, Ys is locally of finite type over κ(s) (Lemma 15.4).
In this way we reduce to the case where S is the spectrum of a field.
Assume S = Spec(k). Let y ∈ Y . Choose an affine open Spec(A) ⊂ Y neighbour-
hood of y. Let Spec(B) ⊂ X be an affine open such that f(Spec(B)) ⊂ Spec(A),
containing a point x ∈ X such that f(x) = y. Choose a surjection k[x1, . . . , xn]→ A
with kernel I. Choose a surjection A[y1, . . . , ym]→ B, which gives rise in turn to a
surjection k[xi, yj ]→ B with kernel J . Let q ⊂ k[xi, yj ] be the prime corresponding
to y ∈ Spec(B) and let p ⊂ k[xi] the prime corresponding to x ∈ Spec(A). Since x

8In fact, if f is surjective, flat, and locally of finite presentation and p is syntomic, then both
q and f are syntomic, see Descent, Lemma 14.7.
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maps to y we have p = q ∩ k[xi]. Consider the following commutative diagram of
local rings:

OX,x Bq k[x1, . . . , xn, y1, . . . , ym]qoo

OY,y

OO

Ap

OO

k[x1, . . . , xn]poo

OO

We claim that the hypotheses of Algebra, Lemma 135.12 are satisfied. Conditions
(1) and (2) are trivial. Condition (4) follows as X → Y is flat. Condition (3) follows
as the rings OY,y and OXy,x = OX,x/myOX,x are complete intersection rings by our
assumptions that f and p are syntomic, see Lemma 30.10. The output of Algebra,
Lemma 135.12 is exactly that OY,y is a complete intersection ring! Hence by Lemma
30.10 again we see that Y is syntomic over k at y as desired. □

31. Conormal sheaf of an immersion

01R1 Let i : Z → X be a closed immersion. Let I ⊂ OX be the corresponding quasi-
coherent sheaf of ideals. Consider the short exact sequence

0→ I2 → I → I/I2 → 0

of quasi-coherent sheaves on X. Since the sheaf I/I2 is annihilated by I it corre-
sponds to a sheaf on Z by Lemma 4.1. This quasi-coherent OZ-module is called
the conormal sheaf of Z in X and is often simply denoted I/I2 by the abuse of
notation mentioned in Section 4.

In case i : Z → X is a (locally closed) immersion we define the conormal sheaf of i
as the conormal sheaf of the closed immersion i : Z → X \ ∂Z, where ∂Z = Z \ Z.
It is often denoted I/I2 where I is the ideal sheaf of the closed immersion i : Z →
X \ ∂Z.

Definition 31.1.01R2 Let i : Z → X be an immersion. The conormal sheaf CZ/X of
Z in X or the conormal sheaf of i is the quasi-coherent OZ-module I/I2 described
above.

In [DG67, IV Definition 16.1.2] this sheaf is denoted NZ/X . We will not follow this
convention since we would like to reserve the notation NZ/X for the normal sheaf
of the immersion. It is defined as

NZ/X = HomOZ
(CZ/X ,OZ) = HomOZ

(I/I2,OZ)

provided the conormal sheaf is of finite presentation (otherwise the normal sheaf
may not even be quasi-coherent). We will come back to the normal sheaf later
(insert future reference here).

Lemma 31.2.01R3 Let i : Z → X be an immersion. The conormal sheaf of i has the
following properties:

(1) Let U ⊂ X be any open subscheme such that i factors as Z i′−→ U → X
where i′ is a closed immersion. Let I = Ker((i′)♯) ⊂ OU . Then

CZ/X = (i′)∗I and i′∗CZ/X = I/I2

(2) For any affine open Spec(R) = U ⊂ X such that Z ∩ U = Spec(R/I) there
is a canonical isomorphism Γ(Z ∩ U, CZ/X) = I/I2.
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Proof. Mostly clear from the definitions. Note that given a ring R and an ideal I
of R we have I/I2 = I ⊗R R/I. Details omitted. □

Lemma 31.3.01R4 Let

Z
i
//

f

��

X

g

��
Z ′ i′ // X ′

be a commutative diagram in the category of schemes. Assume i, i′ immersions.
There is a canonical map of OZ-modules

f∗CZ′/X′ −→ CZ/X

characterized by the following property: For every pair of affine opens (Spec(R) =
U ⊂ X,Spec(R′) = U ′ ⊂ X ′) with f(U) ⊂ U ′ such that Z ∩ U = Spec(R/I) and
Z ′ ∩ U ′ = Spec(R′/I ′) the induced map

Γ(Z ′ ∩ U ′, CZ′/X′) = I ′/I ′2 −→ I/I2 = Γ(Z ∩ U, CZ/X)

is the one induced by the ring map f ♯ : R′ → R which has the property f ♯(I ′) ⊂ I.

Proof. Let ∂Z ′ = Z ′ \ Z ′ and ∂Z = Z \ Z. These are closed subsets of X ′ and of
X. Replacing X ′ by X ′ \ ∂Z ′ and X by X \

(
g−1(∂Z ′) ∪ ∂Z

)
we see that we may

assume that i and i′ are closed immersions.

The fact that g ◦ i factors through i′ implies that g∗I ′ maps into I under the
canonical map g∗I ′ → OX , see Schemes, Lemmas 4.6 and 4.7. Hence we get an
induced map of quasi-coherent sheaves g∗(I ′/(I ′)2) → I/I2. Pulling back by i
gives i∗g∗(I ′/(I ′)2) → i∗(I/I2). Note that i∗(I/I2) = CZ/X . On the other hand,
i∗g∗(I ′/(I ′)2) = f∗(i′)∗(I ′/(I ′)2) = f∗CZ′/X′ . This gives the desired map.

Checking that the map is locally described as the given map I ′/(I ′)2 → I/I2 is a
matter of unwinding the definitions and is omitted. Another observation is that
given any x ∈ i(Z) there do exist affine open neighbourhoods U , U ′ with f(U) ⊂ U ′

and Z ∩ U as well as U ′ ∩ Z ′ closed such that x ∈ U . Proof omitted. Hence the
requirement of the lemma indeed characterizes the map (and could have been used
to define it). □

Lemma 31.4.0473 Let

Z
i
//

f

��

X

g

��
Z ′ i′ // X ′

be a fibre product diagram in the category of schemes with i, i′ immersions. Then
the canonical map f∗CZ′/X′ → CZ/X of Lemma 31.3 is surjective. If g is flat, then
it is an isomorphism.

Proof. Let R′ → R be a ring map, and I ′ ⊂ R′ an ideal. Set I = I ′R. Then
I ′/(I ′)2 ⊗R′ R → I/I2 is surjective. If R′ → R is flat, then I = I ′ ⊗R′ R and
I2 = (I ′)2 ⊗R′ R and we see the map is an isomorphism. □
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Lemma 31.5.062S Let Z → Y → X be immersions of schemes. Then there is a
canonical exact sequence

i∗CY/X → CZ/X → CZ/Y → 0

where the maps come from Lemma 31.3 and i : Z → Y is the first morphism.

Proof. Via Lemma 31.3 this translates into the following algebra fact. Suppose
that C → B → A are surjective ring maps. Let I = Ker(B → A), J = Ker(C → A)
and K = Ker(C → B). Then there is an exact sequence

K/K2 ⊗B A→ J/J2 → I/I2 → 0.

This follows immediately from the observation that I = J/K. □

32. Sheaf of differentials of a morphism

01UM We suggest the reader take a look at the corresponding section in the chapter on
commutative algebra (Algebra, Section 131) and the corresponding section in the
chapter on sheaves of modules (Modules, Section 28).

Definition 32.1.01UQ Let f : X → S be a morphism of schemes. The sheaf of differ-
entials ΩX/S of X over S is the sheaf of differentials of f viewed as a morphism of
ringed spaces (Modules, Definition 28.10) equipped with its universal S-derivation

dX/S : OX −→ ΩX/S .

It turns out that ΩX/S is a quasi-coherent OX -module for example as it is isomor-
phic to the conormal sheaf of the diagonal morphism ∆ : X → X ×S X (Lemma
32.7). We have defined the module of differentials of X over S using a universal
property, namely as the receptacle of the universal derivation. If you have any
other construction of the sheaf of relative differentials which satisfies this universal
property then, by the Yoneda lemma, it will be canonically isomorphic to the one
defined above. For convenience we restate the universal property here.

Lemma 32.2.01UR Let f : X → S be a morphism of schemes. The map

HomOX
(ΩX/S ,F) −→ DerS(OX ,F), α 7−→ α ◦ dX/S

is an isomorphism of functors Mod(OX)→ Sets.

Proof. This is just a restatement of the definition. □

Lemma 32.3.01US Let f : X → S be a morphism of schemes. Let U ⊂ X, V ⊂ S
be open subschemes such that f(U) ⊂ V . Then there is a unique isomorphism
ΩX/S |U = ΩU/V of OU -modules such that dX/S |U = dU/V .

Proof. This is a special case of Modules, Lemma 28.5 if we use the canonical
identification f−1OS |U = (f |U )−1OV . □

From now on we will use these canonical identifications and simply write ΩU/S or
ΩU/V for the restriction of ΩX/S to U .

Lemma 32.4.01UO Let R → A be a ring map. Let F be a sheaf of OX-modules on
X = Spec(A). Set S = Spec(R). The rule which associates to an S-derivation on
F its action on global sections defines a bijection between the set of S-derivations
of F and the set of R-derivations on M = Γ(X,F).
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Proof. Let D : A→M be an R-derivation. We have to show there exists a unique
S-derivation on F which gives rise to D on global sections. Let U = D(f) ⊂ X
be a standard affine open. Any element of Γ(U,OX) is of the form a/fn for some
a ∈ A and n ≥ 0. By the Leibniz rule we have

D(a)|U = a/fnD(fn)|U + fnD(a/fn)

in Γ(U,F). Since f acts invertibly on Γ(U,F) this completely determines the value
ofD(a/fn) ∈ Γ(U,F). This proves uniqueness. Existence follows by simply defining

D(a/fn) := (1/fn)D(a)|U − a/f2nD(fn)|U
and proving this has all the desired properties (on the basis of standard opens of
X). Details omitted. □

Lemma 32.5.01UT Let f : X → S be a morphism of schemes. For any pair of affine
opens Spec(A) = U ⊂ X, Spec(R) = V ⊂ S with f(U) ⊂ V there is a unique
isomorphism

Γ(U,ΩX/S) = ΩA/R.
compatible with dX/S and d : A→ ΩA/R.

Proof. By Lemma 32.3 we may replace X and S by U and V . Thus we may assume
X = Spec(A) and S = Spec(R) and we have to show the lemma with U = X and
V = S. Consider the A-module M = Γ(X,ΩX/S) together with the R-derivation
dX/S : A→M . Let N be another A-module and denote Ñ the quasi-coherent OX -
module associated to N , see Schemes, Section 7. Precomposing by dX/S : A→M
we get an arrow

α : HomA(M,N) −→ DerR(A,N)
Using Lemmas 32.2 and 32.4 we get identifications

HomOX
(ΩX/S , Ñ) = DerS(OX , Ñ) = DerR(A,N)

Taking global sections determines an arrow HomOX
(ΩX/S , Ñ) → HomR(M,N).

Combining this arrow and the identifications above we get an arrow

β : DerR(A,N) −→ HomR(M,N)

Checking what happens on global sections, we find that α and β are each others
inverse. Hence we see that dX/S : A → M satisfies the same universal property
as d : A → ΩA/R, see Algebra, Lemma 131.3. Thus the Yoneda lemma (Cate-
gories, Lemma 3.5) implies there is a unique isomorphism of A-modules M ∼= ΩA/R
compatible with derivations. □

Remark 32.6.01UU The lemma above gives a second way of constructing the module
of differentials. Namely, let f : X → S be a morphism of schemes. Consider the
collection of all affine opens U ⊂ X which map into an affine open of S. These form
a basis for the topology on X. Thus it suffices to define Γ(U,ΩX/S) for such U . We
simply set Γ(U,ΩX/S) = ΩA/R if A, R are as in Lemma 32.5 above. This works,
but it takes somewhat more algebraic preliminaries to construct the restriction
mappings and to verify the sheaf condition with this ansatz.

The following lemma gives yet another way to define the sheaf of differentials and
it in particular shows that ΩX/S is quasi-coherent if X and S are schemes.
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Lemma 32.7.08S2 Let f : X → S be a morphism of schemes. There is a canoni-
cal isomorphism between ΩX/S and the conormal sheaf of the diagonal morphism
∆X/S : X −→ X ×S X.

Proof. We first establish the existence of a couple of “global” sheaves and global
maps of sheaves, and further down we describe the constructions over some affine
opens.

Recall that ∆ = ∆X/S : X → X ×S X is an immersion, see Schemes, Lemma 21.2.
Let J be the ideal sheaf of the immersion which lives over some open subscheme W
of X×SX such that ∆(X) ⊂W is closed. Let us take the one that was found in the
proof of Schemes, Lemma 21.2. Note that the sheaf of rings OW /J 2 is supported
on ∆(X). Moreover it sits in a short exact sequence of sheaves

0→ J /J 2 → OW /J 2 → ∆∗OX → 0.

Using ∆−1 we can think of this as a surjection of sheaves of f−1OS-algebras with
kernel the conormal sheaf of ∆ (see Definition 31.1 and Lemma 31.2).

0→ CX/X×SX → ∆−1(OW /J 2)→ OX → 0

This places us in the situation of Modules, Lemma 28.11. The projection morphisms
pi : X ×S X → X, i = 1, 2 induce maps of sheaves of rings (pi)♯ : (pi)−1OX →
OX×SX . We may restrict to W and quotient by J 2 to get (pi)−1OX → OW /J 2.
Since ∆−1p−1

i OX = OX we get maps

si : OX → ∆−1(OW /J 2).

Both s1 and s2 are sections to the map ∆−1(OW /J 2) → OX , as in Modules,
Lemma 28.11. Thus we get an S-derivation d = s2 − s1 : OX → CX/X×SX . By the
universal property of the module of differentials we find a unique OX -linear map

ΩX/S −→ CX/X×SX , fdg 7−→ fs2(g)− fs1(g)

To see the map is an isomorphism, let us work this out over suitable affine opens.
We can cover X by affine opens Spec(A) = U ⊂ X whose image is contained in
an affine open Spec(R) = V ⊂ S. According to the proof of Schemes, Lemma
21.2 U ×V U ⊂ X ×S X is an affine open contained in the open W mentioned
above. Also U ×V U = Spec(A ⊗R A). The sheaf J corresponds to the ideal
J = Ker(A ⊗R A → A). The short exact sequence to the short exact sequence of
A⊗R A-modules

0→ J/J2 → (A⊗R A)/J2 → A→ 0
The sections si correspond to the ring maps

A −→ (A⊗R A)/J2, s1 : a 7→ a⊗ 1, s2 : a 7→ 1⊗ a.

By Lemma 31.2 we have Γ(U, CX/X×SX) = J/J2 and by Lemma 32.5 we have
Γ(U,ΩX/S) = ΩA/R. The map above is the map adb 7→ a ⊗ b − ab ⊗ 1 which is
shown to be an isomorphism in Algebra, Lemma 131.13. □

Lemma 32.8.01UV Let
X ′

��

f
// X

��
S′ // S
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be a commutative diagram of schemes. The canonical map OX → f∗OX′ composed
with the map f∗dX′/S′ : f∗OX′ → f∗ΩX′/S′ is a S-derivation. Hence we obtain a
canonical map of OX-modules ΩX/S → f∗ΩX′/S′ , and by adjointness of f∗ and f∗

a canonical OX′-module homomorphism
cf : f∗ΩX/S −→ ΩX′/S′ .

It is uniquely characterized by the property that f∗dX/S(h) maps to dX′/S′(f∗h) for
any local section h of OX .

Proof. This is a special case of Modules, Lemma 28.12. In the case of schemes we
can also use the functoriality of the conormal sheaves (see Lemma 31.3) and Lemma
32.7 to define cf . Or we can use the characterization in the last line of the lemma
to glue maps defined on affine patches (see Algebra, Equation (131.4.1)). □

Lemma 32.9.01UX Let f : X → Y , g : Y → S be morphisms of schemes. Then there
is a canonical exact sequence

f∗ΩY/S → ΩX/S → ΩX/Y → 0
where the maps come from applications of Lemma 32.8.

Proof. This is the sheafified version of Algebra, Lemma 131.7. □

Lemma 32.10.01V0 Let X → S be a morphism of schemes. Let g : S′ → S be a
morphism of schemes. Let X ′ = XS′ be the base change of X. Denote g′ : X ′ → X
the projection. Then the map

(g′)∗ΩX/S → ΩX′/S′

of Lemma 32.8 is an isomorphism.

Proof. This is the sheafified version of Algebra, Lemma 131.12. □

Lemma 32.11.01V1 Let f : X → S and g : Y → S be morphisms of schemes with
the same target. Let p : X ×S Y → X and q : X ×S Y → Y be the projection
morphisms. The maps from Lemma 32.8

p∗ΩX/S ⊕ q∗ΩY/S −→ ΩX×SY/S

give an isomorphism.

Proof. By Lemma 32.10 the composition p∗ΩX/S → ΩX×SY/S → ΩX×SY/Y is an
isomorphism, and similarly for q. Moreover, the cokernel of p∗ΩX/S → ΩX×SY/S
is ΩX×SY/X by Lemma 32.9. The result follows. □

Lemma 32.12.01V2 Let f : X → S be a morphism of schemes. If f is locally of finite
type, then ΩX/S is a finite type OX-module.

Proof. Immediate from Algebra, Lemma 131.16, Lemma 32.5, Lemma 15.2, and
Properties, Lemma 16.1. □

Lemma 32.13.01V3 Let f : X → S be a morphism of schemes. If f is locally of finite
presentation, then ΩX/S is an OX-module of finite presentation.

Proof. Immediate from Algebra, Lemma 131.15, Lemma 32.5, Lemma 21.2, and
Properties, Lemma 16.2. □

Lemma 32.14.01UY If X → S is an immersion, or more generally a monomorphism,
then ΩX/S is zero.
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Proof. This is true because ∆X/S is an isomorphism in this case and hence has
trivial conormal sheaf. Hence ΩX/S = 0 by Lemma 32.7. The algebraic version is
Algebra, Lemma 131.4. □

Lemma 32.15.01UZ Let i : Z → X be an immersion of schemes over S. There is a
canonical exact sequence

CZ/X → i∗ΩX/S → ΩZ/S → 0
where the first arrow is induced by dX/S and the second arrow comes from Lemma
32.8.
Proof. This is the sheafified version of Algebra, Lemma 131.9. However we should
make sure we can define the first arrow globally. Hence we explain the meaning of
“induced by dX/S” here. Namely, we may assume that i is a closed immersion by
shrinking X. Let I ⊂ OX be the sheaf of ideals corresponding to Z ⊂ X. Then
dX/S : I → ΩX/S maps the subsheaf I2 ⊂ I to IΩX/S . Hence it induces a map
I/I2 → ΩX/S/IΩX/S which is OX/I-linear. By Lemma 4.1 this corresponds to a
map CZ/X → i∗ΩX/S as desired. □

Lemma 32.16.0474 Let i : Z → X be an immersion of schemes over S, and assume
i (locally) has a left inverse. Then the canonical sequence

0→ CZ/X → i∗ΩX/S → ΩZ/S → 0
of Lemma 32.15 is (locally) split exact. In particular, if s : S → X is a section of
the structure morphism X → S then the map CS/X → s∗ΩX/S induced by dX/S is
an isomorphism.
Proof. Follows from Algebra, Lemma 131.10. Clarification: if g : X → Z is a left
inverse of i, then i∗cg is a right inverse of the map i∗ΩX/S → ΩZ/S . Also, if s is
a section, then it is an immersion s : Z = S → X over S (see Schemes, Lemma
21.11) and in that case ΩZ/S = 0. □

Remark 32.17.060N Let X → S be a morphism of schemes. According to Lemma
32.11 we have

ΩX×SX/S = pr∗
1ΩX/S ⊕ pr∗

2ΩX/S
On the other hand, the diagonal morphism ∆ : X → X ×S X is an immersion,
which locally has a left inverse. Hence by Lemma 32.16 we obtain a canonical short
exact sequence

0→ CX/X×SX → ΩX/S ⊕ ΩX/S → ΩX/S → 0
Note that the right arrow is (1, 1) which is indeed a split surjection. On the other
hand, by Lemma 32.7 we have an identification ΩX/S = CX/X×SX . Because we
chose dX/S(f) = s2(f)− s1(f) in this identification it turns out that the left arrow
is the map (−1, 1)9.
Lemma 32.18.067L Let

Z
i
//

j   

X

��
Y

9Namely, the local section dX/S(f) = 1 ⊗ f − f ⊗ 1 of the ideal sheaf of ∆ maps via dX×SX/X

to the local section 1⊗1⊗1⊗f −1⊗f ⊗1⊗1−1⊗1⊗f ⊗1+f ⊗1⊗1⊗1 = pr∗
2dX/S(f)−pr∗

1dX/S(f).
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be a commutative diagram of schemes where i and j are immersions. Then there
is a canonical exact sequence

CZ/Y → CZ/X → i∗ΩX/Y → 0

where the first arrow comes from Lemma 31.3 and the second from Lemma 32.15.

Proof. The algebraic version of this is Algebra, Lemma 134.7. □

33. Finite order differential operators

0G43 We suggest the reader take a look at the corresponding section in the chapter on
commutative algebra (Algebra, Section 133) and the corresponding section in the
chapter on sheaves of modules (Modules, Section 29).

Lemma 33.1.0G44 Let R → A be a ring map. Denote f : X → S the corresponding
morphism of affine schemes. Let F and G be OX-modules. If F is quasi-coherent
then the map

DiffkX/S(F ,G)→ DiffkA/R(Γ(X,F),Γ(X,G))
sending a differential operator to its action on global sections is bijective.

Proof. Write F = M̃ for some A-module M . Set N = Γ(X,G). Let D : M →
N be a differential operator of order k. We have to show there exists a unique
differential operator F → G of order k which gives rise to D on global sections. Let
U = D(f) ⊂ X be a standard affine open. Then F(U) = Mf is the localization. By
Algebra, Lemma 133.10 the differential operator D extends to a unique differential
operator

Df : F(U) = M̃(U) = Mf → Nf = Ñ(U)

The uniqueness shows that these maps Df glue to give a map of sheaves M̃ → Ñ
on the basis of all standard opens of X. Hence we get a unique map of sheaves
D̃ : M̃ → Ñ agreeing with these maps by the material in Sheaves, Section 30.
Since D̃ is given by differential operators of order k on the standard opens, we find
that D̃ is a differential operator of order k (small detail omitted). Finally, we can
post-compose with the canonical OX -module map c : Ñ → G (Schemes, Lemma
7.1) to get c ◦ D̃ : F → G which is a differential operator of order k by Modules,
Lemma 29.2. This proves existence. We omit the proof of uniqueness. □

Lemma 33.2.0G45 Let a : X → S and b : Y → S be morphisms of schemes. Let F
and F ′ be quasi-coherent OX-modules. Let D : F → F ′ be a differential operator
of order k on X/S. Let G be a quasi-coherent OY -module. Then there is a unique
differential operator

D′ : pr∗
1F ⊗OX×SY

pr∗
2G −→ pr∗

1F ′ ⊗OX×SY
pr∗

2G

of order k on X ×S Y/Y such that D′(s ⊗ t) = D(s) ⊗ t for local sections s of F
and t of G.

Proof. In case X, Y , and S are affine, this follows, via Lemma 33.1, from the
corresponding algebra result, see Algebra, Lemma 133.11. In general, one uses
coverings by affines (for example as in Schemes, Lemma 17.4) to construct D′

globally. Details omitted. □
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Remark 33.3.0G46 Let a : X → S and b : Y → S be morphisms of schemes. Denote
p : X ×S Y → X and q : X ×S Y → Y the projections. In this remark, given an
OX -module F and an OY -module G let us set

F ⊠ G = p∗F ⊗OX×SY
q∗G

Denote AX/S the additive category whose objects are quasi-coherent OX -modules
and whose morphisms are differential operators of finite order on X/S. Similarly
for AY/S and AX×SY/S . The construction of Lemma 33.2 determines a functor

⊠ : AX/S ×AY/S −→ AX×SY/S , (F ,G) 7−→ F ⊠ G
which is bilinear on morphisms. If X = Spec(A), Y = Spec(B), and S = Spec(R),
then via the identification of quasi-coherent sheaves with modules this functor is
given by (M,N) 7→M⊗RN on objects and sends the morphism (D,D′) : (M,N)→
(M ′, N ′) to D ⊗D′ : M ⊗R N →M ′ ⊗R N ′.

34. Smooth morphisms

01V4 Let f : X → Y be a continuous map of topological spaces. Consider the following
condition: For every x ∈ X there exist open neighbourhoods x ∈ U ⊂ X and
f(x) ∈ V ⊂ Y , and an integer d such that f(U) ⊂ V and such that we obtain a
commutative diagram

X

��

Uoo

��

π
// V ×Rd

{{
Y Voo

where π is a homeomorphism onto an open subset. Smooth morphisms of schemes
are the analogue of these maps in the category of schemes. See Lemma 34.11 and
Lemma 36.20.
Contrary to expectations (perhaps) the notion of a smooth ring map is not defined
solely in terms of the module of differentials. Namely, recall that R→ A is a smooth
ring map if A is of finite presentation over R and if the naive cotangent complex of
A over R is quasi-isomorphic to a projective module placed in degree 0, see Algebra,
Definition 137.1.

Definition 34.1.01V5 Let f : X → S be a morphism of schemes.
(1) We say that f is smooth at x ∈ X if there exist an affine open neighbourhood

Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with f(U) ⊂ V
such that the induced ring map R→ A is smooth.

(2) We say that f is smooth if it is smooth at every point of X.
(3) A morphism of affine schemes f : X → S is called standard smooth if

there exists a standard smooth ring map R → R[x1, . . . , xn]/(f1, . . . , fc)
(see Algebra, Definition 137.6) such that X → S is isomorphic to

Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ Spec(R).

A pleasing feature of this definition is that the set of points where a morphism is
smooth is automatically open.
Note that there is no separation or quasi-compactness hypotheses in the definition.
Hence the question of being smooth is local in nature on the source. Here is the
precise result.

https://stacks.math.columbia.edu/tag/0G46
https://stacks.math.columbia.edu/tag/01V5


MORPHISMS OF SCHEMES 66

Lemma 34.2.01V6 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is smooth.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is smooth.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is smooth.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is smooth,

for all j ∈ J, i ∈ Ij.
Moreover, if f is smooth then for any open subschemes U ⊂ X, V ⊂ S with
f(U) ⊂ V the restriction f |U : U → V is smooth.

Proof. This follows from Lemma 14.3 if we show that the property “R → A is
smooth” is local. We check conditions (a), (b) and (c) of Definition 14.1. By Alge-
bra, Lemma 137.4 being smooth is stable under base change and hence we conclude
(a) holds. By Algebra, Lemma 137.14 being smooth is stable under composition
and for any ring R the ring map R → Rf is (standard) smooth. We conclude (b)
holds. Finally, property (c) is true according to Algebra, Lemma 137.13. □

The following lemma characterizes a smooth morphism as a flat, finitely presented
morphism with smooth fibres. Note that schemes smooth over a field are discussed
in more detail in Varieties, Section 25.

Lemma 34.3.01V8 Let f : X → S be a morphism of schemes. If f is flat, locally of
finite presentation, and all fibres Xs are smooth, then f is smooth.

Proof. Follows from Algebra, Lemma 137.17. □

Lemma 34.4.01VA The composition of two morphisms which are smooth is smooth.

Proof. In the proof of Lemma 34.2 we saw that being smooth is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma 14.5
combined with the fact that being smooth is a property of ring maps that is stable
under composition, see Algebra, Lemma 137.14. □

Lemma 34.5.01VB The base change of a morphism which is smooth is smooth.

Proof. In the proof of Lemma 34.2 we saw that being smooth is a local property
of ring maps. Hence the lemma follows from Lemma 14.5 combined with the fact
that being smooth is a property of ring maps that is stable under base change, see
Algebra, Lemma 137.4. □

Lemma 34.6.01VC Any open immersion is smooth.

Proof. This is true because an open immersion is a local isomorphism. □

Lemma 34.7.01VD A smooth morphism is syntomic.

Proof. See Algebra, Lemma 137.10. □

Lemma 34.8.01VE A smooth morphism is locally of finite presentation.

Proof. True because a smooth ring map is of finite presentation by definition. □
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Lemma 34.9.01VF A smooth morphism is flat.

Proof. Combine Lemmas 30.7 and 34.7. □

Lemma 34.10.056G A smooth morphism is universally open.

Proof. Combine Lemmas 34.9, 34.8, and 25.10. Or alternatively, combine Lemmas
34.7, 30.8. □

The following lemma says locally any smooth morphism is standard smooth. Hence
we can use standard smooth morphisms as a local model for a smooth morphism.

Lemma 34.11.01V7 Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Let V ⊂ S be an affine open neighbourhood of f(x). The following are equivalent

(1) The morphism f is smooth at x.
(2) There exists an affine open U ⊂ X, with x ∈ U and f(U) ⊂ V such that

the induced morphism f |U : U → V is standard smooth.

Proof. Follows from the definitions and Algebra, Lemmas 137.7 and 137.10. □

Lemma 34.12.02G1 Let f : X → S be a morphism of schemes. Assume f is smooth.
Then the module of differentials ΩX/S of X over S is finite locally free and

rankx(ΩX/S) = dimx(Xf(x))
for every x ∈ X.

Proof. The statement is local on X and S. By Lemma 34.11 above we may assume
that f is a standard smooth morphism of affines. In this case the result follows from
Algebra, Lemma 137.7 (and the definition of a relative global complete intersection,
see Algebra, Definition 136.5). □

Lemma 34.12 says that the following definition makes sense.

Definition 34.13.02G2 Let d ≥ 0 be an integer. We say a morphism of schemes
f : X → S is smooth of relative dimension d if f is smooth and ΩX/S is finite
locally free of constant rank d.

In other words, f is smooth and the nonempty fibres are equidimensional of di-
mension d. By Lemma 34.14 below this is also the same as requiring: (a) f is
locally of finite presentation, (b) f is flat, (c) all nonempty fibres equidimensional
of dimension d, and (d) ΩX/S finite locally free of rank d. It is not enough to simply
assume that f is flat, of finite presentation, and ΩX/S is finite locally free of rank
d. A counter example is given by Spec(Fp[t])→ Spec(Fp[tp]).
Here is a differential criterion of smoothness at a point. There are many variants
of this result all of which may be useful at some point. We will just add them here
as needed.

Lemma 34.14.01V9 Let f : X → S be a morphism of schemes. Let x ∈ X. Set
s = f(x). Assume f is locally of finite presentation. The following are equivalent:

(1) The morphism f is smooth at x.
(2) The local ring map OS,s → OX,x is flat and Xs → Spec(κ(s)) is smooth at

x.
(3) The local ring map OS,s → OX,x is flat and the OX,x-module ΩX/S,x can

be generated by at most dimx(Xf(x)) elements.
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(4) The local ring map OS,s → OX,x is flat and the κ(x)-vector space
ΩXs/s,x ⊗OXs,x

κ(x) = ΩX/S,x ⊗OX,x
κ(x)

can be generated by at most dimx(Xf(x)) elements.
(5) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V

and the induced morphism f |U : U → V is standard smooth.
(6) There exist affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S with

x ∈ U corresponding to q ⊂ A, and f(U) ⊂ V such that there exists a
presentation

A = R[x1, . . . , xn]/(f1, . . . , fc)
with

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2
. . . . . . . . . . . .

∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc


mapping to an element of A not in q.

Proof. Note that if f is smooth at x, then we see from Lemma 34.11 that (5)
holds, and (6) is a slightly weakened version of (5). Moreover, f smooth implies
that the ring map OS,s → OX,x is flat (see Lemma 34.9) and that ΩX/S is finite
locally free of rank equal to dimx(Xs) (see Lemma 34.12). Thus (1) implies (3) and
(4). By Lemma 34.5 we also see that (1) implies (2).
By Lemma 32.10 the module of differentials ΩXs/s of the fibre Xs over κ(s) is
the pullback of the module of differentials ΩX/S of X over S. Hence the displayed
equality in part (4) of the lemma. By Lemma 32.12 these modules are of finite type.
Hence the minimal number of generators of the modules ΩX/S,x and ΩXs/s,x is the
same and equal to the dimension of this κ(x)-vector space by Nakayama’s Lemma
(Algebra, Lemma 20.1). This in particular shows that (3) and (4) are equivalent.
Algebra, Lemma 137.17 shows that (2) implies (1). Algebra, Lemma 140.3 shows
that (3) and (4) imply (2). Finally, (6) implies (5) see for example Algebra, Example
137.8 and (5) implies (1) by Algebra, Lemma 137.7. □

Lemma 34.15.02V4 Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let W ⊂ X, resp. W ′ ⊂ X ′ be the open
subscheme of points where f , resp. f ′ is smooth. Then W ′ = (g′)−1(W ) if

(1) f is flat and locally of finite presentation, or
(2) f is locally of finite presentation and g is flat.

Proof. Assume first that f locally of finite type. Consider the set
T = {x ∈ X | Xf(x) is smooth over κ(f(x)) at x}

and the corresponding set T ′ ⊂ X ′ for f ′. Then we claim T ′ = (g′)−1(T ). Namely,
let s′ ∈ S′ be a point, and let s = g(s′). Then we have

X ′
s′ = Spec(κ(s′))×Spec(κ(s)) Xs

https://stacks.math.columbia.edu/tag/02V4
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In other words the fibres of the base change are the base changes of the fibres.
Hence the claim is equivalent to Algebra, Lemma 137.19.
Thus case (1) follows because in case (1) T is the (open) set of points where f is
smooth by Lemma 34.14.
In case (2) let x′ ∈ W ′. Then g′ is flat at x′ (Lemma 25.7) and g ◦ f is flat at x′

(Lemma 25.5). It follows that f is flat at x = g′(x′) by Lemma 25.13. On the other
hand, since x′ ∈ T ′ (Lemma 34.5) we see that x ∈ T . Hence f is smooth at x by
Lemma 34.14. □

Here is a lemma that actually uses the vanishing of H−1 of the naive cotangent
complex for a smooth ring map.

