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1. Introduction

073U In this chapter we put some lemmas that have become “obsolete” (see [Mil17]).

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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2. Preliminaries

0G5K
Remark 2.1.0EGF The information which used to be contained in this remark is now
subsumed in the combination of Categories, Lemmas 24.4 and 24.3.

3. Homological algebra

0BFJ
Remark 3.1.076K The following remarks are obsolete as they are subsumed in Ho-
mology, Lemmas 24.11 and 25.3. Let A be an abelian category. Let C ⊂ A be a
weak Serre subcategory (see Homology, Definition 10.1). Suppose that K•,• is a
double complex to which Homology, Lemma 25.3 applies such that for some r ≥ 0
all the objects ′Ep,qr belong to C. Then all the cohomology groups Hn(sK•) belong
to C. Namely, the assumptions imply that the kernels and images of ′dp,qr are in C.
Whereupon we see that each ′Ep,qr+1 is in C. By induction we see that each ′Ep,q∞ is in
C. Hence each Hn(sK•) has a finite filtration whose subquotients are in C. Using
that C is closed under extensions we conclude that Hn(sK•) is in C as claimed. The
same result holds for the second spectral sequence associated to K•,•. Similarly,
if (K•, F ) is a filtered complex to which Homology, Lemma 24.11 applies and for
some r ≥ 0 all the objects Ep,qr belong to C, then each Hn(K•) is an object of C.

4. Obsolete algebra lemmas

088X
Lemma 4.1.055Z Let M be an R-module of finite presentation. For any surjection
α : R⊕n →M the kernel of α is a finite R-module.

Proof. This is a special case of Algebra, Lemma 5.3. □

Lemma 4.2.00I5 Let φ : R→ S be a ring map. If
(1) for any x ∈ S there exists n > 0 such that xn is in the image of φ, and
(2) for any x ∈ Ker(φ) there exists n > 0 such that xn = 0,

then φ induces a homeomorphism on spectra. Given a prime number p such that
(a) S is generated as an R-algebra by elements x such that there exists an n > 0

with xpn ∈ φ(R) and pnx ∈ φ(R), and
(b) the kernel of φ is generated by nilpotent elements,

then (1) and (2) hold, and for any ring map R → R′ the ring map R′ → R′ ⊗R S
also satisfies (a), (b), (1), and (2) and in particular induces a homeomorphism on
spectra.

Proof. This is a combination of Algebra, Lemmas 46.3 and 46.7. □

The following technical lemma says that you can lift any sequence of relations from
a fibre to the whole space of a ring map which is essentially of finite type, in a
suitable sense.

Lemma 4.3.00SX Let R → S be a ring map. Let p ⊂ R be a prime. Let q ⊂ S be a
prime lying over p. Assume Sq is essentially of finite type over Rp. Assume given

(1) an integer n ≥ 0,
(2) a prime a ⊂ κ(p)[x1, . . . , xn],

https://stacks.math.columbia.edu/tag/0EGF
https://stacks.math.columbia.edu/tag/076K
https://stacks.math.columbia.edu/tag/055Z
https://stacks.math.columbia.edu/tag/00I5
https://stacks.math.columbia.edu/tag/00SX
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(3) a surjective κ(p)-homomorphism

ψ : (κ(p)[x1, . . . , xn])a −→ Sq/pSq,

and
(4) elements f1, . . . , fe in Ker(ψ).

Then there exist
(1) an integer m ≥ 0,
(2) and element g ∈ S, g ̸∈ q,
(3) a map

Ψ : R[x1, . . . , xn, xn+1, . . . , xn+m] −→ Sg,

and
(4) elements f1, . . . , fe, fe+1, . . . , fe+m of Ker(Ψ)

such that
(1) the following diagram commutes

R[x1, . . . , xn+m]

Ψ
��

xn+j 7→0
// (κ(p)[x1, . . . , xn])a

ψ

��
Sg // Sq/pSq

,

(2) the element fi, i ≤ n maps to a unit times f i in the local ring

(κ(p)[x1, . . . , xn+m])(a,xn+1,...,xn+m),

(3) the element fe+j maps to a unit times xn+j in the same local ring, and
(4) the induced map R[x1, . . . , xn+m]b → Sq is surjective, where b = Ψ−1(qSg).

Proof. We claim that it suffices to prove the lemma in case R and S are local with
maximal ideals p and q. Namely, suppose we have constructed

Ψ′ : Rp[x1, . . . , xn+m] −→ Sq

and f ′
1, . . . , f

′
e+m ∈ Rp[x1, . . . , xn+m] with all the required properties. Then there

exists an element f ∈ R, f ̸∈ p such that each ff ′
k comes from an element fk ∈

R[x1, . . . , xn+m]. Moreover, for a suitable g ∈ S, g ̸∈ q the elements Ψ′(xi) are
the image of elements yi ∈ Sg. Let Ψ be the R-algebra map defined by the rule
Ψ(xi) = yi. Since Ψ(fi) is zero in the localization Sq we may after possibly replacing
g assume that Ψ(fi) = 0. This proves the claim.

Thus we may assume R and S are local with maximal ideals p and q. Pick
y1, . . . , yn ∈ S such that yi mod pS = ψ(xi). Let yn+1, . . . , yn+m ∈ S be ele-
ments which generate an R-subalgebra of which S is the localization. These exist
by the assumption that S is essentially of finite type over R. Since ψ is surjective we
may write yn+j mod pS = ψ(hj) for some hj ∈ κ(p)[x1, . . . , xn]a. Write hj = gj/d,
gj ∈ κ(p)[x1, . . . , xn] for some common denominator d ∈ κ(p)[x1, . . . , xn], d ̸∈ a.
Choose lifts Gj , D ∈ R[x1, . . . , xn] of gj and d. Set y′

n+j = D(y1, . . . , yn)yn+j −
Gj(y1, . . . , yn). By construction y′

n+j ∈ pS. It is clear that y1, . . . , yn, y
′
n, . . . , y

′
n+m

generate an R-subalgebra of S whose localization is S. We define

Ψ : R[x1, . . . , xn+m]→ S
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to be the map that sends xi to yi for i = 1, . . . , n and xn+j to y′
n+j for j = 1, . . . ,m.

Properties (1) and (4) are clear by construction. Moreover the ideal b maps onto
the ideal (a, xn+1, . . . , xn+m) in the polynomial ring κ(p)[x1, . . . , xn+m].
Denote J = Ker(Ψ). We have a short exact sequence

0→ Jb → R[x1, . . . , xn+m]b → Sq → 0.
The surjectivity comes from our choice of y1, . . . , yn, y

′
n, . . . , y

′
n+m above. This

implies that
Jb/pJb → κ(p)[x1, . . . , xn+m](a,xn+1,...,xn+m) → Sq/pSq → 0

is exact. By construction xi maps to ψ(xi) and xn+j maps to zero under the last
map. Thus it is easy to choose fi as in (2) and (3) of the lemma. □

Remark 4.4 (Projective resolutions).01DE Let R be a ring. For any set S we let F (S)
denote the free R-module on S. Then any left R-module has the following two step
resolution

F (M ×M)⊕ F (R×M)→ F (M)→M → 0.
The first map is given by the rule

[m1,m2]⊕ [r,m] 7→ [m1 +m2]− [m1]− [m2] + [rm]− r[m].

Lemma 4.5.02CA Let S be a multiplicative set of A. Then the map

f : Spec(S−1A) −→ Spec(A)
induced by the canonical ring map A→ S−1A is a homeomorphism onto its image
and Im(f) = {p ∈ Spec(A) : p ∩ S = ∅}.

Proof. This is a duplicate of Algebra, Lemma 17.5. □

Lemma 4.6.05IP Let A→ B be a finite type, flat ring map with A an integral domain.
Then B is a finitely presented A-algebra.

Proof. Special case of More on Flatness, Proposition 13.10. □

Lemma 4.7.053F Let R be a domain with fraction field K. Let S = R[x1, . . . , xn]
be a polynomial ring over R. Let M be a finite S-module. Assume that M is flat
over R. If for every subring R ⊂ R′ ⊂ K, R ̸= R′ the module M ⊗R R′ is finitely
presented over S ⊗R R′, then M is finitely presented over S.

Proof. This lemma is true because M is finitely presented even without the as-
sumption that M ⊗R R′ is finitely presented for every R′ as in the statement of
the lemma. This follows from More on Flatness, Proposition 13.10. Originally this
lemma had an erroneous proof (thanks to Ofer Gabber for finding the gap) and
was used in an alternative proof of the proposition cited. To reinstate this lemma,
we need a correct argument in case R is a local normal domain using only results
from the chapters on commutative algebra; please email stacks.project@gmail.com
if you have an argument. □

Lemma 4.8.02TQ Let A→ B be a ring map. Let f ∈ B. Assume that
(1) A→ B is flat,
(2) f is a nonzerodivisor, and
(3) A→ B/fB is flat.

Then for every ideal I ⊂ A the map f : B/IB → B/IB is injective.

https://stacks.math.columbia.edu/tag/01DE
https://stacks.math.columbia.edu/tag/02CA
https://stacks.math.columbia.edu/tag/05IP
https://stacks.math.columbia.edu/tag/053F
mailto:stacks.project@gmail.com
https://stacks.math.columbia.edu/tag/02TQ
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Proof. Note that IB = I ⊗A B and I(B/fB) = I ⊗A B/fB by the flatness of
B and B/fB over A. In particular IB/fIB ∼= I ⊗A B/fB maps injectively into
B/fB. Hence the result follows from the snake lemma applied to the diagram

0 // I ⊗A B //

f

��

B //

f

��

B/IB //

f

��

0

0 // I ⊗A B // B // B/IB // 0

with exact rows. □

Lemma 4.9.051A If R → S is a faithfully flat ring map then for every R-module M
the map M → S ⊗RM , x 7→ 1⊗ x is injective.

Proof. This lemma is a duplicate of Algebra, Lemma 82.11. □

Remark 4.10.07C2 This reference/tag used to refer to a Section in the chapter Smooth-
ing Ring Maps, but the material has since been subsumed in Algebra, Section 127.

Lemma 4.11.07K3 Let (R,m) be a reduced Noetherian local ring of dimension 1 and
let x ∈ m be a nonzerodivisor. Let q1, . . . , qr be the minimal primes of R. Then

lengthR(R/(x)) =
∑

i
ordR/qi

(x)

Proof. Special (very easy) case of Chow Homology, Lemma 3.2. □

Lemma 4.12.0AXG Let A be a Noetherian local normal domain of dimension 2. For
f ∈ m nonzero denote div(f) =

∑
ni(pi) the divisor associated to f on the punctured

spectrum of A. We set |f | =
∑
ni. There exist integers N and M such that

|f + g| ≤M for all g ∈ mN .

Proof. Pick h ∈ m such that f, h is a regular sequence in A (this follows from Alge-
bra, Lemmas 157.4 and 72.7). We will prove the lemma withM = lengthA(A/(f, h))
and with N any integer such that mN ⊂ (f, h). Such an integer N exists because√

(f, h) = m. Note that M = lengthA(A/(f + g, h)) for all g ∈ mN because
(f, h) = (f + g, h). This moreover implies that f + g, h is a regular sequence in A
too, see Algebra, Lemma 104.2. Now suppose that div(f + g) =

∑
mj(qj). Then

consider the map

c : A/(f + g) −→
∏

A/q
(mj)
j

where q
(mj)
j is the symbolic power, see Algebra, Section 64. Since A is normal, we

see that Aqi is a discrete valuation ring and hence

Aqi
/(f + g) = Aqi

/qmi
i Aqi

= (A/q(mi)
i )qi

Since V (f + g, h) = {m} this implies that c becomes an isomorphism on inverting
h (small detail omitted). Since h is a nonzerodivisor on A/(f + g) we see that
the length of A/(f + g, h) equals the Herbrand quotient eA(A/(f + g), 0, h) as
defined in Chow Homology, Section 2. Similarly the length of A/(h, q(mj)

j ) equals

https://stacks.math.columbia.edu/tag/051A
https://stacks.math.columbia.edu/tag/07C2
https://stacks.math.columbia.edu/tag/07K3
https://stacks.math.columbia.edu/tag/0AXG
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eA(A/q(mj)
j , 0, h). Then we have

M = lengthA(A/(f + g, h)
= eA(A/(f + g), 0, h)

=
∑

i
eA(A/q(mj)

j , 0, h)

=
∑

i

∑
m=0,...,mj−1

eA(q(m)
j /q

(m+1)
j , 0, h)

The equalities follow from Chow Homology, Lemmas 2.3 and 2.4 using in particular
that the cokernel of c has finite length as discussed above. It is straightforward to
prove that eA(q(m)/q(m+1), 0, h) is at least 1 by Nakayama’s lemma. This finishes
the proof of the lemma. □

Lemma 4.13.0BJK Let A→ B be a flat local homomorphism of Noetherian local rings.
If A and B/mAB are Gorenstein, then B is Gorenstein.

Proof. Follows immediately from Dualizing Complexes, Lemma 21.8. □

Lemma 4.14.0DXL Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let
M be a finite A-module. Let s be an integer. Assume

(1) A has a dualizing complex,
(2) if p ̸∈ V (I) and V (p) ∩ V (I) ̸= {m}, then depthAp

(Mp) + dim(A/p) > s.
Then there exists an n > 0 and an ideal J ⊂ A with V (J) ∩ V (I) = {m} such that
JIn annihilates Hi

m(M) for i ≤ s.

Proof. According to Local Cohomology, Lemma 9.4 we have to show this for the
finite A-module Ei = Ext−i

A (M,ω•
A) for i ≤ s. The support Z of E0 ⊕ . . . ⊕ Es is

closed in Spec(A) and does not contain any prime as in (2). Hence it is contained
in V (JIn) for some J as in the statement of the lemma. □

Lemma 4.15.0EFS Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let
M be a finite A-module. Let s and d be integers. Assume

(a) A has a dualizing complex,
(b) cd(A, I) ≤ d,
(c) if p ̸∈ V (I) then depthAp

(Mp) > s or depthAp
(Mp) + dim(A/p) > d+ s.

Then the assumptions of Algebraic and Formal Geometry, Lemma 10.4 hold for
A, I,m,M and Hi

m(M)→ limHi
m(M/InM) is an isomorphism for i ≤ s and these

modules are annihilated by a power of I.

Proof. The assumptions of Algebraic and Formal Geometry, Lemma 10.4 by the
more general Algebraic and Formal Geometry, Lemma 10.5. Then the conclusion
of Algebraic and Formal Geometry, Lemma 10.4 gives the second statement. □

Lemma 4.16.0EFZ In Algebraic and Formal Geometry, Situation 10.1 we have Hs
a(M) =

limHs
a(M/InM).

Proof. This is immediate from Algebraic and Formal Geometry, Theorem 10.8.
The original version of this lemma, which had additional assumptions, was super-
seded by the this theorem. □

Lemma 4.17.0EKR Let A be a Noetherian ring. Let f ∈ a be an element of an ideal of
A. Let U = Spec(A) \ V (a). Assume

https://stacks.math.columbia.edu/tag/0BJK
https://stacks.math.columbia.edu/tag/0DXL
https://stacks.math.columbia.edu/tag/0EFS
https://stacks.math.columbia.edu/tag/0EFZ
https://stacks.math.columbia.edu/tag/0EKR
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(1) A has a dualizing complex and is complete with respect to f ,
(2) Af is (S2) and for every minimal prime p ⊂ A, f ̸∈ p and q ∈ V (p)∩ V (a)

we have dim((A/p)q) ≥ 3.
Then the completion functor

Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. This lemma is a special case of Algebraic and Formal Geometry, Lemma
15.6. □

5. Lemmas related to ZMT

073V The lemmas in this section were originally used in the proof of the (algebraic version
of) Zariski’s Main Theorem, Algebra, Theorem 123.12.

Lemma 5.1.00PU Let R be a ring and let φ : R[x] → S be a ring map. Let t ∈ S.
If t is integral over R[x], then there exists an ℓ ≥ 0 such that for every a ∈ R the
element φ(a)ℓt is integral over φa : R[y]→ S, defined by y 7→ φ(ax) and r 7→ φ(r)
for r ∈ R.

Proof. Say td +
∑
i<d φ(fi)ti = 0 with fi ∈ R[x]. Let ℓ be the maximum degree in

x of all the fi. Multiply the equation by φ(a)ℓ to get φ(a)ℓtd +
∑
i<d φ(aℓfi)ti = 0.

Note that each φ(aℓfi) is in the image of φa. The result follows from Algebra,
Lemma 123.1. □

Lemma 5.2.00PR Let φ : R → S be a ring map. Suppose t ∈ S satisfies the relation
φ(a0) +φ(a1)t+ . . .+φ(an)tn = 0. Set un = φ(an), un−1 = unt+φ(an−1), and so
on till u1 = u2t + φ(a1). Then all of un, un−1, . . . , u1 and unt, un−1t, . . . , u1t are
integral over R, and the ideals (φ(a0), . . . , φ(an)) and (un, . . . , u1) of S are equal.