Lemma 34.16.02K4 Let f : X → Y , g : Y → S be morphisms of schemes. Assume f
is smooth. Then

0→ f∗ΩY/S → ΩX/S → ΩX/Y → 0
(see Lemma 32.9) is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps
A→ B → C with B → C smooth, then the sequence

0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0
of Algebra, Lemma 131.7 is exact. This is Algebra, Lemma 139.1. □

Lemma 34.17.06AA Let i : Z → X be an immersion of schemes over S. Assume that
Z is smooth over S. Then the canonical exact sequence

0→ CZ/X → i∗ΩX/S → ΩZ/S → 0
of Lemma 32.15 is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps
A → B → C with A → C smooth and B → C surjective with kernel J , then the
sequence

0→ J/J2 → C ⊗B ΩB/A → ΩC/A → 0
of Algebra, Lemma 131.9 is exact. This is Algebra, Lemma 139.2. □

Lemma 34.18.06AB Let
Z

i
//

j   

X

��
Y

be a commutative diagram of schemes where i and j are immersions and X → Y
is smooth. Then the canonical exact sequence

0→ CZ/Y → CZ/X → i∗ΩX/Y → 0
of Lemma 32.18 is exact.

Proof. The algebraic version of this lemma is the following: Given ring maps
A→ B → C with A→ C surjective and A→ B smooth, then the sequence

0→ I/I2 → J/J2 → C ⊗B ΩB/A → 0
of Algebra, Lemma 134.7 is exact. This is Algebra, Lemma 139.3. □
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Lemma 34.19.02K5 Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective, and smooth,
(2) p is smooth, and
(3) q is locally of finite presentation10.

Then q is smooth.

Proof. By Lemma 25.13 we see that q is flat. Pick a point y ∈ Y . Pick a point
x ∈ X mapping to y. Suppose f has relative dimension a at x and p has relative
dimension b at x. By Lemma 34.12 this means that ΩX/S,x is free of rank b and
ΩX/Y,x is free of rank a. By the short exact sequence of Lemma 34.16 this means
that (f∗ΩY/S)x is free of rank b − a. By Nakayama’s Lemma this implies that
ΩY/S,y can be generated by b − a elements. Also, by Lemma 28.2 we see that
dimy(Ys) = b− a. Hence we conclude that Y → S is smooth at y by Lemma 34.14
part (2). □

In the situation of the following lemma the image of σ is locally on X cut out by a
regular sequence, see Divisors, Lemma 22.8.

Lemma 34.20.05D9 Let f : X → S be a morphism of schemes. Let σ : S → X be a
section of f . Let s ∈ S be a point such that f is smooth at x = σ(s). Then there
exist affine open neighbourhoods Spec(A) = U ⊂ S of s and Spec(B) = V ⊂ X of
x such that

(1) f(V ) ⊂ U and σ(U) ⊂ V ,
(2) with I = Ker(σ# : B → A) the module I/I2 is a free A-module, and
(3) B∧ ∼= A[[x1, . . . , xd]] as A-algebras where B∧ denotes the completion of B

with respect to I.

Proof. Pick an affine open U ⊂ S containing s Pick an affine open V ⊂ f−1(U)
containing x. Pick an affine open U ′ ⊂ σ−1(V ) containing s. Note that V ′ =
f−1(U ′)∩V is affine as it is equal to the fibre product V ′ = U ′×U V . Then U ′ and
V ′ satisfy (1). Write U ′ = Spec(A′) and V ′ = Spec(B′). By Algebra, Lemma 139.4
the module I ′/(I ′)2 is finite locally free as a A′-module. Hence after replacing
U ′ by a smaller affine open U ′′ ⊂ U ′ and V ′ by V ′′ = V ′ ∩ f−1(U ′′) we obtain
the situation where I ′′/(I ′′)2 is free, i.e., (2) holds. In this case (3) holds also by
Algebra, Lemma 139.4. □

The dimension of a scheme X at a point x (Properties, Definition 10.1) is just the
dimension of X at x as a topological space, see Topology, Definition 10.1. This is
not the dimension of the local ring OX,x, in general.

Lemma 34.21.0AFF Let f : X → Y be a smooth morphism of locally Noetherian
schemes. For every point x in X with image y in Y ,

dimx(X) = dimy(Y ) + dimx(Xy),

10In fact this is implied by (1) and (2), see Descent, Lemma 14.3. Moreover, it suffices to
assume f is surjective, flat and locally of finite presentation, see Descent, Lemma 14.5.
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where Xy denotes the fiber over y.
Proof. After replacing X by an open neighborhood of x, there is a natural number
d such that all fibers of X → Y have dimension d at every point, see Lemma 34.12.
Then f is flat (Lemma 34.9), locally of finite type (Lemma 34.8), and of relative
dimension d. Hence the result follows from Lemma 29.6. □

35. Unramified morphisms

02G3 We briefly discuss unramified morphisms before the (perhaps) more interesting class
of étale morphisms. Recall that a ring map R → A is unramified if it is of finite
type and ΩA/R = 0 (this is the definition of [Ray70]). A ring map R→ A is called
G-unramified if it is of finite presentation and ΩA/R = 0 (this is the definition of
[DG67]). See Algebra, Definition 151.1.
Definition 35.1.02G4 Let f : X → S be a morphism of schemes.

(1) We say that f is unramified at x ∈ X if there exists an affine open neigh-
bourhood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with
f(U) ⊂ V such that the induced ring map R→ A is unramified.

(2) We say that f is G-unramified at x ∈ X if there exists an affine open
neighbourhood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S
with f(U) ⊂ V such that the induced ring map R→ A is G-unramified.

(3) We say that f is unramified if it is unramified at every point of X.
(4) We say that f is G-unramified if it is G-unramified at every point of X.

Note that a G-unramified morphism is unramified. Hence any result for unramified
morphisms implies the corresponding result for G-unramified morphisms. More-
over, if S is locally Noetherian then there is no difference between G-unramified
and unramified morphisms, see Lemma 35.6. A pleasing feature of this definition
is that the set of points where a morphism is unramified (resp. G-unramified) is
automatically open.
Lemma 35.2.02G5 Let f : X → S be a morphism of schemes. Then

(1) f is unramified if and only if f is locally of finite type and ΩX/S = 0, and
(2) f is G-unramified if and only if f is locally of finite presentation and

ΩX/S = 0.
Proof. By definition a ring map R→ A is unramified (resp. G-unramified) if and
only if it is of finite type (resp. finite presentation) and ΩA/R = 0. Hence the lemma
follows directly from the definitions and Lemma 32.5. □

Note that there is no separation or quasi-compactness hypotheses in the definition.
Hence the question of being unramified is local in nature on the source. Here is the
precise result.
Lemma 35.3.02G6 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is unramified (resp. G-unramified).
(2) For every affine open U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map OS(V )→
OX(U) is unramified (resp. G-unramified).

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is unrami-
fied (resp. G-unramified).
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(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj)→ OX(Ui) is unramified

(resp. G-unramified), for all j ∈ J, i ∈ Ij.
Moreover, if f is unramified (resp. G-unramified) then for any open subschemes
U ⊂ X, V ⊂ S with f(U) ⊂ V the restriction f |U : U → V is unramified (resp.
G-unramified).

Proof. This follows from Lemma 14.3 if we show that the property “R → A is
unramified” is local. We check conditions (a), (b) and (c) of Definition 14.1. These
properties are proved in Algebra, Lemma 151.3. □

Lemma 35.4.02G9 The composition of two morphisms which are unramified is unram-
ified. The same holds for G-unramified morphisms.

Proof. The proof of Lemma 35.3 shows that being unramified (resp. G-unramified)
is a local property of ring maps. Hence the first statement of the lemma follows from
Lemma 14.5 combined with the fact that being unramified (resp. G-unramified) is
a property of ring maps that is stable under composition, see Algebra, Lemma
151.3. □

Lemma 35.5.02GA The base change of a morphism which is unramified is unramified.
The same holds for G-unramified morphisms.

Proof. The proof of Lemma 35.3 shows that being unramified (resp. G-unramified)
is a local property of ring maps. Hence the lemma follows from Lemma 14.6 com-
bined with the fact that being unramified (resp. G-unramified) is a property of ring
maps that is stable under base change, see Algebra, Lemma 151.3. □

Lemma 35.6.04EV Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian. Then f is unramified if and only if f is G-unramified.

Proof. Follows from the definitions and Lemma 21.9. □

Lemma 35.7.02GB Any open immersion is G-unramified.

Proof. This is true because an open immersion is a local isomorphism. □

Lemma 35.8.02GC A closed immersion i : Z → X is unramified. It is G-unramified
if and only if the associated quasi-coherent sheaf of ideals I = Ker(OX → i∗OZ) is
of finite type (as an OX-module).

Proof. Follows from Lemma 21.7 and Algebra, Lemma 151.3. □

Lemma 35.9.02GD An unramified morphism is locally of finite type. A G-unramified
morphism is locally of finite presentation.

Proof. An unramified ring map is of finite type by definition. A G-unramified ring
map is of finite presentation by definition. □

Lemma 35.10.02V5 Let f : X → S be a morphism of schemes. If f is unramified
at x then f is quasi-finite at x. In particular, an unramified morphism is locally
quasi-finite.

Proof. See Algebra, Lemma 151.6. □

Lemma 35.11.02G7 Fibres of unramified morphisms.
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(1) Let X be a scheme over a field k. The structure morphism X → Spec(k) is
unramified if and only if X is a disjoint union of spectra of finite separable
field extensions of k.

(2) If f : X → S is an unramified morphism then for every s ∈ S the fibre Xs

is a disjoint union of spectra of finite separable field extensions of κ(s).

Proof. Part (2) follows from part (1) and Lemma 35.5. Let us prove part (1).
We first use Algebra, Lemma 151.7. This lemma implies that if X is a disjoint
union of spectra of finite separable field extensions of k then X → Spec(k) is
unramified. Conversely, suppose that X → Spec(k) is unramified. By Algebra,
Lemma 151.5 for every x ∈ X the residue field extension κ(x)/k is finite separable.
Since X → Spec(k) is locally quasi-finite (Lemma 35.10) we see that all points of X
are isolated closed points, see Lemma 20.6. Thus X is a discrete space, in particular
the disjoint union of the spectra of its local rings. By Algebra, Lemma 151.5 again
these local rings are fields, and we win. □

The following lemma characterizes an unramified morphisms as morphisms locally
of finite type with unramified fibres.

Lemma 35.12.02G8 Let f : X → S be a morphism of schemes.
(1) If f is unramified then for any x ∈ X the field extension κ(x)/κ(f(x)) is

finite separable.
(2) If f is locally of finite type, and for every s ∈ S the fibre Xs is a dis-

joint union of spectra of finite separable field extensions of κ(s) then f is
unramified.

(3) If f is locally of finite presentation, and for every s ∈ S the fibre Xs is a
disjoint union of spectra of finite separable field extensions of κ(s) then f
is G-unramified.

Proof. Follows from Algebra, Lemmas 151.5 and 151.7. □

Here is a characterization of unramified morphisms in terms of the diagonal mor-
phism.

Lemma 35.13.02GE Let f : X → S be a morphism.
(1) If f is unramified, then the diagonal morphism ∆ : X → X ×S X is an

open immersion.
(2) If f is locally of finite type and ∆ is an open immersion, then f is unram-

ified.
(3) If f is locally of finite presentation and ∆ is an open immersion, then f is

G-unramified.

Proof. The first statement follows from Algebra, Lemma 151.4. The second state-
ment from the fact that ΩX/S is the conormal sheaf of the diagonal morphism
(Lemma 32.7) and hence clearly zero if ∆ is an open immersion. □

Lemma 35.14.02GF Let f : X → S be a morphism of schemes. Let x ∈ X. Set
s = f(x). Assume f is locally of finite type (resp. locally of finite presentation).
The following are equivalent:

(1) The morphism f is unramified (resp. G-unramified) at x.
(2) The fibre Xs is unramified over κ(s) at x.
(3) The OX,x-module ΩX/S,x is zero.
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(4) The OXs,x-module ΩXs/s,x is zero.
(5) The κ(x)-vector space

ΩXs/s,x ⊗OXs,x
κ(x) = ΩX/S,x ⊗OX,x

κ(x)
is zero.

(6) We have msOX,x = mx and the field extension κ(x)/κ(s) is finite separable.

Proof. Note that if f is unramified at x, then we see that ΩX/S = 0 in a neighbour-
hood of x by the definitions and the results on modules of differentials in Section
32. Hence (1) implies (3) and the vanishing of the right hand vector space in (5).
It also implies (2) because by Lemma 32.10 the module of differentials ΩXs/s of the
fibre Xs over κ(s) is the pullback of the module of differentials ΩX/S of X over S.
This fact on modules of differentials also implies the displayed equality of vector
spaces in part (4). By Lemma 32.12 the modules ΩX/S,x and ΩXs/s,x are of finite
type. Hence the modules ΩX/S,x and ΩXs/s,x are zero if and only if the correspond-
ing κ(x)-vector space in (4) is zero by Nakayama’s Lemma (Algebra, Lemma 20.1).
This in particular shows that (3), (4) and (5) are equivalent. The support of ΩX/S
is closed in X, see Modules, Lemma 9.6. Assumption (3) implies that x is not in
the support. Hence ΩX/S is zero in a neighbourhood of x, which implies (1). The
equivalence of (1) and (3) applied to Xs → s implies the equivalence of (2) and (4).
At this point we have seen that (1) – (5) are equivalent.
Alternatively you can use Algebra, Lemma 151.3 to see the equivalence of (1) – (5)
more directly.
The equivalence of (1) and (6) follows from Lemma 35.12. It also follows more
directly from Algebra, Lemmas 151.5 and 151.7. □

Lemma 35.15.0475 Let f : X → S be a morphism of schemes. Assume f locally of
finite type. Formation of the open set

T = {x ∈ X | Xf(x) is unramified over κ(f(x)) at x}
= {x ∈ X | X is unramified over S at x}

commutes with arbitrary base change: For any morphism g : S′ → S, consider
the base change f ′ : X ′ → S′ of f and the projection g′ : X ′ → X. Then the
corresponding set T ′ for the morphism f ′ is equal to T ′ = (g′)−1(T ). If f is
assumed locally of finite presentation then the same holds for the open set of points
where f is G-unramified.

Proof. Let s′ ∈ S′ be a point, and let s = g(s′). Then we have
X ′
s′ = Spec(κ(s′))×Spec(κ(s)) Xs

In other words the fibres of the base change are the base changes of the fibres. In
particular

ΩXs/s,x ⊗OXs,x
κ(x′) = ΩX′

s′/s
′,x′ ⊗OX′

s′ ,x
′ κ(x′)

see Lemma 32.10. Whence x′ ∈ T ′ if and only if x ∈ T by Lemma 35.14. The
second part follows from the first because in that case T is the (open) set of points
where f is G-unramified according to Lemma 35.14. □

Lemma 35.16.02GG Let f : X → Y be a morphism of schemes over S.
(1) If X is unramified over S, then f is unramified.
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(2) If X is G-unramified over S and Y is locally of finite type over S, then f
is G-unramified.

Proof. Assume that X is unramified over S. By Lemma 15.8 we see that f is
locally of finite type. By assumption we have ΩX/S = 0. Hence ΩX/Y = 0 by
Lemma 32.9. Thus f is unramified. If X is G-unramified over S and Y is locally of
finite type over S, then by Lemma 21.11 we see that f is locally of finite presentation
and we conclude that f is G-unramified. □

Lemma 35.17.04HB Let S be a scheme. Let X, Y be schemes over S. Let f, g : X → Y
be morphisms over S. Let x ∈ X. Assume that

(1) the structure morphism Y → S is unramified,
(2) f(x) = g(x) in Y , say y = f(x) = g(x), and
(3) the induced maps f ♯, g♯ : κ(y)→ κ(x) are equal.

Then there exists an open neighbourhood of x in X on which f and g are equal.

Proof. Consider the morphism (f, g) : X → Y ×S Y . By assumption (1) and
Lemma 35.13 the inverse image of ∆Y/S(Y ) is open in X. And assumptions (2)
and (3) imply that x is in this open subset. □

36. Étale morphisms

02GH The Zariski topology of a scheme is a very coarse topology. This is particularly clear
when looking at varieties over C. It turns out that declaring an étale morphism
to be the analogue of a local isomorphism in topology introduces a much finer
topology. On varieties over C this topology gives rise to the “correct” Betti numbers
when computing cohomology with finite coefficients. Another observable is that if
f : X → Y is an étale morphism of varieties over C, and if x is a closed point of
X, then f induces an isomorphism O∧

Y,f(x) → O
∧
X,x of complete local rings.

In this section we start our study of these matters. In fact we deliberately restrict
our discussion to a minimum since we will discuss more interesting results elsewhere.
Recall that a ring map R→ A is said to be étale if it is smooth and ΩA/R = 0, see
Algebra, Definition 143.1.

Definition 36.1.02GI Let f : X → S be a morphism of schemes.
(1) We say that f is étale at x ∈ X if there exists an affine open neighbourhood

Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with f(U) ⊂ V
such that the induced ring map R→ A is étale.

(2) We say that f is étale if it is étale at every point of X.
(3) A morphism of affine schemes f : X → S is called standard étale if X → S

is isomorphic to

Spec(R[x]h/(g))→ Spec(R)

where R→ R[x]h/(g) is a standard étale ring map, see Algebra, Definition
144.1, i.e., g is monic and g′ invertible in R[x]h/(g).

A morphism is étale if and only if it is smooth of relative dimension 0 (see Defini-
tion 34.13). A pleasing feature of the definition is that the set of points where a
morphism is étale is automatically open.
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Note that there is no separation or quasi-compactness hypotheses in the definition.
Hence the question of being étale is local in nature on the source. Here is the precise
result.

Lemma 36.2.02GJ Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is étale.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is étale.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is étale.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj)→ OX(Ui) is étale, for

all j ∈ J, i ∈ Ij.
Moreover, if f is étale then for any open subschemes U ⊂ X, V ⊂ S with f(U) ⊂ V
the restriction f |U : U → V is étale.

Proof. This follows from Lemma 14.3 if we show that the property “R → A is
étale” is local. We check conditions (a), (b) and (c) of Definition 14.1. These all
follow from Algebra, Lemma 143.3. □

Lemma 36.3.02GN The composition of two morphisms which are étale is étale.

Proof. In the proof of Lemma 36.2 we saw that being étale is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma 14.5
combined with the fact that being étale is a property of ring maps that is stable
under composition, see Algebra, Lemma 143.3. □

Lemma 36.4.02GO The base change of a morphism which is étale is étale.

Proof. In the proof of Lemma 36.2 we saw that being étale is a local property of
ring maps. Hence the lemma follows from Lemma 14.5 combined with the fact that
being étale is a property of ring maps that is stable under base change, see Algebra,
Lemma 143.3. □

Lemma 36.5.02GK Let f : X → S be a morphism of schemes. Let x ∈ X. Then f is
étale at x if and only if f is smooth and unramified at x.

Proof. This follows immediately from the definitions. □

Lemma 36.6.03WS An étale morphism is locally quasi-finite.

Proof. By Lemma 36.5 an étale morphism is unramified. By Lemma 35.10 an
unramified morphism is locally quasi-finite. □

Lemma 36.7.02GL Fibres of étale morphisms.
(1) Let X be a scheme over a field k. The structure morphism X → Spec(k) is

étale if and only if X is a disjoint union of spectra of finite separable field
extensions of k.

(2) If f : X → S is an étale morphism, then for every s ∈ S the fibre Xs is a
disjoint union of spectra of finite separable field extensions of κ(s).
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Proof. You can deduce this from Lemma 35.11 via Lemma 36.5 above. Here is a
direct proof.

We will use Algebra, Lemma 143.4. Hence it is clear that if X is a disjoint union
of spectra of finite separable field extensions of k then X → Spec(k) is étale.
Conversely, suppose that X → Spec(k) is étale. Then for any affine open U ⊂ X
we see that U is a finite disjoint union of spectra of finite separable field extensions
of k. Hence all points of X are closed points (see Lemma 20.2 for example). Thus
X is a discrete space and we win. □

The following lemma characterizes an étale morphism as a flat, finitely presented
morphism with “étale fibres”.

Lemma 36.8.02GM Let f : X → S be a morphism of schemes. If f is flat, locally of
finite presentation, and for every s ∈ S the fibre Xs is a disjoint union of spectra
of finite separable field extensions of κ(s), then f is étale.

Proof. You can deduce this from Algebra, Lemma 143.7. Here is another proof.

By Lemma 36.7 a fibre Xs is étale and hence smooth over s. By Lemma 34.3 we see
that X → S is smooth. By Lemma 35.12 we see that f is unramified. We conclude
by Lemma 36.5. □

Lemma 36.9.02GP Any open immersion is étale.

Proof. This is true because an open immersion is a local isomorphism. □

Lemma 36.10.02GQ An étale morphism is syntomic.

Proof. See Algebra, Lemma 137.10 and use that an étale morphism is the same
as a smooth morphism of relative dimension 0. □

Lemma 36.11.02GR An étale morphism is locally of finite presentation.

Proof. True because an étale ring map is of finite presentation by definition. □

Lemma 36.12.02GS An étale morphism is flat.

Proof. Combine Lemmas 30.7 and 36.10. □

Lemma 36.13.03WT An étale morphism is open.

Proof. Combine Lemmas 36.12, 36.11, and 25.10. □

The following lemma says locally any étale morphism is standard étale. This is
actually kind of a tricky result to prove in complete generality. The tricky parts are
hidden in the chapter on commutative algebra. Hence a standard étale morphism
is a local model for a general étale morphism.

Lemma 36.14.02GT Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Let V ⊂ S be an affine open neighbourhood of f(x). The following are equivalent

(1) The morphism f is étale at x.
(2) There exist an affine open U ⊂ X with x ∈ U and f(U) ⊂ V such that the

induced morphism f |U : U → V is standard étale (see Definition 36.1).

Proof. Follows from the definitions and Algebra, Proposition 144.4. □
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Here is a differential criterion of étaleness at a point. There are many variants of
this result all of which may be useful at some point. We will just add them here as
needed.

Lemma 36.15.02GU Let f : X → S be a morphism of schemes. Let x ∈ X. Set
s = f(x). Assume f is locally of finite presentation. The following are equivalent:

(1) The morphism f is étale at x.
(2) The local ring map OS,s → OX,x is flat and Xs → Spec(κ(s)) is étale at x.
(3) The local ring map OS,s → OX,x is flat and Xs → Spec(κ(s)) is unramified

at x.
(4) The local ring map OS,s → OX,x is flat and the OX,x-module ΩX/S,x is

zero.
(5) The local ring map OS,s → OX,x is flat and the κ(x)-vector space

ΩXs/s,x ⊗OXs,x
κ(x) = ΩX/S,x ⊗OX,x

κ(x)
is zero.

(6) The local ring map OS,s → OX,x is flat, we have msOX,x = mx and the
field extension κ(x)/κ(s) is finite separable.

(7) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V
and the induced morphism f |U : U → V is standard smooth of relative
dimension 0.

(8) There exist affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S with
x ∈ U corresponding to q ⊂ A, and f(U) ⊂ V such that there exists a
presentation

A = R[x1, . . . , xn]/(f1, . . . , fn)
with

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2
. . . . . . . . . . . .

∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


mapping to an element of A not in q.

(9) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V
and the induced morphism f |U : U → V is standard étale.

(10) There exist affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S with
x ∈ U corresponding to q ⊂ A, and f(U) ⊂ V such that there exists a
presentation

A = R[x]Q/(P ) = R[x, 1/Q]/(P )
with P,Q ∈ R[x], P monic and P ′ = dP/dx mapping to an element of A
not in q.

Proof. Use Lemma 36.14 and the definitions to see that (1) implies all of the other
conditions. For each of the conditions (2) – (10) combine Lemmas 34.14 and 35.14
to see that (1) holds by showing f is both smooth and unramified at x and applying
Lemma 36.5. Some details omitted. □

Lemma 36.16.02GV A morphism is étale at a point if and only if it is flat and G-
unramified at that point. A morphism is étale if and only if it is flat and G-
unramified.

Proof. This is clear from Lemmas 36.15 and 35.14. □
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Lemma 36.17.0476 Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let W ⊂ X, resp. W ′ ⊂ X ′ be the open
subscheme of points where f , resp. f ′ is étale. Then W ′ = (g′)−1(W ) if

(1) f is flat and locally of finite presentation, or
(2) f is locally of finite presentation and g is flat.

Proof. Assume first that f locally of finite type. Consider the set
T = {x ∈ X | f is unramified at x}

and the corresponding set T ′ ⊂ X ′ for f ′. Then T ′ = (g′)−1(T ) by Lemma 35.15.
Thus case (1) follows because in case (1) T is the (open) set of points where f is
étale by Lemma 36.16.
In case (2) let x′ ∈ W ′. Then g′ is flat at x′ (Lemma 25.7) and g ◦ f ′ is flat at
x′ (Lemma 25.5). It follows that f is flat at x = g′(x′) by Lemma 25.13. On the
other hand, since x′ ∈ T ′ (Lemma 34.5) we see that x ∈ T . Hence f is étale at x
by Lemma 36.15. □

Our proof of the following lemma is somewhat complicated. It uses the “Critère
de platitude par fibres” to see that a morphism X → Y over S between schemes
étale over S is automatically flat. The details are in the chapter on commutative
algebra.

Lemma 36.18.02GW Let f : X → Y be a morphism of schemes over S. If X and Y
are étale over S, then f is étale.

Proof. See Algebra, Lemma 143.8. □

Lemma 36.19.02K6 Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective, and étale,
(2) p is étale, and
(3) q is locally of finite presentation11.

Then q is étale.

Proof. By Lemma 34.19 we see that q is smooth. Thus we only need to see that
q has relative dimension 0. This follows from Lemma 28.2 and the fact that f and
p have relative dimension 0. □

A final characterization of smooth morphisms is that a smooth morphism f : X → S
is locally the composition of an étale morphism by a projection Ad

S → S.

11In fact this is implied by (1) and (2), see Descent, Lemma 14.3. Moreover, it suffices to
assume that f is surjective, flat and locally of finite presentation, see Descent, Lemma 14.5.
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Lemma 36.20.054L Let φ : X → Y be a morphism of schemes. Let x ∈ X. Let
V ⊂ Y be an affine open neighbourhood of φ(x). If φ is smooth at x, then there
exists an integer d ≥ 0 and an affine open U ⊂ X with x ∈ U and φ(U) ⊂ V such
that there exists a commutative diagram

X

��

Uoo

��

π
// Ad

V

~~
Y Voo

where π is étale.

Proof. By Lemma 34.11 we can find an affine open U as in the lemma such that
φ|U : U → V is standard smooth. Write U = Spec(A) and V = Spec(R) so that
we can write

A = R[x1, . . . , xn]/(f1, . . . , fc)
with

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2
. . . . . . . . . . . .

∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc


mapping to an invertible element of A. Then it is clear that R[xc+1, . . . , xn] → A
is standard smooth of relative dimension 0. Hence it is smooth of relative dimen-
sion 0. In other words the ring map R[xc+1, . . . , xn] → A is étale. As An−c

V =
Spec(R[xc+1, . . . , xn]) the lemma with d = n− c. □

37. Relatively ample sheaves

01VG Let X be a scheme and L an invertible sheaf on X. Then L is ample on X if X is
quasi-compact and every point of X is contained in an affine open of the form Xs,
where s ∈ Γ(X,L⊗n) and n ≥ 1, see Properties, Definition 26.1. We turn this into
a relative notion as follows.

Definition 37.1.01VH [DG67, II Definition
4.6.1]

Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. We say L is relatively ample, or f -relatively ample, or ample on X/S,
or f -ample if f : X → S is quasi-compact, and if for every affine open V ⊂ S the
restriction of L to the open subscheme f−1(V ) of X is ample.

We note that the existence of a relatively ample sheaf on X does not force the
morphism X → S to be of finite type.

Lemma 37.2.02NN Let X → S be a morphism of schemes. Let L be an invertible
OX-module. Let n ≥ 1. Then L is f -ample if and only if L⊗n is f -ample.

Proof. This follows from Properties, Lemma 26.2. □

Lemma 37.3.01VI Let f : X → S be a morphism of schemes. If there exists an
f -ample invertible sheaf, then f is separated.

Proof. Being separated is local on the base (see Schemes, Lemma 21.7 for example;
it also follows easily from the definition). Hence we may assume S is affine and
X has an ample invertible sheaf. In this case the result follows from Properties,
Lemma 26.8. □
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There are many ways to characterize relatively ample invertible sheaves, analogous
to the equivalent conditions in Properties, Proposition 26.13. We will add these
here as needed.

Lemma 37.4.01VJ [DG67, II,
Proposition 4.6.3]

Let f : X → S be a quasi-compact morphism of schemes. Let L be
an invertible sheaf on X. The following are equivalent:

(1) The invertible sheaf L is f -ample.
(2) There exists an open covering S =

⋃
Vi such that each L|f−1(Vi) is ample

relative to f−1(Vi)→ Vi.
(3) There exists an affine open covering S =

⋃
Vi such that each L|f−1(Vi) is

ample.
(4) There exists a quasi-coherent graded OS-algebra A and a map of graded
OX-algebras ψ : f∗A →

⊕
d≥0 L⊗d such that U(ψ) = X and

rL,ψ : X −→ Proj
S

(A)

is an open immersion (see Constructions, Lemma 19.1 for notation).
(5) The morphism f is quasi-separated and part (4) above holds with A =

f∗(
⊕

d≥0 L⊗d) and ψ the adjunction mapping.
(6) Same as (4) but just requiring rL,ψ to be an immersion.

Proof. It is immediate from the definition that (1) implies (2) and (2) implies (3).
It is clear that (5) implies (4).
Assume (3) holds for the affine open covering S =

⋃
Vi. We are going to show

(5) holds. Since each f−1(Vi) has an ample invertible sheaf we see that f−1(Vi) is
separated (Properties, Lemma 26.8). Hence f is separated. By Schemes, Lemma
24.1 we see that A = f∗(

⊕
d≥0 L⊗d) is a quasi-coherent graded OS-algebra. De-

note ψ : f∗A →
⊕

d≥0 L⊗d the adjunction mapping. The description of the open
U(ψ) in Constructions, Section 19 and the definition of ampleness of L|f−1(Vi) show
that U(ψ) = X. Moreover, Constructions, Lemma 19.1 part (3) shows that the re-
striction of rL,ψ to f−1(Vi) is the same as the morphism from Properties, Lemma
26.9 which is an open immersion according to Properties, Lemma 26.11. Hence (5)
holds.
Let us show that (4) implies (1). Assume (4). Denote π : Proj

S
(A) → S the

structure morphism. Choose V ⊂ S affine open. By Constructions, Definition
16.7 we see that π−1(V ) ⊂ Proj

S
(A) is equal to Proj(A) where A = A(V ) as a

graded ring. Hence rL,ψ maps f−1(V ) isomorphically onto a quasi-compact open
of Proj(A). Moreover, L⊗d is isomorphic to the pullback of OProj(A)(d) for some
d ≥ 1. (See part (3) of Constructions, Lemma 19.1 and the final statement of
Constructions, Lemma 14.1.) This implies that L|f−1(V ) is ample by Properties,
Lemmas 26.12 and 26.2.
Assume (6). By the equivalence of (1) - (5) above we see that the property of being
relatively ample on X/S is local on S. Hence we may assume that S is affine,
and we have to show that L is ample on X. In this case the morphism rL,ψ is
identified with the morphism, also denoted rL,ψ : X → Proj(A) associated to the
map ψ : A = A(V ) → Γ∗(X,L). (See references above.) As above we also see
that L⊗d is the pullback of the sheaf OProj(A)(d) for some d ≥ 1. Moreover, since
X is quasi-compact we see that X gets identified with a closed subscheme of a
quasi-compact open subscheme Y ⊂ Proj(A). By Constructions, Lemma 10.6 (see
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also Properties, Lemma 26.12) we see that OY (d′) is an ample invertible sheaf on
Y for some d′ ≥ 1. Since the restriction of an ample sheaf to a closed subscheme
is ample, see Properties, Lemma 26.3 we conclude that the pullback of OY (d′) is
ample. Combining these results with Properties, Lemma 26.2 we conclude that L
is ample as desired. □

Lemma 37.5.01VK [DG67, II Corollary
4.6.6]

Let f : X → S be a morphism of schemes. Let L be an invertible
OX-module. Assume S affine. Then L is f -relatively ample if and only if L is
ample on X.

Proof. Immediate from Lemma 37.4 and the definitions. □

Lemma 37.6.0891 [DG67, II
Proposition 5.1.6]

Let f : X → S be a morphism of schemes. Then f is quasi-affine
if and only if OX is f -relatively ample.

Proof. Follows from Properties, Lemma 27.1 and the definitions. □

Lemma 37.7.0892 Let f : X → Y be a morphism of schemes, M an invertible OY -
module, and L an invertible OX-module.

(1) If L is f -ample and M is ample, then L ⊗ f∗M⊗a is ample for a≫ 0.
(2) If M is ample and f quasi-affine, then f∗M is ample.

Proof. Assume L is f -ample and M ample. By assumption Y and f are quasi-
compact (see Definition 37.1 and Properties, Definition 26.1). Hence X is quasi-
compact. By Properties, Lemma 26.8 the scheme Y is separated and by Lemma
37.3 the morphism f is separated. Hence X is separated by Schemes, Lemma 21.12.
Pick x ∈ X. We can choose m ≥ 1 and t ∈ Γ(Y,M⊗m) such that Yt is affine and
f(x) ∈ Yt. Since L restricts to an ample invertible sheaf on f−1(Yt) = Xf∗t we
can choose n ≥ 1 and s ∈ Γ(Xf∗t,L⊗n) with x ∈ (Xf∗t)s with (Xf∗t)s affine.
By Properties, Lemma 17.2 part (2) whose assumptions are satisfied by the above,
there exists an integer e ≥ 1 and a section s′ ∈ Γ(X,L⊗n ⊗ f∗M⊗em) which
restricts to s(f∗t)e on Xf∗t. For any b > 0 consider the section s′′ = s′(f∗t)b of
L⊗n ⊗ f∗M⊗(e+b)m. Then Xs′′ = (Xf∗t)s is an affine open of X containing x.
Picking b such that n divides e+ b we see L⊗n ⊗ f∗M⊗(e+b)m is the nth power of
L⊗ f∗M⊗a for some a and we can get any a divisible by m and big enough. Since
X is quasi-compact a finite number of these affine opens cover X. We conclude that
for some a sufficiently divisible and large enough the invertible sheaf L ⊗ f∗M⊗a

is ample on X. On the other hand, we know that M⊗c (and hence its pullback
to X) is globally generated for all c ≫ 0 by Properties, Proposition 26.13. Thus
L ⊗ f∗M⊗a+c is ample (Properties, Lemma 26.5) for c≫ 0 and (1) is proved.
Part (2) follows from Lemma 37.6, Properties, Lemma 26.2, and part (1). □

Lemma 37.8.0C4K Let g : Y → S and f : X → Y be morphisms of schemes. LetM be
an invertible OY -module. Let L be an invertible OX-module. If S is quasi-compact,
M is g-ample, and L is f -ample, then L ⊗ f∗M⊗a is g ◦ f -ample for a≫ 0.

Proof. Let S =
⋃
i=1,...,n Vi be a finite affine open covering. By Lemma 37.4 it

suffices to prove that L ⊗ f∗M⊗a is ample on (g ◦ f)−1(Vi) for i = 1, . . . , n. Thus
the lemma follows from Lemma 37.7. □

Lemma 37.9.0893 Let f : X → S be a morphism of schemes. Let L be an invertible
OX-module. Let S′ → S be a morphism of schemes. Let f ′ : X ′ → S′ be the base
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change of f and denote L′ the pullback of L to X ′. If L is f -ample, then L′ is
f ′-ample.

Proof. By Lemma 37.4 it suffices to find an affine open covering S′ =
⋃
U ′
i such

that L′ restricts to an ample invertible sheaf on (f ′)−1(U ′
i) for all i. We may choose

U ′
i mapping into an affine open Ui ⊂ S. In this case the morphism (f ′)−1(U ′

i) →
f−1(Ui) is affine as a base change of the affine morphism U ′

i → Ui (Lemma 11.8).
Thus L′|(f ′)−1(U ′

i
) is ample by Lemma 37.7. □

Lemma 37.10.0C4L Let g : Y → S and f : X → Y be morphisms of schemes. Let L
be an invertible OX-module. If L is g ◦ f -ample and f is quasi-compact12 then L
is f -ample.

Proof. Assume f is quasi-compact and L is g ◦ f -ample. Let U ⊂ S be an affine
open and let V ⊂ Y be an affine open with g(V ) ⊂ U . Then L|(g◦f)−1(U) is ample
on (g ◦ f)−1(U) by assumption. Since f−1(V ) ⊂ (g ◦ f)−1(U) we see that L|f−1(V )
is ample on f−1(V ) by Properties, Lemma 26.14. Namely, f−1(V )→ (g ◦ f)−1(U)
is a quasi-compact open immersion by Schemes, Lemma 21.14 as (g ◦ f)−1(U) is
separated (Properties, Lemma 26.8) and f−1(V ) is quasi-compact (as f is quasi-
compact). Thus we conclude that L is f -ample by Lemma 37.4. □

38. Very ample sheaves

01VL Recall that given a quasi-coherent sheaf E on a scheme S the projective bundle
associated to E is the morphism P(E) → S, where P(E) = Proj

S
(Sym(E)), see

Constructions, Definition 21.1.

Definition 38.1.01VM Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. We say L is relatively very ample or more precisely f -relatively very
ample, or very ample on X/S, or f -very ample if there exist a quasi-coherent OS-
module E and an immersion i : X → P(E) over S such that L ∼= i∗OP(E)(1).

Since there is no assumption of quasi-compactness in this definition it is not true in
general that a relatively very ample invertible sheaf is a relatively ample invertible
sheaf.

Lemma 38.2.01VN [DG67, II,
Proposition 4.6.2]

Let f : X → S be a morphism of schemes. Let L be an invertible
OX-module. If f is quasi-compact and L is a relatively very ample invertible sheaf,
then L is a relatively ample invertible sheaf.

Proof. By definition there exists quasi-coherent OS-module E and an immersion
i : X → P(E) over S such that L ∼= i∗OP(E)(1). Set A = Sym(E), so P(E) =
Proj

S
(A) by definition. The graded OS-algebra A comes equipped with a map

ψ : A →
⊕

n≥0
π∗OP(E)(n)→

⊕
n≥0

f∗L⊗n

where the second arrow uses the identification L ∼= i∗OP(E)(1). By adjointness of
f∗ and f∗ we get a morphism ψ : f∗A →

⊕
n≥0 L⊗n. We omit the verification that

the morphism rL,ψ associated to this map is exactly the immersion i. Hence the
result follows from part (6) of Lemma 37.4. □

12This follows if g is quasi-separated by Schemes, Lemma 21.14.
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To arrive at the correct converse of this lemma we ask whether given a relatively
ample invertible sheaf L there exists an integer n ≥ 1 such that L⊗n is relatively
very ample? In general this is false. There are several things that prevent this from
being true:

(1) Even if S is affine, it can happen that no finite integer n works because
X → S is not of finite type, see Example 38.4.

(2) The base not being quasi-compact means the result can be prevented from
being true even with f finite type. Namely, given a field k there exists a
scheme Xd of finite type over k with an ample invertible sheaf OXd(1) so
that the smallest tensor power of OXd(1) which is very ample is the dth
power. See Example 38.5. Taking f to be the disjoint union of the schemes
Xd mapping to the disjoint union of copies of Spec(k) gives an example.

To see our version of the converse take a look at Lemma 39.5 below. We will do
some preliminary work before proving it.

Example 38.3.07ZR Let S be a scheme. Let A be a quasi-coherent graded OS-algebra
generated by A1 over A0. Set X = Proj

S
(A). In this case OX(1) is a very ample

invertible sheaf on X. Namely, the morphism associated to the graded OS-algebra
map

Sym∗
OX

(A1) −→ A
is a closed immersion X → P(A1) which pulls back OP(A1)(1) to OX(1), see Con-
structions, Lemma 18.5.

Example 38.4.01VO Let k be a field. Consider the graded k-algebra

A = k[U, V, Z1, Z2, Z3, . . .]/I with I = (U2 − Z2
1 , U

4 − Z2
2 , U

6 − Z2
3 , . . .)

with grading given by deg(U) = deg(V ) = deg(Z1) = 1 and deg(Zd) = d. Note
that X = Proj(A) is covered by D+(U) and D+(V ). Hence the sheaves OX(n)
are all invertible and isomorphic to OX(1)⊗n. In particular OX(1) is ample and
f -ample for the morphism f : X → Spec(k). We claim that no power of OX(1) is
f -relatively very ample. Namely, it is easy to see that Γ(X,OX(n)) is the degree n
summand of the algebra A. Hence if OX(n) were very ample, then X would be a
closed subscheme of a projective space over k and hence of finite type over k. On
the other hand D+(V ) is the spectrum of k[t, t1, t2, . . .]/(t2 − t21, t4 − t22, t6 − t23, . . .)
which is not of finite type over k.

Example 38.5.01VP Let k be an infinite field. Let λ1, λ2, λ3, . . . be pairwise distinct
elements of k∗. (This is not strictly necessary, and in fact the example works
perfectly well even if all λi are equal to 1.) Consider the graded k-algebra

Ad = k[U, V, Z]/Id with Id = (Z2 −
∏2d

i=1
(U − λiV )).

with grading given by deg(U) = deg(V ) = 1 and deg(Z) = d. Then Xd = Proj(Ad)
has ample invertible sheaf OXd(1). We claim that if OXd(n) is very ample, then
n ≥ d. The reason for this is that Z has degree d, and hence Γ(Xd,OXd(n)) =
k[U, V ]n for n < d. Details omitted.

Lemma 38.6.01VQ Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. If L is relatively very ample on X/S then f is separated.
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Proof. Being separated is local on the base (see Schemes, Section 21). An im-
mersion is separated (see Schemes, Lemma 23.8). Hence the lemma follows since
locally X has an immersion into the homogeneous spectrum of a graded ring which
is separated, see Constructions, Lemma 8.8. □

Lemma 38.7.01VR Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume f is quasi-compact. The following are equivalent

(1) L is relatively very ample on X/S,
(2) there exists an open covering S =

⋃
Vj such that L|f−1(Vj) is relatively very

ample on f−1(Vj)/Vj for all j,
(3) there exists a quasi-coherent sheaf of graded OS-algebras A generated in

degree 1 over OS and a map of graded OX-algebras ψ : f∗A →
⊕

n≥0 L⊗n

such that f∗A1 → L is surjective and the associated morphism rL,ψ : X →
Proj

S
(A) is an immersion, and

(4) f is quasi-separated, the canonical map ψ : f∗f∗L → L is surjective, and
the associated map rL,ψ : X → P(f∗L) is an immersion.

Proof. It is clear that (1) implies (2). It is also clear that (4) implies (1); the
hypothesis of quasi-separation in (4) is used to guarantee that f∗L is quasi-coherent
via Schemes, Lemma 24.1.
Assume (2). We will prove (4). Let S =

⋃
Vj be an open covering as in (2). Set

Xj = f−1(Vj) and fj : Xj → Vj the restriction of f . We see that f is separated
by Lemma 38.6 (as being separated is local on the base). By assumption there
exists a quasi-coherent OVj -module Ej and an immersion ij : Xj → P(Ej) with
L|Xj ∼= i∗jOP(Ej)(1). The morphism ij corresponds to a surjection f∗

j Ej → L|Xj ,
see Constructions, Section 21. This map is adjoint to a map Ej → f∗L|Vj such that
the composition

f∗
j Ej → (f∗f∗L)|Xj → L|Xj

is surjective. We conclude that ψ : f∗f∗L → L is surjective. Let rL,ψ : X → P(f∗L)
be the associated morphism. We still have to show that rL,ψ is an immersion; we
urge the reader to prove this for themselves. The OVj -module map Ej → f∗L|Vj
determines a homomorphism on symmetric algebras, which in turn defines a mor-
phism

P(f∗L|Vj ) ⊃ Uj −→ P(Ej)
where Uj is the open subscheme of Constructions, Lemma 18.1. The compatibility
of ψ with Ej → f∗L|Vj shows that rL,ψ(Xj) ⊂ Uj and that there is a factorization

Xj

rL,ψ // Uj // P(Ej)

We omit the verification. This shows that rL,ψ is an immersion.
At this point we see that (1), (2) and (4) are equivalent. Clearly (4) implies (3).
Assume (3). We will prove (1). Let A be a quasi-coherent sheaf of graded OS-
algebras generated in degree 1 over OS . Consider the map of graded OS-algebras
Sym(A1)→ A. This is surjective by hypothesis and hence induces a closed immer-
sion

Proj
S

(A) −→ P(A1)
which pulls back O(1) to O(1), see Constructions, Lemma 18.5. Hence it is clear
that (3) implies (1). □
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Lemma 38.8.0B3F Let f : X → S be a morphism of schemes. Let L be an invertible
OX-module. Let S′ → S be a morphism of schemes. Let f ′ : X ′ → S′ be the base
change of f and denote L′ the pullback of L to X ′. If L is f -very ample, then L′

is f ′-very ample.

Proof. By Definition 38.1 there exists there exist a quasi-coherent OS-module E
and an immersion i : X → P(E) over S such that L ∼= i∗OP(E)(1). The base change
of P(E) to S′ is the projective bundle associated to the pullback E ′ of E and the
pullback of OP(E)(1) is OP(E′)(1), see Constructions, Lemma 16.10. Finally, the
base change of an immersion is an immersion (Schemes, Lemma 18.2). □

39. Ample and very ample sheaves relative to finite type morphisms

02NO In fact most of the material in this section is about the notion of a (quasi-)projective
morphism which we have not defined yet.

Lemma 39.1.02NP Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume that

(1) the invertible sheaf L is very ample on X/S,
(2) the morphism X → S is of finite type, and
(3) S is affine.

Then there exist an n ≥ 0 and an immersion i : X → Pn
S over S such that

L ∼= i∗OPn
S
(1).

Proof. Assume (1), (2) and (3). Condition (3) means S = Spec(R) for some ring
R. Condition (1) means by definition there exists a quasi-coherent OS-module E
and an immersion α : X → P(E) such that L = α∗OP(E)(1). Write E = M̃ for
some R-module M . Thus we have

P(E) = Proj(SymR(M)).

Since α is an immersion, and since the topology of Proj(SymR(M)) is generated by
the standard opens D+(f), f ∈ Symd

R(M), d ≥ 1, we can find for each x ∈ X an
f ∈ Symd

R(M), d ≥ 1, with α(x) ∈ D+(f) such that

α|α−1(D+(f)) : α−1(D+(f))→ D+(f)

is a closed immersion. Condition (2) implies X is quasi-compact. Hence we can
find a finite collection of elements fj ∈ Symdj

R (M), dj ≥ 1 such that for each f = fj
the displayed map above is a closed immersion and such that α(X) ⊂

⋃
D+(fj).

Write Uj = α−1(D+(fj)). Note that Uj is affine as a closed subscheme of the affine
scheme D+(fj). Write Uj = Spec(Aj). Condition (2) also implies that Aj is of
finite type over R, see Lemma 15.2. Choose finitely many xj,k ∈ Aj which generate
Aj as a R-algebra. Since α|Uj is a closed immersion we see that xj,k is the image
of an element

fj,k/f
ej,k
j ∈ SymR(M)(fj) = Γ(D+(fj),OProj(SymR(M))).

Finally, choose n ≥ 1 and elements y0, . . . , yn ∈ M such that each of the polyno-
mials fj , fj,k ∈ SymR(M) is a polynomial in the elements yt with coefficients in R.
Consider the graded ring map

ψ : R[Y0, . . . , Yn] −→ SymR(M), Yi 7−→ yi.
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Denote Fj , Fj,k the elements of R[Y0, . . . , Yn] such that ψ(Fj) = fj and ψ(Fj,k) =
fj,k. By Constructions, Lemma 11.1 we obtain an open subscheme

U(ψ) ⊂ Proj(SymR(M))

and a morphism rψ : U(ψ)→ Pn
R. This morphism satisfies r−1

ψ (D+(Fj)) = D+(fj),
and hence we see that α(X) ⊂ U(ψ). Moreover, it is clear that

i = rψ ◦ α : X −→ Pn
R

is still an immersion since i♯(Fj,k/F
ej,k
j ) = xj,k ∈ Aj = Γ(Uj ,OX) by construc-

tion. Moreover, the morphism rψ comes equipped with a map θ : r∗
ψOPn

R
(1) →

OProj(SymR(M))(1)|U(ψ) which is an isomorphism in this case (for construction θ see
lemma cited above; some details omitted). Since the original map α was assumed
to have the property that L = α∗OProj(SymR(M))(1) we win. □

Lemma 39.2.04II Let π : X → S be a morphism of schemes. Assume that X is
quasi-affine and that π is locally of finite type. Then there exist n ≥ 0 and an
immersion i : X → An

S over S.

Proof. Let A = Γ(X,OX). By assumption X is quasi-compact and is identified
with an open subscheme of Spec(A), see Properties, Lemma 18.4. Moreover, the set
of opens Xf , for those f ∈ A such that Xf is affine, forms a basis for the topology
of X, see the proof of Properties, Lemma 18.4. Hence we can find a finite number
of fj ∈ A, j = 1, . . . ,m such that X =

⋃
Xfj , and such that π(Xfj ) ⊂ Vj for

some affine open Vj ⊂ S. By Lemma 15.2 the ring maps O(Vj) → O(Xfj ) = Afj
are of finite type. Thus we may choose a1, . . . , aN ∈ A such that the elements
a1, . . . , aN , 1/fj generate Afj over O(Vj) for each j. Take n = m+N and let

i : X −→ An
S

be the morphism given by the global sections f1, . . . , fm, a1, . . . , aN of the struc-
ture sheaf of X. Let D(xj) ⊂ An

S be the open subscheme where the jth coordinate
function is nonzero. Then for 1 ≤ j ≤ m we have i−1(D(xj)) = Xfj and the induced
morphismXfj → D(xj) factors through the affine open Spec(O(Vj)[x1, . . . , xn, 1/xj ])
of D(xj). Since the ring map O(Vj)[x1, . . . , xn, 1/xj ] → Afj is surjective by con-
struction we conclude that i−1(D(xj))→ D(xj) is an immersion as desired. □

Lemma 39.3.01VS Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume that

(1) the invertible sheaf L is ample on X, and
(2) the morphism X → S is locally of finite type.

Then there exists a d0 ≥ 1 such that for every d ≥ d0 there exist an n ≥ 0 and an
immersion i : X → Pn

S over S such that L⊗d ∼= i∗OPn
S
(1).

Proof. Let A = Γ∗(X,L) =
⊕

d≥0 Γ(X,L⊗d). By Properties, Proposition 26.13
the set of affine opens Xa with a ∈ A+ homogeneous forms a basis for the topology
of X. Hence we can find finitely many such elements a0, . . . , an ∈ A+ such that

(1) we have X =
⋃
i=0,...,nXai ,

(2) each Xai is affine, and
(3) each Xai maps into an affine open Vi ⊂ S.
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By Lemma 15.2 we see that the ring maps OS(Vi) → OX(Xai) are of finite type.
Hence we can find finitely many elements fij ∈ OX(Xai), j = 1, . . . , ni which
generate OX(Xai) as an OS(Vi)-algebra. By Properties, Lemma 17.2 we may write
each fij as aij/a

eij
i for some aij ∈ A+ homogeneous. Let N be a positive integer

which is a common multiple of all the degrees of the elements ai, aij . Consider the
elements

a
N/ deg(ai)
i , aija

(N/ deg(ai))−eij
i ∈ AN .

By construction these generate the invertible sheaf L⊗N over X. Hence they give
rise to a morphism

j : X −→ Pm
S with m = n+

∑
ni

over S, see Constructions, Lemma 13.1 and Definition 13.2. Moreover, j∗OPS (1) =
L⊗N . We name the homogeneous coordinates T0, . . . , Tn, Tij instead of T0, . . . , Tm.
For i = 0, . . . , n we have i−1(D+(Ti)) = Xai . Moreover, pulling back the element
Tij/Ti via j♯ we get the element fij ∈ OX(Xai). Hence the morphism j restricted
to Xai gives a closed immersion of Xai into the affine open D+(Ti) ∩ Pm

Vi
of PN

S .
Hence we conclude that the morphism j is an immersion. This implies the lemma
holds for some d and n which is enough in virtually all applications.

This proves that for one d2 ≥ 1 (namely d2 = N above), some m ≥ 0 there exists
some immersion j : X → Pm

S given by global sections s′
0, . . . , s

′
m ∈ Γ(X,L⊗d2).

By Properties, Proposition 26.13 we know there exists an integer d1 such that
L⊗d is globally generated for all d ≥ d1. Set d0 = d1 + d2. We claim that the
lemma holds with this value of d0. Namely, given an integer d ≥ d0 we may choose
s′′

1 , . . . , s
′′
t ∈ Γ(X,L⊗d−d2) which generate L⊗d−d2 over X. Set k = (m + 1)t and

denote s0, . . . , sk the collection of sections s′
αs

′′
β , α = 0, . . . ,m, β = 1, . . . , t. These

generate L⊗d over X and therefore define a morphism

i : X −→ Pk−1
S

such that i∗OPn
S
(1) ∼= L⊗d. To see that i is an immersion, observe that i is the

composition
X −→ Pm

S ×S Pt−1
S −→ Pk−1

S

where the first morphism is (j, j′) with j′ given by s′′
1 , . . . , s

′′
t and the second mor-

phism is the Segre embedding (Constructions, Lemma 13.6). Since j is an immer-
sion, so is (j, j′) (apply Lemma 3.1 to X → Pm

S ×S Pt−1
S → Pm

S ). Thus i is a
composition of immersions and hence an immersion (Schemes, Lemma 24.3). □

Lemma 39.4.01VT Let f : X → S be a morphism of schemes. Let L be an invertible
OX-module. Assume S affine and f of finite type. The following are equivalent

(1) L is ample on X,
(2) L is f -ample,
(3) L⊗d is f -very ample for some d ≥ 1,
(4) L⊗d is f -very ample for all d≫ 1,
(5) for some d ≥ 1 there exist n ≥ 1 and an immersion i : X → Pn

S such that
L⊗d ∼= i∗OPn

S
(1), and

(6) for all d ≫ 1 there exist n ≥ 1 and an immersion i : X → Pn
S such that

L⊗d ∼= i∗OPn
S
(1).
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Proof. The equivalence of (1) and (2) is Lemma 37.5. The implication (2) ⇒ (6)
is Lemma 39.3. Trivially (6) implies (5). As Pn

S is a projective bundle over S (see
Constructions, Lemma 21.5) we see that (5) implies (3) and (6) implies (4) from
the definition of a relatively very ample sheaf. Trivially (4) implies (3). To finish
we have to show that (3) implies (2) which follows from Lemma 38.2 and Lemma
37.2. □

Lemma 39.5.01VU Let f : X → S be a morphism of schemes. Let L be an invert-
ible OX-module. Assume S quasi-compact and f of finite type. The following are
equivalent

(1) L is f -ample,
(2) L⊗d is f -very ample for some d ≥ 1,
(3) L⊗d is f -very ample for all d≫ 1.

Proof. Trivially (3) implies (2). Lemma 38.2 guarantees that (2) implies (1) since
a morphism of finite type is quasi-compact by definition. Assume that L is f -ample.
Choose a finite affine open covering S = V1 ∪ . . . ∪ Vm. Write Xi = f−1(Vi). By
Lemma 39.4 above we see there exists a d0 such that L⊗d is relatively very ample
on Xi/Vi for all d ≥ d0. Hence we conclude (1) implies (3) by Lemma 38.7. □

The following two lemmas provide the most used and most useful characterizations
of relatively very ample and relatively ample invertible sheaves when the morphism
is of finite type.

Lemma 39.6.02NQ Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume f is of finite type. The following are equivalent:

(1) L is f -relatively very ample, and
(2) there exist an open covering S =

⋃
Vj, for each j an integer nj, and im-

mersions
ij : Xj = f−1(Vj) = Vj ×S X −→ Pnj

Vj

over Vj such that L|Xj ∼= i∗jOP
nj
Vj

(1).

Proof. We see that (1) implies (2) by taking an affine open covering of S and
applying Lemma 39.1 to each of the restrictions of f and L. We see that (2)
implies (1) by Lemma 38.7. □

Lemma 39.7.02NR Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume f is of finite type. The following are equivalent:

(1) L is f -relatively ample, and
(2) there exist an open covering S =

⋃
Vj, for each j an integers dj ≥ 1,

nj ≥ 0, and immersions

ij : Xj = f−1(Vj) = Vj ×S X −→ Pnj
Vj

over Vj such that L⊗dj |Xj ∼= i∗jOP
nj
Vj

(1).

Proof. We see that (1) implies (2) by taking an affine open covering of S and
applying Lemma 39.4 to each of the restrictions of f and L. We see that (2)
implies (1) by Lemma 37.4. □
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Lemma 39.8.0FVC Let f : X → S be a morphism of schemes. Let N , L be invertible
OX-modules. Assume S is quasi-compact, f is of finite type, and L is f -ample.
Then N ⊗OX

L⊗d is f -very ample for all d≫ 1.

Proof. By Lemma 39.6 we reduce to the case S is affine. Combining Lemma 39.4
and Properties, Proposition 26.13 we can find an integer d0 such that N ⊗L⊗d0 is
globally generated. Choose global sections s0, . . . , sn of N ⊗ L⊗d0 which generate
it. This determines a morphism j : X → Pn

S over S. By Lemma 39.4 we can also
pick an integer d1 such that for all d ≥ d1 there exist sections td,0, . . . , td,n(d) of
L⊗d which generate it and define an immersion

jd = φL⊗d,td,0,...,td,n(d) : X −→ Pn(d)
S

over S. Then for d ≥ d0 + d1 we can consider the morphism

φN ⊗L⊗d,sj⊗td−d0,i
: X −→ P(n+1)(n(d−d0)+1)−1

S

This morphism is an immersion as it is the composition

X → Pn
S ×S Pn(d−d0)

S → P(n+1)(n(d−d0)+1)−1
S

where the first morphism is (j, jd−d0) and the second is the Segre embedding (Con-
structions, Lemma 13.6). Since j is an immersion, so is (j, jd−d0) (apply Lemma
3.1). We have a composition of immersions and hence an immersion (Schemes,
Lemma 24.3). □

40. Quasi-projective morphisms

01VV The discussion in the previous section suggests the following definitions. We take
our definition of quasi-projective from [DG67]. The version with the letter “H” is
the definition in [Har77].

Definition 40.1.01VW [DG67, II,
Definition 5.3.1] and
[Har77, page 103]

Let f : X → S be a morphism of schemes.
(1) We say f is quasi-projective if f is of finite type and there exists an f -

relatively ample invertible OX -module.
(2) We say f is H-quasi-projective if there exists a quasi-compact immersion

X → Pn
S over S for some n.13

(3) We say f is locally quasi-projective if there exists an open covering S =
⋃
Vj

such that each f−1(Vj)→ Vj is quasi-projective.

As this definition suggests the property of being quasi-projective is not local on S.
At a later stage we will be able to say more about the category of quasi-projective
schemes, see More on Morphisms, Section 49.

Lemma 40.2.0B3G A base change of a quasi-projective morphism is quasi-projective.

Proof. This follows from Lemmas 15.4 and 37.9. □

Lemma 40.3.0C4M Let f : X → Y and g : Y → S be morphisms of schemes. If S is
quasi-compact and f and g are quasi-projective, then g ◦ f is quasi-projective.

Proof. This follows from Lemmas 15.3 and 37.8. □

13This is not exactly the same as the definition in Hartshorne. Namely, the definition in
Hartshorne (8th corrected printing, 1997) is that f should be the composition of an open immersion
followed by a H-projective morphism (see Definition 43.1), which does not imply f is quasi-
compact. See Lemma 43.11 for the implication in the other direction.
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Lemma 40.4.01VX Let f : X → S be a morphism of schemes. If f is quasi-projective,
or H-quasi-projective or locally quasi-projective, then f is separated of finite type.

Proof. Omitted. □

Lemma 40.5.01VY A H-quasi-projective morphism is quasi-projective.

Proof. Omitted. □

Lemma 40.6.01VZ Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is locally quasi-projective.
(2) There exists an open covering S =

⋃
Vj such that each f−1(Vj) → Vj is

H-quasi-projective.

Proof. By Lemma 40.5 we see that (2) implies (1). Assume (1). The question is
local on S and hence we may assume S is affine, X of finite type over S and L is
a relatively ample invertible sheaf on X/S. By Lemma 39.4 we may assume L is
ample on X. By Lemma 39.3 we see that there exists an immersion of X into a
projective space over S, i.e., X is H-quasi-projective over S as desired. □

Lemma 40.7.0B3H [DG67, II,
Proposition 5.3.4
(i)]

A quasi-affine morphism of finite type is quasi-projective.

Proof. This follows from Lemma 37.6. □

Lemma 40.8.0C4N Let g : Y → S and f : X → Y be morphisms of schemes. If g ◦ f
is quasi-projective and f is quasi-compact14, then f is quasi-projective.

Proof. Observe that f is of finite type by Lemma 15.8. Thus the lemma follows
from Lemma 37.10 and the definitions. □

41. Proper morphisms

01W0 The notion of a proper morphism plays an important role in algebraic geometry. An
important example of a proper morphism will be the structure morphism Pn

S → S
of projective n-space, and this is in fact the motivating example leading to the
definition.

Definition 41.1.01W1 Let f : X → S be a morphism of schemes. We say f is proper
if f is separated, finite type, and universally closed.

The morphism from the affine line with zero doubled to the affine line is of finite
type and universally closed, so the separation condition is necessary in the definition
above. In the rest of this section we prove some of the basic properties of proper
morphisms and of universally closed morphisms.

Lemma 41.2.02K7 Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is universally closed.
(2) There exists an open covering S =

⋃
Vj such that f−1(Vj)→ Vj is univer-

sally closed for all indices j.

Proof. This is clear from the definition. □

14This follows if g is quasi-separated by Schemes, Lemma 21.14.
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Lemma 41.3.01W2 Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is proper.
(2) There exists an open covering S =

⋃
Vj such that f−1(Vj) → Vj is proper

for all indices j.

Proof. Omitted. □

Lemma 41.4.01W3 The composition of proper morphisms is proper. The same is true
for universally closed morphisms.

Proof. A composition of closed morphisms is closed. If X → Y → Z are univer-
sally closed morphisms and Z ′ → Z is any morphism, then we see that Z ′ ×Z X =
(Z ′ ×Z Y ) ×Y X → Z ′ ×Z Y is closed and Z ′ ×Z Y → Z ′ is closed. Hence the
result for universally closed morphisms. We have seen that “separated” and “finite
type” are preserved under compositions (Schemes, Lemma 21.12 and Lemma 15.3).
Hence the result for proper morphisms. □

Lemma 41.5.01W4 The base change of a proper morphism is proper. The same is true
for universally closed morphisms.

Proof. This is true by definition for universally closed morphisms. It is true for
separated morphisms (Schemes, Lemma 21.12). It is true for morphisms of finite
type (Lemma 15.4). Hence it is true for proper morphisms. □

Lemma 41.6.01W5 A closed immersion is proper, hence a fortiori universally closed.

Proof. The base change of a closed immersion is a closed immersion (Schemes,
Lemma 18.2). Hence it is universally closed. A closed immersion is separated
(Schemes, Lemma 23.8). A closed immersion is of finite type (Lemma 15.5). Hence
a closed immersion is proper. □

Lemma 41.7.01W6 Suppose given a commutative diagram of schemes

X //

��

Y

��
S

with Y separated over S.
(1) If X → S is universally closed, then the morphism X → Y is universally

closed.
(2) If X is proper over S, then the morphism X → Y is proper.

In particular, in both cases the image of X in Y is closed.

Proof. Assume that X → S is universally closed (resp. proper). We factor the
morphism as X → X ×S Y → Y . The first morphism is a closed immersion,
see Schemes, Lemma 21.10. Hence the first morphism is proper (Lemma 41.6).
The projection X ×S Y → Y is the base change of a universally closed (resp.
proper) morphism and hence universally closed (resp. proper), see Lemma 41.5.
Thus X → Y is universally closed (resp. proper) as the composition of universally
closed (resp. proper) morphisms (Lemma 41.4). □

The proof of the following lemma is due to Bjorn Poonen, see this location.

https://stacks.math.columbia.edu/tag/01W2
https://stacks.math.columbia.edu/tag/01W3
https://stacks.math.columbia.edu/tag/01W4
https://stacks.math.columbia.edu/tag/01W5
https://stacks.math.columbia.edu/tag/01W6
https://mathoverflow.net/questions/23337/is-a-universally-closed-morphism-of-schemes-quasi-compact/23528#23528
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Lemma 41.8.04XU Due to Bjorn
Poonen.

A universally closed morphism of schemes is quasi-compact.

Proof. Let f : X → S be a morphism. Assume that f is not quasi-compact. Our
goal is to show that f is not universally closed. By Schemes, Lemma 19.2 there
exists an affine open V ⊂ S such that f−1(V ) is not quasi-compact. To achieve our
goal it suffices to show that f−1(V ) → V is not universally closed, hence we may
assume that S = Spec(A) for some ring A.

Write X =
⋃
i∈I Xi where the Xi are affine open subschemes of X. Let T =

Spec(A[yi; i ∈ I]). Let Ti = D(yi) ⊂ T . Let Z be the closed set (X ×S T ) −⋃
i∈I(Xi×STi). It suffices to prove that the image fT (Z) of Z under fT : X×ST →

T is not closed.

There exists a point s ∈ S such that there is no neighborhood U of s in S such that
XU is quasi-compact. Otherwise we could cover S with finitely many such U and
Schemes, Lemma 19.2 would imply f quasi-compact. Fix such an s ∈ S.

First we check that fT (Zs) ̸= Ts. Let t ∈ T be the point lying over s with κ(t) =
κ(s) such that yi = 1 in κ(t) for all i. Then t ∈ Ti for all i, and the fiber of Zs → Ts
above t is isomorphic to (X −

⋃
i∈I Xi)s, which is empty. Thus t ∈ Ts − fT (Zs).

Assume fT (Z) is closed in T . Then there exists an element g ∈ A[yi; i ∈ I] with
fT (Z) ⊂ V (g) but t ̸∈ V (g). Hence the image of g in κ(t) is nonzero. In particular
some coefficient of g has nonzero image in κ(s). Hence this coefficient is invertible
on some neighborhood U of s. Let J be the finite set of j ∈ I such that yj appears
in g. Since XU is not quasi-compact, we may choose a point x ∈ X−

⋃
j∈J Xj lying

above some u ∈ U . Since g has a coefficient that is invertible on U , we can find a
point t′ ∈ T lying above u such that t′ ̸∈ V (g) and t′ ∈ V (yi) for all i /∈ J . This
is true because V (yi; i ∈ I, i ̸∈ J) = Spec(A[tj ; j ∈ J ]) and the set of points of this
scheme lying over u is bijective with Spec(κ(u)[tj ; j ∈ J ]). In other words t′ /∈ Ti
for each i /∈ J . By Schemes, Lemma 17.5 we can find a point z of X ×S T mapping
to x ∈ X and to t′ ∈ T . Since x ̸∈ Xj for j ∈ J and t′ ̸∈ Ti for i ∈ I \ J we see
that z ∈ Z. On the other hand fT (z) = t′ ̸∈ V (g) which contradicts fT (Z) ⊂ V (g).
Thus the assumption “fT (Z) closed” is wrong and we conclude indeed that fT is
not closed, as desired. □

The following lemma says that the image of a proper scheme (in a separated scheme
of finite type over the base) is proper.