Proof. We prove this by induction on n. As un = φ(an) we conclude from Algebra,
Lemma 123.1 that unt is integral over R. Of course un = φ(an) is integral over R.
Then un−1 = unt + φ(an−1) is integral over R (see Algebra, Lemma 36.7) and we
have

φ(a0) + φ(a1)t+ . . .+ φ(an−1)tn−1 + un−1t
n−1 = 0.

Hence by the induction hypothesis applied to the map S′ → S where S′ is the
integral closure of R in S and the displayed equation we see that un−1, . . . , u1 and
un−1t, . . . , u1t are all in S′ too. The statement on the ideals is immediate from the
shape of the elements and the fact that u1t+ φ(a0) = 0. □

Lemma 5.3.00PS Let φ : R → S be a ring map. Suppose t ∈ S satisfies the relation
φ(a0) +φ(a1)t+ . . .+φ(an)tn = 0. Let J ⊂ S be an ideal such that for at least one
i we have φ(ai) ̸∈ J . Then there exists a u ∈ S, u ̸∈ J such that both u and ut are
integral over R.

Proof. This is immediate from Lemma 5.2 since one of the elements ui will not be
in J . □

The following two lemmas are a way of describing closed subschemes of P1
R cut out

by one (nondegenerate) equation.

https://stacks.math.columbia.edu/tag/00PU
https://stacks.math.columbia.edu/tag/00PR
https://stacks.math.columbia.edu/tag/00PS
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Lemma 5.4.00Q4 Let R be a ring. Let F (X,Y ) ∈ R[X,Y ] be homogeneous of degree
d. Assume that for every prime p of R at least one coefficient of F is not in p. Let
S = R[X,Y ]/(F ) as a graded ring. Then for all n ≥ d the R-module Sn is finite
locally free of rank d.

Proof. The R-module Sn has a presentation

R[X,Y ]n−d → R[X,Y ]n → Sn → 0.

Thus by Algebra, Lemma 79.4 it is enough to show that multiplication by F induces
an injective map κ(p)[X,Y ] → κ(p)[X,Y ] for all primes p. This is clear from the
assumption that F does not map to the zero polynomial mod p. The assertion on
ranks is clear from this as well. □

Lemma 5.5.00Q5 Let k be a field. Let F,G ∈ k[X,Y ] be homogeneous of degrees
d, e. Assume F,G relatively prime. Then multiplication by G is injective on S =
k[X,Y ]/(F ).

Proof. This is one way to define “relatively prime”. If you have another definition,
then you can show it is equivalent to this one. □

Lemma 5.6.00Q6 Let R be a ring. Let F (X,Y ) ∈ R[X,Y ] be homogeneous of degree
d. Let S = R[X,Y ]/(F ) as a graded ring. Let p ⊂ R be a prime such that some
coefficient of F is not in p. There exists an f ∈ R f ̸∈ p, an integer e, and a
G ∈ R[X,Y ]e such that multiplication by G induces isomorphisms (Sn)f → (Sn+e)f
for all n ≥ d.

Proof. During the course of the proof we may replace R by Rf for f ∈ R, f ̸∈ p
(finitely often). As a first step we do such a replacement such that some coefficient
of F is invertible in R. In particular the modules Sn are now locally free of rank d for
n ≥ d by Lemma 5.4. Pick any G ∈ R[X,Y ]e such that the image of G in κ(p)[X,Y ]
is relatively prime to the image of F (X,Y ) (this is possible for some e). Apply
Algebra, Lemma 79.4 to the map induced by multiplication by G from Sd → Sd+e.
By our choice of G and Lemma 5.5 we see Sd ⊗ κ(p) → Sd+e ⊗ κ(p) is bijective.
Thus, after replacing R by Rf for a suitable f we may assume that G : Sd → Sd+e
is bijective. This in turn implies that the image of G in κ(p′)[X,Y ] is relatively
prime to the image of F for all primes p′ of R. And then by Algebra, Lemma 79.4
again we see that all the maps G : Sd → Sd+e, n ≥ d are isomorphisms. □

Remark 5.7.00Q7 Let R be a ring. Suppose that we have F ∈ R[X,Y ]d and G ∈
R[X,Y ]e such that, setting S = R[X,Y ]/(F ) we have (1) Sn is finite locally free of
rank d for all n ≥ d, and (2) multiplication by G defines isomorphisms Sn → Sn+e
for all n ≥ d. In this case we may define a finite, locally free R-algebra A as follows:

(1) as an R-module A = Sed, and
(2) multiplication A×A→ A is given by the rule that H1H2 = H3 if and only

if GdH3 = H1H2 in S2ed.
This makes sense because multiplication by Gd induces a bijective map Sde → S2de.
It is easy to see that this defines a ring structure. Note the confusing fact that the
element Gd defines the unit element of the ring A.

https://stacks.math.columbia.edu/tag/00Q4
https://stacks.math.columbia.edu/tag/00Q5
https://stacks.math.columbia.edu/tag/00Q6
https://stacks.math.columbia.edu/tag/00Q7
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Lemma 5.8.00Q3 Let R be a ring, let f ∈ R. Suppose we have S, S′ and the solid
arrows forming the following commutative diagram of rings

S′′

!!

��

R //

==

��

S

��
Rf // S′ // Sf

Assume that Rf → S′ is finite. Then we can find a finite ring map R → S′′ and
dotted arrows as in the diagram such that S′ = (S′′)f .

Proof. Namely, suppose that S′ is generated by xi over Rf , i = 1, . . . , w. Let
Pi(t) ∈ Rf [t] be a monic polynomial such that Pi(xi) = 0. Say Pi has degree
di > 0. Write Pi(t) = tdi +

∑
j<di

(aij/fn)tj for some uniform n. Also write the
image of xi in Sf as gi/fn for suitable gi ∈ S. Then we know that the element ξi =
fndigdi

i +
∑
j<di

fn(di−j)aijg
j
i of S is killed by a power of f . Hence upon increasing

n to n′, which replaces gi by fn′−ngi we may assume ξi = 0. Then S′ is generated
by the elements fnxi, each of which is a zero of the monic polynomial Qi(t) = tdi +∑
j<di

fn(di−j)aijt
j with coefficients in R. Also, by construction Qi(fngi) = 0 in S.

Thus we get a finite R-algebra S′′ = R[z1, . . . , zw]/(Q1(z1), . . . , Qw(zw)) which fits
into a commutative diagram as above. The map α : S′′ → S maps zi to fngi and
the map β : S′′ → S′ maps zi to fnxi. It may not yet be the case that β induces an
isomorphism (S′′)f ∼= S′. For the moment we only know that this map is surjective.
The problem is that there could be elements h/fn ∈ (S′′)f which map to zero in S′

but are not zero. In this case β(h) is an element of S such that fNβ(h) = 0 for some
N . Thus fNh is an element ot the ideal J = {h ∈ S′′ | α(h) = 0 and β(h) = 0} of
S′′. OK, and it is easy to see that S′′/J does the job. □

6. Formally smooth ring maps

07GD
Lemma 6.1.00TO Let R be a ring. Let S be a R-algebra. If S is of finite presentation
and formally smooth over R then S is smooth over R.

Proof. See Algebra, Proposition 138.13. □

Remark 6.2.0AKC This tag used to refer to an equation in the proof of Algebraization
of Formal Spaces, Proposition 6.3 which became unused because of a rearrangement
of the material.

Remark 6.3.0AKD This tag used to refer to an equation in the proof of Algebraization
of Formal Spaces, Proposition 6.3 which became unused because of a rearrangement
of the material.

Remark 6.4.0AKE This tag used to refer to an equation in the proof of Algebraization
of Formal Spaces, Proposition 6.3 which became unused because of a rearrangement
of the material.

https://stacks.math.columbia.edu/tag/00Q3
https://stacks.math.columbia.edu/tag/00TO
https://stacks.math.columbia.edu/tag/0AKC
https://stacks.math.columbia.edu/tag/0AKD
https://stacks.math.columbia.edu/tag/0AKE
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Remark 6.5.0AKF This tag used to refer to an equation in the proof of Algebraization
of Formal Spaces, Proposition 6.3 which became unused because of a rearrangement
of the material.

Remark 6.6.0AM9 This tag used to refer to an equation in the proof of Algebraization
of Formal Spaces, Lemma 9.1 which became unused because of a rearrangement of
the material.

Lemma 6.7.0AK9 Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let t be the
minimal number of generators for I. Let C be a Noetherian I-adically complete
A-algebra. There exists an integer d ≥ 0 depending only on I ⊂ A → C with the
following property: given

(1) c ≥ 0 and B in Algebraization of Formal Spaces, Equation (2.0.2) such that
for a ∈ Ic multiplication by a on NL∧

B/A is zero in D(B),
(2) an integer n > 2tmax(c, d),
(3) an A/In-algebra map ψn : B/InB → C/InC,

there exists a map φ : B → C of A-algebras such that ψn mod Im−c = φ mod Im−c

with m = ⌊nt ⌋.

Proof. This lemma has been obsoleted by the stronger Algebraization of Formal
Spaces, Lemma 5.3. In fact, we will deduce the lemma from it.
Let I ⊂ A → C be given as in the statement above. Denote d(GrI(C)) and
q(GrI(C)) the integers found in Local Cohomology, Section 22. Observe that t is
an upper bound for the minimal number of generators of IC and hence we have
d(GrI(C)) + 1 ≤ t, see discussion in Local Cohomology, Section 22. We may and
do assume t ≥ 1 since otherwise the lemma does not say anything. We claim that
the lemma is true with

d = q(GrI(C))
Namely, suppose that c, B, n, ψn are as in the statement above. Then we see that

n > 2tmax(c, d)⇒ n ≥ 2tc+ 1⇒ n ≥ 2(d(GrI(C)) + 1)c+ 1
On the other hand, we have
n > 2tmax(c, d)⇒ n > t(c+ d)⇒ n ≥ q(C) + tc ≥ q(GrI(C)) + (d(GrI(C)) + 1)c
Hence the assumptions of Algebraization of Formal Spaces, Lemma 5.3 are satisfied
and we obtain an A-algebra homomorphism φ : B → C which is congruent with
ψn module In−(d(GrI (C))+1)cC. Since

n− (d(GrI(C)) + 1)c = n

t
+ (t− 1)n

t
− (d(GrI(C)) + 1)c

≥ n

t
+ (d(GrI(C))n

t
− (d(GrI(C)) + 1)c

>
n

t
+ d(GrI(C))2tc

t
− (d(GrI(C)) + 1)c

= n

t
+ 2d(GrI(C))c− (d(GrI(C)) + 1)c

= n

t
+ d(GrI(C))c− c

≥ m− c

we see that we have the congruence of φ and ψn module Im−cC as desired. □

https://stacks.math.columbia.edu/tag/0AKF
https://stacks.math.columbia.edu/tag/0AM9
https://stacks.math.columbia.edu/tag/0AK9
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7. Sites and sheaves

0EGM
Remark 7.1 (No map from lower shriek to pushforward).0931 Let U be an object
of a site C. For any abelian sheaf G on C/U one may wonder whether there is a
canonical map

c : jU !G −→ jU∗G
To construct such a thing is the same as constructing a map j−1

U jU !G → G. Note
that restriction commutes with sheafification. Thus we can use the presheaf of
Modules on Sites, Lemma 19.2. Hence it suffices to define for V/U a map⊕

φ∈MorC(V,U)
G(V φ−→ U) −→ G(V/U)

compatible with restrictions. It looks like we can take the which is zero on all
summands except for the one where φ is the structure morphism φ0 : V → U
where we take 1. However, this isn’t compatible with restriction mappings: namely,
if α : V ′ → V is a morphism of C, then denote V ′/U the object of C/U with structure
morphism φ′

0 = φ0 ◦ α. We need to check that the diagram⊕
φ∈MorC(V,U) G(V φ−→ U)

��

// G(V/U)

��⊕
φ′∈MorC(V ′,U) G(V ′ φ′

−→ U) // G(V ′/U)

commutes. The problem here is that there may be a morphism φ : V → U different
from φ0 such that φ ◦ α = φ′

0. Thus the left vertical arrow will send the summand
corresponding to φ into the summand on which the lower horizontal arrow is equal
to 1 and almost surely the diagram doesn’t commute.

8. Cohomology

0BM0 Obsolete lemmas about cohomology.

Lemma 8.1.0EH4 Let I be an ideal of a ring A. Let X be a scheme over Spec(A). Let
. . .→ F3 → F2 → F1

be an inverse system of OX-modules such that Fn = Fn+1/I
nFn+1. Assume⊕

n≥0
H1(X, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then

the inverse system Mn = Γ(X,Fn) satisfies the Mittag-Leffler condition.

Proof. This is a special case of the more general Cohomology, Lemma 35.1. □

Lemma 8.2.0EH5 Let I be an ideal of a ring A. Let X be a scheme over Spec(A). Let
. . .→ F3 → F2 → F1

be an inverse system of OX-modules such that Fn = Fn+1/I
nFn+1. Given n define

H1
n =

⋂
m≥n

Im
(
H1(X, InFm+1)→ H1(X, InFn+1)

)
If

⊕
H1
n satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module,
then the inverse system Mn = Γ(X,Fn) satisfies the Mittag-Leffler condition.

https://stacks.math.columbia.edu/tag/0931
https://stacks.math.columbia.edu/tag/0EH4
https://stacks.math.columbia.edu/tag/0EH5
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Proof. This is a special case of the more general Cohomology, Lemma 35.2. □

Lemma 8.3.0EI7 Let I be a finitely generated ideal of a ring A. Let X be a scheme
over Spec(A). Let

. . .→ F3 → F2 → F1

be an inverse system of OX-modules such that Fn = Fn+1/I
nFn+1. Assume⊕

n≥0
H0(X, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then

the limit topology on M = lim Γ(X,Fn) is the I-adic topology.

Proof. This is a special case of the more general Cohomology, Lemma 35.3. □

Lemma 8.4.06YW Let (Sh(C),OC) be a ringed topos. For any complex of OC-modules
G• there exists a quasi-isomorphism K• → G• such that f∗K• is a K-flat complex
of OD-modules for any morphism f : (Sh(D),OD)→ (Sh(C),OC) of ringed topoi.

Proof. This follows from Cohomology on Sites, Lemmas 17.11 and 18.1. □

Remark 8.5.06YX This remark used to discuss what we know about pullbacks of K-
flat complexes being K-flat or not, but is now obsoleted by Cohomology on Sites,
Lemma 18.1.

The following lemma computes the cohomology sheaves of the derived limit in a
special case.

Lemma 8.6.0A08 Let (C,O) be a ringed site. Let (Kn) be an inverse system of objects
of D(O). Let B ⊂ Ob(C) be a subset. Let d ∈ N. Assume

(1) Kn is an object of D+(O) for all n,
(2) for q ∈ Z there exists n(q) such that Hq(Kn+1) → Hq(Kn) is an isomor-

phism for n ≥ n(q),
(3) every object of C has a covering whose members are elements of B,
(4) for every U ∈ B we have Hp(U,Hq(Kn)) = 0 for p > d and all q.

Then we have Hm(R limKn) = limHm(Kn) for all m ∈ Z.

Proof. Set K = R limKn. Let U ∈ B. For each n there is a spectral sequence
Hp(U,Hq(Kn))⇒ Hp+q(U,Kn)

which converges as Kn is bounded below, see Derived Categories, Lemma 21.3.
If we fix m ∈ Z, then we see from our assumption (4) that only Hp(U,Hq(Kn))
contribute to Hm(U,Kn) for 0 ≤ p ≤ d and m − d ≤ q ≤ m. By assumption
(2) this implies that Hm(U,Kn+1) → Hm(U,Kn) is an isomorphism as soon as
n ≥ max n(m), . . . , n(m− d). The functor RΓ(U,−) commutes with derived limits
by Injectives, Lemma 13.6. Thus we have

Hm(U,K) = Hm(R limRΓ(U,Kn))
On the other hand we have just seen that the complexes RΓ(U,Kn) have eventually
constant cohomology groups. Thus by More on Algebra, Remark 86.10 we find
that Hm(U,K) is equal to Hm(U,Kn) for all n ≫ 0 for some bound independent
of U ∈ B. Pick such an n. Finally, recall that Hm(K) is the sheafification of
the presheaf U 7→ Hm(U,K) and Hm(Kn) is the sheafification of the presheaf
U 7→ Hm(U,Kn). On the elements of B these presheaves have the same values.

https://stacks.math.columbia.edu/tag/0EI7
https://stacks.math.columbia.edu/tag/06YW
https://stacks.math.columbia.edu/tag/06YX
https://stacks.math.columbia.edu/tag/0A08
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Therefore assumption (3) guarantees that the sheafifications are the same too. The
lemma follows. □

Lemma 8.7.0D7P In Simplicial Spaces, Situation 3.3 let a0 be an augmentation towards
a site D as in Simplicial Spaces, Remark 4.1. Suppose given strictly full weak Serre
subcategories

A ⊂ Ab(D), An ⊂ Ab(Cn)
Then

(1) the collection of abelian sheaves F on Ctotal whose restriction to Cn is in
An for all n is a strictly full weak Serre subcategory Atotal ⊂ Ab(Ctotal).

If a−1
n sends A into An for all n, then
(2) a−1 sends A into Atotal and
(3) a−1 sends DA(D) into DAtotal

(Ctotal).
If Rqan,∗ sends An into A for all n, q, then

(4) Rqa∗ sends Atotal into A for all q, and
(5) Ra∗ sends D+

Atotal
(Ctotal) into D+

A(D).

Proof. The only interesting assertions are (4) and (5). Part (4) follows from the
spectral sequence in Simplicial Spaces, Lemma 9.3 and Homology, Lemma 24.11.
Then part (5) follows by considering the spectral sequence associated to the canon-
ical filtration on an object K of D+

Atotal
(Ctotal) given by truncations. We omit the

details. □

Remark 8.8.01DY This tag used to refer to a section of the chapter on cohomology
listing topics to be treated.

Remark 8.9.01FS This tag used to refer to a section of the chapter on cohomology
listing topics to be treated.

Remark 8.10.0DCV This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.3 pertaining to the situation described in Cohomology on Sites, Lemma
31.9.

Remark 8.11.0DCW This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.4 pertaining to the situation described in Cohomology on Sites, Lemma
31.9.

Remark 8.12.0DCX This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.7 pertaining to the situation described in Cohomology on Sites, Lemma
31.9.

Remark 8.13.0DDP This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.3 pertaining to the situation described in Étale Cohomology, Lemma
100.5.

Remark 8.14.0DDQ This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.4 pertaining to the situation described in Étale Cohomology, Lemma
100.5.

Remark 8.15.0DDR This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.7 pertaining to the situation described in Étale Cohomology, Lemma
100.5.

https://stacks.math.columbia.edu/tag/0D7P
https://stacks.math.columbia.edu/tag/01DY
https://stacks.math.columbia.edu/tag/01FS
https://stacks.math.columbia.edu/tag/0DCV
https://stacks.math.columbia.edu/tag/0DCW
https://stacks.math.columbia.edu/tag/0DCX
https://stacks.math.columbia.edu/tag/0DDP
https://stacks.math.columbia.edu/tag/0DDQ
https://stacks.math.columbia.edu/tag/0DDR
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Remark 8.16.0DDZ This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.3 pertaining to the situation described in Étale Cohomology, Lemma
102.4.

Remark 8.17.0DE0 This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.4 pertaining to the situation described in Étale Cohomology, Lemma
102.4.

Remark 8.18.0DE1 This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.5 pertaining to the situation described in Étale Cohomology, Lemma
102.4.

Remark 8.19.0DE2 This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.6 pertaining to the situation described in Étale Cohomology, Lemma
102.4.

Remark 8.20.0DE3 This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.7 pertaining to the situation described in Étale Cohomology, Lemma
102.4.

Remark 8.21.0EWB This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.3 pertaining to the situation described in Étale Cohomology, Lemma
103.4.

Remark 8.22.0EWC This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.4 pertaining to the situation described in Étale Cohomology, Lemma
103.4.

Remark 8.23.0EWD This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.5 pertaining to the situation described in Étale Cohomology, Lemma
103.4.

Remark 8.24.0EWE This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.7 pertaining to the situation described in Étale Cohomology, Lemma
103.4.

Remark 8.25.03TU This tag used to be in the chapter on étale cohomology, but is no
longer suitable there because of a reorganization. The content of the tag was the
following: Étale Cohomology, Lemma 77.3 can be used to prove that if f : X → Y
is a separated, finite type morphism of schemes and Y is Noetherian, then Rf!
induces a functor Dctf (Xétale,Λ)→ Dctf (Yétale,Λ). An example of this argument,
when Y is the spectrum of a field and X is a curve is given in The Trace Formula,
Proposition 13.1.

Lemma 8.26.0F5D Let f : X → Y be a locally quasi-finite morphism of schemes.
There exists a unique functor f ! : Ab(Yétale)→ Ab(Xétale) such that

(1) for any open j : U → X with f◦j separated there is a canonical isomorphism
j! ◦ f ! = (f ◦ j)!, and

(2) these isomorphisms for U ⊂ U ′ ⊂ X are compatible with the isomorphisms
in More Étale Cohomology, Lemma 6.3.

Proof. Immediate consequence of More Étale Cohomology, Lemmas 6.1 and 6.3.
□

https://stacks.math.columbia.edu/tag/0DDZ
https://stacks.math.columbia.edu/tag/0DE0
https://stacks.math.columbia.edu/tag/0DE1
https://stacks.math.columbia.edu/tag/0DE2
https://stacks.math.columbia.edu/tag/0DE3
https://stacks.math.columbia.edu/tag/0EWB
https://stacks.math.columbia.edu/tag/0EWC
https://stacks.math.columbia.edu/tag/0EWD
https://stacks.math.columbia.edu/tag/0EWE
https://stacks.math.columbia.edu/tag/03TU
https://stacks.math.columbia.edu/tag/0F5D
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Proposition 8.27.0F5E Let f : X → Y be a locally quasi-finite morphism. There exist
adjoint functors f! : Ab(Xétale)→ Ab(Yétale) and f ! : Ab(Yétale)→ Ab(Xétale) with
the following properties

(1) the functor f ! is the one constructed in More Étale Cohomology, Lemma
6.1,

(2) for any open j : U → X with f◦j separated there is a canonical isomorphism
f! ◦ j! = (f ◦ j)!, and

(3) these isomorphisms for U ⊂ U ′ ⊂ X are compatible with the isomorphisms
in More Étale Cohomology, Lemma 3.13.

Proof. See More Étale Cohomology, Sections 4 and 6. □

Lemma 8.28.0F5G Let f : X → Y be a morphism of schemes which is locally quasi-
finite. For an abelian group A and a geometric point y : Spec(k) → Y we have
f !(y∗A) =

∏
f(x)=y x∗A.

Proof. Follows from the corresponding statement in More Étale Cohomology, Lemma
6.1. □

Lemma 8.29.0F5K Let f : X → Y and g : Y → Z be composable locally quasi-finite
morphisms of schemes. Then g! ◦ f! = (g ◦ f)! and f ! ◦ g! = (g ◦ f)!.

Proof. Combination of More Étale Cohomology, Lemmas 4.12 and 6.3. □

9. Differential graded algebra

0FU5
Lemma 9.1.0BYY Let (A, d) and (B, d) be differential graded algebras. Let N be a
differential graded (A,B)-bimodule with property (P). Let M be a differential graded
A-module with property (P). Then Q = M ⊗A N is a differential graded B-module
which represents M ⊗L

A N in D(B) and which has a filtration

0 = F−1Q ⊂ F0Q ⊂ F1Q ⊂ . . . ⊂ Q

by differential graded submodules such that Q =
⋃
FpQ, the inclusions FiQ →

Fi+1Q are admissible monomorphisms, the quotients Fi+1Q/FiQ are isomorphic
as differential graded B-modules to a direct sum of (A⊗R B)[k].

Proof. Choose filtrations F• on M and N . Then consider the filtration on Q =
M ⊗A N given by

Fn(Q) =
∑

i+j=n
Fi(M)⊗A Fj(N)

This is clearly a differential graded B-submodule. We see that

Fn(Q)/Fn−1(Q) =
⊕

i+j=n
Fi(M)/Fi−1(M)⊗A Fj(N)/Fj−1(N)

for example because the filtration of M is split in the category of graded A-modules.
Since by assumption the quotients on the right hand side are isomorphic to direct
sums of shifts of A and A⊗R B and since A⊗A (A⊗R B) = A⊗R B, we conclude
that the left hand side is a direct sum of shifts of A⊗RB as a differential graded B-
module. (Warning: Q does not have a structure of (A,B)-bimodule.) This proves
the first statement of the lemma. The second statement is immediate from the
definition of the functor in Differential Graded Algebra, Lemma 33.2. □

https://stacks.math.columbia.edu/tag/0F5E
https://stacks.math.columbia.edu/tag/0F5G
https://stacks.math.columbia.edu/tag/0F5K
https://stacks.math.columbia.edu/tag/0BYY
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10. Simplicial methods

08Q0
Lemma 10.1.01AA Assumptions and notation as in Simplicial, Lemma 32.1. There
exists a section g : U → V to the morphism f and the composition g◦f is homotopy
equivalent to the identity on V . In particular, the morphism f is a homotopy
equivalence.

Proof. Immediate from Simplicial, Lemmas 32.1 and 30.8. □

Lemma 10.2.018W Let C be a category with finite coproducts and finite limits. Let X
be an object of C. Let k ≥ 0. The canonical map

Hom(∆[k], X) −→ cosk1sk1 Hom(∆[k], X)
is an isomorphism.

Proof. For any simplicial object V we have
Mor(V, cosk1sk1 Hom(∆[k], X)) = Mor(sk1V, sk1 Hom(∆[k], X))

= Mor(i1!sk1V,Hom(∆[k], X))
= Mor(i1!sk1V ×∆[k], X)

The first equality by the adjointness of sk and cosk, the second equality by the
adjointness of i1! and sk1, and the first equality by Simplicial, Definition 17.1 where
the last X denotes the constant simplicial object with value X. By Simplicial,
Lemma 20.2 an element in this set depends only on the terms of degree 0 and
1 of i1!sk1V × ∆[k]. These agree with the degree 0 and 1 terms of V × ∆[k],
see Simplicial, Lemma 21.3. Thus the set above is equal to Mor(V × ∆[k], X) =
Mor(V,Hom(∆[k], X)). □

Lemma 10.3.018X Let C be a category. Let X be an object of C such that the self
products X × . . . × X exist. Let k ≥ 0 and let C[k] be as in Simplicial, Example
5.6. With notation as in Simplicial, Lemma 15.2 the canonical map

Hom(C[k], X)1 −→ (cosk0sk0 Hom(C[k], X))1

is identified with the map ∏
α:[k]→[1]

X −→ X ×X

which is the projection onto the factors where α is a constant map.

Proof. This is shown in the proof of Hypercoverings, Lemma 7.3. □

11. Results on schemes

07VA Lemmas that seem superfluous.

Lemma 11.1.03H1 Let (R,m, κ) be a local ring. Let X ⊂ Pn
R be a closed subscheme.

Assume that R = Γ(X,OX). Then the special fibre Xk is geometrically connected.

Proof. This is a special case of More on Morphisms, Theorem 53.5. □

Lemma 11.2.01YJ Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible closed
subset with generic point ξ. Let P be a property of coherent sheaves on X such that

(1) For any short exact sequence of coherent sheaves if two out of three of them
have property P then so does the third.

https://stacks.math.columbia.edu/tag/01AA
https://stacks.math.columbia.edu/tag/018W
https://stacks.math.columbia.edu/tag/018X
https://stacks.math.columbia.edu/tag/03H1
https://stacks.math.columbia.edu/tag/01YJ
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(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme Z ⊂ Z0 ⊂ X, Z ̸= Z0 and every quasi-

coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I.
(4) There exists some coherent sheaf G on X such that

(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ, and
(c) property P holds for G.

Then property P holds for every coherent sheaf F on X whose support is contained
in Z0.

Proof. The proof is a variant on the proof of Cohomology of Schemes, Lemma
12.5. In exactly the same manner as in that proof we see that any coherent sheaf
whose support is strictly contained in Z0 has property P.
Consider a coherent sheaf G as in (3). By Cohomology of Schemes, Lemma 12.2
there exists a sheaf of ideals I on Z0 and a short exact sequence

0→ ((Z0 → X)∗I)⊕r → G → Q→ 0
where the support of Q is strictly contained in Z0. In particular r > 0 and I
is nonzero because the support of G is equal to Z. Since Q has property P we
conclude that also ((Z0 → X)∗I)⊕r has property P. By (2) we deduce property P
for (Z0 → X)∗I. Slotting this into the proof of Cohomology of Schemes, Lemma
12.5 at the appropriate point gives the lemma. Some details omitted. □

Lemma 11.3.01YK Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X such that

(1) For any short exact sequence of coherent sheaves if two out of three of them
have property P then so does the third.

(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme Z ⊂ X with generic point ξ there exists

some coherent sheaf G such that
(a) Supp(G) = Z,
(b) Gξ is annihilated by mξ, and
(c) property P holds for G.

Then property P holds for every coherent sheaf on X.

Proof. This follows from Lemma 11.2 in exactly the same way that Cohomology
of Schemes, Lemma 12.6 follows from Cohomology of Schemes, Lemma 12.5. □

Lemma 11.4.01XP Let X be a scheme. Let L be an invertible OX-module. Let s ∈
Γ(X,L) be a section. Let F ′ ⊂ F be quasi-coherent OX-modules. Assume that

(1) X is quasi-compact,
(2) F is of finite type, and
(3) F ′|Xs

= F|Xs
.

Then there exists an n ≥ 0 such that multiplication by sn on F factors through F ′.

Proof. In other words we claim that snF ⊂ F ′⊗OX
L⊗n for some n ≥ 0. In other

words, we claim that the quotient map F → F/F ′ becomes zero after multiplying
by a power of s. This follows from Properties, Lemma 17.3. □

Lemma 11.5.0CC3 Let f : X → Y be a morphism schemes. Assume

https://stacks.math.columbia.edu/tag/01YK
https://stacks.math.columbia.edu/tag/01XP
https://stacks.math.columbia.edu/tag/0CC3
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(1) X and Y are integral schemes,
(2) f is locally of finite type and dominant,
(3) f is either quasi-compact or separated,
(4) f is generically finite, i.e., one of (1) – (5) of Morphisms, Lemma 51.7

holds.
Then there is a nonempty open V ⊂ Y such that f−1(V )→ V is finite locally free
of degree deg(X/Y ). In particular, the degrees of the fibres of f−1(V ) → V are
bounded by deg(X/Y ).

Proof. We may choose V such that f−1(V )→ V is finite. Then we may shrink V
and assume that f−1(V ) → V is flat and of finite presentation by generic flatness
(Morphisms, Proposition 27.1). Then the morphism is finite locally free by Mor-
phisms, Lemma 48.2. Since V is irreducible the morphism has a fixed degree. The
final statement follows from this and Morphisms, Lemma 57.3. □

12. Derived categories of varieties

0GXZ Some lemma which were originally part of the chapter on derived categories of
varieties but are no longer needed.

Lemma 12.1.0G04 Let k be a field. Let X be a separated scheme of finite type over
k which is regular. Let F : Dperf (OX) → Dperf (OX) be a k-linear exact func-
tor. Assume for every coherent OX-module F with dim(Supp(F)) = 0 there is an
isomorphism of k-vector spaces

HomX(F ,M) = HomX(F , F (M))

functorial in M in Dperf (OX). Then there exists an automorphism f : X → X over
k which induces the identity on the underlying topological space1 and an invertible
OX-module L such that F and F ′(M) = f∗M ⊗L

OX
L are siblings.

Proof. By Derived Categories of Varieties, Lemma 11.2 we conclude that for every
coherent OX -module F whose support is a closed point there are isomorphisms

H0(X,M ⊗L
OX
F) = H0(X,F (M)⊗L

OX
F)

functorial in M .

Let x ∈ X be a closed point and apply the above with F = Ox the skyscraper sheaf
with value κ(x) at x. We find

dimκ(x) TorOX,x
p (Mx, κ(x)) = dimκ(x) TorOX,x

p (F (M)x, κ(x))

for all p ∈ Z. In particular, if Hi(M) = 0 for i > 0, then Hi(F (M)) = 0 for i > 0
by Derived Categories of Varieties, Lemma 11.3.

If E is locally free of rank r, then F (E) is locally free of rank r. This is true because
a perfect complex K over OX,x with

dimκ(x) TorOX,x

i (K,κ(x)) =
{
r if i = 0
0 if i ̸= 0

is equal to a free module of rank r placed in degree 0. See for example More on
Algebra, Lemma 75.6.

1This often forces f to be the identity, see Varieties, Lemma 32.1.

https://stacks.math.columbia.edu/tag/0G04


OBSOLETE 19

If M is supported on a closed subscheme Z ⊂ X, then F (M) is also supported on
Z. This is clear because we will have M ⊗L

OX
Ox = 0 for x ̸∈ Z and hence the same

will be true for F (M) and hence we get the conclusion from Derived Categories of
Varieties, Lemma 11.3.

In particular F (Ox) is supported at {x}. Let i ∈ Z be the minimal integer such
that Hi(Ox) ̸= 0. We know that i ≤ 0. If i < 0, then there is a morphism
Ox[−i] → F (Ox) which contradicts the fact that all morphisms Ox[−i] → Ox are
zero. Thus F (Ox) = H[0] where H is a skyscraper sheaf at x.