Lemma 41.9.03GN Let S be a scheme. Let f : X → Y be a morphism of schemes over
S. If X is universally closed over S and f is surjective then Y is universally closed
over S. In particular, if also Y is separated and locally of finite type over S, then
Y is proper over S.

Proof. Assume X is universally closed and f surjective. Denote p : X → S,
q : Y → S the structure morphisms. Let S′ → S be a morphism of schemes.
The base change f ′ : XS′ → YS′ is surjective (Lemma 9.4), and the base change
p′ : XS′ → S′ is closed. If T ⊂ YS′ is closed, then (f ′)−1(T ) ⊂ XS′ is closed, hence
p′((f ′)−1(T )) = q′(T ) is closed. So q′ is closed. This proves the first statement.
Thus Y → S is quasi-compact by Lemma 41.8 and hence Y → S is proper by
definition if in addition Y → S is locally of finite type and separated. □

https://stacks.math.columbia.edu/tag/04XU
https://stacks.math.columbia.edu/tag/03GN
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Lemma 41.10.0AH6 Suppose given a commutative diagram of schemes

X
h

//

f ��

Y

g
��

S

Assume
(1) X → S is a universally closed (for example proper) morphism, and
(2) Y → S is separated and locally of finite type.

Then the scheme theoretic image Z ⊂ Y of h is proper over S and X → Z is
surjective.

Proof. The scheme theoretic image of h is constructed in Section 6. Since f is
quasi-compact (Lemma 41.8) we find that h is quasi-compact (Schemes, Lemma
21.14). Hence h(X) ⊂ Z is dense (Lemma 6.3). On the other hand h(X) is closed
in Y (Lemma 41.7) hence X → Z is surjective. Thus Z → S is a proper (Lemma
41.9). □

The target of a separated scheme under a surjective universally closed morphism is
separated.

Lemma 41.11.09MQ Let S be a scheme. Let f : X → Y be a surjective universally
closed morphism of schemes over S.

(1) If X is quasi-separated, then Y is quasi-separated.
(2) If X is separated, then Y is separated.
(3) If X is quasi-separated over S, then Y is quasi-separated over S.
(4) If X is separated over S, then Y is separated over S.

Proof. Parts (1) and (2) are a consequence of (3) and (4) for S = Spec(Z) (see
Schemes, Definition 21.3). Consider the commutative diagram

X

��

∆X/S

// X ×S X

��
Y

∆Y/S // Y ×S Y

The left vertical arrow is surjective (i.e., universally surjective). The right vertical
arrow is universally closed as a composition of the universally closed morphisms
X ×S X → X ×S Y → Y ×S Y . Hence it is also quasi-compact, see Lemma 41.8.

Assume X is quasi-separated over S, i.e., ∆X/S is quasi-compact. If V ⊂ Y ×S Y is
a quasi-compact open, then V ×Y×SY X → ∆−1

Y/S(V ) is surjective and V ×Y×SY X

is quasi-compact by our remarks above. We conclude that ∆Y/S is quasi-compact,
i.e., Y is quasi-separated over S.

Assume X is separated over S, i.e., ∆X/S is a closed immersion. Then X → Y ×S Y
is closed as a composition of closed morphisms. Since X → Y is surjective, it follows
that ∆Y/S(Y ) is closed in Y ×S Y . Hence Y is separated over S by the discussion
following Schemes, Definition 21.3. □

https://stacks.math.columbia.edu/tag/0AH6
https://stacks.math.columbia.edu/tag/09MQ
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42. Valuative criteria

0BX4 We have already discussed the valuative criterion for universal closedness and for
separatedness in Schemes, Sections 20 and 22. In this section we will discuss some
consequences and variants. In Limits, Section 15 we will show that it suffices to
consider discrete valuation rings when working with locally Noetherian schemes and
morphisms of finite type.
Lemma 42.1 (Valuative criterion for properness).0BX5 [DG67, II Theorem

7.3.8]
Let S be a scheme. Let f : X →

Y be a morphism of schemes over S. Assume f is of finite type and quasi-separated.
Then the following are equivalent

(1) f is proper,
(2) f satisfies the valuative criterion (Schemes, Definition 20.3),
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a unique
dotted arrow making the diagram commute.

Proof. Part (3) is a reformulation of (2). Thus the lemma is a formal consequence
of Schemes, Proposition 20.6 and Lemma 22.2 and the definitions. □

One usually does not have to consider all possible diagrams when testing the val-
uative criterion. We will call a valuative criterion as in the next lemma a “refined
valuative criterion”.
Lemma 42.2.0894 Let f : X → S and h : U → X be morphisms of schemes. As-
sume that f and h are quasi-compact and that h(U) is dense in X. If given any
commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

S

where A is a valuation ring with field of fractions K, there exists a unique dotted
arrow making the diagram commute, then f is universally closed. If moreover f is
quasi-separated, then f is separated.
Proof. To prove f is universally closed we will verify the existence part of the
valuative criterion for f which suffices by Schemes, Proposition 20.6. To do this,
consider a commutative diagram

Spec(K) //

��

X

��
Spec(A) // S

where A is a valuation ring andK is the fraction field of A. Note that since valuation
rings and fields are reduced, we may replace U , X, and S by their respective

https://stacks.math.columbia.edu/tag/0BX5
https://stacks.math.columbia.edu/tag/0894
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reductions by Schemes, Lemma 12.7. In this case the assumption that h(U) is
dense means that the scheme theoretic image of h : U → X is X, see Lemma 6.7.
We may also replace S by an affine open through which the morphism Spec(A)→ S
factors. Thus we may assume that S = Spec(R).
Let Spec(B) ⊂ X be an affine open through which the morphism Spec(K) → X
factors. Choose a polynomial algebra P over B and a B-algebra surjection P → K.
Then Spec(P ) → X is flat. Hence the scheme theoretic image of the morphism
U ×X Spec(P )→ Spec(P ) is Spec(P ) by Lemma 25.16. By Lemma 6.5 we can find
a commutative diagram

Spec(K ′) //

��

U ×X Spec(P )

��
Spec(A′) // Spec(P )

where A′ is a valuation ring and K ′ is the fraction field of A′ such that the closed
point of Spec(A′) maps to Spec(K) ⊂ Spec(P ). In other words, there is a B-algebra
map φ : K → A′/mA′ . Choose a valuation ring A′′ ⊂ A′/mA′ dominating φ(A)
with field of fractions K ′′ = A′/mA′ (Algebra, Lemma 50.2). We set

C = {λ ∈ A′ | λ mod mA′ ∈ A′′}.
which is a valuation ring by Algebra, Lemma 50.10. As C is an R-algebra with
fraction field K ′, we obtain a commutative diagram

Spec(K ′) //

��

U // X

��
Spec(C) //

66

S

as in the statement of the lemma. Thus a dotted arrow fitting into the diagram as
indicated. By the uniqueness assumption of the lemma the composition Spec(A′)→
Spec(C)→ X agrees with the given morphism Spec(A′)→ Spec(P )→ Spec(B) ⊂
X. Hence the restriction of the morphism to the spectrum of C/mA′ = A′′ induces
the given morphism Spec(K ′′) = Spec(A′/mA′) → Spec(K) → X. Let x ∈ X be
the image of the closed point of Spec(A′′)→ X. The image of the induced ring map
OX,x → A′′ is a local subring which is contained in K ⊂ K ′′. Since A is maximal
for the relation of domination in K and since A ⊂ A′′, we have A = K ∩ A′′. We
conclude that OX,x → A′′ factors through A ⊂ A′′. In this way we obtain our
desired arrow Spec(A)→ X.
Finally, assume f is quasi-separated. Then ∆ : X → X ×S X is quasi-compact.
Given a solid diagram

Spec(K) //

��

U
h // X

∆
��

Spec(A) //

55

X ×S X

where A is a valuation ring with field of fractions K, there exists a unique dotted
arrow making the diagram commute. Namely, the lower horizontal arrow is the
same thing as a pair of morphisms Spec(A) → X which can serve as the dotted
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arrow in the diagram of the lemma. Thus the required uniqueness shows that the
lower horizontal arrow factors through ∆. Hence we can apply the result we just
proved to ∆ : X → X ×S X and h : U → X and conclude that ∆ is universally
closed. Clearly this means that f is separated. □

Remark 42.3.0895 The assumption on uniqueness of the dotted arrows in Lemma 42.2
is necessary (details omitted). Of course, uniqueness is guaranteed if f is separated
(Schemes, Lemma 22.1).

Lemma 42.4.0BX6 Let S be a scheme. Let X, Y be schemes over S. Let s ∈ S and
x ∈ X, y ∈ Y points over s.

(1) Let f, g : X → Y be morphisms over S such that f(x) = g(x) = y and
f ♯x = g♯x : OY,y → OX,x. Then there is an open neighbourhood U ⊂ X with
f |U = g|U in the following cases
(a) Y is locally of finite type over S,
(b) X is integral,
(c) X is locally Noetherian, or
(d) X is reduced with finitely many irreducible components.

(2) Let φ : OY,y → OX,x be a local OS,s-algebra map. Then there exists an
open neighbourhood U ⊂ X of x and a morphism f : U → Y mapping x to
y with f ♯x = φ in the following cases
(a) Y is locally of finite presentation over S,
(b) Y is locally of finite type and X is integral,
(c) Y is locally of finite type and X is locally Noetherian, or
(d) Y is locally of finite type and X is reduced with finitely many irreducible

components.

Proof. Proof of (1). We may replace X, Y , S by suitable affine open neighbour-
hoods of x, y, s and reduce to the following algebra problem: given a ring R, two
R-algebra maps φ,ψ : B → A such that

(1) R → B is of finite type, or A is a domain, or A is Noetherian, or A is
reduced and has finitely many minimal primes,

(2) the two maps B → Ap are the same for some prime p ⊂ A,
show that φ,ψ define the same map B → Ag for a suitable g ∈ A, g ̸∈ p. If R→ B
is of finite type, let t1, . . . , tm ∈ B be generators of B as an R-algebra. For each j
we can find gj ∈ A, gj ̸∈ p such that φ(tj) and ψ(tj) have the same image in Agj .
Then we set g =

∏
gj . In the other cases (if A is a domain, Noetherian, or reduced

with finitely many minimal primes), we can find a g ∈ A, g ̸∈ p such that Ag ⊂ Ap.
See Algebra, Lemma 31.9. Thus the maps B → Ag are equal as desired.
Proof of (2). To do this we may replace X, Y , and S by suitable affine opens. Say
X = Spec(A), Y = Spec(B), and S = Spec(R). Let p ⊂ A be the prime ideal
corresponding to x. Let q ⊂ B be the prime corresponding to y. Then φ is a local
R-algebra map φ : Bq → Ap. If R → B is a ring map of finite presentation, then
there exists a g ∈ A \ p and an R-algebra map B → Ag such that

Bq φ
// Ap

B

OO

// Ag

OO

https://stacks.math.columbia.edu/tag/0895
https://stacks.math.columbia.edu/tag/0BX6
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commutes, see Algebra, Lemmas 127.3 and 9.9. The induced morphism Spec(Ag)→
Spec(B) works. If B is of finite type over R, let t1, . . . , tm ∈ B be generators of B as
an R-algebra. Then we can choose gj ∈ A, gj ̸∈ p such that φ(tj) ∈ Im(Agj → Ap).
Thus after replacing A by A[1/

∏
gj ] we may assume that B maps into the image

of A → Ap. If we can find a g ∈ A, g ̸∈ p such that Ag → Ap is injective, then
we’ll get the desired R-algebra map B → Ag. Thus the proof is finished by another
application of See Algebra, Lemma 31.9. □

Lemma 42.5.0BX7 Let S be a scheme. Let X, Y be schemes over S. Let x ∈ X. Let
U ⊂ X be an open and let f : U → Y be a morphism over S. Assume

(1) x is in the closure of U ,
(2) X is reduced with finitely many irreducible components or X is Noetherian,
(3) OX,x is a valuation ring,
(4) Y → S is proper

Then there exists an open U ⊂ U ′ ⊂ X containing x and an S-morphism f ′ : U ′ →
Y extending f .

Proof. It is harmless to replaceX by an open neighbourhood of x inX (small detail
omitted). By Properties, Lemma 29.8 we may assume X is affine with Γ(X,OX) ⊂
OX,x. In particular X is integral with a unique generic point ξ whose residue field
is the fraction field K of the valuation ring OX,x. Since x is in the closure of U
we see that U is not empty, hence U contains ξ. Thus by the valuative criterion
of properness (Lemma 42.1) there is a morphism t : Spec(OX,x)→ Y fitting into a
commutative diagram

Spec(K)

ξ

��

// Spec(OX,x)

t

��
U

f // Y

of morphisms of schemes over S. Applying Lemma 42.4 with y = t(x) and φ = t♯x
we obtain an open neighbourhood V ⊂ X of x and a morphism g : V → Y over S
which sends x to y and such that g♯x = t♯x. As Y → S is separated, the equalizer
E of f |U∩V and g|U∩V is a closed subscheme of U ∩ V , see Schemes, Lemma 21.5.
Since f and g determine the same morphism Spec(K)→ Y by construction we see
that E contains the generic point of the integral scheme U ∩ V . Hence E = U ∩ V
and we conclude that f and g glue to a morphism U ′ = U ∪V → Y as desired. □

43. Projective morphisms

01W7 We will use the definition of a projective morphism from [DG67]. The version of
the definition with the “H” is the one from [Har77]. The resulting definitions are
different. Both are useful.

Definition 43.1.01W8 Let f : X → S be a morphism of schemes.
(1) We say f is projective if X is isomorphic as an S-scheme to a closed sub-

scheme of a projective bundle P(E) for some quasi-coherent, finite type
OS-module E .

(2) We say f is H-projective if there exists an integer n and a closed immersion
X → Pn

S over S.
(3) We say f is locally projective if there exists an open covering S =

⋃
Ui such

that each f−1(Ui)→ Ui is projective.

https://stacks.math.columbia.edu/tag/0BX7
https://stacks.math.columbia.edu/tag/01W8
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As expected, a projective morphism is quasi-projective, see Lemma 43.10. Con-
versely, quasi-projective morphisms are often compositions of open immersions and
projective morphisms, see Lemma 43.12. For an overview of properties of projective
morphisms over a quasi-projective base, see More on Morphisms, Section 50.

Example 43.2.07ZS Let S be a scheme. Let A be a quasi-coherent graded OS-algebra
generated by A1 over A0. Assume furthermore that A1 is of finite type over OS .
Set X = Proj

S
(A). In this case X → S is projective. Namely, the morphism

associated to the graded OS-algebra map

Sym∗
OX

(A1) −→ A

is a closed immersion, see Constructions, Lemma 18.5.

Lemma 43.3.01W9 An H-projective morphism is H-quasi-projective. An H-projective
morphism is projective.

Proof. The first statement is immediate from the definitions. The second holds as
Pn
S is a projective bundle over S, see Constructions, Lemma 21.5. □

Lemma 43.4.01WB Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is locally projective.
(2) There exists an open covering S =

⋃
Ui such that each f−1(Ui) → Ui is

H-projective.

Proof. By Lemma 43.3 we see that (2) implies (1). Assume (1). For every point
s ∈ S we can find Spec(R) = U ⊂ S an affine open neighbourhood of s such
that XU is isomorphic to a closed subscheme of P(E) for some finite type, quasi-
coherent sheaf of OU -modules E . Write E = M̃ for some finite type R-module
M (see Properties, Lemma 16.1). Choose generators x0, . . . , xn ∈ M of M as an
R-module. Consider the surjective graded R-algebra map

R[X0, . . . , Xn] −→ SymR(M).

According to Constructions, Lemma 11.3 the corresponding morphism

P(E)→ Pn
R

is a closed immersion. Hence we conclude that f−1(U) is isomorphic to a closed
subscheme of Pn

U (as a scheme over U). In other words: (2) holds. □

Lemma 43.5.01WC A locally projective morphism is proper.

Proof. Let f : X → S be locally projective. In order to show that f is proper we
may work locally on the base, see Lemma 41.3. Hence, by Lemma 43.4 above we
may assume there exists a closed immersion X → Pn

S . By Lemmas 41.4 and 41.6
it suffices to prove that Pn

S → S is proper. Since Pn
S → S is the base change of

Pn
Z → Spec(Z) it suffices to show that Pn

Z → Spec(Z) is proper, see Lemma 41.5.
By Constructions, Lemma 8.8 the scheme Pn

Z is separated. By Constructions,
Lemma 8.9 the scheme Pn

Z is quasi-compact. It is clear that Pn
Z → Spec(Z) is

locally of finite type since Pn
Z is covered by the affine opens D+(Xi) each of which

is the spectrum of the finite type Z-algebra

Z[X0/Xi, . . . , Xn/Xi].

https://stacks.math.columbia.edu/tag/07ZS
https://stacks.math.columbia.edu/tag/01W9
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Finally, we have to show that Pn
Z → Spec(Z) is universally closed. This follows from

Constructions, Lemma 8.11 and the valuative criterion (see Schemes, Proposition
20.6). □

Lemma 43.6.0B5N Let f : X → S be a proper morphism of schemes. If there exists
an f -ample invertible sheaf on X, then f is locally projective.

Proof. If there exists an f -ample invertible sheaf, then we can locally on S find
an immersion i : X → Pn

S , see Lemma 39.4. Since X → S is proper the morphism
i is a closed immersion, see Lemma 41.7. □

Lemma 43.7.01WE A composition of H-projective morphisms is H-projective.

Proof. Suppose X → Y and Y → Z are H-projective. Then there exist closed
immersions X → Pn

Y over Y , and Y → Pm
Z over Z. Consider the following diagram

X //

��

Pn
Y

//

��

Pn
Pm
Z

}}

Pn
Z ×Z Pm

Z
// Pnm+n+m

Z

uu

Y //

��

Pm
Z

}}
Z

Here the rightmost top horizontal arrow is the Segre embedding, see Constructions,
Lemma 13.6. The diagram identifies X as a closed subscheme of Pnm+n+m

Z as
desired. □

Lemma 43.8.01WF A base change of a H-projective morphism is H-projective.

Proof. This is true because the base change of projective space over a scheme is
projective space, and the fact that the base change of a closed immersion is a closed
immersion, see Schemes, Lemma 18.2. □

Lemma 43.9.02V6 A base change of a (locally) projective morphism is (locally) pro-
jective.

Proof. This is true because the base change of a projective bundle over a scheme
is a projective bundle, the pullback of a finite type O-module is of finite type
(Modules, Lemma 9.2) and the fact that the base change of a closed immersion is
a closed immersion, see Schemes, Lemma 18.2. Some details omitted. □

Lemma 43.10.07RL A projective morphism is quasi-projective.

Proof. Let f : X → S be a projective morphism. Choose a closed immersion
i : X → P(E) where E is a quasi-coherent, finite type OS-module. Then L =
i∗OP(E)(1) is f -very ample. Since f is proper (Lemma 43.5) it is quasi-compact.
Hence Lemma 38.2 implies that L is f -ample. Since f is proper it is of finite type.
Thus we’ve checked all the defining properties of quasi-projective holds and we
win. □

Lemma 43.11.01WA Let f : X → S be a H-quasi-projective morphism. Then f factors
as X → X ′ → S where X → X ′ is an open immersion and X ′ → S is H-projective.

https://stacks.math.columbia.edu/tag/0B5N
https://stacks.math.columbia.edu/tag/01WE
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https://stacks.math.columbia.edu/tag/07RL
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MORPHISMS OF SCHEMES 101

Proof. By definition we can factor f as a quasi-compact immersion i : X → Pn
S

followed by the projection Pn
S → S. By Lemma 7.7 there exists a closed subscheme

X ′ ⊂ Pn
S such that i factors through an open immersion X → X ′. The lemma

follows. □

Lemma 43.12.07RM Let f : X → S be a quasi-projective morphism with S quasi-
compact and quasi-separated. Then f factors as X → X ′ → S where X → X ′ is
an open immersion and X ′ → S is projective.

Proof. Let L be f -ample. Since f is of finite type and S is quasi-compact L⊗n is
f -very ample for some n > 0, see Lemma 39.5. Replace L by L⊗n. Write F = f∗L.
This is a quasi-coherent OS-module by Schemes, Lemma 24.1 (quasi-projective
morphisms are quasi-compact and separated, see Lemma 40.4). By Properties,
Lemma 22.7 we can find a directed set I and a system of finite type quasi-coherent
OS-modules Ei over I such that F = colim Ei. Consider the compositions ψi :
f∗Ei → f∗F → L. Choose a finite affine open covering S =

⋃
j=1,...,m Vj . For each

j we can choose sections
sj,0, . . . , sj,nj ∈ Γ(f−1(Vj),L) = f∗L(Vj) = F(Vj)

which generate L over f−1Vj and define an immersion
f−1Vj −→ Pnj

Vj
,

see Lemma 39.1. Choose i such that there exist sections ej,t ∈ Ei(Vj) mapping to
sj,t in F for all j = 1, . . . ,m and t = 1, . . . , nj . Then the map ψi is surjective as
the sections f∗ej,t have the same image as the sections sj,t which generate L|f−1Vj .
Whence we obtain a morphism

rL,ψi : X −→ P(Ei)
over S such that over Vj we have a factorization

f−1Vj → P(Ei)|Vj → Pnj
Vj

of the immersion given above. It follows that rL,ψi |Vj is an immersion, see Lemma
3.1. Since S =

⋃
Vj we conclude that rL,ψi is an immersion. Note that rL,ψi

is quasi-compact as X → S is quasi-compact and P(Ei) → S is separated (see
Schemes, Lemma 21.14). By Lemma 7.7 there exists a closed subscheme X ′ ⊂ P(Ei)
such that i factors through an open immersion X → X ′. Then X ′ → S is projective
by definition and we win. □

Lemma 43.13.0BCL Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a morphism of schemes. Then

(1) f is projective if and only if f is quasi-projective and proper, and
(2) f is H-projective if and only if f is H-quasi-projective and proper.

Proof. If f is projective, then f is quasi-projective by Lemma 43.10 and proper
by Lemma 43.5. Conversely, if X → S is quasi-projective and proper, then we can
choose an open immersion X → X ′ with X ′ → S projective by Lemma 43.12. Since
X → S is proper, we see that X is closed in X ′ (Lemma 41.7), i.e., X → X ′ is
a (open and) closed immersion. Since X ′ is isomorphic to a closed subscheme of
a projective bundle over S (Definition 43.1) we see that the same thing is true for
X, i.e., X → S is a projective morphism. This proves (1). The proof of (2) is the
same, except it uses Lemmas 43.3 and 43.11. □
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Lemma 43.14.0C4P Let f : X → Y and g : Y → S be morphisms of schemes. If
S is quasi-compact and quasi-separated and f and g are projective, then g ◦ f is
projective.

Proof. By Lemmas 43.10 and 43.5 we see that f and g are quasi-projective and
proper. By Lemmas 41.4 and 40.3 we see that g ◦ f is proper and quasi-projective.
Thus g ◦ f is projective by Lemma 43.13. □

Lemma 43.15.0C4Q Let g : Y → S and f : X → Y be morphisms of schemes. If g ◦ f
is projective and g is separated, then f is projective.

Proof. Choose a closed immersion X → P(E) where E is a quasi-coherent, finite
type OS-module. Then we get a morphism X → P(E) ×S Y . This morphism is a
closed immersion because it is the composition

X → X ×S Y → P(E)×S Y
where the first morphism is a closed immersion by Schemes, Lemma 21.10 (and the
fact that g is separated) and the second as the base change of a closed immersion.
Finally, the fibre product P(E)×SY is isomorphic to P(g∗E) and pullback preserves
quasi-coherent, finite type modules. □

Lemma 43.16.087S Let S be a scheme which admits an ample invertible sheaf. Then
(1) any projective morphism X → S is H-projective, and
(2) any quasi-projective morphism X → S is H-quasi-projective.

Proof. The assumptions on S imply that S is quasi-compact and separated, see
Properties, Definition 26.1 and Lemma 26.11 and Constructions, Lemma 8.8. Hence
Lemma 43.12 applies and we see that (1) implies (2). Let E be a finite type quasi-
coherent OS-module. By our definition of projective morphisms it suffices to show
that P(E) → S is H-projective. If E is generated by finitely many global sections,
then the corresponding surjection O⊕n

S → E induces a closed immersion

P(E) −→ P(O⊕n
S ) = Pn

S

as desired. In general, let L be an invertible sheaf on S. By Properties, Proposition
26.13 there exists an integer n such that E ⊗OS

L⊗n is globally generated by finitely
many sections. Since P(E) = P(E ⊗OS

L⊗n) by Constructions, Lemma 20.1 this
finishes the proof. □

Lemma 43.17.0C6J Let f : X → S be a universally closed morphism. Let L be an
f -ample invertible OX-module. Then the canonical morphism

r : X −→ Proj
S

(⊕
d≥0

f∗L⊗d
)

of Lemma 37.4 is an isomorphism.

Proof. Observe that f is quasi-compact because the existence of an f -ample in-
vertible module forces f to be quasi-compact. By the lemma cited the morphism
r is an open immersion. On the other hand, the image of r is closed by Lemma
41.7 (the target of r is separated over S by Constructions, Lemma 16.9). Finally,
the image of r is dense by Properties, Lemma 26.11 (here we also use that it was
shown in the proof of Lemma 37.4 that the morphism r over affine opens of S is
given by the canonical morphism of Properties, Lemma 26.9). Thus we conclude
that r is a surjective open immersion, i.e., an isomorphism. □
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Lemma 43.18.0EKE Let f : X → S be a universally closed morphism. Let L be
an f -ample invertible OX-module. Let s ∈ Γ(X,L). Then Xs → S is an affine
morphism.

Proof. The question is local on S (Lemma 11.3) hence we may assume S is affine.
By Lemma 43.17 we can write X = Proj(A) where A is a graded ring and s
corresponds to f ∈ A1 and Xs = D+(f) (Properties, Lemma 26.9) which proves
the lemma by construction of Proj(A), see Constructions, Section 8. □

44. Integral and finite morphisms

01WG Recall that a ring map R → A is said to be integral if every element of A satisfies
a monic equation with coefficients in R. Recall that a ring map R → A is said to
be finite if A is finite as an R-module. See Algebra, Definition 36.1.

Definition 44.1.01WH Let f : X → S be a morphism of schemes.
(1) We say that f is integral if f is affine and if for every affine open Spec(R) =

V ⊂ S with inverse image Spec(A) = f−1(V ) ⊂ X the associated ring map
R→ A is integral.

(2) We say that f is finite if f is affine and if for every affine open Spec(R) =
V ⊂ S with inverse image Spec(A) = f−1(V ) ⊂ X the associated ring map
R→ A is finite.

It is clear that integral/finite morphisms are separated and quasi-compact. It is
also clear that a finite morphism is a morphism of finite type. Most of the lemmas
in this section are completely standard. But note the fun Lemma 44.7 at the end
of the section.

Lemma 44.2.02K8 Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is integral.
(2) There exists an affine open covering S =

⋃
Ui such that each f−1(Ui) is

affine and OS(Ui)→ OX(f−1(Ui)) is integral.
(3) There exists an open covering S =

⋃
Ui such that each f−1(Ui) → Ui is

integral.
Moreover, if f is integral then for every open subscheme U ⊂ S the morphism
f : f−1(U)→ U is integral.

Proof. See Algebra, Lemma 36.14. Some details omitted. □

Lemma 44.3.01WI Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is finite.
(2) There exists an affine open covering S =

⋃
Ui such that each f−1(Ui) is

affine and OS(Ui)→ OX(f−1(Ui)) is finite.
(3) There exists an open covering S =

⋃
Ui such that each f−1(Ui) → Ui is

finite.
Moreover, if f is finite then for every open subscheme U ⊂ S the morphism f :
f−1(U)→ U is finite.

Proof. See Algebra, Lemma 36.14. Some details omitted. □
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Lemma 44.4.01WJ A finite morphism is integral. An integral morphism which is locally
of finite type is finite.

Proof. See Algebra, Lemma 36.3 and Lemma 36.5. □

Lemma 44.5.01WK A composition of finite morphisms is finite. Same is true for
integral morphisms.

Proof. See Algebra, Lemmas 7.3 and 36.6. □

Lemma 44.6.01WL A base change of a finite morphism is finite. Same is true for
integral morphisms.

Proof. See Algebra, Lemma 36.13. □

Lemma 44.7.01WM Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is integral, and
(2) f is affine and universally closed.

Proof. Assume (1). An integral morphism is affine by definition. A base change
of an integral morphism is integral so in order to prove (2) it suffices to show that
an integral morphism is closed. This follows from Algebra, Lemmas 36.22 and 41.6.
Assume (2). We may assume f is the morphism f : Spec(A) → Spec(R) coming
from a ring map R → A. Let a be an element of A. We have to show that a is
integral over R, i.e. that in the kernel I of the map R[x]→ A sending x to a there
is a monic polynomial. Consider the ring B = A[x]/(ax−1) and let J be the kernel
of the composition R[x] → A[x] → B. If f ∈ J there exists q ∈ A[x] such that
f = (ax − 1)q in A[x] so if f =

∑
i fix

i and q =
∑
i qix

i, for all i ≥ 0 we have
fi = aqi−1 − qi. For n ≥ deg q + 1 the polynomial∑

i≥0
fix

n−i =
∑

i≥0
(aqi−1 − qi)xn−i = (a− x)

∑
i≥0

qix
n−i−1

is clearly in I; if f0 = 1 this polynomial is also monic, so we are reduced to
prove that J contains a polynomial with constant term 1. We do it by proving
Spec(R[x]/(J + (x)) is empty.
Since f is universally closed the base change Spec(A[x]) → Spec(R[x]) is closed.
Hence the image of the closed subset Spec(B) ⊂ Spec(A[x]) is the closed sub-
set Spec(R[x]/J) ⊂ Spec(R[x]), see Example 6.4 and Lemma 6.3. In particular
Spec(B) → Spec(R[x]/J) is surjective. Consider the following diagram where ev-
ery square is a pullback:

Spec(B) g // // Spec(R[x]/J) // Spec(R[x])

∅

OO

// Spec(R[x]/(J + (x)))

OO

// Spec(R)

0

OO

The bottom left corner is empty because it is the spectrum of R⊗R[x] B where the
map R[x]→ B sends x to an invertible element and R[x]→ R sends x to 0. Since g
is surjective this implies Spec(R[x]/(J + (x))) is empty, as we wanted to show. □

Lemma 44.8.02NT Let f : X → S be an integral morphism. Then every point of X is
closed in its fibre.
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Proof. See Algebra, Lemma 36.20. □

Lemma 44.9.0ECG Let f : X → Y be an integral morphism. Then dim(X) ≤ dim(Y ).
If f is surjective then dim(X) = dim(Y ).

Proof. Since the dimension of X and Y is the supremum of the dimensions of
the members of an affine open covering, we may assume Y and X are affine. The
inequality follows from Algebra, Lemma 112.3. The equality then follows from
Algebra, Lemmas 112.1 and 36.22. □

Lemma 44.10.02NU A finite morphism is quasi-finite.

Proof. This is implied by Algebra, Lemma 122.4 and Lemma 20.9. Alternatively,
all points in fibres are closed points by Lemma 44.8 (and the fact that a finite
morphism is integral) and use Lemma 20.6 (3) to see that f is quasi-finite at x for
all x ∈ X. □

Lemma 44.11.01WN Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is finite, and
(2) f is affine and proper.

Proof. This follows formally from Lemma 44.7, the fact that a finite morphism
is integral and separated, the fact that a proper morphism is the same thing as a
finite type, separated, universally closed morphism, and the fact that an integral
morphism of finite type is finite (Lemma 44.4). □

Lemma 44.12.035C A closed immersion is finite (and a fortiori integral).

Proof. True because a closed immersion is affine (Lemma 11.9) and a surjective
ring map is finite and integral. □

Lemma 44.13.0CYI Let Xi → Y , i = 1, . . . , n be finite morphisms of schemes. Then
X1 ⨿ . . .⨿Xn → Y is finite too.

Proof. Follows from the algebra fact that if R → Ai, i = 1, . . . , n are finite ring
maps, then R→ A1 × . . .×An is finite too. □

Lemma 44.14.035D Let f : X → Y and g : Y → Z be morphisms.
(1) If g ◦ f is finite and g separated then f is finite.
(2) If g ◦ f is integral and g separated then f is integral.

Proof. Assume g ◦ f is finite (resp. integral) and g separated. The base change
X×Z Y → Y is finite (resp. integral) by Lemma 44.6. The morphism X → X×Z Y
is a closed immersion as Y → Z is separated, see Schemes, Lemma 21.11. A
closed immersion is finite (resp. integral), see Lemma 44.12. The composition of
finite (resp. integral) morphisms is finite (resp. integral), see Lemma 44.5. Thus we
win. □

Lemma 44.15.03BB Let f : X → Y be a morphism of schemes. If f is finite and a
monomorphism, then f is a closed immersion.

Proof. This reduces to Algebra, Lemma 107.6. □

Lemma 44.16.0B3I A finite morphism is projective.
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Proof. Let f : X → S be a finite morphism. Then f∗OX is a quasi-coherent
OS-module (Lemma 11.5) of finite type (by our definition of finite morphisms and
Properties, Lemma 16.1). We claim there is a closed immersion

σ : X −→ P(f∗OX) = Proj
S

(Sym∗
OS

(f∗OX))

over S, which finishes the proof. Namely, we let σ be the morphism which corre-
sponds (via Constructions, Lemma 16.11) to the surjection

f∗f∗OX −→ OX
coming from the adjunction map f∗f∗ → id. Then σ is a closed immersion by
Schemes, Lemma 21.11 and Constructions, Lemma 21.4. □

45. Universal homeomorphisms

04DC The following definition is really superfluous since a universal homeomorphism is
really just an integral, universally injective and surjective morphism, see Lemma
45.5.