Let G be a coherent OX -module with dim(Supp(G)) = 0. Then there exists a
filtration

0 = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G
such that for n ≥ i ≥ 1 the quotient Gi/Gi−1 is isomorphic to Oxi

for some closed
point xi ∈ X. Then we get distinguished triangles

F (Gi−1)→ F (Gi)→ F (Oxi
)

and using induction we find that F (Gi) is a coherent sheaf placed in degree 0.

Let G be a coherent OX -module. We know that Hi(F (G)) = 0 for i > 0. To get
a contradiction assume that Hi(F (G)) is nonzero for some i < 0. We choose i
minimal with this property so that we have a morphism Hi(F (G))[−i] → F (G) in
Dperf (OX). Choose a closed point x ∈ X in the support of Hi(F (G)). By More on
Algebra, Lemma 100.2 there exists an n > 0 such that

Hi(F (G))x ⊗OX,x
OX,x/mnx −→ TorOX,x

−i (F (G)x,OX,x/mnx)

is nonzero. Next, we take m ≥ 1 and we consider the short exact sequence

0→ mmx G → G → G/mmx G → 0

By the above we know that F (G/mmx G) is a sheaf placed in degree 0. Hence
Hi(F (mmx G))→ Hi(F (G)) is an isomorphism. Consider the commutative diagram

Hi(F (mmx G))x ⊗OX,x
OX,x/mnx //

��

TorOX,x

−i (F (mmx G)x,OX,x/mnx)

��
Hi(F (G))x ⊗OX,x

OX,x/mnx // TorOX,x

−i (F (G)x,OX,x/mnx)

Since the left vertical arrow is an isomorphism and the bottom arrow is nonzero,
we conclude that the right vertical arrow is nonzero for all m ≥ 1. On the other
hand, by the first paragraph of the proof, we know this arrow is isomorphic to the
arrow

TorOX,x

−i (mmx Gx,OX,x/mnx) −→ TorOX,x

−i (Gx,OX,x/mnx)
However, this arrow is zero for m≫ n by More on Algebra, Lemma 102.2 which is
the contradiction we’re looking for.

Thus we know that F preserves coherent modules. By Derived Categories of Vari-
eties, Lemma 12.2 we find F is a sibling to the Fourier-Mukai functor F ′ given by
a coherent OX×X -module K flat over X via pr1 and finite over X via pr2. Since
F (OX) is an invertible OX -module L placed in degree 0 we see that

L ∼= F (OX) ∼= F ′(OX) ∼= pr2,∗K
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Thus by Functors and Morphisms, Lemma 7.6 there is a morphism s : X → X ×X
with pr2 ◦ s = idX such that K = s∗L. Set f = pr1 ◦ s. Then we have

F ′(M) = Rpr2,∗(Lpr∗
1K ⊗K)

= Rpr2,∗(Lpr∗
1M ⊗ s∗L)

= Rpr2,∗(Rs∗(Lf∗M ⊗ L))
= Lf∗M ⊗ L

where we have used Derived Categories of Schemes, Lemma 22.1 in the third step.
Since for all closed points x ∈ X the module F (Ox) is supported at x, we see that
f induces the identity on the underlying topological space of X. We still have to
show that f is an isomorphism which we will do in the next paragraph.
Let x ∈ X be a closed point. For n ≥ 1 denote Ox,n the skyscaper sheaf at x with
value OX,x/mnx . We have

HomX(Ox,m,Ox,n) ∼= HomX(Ox,m, F (Ox,n)) ∼= HomX(Ox,m, f∗Ox,n ⊗ L)
functorially with respect to OX -module homomorphisms between the Ox,n. (The
first isomorphism exists by assumption and the second isomorphism because F
and F ′ are siblings.) For m ≥ n we have OX,x/mn = HomX(Ox,m,Ox,n) via the
action on Ox,n we conclude that f ♯ : OX,x/mnx → OX,x/mnx is bijective for all n.
Thus f induces isomorphisms on complete local rings at closed points and hence
is étale (Étale Morphisms, Lemma 11.3). Looking at closed points we see that
∆f : X → X ×f,X,f X (which is an open immersion as f is étale) is bijective
hence an isomorphism. Hence f is a monomorphism. Finally, we conclude f is an
isomorphism as Descent, Lemma 25.1 tells us it is an open immersion. □

13. Representability in the regular proper case

0FYI This section is obsolete because we improved Derived Categories of Varieties, The-
orem 6.3 to apply to all proper schemes over a field (whereas before we only proved
it for projective schemes over a field).

Lemma 13.1.0FYJ The proof given
here follows the
argument given in
[MS20, Remark 3.4]

Let f : X ′ → X be a proper birational morphism of integral Noe-
therian schemes with X regular. The map OX → Rf∗OX′ canonically splits in
D(OX).

Proof. Set E = Rf∗OX′ in D(OX). Observe that E is in Db
Coh(OX) by Derived

Categories of Schemes, Lemma 11.3. By Derived Categories of Schemes, Lemma
11.8 we find that E is a perfect object of D(OX). Since OX′ is a sheaf of algebras,
we have the relative cup product µ : E ⊗L

OX
E → E by Cohomology, Remark 28.7.

Let σ : E ⊗ E∨ → E∨ ⊗ E be the commutativity constraint on the symmetric
monoidal category D(OX) (Cohomology, Lemma 50.6). Denote η : OX → E ⊗ E∨

and ϵ : E∨ ⊗ E → OX the maps constructed in Cohomology, Example 50.7. Then
we can consider the map

E
η⊗1−−→ E ⊗ E∨ ⊗ E σ⊗1−−−→ E∨ ⊗ E ⊗ E 1⊗µ−−−→ E∨ ⊗ E ϵ−→ OX

We claim that this map is a one sided inverse to the map in the statement of the
lemma. To see this it suffices to show that the composition OX → OX is the
identity map. This we may do in the generic point of X (or on an open subscheme
of X over which f is an isomorphism). In this case E = OX and µ is the usual
multiplication map and the result is clear. □

https://stacks.math.columbia.edu/tag/0FYJ
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Lemma 13.2.0FYK Let X be a proper scheme over a field k which is regular. Let
K ∈ Ob(DQCoh(OX)). The following are equivalent

(1) K ∈ Db
Coh(OX) = Dperf (OX), and

(2)
∑
i∈Z dimk ExtiX(E,K) <∞ for all perfect E in D(OX).

Proof. The equality in (1) holds by Derived Categories of Schemes, Lemma 11.8.
The implication (1)⇒ (2) follows from Derived Categories of Varieties, Lemma 5.3.
The implication (2) ⇒ (1) follows from More on Morphisms, Lemma 69.6. □

Lemma 13.3.0FYL Let X be a proper scheme over a field k which is regular.
(1) Let F : Dperf (OX)opp → Vectk be a k-linear cohomological functor such

that ∑
n∈Z

dimk F (E[n]) <∞

for all E ∈ Dperf (OX). Then F is isomorphic to a functor of the form
E 7→ HomX(E,K) for some K ∈ Dperf (OX).

(2) Let G : Dperf (OX)→ Vectk be a k-linear homological functor such that∑
n∈Z

dimkG(E[n]) <∞

for all E ∈ Dperf (OX). Then G is isomorphic to a functor of the form
E 7→ HomX(K,E) for some K ∈ Dperf (OX).

Proof. This follows from Derived Categories of Varieties, Theorem 6.3 and Lemma
6.4. We also give another proof below.

Proof of (1). The derived category DQCoh(OX) has direct sums, is compactly
generated, and Dperf (OX) is the full subcategory of compact objects, see Derived
Categories of Schemes, Lemma 3.1, Theorem 15.3, and Proposition 17.1. By De-
rived Categories of Varieties, Lemma 6.2 we may assume F (E) = HomX(E,K) for
some K ∈ Ob(DQCoh(OX)). Then it follows that K is in Db

Coh(OX) by Lemma
13.2.

Proof of (2). Consider the contravariant functor E 7→ E∨ on Dperf (OX), see Coho-
mology, Lemma 50.5. This functor is an exact anti-self-equivalence of Dperf (OX).
Hence we may apply part (1) to the functor F (E) = G(E∨) to find K ∈ Dperf (OX)
such that G(E∨) = HomX(E,K). It follows that G(E) = HomX(E∨,K) =
HomX(K∨, E) and we conclude that taking K∨ works. □

14. Functor of quotients

08J4
Lemma 14.1.082R Let S = Spec(R) be an affine scheme. Let X be an algebraic space
over S. Let qi : F → Qi, i = 1, 2 be surjective maps of quasi-coherent OX-modules.
Assume Q1 flat over S. Let T → S be a quasi-compact morphism of schemes such
that there exists a factorization

FT
q2,T

""

q1,T

||
Q1,T Q2,Too

https://stacks.math.columbia.edu/tag/0FYK
https://stacks.math.columbia.edu/tag/0FYL
https://stacks.math.columbia.edu/tag/082R
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Then exists a closed subscheme Z ⊂ S such that (a) T → S factors through Z
and (b) q1,Z factors through q2,Z . If Ker(q2) is a finite type OX-module and X
quasi-compact, then we can take Z → S of finite presentation.

Proof. Apply Flatness on Spaces, Lemma 8.2 to the map Ker(q2)→ Q1. □

15. Spaces and fpqc coverings

0ARG The material here was made obsolete by Gabber’s argument showing that alge-
braic spaces satisfy the sheaf condition with respect to fpqc coverings. Please visit
Properties of Spaces, Section 17.

Lemma 15.1.03W9 Let S be a scheme. Let X be an algebraic space over S. Let
{fi : Ti → T}i∈I be a fpqc covering of schemes over S. Then the map

MorS(T,X) −→
∏

i∈I
MorS(Ti, X)

is injective.

Proof. Immediate consequence of Properties of Spaces, Proposition 17.1. □

Lemma 15.2.03WA Let S be a scheme. Let X be an algebraic space over S. Let
X =

⋃
j∈J Xj be a Zariski covering, see Spaces, Definition 12.5. If each Xj satisfies

the sheaf property for the fpqc topology then X satisfies the sheaf property for the
fpqc topology.

Proof. This is true because all algebraic spaces satisfy the sheaf property for the
fpqc topology, see Properties of Spaces, Proposition 17.1. □

Lemma 15.3.03WB Let S be a scheme. Let X be an algebraic space over S. If X is
Zariski locally quasi-separated over S, then X satisfies the sheaf condition for the
fpqc topology.

Proof. Immediate consequence of the general Properties of Spaces, Proposition
17.1. □

Remark 15.4.03WC This remark used to discuss to what extend the original proof of
Lemma 15.3 (of December 18, 2009) generalizes.

16. Very reasonable algebraic spaces

07T6 Material that is somewhat obsolete.

Lemma 16.1.03IN Let S be a scheme. Let X be a reasonable algebraic space over S.
Then |X| is Kolmogorov (see Topology, Definition 8.6).

Proof. Follows from the definitions and Decent Spaces, Lemma 12.3. □

In the rest of this section we make some remarks about very reasonable algebraic
spaces. If there exists a scheme U and a surjective, étale, quasi-compact morphism
U → X, then X is very reasonable, see Decent Spaces, Lemma 4.7.

Lemma 16.2.03I9 A scheme is very reasonable.

Proof. This is true because the identity map is a quasi-compact, surjective étale
morphism. □

https://stacks.math.columbia.edu/tag/03W9
https://stacks.math.columbia.edu/tag/03WA
https://stacks.math.columbia.edu/tag/03WB
https://stacks.math.columbia.edu/tag/03WC
https://stacks.math.columbia.edu/tag/03IN
https://stacks.math.columbia.edu/tag/03I9
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Lemma 16.3.03IA Let S be a scheme. Let X be an algebraic space over S. If there
exists a Zariski open covering X =

⋃
Xi such that each Xi is very reasonable, then

X is very reasonable.

Proof. This is case (ϵ) of Decent Spaces, Lemma 5.2. □

Lemma 16.4.03IB An algebraic space which is Zariski locally quasi-separated is very
reasonable. In particular any quasi-separated algebraic space is very reasonable.

Proof. This is one of the implications of Decent Spaces, Lemma 5.1. □

Lemma 16.5.03JF Let S be a scheme. Let X, Y be algebraic spaces over S. Let
Y → X be a representable morphism. If X is very reasonable, so is Y .

Proof. This is case (ϵ) of Decent Spaces, Lemma 5.3. □

Remark 16.6.03IC Very reasonable algebraic spaces form a strictly larger collection
than Zariski locally quasi-separated algebraic spaces. Consider an algebraic space
of the form X = [U/G] (see Spaces, Definition 14.4) where G is a finite group
acting without fixed points on a non-quasi-separated scheme U . Namely, in this
case U ×X U = U ×G and clearly both projections to U are quasi-compact, hence
X is very reasonable. On the other hand, the diagonal U ×X U → U × U is not
quasi-compact, hence this algebraic space is not quasi-separated. Now, take U
the infinite affine space over a field k of characteristic ̸= 2 with zero doubled, see
Schemes, Example 21.4. Let 01, 02 be the two zeros of U . Let G = {+1,−1}, and
let −1 act by −1 on all coordinates, and by switching 01 and 02. Then [U/G] is
very reasonable but not Zariski locally quasi-separated (details omitted).

Warning: The following lemma should be used with caution, as the schemes Ui in
it are not necessarily separated or even quasi-separated.

Lemma 16.7.03K7 Let S be a scheme. Let X be a very reasonable algebraic space over
S. There exists a set of schemes Ui and morphisms Ui → X such that

(1) each Ui is a quasi-compact scheme,
(2) each Ui → X is étale,
(3) both projections Ui ×X Ui → Ui are quasi-compact, and
(4) the morphism

∐
Ui → X is surjective (and étale).

Proof. Decent Spaces, Definition 6.1 says that there exist Ui → X such that (2),
(3) and (4) hold. Fix i, and set Ri = Ui ×X Ui, and denote s, t : Ri → Ui the
projections. For any affine open W ⊂ Ui the open W ′ = t(s−1(W )) ⊂ Ui is a
quasi-compact Ri-invariant open (see Groupoids, Lemma 19.2). Hence W ′ is a
quasi-compact scheme, W ′ → X is étale, and W ′ ×X W ′ = s−1(W ′) = t−1(W ′) so
both projections W ′ ×X W ′ → W ′ are quasi-compact. This means the family of
W ′ → X, where W ⊂ Ui runs through the members of affine open coverings of the
Ui gives what we want. □

17. Obsolete lemmas on algebraic spaces

0D45 Lemmas that seem superfluous or are no longer used in the text.

Lemma 17.1.07V2 In Cohomology of Spaces, Situation 16.1 the morphism p : X →
Spec(A) is surjective.

https://stacks.math.columbia.edu/tag/03IA
https://stacks.math.columbia.edu/tag/03IB
https://stacks.math.columbia.edu/tag/03JF
https://stacks.math.columbia.edu/tag/03IC
https://stacks.math.columbia.edu/tag/03K7
https://stacks.math.columbia.edu/tag/07V2
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Proof. This lemma was originally used in the proof of Cohomology of Spaces,
Proposition 16.7 but now is a consequence of it. □

Lemma 17.2.07V3 In Cohomology of Spaces, Situation 16.1 the morphism p : X →
Spec(A) is universally closed.

Proof. This lemma was originally used in the proof of Cohomology of Spaces,
Proposition 16.7 but now is a consequence of it. □

Remark 17.3.0AKU This tag used to refer to an equation in the proof of Formal Spaces,
Lemma 20.4.

Remark 17.4.0AKV This tag used to refer to an equation in the proof of Formal Spaces,
Lemma 20.4.

18. Obsolete lemmas on algebraic stacks

0G2T Lemmas that seem superfluous or are no longer used in the text.

Lemma 18.1.0CXS Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf having (RS*). Let x be an object of X over an affine
scheme U of finite type over S. Let un ∈ U , n ≥ 1 be pairwise distinct finite type
points such that x is not versal at un for all n. After replacing un by a subsequence,
there exist morphisms

x→ x1 → x2 → . . . in X lying over U → U1 → U2 → . . .

over S such that
(1) for each n the morphism U → Un is a first order thickening,
(2) for each n we have a short exact sequence

0→ κ(un)→ OUn
→ OUn−1 → 0

with U0 = U for n = 1,
(3) for each n there does not exist a pair (W,α) consisting of an open neigh-

bourhood W ⊂ Un of un and a morphism α : xn|W → x such that the
composition

x|U∩W
restriction of x→xn−−−−−−−−−−−−−→ xn|W

α−→ x

is the canonical morphism x|U∩W → x.

Proof. This lemma was originally used in the proof of a criterion for openness
of versality (Artin’s Axioms, Lemma 20.3) but it got replaced by Artin’s Axioms,
Lemma 20.1 from which it readily follows. Namely, after replacing un, n ≥ 1 by a
subsequence we may and do assume that there are no specializations among these
points, see Properties, Lemma 5.11. Then we can apply Artin’s Axioms, Lemma
20.1 to finish the proof. □

19. Variants of cotangent complexes for schemes

08T5 This section gives an alternative construction of the cotangent complex of a mor-
phism of schemes. This section is currently in the obsolete chapter as we can get
by with the easier version discussed in Cotangent, Section 25 for applications.

https://stacks.math.columbia.edu/tag/07V3
https://stacks.math.columbia.edu/tag/0AKU
https://stacks.math.columbia.edu/tag/0AKV
https://stacks.math.columbia.edu/tag/0CXS
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Let f : X → Y be a morphism of schemes. Let CX/Y be the category whose objects
are commutative diagrams

(19.0.1)08T6

X

��

Uoo

��

i
// A

��
Y Voo

of schemes where
(1) U is an open subscheme of X,
(2) V is an open subscheme of Y , and
(3) there exists an isomorphism A = V × Spec(P ) over V where P is a poly-

nomial algebra over Z (on some set of variables).
In other words, A is an (infinite dimensional) affine space over V . Morphisms are
given by commutative diagrams.
Notation. An object of CX/Y , i.e., a diagram (19.0.1), is often denoted U → A
where it is understood that (a) U is an open subscheme of X, (b) U → A is a
morphism over Y , (c) the image of the structure morphism A → Y is an open
V ⊂ Y , and (d) A→ V is an affine space. We’ll write U → A/V to indicate V ⊂ Y
is the image of A → Y . Recall that XZar denotes the small Zariski site X. There
are forgetful functors

CX/Y → XZar, (U → A) 7→ U and CX/Y 7→ YZar, (U → A/V ) 7→ V.

Lemma 19.1.08T7 Let X → Y be a morphism of schemes.
(1) The category CX/Y is fibred over XZar.
(2) The category CX/Y is fibred over YZar.
(3) The category CX/Y is fibred over the category of pairs (U, V ) where U ⊂ X,

V ⊂ Y are open and f(U) ⊂ V .
Proof. Ad (1). Given an object U → A of CX/Y and a morphism U ′ → U of
XZar consider the object i′ : U ′ → A of CX/Y where i′ is the composition of i and
U ′ → U . The morphism (U ′ → A) → (U → A) of CX/Y is strongly cartesian over
XZar.
Ad (2). Given an object U → A/V and V ′ → V we can set U ′ = U ∩ f−1(V ′) and
A′ = V ′×V A to obtain a strongly cartesian morphism (U ′ → A′)→ (U → A) over
V ′ → V .
Ad (3). Denote (X/Y )Zar the category in (3). Given U → A/V and a morphism
(U ′, V ′)→ (U, V ) in (X/Y )Zar we can consider A′ = V ′×V A. Then the morphism
(U ′ → A′/V ′)→ (U → A/V ) is strongly cartesian in CX/Y over (X/Y )Zar. □

We obtain a topology τX on CX/Y by using the topology inherited from XZar (see
Stacks, Section 10). If not otherwise stated this is the topology on CX/Y we will
consider. To be precise, a family of morphisms {(Ui → Ai) → (U → A)} is a
covering of CX/Y if and only if

(1) U =
⋃
Ui, and

(2) Ai = A for all i.
We obtain the same collection of sheaves if we allow Ai ∼= A in (2). The functor u
defines a morphism of topoi π : Sh(CX/Y )→ Sh(XZar).
The site CX/Y comes with several sheaves of rings.

https://stacks.math.columbia.edu/tag/08T7
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(1) The sheaf O given by the rule (U → A) 7→ O(A).
(2) The sheaf OX = π−1OX given by the rule (U → A) 7→ O(U).
(3) The sheaf OY given by the rule (U → A/V ) 7→ O(V ).

We obtain morphisms of ringed topoi

(19.1.1)08T8

(Sh(CX/Y ),OX)
i
//

π

��

(Sh(CX/Y ),O)

(Sh(XZar),OX)

The morphism i is the identity on underlying topoi and i♯ : O → OX is the
obvious map. The map π is a special case of Cohomology on Sites, Situation
38.1. An important role will be played in the following by the derived functors
Li∗ : D(O) −→ D(OX) left adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! :
D(OX) −→ D(OX) left adjoint to π∗ = π−1 : D(OX)→ D(OX).

Remark 19.2.08TA We obtain a second topology τY on CX/Y by taking the topology
inherited from YZar. There is a third topology τX→Y where a family of morphisms
{(Ui → Ai) → (U → A)} is a covering if and only if U =

⋃
Ui, V =

⋃
Vi

and Ai ∼= Vi ×V A. This is the topology inherited from the topology on the site
(X/Y )Zar whose underlying category is the category of pairs (U, V ) as in Lemma
19.1 part (3). The coverings of (X/Y )Zar are families {(Ui, Vi) → (U, V )} such
that U =

⋃
Ui and V =

⋃
Vi. There are morphisms of topoi

Sh(CX/Y ) = Sh(CX/Y , τX) Sh(CX/Y , τX→Y )oo // Sh(CX/Y , τY )

(recall that τX is our “default” topology). The pullback functors for these arrows
are sheafification and pushforward is the identity on underlying presheaves. The
diagram of topoi

Sh(XZar)

f

��

Sh(CX/Y )
π
oo Sh(CX/Y , τX→Y )oo

��
Sh(YZar) Sh(CX/Y , τY )oo

is not commutative. Namely, the pullback of a nonzero abelian sheaf on Y is a
nonzero abelian sheaf on (CX/Y , τX→Y ), but we can certainly find examples where
such a sheaf pulls back to zero on X. Note that any presheaf F on YZar gives a
sheaf F on CY/X by the rule which assigns to (U → A/V ) the set F(V ). Even
if F happens to be a sheaf it isn’t true in general that F = π−1f−1F . This is
related to the noncommutativity of the diagram above, as we can describe F as
the pushforward of the pullback of F to Sh(CX/Y , τX→Y ) via the lower horizontal
and right vertical arrows. An example is the sheaf OY . But what is true is that
there is a map F → π−1f−1F which is transformed (as we shall see later) into an
isomorphism after applying π!.

20. Deformations and obstructions of flat modules

08VZ In this section we sketch a construction of a deformation theory for the stack of
coherent sheaves for any algebraic space X over a ring Λ. This material is obsolete
due to the improved discussion in Quot, Section 6.

https://stacks.math.columbia.edu/tag/08TA
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Our setup will be the following. We assume given
(1) a ring Λ,
(2) an algebraic space X over Λ,
(3) a Λ-algebra A, set XA = X ×Spec(Λ) Spec(A), and
(4) a finitely presented OXA

-module F flat over A.
In this situation we will consider all possible surjections

0→ I → A′ → A→ 0

where A′ is a Λ-algebra whose kernel I is an ideal of square zero in A′. Given A′

we obtain a first order thickening XA → XA′ of algebraic spaces over Spec(Λ). For
each of these we consider the problem of lifting F to a finitely presented module F ′

on XA′ flat over A′. We would like to replicate the results of Deformation Theory,
Lemma 12.1 in this setting.

To be more precise let Lift(F , A′) denote the category of pairs (F ′, α) where F ′ is a
finitely presented module on XA′ flat over A′ and α : F ′|XA

→ F is an isomorphism.
Morphisms (F ′

1, α1) → (F ′
2, α2) are isomorphisms F ′

1 → F ′
2 which are compatible

with α1 and α2. The set of isomorphism classes of Lift(F , A′) is denoted Lift(F , A′).

Let G be a sheaf of OX ⊗Λ A-modules on Xétale flat over A. We introduce the
category Lift(G, A′) of pairs (G′, β) where G′ is a sheaf of OX ⊗Λ A

′-modules flat
over A′ and β is an isomorphism G′ ⊗A′ A→ G.

Lemma 20.1.08W0 Notation and assumptions as above. Let p : XA → X denote the
projection. Given A′ denote p′ : XA′ → X the projection. The functor p′

∗ induces
an equivalence of categories between

(1) the category Lift(F , A′), and
(2) the category Lift(p∗F , A′).

Proof. FIXME. □

Let H be a sheaf of O⊗ΛA-modules on CX/Λ flat over A. We introduce the category
LiftO(H, A′) whose objects are pairs (H′, γ) where H′ is a sheaf of O⊗ΛA

′-modules
flat over A′ and γ : H′ ⊗A A′ → H is an isomorphism of O ⊗Λ A-modules.

Let G be a sheaf of OX⊗ΛA-modules on Xétale flat over A. Consider the morphisms
i and π of Cotangent, Equation (27.1.1). Denote G = π−1(G). It is simply given
by the rule (U → A) 7→ G(U) hence it is a sheaf of OX ⊗Λ A-modules. Denote i∗G
the same sheaf but viewed as a sheaf of O ⊗Λ A-modules.

Lemma 20.2.08W1 Notation and assumptions as above. The functor π! induces an
equivalence of categories between

(1) the category LiftO(i∗G, A′), and
(2) the category Lift(G, A′).

Proof. FIXME. □

Lemma 20.3.08W2 Notation and assumptions as in Lemma 20.2. Consider the object

L = L(Λ, X,A,G) = Lπ!(Li∗(i∗(G)))

of D(OX ⊗Λ A). Given a surjection A′ → A of Λ-algebras with square zero kernel
I we have

https://stacks.math.columbia.edu/tag/08W0
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(1) The category Lift(G, A′) is nonempty if and only if a certain class ξ ∈
Ext2

OX ⊗A(L,G ⊗A I) is zero.
(2) If Lift(G, A′) is nonempty, then Lift(G, A′) is principal homogeneous under

Ext1
OX ⊗A(L,G ⊗A I).

(3) Given a lift G′, the set of automorphisms of G′ which pull back to idG is
canonically isomorphic to Ext0

OX ⊗A(L,G ⊗A I).

Proof. FIXME. □

Finally, we put everything together as follows.

Proposition 20.4.08W3 With Λ, X, A, F as above. There exists a canonical object
L = L(Λ, X,A,F) of D(XA) such that given a surjection A′ → A of Λ-algebras
with square zero kernel I we have

(1) The category Lift(F , A′) is nonempty if and only if a certain class ξ ∈
Ext2

XA
(L,F ⊗A I) is zero.

(2) If Lift(F , A′) is nonempty, then Lift(F , A′) is principal homogeneous under
Ext1

XA
(L,F ⊗A I).

(3) Given a lift F ′, the set of automorphisms of F ′ which pull back to idF is
canonically isomorphic to Ext0

XA
(L,F ⊗A I).

Proof. FIXME. □

Lemma 20.5.08W4 In the situation of Proposition 20.4, if X → Spec(Λ) is locally of
finite type and Λ is Noetherian, then L is pseudo-coherent.

Proof. FIXME. □

21. The stack of coherent sheaves in the non-flat case

0CXY In Quot, Theorem 5.12 the assumption that f : X → B is flat is not necessary. In
this section we modify the method of proof based on ideas from derived algebraic
geometry to get around the flatness hypothesis. An entirely different method is
used in Quot, Section 6 to get exactly the same result; this is why the method from
this section is obsolete.
The only step in the proof of Quot, Theorem 5.12 which uses flatness is in the appli-
cation of Quot, Lemma 5.11. The lemma is used to construct an obstruction theory
as in Artin’s Axioms, Section 24. The proof of the lemma relies on Deformation
Theory, Lemmas 12.1 and 12.5 from Deformation Theory, Section 12. This is how
the assumption that f is flat comes about. Before we go on, note that results (2)
and (3) of Deformation Theory, Lemmas 12.1 do hold without the assumption that
f is flat as they rely on Deformation Theory, Lemmas 11.7 and 11.4 which do not
have any flatness assumptions.
Before we give the details we give some motivation for the construction from derived
algebraic geometry, since we think it will clarify what follows. Let A be a finite type
algebra over the locally Noetherian base S. Denote X⊗LA a “derived base change”
of X to A and denote i : XA → X ⊗L A the canonical inclusion morphism. The
object X ⊗L A does not (yet) have a definition in the Stacks project; we may think
of it as the algebraic space XA endowed with a simplicial sheaf of rings OX⊗LA

whose homology sheaves are
Hi(OX⊗LA) = TorOS

i (OX , A).

https://stacks.math.columbia.edu/tag/08W3
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The morphism X ⊗L A→ Spec(A) is flat (the terms of the simplicial sheaf of rings
being A-flat), so the usual material for deformations of flat modules applies to it.
Thus we see that we get an obstruction theory using the groups

ExtiX⊗LA(i∗F , i∗F ⊗AM)

where i = 0, 1, 2 for inf auts, inf defs, obstructions. Note that a flat deformation of
i∗F to X ⊗L A′ is automatically of the form i′∗F ′ where F ′ is a flat deformation of
F . By adjunction of the functors Li∗ and i∗ = Ri∗ these ext groups are equal to

ExtiXA
(Li∗(i∗F),F ⊗AM)

Thus we obtain obstruction groups of exactly the same form as in the proof of Quot,
Lemma 5.11 with the only change being that one replaces the first occurrence of F
by the complex Li∗(i∗F).

Below we prove the non-flat version of the lemma by a “direct” construction of
E(F) = Li∗(i∗F) and direct proof of its relationship to the deformation theory
of F . In fact, it suffices to construct τ≥−2E(F), as we are only interested in the
ext groups ExtiXA

(Li∗(i∗F),F ⊗A M) for i = 0, 1, 2. We can even identify the
cohomology sheaves

Hi(E(F)) =


0 if i > 0
F if i = 0
0 if i = −1

TorOS
1 (OX , A)⊗OX

F if i = −2

This observation will guide our construction of E(F) in the remarks below.

Remark 21.1 (Direct construction).09DN Let S be a scheme. Let f : X → B be a
morphism of algebraic spaces over S. Let U be another algebraic space over B.
Denote q : X×B U → U the second projection. Consider the distinguished triangle

Lq∗LU/B → LX×BU/B → E → Lq∗LU/B [1]

of Cotangent, Section 28. For any sheaf F of OX×BU -modules we have the Atiyah
class

F → LX×BU/B ⊗
L
OX×B U

F [1]
see Cotangent, Section 19. We can compose this with the map to E and choose a
distinguished triangle

E(F)→ F → F ⊗L
OX×B U

E[1]→ E(F)[1]

in D(OX×BU ). By construction the Atiyah class lifts to a map

eF : E(F) −→ Lq∗LU/B ⊗L
OX×B U

F [1]

fitting into a morphism of distinguished triangles

F ⊗L Lq∗LU/B [1] // F ⊗L LX×BU/B [1] // F ⊗L E[1]

E(F) //

eF

OO

F //

Atiyah

OO

F ⊗L E[1]

=

OO

Given S,B,X, f, U,F we fix a choice of E(F) and eF .

https://stacks.math.columbia.edu/tag/09DN
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Remark 21.2 (Construction of obstruction class).09DP With notation as in Remark
21.1 let i : U → U ′ be a first order thickening of U over B. Let I ⊂ OU ′ be the
quasi-coherent sheaf of ideals cutting out B in B′. The fundamental triangle

Li∗LU ′/B → LU/B → LU/U ′ → Li∗LU ′/B [1]
together with the map LU/U ′ → I[1] determine a map eU ′ : LU/B → I[1]. Com-
bined with the map eF of the previous remark we obtain

(idF ⊗ Lq∗eU ′) ∪ eF : E(F) −→ F ⊗OX×B U
q∗I[2]

(we have also composed with the map from the derived tensor product to the usual
tensor product). In other words, we obtain an element

ξU ′ ∈ Ext2
OX×B U

(E(F),F ⊗OX×B U
q∗I)

Lemma 21.3.09DQ In the situation of Remark 21.2 assume that F is flat over U .
Then the vanishing of the class ξU ′ is a necessary and sufficient condition for the
existence of a OX×BU ′-module F ′ flat over U ′ with i∗F ′ ∼= F .
Proof (sketch). We will use the criterion of Deformation Theory, Lemma 11.8.
We will abbreviate O = OX×BU and O′ = OX×BU ′ . Consider the short exact
sequence

0→ I → OU ′ → OU → 0.
Let J ⊂ O′ be the quasi-coherent sheaf of ideals cutting out X×BU . By the above
we obtain an exact sequence

TorOB
1 (OX ,OU )→ q∗I → J → 0

where the TorOB
1 (OX ,OU ) is an abbreviation for

Torh
−1OB

1 (p−1OX , q−1OU )⊗(p−1OX ⊗h−1OB
q−1OU ) O.