Definition 45.1.04DD A morphism f : X → Y of schemes is called a universal home-
omorphism if the base change f ′ : Y ′ ×Y X → Y ′ is a homeomorphism for every
morphism Y ′ → Y .

First we state the obligatory lemmas.

Lemma 45.2.0CEU The base change of a universal homeomorphism of schemes by any
morphism of schemes is a universal homeomorphism.

Proof. This is immediate from the definition. □

Lemma 45.3.0CEV The composition of a pair of universal homeomorphisms of schemes
is a universal homeomorphism.

Proof. Omitted. □

The following simple lemma is the key to characterizing universal homeomorphisms.

Lemma 45.4.04DE Let f : X → Y be a morphism of schemes. If f is a homeomorphism
onto a closed subset of Y then f is affine.

Proof. Let y ∈ Y be a point. If y ̸∈ f(X), then there exists an affine neighbour-
hood of y which is disjoint from f(X). If y ∈ f(X), let x ∈ X be the unique point
of X mapping to y. Let y ∈ V be an affine open neighbourhood. Let U ⊂ X be an
affine open neighbourhood of x which maps into V . Since f(U) ⊂ V ∩f(X) is open
in the induced topology by our assumption on f we may choose a h ∈ Γ(V,OY )
such that y ∈ D(h) and D(h)∩f(X) ⊂ f(U). Denote h′ ∈ Γ(U,OX) the restriction
of f ♯(h) to U . Then we see that D(h′) ⊂ U is equal to f−1(D(h)). In other words,
every point of Y has an open neighbourhood whose inverse image is affine. Thus f
is affine, see Lemma 11.3. □

Lemma 45.5.04DF Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f is a universal homeomorphism, and
(2) f is integral, universally injective and surjective.
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Proof. Assume f is a universal homeomorphism. By Lemma 45.4 we see that f
is affine. Since f is clearly universally closed we see that f is integral by Lemma
44.7. It is also clear that f is universally injective and surjective.

Assume f is integral, universally injective and surjective. By Lemma 44.7 f is
universally closed. Since it is also universally bijective (see Lemma 9.4) we see that
it is a universal homeomorphism. □

Lemma 45.6.054M Let X be a scheme. The canonical closed immersion Xred → X
(see Schemes, Definition 12.5) is a universal homeomorphism.

Proof. Omitted. □

Lemma 45.7.0896 Let f : X → S and S′ → S be morphisms of schemes. Assume
(1) S′ → S is a closed immersion,
(2) S′ → S is bijective on points,
(3) X ×S S′ → S′ is a closed immersion, and
(4) X → S is of finite type or S′ → S is of finite presentation.

Then f : X → S is a closed immersion.

Proof. Assumptions (1) and (2) imply that S′ → S is a universal homeomorphism
(for example because Sred = S′

red and using Lemma 45.6). Hence (3) implies that
X → S is homeomorphism onto a closed subset of S. Then X → S is affine by
Lemma 45.4. Let U ⊂ S be an affine open, say U = Spec(A). Then S′ = Spec(A/I)
by (1) for a locally nilpotent ideal I by (2). As f is affine we see that f−1(U) =
Spec(B). Assumption (4) tells us B is a finite type A-algebra (Lemma 15.2) or
that I is finitely generated (Lemma 21.7). Assumption (3) is that A/I → B/IB
is surjective. From Algebra, Lemma 126.9 if A → B is of finite type or Algebra,
Lemma 20.1 if I is finitely generated and hence nilpotent we deduce that A → B
is surjective. This means that f is a closed immersion, see Lemma 2.1. □

Lemma 45.8.0H2M Let f : X → Z be the composition of two morphisms g : X → Y
and h : Y → Z. If two of the morphisms {f, g, h} are universal homeomorphisms,
so is the third morphism.

Proof. If both of g and h are universal homeomorphisms, so is f by Lemma 45.3.

Suppose both of f and g are universal homeomorphisms. We want to show that h
is also. Now base change the diagram along an arbitrary morphism α : Z ′ → Z of
schemes, we get the following diagram with all squares Cartesian:

X ′ g′
//

��

Y ′ h′
//

��

Z ′

��
X

g // Y
h // Z.

Our assumption implies that the composition f ′ = h′ ◦ g′ : X ′ → Z ′ and g′ : X ′ →
Y ′ are homeomorphisms, therefore so is h′. This finishes the proof of h being a
universal homeomorphism.

Finally, assume f and h are universal homeomorphisms. We want to show that g is
a universal homeomorphism. Let β : Y ′ → Y be an arbitrary morphism of schemes.

https://stacks.math.columbia.edu/tag/054M
https://stacks.math.columbia.edu/tag/0896
https://stacks.math.columbia.edu/tag/0H2M


MORPHISMS OF SCHEMES 108

We get the following diagram with all squares Cartesian:

X ′ g′
//

��

Y ′

γ

��
X ′′ g′′

//

��

Y ′′ h′′
//

��

Y ′

h◦β
��

X
g // Y

h // Z.

Here the morphism γ : Y ′ → Y ′′ is defined by the universal property of fiber
products and the two morphisms idY ′ : Y ′ → Y ′ and β : Y ′ → Y . We shall
prove that g′ is a homeomorphism. Since the property of being a homeomorphism
has 2-out-of-3 property, we see that g′′ is a homeomorphism. Staring at the top
square, it suffices to prove that γ is a universal homeomorphism. Since h′′ is a
homeomorphism, we see that it is an affine morphism by Lemma 45.4 and a fortiori
separated (Lemma 11.2). Since h′′ ◦ γ is the identity, we see that γ is a closed
immersion by Schemes, Lemma 21.11. Since h′′ is bijective, it follows that γ is a
bijective closed immersion and hence a universal homeomorphism (for example by
the characterization in Lemma 45.5) as desired. □

46. Universal homeomorphisms of affine schemes

0CN6 In this section we characterize universal homeomorphisms of affine schemes.

Lemma 46.1.0CN7 Let A → B be a ring map such that the induced morphism of
schemes f : Spec(B) → Spec(A) is a universal homeomorphism, resp. a universal
homeomorphism inducing isomorphisms on residue fields, resp. universally closed,
resp. universally closed and universally injective. Then for any A-subalgebra B′ ⊂
B the same thing is true for f ′ : Spec(B′)→ Spec(A).

Proof. If f is universally closed, then B is integral over A by Lemma 44.7. Hence
B′ is integral over A and f ′ is universally closed (by the same lemma). This proves
the case where f is universally closed.
Continuing, we see that B is integral over B′ (Algebra, Lemma 36.15) which implies
Spec(B)→ Spec(B′) is surjective (Algebra, Lemma 36.17). Thus if A→ B induces
purely inseparable extensions of residue fields, then the same is true for A → B′.
This proves the case where f is universally closed and universally injective, see
Lemma 10.2.
The case where f is a universal homeomorphism follows from the remarks above,
Lemma 45.5, and the obvious observation that if f is surjective, then so is f ′.
If A → B induces isomorphisms on residue fields, then so does A → B′ (see
argument in second paragraph). In this way we see that the lemma holds in the
remaining case. □

Lemma 46.2.0CN8 Let A be a ring. Let B = colimBλ be a filtered colimit of A-algebras.
If each fλ : Spec(Bλ)→ Spec(A) is a universal homeomorphism, resp. a universal
homeomorphism inducing isomorphisms on residue fields, resp. universally closed,
resp. universally closed and universally injective, then the same thing is true for
f : Spec(B)→ Spec(A).
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Proof. If fλ is universally closed, then Bλ is integral over A by Lemma 44.7. Hence
B is integral over A and f is universally closed (by the same lemma). This proves
the case where each fλ is universally closed.
For a prime q ⊂ B lying over p ⊂ A denote qλ ⊂ Bλ the inverse image. Then
κ(q) = colim κ(qλ). Thus if A → Bλ induces purely inseparable extensions of
residue fields, then the same is true for A → B. This proves the case where fλ is
universally closed and universally injective, see Lemma 10.2.
The case where f is a universal homeomorphism follows from the remarks above
and Lemma 45.5 combined with the fact that prime ideals in B are the same thing
as compatible sequences of prime ideals in all of the Bλ.
If A → Bλ induces isomorphisms on residue fields, then so does A → B (see
argument in second paragraph). In this way we see that the lemma holds in the
remaining case. □

Lemma 46.3.0CN9 Let A ⊂ B be a ring extension. Let S ⊂ A be a multiplicative
subset. Let n ≥ 1 and bi ∈ B for 1 ≤ i ≤ n. Any x ∈ S−1B such that

x ̸∈ S−1A and bixi ∈ S−1A for i = 1, . . . , n
is equal to s−1y with s ∈ S and y ∈ B such that

y ̸∈ A and biyi ∈ A for i = 1, . . . , n

Proof. Omitted. Hint: clear denominators. □

Lemma 46.4.0CNA Let A ⊂ B be a ring extension. If there exists b ∈ B, b ̸∈ A and
an integer n ≥ 2 with bn ∈ A and bn+1 ∈ A, then there exists a b′ ∈ B, b′ ̸∈ A with
(b′)2 ∈ A and (b′)3 ∈ A.

Proof. Let b and n be as in the lemma. Then all sufficiently large powers of b are
in A. Namely, (bn)k(bn+1)i = b(k+i)n+i which implies any power bm with m ≥ n2

is in A. Hence if i ≥ 1 is the largest integer such that bi ̸∈ A, then (bi)2 ∈ A and
(bi)3 ∈ A. □

Lemma 46.5.0CNB Let A ⊂ B be a ring extension such that Spec(B)→ Spec(A) is a
universal homeomorphism inducing isomorphisms on residue fields. If A ̸= B, then
there exists a b ∈ B, b ̸∈ A with b2 ∈ A and b3 ∈ A.

Proof. Recall that A ⊂ B is integral (Lemma 44.7). By Lemma 46.1 we may
assume that B is generated by a single element over A. Hence B is finite over A
(Algebra, Lemma 36.5). Hence the support of B/A as an A-module is closed and
not empty (Algebra, Lemmas 40.5 and 40.2). Let p ⊂ A be a minimal prime of the
support. After replacing A ⊂ B by Ap ⊂ Bp (permissible by Lemma 46.3) we may
assume that (A,m) is a local ring, that B is finite over A, and that B/A has support
{m} as an A-module. Since B/A is a finite module, we see that I = AnnA(B/A)
satisfies m =

√
I (Algebra, Lemma 40.5). Let m′ ⊂ B be the unique prime ideal

lying over m. Because Spec(B) → Spec(A) is a homeomorphism, we find that
m′ =

√
IB. For f ∈ m′ pick n ≥ 1 such that fn ∈ IB. Then also fn+1 ∈ IB. Since

IB ⊂ A by our choice of I we conclude that fn, fn+1 ∈ A. Using Lemma 46.4 we
conclude our lemma is true if m′ ̸⊂ A. However, if m′ ⊂ A, then m′ = m and we
conclude that A = B as the residue fields are isomorphic as well by assumption.
This contradiction finishes the proof. □
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Lemma 46.6.0CNC Let A ⊂ B be a ring extension such that Spec(B) → Spec(A) is
a universal homeomorphism. If A ̸= B, then either there exists a b ∈ B, b ̸∈ A
with b2 ∈ A and b3 ∈ A or there exists a prime number p and a b ∈ B, b ̸∈ A with
pb ∈ A and bp ∈ A.

Proof. The argument is almost exactly the same as in the proof of Lemma 46.5
but we write everything out to make sure it works.

Recall that A ⊂ B is integral (Lemma 44.7). By Lemma 46.1 we may assume that
B is generated by a single element over A. Hence B is finite over A (Algebra,
Lemma 36.5). Hence the support of B/A as an A-module is closed and not empty
(Algebra, Lemmas 40.5 and 40.2). Let p ⊂ A be a minimal prime of the support.
After replacing A ⊂ B by Ap ⊂ Bp (permissible by Lemma 46.3) we may assume
that (A,m) is a local ring, that B is finite over A, and that B/A has support {m} as
an A-module. Since B/A is a finite module, we see that I = AnnA(B/A) satisfies
m =

√
I (Algebra, Lemma 40.5). Let m′ ⊂ B be the unique prime ideal lying over

m. Because Spec(B) → Spec(A) is a homeomorphism, we find that m′ =
√
IB.

For f ∈ m′ pick n ≥ 1 such that fn ∈ IB. Then also fn+1 ∈ IB. Since IB ⊂ A
by our choice of I we conclude that fn, fn+1 ∈ A. Using Lemma 46.4 we conclude
our lemma is true if m′ ̸⊂ A. If m′ ⊂ A, then m′ = m. Since A ̸= B we conclude
the map κ = A/m → B/m′ = κ′ of residue fields cannot be an isomorphism. By
Lemma 10.2 we conclude that the characteristic of κ is a prime number p and that
the extension κ′/κ is purely inseparable. Pick b ∈ B whose image in κ′ is an element
not contained in κ but whose pth power is in κ. Then b ̸∈ A, bp ∈ A, and pb ∈ A
(because pb ∈ m′ = m ⊂ A) as desired. □

Proposition 46.7.0CND Let A ⊂ B be a ring extension. The following are equivalent
(1) Spec(B)→ Spec(A) is a universal homeomorphism inducing isomorphisms

on residue fields, and
(2) every finite subset E ⊂ B is contained in an extension

A[b1, . . . , bn] ⊂ B

such that b2
i , b

3
i ∈ A[b1, . . . , bi−1] for i = 1, . . . , n.

Proof. Assume (1). Using transfinite recursion we construct for each ordinal α an
A-subalgebra Bα ⊂ B as follows. Set B0 = A. If α is a limit ordinal, then we
set Bα = colimβ<αBβ . If α = β + 1, then either Bβ = B in which case we set
Bα = Bβ or Bβ ̸= B, in which case we apply Lemma 46.5 to choose a bα ∈ B,
bα ̸∈ Bβ with b2

α, b
3
α ∈ Bβ and we set Bα = Bβ [bα] ⊂ B. Clearly, B = colimBα (in

fact B = Bα for some ordinal α as one sees by looking at cardinalities). We will
prove, by transfinite induction, that (2) holds for A→ Bα for every ordinal α. It is
clear for α = 0. Assume the statement holds for every β < α and let E ⊂ Bα be a
finite subset. If α is a limit ordinal, then Bα =

⋃
β<αBβ and we see that E ⊂ Bβ

for some β < α which proves the result in this case. If α = β+1, then Bα = Bβ [bα].
Thus any e ∈ E can be written as a polynomial e =

∑
de,ib

i
α with de,i ∈ Bβ . Let

D ⊂ Bβ be the set D = {de,i} ∪ {b2
α, b

3
α}. By induction assumption there exists an

A-subalgebra A[b1, . . . , bn] ⊂ Bβ as in the statement of the lemma containing D.
Then A[b1, . . . , bn, bα] ⊂ Bα is an A-subalgebra of Bα as in the statement of the
lemma containing E.
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Assume (2). Write B = colimBλ as the colimit of its finite A-subalgebras. By
Lemma 46.2 it suffices to show that Spec(Bλ)→ Spec(A) is a universal homeomor-
phism inducing isomorphisms on residue fields. Compositions of universally closed
morphisms are universally closed and the same thing for morphisms which induce
isomorphisms on residue fields. Thus it suffices to show that if A ⊂ B and B is
generated by a single element b with b2, b3 ∈ A, then (1) holds. Such an exten-
sion is integral and hence Spec(B) → Spec(A) is universally closed and surjective
(Lemma 44.7 and Algebra, Lemma 36.17). Note that (b2)3 = (b3)2 in A. For any
ring map φ : A→ K to a field K we see that there exists a λ ∈ K with φ(b2) = λ2

and φ(b3) = λ3. Namely, λ = 0 if φ(b2) = 0 and λ = φ(b3)/φ(b2) if not. Thus
B ⊗A K is a quotient of K[x]/(x2 − λ2, x3 − λ3). This ring has exactly one prime
with residue field K. This implies that Spec(B)→ Spec(A) is bijective and induces
isomorphisms on residue fields. Combined with universal closedness this shows (1)
is true, see Lemmas 45.5 and 10.2. □

Proposition 46.8.0CNE Let A ⊂ B be a ring extension. The following are equivalent
(1) Spec(B)→ Spec(A) is a universal homeomorphism, and
(2) every finite subset E ⊂ B is contained in an extension

A[b1, . . . , bn] ⊂ B

such that for i = 1, . . . , n we have
(a) b2

i , b
3
i ∈ A[b1, . . . , bi−1], or

(b) there exists a prime number p with pbi, bpi ∈ A[b1, . . . , bi−1].

Proof. The proof is exactly the same as the proof of Proposition 46.7 except for
the following changes:

(1) Use Lemma 46.6 instead of Lemma 46.5 which means that for each successor
ordinal α = β + 1 we either have b2

α, b
3
α ∈ Bβ or we have a prime p and

pbα, b
p
α ∈ Bβ .

(2) If α is a successor ordinal, then take D = {de,i} ∪ {b2
α, b

3
α} or take D =

{de,i} ∪ {pbα, bpα} depending on which case α falls into.
(3) In the proof of (2) ⇒ (1) we also need to consider the case where B is

generated over A by a single element b with pb, bp ∈ B for some prime
number p. Here A ⊂ B induces a universal homeomorphism on spectra for
example by Algebra, Lemma 46.7.

This finishes the proof. □

Lemma 46.9.0CNF Let p be a prime number. Let A→ B be a ring map which induces
an isomorphism A[1/p]→ B[1/p] (for example if p is nilpotent in A). The following
are equivalent

(1) Spec(B)→ Spec(A) is a universal homeomorphism, and
(2) the kernel of A → B is a locally nilpotent ideal and for every b ∈ B there

exists a p-power q with qb and bq in the image of A→ B.

Proof. If (2) holds, then (1) holds by Algebra, Lemma 46.7. Assume (1). Then
the kernel of A→ B consists of nilpotent elements by Algebra, Lemma 30.6. Thus
we may replace A by the image of A → B and assume that A ⊂ B. By Algebra,
Lemma 46.5 the set

B′ = {b ∈ B | pnb, bp
n

∈ A for some n ≥ 0}
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is an A-subalgebra of B (being closed under products is trivial). We have to show
B′ = B. If not, then according to Lemma 46.6 there exists a b ∈ B, b ̸∈ B′ with
either b2, b3 ∈ B′ or there exists a prime number ℓ with ℓb, bℓ ∈ B′. We will show
both cases lead to a contradiction, thereby proving the lemma.
Since A[1/p] = B[1/p] we can choose a p-power q such that qb ∈ A.

If b2, b3 ∈ B′ then also bq ∈ B′. By definition of B′ we find that (bq)q′ ∈ A for some
p-power q′. Then qq′b, bqq

′ ∈ A whence b ∈ B′ which is a contradiction.
Assume now there exists a prime number ℓ with ℓb, bℓ ∈ B′. If ℓ ̸= p then ℓb ∈ B′

and qb ∈ A ⊂ B′ imply b ∈ B′ a contradiction. Thus ℓ = p and bp ∈ B′ and we get
a contradiction exactly as before. □

Lemma 46.10.0EUI Let A be a ring. Let x, y ∈ A.
(1) If x3 = y2 in A, then A → B = A[t]/(t2 − x, t3 − y) induces bijections on

residue fields and a universal homeomorphism on spectra.
(2) If there is a prime number p such that ppx = yp in A, then A → B =

A[t]/(tp − x, pt− y) induces a universal homeomorphism on spectra.

Proof. We will use the criterion of Lemma 45.5 to check this. In both cases the
ring map is integral. Thus it suffices to show that given a field k and a ring map
φ : A → k the k-algebra B ⊗A k has a unique prime ideal whose residue field is
equal to k in case (1) and purely inseparable over k in case (2). See Lemma 10.2.
In case (1) set λ = 0 if φ(x) = 0 and set λ = φ(y)/φ(x) if not. Then B =
k[t]/(t2 − λ2, t3 − λ2). Thus the result is clear.
In case (2) if the characteristic of k is p, then we obtain φ(y) = 0 and B =
k[t]/(tp − φ(x)) which is a local Artinian k-algebra whose residue field is either k
or a degree p purely inseparable extension of k. If the characteristic of k is not p,
then setting λ = φ(y)/p we see B = k[t]/(t− λ) = k and we conclude as well. □

Lemma 46.11.0EUJ Let A→ B be a ring map.
(1) If A → B induces a universal homeomorphism on spectra, then B =

colimBi is a filtered colimit of finitely presented A-algebras Bi such that
A→ Bi induces a universal homeomorphism on spectra.

(2) If A → B induces isomorphisms on residue fields and a universal homeo-
morphism on spectra, then B = colimBi is a filtered colimit of finitely pre-
sented A-algebras Bi such that A → Bi induces isomorphisms on residue
fields and a universal homeomorphism on spectra.

Proof. Proof of (1). We will use the criterion of Algebra, Lemma 127.4. Let
A → C be of finite presentation and let φ : C → B be an A-algebra map. Let
B′ = φ(C) ⊂ B be the image. Then A→ B′ induces a universal homeomorphism on
spectra by Lemma 46.1. By Algebra, Lemma 127.2 we can write B′ = colimi∈I Bi
with A → Bi of finite presentation and surjective transition maps. By Algebra,
Lemma 127.3 we can choose an index 0 ∈ I and a factorization C → B0 → B′ of the
map C → B′. We claim that Spec(Bi) → Spec(A) is a universal homeomorphism
for i sufficiently large. The claim finishes the proof of (1).
Proof of the claim. By Lemma 45.6 the ring map Ared → B′

red induces a universal
homeomorphism on spectra. Thus Ared ⊂ B′

red by Algebra, Lemma 30.6. Set-
ting A′ = Im(A → B′) we have surjections A → A′ → Ared inducing bijections
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Spec(Ared) = Spec(A′) = Spec(A). Thus A′ ⊂ B′ induces a universal homeomor-
phism on spectra. By Proposition 46.8 and the fact that B′ is finite type over A′

we can find n and b′
1, . . . , b

′
n ∈ B′ such that B′ = A′[b′

1, . . . , b
′
n] and such that for

j = 1, . . . , n we have
(1) (b′

j)2, (b′
j)3 ∈ A′[b′

1, . . . , b
′
j−1], or

(2) there exists a prime number p with pb′
j , (b′

j)p ∈ A′[b′
1, . . . , b

′
j−1].

Choose b1, . . . , bn ∈ B0 lifting b′
1, . . . , b

′
n. For i ≥ 0 denote bj,i the image of bj in

Bi. For large enough i we will have for j = 1, . . . , n
(1) b2

j,i, b
3
j,i ∈ Ai[b1,i, . . . , bj−1,i], or

(2) there exists a prime number p with pbj,i, b
p
j,i ∈ Ai[b1,i, . . . , bj−1,i].

Here Ai ⊂ Bi is the image of A→ Bi. Observe that A→ Ai is a surjective ring map
whose kernel is a locally nilpotent ideal. After increasing i more if necessary, we may
assume Bi is generated by b1, . . . , bn over Ai, in other words Bi = Ai[b1, . . . , bn].
By Algebra, Lemmas 46.7 and 46.4 we conclude that A → Ai → Ai[b1] → . . . →
Ai[b1, . . . , bn] = Bi induce universal homeomorphisms on spectra. This finishes the
proof of the claim.

The proof of (2) is exactly the same. □

47. Absolute weak normalization and seminormalization

0EUK Motivated by the results proved in the previous section we give the following defi-
nition.

Definition 47.1.0EUL Let A be a ring.
(1) We say A is seminormal if for all x, y ∈ A with x3 = y2 there is a unique

a ∈ A with x = a2 and y = a3.
(2) We say A is absolutely weakly normal if (a) A is seminormal and (b) for

any prime number p and x, y ∈ A with ppx = yp there is a unique a ∈ A
with x = ap and y = pa.

An amusing observation, see [Cos82], is that in the definition of seminormal rings
it suffices15 to assume the existence of a. Absolutely weakly normal schemes were
defined in [Ryd07, Appendix B].

Lemma 47.2.0EUM Being seminormal or being absolutely weakly normal is a local
property of rings, see Properties, Definition 4.1.

Proof. Suppose that A is seminormal and f ∈ A. Let x′, y′ ∈ Af with (x′)3 =
(y′)2. Write x′ = x/f2n and y′ = y/f3n for some n ≥ 0 and x, y ∈ A. After
replacing x, y by f2mx, f3my and n by n+m, we see that x3 = y2 in A. Then we
find a unique a ∈ A with x = a2 and y = a3. Setting a′ = a/fn we get x′ = (a′)2

and y′ = (a′)3 as desired. Uniqueness of a′ follows from uniqueness of a. In exactly
the same manner the reader shows that if A is absolutely weakly normal, then Af
is absolutely weakly normal.

15Let A be a ring such that for all x, y ∈ A with x3 = y2 there is an a ∈ A with x = a2 and
y = a3. Then A is reduced: if x2 = 0, then x2 = x3 and hence there exists an a such that x = a3

and x = a2. Then x = a3 = ax = a4 = x2 = 0. Finally, if a2
1 = a2

2 and a3
1 = a3

2 for a1, a2 in
a reduced ring, then (a1 − a2)3 = a3

1 − 3a2
1a2 + 3a1a2

2 − a3
2 = (1 − 3 + 3 − 1)a3

1 = 0 and hence
a1 = a2.
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Assume A is a ring and f1, . . . , fn ∈ A generate the unit ideal. Assume Afi is
seminormal for each i. Let x, y ∈ A with x3 = y2. For each i we find a unique
ai ∈ Afi with x = a2

i and y = a3
i in Afi . By the uniqueness and the result of

the first paragraph (which tells us that Afifj is seminormal) we see that ai and
aj map to the same element of Afifj . By Algebra, Lemma 24.2 we find a unique
a ∈ A mapping to ai in Afi for all i. Then x = a2 and y = a3 by the same token.
Clearly this a is unique. Thus A is seminormal. If we assume Afi is absolutely
weakly normal, then the exact same argument shows that A is absolutely weakly
normal. □

Next we define seminormal schemes and absolutely weakly normal schemes.

Definition 47.3.0EUN Let X be a scheme.
(1) We say X is seminormal if every x ∈ X has an affine open neighbourhood

Spec(R) = U ⊂ X such that the ring R is seminormal.
(2) We say X is absolutely weakly normal if every x ∈ X has an affine open

neighbourhood Spec(R) = U ⊂ X such that the ring R is absolutely weakly
normal.

Here is the obligatory lemma.

Lemma 47.4.0EUP Let X be a scheme. The following are equivalent:
(1) The scheme X is seminormal.
(2) For every affine open U ⊂ X the ring OX(U) is seminormal.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

seminormal.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is seminormal.
Moreover, if X is seminormal then every open subscheme is seminormal. The same
statements are true with “seminormal” replaced by “absolutely weakly normal”.

Proof. Combine Properties, Lemma 4.3 and Lemma 47.2. □

Lemma 47.5.0EUQ A seminormal scheme or ring is reduced. A fortiori the same is
true for absolutely weakly normal schemes or rings.

Proof. Let A be a ring. If a ∈ A is nonzero but a2 = 0, then a2 = 02 and a3 = 03

and hence A is not seminormal. □

Lemma 47.6.0EUR Let A be a ring.
(1) The category of ring maps A→ B inducing a universal homeomorphism on

spectra has a final object A→ Aawn.
(2) Given A → B in the category of (1) the resulting map B → Aawn is an

isomorphism if and only if B is absolutely weakly normal.
(3) The category of ring maps A→ B inducing isomorphisms on residue fields

and a universal homeomorphism on spectra has a final object A→ Asn.
(4) Given A → B in the category of (3) the resulting map B → Asn is an

isomorphism if and only if B is seminormal.
For any ring map φ : A → A′ there are unique maps φawn : Aawn → (A′)awn and
φsn : Asn → (A′)sn compatible with φ.
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Proof. We prove (1) and (2) and we omit the proof of (3) and (4) and the final
statement. Consider the category of A-algebras of the form

B = A[x1, . . . , xn]/J

where J is a finitely generated ideal such that A → B defines a universal home-
omorphism on spectra. We claim this category is directed (Categories, Definition
19.1). Namely, given

B = A[x1, . . . , xn]/J and B′ = A[x1, . . . , xn′ ]/J ′

then we can consider
B′′ = A[x1, . . . , xn+n′ ]/J ′′

where J ′′ is generated by the elements of J and the elements f(xn+1, . . . , xn+n′)
where f ∈ J ′. Then we have A-algebra homomorphisms B → B′′ and B′ → B′′

which induce an isomorphism B ⊗A B′ → B′′. It follows from Lemmas 45.2 and
45.3 that Spec(B′′) → Spec(A) is a universal homeomorphism and hence A → B′′

is in our category. Finally, given φ,φ′ : B → B′ in our category with B as displayed
above, then we consider the quotient B′′ of B′ by the ideal generated by φ(xi) −
φ′(xi), i = 1, . . . , n. Since Spec(B′) = Spec(B) we see that Spec(B′′) → Spec(B′)
is a bijective closed immersion hence a universal homeomorphism. Thus B′′ is in
our category and φ,φ′ are equalized by B′ → B′′. This completes the proof of our
claim. We set

Aawn = colimB

where the colimit is over the category just described. Observe that A → Aawn

induces a universal homeomorphism on spectra by Lemma 46.2 (this is where we
use the category is directed).

Given a ring map A→ B of finite presentation inducing a universal homeomorphism
on spectra, we get a canonical map B → Aawn by the very construction of Aawn.
Since every A → B as in (1) is a filtered colimit of A → B as in (1) of finite
presentation (Lemma 46.11), we see that A→ Aawn is final in the category (1).

Let x, y ∈ Aawn be elements such that x3 = y2. Then Aawn → Aawn[t]/(t2 −
x, t3 − y) induces a universal homeomorphism on spectra by Lemma 46.10. Thus
A→ Aawn[t]/(t2−x, t3−y) is in the category (1) and we obtain a unique A-algebra
map Aawn[t]/(t2 − x, t3 − y) → Aawn. The image a ∈ Aawn of t is therefore the
unique element such that a2 = x and a3 = y in Aawn. In exactly the same manner,
given a prime p and x, y ∈ Aawn with ppx = yp we find a unique a ∈ Aawn with
ap = x and pq = y. Thus Aawn is absolutely weakly normal by definition.

Finally, let A→ B be in the category (1) with B absolutely weakly normal. Since
Aawn → Bawn induces a universal homeomorphism on spectra and since Aawn is
reduced (Lemma 47.5) we find Aawn ⊂ Bawn (see Algebra, Lemma 30.6). If this
inclusion is not an equality, then Lemma 46.6 implies there is an element b ∈ Bawn,
b ̸∈ Aawn such that either b2, b3 ∈ Aawn or pb, bp ∈ Aawn for some prime number p.
However, by the existence and uniqueness in Definition 47.1 this forces b ∈ Aawn
and hence we obtain the contradiction that finishes the proof. □

Lemma 47.7.0EUS Let X be a scheme.
(1) The category of universal homeomorphisms Y → X has an initial object

Xawn → X.
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(2) Given Y → X in the category of (1) the resulting morphism Xawn → Y is
an isomorphism if and only if Y is absolutely weakly normal.

(3) The category of universal homeomorphisms Y → X which induce ismomor-
phisms on residue fields has an initial object Xsn → X.

(4) Given Y → X in the category of (3) the resulting morphism Xsn → Y is
an isomorphism if and only if Y is seminormal.

For any morphism h : X ′ → X of schemes there are unique morphisms hawn :
(X ′)awn → Xawn and hsn : (X ′)sn → Xsn compatible with h.

Proof. We will prove (1) and (2) and omit the proof of (3) and (4). Let h : X ′ → X
be a morphism of schemes. If (1) holds for X and X ′, then X ′ ×X Xawn → X ′

is a universal homeomorphism and hence we get a unique morphism (X ′)awn →
X ′ ×X Xawn over X ′ by the universal property of (X ′)awn → X ′. Composed with
the projection X ′×XXawn → Xawn we obtain hawn. If in addition (2) holds for X
and X ′ and h is an open immersion, then X ′×X Xawn is absolutely weakly normal
(Lemma 47.4) and we deduce that (X ′)awn → X ′ ×X Xawn is an isomorphism.

Recall that any universal homeomorphism is affine, see Lemma 45.4. Thus if X is
affine then (1) and (2) follow immediately from Lemma 47.6. Let X be a scheme and
let B be the set of affine opens of X. For each U ∈ B we obtain Uawn → U and for
V ⊂ U , V,U ∈ B we obtain a canonical isomorphism ρV,U : V awn → V ×U Uawn by
the discussion in the previous paragraph. Thus by relative glueing (Constructions,
Lemma 2.1) we obtain a morphism Xawn → X which restricts to Uawn over U
compatibly with the ρV,U . Next, let Y → X be a universal homeomorphism. Then
U ×X Y → U is a universal homeomorphism for U ∈ B and we obtain a unique
morphism gU : Uawn → U ×X Y over U . These gU are compatible with the
morphisms ρV,U ; details omitted. Hence there is a unique morphism g : Xawn → Y
over X agreeing with gU over U , see Constructions, Remark 2.3. This proves (1)
for X. Part (2) follows because it holds affine locally. □

Definition 47.8.0EUT Let X be a scheme.
(1) The morphism Xsn → X constructed in Lemma 47.7 is the seminormal-

ization of X.
(2) The morphism Xawn → X constructed in Lemma 47.7 is the absolute weak

normalization of X.

To be sure, the seminormalization Xsn of X is a seminormal scheme and the abso-
lute weak normalization Xawn is an absolutely weakly normal scheme. Moreover,
for any morphism h : Y → X of schemes we obtain a canonical commutative
diagram

Y awn

hawn

��

// Y sn

hsn

��

// Y

h
��

Xawn // Xsn // X

of schemes; the arrows hsn and hawn are the unique ones compatible with h.