Tensoring with F we obtain the exact sequence
F ⊗O TorOB

1 (OX ,OU )→ F ⊗O q∗I → F ⊗O J → 0
(Note that the roles of the letters I and J are reversed relative to the notation
in Deformation Theory, Lemma 11.8.) Condition (1) of the lemma is that the last
map above is an isomorphism, i.e., that the first map is zero. The vanishing of this
map may be checked on stalks at geometric points z = (x, u) : Spec(k)→ X ×B U .
Set R = OB,b, A = OX,x, B = OU,u, and C = Oz. By Cotangent, Lemma 28.2 and
the defining triangle for E(F) we see that

H−2(E(F))z = Fz ⊗ TorR1 (A,B)
The map ξU ′ therefore induces a map

Fz ⊗ TorR1 (A,B) −→ Fz ⊗B Iu
We claim this map is the same as the stalk of the map described above (proof
omitted; this is a purely ring theoretic statement). Thus we see that condition
(1) of Deformation Theory, Lemma 11.8 is equivalent to the vanishing H−2(ξU ′) :
H−2(E(F))→ F ⊗ I.
To finish the proof we show that, assuming that condition (1) is satisfied, condition
(2) is equivalent to the vanishing of ξU ′ . In the rest of the proof we write F ⊗ I to
denote F ⊗O q∗I = F ⊗O J . A consideration of the spectral sequence

Exti(H−j(E(F)),F ⊗ I)⇒ Exti+j(E(F),F ⊗ I)

https://stacks.math.columbia.edu/tag/09DP
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using that H0(E(F)) = F and H−1(E(F)) = 0 shows that there is an exact
sequence

0→ Ext2(F ,F ⊗ I)→ Ext2(E(F),F ⊗ I)→ Hom(H−2(E(F)),F ⊗ I)

Thus our element ξU ′ is an element of Ext2(F ,F ⊗ I). The proof is finished by
showing this element agrees with the element of Deformation Theory, Lemma 11.8
a verification we omit. □

Lemma 21.4.09DR In Quot, Situation 5.1 assume that S is a locally Noetherian scheme
and S = B. Let X = CohX/B. Then we have openness of versality for X (see
Artin’s Axioms, Definition 13.1).

Proof (sketch). Let U → S be of finite type morphism of schemes, x an object
of X over U and u0 ∈ U a finite type point such that x is versal at u0. After
shrinking U we may assume that u0 is a closed point (Morphisms, Lemma 16.1)
and U = Spec(A) with U → S mapping into an affine open Spec(Λ) of S. We
will use Artin’s Axioms, Lemma 24.4 to prove the lemma. Let F be the coherent
module on XA = Spec(A)×S X flat over A corresponding to the given object x.

Choose E(F) and eF as in Remark 21.1. The description of the cohomology sheaves
of E(F) shows that

Ext1(E(F),F ⊗AM) = Ext1(F ,F ⊗AM)

for any A-module M . Using this and using Deformation Theory, Lemma 11.7 we
have an isomorphism of functors

Tx(M) = Ext1
XA

(E(F),F ⊗AM)

By Lemma 21.3 given any surjection A′ → A of Λ-algebras with square zero kernel
I we have an obstruction class

ξA′ ∈ Ext2
XA

(E(F),F ⊗A I)

Apply Derived Categories of Spaces, Lemma 23.3 to the computation of the Ext
groups ExtiXA

(E(F),F ⊗A M) for i ≤ m with m = 2. We omit the verification
that E(F) is in D−

Coh; hint: use Cotangent, Lemma 5.4. We find a perfect object
K ∈ D(A) and functorial isomorphisms

Hi(K ⊗L
AM) −→ ExtiXA

(E(F),F ⊗AM)

for i ≤ m compatible with boundary maps. This object K, together with the
displayed identifications above gives us a datum as in Artin’s Axioms, Situation
24.2. Finally, condition (iv) of Artin’s Axioms, Lemma 24.3 holds by a variant
of Deformation Theory, Lemma 12.5 whose formulation and proof we omit. Thus
Artin’s Axioms, Lemma 24.4 applies and the lemma is proved. □

Theorem 21.5.0CXZ Let S be a scheme. Let f : X → B be morphism of algebraic
spaces over S. Assume that f is of finite presentation and separated. Then CohX/B
is an algebraic stack over S.

Proof. This theorem is a copy of Quot, Theorem 6.1. The reason we have this copy
here is that with the material in this section we get a second proof (as discussed at
the beginning of this section). Namely, we argue exactly as in the proof of Quot,
Theorem 5.12 except that we substitute Lemma 21.4 for Quot, Lemma 5.11. □
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22. Modifications

0AS3 Here is a obsolete result on the category of Algebraization of Formal Spaces, Equa-
tion (30.0.1). Please visit Algebraization of Formal Spaces, Section 30 for the
current material.

Lemma 22.1.0AE4 Let (A,m, κ) be a Noetherian local ring. The category of Alge-
braization of Formal Spaces, Equation (30.0.1) for A is equivalent to the category
Algebraization of Formal Spaces, Equation (30.0.1) for the henselization Ah of A.

Proof. This is a special case of Algebraization of Formal Spaces, Lemma 30.3. □

The following lemma on rational singularities is no longer needed in the chapter on
resolving surface singularities.

Lemma 22.2.0B50 In Resolution of Surfaces, Situation 9.1. Let M be a finite reflexive
A-module. Let M ⊗A OX denote the pullback of the associated OS-module. Then
M ⊗A OX maps onto its double dual.

Proof. Let F = (M ⊗AOX)∗∗ be the double dual and let F ′ ⊂ F be the image of
the evaluation map M ⊗A OX → F . Then we have a short exact sequence

0→ F ′ → F → Q→ 0

Since X is normal, the local rings OX,x are discrete valuation rings for points of
codimension 1 (see Properties, Lemma 12.5). Hence Qx = 0 for such points by
More on Algebra, Lemma 23.3. Thus Q is supported in finitely many closed points
and is globally generated by Cohomology of Schemes, Lemma 9.10. We obtain the
exact sequence

0→ H0(X,F ′)→ H0(X,F)→ H0(X,Q)→ 0

because F ′ is generated by global sections (Resolution of Surfaces, Lemma 9.2).
Since X → Spec(A) is an isomorphism over the complement of the closed point,
and since M is reflexive, we see that the maps

M → H0(X,F ′)→ H0(X,F)

induce isomorphisms after localization at any nonmaximal prime of A. Hence these
maps are isomorphisms by More on Algebra, Lemma 23.13 and the fact that re-
flexive modules over normal rings have property (S2) (More on Algebra, Lemma
23.18). Thus we conclude that Q = 0 as desired. □

23. Intersection theory

0AYK
Lemma 23.1.0FIG Let b : X ′ → X be the blowing up of a smooth projective scheme
over a field k in a smooth closed subscheme Z ⊂ X. Picture

E
j
//

π

��

X ′

b

��
Z

i // X

Assume there exists an element of K0(X) whose restriction to Z is equal to the class
of CZ/X in K0(Z). Then [Lb∗OZ ] = [OE ] · α′′ in K0(X ′) for some α′′ ∈ K0(X ′).
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Proof. The schemes X, X ′, E, Z are smooth and projective over k and hence we
have K ′

0(X) = K0(X) = K0(Vect(X)) = K0(Db
Coh(X))) and similarly for the other

3. See Derived Categories of Schemes, Lemmas 38.1, 38.4, and 38.5. We will switch
between these versions at will in this proof. Consider the short exact sequence

0→ F → π∗CZ/X → CE/X′ → 0
of finite locally free OE-modules defining F . Observe that CE/X′ = OX′(−E)|E
is the restriction of the invertible OX -module OX′(−E). Let α ∈ K0(X) be an
element such that i∗α = [CZ/X ] in K0(Z). Let α′ = b∗α − [OX′(−E)]. Then
j∗α′ = [F ]. We deduce that j∗λi(α′) = [∧i(F)] by Weil Cohomology Theories,
Lemma 13.1. This means that [OE ] · α′ = [∧iF ] in K0(X), see Derived Categories
of Schemes, Lemma 38.8. Let r be the maximum codimension of an irreducible
component of Z in X. A computation which we omit shows that H−i(Lb∗OZ) =
∧iF for i ≥ 0, 1, . . . , r − 1 and zero in other degrees. It follows that in K0(X) we
have

[Lb∗OZ ] =
∑

i=0,...,r−1
(−1)i[∧iF ]

=
∑

i=0,...,r−1
(−1)i[OE ]λi(α′)

= [OE ]
(∑

i=0,...,r−1
(−1)iλi(α′)

)
This proves the lemma with α′′ =

∑
i=0,...,r−1(−1)iλi(α′). □

Lemma 23.2.02TL Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally
of finite type over S. Let X be integral and n = dimδ(X). Let a ∈ Γ(X,OX) be
a nonzero function. Let i : D = Z(a) → X be the closed immersion of the zero
scheme of a. Let f ∈ R(X)∗. In this case i∗divX(f) = 0 in An−2(D).

Proof. Special case of Chow Homology, Lemma 30.1. □

Remark 23.3.02SA This remark used to say that it wasn’t clear whether the arrows of
Chow Homology, Lemma 23.2 were isomorphisms in general. However, we’ve now
found a proof of this fact.

02SY 23.4. Blowing up lemmas. In this section we prove some lemmas on represent-
ing Cartier divisors by suitable effective Cartier divisors on blowups. These lemmas
can be found in [Ful98, Section 2.4]. We have adapted the formulation so they also
work in the non-finite type setting. It may happen that the morphism b of Lemma
23.11 is a composition of infinitely many blowups, but over any given quasi-compact
open W ⊂ X one needs only finitely many blowups (and this is the result of loc.
cit.).

Lemma 23.5.02SZ Let (S, δ) be as in Chow Homology, Situation 7.1. Let X, Y be
locally of finite type over S. Let f : X → Y be a proper morphism. Let D ⊂ Y be
an effective Cartier divisor. Assume X, Y integral, n = dimδ(X) = dimδ(Y ) and
f dominant. Then

f∗[f−1(D)]n−1 = [R(X) : R(Y )][D]n−1.

In particular if f is birational then f∗[f−1(D)]n−1 = [D]n−1.

Proof. Immediate from Chow Homology, Lemma 26.3 and the fact that D is the
zero scheme of the canonical section 1D of OX(D). □
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Lemma 23.6.02T0 Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally
of finite type over S. Assume X integral with dimδ(X) = n. Let L be an invertible
OX-module. Let s be a nonzero meromorphic section of L. Let U ⊂ X be the
maximal open subscheme such that s corresponds to a section of L over U . There
exists a projective morphism

π : X ′ −→ X

such that
(1) X ′ is integral,
(2) π|π−1(U) : π−1(U)→ U is an isomorphism,
(3) there exist effective Cartier divisors D,E ⊂ X ′ such that

π∗L = OX′(D − E),
(4) the meromorphic section s corresponds, via the isomorphism above, to the

meromorphic section 1D ⊗ (1E)−1 (see Divisors, Definition 14.1),
(5) we have

π∗([D]n−1 − [E]n−1) = divL(s)
in Zn−1(X).

Proof. Let I ⊂ OX be the quasi-coherent ideal sheaf of denominators of s, see
Divisors, Definition 23.10. By Divisors, Lemma 34.6 we get (2), (3), and (4). By
Divisors, Lemma 32.9 we get (1). By Divisors, Lemma 32.13 the morphism π is
projective. We still have to prove (5). By Chow Homology, Lemma 26.3 we have

π∗(divL′(s′)) = divL(s).
Hence it suffices to show that divL′(s′) = [D]n−1 − [E]n−1. This follows from the
equality s′ = 1D ⊗ 1−1

E and additivity, see Divisors, Lemma 27.5. □

Definition 23.7.02T1 Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be
locally of finite type over S. Assume X integral and dimδ(X) = n. Let D1, D2 be
two effective Cartier divisors in X. Let Z ⊂ X be an integral closed subscheme
with dimδ(Z) = n− 1. The ϵ-invariant of this situation is

ϵZ(D1, D2) = nZ ·mZ

where nZ , resp. mZ is the coefficient of Z in the (n−1)-cycle [D1]n−1, resp. [D2]n−1.

Lemma 23.8.02T2 Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally
of finite type over S. Assume X integral and dimδ(X) = n. Let D1, D2 be two
effective Cartier divisors in X. Let Z be an open and closed subscheme of the
scheme D1∩D2. Assume dimδ(D1∩D2 \Z) ≤ n−2. Then there exists a morphism
b : X ′ → X, and Cartier divisors D′

1, D
′
2, E on X ′ with the following properties

(1) X ′ is integral,
(2) b is projective,
(3) b is the blowup of X in the closed subscheme Z,
(4) E = b−1(Z),
(5) b−1(D1) = D′

1 + E, and b−1D2 = D′
2 + E,

(6) dimδ(D′
1 ∩D′

2) ≤ n− 2, and if Z = D1 ∩D2 then D′
1 ∩D′

2 = ∅,
(7) for every integral closed subscheme W ′ with dimδ(W ′) = n− 1 we have

(a) if ϵW ′(D′
1, E) > 0, then setting W = b(W ′) we have dimδ(W ) = n− 1

and
ϵW ′(D′

1, E) < ϵW (D1, D2),
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(b) if ϵW ′(D′
2, E) > 0, then setting W = b(W ′) we have dimδ(W ) = n− 1

and
ϵW ′(D′

2, E) < ϵW (D1, D2),

Proof. Note that the quasi-coherent ideal sheaf I = ID1 + ID2 defines the scheme
theoretic intersection D1 ∩D2 ⊂ X. Since Z is a union of connected components
of D1 ∩ D2 we see that for every z ∈ Z the kernel of OX,z → OZ,z is equal to
Iz. Let b : X ′ → X be the blowup of X in Z. (So Zariski locally around Z it
is the blowup of X in I.) Denote E = b−1(Z) the corresponding effective Cartier
divisor, see Divisors, Lemma 32.4. Since Z ⊂ D1 we have E ⊂ f−1(D1) and hence
D1 = D′

1 +E for some effective Cartier divisor D′
1 ⊂ X ′, see Divisors, Lemma 13.8.

Similarly D2 = D′
2 + E. This takes care of assertions (1) – (5).

Note that if W ′ is as in (7) (a) or (7) (b), then the image W of W ′ is contained
in D1 ∩ D2. If W is not contained in Z, then b is an isomorphism at the generic
point of W and we see that dimδ(W ) = dimδ(W ′) = n − 1 which contradicts the
assumption that dimδ(D1 ∩D2 \ Z) ≤ n − 2. Hence W ⊂ Z. This means that to
prove (6) and (7) we may work locally around Z on X.

Thus we may assume that X = Spec(A) with A a Noetherian domain, and D1 =
Spec(A/a), D2 = Spec(A/b) and Z = D1 ∩D2. Set I = (a, b). Since A is a domain
and a, b ̸= 0 we can cover the blowup by two patches, namely U = Spec(A[s]/(as−
b)) and V = Spec(A[t]/(bt − a)). These patches are glued using the isomorphism
A[s, s−1]/(as − b) ∼= A[t, t−1]/(bt − a) which maps s to t−1. The effective Cartier
divisor E is described by Spec(A[s]/(as− b, a)) ⊂ U and Spec(A[t]/(bt−a, b)) ⊂ V .
The closed subscheme D′

1 corresponds to Spec(A[t]/(bt − a, t)) ⊂ U . The closed
subscheme D′

2 corresponds to Spec(A[s]/(as − b, s)) ⊂ V . Since “ts = 1” we see
that D′

1 ∩D′
2 = ∅.

Suppose we have a prime q ⊂ A[s]/(as− b) of height one with s, a ∈ q. Let p ⊂ A
be the corresponding prime of A. Observe that a, b ∈ p. By the dimension formula
we see that dim(Ap) = 1 as well. The final assertion to be shown is that

ordAp
(a)ordAp

(b) > ordBq
(a)ordBq

(s)

where B = A[s]/(as− b). By Algebra, Lemma 124.1 we have ordAp
(x) ≥ ordBq

(x)
for x = a, b. Since ordBq

(s) > 0 we win by additivity of the ord function and the
fact that as = b. □

Definition 23.9.02T3 Let X be a scheme. Let {Di}i∈I be a locally finite collection
of effective Cartier divisors on X. Suppose given a function I → Z≥0, i 7→ ni.
The sum of the effective Cartier divisors D =

∑
niDi, is the unique effective

Cartier divisor D ⊂ X such that on any quasi-compact open U ⊂ X we have
D|U =

∑
Di∩U ̸=∅ niDi|U is the sum as in Divisors, Definition 13.6.