Lemma 47.9.0H3G Let X be a scheme. The following are equivalent
(1) X is seminormal,
(2) X is equal to its own seminormalization, i.e., the morphism Xsn → X is

an isomorphism,
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(3) if π : Y → X is a universal homomorphism inducing isomorphisms on
residue fields with Y reduced, then π is an isomorphism.

Proof. The equivalence of (1) and (2) is clear from Lemma 47.7. If (3) holds, then
Xsn → X is an isomorphism and we see that (2) holds.

Assume (2) holds and let π : Y → X be a universal homomorphism inducing
isomorphisms on residue fields with Y reduced. Then there exists a factorization
X → Y → X of idX by Lemma 47.7. Then X → Y is a closed immersion (by
Schemes, Lemma 21.11 and the fact that π is separated for example by Lemma
10.3). Since X → Y is also a bijection on points, the reducedness of Y shows that
it has to be an isomorphism. This finishes the proof. □

Lemma 47.10.0H3H Let X be a scheme. The following are equivalent
(1) X is absolutely weakly normal,
(2) X is equal to its own absolute weak normalization, i.e., the morphism

Xawn → X is an isomorphism,
(3) if π : Y → X is a universal homomorphism with Y reduced, then π is an

isomorphism.

Proof. This is proved in exactly the same manner as Lemma 47.9. □

48. Finite locally free morphisms

02K9 In many papers the authors use finite flat morphisms when they really mean finite
locally free morphisms. The reason is that if the base is locally Noetherian then
this is the same thing. But in general it is not, see Exercises, Exercise 5.3.

Definition 48.1.02KA Let f : X → S be a morphism of schemes. We say f is finite
locally free if f is affine and f∗OX is a finite locally free OS-module. In this case
we say f is has rank or degree d if the sheaf f∗OX is finite locally free of degree d.

Note that if f : X → S is finite locally free then S is the disjoint union of open and
closed subschemes Sd such that f−1(Sd)→ Sd is finite locally free of degree d.

Lemma 48.2.02KB Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is finite locally free,
(2) f is finite, flat, and locally of finite presentation.

If S is locally Noetherian these are also equivalent to
(3) f is finite and flat.

Proof. Let V ⊂ S be affine open. In all three cases the morphism is affine hence
f−1(V ) is affine. Thus we may write V = Spec(R) and f−1(V ) = Spec(A) for some
R-algebra A. Assume (1). This means we can cover S by affine opens V = Spec(R)
such that A is finite free as an R-module. Then R→ A is of finite presentation by
Algebra, Lemma 7.4. Thus (2) holds. Conversely, assume (2). For every affine open
V = Spec(R) of S the ring map R→ A is finite and of finite presentation and A is
flat as an R-module. By Algebra, Lemma 36.23 we see that A is finitely presented
as an R-module. Thus Algebra, Lemma 78.2 implies A is finite locally free. Thus
(1) holds. The Noetherian case follows as a finite module over a Noetherian ring is
a finitely presented module, see Algebra, Lemma 31.4. □
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Lemma 48.3.02KC A composition of finite locally free morphisms is finite locally free.

Proof. Omitted. □

Lemma 48.4.02KD A base change of a finite locally free morphism is finite locally free.

Proof. Omitted. □

Lemma 48.5.04MH Let f : X → S be a finite locally free morphism of schemes. There
exists a disjoint union decomposition S =

∐
d≥0 Sd by open and closed subschemes

such that setting Xd = f−1(Sd) the restrictions f |Xd are finite locally free mor-
phisms Xd → Sd of degree d.

Proof. This is true because a finite locally free sheaf locally has a well defined
rank. Details omitted. □

Lemma 48.6.03HW Let f : Y → X be a finite morphism with X affine. There exists a
diagram

Z ′

  

Y ′
i

oo

��

// Y

��
X ′ // X

where
(1) Y ′ → Y and X ′ → X are surjective finite locally free,
(2) Y ′ = X ′ ×X Y ,
(3) i : Y ′ → Z ′ is a closed immersion,
(4) Z ′ → X ′ is finite locally free, and
(5) Z ′ =

⋃
j=1,...,m Z

′
j is a (set theoretic) finite union of closed subschemes,

each of which maps isomorphically to X ′.

Proof. Write X = Spec(A) and Y = Spec(B). See also More on Algebra, Section
21. Let x1, . . . , xn ∈ B be generators of B over A. For each i we can choose a
monic polynomial Pi(T ) ∈ A[T ] such that P (xi) = 0 in B. By Algebra, Lemma
136.14 (applied n times) there exists a finite locally free ring extension A ⊂ A′ such
that each Pi splits completely:

Pi(T ) =
∏

k=1,...,di
(T − αik)

for certain αik ∈ A′. Set
C = A′[T1, . . . , Tn]/(P1(T1), . . . , Pn(Tn))

and B′ = A′ ⊗A B. The map C → B′, Ti 7→ 1 ⊗ xi is an A′-algebra surjection.
Setting X ′ = Spec(A′), Y ′ = Spec(B′) and Z ′ = Spec(C) we see that (1) – (4)
hold. Part (5) holds because set theoretically Spec(C) is the union of the closed
subschemes cut out by the ideals

(T1 − α1k1 , T2 − α2k2 , . . . , Tn − αnkn)
for any 1 ≤ ki ≤ di. □

The following lemma is stated in the correct generality in Lemma 56.4 below.

Lemma 48.7.03HX Let f : Y → X be a finite morphism of schemes. Let T ⊂ Y be
a closed nowhere dense subset of Y . Then f(T ) ⊂ X is a closed nowhere dense
subset of X.

https://stacks.math.columbia.edu/tag/02KC
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Proof. By Lemma 44.11 we know that f(T ) ⊂ X is closed. Let X =
⋃
Xi be an

affine covering. Since T is nowhere dense in Y , we see that also T ∩ f−1(Xi) is
nowhere dense in f−1(Xi). Hence if we can prove the theorem in the affine case,
then we see that f(T ) ∩Xi is nowhere dense. This then implies that T is nowhere
dense in X by Topology, Lemma 21.4.

Assume X is affine. Choose a diagram

Z ′

  

Y ′
i

oo

f ′

��

a
// Y

f

��
X ′ b // X

as in Lemma 48.6. The morphisms a, b are open since they are finite locally free
(Lemmas 48.2 and 25.10). Hence T ′ = a−1(T ) is nowhere dense, see Topology,
Lemma 21.6. The morphism b is surjective and open. Hence, if we can prove
f ′(T ′) = b−1(f(T )) is nowhere dense, then f(T ) is nowhere dense, see Topology,
Lemma 21.6. As i is a closed immersion, by Topology, Lemma 21.5 we see that
i(T ′) ⊂ Z ′ is closed and nowhere dense. Thus we have reduced the problem to the
case discussed in the following paragraph.

Assume that Y =
⋃
i=1,...,n Yi is a finite union of closed subsets, each mapping

isomorphically to X. Consider Ti = Yi ∩ T . If each of the Ti is nowhere dense in
Yi, then each f(Ti) is nowhere dense in X as Yi → X is an isomorphism. Hence
f(T ) = f(Ti) is a finite union of nowhere dense closed subsets of X and we win, see
Topology, Lemma 21.2. Suppose not, say T1 contains a nonempty open V ⊂ Y1.
We are going to show this leads to a contradiction. Consider Y2 ∩ V ⊂ V . This
is either a proper closed subset, or equal to V . In the first case we replace V by
V \ V ∩ Y2, so V ⊂ T1 is open in Y1 and does not meet Y2. In the second case we
have V ⊂ Y1 ∩Y2 is open in both Y1 and Y2. Repeat sequentially with i = 3, . . . , n.
The result is a disjoint union decomposition

{1, . . . , n} = I1 ⨿ I2, 1 ∈ I1

and an open V of Y1 contained in T1 such that V ⊂ Yi for i ∈ I1 and V ∩Yi = ∅ for
i ∈ I2. Set U = f(V ). This is an open of X since f |Y1 : Y1 → X is an isomorphism.
Then

f−1(U) = V ⨿
⋃

i∈I2
(Yi ∩ f−1(U))

As
⋃
i∈I2

Yi is closed, this implies that V ⊂ f−1(U) is open, hence V ⊂ Y is open.
This contradicts the assumption that T is nowhere dense in Y , as desired. □

49. Rational maps

01RR Let X be a scheme. Note that if U , V are dense open in X, then so is U ∩ V .

Definition 49.1.01RS Let X, Y be schemes.
(1) Let f : U → Y , g : V → Y be morphisms of schemes defined on dense open

subsets U , V of X. We say that f is equivalent to g if f |W = g|W for some
W ⊂ U ∩ V dense open in X.

(2) A rational map from X to Y is an equivalence class for the equivalence
relation defined in (1).

https://stacks.math.columbia.edu/tag/01RS
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(3) If X, Y are schemes over a base scheme S we say that a rational map from
X to Y is an S-rational map from X to Y if there exists a representative
f : U → Y of the equivalence class which is an S-morphism.

We say that two morphisms f , g as in (1) of the definition define the same rational
map instead of saying that they are equivalent. In some cases rational maps are
determined by maps on local rings at generic points.

Lemma 49.2.0BX8 Let S be a scheme. Let X and Y be schemes over S. Assume X
has finitely many irreducible components with generic points x1, . . . , xn. Let si ∈ S
be the image of xi. Consider the map{

S-rational maps
from X to Y

}
−→

{
(y1, φ1, . . . , yn, φn) where yi ∈ Y lies over si and
φi : OY,yi → OX,xi is a local OS,si-algebra map

}
which sends f : U → Y to the 2n-tuple with yi = f(xi) and φi = f ♯xi . Then

(1) If Y → S is locally of finite type, then the map is injective.
(2) If Y → S is locally of finite presentation, then the map is bijective.
(3) If Y → S is locally of finite type and X reduced, then the map is bijective.

Proof. Observe that any dense open of X contains the points xi so the construction
makes sense. To prove (1) or (2) we may replace X by any dense open. Thus if
Z1, . . . , Zn are the irreducible components of X, then we may replace X by X \⋃
i̸=j Zi ∩Zj . After doing this X is the disjoint union of its irreducible components

(viewed as open and closed subschemes). Then both the right hand side and the
left hand side of the arrow are products over the irreducible components and we
reduce to the case where X is irreducible.

Assume X is irreducible with generic point x lying over s ∈ S. Part (1) follows
from part (1) of Lemma 42.4. Parts (2) and (3) follow from part (2) of the same
lemma. □

Definition 49.3.01RT Let X be a scheme. A rational function on X is a rational map
from X to A1

Z.

See Constructions, Definition 5.1 for the definition of the affine line A1. Let X
be a scheme over S. For any open U ⊂ X a morphism U → A1

Z is the same
as a morphism U → A1

S over S. Hence a rational function is also the same as a
S-rational map from X into A1

S .

Recall that we have the canonical identification Mor(T,A1
Z) = Γ(T,OT ) for any

scheme T , see Schemes, Example 15.2. Hence A1
Z is a ring-object in the category

of schemes. More precisely, the morphisms

+ : A1
Z ×A1

Z −→ A1
Z

(f, g) 7−→ f + g

∗ : A1
Z ×A1

Z −→ A1
Z

(f, g) 7−→ fg

satisfy all the axioms of the addition and multiplication in a ring (commutative
with 1 as always). Hence also the set of rational maps into A1

Z has a natural ring
structure.

https://stacks.math.columbia.edu/tag/0BX8
https://stacks.math.columbia.edu/tag/01RT


MORPHISMS OF SCHEMES 121

Definition 49.4.01RU Let X be a scheme. The ring of rational functions on X is the
ring R(X) whose elements are rational functions with addition and multiplication
as just described.

For schemes with finitely many irreducible components we can compute this.

Lemma 49.5.01RV Let X be a scheme with finitely many irreducible components
X1, . . . , Xn. If ηi ∈ Xi is the generic point, then

R(X) = OX,η1 × . . .×OX,ηn
If X is reduced this is equal to

∏
κ(ηi). If X is integral then R(X) = OX,η = κ(η)

is a field.

Proof. Let U ⊂ X be an open dense subset. Then Ui = (U ∩Xi) \ (
⋃
j ̸=iXj) is

nonempty open as it contained ηi, contained in Xi, and
⋃
Ui ⊂ U ⊂ X is dense.

Thus the identification in the lemma comes from the string of equalities

R(X) = colimU⊂X open dense Mor(U,A1
Z)

= colimU⊂X open denseOX(U)

= colimηi∈Ui⊂X open
∏
OX(Ui)

=
∏

colimηi∈Ui⊂X openOX(Ui)

=
∏
OX,ηi

where the second equality is Schemes, Example 15.2. The final statement follows
from Algebra, Lemma 25.1. □

Definition 49.6.01RW Let X be an integral scheme. The function field, or the field of
rational functions of X is the field R(X).

We may occasionally indicate this field k(X) instead of R(X). We can use the
notion of the function field to elucidate the separation condition on an integral
scheme. Note that by Lemma 49.5 on an integral scheme every local ring OX,x may
be viewed as a local subring of R(X).

Lemma 49.7.02NF Let X be an integral separated scheme. Let Z1, Z2 be distinct
irreducible closed subsets of X. Let ηi be the generic point of Zi. If Z1 ̸⊂ Z2, then
OX,η1 ̸⊂ OX,η2 as subrings of R(X). In particular, if Z1 = {x} consists of one
closed point x, there exists a function regular in a neighborhood of x which is not
in OX,η2 .

Proof. First observe that under the assumption of X being separated, there is a
unique map of schemes Spec(OX,η2)→ X over X such that the composition

Spec(R(X)) −→ Spec(OX,η2) −→ X

is the canonical map Spec(R(X)) → X. Namely, there is the canonical map can :
Spec(OX,η2) → X, see Schemes, Equation (13.1.1). Given a second morphism
a to X, we have that a agrees with can on the generic point of Spec(OX,η2) by
assumption. Now X being separated guarantees that the subset in Spec(OX,η2)
where these two maps agree is closed, see Schemes, Lemma 21.5. Hence a = can
on all of Spec(OX,η2).
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Assume Z1 ̸⊂ Z2 and assume on the contrary that OX,η1 ⊂ OX,η2 as subrings of
R(X). Then we would obtain a second morphism

Spec(OX,η2) −→ Spec(OX,η1) −→ X.

By the above this composition would have to be equal to can. This implies that η2
specializes to η1 (see Schemes, Lemma 13.2). But this contradicts our assumption
Z1 ̸⊂ Z2. □

Definition 49.8.0A1X Let φ be a rational map between two schemes X and Y . We
say φ is defined in a point x ∈ X if there exists a representative (U, f) of φ with
x ∈ U . The domain of definition of φ is the set of all points where φ is defined.

With this definition it isn’t true in general that φ has a representative which is
defined on all of the domain of definition.

Lemma 49.9.0A1Y Let X and Y be schemes. Assume X reduced and Y separated. Let
φ be a rational map from X to Y with domain of definition U ⊂ X. Then there
exists a unique morphism f : U → Y representing φ. If X and Y are schemes over
a separated scheme S and if φ is an S-rational map, then f is a morphism over S.

Proof. Let (V, g) and (V ′, g′) be representatives of φ. Then g, g′ agree on a dense
open subscheme W ⊂ V ∩ V ′. On the other hand, the equalizer E of g|V ∩V ′ and
g′|V ∩V ′ is a closed subscheme of V ∩ V ′ (Schemes, Lemma 21.5). Now W ⊂ E
implies that E = V ∩ V ′ set theoretically. As V ∩ V ′ is reduced we conclude
E = V ∩ V ′ scheme theoretically, i.e., g|V ∩V ′ = g′|V ∩V ′ . It follows that we can
glue the representatives g : V → Y of φ to a morphism f : U → Y , see Schemes,
Lemma 14.1. We omit the proof of the final statement. □

In general it does not make sense to compose rational maps. The reason is that the
image of a representative of the first rational map may have empty intersection with
the domain of definition of the second. However, if we assume that our schemes are
irreducible and we look at dominant rational maps, then we can compose rational
maps.

Definition 49.10.0A1Z Let X and Y be irreducible schemes. A rational map from X
to Y is called dominant if any representative f : U → Y is a dominant morphism
of schemes.

By Lemma 8.6 it is equivalent to require that the generic point η ∈ X maps to
the generic point ξ of Y , i.e., f(η) = ξ for any representative f : U → Y . We
can compose a dominant rational map φ between irreducible schemes X and Y
with an arbitrary rational map ψ from Y to Z. Namely, choose representatives
f : U → Y with U ⊂ X open dense and g : V → Z with V ⊂ Y open dense.
Then W = f−1(V ) ⊂ X is open nonempty (because it contains the generic point
of X) and we let ψ ◦ φ be the equivalence class of g ◦ f |W : W → Z. We omit the
verification that this is well defined.
In this way we obtain a category whose objects are irreducible schemes and whose
morphisms are dominant rational maps. Given a base scheme S we can similarly
define a category whose objects are irreducible schemes over S and whose morphisms
are dominant S-rational maps.

Definition 49.11.0A20 Let X and Y be irreducible schemes.
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(1) We say X and Y are birational if X and Y are isomorphic in the category
of irreducible schemes and dominant rational maps.

(2) Assume X and Y are schemes over a base scheme S. We say X and Y
are S-birational if X and Y are isomorphic in the category of irreducible
schemes over S and dominant S-rational maps.

If X and Y are birational irreducible schemes, then the set of rational maps from
X to Z is bijective with the set of rational map from Y to Z for all schemes
Z (functorially in Z). For “general” irreducible schemes this is just one possible
definition. Another would be to require X and Y have isomorphic rings of rational
functions. For varieties these conditions are equivalent, see Lemma 50.6.

Lemma 49.12.0BAA Let X and Y be irreducible schemes.
(1) The schemes X and Y are birational if and only if they have isomorphic

nonempty opens.
(2) Assume X and Y are schemes over a base scheme S. Then X and Y are

S-birational if and only if there are nonempty opens U ⊂ X and V ⊂ Y
which are S-isomorphic.

Proof. Assume X and Y are birational. Let f : U → Y and g : V → X define
inverse dominant rational maps from X to Y and from Y to X. We may assume
V affine. We may replace U by an affine open of f−1(V ). As g ◦ f is the identity
as a dominant rational map, we see that the composition U → V → X is the
identity on a dense open of U . Thus after replacing U by a smaller affine open
we may assume that U → V → X is the inclusion of U into X. It follows that
U → V is an immersion (apply Schemes, Lemma 21.11 to U → g−1(U) → U).
However, switching the roles of U and V and redoing the argument above, we see
that there exists a nonempty affine open V ′ ⊂ V such that the inclusion factors
as V ′ → U → V . Then V ′ → U is necessarily an open immersion. Namely,
V ′ → f−1(V ′) → V ′ are monomorphisms (Schemes, Lemma 23.8) composing to
the identity, hence isomorphisms. Thus V ′ is isomorphic to an open of both X and
Y . In the S-rational maps case, the exact same argument works. □

Remark 49.13.0BX9 Here is a generalization of the category of irreducible schemes
and dominant rational maps. For a scheme X denote X0 the set of points x ∈ X
with dim(OX,x) = 0, in other words, X0 is the set of generic points of irreducible
components of X. Then we can consider the category with

(1) objects are schemes X such that every quasi-compact open has finitely
many irreducible components, and

(2) morphisms from X to Y are rational maps f : U → Y from X to Y such
that f(U0) = Y 0.

If U ⊂ X is a dense open of a scheme, then U0 ⊂ X0 need not be an equality, but
if X is an object of our category, then this is the case. Thus given two morphisms
in our category, the composition is well defined and a morphism in our category.

Remark 49.14.01RX There is a variant of Definition 49.1 where we consider only those
morphism U → Y defined on scheme theoretically dense open subschemes U ⊂ X.
We use Lemma 7.6 to see that we obtain an equivalence relation. An equivalence
class of these is called a pseudo-morphism from X to Y . If X is reduced the two
notions coincide.
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50. Birational morphisms

01RN You may be used to the notion of a birational map of varieties having the property
that it is an isomorphism over an open subset of the target. However, in general
a birational morphism may not be an isomorphism over any nonempty open, see
Example 50.4. Here is the formal definition.

Definition 50.1.01RO [GD60, (2.2.9)]Let X, Y be schemes. Assume X and Y have finitely many
irreducible components. We say a morphism f : X → Y is birational if

(1) f induces a bijection between the set of generic points of irreducible com-
ponents of X and the set of generic points of the irreducible components of
Y , and

(2) for every generic point η ∈ X of an irreducible component of X the local
ring map OY,f(η) → OX,η is an isomorphism.

We will see below that the fibres of a birational morphism over generic points are
singletons. Moreover, we will see that in most cases one encounters in practice the
existence a birational morphism between irreducible schemes X and Y implies X
and Y are birational schemes.

Lemma 50.2.01RP Let f : X → Y be a morphism of schemes having finitely many
irreducible components. If f is birational then f is dominant.

Proof. Follows from Lemma 8.2 and the definition. □

Lemma 50.3.0BAB Let f : X → Y be a birational morphism of schemes having finitely
many irreducible components. If y ∈ Y is the generic point of an irreducible com-
ponent, then the base change X ×Y Spec(OY,y)→ Spec(OY,y) is an isomorphism.

Proof. We may assume Y = Spec(B) is affine and irreducible. Then X is irre-
ducible too. If we prove the result for any nonempty affine open U ⊂ X, then the
result holds for X (small argument omitted). Hence we may assume X is affine too,
say X = Spec(A). Let y ∈ Y correspond to the minimal prime q ⊂ B. By assump-
tion A has a unique minimal prime p lying over q and Bq → Ap is an isomorphism.
It follows that Aq → κ(p) is surjective, hence pAq is a maximal ideal. On the other
hand pAq is the unique minimal prime of Aq. We conclude that pAq is the unique
prime of Aq and that Aq = Ap. Since Aq = A⊗B Bq the lemma follows. □

Example 50.4.01RQ Here are two examples of birational morphisms which are not
isomorphisms over any open of the target.

First example. Let k be an infinite field. Let A = k[x]. Let B = k[x, {yα}α∈k]/((x−
α)yα, yαyβ). There is an inclusion A ⊂ B and a retraction B → A setting all
yα equal to zero. Both the morphism Spec(A) → Spec(B) and the morphism
Spec(B)→ Spec(A) are birational but not an isomorphism over any open.

Second example. Let A be a domain. Let S ⊂ A be a multiplicative subset not
containing 0. With B = S−1A the morphism f : Spec(B)→ Spec(A) is birational.
If there exists an open U of Spec(A) such that f−1(U) → U is an isomorphism,
then there exists an a ∈ A such that each every element of S becomes invertible in
the principal localization Aa. Taking A = Z and S the set of odd integers give a
counter example.

https://stacks.math.columbia.edu/tag/01RO
https://stacks.math.columbia.edu/tag/01RP
https://stacks.math.columbia.edu/tag/0BAB
https://stacks.math.columbia.edu/tag/01RQ


MORPHISMS OF SCHEMES 125

Lemma 50.5.0BAC Let f : X → Y be a birational morphism of schemes having finitely
many irreducible components over a base scheme S. Assume one of the following
conditions is satisfied

(1) f is locally of finite type and Y reduced,
(2) f is locally of finite presentation.

Then there exist dense opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V and f |U :
U → V is an isomorphism. In particular if X and Y are irreducible, then X and
Y are S-birational.

Proof. There is an immediate reduction to the case where X and Y are irreducible
which we omit. Moreover, after shrinking further and we may assume X and Y
are affine, say X = Spec(A) and Y = Spec(B). By assumption A, resp. B has a
unique minimal prime p, resp. q, the prime p lies over q, and Bq = Ap. By Lemma
50.3 we have Bq = Aq = Ap.
Suppose B → A is of finite type, say A = B[x1, . . . , xn]. There exist a bi ∈ B and
gi ∈ B \ q such that bi/gi maps to the image of xi in Aq. Hence bi − gixi maps
to zero in Ag′

i
for some g′

i ∈ B \ q. Setting g =
∏
gig

′
i we see that Bg → Ag is

surjective. If moreover Y is reduced, then the map Bg → Bq is injective and hence
Bg → Ag is injective as well. This proves case (1).
Proof of (2). By the argument given in the previous paragraph we may assume that
B → A is surjective. As f is locally of finite presentation the kernel J ⊂ B is a
finitely generated ideal. Say J = (b1, . . . , br). Since Bq = Aq there exist gi ∈ B \ q
such that gibi = 0. Setting g =

∏
gi we see that Bg → Ag is an isomorphism. □

Lemma 50.6.0BAD Let S be a scheme. Let X and Y be irreducible schemes locally
of finite presentation over S. Let x ∈ X and y ∈ Y be the generic points. The
following are equivalent

(1) X and Y are S-birational,
(2) there exist nonempty opens of X and Y which are S-isomorphic, and
(3) x and y map to the same point s of S and OX,x and OY,y are isomorphic

as OS,s-algebras.

Proof. We have seen the equivalence of (1) and (2) in Lemma 49.12. It is imme-
diate that (2) implies (3). To finish we assume (3) holds and we prove (1). By
Lemma 49.2 there is a rational map f : U → Y which sends x ∈ U to y and in-
duces the given isomorphism OY,y ∼= OX,x. Thus f is a birational morphism and
hence induces an isomorphism on nonempty opens by Lemma 50.5. This finishes
the proof. □

Lemma 50.7.0552 Let S be a scheme. Let X and Y be integral schemes locally of
finite type over S. Let x ∈ X and y ∈ Y be the generic points. The following are
equivalent

(1) X and Y are S-birational,
(2) there exist nonempty opens of X and Y which are S-isomorphic, and
(3) x and y map to the same point s ∈ S and κ(x) ∼= κ(y) as κ(s)-extensions.

Proof. We have seen the equivalence of (1) and (2) in Lemma 49.12. It is immedi-
ate that (2) implies (3). To finish we assume (3) holds and we prove (1). Observe
that OX,x = κ(x) and OY,y = κ(y) by Algebra, Lemma 25.1. By Lemma 49.2
there is a rational map f : U → Y which sends x ∈ U to y and induces the given
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isomorphism OY,y ∼= OX,x. Thus f is a birational morphism and hence induces an
isomorphism on nonempty opens by Lemma 50.5. This finishes the proof. □

51. Generically finite morphisms

02NV In this section we characterize maps between schemes which are locally of finite
type and which are “generically finite” in some sense.

Lemma 51.1.02NW Let X, Y be schemes. Let f : X → Y be locally of finite type.
Let η ∈ Y be a generic point of an irreducible component of Y . The following are
equivalent:

(1) the set f−1({η}) is finite,
(2) there exist affine opens Ui ⊂ X, i = 1, . . . , n and V ⊂ Y with f(Ui) ⊂ V ,

η ∈ V and f−1({η}) ⊂
⋃
Ui such that each f |Ui : Ui → V is finite.

If f is quasi-separated, then these are also equivalent to
(3) there exist affine opens V ⊂ Y , and U ⊂ X with f(U) ⊂ V , η ∈ V and

f−1({η}) ⊂ U such that f |U : U → V is finite.
If f is quasi-compact and quasi-separated, then these are also equivalent to

(4) there exists an affine open V ⊂ Y , η ∈ V such that f−1(V )→ V is finite.

Proof. The question is local on the base. Hence we may replace Y by an affine
neighbourhood of η, and we may and do assume throughout the proof below that
Y is affine, say Y = Spec(R).
It is clear that (2) implies (1). Assume that f−1({η}) = {ξ1, . . . , ξn} is finite.
Choose affine opens Ui ⊂ X with ξi ∈ Ui. By Algebra, Lemma 122.10 we see that
after replacing Y by a standard open in Y each of the morphisms Ui → Y is finite.
In other words (2) holds.
It is clear that (3) implies (1). Assume f is quasi-separated and (1). Write
f−1({η}) = {ξ1, . . . , ξn}. There are no specializations among the ξi by Lemma
20.7. Since each ξi maps to the generic point η of an irreducible component of
Y , there cannot be a nontrivial specialization ξ ⇝ ξi in X (since ξ would map
to η as well). We conclude each ξi is a generic point of an irreducible component
of X. Since Y is affine and f quasi-separated we see X is quasi-separated. By
Properties, Lemma 29.1 we can find an affine open U ⊂ X containing each ξi. By
Algebra, Lemma 122.10 we see that after replacing Y by a standard open in Y the
morphisms U → Y is finite. In other words (3) holds.
It is clear that (4) implies all of (1) – (3) with no further assumptions on f . Suppose
that f is quasi-compact and quasi-separated. We have to show that the equivalent
conditions (1) – (3) imply (4). Let U , V be as in (3). Replace Y by V . Since
f is quasi-compact and Y is quasi-compact (being affine) we see that X is quasi-
compact. Hence Z = X \ U is quasi-compact, hence the morphism f |Z : Z → Y
is quasi-compact. By construction of Z we see that η ̸∈ f(Z). Hence by Lemma
8.5 we see that there exists an affine open neighbourhood V ′ of η in Y such that
f−1(V ′) ∩ Z = ∅. Then we have f−1(V ′) ⊂ U and this means that f−1(V ′) → V ′

is finite. □

Example 51.2.03HY Let A =
∏
n∈N F2. Every element of A is an idempotent. Hence

every prime ideal is maximal with residue field F2. Thus the topology on X =
Spec(A) is totally disconnected and quasi-compact. The projection maps A → F2
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define open points of Spec(A). It cannot be the case that all the points of X are
open since X is quasi-compact. Let x ∈ X be a closed point which is not open.
Then we can form a scheme Y which is two copies of X glued along X \ {x}.
In other words, this is X with x doubled, compare Schemes, Example 14.3. The
morphism f : Y → X is quasi-compact, finite type and has finite fibres but is not
quasi-separated. The point x ∈ X is a generic point of an irreducible component of
X (since X is totally disconnected). But properties (3) and (4) of Lemma 51.1 do
not hold. The reason is that for any open neighbourhood x ∈ U ⊂ X the inverse
image f−1(U) is not affine because functions on f−1(U) cannot separate the two
points lying over x (proof omitted; this is a nice exercise). Hence the condition that
f is quasi-separated is necessary in parts (3) and (4) of the lemma.

Remark 51.3.03HZ An alternative to Lemma 51.1 is the statement that a quasi-finite
morphism is finite over a dense open of the target. This will be shown in More on
Morphisms, Lemma 45.2.

Lemma 51.4.0BAH Let X, Y be schemes. Let f : X → Y be locally of finite type. Let
X0, resp. Y 0 denote the set of generic points of irreducible components of X, resp.
Y . Let η ∈ Y 0. The following are equivalent

(1) f−1({η}) ⊂ X0,
(2) f is quasi-finite at all points lying over η,
(3) f is quasi-finite at all ξ ∈ X0 lying over η.

Proof. Condition (1) implies there are no specializations among the points of the
fibre Xη. Hence (2) holds by Lemma 20.6. The implication (2)⇒ (3) is immediate.
Since η is a generic point of Y , the generic points of Xη are generic points of X.
Hence (3) and Lemma 20.6 imply the generic points of Xη are also closed. Thus all
points of Xη are generic and we see that (1) holds. □

Lemma 51.5.0BAI Let X, Y be schemes. Let f : X → Y be locally of finite type. Let
X0, resp. Y 0 denote the set of generic points of irreducible components of X, resp.
Y . Assume

(1) X0 and Y 0 are finite and f−1(Y 0) = X0,
(2) either f is quasi-compact or f is separated.

Then there exists a dense open V ⊂ Y such that f−1(V )→ V is finite.

Proof. Since Y has finitely many irreducible components, we can find a dense open
which is a disjoint union of its irreducible components. Thus we may assume Y is
irreducible affine with generic point η. Then the fibre over η is finite as X0 is finite.

Assume f is separated and Y irreducible affine. Choose V ⊂ Y and U ⊂ X as
in Lemma 51.1 part (3). Since f |U : U → V is finite, we see that U ⊂ f−1(V ) is
closed as well as open (Lemmas 41.7 and 44.11). Thus f−1(V ) = U ⨿W for some
open subscheme W of X. However, since U contains all the generic points of X we
conclude that W = ∅ as desired.

Assume f is quasi-compact and Y irreducible affine. Then X is quasi-compact,
hence there exists a dense open subscheme U ⊂ X which is separated (Properties,
Lemma 29.3). Since the set of generic points X0 is finite, we see that X0 ⊂ U .
Thus η ̸∈ f(X \ U). Since X \ U → Y is quasi-compact, we conclude that there is
a nonempty open V ⊂ Y such that f−1(V ) ⊂ U , see Lemma 8.3. After replacing
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X by f−1(V ) and Y by V we reduce to the separated case which we dealt with in
the preceding paragraph. □

Lemma 51.6.0BAJ Let X, Y be schemes. Let f : X → Y be a birational morphism
between schemes which have finitely many irreducible components. Assume

(1) either f is quasi-compact or f is separated, and
(2) either f is locally of finite type and Y is reduced or f is locally of finite

presentation.
Then there exists a dense open V ⊂ Y such that f−1(V )→ V is an isomorphism.

Proof. By Lemma 51.5 we may assume that f is finite. Since Y has finitely many
irreducible components, we can find a dense open which is a disjoint union of its
irreducible components. Thus we may assume Y is irreducible. By Lemma 50.5
we find a nonempty open U ⊂ X such that f |U : U → Y is an open immersion.
After removing the closed (as f finite) subset f(X \U) from Y we see that f is an
isomorphism. □

Lemma 51.7.02NX Let X, Y be integral schemes. Let f : X → Y be locally of finite
type. Assume f is dominant. The following are equivalent:

(1) the extension R(Y ) ⊂ R(X) has transcendence degree 0,
(2) the extension R(Y ) ⊂ R(X) is finite,
(3) there exist nonempty affine opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V

and f |U : U → V is finite, and
(4) the generic point of X is the only point of X mapping to the generic point

of Y .
If f is separated or if f is quasi-compact, then these are also equivalent to

(5) there exists a nonempty affine open V ⊂ Y such that f−1(V )→ V is finite.

Proof. Choose any affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ Y such
that f(U) ⊂ V . Then R and A are domains by definition. The ring map R → A
is of finite type (Lemma 15.2). By Lemma 8.6 the generic point of X maps to the
generic point of Y hence R → A is injective. Let K = R(Y ) be the fraction field
of R and L = R(X) the fraction field of A. Then L/K is a finitely generated field
extension. Hence we see that (1) is equivalent to (2).
Suppose (2) holds. Let x1, . . . , xn ∈ A be generators of A over R. By assumption
there exist nonzero polynomials Pi(X) ∈ R[X] such that Pi(xi) = 0. Let fi ∈ R
be the leading coefficient of Pi. Then we conclude that Rf1...fn → Af1...fn is finite,
i.e., (3) holds. Note that (3) implies (2). So now we see that (1), (2) and (3) are
all equivalent.
Let η be the generic point of X, and let η′ ∈ Y be the generic point of Y . Assume
(4). Then dimη(Xη′) = 0 and we see that R(X) = κ(η) has transcendence degree 0
over R(Y ) = κ(η′) by Lemma 28.1. In other words (1) holds. Assume the equivalent
conditions (1), (2) and (3). Suppose that x ∈ X is a point mapping to η′. As x is a
specialization of η, this gives inclusions R(Y ) ⊂ OX,x ⊂ R(X), which implies OX,x
is a field, see Algebra, Lemma 36.19. Hence x = η. Thus we see that (1) – (4) are
all equivalent.
It is clear that (5) implies (3) with no additional assumptions on f . What remains
is to prove that if f is either separated or quasi-compact, then the equivalent
conditions (1) – (4) imply (5). This follows from Lemma 51.5. □

https://stacks.math.columbia.edu/tag/0BAJ
https://stacks.math.columbia.edu/tag/02NX


MORPHISMS OF SCHEMES 129

Definition 51.8.02NY Let X and Y be integral schemes. Let f : X → Y be locally
of finite type and dominant. Assume [R(X) : R(Y )] < ∞, or any other of the
equivalent conditions (1) – (4) of Lemma 51.7. Then the positive integer

deg(X/Y ) = [R(X) : R(Y )]

is called the degree of X over Y .

It is possible to extend this notion to a morphism f : X → Y if (a) Y is integral
with generic point η, (b) f is locally of finite type, and (c) f−1({η}) is finite. In
this case we can define

deg(X/Y ) =
∑

ξ∈X, f(ξ)=η
dimR(Y )(OX,ξ).

Namely, given that R(Y ) = κ(η) = OY,η (Lemma 49.5) the dimensions above are
finite by Lemma 51.1 above. However, for most applications the definition given
above is the right one.

Lemma 51.9.02NZ Let X, Y , Z be integral schemes. Let f : X → Y and g : Y → Z
be dominant morphisms locally of finite type. Assume that [R(X) : R(Y )] <∞ and
[R(Y ) : R(Z)] <∞. Then

deg(X/Z) = deg(X/Y ) deg(Y/Z).

Proof. This comes from the multiplicativity of degrees in towers of finite extensions
of fields, see Fields, Lemma 7.7. □

Remark 51.10.073A Let f : X → Y be a morphism of schemes which is locally of finite
type. There are (at least) two properties that we could use to define generically
finite morphisms. These correspond to whether you want the property to be local
on the source or local on the target:

(1) (Local on the target; suggested by Ravi Vakil.) Assume every quasi-
compact open of Y has finitely many irreducible components (for example
if Y is locally Noetherian). The requirement is that the inverse image of
each generic point is finite, see Lemma 51.1.

(2) (Local on the source.) The requirement is that there exists a dense open
U ⊂ X such that U → Y is locally quasi-finite.

In case (1) the requirement can be formulated without the auxiliary condition on
Y , but probably doesn’t give the right notion for general schemes. Property (2) as
formulated doesn’t imply that the fibres over generic points are finite; however, if
f is quasi-compact and Y is as in (1) then it does.

Definition 51.11.0AAZ Let X be an integral scheme. A modification of X is a bira-
tional proper morphism f : X ′ → X with X ′ integral.

Let f : X ′ → X be a modification as in the definition. By Lemma 51.7 there
exists a nonempty U ⊂ X such that f−1(U) → U is finite. By generic flatness
(Proposition 27.1) we may assume f−1(U) → U is flat and of finite presentation.
So f−1(U)→ U is finite locally free (Lemma 48.2). Since f is birational, the degree
of X ′ over X is 1. Hence f−1(U)→ U is finite locally free of degree 1, in other words
it is an isomorphism. Thus we can redefine a modification to be a proper morphism
f : X ′ → X of integral schemes such that f−1(U)→ U is an isomorphism for some
nonempty open U ⊂ X.
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Definition 51.12.0AB0 [dJ96, Definition
2.20]

Let X be an integral scheme. An alteration of X is a proper
dominant morphism f : Y → X with Y integral such that f−1(U)→ U is finite for
some nonempty open U ⊂ X.

This is the definition as given in [dJ96], except that here we do not require X
and Y to be Noetherian. Arguing as above we see that an alteration is a proper
dominant morphism f : Y → X of integral schemes which induces a finite extension
of function fields, i.e., such that the equivalent conditions of Lemma 51.7 hold.

52. The dimension formula

02JT For morphisms between Noetherian schemes we can say a little more about dimen-
sions of local rings. Here is an important (and not so hard to prove) result. Recall
that R(X) denotes the function field of an integral scheme X.

Lemma 52.1.02JU Let S be a scheme. Let f : X → S be a morphism of schemes. Let
x ∈ X, and set s = f(x). Assume

(1) S is locally Noetherian,
(2) f is locally of finite type,
(3) X and S integral, and
(4) f dominant.

We have

(52.1.1)02JV dim(OX,x) ≤ dim(OS,s) + trdegR(S)R(X)− trdegκ(s)κ(x).

Moreover, equality holds if S is universally catenary.

Proof. The corresponding algebra statement is Algebra, Lemma 113.1. □

Lemma 52.2.0BAE Let S be a scheme. Let f : X → S be a morphism of schemes. Let
x ∈ X, and set s = f(x). Assume S is locally Noetherian and f is locally of finite
type, We have

(52.2.1)0BAF dim(OX,x) ≤ dim(OS,s) + E − trdegκ(s)κ(x).

where E is the maximum of trdegκ(f(ξ))(κ(ξ)) where ξ runs over the generic points
of irreducible components of X containing x.

Proof. Let X1, . . . , Xn be the irreducible components of X containing x endowed
with their reduced induced scheme structure. These correspond to the minimal
primes qi of OX,x and hence there are finitely many of them (Schemes, Lemma 13.2
and Algebra, Lemma 31.6). Then dim(OX,x) = max dim(OX,x/qi) = max dim(OXi,x).
The ξ’s occurring in the definition of E are exactly the generic points ξi ∈ Xi.
Let Zi = {f(ξi)} ⊂ S endowed with the reduced induced scheme structure. The
composition Xi → X → S factors through Zi (Schemes, Lemma 12.7). Thus
we may apply the dimension formula (Lemma 52.1) to see that dim(OXi,x) ≤
dim(OZi,x) + trdegκ(f(ξ))(κ(ξ)) − trdegκ(s)κ(x). Putting everything together we
obtain the lemma. □

An application is the construction of a dimension function on any scheme of finite
type over a universally catenary scheme endowed with a dimension function. For
the definition of dimension functions, see Topology, Definition 20.1.
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Lemma 52.3.02JW Let S be a locally Noetherian and universally catenary scheme. Let
δ : S → Z be a dimension function. Let f : X → S be a morphism of schemes.
Assume f locally of finite type. Then the map

δ = δX/S : X −→ Z
x 7−→ δ(f(x)) + trdegκ(f(x))κ(x)

is a dimension function on X.

Proof. Let f : X → S be locally of finite type. Let x⇝ y, x ̸= y be a specialization
in X. We have to show that δX/S(x) > δX/S(y) and that δX/S(x) = δX/S(y) + 1 if
y is an immediate specialization of x.

Choose an affine open V ⊂ S containing the image of y and choose an affine open
U ⊂ X mapping into V and containing y. We may clearly replace X by U and S
by V . Thus we may assume that X = Spec(A) and S = Spec(R) and that f is
given by a ring map R→ A. The ring R is universally catenary (Lemma 17.2) and
the map R→ A is of finite type (Lemma 15.2).

Let q ⊂ A be the prime ideal corresponding to the point x and let p ⊂ R be the
prime ideal corresponding to f(x). The restriction δ′ of δ to S′ = Spec(R/p) ⊂ S
is a dimension function. The ring R/p is universally catenary. The restriction of
δX/S to X ′ = Spec(A/q) is clearly equal to the function δX′/S′ constructed using
the dimension function δ′. Hence we may assume in addition to the above that
R ⊂ A are domains, in other words that X and S are integral schemes, and that x
is the generic point of X and f(x) is the generic point of S.

Note that OX,x = R(X) and that since x⇝ y, x ̸= y, the spectrum of OX,y has at
least two points (Schemes, Lemma 13.2) hence dim(OX,y) > 0 . If y is an immediate
specialization of x, then Spec(OX,y) = {x, y} and dim(OX,y) = 1.

Write s = f(x) and t = f(y). We compute

δX/S(x)− δX/S(y) = δ(s) + trdegκ(s)κ(x)− δ(t)− trdegκ(t)κ(y)
= δ(s)− δ(t) + trdegR(S)R(X)− trdegκ(t)κ(y)
= δ(s)− δ(t) + dim(OX,y)− dim(OS,t)

where we use equality in (52.1.1) in the last step. Since δ is a dimension function
on the scheme S and s ∈ S is the generic point, the difference δ(s)− δ(t) is equal to
codim({t}, S) by Topology, Lemma 20.2. This is equal to dim(OS,t) by Properties,
Lemma 10.3. Hence we conclude that

δX/S(x)− δX/S(y) = dim(OX,y)

and the lemma follows from what we said above about dim(OX,y). □

Another application of the dimension formula is that the dimension does not change
under “alterations” (to be defined later).

Lemma 52.4.02JX Let f : X → Y be a morphism of schemes. Assume that
(1) Y is locally Noetherian,
(2) X and Y are integral schemes,
(3) f is dominant, and
(4) f is locally of finite type.
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Then we have
dim(X) ≤ dim(Y ) + trdegR(Y )R(X).

If f is closed16 then equality holds.

Proof. Let f : X → Y be as in the lemma. Let ξ0 ⇝ ξ1 ⇝ . . .⇝ ξe be a sequence
of specializations in X. Set x = ξe and y = f(x). Observe that e ≤ dim(OX,x) as
the given specializations occur in the spectrum of OX,x, see Schemes, Lemma 13.2.
By the dimension formula, Lemma 52.1, we see that

e ≤ dim(OX,x)
≤ dim(OY,y) + trdegR(Y )R(X)− trdegκ(y)κ(x)
≤ dim(OY,y) + trdegR(Y )R(X)

Hence we conclude that e ≤ dim(Y ) + trdegR(Y )R(X) as desired.

Next, assume f is also closed. Say ξ0 ⇝ ξ1 ⇝ . . .⇝ ξd is a sequence of specializa-
tions in Y . We want to show that dim(X) ≥ d + r. We may assume that ξ0 = η
is the generic point of Y . The generic fibre Xη is a scheme locally of finite type
over κ(η) = R(Y ). It is nonempty as f is dominant. Hence by Lemma 16.10 it is a
Jacobson scheme. Thus by Lemma 16.8 we can find a closed point ξ0 ∈ Xη and the
extension κ(η) ⊂ κ(ξ0) is a finite extension. Note that OX,ξ0 = OXη,ξ0 because η is
the generic point of Y . Hence we see that dim(OX,ξ0) = r by Lemma 52.1 applied
to the scheme Xη over the universally catenary scheme Spec(κ(η)) (see Lemma
17.5) and the point ξ0. This means that we can find ξ−r ⇝ . . . ⇝ ξ−1 ⇝ ξ0 in X.
On the other hand, as f is closed specializations lift along f , see Topology, Lemma
19.7. Thus, as ξ0 lies over η = ξ0 we can find specializations ξ0 ⇝ ξ1 ⇝ . . . ⇝ ξd
lying over ξ0 ⇝ ξ1 ⇝ . . .⇝ ξd. In other words we have

ξ−r ⇝ . . .⇝ ξ−1 ⇝ ξ0 ⇝ ξ1 ⇝ . . .⇝ ξd

which means that dim(X) ≥ d+ r as desired. □

Lemma 52.5.0BAG Let f : X → Y be a morphism of schemes. Assume that Y is
locally Noetherian and f is locally of finite type. Then

dim(X) ≤ dim(Y ) + E

where E is the supremum of trdegκ(f(ξ))(κ(ξ)) where ξ runs through the generic
points of the irreducible components of X.

Proof. Immediate consequence of Lemma 52.2 and Properties, Lemma 10.2. □

53. Relative normalization

0BAK In this section we construct the normalization of one scheme in another.

Lemma 53.1.035F Let X be a scheme. Let A be a quasi-coherent sheaf of OX-algebras.
The subsheaf A′ ⊂ A defined by the rule

U 7−→ {f ∈ A(U) | fx ∈ Ax integral over OX,x for all x ∈ U}
is a quasi-coherent OX-algebra, the stalk A′

x is the integral closure of OX,x in Ax,
and for any affine open U ⊂ X the ring A′(U) ⊂ A(U) is the integral closure of
OX(U) in A(U).

16For example if f is proper, see Definition 41.1.
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Proof. This is a subsheaf by the local nature of the conditions. It is an OX -algebra
by Algebra, Lemma 36.7. Let U ⊂ X be an affine open. Say U = Spec(R) and
say A is the quasi-coherent sheaf associated to the R-algebra A. Then according
to Algebra, Lemma 36.12 the value of A′ over U is given by the integral closure
A′ of R in A. This proves the last assertion of the lemma. To prove that A′ is
quasi-coherent, it suffices to show that A′(D(f)) = A′

f . This follows from the fact
that integral closure and localization commute, see Algebra, Lemma 36.11. The
same fact shows that the stalks are as advertised. □

Definition 53.2.035G Let X be a scheme. Let A be a quasi-coherent sheaf of OX -
algebras. The integral closure of OX in A is the quasi-coherent OX -subalgebra
A′ ⊂ A constructed in Lemma 53.1 above.

In the setting of the definition above we can consider the morphism of relative
spectra

Y = Spec
X

(A) //

&&

X ′ = Spec
X

(A′)

xx
X

see Lemma 11.5. The scheme X ′ → X will be the normalization of X in the scheme
Y . Here is a slightly more general setting. Suppose we have a quasi-compact and
quasi-separated morphism f : Y → X of schemes. In this case the sheaf of OX -
algebras f∗OY is quasi-coherent, see Schemes, Lemma 24.1. Taking the integral
closure O′ ⊂ f∗OY we obtain a quasi-coherent sheaf of OX -algebras whose relative
spectrum is the normalization of X in Y . Here is the formal definition.

Definition 53.3.035H Let f : Y → X be a quasi-compact and quasi-separated mor-
phism of schemes. Let O′ be the integral closure of OX in f∗OY . The normalization
of X in Y is the scheme17

ν : X ′ = Spec
X

(O′)→ X

over X. It comes equipped with a natural factorization

Y
f ′

−→ X ′ ν−→ X

of the initial morphism f .

The factorization is the composition of the canonical morphism Y → Spec(f∗OY )
(see Constructions, Lemma 4.7) and the morphism of relative spectra coming from
the inclusion map O′ → f∗OY . We can characterize the normalization as follows.

Lemma 53.4.035I Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. The factorization f = ν ◦ f ′, where ν : X ′ → X is the normalization
of X in Y is characterized by the following two properties:

(1) the morphism ν is integral, and

17The scheme X′ need not be normal, for example if Y = X and f = idX , then X′ = X.
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(2) for any factorization f = π ◦ g, with π : Z → X integral, there exists a
commutative diagram

Y

f ′

��

g
// Z

π

��
X ′

h

>>

ν // X

for some unique morphism h : X ′ → Z.

Moreover, the morphism f ′ : Y → X ′ is dominant and in (2) the morphism h :
X ′ → Z is the normalization of Z in Y .

Proof. Let O′ ⊂ f∗OY be the integral closure of OX as in Definition 53.3. The
morphism ν is integral by construction, which proves (1). Assume given a factoriza-
tion f = π ◦ g with π : Z → X integral as in (2). By Definition 44.1 π is affine, and
hence Z is the relative spectrum of a quasi-coherent sheaf of OX -algebras B. The
morphism g : Y → Z corresponds to a map of OX -algebras χ : B → f∗OY . Since
B(U) is integral over OX(U) for every affine open U ⊂ X (by Definition 44.1) we
see from Lemma 53.1 that χ(B) ⊂ O′. By the functoriality of the relative spectrum
Lemma 11.5 this provides us with a unique morphism h : X ′ → Z. We omit the
verification that the diagram commutes.

It is clear that (1) and (2) characterize the factorization f = ν ◦ f ′ since it charac-
terizes it as an initial object in a category.

From the universal property in (2) we see that f ′ does not factor through a proper
closed subscheme of X ′. Hence the scheme theoretic image of f ′ is X ′. Since f ′ is
quasi-compact (by Schemes, Lemma 21.14 and the fact that ν is separated as an
affine morphism) we see that f ′(Y ) is dense in X ′. Hence f ′ is dominant.

The morphism h in (2) is integral by Lemma 44.14. Given a factorization g = π′◦g′

with π′ : Z ′ → Z integral, we get a factorization f = (π ◦ π′) ◦ g′ and we get
a morphism h′ : X ′ → Z ′. Uniqueness implies that π′ ◦ h′ = h. Hence the
characterization (1), (2) applies to the morphism h : X ′ → Z which gives the last
statement of the lemma. □

Lemma 53.5.035J Let

Y2

f2

��

// Y1

f1

��
X2 // X1

be a commutative diagram of morphisms of schemes. Assume f1, f2 quasi-compact
and quasi-separated. Let fi = νi ◦ f ′

i , i = 1, 2 be the canonical factorizations, where
νi : X ′

i → Xi is the normalization of Xi in Yi. Then there exists a unique arrow

https://stacks.math.columbia.edu/tag/035J
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X ′
2 → X ′

1 fitting into a commutative diagram

Y2

f ′
2
��

// Y1

f ′
1
��

X ′
2

ν2

��

// X ′
1

ν1

��
X2 // X1

Proof. By Lemmas 53.4 (1) and 44.6 the base change X2×X1 X
′
1 → X2 is integral.

Note that f2 factors through this morphism. Hence we get a unique morphism
X ′

2 → X2×X1 X
′
1 from Lemma 53.4 (2). This gives the arrow X ′

2 → X ′
1 fitting into

the commutative diagram and uniqueness follows as well. □

Lemma 53.6.035K Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Let U ⊂ X be an open subscheme and set V = f−1(U). Then the
normalization of U in V is the inverse image of U in the normalization of X in Y .

Proof. Clear from the construction. □

Lemma 53.7.0BXA Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Let X ′ be the normalization of X in Y . Then the normalization of X ′

in Y is X ′.

Proof. If Y → X ′′ → X ′ is the normalization ofX ′ in Y , then we can apply Lemma
53.4 to the composition X ′′ → X to get a canonical morphism h : X ′ → X ′′ over
X. We omit the verification that the morphisms h and X ′′ → X ′ are mutually
inverse (using uniqueness of the factorization in the lemma). □

Lemma 53.8.0AXN Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Let X ′ → X be the normalization of X in Y . If Y is reduced, so is
X ′.

Proof. This follows from the fact that a subring of a reduced ring is reduced. Some
details omitted. □

Lemma 53.9.0AXP Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Let X ′ → X be the normalization of X in Y . Every generic point
of an irreducible component of X ′ is the image of a generic point of an irreducible
component of Y .

Proof. By Lemma 53.6 we may assume X = Spec(A) is affine. Choose a finite
affine open covering Y =

⋃
Spec(Bi). Then X ′ = Spec(A′) and the morphisms

Spec(Bi) → Y → X ′ jointly define an injective A-algebra map A′ →
∏
Bi. Thus

the lemma follows from Algebra, Lemma 30.5. □

Lemma 53.10.03GO Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Suppose that Y = Y1⨿Y2 is a disjoint union of two schemes. Write fi =
f |Yi . Let X ′

i be the normalization of X in Yi. Then X ′
1 ⨿X ′

2 is the normalization
of X in Y .
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Proof. In terms of integral closures this corresponds to the following fact: Let
A→ B be a ring map. Suppose that B = B1 ×B2. Let A′

i be the integral closure
of A in Bi. Then A′

1×A′
2 is the integral closure of A in B. The reason this works is

that the elements (1, 0) and (0, 1) of B are idempotents and hence integral over A.
Thus the integral closure A′ of A in B is a product and it is not hard to see that the
factors are the integral closures A′

i as described above (some details omitted). □

Lemma 53.11.03GQ Let f : X → S be a quasi-compact, quasi-separated and universally
closed morphisms of schemes. Then f∗OX is integral over OS. In other words, the
normalization of S in X is equal to the factorization

X −→ Spec
S

(f∗OX) −→ S

of Constructions, Lemma 4.7.

Proof. The question is local on S, hence we may assume S = Spec(R) is affine.
Let h ∈ Γ(X,OX). We have to show that h satisfies a monic equation over R.
Think of h as a morphism as in the following commutative diagram

X
h

//

f ��

A1
S

~~
S

Let Z ⊂ A1
S be the scheme theoretic image of h, see Definition 6.2. The morphism

h is quasi-compact as f is quasi-compact and A1
S → S is separated, see Schemes,

Lemma 21.14. By Lemma 6.3 the morphism X → Z is dominant. By Lemma 41.7
the morphism X → Z is closed. Hence h(X) = Z (set theoretically). Thus we can
use Lemma 41.9 to conclude that Z → S is universally closed (and even proper).
Since Z ⊂ A1

S , we see that Z → S is affine and proper, hence integral by Lemma
44.7. Writing A1

S = Spec(R[T ]) we conclude that the ideal I ⊂ R[T ] of Z contains
a monic polynomial P (T ) ∈ R[T ]. Hence P (h) = 0 and we win. □

Lemma 53.12.03GP Let f : Y → X be an integral morphism. Then the normalization
of X in Y is equal to Y .

Proof. By Lemma 44.7 this is a special case of Lemma 53.11. □

Lemma 53.13.035L Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Let X ′ be the normalization of X in Y . Assume

(1) Y is a normal scheme,
(2) quasi-compact opens of Y have finitely many irreducible components.

Then X ′ is a disjoint union of integral normal schemes. Moreover, the morphism
Y → X ′ is dominant and induces a bijection of irreducible components.

Proof. Let U ⊂ X be an affine open. Consider the inverse image U ′ of U in
X ′. Set V = f−1(U). By Lemma 53.6 we V → U ′ → U is the normalization
of U in V . Say U = Spec(A). Then V is quasi-compact, and hence has a finite
number of irreducible components by assumption. Hence V =

∐
i=1,...n Vi is a finite

disjoint union of normal integral schemes by Properties, Lemma 7.5. By Lemma
53.10 we see that U ′ =

∐
i=1,...,n U

′
i , where U ′

i is the normalization of U in Vi.
By Properties, Lemma 7.9 we see that Bi = Γ(Vi,OVi) is a normal domain. Note
that U ′

i = Spec(A′
i), where A′

i ⊂ Bi is the integral closure of A in Bi, see Lemma

https://stacks.math.columbia.edu/tag/03GQ
https://stacks.math.columbia.edu/tag/03GP
https://stacks.math.columbia.edu/tag/035L


MORPHISMS OF SCHEMES 137

53.1. By Algebra, Lemma 37.2 we see that A′
i ⊂ Bi is a normal domain. Hence

U ′ =
∐
U ′
i is a finite union of normal integral schemes and hence is normal.

As X ′ has an open covering by the schemes U ′ we conclude from Properties, Lemma
7.2 that X ′ is normal. On the other hand, each U ′ is a finite disjoint union of irre-
ducible schemes, hence every quasi-compact open ofX ′ has finitely many irreducible
components (by a topological argument which we omit). Thus X ′ is a disjoint union
of normal integral schemes by Properties, Lemma 7.5. It is clear from the descrip-
tion of X ′ above that Y → X ′ is dominant and induces a bijection on irreducible
components V → U ′ for every affine open U ⊂ X. The bijection of irreducible
components for the morphism Y → X ′ follows from this by a topological argument
(omitted). □

Lemma 53.14.0AVK Let f : X → S be a morphism. Assume that
(1) S is a Nagata scheme,
(2) f is quasi-compact and quasi-separated,
(3) quasi-compact opens of X have finitely many irreducible components,
(4) if x ∈ X is a generic point of an irreducible component, then the field

extension κ(x)/κ(f(x)) is finitely generated, and
(5) X is reduced.

Then the normalization ν : S′ → S of S in X is finite.

Proof. There is an immediate reduction to the case S = Spec(R) where R is a
Nagata ring by assumption (1). We have to show that the integral closure A of
R in Γ(X,OX) is finite over R. Since f is quasi-compact by assumption (2) we
can write X =

⋃
i=1,...,n Ui with each Ui affine. Say Ui = Spec(Bi). Each Bi is

reduced by assumption (5) and has finitely many minimal primes qi1, . . . , qimi by
assumption (3) and Algebra, Lemma 26.1. We have

Γ(X,OX) ⊂ B1 × . . .×Bn ⊂
∏

i=1,...,n

∏
j=1,...,mi

(Bi)qij

the second inclusion by Algebra, Lemma 25.2. We have κ(qij) = (Bi)qij by Algebra,
Lemma 25.1. Hence the integral closure A of R in Γ(X,OX) is contained in the
product of the integral closures Aij of R in κ(qij). Since R is Noetherian it suffices
to show that Aij is a finite R-module for each i, j. Let pij ⊂ R be the image of
qij . As κ(qij)/κ(pij) is a finitely generated field extension by assumption (4), we
see that R→ κ(qij) is essentially of finite type. Thus R→ Aij is finite by Algebra,
Lemma 162.2. □

Lemma 53.15.03GR Let f : X → S be a morphism. Assume that
(1) S is a Nagata scheme,
(2) f is of finite type,
(3) X is reduced.

Then the normalization ν : S′ → S of S in X is finite.

Proof. This is a special case of Lemma 53.14. Namely, (2) holds as the finite
type morphism f is quasi-compact by definition and quasi-separated by Lemma
15.7. Condition (3) holds because X is locally Noetherian by Lemma 15.6. Finally,
condition (4) holds because a finite type morphism induces finitely generated residue
field extensions. □
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Lemma 53.16.0BXB Let f : Y → X be a finite type morphism of schemes with Y
reduced and X Nagata. Let X ′ be the normalization of X in Y . Let x′ ∈ X ′ be a
point such that

(1) dim(OX′,x′) = 1, and
(2) the fibre of Y → X ′ over x′ is empty.

Then OX′,x′ is a discrete valuation ring.

Proof. We can replace X by an affine neighbourhood of the image of x′. Hence
we may assume X = Spec(A) with A Nagata. By Lemma 53.15 the morphism
X ′ → X is finite. Hence we can write X ′ = Spec(A′) for a finite A-algebra A′. By
Lemma 53.7 after replacing X by X ′ we reduce to the case described in the next
paragraph.
The case X = X ′ = Spec(A) with A Noetherian. Let p ⊂ A be the prime ideal
corresponding to our point x′. Choose g ∈ p not contained in any minimal prime of
A (use prime avoidance and the fact that A has finitely many minimal primes, see
Algebra, Lemmas 15.2 and 31.6). Set Z = f−1V (g) ⊂ Y ; it is a closed subscheme
of Y . Then f(Z) does not contain any generic point by choice of g and does not
contain x′ because x′ is not in the image of f . The closure of f(Z) is the set of
specializations of points of f(Z) by Lemma 6.5. Thus the closure of f(Z) does
not contain x′ because the condition dim(OX′,x′) = 1 implies only the generic
points of X = X ′ specialize to x′. In other words, after replacing X by an affine
open neighbourhood of x′ we may assume that f−1V (g) = ∅. Thus g maps to an
invertible global function on Y and we obtain a factorization

A→ Ag → Γ(Y,OY )
Since X = X ′ this implies that A is equal to the integral closure of A in Ag. By
Algebra, Lemma 36.11 we conclude that Ap is the integral closure of Ap in Ap[1/g].
By our choice of g, since dim(Ap) = 1 and since A is reduced we see that Ap[1/g]
is a finite product of fields (the product of the residue fields of the minimal primes
contained in p). Hence Ap is normal (Algebra, Lemma 37.16) and the proof is
complete. Some details omitted. □

54. Normalization

035E Next, we come to the normalization of a scheme X. We only define/construct
it when X has locally finitely many irreducible components. Let X be a scheme
such that every quasi-compact open has finitely many irreducible components. Let
X(0) ⊂ X be the set of generic points of irreducible components of X. Let

(54.0.1)035M f : Y =
∐

η∈X(0)
Spec(κ(η)) −→ X

be the inclusion of the generic points into X using the canonical maps of Schemes,
Section 13. Note that this morphism is quasi-compact by assumption and quasi-
separated as Y is separated (see Schemes, Section 21).

Definition 54.1.035N Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. We define the normalization of X as the
morphism

ν : Xν −→ X

which is the normalization of X in the morphism f : Y → X (54.0.1) constructed
above.
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Any locally Noetherian scheme has a locally finite set of irreducible components and
the definition applies to it. Usually the normalization is defined only for reduced
schemes. With the definition above the normalization of X is the same as the
normalization of the reduction Xred of X.

Lemma 54.2.035O Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. The normalization morphism ν factors through the
reduction Xred and Xν → Xred is the normalization of Xred.

Proof. Let f : Y → X be the morphism (54.0.1). We get a factorization Y →
Xred → X of f from Schemes, Lemma 12.7. By Lemma 53.4 we obtain a canonical
morphism Xν → Xred and that Xν is the normalization of Xred in Y . The lemma
follows as Y → Xred is identical to the morphism (54.0.1) constructed for Xred. □

If X is reduced, then the normalization of X is the same as the relative spectrum of
the integral closure of OX in the sheaf of meromorphic functions KX (see Divisors,
Section 23). Namely, KX = f∗OY in this case, see Divisors, Lemma 25.1 and its
proof. We describe this here explicitly.

Lemma 54.3.035P Let X be a reduced scheme such that every quasi-compact open has
finitely many irreducible components. Let Spec(A) = U ⊂ X be an affine open.
Then

(1) A has finitely many minimal primes q1, . . . , qt,
(2) the total ring of fractions Q(A) of A is Q(A/q1)× . . .×Q(A/qt),
(3) the integral closure A′ of A in Q(A) is the product of the integral closures

of the domains A/qi in the fields Q(A/qi), and
(4) ν−1(U) is identified with the spectrum of A′ where ν : Xν → X is the

normalization morphism.

Proof. Minimal primes correspond to irreducible components (Algebra, Lemma
26.1), hence we have (1) by assumption. Then (0) = q1 ∩ . . . ∩ qt because A
is reduced (Algebra, Lemma 17.2). Then we have Q(A) =

∏
Aqi =

∏
κ(qi) by

Algebra, Lemmas 25.4 and 25.1. This proves (2). Part (3) follows from Algebra,
Lemma 37.16, or Lemma 53.10. Part (4) holds because it is clear that f−1(U)→ U
is the morphism

Spec
(∏

κ(qi)
)
−→ Spec(A)

where f : Y → X is the morphism (54.0.1). □

Lemma 54.4.0C3B Let X be a scheme such that every quasi-compact open has a finite
number of irreducible components. Let ν : Xν → X be the normalization of X. Let
x ∈ X. Then the following are canonically isomorphic as OX,x-algebras

(1) the stalk (ν∗OXν )x,
(2) the integral closure of OX,x in the total ring of fractions of (OX,x)red,
(3) the integral closure of OX,x in the product of the residue fields of the mini-

mal primes of OX,x (and there are finitely many of these).

Proof. After replacing X by an affine open neighbourhood of x we may assume
that X has finitely many irreducible components and that x is contained in each of
them. Then the stalk (ν∗OXν )x is the integral closure of A = OX,x in the product L
of the residue fields of the minimal primes of A. This follows from the construction
of the normalization and Lemma 53.1. Alternatively, you can use Lemma 54.3 and
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the fact that normalization commutes with localization (Algebra, Lemma 36.11).
Since Ared has finitely many minimal primes (because these correspond exactly to
the generic points of the irreducible components of X passing through x) we see
that L is the total ring of fractions of Ared (Algebra, Lemma 25.4). Thus our ring
is also the integral closure of A in the total ring of fractions of Ared. □

Lemma 54.5.035Q Let X be a scheme such that every quasi-compact open has finitely
many irreducible components.

(1) The normalization Xν is a disjoint union of integral normal schemes.
(2) The morphism ν : Xν → X is integral, surjective, and induces a bijection

on irreducible components.
(3) For any integral morphism α : X ′ → X such that for U ⊂ X quasi-compact

open the inverse image α−1(U) has finitely many irreducible components
and α|α−1(U) : α−1(U) → U is birational18 there exists a factorization
Xν → X ′ → X and Xν → X ′ is the normalization of X ′.

(4) For any morphism Z → X with Z a normal scheme such that each ir-
reducible component of Z dominates an irreducible component of X there
exists a unique factorization Z → Xν → X.