Lemma 23.10.02T4 Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally
of finite type over S. Assume X integral and dimδ(X) = n. Let {Di}i∈I be a locally
finite collection of effective Cartier divisors on X. Suppose given ni ≥ 0 for i ∈ I.
Then

[D]n−1 =
∑

i
ni[Di]n−1

in Zn−1(X).

https://stacks.math.columbia.edu/tag/02T3
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OBSOLETE 36

Proof. Since we are proving an equality of cycles we may work locally on X.
Hence this reduces to a finite sum, and by induction to a sum of two effective
Cartier divisors D = D1 + D2. By Chow Homology, Lemma 24.2 we see that
D1 = divOX (D1)(1D1) where 1D1 denotes the canonical section of OX(D1). Of
course we have the same statement for D2 and D. Since 1D = 1D1 ⊗ 1D2 via the
identification OX(D) = OX(D1)⊗OX(D2) we win by Divisors, Lemma 27.5. □

Lemma 23.11.02T5 Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally
of finite type over S. Assume X integral and dimδ(X) = d. Let {Di}i∈I be a locally
finite collection of effective Cartier divisors on X. Assume that for all {i, j, k} ⊂ I,
#{i, j, k} = 3 we have Di ∩Dj ∩Dk = ∅. Then there exist

(1) an open subscheme U ⊂ X with dimδ(X \ U) ≤ d− 3,
(2) a morphism b : U ′ → U , and
(3) effective Cartier divisors {D′

j}j∈J on U ′

with the following properties:
(1) b is proper morphism b : U ′ → U ,
(2) U ′ is integral,
(3) b is an isomorphism over the complement of the union of the pairwise in-

tersections of the Di|U ,
(4) {D′

j}j∈J is a locally finite collection of effective Cartier divisors on U ′,
(5) dimδ(D′

j ∩D′
j′) ≤ d− 2 if j ̸= j′, and

(6) b−1(Di|U ) =
∑
nijD

′
j for certain nij ≥ 0.

Moreover, if X is quasi-compact, then we may assume U = X in the above.

Proof. Let us first prove this in the quasi-compact case, since it is perhaps the
most interesting case. In this case we produce inductively a sequence of blowups

X = X0
b0←− X1

b1←− X2 ← . . .

and finite sets of effective Cartier divisors {Dn,i}i∈In . At each stage these will have
the property that any triple intersection Dn,i∩Dn,j ∩Dn,k is empty. Moreover, for
each n ≥ 0 we will have In+1 = In ⨿ P (In) where P (In) denotes the set of pairs of
elements of In. Finally, we will have

b−1
n (Dn,i) = Dn+1,i +

∑
i′∈In,i′ ̸=i

Dn+1,{i,i′}

We conclude that for each n ≥ 0 we have (b0 ◦ . . . ◦ bn)−1(Di) is a nonnegative
integer combination of the divisors Dn+1,j , j ∈ In+1.

To start the induction we set X0 = X and I0 = I and D0,i = Di.

Given (Xn, {Dn,i}i∈In) let Xn+1 be the blowup of Xn in the closed subscheme Zn =⋃
{i,i′}∈P (In) Dn,i∩Dn,i′ . Note that the closed subschemes Dn,i∩Dn,i′ are pairwise

disjoint by our assumption on triple intersections. In other words we may write
Zn =

∐
{i,i′}∈P (In) Dn,i∩Dn,i′ . Moreover, in a Zariski neighbourhood of Dn,i∩Dn,i′

the morphism bn is equal to the blowup of the scheme Xn in the closed subscheme
Dn,i ∩ Dn,i′ , and the results of Lemma 23.8 apply. Hence setting Dn+1,{i,i′} =
b−1
n (Di ∩Di′) we get an effective Cartier divisor. The Cartier divisors Dn+1,{i,i′}

are pairwise disjoint. Clearly we have b−1
n (Dn,i) ⊃ Dn+1,{i,i′} for every i′ ∈ In,

i′ ̸= i. Hence, applying Divisors, Lemma 13.8 we see that indeed b−1(Dn,i) =
Dn+1,i +

∑
i′∈In,i′ ̸=iDn+1,{i,i′} for some effective Cartier divisor Dn+1,i on Xn+1.

https://stacks.math.columbia.edu/tag/02T5
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In a neighbourhood of Dn+1,{i,i′} these divisors Dn+1,i play the role of the primed
divisors of Lemma 23.8. In particular we conclude that Dn+1,i∩Dn+1,i′ = ∅ if i ̸= i′,
i, i′ ∈ In by part (6) of Lemma 23.8. This already implies that triple intersections
of the divisors Dn+1,i are zero.
OK, and at this point we can use the quasi-compactness of X to conclude that the
invariant
(23.11.1)

02T6 ϵ(X, {Di}i∈I) = max{ϵZ(Di, Di′) | Z ⊂ X,dimδ(Z) = d− 1, {i, i′} ∈ P (I)}
is finite, since after all each Di has at most finitely many irreducible components.
We claim that for some n the invariant ϵ(Xn, {Dn,i}i∈In

) is zero. Namely, if not
then by Lemma 23.8 we have a strictly decreasing sequence

ϵ(X, {Di}i∈I) = ϵ(X0, {D0,i}i∈I0) > ϵ(X1, {D1,i}i∈I1) > . . .

of positive integers which is a contradiction. Take n with invariant ϵ(Xn, {Dn,i}i∈In)
equal to zero. This means that there is no integral closed subscheme Z ⊂ Xn

and no pair of indices i, i′ ∈ In such that ϵZ(Dn,i, Dn,i′) > 0. In other words,
dimδ(Dn,i, Dn,i′) ≤ d− 2 for all pairs {i, i′} ∈ P (In) as desired.
Next, we come to the general case where we no longer assume that the scheme X is
quasi-compact. The problem with the idea from the first part of the proof is that
we may get and infinite sequence of blowups with centers dominating a fixed point
of X. In order to avoid this we cut out suitable closed subsets of codimension ≥ 3
at each stage. Namely, we will construct by induction a sequence of morphisms
having the following shape

X = X0

U0

j0

OO

X1
b0oo

U1

j1

OO

X2
b1oo

U2

j2

OO

X3
b2oo

Each of the morphisms jn : Un → Xn will be an open immersion. Each of the mor-
phisms bn : Xn+1 → Un will be a proper birational morphism of integral schemes.
As in the quasi-compact case we will have effective Cartier divisors {Dn,i}i∈In

on Xn. At each stage these will have the property that any triple intersection
Dn,i∩Dn,j∩Dn,k is empty. Moreover, for each n ≥ 0 we will have In+1 = In⨿P (In)
where P (In) denotes the set of pairs of elements of In. Finally, we will arrange it
so that

b−1
n (Dn,i|Un

) = Dn+1,i +
∑

i′∈In,i′ ̸=i
Dn+1,{i,i′}

We start the induction by setting X0 = X, I0 = I and D0,i = Di.
Given (Xn, {Dn,i}) we construct the open subscheme Un as follows. For each pair
{i, i′} ∈ P (In) consider the closed subscheme Dn,i ∩ Dn,i′ . This has “good” irre-
ducible components which have δ-dimension d−2 and “bad” irreducible components
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which have δ-dimension d− 1. Let us set

Bad(i, i′) =
⋃

W⊂Dn,i∩Dn,i′ irred. comp. with dimδ(W )=d−1
W

and similarly

Good(i, i′) =
⋃

W⊂Dn,i∩Dn,i′ irred. comp. with dimδ(W )=d−2
W.

Then Dn,i ∩Dn,i′ = Bad(i, i′)∪Good(i, i′) and moreover we have dimδ(Bad(i, i′)∩
Good(i, i′)) ≤ d− 3. Here is our choice of Un:

Un = Xn \
⋃

{i,i′}∈P (In)
Bad(i, i′) ∩Good(i, i′).

By our condition on triple intersections of the divisors Dn,i we see that the union
is actually a disjoint union. Moreover, we see that (as a scheme)

Dn,i|Un ∩Dn,i′ |Un = Zn,i,i′ ⨿Gn,i,i′

where Zn,i,i′ is δ-equidimensional of dimension d−1 and Gn,i,i′ is δ-equidimensional
of dimension d−2. (So topologically Zn,i,i′ is the union of the bad components but
throw out intersections with good components.) Finally we set

Zn =
⋃

{i,i′}∈P (In)
Zn,i,i′ =

∐
{i,i′}∈P (In)

Zn,i,i′ ,

and we let bn : Xn+1 → Xn be the blowup in Zn. Note that Lemma 23.8 applies to
the morphism bn : Xn+1 → Xn locally around each of the loci Dn,i|Un ∩Dn,i′ |Un .
Hence, exactly as in the first part of the proof we obtain effective Cartier divisors
Dn+1,{i,i′} for {i, i′} ∈ P (In) and effective Cartier divisors Dn+1,i for i ∈ In such
that b−1

n (Dn,i|Un
) = Dn+1,i +

∑
i′∈In,i′ ̸=iDn+1,{i,i′}. For each n denote πn : Xn →

X the morphism obtained as the composition j0 ◦ . . . ◦ jn−1 ◦ bn−1.
Claim: given any quasi-compact open V ⊂ X for all sufficiently large n the maps

π−1
n (V )← π−1

n+1(V )← . . .

are all isomorphisms. Namely, if the map π−1
n (V ) ← π−1

n+1(V ) is not an isomor-
phism, then Zn,i,i′ ∩ π−1

n (V ) ̸= ∅ for some {i, i′} ∈ P (In). Hence there exists an
irreducible component W ⊂ Dn,i ∩Dn,i′ with dimδ(W ) = d − 1. In particular we
see that ϵW (Dn,i, Dn,i′) > 0. Applying Lemma 23.8 repeatedly we see that

ϵW (Dn,i, Dn,i′) < ϵ(V, {Di|V })− n
with ϵ(V, {Di|V }) as in (23.11.1). Since V is quasi-compact, we have ϵ(V, {Di|V }) <
∞ and taking n > ϵ(V, {Di|V }) we see the result.
Note that by construction the difference Xn \ Un has dimδ(Xn \ Un) ≤ d− 3. Let
Tn = πn(Xn \ Un) be its image in X. Traversing in the diagram of maps above
using each bn is closed it follows that T0∪ . . .∪Tn is a closed subset of X for each n.
Any t ∈ Tn satisfies δ(t) ≤ d− 3 by construction. Hence Tn ⊂ X is a closed subset
with dimδ(Tn) ≤ d−3. By the claim above we see that for any quasi-compact open
V ⊂ X we have Tn∩V ̸= ∅ for at most finitely many n. Hence {Tn}n≥0 is a locally
finite collection of closed subsets, and we may set U = X \

⋃
Tn. This will be U as

in the lemma.
Note that Un ∩ π−1

n (U) = π−1
n (U) by construction of U . Hence all the morphisms

bn : π−1
n+1(U) −→ π−1

n (U)
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are proper. Moreover, by the claim they eventually become isomorphisms over each
quasi-compact open of X. Hence we can define

U ′ = limn π
−1
n (U).

The induced morphism b : U ′ → U is proper since this is local on U , and over
each compact open the limit stabilizes. Similarly we set J =

⋃
n≥0 In using the

inclusions In → In+1 from the construction. For j ∈ J choose an n0 such that j
corresponds to i ∈ In0 and define D′

j = limn≥n0 Dn,i. Again this makes sense as
locally over X the morphisms stabilize. The other claims of the lemma are verified
as in the case of a quasi-compact X. □

24. Commutativity of intersecting divisors

0AYE The results of this section were originally used to provide an alternative proof of
the lemmas of Chow Homology, Section 28 and a weak version of Chow Homology,
Lemma 30.5.

Lemma 24.1.02TC Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally
of finite type over S. Let {ij : Dj → X}j∈J be a locally finite collection of effective
Cartier divisors on X. Let nj > 0, j ∈ J . Set D =

∑
j∈J njDj, and denote

i : D → X the inclusion morphism. Let α ∈ Zk+1(X). Then

p :
∐

j∈J
Dj −→ D

is proper and
i∗α = p∗

(∑
nji

∗
jα

)
in CHk(D).

Proof. The proof of this lemma is made a bit longer than expected by a subtlety
concerning infinite sums of rational equivalences. In the quasi-compact case the
family Dj is finite and the result is altogether easy and a straightforward conse-
quence of Chow Homology, Lemma 24.2 and Divisors, Lemma 27.5 and the defini-
tions.
The morphism p is proper since the family {Dj}j∈J is locally finite. Write α =∑
a∈Ama[Wa] with Wa ⊂ X an integral closed subscheme of δ-dimension k + 1.

Denote ia : Wa → X the closed immersion. We assume that ma ̸= 0 for all a ∈ A
such that {Wa}a∈A is locally finite on X.
Observe that by Chow Homology, Definition 29.1 the class i∗α is the class of a cycle∑
maβa for certain βa ∈ Zk(Wa ∩ D). Namely, if Wa ̸⊂ D then βa = [D ∩Wa]k

and if Wa ⊂ D, then βa is a cycle representing c1(OX(D)) ∩ [Wa].
For each a ∈ A write J = Ja,1 ⨿ Ja,2 ⨿ Ja,3 where

(1) j ∈ Ja,1 if and only if Wa ∩Dj = ∅,
(2) j ∈ Ja,2 if and only if Wa ̸= Wa ∩D1 ̸= ∅, and
(3) j ∈ Ja,3 if and only if Wa ⊂ Dj .

Since the family {Dj} is locally finite we see that Ja,3 is a finite set. For every
a ∈ A and j ∈ J we choose a cycle βa,j ∈ Zk(Wa ∩Dj) as follows

(1) if j ∈ Ja,1 we set βa,j = 0,
(2) if j ∈ Ja,2 we set βa,j = [Dj ∩Wa]k, and
(3) if j ∈ Ja,3 we choose βa,j ∈ Zk(Wa) representing c1(i∗aOX(Dj)) ∩ [Wj ].

https://stacks.math.columbia.edu/tag/02TC
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We claim that
βa ∼rat

∑
j∈J

njβa,j

in CHk(Wa ∩D).
Case I: Wa ̸⊂ D. In this case Ja,3 = ∅. Thus it suffices to show that [D ∩Wa]k =∑
nj [Dj ∩Wa]k as cycles. This is Lemma 23.10.

Case II: Wa ⊂ D. In this case βa is a cycle representing c1(i∗aOX(D))∩ [Wa]. Write
D = Da,1 + Da,2 + Da,3 with Da,s =

∑
j∈Ja,s

njDj . By Divisors, Lemma 27.5 we
have

c1(i∗aOX(D)) ∩ [Wa] = c1(i∗aOX(Da,1)) ∩ [Wa] + c1(i∗aOX(Da,2)) ∩ [Wa]
+c1(i∗aOX(Da,3)) ∩ [Wa].

It is clear that the first term of the sum is zero. Since Ja,3 is finite we see that the
last term agrees with

∑
j∈Ja,3

njc1(i∗aLj) ∩ [Wa], see Divisors, Lemma 27.5. This
is represented by

∑
j∈Ja,3

njβa,j . Finally, by Case I we see that the middle term
is represented by the cycle

∑
j∈Ja,2

nj [Dj ∩Wa]k =
∑
j∈Ja,2

njβa,j . Whence the
claim in this case.
At this point we are ready to finish the proof of the lemma. Namely, we have
i∗D ∼rat

∑
maβa by our choice of βa. For each a we have βa ∼rat

∑
j βa,j

with the rational equivalence taking place on D ∩ Wa. Since the collection of
closed subschemes D ∩Wa is locally finite on D, we see that also

∑
maβa ∼rat∑

a,jmaβa,j on D! (See Chow Homology, Remark 19.6.) Ok, and now it is clear
that

∑
amaβa,j (viewed as a cycle on Dj) represents i∗jα and hence

∑
a,jmaβa,j

represents p∗
∑
j i

∗
jα and we win. □

Lemma 24.2.02TD Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally
of finite type over S. Assume X integral and dimδ(X) = n. Let D, D′ be effective
Cartier divisors on X. Assume dimδ(D ∩ D′) = n − 2. Let i : D → X, resp.
i′ : D′ → X be the corresponding closed immersions. Then

(1) there exists a cycle α ∈ Zn−2(D ∩D′) whose pushforward to D represents
i∗[D′]n−1 ∈ CHn−2(D) and whose pushforward to D′ represents (i′)∗[D]n−1 ∈
CHn−2(D′), and

(2) we have
D · [D′]n−1 = D′ · [D]n−1

in CHn−2(X).

Proof. Part (2) is a trivial consequence of part (1). Let us write [D]n−1 =
∑
na[Za]

and [D′]n−1 =
∑
mb[Zb] with Za the irreducible components of D and [Zb] the

irreducible components of D′. According to Chow Homology, Definition 29.1, we
have i∗D′ =

∑
mbi

∗[Zb] and (i′)∗D =
∑
na(i′)∗[Za]. By assumption, none of the

irreducible components Zb is contained in D, and hence i∗[Zb] = [Zb ∩ D]n−2 by
definition. Similarly (i′)∗[Za] = [Za ∩ D′]n−2. Hence we are trying to prove the
equality of cycles ∑

na[Za ∩D′]n−2 =
∑

mb[Zb ∩D]n−2

which are indeed supported on D∩D′. Let W ⊂ X be an integral closed subscheme
with dimδ(W ) = n − 2. Let ξ ∈ W be its generic point. Set R = OX,ξ. It is a
Noetherian local domain. Note that dim(R) = 2. Let f ∈ R, resp. f ′ ∈ R be an

https://stacks.math.columbia.edu/tag/02TD
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element defining the ideal of D, resp. D′. By assumption dim(R/(f, f ′)) = 0. Let
q′

1, . . . , q
′
t ⊂ R be the minimal primes over (f ′), let q1, . . . , qs ⊂ R be the minimal

primes over (f). The equality above comes down to the equality∑
i=1,...,s

lengthRqi
(Rqi

/(f))ordR/qi
(f ′) =

∑
j=1,...,t

lengthRq′
j

(Rq′
j
/(f ′))ordR/q′

j
(f).

By Chow Homology, Lemma 3.1 applied with M = R/(f) the left hand side of this
equation is equal to

lengthR(R/(f, f ′))− lengthR(Ker(f ′ : R/(f)→ R/(f)))

OK, and now we note that Ker(f ′ : R/(f) → R/(f)) is canonically isomorphic to
((f) ∩ (f ′))/(ff ′) via the map x mod (f) 7→ f ′x mod (ff ′). Hence the left hand
side is

lengthR(R/(f, f ′))− lengthR((f) ∩ (f ′)/(ff ′))
Since this is symmetric in f and f ′ we win. □

Lemma 24.3.02TE Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally
of finite type over S. Assume X integral and dimδ(X) = n. Let {Dj}j∈J be
a locally finite collection of effective Cartier divisors on X. Let nj ,mj ≥ 0 be
collections of nonnegative integers. Set D =

∑
njDj and D′ =

∑
mjDj. Assume

that dimδ(Dj ∩Dj′) = n − 2 for every j ̸= j′. Then D · [D′]n−1 = D′ · [D]n−1 in
CHn−2(X).

Proof. This lemma is a trivial consequence of Lemmas 23.10 and 24.2 in case the
sums are finite, e.g., if X is quasi-compact. Hence we suggest the reader skip the
proof.

Here is the proof in the general case. Let ij : Dj → X be the closed immersions
Let p :

∐
Dj → X denote coproduct of the morphisms ij . Let {Za}a∈A be the

collection of irreducible components of
⋃
Dj . For each j we write

[Dj ]n−1 =
∑

dj,a[Za].

By Lemma 23.10 we have

[D]n−1 =
∑

njdj,a[Za], [D′]n−1 =
∑

mjdj,a[Za].

By Lemma 24.1 we have

D · [D′]n−1 = p∗

(∑
nji

∗
j [D′]n−1

)
, D′ · [D]n−1 = p∗

(∑
mj′i∗j′ [D]n−1

)
.

As in the definition of the Gysin homomorphisms (see Chow Homology, Definition
29.1) we choose cycles βa,j on Dj ∩ Za representing i∗j [Za]. (Note that in fact
βa,j = [Dj ∩ Za]n−2 if Za is not contained in Dj , i.e., there is no choice in that
case.) Now since p is a closed immersion when restricted to each of the Dj we can
(and we will) view βa,j as a cycle on X. Plugging in the formulas for [D]n−1 and
[D′]n−1 obtained above we see that

D · [D′]n−1 =
∑

j,j′,a
njmj′dj′,aβa,j , D′ · [D]n−1 =

∑
j,j′,a

mj′njdj,aβa,j′ .

Moreover, with the same conventions we also have

Dj · [Dj′ ]n−1 =
∑

dj′,aβa,j .

https://stacks.math.columbia.edu/tag/02TE
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In these terms Lemma 24.2 (see also its proof) says that for j ̸= j′ the cycles∑
dj′,aβa,j and

∑
dj,aβa,j′ are equal as cycles! Hence we see that

D · [D′]n−1 =
∑

j,j′,a
njmj′dj′,aβa,j

=
∑

j ̸=j′
njmj′

(∑
a
dj′,aβa,j

)
+

∑
j,a
njmjdj,aβa,j

=
∑

j ̸=j′
njmj′

(∑
a
dj,aβa,j′

)
+

∑
j,a
njmjdj,aβa,j

=
∑

j,j′,a
mj′njdj,aβa,j′

= D′ · [D]n−1

and we win. □

Lemma 24.4.02TF Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally
of finite type over S. Assume X integral and dimδ(X) = n. Let D, D′ be effective
Cartier divisors on X. Then

D · [D′]n−1 = D′ · [D]n−1

in CHn−2(X).

First proof of Lemma 24.4. First, let us prove this in case X is quasi-compact.
In this case, apply Lemma 23.11 to X and the two element set {D,D′} of effective
Cartier divisors. Thus we get a proper morphism b : X ′ → X, a finite collection of
effective Cartier divisors D′

j ⊂ X ′ intersecting pairwise in codimension ≥ 2, with
b−1(D) =

∑
njD

′
j , and b−1(D′) =

∑
mjD

′
j . Note that b∗[b−1(D)]n−1 = [D]n−1

in Zn−1(X) and similarly for D′, see Lemma 23.5. Hence, by Chow Homology,
Lemma 26.4 we have

D · [D′]n−1 = b∗
(
b−1(D) · [b−1(D′)]n−1

)
in CHn−2(X) and similarly for the other term. Hence the lemma follows from the
equality b−1(D) · [b−1(D′)]n−1 = b−1(D′) · [b−1(D)]n−1 in CHn−2(X ′) of Lemma
24.3.

Note that in the proof above, each referenced lemma works also in the general case
(when X is not assumed quasi-compact). The only minor change in the general
case is that the morphism b : U ′ → U we get from applying Lemma 23.11 has as its
target an open U ⊂ X whose complement has codimension ≥ 3. Hence by Chow
Homology, Lemma 19.3 we see that CHn−2(U) = CHn−2(X) and after replacing X
by U the rest of the proof goes through unchanged. □

Second proof of Lemma 24.4. Let I = OX(−D) and I ′ = OX(−D′) be the
invertible ideal sheaves of D and D′. We denote ID′ = I ⊗OX

OD′ and I ′
D =

I ′ ⊗OX
OD. We can restrict the inclusion map I → OX to D′ to get a map

φ : ID′ −→ OD′

and similarly
ψ : I ′

D −→ OD
It is clear that

Coker(φ) ∼= OD∩D′ ∼= Coker(ψ)

https://stacks.math.columbia.edu/tag/02TF
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and

Ker(φ) ∼=
I ∩ I ′

II ′
∼= Ker(ψ).

Hence we see that
γ = [ID′ ]− [OD′ ] = [I ′

D]− [OD]
in K0(Coh≤n−1(X)). On the other hand it is clear that

[I ′
D]n−1 = [D]n−1, [ID′ ]n−1 = [D′]n−1.

and that
OX(D′)⊗ I ′

D = OD, OX(D)⊗ ID′ = OD′ .

By Chow Homology, Lemma 69.7 (applied two times) this means that the ele-
ment γ is an element of Bn−2(X), and maps to both c1(OX(D′)) ∩ [D]n−1 and to
c1(OX(D)) ∩ [D′]n−1 and we win (since the map Bn−2(X) → CHn−2(X) is well
defined – which is the key to this proof). □

25. Dualizing modules on regular proper models

0C6D In Semistable Reduction, Situation 9.3 we let ω•
X/R = f !OSpec(R) be the relative

dualizing complex of f : X → Spec(R) as introduced in Duality for Schemes, Re-
mark 12.5. Since f is Gorenstein of relative dimension 1 by Semistable Reduction,
Lemma 9.2 we can use Duality for Schemes, Lemmas 25.10, 21.7, and 25.4 to see
that

ω•
X/R = ωX [1]

for some invertible OX -module ωX . This invertible module is often called the
relative dualizing module of X over R. Since R is regular (hence Gorenstein) of
dimension 1 we see that ω•

R = R[1] is a normalized dualizing complex for R. Hence
ωX = H−2(f !ω•

R) and we see that ωX is not just a relative dualizing module but also
a dualizing module, see Duality for Schemes, Example 22.1. Thus ωX represents
the functor

Coh(OX)→ Sets, F 7→ HomR(H1(X,F), R)
by Duality for Schemes, Lemma 22.5. This gives an alternative definition of the
relative dualizing module in Semistable Reduction, Situation 9.3. The formation of
ωX commutes with arbitrary base change (for any proper Gorenstein morphism of
given relative dimension); this follows from the corresponding fact for the relative
dualizing complex discussed in Duality for Schemes, Remark 12.5 which goes back to
Duality for Schemes, Lemma 12.4. Thus ωX pulls back to the dualizing module ωC
of C over K discussed in Algebraic Curves, Lemma 4.2. Note that ωC is isomorphic
to ΩC/K by Algebraic Curves, Lemma 4.1. Similarly ωX |Xk

is the dualizing module
ωXk

of Xk over k.

Lemma 25.1.0C6E In Semistable Reduction, Situation 9.3 the dualizing module of Ci
over k is

ωCi = ωX(Ci)|Ci

where ωX is as above.

Proof. Let t : Ci → X be the closed immersion. Since t is the inclusion of an
effective Cartier divisor we conclude from Duality for Schemes, Lemmas 9.7 and

https://stacks.math.columbia.edu/tag/0C6E
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14.2 that we have t!(L) = L(Ci)|Ci
for every invertible OX -module L. Consider

the commutative diagram

Ci t
//

g

��

X

f

��
Spec(k) s // Spec(R)

Observe that Ci is a Gorenstein curve (Semistable Reduction, Lemma 9.2) with
invertible dualizing module ωCi

characterized by the property ωCi
[0] = g!OSpec(k).

See Algebraic Curves, Lemma 4.1, its proof, and Algebraic Curves, Lemmas 4.2
and 5.2. On the other hand, s!(R[1]) = k and hence

ωCi [0] = g!s!(R[1]) = t!f !(R[1]) = t!ωX

Combining the above we obtain the statement of the lemma. □

26. Duplicate and split out references

09AQ This section is a place where we collect duplicates and references which used to say
several things at the same time but are now split into their constituent parts.

Lemma 26.1.05JR Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let F be a quasi-coherent OX-module. Then F is the directed colimit of
its finite type quasi-coherent submodules.

Proof. This is a duplicate of Properties, Lemma 22.3. □

Lemma 26.2.03IF Let S be a scheme. Let X be an algebraic space over S. The map
{Spec(k)→ X monomorphism} → |X| is injective.

Proof. This is a duplicate of Properties of Spaces, Lemma 4.12. □

Theorem 26.3.03QZ Let S = Spec(K) with K a field. Let s be a geometric point of
S. Let G = Galκ(s) denote the absolute Galois group. Then there is an equivalence
of categories Sh(Sétale)→ G-Sets, F 7→ Fs.

Proof. This is a duplicate of Étale Cohomology, Theorem 56.3. □

Remark 26.4.06IF You got here because of a duplicate tag. Please see Formal De-
formation Theory, Section 12 for the actual content.

Lemma 26.5.08E6 Let X be a locally ringed space. A direct summand of a finite free
OX-module is finite locally free.

Proof. This is a duplicate of Modules, Lemma 14.6. □

Lemma 26.6.08XU Let R be a ring. Let E be an R-module. The following are equiv-
alent

(1) E is an injective R-module, and
(2) given an ideal I ⊂ R and a module map φ : I → E there exists an extension

of φ to an R-module map R→ E.

Proof. This is Baer’s criterion, see Injectives, Lemma 2.6. □

Lemma 26.7.02PI Let R be a local ring.

https://stacks.math.columbia.edu/tag/05JR
https://stacks.math.columbia.edu/tag/03IF
https://stacks.math.columbia.edu/tag/03QZ
https://stacks.math.columbia.edu/tag/06IF
https://stacks.math.columbia.edu/tag/08E6
https://stacks.math.columbia.edu/tag/08XU
https://stacks.math.columbia.edu/tag/02PI
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(1) If (M,N,φ, ψ) is a 2-periodic complex such that M , N have finite length.
Then eR(M,N,φ, ψ) = lengthR(M)− lengthR(N).

(2) If (M,φ, ψ) is a (2, 1)-periodic complex such that M has finite length. Then
eR(M,φ, ψ) = 0.

(3) Suppose that we have a short exact sequence of 2-periodic complexes
0→ (M1, N1, φ1, ψ1)→ (M2, N2, φ2, ψ2)→ (M3, N3, φ3, ψ3)→ 0

If two out of three have cohomology modules of finite length so does the
third and we have
eR(M2, N2, φ2, ψ2) = eR(M1, N1, φ1, ψ1) + eR(M3, N3, φ3, ψ3).

Proof. This follows from Chow Homology, Lemmas 2.3 and 2.4. □

Lemma 26.8.08S8 Let A be a ring and let I be an A-module.
(1) The set of extensions of rings 0→ I → A′ → A→ 0 where I is an ideal of

square zero is canonically bijective to Ext1
A(NLA/Z, I).

(2) Given a ring map A → B, a B-module N , an A-module map c : I → N ,
and given extensions of rings with square zero kernels:
(a) 0→ I → A′ → A→ 0 corresponding to α ∈ Ext1

A(NLA/Z, I), and
(b) 0→ N → B′ → B → 0 corresponding to β ∈ Ext1

B(NLB/Z, N)
then there is a map A′ → B′ fitting into Deformation Theory, Equation
(2.0.1) if and only if β and α map to the same element of Ext1

A(NLA/Z, N).

Proof. This follows from Deformation Theory, Lemmas 2.3 and 2.5. □

Lemma 26.9.08UD Let (S,OS) be a ringed space and let J be an OS-module.
(1) The set of extensions of sheaves of rings 0 → J → OS′ → OS → 0 where
J is an ideal of square zero is canonically bijective to Ext1

OS
(NLS/Z,J ).

(2) Given a morphism of ringed spaces f : (X,OX)→ (S,OS), an OX-module
G, an f -map c : J → G, and given extensions of sheaves of rings with
square zero kernels:
(a) 0→ J → OS′ → OS → 0 corresponding to α ∈ Ext1

OS
(NLS/Z,J ),

(b) 0→ G → OX′ → OX → 0 corresponding to β ∈ Ext1
OX

(NLX/Z,G)
then there is a morphism X ′ → S′ fitting into Deformation Theory, Equa-
tion (7.0.1) if and only if β and α map to the same element of Ext1

OX
(Lf∗ NLS/Z,G).

Proof. This follows from Deformation Theory, Lemmas 7.4 and 7.6. □

Lemma 26.10.08UL Let (Sh(B),OB) be a ringed topos and let J be an OB-module.
(1) The set of extensions of sheaves of rings 0 → J → OB′ → OB → 0 where
J is an ideal of square zero is canonically bijective to Ext1

OB
(NLOB/Z,J ).

(2) Given a morphism of ringed topoi f : (Sh(C),O) → (Sh(B),OB), an O-
module G, an f−1OB-module map c : f−1J → G, and given extensions of
sheaves of rings with square zero kernels:
(a) 0→ J → OB′ → OB → 0 corresponding to α ∈ Ext1

OB
(NLOB/Z,J ),

(b) 0→ G → O′ → O → 0 corresponding to β ∈ Ext1
O(NLO/Z,G)

then there is a morphism (Sh(C),O′) → (Sh(B,OB′) fitting into Deforma-
tion Theory, Equation (13.0.1) if and only if β and α map to the same
element of Ext1

O(Lf∗ NLOB/Z,G).

Proof. This follows from Deformation Theory, Lemmas 13.4 and 13.6. □

https://stacks.math.columbia.edu/tag/08S8
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OBSOLETE 46

Remark 26.11.0D3H This tag used to point to a section describing several examples
of deformation problems. These now each have their own section. See Deformation
Problems, Sections 4, 5, 6, and 7.

Lemma 26.12.0D3M Deformation Problems, Examples 4.1, 5.1, 6.1, and 7.1 satisfy
the Rim-Schlessinger condition (RS).

Proof. This follows from Deformation Problems, Lemmas 4.2, 5.2, 6.2, and 7.2. □

Lemma 26.13.0D3N We have the following canonical k-vector space identifications:
(1) In Deformation Problems, Example 4.1 if x0 = (k, V ), then Tx0F = (0)

and Infx0(F) = Endk(V ) are finite dimensional.
(2) In Deformation Problems, Example 5.1 if x0 = (k, V, ρ0), then Tx0F =

Ext1
k[Γ](V, V ) = H1(Γ,Endk(V )) and Infx0(F) = H0(Γ,Endk(V )) are finite

dimensional if Γ is finitely generated.
(3) In Deformation Problems, Example 6.1 if x0 = (k, V, ρ0), then Tx0F =

H1
cont(Γ,Endk(V )) and Infx0(F) = H0

cont(Γ,Endk(V )) are finite dimen-
sional if Γ is topologically finitely generated.

(4) In Deformation Problems, Example 7.1 if x0 = (k, P ), then Tx0F and
Infx0(F) = Derk(P, P ) are finite dimensional if P is finitely generated over
k.

Proof. This follows from Deformation Problems, Lemmas 4.3, 5.3, 6.3, and 7.3. □
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