Proof. Let f : Y → X be as in (54.0.1). The scheme Xν is a disjoint union of
normal integral schemes because Y is normal and every affine open of Y has finitely
many irreducible components, see Lemma 53.13. This proves (1). Alternatively one
can deduce (1) from Lemmas 54.2 and 54.3.
The morphism ν is integral by Lemma 53.4. By Lemma 53.13 the morphism
Y → Xν induces a bijection on irreducible components, and by construction of
Y this implies that Xν → X induces a bijection on irreducible components. By
construction f : Y → X is dominant, hence also ν is dominant. Since an integral
morphism is closed (Lemma 44.7) this implies that ν is surjective. This proves (2).
Suppose that α : X ′ → X is as in (3). It is clear that X ′ satisfies the assumptions
under which the normalization is defined. Let f ′ : Y ′ → X ′ be the morphism
(54.0.1) constructed starting with X ′. As α is locally birational it is clear that
Y ′ = Y and f = α ◦ f ′. Hence the factorization Xν → X ′ → X exists and
Xν → X ′ is the normalization of X ′ by Lemma 53.4. This proves (3).
Let g : Z → X be a morphism whose domain is a normal scheme and such that
every irreducible component dominates an irreducible component of X. By Lemma
54.2 we have Xν = Xν

red and by Schemes, Lemma 12.7 Z → X factors through
Xred. Hence we may replace X by Xred and assume X is reduced. Moreover, as
the factorization is unique it suffices to construct it locally on Z. Let W ⊂ Z and
U ⊂ X be affine opens such that g(W ) ⊂ U . Write U = Spec(A) and W = Spec(B),
with g|W given by φ : A → B. We will use the results of Lemma 54.3 freely. Let
p1, . . . , pt be the minimal primes of A. As Z is normal, we see that B is a normal
ring, in particular reduced. Moreover, by assumption any minimal prime q ⊂ B
we have that φ−1(q) is a minimal prime of A. Hence if x ∈ A is a nonzerodivisor,
i.e., x ̸∈

⋃
pi, then φ(x) is a nonzerodivisor in B. Thus we obtain a canonical ring

map Q(A) → Q(B). As B is normal it is equal to its integral closure in Q(B)

18This awkward formulation is necessary as we’ve only defined what it means for a morphism
to be birational if the source and target have finitely many irreducible components. It suffices if
X′

red → Xred satisfies the condition.
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(see Algebra, Lemma 37.12). Hence we see that the integral closure A′ ⊂ Q(A) of
A maps into B via the canonical map Q(A) → Q(B). Since ν−1(U) = Spec(A′)
this gives the canonical factorization W → ν−1(U) → U of ν|W . We omit the
verification that it is unique. □

Lemma 54.6.0CDV Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. Let Zi ⊂ X, i ∈ I be the irreducible components of
X endowed with the reduced induced structure. Let Zνi → Zi be the normalization.
Then

∐
i∈I Z

ν
i → X is the normalization of X.

Proof. We may assume X is reduced, see Lemma 54.2. Then the lemma follows
either from the local description in Lemma 54.3 or from Lemma 54.5 part (3)
because

∐
Zi → X is integral and locally birational (as X is reduced and has

locally finitely many irreducible components). □

Lemma 54.7.0BXC Let X be a reduced scheme with finitely many irreducible compo-
nents. Then the normalization morphism Xν → X is birational.

Proof. The normalization induces a bijection of irreducible components by Lemma
54.5. Let η ∈ X be a generic point of an irreducible component of X and let
ην ∈ Xν be the generic point of the corresponding irreducible component of Xν .
Then ην 7→ η and to finish the proof we have to show that OX,η → OXν ,ην is
an isomorphism, see Definition 50.1. Because X and Xν are reduced, we see that
both local rings are equal to their residue fields (Algebra, Lemma 25.1). On the
other hand, by the construction of the normalization as the normalization of X
in Y =

∐
Spec(κ(η)) we see that we have κ(η) ⊂ κ(ην) ⊂ κ(η) and the proof is

complete. □

Lemma 54.8.0AB1 A finite (or even integral) birational morphism f : X → Y of
integral schemes with Y normal is an isomorphism.

Proof. Let V ⊂ Y be an affine open with inverse image U ⊂ X which is an affine
open too. Since f is a birational morphism of integral schemes, the homomorphism
OY (V )→ OX(U) is an injective map of domains which induces an isomorphism of
fraction fields. As Y is normal, the ring OY (V ) is integrally closed in the fraction
field. Since f is finite (or integral) every element of OX(U) is integral over OY (V ).
We conclude that OY (V ) = OX(U). This proves that f is an isomorphism as
desired. □

Lemma 54.9.035R Let X be an integral, Japanese scheme. The normalization ν :
Xν → X is a finite morphism.

Proof. Follows from the definition (Properties, Definition 13.1) and Lemma 54.3.
Namely, in this case the lemma says that ν−1(Spec(A)) is the spectrum of the
integral closure of A in its field of fractions. □

Lemma 54.10.035S Let X be a Nagata scheme. The normalization ν : Xν → X is a
finite morphism.

Proof. Note that a Nagata scheme is locally Noetherian, thus Definition 54.1 does
apply. The lemma is now a special case of Lemma 53.14 but we can also prove
it directly as follows. Write Xν → X as the composition Xν → Xred → X. As
Xred → X is a closed immersion it is finite. Hence it suffices to prove the lemma
for a reduced Nagata scheme (by Lemma 44.5). Let Spec(A) = U ⊂ X be an affine
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open. By Lemma 54.3 we have ν−1(U) = Spec(
∏
A′
i) where A′

i is the integral
closure of A/qi in its fraction field. As A is a Nagata ring (see Properties, Lemma
13.6) each of the ring extensions A/qi ⊂ A′

i are finite. Hence A→
∏
A′
i is a finite

ring map and we win. □

Lemma 54.11.0GIQ Let X be an irreducible, geometrically unibranch scheme. The
normalization morphism ν : Xν → X is a universal homeomorphism.

Proof. We have to show that ν is integral, universally injective, and surjective,
see Lemma 45.5. By Lemma 54.5 the morphism ν is integral. Let x ∈ X and set
A = OX,x. Since X is irreducible we see that A has a single minimal prime p and
Ared = A/p. By Lemma 54.4 the stalk A′ = (ν∗OXν )x is the integral closure of
A in the fraction field of Ared. By More on Algebra, Definition 106.1 we see that
A′ has a single prime m′ lying over mx ⊂ A and κ(m′)/κ(x) is purely inseparable.
Hence ν is bijective (hence surjective) and universally injective by Lemma 10.2. □

55. Weak normalization

0H3I We will only define the weak normalization of a scheme when it locally has finitely
many irreducible components; similar to the case of normalization.

Lemma 55.1.0H3J Let A→ B be a ring map inducing a dominant morphism Spec(B)→
Spec(A) of spectra. There exists an A-subalgebra B′ ⊂ B such that

(1) Spec(B′)→ Spec(A) is a universal homeomorphism,
(2) given a factorization A → C → B such that Spec(C) → Spec(A) is a

universal homeomorphism, the image of C → B is contained in B′.

Proof. We will use Lemma 45.6 without further mention. Consider the commuta-
tive diagram

B // Bred

A

OO

// Ared

OO

For any factorization A→ C → B of A→ B as in (2), we see that Ared → Cred →
Bred is a factorization of Ared → Bred as in (2). It follows that if the lemma
holds for Ared → Bred and produces the Ared-subalgebra B′

red ⊂ Bred, then setting
B′ ⊂ B equal to the inverse image of B′

red solves the lemma for A → B. This
reduces us to the case discussed in the next paragraph.

Assume A and B are reduced. In this case A ⊂ B by Algebra, Lemma 30.6. Let
A → C → B be a factorization as in (2). Then we may apply Proposition 46.8 to
A ⊂ C to see that every element of C is contained in an extension A[c1, . . . , cn] ⊂ C
such that for i = 1, . . . , n we have

(1) c2
i , c

3
i ∈ A[c1, . . . , ci−1], or

(2) there exists a prime number p with pci, c
p
i ∈ A[c1, . . . , ci−1].

Thus property (2) holds if we define B′ ⊂ B to be the subset of elements b ∈ B
which are contained in an extension A[b1, . . . , bn] ⊂ B such that (*) holds: for
i = 1, . . . , n we have

(1) b2
i , b

3
i ∈ A[b1, . . . , bi−1], or

(2) there exists a prime number p with pbi, b
p
i ∈ A[b1, . . . , bi−1].
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There are only two things to check: (a) B′ is an A-subalgebra, and (b) Spec(B′)→
Spec(A) is a universal homeomorphism. Part (a) follows because given n ≥ 0 and
b1, . . . , bn ∈ B satisfying (*) and m ≥ 0 and b′

1, . . . , b
′
m ∈ B satisfying (*), the

integer n + m and b1, . . . , bn, b
′
1, . . . , b

′
m ∈ B also satisfies (*). Finally, part (b)

holds by Proposition 46.8 and our construction of B′. □

Lemma 55.2.0H3K Let A→ B be a ring map inducing a dominant morphism Spec(B)→
Spec(A) of spectra. Formation of the A-subalgebra B′ ⊂ B in Lemma 55.1 com-
mutes with localization (see proof for explanation).

Proof. Let S ⊂ A be a multiplicative subset. Then S−1A→ S−1B is a ring map
which induces a dominant morphism Spec(S−1B)→ Spec(S−1A) as well (see Lem-
mas 8.4 and 25.9). Hence Lemma 55.1 produces an S−1A-subalgebra (S−1B)′ ⊂
S−1B. The statement means that S−1B′ = (S−1B)′ as S−1A-subalgebras of S−1B.

To see this is true, we will use the construction of B′ and (S−1B)′ in the proof
of Lemma 55.1. In the first step, we see that B′ is the inverse image of the Ared-
subalgebra B′

red ⊂ Bred constructed for the ring map Ared → Bred and similarly for
(S−1B)′. Noting that S−1Bred = (S−1B)red this reduces us to the case discussed
in the next paragraph.

If A and B are reduced, we have constructed B′ as the union of the subalgebras
A[b1, . . . , bn] such that for i = 1, . . . , n we have

(1) b2
i , b

3
i ∈ A[b1, . . . , bi−1], or

(2) there exists a prime number p with pbi, b
p
i ∈ A[b1, . . . , bi−1].

Similarly for (S−1B)′ ⊂ S−1B. Thus it is clear that the image of B′ → B → S−1B
is contained in (S−1B)′. To show that the corresponding map S−1B′ → (S−1B)′

is surjective, one uses Lemma 46.3 to clear denominators successively; we omit the
details. □

Lemma 55.3.0H3L Let A→ B be a ring map inducing a dominant morphism Spec(B)→
Spec(A) of spectra. There exists an A-subalgebra B′ ⊂ B such that

(1) Spec(B′)→ Spec(A) is a universal homeomorphism inducing isomorphisms
on residue fields,

(2) given a factorization A → C → B such that Spec(C) → Spec(A) is a uni-
versal homeomorphism inducing isomorphisms on residue fields, the image
of C → B is contained in B′.

Proof. This proof is exactly the same as the proof of Lemma 55.1 except we use
Proposition 46.7 in stead of Proposition 46.8 □

Lemma 55.4.0H3M Let A→ B be a ring map inducing a dominant morphism Spec(B)→
Spec(A) of spectra. Formation of the A-subalgebra B′ ⊂ B in Lemma 55.3 com-
mutes with localization (see proof for explanation).

Proof. The proof is the same as the proof of Lemma 55.2. □

Lemma 55.5.0H3N Let f : Y → X be a quasi-compact, quasi-separated, and dominant
morphism of schemes.

(1) The category of factorizations Y → X ′ → X where X ′ → X is a universal
homeomorphism has an initial object Y → XY/wn → X.
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(2) The category of factorizations Y → X ′ → X where X ′ → X is a univer-
sal homeomorphism inducing isomorphisms on residue fields has an initial
object Y → XY/sn → X.

Moreover, formation of the factorization Y → XY/wn → X and Y → XY/sn → X
commutes with base change to open subschemes of X.

Proof. We will prove (1) and omit the proof of (2); also the final assertion will
follow from the construction of the factorization. We will use Lemma 45.5 without
further mention. First, let Y → XY/n → X be the normalization of X in Y ,
see Definition 53.3. For Y → X ′ → X as in (1), we obtain a unique morphism
XY/n → X ′ compatible with the given morphisms, see Lemma 53.4. Thus it
suffices to prove the lemma with f replaced by XY/n → X. This reduces us to the
case studied in the next paragraph.

Assume f is integral (the rest of the proof works more generally if f is affine). Let
U = Spec(A) be an affine open of X and let V = f−1(U) = Spec(B) be the inverse
image in Y . Then A → B is a ring map which induces a dominant morphism on
spectra. By Lemma 55.1 we obtain an A-subalgebra B′ ⊂ B such that setting
UV/wn = Spec(B′) the factorization V → UV/wn → U is initial in the category of
factorizations V → U ′ → U where U ′ → U is a universal homeomorphism.

If U1 ⊂ U2 ⊂ X are affine opens, then setting Vi = f−1(Ui) we obtain a canonical
morphism

ρU2
U1

: UV1/wn
1 → U1 ×U2 U

V2/wn
2

over U1 by the universal property of UV1/wn
1 . These morphisms satisfy a natural

functoriality which we leave to the reader to formulate and prove. Furthermore,
the morphism ρU2

U1
is an isomorphism; this follows from Lemma 55.2 provided that

U1 ⊂ U2 is a standard open and in the general case can be reduced to this case by the
functorial nature of these maps and Schemes, Lemma 11.5 (details omitted). Thus
by relative glueing (Constructions, Lemma 2.1) we obtain a morphism XY/wn → X

which restricts to UV/wn → U over U compatibly with the ρU2
U1

. Of course, the
morphisms V → UV/wn glue to a morphism Y → XY/wn (see Constructions,
Remark 2.3) and we get our factorization Y → XY/wn → X where the second
morphism is a universal homeomorphism.

Finally, let Y → X ′ → X be a factorization as in (1). With V → UV/wn → U ⊂ X
as above, we obtain a factorization V → U ×XX ′ → U where the second arrow is a
universal homeomorphism and we obtain a unique morphism gU : UV/wn → U ×X
X ′ over U by the universal property of UV/wn. These gU are compatible with the
morphisms ρU2

U1
; details omitted. Hence there is a unique morphism g : XY/wn → X ′

over X agreeing with gU over U , see Constructions, Remark 2.3. This proves that
Y → XY/wn → X is initial in our category and the proof is complete. □

Definition 55.6.0H3P Let f : Y → X be a quasi-compact, quasi-separated, and
dominant morphism of schemes.

(1) The factorization Y → XY/sn → X constructed in Lemma 55.5 part (2) is
the seminormalization of X in Y .

(2) The factorization Y → XY/wn → X constructed in Lemma 55.5 part (1) is
the weak normalization of X in Y .
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Here is a way to reinterpret the seminormalization of a scheme which locally has
finitely many irreducible components.

Lemma 55.7.0H3Q Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. Let ν : Xν → X be the normalization of X. Then
the seminormalization of X in Xν is is the seminormalization of X. In a formula:
Xsn = XXν/sn.

Proof. Let f : Y → X be as in (54.0.1) so that Xν is the normalization of X in
Y . The seminormalization Xsn → X of X is the initial object in the category of
universal homeomorphisms X ′ → X inducing isomorphisms on residue fields. Since
Y is the disjoint union of the spectra of the residue fields at the generic points of
irreducible components of X, we see that for any X ′ → X in this category we obtain
a canonical lift f ′ : Y → X ′ of f . Then by Lemma 53.4 we obtain a canonical
morphism Xν → X ′. Whence in turn a canonical morphism XXν/sn → X ′ by the
universal property of XXν/sn. In this way we see that XXν/sn satisfies the same
universal property that Xsn has and we conclude. □

Lemma 55.7 motivates the following definition. Since we have only constructed the
normalization in case X locally has finitely many irreducible components, we will
also restrict ourselves to that case for the weak normalization.

Definition 55.8.0H3R Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. We define the weak normalization of X as
the weak normalization

Xν −→ Xwn −→ X

of X in the normalization Xν of X (Definition 54.1). In a formula: Xwn = XXν/wn.

Combined with Lemma 55.7 we see that for a scheme X which locally has finitely
many irreducible components there are canonical morphisms

Xν → Xwn → Xsn → X

Having made this definition, we can say what it means for a scheme to be weakly
normal (provided it has locally finitely many irreducible components).

Definition 55.9.0H3S Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. We say X is weakly normal if the weak
normalization Xwn → X is an isomorphism (Definition 55.8).

It follows immediately from the definitions that for a scheme X such that every
quasi-compact open has finitely many irreducible components we have

X normal⇒ X weakly normal⇒ X seminormal

We can work out the meaning of weak normality in the affine case as follows.

Lemma 55.10.0H3T Let X = Spec(A) be an affine scheme which has finitely many
irreducible components. Then X is weakly normal if and only if

(1) A is seminormal (Definition 47.1),
(2) for a prime number p and z, w ∈ A such that (a) z is a nonzerodivisor, (b)

wp is divisible by zp, and (c) pw is divisible by z, then w is divisible by z.
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Proof. Assume X is weakly normal. Since a weakly normal scheme is seminormal,
we see that (1) holds (by our definition of weakly normal schemes). In particular
A is reduced. Let p, z, w be as in (2). Choose x, y ∈ A such that zpx = wp

and zy = pw. Then ppx = yp. The ring map A → C = A[t]/(tp − x, pt − y)
induces a universal homeomorphism on spectra. The normalization Xν of X is
the spectrum of the integral closure A′ of A in the total ring of fractions of A, see
Lemma 54.3. Note that a = w/z ∈ A′ because ap = x. Hence we have an A-algebra
homomorphism A → C → A′ sending t to a. At this point the defining property
X = Xwn = XXν/wn of being weakly normal tells us that C → A′ maps into A.
Thus we find a ∈ A as desired.

Conversely, assume (1) and (2). Let A′ be as in the previous paragraph. We have to
show that XXν/wn = X. By construction in the proof of Lemma 55.1, the scheme
XXν/wn is the spectrum of the subring of A′ which is the union of the subrings
A[a1, . . . , an] ⊂ A′ such that for i = 1, . . . , n we have

(a) a2
i , a

3
i ∈ A[a1, . . . , ai−1], or

(b) there exists a prime number p with pai, a
p
i ∈ A[a1, . . . , ai−1].

Then we can use (1) and (2) to inductively see that a1, . . . , an ∈ A; we omit the
details. Consequently, we have X = XXν/wn and hence X is weakly normal. □

Here is the obligatory lemma.

Lemma 55.11.0H3U Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. The following are equivalent:

(1) The scheme X is weakly normal.
(2) For every affine open U ⊂ X the ring OX(U) satisfies conditions (1) and

(2) of Lemma 55.10.
(3) There exists an affine open covering X =

⋃
Ui such that each ring OX(Ui)

satisfies conditions (1) and (2) of Lemma 55.10.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is weakly normal.
Moreover, if X is weakly normal then every open subscheme is weakly normal.

Proof. The condition toX be weakly normal is that the morphismXwn = XXν/wn →
X is an isomorphism. Since the construction of Xν → X commutes with base
change to open subschemes and since the construction of XXν/wn commutes with
base change to open subschemes of X (Lemma 55.5) the lemma is clear. □

56. Zariski’s Main Theorem (algebraic version)

03GS This is the version you can prove using purely algebraic methods. Before we can
prove more powerful versions (for non-affine morphisms) we need to develop more
tools. See Cohomology of Schemes, Section 21 and More on Morphisms, Section
43.

Theorem 56.1 (Algebraic version of Zariski’s Main Theorem).03GT Let f : Y → X
be an affine morphism of schemes. Assume f is of finite type. Let X ′ be the
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normalization of X in Y . Picture:

Y

f   

f ′
// X ′

ν
~~

X

Then there exists an open subscheme U ′ ⊂ X ′ such that
(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ Y is the set of points at which f is quasi-finite.

Proof. There is an immediate reduction to the case where X and hence Y are
affine. Say X = Spec(R) and Y = Spec(A). Then X ′ = Spec(A′), where A′ is
the integral closure of R in A, see Definitions 53.2 and 53.3. By Algebra, Theorem
123.12 for every y ∈ Y at which f is quasi-finite, there exists an open U ′

y ⊂ X ′

such that (f ′)−1(U ′
y)→ U ′

y is an isomorphism. Set U ′ =
⋃
U ′
y where y ∈ Y ranges

over all points where f is quasi-finite. It remains to show that f is quasi-finite at
all points of (f ′)−1(U ′). If y ∈ (f ′)−1(U ′) with image x ∈ X, then we see that
Yx → X ′

x is an isomorphism in a neighbourhood of y. Hence there is no point of
Yx which specializes to y, since this is true for f ′(y) in X ′

x, see Lemma 44.8. By
Lemma 20.6 part (3) this implies f is quasi-finite at y. □

We can use the algebraic version of Zariski’s Main Theorem to show that the set
of points where a morphism is quasi-finite is open.

Lemma 56.2.01TI Let f : X → S be a morphism of schemes. The set of points of X
where f is quasi-finite is an open U ⊂ X. The induced morphism U → S is locally
quasi-finite.

Proof. Suppose f is quasi-finite at x. Let x ∈ U = Spec(A) ⊂ X, V = Spec(R) ⊂
S be affine opens as in Definition 20.1. By either Theorem 56.1 above or Algebra,
Lemma 123.13, the set of primes q at which R → A is quasi-finite is open in
Spec(A). Since these all correspond to points of X where f is quasi-finite we get
the first statement. The second statement is obvious. □

We will improve the following lemma to general quasi-finite separated morphisms
later, see More on Morphisms, Lemma 43.3.

Lemma 56.3.03GU Let f : Y → X be a morphism of schemes. Assume
(1) X and Y are affine, and
(2) f is quasi-finite.

Then there exists a diagram

Y

f   

j
// Z

π~~
X

with Z affine, π finite and j an open immersion.

Proof. This is Algebra, Lemma 123.14 reformulated in the language of schemes.
□
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Lemma 56.4.03J2 Let f : Y → X be a quasi-finite morphism of schemes. Let T ⊂ Y
be a closed nowhere dense subset of Y . Then f(T ) ⊂ X is a nowhere dense subset
of X.

Proof. As in the proof of Lemma 48.7 this reduces immediately to the case where
the base X is affine. In this case Y =

⋃
i=1,...,n Yi is a finite union of affine opens

(as f is quasi-compact). Since each T ∩Yi is nowhere dense, and since a finite union
of nowhere dense sets is nowhere dense (see Topology, Lemma 21.2), it suffices to
prove that the image f(T ∩ Yi) is nowhere dense in X. This reduces us to the case
where both X and Y are affine. At this point we apply Lemma 56.3 above to get
a diagram

Y

f   

j
// Z

π~~
X

with Z affine, π finite and j an open immersion. Set T = j(T ) ⊂ Z. By Topology,
Lemma 21.3 we see T is nowhere dense in Z. Since f(T ) ⊂ π(T ) the lemma follows
from the corresponding result in the finite case, see Lemma 48.7. □

57. Universally bounded fibres

03J3 Let X be a scheme over a field k. If X is finite over k, then X = Spec(A) where
A is a finite k-algebra. Another way to say this is that X is finite locally free over
Spec(k), see Definition 48.1. Hence X → Spec(k) has a degree which is an integer
d ≥ 0, namely d = dimk(A). We sometime call this the degree of the (finite) scheme
X over k.

Definition 57.1.03J4 Let f : X → Y be a morphism of schemes.
(1) We say the integer n bounds the degrees of the fibres of f if for all y ∈ Y

the fibre Xy is a finite scheme over κ(y) whose degree over κ(y) is ≤ n.
(2) We say the fibres of f are universally bounded19 if there exists an integer n

which bounds the degrees of the fibres of f .

Note that in particular the number of points in a fibre is bounded by n as well.
(The converse does not hold, even if all fibres are finite reduced schemes.)

Lemma 57.2.03J5 Let f : X → Y be a morphism of schemes. Let n ≥ 0. The
following are equivalent:

(1) the integer n bounds the degrees of the fibres of f , and
(2) for every morphism Spec(k) → Y , where k is a field, the fibre product

Xk = Spec(k)×Y X is finite over k of degree ≤ n.
In this case the fibres of f are universally bounded and the schemes Xk have at
most n points. More precisely, if Xk = {x1, . . . , xt}, then we have

n ≥
∑

i=1,...,t
[κ(xi) : k]

Proof. The implication (2)⇒ (1) is trivial. The other implication holds because if
the image of Spec(k)→ Y is y, then Xk = Spec(k)×Spec(κ(y))Xy. By definition the
fibres of f being universally bounded means that some n exists. Finally, suppose

19This is probably nonstandard notation.
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that Xk = Spec(A). Then dimk A = n. Hence A is Artinian, all prime ideals
are maximal ideals mi, and A is the product of the localizations at these maximal
ideals. See Algebra, Lemmas 53.2 and 53.6. Then mi corresponds to xi, we have
Ami = OXk,xi and hence there is a surjection A →

⊕
κ(mi) =

⊕
κ(xi) which

implies the inequality in the statement of the lemma by linear algebra. □

Lemma 57.3.0CC2 If f is a finite locally free morphism of degree d, then d bounds the
degree of the fibres of f .

Proof. This is true because any base change of f is finite locally free of degree d
(Lemma 48.4) and hence the fibres of f all have degree d. □

Lemma 57.4.03J6 A composition of morphisms with universally bounded fibres is a
morphism with universally bounded fibres. More precisely, assume that n bounds
the degrees of the fibres of f : X → Y and m bounds the degrees of g : Y → Z.
Then nm bounds the degrees of the fibres of g ◦ f : X → Z.

Proof. Let f : X → Y and g : Y → Z have universally bounded fibres. Say
that deg(Xy/κ(y)) ≤ n for all y ∈ Y , and that deg(Yz/κ(z)) ≤ m for all z ∈ Z.
Let z ∈ Z be a point. By assumption the scheme Yz is finite over Spec(κ(z)). In
particular, the underlying topological space of Yz is a finite discrete set. The fibres
of the morphism fz : Xz → Yz are the fibres of f at the corresponding points of Y ,
which are finite discrete sets by the reasoning above. Hence we conclude that the
underlying topological space ofXz is a finite discrete set as well. ThusXz is an affine
scheme (this is a nice exercise; it also follows for example from Properties, Lemma
29.1 applied to the set of all points of Xz). Write Xz = Spec(A), Yz = Spec(B),
and k = κ(z). Then k → B → A and we know that (a) dimk(B) ≤ m, and (b) for
every maximal ideal m ⊂ B we have dimκ(m)(A/mA) ≤ n. We claim this implies
that dimk(A) ≤ nm. Note that B is the product of its localizations Bm, for example
because Yz is a disjoint union of 1-point schemes, or by Algebra, Lemmas 53.2 and
53.6. So we see that dimk(B) =

∑
m dimk(Bm) and dimk(A) =

∑
m dimk(Am)

where in both cases m runs over the maximal ideals of B (not of A). By the above,
and Nakayama’s Lemma (Algebra, Lemma 20.1) we see that each Am is a quotient
of B⊕n

m as a Bm-module. Hence dimk(Am) ≤ ndimk(Bm). Putting everything
together we see that

dimk(A) =
∑

m
dimt a(Am) ≤

∑
m
n dimk(Bm) = ndimk(B) ≤ nm

as desired. □

Lemma 57.5.03J7 A base change of a morphism with universally bounded fibres is a
morphism with universally bounded fibres. More precisely, if n bounds the degrees
of the fibres of f : X → Y and Y ′ → Y is any morphism, then the degrees of the
fibres of the base change f ′ : Y ′ ×Y X → Y ′ is also bounded by n.

Proof. This is clear from the result of Lemma 57.2. □

Lemma 57.6.03J8 Let f : X → Y be a morphism of schemes. Let Y ′ → Y be a
morphism of schemes, and let f ′ : X ′ = XY ′ → Y ′ be the base change of f . If
Y ′ → Y is surjective and f ′ has universally bounded fibres, then f has universally
bounded fibres. More precisely, if n bounds the degree of the fibres of f ′, then also
n bounds the degrees of the fibres of f .
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Proof. Let n ≥ 0 be an integer bounding the degrees of the fibres of f ′. We claim
that n works for f also. Namely, if y ∈ Y is a point, then choose a point y′ ∈ Y ′

lying over y and observe that
X ′
y′ = Spec(κ(y′))×Spec(κ(y)) Xy.

Since X ′
y′ is assumed finite of degree ≤ n over κ(y′) it follows that also Xy is finite

of degree ≤ n over κ(y). (Some details omitted.) □

Lemma 57.7.03J9 An immersion has universally bounded fibres.

Proof. The integer n = 1 works in the definition. □

Lemma 57.8.03WU Let f : X → Y be an étale morphism of schemes. Let n ≥ 0. The
following are equivalent

(1) the integer n bounds the degrees of the fibres,
(2) for every field k and morphism Spec(k)→ Y the base change Xk = Spec(k)×Y

X has at most n points, and
(3) for every y ∈ Y and every separable algebraic closure κ(y) ⊂ κ(y)sep the

scheme Xκ(y)sep has at most n points.

Proof. This follows from Lemma 57.2 and the fact that the fibres Xy are disjoint
unions of spectra of finite separable field extensions of κ(y), see Lemma 36.7. □

Having universally bounded fibres is an absolute notion and not a relative notion.
This is why the condition in the following lemma is that X is quasi-compact, and
not that f is quasi-compact.

Lemma 57.9.03JA Let f : X → Y be a morphism of schemes. Assume that
(1) f is locally quasi-finite, and
(2) X is quasi-compact.

Then f has universally bounded fibres.

Proof. Since X is quasi-compact, there exists a finite affine open covering X =⋃
i=1,...,n Ui and affine opens Vi ⊂ Y , i = 1, . . . , n such that f(Ui) ⊂ Vi. Because of

the local nature of “local quasi-finiteness” (see Lemma 20.6 part (4)) we see that
the morphisms f |Ui : Ui → Vi are locally quasi-finite morphisms of affines, hence
quasi-finite, see Lemma 20.9. For y ∈ Y it is clear that Xy =

⋃
y∈Vi(Ui)y is an

open covering. Hence it suffices to prove the lemma for a quasi-finite morphism of
affines (namely, if ni works for the morphism f |Ui : Ui → Vi, then

∑
ni works for

f).
Assume f : X → Y is a quasi-finite morphism of affines. By Lemma 56.3 we can
find a diagram

X

f   

j
// Z

π
��

Y

with Z affine, π finite and j an open immersion. Since j has universally bounded
fibres (Lemma 57.7) this reduces us to showing that π has universally bounded
fibres (Lemma 57.4).
This reduces us to a morphism of the form Spec(B) → Spec(A) where A → B is
finite. Say B is generated by x1, . . . , xn over A and say Pi(T ) ∈ A[T ] is a monic
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polynomial of degree di such that Pi(xi) = 0 in B (a finite ring extension is integral,
see Algebra, Lemma 36.3). With these notations it is clear that⊕

0≤ei<di,i=1,...n
A −→ B, (a(e1,...,en)) 7−→

∑
a(e1,...,en)x

e1
1 . . . xenn

is a surjective A-module map. Thus for any prime p ⊂ A this induces a surjective
map κ(p)-vector spaces

κ(p)⊕d1...dn −→ B ⊗A κ(p)
In other words, the integer d1 . . . dn works in the definition of a morphism with
universally bounded fibres. □

Lemma 57.10.03JB Consider a commutative diagram of morphisms of schemes

X

g
  

f
// Y

h��
Z

If g has universally bounded fibres, and f is surjective and flat, then also h has
universally bounded fibres. More precisely, if n bounds the degree of the fibres of g,
then also n bounds the degree of the fibres of h.

Proof. Assume g has universally bounded fibres, and f is surjective and flat. Say
the degree of the fibres of g is bounded by n ∈ N. We claim n also works for h. Let
z ∈ Z. Consider the morphism of schemes Xz → Yz. It is flat and surjective. By
assumption Xz is a finite scheme over κ(z), in particular it is the spectrum of an
Artinian ring (by Algebra, Lemma 53.2). By Lemma 11.13 the morphism Xz → Yz
is affine in particular quasi-compact. It follows from Lemma 25.12 that Yz is a finite
discrete as this holds for Xz. Hence Yz is an affine scheme (this is a nice exercise;
it also follows for example from Properties, Lemma 29.1 applied to the set of all
points of Yz). Write Yz = Spec(B) and Xz = Spec(A). Then A is faithfully flat
over B, so B ⊂ A. Hence dimk(B) ≤ dimk(A) ≤ n as desired. □

58. Miscellany

0H1L Results which do not fit elsewhere.

Lemma 58.1.0H1M Let f : Y → X be a morphism of schemes. Let x ∈ X be a point.
Assume that Y is reduced and f(Y ) is set-theoretically contained in {x}. Then f
factors through the canonical morphism x = Spec(κ(x))→ X.

Proof. Omitted. Hints: working affine locally one reduces to a commutative al-
gebra lemma. Given a ring map A → B with B reduced such that there exists a
unique prime ideal p ⊂ A in the image of Spec(B)→ Spec(A), then A→ B factors
through κ(p). This is a nice exercise. □

Lemma 58.2.0H1N Let f : Y → X be a morphism of schemes. Let E ⊂ X. Assume
X is locally Noetherian, there are no nontrivial specializations among the elements
of E, Y is reduced, and f(Y ) ⊂ E. Then f factors through

∐
x∈E x→ X.

Proof. When E is a singleton this follows from Lemma 58.1. If E is finite, then
E (with the induced topology of X) is a finite discrete space by our assumption
on specializations. Hence this case reduces to the singleton case. In general, there
is a reduction to the case where X and Y are affine schemes. Say f : Y → X

https://stacks.math.columbia.edu/tag/03JB
https://stacks.math.columbia.edu/tag/0H1M
https://stacks.math.columbia.edu/tag/0H1N
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corresponds to the ring map φ : A → B. Denote A′ ⊂ B the image of φ. Let
E′ ⊂ Spec(A′) ⊂ Spec(A) be the set of minimal primes of A′. By Algebra, Lemma
30.5 the set E′ is contained in the image of Spec(B) → Spec(A′) ⊂ Spec(A). We
conclude that E′ ⊂ E. Since A′ is Noetherian we have E′ is finite by Algebra,
Lemma 31.6. Since any other point in the image of Spec(B) → Spec(A) is a
specialization of an element of E′ and in E, we conclude that the image is contained
in E′ (by our assumption on specializations between points of E). Thus we reduce
to the case where E is finite which we dealt with above. □
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